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چکیده
آنها ترمودینامیک بررسی به مختلف سیاه   چاله های معرفی ضمن ابتدا در پایان نامه، این در
در می نماییم. مطالعه و معرفی سیاه   چاله ها برای را ترمودینامیکی قانون های و می پردازیم
رهیافت این کاربرد به راپنیر، ترمودینامیکی هندسه ی همچون مفاهیمی معرفی ضمن ادامه
گذار نقاط بین یک به یک تطابق آنجایی که از می پردازیم. سیاه چاله ها فاز گذار مطالعه در
رهیافت نیست، همیشگی هندسی رهیافت این در خمش تکینگی های و گرمایی ظرفیت برای
فرمالیسم به که جدید هندسی رهیافت این در کرد. خواهیم معرفی زمینه این در جدیدی
برای گذار نقاط میان یک به یک ارتباط است، موسوم (۱NTG) ترمودینامیک هندسه جدید
رهیافت این از محاسبات ادامه در بنابراین است. برقرار خمش های تکینگی و گرمایی ظرفیت

می بریم. بهره جدید
خمش های۴ جهان شمول دامنه های۳ و بحرانی نماهای۲ ،[۱] مرجع با مطابق ادامه در
بزرگ⁃ سیاه   چاله فاز تغییر بحرانی نقطه در را عرضی۶ و ذاتی۵ خمش نظیر ترمودینامیکی
می   دهیم. قرار مطالعه مورد عددی و تحلیلی صورت به باردار، AdS سیاه   چاله   های برای را کوچک
دارای ترتیب به KN عرضی خمش و RN بهنجارشده ذاتی خمش که درمی   یابیم بحرانی، نقطه در
دمای پارامتر با KN t و RN t۲ جهان شمول دامنه های اساس، این بر هستند. ۱ و ۲ بحرانی نمایه
نقطه نزدیکی در می شوند. تعریف بحرانی دمای یا دما بحرانی مقدار Tc آن در که t = T/Tc− ۱
در بود، خواهد −۱/۲ با برابر باشد، t → ۰+ که وقتی KN t و RN t۲ بحرانی دامنه بحرانی،
می باشند. KN t ≈ −۱/۴ و RN t۲ ≈ −۱/۸ صورت به پارامتر دو این t → ۰− حد در که حالی
نیز گسترده تر ابعاد در همچنین که بعدی، چهار باردار AdS سیاه چاله برای تنها نه نتایج این
هندسه در جدید نگرشی ایجاد سبب فراگیری خصوصیات چنین بنابراین، می کنند. صدق

می شوند. سیاه چاله فازی تغییرات و ترمودینامیکی
پنج⁃ خنثی سیاه   چاله در را NTG هندسه از حاصل ترمودینامیک خمش های انتها، در
خمش که می دهد نشان نتایجمان می نماییم. بررسی ،۷AdS فضای در گاوس⁃بونت بعدی
AdS باردار سیاه چاله های برای آمده به دست جهان شمول مقادیر همان دارای عرضی و ذاتی

می باشند. بونت گاوس جفت شدگی ثابت از مستقل که است

ذاتی، خمش ،AdS سیاه   چاله ترمودینامیکی، هندسه سیاه   چاله، ترمودینامیک کلیدی: کلمات
عرضی خمش

1New formalism of Themodynamic Geometry (NTG)
2Exponent
3Amplitude
4Curvature
5Intrinsic
6Extrinsic
7Anti de-Sitter
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۲۰ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . راپنیر متریک ۲ .۳
۲۲ . . . . . . . . . . (NTG) ترمودینامیکی هندسه ی از جدید فرمالیسم ۳ .۳
۲۵ . . . . . . . . . . . . . . . . . . . . . . . . عرضی خمش و ابرسطح ۴ .۳

۲۹ باردار AdS سیاه   چاله   های برای ترمودینامیکی خمش های بحرانی رفتار بررسی ۴
۲۹ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . مقدمه ۱ .۴
۳۰ . . . . . . . . . . . . . . . . . . . . ترمودینامیکی خمش های تعریف ۲ .۴
۳۱ . . . . . . . . . . . . . . . . . . . . . . . . . . . وان دروالس سیال ۳ .۴

س



مطالب فهرست ع
۳۶ . . . . . . . . . . . . . . . . . . چهاربعدی باردار AdS سیاه  چاله  های ۴ .۴
۳۸ . . . . . . . . . . . . . . . . بزرگ تر ابعاد با باردار AdS سیاه چاله های ۵ .۴

GB- بار بدون بونت گاوس سیاه   چاله برای ترمودینامیکی خمش های بحرانی رفتار ۵
۴۳ AdS

۴۳ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . مقدمه ۱ .۵
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۴۹ نتایج ۶
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تصاویر فهرست
محور با منحنی هر تلاقی نقاط ، ریسنرنردستروم سیاه   چاله f(r)برای تابع ۱ .۲

۸ . . . . . . . . . . . . . . . . . . . . . . هستند. رویداد افق نقاط r
۱۰ . . . . . . . . . . . . . . . . . . . . کر سیاه   چاله رویداد افق ساختار ۲ .۲
۱۸ . . . . . . . . . . .Ar منبع و A باز سیستم از متشکل A۰ بسته سیستم ۱ .۳

گاز⁃مایع هم زیستی منحنی امتداد در ln(۱−T̂ ) برحسب ln(ng−nl) منحنی ۱ .۴
گذشته ln∆n = β ln(۱−T̂ )+b معادله با آبی مستقیم خط .p̂−T̂ نمودار در
b = ۱٫۳۸۶۱۵ و β = ۰٫۴۹۹۹۹ با عددی) (داده های قرمز نقاط از شده

۳۳ . . . . . . . . . . . . . . . . . . . . . . . . . می شود[۱]. مشخص
مستقیم آبی خط شیب (راست) .ln(۱− T̂ ) برحسب κTPc از ln− ln نمودار ۲ .۴
مایع هم زیستی منحنی امتداد در عددی) (داده های قرمز نقاط از گذشته
گازاشباع هم زیستی منحنی امتداد در (چپ) است −۱٫۰۱۲۳۹ شده اشباع

۳۳ . . . . . . . . . . . . . . . . . . . . . . .[۱] است −۰٫۹۸۷۴۵ شده
قرمز نقاط با عددی داده های .ln(۱ − T̂ ) حسب بر ln |K| عرضی خمش ۳ .۴
پیوسته آبی خط با شده داده تطبیق خط معادله و است شده داده نشان
، شده اشباع مایع همزیستی منحنی امتداد در (راست) می شود. تعیین
شده اشباع گاز همزیستی منحنی امتداد در (چپ) است −۰٫۹۹۸۶۹ شیب

۳۶ . . . . . . . . . . . . . . . . . . . . . .[۱] است −۱٫۰۰۱۴۷ شیب ،

ف





جداول فهرست
ترمودینامیک قوانین با معمول ترمودینامیک قوانین میان شباهت های ۱ .۲

۱۱ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . سیاه   چاله ها.
۲۱ . . . . . . . . . . . مختلف ابعاد در ها سیاهچاله هندسی ترمودینامیک ۱ .۳
۲۳ . . . . . . . . . فاز گذار نقاط و اسکالر خمش واگرایی نقاط میان تطابق ۲ .۳

،Kerr سیاه   چاله های برای ترمودینامیکی متغیرهای و عرضی خمش تابع ۳ .۳
۲۷ . . . . . . . . . . . . . . . . . . . . . . . . .EMGB و BTZ ،RN

ln |κTPc| = و ln = ∆n = cn ln(۱ − T̂ ) + dn شیب و مبدا از عرض مقادیر ۱ .۴
کوچک سیاه چاله شده اشباع همزیستی منحنی های برای −ck ln(۱−T̂ )−dk

۳۹ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .[۱] بزرگ و
همزیستی منحنی  برای ln− ln مستقیم خط به مربوط شیب و مبدا از عرض ۲ .۴

۴۰ . . . . . . . . . . . . . . [۱] کوچک و بزرگ سیاه چاله های شده اشباع
۴۱ . [۱] بحرانی نقطه نزدیکی در ترمودینامیکی خمش های بحرانی دامنه های ۳ .۴

ق





۱ فصل
مقدمه

سیاه چاله ها ترمودینامیکی ویژگی های که بودند دانشمندانی نخستین از پیج۱ و هاوکینگ
آن از پس .[۲] دادند قرار مطالعه مورد را آنها فازی ساختار نیز و پاددوسیته۲ فضای در
فازی ساختار مطالعه در ترمودینامیکی متغیر یک عنوان به کیهان شناسی ثابت نمودن لحاظ
کیهان شناسی ثابت دقیق تر، بیانی به است. شده واقع زیادی توجه مورد سیاه چاله ها ترمودینامیکی
نقش که ترمودینامیکی متغیر یک به عنوان [۳] است فضا⁃زمان خلاء انرژی چگالی همان که
،۶ ،۵ می شود[۴، گرفته نظر در می کند، بازی ترمودینامیک اول قانون در را ترمودینامیکی فشار
ترمودینامیک اول قانون سازگاری منظور به امر این علت .[۱۶ ،۱۵ ،۱۴ ،۱۳ ،۱۲ ،۱۱ ،۱۰ ،۸ ،۷
انرژی با ترمودینامیک اول قانون در شده معرفی جرم صورت این در ۳است. اسمار رابطه با
کمیت است. ارز هم آنتالپی ترمودینامیکی پتانسیل با بلکه بود نخواهد برابر سیستم داخلی

است. مربوط کیهان شناسی ثابت به زیر رابطه با فشار ترمودینامیکی
P = − Λ

۸π =
(d− ۱)(d− ۲)

۱۶πl۲ (۱ .۱)
Λ = ۰ ازای به است. دوسیته آنتی فضای شعاع l و کیهان شناسی ثابت Λ فضا⁃زمان، بعد d که
را آن Λ < ۰ حالت در یعنی صورت، این غیر در و دوسیته را آن Λ > ۰ ازای به تخت، را فضا
ترمودینامیک اول قانون می توان ترمودینامیکی فشار از تعریفی چنین با می گویند. پاددوسیته
با هم ارز صورت، این در آورد. به  دست را پاددوسیته های سیاهچاله یک رویداد افق روی بر

1Hawking and Page
2 Anti-de Sitter
3Smarr relation

۱



مقدمه ۲
ترمودینامیک اول قانون معمول، ترمودینامیکی سیستم های برای ترمودینامیک اول قانون
خواهد زیر شکل به متغیر کیهان شناسی ثابت گرفتن درنظر با پاددوسیته سیاه چاله های برای
آنتروپی جای به و سطحی گرانش دما، جای به آنتالپی، انرژی، به جای که تفاوت این با بود

می گیرد. قرار مساحت
dM = TdS +ΩdJ +ΦdQ+ V dP . (۲ .۱)

S = A۴ ، است) سیاهچاله سطحی گرانش k) سیاهچاله هاوکینگ دمای T = k۲π آن در که
Φ ای، زاویه تکانه J ای، زاویه سرعت Ω ، است) پلانک های واحد در Aمساحت ) آنتروپی
M و سیاهچاله الکتریکی بار Q سیاهچاله، افق و نهایت بی بین الکتریکی پتانسیل اختلاف
که همیوغ کمیت ترمودینامیک اول قانون از استفاده با و فشار برای است. سیاهچاله جرم

نمود. لحاظ می توان V =
(
∂M
∂P

)
S,Q,J

صورت به را است حجم ابعاد دارای
اتفاق پایدار بزرگ سیاه    چاله    های و حرارتی تابش میان که هاوکینگ⁃پیج فاز گذار علاوه بر
دارد. وجود نیز باردار AdS سیاه    چاله یک در نیز بزرگ⁃کوچک سیاه    چاله فاز گذار می افتد،
است[۱۷]. مایع⁃گاز فاز گذار با مشابه فاز گذار این ،(VdW) ۱ والس در وان سیال با مشابه
و یافته گسترش فاز گذار نقطه دما، افزایش با سپس و شده آغاز صفر دمای از فاز گذار این
می    شود، دوم مرتبه فاز گذار یک به تبدیل اول مرتبه فاز گذار آن در که بحرانی نقطه یک در
مشترکی بحرانی توان    های بحرانی، نقطه نزدیکی در سیاهچاله ها، این مورد در می یابد. ادامه
گذار نظیر نیز بیشتری فازهای ساختار این، علاوه بر بنابراین، می شود. یافت VdW سیال با
بررسی مورد باردار سیاه چاله های این مورد در ... و λ خط فاز گذار گانه، سه نقطه مقعر، فاز

.[۳۲ ،۳۱ ،۳۰ ،۲۹ ،۲۸ ،۲۷ ،۲۶ ،۲۵ ،۲۴ ،۲۳ ،۲۲ ،۲۱ ،۲۰ ،۱۹ است[۱۸، گرفته قرار
جنبه    های از برخی تا می    سازد فراهم ما برای سودمند ابزاری ریمانی هندسه دیگر، سوی از
مثال، برای کنیم[۳۳]. مطالعه را بحرانی رفتارهای و فازی گذارهای مانند ترمودینامیکی
۳ هسیان یک با که داد ارائه ترمودینامیکی تعادل فضای در ریمانی۲ متریک یک واینهولد
تعادل، حالت در خیز۴ و افت نظریه بکارگیری با می    شود[۳۴]. تعریف داخلی انرژی تابع از
ساخته آنتروپی تابع دوم مرتبه مشتق با که متفاوت متریک ساختار یک نیز [۳۵ راپنیر[۳۳،
فاکتور عنوان به T دما وسیله به واینهولد متریک که می رسد نظر به داد. ارائه را است شده
این بر اعتقاد عموما می کند. پیدا ارتباط راپنیر متریک با همدیس صورت به ،۵ همدیس
میکرو درجات حرارتی حرکت و میکروسکوپی برهم کنش میان رقابتی فاز، گذار یک که است
روی می توانیم ترمودینامیکی هندسه و فاز گذار ترکیب با بنابراین است. سیاه چاله یک آزادی
برهم کنش که جایی ،[۳۶] منبع در ابتدا در ایده این کنیم. تحقیق سیاه چاله ها ریزساختارهای
همان گونه است. شده سازی پیاده شد، کشف راپنیر هندسه ایجاد با سیاه چاله مولکول دو بین

1Van der Waals
2Riemannian metric
3Hessian
4Fluctuation theory
5Conformal factor



۳
همبستگی۱ طول مانند مقیاسی ترمودینامیکی ذاتی خمش شده، عنوان [۳۳] منبع در که
برخی در وجود، این با می کند. میل بی نهایت سمت به بحرانی نقطه در و دارد سیستم
بحرانی نقطه در راپنیر، هندسه (اسکالر) نرده ای۲ خمشی [۳۸ ،۳۷ ،۳۶]) متناقض نمونه های
ملزومات از که راپنیر هندسه از جدید فرمول بندی یک مشکل، این رفع برای نیست. واگرا دقیقا
لژاندر۳ تبدیلات توسط آنتروپی) تابع جای (به انرژی تابع به مربوط ترمودینامیکی پتانسیل های
جدید فرمول بندی این کرد. مشاهده ([۴۱ ،۴۰ ،۳۹]) منابع در می توان را است آمده وجود به
در که بحرانی نقاط بین یک به یک (تناظر) همخوانی امکان (NTG) ترمودینامیکی هندسه

می سازد. فراهم را خمش تکینگی های۴ با می دهد رخ فاز گذار آن ها
و ذاتی خمش های ابتدا NTG ترمودینامیکی هندسه از بهره مندی با پایان نامه، این در
سیاهچاله نیز و پادوسیته باردار سیاهچاله های برای ترمودینامیکی فضای به مربوط عرضی
چنین بحرانی رفتار سپس می نماییم. بررسی را بعد پنج در پاددوسیته گاوس⁃بونت خنثی
دامنه های که می دهند نشان نتایج می کنیم. مطالعه بحرانی نقطه نزدیکی در را خمش های
و فضازمان بعد از مستقل طوری به هستند جهان شمول مقادیری خمش های چنین بحرانی

هستند. جفت شدگی ثابت هرگونه نیر
را بار بدون و چرخان و باردار سیاهچاله های فیزیک ۲ فصل در ابتدا نامه، پایان این در
قرار مطالعه مورد را سیاهچاله ها به مربوط ترمودینامیک قانون چهار همچنین و می کنیم مرور
هندسه های و ترمودینامیکی خیز و افت نظریه و ریمانی هندسه ۳ فصل در ادامه، در می دهیم.
ترمودینامیکی تعادلی حالات فضای بودن تخت یا خمیده و می کنیم تعریف را راپنیر و وینهلد
فرمولبندی فصل همین انتهای در همچنین می کنیم. تحقیق را وینهلد و راپنیر متریک دو برای
که می دهیم قرار بررسی مورد را (NTG) نام به ترمودینامیک هندسه ی نمایش از جدیدی
فصل در می کند. توجیه خوبی به را اسکالر خمش تکینگی نقاط و فاز گذار نقاط میان هم خوانی
پاددوسیته، باردار سیاه چاله های و واندوالس سیال مربوط ترمودینامیکی کمیت های ابتدا در ۴
مطالعه مورد همدما تراکم پذیری عددی، چگالی تغییرات ،P − V نمودار حالت، معادله نظیر
از حاصل ترمودینامیک خمش های همچنین و کمیت هایی چنین رفتار سپس و می دهیم قرار
منحنی و هم حجم مسیر دو طریق از بحرانی نقطه نزدیکی در را (NTG) ترمودینامیکی هندسه
نظیر ترمودینامیکی کمیت های تعریف با ۵ فصل در انتها در می نماییم. بررسی را همزیستی
به دست را بعد ۵ در بونت گاوس خنثی سیاه چاله برای را حالت معادله حجم، و فشار دما،
مذکور، حالت معادله از استفاده و ۴ فصل در رفته بکار روش از پیروی با سرانجام می آوریم.

می دهیم. قرار تحقیق مورد سیاه چاله این برای را ترمودینامیک خمش های بحرانی رفتار

1Correlation length
2Scalar curvature
3Legendre transformation
4Singularity





۲ فصل
ترمودینامیک قوانین بر مروری

ها سیاه   چاله
دانشمندان توسط اخیر سال های در که است جذابی موضوعات از یکی سیاه   چاله ها نظریه
که است زمان و فضا از ناحیه ای سیاه   چاله ساده بیانی به است. گرفته قرار تحقیق مورد زیادی
خیلی گرانشی نیروی ناحیه این داخل در نیز و است شده احاطه رویداد افق بنام مرزی توسط
قابل غیر ناحیه این بنابراین ندارد، را ناحیه این از گریز راه هم نور حتی که دارد، وجود قوی
امکان بود، انگلیسی کشیک یک که ۱ مایکل جان ۱۷۸۴ سال در بار نخستین برای است. دیدن
راستا این در کرد. مطرح نیوتنی گرانش از استفاده با را نور سرعت از بیش سرعتی به رسیدن
مفاهیم از بهره گیری با که بود دانشمندی نخستین ۲ لاپلاس پیر ۱۷۹۵ سال در بعد مدتی
در سیاه   چاله درباره دقیق تر نظریه های اما شد. گرانشی شعاع آوردن به دست به موفق گرانش
معادله شد. محاسبه انیشتین معادلات دقیق حل با ۳ شیلد شوارتس توسط ،۱۹۱۶ سال حدود

می شود. داده زیر صورت به انرژی و ماده از منبعی برای اینشتین شده شناخته
Rab −

۱
۲gabR =

۸πGTab

C۴ (۱ .۲)
برای است. تکانه انرژی تانسور نیز Tab و اسکالر خمش R خمش، تانسور Rab بالا رابطه در
این در است. Tab = ۰ ندارد وجود ماده ای یا انرژی منبع هیچ اینکه علت به خلاء محیط

1 Michell Jane
2 Laplace Pierre
3 Schwarschild Karl

۵



ها سیاه   چاله ترمودینامیک قوانین بر مروری ۶
با شیلد شوارتس حل یا خلاء حل به مربوط اینشتین معادله صورت

Rab −
۱
۲gabR = ۰ (۲ .۲)

بار گرفتن نظر در با اما است، بار بدون سیاه   چاله به مربوط معادله چنین حل می شود. داده
نام به فیزیکدانی میلادی ۱۹۱۸ سال در شد. پیشنهاد انیشتین معادلات برای جدیدی حل
به که آورد به دست کروی تقارن با باردار سیاه   چاله های برای را جدیدی حل نردستروم ریسنر
ناشناخته فیزیکدان ،۱۹۲۰ سال در .[۴۳ ،۴۲] می شود معرفی نوردستروم ریسنر سیاه   چاله نام
کروی تقارن با محیط ها تمام برای انیشتین معادله کرد ثابت ۱ جبسن تافت جرج نروژی،
نظریه ۲ بیرکف جرج بنام دیگری دانشمند ۱۹۲۳ سال در همچنین دارد[۴۴]. یکسانی حل
یگانه ای حل شیلد شوارتس متریک که می دهد نشان بیرکف نظریه کرد. مطرح را مشابه ای
باشد. زمان به وابسته متقارن توزیع این اگر حتی است، کروی متقارن جرمی توزیع هر از بیرون
و ۳ اسنایدر چون دانشمندانی باشد. داشته بقا مسئله تقارن بایستی که باشید داشته توجه
بیان گرانشی نیروی اثر بر پرجرم ستاره های فروپاشی را ها سیاه   چاله تشکیل دلیل ۴ اوپنهیر
برای دیگری متفاوت حل ۱۹۶۳ سال در نردستروم، ریسنر حل از پس مدت ها .[۴۵] کردند
که حالی در شد. نامگذاری نامش به و مطرح ۵ کر روی توسط بار بدون چرخان سیاه   چاله های
معرفی نیز نیومن کر بنام دیگری متفاوت حل سیستم یک برای چرخش و بار گرفتن نظر در با
زاویه ای تکانه و جرم بار، اصلی پارامتر سه حسب بر می توان را سیاه   چاله ها کلی طور به شد.

کرد. بندی تقسیم زیر گروه سه در
می شوند. توصیف شیلد شوارتس حل با که بار بدون سیاه   چاله های ●

می شوند. توصیف ریسنرنردستروم حل با که باردار سیاه   چاله های ●
می شوند. توصیف کر حل با که چرخان سیاه   چاله های ●

شیلد شوارتس سیاه   چاله ی ۱ .۲
صورت به شیلد شوارتس خلاء حل به مربوط متریک

dS۲ = −(۱ − ۲M
r

)dt۲ + (۱ − ۲M
r

)
−۱

dr۲ + r۲dΩ۲ (۳ .۲)
که می گردد تعیین

dΩ۲ = (sin۲θdθ۲ + dφ۲) (۴ .۲)
1 Jorg Tofte Jebsen
2 George D.birkhoff
3Snyder
4Oppenheimer
5Roy Kerr



۷ نردستروم ریسنر سیاه   چاله
داخل به که چیزی هر می دانیم که طور همان است. واحد شعاع با کره به مربوط زاویه ای عنصر
که همان طور بنابرین داشت، نخواهد سیاه   چاله از بیرون به فراری راه دیگر رود فرو سیاه   چاله ها
سیاه   چاله وارد مرز آن از اشیاء که باشد داشته وجود رویداد افق بنام مرزی باید شد اشاره قبلا
در شیلد شوارتس سیاه   چاله رویداد افق مثال برای شوند. خارج آن از نتوانند دیگر و شوند
در r = ۲M دادن قرار با که است روشن بسیار است. سیاهچاله جرم M که دارد قرار r = ۲M
دهنده نشان که می کند میل بینهایت به شیلد شوارتس متریک در dr۲ ضریب ( ۳ .۲ ) رابطه
تکینگی چنین رفع برای می افتند. اتفاق ظاهری ۱ تکینگی یک r = ۲M در که است موضوع این

می کنند. استفاده ۲ سزیگرس کروسکال⁃ مختصات مثل دیگر مختصات دستگاه های از

نردستروم ریسنر سیاه   چاله ۲ .۲
بیان به می آید. به دست ماکسول و انیشتین معادلات همزمان حل از نردستروم ریسنر حل

زیر معادله حل دیگر،
Rab −

۱
۲gabR =

۸πGTab

C۴ (۵ .۲)
تکانه، انرژی تانسور با

Tab = FacF
c
b − ۱

۴gabFcdF
cd (۶ .۲)

معادله در F ماکسول تانسور (۶ .۲) رابطه در می گردد. منتج نردستروم ریسنر جواب به
انرژی تانسور که علت این به همچنین می کند. صدق ∂[aFbc] = ۰ نیز و ▽aF

ab = ۰ ماکسول
(۵ .۲) معادله در را ریچی اسکالر می توان است، رد بدون الکترومغناطیس میدان برای تکانه

داشت خواهیم لذا گرفت، نظر در صفر برابر
Rab =

۸πGTab

C۴ (۷ .۲)
می شود. حاصل زیر حل کروی مختصات در ماکسول انیشتین⁃ معادله حل باز

ds۲ = −f(r)dt۲ + f−۱(r)dr۲ + r۲dΩ۲ (۸ .۲)
هستند. نردستروم ریسنر سیاه   چاله بار و جرم ترتیب به Q و M و f(r) = ۱−۲M/r+Q۲/r۲ که
نردستروم ریسنر متریک هم و شواتزشیلد سیاهچاله متریک هم که است ذکر به لازم
توان می ،I = RabcdR

abcd کریشمن، ناوردای از استفاده با که دارند r = ۰ نقطه در تکینگی
در می کند، میل بینهایت سمت به نیز I کند میل صفر سمت به شعاع که زمانی نمود مشاهده
قابل نیز مختصات تغییر با حتی که است سیاهچاله واقعی تکینگی عنوان به r = ۰ صورت این

1Singularity
2Kruskal- Szekeres



ها سیاه   چاله ترمودینامیک قوانین بر مروری ۸
تنها الکترومغناطیسی میدان های ، نردستروم ریسنر سیاهچاله حل در نیست. شدن برطرف

شده اند. گرفته نظر در زیر الکتریکی میدان با

Er = Frt =
Q

۴πr۲ (۹ .۲)
یعنی خلاء در ماکسول معادلات حل از که

▽aF
ab =

۱
√
g
∂a(

√
gF ab) (۱۰ .۲)

در الکتریکی میدان از انتگرال که می رود انتظار لذا است. سیاه   چاله بار Q و می شود محاسبه
است. بار مقدار بینهایت در بعدی دو کره یک سرتاسر

Q = − lim
r→∞

∫
S۲

dθdφr۲ sin θEr (۱۱ .۲)
مورد در که می کنند مشخص را رویداد افق مکان f(r) = ۰ معادله ریشه های معمول طور به

در رویداد افق های RN سیاه   چاله
r± = M ±

√
M۲ −Q۲ (۱۲ .۲)

افق یا داخلی رویداد افق r− ریشه که حالی در است تر بیرونی رویداد افق r+ ریشه که دارند قرار
برای را حالت سه می توان (۱۲ .۲) معادله گرفتن نظر در با می دهد. نشان را ۱ کوشی رویداد

است. شده رسم r حسب بر f(r) تابع از نموداری ۱ .۲ شکل در شد. متصور RN سیاه   چاله

رویداد افق نقاط r محور با منحنی هر تلاقی نقاط ، ریسنرنردستروم سیاه   چاله f(r)برای تابع :۱ .۲ شکل
هستند.

پیداست: شکل از که همان طور
می شمار به گونه زمان تکینگی و ندارد وجود رویدادی افق هیچ باشد، M۲ < Q۲ وقتی ⁃۱

رود.
1Cauchy



۹ نیومان کر و کر سیاه   چاله
رویداد وافق بیرونی رویداد افق ترتیب به r− و r+ ریشه دو هر باشد M۲ > Q۲ که زمانی  ⁃۲
متریک افق دو میان در زمان گونه، متریک بیرونی رویداد افق بیرون . هستند داخلی
متریک سیاه چاله واقعی تکینگی به رسیدن تا داخلی رویداد افق از عبور از پس و فضاگونه

است. زمان گونه
این و می آید به دست نردستروم ریسنر سیاه   چاله از فرینه حالت باشد M۲ = Q۲ که زمانی ⁃۳
در بجز نقاط تمام در t مختصات آن بر علاوه نمی آید شمار به فیزیکی حالت یک حالت

است. زمان گونه r = M نقطه

نیومان کر و کر سیاه   چاله ۳ .۲
ریسنرنردستروم و شیلد شوارتس سیاه   چاله های حل از پیچیده تر خیلی نیومان کر و کر حل
بر زاویه ای تکانه و جرم مشخصه دو با و محوری تقارن با کر سیاه   چاله متریک می روند. بشمار

می شود. داده زیر صورت به لینکوست۱ بیر⁃ مختصات در (a = J/M) جرم واحد

ds۲ = −∆− a۲sin۲θ
ρ۲ dt۲ − ۲a۲Mrsin۲θ

ρ۲ dtdφ+ (۱۳ .۲)
(r۲ + a۲)۲ − a۲∆sin۲θ

ρ۲ sin۲θdφ۲ +
ρ۲
∆

dr۲ + ρ۲dθ۲ (۱۴ .۲)

بالا رابطه در که
∆ = r۲ − ۲Mr + a۲ (۱۵ .۲)

ρ۲ = r۲ + a۲ cos θ (۱۶ .۲)
صورت به M۲ > a۲ حالت در را کر سیاه   چاله رویداد افق های می توان

r± = M ±
√
M۲ − a۲ (۱۷ .۲)

یک کر سیاه   چاله باشد، J < M۲ که زمانی پیداست بالا رابطه از که همان طور کرد. بیان
حد J = M۲ حالت برای دیگر سوی از و است رویداد افق دو دارای و است فیزیکی سیاه   چاله
متریک به کر متریک باشد J = ۰ که زمانی همچنین می شود. حاصل کر سیاه   چاله فرینه ی
و محوری تقارن دارای کر سیاه   چاله حل که است ذکر به لازم می گردد. تبدیل شیلد شوارتس
ایستا حد سطح و بیرونی رویداد افق بین پیداست ۲ .۲ شکل در که گونه همان است. ایستا نیز

دارد. وجود ۲ اگروسفر بنام ماده ای
1Boyer-Lindquist
2Ergosphere



ها سیاه   چاله ترمودینامیک قوانین بر مروری ۱۰

کر سیاه   چاله رویداد افق ساختار :۲ .۲ شکل

رسید. خواهیم نیومان کر سیاه   چاله نام به حلی به کر سیاه   چاله به بار کردن اضافه با اکنون
که تفاوت این با است نزدیک کر زمانی فضا هندسه ی به خیلی سیاه   چاله این فضای هندسه ی

∆ = ∆Kerr +Q۲ (۱۸ .۲)
که طوری به هستند متفاوت کر سیاه   چاله با اندکی نیومان کر سیاه   چاله در رویداد افق های لذا

،M۲ > a۲ +Q۲ حالت در
r± = M ±

√
M۲ −Q۲ − a۲ (۱۹ .۲)

ریسنر سیاه   چاله در رویداد افق های حل به a = ۰ دادن قرار که است جالب بسیار است.
نمایشی نیومان کر سیاه   چاله متریک حالت این در گفت می توان بنابراین می رسیم. نردستروم
می شود. حاصل کر سیاه   چاله حل باشد Q = ۰ اگر نیز و است نردستروم ریسنر سیاه   چاله از

است. نیومان کر سیاه   چاله فرینه حالت a۲ +Q۲ = M۲ حالت که باشید داشته توجه

کیهانی زمینه در سیاه   چاله ها ۴ .۲
گرفته نظر در انیشتین معادلات در پنهان ضریب یک عنوان به کیهانشناسی ثابت ابتدا در
ایستا جهان که داشتند اعتقاد دانشمندان دیگر و انیشتین زمان آن در که علت این به می شد
ثابت انیشتین است، انبساط حال در جهان که داد نشان هابل مشاهدات که زمانی اما است
دوران طول در اشتباه بزرگترین عنوان به را آن و کرد حذف خود معادلات از را کیهانشناسی
استفاده امکان و هستند عالم بودن شتابدار بر مبنی اخیر رصدی مشاهدات برد. نام زندگیش
صورت به انرژی چنین چگالی می آورد. وجود به را انیشتین معادلات در کیهانشناسی ثابت از

صورت به اینشتین معادله بنابراین است ρv = Λ۸πG
Rab −

۱
۲gabR+ gabΛ =

۸πGTab

C۴ (۲۰ .۲)
یا

Gab + gabΛ =
۸πGTab

C۴ (۲۱ .۲)
و ندارد وجود منبعی که جای یعنی خلاء در است. اینشتین تانسور Gab که می شوند داده

صورت به بالا معادله است، Tab = ۰
Gab + Λgab = ۰ (۲۲ .۲)



۱۱ سیاه   چاله ها برای ترمودینامیک قانون چهار
به اشاره Λ > ۰ ترتیب به گرفت. نظر در مثبت یا و منفی را Λ می توان که می شود داده
ترین ساده است. (AdS) دوسیته پاد فضای به Λمربوط > ۰ و دارد (dS) دوسیته فضای
بار فاقد که است شوارتس شیلد⁃پاددوسیته سیاه   چاله ی دوسیته آنتی فضای در سیاه   چاله نوع
این در متریک ضریب دارد. کروی تقارن هندسی لحاظ به و است ای زاویه تکانه و الکتریکی

از است عبارت سیاه   چاله
f = ۱ − ۲M

r
+

r۲
l۲ . (۲۳ .۲)

ثابت به بعد چهار در Λ = −۳/l۲ رابطه با که است پاددوسیته فضای شعاع l رابطه این در که
می شود. مربوط کیهان شناسی

سیاه   چاله ها برای ترمودینامیک قانون چهار ۵ .۲
فرمولبندی را قانون چهار این کارتر۲ و هاوکینگ۱ مانند دانشمندانی ۱۹۷۳ سال در بار اولین برای
ترمودینامیکی سیستم های برای ترمودینامیک قوانین همان به زیادی شباهت قوانین این کردند.
داده زیر روابط با انرژی دما، آنتروپی، مانند کمیت های سیاه   چاله ها برای دارند. معمول

می شوند.
T =

ℏk
۲πkBc

SH =
A

۴l۲p
E = Mc۲

(۲۴ .۲)

E و افق سطح مساحت A همچنین است. پلانک طول lp = ℏG/c۳ و سطحی گرانش k که
مشابه ی قانون های معمول ترمودینامیک همانند می توان بنابراین است سیاه   چاله (جرم) انرژی
سیستم برای ترمودینامیکی قانون چهار میان شباهت های ۱ .۲ جدول در شد. متصور آنها برای

است. شده آورده سیاه   چاله ها و معمول ترمودینامیک های
سیاه   چاله ها. ترمودینامیک قوانین با معمول ترمودینامیک قوانین میان شباهت های :۱ .۲ جدول

سیاه   چاله ترمودینامیکی سیستم قانون
سیاه   چاله رویداد افق سراسر در سطحی گرانش بودن ثابت ثابت T دمای در منبع با گرمای تعادل صفرم قانون

dM = k۸πdA+ΩdJ +ΦdQ dE = TdS − PdV + µdN اول قانون
dA ≥ ۰ dS ≥ ۰ دوم قانون

است. دسترس قابل غیر k = ۰ سطحی گرانش به رسیدن است. دسترس قابل غیر T = ۰ دمای به رسیدن سوم قانون

1Hawking
2 Carter



ها سیاه   چاله ترمودینامیک قوانین بر مروری ۱۲

صفرم قانون ۱ .۵ .۲
رویداد افق سراسر در کمیت این که می کنند توصیف سطحی گرانش یا k کمیت با را رویداد افق

یعنی دارد، هاوکینک) (دمای سیاه   چاله دمای با مستقیم رابطه ی و است ثابتی مقدار
TH =

k

۲π (۲۵ .۲)
بیان که دارد ترمودینامیک صفرم قانون به زیادی تشابه سطحی گرانش بودن ثابت همچنین
به است. یکسان آن جای همه در ترمودینامیکی تعادل حال در سیستم یک دمای می کند

برابر دما این (k = ۱/۴GM) که شیلد شوارتس سیاه   چاله برای خاص، مثال یک عنوان
TH =

ℏ
۸πGkBM

≈ ۶٫۲ × ۱۰−۸M⊙
M

K (۲۶ .۲)
بسیار مقدار خورشید جرم با سیاه   چاله ای برای دما این گرفت نتیجه می توان بنابراین است.
دمای کر مانند چرخان های سیاه   چاله مورد در اما است. کردن نظر صرف قابل و ناچیز

که گونه ای به دارد بیشتری کاهش هاوکنیک
TH =

ℏk
۲πkB = ۲(۱ − M√

M۲ − a۲ )
−۱ ℏ

۸πMkB
< T sch

H (۲۷ .۲)
آن هاوکینک دمای است باردار سیاه   چاله یک که نردستروم ریسنر سیاه   چاله ی برای همچنین

می یابد، کاهش مقداری هم باز بی بار حالت به نسبت
TH =

ℏk
۲πkB = (۱ − Q۲

r۴
+

)
ℏ

۸πMkB
< T sch

H (۲۸ .۲)
سیاه   چاله هاوکینگ دمای از کمتر دمای سیاه   چاله ها به دوران یا و بار افزودن با بنابراین

می شود. حاصل شیلد شوارتس

اول قانون ۲ .۵ .۲
ایستای حالت به ایستا حالت یک از سیاه   چاله که زمانی (جرم) انرژی تغییرات به قانون این

می شود. داده زیر رابطه با که پردازد می می دهد، شکل تغییر دیگر
dM =

(
k

۸π
)

dA+′′ work terms′′ (۲۹ .۲)
یا و

dM = THdSBH +′′ work terms′′ (۳۰ .۲)
اولین برای هاوکینک دارد. معمول ترمودینامیک اول قانون به زیادی خیلی شباهت معاله این
با افق سطح مساحت و آنتروپی که کرد اثبات کوانتمی میدان های نظریه از بهره مندی با بار

یعنی هستند، متناسب هم
SBH =

A

۴ (۳۱ .۲)



۱۳ سیاه   چاله ها برای ترمودینامیک قانون چهار
شامل ′′work terms′′ دارد. ۱ هاوکینگ بکشتین⁃ آنتروپی به اشاره SBH نویس زیر که
است. وابسته سیاه   چاله نوع به که هست فزونبر نا و فزونبر کمیت های از مزدوجی جفت های

نیومان کر⁃ سیاه   چاله برای مثال برای
dM = TdS +ΩdJ +ΦdQ (۳۲ .۲)

زیر مشتقی رابطه های با که هستند الکتریکی پتانسیل Φ و زاویه ای سرعت همان Ω که است
می شوند. تعریف

Ω = (
∂M

∂J
) (۳۳ .۲)

Φ = (
∂M

∂Q
) (۳۴ .۲)

دوم قانون ۳ .۵ .۲
کاهش هرگز زمان گذشت با سیاه   چاله یک رویداد افق مساحت که می دهد نشان قانون این
رابطه رویداد افق مساحت با آنتروپی اینکه دلیل به است. ∆A ≥ ۰ همیشه یعنی نمی یابد
اما نمی یابد. کاهش هرگز سیاه   چاله یک آنتروپی که گفت می توان دیگر بیانی به دارد مستقیم
دیگر می شود لحاظ سیاه   چاله ها برای هاوکینگ تابش یعنی کوانتمی آثار که زمانی قانون این
آزمایش های سو یک از یابد. افزایش همیشه جهان آنتروپی داریم انتظار حالی در نیست برقرار
می شود سیاه   چاله اطراف محیط آنتروپی افزایش باعث سیاه   چاله از تابش که داد نشان ذهنی

زیر صورت به [۴۷ ،۴۶] یافته تعمیم آنتروپی معرفی با بکشتین دیگر سوی از و
S

′
= SBH + Sm (۳۵ .۲)

دهد نشان شد موفق است، سیاه   چاله آنتروپی SBH و سیاه   چاله اطراف آنتروپی Sm آن در که
تعمیم دوم قانون بنام جدید، قانون این که (∆S

′ ≥ ۰) نمی یابد کاهش هیچگاه آنتروپی که
است. معروف ۲(GSL) یافته

سوم قانون ۴ .۵ .۲
فرینه حد k = ۰ حد است. ممکن غیر سیاه   چاله ها برای k = ۰ حد به رسیدن سوم قانون طبق
در است واقع J = M۲ در فرینه حد کر سیاه   چاله در مثال عنوان به است. سیاه   چاله ها برای
صفر غیر مقداری سیاه   چاله این به مربوط آنتروپی اما است صفر سیاه   چاله این دمای حد این
یعنی داشیم، معمول ترمودینامیک سیستم های در ما که است انتظاری برخلاف این که است

می شود. آنتروپی شدن صفر باعث صفر دما به رسیدن
1Bekenstein-Hawking
2The Generalized Second Law





۳ فصل
هندسه و خیز و افت نظریه

ترمودینامیکی

داد. خواهیم قرار مطالعه مورد را ریمانی هندسه ی منظر از ترمودینامیکی مفاهیم فصل این در
توسط ۱۹۷۹ سال در که است راپنیر هندسه ترمودینامیکی هندسه ی شناخته شده ترین جمله از
شد. ریزی پایه خیز۲، و افت نظریه از استفاده با ترمودینامیکی سیستم های برای ۱ راپنیر جورج
از پاره ای در اما می شود، استفاده سیاهچاله ها در گذار نقاط بررسی برای معمولا هندسه این از
این پایان در بنابراین است. ناتوان گذار نقاط فیزیک توجیه در هندسه ای چنین سیاهچاله ها
نقاط میان می دهد نشان که می شود مطرح هندسه ترمودینامیک از جدیدی فرمالیسم فصل
وجود یک به یک کاملا تطابق یک هندسه ای چنین خمش از حاصل تکینگی نقاط و فاز گذار

دارد.

خیز و افت نظریه ۱ .۳
ترمودینامیکی سیستم های میان در کار و گرما صورت دو به انرژی ترمودینامیک اول قانون طبق بر
معرفی را آنتروپی نام به جدیدی کمیت ترمودینامیکی قوانین آن، بر علاوه می شود. منتقل

1George Ruppeiner
2The fluctuation theory

۱۵



ترمودینامیکی هندسه و خیز و افت نظریه ۱۶
در شد. مطرح ۱۸۵۰ سال در ۱ کلاسیوس رادولف توسط بار اولین برای کمیت این می کنند.

چرخه، یک برای ناپذیر برگشت یا پذیر برگشت فرآیندی هر برای کلاسیوس ∮نظریه
dQ

T
≤ ۰ (۱ .۳)

در B و A نقاط بین مشخص مسیر یک در اما است. T دمای در گرمایی انرژی dQ که است
میان مسیر از مستقل که می شود معرفی آنتروپی نام به جدیدی حالت تابع پذیر برگشت فرایند

دارد. بستگی پایانی و اولیه های حالت به فقط و است نقطه دو
S(B)− S(A) =

∫ B

A

dQrev

T
(۲ .۳)

آنتروپی آن بر علاوه . است سیستم نظمی بی میزان آنتروپی، از معمول تعریف یک معمولا
سیستم در می   کند. بازی آماری مکانیک نیز و سیستم یک ترمودینامیک در را اساسی نقشی

می شود. نوشته زیر صورت به ترمودینامیک اول قانون معمول ترمودینامیک های
dS =

۱
T
dU +

P

T
dV − µ

T
dN (۳ .۳)

برای است. ذرات تعداد و سیستم حجم درونی، انرژی از تابعی آنتروپی پیداست که همان طور
می شود. داده زیر با آل ایده گاز آنتروپی مثال،

S = k ln

[
(
u

u۰ )
g۲ v

v۰
]

(۴ .۳)
و بولتزمن ثابت ترتیب به g و k های ثابت و گاز حجم و انرژی ترتیب به v و u متغیرهای که

ال ایده گاز برای ترمودینامیک اول قانون طبق هستند. مولکول آزادی درجات

dS =
۱
T
du+

p

T
dv (۵ .۳)

می شود. حاصل زیر دیفرانسیلی معادلات با ایده ال گاز حالت معادله و درونی انرژی
۱
T

= (
∂S

∂u
) ⇔ u =

gk

۲ T (۶ .۳)

p

T
=

(
∂S

∂v

)
⇔ pv = kT (۷ .۳)

(dQrev = ۰) تعادل حالت در دررو بی هرسیستم برای باشد، انتگرال پذیر dS اگر همچنین
می توان،

dS = ۰ ⇔ S = Smax imum (۸ .۳)
1Clausius



۱۷ خیز و افت نظریه
تعادل حالت به رسیدن بنابراین است. dS > ۰ برگشت پذیر قابل غیر فرایند هر برای که حالی در
ترمودینامیکی فرایند هر در معادل بیانی به است. آنتروپی مقدار بیشترین به رسیدن مستلزم
معمول طور به است. ترودینامیک دوم قانون از بیانی که است افزایش حال در سیستم آنتروپی
در میکروسکوپیکی کمیت های از سری یک براساس ماکروسکوپیک فیزیکی مشاهده پذیرهای
خودی خودبه انحراف و هستند نزدیک میانگین مقدار به اکثراً که شده اند پایه ریزی تعادل حال
از انحراف شد. خواهد سیستم  طبیعی رفتار توصیف به منجر مقادیری چنین از سیستم

می نامند. ترمودینامیکی خیز و افت اصطلاح به را میانگین، مقدارهای
تعریف صورت این به میکروکانونی آنسامبل در سیستم یک آنتروپی آماری، مکانیک در

می شود.
S = lnΩ (۹ .۳)

یعنی است سیستم ماکروحالت از تابعی و سیستم میکروحالت های تعداد کننده مشخص Ω که
مشخص را سیستم ذارت تعداد و حجم انرژی، ترتیب به N و V ،E که Ω = Ω(E, V,N)

و آنتروپی مثل ماکروسکوپی کمیت بین پیداست (۹ .۳) معادله از که همان طور می کنند.
صفر آنتروپی که طوری به است برقرار لوگرایتمیک ارتباط یک سیستم میکروحالت های تعداد
با میلادی ۱۹۰۷ سال در اینشتین دهد. می نشان را میکروحالت یک با سیستمی به مربوط

داد. پیشنهاد سیستم میکروحالات تعداد برای معادله ای (۹ .۳) معادله کردن وارون
Ω = eS (۱۰ .۳)

کنید. فرض را است، U داخلی انر ژی دارای و V حجم به جعبه ای در که را سیستمی آنتروپی
S = S(U, V ) (۱۱ .۳)

در را انرژی و آنتروپی صورت این در هستند جمع پذیر کمیت های V و U و S اینکه علت به
داریم لذا نوشت، می توان حجم واحد

{s, u} = {S/V, U/V } (۱۲ .۳)

طوری به کنیم تقسیم قسمت دو به را V۰ حجم و U۰ انرژی با A۰ سیستم کنید فرض حال
و Ur انرژی با Ar منبع دوم قسمت و V حجم و U انرژی با A محدود سیستم اول، قسمت که
میکروحالت هر برای دادن رخ احتمال میکروکانونی انسامبل در اینکه علت به باشند. Vr حجم
و u انرژی مقادیر بین A سیستم برای حجم واحد در انرژی یافتن احتمال بنابراین است، برابر

.[۴۸] است A۰ سیستم میکروحالت های شمار با متناسب u+ du

P (u, V ) = CΩ(u, V )du (۱۳ .۳)



ترمودینامیکی هندسه و خیز و افت نظریه ۱۸

.Ar منبع و A باز سیستم از متشکل A۰ بسته سیستم :۱ .۳ شکل

معادله دادن قرار با اکنون هستند. بهنجارش ضریب C و میکروحالات تعداد Ω بالا رابطه در
می رسیم. زیر رابطه به (۱۳ .۳) رابطه در (۱۰ .۳)

P (u, V ) = C exp

[
S(u, V )

kB

]
du (۱۴ .۳)

معادله چنین باشد. u انرژی دارای A سیستم که وقتی است A۰ سیستم آنتروپی S(u, V ) که
جمع پذیر کمیتی آنتروپی اینکه علت به  می شود. نامیده ترمودینامیکی خیز و افت نظریه پایه

نوشت. زیر شکل به را آن می توان است
S(u, V ) = V s(u) + Vrs(ur) (۱۵ .۳)

سیستم های میان انرژی از یکسان تقسیم بندی های برخی که کرد فرض می توان آماری مکانیک در
در بیشینه مقدار این دارند. وجود می کند، بیشینه را S(u, V ) آنتروپی مقدار که Ar و A۰
به انرژی ها چنین در آنتروپی تیلور بسط با لذا می افتد. اتفاق ur = u∗r و u = u∗ انرژی های

رسید. خواهیم زیر رابطه

S(u, V ) = V s(u∗) + Vrs(u
∗
r) + V s

′
(u∗)∆u+ Vrs

′
(u∗r)∆ur

+
V

۲ s
′′
(u∗)(∆u)۲ +

Vr۲ s(u∗r)(∆u∗r)
۲ + ....

(۱۶ .۳)

که پیداست (۱۶ .۳) رابطه از هستند. ∆ur = ur − u∗r و ∆u = u− u∗ بالا رابطه رابطه در
بنابرین باشد صفر بیشینه نقاط در بایستی اول مرتبه بسط

V s
′
(u∗)∆u+ Vrs

′
(u∗r)∆ur = ۰ (۱۷ .۳)

برقرار زیر اتحاد (۱۷ .۳) رابطه در ،V∆u = −Vr∆ur انرژی، بقای معادله از استفاده با حال
می شود.

s
′
(u∗) = s

′
(u∗r) (۱۸ .۳)



۱۹ خیز و افت نظریه
است. u∗ = u∗r دادن قرار مستلزم آنتروپی از اول مشتق شامل عبارات حذف صورت این در

نوشت. زیر عبارت صورت به را انرژی می توان همچنین
V u∗ + Vru

∗
r = V۰u۰ (۱۹ .۳)

معادله همچنین است. u∗ = u∗r = u۰ که گرفت نتیجه می توان پس V +Vr = V۰ اینکه علت به
مشتق های به نسبت s(ur) از بالا مراتب های مشتق از می توان که می کند تایید انرژی بقای
حاصل زیر رابطه سرانجام ،(۱۶ .۳) معادله در تغییرات این اعمال با کرد. چشم پوشی s(u)

می شود.
S۰(u, V ) = V s(u۰) + Vrs(u۰) + V

۲ s
′′
(u۰)(∆u)۲ + ...... (۲۰ .۳)

رسید. خواهیم زیر رابطه به سرانجام ( ۱۴ .۳) در (۲۰ .۳) جای گذاری با حال
P (u, V )du = A exp

[
−V

۲ g(u۰)(∆u)۲
]
du (۲۱ .۳)

دست به منظور به است. بهنجار ثابت A و مثبت مقداری همیشه که g(u۰) = −s
′′
(u۰)/kB که

صورت این در کرد. استفاده می توان ∫ p(u, V )du = ۱ بهنجارش شرط از ثابت این آوردن
A =

√
V

۲πg(u۰) (۲۲ .۳)
یعنی گرفت، نظر در می توان گوسین توزیع تابع صورت به را (۲۱ .۳) رابطه بنابراین

PG(u, V )du =

√
V g(u۰)۲π exp

[
−V

۲ g(u۰)(∆u)۲
]
du (۲۳ .۳)

از شدن دور با و رسید خواهد خود مقدار بیشترین به باشد u = u۰ که زمانی توزیع تابع این
می کند. پیدا نزول شدت به تابع این انرژی این

می شود تعریف S(x۱, ..., xn) صورت به آنتروپی نوسانی متغییر یک از بیش با حالتی برای
می رسیم. زیر رابطه به میانگین نقاط حول آن بسط با و

S − S۰ = − ۱
۲gijxixj (۲۴ .۳)

با احتمال توزیع تابع صورت این در
P = A exp

(
− ۱

۲gijxixj

)
(۲۵ .۳)

بهنجار، شرط از استفاده با که می شود ∫مشخص
dx۱

∫
dx۲...

∫
dxnP (x۱, ..., xn) = ۱ (۲۶ .۳)

می آید[۴۹]. دست به A بهنجارش، ثابت
A =

√
g

(۲π)n/۲ (۲۷ .۳)



ترمودینامیکی هندسه و خیز و افت نظریه ۲۰
با متغییر یک از بیش برای گاوسی توزیع تابع ،(۲۵ .۳) معادله در معادله این دادن قرار با

P =

√
g

(۲π)n/۲ exp

(
− ۱

۲gijxixj

)
(۲۸ .۳)

dl۲ = gijdx
idxj رابطه با همچنین هستند. gij = − ∂۲S

∂xi∂xj
و g = |gij | که است تعریف قابل

فاصله که منیفلدی به آورد. دست به منیفلد یک در تعادلی حالت های بین فاصله می توان
بنابراین می گویند. ترمودینامیکی ریمانی منیفلد می شود، مشخص معادله این با حالت هایش
تعریف حالات این میان خیز و افت یا نوسان احتمال با تعادلی حالت دو میان فاصله اندازه

است. حالت دو میان زیاد فاصله دهنده نشان کم احتمال مثال برای می شود.

راپنیر متریک ۲ .۳
استفاده با فیزیکی سیستم های ترمودینامیک مطالعه برای را متفاوتی روش راپنیر ۱۹۷۹ سال در
ریمانی هندسه با ترمودینامیکی سیستم های روش این در داد.[۵۰] پیشنهاد ریمانی هندسه از
بنا سیستم تعادلی حالت های میان خیز و افت نظریه پایه بر مدل این می شوند. داده نمایش
فزونبر کمیت های به نسبت سیستم آنتروپی از هسین ماتریس با راپنیر متریک است. شده

می آید. به دست سیستم
gR = Hi,jS (۲۹ .۳)

(a = ۱, ...,n با Xi = (U,Na) که است آنتروپی از هسین ماتریس Hi,jS = ∂۲S/∂Xi∂Xj که
راپنیر از پیش همچنین هستند. سیستم فزونبر کمیت های Na و درونی انرژی U که هستند
ترمودینامیکی فاز فضای مدل وینهلد نام به دانشمندی بار اولین برای میلادی ۱۹۷۵ سال در
فضای برای هندسی نمایش یک توانست ریاضیات علم از بهره گیری با نیز و داد پیشنهاد را
نمایش در متریکی وینهلد متریک .[۵۱] آورد به دست ترمودینامیکی حالت های بین تعادلی
داده نمایش Y i = (S,Na) با سیستم فزونبر متغییر های تمام انرژی، نمایش در است. انرژی
انرژی متغییر بجای که تفاوت این با تنها است، Xi = (U,Na) متغییر های با معادل که می شود
وینهلد متریک کلی طور به است. رفته بکار انرژی نمایش در آنتروپی متغییر آنتروپی، نمایش در

می شود. تعریف زیر صورت به
gW = Hi,jU (۳۰ .۳)

متریک هندسی، ترمودینامیک در است. انرژی از هسین ماتریس Hi,jU = ∂۲U/∂Y i∂Y j که
وینهلد متریک بنابراین است. برخوردار زیادی اهمیت از ترمودینامیکی حالت فضای به مربوط
ترمودینامیکی حالات فضای از منطقی ساختار یک که هستند متریک های جمله از راپنیر و
اول قانون از است کافی انرژی نمایش در های متریک چنین ساخت منظور به می کنند. تعریف



۲۱ راپنیر متریک
همچنین بسازیم. را وینهلد متریک هسین ماتریس های از استفاده با و شروع ترمودینامیک

که طوری به ، می شوند مربوط یکدیگر به دما عامل با متریک دو این

ds۲ = gRijdX
idXj =

۱
T
gWij dY

idY j (۳۱ .۳)

برای ابتدا در راپنیر ترمودینامیک هندسه می دهد. نشان را دما T که می شود. تعریف
گرفت. قرار استفاده مورد واندروالس گاز و ایده آل گاز جمله از گازی سیستم های مطالعه
می دهد نشان که است صفر ایده آل گاز سیستم مورد در راپنیر متریک از آمده دست به خمش
غیر مقداری خمش واندروالس گاز سیستم در اما است تخت فضای یک ترمودینامیکی فضای
فاز گذار نقاط یا گرمایی ظرفیت واگرایی نقاط در دقیقاً خمش این همچنین می دهد را صفر
اسکالر خمش و است آمده دست به گوناگون سیاه   چاله های برای راپنیر متریک است. واگرا
برای ترمودینامیکی فضای خمیدگی و تختی ۱ .۳ جدول در است. شده محاسبه نیز مربوطه
سیاه   چاله جمله از سیاه   چاله ها این از بسیاری در .[۵۲] است شده آورده مختلف سیاهچاله های

مختلف ابعاد در ها سیاهچاله هندسی ترمودینامیک :۱ .۳ جدول
وینهلد هندسه راپنیر هندسه سیاهچاله فضاوزمان

خمیده تخت BTZ بعدی ۳
تخت خمیده Kerr بعدی ۴

خمیده تخت RN

خمیده خمیده RNAdS

تخت خمیده KN

تخت خمیده Kerr بعدی ۵
خمیده تخت RN

تخت خمیده Kerr (D > ۵) بعدی D
خمیده تخت RN

گرمایی ظرفیت در فاز گذار نقاط با اسکالر خمش تکینگی نقاط میان سازگاری ریسنرنردستروم
داریم انتظار که صورتی در نیستند گذار نقاط تکینگی نقاط دیگر عبارت به نمی شود، مشاهده

دهند. رخ مکان یک در خمش تکینگی نقاط با گذار نقاط
شده پیشنهاد [۵۵ ،۵۴ ،۵۳] مراجع در که را راپنیر متریک از جدید فرمالیسم اکنون
گذار نقاط و خمش واگرایی نقاط میان یک به یک تطابق متریک این می کنیم. مرور را است
این برای ترمودینامیک اول رابطه کلی طور به باردار سیاه   چاله های برای می دهد. نشان را
آنتروپی، S و دما T جرم، M که می شود نوشته dM = TdS + ΦdQ صورت به سیاه   چاله ها
سیاه   چاله ها نوع این برای بنابراین هستند. سیاه   چاله بارالکتریکی Q و الکتریکی پتانسیل Φ



ترمودینامیکی هندسه و خیز و افت نظریه ۲۲
نمود. تعریف زیر روابط با ثابت نافزونبر و فزونبر پارامترهای در را گرمایی ظرفیت های می توان

CXi = T

(
∂S

∂T

)
Xi

Xi = (Φ, Q) (۳۲ .۳)
نوشته دترمینانی شکل به بعد دو در هسینی متریک های به مربوط اسکالر خمش دیگر طرف از

می شوند.

RH =

∣∣∣∣∣∣∣∣∣
H۱,۱f H۱,۲f H۲,۲f
H۱,۱;۱f H۱,۲;۱f H۲,۲;۱f
H۱,۱;۲f H۱,۲;۲f H۲,۲;۲f

∣∣∣∣∣∣∣∣∣
۲(det [Hi,jf ])

۲ (۳۳ .۳)

اسکالر خمش تکینگی نقاط پیداست بالا رابطه از که گونه همان است. H۱,۱;۱f = ∂۱
(
∂۲۱ f

) که
تکینگی نقاط که می شود مطرح سوال این اکنون است. det [Hi,jf ] یعنی مخرج جمله ریشه های
بالا گرمایی ظرفیت های از یک هر فاز گذار نقاط با کامل تطابق در ترمودینامیکی منیفلد کدام
جرم تابع برای است. نهفته لژاندر توابع از شده ساخته متریک در سوال این پاسخ است.
که می شود تعریف Xi = (S,Q) با gR =

Hi,jM
T ماتریس هسین با راپنیر متریک M(S,Q)

می آید. به دست زیر شکل به آن دیرمینان

det [Hi,jM ] =

∣∣∣∣∣∣
MSS
T

MSQ

T

MSQ

T
MQQ

T

∣∣∣∣∣∣ = ۱
TCΦCS

(۳۴ .۳)

ساخته R (S,Q) خمش واگرایی نقاط بر منطبق CΦ واگرایی نقاط که می دهد نشان بالا رابطه
هسین اما است. شده تعریف CS ≡

(
∂Q

∂Φ

)
S

بالا رابطه در همچنین است. M(S,Q) از شده
Xi = (S,Φ) با g =

Hi,jM
T فرم به M(S,Φ) = M − QΦ آنتالپی تابع از شده ساخته متریک

دترمینان دارای

det [g] =

∣∣∣∣∣∣
M̄SS
T

M̄SΦ
T

M̄SΦ
T

M̄ΦΦ
T

∣∣∣∣∣∣ = − CS

TCQ
(۳۵ .۳)

این (۲ .۳) جدول در همچنین است. یکسان CQ گذار نقاط با R (S,Φ) تکینگی نقاط که است
است. شده محاسبه سیاه   چاله ها از برخی برای تطابق

(NTG) ترمودینامیکی هندسه ی از جدید فرمالیسم ۳ .۳
است. غیرممکن یا دشوار معمولا˟ (S,Φ) از تابعی عنوان به Q نوشتن سیاه چاله ها، از برخی در
کرد. بازنویسی (S,Q) مختصات در (S,Φ) مختصات از را ḡij متریک تا است راحتتر رو این از

ژاکوبی تبدیل ماتریس از استفاده با
J ≡ ∂ (S,Φ)

∂ (S,Q)
(۳۶ .۳)



۲۳ (NTG) ترمودینامیکی هندسه ی از جدید فرمالیسم
. فاز گذار نقاط و اسکالر خمش واگرایی نقاط میان تطابق :۲ .۳ جدول

RN kerr

M(S,Q) =
√
Sπ۲ ( ۱

π + Q۲
S ) M(S, J) =

√
S۴π + J۲π

S

T (S,Q) = S−Q۲π
۴S۳/۲√π

T (S, J) = S۲−۴J۲π۲
۴S۳/۲√πS۲+۴J۲π۳

R(S,Q) = ۰ R(S, J) = − S(S۲+۱۲π۲J۲)
(S۲+۴π۲J۲)(۴π۲J۲−S۲)

CΦ(S,Q) = −۲S CΩ(S, J) = ۲(−S۲+۴J۲π۲)S۳
(S۲+۴J۲π۲)۲

M(S,Φ) =
√

S۴π (Φ۲ − ۱) M(S,Ω) =
√

S۴π − (SΩ۲π )۲
T (S,Φ) = ۱−Φ۲

۴√πS
T (S,Ω) = −۲SΩ۲+π

۴π√S(−SΩ۲+π)

R(S,Φ) = − −۱+Φ۲
(−۱+۳Φ۲)۲

S
R(S,Ω) = ۴ (−SΩ۲+π)π۲(π۲−۲SΩ۲π−۸S۲Ω۴)

(π۲−۸SΩ۲π+۴S۲Ω۴)۲
(−۲SΩ۲+π)S

CQ(S,Φ) = −۲S(Φ۲−۱)
−۱+۳Φ۲ CJ(S,Ω) = −۲ πS(−۲SΩ۲+π)

۴S۲Ω۴−۸SΩ۲π+π۲

مولفه های جدید، مختصات در شد. منتقل (S,Q) جدید مختصات به (S,Φ) مختصات از می توان
می کنند. تغییر زیر صورت به متریک

ḡij = JT
ikḡklJlj (۳۷ .۳)

نوشتن نیز و (۳۶ .۳) ژاکوبی ماتریس از استفاده با حال است. J ترانهاده ماتریس JT که
صورت به آنتالپی نمایش در متریک مولفه های

ḡ =
۱
T


(
∂T

∂S

)
Φ

(
∂T

∂Φ

)
S

−
(
∂Q

∂S

)
Φ

−
(
∂Q

∂Φ

)
S

 =
∂(T,−Q)

T∂(S,Φ)
(۳۸ .۳)

رسید. خواهیم زیر رابطه به

g′
=

(
∂(S,Φ)

∂(S,Q)

)T (∂(T,−Q)

T∂(S,Φ)

)(
∂(S,Φ)

∂(S,Q)

)
=

(
∂(S,Φ)

∂(S,Q)

)T (∂(T,−Q)

T∂(S,Q)

)
(۳۹ .۳)

dM = TdS + اول، قانون از استفاده نیز و ( ∂T∂Q)|S = (∂Φ∂S )|Q ماکسول روابط به توجه با اکنون
زیر رابطه با است هندسی ترمودینامیک از جدید فرمولبندی یک که نهایی متریک شکل ،ΦdQ

.[۴۱] شود می تعریف
gNTG = g′ = ⅾiag( ۱

T
(
∂T

∂S
)
Q
,− ۱

T
(
∂Φ

∂Q
)
S

)
=

۱
T

ⅾiag(∂۲M
∂S۲ ,−∂۲M

∂Q۲
) (۴۰ .۳)

نهایتا ولی شد استفاده متریک ساخت در آنتالپی پتانسیل تابع از ابتدا در که است جالب بسیار
برقراری برای مناسب ابزاری می تواند که است M(S,Q) جرم پتانسیل تابع جدید فرمولبندی در

.[۴۱] باشد RNTG تکینیگی نقاط و CQ گذار نقاط میان یک به یک ارتباطی



ترمودینامیکی هندسه و خیز و افت نظریه ۲۴
Xj = (S,Φ۱, ...,Φn) ترمودینامیکی متغیر (n+۱) با سیاه چاله های برای بالا، روند با مشابه
نوشته زیر صورت به آنتالپی نمایش در متریک ماتریس ،M = M−

∑n
i ΦiQi آنتالپی پتانسیل و

می شود.
g =

∂(T,−Q۱,−Q۲, ..., Qn)

T∂(S,Φ۱,Φ۲, ...,Φn)
(۴۱ .۳)

اکنون است. شده استفاده dM = TdS −
∑

iQidΦi ترمودینامیک اول قانون از بالا رابطه در
زیر ژاکوبی ماتریس تعریف با

J ≡ ∂(S,Φ۱,Φ۲, ...,Φn)

∂(S,Q۱, Q۲, ..., Qn)
(۴۲ .۳)

قطری بلوکه شکل (۴۱ .۳) متریک ،(S,Q۱, ..., Qn) به (S,Φ۱, ...,Φn) از مختصات تغییر تحت
می گیرد. خود به جدید مختصات در را زیر

g′ =

C−۱
Q۱,...,Qn

۰
۰ (−G)n×n


(n+۱)×(n+۱)

=

 ۱
T

∂۲M
∂S۲ ۰
۰ (−G)n×n


(n+۱)×(n+۱)

(۴۳ .۳)

است. شده تعریف زیر صورت به که است n رنک با مربعی ماتریس G که
G =

۱
T

∂۲M
∂Y i∂Y j

; Y i = (Q۱, Q۲, ..., Qn) (۴۴ .۳)
بازنویسی زیر بسته شکل به می توان را ۴۳ .۳ رابطه ηji = diag(−۱, ۱, ..., ۱) ماتریس تعریف با

.[۴۱] کرد
dI۲

M = − ۱
T

(
ηji

∂۲M
∂Xj∂X l

dXidX l

)
(۴۵ .۳)

که همان طور این، بر علاوه هستند. فزونبر ترمودینامیک متغیرهای Xi = (S,Q۱, ..., Qn) که
جرم نمایش در (RS,Q۱,Q۲,...,Qn) راپنیر متریک از آمده به دست خمش تکینگی های شد، اشاره

gRij =
۱
T

∂۲M
∂Xi∂Xj

Xi = (S,Q۱, ..., Qn) (۴۶ .۳)
.[۵۵ ،۵۴ ،۵۳] می افتند اتفاق CΦ۱,Φ۲,...,Φn = T (∂S/∂T )Φ۱,Φ۲,...,Φn

ظرفیت گذار نقاط در دقیقا
برای نوشت. آنتالپی پتانسیل از بسته ای شکل به قبل با مشابه روشی به می توان را متریک این
می توان dM = TdS+

∑n
i=۱ ΦidQi ترمودینامیک اول قانون از بهره گیری با ابتدا در منظور این

نوشت. زیر صورت به را جرم نمایش در راپنیر متریک
gR =

∂(T,Φ۱,Φ۲, ...,Φn)

T∂(S,Q۱, Q۲, ..., Qn)
(۴۷ .۳)

زیر ژاکوبی ماتریس طریق از (S,Φ۱, ...,Φn) به (S,Q۱, ..., Qn) از مختصات تغییر تحت سپس
J ≡ ∂(S,Q۱, Q۲, ..., Qn)

∂(S,Φ۱,Φ۲, ...,Φn)
(۴۸ .۳)



۲۵ عرضی خمش و ابرسطح
می شود. تبدیل زیر قطری بلوکه شکل به (۱ .۵) متریک جدید، مختصات در

g′ =

C−۱
Φ۱,Φ۲,...,Φn

۰
۰ (−G)n×n


(n+۱)×(n+۱)

=

 ۱
T

∂۲M
∂S۲ ۰
۰ (−G)n×n


(n+۱)×(n+۱)

(۴۹ .۳)

می شود. تعریف زیر صورت به G ماتریس که

G =
۱
T

∂۲M
∂Y i∂Y j

; Y i = (Φ۱,Φ۲, ...,Φn) (۵۰ .۳)
کرد. بازنویسی زیر بسته شکل به می توان را ۴۹ .۳ قطری بلوکه متریک حال

dI۲
M = − ۱

T

(
ηji

∂۲M
∂Xj∂X ldXidX l

)
(۵۱ .۳)

المان با می توان را (۵۱ .۳) و (۴۵ .۳) متریک دو هر اکنون است. Xj = (S,Φ۱, ...,Φn) که
.[۴۱] کرد تعریف زیر فاصله ی

dI۲
NTG = − ۱

T

(
ηji

∂۲Ξ
∂Xj∂X l

)
dXidX l (۵۲ .۳)

زمانی که است جالب بسیار است. ترمودینامیکی پتانسیل Ξ نیز و ηji = diag(−۱, ۱, ..., ۱) که
تکینگی های صورت این در شوند، انتخاب Xi = (S,Q۱, ..., Qn) مختصات نیز و (Ξ = M)
واگرایی نقاط بر منطبق RNTG(S,Q۱, ..., Qn) یعنی متریک این از حاصل (ذاتی) اسکالر خمش
Xi = (S,Φ۱, ...,Φn) نیز و ،(Ξ = M) که زمانی این بر علاوه است. CQ۱,...,Qn گرمایی ظرفیت

یعنی متریک این از حاصل خمش تکینگی های که نمود مشاهده می توان شوند انتخاب
رخ اتفاق CΦ۱,...,Φn گرمایی ظرفیت به مربوط فاز گذار نقاط در دقیقا RNTG(S,Φ۱, ...,Φn)

می دهند.

عرضی خمش و ابرسطح ۴ .۳
گوناگون نمایش های در را M ترمودینامیکی خمینه از (اسکالر) ذاتی خمش نقش قبل بخش در
ترمودینامیک در ابرسطح ها از عرضی خمش نقش اکنون دادیم. قرار بررسی مورد پتانسیل

داد. خواهیم قرار مطالعه مورد را هندسی
نورگونه، d سطح ابر یک می تواند بعدی (d+ ۱) M منیفلد یک در هندسه ای، نظر نقطه از

قید، کردن لحاظ با Σ ابرسطح این باشد. غوطه ور فضاگونه یا و زمان گونه
Φ(xα) = ۰ (۵۳ .۳)

که xα = xα (ya) شکل به مختصات کردن پارامتربندی با و M منیلفد مختصات روی



ترمودینامیکی هندسه و خیز و افت نظریه ۲۶
همچنین می شود. مشخص است، ابرسطح برای القایی مختصات که ya

(
a = ۱,۲, ..., d)

xα به نسبت بخشی مشتق , α علامت از (منظور است Σ سطح ابر بر نرمال بردار Φ,α بردار
نیز و nαΦ,α > ۰ یعنی، باشد Φ افزایش جهت در که صورتی در واحد نرمال بردار لذا است.).

.[۵۶] می شود تعریف زیر صورت به نباشد نورگونه ابرسطح
nα =

εΦ,α√
|gµνΦ,µΦ,ν |

; nαn
α = ε (۵۴ .۳)

المان همچنین است. زمان گونه ابرسطح برای ε = ۱ و فضاگونه ابرسطح برای ε = −۱ که
معادله با Eα

a = ∂xα

∂xa مماس بردار تعریف و xα = xα (ya) رابطه از استفاده با Σ ابرسطح از فاصله
می شود. داده زیر

ds۲
Σ = gαβdx

αdxβ = gαβ(
∂xα

∂ya
dya)(

∂xβ

∂yb
dyb) = habdy

adyb (۵۵ .۳)
عرضی خمش تانسور طرفی از است. ابرسطح (ذاتی) القایی متریک hab = gαβE

α
aE

β
b که

رابطه، با ابرسطح
Kab ≡ nα;βE

α
aE

β
a (۵۶ .۳)

از لی مشتق برحسب آن بر علاوه و (Kab = Kba) است متقارن تانسور این است. تعریف قابل
است. بیان قابل نیز متریک

Kab =
۱
۲ (Lngαβ)E

α
aE

β
b (۵۷ .۳)

می آید. به دست پایین رابطه مانند خمش تانسور از ردگیری با عرضی خمش اسکالر همچنین
K ≡ habKab = nα

;α =
۱
√
g
∂α (

√
gnα) (۵۸ .۳)

گرفته درنظر را بعدی دو منیفلد با باردار سیاه   چاله های دیگر بار اکنون است. g = det (gµν) که
خمش محاسبه واقع در داد. خواهیم قرار تحلیل مورد را ابرسطح از یکی تقاضا به بسته و
اطراف در ناپایدار و پایدار نواحی کردن مشخص و گذار نقاط بررسی برای ابرسطح ها از عرضی
اطلاعات عرضی خمش است شده داده نشان [۵۵] مرجع در که همانطور است. گذار نقاط
نقاط این اطراف سیستم پایداری نیز و گذار نقاط مورد در ذاتی خمش به نسبت را بیشتری
Q ابرسطح بایستی عرضی، خمش طریق از CQ فاز گذار نقاط بررسی برای اکنون داد. خواهد

است. شده تعریف ثابت الکتریکی بار در گرمایی ظرفیت این زیرا گرفت نظر در را ثابت
رابطه، با (Φ(xα) = Q− cons = ۰) ثابت Q ابرسطح بر نرمال بردار (۵۴ .۳) رابطه طبق

با، عرضی اسکالر خمش صورت این در می شود. داده nQ = −۱/√|gQQ|

K(S,Q) =
۱

۲g [(nµ∂µ) g] + (∂µn
µ) (۵۹ .۳)



۲۷ عرضی خمش و ابرسطح
NTG فرمالسیم در دیگر طرفی از است. nµ =

(
nS , nQ

)
=
(
gSQ, gQQ

)
nQ که می آید به دست

تکینگی های که رسید خواهیم زیر متریک به Xi = (S,Q) نیز و Ξ = M انتخاب با (۵۲ .۳)
هستند. منطبق CQ واگرایی نقاط بر آن از ذاتی خمش

g = ⅾiag(C−۱
Q ,−

C−۱
S

T

) (۶۰ .۳)
ثابت، Q ابرسطح بر نرمال بردار بنابراین

nµ =
(۰, nQ

)
=
(۰,√|TCS |

) (۶۱ .۳)
صورت این در .(nµn

µ = −۱ ) است واحد نرمال بردار یک بردار این است ذکر به لازم است.
می شود. داده زیر معادله با سادگی به عرضی خمش

KNTG(S,Q) =
[ TCQ

C−۱
S

[√
|TCS |∂Q

(
C−۱
S

TCQ

)]
+ ∂Q

√
|TCS |

] ∣∣∣∣∣
Q=cte

(۶۲ .۳)

می افتد. اتفاق CQ فاز گذار نقاط در دقیقا عرضی خمش تکینگی نقاط که می دهد نشان بالا رابطه
،RN ،Kerr سیاه   چاله های برای گرمایی ظرفیت و دما نیز و عرضی خمش ،(۴ .۳) جدول در
نقاط همان عرضی خمش مخرج ریشه های موارد تمام در است. شده آورده EMGB و BTZ

هستند. گذار
و BTZ ،RN ،Kerr سیاه   چاله های برای ترمودینامیکی متغیرهای و عرضی خمش تابع :۳ .۳ جدول

.EMGB

RN kerr

M(S,Q) =

√
Sπ

(
π−۱+Q۲

S

)
۲ M(S, J) =

√
S
π
+۴ J۲π

S۲
T (S,Q) = −

√
SπQ۲
۲S۲ T (S, J) = −۴ J۲π۲−S۲

۴√πS۲ ۱√ ۴ J۲π۲+S۲
S

K(S,Q) = ۰ K(S, J) =
۲Jπ (۴۸ J۴π۴+۸ J۲π۲S۲+۳S۴)

√۲√S

(۴۸ J۴π۴+۲۴ J۲π۲S۲−S۴)
√۱۶ J۴π۴−S۴

CQ(S,Q) = −S/۲ CJ(S, J) = − ۲S(۱۶ J۴π۴−S۴)
۴۸ J۴π۴+۲۴ J۲π۲S۲−S۴





۴ فصل
خمش های بحرانی رفتار بررسی

AdS سیاه   چاله   های برای ترمودینامیکی
باردار

مقدمه ۱ .۴
از یکی به تبدیل فاز گذار مطالعه ، [۵۸ سیاه    چاله    [۵۷، ترمودینامیک قانون چهار معرفی زمان از
رویکردی مطالعه، این همچنین است. شده سیاه    چاله     فیزیک در رشد به رو و فعال زمینه    های
می    رود انتظار و می    سازد فراهم سیاه    چاله    ها ریزساختارهای مورد در تحقیق برای توجه جالب
کرد. کشف آماری فیزیک اساس بر نیز را سیاه    چاله    ها میکروسکوپی برهم    کنش    های بتوان که
می توانند بحرانی دامنه هاب و بحرانی نماهای نظیر بحرانی پدیده های فاز، گذار مطالعه هنگام
بنابراین شوند. سیستم برای بحرانی نقطه نزدیکی در جهان شمول ویژگی هایی شدن آشکار سبب
[۶۰ ،۵۹] مراجع در است. اهمیت حائز ترمودینامیکی کمیت های برای بحرانی رفتار بررسی
می کند. میل (−∞) منفی بی نهایت به بحرانی نقطه در ذاتی خمش که است داده شده نشان
بحرانی دامنه و بحرانی نماهای (NTG) هندسه جدید فرمول بندی از استفاده با این، بر علاوه
بر علاوه شد، اشاره ۳ فصل در همان طورکه است. محاسبه قابل فاز گذار نقطه نزدیکی در
بررسی برای ترمودینامیکی حالت فضای در جالب رویکرد یک نیز عرضی خمش ذاتی، خمش

۲۹



باردار AdS سیاه   چاله   های برای ترمودینامیکی خمش های بحرانی رفتار بررسی ۳۰
در معین ابرسطح۱ یک عرضی خمش که شده است نشان داده [۶۱] مرجع در است. فاز گذار
سیستم پایداری و بحرانی نقطه موقعیت مورد در مفیدی اطلاعات حاوی ترمودینامیکی فضای
گرمای ظرفیت با مشترکی علائم و واگرایی نقاط دارای عرضی خمش دیگر به عبارت است.
مرور [۱] مرجع به مربوط محاسبات و نتایج فصل، این در است. بحرانی نقطه حول ویژه۲
خمینه۳ از ذاتی خمش برای را بحرانی دامنه های و بحرانی نماهای دقیق تر، بیانی به . می نماییم
برای ترمودینامیکی خمینه چنین از هم دما ابرسطح های روی عرضی خمش و ترمودینامیکی

می دهیم. قرار مطالعه و بررسی مورد پاددوسیته باردار سیاه چاله های و واندروالس سیال

ترمودینامیکی خمش های تعریف ۲ .۴
[۴۱] (NTG) ترمودینامیکی هندسه جدید فرمول بندی شد، اشاره قبل فصل در که همانگونه

می شود. تعریف زیر شکل به

dl۲NTG =
۱
T

(
ηji

∂۲Ξ
∂Xj∂X l

dXidX l

)
(۱ .۴)

یا فزون ور متغیرهای Xi و ترمودینامیکی پتانسیل Ξ و ηji = ⅾiag (−۱, ۱, ..٫۱) آن در که
و فاز گذار نقاط بین یک به یک هم خوانی یک توضیح به قادر هندسه این هستند. نافزون ور
گرفتن نظر در با دوبعدی، ترمودینامیکی خمینه در مثال، برای است. خمش تکینگی های
می تواند x آن در که ،Xi = (T, x) و Ξ = F یعنی، ترمودینامیکی پتانسیل به عنوان آزاد انرژی
باشند، فزون ور کمیت های دیگر یا J زاویه ای تکانه ،Q بار ،V حجم کمیت های از کدام هر
هستند. متناظر ،Cy یا ثابت y در گرمایی ظرفیت و فاز گذار نقاط با دقیقا خمش تکینگی های

می شود. تعریف صورت این به طول المان مورد، این در

dl۲NTG =
۱
T

(
−∂۲F
∂T ۲ dT ۲ +

∂۲F
∂X۲dx۲

)
(۲ .۴)

متریک المان های می توان ، dF = −SdT + ydx آزاد، انرژی دیفرانسیلی شکل از استفاده با
کرد. بازنویسی صورت این به را بالا

dl۲NTG =
۱
T

(
∂S

∂T

)
x

dT ۲ +
۱
T

(
∂y

∂x

)
T

dx۲ (۳ .۴)
=

Cx

T ۲dT ۲ +
۱
T

(
∂y

∂x

)
T

dx۲,

تعمیم یافته، ترمودینامیکی فضای در است. ثابت x در گرمایی ظرفیت Cx = T (∂S/∂T )x که
ترمودینامیکی حجم عنوان به آن مزدوج کمیت و ترمودینامیکی فشار عنوان به کیهان شناسی ثابت

1Hypersurface
2Specific heat
3Manifold



۳۱ وان دروالس سیال
شبیه بسیار باردار AdS سیاه چاله بحرانی رفتارهای صورت، این  در می شود. تفسیر سیاه چاله
باردار سیاه چاله های برای ثابت حجم در گرمایی ظرفیت که گرچه شد. خواهد VdW سیال
،CV = ۳KB/۲ یعنی VdW سیال ثابت حجم در گرمایی ظرفیت با مقایسه در اما است، CV = ۰
گرفت نظر در VdW سیال KB → ۰+ حد بعنوان را باردار AdS سیاه چاله گرمایی ظرفیت می توان
صورت به که کرد تعریف را RN = RCV بهنجارشده ذاتی خمش که است بهتر بنابراین، .[۶۰]

می شود. بیان زیر
RN = RCV =

(∂V P )۲ − T ۲(∂T,V P )۲ + ۲T ۲(∂V P )(∂T,T,V P )

۲(∂V P )۲ (۴ .۴)
همیشه دارند، VdW سیال به شبیه رفتاری که سیاه چاله هایی برای حالت معادله با مطابق
ذاتی خمش درنتیجه و ∂T,T,V P = ۰ بنابراین دارد، بستگی T دما به خطی طور به P فشار

می یابد. کاهش زیر عبارت این به (۴ .۴) بهنجارشده
RN =

۱
۲
[
۱ −

(
T
∂V,TP

∂V P

)۲]
, (۵ .۴)

کمیت های اکثر بایستی ترمودینامیکی سیستم یک بحرانی شرایط بررسی برای دیگر، طرف از
کمتری ترمودینامیکی پارامترهای به بحرانی نقطه آنگاه داشت، نگه ثابت را ترمودینامیکی
ایجاد ترمودینامیکی خمینه در ابرسطح یک ایجاد برای می توان بنابراین می کند. پیدا وابستگی
خمش بحرانی رفتار و کرد فرض ثابت را ترمودینامیکی متغیرهای از یکی NTG متریک از شده
است شده داده نشان [۶۱] مرجع در راستا این در نمود. بررسی را ابرسطحی چنین عرضی
ترمودینامیکی خمینه از ثابت ترمودینامیکی متغیر به مربوط ابرسطح یک عرضی خمش که
سیستم پایداری مورد در مفیدی اطلاعاتی حاوی همچنین و بوده واگرا فاز گذار نقاط در
ثایت دماهای در منحنی ها اینکه علت به P − V نمودار به توجه با اکنون است. ترمودینامیکی
متریک از شده ساخته ترمودینامیکی خمینه در را = T ابرسطح های می توان شده اند رسم
ni = (nT , nV ) = (۱, ۰) به صورت ابرسطح هایی چنین بر عمود۱ یکه بردار گرفت. نظر در (۳ .۴)
رابطه با ،K = ∇in

i عرضی، خمش صورت، این در می شود. تعریف ni = gijnj=(C
۱/۲
V /T, ۰) و

می شود. محاسبه زیر
KN = K

√
CV

۱
۲
[
۱ −

T∂V,TP

∂V P

]
(۶ .۴)

است. تعریف قابل نیز را KN بهنجارشده عرضی خمش ، بهنجارشده ذاتی خمش با مشابه

وان دروالس سیال ۳ .۴
می توان که می باشد VdW سیال برهم کنشی، سیستم یک شده شناخته نمونه ساده ترین و اولین
معادله داد. قرار استفاده مورد مایع، و گاز فازهای بین اول مرتبه فاز گذار توضیح برای را آن

1Unit normal vector



باردار AdS سیاه   چاله   های برای ترمودینامیکی خمش های بحرانی رفتار بررسی ۳۲
است. زیر صورت به آن حالت

P =
T

υ − b
− a

υ۲ (۷ .۴)
N آن در که است υ = V/N رابطه با کل حجم به وابسته و سیال۱ مخصوص حجم υ آن در که
از مجموعه ای از استفاده با نیز بحرانی نقطه می باشد. میکروسکوپی مولکول های کل تعداد
نقاط ،(۷ .۴) حالت معادله به توجه با می آید. به دست (∂υ,υP )T = ۰ و (∂υP )T = ۰ شرط دو

بود خواهند شکل به بحرانی
Pc =

a

۲۷b۲ , υc = ۳b, Tc =
۸a
۲۷b (۸ .۴)

صورت به (۷ .۴) رابطه T̂ = T
Tc

و ،υ̂ = υ
υc

،P̂ = P
Pc

صورت به یافته کاهش متغیرهای تعریف با
می شود. بازنویسی زیر

P̂ =
۸T̂

۳υ̂ − ۱ − ۳
υ̂۲ (۹ .۴)

کاهش یافته شکل گرفتن نظر در با .[۶۲] است یافته کاهش پارامتری فضای در حالت معادله که
حسب بر را (۹ .۴) رابطه می توان گاز، و مایع فازهای بین n̂ = ۱/υ̂ صورت به عددی چگالی

نوشت. زیر صورت به یافته کاهش سیال عددی چگالی
P̂ =

۸T̂ n̂
۳ − n̂

− ۳n̂۲. (۱۰ .۴)
می شود. تعریف صورت این به نیز κT هم دما۲ تراکم پذیری کاهش یافته، پارامتری فضای در

κT ≡ − ۱
V

(
∂V

∂P

)
T

= − ۱
PcV̂

(
∂V̂

∂P̂

)
T̂

= − ۱
Pcυ̂

(
∂υ̂

∂P̂

)
T̂

=
۱

Pcn̂

(
∂n̂

∂P̂

)
T̂

(۱۱ .۴)

داشت. خواهیم ،(۹ .۴) حالت معادله از استفاده با

κTPc =

(۳ − n̂
)۲

/۶n̂
۴T̂ − n̂

(۳ − n̂
)۲ (۱۲ .۴)

ساده برای زیر جدید پارامترهای بحرانی، نقطه حول ترمودینامیکی کمیت های بسط منظور به
هستند. مفید محاسبات سازی

t = T̂ − ۱, ω = υ̂ − ۱, π = p̂− ۱. (۱۳ .۴)
منحنی درامتداد مایع⁃گاز فاز دو عددی چگالی اختلاف به مربوط که β بحرانی نمای اکنون
می شود. تعریف زیر بصورت ،[۶۲] است بحرانی نقطه نزدیکی در T − P نمودار در هم زیستی۳

∆n = ng − nl ∝ (−t)β t < ۰. (۱۴ .۴)
1Specific volume
2Isothermal compressibility
3Coexistence curve



۳۳ وان دروالس سیال
،۱ .۴ شکل در است. مایع فاز به مربوط l زیراندیس و گازی فاز به مربوط g زیراندیس رابطه در
مستقیم خط معادله دادن تطابق با است. شده رسم ln(۱− T̂ ) از تابعی عنوان به را ln(ng−nl)

مرجع نتایج با که می آید به دست β = ۰/۴۹۹۹۹ ∼ ۰/۵ قرمز) (نقاط عددی داده های نقاط با
در κT هم دمای تراکم پذیری برای ترتیب به γ′ و γ بحرانی نماهای طرفی از دارد. تطابق [۶۲]
تعیین زیر صورت به که می دهند نشان را p̂− υ̂ هم زیستی منحنی و n̂ = ۱ هم حجم خط امتداد

می شوند.

κTPc ∝

 tγ t > ۰,
(−t)−γ′

t < ۰. (۱۵ .۴)

Fitting :

0.49999 Ln1 - T

 + 1.38615

-11.0 -10.5 -10.0 -9.5
-4.2

-4.0

-3.8

-3.6

-3.4

-3.2

Ln(1-T)

Ln
(n
l-
n
g
)

نمودار در گاز⁃مایع هم زیستی منحنی امتداد در ln(۱ − T̂ ) برحسب ln(ng − nl) منحنی :۱ .۴ شکل
عددی) (داده های قرمز نقاط از شده گذشته ln∆n = β ln(۱− T̂ )+b معادله با آبی مستقیم خط .p̂− T̂

می شود[۱]. مشخص b = ۱٫۳۸۶۱۵ و β = ۰٫۴۹۹۹۹ با

Fitting :

-0.98745 Ln1 - T

 - 2.33393

-11.0 -10.5 -10.0 -9.5

7.0

7.5

8.0

8.5

Ln(1-T)

Ln
(κ
T
p
c
)

Fitting :

-1.01239 Ln1 - T

 - 2.63409

-11.0 -10.5 -10.0 -9.5
6.5

7.0

7.5

8.0

8.5

Ln(1-T)

Ln
(κ
T
p
c
)

نقاط از گذشته مستقیم آبی خط شیب (راست) .ln(۱− T̂ ) برحسب κTPc از ln− ln نمودار :۲ .۴ شکل
امتداد در (چپ) است −۱٫۰۱۲۳۹ شده اشباع مایع هم زیستی منحنی امتداد در عددی) (داده های قرمز

.[۱] است −۰٫۹۸۷۴۵ شده گازاشباع هم زیستی منحنی
γ = ۱ می توان ،t پایین مرتبه های بسط و (۱۲ .۴) رابطه در n̂ = ۱ دادن قرار با بنابراین،
t < ۰ برای (۱ − T̂ ) برحسب κTPc هم دما تراکم پذیری ln− ln نمودار همچنین آید. دست به



باردار AdS سیاه   چاله   های برای ترمودینامیکی خمش های بحرانی رفتار بررسی ۳۴
داده ها پیداست که همانطور است. شده رسم ۲ .۴ شکل در p̂− υ̂ همزیستی منحنی امتداد در
مایع⁃گاز همزیستی منحنی دو هر در γ′ = ۱ نمای با κTPc ≈ (−t)γ

′ مجانبی بحرانی رفتار از
می کند. پیروی شده اشباع

را بحرانی نقطه نزدیکی در KN عرضی خمش و RN ذاتی خمش بحرانی رفتار اکنون .
بازنویسی صورت این به (۱۱ .۴) رابطه ابتدا است بهتر منظور، این برای نمود. بررسی می توان

)شود.
∂P̂

∂n̂

)
T̂

= (κTPcn̂)
−۱ . (۱۶ .۴)

کرد. بیان زیر بصورت می توان را هم زیستی منحنی در یافته کاهش چگالی همچنین
۱
n̂
=

θ

n̂l
+

(۱ − θ)

n̂g
, (۱۷ .۴)

فاز ،θ = ۰ برای و (n̂ = n̂l) خالص مایع فاز ،θ = ۱ برای که صورتی به است، مایع فاز کسر θ که
،(۱۷ .۴) یافته کاهش عددی چگالی از استفاده با بود. خواهند غالب (n̂ = n̂g) خالص گازی

نوشت. صورت این به می توان را (۱۶ .۴) )معادله
∂P̂

∂n̂

)
T̂

=
۱

κTPc

(
θ

n̂l
+

(۱ − θ)

n̂g

)
. (۱۸ .۴)

داشت. خواهیم ، t < ۰ برای هم زیستی منحنی امتداد در بحرانی نقطه سمت به شدن زدیک )با
∂P̂

∂n̂

)
T̂

∣∣∣∣∣
nl

= − ۱
κTPcn̂l

∝ (−t)γ
′−β, (۱۹ .۴)

(
∂P̂

∂n̂

)
T̂

∣∣∣∣∣
ng

= − ۱
κTPcn̂g

∝ (−t)γ
′−β, (۲۰ .۴)

رابطه t > با۰ (n̂ = ۱) هم  حجم منحنی امتداد در بحرانی نقطه به نزدیک شدن با دیگر، سوی از
می شود. نتیجه )زیر

∂P̂

∂n̂

)
T̂

= − ۱
κTPc

∝ tγ . (۲۱ .۴)
نوشت. شکل این به می  توان را (۶ .۴) و (۵ .۴) معادلات در پرانتز درون عبارت این علاوه بر

T
∂V,TP

∂V P
= T̂

∂V̂ ,T̂ P̂

∂V̂ P̂
= T̂

∂n̂,T̂ P̂

∂n̂P̂
= (۱ + t)

∂

∂t

(
ln

(
∂P̂

∂n̂

)
t

)
. (۲۲ .۴)

می  گردد. تعیین زیر شکل به بالا رابطه بحرانی رفتار )بنابراین،
T̂
∂n̂,T̂ P̂

∂n̂P̂

)∣∣∣∣∣
nl,ng

∼ (γ′ − β)

t
t < ۰, (۲۳ .۴)

(
T̂
∂n̂,T̂ P̂

∂n̂P̂

)∣∣∣∣∣
n̂=۱

∼ γ

t
t > ۰, (۲۴ .۴)



۳۵ وان دروالس سیال
مشخص زیر رابطه با RN بحرانی رفتار ،(۵ .۴) رابطه در مقادیر این کردن جایگزین با سرانجام

.[۱] می شود
RN t۲ ≈ −(γ′ − β)۲

۲ t < ۰, (۲۵ .۴)
RN t۲ ≈ −γ۲

۲ t > ۰. (۲۶ .۴)
داشت، خواهیم γ = γ′ = ۱ و β = ۱/۲ بحرانی نمای با VdW سیال مورد در

RN t۲ ≈ − ۱
۸ t < ۰, (۲۷ .۴)

RN t۲ ≈ − ۱
۲ t > ۰, (۲۸ .۴)

با عبارت این ،t > ۰ برای که حالی در است، t < ۰ با [۶۰ ،۵۹] مراجع با مطابق دقیقا که
نمودار در مختلف مسیرهای انتخاب که است ذکر به لازم دارد سازگاری [۶۴ ،۶۳] مراجع
در مختلف مسیرهای از ما انتخاب که باشید داشته توجه .( باشد۱ α = ۰ که (وقتی P − V

ذاتی خمشی مقدار در ناپیوستگی یک ایجاد به منجر بحرانی نقطه به رسیدن برای p̂− υ̂ نمودار
با (۶ .۴) بهنجارشده عرضی خمش بحرانی رفتار این، بر علاوه می  شود.

KN t ≈ −γ′ − β

۲ t < ۰ (۲۹ .۴)
KN t ≈ −γ

۲ t > ۰ (۳۰ .۴)
می  توان VdW� سیال برای γ = γ′ = ۱ و β = ۱/۲ بحرانی نماهای انتخاب با .[۱] می شود داده

که کرد مشاهده
KN t ≈ − ۱

۴ t < ۰, (۳۱ .۴)
KN t ≈ − ۱

۲ t > ۰, (۳۲ .۴)
در است. شده بررسی [۱] مرجع در عددی صورت به عرضی خمش مربوط بحرانی رفتار این
داده های از را بحرانی نمای می توان عرضی، خمش برای زیر رابطه فرض با بحرانی، نقطه نزدیکی

نمود. محاسبه عددی
KN ∼ −

(۱ − T̂
)−cK

or ln |K| = −cK ln(۱ − T̂ ) + dK . (۳۳ .۴)
شده اشباع گاز و مایع هم زیستی منحنی  های در مستقیم ln− ln خطوط مبدا از عرض روی از

که گرفت نتیجه می توان ،۳ .۴ شکل در
KN t ∼ K

(۱ − T̂
)√

Cυ = −
√۳

۲e
−۱٫۵۷۳۲۵+۱٫۶۰۶۶۲۲ = −۰٫۲۴۹۷۷۹ ≈ − ۱

۴ (۳۴ .۴)
باردار سیاه  چاله  های برای بحرانی نقطه نزدیکی در بهنجارشده خمش های رفتار بعدی دربخش

می شود. بررسی می دهند، نشان VdW سیال مشابه رفتاری که بعدی چند و چهار AdS
است. ثابت حجم در گرمایی ظرفیت برای α بحرانی ۱توان



باردار AdS سیاه   چاله   های برای ترمودینامیکی خمش های بحرانی رفتار بررسی ۳۶

Fitting :

-1.00147 Ln1 - T

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Fitting :
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
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شده داده نشان قرمز نقاط با عددی داده های .ln(۱ − T̂ ) حسب بر ln |K| عرضی خمش :۳ .۴ شکل
منحنی امتداد در (راست) می شود. تعیین پیوسته آبی خط با شده داده تطبیق خط معادله و است
شده اشباع گاز همزیستی منحنی امتداد در (چپ) است −۰٫۹۹۸۶۹ شیب ، شده اشباع مایع همزیستی

.[۱] است −۱٫۰۰۱۴۷ شیب ،

چهاربعدی باردار AdS سیاه  چاله  های ۴ .۴
چهاربعدی باردار AdS سیاه  چاله   یک برای را (۲۹ .۴) و (۲۵ .۴) روابط درستی بخش، این در
مطالعه مورد [۱۷] مرجع در سیاه  چاله  هایی چنین فاز و ترمودینامیکی ساختار می کنیم. بررسی
است. صورت این به چهاربعدی باردار AdS سیاه  چاله   یک برای حالت معادله است. گرفته قرار

P =
T

υ
− ۱

۲πυ۲ +
۲Q۲
πυ۴ , (۳۵ .۴)

فاز گذار یک سیاه چاله ها این در است). رویداد۱ افق شعاع rh) v = ۲rh ویژه حجم آن در که
و می   افتد اتفاق VdW سیال در گاز و مایع فاز گذار با مشابه بزرگ و کوچک سیاه چاله های بین
فضای در می شود. مشخص υc = ۲√۶Q و Tc =

√۶/۱۸πQ ،Pc = ۱/۹۶πQ۲ با بحرانی نقطه
می شود. بازنویسی زیر شکل به حالت معادله کاهش  یافته، پارامتری

P̂ =
۸T̂
۳υ̂ − ۲

υ̂۲ +
۱

۳υ̂۴ . (۳۶ .۴)

[۶۶] رابطه با P − T نمودار در بزرگ کوچک̸ سیاه  چاله همزیستی منحنی این، بر علاوه

T̂ ۲ = P̂
(۳ −

√
P̂
)
/۲, (۳۷ .۴)

با هستند. یافته کاهش فشار و دما ترتیب به P̂ = P/Pc و T̂ = T/Tc که می شود داده
را یافته کاهش ترمودینامیکی حجم  های می توان ۳۵ .۴ حالت معادله و رابطه این از استفاده

1Event horizon



۳۷ چهاربعدی باردار AdS سیاه  چاله  های
آورد. دست به همزیستی منحنی امتداد در کوچک و بزرگ سیاه  چاله  های برای

V̂s =


√

۳ −
√
P̃ −

√
۳ − ۳√P̂√۲P̂

۳
, (۳۸ .۴)

V̂l =


√

۳ −
√
P̂ +

√
۳ − ۳√P̂√۲P̂

۳
, (۳۹ .۴)

اختلاف از ناشی بحرانی رفتار حال می  باشد. Vc = ۸√۶πQ۳ و V = ۴۳πr۳
h ، V̂ = V/Vc = v̂۳ که

تعیین P − T همزیستی منحنی روی را کوچک و بزرگ سیاه  چاله فازهای بین عددی چگالی
با ∆n̂ مجانبی بحرانی رفتار ،(۳۸ .۴) رابطه طریق از می  شود.
∆n̂ = n̂l − n̂s ≈ ۶√−۲t, (۴۰ .۴)

ns ≈ ۱ − ۳√−۲t و nl ≈ ۱ + ۳√−۲t باردار AdS سیاه  چاله  های برای آن در که می آید به دست
β = ۱/۲ بحرانی نمای که می دهد نشان (۱۴ .۴) رابطه تعریف با عبارت این مقایسه هستند.
از مشتق گرفتن با گرفت. نظر در را t → ۰± حد در κT بحرانی رفتار می توان اکنون می  شود.

داشت. خواهیم کل، حجم حسب بر (۳۶ .۴) حالت )معادله
∂P̂

∂V̂

)
T̂

= − ۴
۹V̂ ۷/۳ +

۴
۳V̂ ۵/۳ − ۸T̂

۹V̂ ۴/۳ . (۴۱ .۴)

اعمال و ،w′ = V̂ − ۱ و t = T̂ − ۱ همان یا بسط پارامترهای حسب بر بالا رابطه نوشتن با که
می شود. حاصل زیر روابط مرتبه  ها، پایین  ترین تا تیلور۱ )بسط

∂P̂

∂V̂

)
T̂

≈ −۸
۹ t− ۴

۲۷w′۲ t > ۰, (۴۲ .۴)(
∂P̂

∂V̂

)
T̂

≈ ۸
۹ t− ۴

۲۷w′۲ t < ۰. (۴۳ .۴)

(۱۹ .۵) و (۱۱ .۴) معادلات از استفاده با و w′ = ۰ گرفتن نظر در با هم حجم منحنی امتداد در
می شود. نتیجه زیر رابطه

κTPc ≈
۸
۹

۱
t

t > ۰. (۴۴ .۴)
پایین  ترین بسط با دیگر طرف از می شود. حاصل γ = ۱ بحرانی نمای (۱۵ .۴) تعریف تطابق با که

داشت. خواهیم (۳۸ .۴) رابطه از ،t حسب بر مرتبه
w′۲

s,l ≈ ۱۸t. (۴۵ .۴)
1Taylor expanding



باردار AdS سیاه   چاله   های برای ترمودینامیکی خمش های بحرانی رفتار بررسی ۳۸
عبارت نهایت در (۱۱ .۴) رابطه از استفاده با و (۱۹ .۵) رابطه در مقادیر این کردن جایگزین با که

می آید. به دست زیر
κTPc ≈

۹
۱۶

۱
t

t < ۰. (۴۶ .۴)
می شود. نتیجه γ′ = ۱ بحرانی نمای (۱۵ .۴) رابطه تطبیق با که

خمش و RN بهنجارشده ذاتی خمش (۶ .۴) و (۵ .۴) معادلات از بهره مندی با دیگر سوی از
می شوند. محاسبه زیر صورت به KN عرضی

RN =

(۳V̂ ۲/۳ − ۱)(۳V̂ ۲/۳ − ۱ − ۴T̂ V̂ )
۲(۱ − ۳V̂ ۲/۳ + ۲T̂ V̂ )۲ . (۴۷ .۴)

KN =
۱ − ۳V̂ ۲/۳

۲(۱ − ۳V̂ ۲/۳ + ۲T̂ V̂ )۲ . (۴۸ .۴)

داریم t > ۰ برای w′ = ۰ دادن قرار سپس و بسط پارامترهای حسب بر عبارت ها این نوشتن با
به دست زیر بحرانی روابط t از مرتبه پایین  ترین تا ،t < ۰ برای w′ = w′

s = −w′
l = ۳√−۲t و

می آید.

RN t۲ ≈

 ۱۲ t > ۰
− ۱۸ t < ۰, and KN t ≈

 − ۱۲ t > ۰
− ۱۴ t < ۰. (۴۹ .۴)

همچنین هستند. تطابق در VdW سیال برای حاصل نتایج با بالا نتایج که است جالب بسیار
بحرانی دامنه  های همان ، (۲۷ .۴) و (۲۵ .۴) روابط در γ = γ′ = ۱ و β = ۱ مقادیر دادن قرار با
مرجع در شده گزارش نتیجه با RN t۲ ∼ − ۱۸، t < ۰ برای می شود. حاصل بالا جهان شمول

است. سازگار [۵۹]

بزرگ تر ابعاد با باردار AdS سیاه چاله های ۵ .۴
چهار باردار AdS سیاه چاله های و VdW سیال مورد در قبل بخش های در مطالعه دنبال به
حائز بزرگتر ابعاد با باردار AdS سیاه چاله یک برای KN و RN بحرانی رفتار مطالعه بعدی،
با RN-AdS سیاه چاله های برای حالت معادله کاهش یافته، پارامتری فضای در است. اهمیت

است. زیر صورت این به بزرگ تر ابعاد

P̂ =
V̂ − ۲(d−۲)

d−۱ +
(
d− ۲)V̂ ۲۱−d

(۵ − ۲d+ ۴ (d− ۳) T̂ V̂ ۱
d−۱
)

(
d− ۳) (۲d− ۵) (۵۰ .۴)

برای هم زیستی منحنی از تحلیلی شکل هیچ چهاربعدی، مورد خلاف بر که است ذکر به لازم
با هم زیستی منحنی از فرمول هایی وجود، این با ندارد. وجود کوچک⁃بزرگ سیاه چاله های



۳۹ بزرگ تر ابعاد با باردار AdS سیاه چاله های
می توان بنابراین، است. آمده دست به [۶۵] منبع در بعدی، ده تا پنج موارد برای دقیق تناسبی
سپس و نمود محاسبه عددی صورت به بحرانی نقطه به نزدیک بسیار را هم زیستی منحنی
ذاتی خمش عددی، چگالی هم دما، تراکم پذیری نظیر ترمودینامیکی کمیت های بحرانی رفتار
محاسبه برای .[۱] نمود تعیین همزیستی منحنی های امتداد در را عرضی خمش و بهنجارشده
عددی چگالی اختلاف و κTPc هم دما تراکم پذیری رفتار باید ابتدا ،γ′ و γ ، β بحرانی نماهای
تراکم پذیری نماییم. بررسی بحرانی نقطه نزدیکی در را کوچک و بزرگ سیاه چاله های بین ∆n

شکل به (۵۰ .۴) و (۱۱ .۴) روابط از استفاده با بزرگتر ابعاد با باردار AⅾS سیاه چاله در هم دما
می شود. محاسبه زیر

κTPc =

(
−۳ + d

)
(−۱ + d)

(
−۵ + ۲d)

۲ (d− ۲)(V̂ − ۲
d−۱
(۲ (d− ۳) T̂ V̂ ۱

d−۱ − ۲d+ ۵)+ V̂ − ۲(d−۲)
d−۱

) . (۵۱ .۴)

بحرانی رفتار ،t > ۰ در V̂ = ۱ هم حجم منحنی امتداد در بحرانی نقطه به رسیدن مسیر در
با  κT هم دما تراکم پذیری

κT Pc ≈
(d− ۱) (۲d− ۵)

۴ (d− ۲) t , (۵۲ .۴)
روش از استفاده با [۱] مرجع در می کند. دلالت γ = ۱ بحرانی نمای بر که می آید به دست
در ترتیب به d = ۵ − ۱۰ ابعاد در t < ۰ برای κTPc و ∆n رفتار ماکسول، برابر مساحت های
نتایج که است شده محاسبه عددی صورت به P̂ − V̂ و P̂ − T̂ هم زیستی منحنی های امتداد
توان مقادیر که است واضح ،۱ .۴ جدول داده های طبق است. مشاهده قابل ۱ .۴ جدول در آن
ln |κTPc| = −ck ln(۱− T̂ )−dk و ln = ∆n = cn ln(۱− T̂ )+dn شیب و مبدا از عرض مقادیر :۱ .۴ جدول

.[۱] بزرگ و کوچک سیاه چاله شده اشباع همزیستی منحنی های برای

Quantity Coefficient d = 5 d = 6 d = 7 d = 8 d = 9 d = 10

ln(∆n) cn 0.50004 0.50004 0.0005 0.0005 0.50006 0.50006

dn 2.17107 2.22602 2.28272 2.38664 2.33658 2.43293

ln|κTPc| (LBH) ck 1.00901 1.00938 1.00982 1.01029 1.01076 1.01122

−dk 0.29237 0.02490 0.18017 0.34698 0.48771 0.60945

ln|κTPc| (SBH) ck 0.99080 0.99044 0.98999 0.98952 0.98904 0.98857

−dk 0.07027 0.20613 0.42211 0.60038 0.75259 0.88563

فضازمان بعد افزایش با هستند، ck(LBH) و ck(SBH) شیب دو متوسط که γ′ و β = cn بحرانی
بنابراین ندارند، چندانی تغییری

β ≈ ۱
۲ , γ′ ≈ ۱ (۵۳ .۴)



باردار AdS سیاه   چاله   های برای ترمودینامیکی خمش های بحرانی رفتار بررسی ۴۰
یکسان بعدی چهار باردار AdS سیاه چاله های و VdW سیال مقادیر با مقادیر این هستند.
ذاتی خمش فضازمان، بعد تغییر از نظر صرف که داشت انتظار می توان بنابراین، هستند.
از بحرانی نقطه نزدیکی در را جهان شمولی بحرانی رفتار KN عرضی خمش و RN بهنجارشده
به می توان (۵۰ .۴) و (۶ .۴) و (۵ .۴) معادلات از استفاده با دیگر ازسوی دهند. نشان خود

نمود. تعیین زیر بصورت t > ۰ برای را ترمودینامیکی خمش های بحرانی رفتار راحتی

RN t۲ ≈ − ۱
۲ , KN t ≈ − ۱

۲ , (۵۴ .۴)

نقطه نزدیک ترمودینامیکی خمش های برای جهان شمول رفتار یک نشان دهنده بالا رابطه
باردار AdS سیاه چاله های و VdW سیال مقادیر با مشابه هم حجم، منحنی امتداد در بحرانی
فیزیکی سیستم جزئیات به مقادیر این که گفت می توان دیگر عبارت به یا می باشد، بعدی چهار
در بحرانی نقطه نزدیکی در ترمودینامیکی خمش های بحرانی رفتار همچنین نیستند. وابسته
بررسی [۱] مرجع در P −V نمودار در بزرگ ̸ کوچک سیاه چاله های هم زیستی منحنی امتداد
حسب بر KN و RN به مربوط ln-ln مستقیم خط شیب و مبدا از عرض ضرایب است. شده

است. شده آورده ۲ .۴ جدول در (۱ − T̂)
KN و RN برای بحرانی نمای که می دهند نشان شیب ها عددی۱، خطای گرفتن نظر در با
VdW سیال برای حاصله مقادیر با کامل سازگاری در که هستند cK = ۱ و cR = ۲ صورت به
می توان وضوح به .[۱] است شده آورده ۳ .۴ جدول در بحرانی دامنه های همچنین هستند.

شده اشباع همزیستی منحنی  برای ln− ln مستقیم خط به مربوط شیب و مبدا از عرض :۲ .۴ جدول
[۱] کوچک و بزرگ سیاه چاله های

Quantity Coefficient d = 5 d = 6 d = 7 d = 8 d = 9 d = 10

ln|RN | (SBH) cR 2.01116 2.01297 2.01455 2.01598 2.01729 2.01851

dR 2.21562 2.23775 2.25709 2.27454 2.29054 2.30541

ln|RN | (LBH) cR 1.98875 1.98693 1.98532 1.98388 1.98255 1.98132

−dR 1.94227 1.92008 1.90054 1.88292 1.86674 1.85169

ln|KN | (SBH) ck 1.00567 1.00657 1.00737 1.00808 1.00874 1.00935

−dk 1.45537 1.146644 1.47611 1.48484 1.49284 1.50028

ln|KN | (LBH) ck 0.99446 0.99355 0.99275 0.99202 0.99136 0.99074

−dk 1.31866 1.30756 1.29779 1.28898 1.28089 1.27336

خمش های بحرانی رفتار درنتیجه، است. ناچیز فضازمان، بعد افزایش با دامنه ها تغییر که دید
1numerical error



۴۱ بزرگ تر ابعاد با باردار AdS سیاه چاله های
[۱] بحرانی نقطه نزدیکی در ترمودینامیکی خمش های بحرانی دامنه های :۳ .۴ جدول

Quantity d = 5 d = 6 d = 7 d = 8 d = 9 d = 10

RN t2 -0.12506 -0.12507 -0.12508 -0.12509 -0.12510 0.12511

− (γ′−β)2

2 -0.12493 -12.493 -0.12493 -0.12493 -0.12492 -0.12492

KN t -0.24982 -0.24982 -0.24984 -0.24985 -0.24986 -0.24987

− (γ′−β)
2 -0.24993 -0.24993 -0.24993 -0.24993 -0.24992 -0.24992

می شود. بیان زیر بصورت هم زیستی امتدادمنحنی در t < ۰ برای بهنجارشده ترمودینامیکی
RN t۲ ≈ − ۱

۸ , KN t ≈ − ۱
۴ , (۵۵ .۴)

مقادیر این این، بر علاوه می دهد. نشان را زمان فضا بعد به بحرانی دامنه های وابستگی عدم که
هستند. (۲۹ .۴) و (۲۵ .۴) رابطه های در آمده دست به جهان شمول دامنه های موید





۵ فصل
ترمودینامیکی خمش های بحرانی رفتار

بار بدون بونت گاوس سیاه   چاله برای
GB-AdS

مقدمه ۱ .۵
دامنه و ۲ جهان شمول نمای دارای بهنجار ذاتی خمش دیدیم، قبل فصل در که همان گونه
چنین برای براین علاوه است. پاددوسیته باردار سیاه چاله های برای RN t۲ = −۱/۸ بحرانی
دارای همزیستی منحنی امتداد در بحرانی نقطه نزدیکی در نیز عرضی خمش سیاه چاله هایی،
چنین بخش، این در بنابراین است. KN t۲ = −۱/۴ بحرانی دامنه و ۱ جهان شمول نمای
برای را بحرانی نقطه نزدیکی در ترمودینامیکی خمش های برای را جهان ش شمولی ویژگی های
این به می  دهیم. قرار مطالعه مورد را پاددوسیته فضای در بار بدون بونت۱ گاوس سیاه چاله
و می کند، بازی باردار سیاه چاله های در را بار شبیه نقشی بونت گاوس جفت شدگی که علت
به محدود را خود بنابراین ،[۶۷] می دهد نشان را واندروالس سیال با مشابه رفتاری همچنین

می کنیم. بونت گاوس سیاه چاله بار بدون مدل
1Gauss-bonnet (GB)

۴۳



بار بدون بونت گاوس سیاه   چاله برای ترمودینامیکی خمش های بحرانی رفتار ۴۴
GB-AdS

بونت گاوس سیاه چاله ۲ .۵
می شود: نوشته زیر به صورت AdS فضای در بار بدون بعدی پنج GB سیاه چاله کنش

S =

∫
d۵x√−g

( ۱
۱۶πG

(
R− ۲Λ + αLGB

)) (۱ .۵)

آن در که
LGB = RµνγδRµνγδ − ۴RµνRµν +R۲ (۲ .۵)

عنصر با کروی تقارن با سیاه چاله این حل بنابراین است. GB گرانش در شدگی جفت ثابت α و
می شود. داده زیر متریک

f(r) = ۱ +
r۲
۴α
(

۱ −

√
۱ +

۴α
۳
(۱۶M

πr۴ + Λ

))
(۳ .۵)

ثابت تعریف با تعمیم یافته فاز فضای در اکنون هستند. سیاه   چاله جرم M پارامترهای آن در که
ترمودینامیکی، فشار بصورت Λ کیهانشناسی

P = − Λ

۸π (۴ .۵)
بررسی را آن ها همزیستی منحنی نیز و کوچک⁃بزرگ سیاه چاله های نوع از فاز گذار می توان
بصورت را سیاه   چاله جرم می توان بیرونی رویداد افق در f(rh) = ۰ رابطه دادن قرار با نمود.

آورد. به دست زیر
M =

π

۸
(۴Pπr۴

h + ۳r۲
h + ۶α) (۵ .۵)

.[۶۸] دارد را H ≡ M ترمودینامیکی پتانسیل نقش سیاه چاله این جرم که است ذکر به لازم
می شود. داده زیر رابطه با سیاه چاله این آنتروپی همچنین
S =

π۲rh۲
(
r۲
h + ۱۲α) (۶ .۵)

dM = dH = TdS + V dP + Adα بصورت آنتالپی برای ترمودینامیک اول قانون طبق
می آیند. به دست زیر بصورت ترمودینامیکی کمیت های

T =
(∂M
∂S

)
α,P

=
۸πPr۳

h + ۳rh
۶πr۲

h + ۲۴πα , (۷ .۵)

A =
(∂M
∂α

)
S,P

= −π

۸
۳۲πPr۴

h + ۹r۲
h − ۱۲α

r۲
h + ۴α , (۸ .۵)

V =
(∂M
∂P

)
α,S

=
π۲r۴

h۲ (۹ .۵)



۴۵ بونت گاوس سیاه چاله
استفاده با هستند. سیاه   چاله ترمودینامیکی حجم V پارامتر و α ضریب با مزدوج کمیت A که

می شود. داده زیر رابطه با حالت معادله ۷ .۵ رابطه از
P =

T

v
− ۲

۳πv۲ +
۶۴Tα
۹v۳ . (۱۰ .۵)

پیداست، رابطه این از که همان طور است. شده تعریف ویژه حجم v = (۴/۳)rh آن در که
فاز گذار یک وجود بنابراین است. واندروالس سیال حالت معادله به شبیه حالت معادله این
[۶۷] مرجع در فاز گذار این به مربوط نمودارهای که می رود انتظار کوچک⁃بزرگ سیاه   چاله
کمیت های مقدار بحرانی نقطه در (∂vP )T = (∂v,vP )T = ۰ معادلات، حل با است. شده رسم

می آید. به دست زیر بصورت ترمودینامیک

Pc =
۱

۹۶πα, Tc =
۱

۲π√۱۲α, Vc = ۷۲π۲α۲, vc =
√

۶۴α
۳ (۱۱ .۵)

با یافته کاهش کمیت های تعریف با اکنون

P̂ =
P

Pc
, T̂ =

T

Tc
, v̂ =

v

vc
(۱۲ .۵)

می شود. بازنویسی زیر بصورت حالت معادله

P̂ =
۳T̂
v̂

− ۳
v̂۲ +

T̂

v̂۳ (۱۳ .۵)
است. α پارامتر از مستقل ،(۱۳ .۵) یافته کاهش حالت معادله پیداست که همان گونه

بصورت v ویژه حجم و V ترمودینامیکی حجم میان ارتباط طریق از همچنین

V =
۸۴π۲v۴

۵۱۲ (۱۴ .۵)
نمود. بیان زیر رابطه با V̂ = V

Vc
= v̂۴ کاهش یافته حجم برحسب می توان را حالت معادله

P̂ =
T̂

V̂ ۳/۴ − ۳√
V̂

+
۳T̂
V̂ ۱/۴ (۱۵ .۵)

در همزیستی منحنی یافته، کاهش پارامتری فضای در بالا، حالت معادله از استفاده با
.[۶۷] است شده مشخص زیر رابطه با T − P نمودار

T̂ =

√
P̂ (۳ − P̂ )

۲ (۱۶ .۵)



بار بدون بونت گاوس سیاه   چاله برای ترمودینامیکی خمش های بحرانی رفتار ۴۶
GB-AdS

برای به ترتیب V̂l و V̂s کاهش یافته ترمودینامیکی حجم های بالا، رابطه از بهره مندی با اکنون
.[۶۷] می شوند داده زیر رابطه های با P − V نمودار در بزرگ و کوچک سیاه چاله های

V̂s =

۲T̂ −
√۶
√

۲T̂ ۲ − ۳ +
√۹ − ۸T̂ ۲

۳ −
√۹ − ۸T̂ ۲

۴

V̂l =

۲T̂ +
√۶
√

۲T̂ ۲ − ۳ +
√۹ − ۸T̂ ۲

۳ −
√۹ − ۸T̂ ۲

۴
(۱۷ .۵)

(۱۵ .۵) فشار از گرفتن مشتق با می  گیریم. نظر در t → ۰± حد با را κT بحرانی رفتار ابتدا در
داشت: خواهیم کل حجم حسب )بر

∂P̂

∂V̂

)
T̂

= − ۳T
۴V̂ ۵/۴ − ۳T

۴V̂ ۷/۴ +
۳

۲V̂ ۳/۲ (۱۸ .۵)

اعمال و ،w′ = V̂ − ۱ و t = T̂ − ۱ همان یا بسط پارامترهای حسب بر بالا معادله بازنویسی با
رسید. خواهیم زیر بسط به مرتبه  ها پایین  ترین روی تیلور )بسط

∂P̂

∂V̂

)
T̂

≈ −۳t
۲ +

۹tw′

۴ − ۱۸۳tw′۲
۶۴ − ۳w′۲

۶۴ t > ۰, . (۱۹ .۵)
(
∂P̂

∂V̂

)
T̂

≈ ۳t
۲ − ۹tw′

۴ +
۱۸۳tw′۲

۶۴ − ۳w′۲
۶۴ t < ۰. (۲۰ .۵)

(۱۹ .۵) و (۱۱ .۴) معادلات از استفاده با و w′ = ۰ گرفتن نظر در با هم حجم، منحنی طول در
می  رسیم. زیر رابطه به

κTPc ≈
۲
۳t t > ۰. (۲۱ .۵)

،t حسب بر مرتبه پایین  ترین بسط به توجه با می  رسیم. γ = ۱ به (۱۵ .۴) رابطه تعریف طبق
می شود، نتیجه (۱۷ .۵) رابطه از

w′۲
s,l ≈

۳t
۱۲۸ . (۲۲ .۵)

این به نهایت در (۱۱ .۴) رابطه از استفاده با و (۲۰ .۵) رابطه در مقادیر این کردن جایگزین با
رسید. خواهیم عبارت

κTPc ≈
۱
۳t t < ۰ . (۲۳ .۵)

رابطه نوشتن با دیگر طرف از می آید. به دست .γ′ = ۱ بحرانی نمای (۱۵ .۴) رابطه بنابر اکنون
می رسیم. زیر رابطه به کاهش یافته پارامترهای برحسب (۶ .۴) و (۵ .۴)

RN = RCV =
۱
۲
۱ −

(
T̂
∂V̂ ,T̂ P̂

∂V̂ P̂

)۲ , (۲۴ .۵)



۴۷ بونت گاوس سیاه چاله

KN = K
√
CV =

۱
۲
[
۱ −

T̂ ∂V̂ ,T̂ P̂

∂V̂ P̂

]
(۲۵ .۵)

به را KN عرضی خمش و RN بهنجارشده ذاتی خمش ۱۵ .۵ حالت معادله از استفاده با اکنون
می آوریم. به دست زیر صورت

RN = −
۲ ۴√

V̂
(
T̂
√
V̂ + T̂ − ۴√

V̂
)

(
T̂
√
V̂ + T̂ − ۲ ۴√

V̂
)۲ . (۲۶ .۵)

KN =

۴√
V̂

۲ ۴√
V̂ − T̂

(√
V̂ + ۱) . (۲۷ .۵)

t > ۰ برای w′ = ۰ دادن قرار سپس و w′ و t بسط پارامترهای حسب بر عبارات این نوشتن با
می رسیم. زیر بسط رابطه به t < ۰ برای w′ = w′

s = −w′
l =

√۳t/۱۲۸نیز و

RN t۲ ≈

 ۱۲ t > ۰
− ۱۸ t < ۰, and KN t ≈

 − ۱۲ t > ۰
− ۱۴ t < ۰. (۲۸ .۵)

AdS باردار های سیاه چاله و VdW سیال برای حاصل نتایج با بالا نتایج که است توجه جالب
که است (α) بونت گاوس جفت شدگی ثابت از مستقل مقادیر این حال درعین دارند. تطبیق

است. مقادیر این بودن جهان شمول بر دلیلی خود این





۶ فصل
نتایج

تعریف از پس (NTG) ترمودینامیکی هندسه جدید فرمالیسم از استفاده با پایان نامه، این در
بهنجارشده عرضی و RN بهنجارشده ذاتی خمش های بحرانی رفتارهای عرضی، و ذاتی خمش های
بررسی مورد خنثی بونت گاوس سیاه چاله و باردار سیاه چابه های ،VdW سیال برای برای را KN

P − V نمودار و حالت معادله طریق از باردار سیاه چابه های و VdW سیال برای داده ایم. قرار
دوفازی همزیستی منحنی نیز و (t > ۰) هم حجم مسیر دو امتداد در که نمودیم مشاهده
۱ بحرانی توان دارای KN و ۲ بحرانی توان دارای RN بحرانی، نقطه به رسیدن برای (t < ۰)
به طوریکه هستند. جهان شمول مقادیری KN t و RN t۲ بحرانی دامنه های همچنین هستند.
t → ۰− برای را RN t۲ = −۱/۸ که داده اند نشان تحلیلی محاسبات هم و عددی محاسبات هم
به t → ۰+ برای را −۱/۲ و t → ۰− برای KN t = −۱/۴ مقادیر و ،t → ۰+ برای را −۱/۲ و
بحرانی دامنه های این که دید می توان بعدی d باردار سیاه چاله های مورد در حتی می آید. دست
است. مقادیر این بودن جهان شمول بر دلیلی خود این که هستند d فضازمان بعد از مستقل

از حاصل ترمودینامیک خمش های برای بحرانی دامنه های مقادیر تحلیلی، بطور ادامه در
نشان ما نتایج نمودیم. محاسبه GB-AdS پنج⁃بعدی خنثی سیاه   چاله برای را NTG هندسه

می دهد.

RN t۲ ≈

 ۱۲ t > ۰
− ۱۸ t < ۰, and KN t ≈

 − ۱۲ t > ۰
− ۱۴ t < ۰. (۱ .۶)

که است بونت گاوس جفت شدگی ثابت از مستقل بحرانی دامنه های پیداست که همانطور
۴۹



نتایج ۵۰
دامنه های مقادیر که نموده ایم مشاهده اینجا تا آنهاست. بودن جهان شمول نشان دهنده
خنثی سیاه چاله نیز و بعدی d باردار سیاه چاله های واندوالس، سیال سیستم هایی برای بحرانی
جهان شمول می توان ادامه در هستند. سیستم فیزیکی پارامترهای از مستقل بونت گاوس

نمود. بررسی نیز دیگر سیاه چاله های برای را مقادیر این بودن
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Aabstract

In the thesis, we introduce different black holes and study their thermodynamics of

processing and also introduce the laws of thermodynamics for black holes. In the following,

we will introduce concepts such as Ruppenier’s thermodynamic geometry, and apply this

approach to the use of phase study of black holes. Since the one-to-one matching between

singularities of heat capacity and singularities of geometric scalar in Ruppenier approach,

we also introduce the new approach in this field. In this new geometric approach, called the

new formalism of thermodynamic (NTG) geometry, the correct relationship between the

phase transition for heat capacity and the singularities in scalar curvatures is established.

Therefore, we have used this new approach in the remainder of this thesis.

Then, critical exponents and critical amplitude of thermodynamic intrinsic and ex-

trinsic curvatures of the large-small black hole phase for the charged AdS black hole were

studied. At the critical point, we find that the normalized intrinsic curvature RN and the

extrinsic curvature KN represent the critical values 2 and 1, respectively. Accordingly,

the general domains RN t2 and KN t with the temperature parameter t = T/Tc − 1 where

Tc is the critical temperature value or critical temperature. Near the critical point, we find

that the critical domain RN t2 and KN t when t → 0+, will be equal to −1/2, while in the

range t → 0−. These two parameters are RN t2 ≈ −1/8 and KN t ≈ −1/4. These results

apply not only to four-dimensional charged AdS black holes, but also to larger dimensions.

Then, at the end, we study the thermodynamic curvatures associated with NTG ge-

ometry for the five-dimensional Gauss-bonnet neutral black hole in the AdS space. Our

results show that the intrinsic and extrinsic curvature gets the same universal amplitudes

obtained for charged AdS black holes so that they are independent of the Gauss-Bonnet

coupling values.

Keywords: Black hole Thermodynamics, Thermodynamic Geometry, Ads Black hole,

Intrinsic curvature, Extrinsic curvature
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