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 اثر تقديم

 با که عزیزم همسر و محترم خانواده به تحقیق نای  در را  خود یماههن چندی  تلاش تمامی
 نامهپایان بهتر چه هر پیشرفت در را  دریغشان،اینجانب بی هایهمراهی و هحوصل  و صبر

  .نمايم می تقديم ند،انموده مساعدت و ی یار
‌  



 ج‌

 

 قدردانی و تشكر

وند الطاف سایه در که  اکنون نم لازم خود بر است، رسیده انجام به نامهپایان نای  متعال خدا  از میدا
-بی هایهتوصی  راهنما استاد منصب در که  دکتر محمّدباقر نظری آقایجناب  بزرگوارم زحمات فراوان استاد

 جابه را  سپاس مراتب اند،نموده ارائه  پروژه گردآوری گیری صحیح،  تدوین و  جهت در را  دخو یهشائب 
راهنمایی های خود بنده با دکتر مسعود مهدی زاده رخی که  آقایجناب   زحمات خالصانه از ینهمچن  .آورم

 را یاری نموده اند،بسیار متشكرم.
 هایحمایت و صدر هسع  با که کسانییزم آقایان مهندس وحید عصمتی و مهندس محمد کرمی و کلیه دوستان عز

 از و نمايم می قدردانی و تشكر خالصانه ند،ارسانده یاری  تحقیق نای  ثمررساندن به در را  اینجانب دریغ،بی
 .خواستارم را  ایشان روزافزون توفیق منان ایزد درگاه
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 تعهد نامه

‌مکانیکدانشکده‌‌طراحی کاربردی -مهندسی مکانیک دانشجوی‌دوره‌کارشناسی‌ارشد‌رشته‌‌وحید جعفریجانب‌این

دارای ترک تحت شوک دمایی به روش المان  ایزوتروپیکمطالعه محیط دانشگاه‌صنعتی‌شاهرود،‌نویسنده‌پایان‌نامه‌

دکتر محمدباقر نظری و دکتر تحت‌راهنمایی‌ تیزو -با در نظر گرفتن تئوری چاندراساخاریا یافته  توسعهمحدود 

‌شوم:متعهد‌می‌زاده رخی مسعود مهدی

‌است.‌شده‌انجام*‌تحقیقات‌در‌این‌پایان‌نامه‌توسط‌اینجانب‌

‌استناد‌شده‌است.‌مورداستفادههای‌محققان‌دیگر‌به‌مرجع‌*‌در‌استفاده‌از‌نتایج‌پژوهش

ود‌یا‌فرد‌دیگری‌برای‌دریافت‌هیچگونه‌مدرک‌یا‌امتیازی‌در‌هیچ‌جا‌ارائه‌*‌مطالب‌مندرج‌در‌پایان‌نامه‌تاکنون‌توسط‌خ

‌نشده‌است.‌

دانشگاه‌صنعتی‌شاهرود‌»‌باشد‌و‌مقالات‌مستخرج‌با‌نام‌*‌کلیه‌حقوق‌معنوی‌این‌اثر‌متعلق‌به‌دانشگاه‌صنعتی‌شاهرود‌می

‌به‌چاپ‌خواهد‌رسید.«‌‌Shahrood University of Technology»و‌یا‌«‌

نامه‌‌اند‌در‌مقالات‌مستخرج‌از‌پایانگذار‌بوده‌تأثیرآمدن‌نتایج‌اصلی‌پایان‌نامه‌‌به‌دستوق‌معنوی‌تمام‌افرادی‌که‌در‌*‌حق

‌گردد.رعایت‌می

*‌در‌کلیه‌مراحل‌انجام‌این‌پایان‌نامه‌در‌مواردی‌که‌به‌حوزه‌اطلاعات‌شخصی‌افراد‌دسترسی‌یافته‌یا‌از‌آن‌استفاده‌شده‌

‌ضوابط‌و‌اصول‌اخلاق‌انسانی‌رعایت‌شده‌است.است،‌اصل‌رازداری،‌

‌تاریخ‌:‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌

 امضای‌دانشجو‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌

‌

 مالکیت نتایج و حق نشر

ای،‌نرم‌افزارها‌و‌...(‌متعلق‌های‌رایانهعنوی‌این‌اثر‌و‌محصولات‌آن‌)مقالات‌مستخرج،‌کتاب،‌برنامه*‌کلیه‌حقوق‌م

‌باشد.‌به‌دانشگاه‌صنعتی‌شاهرود‌می

‌باشد.بدون‌ذکر‌منبع‌مجاز‌نمی‌پایان‌نامه*‌استفاده‌از‌اطلاعات‌و‌نتایج‌موجود‌در‌





 

 و‌ 

 

 چکیده

است.‌ک‌حرارتی‌مورد‌مطالعه‌قرار‌گرفتهدارای‌ترک‌ساکن‌تحت‌شو‌پیکایزوترونامه‌یک‌محیط‌در‌این‌پایان

‌ ‌این‌تحقیق‌از ‌‌معادلاتدر ‌نظر‌گرفتن‌تئوری‌چاندراساخاریا ‌در تیزو‌‌-ترموالاستیسیته‌دینامیکی‌کوپل‌با

‌بعدی‌بیمعادلات‌در‌فضاسازی‌المان‌محدود‌توسعه‌یافته،‌گسسته‌.‌با‌بهره‌گیری‌از‌روشاست‌استفاده‌شده

چند‌در‌نهایت‌‌کنش‌استفاده‌شده‌است..‌برای‌محاسبه‌ضرایب‌شدت‌تنش‌از‌انتگرال‌بر‌هماستجام‌شده‌ان

در‌امتداد‌‌yو‌‌‌xهایجایی،‌تنش‌در‌جهت‌محورتوزیع‌دما‌،‌جابه‌حل‌شده‌و‌عددیبا‌استفاده‌از‌روش‌مثال‌

‌ ‌همچنین ‌است. ‌بدست‌آمده ‌همگن ‌یک‌لایه ‌و ‌بررسی ‌تنش‌تحت‌شوک‌دمایی ‌تئوری‌ضرایب‌شدت با

جایی‌و‌تنش‌بر‌بهجا،نتایج‌نشان‌می‌دهد‌که‌سرعت‌موج‌دما .تاس‌گردیدهترموالاستیک‌کلاسیک‌مقایسه‌

‌ ‌چاندراساخاریا ‌تئوری ‌می‌-اساس ‌محدود ‌کلاسیک ‌ترموالاستیسیته ‌تئوری ‌برخلاف ‌همچنین‌تیزو باشد.

‌جایی‌و‌تنش‌ماکزیمم‌مقادیر‌جابه ‌دیواره‌تحت‌ت‌-بر‌اساس‌تئوری‌چاندراساخاریا یزو‌در‌فاصله‌کمتری‌از

‌،شوک‌حرارتی‌اتفاق‌می‌افتد ‌‌بیشینهو ‌بارگذاری‌های‌-و‌Iضریب‌شدت‌تنش‌مود ضریب‌‌-نامتقارن‌‌در

‌تئوری‌چاندراساخاریا‌بزرگتربر‌اساس‌تئوری‌ترموالاستیسیته‌کلاسیک‌‌IIشدت‌تنش‌مود‌ ‌و‌-از ‌بوده تیزو

 زودتر‌اتفاق‌می‌افتد.
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تئوری‌یافته،‌ترموالاستیسیته‌تعمیم،‌شوک‌گرمایی،‌یافته‌‌توسعهیب‌شدت‌تنش،‌المان‌محدود‌ضر

‌.  تیزو -چاندراساخاریا
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 هافهرست علامت

A ( ،مساحت المانm
2) 

A
mمساحت ناحیه انتگرال برهمکنش، ) *

2) 

A ( ،طول ترکm) 

A ای مربوط به توابع شکل المان محدود بردار مجهولات گره 

B کالبدی بر واحد حجم، ) بردار نیرویN/m
3) 

B شده با تابع هویسایدای مربوط به توابع شکل غنیبردار مجهولات گره 

C شده نوک ترکای مربوط به توابع شکل غنیبردار مجهولات گره 

[C] ماتریس میرایی 

𝑪𝑻 سرعت موج دما 

E ( ،مدول یانگN/m
2) 

F بردار نیروهای گره( ،ایN) 

Fm سازی نوک ترک، ) نیتوابع غm
0.5) 

H تابع هویساید 

K ( ،هدایت گرماییW/(m.
◦
K)) 

[K] ماتریس سفتی 

                 𝑲𝑻 ضریب شدت شار گرمایی 

𝑲𝑰 ( ،ضریب شدت تنش مد اولN.m
-1.5) 

𝑲𝑰𝑰 ( ،ضریب شدت تنش مد دومN.m
-1.5) 

𝒍 طول مشخصه 

[M] ( ،ماتریس جرمkg) 

M انتگ( ،رال برهمکنشN/m) 

N تابع شکل روش المان محدود 

𝐍𝐀 های شبکهمجموعه گره 

𝐍𝐇 های اطراف مسیر ترکمجموعه گره 



 ک‌

 

𝐍𝐂 های نوک ترکهای المانمجموعه گره 

Q بعد تابع وزنی برای محاسبه انتگرال برهمکنش، بی 

qi های بردار شار گرمایی بر واحد سطح، ) مؤلفهW/m
2) 

R ( ،گرمای تولیدشده بر واحد حجمW/m
3) 

R ( ،مؤلفه دستگاه مختصات قطبیm) 

T ( ،دماK) 

Tr ( ،بردار نیروی سطحی بر واحد سطحN/m
2) 

T ( ،زمانsec) 

U جایی  بردار جابه 

V ( ،حجمm
3) 

𝒗  سرعت مشخصه(m/s) 

W ( ،عرض نمونهm) 

W چگالی انرژی کرنشی مکانیکی 

X1 و   X2 مؤلفه ( ،های دستگاه مختصات دکارتی سراسریm) 

x1 و x2 مؤلفه ( ،های دستگاه مختصات دکارتی محلیm) 

𝚭 تابع فاصله علامت( ،دارm) 

 

 

 

 

 

 

 

 

 



 ل‌

 

 های یونانیعلامت

𝜶 ( ،1ضریب انبساط گرمایی/
◦
C) 

𝜷  دما-تانسور مدول تنش 

𝜹𝒊𝒋 بعد دلتای کرونکر، بی 

𝜺 بعد تانسور کرنش، بی 

𝜽 ( ،تغییر دماK) 

𝝁 و   𝝀 ( ،ثوابت لامهN/m
2) 

𝝂 بعد نسبت پواسون، بی 

𝝆 ( ،چگالیkg/m
3) 

𝝋 بعد مؤلفه دستگاه مختصات قطبی، بی 

𝝈 ( ،تانسور تنشN/m
2) 

 بردار مجهولات گره ای ∆

𝚽 بعد های مسیر ترک، بیشده برای المان تابع شکل غنی 

𝚿 بعد های نوک ترک، بینشده برای الما تابع شکل غنی 

𝝎 بعد های مختصات محلی و سراسری، بیزاویه بین دستگاه 

  𝜉, 𝜂    مولفه های دستگاه مختصات محلی در المان های ایزوپارامتریک    

ها بالانویس   

S نهی مربوط به حالت برهم 

T مربوط به دما 

v و   u  ات افقی و قائم به ترتیب مربوط به جابجایی در جهت محورهای مختص 

  ها زیرنویس

𝒈 دهنده مختصات سراسری نشان 

i   شمارنده، مربوط به مؤلفهx دستگاه مختصات دکارتی 

J  شمارنده، مربوط به مؤلفهy دستگاه مختصات دکارتی 



 م‌

 

L دهنده مختصات محلی شمارنده مربوط به توابع شکل و همچنین نشان 

M نوک ترک  سازی شمارنده، مربوط به توابع غنی 

N های دستگاه مختصات و مؤلفه ها، گام زمانیشمارنده، مربوط به گره 
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 مقدمه 1-1
ثل مها و مخازن تحت فشار در تجهیزات مهندسی مدرن هایی مثل لولهای از جمله سازهبسیاری از قطعات استوانه

، ]1[هایی چون ذوب سطحی فلزات ایکس و لیزر و در فرآیندهای تولید و انتقال اشعهای، دستگاهراکتورهای هسته

 گرماییهدایت‌همچنین مخازن گازهای مایع در صنایع هوافضا، تحت  و  ]2[سرامیک ها دهی فلزات با نانوپوشش

ها، ارزیابی دقیق ایمنی، تخمین عمر و رک در این سازهیا ت گیرند. با توجه به امکان وجود عیبسریع قرار می

ر و گرادیان های تحت فشااز میان انواع ترک ها در استوانهظرفیت تحمل بار آنها مستلزم بررسی رفتار ترک است. 

 ].3[ ترین وضعیت را خواهند داشتبحرانی 2های محیطیو ترک 1های طولیها شامل ترکدما، دو دسته از ترک

یک تاثیر براساس این تئوری، شود. می مسئلهه معادله حاکم سهموی در گرمایی فوریه منجر بری مرسوم هدایتتئو

قبول نیست.  شود که از نظر فیزیکی قابلاصله در نقاط دور از آن احساس میگرمایی در مرز یک جسم بلاف اغتشاش

 های زماندر  3های گرماییی پایین، شوکتشاش گرمایی در دماهاها در مواردی چون اغاز طرف دیگر، آزمایش

. در این موارد، نتایج ]4[ند کسرعت محدود موج گرما را تأیید میهای گرمایی در مقیاس میکرو، کوتاه و هدایت

-ت بیانون فوریه، منجر شدن به سرع. مهمترین نقص ق]5[د نکاربرد قانون فوریه با نتایج تجربی اختلاف فاحش دار

اند. در ارائه شده 4افته ترموالاستیسیتهیهای مختلف تعمیمی است. برای رفع این مشکل، تئورینهایت موج گرمای

قیق نیست. برای دهد، توزیع دمای حاصل از قانون فوریه به اندازه کافی دگرمایی سریع رخ میمواردی که هدایت

 های زمانق لیزر قرار گرفته است، در ت گرمایش سریع از طریگیری شده در باریکه نازکی که تحمثال دمای اندازه

گراد بیشتر از دمایی است که توسط قانون فوریه درجه سانتی 300شوک گرمایی حدود  بسیار نزدیک به زمان اعمال

                                                 
1. Longitudinal crack 
2 .‌  Circumferential crack 
3 .‌Thermal shock 
4 .‌Generalized thermoelectricity 
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کند و  بینیدرستی پیشتواند نتایج را به ورنات نیز در برخی موارد نمی -نوگرمایی کاتا. هدایت]6[محاسبه می شود 

-8[شود ر مقیاس میکرو منجر به نتایج غیرطبیعی میهای سریع انتقال گرما و انتقال گرما دفرآیند چون یدر موارد

یج دما و تنش را در سازه به گرمایی تأخیر فاز دوگانه با توجه به روابط ساختاری در نظر گرفته شده، نتا. هدایت]7

رمایی سریع و گرد و از طرف دیگر، در هدایتایشگاهی سازگاری داکند که با نتایج آزمبینی میای پیشگونه

‌کند.نانو نتایج قابل قبولی ارائه می هدایت گرمایی در مقیاس میکرو و

 مروری بر کارهای پیشین 1-2
یافته یا هذلولوی برای حل مشکل تئوری کلاسیک های ترموالاستیسیته تعمیمتاکنون چند تئوری بنام تئوری

به علت یافته، سرعت انتقال انرژی های ترموالاستیسیته تعمیم. در بیشتر تئوری]9-12[یسیته مطرح شده اند ترموالاست

 گرمایی محدود است.  فرم هذلولوی معادله هدایت

های کنش میکروساختار ماده در فرآیندای را برای لحاظ کردن بر همیک مدل هذلولی دو مرحله ]13-14[تزو 

ی شود دو زمان آسایش یکی برامدل تأخیر فاز دوگانه نامیده می ا پیشنهاد کرد، در این مدل کهسریع انتقال گرم

-گرمایی معرفی شده است. زمان آسایش گرادیان دما تأخیر زمانی ناشی از برهمگرادیان دما، و دیگری برای شار

گرمایی اثر اینرسی گرمایی شار ها و زمان آسایشنش فوتون الکترون و پراکنش فوتونککنش میکروساختار، برهم

گرمایی با مشتقات نون فوریه، منجر به معادله هدایت. مدل تأخیر فاز دوگانه بر خلاف قا]15[را لحاظ می کند 

دهد مدل تأخیر فاز دوگانه رفتار واقعی ماده در شود. نتایج آزمایش ها نشان میجزئی مرتبه بالا نسبت به زمان می

های . در تئوری]16[کند و را بهتر از مدل هذلولی بیان مییا انتشار گرما در مقیاس میکرانتقال گرمای سریع و 

-دان دما محدود است. یکی از تئوریگونه مییافته، سرعت انتقال انرژی با توجه به ماهیت موجترموالاستیسیته تعمیم

گرمایی تأخیر فاز دوگانه بر مبنای هدایت ]17[ساخاریا و تزو  یافته توسط چاندراهای اخیر ترموالاستیسیته تعمیم

انرژی براساس رابطه ساختاری  معادله شدن در این تئوری، معادلات حاکم از کوپل ارائه شده است. ]18[
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 د.نآیدوگانه و معادله تعادل به دست میمدل تأخیر فاز  با گرماییشار

 ]20[ایه نابرابری تولید آنتروپی گرین و لاوز یافته ترموالاستیسیته بر پیک تئوری تعمیم ]19[گرین و لیندزی 

ند. بنابراین، کمعادلات آنتروپی و تنش معرفی می رزمان تأخیر نرخ دما را د ولیندزی، د –پیشنهاد دادند. مدل گرین 

به  گرمایی فوریه نیزاند. در این تئوری،  شکل کلی شارغییرات دما به نرخ دما هم وابستهتنش و آنتروپی علاوه بر ت

شود لیندزی قانون فوریه نقض نمی -گرینشود. البته، در مدل گرادیان دما و نرخ دما تعریف میصورت تابعی از 

. فو و همکاران در پژوهش خود رفتار ترموالاستیک کوپل یک چندلایه یا سیلندر توخالی تحت گرمای گذرا ]19[

 . ]21[و بارهای مکانیکی را مورد بررسی قرار دادند 

یابد. در ها کاهش میها با وجود عیوب یا ترکنتظار یا ظرفیت بارگذاری سازهرف دیگر، عمر مورد ااز ط

گسیختگی است. به علت ترین مود ای بالا یا گرادیان دمایی هستند، ایجاد و رشد ترک مرسومقطعاتی که تحت دم

مختلف ترموالاستیسیته به طور  های عددی برای تحلیل مسائلهای آزمایشگاهی و تحلیلی، روشمحدودیت روش

با استفاده از روش المان محدود در فضای لاپلاس و سپس کاربرد  ]23[. تما و رایلکار ]22[گسترده توسعه یافتند 

ا در مسائل تأخیر بر دما و توزیع تنش ناشی از آن ر های زمانش لاپلاس معکوس عددی، تأثیر یک رو

ومکانیکی با معادلات مهای تقریبی برای مسائل تربررسی کردند. حلیافته غیرکوپل ترموالاستیسیته تعمیم

، لیو و پانگ ]24[ترموالاستیسیته دینامیکی کوپل و غیر کوپل با استفاده از روش المان محدود توسط تینگ و چن 

در نظر گرفتن با  ]31[و نامبرو  ]30[ارائه شده است. تما  ]28-29[و تما و نامبورو  ]26-27[، تما و رایلکار ]25[

که با استفاده از در معادلات دینامیکی ترموالاستیسیته، نوسات عددی در توزیع دما و تنش را  5ویسکوزیته مصنوعی

با استفاده از روش  ]32[حذف کردند. چن و دارگوش  بودند، روش انتگرال گیری مستقیم زمانی به دست آمده

 ستیسیته تعمیم یافته را در یک نیم صفحه حل کردند.ترموالا مسئلهالمان مرزی در فضای لاپلاس، 

                                                 
5
Artificial viscosity ‌ 
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معادلات  اند که در آنرتی تأخیر فاز دوگانه ارائه دادهلی و وانگ یک روش عددی برای حل هدایت حرا

 .]33[ند و به وسیله روش المان محدود حل شداستخراج  ،دیفرانسیل حاکم شامل مشتق مرتبه سوم نسبت به زمان

قطه طبق مدل تأخیر ان در پژوهش خود نتیجه گرفتند که علاوه بر تغییر زمانی دمای یک ننژاد و همکارفرهی

دهد. ضریب شدت تنش رک را نسبت به مدل فوریه نشان میهای هذلولی و فوریه، رفتار متفاوت تدوگانه با مدل

نین در مدل تأخیر فاز دوگانه ای بزرگتر است. همچاز مدل فوریه به طور قابل ملاحظهدوگانه  بیشینه مدل تأخیر فاز

ضریب شدت تنش بیشینه در هر لحظه قبل از رسیدن پیشانی موج تنش در موقعیت نوک آن قرار داد. مطابق با نتایج 

ای دارد -تحت بار گرمایی گذرا اهمیت ویژه هایگرمایی در طراحی سازهان در نظر گرفتن مدل مناسب هدایتآن

های دما و کرنش تأثیر ضریب کوپل بین میدان با استفاده از روش المان مرزی ]35[تهرانی و اسلامی -.حسینی]34[

تهرانی و اسلامی العه کردند. علاوه بر این، حسینیبر فرکانس طبیعی و دامنه ارتعاشات در یک فضای محدود را مط

ما را در یک فضای جایی و دهبا بکارگیری روش المان مرزی در فضای لاپلاس، توزیع تنش به همراه جاب ]36[

های کلاسیک، لرد شلمان و گرین لیندزی مقایسه کردند. چن و ونگ مایی بر اساس تئوریمحدود تحت شوک گر

یافته بر تأخیر تئوری های تعمیم های زمانپلاس جهت در نظر گرفتن اثر از روش المان محدود در فضای لا ]37[

روش نیومارک صریح/ضمنی بر پایه روش تقسیم بندی  ]38[ائو میدان های دما و تنش استفاده کردند. پریوست و ت

جایی در یک صفحه هت محاسبه توزیع دما، تنش و جابهمعرفی شد را ج ]39-40[که توسط هیوز و لیو  6ناحیه حل

نیومارک به از روش  ]41[تحت شوک گرمایی با مدل گرین لیندزی، بکار بردند. تیان و همکاران  ایزوتروپیک

صفحه استفاده کردند. آنها محیط المان محدود برای یک نیملیندزی در  –منظور  حل معادلات گسسته گرین 

 های هموارسازی حذف کردند.ده از روش نیومارک را توسط تکنیکنوسانات ایجاد شده در نتایج به علت استفا

                                                 
6‌Splitting method 
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کردن یک ترک دلخواه در یک ماده را پیشنهاد  جهت مدل 7روش المان مرزی دوگانه ]42[آبادی پورتلا و علی

و رشد ترک شبه  ]43[کوپل تحلیل ترک ترموالاستیک گذرای غیرکردند. یک روش المان مرزی دوگانه برای 

آبادی ترموالاستیک دارای ترک، توسط علیبعدی و برای مسائل سه ]44[استاتیکی تحت بارگذاری ترمومکانیکی 

از یک روش ترکیبی روی دامنه حل و مرز آن  ]46-47[ته است. اخلاکف و همکاران توسعه یاف ]45[و همکاران 

گرمایی با در نظر ای از جنس مواد تابعی تحت شوکریب شدت تنش برای یک ترک در صفحهجهت محاسبه ض

ضای تهرانی و همکاران روش المان مرزی را در فیته کلاسیک استفاده کردند. حسینیگرفتن تئوری ترموالاستیس

بعدی، تحت دو ایزوتروپیکرک، در فضای محدود لاپلاس جهت محاسبه ضریب شدت تنش مود اول برای یک ت

 ]50[لیندزی  –و گرین  ]49[، لرد شلمان ]48[شوک گرمایی با در نظرگرفتن تئوری ترموالاستیسیته کلاسیک 

ضریب شدت تنش مود اول بر اساس تئوری ترموالاستیسیته بکار بردند. همچنین، تأثیر ضرایب اینرسی و کوپل بر 

تحت دارای ترک [ اثر اینرسی بر شکست جسم صلب 52ژیو و ونگ ] گزارش شده است. ]51[کلاسیک در 

ایق در این پژوهش هم ترک گرم و هم ترک با عتاخیر فاز دو گانه بررسی نمودند که با مدل  را شوک حرارتی

ای به وسیله اثر اینرسی مشخص شد که اثر غیرفوریه ای به طور قابل ملاحظه است،حرارتی در نظر گرفته شده 

دهد را برای ترک گرم افزایش می ɪبرجسته شده است و اثر اینرسی همیشه دامنه ضرائب شدت تنش حرارتی مدل 

سرعت  را برای ترک عایق شده ضعیف کند، اگر  IIاگر چه ممکن است دامنه ضرایب شدت تنش حرارتی مدل 

برای تحلیل مسائل شامل ترک تحت  یافته  توسعهروش المان محدود  موج حرارتی به اندازه کافی زیاد باشد.

رخی زادهکار گرفته شد. مهدیبه ]53[کوپل توسط حسینی و همکاران ذاری ترمومکانیکی استاتیکی و غیربارگ

مکانیکی را مورد بررسی و تحلیل قرار  –رتیهای حرااین روش شکست مواد تابعی تحت شوکبا استفاده از  ]54[

 به بررسی ترک در مواد تابعی تحت محیط بارگذاری حرارتی و مکانیکی پرداخته است.  ]55[ دادند. پاتاک

                                                 
7‌Dual boundary element method 
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، رفتار ترک را در مواد ارتوتروپیک تحت بار یافته  توسعهستفاده از روش المان محدود با ا ]56[محمدی حاجی

ین، این روش در ترموالاستیسیته شبه استاتیکی برای محاسبه ضریب شدت تنش و رشد حرارتی بررسی کرد.  همچن

دما در مواد تابعی جهت مدل کردن ترک عایق و هم ]58[و بایسته و همکاران  ]57[ترک توسط گلی و همکاران 

 بکار گرفته شده است.

 نوآوری 1-3
در مورد محاسبه ضرایب شدت تنش برای  کمی بسیار هایپژوهشهای انجام شده تاکنون طبق جستجوی

  شده است.تیزو منتشر  –ساخاریا رابارگذاری دمایی با در نظرگرفتن تئوری چاند
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 یافته  توسعهالمان محدود  روش
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 مقدمه-2-1
توجه به سطح بالای و... با  هوافضا، پزشکی ه خصوصا در صنایعی نظیر مهندسیازبه منظور طراحی یک س

بایست باشد و میها درست نمیدر تحلیل آنهای بالا تنها اکتفا کردن به روابط مقاومت مصالح اهمیت و هزینه

از علم مکانیک شکست ها مورد بررسی قرار داد و مانند حفره و ترک را در این سازههایی اثرات نقص و ناپیوستگی

شرایط مرزی و یا مسائل مکانیک شکست به دلیل پیچیدگی در  از در کنار مقاومت مصالح بهره برد. در بسیاری

های عددی به تحلیل ی استفاده کرد و باید به کمک روشو آزمایشگاه یهای تحلیلتوان از روشنمی مسئلههندسه 

بدون  ،های عددی همچون: المان محدودکست برای بررسی رفتار ترک از روشمکانیک ش پرداخت. در علم مسئله

هایی که که با توجه به مزیت شودتطبیقی و المان مرزی استفاده می المان محدود ،یافته  توسعهالمان محدود  ،شبکه

 د استقبال قرار گرفته است.نسبت به سایر روش ها دارد بیش از هر روش دیگری مور یافته  توسعهروش المان محدود 

‌

  یافته  توسعهروش اجزای محدود  -2-2
ی هااجزای محدود متداول دارای برتری های مبتنی بردر مقایسه با روش یافته  توسعهروش اجزای محدود 

بندی با کردن ترک در شبکه، لازم است شبکههای مبتنی بر اجزای محدود متداول برای مدل بسیاری است. در روش

ر هر مرحله از رشد ترک که دسازی رشد ترک، به دلیل آنطابقت داشته باشد. در هنگام شبیهدسه ناپیوستگی مهن

-ردد. به علاوه در روشگمحدودیت بیشتر احساس می بندی با هندسه ترک جدید تطابق داشته باشد، اینباید شبکه

های بسیار ریز است که این امر باعث افزایش مانوک ترک نیاز به استفاده از الهای قبل برای محاسبه تکینگی در ن

سازی ا ارائه راهکاری جدید برای پیادهخواهد گردید. روش اجزای محدود توسعه یافته ب مسئلهبار محاسباتی در 

 .بگذاردبسیاری از عیوب مذکور را پشت سر ترک، توانسته

[. در این روش، 61-59سازی استفاده نمودند ]های غنیبعلک برای تعریف ناپیوستگی از تاچکو و بیاولین بار بل
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هندسی استفاده ضافی برای معرفی ترک به صورت غیرهای آزادی اهمراه درجههای غنی شده مخصوص بهتابعاز 

های آزادی اضافه گردیده، ناپیوستگی در میدان جابجایی و تنش بینهایت را به صورت ها و درجهتابع شود. اینمی

-59نمایند ] به مدل اجزای محدود اضافه نموده و نیاز به وارد کردن ترک به صورت هندسی را برطرف می ریاضی

61 .] 

 تقریب تابع غنی سازی:-2-3
 :[62]سازی در روش اجزا محدود توسعه یافته به دست می آیدبه کمک تقریب زیر توابع غنی

(2-1)                                        𝑢(𝑥) = ∑ 𝑁𝒊(𝐱)𝐚𝒊∀𝒊 + ∑ 𝝓
𝒊
(𝐱)𝚿(𝐱)𝐛𝒊∀𝒊   

توابع   i (x) φ ها پارامترهای مجهول مجازی هستند.biای استاندارد و ها درجات آزادی گرهaiدر این رابطه 

 شوند:ید هستند که به صورت زیر تعریف مها توابع شکل استاندار Ni.سازی هستندتابع غنی Ψ (x)شکل و 

(2-2)                                     𝑁𝑖(𝜉, 𝜂) =
1

4
(1 + 𝜉𝜉𝑖)(1 + 𝜂𝜂𝑖) 

-دوم اغلب انساتز نامیده می( تقریب المان محدود استاندارد است و بخش 1-2اولین عبارت در سمت راست رابطه )

یافته ممکن است توابع شکل یکسان و تعمیم روش المان محدود کلاسیک برای تقریب مورد استفاده در .[62] شود

 یدر این تحقیق نیز توابع شکل یعن [62]کند ایجاد نمی مسئلهمحدودیتی در حل  نباشند اما استفاده از توابع یکسان

i (x) φ  برابر با Ni(x) نداض شدهفر. 

 یافته  توسعهدر روش المان محدود  سازی ترکمدل -2-4
-شود تمام گرهشود. فرض میر مطابق شکل ذیل در نظر گرفته میدااز یک جسم ترک ک مدل المان محدودی

های غنی های مسیر ترک و نوک ترک گرهگره ،بندیمشخص شوند. در این شبکه NAهای شبکه المان محدود با 

 شوند.می شناخته NCهای غنی شده نوک و گره NHهای غنی شده گام شند و به ترتیب به عنوان گرهباشده می
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‌همراه‌با‌المان‌های‌غنی‌شده‌یافته‌‌توسعهرک‌در‌یک‌شبکه‌اجزای‌محدود‌نمایش‌یک‌ت‌(1-2شکل‌)

 

 : [63]میدان جابه جایی برای یک المان غنی شده ترک به صورت زیر است  یافته  توسعهدر روش المان محدود 

                              

𝑢(𝑥, 𝑦, 𝑡) = ∑ 𝑁𝑛(𝑥, 𝑦)𝑎𝑛(𝑡) + ∑ 𝑁𝑛(𝑥, 𝑦)[𝐻(𝑍) − 𝐻(𝑍𝑛)]𝑏𝑛(𝑡)

𝑛𝜖𝑁𝐻𝑛𝜖𝑁𝐴

 

+ ∑ ∑ 𝑁𝑛(𝑥, 𝑦)[𝐹𝑚(𝑟, 𝜑) − 𝐹𝑚(𝑟𝑛, 𝜑𝑛)]𝐶𝑛𝑚(𝑡)                         𝑛𝜖𝑁𝐶𝑚  (2-3)  



 

13 

 

 باشند. ای هستند که تابع زمان میمجهولات گره 𝑎𝑛 ،(t) 𝑏𝑛 ، (t) 𝐶𝑛𝑚 (t)در این رابطه

    

  (2-4)                                                                                 𝑎𝑛(𝑡)𝑛(𝑡) = {𝑎𝑛
𝑢(𝑡), 𝑎𝑛

𝑣(𝑡)}𝑇 

 

  (2-5)                                                                                      𝑏𝑛(𝑡) = {𝑏𝑛
𝑢(𝑡), 𝑏𝑛

𝑣(𝑡)}𝑇 

 

    (2-6)                                                              𝑐𝑛𝑚(𝑡) = {𝑐𝑛𝑚
𝑢 (𝑡), 𝑐𝑛𝑚

𝑣 (𝑡)}𝑇 

  

 زیر است:تابع هویساید با رابطه H(z) ( 3-2در رابطه )

(2-7)                                                                                 𝐻(𝑍) = {
1,                𝑍 > 0     
0,                𝑍 ≤ 0   

 

 تابعی از موقعیت یک نقطه نسبت به مسیر ترک است. Zکه 

( از تابع هویساید اصلاح شده 7-2های عددی به جای رابطه )داریوان به جهت جلوگیری از ناپایتهمچنین می

 .[64]استفاده نمود 

   (2-8                                      )         𝐻(𝑍) = {

0         𝑧 < −𝜁

0.5 +
𝑧

2𝜍
+

1

2𝜋
𝑠𝑖𝑛

𝜋𝑍

𝜁
 − 𝜁 < 𝑧 < 𝜁

1                               𝑍 > 𝜍
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 کوچکتر از ابعاد یک المان است. ςرابطه که در این 

به    (ϕو  rای از توابع غنی سازی هستند که برحسب مختصات محلی نوک ترک )مجموعه Fm( 3-2در رابطه )

 :[63]شود صورت زیر بیان می

(2-9     )         

{𝐹𝑚} = {√𝑟 𝑠𝑖𝑛 (
𝜑

2
) , √𝑟 𝑐𝑜𝑠 (

𝜑

2
) , √𝑟 𝑠𝑖𝑛(𝜑)𝑠𝑖𝑛 (

𝜑

2
) , √𝑟 𝑠𝑖𝑛(𝜑)𝑐𝑜𝑠 (

𝜑

2
) 

جایی در دستگاه مختصات ( مولفه های جابه3-2( در رابطه )9-2( و )6-2( تا )4-2گذاری روابط )با جای

 شود:به صورت زیر تعریف می   (xو  y سراسری )

(2-10)     

𝑢(𝑥, 𝑦, 𝑡) = ∑ 𝑁𝑛(𝑥, 𝑦)𝑎𝑛
𝑢(𝑡) + ∑ 𝑁𝑛(𝑥, 𝑦)[𝐻(𝑍) − 𝐻(𝑍𝑛)]𝑏𝑛

𝑢(𝑡)

𝑛𝜖𝑁𝐻𝑛𝜖𝑁𝐴

 

+ ∑ 𝑁𝑛(𝑥, 𝑦) [√𝑟𝑠𝑖𝑛 (
𝜑

2
) − √𝑟𝑛𝑠𝑖𝑛 (

𝜑𝑛

2
)] 𝑐𝑛1

𝑢 (𝑡)

𝑛𝜖𝑁𝑐

 

+ ∑ 𝑁𝑛(𝑥, 𝑦) [√𝑟𝑐𝑜𝑠 (
𝜑

2
) − √𝑟𝑛𝑐𝑜𝑠 (

𝜑𝑛

2
)] 𝑐𝑛2

𝑢 (𝑡)

𝑛𝜖𝑁𝑐

 

+ ∑ 𝑁𝑛(𝑥, 𝑦) [√𝑟𝑠𝑖𝑛(𝜑)𝑠𝑖𝑛 (
𝜑

2
) − √𝑟𝑛𝑠𝑖𝑛(𝜑𝑛)𝑠𝑖𝑛 (

𝜑𝑛

2
)] 𝑐𝑛3

𝑢 (𝑡)

𝑛𝜖𝑁𝑐

 

+ ∑ 𝑁𝑛(𝑥, 𝑦) [√𝑟𝑠𝑖𝑛(𝜑)𝑐𝑜𝑠 (
𝜑

2
) − √𝑟𝑛𝑠𝑖𝑛(𝜑𝑛)𝑐𝑜𝑠 (

𝜑𝑛

2
)] 𝑐𝑛4

𝑢 (𝑡)

𝑛𝜖𝑁𝑐

 

(2-11) 

𝑣(𝑥, 𝑦, 𝑡) = ∑ 𝑁𝑛(𝑥, 𝑦)𝑎𝑛
𝑣(𝑡) + ∑ 𝑁𝑛(𝑥, 𝑦)[𝐻(𝑍) − 𝐻(𝑍𝑛)]𝑏𝑛

𝑣(𝑡)

𝑛𝜖𝑁𝐻𝑛𝜖𝑁𝐴

 

+ ∑ 𝑁𝑛(𝑥, 𝑦) [√𝑟𝑠𝑖𝑛 (
𝜑

2
) − √𝑟𝑛𝑠𝑖𝑛 (

𝜑𝑛

2
)] 𝑐𝑛1

𝑣 (𝑡)

𝑛𝜖𝑁𝑐

 

+ ∑ 𝑁𝑛(𝑥, 𝑦) [√𝑟𝑐𝑜𝑠 (
𝜑

2
) − √𝑟𝑛𝑐𝑜𝑠 (

𝜑𝑛

2
)] 𝑐𝑛2

𝑣 (𝑡)

𝑛𝜖𝑁𝑐

 



15 

 

+ ∑ 𝑁𝑛(𝑥, 𝑦) [√𝑟𝑠𝑖𝑛(𝜑)𝑠𝑖𝑛 (
𝜑

2
) − √𝑟𝑛𝑠𝑖𝑛(𝜑𝑛)𝑠𝑖𝑛 (

𝜑𝑛

2
)] 𝑐𝑛3

𝑣 (𝑡)

𝑛𝜖𝑁𝑐

 

+ ∑ 𝑁𝑛(𝑥, 𝑦) [√𝑟𝑠𝑖𝑛(𝜑)𝑐𝑜𝑠 (
𝜑

2
) − √𝑟𝑛𝑠𝑖𝑛(𝜑𝑛)𝑐𝑜𝑠 (

𝜑𝑛

2
)] 𝑐𝑛4

𝑣 (𝑡)

𝑛𝜖𝑁𝑐

 

                                                                   

در صورتیکه ترک عایق فرض شود در امتداد ترک میدان دما ناپیوسته و در نوک ترک شار حرارتی تکین خواهد 

ن دمای نوک ترک مشابه . میداوان از تابع هویساید استفاده کردپیوستگی می ت. به منظور در نظر گرفتن این نا[65]بود 

 :[65] صورت زیر است( ترک بهجایی مد پارگی )مد میدان جابه

   (2-12)                                                              𝑇 = −
𝐾𝑇

𝑘
√

2𝑟

𝜋
sin(

𝜑

2
) 

 

 ضریب هدایت گرمایی است. kریب شدت تنش گرمایی و ض KTدر این رابطه 

های ( برای غنی سازی گره9-2ع رابطه )( و اولین تاب12-2سازی میدان دما می توان از رابطه )به منظور گسسته

 :[66]نوک ترک استفاده کرد و به صورت زیر بیان نمود

(2-13)      

𝜃(𝑥, 𝑦, 𝑡) = ∑ 𝑁𝑛(𝑥, 𝑦)𝑎𝑛
𝑇(𝑡) + ∑ 𝑁𝑛(𝑥, 𝑦)[𝐻(𝑍) − 𝐻(𝑍𝑛)𝑏𝑛

𝑇(𝑡)

𝑛𝜖𝑁𝐻𝑛𝜖𝑁𝐴

 

+ ∑ 𝑁𝑛(𝑥, 𝑦)[√𝑟 𝑠𝑖𝑛 (
𝜑

2
) − √𝑟𝑛𝑠𝑖𝑛

𝑛𝜖𝑁𝐶

(
𝜑𝑛

2
) 𝐶𝑛

𝑇(𝑡) 

 

𝑎𝑛 رابطه این در که
𝑇(𝑡) ، 𝑏𝑛

𝑇(𝑡) و 𝑐𝑛
𝑇(𝑡) 2روابط ) شکل هستند. توابع برای هاهگر دمای تغییرات مقادیر-

 شوند:( به صورت زیر بازنویسی می13-2و) (2-11) (10
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(2-14) 

𝑢(𝑥, 𝑦, 𝑡) = 

∑ 𝑁𝑛(𝑥, 𝑦)𝑎𝑛
𝑢(𝑡) + ∑ 𝜙𝑛(𝑥, 𝑦)𝑏𝑛

𝑢(𝑡) + ∑ ∑ Ψ𝑛𝑚(𝑥, 𝑦)𝑐𝑛𝑚
𝑢 (𝑡)

4

𝑚=1𝑛𝜖𝑁𝑐𝑛𝜖𝑁𝐻𝑛𝜖𝑁𝐴

 

 

(2-15  ) 

     𝑣(𝑥, 𝑦, 𝑡)=    

∑ 𝑁𝑛(𝑥, 𝑦)𝑎𝑛
𝑣(𝑡) + ∑ 𝜙𝑛(𝑥, 𝑦)𝑏𝑛

𝑣(𝑡) + ∑ ∑ Ψ𝑛𝑚(𝑥, 𝑦)𝑐𝑛𝑚
𝑣 (𝑡)4

𝑚=1𝑛𝜖𝑁𝑐𝑛𝜖𝑁𝐻𝑛𝜖𝑁𝐴
 

 

 (2-16    )                                                                                                  = 𝜃(𝑥, 𝑦, 𝑡) 

∑ 𝑁𝑛(𝑥, 𝑦)𝑎𝑛
𝑇(𝑡) + ∑ 𝜙𝑛(𝑥, 𝑦)𝑏𝑛

𝑇(𝑡) + ∑ Ψ𝑛1(𝑥, 𝑦)𝑐𝑛1
𝑇 (𝑡)

𝑛𝜖𝑁𝑐𝑛𝜖𝑁𝐻𝑛𝜖𝑁𝐴

 

        

 

 

 (داریم:13-2(و)11-2()10-2با توجه به روابط  )

 (2-17)  

                                                                 𝜙𝑛(𝑥, 𝑦) = 𝑁𝑛(𝑥, 𝑦)[𝐻(𝑍) − 𝐻(𝑍𝑛) 

(2-18) 

Ψ𝑛(𝑥, 𝑦) = 𝑁𝑛(𝑥, 𝑦)[√𝑟𝑠𝑖𝑛 (
𝜑

2
) − √𝑟𝑛𝑠𝑖𝑛 (

𝜑𝑛

2
) , √𝑟𝑐𝑜𝑠 (

𝜑

2
)  

−√𝑟𝑛 cos (
𝜑𝑛

2
) , √𝑟 sin(𝜑) 𝑠𝑖𝑛 (

𝜑

2
) − √𝑟𝑛𝑠𝑖𝑛(𝜑𝑛)𝑠𝑖𝑛 (

𝜑𝑛

2
) , √𝑟 sin(𝜑) 𝑐𝑜𝑠 (

𝜑

2
) −

√𝑟𝑛𝑠𝑖𝑛(𝜑𝑛)𝑐𝑜𝑠 (
𝜑𝑛

2
)] 
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 هستند. دما و جابجایی میدانهای غنی سازی عبارتهایΨ‎ وΦ‎ روابط این در

سازی توان این معادلات را گسستهمورد نظر می مسئلهادلات حاکم بر (در مع16-2( تا )14-2) روابط با قرار دادن

‌.کرد

‌

 ین موقعیت نقاط نسبت به مسیر ترکتعی-2-5
لازم است موقعیت نقاط المان یعنی ،های روی مسیر ترک های عددی المانم محاسبه تابع هویساید و انتگرالهنگا

 اینکه در کدام طرف ترک قرار دارند مشخص گردد. 

الگوریتمی برای محاسبه  ،ای مشخص کردن فاصله و سمت قرارگیری نقاط نسبت به مسیر ترکدر این بخش بر

 شود:ارائه می (8-2و7 -2ابط ودر ر zتابع فاصله علامت دار )

  B   و A نقاط (2-2شکل ) کنیم . مطابقهر بخش یک خط راست است تقسیم می بخش که nمسیر ترک را به 

 تصویر نیز O نقطه .کنیممی دلخواه فرض نقطه یک را C نقطه و ترک مسیر از ام n بخش انتهای و ابتدا نقاطرا 

 شود:می تعریف زیر صورت به باشدمی  oکه موقعیت نقطه 𝑟𝑐پارامتر .باشدمی AB خط روی بر C نقطه

   (2-19)                                                                            𝑟𝑐 =
𝐴𝑂

𝐴𝐵
=

𝐴𝐶.𝐴𝐵

|𝐴𝐵|2
 

    

 باشد که:صورت میبه این 𝑟𝑐تفسیر 

گیرد. قرار می  Bبر روی نقطه  Oباشد نقطه𝑟𝑐 = 1گیرد . اگرقرار می Aبر روی نقطه   Oباشد نقطه 𝑟𝑐 = 0اگر 

در امتداد  Oگاه نقطه آن<𝑟𝑐  1باشد. اگر می Aو قبل از نقطه   ABبر روی امتداد  Oگاه نقطهآنباشد >𝑟𝑐  0اگر 

AB  و بعد  از نقطهB  0است و اگر<𝑟𝑐<1 آنگاه نقطهO  در امتدادAB  و بین نقاطA  وB .خواهد بود 
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‌موقعیت‌یک‌نقطه‌دلخواه‌نسبت‌به‌مسیر‌ترک‌(2-2شکل‌)

 

 :شودمی تعریف زیر صورتبه نیز 𝑟𝑠 پارامتر

        (2-20)                                                                                             𝑟𝑠 =
𝐴𝐵.𝐴𝐶

|𝐴𝐵|2
 

 صورت می باشد که: به این 𝑟𝑠تفسیر 

و  ABدر سمت چپ بردار   Cباشد نقطه 𝑟𝑠>0قرار دارد . اگر   ABبر روی بردار Cباشد نقطه 𝑟𝑠 = 0اگر 

 قرار دارد .  ABدر سمت راست بردار   Cباشد نقطه  𝑟𝑠<0هنگامیکه 

شود تغییر فرض می موقعیت نقاط را نسبت به ترک به دست آورد.𝑟𝑠 و 𝑟𝑐توان به وسیله پارامترهای اکنون می

 درجه باشد. 90زاویه هر بخش از ترک نسبت به بخش قبلی کمتر از 

  ایزوپارامتریک های المان -2-6
 (x,y) مختصات سراسری دستگاه در وجهیچهار المان یک مربعی پارامتریکایزو المانهای (3-2) شکل مطابق

نقاط المان اولیه در دستگاه سراسری  مختصات.  نندکمی نگاشت (ξ×η)در دستگاه محلی  2 × 2  مربع یک به را

 :[64] آیندمی بدست زیر روابط از
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‌المان‌ایزو‌پارامتریک‌(3-2شکل‌)

 

  (2-21)                                                  𝑥 = ∑ 𝑥𝑖𝑁𝑖   ,4
𝑖=1 𝑦 = ∑ 𝑦𝑖𝑁𝑖   4

𝑖=1 

    

 آید.دست می( به2-2از رابطه ) Niکه 

 شود.های ایزو پارامتریک استفاده می بندی از الماندر این تحقیق برای المان

 گیری عددیانتگرال -2-7
دی استفاده های عدشویم که برای حل آن ها باید از روشهایی روبرو میگرالسازی معادلات با انتپس ازگسسته

 :[68]شودباشد که به صورت زیر تعریف میگیری گوس میروش انتگرال،ها کنیم. یکی از این روش

      (2-22)                                                         ∫ 𝑓(𝜉)𝑑𝜉 = ∑ 𝑓(𝜉𝑖)𝑤𝑖
𝑛𝑄
𝑖=1

1

−1
 

      

 باشند.توابع وزنی می 𝑤𝑖تعداد نقاط گوسی و   𝑛𝑄مقادیر نقاط گوسی و 𝜉𝑖که در این رابطه 

گیری نمایم بنابراین باید به خواهیم بر روی سطح المان انتگرالاینکه در روش المان محدود ما می با توجه به

 دست آورد:توان به صورت زیر بهها را میاستفاده از روش گاوس این انتگرالکه با  محاسبه انتگرال دوگانه پرداخت

(2-23)                                    ∫ ∫ 𝑓(𝜉, 𝜂)𝑑𝜉𝑑𝜂 = ∑ ∑ 𝑓(𝜉𝑖 , 𝜂𝑖)𝑤𝑖𝑤𝑗
𝑛𝑄 
𝑗=1

𝑛𝑄
𝑖=1

1

−1

1

−1
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توان از روش گاوس استفاده سازی نمیگیری توابع غنیانتگرالبرای شوند هایی که توسط ترک بریده میدر المان

در مسیر  دو روش برای حل این موضوع ارائه نمود. روش اول به اینصورت است که المانی که [68]کرد لذا دالبو

قسیم باشد تها منطبق بر ترک میهای این المانلثی کوچکتر در دو طرف ترک که لبههای مثترک قرار دارد به المان

 گردد.های چهارضلعی کوچکتر تقسیم میوش دوم المان ترک خورده به الماندر ر شود.

های چهارضلعی به خورده ترک های( المان4-2شکل ) مطابق و دوم تحقیق با استفاده از روش این در  

 گیریرالملاک انتگ ترک به نسبت کوچکتر هایچهارضلعی از هریک مرکز شوند. موقعیتکوچکتری تقسیم می

 روی گوسی بر نقاط کل ،گیریانتگرال در هویساید تابع ارزیابی یعنی برای گیرد.هویساید قرار می تابع ارزیابی و

 شود که مرکز چهارضلعی در همان طرف ترک باشد.هارضلعی در طرفی در نظر گرفته میهر چ

 چند ک در عبارت زیر انتگرال به( به منظور حذف اثر تکینی نوک تر5-2) شکل مطابق نیز ترک نوک المان

 شود.می  تقسیم مثلث

 

 

‌عددی گیری‌انتگرال‌ برای ترک شامل های‌المان بندی‌تقسیم(4-2شکل‌)
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‌عددی گیری‌انتگرال‌ برای ترک نوک شامل المان بندی‌تقسیم(‌5-2شکل‌)

 

 خراج معادلات حاکماست -2-8
 پردازیم .نها میآبعد سازی قسمت به بررسی معادلات حاکم و بیدر این 

تیزو برحسب  –ساخاریا ادربا در نظر گرفتن تئوری چان ایزوتروپیکبرای یک محیط  مسئلهمعادلات حاکم بر 

 ت زیر است :گرمایی و نیروهای کالبدی به صور جایی و دما بدون وجود منبعهای جابهمولفه

(𝜆 + 𝜇)𝑢𝑗,𝑗𝑖 + 𝜇𝑢𝑖,𝑗𝑗 − 𝛽𝜃,𝑖 = 𝜌𝑢̈𝑖 (2-24)                                                                      

         (2-25)  

−𝜌𝐶𝑉𝜃̇ − 𝑇0𝛽𝑢̇𝑖,𝑖 − 𝜏𝑞𝜌𝐶𝑉𝜃̈ − 𝜏𝑞𝑇0𝛽𝑢̈𝑖,𝑖 −
1

2
𝜏𝑞

2𝜌𝐶𝑉𝜃 −
1

2
𝜏𝑞

2𝑇0𝛽𝑢𝑖,𝑖

= −𝑘∇2𝜃 − 𝜏𝑡𝑘∇2𝜃̇ 

 نماییم .عد زیر معادلات فوق را بی بعد میببا استفاده از متغیرهای بی

 بعد :پارامترهای بی

𝑥𝑖 = 𝑥𝑖𝐿 (2-26)                                                                                                                              

𝜏𝑇 =
𝜏̂𝑇𝐿  

𝑉
(2-27)                                                                                                                              
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𝐶 = 𝐶̂𝑉 (2-28)                                                                                                                               

𝜏𝑞 =
𝜏̂𝑞𝐿

𝑉
(2-29)                                                                                                                                   

(𝐿 = 𝑉𝑡̂ → 𝑡̂ =
𝐿

𝑉
) 𝑡 =

𝐿

𝑉
𝑡̂   (2-30)                                                                                                

   𝑘̂ =
𝑘

𝑉𝐿𝜌𝐶𝑉
(2-31)                                                                                                                                 

𝜃 = 𝑇0𝑇̂ (2-32)                                                                                                                                   

𝜃̇ =
𝜕𝜃

𝜕𝑡
=

𝜕(𝑇0𝑇̂)

𝜕(
𝐿

𝑉
𝑡̂)

=
𝑇0𝑉

𝐿
𝑇̇̂                                                                                                (2-33)  

𝜆̂ =
𝜆

𝜆+2𝜇
(2-34)                                                                                                                                  

𝜃̈ =
𝜕2𝜃

𝜕𝑡2
=

𝜕2(𝑇0𝑇̂)

𝜕(
𝐿

𝑉
𝑡̂)

2 =
𝑇0𝑉2

𝐿2
𝑇̈̂           (2-35)                                                                                             

𝜇̂ =
𝜇

𝜆+2𝜇
(2-36)                                                                                                                                  

𝜃 =
𝜕3𝜃

𝜕𝑡3
=

𝜕3(𝑇0𝑇̂)

𝜕(
𝐿

𝑉
𝑡̂)

3 =
𝑇0𝑉3

𝐿3
𝑇⃛̂                                                                                             (2-37)  

𝛽̂ =
𝜌𝑉2

𝜆+2𝜇
(2-38)                                                                                                                                   

𝑢 =
𝐿𝛽𝑇0

(𝜆+2𝜇)
𝑢̂ (2-39)                                                                                                                            

𝑢𝑖,𝑖 =
𝜕𝑢𝑖

𝜕𝑥𝑖
=

𝜕(
𝐿𝛽𝑇0

(𝜆+2𝜇)
𝑢̂𝑖)

𝜕(𝐿𝑥̂𝑖)
=

𝛽𝑇0

(𝜆+2𝜇)

𝜕𝑢𝑖

𝜕𝑥̂𝑖
(2-40)                                                                              

𝑢̇𝑖,𝑖 =
𝜕

𝜕𝑡
𝑢𝑖,𝑖 =

𝜕

𝜕𝑡
(

𝛽𝑇0

(𝜆+2𝜇)

𝜕𝑢𝑖

𝜕𝑥̂𝑖
) =

𝜕

𝜕(
𝐿

𝑉
𝑡̂)

(
𝛽𝑇0

(𝜆+2𝜇)

𝜕𝑢𝑖

𝜕𝑥̂𝑖
) =

𝛽𝑇0𝑉

(𝜆+2𝜇)𝐿
𝑢̇̂𝑖,𝑖 (2-41)                   

𝑢̈𝑖,𝑖 =
𝜕2

𝜕𝑡2
𝑢𝑖,𝑖 =

𝜕2

𝜕(
𝐿

𝑉
𝑡̂)2

(
𝛽𝑇0

(𝜆+2𝜇)

𝜕𝑢𝑖

𝜕𝑥̂𝑖
) =

𝛽𝑇0𝑉2

(𝜆+2𝜇)𝐿2
𝑢̈̂𝑖,𝑖 (2-42)                                                  

𝑢𝑖,𝑖 =
𝜕3

𝜕𝑡3
𝑢𝑖,𝑖 =

𝜕3

𝜕(
𝐿

𝑉
𝑡̂)3

(
𝛽𝑇0

(𝜆+2𝜇)

𝜕𝑢𝑖

𝜕𝑥̂𝑖
) =

𝛽𝑇0𝑉3

(𝜆+2𝜇)𝐿3
𝑢⃛̂𝑖,𝑖 (2-43)                                                  

𝑢̈𝑖 =
𝜕2

𝜕𝑡2
𝑢𝑖 =

𝜕2(
𝐿𝛽𝑇0
𝜆+2𝜇

)𝑢̂

𝜕(
𝐿

𝑉
𝑡̂)2

=
𝐿𝛽𝑇0𝑉2

𝐿2(𝜆+2𝜇)
𝑢̈̂𝑖 =

𝛽𝑇0𝑉2

𝐿(𝜆+2𝜇)
𝑢̈̂𝑖 (2-44)                                                 
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𝑢𝑖,𝑗𝑗 =
𝜕2𝑢𝑖

𝜕𝑥𝑗𝜕𝑥𝑗
=

𝜕2(
𝐿𝛽𝑇0
𝜆+2𝜇

𝑢̂𝑖)

𝜕(𝐿𝑥̂𝑗)𝜕(𝐿𝑥̂𝑗)
=

𝐿𝛽𝑇0
𝜆+2𝜇

𝐿2

𝜕2𝑢𝑖

𝜕𝑥̂𝑗𝜕𝑥̂𝑗
=

𝛽𝑇0

𝐿(𝜆+2𝜇)
𝑢̂𝑖,𝑗𝑗 (2-45)                        

𝑢𝑗,𝑗𝑖 =
𝜕2𝑢𝑗

𝜕𝑥𝑗𝜕𝑥𝑖
=

𝜕2(
𝐿𝛽𝑇0
𝜆+2𝜇

𝑢̂𝑗)

𝜕(𝐿𝑥̂𝑗)𝜕(𝐿𝑥̂𝑖)
=

𝐿𝛽𝑇0
𝜆+2𝜇

𝐿2

𝜕2𝑢𝑗

𝜕𝑥̂𝑗𝜕𝑥̂𝑖
=

𝛽𝑇0

𝐿(𝜆+2𝜇)
𝑢̂𝑗,𝑗𝑖 (2-46)                           

∇𝜃 = 𝜃,𝑖 =
𝜕𝜃

𝜕𝑥
=

𝜕𝑇0𝑇̂

𝜕(𝐿𝑥̂)
=

𝑇0

𝐿
𝑇̂,𝑖 (2-47)                                                                                 

∇2𝜃 =
𝜕2𝜃

𝜕𝑥2
=

𝜕

𝜕𝑥
(

𝜕𝜃

𝜕𝑥
) =

𝜕

𝜕(𝐿𝑥̂)
= (

𝑇0

𝐿
𝑇̂,𝑖) =

𝑇0

𝐿2
𝑇̂,𝑖𝑖 (2-48)                                             

∇2𝜃̇ =
𝜕

𝜕𝑡
(∇2𝜃) =

𝜕

𝜕(
𝐿

𝑉
𝑡̂)

(
𝑇0

𝐿2
𝑇̂,𝑖𝑖) =

𝑇0𝑉

𝐿3
𝑇̇̂,𝑖𝑖 (2-49)                                                          

 

=∋بعد و تعریف گذاری متغیرهای بیپس از جای
𝑇0 𝛽2

𝜌𝐶𝑉(𝜆+2𝜇)
 

 شود :( به صورت زیر بیان می25-2( و )24-2معادلات )

(𝜆̂ + 𝜇̂)𝑢̂𝑗,𝑗𝑖 + 𝜇̂𝑢̂𝑖,𝑗𝑗 − 𝑇̂,𝑖 = 𝛽 𝑢̈̂𝑖         (2-50)                                                                                

        (2-51)          

1

2
𝜏̂𝑞

2 ∈ 𝑢⃛̂𝑖,𝑖 +
1

2
𝜏̂𝑞

2𝑇⃛̂ + 𝜏̂𝑞 ∈ 𝑢̈̂𝑖,𝑖 + 𝜏̂𝑞 𝑇̈̂+∈ 𝑢̇̂𝑖,𝑖 + 𝑇̇̂ − 𝜏̂𝑇𝐾̂ 𝑇̇̂,𝑖𝑖 − 𝐾̂𝑇̂,𝑖𝑖 = 0 

 برای سادگی حذف شده است. ̂شوند  و علامت یا ن میبعد بم معادلات در فضای بیاین پس تما از

 

 گسسته سازی معادلات حاکم-2-9

 تقریب گلرکین با به کارگیری انتگرال باقی مانده وزنی برای تابع حرکت :

 (2-52)                                                                              ∫ (𝜎𝑖𝑗,𝑗 + 𝐵𝑖 − 𝜌𝑢̈𝑖)𝑆𝐿𝑑𝑣 = 0
𝑣

 

 بندی ضعیف بر روی عبارت مشخص شده :با به کارگیری فرمول

 (2-53)                                               ∫ (𝜎𝑖𝑗,𝑗)𝑆𝐿𝑑𝑣 =
𝑣

∫ 𝜎𝑖𝑗𝑛𝑗𝑆𝐿𝑑𝐴
𝐴

− ∫
𝜕𝑆𝐿

𝜕𝑥𝑗
 𝜎𝑖𝑗 𝑑𝑣

𝑉
 

 : ( 52-2)در   (53-2)گذاری رابطه با جای
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(2-54)            ∫ 𝜎𝑖𝑗𝑛𝑗𝑆𝐿𝑑𝐴 −
𝐴

∫
𝜕𝑆𝐿

𝜕𝑥𝑗
 𝜎𝑖𝑗 𝑑𝑣 +

𝑉
∫ 𝐵𝑖𝑆𝐿𝑑𝑣

𝑣
− ∫ 𝜌𝑢̈𝑖𝑆𝐿𝑑𝑣

𝑉
= 0 

 :ا در نظر گرفتن فرمول کوشی داریمب

(2-55)                                                                            ∫ 𝜎𝑖𝑗𝑛𝑗𝑆𝐿𝑑𝐴 =
𝐴

∫ 𝑇𝑟𝑖
𝑛𝑆𝐿𝑑𝐴

𝐴
 

 :بعدسازی داشتیماز طرفی در بخش بی

(2-56)                                              𝜎̂𝑖𝑗 = 𝜇̂(𝑢̂𝑖,𝑗 + 𝑢̂𝑗,𝑖) + 𝜆̂𝑢̂𝑘,𝑘𝛿𝑖𝑗 − 𝛽̂𝜃𝛿𝑖𝑗 

 :داریم (54-2)در عبارت دوم رابطه  (56-2)گذاری رابطه با جای

(2-57)∫
𝜕𝑆𝐿

𝜕𝑥𝑗
 𝜎𝑖𝑗 𝑑𝑣

𝑉
= ∫

𝜕𝑆𝐿

𝜕𝑥𝑗
 [𝜇(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖) + 𝜆𝑢𝑘,𝑘𝛿𝑖𝑗 − 𝛽𝜃𝛿𝑖𝑗]𝑑𝑣

𝑉
                

 :داریم (54-2)در  (57-2)و  (55-2)گذاری با جای

(2-58)      ∫ 𝜌𝑢̈𝑖𝑆𝐿𝑑𝑣 +
𝑉

∫
𝜕𝑆𝐿

𝜕𝑥𝑗
 [𝜇(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖) + 𝜆𝑢𝑘,𝑘𝛿𝑖𝑗]

𝑉
𝑑𝑣 − ∫ 𝛽𝜃

𝜕𝑆𝐿

𝜕𝑥𝑗
𝑑𝑣 =

𝑉

∫ 𝐵𝑖𝑆𝐿𝑑𝑣 +
𝑉

∫ 𝑇𝑟𝑖
𝑛𝑆𝐿𝑑𝐴

𝐴
 

 جایی و تغییر دما برای هر المان مبنا :جابه مولفه های

𝑢(𝑥, 𝑦, 𝑡) = 𝑁ℎ(𝑥, 𝑦)𝑎 ℎ
𝑢 (𝑡) + ∅ℎ(𝑥, 𝑦)𝑏ℎ

𝑢(𝑡) + Ψℎ𝑚(𝑥, 𝑦)𝐶ℎ𝑚
𝑢 (𝑡)  (2-59)                 

𝑣(𝑥, 𝑦, 𝑡) = 𝑁ℎ(𝑥, 𝑦)𝑎 ℎ
𝑣 (𝑡) + ∅ℎ(𝑥, 𝑦)𝑏ℎ

𝑣(𝑡) + Ψℎ𝑚(𝑥, 𝑦)𝐶ℎ𝑚
𝑣 (𝑡)   (2-60)                 

𝜃(𝑥, 𝑦, 𝑡) = 𝑁ℎ(𝑥, 𝑦)𝑎 ℎ
𝑇 (𝑡) + ∅ℎ(𝑥, 𝑦)𝑏ℎ

𝑇(𝑡) + Ψℎ𝑚(𝑥, 𝑦)𝐶ℎ𝑚
𝑇 (𝑡)  (2-61)                 

 

 

𝑢̇ = 𝑁ℎ(𝑥, 𝑦)𝑎̇ℎ
𝑢(𝑡) + ∅ℎ(𝑥, 𝑦)𝑏̇ℎ

𝑢 + ψℎ𝑚(𝑥, 𝑦)𝑐̇ℎ𝑚
𝑢 (𝑡)  (2-62)                                        

𝑢̈ = 𝑁ℎ(𝑥, 𝑦)𝑎̈ℎ
𝑢(𝑡) + ∅ℎ(𝑥, 𝑦)𝑏̈ℎ

𝑢 + ψℎ𝑚(𝑥, 𝑦)𝑐̈ℎ𝑚
𝑢 (𝑡)  (2-63)                                        

 باشد .مابقی پارامترها هم به همین ترتیب می
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 داریم : (58-2)جایی و دما در رابطه های جابهگذاری مولفهبا جای

(∫ 𝜌𝑆𝐿𝑁ℎ𝑑𝑣
𝑣

) 𝑎̈ℎ
𝑢 + (∫ 𝜌𝑆𝐿𝜙ℎ𝑑𝑣

𝑣
) 𝑏̈ℎ

𝑢 + (∫ 𝜌𝑆𝐿𝜓ℎ𝑚𝑑𝑣
𝑣

) 𝑐̈ℎ𝑚
𝑢 (2-64)                   

+ ∫ 𝑆𝐿,𝑥[(𝜆 + 2𝜇)(𝑁ℎ,𝑥𝑎ℎ
𝑢 + 𝜙ℎ,𝑥𝑏ℎ

𝑢 + 𝜓ℎ𝑚,𝑥𝑐ℎ𝑚
𝑢 )

𝑣

+ 𝜆(𝑁ℎ,𝑦𝑎ℎ
𝑣 + 𝜙ℎ,𝑦𝑏ℎ

𝑣 + 𝜓ℎ𝑚,𝑦𝑐ℎ𝑚
𝑣 )]𝑑𝑣 

+ ∫ 𝜇𝑆𝐿,𝑦(𝑁ℎ,𝑦𝑎ℎ
𝑢 + 𝜙ℎ,𝑦𝑏ℎ

𝑢 + 𝜓ℎ𝑚,𝑦𝑐ℎ𝑚
𝑢 + 𝑁ℎ,𝑥𝑎ℎ

𝑣 + 𝜙ℎ,𝑥𝑏ℎ
𝑣 + 𝜓ℎ𝑚,𝑥𝑐ℎ𝑚

𝑣 )𝑑𝑣
𝑣

 

                           − ∫ 𝛽𝑆𝐿,𝑥(𝑁ℎ𝑎ℎ
𝑇 + 𝜙ℎ𝑏ℎ

𝑇 + 𝜓ℎ𝑚𝑐ℎ𝑚
𝑇 )𝑑𝑣 =

𝑣
∫ 𝐵𝑥𝑆𝐿𝑑𝑣 +

𝑉

∫ 𝑇𝑟𝑥
𝑛𝑆𝐿𝑑𝐴

𝐴
 

(2-65) 

(∫ 𝜌𝑆𝐿𝑁ℎ𝑑𝑉
𝑣

) 𝑎̈ℎ
𝑣 + (∫ 𝜌𝑆𝐿∅ℎ𝑑𝑉

𝑣

) 𝑏̈ℎ
𝑣 + (∫ 𝜌𝑁𝑆𝐿𝜓ℎ𝑚𝑑𝑉

𝑣

) 𝑐̈ℎ𝑚
𝑣  

+ ∫ 𝜇𝑆𝐿,𝑥(𝑁ℎ,𝑥𝑎ℎ
𝑣 + 𝜙ℎ,𝑥𝑏ℎ

𝑣 + 𝜓ℎ𝑚,𝑥𝑐ℎ𝑚
𝑣 + 𝑁ℎ,𝑦𝑎ℎ

𝑢 + 𝜙ℎ,𝑦𝑏ℎ
𝑢 + 𝜓ℎ𝑚,𝑦𝑐ℎ𝑚

𝑢 )𝑑𝑣

𝑣

 

     + ∫ 𝑆𝐿,𝑦[(𝜆 + 2𝜇)(𝑁ℎ,𝑦𝑎ℎ
𝑣 + 𝜙ℎ,𝑦𝑏ℎ

𝑣 + 𝜓ℎ𝑚,𝑦𝑐ℎ𝑚
𝑣 ) + 𝜆(𝑁ℎ,𝑥𝑎ℎ

𝑢 + 𝜙ℎ,𝑥𝑏ℎ
𝑢 +

𝑣

𝜓ℎ𝑚,𝑥𝑐ℎ𝑚
𝑢 )] 𝑑𝑣 − ∫ 𝛽𝑆𝐿,𝑦(𝑁ℎ𝑎ℎ

𝑇 + 𝜙ℎ𝑏ℎ
𝑇 + 𝜓ℎ𝑚𝑐ℎ𝑚

𝑇 )𝑑𝑣
𝑣

=

∫ 𝐵𝑦𝑆𝐿𝑑𝑣 +
𝑉

∫ 𝑇𝑟𝑦
𝑛𝑆𝐿𝑑𝐴

𝐴
 

 شوند :یبه صورت زیر بازنویسی م (65-2)و  (64-2)معادلات 

(2-66) 

(∫ 𝜌𝑆𝐿𝑁ℎ𝑑𝑣
𝑣

) 𝑎̈ℎ
𝑢 + (∫ 𝜌𝑆𝐿𝜙ℎ𝑑𝑣

𝑣

) 𝑏̈ℎ
𝑢 + (∫ 𝜌𝑆𝐿𝜓ℎ𝑚𝑑𝑣

𝑣

) 𝑐̈ℎ𝑚+
𝑢  

                              

(∫ [(𝜆 + 2𝜇)𝑆𝐿,𝑥𝑁ℎ,𝑥 + 𝜇𝑆𝐿,𝑦𝑁ℎ,𝑦]𝑑𝑣)𝑎ℎ
𝑢 +

𝑣
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 (∫ [(𝜆 + 2𝜇)𝑆𝐿,𝑥∅ℎ,𝑥 + 𝜇𝑆𝐿,𝑦∅ℎ,𝑦]𝑑𝑣)𝑏ℎ
𝑢 +

𝑣

 

 (∫ [(𝜆 + 2𝜇)𝑆𝐿,𝑥𝜓ℎ𝑚,𝑥 + 𝜇𝑆𝐿,𝑦𝜓ℎ𝑚,𝑦]𝑑𝑣)𝑐ℎ𝑚
𝑢 +

𝑣

 

(∫ [𝜆𝑆𝐿,𝑥𝑁ℎ,𝑦 + 𝜇𝑆𝐿,𝑦𝑁ℎ,𝑥]
𝑣

𝑑𝑣) 𝑎ℎ
𝑣 + (∫ [𝜆𝑆𝐿,𝑥∅ℎ,𝑦 + 𝜇𝑆𝐿,𝑦∅ℎ,𝑥]

𝑣

𝑑𝑣)𝑏ℎ
𝑣 + 

∫ ([𝜆𝑆𝐿,𝑥𝜓ℎ𝑚,𝑦 + 𝜇𝑆𝐿,𝑦𝜓ℎ𝑚,𝑥]𝑑𝑣)𝑐ℎ𝑚
𝑣

𝑣

− (∫ [𝛽𝑆𝐿,𝑥(𝑁ℎ𝑎ℎ
𝑇 + ∅ℎ𝑏ℎ

𝑇 + 𝜓ℎ𝑚𝑐ℎ𝑚
𝑇 ]𝑑𝑣

𝑣

 

     

     = ∫ 𝐵𝑥𝑠𝐿𝑑𝑣 + ∫ 𝑇𝑟𝑥
𝑛𝑆𝐿𝑑𝐴

𝐴𝑣
 

(2-67) 

 

(∫ 𝜌𝑆𝐿𝑁ℎ𝑑𝑣
𝑣

) 𝑎̈ℎ
𝑉 + (∫ 𝜌𝑆𝐿𝜙ℎ𝑑𝑣

𝑣

) 𝑏̈ℎ
𝑣 + (∫ 𝜌𝑆𝐿𝜓ℎ𝑚𝑑𝑣

𝑣

) 𝑐̈ℎ𝑚
𝑣 + 

 (∫ [𝜇𝑆𝐿,𝑥𝑁ℎ,𝑦 + 𝜆𝑆𝐿,𝑦𝑁ℎ,𝑥]𝑑𝑣)𝑎ℎ
𝑢

𝑣

+ (∫ [𝜇𝑆𝐿,𝑥∅ℎ,𝑦 + 𝜆𝑆𝐿,𝑦∅ℎ,𝑥]
𝑣

𝑑𝑣)𝑏ℎ
𝑢 

+ (∫ [𝜇𝑆𝐿,𝑥𝜓ℎ𝑚,𝑦 + 𝜆𝑆𝐿,𝑦𝜓ℎ𝑚,𝑥]𝑑𝑣)𝑐ℎ𝑚
𝑢

𝑣

+ (∫ [𝜇𝑆𝐿,𝑥𝑁ℎ,𝑥 + (𝜆 + 2𝜇)𝑆𝐿,𝑦𝑁ℎ,𝑦]𝑑𝑣
𝑣

) 𝑎ℎ
𝑣  

 (∫ [𝜇𝑆𝐿,𝑥∅ℎ,𝑥 + (𝜆 + 2𝜇)𝑆𝐿,𝑦∅ℎ,𝑦]
𝑣

𝑑𝑣)𝑏ℎ
𝑣

+ (∫ [𝜇𝑆𝐿,𝑥𝜓ℎ𝑚,𝑥 + (𝜆 + 2𝜇)𝑆𝐿,𝑦𝜓ℎ𝑚,𝑦]
𝑣

𝑑𝑣) 𝑐ℎ𝑚
𝑣  

−(∫ [𝛽𝑆𝐿,𝑦(𝑁ℎ𝑎ℎ
𝑇 + ∅ℎ𝑏ℎ

𝑇 + 𝜓ℎ𝑚𝑐ℎ𝑚
𝑇 ]

𝑣

𝑑𝑣 = ∫ 𝐵𝑦𝑆𝐿𝑑𝑣 + ∫ 𝑇𝑟𝑦
𝑛𝑆𝐿𝑑𝐴

𝐴𝑣
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 بعد شده انرژی را از قبل داشتیم:معادله بی

1

2
𝜏𝑞

2 ∈ 𝑢𝑖,𝑖 +
1

2
𝜏𝑞

2𝑇 + 𝜏𝑞 ∈ 𝑢̈𝑖,𝑖 + 𝜏𝑞𝑇̈+∈ 𝑢̇𝑖,𝑖 + 𝑇̇ − 𝜏𝑇𝐾𝑇̇,𝑖𝑖−𝑘𝑇,𝑖𝑖 = 0 

 با اعمال انتگرال باقی مانده وزنی داریم :

(2-68)                                      ∫ (𝜏𝑞 ∈ 𝑢̈𝑖,𝑖 + 𝜏𝑞𝑇̈+∈ 𝑢̇𝑖,𝑖 + 𝑇̇ +
1

2
𝜏𝑞

2 ∈ 𝑢𝑖,𝑖 +
1

2
𝜏𝑞

2𝑇 −
𝑣

𝜏𝑇𝐾𝑇̇,𝑖𝑖 − 𝐾𝑇,𝑖𝑖) 𝑆𝐿𝑑𝑉 = 0 

 :ضعیف روی عبارات مشخص شده داریم بندیا اعمال فرمولب

(2-69)                             ∫ (𝜏𝑇𝐾 𝑇̇,𝑖𝑖 + 𝐾𝑇,𝑖𝑖)𝑆𝐿𝑑 𝑉 =
𝑉

∫ (𝜏𝑇𝐾 𝑇̇,𝑖 + 𝐾𝑇,𝑖)
𝐴

𝑆𝐿𝑛𝑖𝑑𝐴 −

∫ (𝜏𝑇𝐾 𝑇̇,𝑖 + 𝐾𝑇,𝑖)𝑆𝐿,𝑥𝑖
𝑑 𝑉𝑉

 

 :داریم (68-2)در  (69-2)گذاری با جای

     (2-70) 

    ∫ (
1

2
𝜏𝑞

2 ∈ 𝑢𝑖,𝑖 +
1

2
𝜏𝑞

2𝑇 + 𝜏𝑞 ∈ 𝑢̈𝑖,𝑖 + 𝜏𝑞𝑇̈+∈ 𝑢̇𝑖,𝑖 + 𝑇̇)
𝑣

𝑆𝐿𝑑𝑣 − 

∫ (𝜏𝑇𝐾 𝑇̇,𝑖 + 𝐾𝑇,𝑖)𝑆𝐿𝑛𝑖𝑑𝐴 + ∫ (𝜏𝑇𝐾 𝑇̇,𝑖 + 𝐾𝑇,𝑖)
𝑉

𝑆𝐿,𝑥𝑖
𝑑𝑣

𝐴

= 0 

 :داریم (70-2)جایی و تغییر دما در رابطه گذاری مولفه های جابهبا جای

   (2-71)   

∫ (
1

2
𝜏𝑞

2

𝑣

∈ (𝑁ℎ,𝑥𝑎ℎ
𝑢 + ∅ℎ,𝑥𝑏ℎ

𝑢 + 𝜓ℎ𝑚,𝑥𝑐ℎ𝑚
𝑢 + 𝑁ℎ,𝑦𝑎ℎ

𝑣 + 𝜙ℎ,𝑦𝑏ℎ
𝑣 + 𝜓ℎ𝑚,𝑦𝑐ℎ𝑚

𝑣 )

+
1

2
𝜏𝑞

2(𝑁ℎ𝑎ℎ
𝑇 + ∅ℎ𝑏ℎ

𝑇 + 𝜓ℎ𝑚𝑐ℎ𝑚
𝑇 ) + 𝜏𝑞

∈ (𝑁ℎ,𝑥𝑎̈ℎ
𝑢 + 𝜙ℎ,𝑥𝑏̈ℎ

𝑢 + 𝜓ℎ𝑚,𝑥𝑐̈ℎ𝑚
𝑢 + 𝑁ℎ,𝑦𝑎̈ℎ

𝑣 + ∅ℎ,𝑦𝑏̈ℎ
𝑣 + 𝜓ℎ𝑚,𝑦𝑐̈ℎ𝑚

𝑣 )   

+𝜏𝑞(𝑁ℎ𝑎̈ℎ
𝑇 + 𝜙ℎ𝑏̈ℎ

𝑇 + 𝜓ℎ𝑚𝑐̈ℎ𝑚
𝑇 ) + 
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∈ (𝑁ℎ,𝑥𝑎̇ℎ
𝑢 + 𝜙ℎ,𝑥𝑏̇ℎ

𝑢 + 𝜓ℎ𝑚,𝑥𝑐̇ℎ𝑚
𝑢 + 𝑁ℎ,𝑦𝑎̇ℎ

𝑣 + ∅ℎ,𝑦𝑏̇ℎ
𝑣 + 𝜓ℎ𝑚,𝑦𝑐̇ℎ𝑚

𝑣 ) + 𝑁ℎ𝑎̇ℎ
𝑇 + 

𝜙ℎ𝑏̇ℎ
𝑇 + 𝜓ℎ𝑚𝑐̇ℎ𝑚

𝑇 )𝑆𝐿𝑑𝑣 − ∫ (𝜏𝑇𝐾 𝑇̇,𝑥 + 𝐾𝑇,𝑥)𝑆𝐿𝑛𝑥𝑑𝐴 − 

− ∫ (𝜏𝑇𝐾 𝑇̇,𝑦 + 𝐾𝑇,𝑦)𝑆𝐿𝑛𝑦𝑑𝐴
𝐴

+ ∫ (𝜏𝑇𝐾(𝑁ℎ,𝑥𝑎̇ℎ
𝑇 + ∅ℎ,𝑥  𝑏̇ℎ

𝑇 + 𝜓ℎ𝑚,𝑥𝑐̇ℎ𝑚
𝑇 )

𝑉

 

                    +𝑘(𝑁ℎ,𝑥𝑎ℎ
𝑇 + ∅ℎ,𝑥𝑏ℎ

𝑇 + 𝜓ℎ𝑚,𝑥𝑐ℎ𝑚
𝑇 ))𝑆𝐿,𝑥𝑑𝑣 + ∫ (𝜏𝑇𝐾(𝑁ℎ,𝑦𝑎̇ℎ

𝑇 +

∅ℎ,𝑦 𝑏̇ℎ
𝑇 + 𝜓ℎ𝑚,𝑦𝑐̇ℎ𝑚

𝑇 ) + 𝑘(𝑁ℎ,𝑦𝑎ℎ
𝑇 + ∅ℎ,𝑦𝑏ℎ

𝑇 + 𝜓ℎ𝑚,𝑦𝑐ℎ𝑚
𝑇 ))𝑆𝐿,𝑦 𝑑𝑣 = 0 

 د .شوبه صورت زیر  بازنویسی می (71-2)معادله 

(2-72) 

(∫
1

2
 𝜏𝑞

2 ∈ 𝑁ℎ,𝑥𝑆𝐿𝑑𝑣
𝑉

) 𝑎ℎ
𝑢 + (∫

1

2
 𝜏𝑞

2 ∈ ∅ℎ,𝑥𝑆𝐿𝑑𝑣
𝑉

) 𝑏ℎ
𝑢

+ (∫
1

2
 𝜏𝑞

2 ∈ 𝜓ℎ𝑚,𝑥𝑆𝐿𝑑𝑣
𝑉

) 

𝐶ℎ𝑚
𝑢 + (∫

1

2
 𝜏𝑞

2 ∈ 𝑁ℎ,𝑦𝑆𝐿𝑑𝑣
𝑉

) 𝑎ℎ
𝑣 + (∫

1

2
 𝜏𝑞

2 ∈ ∅ℎ,𝑦𝑆𝐿𝑑𝑣
𝑉

) 𝑏ℎ
𝑣

+ (∫
1

2
 𝜏𝑞

2 ∈ 𝜓ℎ𝑚,𝑦𝑆𝐿𝑑𝑦
𝑉

) 

𝐶ℎ𝑚
𝑉 + (∫

1

2
 𝜏𝑞

2𝑁ℎ𝑆𝐿𝑑𝑣
𝑉

) 𝑎ℎ
𝑇 + (∫

1

2
 𝜏𝑞

2∅ℎ𝑆𝐿𝑑𝑣
𝑉

) 𝑏 ⃛ℎ
𝑇

+ (∫
1

2
 𝜏𝑞

2𝜓ℎ𝑚𝑆𝐿𝑑𝑣
𝑉

) 𝐶 ℎ𝑚
𝑇  

+ (∫ 𝜏𝑞 ∈ 𝑁ℎ,𝑥𝑆𝐿𝑑𝑣
𝑉

) 𝑎̈ℎ
𝑢 + (∫ 𝜏𝑞 ∈ ∅ℎ,𝑥𝑆𝐿𝑑𝑣

𝑉

) 𝑏̈ℎ
𝑢

+ (∫ 𝜏𝑞 ∈ 𝜓ℎ𝑚,𝑥𝑆𝐿𝑑𝑣
𝑉

) 𝑐̈ℎ𝑚
𝑢 + 
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+ (∫ 𝜏𝑞 ∈ 𝑁ℎ,𝑦𝑆𝐿𝑑𝑣
𝑉

) 𝑎̈ℎ
𝑣 + (∫ 𝜏𝑞 ∈ ∅ℎ,𝑦𝑆𝐿𝑑𝑣

𝑉

) 𝑏̈ℎ
𝑣

+ (∫ 𝜏𝑞 ∈ 𝜓ℎ𝑚,𝑦𝑆𝐿𝑑𝑣
𝑉

) 𝑐̈ℎ𝑚
𝑣  

+ (∫ 𝜏𝑞𝑁ℎ𝑆𝐿𝑑𝑣
𝑉

) 𝑎̈ℎ
𝑇 + (∫ 𝜏𝑞∅ℎ𝑆𝐿𝑑𝑣

𝑉

) 𝑏̈ℎ
𝑇 + (∫ 𝜏𝑞𝜓ℎ𝑚𝑆𝐿𝑑𝑣

𝑉

) 𝑐̈ℎ𝑚
𝑇  

+ (∫ ∈ 𝑁ℎ,𝑥𝑆𝐿𝑑𝑣
𝑉

) 𝑎̇ℎ
𝑢 + (∫ ∈ ∅ℎ,𝑥𝑆𝐿𝑑𝑣

𝑉

) 𝑏̇ℎ
𝑢 + (∫ ∈ 𝜓ℎ𝑚,𝑥𝑆𝐿𝑑𝑣

𝑉

) 𝑐̇ℎ𝑚
𝑢 + 

(∫ ∈ 𝑁ℎ,𝑦𝑆𝐿𝑑𝑣
𝑉

) 𝑎̇ℎ
𝑣 + (∫ ∈ ∅ℎ,𝑦𝑆𝐿𝑑𝑣

𝑉

) 𝑏̇ℎ
𝑣 + (∫ ∈ 𝜓ℎ𝑚,𝑦𝑆𝐿𝑑𝑣

𝑉

) 𝑐̇ℎ𝑚
𝑣 + 

[∫ (𝑁ℎ𝑆𝐿 + 𝜏𝑇𝐾𝑁ℎ,𝑥𝑆𝐿,𝑥 + 𝜏𝑇𝐾𝑁ℎ,𝑦𝑆𝐿,𝑦)𝑑𝑣
𝑉

] 𝑎̇ℎ
𝑇 + 

[∫ (∅ℎ𝑆𝐿 + 𝜏𝑇𝐾∅ℎ,𝑥𝑆𝐿,𝑥 + 𝜏𝑇𝐾∅ℎ,𝑦𝑆𝐿,𝑦)𝑑𝑣
𝑉

] 𝑏̇ℎ
𝑇 + 

[∫ (𝜓ℎ,𝑚𝑆𝐿 + 𝜏𝑇𝐾𝜓ℎ𝑚,𝑥𝑆𝐿,𝑥 + 𝜏𝑇𝐾𝜓ℎ𝑚,𝑦𝑆𝐿,𝑦)𝑑𝑣
𝑉

] 𝑐̇ℎ𝑚
𝑇 + 

 

[∫ 𝐾𝑁ℎ,𝑥𝑆𝐿,𝑥 + 𝐾𝑁ℎ,𝑦𝑆𝐿,𝑦)𝑑𝑣
𝑉

] 𝑎ℎ
𝑇 + [∫ (𝐾∅ℎ,𝑋𝑆𝐿,𝑋 + 𝐾∅ℎ,𝑦𝑆𝐿,𝑦)𝑑𝑣

𝑉

] 𝑏ℎ
𝑇 

+𝐶ℎ𝑚
𝑇 [∫ (𝐾𝜓ℎ𝑚,𝑥𝑆𝐿,𝑥 + 𝐾𝜓ℎ𝑚,𝑦𝑆𝐿,𝑦)𝑑𝑣

𝑉

] = ∫ (𝜏𝑇𝐾𝑇̇,𝑥 + 𝐾𝑇,𝑥)
𝐴

𝑆𝐿𝑛𝑥𝑑𝐴 

     + ∫ (𝜏𝑇𝐾 𝑇̇,𝑦 + 𝐾𝑇,𝑦)𝑆𝐿𝑛𝑦𝑑𝐴
𝐴

 

 توان به شکل ماتریسی زیر بیان نمود :معادلات فوق را می

[𝑃]{Δ}⃛ + [𝑀]{Δ̈} + [𝐶]{Δ̇} + [𝐾]{Δ} = {𝐹} (2-73)                                                    

ای و ردار مجهولات گرهب {Δ}سفتی هستند ،  های جرم ، میرایی وبه ترتیب ماتریس K و Cو   Mدر رابطه بالا 

{𝐹} ای است .بردار نیروهای گره 

{Δ} = {𝑎ℎ
𝑢, 𝑏ℎ

𝑢, 𝑐ℎ𝑚
𝑢 , 𝑎ℎ

𝑣 , 𝑏ℎ
𝑣, 𝑐ℎ𝑚

𝑣 , 𝑎ℎ
𝑇 , 𝑏ℎ

𝑇 , 𝑐ℎ𝑚
𝑇 } (2-74)                                                    
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 هاهای ماتریسدرایه

 

𝑀11 = ∫ 𝜌𝑆𝐿𝑁ℎ𝑑𝑣
𝑣

(2-75)                                                                                                       

𝑀12 = ∫ 𝜌𝑆𝐿𝜙ℎ𝑑𝑣
𝑣

(2-76)                                                                                                       

𝑀13 = ∫ 𝜌𝑆𝐿𝜓ℎ𝑚𝑑𝑣
𝑣

(2-77)                                                                                                     

𝑀24 = ∫ 𝜌𝑆𝐿𝑁ℎ𝑑𝑣
𝑣

(2-78)                                                                                                         

𝑀25 = ∫ 𝜌𝑆𝐿𝜙ℎ𝑑𝑣
𝑣

(2-79)                                                                                                         

𝑀26 = ∫ 𝜌𝑆𝐿𝜓ℎ𝑚𝑑𝑣
𝑣

(2-80)                                                                                                      

𝑀31 = ∫ 𝜏𝑞 ∈ 𝑁ℎ,𝑥𝑆𝐿𝑑𝑣
𝑣

 (2-81)                                                                                             

𝑀32 = ∫ 𝜏𝑞𝑣
∈ ∅ℎ,𝑥𝑆𝐿𝑑𝑣 (2-82)                                                                                               

𝑀33 = ∫ 𝜏𝑞𝑣
∈ 𝜓ℎ𝑚,𝑥𝑆𝐿𝑑𝑣 (2-83)                                                                                           

𝑀34 = ∫ 𝜏𝑞𝑣
∈ 𝑁ℎ,𝑦𝑆𝐿𝑑𝑣 (2-84)                                                                                              

𝑀35 = ∫ 𝜏𝑞𝑣
∈ ∅ℎ,𝑦𝑆𝐿𝑑𝑣 (2-85)                                                                                               

𝑀36 = ∫ 𝜏𝑞𝑣
∈ 𝜓ℎ𝑚,𝑦𝑆𝐿𝑑𝑣 (2-86)                                                                                            

𝑀37 = ∫ 𝜏𝑞𝑣
𝑁ℎ𝑆𝐿𝑑𝑣 (2-87)                                                                                                        

𝑀38 = ∫ 𝜏𝑞𝑣
∅ℎ𝑆𝐿𝑑𝑣 (2-88)                                                                                                        

𝑀39 = ∫ 𝜏𝑞𝑣
𝜓ℎ𝑚𝑆𝐿𝑑𝑣 (2-89)                                                                                                     

𝐶31 = ∫ ∈
𝑣

 𝑁ℎ,𝑥𝑆𝐿𝑑𝑣 (2-90)                                                                                                        
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𝐶32 = ∫ ∈
𝑣

∅ℎ,𝑥𝑆𝐿𝑑𝑣 (2-91)                                                                                            

𝐶33 = ∫ ∈
𝑣

𝜓ℎ𝑚,𝑥𝑆𝐿𝑑𝑣 (2-92)                                                                                         

𝐶34 = ∫ ∈
𝑣

 𝑁ℎ,𝑦𝑆𝐿𝑑𝑣 (2-93)                                                                                            

𝐶35 = ∫ ∈
𝑣

∅ℎ,𝑦𝑆𝐿𝑑𝑣 (2-94)                                                                                             

𝐶36 = ∫ ∈
𝑣

𝜓ℎ𝑚,𝑦𝑆𝐿𝑑𝑣 (2-95)                                                                                         

𝐶37 = ∫ (𝑁ℎ𝑆𝐿 + 𝜏𝑇𝐾𝑁ℎ,𝑥𝑆𝐿,𝑥 + 𝜏𝑇𝐾𝑁ℎ,𝑦𝑆𝐿,𝑦)
𝑣

𝑑𝑣 (2-96)                                

𝐶38 = ∫ (∅ℎ𝑆𝐿 + 𝜏𝑇𝐾∅ℎ,𝑥𝑆𝐿,𝑥 + 𝜏𝑇𝐾∅ℎ,𝑦𝑆𝐿,𝑦)
𝑣

𝑑𝑣 (2-97)                                 

𝐶39 = ∫ (𝜓ℎ𝑚𝑆𝐿 + 𝜏𝑇𝐾𝜓ℎ𝑚,𝑥𝑆𝐿,𝑥 + 𝜏𝑇𝐾𝜓ℎ𝑚,𝑦𝑆𝐿,𝑦)
𝑣

𝑑𝑣 (2-98)                      

𝐾11 = ∫ [(𝜆 + 2𝜇)𝑆𝐿,𝑥𝑁ℎ,𝑥 + 𝜇𝑆𝐿,𝑦𝑁ℎ,𝑦]
𝑣

𝑑𝑣 (2-99)                                              

𝐾12 = ∫ [(𝜆 + 2𝜇)𝑆𝐿,𝑥∅ℎ,𝑥 + 𝜇𝑆𝐿,𝑦∅ℎ,𝑦]
𝑣

𝑑𝑣 (2-100)                                             

𝐾13 = ∫ [(𝜆 + 2𝜇)𝑆𝐿,𝑥𝜓ℎ𝑚,𝑥 + 𝜇𝑆𝐿,𝑦𝜓ℎ𝑚,𝑦]𝑑𝑣
𝑣

(2-101)                                        

𝐾14 = ∫ [𝜆𝑆𝐿,𝑥𝑁ℎ,𝑦 + 𝜇𝑆𝐿,𝑦𝑁ℎ,𝑥]𝑑𝑣
𝑣

(2-102)                                                                

𝐾15 = ∫ [𝜆𝑆𝐿,𝑥∅ℎ,𝑦 + 𝜇𝑆𝐿,𝑦∅ℎ,𝑥]𝑑𝑣
𝑣

(2-103)                                                                

𝐾16 = ∫ [𝜆𝑆𝐿,𝑥𝜓ℎ𝑚,𝑦 + 𝜇𝑆𝐿,𝑦𝜓ℎ𝑚,𝑥]
𝑣

𝑑𝑣 (2-104)                                                        

𝐾17 = ∫ 𝛽𝑆𝐿,𝑥𝑁ℎ𝑎ℎ
𝑇

𝑣
 𝑑𝑣 (2-105)                                                                                        

𝐾18 = ∫ 𝛽𝑆𝑙,𝑥∅ℎ𝑏ℎ
𝑇

𝑣
𝑑𝑣 (2-106)                                                                                           

𝐾19 = ∫ 𝛽𝑆𝑙,𝑥𝜓ℎ𝑚𝑐ℎ𝑚
𝑇

𝑣
 𝑑𝑣 (2-107)                                                                                    

𝑘21 = ∫ [𝜇𝑆𝐿,𝑥𝑁ℎ,𝑦 + 𝜆𝑆𝐿,𝑦𝑁ℎ,𝑥] 𝑑𝑣
𝑣

(2-108)                                                                 
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     𝑘22 = ∫ 𝑣[𝜇𝑆𝐿,𝑥∅ℎ,𝑦 + 𝜆𝑆𝐿,𝑦∅ℎ,𝑥] 𝑑𝑣 (2-109)                                                                        

𝑘23 = ∫ [𝜇𝑆𝐿,𝑥𝜓ℎ𝑚,𝑦 + 𝜆𝑆𝐿,𝑦𝜓ℎ𝑚,𝑥]𝑑𝑣
𝑣

(2-110)                                                                   

𝑘24 = ∫ [𝜇𝑆𝐿,𝑥𝑁ℎ,𝑥 + (𝜆 + 2𝜇)𝑆𝐿,𝑦𝑁ℎ,𝑦] 𝑑𝑣
𝑣

(2-111)                                                         

𝑘25 = ∫ [𝜇𝑆𝐿,𝑥∅ℎ,𝑥 + (𝜆 + 2𝜇)𝑆𝐿,𝑦∅ℎ,𝑦] 𝑑𝑣
𝑣

(2-112)                                                         

 𝑘26 = ∫ [𝜇𝑆𝐿,𝑥𝜓ℎ𝑚,𝑥 + (𝜆 + 2𝜇)𝑆𝐿,𝑦𝜓ℎ𝑚,𝑦] 𝑑𝑣
𝑣

(2-113)                                                 

𝑘27 = − ∫ 𝛽𝑆𝐿,𝑦𝑁ℎ𝑎ℎ
𝑇  𝑑𝑣

𝑣
(2-114)                                                                                               

𝑘28 = − ∫ 𝛽𝑆𝐿,𝑦∅ℎ𝑏ℎ
𝑇𝑑𝑣

𝑣
(2-115)                                                                                                 

𝑘29 = − ∫ 𝛽𝑆𝐿,𝑦𝜓ℎ𝑚𝑐ℎ𝑚
𝑇 𝑑𝑣

𝑣
(2-116)                                                                                           

𝑘37 = ∫ (𝐾𝑁ℎ,𝑥𝑆𝐿,𝑥 + 𝐾𝑁ℎ,𝑦𝑆𝐿,𝑦)𝑑𝑣
𝑣

(2-117)                                                                          

𝑘38 = ∫ (𝐾∅ℎ,𝑋𝑆𝐿,𝑋 + 𝐾∅ℎ,𝑦𝑆𝐿,𝑦)𝑑𝑣
𝑣

(2-118)                                                                          

𝑘39 = 𝐶ℎ𝑚
𝑇 [∫ (𝐾𝜓ℎ𝑚,𝑥𝑆𝐿,𝑥 + 𝐾𝜓ℎ𝑚,𝑦𝑆𝐿,𝑦)𝑑𝑣

𝑣
]  (2-119)                                                       

𝑃31 = ∫
1

2
 𝜏𝑞

2 ∈ 𝑁ℎ,𝑥𝑆𝐿𝑑𝑣
𝑣

(2-120)                                                                                                

𝑃32 = ∫
1

2
 𝜏𝑞

2 ∈ ∅ℎ,𝑥𝑆𝐿𝑑𝑣
𝑣

(2-121)                                                                                                

𝑃33 = ∫
1

2
 𝜏𝑞

2 ∈ 𝜓ℎ𝑚,𝑥𝑆𝐿𝑑𝑣
𝑣

(2-122)                                                                                            

𝑃34 = ∫
1

2
 𝜏𝑞

2 ∈ 𝑁ℎ,𝑦𝑆𝐿𝑑𝑣
𝑉

(2-123)                                                                                                

𝑃35 = ∫
1

2
 𝜏𝑞

2 ∈ ∅ℎ,𝑦𝑆𝐿𝑑𝑣
𝑉

(2-124)                                                                                                

𝑃36 = ∫
1

2
 𝜏𝑞

2 ∈ 𝜓ℎ𝑚,𝑦𝑆𝐿𝑑𝑣
𝑉

(2-125)                                                                                             

𝑃37 = ∫
1

2
 𝜏𝑞

2𝑁ℎ𝑆𝐿𝑑𝑣
𝑉

(2-126)                                                                                                          
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𝑃38 = ∫
1

2
 𝜏𝑞

2∅ℎ𝑆𝐿𝑑𝑣
𝑉

(2-127)                                                                                                 

𝑃39 = ∫
1

2
 𝜏𝑞

2𝜓ℎ𝑚𝑆𝐿𝑑𝑣
𝑉

(2-128)                                                                                             

𝐹11 = ∫ 𝐵𝑥𝑠𝐿𝑑𝑣 +
𝑉

∫ 𝑇𝑟𝑥
𝑛𝑆𝐿𝑑𝐴

𝐴
(2-129)                                                                          

𝐹21 = ∫ 𝐵𝑦𝑆𝐿𝑑𝑣
𝑉

+ ∫ 𝑇𝑟𝑦
𝑛𝑆𝐿𝑑𝐴

𝐴
(2-130)                                                                          

𝐹31 = ∫ (𝜏𝑇𝐾 𝑇̇,𝑥 + 𝐾𝑇,𝑥)𝑆𝐿𝑛𝑥𝑑𝐴
𝐴

(2-131)                                                                         

+ ∫ (𝜏𝑇𝐾 𝑇̇,𝑦 + 𝐾𝑇,𝑦)𝑆𝐿𝑛𝑦𝑑𝐴
𝐴

 

[𝑠] = [𝑁1 … 𝑁4   𝛷1 … 𝛷4   𝛹11 … 𝛹44] (2-132)                                                                   

[𝑁] = [𝑁1 𝑁2 𝑁3 𝑁4] (2-133)                                                                                                      

[𝛷] = [𝛷1 𝛷2 𝛷3 𝛷4] (2-134)                                                                                                      

[𝛹1] = [𝛹11 𝛹12 𝛹13 𝛹14] (2-135)                                                                                            

[𝛹2] = [𝛹21 𝛹22 𝛹23 𝛹24] (2-136)                                                                                            

[𝛹3] = [𝛹31 𝛹32 𝛹33 𝛹34] (2-137)                                                                                            

[𝛹4] = [𝛹41 𝛹42 𝛹43 𝛹44] (2-138)                                                                                             

[𝐺1] = [𝑁1,𝑥  𝑁2,𝑥 𝑁3,𝑥 𝑁4,𝑥] (2-139)                                                                                           

[𝐺2] = [𝑁1,𝑦 𝑁2,𝑦 𝑁3,𝑦 𝑁4,𝑦] (2-140)                                                                                           

[𝐺3] = [𝛷1,𝑥 𝛷2,𝑥 𝛷3,𝑥 𝛷4,𝑥] (2-141)                                                                                           

[𝐺4] = [𝛷1,𝑦 𝛷2,𝑦 𝛷3,𝑦 𝛷4,𝑦] (2-142)                                                                                           

[𝐺5] = [𝛹11,𝑥 𝛹12,𝑥 𝛹13,𝑥  𝛹14,𝑥] (2-143)                                                                                   

[𝐺6] = [𝛹21,𝑥  𝛹22,𝑥  𝛹23,𝑥  𝛹24,𝑥] (2-144 )                                                                                   
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[𝐺7] = [𝛹31,𝑥  𝛹32,𝑥  𝛹33,𝑥  𝛹34,𝑥] (2-145)                                                                                    

[𝐺8] = [𝛹41,𝑥 𝛹42,𝑥 𝛹43,𝑥 𝛹44,𝑥] (2-146)                                                                                     

[𝐺9] = [𝛹11,𝑦 𝛹12,𝑦 𝛹13,𝑦 𝛹14,𝑦] (2-147)                                                                                    

[𝐺10] = [𝛹21,𝑦 𝛹22,𝑦 𝛹23,𝑦 𝛹24,𝑦] (2-148)                                                                                 

[𝐺11] = [𝛹31,𝑦 𝛹32,𝑦 𝛹33,𝑦 𝛹34,𝑦] (2-149)                                                                                  

[𝐺12] = [𝛹41,𝑦 𝛹42,𝑦 𝛹43,𝑦 𝛹44,𝑦] (2-150)                                                                                   

[𝐺13] = [𝑁1,𝑥 … 𝑁4,𝑥   𝛷1,𝑥 … 𝛷4,𝑥   𝛹11,𝑥 … 𝛹44,𝑥] (2-151)                                                  

[𝐺14] = [𝑁1,𝑦 … 𝑁4,𝑦   𝛷1,𝑦 … 𝛷4,𝑦   𝛹11,𝑦 … 𝛹44,𝑦] (2-152)                                                 

 شوند:یها به صورت زیر بازنویسی مهای ماتریسبا استفاده از روابط فوق، مؤلفه

[𝑀11] = [𝑀24] = ∫ 𝜌[𝑆]𝑇
𝑣

[𝑁]𝑑𝑣 (2-153)                                                                                   

[𝑀12] = [𝑀25] = ∫ 𝜌[𝑆]𝑇
𝑣

[𝛷]𝑑𝑣 (2-154)                                                                                   

[𝑀13] = [𝑀26] = ∫ 𝜌[𝑆]𝑇
𝑣

[𝛹]𝑑𝑣 (2-155)                                                                                   

(2-156)                                                                                                                                                        

[𝑀13] = [𝑀26] = ∫[𝜌[𝑆]𝑇[𝛹1]  𝜌[𝑆]𝑇[𝛹2]  𝜌[𝑆]𝑇[𝛹3]    𝜌[𝑆]𝑇[𝛹4]]

𝑣

𝑑𝑣 

[𝑀31] = ∫   𝜏𝑞 ∈ [𝐺1][𝑆]𝑇
𝑣

𝑑𝑣 (2-157)                                                                                               

[𝑀32] = ∫   𝜏𝑞 ∈ [𝐺3][𝑆]𝑇
𝑣

𝑑𝑣 (2-158)                                                                                               

 

‌

‌

‌
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(2-159) 

[𝑀33] = ∫[  𝜏𝑞 ∈ [𝐺5][𝑆]𝑇    𝜏𝑞 ∈ [𝐺6][𝑆]𝑇   𝜏𝑞 ∈ [𝐺7][𝑆]𝑇   𝜏𝑞 ∈ [𝐺8][𝑆]𝑇]

𝑣

𝑑𝑣 

[𝑀34] = ∫   𝜏𝑞 ∈ [𝐺2][𝑆]𝑇
𝑣

𝑑𝑣 (2-160)                                                                                               

[𝑀35] = ∫   𝜏𝑞 ∈ [𝐺4][𝑆]𝑇
𝑣

𝑑𝑣 (2-161)                                                                                               

(2-162)                                                                                                                                                          

[𝑀36] = ∫[  𝜏𝑞 ∈ [𝐺9][𝑆]𝑇    𝜏𝑞 ∈ [𝐺10][𝑆]𝑇    𝜏𝑞 ∈ [𝐺11][𝑆]𝑇    𝜏𝑞 ∈ [𝐺12][𝑆]𝑇]

𝑣

𝑑𝑣 

[𝑀37] = ∫   𝜏𝑞 [𝑁][𝑆]𝑇
𝑣

𝑑𝑣 (2-163)                                                                                                      

[𝑀38] = ∫   𝜏𝑞 [𝛷][𝑆]𝑇
𝑣

𝑑𝑣 (2-164)                                                                                                      

[𝑀39] = ∫ [  𝜏𝑞 [𝛹1][𝑆]𝑇    𝜏𝑞 [𝛹2][𝑆]𝑇    𝜏𝑞 [𝛹3][𝑆]𝑇    𝜏𝑞 [𝛹4][𝑆]𝑇]
𝑣

𝑑𝑣 (2-165)             

[𝐶31] = ∫ ∈ [𝐺1][𝑆]𝑇
𝑣

𝑑𝑣 (2-166)                                                                                                         

[𝐶32] = ∫ ∈ [𝐺3][𝑆]𝑇
𝑣

𝑑𝑣 (2-167)                                                                                                         

[𝐶33] = ∫ [∈ [𝐺5][𝑆]𝑇   ∈ [𝐺6][𝑆]𝑇   ∈ [𝐺7][𝑆]𝑇  ∈ [𝐺8][𝑆]𝑇  ]
𝑣

𝑑𝑣 (2-168)                        

[𝐶34] = ∫ ∈ [𝐺2][𝑆]𝑇
𝑣

𝑑𝑣 (2-169)                                                                                                         

[𝐶35] = ∫ ∈ [𝐺4][𝑆]𝑇
𝑣

𝑑𝑣 (2-170)                                                                                                         

[𝐶36] = ∫ [∈ [𝐺9][𝑆]𝑇   ∈ [𝐺10][𝑆]𝑇   ∈ [𝐺11][𝑆]𝑇  ∈ [𝐺12][𝑆]𝑇 ]
𝑣

𝑑𝑣 (2-171)                  

[𝐶37] = ∫ ([𝑁][𝑆]𝑇 + 𝜏𝑇𝐾[𝐺1][𝐺13]𝑇 + 𝜏𝑇𝐾[𝐺2][𝐺14]𝑇)
𝑣

𝑑𝑣 (2-172)                                

[𝐶38] = ∫ ([𝛷][𝑆]𝑇 + 𝜏𝑇𝐾[𝐺3][𝐺13]𝑇 + 𝜏𝑇𝐾[𝐺4][𝐺14]𝑇)
𝑣

𝑑𝑣 (2-173)                                
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(2-174)  

[𝐶39]                  

= ∫([[𝛹1][𝑆]𝑇   [𝛹2][𝑆]𝑇   [𝛹3][𝑆]𝑇  [𝛹4][𝑆]𝑇  ]  

𝑣

+ [𝜏𝑇𝐾[𝐺5][𝐺13]𝑇   𝜏𝑇𝐾[𝐺6][𝐺13]𝑇   𝜏𝑇𝐾[𝐺7][𝐺13]𝑇 𝜏𝑇𝐾[𝐺8][𝐺13]𝑇  ]

+ [𝜏𝑇𝐾[𝐺9][𝐺14]𝑇   𝜏𝑇𝐾[𝐺10][𝐺14]𝑇  𝜏𝑇𝐾[𝐺11][𝐺14]𝑇  𝜏𝑇𝐾[𝐺12][𝐺14]𝑇 ] ) 𝑑𝑣 

[𝐶39] = [∫[[𝛹1][𝑆]𝑇 + [𝐺5]𝜏𝑇𝐾[𝐺13]𝑇

𝑣

+ 𝜏𝑇𝐾[𝐺9][𝐺14]𝑇] 𝑑𝑣 . ∫[[𝛹2][𝑆]𝑇 + 𝜏𝑇𝐾[𝐺6][𝐺13]𝑇

𝑣

+ 𝜏𝑇𝐾[𝐺10][𝐺14]𝑇] 𝑑𝑣. ∫[[𝛹3][𝑆]𝑇 + 𝜏𝑇𝐾[𝐺7][𝐺13]𝑇

𝑣

+ 𝜏𝑇𝐾[𝐺11][𝐺14]𝑇] 𝑑𝑣 . ∫[[𝛹4][𝑆]𝑇 + 𝜏𝑇𝐾[𝐺8][𝐺13]𝑇

𝑣

+ 𝜏𝑇𝐾[𝐺12][𝐺14]𝑇] 𝑑𝑣  ] 

[𝐾11] = ∫ [(𝜆 + 2𝜇)[𝐺13]𝑇[𝐺1] +  𝜇[𝐺14]𝑇[𝐺2] ]
𝑣

𝑑𝑣 (2-175)                                             

     

[𝐾12] = ∫ [(𝜆 + 2𝜇)[𝐺13]𝑇[𝐺3] +  𝜇[𝐺14]𝑇[𝐺4] ]
𝑣

𝑑𝑣 (2-176)                                              

 

 

 

 

 

‌
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(2-177)       

[𝐾13] = ∫[[(𝜆 + 2𝜇)[𝐺13]𝑇[𝐺5]  (𝜆 + 2𝜇)[𝐺13]𝑇[𝐺6]  (𝜆 + 2𝜇)[𝐺13]𝑇[𝐺7]  (𝜆

𝑣

+ 2𝜇)[𝐺13]𝑇[𝐺8] ]

+ [𝜇[𝐺14]𝑇[𝐺9] 𝜇[𝐺14]𝑇[𝐺10]  𝜇[𝐺14]𝑇[𝐺11]  𝜇[𝐺14]𝑇[𝐺12] ]] 𝑑𝑣 

[𝐾13] = [∫[(𝜆 + 2𝜇)[𝐺13]𝑇[𝐺5]

𝑣

+ 𝜇[𝐺14]𝑇[𝐺9] ]𝑑𝑣 . ∫[(𝜆 + 2𝜇)[𝐺13]𝑇[𝐺6] + 𝜇[𝐺14]𝑇[𝐺10] ]𝑑𝑣 .

𝑣

∫[(𝜆

𝑣

+ 2𝜇)[𝐺13]𝑇[𝐺7]

+ 𝜇[𝐺14]𝑇[𝐺11] ]𝑑𝑣 . ∫[(𝜆 + 2𝜇)[𝐺13]𝑇[𝐺8] + 𝜇[𝐺14]𝑇[𝐺12] ]𝑑𝑣 

𝑣

] 

[𝐾14] = ∫ [𝜆[𝐺13]𝑇[𝐺2] +  𝜇[𝐺14]𝑇[𝐺1] ]
𝑣

𝑑𝑣 (2-178)                                                                   

[𝐾15] = ∫ [𝜆[𝐺13]𝑇[𝐺4] +  𝜇[𝐺14]𝑇[𝐺3] ]
𝑣

𝑑𝑣 (2-179)                                                                   

(2-180)  

[𝐾16] = ∫ [[𝜆[𝐺13]𝑇[𝐺9]   𝜆[𝐺13]𝑇[𝐺10]  𝜆[𝐺13]𝑇[𝐺11] 𝜆[𝐺13]𝑇[𝐺12]]

𝑣

+ [𝜇[𝐺14]𝑇[𝐺5]  𝜇[𝐺14]𝑇[𝐺6]  𝜇[𝐺14]𝑇[𝐺7]  𝜇[𝐺14]𝑇[𝐺8]]] 𝑑𝑣 

 

 

 

‌

‌

‌

‌



38 

 

(2-181)‌

[𝐾16] = [∫[𝜆[𝐺13]𝑇[𝐺9]

𝑣

+ 𝜇[𝐺14]𝑇[𝐺5]]𝑑𝑣 . ∫ [𝜆[𝐺13]𝑇[𝐺10]
𝑣

+ 𝜇[𝐺14]𝑇[𝐺6]]𝑑𝑣. ∫ [𝜆[𝐺13]𝑇[𝐺11]
𝑣

+ 𝜇[𝐺14]𝑇[𝐺7]]𝑑𝑣. ∫ [𝜆[𝐺13]𝑇[𝐺12] + 𝜇[𝐺14]𝑇[𝐺8]]𝑑𝑣
𝑣

] 

[𝐾17] = ∫ 𝛽[𝐺13]𝑇[𝑁]
𝑣

𝑑𝑣 (2-182)                                                                                                        

  

[𝐾18] = ∫ 𝛽[𝐺13]𝑇[𝛷]
𝑣

𝑑𝑣 (2-183)                                                                                                         

(2-184)             

[𝐾19] = ∫[𝛽[𝐺13]𝑇[𝛹1]  𝛽[𝐺13]𝑇[𝛹2]   𝛽[𝐺13]𝑇[𝛹3]  𝛽[𝐺13]𝑇[𝛹4]]

𝑣

𝑑𝑣 

[𝐾21] = ∫ [𝜇[𝐺13]𝑇[𝐺2] +  𝜆[𝐺14]𝑇[𝐺1] ]
𝑣

𝑑𝑣 (2-185)                                                                  

  

[𝐾22] = ∫ [𝜇[𝐺13]𝑇[𝐺4] +  𝜆[𝐺14]𝑇[𝐺3] ]
𝑣

𝑑𝑣 (2-186)                                                                  
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(2-187)  

[𝐾23] = ∫[( 𝜇[𝐺13]𝑇[𝐺9] +  𝜆[𝐺14]𝑇[𝐺5])  ( 𝜇[𝐺13]𝑇[𝐺10]

𝑣

+  𝜆[𝐺14]𝑇[𝐺6]) ( 𝜇[𝐺13]𝑇[𝐺11] +  𝜆[𝐺14]𝑇[𝐺7]) ( 𝜇[𝐺13]𝑇[𝐺12]

+  𝜆[𝐺14]𝑇[𝐺8])] 𝑑𝑣 

[𝐾24] = ∫ [𝜇[𝐺13]𝑇[𝐺1] + (𝜆 + 2𝜇)[𝐺14]𝑇[𝐺2] ]
𝑣

𝑑𝑣 (2-188)                                                   

[𝐾25] = ∫ [𝜇[𝐺13]𝑇[𝐺3] + (𝜆 + 2𝜇)[𝐺14]𝑇[𝐺4] ]
𝑣

𝑑𝑣 (2-189)                                              

 

‌

(2-190)  

[𝐾26] = ∫[(𝜇[𝐺13]𝑇[𝐺5] + (𝜆 + 2𝜇)[𝐺14]𝑇[𝐺9]) (𝜇[𝐺13]𝑇[𝐺6]

𝑣

+ (𝜆 + 2𝜇)[𝐺14]𝑇[𝐺10])  (𝜇[𝐺13]𝑇[𝐺7]

+ (𝜆 + 2𝜇)[𝐺14]𝑇[𝐺11])(𝜇[𝐺13]𝑇[𝐺8] + (𝜆 + 2𝜇)[𝐺14]𝑇[𝐺12])] 𝑑𝑣 

[𝐾27] = − ∫ 𝛽[𝐺14]𝑇[𝑁]
𝑣

𝑑𝑣 (2-191)                                                                                                  

[𝐾28] = − ∫ 𝛽[𝐺14]𝑇[𝛷]
𝑣

𝑑𝑣 (2-192)                                                                                                  

                                (2-193)  

[𝐾29] = − ∫[𝛽[𝐺14]𝑇[𝛹1]  𝛽[𝐺14]𝑇[𝛹2]   𝛽[𝐺14]𝑇[𝛹3]  𝛽[𝐺14]𝑇[𝛹4]]

𝑣

𝑑𝑣 

[𝐾37] = ∫ (𝐾[𝐺1][𝐺13]𝑇 + 𝐾[𝐺2][𝐺14]𝑇)
𝑣

𝑑𝑣 (2-194)                                                                  

[𝐾38] = ∫ (𝐾[𝐺3][𝐺13]𝑇 + 𝐾[𝐺4][𝐺14]𝑇)
𝑣

𝑑𝑣 (2-195)                                                                  

(2-196)                                                                                                                                                         
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[𝐾39] = ∫[(𝐾[𝐺5][𝐺13]𝑇 + 𝐾[𝐺9][𝐺14]𝑇)(𝐾[𝐺6][𝐺13]𝑇

𝑣

+ 𝐾[𝐺10][𝐺14]𝑇)(𝐾[𝐺7][𝐺13]𝑇 + 𝐾[𝐺11][𝐺14]𝑇)(𝐾[𝐺8][𝐺13]𝑇

+ 𝐾[𝐺12][𝐺14]𝑇) ] 𝑑𝑣 

[𝑃31] = ∫
1

2𝑣
  𝜏𝑞

2 ∈ [𝐺1][𝑆]𝑇𝑑𝑣 (2-197)                                                                                               

[𝑃32] = ∫
1

2𝑣
  𝜏𝑞

2 ∈ [𝐺3][𝑆]𝑇𝑑𝑣 (2-198)                                                                                               

 (2-199) 

[𝑃33] = ∫ [
1

2
  𝜏𝑞

2 ∈ [𝐺5][𝑆]𝑇   
1

2
  𝜏𝑞

2 ∈ [𝐺6][𝑆]𝑇     
1

2
  𝜏𝑞

2 ∈ [𝐺7][𝑆]𝑇  
1

2
  𝜏𝑞

2

𝑣

∈ [𝐺8][𝑆]𝑇] 𝑑𝑣 

[𝑃34] = ∫
1

2𝑣
  𝜏𝑞

2 ∈ [𝐺2][𝑆]𝑇𝑑𝑣 (2-200)                                                                                         

[𝑃35] = ∫
1

2𝑣
  𝜏𝑞

2 ∈ [𝐺4][𝑆]𝑇𝑑𝑣 (2-201)                                                                                         

(2-202)                                                                                                                                             

[𝑃36] = ∫ [
1

2
  𝜏𝑞

2 ∈ [𝐺9][𝑆]𝑇   
1

2
  𝜏𝑞

2 ∈ [𝐺10][𝑆]𝑇     
1

2
  𝜏𝑞

2 ∈ [𝐺11][𝑆]𝑇  
1

2
  𝜏𝑞

2

𝑣

∈ [𝐺12][𝑆]𝑇] 𝑑𝑣 

[𝑃37] = ∫
1

2𝑣
  𝜏𝑞

2[𝑁][𝑆]𝑇𝑑𝑣 (2-203)                                                                                                  

[𝑃38] = ∫
1

2𝑣
  𝜏𝑞

2[𝛷][𝑆]𝑇𝑑𝑣 (2-204)                                                                                                  

(2-205) 

[𝑃39] = ∫ [
1

2
  𝜏𝑞

2[𝛹1][𝑆]𝑇   
1

2
  𝜏𝑞

2[𝛹2][𝑆]𝑇     
1

2
  𝜏𝑞

2[𝛹3][𝑆]𝑇  
1

2
  𝜏𝑞

2[𝛹4][𝑆]𝑇]
𝑣

𝑑𝑣 
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  مقدمه -3-1
سنجی روش حل دی موجود در مقالات به منظور صحتو عدنتایج حاصل با نتایج تحلیلی در ابتدا در این فصل 

جایی و تنش برای یک لایه همگن و توزیع دما ، جابهدر مثال اول  ئه شده در این تحقیق مقایسه شده است.اار

شده است. در مثال دوم تغییرات ضریب  ارزیابیتحت شوک دمایی با نتایج حاصل از یک حل عددی  ایزوتروپیک

پس از آن در چند مثال رفتار یک با نتایج عددی به جهت اعتبار سنجی مطابقت داده شده است.  Iمود ش شدت تن

مورد بررسی و مقایسه با تئوری  1تیزو -لایه دارای ترک تحت شوک دمایی با در نظر گرفتن تئوری چاندراساخاریا

  قرار گرفته است. 2ترموالاستیسیته کلاسیک

 مثال اول-3-2
و عایق  گیردار x=Lبدون تنش و در  x=0را که در  ایزوتروپیکیک لایه همگن و  ]69[مکاران اسلامی و ه

در  شود.اعمال می x=0ای نیز به سطح ( یک شوک حرارتی پله1-3طابق شکل اند. )مرا مورد بررسی قرار دادهشده 

نتایج  ها در لایه استفاده شده است.دما، جابجایی ها و تنشرای تعیین این مثال از معادلات ترموالاستیسیته کلاسیک ب

-جابه xزیع دما در راستای ومقایسه شده است و در ت ] 69 [نتایج ارائه شده در مرجع دست آمده از این مطالعه با به

‌گرایی مناسبی مشاهده شد.جایی و تغییرات تنش هم

‌

‌

‌
 

 

 

 

 

 

 

 

 

                                                 
1‌. Chandrasekharaiah -Tizo theory(C-T) 
2‌. classical thermoelasticity theory (CTE) 
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‌تحت‌شوک‌حرارتی‌ایزوتروپیکلایه‌همگن‌و‌‌(1-3شکل‌)

 

 
 و‌خواص‌ماده‌مسئله(‌مشخصات‌1-3جدول‌)

 مقدار واحد نام پارامتر

‌‌1- طول بدون بعد  

‌‌3- عرض بدون بعد

‌X -‌71مش بندی در راستای 

‌Y -‌201مش بندی در راستای 

‌‌0.01- بی بعد گام زمانی

‌‌1.25- بی بعد زمان نهایی

E GPa‌200‌

K W/mK‌17‌

∝ 1/K‌4.4112e-05‌

ρ kg/m^3 7833 

‌
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‌

‌مختلف‌های‌زماندر‌امتداد‌طول‌لایه‌در‌‌xدر‌جهت‌‌تغییرات‌تنش‌نمایش‌(2-3شکل‌)

‌

‌مختلف‌های‌زماندر‌‌در‌امتداد‌طول‌لایه‌‌uxجاییتغییرات‌جابه‌(3-3شکل‌)

‌
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‌مختلف‌های‌زماندر‌‌در‌امتداد‌طول‌لایه‌تغییرات‌دما‌(4-3شکل‌)

 

 مثال دوم-3-3
درنظرر  ( 5-3)ای مطابق با شکل  و همگن با یک ترک لبه ایزوتروپیکبرای این مثال یک لایه دو بعدی الاستیک 

شود. دمای سرطح سرمت چرپ ایرن     میفرض  (273K  =T0معادل با ) 273Kاولیه لایه برابر با دمای  شود.گرفته می

(. سطوح دیگرر ایرن لایره    K0  =T1 ) کندبه سرعت به مقدار صفرکاهش پیدا می t=  0ان لایه با فرایند رسانش در زم

 بعدبی (. ضخامت5-3)شکل  a=  5/0و  L  ،4  =W= 1بعد این لایه عبارتند از بی ابعاد شوند.عایق حرارتی فرض می

ای حل در حالت کرنش صفحه مسئله ( ارائه شده است.2-3خواص ماده در جدول ) شود.در نظر گرفته می 10لایه نیز 

  .شده است
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‌

‌ای‌تحت‌شوک‌گرماییهمگن‌دارای‌ترک‌لبه‌ایزوتروپیکهندسه‌و‌ابعاد‌صفحه‌(‌5-‌3)شکل

‌

 باشد.در فضای بی بعد می 𝑡∆=  0.005در قلمرو زمان نیز  مسئلهگام زمانی استفاده شده برای حل 

مورد استفاده قرار گرفته است.  مسئلهسازی هندسه ای برای گسستهالمان مستطیلی چهار گره 51×205یک شبکه شامل 

 در نظر گرفته شده است. 0.00470782و سرعت مشخصه   0.001طول مشخصه 

( مقادیر 7-3مقایسه شده است. در شکل )( 6-3در شکل )[70] با نتایج Iتغییرات زمانی ضریب شدت تنش مد 

دهد مقدار ضریب مقایسه شده است که نتایج نشان میگیری متفاوت چهار ناحیه انتگرالشدت تنش برای ضریب 

 باشد.گیری مستقل میناحیه انتگرال اندازه از Iشدت تنش مد 

 [70]‌ماده‌در‌نظر‌گرفته‌شدهخواص‌‌(2-3جدول‌)

‌
ظرفیت‌

گرمایی‌ویژه‌
(J/Kg-K) 

چگالی‌
(Kg/m

3
) 

هدایت‌

 گرمایی

(W/m-K) 

یب‌انبساط‌ضر

گرمایی‌
(10

−6
/K) 

نسبت‌

 پواسون

‌ مدول

یانگ‌
(GPa) 

‌

‌461 7833 17 6.68 0.3 200  

‌

T1 

L 

W 

T0 

x 

y 

a 

 عایق
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‌

 Iتغییرات‌زمانی‌ضریب‌شدت‌تنش‌مود‌‌(6-3شکل)‌

 
 

 

‌Iگیری‌بر‌روی‌مقدار‌ضریب‌شدت‌تنش‌مد‌اثر‌تغییر‌اندازه‌ناحیه‌انتگرال(‌‌7-3شکل)‌
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 مثال سوم-3-4
شود.‌درنظر‌گرفته‌می‌(8-3)و‌همگن‌مطابق‌با‌شکل‌‌ایزوتروپیکبعدی‌الاستیک‌دوبرای‌این‌مثال‌یک‌لایه‌

‌‌100Kدمای‌اولیه‌لایه‌برابر‌با‌ ‌فرایند‌فرض‌می‌(100K‌=T0)معادل‌با ‌دمای‌سطح‌سمت‌چپ‌این‌لایه‌با شود.

‌زمان‌ ‌‌0رسانش‌در =t‌‌ ‌مقدار ‌می‌افزایش T0 2به‌سرعت‌به ‌)پیدا ‌2T0کند =T1سطوح‌دی‌ ‌عایق‌(. ‌این‌لایه گر

‌شوند‌و‌لبه‌سمت‌چپ‌کاملا‌مقید‌شده‌است.حرارتی‌فرض‌می

بی‌بعد‌این‌لایه‌عبارتند‌از‌‌ابعادو‌‌استفاده‌شده‌مسئلهبرای‌حل‌‌1از‌معادلات‌انتقال‌حرارت‌با‌تاخیر‌فاز‌دوگانه

3‌‌=L‌،6‌‌=W‌ شود.‌در‌نظر‌گرفته‌میبی‌بعد‌‌10ضخامت‌لایه‌نیز‌‌.‌(8-3)شکلτqو‌‌τTبعد‌هم‌به‌ترتیب‌بی‌

‌برابر‌ ‌ای‌حل‌شده‌استدر‌حالت‌کرنش‌صفحه‌مسئلهاند‌و‌در‌نظر‌گرفته‌شده‌3/0و‌‌1با خواص‌ماده‌تشکیل‌.

‌(‌ارائه‌شده‌است.3-3دهنده‌صفحه‌در‌جدول‌)

‌

‌

 همگن‌تحت‌شوک‌گرمایی‌ایزوتروپیکهندسه‌و‌ابعاد‌صفحه‌(‌8-3شکل)‌

‌

‌

‌

‌

                                                 
1‌dual-phase-lag (DPL) heat conduction 

T1 

L 

W 

T0 

x 

y 

 عایق
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 (‌خواص‌ماده‌در‌نظر‌گرفته‌شده3-3جدول‌)

‌
ظرفیت‌

گرمایی‌ویژه‌
(J/Kg-K) 

چگالی‌
(Kg/m

3
) 

هدایت‌

 گرمایی

(W/m-K) 

ضریب‌انبساط‌

گرمایی‌
(10

−6
/K) 

نسبت‌

 پواسون

‌ مدول

یانگ‌
(GPa) 

‌

‌461 7833 17 112/44 0.3 200  

‌

‌باشد.بعد‌میدر‌فضای‌بی‌𝑡∆=‌‌0.03در‌قلمرو‌زمان‌نیز‌‌مسئلهگام‌زمانی‌استفاده‌شده‌برای‌حل‌

‌شامل‌ ‌گره‌71×143یک‌شبکه ‌ای‌برای‌گسستهالمان‌مستطیلی‌چهار ‌قرار‌‌مسئلهسازی‌هندسه ‌استفاده مورد

‌گرفته‌است.‌

‌زمان ‌در‌صفحه‌در در‌تیزو  -ندرا ساخاریاستیسیته کلاسیک و چاهای ترموالابرای تئوریهای‌مختلف‌-توزیع‌دما

یه به دمای که دمای سطح چپ این لاکلاسیک وقتی ترموالاستیسیتهدر تئوری یش در آمده است . به نما (9-3) شکل‌

دهنده  باشد و این نشاندمای تمام صفحه بالاتر از صفر میهای زمانی رسد در هر یک از گامیک درفضای بی بعد می

تیزو قابل  -ر تئوری چاندراساخاریابه خوبی د باشد حال آنکه سرعت محدود موج دمامحدود موج دما میسرعت نا

 باشد .ای از سطح چپ لایه دما صفر میهای زمانی در فاصلهشاهده است. یعنی در هر یک از گامم

‌از‌لبه‌سمت‌راست‌باریکه‌به‌t=3.75در‌ ‌کرده‌است‌و‌در‌ابتدای‌برگشت‌موج‌دما ‌دمای‌تمام‌صفحه‌تغییر‌پیدا

موجی‌‌C-Tملا‌مشخص‌است‌که‌انتشار‌گرما‌‌بر‌اساس‌تئوری‌باشیم.‌همچنین‌کاسمت‌چپ‌شاهد‌یک‌پیک‌می

‌باشیم.ما‌شاهد‌پخش‌گرما‌در‌صفحه‌می‌CTEشکل‌است‌لکن‌بر‌اساس‌

جایی به دهد. سرعت محدود جابه-حه در زمان های مختلف را نشان میجایی در صفتغییرات جابه (10-3)شکل‌

اتفاق  xجایی در جهت منفی محور جابهچپ لایه  سطح یدر ابتدا با افزایش دما C-T در تئوریخوبی مشخص است.

از سطح سمت چپ لایه مقدار  گرفتنشود .در هر گام زمانی با فاصله افتد که با گذشت زمان این مقدار بیشتر میمی

و  یابدافزایش می xجایی ها در جهت مثبت محور رسد و بعد از آن جابهای به صفر میجایی ها کمتر و در نقطهجابه

رسد و سایر نقاط جایی ها کاسته شده و به صفر میهستیم و بعد از آن از مقدار جابهشاهد یک کشش در آن نقطه 

‌CTEتئوری‌ در‌t=3.75در گام زمانی جایی دارد.ین خود دلالت بر سرعت محدود جابهجایی ندارند واگونه جابههیچ
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‌ابهگونه‌جهیچ ‌شاهد‌نیستیم. هر گام زمانی در  C-Tبر اساس تئوری  توجه به نمودار ، همچنین باجایی‌مثبتی‌را

‌افتد.‌اتفاق‌می‌CTEنسبت‌به‌تئوری‌جایی ، در فاصله کمتری از سطح در معرض شوک حرارتی بیشترین مقدار جابه

‌تئوری‌‌C-Tصفحه را بر اساس تئوری   x تغییرات تنش در راستای محور (11-3)شکل‌ دهد.‌نشان‌می‌CTEو

نسبت‌به‌تئوری‌در فاصله کمتری از سطح در معرض شوک حرارتی ‌C-Tبر اساس تئوری دیر‌تنش‌بیشترین‌مقا

CTEافتد،‌اما‌مقادیر‌آن‌ها‌کمتر‌از‌تئوری‌اتفاق‌می‌CTEتئوری همچنین‌محدود‌بودن‌موج‌تنش‌در‌باشد.‌می‌

C-T‌.به‌خوبی‌مشخص‌است‌

دهد.‌نشان‌می‌CTEو‌تئوری‌‌C-Tساس تئوری صفحه را بر ا  y تغییرات تنش در راستای محور‌(12-3شکل‌)‌‌

در فاصله کمتری از سطح در معرض ‌C-Tبر اساس تئوری  xمقادیر‌تنش‌در‌این‌راستا‌نیز‌همانند‌محور‌ بیشترین

باشد.‌تغییرات‌تنش‌می‌CTEافتد،‌اما‌مقادیر‌آن‌ها‌کمتر‌از‌تئوری‌اتفاق‌می‌CTEنسبت‌به‌تئوری‌شوک حرارتی 

باشیم.‌همچنین‌محدود‌بودن‌شاهد‌رفتار‌هموارتری‌می‌C-Tتئوری اناتی‌همراه‌است‌اما‌در‌با‌نوس‌CTEدر‌تئوری‌

‌به‌خوبی‌مشخص‌است.‌CTEو‌نامحدود‌بودن‌آن‌در‌تئوری‌‌C-Tتئوری موج‌تنش‌در‌

تغییرات اثر‌یافته‌لحاظ‌گردید‌وساختارمش‌چهار‌t=1.5و‌‌t=2.25های زمانی برای هر یک از گام (13-3) در شکل

تعداد المان ازکه همگرایی خوبی را نشان می دهد و لذا نتایج مستقل  شدا تغییرات تعداد المان های شبکه بررسی ب دما

‌د.نباشهای شبکه  می

‌

‌

‌

‌

 

‌
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 توزیع‌دما‌در‌صفحه‌در‌زمان‌های‌مختلف(‌9-3شکل)‌

 

 مختلف‌های‌زمانر‌صفحه‌در‌د‌‌uxجاییتغییرات‌جابه(‌10-3شکل)‌
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 مختلف‌های‌زماندر‌صفحه‌در‌‌σxیرات‌تغی(‌11-3شکل)‌

 

 مختلف‌های‌زماندر‌صفحه‌در‌‌σyتغییرات‌(‌12-3شکل)‌
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‌های‌شبکهرایی‌نتایج‌با‌تغییر‌تعداد‌المانبررسی‌همگ‌توزیع‌دما‌در‌لایه‌برای‌دو‌زمان‌متفاوت‌جهت‌(13-3شکل)‌

 

 مثال چهارم-3-5
شود.‌مطابق‌با‌شکل‌درنظر‌گرفته‌میدار‌ترکو‌همگن‌‌وتروپیکایزبرای‌این‌مثال‌یک‌لایه‌دو‌بعدی‌الاستیک‌

‌دمای‌سطح‌سمت‌چپ‌این‌لایه‌با‌فرایند‌(‌فرض‌می100K‌=T0معادل‌با‌)‌‌100Kدمای‌اولیه‌لایه‌برابر‌با‌ شود.

(.‌سطوح‌دیگر‌این‌لایه‌عایق‌0.02T0‌=T1کند‌)کاهش‌پیدا‌می T0 0.02به‌سرعت‌به‌مقدار‌‌t=‌‌0رسانش‌در‌زمان‌

‌شوند‌و‌لبه‌سمت‌چپ‌کاملا‌مقید‌شده‌است.ارتی‌فرض‌میحر

‌ ‌دوگانه ‌فاز ‌تاخیر ‌معادلات‌انتقال‌حرارت‌با ‌شده‌مسئلهبرای‌حل‌از ‌ضریب‌شدت‌تنش‌مد‌‌استفاده با‌‌Iو

‌ ‌است. ‌آمده ‌بدست ‌برهمکنش ‌انتگرال ‌روش ‌از ‌بیاستفاده ‌ابعاد ‌از ‌عبارتند ‌لایه ‌این ‌‌3بعد =L‌ ،6‌‌ =Wو‌‌‌

‌L/3‌‌=a(.‌14-3)شکل‌‌‌

در‌نظر‌گرفته‌‌3/0و‌‌1ابر‌با‌ترتیب‌بربعد‌هم‌بهبی‌τTو‌‌‌τqشود.در‌نظر‌گرفته‌می‌10بعد‌لایه‌نیز‌ضخامت‌بی

خواص‌ماده‌در‌نظر‌گرفته‌شده‌برای‌صفحه‌در‌جدول‌ ای‌حل‌شده‌است.در‌حالت‌کرنش‌صفحه‌مسئلهاند‌و‌شده

‌(‌‌ارائه‌شده‌است.3-4)
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‌

‌

‌همگن‌تحت‌شوک‌گرمایی‌ایزوتروپیکهندسه‌و‌ابعاد‌صفحه‌(‌14-3شکل)‌

 ماده‌در‌نظر‌گرفته‌شدهخواص‌‌(4-3جدول‌)

ظرفیت‌

گرمایی‌ویژه‌
(J/Kg-K) 

چگالی‌
(Kg/m

3
) 

هدایت‌

 گرمایی

(W/m-K) 

ضریب‌انبساط‌

گرمایی‌
(10

−6
/K) 

نسبت‌

 پواسون

‌ مدول

یانگ‌
(GPa) 

461 7833 17 6.68 0.3 200 

‌

‌باشد.بعد‌میدر‌فضای‌بی‌𝑡∆=‌‌0.03در‌قلمرو‌زمان‌نیز‌‌مسئلهستفاده‌شده‌برای‌حل‌گام‌زمانی‌ا

ای‌مدلسازی‌مستطیلی‌چهار‌گره المان‌81×163المان‌و‌‌‌61×123المان،‌‌71×143با‌سه‌شبکه‌شامل‌‌مسئلهاین‌

‌و‌تحلیل‌شده‌است‌است.‌

ررسی شد و شاهد همگرایی نتایج میشبکه بر ضریب شدت تنش مود اول بهای تاثیر تعداد المان (15-3) در‌نمودار

یابد حال آنکه در وک دمایی ضریب شدت تنش افزایش میبه محض اعمال ش  CTEتئوری‌در نتایج مبتنی بر  باشیم.

‌زمان‌بی‌C-Tتئوری  ‌این‌خود‌نشان‌باشیم-شاهد‌افزایش‌ضریب‌شدت‌تنش‌می‌1بعد‌پس‌از ‌محدود‌و دهنده

مقادیر ضریب شدت تنش نوسانات بیشتری نسبت به مقادیر   CTE.‌در‌تئوری‌باشدی‌میموج‌دما‌در‌این‌تئور‌بودن
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T0 
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a 

 عایق
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بوده‌و‌به‌‌C-Tبیشتر از تئوری  CTEتئوری‌دارد ، همچنین بیشترین مقدار ضریب شدت تنش  C-Tتئوری  حاصل از

 افتد.اتفاق می ضریب شدت تنش زودتر بیشترین مقدار،‌سرعت‌موج‌دما‌بر‌اساس‌این‌تئوری‌دلیل‌نامحدود‌بودن

قارن ترک به خوبی قابل مشاهده میجایی در تمام صفحه و باز شدگی متسرعت محدود جابه (16-3)در نمودار    ‌‌

نشان‌داده‌شده‌است‌.‌سرعت‌محدود‌موج‌گرما‌در‌‌t=1.5و‌‌t=2.25 های زمانتوزیع دما در  (17-3)در شکل  باشد.

ارائه‌شده‌‌t=1.5و‌‌t=2.25 های زماندر  yجایی در راستای جابه (18-3شکل) در‌‌ود‌است.زمان‌های‌قید‌شده‌مشه

تنش (19-3شکل) ‌نشان‌داده‌شده‌است.‌yجایی‌در‌راستای‌از‌شدگی‌ترک‌و‌همچنین‌تقارن‌جابهوضوح‌ب.‌بهاست

کند‌سرعت‌ل‌مشخص‌میدهد.‌این‌شکرا‌نشان‌می‌t=1.5و‌ ‌t=2.25های زماندر  xوجود آمده در راستای های به

 باشد.‌ل‌انتشار‌به‌دیواره‌راست‌لایه‌میبا‌گذشت‌زمان‌در‌حا‌و‌بودهموج‌تنش‌محدود‌

 

‌

‌
‌

‌بر‌حسب‌دما‌برای‌سه‌شبکه‌مختلف‌CTحاصل‌از‌تئوری‌ترموالاستیسیته‌‌Iضریب‌شدت‌تنش‌مد‌‌منحنی‌های(‌15-3شکل)‌

 سیکحاصل‌از‌تئوری‌کلا‌Iو‌مقایسه‌با‌منحنی‌ضریب‌شدت‌تنش‌مد‌

‌
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‌t=0.75تغییر‌شکل‌نمونه‌در‌زمان‌(‌16-3شکل)‌

 ‌

t=2.25‌t=1.5 

‌کانتورهای‌دما‌در‌دو‌زمان‌مختلف(‌17-3شکل)‌
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‌‌

t=2.25‌t=1.5 

‌در‌دو‌زمان‌مختلف‌uyکانتورهای‌جابجایی‌(‌18-3شکل)‌

 ‌

t=2.25‌t=1.5 

 در‌دو‌زمان‌مختلف‌σxکانتورهای‌تنش‌(‌19-3شکل)‌
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‌

 ‌

t=2.25‌t=1.5 

‌در‌دو‌زمان‌مختلف‌σyکانتورهای‌تنش‌(‌20-3شکل)‌

 مثال پنجم -3-6
نظر‌ در‌(21-3)مطابق‌با‌شکل‌دارای‌ترک‌و‌همگن‌‌روپیکایزوتبعدی‌الاستیک‌برای‌این‌مثال‌یک‌لایه‌دو

شود.‌دمای‌نیمه‌پایین‌لبه‌سمت‌(‌فرض‌می100K‌=T0معادل‌با‌)‌100Kشود.‌دمای‌اولیه‌لایه‌برابر‌با‌گرفته‌می

‌زمان‌ ‌فرایند‌رسانش‌در ‌با ‌‌t=‌0چپ‌این‌لایه ‌می T0 0.02به‌سرعت‌به‌مقدار (.‌0.02T0‌=T1کند‌)کاهش‌پیدا

بعد‌هم‌بهبی‌τTو‌‌‌τqشوند‌و‌لبه‌سمت‌چپ‌کاملا‌مقید‌شده‌است.این‌لایه‌عایق‌حرارتی‌فرض‌می‌سطوح‌دیگر

‌ای‌حل‌شده‌است.در‌حالت‌کرنش‌صفحه‌مسئلهاند‌و‌در‌نظر‌گرفته‌شده‌3/0و‌‌1ابر‌با‌ترتیب‌بر

‌3بعد‌این‌لایه‌عبارتند‌از‌و‌ابعاد‌بی‌ده‌شدهاستفا‌مسئلهبرای‌حل‌‌از‌معادلات‌انتقال‌حرارت‌با‌تاخیر‌فاز‌دوگانه

‌= L‌،6‌‌=Wو‌‌L/3‌‌=aخواص‌ماده‌تشکیل‌شود.‌در‌نظر‌گرفته‌می‌10بعد‌لایه‌نیز‌ضخامت‌بی(.‌21-3)شکل‌‌

‌(‌است.4-3جسم‌مطابق‌با‌جدول‌)دهنده‌

‌
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‌

‌ای‌تحت‌شوک‌گرماییهمگن‌دارای‌ترک‌لبه‌ایزوتروپیکهندسه‌و‌ابعاد‌صفحه‌‌(21-3شکل)‌

‌باشد.در‌فضای‌بی‌بعد‌می‌𝑡∆=‌‌0.03در‌قلمرو‌زمان‌نیز‌‌مسئلهگام‌زمانی‌استفاده‌شده‌برای‌حل‌

ضرایب‌شدت‌است.‌‌ای‌مدلسازی‌و‌تحلیل‌شدهالمان‌مستطیلی‌چهار‌گره‌71×143با‌یک‌شبکه‌شامل‌‌مسئلهاین‌

(‌ارائه‌و‌با‌ضرایب‌شدت‌تنش‌حاصل‌از‌22-3در‌شکل‌)‌CTستیسیته‌تنش‌بدست‌آمده‌حاصل‌از‌تئوری‌ترموالا

ضریب‌شدت‌تنش‌مد‌در‌این‌مثال‌مطابق‌انتظار‌با‌توجه‌به‌عدم‌تقارن‌بارگذاری‌‌اند.مقایسه‌شده‌تئوری‌کلاسیک

IIمی‌‌ ‌ایجاد ‌نیز ‌ضریب‌شدت‌تنش‌مد ‌با ‌مقایسه ‌در ‌که ‌سریعت‌Iشود ‌و ‌از‌ماکزیمم‌کمتری‌دارد ‌آن ‌مقدار ر

با‌‌است.‌uyلبه‌پایینی‌نسبت‌به‌‌ux.‌دلیل‌این‌رفتار‌مربوط‌به‌تغییرات‌محدودتر‌جابجایی‌رسدزیمم‌به‌صفر‌میماک

‌شود.گذشت‌زمان،‌مقدار‌آن‌منفی‌هم‌می‌بعد‌از‌uxتوجه‌به‌تغییر‌جهت‌جابجایی‌

ه پایینی سطح سمت در نیم نشان داده شده است. اثر کاهش دما ‌t=0.75ر شکل لایه در زمان یتغی (23-3) در‌شکل

توزیع دما در دو  (24-3) در شکل جایی مشهود است.سرعت محدود جابه ، باز شدن سطح پایینی ترک وچپ لایه

.‌محدود‌بودن‌سرعت‌موج‌دما‌و‌انتقال‌حرارت‌از‌سطح‌بالایی‌ترک‌نمایش‌داده‌شده‌است‌t=2.25و  ‌t=1.5زمان 

دهد‌و‌را‌نشان‌می‌t=2.25و  ‌t=1.5جایی در دو زمان جابه (25-3باشد.‌شکل‌)قابل‌مشاهده‌میبا‌گذشت‌زمان‌

‌مشخص‌26-3در‌شکل‌)‌جایی‌کاملا‌مشخص‌می‌باشد.نی‌ترک‌و‌سرعت‌محدود‌جابهبازشدگی‌سطح‌پایی ‌با )

و‌سرعت‌محدود‌موج‌ایجاد‌موج‌تنش‌در‌نیمه‌پایینی‌لایه‌‌t=2.25و  ‌t=1.5در‌دو‌زمان‌‌xکردن‌تنش‌در‌راستای‌

‌دهد.تنش‌را‌نشان‌می

L 

W 

T0 

x 

y 

a 

 ایقع

T1 

 عایق



60 

 

 

 بر‌حسب‌زمان‌‌IIو‌‌Iنمودار‌ضریب‌شدت‌تنش‌مد‌ (22-3شکل) 

 

 t=0.75(‌تغییر‌شکل‌نمونه‌در‌زمان‌23-3شکل)‌
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‌‌

t=2.25‌t=1.5 

‌کانتورهای‌دما‌در‌دو‌زمان‌مختلف(‌24-3شکل)‌

‌‌

t=2.25‌t=1.5 

‌در‌دو‌زمان‌مختلف‌uyکانتورهای‌جابجایی‌‌(25-3شکل)‌
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‌‌

t=2.25‌t=1.5 

 در دو زمان مختلف σxکانتورهای تنش  (26-3شکل) 

‌‌

t=2.25‌t=1.5 

‌در‌دو‌زمان‌مختلف‌σyانتورهای‌تنش‌ک(27-3شکل)‌
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 گیری نتیجه -4-1
ته است. دارای ترک ساکن تحت شوک حرارتی مورد مطالعه قرار گرف ایزوتروپیکنامه یک محیط یاندر این پا 

تیزو استفاده شده  -ر نظر گرفتن تئوری چاندراساخاریادر این تحقیق از معادلات ترموالاستیسیته دینامیکی کوپل با د

بعد انجام شده است. برای دلات در فضای بیسازی معا، گسستهیافته  توسعهگیری از روش المان محدود . با بهرهاست

در چند مثال عددی نتایج با تئوری کنش استفاده شده است. همسبه ضرایب شدت تنش از انتگرال برمحا

های شبکه بررسی تعداد المان  گیری و نیز لاستیسیته کلاسیک مقایسه شده است. اثر استقلال از ناحیه انتگرالترموا

 بخشی از نتایج حاصل از این پژوهش عبارتند از:شد. 

رموالاستیسیته باشد لکن در تئوری تحدود میتیزو م -دما بر اساس تئوری چاندراساخاریاسرعت موج  .1

 باشد.کلاسیک نامحدود می

نتایج حاصل از تئوری لی باشد وجایی ها محدود میعت جابهتیزو سر -بر اساس تئوری چاندراساخاریا .2

 ترموالاستیسیته کلاسیک دلالت بر نامحدود بودن آن دارد.

 -ه و بر اساس تئوری چاندراساخاریانامحدود بود سرعت موج تنش بر اساس تئوری ترموالاستیسیته کلاسیک .3

 باشد.تیزو محدود می

تیزو نسبت به تئوری ترموالاستیسیته کلاسیک در فاصله  -جایی در تئوری چاندراساخاریاماکزیمم مقدار جابه .4

 افتد.   دیواره تحت شوک حرارتی اتفاق می کمتری از

تیزو نسبت به تئوری  -وری چاندراساخاریادر تئ yو  xمقدار تنش در جهت محورهای ماکزیمم  .5

افتد ولی مقادیر آن کمتر دیواره تحت شوک حرارتی اتفاق می ترموالاستیسیته کلاسیک در فاصله کمتری از

 باشد.والاستیسیته کلاسیک میاز مقادیر حاصل از تئوری ترم

بیشتر از تئوری  تئوری ترموالاستیسیته کلاسیکبر اساس  Iماکزیمم مقدار ضریب شدت تنش مود  .6

 افتد.تیزو بوده و زودتر اتفاق می -چاندراساخاریا



65 

 

شود، ماکزیمم مقدار ضریب شدت نیز ایجاد می IIدر بارگذاری های نامتقارن که ضریب شدت تنش مود   .7

تیزو بوده و زودتر  -یک بیشتر از تئوری چاندراساخاریابر اساس تئوری ترموالاستیسیته کلاس IIتنش مود 

در مقایسه با ضریب  IIافتد. همچنین مشخص شد که در هر دو تئوری ضریب شدت تنش مود یاتفاق م

 ماکزیمم کمتری دارد. Iشدت تنش مود 

 پیشنهادات -4-2
-به منظور پیش (FGMتیزو  برای مواد تابعی ) -ساس تئوری چاندراساخاریامحاسبه ضرایب شدت تنش بر ا .1

 .بینی رفتار مواد تابعی دارای ترک

با توزیع  ایزوتروپیکگن و تیزو برای محیط هم -بر اساس تئوری چاندراساخاریابه ضرایب شدت تنش محاس .2

 خطی.دمای غیر

 تیزو. -چاندراساخاریار گرفتن در نظبا  ایزوتروپیکهای داخلی در یک محیط همگن و بررسی ترک .3
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Abstract 
 

In this thesis, an isotropic medium with static cracks under heat shock has been studied. In this 

research, the dynamic thermoelasticity equations of the coupling have been used considering 

Chandrasakharia-Tizo theory. Using the extended finite element method, the equations are 

discretized in dimensionless space. Interaction integral has been used to calculate the stress 

intensity factors. Finally, some examples are obtained using the numerical method and the 

distribution of temperature, displacement, Stress in the direction of the X and Y axes along a 

homogeneous layer. Also, stress intensity factors under temperature shock have been investigated 

and compared with classical thermoelasticity theory. The results show that, the speed of 

temperature, displacement and stress waves are limited according to Chandrasakharia-Tizo theory, 

contrary to the classical thermoelasticity theory. Also, the maximum values of displacement and 

stress according to Chandrasakharia-Tizo theory occur at a shorter distance from the wall under 

heat shock, and the maximum stress intensity factor of mode I and - in asymmetric loads - the 

stress intensity factor of mode II according to the classical thermoelasticity theory is greater than 

the Chandrasakharia-Tizo theory and occurs earlier. 
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Stress intensity factors, extended finite element method, Thermal shock, generalized 

thermoelasticity, Chandrasakharia-Tizo theory.  

 

 

 

 

 

 

 

 

 

 

 

 



73 

 

 

 

 

 

 
 

Shahrood University of Technology 
 

Faculty of Mechanical Engineering 

 

 
 

 

XFEM analysis of cracked media under thermal shock considering 

Chandrasekharaiah-Tzou theory 
 

Vahid Jafari 

 

Thesis 

Submitted in partial fulfillment of the requirements for the degree of  

Master of Science (M. Sc) 
 

 

Supervisors 

Dr. Mohammad Bagher Nazari 

Dr. Masoud Mahdizadeh Rokhi 

 

 

 

 

 

 

 

 

February 2021 
 

 


