Chapter 2:

Second-Order Linear ODEs

E. Kreyszig




2.1. Homogeneous Linear ODEs of Second Order

We have already considered first-order linear ODEs (Sec. 1.5) and shall now define and
discuss linear ODEs of second order. These equations have important engineering
applications, especially in connection with mechanical and electrical vibrations (Secs. 2.4,
2.8, 2.9) as well as in wave motion, heat conduction, and other parts of physics, as we
shall see in Chap. 12.

A second-order ODE is called linear if it can be written

(1) y' A+ py' + gy = r(x)

and nonlinear if it cannot be written in this form.

The distinctive feature of this equation is that it is linear in y and its derivatives, whereas
the functions p, g, and r on the right may be any given functions of x. If the equation
begins with, say, f(x)y " then divide by f(x) to have the standard form (1) with y" as the
first term.

Homogeneous r(x)=0 ) ,
(2) Secondg—Order > Y T ply + gy =0

Linear ODEs
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Standard )

foa.lr?nar xy" +y +xy=0, « Homogeneous linear ODE

y" + 25y = e~ " cos x, « Nonhomogeneous linear ODE
* Nonlinear ODE

The functions p and ¢ in (1) and (2) are called the coefficients of the ODE:s.
Solutions are defined similarly as for first-order ODEs in Chap. 1. A function

y = h(x)




Homogeneous Linear ODEs: Superposition Principle

Linear ODEs have a rich solution structure. For the homogeneous equation the backbone
of this structure is the|superposition principle or linearity principle which says that we
can obtain further solutions from given ones by adding them or by multiplying them with
any constants. Of course, this is a great advantage of homogeneous linear ODEs. Let us
first discuss an example.

EXAMPLE 1 Homogeneous Linear ODEs: Superposition of Solutions

The functions y = cos x and y = sin x are solutions of the homogeneous linear ODE

”

y +y=0
for all x. We verify this by differentiation and substitution. We obtain (cos x)” = —cos x; hence
y" +y = (cosx)” + cosx = —cos x + cos x = 0.

Similarly for y = sin x (verify!). We can go an important step further. We multiply cos x by any constant, for
instance, 4.7, and sin x by, say, —2, and take the sum of the results, claiming that it is a solution. Indeed,
differentiation and substitution gives

(4.7 cosx — 2sinx)” + (4.7cosx — 2sinx) = —4.7cosx + 2sinx + 4.7 cosx — 2sinx = 0. ||
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In this example we have obtained from y; (= cos x) and ys (= sin x) a function of the form
(3) y = c1y1 + c9ys (c1, cg arbitrary constants).
This is called a linear combination of y; and ys. In terms of this concept we can now

formulate the result suggested by our example, often called the superposition principle
or linearity principle.

THEOREM 1

Fundamental Theorem for the Homogeneous Linear ODE (2)

For a homogeneous linear ODE (2), any linear combination of two solutions on an
open interval I is again a solution of (2) on 1. In particular, for such an equation,
sums and constant multiples of solutions are again solutions.

PROOF

Let y; and ys be solutions of (2) on I. Then by substituting y = c;y; + c2y9 and
its derivatives into (2), and using the familiar rule (cqy1 + czyz)' = clyi + czyé, etc.,
we get




(c1y1 + coy2)” + plcryr + caye)” + qlcryr + cays)

c1y1 + coys + pleiyi + cay2) + glc1yr + cays)

c1(y1 + py1 + @) + ca(ya + pys + gy2) = 0,

since in the last line, (- - -) = 0 because y; and yy are solutions, by assumption. This shows
that y is a solution of (2) on 1. ||

CAUTION! Don’t forget that this highly important theorem holds for homogeneous
linear ODEs only but dees not hold for nonhomogeneous linear or nonlinear ODEs, as

the following two examples illustrate.

EXAMPLE 2 A Nonhomogeneous Linear ODE

Verify by substitution that the functionsy = 1 + cosxand y = 1 + sin x are solutions of the nonhomogeneous
linear ODE

but their sum is not a solution. Neither is, for instance, 2(1 + cos x) or 5(1 + sin x).




Initial VValue Problem. Basis. General Solution

For a second-order homogeneous linear ODE (2) an initial value problem consists of
(2) and two initial conditions

(4) y(xo) = Ko, y'(xo) = K.

These conditions prescribe given values K¢ and Ky of the solution and its first derivative
(the slope of its curve) at the same given x = x( in the open interval considered.

The conditions (4) are used to determine the two arbitrary constants ¢; and ¢ in a
general solution

(5) y = c1y1 T cays

of the ODE; here, y; and y9 are suitable solutions of the ODE, with “suitable” to be
explained after the next example. This results in a unique solution, passing through the
point (xg, Kg) with K3 as the tangent direction (the slope) at that point. That solution 1s
called a particular solution of the ODE (2).



EXAMPLE 4 Initial Value Problem

Solve the initial value problem
Yi+y=0, 0 =30, (0 =-05

Solution. Step 1. General solution. The functions cos x and sin x are solutions of the ODE (by Example 1),
and we take

y = ¢1€os x + cgsin x.

This will turn out to be a general solution as defined below.

Step 2. Particular solution. We need the derivative y’ = —¢; sin x + ¢y cos x. From this and the
initial values we obtain, since cos 0 = 1 and sin 0 = 0,

y0)=¢; =30 and y'(0) = c3 = —0.5.

This gives as the solution of our initial value problem the particular solution

y = 3.0 cos x — 0.5 sin x.

Figure 29 shows that at x = 0 it has the value 3.0 and the slope —0.5, so that its tangent intersects
the x-axis at x = 3.0/0.5 = 6.0 . (The scales on the axes differ!) ]




Observation. Our choice of y; and y, was general enough to satisfy both initial
conditions. Now let us take instead two proportional solutions y; = cos x and y5 = k cos x,
so that y;/ys = 1/k = const. Then we can write y = ¢1y; + c2y9 in the form

y = c1c08x + co(kcosx) = Ccosx where C = c1 + cok.

Hence we are no longer able to satisfy two initial conditions with only one arbitrary
constant C. Consequently, in defining the concept of a general solution, we must exclude
proportionality. And we see at the same time why the concept of a general solution is of
importance in connection with initial value problems.

DEFINITION

General Solution, Basis, Particular Solution

A general solution of an ODE (2) on an open interval / is a solution (5) in which
y1 and ys are solutions of (2) on / that are not proportional, and ¢ and cg are arbitrary
constants. These y;, yo are called a basis (or a fundamental system) of solutions
of (2) on L

A particular solution of (2) on / is obtained if we assign specific values to ¢y
and cs in (5).
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DEFINITION

Basis (Reformulated)

A basis of solutions of (2) on an open interval 7 is a pair of linearly independent
solutions of (2) on 1.

EXAMPLE 5 Basis, General Solution, Particular Solution

cosx and sinx in Example 4 form a basis of solutions of the ODE y” + y = 0 for all x because their
quotient is cot x # const (or tan x # const). Hence y = ¢1 cos x + c9 sin x is a general solution. The solution
y = 3.0 cos x — 0.5 sin x of the initial value problem is a particular solution. ||

EXAMPLE 6 Basis, General Solution, Particular Solution

Verify by substitution that y; = ¢* and y5 = ¢~ * are solutions of the ODE y"” — y = 0. Then solve the initial
value problem

14

y —y=0, v(0) = 6, y'(0) = —2.
Solution. ()" — ¢* =0 and (¢™)" — ¢™* = 0 show that ¢“ and ¢~ " are solutions. They are not

proportional, e“/e™* = ¢** # const. Hence ¢, ¢ * form a basis for all x. We now write down the corresponding
general solution and its derivative and equate their values at O to the given 1nitial conditions,

y = c1e¥ + coe” 7, vy =1 — c9e ", y(0) = ¢1 + cg = 6, vy (0) =c1— cg = —2.
By addition and subtraction, ¢; = 2, cg = 4, so that the answeris y = 2¢* + 4e™". This is the particular solution

. satisfying the two initial conditions. L]
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Find a Basis if One Solution Is Known.
Reduction of Order

It happens quite often that one solution can be found by inspection or in some other way.
Then a second linearly independent solution can be obtained by solving a first-order ODE.
This is called the method of reduction of order." We first show how this method works

in an example and then in general.

EXAMPLE 7 Reduction of Order if a Solution Is Known. Basis

Find a basis of solutions of the ODE
(x2 —x)y" —xy' +y=0,

Solution. Inspection shows that y; = x is a solution because y; = 1 and y] = 0, so that the first term
vanishes identically and the second and third terms cancel. The idea of the method is to substitute

y = uy; = ux, v =u'x + u, v =u"x+2u'
into the ODE. This gives
(x2 — )" x +2u") — x(u'x + u) + ux = 0.
ux and —xu cancel and we are left with the following ODE, which we divide by x, order, and simplify,

(x2 — 0w"x +2u") — 2y = 0, (x2 —xu” + & —2u =0.



This ODE is of first order in v=u, namely, xZ = v + (x = 2w = 0. Separation of variables and integration
gives

x—2 1 2 lx — 1]
—=—— dx = — — |dx, Inlv| =In|x—=1] =2In|x| = In 5.
U X —x x—1 X X

We need no constant of integration because we want to obtain a particular solution; similarly in the next
integration. Taking exponents and integrating again, we obtain

1 1 1
- =, u=fvdx=ln|x|—|——, hence  yy = ux = x In |x| + L.
X X x

Since y; = xand ys = xIn |x| + 1 are linearly indépendent (their quotient is not constant), we have obtained
a basis of solutions, valid for all positive x. ||

In this example we applied reduction of order to a homogeneous linear ODE [see (2)]

y' 4+ py” + gx)y = 0.

Note that we now take the ODE in standard form, with y”, not f(x)y"”—this is essential
in applying our subsequent formulas. We assume a solution y; of (2), on an open interval
I, to be known and want to find a basis. For this we need a second linearly independent
solution ys of (2) on I. To get ys, we substitute




| y = yg = uyi, | Y =ye =u'yr tuyr, Y =yg =u"y + 2u'y1 + uyi

into (2). This gives

(8) u'yr + 2u'yy + uyi + pQu'yy + uyy) + quy; = 0.
Collecting terms in u", u', and u, we have

uyi + u'(2Qy1 + py1) + u(yi + py1 + gy1) = 0.

Now comes the main point. Since y; is a solution of (2), the expression in the last
parentheses is zero. Hence u is gone, and we are left with an ODE in «’ and u”. We divide
this remaining ODE by y; and set u’ = U, u" = U/,

2’
— 0, thus U’+(£+p
Y1

"

y 2y1 + p»n
1

+




This is the desired first-order ODE, the reduced ODE. Separation of variables and
integration gives

y— —I-p)dx and In|U| = —21In |y1| — dex.
1

By taking exponents we finally obtain

Here U = u', so that u = [U dx. Hence the desired second solution is

Yo = y1u = )dedx-

The quotient yo/y; = u = [ U dx cannot be constant (since U > 0), so that y; and y form
a basis of solutions.




2.2. Homogeneous Linear ODEs

with Constant Coefficients

We shall now consider second-order homogeneous linear ODEs whose coefficients @ and
b are constant,

(1) y"+@ﬂ+m=oJ

These equations have/important applications in mechanical and electrical vibrations, as
we shall see in Secs/ 2.4, 2.8, and 2.9.

To solve (1), we recall from Sec. 1.5 that the solution of the first-order linear ODE with

a constant coefficiant k
/‘[ y, + ky = O]

is an exponential fun ior[ y = ce_kﬁ. This gives us the idea to try as a solution of (1) the

function f, - ~
] y = Ae
(2) y= e
J yn — Aze/\x
\_ Y, 15




Substituting (2) and its derivatives into our equation (1), we obtain

(A2 + aX + b)e™ = 0.

Hence if A 1s a solution of the important characteristic equation (or auxiliary equation)

) Mt+ar+b=0

then the exponential function (2) is a solution of the ODE (1). Now from algebra we recall
that the roots of this quadratic equation (3) are

(3) and (4) will be basic because our derivation shows that the functions

are solutions of (1). Verify this by substituting (5) into (1).

From algebra we further know that the quadratic equation (3) may have three kinds of

roots, depending on the Sign of the discriminant &* = 4b| namely,




(Case I) Two real roots if a’ — 4b > 0,
(Case Il) A real double root if a- —45 =10,
(Case III) Complex conjugate roots if a’ — 4b < 0.

Case |. Two Distinct Real-Roots

In this case, a basis of solutions of (1) on any interval is

AX

yi =e and yo = e"2"

because y; and ys are defined (and real) for all x and their quotient is not constant. The
corresponding general solution is

(6) y = c1eM” + coe?®

EXAMPLE 1 General Solution in the Case of Distinct Real Roots

We can now solve y” —y =0 in Example 6 of Sec. 2.1 systematically. The characteristic equation is
A2 — 1 = 0. Its roots are A1 = 1 and Ay = —1. Hence a basis of solutions is ¢* and e~ " and gives the same
general solution as before,

y = clex + cze_x. .



EXAMPLE 2 Initial Value Problem in the Case of Distinct Real Roots

Solve the initial value problem
Yty —2y=0, y0) =4, (0 =-5

Solution. Step 1. General solution. The characteristic equation is

M =3(-1+V9) =1

2 — —
APHr-2=0 C—p )\2=%(—1—\/§)=—2:>

y = c1€® + coe” %,

Step 2. Particular solution. Since y'(x) = c1e” — 2cze_2x, we obtain from the general solution and the initial

conditions

YO0) =1+ cp =4,

—

y’(O) =1 — 2c9 = —5.

Fig. 30. Solution in Example 2

y=¢% + 37




Case Il. Real Double Root

If the discriminant a® — 4b is zero, we see directly from (4) that we get only one root,
A = A1 = A3 = —al2, hence only one solution,

y, = e~ @/2x

To obtain a second independent solution y, (needed for a basis), we use the method of
reduction of order discussed in the last section, setting ys = uyy. Substituting this and its

derivatives y5 = u'y; + uyi and y5 into (1), we first have

(u"yl + 2u'y'1 + uy'l') + a(u'yl + uy'l) + buy; = 0.

Collecting terms in u” u' and u, as in the last section, we obtain

u"yy +u'(2y1 + ayp) + w7 + ayy + byy) = 0.

The expression in the last parentheses is zero, since y; is a solution of (1). The expression
in the first parentheses is zero, too, since

Wi = —ae” %2 = —gy,.




We are thus left with #”y; = 0. Hence u” = 0. By two integrations, # = ¢1x + ¢g. To

get a second independent

solution yg = uyy, we can simply choose €3 = 1,¢3 = 0 and

take wr=wm. Then|ys = xy1

. Since these solutions are not proportional, they form a basis.

Hence in the case of a double root of (3) a basis of solutions of (1) on any interval is

[ e—axlz’ xe—axlz-]

The corresponding general

(7)

solution 1s

y = (c; + czx)e_axlz.]

EXAMPLE 3 General Solution in the Case of a Double Root

The characteristic equation of the

root A = —3. Hence a basis is ¢ >

ODE y” + 6y’ + 9y = 0is A + 64 + 9 = (A + 3)% = 0. It has the double
 and xe”>*. The corresponding general solution is y = (¢; + cox)e %, M

EXAMPLE 4 Initial Value Problem in the Case of a Double Root

Solve the initial value problem

y” + y' + 0.25y = 0, y(0) = 3.0, y'(O) = —35.




Solution. The characteristic equation is A+ A+025 = (A + 0.5)2 = 0. It has the double root A = —0.5.
This gives the general solution

y = (c1 + cox)e™ 0%,

We need its derivative

Y = c0e7 %" — 0.5(c; + cox)e™ 0,
From this and the initial conditions we obtain
y(0) = c¢; = 3.0, y'(0) = ¢cg — 0.5¢; = 3.5; hence co = —2.

The particular solution of the initial value problem is y = (3 — 2x)e %% See Fig. 31.

Fig. 31. Solution in Example 4




Case I11. Complex Roots

This case occurs if the discriminant a® — 4b of the characteristic equation (3) is negative.
In this case, the roots of (3) are the complex _ that give the complex solutions
of the ODE (1). However, we will show that we can obtain a basis of real solutions

(8) 1 = e %2 cos wr, o = e~ 2 gin wx (w > 0)
y Y

where w® = b — iaz.

9) => y = "2 (A cos wx + B sin wx) (A, B arbitrary).

EXAMPLE 6 Complex Roots

A general solution of the ODE

Y+ oy =0 (w constant, not zero)

y = A cos wx + B sin wx.

Withw = 1 this confirms Example 4 in Sec. 2.1.




EXAMPLE 5 Complex Roots. Initial Value Problem

Solve the initial value problem

'+ 04y £9.04y =0, y0) =0, y'(0) =3.

Solution. Step 1. General solution. The characteristic equation is A2 + 0.4A + 9.04 = 0. It has the roots
—0.2 *= 3i. Hence w = 3, and a general solution (9) is

y = ¢ %2%(A cos 3x + B sin 3x).

Step 2. Particular solution. The first initial condition gives y(0) = A = 0. The remaining expression is
y = Be~%2% gin 3x. We need the derivative (chain rule!)

y' = B(—0.2¢7 %% sin 3x + 3¢~ %2% cos 3x).

From this and the second initial condition we obtain y'(0) = 3B = 3. Hence B = 1. Our solution is

y = ¢ %% gjn 3x.

2 —0.2x

Figure 32 shows y and the curves of e %2% and —e (dashed), between which the curve of y oscillates.

Such “damped vibrations” (with x = ¢ being time) have important mechanical and electrical applications, as we
shall soon see (in Sec. 2.4). ||




Fig. 32. Solution in Example 5

Summary of Cases Il

Euler formula

e = cost + isint,

Case

Roots of (2)

Basis of (1)

General Solution of (1)

Distinct real
A1, Ag

A A

e, e

y = c1e™* + cge™®

Real double root
A= —%a

—ax/2 —ax/2
e ax/’xe ax/

y = (c; + cpx)e” W2

Complex conjugate
A-l = —%a + i(z),

Ao = —%a— w

—ax/2

€ COS wx

—ax/2

e sin wx

—ax/2

y=e (A cos wx + B sin wx)




2.4. Modeling of Free Oscillations

of a Mass—Spring System

We take an ordinary coil spring that resists extension as well as compression. We suspend
it vertically from a fixed support and attach a body at its lower end, for instance, an iron
ball, as shown in Fig. 33. We let y = 0 denote the position of the ball when the system
is at rest (Fig. 33b). Furthermore, we choose the downward direction as positive, thus
regarding downward forces as peositive and upward forces as negative.

This causes a spring force

(1) | F; = —ky | (Hooke’s law?)

Unstretched _AI'
. s
spring 0

—————— U=O)T“' proportional to the stretch vy,
y
Systentﬂ at  J——- with k& (>0) called the spring constant.
res
System in
motion
(a) (b) (c)

Fig. 33. Mechanlcal mass— sprlng system



The motion of our mass—spring system is determined by Newton’s second law

(2) Mass X Acceleration = my" = Force

where y" = d 2"y/ dr? and “Force” is the resultant of all the forces acting on the ball.

This is a homogeneous linear ODE with constant coefficients. A general solution is

obtained as in Sec. 2.2, namely (see Example 6 in Sec. 2.2)

4 y(f) = A cos wgt + B sin wot wy = %

This motion is called a harmonic oscillation (Fig. 34). Its frequency is f = wo/27 Hertz®

(= cycles/sec) because cos and sin in (4) have the period 277/ wq. The frequency fis called
the natural frequency of the system. (We write wg to reserve o for Sec. 2.8.)

(4%) (@) = C cos (wgf — 8) C=VA? + B?

tan 6 = B/A.




(D) Positive

@ Zero } Initial velocity
(3) Negative

Fig. 34. Typical harmonic oscillations (4) and (4*) with the same y(0) = A and
different initial velocities y'(0) = wyB, positive (1), zero (2), negative (3)




ODE of the Damped System

To our model my” = —ky we now add a damping force

F2 = _Cy,’

obtaining my” = —ky — cy’; thus the ODE of the damped mass—spring system is

) my” + cy' + ky = 0.

The ODE (5) is homogeneous linear and has constant coefficients.
The characteristic equation is (divide (5) by m)

k—O.

m_

A2+ S+
m

©6) Mq=—-a+pB A=—-a—-§p

where a = — and B = L\/c2 — 4mk.
2m 2m

Fig. 36.
Damped system




It is now interesting that depending on the amount of damping present—whether a lot of
damping, a medium amount of damping or little damping—three types of motions occur,
respectively:

Case L ¢® > 4mk. Distinct real roots Ay, s. (Overdamping)
Case I.  ¢* = 4mk. A real double root. (Critical damping)
Case III. ¢* < 4mk. Complex conjugate roots. (Underdamping)

[Case . Overdamping]
If the damping constant ¢ is so large that ¢ > 4mk, then A; and Ay are distinct real roots.
In this case the corresponding general solution of (5) is

(7) [ y(1) = cre @R ¢+ cze_(‘”B)t.]

We see that in this case, damping takes out energy so quickly that the body does not
oscillate. For ¢ > 0 both exponents in (7) are negative because a > 0, 8 > 0, and
B% = a® — k/m < . Hence both terms in (7) approach zero as t— . Practically



(D Positive
@) Zero Initial velocity
(3) Negative

Fig. 37. Typical motions (7) in the overdamped case
(a) Positive initial displacement
(b) Negative initial displacement

[Case Il. Critical Damping]

Critical damping is the border case between nonoscillatory motions (Case I) and oscillations
(Case III). It occurs if the characteristic equation has a double root, that is, if c? = 4mk,
so that 8 = 0, Ay = A = —a. Then the corresponding general solution of (5) is

@®) [y(r) — (@ + sz)e_at-]




(D) Positive
@ zero Initial velocity
(3) Negative

Fig. 38. Critical damping [see (8)]

Case lll. Underdamping ]

This is the most interesting case. It occurs if the damping constant ¢ is so small that
¢? < 4mk. Then B in (6) is no longer real but pure imaginary, say,

(9) [Bziw*] where o = - \Vamk — 2 \/——— (>0).
2m 4




The foots of the characteristic equation are now complex conjugates,
)\1 = —a + ia)*, /\2 = —a — iw*

with @ = ¢/(2m), as given in (6). Hence the corresponding general solution is

(10) y(t) = e YA cos w*t + B sin w*t) = Ce™* cos (w*t — 8)

where C? = A2 4+ B?and tan & = B/A, as in (4%).

This represents damped oscillations. Their curve lies between the dashed curves
y = Ce *andy = —Ce™* in Fig. 39, touching them when w*r — & is an integer multiple

of 77 because these are the points at which cos (w*r — 6) equals 1 or —1.
y

Fig. 39. Damped oscillation in Case Il [see (10)]




EXAMPLE 2 The Three Cases of Damped Motion

How does the motion in Example 1 change if we change the damping constant ¢ from one to another of the
following three values, with y(0) = 0.16 and y'(0) = 0 as before?

(D) ¢ = 100 kg/sec, (IT) ¢ = 60 kg/sec, () ¢ = 10 kg/sec.

Solution. 1t is interesting to see how the behavior of the system changes due to the effect of the damping,
which takes energy from the system, so that the oscillations decrease in amplitude (Case III) or even disappear
(Cases II and I).

(I) With m = 10 and k = 90, as in Example 1, the model is the initial value problem

10y” + 100y + 90y =0,  y(0) = 0.16 [meter],  y'(0) = 0.

The characteristic equation is 10A2 + 100A + 90 = 10(A + 9)(A + 1) = 0. It has the roots —9 and —1. This
gives the general solution

t

y = cle_gt + coe” . We also need y' = —9c1e_9t — coe” "

The initial conditions give ¢; + ¢co = 0.16, —9¢; — ¢ = 0. The solution is ¢; = —0.02, c5 = 0.18. Hence in
the overdamped case the solution is

y = —0.02¢"" + 0.18¢7".

It approaches 0 as t — . The approach is rapid; after a few seconds the solution is practically 0, that is, the
iron ball is at rest.




(IT) The model is as before, with ¢ = 60 instead of 100. The characteristic equation now has the form
10A%Z + 60X + 90 = 10(A + 3)2 = 0. It has the double root —3. Hence the corresponding general solution is

y=(c1 + e Wealsoneed vy = (cg — 3¢; — 3cat)e >,

The initial conditions give y(0) = ¢; = 0.16, y'(0) = ¢5 — 3¢; = 0, c5 = 0.48. Hence in the critical case the
solution is
y = (0.16 + 0.481)e~3".

It is always positive and decreases to 0 in a monotone fashion.

(IIT) The model now is 10y” + 10y’ + 90y = 0. Since ¢ = 10 is smaller than the critical ¢, we shall get
oscillations. The characteristic equation is 10A%2 + 101 + 90 = 10[(A + %) 249— %] = (. It has the complex
roots [see (4) in Sec. 2.2 witha = 1 and b = 9]

A=-05* V052 -9=-05* 296
This gives the general solution
y = e~ %°%A cos 2.96t + B sin 2.961).
Thus y(0) = A = 0.16. We also need the derivative
y' = 7 %%%(—0.54 cos 2.96t — 0.5B sin 2.96: — 2.96A sin 2.96t + 2.96B cos 2.961).
Hence y'(0) = —0.5A + 2.96B = 0, B = 0.54/2.96 = 0.027. This gives the solution

y = e~ 92%0.16 cos 2.96¢ + 0.027 sin 2.967) = 0.162¢ ™% cos (2.96r — 0.17).




We see that these damped oscillations have a smaller frequency than the harmonic oscillations in Example 1 by
about 1% (since 2.96 is smaller than 3.00 by about 1%). Their amplitude goes to zero. See Fig. 40. ||

Fig. 40. The three solutions in Example 2




