QA237 : Boundary Element Method For The Helmholtz Equation
Thesis > Central Library of Shahrood University > Mathematical Sciences > MSc > 2014
Authors:
Abstarct: Numerical approximation for solving a differential equation has a wide range of
application in engineering and mathematics. The boundary element method is
a powerful tool for numerical approximation for a differential equation. In this
thesis we want to approximate the Helmholtz equation by the boundary element
method. This thesis organized in four sections: in the first chapter, we express
disadvantages and advantages and history of the boundary element method. In the
second chapter, we introduce some preliminaries and we describe the structure of
the boundary element method. In the third chapter, we applied boundary element
method for Laplace equation which is a special case of Helmholtz equation. Finally,
in the fourth chapter we have approximated the boundary element solution of
Helmholtz equation.
Keywords:
#Laplace equation #Helmholtz equation #boundary integral equation #discretization #boundary element method
Keeping place: Central Library of Shahrood University
Visitor:
Keeping place: Central Library of Shahrood University
Visitor: