پایان نامه > کتابخانه مرکزی دانشگاه صنعتی شاهرود > علوم ریاضی > مقطع کارشناسی ارشد > سال 1389
پدیدآورندگان:
سمانه آذر بیک [پدیدآور اصلی]، جعفر فتحعلی[استاد راهنما]، داود شاهسونی[استاد راهنما]، علیرضا ناظمی[استاد مشاور]
چکیده: با پیشرفت فن آوری اطلاعات و ارتباطات و توسعه ارتباط درون سازمانی و بین سازمانی نیاز به استفاده از مدل های بهینه سازی را برای استفاده منطقی از داده ها و اطلاعات فراهم شده گسترش داده است. این مطلب متضمن بزرگ شدن اندازه مسائل بهینه سازی که در عمل وجود دارند خواهد بود. در این شرایط لزوم به کارگیری روش های کار آمدی که بتوانند با سرعت بالا مسائل بسیار بزرگ را با کیفیت قابل قبول حل کنند بیش از بیش احساس می شود. اخیراً روش های بهینه سازی که بر پایه رویکرد هوش مصنوعی توسعه یافته اند، موفقیت های چشم گیری در حل مؤثر و کارای مسائل بهینه سازی به دست آورده اند. روش هایی چون الگوریتم ژنتیک ، جستجوی ممنوع ، گرم و سرد کردن شبیه سازی شده و شبکه عصبی ، قابلیت های خود را در حل مسائل بزرگ عملی به خوبی نشان داده اند. امتیازات ویژه ی موجود در شبکه های عصبی امکان کاربرد آنها را در حوزه وسیعی از تحقیقات فراهم ساخته است. از جمله آن امتیازات می توان به امکان یادگیری و بهبود عملکرد بر اساس داده های ورودی اشاره کرد. همچنین امکان انجام محاسبات به صورت موازی در شبکه های عصبی امتیاز دیگری است که با توجه به گسترش سخت افزارهای موازی، امکان حل مسائل بسیار بزرگ را توسط این رویکرد ممکن می سازد. در این پایان نامه چند مدل مختلف شبکه عصبی بازگشتی برای حل مسائل برنامه ریزی خطی و درجه دوم ارائه می شود. تحلیل وجود یکتایی، پایداری و همگرایی سراسری جواب ها مورد بررسی قرار می گیرند و عملکرد روش های ارائه شده با به کارگیری چند مثال نشان داده می شود.
کلید واژه ها (نمایه ها):
#شبکه عصبی #برنامه ریزی خطی #برنامه ریزی درجه دوم #بهینه سازی
محل نگهداری: کتابخانه مرکزی دانشگاه صنعتی شاهرود
یادداشت: حقوق مادی و معنوی متعلق به دانشگاه صنعتی شاهرود می باشد.
تعداد بازدید کننده:
پایان نامه های مرتبط (بر اساس کلیدواژه ها)