QD381 : Application of vortex assisted-liquid phase microextraction by an amine-baxsed ligand as complexing agent and solvent extraction for determination of trace amount of Copper (II) by flame atomic absorption
Thesis > Central Library of Shahrood University > Chemistry > MSc > 2021
Authors:
Zahra Fallahi [Author], Naser Goudarzi[Supervisor], Mansour Arab Chamjangali[Advisor]
Abstarct: [1] G. W. C. Kaye , T. H. Laby, Tables of Physical and Chemical Constants, Longman, 16th Edition, 1995. . [2] “www.ngdir.com.” . [3] H. Wayne Richardson, Handbook of copper compounds and applications, CRC Press, New York, USA, 1997. . [4] “D. Lide, Handbook of Chemistry and Physics, CRC Press, Florida, USA, 2004.” [5] W. F. Smith, J. Hashemi, (2003). Foundations of Materials Science and Engineering.McGraw-Hill Professional. p. 223. . [6] L. Engström,A.G. Aurubis , The Copper Book for Architecture, Sweden, Second edition 2013. . [7] “https://www.verywellhealth.com/copper-benefits-4178854.” . [8] M. Hassan, Z. Erbas, U. Alshana, and M. Soylak, “Ligandless reversed-phase switchable-hydrophilicity solvent liquid–liquid microextraction combined with flame-atomic absorption spectrometry for the determination of copper in oil samples,” Microchem. J., vol. 156, no. February, p. 104868, 2020, doi: 10.1016/j.microc.2020.104868. [9] M. Harja, G. Buema, N. Lupu, H. Chiriac, D. D. Herea, and G. Ciobanu, “Fly ash coated with magnetic materials: Improved adsorbent for cu (ii) removal from wastewater,” Materials (baxsel)., vol. 14, no. 1, pp. 1–18, 2021, doi: 10.3390/ma14010063. [10] N. Almasoud et al., “Nano-clay as a solid phase microextractor of copper, cadmium and lead for ultra-trace quantification by ICP-MS,” Anal. Methods, vol. 12, no. 41, pp. 4949–4955, 2020, doi: 10.1039/d0ay01343a. [11] N. Jalbani and S. Bhutto, “Application of a Graphene Oxide for Determination of Cadmium , Lead , Copper and Zinc ions at Trace Level in Personal Care Products using Solid Phase Extraction by Atomic Absorption Spectrometry : A Multivariate Study,” no. July, 2020. [12] P. Viñas, N. Campillo, and V. Andruch, “Recent achievements in solidified floating organic drop microextraction,” TrAC - Trends Anal. Chem., vol. 68, pp. 48–77, 2015, doi: 10.1016/j.trac.2015.02.005. [13] E. A. Al-Harbi and M. S. El-Shahawi, “Square Wave-Anodic Stripping Voltammetric Determination of Copper at a Bismuth Film/Glassy Carbon Electrode Using 3-[(2-Mercapto-Vinyl)-Hydrazono]- 1,3-Dihydro-Indol-2-One,” Electroanalysis, vol. 30, no. 8, pp. 1829–1838, 2018, doi: 10.1002/elan.201800092. [14] K. Adhami, H. Asadollahzadeh, and M. Ghazizadeh, “Preconcentration and determination of nickel (II) and copper (II) ions, in vegetable oils by [TBP] [PO4] IL-baxsed dispersive liquid–liquid microextraction technique, and flame atomic absorption spectrophotometry,” J. Food Compos. Anal., vol. 89, no. January, p. 103457, 2020, doi: 10.1016/j.jfca.2020.103457. [15] C. Karadaş and D. Kara, “Dispersive liquid–liquid microextraction baxsed on solidification of floating organic drop for preconcentration and determination of trace amounts of copper by flame atomic absorption spectrometry,” Food Chem., vol. 220, pp. 242–248, 2017, doi: 10.1016/j.foodchem.2016.09.005. [16] Y. Çağlar and E. T. Saka, “Ionic liquid baxsed dispersive liquid–liquid microextraction procedure for the spectrophotometric determination of copper using 3-dimethylamino rhodanine as a chelating agent in natural waters,” Karbala Int. J. Mod. Sci., vol. 3, no. 4, pp. 185–190, 2017, doi: 10.1016/j.kijoms.2017.09.002. [17] Werner, Justyna. "Ionic liquid ultrasound-assisted dispersive liquid-liquid microextraction baxsed on solidification of the aqueous phase for preconcentration of heavy mextals ions prior to determination by LC-UV." Talanta 182 (2018): 69-73. [18] N. Altunay, A. Elik, and R. Gürkan, “Monitoring of some trace mextals in honeys by flame atomic absorption spectrometry after ultrasound assisted-dispersive liquid liquid microextraction using natural deep eutectic solvent,” Microchem. J., vol. 147, pp. 49–59, 2019, doi: 10.1016/j.microc.2019.03.003. [19] Bagherian, Ghadamali, et al. "Determination of copper (II) by flame atomic absorption spectrometry after its perconcentration by a highly selective and environmentally friendly dispersive liquid–liquid microextraction technique." Journal of Analytical Science and Technology 10.1 (2019): 1-11. [20] U. Divrikli, F. Altun, A. Akdoğan, M. Soylak, and L. Elçi, “An efficient green microextraction method of Co and Cu in environmental samples prior to their flame atomic absorption spectrometric detection,” Int. J. Environ. Anal. Chem., vol. 7319, 2020, doi: 10.1080/03067319.2020.1711891. [21] M. Akl, A. Molouk, and A. AL-Rabasi, “Cloud point extraction and FAAS determination of copper(II) at trace level in environmental samples using N-benzamido-N’-benzoylthiocarbamide and CTAB,” Egypt. J. Chem., vol. 0, no. 0, pp. 0–0, 2020, doi: 10.21608/ejchem.2020.36387.2752. [22] F. De S Dias, S. C. De S R Neto, L. De N Pires, and V. A. Lemos, “Emulsification solidified floating organic drop microextraction assisted by ultrasound for the determination of nickel, cobalt and copper in oyster and fish samples,” Anal. Methods, vol. 12, no. 6, pp. 865–871, 2020, doi: 10.1039/c9ay02453k. [23] N. Ozkantar, E. Yilmaz, M. Soylak, and M. Tuzen, “Pyrocatechol violet impregnated magnetic graphene oxide for magnetic solid phase microextraction of copper in water, black tea and diet supplements,” Food Chem., vol. 321, no. March, p. 126737, 2020, doi: 10.1016/j.foodchem.2020.126737. [24] R. El Sheikh, M. Shaltout, K. El Nabawy, and A. A. Gouda, “A Green Enrichment Method of Copper, Manganese and Nickel in WaterSamples via Cloud Point Extraction,” Anal. Bioanal. Chem. Res., vol. 7, no. 1, pp. 49–60, 2020. [25] A. Mehdinia, M. Salamat, and A. Jabbari, “Preparation of a magnetic polystyrene nanocomposite for dispersive solid-phase extraction of copper ions in environmental samples,” Sci. Rep., vol. 10, no. 1, pp. 1–8, 2020, doi: 10.1038/s41598-020-60232-x. [26] R. M. Smith, “Before the injection - Modern methods of sample preparation for separation techniques,” J. Chromatogr. A, vol. 1000, no. 1–2, pp. 3–27, 2003, doi: 10.1016/S0021-9673(03)00511-9. [27] B. Buszewski and T. Ligor, “LOGC Europe February 2002 Single-Drop Extraction versus Solid-Phase Microextraction for the Analysis of VOCs in Water,” LC GC Eur., vol. 15, no. 2, pp. 92–97, 2002. [28] Y. He and H. K. Lee, “Combination of solid-phase extraction and field-amplified concentration for trace analysis of organonitrogen pesticides by micellar electrokinetic chromatography,” Electrophoresis, vol. 18, no. 11, pp. 2036–2041, 1997, doi: 10.1002/elps.1150181126. [29] E. Psillakis and N. Kalogerakis, “Developments in liquid-phase microextraction,” TrAC - Trends Anal. Chem., vol. 22, no. 9, pp. 565–574, 2003, doi: 10.1016/S0165-9936(03)01007-0. [30] T. S. Ho, J. L. E. Reubsaet, H. S. Anthonsen, S. Pedersen-Bjergaard, and K. E. Rasmussen, “Liquid-phase microextraction baxsed on carrier mediated transport combined with liquid chromatography-mass spectrometry: New concept for the determination of polar drugs in a single drop of human plasma,” J. Chromatogr. A, vol. 1072, no. 1, pp. 29–36, 2005, doi: 10.1016/j.chroma.2004.11.078. [31] M. A. Farajzadeh and M. R. A. Mogaddam, “Air-assisted liquid-liquid microextraction method as a novel microextraction technique; Application in extraction and preconcentration of phthalate esters in aqueous sample followed by gas chromatography-flame ionization detection,” Anal. Chim. Acta, vol. 728, pp. 31–38, 2012, doi: 10.1016/j.aca.2012.03.031. [32] S. Dadfarnia and A. M. Haji Shabani, “Recent development in liquid phase microextraction for determination of trace level concentration of mextals-A review,” Anal. Chim. Acta, vol. 658, no. 2, pp. 107–119, 2010, doi: 10.1016/j.aca.2009.11.022. [33] M. R. Khalili Zanjani, Y. Yamini, S. Shariati, and J. Å. Jönsson, “A new liquid-phase microextraction method baxsed on solidification of floating organic drop,” Anal. Chim. Acta, vol. 585, no. 2, pp. 286–293, 2007, doi: 10.1016/j.aca.2006.12.049. [34] M. I. Leong and S. Da Huang, “Dispersive liquid-liquid microextraction method baxsed on solidification of floating organic drop for extraction of organochlorine pesticides in water samples,” J. Chromatogr. A, vol. 1216, no. 45, pp. 7645–7650, 2009, doi: 10.1016/j.chroma.2009.09.004. [35] M. I. Leong and S. Da Huang, “Dispersive liquid-liquid microextraction method baxsed on solidification of floating organic drop combined with gas chromatography with electron-capture or mass spectrometry detection,” J. Chromatogr. A, vol. 1211, no. 1–2, pp. 8–12, 2008, doi: 10.1016/j.chroma.2008.09.111. [36] M. J. Trujillo-Rodríguez, P. Rocío-Bautista, V. Pino, and A. M. Afonso, “Ionic liquids in dispersive liquid-liquid microextraction,” TrAC - Trends Anal. Chem., vol. 51, pp. 87–106, 2013, doi: 10.1016/j.trac.2013.06.008. [37] E. Ranjbari and M. R. Hadjmohammadi, “Magnetic stirring-assisted dispersive liquid-liquid microextraction followed by high performance liquid chromatography for determination of phthalate esters in drinking and environmental water samples,” Talanta, vol. 100, pp. 447–453, 2012, doi: 10.1016/j.talanta.2012.08.019. [38] Habila, M. A., et al. "A new amine baxsed microextraction of lead (II) in real water samples using flame atomic absorption spectrometry." Microchemical Journal 148 (2019): 214-219. [39] “جعفری ، م ،(1397) پایان نامه ارشد : "کاربرد میکرواستخراج فاز مایع بدون لیگاند بر مبنای حلال یوتکتیک ژرف برای اندازه گیری مقادیر کم سرب در روغن های خوراکی با اسپکترومتری جذب اتمی شعله " ، دانشکده شیمی ، دانشگاه صنعتی شاهرود.” [40] داگلاس ای، اسگوک، جیمز جی لری، (1380) ،"اصول تجزیه دستگاهی"، جلد اول ، ترجمه ژیلا آزاد ، کارگشا ، چاپ اول ، نشر دانشگاهی تهران ، ص 170-158. . [41] رابینسون ، ج ، د،(1371)"اسپکترومتری جذب اتمی"،پوررضا، ن ، چاپ اول ، دانشگاه شهید چمران اهواز، ص 10-9. . [42] Sorouraddin, Saeed Mohammad, Mir Ali Farajzadeh, and Tohid Okhravi. "Cyclohexylamine as extraction solvent and chelating agent in extraction and preconcentration of some heavy mextals in aqueous samples baxsed on heat-induced homogeneous liquid-liquid extraction." Talanta 175 (2017): 359-365. [43] Smith, Roger M. "Before the injection—modern methods of sample preparation for separation techniques." Journal of chromatography A 1000.1-2 (2003): 3-27. [44] Farajzadeh, Mir Ali, Morteza Bahram, and Jan Åke Jönsson. "Dispersive liquid–liquid microextraction followed by high-performance liquid chromatography-diode array detection as an efficient and sensitive technique for determination of antioxidants." Analytica Chimica Acta 591.1 (2007): 69-79. [45] Tokalıoğlu, Şerife, and Fatma Gürbüz. "Selective determination of copper and iron in various food samples by the solid phase extraction." Food Chemistry 123.1 (2010): 183-187., Mir Ali, Morteza Bahram, and Jan Åke Jönsson. "Dispersive liquid–liquid microextraction followed by high-performance liquid chromatography-diode array detection as an efficient and sensitive technique for determination of antioxidants." Analytica Chimica Acta 591.1 (2007): 69-79. Abstract In this study, the liquid phase microextraction method using vortex has been used as a simple, fast and efficient method for selective extraction of trace amounts of copper(II) ion. The extraction solvent and complexing agent in the suggested approach was N,N-Dimethyl-n-octylamine , which may form a hydrophobic complex with copper(II) ion. The copper(II) ion values were determined using a flame atomic absorption spectroscopy (FAAS). Additionally, in the present study, the vortex was empolyed for the elemination of the dispersive solvent. The effect of different parameters on extraction efficiency such as pH, type and volume of buffer, volume of ligand (as extracting solvent and complexing agent), aqueous phase volume, temperature, vortex time, ionic strength, salt type, centrifuge time, centrifuge speed were investigated and optimized. Under the optimal conditions, the linear range of the calibration curve is 0/005-0/3 mg/L, the detection limit is 0/00093 mg/L, and the pre-concentration factor is 22/6. Relative standard deviation values for repetitive measurements at concentrations of 0/04, 0/08 and 0/240 mg/L were achieved 2/5%, 4/87% and 1/64%, respectively. This method has been successfully used for the measurement of copper(II) ions in water and tea real samples.
Keywords:
#Copper(II) #Liquid phase microextractio #N #N-Dimethyl-n-octylamine #Flame atomic absorption spectrometry Keeping place: Central Library of Shahrood University
Visitor: