Chapter 6:

Laplace Transforms

E. Kreyszig




6.1 Laplace Transform. Linearity.
First Shifting Theorem

Roughly speaking, the Laplace transform, when applied to a function, changes that

function into a new function by using a process that involves integration. Details are as

follows.
If (¢) is a function defined for all + = 0, its Laplace transform® is the integral of £(?)
times e~ from ¢ = 0 to . It is a function of s, say, F(s), and is denoted by &£( f); thus

[*]

(1) F(s) = $(f) = J e (1) dt.

0

Not only is the result F(s) called the Laplace transform, but the operation just described,
which yields F(s) from a given f(¢), is also called the Laplace transform. It is an “integral

transform”

F(s) = J k(s, 1) f(¢) dt

0

with “kernel” k(s, 1) = ¢~ .



Note that the Laplace transform is called an integral transform because it transforms

(changes) a function in one space to a function in'another space by a process of integration

that involves a kernel. The kernel or kernel function i1s a function of the variables in the

two spaces and defines the integral transform.

Furthermore, the given function f(¢) in (1) is called the inveérSé transtorm of /' (s) and
is denoted by 53_1(}7 ); that is, we shall write

(1%) [f(t) = $7Y(F). ]

Note that (1) and (1*) together imply ELTHE(F)) = f and LELTE) = E.

Notation

Original functions depend on f and their transforms on s—keep this in mind! Original

functions are denoted by lowercase letters and their transforms by the same letters in capital,

so that F(s) denotes the transform of f(¢), and Y(s) denotes the transform of y(#), and so on.




EXAMPLE 1 Laplace Transform

Let f(r) = 1 when ¢t = 0. Find F(s).

Solution. From (1) we obtain by integration

o

F(f)=%0) = J e Stdr = _%e—st
0

EXAMPLE 2 Laplace Transform £(e”’) of the Exponential Function e

Let f(r) = ¢t when ¢ = 0, where a is a constant. Find L)

Solution. Again by (1),

0 (e <]

1
F(e™) = f e St dr = ——

e—(s—a)t :
a— S5
0 0

hence, when s — a > 0,

1
™) = .




THEOREM 1

Linearity of the Laplace Transform

The Laplace transform is a linear operation, that is, for any functions f(t) and g(t)
whose transforms exist and any constants a and b the transform of af(t) + bg(r)
exists, and

Llaf() + bg®)} = ad{f®} + bL{g®}.

EXAMPLE 3 Application of Theorem 1: Hyperbolic Functions

Find the transforms of cosh at and sinh ar.
Solution. Since cosh ar = l(eat + e_at) and sinh at = l(eat — e_at), we obtain from Example 2 and
2 2 p

Theorem 1

1

—da

$(cosh at) = 1 (L™ + (e M) = l(
2 2\s

£L(sinh ar) = %(iﬁ(f?at) — P(e” ) = l( 1

2\s —a




Table 6.1 Some Functions f(t) and Their Laplace Transforms £(f)

f@ £(f) f@®

Ccos wt

cosh at

(n

(a positive)




s-Shifting: Replacing s by in the Transform

The Laplace transform has the very useful property that, if we know the transform of f(z),
we can immediately get that of ¢®*f(7), as follows.

THEOREM 2

First Shifting Theorem, s-Shifting

Iff(?) has the transform F(s) (where s > k for some k), then e™f(f) has the transform
F(s — a) (where s — a > k). In formulas,

L{e™f(t)} = F(s — a)
or, if we take the inverse on both sides,

@) = $HEF(Gs — a)).

PR O O F We obtain F(s — a) by replacing s with s — a in the integral in (1), so that

o2}

F(s — a) = J e STV dr = J e S ()] dt = L{e™F(1)). .

YT T O 0 rrrrrrrrrrrrrrrrrrrrrrl"



EXAMPLE 5 s-Shifting: Damped Vibrations. Completing the Square

From Example 4 and the first shifting theorem we immediately obtain formulas 11 and 12 in Table 6.1,

S —da w

S Pl sinwt) = .
s—a)+ow (s—a)2+w2

P{e™ cos wt}) =

For instance, use these formulas to find the inverse of the transform

3s — 137
s+ 25 + 401'

(f) =

Solution. Applying the inverse transform, using its linearity (Prob. 24), and completing the square, we obtain

f:$_1{3(s+1)—140}:3$_1{ s+ 1 }_73_1{ 20 }
(s + 1)% + 400 (s + 12 + 202 (s + )2+ 202)

We now see that the inverse of the right side is the damped vibration (Fig. 114)

() = e %3 cos 20r — 7 sin 207).

Fig. 114. Vibrations in Example 5




Existence and Uniqueness of Laplace Transforms

This is not a big practical problem because in most cases we can check the solution of
an ODE without too much trouble. Nevertheless we should be aware of some basic facts.

A function f(7) has a Laplace transform if it does ROt grow 060 fast, say, if for all t = 0
and some constants M and k it satisfies the “growth restriction”

2) f@)] = Me*.

f(#) need not be continuous, but it should not be too bad. The technical term (generally
used in mathematics) is piecewise continuity. f(t) is piecewise continuous on a finite
interval a = t = b where f is defined, if this interval can be divided into finitely many
subintervals in each of which fis continuous and has finite limits as ¢ approaches either
endpoint of such a subinterval from the interior.

T\
No b

|
a t

Fig. 115. Example of a piecewise continuous function f(t).

q



THEOREM 3

Existence Theorem for Laplace Transforms

If f(?) is defined and piecewise continuous on every finite interval on the semi-axis
t = 0 and satisfies (2) for all t = 0 and some constants M and k, then the Laplace

transform E(f) exists for all s > k.

Uniqueness. If the Laplace transform of a given function exists, it is uniquely

determined. Conversely, it can be shown that if two functions (both defined on the positive
real axis) have the same transform, these functions cannot differ over an interval of positive

length, although they may differ at isolated points (see Ref. [A14] in App. 1). Hence we
may say that the inverse of a given transform is essentially unique. In particular, if two




6.2. Transforms of Derivatives and Integrals. ODEs

The Laplace transform is a method of solving ODEs and initial value problems.

THEOREM 1

Laplace Transform of Derivatives

The transforms of the first and second derivatives of f(t) satisfy

(1) Pf") = sL(f) — £(0)
(2) Pf") = s2L(f) — sf(0) — f(0).

Formula (1) holds if f(t) is continuous for all t = 0 and satisfies the growth
restriction (2) in Sec. 6.1 and f' (1) is piecewise continuous on every finite interval
on the semi-axis t = 0. Similarly, (2) holds if f and " are continuous for all t = 0
and satisfy the growth restriction and f" is piecewise continuous on every finite
interval on the semi-axis t = 0.




THEOREM 2

Laplace Transform of the Derivative f") of Any Order

Let f.f", -+, f @=L pe continuous for all t = 0 and satisfy the growth restriction
(2) in Sec. 6.1. Furthermore, let f be piecewise continuous on every finite interval
on the semi-axis t = 0. Then the transform of f™ satisfies

3) L) = s"Rf) — sTHO) = s"TE0) — - = £ TR0,

EXAMPLE 2 Formulas 7 and 8 in Table 6.1, Sec. 6.1

This is a third derivation of ¥(cos wr) and £(sin wr); cf. Example 4 in Sec. 6.1. Let f(#) = cos wt. Then
fO)=1,£(0)=0,f"() = —w? cos wt. From this and (2) we obtain

LY = 2L(f) — s = —®L(f).  Byalgebra,  F(cos wr) =

k) +w2

Similarly, let g = sin wt. Then g(0) = 0, g’ = w cos wt. From this and (1) we obtain

Pg') = sF(g) = wP(cos wf). Hence,  L(sin wr) = ?ﬁﬁ(cos wf) =

2 + w2




Laplace Transform of the Integral of a Function

THEOREM 3

Laplace Transform of Integral

Let F(s) denote the transform of a function f(t) which is piecewise continuous for t = 0
and satisfies a growth restriction (2), Sec. 6.1. Then, for s > 0, s > k, and t > 0,

t t
4) g{ f f(7) dr} = %F(s), thus f f(r) dr = 512‘1{;1«“@)}.
0 0

Differential Equations, Initial Value Problems

Let us now discuss how the Laplace transform method solves ODEs and initial value
problems. We consider an 1nitial value problem

(5) y' + ay' + by = r(@), y(0) = Ky, y'(0) = K4



where a and b are constant. Here r(¢) is the given input (driving force) applied to the
mechanical or electrical system and y(z) is the output (response to the input) to be obtained.
In Laplace’s method we do three steps:

Step 1. Setting up the subsidiary equation. This is an algebraic equation for the transform
Y = ¥(y) obtained by transforming (5) by means of (1) and (2), namely,

[s%Y = sy(0) = ¥'(0)] + a[sY — y(0)] + bY = R(s)
where R(s) = £(r). Collecting the Y-terms, we have the subsidiary equation

(s2 + as + b)Y = (s + a)y0) + y'(0) + R(s).

Step 2. Solution of the subsidiary equation by algebra. We divide by s> + as + b and
use the so-called transfer function

1 1
(6) os) = — = R T 2
s“+as+b (s+3a)”+b—za




(Q 1s often denoted by H, but we need H much more frequently for other purposes.) This
gives the solution

(7) Y(s) = [(s + a)y(0) + y'(0)]O(s) + R(s)O(s).
If y(0) = y'(0) = 0, this is simply Y = RQ; hence

<(output)
<(input)

_ Y _
C=%

and this explains the name of Q. Note that Q depends neither on r(t) nor on the initial
conditions (but only on a and b).

Step 3. Inversion of Y to obtainy = £~ '(Y). We reduce (7) (usually by partial fractions
as in calculus) to a sum of terms whose inverses can be found from the tables (e.g., in
Sec. 6.1 or Sec. 6.9) or by a CAS, so that we obtain the solution y(r) = 55_1(Y ) of (5).




EXAMPLE 4 Initial Value Problem: The Basic Laplace Steps

Solve
Y —=y=t 0 =1 Y0 =1

Solution. Step 1. From (2) and Table 6.1 we get the subsidiary equation [with ¥ = £(y)]
2 ' — 172 2 _ 2
7Y — sy(0) — y'(0) — Y = 1/s57, thus (s“—DY=s+ 1+ 1/s"

Step 2. The transfer function is Q = 1/ (s2 — 1), and (7) becomes

s+ 1 1
_|_

|
Y=(s+1)Q+—0= .
’ 52 s2—1  s§%(s% - 1)

Simplification of the first fraction and an expansion of the last fraction gives

1

Step 3. From this expression for Y and Table 6.1 we obtain the solution

1 1 1
yir) = L7Ny) = 33_1{—} + EL’_I{ 5 } — 58_1{—2} = ¢! + sinhs — 1.
s — 1 s —1 s .




EXAMPLE 5 Comparison with the Usual Method

Solve the initial value problem
y'+3y +9y=0. y0)=0.16, y'(0)=0.
Solution. From (1) and (2) we see that the subsidiary equation is
s2Y — 0.16s + sY — 0.16 + 9Y = 0, thus (s + s+ 9)Y=0.16(s + ).

The solution is

0.16(s + 1)  0.16(s + 3) + 0.08

24+ 5 +09 (s + 3%+ 3
Hence by the first shifting theorem and the formulas for cos and sin in Table 6.1 we obtain

/35 0.08 35
i) = L7HY) = V2 (0.16 cos t+ sin 4 | — t)
4 1N/35 4

= ¢7 990,16 cos 2.96¢ + 0.027 sin 2.96¢).

This agrees with Example 2, Case (III) in Sec. 2.4. The work was less.




t-space s-space

Given problem Subsidiary equation
y'-y=t (s2-1)Y=s+1+1/s2

y(0) =1

y'(0) =1
Solution of given problem Solution of subsidiary equation

y(t) = et +sinh £ — ¢ e yo 1 , 1 1
s—1 s2-1 g2

Fig. 116. Steps of the Laplace transform method

Advantages of the Laplace Method

1. Solving a nonhomogeneous ODE does not require first solving the
homogeneous ODE. See Example 4.

2. [Initial values are automatically taken care of. See Examples 4 and 5.




6.3. Unit Step Function (Heaviside Function).

Second Shifting Theorem (t-Shifting)

Unit Step Function (Heaviside Function)

The unit step function or Heaviside function u(r — a) is 0 for t < a, has a jump of size
I at t = a (where we can leave 1t undefined), and is 1 for # > a, in a formula:

0 ift <a
(1) u(t — a) = (a = 0).
1 ift>a
u(t) u(t—a)
1 1 —
|
|
|
0 t 0 a t
Fig. 118.  Unit step function u(t) Fig. 119.  Unit step function u(t — a)



The transform of u(t — a) follows directly from the defining integral in Sec. 6.1,

<${u0-—cn}:=f e Stu(t — a)dr = J e St 1dr = —
0 0

here the integration begins at t = a(=0) because u(t — a) is 0 for t < a. Hence

—as

) Plut — a)) =< (s > 0).

S

The unit step function is a typical “‘engineering function” made to measure for engineering
applications, which often involve functions (mechanical or electrical driving forces) that

are either “off ” or “on.” Multiplying functions f(¢) with u(t — a), we can produce all sorts
of effects. The simple basic idea is illustrated in Figs. 120 and 121.

Let f(t) = 0 for all negative t. Then f(t — a)u(t — a) with a > 0 is f(t) shifted
(translated) to the right by the amount a.




ne

2 m42 2m+2  t

., v

(A) f@)=5sint  (B) f(Hult-2) (C) fE-2)ult-2)

Fig. 120. Effects of the unit step function: (A) Given function.
(B) Switching off and on. (C) Shift.

nAN

—k — 0 2 4 6 8 10 t

(A) Rlu(t—1)—2u(t —4) + u(t - 6)] (B) 4 sin (%n‘t)[u(t) —u(t-2)+ult-4)—+ -]

Fig. 121.  Use of many unit step functions.




Time Shifting (t-Shifting)

THEOREM 1

Second Shifting Theorem; Time Shifting
If f(t) has the transform F(s), then the “shifted function”

0 ifr<a

(3) f = ft — ayu(t — a) = {

f(t—a) ift>a
has the transform e~ **F(s). That is, if L{f(t)} = F(s), then

4) Lt — aut — a)} = e~ PF(s).

Or, if we take the inverse on both sides, we can write

(4%) f(t — au(t — a) = L~ He BF(s)).




Practically speaking, if we know F(s), we can obtain the transform of (3) by multiplying
F(s) by e~ . In Fig. 120, the transform of 5 sin ¢ is F(s) = 5/ (s2 + 1), hence the shifted
function 5 sin (f — 2)u(t — 2) shown in Fig. 120(C) has the transform

e ZF(s) = Se” /(s + 1).

EXAMPLE 1 Application of Theorem 1. Use of Unit Step Functions

Write the following function using unit step functions and find its transform.

P ifo<r<1

f(n =132 ifl<i<im (Fig. 122)

cost if t > %77.

Fig. 122. f(t) in Example 1




Solution. Step 1. In terms of unit step functions,

f@ =20 — ut — 1) + 32u(t — 1) — u(t — 317)) + (cos Nu(t — ).

Indeed, 2(1 — u(r — 1)) gives f(r) for 0 <t < 1, and so on.

Step 2. To apply Theorem 1, we must write each term in f(7) in the form f(t — a)u(t — a). Thus, 2(1 — u(t — 1))
remains as it is and gives the transform 2(1 — e¢~®)/s. Then

Sf{%tzu(t— 1)} = 52(%(:— D2+ @—1)+ %)u(t — 1)} =(

1 1 1 ° 2
SB{—rzu(r——ﬂ-)}:EB{—(r——fn—) +E(r——w) U

2 2 2 2 2 2 8




If the conversion of f(¢) to f(t — a) is inconvenient, replace it by

(4%%) Elfut — a)} = e CL{f + a)}.

(4**) follows from (4) by writing f(t — a) = g(1), hence f(r) = g(¢t + a) and then again writing f for g. Thus,

1, s {1 2} s {1 0 1} _3(1 1 1)
= - = —(t + = —t°+t+ - = =+ =5+ —
SB{ztu(t 1)} e °%F 2(r 1) e °%L 2t t 5 e st a2t

as before. Similarly for £{37%u(t — 37)}. Finally, by (4*%),

1 1 1
§B{cos tu(t — 571')} = e_ws/zﬂf{cos (t + EW)} = ¢ 2P (—sint) = —e ™2 2 H

EXAMPLE 2 Application of Both Shifting Theorems. Inverse Transform

Find the inverse transform f(7) of

e—S

F(s) =
52 + 772




Solution. Without the exponential functions in the numerator the three terms of F(s) would have the inverses
(sin 771)/ 17, (sin 771)/7r, and re” 2" because 1/s2 has the inverse ¢, so that 1/(s + 2) has the inverse re 2" by the
first shifting theorem in Sec. 6.1. Hence by the second shifting theorem (z-shifting),

1 L . —2t—3)
f(n) = o sin (m(t — 1)u(t—1) + o sin (m(t — 2) u(t — 2) + (t — 3)e u(t — 3).

Now sin (7rt — 1) = —sin 7rt and sin (77t — 277) = sin 771, so that the first and second terms cancel each other
when ¢ > 2. Hence we obtain f(r) =0 if 0 <r <1, —(sinaro)/m if 1 <r<2, 0 if 2 <r<3, and
(t — 3)e” 2" if t > 3. See Fig. 123. L]

2
Fig. 123.  f(t) in Example 2




6.8. Laplace Transform: General Formulas

Formula Name, Comments

F(s) = {f(H} = J e S () dt Definition of Transform
0

() = L7HF(s)) Inverse Transform

Llaf(t) + bg()} = a%{f(t)} + bL{g(t)} Linearity

at — _
e f0) = Fe—a) s-Shifting

SHFGs — a)) = @) (First Shifting Theorem)

L(f") = sL(f) = f(0)
L(f") = 2L ) — sf0) — f(0) Differentiation of Function
L™y = s"ECf) = s = -

e — f(n_l)(O)

t
2{ J f(7) d'r} = %SE( D) Integration of Function
0




ot

(f+g)@®) = | f(1)g(t — 7)dT

J

0
ot

= J [t — 7)g(r)dr Convolution
0

L(f=g) = L(fHEL(g)

Lt — a)u(t — a)} = e~ PF(s) (-Shifting

P He ™ BF(s)} = f(t — a)ult — a) (Second Shifting Theorem)

L)) = —F'(s) Differentiation of Transform

J(@) o
if{T = f F(s)ds Integration of Transform
S

6.4

p
“p J e (1) di f Periodic with Period p Project
16
0




6.9. Table of Laplace Transforms

F(s) = £{f(}

f@

1

1

(" = 1)
1/ Vi
2Vijm

1“7 1T(a)

(s — a)®
1

(s —a)
1

(s — @)

(n= 1’2’)

(k > 0)

t
e

t ea:t

1

(s —a)s — b)
N

(s —a)(s — b)

(a # b)

(a # b)




1 .
— sinh at
a

cosh at

1 .
— ¢ sinh wt
)

e™ cos wt

1
—2(1 — COS wt)
1)

—3(wt — sin wt)
1)




F(s) = £{f(n}

1@

1
(s + w?)?
5
(s2 + w2)2
S2
(s2 + w2)2
s

(s + a®)(s2 + b?)

(a® # b?)

—3(sin w! — Wt cos wt)
2w

r .
— sin wt
2w

| S
—(sin wt + wt cos wt)
2w

5 5 (cos at — cos bt)
be — a

N S
st + 4kt

i(sin kt cos kt — cos kt sinh kt)
4k3

% sin kf sinh kt
2k

L(sinh kt — sin kt)
2k3

1
——(cosh kt — cos kt)
2k>




Vs—a— Vs—b

1
Vs+aVs+b
1

sz+a2

p—(at b2 Io (% t)

Jo(ar)

5
(s — a)3/ 2
1

(k> 0)
(sz—a

2)k

(1 + 2ar)
Tt

Var [\
T (Z—a) Ii—1/2(ar)

e %/s

u(t — a)
o(t — a)

Jo(2Vkt)
cos 2Vkt

(N

! - sinh 2Vkr

k _
e k> /4




F(s) = £{f®}

f@

—Int —vy (y=0.5772)

at)

1
?(ebt e

2
. (1 — cos wt)

2
- (I — cosh ar)

1 .
— sin wt
!

Si(¢)




