TJ38 :
Thesis > Central Library of Shahrood University > Mechanical Engineering > MSc > 2009
Authors:
Abstarct: This thesis exhibits a new structural model for prediction of the mechanical properties of carbon nanotubes. In addition to, the influence of various vacancy defects on the critical buckling loads and strains in carbon nanotubes under axial compression is investigated via a new structural model in ABAQUS software. The necessity of desirable conditions and expensive tests for experimental methods, in addition to the time expenditure required for atomic simulations, are the motivation for this work, which, in addition to yielding accurate results, avoids the obstacles of the previous methods. In fact, this model is a combination of other structural models designed to eliminate the deficiencies inherent in individual approaches. Because the present model is constructed in the CAE space of ABAQUS, there is no need to program for different loading and boundary conditions. A nonlinear connector is considered for modeling of stretching and torsional interactions, and a nonlinear spring is used for modeling of the angle variation interactions. A Morse potential is employed for stretching and bending potentials, and a periodic type of bond torsion is used for torsion interactions. The effect of different types of vacancy defects at various locations on the mechanical properties and the critical buckling loads and strains is studied for zigzag and armchair nanotubes with various aspect ratios (Length/Diameter). Comparison of our results with those of buckling of shells with cutouts indicates that vacancy defects in the carbon nanotubes can most likely be modeled as cutouts of the shells. Finally, results of the present structural model are compared with those from molecular dynamics (MD) simulation and show good agreement between our model and the MD model.
Keywords:
#
Keeping place: Central Library of Shahrood University
Visitor:
Keeping place: Central Library of Shahrood University
Visitor: