TJ414 : Analytical Solution to Forced Convection Heat Transfer of non-Newtonian Fluid Flow through Straight Pipes
Thesis > Central Library of Shahrood University > Mechanical Engineering > MSc > 2016
Authors:
Seyed Zia Daghighi [Author], Mahmood Norouzi[Supervisor]
Abstarct: In ‎the ‎present ‎study ‎the ‎heat ‎convection ‎of ‎non-Newtonian ‎fluids ‎in ‎the ‎straight ‎pipes ‎is ‎investigated ‎analytically ‎and ‎by ‎the ‎Modal ‎analysis. ‎The ‎non-Newtonian ‎fluids ‎are ‎namely, ‎time ‎independent ‎non-Newtonian ‎Power-law fluid, ‎Viscoelastic ‎non-Newtonian ‎fluids ‎following ‎LPTT ‎and ‎FENE-P ‎models. ‎In ‎Power-law ‎fluid ‎by ‎assumption ‎of ‎thermally ‎developing ‎flow, ‎the ‎temperature ‎distribution ‎is ‎solved ‎in ‎the ‎closed ‎form ‎solutions ‎for ‎two ‎special ‎values ‎of ‎Power-law ‎indeces. ‎An ‎analytical ‎relation ‎for ‎Nusselt ‎number ‎versus ‎longitudinal ‎coordinate ‎of ‎pipe ‎is ‎derived. ‎The ‎comparison ‎of ‎the resulted local ‎Nusselt ‎numbers ‎in ‎this ‎work ‎with ‎the ‎previous ‎results, ‎reveals ‎the ‎good ‎precise ‎of ‎this ‎work. ‎the ‎temperature ‎distribution ‎of ‎Viscoelastic ‎fluids ‎considered ‎in ‎this ‎research, ‎is ‎derived ‎by ‎Frobenius series ‎Method. ‎‎By ‎affecting ‎of ‎Viscous Dissipation ‎term ‎on ‎Energy ‎equation, ‎the ‎effects ‎of ‎dimensionless ‎Brinkman ‎number ‎is ‎discussed. ‎‎It ‎is ‎revealed ‎that ‎by ‎increasing ‎of ‎the ‎level ‎of ‎elasticity ‎of ‎the ‎fluid, ‎dimensionless ‎Debora ‎number, ‎the ‎Nusselt ‎number ‎and so ‎the ‎heat ‎transfer ‎in ‎the ‎pipe ‎are ‎increased ‎because ‎of ‎the ‎enhancement ‎of ‎velocity ‎gradient ‎and ‎shear ‎rate ‎in ‎the ‎wall ‎region, ‎and ‎then ‎reduction ‎of ‎fluid ‎viscosity.‎It ‎is ‎shown ‎that ‎in ‎the ‎FENE-P Viscoelastic ‎fluid, ‎by ‎increasing ‎of ‎extensibility ‎parameter, ‎L, ‎the ‎Nusselt ‎number ‎and ‎so ‎the ‎heat ‎transfer ‎are ‎decreased. ‎‎But ‎in the ‎LPTT‎ Viscoelastic ‎fluids, ‎by ‎increasing ‎of ‎the ‎corresponding ‎extesion ‎parameter, ‎the ‎heat ‎transfer ‎and the Nusselt numbers are ‎increased. ‎As ‎we ‎know ‎the ‎Brinkman ‎number ‎is ‎because ‎of ‎considering of ‎viscous ‎dissipation ‎term ‎in ‎the ‎pipe.‎In ‎deed ‎by ‎considering ‎the ‎viscous ‎dissiaption ‎term ‎the ‎dimensionless ‎Brinkman ‎number ‎is ‎resulted. ‎‎The ‎viscous ‎dissipation ‎term ‎is ‎defined ‎as ‎the ‎tensor ‎production ‎of ‎shear ‎stress and ‎velocity ‎gradient. ‎So ‎the ‎viscous ‎dissipation ‎term ‎and ‎‎Brinkman ‎number ‎have ‎direct ‎relatin ‎with ‎velocity ‎gradient. ‎By ‎increasing ‎the ‎positive ‎Brinkman ‎numbers, ‎more ‎heat ‎is ‎produced ‎in ‎the ‎pipe. ‎Since ‎the ‎velocity ‎gradient ‎at ‎any cross ‎section ‎of ‎the ‎pipe, ‎is ‎maximum ‎in ‎the ‎wall ‎region, ‎so ‎the ‎highest ‎values ‎of ‎heat ‎generation ‎is ‎there. ‎‎The ‎results ‎reveal ‎that ‎by ‎increasing ‎of ‎the‎ ‎Brinkman ‎number, ‎the ‎Nusselt ‎number ‎and ‎so ‎the ‎heat ‎transfer ‎are ‎decreased.
Keywords:
#Forced convection #Viscoelastic Fluid #Isothermal Pipe #Brinkman number #Modal Analysis Link
Keeping place: Central Library of Shahrood University
Visitor: