Chapter 9:

Vector Differential Calculus.
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9.1. Vectors in 2-Space and 3-Space

In engineering, physics, mathematics, and other areas we encounter two kinds of quantities.
They are scalars and vectors.

A scalar is a quantity that is determined by its magnitude. It takes on a numerical value,
i.e., a number. Examples of scalars are time, temperature, length, distance, speed, density,
energy, and voltage.

In contrast, a vector is a quantity that has both magnitude and direction. We can say
that a vector is an arrow or a directed line segment. For example, a velocity vector has
length or magnitude, which is speed, and direction, which indicates the direction of motion.
Typical examples of vectors are displacement, velocity, and force, see Fig. 164 as an
illustration. Velocity

Fig. 164. Force and velocity
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A vector (arrow) has a tail, called its initial point, and a tip, called its terminal point.
This is motivated in the translation (displacement without rotation) of the triangle in
Fig. 165, where the initial point P of the vector a is the original position of a point, and
the terminal point Q is the terminal position of that point, its position after the translation.
The length of the arrow equals the distance between P and Q. This is called the length
(or magnitude) of the vector a and is denoted by |a|. Another name for length is HOFm
(or Euclidean norm,).

A vector of length 1 is called a unit vector.

Pc

Fig. 165. Translation

DEFINITION

Equality of Vectors

Two vectors a and b are equal, written a = b, if they have the same length and the
same direction [as explained in Fig. 166; in particular, note (B)]. Hence a vector
can be arbitrarily translated; that is, its initial point can be chosen arbitrarily.
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Equal vectors, Vectors having Vectors having Vectors having
a=b the same length the same direction different length
(A) but different but different and different
direction length direction
(B) ©) (D)

Fig. 166. (A) Equal vectors. (B)—(D) Different vectors

Components of a Vector

We choose an xyz Cartesian coordinate system' in space (Fig. 167), that is, a usual
rectangular coordinate system with the same scale of measurement on the three mutually
perpendicular coordinate axes. Let a be a given vector with initial point P: (x4, y1, z1) and
terminal point Q: (xg, ys, 72). Then the three coordinate differences

(1) ay — X2 — X1, g — Y2 — Y1, az — {2 — <1




Fig. 167. Cartesian Fig. 168. Components Fig. 169. Position vector r ‘

A

coordinate system of a vector of a point A: (x, y,z) -

are called the components of the vector a with respect to that coordinate system, and we
write simply @ ="[day, ds; a3]. See Fig. 168.

The length |a| of a can now readily be expressed in terms of components because from
(1) and the Pythagorean theorem we have

) la| = Va2 + a2 + a2

A Cartesian coordinate system being given, the position vector r of a point A: (x, y, z)
is the vector with the origin (0, 0, 0) as the initial point and A as the terminal point (see
Fig. 169). Thus in components, r = [x, y, z]. This can be seen directly from (1) with
x1=y1=21=0.




Vector Addition, Scalar Multiplication

DEFINITION

Addition of Vectors

The sum a + b of two vectors a = [ay, as, ag] and b = [bq, bo, b3] 1s obtained by
adding the corresponding components,

(3) a—l—b=[a1+b1, a2+b2, a3-|-b3].

Geometrically, place the vectors as in Fig. 170 (the initial point of b at the terminal

point of a); then a + b is the vector drawn from the initial point of a to the terminal
point of b.
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Resultant

Fig. 171. Resultant of two forces (parallelogram law)
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Fig. 172. Vector addition Fig. 173. Cummutativity Fig. 174. Associativity
of vector addition of vector addition

Basic Properties of Vector Addition. Familiar laws for real numbers give immediately

(a) a+b=Db+a (Commutativity)
b) @@tv)+w=u+(v+tw (Associativity)
(c) at0=0+a=a

(d) a+ (—a)=0.

Properties (a) and (b) are verified geometrically in Figs. 173 and 174. Furthermore, —a
denotes the vector having the length |a| and the direction opposite to that of a.




DEFINITION

Scalar Multiplication (Multiplication by a Number)

The product ca of any vector a = [aq, as, ag] and any scalar ¢ (real number ¢) is

the vector obtained by multiplying each component of a by c, /
VAV
a 2a é

5) ca = [caq, cas, cag].
-a --a

Geometrically, if a # 0, then ca with ¢ > 0 has the direction of a and with ¢ <0
the direction opposite to a. In any case, the length of ca is lca| = |c||al, and ca = 0
if a = 0 or ¢ = 0 (or both). (See Fig. 175.)

Basic Properties of Scalar Multiplication. From the definitions we obtain directly

c@+ b)=ca-+ cb
(c + k)Ja = ca + ka
c(ka) = (ck)a (written cka)

la = a.




EXAMPLE 2 Vector Addition. Multiplication by Scalars

With respect to a given coordinate system, let
a=1[4,0,1 and b=1[2, -513]
Then —a = [—4,0,—1], 7a=1[28,0,7], a+b=1[6-53] and

2(a — b) = 2[2,5,%] = [4,10,5] = 2a — 2b.

Unit Vectors i, j, k. Besides a = [a;, as, ag] another popular way of writing vectors is

(8) a — Clli + a2j + a3k.

In this representation, i, j, kK are the unit vectors in the positive directions of the axes of
a Cartesian coordinate system (Fig. 177). Hence, in components,

9) i=1[1,00], j=1[0,10, k=][001]

and the right side of (8) is a sum of three vectors parallel to the three axes.




All the vectors a = [aq, as, az] = aji + asj + azk (with real numbers as components)
form the real vector space R? with the two algebraic operations of vector addition and
scalar multiplication as just defined. R? has dimension 3. The triple of vectors i, j, k
is called a standard basis of R>. Given a Cartesian coordinate system, the representation
(8) of a given vector is unique.

Fig. 177. The unit vectors i, j, k
and the representation (8)




9.2. Inner Product (Dot Product)

IDEFINITION|

Inner Product (Dot Product) of Vectors

The inner product or dot product a * b (read “a dot b”) of two vectors a and b is
the product of their lengths times the cosine of their angle (see Fig. 178),

a*b = |a||b| cosy if a#0,b+#0

(1)
a*b=0 if a=0orb =0.

The angle vy, 0 = y = 7, between a and b is measured when the initial points of
the vectors coincide, as in Fig. 178. In components, a = [ay, as, agl, b = [by, b, b3],

and

(2) a*b = Cllbl + dzbz + (lgbg.




The second line in (1) is needed because y is undefined when a = 0 or b = 0. The
derivation of (2) from (1) is shown below.

Y
Y a
== > >
b b b
aeb>0 ab=0 ab<0
(orthogonality)

Fig. 178. Angle between vectors and value of inner product

A vector a is called orthogonal to a vector b if a*b'="0. Then b is also orthogonal
to a, and we call a and b orthogonal vectors. Clearly, this happens for nonzero vectors
if and only if cos y = 0; thus y = /2 (90°). This proves the important

THEOREM 1

Orthogonality Criterion

The inner product of two nonzero vectors is O if and only if these vectors are
perpendicular.




Length and Angle. Equation (1) with b = a gives a *a = |a|% Hence

3) la|] = Va-a.

From (3) and (1) we obtain for the angle y between two nonzero vectors

a*b _ a°b
la|[b] VasaVbeb

4) cos y =

EXAMPLE 1 Inner Product. Angle Between Vectors

Find the inner product and the lengths of a = [1,2,0] and b = [3, —2, 1] as well as the angle between these
vectors.

Solution. a+b=1-3+2-(-2)+0-1=—1,|la] = Vasa=V5,|bl =Vbeb=VI14, and (4)

gives the angle

*b
Y = arccos |a|| | = arccos (—0.11952) = 1.69061 = 96.865°.
al|b




From the definition we see that the inner product has the following properties. For any
vectors a, b, ¢ and scalars g1, g9,

(a) (g1a + gob)*ec =giasc + gibec (Linearity)

(b) a*b=>b-a (Symmetry)

a*ca=0
(c) (Positive-definiteness).

a*a=0 ifandonlyif a=0

Hence dot multiplication is commutative as shown by (5b). Furthermore, it is distributive
with respect to vector addition. This follows from (5a) with g1 = 1 and g9 = 1:

(5a%*) (@atb)ec=acect+bec (Distributivity).
Furthermore, from (1) and |cos y| = | we see that

(6) laeb| = |a]|b] (Cauchy-Schwarz inequality).

14




Using this and (3), you may prove (see Prob. 16)
(7) la + b| = |a| + |b] (Triangle inequality).

Geometrically, (7) with < says that one side of a triangle must be shorter than the other
two sides together; this motivates the name of (7).
A simple direct calculation with inner products shows that

(8) la + b|2 + |la — b|2 = 2(|a|2 + |b|2) (Parallelogram equality).

EXAMPLE 2 Work Done by a Force Expressed as an Inner Product

This is a major application. It concerns a body on which a constant force p acts. (For a variable force, see
Sec. 10.1.) Let the body be given a displacement d. Then the work done by p in the displacement is defined as

9) W = |plld| cosa = p-d,

d S

Fig. 179. Work done by a force




that is, magnitude |p| of the force times length |d| of the displacement times the cosine of the angle  between
p and d (Fig. 179). If <902, as in Fig. 179, then W='0. If p and d are orthogonal, then the work is zero
(why?). If @=790°, then W0, which means that in the displacement one has to do work against the force.
For example, think of swimming across a river at some angle « against the current.

EXAMPLE 3 Component of a Force in a Given Direction

What force in the rope in Fig. 180 will hold a car of 5000 1b in equilibrium if the ramp makes an angle of 25°
with the horizontal?

~ Ja
Fig. 180. Example 3




Solution. Introducing coordinates as shown, the weight is a = [0, —5000] because this force points
downward, in the negative y-direction. We have to represent a as a sum (resultant) of two forces, a = ¢ + p,
where ¢ 1s the force the car exerts on the ramp, which is of no interest to us, and p is parallel to the rope. A
vector in the direction of the rope is (see Fig. 180)

b = [—1, tan 25°] = [—1, 0.46631], thus |b| = 1.10338,

The direction of the unit vector u is opposite to the direction of the rope so that

1
u = _ﬂb = [0.90631, —0.42262].
b

Since |u| = 1 and cos y > 0, we see that we can write our result as

a*b 5000 - 0.46631
b 1.10338

Ipl = (la] cos y)lul| =aeu= - = 2113 [1b].

We can also note that y = 90° — 25° = 65° is the angle between a and p so that
Ip| = lal cos y = 5000 cos 65° = 2113 [1b].

Answer: About 2100 Ib.




Example 3 is typical of applications that deal with the (component or projection)of a
vector a in the direction of a vector b(#0). If we denote by p the length of the orthogonal
projection of a on a straight line [ parallel to b as shown in Fig. 181, then

(10) p = |a| cos y.

Here p is taken with the plus sign if pb has the direction of b and with the minus sign if
pb has the direction opposite to b.

(p>0) (p=0) (p<0)

Fig. 181. Component of a vector a in the direction of a vector b




Multiplying (10) by |b|/|b| = 1, we have a * b in the numerator and thus

_ a*b
b

(11) p (b # 0).

If b is a unit vector, as it is often used for fixing a direction, then (11) simply gives
(12) p=ac<b (Ib] = 1).

Figure 182 shows the projection p of a in the direction of b (as in Fig. 181) and the
projection ¢ = |b| cos y of b in the direction of a.

Fig. 182. Projections p of aonbandgof bona




9.3. Vector Product (Cross Product)

DEFINITION

Vector Product (Cross Product, Outer Product) of Vectors

The vector product or cross product a X b (read “a cross b”) of two vectors a
and b is the vector v denoted by
[ v=aXh ]

[. fa=0orb =0, then we definev=a X b = 0.
II. If both vectors are nonzero vectors, then vector v has the length

0 [l = la x bl = fallb] sin,

where vy is the angle between a and b as in Sec. 9.2.

Furthermore, by design, a and b form the sides of a parallelogram on a plane
in space. The parallelogram is shaded in blue in Fig. 185. The area of this blue
parallelogram is precisely given by Eq. (1), so that the length |v| of the vector
VvV is equal to the area of that parallelogram




ITI. If a and b lie in the same straight line, i.e., a and b have the same or opposite
directions, then vy is 0° or 180° so that siny = 0. In that case lv| = 0 so that
v=aXxXb=0.

IV. If cases I and III do not occur, then v 1s a nonzero vector. The direction of
v = a X b is perpendicular to both a and b such that a, b, v—precisely in this
order (!)—form a right-handed triple as shown in Figs. 185-187 and explained
below.

Another term for vector product is outer product.

Fig. 185. Vector product Fig. 186. Right-handed
triple of vectors a, b, v




Just as we did with the dot product, we would also like to express the cross product in
components. Let a = [ay, asg, ag]l and b = [by, by, b3]. Then v = [vq, U9, V3] = a X b has
the components

(2) U1 = agbs — asbs, Vg = asb; — apbs, U3 = ajby — aghy.

Right-Handed Cartesian Coordinate System. The system is called right-handed if
the corresponding unit vectors i, j, k in the positive directions of the axes (see Sec. 9.1)
form a right-handed triple as in Fig. 188a. The system is called left-handed if the sense

of k is reversed, as in Fig. 188b. In applications, we prefer right-handed systems.
z

4

(a) Right-handed (b) Left-handed
Fig. 188. The two types of Cartesian coordinate systems




How to Memorize (2). If you know second- and third-order determinants, you see that
(2) can be written

dg dsg ay ay ds
(2*) v 1 - 5 o Y 3 -
by D3 by by b by by

and v = [vq, Ug, U3] = U411 + vg] + vgk is the expansion of the following symbolic
determinant by its first row. (We call the determinant “symbolic” because the first row
consists of vectors rather than of numbers.)

i j K

as dg a as a as

ay as as|= i— Jj+ k.
by b3 by b3 by by

by by b3

For a left-handed system the determinant has a minus sign in front.




EXAMPLE 1 Vector Product

For the vector product v=a X b of a = [1, 1,0] and b = [3, 0, 0] in right-handed coordinates we obtain
from (2)

U1:0, 0220, 03:1'0_1'3:_3.

We confirm this by (2**):

1 0 1 1
JT k = -3k = [0, 0, —3].
3 0 30

EXAMPLE 2 Vector Products of the Standard Basis Vectors

ixj= k jxk= i kXi

3)
jxi=—-k kxj=-i ixk




THEOREM 1

General Properties of Vector Products

(a) For every scalar |,
4) (la) X b =1I(a X b)=a X (Ib).
(b) Cross multiplication is distributive with respect to vector addition; that is,

(o) aX(b+c)=(@xb)+ (axXec),

(5)
(B) (@atb)yXc=(@Xc)+ (b Xc).

(c) Cross multiplication is not commutative but anticommutative; that is,




(d) Cross multiplication is not associative; that is, in general,
(7) aX(bXc)#(@xb) xXc

so that the parentheses cannot be omitted.

EXAMPLE 3 Moment of a Force

In mechanics the moment m of a force p about a point Q is defined as the product m = |pld, where d is the
(perpendicular) distance between Q and the line of action L of p (Fig. 190). If r is the vector from Q to any
point A on L, then d = |r| sin 7y, as shown in Fig. 190, and

m = |r||p| sin y.

Since 1 is the angle between r and p, we see from (1) that m = |r X p|. The vector m=7rXp

is called the moment vector or vector moment of p about Q. Its magnitude is m.

Fig. 190. Moment of a force p




EXAMPLE 4 Moment of a Force

Find the moment of the force p about the center Q of a wheel, as given in Fig. 191.

Solution. Introducing coordinates as shown in Fig. 191, we have

p = [1000 cos 30°, 1000 sin 30°, 0] = [866, 500, O], r=1[0, 1.5, O]
(Note that the center of the wheel is at y = —1.5 on the y-axis.) Hence (8) and (2**) give

i i k
0 1.5
m=rXp=| 0 15  0/=0i-0j+ k = [0, 0, —1299].
866 500
866 500 0

This moment vector m is normal, i.e., perpendicular to the plane of the wheel. Hence it has the direction of the
axis of rotation about the center Q of the wheel that the force p has the tendency to produce. The moment m
points in the negative z-direction, This is, the direction in which a right-handed screw would advance if turned

in that way. (]
|p| = 1000 Ib

Fig. 191. Moment of a force p




Scalar Triple Product

Certain products of vectors, having three or more factors, occur in applications. The most
important of these products is the scalar triple product or mixed product of three vectors
a, b, c.

(10%) @ b c¢)=a-bdbXc).

a*v = a1 + asLy + asgls

by b3 b3 b by

+ as + asg




THEOREM 2

Properties and Applications of Scalar Triple Products

(@) In (10) the dot and cross can be interchanged.:

(11) (@ b ¢)=as(bXc)=(@XDb)ec.

(b) Geometric interpretation. The absolute value |(a b ¢)| of (10) is the
volume of the parallelepiped (oblique box) with a, b, ¢ as edge vectors (Fig. 193).

(¢) Linear independence. Three vectors in R® are linearly independent if
and only if their scalar triple product is not zero.

Fig. 193. Geometric interpretation of a scalar triple product




9.4. VVector and Scalar Functions and Their Fields.

Vector Calculus: Derivatives

Our discussion of vector calculus begins with identifying the two types of functions on which
it operates. Let P be any point in a domain of definition. Typical domains in applications
are three-dimensional, or a surface or a curve in space. Then we define a vector function
v, whose values are vectors, that is,

v = Vv(P) = [v1(P), va(P), v3(P)]

that depends on points P in space. We say that a vector function defines a vector field in
a domain of definition. Typical domains were just mentioned. Examples of vector fields
are the field of tangent vectors of a curve (shown in Fig. 195), normal vectors of a surface
(Fig. 196), and velocity field of a rotating body (Fig. 197). Note that vector functions may
also depend on time 7 or on some other parameters.

/\4\/
A\

Fig. 195. Field of tangent Fig. 196. Field of normal
vectors of a curve vectors of a surface 30



Similarly, we define a scalar function f, whose values are scalars, that is,

f =7

that depends on P. We say that a scalar function defines a scalar field in that three-
dimensional domain or surface or curve in space. Two representative examples of scalar
fields are the temperature field of a body and the pressure field of the air in Earth’s
atmosphere. Note that scalar functions may also depend on some parameter such as
time t.

Notation. If we introduce Cartesian coordinates x, y, z, then, instead of writing v(P) for
the vector function, we can write

V(X, Vs Z) — [Ul(xv Y Z)v U2(-x7 Y Z)’ US(-xv Y, Z)]

We have to keep in mind that the components depend on our choice of coordinate system,
whereas a vector field that has a physical or geometric meaning should have magnitude
and direction depending only on P, not on the choice of coordinate system.

Similarly, for a scalar function, we write

f(P) =[x, y,2).



EXAMPLE 2 Vector Field (Velocity Field)

At any instant the velocity vectors v(P) of a rotating body B constitute a vector field, called the velocity field
of the rotation. If we introduce a Cartesian coordinate system having the origin on the axis of rotation, then (see
Example 5 in Sec. 9.3)

(1) VLY, ) =W Xr=wX[xyzl=wX i+ y + k)

where x, y, z are the coordinates of any point P of B at the instant under consideration. If the coordinates are
such that the z-axis is the axis of rotation and w points in the positive z-direction, then w = wk and

s

Fig. 197. Velocity field of a rotating body




Vector Calculus

Convergence. An infinite sequence of vectors a,),n = 1,2,---, is said to converge if

there is a vector a such that
(4) lim |agy — af = 0.
a is called the limit vector of that sequence, and we write

(5) lim a,, = a.

n—>0

Similarly, a vector function v(#) of a real variable ¢ is said to have the limit / as ¢
approaches ?¢, if v(#) 1s defined in some neighborhood of 7y (possibly except at 7o) and

(6) }Lntl lv(t) — 1] = 0.

Then we write
(7) tll)n% v(t) = L

Here, a neighborhood of t, is an interval (segment) on the 7-axis containing ¢ as an interior
point (not as an endpoint).




Continuity. A vector function v(7) is said to be continuous at r = 7 if it is defined in
some neighborhood of 7¢ (including at ¢ itself!) and

(8) }i_{g V(1) = v(Zo).
If we introduce a Cartesian coordinate system, we may write
V(1) = [v1(1), v2(D), V3()] = v1(OI + va(D)j + v3(Dk.

Then v(7) 1s continuous at #q if and only if its three components are continuous at .
DEFINITION

Derivative of a Vector Function

A vector function v(7) 1s said to be differentiable at a point 7 if the following limit
exists:

v(t + Ar) — v(1)
At—0 At ’

9) v () = lim

This vector v’ (f) is called the derivative of v(7). See Fig. 199.




In components with respect to a given Cartesian coordinate system,

(10) Vi) = [vi@), va®, vs)].

Hence the derivative v' () is obtained by differentiating each component separately. For
instance, if v = [t, 12, 0], then v = [1, 21, 0].

(cv)’ (c constant),

(u+v)

and in particular

(11) mev) =u ev+uev
(12) wxXv) =u Xv+uxyv

(13) wm v w=@ v wt+t@m v. w+@m v w).




EXAMPLE 4 Derivative of a Vector Function of Constant Length

Let v(r) be a vector function whose length 1s constant, say, |v(1)| = ¢. Then lv|2=vev =¢? and
(vev) =2vev' =0, by differentiation [see (11)]. This yields the following result. The derivative of a vector

function v(t) of constant length is either the zero vector or is perpendicular to V(). L]

I)
l Partial Derivatives of a VVector Function l

Our present discussion shows that partial differentiation of vector functions of two or more
variables can be introduced as follows. Suppose that the components of a vector function

v =[v1, U, 3] =uv1i+ vaj + v3k

are differentiable functions of n variables #1, - - -, t,,. Then the partial derivative of v with
respect to 7, is denoted by dv/dt,, and is defined as the vector function

v (9()1 . (91)2 . (903
= 1+—J]+t
Oy, Oty Oty Ot

Similarly, second partial derivatives are

v 0%uq : 9%V .- 9205
0t10t,, 010t atlatm‘] 10ty 6



EXAMPLE 5

Partial Derivatives

Let r(¢t1,t2) = acosti;i + asintyj + s k.

or
df1

o
dto

—asint;i+acostyj and




9.5. Curves. Arc Length. Curvature. Torsion

Bodies that move in space form paths that may be represented by curves C. This and
other applications show the need for parametric representations of C with parameter ¢,

which may denote time or something else (see Fig. 200). A typical parametric representation
1s given by

1) r( =[x, y@®, z@O] =x@i + y@j + z(k.

Fig. 200. Parametric representation of a curve



EXAMPLE 1 Circle. Parametric Representation. Positive Sense

The circle x2 + y2 = 4,z = 0 in the xy-plane with center O and radius 2 can be represented parametrically by

r(f) = [2cost,2sint, 0] or simply by r(f) = [2cost, 2 sin {] (Fig. 201)

where 0 = =< 27r. Indeed, x2 + y2 = (2 cos t)2 + (2 sin t)2 = 4((:032 ¢ + sin? t) = 4, For t = 0 we have
r(0) = [2,0], for ¢t = %77 we get r(% ) = [0, 2], and so on. The positive sense induced by this representation
is the counterclockwise sense.

(t= %n)
\\2

\ X
J =0)

3
(t — gn) (t = EJE)

Fig. 201. Circle in Example 1 Fig. 202. Ellipse in Example 2




EXAMPLE 2 Ellipse

The vector function

3) r(t) =[acost, bsint, 0] =acosti+ bsintj (Fig. 202)

represents an ellipse in the xy-plane with center at the origin and principal axes in the direction of the x- and
y-axes. In fact, since cos®t + sin?7 = 1, we obtain from (3)

y2
+ = =1,
b2

If b = a, then (3) represents a circle of radius a.

EXAMPLE 4 Circular Helix

The twisted curve C represented by the vector function

(5) r(t) = [acost, asint, ct] =acosti+ asintj+ ctk (c #0)

is called a circular helix. It lies on the cylinder x> + y* = a2, If ¢ > 0, the helix is shaped like a right-handed
screw (Fig. 204). If ¢ < 0, it looks like a left-handed screw (Fig. 205). If ¢ = 0, then (5) is a circle. N




Fig. 204. Right-handed circular helix Fig. 205. Left-handed circular helix

A simple curve is a curve without multiple points, that is, without points at which the

curve intersects or touches itself. Circle and helix are simple curves. Figure 206 shows

curves that are not simple. An example is [sin 2z, cos?, 0]. Can you sketch it?

An arc of a curve is the portion between any two points of the curve. For simplicity,
we say “curve” for curves as well as for arcs.

> o9 Ao B

Fig. 206. Curves with multiple points




Let us formalize this concept. If C is given by r(¢), and P and Q correspond to ¢ and
t + Az, then a vector in the direction of L is

Ait[r(t + Af) — r(»].

(6)

In the limit this vector becomes the derivative

(7) r'() = li L[r(r + Ar) — r(1)]
= Aat20 Ay :

r(t+At)

Fig. 207. Tangent to a curve




provided r(?) is difféfentiable, as we shall assume from now on. If r’(f) # 0, we call r' (£)
a tangent vector of C at P because it has the direction of the tangent. The corresponding

unit vector is the unit tangent vector (see Fig. 207)

8) u = . r'.

|

EXAMPLE 5 Tangent to an Ellipse

Find the tangent to the ellipse %xz + y2 =1atP: (V2,1 / V2).

Solution. Equation (3) with semi-axes a = 2 and b = 1 gives r(t) = [2 cos ¢, sin f]. The derivative is
r'(f) = [—2sint, cos t]. Now P corresponds to t = 7 /4 because

r(m/4) = [2 cos (m/4), sin (/4] = [V2, 1/V2].
Hence r'(7/4) = [-V2, 1/V?2]. From (9) we thus get the answer

qw) = [V2, 1/V2] +w[-V2, 1/V2]=[V2( —w), (1/V2)1 + w)l.

To check the result, sketch or graph the ellipse and the tangent.




Length of a Curve

We are now ready to define the length [ of a curve. [ will be the limit of the lengths of
broken lines of n chords (see Fig. 209, where n = 5) with larger and larger n. For this,
let r(r),a =t = b, represent C. For each n = 1, 2,---, we subdivide (“partition”) the
interval a = t = b by points

to(=a), 11, ,th-1, (= Db), where fo <ty < -+ <t

Fig. 209. Length of a curve




Curves in Mechanics. Velocity. Acceleration

Curves play a basic role in mechanics, where they may serve as paths of moving bodies.
Then such a curve C should be represented by a parametric representation r(z) with time
t as parameter. The tangent vector (7) of C is then called the velocity vector v because,
being tangent, it points in the instantaneous direction of motion and its length gives the
speed |v| = [r'| = Vr' or’' = ds/dr; see (12). The second derivative of r(¢) is called
the acceleration vector and is denoted by a. Its length |a| is called the acceleration of
the motion. Thus

(16) vo=r'®, a@=v®=r"0.

Tangential and Normal Acceleration. Whereas the velocity vector is always tangent
to the path of motion, the aceeleration vector will generally have another direction. We
can split the acceleration vector into two directional components, that is,

(17) a = agan T Aporm,

where the tangential acceleration vector aggy 1s tangent to the path (or, sometimes, 0)

and the normal acceleration vector aggem is normal (perpendicular) to the path (or,
sometimes, 0).



Expressi’on’s for the vectors in (17) are obtained from (16) by the chain rule. We first have

dr dr ds ds
dt ds dt dt

|
|
s
—~
o)
~

v(r) =

where u(s) 1s the unit tangent vector (14). Another differentiation gives

dv d d 24
(18) at = <7 = ¢ (()S) d?(f;) ue) s

Since the tangent vector u(s) has constant length (length one), its derivative du/ds is
perpendicular to u(s), from the result in Example 4 in Sec. 9.4. Hence the first term on
the right of (18) is the|normal acceleration vector} and the second term on the right is the
tangential acceleration vector} so that (18) is of the form (17).

Now the length |a¢ap| is the absolute value of the projection of a in the direction of v,

given by (11) in Sec. 9.2 with b = v; that is, |agan| = @ v|/|v|. Hence a;,, is this
expression times the unit vector (1/ |v|)v in the direction of v, that is,

a°v
(18%) [atan = Vv v.] Also, [anorm =a— atan.]
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EXAMPLE 7 Centripetal Acceleration. Centrifugal Force

The vector function
r(t) = [Rcoswt, Rsinwt] = Rcoswti + R sin wt j (Fig. 210)

(with fixed 1 and j) represents a circle C of radius R with center at the origin of the xy-plane and describes the
motion of a small body B counterclockwise around the circle. Differentiation gives the velocity vector

v=r =[-Rwsinwf, Rwcoswl] = —Rw sin wti + Rw cos wt j (Fig. 210)
v is tangent to C. Its magnitude, the speed, is

lv| = |r'| = Vr' *r' = Rw.

Hence it is constant. The speed divided by the distance R from the center is called the angular speed. It equals
w, so that it 1s constant, too. Differentiating the velocity vector, we obtain the acceleration vector

(19) a=v = [—Rw2 cos wf, —Rw?sin wt| = —Rw? cos wt i — Rw? sin wt j.

This shows that a = —a@r (Fig. 210), so that there is an acceleration toward the center, called the centripetal
acceleration of the motion. It occurs because the velocity vector is changing direction at a constant rate. Its
magnitude is constant, |a| = »?|r| = »w?R. Multiplying a by the mass m of B, we get the centripetal force iia.
The opposite vector —ma is called the centrifugal force. At cach instant these two forces are in equilibrium.
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9.6. Calculus Review:

Functions of Several Variables

U Z
Chain Rules -
m [x(u, v), y(u, v), 2(u, v)]

B o=

)
L/ u /\
- y

Fig. 213. Notations in Theorem 1

Chain Rule

Let w = f(x, y, z) be continuous and have continuous first partial derivatives in a
domain D in xyz-space. Let x = x(u,v),y = y(u, v), z = z(u, v) be functions that
are continuous and have first partial derivatives in a domain B in the uv-plane,
where B is such that for every point (u, v) in B, the corresponding point [x(u, v),
y(u, v), z(u, v)] lies in D. See Fig. 213. Then the function

w = f(x(u, v), y(u, v), z(u, v))




is defined in B, has first partial derivatives with respect to u and v in B, and

aw:8w6x+8way+8w 0z
ou ox du dy du 9z Ju

aw_awax+6w8y+aw82
v  dx v dy dv Az AU

In calculus, Bi95"2 are often called the intermediate variables, in contrast with the
independent variables i, v and the dependent variable w.

Special Cases of Practical Interest

If w= f(x,y) and x = x(u, v), y = y(u, v) as before, then (1) becomes

8w_6w8x+6w8y
ou ox du  dy du

8w_6‘w8x+8w8y
v dx v Ay Jv




Ifw=f(x,y,z) and x = x(¢), y = y(¢), z = z(1), then (1) gives

dw owdx owdy owdz
(3) = + Sl .
dt ox dt dy dt 0z dt

If w= f(x,y) and x = x(¢), y = y(¢), then (3) reduces to

dw

wdx | dwdy

(4) dt  dx dt 9y dr

Finally, the simplest case w = f(x), x = x(¢) gives

dw  dw dx
) dt  dx di




EXAMPLE 1 Chain Rule

2 — y2 and we define polar coordinates r, @ by x = rcos 6, y = rsin 6, then (2) gives

Ifw=ux

ow . 2 . 2
— = 2xcos @ — 2ysin @ = 2rcos” 0 — 2rsin” @ = 2r cos 20

or

20 = 2x(—rsin @) — 2y(rcos @) = —2r~cos @sin @ — 2r~sin  cos § = —2r~ sin 26.

Partial Derivatives on a Surface

Letw = f(x,y, z) and let z = g(x, y) represent a surface S in space. Then on § the function

wx, y) = flx, y, g(x, ).

Hence, by (1), the partial derivatives are

becomes

ow ad df o ow 9 df o
0x ox 0z dx dy dy  dz dy




EXAMPLE 2 Partial Derivatives on Surface

Letw =f= X3+ y3 +z2and let z = g = xZ + yz. Then (6) gives

~

ow

e 3x2 + 372 - 20 = 3x2 + 3(x2 + y2)2 - 2,
X

ow
peie 3y2 + 3722 - 2y = 3y2 + 3(xZ + y3)2 - 2y.

We confirm this by substitution, using w(x, y) = x3 + y3 + (x% + y2)3, that is,

~

ow ow

o2 4302+ 922 2x, — =392 + 32 + D2 - 2y,
ox dy




Mean Value Theorems

THEOREM 2

Mean Value Theorem

Let f(x, v, 7) be continuous and have continuous first partial derivatives in a
domain D in xyz-space. Let Fy: (xq, Yo, 29) and P: (xg + h,yg + k,zo + 1) be
points in D such that the straight line segment PyP joining these points lies entirely

in D. Then

(7) fxo + h,yo + k, z0+l)—f(x0,y0,zo)—h f f+la—f,
ay 0z

the partial derivatives being evaluated at a suitable point of that segment.

For a function (x, y) of two variables f(xo + h,yo + k) — f(x0, yo) = h f + k ;c

For a function (x) of a single variable th) — — 9 f ﬁ
Jxo + h) = flxo) = A7 -, 53




9.7. Gradient of a Scalar Field.

Directional Derivative

DEFINITION 1

Gradient

The setting 1s that we are given a scalar function f(x, y, z) that 1s defined and
differentiable in a domain in 3-space with Cartesian coordinates x, y, z. We denote
the gradient of that function by grad f or Vf (read nabla f). Then the gradient of
f(x,y, z) 1s defined as the vector function

of of of

(1) gradf — Vf — {a, a—y, a—z}

of of of
=—i+—j+—k
0x ay 0z

Remarks. For a definition of the gradient in curvilinear coordinates, see App. 3.4.
As a quick example, if f(x,y,2) = 2y3 + 4xz + 3x, then grad f = [4z + 3, 6y2, 4x].



Furtherimore, we will show later in this section that (1) actualiy does define a vector.
The notation Vfis suggested by the differential operator V (read nabla) defined by

(1%) V=—i+—j+—k

Directional Derivative

From calculus we know that the partial derivatives in (1) give the rates of change of
f(x, v, z) in the directions of the three coordinate axes. It seems natural to extend this and
ask for the rate of change of fin an arbitrary direction in space. This leads to the following
concept.

DEFINITION 2

Directional Derivative

The directional derivative Dy, f or df/ds of a function f(x, y, z) at a point P in the
direction of a vector b is defined by (see Fig. 215)

df _ [ — fP)
2) Duf = o = lig = |

P v s AR T AT IS T AT IR T A I s




Here Q is a variable point on the straight line L in the direction of b, and |s| is the
distance between P and Q. Also, s > 0 if Q lies in the direction of b (as in Fig. 215),
s < 0 1if QO lies in the direction of —b, and s = 01f Q0 = P.

P

Fig. 215. Directional derivative

The next idea is to use Cartesian xyz-coordinates and for b a unit vector. Then the line L
is given by

3) r(s) =x(i+ y@)Jj+ z()k =po + sb (Ibl = 1)

o0




where pg the position vector of P. Equation (2) now shows that Dy f = df/ds is the
derivative of the function f(x(s), y(s), z(s)) with respect to the arc length s of L. Hence,
assuming that f has continuous partial derivatives and applying the chain rule [formula
(3) in the previous section], we obtain

0
@ - Ty

where primes denote derivatives with respect to s (which are taken at s = 0). But here,
differentiating (3) givesr’ = x'i + y'j + z'k = b. Hence (4) is simply the inner product
of grad fand b [see (2), Sec. 9.2]; that is,

d
(3) Dyf = d{ = begradf (Ibl = 1).

ATTENTION! If the direction is given by a vector a of any length (# 0), then

(5%) D.f= |—1| ae~gradf
a




EXAMPLE 1 Gradient. Directional Derivative

Find the directional derivative of f(x, vy, z) = 2x2 + 3y% + zZ at P: (2, 1, 3) in the direction of a = [1, 0, —2].

Solution. grad f = [4x, 6y, 2z] gives at P the vector grad f(P) = [8, 6, 6]. From this and (5*%) we obtain,
since |al = V3,

D.f(P) = % (1,0, —2] *[8, 6, 6] = é(g +0-12) = —% = —1.789.

The minus sign indicates that at P the function f is decreasing in the direction of a. L

Gradient Is a Vector. Maximum Increase

THEOREM 1

Use of Gradient: Direction of Maximum Increase

Let f(P) = f(x, y, z) be a scalar function having continuous first partial derivatives
in some domain B in space. Then gtadf exists in B and is a Ye€tor, that is, its length
and direction are independent of the particular choice of Cartesian coordinates. If
grad f(P) # 0 at some point P, it has the direction of maximum increase of f at P.

'hmmmmmmmmmmmmmmml



Gradient as Surface Normal VVector

Gradients have an important application in connection with surfaces, namely, as surface
normal vectors, as follows. Let § be a surface represented by f(x, y, z) = ¢ = const, where
f 1s differentiable. Such a surface is called a level surface of f, and for different ¢ we get
different level surfaces. Now let C be a curve on S through a point P of S. As a curve in
space, C has a representation r () = [x(7), y(?), z(#)]. For C to lie on the surface S, the
components of r(f) must satisty f(x, y, z) = c, that 1s,

(7) Jx (@, y(@®), z(t) = c.

Now a tangent vector of C is r'(f) = [x'(¢), y'(t), 2 (f)]. And the tangent vectors of all
curves on § passing through P will generally form a plane, called the tangent plane of S
at P. (Exceptions occur at edges or cusps of §, for instance, at the apex of the cone in
Fig. 217.) The normal of this plane (the straight line through P perpendicular to the tangent
plane) is called the surface normal to S at P. A vector in the direction of the surface

normal is called a surface normal vector of § at P. We can obtain such a vector quite
simply by differentiating (7) with respect to ¢. By the chain rule,



Tangent plane

Fig. 216. Gradient as surface normal vector

THEOREM 2

Gradient as Surface Normal Vector

Let f be a differentiable scalar function in space. Let f(x, y, 7) = ¢ = const represent
a surface S. Then if the gradient of f at a point P of S is not the zero vector, it is a
normal vector of S at P.




EXAMPLE 2 Gradient as Surface Normal Vector. Cone

Find a unit normal vector n of the cone of revolution 72 = 4(x2 + y2) at the point P: (1, 0, 2).

Solution. The cone is the level surface f = 0 of f(x, y, z) = 4(xZ + y?) — z2 Thus (Fig. 217)

gradf = [8x, 8y, —2z], gradf(P)=1[8, 0, —4]

1 2 1
mgradf(P)= ﬁ’ 0, _ﬁ .

n points downward since it has a negative z-component. The other unit normal vector of the cone at P is —n.

% y

Fig. 217. Cone and unit normal vector n




9.8. Divergence of a Vector Field

Vector calculus owes much of its importance in engineering and physics to the gradient,
divergence, and curl. From a scalar field we can obtain a vector field by the gradient
(Sec. 9.7). Conversely, from a vector field we can obtain a scalar field by the diVergence
or another vector field by the €a#l (to be discussed in Sec. 9.9).

To begin, let v(x, y, z) be a differentiable vector function, where x, y, z are Cartesian
coordinates, and let v, v9, g be the components of v. Then the function

) avl aUZ 3U3
(1) divv = + +
ox ay 0z

is called the divergeénce of v or the divergence of the vector field defined by v. For
example, if

v = [3xz, 2xy, —yzz] = 3xzi + 2xyj — yzzk, then divv = 3z + 2x — 2yz.



a d 0
ox’ dy’ 0z

divv=V°v={

] * [U1, Vg, U3]

0 0 0
—i1+ —j3+ —k |- 1 + 1 + =k
(ax dy 0z ) Gt v2) v3k)

avl

with the understanding that the “product” (d/dx)v; in the dot product means the partial
derivative dvq/dx, etc. This is a convenient notation, but nothing more. Note that N 8¥

means the scalar div v, whereas Mf means the vector grad f defined in Sec. 9.7.
THEOREM 1

Invariance of the Divergence

The divergence div v is a scalar function, that is, its values depend only on the
points in space (and, of course, on v) but not on the choice of the coordinates in
(1), so that with respect to other Cartesian coordinates x*, y*, z* and corresponding
components v1*, Vo™*, 3™ of v,

ovs ovs
2 I + + .
) 0 az*




Presently, let us turn to the more immediate practical task of gaining a feel for the
significance of the divergence. Let f(x, y, z) be a twice differentiable scalar function. Then
its gradient exists,

aof af af af . af . of
v=gradf=|—,—,—|= —it+—j+—k
ox dy 0z ay 0z

and we can differentiate once more, the first component with respect to x, the second with
respect to y, the third with respect to z, and then form the divergence,

o o A
+ +—.

x> ay2 37>

divv = div (grad f) =

Hence we have the basic result that the divergence of the gradient is the Laplacian
(Sec. 9.7),

3) div (grad ) = VZf.




9.10. Curl of a VVector Field

Let v(x, vy, z) = [v1, Ug, U3] = v1i + vaj + v3k be a differentiable vector function of
the Cartesian coordinates x, y, z. Then the curl of the vector function v or of the vector
field given by v is defined by the “symbolic” determinant

] k

0 0 d

(1) curlv=VXv=|— — —
ox dy 0z

U1 Uo U3

803 dUo . U1 303 . dUs 0U1
= — i+ — J+|——— |k
ay 0z 0z 0x 0x dy
Instead of curl v one also uses the notation rot v. This is suggested by “rotation,”

an application explored in Example 2. Note that curl v is a vector, as shown in
Theorem 3.



EXAMPLE 1 Curl of a Vector Function

Letv = [yz, 3zx, z] = yzi + 3zxj + zk with right-handed x, y, z. Then (1) gives

= —3xi +yj + Bz — 2k = —3xi + yj + 2zk.

vz

EXAMPLE 2 Rotation of a Rigid Body. Relation to the Curl

We have seen in Example 5, Sec. 9.3, that a rotation of a rigid body B about a fixed axis in space can be
described by a vector w of magnitude w in the direction of the axis of rotation, where @ (>0) is the angular
speed of the rotation, and w 1s directed so that the rotation appears clockwise if we look in the direction of w.
According to (9), Sec. 9.3, the velocity field of the rotation can be represented in the form

vV=wXr
where r 1s the position vector of a moving point with respect to a Cartesian coordinate system having the origin
on the axis of rotation. Let us choose right-handed Cartesian coordinates such that the axis of rotation is the

z-axis. Then (see Example 2 in Sec. 9.4)

w=1[0, 0, w]-=wk, V=wXr=[—wy, wx, 0]=—wy+ wxij.




J
=[0, 0, 2w]= 2wk = 2w.

Fig. 192. Rotation of a rigid body
THEOREM 1

Rotating Body and Curl
The curl of the velocity field of a rotating rigid body has the direction of

the axis of the rotation, and its magnitude equals twice the angular speed of the
rotation.




THEOREM 2

Grad, Div, Curl

Gradient fields are irrotational. That is, if a continuously differentiable vector
function is the gradient of a scalar function f, then its curl is the zero vector,

(2) curl(grad f) = 0.

Furthermore, the divergence of the curl of a twice continuously differentiable vector
function Vv is zero,

3) div (curl v) = 0.




