QC373 : Design of an appropriate shielding and moderator for an Am-Be neutron source in order to increase thermal neutron flux using Monte Carlo method
Thesis > Central Library of Shahrood University > Physics > MSc > 2017
Authors:
Hamid Basiri [Author], Hossein Tavakoli Anbaran[Supervisor]
Abstarct: ‏ [1] K.-H. Beckurts and K. Wirtz، Neutron Physics. Springer Science & Business Media، 2013. [2] H. P. gen Schieck، Nuclear Reactions: An Introduction. Springer، 2014. [3] P. Reuss، Neutron Physics. EDP Sciences، 2008. [4] W. E. Meyerhof، Elements of Nuclear Physics. McGraw Hill Book Company، 1989. [5] K. K. S، Introductory Nuclear Physics. Wiley India، 2008. [6] A. Kamal، Nuclear Physics. Springer، 2014. [7] Z. B. Alfassi، Chemical Analysis by Nuclear Methods. Wiley، 1994. [8] R.J. Holmes، ، Gamma-Ray and Neutron Sources، Chap. 3. International Atomic Energy Agency. [‏[9 J. Zhang and X. Tuo، “PGNAA neutron source moderation setup optimization”، ArXiv13091308 Phys.، Sep. 2013. [10] Y. Zongyuan، L. Jingwen، Y. Gang and S. Detang، “High energy γ-radioactive source–A new application of Am-Be neutron source”، Chin. Phys. Lett.، vol. 3، no. 7، p. 301، 1986 [11] Eckert and Ziegler، Sealed Radiation Sources Product Information. Nuclitec GmbH، 2009. [12] N. R. Council، D. on E. and L. Studies، N. and R. S. Board and C. on R. S. U. and Replacement، Radiation Source Use and Replacement: Abbreviated Version. National Academies Press، 2008. [13] Neutron Generators for Analytical Purposes. Vienna: International Atomic Energy Agency، 2012. [14] P. B.B.Srivastava، Nuclear Physics. Rastogi Publications، 2011. [15] D. P. Riley، E. H. Kisi، T. C. Hansen and A. W. Hewat، “Self-Propagating High-Temperature Synthesis of Ti3SiC2: I, Ultra-High-Speed Neutron Diffraction Study of the Reaction Mechanism”، J. Am. Ceram. Soc.، vol. 85، no. 10، pp. 2417–2424، Oct. 2002. [16] F. Shu، V. Ramakrishnan and B. P. Schoenborn، “Enhanced visibility of hydrogen atoms by neutron crystallography on fully deuterated myoglobin”، Proc. Natl. Acad. Sci. U. S. A.، vol. 97، no. 8، pp. 3872–3877، Apr. 2000. [17] A. E.-G. E. Abd and J. J. Milczarek، “Neutron radiography study of water absorption in porous building materials: anomalous diffusion analysis”، J. Phys. Appl. Phys.، vol. 37، no. 16، p. 2305، 2004. ‏ [18] IAEA F1-RC-925-2، Summary report on Development of improved sources and imaging systems for neutron radiography. [‏[19 W. V. Nunes، A. X. da Silva، V. R. Crispim and R. Schirru، “Explosives detection using prompt-gamma neutron activation and neural networks”، Appl. Radiat. Isot.، vol. 56، no. 6، pp. 937–943، Jun. 2002. [20] G. F. Knoll، Radiation Detection and Measurement. John Wiley & Sons، 2010. [21] S. B. Dowd and E. R. Tilson، Practical Radiation Protection and Applied Radiobiology. W.B. Saunders، 1999. [22] M. H. Kharita، S. Yousef and M. AlNassar، “Review on the addition of boron compounds to radiation shielding concrete”، Prog. Nucl. Energy، vol. 53، no. 2، pp. 207–211، Mar. 2011 [23] A. B. Chilton، J. K. Shultis and R. E. Faw، Principles of radiation shielding. Prentice Hall PTR، 1984. [24] E. J. Hall and A. J. Giaccia، Radiobiology for the Radiologist. Lippincott Williams & Wilkins، 2006. [25] K. D. Kok، Nuclear Engineering Handbook. CRC Press، 2009. [26] J. E. Turner، Atoms, Radiation, and Radiation Protection. John Wiley & Sons، 2008. [27] J. R. Lamarsh and A. J. Baratta، Introduction to Nuclear Engineering. Pearson Education, Limited، 2017. [28] W. M. Stacey، Nuclear Reactor Physics. John Wiley & Sons، 2007. [29] J. M. Beeston، “Beryllium mextal as a neutron moderator and reflector material”، Nucl. Eng. Des.، vol. 14، no. 3، pp. 445–474، Feb. 1971 [30] D. J. Bennet and J. R. Thomson، The elements of nuclear power. Longman [‏‏[31 A. A. Naqvi، M. S. Abdelmonem، G. Al-Misned and H. Al-Ghamdi، “New source–moderator geometry to improve performance of 252Cf and 241Am–Be source-baxsed PGNAA setups”، Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip.، vol. 562، no. 1، pp. 358–364، Jun. 2006. ‏[32] س. پ. شیرمردی، ع. طاهری و ج. امیری، کاربرد کد شبیه سازی MCNP در محاسبات هسته ای. کرج: سنوبرک، 1389. [‏[33 R. Bedogni، C. Domingo، N. Roberts، D. J. Thomas، M. Chiti، A. Esposito، M. J. Garcia، A. Gentile، Z. Z. Liu and M. de-San-Pedro، “Investigation of the neutron spectrum of americium–beryllium sources by Bonner sphere spectrometry”، Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip.، vol. 763، pp. 547–552، Nov. 2014. [‏[34 ISO 8529:1989، Neutron reference radiations for calibrating neutron-measuring devices used for radiation protection purposes and for determining their response as a function of neutron energy. International Organization for Standardization، 1989. [‏[35 R. J. McConn Jr، C. J. Gesh، R. T. Pagh، R. A. Rucker and R. G. Williams III، “Compendium of material composition data for radiation transport modeling”، PNNL-15870 Rev، vol. 1، no. 4، 2011. ‏[36] م. وفابخش و ی. ریاضی، راهنمای استفاده از کد شبیه سازی MCNP4C. تهران: اندیشه سرا، 1389. [‏[37 A. L. Schwarz and R. A. Schwarz، MCNP/MCNPX Visual Editor Computer Code Manual. 2008. [38] C. R. Russell، Reactor Safeguards. Elsevier، 2013. ‏ [39] V. S. jr and W. M. Murphey، “Calculation of Thermal Neutron Absorption in Cylindrical and Spherical Neutron Sources”، Metrologia، vol. 7، no. 1، p. 34، 1971. [40] B. Aygün and G. Budak، “A new neutron absorber material: Oil loaded paraffin wax”، Nucl. Sci. Technol.، pp. 33–39، 2012. [‏[41 D. Harder and K.-P.Hermann، “Tissue-Equivalent Materials and the ICRU Sphere”، Radiat. Prot. Dosimetry، vol. 12، no. 2، pp. 125–128، Aug. 1985. Abstract The neutron is an unstable particle with a short half-life of about eleven minutes and should be artificially produced for use in industry, medicine, and research. Nuclear reactors are known as the most important neutron source, but their huge dimensions and the high technology involved, the safety and security concerns, and the costly maintenance and repair, have made it impossible to use in many ways. (α,n) sources are an approporiate alternative to fission nuclear reactors. In this study, the most commonly used neutron source, Am-Be, has been used. The neutrons produced from this source have different energies in the 0-11 MeV range. In order to slow down non-thermal neutrons and increase the flux of thermal neutrons, a moderator is used around the source. In this study, Am-Be neutron source in different moderators was simulated by use of MCNP Monte Carlo code and the best moderator and its optimized thickness for using thermal neutrons has been proposed. Then the effect of adding a reflector and neutron multiplier material to the source has been investigated. finally, appropriate sheilding for the final configuration was studied in order to minimize biological damage when working with the neutron source. The performed simulations indicated that using a spherical moderator instead of common cylindrical moderators can lead to an increase in thermal neutron flux. Among the different moderators, paraffin produced the highest flux of thermal neutrons. Moreover, beryllium was established as the best neutron reflector and multiplier to increase the thermal flux of an Am- Be neutrons source. After all, the most suitable shield to have the minimum equivalent dose in an ICRU sphere was proposed. The final proposed configuration includes a paraffin sphere of radius 7 cm, beryllium with the thickness of 23 cm and again paraffin with a thickness of 31 cm and Kennetium alloy with a thickness of 7 cm. The thermal neutron flux in a distance between 4 to 7 cm is maximum.
Keywords:
#Thermal neutron #Neutron source #Moderator #Shielding #Am-Be Link
Keeping place: Central Library of Shahrood University
Visitor: