Chapter 1:

Ordinary Differential Equations

(ODESs)

E. Kreyszig
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Some applications of differential equations

Falling stone

y” =g = const.
(Sec. 1.1)

Velocity
v
Parachutist

A 2
mv’ = mg — bv
(Sec. 1.2)

Water level A

Outflowing water
B =-k\Nh
(Sec. 1.3)

Deformation of a beam

Ely" = flx)
(Sec. 3.3)
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Displacement y
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Beats of a vibrating
system
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Y+ @y =cos wt, w;=0

(Sec. 2.8)
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Current I in an
RLC circuit

LI” + RI + %I %
(Sec. 2.9)
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Pendulum

L6"+gsin6=0
(Sec. 4.5)




An ordinary differential equation (ODE) is an equation that contains one or several
derivatives of an unknown function, which we usually call y(x) (or sometimes y(7) if the
independent variable is time ¢). The equation may also contain y itself, known functions
of x (or ), and constants. For example,

(1) y' = cosx
(2) y' 49y = 7
(3) ylylll _ %ylz — O

are ordinary differential equations (ODEs). Here, as in calculus, y' denotes dy/dx,
y' = dzy/dxz, etc. The term ordinary distinguishes them from partial differential
equations (PDEs), which involve partial derivatives of an unknown function of two
or more variables. For instance, a PDE with unknown function u of two variables x
and y is

0%u o%u

x> ayz

= 0.

PDEs have important engineering applications, but they are more complicated than ODEs;
they will be considered in Chap. 12.



An ODE is said to be of if the nth derivative of the unknown function y is the
highest derivative of y in the equation. The concept of order gives a useful classification

into ODEs of first order, second order, and so on. Thus, (1) is of first order, (2) of second
order, and (3) of third order.

In this chapter we shall consider first-order ODEs. Such equations contain only the
first derivative y' and may contain y and any given functions of x. Hence we can write
them as

4 F(x, y, y') =0

or often in the form

K—' y' = flx,p.

This 1s called the explicit form, in contrast to the implicit form (4). For instance, the implicit
ODE x 3y’ — 4y® = 0 (where x # 0) can be written explicitly as y' = 4x3y?.




Concept of Solution

A function y = h(x)

is called a solution of a given ODE (4) on some open interval a < x < b if h(x) is
defined and differentiable throughout the interval and is such that the equation becomes

an identity if y and y’ are replaced with 4 and A', respectively. The curve (the graph) of
h is called a solution curve.

Here, open interval ¢ < x < b means that the endpoints a and b are not regarded as
points belonging to the interval. Also,a < x < bincludes infinite intervals —» < x < b,
a < x < o, —c0 < x < o (the real line) as special cases.

EXAMPLE 1 Verification of Solution

Verify that y = ¢/x (c an arbitrary constant) is a solution of the ODE xy’ = —y for all x # 0. Indeed, differentiate
y = c¢/x to get y’ = —c¢/x? Multiply this by x, obtaining xy’ = —c/x; thus, xy’ = —y, the given ODE. M

6



EXAMPLE 2 Solution by Calculus. Solution Curves

The ODE y' = dy/dx = cos x can be solved directly by integration on both sides. Indeed, using calculus,
we obtain y = [cos x dx = sinx + ¢, where ¢ is an arbitrary constant. This is a family of solutions. Each value

of ¢, for instance, 2.75 or 0 or —8, gives one of these curves. Figure 3 shows some of them, for ¢ = =3, =2,
—-1,0,1, 2,3, 4. B
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Fig. 3. Solutions y = sinx + ¢ of the ODE y' = cos x




EXAMPLE 3 (A)Exponential Growth. (B) Exponential Decay

From calculus we know that y = ce®2 has the derivative

dy
yo== 0.2¢%% = 0.2y.

Hence y is a solution of y’ = 0.2y (Fig. 4A). This ODE is of the form y’ = ky. With positive-constant k it can
model exponential growth, for instance, of colonies of bacteria or populations of animals. It also applies to
humans for small populations in a large country (e.g., the United States in early times) and is then known as
Malthus’s law.! We shall say more about this topic in Sec. 1.5.

(B) Similarly, y’ = —0.2 (with a minus on the right) has the solution y = ce™%%', (Fig. 4B) modeling
exponential decay, as, for instance, of a radioactive substance (see Example 5). H
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Fig. 4A. Solutions of y’ = 0.2y Fig. 4B. Solutions of y' = —0.2y
in Example 3 (exponential growth) in Example 3 (exponential decay)




We see that each ODE in these examples has a solution that contains an arbitrary
constant c. Such a solution containing an arbitrary constant c is called a general solution
of the ODE.

Geometrically, the general solution of an ODE is a family of infinitely many solution
curves, one for each value of the constant c. If we choose a specific ¢ (e.g., ¢ = 6.45 or 0
or —2.01) we obtain what is called a particular solution of the ODE. A particular solution
does not contain any arbitrary constants.

Initial Value Problem

In most cases the unique solution of a given problem, hence a particular solution, is
obtained from a general solution by an initial condition y(xy) = yo, with given values
xo and yg, that 1s used to determine a value of the arbitrary constant ¢. Geometrically
this condition means that the solution curve should pass through the point (xg, yg)
in the xy-plane. An ODE, together with an initial condition, is called an initial value
problem. Thus, if the ODE is explicit, y' = f(x, ), the initial value problem is of
the form

(5) y, :f(xa y)’ y(x()) = Yo-



EXAMPLE 4 |Initial Value Problem

Solve the initial value problem

by

y = I 3y, v(0) = 5.7.
X

Solution. The general solution is y(x) = ce%; see Example 3. From this solution and the initial condition

we obtain y(0) = ce® = ¢ = 5.7. Hence the initial value problem has the solution y(x) = 5.7¢%*. This is a
particular solution. ||

1.3. Separable ODEs. Modeling

Many practically useful ODEs can be reduced to the form
1) gy = fx)

by purely algebraic manipulations. Then we can integrate on both sides with respect to x,

obtaining
10



(2) f g(y) y'dx = J f(x) dx + c.

On the left we can switch to y as the variable of integration. By calculus, y'dx = dy, so that

3) J o) dy = J o dx + .

If f and g are continuous functions, the integrals in (3) exist, and by evaluating them we
obtain a general solution of (1). This method of solving ODE:s is called the method of

separating variables, and (1) is called a separable equation, because in (3) the variables

are now separated: x appears only on the right and y only on the left.

EXAMPLE 1 Separable ODE

The ODE y' = 1 + y? is separable because it can be written

By integration, arctany = x + ¢ y = tan (x + ¢).




EXAMPLE 2 Separable ODE

The ODE y" = (x + 1)e™*y? is separable; we obtain y " 2dy = (x + 1)e™* dx.

1
By integration, —y L=~ + 2)e™™ + ¢, = — )
Y 8 Y ) Y (x+2e *—c

EXAMPLE 3 Initial Value Problem (IVP). Bell-Shaped Curve

Solve y' = —2xy, y(0) = 1.8.

Solution. By separation and integration,

dy ~
— = —2xdx, 1ny=—x2+c, y = ce
y

_xz

This is the general golution. From it and the initial condition, y(0) = ce® = ¢ = 1.8. Hence the IVP has the
solution y = 1.8¢™" . This is a particular solution, representing a bell-shaped curve (Fig. 10). []
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Fig. 10. Solution in Example 3 (bell-shaped curve)




Extended Method: Reduction to Separable Form

Certain nonseparable ODEs can be made separable by transformations that introduce for
y a new unknown function. We discuss this technique for a class of ODEs of practical
importance, namely, for equations

(8) V= f@

Here, f is any (differentiable) function of y/x, such as sin(y/x), (y/x)4, and so on. (Such
an ODE is sometimes called a homogeneous ODE, a term we shall not use but reserve
for a more important purpose in Sec. 1.5.)

The form of such an ODE suggests that we set y/x = u; thus,

9) y = ux and by product differentiation v =u'x + u

Substitution into y' = f(y/x) then gives u'x + u = f(u) or u'x = f(u) — u. We see that
if f(u) — u # 0, this can be separated:




EXAMPLE 8 Reduction to Separable Form

Solve

2xyy’ = y? — X%

Solution. To get the usual explicit form, divide the given equation by 2xy,

Now substitute y and y’ from (9) and then simplify by subtracting u on both sides,

i —uZ -1
2u’ u

14 + u
ux-+u=_
2

You see that in the last equation you can now separate the variables,

2ud d 1
= uz == By integration, In(l1 +u®=—Inlx| +c¢*=1In —‘ + c*.
1 +u X X

Take exponents on both sides to get 1 + u® = ¢/x or 1 + (y/x)®> = ¢/x. Multiply the last equation by x? to

obtain (Fig. 14)
2

c
xZ +y2 = cx. Thus = —.

This general solution represents a family of circles passing through the origin with centers on the x-axis. B
14




>,

Fig. 14. General solution (family of circles) in Example 8

R

1.4. Exact ODEs. Integrating Factors

We recall from calculus that if a function u(x, y) has continuous partial derivatives, its
differential (also called its total differential) is

9
du =L ax +
o0x




From this it follows that if u(x, y) = ¢ = const, then du = 0.
For example, if u = x + x2y3 = ¢, then

du = (1 + 2xy%) dx + 3x%y%dy = 0

,_dy 1+ 2xy>

Y

2

A first-order ODE M(x, y) + N(x, y)y' = 0, written as (use dy = y'dx as in Sec. 1.3)

§)) M(x,y)dx + N(x,y)dy = 0

is called an exact differential equation if the differential form M(x, y) dx + N(x, y) dy

1s exact, that is, this form is the differential

(2)

of some function u(x, y). Then (1) can be written




du = 0.

By integration we immediately obtain the general solution of (1) in the form

3) u(x, y) = c.

Comparing (1) and (2), we see that (1) is an exact differential equation if there is some
function u(x, y) such that

4

This condition is not only necessary but also sufficient for (1) to be an exact differential equatiom.




If (1) 1s exact, the function u(x, y) can be found by inspection or in the following
systematic way. From (4a) we have by integration with respect to x

(6) u = JM dx + k(y);

in this integration, y is to be regarded as a constant, and k(y) plays the role of a “constant”
of integration. To determine k(y), we derive du/dy from (6), use (4b) to get dk/dy, and
integrate dk/dy to get k. (See Example 1, below.)

Formula (6) was obtained from (4a). Instead of (4a) we may equally well use (4b).
Then, instead of (6), we first have by integration with respect to y

(6%) U = J Ndy + I(x).

To determine /(x), we derive du/dx from (6*), use (4a) to get dl/dx, and integrate. We
illustrate all this by the following typical examples.




EXAMPLE 1 An Exact ODE

Solve

(7) cos (x + y)dx + (3y% + 2y + cos (x + y)) dy = 0.

Solution. Step 1. Test for exactness. Our equation is of the form (1) with

M = cos (x + y),

N=3y2+2y—|—cos(x-|—y).

oM _
—— = —sin(x + y),
dy

oN :
— = —sin (x + y).
ox

From this and (5) we see that (7) is exact.




Step 2. Implicit general solution. From (6) we obtain by integration

(8) u= Jde+k(y) = Jcos(x+y)dx+k(y)= sin (x + y) + k(y).

To find k(y), we differentiate this formula with respect to y and use formula (4b), obtaining
0 dk
—u=c0s(x+y)—|-—=N=3y2+2y+cos(x+y).
dy dy

Hence dk/dy = 3y2 + 2y. By integration, k = y3 + y2 + ¢*. Inserting this result into (8) and observing (3),
we obtain the answer

u(x,y) = sin (x +y) + y3 + y2 = c.
Step 3. Checking an implicit solution. We can check by differentiating the implicit solution u(x,y) = ¢
implicitly and see whether this leads to the given ODE (7):

3 5
©) du =a—udx+a—udy=cos(x+y)dx+ (cos (x + y) + 3y2 + 2y) dy = 0.
x y

This completes the check.




EXAMPLE 2 An Initial Value Problem

Solve the initial value problem
(10) (cosysinhx + 1) dx — siny coshx dy = 0, y(l) = 2.

Solution. You may verify that the given ODE is exact. We find u. For a change, let us use (6%),

u= - Jsiny cosh x dy + l(x) = cos y cosh x + I(x).

From this, du/dx = cos y sinh x + dl/dx = M = cos y sinh x + 1.Hencedl/dx = 1.Byintegration, /(x) = x + c*.
This gives the general solution u(x, y) = cos y cosh x + x = ¢. From the initial condition, cos 2 cosh 1 + 1 =
0.358 = c. Hence the answer is cos ycosh x + x = 0.358. Figure 17 shows the particular solutions for ¢ = 0, 0.358
(thicker curve), 1, 2, 3. Check that the answer satisfies the ODE. (Proceed as in Example 1.) Also check that the
initial condition is satisfied. ]
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Fig. 17. Particular solutions in Example 2




EXAMPLE 3 WARNING! Breakdown in the Case of Nonexactness

The equation —y dx + xdy = 0 is not exact because M = —y and N = x, so that in (5), dM/dy = —1 but
dN/ox = 1. Let us show that in such a case the present method does not work. From (6),

0 dk

u = JM dx + k(y) = —xy + k(y), hence 2= —x + —.

dy dy
Now, du/dy should equal N = x, by (4b). However, this is impossible because k(y) can depend only on y. Try
(6*); it will also fail. Solve the equation by another method that we have discussed. ||

Reduction to Exact Form. Integrating Factors

The ODE in Example 3 is —y dx + x dy = 0. It is not exact. However, if we multiply it
by 1 /xz, we get an exact equation [check exactness by (5)!],

—ydx + xd 1
(11) et y=—y2dx+dy=d(y)=0.
X

X X X

Integration of (11) then gives the general solution y/x = ¢ = const.



This example gives the idea. All we did was to multiply a given nonexact equation, say,

(12) P(x,y)dx + O(x,y)dy = 0,

by a function F that, in general, will be a function of both x and y. The result was an equation
(13) FPdx + FQdy =0

that is exact, so we can solve it as just discussed. Such a function F(x, y) is then called

an integrating factor of (12).
EXAMPLE 4 Integrating Factor

The integrating factor in (11) is F = 1/x2. Hence in this case the exact equation (13) is

x2 X

—ydx + xdy y _
FPdx + FQdy = =d|{—|=0. Solution
These are straight lines y = cx through the origin. (Note that x = 0 is also a solution of —y dx + xdy = 0.)
It is remarkable that we can readily find other integrating factors for the equation —y dx + x dy = 0, namely,
1/y%, 1/(xy), and 1/(x* + y®), because

(14) , 0

y

—ydx + xd —ydx + xd —ydx + xd
y yzd( y y:_d(lx), Y y:d(a

y
, 5 5 rctan —). ||
y XYy x“+y X




How to Find Integrating Factors

For M dx + N dy = 0 the exactness condition (5) is dM/dy = dN/dx. Hence for (13),
FP dx + FQ dy = 0, the exactness condition is

15 iFP—iF)
(15) oy FP) = - (FO)

By the product rule, with subscripts denoting partial derivatives, this gives

[@P+H@=%Q+m%]

In the general case, this would be complicated and useless. So we follow the Golden Rule:
If you cannot solve your problem, try to solve a simpler one—the result may be useful
(and may also help you later on). Hence we look for an integrating factor depending only
on one variable: fortunately, in many practical cases, there are such factors, as we shall
see. Thus, let ¥ = F(x). Then F,, = 0, and F, = F' = dF/dx, so that (15) becomes

[F@ZF@+F%J




Dividing by FQ and reshuffling terms, we have

LdF _

(16) 7 E = R, where

THEOREM 1

Integrating Factor F(x)

If (12) is such that the right side R of (16) depends only on x, then (12) has an
integrating factor F = F(x), which is obtained by integrating (16) and taking
exponents on both sides.

17) F(x) = eXpJR(x) dx.

Similarly, if F** = F*(y), then instead of (16) we get

(18) where

and we have the companion




THEOREM 2

Integrating Factor F*(y)

If (12) is such that the right side R* of (18) depends only on y, then (12) has an
integrating factor F* = F*(y), which is obtained from (18) in the form

(19) F*(y) = exp J R*(y) dy.

EXAMPLE 5 Application of Theorems 1 and 2. Initial Value Problem

Using Theorem 1 or 2, find an integrating factor and solve the initial value problem

(20) @Y+ yeDNdx + (xeV — 1)dy =0, y0) = —1

Solution. Step 1. Nonexactness. The exactness check fails:

P 9 0 9
—=—(@ Yty ) ="V + Y + vy but Pl a—(xey — 1) =é"
X dx

dy  dy




Step 2. Integrating factor. General solution. Theorem 1 fails because R [the right side of (16)] depends on

both x and y.

@Y + ¥ + ye¥ — &Y.

Try Theorem 2. The right side of (18) is

R* =l(§_£)=
P\ ox dy

Hence (19) gives the integrating factor F*(y) = ¢~ Y. From this result and (20) you get the exact equation
(e +ydex+ (x—e Ndy=0.

Test for exactness; you will get 1 on both sides of the exactness condition. By integration, using (4a),

u = J(ex—i-y)dx:ex-l-xy-l-k(y).

Differentiate this with respect to y and use (4b) to get

ou dk _
—=x+—=N=x—¢Y
ay dy

Hence the general solution is




1.5. Linear ODEs. Bernoulli Equation

Linear ODEs or ODEs that can be transformed to linear form are models of various
phenomena, for instance, in physics, biology, population dynamics, and ecology, as we
shall see. A first-order ODE is said to be linear if it can be brought into the form

(1) Y+ p)y = (),

by algebra, and nonlinear if it cannot be brought into this form.

The defining feature of the linear ODE (1) is that it is linear in both the unknown
function y and its derivative y' = dy/dx, whereas p and r may be any given functions of
x. If in an application the independent variable is time, we write ¢ instead of x.

If the first term is fx)y' (insiead of y'), divide the equation by f(x) to get the standard

form (1), with y' as the first term, which is practical.
For instance, y' cosx + ysinx = x is a linear ODE, and its standard form is

y' + ytanx = x sec x.



Homogeneous Linear ODE. We want to solve (1) in some interval a < x < b, call
it J, and we begin with the simpler special case that r(x) is zero for all x in J. (This is
sometimes written 7(x) = 0.) Then the ODE (1) becomes

and 1is called homogeneous. By separating variables and integrating we then obtain

d
A —p(x)dx, thus In |y| = —Jp(x)dx + c*,
y

Taking exponents on both sides, we obtain the general solution of the homogeneous
ODE (2),

3) Y(x) = e JP@A (c = £ when y = 0);

here we may also choose ¢ = 0 and obtain the trivial solution y(x) = 0 for all x in that
interval.




Nonhomogeneous Linear ODE. We now solve (1) in the case that r(x) in (1) is not
everywhere zero in the interval J considered. Then the ODE (1) is called honhomogeneous.
It turns out that in this case, (1) has a pleasant property; namely, it has an integrating factor
depending only on X! We can find this factor F(x) by Theorem 1 in the previous section
or we can proceed directly, as follows. We multiply (1) by F(x), obtaining

(1%) Fy' + pFy =rF.  «——y + p)y = rx),

The left side is the derivative (Fy)' = F'y + Fy' of the product Fy if
pFy = F'y, thus pF =F'.

By separating variables, dF/F = p dx. By integration, writing & = [p dx,

ln|F|=h=dex, thus F = e

With this F and 4" = p, Eq. (1¥) becomes

ehy’ + h’ehy — ehy’ 4+ (eh)'y _ (ehy)r _ reh.




By integration,
ehy = Jehr dx + c.

Dividing by ", we obtain the desired solution formula
— ,—h h —
y(x) =e (Je rdx + c), h = Jp(x) dx.

The structure of (4) is interesting. The only quantity depending on a given initial
condition is c. Accordingly, writing (4) as a sum of two terms,

(4%) y(x) = e_hJehr dx + ce_h,

we see the following:

(5) Total Output = Response to the Input r + Response to the Initial Data.




EXAMPLE 1 First-Order ODE, General Solution, Initial Value Problem

Solve the initial value problem

y' + ytan x = sin 2x, y(0) = 1.
Solution. Here p = tanx, r = sin 2x = 2 sin x cos x, and

h = fpdx = Jtanxdx = In |sec x|.
From this we see that in (4),
h —-h

e’ = sec X, e " = cosux, lr = (sec x)(2 sin x cos x) = 2 sin x,

and the general solution of our equation is

y(x) = cosx(ZJsinxdx + c) = ccosx — 2 cosZx.

From this and the initial condition, 1 = ¢ - 1 — 2 - 1%; thus ¢ = 3 and the solution of our initial value problem
is y = 3 cos x — 2 cos®x. Here 3 cos x is the response to the initial data, and —2 cos® x is the response to the
input sin 2x. ||




Reduction to Linear Form.
Bernoulli Equation

Numerous applications can be modeled by ODEs that are nonlinear but can be transformed
to linear ODEs. One of the most useful ones of these is the Bernoulli equation’

9) [y' + p(x)y = g(x)ya] a any real number).

If a =0 ora =1, Equation (9) is linear. Otherwise it is nonlinear.| Then we set

[u(x) - [y(x)]l‘“.]

We differentiate this and substitute y' from (9), obtaining

u' =1 —ay % = —ay “gy* - py.

Simplification gives W =1 — a)g — p yl—a)’

a

where y'™% = 4 on the right, so that we get the linear ODE

(10) [u' + (1 —apu =(1— a)g.}i




EXAMPLE 4 Logistic Equation

Solve the following Bernoulli equation, known as the logistic equation (or Verhulst equation®):

(11) y' = Ay — By?

Solution. Write (11) in the form (9), that is,

v — Ay = =By
to see that @ = 2, so that u = yl_ = y_l. Differentiate this « and substitute y' from (11),

u' = =y = —y7HAy - By) = B — Ay .
The last term is —Ay~ ' = —Au. Hence we have obtained the linear ODE
u' + Au = B.

The general solution is [by (4)]

u=ce * + B/A.

Since u = 1/y, this gives the general solution of (11),

(12)




1.5. Existence and Unigueness of Solutions

for Initial Value Problems

fThe initial value problem )

y'| + |yl =0, y(0) =1

&as no solution because y = 0 (that is, y(x) = 0 for all x) is the only solution of the ODE)

has infinitely many solutions, namely, y = 1 + cx, where c is an arbitrary constant because

\y(0) = 1 for all c. )

35

(The initial value problem )
y' = 2x, v(0) =1
has precisely one solution, namely, y = x% + 1. )
(The initial value problem R
xy' =y-1, ¥(0) =1

ﬁ‘ i




From these examples we see that an initial value problem
1) Y =fxy,  yxe) =yo

may have no solution, precisely one solution, or more than one solution. This fact leads

to the following two fundamental questions.

Problem of Existence

Under what conditions does an initial value problem of the form (1) have at least
one solution (hence one or several solutions)?

Problem of Uniqueness

Under what conditions does that problem have at most one solution (hence excluding
the case that is has more than one solution)?

Theorems that state such conditions are called existence theorems and uniqueness
theorems, respectively.




THEOREM 1

Existence Theorem

Let the right side f(x, y) of the ODE in the initial value problem
(1) Y =f0ny), y(xe) = yo
be continuous at all points (x, y) in some rectangle
R: |x — xol < a, ly — yol < b
and bounded in R; that is, there is a number K such that
(2) fonl =K for all (x, y) in R.
Then the initial value problem (1) has at least one solution y(x). This solution exists

at least for all x in the subinterval lx — x0| < « of the interval lx — x0| < a;
here, a is the smaller of the two numbers a and b/K.

(Example of Boundedness. The function f(x, y) = x2 + y2 is bounded (with K = 2) in the
square |x| < 1,|y| < 1. The function f(x,y) = tan (x + y) is not bounded for
|x + y| < /2. Explain!)




THEOREM 2

Uniqueness Theorem

Let fand its partial derivative f,, = df/dy be continuous for all (x, y) in the rectangle
R (Fig. 26) and bounded, say,

(3) @) |fx, | =K, by Ay =M for all (x,y) in R.

Then the initial value problem (1) has at most one solution v(x). Thus, by Theorem 1,
the problem has precisely one solution. This solution exists at least for all x in that
subinterval |x — xo| < a.




Understanding These Theorems

These two theorems take care of almost all practical cases. Theorem 1 says that if f(x, y)
is continuous in some region in the xy-plane containing the point (xg, yg), then the initial
value problem (1) has at least one solution.

Theorem 2 says that if, moreover, the partial derivative df/dy of f with respect to y
exists and is continuous in that region, then (1) can have at most one solution; hence, by
Theorem 1, it has precisely one solution.

Since y' = f(x, y), the condition (2) implies that |y’| = K; that is, the slope of any
solution curve y(x) in R is at least —K and at most K. Hence a solution curve that passes
through the point (x¢, yo) must lie in the colored region in Fig. 27 bounded by the lines
[1 and /5 whose slopes are —K and K, respectively. Depending on the form of R, two
different cases may arise. In the first case, shown in Fig. 27a, we have b/K = a and
therefore e===a 1n the existence theorem, which then asserts that the solution exists for all
x between xo — a and x¢ + a. In the second case, shown in Fig. 27b, we have b/K < a.
Therefore, @ = b/K < a, and all we can conclude from the theorems is that the solution
exists for all x between xo — b/K and x¢ + b/K.



Fig. 27. The condition (2) of the existence theorem. (a) First case. (b) Second case




EXAMPLE 1 Choice of a Rectangle

Consider the initial value problem
yi=1+y% ¥0) =0
and take the rectangle R; x| < 5, y| < 3. Thena = 5,b = 3, and

fe v =11+ y* =K = 10,

of
|—‘ =2ly| =M =6,
dy

b
a=—=03 < a.
K

Indeed, the solution of the problem is y = tan x (see Sec. 1.3, Example 1). This solution is discontinuous at
*+177/2, and there is no continuous solution valid in the entire interval |x| < 5 from which we started. ||




