E X T E N D E D

 FUNDAMENTALS OF PHYSICS

 FUNDAMENTALS OF PHYSICS
 TEENTH E D I I T I O N

JEARL WALKER
CLEVELAND STATE UNIVERSITY

Wiley

From Eq. 1-8, the total mass $m_{\text {sand }}$ of the sand grains is the product of the density of silicon dioxide and the total volume of the sand grains:

$$
\begin{equation*}
m_{\text {sand }}=\rho_{\mathrm{SiO}_{2}} V_{\text {grains }} \tag{1-12}
\end{equation*}
$$

Substituting this expression into Eq. 1-10 and then substituting for $V_{\text {grains }}$ from Eq. 1-11 lead to

$$
\begin{equation*}
\rho_{\mathrm{sand}}=\frac{\rho_{\mathrm{SiO}_{2}}}{V_{\text {total }}} \frac{V_{\text {total }}}{1+e}=\frac{\rho_{\mathrm{SiO}_{2}}}{1+e} . \tag{1-13}
\end{equation*}
$$

Substituting $\rho_{\mathrm{SiO}_{2}}=2.600 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$ and the critical value of $e=0.80$, we find that liquefaction occurs when the sand density is less than

$$
\rho_{\text {sand }}=\frac{2.600 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}}{1.80}=1.4 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}
$$

(Answer)
A building can sink several meters in such liquefaction.

8eview \& Summary

Measurement in Physics Physics is based on measurement of physical quantities. Certain physical quantities have been chosen as base quantities (such as length, time, and mass); each has been defined in terms of a standard and given a unit of measure (such as meter, second, and kilogram). Other physical quantities are defined in terms of the base quantities and their standards and units.

SI Units The unit system emphasized in this book is the International System of Units (SI). The three physical quantities displayed in Table 1-1 are used in the early chapters. Standards, which must be both accessible and invariable, have been established for these base quantities by international agreement. These standards are used in all physical measurement, for both the base quantities and the quantities derived from them. Scientific notation and the prefixes of Table 1-2 are used to simplify measurement notation.

Changing Units Conversion of units may be performed by using chain-link conversions in which the original data are multiplied
successively by conversion factors written as unity and the units are manipulated like algebraic quantities until only the desired units remain.

Length The meter is defined as the distance traveled by light during a precisely specified time interval.

Time The second is defined in terms of the oscillations of light emitted by an atomic (cesium-133) source. Accurate time signals are sent worldwide by radio signals keyed to atomic clocks in standardizing laboratories.

Mass The kilogram is defined in terms of a platinumiridium standard mass kept near Paris. For measurements on an atomic scale, the atomic mass unit, defined in terms of the atom carbon- 12 , is usually used.

Density The density ρ of a material is the mass per unit volume:

$$
\begin{equation*}
\rho=\frac{m}{V} \tag{1-8}
\end{equation*}
$$

Problems

Module 1-1 Measuring Things, Including Lengths

$\cdot 1$ SSM Earth is approximately a sphere of radius $6.37 \times 10^{6} \mathrm{~m}$. What are (a) its circumference in kilometers, (b) its surface area in square kilometers, and (c) its volume in cubic kilometers?
-2 A $g r y$ is an old English measure for length, defined as $1 / 10$ of a line, where line is another old English measure for length, defined as $1 / 12$ inch. A common measure for length in the publishing business is a point, defined as $1 / 72$ inch. What is an area of 0.50 gry 2 in points squared (points ${ }^{2}$)?
-3 The micrometer $(1 \mu \mathrm{~m})$ is often called the micron. (a) How
many microns make up 1.0 km ? (b) What fraction of a centimeter equals $1.0 \mu \mathrm{~m}$? (c) How many microns are in 1.0 yd ?
-4 Spacing in this book was generally done in units of points and picas: 12 points $=1$ pica, and 6 picas $=1$ inch. If a figure was misplaced in the page proofs by 0.80 cm , what was the misplacement in (a) picas and (b) points?
-5 SSM www Horses are to race over a certain English meadow for a distance of 4.0 furlongs. What is the race distance in (a) rods and (b) chains? (1 furlong $=201.168 \mathrm{~m}, 1 \operatorname{rod}=5.0292 \mathrm{~m}$, and 1 chain $=20.117 \mathrm{~m}$.)
©6 You can easily convert common units and measures electronically, but you still should be able to use a conversion table, such as those in Appendix D. Table 1-6 is part of a conversion table for a system of volume measures once common in Spain; a volume of 1 fanega is equivalent to $55.501 \mathrm{dm}^{3}$ (cubic decimeters). To complete the table, what numbers (to three significant figures) should be entered in (a) the cahiz column, (b) the fanega column, (c) the cuartilla column, and (d) the almude column, starting with the top blank? Express 7.00 almudes in (e) medios, (f) cahizes, and (g) cubic centimeters $\left(\mathrm{cm}^{3}\right)$.

Table 1-6 Problem 6

	cahiz	fanega	cuartilla	almude	medio
1 cahiz $=$	1	12	48	144	288
1 fanega $=$		1	4	12	24
1 cuartilla $=$			1	3	6
1 almude $=$				1	2
1 medio $=$					1

-•7 ILw Hydraulic engineers in the United States often use, as a unit of volume of water, the acre-foot, defined as the volume of water that will cover 1 acre of land to a depth of 1 ft . A severe thunderstorm dumped 2.0 in . of rain in 30 min on a town of area 26 km^{2}. What volume of water, in acre-feet, fell on the town?
008 © Harvard Bridge, which connects MIT with its fraternities across the Charles River, has a length of 364.4 Smoots plus one ear. The unit of one Smoot is based on the length of Oliver Reed Smoot, Jr., class of 1962, who was carried or dragged length by length across the bridge so that other pledge members of the Lambda Chi Alpha fraternity could mark off (with paint) 1 -Smoot lengths along the bridge. The marks have been repainted biannually by fraternity pledges since the initial measurement, usually during times of traffic congestion so that the police cannot easily interfere. (Presumably, the police were originally upset because the Smoot is not an SI base unit, but these days they seem to have accepted the unit.) Figure 1-4 shows three parallel paths, measured in Smoots (S), Willies (W), and Zeldas (Z). What is the length of 50.0 Smoots in (a) Willies and (b) Zeldas?

Figure 1-4 Problem 8.
-•9 Antarctica is roughly semicircular, with a radius of 2000 km (Fig. 1-5). The average thickness of its ice cover is 3000 m . How many cubic centimeters of ice does Antarctica contain? (Ignore the curvature of Earth.)

Figure 1-5 Problem 9.

Module 1-2 Time

-10 Until 1883, every city and town in the United States kept its own local time. Today, travelers reset their watches only when the time change equals 1.0 h . How far, on the average, must you travel in degrees of longitude between the time-zone boundaries at which your watch must be reset by 1.0 h ? (Hint: Earth rotates 360° in about 24 h .)
-11 For about 10 years after the French Revolution, the French government attempted to base measures of time on multiples of ten: One week consisted of 10 days, one day consisted of 10 hours, one hour consisted of 100 minutes, and one minute consisted of 100 seconds. What are the ratios of (a) the French decimal week to the standard week and (b) the French decimal second to the standard second?
-12 The fastest growing plant on record is a Hesperoyucca whipplei that grew 3.7 m in 14 days. What was its growth rate in micrometers per second?
-13 ©0 Three digital clocks A, B, and C run at different rates and do not have simultaneous readings of zero. Figure 1-6 shows simultaneous readings on pairs of the clocks for four occasions. (At the earliest occasion, for example, B reads 25.0 s and C reads 92.0 s.) If two events are 600 s apart on clock A, how far apart are they on (a) clock B and (b) clock C ? (c) When clock A reads 400 s, what does clock B read? (d) When clock C reads 15.0 s , what does clock B read? (Assume negative readings for prezero times.)

Figure 1-6 Problem 13.
-14 A lecture period (50 min) is close to 1 microcentury. (a) How long is a microcentury in minutes? (b) Using

$$
\text { percentage difference }=\left(\frac{\text { actual }- \text { approximation }}{\text { actual }}\right) 100,
$$

find the percentage difference from the approximation.
-15 A fortnight is a charming English measure of time equal to 2.0 weeks (the word is a contraction of "fourteen nights"). That is a nice amount of time in pleasant company but perhaps a painful string of microseconds in unpleasant company. How many microseconds are in a fortnight?
-16 Time standards are now based on atomic clocks. A promising second standard is based on pulsars, which are rotating neutron stars (highly compact stars consisting only of neutrons). Some rotate at a rate that is highly stable, sending out a radio beacon that sweeps briefly across Earth once with each rotation, like a lighthouse beacon. Pulsar PSR $1937+21$ is an example; it rotates once every $1.55780644887275 \pm 3 \mathrm{~ms}$, where the trailing ± 3 indicates the uncertainty in the last decimal place (it does not mean $\pm 3 \mathrm{~ms}$). (a) How many rotations does PSR $1937+21$ make in 7.00 days? (b) How much time does the pulsar take to rotate exactly one million times and (c) what is the associated uncertainty?
-17 SSM Five clocks are being tested in a laboratory. Exactly at noon, as determined by the WWV time signal, on successive days of a week the clocks read as in the following table. Rank the five clocks according to their relative value as good timekeepers, best to worst. Justify your choice.

Clock	Sun.	Mon.	Tues.	Wed.	Thurs.	Fri.	Sat.
A	$12: 36: 40$	$12: 36: 56$	$12: 37: 12$	$12: 37: 27$	$12: 37: 44$	$12: 37: 59$	$12: 38: 14$
B	$11: 59: 59$	$12: 00: 02$	$11: 59: 57$	$12: 00: 07$	$12: 00: 02$	$11: 59: 56$	$12: 00: 03$
C	$15: 50: 45$	$15: 51: 43$	$15: 52: 41$	$15: 53: 39$	$15: 54: 37$	$15: 55: 35$	$15: 56: 33$
D	$12: 03: 59$	$12: 02: 52$	$12: 01: 45$	$12: 00: 38$	$11: 59: 31$	$11: 58: 24$	$11: 57: 17$
E	$12: 03: 59$	$12: 02: 49$	$12: 01: 54$	$12: 01: 52$	$12: 01: 32$	$12: 01: 22$	$12: 01: 12$

$\bullet 18$ Because Earth's rotation is gradually slowing, the length of each day increases: The day at the end of 1.0 century is 1.0 ms longer than the day at the start of the century. In 20 centuries, what is the total of the daily increases in time?
$\because 0019$ Suppose that, while lying on a beach near the equator watching the Sun set over a calm ocean, you start a stopwatch just as the top of the Sun disappears. You then stand, elevating your eyes by a height $H=1.70 \mathrm{~m}$, and stop the watch when the top of the Sun again disappears. If the elapsed time is $t=11.1 \mathrm{~s}$, what is the radius r of Earth?

Module 1-3 Mass

-20 © The record for the largest glass bottle was set in 1992 by a team in Millville, New Jersey-they blew a bottle with a volume of 193 U.S. fluid gallons. (a) How much short of 1.0 million cubic centimeters is that? (b) If the bottle were filled with water at the leisurely rate of $1.8 \mathrm{~g} / \mathrm{min}$, how long would the filling take? Water has a density of $1000 \mathrm{~kg} / \mathrm{m}^{3}$.
-21 Earth has a mass of $5.98 \times 10^{24} \mathrm{~kg}$. The average mass of the atoms that make up Earth is 40 u. How many atoms are there in Earth?
-22 Gold, which has a density of $19.32 \mathrm{~g} / \mathrm{cm}^{3}$, is the most ductile metal and can be pressed into a thin leaf or drawn out into a long fiber. (a) If a sample of gold, with a mass of 27.63 g , is pressed into a leaf of $1.000 \mu \mathrm{~m}$ thickness, what is the area of the leaf? (b) If, instead, the gold is drawn out into a cylindrical fiber of radius 2.500 $\mu \mathrm{m}$, what is the length of the fiber?
$\cdot 23$ SSM (a) Assuming that water has a density of exactly $1 \mathrm{~g} / \mathrm{cm}^{3}$, find the mass of one cubic meter of water in kilograms. (b) Suppose that it takes 10.0 h to drain a container of $5700 \mathrm{~m}^{3}$ of water. What is the "mass flow rate," in kilograms per second, of water from the container?
$\bullet 24$ ©o Grains of fine California beach sand are approximately spheres with an average radius of $50 \mu \mathrm{~m}$ and are made of silicon dioxide, which has a density of $2600 \mathrm{~kg} / \mathrm{m}^{3}$. What mass of sand grains would have a total surface area (the total area of all the individual spheres) equal to the surface area of a cube 1.00 m on an edge?
$\bullet 25$ During heavy rain, a section of a mountainside measuring 2.5 km horizontally, 0.80 km up along the slope, and 2.0 m deep slips into a valley in a mud slide. Assume that the mud ends up uniformly distributed over a surface area of the valley measuring $0.40 \mathrm{~km} \times 0.40 \mathrm{~km}$ and that mud has a density of $1900 \mathrm{~kg} / \mathrm{m}^{3}$. What is the mass of the mud sitting above a $4.0 \mathrm{~m}^{2}$ area of the valley floor? -26 One cubic centimeter of a typical cumulus cloud contains 50 to 500 water drops, which have a typical radius of $10 \mu \mathrm{~m}$. For
that range, give the lower value and the higher value, respectively, for the following. (a) How many cubic meters of water are in a cylindrical cumulus cloud of height 3.0 km and radius 1.0 km ? (b) How many 1-liter pop bottles would that water fill? (c) Water has a density of $1000 \mathrm{~kg} / \mathrm{m}^{3}$. How much mass does the water in the cloud have?
$\bullet 27$ Iron has a density of $7.87 \mathrm{~g} / \mathrm{cm}^{3}$, and the mass of an iron atom is $9.27 \times 10^{-26} \mathrm{~kg}$. If the atoms are spherical and tightly packed, (a) what is the volume of an iron atom and (b) what is the distance between the centers of adjacent atoms?
$\because 28$ A mole of atoms is 6.02×10^{23} atoms. To the nearest order of magnitude, how many moles of atoms are in a large domestic cat? The masses of a hydrogen atom, an oxygen atom, and a carbon atom are $1.0 \mathrm{u}, 16 \mathrm{u}$, and 12 u , respectively. (Hint: Cats are sometimes known to kill a mole.)
-29 On a spending spree in Malaysia, you buy an ox with a weight of 28.9 piculs in the local unit of weights: 1 picul $=$ 100 gins, 1 gin $=16$ tahils, 1 tahil $=10$ chees, and 1 chee $=$ 10 hoons. The weight of 1 hoon corresponds to a mass of 0.3779 g . When you arrange to ship the ox home to your astonished family, how much mass in kilograms must you declare on the shipping manifest? (Hint: Set up multiple chain-link conversions.)
-30 ©o Water is poured into a container that has a small leak. The mass m of the water is given as a function of time t by $m=5.00 t^{0.8}-3.00 t+20.00$, with $t \geq 0, m$ in grams, and t in seconds. (a) At what time is the water mass greatest, and (b) what is that greatest mass? In kilograms per minute, what is the rate of mass change at (c) $t=2.00 \mathrm{~s}$ and (d) $t=5.00 \mathrm{~s}$?
00031 A vertical container with base area measuring 14.0 cm by 17.0 cm is being filled with identical pieces of candy, each with a volume of $50.0 \mathrm{~mm}^{3}$ and a mass of 0.0200 g . Assume that the volume of the empty spaces between the candies is negligible. If the height of the candies in the container increases at the rate of $0.250 \mathrm{~cm} / \mathrm{s}$, at what rate (kilograms per minute) does the mass of the candies in the container increase?

Additional Problems

32 In the United States, a doll house has the scale of 1:12 of a real house (that is, each length of the doll house is $\frac{1}{12}$ that of the real house) and a miniature house (a doll house to fit within a doll house) has the scale of $1: 144$ of a real house. Suppose a real house (Fig. 1-7) has a front length of 20 m , a depth of 12 m , a height of 6.0 m , and a standard sloped roof (vertical triangular faces on the ends) of height 3.0 m . In cubic meters, what are the volumes of the corresponding (a) doll house and (b) miniature house ?

33 SSIM A ton is a measure of volume frequently used in shipping, but that use requires some care because there are at least three types of tons: A displacement ton is equal to 7 barrels bulk, a freight ton is equal to 8 barrels bulk, and a register ton is equal to 20 barrels bulk. A barrel bulk is another measure of volume: 1 barrel bulk $=0.1415 \mathrm{~m}^{3}$. Suppose you spot a shipping order for "73 tons" of M\&M candies, and you are certain that the client who sent the order intended "ton" to refer to volume (instead of weight or mass, as discussed in Chapter 5). If the client actually meant displacement tons, how many extra U.S. bushels of the candies will you erroneously ship if you interpret the order as (a) 73 freight tons and (b) 73 register tons? $\left(1 \mathrm{~m}^{3}=28.378\right.$ U.S. bushels.)

34 Two types of barrel units were in use in the 1920s in the United States. The apple barrel had a legally set volume of $7056 \mathrm{cu}-$ bic inches; the cranberry barrel, 5826 cubic inches. If a merchant sells 20 cranberry barrels of goods to a customer who thinks he is receiving apple barrels, what is the discrepancy in the shipment volume in liters?

35 An old English children's rhyme states, "Little Miss Muffet sat on a tuffet, eating her curds and whey, when along came a spider who sat down beside her. . . ." The spider sat down not because of the curds and whey but because Miss Muffet had a stash of 11 tuffets of dried flies. The volume measure of a tuffet is given by 1 tuffet $=2$ pecks $=0.50$ Imperial bushel, where 1 Imperial bushel $=36.3687$ liters (L). What was Miss Muffet's stash in (a) pecks, (b) Imperial bushels, and (c) liters?

36 Table 1-7 shows some old measures of liquid volume. To complete the table, what numbers (to three significant figures) should be entered in (a) the wey column, (b) the chaldron column, (c) the bag column, (d) the pottle column, and (e) the gill column, starting from the top down? (f) The volume of 1 bag is equal to $0.1091 \mathrm{~m}^{3}$. If an old story has a witch cooking up some vile liquid in a cauldron of volume 1.5 chaldrons, what is the volume in cubic meters?

Table 1-7 Problem 36

	wey	chaldron	bag	pottle	gill
1 wey $=$	1	$10 / 9$	$40 / 3$	640	120240
1 chaldron $=$					
1 bag $=$					
1 pottle $=$					
1 gill $=$					

37 A typical sugar cube has an edge length of 1 cm . If you had a cubical box that contained a mole of sugar cubes, what would its edge length be? $\left(\right.$ One mole $=6.02 \times 10^{23}$ units. $)$
38 An old manuscript reveals that a landowner in the time of King Arthur held 3.00 acres of plowed land plus a livestock area of 25.0 perches by 4.00 perches. What was the total area in (a) the old unit of roods and (b) the more modern unit of square meters? Here, 1 acre is an area of 40 perches by 4 perches, 1 rood is an area of 40 perches by 1 perch, and 1 perch is the length 16.5 ft .
39 SSM A tourist purchases a car in England and ships it home to the United States. The car sticker advertised that the car's fuel consumption was at the rate of 40 miles per gallon on the open road.

The tourist does not realize that the U.K. gallon differs from the U.S. gallon:

$$
\begin{aligned}
1 \text { U.K. gallon } & =4.5460900 \text { liters } \\
1 \text { U.S. gallon } & =3.7854118 \text { liters. }
\end{aligned}
$$

For a trip of 750 miles (in the United States), how many gallons of fuel does (a) the mistaken tourist believe she needs and (b) the car actually require?
40 Using conversions and data in the chapter, determine the number of hydrogen atoms required to obtain 1.0 kg of hydrogen. A hydrogen atom has a mass of 1.0 u .
41 SSIM A cord is a volume of cut wood equal to a stack 8 ft long, 4 ft wide, and 4 ft high. How many cords are in $1.0 \mathrm{~m}^{3}$?

42 One molecule of water $\left(\mathrm{H}_{2} \mathrm{O}\right)$ contains two atoms of hydrogen and one atom of oxygen. A hydrogen atom has a mass of 1.0 u and an atom of oxygen has a mass of 16 u , approximately. (a) What is the mass in kilograms of one molecule of water? (b) How many molecules of water are in the world's oceans, which have an estimated total mass of $1.4 \times 10^{21} \mathrm{~kg}$?
43 A person on a diet might lose 2.3 kg per week. Express the mass loss rate in milligrams per second, as if the dieter could sense the second-by-second loss.

44 What mass of water fell on the town in Problem 7? Water has a density of $1.0 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$.

45 (a) A unit of time sometimes used in microscopic physics is the shake. One shake equals $10^{-8} \mathrm{~s}$. Are there more shakes in a second than there are seconds in a year? (b) Humans have existed for about 10^{6} years, whereas the universe is about 10^{10} years old. If the age of the universe is defined as 1 "universe day," where a universe day consists of "universe seconds" as a normal day consists of normal seconds, how many universe seconds have humans existed?

46 A unit of area often used in measuring land areas is the hectare, defined as $10^{4} \mathrm{~m}^{2}$. An open-pit coal mine consumes 75 hectares of land, down to a depth of 26 m , each year. What volume of earth, in cubic kilometers, is removed in this time?

47 SSIM An astronomical unit (AU) is the average distance between Earth and the Sun, approximately $1.50 \times 10^{8} \mathrm{~km}$. The speed of light is about $3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}$. Express the speed of light in astronomical units per minute.

48 The common Eastern mole, a mammal, typically has a mass of 75 g , which corresponds to about 7.5 moles of atoms. (A mole of atoms is 6.02×10^{23} atoms.) In atomic mass units (u), what is the average mass of the atoms in the common Eastern mole?
49 A traditional unit of length in Japan is the ken (1 ken = $1.97 \mathrm{~m})$. What are the ratios of (a) square kens to square meters and (b) cubic kens to cubic meters? What is the volume of a cylindrical water tank of height 5.50 kens and radius 3.00 kens in (c) cubic kens and (d) cubic meters?
50 You receive orders to sail due east for 24.5 mi to put your salvage ship directly over a sunken pirate ship. However, when your divers probe the ocean floor at that location and find no evidence of a ship, you radio back to your source of information, only to discover that the sailing distance was supposed to be 24.5 nautical miles, not regular miles. Use the Length table in Appendix D to calculate how far horizontally you are from the pirate ship in kilometers.

51 The cubit is an ancient unit of length based on the distance between the elbow and the tip of the middle finger of the measurer. Assume that the distance ranged from 43 to 53 cm , and suppose that ancient drawings indicate that a cylindrical pillar was to have a length of 9 cubits and a diameter of 2 cubits. For the stated range, what are the lower value and the upper value, respectively, for (a) the cylinder's length in meters, (b) the cylinder's length in millimeters, and (c) the cylinder's volume in cubic meters?

52 As a contrast between the old and the modern and between the large and the small, consider the following: In old rural England 1 hide (between 100 and 120 acres) was the area of land needed to sustain one family with a single plough for one year. (An area of 1 acre is equal to $4047 \mathrm{~m}^{2}$.) Also, 1 wapentake was the area of land needed by 100 such families. In quantum physics, the cross-sectional area of a nucleus (defined in terms of the chance of a particle hitting and being absorbed by it) is measured in units of barns, where 1 barn is $1 \times 10^{-28} \mathrm{~m}^{2}$. (In nuclear physics jargon, if a nucleus is "large," then shooting a particle at it is like shooting a bullet at a barn door, which can hardly be missed.) What is the ratio of 25 wapentakes to 11 barns?
53 SSM An astronomical unit (AU) is equal to the average distance from Earth to the Sun, about $92.9 \times 10^{6} \mathrm{mi}$. A parsec (pc) is the distance at which a length of 1 AU would subtend an angle of exactly 1 second of arc (Fig. 1-8). A light-year (ly) is the distance that light, traveling through a vacuum with a speed of $186000 \mathrm{mi} / \mathrm{s}$, would cover in 1.0 year. Express the Earth-Sun distance in (a) parsecs and (b) light-years.

Figure 1-8 Problem 53.

54 The description for a certain brand of house paint claims a coverage of $460 \mathrm{ft}^{2} / \mathrm{gal}$. (a) Express this quantity in square meters per liter. (b) Express this quantity in an SI unit (see Appendices A and D). (c) What is the inverse of the original quantity, and (d) what is its physical significance?
55 Strangely, the wine for a large wedding reception is to be served in a stunning cut-glass receptacle with the interior dimensions of $40 \mathrm{~cm} \times 40 \mathrm{~cm} \times 30 \mathrm{~cm}$ (height). The receptacle is to be initially filled to the top. The wine can be purchased in bottles of the sizes given in the following table. Purchasing a larger bottle instead of multiple smaller bottles decreases the overall cost of the wine. To minimize the cost, (a) which bottle sizes should be purchased and how many of each should be purchased and, once the receptacle is filled, how much wine is left over in terms of (b) standard bottles and (c) liters?

1 standard bottle

1 magnum $=2$ standard bottles
1 jeroboam $=4$ standard bottles
1 rehoboam $=6$ standard bottles
1 methuselah $=8$ standard bottles
1 salmanazar $=12$ standard bottles
1 balthazar $=16$ standard bottles $=11.356 \mathrm{~L}$
1 nebuchadnezzar $=20$ standard bottles

56 The corn-hog ratio is a financial term used in the pig market and presumably is related to the cost of feeding a pig until it is large enough for market. It is defined as the ratio of the market price of a pig with a mass of 3.108 slugs to the market price of a U.S. bushel of corn. (The word "slug" is derived from an old German word that means "to hit"; we have the same meaning for "slug" as a verb in modern English.) A U.S. bushel is equal to 35.238 L . If the corn-hog ratio is listed as 5.7 on the market exchange, what is it in the metric units of

$$
\frac{\text { price of } 1 \text { kilogram of pig }}{\text { price of } 1 \text { liter of corn }} ?
$$

(Hint: See the Mass table in Appendix D.)

57 You are to fix dinners for 400 people at a convention of Mexican food fans. Your recipe calls for 2 jalapeño peppers per serving (one serving per person). However, you have only habanero peppers on hand. The spiciness of peppers is measured in terms of the scoville heat unit (SHU). On average, one jalapeño pepper has a spiciness of 4000 SHU and one habanero pepper has a spiciness of 300000 SHU. To get the desired spiciness, how many habanero peppers should you substitute for the jalapeño peppers in the recipe for the 400 dinners?

58 A standard interior staircase has steps each with a rise (height) of 19 cm and a run (horizontal depth) of 23 cm . Research suggests that the stairs would be safer for descent if the run were, instead, 28 cm . For a particular staircase of total height 4.57 m , how much farther into the room would the staircase extend if this change in run were made?
59 In purchasing food for a political rally, you erroneously order shucked medium-size Pacific oysters (which come 8 to 12 per U.S. pint) instead of shucked medium-size Atlantic oysters (which come 26 to 38 per U.S. pint). The filled oyster container shipped to you has the interior measure of $1.0 \mathrm{~m} \times 12 \mathrm{~cm} \times 20 \mathrm{~cm}$, and a U.S. pint is equivalent to 0.4732 liter. By how many oysters is the order short of your anticipated count?

60 An old English cookbook carries this recipe for cream of nettle soup: "Boil stock of the following amount: 1 breakfastcup plus 1 teacup plus 6 tablespoons plus 1 dessertspoon. Using gloves, separate nettle tops until you have 0.5 quart; add the tops to the boiling stock. Add 1 tablespoon of cooked rice and 1 saltspoon of salt. Simmer for 15 min ." The following table gives some of the conversions among old (premetric) British measures and among common (still premetric) U.S. measures. (These measures just scream for metrication.) For liquid measures, 1 British teaspoon = 1 U.S. teaspoon. For dry measures, 1 British teaspoon $=2$ U.S. teaspoons and 1 British quart $=1$ U.S. quart. In U.S. measures, how much (a) stock, (b) nettle tops, (c) rice, and (d) salt are required in the recipe?

Old British Measures	U.S. Measures
teaspoon $=2$ saltspoons	tablespoon $=3$ teaspoons
dessertspoon $=2$ teaspoons	half cup $=8$ tablespoons
tablespoon $=2$ dessertspoons	cup $=2$ half cups
teacup $=8$ tablespoons	
breakfastcup $=2$ teacups	

Sample Problem 2.06 Graphical integration a versus t, whiplash injury

"Whiplash injury" commonly occurs in a rear-end collision where a front car is hit from behind by a second car. In the 1970s, researchers concluded that the injury was due to the occupant's head being whipped back over the top of the seat as the car was slammed forward. As a result of this finding, head restraints were built into cars, yet neck injuries in rearend collisions continued to occur.

In a recent test to study neck injury in rear-end collisions, a volunteer was strapped to a seat that was then moved abruptly to simulate a collision by a rear car moving at $10.5 \mathrm{~km} / \mathrm{h}$. Figure 2-15a gives the accelerations of the volunteer's torso and head during the collision, which began at time $t=0$. The torso acceleration was delayed by 40 ms because during that time interval the seat back had to compress against the volunteer. The head acceleration was delayed by an additional 70 ms . What was the torso speed when the head began to accelerate?

KEY IDEA
We can calculate the torso speed at any time by finding an area on the torso $a(t)$ graph.
Calculations: We know that the initial torso speed is $v_{0}=0$ at time $t_{0}=0$, at the start of the "collision." We want the torso speed v_{1} at time $t_{1}=110 \mathrm{~ms}$, which is when the head begins to accelerate.
(a)

Combining Eqs. 2-27 and 2-28, we can write

$$
\begin{equation*}
v_{1}-v_{0}=\binom{\text { area between acceleration curve }}{\text { and time axis, from } t_{0} \text { to } t_{1}} \tag{2-31}
\end{equation*}
$$

For convenience, let us separate the area into three regions (Fig. 2-15b). From 0 to 40 ms , region A has no area:

$$
\operatorname{area}_{A}=0 .
$$

From 40 ms to 100 ms , region B has the shape of a triangle, with area

$$
\operatorname{area}_{B}=\frac{1}{2}(0.060 \mathrm{~s})\left(50 \mathrm{~m} / \mathrm{s}^{2}\right)=1.5 \mathrm{~m} / \mathrm{s} .
$$

From 100 ms to 110 ms , region C has the shape of a rectangle, with area

$$
\operatorname{area}_{C}=(0.010 \mathrm{~s})\left(50 \mathrm{~m} / \mathrm{s}^{2}\right)=0.50 \mathrm{~m} / \mathrm{s}
$$

Substituting these values and $v_{0}=0$ into Eq. 2-31 gives us

$$
v_{1}-0=0+1.5 \mathrm{~m} / \mathrm{s}+0.50 \mathrm{~m} / \mathrm{s}
$$

or $\quad v_{1}=2.0 \mathrm{~m} / \mathrm{s}=7.2 \mathrm{~km} / \mathrm{h}$. (Answer)
Comments: When the head is just starting to move forward, the torso already has a speed of $7.2 \mathrm{~km} / \mathrm{h}$. Researchers argue that it is this difference in speeds during the early stage of a rear-end collision that injures the neck. The backward whipping of the head happens later and could, especially if there is no head restraint, increase the injury.
(b)

The total area gives the change in velocity.

Figure 2-15 (a) The $a(t)$ curve of the torso and head of a volunteer in a simulation of a rear-end collision. (b) Breaking up the region between the plotted curve and the time axis to calculate the area.

Additional examples, video, and practice available at WileyPLUS

8eview \& Summary

Position The position x of a particle on an x axis locates the particle with respect to the origin, or zero point, of the axis. The position is either positive or negative, according to which side of the origin the particle is on, or zero if the particle is at the origin. The positive direction on an axis is the direction of increasing positive numbers; the opposite direction is the negative direction on the axis.

Displacement The displacement Δx of a particle is the change in its position:

$$
\begin{equation*}
\Delta x=x_{2}-x_{1} \tag{2-1}
\end{equation*}
$$

Displacement is a vector quantity. It is positive if the particle has moved in the positive direction of the x axis and negative if the particle has moved in the negative direction.

Average Velocity When a particle has moved from position x_{1} to position x_{2} during a time interval $\Delta t=t_{2}-t_{1}$, its average velocity during that interval is

$$
\begin{equation*}
v_{\mathrm{avg}}=\frac{\Delta x}{\Delta t}=\frac{x_{2}-x_{1}}{t_{2}-t_{1}} \tag{2-2}
\end{equation*}
$$

The algebraic sign of $v_{\text {avg }}$ indicates the direction of motion ($v_{\text {avg }}$ is a vector quantity). Average velocity does not depend on the actual distance a particle moves, but instead depends on its original and final positions.

On a graph of x versus t, the average velocity for a time interval Δt is the slope of the straight line connecting the points on the curve that represent the two ends of the interval.

Average Speed The average speed $s_{\text {avg }}$ of a particle during a time interval Δt depends on the total distance the particle moves in that time interval:

$$
\begin{equation*}
s_{\mathrm{avg}}=\frac{\text { total distance }}{\Delta t} . \tag{2-3}
\end{equation*}
$$

Instantaneous Velocity The instantaneous velocity (or simply velocity) v of a moving particle is

$$
\begin{equation*}
v=\lim _{\Delta t \rightarrow 0} \frac{\Delta x}{\Delta t}=\frac{d x}{d t} \tag{2-4}
\end{equation*}
$$

where Δx and Δt are defined by Eq. 2-2. The instantaneous velocity (at a particular time) may be found as the slope (at that particular time) of the graph of x versus t. Speed is the magnitude of instantaneous velocity.

Average Acceleration Average acceleration is the ratio of a change in velocity Δv to the time interval Δt in which the change occurs:

$$
\begin{equation*}
a_{\mathrm{avg}}=\frac{\Delta v}{\Delta t} . \tag{2-7}
\end{equation*}
$$

The algebraic sign indicates the direction of $a_{\text {avg }}$.
Instantaneous Acceleration Instantaneous acceleration (or simply acceleration) a is the first time derivative of velocity $v(t)$
and the second time derivative of position $x(t)$:

$$
\begin{equation*}
a=\frac{d v}{d t}=\frac{d^{2} x}{d t^{2}} \tag{2-8,2-9}
\end{equation*}
$$

On a graph of v versus t, the acceleration a at any time t is the slope of the curve at the point that represents t.

Constant Acceleration The five equations in Table 2-1 describe the motion of a particle with constant acceleration:

$$
\begin{gather*}
v=v_{0}+a t, \tag{2-11}\\
x-x_{0}=v_{0} t+\frac{1}{2} a t^{2}, \tag{2-15}\\
v^{2}=v_{0}^{2}+2 a\left(x-x_{0}\right), \tag{2-16}\\
x-x_{0}=\frac{1}{2}\left(v_{0}+v\right) t, \tag{2-17}\\
x-x_{0}=v t-\frac{1}{2} a t^{2} . \tag{2-18}
\end{gather*}
$$

These are not valid when the acceleration is not constant.
Free-Fall Acceleration An important example of straightline motion with constant acceleration is that of an object rising or falling freely near Earth's surface. The constant acceleration equations describe this motion, but we make two changes in notation:
(1) we refer the motion to the vertical y axis with $+y$ vertically $u p$;
(2) we replace a with $-g$, where g is the magnitude of the free-fall acceleration. Near Earth's surface, $g=9.8 \mathrm{~m} / \mathrm{s}^{2}\left(=32 \mathrm{ft} / \mathrm{s}^{2}\right)$.

Questions

1 Figure 2-16 gives the velocity of a particle moving on an x axis. What are (a) the initial and (b) the final directions of travel? (c) Does the particle stop momentarily? (d) Is the acceleration positive or negative? (e) Is it constant or varying?
2 Figure 2-17 gives the acceleration $a(t)$ of a Chihuahua as it chases a German shepherd along an axis. In which of the time periods indicated does the Chihuahua move at constant speed?

Figure 2-16 Question 1.

Figure 2-17 Question 2.

3 Figure 2-18 shows four paths along which objects move from a starting point to a final point, all in the same time interval. The paths pass over a grid of equally spaced straight lines. Rank the paths according to (a) the average velocity of the objects and (b) the average speed of the objects, greatest first.

Figure 2-18 Question 3.

4 Figure 2-19 is a graph of a particle's position along an x axis versus time. (a) At time $t=0$, what
is the sign of the particle's position? Is the particle's velocity positive, negative, or 0 at (b) $t=1 \mathrm{~s}$, (c) $t=2$ s , and (d) $t=3 \mathrm{~s}$? (e) How many times does the particle go through the point $x=0$?

5 Figure 2-20 gives the velocity of a particle moving along an axis. Point 1 is at the highest point on the curve; point 4 is at the lowest point; and points 2 and 6 are at the same height. What is the direction of travel at (a) time $t=0$ and (b) point 4 ? (c) At which of the six numbered points does the particle reverse its direction of travel? (d) Rank the six points according to the magnitude of the acceleration, greatest first.

Figure 2-19 Question 4.

Figure 2-20 Question 5.
6 At $t=0$, a particle moving along an x axis is at position $x_{0}=-20 \mathrm{~m}$. The signs of the particle's initial velocity v_{0} (at time t_{0}) and constant acceleration a are, respectively, for four situations: (1) + , +; (2) +, -; (3) -, +; (4) -, -. In which situations will the particle (a) stop momentarily, (b) pass through the origin, and (c) never pass through the origin?
7 Hanging over the railing of a bridge, you drop an egg (no initial velocity) as you throw a second egg downward. Which curves in Fig. 2-21

Figure 2-21 Question 7.
give the velocity $v(t)$ for (a) the dropped egg and (b) the thrown egg? (Curves A and B are parallel; so are C, D, and E; so are F and G.)

8 The following equations give the velocity $v(t)$ of a particle in four situations: (a) $v=3$; (b) $v=4 t^{2}+2 t-6$; (c) $v=3 t-4$; (d) $v=5 t^{2}-3$. To which of these situations do the equations of Table 2-1 apply?

9 In Fig. 2-22, a cream tangerine is thrown directly upward past three evenly spaced windows of equal heights. Rank the windows according to (a) the average speed of the cream tangerine while passing them, (b) the time the cream tangerine takes to pass them, (c) the magnitude of the acceleration of the cream tangerine while passing them, and (d) the change Δv in the speed of the cream tangerine during the passage, greatest first.

10 Suppose that a passenger intent on lunch during his first ride in a hot-air balloon accidently drops an apple over the side during the balloon's liftoff. At the moment of the
apple's release, the balloon is accelerating upward with a magnitude of $4.0 \mathrm{~m} / \mathrm{s}^{2}$ and has an upward velocity of magnitude $2 \mathrm{~m} / \mathrm{s}$. What are the (a) magnitude and (b) direction of the acceleration of the apple just after it is released? (c) Just then, is the apple moving upward or downward, or is it stationary? (d) What is the magnitude of its velocity just then? (e) In the next few moments, does the speed of the apple increase, decrease, or remain constant?

11 Figure 2-23 shows that a particle moving along an x axis undergoes three periods of acceleration. Without written computation, rank the acceleration periods according to the increases they produce in the particle's velocity, greatest first.

Figure 2-23 Question 11.

8roblems

Module 2-1 Position, Displacement, and Average Velocity
-1 While driving a car at $90 \mathrm{~km} / \mathrm{h}$, how far do you move while your eyes shut for 0.50 s during a hard sneeze?
-2 Compute your average velocity in the following two cases: (a) You walk 73.2 m at a speed of $1.22 \mathrm{~m} / \mathrm{s}$ and then run 73.2 m at a speed of $3.05 \mathrm{~m} / \mathrm{s}$ along a straight track. (b) You walk for 1.00 min at a speed of $1.22 \mathrm{~m} / \mathrm{s}$ and then run for 1.00 min at $3.05 \mathrm{~m} / \mathrm{s}$ along a straight track. (c) Graph x versus t for both cases and indicate how the average velocity is found on the graph.
-3 SSM www An automobile travels on a straight road for 40 km at $30 \mathrm{~km} / \mathrm{h}$. It then continues in the same direction for another 40 km at $60 \mathrm{~km} / \mathrm{h}$. (a) What is the average velocity of the car during the full 80 km trip? (Assume that it moves in the positive x direction.) (b) What is the average speed? (c) Graph x versus t and indicate how the average velocity is found on the graph.
-4 A car moves uphill at $40 \mathrm{~km} / \mathrm{h}$ and then back downhill at 60 km / h. What is the average speed for the round trip?
$\cdot 5$ SSM The position of an object moving along an x axis is given by $x=3 t-4 t^{2}+t^{3}$, where x is in meters and t in seconds. Find the position of the object at the following values of t : (a) 1 s, (b) 2 s , (c) 3 s , and (d) 4 s . (e) What is the object's displacement between $t=0$ and $t=4 \mathrm{~s}$? (f) What is its average velocity for the time interval from $t=2 \mathrm{~s}$ to $t=4 \mathrm{~s}$? (g) Graph x versus t for $0 \leq t \leq 4 \mathrm{~s}$ and indicate how the answer for (f) can be found on the graph.
-6 The 1992 world speed record for a bicycle (human-powered vehicle) was set by Chris Huber. His time through the measured 200 m stretch was a sizzling 6.509 s , at which he commented,
"Cogito ergo zoom!" (I think, therefore I go fast!). In 2001, Sam Whittingham beat Huber's record by $19.0 \mathrm{~km} / \mathrm{h}$. What was Whittingham's time through the 200 m ?
$\bullet 7$ Two trains, each having a speed of $30 \mathrm{~km} / \mathrm{h}$, are headed at each other on the same straight track. A bird that can fly $60 \mathrm{~km} / \mathrm{h}$ flies off the front of one train when they are 60 km apart and heads directly for the other train. On reaching the other train, the (crazy) bird flies directly back to the first train, and so forth. What is the total distance the bird travels before the trains collide?
0.8 Panic escape. Figure 2-24 shows a general situation in which a stream of people attempt to escape through an exit door that turns out to be locked. The people move toward the door at speed $v_{s}=3.50 \mathrm{~m} / \mathrm{s}$, are each $d=0.25 \mathrm{~m}$ in depth, and are separated by $L=1.75 \mathrm{~m}$. The arrangement in Fig. 2-24 occurs at time $t=0$. (a) At what average rate does the layer of people at the door increase? (b) At what time does the layer's depth reach 5.0 m ? (The answers reveal how quickly such a situation

Figure 2-24 Problem 8. becomes dangerous.)
-•9 ILW In 1 km races, runner 1 on track 1 (with time $2 \mathrm{~min}, 27.95 \mathrm{~s}$) appears to be faster than runner 2 on track $2(2 \mathrm{~min}, 28.15 \mathrm{~s})$. However, length L_{2} of track 2 might be slightly greater than length L_{1} of track 1. How large can $L_{2}-L_{1}$ be for us still to conclude that runner 1 is faster?
-10 To set a speed record in a measured (straight-line) distance d, a race car must be driven first in one direction (in time t_{1}) and then in the opposite direction (in time t_{2}). (a) To eliminate the effects of the wind and obtain the car's speed v_{c} in a windless situation, should we find the average of d / t_{1} and $d / t_{2}(\operatorname{method} 1)$ or should we divide d by the average of t_{1} and t_{2} ? (b) What is the fractional difference in the two methods when a steady wind blows along the car's route and the ratio of the wind speed v_{w} to the car's speed v_{c} is 0.0240 ?
$\bullet 11$ बo You are to drive 300 km to an interview. The interview is at $11: 15$ A.m. You plan to drive at $100 \mathrm{~km} / \mathrm{h}$, so you leave at $8: 00$ A.M. to allow some extra time. You drive at that speed for the first 100 km , but then construction work forces you to slow to $40 \mathrm{~km} / \mathrm{h}$ for 40 km . What would be the least speed needed for the rest of the trip to arrive in time for the interview?
$\cdots 12$ Traffic shock wave. An abrupt slowdown in concentrated traffic can travel as a pulse, termed a shock wave, along the line of cars, either downstream (in the traffic direction) or upstream, or it can be stationary. Figure 2-25 shows a uniformly spaced line of cars moving at speed $v=25.0 \mathrm{~m} / \mathrm{s}$ toward a uniformly spaced line of slow cars moving at speed $v_{s}=5.00 \mathrm{~m} / \mathrm{s}$. Assume that each faster car adds length $L=12.0 \mathrm{~m}$ (car length plus buffer zone) to the line of slow cars when it joins the line, and assume it slows abruptly at the last instant. (a) For what separation distance d between the faster cars does the shock wave remain stationary? If the separation is twice that amount, what are the (b) speed and (c) direction (upstream or downstream) of the shock wave?

Figure 2-25 Problem 12.
-••13 ILW You drive on Interstate 10 from San Antonio to Houston, half the time at $55 \mathrm{~km} / \mathrm{h}$ and the other half at $90 \mathrm{~km} / \mathrm{h}$. On the way back you travel half the distance at $55 \mathrm{~km} / \mathrm{h}$ and the other half at $90 \mathrm{~km} / \mathrm{h}$. What is your average speed (a) from San Antonio to Houston, (b) from Houston back to San Antonio, and (c) for the entire trip? (d) What is your average velocity for the entire trip? (e) Sketch x versus t for (a), assuming the motion is all in the positive x direction. Indicate how the average velocity can be found on the sketch.

Module 2-2 Instantaneous Velocity and Speed

-14 (so An electron moving along the x axis has a position given by $x=16 t e^{-t} \mathrm{~m}$, where t is in seconds. How far is the electron from the origin when it momentarily stops?
-15 (a) If a particle's position is given by $x=4-12 t+3 t^{2}$ (where t is in seconds and x is in meters), what is its velocity at $t=1 \mathrm{~s}$? (b) Is it moving in the positive or negative direction of x just then? (c) What is its speed just then? (d) Is the speed increasing or decreasing just then? (Try answering the next two questions without further calculation.) (e) Is there ever an instant when the velocity is zero? If so, give the time t; if not, answer no. (f) Is there a time after $t=3 \mathrm{~s}$ when the particle is moving in the negative direction of x ? If so, give the time t; if not, answer no.
-16 The position function $x(t)$ of a particle moving along an x axis is $x=4.0-6.0 t^{2}$, with x in meters and t in seconds. (a) At what time and (b) where does the particle (momentarily) stop? At what (c) negative time and (d) positive time does the particle pass through the origin? (e) Graph x versus t for the range -5 s to +5 s . (f) To shift the curve rightward on the graph, should we include the
term $+20 t$ or the term $-20 t$ in $x(t) ?(\mathrm{~g})$ Does that inclusion increase or decrease the value of x at which the particle momentarily stops?
$\bullet 17$ The position of a particle moving along the x axis is given in centimeters by $x=9.75+1.50 t^{3}$, where t is in seconds. Calculate (a) the average velocity during the time interval $t=2.00 \mathrm{~s}$ to $t=3.00 \mathrm{~s}$; (b) the instantaneous velocity at $t=2.00 \mathrm{~s}$; (c) the instantaneous velocity at $t=3.00 \mathrm{~s} ;$ (d) the instantaneous velocity at $t=2.50 \mathrm{~s}$; and (e) the instantaneous velocity when the particle is midway between its positions at $t=2.00 \mathrm{~s}$ and $t=3.00 \mathrm{~s}$. (f) Graph x versus t and indicate your answers graphically.

Module 2-3 Acceleration

-18 The position of a particle moving along an x axis is given by $x=12 t^{2}-2 t^{3}$, where x is in meters and t is in seconds. Determine (a) the position, (b) the velocity, and (c) the acceleration of the particle at $t=3.0 \mathrm{~s}$. (d) What is the maximum positive coordinate reached by the particle and (e) at what time is it reached? (f) What is the maximum positive velocity reached by the particle and (g) at what time is it reached? (h) What is the acceleration of the particle at the instant the particle is not moving (other than at $t=0$)? (i) Determine the average velocity of the particle between $t=0$ and $t=3 \mathrm{~s}$.
-19 SSM At a certain time a particle had a speed of $18 \mathrm{~m} / \mathrm{s}$ in the positive x direction, and 2.4 s later its speed was $30 \mathrm{~m} / \mathrm{s}$ in the opposite direction. What is the average acceleration of the particle during this 2.4 s interval?
-20 (a) If the position of a particle is given by $x=20 t-5 t^{3}$, where x is in meters and t is in seconds, when, if ever, is the particle's velocity zero? (b) When is its acceleration a zero? (c) For what time range (positive or negative) is a negative? (d) Positive? (e) Graph $x(t), v(t)$, and $a(t)$.
$\bullet 21$ From $t=0$ to $t=5.00 \mathrm{~min}$, a man stands still, and from $t=5.00 \mathrm{~min}$ to $t=10.0 \mathrm{~min}$, he walks briskly in a straight line at a constant speed of $2.20 \mathrm{~m} / \mathrm{s}$. What are (a) his average velocity $v_{\text {avg }}$ and (b) his average acceleration $a_{\text {avg }}$ in the time interval 2.00 min to 8.00 min ? What are (c) $v_{\text {avg }}$ and (d) $a_{\text {avg }}$ in the time interval 3.00 min to 9.00 min? (e) Sketch x versus t and v versus t, and indicate how the answers to (a) through (d) can be obtained from the graphs.
$\bullet 22$ The position of a particle moving along the x axis depends on the time according to the equation $x=c t^{2}-b t^{3}$, where x is in meters and t in seconds. What are the units of (a) constant c and (b) constant b ? Let their numerical values be 3.0 and 2.0, respectively. (c) At what time does the particle reach its maximum positive x position? From $t=0.0 \mathrm{~s}$ to $t=4.0 \mathrm{~s}$, (d) what distance does the particle move and (e) what is its displacement? Find its velocity at times (f) 1.0 s , (g) 2.0 s , (h) 3.0 s , and (i) 4.0 s . Find its acceleration at times (j) 1.0 s , (k) 2.0 s , (l) 3.0 s , and (m) 4.0 s .

Module 2-4 Constant Acceleration

-23 SSM An electron with an initial velocity $v_{0}=1.50 \times 10^{5} \mathrm{~m} / \mathrm{s}$ enters a region of length $L=1.00$ cm where it is electrically accelerated (Fig. 2-26). It emerges with $v=5.70 \times 10^{6} \mathrm{~m} / \mathrm{s}$. What is its acceleration, assumed constant?
-24 Catapulting mushrooms. Certain mushrooms launch their spores by a catapult mechanism. As water condenses from the air onto a spore that is attached to

Figure 2-26 Problem 23.
the mushroom, a drop grows on one side of the spore and a film grows on the other side. The spore is bent over by the drop's weight, but when the film reaches the drop, the drop's water suddenly spreads into the film and the spore springs upward so rapidly that it is slung off into the air. Typically, the spore reaches a speed of 1.6 m / s in a $5.0 \mu \mathrm{~m}$ launch; its speed is then reduced to zero in 1.0 mm by the air. Using those data and assuming constant accelerations, find the acceleration in terms of g during (a) the launch and (b) the speed reduction.
-25 An electric vehicle starts from rest and accelerates at a rate of $2.0 \mathrm{~m} / \mathrm{s}^{2}$ in a straight line until it reaches a speed of $20 \mathrm{~m} / \mathrm{s}$. The vehicle then slows at a constant rate of $1.0 \mathrm{~m} / \mathrm{s}^{2}$ until it stops. (a) How much time elapses from start to stop? (b) How far does the vehicle travel from start to stop?
-26 A muon (an elementary particle) enters a region with a speed of $5.00 \times 10^{6} \mathrm{~m} / \mathrm{s}$ and then is slowed at the rate of $1.25 \times 10^{14} \mathrm{~m} / \mathrm{s}^{2}$.
(a) How far does the muon take to stop? (b) Graph x versus t and v versus t for the muon.
-27 An electron has a constant acceleration of $+3.2 \mathrm{~m} / \mathrm{s}^{2}$. At a certain instant its velocity is $+9.6 \mathrm{~m} / \mathrm{s}$. What is its velocity (a) 2.5 s earlier and (b) 2.5 slater?
-28 On a dry road, a car with good tires may be able to brake with a constant deceleration of $4.92 \mathrm{~m} / \mathrm{s}^{2}$. (a) How long does such a car, initially traveling at $24.6 \mathrm{~m} / \mathrm{s}$, take to stop? (b) How far does it travel in this time? (c) Graph x versus t and v versus t for the deceleration.
-29 ILW A certain elevator cab has a total run of 190 m and a maximum speed of $305 \mathrm{~m} / \mathrm{min}$, and it accelerates from rest and then back to rest at $1.22 \mathrm{~m} / \mathrm{s}^{2}$. (a) How far does the cab move while accelerating to full speed from rest? (b) How long does it take to make the nonstop 190 m run, starting and ending at rest?
-30 The brakes on your car can slow you at a rate of $5.2 \mathrm{~m} / \mathrm{s}^{2}$. (a) If you are going $137 \mathrm{~km} / \mathrm{h}$ and suddenly see a state trooper, what is the minimum time in which you can get your car under the $90 \mathrm{~km} / \mathrm{h}$ speed limit? (The answer reveals the futility of braking to keep your high speed from being detected with a radar or laser gun.) (b) Graph x versus t and v versus t for such a slowing.
-31 SSm Suppose a rocket ship in deep space moves with constant acceleration equal to $9.8 \mathrm{~m} / \mathrm{s}^{2}$, which gives the illusion of normal gravity during the flight. (a) If it starts from rest, how long will it take to acquire a speed one-tenth that of light, which travels at $3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}$? (b) How far will it travel in so doing?
-32 A world's land speed record was set by Colonel John P. Stapp when in March 1954 he rode a rocket-propelled sled that moved along a track at $1020 \mathrm{~km} / \mathrm{h}$. He and the sled were brought to a stop in 1.4 s . (See Fig. 2-7.) In terms of g, what acceleration did he experience while stopping?
-33 SSM ILW A car traveling $56.0 \mathrm{~km} / \mathrm{h}$ is 24.0 m from a barrier when the driver slams on the brakes. The car hits the barrier 2.00 s later. (a) What is the magnitude of the car's constant acceleration before impact? (b) How fast is the car traveling at impact?
-034 ©0 In Fig. 2-27, a red car and a green car, identical except for the color, move toward each other in adjacent lanes and parallel to an x axis. At time $t=0$, the red car is at $x_{r}=0$ and the green car is at $x_{g}=$ 220 m . If the red car has a constant velocity of $20 \mathrm{~km} / \mathrm{h}$, the cars pass each other at $x=44.5 \mathrm{~m}$, and if it has a constant velocity of $40 \mathrm{~km} / \mathrm{h}$, they pass each other at $x=76.6 \mathrm{~m}$. What are (a) the initial velocity and (b) the constant acceleration of the green car?

Figure 2-27 Problems 34 and 35.
-035 Figure 2-27 shows a red car and a green car that move toward each other. Figure 2-28 is a graph of their motion, showing the positions $x_{g 0}=270 \mathrm{~m}$ and $x_{r 0}=-35.0 \mathrm{~m}$ at time $t=0$. The green car has a constant speed of $20.0 \mathrm{~m} / \mathrm{s}$ and the red car begins from rest. What is the acceleration magnitude of the red car?

Figure 2-28 Problem 35.
-036 A car moves along an x axis through a distance of 900 m , starting at rest (at $x=0$) and ending at rest (at $x=900 \mathrm{~m}$). Through the first $\frac{1}{4}$ of that distance, its acceleration is $+2.25 \mathrm{~m} / \mathrm{s}^{2}$. Through the rest of that distance, its acceleration is $-0.750 \mathrm{~m} / \mathrm{s}^{2}$. What are (a) its travel time through the 900 m and (b) its maximum speed? (c) Graph position x, velocity v, and acceleration a versus time t for the trip.
-037 Figure 2-29 depicts the motion of a particle moving along an x axis with a constant acceleration. The figure's vertical scaling is set by $x_{s}=6.0 \mathrm{~m}$. What are the (a) magnitude and (b) direction of the particle's acceleration?
©38 (a) If the maximum acceleration that is tolerable for passengers in a subway train is $1.34 \mathrm{~m} / \mathrm{s}^{2}$ and subway stations are located 806 m apart, what is the maximum speed a subway train

Figure 2-29 Problem 37. can attain between stations? (b) What is the travel time between stations? (c) If a subway train stops for 20 s at each station, what is the maximum average speed of the train, from one start-up to the next? (d) Graph x, v, and a versus t for the interval from one start-up to the next.
-०39 Cars A and B move in the same direction in adjacent lanes. The position x of $\operatorname{car} A$ is given in Fig. 2-30, from time $t=0$ to $t=7.0 \mathrm{~s}$. The figure's vertical scaling is set by $x_{s}=$ 32.0 m . At $t=0, \operatorname{car} B$ is at $x=$ 0 , with a velocity of $12 \mathrm{~m} / \mathrm{s}$ and a negative constant acceleration a_{B}. (a) What must a_{B} be

Figure 2-30 Problem 39. such that the cars are (momentarily) side by side (momentarily at the same value of x) at $t=4.0 \mathrm{~s}$? (b) For that value of a_{B}, how many times are the cars side by side? (c) Sketch the position x of car B versus time t on Fig. 2-30. How many times will the cars be side by side if the magnitude of acceleration a_{B} is (d) more than and (e) less than the answer to part (a)?
-०40 You are driving toward a traffic signal when it turns yellow. Your speed is the legal speed limit of $v_{0}=55 \mathrm{~km} / \mathrm{h}$; your best deceleration rate has the magnitude $a=5.18 \mathrm{~m} / \mathrm{s}^{2}$. Your best reaction time to begin braking is $T=0.75 \mathrm{~s}$. To avoid having the front of your car enter the intersection after the light turns red, should you brake to a stop or continue to move at $55 \mathrm{~km} / \mathrm{h}$ if the distance to
the intersection and the duration of the yellow light are (a) 40 m and 2.8 s , and (b) 32 m and 1.8 s ? Give an answer of brake, continue, either (if either strategy works), or neither (if neither strategy works and the yellow duration is inappropriate).
$\bullet 41$ ©o As two trains move along a track, their conductors suddenly notice that they are headed toward each other. Figure 2-31 gives their velocities v as functions of time t as the conductors slow the trains. The figure's vertical scaling is set by
 $v_{s}=40.0 \mathrm{~m} / \mathrm{s}$. The slowing processes begin when the trains are 200 m apart. What is their separation when both trains have stopped?
\bullet © 0 (6 You are arguing over a cell phone while trailing an unmarked police car by 25 m ; both your car and the police car are traveling at $110 \mathrm{~km} / \mathrm{h}$. Your argument diverts your attention from the police car for 2.0 s (long enough for you to look at the phone and yell, "I won't do that!"). At the beginning of that 2.0 s , the police officer begins braking suddenly at $5.0 \mathrm{~m} / \mathrm{s}^{2}$. (a) What is the separation between the two cars when your attention finally returns? Suppose that you take another 0.40 s to realize your danger and begin braking. (b) If you too brake at $5.0 \mathrm{~m} / \mathrm{s}^{2}$, what is your speed when you hit the police car?
$\bullet \bullet 43$ ©o When a high-speed passenger train traveling at $161 \mathrm{~km} / \mathrm{h}$ rounds a bend, the engineer is shocked to see that a locomotive has improperly entered onto the track from a siding and is a distance $D=676 \mathrm{~m}$ ahead (Fig. 2-32). The locomotive is moving at $29.0 \mathrm{~km} / \mathrm{h}$. The engineer of the high-speed train immediately applies the brakes. (a) What must be the magnitude of the resulting constant deceleration if a collision is to be just avoided? (b) Assume that the engineer is at $x=0$ when, at $t=0$, he first spots the locomotive. Sketch $x(t)$ curves for the locomotive and high-speed train for the cases in which a collision is just avoided and is not quite avoided.

Figure 2-32 Problem 43.

Module 2-5 Free-Fall Acceleration

-44 When startled, an armadillo will leap upward. Suppose it rises 0.544 m in the first 0.200 s . (a) What is its initial speed as it leaves the ground? (b) What is its speed at the height of 0.544 m ? (c) How much higher does it go?
-45 SSM Www (a) With what speed must a ball be thrown vertically from ground level to rise to a maximum height of 50 m ? (b) How long will it be in the air? (c) Sketch graphs of y, v, and a versus t for the ball. On the first two graphs, indicate the time at which 50 m is reached.
-46 Raindrops fall 1700 m from a cloud to the ground. (a) If they were not slowed by air resistance, how fast would the drops be moving when they struck the ground? (b) Would it be safe to walk outside during a rainstorm?
-47 SSM At a construction site a pipe wrench struck the ground with a speed of $24 \mathrm{~m} / \mathrm{s}$. (a) From what height was it inadvertently dropped? (b) How long was it falling? (c) Sketch graphs of y, v, and a versus t for the wrench.
-48 A hoodlum throws a stone vertically downward with an initial speed of $12.0 \mathrm{~m} / \mathrm{s}$ from the roof of a building, 30.0 m above the ground. (a) How long does it take the stone to reach the ground? (b) What is the speed of the stone at impact?
-49 SSM A hot-air balloon is ascending at the rate of $12 \mathrm{~m} / \mathrm{s}$ and is 80 m above the ground when a package is dropped over the side. (a) How long does the package take to reach the ground? (b) With what speed does it hit the ground?
$\bullet 50$ At time $t=0$, apple 1 is dropped from a bridge onto a roadway beneath the bridge; somewhat later, apple 2 is thrown down from the same height. Figure 2-33 gives the vertical positions y of the apples versus t during the falling, until both apples have hit the roadway. The scaling is set by $t_{s}=2.0 \mathrm{~s}$. With approximately what speed is apple 2 thrown down?

Figure 2-33 Problem 50.
$\bullet 51$ As a runaway scientific balloon ascends at $19.6 \mathrm{~m} / \mathrm{s}$, one of its instrument packages breaks free of a harness and free-falls. Figure 2-34 gives the vertical velocity of the package versus time, from before it breaks free to when it reaches the ground. (a) What maximum height above the break-free point does it

Figure 2-34 Problem 51. rise? (b) How high is the break-free point above the ground?
$\bullet 52$ ©o A bolt is dropped from a bridge under construction, falling 90 m to the valley below the bridge. (a) In how much time does it pass through the last 20% of its fall? What is its speed (b) when it begins that last 20% of its fall and (c) when it reaches the valley beneath the bridge?
-•53 SSM ILW A key falls from a bridge that is 45 m above the water. It falls directly into a model boat, moving with constant velocity, that is 12 m from the point of impact when the key is released. What is the speed of the boat?
$\bullet 54$ © © stone is dropped into a river from a bridge 43.9 m above the water. Another stone is thrown vertically down 1.00 s after the first is dropped. The stones strike the water at the same time. (a) What is the initial speed of the second stone? (b) Plot velocity versus time on a graph for each stone, taking zero time as the instant the first stone is released.
$\bullet 55$ SSM A ball of moist clay falls 15.0 m to the ground. It is in contact with the ground for 20.0 ms before stopping. (a) What is the magnitude of the average acceleration of the ball during the time it is in contact with the ground? (Treat the ball as a particle.) (b) Is the average acceleration up or down?
-056 ©0 Figure 2-35 shows the speed v versus height y of a ball tossed directly upward, along a y axis. Distance d is 0.40 m . The speed at height y_{A} is v_{A}. The speed at height y_{B} is $\frac{1}{3} v_{A}$. What is speed v_{A} ? $\bullet 57$ To test the quality of a tennis ball, you drop it onto the floor from a

Figure 2-35 Problem 56. height of 4.00 m . It rebounds to a height of 2.00 m . If the ball is in contact with the floor for 12.0 ms , (a) what is the magnitude of its average acceleration during that contact and (b) is the average acceleration up or down?
$\because 58$ An object falls a distance h from rest. If it travels $0.50 h$ in the last 1.00 s , find (a) the time and (b) the height of its fall. (c) Explain the physically unacceptable solution of the quadratic equation in t that you obtain.
-059 Water drips from the nozzle of a shower onto the floor 200 cm below. The drops fall at regular (equal) intervals of time, the first drop striking the floor at the instant the fourth drop begins to fall. When the first drop strikes the floor, how far below the nozzle are the (a) second and (b) third drops?
$\bullet 60$ © A rock is thrown vertically upward from ground level at time $t=0 . \mathrm{At} t=1.5 \mathrm{~s}$ it passes the top of a tall tower, and 1.0 s later it reaches its maximum height. What is the height of the tower?
00061 (60 A steel ball is dropped from a building's roof and passes a window, taking 0.125 s to fall from the top to the bottom of the window, a distance of 1.20 m . It then falls to a sidewalk and bounces back past the window, moving from bottom to top in 0.125 s. Assume that the upward flight is an exact reverse of the fall. The time the ball spends below the bottom of the window is 2.00 s. How tall is the building?

00062 A basketball player grabbing a rebound jumps 76.0 cm vertically. How much total time (ascent and descent) does the player spend (a) in the top 15.0 cm of this jump and (b) in the bottom 15.0 cm ? (The player seems to hang in the air at the top.)
-0063 (60 A drowsy cat spots a flowerpot that sails first up and then down past an open window. The pot is in view for a total of 0.50 s , and the top-to-bottom height of the window is 2.00 m . How high above the window top does the flowerpot go?
©o064 A ball is shot vertically upward from the surface of another planet. A plot of y versus t for the ball is shown in Fig. 2-36, where y is the height of the ball above its starting point and $t=0$ at the instant the ball is shot. The figure's vertical scaling is set by $y_{s}=30.0 \mathrm{~m}$. What are the magnitudes of (a) the free-fall acceleration on the planet and (b) the initial velocity of the ball?

Figure 2-36 Problem 64.

Module 2-6 Graphical Integration in Motion Analysis

-65 Figure 2-15a gives the acceleration of a volunteer's head and torso during a rear-end collision. At maximum head acceleration, what is the speed of (a) the head and (b) the torso?
$\bullet 066$ In a forward punch in karate, the fist begins at rest at the waist and is brought rapidly forward until the arm is fully extended. The speed $v(t)$ of the fist is given in Fig. 2-37 for someone skilled in karate. The vertical scaling is set by $v_{s}=8.0 \mathrm{~m} / \mathrm{s}$. How far has the fist moved at (a) time $t=50 \mathrm{~ms}$ and (b) when the speed of the fist is maximum?

Figure 2-37 Problem 66.
-•67 When a soccer ball is kicked toward a player and the player deflects the ball by "heading" it, the acceleration of the head during the collision can be significant. Figure 2-38 gives the measured acceleration

Figure 2-38 Problem 67. $a(t)$ of a soccer player's head for a bare head and a helmeted head, starting from rest. The scaling on the vertical axis is set by $a_{s}=200$ $\mathrm{m} / \mathrm{s}^{2}$. At time $t=7.0 \mathrm{~ms}$, what is the difference in the speed acquired by the bare head and the speed acquired by the helmeted head?
-•68 A salamander of the genus Hydromantes captures prey by launching its tongue as a projectile: The skeletal part of the tongue is shot forward, unfolding the rest of the tongue, until the outer portion lands on the prey, sticking to it. Figure 2-39 shows the acceleration magnitude a versus time t for the acceleration phase of the launch in a typical situation. The indicated accelerations are $a_{2}=400 \mathrm{~m} / \mathrm{s}^{2}$ and $a_{1}=100 \mathrm{~m} / \mathrm{s}^{2}$. What is the outward speed of the tongue at the end of the acceleration phase?
-•69 ILw How far does the runner whose velocity-time graph is shown in Fig. 2-40 travel in 16 s ? The figure's vertical scaling is set by $v_{s}=8.0 \mathrm{~m} / \mathrm{s}$.

Figure 2-39 Problem 68.

Figure 2-40 Problem 69.
$\because 70$ Two particles move along an x axis. The position of particle 1 is given by $x=6.00 t^{2}+3.00 t+2.00$ (in meters and seconds); the acceleration of particle 2 is given by $a=-8.00 t$ (in meters per second squared and seconds) and, at $t=0$, its velocity is $20 \mathrm{~m} / \mathrm{s}$. When the velocities of the particles match, what is their velocity?

Additional Problems

71 In an arcade video game, a spot is programmed to move across the screen according to $x=9.00 t-0.750 t^{3}$, where x is distance in centimeters measured from the left edge of the screen and t is time in seconds. When the spot reaches a screen edge, at either $x=0$ or $x=15.0 \mathrm{~cm}, t$ is reset to 0 and the spot starts moving again according to $x(t)$. (a) At what time after starting is the spot instantaneously at rest? (b) At what value of x does this occur? (c) What is the spot's acceleration (including sign) when this occurs? (d) Is it moving right or left just prior to coming to rest? (e) Just after? (f) At what time $t>0$ does it first reach an edge of the screen?

72 A rock is shot vertically upward from the edge of the top of a tall building. The rock reaches its maximum height above the top of the building 1.60 s after being shot. Then, after barely missing the edge of the building as it falls downward, the rock strikes the ground 6.00 s after it is launched. In SI units: (a) with what upward velocity is the rock shot, (b) what maximum height above the top of the building is reached by the rock, and (c) how tall is the building?
73 ©o At the instant the traffic light turns green, an automobile starts with a constant acceleration a of $2.2 \mathrm{~m} / \mathrm{s}^{2}$. At the same instant a truck, traveling with a constant speed of $9.5 \mathrm{~m} / \mathrm{s}$, overtakes and passes the automobile. (a) How far beyond the traffic signal will the automobile overtake the truck? (b) How fast will the automobile be traveling at that instant?
74 A pilot flies horizontally at $1300 \mathrm{~km} / \mathrm{h}$, at height $h=35 \mathrm{~m}$ above initially level ground. However, at time $t=0$, the pilot begins to fly over ground sloping upward at angle $\theta=4.3^{\circ}$ (Fig. 2-41). If the pilot does not change the airplane's heading, at what time t does the plane strike the ground?

Figure 2-41 Problem 74.
75 ©o To stop a car, first you require a certain reaction time to begin braking; then the car slows at a constant rate. Suppose that the total distance moved by your car during these two phases is 56.7 m when its initial speed is $80.5 \mathrm{~km} / \mathrm{h}$, and 24.4 m when its initial speed is $48.3 \mathrm{~km} / \mathrm{h}$. What are (a) your reaction time and (b) the magnitude of the acceleration?
76 Fo $2-42$ shows part of a street where traffic flow is to be controlled to allow a platoon of cars to move smoothly along the street. Suppose that the platoon leaders have just

Figure 2-42 Problem 76.
reached intersection 2 , where the green appeared when they were distance d from the intersection. They continue to travel at a certain speed v_{p} (the speed limit) to reach intersection 3, where the green appears when they are distance d from it. The intersections are separated by distances D_{23} and D_{12}. (a) What should be the time delay of the onset of green at intersection 3 relative to that at intersection 2 to keep the platoon moving smoothly?

Suppose, instead, that the platoon had been stopped by a red light at intersection 1 . When the green comes on there, the leaders require a certain time t_{r} to respond to the change and an additional time to accelerate at some rate a to the cruising speed v_{p}. (b) If the green at intersection 2 is to appear when the leaders are distance d from that intersection, how long after the light at intersection 1 turns green should the light at intersection 2 turn green?
77 SSIM A hot rod can accelerate from 0 to $60 \mathrm{~km} / \mathrm{h}$ in 5.4 s . (a) What is its average acceleration, in $\mathrm{m} / \mathrm{s}^{2}$, during this time? (b) How far will it travel during the 5.4 s , assuming its acceleration is constant? (c) From rest, how much time would it require to go a distance of 0.25 km if its acceleration could be maintained at the value in (a)?

78 © A red train traveling at $72 \mathrm{~km} / \mathrm{h}$ and a green train traveling at $144 \mathrm{~km} / \mathrm{h}$ are headed toward each other along a straight, level track. When they are 950 m apart, each engineer sees the other's train and applies the brakes. The brakes slow each train at the rate of $1.0 \mathrm{~m} / \mathrm{s}^{2}$. Is there a collision? If so, answer yes and give the speed of the red train and the speed of the green train at impact, respectively. If not, answer no and give the separation between the trains when they stop.

79 (so At time $t=0$, a rock climber accidentally allows a piton to fall freely from a high point on the rock wall to the valley below him. Then, after a short delay, his climbing partner, who is 10 m higher on the wall, throws a piton downward. The positions y of the pitons versus t during the

Figure 2-43 Problem 79. falling are given in Fig. 2-43. With what speed is the second piton thrown?

80 A train started from rest and moved with constant acceleration. At one time it was traveling $30 \mathrm{~m} / \mathrm{s}$, and 160 m farther on it was traveling $50 \mathrm{~m} / \mathrm{s}$. Calculate (a) the acceleration, (b) the time required to travel the 160 m mentioned, (c) the time required to attain the speed of $30 \mathrm{~m} / \mathrm{s}$, and (d) the distance moved from rest to the time the train had a speed of $30 \mathrm{~m} / \mathrm{s}$. (e) Graph x versus t and v versus t for the train, from rest.

81 SSM A particle's acceleration along an x axis is $a=5.0 t$, with t in seconds and a in meters per second squared. At $t=2.0 \mathrm{~s}$, its velocity is $+17 \mathrm{~m} / \mathrm{s}$. What is its velocity at $t=4.0 \mathrm{~s}$?

82 Figure 2-44 gives the acceleration a versus time t for a particle moving along an x axis. The a-axis scale is set by $a_{s}=12.0 \mathrm{~m} / \mathrm{s}^{2}$. At $t=-2.0 \mathrm{~s}$, the particle's velocity is 7.0 m / s. What is its velocity at $t=$ 6.0 s?

Figure 2-44 Problem 82.

83 Figure 2-45 shows a simple device for measuring your reaction time. It consists of a cardboard strip marked with a scale and two large dots. A friend holds the strip vertically, with thumb and forefinger at the dot on the right in Fig. 2-45. You then position your thumb and forefinger at the other dot (on the left in Fig. 2-45), being careful not to touch the strip. Your friend releases the strip, and you try to pinch it as soon as possible after you see it begin to fall. The mark at the place where you pinch the strip gives your reaction time. (a) How far from the lower dot should you place the 50.0 ms mark? How much higher should you place the marks for (b) 100 , (c) 150 , (d) 200 , and (e) 250 ms ? (For example, should the 100 ms marker be 2 times as far from the dot as the 50 ms marker? If so, give an answer of 2 times. Can you find any pattern in the answers?)

84 A rocket-driven sled running on a straight, level track is used to investigate the effects of large accelerations on humans. One such sled can attain a speed of $1600 \mathrm{~km} / \mathrm{h}$ in 1.8 s , starting from rest. Find (a) the acceleration (assumed constant) in terms of g and (b) the distance traveled.
85 A mining cart is pulled up a hill at $20 \mathrm{~km} / \mathrm{h}$ and then pulled back down the hill at $35 \mathrm{~km} / \mathrm{h}$ through its original level. (The time required for the cart's reversal at the top of its climb is negligible.) What is the average speed of the cart for its round trip, from its original level back to its original level?
86 A motorcyclist who is moving along an x axis directed toward the east has an acceleration given by $a=(6.1-1.2 t) \mathrm{m} / \mathrm{s}^{2}$ for $0 \leq t \leq 6.0 \mathrm{~s}$. At $t=0$, the velocity and position of the cyclist are $2.7 \mathrm{~m} / \mathrm{s}$ and 7.3 m . (a) What is the maximum speed achieved by the cyclist? (b) What total distance does the cyclist travel between $t=0$ and 6.0 s?
87 SSM When the legal speed limit for the New York Thruway was increased from $55 \mathrm{mi} / \mathrm{h}$ to $65 \mathrm{mi} / \mathrm{h}$, how much time was saved by a motorist who drove the 700 km between the Buffalo entrance and the New York City exit at the legal speed limit?
88 A car moving with constant acceleration covered the distance between two points 60.0 m apart in 6.00 s . Its speed as it passed the second point was $15.0 \mathrm{~m} / \mathrm{s}$. (a) What was the speed at the first point? (b) What was the magnitude of the acceleration? (c) At what prior distance from the first point was the car at rest? (d) Graph x versus t and v versus t for the car, from rest $(t=0)$.
89 SSM A certain juggler usually tosses balls vertically to a height H. To what height must they be tossed if they are to spend twice as much time in the air?
90 A particle starts from the origin at $t=0$ and moves along the positive x axis. A graph of the velocity of the particle as a function of the time is shown in Fig. 2-46; the v-axis scale is set by $v_{s}=4.0 \mathrm{~m} / \mathrm{s}$. (a) What is the coordinate of the particle at $t=5.0 \mathrm{~s}$? (b) What is the velocity of the particle at $t=5.0 \mathrm{~s}$? (c) What is

Figure 2-46 Problem 90.
the acceleration of the particle at $t=5.0 \mathrm{~s}$? (d) What is the average velocity of the particle between $t=1.0 \mathrm{~s}$ and $t=5.0 \mathrm{~s}$? (e) What is the average acceleration of the particle between $t=1.0 \mathrm{~s}$ and $t=5.0 \mathrm{~s}$?
91 A rock is dropped from a 100 -m-high cliff. How long does it take to fall (a) the first 50 m and (b) the second 50 m ?
92 Two subway stops are separated by 1100 m . If a subway train accelerates at $+1.2 \mathrm{~m} / \mathrm{s}^{2}$ from rest through the first half of the distance and decelerates at $-1.2 \mathrm{~m} / \mathrm{s}^{2}$ through the second half, what are (a) its travel time and (b) its maximum speed? (c) Graph x, v, and a versus t for the trip.
93 A stone is thrown vertically upward. On its way up it passes point A with speed v, and point $B, 3.00 \mathrm{~m}$ higher than A, with speed $\frac{1}{2} v$. Calculate (a) the speed v and (b) the maximum height reached by the stone above point B.
94 A rock is dropped (from rest) from the top of a $60-\mathrm{m}-\mathrm{tall}$ building. How far above the ground is the rock 1.2 s before it reaches the ground?
95 SSM An iceboat has a constant velocity toward the east when a sudden gust of wind causes the iceboat to have a constant acceleration toward the east for a period of 3.0 s . A plot of x versus t is shown in Fig. 2-47, where $t=0$ is taken to be the instant the wind starts to blow and the positive x axis is toward the east. (a) What is the acceleration of the iceboat during the 3.0 s interval? (b) What is the velocity of the iceboat at the end of the 3.0 s interval? (c) If the acceleration remains constant for an additional 3.0 s , how far does the iceboat travel during this second 3.0 s interval?

Figure 2-47 Problem 95.
96 A lead ball is dropped in a lake from a diving board 5.20 m above the water. It hits the water with a certain velocity and then sinks to the bottom with this same constant velocity. It reaches the bottom 4.80 s after it is dropped. (a) How deep is the lake? What are the (b) magnitude and (c) direction (up or down) of the average velocity of the ball for the entire fall? Suppose that all the water is drained from the lake. The ball is now thrown from the diving board so that it again reaches the bottom in 4.80 s . What are the (d) magnitude and (e) direction of the initial velocity of the ball?

97 The single cable supporting an unoccupied construction elevator breaks when the elevator is at rest at the top of a $120-\mathrm{m}$-high building. (a) With what speed does the elevator strike the ground? (b) How long is it falling? (c) What is its speed when it passes the halfway point on the way down? (d) How long has it been falling when it passes the halfway point?
98 Two diamonds begin a free fall from rest from the same height, 1.0 s apart. How long after the first diamond begins to fall will the two diamonds be 10 m apart?
99 A ball is thrown vertically downward from the top of a 36.6m -tall building. The ball passes the top of a window that is 12.2 m above the ground 2.00 s after being thrown. What is the speed of the ball as it passes the top of the window?

100 A parachutist bails out and freely falls 50 m . Then the parachute opens, and thereafter she decelerates at $2.0 \mathrm{~m} / \mathrm{s}^{2}$. She reaches the ground with a speed of $3.0 \mathrm{~m} / \mathrm{s}$. (a) How long is the parachutist in the air? (b) At what height does the fall begin?

101 A ball is thrown down vertically with an initial speed of v_{0} from a height of h. (a) What is its speed just before it strikes the ground? (b) How long does the ball take to reach the ground? What would be the answers to (c) part a and (d) part b if the ball were thrown upward from the same height and with the same initial speed? Before solving any equations, decide whether the answers to (c) and (d) should be greater than, less than, or the same as in (a) and (b).

102 The sport with the fastest moving ball is jai alai, where measured speeds have reached $303 \mathrm{~km} / \mathrm{h}$. If a professional jai alai player faces a ball at that speed and involuntarily blinks, he blacks out the scene for 100 ms . How far does the ball move during the blackout?
103 If a baseball pitcher throws a fastball at a horizontal speed of $160 \mathrm{~km} / \mathrm{h}$, how long does the ball take to reach home plate 18.4 m away?
104 A proton moves along the x axis according to the equation $x=50 t+10 t^{2}$, where x is in meters and t is in seconds. Calculate (a) the average velocity of the proton during the first 3.0 s of its motion, (b) the instantaneous velocity of the proton at $t=3.0 \mathrm{~s}$, and (c) the instantaneous acceleration of the proton at $t=3.0 \mathrm{~s}$. (d) Graph x versus t and indicate how the answer to (a) can be obtained from the plot. (e) Indicate the answer to (b) on the graph. (f) Plot v versus t and indicate on it the answer to (c).

105 A motorcycle is moving at $30 \mathrm{~m} / \mathrm{s}$ when the rider applies the brakes, giving the motorcycle a constant deceleration. During the 3.0 s interval immediately after braking begins, the speed decreases to $15 \mathrm{~m} / \mathrm{s}$. What distance does the motorcycle travel from the instant braking begins until the motorcycle stops?
106 A shuffleboard disk is accelerated at a constant rate from rest to a speed of $6.0 \mathrm{~m} / \mathrm{s}$ over a 1.8 m distance by a player using a cue. At this point the disk loses contact with the cue and slows at a constant rate of $2.5 \mathrm{~m} / \mathrm{s}^{2}$ until it stops. (a) How much time elapses from when the disk begins to accelerate until it stops? (b) What total distance does the disk travel?

107 The head of a rattlesnake can accelerate at $50 \mathrm{~m} / \mathrm{s}^{2}$ in striking a victim. If a car could do as well, how long would it take to reach a speed of $100 \mathrm{~km} / \mathrm{h}$ from rest?

108 A jumbo jet must reach a speed of $360 \mathrm{~km} / \mathrm{h}$ on the runway for takeoff. What is the lowest constant acceleration needed for takeoff from a 1.80 km runway?
109 An automobile driver increases the speed at a constant rate from $25 \mathrm{~km} / \mathrm{h}$ to $55 \mathrm{~km} / \mathrm{h}$ in 0.50 min . A bicycle rider speeds up at a constant rate from rest to $30 \mathrm{~km} / \mathrm{h}$ in 0.50 min . What are the magnitudes of (a) the driver's acceleration and (b) the rider's acceleration?
110 On average, an eye blink lasts about 100 ms . How far does a MiG-25 "Foxbat" fighter travel during a pilot's blink if the plane's average velocity is $3400 \mathrm{~km} / \mathrm{h}$?

111 A certain sprinter has a top speed of $11.0 \mathrm{~m} / \mathrm{s}$. If the sprinter starts from rest and accelerates at a constant rate, he is able to reach his top speed in a distance of 12.0 m . He is then able to maintain this top speed for the remainder of a 100 m race. (a) What is his time for the 100 m race? (b) In order to improve his time, the sprinter tries to decrease the distance required for him to reach his
top speed. What must this distance be if he is to achieve a time of 10.0 s for the race?

112 The speed of a bullet is measured to be $640 \mathrm{~m} / \mathrm{s}$ as the bullet emerges from a barrel of length 1.20 m . Assuming constant acceleration, find the time that the bullet spends in the barrel after it is fired.
113 The Zero Gravity Research Facility at the NASA Glenn Research Center includes a 145 m drop tower. This is an evacuated vertical tower through which, among other possibilities, a 1-m-diameter sphere containing an experimental package can be dropped. (a) How long is the sphere in free fall? (b) What is its speed just as it reaches a catching device at the bottom of the tower? (c) When caught, the sphere experiences an average deceleration of 25 g as its speed is reduced to zero. Through what distance does it travel during the deceleration?
114 A car can be braked to a stop from the autobahn-like speed of $200 \mathrm{~km} / \mathrm{h}$ in 170 m . Assuming the acceleration is constant, find its magnitude in (a) SI units and (b) in terms of g. (c) How much time T_{b} is required for the braking? Your reaction time T_{r} is the time you require to perceive an emergency, move your foot to the brake, and begin the braking. If $T_{r}=400 \mathrm{~ms}$, then (d) what is T_{b} in terms of T_{r}, and (e) is most of the full time required to stop spent in reacting or braking? Dark sunglasses delay the visual signals sent from the eyes to the visual cortex in the brain, increasing T_{r}. (f) In the extreme case in which T_{r} is increased by 100 ms , how much farther does the car travel during your reaction time?
115 In 1889, at Jubbulpore, India, a tug-of-war was finally won after 2 h 41 min , with the winning team displacing the center of the rope 3.7 m . In centimeters per minute, what was the magnitude of the average velocity of that center point during the contest?

116 Most important in an investigation of an airplane crash by the U.S. National Transportation Safety Board is the data stored on the airplane's flight-data recorder, commonly called the "black box" in spite of its orange coloring and reflective tape. The recorder is engineered to withstand a crash with an average deceleration of magnitude 3400 g during a time interval of 6.50 ms . In such a crash, if the recorder and airplane have zero speed at the end of that time interval, what is their speed at the beginning of the interval?
117 From January 26, 1977, to September 18, 1983, George Meegan of Great Britain walked from Ushuaia, at the southern tip of South America, to Prudhoe Bay in Alaska, covering 30600 km . In meters per second, what was the magnitude of his average velocity during that time period?
118 The wings on a stonefly do not flap, and thus the insect cannot fly. However, when the insect is on a water surface, it can sail across the surface by lifting its wings into a breeze. Suppose that you time stoneflies as they move at constant speed along a straight path of a certain length. On average, the trips each take 7.1 s with the wings set as sails and 25.0 s with the wings tucked in. (a) What is the ratio of the sailing speed v_{s} to the nonsailing speed $v_{n s}$? (b) In terms of v_{s}, what is the difference in the times the insects take to travel the first 2.0 m along the path with and without sailing?

119 The position of a particle as it moves along a y axis is given by

$$
y=(2.0 \mathrm{~cm}) \sin (\pi t / 4)
$$

with t in seconds and y in centimeters. (a) What is the average velocity of the particle between $t=0$ and $t=2.0 \mathrm{~s}$? (b) What is the instantaneous velocity of the particle at $t=0,1.0$, and 2.0 s ? (c) What is the average acceleration of the particle between $t=0$ and $t=2.0 \mathrm{~s}$? (d) What is the instantaneous acceleration of the particle at $t=0$, 1.0 , and 2.0 s ?

We next evaluate each term with Eq. 3-24, finding the direction with the right-hand rule. For the first term here, the angle ϕ between the two vectors being crossed is 0 . For the other terms, ϕ is 90°. We find

$$
\begin{aligned}
\vec{c} & =-6(0)+9(-\hat{\mathrm{j}})+8(-\hat{\mathrm{k}})-12 \hat{\mathrm{i}} \\
& =-12 \hat{\mathrm{i}}-9 \hat{\mathrm{j}}-8 \hat{\mathrm{k}}
\end{aligned}
$$

(Answer)

This vector \vec{c} is perpendicular to both \vec{a} and \vec{b}, a fact you can check by showing that $\vec{c} \cdot \vec{a}=0$ and $\vec{c} \cdot \vec{b}=0$; that is, there is no component of \vec{c} along the direction of either \vec{a} or \vec{b}.

In general: A cross product gives a perpendicular vector, two perpendicular vectors have a zero dot product, and two vectors along the same axis have a zero cross product.

8eview \& Summary

Scalars and Vectors Scalars, such as temperature, have magnitude only. They are specified by a number with a unit $\left(10^{\circ} \mathrm{C}\right)$ and obey the rules of arithmetic and ordinary algebra. Vectors, such as displacement, have both magnitude and direction (5 m , north) and obey the rules of vector algebra.

Adding Vectors Geometrically Two vectors \vec{a} and \vec{b} may be added geometrically by drawing them to a common scale and placing them head to tail. The vector connecting the tail of the first to the head of the second is the vector sum \vec{s}. To subtract \vec{b} from \vec{a}, reverse the direction of \vec{b} to get $-\vec{b}$; then add $-\vec{b}$ to \vec{a}. Vector addition is commutative

$$
\begin{equation*}
\vec{a}+\vec{b}=\vec{b}+\vec{a} \tag{3-2}
\end{equation*}
$$

and obeys the associative law

$$
\begin{equation*}
(\vec{a}+\vec{b})+\vec{c}=\vec{a}+(\vec{b}+\vec{c}) . \tag{3-3}
\end{equation*}
$$

Components of a Vector The (scalar) components a_{x} and a_{y} of any two-dimensional vector \vec{a} along the coordinate axes are found by dropping perpendicular lines from the ends of \vec{a} onto the coordinate axes. The components are given by

$$
\begin{equation*}
a_{x}=a \cos \theta \quad \text { and } \quad a_{y}=a \sin \theta, \tag{3-5}
\end{equation*}
$$

where θ is the angle between the positive direction of the x axis and the direction of \vec{a}. The algebraic sign of a component indicates its direction along the associated axis. Given its components, we can find the magnitude and orientation (direction) of the vector \vec{a} by using

$$
\begin{equation*}
a=\sqrt{a_{x}^{2}+a_{y}^{2}} \quad \text { and } \tan \theta=\frac{a_{y}}{a_{x}} \tag{3-6}
\end{equation*}
$$

Unit-Vector Notation Unit vectors $\hat{i}, \hat{\mathrm{j}}$, and $\hat{\mathrm{k}}$ have magnitudes of unity and are directed in the positive directions of the x, y, and z axes, respectively, in a right-handed coordinate system (as defined by the vector products of the unit vectors). We can write a vector \vec{a} in terms of unit vectors as

$$
\begin{equation*}
\vec{a}=a_{x} \hat{\mathrm{i}}+a_{y} \hat{\mathrm{j}}+a_{z} \hat{\mathrm{k}}, \tag{3-7}
\end{equation*}
$$

in which $a_{x} \hat{\mathrm{i}}, a_{y} \hat{\mathrm{j}}$, and $a_{z} \hat{\mathrm{k}}$ are the vector components of \vec{a} and a_{x}, a_{y}, and a_{z} are its scalar components.

Adding Vectors in Component Form To add vectors in component form, we use the rules

$$
\begin{equation*}
r_{x}=a_{x}+b_{x} \quad r_{y}=a_{y}+b_{y} \quad r_{z}=a_{z}+b_{z} . \tag{3-10to3-12}
\end{equation*}
$$

Here \vec{a} and \vec{b} are the vectors to be added, and \vec{r} is the vector sum. Note that we add components axis by axis.We can then express the sum in unit-vector notation or magnitude-angle notation.

Product of a Scalar and a Vector The product of a scalar s and a vector \vec{v} is a new vector whose magnitude is $s v$ and whose direction is the same as that of \vec{v} if s is positive, and opposite that of \vec{v} if s is negative. (The negative sign reverses the vector.) To divide \vec{v} by s, multiply \vec{v} by $1 / s$.

The Scalar Product The scalar (or dot) product of two vectors \vec{a} and \vec{b} is written $\vec{a} \cdot \vec{b}$ and is the scalar quantity given by

$$
\begin{equation*}
\vec{a} \cdot \vec{b}=a b \cos \phi, \tag{3-20}
\end{equation*}
$$

in which ϕ is the angle between the directions of \vec{a} and \vec{b}. A scalar product is the product of the magnitude of one vector and the scalar component of the second vector along the direction of the first vector. Note that $\vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{a}$, which means that the scalar product obeys the commutative law.

In unit-vector notation,

$$
\begin{equation*}
\vec{a} \cdot \vec{b}=\left(a_{x} \hat{\mathrm{i}}+a_{y} \hat{\mathrm{j}}+a_{z} \hat{\mathrm{k}}\right) \cdot\left(b_{x} \hat{\mathrm{i}}+b_{y} \hat{\mathrm{j}}+b_{z} \hat{\mathrm{k}}\right), \tag{3-22}
\end{equation*}
$$

which may be expanded according to the distributive law.
The Vector Product The vector (or cross) product of two vectors \vec{a} and \vec{b} is written $\vec{a} \times \vec{b}$ and is a vector \vec{c} whose magnitude c is given by

$$
\begin{equation*}
c=a b \sin \phi, \tag{3-24}
\end{equation*}
$$

in which ϕ is the smaller of the angles between the directions of \vec{a} and \vec{b}. The direction of \vec{c} is perpendicular to the plane defined by \vec{a} and \vec{b} and is given by a right-hand rule, as shown in Fig. 3-19. Note that $\vec{a} \times \vec{b}=-(\vec{b} \times \vec{a})$, which means that the vector product does not obey the commutative law.

In unit-vector notation,

$$
\begin{equation*}
\vec{a} \times \vec{b}=\left(a_{x} \hat{\mathrm{i}}+a_{y} \hat{\mathrm{j}}+a_{z} \hat{\mathrm{k}}\right) \times\left(b_{x} \hat{\mathrm{i}}+b_{y} \hat{\mathrm{j}}+b_{z} \hat{\mathrm{k}}\right) \tag{3-26}
\end{equation*}
$$

which we may expand with the distributive law.

Questions

1 Can the sum of the magnitudes of two vectors ever be equal to the magnitude of the sum of the same two vectors? If no, why not? If yes, when?
2 The two vectors shown in Fig. 3-21 lie in an $x y$ plane. What are the signs of the x and y components, respectively, of (a) $\vec{d}_{1}+\vec{d}_{2}$, (b) $\vec{d}_{1}-\vec{d}_{2}$, and (c) $\vec{d}_{2}-\vec{d}_{1}$?

3 Being part of the "Gators," the University of Florida golfing team must play on a putting green with an alligator pit. Figure 3-22 shows an overhead view of one putting challenge of the team; an $x y$ coordinate system is superimposed. Team members must putt from the origin to the hole, which is at $x y$ coordinates (8 m , $12 \mathrm{~m})$, but they can putt the golf ball using only one or more of the following displacements, one or more times:

$$
\vec{d}_{1}=(8 \mathrm{~m}) \hat{\mathrm{i}}+(6 \mathrm{~m}) \hat{\mathrm{j}}, \quad \vec{d}_{2}=(6 \mathrm{~m}) \hat{\mathrm{j}}, \quad \vec{d}_{3}=(8 \mathrm{~m}) \hat{\mathrm{i}} .
$$

The pit is at coordinates $(8 \mathrm{~m}, 6 \mathrm{~m})$. If a team member putts the ball into or through the pit, the member is automatically transferred to Florida State University, the arch rival. What sequence of displacements should a team member use to avoid the pit and the school transfer?
4 Equation 3-2 shows that the addition of two vectors \vec{a} and \vec{b} is commutative. Does that mean subtraction is commutative, so that $\vec{a}-\vec{b}=\vec{b}-\vec{a}$?
5 Which of the arrangements of axes in Fig. 3-23 can be labeled "right-handed coordinate system"? As usual, each axis label indicates the positive side of the axis.

Figure 3-23 Question 5.

Figure 3-21 Question 2.

Figure 3-22 Question 3.

6 Describe two vectors \vec{a} and \vec{b} such that
(a) $\vec{a}+\vec{b}=\vec{c}$ and $a+b=c$;
(b) $\vec{a}+\vec{b}=\vec{a}-\vec{b}$;
(c) $\vec{a}+\vec{b}=\vec{c}$ and $a^{2}+b^{2}=c^{2}$.

7 If $\vec{d}=\vec{a}+\vec{b}+(-\vec{c})$, does (a) $\vec{a}+(-\vec{d})=\vec{c}+(-\vec{b})$, (b) $\vec{a}=$ $(-\vec{b})+\vec{d}+\vec{c}$, and (c) $\vec{c}+(-\vec{d})=\vec{a}+\vec{b}$?
8 If $\vec{a} \cdot \vec{b}=\vec{a} \cdot \vec{c}$, must \vec{b} equal \vec{c} ?
9 If $\vec{F}=q(\vec{v} \times \vec{B})$ and \vec{v} is perpendicular to \vec{B}, then what is the direction of \vec{B} in the three situations shown in Fig. 3-24 when constant q is (a) positive and (b) negative?

(1)

(2)

(3)

Figure 3-24 Question 9.
10 Figure 3-25 shows vector \vec{A} and four other vectors that have the same magnitude but differ in orientation. (a) Which of those other four vectors have the same dot product with \vec{A} ? (b) Which have a negative dot product with \vec{A} ?

11 In a game held within a threedimensional maze, you must move

Figure 3-25 Question 10. your game piece from start, at $x y z$ coordinates $(0,0,0)$, to finish, at coordinates ($-2 \mathrm{~cm}, 4 \mathrm{~cm},-4 \mathrm{~cm}$). The game piece can undergo only the displacements (in centimeters) given below. If, along the way, the game piece lands at coordinates ($-5 \mathrm{~cm},-1 \mathrm{~cm},-1 \mathrm{~cm}$) or ($5 \mathrm{~cm}, 2 \mathrm{~cm},-1 \mathrm{~cm}$), you lose the game. Which displacements and in what sequence will get your game piece to finish?

$$
\begin{array}{ll}
\vec{p}=-7 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}-3 \hat{\mathrm{k}} & \vec{r}=2 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}+2 \hat{\mathrm{k}} \\
\vec{q}=2 \hat{\mathrm{i}}-\hat{\mathrm{j}}+4 \hat{\mathrm{k}} & \vec{s}=3 \hat{\mathrm{i}}+5 \hat{\mathrm{j}}-3 \hat{\mathrm{k}}
\end{array}
$$

12 The x and y components of four vectors $\vec{a}, \vec{b}, \vec{c}$, and \vec{d} are given below. For which vectors will your calculator give you the correct angle θ when you use it to find θ with Eq. 3-6? Answer first by examining Fig. 3-12, and then check your answers with your calculator.

$$
\begin{array}{llll}
a_{x}=3 & a_{y}=3 & c_{x}=-3 & c_{y}=-3 \\
b_{x}=-3 & b_{y}=3 & d_{x}=3 & d_{y}=-3 .
\end{array}
$$

13 Which of the following are correct (meaningful) vector expressions? What is wrong with any incorrect expression?
(a) $\vec{A} \cdot(\vec{B} \cdot \vec{C})$
(f) $\vec{A}+(\vec{B} \times \vec{C})$
(b) $\vec{A} \times(\vec{B} \cdot \vec{C})$
(g) $5+\vec{A}$
(c) $\vec{A} \cdot(\vec{B} \times \vec{C})$
(h) $5+(\vec{B} \cdot \vec{C})$
(d) $\vec{A} \times(\vec{B} \times \vec{C})$
(i) $5+(\vec{B} \times \vec{C})$
(e) $\vec{A}+(\vec{B} \cdot \vec{C})$
(j) $(\vec{A} \cdot \vec{B})+(\vec{B} \times \vec{C})$

8roblems

```
G0 Tutoring problem available (at instructor's discretion) in WileyPLUS and WebAssign
SSM Worked-out solution available in Student Solutions Manual WWW Worked-out solution is at
-- Number of dots indicates level of problem difficulty ILW Interactive solution is at
    ILW Interactive solution is at http://www.wiley.com/college/halliday
$"
Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com
```


Module 3-1 Vectors and Their Components

$\bullet 1$ SSM What are (a) the x component and (b) the y component of a vector \vec{a} in the $x y$ plane if its direction is 250° counterclockwise from the positive direction of the x axis and its magnitude is 7.3 m ?
-2 A displacement vector \vec{r} in the $x y$ plane is 15 m long and directed at angle $\theta=30^{\circ}$ in Fig. 3-26. Determine (a) the x component and (b) the y component of the vector.

Figure 3-26
Problem 2.
$\cdot 3$ ssm The x component of vector \vec{A} is
-25.0 m and the y component is +40.0 m . (a) What is the magnitude of \vec{A} ? (b) What is the angle between the direction of \vec{A} and the positive direction of x ?
-4 Express the following angles in radians: (a) 20.0°, (b) 50.0°,
(c) 100°. Convert the following angles to degrees: (d) 0.330 rad , (e) 2.10 rad , (f) 7.70 rad .
-5 A ship sets out to sail to a point 120 km due north. An unexpected storm blows the ship to a point 100 km due east of its starting point. (a) How far and (b) in what direction must it now sail to reach its original destination?
-6 In Fig. 3-27, a heavy piece of machinery is raised by sliding it a distance $d=12.5 \mathrm{~m}$ along a plank oriented at angle $\theta=20.0^{\circ}$ to the horizontal. How far is it moved (a) vertically and (b) horizontally?
$\bullet 7$ Consider two displacements, one of magnitude 3 m and another

Figure 3-27 Problem 6. of magnitude 4 m . Show how the displacement vectors may be combined to get a resultant displacement of magnitude (a) 7 m , (b) 1 m , and (c) 5 m .

Module 3-2 Unit Vectors, Adding Vectors by Components

-8 A person walks in the following pattern: 3.1 km north, then 2.4 km west, and finally 5.2 km south. (a) Sketch the vector diagram that represents this motion. (b) How far and (c) in what direction would a bird fly in a straight line from the same starting point to the same final point?
-9 Two vectors are given by

$$
\begin{aligned}
& \vec{a}=(4.0 \mathrm{~m}) \hat{\mathrm{i}}-(3.0 \mathrm{~m}) \hat{\mathrm{j}}+(1.0 \mathrm{~m}) \hat{\mathrm{k}} \\
& \text { and } \vec{b} \\
&=(-1.0 \mathrm{~m}) \hat{\mathrm{i}}+(1.0 \mathrm{~m}) \hat{\mathrm{j}}+(4.0 \mathrm{~m}) \hat{\mathrm{k}} .
\end{aligned}
$$

In unit-vector notation, find (a) $\vec{a}+\vec{b}$, (b) $\vec{a}-\vec{b}$, and (c) a third vector \vec{c} such that $\vec{a}-\vec{b}+\vec{c}=0$.
-10 Find the (a) x, (b) y, and (c) z components of the sum \vec{r} of the displacements \vec{c} and \vec{d} whose components in meters are $c_{x}=7.4, c_{y}=-3.8, c_{z}=-6.1 ; d_{x}=4.4, d_{y}=-2.0, d_{z}=3.3$.
$\cdot 11$ SSM (a) In unit-vector notation, what is the sum $\vec{a}+\vec{b}$ if $\vec{a}=(4.0 \mathrm{~m}) \hat{\mathrm{i}}+(3.0 \mathrm{~m}) \hat{\mathrm{j}}$ and $\vec{b}=(-13.0 \mathrm{~m}) \hat{\mathrm{i}}+(7.0 \mathrm{~m}) \hat{\mathrm{j}}$? What are the (b) magnitude and (c) direction of $\vec{a}+\vec{b}$?
-12 A car is driven east for a distance of 50 km , then north for 30 km , and then in a direction 30° east of north for 25 km . Sketch the vector diagram and determine (a) the magnitude and (b) the angle of the car's total displacement from its starting point.
-13 A person desires to reach a point that is 3.40 km from her present location and in a direction that is 35.0° north of east. However, she must travel along streets that are oriented either north-south or east-west. What is the minimum distance she could travel to reach her destination?
-14 You are to make four straight-line moves over a flat desert floor, starting at the origin of an $x y$ coordinate system and ending at the $x y$ coordinates $(-140 \mathrm{~m}, 30 \mathrm{~m})$. The x component and y component of your moves are the following, respectively, in meters: (20 and 60), then (b_{x} and -70), then (-20 and c_{y}), then (-60 and -70). What are (a) component b_{x} and (b) component c_{y} ? What are (c) the magnitude and (d) the angle (relative to the positive direction of the x axis) of the overall displacement?
-15 SSm ILw www The two vectors \vec{a} and \vec{b} in Fig. 3-28 have equal magnitudes of 10.0 m and the angles are $\theta_{1}=30^{\circ}$ and $\theta_{2}=105^{\circ}$. Find the (a) x and (b) y components of their vector sum \vec{r}, (c) the magnitude of \vec{r}, and (d) the angle \vec{r} makes with the positive direction of the x axis.
-16 For the displacement vectors $\vec{a}=(3.0 \mathrm{~m}) \hat{\mathrm{i}}+(4.0 \mathrm{~m}) \hat{\mathrm{j}}$ and $\vec{b}=$ $(5.0 \mathrm{~m}) \hat{\mathrm{i}}+(-2.0 \mathrm{~m}) \hat{\mathrm{j}}$, give $\vec{a}+\vec{b}$ in (a) unit-vector notation, and as (b) a

Figure 3-28 Problem 15. magnitude and (c) an angle (relative to $\hat{\mathrm{i}}$). Now give $\vec{b}-\vec{a}$ in (d) unit-vector notation, and as (e) a magnitude and (f) an angle.
-17 ©0 ILW Three vectors \vec{a}, \vec{b}, and \vec{c} each have a magnitude of 50 m and lie in an $x y$ plane. Their directions relative to the positive direction of the x axis are $30^{\circ}, 195^{\circ}$, and 315°, respectively. What are
(a) the magnitude and (b) the angle of the vector $\vec{a}+\vec{b}+\vec{c}$, and
(c) the magnitude and (d) the angle of $\vec{a}-\vec{b}+\vec{c}$? What are the
(e) magnitude and (f) angle of a fourth vector \vec{d} such that $(\vec{a}+\vec{b})-(\vec{c}+\vec{d})=0$?
-18 In the sum $\vec{A}+\vec{B}=\vec{C}$, vector \vec{A} has a magnitude of 12.0 m and is angled 40.0° counterclockwise from the $+x$ direction, and vector \vec{C} has a magnitude of 15.0 m and is angled 20.0° counterclockwise from the $-x$ direction. What are (a) the magnitude and (b) the angle (relative to $+x$) of \vec{B} ?
-19 In a game of lawn chess, where pieces are moved between the centers of squares that are each 1.00 m on edge, a knight is moved in the following way: (1) two squares forward, one square rightward; (2) two squares leftward, one square forward; (3) two squares forward, one square leftward. What are (a) the magnitude and (b) the angle (relative to "forward") of the knight's overall displacement for the series of three moves?
$\bullet 20$ An explorer is caught in a whiteout (in which the snowfall is so thick that the ground cannot be distinguished from the sky) while returning to base camp. He was supposed to travel due north for 5.6 km , but when the snow clears, he discovers that he actually traveled 7.8 km at 50° north of due east. (a) How far and (b) in what direction must he now travel to reach base camp?
-21 © An ant, crazed by the Sun on a hot Texas afternoon, darts over an $x y$ plane scratched in the dirt. The x and y components of four consecutive darts are the following, all in centimeters: (30.0, $40.0),\left(b_{x},-70.0\right),\left(-20.0, c_{y}\right),(-80.0,-70.0)$. The overall displacement of the four darts has the $x y$ components $(-140,-20.0)$. What are (a) b_{x} and (b) c_{y} ? What are the (c) magnitude and (d) angle (relative to the positive direction of the x axis) of the overall displacement?
-22 (a) What is the sum of the following four vectors in unitvector notation? For that sum, what are (b) the magnitude, (c) the angle in degrees, and (d) the angle in radians?

$$
\begin{array}{ll}
\vec{E}: 6.00 \mathrm{~m} \text { at }+0.900 \mathrm{rad} & \vec{F}: 5.00 \mathrm{~m} \text { at }-75.0^{\circ} \\
\vec{G}: 4.00 \mathrm{~m} \text { at }+1.20 \mathrm{rad} & \vec{H}: 6.00 \mathrm{~m} \text { at }-210^{\circ}
\end{array}
$$

-23 If \vec{B} is added to $\vec{C}=3.0 \hat{\mathrm{i}}+4.0 \hat{\mathrm{j}}$, the result is a vector in the positive direction of the y axis, with a magnitude equal to that of \vec{C}. What is the magnitude of \vec{B} ?
$\because 24$ ©o Vector \vec{A}, which is directed along an x axis, is to be added to vector \vec{B}, which has a magnitude of 7.0 m . The sum is a third vector that is directed along the y axis, with a magnitude that is 3.0 times that of \vec{A}. What is that magnitude of \vec{A} ?
$\bullet 25$ ©0 Oasis B is 25 km due east of oasis A. Starting from oasis A, a camel walks 24 km in a direction 15° south of east and then walks 8.0 km due north. How far is the camel then from oasis B ?
$\bullet 26$ What is the sum of the following four vectors in (a) unitvector notation, and as (b) a magnitude and (c) an angle?

$$
\begin{array}{ll}
\vec{A}=(2.00 \mathrm{~m}) \hat{\mathrm{i}}+(3.00 \mathrm{~m}) \hat{\mathrm{j}} & \vec{B}: 4.00 \mathrm{~m}, \text { at }+65.0^{\circ} \\
\vec{C}=(-4.00 \mathrm{~m}) \hat{\mathrm{i}}+(-6.00 \mathrm{~m}) \hat{\mathrm{j}} & \vec{D}: 5.00 \mathrm{~m}, \text { at }-235^{\circ}
\end{array}
$$

-27 ๔๐ If $\vec{d}_{1}+\vec{d}_{2}=5 \vec{d}_{3}, \vec{d}_{1}-\vec{d}_{2}=3 \vec{d}_{3}$, and $\vec{d}_{3}=2 \hat{\mathrm{i}}+4 \hat{\mathrm{j}}$, then what are, in unit-vector notation, (a) \vec{d}_{1} and (b) \vec{d}_{2} ?
$\bullet 28$ Two beetles run across flat sand, starting at the same point. Beetle 1 runs 0.50 m due east, then 0.80 m at 30° north of due east. Beetle 2 also makes two runs; the first is 1.6 m at 40° east of due north. What must be (a) the magnitude and (b) the direction of its second run if it is to end up at the new location of beetle 1 ?
-29 © Typical backyard ants often create a network of chemical trails for guidance. Extending outward from the nest, a trail branches (bifurcates) repeatedly, with 60° between the branches. If a roaming ant chances upon a trail, it can tell the way to the nest at any branch point: If it is moving away from the nest, it has two choices of path requiring a small turn in its travel direction, either 30° leftward or 30° rightward. If it is moving toward the nest, it has only one such choice. Figure 3-29 shows a typical ant trail, with lettered straight sections of 2.0 cm length and symmetric bifurcation of 60°. Path v is parallel to the y axis. What are the (a) magnitude and (b) angle (relative to the positive direction of the superimposed x axis) of
an ant's displacement from the nest (find it in the figure) if the ant enters the trail at point A ? What are the (c) magnitude and (d) angle if it enters at point B ?

Figure 3-29 Problem 29.

- 030 (Here are two vectors:

$$
\vec{a}=(4.0 \mathrm{~m}) \hat{\mathrm{i}}-(3.0 \mathrm{~m}) \hat{\mathrm{j}} \quad \text { and } \quad \vec{b}=(6.0 \mathrm{~m}) \hat{\mathrm{i}}+(8.0 \mathrm{~m}) \hat{\mathrm{j}} .
$$

What are (a) the magnitude and (b) the angle (relative to \hat{i}) of \vec{a} ? What are (c) the magnitude and (d) the angle of \vec{b} ? What are (e) the magnitude and (f) the angle of $\vec{a}+\vec{b}$; (g) the magnitude and (h) the angle of $\vec{b}-\vec{a}$; and (i) the magnitude and (j) the angle of $\vec{a}-\vec{b}$? (k) What is the angle between the directions of $\vec{b}-\vec{a}$ and $\vec{a}-\vec{b}$?
©031 In Fig. 3-30, a vector \vec{a} with a magnitude of 17.0 m is directed at angle $\theta=56.0^{\circ}$ counterclockwise from the $+x$ axis. What are the components (a) a_{x} and (b) a_{y} of the vector? A second coordinate system is inclined by angle $\theta^{\prime}=18.0^{\circ}$ with respect to the first. What are the components (c) a_{x}^{\prime} and (d) a_{y}^{\prime} in this primed coordinate system?

Figure 3-30 Problem 31.
-0032 In Fig. 3-31, a cube of edge length a sits with one corner at the origin of an $x y z$ coordinate system. A body diagonal is a line that extends from one corner to another through the center. In unit-vector notation, what is the body diagonal that extends from the corner at (a) coordinates (0 , $0,0)$, (b) coordinates $(a, 0,0)$, (c) coordinates $(0, a, 0)$, and (d) coordinates $(a, a, 0)$? (e) Determine the

Figure 3-31 Problem 32.
angles that the body diagonals make with the adjacent edges. (f) Determine the length of the body diagonals in terms of a.

Module 3-3 Multiplying Vectors

-33 For the vectors in Fig. 3-32, with $a=4, b=3$, and $c=5$, what are (a) the magnitude and (b) the direction of $\vec{a} \times \vec{b}$, (c) the magnitude and (d) the direction of $\vec{a} \times \vec{c}$, and (e) the magnitude and (f) the direction of $\vec{b} \times \vec{c}$? (The z axis is not shown.)
-34 Two vectors are presented as $\vec{a}=3.0 \hat{\mathrm{i}}+5.0 \hat{\mathrm{j}}$ and $\vec{b}=2.0 \hat{\mathrm{i}}+4.0 \hat{\mathrm{j}}$. Find (a) $\vec{a} \times \vec{b}$, (b) $\vec{a} \cdot \vec{b}$, (c) $(\vec{a}+\vec{b}) \cdot \vec{b}$, and (d) the component of \vec{a} along the direction of \vec{b}. (Hint: For (d), consider Eq. 3-20

Figure 3-32
Problems 33 and 54. and Fig. 3-18.)
-35 Two vectors, \vec{r} and \vec{s}, lie in the $x y$ plane. Their magnitudes are 4.50 and 7.30 units, respectively, and their directions are 320° and 85.0°, respectively, as measured counterclockwise from the positive x axis. What are the values of (a) $\vec{r} \cdot \vec{s}$ and (b) $\vec{r} \times \vec{s}$?
-36 If $\vec{d}_{1}=3 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}+4 \hat{\mathrm{k}}$ and $\vec{d}_{2}=-5 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}-\hat{\mathrm{k}}$, then what is $\left(\vec{d}_{1}+\vec{d}_{2}\right) \cdot\left(\vec{d}_{1} \times 4 \vec{d}_{2}\right)$?
-37 Three vectors are given by $\vec{a}=3.0 \hat{\mathrm{i}}+3.0 \hat{\mathrm{j}}-2.0 \hat{\mathrm{k}}$, $\vec{b}=-1.0 \hat{\mathrm{i}}-4.0 \hat{\mathrm{j}}+2.0 \hat{\mathrm{k}}$, and $\vec{c}=2.0 \hat{\mathrm{i}}+2.0 \hat{\mathrm{j}}+1.0 \hat{\mathrm{k}}$. Find (a) $\vec{a} \cdot(\vec{b} \times \vec{c}),(\mathrm{b}) \vec{a} \cdot(\vec{b}+\vec{c})$, and (c) $\vec{a} \times(\vec{b}+\vec{c})$.
-038 ©or the following three vectors, what is $3 \vec{C} \cdot(2 \vec{A} \times \vec{B})$?

$$
\begin{aligned}
& \vec{A}=2.00 \hat{\mathrm{i}}+3.00 \hat{\mathrm{j}}-4.00 \hat{\mathrm{k}} \\
& \vec{B}=-3.00 \hat{\mathrm{i}}+4.00 \hat{\mathrm{j}}+2.00 \hat{\mathrm{k}} \quad \vec{C}=7.00 \hat{\mathrm{i}}-8.00 \hat{\mathrm{j}}
\end{aligned}
$$

थ.39 Vector \vec{A} has a magnitude of 6.00 units, vector \vec{B} has a magnitude of 7.00 units, and $\vec{A} \cdot \vec{B}$ has a value of 14.0 . What is the angle between the directions of \vec{A} and \vec{B} ?
๑40 ©0 Displacement \vec{d}_{1} is in the $y z$ plane 63.0° from the positive direction of the y axis, has a positive z component, and has a magnitude of 4.50 m . Displacement \vec{d}_{2} is in the $x z$ plane 30.0° from the positive direction of the x axis, has a positive z component, and has magnitude 1.40 m . What are (a) $\vec{d}_{1} \cdot \vec{d}_{2}$, (b) $\vec{d}_{1} \times \vec{d}_{2}$, and (c) the angle between \vec{d}_{1} and \vec{d}_{2} ?
$\bullet 41$ SSM ILW Www Use the definition of scalar product, $\vec{a} \cdot \vec{b}=a b \cos \theta$, and the fact that $\vec{a} \cdot \vec{b}=a_{x} b_{x}+a_{y} b_{y}+a_{z} b_{z}$ to calculate the angle between the two vectors given by $\vec{a}=3.0 \hat{\mathrm{i}}+$ $3.0 \hat{\mathrm{j}}+3.0 \hat{\mathrm{k}}$ and $\vec{b}=2.0 \hat{\mathrm{i}}+1.0 \hat{\mathrm{j}}+3.0 \hat{\mathrm{k}}$.
${ }_{\rightarrow}^{\circ} 42$ In a meeting of mimes, mime 1 goes through a displacement $\vec{d}_{1}=(4.0 \mathrm{~m}) \hat{\mathrm{i}}+(5.0 \mathrm{~m}) \hat{\mathrm{j}}$ and mime 2 goes through a displacement $\vec{d}_{2}=(-3.0 \mathrm{~m}) \hat{\mathrm{i}}+(4.0 \mathrm{~m}) \hat{\mathrm{j}}$. What are (a) $\vec{d}_{1} \times \vec{d}_{2}$, (b) $\vec{d}_{1} \cdot \vec{d}_{2}$, (c) $\left(\vec{d}_{1}+\vec{d}_{2}\right) \cdot \vec{d}_{2}$, and (d) the component of \vec{d}_{1} along the direction of \vec{d}_{2} ? (Hint: For (d), see Eq. 3-20 and Fig. 3-18.)
$\bullet 43$ SSM ILW The three vectors in Fig. 3-33 have magnitudes $a=3.00 \mathrm{~m}$, $b=4.00 \mathrm{~m}$, and $c=10.0 \mathrm{~m}$ and angle $\theta=30.0^{\circ}$. What are (a) the x component and (b) the y component of \vec{a}; (c) the x component and (d) the y com-
ponent of \vec{b}; and (e) the x component and (f) the y component of \vec{c} ? If $\vec{c}=p \vec{a}+q \vec{b}$, what are the values of $(\mathrm{g}) p$ and (h) q ?

- 44 (60 In the product $\vec{F}=q \vec{v} \times \vec{B}$, take $q=2$,

$$
\vec{v}=2.0 \hat{\mathrm{i}}+4.0 \hat{\mathrm{j}}+6.0 \hat{\mathrm{k}} \quad \text { and } \quad \vec{F}=4.0 \hat{\mathrm{i}}-20 \hat{\mathrm{j}}+12 \hat{\mathrm{k}} .
$$

What then is \vec{B} in unit-vector notation if $B_{x}=B_{y}$?

Additional Problems

45 Vectors \vec{A} and \vec{B} lie in an $x y$ plane. \vec{A} has magnitude 8.00 and angle $130^{\circ} ; \vec{B}$ has components $B_{x}=-7.72$ and $B_{y}=-9.20$. (a) What is $5 \vec{A} \cdot \vec{B}$? What is $4 \vec{A} \times 3 \vec{B}$ in (b) unit-vector notation and (c) magnitude-angle notation with spherical coordinates (see Fig. 3-34)? (d) What is the angle between the directions of \vec{A} and $4 \vec{A} \times 3 \vec{B}$? (Hint: Think a bit before you resort to a calculation.) What is $\vec{A}+3.00 \hat{\mathrm{k}}$ in (e) unit-vector notation and (f) magnitudeangle notation with spherical coordinates?

Figure 3-34 Problem 45.

46 ©octor \vec{a} has a magnitude of 5.0 m and is directed east. Vector \vec{b} has a magnitude of 4.0 m and is directed 35° west of due north. What are (a) the magnitude and (b) the direction of $\vec{a}+\vec{b}$? What are (c) the magnitude and (d) the direction of $\vec{b}-\vec{a}$? (e) Draw a vector diagram for each combination.
47 Vectors \vec{A} and \vec{B} lie in an $x y$ plane. \vec{A} has magnitude 8.00 and angle $130^{\circ} ; \vec{B}$ has components $B_{x}=-7.72$ and $B_{y}=-9.20$. What are the angles between the negative direction of the y axis and (a) the direction of \vec{A}, (b) the direction of the product $\vec{A} \times \vec{B}$, and (c) the direction of $\vec{A} \times(\vec{B}+3.00 \hat{\mathrm{k}})$?
48 © Two vectors \vec{a} and \vec{b} have the components, in meters, $a_{x}=3.2, a_{y}=1.6, b_{x}=0.50, b_{y}=4.5$. (a) Find the angle between the directions of \vec{a} and \vec{b}. There are two vectors in the $x y$ plane that are perpendicular to \vec{a} and have a magnitude of 5.0 m . One, vector \vec{c}, has a positive x component and the other, vector \vec{d}, a negative x component. What are (b) the x component and (c) the y component of vector \vec{c}, and (d) the x component and (e) the y component of vector \vec{d} ?
49 SSM A sailboat sets out from the U.S. side of Lake Erie for a point on the Canadian side, 90.0 km due north. The sailor, however, ends up 50.0 km due east of the starting point. (a) How far and (b) in what direction must the sailor now sail to reach the original destination?
50 Vector \vec{d}_{1} is in the negative direction of a y axis, and vector \vec{d}_{2} is in the positive direction of an x axis. What are the directions of (a) $\vec{d}_{2} / 4$ and (b) $\vec{d}_{1} /(-4)$? What are the magnitudes of products (c) $\vec{d}_{1} \cdot \vec{d}_{2}$ and (d) $\vec{d}_{1} \cdot\left(\vec{d}_{2} / 4\right)$? What is the direction of the vector resulting from (e) $\vec{d}_{1} \times \vec{d}_{2}$ and (f) $\vec{d}_{2} \times \vec{d}_{1}$? What is the magnitude of the vector product in (g) part (e) and (h) part (f)? What are the (i) magnitude and (j) direction of $\vec{d}_{1} \times\left(\vec{d}_{2} / 4\right)$?

51 Rock faults are ruptures along which opposite faces of rock have slid past each other. In Fig. 3-35, points A and B coincided before the rock in the foreground slid down to the right. The net displacement $\overrightarrow{A B}$ is along the plane of the fault. The horizontal component of $\overrightarrow{A B}$ is the strike-slip $A C$. The component of $\overrightarrow{A B}$ that is directed down the plane of the fault is the dip-slip $A D$. (a) What is the magnitude of the net displacement $\overrightarrow{A B}$ if the strike-slip is 22.0 m and the dip-slip is 17.0 m ? (b) If the plane of the fault is inclined at angle $\phi=52.0^{\circ}$ to the horizontal, what is the vertical component of $\overrightarrow{A B}$?

Figure 3-35 Problem 51.
52 Here are three displacements, each measured in meters: $\vec{d}_{1}=4.0 \hat{\mathrm{i}}+5.0 \hat{\mathrm{j}}-6.0 \hat{\mathrm{k}}, \quad \vec{d}_{2}=-1.0 \hat{\mathrm{i}}+2.0 \hat{\mathrm{j}}+3.0 \hat{\mathrm{k}}, \quad$ and $\quad \vec{d}_{3}=$ $4.0 \hat{\mathrm{i}}+3.0 \hat{\mathrm{j}}+2.0 \hat{\mathrm{k}}$. (a) What is $\vec{r}=\vec{d}_{1}-\vec{d}_{2}+\vec{d}_{3}$? (b) What is the angle between \vec{r} and the positive z axis? (c) What is the component of \vec{d}_{1} along the direction of \vec{d}_{2} ? (d) What is the component of \vec{d}_{1} that is perpendicular to the direction of \vec{d}_{2} and in the plane of \vec{d}_{1} and \vec{d}_{2} ? (Hint: For (c), consider Eq. 3-20 and Fig. 3-18; for (d), consider Eq. 3-24.)
53 SSM A vector \vec{a} of magnitude 10 units and another vector \vec{b} of magnitude 6.0 units differ in directions by 60°. Find (a) the scalar product of the two vectors and (b) the magnitude of the vector product $\vec{a} \times \vec{b}$.
54 For the vectors in Fig. 3-32, with $a=4, b=3$, and $c=5$, calculate (a) $\vec{a} \cdot \vec{b}$, (b) $\vec{a} \cdot \vec{c}$, and (c) $\vec{b} \cdot \vec{c}$.

55 A particle undergoes three successive displacements in a plane, as follows: $\vec{d}_{1}, 4.00 \mathrm{~m}$ southwest; then $\vec{d}_{2}, 5.00 \mathrm{~m}$ east; and finally $\vec{d}_{3}, 6.00 \mathrm{~m}$ in a direction 60.0° north of east. Choose a coordinate system with the y axis pointing north and the x axis pointing east. What are (a) the x component and (b) the y component of \vec{d}_{1} ? What are (c) the x component and (d) the y component of \vec{d}_{2} ? What are (e) the x component and (f) the y component of \vec{d}_{3} ? Next, consider the net displacement of the particle for the three successive displacements. What are (g) the x component, (h) the y component, (i) the magnitude, and (j) the direction of the net displacement? If the particle is to return directly to the starting point, (k) how far and (1) in what direction should it move?

56 Find the sum of the following four vectors in (a) unit-vector notation, and as (b) a magnitude and (c) an angle relative to $+x$.
$\vec{P}: 10.0 \mathrm{~m}$, at 25.0° counterclockwise from $+x$
$\vec{Q}: 12.0 \mathrm{~m}$, at 10.0° counterclockwise from $+y$
$\vec{R}: 8.00 \mathrm{~m}$, at 20.0° clockwise from $-y$
$\vec{S}: 9.00 \mathrm{~m}$, at 40.0° counterclockwise from $-y$
57 Ssm If \vec{B} is added to \vec{A}, the result is $6.0 \hat{\mathrm{i}}+1.0 \hat{\mathrm{j}}$. If \vec{B} is subtracted from \vec{A}, the result is $-4.0 \hat{\mathrm{i}}+7.0 \hat{\mathrm{j}}$. What is the magnitude of \vec{A} ?

58 A vector \vec{d} has a magnitude of 2.5 m and points north. What are (a) the magnitude and (b) the direction of $4.0 \vec{d}$? What are (c) the magnitude and (d) the direction of $-3.0 \vec{d}$?
$59 \vec{A}$ has the magnitude 12.0 m and is angled 60.0° counterclockwise from the positive direction of the x axis of an $x y$ coordinate system. Also, $\vec{B}=(12.0 \mathrm{~m}) \hat{\mathrm{i}}+(8.00 \mathrm{~m}) \hat{\mathrm{j}}$ on that same coordinate system. We now rotate the system counterclockwise about the origin by 20.0° to form an $x^{\prime} y^{\prime}$ system. On this new system, what are (a) \vec{A} and (b) \vec{B}, both in unit-vector notation?
60 If $\vec{a}-\vec{b}=2 \vec{c}, \vec{a}+\vec{b}=4 \vec{c}$, and $\vec{c}=3 \hat{\mathrm{i}}+4 \hat{\mathrm{j}}$, then what are (a) \vec{a} and (b) \vec{b} ?

61 (a) In unit-vector notation, what is $\vec{r}=\vec{a}-\vec{b}+\vec{c}$ if $\vec{a}=5.0 \hat{\mathrm{i}}+4.0 \hat{\mathrm{j}}-6.0 \hat{\mathrm{k}}, \vec{b}=-2.0 \hat{\mathrm{i}}+2.0 \hat{\mathrm{j}}+3.0 \hat{\mathrm{k}}$, and $\vec{c}=4.0 \hat{\mathrm{i}}+$ $3.0 \hat{\mathrm{j}}+2.0 \hat{\mathrm{k}}$? (b) Calculate the angle between \vec{r} and the positive z axis. (c) What is the component of \vec{a} along the direction of \vec{b} ? (d) What is the component of \vec{a} perpendicular to the direction of \vec{b} but in the plane of \vec{a} and \vec{b} ? (Hint: For (c), see Eq. 3-20 and Fig. 3-18; for (d), see Eq. 3-24.)
62 A golfer takes three putts to get the ball into the hole. The first putt displaces the ball 3.66 m north, the second 1.83 m southeast, and the third 0.91 m southwest. What are (a) the magnitude and (b) the direction of the displacement needed to get the ball into the hole on the first putt?
63 Here are three vectors in meters:

$$
\begin{aligned}
& \vec{d}_{1}=-3.0 \hat{\mathrm{i}}+3.0 \hat{\mathrm{j}}+2.0 \hat{\mathrm{k}} \\
& \vec{d}_{2}=-2.0 \hat{\mathrm{i}}-4.0 \hat{\mathrm{j}}+2.0 \hat{\mathrm{k}} \\
& \vec{d}_{3}=2.0 \hat{\mathrm{i}}+3.0 \hat{\mathrm{j}}+1.0 \hat{\mathrm{k}}
\end{aligned}
$$

What results from (a) $\vec{d}_{1} \cdot\left(\vec{d}_{2}+\vec{d}_{3}\right)$, (b) $\vec{d}_{1} \cdot\left(\vec{d}_{2} \times \vec{d}_{3}\right)$, and (c) $\vec{d}_{1} \times\left(\vec{d}_{2}+\vec{d}_{3}\right)$?

64 SSM www A room has dimensions 3.00 m (height) \times $3.70 \mathrm{~m} \times 4.30 \mathrm{~m}$. A fly starting at one corner flies around, ending up at the diagonally opposite corner. (a) What is the magnitude of its displacement? (b) Could the length of its path be less than this magnitude? (c) Greater? (d) Equal? (e) Choose a suitable coordinate system and express the components of the displacement vector in that system in unit-vector notation. (f) If the fly walks, what is the length of the shortest path? (Hint: This can be answered without calculus. The room is like a box. Unfold its walls to flatten them into a plane.)
65 A protester carries his sign of protest, starting from the origin of an $x y z$ coordinate system, with the $x y$ plane horizontal. He moves 40 m in the negative direction of the x axis, then 20 m along a perpendicular path to his left, and then 25 m up a water tower. (a) In unit-vector notation, what is the displacement of the sign from start to end? (b) The sign then falls to the foot of the tower. What is the magnitude of the displacement of the sign from start to this new end?
66 Consider \vec{a} in the positive direction of x, \vec{b} in the positive direction of y, and a scalar d. What is the direction of \vec{b} / d if d is (a) positive and (b) negative? What is the magnitude of (c) $\vec{a} \cdot \vec{b}$ and (d) $\vec{a} \cdot \vec{b} / d$? What is the direction of the vector resulting from (e) $\vec{a} \times \vec{b}$ and (f) $\vec{b} \times \vec{a}$? (g) What is the magnitude of the vector product in (e)? (h) What is the magnitude of the vector product in (f)? What are (i) the magnitude and (j) the direction of $\vec{a} \times \vec{b} / d$ if d is positive?

67 Let \hat{i} be directed to the east, \hat{j} be directed to the north, and \hat{k} be directed upward. What are the values of products (a) $\hat{i} \cdot \hat{k}$, (b) $(-\hat{k}) \cdot(-\hat{j})$, and $(c) \hat{j} \cdot(-\hat{j})$? What are the directions (such as east or down) of products $(\mathrm{d}) \hat{\mathrm{k}} \times \hat{\mathrm{j}},(\mathrm{e})(-\hat{\mathrm{i}}) \times(-\hat{\mathrm{j}})$, and $(\mathrm{f})(-\hat{\mathrm{k}}) \times(-\hat{\mathrm{j}})$?
68 A bank in downtown Boston is robbed (see the map in Fig. 3-36). To elude police, the robbers escape by helicopter, making three successive flights described by the following displacements: $32 \mathrm{~km}, 45^{\circ}$ south of east; $53 \mathrm{~km}, 26^{\circ}$ north of west; $26 \mathrm{~km}, 18^{\circ}$ east of south. At the end of the third flight they are captured. In what town are they apprehended?

Figure 3-36 Problem 68.
69 A wheel with a radius of 45.0 cm rolls without slipping along a horizontal floor (Fig. 3-37). At time t_{1}, the dot P painted on the rim of the wheel is at the point of contact between the wheel and the floor. At a later time t_{2}, the wheel has rolled through one-half of a revolution. What are (a) the magnitude and (b)

At time t_{1} At time t_{2}

Figure 3-37 Problem 69. the angle (relative to the floor) of the displacement of P ?
70 A woman walks 250 m in the direction 30° east of north, then 175 m directly east. Find (a) the magnitude and (b) the angle of her final displacement from the starting point. (c) Find the distance she walks. (d) Which is greater, that distance or the magnitude of her displacement?
71 A vector \vec{d} has a magnitude 3.0 m and is directed south. What are (a) the magnitude and (b) the direction of the vector $5.0 \vec{d}$? What are (c) the magnitude and (d) the direction of the vector $-2.0 \vec{d}$?

72 A fire ant, searching for hot sauce in a picnic area, goes through three displacements along level ground: \vec{d}_{1} for 0.40 m southwest (that is, at 45° from directly south and from directly west), \vec{d}_{2} for 0.50 m due east, \vec{d}_{3} for 0.60 m at 60° north of east. Let the positive x direction be east and the positive y direction be north. What are (a) the x component and (b) the y component of \vec{d}_{1} ? Next, what are (c) the x component and (d) the y component of \vec{d}_{2} ? Also, what are (e) the x component and (f) the y component of \vec{d}_{3} ?

What are (g) the x component, (h) the y component, (i) the magnitude, and (j) the direction of the ant's net displacement? If the ant is to return directly to the starting point, (k) how far and (1) in what direction should it move?
73 Two vectors are given by $\vec{a}=3.0 \hat{\mathrm{i}}+5.0 \hat{\mathrm{j}}$ and $\vec{b}=2.0 \hat{\mathrm{i}}+4.0 \hat{\mathrm{j}}$. Find (a) $\vec{a} \times \vec{b}$, (b) $\vec{a} \cdot \vec{b}$, (c) $(\vec{a}+\vec{b}) \cdot \vec{b}$, and (d) the component of \vec{a} along the direction of \vec{b}.
74 Vector \vec{a} lies in the $y z$ plane 63.0° from the positive direction of the y axis, has a positive z component, and has magnitude 3.20 units. Vector \vec{b} lies in the $x z$ plane 48.0° from the positive direction of the x axis, has a positive z component, and has magnitude 1.40 units. Find (a) $\vec{a} \cdot \vec{b}$, (b) $\vec{a} \times \vec{b}$, and (c) the angle between \vec{a} and \vec{b}.
75 Find (a) "north cross west," (b) "down dot south," (c) "east cross up," (d) "west dot west," and (e) "south cross south." Let each "vector" have unit magnitude.
76 A vector \vec{B}, with a magnitude of 8.0 m , is added to a vector \vec{A}, which lies along an x axis. The sum of these two vectors is a third vector that lies along the y axis and has a magnitude that is twice the magnitude of \vec{A}. What is the magnitude of \vec{A} ?
77 A man goes for a walk, starting from the origin of an $x y z$ coordinate system, with the $x y$ plane horizontal and the x axis eastward. Carrying a bad penny, he walks 1300 m east, 2200 m north, and then drops the penny from a cliff 410 m high. (a) In unit-vector notation, what is the displacement of the penny from start to its landing point? (b) When the man returns to the origin, what is the magnitude of his displacement for the return trip?
78 What is the magnitude of $\vec{a} \times(\vec{b} \times \vec{a})$ if $a=3.90, b=2.70$, and the angle between the two vectors is 63.0° ?
79 In Fig. 3-38, the magnitude of \vec{a} is 4.3, the magnitude of \vec{b} is 5.4 , and $\phi=46^{\circ}$. Find the area of the triangle contained between the two vectors and the thin diagonal line.

Figure 3-38 Problem 79.
velocity of plane $=$ velocity of plane $+\quad$ velocity of wind relative to ground ${ }^{=}$relative to wind ${ }^{+}$relative to ground.
$(P G)$
($P W$)
(WG)
This relation is written in vector notation as

$$
\begin{equation*}
\vec{v}_{P G}=\vec{v}_{P W}+\vec{v}_{W G} \tag{4-46}
\end{equation*}
$$

We need to resolve the vectors into components on the coordinate system of Fig. 4-20b and then solve Eq. 4-46 axis by axis. For the y components, we find

$$
v_{P G, y}=v_{P W, y}+v_{W G, y}
$$

or $\quad 0=-(215 \mathrm{~km} / \mathrm{h}) \sin \theta+(65.0 \mathrm{~km} / \mathrm{h})\left(\cos 20.0^{\circ}\right)$.
Solving for θ gives us

$$
\theta=\sin ^{-1} \frac{(65.0 \mathrm{~km} / \mathrm{h})\left(\cos 20.0^{\circ}\right)}{215 \mathrm{~km} / \mathrm{h}}=16.5^{\circ} .
$$

(Answer)
Similarly, for the x components we find

$$
v_{P G, x}=v_{P W, x}+v_{W G, x}
$$

Here, because $\vec{v}_{P G}$ is parallel to the x axis, the component $v_{P G, x}$ is equal to the magnitude $v_{P G}$. Substituting this notation and the value $\theta=16.5^{\circ}$, we find

$$
\begin{aligned}
v_{P G} & =(215 \mathrm{~km} / \mathrm{h})\left(\cos 16.5^{\circ}\right)+(65.0 \mathrm{~km} / \mathrm{h})\left(\sin 20.0^{\circ}\right) \\
& =228 \mathrm{~km} / \mathrm{h} .
\end{aligned}
$$

Figure 4-20 A plane flying in a wind.

PLU'S Additional examples, video, and practice available at WileyPLUS

Qeview \& Summary

Position Vector The location of a particle relative to the origin of a coordinate system is given by a position vector \vec{r}, which in unit-vector notation is

$$
\begin{equation*}
\vec{r}=x \hat{\mathrm{i}}+y \hat{\mathrm{j}}+z \hat{\mathrm{k}} . \tag{4-1}
\end{equation*}
$$

Here $x \hat{\mathrm{i}}, y \hat{\mathrm{j}}$, and $z \hat{\mathrm{k}}$ are the vector components of position vector \vec{r}, and x, y, and z are its scalar components (as well as the coordinates of the particle). A position vector is described either by a magnitude and one or two angles for orientation, or by its vector or scalar components.

Displacement If a particle moves so that its position vector changes from \vec{r}_{1} to \vec{r}_{2}, the particle's displacement $\Delta \vec{r}$ is

$$
\begin{equation*}
\Delta \vec{r}=\vec{r}_{2}-\vec{r}_{1} . \tag{4-2}
\end{equation*}
$$

The displacement can also be written as

$$
\begin{align*}
\Delta \vec{r} & =\left(x_{2}-x_{1}\right) \hat{\mathrm{i}}+\left(y_{2}-y_{1}\right) \hat{\mathrm{j}}+\left(z_{2}-z_{1}\right) \hat{\mathrm{k}} \tag{4-3}\\
& =\Delta x \hat{\mathrm{i}}+\Delta y \hat{\mathrm{j}}+\Delta z \hat{\mathrm{k}} . \tag{4-4}
\end{align*}
$$

Average Velocity and Instantaneous Velocity If a particle undergoes a displacement $\Delta \vec{r}$ in time interval Δt, its average velocity $\vec{v}_{\text {avg }}$ for that time interval is

$$
\begin{equation*}
\vec{v}_{\text {avg }}=\frac{\Delta \vec{r}}{\Delta t} . \tag{4-8}
\end{equation*}
$$

As Δt in Eq. $4-8$ is shrunk to $0, \vec{v}_{\text {avg }}$ reaches a limit called either the velocity or the instantaneous velocity \vec{v} :

$$
\begin{equation*}
\vec{v}=\frac{d \vec{r}}{d t} \tag{4-10}
\end{equation*}
$$

which can be rewritten in unit-vector notation as

$$
\begin{equation*}
\vec{v}=v_{x} \hat{i}+v_{y} \hat{\mathrm{j}}+v_{z} \hat{\mathrm{k}}, \tag{4-11}
\end{equation*}
$$

where $v_{x}=d x / d t, v_{y}=d y / d t$, and $v_{z}=d z / d t$. The instantaneous velocity \vec{v} of a particle is always directed along the tangent to the particle's path at the particle's position.

Average Acceleration and Instantaneous Acceleration

If a particle's velocity changes from \vec{v}_{1} to \vec{v}_{2} in time interval Δt, its average acceleration during Δt is

$$
\begin{equation*}
\vec{a}_{\mathrm{avg}}=\frac{\vec{v}_{2}-\vec{v}_{1}}{\Delta t}=\frac{\Delta \vec{v}}{\Delta t} . \tag{4-15}
\end{equation*}
$$

As Δt in Eq. $4-15$ is shrunk to $0, \vec{a}_{\text {avg }}$ reaches a limiting value called either the acceleration or the instantaneous acceleration \vec{a} :

$$
\begin{equation*}
\vec{a}=\frac{d \vec{v}}{d t} . \tag{4-16}
\end{equation*}
$$

In unit-vector notation,

$$
\begin{equation*}
\vec{a}=a_{x} \hat{\mathrm{i}}+a_{y} \hat{\mathrm{j}}+a_{z} \hat{\mathrm{k}} \tag{4-17}
\end{equation*}
$$

where $a_{x}=d v_{x} / d t, a_{y}=d v_{y} / d t$, and $a_{z}=d v_{z} / d t$.

Projectile Motion Projectile motion is the motion of a particle that is launched with an initial velocity \vec{v}_{0}. During its flight, the particle's horizontal acceleration is zero and its vertical acceleration is the free-fall acceleration $-g$. (Upward is taken to be a positive direction.) If \vec{v}_{0} is expressed as a magnitude (the speed v_{0}) and an angle θ_{0} (measured from the horizontal), the particle's equations of motion along the horizontal x axis and vertical y axis are

$$
\begin{align*}
x-x_{0} & =\left(v_{0} \cos \theta_{0}\right) t, \tag{4-21}\\
y-y_{0} & =\left(v_{0} \sin \theta_{0}\right) t-\frac{1}{2} g t^{2}, \tag{4-22}\\
v_{y} & =v_{0} \sin \theta_{0}-g t, \tag{4-23}\\
v_{y}^{2} & =\left(v_{0} \sin \theta_{0}\right)^{2}-2 g\left(y-y_{0}\right) . \tag{4-24}
\end{align*}
$$

The trajectory (path) of a particle in projectile motion is parabolic and is given by

$$
\begin{equation*}
y=\left(\tan \theta_{0}\right) x-\frac{g x^{2}}{2\left(v_{0} \cos \theta_{0}\right)^{2}}, \tag{4-25}
\end{equation*}
$$

if x_{0} and y_{0} of Eqs. 4-21 to 4-24 are zero. The particle's horizontal range R, which is the horizontal distance from the launch point to the point at which the particle returns to the launch height, is

$$
\begin{equation*}
R=\frac{v_{0}^{2}}{g} \sin 2 \theta_{0} \tag{4-26}
\end{equation*}
$$

Questions

1 Figure 4-21 shows the path taken by a skunk foraging for trash food, from initial point i. The skunk took the same time T to go from each labeled point to the next along its path. Rank points a, b, and c according to the magnitude of the average velocity of the skunk to reach them from initial point i, greatest first.
2 Figure 4-22 shows the initial position i and the final position f of a parti-

Figure 4-21 Question 1. cle. What are the (a) initial position vector \vec{r}_{i} and (b) final position vector \vec{r}_{f}, both in unit-vector notation? (c) What is the x component of displacement $\Delta \vec{r}$?

Figure 4-22 Question 2.
3 When Paris was shelled from 100 km away with the WWI long-range artillery piece "Big Bertha," the shells were fired at an angle greater than 45° to give them a greater range, possibly even

Uniform Circular Motion If a particle travels along a circle or circular arc of radius r at constant speed v, it is said to be in uniform circular motion and has an acceleration \vec{a} of constant magnitude

$$
\begin{equation*}
a=\frac{v^{2}}{r} . \tag{4-34}
\end{equation*}
$$

The direction of \vec{a} is toward the center of the circle or circular arc, and \vec{a} is said to be centripetal. The time for the particle to complete a circle is

$$
\begin{equation*}
T=\frac{2 \pi r}{v} . \tag{4-35}
\end{equation*}
$$

T is called the period of revolution, or simply the period, of the motion.

Relative Motion When two frames of reference A and B are moving relative to each other at constant velocity, the velocity of a particle P as measured by an observer in frame A usually differs from that measured from frame B. The two measured velocities are related by

$$
\begin{equation*}
\vec{v}_{P A}=\vec{v}_{P B}+\vec{v}_{B A}, \tag{4-44}
\end{equation*}
$$

where $\vec{v}_{B A}$ is the velocity of B with respect to A. Both observers measure the same acceleration for the particle:

$$
\begin{equation*}
\vec{a}_{P A}=\vec{a}_{P B} . \tag{4-45}
\end{equation*}
$$

twice as long as at 45°. Does that result mean that the air density at high altitudes increases with altitude or decreases?
4 You are to launch a rocket, from just above the ground, with one of the following initial velocity vectors: (1) $\vec{v}_{0}=20 \hat{\mathrm{i}}+70 \hat{\mathrm{j}}$, (2) $\vec{v}_{0}=-20 \hat{\mathrm{i}}+70 \hat{\mathrm{j}}$, (3) $\vec{v}_{0}=20 \hat{\mathrm{i}}-70 \hat{\mathrm{j}}$, (4) $\vec{v}_{0}=-20 \hat{\mathrm{i}}-70 \hat{\mathrm{j}}$. In your coordinate system, x runs along level ground and y increases upward. (a) Rank the vectors according to the launch speed of the projectile, greatest first. (b) Rank the vectors according to the time of flight of the projectile, greatest first.
5 Figure 4-23 shows three situations in which identical projectiles are launched (at the same level) at identical initial speeds and angles. The projectiles do not land on the same terrain, however. Rank the situations according to the final speeds of the projectiles just before they land, greatest first.

6 The only good use of a fruitcake is in catapult practice. Curve 1 in Fig. 4-24 gives the height y of a catapulted fruitcake versus the angle θ between its velocity vector and its acceleration vector during flight. (a) Which of the lettered points on that curve corresponds to the landing of the fruitcake on the ground? (b) Curve 2 is a similar plot for the same

Figure 4-24 Question 6.
launch speed but for a different launch angle. Does the fruitcake now land farther away or closer to the launch point?
7 An airplane flying horizontally at a constant speed of $350 \mathrm{~km} / \mathrm{h}$ over level ground releases a bundle of food supplies. Ignore the effect of the air on the bundle. What are the bundle's initial (a) vertical and (b) horizontal components of velocity? (c) What is its horizontal component of velocity just before hitting the ground? (d) If the airplane's speed were, instead, $450 \mathrm{~km} / \mathrm{h}$, would the time of fall be longer, shorter, or the same?
8 In Fig. 4-25, a cream tangerine is thrown up past windows 1, 2, and 3 , which are identical in size and regularly spaced vertically. Rank those three windows according to (a) the time the cream tangerine takes to pass them and (b) the average speed of the cream tangerine during the passage, greatest first.

The cream tangerine then moves down past windows 4, 5, and 6 , which are identical in size and irregularly spaced horizontally. Rank those three windows according to (c) the time the cream tangerine takes to pass them and (d) the average speed of the cream tangerine during the passage, greatest first.

Figure 4-25 Question 8.
9 Figure 4-26 shows three paths for a football kicked from ground level. Ignoring the effects of air, rank the paths according to (a) time of flight, (b) initial vertical velocity component, (c) initial horizontal velocity component, and (d) initial speed, greatest first.

Figure 4-26 Question 9.
10 A ball is shot from ground level over level ground at a certain initial speed. Figure $4-27$ gives the range R of the ball versus its launch angle θ_{0}. Rank the three lettered points on the plot according to (a) the total flight time of the ball and (b) the ball's speed at maximum height, greatest first.

Figure 4-27 Question 10.

11 Figure 4-28 shows four tracks (either half- or quarter-circles) that can be taken by a train, which moves at a constant speed. Rank the tracks according to the magnitude of a train's acceleration on the curved portion, greatest first.

Figure 4-28 Question 11.
12 In Fig. 4-29, particle P is in uniform circular motion, centered on the origin of an $x y$ coordinate system. (a) At what values of θ is the vertical component r_{y} of the position vector greatest in magnitude? (b) At what values of θ is the vertical component v_{y} of the particle's velocity greatest in magnitude? (c) At what values of θ is the vertical component a_{y} of the particle's acceleration greatest in magnitude?

Figure 4-29 Question 12.
13 (a) Is it possible to be accelerating while traveling at constant speed? Is it possible to round a curve with (b) zero acceleration and (c) a constant magnitude of acceleration?

14 While riding in a moving car, you toss an egg directly upward. Does the egg tend to land behind you, in front of you, or back in your hands if the car is (a) traveling at a constant speed, (b) increasing in speed, and (c) decreasing in speed?
15 A snowball is thrown from ground level (by someone in a hole) with initial speed v_{0} at an angle of 45° relative to the (level) ground, on which the snowball later lands. If the launch angle is increased, do (a) the range and (b) the flight time increase, decrease, or stay the same?
16 You are driving directly behind a pickup truck, going at the same speed as the truck. A crate falls from the bed of the truck to the road. (a) Will your car hit the crate before the crate hits the road if you neither brake nor swerve? (b) During the fall, is the horizontal speed of the crate more than, less than, or the same as that of the truck?
17 At what point in the path of a projectile is the speed a minimum?
18 In shot put, the shot is put (thrown) from above the athlete's shoulder level. Is the launch angle that produces the greatest range 45°, less than 45°, or greater than 45° ?

9 Problems

GO Tutoring problem available (at instructor's discretion) in WileyPLUS and WebAssign
SSM Worked-out solution available in Student Solutions Manual WWW Worked-out solution is at

- Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

http://www.wiley.com/college/halliday

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

Module 4-1 Position and Displacement

-1 The position vector for an electron is $\vec{r}=(5.0 \mathrm{~m}) \hat{\mathrm{i}}-$ $(3.0 \mathrm{~m}) \hat{\mathrm{j}}+(2.0 \mathrm{~m}) \hat{\mathrm{k}}$. (a) Find the magnitude of \vec{r}. (b) Sketch the vector on a right-handed coordinate system.
-2 A watermelon seed has the following coordinates: $x=-5.0 \mathrm{~m}$, $y=8.0 \mathrm{~m}$, and $z=0 \mathrm{~m}$. Find its position vector (a) in unit-vector notation and as (b) a magnitude and (c) an angle relative to the positive direction of the x axis. (d) Sketch the vector on a right-handed coordinate system. If the seed is moved to the $x y z$ coordinates $(3.00 \mathrm{~m}$, $0 \mathrm{~m}, 0 \mathrm{~m}$), what is its displacement (e) in unit-vector notation and as (f) a magnitude and (g) an angle relative to the positive x direction?
-3 A positron undergoes a displacement $\Delta \vec{r}=2.0 \hat{\mathrm{i}}-3.0 \hat{\mathrm{j}}+6.0 \hat{\mathrm{k}}$, ending with the position vector $\vec{r}=3.0 \hat{\mathrm{j}}-4.0 \hat{\mathrm{k}}$, in meters. What was the positron's initial position vector?
©4 The minute hand of a wall clock measures 10 cm from its tip to the axis about which it rotates. The magnitude and angle of the displacement vector of the tip are to be determined for three time intervals. What are the (a) magnitude and (b) angle from a quarter after the hour to half past, the (c) magnitude and (d) angle for the next half hour, and the (e) magnitude and (f) angle for the hour after that?

Module 4-2 Average Velocity and Instantaneous Velocity

$\cdot 5$ SSM A train at a constant $60.0 \mathrm{~km} / \mathrm{h}$ moves east for 40.0 min , then in a direction 50.0° east of due north for 20.0 min , and then west for 50.0 min . What are the (a) magnitude and (b) angle of its average velocity during this trip?
-6 An electron's position is given by $\vec{r}=3.00 t \hat{i}-4.00 t \hat{j}+2.00 \hat{\mathrm{k}}$, with t in seconds and \vec{r} in meters. (a) In unit-vector notation, what is the electron's velocity $\vec{v}(t)$? At $t=2.00 \mathrm{~s}$, what is $\vec{v}(\mathrm{~b})$ in unitvector notation and as (c) a magnitude and (d) an angle relative to the positive direction of the x axis?
-7 An ion's position vector is initially $\vec{r}=5.0 \hat{\mathrm{i}}-6.0 \hat{\mathrm{j}}+2.0 \hat{\mathrm{k}}$, and 10 s later it is $\vec{r}=-2.0 \hat{\mathrm{i}}+8.0 \hat{\mathrm{j}}-2.0 \hat{\mathrm{k}}$, all in meters. In unitvector notation, what is its $\vec{v}_{\text {avg }}$ during the 10 s ?
-•8 A plane flies 483 km east from city A to city B in 45.0 min and then 966 km south from city B to city C in 1.50 h . For the total trip, what are the (a) magnitude and (b) direction of the plane's displacement, the (c) magnitude and (d) direction of its average velocity, and (e) its average speed?
-•9 Figure 4-30 gives the path of a squirrel moving about on level ground, from point A (at time $t=0$), to points B (at $t=5.00 \mathrm{~min}$), C (at $t=10.0 \mathrm{~min}$), and finally D (at $t=15.0 \mathrm{~min}$). Consider the average velocities of the squirrel from point A to each of the other three points. Of them, what are the (a) magnitude

Figure 4-30 Problem 9.
and (b) angle of the one with the least magnitude and the (c) magnitude and (d) angle of the one with the greatest magnitude?
-0010 The position vector $\vec{r}=5.00 t \hat{i}+\left(e t+f t^{2}\right) \hat{\mathrm{j}}$ locates a particle as a function of time t. Vector \vec{r} is in meters, t is in seconds, and factors e and f are constants. Figure 4-31 gives the angle θ of the particle's direction of travel as a function of t (θ is measured from the positive x direction). What are (a) e and (b) f, including units?

Module 4-3 Average Acceleration and

Instantaneous Acceleration

-11 © The position \vec{r} of a particle moving in an $x y$ plane is given by $\vec{r}=\left(2.00 t^{3}-5.00 t\right) \hat{\mathrm{i}}+\left(6.00-7.00 t^{4}\right) \hat{\mathrm{j}}$, with \vec{r} in meters and t in seconds. In unit-vector notation, calculate (a) \vec{r}, (b) \vec{v}, and (c) \vec{a} for $t=2.00 \mathrm{~s}$. (d) What is the angle between the positive direction of the x axis and a line tangent to the particle's path at $t=2.00 \mathrm{~s}$?
-12 At one instant a bicyclist is 40.0 m due east of a park's flagpole, going due south with a speed of $10.0 \mathrm{~m} / \mathrm{s}$. Then 30.0 s later, the cyclist is 40.0 m due north of the flagpole, going due east with a speed of $10.0 \mathrm{~m} / \mathrm{s}$. For the cyclist in this 30.0 s interval, what are the (a) magnitude and (b) direction of the displacement, the (c) magnitude and (d) direction of the average velocity, and the (e) magnitude and (f) direction of the average acceleration?
-13 SSM A particle moves so that its position (in meters) as a function of time (in seconds) is $\vec{r}=\hat{\mathrm{i}}+4 t 2 \hat{\mathrm{j}}+t \hat{\mathrm{k}}$. Write expressions for (a) its velocity and (b) its acceleration as functions of time.
-14 A proton initially has $\vec{v}=4.0 \hat{\mathrm{i}}-2.0 \hat{\mathrm{j}}+3.0 \hat{\mathrm{k}}$ and then 4.0 s later has $\vec{v}=-2.0 \hat{\mathrm{i}}-2.0 \hat{\mathrm{j}}+5.0 \hat{\mathrm{k}}$ (in meters per second). For that 4.0 s , what are (a) the proton's average acceleration $\vec{a}_{\text {avg }}$ in unitvector notation, (b) the magnitude of $\vec{a}_{\text {avg }}$, and (c) the angle between $\vec{a}_{\text {avg }}$ and the positive direction of the x axis?
$\because 15$ SSM ILW A particle leaves the origin with an initial velocity $\vec{v}=(3.00 \hat{\mathrm{i}}) \mathrm{m} / \mathrm{s}$ and a constant acceleration $\vec{a}=(-1.00 \hat{\mathrm{i}}-$ $0.500 \hat{\mathrm{j}}) \mathrm{m} / \mathrm{s}^{2}$. When it reaches its maximum x coordinate, what are its (a) velocity and (b) position vector?
$\bullet 16$ ©o The velocity \vec{v} of a particle moving in the $x y$ plane is given by $\vec{v}=\left(6.0 t-4.0 t^{2}\right) \hat{\mathrm{i}}+8.0 \hat{\mathrm{j}}$, with \vec{v} in meters per second and $t(>0)$ in seconds. (a) What is the acceleration when $t=3.0 \mathrm{~s}$? (b) When (if ever) is the acceleration zero? (c) When (if ever) is the velocity zero? (d) When (if ever) does the speed equal $10 \mathrm{~m} / \mathrm{s}$?
-•17 A cart is propelled over an $x y$ plane with acceleration components $a_{x}=4.0 \mathrm{~m} / \mathrm{s}^{2}$ and $a_{y}=-2.0 \mathrm{~m} / \mathrm{s}^{2}$. Its initial velocity has components $v_{0 x}=8.0 \mathrm{~m} / \mathrm{s}$ and $v_{0 y}=12 \mathrm{~m} / \mathrm{s}$. In unit-vector notation, what is the velocity of the cart when it reaches its greatest y coordinate? -11 A moderate wind accelerates a pebble over a horizontal $x y$ plane with a constant acceleration $\vec{a}=\left(5.00 \mathrm{~m} / \mathrm{s}^{2}\right) \hat{\mathrm{i}}+\left(7.00 \mathrm{~m} / \mathrm{s}^{2}\right) \hat{\mathrm{j}}$.

At time $t=0$, the velocity is $(4.00 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{i}}$. What are the (a) magnitude and (b) angle of its velocity when it has been displaced by 12.0 m parallel to the x axis?
-0019 The acceleration of a particle moving only on a horizontal $x y$ plane is given by $\vec{a}=3 t \hat{\mathrm{i}}+4 t \hat{\mathrm{j}}$, where \vec{a} is in meters per secondsquared and t is in seconds. At $t=0$, the position vector $\vec{r}=(20.0 \mathrm{~m}) \hat{\mathrm{i}}+(40.0 \mathrm{~m}) \hat{\mathrm{j}}$ locates the particle, which then has the velocity vector $\vec{v}=(5.00 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{i}}+(2.00 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{j}}$. At $t=4.00 \mathrm{~s}$, what are (a) its position vector in unit-vector notation and (b) the angle between its direction of travel and the positive direction of the x axis?
-•020 ©0 In Fig. 4-32, particle A moves along the line $y=30 \mathrm{~m}$ with a constant velocity \vec{v} of magnitude $3.0 \mathrm{~m} / \mathrm{s}$ and parallel to the x axis. At the instant particle A passes the y axis, particle B leaves the origin with a zero initial speed and a constant acceleration \vec{a} of magnitude $0.40 \mathrm{~m} / \mathrm{s}^{2}$. What angle θ between \vec{a} and the positive direction of the y axis would result in a

Figure 4-32 Problem 20. collision?

Module 4-4 Projectile Motion

-21 A dart is thrown horizontally with an initial speed of $10 \mathrm{~m} / \mathrm{s}$ toward point P, the bull's-eye on a dart board. It hits at point Q on the rim, vertically below $P, 0.19 \mathrm{~s}$ later. (a) What is the distance $P Q$? (b) How far away from the dart board is the dart released?
-22 A small ball rolls horizontally off the edge of a tabletop that is 1.20 m high. It strikes the floor at a point 1.52 m horizontally from the table edge. (a) How long is the ball in the air? (b) What is its speed at the instant it leaves the table?
-23 A projectile is fired horizontally from a gun that is 45.0 m above flat ground, emerging from the gun with a speed of $250 \mathrm{~m} / \mathrm{s}$. (a) How long does the projectile remain in the air? (b) At what horizontal distance from the firing point does it strike the ground? (c) What is the magnitude of the vertical component of its velocity as it strikes the ground?
-24 In the 1991 World Track and Field Championships in Tokyo, Mike Powell jumped 8.95 m , breaking by a full 5 cm the 23 -year long-jump record set by Bob Beamon. Assume that Powell's speed on takeoff was $9.5 \mathrm{~m} / \mathrm{s}$ (about equal to that of a sprinter) and that $g=9.80 \mathrm{~m} / \mathrm{s}^{2}$ in Tokyo. How much less was Powell's range than the maximum possible range for a particle launched at the same speed?
$\cdot 25$ The current world-record motorcycle jump is 77.0 m , set by Jason Renie. Assume that he left the take-off ramp at 12.0° to the horizontal and that the take-off and landing heights are the same. Neglecting air drag, determine his take-off speed.
-26 A stone is catapulted at time $t=0$, with an initial velocity of magnitude $20.0 \mathrm{~m} / \mathrm{s}$ and at an angle of 40.0° above the horizontal. What are the magnitudes of the (a) horizontal and (b) vertical components of its displacement from the catapult site at $t=1.10 \mathrm{~s}$? Repeat for the (c) horizontal and (d) vertical components at $t=1.80 \mathrm{~s}$, and for the (e) horizontal and (f) vertical components at $t=5.00 \mathrm{~s}$.
-27 ILW A certain airplane has a speed of $290.0 \mathrm{~km} / \mathrm{h}$ and is diving at an angle of $\theta=30.0^{\circ}$ below the horizontal when the pilot releases a radar decoy (Fig. 4-33). The horizontal distance between the release point and the point where the decoy strikes the ground is $d=$ 700 m . (a) How long is the decoy in the air? (b) How high was the release point?

Figure 4-33 Problem 27.
-228 © In Fig. 4-34, a stone is projected at a cliff of height h with an initial speed of $42.0 \mathrm{~m} / \mathrm{s}$ directed at angle $\theta_{0}=60.0^{\circ}$ above the horizontal. The stone strikes at A, 5.50 s after launching. Find (a) the height h of the cliff, (b) the speed of the stone just before impact at A, and (c) the maximum height H reached above the ground.

Figure 4-34 Problem 28.
-29 A projectile's launch speed is five times its speed at maximum height. Find launch angle θ_{0}.
-•30 ©0 A soccer ball is kicked from the ground with an initial speed of $19.5 \mathrm{~m} / \mathrm{s}$ at an upward angle of 45°. A player 55 m away in the direction of the kick starts running to meet the ball at that instant. What must be his average speed if he is to meet the ball just before it hits the ground?
-031 In a jump spike, a volleyball player slams the ball from overhead and toward the opposite floor. Controlling the angle of the spike is difficult. Suppose a ball is spiked from a height of 2.30 m with an initial speed of $20.0 \mathrm{~m} / \mathrm{s}$ at a downward angle of 18.00°. How much farther on the opposite floor would it have landed if the downward angle were, instead, 8.00° ?

- 32 (60 You throw a ball toward a wall at speed $25.0 \mathrm{~m} / \mathrm{s}$ and at angle $\theta_{0}=40.0^{\circ}$ above the horizontal (Fig. 4-35). The wall is distance $d=$ 22.0 m from the release point of the ball. (a) How far above the release point does the ball hit the wall?

Figure 4-35 Problem 32. What are the (b) horizontal and
(c) vertical components of its velocity as it hits the wall? (d) When it hits, has it passed the highest point on its trajectory?
-33 SSM A plane, diving with constant speed at an angle of 53.0° with the vertical, releases a projectile at an altitude of 730 m . The projectile hits the ground 5.00 s after release. (a) What is the speed of the plane? (b) How far does the projectile travel horizontally during its flight? What are the (c) horizontal and (d) vertical components of its velocity just before striking the ground?
-034 A trebuchet was a hurling machine built to attack the walls of a castle under siege. A large stone could be hurled against a wall to break apart the wall. The machine was not placed near the
wall because then arrows could reach it from the castle wall. Instead, it was positioned so that the stone hit the wall during the second half of its flight. Suppose a stone is launched with a speed of $v_{0}=28.0 \mathrm{~m} / \mathrm{s}$ and at an angle of $\theta_{0}=40.0^{\circ}$. What is the speed of the stone if it hits the wall (a) just as it reaches the top of its parabolic path and (b) when it has descended to half that height? (c) As a percentage, how much faster is it moving in part (b) than in part (a)?
$\bullet 35$ SSM A rifle that shoots bullets at $460 \mathrm{~m} / \mathrm{s}$ is to be aimed at a target 45.7 m away. If the center of the target is level with the rifle, how high above the target must the rifle barrel be pointed so that the bullet hits dead center?
0.36 ©0 During a tennis match, a player serves the ball at $23.6 \mathrm{~m} / \mathrm{s}$, with the center of the ball leaving the racquet horizontally 2.37 m above the court surface. The net is 12 m away and 0.90 m high. When the ball reaches the net, (a) does the ball clear it and (b) what is the distance between the center of the ball and the top of the net? Suppose that, instead, the ball is served as before but now it leaves the racquet at 5.00° below the horizontal. When the ball reaches the net, (c) does the ball clear it and (d) what now is the distance between the center of the ball and the top of the net?
-•37 SSM www A lowly high diver pushes off horizontally with a speed of $2.00 \mathrm{~m} / \mathrm{s}$ from the platform edge 10.0 m above the surface of the water. (a) At what horizontal distance from the edge is the diver 0.800 s after pushing off? (b) At what vertical distance above the surface of the water is the diver just then? (c) At what horizontal distance from the edge does the diver strike the water?
-०38 A golf ball is struck at ground level. The speed of the golf ball as a function of the time is shown in Fig. 4-36, where $t=0$ at the instant the ball is struck. The scaling on the vertical axis is set by $v_{a}=19 \mathrm{~m} / \mathrm{s}$ and $v_{b}=31 \mathrm{~m} / \mathrm{s}$. (a) How far does the golf ball travel horizontally be-

Figure 4-36 Problem 38. fore returning to ground level? (b) What is the maximum height above ground level attained by the ball?
-039 In Fig. 4-37, a ball is thrown leftward from the left edge of the roof, at height h above the ground. The ball hits the ground 1.50 s later, at distance $d=25.0 \mathrm{~m}$ from the building and at angle $\theta=60.0^{\circ}$ with the horizontal. (a) Find h. (Hint: One way is to reverse the motion, as if on video.) What are the (b) magnitude and (c) angle relative to the horizontal of the velocity at which the ball is thrown? (d) Is the angle above or below the horizontal?

Figure 4-37 Problem 39.
-०40 Suppose that a shot putter can put a shot at the worldclass speed $v_{0}=15.00 \mathrm{~m} / \mathrm{s}$ and at a height of 2.160 m . What horizontal distance would the shot travel if the launch angle θ_{0} is (a) 45.00° and (b) 42.00° ? The answers indicate that the angle of 45°, which maximizes the range of projectile motion, does not maximize the horizontal distance when the launch and landing are at different heights.
-041 U0 Upon spotting an insect on a twig overhanging water, an archer fish squirts water drops at the insect to knock it into the water (Fig. 4-38). Although the fish sees the insect along a straight-line path at angle ϕ and distance d, a drop must be launched at a different angle θ_{0} if its parabolic path is to intersect the

Figure 4-38 Problem 41. insect. If $\phi=36.0^{\circ}$ and $d=0.900 \mathrm{~m}$, what launch angle θ_{0} is required for the drop to be at the top of the parabolic path when it reaches the insect?
-042 In 1939 or 1940, Emanuel Zacchini took his humancannonball act to an extreme: After being shot from a cannon, he soared over three Ferris wheels and into a net (Fig. 4-39). Assume that he is launched with a speed of $26.5 \mathrm{~m} / \mathrm{s}$ and at an angle of 53.0°. (a) Treating him as a particle, calculate his clearance over the first wheel. (b) If he reached maximum height over the middle wheel, by how much did he clear it? (c) How far from the cannon should the net's center have been positioned (neglect air drag)?

-043 ILW A ball is shot from the ground into the air. At a height of 9.1 m , its velocity is $\vec{v}=(7.6 \hat{\mathrm{i}}+6.1 \hat{\mathrm{j}}) \mathrm{m} / \mathrm{s}$, with $\hat{\mathrm{i}}$ horizontal and $\hat{\mathrm{j}}$ upward. (a) To what maximum height does the ball rise? (b) What total horizontal distance does the ball travel? What are the (c) magnitude and (d) angle (below the horizontal) of the ball's velocity just before it hits the ground?
-•44 A baseball leaves a pitcher's hand horizontally at a speed of $161 \mathrm{~km} / \mathrm{h}$. The distance to the batter is 18.3 m . (a) How long does the ball take to travel the first half of that distance? (b) The second half? (c) How far does the ball fall freely during the first half? (d) During the second half? (e) Why aren't the quantities in (c) and (d) equal?
$\bullet 045$ In Fig. 4-40, a ball is launched with a velocity of magnitude $10.0 \mathrm{~m} / \mathrm{s}$, at an angle of 50.0° to the horizontal. The launch point is at the base of a ramp of horizontal length $d_{1}=6.00 \mathrm{~m}$ and height $d_{2}=3.60 \mathrm{~m}$. A plateau is located at the top of the ramp. (a) Does the ball land on the ramp or the plateau? When it lands, what are the (b) mag-

Figure 4-40 Problem 45. nitude and (c) angle of its displacement from the launch point?
©046 In basketball, hang is an illusion in which a player seems to weaken the gravitational acceleration while in midair. The illusion depends much on a skilled player's ability to rapidly shift
the ball between hands during the flight, but it might also be supported by the longer horizontal distance the player travels in the upper part of the jump than in the lower part. If a player jumps with an initial speed of $v_{0}=7.00 \mathrm{~m} / \mathrm{s}$ at an angle of $\theta_{0}=35.0^{\circ}$, what percent of the jump's range does the player spend in the upper half of the jump (between maximum height and half maximum height)?
-047 SSM www A batter hits a pitched ball when the center of the ball is 1.22 m above the ground. The ball leaves the bat at an angle of 45° with the ground. With that launch, the ball should have a horizontal range (returning to the launch level) of 107 m . (a) Does the ball clear a $7.32-\mathrm{m}$-high fence that is 97.5 m horizontally from the launch point? (b) At the fence, what is the distance between the fence top and the ball center?
००48 © In Fig. 4-41, a ball is thrown up onto a roof, landing 4.00 s later at height $h=20.0 \mathrm{~m}$ above the release level. The ball's path just before landing is angled at $\theta=60.0^{\circ}$ with the roof. (a) Find the horizontal distance d it travels. (See the hint to Problem 39.) What are the (b) magnitude and (c) angle (relative to the horizontal) of

Figure 4-41 Problem 48. the ball's initial velocity?
${ }^{00049}$ SSM A football kicker can give the ball an initial speed of $25 \mathrm{~m} / \mathrm{s}$. What are the (a) least and (b) greatest elevation angles at which he can kick the ball to score a field goal from a point 50 m in front of goalposts whose horizontal bar is 3.44 m above the ground?
-⿰氵50 © Two seconds after being projected from ground level, a projectile is displaced 40 m horizontally and 53 m vertically above its launch point. What are the (a) horizontal and (b) vertical components of the initial velocity of the projectile? (c) At the instant the projectile achieves its maximum height above ground level, how far is it displaced horizontally from the launch point?
${ }^{\circ 0051 \text { A skilled skier knows to jump upward before reaching a }}$ downward slope. Consider a jump in which the launch speed is $v_{0}=10 \mathrm{~m} / \mathrm{s}$, the launch angle is $\theta_{0}=11.3^{\circ}$, the initial course is approximately flat, and the steeper track has a slope of 9.0°. Figure 4-42a shows a prejump that allows the skier to land on the top portion of the steeper track. Figure $4-42 b$ shows a jump at the edge of the steeper track. In Fig. 4-42a, the skier lands at approximately the launch level. (a) In the landing, what is the angle ϕ between the skier's path and the slope? In Fig. 4-42b, (b) how far below the launch level does the skier land and (c) what is ϕ ? (The greater fall and greater ϕ can result in loss of control in the landing.)

(a)

(b)

Figure 4-42 Problem 51.
${ }^{\circ 0052}$ A ball is to be shot from level ground toward a wall at distance x (Fig. 4-43a). Figure 4-43b shows the y component v_{y} of the ball's velocity just as it would reach the wall, as a function of that
distance x. The scaling is set by $v_{y s}=5.0 \mathrm{~m} / \mathrm{s}$ and $x_{s}=20 \mathrm{~m}$. What is the launch angle?

Figure 4-43 Problem 52.
 then caught at the same height. It travels alongside a wall, moving up past the top of the wall 1.00 s after it is hit and then down past the top of the wall 4.00 s later, at distance $D=50.0 \mathrm{~m}$ farther along the wall. (a) What horizontal distance is traveled by the ball from hit to catch? What are the (b) magnitude and (c) angle (relative to the horizontal) of the ball's velocity just after being hit? (d) How high is the wall?

Figure 4-44 Problem 53.
00054 © A ball is to be shot from level ground with a certain speed. Figure 4-45 shows the range R it will have versus the launch angle θ_{0}. The value of θ_{0} determines the flight time; let $t_{\text {max }}$ represent the maximum flight time. What is the least speed the ball will have during its flight if θ_{0} is chosen such that the flight time is $0.500 t_{\max }$?

Figure 4-45 Problem 54.
${ }^{000} 55$ SSM A ball rolls horizontally off the top of a stairway with a speed of $1.52 \mathrm{~m} / \mathrm{s}$. The steps are 20.3 cm high and 20.3 cm wide. Which step does the ball hit first?

Module 4-5 Uniform Circular Motion

-56 An Earth satellite moves in a circular orbit 640 km (uniform circular motion) above Earth's surface with a period of 98.0 min . What are (a) the speed and (b) the magnitude of the centripetal acceleration of the satellite?
-57 A carnival merry-go-round rotates about a vertical axis at a constant rate. A man standing on the edge has a constant speed of $3.66 \mathrm{~m} / \mathrm{s}$ and a centripetal acceleration \vec{a} of magnitude $1.83 \mathrm{~m} / \mathrm{s}^{2}$. Position vector \vec{r} locates him relative to the rotation axis. (a) What is the magnitude of \vec{r} ? What is the direction of \vec{r} when \vec{a} is directed (b) due east and (c) due south?
-58 A rotating fan completes 1200 revolutions every minute. Consider the tip of a blade, at a radius of 0.15 m . (a) Through what distance does the tip move in one revolution? What are (b) the
tip's speed and (c) the magnitude of its acceleration? (d) What is the period of the motion?
-59 ILW A woman rides a carnival Ferris wheel at radius 15 m , completing five turns about its horizontal axis every minute. What are (a) the period of the motion, the (b) magnitude and (c) direction of her centripetal acceleration at the highest point, and the (d) magnitude and (e) direction of her centripetal acceleration at the lowest point?
-60 A centripetal-acceleration addict rides in uniform circular motion with radius $r=3.00 \mathrm{~m}$. At one instant his acceleration is $\vec{a}=\left(6.00 \mathrm{~m} / \mathrm{s}^{2}\right) \hat{\mathrm{i}}+\left(-4.00 \mathrm{~m} / \mathrm{s}^{2}\right) \hat{\mathrm{j}}$. At that instant, what are the values of (a) $\vec{v} \cdot \vec{a}$ and (b) $\vec{r} \times \vec{a}$?
-61 When a large star becomes a supernova, its core may be compressed so tightly that it becomes a neutron star, with a radius of about 20 km (about the size of the San Francisco area). If a neutron star rotates once every second, (a) what is the speed of a particle on the star's equator and (b) what is the magnitude of the particle's centripetal acceleration? (c) If the neutron star rotates faster, do the answers to (a) and (b) increase, decrease, or remain the same?
-62 What is the magnitude of the acceleration of a sprinter running at $10 \mathrm{~m} / \mathrm{s}$ when rounding a turn of radius 25 m ?
-•63 ©0 At $t_{1}=2.00 \mathrm{~s}$, the acceleration of a particle in counterclockwise circular motion is $\left(6.00 \mathrm{~m} / \mathrm{s}^{2}\right) \hat{\mathrm{i}}+\left(4.00 \mathrm{~m} / \mathrm{s}^{2}\right) \hat{\mathrm{j}}$. It moves at constant speed. At time $t_{2}=5.00 \mathrm{~s}$, the particle's acceleration is $\left(4.00 \mathrm{~m} / \mathrm{s}^{2}\right) \hat{\mathrm{i}}+\left(-6.00 \mathrm{~m} / \mathrm{s}^{2}\right) \hat{\mathrm{j}}$. What is the radius of the path taken by the particle if $t_{2}-t_{1}$ is less than one period?
-•64 ©o A particle moves horizontally in uniform circular motion, over a horizontal $x y$ plane. At one instant, it moves through the point at coordinates $(4.00 \mathrm{~m}, 4.00 \mathrm{~m})$ with a velocity of $-5.00 \hat{\mathrm{i}} \mathrm{m} / \mathrm{s}$ and an acceleration of $+12.5 \hat{\mathrm{j}} \mathrm{m} / \mathrm{s}^{2}$. What are the (a) x and (b) y coordinates of the center of the circular path?
-•65 A purse at radius 2.00 m and a wallet at radius 3.00 m travel in uniform circular motion on the floor of a merry-go-round as the ride turns. They are on the same radial line. At one instant, the acceleration of the purse is $\left(2.00 \mathrm{~m} / \mathrm{s}^{2}\right) \hat{\mathrm{i}}+\left(4.00 \mathrm{~m} / \mathrm{s}^{2}\right) \hat{\mathrm{j}}$. At that instant and in unit-vector notation, what is the acceleration of the wallet?
-•66 A particle moves along a circular path over a horizontal xy coordinate system, at constant speed. At time $t_{1}=4.00 \mathrm{~s}$, it is at point $(5.00 \mathrm{~m}, 6.00 \mathrm{~m})$ with velocity $(3.00 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{j}}$ and acceleration in the positive x direction. At time $t_{2}=10.0 \mathrm{~s}$, it has velocity $(-3.00 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{i}}$ and acceleration in the positive y direction. What are the (a) x and (b) y coordinates of the center of the circular path if $t_{2}-t_{1}$ is less than one period?
-••67 SSM WWW A boy whirls a stone in a horizontal circle of radius 1.5 m and at height 2.0 m above level ground. The string breaks, and the stone flies off horizontally and strikes the ground after traveling a horizontal distance of 10 m . What is the magnitude of the centripetal acceleration of the stone during the circular motion?
\bullet ••68 A cat rides a merry-go-round turning with uniform circular motion. At time $t_{1}=2.00 \mathrm{~s}$, the cat's velocity is $\vec{v}_{1}=$ $(3.00 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{i}}+(4.00 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{j}}$, measured on a horizontal $x y$ coordinate system. At $t_{2}=5.00 \mathrm{~s}$, the cat's velocity is $\vec{v}_{2}=(-3.00 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{i}}+$ $(-4.00 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{j}}$. What are (a) the magnitude of the cat's centripetal acceleration and (b) the cat's average acceleration during the time interval $t_{2}-t_{1}$, which is less than one period?

Module 4-6 Relative Motion in One Dimension

-69 A cameraman on a pickup truck is traveling westward at $20 \mathrm{~km} / \mathrm{h}$ while he records a cheetah that is moving westward $30 \mathrm{~km} / \mathrm{h}$ faster than the truck. Suddenly, the cheetah stops, turns, and then runs at $45 \mathrm{~km} / \mathrm{h}$ eastward, as measured by a suddenly nervous crew member who stands alongside the cheetah's path. The change in the animal's velocity takes 2.0 s . What are the (a) magnitude and (b) direction of the animal's acceleration according to the cameraman and the (c) magnitude and (d) direction according to the nervous crew member?
-70 A boat is traveling upstream in the positive direction of an x axis at $14 \mathrm{~km} / \mathrm{h}$ with respect to the water of a river. The water is flowing at $9.0 \mathrm{~km} / \mathrm{h}$ with respect to the ground. What are the (a) magnitude and (b) direction of the boat's velocity with respect to the ground? A child on the boat walks from front to rear at $6.0 \mathrm{~km} / \mathrm{h}$ with respect to the boat. What are the (c) magnitude and (d) direction of the child's velocity with respect to the ground?
$\bullet \bullet 71$ A suspicious-looking man runs as fast as he can along a moving sidewalk from one end to the other, taking 2.50 s . Then security agents appear, and the man runs as fast as he can back along the sidewalk to his starting point, taking 10.0 s . What is the ratio of the man's running speed to the sidewalk's speed?

Module 4-7 Relative Motion in Two Dimensions

-72 A rugby player runs with the ball directly toward his opponent's goal, along the positive direction of an x axis. He can legally pass the ball to a teammate as long as the ball's velocity relative to the field does not have a positive x component. Suppose the player runs at speed $4.0 \mathrm{~m} / \mathrm{s}$ relative to the field while he passes the ball with velocity $\vec{v}_{B P}$ relative to himself. If $\vec{v}_{B P}$ has magnitude $6.0 \mathrm{~m} / \mathrm{s}$, what is the smallest angle it can have for the pass to be legal?
-•73 Two highways intersect as shown in Fig. 4-46. At the instant shown, a police car P is distance $d_{P}=800 \mathrm{~m}$ from the intersection and moving at speed $v_{P}=80 \mathrm{~km} / \mathrm{h}$. Motorist M is distance $d_{M}=$ 600 m from the intersection and moving at speed $v_{M}=60 \mathrm{~km} / \mathrm{h}$.

Figure 4-46 Problem 73.
(a) In unit-vector notation, what is the velocity of the motorist with respect to the police car? (b) For the instant shown in Fig. 4-46, what is the angle between the velocity found in (a) and the line of sight between the two cars? (c) If the cars maintain their velocities, do the answers to (a) and (b) change as the cars move nearer the intersection?
-•74 After flying for 15 min in a wind blowing $42 \mathrm{~km} / \mathrm{h}$ at an angle of 20° south of east, an airplane pilot is over a town that is 55 km due north of the starting point. What is the speed of the airplane relative to the air?
© 75 SSM A train travels due south at $30 \mathrm{~m} / \mathrm{s}$ (relative to the ground) in a rain that is blown toward the south by the wind. The path of each raindrop makes an angle of 70° with the vertical, as measured by an observer stationary on the ground. An observer on the train, however, sees the drops fall perfectly vertically. Determine the speed of the raindrops relative to the ground.
-•76 A light plane attains an airspeed of $500 \mathrm{~km} / \mathrm{h}$. The pilot sets out for a destination 800 km due north but discovers that the plane must be headed 20.0° east of due north to fly there directly. The plane arrives in 2.00 h . What were the (a) magnitude and (b) direction of the wind velocity?
$\bullet 077$ SSM Snow is falling vertically at a constant speed of $8.0 \mathrm{~m} / \mathrm{s}$. At what angle from the vertical do the snowflakes appear to be falling as viewed by the driver of a car traveling on a straight, level road with a speed of $50 \mathrm{~km} / \mathrm{h}$?
-078 In the overhead view of Fig. 4-47, Jeeps P and B race along straight lines, across flat terrain, and past stationary border guard A. Relative to the guard, B travels at a constant speed of $20.0 \mathrm{~m} / \mathrm{s}$, at the angle $\theta_{2}=30.0^{\circ}$. Relative to the guard, P has accelerated from rest at a constant rate of $0.400 \mathrm{~m} / \mathrm{s}^{2}$ at the
 angle $\theta_{1}=60.0^{\circ}$. At a certain time during the acceleration, P has a speed of $40.0 \mathrm{~m} / \mathrm{s}$. At that time, what are the (a) magnitude and (b) direction of the velocity of P relative to B and the (c) magnitude and (d) direction of the acceleration of P relative to B ?
-•79 SSM ILw Two ships, A and B, leave port at the same time. Ship A travels northwest at 24 knots, and ship B travels at 28 knots in a direction 40° west of south. (1 knot $=1$ nautical mile per hour; see Appendix D.) What are the (a) magnitude and (b) direction of the velocity of ship A relative to B ? (c) After what time will the ships be 160 nautical miles apart? (d) What will be the bearing of B (the direction of B 's position) relative to A at that time?
-080 © A 200-m-wide river flows due east at a uniform speed of $2.0 \mathrm{~m} / \mathrm{s}$. A boat with a speed of $8.0 \mathrm{~m} / \mathrm{s}$ relative to the water leaves the south bank pointed in a direction 30° west of north. What are the (a) magnitude and (b) direction of the boat's velocity relative to the ground? (c) How long does the boat take to cross the river?
-0081 © Ship A is located 4.0 km north and 2.5 km east of ship B. Ship A has a velocity of $22 \mathrm{~km} / \mathrm{h}$ toward the south, and ship B has a velocity of $40 \mathrm{~km} / \mathrm{h}$ in a direction 37° north of east. (a) What is the velocity of A relative to B in unit-vector notation with $\hat{\mathrm{i}}$ toward the east? (b) Write an expression (in terms of $\hat{\mathrm{i}}$ and $\hat{\mathrm{j}}$) for the position of A relative to B as a function of t, where $t=0$ when the ships are in the positions described above. (c) At what time is the separation between the ships least? (d) What is that least separation?
-0082 © A 200-m-wide river has a uniform flow speed of $1.1 \mathrm{~m} / \mathrm{s}$ through a jungle and toward the east. An explorer wishes to
leave a small clearing on the south bank and cross the river in a powerboat that moves at a constant speed of $4.0 \mathrm{~m} / \mathrm{s}$ with respect to the water. There is a clearing on the north bank 82 m upstream from a point directly opposite the clearing on the south bank. (a) In what direction must the boat be pointed in order to travel in a straight line and land in the clearing on the north bank? (b) How long will the boat take to cross the river and land in the clearing?

Additional Problems

83 A woman who can row a boat at $6.4 \mathrm{~km} / \mathrm{h}$ in still water faces a long, straight river with a width of 6.4 km and a current of $3.2 \mathrm{~km} / \mathrm{h}$. Let \hat{i} point directly across the river and \hat{j} point directly downstream. If she rows in a straight line to a point directly opposite her starting position, (a) at what angle to \hat{i} must she point the boat and (b) how long will she take? (c) How long will she take if, instead, she rows 3.2 km down the river and then back to her starting point? (d) How long if she rows 3.2 km up the river and then back to her starting point? (e) At what angle to \hat{i} should she point the boat if she wants to cross the river in the shortest possible time? (f) How long is that shortest time?
84 In Fig. 4-48a, a sled moves in the negative x direction at constant speed v_{s} while a ball of ice is shot from the sled with a velocity $\vec{v}_{0}=v_{0 x} \hat{i}+v_{0, y} \hat{j}$ relative to the sled. When the ball lands, its horizontal displacement $\Delta x_{b g}$ relative to the ground (from its launch position to its landing position) is measured. Figure $4-48 b$ gives $\Delta x_{b g}$ as a function of v_{s}. Assume the ball lands at approximately its launch height. What are the values of (a) $v_{0 x}$ and (b) $v_{0 y}$? The ball's displacement $\Delta x_{b s}$ relative to the sled can also be measured. Assume that the sled's velocity is not changed when the ball is shot. What is $\Delta x_{b s}$ when v_{s} is (c) $5.0 \mathrm{~m} / \mathrm{s}$ and (d) $15 \mathrm{~m} / \mathrm{s}$?

Figure 4-48 Problem 84.

85 You are kidnapped by political-science majors (who are upset because you told them political science is not a real science). Although blindfolded, you can tell the speed of their car (by the whine of the engine), the time of travel (by mentally counting off seconds), and the direction of travel (by turns along the rectangular street system). From these clues, you know that you are taken along the following course: $50 \mathrm{~km} / \mathrm{h}$ for 2.0 min , turn 90° to the right, $20 \mathrm{~km} / \mathrm{h}$ for 4.0 min , turn 90° to the right, $20 \mathrm{~km} / \mathrm{h}$ for 60 s , turn 90° to the left, $50 \mathrm{~km} / \mathrm{h}$ for 60 s , turn 90° to the right, $20 \mathrm{~km} / \mathrm{h}$ for 2.0 min , turn 90° to the left, $50 \mathrm{~km} / \mathrm{h}$ for 30 s . At that point, (a) how far are you from your starting point, and (b) in what direction relative to your initial direction of travel are you?

86 A radar station detects an airplane approaching directly from the east. At first observation, the airplane is at distance $d_{1}=360 \mathrm{~m}$ from the station and at angle $\theta_{1}=40^{\circ}$ above the horizon (Fig. 4-49). The airplane is tracked through an angular change $\Delta \theta=123^{\circ}$ in the vertical east-west plane; its distance is then $d_{2}=790 \mathrm{~m}$. Find the (a) magnitude and (b) direction of the airplane's displacement during this period.

Figure 4-49 Problem 86.

87 SSM A baseball is hit at ground level. The ball reaches its maximum height above ground level 3.0 s after being hit. Then 2.5 s after reaching its maximum height, the ball barely clears a fence that is 97.5 m from where it was hit. Assume the ground is level. (a) What maximum height above ground level is reached by the ball? (b) How high is the fence? (c) How far beyond the fence does the ball strike the ground?

88 Long flights at midlatitudes in the Northern Hemisphere encounter the jet stream, an eastward airflow that can affect a plane's speed relative to Earth's surface. If a pilot maintains a certain speed relative to the air (the plane's airspeed), the speed relative to the surface (the plane's ground speed) is more when the flight is in the direction of the jet stream and less when the flight is opposite the jet stream. Suppose a round-trip flight is scheduled between two cities separated by 4000 km , with the outgoing flight in the direction of the jet stream and the return flight opposite it. The airline computer advises an airspeed of $1000 \mathrm{~km} / \mathrm{h}$, for which the difference in flight times for the outgoing and return flights is 70.0 min . What jet-stream speed is the computer using?

89 SSM A particle starts from the origin at $t=0$ with a velocity of $8.0 \hat{\mathrm{j}} \mathrm{m} / \mathrm{s}$ and moves in the $x y$ plane with constant acceleration $(4.0 \hat{\mathrm{i}}+2.0 \hat{\mathrm{j}}) \mathrm{m} / \mathrm{s}^{2}$. When the particle's x coordinate is 29 m , what are its (a) y coordinate and (b) speed?
90 At what initial speed must the basketball player in Fig. 4-50 throw the ball, at angle $\theta_{0}=55^{\circ}$ above the horizontal, to make the foul shot? The horizontal distances are $d_{1}=1.0 \mathrm{ft}$ and $d_{2}=14 \mathrm{ft}$, and the heights are $h_{1}=7.0 \mathrm{ft}$ and $h_{2}=10 \mathrm{ft}$.
91 During volcanic eruptions, chunks of solid rock can be blasted out of the vol-

Figure 4-50 Problem 90. cano; these projectiles are called volcanic bombs. Figure 4-51 shows a cross section of Mt. Fuji, in Japan. (a) At what initial speed would a bomb have to be ejected, at angle $\theta_{0}=35^{\circ}$ to the horizontal, from the vent at A in order to fall at the foot of the volcano at B, at vertical distance $h=3.30 \mathrm{~km}$ and horizontal distance $d=9.40 \mathrm{~km}$? Ignore, for the
moment, the effects of air on the bomb's travel. (b) What would be the time of flight? (c) Would the effect of the air increase or decrease your answer in (a)?

Figure 4-51 Problem 91.
92 An astronaut is rotated in a horizontal centrifuge at a radius of 5.0 m . (a) What is the astronaut's speed if the centripetal acceleration has a magnitude of $7.0 g$? (b) How many revolutions per minute are required to produce this acceleration? (c) What is the period of the motion?
93 ssm Oasis A is 90 km due west of oasis B. A desert camel leaves A and takes 50 h to walk 75 km at 37° north of due east. Next it takes 35 h to walk 65 km due south. Then it rests for 5.0 h . What are the (a) magnitude and (b) direction of the camel's displacement relative to A at the resting point? From the time the camel leaves A until the end of the rest period, what are the (c) magnitude and (d) direction of its average velocity and (e) its average speed? The camel's last drink was at A; it must be at B no more than 120 h later for its next drink. If it is to reach B just in time, what must be the (f) magnitude and (g) direction of its average velocity after the rest period?
94 Curtain of death. A large metallic asteroid strikes Earth and quickly digs a crater into the rocky material below ground level by launching rocks upward and outward. The following table gives five pairs of launch speeds and angles (from the horizontal) for such rocks, based on a model of crater formation. (Other rocks, with intermediate speeds and angles, are also launched.) Suppose that you are at $x=20 \mathrm{~km}$ when the asteroid strikes the ground at time $t=0$ and position $x=0$ (Fig. 4-52). (a) At $t=20 \mathrm{~s}$, what are the x and y coordinates of the rocks headed in your direction from launches A through E? (b) Plot these coordinates and then sketch a curve through the points to include rocks with intermediate launch speeds and angles. The curve should indicate what you would see as you look up into the approaching rocks.

Launch	Speed (m/s)	Angle (degrees)
A	520	14.0
B	630	16.0
C	750	18.0
D	870	20.0
E	1000	22.0

Figure 4-52 Problem 94.

95 Figure 4-53 shows the straight path of a particle across an $x y$ coordinate system as the particle is accelerated from rest during time interval Δt_{1}. The acceleration is constant. The $x y$ coordinates for point A are $(4.00 \mathrm{~m}, 6.00 \mathrm{~m})$; those for point B are (12.0 $\mathrm{m}, 18.0 \mathrm{~m}$). (a) What is the ratio a_{y} / a_{x} of the acceleration components? (b) What are the coordinates of the particle if the motion is continued for another interval equal to Δt_{1} ?
96 For women's volleyball the top of the net is 2.24 m above the floor and the court measures 9.0 m by 9.0 m on each side of the net. Using a jump serve, a player strikes the ball at a point that is 3.0 m above the floor and a horizontal distance of 8.0 m from the net. If the initial velocity of the ball is horizontal, (a) what minimum magnitude must it have if the ball is to clear the net and (b) what maximum magnitude can it have if the ball is to strike the floor inside the back line on the other side of the net?
97 SSM A rifle is aimed horizontally at a target 30 m away. The bullet hits the target 1.9 cm below the aiming point. What are (a) the bullet's time of flight and (b) its speed as it emerges from the rifle?
98 A particle is in uniform circular motion about the origin of an $x y$ coordinate system, moving clockwise with a period of 7.00 s . At one instant, its position vector (measured from the origin) is $\vec{r}=(2.00 \mathrm{~m}) \hat{\mathrm{i}}-(3.00 \mathrm{~m}) \hat{\mathrm{j}}$. At that instant, what is its velocity in unit-vector notation?

99 In Fig. 4-54, a lump of wet putty moves in uniform circular motion as it rides at a radius of 20.0 cm on the rim of a wheel rotating counterclockwise with a period of 5.00 ms . The lump then happens to fly off the rim at the 5 o'clock position (as if on a clock face). It leaves the rim

Figure 4-54 Problem 99. at a height of $h=1.20 \mathrm{~m}$ from the floor and at a distance $d=2.50$ m from a wall. At what height on the wall does the lump hit?
100 An iceboat sails across the surface of a frozen lake with constant acceleration produced by the wind. At a certain instant the boat's velocity is $(6.30 \hat{\mathrm{i}}-8.42 \hat{\mathrm{j}}) \mathrm{m} / \mathrm{s}$. Three seconds later, because of a wind shift, the boat is instantaneously at rest. What is its average acceleration for this 3.00 s interval?
101 In Fig. 4-55, a ball is shot directly upward from the ground with an initial speed of $v_{0}=7.00 \mathrm{~m} / \mathrm{s}$. Simultaneously, a construction elevator cab begins to move upward from the ground with a constant speed of $v_{c}=3.00 \mathrm{~m} / \mathrm{s}$. What maximum height

Figure 4-55 Problem 101. does the ball reach relative to (a) the ground and (b) the cab floor? At what rate does the speed of the ball change relative to (c) the ground and (d) the cab floor?
102 A magnetic field forces an electron to move in a circle with radial acceleration $3.0 \times 10^{14} \mathrm{~m} / \mathrm{s}^{2}$. (a) What is the speed of the electron if the radius of its circular path is 15 cm ? (b) What is the period of the motion?

103 In 3.50 h , a balloon drifts 21.5 km north, 9.70 km east, and 2.88 km upward from its release point on the ground. Find (a) the magnitude of its average velocity and (b) the angle its average velocity makes with the horizontal.

104 A ball is thrown horizontally from a height of 20 m and hits the ground with a speed that is three times its initial speed. What is the initial speed?
105 A projectile is launched with an initial speed of $30 \mathrm{~m} / \mathrm{s}$ at an angle of 60° above the horizontal. What are the (a) magnitude and (b) angle of its velocity 2.0 s after launch, and (c) is the angle above or below the horizontal? What are the (d) magnitude and (e) angle of its velocity 5.0 s after launch, and (f) is the angle above or below the horizontal?
106 The position vector for a proton is initially $\vec{r}=$ $5.0 \hat{\mathrm{i}}-6.0 \hat{\mathrm{j}}+2.0 \hat{\mathrm{k}}$ and then later is $\vec{r}=-2.0 \hat{\mathrm{i}}+6.0 \hat{\mathrm{j}}+2.0 \hat{\mathrm{k}}$, all in meters. (a) What is the proton's displacement vector, and (b) to what plane is that vector parallel?

107 A particle P travels with constant speed on a circle of radius $r=$ 3.00 m (Fig. 4-56) and completes one revolution in 20.0 s . The particle passes through O at time $t=0$. State the following vectors in magnitudeangle notation (angle relative to the positive direction of x). With respect to O, find the particle's position vector at the times t of (a) 5.00 s , (b) 7.50 s , and (c) 10.0 s . (d) For the 5.00 s interval from the end of

Figure 4-56 Problem 107. the fifth second to the end of the tenth second, find the particle's displacement. For that interval, find (e) its average velocity and its velocity at the (f) beginning and (g) end. Next, find the acceleration at the (h) beginning and (i) end of that interval.
108 The fast French train known as the TGV (Train à Grande Vitesse) has a scheduled average speed of $216 \mathrm{~km} / \mathrm{h}$. (a) If the train goes around a curve at that speed and the magnitude of the acceleration experienced by the passengers is to be limited to 0.050 g , what is the smallest radius of curvature for the track that can be tolerated? (b) At what speed must the train go around a curve with a 1.00 km radius to be at the acceleration limit?
109 (a) If an electron is projected horizontally with a speed of $3.0 \times 10^{6} \mathrm{~m} / \mathrm{s}$, how far will it fall in traversing 1.0 m of horizontal distance? (b) Does the answer increase or decrease if the initial speed is increased?

110 A person walks up a stalled $15-\mathrm{m}$-long escalator in 90 s . When standing on the same escalator, now moving, the person is carried up in 60 s . How much time would it take that person to walk up the moving escalator? Does the answer depend on the length of the escalator?
111 (a) What is the magnitude of the centripetal acceleration of an object on Earth's equator due to the rotation of Earth? (b) What would Earth's rotation period have to be for objects on the equator to have a centripetal acceleration of magnitude $9.8 \mathrm{~m} / \mathrm{s}^{2}$?
112 The range of a projectile depends not only on v_{0} and θ_{0} but also on the value g of the free-fall acceleration, which varies from place to place. In 1936, Jesse Owens established a world's running broad jump record of 8.09 m at the Olympic Games at Berlin (where $g=9.8128 \mathrm{~m} / \mathrm{s}^{2}$). Assuming the same values of v_{0} and θ_{0}, by how much would his record have differed if he had competed instead in 1956 at Melbourne (where $g=9.7999 \mathrm{~m} / \mathrm{s}^{2}$)?

113 Figure 4-57 shows the path taken by a drunk skunk over level ground, from initial point i to final point f. The angles are $\theta_{1}=30.0^{\circ}$, $\theta_{2}=50.0^{\circ}$, and $\theta_{3}=80.0^{\circ}$, and the distances are $d_{1}=5.00 \mathrm{~m}, d_{2}=8.00$ m , and $d_{3}=12.0 \mathrm{~m}$. What are the (a) magnitude and (b) angle of the skunk's displacement from i to f ?
114 The position vector \vec{r} of a particle moving in the $x y$ plane is $\vec{r}=2 \hat{\mathrm{i}}+2 \sin [(\pi / 4 \mathrm{rad} / \mathrm{s}) t] \hat{\mathrm{j}}$, with \vec{r} in meters and t in seconds. (a)

Figure 4-57 Problem 113. Calculate the x and y components of the particle's position at $t=0,1.0,2.0,3.0$, and 4.0 s and sketch the particle's path in the $x y$ plane for the interval $0 \leq t \leq$ 4.0 s . (b) Calculate the components of the particle's velocity at $t=1.0,2.0$, and 3.0 s . Show that the velocity is tangent to the path of the particle and in the direction the particle is moving at each time by drawing the velocity vectors on the plot of the particle's path in part (a). (c) Calculate the components of the particle's acceleration at $t=1.0,2.0$, and 3.0 s .

115 An electron having an initial horizontal velocity of magnitude $1.00 \times 10^{9} \mathrm{~cm} / \mathrm{s}$ travels into the region between two horizontal metal plates that are electrically charged. In that region, the electron travels a horizontal distance of 2.00 cm and has a constant downward acceleration of magnitude $1.00 \times 10^{17} \mathrm{~cm} / \mathrm{s}^{2}$ due to the charged plates. Find (a) the time the electron takes to travel the 2.00 cm , (b) the vertical distance it travels during that time, and the magnitudes of its (c) horizontal and (d) vertical velocity components as it emerges from the region.
116 An elevator without a ceiling is ascending with a constant speed of $10 \mathrm{~m} / \mathrm{s}$. A boy on the elevator shoots a ball directly upward, from a height of 2.0 m above the elevator floor, just as the elevator floor is 28 m above the ground. The initial speed of the ball with respect to the elevator is $20 \mathrm{~m} / \mathrm{s}$. (a) What maximum height above the ground does the ball reach? (b) How long does the ball take to return to the elevator floor?
117 A football player punts the football so that it will have a "hang time" (time of flight) of 4.5 s and land 46 m away. If the ball leaves the player's foot 150 cm above the ground, what must be the (a) magnitude and (b) angle (relative to the horizontal) of the ball's initial velocity?
118 An airport terminal has a moving sidewalk to speed passengers through a long corridor. Larry does not use the moving sidewalk; he takes 150 s to walk through the corridor. Curly, who simply stands on the moving sidewalk, covers the same distance in 70 s . Moe boards the sidewalk and walks along it. How long does Moe take to move through the corridor? Assume that Larry and Moe walk at the same speed.
119 A wooden boxcar is moving along a straight railroad track at speed v_{1}. A sniper fires a bullet (initial speed v_{2}) at it from a high-powered rifle. The bullet passes through both lengthwise walls of the car, its entrance and exit holes being exactly opposite each other as viewed from within the car. From what direction, relative to the track, is the bullet fired? Assume that the bullet is not deflected upon entering the car, but that its speed decreases by 20%. Take $v_{1}=85 \mathrm{~km} / \mathrm{h}$ and $v_{2}=650 \mathrm{~m} / \mathrm{s}$. (Why don't you need to know the width of the boxcar?)

120 A sprinter running on a circular track has a velocity of constant magnitude $9.20 \mathrm{~m} / \mathrm{s}$ and a centripetal acceleration of magnitude $3.80 \mathrm{~m} / \mathrm{s}^{2}$. What are (a) the track radius and (b) the period of the circular motion?

121 Suppose that a space probe can withstand the stresses of a $20 g$ acceleration. (a) What is the minimum turning radius of such a craft moving at a speed of one-tenth the speed of light? (b) How long would it take to complete a 90° turn at this speed?
122 ©o You are to throw a ball with a speed of $12.0 \mathrm{~m} / \mathrm{s}$ at a target that is height $h=5.00 \mathrm{~m}$ above the level at which you release the ball (Fig. 4-58). You want the ball's velocity to be horizontal at the instant it reaches the target. (a) At what angle θ above the horizontal must you throw the ball? (b) What is the horizontal distance from the release point to the target? (c) What is the speed of the ball just as it reaches the target?
123 A projectile is fired with an initial speed $v_{0}=30.0 \mathrm{~m} / \mathrm{s}$ from level ground at a target that is on the ground, at distance $R=20.0 \mathrm{~m}$, as shown in Fig. 4-59. What are the (a) least and (b) greatest launch angles that will allow the projectile to hit the

Figure 4-58 Problem 122.

Figure 4-59 Problem 123. target?
124 A graphing surprise. At time $t=0$, a burrito is launched from level ground, with an initial speed of $16.0 \mathrm{~m} / \mathrm{s}$ and launch angle θ_{0}. Imagine a position vector \vec{r} continuously directed from the launching point to the burrito during the flight. Graph the magnitude r of the position vector for (a) $\theta_{0}=40.0^{\circ}$ and (b) $\theta_{0}=80.0^{\circ}$. For $\theta_{0}=40.0^{\circ}$, (c) when does r reach its maximum value, (d) what is that value, and how far (e) horizontally and (f) vertically is the burrito from the launch point? For $\theta_{0}=80.0^{\circ},(\mathrm{g})$ when does r reach its maximum value, (h) what is that value, and how far (i) horizontally and (j) vertically is the burrito from the launch point?

125 A cannon located at sea level fires a ball with initial speed $82 \mathrm{~m} / \mathrm{s}$ and initial angle 45°. The ball lands in the water after traveling a horizontal distance 686 m . How much greater would the horizontal distance have been had the cannon been 30 m higher?

126 The magnitude of the velocity of a projectile when it is at its maximum height above ground level is $10.0 \mathrm{~m} / \mathrm{s}$. (a) What is the magnitude of the velocity of the projectile 1.00 s before it achieves its maximum height? (b) What is the magnitude of the velocity of the projectile 1.00 s after it achieves its maximum height? If we take $x=0$ and $y=0$ to be at the point of maximum height and positive x to be in the direction of the velocity there, what are the (c) x coordinate and (d) y coordinate of the projectile 1.00 s before it reaches its maximum height and the (e) x coordinate and (f) y coordinate 1.0 s after it reaches its maximum height?

127 A frightened rabbit moving at $6.00 \mathrm{~m} / \mathrm{s}$ due east runs onto a large area of level ice of negligible friction. As the rabbit slides across the ice, the force of the wind causes it to have a constant acceleration of $1.40 \mathrm{~m} / \mathrm{s}^{2}$, due north. Choose a coordinate system with the origin at the rabbit's initial position on the ice and the positive x axis directed toward the east. In unit-vector notation, what are the rabbit's (a) velocity and (b) position when it has slid for 3.00 s?

128 The pilot of an aircraft flies due east relative to the ground in a wind blowing $20.0 \mathrm{~km} / \mathrm{h}$ toward the south. If the speed of the aircraft in the absence of wind is $70.0 \mathrm{~km} / \mathrm{h}$, what is the speed of the aircraft relative to the ground?
129 The pitcher in a slow-pitch softball game releases the ball at a point 3.0 ft above ground level. A stroboscopic plot of the position of the ball is shown in Fig. 4-60, where the readings are 0.25 s apart and the ball is released at $t=0$. (a) What is the initial speed of the ball? (b) What is the speed of the ball at the instant it reaches its maximum height above ground level? (c) What is that maximum height?

Figure 4-60 Problem 129.
130 Some state trooper departments use aircraft to enforce highway speed limits. Suppose that one of the airplanes has a speed of $135 \mathrm{mi} / \mathrm{h}$ in still air. It is flying straight north so that it is at all times directly above a north-south highway. A ground observer tells the pilot by radio that a $70.0 \mathrm{mi} / \mathrm{h}$ wind is blowing but neglects to give the wind direction. The pilot observes that in spite of the wind the plane can travel 135 mi along the highway in 1.00 h . In other words, the ground speed is the same as if there were no wind. (a) From what direction is the wind blowing? (b) What is the heading of the plane; that is, in what direction does it point?
131 A golfer tees off from the top of a rise, giving the golf ball an initial velocity of $43.0 \mathrm{~m} / \mathrm{s}$ at an angle of 30.0° above the horizontal. The ball strikes the fairway a horizontal distance of 180 m from the tee. Assume the fairway is level. (a) How high is the rise above the fairway? (b) What is the speed of the ball as it strikes the fairway?
132 A track meet is held on a planet in a distant solar system. A shot-putter releases a shot at a point 2.0 m above ground level. A stroboscopic plot of the position of the shot is shown in Fig. 4-61,

Figure 4-61 Problem 132.
where the readings are 0.50 s apart and the shot is released at time $t=0$. (a) What is the initial velocity of the shot in unit-vector notation? (b) What is the magnitude of the free-fall acceleration on the planet? (c) How long after it is released does the shot reach the ground? (d) If an identical throw of the shot is made on the surface of Earth, how long after it is released does it reach the ground?
133 A helicopter is flying in a straight line over a level field at a constant speed of $6.20 \mathrm{~m} / \mathrm{s}$ and at a constant altitude of 9.50 m . A package is ejected horizontally from the helicopter with an initial velocity of $12.0 \mathrm{~m} / \mathrm{s}$ relative to the helicopter and in a direction opposite the helicopter's motion. (a) Find the initial speed of the package relative to the ground. (b) What is the horizontal distance between the helicopter and the package at the instant the package strikes the ground? (c) What angle does the velocity vector of the package make with the ground at the instant before impact, as seen from the ground?
134 A car travels around a flat circle on the ground, at a constant speed of $12.0 \mathrm{~m} / \mathrm{s}$. At a certain instant the car has an acceleration of $3.00 \mathrm{~m} / \mathrm{s}^{2}$ toward the east. What are its distance and direction from the center of the circle at that instant if it is traveling (a) clockwise around the circle and (b) counterclockwise around the circle?
135 You throw a ball from a cliff with an initial velocity of $15.0 \mathrm{~m} / \mathrm{s}$ at an angle of 20.0° below the horizontal. Find (a) its horizontal displacement and (b) its vertical displacement 2.30 s later.

136 A baseball is hit at Fenway Park in Boston at a point 0.762 m above home plate with an initial velocity of $33.53 \mathrm{~m} / \mathrm{s}$ directed 55.0° above the horizontal. The ball is observed to clear the $11.28-\mathrm{m}$-high wall in left field (known as the "green monster") 5.00 s after it is hit, at a point just inside the left-field foulline pole. Find (a) the horizontal distance down the left-field foul line from home plate to the wall; (b) the vertical distance by which the ball clears the wall; (c) the horizontal and vertical displacements of the ball with respect to home plate 0.500 s before it clears the wall.
137 A transcontinental flight of 4350 km is scheduled to take 50 min longer westward than eastward. The airspeed of the airplane is $966 \mathrm{~km} / \mathrm{h}$, and the jet stream it will fly through is presumed to move due east. What is the assumed speed of the jet stream?
138 A woman can row a boat at $6.40 \mathrm{~km} / \mathrm{h}$ in still water. (a) If she is crossing a river where the current is $3.20 \mathrm{~km} / \mathrm{h}$, in what direction must her boat be headed if she wants to reach a point directly opposite her starting point? (b) If the river is 6.40 km wide, how long will she take to cross the river? (c) Suppose that instead of crossing the river she rows 3.20 km down the river and then back to her starting point. How long will she take? (d) How long will she take to row 3.20 km up the river and then back to her starting point? (e) In what direction should she head the boat if she wants to cross in the shortest possible time, and what is that time?

Qeview \& Summary

Newtonian Mechanics The velocity of an object can change (the object can accelerate) when the object is acted on by one or more forces (pushes or pulls) from other objects. Newtonian mechanics relates accelerations and forces.

Force Forces are vector quantities. Their magnitudes are defined in terms of the acceleration they would give the standard kilogram. A force that accelerates that standard body by exactly $1 \mathrm{~m} / \mathrm{s}^{2}$ is defined to have a magnitude of 1 N . The direction of a force is the direction of the acceleration it causes. Forces are combined according to the rules of vector algebra. The net force on a body is the vector sum of all the forces acting on the body.

Newton's First Law If there is no net force on a body, the body remains at rest if it is initially at rest or moves in a straight line at constant speed if it is in motion.

Inertial Reference Frames Reference frames in which Newtonian mechanics holds are called inertial reference frames or inertial frames. Reference frames in which Newtonian mechanics does not hold are called noninertial reference frames or noninertial frames.

Mass The mass of a body is the characteristic of that body that relates the body's acceleration to the net force causing the acceleration. Masses are scalar quantities.

Newton's Second Law The net force $\vec{F}_{\text {net }}$ on a body with mass m is related to the body's acceleration \vec{a} by

$$
\begin{equation*}
\vec{F}_{\text {net }}=m \vec{a}, \tag{5-1}
\end{equation*}
$$

which may be written in the component versions

$$
\begin{equation*}
F_{\text {net }, x}=m a_{x} \quad F_{\text {net }, y}=m a_{y} \quad \text { and } \quad F_{\text {net }, z}=m a_{z} . \tag{5-2}
\end{equation*}
$$

The second law indicates that in SI units

$$
\begin{equation*}
1 \mathrm{~N}=1 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}^{2} . \tag{5-3}
\end{equation*}
$$

uestions

1 Figure 5-19 gives the free-body diagram for four situations in which an object is pulled by several forces across a frictionless floor, as seen from overhead. In which situations does the acceleration \vec{a} of the object have (a) an x component and (b) a y com-

(1)

(2)

A free-body diagram is a stripped-down diagram in which only one body is considered. That body is represented by either a sketch or a dot. The external forces on the body are drawn, and a coordinate system is superimposed, oriented so as to simplify the solution.

Some Particular Forces A gravitational force \vec{F}_{g} on a body is a pull by another body. In most situations in this book, the other body is Earth or some other astronomical body. For Earth, the force is directed down toward the ground, which is assumed to be an inertial frame. With that assumption, the magnitude of \vec{F}_{g} is

$$
\begin{equation*}
F_{g}=m g, \tag{5-8}
\end{equation*}
$$

where m is the body's mass and g is the magnitude of the free-fall acceleration.

The weight W of a body is the magnitude of the upward force needed to balance the gravitational force on the body. A body's weight is related to the body's mass by

$$
\begin{equation*}
W=m g . \tag{5-12}
\end{equation*}
$$

A normal force \vec{F}_{N} is the force on a body from a surface against which the body presses. The normal force is always perpendicular to the surface.

A frictional force \vec{f} is the force on a body when the body slides or attempts to slide along a surface. The force is always parallel to the surface and directed so as to oppose the sliding. On a frictionless surface, the frictional force is negligible.

When a cord is under tension, each end of the cord pulls on a body. The pull is directed along the cord, away from the point of attachment to the body. For a massless cord (a cord with negligible mass), the pulls at both ends of the cord have the same magnitude T, even if the cord runs around a massless, frictionless pulley (a pulley with negligible mass and negligible friction on its axle to oppose its rotation).

Newton's Third Law If a force $\vec{F}_{B C}$ acts on body B due to body C, then there is a force $\vec{F}_{C B}$ on body C due to body B :

$$
\vec{F}_{B C}=-\vec{F}_{C B} .
$$

ponent? (c) In each situation, give the direction of \vec{a} by naming either a quadrant or a direction along an axis. (Don't reach for the calculator because this can be answered with a few mental calculations.)

(3)

(4)

Figure 5-19 Question 1.

2 Two horizontal forces,

$$
\vec{F}_{1}=(3 \mathrm{~N}) \hat{\mathrm{i}}-(4 \mathrm{~N}) \hat{\mathrm{j}} \quad \text { and } \quad \vec{F}_{2}=-(1 \mathrm{~N}) \hat{\mathrm{i}}-(2 \mathrm{~N}) \hat{\mathrm{j}}
$$

pull a banana split across a frictionless lunch counter. Without using a calculator, determine which of the vectors in the free-body diagram of Fig. 5-20 best represent (a) \vec{F}_{1} and (b) \vec{F}_{2}. What is the net-force component along (c) the x axis and (d) the y axis? Into which quadrants do (e) the net-force vector and (f) the split's acceleration vector point?
3 In Fig. 5-21, forces \vec{F}_{1} and \vec{F}_{2} are applied to a lunchbox as it slides at constant velocity over a frictionless floor. We are to decrease angle θ without changing the magnitude of \vec{F}_{1}. For constant velocity, should we increase, decrease, or maintain the magnitude of \vec{F}_{2} ?
4 At time $t=0$, constant \vec{F} begins to act on a rock moving through

Figure 5-20 Question 2.

Figure 5-21 Question 3. deep space in the $+x$ direction. (a) For time $t>0$, which are possible functions $x(t)$ for the rock's position: (1) $x=4 t-3$, (2) $x=-4 t^{2}+6 t-3$, (3) $x=4 t^{2}+6 t-3$? (b) For which function is \vec{F} directed opposite the rock's initial direction of motion?
5 Figure 5-22 shows overhead views of four situations in which forces act on a block that lies on a frictionless floor. If the force magnitudes are chosen properly, in which situations is it possible that the block is (a) stationary and (b) moving with a constant velocity?
(1)

(2)

(3)

(4)

Figure 5-22 Question 5.
6 Figure 5-23 shows the same breadbox in four situations where horizontal forces are applied. Rank the situations according to the magnitude of the box's acceleration, greatest first.

7 July 17, 1981, Kansas City: The newly opened Hyatt Regency is packed with people listening and dancing to a band playing favorites from the 1940s. Many of the people are crowded onto the walkways that hang like bridges across the wide atrium. Suddenly two of the walkways collapse, falling onto the merrymakers on the main floor.

The walkways were suspended one above another on vertical rods and held in place by nuts threaded onto the rods. In the original design, only two long rods were to be used, each extending through all three walkways (Fig. 5-24a). If each walkway and the merrymakers on it have a combined mass of M, what is the total mass supported by the threads and two nuts on (a) the lowest walkway and (b) the highest walkway?

Apparently someone responsible for the actual construction realized that threading nuts on a rod is impossible except at the ends, so the design was changed: Instead, six rods were used, each connecting two walkways (Fig. 5-24b). What now is the total mass supported by the threads and two nuts on (c) the lowest walkway, (d) the upper side of the highest walkway, and (e) the lower side of the highest walkway? It was this design that failed on that tragic night-a simple engineering error.

Figure 5-24 Question 7.

8 Figure 5-25 gives three graphs of velocity component $v_{x}(t)$ and three graphs of velocity component $v_{y}(t)$. The graphs are not to scale. Which $v_{x}(t)$ graph and which $v_{y}(t)$ graph best correspond to each of the four situations in Question 1 and Fig. 5-19?

Figure 5-25 Question 8.

9 Figure 5-26 shows a train of four blocks being pulled across a frictionless floor by force \vec{F}. What total mass is accelerated to the right by (a) force \vec{F}, (b) cord 3, and (c) cord 1 ? (d) Rank the blocks according to their accelerations, greatest first. (e) Rank the cords according to their tension, greatest first.

Figure 5-26 Question 9.
10 Figure 5-27 shows three blocks being pushed across a frictionless floor by horizontal force \vec{F}. What total mass is accelerated to the right by (a) force \vec{F}, (b) force \vec{F}_{21} on block 2 from block 1, and (c) force

Figure 5-27 Question 10.
\vec{F}_{32} on block 3 from block 2? (d) Rank the blocks according to their acceleration magnitudes, greatest first. (e) Rank forces \vec{F}, \vec{F}_{21}, and \vec{F}_{32} according to magnitude, greatest first.
11 A vertical force \vec{F} is applied to a block of mass m that lies on a floor. What happens to the magnitude of the normal force \vec{F}_{N} on the block from the floor as magnitude F is increased from zero if force \vec{F} is (a) downward and (b) upward?

12 Figure 5-28 shows four choices for the direction of a force of magnitude F to be applied to a block on an inclined plane. The directions are either horizontal or vertical. (For choice b, the force is not enough to lift the block off the plane.) Rank the choices according to the magnitude of the normal force acting on the block from the plane, greatest first.

Figure 5-28 Question 12.

8roblems

©o	Tutoring problem available (at instructor's discretion) in WileyPLUS and WebAssign
SSIM	Worked-out solution available in Student Solutions Manual
NWW Worked-out solution is at	
Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com	

Module 5-1 Newton's First and Second Laws

-1 Only two horizontal forces act on a 3.0 kg body that can move over a frictionless floor. One force is 9.0 N , acting due east, and the other is 8.0 N , acting 62° north of west. What is the magnitude of the body's acceleration?
-2 Two horizontal forces act on a 2.0 kg chopping block that can slide over a frictionless kitchen counter, which lies in an $x y$ plane. One force is $\vec{F}_{1}=(3.0 \mathrm{~N}) \hat{\mathrm{i}}+(4.0 \mathrm{~N}) \hat{\mathrm{j}}$. Find the acceleration of the chopping block in unit-vector notation when the other force is (a) $\vec{F}_{2} \underset{\rightarrow}{=}(-3.0 \mathrm{~N}) \hat{\mathrm{i}}+(-4.0 \mathrm{~N}) \hat{\mathrm{j}},(\mathrm{b}) \vec{F}_{2}=(-3.0 \mathrm{~N}) \hat{\mathrm{i}}+(4.0 \mathrm{~N}) \hat{\mathrm{j}}$, and (c) $\vec{F}_{2}=(3.0 \mathrm{~N}) \hat{\mathrm{i}}+(-4.0 \mathrm{~N}) \hat{\mathrm{j}}$.
-3 If the 1 kg standard body has an acceleration of $2.00 \mathrm{~m} / \mathrm{s}^{2}$ at 20.0° to the positive direction of an x axis, what are (a) the x component and (b) the y component of the net force acting on the body, and (c) what is the net force in unit-vector notation?
$\bullet 4$ While two forces act on it, a particle is to move at the constant velocity $\vec{v}=(3 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{i}}-(4 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{j}}$. One of the forces is $\vec{F}_{1}=(2 \mathrm{~N}) \hat{\mathrm{i}}+$ $(-6 \mathrm{~N}) \hat{\mathrm{j}}$. What is the other force?
$\bullet 5$ ©0 Three astronauts, propelled by jet backpacks, push and guide a 120 kg asteroid toward a processing dock, exerting the forces shown in Fig. 5-29, with $F_{1}=32 \mathrm{~N}, F_{2}=55 \mathrm{~N}$, $F_{3}=41 \mathrm{~N}, \theta_{1}=30^{\circ}$, and $\theta_{3}=60^{\circ}$.

Figure 5-29 Problem 5. What is the asteroid's acceleration
(a) in unit-vector notation and as (b) a magnitude and (c) a direction relative to the positive direction of the x axis?
-•6 In a two-dimensional tug-ofwar, Alex, Betty, and Charles pull horizontally on an automobile tire at the angles shown in the overhead view of Fig. 5-30. The tire remains stationary in spite of the three pulls. Alex pulls with force \vec{F}_{A} of magnitude 220 N , and Charles pulls with force \vec{F}_{C} of magnitude 170 N . Note that the direction of \vec{F}_{C} is not given. What is the magnitude of Betty's force \vec{F}_{B} ?
$\bullet 7$ SSm There are two forces on the 2.00 kg box in the overhead view of Fig. 5-31, but only one is shown. For $F_{1}=20.0 \mathrm{~N}, a=12.0 \mathrm{~m} / \mathrm{s}^{2}$, and $\theta=30.0^{\circ}$, find the second force (a) in unit-vector notation and as (b) a magnitude and (c) an angle relative to the positive direction of the x axis.
-•8 A 2.00 kg object is subjected to three forces that give it an acceleration $\vec{a}=-\left(8.00 \mathrm{~m} / \mathrm{s}^{2}\right) \hat{\mathrm{i}}+\left(6.00 \mathrm{~m} / \mathrm{s}^{2}\right) \hat{\mathrm{j}}$. If two of the three forces are

Figure 5-30 Problem 6.

Figure 5-31 Problem 7. $\vec{F}_{1}=(30.0 \mathrm{~N}) \hat{\mathrm{i}}+(16.0 \mathrm{~N}) \hat{\mathrm{j}}$ and $\vec{F}_{2}=$ $-(12.0 \mathrm{~N}) \hat{\mathrm{i}}+(8.00 \mathrm{~N}) \hat{\mathrm{j}}$, find the third force.
-•9 A 0.340 kg particle moves in an $x y$ plane according to $x(t)=-15.00+2.00 t-4.00 t^{3}$ and $y(t)=25.00+7.00 t-9.00 t^{2}$, with x and y in meters and t in seconds. At $t=0.700 \mathrm{~s}$, what are
(a) the magnitude and (b) the angle (relative to the positive direction of the x axis) of the net force on the particle, and (c) what is the angle of the particle's direction of travel?
$\bullet 10$ A 0.150 kg particle moves along an x axis according to $x(t)=-13.00+2.00 t+4.00 t^{2}-3.00 t^{3}$, with x in meters and t in seconds. In unit-vector notation, what is the net force acting on the particle at $t=3.40 \mathrm{~s}$?
$\bullet 11$ A 2.0 kg particle moves along an x axis, being propelled by a variable force directed along that axis. Its position is given by $x=$ $3.0 \mathrm{~m}+(4.0 \mathrm{~m} / \mathrm{s}) t+c t^{2}-\left(2.0 \mathrm{~m} / \mathrm{s}^{3}\right) t^{3}$, with x in meters and t in seconds. The factor c is a constant. At $t=3.0 \mathrm{~s}$, the force on the particle has a magnitude of 36 N and is in the negative direction of the axis. What is c ?
-0012 Two horizontal forces \vec{F}_{1} and \vec{F}_{2} act on a 4.0 kg disk that slides over frictionless ice, on which an $x y$ coordinate system is laid out. Force \vec{F}_{1} is in the positive direction of the x axis and has a magnitude of 7.0 N . Force \vec{F}_{2} has a magnitude of 9.0 N . Figure 5-32 gives the x component v_{x} of the velocity of the disk as a function of time t during the sliding. What is the angle between the constant directions of forces \vec{F}_{1} and \vec{F}_{2} ?

Figure 5-32 Problem 12.

Module 5-2 Some Particular Forces

-13 Figure 5-33 shows an arrangement in which four disks are suspended by cords. The longer, top cord loops over a frictionless pulley and pulls with a force of magnitude 98 N on the wall to which it is attached. The tensions in the three shorter cords are $T_{1}=58.8 \mathrm{~N}$, $T_{2}=49.0 \mathrm{~N}$, and $T_{3}=9.8 \mathrm{~N}$. What are the masses of (a) disk A, (b) disk B, (c) disk C, and (d) disk D ?
-14 A block with a weight of 3.0 N is at rest on a horizontal surface. A 1.0 N upward force is applied to the block by means of an attached vertical string. What are the (a) magnitude and (b) direction of the force of the block on the horizontal surface?

Figure 5-33 Problem 13.
-15 SSM (a) An 11.0 kg salami is supported by a cord that runs to a spring scale, which is supported by a cord hung from the ceiling (Fig. 5-34a). What is the reading on the scale, which is marked in SI weight units? (This is a way to measure weight by a deli owner.) (b) In Fig. 5-34b the salami is supported by a cord that runs around a pulley and to a scale. The opposite end of the scale is attached by a cord to a wall. What is the reading on the scale? (This is the way by a physics major.) (c) In Fig. 5-34c the wall has been replaced with a second 11.0 kg salami, and the assembly is stationary. What is the
reading on the scale? (This is the way by a deli owner who was once a physics major.)

Figure 5-34 Problem 15.
-•16 Some insects can walk below a thin rod (such as a twig) by hanging from it. Suppose that such an insect has mass m and hangs from a horizontal rod as shown in Fig. 5-35, with angle $\theta=40^{\circ}$. Its six legs are all under the same tension, and the leg sections nearest the body are hori-

Figure 5-35 Problem 16. zontal. (a) What is the ratio of the tension in each tibia (forepart of a leg) to the insect's weight? (b) If the insect straightens out its legs somewhat, does the tension in each tibia increase, decrease, or stay the same?

Module 5-3 Applying

Newton's Laws

-17 SSM www In Fig. 5-36, let the mass of the block be 8.5 kg and the angle θ be 30°. Find (a) the tension in the cord and (b) the normal force acting on the block. (c) If the cord is cut, find the magnitude of the resulting acceleration of the block.
-18 In April 1974, John

Figure 5-36 Problem 17. Massis of Belgium managed to move two passenger railroad cars. He did so by clamping his teeth down on a bit that was attached to the cars with a rope and then leaning backward while pressing his feet against the railway ties. The cars together weighed 700 kN (about 80 tons). Assume that he pulled with a constant force that was 2.5 times his body weight, at an upward angle θ of 30° from the horizontal. His mass was 80 kg , and he moved the cars by 1.0 m . Neglecting any retarding force from the wheel rotation, find the speed of the cars at the end of the pull.
-19 SSM A 500 kg rocket sled can be accelerated at a constant rate from rest to $1600 \mathrm{~km} / \mathrm{h}$ in 1.8 s . What is the magnitude of the required net force?
-20 A car traveling at $53 \mathrm{~km} / \mathrm{h}$ hits a bridge abutment. A passenger in the car moves forward a distance of 65 cm (with respect to the road) while being brought to rest by an inflated air bag. What magnitude of force (assumed constant) acts on the passenger's upper torso, which has a mass of 41 kg ?
-21 A constant horizontal force \vec{F}_{a} pushes a 2.00 kg FedEx package across a frictionless floor on which an $x y$ coordinate system has been drawn. Figure 5-37 gives the package's x and y velocity components versus time t. What are the (a) magnitude and (b) direction of \vec{F}_{a} ?

Figure 5-37 Problem 21.
-22 A customer sits in an amusement park ride in which the compartment is to be pulled downward in the negative direction of a y axis with an acceleration magnitude of $1.24 g$, with $g=9.80 \mathrm{~m} / \mathrm{s}^{2}$. A 0.567 g coin rests on the customer's knee. Once the motion begins and in unit-vector notation, what is the coin's acceleration relative to (a) the ground and (b) the customer? (c) How long does the coin take to reach the compartment ceiling, 2.20 m above the knee? In unit-vector notation, what are (d) the actual force on the coin and (e) the apparent force according to the customer's measure of the coin's acceleration?
-23 Tarzan, who weighs 820 N , swings from a cliff at the end of a 20.0 m vine that hangs from a high tree limb and initially makes an angle of 22.0° with the vertical. Assume that an x axis extends horizontally away from the cliff edge and a y axis extends upward. Immediately after Tarzan steps off the cliff, the tension in the vine is 760 N . Just then, what are (a) the force on him from the vine in unit-vector notation and the net force on him (b) in unit-vector notation and as (c) a magnitude and (d) an angle relative to the positive direction of the x axis? What are the (e) magnitude and (f) angle of Tarzan's acceleration just then?
-24 There are two horizontal forces on the 2.0 kg box in the overhead view of Fig. 5-38 but only one (of magnitude $F_{1}=20 \mathrm{~N}$) is shown.

Figure 5-38 Problem 24. The box moves along the x axis. For each of the following values for the acceleration a_{x} of the box, find the second force in unit-vector notation: (a) $10 \mathrm{~m} / \mathrm{s}^{2}$, (b) $20 \mathrm{~m} / \mathrm{s}^{2}$, (c) 0, (d) $-10 \mathrm{~m} / \mathrm{s}^{2}$, and (e) $-20 \mathrm{~m} / \mathrm{s}^{2}$.
-25 Sunjamming. A "sun yacht" is a spacecraft with a large sail that is pushed by sunlight. Although such a push is tiny in everyday circumstances, it can be large enough to send the spacecraft outward from the Sun on a cost-free but slow trip. Suppose that the spacecraft has a mass of 900 kg and receives a push of 20 N . (a) What is the magnitude of the resulting acceleration? If the craft starts from rest, (b) how far will it travel in 1 day and (c) how fast will it then be moving?
-26 The tension at which a fishing line snaps is commonly called the line's "strength." What minimum strength is needed for a line that is to stop a salmon of weight 85 N in 11 cm if the fish is initially drifting at $2.8 \mathrm{~m} / \mathrm{s}$? Assume a constant deceleration.
$\cdot 27$ SSM An electron with a speed of $1.2 \times 10^{7} \mathrm{~m} / \mathrm{s}$ moves horizontally into a region where a constant vertical force of $4.5 \times$ $10^{-16} \mathrm{~N}$ acts on it. The mass of the electron is $9.11 \times 10^{-31} \mathrm{~kg}$. Determine the vertical distance the electron is deflected during the time it has moved 30 mm horizontally.
-28 A car that weighs $1.30 \times 10^{4} \mathrm{~N}$ is initially moving at $40 \mathrm{~km} / \mathrm{h}$ when the brakes are applied and the car is brought to a stop in 15 m . Assuming the force that stops the car is constant, find (a) the magnitude of that force and (b) the time required for the change in speed. If the initial speed is doubled, and the car experiences the same force during the braking, by what factors are (c) the stopping distance and (d) the stopping time multiplied? (There could be a lesson here about the danger of driving at high speeds.)
-29 A firefighter who weighs 712 N slides down a vertical pole with an acceleration of $3.00 \mathrm{~m} / \mathrm{s}^{2}$, directed downward. What are the (a) magnitude and (b) direction (up or down) of the vertical force on the firefighter from the pole and the (c) magnitude and (d) direction of the vertical force on the pole from the firefighter?
-30 The high-speed winds around a tornado can drive projectiles into trees, building walls, and even metal traffic signs. In a laboratory simulation, a standard wood toothpick was shot by pneumatic gun into an oak branch. The toothpick's mass was 0.13 g , its speed before entering the branch was $220 \mathrm{~m} / \mathrm{s}$, and its penetration depth was 15 mm . If its speed was decreased at a uniform rate, what was the magnitude of the force of the branch on the toothpick?
थ31 SSM www A block is projected up a frictionless inclined plane with initial speed $v_{0}=3.50$ m / s. The angle of incline is $\theta=32.0^{\circ}$. (a) How far up the plane does the block go? (b) How long does it take to get there? (c) What is its speed when it gets back to the bottom?
-032 Figure 5-39 shows an overhead view of a 0.0250 kg lemon half and

Figure 5-39 Problem 32.
two of the three horizontal forces that act on it as it is on a frictionless table. Force \vec{F}_{1} has a magnitude of 6.00 N and is at $\theta_{1}=30.0^{\circ}$. Force \vec{F}_{2} has a magnitude of 7.00 N and is at $\theta_{2}=30.0^{\circ}$. In unit-vector notation, what is the third force if the lemon half (a) is stationary, (b) has the constant velocity $\vec{v}=(13.0 \hat{i}-14.0 \hat{\mathrm{j}}) \mathrm{m} / \mathrm{s}$, and (c) has the varying velocity $\vec{v}=(13.0 t \hat{i}-14.0 t \hat{j}) \mathrm{m} / \mathrm{s}^{2}$, where t is time?
-•33 An elevator cab and its load have a combined mass of 1600 kg . Find the tension in the supporting cable when the cab, originally moving downward at $12 \mathrm{~m} / \mathrm{s}$, is brought to rest with constant acceleration in a distance of 42 m .
-034 ©0 In Fig. 5-40, a crate of mass $m=100 \mathrm{~kg}$ is pushed at constant speed up a frictionless ramp $\left(\theta=30.0^{\circ}\right)$ by a horizontal force \vec{F}. What are the magnitudes of (a) \vec{F} and (b) the force on the crate from the ramp?
©35 The velocity of a 3.00 kg parti-

Figure 5-40 Problem 34. cle is given by $\vec{v}=\left(8.00 \hat{\hat{i}}+3.00 t^{2}\right)$ m / s, with time t in seconds. At the instant the net force on the particle has a magnitude of 35.0 N , what are the direction (relative to the positive direction of the x axis) of (a) the net force and (b) the particle's direction of travel?
-36 Holding on to a towrope moving parallel to a frictionless ski slope, a 50 kg skier is pulled up the slope, which is at an angle of 8.0° with the horizontal. What is the magnitude $F_{\text {rope }}$ of the force on the skier from the rope when (a) the magnitude v of the skier's velocity is constant at $2.0 \mathrm{~m} / \mathrm{s}$ and (b) $v=2.0 \mathrm{~m} / \mathrm{s}$ as v increases at a rate of $0.10 \mathrm{~m} / \mathrm{s}^{2}$?
-037 A 40 kg girl and an 8.4 kg sled are on the frictionless ice of a frozen lake, 15 m apart but connected by a rope of negligible mass. The girl exerts a horizontal 5.2 N force on the rope. What are the acceleration magnitudes of (a) the sled and (b) the girl? (c) How far from the girl's initial position do they meet?
-038 A 40 kg skier skis directly down a frictionless slope angled at 10° to the horizontal. Assume the skier moves in the negative direction of an x axis along the slope. A wind force with component F_{x} acts on the skier. What is F_{x} if the magnitude of the skier's velocity is (a) constant, (b) increasing at a rate of $1.0 \mathrm{~m} / \mathrm{s}^{2}$, and (c) increasing at a rate of $2.0 \mathrm{~m} / \mathrm{s}^{2}$?

- 039 ILW A sphere of mass $3.0 \times 10^{-4} \mathrm{~kg}$ is suspended from a cord. A steady horizontal breeze pushes the sphere so that the cord makes a constant angle of 37° with the vertical. Find (a) the push magnitude and (b) the tension in the cord.
$\bullet 40$ © A dated box of dates, of mass 5.00 kg , is sent sliding up a frictionless ramp at an angle of θ to the horizontal. Figure 5-41 gives,

Figure 5-41 Problem 40.
as a function of time t, the component v_{x} of the box's velocity along an x axis that extends directly up the ramp. What is the magnitude of the normal force on the box from the ramp?
-•41 Using a rope that will snap if the tension in it exceeds 387 N , you need to lower a bundle of old roofing material weighing 449 N from a point 6.1 m above the ground. Obviously if you hang the bundle on the rope, it will snap. So, you allow the bundle to accelerate downward. (a) What magnitude of the bundle's acceleration will put the rope on the verge of snapping? (b) At that acceleration, with what speed would the bundle hit the ground?
-•42 ©0 In earlier days, horses pulled barges down canals in the manner shown in Fig. 5-42. Suppose the horse pulls on the rope with a force of 7900 N at an angle of $\theta=18^{\circ}$ to the direction of motion of the barge, which is headed straight along the positive direction of an x axis. The mass of the barge is 9500 kg , and the magnitude of its acceleration is $0.12 \mathrm{~m} / \mathrm{s}^{2}$. What are the (a) magnitude and (b) direction (relative to positive x) of the force on the barge from the water?

Figure 5-42 Problem 42.
$\because 043$ SSM In Fig. 5-43, a chain consisting of five links, each of mass 0.100 kg , is lifted vertically with constant acceleration of magnitude $a=2.50$ $\mathrm{m} / \mathrm{s}^{2}$. Find the magnitudes of (a) the force on link 1 from link 2, (b) the force on link 2 from link 3 , (c) the force on link 3 from link 4, and (d) the force on link 4 from link 5 . Then find the magnitudes of (e) the force \vec{F} on the top link from the person lifting the chain and (f) the net force accelerating each link.
-•44 A lamp hangs vertically from a cord in a descending elevator that decelerates at $2.4 \mathrm{~m} / \mathrm{s}^{2}$. (a) If the tension in the cord is 89 N , what is the lamp's

Figure 5-43
Problem 43. mass? (b) What is the cord's tension when the elevator ascends with an upward acceleration of $2.4 \mathrm{~m} / \mathrm{s}^{2}$?
-•45 An elevator cab that weighs 27.8 kN moves upward. What is the tension in the cable if the cab's speed is (a) increasing at a rate of $1.22 \mathrm{~m} / \mathrm{s}^{2}$ and (b) decreasing at a rate of $1.22 \mathrm{~m} / \mathrm{s}^{2}$?
-046 An elevator cab is pulled upward by a cable. The cab and its single occupant have a combined mass of 2000 kg . When that occupant drops a coin, its acceleration relative to the cab is $8.00 \mathrm{~m} / \mathrm{s}^{2}$ downward. What is the tension in the cable?
$\because 47$ The Zacchini family was renowned for their hu-man-cannonball act in which a family member was shot from a cannon using either elastic bands or compressed air. In one version of the act, Emanuel Zacchini was shot over three Ferris wheels to land in a net at the same height as the open end of the cannon and at a range of 69 m . He was propelled inside the barrel for 5.2 m and launched at an angle of 53°. If his mass was 85 kg and he underwent constant acceleration inside the barrel, what was the magnitude of the force propelling him? (Hint: Treat the launch as though it were along a ramp at 53°. Neglect air drag.)
$\bullet 48$ ©o In Fig. 5-44, elevator cabs A and B are connected by a short cable and can be pulled upward or lowered by the cable above cab A. Cab A has mass 1700 kg ; cab B has mass 1300 kg . A 12.0 kg box of catnip lies on the floor of cab A. The tension in the cable connecting the cabs is $1.91 \times 10^{4} \mathrm{~N}$. What is the magnitude of the normal force on the box from the floor?
$\bullet 49$ In Fig. 5-45, a block of mass $m=5.00 \mathrm{~kg}$ is pulled along a horizontal frictionless floor by a cord that exerts a force of magnitude $F=12.0 \mathrm{~N}$ at an angle $\theta=25.0^{\circ}$. (a) What is the magnitude of the block's acceleration? (b) The force magnitude F is slowly increased. What is its value just before the block is lifted (completely) off the floor? (c) What is the magnitude of the block's acceleration just before it is lifted (completely) off the floor?

Figure 5-45
Problems 49 and 60.
$\bullet 50$ © so In Fig. 5-46, three ballot boxes are connected by cords, one of which wraps over a pulley having negligible friction on its axle and negligible mass. The three masses are $\quad m_{A}=30.0 \mathrm{~kg}, \quad m_{B}=40.0 \mathrm{~kg}$,

Figure 5-46 Problem 50. and $m_{C}=10.0 \mathrm{~kg}$. When the assembly is released from rest, (a) what is the tension in the cord connecting B and C, and (b) how far does A move in the first 0.250 s (assuming it does not reach the pulley)?
$\bullet 51$ ©o Figure 5-47 shows two blocks connected by a cord (of negligible mass) that passes over a frictionless pulley (also of negligible mass). The arrangement is known as Atwood's machine. One block has mass $m_{1}=1.30 \mathrm{~kg}$; the other has mass $m_{2}=$ 2.80 kg . What are (a) the magnitude of the blocks' acceleration and (b) the tension in the cord?
$\bullet 52$ An 85 kg man lowers himself to the ground from a height of 10.0 m by holding onto a rope that runs over a frictionless pulley to a 65 kg sandbag. With what speed does the man hit the ground if he started from rest?
$\bullet \bullet 53$ In Fig. 5-48, three connected blocks are pulled to the right on a horizontal frictionless table

Figure 5-47
Problems 51 and 65. by a force of magnitude $T_{3}=65.0 \mathrm{~N}$. If $m_{1}=12.0 \mathrm{~kg}$, $m_{2}=24.0 \mathrm{~kg}$, and $m_{3}=31.0 \mathrm{~kg}$, calculate (a) the magnitude of the system's acceleration, (b) the tension T_{1}, and (c) the tension T_{2}.

Figure 5-48 Problem 53.
-54 ©0 Figure 5-49 shows four penguins that are being playfully pulled along very slippery (frictionless) ice by a curator. The masses of three penguins and the tension in two of the cords are $m_{1}=12 \mathrm{~kg}$, $m_{3}=15 \mathrm{~kg}, m_{4}=20 \mathrm{~kg}, T_{2}=111 \mathrm{~N}$, and $T_{4}=222 \mathrm{~N}$. Find the penguin mass m_{2} that is not given.

Figure 5-49 Problem 54.
-•55 SSIM ILW WWW Two blocks are in contact on a frictionless table. A horizontal force is applied to the larger block, as shown in Fig. $5-50$. (a) If $m_{1}=2.3 \mathrm{~kg}$, $m_{2}=1.2 \mathrm{~kg}$, and $F=3.2 \mathrm{~N}$, find the magnitude of the force between the two blocks. (b) Show that if a force of the same

Figure 5-50
Problem 55. magnitude F is applied to the smaller block but in the opposite direction, the magnitude of the force between the blocks is 2.1 N , which is not the same value calculated in (a). (c) Explain the difference.
-•56 ©o In Fig. 5-51 a, a constant horizontal force \vec{F}_{a} is applied to block A, which pushes against block B with a 20.0 N force directed horizontally to the right. In Fig. 5-51b, the same force \vec{F}_{a} is applied to block B; now block A pushes on block B with a 10.0 N force directed horizontally to the left. The blocks have a combined mass of 12.0 kg . What are the magnitudes of (a) their acceleration in Fig. 5-51a and (b) force \vec{F}_{a} ?

(a)

(b)

Figure 5-51 Problem 56.
$\bullet 57$ ILW A block of mass $m_{1}=3.70 \mathrm{~kg}$ on a frictionless plane inclined at angle $\theta=30.0^{\circ}$ is connected by a cord over a massless, frictionless pulley to a second block of mass $m_{2}=2.30 \mathrm{~kg}$ (Fig. 5-52). What are (a) the magnitude of the acceleration of each block, (b) the direction of the acceleration of the hanging block, and (c) the tension in the cord?

-•58 Figure 5-53 shows a man sitting in a bosun's chair that dangles from a massless rope, which runs over a massless, frictionless pulley and back down to the man's hand. The combined mass of man and chair is 95.0 kg . With what force magnitude must the man pull on the rope if he is to rise (a) with a constant velocity and
(b) with an upward acceleration of $1.30 \mathrm{~m} / \mathrm{s}^{2}$? (Hint: A free-body diagram can really help.) If the rope on the right extends to the ground and is pulled by a co-worker, with what force magnitude must the coworker pull for the man to rise (c) with a constant velocity and (d) with an upward acceleration of $1.30 \mathrm{~m} / \mathrm{s}^{2}$? What is the magnitude of the force on the ceiling from the pulley system in (e) part a, (f) part $\mathrm{b},(\mathrm{g})$ part c , and (h) part d?
-059 SSM A 10 kg monkey climbs up a massless rope that runs over a frictionless tree limb and back down to a 15 kg package on the ground (Fig. 5-54). (a) What is the magnitude of the least acceleration the monkey must have if it is to lift the package off the ground? If, after the package has been lifted, the monkey stops its climb and holds onto the rope, what are the (b) magnitude and (c) direction of the monkey's acceleration and (d) the tension in the rope?
-•60 Figure $5-45$ shows a 5.00 kg block being pulled along a frictionless floor by a cord that applies a force of constant magnitude 20.0 N but with an angle $\theta(t)$ that varies with time. When angle $\theta=25.0^{\circ}$, at what rate is the acceleration of the block changing if (a) $\theta(t)=$ $\left(2.00 \times 10^{-2} \mathrm{deg} / \mathrm{s}\right) t$ and (b) $\theta(t)=-\left(2.00 \times 10^{-2} \mathrm{deg} / \mathrm{s}\right) t$? (Hint: The angle should be in radians.)
$\bullet 61$ SSM ILW A hot-air balloon of mass M is descending vertically with downward acceleration of magnitude a. How much mass (ballast) must be thrown out to give the balloon an upward acceleration of magnitude a ? Assume that the upward force from the air (the lift) does not change because of the decrease in mass.
${ }^{\circ 0062}$ In shot putting, many athletes elect to launch the shot at an angle that is smaller than the theoretical one (about 42°) at which the distance of a projected ball at the same speed and height is greatest. One reason has to do with the speed the athlete can give the shot during the acceleration phase of the throw. Assume that a 7.260 kg shot is accelerated along a straight path of length 1.650 m by a constant applied force of magnitude 380.0 N , starting with an initial speed of $2.500 \mathrm{~m} / \mathrm{s}$ (due to the athlete's preliminary motion). What is the shot's speed at the end of the acceleration phase if the angle between the path and the horizontal is (a) 30.00° and (b) 42.00° ? (Hint: Treat the motion as though it were along a ramp at the given angle.) (c) By what percent is the launch speed decreased if the athlete increases the angle from 30.00° to 42.00° ?

ヘ0063 ©0 Figure 5-55 gives, as a function of time t, the force component F_{x} that acts on a 3.00 kg ice block that can move only along the x axis. At $t=0$, the block is moving in the positive direction of

Figure 5-53 Problem 58.

Figure 5-54 Problem 59.
are taut and inclined at angle $\theta=35^{\circ}$. What is the difference in tension between adjacent sections of pull cable if the cars are at the maximum permissible mass and are being accelerated up the incline at $0.81 \mathrm{~m} / \mathrm{s}^{2}$?
-••67 Figure 5-58 shows three blocks attached by cords that loop over frictionless pulleys. Block B lies on a frictionless table; the masses are $m_{A}=6.00 \mathrm{~kg}, m_{B}=8.00$ kg , and $m_{C}=10.0 \mathrm{~kg}$. When the blocks are released, what is the

Figure 5-58 Problem 67 tension in the cord at the right?
\bullet A shot putter launches a 7.260 kg shot by pushing it along a straight line of length 1.650 m and at an angle of 34.10° from the horizontal, accelerating the shot to the launch speed from its initial speed of $2.500 \mathrm{~m} / \mathrm{s}$ (which is due to the athlete's preliminary motion). The shot leaves the hand at a height of 2.110 m and at an angle of 34.10°, and it lands at a horizontal distance of 15.90 m . What is the magnitude of the athlete's average force on the shot during the acceleration phase? (Hint: Treat the motion during the acceleration phase as though it were along a ramp at the given angle.)

Additional Problems

69 In Fig. $5-59,4.0 \mathrm{~kg}$ block A and 6.0 kg block B are connected by a string of negligible mass. Force $\vec{F}_{A}=(12 \mathrm{~N}) \hat{\mathrm{i}}$ acts on block A; force $\vec{F}_{B}=(24 \mathrm{~N}) \hat{\mathrm{i}}$ acts on block B. What is the tension in the string?

Figure 5-59 Problem 69.

70 An 80 kg man drops to a concrete patio from a window 0.50 m above the patio. He neglects to bend his knees on landing, taking 2.0 cm to stop. (a) What is his average acceleration from when his feet first touch the patio to when he stops? (b) What is the magnitude of the average stopping force exerted on him by the patio?
71 SSM Figure 5-60 shows a box of dirty money (mass $m_{1}=3.0 \mathrm{~kg}$) on a frictionless plane inclined at angle $\theta_{1}=30^{\circ}$. The box is connected via a cord of negligible mass to a box of laundered money (mass $m_{2}=2.0 \mathrm{~kg}$) on a frictionless plane inclined at angle $\theta_{2}=60^{\circ}$. The pulley is frictionless and has negligible mass. What is the tension in the cord?

Figure 5-60 Problem 71.

72 Three forces act on a particle that moves with unchanging velocity $\vec{v}=(2 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{i}}-(7 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{j}}$. Two of the forces are $\vec{F}_{1}=(2 \mathrm{~N}) \hat{\mathrm{i}}+$ $(3 \mathrm{~N}) \hat{\mathrm{j}}+(-2 \mathrm{~N}) \hat{\mathrm{k}}$ and $\vec{F}_{2}=(-5 \mathrm{~N}) \hat{\mathrm{i}}+(8 \mathrm{~N}) \hat{\mathrm{j}}+(-2 \mathrm{~N}) \hat{\mathrm{k}}$. What is the third force?

73 SSM In Fig. 5-61, a tin of antioxidants ($\left.m_{1}=1.0 \mathrm{~kg}\right)$ on a frictionless inclined surface is connected to a tin of corned beef ($m_{2}=$ 2.0 kg). The pulley is massless and frictionless. An upward force of magnitude $F=6.0 \mathrm{~N}$ acts on the corned beef tin, which has a downward acceleration of $5.5 \mathrm{~m} / \mathrm{s}^{2}$. What are (a) the tension in the connecting cord and (b) angle β ?

74 The only two forces acting on a body have magnitudes of 20 N and 35 N and directions that differ by 80°. The resulting acceleration has a magnitude of $20 \mathrm{~m} / \mathrm{s}^{2}$. What is the mass of the body?
75 Figure $5-62$ is an overhead view of a 12 kg tire that is to be pulled by three horizontal ropes. One rope's force ($F_{1}=50 \mathrm{~N}$) is indicated. The forces from the other ropes are to be oriented such that the tire's acceleration magnitude a is least. What is that least a if (a) $F_{2}=$ $30 \mathrm{~N}, F_{3}=20 \mathrm{~N}$; (b) $F_{2}=30 \mathrm{~N}, F_{3}=$ $10 \mathrm{~N} ;$ and (c) $F_{2}=F_{3}=30 \mathrm{~N}$?
76 A block of mass M is pulled along a horizontal frictionless surface by a rope of mass m, as shown in Fig. 5-63. A horizontal force \vec{F}

Figure 5-61 Problem 73.

Figure 5-62 Problem 75.

Figure 5-63 Problem 76. acts on one end of the rope.
(a) Show that the rope must sag, even if only by an imperceptible amount. Then, assuming that the sag is negligible, find (b) the acceleration of rope and block, (c) the force on the block from the rope, and (d) the tension in the rope at its midpoint.

77 SSM A worker drags a crate across a factory floor by pulling on a rope tied to the crate. The worker exerts a force of magnitude $F=450 \mathrm{~N}$ on the rope, which is inclined at an upward angle $\theta=38^{\circ}$ to the horizontal, and the floor exerts a horizontal force of magnitude $f=125 \mathrm{~N}$ that opposes the motion. Calculate the magnitude of the acceleration of the crate if (a) its mass is 310 kg and (b) its weight is 310 N .

78 In Fig. 5-64, a force \vec{F} of magnitude 12 N is applied to a FedEx box of mass $m_{2}=1.0 \mathrm{~kg}$. The force is directed up a plane tilted by $\theta=$ 37°. The box is connected by a cord to a UPS box of mass $m_{1}=3.0 \mathrm{~kg}$ on the floor. The floor, plane, and

Figure 5-64 Problem 78. pulley are frictionless, and the masses of the pulley and cord are negligible. What is the tension in the cord?

79 A certain particle has a weight of 22 N at a point where $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$. What are its (a) weight and (b) mass at a point where $g=4.9 \mathrm{~m} / \mathrm{s}^{2}$? What are its (c) weight and (d) mass if it is moved to a point in space where $g=0$?
80 An 80 kg person is parachuting and experiencing a downward acceleration of $2.5 \mathrm{~m} / \mathrm{s}^{2}$. The mass of the parachute is 5.0 kg . (a)

What is the upward force on the open parachute from the air? (b) What is the downward force on the parachute from the person?
81 A spaceship lifts off vertically from the Moon, where $g=$ $1.6 \mathrm{~m} / \mathrm{s}^{2}$. If the ship has an upward acceleration of $1.0 \mathrm{~m} / \mathrm{s}^{2}$ as it lifts off, what is the magnitude of the force exerted by the ship on its pilot, who weighs 735 N on Earth?
82 In the overhead view of Fig. $5-65$, five forces pull on a box of mass $m=4.0 \mathrm{~kg}$. The force magnitudes are $F_{1}=11 \mathrm{~N}, \quad F_{2}=17 \mathrm{~N}$, $F_{3}=3.0 \mathrm{~N}, F_{4}=14 \mathrm{~N}$, and $F_{5}=5.0 \mathrm{~N}$, and angle θ_{4} is 30°. Find the box's acceleration (a) in unit-vector notation and as (b) a magnitude and (c) an angle relative to the positive direction of the x axis.
83 SSM A certain force gives an object of mass m_{1} an acceleration of $12.0 \mathrm{~m} / \mathrm{s}^{2}$ and an object of mass m_{2} an acceleration of 3.30 $\mathrm{m} / \mathrm{s}^{2}$. What acceleration would the force give to an object of mass (a) $m_{2}-m_{1}$ and (b) $m_{2}+m_{1}$?

84 You pull a short refrigerator with a constant force \vec{F} across a greased (frictionless) floor, either with \vec{F} horizontal (case 1) or with \vec{F} tilted upward at an angle θ (case 2). (a) What is the ratio of the refrigerator's speed in case 2 to its speed in case 1 if you pull for a certain time t ? (b) What is this ratio if you pull for a certain distance d ?
85 A 52 kg circus performer is to slide down a rope that will break if the tension exceeds 425 N . (a) What happens if the performer hangs stationary on the rope? (b) At what magnitude of acceleration does the performer just avoid breaking the rope?
86 Compute the weight of a 75 kg space ranger (a) on Earth, (b) on Mars, where $g=3.7 \mathrm{~m} / \mathrm{s}^{2}$, and (c) in interplanetary space, where $g=0$. (d) What is the ranger's mass at each location?
87 An object is hung from a spring balance attached to the ceiling of an elevator cab. The balance reads 65 N when the cab is standing still. What is the reading when the cab is moving upward (a) with a constant speed of $7.6 \mathrm{~m} / \mathrm{s}$ and (b) with a speed of $7.6 \mathrm{~m} / \mathrm{s}$ while decelerating at a rate of $2.4 \mathrm{~m} / \mathrm{s}^{2}$?
88 Imagine a landing craft approaching the surface of Callisto, one of Jupiter's moons. If the engine provides an upward force (thrust) of 3260 N , the craft descends at constant speed; if the engine provides only 2200 N , the craft accelerates downward at $0.39 \mathrm{~m} / \mathrm{s}^{2}$. (a) What is the weight of the landing craft in the vicinity of Callisto's surface? (b) What is the mass of the craft? (c) What is the magnitude of the free-fall acceleration near the surface of Callisto?

89 A 1400 kg jet engine is fastened to the fuselage of a passenger jet by just three bolts (this is the usual practice). Assume that each bolt supports one-third of the load. (a) Calculate the force on each bolt as the plane waits in line for clearance to take off. (b) During flight, the plane encounters turbulence, which suddenly imparts an upward vertical acceleration of $2.6 \mathrm{~m} / \mathrm{s}^{2}$ to the plane. Calculate the force on each bolt now.

90 An interstellar ship has a mass of $1.20 \times 10^{6} \mathrm{~kg}$ and is initially at rest relative to a star system. (a) What constant acceleration is needed to bring the ship up to a speed of $0.10 c$ (where c is the speed of light, $3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}$) relative to the star system in 3.0 days? (b) What is that
acceleration in g units? (c) What force is required for the acceleration? (d) If the engines are shut down when $0.10 c$ is reached (the speed then remains constant), how long does the ship take (start to finish) to journey 5.0 light-months, the distance that light travels in 5.0 months?

91 ssm A motorcycle and 60.0 kg rider accelerate at $3.0 \mathrm{~m} / \mathrm{s}^{2}$ up a ramp inclined 10° above the horizontal. What are the magnitudes of (a) the net force on the rider and (b) the force on the rider from the motorcycle?
92 Compute the initial upward acceleration of a rocket of mass $1.3 \times 10^{4} \mathrm{~kg}$ if the initial upward force produced by its engine (the thrust) is $2.6 \times 10^{5} \mathrm{~N}$. Do not neglect the gravitational force on the rocket.
93 SSM Figure $5-66 a$ shows a mobile hanging from a ceiling; it consists of two metal pieces ($m_{1}=3.5 \mathrm{~kg}$ and $m_{2}=4.5 \mathrm{~kg}$) that are strung together by cords of negligible mass. What is the tension in (a) the bottom cord and (b) the top cord? Figure 5-66b shows a mobile consisting of three metal pieces. Two of the masses are $m_{3}=$ 4.8 kg and $m_{5}=5.5 \mathrm{~kg}$. The tension in the top cord is 199 N . What is the tension in (c) the lowest cord and (d) the middle cord?

Figure 5-66 Problem 93.

94 For sport, a 12 kg armadillo runs onto a large pond of level, frictionless ice. The armadillo's initial velocity is $5.0 \mathrm{~m} / \mathrm{s}$ along the positive direction of an x axis. Take its initial position on the ice as being the origin. It slips over the ice while being pushed by a wind with a force of 17 N in the positive direction of the y axis. In unitvector notation, what are the animal's (a) velocity and (b) position vector when it has slid for 3.0 s ?

95 Suppose that in Fig. 5-12, the masses of the blocks are 2.0 kg and 4.0 kg . (a) Which mass should the hanging block have if the magnitude of the acceleration is to be as large as possible? What then are (b) the magnitude of the acceleration and (c) the tension in the cord?
96 A nucleus that captures a stray neutron must bring the neutron to a stop within the diameter of the nucleus by means of the strong force. That force, which "glues" the nucleus together, is approximately zero outside the nucleus. Suppose that a stray neutron with an initial speed of $1.4 \times 10^{7} \mathrm{~m} / \mathrm{s}$ is just barely captured by a nucleus with diameter $d=1.0 \times 10^{-14} \mathrm{~m}$. Assuming the strong force on the neutron is constant, find the magnitude of that force. The neutron's mass is $1.67 \times 10^{-27} \mathrm{~kg}$.
97 If the 1 kg standard body is accelerated by only $\vec{F}_{1}=$ $(3.0 \mathrm{~N}) \hat{\mathrm{i}}+(4.0 \mathrm{~N}) \hat{\mathrm{j}}$ and $\vec{F}_{2}=(-2.0 \mathrm{~N}) \hat{\mathrm{i}}+(-6.0 \mathrm{~N}) \hat{\mathrm{j}}$, then what is $\vec{F}_{\text {net }}$ (a) in unit-vector notation and as (b) a magnitude and (c) an angle relative to the positive x direction? What are the (d) magnitude and (e) angle of \vec{a} ?

Radial calculation: As Fig. 6-11b shows (and as you should verify), the angle that force \vec{F}_{N} makes with the vertical is equal to the bank angle θ of the track. Thus, the radial component $F_{N r}$ is equal to $F_{N} \sin \theta$. We can now write Newton's second law for components along the r axis $\left(F_{\text {net }, r}=m a_{r}\right)$ as

$$
\begin{equation*}
-F_{N} \sin \theta=m\left(-\frac{v^{2}}{R}\right) \tag{6-23}
\end{equation*}
$$

We cannot solve this equation for the value of θ because it also contains the unknowns F_{N} and m.

Vertical calculations: We next consider the forces and acceleration along the y axis in Fig. 6-11b. The vertical component of the normal force is $F_{N y}=F_{N} \cos \theta$, the gravitational force \vec{F}_{g} on the car has the magnitude $m g$, and the acceleration of the car along the y axis is zero. Thus we can
write Newton's second law for components along the y axis $\left(F_{\text {net }, y}=m a_{y}\right)$ as

$$
F_{N} \cos \theta-m g=m(0),
$$

from which

$$
\begin{equation*}
F_{N} \cos \theta=m g . \tag{6-24}
\end{equation*}
$$

Combining results: Equation 6-24 also contains the unknowns F_{N} and m, but note that dividing Eq. 6-23 by Eq. 6-24 neatly eliminates both those unknowns. Doing so, replacing $(\sin \theta) /(\cos \theta)$ with $\tan \theta$, and solving for θ then yield

$$
\begin{aligned}
\theta & =\tan ^{-1} \frac{v^{2}}{g R} \\
& =\tan ^{-1} \frac{(20 \mathrm{~m} / \mathrm{s})^{2}}{\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(190 \mathrm{~m})}=12^{\circ} .
\end{aligned}
$$

(Answer)

Beview \& Summary

Friction When a force \vec{F} tends to slide a body along a surface, a frictional force from the surface acts on the body. The frictional force is parallel to the surface and directed so as to oppose the sliding. It is due to bonding between the atoms on the body and the atoms on the surface, an effect called cold-welding.

If the body does not slide, the frictional force is a static frictional force \vec{f}_{s}. If there is sliding, the frictional force is a kinetic frictional force $\overrightarrow{f_{k}}$.

1. If a body does not move, the static frictional force \vec{f}_{s} and the component of \vec{F} parallel to the surface are equal in magnitude, and \vec{f}_{s} is directed opposite that component. If the component increases, f_{s} also increases.
2. The magnitude of \vec{f}_{s} has a maximum value $f_{s, \max }$ given by

$$
\begin{equation*}
f_{s, \max }=\mu_{s} F_{N}, \tag{6-1}
\end{equation*}
$$

where μ_{s} is the coefficient of static friction and F_{N} is the magnitude of the normal force. If the component of \vec{F} parallel to the surface exceeds $f_{s, \text { max }}$, the static friction is overwhelmed and the body slides on the surface.
3. If the body begins to slide on the surface, the magnitude of the frictional force rapidly decreases to a constant value f_{k} given by

$$
\begin{equation*}
f_{k}=\mu_{k} F_{N}, \tag{6-2}
\end{equation*}
$$

where μ_{k} is the coefficient of kinetic friction.
Drag Force When there is relative motion between air (or some other fluid) and a body, the body experiences a drag force \vec{D} that opposes the relative motion and points in the direction in which the fluid flows relative to the body. The magnitude of \vec{D} is
related to the relative speed v by an experimentally determined drag coefficient C according to

$$
\begin{equation*}
D=\frac{1}{2} C \rho A v^{2}, \tag{6-14}
\end{equation*}
$$

where ρ is the fluid density (mass per unit volume) and A is the effective cross-sectional area of the body (the area of a cross section taken perpendicular to the relative velocity \vec{v}).

Terminal Speed When a blunt object has fallen far enough through air, the magnitudes of the drag force \vec{D} and the gravitational force \vec{F}_{g} on the body become equal. The body then falls at a constant terminal speed v_{t} given by

$$
\begin{equation*}
v_{t}=\sqrt{\frac{2 F_{g}}{C \rho A}} \tag{6-16}
\end{equation*}
$$

Uniform Circular Motion If a particle moves in a circle or a circular arc of radius R at constant speed v, the particle is said to be in uniform circular motion. It then has a centripetal acceleration \vec{a} with magnitude given by

$$
\begin{equation*}
a=\frac{v^{2}}{R} . \tag{6-17}
\end{equation*}
$$

This acceleration is due to a net centripetal force on the particle, with magnitude given by

$$
\begin{equation*}
F=\frac{m v^{2}}{R} \tag{6-18}
\end{equation*}
$$

where m is the particle's mass. The vector quantities \vec{a} and \vec{F} are directed toward the center of curvature of the particle's path. A particle can move in circular motion only if a net centripetal force acts on it.

Questions

1 In Fig. 6-12, if the box is stationary and the angle θ between the horizontal and force \vec{F} is increased somewhat, do the following quantities increase, decrease, or remain the

Figure 6-12 Question 1. same: (a) F_{x}; (b) f_{s}; (c) F_{N}; (d) $f_{s, \text { max }}$? (e) If, instead, the box is sliding and θ is increased, does the magnitude of the frictional force on the box increase, decrease, or remain the same?
2 Repeat Question 1 for force \vec{F} angled upward instead of downward as drawn.
3 In Fig. 6-13, horizontal force \vec{F}_{1} of magnitude 10 N is applied to a box on a floor, but the box does not slide. Then, as the magnitude of ver-
 tical force \vec{F}_{2} is increased from zero,

Figure 6-13 Question 3. do the following quantities increase, decrease, or stay the same: (a) the magnitude of the frictional force \vec{f}_{s} on the box; (b) the magnitude of the normal force \vec{F}_{N} on the box from the floor; (c) the maximum value $f_{s, \text { max }}$ of the magnitude of the static frictional force on the box? (d) Does the box eventually slide?
4 In three experiments, three different horizontal forces are applied to the same block lying on the same countertop. The force magnitudes are $F_{1}=12 \mathrm{~N}, F_{2}=8 \mathrm{~N}$, and $F_{3}=4 \mathrm{~N}$. In each experiment, the block remains stationary in spite of the applied force. Rank the forces according to (a) the magnitude f_{s} of the static frictional force on the block from the countertop and (b) the maximum value $f_{s, \text { max }}$ of that force, greatest first.
5 If you press an apple crate against a wall so hard that the crate cannot slide down the wall, what is the direction of (a) the static frictional force \vec{f}_{s} on the crate from the wall and (b) the normal force \vec{F}_{N} on the crate from the wall? If you increase your push, what happens to (c) f_{s}, (d) F_{N}, and (e) $f_{s, \text { max }}$?
6 In Fig. 6-14, a block of mass m is held stationary on a ramp by the frictional force on it from the ramp. A force \vec{F}, directed up the ramp, is then applied to the block and gradually increased in magnitude from zero. During the increase, what happens to the direction and magnitude of the frictional force

Figure 6-14
Question 6. on the block?
7 Reconsider Question 6 but with the force \vec{F} now directed down the ramp. As the magnitude of \vec{F} is increased from zero, what happens to the direction and magnitude of the frictional force on the block?
8 In Fig. 6-15, a horizontal force of 100 N is to be applied to a 10 kg slab that is initially stationary on a frictionless floor, to accelerate the slab. A 10 kg block lies on top of the slab; the coefficient of friction μ between the block and the slab is not known, and the

Figure 6-15 Question 8.
block might slip. In fact, the contact between the block and the slab might even be frictionless. (a) Considering that possibility, what is the possible range of values for the magnitude of the slab's acceleration $a_{\text {slab }}$? (Hint: You don't need written calculations; just consider extreme values for μ.) (b) What is the possible range for the magnitude $a_{\text {block }}$ of the block's acceleration?
9 Figure 6-16 shows the overhead view of the path of an amusement-park ride that travels at constant speed through five circular arcs of radii $R_{0}, 2 R_{0}$, and $3 R_{0}$. Rank the arcs according to the magnitude of the centripetal force on a rider traveling in the arcs, greatest first.

Figure 6-16 Question 9.
10 In 1987, as a Halloween stunt, two sky divers passed a pumpkin back and forth between them while they were in free fall just west of Chicago. The stunt was great fun until the last sky diver with the pumpkin opened his parachute. The pumpkin broke free from his grip, plummeted about 0.5 km , ripped through the roof of a house, slammed into the kitchen floor, and splattered all over the newly remodeled kitchen. From the sky diver's viewpoint and from the pumpkin's viewpoint, why did the sky diver lose control of the pumpkin?
11 A person riding a Ferris wheel moves through positions at (1) the top, (2) the bottom, and (3) midheight. If the wheel rotates at a constant rate, rank these three positions according to (a) the magnitude of the person's centripetal acceleration, (b) the magnitude of the net centripetal force on the person, and (c) the magnitude of the normal force on the person, greatest first.
12 During a routine flight in 1956, test pilot Tom Attridge put his jet fighter into a 20° dive for a test of the aircraft's 20 mm machine cannons. While traveling faster than sound at 4000 m altitude, he shot a burst of rounds. Then, after allowing the cannons to cool, he shot another burst at 2000 m ; his speed was then $344 \mathrm{~m} / \mathrm{s}$, the speed of the rounds relative to him was $730 \mathrm{~m} / \mathrm{s}$, and he was still in a dive.

Almost immediately the canopy around him was shredded and his right air intake was damaged. With little flying capability left, the jet crashed into a wooded area, but Attridge managed to escape the resulting explosion. Explain what apparently happened just after the second burst of cannon rounds. (Attridge has been the only pilot who has managed to shoot himself down.)
13 A box is on a ramp that is at angle θ to the horizontal. As θ is increased from zero, and before the box slips, do the following increase, decrease, or remain the same: (a) the component of the gravitational force on the box, along the ramp, (b) the magnitude of the static frictional force on the box from the ramp, (c) the component of the gravitational force on the box, perpendicular to the ramp, (d) the magnitude of the normal force on the box from the ramp, and (e) the maximum value $f_{s, \max }$ of the static frictional force?

8roblems

Module 6-1 Friction

-1 The floor of a railroad flatcar is loaded with loose crates having a coefficient of static friction of 0.25 with the floor. If the train is initially moving at a speed of $48 \mathrm{~km} / \mathrm{h}$, in how short a distance can the train be stopped at constant acceleration without causing the crates to slide over the floor?
-2 In a pickup game of dorm shuffleboard, students crazed by final exams use a broom to propel a calculus book along the dorm hallway. If the 3.5 kg book is pushed from rest through a distance of 0.90 m by the horizontal 25 N force from the broom and then has a speed of $1.60 \mathrm{~m} / \mathrm{s}$, what is the coefficient of kinetic friction between the book and floor?
-3 SSM www A bedroom bureau with a mass of 45 kg , including drawers and clothing, rests on the floor. (a) If the coefficient of static friction between the bureau and the floor is 0.45 , what is the magnitude of the minimum horizontal force that a person must apply to start the bureau moving? (b) If the drawers and clothing, with 17 kg mass, are removed before the bureau is pushed, what is the new minimum magnitude?
$\bullet 4$ A slide-loving pig slides down a certain 35° slide in twice the time it would take to slide down a frictionless 35° slide. What is the coefficient of kinetic friction between the pig and the slide?
-5 © A 2.5 kg block is initially at rest on a horizontal surface. A horizontal force \vec{F} of magnitude 6.0 N and a vertical force \vec{P} are then applied to the block (Fig. 6-17). The coefficients of friction for the block and surface are $\mu_{s}=0.40$ and $\mu_{k}=0.25$. Determine the magnitude of the frictional force acting on the block if the magnitude of \vec{P} is (a) 8.0 N , (b) 10 N , and (c) 12 N .

Figure 6-17 Problem 5.
-6 A baseball player with mass $m=79 \mathrm{~kg}$, sliding into second base, is retarded by a frictional force of magnitude 470 N . What is the coefficient of kinetic friction μ_{k} between the player and the ground?
$\bullet 7$ SSM ILW A person pushes horizontally with a force of 220 N on a 55 kg crate to move it across a level floor. The coefficient of kinetic friction between the crate and the floor is 0.35 . What is the magnitude of (a) the frictional force and (b) the acceleration of the crate?
-8 The mysterious sliding stones. Along the remote Racetrack Playa in Death Valley, California, stones sometimes gouge out prominent trails in the desert floor, as if the stones had been migrating (Fig. 6-18). For years curiosity mounted about why the stones moved. One explanation was that strong winds during occasional rainstorms would drag the rough stones
over ground softened by rain. When the desert dried out, the trails behind the stones were hard-baked in place. According to measurements, the coefficient of kinetic friction between the stones and the wet playa ground is about 0.80 . What horizontal force must act on a 20 kg stone (a typical mass) to maintain the stone's motion once a gust has started it moving? (Story continues with Problem 37.)

Jerry Schad/Photo Researchers, Inc.
Figure 6-18 Problem 8. What moved the stone?
-9 © A 3.5 kg block is pushed along a horizontal floor by a force \vec{F} of magnitude 15 N at an angle $\theta=40^{\circ}$ with the horizontal (Fig. 6-19). The coefficient of kinetic friction between the block and the floor is 0.25 . Calculate the magnitudes of (a) the frictional force on the block from the floor and (b) the block's acceleration.
-10 Figure 6-20 shows an initially stationary block of mass m on a floor. A force of magnitude 0.500 mg is then applied at upward angle $\theta=$ 20°. What is the magnitude of the ac-

Figure 6-19
Problems 9 and 32.

Figure 6-20 Problem 10. celeration of the block across the floor if the friction coefficients are (a) $\mu_{s}=0.600$ and $\mu_{k}=0.500$ and (b) $\mu_{s}=0.400$ and $\mu_{k}=0.300$?
$\cdot 11$ SSM A 68 kg crate is dragged across a floor by pulling on a rope attached to the crate and inclined 15° above the horizontal. (a) If the coefficient of static friction is 0.50 , what minimum force magnitude is required from the rope to start the crate moving?
(b) If $\mu_{k}=0.35$, what is the magnitude of the initial acceleration of the crate?
-12 In about 1915, Henry Sincosky of Philadelphia suspended himself from a rafter by gripping the rafter with the thumb of each
hand on one side and the fingers on the opposite side (Fig. 6-21). Sincosky's mass was 79 kg . If the coefficient of static friction between hand and rafter was 0.70 , what was the least magnitude of the normal force on the rafter from each thumb or opposite fingers? (After suspending himself, Sincosky chinned himself on the rafter and then moved hand-over-hand along the rafter. If you do not think Sincosky's grip was remarkable, try to repeat his stunt.)
-13 A worker pushes horizontally on a 35 kg crate with a force of magnitude 110 N . The coefficient of static friction between the crate and the floor is 0.37 . (a) What is the value of $f_{s, \text { max }}$ under the circumstances? (b) Does the crate move? (c) What is the frictional force on the crate from the floor? (d) Suppose, next, that a second worker pulls directly upward on the crate to help out. What is the least vertical pull that will allow the

Figure 6-21
Problem 12. first worker's 110 N push to move the crate? (e) If, instead, the second worker pulls horizontally to help out, what is the least pull that will get the crate moving?
-14 Figure 6-22 shows the cross section of a road cut into the side of a mountain. The solid line $A A^{\prime}$ represents a weak bedding plane along which sliding is possible. Block B directly above the highway is separated from uphill rock by a large crack (called a joint), so that only friction between the block and the

Figure 6-22 Problem 14. bedding plane prevents sliding. The mass of the block is $1.8 \times 10^{7} \mathrm{~kg}$, the dip angle θ of the bedding plane is 24°, and the coefficient of static friction between block and plane is 0.63 . (a) Show that the block will not slide under these circumstances. (b) Next, water seeps into the joint and expands upon freezing, exerting on the block a force \vec{F} parallel to $A A^{\prime}$. What minimum value of force magnitude F will trigger a slide down the plane?
-15 The coefficient of static friction between Teflon and scrambled eggs is about 0.04 . What is the smallest angle from the horizontal that will cause the eggs to slide across the bottom of a Teflon-coated skillet?
-116 A loaded penguin sled weighing 80 N rests on a plane inclined at angle $\theta=20^{\circ}$ to the horizontal (Fig. $6-23$). Between the sled and the plane, the coefficient of static friction is 0.25 , and the coefficient of kinetic friction is 0.15 . (a) What is the least magnitude of the force \vec{F},

Figure 6-23
Problems 16 and 22. parallel to the plane, that will prevent the sled from slipping down the plane? (b) What is the minimum magnitude F that will start the sled moving up the plane? (c) What value of F is required to move the sled up the plane at constant velocity?
-•17 In Fig. 6-24, a force \vec{P} acts on a block weighing 45 N . The block is

Figure 6-24 Problem 17.
initially at rest on a plane inclined at angle $\theta=15^{\circ}$ to the horizontal. The positive direction of the x axis is up the plane. Between block and plane, the coefficient of static friction is $\mu_{s}=0.50$ and the coefficient of kinetic friction is $\mu_{k}=0.34$. In unit-vector notation, what is the frictional force on the block from the plane when \vec{P} is (a) $(-5.0 \mathrm{~N}) \hat{\mathrm{i}},(\mathrm{b})(-8.0 \mathrm{~N}) \hat{\mathrm{i}}$, and (c) $(-15 \mathrm{~N}) \hat{\mathrm{i}}$?
$\bullet 18$ (so You testify as an expert witness in a case involving an accident in which car A slid into the rear of car B, which was stopped at a red light along a road headed down a hill (Fig. 6-25). You find that the slope of the hill is $\theta=12.0^{\circ}$, that the cars were separated by distance $d=24.0 \mathrm{~m}$ when the driver of car A put the car into a slide (it lacked any automatic anti-brake-lock system), and that the speed of $\operatorname{car} A$ at the onset of braking was $v_{0}=18.0 \mathrm{~m} / \mathrm{s}$. With what speed did car A hit car B if the coefficient of kinetic friction was (a) 0.60 (dry road surface) and (b) 0.10 (road surface covered with wet leaves)?

-•19 A 12 N horizontal force \vec{F} pushes a block weighing 5.0 N against a vertical wall (Fig. 6-26). The coefficient of static friction between the wall and the block is 0.60 , and the coefficient of kinetic friction

Figure 6-26 Problem 19. is 0.40 . Assume that the block is not moving initially. (a) Will the block move? (b) In unit-vector notation, what is the force on the block from the wall?
$\bullet 20$ ©0 In Fig. 6-27, a box of Cheerios (mass $m_{C}=1.0 \mathrm{~kg}$) and a box of Wheaties (mass $m_{W}=3.0$ kg) are accelerated across a horizontal surface by a horizontal force

Figure 6-27 Problem 20. \vec{F} applied to the Cheerios box. The magnitude of the frictional force on the Cheerios box is 2.0 N , and the magnitude of the frictional force on the Wheaties box is 4.0 N . If the magnitude of \vec{F} is 12 N , what is the magnitude of the force on the Wheaties box from the Cheerios box?
-2 21 An initially stationary box of sand is to be pulled across a floor by means of a cable in which the tension should not exceed 1100 N . The coefficient of static friction between the box and the floor is 0.35 . (a) What should be the angle between the cable and the horizontal in order to pull the greatest possible amount of sand, and (b) what is the weight of the sand and box in that situation?
$\bullet 22$ ©o In Fig. 6-23, a sled is held on an inclined plane by a cord pulling directly up the plane. The sled is to be on the verge of moving up the plane. In Fig. 628, the magnitude F required of the cord's force on the sled is plotted versus a range of values for the coefficient of static friction μ_{s} between sled and plane: $F_{1}=2.0 \mathrm{~N}, F_{2}=5.0 \mathrm{~N}$, and $\mu_{2}=$ 0.50 . At what angle θ is the plane inclined?

Figure 6-28 Problem 22.
-23 When the three blocks in Fig. 6-29 are released from rest, they accelerate with a magnitude of $0.500 \mathrm{~m} / \mathrm{s}^{2}$. Block 1 has mass M, block 2 has $2 M$, and block 3 has $2 M$. What is the coefficient of kinetic friction between block 2 and the table?
$\bullet 24$ A 4.10 kg block is pushed along a floor by a constant applied force that is horizontal and has a magnitude of 40.0 N . Figure 6-30 gives the block's speed v versus time t as the block moves along an x axis on the floor. The scale of the figure's vertical axis is set by $v_{s}=$ $5.0 \mathrm{~m} / \mathrm{s}$. What is the coefficient of kinetic friction between the block and the floor?
$\bullet 25$ SSm www Block B in Fig. 6-31 weighs 711 N . The coefficient of static friction between block and table is 0.25 ; angle θ is 30°; assume that the cord between B and the knot is horizontal. Find the maximum weight of block A for which the system will be stationary.
-•26 ©0 Figure 6-32 shows three crates being pushed over a concrete floor by a horizontal force \vec{F} of magnitude 440 N . The masses of the crates are $m_{1}=30.0 \mathrm{~kg}, m_{2}=10.0$ kg , and $m_{3}=20.0 \mathrm{~kg}$. The coefficient of kinetic friction between the floor and each of the crates is 0.700 . (a) What is the magnitude F_{32} of the force on crate 3 from crate 2? (b) If the crates then slide onto a polished floor, where the coefficient of kinetic friction is less than 0.700 , is magnitude F_{32} more than, less than, or the same as it was when the coefficient was 0.700 ?
$\bullet 27$ ©o Body A in Fig. 6-33 weighs 102 N , and body B weighs 32 N . The coefficients of friction between A and the incline are $\mu_{s}=0.56$ and $\mu_{k}=0.25$. Angle θ is 40°. Let the positive direction of an x axis be up the incline. In unit-vector notation, what is the acceleration of A if A is initially (a) at rest, (b) moving up the incline, and (c) moving down the incline?
-22 In Fig. 6-33, two blocks are connected over a pulley. The mass of block A is 10 kg , and the coefficient of kinetic friction between A and the incline is 0.20 . Angle θ of the incline is 30°. Block A slides down the incline at constant speed. What is the mass of block B ? Assume the connecting rope has negligible mass. (The pulley's function is only to redirect the rope.)

Figure 6-29 Problem 23.

Figure 6-30 Problem 24.

Figure 6-31 Problem 25.

Figure 6-32 Problem 26.
-29 ©0 In Fig. 6-34, blocks A and B have weights of 44 N and 22 N , respectively. (a) Determine the minimum weight of block C to keep A from sliding if μ_{s} between A and the table is 0.20 . (b) Block C suddenly is lifted off A. What is the acceleration of block A if μ_{k} between A and the table is 0.15 ?

Figure 6-34 Problem 29.
-•30 A toy chest and its contents have a combined weight of 180 N . The coefficient of static friction between toy chest and floor is 0.42 . The child in Fig. 6-35 attempts to move the chest across the floor by pulling on an attached rope. (a) If θ is 42°, what is the magnitude of the force \vec{F} that the child must exert on the rope to put the chest on the verge of moving? (b) Write an expression for the magnitude F required to put the chest on the verge of moving as a function of the angle θ. Determine (c) the value of θ for which F is a minimum and (d) that minimum magnitude.

Figure 6-35 Problem 30.
-•31 SSM Two blocks, of weights 3.6 N and 7.2 N , are connected by a massless string and slide down a 30° inclined plane. The coefficient of kinetic friction between the lighter block and the plane is 0.10 , and the coefficient between the heavier block and the plane is 0.20. Assuming that the lighter block leads, find (a) the magnitude of the acceleration of the blocks and (b) the tension in the taut string.
-•32 ©० A block is pushed across a floor by a constant force that is applied at downward angle θ (Fig. 6-19). Figure 6-36 gives the acceleration magnitude a versus a range of values for the coefficient of kinetic friction μ_{k} between block and floor: $a_{1}=3.0 \mathrm{~m} / \mathrm{s}^{2}, \mu_{k 2}=$ 0.20 , and $\mu_{k 3}=0.40$. What is the value of θ ?

Figure 6-36 Problem 32
$\bullet \bullet 33$ SSM A 1000 kg boat is traveling at $90 \mathrm{~km} / \mathrm{h}$ when its engine is shut off. The magnitude of the frictional force \vec{f}_{k} between boat and water is proportional to the speed v of the boat: $f_{k}=70 v$, where v is in meters per second and f_{k} is in newtons. Find the time required for the boat to slow to $45 \mathrm{~km} / \mathrm{h}$.
-••34 ©o In Fig. 6-37, a slab of mass $m_{1}=40 \mathrm{~kg}$ rests on a frictionless floor, and a block of mass $m_{2}=10$ kg rests on top of the slab. Between

Figure 6-37 Problem 34. block and slab, the coefficient of static friction is 0.60 , and the coefficient of kinetic friction is 0.40 . A horizontal force \vec{F} of magnitude 100 N begins to pull directly on the block, as shown. In unit-vector notation, what are the resulting accelerations of (a) the block and (b) the slab?
$\bullet \bullet 35$ ILW The two blocks ($m=16$ kg and $M=88 \mathrm{~kg}$) in Fig. 6-38 are not attached to each other. The coefficient of static friction between the blocks is $\mu_{s}=0.38$, but the surface beneath the larger block is frictionless. What is the minimum magnitude
 of the horizontal force \vec{F} required to keep the smaller block from slipping down the larger block?

Module 6-2 The Drag Force and Terminal Speed

-36 The terminal speed of a sky diver is $160 \mathrm{~km} / \mathrm{h}$ in the spreadeagle position and $310 \mathrm{~km} / \mathrm{h}$ in the nosedive position. Assuming that the diver's drag coefficient C does not change from one position to the other, find the ratio of the effective cross-sectional area A in the slower position to that in the faster position.
-.37 Continuation of Problem 8. Now assume that Eq. 6-14 gives the magnitude of the air drag force on the typical 20 kg stone, which presents to the wind a vertical cross-sectional area of $0.040 \mathrm{~m}^{2}$ and has a drag coefficient C of 0.80 . Take the air density to be $1.21 \mathrm{~kg} / \mathrm{m}^{3}$, and the coefficient of kinetic friction to be 0.80 . (a) In kilometers per hour, what wind speed V along the ground is needed to maintain the stone's motion once it has started moving? Because winds along the ground are retarded by the ground, the wind speeds reported for storms are often measured at a height of 10 m . Assume wind speeds are 2.00 times those along the ground. (b) For your answer to (a), what wind speed would be reported for the storm? (c) Is that value reasonable for a high-speed wind in a storm? (Story continues with Problem 65.)
-•38 Assume Eq. 6-14 gives the drag force on a pilot plus ejection seat just after they are ejected from a plane traveling horizontally at $1300 \mathrm{~km} / \mathrm{h}$. Assume also that the mass of the seat is equal to the mass of the pilot and that the drag coefficient is that of a sky diver. Making a reasonable guess of the pilot's mass and using the appropriate v_{t} value from Table 6-1, estimate the magnitudes of (a) the drag force on the pilot + seat and (b) their horizontal deceleration (in terms of g), both just after ejection. (The result of (a) should indicate an engineering requirement: The seat must include a protective barrier to deflect the initial wind blast away from the pilot's head.)
-•39 Calculate the ratio of the drag force on a jet flying at $1000 \mathrm{~km} / \mathrm{h}$ at an altitude of 10 km to the drag force on a propdriven transport flying at half that speed and altitude. The density
of air is $0.38 \mathrm{~kg} / \mathrm{m}^{3}$ at 10 km and $0.67 \mathrm{~kg} / \mathrm{m}^{3}$ at 5.0 km . Assume that the airplanes have the same effective cross-sectional area and drag coefficient C.
-•40 In downhill speed skiing a skier is retarded by both the air drag force on the body and the kinetic frictional force on the skis. (a) Suppose the slope angle is $\theta=40.0^{\circ}$, the snow is dry snow with a coefficient of kinetic friction $\mu_{k}=0.0400$, the mass of the skier and equipment is $m=85.0 \mathrm{~kg}$, the cross-sectional area of the (tucked) skier is $A=1.30 \mathrm{~m}^{2}$, the drag coefficient is $C=0.150$, and the air density is $1.20 \mathrm{~kg} / \mathrm{m}^{3}$. (a) What is the terminal speed? (b) If a skier can vary C by a slight amount $d C$ by adjusting, say, the hand positions, what is the corresponding variation in the terminal speed?

Module 6-3 Uniform Circular Motion

-41 A cat dozes on a stationary merry-go-round in an amusement park, at a radius of 5.4 m from the center of the ride. Then the operator turns on the ride and brings it up to its proper turning rate of one complete rotation every 6.0 s . What is the least coefficient of static friction between the cat and the merry-go-round that will allow the cat to stay in place, without sliding (or the cat clinging with its claws)?
-42 Suppose the coefficient of static friction between the road and the tires on a car is 0.60 and the car has no negative lift. What speed will put the car on the verge of sliding as it rounds a level curve of 30.5 m radius?
-43 ILW What is the smallest radius of an unbanked (flat) track around which a bicyclist can travel if her speed is $29 \mathrm{~km} / \mathrm{h}$ and the μ_{s} between tires and track is 0.32 ?
-44 During an Olympic bobsled run, the Jamaican team makes a turn of radius 7.6 m at a speed of $96.6 \mathrm{~km} / \mathrm{h}$. What is their acceleration in terms of g ?
$\bullet 45$ SSM ILW A student of weight 667 N rides a steadily rotating Ferris wheel (the student sits upright). At the highest point, the magnitude of the normal force \vec{F}_{N} on the student from the seat is 556 N . (a) Does the student feel "light" or "heavy" there? (b) What is the magnitude of \vec{F}_{N} at the lowest point? If the wheel's speed is doubled, what is the magnitude F_{N} at the (c) highest and (d) lowest point?
-•46 A police officer in hot pursuit drives her car through a circular turn of radius 300 m with a constant speed of $80.0 \mathrm{~km} / \mathrm{h}$. Her mass is 55.0 kg . What are (a) the magnitude and (b) the angle (relative to vertical) of the net force of the officer on the car seat? (Hint: Consider both horizontal and vertical forces.)
$\bullet 47$ A circular-motion addict of mass 80 kg rides a Ferris wheel around in a vertical circle of radius 10 m at a constant speed of $6.1 \mathrm{~m} / \mathrm{s}$. (a) What is the period of the motion? What is the magnitude of the normal force on the addict from the seat when both go through (b) the highest point of the circular path and (c) the lowest point?
$\bullet 48$ A roller-coaster car at an amusement park has a mass of 1200 kg when fully loaded with passengers. As the car passes over the top of a circular hill of radius 18 m , assume that its speed is not changing. At the top of the hill, what are the (a) magnitude F_{N} and (b) direction (up or down) of the normal force on the car from the track if the car's speed is $v=11 \mathrm{~m} / \mathrm{s}$? What are (c) F_{N} and (d) the direction if $v=14 \mathrm{~m} / \mathrm{s}$?
-049 ©0 In Fig. 6-39, a car is driven at constant speed over a circular hill and then into a circular valley with the same radius. At the top of the hill, the normal force on the driver from the car seat is 0 . The driver's mass is 70.0 kg . What is the magnitude of the normal force on the driver from the seat when the car passes through the bottom of the valley?

Figure 6-39 Problem 49.
-•50 An 85.0 kg passenger is made to move along a circular path of radius $r=3.50 \mathrm{~m}$ in uniform circular motion. (a) Figure 6-40a is a plot of the required magnitude F of the net centripetal force for a range of possible values of the passenger's speed v. What is the plot's slope at $v=8.30 \mathrm{~m} / \mathrm{s}$? (b) Figure $6-40 b$ is a plot of F for a range of possible values of T, the period of the motion. What is the plot's slope at $T=2.50 \mathrm{~s}$?

Figure 6-40 Problem 50.
-051 SSM Www An airplane is flying in a horizontal circle at a speed of $480 \mathrm{~km} / \mathrm{h}$ (Fig. 6-41). If its wings are tilted at angle $\theta=40^{\circ}$ to the horizontal , what is the radius of the circle in which the plane is flying? Assume that the required force is provided entirely by an "aerodynamic lift" that is perpendicular to the wing surface. \bullet An amusement park ride consists of a car moving in a ver-

Figure 6-41 Problem 51. tical circle on the end of a rigid boom of negligible mass. The combined weight of the car and riders is 5.0 kN , and the circle's radius is 10 m . At the top of the circle, what are the (a) magnitude F_{B} and (b) direction (up or down) of the force on the car from the boom if the car's speed is $v=5.0 \mathrm{~m} / \mathrm{s}$? What are (c) F_{B} and (d) the direction if $v=12 \mathrm{~m} / \mathrm{s}$?
-053 An old streetcar rounds a flat corner of radius 9.1 m , at $16 \mathrm{~km} / \mathrm{h}$. What angle with the vertical will be made by the loosely hanging hand straps?
-054 In designing circular rides for amusement parks, mechanical engineers must consider how small variations in certain parameters can alter the net force on a passenger. Consider a passenger of mass m riding around a horizontal circle of radius r at speed v. What is the variation $d F$ in the net force magnitude for (a) a variation $d r$ in the radius with v held constant, (b) a variation
$d \nu$ in the speed with r held constant, and (c) a variation $d T$ in the period with r held constant?
-055 A bolt is threaded onto one end of a thin horizontal rod, and the rod is then rotated horizontally about its other end. An engineer monitors the motion by flashing a strobe lamp onto the rod and bolt, adjusting the strobe rate until the bolt appears to be in the same

Figure 6-42 Problem 55. eight places during each full rotation of the rod (Fig. 6-42). The strobe rate is 2000 flashes per second; the bolt has mass 30 g and is at radius 3.5 cm . What is the magnitude of the force on the bolt from the rod?
-056 (s) A banked circular highway curve is designed for traffic moving at $60 \mathrm{~km} / \mathrm{h}$. The radius of the curve is 200 m . Traffic is moving along the highway at $40 \mathrm{~km} / \mathrm{h}$ on a rainy day. What is the minimum coefficient of friction between tires and road that will allow cars to take the turn without sliding off the road? (Assume the cars do not have negative lift.)
-०57 60 A puck of mass $m=1.50 \mathrm{~kg}$ slides in a circle of radius $r=20.0 \mathrm{~cm}$ on a frictionless table while attached to a hanging cylinder of mass $M=2.50 \mathrm{~kg}$ by means of a cord that extends through a hole in the table (Fig. 6-43). What speed keeps the cylinder at rest?

Figure 6-43 Problem 57.
$\bullet 58$ Brake or turn? Figure 644 depicts an overhead view of a car's path as the car travels toward a wall. Assume that the driver begins to brake the car when the distance to the wall is $d=107 \mathrm{~m}$, and take the car's mass as $m=1400 \mathrm{~kg}$, its initial speed as $v_{0}=35 \mathrm{~m} / \mathrm{s}$, and the coefficient of static friction as $\mu_{s}=0.50$. Assume that the car's weight is dis-

Figure 6-44
Problem 58. tributed evenly on the four wheels, even during braking. (a) What magnitude of static friction is needed (between tires and road) to stop the car just as it reaches the wall? (b) What is the maximum possible static friction $f_{s, \max }$? (c) If the coefficient of kinetic friction between the (sliding) tires and the road is $\mu_{k}=0.40$, at what speed will the car hit the wall? To avoid the crash, a driver could elect to turn the car so that it just barely misses the wall, as shown in the figure. (d) What magnitude of frictional force would be required to keep the car in a circular path of radius d and at the given speed v_{0}, so that the car moves in a quarter circle and then parallel to the wall? (e) Is the required force less than $f_{s, \text { max }}$ so that a circular path is possible?
-o059 SSM ILW In Fig. 6-45, a 1.34 kg ball is connected by means of two massless strings, each of length $L=1.70 \mathrm{~m}$, to a vertical, rotating rod. The strings are tied to the rod with separation $d=1.70 \mathrm{~m}$ and are taut. The tension in the upper string is 35 N . What are the (a) tension in the lower string, (b) magnitude of the net force $\vec{F}_{\text {net }}$ on the ball, and (c) speed of the ball? (d) What is the direction of $\vec{F}_{\text {net }}$?

Additional Problems

60 ©o In Fig. 6-46, a box of ant aunts (total

Figure 6-45
Problem 59. mass $m_{1}=1.65 \mathrm{~kg}$) and a box of ant uncles (total mass $m_{2}=3.30 \mathrm{~kg}$) slide down an inclined plane while attached by a massless rod parallel to the plane. The angle of incline is $\theta=30.0^{\circ}$. The coefficient of kinetic friction between the aunt box and the incline is $\mu_{1}=0.226$; that between the uncle box and the incline is $\mu_{2}=0.113$. Compute (a) the tension in the rod and (b) the magnitude of the common acceleration of the two boxes. (c) How would the answers to (a) and (b) change if the uncles trailed the aunts?

Figure 6-46 Problem 60.
61 SSM A block of mass $m_{t}=4.0 \mathrm{~kg}$ is put on top of a block of mass $m_{b}=5.0 \mathrm{~kg}$. To cause the top block to slip on the bottom one while the bottom one is held fixed, a horizontal force of at least 12 N must be applied to the top block. The assembly of blocks is now placed on a horizontal, frictionless table (Fig. 6-47). Find the magnitudes of (a) the maximum horizontal force \vec{F} that can be applied to the lower block so that the blocks will move together and (b) the resulting acceleration of the blocks.

Figure 6-47 Problem 61.
62 A 5.00 kg stone is rubbed across the horizontal ceiling of a cave passageway (Fig. 6-48). If the coefficient of kinetic friction is 0.65 and the force applied to the stone is angled at $\theta=70.0^{\circ}$, what must the magnitude of the force be for the stone to move at constant velocity?

Figure 6-48 Problem 62.

63 In Fig. 6-49, a 49 kg rock climber is climbing a "chimney." The coefficient of static friction between her shoes and the rock is 1.2 ; between her back and the rock is 0.80 . She has reduced her push against the rock until her back and her shoes are on the verge of slipping. (a) Draw a free-body diagram of her. (b) What is the magnitude of her push against the rock? (c) What fraction of her weight is supported by the frictional force on her shoes?

Figure 6-49 Problem 63.
64 A high-speed railway car goes around a flat, horizontal circle of radius 470 m at a constant speed. The magnitudes of the horizontal and vertical components of the force of the car on a 51.0 kg passenger are 210 N and 500 N , respectively. (a) What is the magnitude of the net force (of all the forces) on the passenger? (b) What is the speed of the car?
65 Continuation of Problems 8 and 37. Another explanation is that the stones move only when the water dumped on the playa during a storm freezes into a large, thin sheet of ice. The stones are trapped in place in the ice. Then, as air flows across the ice during a wind, the air-drag forces on the ice and stones move them both, with the stones gouging out the trails. The magnitude of the air-drag force on this horizontal "ice sail" is given by $D_{\text {ice }}=4 C_{\text {ice }} \rho A_{\text {ice }} v^{2}$, where $C_{\text {ice }}$ is the drag coefficient $\left(2.0 \times 10^{-3}\right), \rho$ is the air density $\left(1.21 \mathrm{~kg} / \mathrm{m}^{3}\right), A_{\text {ice }}$ is the horizontal area of the ice, and v is the wind speed along the ice.

Assume the following: The ice sheet measures 400 m by 500 m by 4.0 mm and has a coefficient of kinetic friction of 0.10 with the ground and a density of $917 \mathrm{~kg} / \mathrm{m}^{3}$. Also assume that 100 stones identical to the one in Problem 8 are trapped in the ice. To maintain the motion of the sheet, what are the required wind speeds (a) near the sheet and (b) at a height of 10 m ? (c) Are these reasonable values for high-speed winds in a storm?
66 ©0 In Fig. 6-50, block 1 of mass $m_{1}=2.0 \mathrm{~kg}$ and block 2 of mass $m_{2}=3.0 \mathrm{~kg}$ are connected by a string of negligible mass and are initially held in place. Block 2 is on a frictionless surface tilted at $\theta=30^{\circ}$. The coefficient of kinetic friction between block 1 and the horizontal surface is 0.25 . The pulley has negligible mass and friction. Once they are released, the blocks move. What then is the tension in the string?

Figure 6-50 Problem 66.

67 In Fig. 6-51, a crate slides down an inclined right-angled trough. The coefficient of kinetic friction between the crate and the trough is μ_{k}. What is the acceleration of the crate in terms of μ_{k}, θ, and g ?

Figure 6-51 Problem 67.

68 Engineering a highway curve. If a car goes through a curve too fast, the car tends to slide out of the curve. For a banked curve with friction, a frictional force acts on a fast car to oppose the tendency to slide out of the curve; the force is directed down the bank (in the direction water would drain). Consider a circular curve of radius $R=200 \mathrm{~m}$ and bank angle θ, where the coefficient of static friction between tires and pavement is μ_{s}. A car (without negative lift) is driven around the curve as shown in Fig. 6-11. (a) Find an expression for the car speed $v_{\text {max }}$ that puts the car on the verge of sliding out. (b) On the same graph, plot $v_{\max }$ versus angle θ for the range 0° to 50°, first for $\mu_{s}=0.60$ (dry pavement) and then for $\mu_{s}=0.050$ (wet or icy pavement). In kilometers per hour, evaluate $v_{\text {max }}$ for a bank angle of $\theta=10^{\circ}$ and for (c) $\mu_{s}=0.60$ and (d) $\mu_{s}=$ 0.050. (Now you can see why accidents occur in highway curves when icy conditions are not obvious to drivers, who tend to drive at normal speeds.)
69 A student, crazed by final exams, uses a force \vec{P} of magnitude 80 N and angle $\theta=70^{\circ}$ to push a 5.0 kg block across the ceiling of his room (Fig. 6-52). If the coefficient of kinetic friction between the block and the ceiling is 0.40 , what is the magnitude of the block's acceleration?

Figure 6-52 Problem 69.
70 © Figure 6-53 shows a conical pendulum, in which the bob (the small object at the lower end of the cord) moves in a horizontal circle at constant speed. (The cord sweeps out a cone as the bob rotates.) The bob has a mass of 0.040 kg , the string has length $L=0.90 \mathrm{~m}$ and negligible mass, and the bob follows a circular path of circumference 0.94 m . What are (a) the tension in the string and (b) the period of the motion?

71 An 8.00 kg block of steel is at rest on a horizontal table. The coefficient of static friction between the block and the table is 0.450 . A force is to be applied to the block.

Figure 6-53 Problem 70.

To three significant figures, what is the magnitude of that applied force if it puts the block on the verge of sliding when the force is directed (a) horizontally, (b) upward at 60.0° from the horizontal, and (c) downward at 60.0° from the horizontal?
72 A box of canned goods slides down a ramp from street level into the basement of a grocery store with acceleration $0.75 \mathrm{~m} / \mathrm{s}^{2} \mathrm{di}$ rected down the ramp. The ramp makes an angle of 40° with the horizontal. What is the coefficient of kinetic friction between the box and the ramp?

73 In Fig. 6-54, the coefficient of kinetic friction between the block and inclined plane is 0.20 , and angle θ is 60°. What are the (a) magnitude a and (b) direction (up or down the plane) of the block's acceleration if the block is sliding down the plane? What are (c) a and (d) the direction if the block is sent sliding up the plane?

Figure 6-54
Problem 73.

74 A 110 g hockey puck sent sliding over ice is stopped in 15 m by the frictional force on it from the ice. (a) If its initial speed is $6.0 \mathrm{~m} / \mathrm{s}$, what is the magnitude of the frictional force? (b) What is the coefficient of friction between the puck and the ice?
75 A locomotive accelerates a 25 -car train along a level track. Every car has a mass of $5.0 \times 10^{4} \mathrm{~kg}$ and is subject to a frictional force $f=250 v$, where the speed v is in meters per second and the force f is in newtons. At the instant when the speed of the train is $30 \mathrm{~km} / \mathrm{h}$, the magnitude of its acceleration is $0.20 \mathrm{~m} / \mathrm{s}^{2}$. (a) What is the tension in the coupling between the first car and the locomotive? (b) If this tension is equal to the maximum force the locomotive can exert on the train, what is the steepest grade up which the locomotive can pull the train at $30 \mathrm{~km} / \mathrm{h}$?
76 A house is built on the top of a hill with a nearby slope at angle $\theta=45^{\circ}$ (Fig. 6-55). An engineering study indicates that the slope angle should be reduced because the top layers of soil along the slope might slip past the lower layers. If the coefficient of static friction between two such layers is 0.5 , what is the least angle ϕ through which the present slope should be reduced to prevent slippage?

Figure 6-55 Problem 76.
77 What is the terminal speed of a 6.00 kg spherical ball that has a radius of 3.00 cm and a drag coefficient of 1.60 ? The density of the air through which the ball falls is $1.20 \mathrm{~kg} / \mathrm{m}^{3}$.
78 A student wants to determine the coefficients of static friction and kinetic friction between a box and a plank. She places the box on the plank and gradually raises one end of the plank. When the angle of inclination with the horizontal reaches 30°, the box starts to slip, and it then slides 2.5 m down the plank in 4.0 s at constant acceleration. What are (a) the coefficient of static friction and (b) the coefficient of kinetic friction between the box and the plank?

79 SSM Block A in Fig. 6-56 has mass $m_{A}=4.0 \mathrm{~kg}$, and block B has mass $m_{B}=2.0 \mathrm{~kg}$. The coefficient of kinetic friction between block B and the horizontal plane is $\mu_{k}=0.50$. The inclined plane is frictionless and at angle $\theta=30^{\circ}$. The pulley serves only to change the direction of the cord connecting the blocks. The cord has negligible mass. Find (a) the tension in the cord and (b) the magnitude of the acceleration of the blocks.

Figure 6-56 Problem 79.
80 Calculate the magnitude of the drag force on a missile 53 cm in diameter cruising at $250 \mathrm{~m} / \mathrm{s}$ at low altitude, where the density of air is $1.2 \mathrm{~kg} / \mathrm{m}^{3}$. Assume $C=0.75$.
81 SSM A bicyclist travels in a circle of radius 25.0 m at a constant speed of $9.00 \mathrm{~m} / \mathrm{s}$. The bicycle-rider mass is 85.0 kg . Calculate the magnitudes of (a) the force of friction on the bicycle from the road and (b) the net force on the bicycle from the road.
82 In Fig. 6-57, a stuntman drives a car (without negative lift) over the top of a hill, the cross section of which can be approximated by a circle of radius $R=250 \mathrm{~m}$. What is the greatest speed at which he can

Figure 6-57 Problem 82. drive without the car leaving the road at the top of the hill?
83 You must push a crate across a floor to a docking bay. The crate weighs 165 N . The coefficient of static friction between crate and floor is 0.510 , and the coefficient of kinetic friction is 0.32 . Your force on the crate is directed horizontally. (a) What magnitude of your push puts the crate on the verge of sliding? (b) With what magnitude must you then push to keep the crate moving at a constant velocity? (c) If, instead, you then push with the same magnitude as the answer to (a), what is the magnitude of the crate's acceleration?
84 In Fig. 6-58, force \vec{F} is applied to a crate of mass m on a floor where the coefficient of static friction between crate and floor is μ_{s}. Angle θ is initially 0° but is gradu-

Figure 6-58 Problem 84. ally increased so that the force vector rotates clockwise in the figure. During the rotation, the magnitude F of the force is continuously adjusted so that the crate is always on the verge of sliding. For $\mu_{s}=0.70$, (a) plot the ratio $F / m g$ versus θ and (b) determine the angle $\theta_{\text {inf }}$ at which the ratio approaches an infinite value. (c) Does lubricating the floor increase or decrease θ_{inf}, or is the value unchanged? (d) What is $\theta_{\text {inf }}$ for $\mu_{s}=0.60$?
85 In the early afternoon, a car is parked on a street that runs down a steep hill, at an angle of 35.0° relative to the horizontal. Just then the coefficient of static friction between the tires and the street surface is 0.725 . Later, after nightfall, a sleet storm hits the area, and the coefficient decreases due to both the ice and a chemi-
cal change in the road surface because of the temperature decrease. By what percentage must the coefficient decrease if the car is to be in danger of sliding down the street?

86 A sling-thrower puts a stone $(0.250 \mathrm{~kg})$ in the sling's pouch $(0.010 \mathrm{~kg})$ and then begins to make the stone and pouch move in a vertical circle of radius 0.650 m . The cord between the pouch and the person's hand has negligible mass and will break when the tension in the cord is 33.0 N or more. Suppose the slingthrower could gradually increase the speed of the stone. (a) Will the breaking occur at the lowest point of the circle or at the highest point? (b) At what speed of the stone will that breaking occur?
87 SSM A car weighing 10.7 kN and traveling at $13.4 \mathrm{~m} / \mathrm{s}$ without negative lift attempts to round an unbanked curve with a radius of 61.0 m . (a) What magnitude of the frictional force on the tires is required to keep the car on its circular path? (b) If the coefficient of static friction between the tires and the road is 0.350 , is the attempt at taking the curve successful?

88 In Fig. 6-59, block 1 of mass $m_{1}=2.0 \mathrm{~kg}$ and block 2 of mass $m_{2}=1.0 \mathrm{~kg}$ are connected by a string of negligible mass. Block 2 is pushed by force \vec{F} of magnitude 20

Figure 6-59 Problem 88. N and angle $\theta=35^{\circ}$. The coefficient of kinetic friction between each block and the horizontal surface is 0.20. What is the tension in the string?

89 SSM A filing cabinet weighing 556 N rests on the floor. The coefficient of static friction between it and the floor is 0.68 , and the coefficient of kinetic friction is 0.56 . In four different attempts to move it, it is pushed with horizontal forces of magnitudes (a) 222 N , (b) 334 N , (c) 445 N , and (d) 556 N . For each attempt, calculate the magnitude of the frictional force on it from the floor. (The cabinet is initially at rest.) (e) In which of the attempts does the cabinet move?
90 In Fig. 6-60, a block weighing 22 N is held at rest against a vertical wall by a horizontal force \vec{F} of magnitude 60 N . The coefficient of static friction between the wall and the block is 0.55 , and the coefficient of kinetic friction between them is 0.38 . In six experiments, a second force \vec{P} is applied to the block and directed parallel to the wall with these magnitudes and directions: (a) 34 N , up, (b) 12 N , up, (c) 48 N , up, (d) 62 N , up, (e) 10 N , down, and (f) 18 N , down. In each experiment, what is the

Figure 6-60
Problem 90. magnitude of the frictional force on the block? In which does the block move (g) up the wall and (h) down the wall? (i) In which is the frictional force directed down the wall?

91 SSIM A block slides with constant velocity down an inclined plane that has slope angle θ. The block is then projected up the same plane with an initial speed v_{0}. (a) How far up the plane will it move before coming to rest? (b) After the block comes to rest, will it slide down the plane again? Give an argument to back your answer.
92 A circular curve of highway is designed for traffic moving at $60 \mathrm{~km} / \mathrm{h}$. Assume the traffic consists of cars without negative lift. (a) If the radius of the curve is 150 m , what is the correct angle of banking of the road? (b) If the curve were not banked, what would be the minimum coefficient of friction between tires and road that would keep traffic from skidding out of the turn when traveling at $60 \mathrm{~km} / \mathrm{h}$?

93 A 1.5 kg box is initially at rest on a horizontal surface when at $t=0$ a horizontal force $\vec{F}=(1.8 t) \hat{\mathrm{i}} \mathrm{N}$ (with t in seconds) is applied to the box. The acceleration of the box as a function of time t is given by $\vec{a}=0$ for $0 \leq t \leq 2.8 \mathrm{~s}$ and $\vec{a}=(1.2 t-2.4) \hat{\mathrm{i}} \mathrm{m} / \mathrm{s}^{2}$ for $t>$ 2.8 s . (a) What is the coefficient of static friction between the box and the surface? (b) What is the coefficient of kinetic friction between the box and the surface?

94 A child weighing 140 N sits at rest at the top of a playground slide that makes an angle of 25° with the horizontal. The child keeps from sliding by holding onto the sides of the slide. After letting go of the sides, the child has a constant acceleration of $0.86 \mathrm{~m} / \mathrm{s}^{2}$ (down the slide, of course). (a) What is the coefficient of kinetic friction between the child and the slide? (b) What maximum and minimum values for the coefficient of static friction between the child and the slide are consistent with the information given here?
95 In Fig. 6-61 a fastidious worker pushes directly along the handle of a mop with a force \vec{F}. The handle is at an angle θ with the vertical, and μ_{s} and μ_{k} are the coefficients of static and kinetic friction between the head of the mop and the floor. Ignore the mass of the handle and assume that all the mop's mass m is in its head. (a) If the mop head moves along the floor with a constant velocity, then what is F ? (b) Show that if θ is less than a certain value θ_{0}, then \vec{F} (still directed along the handle) is unable to move the mop head. Find θ_{0}.
96 A child places a picnic basket on the outer rim of a merry-go-round that has a radius of 4.6 m and revolves once every 30 s . (a) What is the speed of a point on that rim? (b) What is the lowest value of the coefficient of static friction between basket and merry-go-round that allows the basket to stay on the ride?
97 SSM A warehouse worker exerts a constant horizontal force of magnitude 85 N on a 40 kg box that is initially at rest on the horizontal floor of the warehouse. When the box has moved a distance of 1.4 m , its speed is $1.0 \mathrm{~m} / \mathrm{s}$. What is the coefficient of kinetic friction between the box and the floor?
98 In Fig. 6-62, a 5.0 kg block is sent sliding up a plane inclined at $\theta=37^{\circ}$ while a horizontal force \vec{F} of magnitude 50 N acts on it. The coefficient of kinetic friction between block and plane is 0.30 . What are the (a) magnitude and (b) direction (up or down the plane) of the block's acceleration? The block's initial speed is 4.0 m / s. (c) How far up the plane does the block go? (d) When it reaches its highest point, does it remain at rest or slide back down the plane?

Figure 6-62 Problem 98.

99 An 11 kg block of steel is at rest on a horizontal table. The coefficient of static friction between block and table is 0.52 . (a) What is the magnitude of the horizontal force that will put the block on the verge of moving? (b) What is the magnitude of a force acting upward 60° from the horizontal that will put the block on the verge of moving? (c) If the force acts downward at 60° from the horizontal, how large can its magnitude be without causing the block to move?
100 A ski that is placed on snow will stick to the snow. However, when the ski is moved along the snow, the rubbing warms and partially melts the snow, reducing the coefficient of kinetic friction and promoting sliding. Waxing the ski makes it water repellent and reduces friction with the resulting layer of water. A magazine reports that a new type of plastic ski is especially water repellent and that, on a gentle 200 m slope in the Alps, a skier reduced his top-to-bottom time from 61 s with standard skis to 42 s with the new skis. Determine the magnitude of his average acceleration with (a) the standard skis and (b) the new skis. Assuming a 3.0° slope, compute the coefficient of kinetic friction for (c) the standard skis and (d) the new skis.
101 Playing near a road construction site, a child falls over a barrier and down onto a dirt slope that is angled downward at 35° to the horizontal. As the child slides down the slope, he has an acceleration that has a magnitude of $0.50 \mathrm{~m} / \mathrm{s}^{2}$ and that is directed $u p$ the slope. What is the coefficient of kinetic friction between the child and the slope?
102 A 100 N force, directed at an angle θ above a horizontal floor, is applied to a 25.0 kg chair sitting on the floor. If $\theta=0^{\circ}$, what are (a) the horizontal component F_{h} of the applied force and (b) the magnitude F_{N} of the normal force of the floor on the chair? If $\theta=30.0^{\circ}$, what are (c) F_{h} and (d) F_{N} ? If $\theta=60.0^{\circ}$, what are (e) F_{h} and (f) F_{N} ? Now assume that the coefficient of static friction between chair and floor is 0.420 . Does the chair slide or remain at rest if θ is (g) 0°, (h) 30.0°, and (i) 60.0° ?
103 A certain string can withstand a maximum tension of 40 N without breaking. A child ties a 0.37 kg stone to one end and, holding the other end, whirls the stone in a vertical circle of radius 0.91 m , slowly increasing the speed until the string breaks. (a) Where is the stone on its path when the string breaks? (b) What is the speed of the stone as the string breaks?
104 A four-person bobsled (total mass $=630 \mathrm{~kg}$) comes down a straightaway at the start of a bobsled run. The straightaway is 80.0 m long and is inclined at a constant angle of 10.2° with the horizontal. Assume that the combined effects of friction and air drag produce on the bobsled a constant force of 62.0 N that acts parallel to the incline and up the incline. Answer the following questions to three significant digits. (a) If the speed of the bobsled at the start of the run is $6.20 \mathrm{~m} / \mathrm{s}$, how long does the bobsled take to come down the straightaway? (b) Suppose the crew is able to reduce the effects of friction and air drag to 42.0 N . For the same initial velocity, how long does the bobsled now take to come down the straightaway?
105 As a 40 N block slides down a plane that is inclined at 25° to the horizontal, its acceleration is $0.80 \mathrm{~m} / \mathrm{s}^{2}$, directed up the plane. What is the coefficient of kinetic friction between the block and the plane?

Sample Problem 7.09 Power, force, and velocity

Here we calculate an instantaneous work-that is, the rate at which work is being done at any given instant rather than averaged over a time interval. Figure 7-15 shows constant forces \vec{F}_{1} and \vec{F}_{2} acting on a box as the box slides rightward across a frictionless floor. Force \vec{F}_{1} is horizontal, with magnitude 2.0 N ; force \vec{F}_{2} is angled upward by 60° to the floor and has magnitude 4.0 N . The speed v of the box at a certain instant is $3.0 \mathrm{~m} / \mathrm{s}$. What is the power due to each force acting on the box at that instant, and what is the net power? Is the net power changing at that instant?

KEY IDEA

We want an instantaneous power, not an average power over a time period. Also, we know the box's velocity (rather than the work done on it).

Figure 7-15 Two forces \vec{F}_{1} and \vec{F}_{2} act on a box that slides rightward across a frictionless floor. The velocity of the box is \vec{v}.

Calculation: We use Eq. 7-47 for each force. For force \vec{F}_{1}, at angle $\phi_{1}=180^{\circ}$ to velocity \vec{v}, we have

$$
\begin{aligned}
P_{1} & =F_{1} v \cos \phi_{1}=(2.0 \mathrm{~N})(3.0 \mathrm{~m} / \mathrm{s}) \cos 180^{\circ} \\
& =-6.0 \mathrm{~W} .
\end{aligned}
$$

(Answer)
This negative result tells us that force \vec{F}_{1} is transferring energy from the box at the rate of $6.0 \mathrm{~J} / \mathrm{s}$.

For force \vec{F}_{2}, at angle $\phi_{2}=60^{\circ}$ to velocity \vec{v}, we have

$$
\begin{aligned}
P_{2} & =F_{2} v \cos \phi_{2}=(4.0 \mathrm{~N})(3.0 \mathrm{~m} / \mathrm{s}) \cos 60^{\circ} \\
& =6.0 \mathrm{~W} .
\end{aligned}
$$

(Answer)
This positive result tells us that force \vec{F}_{2} is transferring energy to the box at the rate of $6.0 \mathrm{~J} / \mathrm{s}$.

The net power is the sum of the individual powers (complete with their algebraic signs):

$$
\begin{aligned}
P_{\mathrm{net}} & =P_{1}+P_{2} \\
& =-6.0 \mathrm{~W}+6.0 \mathrm{~W}=0
\end{aligned}
$$

(Answer)
which tells us that the net rate of transfer of energy to or from the box is zero. Thus, the kinetic energy ($K=\frac{1}{2} m v^{2}$) of the box is not changing, and so the speed of the box will remain at $3.0 \mathrm{~m} / \mathrm{s}$. With neither the forces \vec{F}_{1} and \vec{F}_{2} nor the velocity \vec{v} changing, we see from Eq. $7-48$ that P_{1} and P_{2} are constant and thus so is $P_{\text {net }}$.

8)

Kinetic Energy The kinetic energy K associated with the motion of a particle of mass m and speed v, where v is well below the speed of light, is

$$
\begin{equation*}
K=\frac{1}{2} m v^{2} \quad \text { (kinetic energy). } \tag{7-1}
\end{equation*}
$$

Work Work W is energy transferred to or from an object via a force acting on the object. Energy transferred to the object is positive work, and from the object, negative work.
Work Done by a Constant Force The work done on a particle by a constant force \vec{F} during displacement \vec{d} is

$$
\begin{equation*}
W=F d \cos \phi=\vec{F} \cdot \vec{d} \quad(\text { work , constant force) }, \tag{7-7,7-8}
\end{equation*}
$$

in which ϕ is the constant angle between the directions of \vec{F} and \vec{d}. Only the component of \vec{F} that is along the displacement \vec{d} can do work on the object. When two or more forces act on an object, their net work is the sum of the individual works done by the forces, which is also equal to the work that would be done on the object by the net force $\vec{F}_{\text {net }}$ of those forces.
Work and Kinetic Energy For a particle, a change ΔK in the kinetic energy equals the net work W done on the particle:

$$
\begin{equation*}
\left.\Delta K=K_{f}-K_{i}=W \quad \text { (work-kinetic energy theorem }\right) \tag{7-10}
\end{equation*}
$$

in which K_{i} is the initial kinetic energy of the particle and K_{f} is the kinetic energy after the work is done. Equation 7-10 rearranged gives us

$$
\begin{equation*}
K_{f}=K_{i}+W \tag{7-11}
\end{equation*}
$$

Work Done by the Gravitational Force The work W_{g} done by the gravitational force \vec{F}_{g} on a particle-like object of mass m as the object moves through a displacement \vec{d} is given by

$$
\begin{equation*}
W_{g}=m g d \cos \phi \tag{7-12}
\end{equation*}
$$

in which ϕ is the angle between \vec{F}_{g} and \vec{d}.
Work Done in Lifting and Lowering an Object The work W_{a} done by an applied force as a particle-like object is either lifted or lowered is related to the work W_{g} done by the gravitational force and the change ΔK in the object's kinetic energy by

$$
\begin{equation*}
\Delta K=K_{f}-K_{i}=W_{a}+W_{g} \tag{7-15}
\end{equation*}
$$

If $K_{f}=K_{i}$, then Eq. $7-15$ reduces to

$$
\begin{equation*}
W_{a}=-W_{g}, \tag{7-16}
\end{equation*}
$$

which tells us that the applied force transfers as much energy to the object as the gravitational force transfers from it.

Spring Force The force \vec{F}_{s} from a spring is

$$
\begin{equation*}
\vec{F}_{s}=-k \vec{d} \quad(\text { Hooke's law) } \tag{7-20}
\end{equation*}
$$

where \vec{d} is the displacement of the spring's free end from its position when the spring is in its relaxed state (neither compressed nor extended), and k is the spring constant (a measure of the spring's stiffness). If an x axis lies along the spring, with the origin at the location of the spring's free end when the spring is in its relaxed state, Eq. 7-20 can be written as

$$
\begin{equation*}
F_{x}=-k x \quad \text { (Hooke's law). } \tag{7-21}
\end{equation*}
$$

A spring force is thus a variable force: It varies with the displacement of the spring's free end.
Work Done by a Spring Force If an object is attached to the spring's free end, the work W_{s} done on the object by the spring force when the object is moved from an initial position x_{i} to a final position x_{f} is

$$
\begin{equation*}
W_{s}=\frac{1}{2} k x_{i}^{2}-\frac{1}{2} k x_{f}^{2} . \tag{7-25}
\end{equation*}
$$

If $x_{i}=0$ and $x_{f}=x$, then Eq. $7-25$ becomes

$$
\begin{equation*}
W_{s}=-\frac{1}{2} k x^{2} . \tag{7-26}
\end{equation*}
$$

Work Done by a Variable Force When the force \vec{F} on a particlelike object depends on the position of the object, the work done by \vec{F} on the object while the object moves from an initial position r_{i} with coordinates $\left(x_{i}, y_{i}, z_{i}\right)$ to a final position r_{f} with coordinates $\left(x_{f}, y_{f}, z_{f}\right)$

Questions

1 Rank the following velocities according to the kinetic energy a particle will have with each velocity, greatest first: (a) $\vec{v}=4 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}$, (b) $\vec{v}=-4 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}$, (c) $\vec{v}=-3 \hat{\mathrm{i}}+4 \hat{\mathrm{j}}$, (d) $\vec{v}=3 \hat{\mathrm{i}}-4 \hat{\mathrm{j}}$, (e) $\vec{v}=5 \hat{\mathrm{i}}$, and (f) $v=5 \mathrm{~m} / \mathrm{s}$ at 30° to the horizontal.
2 Figure 7-16a shows two horizontal forces that act on a block that is sliding to the right across a frictionless floor. Figure 7-16b shows three plots of the block's kinetic energy K versus time t. Which of the plots best corresponds to the following three situations: (a) $F_{1}=F_{2}$, (b) $F_{1}>F_{2}$, (c) $F_{1}<F_{2}$?

Figure 7-16 Question 2.

3 Is positive or negative work done by a constant force \vec{F} on a particle during a straight-line displacement \vec{d} if (a) the angle between \vec{F} and \vec{d} is 30°; (b) the angle is 100°; (c) $\vec{F}=2 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}$ and $\vec{d}=-4 \hat{\mathrm{i}}$?
4 In three situations, a briefly applied horizontal force changes the velocity of a hockey puck that slides over frictionless ice. The overhead views of Fig. 7-17 indicate, for each situation, the puck's initial speed v_{i}, its final speed v_{f}, and the directions of the corresponding velocity vectors. Rank the situations according to the work done on the puck by the applied force, most positive first and most negative last.
must be found by integrating the force. If we assume that component F_{x} may depend on x but not on y or z, component F_{y} may depend on y but not on x or z, and component F_{z} may depend on z but not on x or y, then the work is

$$
\begin{equation*}
W=\int_{x_{i}}^{x_{f}} F_{x} d x+\int_{y_{i}}^{y_{f}} F_{y} d y+\int_{z_{i}}^{z_{f}} F_{z} d z . \tag{7-36}
\end{equation*}
$$

If \vec{F} has only an x component, then Eq. 7-36 reduces to

$$
\begin{equation*}
W=\int_{x_{i}}^{x_{f}} F(x) d x . \tag{7-32}
\end{equation*}
$$

Power The power due to a force is the rate at which that force does work on an object. If the force does work W during a time interval Δt, the average power due to the force over that time interval is

$$
\begin{equation*}
P_{\text {avg }}=\frac{W}{\Delta t} . \tag{7-42}
\end{equation*}
$$

Instantaneous power is the instantaneous rate of doing work:

$$
\begin{equation*}
P=\frac{d W}{d t} \tag{7-43}
\end{equation*}
$$

For a force \vec{F} at an angle ϕ to the direction of travel of the instantaneous velocity \vec{v}, the instantaneous power is

$$
\begin{equation*}
P=F v \cos \phi=\vec{F} \cdot \vec{v} \tag{7-47,7-48}
\end{equation*}
$$

Figure 7-17 Question 4.
5 The graphs in Fig. 7-18 give the x component F_{x} of a force acting on a particle moving along an x axis. Rank them according to the work done by the force on the particle from $x=0$ to $x=x_{1}$, from most positive work first to most negative work last.
(a)

(b)

(c)

(d)

Figure 7-18
Question 5.

6 Figure 7-19 gives the x component F_{x} of a force that can act on a particle. If the particle begins at rest at $x=0$, what is its coordinate when it has (a) its greatest kinetic energy, (b) its greatest speed, and (c) zero speed? (d) What is the particle's direction of travel after it reaches $x=6 \mathrm{~m}$?
7 In Fig. 7-20, a greased pig has a choice of three frictionless slides along which to slide to the ground. Rank the slides according to how much work the gravitational force does on the pig during the descent, greatest first.

Figure 7-20
Question 7.

Figure 7-19 Question 6.

8 Figure 7-21a shows four situations in which a horizontal force acts on the same block, which is initially at rest. The force magnitudes are $F_{2}=F_{4}=2 F_{1}=2 F_{3}$. The horizontal component v_{x} of the block's velocity is shown in Fig. 7-21b for the four situations. (a) Which plot in Fig. 7-21b best corresponds to which force in Fig. 7-21a? (b) Which

Figure 7-21 Question 8.

Problems

plot in Fig. 7-21c (for kinetic energy K versus time t) best corresponds to which plot in Fig. 7-21b?
9 Spring A is stiffer than spring $B\left(k_{A}>k_{B}\right)$. The spring force of which spring does more work if the springs are compressed (a) the same distance and (b) by the same applied force?
10 A glob of slime is launched or dropped from the edge of a cliff. Which of the graphs in Fig. 7-22 could possibly show how the kinetic energy of the glob changes during its flight?

Figure 7-22 Question 10.
11 In three situations, a single force acts on a moving particle. Here are the velocities (at that instant) and the forces: (1) $\vec{v}=(-4 \hat{\mathrm{i}}) \mathrm{m} / \mathrm{s}, \quad \vec{F}=(6 \hat{\mathrm{i}}-20 \hat{\mathrm{j}}) \mathrm{N} ; \quad(2) \quad \vec{v}=(2 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}) \mathrm{m} / \mathrm{s}$, $\vec{F}=(-2 \hat{\mathrm{j}}+7 \hat{\mathrm{k}}) \mathrm{N} ;(3) \vec{v}=(-3 \hat{\mathrm{i}}+\hat{\mathrm{j}}) \mathrm{m} / \mathrm{s}, \vec{F}=(2 \hat{\mathrm{i}}+6 \hat{\mathrm{j}}) \mathrm{N}$. Rank the situations according to the rate at which energy is being transferred, greatest transfer to the particle ranked first, greatest transfer from the particle ranked last.

12 Figure 7-23 shows three arrangements of a block attached to identical springs that are in their relaxed state when the block is centered as shown. Rank the arrangements according to the magnitude of the net force on the block, largest first, when the block is displaced by distance d (a) to the right and (b) to the left. Rank the arrangements according to the work done on the block by the spring forces, greatest first, when the block is displaced by d (c) to the right and (d) to the left.

(1)
(2)

Figure 7-23 Question 12.

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

Module 7-1 Kinetic Energy

$\bullet 1$ SSM A proton (mass $m=1.67 \times 10^{-27} \mathrm{~kg}$) is being accelerated along a straight line at $3.6 \times 10^{15} \mathrm{~m} / \mathrm{s}^{2}$ in a machine. If the proton has an initial speed of $2.4 \times 10^{7} \mathrm{~m} / \mathrm{s}$ and travels 3.5 cm , what then is (a) its speed and (b) the increase in its kinetic energy?
-2 If a Saturn V rocket with an Apollo spacecraft attached had a combined mass of $2.9 \times 10^{5} \mathrm{~kg}$ and reached a speed of $11.2 \mathrm{~km} / \mathrm{s}$, how much kinetic energy would it then have?
-3 On August 10, 1972, a large meteorite skipped across the atmosphere above the western United States and western Canada,
much like a stone skipped across water. The accompanying fireball was so bright that it could be seen in the daytime sky and was brighter than the usual meteorite trail. The meteorite's mass was about $4 \times 10^{6} \mathrm{~kg}$; its speed was about $15 \mathrm{~km} / \mathrm{s}$. Had it entered the atmosphere vertically, it would have hit Earth's surface with about the same speed. (a) Calculate the meteorite's loss of kinetic energy (in joules) that would have been associated with the vertical impact. (b) Express the energy as a multiple of the explosive energy of 1 megaton of TNT, which is $4.2 \times 10^{15} \mathrm{~J}$. (c) The energy associated with the atomic bomb explosion over Hiroshima was equivalent to 13 kilotons of TNT. To how many Hiroshima bombs would the meteorite impact have been equivalent?
$\bullet 4$ An explosion at ground level leaves a crater with a diameter that is proportional to the energy of the explosion raised to the $\frac{1}{3}$ power; an explosion of 1 megaton of TNT leaves a crater with a 1 km diameter. Below Lake Huron in Michigan there appears to be an ancient impact crater with a 50 km diameter. What was the kinetic energy associated with that impact, in terms of (a) megatons of TNT (1 megaton yields $\left.4.2 \times 10^{15} \mathrm{~J}\right)$ and (b) Hiroshima bomb equivalents (13 kilotons of TNT each)? (Ancient meteorite or comet impacts may have significantly altered the climate, killing off the dinosaurs and other life-forms.)
$\bullet 5$ A father racing his son has half the kinetic energy of the son, who has half the mass of the father. The father speeds up by $1.0 \mathrm{~m} / \mathrm{s}$ and then has the same kinetic energy as the son. What are the original speeds of (a) the father and (b) the son?
-•6 A bead with mass $1.8 \times 10^{-2} \mathrm{~kg}$ is moving along a wire in the positive direction of an x axis. Beginning at time $t=0$, when the bead passes through $x=0$ with speed $12 \mathrm{~m} / \mathrm{s}$, a constant force acts on the bead. Figure 7-24 indicates the bead's position at these four times: $t_{0}=0, t_{1}=1.0 \mathrm{~s}, t_{2}=2.0 \mathrm{~s}$, and $t_{3}=3.0 \mathrm{~s}$. The bead momentarily stops at $t=3.0 \mathrm{~s}$. What is the kinetic energy of the bead at $t=10 \mathrm{~s}$?

Figure 7-24 Problem 6.

Module 7-2 Work and Kinetic Energy

-7 A 3.0 kg body is at rest on a frictionless horizontal air track when a constant horizontal force \vec{F} acting in the positive direction of an x axis along the track is applied to the body. A stroboscopic graph of the position of the body as it slides to the right is shown in Fig. 725. The force \vec{F} is applied to the body at $t=0$, and the graph records the position of the body at 0.50 s intervals. How much work is done on the body by the applied force \vec{F} between $t=0$ and $t=2.0 \mathrm{~s}$?

Figure 7-25 Problem 7.
-8 A ice block floating in a river is pushed through a displacement $\vec{d}=(15 \mathrm{~m}) \hat{\mathrm{i}}-(12 \mathrm{~m}) \hat{\mathrm{j}}$ along a straight embankment by rushing water, which exerts a force $\vec{F}=(210 \mathrm{~N}) \hat{\mathrm{i}}-(150 \mathrm{~N}) \hat{\mathrm{j}}$ on the block. How much work does the force do on the block during the displacement?
-9 The only force acting on a 2.0 kg canister that is moving in an $x y$ plane has a magnitude of 5.0 N . The canister initially has a veloc-
ity of $4.0 \mathrm{~m} / \mathrm{s}$ in the positive x direction and some time later has a velocity of $6.0 \mathrm{~m} / \mathrm{s}$ in the positive y direction. How much work is done on the canister by the 5.0 N force during this time?
-10 A coin slides over a frictionless plane and across an $x y$ coordinate system from the origin to a point with $x y$ coordinates $(3.0 \mathrm{~m}, 4.0 \mathrm{~m})$ while a constant force acts on it. The force has magnitude 2.0 N and is directed at a counterclockwise angle of 100° from the positive direction of the x axis. How much work is done by the force on the coin during the displacement?
$\bullet 11$ A 12.0 N force with a fixed orientation does work on a particle as the particle moves through the three-dimensional displacement $\vec{d}=(2.00 \hat{\mathrm{i}}-4.00 \hat{\mathrm{j}}+3.00 \hat{\mathrm{k}}) \mathrm{m}$. What is the angle between the force and the displacement if the change in the particle's kinetic energy is (a) +30.0 J and (b) -30.0 J ?
$\bullet 12$ A can of bolts and nuts is pushed 2.00 m along an x axis by a broom along the greasy (frictionless) floor of a car repair shop in a version of shuffleboard. Figure 7-26 gives the work W done on the can by the constant horizontal force from the broom, versus the can's position x. The scale of the figure's vertical axis is set by $W_{s}=6.0 \mathrm{~J}$. (a)

Figure 7-26 Problem 12. What is the magnitude of that force? (b) If the can had an initial kinetic energy of 3.00 J , moving in the positive direction of the x axis, what is its kinetic energy at the end of the 2.00 m ?
$\bullet 13$ A luge and its rider, with a total mass of 85 kg , emerge from a downhill track onto a horizontal straight track with an initial speed of $37 \mathrm{~m} / \mathrm{s}$. If a force slows them to a stop at a constant rate of 2.0 $\mathrm{m} / \mathrm{s}^{2}$, (a) what magnitude F is required for the force, (b) what distance d do they travel while slowing, and (c) what work W is done on them by the force? What are (d) F, (e) d, and (f) W if they, instead, slow at $4.0 \mathrm{~m} / \mathrm{s}^{2}$?
$\bullet 14$ ©o Figure $7-27$ shows an overhead view of three horizontal forces acting on a cargo canister that was initially stationary but now moves across a frictionless floor. The force magnitudes are $F_{1}=3.00 \mathrm{~N}, F_{2}=$ 4.00 N , and $F_{3}=10.0 \mathrm{~N}$, and the indicated angles are $\theta_{2}=50.0^{\circ}$ and $\theta_{3}=$ 35.0°. What is the net work done on the canister by the three forces during the first 4.00 m of displacement?
$\bullet 15$ ©o Figure 7-28 shows three forces applied to a trunk that moves leftward by 3.00 m over a frictionless floor. The force magnitudes are $F_{1}=5.00 \mathrm{~N}, F_{2}=9.00 \mathrm{~N}$, and $F_{3}=$ 3.00 N , and the indicated angle is $\theta=$ 60.0°. During the displacement, (a) what is the net work done on the trunk by the three forces and (b) does the kinetic energy of the trunk

Figure 7-27 Problem 14.

Figure 7-28 Problem 15. increase or decrease?
-16 An An 8.0 kg object is moving in the positive direction of an x axis. When it passes through $x=0$, a constant force directed
along the axis begins to act on it. Figure 7-29 gives its kinetic energy K versus position x as it moves from $x=0$ to $x=5.0 \mathrm{~m} ; K_{0}=30.0$ J . The force continues to act. What is v when the object moves back through $x=-3.0 \mathrm{~m}$?

Module 7-3 Work Done by the Gravitational Force

$\cdot 17$ SSM Www A helicopter lifts a 72 kg astronaut 15 m vertically from the ocean by means of a cable. The acceleration of the astronaut is $g / 10$. How much work is done on the astronaut by (a) the force from the helicopter and (b) the gravitational force on her? Just before she reaches the helicopter, what are her (c) kinetic energy and (d) speed?
-18 (a) In 1975 the roof of Montreal's Velodrome, with a weight of 360 kN , was lifted by 10 cm so that it could be centered. How much work was done on the roof by the forces making the lift? (b) In 1960 a Tampa, Florida, mother reportedly raised one end of a car that had fallen onto her son when a jack failed. If her panic lift effectively raised 4000 N (about $\frac{1}{4}$ of the car's weight) by 5.0 cm , how much work did her force do on the car?
$\bullet 19$ ©o In Fig. 7-30, a block of ice slides down a frictionless ramp at angle $\theta=50^{\circ}$ while an ice worker pulls on the block (via a rope) with a force \vec{F}_{r} that has a magnitude of 50 N and is directed up the ramp. As the block slides through distance $d=0.50 \mathrm{~m}$ along the ramp, its kinetic energy increases by 80 J. How much greater would its kinetic energy have been if the rope had not been attached to the block?
$\because 20$ A block is sent up a frictionless ramp along which an x axis extends upward. Figure 7-31 gives the kinetic energy of the block as a function of position x; the scale of the figure's vertical axis is set by $K_{s}=40.0 \mathrm{~J}$. If the block's initial speed is $4.00 \mathrm{~m} / \mathrm{s}$, what is the normal force on the block?
$\because 21$ SSM A cord is used to vertically

Figure 7-30 Problem 19.

Figure 7-31 Problem 20. lower an initially stationary block of mass M at a constant downward acceleration of $g / 4$. When the block has fallen a distance d, find (a) the work done by the cord's force on the block, (b) the work done by the gravitational force on the block, (c) the kinetic energy of the block, and (d) the speed of the block.
-22 A cave rescue team lifts an injured spelunker directly upward and out of a sinkhole by means of a motor-driven cable. The lift is performed in three stages, each requiring a vertical distance of 10.0 m : (a) the initially stationary spelunker is accelerated to a speed of $5.00 \mathrm{~m} / \mathrm{s}$; (b) he is then lifted at the constant speed of $5.00 \mathrm{~m} / \mathrm{s}$; (c) finally he is decelerated to zero speed. How much work is done on the 80.0 kg rescuee by the force lifting him during each stage? -०23 In Fig. 7-32, a constant force \vec{F}_{a} of magnitude 82.0 N is applied to a 3.00 kg shoe box at angle $\phi=53.0^{\circ}$, causing

Figure 7-32 Problem 23.
the box to move up a frictionless ramp at constant speed. How much work is done on the box by \vec{F}_{a} when the box has moved through vertical distance $h=0.150 \mathrm{~m}$?
$\because 24$ ©o In Fig. 7-33, a horizontal force \vec{F}_{a} of magnitude 20.0 N is applied to a 3.00 kg psychology book as the book slides a distance $d=0.500 \mathrm{~m}$ up a frictionless ramp at angle $\theta=30.0^{\circ}$. (a) During the displacement, what is the net work done on the book by \vec{F}_{a}, the gravitational force on the book, and the normal force on the book? (b) If the book

Figure 7-33 Problem 24. has zero kinetic energy at the start of the displacement, what is its speed at the end of the displacement?
$\because 0025$ © In Fig. 7-34, a 0.250 kg block of cheese lies on the floor of a 900 kg elevator cab that is being pulled upward by a cable through distance $d_{1}=2.40 \mathrm{~m}$ and then through distance $d_{2}=10.5 \mathrm{~m}$. (a) Through d_{1}, if the normal force on the block from the floor has constant magnitude $F_{N}=3.00 \mathrm{~N}$, how much work is done on the cab by the force from the cable? (b) Through d_{2}, if the work done on the cab by the (constant) force from the cable is 92.61 kJ , what is the magnitude of F_{N} ?

Figure 7-34 Problem 25.

Module 7-4 Work Done by a Spring Force

-26 In Fig. 7-10, we must apply a force of magnitude 80 N to hold the block stationary at $x=-2.0 \mathrm{~cm}$. From that position, we then slowly move the block so that our force does +4.0 J of work on the spring-block system; the block is then again stationary. What is the block's position? (Hint:There are two answers.)
-27 A spring and block are in the arrangement of Fig. 7-10. When the block is pulled out to $x=+4.0 \mathrm{~cm}$, we must apply a force of magnitude 360 N to hold it there. We pull the block to $x=11 \mathrm{~cm}$ and then release it. How much work does the spring do on the block as the block moves from $x_{i}=+5.0 \mathrm{~cm}$ to (a) $x=+3.0 \mathrm{~cm}$, (b) $x=-3.0 \mathrm{~cm}$, (c) $x=-5.0 \mathrm{~cm}$, and (d) $x=-9.0 \mathrm{~cm}$?
-28 During spring semester at MIT, residents of the parallel buildings of the East Campus dorms battle one another with large catapults that are made with surgical hose mounted on a window frame. A balloon filled with dyed water is placed in a pouch attached to the hose, which is then stretched through the width of the room. Assume that the stretching of the hose obeys Hooke's law with a spring constant of $100 \mathrm{~N} / \mathrm{m}$. If the hose is stretched by 5.00 m and then released, how much work does the force from the hose do on the balloon in the pouch by the time the hose reaches its relaxed length?
$\because 29$ In the arrangement of Fig. 7-10, we gradually pull the block from $x=0$ to $x=+3.0 \mathrm{~cm}$, where it is stationary. Figure $7-35$ gives

the work that our force does on the block. The scale of the figure's vertical axis is set by $W_{s}=1.0 \mathrm{~J}$. We then pull the block out to $x=$ +5.0 cm and release it from rest. How much work does the spring do on the block when the block moves from $x_{i}=+5.0 \mathrm{~cm}$ to (a) $x=+4.0 \mathrm{~cm}$, (b) $x=-2.0 \mathrm{~cm}$, and (c) $x=-5.0 \mathrm{~cm}$?
-•30 In Fig. 7-10a, a block of mass m lies on a horizontal frictionless surface and is attached to one end of a horizontal spring (spring constant k) whose other end is fixed. The block is initially at rest at the position where the spring is

Figure 7-36 Problem 30. unstretched ($x=0$) when a constant horizontal force \vec{F} in the positive direction of the x axis is applied to it. A plot of the resulting kinetic energy of the block versus its position x is shown in Fig. 7-36. The scale of the figure's vertical axis is set by $K_{s}=4.0 \mathrm{~J}$. (a) What is the magnitude of \vec{F} ? (b) What is the value of k ?
-031 SSM www The only force acting on a 2.0 kg body as it moves along a positive x axis has an x component $F_{x}=-6 x \mathrm{~N}$, with x in meters. The velocity at $x=3.0 \mathrm{~m}$ is $8.0 \mathrm{~m} / \mathrm{s}$. (a) What is the velocity of the body at $x=4.0 \mathrm{~m}$? (b) At what positive value of x will the body have a velocity of $5.0 \mathrm{~m} / \mathrm{s}$?
-32 Figure 7-37 gives spring force F_{x} versus position x for the spring-block arrangement of Fig. 710 . The scale is set by $F_{s}=160.0 \mathrm{~N}$. We release the block at $x=12 \mathrm{~cm}$. How much work does the spring do on the block when the block moves from $x_{i}=+8.0 \mathrm{~cm}$ to (a) $x=+5.0$ cm , (b) $x=-5.0 \mathrm{~cm}$, (c) $x=-8.0$

Figure 7-37 Problem 32. cm , and (d) $x=-10.0 \mathrm{~cm}$?
00033 ©0 The block in Fig. 7-10a lies on a horizontal frictionless surface, and the spring constant is $50 \mathrm{~N} / \mathrm{m}$. Initially, the spring is at its relaxed length and the block is stationary at position $x=0$. Then an applied force with a constant magnitude of 3.0 N pulls the block in the positive direction of the x axis, stretching the spring until the block stops. When that stopping point is reached, what are (a) the position of the block, (b) the work that has been done on the block by the applied force, and (c) the work that has been done on the block by the spring force? During the block's displacement, what are (d) the block's position when its kinetic energy is maximum and (e) the value of that maximum kinetic energy?

Module 7-5 Work Done by a General Variable Force

-34 ILW A 10 kg brick moves along an x axis. Its acceleration as a function of its position is shown in Fig. 7-38. The scale of the figure's vertical axis is set by $a_{s}=20.0 \mathrm{~m} / \mathrm{s}^{2}$. What is the net work performed on the brick by the force causing the acceleration as the brick moves from $x=0$ to $x=8.0 \mathrm{~m}$?

Figure 7-38 Problem 34.
-35 SSM WWW The force on a particle is directed along an x axis and given by $F=F_{0}\left(x / x_{0}-1\right)$. Find the work done by the force in moving the particle from $x=0$ to $x=2 x_{0}$ by (a) plotting $F(x)$ and measuring the work from the graph and (b) integrating $F(x)$.
-36 © A 5.0 kg block moves in a straight line on a horizontal frictionless surface under the influence of a force that varies with position as shown in Fig. 7-39. The scale of the figure's vertical axis is set by $F_{s}=10.0 \mathrm{~N}$. How much work is done by the force as the block moves from the origin to $x=8.0 \mathrm{~m}$?

Figure 7-39 Problem 36. - 37 © Figure 7-40 gives the acceleration of a 2.00 kg particle as an applied force \vec{F}_{a} moves it from rest along an x axis from $x=0$ to $x=9.0 \mathrm{~m}$. The scale of the figure's vertical axis is set by $a_{s}=6.0 \mathrm{~m} / \mathrm{s}^{2}$. How much work has the force done on the particle when the particle reaches (a) $x=4.0 \mathrm{~m}$, (b) $x=7.0 \mathrm{~m}$, and (c) $x=9.0 \mathrm{~m}$? What is the particle's speed and direction of travel when it reaches (d) $x=4.0 \mathrm{~m}$, (e) $x=7.0 \mathrm{~m}$, and (f) $x=9.0 \mathrm{~m}$?

Figure 7-40 Problem 37.
-•38 A 1.5 kg block is initially at rest on a horizontal frictionless surface when a horizontal force along an x axis is applied to the block. The force is given by $\vec{F}(x)=\left(2.5-x^{2}\right) \hat{\mathrm{i}} \mathrm{N}$, where x is in meters and the initial position of the block is $x=0$. (a) What is the kinetic energy of the block as it passes through $x=2.0 \mathrm{~m}$? (b) What is the maximum kinetic energy of the block between $x=0$ and $x=2.0 \mathrm{~m}$?
-•39 ©0 A force $\vec{F}=\left(c x-3.00 x^{2}\right) \hat{\mathrm{i}}$ acts on a particle as the particle moves along an x axis, with \vec{F} in newtons, x in meters, and c a constant. At $x=0$, the particle's kinetic energy is 20.0 J ; at $x=3.00 \mathrm{~m}$, it is 11.0 J . Find c.
$\because 40$ A can of sardines is made to move along an x axis from $x=0.25 \mathrm{~m}$ to $x=1.25 \mathrm{~m}$ by a force with a magnitude given by $F=\exp \left(-4 x^{2}\right)$, with x in meters and F in newtons. (Here exp is the exponential function.) How much work is done on the can by the force?
$\bullet 41$ A single force acts on a 3.0 kg particle-like object whose position is given by $x=3.0 t-4.0 t^{2}+1.0 t^{3}$, with x in meters and t in seconds. Find the work done by the force from $t=0$ to $t=4.0 \mathrm{~s}$.
$\bullet \bullet 42$ ©o Figure 7-41 shows a cord attached to a cart that can slide along a frictionless horizontal rail aligned along an x axis. The left

Figure 7-41 Problem 42.
end of the cord is pulled over a pulley, of negligible mass and friction and at cord height $h=1.20 \mathrm{~m}$, so the cart slides from $x_{1}=3.00 \mathrm{~m}$ to $x_{2}=1.00 \mathrm{~m}$. During the move, the tension in the cord is a constant 25.0 N . What is the change in the kinetic energy of the cart during the move?

Module 7-6 Power

-43 SSM A force of 5.0 N acts on a 15 kg body initially at rest. Compute the work done by the force in (a) the first, (b) the second, and (c) the third seconds and (d) the instantaneous power due to the force at the end of the third second.
-44 A skier is pulled by a towrope up a frictionless ski slope that makes an angle of 12° with the horizontal. The rope moves parallel to the slope with a constant speed of $1.0 \mathrm{~m} / \mathrm{s}$. The force of the rope does 900 J of work on the skier as the skier moves a distance of 8.0 m up the incline. (a) If the rope moved with a constant speed of $2.0 \mathrm{~m} / \mathrm{s}$, how much work would the force of the rope do on the skier as the skier moved a distance of 8.0 m up the incline? At what rate is the force of the rope doing work on the skier when the rope moves with a speed of (b) $1.0 \mathrm{~m} / \mathrm{s}$ and (c) $2.0 \mathrm{~m} / \mathrm{s}$?
-45 SSM ILW A 100 kg block is pulled at a constant speed of $5.0 \mathrm{~m} / \mathrm{s}$ across a horizontal floor by an applied force of 122 N directed 37° above the horizontal. What is the rate at which the force does work on the block?
-46 The loaded cab of an elevator has a mass of $3.0 \times 10^{3} \mathrm{~kg}$ and moves 210 m up the shaft in 23 s at constant speed. At what average rate does the force from the cable do work on the cab?
$\bullet 47$ A machine carries a 4.0 kg package from an initial position of $\vec{d}_{i}=(\underset{\rightarrow}{(0.50} \mathrm{m}) \hat{\mathrm{i}}+(0.75 \mathrm{~m}) \hat{\mathrm{j}}+(0.20 \mathrm{~m}) \hat{\mathrm{k}}$ at $t=0$ to a final position of $\vec{d}_{f}=(7.50 \mathrm{~m}) \hat{\mathrm{i}}+(12.0 \mathrm{~m}) \hat{\mathrm{j}}+(7.20 \mathrm{~m}) \hat{\mathrm{k}}$ at $t=12 \mathrm{~s}$. The constant force applied by the machine on the package is $\vec{F}=(2.00 \mathrm{~N}) \hat{\mathrm{i}}+(4.00 \mathrm{~N}) \hat{\mathrm{j}}+(6.00 \mathrm{~N}) \hat{\mathrm{k}}$. For that displacement, find (a) the work done on the package by the machine's force and (b) the average power of the machine's force on the package.
-•48 A 0.30 kg ladle sliding on a horizontal frictionless surface is attached to one end of a horizontal spring ($k=500 \mathrm{~N} / \mathrm{m}$) whose other end is fixed. The ladle has a kinetic energy of 10 J as it passes through its equilibrium position (the point at which the spring force is zero). (a) At what rate is the spring doing work on the ladle as the ladle passes through its equilibrium position? (b) At what rate is the spring doing work on the ladle when the spring is compressed 0.10 m and the ladle is moving away from the equilibrium position?
-•49 SSM A fully loaded, slow-moving freight elevator has a cab with a total mass of 1200 kg , which is required to travel upward 54 m in 3.0 min , starting and ending at rest. The elevator's counterweight has a mass of only 950 kg , and so the elevator motor must help. What average power is required of the force the motor exerts on the cab via the cable?
$\bullet 50$ (a) At a certain instant, a particle-like object is acted on by a force $\vec{F}=(4.0 \mathrm{~N}) \hat{\mathrm{i}}-(2.0 \mathrm{~N}) \hat{\mathrm{j}}+(9.0 \mathrm{~N}) \hat{\mathrm{k}}$ while the object's velocity is $\vec{v}=-(2.0 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{i}}+(4.0 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{k}}$. What is the instantaneous rate at which the force does work on the object? (b) At some other time, the velocity consists of only a y component. If the force is unchanged and the instantaneous power is -12 W , what is the velocity of the object?
-•51 A force $\vec{F}=(3.00 \mathrm{~N}) \hat{\mathrm{i}}+(7.00 \mathrm{~N}) \hat{\mathrm{j}}+(7.00 \mathrm{~N}) \hat{\mathrm{k}}$ acts on a 2.00 kg mobile object that moves from an initial position of
$\vec{d}_{i}=(3.00 \mathrm{~m}) \hat{\mathrm{i}}-(2.00 \mathrm{~m}) \hat{\mathrm{j}}+(5.00 \mathrm{~m}) \hat{\mathrm{k}}$ to a final position of $\vec{d}_{f}=-(5.00 \mathrm{~m}) \hat{\mathrm{i}}+(4.00 \mathrm{~m}) \hat{\mathrm{j}}+(7.00 \mathrm{~m}) \hat{\mathrm{k}}$ in 4.00 s . Find (a) the work done on the object by the force in the 4.00 s interval, (b) the average power due to the force during that interval, and (c) the angle between vectors \vec{d}_{i} and \vec{d}_{f}.
$\bullet \bullet 52$ A funny car accelerates from rest through a measured track distance in time T with the engine operating at a constant power P. If the track crew can increase the engine power by a differential amount $d P$, what is the change in the time required for the run?

Additional Problems

53 Figure 7-42 shows a cold package of hot dogs sliding rightward across a frictionless floor through a distance $d=20.0 \mathrm{~cm}$ while three forces act on the package. Two of them are horizontal and have the magnitudes $F_{1}=5.00 \mathrm{~N}$ and $F_{2}=1.00 \mathrm{~N}$; the third is angled down by $\theta=60.0^{\circ}$ and has the magnitude $F_{3}=4.00 \mathrm{~N}$. (a) For the 20.0 cm displacement, what is the net work done on the package by the three applied forces, the gravitational force on the package, and the normal force on the package? (b) If the package has a mass of 2.0 kg and an initial kinetic energy of 0 , what is its speed at the end of the displacement?

54 © 50 The only force acting on a $F_{x}(\mathrm{~N})$ 2.0 kg body as the body moves along an x axis varies as shown in Fig. 7-43. The scale of the figure's vertical axis is set by $F_{s}=4.0 \mathrm{~N}$. The velocity of the body at $x=0$ is $4.0 \mathrm{~m} / \mathrm{s}$. (a) What is the kinetic energy of the body at $x=3.0 \mathrm{~m}$? (b) At what value of x will

Figure 7-43 Problem 54. the body have a kinetic energy of 8.0 J ? (c) What is the maximum kinetic energy of the body between $x=0$ and $x=5.0 \mathrm{~m}$?
55 SSM A horse pulls a cart with a force of 40 lb at an angle of 30° above the horizontal and moves along at a speed of $6.0 \mathrm{mi} / \mathrm{h}$. (a) How much work does the force do in 10 min ? (b) What is the average power (in horsepower) of the force?
56 An initially stationary 2.0 kg object accelerates horizontally and uniformly to a speed of $10 \mathrm{~m} / \mathrm{s}$ in 3.0 s . (a) In that 3.0 s interval, how much work is done on the object by the force accelerating it? What is the instantaneous power due to that force (b) at the end of the interval and (c) at the end of the first half of the interval?

57 A 230 kg crate hangs from the end of a rope of length $L=12.0 \mathrm{~m}$. You push horizontally on the crate with a varying force \vec{F} to move it distance $d=$ 4.00 m to the side (Fig. 7-44). (a) What is the magnitude of \vec{F} when the crate is in this final position? During the crate's displacement, what are (b) the total

Figure 7-44 Problem 57.
work done on it, (c) the work done by the gravitational force on the crate, and (d) the work done by the pull on the crate from the rope? (e) Knowing that the crate is motionless before and after its displacement, use the answers to (b), (c), and (d) to find the work your force \vec{F} does on the crate. (f) Why is the work of your force not equal to the product of the horizontal displacement and the answer to (a)?
58 To pull a 50 kg crate across a horizontal frictionless floor, a worker applies a force of 210 N , directed 20° above the horizontal. As the crate moves 3.0 m , what work is done on the crate by (a) the worker's force, (b) the gravitational force, and (c) the normal force? (d) What is the total work?

59 A force \vec{F}_{a} is applied to a bead as the bead is moved along a straight wire through displacement +5.0 cm . The magnitude of \vec{F}_{a} is set at a certain value, but the angle ϕ between \vec{F}_{a} and the bead's displacement can be chosen. Figure 7-45 gives the work W done by \vec{F}_{a} on the bead for a range of ϕ values; $W_{0}=25 \mathrm{~J}$. How much work is done by \vec{F}_{a} if ϕ is (a)

Figure 7-45
Problem 59. 64° and (b) 147° ?

60 A frightened child is restrained by her mother as the child slides down a frictionless playground slide. If the force on the child from the mother is 100 N up the slide, the child's kinetic energy increases by 30 J as she moves down the slide a distance of 1.8 m . (a) How much work is done on the child by the gravitational force during the 1.8 m descent? (b) If the child is not restrained by her mother, how much will the child's kinetic energy increase as she comes down the slide that same distance of 1.8 m ?
61 How much work is done by a force $\vec{F}=(2 x \mathrm{~N}) \hat{\mathrm{i}}+(3 \mathrm{~N}) \hat{\mathrm{j}}$, with x in meters, that moves a particle from a position $\vec{r}_{i}=$ $(2 \mathrm{~m}) \hat{\mathrm{i}}+(3 \mathrm{~m}) \hat{\mathrm{j}}$ to a position $\vec{r}_{f}=-(4 \mathrm{~m}) \hat{\mathrm{i}}-(3 \mathrm{~m}) \hat{\mathrm{j}}$?
62 A 250 g block is dropped onto a relaxed vertical spring that has a spring constant of $k=$ $2.5 \mathrm{~N} / \mathrm{cm}$ (Fig. 7-46). The block becomes attached to the spring and compresses the spring 12 cm before momentarily stopping. While the spring is being compressed, what work is done on the block by (a) the gravitational force on it and (b) the spring force? (c) What is the speed of the block just before it hits the spring? (Assume that friction is negligible.) (d) If the speed at impact is doubled, what is the maximum compression of the spring?

Figure 7-46 Problem 62.

63 SSM To push a 25.0 kg crate up a frictionless incline, angled at 25.0° to the horizontal, a worker exerts a force of 209 N parallel to the incline. As the crate slides 1.50 m , how much work is done on the crate by (a) the worker's applied force, (b) the gravitational force on the crate, and (c) the normal force exerted by the incline on the crate? (d) What is the total work done on the crate?
64 Boxes are transported from one location to another in a warehouse by means of a conveyor belt that moves with a constant speed of $0.50 \mathrm{~m} / \mathrm{s}$. At a certain location the conveyor belt moves for 2.0 m up an incline that makes an angle of 10° with the horizontal, then for 2.0 m horizontally, and finally for 2.0 m down an incline that makes an angle of 10° with the horizontal. Assume that a 2.0 kg box rides on the belt without slipping. At what rate is the force of the conveyor belt doing work on the box as the box moves (a) up the 10° incline, (b) horizontally, and (c) down the 10° incline?

65 In Fig. 7-47, a cord runs around two massless, frictionless pulleys. A canister with mass $m=20 \mathrm{~kg}$ hangs from one pulley, and you exert a force \vec{F} on the free end of the cord. (a) What must be the magnitude of \vec{F} if you are to lift the canister at a constant speed? (b) To lift the canister by 2.0 cm , how far must you pull the free end of the cord? During that lift, what is the work done on the canister by (c) your force (via the cord) and (d) the gravitational force? (Hint: When a cord loops around a pulley as shown, it pulls on the pulley with a net force that is twice the tension in the cord.)
66 If a car of mass 1200 kg is moving along a highway at $120 \mathrm{~km} / \mathrm{h}$, what is the car's kinetic energy as determined by someone standing alongside the highway?

67 SSM A spring with a pointer attached is hanging next to a scale marked in millimeters. Three different packages are hung from the spring, in turn, as shown in Fig. 7-48. (a) Which mark on the scale will the pointer indicate when no package is hung from the spring? (b) What is the weight W of the third package?

Figure 7-48 Problem 67.

68 An iceboat is at rest on a frictionless frozen lake when a sudden wind exerts a constant force of 200 N , toward the east, on the boat. Due to the angle of the sail, the wind causes the boat to slide in a straight line for a distance of 8.0 m in a direction 20° north of east. What is the kinetic energy of the iceboat at the end of that 8.0 m ?

69 If a ski lift raises 100 passengers averaging 660 N in weight to a height of 150 m in 60.0 s , at constant speed, what average power is required of the force making the lift?
70 A force $\vec{F}=(4.0 \mathrm{~N}) \hat{\mathrm{i}}+c \hat{\mathrm{j}}$ acts on a particle as the particle goes through displacement $\vec{d}=(3.0 \mathrm{~m}) \hat{\mathrm{i}}-(2.0 \mathrm{~m}) \hat{\mathrm{j}}$. (Other forces also act on the particle.) What is c if the work done on the particle by force \vec{F} is (a) 0, (b) 17 J , and (c) -18 J ?

71 A constant force of magnitude 10 N makes an angle of 150° (measured counterclockwise) with the positive x direction as it acts on a 2.0 kg object moving in an $x y$ plane. How much work is done on the object by the force as the object moves from the origin to the point having position vector $(2.0 \mathrm{~m}) \hat{\mathrm{i}}-(4.0 \mathrm{~m}) \hat{\mathrm{j}}$?

72 In Fig. 7-49a, a 2.0 N force is applied to a 4.0 kg block at a downward angle θ as the block moves rightward through 1.0 m across a frictionless floor. Find an expression for the speed v_{f} of the block at the end of that distance if the block's initial velocity is (a) 0 and (b) $1.0 \mathrm{~m} / \mathrm{s}$ to the right. (c) The situation in Fig. $7-49$ b is similar in that the block is initially moving at $1.0 \mathrm{~m} / \mathrm{s}$ to the right, but now the 2.0 N force is directed downward to the left. Find an expression for the speed v_{f} of the block at the end of the 1.0 m distance. (d) Graph all three expressions for v_{f} versus downward angle θ for $\theta=0^{\circ}$ to $\theta=90^{\circ}$. Interpret the graphs.

Figure 7-49 Problem 72.
73 A force \vec{F} in the positive direction of an x axis acts on an object moving along the axis. If the magnitude of the force is $F=10 e^{-x / 2.0}$ N, with x in meters, find the work done by \vec{F} as the object moves from $x=0$ to $x=2.0 \mathrm{~m}$ by (a) plotting $F(x)$ and estimating the area under the curve and (b) integrating to find the work analytically.

74 A particle moves along a straight path through displacement $\vec{d}=(8 \mathrm{~m}) \hat{\mathrm{i}}+c \hat{\mathrm{j}}$ while force $\vec{F}=(2 \mathrm{~N}) \hat{\mathrm{i}}-(4 \mathrm{~N}) \hat{\mathrm{j}}$ acts on it. (Other forces also act on the particle.) What is the value of c if the work done by \vec{F} on the particle is (a) zero, (b) positive, and (c) negative?
75 SSIM What is the power of the force required to move a 4500 kg elevator cab with a load of 1800 kg upward at constant speed $3.80 \mathrm{~m} / \mathrm{s}$?
76 A 45 kg block of ice slides down a frictionless incline 1.5 m long and 0.91 m high. A worker pushes up against the ice, parallel to the incline, so that the block slides down at constant speed. (a) Find the magnitude of the worker's force. How much work is done on the block by (b) the worker's force, (c) the gravitational force on the block, (d) the normal force on the block from the surface of the incline, and (e) the net force on the block?
77 As a particle moves along an x axis, a force in the positive direction of the axis acts on it. Figure $7-50$ shows the magnitude F of the force versus position x of the particle. The curve is given by $F=a / x^{2}$, with $a=9.0 \mathrm{~N} \cdot \mathrm{~m}^{2}$. Find the work done on the particle by the force as the particle moves from $x=1.0 \mathrm{~m}$ to $x=3.0 \mathrm{~m}$ by (a) estimating the work from the graph and (b) integrating the force function.

Figure 7-50 Problem 77.
78 A CD case slides along a floor in the positive direction of an x axis while an applied force \vec{F}_{a} acts on the case. The force is di-
rected along the x axis and has the x component $F_{a x}=9 x-3 x^{2}$, with x in meters and $F_{a x}$ in newtons. The case starts at rest at the position $x=0$, and it moves until it is again at rest. (a) Plot the work \vec{F}_{a} does on the case as a function of x. (b) At what position is the work maximum, and (c) what is that maximum value? (d) At what position has the work decreased to zero? (e) At what position is the case again at rest?
79 SSM A 2.0 kg lunchbox is sent sliding over a frictionless surface, in the positive direction of an x axis along the surface. Beginning at time $t=0$, a steady wind pushes on the lunchbox in the negative direction of the x axis. Figure 7-51 shows the position x of the lunchbox as a function of time t as the wind pushes on the lunchbox. From the graph, estimate the kinetic energy of the lunchbox at (a) $t=1.0 \mathrm{~s}$ and (b) $t=5.0 \mathrm{~s}$. (c) How much work does the force from the wind do on the lunchbox from $t=1.0 \mathrm{~s}$ to $t=5.0 \mathrm{~s}$?

Figure 7-51 Problem 79.
80 Numerical integration. A breadbox is made to move along an x axis from $x=0.15 \mathrm{~m}$ to $x=1.20 \mathrm{~m}$ by a force with a magnitude given by $F=\exp \left(-2 x^{2}\right)$, with x in meters and F in newtons. (Here exp is the exponential function.) How much work is done on the breadbox by the force?
81 In the block-spring arrangement of Fig. 7-10, the block's mass is 4.00 kg and the spring constant is $500 \mathrm{~N} / \mathrm{m}$. The block is released from position $x_{i}=0.300 \mathrm{~m}$. What are (a) the block's speed at $x=0$, (b) the work done by the spring when the block reaches $x=0$, (c) the instantaneous power due to the spring at the release point x_{i}, (d) the instantaneous power at $x=0$, and (e) the block's position when the power is maximum?
82 A 4.00 kg block is pulled up a frictionless inclined plane by a 50.0 N force that is parallel to the plane, starting from rest. The normal force on the block from the plane has magnitude 13.41 N . What is the block's speed when its displacement up the ramp is 3.00 m ?
83 A spring with a spring constant of $18.0 \mathrm{~N} / \mathrm{cm}$ has a cage attached to its free end. (a) How much work does the spring force do on the cage when the spring is stretched from its relaxed length by 7.60 mm ? (b) How much additional work is done by the spring force when the spring is stretched by an additional 7.60 mm ?
84 A force $\vec{F}=(2.00 \hat{\mathrm{i}}+9.00 \hat{\mathrm{j}}+5.30 \hat{\mathrm{k}}) \mathrm{N}$ acts on a 2.90 kg object that moves in time interval 2.10 s from an initial position $\vec{r}_{1}=(2.70 \hat{\mathrm{i}}-2.90 \hat{\mathrm{j}}+5.50 \hat{\mathrm{k}}) \mathrm{m}$ to a final position $\vec{r}_{2}=$ $(-4.10 \hat{i}+3.30 \hat{j}+5.40 \hat{k}) \mathrm{m}$. Find (a) the work done on the object by the force in that time interval, (b) the average power due to the force during that time interval, and (c) the angle between vectors \vec{r}_{1} and \vec{r}_{2}.
85 At $t=0$, force $\vec{F}=(-5.00 \hat{\mathrm{i}}+5.00 \hat{\mathrm{j}}+4.00 \hat{\mathrm{k}}) \mathrm{N}$ begins to act on a 2.00 kg particle with an initial speed of $4.00 \mathrm{~m} / \mathrm{s}$. What is the particle's speed when its displacement from the initial point is $\vec{d}=(2.00 \hat{\mathrm{i}}+2.00 \hat{\mathrm{j}}+7.00 \hat{\mathrm{k}}) \mathrm{m}$?

In the final state, with the spring now in its relaxed state and the glider again stationary but no longer elevated, the final mechanical energy of the system is

$$
\begin{align*}
E_{\mathrm{mec}, 2} & =K_{2}+U_{e 2}+U_{g 2} \\
& =0+0+0 . \tag{8-44}
\end{align*}
$$

Let's next go after the change ΔE_{th} of the thermal energy of the glider and ground-level track. From Eq. 8-31, we can substitute for $\Delta E_{\text {th }}$ with $f_{k} L$ (the product of the frictional force magnitude and the distance of rubbing). From Eq. 6-2, we know that $f_{k}=\mu_{k} F_{N}$, where F_{N} is the normal force. Because the glider moves horizontally through the region with friction, the magnitude of F_{N} is equal to $m g$ (the upward force matches the downward force). So, the friction's theft from the mechanical energy amounts to

$$
\begin{equation*}
\Delta E_{\mathrm{th}}=\mu_{k} m g L \tag{8-45}
\end{equation*}
$$

(By the way, without further experiments, we cannot say how much of this thermal energy ends up in the glider and how much in the track. We simply know the total amount.)

Substituting Eqs. 8-43 through 8-45 into Eq. 8-42, we find

$$
\begin{equation*}
0=\frac{1}{2} k d^{2}+m g h-\mu_{k} m g L \tag{8-46}
\end{equation*}
$$

and

$$
\begin{aligned}
L & =\frac{k d^{2}}{2 \mu_{k} m g}+\frac{h}{\mu_{k}} \\
& =\frac{\left(3.20 \times 10^{3} \mathrm{~N} / \mathrm{m}\right)(5.00 \mathrm{~m})^{2}}{2(0.800)(200 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)}+\frac{35 \mathrm{~m}}{0.800} \\
& =69.3 \mathrm{~m}
\end{aligned}
$$

Finally, note how algebraically simple our solution is. By carefully defining a system and realizing that we have an isolated system, we get to use the law of the conservation of energy. That means we can relate the initial and final states of the system with no consideration of the intermediate states. In particular, we did not need to consider the glider as it slides over the uneven track. If we had, instead, applied Newton's second law to the motion, we would have had to know the details of the track and would have faced a far more difficult calculation.

Seview \& Summary

Conservative Forces A force is a conservative force if the net work it does on a particle moving around any closed path, from an initial point and then back to that point, is zero. Equivalently, a force is conservative if the net work it does on a particle moving between two points does not depend on the path taken by the particle. The gravitational force and the spring force are conservative forces; the kinetic frictional force is a nonconservative force.

Potential Energy A potential energy is energy that is associated with the configuration of a system in which a conservative force acts. When the conservative force does work W on a particle within the system, the change ΔU in the potential energy of the system is

$$
\begin{equation*}
\Delta U=-W \tag{8-1}
\end{equation*}
$$

If the particle moves from point x_{i} to point x_{f}, the change in the potential energy of the system is

$$
\begin{equation*}
\Delta U=-\int_{x_{i}}^{x_{f}} F(x) d x \tag{8-6}
\end{equation*}
$$

Gravitational Potential Energy The potential energy associated with a system consisting of Earth and a nearby particle is gravitational potential energy. If the particle moves from height y_{i} to height y_{f}, the change in the gravitational potential energy of the particle-Earth system is

$$
\begin{equation*}
\Delta U=m g\left(y_{f}-y_{i}\right)=m g \Delta y . \tag{8-7}
\end{equation*}
$$

If the reference point of the particle is set as $y_{i}=0$ and the corresponding gravitational potential energy of the system is set as $U_{i}=0$, then the gravitational potential energy U when the parti-
cle is at any height y is

$$
\begin{equation*}
U(y)=m g y . \tag{8-9}
\end{equation*}
$$

Elastic Potential Energy Elastic potential energy is the energy associated with the state of compression or extension of an elastic object. For a spring that exerts a spring force $F=-k x$ when its free end has displacement x, the elastic potential energy is

$$
\begin{equation*}
U(x)=\frac{1}{2} k x^{2} . \tag{8-11}
\end{equation*}
$$

The reference configuration has the spring at its relaxed length, at which $x=0$ and $U=0$.

Mechanical Energy The mechanical energy $E_{\text {mec }}$ of a system is the sum of its kinetic energy K and potential energy U :

$$
\begin{equation*}
E_{\mathrm{mec}}=K+U . \tag{8-12}
\end{equation*}
$$

An isolated system is one in which no external force causes energy changes. If only conservative forces do work within an isolated system, then the mechanical energy $E_{\text {mec }}$ of the system cannot change. This principle of conservation of mechanical energy is written as

$$
\begin{equation*}
K_{2}+U_{2}=K_{1}+U_{1}, \tag{8-17}
\end{equation*}
$$

in which the subscripts refer to different instants during an energy transfer process. This conservation principle can also be written as

$$
\begin{equation*}
\Delta E_{\mathrm{mec}}=\Delta K+\Delta U=0 . \tag{8-18}
\end{equation*}
$$

Potential Energy Curves If we know the potential energy function $U(x)$ for a system in which a one-dimensional force $F(x)$
acts on a particle, we can find the force as

$$
\begin{equation*}
F(x)=-\frac{d U(x)}{d x} \tag{8-22}
\end{equation*}
$$

If $U(x)$ is given on a graph, then at any value of x, the force $F(x)$ is the negative of the slope of the curve there and the kinetic energy of the particle is given by

$$
\begin{equation*}
K(x)=E_{\mathrm{mec}}-U(x), \tag{8-24}
\end{equation*}
$$

where $E_{\text {mec }}$ is the mechanical energy of the system. A turning point is a point x at which the particle reverses its motion (there, $K=0$). The particle is in equilibrium at points where the slope of the $U(x)$ curve is zero (there, $F(x)=0$).

Work Done on a System by an External Force Work W is energy transferred to or from a system by means of an external force acting on the system. When more than one force acts on a system, their net work is the transferred energy. When friction is not involved, the work done on the system and the change $\Delta E_{\text {mec }}$ in the mechanical energy of the system are equal:

$$
\begin{equation*}
W=\Delta E_{\mathrm{mec}}=\Delta K+\Delta U \tag{8-26,8-25}
\end{equation*}
$$

When a kinetic frictional force acts within the system, then the thermal energy E_{th} of the system changes. (This energy is associated with the random motion of atoms and molecules in the system.) The work done on the system is then

$$
\begin{equation*}
W=\Delta E_{\mathrm{mec}}+\Delta E_{\mathrm{th}} . \tag{8-33}
\end{equation*}
$$

Questions

1 In Fig. 8-18, a horizontally moving block can take three frictionless routes, differing only in elevation, to reach the dashed finish line. Rank the routes according to (a) the speed of the block at the finish line and (b) the travel time of the block to the finish line, greatest first.

Figure 8-18 Question 1.
2 Figure 8-19 gives the potential energy function of a particle.
(a) Rank regions $A B, B C, C D$, and $D E$ according to the magni-

Figure 8-19 Question 2.

The change ΔE_{th} is related to the magnitude f_{k} of the frictional force and the magnitude d of the displacement caused by the external force by

$$
\begin{equation*}
\Delta E_{\mathrm{th}}=f_{k} d \tag{8-31}
\end{equation*}
$$

Conservation of Energy The total energy E of a system (the sum of its mechanical energy and its internal energies, including thermal energy) can change only by amounts of energy that are transferred to or from the system. This experimental fact is known as the law of conservation of energy. If work W is done on the system, then

$$
\begin{equation*}
W=\Delta E=\Delta E_{\mathrm{mec}}+\Delta E_{\mathrm{th}}+\Delta E_{\mathrm{int}} . \tag{8-35}
\end{equation*}
$$

If the system is isolated $(W=0)$, this gives

$$
\begin{equation*}
\Delta E_{\mathrm{mec}}+\Delta E_{\mathrm{th}}+\Delta E_{\mathrm{int}}=0 \tag{8-36}
\end{equation*}
$$

and $\quad E_{\text {mec }, 2}=E_{\text {mec }, 1}-\Delta E_{\text {th }}-\Delta E_{\text {int }}$,
where the subscripts 1 and 2 refer to two different instants.
Power The power due to a force is the rate at which that force transfers energy. If an amount of energy ΔE is transferred by a force in an amount of time Δt, the average power of the force is

$$
\begin{equation*}
P_{\mathrm{avg}}=\frac{\Delta E}{\Delta t} . \tag{8-40}
\end{equation*}
$$

The instantaneous power due to a force is

$$
\begin{equation*}
P=\frac{d E}{d t} . \tag{8-41}
\end{equation*}
$$

tude of the force on the particle, greatest first. What value must the mechanical energy $E_{\text {mec }}$ of the particle not exceed if the particle is to be (b) trapped in the potential well at the left, (c) trapped in the potential well at the right, and (d) able to move between the two potential wells but not to the right of point H ? For the situation of (d), in which of regions $B C, D E$, and $F G$ will the particle have (e) the greatest kinetic energy and (f) the least speed?
3 Figure 8-20 shows one direct path and four indirect paths from point i to point f. Along the direct path and three of the indirect paths, only a conservative force F_{c} acts on a certain object. Along the fourth indirect path, both F_{c} and a nonconservative force $F_{\text {nc }}$ act on the object.

Figure 8-20 Question 3. The change $\Delta E_{\text {mec }}$ in the object's mechanical energy (in joules) in going from i to f is indicated along each straight-line segment of the indirect paths. What is $\Delta E_{\text {mec }}$ (a) from i to f along the direct path and (b) due to $F_{\text {nc }}$ along the one path where it acts?
4 In Fig. 8-21, a small, initially stationary block is released on a frictionless ramp at a height of 3.0 m . Hill heights along the ramp are as shown in the figure. The hills have identical circular tops, and the block does not fly off any hill. (a) Which hill is the first the block cannot cross? (b) What does the block do after failing to cross that hill? Of the hills that the block can cross, on which hill-
top is (c) the centripetal acceleration of the block greatest and (d) the normal force on the block least?

Figure 8-21 Question 4.
5 In Fig. 8-22, a block slides from A to C along a frictionless ramp, and then it passes through horizontal region $C D$, where a frictional force acts on it. Is the block's kinetic energy increasing, decreasing, or constant in (a) region $A B$, (b) region $B C$, and (c) region $C D$? (d) Is the block's mechanical energy increasing, decreasing, or constant in those regions?

Figure 8-22 Question 5.

6 In Fig. 8-23a, you pull upward on a rope that is attached to a cylinder on a vertical rod. Because the cylinder fits tightly on the rod, the cylinder slides along the rod with considerable friction. Your force does work $W=+100 \mathrm{~J}$ on the cylinder-rod-Earth system (Fig. 8-23b). An "energy statement" for the system is shown in Fig. 8-23c: the kinetic energy K increases by 50 J , and the gravitational potential energy U_{g} increases by 20 J . The only other change in energy within the system is for the thermal energy E_{th}. What is the change ΔE_{th} ?

Figure 8-23 Question 6.

7 The arrangement shown in Fig. 8-24 is similar to that in Question 6. Here you pull downward on the rope that is attached to the cylinder, which fits tightly on the rod. Also, as the cylinder
descends, it pulls on a block via a second rope, and the block slides over a lab table. Again consider the cylinder-rod-Earth system, similar to that shown in Fig. 8-23b. Your work on the system is 200 J . The system does work of 60 J on the block. Within the system, the kinetic energy increases by 130 J and the gravitational potential energy decreases by 20 J. (a) Draw an "energy statement" for the system, as in Fig. 8-23c. (b) What is the change in

Figure 8-24 Question 7. the thermal energy within the system?
8 In Fig. 8-25, a block slides along a track that descends through distance h. The track is frictionless except for the lower section. There the block slides to a stop in a certain distance D because of friction. (a) If we decrease h, will the block now slide to a stop in a distance that is greater than, less than, or equal to D ? (b) If, instead, we increase the mass of the block, will the stopping distance now be greater than, less than, or equal to D ?

Figure 8-25 Question 8.

9 Figure 8-26 shows three situations involving a plane that is not frictionless and a block sliding along the plane. The block begins with the same speed in all three situations and slides until the kinetic frictional force has stopped it. Rank the situations according to the increase in thermal energy due to the sliding, greatest first.

Figure 8-26 Question 9.

10 Figure 8-27 shows three plums that are launched from the same level with the same speed. One moves straight upward, one is launched at a small angle to the vertical, and one is launched along a frictionless incline. Rank the plums according to their speed when they reach the level of the dashed line, greatest first.
11 When a particle moves from f to i and from j to i along the paths shown in Fig. 8-28, and in the indicated directions, a conservative force \vec{F} does the indicated amounts of work on it. How much work is done on the particle by \vec{F} when the particle moves directly from f to j ?

Figure 8-27 Question 10.

Figure 8-28 Question 11.

Qroblems

Module 8-1 Potential Energy

$\cdot 1$ SSM What is the spring constant of a spring that stores 25 J of elastic potential energy when compressed by 7.5 cm ?
-2 In Fig. 8-29, a single frictionless roller-coaster car of mass $m=825 \mathrm{~kg}$ tops the first hill with speed $v_{0}=17.0 \mathrm{~m} / \mathrm{s}$ at height $h=42.0 \mathrm{~m}$. How much work does the gravitational force do on the car from that point to (a) point A, (b) point B, and (c) point C ? If the gravitational potential energy of the car-Earth system is taken to be zero at C, what is its value when the car is at (d) B and (e) A ? (f) If mass m were doubled, would the change in the gravitational potential energy of the system between points A and B increase, decrease, or remain the same?

Figure 8-29 Problems 2 and 9.
-3 You drop a 2.00 kg book to a friend who stands on the ground at distance $D=10.0 \mathrm{~m}$ below. If your friend's outstretched hands are at distance $d=1.50 \mathrm{~m}$ above the ground (Fig. 8-30), (a) how much work W_{g} does the gravitational force do on the book as it drops to her hands? (b) What is the change ΔU in the gravitational potential energy of the book-Earth system during the drop? If the gravitational potential energy U of that system is taken to be zero at ground level, what is U (c) when the book is released and (d) when it reaches her hands? Now take U to be 100 J at ground level and again find (e) W_{g}, (f) $\Delta U,(\mathrm{~g}) U$ at the release point, and (h) U at her hands.
-4 Figure 8-31 shows a ball with mass $m=0.341 \mathrm{~kg}$ attached to the end of a thin rod with length $L=0.452 \mathrm{~m}$ and negligible mass. The other end of the rod is pivoted so that the ball can move in a vertical circle. The rod is held horizontally as shown and then given enough of a downward push to cause the ball to swing down and around and just reach the vertically up position, with zero speed there. How much work is done on the ball by the gravitational force from the initial point

Figure 8-30
Problems 3 and 10.
to (a) the lowest point, (b) the highest point, and (c) the point on the right level with the initial point? If the gravitational potential energy of the ball-Earth system is taken to be zero at the initial point, what is it when the ball reaches (d) the lowest point, (e) the highest point, and (f) the point on the right level with the initial point? (g) Suppose the rod were pushed harder so that the ball passed through the highest point with a nonzero speed. Would ΔU_{g} from the lowest point to the highest point then be greater than, less than, or the same as it was when the ball stopped at the highest point?
${ }^{\circ} 5$ ssm In Fig. 8-32, a 2.00 g ice flake is released from the edge of a hemispherical bowl whose radius r is 22.0 cm . The flake-bowl contact is frictionless. (a) How much work is done on the flake by the gravitational force during the flake's descent to the bottom of the bowl? (b) What is the change in the potential energy of the flake-Earth system during that descent? (c) If that potential energy is taken to be zero

Figure 8-32 Problems 5 and 11 . at the bottom of the bowl, what is its value when the flake is released? (d) If, instead, the potential energy is taken to be zero at the release point, what is its value when the flake reaches the bottom of the bowl? (e) If the mass of the flake were doubled, would the magnitudes of the answers to (a) through (d) increase, decrease, or remain the same?
-06 In Fig. 8-33, a small block of mass $m=0.032 \mathrm{~kg}$ can slide along the frictionless loop-the-loop, with loop radius $R=12 \mathrm{~cm}$. The block is released from rest at point P, at height $h=5.0 \mathrm{R}$ above the bottom of the loop. How much work does the gravitational force do on the block as the block travels from point P to (a) point Q and (b) the top of the loop? If the gravitational potential energy of the block-Earth system is taken to be zero at the bot-

Figure 8-33 Problems 6 and 17. tom of the loop, what is that potential energy when the block is (c) at point $P,(\mathrm{~d})$ at point Q, and (e) at the top of the loop? (f) If, instead of merely being released, the block is given some initial speed downward along the track, do the answers to (a) through (e) increase, decrease, or remain the same?
$\bullet \bullet 7$ Figure $8-34$ shows a thin rod, of length $L=2.00 \mathrm{~m}$ and negligible mass, that can pivot about one end to rotate in a vertical circle. A ball of mass $m=5.00 \mathrm{~kg}$ is attached to the other end. The rod is pulled aside to angle $\theta_{0}=30.0^{\circ}$ and released with initial velocity $\vec{v}_{0}=0$. As the ball descends to its lowest point,
(a) how much work does the gravitational force do on it and
(b) what is the change in the gravitational potential energy of
the ball-Earth system? (c) If the gravitational potential energy is taken to be zero at the lowest point, what is its value just as the ball is released? (d) Do the magnitudes of the answers to (a) through (c) increase, decrease, or remain the same if angle θ_{0} is increased?

थ०8 A 1.50 kg snowball is fired from a cliff 12.5 m high. The snowball's initial velocity is $14.0 \mathrm{~m} / \mathrm{s}$, directed 41.0° above the horizontal. (a) How much work is done on the snowball by the gravitational force during its flight to the flat ground below the cliff? (b) What is the change in the gravitational potential energy of the snowball-Earth system during the flight? (c) If that gravitational potential

Figure 8-34
Problems 7,18, and 21. energy is taken to be zero at the height of the cliff, what is its value when the snowball reaches the ground?

Module 8-2 Conservation of Mechanical Energy

-9 ©0 In Problem 2, what is the speed of the car at (a) point A, (b) point B, and (c) point C ? (d) How high will the car go on the last hill, which is too high for it to cross? (e) If we substitute a second car with twice the mass, what then are the answers to (a) through (d)?
-10 (a) In Problem 3, what is the speed of the book when it reaches the hands? (b) If we substituted a second book with twice the mass, what would its speed be? (c) If, instead, the book were thrown down, would the answer to (a) increase, decrease, or remain the same?
-11 SSM www (a) In Problem 5, what is the speed of the flake when it reaches the bottom of the bowl? (b) If we substituted a second flake with twice the mass, what would its speed be? (c) If, instead, we gave the flake an initial downward speed along the bowl, would the answer to (a) increase, decrease, or remain the same?
$\cdot 12$ (a) In Problem 8, using energy techniques rather than the techniques of Chapter 4, find the speed of the snowball as it reaches the ground below the cliff. What is that speed (b) if the launch angle is changed to 41.0° below the horizontal and (c) if the mass is changed to 2.50 kg ?
-13 SSM A 5.0 g marble is fired vertically upward using a spring gun. The spring must be compressed 8.0 cm if the marble is to just reach a target 20 m above the marble's position on the compressed spring. (a) What is the change ΔU_{g} in the gravitational potential energy of the marble-Earth system during the 20 m ascent? (b) What is the change ΔU_{s} in the elastic potential energy of the spring during its launch of the marble? (c) What is the spring constant of the spring?
-14 (a) In Problem 4, what initial speed must be given the ball so that it reaches the vertically upward position with zero speed? What then is its speed at (b) the lowest point and (c) the point on the right at which the ball is level with the initial point? (d) If the ball's mass were doubled, would the answers to (a) through (c) increase, decrease, or remain the same?
-15 SSM In Fig. 8-35, a runaway truck with failed brakes is moving downgrade at $130 \mathrm{~km} / \mathrm{h}$ just before the driver steers the truck up a frictionless emergency escape ramp with an inclination of $\theta=15^{\circ}$. The truck's mass is $1.2 \times 10^{4} \mathrm{~kg}$. (a) What minimum length
L must the ramp have if the truck is to stop (momentarily) along it? (Assume the truck is a particle, and justify that assumption.) Does the minimum length L increase, decrease, or remain the same if (b) the truck's mass is decreased and (c) its speed is decreased?

Figure 8-35 Problem 15.
-•16 A 700 g block is released from rest at height h_{0} above a vertical spring with spring constant $k=400 \mathrm{~N} / \mathrm{m}$ and negligible mass. The block sticks to the spring and momentarily stops after compressing the spring 19.0 cm . How much work is done (a) by the block on the spring and (b) by the spring on the block? (c) What is the value of h_{0} ? (d) If the block were released from height $2.00 h_{0}$ above the spring, what would be the maximum compression of the spring?
$\because 17$ In Problem 6, what are the magnitudes of (a) the horizontal component and (b) the vertical component of the net force acting on the block at point Q ? (c) At what height h should the block be released from rest so that it is on the verge of losing contact with the track at the top of the loop? (On the verge of losing contact means that the normal force on the block from the track has just then become zero.) (d) Graph the magnitude of the normal force on the block at the top of the loop versus initial height h, for the range $h=0$ to $h=6 R$.
$\because 18$ (a) In Problem 7, what is the speed of the ball at the lowest point? (b) Does the speed increase, decrease, or remain the same if the mass is increased?
-19 19 Figure $8-36$ shows an 8.00 kg stone at rest on a spring. The spring is compressed 10.0 cm by the stone. (a) What is the spring constant? (b) The stone is pushed down an additional 30.0 cm and released. What is the elastic potential energy of the compressed spring just before that release? (c) What is the change in the gravitational potential en-

Figure 8-36 Problem 19. ergy of the stone-Earth system when the stone moves from the release point to its maximum height? (d) What is that maximum height, measured from the release point?
$\bullet 20$ (0 A pendulum consists of a 2.0 kg stone swinging on a 4.0 m string of negligible mass. The stone has a speed of $8.0 \mathrm{~m} / \mathrm{s}$ when it passes its lowest point. (a) What is the speed when the string is at 60° to the vertical? (b) What is the greatest angle with the vertical that the string will reach during the stone's motion? (c) If the potential energy of the pendulum-Earth system is taken to be zero at the stone's lowest point, what is the total mechanical energy of the system?
-21 Figure 8 - 34 shows a pendulum of length $L=1.25 \mathrm{~m}$. Its bob (which effectively has all the mass) has speed v_{0} when the cord makes an angle $\theta_{0}=40.0^{\circ}$ with the vertical. (a) What is the speed of the bob when it is in its lowest position if $v_{0}=8.00 \mathrm{~m} / \mathrm{s}$? What is the least value that v_{0} can have if the pendulum is to swing down and then up (b) to a horizontal position, and (c) to a vertical position with the cord remaining straight? (d) Do the answers to (b) and (c) increase, decrease, or remain the same if θ_{0} is increased by a few degrees?
-•22 A 60 kg skier starts from rest at height $H=20 \mathrm{~m}$ above the end of a ski-jump ramp (Fig. 8-37) and leaves the ramp at angle $\theta=28^{\circ}$. Neglect the effects of air resistance and assume the ramp is frictionless. (a) What is the maximum height h of his jump above the end of the ramp? (b) If he increased his weight by putting on a backpack, would h then be greater, less, or the same?

Figure 8-37 Problem 22.
-23 ILW The string in Fig. 8-38 is $L=120 \mathrm{~cm}$ long, has a ball attached to one end, and is fixed at its other end. The distance d from the fixed end to a fixed peg at point P is 75.0 cm . When the initially stationary ball is released with the string horizontal as shown, it will swing along the dashed arc. What is its speed when it reaches (a) its lowest point and (b) its highest point after the string catches on the peg?
०2 24 A block of mass $m=2.0 \mathrm{~kg}$ is dropped from height $h=40 \mathrm{~cm}$ onto a spring of spring constant $k=1960 \mathrm{~N} / \mathrm{m}$ (Fig. 8-39). Find the maximum distance the spring is compressed.
००25 At $t=0$ a 1.0 kg ball is thrown from a tall tower with $\vec{v}=(18 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{i}}+(24 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{j}}$. What is ΔU of the ball-Earth system between $t=0$ and $t=6.0 \mathrm{~s}$ (still free fall)?
-•26 A conservative force $\vec{F}=(6.0 x-12) \hat{\mathrm{i}} \mathrm{N}$, where x is in meters, acts on a particle moving along an x axis. The potential energy U associated

Figure 8-39
Problem 24. with this force is assigned a value of 27 J at $x=0$. (a) Write an expression for U as a function of x, with U in joules and x in meters. (b) What is the maximum positive potential energy? At what (c) negative value and (d) positive value of x is the potential energy equal to zero?
-•27 Tarzan, who weighs 688 N , swings from a cliff at the end of a vine 18 m long (Fig. 8-40). From the top of the cliff to the bottom of the swing, he descends by 3.2 m . The vine will break if the force on it exceeds 950 N . (a) Does the vine break? (b) If no, what is the greatest force on it during the swing? If yes, at what angle with the vertical does it break?

Figure 8-40 Problem 27.

Figure 8-38 Problems 23 and 70.
${ }^{\circ} 28$ Figure $8-41 a$ applies to the spring in a cork gun (Fig. 8-41b); it shows the spring force as a function of the stretch or compression of the spring. The spring is compressed by 5.5 cm and used to propel a 3.8 g cork from the gun. (a) What is the speed of the cork if it is released as the spring passes through its relaxed position? (b) Suppose, instead, that the cork sticks to the spring and stretches it 1.5 cm before separation occurs. What now is the speed of the cork at the time of release?
-29 SSM Www In Fig. 8-42, a block of mass $m=12 \mathrm{~kg}$ is released from rest on a frictionless incline of angle $\theta=30^{\circ}$. Below the block is a spring that can be compressed 2.0 cm by a force of 270 N . The block momentarily stops when it compresses the spring by 5.5 cm . (a) How far does the block move down the incline from its rest position to this stopping point? (b) What is the speed of the block just as it touches the spring?
$\because 30$ © A 2.0 kg breadbox on a frictionless incline of angle $\theta=40^{\circ}$ is connected, by a cord that runs over a pulley, to a light spring of spring constant $k=120 \mathrm{~N} / \mathrm{m}$, as shown in

(a)

Figure 8-41 Problem 28. Fig. 8-43. The box is released from rest when the spring is unstretched. Assume that the pulley is massless and frictionless. (a) What is the speed of the box when it has moved 10 cm down the incline? (b) How far down the incline from its point of release does the box slide before momentarily stopping, and what are the (c) magnitude and (d) direction (up or down the incline) of the box's acceleration at the instant the box momentarily stops?

Figure 8-43 Problem 30.
-031 ILW A block with mass $m=2.00 \mathrm{~kg}$ is placed against a spring on a frictionless incline with angle $\theta=30.0^{\circ}$ (Fig. 8-44). (The block is not attached to the spring.) The spring, with spring constant $k=19.6$ N / cm, is compressed 20.0 cm and then released. (a) What is the elastic potential energy of the compressed spring? (b) What is the change in the gravitational potential energy of the block-Earth system as the block moves from the release point to its highest point on the incline? (c) How far along the incline is the highest point from the release point?

Figure 8-44 Problem 31.

Figure 8-42 Problems 29 and 35 .

- 32 In Fig. 8-45, a chain is held on a frictionless table with onefourth of its length hanging over the edge. If the chain has length $L=28 \mathrm{~cm}$ and mass $m=0.012 \mathrm{~kg}$, how much work is required to pull the hanging part back onto the table?
$\bullet \bullet 33$ ©0 In Fig. 8-46, a spring with $k=170 \mathrm{~N} / \mathrm{m}$ is at the top of a frictionless incline of angle $\theta=37.0^{\circ}$. The lower end of the incline is distance $D=1.00 \mathrm{~m}$ from the end of the spring, which is at its relaxed length. A 2.00 kg canister is pushed against the spring until the spring is compressed 0.200 m and released from rest. (a) What is the speed of the canister at the instant the spring returns to its relaxed length (which is when the canister loses contact with the spring)? (b) What is the speed of the canister when it reaches the lower end of the incline?
$\bullet 034$ ©o A boy is initially seated on the top of a hemispherical ice mound of radius $R=13.8 \mathrm{~m}$. He begins to slide down the ice, with a negligible initial speed (Fig. 8-47). Approximate the ice as being frictionless. At what height does the boy lose contact with the ice?

Figure 8-47 Problem 34.

00035 60 In Fig. 8-42, a block of mass $m=3.20 \mathrm{~kg}$ slides from rest a distance d down a frictionless incline at angle $\theta=30.0^{\circ}$ where it runs into a spring of spring constant $431 \mathrm{~N} / \mathrm{m}$. When the block momentarily stops, it has compressed the spring by 21.0 cm . What are (a) distance d and (b) the distance between the point of the first block-spring contact and the point where the block's speed is greatest?
$\bullet \bullet 36$ (so Two children are playing a game in which they try to hit a small box on the floor with a marble fired from a spring-loaded gun that is mounted on a table. The target box is horizontal distance $D=2.20 \mathrm{~m}$

Figure 8-48 Problem 36. from the edge of the table; see Fig. 8-48. Bobby compresses the spring 1.10 cm , but the center of the marble falls 27.0 cm short of the center of the box. How far should Rhoda compress the spring to score a direct hit? Assume that neither the spring nor the ball encounters friction in the gun.
$\bullet \bullet 37$ A uniform cord of length 25 cm and mass 15 g is initially stuck to a ceiling. Later, it hangs vertically from the ceiling with only one end still stuck. What is the change in the gravitational potential energy of the cord with this change in orientation? (Hint: Consider a differential slice of the cord and then use integral calculus.)

Module 8-3 Reading a Potential Energy Curve

-•38 Figure 8-49 shows a plot of potential energy U versus position x of a 0.200 kg particle that can travel only along an x axis under the influence of a conservative force. The graph has these
values: $U_{A}=9.00 \mathrm{~J}, U_{C}=20.00 \mathrm{~J}$, and $U_{D}=24.00 \mathrm{~J}$. The particle is released at the point where U forms a "potential hill" of "height" $U_{B}=12.00 \mathrm{~J}$, with kinetic energy 4.00 J . What is the speed of the particle at (a) $x=3.5 \mathrm{~m}$ and (b) $x=6.5 \mathrm{~m}$? What is the position of the turning point on (c) the right side and (d) the left side?

Figure 8-49 Problem 38.
-•39 ©o Figure 8-50 shows a plot of potential energy U versus position x of a 0.90 kg particle that can travel only along an x axis. (Nonconservative forces are not involved.) Three values are $U_{A}=15.0 \mathrm{~J}, \quad U_{B}=35.0 \mathrm{~J}$, and $U_{C}=45.0 \mathrm{~J}$. The particle is released at $x=4.5 \mathrm{~m}$ with an initial speed of $7.0 \mathrm{~m} / \mathrm{s}$, headed

Figure 8-50 Problem 39. in the negative x direction.
(a) If the particle can reach $x=1.0 \mathrm{~m}$, what is its speed there, and if it cannot, what is its turning point? What are the (b) magnitude and (c) direction of the force on the particle as it begins to move to the left of $x=4.0 \mathrm{~m}$? Suppose, instead, the particle is headed in the positive x direction when it is released at $x=4.5 \mathrm{~m}$ at speed $7.0 \mathrm{~m} / \mathrm{s}$. (d) If the particle can reach $x=7.0 \mathrm{~m}$, what is its speed there, and if it cannot, what is its turning point? What are the (e) magnitude and (f) direction of the force on the particle as it begins to move to the right of $x=5.0 \mathrm{~m}$?
$\bullet 40$ The potential energy of a diatomic molecule (a two-atom system like H_{2} or O_{2}) is given by

$$
U=\frac{A}{r^{12}}-\frac{B}{r^{6}}
$$

where r is the separation of the two atoms of the molecule and A and B are positive constants. This potential energy is associated with the force that binds the two atoms together. (a) Find the equilibrium separation - that is, the distance between the atoms at which the force on each atom is zero. Is the force repulsive (the atoms are pushed apart) or attractive (they are pulled together) if their separation is (b) smaller and (c) larger than the equilibrium separation?
-•41 A single conservative force $F(x)$ acts on a 1.0 kg particle that moves along an x axis. The potential energy $U(x)$ associated with $F(x)$ is given by

$$
U(x)=-4 x e^{-x / 4} \mathrm{~J}
$$

where x is in meters. At $x=5.0 \mathrm{~m}$ the particle has a kinetic energy of 2.0 J . (a) What is the mechanical energy of the system? (b) Make
a plot of $U(x)$ as a function of x for $0 \leq x \leq 10 \mathrm{~m}$, and on the same graph draw the line that represents the mechanical energy of the system. Use part (b) to determine (c) the least value of x the particle can reach and (d) the greatest value of x the particle can reach. Use part (b) to determine (e) the maximum kinetic energy of the particle and (f) the value of x at which it occurs. (g) Determine an expression in newtons and meters for $F(x)$ as a function of x. (h) For what (finite) value of x does $F(x)=0$?

Module 8-4 Work Done on a System by an External Force

-42 A worker pushed a 27 kg block 9.2 m along a level floor at constant speed with a force directed 32° below the horizontal. If the coefficient of kinetic friction between block and floor was 0.20 , what were (a) the work done by the worker's force and (b) the increase in thermal energy of the block-floor system?
-43 A collie drags its bed box across a floor by applying a horizontal force of 8.0 N . The kinetic frictional force acting on the box has magnitude 5.0 N . As the box is dragged through 0.70 m along the way, what are (a) the work done by the collie's applied force and (b) the increase in thermal energy of the bed and floor?
-•44 A horizontal force of magnitude 35.0 N pushes a block of mass 4.00 kg across a floor where the coefficient of kinetic friction is 0.600 . (a) How much work is done by that applied force on the block-floor system when the block slides through a displacement of 3.00 m across the floor? (b) During that displacement, the thermal energy of the block increases by 40.0 J . What is the increase in thermal energy of the floor? (c) What is the increase in the kinetic energy of the block?
-•45 SSm A rope is used to pull a 3.57 kg block at constant speed 4.06 m along a horizontal floor. The force on the block from the rope is 7.68 N and directed 15.0° above the horizontal. What are (a) the work done by the rope's force, (b) the increase in thermal energy of the block-floor system, and (c) the coefficient of kinetic friction between the block and floor?

Module 8-5 Conservation of Energy

-46 An outfielder throws a baseball with an initial speed of $81.8 \mathrm{mi} / \mathrm{h}$. Just before an infielder catches the ball at the same level, the ball's speed is $110 \mathrm{ft} / \mathrm{s}$. In foot-pounds, by how much is the mechanical energy of the ball-Earth system reduced because of air drag? (The weight of a baseball is 9.0 oz .)
$\bullet 47$ A 75 g Frisbee is thrown from a point 1.1 m above the ground with a speed of $12 \mathrm{~m} / \mathrm{s}$. When it has reached a height of 2.1 m , its speed is $10.5 \mathrm{~m} / \mathrm{s}$. What was the reduction in E_{mec} of the Frisbee-Earth system because of air drag?
-48 In Fig. 8-51, a block slides down an incline. As it moves from point A to point B, which are 5.0 m apart, force \vec{F} acts on the block, with magnitude 2.0 N and directed down the incline. The magnitude of the frictional force acting on the block is

Figure 8-51 Problems 48 and 71 . 10 N . If the kinetic energy of the block increases by 35 J between A and B, how much work is done on the block by the gravitational force as the block moves from A to B ?
$\bullet 49$ SSm ILw A 25 kg bear slides, from rest, 12 m down a lodgepole pine tree, moving with a speed of $5.6 \mathrm{~m} / \mathrm{s}$ just before hitting the ground. (a) What change occurs in the gravitational
potential energy of the bear-Earth system during the slide? (b) What is the kinetic energy of the bear just before hitting the ground? (c) What is the average frictional force that acts on the sliding bear?
-50 A 60 kg skier leaves the end of a ski-jump ramp with a velocity of $24 \mathrm{~m} / \mathrm{s}$ directed 25° above the horizontal. Suppose that as a result of air drag the skier returns to the ground with a speed of 22 m / s, landing 14 m vertically below the end of the ramp. From the launch to the return to the ground, by how much is the mechanical energy of the skier-Earth system reduced because of air drag?
-51 During a rockslide, a 520 kg rock slides from rest down a hillside that is 500 m long and 300 m high. The coefficient of kinetic friction between the rock and the hill surface is 0.25 . (a) If the gravitational potential energy U of the rock-Earth system is zero at the bottom of the hill, what is the value of U just before the slide? (b) How much energy is transferred to thermal energy during the slide? (c) What is the kinetic energy of the rock as it reaches the bottom of the hill? (d) What is its speed then?
$\because 52$ A large fake cookie sliding on a horizontal surface is attached to one end of a horizontal spring with spring constant $k=400 \mathrm{~N} / \mathrm{m}$; the other end of the spring is fixed in place. The cookie has a kinetic energy of 20.0 J as it passes through the spring's equilibrium position. As the cookie slides, a frictional force of magnitude 10.0 N acts on it. (a) How far will the cookie slide from the equilibrium position before coming momentarily to rest? (b) What will be the kinetic energy of the cookie as it slides back through the equilibrium position?
००53 (60 In Fig. 8-52, a 3.5 kg block is accelerated from rest by a compressed spring of spring constant $640 \mathrm{~N} / \mathrm{m}$. The block leaves the spring at the spring's relaxed length and then travels over a horizontal floor with a coefficient of ki-

Figure 8-52 Problem 53. netic friction $\mu_{k}=0.25$. The frictional force stops the block in distance $D=7.8 \mathrm{~m}$. What are (a) the increase in the thermal energy of the block-floor system, (b) the maximum kinetic energy of the block, and (c) the original compression distance of the spring?
-054 A child whose weight is 267 N slides down a 6.1 m playground slide that makes an angle of 20° with the horizontal. The coefficient of kinetic friction between slide and child is 0.10 . (a) How much energy is transferred to thermal energy? (b) If she starts at the top with a speed of $0.457 \mathrm{~m} / \mathrm{s}$, what is her speed at the bottom? -055 ILW In Fig. 8-53, a block of mass $m=2.5 \mathrm{~kg}$ slides head on into a spring of spring constant $k=320 \mathrm{~N} / \mathrm{m}$. When the block stops, it has compressed the spring by 7.5 cm . The coefficient of kinetic friction between block and floor is 0.25 . While the block is in contact with the spring and

Figure 8-53 Problem 55. being brought to rest, what are (a) the work done by the spring force and (b) the increase in thermal energy of the block-floor system? (c) What is the block's speed just as it reaches the spring?
-056 You push a 2.0 kg block against a horizontal spring, compressing the spring by 15 cm . Then you release the block, and the
spring sends it sliding across a tabletop. It stops 75 cm from where you released it. The spring constant is $200 \mathrm{~N} / \mathrm{m}$. What is the block - table coefficient of kinetic friction?
\bullet •57 © © In Fig. 8-54, a block slides along a track from one level to a higher level after passing through an intermediate valley. The track is frictionless until the block reaches the higher level. There a frictional force stops the block in a distance d. The block's initial speed v_{0} is $6.0 \mathrm{~m} / \mathrm{s}$, the height difference h is 1.1 m , and μ_{k} is 0.60 . Find d.

Figure 8-54 Problem 57.
-•58 A cookie jar is moving up a 40° incline. At a point 55 cm from the bottom of the incline (measured along the incline), the jar has a speed of $1.4 \mathrm{~m} / \mathrm{s}$. The coefficient of kinetic friction between jar and incline is 0.15 . (a) How much farther up the incline will the jar move? (b) How fast will it be going when it has slid back to the bottom of the incline? (c) Do the answers to (a) and (b) increase, decrease, or remain the same if we decrease the coefficient of kinetic friction (but do not change the given speed or location)?
$\bullet 59$ A stone with a weight of 5.29 N is launched vertically from ground level with an initial speed of $20.0 \mathrm{~m} / \mathrm{s}$, and the air drag on it is 0.265 N throughout the flight. What are (a) the maximum height reached by the stone and (b) its speed just before it hits the ground?
-•60 A 4.0 kg bundle starts up a 30° incline with 128 J of kinetic energy. How far will it slide up the incline if the coefficient of kinetic friction between bundle and incline is 0.30 ?
-61 When a click beetle is upside down on its back, it jumps upward by suddenly arching its back, transferring energy stored in a muscle to mechanical energy. This launching mechanism produces an audible click, giving the beetle its name. Videotape of a certain clickbeetle jump shows that a beetle of mass $m=4.0 \times 10^{-6} \mathrm{~kg}$ moved directly upward by 0.77 mm during the launch and then to a maximum height of $h=0.30 \mathrm{~m}$. During the launch, what are the average magnitudes of (a) the external force on the beetle's back from the floor and (b) the acceleration of the beetle in terms of g ?
$\bullet 62$ ©0 In Fig. 8-55, a block slides along a path that is without friction until the block reaches the section of length $L=0.75 \mathrm{~m}$, which begins at height $h=2.0 \mathrm{~m}$ on a ramp of angle $\theta=30^{\circ}$. In that section, the coefficient of kinetic friction is 0.40 . The block passes through point A with a speed of $8.0 \mathrm{~m} / \mathrm{s}$. If the block can reach point B (where the friction ends), what is its speed there, and if it cannot, what is its greatest height above A ?

Figure 8-55 Problem 62.
-••63 The cable of the 1800 kg elevator cab in Fig. 8-56 snaps when the cab is at rest at the first floor, where the cab bottom is a distance $d=3.7 \mathrm{~m}$ above a spring of spring constant $k=0.15 \mathrm{MN} / \mathrm{m}$. A safety device clamps the cab against guide rails so that a constant frictional force of 4.4 kN opposes the cab's motion. (a) Find the speed of the cab just before it hits the spring. (b) Find the maximum distance x that the spring is compressed (the frictional force still acts during this compression). (c) Find the distance that the cab will bounce back up the shaft. (d) Using

Figure 8-56 Problem 63 conservation of energy, find the approximate total distance that the cab will move before coming to rest. (Assume that the frictional force on the cab is negligible when the cab is stationary.)
-••64 ©0 In Fig. 8-57, a block is released from rest at height $d=40$ cm and slides down a frictionless ramp and onto a first plateau, which has length d and where the coefficient of kinetic friction is 0.50. If the block is still moving, it then slides down a second frictionless ramp through height $d / 2$ and onto a lower plateau, which has length $d / 2$ and where the coefficient of kinetic friction is again 0.50. If the block is still moving, it then slides up a frictionless ramp until it (momentarily) stops. Where does the block stop? If its final stop is on a plateau, state which one and give the distance L from the left edge of that plateau. If the block reaches the ramp, give the height H above the lower plateau where it momentarily stops.

Figure 8-57 Problem 64.
-•65 ©0 A particle can slide along a track with elevated ends and a flat central part, as shown in Fig. 8-58. The flat part has length $L=40 \mathrm{~cm}$. The curved portions of the track are frictionless, but for the flat part the

Figure 8-58 Problem 65. coefficient of kinetic friction is $\mu_{k}=$ 0.20 . The particle is released from rest at point A, which is at height $h=L / 2$. How far from the left edge of the flat part does the particle finally stop?

Additional Problems

66 A 3.2 kg sloth hangs 3.0 m above the ground. (a) What is the gravitational potential energy of the sloth-Earth system if we take the reference point $y=0$ to be at the ground? If the sloth drops to the ground and air drag on it is assumed to be negligible, what are the (b) kinetic energy and (c) speed of the sloth just before it reaches the ground?

67 SSM A spring ($k=200 \mathrm{~N} / \mathrm{m}$) is fixed at the top of a frictionless plane inclined at angle $\theta=40^{\circ}$ (Fig. 8-59). A 1.0 kg block is projected up the plane, from an initial position that is distance $d=0.60 \mathrm{~m}$ from the end of the relaxed spring, with an initial kinetic energy of 16 J . (a) What is the kinetic energy of the block at the instant it has compressed the spring 0.20 m ? (b) With what kinetic energy must the block be projected up the plane if it is to stop momentarily when it has compressed the spring by 0.40 m ?

68 From the edge of a cliff, a 0.55 kg projectile is launched with an initial kinetic energy of 1550 J . The projectile's maximum upward displacement from the launch point is +140 m . What are the (a) horizontal and (b) vertical components of its launch velocity? (c) At the instant the vertical component of its velocity is $65 \mathrm{~m} / \mathrm{s}$, what is its vertical displacement from the launch point?
69 SSM In Fig. 8-60, the pulley has negligible mass, and both it and the inclined plane are frictionless. Block A has a mass of 1.0 kg , block B has a mass of 2.0 kg , and angle θ is 30°. If the blocks are released from rest with the connecting cord taut, what is their total kinetic energy when block B has fallen 25 cm ?

70 ©o In Fig. 8-38, the string is $L=120 \mathrm{~cm}$ long, has a ball attached to one end, and is fixed at its other end. A fixed peg is at point P. Released from rest, the ball swings down until the string catches on the peg; then the ball swings up, around the peg. If the ball is to swing completely around the peg, what value must distance d exceed? (Hint: The ball must still be moving at the top of its swing. Do you see why?)
71 SSM In Fig. 8-51, a block is sent sliding down a frictionless ramp. Its speeds at points A and B are $2.00 \mathrm{~m} / \mathrm{s}$ and $2.60 \mathrm{~m} / \mathrm{s}$, respectively. Next, it is again sent sliding down the ramp, but this time its speed at point A is $4.00 \mathrm{~m} / \mathrm{s}$. What then is its speed at point B ?

72 Two snowy peaks are at heights $H=850 \mathrm{~m}$ and $h=750 \mathrm{~m}$ above the valley between them. A ski run extends between the peaks, with a total length of 3.2 km and an average slope of $\theta=30^{\circ}$ (Fig. 8-61). (a) A skier starts from rest at the top of the higher peak. At what speed will he arrive at the top of the lower peak if he coasts without using ski poles? Ignore friction. (b) Approximately what coefficient of kinetic friction

Figure 8-61 Problem 72.
between snow and skis would make him stop just at the top of the lower peak?

73 SSM The temperature of a plastic cube is monitored while the cube is pushed 3.0 m across a floor at constant speed by a horizontal force of 15 N . The thermal energy of the cube increases by 20 J . What is the increase in the thermal energy of the floor along which the cube slides?

74 A skier weighing 600 N goes over a frictionless circular hill of radius $R=20 \mathrm{~m}$ (Fig. 8-62). Assume that the effects of air resistance on the skier are negligible. As she comes up the hill, her speed is $8.0 \mathrm{~m} / \mathrm{s}$ at point B, at angle $\theta=20^{\circ}$. (a) What is her speed at the hilltop (point A) if she coasts without using her poles? (b) What minimum speed can she have at B and still coast to the hilltop? (c) Do the answers to these two questions increase, decrease, or remain the same if the skier weighs 700 N instead of 600 N ?

Figure 8-62 Problem 74.

75 SSM To form a pendulum, a 0.092 kg ball is attached to one end of a rod of length 0.62 m and negligible mass, and the other end of the rod is mounted on a pivot. The rod is rotated until it is straight up, and then it is released from rest so that it swings down around the pivot. When the ball reaches its lowest point, what are (a) its speed and (b) the tension in the rod? Next, the rod is rotated until it is horizontal, and then it is again released from rest. (c) At what angle from the vertical does the tension in the rod equal the weight of the ball? (d) If the mass of the ball is increased, does the answer to (c) increase, decrease, or remain the same?

76 We move a particle along an x axis, first outward from $x=1.0 \mathrm{~m}$ to $x=4.0 \mathrm{~m}$ and then back to $x=1.0 \mathrm{~m}$, while an external force acts on it. That force is directed along the x axis, and its x component can have different values for the outward trip and for the return trip. Here are the values (in newtons) for four situations, where x is in meters:

Outward	Inward
$(\mathrm{a})+3.0$	-3.0
(b) +5.0	+5.0
(c) $+2.0 x$	$-2.0 x$
(d) $+3.0 x^{2}$	$+3.0 x^{2}$

Find the net work done on the particle by the external force for the round trip for each of the four situations. (e) For which, if any, is the external force conservative?
77 SSIM A conservative force $F(x)$ acts on a 2.0 kg particle that moves along an x axis. The potential energy $U(x)$ associated with $F(x)$ is graphed in Fig. 8-63. When the particle is at $x=2.0 \mathrm{~m}$, its
velocity is $-1.5 \mathrm{~m} / \mathrm{s}$. What are the (a) magnitude and (b) direction of $F(x)$ at this position? Between what positions on the (c) left and (d) right does the particle move? (e) What is the particle's speed at $x=7.0 \mathrm{~m}$?

Figure 8-63 Problem 77.
78 At a certain factory, 300 kg crates are dropped vertically from a packing machine onto a conveyor belt moving at $1.20 \mathrm{~m} / \mathrm{s}$ (Fig. 8-64). (A motor maintains the belt's constant speed.) The coefficient of kinetic friction between the belt and each crate is 0.400 . After a short

Figure 8-64 Problem 78. time, slipping between the belt and the crate ceases, and the crate then moves along with the belt. For the period of time during which the crate is being brought to rest relative to the belt, calculate, for a coordinate system at rest in the factory, (a) the kinetic energy supplied to the crate, (b) the magnitude of the kinetic frictional force acting on the crate, and (c) the energy supplied by the motor. (d) Explain why answers (a) and (c) differ.

79 SSM A 1500 kg car begins sliding down a 5.0° inclined road with a speed of $30 \mathrm{~km} / \mathrm{h}$. The engine is turned off, and the only forces acting on the car are a net frictional force from the road and the gravitational force. After the car has traveled 50 m along the road, its speed is $40 \mathrm{~km} / \mathrm{h}$. (a) How much is the mechanical energy of the car reduced because of the net frictional force? (b) What is the magnitude of that net frictional force?
80 © In Fig. 8-65, a 1400 kg block of granite is pulled up an incline at a constant speed of $1.34 \mathrm{~m} / \mathrm{s}$ by a cable and winch. The indicated distances are $d_{1}=40 \mathrm{~m}$ and $d_{2}=30 \mathrm{~m}$. The coefficient of kinetic friction between the block and the incline is 0.40 . What is the power due to the force applied to the block by the cable?

Figure 8-65 Problem 80.

81 A particle can move along only an x axis, where conservative forces act on it (Fig. 8-66 and the following table). The particle is released at $x=5.00 \mathrm{~m}$ with a kinetic energy of $K=14.0 \mathrm{~J}$ and a potential energy of $U=0$. If its motion is in the negative direction of the x axis, what are its (a) K and (b) U at $x=2.00 \mathrm{~m}$ and its (c) K and (d) U at $x=0$? If its motion is in the positive direction of the x axis, what are its (e) K and (f) U at $x=11.0 \mathrm{~m}$, its (g) K and (h) U at $x=12.0 \mathrm{~m}$, and its (i) K and (j) U at $x=13.0 \mathrm{~m}$? (k) Plot $U(x)$ versus x for the range $x=0$ to $x=13.0 \mathrm{~m}$.

Next, the particle is released from rest at $x=0$. What are (1) its kinetic energy at $x=5.0 \mathrm{~m}$ and (m) the maximum positive position $x_{\max }$ it reaches? (n) What does the particle do after it reaches $x_{\max }$?

Range	Force
0 to 2.00 m	$\vec{F}_{1}=+(3.00 \mathrm{~N}) \hat{\mathrm{i}}$
2.00 m to 3.00 m	$\vec{F}_{2}=+(5.00 \mathrm{~N}) \hat{\mathrm{i}}$
3.00 m to 8.00 m	$F=0$
8.00 m to 11.0 m	$\vec{F}_{3}=-(4.00 \mathrm{~N}) \hat{\mathrm{i}}$
11.0 m to 12.0 m	$\vec{F}_{4}=-(1.00 \mathrm{~N}) \hat{\mathrm{i}}$
12.0 m to 15.0 m	F

82 For the arrangement of forces in Problem 81, a 2.00 kg particle is released at $x=5.00 \mathrm{~m}$ with an initial velocity of $3.45 \mathrm{~m} / \mathrm{s}$ in the negative direction of the x axis. (a) If the particle can reach $x=0 \mathrm{~m}$, what is its speed there, and if it cannot, what is its turning point? Suppose, instead, the particle is headed in the positive x direction when it is released at $x=5.00 \mathrm{~m}$ at speed $3.45 \mathrm{~m} / \mathrm{s}$. (b) If the particle can reach $x=13.0 \mathrm{~m}$, what is its speed there, and if it cannot, what is its turning point?
83 SSM A 15 kg block is accelerated at $2.0 \mathrm{~m} / \mathrm{s}^{2}$ along a horizontal frictionless surface, with the speed increasing from $10 \mathrm{~m} / \mathrm{s}$ to $30 \mathrm{~m} / \mathrm{s}$. What are (a) the change in the block's mechanical energy and (b) the average rate at which energy is transferred to the block? What is the instantaneous rate of that transfer when the block's speed is (c) $10 \mathrm{~m} / \mathrm{s}$ and (d) $30 \mathrm{~m} / \mathrm{s}$?
84 A certain spring is found not to conform to Hooke's law. The force (in newtons) it exerts when stretched a distance x (in meters) is found to have magnitude $52.8 x+38.4 x^{2}$ in the direction opposing the stretch. (a) Compute the work required to stretch the spring from $x=0.500 \mathrm{~m}$ to $x=1.00 \mathrm{~m}$. (b) With one end of the spring fixed, a particle of mass 2.17 kg is attached to the other end of the spring when it is stretched by an amount $x=1.00 \mathrm{~m}$. If the particle is then released from rest, what is its speed at the instant the stretch in the spring is $x=0.500 \mathrm{~m}$? (c) Is the force exerted by the spring conservative or nonconservative? Explain.
85 SSm Each second, $1200 \mathrm{~m}^{3}$ of water passes over a waterfall 100 m high. Three-fourths of the kinetic energy gained by the water in falling is transferred to electrical energy by a hydroelectric generator. At what rate does the generator produce electrical energy? (The mass of $1 \mathrm{~m}^{3}$ of water is 1000 kg .)

86 ©0 In Fig. 8-67, a small block is sent through point A with a speed of $7.0 \mathrm{~m} / \mathrm{s}$. Its path is without friction until it reaches the section of length $L=12 \mathrm{~m}$, where the coefficient of kinetic friction is 0.70 . The indicated heights are $h_{1}=6.0 \mathrm{~m}$ and $h_{2}=2.0 \mathrm{~m}$. What are the speeds of the block at (a) point B and (b) point C ? (c) Does the block reach point D ? If so, what is its speed there; if not, how far through the section of friction does it travel?

Figure 8-67 Problem 86.

87 SSM A massless rigid rod of length L has a ball of mass m attached to one end (Fig. 8-68). The other end is pivoted in such a way that the ball will move in a vertical circle. First, assume that there is no friction at the pivot. The system is launched downward from the horizontal position A with initial speed v_{0}. The ball just barely reaches point D and then stops. (a) Derive an expression for v_{0} in terms of L, m, and

Figure 8-68 Problem 87. g. (b) What is the tension in the rod when the ball passes through B ? (c) A little grit is placed on the pivot to increase the friction there. Then the ball just barely reaches C when launched from A with the same speed as before. What is the decrease in the mechanical energy during this motion? (d) What is the decrease in the mechanical energy by the time the ball finally comes to rest at B after several oscillations?
88 A 1.50 kg water balloon is shot straight up with an initial speed of $3.00 \mathrm{~m} / \mathrm{s}$. (a) What is the kinetic energy of the balloon just as it is launched? (b) How much work does the gravitational force do on the balloon during the balloon's full ascent? (c) What is the change in the gravitational potential energy of the balloon-Earth system during the full ascent? (d) If the gravitational potential energy is taken to be zero at the launch point, what is its value when the balloon reaches its maximum height? (e) If, instead, the gravitational potential energy is taken to be zero at the maximum height, what is its value at the launch point? (f) What is the maximum height?
89 A 2.50 kg beverage can is thrown directly downward from a height of 4.00 m , with an initial speed of $3.00 \mathrm{~m} / \mathrm{s}$. The air drag on the can is negligible. What is the kinetic energy of the can (a) as it reaches the ground at the end of its fall and (b) when it is halfway to the ground? What are (c) the kinetic energy of the can and (d) the gravitational potential energy of the can-Earth system 0.200 s before the can reaches the ground? For the latter, take the reference point $y=0$ to be at the ground.

90 A constant horizontal force moves a 50 kg trunk 6.0 m up a 30° incline at constant speed. The coefficient of kinetic friction is 0.20 . What are (a) the work done by the applied force and (b) the increase in the thermal energy of the trunk and incline?

91 © Two blocks, of masses $M=2.0 \mathrm{~kg}$ and $2 M$, are connected to a spring of spring constant $k=200 \mathrm{~N} / \mathrm{m}$ that has one end fixed, as shown in Fig. 8-69. The horizontal surface and the pulley are frictionless, and the pulley has negligible mass. The blocks are released from rest with the spring relaxed. (a) What is the combined kinetic energy of the two blocks when the hanging block has fallen 0.090 m ? (b) What is the kinetic energy of the hanging block when it has

Figure 8-69 Problem 91. fallen that 0.090 m ? (c) What maximum distance does the hanging block fall before momentarily stopping?
92 A volcanic ash flow is moving across horizontal ground when it encounters a 10° upslope. The front of the flow then travels 920 m up the slope before stopping. Assume that the gases entrapped in the flow lift the flow and thus make the frictional force from the ground negligible; assume also that the mechanical energy of the front of the flow is conserved. What was the initial speed of the front of the flow?

93 A playground slide is in the form of an arc of a circle that has a radius of 12 m . The maximum height of the slide is $h=4.0 \mathrm{~m}$, and the ground is tangent to the circle (Fig. 8-70). A 25 kg child starts from rest at the top of the slide and has a speed of $6.2 \mathrm{~m} / \mathrm{s}$ at the bottom. (a) What is the length of the slide? (b) What average frictional force acts on the child over this distance? If, instead of the ground, a vertical line through the top of the slide is tangent to the circle, what are (c) the length of the slide and (d) the average frictional force on the child?

94 The luxury liner Queen Elizabeth 2 has a diesel-electric power plant with a maximum power of 92 MW at a cruising speed of 32.5 knots. What forward force is exerted on the ship at this speed? (1 knot $=1.852 \mathrm{~km} / \mathrm{h}$.)
95 A factory worker accidentally releases a 180 kg crate that was being held at rest at the top of a ramp that is 3.7 m long and inclined at 39° to the horizontal. The coefficient of kinetic friction between the crate and the ramp, and between the crate and the horizontal factory floor, is 0.28 . (a) How fast is the crate moving as it reaches the bottom of the ramp? (b) How far will it subsequently slide across the floor? (Assume that the crate's kinetic energy does not change as it moves from the ramp onto the floor.) (c) Do the answers to (a) and (b) increase, decrease, or remain the same if we halve the mass of the crate?
96 If a 70 kg baseball player steals home by sliding into the plate with an initial speed of $10 \mathrm{~m} / \mathrm{s}$ just as he hits the ground, (a) what
is the decrease in the player's kinetic energy and (b) what is the increase in the thermal energy of his body and the ground along which he slides?
97 A 0.50 kg banana is thrown directly upward with an initial speed of $4.00 \mathrm{~m} / \mathrm{s}$ and reaches a maximum height of 0.80 m . What change does air drag cause in the mechanical energy of the banana-Earth system during the ascent?
98 A metal tool is sharpened by being held against the rim of a wheel on a grinding machine by a force of 180 N . The frictional forces between the rim and the tool grind off small pieces of the tool. The wheel has a radius of 20.0 cm and rotates at $2.50 \mathrm{rev} / \mathrm{s}$. The coefficient of kinetic friction between the wheel and the tool is 0.320 . At what rate is energy being transferred from the motor driving the wheel to the thermal energy of the wheel and tool and to the kinetic energy of the material thrown from the tool?
99 A swimmer moves through the water at an average speed of $0.22 \mathrm{~m} / \mathrm{s}$. The average drag force is 110 N . What average power is required of the swimmer?
100 An automobile with passengers has weight 16400 N and is moving at $113 \mathrm{~km} / \mathrm{h}$ when the driver brakes, sliding to a stop. The frictional force on the wheels from the road has a magnitude of 8230 N. Find the stopping distance.
101 A 0.63 kg ball thrown directly upward with an initial speed of $14 \mathrm{~m} / \mathrm{s}$ reaches a maximum height of 8.1 m . What is the change in the mechanical energy of the ball-Earth system during the ascent of the ball to that maximum height?

102 The summit of Mount Everest is 8850 m above sea level. (a) How much energy would a 90 kg climber expend against the gravitational force on him in climbing to the summit from sea level? (b) How many candy bars, at 1.25 MJ per bar, would supply an energy equivalent to this? Your answer should suggest that work done against the gravitational force is a very small part of the energy expended in climbing a mountain.
103 A sprinter who weighs 670 N runs the first 7.0 m of a race in 1.6 s , starting from rest and accelerating uniformly. What are the sprinter's (a) speed and (b) kinetic energy at the end of the 1.6 s ? (c) What average power does the sprinter generate during the 1.6 s interval?
104 A 20 kg object is acted on by a conservative force given by $F=-3.0 x-5.0 x^{2}$, with F in newtons and x in meters. Take the potential energy associated with the force to be zero when the object is at $x=0$. (a) What is the potential energy of the system associated with the force when the object is at $x=2.0 \mathrm{~m}$? (b) If the object has a velocity of $4.0 \mathrm{~m} / \mathrm{s}$ in the negative direction of the x axis when it is at $x=5.0 \mathrm{~m}$, what is its speed when it passes through the origin? (c) What are the answers to (a) and (b) if the potential energy of the system is taken to be -8.0 J when the object is at $x=0$?
105 A machine pulls a 40 kg trunk 2.0 m up a $40^{\circ} \mathrm{ramp}$ at constant velocity, with the machine's force on the trunk directed parallel to the ramp. The coefficient of kinetic friction between the trunk and the ramp is 0.40 . What are (a) the work done on the trunk by the machine's force and (b) the increase in thermal energy of the trunk and the ramp?
106 The spring in the muzzle of a child's spring gun has a spring constant of $700 \mathrm{~N} / \mathrm{m}$. To shoot a ball from the gun, first the spring is compressed and then the ball is placed on it. The gun's trigger then
releases the spring, which pushes the ball through the muzzle. The ball leaves the spring just as it leaves the outer end of the muzzle. When the gun is inclined upward by 30° to the horizontal, a 57 g ball is shot to a maximum height of 1.83 m above the gun's muzzle. Assume air drag on the ball is negligible. (a) At what speed does the spring launch the ball? (b) Assuming that friction on the ball within the gun can be neglected, find the spring's initial compression distance.
107 The only force acting on a particle is conservative force \vec{F}. If the particle is at point A, the potential energy of the system associated with \vec{F} and the particle is 40 J . If the particle moves from point A to point B, the work done on the particle by \vec{F} is +25 J . What is the potential energy of the system with the particle at B ?
108 In 1981, Daniel Goodwin climbed 443 m up the exterior of the Sears Building in Chicago using suction cups and metal clips. (a) Approximate his mass and then compute how much energy he had to transfer from biomechanical (internal) energy to the gravitational potential energy of the Earth-Goodwin system to lift himself to that height. (b) How much energy would he have had to transfer if he had, instead, taken the stairs inside the building (to the same height)?
109 A 60.0 kg circus performer slides 4.00 m down a pole to the circus floor, starting from rest. What is the kinetic energy of the performer as she reaches the floor if the frictional force on her from the pole (a) is negligible (she will be hurt) and (b) has a magnitude of 500 N ?

110 A 5.0 kg block is projected at $5.0 \mathrm{~m} / \mathrm{s}$ up a plane that is inclined at 30° with the horizontal. How far up along the plane does the block go (a) if the plane is frictionless and (b) if the coefficient of kinetic friction between the block and the plane is 0.40 ? (c) In the latter case, what is the increase in thermal energy of block and plane during the block's ascent? (d) If the block then slides back down against the frictional force, what is the block's speed when it reaches the original projection point?
111 A 9.40 kg projectile is fired vertically upward. Air drag decreases the mechanical energy of the projectile-Earth system by 68.0 kJ during the projectile's ascent. How much higher would the projectile have gone were air drag negligible?

112 A 70.0 kg man jumping from a window lands in an elevated fire rescue net 11.0 m below the window. He momentarily stops when he has stretched the net by 1.50 m . Assuming that mechanical energy is conserved during this process and that the net functions like an ideal spring, find the elastic potential energy of the net when it is stretched by 1.50 m .
113 A 30 g bullet moving a horizontal velocity of $500 \mathrm{~m} / \mathrm{s}$ comes to a stop 12 cm within a solid wall. (a) What is the change in the bullet's mechanical energy? (b) What is the magnitude of the average force from the wall stopping it?
114 A 1500 kg car starts from rest on a horizontal road and gains a speed of $72 \mathrm{~km} / \mathrm{h}$ in 30 s . (a) What is its kinetic energy at the end of the 30 s ? (b) What is the average power required of the car during the 30 s interval? (c) What is the instantaneous power at the end of the 30 s interval, assuming that the acceleration is constant?

115 A 1.50 kg snowball is shot upward at an angle of 34.0° to the horizontal with an initial speed of $20.0 \mathrm{~m} / \mathrm{s}$. (a) What is its initial kinetic energy? (b) By how much does the gravitational potential
energy of the snowball-Earth system change as the snowball moves from the launch point to the point of maximum height? (c) What is that maximum height?
116 A 68 kg sky diver falls at a constant terminal speed of $59 \mathrm{~m} / \mathrm{s}$. (a) At what rate is the gravitational potential energy of the Earth-sky diver system being reduced? (b) At what rate is the system's mechanical energy being reduced?
117 A 20 kg block on a horizontal surface is attached to a horizontal spring of spring constant $k=4.0 \mathrm{kN} / \mathrm{m}$. The block is pulled to the right so that the spring is stretched 10 cm beyond its relaxed length, and the block is then released from rest. The frictional force between the sliding block and the surface has a magnitude of 80 N . (a) What is the kinetic energy of the block when it has moved 2.0 cm from its point of release? (b) What is the kinetic energy of the block when it first slides back through the point at which the spring is relaxed? (c) What is the maximum kinetic energy attained by the block as it slides from its point of release to the point at which the spring is relaxed?
118 Resistance to the motion of an automobile consists of road friction, which is almost independent of speed, and air drag, which is proportional to speed-squared. For a certain car with a weight of 12000 N , the total resistant force F is given by $F=300+1.8 \nu^{2}$, with F in newtons and v in meters per second. Calculate the power (in horsepower) required to accelerate the car at $0.92 \mathrm{~m} / \mathrm{s}^{2}$ when the speed is $80 \mathrm{~km} / \mathrm{h}$.
119 SSM A 50 g ball is thrown from a window with an initial velocity of $8.0 \mathrm{~m} / \mathrm{s}$ at an angle of 30° above the horizontal. Using energy methods, determine (a) the kinetic energy of the ball at the top of its flight and (b) its speed when it is 3.0 m below the window. Does the answer to (b) depend on either (c) the mass of the ball or (d) the initial angle?

120 A spring with a spring constant of $3200 \mathrm{~N} / \mathrm{m}$ is initially stretched until the elastic potential energy of the spring is 1.44 J . ($U=0$ for the relaxed spring.) What is ΔU if the initial stretch is changed to (a) a stretch of 2.0 cm , (b) a compression of 2.0 cm , and (c) a compression of 4.0 cm ?

121 A locomotive with a power capability of 1.5 MW can accelerate a train from a speed of $10 \mathrm{~m} / \mathrm{s}$ to $25 \mathrm{~m} / \mathrm{s}$ in 6.0 min . (a) Calculate the mass of the train. Find (b) the speed of the train and (c) the force accelerating the train as functions of time (in seconds) during the 6.0 min interval. (d) Find the distance moved by the train during the interval.
122 SSM A 0.42 kg shuffleboard disk is initially at rest when a player uses a cue to increase its speed to $4.2 \mathrm{~m} / \mathrm{s}$ at constant acceleration. The acceleration takes place over a 2.0 m distance, at the end of which the cue loses contact with the disk. Then the disk slides an additional 12 m before stopping. Assume that the shuffleboard court is level and that the force of friction on the disk is constant. What is the increase in the thermal energy of the disk-court system (a) for that additional 12 m and (b) for the entire 14 m distance? (c) How much work is done on the disk by the cue?
123 A river descends 15 m through rapids. The speed of the water is $3.2 \mathrm{~m} / \mathrm{s}$ upon entering the rapids and $13 \mathrm{~m} / \mathrm{s}$ upon leaving. What percentage of the gravitational potential energy of the water-Earth system is transferred to kinetic energy during the descent? (Hint: Consider the descent of, say, 10 kg of water.)

124 The magnitude of the gravitational force between a particle of mass m_{1} and one of mass m_{2} is given by

$$
F(x)=G \frac{m_{1} m_{2}}{x^{2}}
$$

where G is a constant and x is the distance between the particles. (a) What is the corresponding potential energy function $U(x)$? Assume that $U(x) \rightarrow 0$ as $x \rightarrow \infty$ and that x is positive. (b) How much work is required to increase the separation of the particles from $x=x_{1}$ to $x=x_{1}+d$?
125 Approximately $5.5 \times 10^{6} \mathrm{~kg}$ of water falls 50 m over Niagara Falls each second. (a) What is the decrease in the gravitational potential energy of the water-Earth system each second? (b) If all this energy could be converted to electrical energy (it cannot be), at what rate would electrical energy be supplied? (The mass of $1 \mathrm{~m}^{3}$ of water is 1000 kg .) (c) If the electrical energy were sold at 1 cent/kW $\cdot \mathrm{h}$, what would be the yearly income?
126 To make a pendulum, a 300 g ball is attached to one end of a string that has a length of 1.4 m and negligible mass. (The other end of the string is fixed.) The ball is pulled to one side until the string makes an angle of 30.0° with the vertical; then (with the string taut) the ball is released from rest. Find (a) the speed of the ball when the string makes an angle of 20.0° with the vertical and (b) the maximum speed of the ball. (c) What is the angle between the string and the vertical when the speed of the ball is one-third its maximum value?
127 In a circus act, a 60 kg clown is shot from a cannon with an initial velocity of $16 \mathrm{~m} / \mathrm{s}$ at some unknown angle above the horizontal. A short time later the clown lands in a net that is 3.9 m vertically above the clown's initial position. Disregard air drag. What is the kinetic energy of the clown as he lands in the net?

128 A 70 kg firefighter slides, from rest, 4.3 m down a vertical pole. (a) If the firefighter holds onto the pole lightly, so that the frictional force of the pole on her is negligible, what is her speed just before reaching the ground floor? (b) If the firefighter grasps the pole more firmly as she slides, so that the average frictional force of the pole on her is 500 N upward, what is her speed just before reaching the ground floor?
129 The surface of the continental United States has an area of about $8 \times 10^{6} \mathrm{~km}^{2}$ and an average elevation of about 500 m (above sea level). The average yearly rainfall is 75 cm . The fraction of this rainwater that returns to the atmosphere by evaporation is $\frac{2}{3}$; the rest eventually flows into the ocean. If the decrease in gravitational potential energy of the water-Earth system associated with that flow could be fully converted to electrical energy, what would be the average power? (The mass of $1 \mathrm{~m}^{3}$ of water is 1000 kg .)
130 A spring with spring constant $k=200 \mathrm{~N} / \mathrm{m}$ is suspended vertically with its upper end fixed to the ceiling and its lower end at position $y=0$. A block of weight 20 N is attached to the lower end, held still for a moment, and then released. What are (a) the kinetic energy K, (b) the change (from the initial value) in the gravitational potential energy ΔU_{g}, and (c) the change in the elastic potential energy ΔU_{e} of the spring-block system when the block is at $y=-5.0 \mathrm{~cm}$? What are (d) K, (e) ΔU_{g}, and (f) ΔU_{e} when $y=-10 \mathrm{~cm}$, (g) K, (h) ΔU_{g}, and (i) ΔU_{e} when $y=-15 \mathrm{~cm}$, and (j) K, (k) ΔU_{g}, and (1) ΔU_{e} when $y=-20 \mathrm{~cm}$?

131 Fasten one end of a vertical spring to a ceiling, attach a cabbage to the other end, and then slowly lower the cabbage until the upward force on it from the spring balances the gravitational force on it. Show that the loss of gravitational potential energy of the cabbage-Earth system equals twice the gain in the spring's potential energy.
132 The maximum force you can exert on an object with one of your back teeth is about 750 N . Suppose that as you gradually bite on a clump of licorice, the licorice resists compression by one of your teeth by acting like a spring for which $k=2.5 \times 10^{5} \mathrm{~N} / \mathrm{m}$. Find (a) the distance the licorice is compressed by your tooth and (b) the work the tooth does on the licorice during the compression.
(c) Plot the magnitude of your force versus the compression distance. (d) If there is a potential energy associated with this compression, plot it versus compression distance.

In the 1990s the pelvis of a particular Triceratops dinosaur was found to have deep bite marks. The shape of the marks suggested that they were made by a Tyrannosaurus rex dinosaur. To test the idea, researchers made a replica of a T. rex tooth from bronze and aluminum and then used a hydraulic press to gradually drive the replica into cow bone to the depth seen in the Triceratops bone. A graph of the force required versus depth of penetration is given in Fig. 8-71 for one trial; the required force increased with depth because, as the nearly conical tooth penetrated the bone, more of the tooth came in contact with the bone. (e) How much work was done by the hydraulic press-and thus presumably by the T. rex-in such a penetration? (f) Is there a potential energy associated with this penetration? (The large biting force and energy expenditure

Figure 8-71 Problem 132.
attributed to the T. rex by this research suggest that the animal was a predator and not a scavenger.)

133 Conservative force $F(x)$ acts on a particle that moves along an x axis. Figure 8-72 shows how the potential energy $U(x)$ associated with force $F(x)$ varies with the position of the particle, (a) Plot $F(x)$ for the range $0<x<6 \mathrm{~m}$. (b) The mechanical energy E of the system is 4.0 J . Plot the kinetic energy $K(x)$ of the particle directly on Fig. 8-72.
134 Figure 8-73a shows a molecule consisting of two atoms of masses m and M (with $m \ll M$) and separation r. Figure $8-73 b$ shows the potential energy $U(r)$ of the molecule as a function of r. Describe the motion of the atoms (a) if the total mechanical energy E of the two-atom system is greater than zero (as is E_{1}), and (b) if E is less than zero (as is E_{2}). For $E_{1}=1 \times 10^{-19} \mathrm{~J}$ and $r=0.3 \mathrm{~nm}$, find (c) the potential energy of the system, (d) the total kinetic energy of the atoms, and (e) the force (magnitude and direction) acting on each atom. For what values of r

Figure 8-72 Problem 133.

(a)

Figure 8-73 Problem 134. is the force (f) repulsive, (g) attractive, and (h) zero?

135 Repeat Problem 83, but now with the block accelerated up a frictionless plane inclined at 5.0° to the horizontal.

136 A spring with spring constant $k=620 \mathrm{~N} / \mathrm{m}$ is placed in a vertical orientation with its lower end supported by a horizontal surface. The upper end is depressed 25 cm , and a block with a weight of 50 N is placed (unattached) on the depressed spring. The system is then released from rest. Assume that the gravitational potential energy U_{g} of the block is zero at the release point $(y=0)$ and calculate the kinetic energy K of the block for y equal to (a) 0 , (b) 0.050 m , (c) 0.10 m , (d) 0.15 m , and (e) 0.20 m . Also, (f) how far above its point of release does the block rise?

Integrating leads to

$$
\int_{v_{i}}^{v_{f}} d v=-v_{\mathrm{rel}} \int_{M_{i}}^{M_{f}} \frac{d M}{M}
$$

in which M_{i} is the initial mass of the rocket and M_{f} its final mass. Evaluating the integrals then gives

$$
\begin{equation*}
v_{f}-v_{i}=v_{\text {rel }} \ln \frac{M_{i}}{M_{f}} \quad \text { (second rocket equation) } \tag{9-88}
\end{equation*}
$$

for the increase in the speed of the rocket during the change in mass from M_{i} to M_{f}. (The symbol "ln" in Eq. 9-88 means the natural logarithm.) We see here the advantage of multistage rockets, in which M_{f} is reduced by discarding successive stages when their fuel is depleted. An ideal rocket would reach its destination with only its payload remaining.

Sample Problem 9.09 Rocket engine, thrust, acceleration

In all previous examples in this chapter, the mass of a system is constant (fixed as a certain number). Here is an example of a system (a rocket) that is losing mass. A rocket whose initial mass M_{i} is 850 kg consumes fuel at the rate $R=2.3 \mathrm{~kg} / \mathrm{s}$. The speed $v_{\text {rel }}$ of the exhaust gases relative to the rocket engine is $2800 \mathrm{~m} / \mathrm{s}$. What thrust does the rocket engine provide?

KEY IDEA

Thrust T is equal to the product of the fuel consumption rate R and the relative speed $v_{\text {rel }}$ at which exhaust gases are expelled, as given by Eq. 9-87.
Calculation: Here we find

$$
\begin{aligned}
T & =R v_{\mathrm{rel}}=(2.3 \mathrm{~kg} / \mathrm{s})(2800 \mathrm{~m} / \mathrm{s}) \\
& =6440 \mathrm{~N} \approx 6400 \mathrm{~N}
\end{aligned}
$$

(Answer)
(b) What is the initial acceleration of the rocket?

KEY IDEA

We can relate the thrust T of a rocket to the magnitude a of the resulting acceleration with $T=M a$, where M is the
rocket's mass. However, M decreases and a increases as fuel is consumed. Because we want the initial value of a here, we must use the intial value M_{i} of the mass.

Calculation: We find

$$
a=\frac{T}{M_{i}}=\frac{6440 \mathrm{~N}}{850 \mathrm{~kg}}=7.6 \mathrm{~m} / \mathrm{s}^{2}
$$

(Answer)

To be launched from Earth's surface, a rocket must have an initial acceleration greater than $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$. That is, it must be greater than the gravitational acceleration at the surface. Put another way, the thrust T of the rocket engine must exceed the initial gravitational force on the rocket, which here has the magnitude $M_{i} g$, which gives us

$$
(850 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)=8330 \mathrm{~N}
$$

Because the acceleration or thrust requirement is not met (here $T=6400 \mathrm{~N}$), our rocket could not be launched from Earth's surface by itself; it would require another, more powerful, rocket.

8eview \& Summary

Center of Mass The center of mass of a system of n particles is defined to be the point whose coordinates are given by

$$
\begin{array}{ll}
x_{\mathrm{com}}=\frac{1}{M} \sum_{i=1}^{n} m_{i} x_{i}, & y_{\mathrm{com}}=\frac{1}{M} \sum_{i=1}^{n} m_{i} y_{i}, \quad z_{\mathrm{com}}=\frac{1}{M} \sum_{i=1}^{n} m_{i} z_{i}, \\
\text { or } & \vec{r}_{\mathrm{com}}=\frac{1}{M} \sum_{i=1}^{n} m_{i} \vec{r}_{i},
\end{array}
$$

where M is the total mass of the system.

Newton's Second Law for a System of Particles The motion of the center of mass of any system of particles is governed by Newton's second law for a system of particles, which is

$$
\begin{equation*}
\vec{F}_{\mathrm{net}}=M \vec{a}_{\mathrm{com}} . \tag{9-14}
\end{equation*}
$$

Here $\vec{F}_{\text {net }}$ is the net force of all the external forces acting on the system, M is the total mass of the system, and $\vec{a}_{\text {com }}$ is the acceleration of the system's center of mass.

Linear Momentum and Newton's Second Law For a single particle, we define a quantity \vec{p} called its linear momentum as

$$
\begin{equation*}
\vec{p}=m \vec{v}, \tag{9-22}
\end{equation*}
$$

and can write Newton's second law in terms of this momentum:

$$
\begin{equation*}
\vec{F}_{\mathrm{net}}=\frac{d \vec{p}}{d t} . \tag{9-23}
\end{equation*}
$$

For a system of particles these relations become

$$
\begin{equation*}
\vec{P}=M \vec{v}_{\text {com }} \quad \text { and } \quad \vec{F}_{\mathrm{net}}=\frac{d \vec{P}}{d t} . \tag{9-25,9-27}
\end{equation*}
$$

Collision and Impulse Applying Newton's second law in momentum form to a particle-like body involved in a collision leads to the impulse-linear momentum theorem:

$$
\begin{equation*}
\vec{p}_{f}-\vec{p}_{i}=\Delta \vec{p}=\vec{J}, \tag{9-31,9-32}
\end{equation*}
$$

where $\vec{p}_{f}-\vec{p}_{i}=\Delta \vec{p}$ is the change in the body's linear momentum, and \vec{J} is the impulse due to the force $\vec{F}(t)$ exerted on the body by the other body in the collision:

$$
\begin{equation*}
\vec{J}=\int_{t_{i}}^{t_{f}} \vec{F}(t) d t . \tag{9-30}
\end{equation*}
$$

If $F_{\text {avg }}$ is the average magnitude of $\vec{F}(t)$ during the collision and Δt is the duration of the collision, then for one-dimensional motion

$$
\begin{equation*}
J=F_{\text {avg }} \Delta t . \tag{9-35}
\end{equation*}
$$

When a steady stream of bodies, each with mass m and speed v, collides with a body whose position is fixed, the average force on the fixed body is

$$
\begin{equation*}
F_{\text {avg }}=-\frac{n}{\Delta t} \Delta p=-\frac{n}{\Delta t} m \Delta v \tag{9-37}
\end{equation*}
$$

where $n / \Delta t$ is the rate at which the bodies collide with the fixed body, and Δv is the change in velocity of each colliding body. This average force can also be written as

$$
\begin{equation*}
F_{\text {avg }}=-\frac{\Delta m}{\Delta t} \Delta v \tag{9-40}
\end{equation*}
$$

where $\Delta m / \Delta t$ is the rate at which mass collides with the fixed body. In Eqs. 9-37 and 9-40, $\Delta v=-v$ if the bodies stop upon impact and $\Delta v=$ $-2 v$ if they bounce directly backward with no change in their speed.

Conservation of Linear Momentum If a system is isolated so that no net external force acts on it, the linear momentum \vec{P} of the system remains constant:

$$
\begin{equation*}
\vec{P}=\text { constant } \quad \text { (closed, isolated system) } . \tag{9-42}
\end{equation*}
$$

This can also be written as

$$
\begin{equation*}
\vec{P}_{i}=\vec{P}_{f} \quad(\text { closed, isolated system }), \tag{9-43}
\end{equation*}
$$

where the subscripts refer to the values of \vec{P} at some initial time and at a later time. Equations $9-42$ and $9-43$ are equivalent statements of the law of conservation of linear momentum.

Inelastic Collision in One Dimension In an inelastic collision of two bodies, the kinetic energy of the two-body system is not conserved (it is not a constant). If the system is closed and isolated, the total linear momentum of the system
must be conserved (it is a constant), which we can write in vector form as

$$
\begin{equation*}
\vec{p}_{1 i}+\vec{p}_{2 i}=\vec{p}_{1 f}+\vec{p}_{2 f}, \tag{9-50}
\end{equation*}
$$

where subscripts i and f refer to values just before and just after the collision, respectively.

If the motion of the bodies is along a single axis, the collision is one-dimensional and we can write Eq. $9-50$ in terms of velocity components along that axis:

$$
\begin{equation*}
m_{1} v_{1 i}+m_{2} v_{2 i}=m_{1} v_{1 f}+m_{2} v_{2 f} . \tag{9-51}
\end{equation*}
$$

If the bodies stick together, the collision is a completely inelastic collision and the bodies have the same final velocity V (because they are stuck together).

Motion of the Center of Mass The center of mass of a closed, isolated system of two colliding bodies is not affected by a collision. In particular, the velocity $\vec{v}_{\text {com }}$ of the center of mass cannot be changed by the collision.

Elastic Collisions in One Dimension An elastic collision is a special type of collision in which the kinetic energy of a system of colliding bodies is conserved. If the system is closed and isolated, its linear momentum is also conserved. For a onedimensional collision in which body 2 is a target and body 1 is an incoming projectile, conservation of kinetic energy and linear momentum yield the following expressions for the velocities immediately after the collision:

$$
\begin{align*}
& v_{1 f}=\frac{m_{1}-m_{2}}{m_{1}+m_{2}} v_{1 i} \tag{9-67}\\
& v_{2 f}=\frac{2 m_{1}}{m_{1}+m_{2}} v_{1 i} . \tag{9-68}
\end{align*}
$$

and

Collisions in Two Dimensions If two bodies collide and their motion is not along a single axis (the collision is not head-on), the collision is two-dimensional. If the two-body system is closed and isolated, the law of conservation of momentum applies to the collision and can be written as

$$
\begin{equation*}
\vec{P}_{1 i}+\vec{P}_{2 i}=\vec{P}_{1 f}+\vec{P}_{2 f} . \tag{9-77}
\end{equation*}
$$

In component form, the law gives two equations that describe the collision (one equation for each of the two dimensions). If the collision is also elastic (a special case), the conservation of kinetic energy during the collision gives a third equation:

$$
\begin{equation*}
K_{1 i}+K_{2 i}=K_{1 f}+K_{2 f} . \tag{9-78}
\end{equation*}
$$

Variable-Mass Systems In the absence of external forces a rocket accelerates at an instantaneous rate given by

$$
\begin{equation*}
R v_{\mathrm{rel}}=M a \quad \text { (first rocket equation), } \tag{9-87}
\end{equation*}
$$

in which M is the rocket's instantaneous mass (including unexpended fuel), R is the fuel consumption rate, and $v_{\text {rel }}$ is the fuel's exhaust speed relative to the rocket. The term $R v_{\text {rel }}$ is the thrust of the rocket engine. For a rocket with constant R and $v_{\text {rel }}$, whose speed changes from v_{i} to v_{f} when its mass changes from M_{i} to M_{f},

$$
\begin{equation*}
v_{f}-v_{i}=v_{\mathrm{rel}} \ln \frac{M_{i}}{M_{f}} \quad \text { (second rocket equation). } \tag{9-88}
\end{equation*}
$$

Questions

1 Figure 9-23 shows an overhead view of three particles on which external forces act. The magnitudes and directions of the forces on two of the particles are indicated. What are the magnitude and direction of the force acting on the third particle if the center of mass of the three-particle system is (a) stationary, (b) moving at a constant velocity rightward, and (c) accelerating rightward?
2 Figure 9-24 shows an overhead view of four particles of equal mass sliding over a frictionless surface at constant velocity. The directions of the velocities are indicated; their magnitudes are equal. Consider pairing the particles. Which pairs form a system with a center of mass that (a) is stationary,
(b) is stationary and at the ori-

Figure 9-24 Question 2. gin, and (c) passes through the origin?
3 Consider a box that explodes into two pieces while moving with a constant positive velocity along an x axis. If one piece, with mass m_{1}, ends up with positive velocity \vec{v}_{1}, then the second piece, with mass m_{2}, could end up with (a) a positive velocity \vec{v}_{2} (Fig. 9-25a), (b) a negative velocity \vec{v}_{2} (Fig. 9-25b), or (c) zero velocity (Fig. 9-25c). Rank those three possible results for the second piece according to the corresponding magnitude of $\overrightarrow{v_{1}}$, greatest first.

Figure 9-25 Question 3.
4 Figure 9-26 shows graphs of force magnitude versus time for a body involved in a collision. Rank the graphs according to the magnitude of the impulse on the body, greatest first.

Figure 9-26 Question 4.
5 The free-body diagrams in Fig. 9-27 give, from overhead views, the horizontal forces acting on three boxes of chocolates as the

Figure 9-27 Question 5.
boxes move over a frictionless confectioner's counter. For each box, is its linear momentum conserved along the x axis and the y axis?
6 Figure 9-28 shows four groups of three or four identical particles that move parallel to either the x axis or the y axis, at identical speeds. Rank the groups according to center-of-mass speed, greatest first.

Figure 9-28 Question 6.

7 A block slides along a frictionless floor and into a stationary second block with the same mass. Figure 9-29 shows four choices for a graph of the kinetic energies K of the blocks. (a) Determine which represent physically impossible situations. Of the others, which best represents (b) an elastic collision and (c) an inelastic collision?

Figure 9-29 Question 7.
8 Figure 9-30 shows a snapshot of block 1 as it slides along an x axis on a frictionless floor, before it undergoes an elastic collision with stationary

Figure 9-30 Question 8. block 2. The figure also shows three possible positions of the center of mass (com) of the two-block system at the time of the snapshot. (Point B is halfway between the centers of the two blocks.) Is block 1 stationary, moving forward, or moving backward after the collision if the com is located in the snapshot at (a) A, (b) B, and (c) C ?

9 Two bodies have undergone an elastic one-dimensional collision along an x axis. Figure 9-31 is a graph of position versus time for those bodies and for their center of mass. (a) Were both bodies initially moving, or was one initially stationary? Which line segment corresponds to the mo-

Figure 9-31 Question 9. tion of the center of mass (b) before the collision and (c) after the collision? (d) Is the mass of the body that was moving faster before the collision greater than, less than, or equal to that of the other body?
10 Figure 9-32: A block on a horizontal floor is initially either stationary, sliding in the positive direction of an x axis, or sliding in

Figure 9-32 Question 10.
the negative direction of that axis. Then the block explodes into two pieces that slide along the x axis. Assume the block and the two pieces form a closed, isolated system. Six choices for a graph of the momenta of the block and the pieces are given, all versus time t. Determine which choices represent physically impossible situations and explain why.
11 Block 1 with mass m_{1} slides along an x axis across a frictionless floor and then undergoes an elastic collision with a stationary block 2 with mass m_{2}. Figure 9-33 shows a plot of position x versus time t of block 1 until the collision occurs at position x_{c} and time t_{c}. In which of the lettered regions on the graph will the plot be continued (after the collision) if (a) $m_{1}<m_{2}$ and (b) $m_{1}>m_{2}$? (c) Along which of the numbered dashed lines will the plot be continued if $m_{1}=m_{2}$?
12 Figure 9-34 shows four graphs of position versus time for two bodies and their center of mass. The two bodies form a closed, isolated system and undergo a completely inelastic, one-dimensional collision on an x axis. In graph 1 , are (a) the two bodies and (b) the center of mass moving in the positive or negative direction of the x axis? (c) Which of the graphs correspond to a physically impossible situation? Explain.

Figure 9-33 Question 11.

(3)

(4)

Figure 9-34 Question 12.

Problems

Module 9-1 Center of Mass

$\bullet 1$ A 2.00 kg particle has the $x y$ coordinates $(-1.20 \mathrm{~m}, 0.500 \mathrm{~m})$, and a 4.00 kg particle has the $x y$ coordinates $(0.600 \mathrm{~m},-0.750 \mathrm{~m})$. Both lie on a horizontal plane. At what (a) x and (b) y coordinates must you place a 3.00 kg particle such that the center of mass of the three-particle system has the coordinates ($-0.500 \mathrm{~m},-0.700 \mathrm{~m}$)?
-2 Figure 9-35 shows a three-particle system, with masses $m_{1}=3.0$ $\mathrm{kg}, m_{2}=4.0 \mathrm{~kg}$, and $m_{3}=8.0 \mathrm{~kg}$. The scales on the axes are set by $x_{s}=2.0 \mathrm{~m}$ and $y_{s}=2.0 \mathrm{~m}$. What are (a) the x coordinate and (b) the y coordinate of the system's center of mass? (c) If m_{3} is gradually in-

Figure 9-35 Problem 2. creased, does the center of mass of the system shift toward or away from that particle, or does it remain stationary?
-•3 Figure 9-36 shows a slab with dimensions $d_{1}=11.0 \mathrm{~cm}, d_{2}=$ 2.80 cm , and $d_{3}=13.0 \mathrm{~cm}$. Half the slab consists of aluminum (den-
sity $=2.70 \mathrm{~g} / \mathrm{cm}^{3}$) and half consists of iron (density $=7.85 \mathrm{~g} / \mathrm{cm}^{3}$). What are (a) the x coordinate, (b) the y coordinate, and (c) the z coordinate of the slab's center of mass?

-•4 In Fig. 9-37, three uniform thin rods, each of length $L=22 \mathrm{~cm}$, form an inverted U. The vertical rods each have a mass of 14 g ; the horizontal rod has a mass of 42 g . What are (a) the x coordinate and (b) the y coordinate of the system's center of mass?
005 ©o What are (a) the x coordinate and (b) the y coordinate of the center of mass for the uniform plate shown in Fig. 9-38 if $L=5.0 \mathrm{~cm}$?

Figure 9-38 Problem 5.
-•6 Figure 9-39 shows a cubical box that has been constructed from uniform metal plate of negligible thickness. The box is open at the top and has edge length $L=$ 40 cm . Find (a) the x coordinate, (b) the y coordinate, and (c) the z coordinate of the center of mass of the box.
0007 ILW In the ammonia $\left(\mathrm{NH}_{3}\right)$ molecule of Fig. 9-40, three hydrogen (H) atoms form an equilateral triangle, with the center of the triangle at distance $d=$ $9.40 \times 10^{-11} \mathrm{~m}$ from each hydrogen atom. The nitrogen (N) atom is at the apex of a pyramid, with the three hydrogen atoms forming the base. The nitro-gen-to-hydrogen atomic mass ratio is 13.9, and the nitrogen-to-hydrogen distance is $L=10.14 \times 10^{-11} \mathrm{~m}$. What are the (a) x and (b) y coordinates of the molecule's center of mass?
0008 (60 A uniform soda can of mass 0.140 kg is 12.0 cm tall and filled with 0.354 kg of soda (Fig. 9-41). Then small holes are drilled in the top and bottom (with negligible loss of metal) to drain the soda. What is the height h of the com of the can and contents (a) initially and (b) after the can loses all the soda? (c) What happens to h as the soda drains out? (d) If x is the height of the remaining soda at any given instant, find x when the com reaches its lowest point.

Figure 9-39 Problem 6.

Figure 9-40 Problem 7.

Figure 9-41 Problem 8.

Module 9-2 Newton's Second Law for a System of Particles
-9 ILW A stone is dropped at $t=0$. A second stone, with twice the mass of the first, is dropped from the same point at $t=100 \mathrm{~ms}$. (a) How far below the release point is the center of mass of the two stones at $t=300 \mathrm{~ms}$? (Neither stone has yet reached the ground.) (b) How fast is the center of mass of the twostone system moving at that time?
-10 © A 1000 kg automobile is at rest at a traffic signal. At the instant the light turns green, the automobile starts to move with a constant acceleration of $4.0 \mathrm{~m} / \mathrm{s}^{2}$. At the same instant a 2000 kg truck, traveling at a constant speed of $8.0 \mathrm{~m} / \mathrm{s}$, overtakes and passes the automobile. (a) How far is the com of the automobile-truck system from the traffic light at $t=3.0 \mathrm{~s}$? (b) What is the speed of the com then?
-11 A big olive ($m=0.50 \mathrm{~kg}$) lies at the origin of an $x y$ coordinate system, and a big Brazil nut ($M=1.5 \mathrm{~kg}$) lies at the point $(1.0,2.0) \mathrm{m}$. At $t=0$, a force $\vec{F}_{o}=(2.0 \hat{\mathrm{i}}+3.0 \hat{\mathrm{j}}) \mathrm{N}$ begins to act on the olive, and a force $\vec{F}_{n}=(-3.0 \hat{\mathrm{i}}-2.0 \hat{\mathrm{j}}) \mathrm{N}$ begins to act on the nut. In unit-vector notation, what is the displacement of the center of mass of the olive-nut system at $t=4.0 \mathrm{~s}$, with respect to its position at $t=0$?
-12 Two skaters, one with mass 65 kg and the other with mass 40 kg , stand on an ice rink holding a pole of length 10 m and negligible mass. Starting from the ends of the pole, the skaters pull themselves along the pole until they meet. How far does the 40 kg skater move?
$\bullet 13$ SSM A shell is shot with an initial velocity \vec{v}_{0} of $20 \mathrm{~m} / \mathrm{s}$, at an angle of $\theta_{0}=60^{\circ}$ with the horizontal. At the top of the trajectory, the shell explodes into two fragments of equal mass (Fig. $9-42$). One fragment, whose speed immediately after the explosion is zero, falls vertically. How far from the gun does the other fragment land, assuming that the terrain is level and that air drag is negligible?

Figure 9-42 Problem 13.
-•14 In Figure 9-43, two particles are launched from the origin of the coordinate system at time $t=0$. Particle 1 of mass $m_{1}=5.00 \mathrm{~g}$ is shot directly along the x axis on a frictionless floor, with constant speed $10.0 \mathrm{~m} / \mathrm{s}$. Particle 2 of mass $m_{2}=3.00 \mathrm{~g}$ is shot with a velocity of magnitude $20.0 \mathrm{~m} / \mathrm{s}$, at an upward angle such that it always stays directly above particle 1 . (a) What is the maximum height $H_{\max }$ reached by the com of the two-particle system? In unit-vector notation, what are the (b) velocity and (c) acceleration of the com when the com reaches $H_{\text {max }}$?

Figure 9-43 Problem 14.
-15 Figure 9-44 shows an arrangement with an air track, in which a cart is connected by a cord to a hanging block. The cart has mass $m_{1}=0.600 \mathrm{~kg}$, and its center is initially at $x y$ coordinates $(-0.500$ $\mathrm{m}, 0 \mathrm{~m}$); the block has mass $m_{2}=0.400 \mathrm{~kg}$, and its center is initially at xy coordinates $(0,-0.100 \mathrm{~m})$. The mass of the cord and pulley are negligible. The cart is released from rest, and both cart and block move until the cart hits the pulley. The friction between the cart and the air track and between the pulley and its axle is negligible. (a) In unit-vector notation, what is the acceleration of the center of mass of the cart-block system? (b) What is the velocity of the com as a function of time t ? (c) Sketch the path taken by the com. (d) If the path is curved, determine whether it bulges upward to the right or downward to the left, and if it is straight, find the angle between it and the x axis.

Figure 9-44 Problem 15.
$\because 16$ ©o Ricardo, of mass 80 kg , and Carmelita, who is lighter, are enjoying Lake Merced at dusk in a 30 kg canoe. When the canoe is at rest in the placid water, they exchange seats, which are 3.0 m apart and symmetrically located with respect to the canoe's center. If the canoe moves 40 cm horizontally relative to a pier post, what is Carmelita's mass?
$\bullet \bullet 17$ so In Fig. 9-45a, a 4.5 kg dog stands on an 18 kg flatboat at distance $D=6.1 \mathrm{~m}$ from the shore. It walks 2.4 m along the boat toward shore and then stops. Assuming no friction between the boat and the water, find how far the dog is then from the shore. (Hint: See Fig. 9-45b.)

(a)

(b)

Figure 9-45 Problem 17.

Module 9-3 Linear Momentum

-18 A 0.70 kg ball moving horizontally at $5.0 \mathrm{~m} / \mathrm{s}$ strikes a vertical wall and rebounds with speed $2.0 \mathrm{~m} / \mathrm{s}$. What is the magnitude of the change in its linear momentum?
-19 ILW A 2100 kg truck traveling north at $41 \mathrm{~km} / \mathrm{h}$ turns east and accelerates to $51 \mathrm{~km} / \mathrm{h}$. (a) What is the change in the truck's kinetic energy? What are the (b) magnitude and (c) direction of the change in its momentum?
$\bullet 20$ ©o At time $t=0$, a ball is struck at ground level and sent over level ground. The momentum p versus t during the flight is given by Fig. $9-46$ (with $p_{0}=6.0 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$ and $p_{1}=4.0 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$). At what initial angle is the ball launched? (Hint: Find a solution that does not require you to read the time of the low point of the plot.)

Figure 9-46 Problem 20.
-2 21 A 0.30 kg softball has a velocity of $15 \mathrm{~m} / \mathrm{s}$ at an angle of 35° below the horizontal just before making contact with the bat. What is the magnitude of the change in momentum of the ball while in contact with the bat if the ball leaves with a velocity of (a) $20 \mathrm{~m} / \mathrm{s}$, vertically downward, and (b) $20 \mathrm{~m} / \mathrm{s}$, horizontally back toward the pitcher?
$\bullet 22$ Figure 9-47 gives an overhead view of the path taken by a 0.165 kg cue ball as it bounces from a rail of a pool table. The ball's initial speed is $2.00 \mathrm{~m} / \mathrm{s}$, and the angle θ_{1} is 30.0°. The bounce reverses the y component of the ball's velocity but does not alter the x component. What are (a) angle θ_{2} and (b) the change in the ball's linear momentum in unit-vector notation? (The fact that the ball rolls is irrelevant to the problem.)

Figure 9-47 Problem 22.

Module 9-4 Collision and Impulse

-23 Until his seventies, Henri LaMothe (Fig. 9-48) excited audiences by belly-flopping from a height of 12 m into 30 cm of water. Assuming that he stops just as he reaches the bottom of the water and estimating his mass, find the magnitude of the impulse on him from the water.

George Long/Getty Images, Inc.
Figure 9-48 Problem 23. Belly-flopping into 30 cm of water.
-24 In February 1955, a paratrooper fell 370 m from an airplane without being able to open his chute but happened to land in snow, suffering only minor injuries. Assume that his speed at impact was $56 \mathrm{~m} / \mathrm{s}$ (terminal speed), that his mass (including gear) was 85 kg , and that the magnitude of the force on him from the
snow was at the survivable limit of $1.2 \times 10^{5} \mathrm{~N}$. What are (a) the minimum depth of snow that would have stopped him safely and (b) the magnitude of the impulse on him from the snow?
-25 A 1.2 kg ball drops vertically onto a floor, hitting with a speed of $25 \mathrm{~m} / \mathrm{s}$. It rebounds with an initial speed of $10 \mathrm{~m} / \mathrm{s}$. (a) What impulse acts on the ball during the contact? (b) If the ball is in contact with the floor for 0.020 s , what is the magnitude of the average force on the floor from the ball?
-26 In a common but dangerous prank, a chair is pulled away as a person is moving downward to sit on it, causing the victim to land hard on the floor. Suppose the victim falls by 0.50 m , the mass that moves downward is 70 kg , and the collision on the floor lasts 0.082 s . What are the magnitudes of the (a) impulse and (b) average force acting on the victim from the floor during the collision?
-27 SSIM A force in the negative direction of an x axis is applied for 27 ms to a 0.40 kg ball initially moving at $14 \mathrm{~m} / \mathrm{s}$ in the positive direction of the axis. The force varies in magnitude, and the impulse has magnitude $32.4 \mathrm{~N} \cdot \mathrm{~s}$. What are the ball's (a) speed and (b) direction of travel just after the force is applied? What are (c) the average magnitude of the force and (d) the direction of the impulse on the ball?
-28 In tae-kwon-do, a hand is slammed down onto a target at a speed of $13 \mathrm{~m} / \mathrm{s}$ and comes to a stop during the 5.0 ms collision. Assume that during the impact the hand is independent of the arm and has a mass of 0.70 kg . What are the magnitudes of the (a) impulse and (b) average force on the hand from the target?
-29 Suppose a gangster sprays Superman's chest with 3 g bullets at the rate of 100 bullets $/ \mathrm{min}$, and the speed of each bullet is 500 m / s. Suppose too that the bullets rebound straight back with no change in speed. What is the magnitude of the average force on Superman's chest?
-•30 Two average forces. A steady stream of 0.250 kg snowballs is shot perpendicularly into a wall at a speed of $4.00 \mathrm{~m} / \mathrm{s}$. Each ball sticks to the wall. Figure 9-49 gives the magnitude F of the force on the wall as a function of time t for two of the snowball impacts. Impacts occur with a repetition time interval $\Delta t_{r}=50.0 \mathrm{~ms}$, last a duration time interval $\Delta t_{d}=10 \mathrm{~ms}$, and produce isosceles triangles on the graph, with each impact reaching a force maximum $F_{\max }=200 \mathrm{~N}$. During each impact, what are the magnitudes of (a) the impulse and (b) the average force on the wall? (c) During a time interval of many impacts, what is the magnitude of the average force on the wall?

$\bullet 31$ Jumping up before the elevator hits. After the cable snaps and the safety system fails, an elevator cab free-falls from a height of 36 m . During the collision at the bottom of the elevator shaft, a 90 kg passenger is stopped in 5.0 ms . (Assume that neither the passenger nor the cab rebounds.) What are the magnitudes of the (a) impulse and (b) average force on the passenger during the collision? If the passenger were to jump upward with a speed of $7.0 \mathrm{~m} / \mathrm{s}$ relative to the cab floor just before the cab hits the bottom of the shaft, what
are the magnitudes of the (c) impulse and (d) average force (assuming the same stopping time)?
-•32 A 5.0 kg toy car can move along an x axis; Fig. 9-50 gives F_{x} of the force acting on the car, which begins at rest at time $t=0$. The scale on the F_{x} axis is set by $F_{x s}=5.0 \mathrm{~N}$. In unit-vector notation, what is \vec{p} at (a) $t=4.0 \mathrm{~s}$ and (b) $t=7.0 \mathrm{~s}$, and (c) what is \vec{v} at $t=9.0 \mathrm{~s}$?
$\bullet 33$ ©o Figure $9-51$ shows a 0.300 kg baseball just before and just after it collides with a bat. Just before, the ball has velocity \vec{v}_{1} of magnitude $12.0 \mathrm{~m} / \mathrm{s}$ and angle $\theta_{1}=35.0^{\circ}$. Just after, it is traveling directly upward with velocity \vec{v}_{2} of magnitude 10.0 m / s. The duration of the collision is

Figure 9-50 Problem 32.

Figure 9-51 Problem 33. 2.00 ms . What are the (a) magnitude and (b) direction (relative to the positive direction of the x axis) of the impulse on the ball from the bat? What are the (c) magnitude and (d) direction of the average force on the ball from the bat?
-•34 Basilisk lizards can run across the top of a water surface (Fig. 9-52). With each step, a lizard first slaps its foot against the water and then pushes it down into the water rapidly enough to form an air cavity around the top of the foot. To avoid having to pull the foot back up against water drag in order to complete the step, the lizard withdraws the foot before water can flow into the air cavity. If the lizard is not to sink, the average upward impulse on the lizard during this full action of slap, downward push, and withdrawal must match the downward impulse due to the gravitational force. Suppose the mass of a basilisk lizard is 90.0 g , the mass of each foot is 3.00 g , the speed of a foot as it slaps the water is $1.50 \mathrm{~m} / \mathrm{s}$, and the time for a single step is 0.600 s . (a) What is the magnitude of the impulse on the lizard during the slap? (Assume this impulse is directly upward.) (b) During the 0.600 s duration of a step, what is the downward impulse on the lizard due to the gravitational force? (c) Which action, the slap or the push, provides the primary support for the lizard, or are they approximately equal in their support?

[^0]Figure 9-52 Problem 34. Lizard running across water.
-035 © Figure 9-53 shows an approximate plot of force magnitude F versus time t during the collision of a 58 g Superball with a wall. The initial velocity of the ball is $34 \mathrm{~m} / \mathrm{s}$ perpendicular to the wall; the ball rebounds directly back with approximately the same speed, also perpendicular to the wall. What is $F_{\max }$, the maximum magnitude of the force on the ball from the wall during the collision?
-36 A 0.25 kg puck is initially stationary on an ice surface with negligible friction. At time $t=0$, a horizontal force begins to move the puck. The force is given by $\vec{F}=\left(12.0-3.00 t^{2}\right) \hat{\mathrm{i}}$, with \vec{F} in newtons and t in seconds, and it acts until its magnitude is zero. (a) What is the magnitude of the impulse on the puck from the force between $t=0.500 \mathrm{~s}$ and $t=1.25 \mathrm{~s}$? (b) What is the change in momentum of the puck between $t=0$ and the instant at which $F=0$?
-•37 SSM A soccer player kicks a soccer ball of mass 0.45 kg that is initially at rest. The foot of the player is in contact with the ball for $3.0 \times 10^{-3} \mathrm{~s}$, and the force of the kick is given by

$$
F(t)=\left[\left(6.0 \times 10^{6}\right) t-\left(2.0 \times 10^{9}\right) t^{2}\right] \mathrm{N}
$$

for $0 \leq t \leq 3.0 \times 10^{-3} \mathrm{~s}$, where t is in seconds. Find the magnitudes of (a) the impulse on the ball due to the kick, (b) the average force on the ball from the player's foot during the period of contact, (c) the maximum force on the ball from the player's foot during the period of contact, and (d) the ball's velocity immediately after it loses contact with the player's foot.
-038 In the overhead view of Fig. $9-54$, a 300 g ball with a speed v of $6.0 \mathrm{~m} / \mathrm{s}$ strikes a wall at an angle θ of 30° and then rebounds with the same speed and angle. It is in contact with the wall for 10 ms . In unitvector notation, what are (a) the

Figure 9-54 Problem 38. impulse on the ball from the wall and (b) the average force on the wall from the ball?

Module 9-5 Conservation of Linear Momentum

-39 SSM A 91 kg man lying on a surface of negligible friction shoves a 68 g stone away from himself, giving it a speed of $4.0 \mathrm{~m} / \mathrm{s}$. What speed does the man acquire as a result?
-40 A space vehicle is traveling at $4300 \mathrm{~km} / \mathrm{h}$ relative to Earth when the exhausted rocket motor (mass $4 m$) is disengaged and sent backward with a speed of $82 \mathrm{~km} / \mathrm{h}$ relative to the command module (mass m). What is the speed of the command module relative to Earth just after the separation?
-•41 Figure 9-55 shows a two-ended "rocket" that is initially stationary on a frictionless floor, with its center at the origin of an x axis. The rocket consists of a central block C (of mass $M=6.00 \mathrm{~kg}$) and blocks L and R (each of mass $m=2.00 \mathrm{~kg}$) on the left and right sides. Small explosions can shoot either of the side blocks away from block C and along the x axis. Here is the sequence: (1) At time $t=$ 0 , block L is shot to the left with a speed of $3.00 \mathrm{~m} / \mathrm{s}$ relative to the ve-

Figure 9-55 Problem 41.
locity that the explosion gives the rest of the rocket. (2) Next, at time $t=0.80 \mathrm{~s}$, block R is shot to the right with a speed of $3.00 \mathrm{~m} / \mathrm{s}$ relative to the velocity that block C then has. At $t=2.80 \mathrm{~s}$, what are (a) the velocity of block C and (b) the position of its center?
-•42 An object, with mass m and speed v relative to an observer, explodes into two pieces, one three times as massive as the other; the explosion takes place in deep space. The less massive piece stops relative to the observer. How much kinetic energy is added to the system during the explosion, as measured in the observer's reference frame?
$\because 43$ In the Olympiad of 708 в.c., some athletes competing in the standing long jump used handheld weights called halteres to lengthen their jumps (Fig. 9-56). The weights were swung up in front just before liftoff and then swung down and thrown backward during the flight. Suppose a modern 78 kg long jumper similarly uses two 5.50 kg halteres, throwing them horizontally to the rear at his maximum height such that their horizontal velocity is zero relative to the ground. Let his liftoff velocity be $\vec{v}=(9.5 \hat{i}+4.0 \hat{\mathrm{j}}) \mathrm{m} / \mathrm{s}$ with or without the halteres, and assume that he lands at the liftoff level. What distance would the use of the halteres add to his range?

Réunion des Musées Nationaux/ Art Resource

Figure 9-56 Problem 43.
$\bullet 44$ © $\boldsymbol{\bullet}$ - In Fig. 9-57, a stationary block explodes into two pieces L and R that slide across a frictionless floor and then into regions with friction, where they stop. Piece L, with a mass of 2.0 kg , encounters a coefficient of kinetic friction $\mu_{L}=0.40$ and slides to a stop in distance $d_{L}=0.15 \mathrm{~m}$. Piece R encounters a coefficient of kinetic friction $\mu_{R}=$ 0.50 and slides to a stop in distance $d_{R}=0.25 \mathrm{~m}$. What was the mass of the block?

Figure 9-57 Problem 44.
$\bullet 45$ SSM Www A 20.0 kg body is moving through space in the positive direction of an x axis with a speed of $200 \mathrm{~m} / \mathrm{s}$ when, due to an internal explosion, it breaks into three parts. One part, with a mass of 10.0 kg , moves away from the point of explosion with a speed of $100 \mathrm{~m} / \mathrm{s}$ in the positive y direction. A second part, with a mass of 4.00 kg , moves in the negative x direction with a speed of $500 \mathrm{~m} / \mathrm{s}$. (a) In unit-vector notation, what is the velocity of the third part? (b) How much energy is released in the explosion? Ignore effects due to the gravitational force.
-•46 A 4.0 kg mess kit sliding on a frictionless surface explodes into two 2.0 kg parts: $3.0 \mathrm{~m} / \mathrm{s}$, due north, and $5.0 \mathrm{~m} / \mathrm{s}, 30^{\circ}$ north of east. What is the original speed of the mess kit?
$\bullet 47$ A vessel at rest at the origin of an $x y$ coordinate system explodes into three pieces. Just after the explosion, one piece, of mass m, moves with velocity $(-30 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{i}}$ and a second piece, also of mass m, moves with velocity $(-30 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{j}}$. The third piece has mass $3 m$. Just after the explosion, what are the (a) magnitude and (b) direction of the velocity of the third piece?
$\bullet \bullet 48$ © Particle A and particle B are held together with a compressed spring between them. When they are released, the spring pushes them apart, and they then fly off in opposite directions, free of the spring. The mass of A is 2.00 times the mass of B, and the energy stored in the spring was 60 J . Assume that the spring has negligible mass and that all its stored energy is transferred to the particles. Once that transfer is complete, what are the kinetic energies of (a) particle A and (b) particle B ?

Module 9-6 Momentum and Kinetic Energy in Collisions

-49 A bullet of mass 10 g strikes a ballistic pendulum of mass 2.0 kg . The center of mass of the pendulum rises a vertical distance of 12 cm . Assuming that the bullet remains embedded in the pendulum, calculate the bullet's initial speed.
$\cdot 50$ A 5.20 g bullet moving at $672 \mathrm{~m} / \mathrm{s}$ strikes a 700 g wooden block at rest on a frictionless surface. The bullet emerges, traveling in the same direction with its speed reduced to $428 \mathrm{~m} / \mathrm{s}$. (a) What is the resulting speed of the block? (b) What is the speed of the bullet-block center of mass?
-051 60 In Fig. 9-58a, a 3.50 g bullet is fired horizontally at two blocks at rest on a frictionless table. The bullet passes through block 1 (mass 1.20 kg) and embeds itself in block 2 (mass 1.80 kg). The blocks end up with speeds $v_{1}=0.630 \mathrm{~m} / \mathrm{s}$ and $v_{2}=1.40 \mathrm{~m} / \mathrm{s}$ (Fig. $9-58 b)$. Neglecting the material removed from block 1 by the bullet, find the speed of the bullet as it (a) leaves and (b) enters block 1.

Figure 9-58 Problem 51.
$\bullet 52$ ©o In Fig. 9-59, a 10 g bullet moving directly upward at $1000 \mathrm{~m} / \mathrm{s}$ strikes and passes through the center of mass of a 5.0 kg block initially at rest. The bullet emerges from the block moving directly upward at 400 m / s. To what maximum height does the block then rise above its initial

Figure 9-59 Problem 52. position?
-•53 In Anchorage, collisions of a vehicle with a moose are so common that they are referred to with the abbreviation MVC. Suppose a 1000 kg car slides into a stationary 500 kg moose on a very slippery road, with the moose being thrown through the windshield (a common MVC result). (a) What percent of the original kinetic energy is lost in the collision to other forms of energy? A similar danger occurs in Saudi Arabia because of camel-vehicle
collisions (CVC). (b) What percent of the original kinetic energy is lost if the car hits a 300 kg camel? (c) Generally, does the percent loss increase or decrease if the animal mass decreases?
-•54 A completely inelastic collision occurs between two balls of wet putty that move directly toward each other along a vertical axis. Just before the collision, one ball, of mass 3.0 kg , is moving upward at $20 \mathrm{~m} / \mathrm{s}$ and the other ball, of mass 2.0 kg , is moving downward at $12 \mathrm{~m} / \mathrm{s}$. How high do the combined two balls of putty rise above the collision point? (Neglect air drag.)
$\bullet 55$ ILW A 5.0 kg block with a speed of $3.0 \mathrm{~m} / \mathrm{s}$ collides with a 10 kg block that has a speed of $2.0 \mathrm{~m} / \mathrm{s}$ in the same direction. After the collision, the 10 kg block travels in the original direction with a speed of $2.5 \mathrm{~m} / \mathrm{s}$. (a) What is the velocity of the 5.0 kg block immediately after the collision? (b) By how much does the total kinetic energy of the system of two blocks change because of the collision? (c) Suppose, instead, that the 10 kg block ends up with a speed of $4.0 \mathrm{~m} / \mathrm{s}$. What then is the change in the total kinetic energy? (d) Account for the result you obtained in (c).
${ }^{\bullet} 56$ In the "before" part of Fig. 9-60, car A (mass 1100 kg) is stopped at a traffic light when it is rear-ended by car B (mass 1400 kg). Both cars then slide with locked wheels until the frictional force from the slick road (with a low μ_{k} of 0.13) stops them, at distances $d_{A}=8.2 \mathrm{~m}$ and $d_{B}=6.1 \mathrm{~m}$. What are the speeds of (a) car A and (b) car B at the start of the sliding, just after the collision? (c) Assuming that linear momentum is conserved during the collision, find the speed of car B just before the collision. (d) Explain why this assumption may be invalid.

-•57 ©0 In Fig. 9-61, a ball of mass $m=60 \mathrm{~g}$ is shot with speed $v_{i}=22$ m / s into the barrel of a spring gun of mass $M=240 \mathrm{~g}$ initially at rest on a frictionless surface. The ball sticks in

Figure 9-61 Problem 57. the barrel at the point of maximum compression of the spring. Assume that the increase in thermal energy due to friction between the ball and the barrel is negligible. (a) What is the speed of the spring gun after the ball stops in the barrel? (b) What fraction of the initial kinetic energy of the ball is stored in the spring?
$\bullet \bullet 58$ In Fig. 9-62, block 2 (mass 1.0 kg) is at rest on a frictionless surface and touching the end of an unstretched spring of spring constant

Figure 9-62 Problem 58. $200 \mathrm{~N} / \mathrm{m}$. The other end of the spring is fixed to a wall. Block 1 (mass 2.0 kg), traveling at speed $v_{1}=4.0$ m / s, collides with block 2 , and the two blocks stick together. When the blocks momentarily stop, by what distance is the spring compressed?
-•059 ILw In Fig. 9-63, block 1 (mass 2.0 kg) is moving rightward at $10 \mathrm{~m} / \mathrm{s}$ and block 2 (mass 5.0 kg) is moving rightward at $3.0 \mathrm{~m} / \mathrm{s}$. The surface is frictionless, and a spring with a spring constant of $1120 \mathrm{~N} / \mathrm{m}$ is fixed to block 2 . When the blocks collide, the compression of the spring is maximum at the instant the blocks have the same velocity. Find the maximum compression.

Figure 9-63 Problem 59.

Module 9-7 Elastic Collisions in One Dimension

-60 In Fig. 9-64, block A (mass 1.6 kg) slides into block B (mass 2.4 kg), along a frictionless surface. The directions of three velocities before (i) and after (f) the collision are indicated; the corresponding speeds are $v_{A i}=$ $5.5 \mathrm{~m} / \mathrm{s}, v_{B i}=2.5 \mathrm{~m} / \mathrm{s}$, and $v_{B f}=4.9$ m / s. What are the (a) speed and (b) direction (left or right) of velocity $\vec{v}_{A f}$? (c) Is the collision elastic?

Figure 9-64 Problem 60. $\bullet 61$ SSM A cart with mass 340 g moving on a frictionless linear air track at an initial speed of $1.2 \mathrm{~m} / \mathrm{s}$ undergoes an elastic collision with an initially stationary cart of unknown mass. After the collision, the first cart continues in its original direction at $0.66 \mathrm{~m} / \mathrm{s}$. (a) What is the mass of the second cart? (b) What is its speed after impact? (c) What is the speed of the twocart center of mass?
-62 Two titanium spheres approach each other head-on with the same speed and collide elastically. After the collision, one of the spheres, whose mass is 300 g , remains at rest. (a) What is the mass of the other sphere? (b) What is the speed of the two-sphere center of mass if the initial speed of each sphere is $2.00 \mathrm{~m} / \mathrm{s}$?
-063 Block 1 of mass m_{1} slides along a frictionless floor and into a one-dimensional elastic collision with stationary block 2 of mass $m_{2}=3 m_{1}$. Prior to the collision, the center of mass of the twoblock system had a speed of $3.00 \mathrm{~m} / \mathrm{s}$. Afterward, what are the speeds of (a) the center of mass and (b) block 2?
$\bullet \bullet 64$ (60) A steel ball of mass 0.500 kg is fastened to a cord that is 70.0 cm long and fixed at the far end. The ball is then released when the cord is horizontal (Fig. 9-65). At the bottom of its path, the ball strikes a 2.50 kg steel block initially at rest on a frictionless surface. The collision is elastic. Find (a) the speed of the ball and (b) the speed of

Figure 9-65 Problem 64. the block, both just after the collision.
-065 SSM A body of mass 2.0 kg makes an elastic collision with another body at rest and continues to move in the original direction but with one-fourth of its original speed. (a) What is the mass of the other body? (b) What is the speed of the two-body center of mass if the initial speed of the 2.0 kg body was $4.0 \mathrm{~m} / \mathrm{s}$?
-•66 Block 1, with mass m_{1} and speed $4.0 \mathrm{~m} / \mathrm{s}$, slides along an x axis on a frictionless floor and then undergoes a one-dimensional elastic collision with stationary block 2 , with mass $m_{2}=0.40 m_{1}$. The two blocks then slide into a region where the coefficient of kinetic
friction is 0.50 ; there they stop. How far into that region do (a) block 1 and (b) block 2 slide?
$\bullet \bullet 67$ In Fig. 9-66, particle 1 of mass $m_{1}=0.30 \mathrm{~kg}$ slides rightward along an x axis on a frictionless floor with a speed of $2.0 \mathrm{~m} / \mathrm{s}$. When it reaches $x=$ 0 , it undergoes a one-dimensional elastic collision with stationary parti-

Figure 9-66 Problem 67. cle 2 of mass $m_{2}=0.40 \mathrm{~kg}$. When particle 2 then reaches a wall at $x_{w}=70 \mathrm{~cm}$, it bounces from the wall with no loss of speed. At what position on the x axis does particle 2 then collide with particle 1 ?
-•68 60 In Fig. 9-67, block 1 of mass m_{1} slides from rest along a frictionless ramp from height $h=2.50 \mathrm{~m}$ and then collides with stationary block 2 , which has mass $m_{2}=2.00 m_{1}$. After the collision, block 2 slides into a region where the coefficient of kinetic friction μ_{k} is 0.500 and comes to a stop in distance d within that region. What is the value of distance d if the collision is (a) elastic and (b) completely inelastic?

Figure 9-67 Problem 68.
$\bullet 0069$ A small ball of mass m is aligned above a larger ball of mass $M=0.63 \mathrm{~kg}$ (with a slight separation, as with the baseball and basketball of Fig. 9-68a), and the two are dropped simultaneously from a height of $h=1.8 \mathrm{~m}$. (Assume the radius of each ball is negligible relative to h.) (a) If the larger ball rebounds elastically from the floor and then the small ball rebounds elastically from the larger ball, what value of m results in the larger ball stopping when it collides with the small ball? (b) What height does the small ball

Figure 9-68 Problem 69. then reach (Fig. 9-68b)?
00070 60 In Fig. 9-69, puck 1 of mass $m_{1}=0.20 \mathrm{~kg}$ is sent sliding across a frictionless lab bench, to undergo a one-dimensional elastic collision with stationary puck 2 . Puck 2 then slides off the bench and lands a distance d from the base of the bench. Puck 1 rebounds from the collision and slides off the opposite edge of the bench, landing a distance $2 d$ from the base of the bench. What is the mass of puck 2? (Hint: Be careful with signs.)

Figure 9-69 Problem 70.

Module 9-8 Collisions in Two Dimensions

$\bullet 071$ ILW In Fig. 9-21, projectile particle 1 is an alpha particle and target particle 2 is an oxygen nucleus. The alpha particle is scattered at angle $\theta_{1}=64.0^{\circ}$ and the oxygen nucleus recoils with speed $1.20 \times$ $10^{5} \mathrm{~m} / \mathrm{s}$ and at angle $\theta_{2}=51.0^{\circ}$. In atomic mass units, the mass of the alpha particle is 4.00 u and the mass of the oxygen nucleus is 16.0 u . What are the (a) final and (b) initial speeds of the alpha particle?
$\odot 72$ Ball B, moving in the positive direction of an x axis at speed v, collides with stationary ball A at the origin. A and B have different masses. After the collision, B moves in the negative direction of the y axis at speed $v / 2$. (a) In what direction does A move? (b) Show that the speed of A cannot be determined from the given information.
$\bullet 73$ After a completely inelastic collision, two objects of the same mass and same initial speed move away together at half their initial speed. Find the angle between the initial velocities of the objects.
${ }^{\circ} 74$ Two 2.0 kg bodies, A and B, collide. The velocities before the collision are $\vec{v}_{A}=(15 \hat{\mathrm{i}}+30 \hat{\mathrm{j}}) \mathrm{m} / \mathrm{s}$ and $\vec{v}_{B}=(-10 \hat{\mathrm{i}}+5.0 \hat{\mathrm{j}}) \mathrm{m} / \mathrm{s}$. After the collision, $\vec{v}_{A}^{\prime}=(-5.0 \hat{\mathrm{i}}+20 \hat{\mathrm{j}}) \mathrm{m} / \mathrm{s}$. What are (a) the final velocity of B and (b) the change in the total kinetic energy (including sign)?
$\bullet 75$ © A projectile proton with a speed of $500 \mathrm{~m} / \mathrm{s}$ collides elastically with a target proton initially at rest. The two protons then move along perpendicular paths, with the projectile path at 60° from the original direction. After the collision, what are the speeds of (a) the target proton and (b) the projectile proton?

Module 9-9 Systems with Varying Mass: A Rocket

${ }^{-} 76$ A 6090 kg space probe moving nose-first toward Jupiter at $105 \mathrm{~m} / \mathrm{s}$ relative to the Sun fires its rocket engine, ejecting 80.0 kg of exhaust at a speed of $253 \mathrm{~m} / \mathrm{s}$ relative to the space probe. What is the final velocity of the probe?
${ }^{-77}$ ssm In Fig. 9-70, two long barges are moving in the same direction in still water, one with a speed of $10 \mathrm{~km} / \mathrm{h}$ and the other with a speed of $20 \mathrm{~km} / \mathrm{h}$. While they are passing each other, coal is shoveled from the slower to the faster one at a rate of $1000 \mathrm{~kg} / \mathrm{min}$. How much additional force must be provided by the driving engines of (a) the faster barge and (b) the slower barge if neither is to change speed? Assume that the shoveling is always perfectly sideways and that the frictional forces between the barges and the water do not depend on the mass of the barges.

Figure 9-70 Problem 77.
-78 Consider a rocket that is in deep space and at rest relative to an inertial reference frame. The rocket's engine is to be fired for a
certain interval. What must be the rocket's mass ratio (ratio of initial to final mass) over that interval if the rocket's original speed relative to the inertial frame is to be equal to (a) the exhaust speed (speed of the exhaust products relative to the rocket) and (b) 2.0 times the exhaust speed?
-79 SSM ILW A rocket that is in deep space and initially at rest relative to an inertial reference frame has a mass of $2.55 \times 10^{5} \mathrm{~kg}$, of which $1.81 \times 10^{5} \mathrm{~kg}$ is fuel. The rocket engine is then fired for 250 s while fuel is consumed at the rate of $480 \mathrm{~kg} / \mathrm{s}$. The speed of the exhaust products relative to the rocket is $3.27 \mathrm{~km} / \mathrm{s}$. (a) What is the rocket's thrust? After the 250 s firing, what are (b) the mass and (c) the speed of the rocket?

Additional Problems

80 An object is tracked by a radar station and determined to have a position vector given by $\vec{r}=(3500-160 t) \hat{\mathrm{i}}+2700 \hat{\mathrm{j}}+300 \hat{\mathrm{k}}$, with \vec{r} in meters and t in seconds. The radar station's x axis points east, its y axis north, and its z axis vertically up. If the object is a 250 kg meteorological missile, what are (a) its linear momentum, (b) its direction of motion, and (c) the net force on it?
81 The last stage of a rocket, which is traveling at a speed of $7600 \mathrm{~m} / \mathrm{s}$, consists of two parts that are clamped together: a rocket case with a mass of 290.0 kg and a payload capsule with a mass of 150.0 kg . When the clamp is released, a compressed spring causes the two parts to separate with a relative speed of $910.0 \mathrm{~m} / \mathrm{s}$. What are the speeds of (a) the rocket case and (b) the payload after they have separated? Assume that all velocities are along the same line. Find the total kinetic energy of the two parts (c) before and (d) after they separate. (e) Account for the difference.
82 Pancake collapse of a tall building. In the section of a tall building shown in Fig. 9-71a, the infrastructure of any given floor K must support the weight W of all higher floors. Normally the infrastructure is constructed with a safety factor s so that it can withstand an even greater downward force of $s W$. If, however, the support columns between K and L suddenly

(a)

(b)

Figure 9-71 Problem 82. collapse and allow the higher floors to free-fall together onto floor K (Fig. 9-71b), the force in the collision can exceed $s W$ and, after a brief pause, cause K to collapse onto floor J, which collapses on floor I, and so on until the ground is reached. Assume that the floors are separated by $d=4.0 \mathrm{~m}$ and have the same mass. Also assume that when the floors above K free-fall onto K, the collision lasts 1.5 ms . Under these simplified conditions, what value must the safety factor s exceed to prevent pancake collapse of the building?
83 "Relative" is an important word. In Fig. 9-72, block L of mass $m_{L}=1.00 \mathrm{~kg}$ and block R of mass $m_{R}=0.500 \mathrm{~kg}$ are held in place with

Figure 9-72 Problem 83. a compressed spring between them. When the blocks are released, the spring sends them sliding across a frictionless floor. (The spring has negligible mass and falls to the floor after the blocks leave it.) (a) If the spring gives block L a release speed of $1.20 \mathrm{~m} / \mathrm{s}$ relative to the floor, how far does block R travel in the next 0.800 s ? (b) If, instead, the spring gives block L a release speed of $1.20 \mathrm{~m} / \mathrm{s}$ relative to the velocity that the spring gives block R, how far does block R travel in the next 0.800 s ?

84 Figure 9-73 shows an overhead view of two particles sliding at constant velocity over a frictionless surface. The particles have the same mass and the same initial speed $v=4.00 \mathrm{~m} / \mathrm{s}$, and they collide where their paths intersect. An x axis is arranged to bisect the angle between their incoming paths, such that $\theta=40.0^{\circ}$. The region to the right of the collision is divided into four lettered sections by the x axis and four numbered dashed lines. In what region or along what line do the particles travel if the collision is (a) completely inelastic, (b) elastic, and (c) inelastic? What are their final speeds if the collision is (d) completely inelastic and (e) elastic?
85 Speed deamplifier. In Fig. 9-74, block 1 of mass m_{1} slides along an x axis on a frictionless floor at speed $4.00 \mathrm{~m} / \mathrm{s}$. Then it undergoes a one-dimensional elastic collision

Figure 9-74 Problem 85. with stationary block 2 of mass $m_{2}=$ $2.00 m_{1}$. Next, block 2 undergoes a one-dimensional elastic collision with stationary block 3 of mass $m_{3}=2.00 m_{2}$. (a) What then is the speed of block 3? Are (b) the speed, (c) the kinetic energy, and (d) the momentum of block 3 greater than, less than, or the same as the initial values for block 1 ?
86 Speed amplifier. In Fig. 9-75, block 1 of mass m_{1} slides along an x axis on a frictionless floor with a speed of $v_{1 i}=4.00 \mathrm{~m} / \mathrm{s}$. Then it under-

Figure 9-75 Problem 86. goes a one-dimensional elastic collision with stationary block 2 of mass $m_{2}=0.500 m_{1}$. Next, block 2 undergoes a one-dimensional elastic collision with stationary block 3 of mass $m_{3}=0.500 m_{2}$. (a) What then is the speed of block 3? Are (b) the speed, (c) the kinetic energy, and (d) the momentum of block 3 greater than, less than, or the same as the initial values for block 1 ?
87 A ball having a mass of 150 g strikes a wall with a speed of $5.2 \mathrm{~m} / \mathrm{s}$ and rebounds with only 50% of its initial kinetic energy. (a) What is the speed of the ball immediately after rebounding? (b) What is the magnitude of the impulse on the wall from the ball? (c) If the ball is in contact with the wall for 7.6 ms , what is the magnitude of the average force on the ball from the wall during this time interval?

88 A spacecraft is separated into two parts by detonating the explosive bolts that hold them together. The masses of the parts are 1200 kg and 1800 kg ; the magnitude of the impulse on each part from the bolts is $300 \mathrm{~N} \cdot \mathrm{~s}$. With what relative speed do the two parts separate because of the detonation?

89 SSM A 1400 kg car moving at $5.3 \mathrm{~m} / \mathrm{s}$ is initially traveling north along the positive direction of a y axis. After completing a 90° right-hand turn in 4.6 s , the inattentive operator drives into a tree, which stops the car in 350 ms . In unit-vector notation, what is the impulse on the car (a) due to the turn and (b) due to the collision? What is the magnitude of the average force that acts on the car (c) during the turn and (d) during the collision? (e) What is the direction of the average force during the turn?
90 ILW A certain radioactive (parent) nucleus transforms to a different (daughter) nucleus by emitting an electron and a neutrino. The parent nucleus was at rest at the origin of an $x y$ coordinate system. The electron moves away from the origin with linear momentum $\left(-1.2 \times 10^{-22} \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}\right) \hat{\mathrm{i}}$; the neutrino moves away from the
origin with linear momentum $\left(-6.4 \times 10^{-23} \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}\right) \hat{\mathrm{j}}$. What are the (a) magnitude and (b) direction of the linear momentum of the daughter nucleus? (c) If the daughter nucleus has a mass of $5.8 \times$ $10^{-26} \mathrm{~kg}$, what is its kinetic energy?
91 A 75 kg man rides on a 39 kg cart moving at a velocity of $2.3 \mathrm{~m} / \mathrm{s}$. He jumps off with zero horizontal velocity relative to the ground. What is the resulting change in the cart's velocity, including sign?
92 Two blocks of masses 1.0 kg and 3.0 kg are connected by a spring and rest on a frictionless surface. They are given velocities toward each other such that the 1.0 kg block travels initially at $1.7 \mathrm{~m} / \mathrm{s}$ toward the center of mass, which remains at rest. What is the initial speed of the other block?
93 SSM A railroad freight car of mass $3.18 \times 10^{4} \mathrm{~kg}$ collides with a stationary caboose car. They couple together, and 27.0% of the initial kinetic energy is transferred to thermal energy, sound, vibrations, and so on. Find the mass of the caboose.
94 An old Chrysler with mass 2400 kg is moving along a straight stretch of road at $80 \mathrm{~km} / \mathrm{h}$. It is followed by a Ford with mass 1600 kg moving at $60 \mathrm{~km} / \mathrm{h}$. How fast is the center of mass of the two cars moving?
95 SSM In the arrangement of Fig. 9-21, billiard ball 1 moving at a speed of $2.2 \mathrm{~m} / \mathrm{s}$ undergoes a glancing collision with identical billiard ball 2 that is at rest. After the collision, ball 2 moves at speed $1.1 \mathrm{~m} / \mathrm{s}$, at an angle of $\theta_{2}=60^{\circ}$. What are (a) the magnitude and (b) the direction of the velocity of ball 1 after the collision? (c) Do the given data suggest the collision is elastic or inelastic?

96 A rocket is moving away from the solar system at a speed of $6.0 \times 10^{3} \mathrm{~m} / \mathrm{s}$. It fires its engine, which ejects exhaust with a speed of $3.0 \times 10^{3} \mathrm{~m} / \mathrm{s}$ relative to the rocket. The mass of the rocket at this time is $4.0 \times 10^{4} \mathrm{~kg}$, and its acceleration is $2.0 \mathrm{~m} / \mathrm{s}^{2}$. (a) What is the thrust of the engine? (b) At what rate, in kilograms per second, is exhaust ejected during the firing?

97 The three balls in the overhead view of Fig. 9-76 are identical. Balls 2 and 3 touch each other and are aligned perpendicular to the path of ball 1.

Figure 9-76 Problem 97.

The velocity of ball 1 has magnitude $v_{0}=10 \mathrm{~m} / \mathrm{s}$ and is directed at the contact point of balls 1 and 2. After the collision, what are the (a) speed and (b) direction of the velocity of ball 2 , the (c) speed and (d) direction of the velocity of ball 3, and the (e) speed and (f) direction of the velocity of ball 1? (Hint: With friction absent, each impulse is directed along the line connecting the centers of the colliding balls, normal to the colliding surfaces.)
98 A 0.15 kg ball hits a wall with a velocity of $(5.00 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{i}}+(6.50$ $\mathrm{m} / \mathrm{s}) \hat{\mathrm{j}}+(4.00 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{k}}$. It rebounds from the wall with a velocity of $(2.00 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{i}}+(3.50 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{j}}+(-3.20 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{k}}$. What are (a) the change in the ball's momentum, (b) the impulse on the ball, and (c) the impulse on the wall?

99 In Fig. 9-77, two identical containers of sugar are connected by a cord that passes over a frictionless pulley. The cord and pulley have negligible mass, each container and its sugar together have a mass of 500 g , the centers of the containers are separated by 50 mm , and the containers are held fixed at the same height. What is the horizontal distance between the center of container 1 and the center of mass of the two-container system (a) initially and

Figure 9-77
Problem 99.
(b) after 20 g of sugar is transferred from container 1 to container 2? After the transfer and after the containers are released, (c) in what direction and (d) at what acceleration magnitude does the center of mass move?

100 In a game of pool, the cue ball strikes another ball of the same mass and initially at rest. After the collision, the cue ball moves at $3.50 \mathrm{~m} / \mathrm{s}$ along a line making an angle of 22.0° with the cue ball's original direction of motion, and the second ball has a speed of $2.00 \mathrm{~m} / \mathrm{s}$. Find (a) the angle between the direction of motion of the second ball and the original direction of motion of the cue ball and (b) the original speed of the cue ball. (c) Is kinetic energy (of the centers of mass, don't consider the rotation) conserved?
101 In Fig. 9-78, a 3.2 kg box of running shoes slides on a horizontal frictionless table and collides with a 2.0 kg box of ballet slippers initially at rest on the edge of the table, at height $h=0.40 \mathrm{~m}$. The speed of the 3.2 kg box is $3.0 \mathrm{~m} / \mathrm{s}$ just before the

Figure 9-78 Problem 101. collision. If the two boxes stick together because of packing tape on their sides, what is their kinetic energy just before they strike the floor?
102 In Fig. 9-79, an 80 kg man is on a ladder hanging from a balloon that has a total mass of 320 kg (including the basket passenger). The balloon is initially stationary relative to the ground. If the man on the ladder begins to climb at $2.5 \mathrm{~m} / \mathrm{s}$ relative to the ladder, (a) in what direction and (b) at what speed does the balloon move? (c) If the man then stops climbing, what is the speed of the balloon?
103 In Fig. 9-80, block 1 of mass $m_{1}=6.6 \mathrm{~kg}$ is at rest on a long frictionless table that is up against a wall. Block 2 of mass m_{2} is placed between block 1 and the wall and sent sliding to the left, toward block 1, with constant

Figure 9-79
Problem 102. speed $v_{2 i}$. Find the value of m_{2} for which both blocks move with the same velocity after block 2 has collided once with block 1 and once with the wall. Assume all collisions are elastic (the collision with the wall does not change the speed of block 2).

Figure 9-80 Problem 103.

104 The script for an action movie calls for a small race car (of mass 1500 kg and length 3.0 m) to accelerate along a flattop boat (of mass 4000 kg and length 14 m), from one end of the boat to the other, where the car will then jump the gap between the boat and a somewhat lower dock. You are the technical advisor for the movie. The

Figure 9-81 Problem 104.
boat will initially touch the dock, as in Fig. 9-81; the boat can slide through the water without significant resistance; both the car and the boat can be approximated as uniform in their mass distribution. Determine what the width of the gap will be just as the car is about to make the jump.
105 SSM A 3.0 kg object moving at $8.0 \mathrm{~m} / \mathrm{s}$ in the positive direction of an x axis has a one-dimensional elastic collision with an object of mass M, initially at rest. After the collision the object of mass M has a velocity of $6.0 \mathrm{~m} / \mathrm{s}$ in the positive direction of the axis. What is mass M ?
106 A 2140 kg railroad flatcar, which can move with negligible friction, is motionless next to a platform. A 242 kg sumo wrestler runs at $5.3 \mathrm{~m} / \mathrm{s}$ along the platform (parallel to the track) and then jumps onto the flatcar. What is the speed of the flatcar if he then (a) stands on it, (b) runs at $5.3 \mathrm{~m} / \mathrm{s}$ relative to it in his original direction, and (c) turns and runs at $5.3 \mathrm{~m} / \mathrm{s}$ relative to the flatcar opposite his original direction?
107 SSM A 6100 kg rocket is set for vertical firing from the ground. If the exhaust speed is $1200 \mathrm{~m} / \mathrm{s}$, how much gas must be ejected each second if the thrust (a) is to equal the magnitude of the gravitational force on the rocket and (b) is to give the rocket an initial upward acceleration of $21 \mathrm{~m} / \mathrm{s}^{2}$?
108 A 500.0 kg module is attached to a 400.0 kg shuttle craft, which moves at $1000 \mathrm{~m} / \mathrm{s}$ relative to the stationary main spaceship. Then a small explosion sends the module backward with speed $100.0 \mathrm{~m} / \mathrm{s}$ relative to the new speed of the shuttle craft. As measured by someone on the main spaceship, by what fraction did the kinetic energy of the module and shuttle craft increase because of the explosion?
109 SSM (a) How far is the center of mass of the Earth-Moon system from the center of Earth? (Appendix C gives the masses of Earth and the Moon and the distance between the two.) (b) What percentage of Earth's radius is that distance?
110 A 140 g ball with speed $7.8 \mathrm{~m} / \mathrm{s}$ strikes a wall perpendicularly and rebounds in the opposite direction with the same speed. The collision lasts 3.80 ms . What are the magnitudes of the (a) impulse and (b) average force on the wall from the ball during the elastic collision?
111 SSM A rocket sled with a mass of 2900 kg moves at $250 \mathrm{~m} / \mathrm{s}$ on a set of rails. At a certain point, a scoop on the sled dips into a trough of water located between the tracks and scoops water into an empty tank on the sled. By applying the principle of conservation of linear momentum, determine the speed of the sled after 920 kg of water has been scooped up. Ignore any retarding force on the scoop.
112 SSM A pellet gun fires ten 2.0 g pellets per second with a speed of $500 \mathrm{~m} / \mathrm{s}$. The pellets are stopped by a rigid wall. What are (a) the magnitude of the momentum of each pellet, (b) the kinetic energy of each pellet, and (c) the magnitude of the average force on the wall from the stream of pellets? (d) If each pellet is in contact with the wall for 0.60 ms , what is the magnitude of the average force on the wall from each pellet during contact? (e) Why is this average force so different from the average force calculated in (c)?

113 A railroad car moves under a grain elevator at a constant speed of $3.20 \mathrm{~m} / \mathrm{s}$. Grain drops into the car at the rate of $540 \mathrm{~kg} / \mathrm{min}$. What is the magnitude of the force needed to keep the car moving at constant speed if friction is negligible?

114 Figure $9-82$ shows a uniform square plate of edge length $6 d=6.0 \mathrm{~m}$ from which a square piece of edge length $2 d$ has been removed. What are (a) the x coordinate and (b) the y coordinate of the center of mass of the remaining piece?

Figure 9-82 Problem 114.

115 SSM At time $t=0$, force $\vec{F}_{1}=(-4.00 \hat{\mathrm{i}}+5.00 \hat{\mathrm{j}}) \mathrm{N}$ acts on an initially stationary particle of mass $2.00 \times 10^{-3} \mathrm{~kg}$ and force $\vec{F}_{2}=(2.00 \hat{\mathrm{i}}-4.00 \hat{\mathrm{j}}) \mathrm{N}$ acts on an initially stationary particle of mass $4.00 \times 10^{-3} \mathrm{~kg}$. From time $t=0$ to $t=2.00 \mathrm{~ms}$, what are the (a) magnitude and (b) angle (relative to the positive direction of the x axis) of the displacement of the center of mass of the twoparticle system? (c) What is the kinetic energy of the center of mass at $t=2.00 \mathrm{~ms}$?
116 Two particles P and Q are released from rest 1.0 m apart. P has a mass of 0.10 kg , and Q a mass of $0.30 \mathrm{~kg} . P$ and Q attract each other with a constant force of $1.0 \times 10^{-2} \mathrm{~N}$. No external forces act on the system. (a) What is the speed of the center of mass of P and Q when the separation is 0.50 m ? (b) At what distance from P 's original position do the particles collide?

117 A collision occurs between a 2.00 kg particle traveling with velocity $\vec{v}_{1}=(-4.00 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{i}}+(-5.00 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{j}}$ and a 4.00 kg particle traveling with velocity $\vec{v}_{2}=(6.00 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{i}}+(-2.00 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{j}}$. The collision connects the two particles. What then is their velocity in (a) unit-vector notation and as a (b) magnitude and (c) angle?
118 In the two-sphere arrangement of Fig. 9-20, assume that sphere 1 has a mass of 50 g and an initial height of $h_{1}=9.0 \mathrm{~cm}$, and that sphere 2 has a mass of 85 g . After sphere 1 is released and collides elastically with sphere 2 , what height is reached by (a) sphere 1 and (b) sphere 2? After the next (elastic) collision, what height is reached by (c) sphere 1 and (d) sphere 2? (Hint: Do not use rounded-off values.)
119 In Fig. 9-83, block 1 slides along an x axis on a frictionless floor with a speed of $0.75 \mathrm{~m} / \mathrm{s}$. When it reaches stationary block 2 , the two blocks undergo an elastic collision. The following table

Figure 9-83 Problem 119. gives the mass and length of the (uniform) blocks and also the locations of their centers at time $t=0$. Where is the center of mass of the two-block system located (a) at $t=0,(\mathrm{~b})$ when the two blocks first touch, and (c) at $t=4.0 \mathrm{~s}$?

Block	Mass (kg)	Length (cm)	Center at $t=0$
1	0.25	5.0	$x=-1.50 \mathrm{~m}$
2	0.50	6.0	$x=0$

120 A body is traveling at $2.0 \mathrm{~m} / \mathrm{s}$ along the positive direction of an x axis; no net force acts on the body. An internal explosion sepa-
rates the body into two parts, each of 4.0 kg , and increases the total kinetic energy by 16 J . The forward part continues to move in the original direction of motion. What are the speeds of (a) the rear part and (b) the forward part?
121 An electron undergoes a one-dimensional elastic collision with an initially stationary hydrogen atom. What percentage of the electron's initial kinetic energy is transferred to kinetic energy of the hydrogen atom? (The mass of the hydrogen atom is 1840 times the mass of the electron.)

122 A man (weighing 915 N) stands on a long railroad flatcar (weighing 2415 N) as it rolls at $18.2 \mathrm{~m} / \mathrm{s}$ in the positive direction of an x axis, with negligible friction. Then the man runs along the flatcar in the negative x direction at $4.00 \mathrm{~m} / \mathrm{s}$ relative to the flatcar. What is the resulting increase in the speed of the flatcar?
123 An unmanned space probe (of mass m and speed v relative to the Sun) approaches the planet Jupiter (of mass M and speed V_{J} relative to the Sun) as shown in Fig. 9-84. The spacecraft rounds the planet and departs in the opposite direction. What is its speed (in kilometers per second), relative to the Sun, after this slingshot encounter, which can be analyzed as a collision? Assume $v=10.5 \mathrm{~km} / \mathrm{s}$ and $V_{J}=13.0 \mathrm{~km} / \mathrm{s}$ (the orbital speed of Jupiter). The mass of Jupiter is very much greater than the mass of the spacecraft $(M \gg m)$.

124 A 0.550 kg ball falls directly down onto concrete, hitting it with a speed of $12.0 \mathrm{~m} / \mathrm{s}$ and rebounding directly upward with a speed of $3.00 \mathrm{~m} / \mathrm{s}$. Extend a y axis upward. In unit-vector notation, what are (a) the change in the ball's momentum, (b) the impulse on the ball, and (c) the impulse on the concrete?
125 An atomic nucleus at rest at the origin of an $x y$ coordinate system transforms into three particles. Particle 1, mass 16.7×10^{-27} kg , moves away from the origin at velocity $\left(6.00 \times 10^{6} \mathrm{~m} / \mathrm{s}\right) \hat{\mathrm{i}}$; particle 2 , mass $8.35 \times 10^{-27} \mathrm{~kg}$, moves away at velocity $\left(-8.00 \times 10^{6} \mathrm{~m} / \mathrm{s}\right) \hat{\mathrm{j}}$. (a) In unit-vector notation, what is the linear momentum of the third particle, mass $11.7 \times 10^{-27} \mathrm{~kg}$? (b) How much kinetic energy appears in this transformation?
126 Particle 1 of mass 200 g and speed $3.00 \mathrm{~m} / \mathrm{s}$ undergoes a onedimensional collision with stationary particle 2 of mass 400 g . What is the magnitude of the impulse on particle 1 if the collision is (a) elastic and (b) completely inelastic?
127 During a lunar mission, it is necessary to increase the speed of a spacecraft by $2.2 \mathrm{~m} / \mathrm{s}$ when it is moving at $400 \mathrm{~m} / \mathrm{s}$ relative to the Moon. The speed of the exhaust products from the rocket engine is $1000 \mathrm{~m} / \mathrm{s}$ relative to the spacecraft. What fraction of the initial mass of the spacecraft must be burned and ejected to accomplish the speed increase?

128 A cue stick strikes a stationary pool ball, with an average force of 32 N over a time of 14 ms . If the ball has mass 0.20 kg , what speed does it have just after impact?

Beview \& Summary

Angular Position To describe the rotation of a rigid body about a fixed axis, called the rotation axis, we assume a reference line is fixed in the body, perpendicular to that axis and rotating with the body. We measure the angular position θ of this line relative to a fixed direction. When θ is measured in radians,

$$
\begin{equation*}
\theta=\frac{s}{r} \quad \text { (radian measure), } \tag{10-1}
\end{equation*}
$$

where s is the arc length of a circular path of radius r and angle θ. Radian measure is related to angle measure in revolutions and degrees by

$$
\begin{equation*}
1 \mathrm{rev}=360^{\circ}=2 \pi \mathrm{rad} \tag{10-2}
\end{equation*}
$$

Angular Displacement A body that rotates about a rotation axis, changing its angular position from θ_{1} to θ_{2}, undergoes an angular displacement

$$
\begin{equation*}
\Delta \theta=\theta_{2}-\theta_{1} \tag{10-4}
\end{equation*}
$$

where $\Delta \theta$ is positive for counterclockwise rotation and negative for clockwise rotation.

Angular Velocity and Speed If a body rotates through an angular displacement $\Delta \theta$ in a time interval Δt, its average angular velocity $\omega_{\text {avg }}$ is

$$
\begin{equation*}
\omega_{\mathrm{avg}}=\frac{\Delta \theta}{\Delta t} \tag{10-5}
\end{equation*}
$$

The (instantaneous) angular velocity ω of the body is

$$
\begin{equation*}
\omega=\frac{d \theta}{d t} . \tag{10-6}
\end{equation*}
$$

Both $\omega_{\text {avg }}$ and ω are vectors, with directions given by the right-hand rule of Fig. 10-6. They are positive for counterclockwise rotation and negative for clockwise rotation. The magnitude of the body's angular velocity is the angular speed.

Angular Acceleration If the angular velocity of a body changes from ω_{1} to ω_{2} in a time interval $\Delta t=t_{2}-t_{1}$, the average angular acceleration $\alpha_{\text {avg }}$ of the body is

$$
\begin{equation*}
\alpha_{\mathrm{avg}}=\frac{\omega_{2}-\omega_{1}}{t_{2}-t_{1}}=\frac{\Delta \omega}{\Delta t} . \tag{10-7}
\end{equation*}
$$

The (instantaneous) angular acceleration α of the body is

$$
\begin{equation*}
\alpha=\frac{d \omega}{d t} . \tag{10-8}
\end{equation*}
$$

Both $\alpha_{\text {avg }}$ and α are vectors.
The Kinematic Equations for Constant Angular Acceleration Constant angular acceleration ($\alpha=$ constant) is an important special case of rotational motion. The appropriate kinematic equations, given in Table 10-1, are

$$
\begin{align*}
\omega & =\omega_{0}+\alpha t, \tag{10-12}\\
\theta-\theta_{0} & =\omega_{0} t+\frac{1}{2} \alpha t^{2}, \tag{10-13}\\
\omega^{2} & =\omega_{0}^{2}+2 \alpha\left(\theta-\theta_{0}\right), \tag{10-14}\\
\theta-\theta_{0} & =\frac{1}{2}\left(\omega_{0}+\omega\right) t, \tag{10-15}\\
\theta-\theta_{0} & =\omega t-\frac{1}{2} \alpha t^{2} . \tag{10-16}
\end{align*}
$$

Linear and Angular Variables Related A point in a rigid rotating body, at a perpendicular distance r from the rotation axis,
moves in a circle with radius r. If the body rotates through an angle θ, the point moves along an arc with length s given by

$$
\begin{equation*}
s=\theta r \quad(\text { radian measure }) \tag{10-17}
\end{equation*}
$$

where θ is in radians.
The linear velocity \vec{v} of the point is tangent to the circle; the point's linear speed v is given by

$$
\begin{equation*}
v=\omega r \quad \text { (radian measure) } \tag{10-18}
\end{equation*}
$$

where ω is the angular speed (in radians per second) of the body.
The linear acceleration \vec{a} of the point has both tangential and radial components. The tangential component is

$$
\begin{equation*}
a_{t}=\alpha r \quad(\text { radian measure }) \tag{10-22}
\end{equation*}
$$

where α is the magnitude of the angular acceleration (in radians per second-squared) of the body. The radial component of \vec{a} is

$$
\begin{equation*}
a_{r}=\frac{v^{2}}{r}=\omega^{2} r \quad(\text { radian measure }) \tag{10-23}
\end{equation*}
$$

If the point moves in uniform circular motion, the period T of the motion for the point and the body is

$$
\begin{equation*}
T=\frac{2 \pi r}{v}=\frac{2 \pi}{\omega} \quad \text { (radian measure). } \tag{10-19,10-20}
\end{equation*}
$$

Rotational Kinetic Energy and Rotational Inertia The kinetic energy K of a rigid body rotating about a fixed axis is given by

$$
\begin{equation*}
K=\frac{1}{2} I \omega^{2} \quad(\text { radian measure }) \tag{10-34}
\end{equation*}
$$

in which I is the rotational inertia of the body, defined as

$$
\begin{equation*}
I=\sum m_{i} r_{i}^{2} \tag{10-33}
\end{equation*}
$$

for a system of discrete particles and defined as

$$
\begin{equation*}
I=\int r^{2} d m \tag{10-35}
\end{equation*}
$$

for a body with continuously distributed mass. The r and r_{i} in these expressions represent the perpendicular distance from the axis of rotation to each mass element in the body, and the integration is carried out over the entire body so as to include every mass element.

The Parallel-Axis Theorem The parallel-axis theorem relates the rotational inertia I of a body about any axis to that of the same body about a parallel axis through the center of mass:

$$
\begin{equation*}
I=I_{\mathrm{com}}+M h^{2} \tag{10-36}
\end{equation*}
$$

Here h is the perpendicular distance between the two axes, and $I_{\text {com }}$ is the rotational inertia of the body about the axis through the com. We can describe h as being the distance the actual rotation axis has been shifted from the rotation axis through the com.

Torque Torque is a turning or twisting action on a body about a rotation axis due to a force \vec{F}. If \vec{F} is exerted at a point given by the position vector \vec{r} relative to the axis, then the magnitude of the torque is

$$
\begin{equation*}
\tau=r F_{t}=r_{\perp} F=r F \sin \phi, \tag{10-40,10-41,10-39}
\end{equation*}
$$

where F_{t} is the component of \vec{F} perpendicular to \vec{r} and ϕ is the angle between \vec{r} and \vec{F}. The quantity r_{\perp} is the perpendicular distance between the rotation axis and an extended line running through the \vec{F} vector. This line is called the line of action of \vec{F}, and r_{\perp} is called the moment arm of \vec{F}. Similarly, r is the moment arm of F_{t}.

The SI unit of torque is the newton-meter $(\mathrm{N} \cdot \mathrm{m})$. A torque τ is positive if it tends to rotate a body at rest counterclockwise and negative if it tends to rotate the body clockwise.

Newton's Second Law in Angular Form The rotational analog of Newton's second law is

$$
\begin{equation*}
\tau_{\text {net }}=I \alpha, \tag{10-45}
\end{equation*}
$$

where $\tau_{\text {net }}$ is the net torque acting on a particle or rigid body, I is the rotational inertia of the particle or body about the rotation axis, and α is the resulting angular acceleration about that axis.

Work and Rotational Kinetic Energy The equations used for calculating work and power in rotational motion correspond to

Questions

1 Figure 10-20 is a graph of the angular velocity versus time for a disk rotating like a merry-go-round. For a point on the disk rim, rank the instants a, b, c, and d according to the magnitude of the (a) tangential and (b) radial acceleration, greatest first.

2 Figure 10-21 shows plots of angular position θ versus time t for three cases in which a disk is rotated like a merry-go-round. In each case, the rotation direction changes at a certain angular position $\theta_{\text {change }}$. (a) For each case, determine whether $\theta_{\text {change }}$ is clockwise or counterclockwise from $\theta=0$, or whether it is at $\theta=0$. For each case, determine (b) whether

Figure 10-20 Question 1.

Figure 10-21 Question 2. ω is zero before, after, or at $t=0$ and (c) whether α is positive, negative, or zero.
3 A force is applied to the rim of a disk that can rotate like a merry-go-round, so as to change its angular velocity. Its initial and final angular velocities, respectively, for four situations are: (a) $-2 \mathrm{rad} / \mathrm{s}, 5 \mathrm{rad} / \mathrm{s}$; (b) $2 \mathrm{rad} / \mathrm{s}, 5 \mathrm{rad} / \mathrm{s}$; (c) $-2 \mathrm{rad} / \mathrm{s},-5 \mathrm{rad} / \mathrm{s}$; and (d) $2 \mathrm{rad} / \mathrm{s},-5 \mathrm{rad} / \mathrm{s}$. Rank the situations according to the work done by the torque due to the force, greatest first.
4 Figure $10-22 b$ is a graph of the angular position of the rotating disk of Fig. 10-22a. Is the angular velocity of the disk positive, negative, or zero at (a) $t=1 \mathrm{~s}$, (b) $t=2 \mathrm{~s}$, and (c) $t=3 \mathrm{~s}$? (d) Is the angular acceleration positive or negative?

Figure 10-22 Question 4.
5 In Fig. 10-23, two forces \vec{F}_{1} and \vec{F}_{2} act on a disk that turns about its center like a merry-go-round. The forces maintain the indicated
equations used for translational motion and are

$$
\begin{equation*}
W=\int_{\theta_{i}}^{\theta_{f}} \tau d \theta \tag{10-53}
\end{equation*}
$$

and

$$
\begin{equation*}
P=\frac{d W}{d t}=\tau \omega \tag{10-55}
\end{equation*}
$$

When τ is constant, Eq. $10-53$ reduces to

$$
\begin{equation*}
W=\tau\left(\theta_{f}-\theta_{i}\right) \tag{10-54}
\end{equation*}
$$

The form of the work-kinetic energy theorem used for rotating bodies is

$$
\begin{equation*}
\Delta K=K_{f}-K_{i}=\frac{1}{2} I \omega_{f}^{2}-\frac{1}{2} I \omega_{i}^{2}=W . \tag{10-52}
\end{equation*}
$$

angles during the rotation, which is counterclockwise and at a constant rate. However, we are to decrease the angle θ of \vec{F}_{1} without changing the magnitude of \vec{F}_{1}. (a) To keep the angular speed constant, should we increase, decrease, or maintain the magnitude of \vec{F}_{2} ? Do forces (b) \vec{F}_{1} and (c) \vec{F}_{2} tend to rotate the disk clockwise or counterclockwise?
6 In the overhead view of Fig. 10-24, five forces of the same magnitude act on a strange merry-go-round; it is a square that can rotate about point P, at midlength along one of the edges. Rank the forces according to the magnitude of the torque they create about point P, greatest first.
7 Figure 10-25a is an overhead view

Figure 10-23 Question 5. of a horizontal bar that can pivot; two horizontal forces act on the bar, but it is stationary. If the angle between the bar and \vec{F}_{2} is now decreased from 90° and the bar is still not to turn, should F_{2} be made larger, made smaller, or left the same?

Figure 10-25 Questions 7 and 8.
8 Figure 10-25b shows an overhead view of a horizontal bar that is rotated about the pivot point by two horizontal forces, \vec{F}_{1} and \vec{F}_{2}, with \vec{F}_{2} at angle ϕ to the bar. Rank the following values of ϕ according to the magnitude of the angular acceleration of the bar, greatest first: $90^{\circ}, 70^{\circ}$, and 110°.
9 Figure 10-26 shows a uniform metal plate that had been square before 25% of it was snipped off. Three lettered points are indicated. Rank them according to the rotational inertia of the plate around a perpendicular axis through them, greatest first.

Figure 10-26 Question 9.

10 Figure 10-27 shows three flat disks (of the same radius) that can rotate about their centers like merry-go-rounds. Each disk consists of the same two materials, one denser than the other (density is mass per unit volume). In disks 1 and 3, the denser material forms the outer half of the disk area. In disk 2, it forms the inner half of the disk area. Forces with identical magnitudes are applied tangentially to the disk, either at the outer edge or at the interface of the two materials, as shown. Rank the disks according to (a) the torque about the disk center, (b) the rotational inertia about the disk center, and (c) the angular acceleration of the disk, greatest first.

Disk 1

Disk 2

Disk 3

Figure 10-27 Question 10.

11 Figure 10-28a shows a meter stick, half wood and half steel, that is pivoted at the wood end at O.A force \vec{F} is applied to the steel end at a. In Fig. 10-28b, the stick is reversed and pivoted at the steel end at O^{\prime}, and the same force is applied at the wood end at a^{\prime}. Is the resulting angular acceleration of Fig. 10-28a greater than, less than, or the same as that of Fig. 10-28b?

Figure 10-28
Question 11.

12 Figure 10-29 shows three disks, each with a uniform distribution of mass. The radii R and masses M are indicated. Each disk can rotate around its central axis (perpendicular to the disk face and through the center). Rank the disks according to their rotational inertias calculated about their central axes, greatest first.

Figure 10-29 Question 12.

8roblems

-1 A good baseball pitcher can throw a baseball toward home plate at $85 \mathrm{mi} / \mathrm{h}$ with a spin of $1800 \mathrm{rev} / \mathrm{min}$. How many revolutions does the baseball make on its way to home plate? For simplicity, assume that the 60 ft path is a straight line.
-2 What is the angular speed of (a) the second hand, (b) the minute hand, and (c) the hour hand of a smoothly running analog watch? Answer in radians per second.
$\bullet 3$ When a slice of buttered toast is accidentally pushed over the edge of a counter, it rotates as it falls. If the distance to the floor is 76 cm and for rotation less than 1 rev , what are the (a) smallest and (b) largest angular speeds that cause the toast to hit and then topple to be butter-side down?
$\bullet 4$ The angular position of a point on a rotating wheel is given by $\theta=2.0+4.0 t^{2}+2.0 t^{3}$, where θ is in radians and t is in seconds. At $t=0$, what are (a) the point's angular position and (b) its angular velocity? (c) What is its angular velocity at $t=4.0 \mathrm{~s}$? (d) Calculate its angular acceleration at $t=2.0 \mathrm{~s}$. (e) Is its angular acceleration constant? $\bullet \circ 5$ ILW A diver makes 2.5 revolutions on the way from a 10-m-high platform to the water. Assuming zero initial vertical velocity, find the average angular velocity during the dive.
-•6 The angular position of a point on the rim of a rotating wheel is given by $\theta=4.0 t-3.0 t^{2}+t^{3}$, where θ is in radians and t is in seconds. What are the angular velocities at (a) $t=2.0 \mathrm{~s}$ and (b) $t=4.0 \mathrm{~s}$? (c) What is the average angular acceleration for the time interval that begins at $t=2.0 \mathrm{~s}$ and ends at $t=4.0 \mathrm{~s}$? What are the instantaneous angular accelerations at (d) the beginning and (e) the end of this time interval?
$\bullet \bullet 7$ The wheel in Fig. 10-30 has eight equally spaced spokes and a radius of 30 cm . It is mounted on a fixed axle and is spinning at 2.5 $\mathrm{rev} / \mathrm{s}$. You want to shoot a $20-\mathrm{cm}-l o n g$ arrow parallel to this axle and
through the wheel without hitting any of the spokes. Assume that the arrow and the spokes are very thin. (a) What minimum speed must the arrow have? (b) Does it matter where between the axle and rim of the wheel you aim? If so, what is the best location?
$\bullet \bullet 8$ The angular acceleration of a

Figure 10-30 Problem 7. wheel is $\alpha=6.0 t^{4}-4.0 t^{2}$, with α in radians per second-squared and t in seconds. At time $t=0$, the wheel has an angular velocity of $+2.0 \mathrm{rad} / \mathrm{s}$ and an angular position of +1.0 rad . Write expressions for (a) the angular velocity ($\mathrm{rad} / \mathrm{s}$) and (b) the angular position (rad) as functions of time (s).

Module 10-2 Rotation with Constant Angular Acceleration

-9 A drum rotates around its central axis at an angular velocity of $12.60 \mathrm{rad} / \mathrm{s}$. If the drum then slows at a constant rate of 4.20 $\mathrm{rad} / \mathrm{s}^{2}$, (a) how much time does it take and (b) through what angle does it rotate in coming to rest?
-10 Starting from rest, a disk rotates about its central axis with constant angular acceleration. In 5.0 s , it rotates 25 rad . During that time, what are the magnitudes of (a) the angular acceleration and (b) the average angular velocity? (c) What is the instantaneous angular velocity of the disk at the end of the 5.0 s ? (d) With the angular acceleration unchanged, through what additional angle will the disk turn during the next 5.0 s ?
-11 A disk, initially rotating at $120 \mathrm{rad} / \mathrm{s}$, is slowed down with a constant angular acceleration of magnitude $4.0 \mathrm{rad} / \mathrm{s}^{2}$. (a) How much time does the disk take to stop? (b) Through what angle does the disk rotate during that time?
-12 The angular speed of an automobile engine is increased at a constant rate from $1200 \mathrm{rev} / \mathrm{min}$ to $3000 \mathrm{rev} / \mathrm{min}$ in 12 s . (a) What is
its angular acceleration in revolutions per minute-squared? (b) How many revolutions does the engine make during this 12 s interval?
-•13 ILW A flywheel turns through 40 rev as it slows from an angular speed of $1.5 \mathrm{rad} / \mathrm{s}$ to a stop. (a) Assuming a constant angular acceleration, find the time for it to come to rest. (b) What is its angular acceleration? (c) How much time is required for it to complete the first 20 of the 40 revolutions?
-14 ©0 A disk rotates about its central axis starting from rest and accelerates with constant angular acceleration. At one time it is rotating at $10 \mathrm{rev} / \mathrm{s}$; 60 revolutions later, its angular speed is $15 \mathrm{rev} / \mathrm{s}$. Calculate (a) the angular acceleration, (b) the time required to complete the 60 revolutions, (c) the time required to reach the $10 \mathrm{rev} / \mathrm{s}$ angular speed, and (d) the number of revolutions from rest until the time the disk reaches the $10 \mathrm{rev} / \mathrm{s}$ angular speed.

- 15 SSM Starting from rest, a wheel has constant $\alpha=3.0 \mathrm{rad} / \mathrm{s}^{2}$. During a certain 4.0 s interval, it turns through 120 rad. How much time did it take to reach that 4.0 s interval?
-11 A merry-go-round rotates from rest with an angular acceleration of $1.50 \mathrm{rad} / \mathrm{s}^{2}$. How long does it take to rotate through (a) the first 2.00 rev and (b) the next 2.00 rev ?
-•17 At $t=0$, a flywheel has an angular velocity of $4.7 \mathrm{rad} / \mathrm{s}$, a constant angular acceleration of $-0.25 \mathrm{rad} / \mathrm{s}^{2}$, and a reference line at $\theta_{0}=0$. (a) Through what maximum angle $\theta_{\text {max }}$ will the reference line turn in the positive direction? What are the (b) first and (c) second times the reference line will be at $\theta=\frac{1}{2} \theta_{\max }$? At what (d) negative time and (e) positive time will the reference line be at $\theta=10.5 \mathrm{rad}$? (f) Graph θ versus t, and indicate your answers.
$\because 0018$ A pulsar is a rapidly rotating neutron star that emits a radio beam the way a lighthouse emits a light beam. We receive a radio pulse for each rotation of the star. The period T of rotation is found by measuring the time between pulses. The pulsar in the Crab nebula has a period of rotation of $T=0.033 \mathrm{~s}$ that is increasing at the rate of $1.26 \times 10^{-5} \mathrm{~s} / \mathrm{y}$. (a) What is the pulsar's angular acceleration α ? (b) If α is constant, how many years from now will the pulsar stop rotating? (c) The pulsar originated in a supernova explosion seen in the year 1054. Assuming constant α, find the initial T.

Module 10-3 Relating the Linear and Angular Variables

-19 What are the magnitudes of (a) the angular velocity, (b) the radial acceleration, and (c) the tangential acceleration of a spaceship taking a circular turn of radius 3220 km at a speed of $29000 \mathrm{~km} / \mathrm{h}$?
-20 An object rotates about a fixed axis, and the angular position of a reference line on the object is given by $\theta=0.40 e^{2 t}$, where θ is in radians and t is in seconds. Consider a point on the object that is 4.0 cm from the axis of rotation. At $t=0$, what are the magnitudes of the point's (a) tangential component of acceleration and (b) radial component of acceleration?
-21 Between 1911 and 1990, the top of the leaning bell tower at Pisa, Italy, moved toward the south at an average rate of $1.2 \mathrm{~mm} / \mathrm{y}$. The tower is 55 m tall. In radians per second, what is the average angular speed of the tower's top about its base?
-22 An astronaut is tested in a centrifuge with radius 10 m and rotating according to $\theta=0.30 t^{2}$. At $t=5.0 \mathrm{~s}$, what are the magnitudes of the (a) angular velocity, (b) linear velocity, (c) tangential acceleration, and (d) radial acceleration?
$\cdot 23$ ssm www A flywheel with a diameter of 1.20 m is rotating at an angular speed of $200 \mathrm{rev} / \mathrm{min}$. (a) What is the angular speed of the flywheel in radians per second? (b) What is the linear speed of a point on the rim of the flywheel? (c) What constant angular ac-
celeration (in revolutions per minute-squared) will increase the wheel's angular speed to $1000 \mathrm{rev} / \mathrm{min}$ in 60.0 s ? (d) How many revolutions does the wheel make during that 60.0 s ?
-24 A vinyl record is played by rotating the record so that an approximately circular groove in the vinyl slides under a stylus. Bumps in the groove run into the stylus, causing it to oscillate. The equipment converts those oscillations to electrical signals and then to sound. Suppose that a record turns at the rate of $33 \frac{1}{3} \mathrm{rev} / \mathrm{min}$, the groove being played is at a radius of 10.0 cm , and the bumps in the groove are uniformly separated by 1.75 mm . At what rate (hits per second) do the bumps hit the stylus?
$\bullet 25$ SSM (a) What is the angular speed ω about the polar axis of a point on Earth's surface at latitude $40^{\circ} \mathrm{N}$? (Earth rotates about that axis.) (b) What is the linear speed v of the point? What are (c) ω and (d) v for a point at the equator?
$\bullet 26$ The flywheel of a steam engine runs with a constant angular velocity of $150 \mathrm{rev} / \mathrm{min}$. When steam is shut off, the friction of the bearings and of the air stops the wheel in 2.2 h . (a) What is the constant angular acceleration, in revolutions per minute-squared, of the wheel during the slowdown? (b) How many revolutions does the wheel make before stopping? (c) At the instant the flywheel is turning at $75 \mathrm{rev} / \mathrm{min}$, what is the tangential component of the linear acceleration of a flywheel particle that is 50 cm from the axis of rotation? (d) What is the magnitude of the net linear acceleration of the particle in (c)?
$\bullet 27$ A seed is on a turntable rotating at $33 \frac{1}{3} \mathrm{rev} / \mathrm{min}, 6.0 \mathrm{~cm}$ from the rotation axis. What are (a) the seed's acceleration and (b) the least coefficient of static friction to avoid slippage? (c) If the turntable had undergone constant angular acceleration from rest in 0.25 s , what is the least coefficient to avoid slippage?
-•28 In Fig. 10-31, wheel A of radius $r_{A}=10 \mathrm{~cm}$ is coupled by belt B to wheel C of radius $r_{C}=25 \mathrm{~cm}$. The angular speed of wheel A is increased from rest at a constant rate of $1.6 \mathrm{rad} / \mathrm{s}^{2}$. Find the time needed for wheel C to reach an angular speed of

Figure 10-31 Problem 28. $100 \mathrm{rev} / \mathrm{min}$, assuming the belt does not slip. (Hint: If the belt does not slip, the linear speeds at the two rims must be equal.)
$\bullet 29$ Figure 10-32 shows an early method of measuring the speed of light that makes use of a rotating slotted wheel. A beam of

Figure 10-32 Problem 29.
light passes through one of the slots at the outside edge of the wheel, travels to a distant mirror, and returns to the wheel just in time to pass through the next slot in the wheel. One such slotted wheel has a radius of 5.0 cm and 500 slots around its edge. Measurements taken when the mirror is $L=500 \mathrm{~m}$ from the wheel indicate a speed of light of $3.0 \times 10^{5} \mathrm{~km} / \mathrm{s}$. (a) What is the (constant) angular speed of the wheel? (b) What is the linear speed of a point on the edge of the wheel?
-•30 A gyroscope flywheel of radius 2.83 cm is accelerated from rest at $14.2 \mathrm{rad} / \mathrm{s}^{2}$ until its angular speed is $2760 \mathrm{rev} / \mathrm{min}$. (a) What is the tangential acceleration of a point on the rim of the flywheel during this spin-up process? (b) What is the radial acceleration of this point when the flywheel is spinning at full speed? (c) Through what distance does a point on the rim move during the spin-up?
$\bullet 31$ ©o A disk, with a radius of 0.25 m , is to be rotated like a merry-go-round through 800 rad, starting from rest, gaining angular speed at the constant rate α_{1} through the first 400 rad and then losing angular speed at the constant rate $-\alpha_{1}$ until it is again at rest. The magnitude of the centripetal acceleration of any portion of the disk is not to exceed $400 \mathrm{~m} / \mathrm{s}^{2}$. (a) What is the least time required for the rotation? (b) What is the corresponding value of α_{1} ?
-•32 A car starts from rest and moves around a circular track of radius 30.0 m . Its speed increases at the constant rate of $0.500 \mathrm{~m} / \mathrm{s}^{2}$.
(a) What is the magnitude of its net linear acceleration 15.0 s later?
(b) What angle does this net acceleration vector make with the car's velocity at this time?

Module 10-4 Kinetic Energy of Rotation

-33 SSIM Calculate the rotational inertia of a wheel that has a kinetic energy of 24400 J when rotating at $602 \mathrm{rev} / \mathrm{min}$.
-34 Figure 10-33 gives angular speed versus time for a thin rod that rotates around one end. The scale on the ω axis is set by $\omega_{s}=6.0 \mathrm{rad} / \mathrm{s}$. (a) What is the magnitude of the rod's angular acceleration? (b) At $t=$

Figure 10-33 Problem 34. 4.0 s , the rod has a rotational kinetic energy of 1.60 J . What is its kinetic energy at $t=0$?

Module 10-5 Calculating the Rotational Inertia

-35 SSIM Two uniform solid cylinders, each rotating about its central (longitudinal) axis at $235 \mathrm{rad} / \mathrm{s}$, have the same mass of 1.25 kg but differ in radius. What is the rotational kinetic energy of (a) the smaller cylinder, of radius 0.25 m , and (b) the larger cylinder, of radius 0.75 m ?
-36 Figure 10-34a shows a disk that can rotate about an axis at

Figure 10-34 Problem 36.
a radial distance h from the center of the disk. Figure 10-34b gives the rotational inertia I of the disk about the axis as a function of that distance h, from the center out to the edge of the disk. The scale on the I axis is set by $I_{A}=0.050 \mathrm{~kg} \cdot \mathrm{~m}^{2}$ and $I_{B}=0.150 \mathrm{~kg} \cdot \mathrm{~m}^{2}$. What is the mass of the disk?
-37 SSM Calculate the rotational inertia of a meter stick, with mass 0.56 kg , about an axis perpendicular to the stick and located at the 20 cm mark. (Treat the stick as a thin rod.)
-38 Figure 10-35 shows three 0.0100 kg particles that have been glued to a rod of length $L=6.00 \mathrm{~cm}$ and negligible mass. The assembly can rotate around a perpendicular axis through point O at the left end. If we remove one particle (that is,

Figure 10-35 Problems 38 and 62. 33% of the mass), by what percentage does the rotational inertia of the assembly around the rotation axis decrease when that removed particle is (a) the innermost one and (b) the outermost one?
-•39 Trucks can be run on energy stored in a rotating flywheel, with an electric motor getting the flywheel up to its top speed of $200 \pi \mathrm{rad} / \mathrm{s}$. Suppose that one such flywheel is a solid, uniform cylinder with a mass of 500 kg and a radius of 1.0 m . (a) What is the kinetic energy of the flywheel after charging? (b) If the truck uses an average power of 8.0 kW , for how many minutes can it operate between chargings?
-•40 Figure 10-36 shows an arrangement of 15 identical disks that have been glued together in a rod-like shape of length $L=1.0000 \mathrm{~m}$ and (total) mass $M=100.0 \mathrm{mg}$. The disks are uniform, and the disk arrangement can rotate about a perpendicular axis through its central disk at point O. (a) What is the rotational inertia of the arrangement about that axis? (b) If we approximated the arrangement as being a uniform rod of mass M and length L, what percentage error would we make in using the formula in Table 10-2e to calculate the rotational inertia?

Figure 10-36 Problem 40.
$\bullet 41$ ©o In Fig. 10-37, two particles, each with mass $m=0.85 \mathrm{~kg}$, are fastened to each other, and to a rotation axis at O, by two thin rods, each with length $d=5.6 \mathrm{~cm}$ and mass $M=$ 1.2 kg . The combination rotates around the rotation axis with the angular speed $\omega=0.30 \mathrm{rad} / \mathrm{s}$. Measured

Figure 10-37 Problem 41. about O, what are the combination's

(a) rotational inertia and (b) kinetic energy?

-•42 The masses and coordinates of four particles are as follows: $50 \mathrm{~g}, x=2.0 \mathrm{~cm}, y=2.0 \mathrm{~cm} ; 25 \mathrm{~g}, x=0, y=4.0 \mathrm{~cm} ; 25 \mathrm{~g}$, $x=-3.0 \mathrm{~cm}, y=-3.0 \mathrm{~cm} ; 30 \mathrm{~g}, x=-2.0 \mathrm{~cm}, y=4.0 \mathrm{~cm}$. What are the rotational inertias of this collection about the (a) x, (b) y, and (c) z axes? (d) Suppose that we symbolize the answers to (a) and (b) as A and B, respectively. Then what is the answer to (c) in terms of A and B ?
$\bullet 43$ SSm www The uniform solid block in Fig. 10-38 has mass 0.172 kg and edge lengths $a=3.5 \mathrm{~cm}, b=8.4$ cm , and $c=1.4 \mathrm{~cm}$. Calculate its rotational inertia about an axis through one corner and perpendicular to the large faces.
-•44 Four identical particles of mass 0.50 kg each are placed at the vertices of a $2.0 \mathrm{~m} \times 2.0 \mathrm{~m}$ square and held there by four massless rods, which form the sides of the square. What is the rotational inertia of this rigid body about an axis that (a) passes through the midpoints of opposite sides and lies in the plane of the square, (b) passes through the midpoint of one of the sides and is perpendicular to the plane of the square, and (c) lies in the plane of the square and passes through two diagonally opposite particles?

Module 10-6 Torque

-45 Ssm ILw The body in Fig. 10-39 is pivoted at O, and two forces act on it as shown. If $r_{1}=1.30 \mathrm{~m}, \quad r_{2}=2.15 \mathrm{~m}, \quad F_{1}=$ $4.20 \mathrm{~N}, F_{2}=4.90 \mathrm{~N}, \theta_{1}=75.0^{\circ}$, and $\theta_{2}=60.0^{\circ}$, what is the net torque about the pivot?
-46 The body in Fig. 10-40 is pivoted at O. Three forces act on it: $F_{A}=10 \mathrm{~N}$ at point $A, 8.0$ m from $O ; F_{B}=16 \mathrm{~N}$ at $B, 4.0$ m from O; and $F_{C}=19 \mathrm{~N}$ at C, 3.0 m from O. What is the net torque about O ?
$\bullet 47$ SSM A small ball of mass 0.75 kg is attached to one end of a $1.25-\mathrm{m}-$ long massless rod,

Figure 10-39 Problem 45.

Figure 10-40 Problem 46. and the other end of the rod is hung from a pivot. When the resulting pendulum is 30° from the vertical, what is the magnitude of the gravitational torque calculated about the pivot?
-48 The length of a bicycle pedal arm is 0.152 m , and a downward force of 111 N is applied to the pedal by the rider. What is the magnitude of the torque about the pedal arm's pivot when the arm is at angle (a) 30°, (b) 90°, and (c) 180° with the vertical?

Module 10-7 Newton's Second Law for Rotation

-49 SSM ILW During the launch from a board, a diver's angular speed about her center of mass changes from zero to $6.20 \mathrm{rad} / \mathrm{s}$ in 220 ms . Her rotational inertia about her center of mass is $12.0 \mathrm{~kg} \cdot \mathrm{~m}^{2}$. During the launch, what are the magnitudes of (a) her average angular acceleration and (b) the average external torque on her from the board?
-50 If a $32.0 \mathrm{~N} \cdot \mathrm{~m}$ torque on a wheel causes angular acceleration $25.0 \mathrm{rad} / \mathrm{s}^{2}$, what is the wheel's rotational inertia?
$\because 51$ (60 In Fig. 10-41, block 1 has mass $m_{1}=460 \mathrm{~g}$, block 2 has mass $m_{2}=500 \mathrm{~g}$, and the pulley, which is mounted on a horizontal axle with negligible friction, has radius $R=5.00 \mathrm{~cm}$. When released from

Figure 10-41
Problems 51 and 83.
rest, block 2 falls 75.0 cm in 5.00 s without the cord slipping on the pulley. (a) What is the magnitude of the acceleration of the blocks? What are (b) tension T_{2} and (c) tension T_{1} ? (d) What is the magnitude of the pulley's angular acceleration? (e) What is its rotational inertia?
-052 ©0 In Fig. 10-42, a cylinder having a mass of 2.0 kg can rotate about its central axis through point O. Forces are applied as shown: $F_{1}=6.0 \mathrm{~N}, F_{2}=4.0 \mathrm{~N}, F_{3}=2.0 \mathrm{~N}$, and $F_{4}=5.0 \mathrm{~N}$. Also, $r=5.0 \mathrm{~cm}$ and $R=12 \mathrm{~cm}$. Find the (a) magnitude and (b) direction of the angular acceleration of the cylinder. (During the rotation, the forces maintain their same angles relative to the cylinder.)

Figure 10-42 Problem 52.

-•53 ©0 Figure 10-43 shows a uniform disk that can rotate around its center like a merry-go-round. The disk has a radius of 2.00 cm and a mass of 20.0 grams and is initially at rest. Starting at time $t=0$, two forces are to be applied tangentially to the rim as indicated, so that at time $t=1.25 \mathrm{~s}$

Figure 10-43
Problem 53. the disk has an angular velocity of 250 $\mathrm{rad} / \mathrm{s}$ counterclockwise. Force \vec{F}_{1} has a magnitude of 0.100 N . What is magnitude F_{2} ?
-054 In a judo foot-sweep move, you sweep your opponent's left foot out from under him while pulling on his gi (uniform) toward that side. As a result, your opponent rotates around his right foot and onto the mat. Figure 10-44 shows a simplified diagram of your opponent as you face him, with his left foot swept out. The rotational axis is through point O. The gravitational force \vec{F}_{g} on him effectively acts at his center of mass, which is a horizontal distance $d=28 \mathrm{~cm}$ from point O. His

Figure 10-44 Problem 54. mass is 70 kg , and his rotational inertia about point O is $65 \mathrm{~kg} \cdot \mathrm{~m}^{2}$. What is the magnitude of his initial angular acceleration about point O if your pull \vec{F}_{a} on his gi is (a) negligible and (b) horizontal with a magnitude of 300 N and applied at height $h=1.4 \mathrm{~m}$?
$\bullet 55$ © 0 In Fig. 10-45a, an irregularly shaped plastic plate with uniform thickness and density (mass per unit volume) is to be rotated around an axle that is perpendicular to the plate face and through point O. The rotational inertia of the plate about
that axle is measured with the following method. A circular disk of mass 0.500 kg and radius 2.00 cm is glued to the plate, with its center aligned with point O (Fig. 10-45b). A string is wrapped around the edge of the disk the way a string is wrapped around a top. Then the string is pulled for 5.00 s . As a result, the disk and plate are rotated by a constant force of 0.400 N that is applied by the string tangentially to the edge of the disk. The resulting angular speed is $114 \mathrm{rad} / \mathrm{s}$. What is the rotational inertia of the plate about the axle?
-056 © 50 Figure 10-46 shows particles 1 and 2, each of mass m, fixed to the ends of a rigid massless rod of length $L_{1}+$ L_{2}, with $L_{1}=20 \mathrm{~cm}$ and $L_{2}=$ 80 cm . The rod is held hori-

Figure 10-46 Problem 56.
 zontally on the fulcrum and then released. What are the magnitudes of the initial accelerations of (a) particle 1 and (b) particle 2? -0057 ©0 A pulley, with a rotational inertia of $1.0 \times 10^{-3} \mathrm{~kg} \cdot \mathrm{~m}^{2}$ about its axle and a radius of 10 cm , is acted on by a force applied tangentially at its rim. The force magnitude varies in time as $F=0.50 t+0.30 t^{2}$, with F in newtons and t in seconds. The pulley is initially at rest. At $t=3.0 \mathrm{~s}$ what are its (a) angular acceleration and (b) angular speed?

Module 10-8 Work and Rotational Kinetic Energy

$\cdot 58$ (a) If $R=12 \mathrm{~cm}, M=400 \mathrm{~g}$, and $m=50 \mathrm{~g}$ in Fig. 10-19, find the speed of the block after it has descended 50 cm starting from rest. Solve the problem using energy conservation principles. (b) Repeat (a) with $R=5.0 \mathrm{~cm}$.
-59 An automobile crankshaft transfers energy from the engine to the axle at the rate of $100 \mathrm{hp}(=74.6 \mathrm{~kW})$ when rotating at a speed of $1800 \mathrm{rev} / \mathrm{min}$. What torque (in newton-meters) does the crankshaft deliver?
${ }^{\circ} 60$ A thin rod of length 0.75 m and mass 0.42 kg is suspended freely from one end. It is pulled to one side and then allowed to swing like a pendulum, passing through its lowest position with angular speed $4.0 \mathrm{rad} / \mathrm{s}$. Neglecting friction and air resistance, find (a) the rod's kinetic energy at its lowest position and (b) how far above that position the center of mass rises.
-61 A 32.0 kg wheel, essentially a thin hoop with radius 1.20 m , is rotating at $280 \mathrm{rev} / \mathrm{min}$. It must be brought to a stop in 15.0 s . (a) How much work must be done to stop it? (b) What is the required average power?
-•62 In Fig. 10-35, three 0.0100 kg particles have been glued to a rod of length $L=6.00 \mathrm{~cm}$ and negligible mass and can rotate around a perpendicular axis through point O at one end. How much work is required to change the rotational rate (a) from 0 to $20.0 \mathrm{rad} / \mathrm{s}$, (b) from $20.0 \mathrm{rad} / \mathrm{s}$ to $40.0 \mathrm{rad} / \mathrm{s}$, and (c) from $40.0 \mathrm{rad} / \mathrm{s}$ to $60.0 \mathrm{rad} / \mathrm{s}$? (d) What is the slope of a plot of the assembly's kinetic energy (in joules) versus the square of its rotation rate (in radianssquared per second-squared)?
${ }^{\bullet} 63$ SSM ILW A meter stick is held vertically with one end on the floor and is then allowed to fall. Find the speed of the other end just before it hits the floor, assuming that the end on the floor does not slip. (Hint: Consider the stick to be a thin rod and use the conservation of energy principle.)

(a)

(b)

Figure 10-45 Problem 55.

 over a pulley of rotational inertia $I=3.0 \times 10^{-3} \mathrm{~kg} \cdot \mathrm{~m}^{2}$ and radius $r=5.0 \mathrm{~cm}$, and is attached to a small object of mass $m=0.60 \mathrm{~kg}$.There is no friction on the pulley's axle; the cord does not slip on $r=5.0 \mathrm{~cm}$, and is attached to a small object of mass $m=0.60 \mathrm{~kg}$.
There is no friction on the pulley's axle; the cord does not slip on the pulley. What is the speed of the object when it has fallen 82 cm after being released from rest? Use energy considerations.

Figure 10-47 Problem 66.
-064 A uniform cylinder of radius 10 cm and mass 20 kg is mounted so as to rotate freely about a horizontal axis that is parallel to and 5.0 cm from the central longitudinal axis of the cylinder. (a) What is the rotational inertia of the cylinder about the axis of rotation? (b) If the cylinder is released from rest with its central longitudinal axis at the same height as the axis about which the cylinder rotates, what is the angular speed of the cylinder as it passes through its lowest position?
©0065 A tall, cylindrical chimney falls over when its base is ruptured. Treat the chimney as a thin rod of length 55.0 m . At the instant it makes an angle of 35.0° with the vertical as it falls, what are (a) the radial acceleration of the top, and (b) the tangential acceleration of the top. (Hint: Use energy considerations, not a torque.) (c) At what angle θ is the tangential acceleration equal to g ?
©0066 (60 A uniform spherical shell of mass $M=4.5 \mathrm{~kg}$ and radius $R=8.5 \mathrm{~cm}$ can rotate about a vertical axis on frictionless bearings (Fig. 10-47). A massless cord passes around the equator of the shell,
-0067 ©0 Figure 10-48 shows a rigid assembly of a thin hoop (of mass m and radius $R=0.150 \mathrm{~m}$) and a thin radial rod (of mass m and length $L=2.00 R$). The assembly is upright, but if we give it a slight nudge, it will rotate around a horizontal axis in the plane of the rod and hoop, through the lower end of the rod. Assuming that the energy given to the

Figure 10-48 Problem 67. assembly in such a nudge is negligible, what would be the assembly's angular speed about the rotation axis when it passes through the upside-down (inverted) orientation?

Additional Problems

68 Two uniform solid spheres have the same mass of 1.65 kg , but one has a radius of 0.226 m and the other has a radius of 0.854 m . Each can rotate about an axis through its center. (a) What is the magnitude τ of the torque required to bring the smaller sphere from rest to an angular speed of $317 \mathrm{rad} / \mathrm{s}$ in 15.5 s ? (b) What is the magnitude F of the force that must be applied tangentially at the sphere's equator to give that torque? What are the corresponding values of (c) τ and (d) F for the larger sphere?

69 In Fig. 10-49, a small disk of radius $r=2.00 \mathrm{~cm}$ has been glued to the edge of a larger disk of radius $R=4.00 \mathrm{~cm}$ so that

Figure 10-49 Problem 69.
the disks lie in the same plane. The disks can be rotated around a perpendicular axis through point O at the center of the larger disk. The disks both have a uniform density (mass per unit volume) of $1.40 \times$ $10^{3} \mathrm{~kg} / \mathrm{m}^{3}$ and a uniform thickness of 5.00 mm . What is the rotational inertia of the two-disk assembly about the rotation axis through O ?
70 A wheel, starting from rest, rotates with a constant angular acceleration of $2.00 \mathrm{rad} / \mathrm{s}^{2}$. During a certain 3.00 s interval, it turns through 90.0 rad . (a) What is the angular velocity of the wheel at the start of the 3.00 s interval? (b) How long has the wheel been turning before the start of the 3.00 s interval?

71 SSM In Fig. 10-50, two 6.20 kg blocks are connected by a massless string over a pulley of radius 2.40 cm and rotational inertia 7.40×10^{-4} $\mathrm{kg} \cdot \mathrm{m}^{2}$. The string does not slip on the pulley; it is not known whether there is friction between the table and the sliding block; the pulley's axis is frictionless. When this system is re-

Figure 10-50 Problem 71. leased from rest, the pulley turns through 0.130 rad in 91.0 ms and the acceleration of the blocks is constant. What are (a) the magnitude of the pulley's angular acceleration, (b) the magnitude of either block's acceleration, (c) string tension T_{1}, and (d) string tension T_{2} ?
72 Attached to each end of a thin steel rod of length 1.20 m and mass 6.40 kg is a small ball of mass 1.06 kg . The rod is constrained to rotate in a horizontal plane about a vertical axis through its midpoint. At a certain instant, it is rotating at $39.0 \mathrm{rev} / \mathrm{s}$. Because of friction, it slows to a stop in 32.0 s . Assuming a constant retarding torque due to friction, compute (a) the angular acceleration, (b) the retarding torque, (c) the total energy transferred from mechanical energy to thermal energy by friction, and (d) the number of revolutions rotated during the 32.0 s . (e) Now suppose that the retarding torque is known not to be constant. If any of the quantities (a), (b), (c), and (d) can still be computed without additional information, give its value.
73 A uniform helicopter rotor blade is 7.80 m long, has a mass of 110 kg , and is attached to the rotor axle by a single bolt. (a) What is the magnitude of the force on the bolt from the axle when the rotor is turning at $320 \mathrm{rev} / \mathrm{min}$? (Hint: For this calculation the blade can be considered to be a point mass at its center of mass. Why?) (b) Calculate the torque that must be applied to the rotor to bring it to full speed from rest in 6.70 s. Ignore air resistance. (The blade cannot be considered to be a point mass for this calculation. Why not? Assume the mass distribution of a uniform thin rod.) (c) How much work does the torque do on the blade in order for the blade to reach a speed of $320 \mathrm{rev} / \mathrm{min}$?
74 Racing disks. Figure 10-51 shows two disks that can rotate about their centers like a merry-go-round. At time $t=0$, the reference lines of the two disks have the same orientation. Disk A is already rotating, with a constant angular velocity of $9.5 \mathrm{rad} / \mathrm{s}$.

Figure 10-51 Problem 74. Disk B has been stationary but now begins to rotate at a constant angular acceleration of $2.2 \mathrm{rad} / \mathrm{s}^{2}$. (a) At what time t will the reference lines of the two disks momentarily have the same angular displacement θ ? (b) Will that time t be the first time since $t=0$ that the reference lines are momentarily aligned?
75 A high-wire walker always attempts to keep his center of mass over the wire (or rope). He normally carries a long, heavy pole
to help: If he leans, say, to his right (his com moves to the right) and is in danger of rotating around the wire, he moves the pole to his left (its com moves to the left) to slow the rotation and allow himself time to adjust his balance. Assume that the walker has a mass of 70.0 kg and a rotational inertia of $15.0 \mathrm{~kg} \cdot \mathrm{~m}^{2}$ about the wire. What is the magnitude of his angular acceleration about the wire if his com is 5.0 cm to the right of the wire and (a) he carries no pole and (b) the 14.0 kg pole he carries has its com 10 cm to the left of the wire?

76 Starting from rest at $t=0$, a wheel undergoes a constant angular acceleration. When $t=2.0 \mathrm{~s}$, the angular velocity of the wheel is $5.0 \mathrm{rad} / \mathrm{s}$. The acceleration continues until $t=20 \mathrm{~s}$, when it abruptly ceases. Through what angle does the wheel rotate in the interval $t=0$ to $t=40 \mathrm{~s}$?
77 SSM A record turntable rotating at $33 \frac{1}{3} \mathrm{rev} / \mathrm{min}$ slows down and stops in 30 s after the motor is turned off. (a) Find its (constant) angular acceleration in revolutions per minute-squared. (b) How many revolutions does it make in this time?

78 © A rigid body is made of three identical thin rods, each with length $L=0.600 \mathrm{~m}$, fastened together in the form of a letter \mathbf{H} (Fig. 10-52). The body is free to rotate about a horizontal axis that runs along the length of one of the legs of the \mathbf{H}. The body

Figure 10-52 Problem 78. is allowed to fall from rest from a position in which the plane of the \mathbf{H} is horizontal. What is the angular speed of the body when the plane of the \mathbf{H} is vertical?
79 SSM (a) Show that the rotational inertia of a solid cylinder of mass M and radius R about its central axis is equal to the rotational inertia of a thin hoop of mass M and radius $R / \sqrt{2}$ about its central axis. (b) Show that the rotational inertia I of any given body of mass M about any given axis is equal to the rotational inertia of an equivalent hoop about that axis, if the hoop has the same mass M and a radius k given by

$$
k=\sqrt{\frac{I}{M}} .
$$

The radius k of the equivalent hoop is called the radius of gyration of the given body.
80 A disk rotates at constant angular acceleration, from angular position $\theta_{1}=10.0 \mathrm{rad}$ to angular position $\theta_{2}=70.0 \mathrm{rad}$ in 6.00 s . Its angular velocity at θ_{2} is $15.0 \mathrm{rad} / \mathrm{s}$. (a) What was its angular velocity at θ_{1} ? (b) What is the angular acceleration? (c) At what angular position was the disk initially at rest? (d) Graph θ versus time t and angular speed ω versus t for the disk, from the beginning of the motion (let $t=0$ then).
81 (60 The thin uniform rod in Fig. 10-53 has length 2.0 m and can pivot about a horizontal, frictionless pin through one end. It is released from rest at angle $\theta=40^{\circ}$ above the horizontal. Use the principle of conservation of energy to determine the angular speed of the rod as it passes through the horizontal position.

Figure 10-53
Problem 81.

82 George Washington Gale Ferris, Jr., a civil engineering graduate from Rensselaer Polytechnic Institute, built the original Ferris wheel for the 1893 World's Columbian Exposition in Chicago. The wheel, an astounding engineering construction at the time, carried 36 wooden cars, each holding up to 60 passengers, around a circle 76 m in diameter. The cars were loaded 6 at a time, and once all 36 cars were full, the wheel made a complete
rotation at constant angular speed in about 2 min . Estimate the amount of work that was required of the machinery to rotate the passengers alone.
83 In Fig. 10-41, two blocks, of mass $m_{1}=400 \mathrm{~g}$ and $m_{2}=600 \mathrm{~g}$, are connected by a massless cord that is wrapped around a uniform disk of mass $M=500 \mathrm{~g}$ and radius $R=12.0 \mathrm{~cm}$. The disk can rotate without friction about a fixed horizontal axis through its center; the cord cannot slip on the disk. The system is released from rest. Find (a) the magnitude of the acceleration of the blocks, (b) the tension T_{1} in the cord at the left, and (c) the tension T_{2} in the cord at the right.
84 At 7:14 A.M. on June 30, 1908, a huge explosion occurred above remote central Siberia, at latitude $61^{\circ} \mathrm{N}$ and longitude $102^{\circ} \mathrm{E}$; the fireball thus created was the brightest flash seen by anyone before nuclear weapons. The Tunguska Event, which according to one chance witness "covered an enormous part of the sky," was probably the explosion of a stony asteroid about 140 m wide. (a) Considering only Earth's rotation, determine how much later the asteroid would have had to arrive to put the explosion above Helsinki at longitude $25^{\circ} \mathrm{E}$. This would have obliterated the city. (b) If the asteroid had, instead, been a metallic asteroid, it could have reached Earth's surface. How much later would such an asteroid have had to arrive to put the impact in the Atlantic Ocean at longitude $20^{\circ} \mathrm{W}$? (The resulting tsunamis would have wiped out coastal civilization on both sides of the Atlantic.)
85 A golf ball is launched at an angle of 20° to the horizontal, with a speed of $60 \mathrm{~m} / \mathrm{s}$ and a rotation rate of $90 \mathrm{rad} / \mathrm{s}$. Neglecting air drag, determine the number of revolutions the ball makes by the time it reaches maximum height.
86 © 6 Figure 10-54 shows a flat construction of two circular rings that have a common center and are held together by three rods of negligible mass. The construction, which is initially at rest, can rotate around the common center (like a merry-go-round), where another rod of negligible mass lies. The mass, inner radius, and outer radius of

Figure 10-54 Problem 86. the rings are given in the following table. A tangential force of magnitude 12.0 N is applied to the outer edge of the outer ring for 0.300 s . What is the change in the angular speed of the construction during the time interval?

Ring	Mass (kg)	Inner Radius (m)	Outer Radius (m)
1	0.120	0.0160	0.0450
2	0.240	0.0900	0.1400

87 so In Fig. 10-55, a wheel of radius 0.20 m is mounted on a frictionless horizontal axle. A massless cord is wrapped around the wheel and attached to a 2.0 kg box that slides on a frictionless surface inclined at angle $\theta=20^{\circ}$ with the horizontal. The

Figure 10-55 Problem 87. box accelerates down the surface at $2.0 \mathrm{~m} / \mathrm{s}^{2}$. What is the rotational inertia of the wheel about the axle?

88 A thin spherical shell has a radius of 1.90 m . An applied torque of $960 \mathrm{~N} \cdot \mathrm{~m}$ gives the shell an angular acceleration of $6.20 \mathrm{rad} / \mathrm{s}^{2}$ about an axis through the center of the shell. What are (a) the rotational inertia of the shell about that axis and (b) the mass of the shell?
89 A bicyclist of mass 70 kg puts all his mass on each downwardmoving pedal as he pedals up a steep road. Take the diameter of
the circle in which the pedals rotate to be 0.40 m , and determine the magnitude of the maximum torque he exerts about the rotation axis of the pedals.
90 The flywheel of an engine is rotating at $25.0 \mathrm{rad} / \mathrm{s}$. When the engine is turned off, the flywheel slows at a constant rate and stops in 20.0 s. Calculate (a) the angular acceleration of the flywheel,
(b) the angle through which the flywheel rotates in stopping, and
(c) the number of revolutions made by the flywheel in stopping.

91 SSIM In Fig. 10-19a, a wheel of radius 0.20 m is mounted on a frictionless horizontal axis. The rotational inertia of the wheel about the axis is $0.40 \mathrm{~kg} \cdot \mathrm{~m}^{2}$. A massless cord wrapped around the wheel's circumference is attached to a 6.0 kg box. The system is released from rest. When the box has a kinetic energy of 6.0 J , what are (a) the wheel's rotational kinetic energy and (b) the distance the box has fallen?
92 Our Sun is 2.3×10^{4} ly (light-years) from the center of our Milky Way galaxy and is moving in a circle around that center at a speed of $250 \mathrm{~km} / \mathrm{s}$. (a) How long does it take the Sun to make one revolution about the galactic center? (b) How many revolutions has the Sun completed since it was formed about 4.5×10^{9} years ago?
93 SSM A wheel of radius 0.20 m is mounted on a frictionless horizontal axis. The rotational inertia of the wheel about the axis is $0.050 \mathrm{~kg} \cdot \mathrm{~m}^{2}$. A massless cord wrapped around

Figure 10-56 Problem 93. the wheel is attached to a 2.0 kg block that slides on a horizontal frictionless surface. If a horizontal force of magnitude $P=3.0 \mathrm{~N}$ is applied to the block as shown in Fig. 10-56, what is the magnitude of the angular acceleration of the wheel? Assume the cord does not slip on the wheel.
94 If an airplane propeller rotates at $2000 \mathrm{rev} / \mathrm{min}$ while the airplane flies at a speed of $480 \mathrm{~km} / \mathrm{h}$ relative to the ground, what is the linear speed of a point on the tip of the propeller, at radius 1.5 m , as seen by (a) the pilot and (b) an observer on the ground? The plane's velocity is parallel to the propeller's axis of rotation.
95 The rigid body shown in Fig. 10-57 consists of three particles connected by massless rods. It is to be rotated about an axis perpendicular to its plane through point P. If $M=$ $0.40 \mathrm{~kg}, a=30 \mathrm{~cm}$, and $b=50 \mathrm{~cm}$, how much work is required to take the body from rest to an angular speed of $5.0 \mathrm{rad} / \mathrm{s}$?

96 Beverage engineering. The pull tab was a major advance in the engi-

Figure 10-57 Problem 95. neering design of beverage containers. The tab pivots on a central bolt in the can's top. When you pull upward on one end of the tab, the other end presses downward on a portion of the can's top that has been scored. If you pull upward with a 10 N force, what force magnitude acts on the scored section? (You will need to examine a can with a pull tab.)
97 Figure 10-58 shows a propeller blade that rotates at $2000 \mathrm{rev} / \mathrm{min}$ about a perpendicular axis at point B. Point A is at the outer tip of the blade, at radial distance 1.50 m . (a) What is the difference in the magnitudes a of the centripetal acceleration of point A and of a point at radial distance 0.150 m ? (b) Find the slope of a plot of a versus radial distance along the blade.

Figure 10-58
Problem 97.

98 A yo-yo-shaped device mounted on a horizontal frictionless axis is used to lift a 30 kg box as shown in Fig. 10-59. The outer radius R of the device is 0.50 m , and the radius r of the hub is 0.20 m . When a constant horizontal force $\vec{F}_{\text {app }}$ of magnitude 140 N is applied to a rope wrapped around the outside of the device, the box, which is suspended from a rope wrapped around the hub, has an upward acceleration of magnitude 0.80 $\mathrm{m} / \mathrm{s}^{2}$. What is the rotational iner-

Figure 10-59 Problem 98. tia of the device about its axis of rotation?
99 A small ball with mass 1.30 kg is mounted on one end of a rod 0.780 m long and of negligible mass. The system rotates in a horizontal circle about the other end of the rod at $5010 \mathrm{rev} / \mathrm{min}$. (a) Calculate the rotational inertia of the system about the axis of rotation. (b) There is an air drag of $2.30 \times 10^{-2} \mathrm{~N}$ on the ball, directed opposite its motion. What torque must be applied to the system to keep it rotating at constant speed?
100 Two thin rods (each of mass 0.20 kg) are joined together to form a rigid body as shown in Fig. 10-60. One of the rods has length $L_{1}=0.40 \mathrm{~m}$, and the other has length $L_{2}=0.50 \mathrm{~m}$. What is the rotational inertia of this rigid body about (a) an axis that is perpendicular to the plane of the paper and passes through the center of the shorter rod and (b) an axis that is perpendicular to the plane of the paper and passes through the center of the longer rod?

Figure 10-60 Problem 100.

101 In Fig. 10-61, four pulleys are connected by two belts. Pulley A (radius 15 cm) is the drive pulley, and it rotates at $10 \mathrm{rad} / \mathrm{s}$. Pulley B (radius 10 cm) is connected by belt 1 to pulley A. Pulley B^{\prime} (radius 5 cm) is concentric with pulley B and is rigidly attached to it. Pulley C (radius 25 cm) is connected by belt 2 to pulley B^{\prime}. Calculate (a) the linear speed of a point on belt $1,(\mathrm{~b})$ the angular

Figure 10-61 Problem 101. speed of pulley B, (c) the angular speed of pulley B^{\prime}, (d) the linear speed of a point on belt 2 , and (e) the angular speed of pulley C. (Hint: If the belt between two pulleys does not slip, the linear speeds at the rims of the two pulleys must be equal.)
102 The rigid object shown in Fig. 10-62 consists of three balls

Figure 10-62
Problem 102.
and three connecting rods, with $M=1.6 \mathrm{~kg}, L=0.60 \mathrm{~m}$, and $\theta=30^{\circ}$. The balls may be treated as particles, and the connecting rods have negligible mass. Determine the rotational kinetic energy of the object if it has an angular speed of $1.2 \mathrm{rad} / \mathrm{s}$ about (a) an axis that passes through point P and is perpendicular to the plane of the figure and (b) an axis that passes through point P, is perpendicular to the rod of length $2 L$, and lies in the plane of the figure.
103 In Fig. 10-63, a thin uniform rod (mass 3.0 kg , length 4.0 m) rotates freely about a horizontal axis A that is perpendicular to the rod and passes through a point at distance $d=1.0 \mathrm{~m}$ from the end of the rod. The kinetic energy of the rod as it passes through the vertical position is 20 J . (a) What is the rotational inertia of the rod about axis A ? (b) What is the (linear) speed of the end B of the rod as the rod passes through the vertical position? (c) At what angle θ will the rod momentarily stop in its upward swing?

Figure 10-63 Problem 103.

Figure 10-64 Problem 104. 104 Four particles, each of mass, 0.20 kg , are placed at the vertices of a square with sides of length 0.50 m . The particles are connected by rods of negligible mass. This rigid body can rotate in a vertical plane about a horizontal axis A that passes through one of the particles. The body is released from rest with $\operatorname{rod} A B$ horizontal (Fig. 10-64).
(a) What is the rotational inertia of the body about axis A ? (b) What is the angular speed of the body about axis A when $\operatorname{rod} A B$ swings through the vertical position?
105 Cheetahs running at top speed have been reported at an astounding $114 \mathrm{~km} / \mathrm{h}$ (about $71 \mathrm{mi} / \mathrm{h}$) by observers driving alongside the animals. Imagine trying to measure a cheetah's speed by keeping your vehicle abreast of the animal while also glancing at your speedometer, which is registering $114 \mathrm{~km} / \mathrm{h}$. You keep the vehicle a constant 8.0 m from the cheetah, but the noise of the vehicle causes the cheetah to continuously veer away from you along a circular path of radius 92 m . Thus, you travel along a circular path of radius 100 m . (a) What is the angular speed of you and the cheetah around the circular paths? (b) What is the linear speed of the cheetah along its path? (If you did not account for the circular motion, you would conclude erroneously that the cheetah's speed is $114 \mathrm{~km} / \mathrm{h}$, and that type of error was apparently made in the published reports.)
106 A point on the rim of a 0.75 -m-diameter grinding wheel changes speed at a constant rate from $12 \mathrm{~m} / \mathrm{s}$ to $25 \mathrm{~m} / \mathrm{s}$ in 6.2 s . What is the average angular acceleration of the wheel?
107 A pulley wheel that is 8.0 cm in diameter has a $5.6-\mathrm{m}-l o n g$ cord wrapped around its periphery. Starting from rest, the wheel is given a constant angular acceleration of $1.5 \mathrm{rad} / \mathrm{s}^{2}$. (a) Through what angle must the wheel turn for the cord to unwind completely? (b) How long will this take?
108 A vinyl record on a turntable rotates at $33 \frac{1}{3} \mathrm{rev} / \mathrm{min}$. (a) What is its angular speed in radians per second? What is the linear speed of a point on the record (b) 15 cm and (c) 7.4 cm from the turntable axis?

According to Eq. 11-41, torque $\vec{\tau}$ causes an incremental change $d \vec{L}$ in the angular momentum of the gyroscope in an incremental time interval $d t$; that is,

$$
\begin{equation*}
d \vec{L}=\vec{\tau} d t \tag{11-44}
\end{equation*}
$$

However, for a rapidly spinning gyroscope, the magnitude of \vec{L} is fixed by Eq. 11-43. Thus the torque can change only the direction of \vec{L}, not its magnitude.

From Eq. $11-44$ we see that the direction of $d \vec{L}$ is in the direction of $\vec{\tau}$, perpendicular to \vec{L}. The only way that \vec{L} can be changed in the direction of $\vec{\tau}$ without the magnitude L being changed is for \vec{L} to rotate around the z axis as shown in Fig. 11-22c. \vec{L} maintains its magnitude, the head of the \vec{L} vector follows a circular path, and $\vec{\tau}$ is always tangent to that path. Since \vec{L} must always point along the shaft, the shaft must rotate about the z axis in the direction of $\vec{\tau}$. Thus we have precession. Because the spinning gyroscope must obey Newton's law in angular form in response to any change in its initial angular momentum, it must precess instead of merely toppling over.

Precession. We can find the precession rate Ω by first using Eqs. 11-44 and 11-42 to get the magnitude of $d \vec{L}$:

$$
\begin{equation*}
d L=\tau d t=M g r d t \tag{11-45}
\end{equation*}
$$

As \vec{L} changes by an incremental amount in an incremental time interval $d t$, the shaft and \vec{L} precess around the z axis through incremental angle $d \phi$. (In Fig. 11-22c, angle $d \phi$ is exaggerated for clarity.) With the aid of Eqs. 11-43 and 11-45, we find that $d \phi$ is given by

$$
d \phi=\frac{d L}{L}=\frac{M g r d t}{I \omega}
$$

Dividing this expression by $d t$ and setting the rate $\Omega=d \phi / d t$, we obtain

$$
\begin{equation*}
\Omega=\frac{M g r}{I \omega} \quad \text { (precession rate). } \tag{11-46}
\end{equation*}
$$

This result is valid under the assumption that the spin rate ω is rapid. Note that Ω decreases as ω is increased. Note also that there would be no precession if the gravitational force $M \vec{g}$ did not act on the gyroscope, but because I is a function of M, mass cancels from Eq. $11-46$; thus Ω is independent of the mass.

Equation 11-46 also applies if the shaft of a spinning gyroscope is at an angle to the horizontal. It holds as well for a spinning top, which is essentially a spinning gyroscope at an angle to the horizontal.

Review \& Summary

Rolling Bodies For a wheel of radius R rolling smoothly,

$$
\begin{equation*}
v_{\mathrm{com}}=\omega R, \tag{11-2}
\end{equation*}
$$

where $v_{\text {com }}$ is the linear speed of the wheel's center of mass and ω is the angular speed of the wheel about its center. The wheel may also be viewed as rotating instantaneously about the point P of the "road" that is in contact with the wheel. The angular speed of the wheel about this point is the same as the angular speed of the wheel about its center. The rolling wheel has kinetic energy

$$
\begin{equation*}
K=\frac{1}{2} I_{\mathrm{com}} \omega^{2}+\frac{1}{2} M v_{\mathrm{com}}^{2}, \tag{11-5}
\end{equation*}
$$

where I_{com} is the rotational inertia of the wheel about its center of mass and M is the mass of the wheel. If the wheel is being accelerated but is still rolling smoothly, the acceleration of the center of mass $\vec{a}_{\text {com }}$ is related to the angular acceleration α about the center with

$$
\begin{equation*}
a_{\mathrm{com}}=\alpha R . \tag{11-6}
\end{equation*}
$$

If the wheel rolls smoothly down a ramp of angle θ, its acceleration along an x axis extending up the ramp is

$$
\begin{equation*}
a_{\mathrm{com}, x}=-\frac{g \sin \theta}{1+I_{\mathrm{com}} / M R^{2}} . \tag{11-10}
\end{equation*}
$$

Torque as a Vector In three dimensions, torque $\vec{\tau}$ is a vector quantity defined relative to a fixed point (usually an origin); it is

$$
\begin{equation*}
\vec{\tau}=\vec{r} \times \vec{F} \tag{11-14}
\end{equation*}
$$

where \vec{F} is a force applied to a particle and \vec{r} is a position vector locating the particle relative to the fixed point. The magnitude of $\vec{\tau}$ is

$$
\begin{equation*}
\tau=r F \sin \phi=r F_{\perp}=r_{\perp} F, \tag{11-15,11-16,11-17}
\end{equation*}
$$

where ϕ is the angle between \vec{F} and \vec{r}, F_{\perp} is the component of \vec{F} perpendicular to \vec{r}, and r_{\perp} is the moment arm of \vec{F}. The direction of $\vec{\tau}$ is given by the right-hand rule.

Angular Momentum of a Particle The angular momentum $\vec{\ell}$ of a particle with linear momentum \vec{p}, mass m, and linear velocity \vec{v} is a vector quantity defined relative to a fixed point (usually an origin) as

$$
\begin{equation*}
\vec{\ell}=\vec{r} \times \vec{p}=m(\vec{r} \times \vec{v}) . \tag{11-18}
\end{equation*}
$$

The magnitude of $\vec{\ell}$ is given by

$$
\begin{align*}
\ell & =r m v \sin \phi \tag{11-19}\\
& =r p_{\perp}=r m v_{\perp} \tag{11-20}\\
& =r_{\perp} p=r_{\perp} m v \tag{11-21}
\end{align*}
$$

where ϕ is the angle between \vec{r} and \vec{p}, p_{\perp} and v_{\perp} are the components of \vec{p} and \vec{v} perpendicular to \vec{r}, and r_{\perp} is the perpendicular distance between the fixed point and the extension of \vec{p}. The direction of $\vec{\ell}$ is given by the right-hand rule for cross products.
Newton's Second Law in Angular Form Newton's second law for a particle can be written in angular form as

$$
\begin{equation*}
\vec{\tau}_{\mathrm{net}}=\frac{d \vec{\ell}}{d t} \tag{11-23}
\end{equation*}
$$

where $\vec{\tau}_{\text {net }}$ is the net torque acting on the particle and $\vec{\ell}$ is the angular momentum of the particle.

Angular Momentum of a System of Particles The angular momentum \vec{L} of a system of particles is the vector sum of the angular momenta of the individual particles:

$$
\begin{equation*}
\vec{L}=\vec{\ell}_{1}+\vec{\ell}_{2}+\cdots+\vec{\ell}_{n}=\sum_{i=1}^{n} \vec{\ell}_{i} \tag{11-26}
\end{equation*}
$$

Questions

1 Figure 11-23 shows three particles of the same mass and the same constant speed moving as indicated by the velocity vectors. Points a, b, c, and d form a square, with point e at the center. Rank the points according to the magnitude of the net angular momentum of the three-particle system when measured about the points, greatest first.
2 Figure 11-24 shows two particles A and B at $x y z$ coordinates ($1 \mathrm{~m}, 1 \mathrm{~m}, 0$) and ($1 \mathrm{~m}, 0,1 \mathrm{~m}$). Acting on each particle are three numbered forces, all of the same magnitude and each directed parallel to an axis. (a) Which of the forces produce a torque about the origin that is directed parallel to y ? (b) Rank the forces according to the magnitudes of the torques they produce on the particles about the origin, greatest first.
3 What happens to the initially stationary yo-yo in Fig. 11-25 if you pull it via its string with (a) force \vec{F}_{2} (the line of action passes through the point of contact on the table, as indicated), (b) force \vec{F}_{1} (the line of action passes

Figure 11-23 Question 1.

Figure 11-24 Question 2.

Figure 11-25 Question 3.

The time rate of change of this angular momentum is equal to the net external torque on the system (the vector sum of the torques due to interactions with particles external to the system):

$$
\begin{equation*}
\vec{\tau}_{\text {net }}=\frac{d \vec{L}}{d t} \quad \text { (system of particles). } \tag{11-29}
\end{equation*}
$$

Angular Momentum of a Rigid Body For a rigid body rotating about a fixed axis, the component of its angular momentum parallel to the rotation axis is

$$
\begin{equation*}
L=I \omega \quad \text { (rigid body, fixed axis). } \tag{11-31}
\end{equation*}
$$

Conservation of Angular Momentum The angular momentum \vec{L} of a system remains constant if the net external torque acting on the system is zero:

$$
\begin{gather*}
\vec{L}=\text { a constant } \quad \text { (isolated system) } \tag{11-32}\\
\vec{L}_{i}=\vec{L}_{f} \quad \text { (isolated system). } \tag{11-33}
\end{gather*}
$$

This is the law of conservation of angular momentum.

Precession of a Gyroscope A spinning gyroscope can precess about a vertical axis through its support at the rate

$$
\begin{equation*}
\Omega=\frac{M g r}{I \omega}, \tag{11-46}
\end{equation*}
$$

where M is the gyroscope's mass, r is the moment arm, I is the rotational inertia, and ω is the spin rate.
above the point of contact), and (c) force \vec{F}_{3} (the line of action passes to the right of the point of contact)?
4 The position vector \vec{r} of a particle relative to a certain point has a magnitude of 3 m , and the force \vec{F} on the particle has a magnitude of 4 N . What is the angle between the directions of \vec{r} and \vec{F} if the magnitude of the associated torque equals (a) zero and (b) 12 $\mathrm{N} \cdot \mathrm{m}$?
5 In Fig. 11-26, three forces of the same magnitude are applied to a particle at the origin (\vec{F}_{1} acts directly into the plane of the figure). Rank the forces according to the magnitudes of the torques they create about (a) point P_{1}, (b) point P_{2}, and (c) point P_{3}, greatest first.
6 The angular momenta $\ell(t)$ of a

Figure 11-26 Question 5. particle in four situations are (1) $\ell=3 t+4$; (2) $\ell=-6 t^{2}$; (3) $\ell=2$; (4) $\ell=4 / t$. In which situation is the net torque on the particle (a) zero, (b) positive and constant, (c) negative and increasing in magnitude ($t>0$), and (d) negative and decreasing in magnitude $(t>0)$?
7 A rhinoceros beetle rides the rim of a horizontal disk rotating counterclockwise like a merry-go-round. If the beetle then walks along the rim in the direction of the rotation, will the magnitudes of the following quantities (each measured about the rotation axis) increase, decrease, or remain the same (the disk is still rotating in the counterclockwise direction): (a) the angular momentum of the
beetle-disk system, (b) the angular momentum and angular velocity of the beetle, and (c) the angular momentum and angular velocity of the disk? (d) What are your answers if the beetle walks in the direction opposite the rotation?
8 Figure 11-27 shows an overhead view of a rectangular slab that can spin like a merry-go-round about its center at O. Also shown are seven paths along which wads of bubble gum can be thrown (all with the same speed and mass) to stick onto the stationary slab. (a) Rank the paths according to the angular speed that the slab (and gum) will have after the gum sticks, greatest first. (b) For which paths will the angular momentum of the slab (and gum) about O be negative from the view of Fig. 11-27?
9 Figure 11-28 gives the angular momentum magnitude L of a wheel versus time t. Rank the four lettered time intervals according to the magnitude of the torque acting on the wheel, greatest first.

Figure 11-28 Question 9.

10 Figure 11-29 shows a particle moving at constant velocity \vec{v} and five points with their $x y$ coordinates. Rank the points accord-
ing to the magnitude of the angular momentum of the particle measured about them, greatest first.

Figure 11-29 Question 10.
11 A cannonball and a marble roll smoothly from rest down an incline. Is the cannonball's (a) time to the bottom and (b) translational kinetic energy at the bottom more than, less than, or the same as the marble's?
12 A solid brass cylinder and a solid wood cylinder have the same radius and mass (the wood cylinder is longer). Released together from rest, they roll down an incline. (a) Which cylinder reaches the bottom first, or do they tie? (b) The wood cylinder is then shortened to match the length of the brass cylinder, and the brass cylinder is drilled out along its long (central) axis to match the mass of the wood cylinder. Which cylinder now wins the race, or do they tie?

Broblems

Module 11-1 Rolling as Translation and Rotation Combined
-1 A car travels at $80 \mathrm{~km} / \mathrm{h}$ on a level road in the positive direction of an x axis. Each tire has a diameter of 66 cm . Relative to a woman riding in the car and in unit-vector notation, what are the velocity \vec{v} at the (a) center, (b) top, and (c) bottom of the tire and the magnitude a of the acceleration at the (d) center, (e) top, and (f) bottom of each tire? Relative to a hitchhiker sitting next to the road and in unit-vector notation, what are the velocity \vec{v} at the (g) center, (h) top, and (i) bottom of the tire and the magnitude a of the acceleration at the (j) center, (k) top, and (l) bottom of each tire?
-2 An automobile traveling at $80.0 \mathrm{~km} / \mathrm{h}$ has tires of 75.0 cm diameter. (a) What is the angular speed of the tires about their axles? (b) If the car is brought to a stop uniformly in 30.0 complete turns of the tires (without skidding), what is the magnitude of the angular acceleration of the wheels? (c) How far does the car move during the braking?

Module 11-2 Forces and Kinetic Energy of Rolling

$\cdot 3$ SSm A 140 kg hoop rolls along a horizontal floor so that the hoop's center of mass has a speed of $0.150 \mathrm{~m} / \mathrm{s}$. How much work must be done on the hoop to stop it?
-4 A uniform solid sphere rolls down an incline. (a) What must be the incline angle if the linear acceleration of the center of the sphere is to have a magnitude of 0.10 g ? (b) If a frictionless block were to slide down the incline at that angle, would its acceleration magnitude be more than, less than, or equal to $0.10 g$? Why?
-5 ILW A 1000 kg car has four 10 kg wheels. When the car is moving, what fraction of its total kinetic energy is due to rotation of the wheels about their axles? Assume that the wheels are uniform disks of the same mass and size. Why do you not need to know the radius of the wheels?
-•6 Figure 11-30 gives the speed v versus time t for a 0.500 kg object of radius 6.00 cm that rolls smoothly down a 30° ramp. The scale on the velocity axis is set by $v_{s}=4.0 \mathrm{~m} / \mathrm{s}$. What is the rotational inertia of the object?
-•7 ILW In Fig. 11-31, a solid cylinder of radius 10 cm and mass 12 kg starts from rest and rolls without slipping a distance $L=6.0 \mathrm{~m}$ down a roof that is inclined at angle $\theta=$ 30°. (a) What is the angular speed of the cylinder about its center as it leaves the roof? (b) The roof's edge is at height $H=5.0 \mathrm{~m}$. How far horizontally from the roof's edge does the cylinder hit the level ground?

Figure 11-30 Problem 6.

Figure 11-31 Problem 7.
©8 Figure 11-32 shows the potential energy $U(x)$ of a solid ball that can roll along an x axis. The scale on the U axis is set by $U_{s}=100 \mathrm{~J}$. The ball is uniform, rolls smoothly, and has a mass of 0.400 kg . It is released at $x=7.0 \mathrm{~m}$ headed in the negative direction of the x axis with a mechanical energy of 75 J . (a) If the ball can reach $x=0 \mathrm{~m}$, what is its speed there, and if it cannot, what is its

Figure 11-32 Problem 8. turning point? Suppose, instead, it is headed in the positive direction of the x axis when it is released at $x=7.0 \mathrm{~m}$ with 75 J . (b) If the ball can reach $x=13 \mathrm{~m}$, what is its speed there, and if it cannot, what is its turning point?
009 ©o In Fig. 11-33, a solid ball rolls smoothly from rest (starting at height $H=6.0 \mathrm{~m}$) until it leaves the horizontal section at the end of the track, at height $h=2.0 \mathrm{~m}$. How far horizontally from point A does the

Figure 11-33 Problem 9. ball hit the floor?
$\bullet 10$ A hollow sphere of radius 0.15 m , with rotational inertia $I=0.040 \mathrm{~kg} \cdot \mathrm{~m}^{2}$ about a line through its center of mass, rolls without slipping up a surface inclined at 30° to the horizontal. At a certain initial position, the sphere's total kinetic energy is 20 J .
(a) How much of this initial kinetic energy is rotational? (b) What is the speed of the center of mass of the sphere at the initial position? When the sphere has moved 1.0 m up the incline from its initial position, what are (c) its total kinetic energy and (d) the speed of its center of mass?

- 11 In Fig. 11-34, a constant horizontal force $\vec{F}_{\text {app }}$ of magnitude 10 N is applied to a wheel of mass 10 kg and radius 0.30 m . The wheel rolls smoothly on the horizontal surface, and the acceleration of its center of mass has magnitude $0.60 \mathrm{~m} / \mathrm{s}^{2}$. (a) In

Figure 11-34 Problem 11. unit-vector notation, what is the frictional force on the wheel? (b) What is the rotational inertia of the wheel about the rotation axis through its center of mass?

- 12 (60 In Fig. 11-35, a solid brass ball of mass 0.280 g will roll smoothly along a loop-the-loop track when released from rest along the straight section. The circular loop has radius $R=14.0 \mathrm{~cm}$, and the ball has radius $r \ll R$. (a) What is h if the ball is on the verge of leaving the track when it reaches the top of the loop? If the ball is released at height $h=6.00 R$, what are the (b) magnitude and (c) direction of the horizontal force component acting on the ball at point Q ?
-•013 ©o Nonuniform ball. In Fig. 1136, a ball of mass M and radius R

Figure 11-35 Problem 12.

Figure 11-36 Problem 13.
rolls smoothly from rest down a ramp and onto a circular loop of radius 0.48 m . The initial height of the ball is $h=0.36 \mathrm{~m}$. At the loop bottom, the magnitude of the normal force on the ball is 2.00 Mg . The ball consists of an outer spherical shell (of a certain uniform density) that is glued to a central sphere (of a different uniform density). The rotational inertia of the ball can be expressed in the general form $I=\beta M R^{2}$, but β is not 0.4 as it is for a ball of uniform density. Determine β.
${ }^{\circ 0014 \text { (60 In Fig. 11-37, a small, solid, uniform ball is to be shot }}$ from point P so that it rolls smoothly along a horizontal path, up along a ramp, and onto a plateau. Then it leaves the plateau horizontally to land on a game board, at a horizontal distance d from the right edge of the plateau. The vertical heights are $h_{1}=5.00$ cm and $h_{2}=1.60 \mathrm{~cm}$. With what speed must the ball be shot at point P for it to land at $d=6.00 \mathrm{~cm}$?

Figure 11-37 Problem 14. 00015 A bowler throws a bowling ball of radius $R=11 \mathrm{~cm}$ along a lane. The ball (Fig. 11-38) slides on the lane with initial speed $v_{\text {com }, 0}=8.5 \mathrm{~m} / \mathrm{s}$ and initial angular

Figure 11-38 Problem 15. speed $\omega_{0}=0$. The coefficient of kinetic friction between the ball and the lane is 0.21 . The kinetic frictional force \vec{f}_{k} acting on the ball causes a linear acceleration of the ball while producing a torque that causes an angular acceleration of the ball. When speed $v_{\text {com }}$ has decreased enough and angular speed ω has increased enough, the ball stops sliding and then rolls smoothly. (a) What then is $v_{\text {com }}$ in terms of ω ? During the sliding, what are the ball's (b) linear acceleration and (c) angular acceleration? (d) How long does the ball slide? (e) How far does the ball slide? (f) What is the linear speed of the ball when smooth rolling begins?
-0016 (60 Nonuniform cylindrical object. In Fig. 11-39, a cylindrical object of mass M and radius R rolls smoothly from rest down a ramp and onto a horizontal section. From there it rolls off the ramp and onto the floor, landing a horizontal distance $d=0.506 \mathrm{~m}$ from the end of the ramp. The initial height of the object is $H=0.90 \mathrm{~m}$; the end of the ramp is at height $h=0.10 \mathrm{~m}$. The object consists of an outer cylindrical shell (of a certain uniform density) that is glued to a central cylinder (of a different uniform density). The rotational inertia of the object can be expressed in the general form $I=\beta M R^{2}$, but β is not 0.5 as it is for a cylinder of uniform density. Determine β.

Figure 11-39 Problem 16.

Module 11-3 The Yo-Yo

$\bullet 17$ SSM A yo-yo has a rotational inertia of $950 \mathrm{~g} \cdot \mathrm{~cm}^{2}$ and a mass of 120 g . Its axle radius is 3.2 mm , and its string is 120 cm long. The yo-yo rolls from rest down to the end of the string. (a) What is the magnitude of its linear acceleration? (b) How long does it take to reach the end of the string? As it reaches the end of the string, what are its (c) linear speed, (d) translational kinetic energy, (e) rotational kinetic energy, and (f) angular speed?
-18 In 1980, over San Francisco Bay, a large yo-yo was released from a crane. The 116 kg yo-yo consisted of two uniform disks of radius 32 cm connected by an axle of radius 3.2 cm . What was the magnitude of the acceleration of the yo-yo during (a) its fall and (b) its rise? (c) What was the tension in the cord on which it rolled? (d) Was that tension near the cord's limit of 52 kN ? Suppose you build a scaled-up version of the yo-yo (same shape and materials but larger). (e) Will the magnitude of your yo-yo's acceleration as it falls be greater than, less than, or the same as that of the San Francisco yo-yo? (f) How about the tension in the cord?

Module 11-4 Torque Revisited

-19 In unit-vector notation, what is the net torque about the origin on a flea located at coordinates $(0,-4.0 \mathrm{~m}, 5.0 \mathrm{~m})$ when forces $\vec{F}_{1}=(3.0 \mathrm{~N}) \hat{\mathrm{k}}$ and $\vec{F}_{2}=(-2.0 \mathrm{~N}) \hat{\mathrm{j}}$ act on the flea?
-20 A plum is located at coordinates ($-2.0 \mathrm{~m}, 0,4.0 \mathrm{~m}$). In unitvector notation, what is the torque about the origin on the plum if that torque is due to a force \vec{F} whose only component is (a) $F_{x}=$ 6.0 N , (b) $F_{x}=-6.0 \mathrm{~N}$, (c) $F_{z}=6.0 \mathrm{~N}$, and (d) $F_{z}=-6.0 \mathrm{~N}$?
-21 In unit-vector notation, what is the torque about the origin on a particle located at coordinates $(0,-4.0 \mathrm{~m}, 3.0 \mathrm{~m})$ if that torque is due to (a) force \vec{F}_{1} with components $F_{1 x}=2.0 \mathrm{~N}, F_{1 y}=F_{1 z}=0$, and (b) force \vec{F}_{2} with components $F_{2 x}=0, F_{2 y}=2.0 \mathrm{~N}, F_{2 z}=4.0 \mathrm{~N}$?
-022 A particle moves through an $x y z$ coordinate system while a force acts on the particle. When the particle has the position vector $\vec{r}=(2.00 \mathrm{~m}) \hat{\mathrm{i}}-(3.00 \mathrm{~m}) \hat{\mathrm{j}}+(2.00 \mathrm{~m}) \hat{\mathrm{k}}$, the force is given by $\vec{F}=F_{x} \hat{i}+(7.00 \mathrm{~N}) \hat{\mathrm{j}}-(6.00 \mathrm{~N}) \hat{\mathrm{k}}$ and the corresponding torque about the origin is $\vec{\tau}=(4.00 \mathrm{~N} \cdot \mathrm{~m}) \hat{\mathrm{i}}+(2.00 \mathrm{~N} \cdot \mathrm{~m}) \hat{\mathrm{j}}-(1.00 \mathrm{~N} \cdot \mathrm{~m}) \hat{\mathrm{k}}$. Determine F_{x}.
-23 Force $\vec{F}=(2.0 \mathrm{~N}) \hat{\mathrm{i}}-(3.0 \mathrm{~N}) \hat{\mathrm{k}}$ acts on a pebble with position vector $\vec{r}=(0.50 \mathrm{~m}) \hat{\mathrm{j}}-(2.0 \mathrm{~m}) \hat{\mathrm{k}}$ relative to the origin. In unit-vector notation, what is the resulting torque on the pebble about (a) the origin and (b) the point ($2.0 \mathrm{~m}, 0,-3.0 \mathrm{~m}$)?
$\bullet 24$ In unit-vector notation, what is the torque about the origin on a jar of jalapeño peppers located at coordinates ($3.0 \mathrm{~m},-2.0 \mathrm{~m}$, $4.0 \mathrm{~m})$ due to (a) force $\vec{F}_{1}=(3.0 \mathrm{~N}) \hat{\mathrm{i}}-(4.0 \mathrm{~N}) \hat{\mathrm{j}}+(5.0 \mathrm{~N}) \hat{\mathrm{k}}$, (b) force $\vec{F}_{2}=(-3.0 \mathrm{~N}) \hat{\mathrm{i}}-(4.0 \mathrm{~N}) \hat{\mathrm{j}}-(5.0 \mathrm{~N}) \hat{\mathrm{k}}$, and (c) the vector sum of \vec{F}_{1} and \vec{F}_{2} ? (d) Repeat part (c) for the torque about the point with coordinates ($3.0 \mathrm{~m}, 2.0 \mathrm{~m}, 4.0 \mathrm{~m}$).
$\bullet 25$ ssm Force $\vec{F}=(-8.0 \mathrm{~N}) \hat{\mathrm{i}}+(6.0 \mathrm{~N}) \hat{\mathrm{j}}$ acts on a particle with position vector $\vec{r}=(3.0 \mathrm{~m}) \hat{\mathrm{i}}+(4.0 \mathrm{~m}) \hat{\mathrm{j}}$. What are (a) the torque on the particle about the origin, in unit-vector notation, and (b) the angle between the directions of \vec{r} and \vec{F} ?

Module 11-5 Angular Momentum

-26 At the instant of Fig. 11-40, a 2.0 kg particle P has a position vector \vec{r} of magnitude 3.0 m and angle $\theta_{1}=45^{\circ}$ and a velocity vector \vec{v} of magnitude $4.0 \mathrm{~m} / \mathrm{s}$ and angle $\theta_{2}=30^{\circ}$. Force \vec{F}, of magnitude 2.0 N and

Figure 11-40
Problem 26.
angle $\theta_{3}=30^{\circ}$, acts on P. All three vectors lie in the $x y$ plane. About the origin, what are the (a) magnitude and (b) direction of the angular momentum of P and the (c) magnitude and (d) direction of the torque acting on P ?
-27 SSM At one instant, force $\vec{F}=4.0 \hat{\mathrm{j}} \mathrm{N}$ acts on a 0.25 kg object that has position vector $\vec{r}=(2.0 \hat{i}-2.0 \hat{\mathrm{k}}) \mathrm{m}$ and velocity vector $\vec{v}=(-5.0 \hat{\mathrm{i}}+5.0 \hat{\mathrm{k}}) \mathrm{m} / \mathrm{s}$. About the origin and in unit-vector notation, what are (a) the object's angular momentum and (b) the torque acting on the object?
-28 A 2.0 kg particle-like object moves in a plane with velocity components $v_{x}=30 \mathrm{~m} / \mathrm{s}$ and $v_{y}=60 \mathrm{~m} / \mathrm{s}$ as it passes through the point with (x, y) coordinates of $(3.0,-4.0) \mathrm{m}$. Just then, in unitvector notation, what is its angular momentum relative to (a) the origin and (b) the point located at $(-2.0,-2.0) \mathrm{m}$?
-29 ILW In the instant of Fig. 11-41, two particles move in an $x y$ plane. Particle P_{1} has mass 6.5 kg and speed $v_{1}=2.2 \mathrm{~m} / \mathrm{s}$, and it is at distance $d_{1}=1.5 \mathrm{~m}$ from point O. Particle P_{2} has mass 3.1 kg and speed $v_{2}=3.6 \mathrm{~m} / \mathrm{s}$, and it is at distance $d_{2}=$ 2.8 m from point O. What are the

Figure 11-41 Problem 29. (a) magnitude and (b) direction of the net angular momentum of the two particles about O ?
-30 At the instant the displacement of a 2.00 kg object relative to the origin is $\vec{d}=(2.00 \mathrm{~m}) \hat{\mathrm{i}}+(4.00 \mathrm{~m}) \hat{\mathrm{j}}-(3.00 \mathrm{~m}) \hat{\mathrm{k}}$, its velocity is $\vec{v}=-(6.00 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{i}}+(3.00 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{j}}+(3.00 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{k}}$ and it is subject to a force $\vec{F}=(6.00 \mathrm{~N}) \hat{\mathrm{i}}-(8.00 \mathrm{~N}) \hat{\mathrm{j}}+(4.00 \mathrm{~N}) \hat{\mathrm{k}}$. Find (a) the acceleration of the object, (b) the angular momentum of the object about the origin, (c) the torque about the origin acting on the object, and (d) the angle between the velocity of the object and the force acting on the object.
© 31 In Fig. 11-42, a 0.400 kg ball is shot directly upward at initial speed 40.0 m / s. What is its angular momentum about $P, 2.00 \mathrm{~m}$ horizontally from the launch point, when the ball is (a) at

Figure 11-42 Problem 31. maximum height and (b) halfway back to the ground? What is the torque on the ball about P due to the gravitational force when the ball is (c) at maximum height and (d) halfway back to the ground?

Module 11-6 Newton's Second Law in Angular Form

-32 A particle is acted on by two torques about the origin: $\vec{\tau}_{1}$ has a magnitude of $2.0 \mathrm{~N} \cdot \mathrm{~m}$ and is directed in the positive direction of the x axis, and $\vec{\tau}_{2}$ has a magnitude of $4.0 \mathrm{~N} \cdot \mathrm{~m}$ and is directed in the negative direction of the y axis. In unit-vector notation, find $d \vec{\ell} / d t$, where $\vec{\ell}$ is the angular momentum of the particle about the origin.
-33 SSM Www ILW At time $t=0$, a 3.0 kg particle with velocity $\vec{v}=(5.0 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{i}}-(6.0 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{j}}$ is at $x=3.0 \mathrm{~m}, y=8.0 \mathrm{~m}$. It is pulled by a 7.0 N force in the negative x direction. About the origin, what are (a) the particle's angular momentum, (b) the torque acting on the particle, and (c) the rate at which the angular momentum is changing?
-34 A particle is to move in an $x y$ plane, clockwise around the origin as seen from the positive side of the z axis. In unit-vector notation, what torque acts on the particle if the magnitude of its angular momentum about the origin is (a) $4.0 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}$, (b) $4.0 t^{2} \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}$, (c) $4.0 \sqrt{t \mathrm{~kg}} \cdot \mathrm{~m}^{2} / \mathrm{s}$, and (d) $4.0 / t^{2} \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}$?
-•35 At time t, the vector $\vec{r}=4.0 t^{2} \hat{\mathrm{i}}-\left(2.0 t+6.0 t^{2}\right) \hat{\mathrm{j}}$ gives the position of a 3.0 kg particle relative to the origin of an $x y$ coordinate system (\vec{r} is in meters and t is in seconds). (a) Find an expression for the torque acting on the particle relative to the origin. (b) Is the magnitude of the particle's angular momentum relative to the origin increasing, decreasing, or unchanging?

Module 11-7 Angular Momentum of a Rigid Body

-36 Figure 11-43 shows three rotating, uniform disks that are coupled by belts. One belt runs around the rims of disks A and C. Another belt runs around a central hub on disk A and the rim of disk B. The belts move smoothly without slippage on the rims and hub. Disk A has radius R; its hub has radius $0.5000 R$; disk B has radius $0.2500 R$; and disk C has radius $2.000 R$. Disks B and C have the same density (mass per unit volume) and thickness. What is the ratio of the magnitude of the angular momentum of disk C to that of disk B ?

Figure 11-43 Problem 36.
-37 ©0 In Fig. 11-44, three particles of mass $m=23 \mathrm{~g}$ are fastened to three rods of length $d=12 \mathrm{~cm}$ and negligible mass. The rigid assembly rotates around point O at the angular speed $\omega=0.85 \mathrm{rad} / \mathrm{s}$. About O, what are (a) the rotational inertia

Figure 11-44 Problem 37. of the assembly, (b) the magnitude of the angular momentum of the middle particle, and (c) the magnitude of the angular momentum of the asssembly?
-38 A sanding disk with rotational inertia $1.2 \times 10^{-3} \mathrm{~kg} \cdot \mathrm{~m}^{2}$ is attached to an electric drill whose motor delivers a torque of magnitude $16 \mathrm{~N} \cdot \mathrm{~m}$ about the central axis of the disk. About that axis and with the torque applied for 33 ms , what is the magnitude of the (a) angular momentum and (b) angular velocity of the disk?
-39 SSM The angular momentum of a flywheel having a rotational inertia of $0.140 \mathrm{~kg} \cdot \mathrm{~m}^{2}$ about its central axis decreases from 3.00 to $0.800 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}$ in 1.50 s . (a) What is the magnitude of the average torque acting on the flywheel about its central axis during this period? (b) Assuming a constant angular acceleration, through what angle does the flywheel turn? (c) How much work is done on the wheel? (d) What is the average power of the flywheel?
$\bullet 40$ A disk with a rotational inertia of $7.00 \mathrm{~kg} \cdot \mathrm{~m}^{2}$ rotates like a merry-go-round while undergoing a time-dependent torque given by $\tau=(5.00+2.00 t) \mathrm{N} \cdot \mathrm{m}$. At time $t=1.00 \mathrm{~s}$, its angular momentum is $5.00 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}$. What is its angular momentum at $t=3.00 \mathrm{~s}$?
$\bullet 41$ (so Figure $11-45$ shows a rigid structure consisting of a circular hoop of radius R and mass m, and a square made of four thin bars, each of length R and mass m. The rigid structure rotates at a constant speed about a vertical axis, with a period of

Figure 11-45 Problem 41.
rotation of 2.5 s . Assuming $R=0.50 \mathrm{~m}$ and $m=2.0 \mathrm{~kg}$, calculate (a) the structure's rotational inertia about the axis of rotation and (b) its angular momentum about that axis.
-•42 Figure 11-46 gives the torque τ that acts on an initially stationary disk that can rotate about its center like a merry-go-round. The scale on the τ axis is set by $\tau_{s}=4.0 \mathrm{~N} \cdot \mathrm{~m}$. What is the angular momentum of the disk about the rotation axis at times (a) $t=7.0 \mathrm{~s}$ and (b) $t=20 \mathrm{~s}$?

Figure 11-46 Problem 42.

Module 11-8 Conservation of Angular Momentum

-43 In Fig. 11-47, two skaters, each of mass 50 kg , approach each other along parallel paths separated by 3.0 m . They have opposite velocities of $1.4 \mathrm{~m} / \mathrm{s}$ each. One skater carries one end of a long pole of negligible mass, and the other skater grabs the

Figure 11-47 Problem 43. other end as she passes. The skaters then rotate around the center of the pole. Assume that the friction between skates and ice is negligible. What are (a) the radius of the circle, (b) the angular speed of the skaters, and (c) the kinetic energy of the two-skater system? Next, the skaters pull along the pole until they are separated by 1.0 m . What then are (d) their angular speed and (e) the kinetic energy of the system? (f) What provided the energy for the increased kinetic energy?
-44 A Texas cockroach of mass 0.17 kg runs counterclockwise around the rim of a lazy Susan (a circular disk mounted on a vertical axle) that has radius 15 cm , rotational inertia $5.0 \times 10^{-3} \mathrm{~kg} \cdot \mathrm{~m}^{2}$, and frictionless bearings. The cockroach's speed (relative to the ground) is $2.0 \mathrm{~m} / \mathrm{s}$, and the lazy Susan turns clockwise with angular speed $\omega_{0}=$ $2.8 \mathrm{rad} / \mathrm{s}$. The cockroach finds a bread crumb on the rim and, of course, stops. (a) What is the angular speed of the lazy Susan after the cockroach stops? (b) Is mechanical energy conserved as it stops?
-45 SSM Www A man stands on a platform that is rotating (without friction) with an angular speed of $1.2 \mathrm{rev} / \mathrm{s}$; his arms are outstretched and he holds a brick in each hand. The rotational inertia of the system consisting of the man, bricks, and platform about the central vertical axis of the platform is $6.0 \mathrm{~kg} \cdot \mathrm{~m}^{2}$. If by moving the bricks the man decreases the rotational inertia of the system to 2.0 $\mathrm{kg} \cdot \mathrm{m}^{2}$, what are (a) the resulting angular speed of the platform and (b) the ratio of the new kinetic energy of the system to the original kinetic energy? (c) What source provided the added kinetic energy?
-46 The rotational inertia of a collapsing spinning star drops to $\frac{1}{3}$ its initial value. What is the ratio of the new rotational kinetic energy to the initial rotational kinetic energy?
-47 SSM A track is mounted on a large wheel that is free to turn with negligible friction about a vertical axis (Fig. 11-48). A toy train of mass m is placed on the track and, with the system initially at rest, the train's electrical power is turned on. The train reaches speed $0.15 \mathrm{~m} / \mathrm{s}$ with respect to the track. What is the wheel's angular speed if its mass is 1.1 m and its radius is 0.43 m ? (Treat it as a hoop, and neglect the mass of the spokes and hub.)
-48 A Texas cockroach walks from the center of a circular disk (that rotates like a merry-go-round without external torques) out to the edge at radius R. The angular speed of the cockroach-disk system for the walk is given in Fig. 11-49 $\left(\omega_{a}=5.0 \mathrm{rad} / \mathrm{s}\right.$ and $\left.\omega_{b}=6.0 \mathrm{rad} / \mathrm{s}\right)$. After reaching R, what fraction of the rotational inertia of the disk does the cockroach have?

Figure 11-49 Problem 48.
-49 Two disks are mounted (like a merry-go-round) on lowfriction bearings on the same axle and can be brought together so that they couple and rotate as one unit. The first disk, with rotational inertia $3.30 \mathrm{~kg} \cdot \mathrm{~m}^{2}$ about its central axis, is set spinning counterclockwise at $450 \mathrm{rev} / \mathrm{min}$. The second disk, with rotational inertia $6.60 \mathrm{~kg} \cdot \mathrm{~m}^{2}$ about its central axis, is set spinning counterclockwise at $900 \mathrm{rev} / \mathrm{min}$. They then couple together. (a) What is their angular speed after coupling? If instead the second disk is set spinning clockwise at $900 \mathrm{rev} / \mathrm{min}$, what are their (b) angular speed and (c) direction of rotation after they couple together?
-50 The rotor of an electric motor has rotational inertia $I_{m}=$ $2.0 \times 10^{-3} \mathrm{~kg} \cdot \mathrm{~m}^{2}$ about its central axis. The motor is used to change the orientation of the space probe in which it is mounted. The motor axis is mounted along the central axis of the probe; the probe has rotational inertia $I_{p}=12 \mathrm{~kg} \cdot \mathrm{~m}^{2}$ about this axis. Calculate the number of revolutions of the rotor required to turn the probe through 30° about its central axis.
$\cdot 51$ SSM ILW A wheel is rotating freely at angular speed $800 \mathrm{rev} / \mathrm{min}$ on a shaft whose rotational inertia is negligible. A second wheel, initially at rest and with twice the rotational inertia of the first, is suddenly coupled to the same shaft. (a) What is the angular speed of the resultant combination of the shaft and two wheels? (b) What fraction of the original rotational kinetic energy is lost?
$\bullet 52$ (60) A cockroach of mass m lies on the rim of a uniform disk of mass 4.00 m that can rotate freely about its center like a merry-goround. Initially the cockroach and disk rotate together with an angular velocity of $0.260 \mathrm{rad} / \mathrm{s}$. Then the cockroach walks halfway to the center of the disk. (a) What then is the angular velocity of the cock-roach-disk system? (b) What is the ratio K / K_{0} of the new kinetic energy of the system to its initial kinetic energy? (c) What accounts for the change in the kinetic energy?
$\bullet 053$ (60 In Fig. 11-50 (an overhead view), a uniform thin rod of length 0.500 m and mass 4.00 kg can rotate in a horizontal plane about a vertical axis through its center. The rod is at rest when a 3.00 g bullet traveling in the rotation plane is fired into one end of the rod. In the view from

Figure 11-50 Problem 53.
above, the bullet's path makes angle $\theta=60.0^{\circ}$ with the rod (Fig. 1150). If the bullet lodges in the rod and the angular velocity of the rod is $10 \mathrm{rad} / \mathrm{s}$ immediately after the collision, what is the bullet's speed just before impact?
$\bullet 54$ ©o Figure $11-51$ shows an overhead view of a ring that can rotate about its center like a merry-go-round. Its outer radius R_{2} is 0.800 m , its inner radius R_{1} is $R_{2} / 2.00$, its mass M is 8.00 kg , and the mass of the crossbars at its center is negligible. It initially rotates at an angular speed of $8.00 \mathrm{rad} / \mathrm{s}$ with a cat of

Figure 11-51 Problem 54. mass $m=M / 4.00$ on its outer edge, at radius R_{2}. By how much does the cat increase the kinetic energy of the cat-ring system if the cat crawls to the inner edge, at radius R_{1} ? -•55 A horizontal vinyl record of mass 0.10 kg and radius 0.10 m rotates freely about a vertical axis through its center with an angular speed of $4.7 \mathrm{rad} / \mathrm{s}$ and a rotational inertia of $5.0 \times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$. Putty of mass 0.020 kg drops vertically onto the record from above and sticks to the edge of the record. What is the angular speed of the record immediately afterwards?
$\because 56$ In a long jump, an athlete leaves the ground with an initial angular momentum that tends to rotate her body forward, threatening to ruin her landing. To counter this tendency, she rotates her outstretched arms to "take up" the angular momentum (Fig. 1118). In 0.700 s , one arm sweeps through 0.500 rev and the other arm sweeps through 1.000 rev . Treat each arm as a thin rod of mass 4.0 kg and length 0.60 m , rotating around one end. In the athlete's reference frame, what is the magnitude of the total angular momentum of the arms around the common rotation axis through the shoulders?
$\bullet 57$ A uniform disk of mass $10 m$ and radius $3.0 r$ can rotate freely about its fixed center like a merry-go-round. A smaller uniform disk of mass m and radius r lies on top of the larger disk, concentric with it. Initially the two disks rotate together with an angular velocity of $20 \mathrm{rad} / \mathrm{s}$. Then a slight disturbance causes the smaller disk to slide outward across the larger disk, until the outer edge of the smaller disk catches on the outer edge of the larger disk. Afterward, the two disks again rotate together (without further sliding). (a) What then is their angular velocity about the center of the larger disk? (b) What is the ratio K / K_{0} of the new kinetic energy of the two-disk system to the system's initial kinetic energy?
-058 A horizontal platform in the shape of a circular disk rotates on a frictionless bearing about a vertical axle through the center of the disk. The platform has a mass of 150 kg , a radius of 2.0 m , and a rotational inertia of $300 \mathrm{~kg} \cdot \mathrm{~m}^{2}$ about the axis of rotation. A 60 kg student walks slowly from the rim of the platform toward the center. If the angular speed of the system is $1.5 \mathrm{rad} / \mathrm{s}$ when the student starts at the rim, what is the angular speed when she is 0.50 m from the center?
$\bullet 59$ Figure $11-52$ is an overhead view of a thin uniform rod of length 0.800 m and mass M rotating horizontally at angular speed $20.0 \mathrm{rad} / \mathrm{s}$ about an axis through its center. A particle

Figure 11-52 Problem 59.

 of mass $M / 3.00$ initially attached to one end is ejected from the rod and travels along a path that is perpendicular to the rod at the instant of ejection. If the particle's speed v_{p} is $6.00 \mathrm{~m} / \mathrm{s}$ greater than the speed of the rod end just after ejection, what is the value of v_{p} ?-•60 In Fig. 11-53, a 1.0 g bullet is fired into a 0.50 kg block attached to the end of a 0.60 m nonuniform rod of mass 0.50 kg . The block-rod-bullet system then rotates in the plane of the figure, about a fixed axis at A. The rotational inertia of the rod alone about that axis at A is $0.060 \mathrm{~kg} \cdot \mathrm{~m}^{2}$. Treat the block as a particle. (a) What then is the rotational inertia of the block-rod-bullet system about point A ? (b) If the angular speed of the system about A just after impact is $4.5 \mathrm{rad} / \mathrm{s}$, what is the bullet's speed just before impact?
${ }^{\circ} 61$ The uniform rod (length 0.60 m , mass 1.0 kg) in Fig. 11-54 rotates in the plane of the figure about an axis through one end, with a rotational inertia of 0.12 $\mathrm{kg} \cdot \mathrm{m}^{2}$. As the rod swings through its lowest position, it collides with a 0.20 kg putty wad that sticks to the end of the rod. If the rod's angular speed just before collision is $2.4 \mathrm{rad} / \mathrm{s}$, what is the angular speed of the rod-putty system immediately after collision?
make a quadruple somersault lasting a time $t=1.87 \mathrm{~s}$. For the first and last quarter-revolution, he is in the extended orientation shown in Fig. 11-55, with rotational inertia $I_{1}=19.9 \mathrm{~kg} \cdot \mathrm{~m}^{2}$ around his center of mass (the dot). During the rest of the flight he is in a tight tuck, with rotational inertia $I_{2}=3.93 \mathrm{~kg} \cdot \mathrm{~m}^{2}$. What must be his angular speed ω_{2} around his center of mass during the tuck?

Figure 11-55 Problem 62.
-0063 ©0 In Fig. 11-56, a 30 kg child stands on the edge of a stationary merry-go-round of radius 2.0 m . The rotational inertia of the merry-go-round about its rotation axis is $150 \mathrm{~kg} \cdot \mathrm{~m}^{2}$. The child catches a ball of mass 1.0 kg thrown by a friend. Just before the ball is caught, it has a horizontal velocity \vec{v} of magnitude $12 \mathrm{~m} / \mathrm{s}$, at angle $\phi=37^{\circ}$ with a line

Figure 11-53 Problem 60.

Figure 11-54 Problem 61.
tangent to the outer edge of the merry-go-round, as shown. What is the angular speed of the merry-go-round just after the ball is caught?
0064 A ballerina begins a tour jeté (Fig. 11-19a) with angular speed ω_{i} and a rotational inertia consisting of two parts: $I_{\text {leg }}=1.44 \mathrm{~kg} \cdot \mathrm{~m}^{2}$ for her leg extended outward at angle $\theta=90.0^{\circ}$ to her body and $I_{\text {trunk }}=0.660 \mathrm{~kg} \cdot \mathrm{~m}^{2}$ for the rest of her body (primarily her trunk). Near her maximum height she holds both legs at angle $\theta=30.0^{\circ}$ to her body and has angular speed ω_{f} (Fig. 11-19b). Assuming that $I_{\text {trunk }}$ has not changed, what is the ratio ω_{f} / ω_{i} ?
00065 SSM www Two 2.00 kg balls are attached to the ends of a thin rod of length 50.0 cm and negligible mass. The rod is free to rotate in a vertical plane without friction about a horizontal axis through its center. With the rod initially horizontal (Fig. 11-57), a 50.0 g wad of wet putty drops onto one of the balls, hit-

Figure 11-57 Problem 65. ting it with a speed of $3.00 \mathrm{~m} / \mathrm{s}$ and then sticking to it. (a) What is the angular speed of the system just after the putty wad hits? (b) What is the ratio of the kinetic energy of the system after the collision to that of the putty wad just before? (c) Through what angle will the system rotate before it momentarily stops?
-0066 ©o In Fig. 11-58, a small 50 g block slides down a frictionless surface through height $h=20 \mathrm{~cm}$ and then sticks to a uniform rod of mass 100 g and length 40 cm . The rod pivots about point O through angle θ before momentarily stopping. Find θ. 00067 ©o Figure 11-59 is an overhead view of a thin uniform rod of length 0.600 m and mass M rotating

Figure 11-58 Problem 66. horizontally at $80.0 \mathrm{rad} / \mathrm{s}$ counterclockwise about an axis through its center. A particle of mass $M / 3.00$ and traveling horizontally at speed $40.0 \mathrm{~m} / \mathrm{s}$ hits the rod and sticks. The particle's path is perpendicular to the rod at the instant of the hit, at a distance d from the rod's center. (a) At what value of d are rod and particle stationary after the hit? (b) In which direction do rod and particle rotate if d is greater than this value?

Module 11-9 Precession of a Gyroscope

-068 A top spins at $30 \mathrm{rev} / \mathrm{s}$ about an axis that makes an angle of 30° with the vertical. The mass of the top is 0.50 kg , its rotational inertia about its central axis is $5.0 \times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$, and its center of mass is 4.0 cm from the pivot point. If the spin is clockwise from an overhead view, what are the (a) precession rate and (b) direction of the precession as viewed from overhead?
-•69 A certain gyroscope consists of a uniform disk with a 50 cm radius mounted at the center of an axle that is 11 cm long and of negligible mass. The axle is horizontal and supported at one end. If the spin rate is $1000 \mathrm{rev} / \mathrm{min}$, what is the precession rate?

Additional Problems

70 A uniform solid ball rolls smoothly along a floor, then up a ramp inclined at 15.0°. It momentarily stops when it has rolled 1.50 m along the ramp. What was its initial speed?

71 ssm In Fig. 11-60, a constant horizontal force $\vec{F}_{\text {app }}$ of magnitude 12 N is applied to a uniform solid cylinder by fishing line wrapped around the cylinder. The mass of the cylinder is 10 kg , its radius is 0.10 m , and the cylinder rolls smoothly on the horizontal surface. (a) What is the mag-

Figure 11-60 Problem 71. nitude of the acceleration of the center of mass of the cylinder? (b) What is the magnitude of the angular acceleration of the cylinder about the center of mass? (c) In unit-vector notation, what is the frictional force acting on the cylinder?
72 A thin-walled pipe rolls along the floor. What is the ratio of its translational kinetic energy to its rotational kinetic energy about the central axis parallel to its length?
73 SSM A 3.0 kg toy car moves along an x axis with a velocity given by $\vec{v}=-2.0 t^{\hat{\beta} \mathrm{i}} \mathrm{m} / \mathrm{s}$, with t in seconds. For $t>0$, what are (a) the angular momentum \vec{L} of the car and (b) the torque $\vec{\tau}$ on the car, both calculated about the origin? What are (c) \vec{L} and (d) $\vec{\tau}$ about the point $(2.0 \mathrm{~m}, 5.0 \mathrm{~m}, 0)$? What are (e) \vec{L} and (f) $\vec{\tau}$ about the point ($2.0 \mathrm{~m},-5.0 \mathrm{~m}, 0$)?
74 A wheel rotates clockwise about its central axis with an angular momentum of $600 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}$. At time $t=0$, a torque of magnitude $50 \mathrm{~N} \cdot \mathrm{~m}$ is applied to the wheel to reverse the rotation. At what time t is the angular speed zero?
75 SSM In a playground, there is a small merry-go-round of radius 1.20 m and mass 180 kg . Its radius of gyration (see Problem 79 of Chapter 10) is 91.0 cm . A child of mass 44.0 kg runs at a speed of $3.00 \mathrm{~m} / \mathrm{s}$ along a path that is tangent to the rim of the initially stationary merry-go-round and then jumps on. Neglect friction between the bearings and the shaft of the merry-go-round. Calculate (a) the rotational inertia of the merry-go-round about its axis of rotation, (b) the magnitude of the angular momentum of the running child about the axis of rotation of the merry-go-round, and (c) the angular speed of the merry-go-round and child after the child has jumped onto the merry-go-round.
76 A uniform block of granite in the shape of a book has face dimensions of 20 cm and 15 cm and a thickness of 1.2 cm . The density (mass per unit volume) of granite is $2.64 \mathrm{~g} / \mathrm{cm}^{3}$. The block rotates around an axis that is perpendicular to its face and halfway between its center and a corner. Its angular momentum about that axis is $0.104 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}$. What is its rotational kinetic energy about that axis?
77 SSM Two particles, each of mass $2.90 \times 10^{-4} \mathrm{~kg}$ and speed $5.46 \mathrm{~m} / \mathrm{s}$, travel in opposite directions along parallel lines separated by 4.20 cm . (a) What is the magnitude L of the angular momentum of the two-particle system around a point midway between the two lines? (b) Is the value different for a different location of the point? If the direction of either particle is reversed, what are the answers for (c) part (a) and (d) part (b)?
78 A wheel of radius 0.250 m , moving initially at $43.0 \mathrm{~m} / \mathrm{s}$, rolls to a stop in 225 m . Calculate the magnitudes of its (a) linear acceleration and (b) angular acceleration. (c) Its rotational inertia is 0.155 $\mathrm{kg} \cdot \mathrm{m}^{2}$ about its central axis. Find the magnitude of the torque about the central axis due to friction on the wheel.

79 Wheels A and B in Fig. 11-61 are connected by a belt that does not slip. The radius of B is 3.00 times the radius of A. What would be the ratio of the rotational inertias I_{A} / I_{B} if the two wheels had (a) the same angular momentum about their central axes and

Figure 11-61 Problem 79. (b) the same rotational kinetic energy?

80 A 2.50 kg particle that is moving horizontally over a floor with velocity $(-3.00 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{j}}$ undergoes a completely inelastic collision with a 4.00 kg particle that is moving horizontally over the floor with velocity $(4.50 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{i}}$. The collision occurs at $x y$ coordinates ($-0.500 \mathrm{~m},-0.100 \mathrm{~m}$). After the collision and in unit-vector notation, what is the angular momentum of the stuck-together particles with respect to the origin?
81 ssm A uniform wheel of mass 10.0 kg and radius 0.400 m is mounted rigidly on a massless axle through its center (Fig. 11-62). The radius of the axle is 0.200 m , and the rotational inertia of the wheel-axle combination about its central axis

Figure 11-62 Problem 81. is $0.600 \mathrm{~kg} \cdot \mathrm{~m}^{2}$. The wheel is initially at rest at the top of a surface that is inclined at angle $\theta=$ 30.0° with the horizontal; the axle rests on the surface while the wheel extends into a groove in the surface without touching the surface. Once released, the axle rolls down along the surface smoothly and without slipping. When the wheel-axle combination has moved down the surface by 2.00 m , what are (a) its rotational kinetic energy and (b) its translational kinetic energy?
82 A uniform rod rotates in a horizontal plane about a vertical axis through one end. The rod is 6.00 m long, weighs 10.0 N , and rotates at $240 \mathrm{rev} / \mathrm{min}$. Calculate (a) its rotational inertia about the axis of rotation and (b) the magnitude of its angular momentum about that axis.
83 A solid sphere of weight 36.0 N rolls up an incline at an angle of 30.0°. At the bottom of the incline the center of mass of the sphere has a translational speed of $4.90 \mathrm{~m} / \mathrm{s}$. (a) What is the kinetic energy of the sphere at the bottom of the incline? (b) How far does the sphere travel up along the incline? (c) Does the answer to (b) depend on the sphere's mass?

84 Suppose that the yo-yo in Problem 17, instead of rolling from rest, is thrown so that its initial speed down the string is $1.3 \mathrm{~m} / \mathrm{s}$. (a) How long does the yo-yo take to reach the end of the string? As it reaches the end of the string, what are its (b) total kinetic energy, (c) linear speed, (d) translational kinetic energy, (e) angular speed, and (f) rotational kinetic energy?

85 A girl of mass M stands on the rim of a frictionless merry-go-round of radius R and rotational inertia I that is not moving. She throws a rock of mass m horizontally in a direction that is tangent to the outer edge of the merry-go-round. The speed of the rock, relative to the ground, is v. Afterward, what are (a) the angular speed of the merry-go-round and (b) the linear speed of the girl?
86 A body of radius R and mass m is rolling smoothly with speed v on a horizontal surface. It then rolls up a hill to a maximum height h. (a) If $h=3 v^{2} / 4 g$, what is the body's rotational inertia about the rotational axis through its center of mass? (b) What might the body be?

A P P E N D I X A

THE INTERNATIONAL SYSTEM OF UNITS (SI)*

Table 1 The SI Base Units

Quantity	Name	Symbol	Definition
length	meter	m	"... the length of the path traveled by light in vacuum in 1/299,792,458 of a second." (1983)
mass	kilogram	kg	"... this prototype [a certain platinum-iridium cylinder] shall henceforth be considered to be the unit of mass." (1889)
time	second	S	"... the duration of $9,192,631,770$ periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the cesium-133 atom." (1967)
electric current	ampere	A	"... that constant current which, if maintained in two straight parallel conductors of infinite length, of negligible circular cross section, and placed 1 meter apart in vacuum, would produce between these conductors a force equal to 2×10^{-7} newton per meter of length." (1946)
thermodynamic temperature	kelvin	K	"... the fraction $1 / 273.16$ of the thermodynamic temperature of the triple point of water." (1967)
amount of substance	mole	mol	"... the amount of substance of a system which contains as many elementary entities as there are atoms in 0.012 kilogram of carbon-12." (1971)
luminous intensity	candela	cd	"... the luminous intensity, in a given direction, of a source that emits monochromatic radiation of frequency $540 \times$ 10^{12} hertz and that has a radiant intensity in that direction of $1 / 683$ watt per steradian." (1979)

[^1]Table 2 Some SI Derived Units

Quantity	Name of Unit	Symbol	
area	square meter	m^{2}	
volume	cubic meter	m^{3}	
frequency	hertz	Hz	s^{-1}
mass density (density)	kilogram per cubic meter	$\mathrm{kg} / \mathrm{m}^{3}$	
speed, velocity	meter per second	m / s	
angular velocity	radian per second	$\mathrm{rad} / \mathrm{s}$	
acceleration	meter per second per second	$\mathrm{m} / \mathrm{s}^{2}$	
angular acceleration	radian per second per second	$\mathrm{rad} / \mathrm{s}^{2}$	
force	newton	N	$\mathrm{kg} \cdot \mathrm{m} / \mathrm{s}^{2}$
pressure	pascal	Pa	$\mathrm{N} / \mathrm{m}^{2}$
work, energy, quantity of heat	joule	J	$\mathrm{N} \cdot \mathrm{m}$
power	watt	W	J/s
quantity of electric charge	coulomb	C	A $\cdot \mathrm{s}$
potential difference, electromotive force	volt	V	W/A
electric field strength	volt per meter (or newton per coulomb)	V/m	N/C
electric resistance	ohm	Ω	V/A
capacitance	farad	F	A $\cdot \mathrm{s} / \mathrm{V}$
magnetic flux	weber	Wb	$\mathrm{V} \cdot \mathrm{s}$
inductance	henry	H	$\mathrm{V} \cdot \mathrm{s} / \mathrm{A}$
magnetic flux density	tesla	T	$\mathrm{Wb} / \mathrm{m}^{2}$
magnetic field strength	ampere per meter	A/m	
entropy	joule per kelvin	J/K	
specific heat	joule per kilogram kelvin	$\mathrm{J} /(\mathrm{kg} \cdot \mathrm{K})$	
thermal conductivity	watt per meter kelvin	W/(m•K)	
radiant intensity	watt per steradian	W/sr	

Table 3 The SI Supplementary Units

Quantity	Name of Unit	Symbol
plane angle	radian	rad
solid angle	steradian	sr

A P P E N D I X B

SOME FUNDAMENTAL CONSTANTS OF PHYSICS*

Constant	Symbol	Computational Value	Best (1998) Value	
			Value ${ }^{a}$	Uncertainty ${ }^{\text {b }}$
Speed of light in a vacuum	c	$3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$	2.99792458	exact
Elementary charge	e	$1.60 \times 10^{-19} \mathrm{C}$	1.602176487	0.025
Gravitational constant	G	$6.67 \times 10^{-11} \mathrm{~m}^{3} / \mathrm{s}^{2} \cdot \mathrm{~kg}$	6.67428	100
Universal gas constant	R	$8.31 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}$	8.314472	1.7
Avogadro constant	$N_{\text {A }}$	$6.02 \times 10^{23} \mathrm{~mol}^{-1}$	6.02214179	0.050
Boltzmann constant	k	$1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$	1.3806504	1.7
Stefan-Boltzmann constant	σ	$5.67 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{~K}^{4}$	5.670400	7.0
Molar volume of ideal gas at STP ${ }^{d}$	V_{m}	$2.27 \times 10^{-2} \mathrm{~m}^{3} / \mathrm{mol}$	2.2710981	1.7
Permittivity constant	ϵ_{0}	$8.85 \times 10^{-12} \mathrm{~F} / \mathrm{m}$	8.85418781762	exact
Permeability constant	μ_{0}	$1.26 \times 10^{-6} \mathrm{H} / \mathrm{m}$	1.25663706143	exact
Planck constant	h	$6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}$	6.62606896	0.050
Electron mass ${ }^{\text {c }}$	$m_{\text {e }}$	$9.11 \times 10^{-31} \mathrm{~kg}$	9.10938215	0.050
		$5.49 \times 10^{-4} \mathrm{u}$	5.4857990943	4.2×10^{-4}
Proton mass ${ }^{\text {c }}$	$m_{\text {p }}$	$1.67 \times 10^{-27} \mathrm{~kg}$	1.672621637	0.050
		1.0073 u	1.00727646677	1.0×10^{-4}
Ratio of proton mass to electron mass	$m_{\mathrm{p}} / m_{\text {e }}$	1840	1836.15267247	4.3×10^{-4}
Electron charge-to-mass ratio	$e / m_{\text {e }}$	$1.76 \times 10^{11} \mathrm{C} / \mathrm{kg}$	1.758820150	0.025
Neutron mass ${ }^{\text {c }}$	m_{n}	$1.68 \times 10^{-27} \mathrm{~kg}$	1.674927211	0.050
		1.0087 u	1.00866491597	4.3×10^{-4}
Hydrogen atom mass ${ }^{\text {c }}$	$m_{1_{\text {H }}}$	1.0078 u	1.0078250316	0.0005
Deuterium atom mass ${ }^{\text {c }}$	$m_{2 \mathrm{H}}$	2.0136 u	2.013553212724	3.9×10^{-5}
Helium atom mass ${ }^{\text {c }}$	$m_{4 \mathrm{He}}$	4.0026 u	4.0026032	0.067
Muon mass	m_{μ}	$1.88 \times 10^{-28} \mathrm{~kg}$	1.88353130	0.056
Electron magnetic moment	$\mu_{\text {e }}$	$9.28 \times 10^{-24} \mathrm{~J} / \mathrm{T}$	9.28476377	0.025
Proton magnetic moment	μ_{p}	$1.41 \times 10^{-26} \mathrm{~J} / \mathrm{T}$	1.410606662	0.026
Bohr magneton	$\mu_{\text {B }}$	$9.27 \times 10^{-24} \mathrm{~J} / \mathrm{T}$	9.27400915	0.025
Nuclear magneton	μ_{N}	$5.05 \times 10^{-27} \mathrm{~J} / \mathrm{T}$	5.05078324	0.025
Bohr radius	a	$5.29 \times 10^{-11} \mathrm{~m}$	5.2917720859	6.8×10^{-4}
Rydberg constant	R	$1.10 \times 10^{7} \mathrm{~m}^{-1}$	1.0973731568527	6.6×10^{-6}
Electron Compton wavelength	$\lambda_{\text {C }}$	$2.43 \times 10^{-12} \mathrm{~m}$	2.4263102175	0.0014

[^2][^3]
A P P E N D I X C

SOME ASTRONOMICAL DATA

Some Distances from Earth

To the Moon*	$3.82 \times 10^{8} \mathrm{~m}$	To the center of our galaxy	$2.2 \times 10^{20} \mathrm{~m}$
To the Sun*	$1.50 \times 10^{11} \mathrm{~m}$	To the Andromeda Galaxy	$2.1 \times 10^{22} \mathrm{~m}$
To the nearest star (Proxima Centauri)	$4.04 \times 10^{16} \mathrm{~m}$	To the edge of the observable universe	$\sim 10^{26} \mathrm{~m}$

*Mean distance.

The Sun, Earth, and the Moon

Property	Unit		Sun	Earth
Mass	kg	1.99×10^{30}	5.98×10^{24}	7.36×10^{22}
Mean radius	m	6.96×10^{8}	6.37×10^{6}	1.74×10^{6}
Mean density	$\mathrm{kg} / \mathrm{m}^{3}$	1410	5520	3340
Free-fall acceleration at the surface	$\mathrm{m} / \mathrm{s}^{2}$	274	9.81	1.67
Escape velocity $^{\text {Period of rotation }}$ a	km / s	618		11.2
Radiation power c	-	$37{\text { dat } \text { poles }^{b}}^{b}$	26 d at equator ${ }^{b}$	23 h 56 min

${ }^{a}$ Measured with respect to the distant stars.
${ }^{b}$ The Sun, a ball of gas, does not rotate as a rigid body.
${ }^{c}$ Just outside Earth's atmosphere solar energy is received, assuming normal incidence, at the rate of $1340 \mathrm{~W} / \mathrm{m}^{2}$.
Some Properties of the Planets

	Mercury	Venus	Earth	Mars	Jupiter	Saturn	Uranus	Neptune	Pluto $^{\text {d }}$
Mean distance from Sun, $10^{6} \mathrm{~km}$	57.9	108	150	228	778	1430	2870	4500	5900
Period of revolution, y	0.241	0.615	1.00	1.88	11.9	29.5	84.0	165	248
Period of rotation, ${ }^{a} \mathrm{~d}$	58.7	-243^{b}	0.997	1.03	0.409	0.426	-0.451^{b}	0.658	6.39
Orbital speed, km / s	47.9	35.0	29.8	24.1	13.1	9.64	6.81	5.43	4.74
Inclination of axis to orbit	$<28^{\circ}$	$\approx 3^{\circ}$	23.4°	25.0°	3.08°	26.7°	97.9°	29.6°	57.5°
Inclination of orbit to \quad Earth's orbit	7.00°	3.39°		1.85°	1.30°	2.49°	0.77°	1.77°	17.2°
Eccentricity of orbit	0.206	0.0068	0.0167	0.0934	0.0485	0.0556	0.0472	0.0086	0.250
Equatorial diameter, km	4880	12100	12800	6790	143000	120000	51800	49500	2300
Mass (Earth $=1$)	0.0558	0.815	1.000	0.107	318	95.1	14.5	17.2	0.002
Density (water $=1)$	5.60	5.20	5.52	3.95	1.31	0.704	1.21	1.67	2.03
Surface value of $g{ }^{c}{ }^{c} \mathrm{~m} / \mathrm{s}^{2}$	3.78	8.60	9.78	3.72	22.9	9.05	7.77	11.0	0.5
Escape velocity, km / s	4.3	10.3	11.2	5.0	59.5	35.6	21.2	23.6	1.3
Known satellites	0	0	1	2	$67+$ ring	$62+$ rings	$27+$ rings	$13+$ rings	4

${ }^{a}$ Measured with respect to the distant stars.
${ }^{b}$ Venus and Uranus rotate opposite their orbital motion.
${ }^{c}$ Gravitational acceleration measured at the planet's equator.
${ }^{d}$ Pluto is now classified as a dwarf planet.

A P P E N D I X D

CONVERSION FACTORS

Conversion factors may be read directly from these tables. For example, 1 degree $=2.778 \times$ 10^{-3} revolutions, so $16.7^{\circ}=16.7 \times 2.778 \times 10^{-3} \mathrm{rev}$. The SI units are fully capitalized. Adapted in part from G. Shortley and D. Williams, Elements of Physics, 1971, Prentice-Hall, Englewood Cliffs, NJ.

Plane Angle

-	,	"	RADIAN	rev
1 degree $=1$	60	3600	1.745×10^{-2}	2.778×10^{-3}
1 minute $=1.667 \times 10^{-2}$	1	60	2.909×10^{-4}	4.630×10^{-5}
1 second $=2.778 \times 10^{-4}$	1.667×10^{-2}	1	4.848×10^{-6}	7.716×10^{-7}
1 RADIAN $=57.30$	3438	2.063×10^{5}	1	0.1592
1 revolution $=360$	2.16×10^{4}	1.296×10^{6}	6.283	1

Solid Angle
1 sphere $=4 \pi$ steradians $=12.57$ steradians

Length

cm	METER	km	in.	ft	mi
1 centimeter $=1$	10^{-2}	10^{-5}	0.3937	3.281×10^{-2}	6.214×10^{-6}
$1 \mathrm{METER}=100$	1	10^{-3}	39.37	3.281	6.214×10^{-4}
1 kilometer $=10^{5}$	1000	1	3.937×10^{4}	3281	0.6214
1 inch $=2.540$	2.540×10^{-2}	2.540×10^{-5}	1	8.333×10^{-2}	1.578×10^{-5}
1 foot $=30.48$	0.3048	3.048×10^{-4}	12	1	1.894×10^{-4}
1 mile $=1.609 \times 10^{5}$	1609	1.609	6.336×10^{4}	5280	1
1 angström $=10^{-10} \mathrm{~m}$	1 fermi $=10^{-15} \mathrm{~m}$		1 fathom $=6 \mathrm{ft}$		$1 \mathrm{rod}=16.5 \mathrm{ft}$
$\begin{array}{r} 1 \text { nautical mile }=1852 \mathrm{~m} \\ =1.151 \text { miles }=6076 \mathrm{ft} \end{array}$	1 light-year $=9.461 \times 10^{12} \mathrm{~km}$		1 Bohr radius $=5.292 \times 10^{-11} \mathrm{~m}$		$\begin{aligned} & 1 \mathrm{mil}=10^{-3} \mathrm{in} . \\ & 1 \mathrm{~nm}=10^{-9} \mathrm{~m} \end{aligned}$

Area

METER 2	$\mathrm{~cm}^{2}$	ft^{2}	$\mathrm{in.}^{2}$
1 SQUARE METER $=1$	10^{4}	10.76	1550
1 square centimeter $=10^{-4}$	1	1.076×10^{-3}	0.1550
1 square foot $=9.290 \times 10^{-2}$	929.0	1	144
1 square inch $=6.452 \times 10^{-4}$	6.452	6.944×10^{-3}	1

1 square mile $=2.788 \times 10^{7} \mathrm{ft}^{2}=640$ acres	1 acre $=43560 \mathrm{ft}^{2}$
1 barn $=10^{-28} \mathrm{~m}^{2}$	1 hectare $=10^{4} \mathrm{~m}^{2}=2.471$ acres

Volume

METER 3	$\mathrm{~cm}^{3}$	L	ft^{3}	in. 3
1 CUBIC METER $=1$	10^{6}	1	1000	35.31
1 cubic centimeter $=10^{-6}$	1000	1.000×10^{-3}	3.531×10^{-5}	6.102×10^{4}
1 liter $=1.000 \times 10^{-3}$	2.832×10^{4}	28.32	3.531×10^{-2}	61.02
1 cubic foot $=2.832 \times 10^{-2}$	16.39	1.639×10^{-2}	1	1728
1 cubic inch $=1.639 \times 10^{-5}$				

1 U.S. fluid gallon $=4$ U.S. fluid quarts $=8$ U.S. pints $=128$ U.S. fluid ounces $=231 \mathrm{in} .^{3}$
1 British imperial gallon $=277.4$ in. ${ }^{3}=1.201$ U.S. fluid gallons

Mass

Quantities in the colored areas are not mass units but are often used as such. For example, when we write 1 kg "=" 2.205 lb , this means that a kilogram is a mass that weighs 2.205 pounds at a location where g has the standard value of $9.80665 \mathrm{~m} / \mathrm{s}^{2}$.

g	KILOGRAM	slug	u	oz	lb	ton
1 gram $=1$	0.001	6.852×10^{-5}	6.022×10^{23}	3.527×10^{-2}	2.205×10^{-3}	1.102×10^{-6}
$1 \mathrm{KILOGRAM}=1000$	1	6.852×10^{-2}	6.022×10^{26}	35.27	2.205	1.102×10^{-3}
$1 \mathrm{slug}=1.459 \times 10^{4}$	14.59	1	8.786×10^{27}	514.8	32.17	1.609×10^{-2}
$\begin{aligned} & 1 \text { atomic } \\ & \text { mass unit }=1.661 \times 10^{-24} \end{aligned}$	1.661×10^{-27}	1.138×10^{-28}	1	5.857×10^{-26}	3.662×10^{-27}	1.830×10^{-30}
1 ounce $=28.35$	2.835×10^{-2}	1.943×10^{-3}	1.718×10^{25}	1	6.250×10^{-2}	3.125×10^{-5}
1 pound $=453.6$	0.4536	3.108×10^{-2}	2.732×10^{26}	16	1	0.0005
1 ton $=9.072 \times 10^{5}$	907.2	62.16	5.463×10^{29}	3.2×10^{4}	2000	1

1 metric ton $=1000 \mathrm{~kg}$

Density

Quantities in the colored areas are weight densities and, as such, are dimensionally different from mass densities.
See the note for the mass table.

slug/ft ${ }^{3}$	KILOGRAM/ METER ${ }^{3}$	$\mathrm{g} / \mathrm{cm}^{3}$	$\mathrm{lb} / \mathrm{ft}^{3}$	lb/in. ${ }^{3}$
1 slug per foot ${ }^{3}=1$	515.4	0.5154	32.17	1.862×10^{-2}
$\begin{aligned} & 1 \text { KILOGRAM } \\ & \text { per } \text { METER }^{3}=1.940 \times 10^{-3} \end{aligned}$	1	0.001	6.243×10^{-2}	3.613×10^{-5}
1 gram per centimeter ${ }^{3}=1.940$	1000	1	62.43	3.613×10^{-2}
1 pound per foot ${ }^{3}=3.108 \times 10^{-2}$	16.02	16.02×10^{-2}	1	5.787×10^{-4}
1 pound per inch ${ }^{3}=53.71$	2.768×10^{4}	27.68	1728	1

Time

y	d	h	\min	SECOND
1 year $=1$	365.25	8.766×10^{3}	5.259×10^{5}	3.156×10^{7}
1 day $=2.738 \times 10^{-3}$	1	24	1440	8.640×10^{4}
1 hour $=1.141 \times 10^{-4}$	4.167×10^{-2}	1	60	3600
1 minute $=1.901 \times 10^{-6}$	6.944×10^{-4}	1.667×10^{-2}	1	60
1 SECOND $=3.169 \times 10^{-8}$	1.157×10^{-5}	2.778×10^{-4}	1.667×10^{-2}	1

Speed

ft / s	km / h	METER/SECOND	mi / h	cm / s
1 foot per second $=1$	1.097	1	0.3048	0.6818
1 kilometer per hour $=0.9113$	3.6	0.2778	0.6214	30.48
1 METER per SECOND $=3.281$	1.609	1	2.237	27.78
1 mile per hour $=1.467$	3.6×10^{-2}	0.4470	1	100
1 centimeter per second $=3.281 \times 10^{-2}$	0.01	2.237×10^{-2}	1	

$1 \mathrm{knot}=1$ nautical mi $/ \mathrm{h}=1.688 \mathrm{ft} / \mathrm{s} \quad 1 \mathrm{mi} / \mathrm{min}=88.00 \mathrm{ft} / \mathrm{s}=60.00 \mathrm{mi} / \mathrm{h}$

Force
Force units in the colored areas are now little used. To clarify: 1 gram-force ($=1 \mathrm{gf}$) is the force of gravity that would act on an object whose mass is 1 gram at a location where g has the standard value of $9.80665 \mathrm{~m} / \mathrm{s}^{2}$.

dyne	NEWTON	lb	pdl	gf	kgf
1 dyne $=1$	10^{-5}	2.248×10^{-6}	7.233×10^{-5}	1.020×10^{-3}	1.020×10^{-6}
1 NEWTON $=10^{5}$	1	0.2248	7.233	102.0	0.1020
1 pound $=4.448 \times 10^{5}$	4.448	1	32.17	453.6	0.4536
1 poundal $=1.383 \times 10^{4}$	0.1383	3.108×10^{-2}	1	14.10	1.410×10^{2}
1 gram-force $=980.7$	9.807×10^{-3}	2.205×10^{-3}	7.093×10^{-2}	1	0.001
1 kilogram-force $=9.807 \times 10^{5}$	9.807	2.205	70.93	1000	1

$1 \mathrm{ton}=2000 \mathrm{lb}$

Pressure

atm	dyne/cm ${ }^{2}$	inch of water	cm Hg	PASCAL	$\mathrm{lb} / \mathrm{in} .^{2}$	$\mathrm{lb} / \mathrm{ft}^{2}$
1 atmosphere $=1$	1.013×10^{6}	406.8	76	1.013×10^{5}	14.70	2116
$\begin{aligned} & \begin{array}{l} 1 \text { dyne per } \\ \text { centimeter } \end{array}=9.869 \times 10^{-7} \end{aligned}$	1	4.015×10^{-4}	7.501×10^{-5}	0.1	1.405×10^{-5}	2.089×10^{-3}
$\begin{gathered} 1 \text { inch of } \\ \text { water }^{a} \text { at } 4^{\circ} \mathrm{C}=2.458 \times 10^{-3} \end{gathered}$	2491	1	0.1868	249.1	3.613×10^{-2}	5.202
1 centimeter of mercury ${ }^{a}$ at $0^{\circ} \mathrm{C}=1.316 \times 10^{-2}$	1.333×10^{4}	5.353	1	1333	0.1934	27.85
1 PASCAL $=9.869 \times 10^{-6}$	10	4.015×10^{-3}	7.501×10^{-4}	1	1.450×10^{-4}	2.089×10^{-2}
1 pound per inch ${ }^{2}=6.805 \times 10^{-2}$	6.895×10^{4}	27.68	5.171	6.895×10^{3}	1	144
1 pound per foot ${ }^{2}=4.725 \times 10^{-4}$	478.8	0.1922	3.591×10^{-2}	47.88	6.944×10^{-3}	1

${ }^{a}$ Where the acceleration of gravity has the standard value of $9.80665 \mathrm{~m} / \mathrm{s}^{2}$.
1 bar $=10^{6}$ dyne $/ \mathrm{cm}^{2}=0.1 \mathrm{MPa} \quad 1$ millibar $=10^{3}$ dyne $/ \mathrm{cm}^{2}=10^{2} \mathrm{~Pa} \quad 1 \mathrm{torr}=1 \mathrm{~mm} \mathrm{Hg}$

Energy, Work, Heat
Quantities in the colored areas are not energy units but are included for convenience. They arise from the relativistic mass-energy equivalence formula $E=m c^{2}$ and represent the energy released if a kilogram or unified atomic mass unit (u) is completely converted to energy (bottom two rows) or the mass that would be completely converted to one unit of energy (rightmost two columns).

Btu	erg

Power

$\mathrm{Btu} / \mathrm{h}$	$\mathrm{ft} \cdot \mathrm{lb} / \mathrm{s}$	hp	$\mathrm{cal} / \mathrm{s}$	kW	
1 British thermal unit per hour $=1$	0.2161	3.929×10^{-4}	6.998×10^{-2}	2.930×10^{-4}	0.2930
1 foot-pound per second $=4.628$	1	1.818×10^{-3}	0.3239	178.1	1.356×10^{-3}
1 horsepower $=2545$	550	1	1	0.7457	4.186×10^{-3}
1 calorie per second $=14.29$	3.088	5.615×10^{-3}	745.7		
1 kilowatt	$=3413$	737.6	1.341	238.9	1

Magnetic Field

gauss	TESLA	milligauss
1 gauss $=1$	10^{-4}	1000
1 TESLA $=10^{4}$	1	10^{7}
1 milligauss $=0.001$	10^{-7}	1

1 tesla $=1$ weber $/$ meter 2

Magnetic Flux

	maxwell
WEBER	
1 maxwell $=1$	10^{-8}
1 WEBER $=10^{8}$	1

A P P E N D I X E

MATHEMATICAL FORMULAS

Geometry

Circle of radius r : circumference $=2 \pi r$; area $=\pi r^{2}$.
Sphere of radius r : area $=4 \pi r^{2} ;$ volume $=\frac{4}{3} \pi r^{3}$.
Right circular cylinder of radius r and height h : area $=2 \pi r^{2}+2 \pi r h ;$ volume $=\pi r^{2} h$.
Triangle of base a and altitude h : area $=\frac{1}{2} a h$.

Quadratic Formula

If $a x^{2}+b x+c=0$, then $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$.

Trigonometric Functions of Angle θ

Pythagorean Theorem

In this right triangle,

$$
a^{2}+b^{2}=c^{2}
$$

Triangles

Angles are A, B, C
Opposite sides are a, b, c
Angles $A+B+C=180^{\circ}$
$\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}$
$c^{2}=a^{2}+b^{2}-2 a b \cos C$

Exterior angle $D=A+C$

Mathematical Signs and Symbols

$=$ equals
\approx equals approximately
\sim is the order of magnitude of
\neq is not equal to
\equiv is identical to, is defined as
$>$ is greater than ($>$ is much greater than)
$<$ is less than ($<$ is much less than)
\geq is greater than or equal to (or, is no less than)
\leq is less than or equal to (or, is no more than)
\pm plus or minus
\propto is proportional to
Σ the sum of
$x_{\text {avg }}$ the average value of x

Trigonometric Identities

$\sin \left(90^{\circ}-\theta\right)=\cos \theta$
$\cos \left(90^{\circ}-\theta\right)=\sin \theta$
$\sin \theta / \cos \theta=\tan \theta$
$\sin ^{2} \theta+\cos ^{2} \theta=1$
$\sec ^{2} \theta-\tan ^{2} \theta=1$
$\csc ^{2} \theta-\cot ^{2} \theta=1$
$\sin 2 \theta=2 \sin \theta \cos \theta$
$\cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta=2 \cos ^{2} \theta-1=1-2 \sin ^{2} \theta$
$\sin (\alpha \pm \beta)=\sin \alpha \cos \beta \pm \cos \alpha \sin \beta$
$\cos (\alpha \pm \beta)=\cos \alpha \cos \beta \mp \sin \alpha \sin \beta$
$\tan (\alpha \pm \beta)=\frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \tan \beta}$
$\sin \alpha \pm \sin \beta=2 \sin \frac{1}{2}(\alpha \pm \beta) \cos \frac{1}{2}(\alpha \mp \beta)$
$\cos \alpha+\cos \beta=2 \cos \frac{1}{2}(\alpha+\beta) \cos \frac{1}{2}(\alpha-\beta)$
$\cos \alpha-\cos \beta=-2 \sin \frac{1}{2}(\alpha+\beta) \sin \frac{1}{2}(\alpha-\beta)$

Binomial Theorem

$(1+x)^{n}=1+\frac{n x}{1!}+\frac{n(n-1) x^{2}}{2!}+\cdots \quad\left(x^{2}<1\right)$

Exponential Expansion

$$
e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots
$$

Logarithmic Expansion

$$
\ln (1+x)=x-\frac{1}{2} x^{2}+\frac{1}{3} x^{3}-\cdots \quad(|x|<1)
$$

Trigonometric Expansions

(θ in radians)

$$
\begin{aligned}
& \sin \theta=\theta-\frac{\theta^{3}}{3!}+\frac{\theta^{5}}{5!}-\cdots \\
& \cos \theta=1-\frac{\theta^{2}}{2!}+\frac{\theta^{4}}{4!}-\cdots \\
& \tan \theta=\theta+\frac{\theta^{3}}{3}+\frac{2 \theta^{5}}{15}+\cdots
\end{aligned}
$$

Cramer's Rule

Two simultaneous equations in unknowns x and y,

$$
a_{1} x+b_{1} y=c_{1} \quad \text { and } \quad a_{2} x+b_{2} y=c_{2}
$$

have the solutions

$$
x=\frac{\left|\begin{array}{ll}
c_{1} & b_{1} \\
c_{2} & b_{2}
\end{array}\right|}{\left|\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right|}=\frac{c_{1} b_{2}-c_{2} b_{1}}{a_{1} b_{2}-a_{2} b_{1}}
$$

and

$$
y=\frac{\left|\begin{array}{ll}
a_{1} & c_{1} \\
a_{2} & c_{2}
\end{array}\right|}{\left|\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right|}=\frac{a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}
$$

Products of Vectors

Let $\hat{\mathrm{i}}, \hat{\mathrm{j}}$, and $\hat{\mathrm{k}}$ be unit vectors in the x, y, and z directions. Then

$$
\begin{gathered}
\hat{\mathrm{i}} \cdot \hat{\mathrm{i}}=\hat{\mathrm{j}} \cdot \hat{\mathrm{j}}=\hat{\mathrm{k}} \cdot \hat{\mathrm{k}}=1, \quad \hat{\mathrm{i}} \cdot \hat{\mathrm{j}}=\hat{\mathrm{j}} \cdot \hat{\mathrm{k}}=\hat{\mathrm{k}} \cdot \hat{\mathrm{i}}=0 \\
\hat{\mathrm{i}} \times \hat{\mathrm{i}}=\hat{\mathrm{j}} \times \hat{\mathrm{j}}=\hat{\mathrm{k}} \times \hat{\mathrm{k}}=0 \\
\hat{\mathrm{i}} \times \hat{\mathrm{j}}=\hat{\mathrm{k}}, \quad \hat{\mathrm{j}} \times \hat{\mathrm{k}}=\hat{\mathrm{i}}, \quad \hat{\mathrm{k}} \times \hat{\mathrm{i}}=\hat{\mathrm{j}}
\end{gathered}
$$

Any vector \vec{a} with components a_{x}, a_{y}, and a_{z} along the x, y, and z axes can be written as

$$
\vec{a}=a_{x} \hat{\mathrm{i}}+a_{y} \hat{\mathrm{j}}+a_{z} \hat{\mathrm{k}}
$$

Let \vec{a}, \vec{b}, and \vec{c} be arbitrary vectors with magnitudes a, b, and c. Then

Let θ be the smaller of the two angles between \vec{a} and \vec{b}. Then

$$
\vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{a}=a_{x} b_{x}+a_{y} b_{y}+a_{z} b_{z}=a b \cos \theta
$$

$$
\begin{aligned}
\vec{a} \times \vec{b}= & -\vec{b} \times \vec{a}=\left|\begin{array}{ccc}
\hat{\mathrm{i}} & \hat{\mathrm{j}} & \hat{\mathrm{k}} \\
a_{x} & a_{y} & a_{z} \\
b_{x} & b_{y} & b_{z}
\end{array}\right| \\
= & \hat{\mathrm{i}}\left|\begin{array}{ll}
a_{y} & a_{z} \\
b_{y} & b_{z}
\end{array}\right|-\hat{\mathrm{j}}\left|\begin{array}{cc}
a_{x} & a_{z} \\
b_{x} & b_{z}
\end{array}\right|+\hat{\mathrm{k}}\left|\begin{array}{cc}
a_{x} & a_{y} \\
b_{x} & b_{y}
\end{array}\right| \\
= & \left(a_{y} b_{z}-b_{y} a_{z}\right) \hat{\mathrm{i}}+\left(a_{z} b_{x}-b_{z} a_{x}\right) \hat{\mathrm{j}} \\
& +\left(a_{x} b_{y}-b_{x} a_{y}\right) \hat{\mathrm{k}} \\
& |\vec{a} \times \vec{b}|=a b \sin \theta
\end{aligned}
$$

$$
\vec{a} \cdot(\vec{b} \times \vec{c})=\vec{b} \cdot(\vec{c} \times \vec{a})=\vec{c} \cdot(\vec{a} \times \vec{b})
$$

$$
\vec{a} \times(\vec{b} \times \vec{c})=(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{a} \cdot \vec{b}) \vec{c}
$$

$$
\begin{aligned}
& \vec{a} \times(\vec{b}+\vec{c})=(\vec{a} \times \vec{b})+(\vec{a} \times \vec{c}) \\
& (s \vec{a}) \times \vec{b}=\vec{a} \times(s \vec{b})=s(\vec{a} \times \vec{b}) \quad(s=\text { a scalar }) .
\end{aligned}
$$

Derivatives and Integrals

In what follows, the letters u and v stand for any functions of x, and a and m are constants. To each of the indefinite integrals should be added an arbitrary constant of integration. The Handbook of Chemistry and Physics (CRC Press Inc.) gives a more extensive tabulation.

1. $\frac{d x}{d x}=1$
2. $\frac{d}{d x}(a u)=a \frac{d u}{d x}$
3. $\frac{d}{d x}(u+v)=\frac{d u}{d x}+\frac{d v}{d x}$
4. $\frac{d}{d x} x^{m}=m x^{m-1}$
5. $\frac{d}{d x} \ln x=\frac{1}{x}$
6. $\frac{d}{d x}(u v)=u \frac{d v}{d x}+v \frac{d u}{d x}$
7. $\frac{d}{d x} e^{x}=e^{x}$
8. $\frac{d}{d x} \sin x=\cos x$
9. $\frac{d}{d x} \cos x=-\sin x$
10. $\frac{d}{d x} \tan x=\sec ^{2} x$
11. $\frac{d}{d x} \cot x=-\csc ^{2} x$
12. $\frac{d}{d x} \sec x=\tan x \sec x$
13. $\frac{d}{d x} \csc x=-\cot x \csc x$
14. $\frac{d}{d x} e^{u}=e^{u} \frac{d u}{d x}$
15. $\frac{d}{d x} \sin u=\cos u \frac{d u}{d x}$
16. $\frac{d}{d x} \cos u=-\sin u \frac{d u}{d x}$
17. $\int d x=x$
18. $\int a u d x=a \int u d x$
19. $\int(u+v) d x=\int u d x+\int v d x$
20. $\int x^{m} d x=\frac{x^{m+1}}{m+1}(m \neq-1)$
21. $\int \frac{d x}{x}=\ln |x|$
22. $\int u \frac{d v}{d x} d x=u v-\int v \frac{d u}{d x} d x$
23. $\int e^{x} d x=e^{x}$
24. $\int \sin x d x=-\cos x$
25. $\int \cos x d x=\sin x$
26. $\int \tan x d x=\ln |\sec x|$
27. $\int \sin ^{2} x d x=\frac{1}{2} x-\frac{1}{4} \sin 2 x$
28. $\int e^{-a x} d x=-\frac{1}{a} e^{-a x}$
29. $\int x e^{-a x} d x=-\frac{1}{a^{2}}(a x+1) e^{-a x}$
30. $\int x^{2} e^{-a x} d x=-\frac{1}{a^{3}}\left(a^{2} x^{2}+2 a x+2\right) e^{-a x}$
31. $\int_{0}^{\infty} x^{n} e^{-a x} d x=\frac{n!}{a^{n+1}}$
32. $\int_{0}^{\infty} x^{2 n} e^{-a x^{2}} d x=\frac{1 \cdot 3 \cdot 5 \cdots(2 n-1)}{2^{n+1} a^{n}} \sqrt{\frac{\pi}{a}}$
33. $\int \frac{d x}{\sqrt{x^{2}+a^{2}}}=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)$
34. $\int \frac{x d x}{\left(x^{2}+a^{2}\right)^{3 / 2}}=-\frac{1}{\left(x^{2}+a^{2}\right)^{1 / 2}}$
35. $\int \frac{d x}{\left(x^{2}+a^{2}\right)^{3 / 2}}=\frac{x}{a^{2}\left(x^{2}+a^{2}\right)^{1 / 2}}$
36. $\int_{0}^{\infty} x^{2 n+1} e^{-a x^{2}} d x=\frac{n!}{2 a^{n+1}}(a>0)$
37. $\int \frac{x d x}{x+d}=x-d \ln (x+d)$

A $\mathbf{N} \mathbf{S} \mathbf{W} \quad \mathrm{E} \boldsymbol{\mathrm { S }}$

To Checkpoints and Odd-Numbered Questions and Problems

Chapter 1

P 1. (a) $4.00 \times 10^{4} \mathrm{~km}$; (b) $5.10 \times 10^{8} \mathrm{~km}^{2}$; (c) $1.08 \times 10^{12} \mathrm{~km}^{3}$ 3. (a) $10^{9} \mu \mathrm{~m}$; (b) 10^{-4}; (c) $9.1 \times 10^{5} \mu \mathrm{~m} \quad$ 5. (a) 160 rods ; (b) 40 chains $\quad 7.1 .1 \times 10^{3}$ acre-feet $9.1 .9 \times 10^{22} \mathrm{~cm}^{3} \quad$ 11. (a) 1.43 ; (b) 0.864 13. (a) 495 s ; (b) 141 s ; (c) 198 s ; (d) $-245 \mathrm{~s} \quad \mathbf{1 5 . 1 . 2 1 \times}$ $10^{12} \mu \mathrm{~S}$ 17. C, D, A, B, E; the important criterion is the consistency $\begin{array}{lll}\text { of the daily variation, not its magnitude } & \mathbf{1 9 . 5 . 2} \times 10^{6} \mathrm{~m} & \mathbf{2 1 . 9 . 0} \times\end{array}$ 10^{49} atoms 23. (a) $1 \times 10^{3} \mathrm{~kg}$; (b) $158 \mathrm{~kg} / \mathrm{s} \quad 25.1 .9 \times 10^{5} \mathrm{~kg}$ 27. (a) $1.18 \times 10^{-29} \mathrm{~m}^{3}$; (b) $0.282 \mathrm{~nm} \quad 29.1 .75 \times 10^{3} \mathrm{~kg} \quad 31.1 .43$ $\mathrm{kg} / \mathrm{min} \quad$ 33. (a) 293 U.S. bushels; (b) 3.81×10^{3} U.S. bushels 35. (a) 22 pecks; (b) 5.5 Imperial bushels; (c) $200 \mathrm{~L} \quad 37.8 \times 10^{2} \mathrm{~km}$ 39. (a) 18.8 gallons; (b) 22.5 gallons $\quad 41.0 .3$ cord $\quad 43.3 .8 \mathrm{mg} / \mathrm{s}$ 45. (a) yes; (b) 8.6 universe seconds $\quad 47.0 .12 \mathrm{AU} / \mathrm{min}$ 49. (a) 3.88 ; (b) 7.65 ; (c) $156 \mathrm{ken}^{3}$; (d) $1.19 \times 10^{3} \mathrm{~m}^{3}$ 51. (a) $3.9 \mathrm{~m}, 4.8 \mathrm{~m}$; (b) $3.9 \times 10^{3} \mathrm{~mm}, 4.8 \times 10^{3} \mathrm{~mm}$; (c) $2.2 \mathrm{~m}^{3}, 4.2 \mathrm{~m}^{3}$ 53. (a) $4.9 \times$ $10^{-6} \mathrm{pc}$; (b) $1.6 \times 10^{-5} \mathrm{ly} \quad \mathbf{5 5}$. (a) 3 nebuchadnezzars, 1 methuselah; (b) 0.37 standard bottle; (c) $0.26 \mathrm{~L} \quad \mathbf{5 7 . 1 0 . 7}$ habaneros 59. 700 to 1500 oysters

Chapter 2

CP 1.b and c 2. (check the derivative $d x / d t$) (a) 1 and 4; (b) 2 and 3 3. (a) plus; (b) minus; (c) minus; (d) plus 4.1 and 4 ($a=d^{2} x / d t^{2}$ must be constant) 5. (a) plus (upward displacement on y axis); (b) minus (downward displacement on y axis); (c) $a=$ $-g=-9.8 \mathrm{~m} / \mathrm{s}^{2}$
Q 1. (a) negative; (b) positive; (c) yes; (d) positive; (e) constant 3. (a) all tie; (b) 4 , tie of 1 and 2 , then 3 5. (a) positive direction; (b) negative direction; (c) 3 and 5; (d) 2 and 6 tie, then 3 and 5 tie, then 1 and 4 tie (zero) 7. (a) D; (b) $E \quad$ 9. (a) 3,2,1; (b) 1,2,3; (c) all tie; (d) $1,2,3 \quad \mathbf{1 1 .} 1$ and 2 tie, then 3
$\begin{array}{ll}\text { P } \quad 1.13 \mathrm{~m} & \text { 3. (a) }+40 \mathrm{~km} / \mathrm{h} \text {; (b) } 40 \mathrm{~km} / \mathrm{h} \\ \text { 5. (a) } 0 \text {; (b) }-2 \mathrm{~m} \text {; }\end{array}$ (c) 0 ; (d) 12 m ; (e) +12 m ; (f) $+7 \mathrm{~m} / \mathrm{s} \quad 7.60 \mathrm{~km} \quad 9.1 .4 \mathrm{~m} \quad \mathbf{1 1 . 1 2 8}$ km / h 13. (a) $73 \mathrm{~km} / \mathrm{h}$; (b) $68 \mathrm{~km} / \mathrm{h}$; (c) $70 \mathrm{~km} / \mathrm{h}$; (d) 0 15. (a) -6 m / s; (b) $-x$ direction; (c) $6 \mathrm{~m} / \mathrm{s}$; (d) decreasing; (e) 2 s ; (f) no 17. (a) $28.5 \mathrm{~cm} / \mathrm{s}$; (b) $18.0 \mathrm{~cm} / \mathrm{s}$; (c) $40.5 \mathrm{~cm} / \mathrm{s}$; (d) $28.1 \mathrm{~cm} / \mathrm{s}$; (e) $30.3 \mathrm{~cm} / \mathrm{s}$ 19. $-20 \mathrm{~m} / \mathrm{s}^{2} \quad$ 21. (a) $1.10 \mathrm{~m} / \mathrm{s}$; (b) $6.11 \mathrm{~mm} / \mathrm{s}^{2}$; (c) $1.47 \mathrm{~m} / \mathrm{s}$; (d) 6.11 $\mathrm{mm} / \mathrm{s}^{2} \quad$ 23. $1.62 \times 10^{15} \mathrm{~m} / \mathrm{s}^{2} \quad$ 25. (a) 30 s ; (b) $300 \mathrm{~m} \quad$ 27. (a) $+1.6 \mathrm{~m} / \mathrm{s}$; (b) $+18 \mathrm{~m} / \mathrm{s} \quad$ 29. (a) 10.6 m ; (b) $41.5 \mathrm{~s} \quad$ 31. (a) $3.1 \times 10^{6} \mathrm{~s}$; (b) $4.6 \times$ $10^{13} \mathrm{~m} \quad$ 33. (a) $3.56 \mathrm{~m} / \mathrm{s}^{2}$; (b) $8.43 \mathrm{~m} / \mathrm{s} \quad 35.0 .90 \mathrm{~m} / \mathrm{s}^{2} \quad 37$. (a) $4.0 \mathrm{~m} / \mathrm{s}^{2}$; (b) $+x$ 39. (a) $-2.5 \mathrm{~m} / \mathrm{s}^{2}$; (b) 1 ; (d) 0 ; (e) $2 \quad 41.40 \mathrm{~m}$ 43. (a) $0.994 \mathrm{~m} / \mathrm{s}^{2} \quad$ 45. (a) $31 \mathrm{~m} / \mathrm{s}$; (b) $6.4 \mathrm{~s} \quad$ 47. (a) 29.4 m ; (b) 2.45 s 49. (a) 5.4 s ; (b) $41 \mathrm{~m} / \mathrm{s} \quad \mathbf{5 1}$. (a) 20 m ; (b) $59 \mathrm{~m} \quad \mathbf{5 3 .} 4.0 \mathrm{~m} / \mathrm{s}$ 55. (a) $857 \mathrm{~m} / \mathrm{s}^{2}$; (b) up 57. (a) $1.26 \times 10^{3} \mathrm{~m} / \mathrm{s}^{2}$; (b) up $\mathbf{5 9 .}$ (a) 89 cm ; $\begin{array}{llll}\text { (b) } 22 \mathrm{~cm} & \mathbf{6 1 . 2 0 . 4} & \mathbf{6 3 .} 2.34 \mathrm{~m} & \mathbf{6 5} \text {. (a) } 2.25 \mathrm{~m} / \mathrm{s} \text {; (b) } 3.90 \mathrm{~m} / \mathrm{s}\end{array}$ 67. $0.56 \mathrm{~m} / \mathrm{s} \quad 69.100 \mathrm{~m} \quad$ 71. (a) 2.00 s ; (b) 12 cm ; (c) $-9.00 \mathrm{~cm} / \mathrm{s}^{2}$; (d) right; (e) left; (f) $3.46 \mathrm{~s} \quad$ 73. (a) 82 m ; (b) $19 \mathrm{~m} / \mathrm{s} \quad 75$. (a) 0.74 s ; (b) $6.2 \mathrm{~m} / \mathrm{s}^{2} \quad 77$. (a) $3.1 \mathrm{~m} / \mathrm{s}^{2}$; (b) 45 m ; (c) $13 \mathrm{~s} \quad 79.17 \mathrm{~m} / \mathrm{s} \quad 81 .+47$ $\mathrm{m} / \mathrm{s} \quad \mathbf{8 3}$. (a) 1.23 cm ; (b) 4 times; (c) 9 times; (d) 16 times; (e) 25 $\begin{array}{llll}\text { times } 85.25 \mathrm{~km} / \mathrm{h} & \mathbf{8 7 . 1 . 2} & \mathbf{8 9 . 4 H} & \mathbf{9 1} \text {. (a) } 3.2 \mathrm{~s} \text {;(b) } 1.3 \mathrm{~s}\end{array}$ 93. (a) $8.85 \mathrm{~m} / \mathrm{s}$; (b) $1.00 \mathrm{~m} \quad$ 95. (a) $2.0 \mathrm{~m} / \mathrm{s}^{2}$; (b) $12 \mathrm{~m} / \mathrm{s}$; (c) 45 m 97. (a) $48.5 \mathrm{~m} / \mathrm{s}$; (b) 4.95 s ; (c) $34.3 \mathrm{~m} / \mathrm{s}$; (d) $3.50 \mathrm{~s} \quad 99.22 .0 \mathrm{~m} / \mathrm{s}$ 101. (a) $v=\left(v_{0}^{2}+2 g h\right)^{0.5}$; (b) $t=\left[\left(v_{0}^{2}+2 g h\right)^{0.5}-v_{0}\right] / g$; (c) same as (a); (d) $t=\left[\left(v_{0}^{2}+2 g h\right)^{0.5}+v_{0}\right] / g$, greater $\quad \mathbf{1 0 3 . 4 1 4 m s} \quad 105.90 \mathrm{~m}$ 107. $0.556 \mathrm{~s} \quad$ 109. (a) $0.28 \mathrm{~m} / \mathrm{s}^{2}$; (b) $0.28 \mathrm{~m} / \mathrm{s}^{2} \quad$ 111. (a) 10.2 s ;
(b) $10.0 \mathrm{~m} \quad$ 113. (a) 5.44 s ; (b) $53.3 \mathrm{~m} / \mathrm{s}$; (c) $5.80 \mathrm{~m} \quad \mathbf{1 1 5 . 2 . 3 \mathrm { cm } / \mathrm { min }}$ 117. $0.15 \mathrm{~m} / \mathrm{s}$ 119. (a) $1.0 \mathrm{~cm} / \mathrm{s}$; (b) $1.6 \mathrm{~cm} / \mathrm{s}, 1.1 \mathrm{~cm} / \mathrm{s}, 0$; (c) $-0.79 \mathrm{~cm} / \mathrm{s}^{2}$; (d) $0,-0.87 \mathrm{~cm} / \mathrm{s}^{2},-1.2 \mathrm{~cm} / \mathrm{s}^{2}$

Chapter 3

CP 1. (a) 7 m (\vec{a} and \vec{b} are in same direction); (b) 1 m (\vec{a} and \vec{b} are in opposite directions) 2. c, d, f (components must be head to tail; \vec{a} must extend from tail of one component to head of the other) 3. (a) $+,+;(\mathrm{b})+,-;(\mathrm{c})+,+\left(\right.$ draw vector from tail of \vec{d}_{1} to head of $\left.\vec{d}_{2}\right)$ 4. (a) 90°; (b) 0° (vectors are parallel-same direction); (c) 180° (vectors are antiparallel-opposite directions) 5. (a) 0° or 180°; (b) 90° Q 1. yes, when the vectors are in same direction 3. Either the sequence \vec{d}_{2}, \vec{d}_{1} or the sequence $\vec{d}_{2}, \vec{d}_{2}, \vec{d}_{3} \quad$ 5. all but (e) 7. (a) yes; (b) yes; (c) no 9. (a) $+x$ for (1), $+z$ for (2), $+z$ for (3); (b) $-x$ for (1), $-z$ for (2), $-z$ for (3) 11. $\vec{s}, \vec{p}, \vec{r}$ or $\vec{p}, \vec{s}, \vec{r} \quad$ 13. Correct: c, d, f, h. Incorrect: a (cannot dot a vector with a scalar), b (cannot cross a vector with a scalar), e, g, i, j (cannot add a scalar and a vector).
$\begin{array}{llll}\text { P 1. (a) }-2.5 \mathrm{~m} \text {; (b) }-6.9 \mathrm{~m} & \text { 3. (a) } 47.2 \mathrm{~m} \text {; (b) } 122^{\circ} \quad \text { 5. (a) } 156\end{array}$ km ; (b) 39.8° west of due north 7. (a) parallel; (b) antiparallel; (c) perpendicular 9. (a) $(3.0 \mathrm{~m}) \hat{\mathrm{i}}-(2.0 \mathrm{~m}) \hat{\mathrm{j}}+(5.0 \mathrm{~m}) \hat{\mathrm{k}}$; (b) (5.0 m) $\hat{\mathrm{i}}-(4.0 \mathrm{~m}) \hat{\mathrm{j}}-(3.0 \mathrm{~m}) \hat{\mathrm{k}}$; (c) $(-5.0 \mathrm{~m}) \hat{\mathrm{i}}+(4.0 \mathrm{~m}) \hat{\mathrm{j}}+(3.0 \mathrm{~m}) \hat{\mathrm{k}}$ 11. (a) $(-9.0 \mathrm{~m}) \hat{\mathrm{i}}+(10 \mathrm{~m}) \hat{\mathrm{j}}$; (b) 13 m ; (c) $132^{\circ} \quad \mathbf{1 3 .} 4.74 \mathrm{~km} \quad 15$. (a) 1.59 m ; (b) 12.1 m ; (c) 12.2 m ; (d) $82.5^{\circ} \quad$ 17. (a) 38 m ; (b) -37.5°; (c) 130 m ; (d) 1.2°; (e) 62 m ; (f) $130^{\circ} \quad \mathbf{1 9 . 5 . 3 9 \mathrm { m } \text { at } 2 1 . 8 ^ { \circ } \text { left of }}$ forward 21. (a) -70.0 cm ; (b) 80.0 cm ; (c) 141 cm ; (d) -172° $\begin{array}{llll}23.3 .2 & \text { 25. } 2.6 \mathrm{~km} & \text { 27. (a) } 8 \hat{\mathrm{i}}+16 \hat{\mathrm{j}} \text {; (b) } 2 \hat{\mathrm{i}}+4 \hat{\mathrm{j}} & \text { 29. (a) } 7.5 \mathrm{~cm} \text {; }\end{array}$ (b) 90°; (c) 8.6 cm ; (d) 48° 31. (a) 9.51 m ; (b) 14.1 m ; (c) 13.4 m ; (d) 10.5 m 33. (a) 12 ; (b) $+z$; (c) 12 ; (d) $-z$; (e) 12 ; (f) $+z$ 35. (a) -18.8 units; (b) 26.9 units, $+z$ direction 37. (a) -21 ; (b) -9 ; (c) $5 \hat{\mathrm{i}}-11 \hat{\mathrm{j}}-9 \hat{\mathrm{k}} \quad 39.70 .5^{\circ} \quad \mathbf{4 1 . 2 2 ^ { \circ }} \quad$ 43. (a) 3.00 m ; (b) 0 ; (c) 3.46 m; (d) 2.00 m ; (e) -5.00 m ; (f) 8.66 m ; (g) -6.67 ; (h) 4.33
45. (a) -83.4 ; (b) $\left(1.14 \times 10^{3}\right) \hat{\mathrm{k}}$; (c) $1.14 \times 10^{3}, \theta$ not defined, $\phi=0^{\circ}$; (d) 90.0°; (e) $-5.14 \hat{i}+6.13 \hat{j}+3.00 \hat{k}$; (f) $8.54, \theta=130^{\circ}, \phi=69.4^{\circ}$ 47. (a) 140°; (b) 90.0°; (c) $99.1^{\circ} \quad$ 49. (a) 103 km ; (b) 60.9° north of due west 51. (a) 27.8 m ; (b) $13.4 \mathrm{~m} \quad$ 53. (a) 30 ; (b) $52 \quad$ 55. (a) -2.83 m ;(b) -2.83 m ; (c) 5.00 m ; (d) 0 ; (e) 3.00 m ; (f) 5.20 m ; (g) 5.17 m ; (h) 2.37 m ; (i) 5.69 m ; (j) 25° north of due east; (k) 5.69 m ; (l) 25° $\begin{array}{lll}\text { south of due west } & \mathbf{5 7 . 4} & \text { 59. (a) }(9.19 \mathrm{~m}) \hat{\mathrm{i}}^{\prime}+(7.71 \mathrm{~m}) \hat{\mathrm{j}}^{\prime} ; \text { (b) }\end{array}$ $(14.0 \mathrm{~m}) \hat{\mathrm{i}}^{\prime}+(3.41 \mathrm{~m}) \hat{\mathrm{j}}^{\prime} \quad$ 61. (a) $11 \hat{\mathrm{i}}+5.0 \hat{\mathrm{j}}-7.0 \hat{\mathrm{k}}$; (b) 120°; (c) -4.9 ; (d) 7.3 63. (a) $3.0 \mathrm{~m}^{2}$; (b) $52 \mathrm{~m}^{3}$; (c) $\left(11 \mathrm{~m}^{2}\right) \hat{\mathrm{i}}+\left(9.0 \mathrm{~m}^{2}\right) \hat{\mathrm{j}}+\left(3.0 \mathrm{~m}^{2}\right) \hat{\mathrm{k}}$ 65. (a) $(-40 \hat{\mathrm{i}}-20 \hat{\mathrm{j}}+25 \hat{\mathrm{k}}) \mathrm{m}$; (b) $45 \mathrm{~m} \quad$ 67. (a) 0 ; (b) 0 ; (c) -1 ;
(d) west; (e) up; (f) west $\mathbf{6 9}$. (a) 168 cm ; (b) $32.5^{\circ} \quad$ 71. (a) 15 m ; (b) south; (c) 6.0 m ; (d) north 73. (a) $2 \hat{\mathrm{k}}$; (b) 26; (c) 46; (d) 5.81 75. (a) up; (b) 0; (c) south; (d) 1 ; (e) 0 77. (a) (1300 m) $\hat{\mathrm{i}}+$ $(2200 \mathrm{~m}) \hat{\mathrm{j}}-(410 \mathrm{~m}) \hat{\mathrm{k}}$; (b) $2.56 \times 10^{3} \mathrm{~m} \quad 79.8 .4$

Chapter 4

CP 1. (draw \vec{v} tangent to path, tail on path) (a) first; (b) third 2. (take second derivative with respect to time) (1) and (3) a_{x} and a_{y} are both constant and thus \vec{a} is constant; (2) and (4) a_{y} is constant but a_{x} is not, thus \vec{a} is not 3. yes 4. (a) v_{x} constant; (b) v_{y} initially positive, decreases to zero, and then becomes progressively more negative; (c) $a_{x}=0$ throughout; (d) $a_{y}=-g$ throughout 5. (a) $-(4 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{i}} ;(\mathrm{b})-\left(8 \mathrm{~m} / \mathrm{s}^{2}\right) \hat{\mathrm{j}}$

Q 1. a and c tie, then b 3. decreases 5. a, b, c 7. (a) 0 ; (b) 350 km / h; (c) $350 \mathrm{~km} / \mathrm{h}$; (d) same (nothing changed about the vertical motion) 9. (a) all tie; (b) all tie; (c) 3,2,1; (d) 3,2,1 11.2, then 1 and 4 tie, then 3 13. (a) yes; (b) no; (c) yes 15. (a) decreases; (b) increases 17. maximum height

P 1. (a) $6.2 \mathrm{~m} \quad$ 3. $(-2.0 \mathrm{~m}) \hat{\mathrm{i}}+(6.0 \mathrm{~m}) \hat{\mathrm{j}}-(10 \mathrm{~m}) \hat{\mathrm{k}} \quad$ 5. (a) 7.59 km / h; (b) 22.5° east of due north $\quad 7 .(-0.70 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{i}}+(1.4 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{j}}-$ ($0.40 \mathrm{~m} / \mathrm{s}$) $\hat{\mathrm{k}} \quad$ 9. (a) $0.83 \mathrm{~cm} / \mathrm{s}$; (b) 0°; (c) $0.11 \mathrm{~m} / \mathrm{s}$; (d) $-63^{\circ} \quad$ 11. (a) $(6.00 \mathrm{~m}) \hat{\mathrm{i}}-(106 \mathrm{~m}) \hat{\mathrm{j}}$; (b) $(19.0 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{i}}-(224 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{j}}$; (c) $\left(24.0 \mathrm{~m} / \mathrm{s}^{2}\right) \hat{\mathrm{i}}-$ ($336 \mathrm{~m} / \mathrm{s}^{2}$) $\hat{\mathrm{j}} ;(\mathrm{d})-85.2^{\circ} \quad$ 13. (a) $\left(8 \mathrm{~m} / \mathrm{s}^{2}\right) \hat{\mathrm{j}}+(1 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{k}} ;$ (b) $\left(8 \mathrm{~m} / \mathrm{s}^{2}\right) \hat{\mathrm{j}}$ 15. (a) $(-1.50 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{j}}$; (b) $(4.50 \mathrm{~m}) \hat{\mathrm{i}}-(2.25 \mathrm{~m}) \hat{\mathrm{j}} \quad$ 17. ($32 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{i}}$ 19. (a) $(72.0 \mathrm{~m}) \hat{\mathrm{i}}+(90.7 \mathrm{~m}) \hat{\mathrm{j}}$; (b) $49.5^{\circ} \quad$ 21. (a) 18 cm ; (b) 1.9 m 23. (a) 3.03 s ; (b) 758 m ; (c) $29.7 \mathrm{~m} / \mathrm{s} \quad 25.43 .1 \mathrm{~m} / \mathrm{s}(155 \mathrm{~km} / \mathrm{h}) \quad$ 27. (a) 10.0 s ; (b) $897 \mathrm{~m} \quad 29.78 .5^{\circ} \quad 31.3 .35 \mathrm{~m} \quad$ 33. (a) $202 \mathrm{~m} / \mathrm{s}$; (b) 806 m ; (c) $161 \mathrm{~m} / \mathrm{s}$; (d) $-171 \mathrm{~m} / \mathrm{s} \quad 35.4 .84 \mathrm{~cm} \quad$ 37. (a) 1.60 m ; (b) 6.86 m ; (c) $2.86 \mathrm{~m} \quad$ 39. (a) 32.3 m ; (b) $21.9 \mathrm{~m} / \mathrm{s}$; (c) 40.4°; (d) below 41. 55.5° 43. (a) 11 m ; (b) 23 m ; (c) $17 \mathrm{~m} / \mathrm{s}$; (d) 63° 45. (a) ramp; (b) 5.82 m ; (c) $31.0^{\circ} \quad$ 47. (a) yes; (b) 2.56 m 49. (a) 31°; (b) 63° 51. (a) 2.3°; (b) 1.1 m ; (c) 18° 53. (a) 75.0 m ; (b) $31.9 \mathrm{~m} / \mathrm{s}$; (c) 66.9°; (d) 25.5 m 55. the third $\mathbf{5 7}$. (a) 7.32 m ; (b) west; (c) north 59. (a) 12 s ; (b) $4.1 \mathrm{~m} / \mathrm{s}^{2}$; (c) down; (d) $4.1 \mathrm{~m} / \mathrm{s}^{2}$; (e) up 61. (a) $1.3 \times 10^{5} \mathrm{~m} / \mathrm{s}$; (b) $7.9 \times 10^{5} \mathrm{~m} / \mathrm{s}^{2}$; (c) increase $\quad \mathbf{6 3 . 2} .92 \mathrm{~m} \quad \mathbf{6 5} .\left(3.00 \mathrm{~m} / \mathrm{s}^{2}\right) \hat{\mathrm{i}}+$ ($6.00 \mathrm{~m} / \mathrm{s}^{2}$) $\hat{\mathrm{j}} \quad \mathbf{6 7 . 1 6 0 ~} \mathrm{m} / \mathrm{s}^{2} \quad$ 69. (a) $13 \mathrm{~m} / \mathrm{s}^{2}$; (b) eastward; (c) $13 \mathrm{~m} / \mathrm{s}^{2}$; (d) eastward 71. 1.67 73. (a) $(80 \mathrm{~km} / \mathrm{h}) \hat{\mathrm{i}}-(60 \mathrm{~km} / \mathrm{h}) \hat{\mathrm{j}}$; (b) 0°; $\begin{array}{ll}\text { (c) answers do not change } 75.32 \mathrm{~m} / \mathrm{s} \quad 77.60^{\circ} & \text { 79. (a) } 38 \text { knots; }\end{array}$ (b) 1.5° east of due north; (c) 4.2 h ; (d) 1.5° west of due south 81. (a) $(-32 \mathrm{~km} / \mathrm{h}) \hat{\mathrm{i}}-(46 \mathrm{~km} / \mathrm{h}) \hat{\mathrm{j}}$; (b) $[(2.5 \mathrm{~km})-(32 \mathrm{~km} / \mathrm{h}) t] \hat{\mathrm{i}}+$ $\left[(4.0 \mathrm{~km})-(46 \mathrm{~km} / \mathrm{h}) t \mathrm{j} \mathrm{j}\right.$; (c) 0.084 h ; (d) $2 \times 10^{2} \mathrm{~m}$ 83. (a) -30°; (b) 69 min ; (c) 80 min ; (d) 80 min ; (e) 0°; (f) $60 \mathrm{~min} \quad 85$. (a) 2.7 km ; (b) 76° clockwise 87. (a) 44 m ; (b) 13 m ; (c) $8.9 \mathrm{~m} \quad$ 89. (a) 45 m ; (b) $22 \mathrm{~m} / \mathrm{s}$ 91. (a) $2.6 \times 10^{2} \mathrm{~m} / \mathrm{s}$; (b) 45 s ; (c) increase 93. (a) 63 km ; (b) 18° south of due east; (c) $0.70 \mathrm{~km} / \mathrm{h}$; (d) 18° south of due east; (e) $1.6 \mathrm{~km} / \mathrm{h}$; (f) $1.2 \mathrm{~km} / \mathrm{h}$; (g) 33° north of due east 95 . (a) 1.5 ; (b) $(36 \mathrm{~m}, 54 \mathrm{~m}) \quad$ 97. (a) 62 ms ; (b) $4.8 \times 10^{2} \mathrm{~m} / \mathrm{s} \quad \mathbf{9 9 . 2 . 6 4} \mathrm{m}$ 101. (a) 2.5 m ; (b) 0.82 m ; (c) $9.8 \mathrm{~m} / \mathrm{s}^{2}$; (d) $9.8 \mathrm{~m} / \mathrm{s}^{2} \quad$ 103. (a) $6.79 \mathrm{~km} / \mathrm{h}$; (b) $6.96^{\circ} \quad \mathbf{1 0 5 .}$ (a) $16 \mathrm{~m} / \mathrm{s}$; (b) 23°; (c) above; (d) $27 \mathrm{~m} / \mathrm{s}$; (e) 57°; (f) below 107. (a) $4.2 \mathrm{~m}, 45^{\circ}$; (b) $5.5 \mathrm{~m}, 68^{\circ}$; (c) $6.0 \mathrm{~m}, 90^{\circ}$; (d) 4.2 m , 135°; (e) $0.85 \mathrm{~m} / \mathrm{s}, 135^{\circ}$; (f) $0.94 \mathrm{~m} / \mathrm{s}, 90^{\circ}$; (g) $0.94 \mathrm{~m} / \mathrm{s}, 180^{\circ}$; (h) 0.30 $\mathrm{m} / \mathrm{s}^{2}, 180^{\circ}$; (i) $0.30 \mathrm{~m} / \mathrm{s}^{2}, 270^{\circ} \quad$ 109. (a) $5.4 \times 10^{-13} \mathrm{~m}$; (b) decrease 111. (a) $0.034 \mathrm{~m} / \mathrm{s}^{2}$; (b) 84 min 113. (a) 8.43 m ; (b) -129° 115. (a) 2.00 ns ; (b) 2.00 mm ; (c) $1.00 \times 10^{7} \mathrm{~m} / \mathrm{s}$; (d) $2.00 \times 10^{6} \mathrm{~m} / \mathrm{s} 117$.
(a) $24 \mathrm{~m} / \mathrm{s}$; (b) $65^{\circ} \quad \mathbf{1 1 9 .} 93^{\circ}$ from the car's direction of motion $\mathbf{1 2 1 .}$ (a) $4.6 \times 10^{12} \mathrm{~m}$; (b) $2.4 \times 10^{5} \mathrm{~s} \quad$ 123. (a) 6.29°; (b) $83.7^{\circ} \quad$ 125. (a) $3 \times$ $10^{1} \mathrm{~m}$ 127. (a) $(6.0 \hat{\mathrm{i}}+4.2 \hat{\mathrm{j}}) \mathrm{m} / \mathrm{s}$; (b) $(18 \hat{\mathrm{i}}+6.3 \hat{\mathrm{j}}) \mathrm{m}$ 129. (a) $38 \mathrm{ft} / \mathrm{s}$; (b) $32 \mathrm{ft} / \mathrm{s}$; (c) $9.3 \mathrm{ft} \quad \mathbf{1 3 1}$. (a) 11 m ; (b) $45 \mathrm{~m} / \mathrm{s} \quad$ 133. (a) $5.8 \mathrm{~m} / \mathrm{s}$; (b) 17 m ; (c) $67^{\circ} \mathbf{1 3 5}$. (a) 32.4 m ; (b) $-37.7 \mathrm{~m} \quad \mathbf{1 3 7 .} 88.6 \mathrm{~km} / \mathrm{h}$

Chapter 5

CP 1. c, d, and $e\left(\vec{F}_{1}\right.$ and \vec{F}_{2} must be head to tail, $\vec{F}_{\text {net }}$ must be from tail of one of them to head of the other) 2. (a) and (b) 2 N , leftward (acceleration is zero in each situation) 3. (a) equal; (b) greater (acceleration is upward, thus net force on body must be upward) 4. (a) equal; (b) greater; (c) less 5. (a) increase; (b) yes; (c) same; (d) yes

Q 1. (a) $2,3,4$; (b) $1,3,4$; (c) $1,+y ; 2,+x ; 3$, fourth quadrant; 4 , third quadrant 3. increase 5. (a) 2 and 4 ; (b) 2 and 4 7. (a) M; (b) M; (c) M; (d) $2 M$; (e) $3 M$ 9. (a) 20 kg ; (b) 18 kg ; (c) 10 kg ; (d) all tie; (e) 3,2,1 11. (a) increases from initial value mg ; (b) decreases from $m g$ to zero (after which the block moves up away from the floor)
P 1. $2.9 \mathrm{~m} / \mathrm{s}^{2} \quad$ 3. (a) 1.88 N ; (b) 0.684 N ; (c) $(1.88 \mathrm{~N}) \hat{\mathrm{i}}+(0.684 \mathrm{~N}) \hat{\mathrm{j}}$ 5. (a) $\left(0.86 \mathrm{~m} / \mathrm{s}^{2}\right) \hat{\mathrm{i}}-\left(0.16 \mathrm{~m} / \mathrm{s}^{2}\right) \hat{\mathrm{j}}$; (b) $0.88 \mathrm{~m} / \mathrm{s}^{2}$; (c) $-11^{\circ} \quad$ 7. (a)
$(-32.0 \mathrm{~N}) \hat{\mathrm{i}}-(20.8 \mathrm{~N}) \hat{\mathrm{j}} ;$ (b) 38.2 N ; (c) $-147^{\circ} \quad$ 9. (a) 8.37 N ; (b) -133°; (c) $-125^{\circ} \quad 11.9 .0 \mathrm{~m} / \mathrm{s}^{2} \quad$ 13. (a) 4.0 kg ; (b) 1.0 kg ; (c) 4.0 kg ; (d) 1.0 kg 15. (a) 108 N ; (b) 108 N ; (c) $108 \mathrm{~N} \quad$ 17. (a) 42 N ; (b) 72 N ; $\begin{array}{lll}\text { (c) } 4.9 \mathrm{~m} / \mathrm{s}^{2} & \mathbf{1 9 . 1 . 2} \times 10^{5} \mathrm{~N} \quad 21 \text {. (a) } 11.7 \mathrm{~N} \text {; (b) }-59.0^{\circ} \quad \text { 23. (a) }\end{array}$ $(285 \mathrm{~N}) \hat{\mathrm{i}}+(705 \mathrm{~N}) \hat{\mathrm{j}}$; (b) $(285 \mathrm{~N}) \hat{\mathrm{i}}-(115 \mathrm{~N}) \hat{\mathrm{j}}$; (c) 307 N ; (d) -22.0°; (e) $3.67 \mathrm{~m} / \mathrm{s}^{2}$; (f) $-22.0^{\circ} \quad$ 25. (a) $0.022 \mathrm{~m} / \mathrm{s}^{2}$; (b) $8.3 \times 10^{4} \mathrm{~km}$; (c) $1.9 \times 10^{3} \mathrm{~m} / \mathrm{s} \quad 27.1 .5 \mathrm{~mm} \quad 29$. (a) 494 N ; (b) up; (c) 494 N ; (d) down 31. (a) 1.18 m ; (b) 0.674 s ; (c) $3.50 \mathrm{~m} / \mathrm{s} \quad 33.1 .8 \times 10^{4} \mathrm{~N}$ 35. (a) 46.7°; (b) $28.0^{\circ} \quad$ 37. (a) $0.62 \mathrm{~m} / \mathrm{s}^{2}$; (b) $0.13 \mathrm{~m} / \mathrm{s}^{2}$; (c) 2.6 m 39. (a) $2.2 \times 10^{-3} \mathrm{~N}$; (b) $3.7 \times 10^{-3} \mathrm{~N} \quad$ 41. (a) $1.4 \mathrm{~m} / \mathrm{s}^{2}$; (b) $4.1 \mathrm{~m} / \mathrm{s}$ 43. (a) 1.23 N ; (b) 2.46 N ; (c) 3.69 N ; (d) 4.92 N ; (e) 6.15 N ; (f) 0.250 N 45. (a) 31.3 kN ; (b) $24.3 \mathrm{kN} \quad 47.6 .4 \times 10^{3} \mathrm{~N} \quad$ 49. (a) $2.18 \mathrm{~m} / \mathrm{s}^{2}$; (b) 116 N ; (c) $21.0 \mathrm{~m} / \mathrm{s}^{2} \quad \mathbf{5 1 .}$. (a) $3.6 \mathrm{~m} / \mathrm{s}^{2}$; (b) $17 \mathrm{~N} \quad \mathbf{5 3}$. (a) $0.970 \mathrm{~m} / \mathrm{s}^{2}$; (b) 11.6 N ; (c) $34.9 \mathrm{~N} \quad$ 55. (a) $1.1 \mathrm{~N} \quad$ 57. (a) $0.735 \mathrm{~m} / \mathrm{s}^{2}$; (b) down; (c) $20.8 \mathrm{~N} \quad$ 59. (a) $4.9 \mathrm{~m} / \mathrm{s}^{2}$; (b) $2.0 \mathrm{~m} / \mathrm{s}^{2}$; (c) up; (d) $120 \mathrm{~N} \quad \mathbf{6 1}$. $2 \mathrm{Ma} /(a+g) \quad$ 63. (a) $8.0 \mathrm{~m} / \mathrm{s}$; (b) $+x \quad$ 65. (a) $0.653 \mathrm{~m} / \mathrm{s}^{3}$; (b) 0.896 $\mathrm{m} / \mathrm{s}^{3}$; (c) $6.50 \mathrm{~s} \quad 67.81 .7 \mathrm{~N} \quad \mathbf{6 9 . 2 . 4 \mathrm { N }} \quad \mathbf{7 1 . 1 6 \mathrm { N }} \quad \mathbf{7 3}$. (a) 2.6 N ; (b) 17° 75. (a) 0 ; (b) $0.83 \mathrm{~m} / \mathrm{s}^{2}$; (c) $0 \quad$ 77. (a) $0.74 \mathrm{~m} / \mathrm{s}^{2}$; (b) $7.3 \mathrm{~m} / \mathrm{s}^{2}$ 79. (a) 11 N ; (b) 2.2 kg ; (c) 0 ; (d) $2.2 \mathrm{~kg} \quad \mathbf{8 1 .} 195 \mathrm{~N} \quad \mathbf{8 3}$. (a) $4.6 \mathrm{~m} / \mathrm{s}^{2}$; (b) $2.6 \mathrm{~m} / \mathrm{s}^{2} \quad \mathbf{8 5}$. (a) rope breaks; (b) $1.6 \mathrm{~m} / \mathrm{s}^{2} \quad \mathbf{8 7}$. (a) 65 N ; (b) 49 N 89. (a) $4.6 \times 10^{3} \mathrm{~N}$; (b) $5.8 \times 10^{3} \mathrm{~N} \quad 91$. (a) $1.8 \times 10^{2} \mathrm{~N}$; (b) $6.4 \times$ $10^{2} \mathrm{~N}$ 93. (a) 44 N ; (b) 78 N ; (c) 54 N ; (d) 152 N 95. (a) 4 kg ; (b) $6.5 \mathrm{~m} / \mathrm{s}^{2}$; (c) 13 N 97. (a) $(1.0 \hat{\mathrm{i}}-2.0 \hat{\mathrm{j}}) \mathrm{N}$; (b) 2.2 N ; (c) -63°; (d) $2.2 \mathrm{~m} / \mathrm{s}^{2}$; (e) -63°

Chapter 6

CP 1. (a) zero (because there is no attempt at sliding); (b) 5 N ; (c) no; (d) yes; (e) $8 \mathrm{~N} \xrightarrow[\rightarrow]{\boldsymbol{2}}$. $(\vec{a}$ is directed toward center of circular path) (a) \vec{a} downward, \vec{F}_{N} upward; (b) \vec{a} and \vec{F}_{N} upward; (c) same; (d) greater at lowest point

Q 1. (a) decrease; (b) decrease; (c) increase; (d) increase; (e) increase 3. (a) same; (b) increases; (c) increases; (d) no 5. (a) upward; (b) horizontal, toward you; (c) no change; (d) increases; (e) increases 7. At first, \vec{f}_{s} is directed up the ramp and its magnitude increases from $\mathrm{mg} \sin \theta$ until it reaches $f_{s, \text { max }}$. Thereafter the force is kinetic friction directed up the ramp, with magnitude f_{k} (a constant value smaller than $f_{s \text { max }}$). $\quad 9.4,3$, then 1,2 , and 5 tie $\quad \mathbf{1 1}$. (a) all tie; (b) all tie; (c) $2,3,1 \quad$ 13. (a) increases; (b) increases; (c) decreases; (d) decreases; (e) decreases

P 1.36m 3. (a) $2.0 \times 10^{2} \mathrm{~N}$; (b) $1.2 \times 10^{2} \mathrm{~N} \quad$ 5. (a) 6.0 N ; (b) 3.6 N ; (c) $3.1 \mathrm{~N} \quad$ 7. (a) $1.9 \times 10^{2} \mathrm{~N}$; (b) $0.56 \mathrm{~m} / \mathrm{s}^{2} \quad$ 9. (a) 11 N ; (b) $0.14 \mathrm{~m} / \mathrm{s}^{2} \quad$ 11. (a) $3.0 \times 10^{2} \mathrm{~N}$; (b) $1.3 \mathrm{~m} / \mathrm{s}^{2} \quad$ 13. (a) $1.3 \times 10^{2} \mathrm{~N}$; (b) no; (c) $1.1 \times 10^{2} \mathrm{~N}$; (d) 46 N ; (e) $17 \mathrm{~N} \quad$ 15. $2^{\circ} \quad$ 17. (a) (17 N) $\hat{\mathrm{i}}$; (b) (20 N) $\hat{\mathrm{i}}$; (c) (15 N$) \hat{\mathrm{i}}$ 19. (a) no; (b) $(-12 \mathrm{~N}) \hat{\mathrm{i}}+(5.0 \mathrm{~N}) \hat{\mathrm{j}}$ 21. (a) 19°; (b) $3.3 \mathrm{kN} \quad 23.0 .37 \quad 25.1 .0 \times 10^{2} \mathrm{~N} \quad$ 27. (a) 0 ; (b) $\left(-3.9 \mathrm{~m} / \mathrm{s}^{2}\right) \hat{\mathrm{i}}$; (c) $\left(-1.0 \mathrm{~m} / \mathrm{s}^{2}\right) \hat{\mathrm{i}} \quad$ 29. (a) 66 N ; (b) $2.3 \mathrm{~m} / \mathrm{s}^{2}$ 31. (a) $3.5 \mathrm{~m} / \mathrm{s}^{2}$; (b) $0.21 \mathrm{~N} \quad 33.9 .9 \mathrm{~s} \quad 35.4 .9 \times 10^{2} \mathrm{~N} \quad 37$. (a) $3.2 \times$ $10^{2} \mathrm{~km} / \mathrm{h}$; (b) $6.5 \times 10^{2} \mathrm{~km} / \mathrm{h}$; (c) no $\quad 39.2 .3 \quad 41.0 .60 \quad 43.21 \mathrm{~m}$ 45. (a) light; (b) 778 N ; (c) 223 N ; (d) 1.11 kN 47. (a) 10 s ; (b) $4.9 \times$ $10^{2} \mathrm{~N}$; (c) $1.1 \times 10^{3} \mathrm{~N} \quad 49.1 .37 \times 10^{3} \mathrm{~N} \quad \mathbf{5 1 . 2} 2 \mathrm{~km} \quad \mathbf{5 3 .} 12^{\circ}$ 55. $2.6 \times 10^{3} \mathrm{~N} \quad 57.1 .81 \mathrm{~m} / \mathrm{s} \quad \mathbf{5 9 .}$ (a) 8.74 N ; (b) 37.9 N ; (c) $6.45 \mathrm{~m} / \mathrm{s}$; (d) radially inward $\quad 61$. (a) 27 N ; (b) $3.0 \mathrm{~m} / \mathrm{s}^{2} \quad 63$. (b) 240 N ; (c) $0.60 \quad \mathbf{6 5}$. (a) $69 \mathrm{~km} / \mathrm{h}$; (b) $139 \mathrm{~km} / \mathrm{h}$; (c) yes $\mathbf{6 7}$. $g\left(\sin \theta-2^{0.5} \mu_{k} \cos \theta\right) \quad 69.3 .4 \mathrm{~m} / \mathrm{s}^{2} \quad$ 71. (a) 35.3 N ; (b) 39.7 N ; (c) 320 N 73. (a) $7.5 \mathrm{~m} / \mathrm{s}^{2}$; (b) down; (c) $9.5 \mathrm{~m} / \mathrm{s}^{2}$; (d) down 75. (a) $3.0 \times 10^{5} \mathrm{~N}$; (b) $1.2^{\circ} \quad 77.147 \mathrm{~m} / \mathrm{s} \quad 79$. (a) 13 N ; (b) $1.6 \mathrm{~m} / \mathrm{s}^{2}$ 81. (a) 275 N ; (b) $877 \mathrm{~N} \quad$ 83. (a) 84.2 N ; (b) 52.8 N ; (c) $1.87 \mathrm{~m} / \mathrm{s}^{2}$ 85. 3.4% 87. (a) $3.21 \times 10^{3} \mathrm{~N}$; (b) yes 89. (a) 222 N ; (b) 334 N ; (c) 311 N ; (d) 311 N ; (e) c, d 91. (a) $v_{0}^{2} /(4 g \sin \theta)$; (b) no 93. (a) 0.34 ; (b) 0.24 95. (a) $\mu_{k} m g /\left(\sin \theta-\mu_{k} \cos \theta\right)$; (b) $\theta_{0}=\tan ^{-1} \mu_{s}$ 97.0.18 99. (a) 56 N ; (b) 59 N ; (c) $1.1 \times 10^{3} \mathrm{~N} \quad 101.0 .76$ 103. (a) bottom of circle; (b) $9.5 \mathrm{~m} / \mathrm{s} \quad 105.0 .56$

Chapter 7

CP 1. (a) decrease; (b) same; (c) negative, zero 2. (a) positive; (b) negative; (c) zero 3. zero

Q 1. all tie 3. (a) positive; (b) negative; (c) negative 5. b (positive work), a (zero work), c (negative work), d (more negative work) 7. all tie 9. (a) A; (b) $B \quad 11.2,3,1$
P 1. (a) $2.9 \times 10^{7} \mathrm{~m} / \mathrm{s}$; (b) $2.1 \times 10^{-13} \mathrm{~J} \quad$ 3. (a) $5 \times 10^{14} \mathrm{~J}$; (b) 0.1 megaton TNT; (c) 8 bombs \quad 5. (a) $2.4 \mathrm{~m} / \mathrm{s}$; (b) $4.8 \mathrm{~m} / \mathrm{s} \quad 7.0 .96 \mathrm{~J}$ 9. 20 J 11. (a) 62.3°; (b) $118^{\circ} \quad$ 13. (a) $1.7 \times 10^{2} \mathrm{~N}$; (b) $3.4 \times 10^{2} \mathrm{~m}$; (c) $-5.8 \times 10^{4} \mathrm{~J}$; (d) $3.4 \times 10^{2} \mathrm{~N}$; (e) $1.7 \times 10^{2} \mathrm{~m}$; (f) $-5.8 \times 10^{4} \mathrm{~J}$ 15. (a) 1.50 J ; (b) increases 17. (a) 12 kJ ; (b) -11 kJ ; (c) 1.1 kJ ; (d) $5.4 \mathrm{~m} / \mathrm{s} \quad 19.25 \mathrm{~J} \quad$ 21. (a) $-3 \mathrm{Mgd} / 4$; (b) Mgd ; (c) $M g d / 4$; (d) $(g d / 2)^{0.5} \quad 23.4 .41 \mathrm{~J} \quad$ 25. (a) 25.9 kJ ; (b) 2.45 N 27. (a) 7.2 J ; (b) 7.2 J ; (c) 0 ; (d) -25 J 29. (a) 0.90 J ; (b) 2.1 J ; (c) 0 31. (a) $6.6 \mathrm{~m} / \mathrm{s}$; (b) $4.7 \mathrm{~m} \quad$ 33. (a) 0.12 m ; (b) 0.36 J ; (c) -0.36 J ; (d) 0.060 m ; (e) $0.090 \mathrm{~J} \quad 35$. (a) 0 ; (b) $0 \quad 37$. (a) 42 J ; (b) 30 J ; (c) 12 J ; (d) $6.5 \mathrm{~m} / \mathrm{s},+x$ axis; (e) $5.5 \mathrm{~m} / \mathrm{s},+x$ axis; (f) $3.5 \mathrm{~m} / \mathrm{s},+x$ axis 39. $4.00 \mathrm{~N} / \mathrm{m} \quad 41.5 .3 \times 10^{2} \mathrm{~J} \quad 43$. (a) 0.83 J ; (b) 2.5 J ; (c) 4.2 J ; (d) $5.0 \mathrm{~W} \quad 45.4 .9 \times 10^{2} \mathrm{~W} \quad 47$. (a) $1.0 \times 10^{2} \mathrm{~J}$; (b) 8.4 W 49. $7.4 \times 10^{2} \mathrm{~W} \quad$ 51. (a) 32.0 J ; (b) 8.00 W ; (c) $78.2^{\circ} \quad$ 53. (a) 1.20 J ; (b) $1.10 \mathrm{~m} / \mathrm{s} \quad$ 55. (a) $1.8 \times 10^{5} \mathrm{ft} \cdot \mathrm{lb}$; (b) $0.55 \mathrm{hp} \quad \mathbf{5 7}$. (a) 797 N ; (b) 0 ; (c) -1.55 kJ ; (d) 0 ; (e) 1.55 kJ ; (f) F varies during displacement 59. (a) 11 J ; (b) -21 J 61. $-6 \mathrm{~J} \quad$ 63. (a) 314 J ; (b) -155 J ; (c) 0 ; (d) $158 \mathrm{~J} \quad \mathbf{6 5}$. (a) 98 N ; (b) 4.0 cm ; (c) 3.9 J ; (d) -3.9 J 67. (a) 23 mm ; (b) $45 \mathrm{~N} \quad 69.165 \mathrm{~kW} \quad 71$. $-37 \mathrm{~J} \quad$ 73. (a) 13 J ; (b) $13 \mathrm{~J} \quad 75.235 \mathrm{~kW} \quad$ 77. (a) 6 J ; (b) 6.0 J 79. (a) 0.6 J ; (b) 0 ; (c) -0.6 J 81. (a) $3.35 \mathrm{~m} / \mathrm{s}$; (b) 22.5 J ; (c) 0 ; (d) 0; (e) 0.212 m 83. (a) $-5.20 \times 10^{-2} \mathbf{J}$; (b) $-0.160 \mathrm{~J} \quad \mathbf{8 5 . 6 . 6 3 \mathrm { m } / \mathrm { s }}$

Chapter 8

CP 1. no (consider round trip on the small loop) 2.3,1,2 (see Eq. 8-6) 3. (a) all tie; (b) all tie 4. (a) $C D, A B, B C$ (0) (check slope magnitudes); (b) positive direction of $x \quad$ 5. all tie Q 1. (a) $3,2,1$; (b) $1,2,3$ 3. (a) 12 J ; (b) $-2 \mathrm{~J} \quad$ 5. (a) increasing; (b) decreasing; (c) decreasing; (d) constant in $A B$ and $B C$, decreasing in $C D \quad$ 7. $+30 \mathrm{~J} \quad$ 9.2, 1, $3 \quad$ 11. -40 J
P 1. $89 \mathrm{~N} / \mathrm{cm}$ 3. (a) 167 J ; (b) -167 J ; (c) 196 J ; (d) 29 J ; (e) 167 J ; (f) -167 J ; (g) 296 J ; (h) $129 \mathrm{~J} \quad$ 5. (a) 4.31 mJ ; (b) -4.31 mJ ; (c) 4.31 mJ ; (d) -4.31 mJ ; (e) all increase 7 . (a) 13.1 J ; (b) -13.1 J ; (c) 13.1 J ; (d) all increase 9. (a) $17.0 \mathrm{~m} / \mathrm{s}$; (b) $26.5 \mathrm{~m} / \mathrm{s}$; (c) $33.4 \mathrm{~m} / \mathrm{s}$; (d) 56.7 m ; (e) all the same $\quad \mathbf{1 1}$. (a) $2.08 \mathrm{~m} / \mathrm{s}$; (b) $2.08 \mathrm{~m} / \mathrm{s}$; (c) increase 13. (a) 0.98 J ; (b) -0.98 J ; (c) $3.1 \mathrm{~N} / \mathrm{cm} \quad$ 15. (a) $2.6 \times 10^{2} \mathrm{~m}$; (b) same; (c) decrease 17. (a) 2.5 N ; (b) 0.31 N ; (c) 30 cm 19. (a) $784 \mathrm{~N} / \mathrm{m}$; (b) 62.7 J ; (c) 62.7 J ; (d) $80.0 \mathrm{~cm} \quad$ 21. (a) $8.35 \mathrm{~m} / \mathrm{s}$; (b) 4.33 m / s; (c) $7.45 \mathrm{~m} / \mathrm{s}$; (d) both decrease $\quad 23$. (a) $4.85 \mathrm{~m} / \mathrm{s}$; (b) $2.42 \mathrm{~m} / \mathrm{s}$ $\begin{array}{lll}\text { 25. }-3.2 \times 10^{2} \mathrm{~J} & \text { 27. (a) no; (b) } 9.3 \times 10^{2} \mathrm{~N} & \text { 29. (a) } 35 \mathrm{~cm} \text {; (b) }\end{array}$ $1.7 \mathrm{~m} / \mathrm{s} \quad$ 31. (a) 39.2 J ; (b) 39.2 J ; (c) 4.00 m 33. (a) $2.40 \mathrm{~m} / \mathrm{s}$; (b) $4.19 \mathrm{~m} / \mathrm{s}$ 35. (a) 39.6 cm ; (b) $3.64 \mathrm{~cm} \quad$ 37. $-18 \mathrm{~mJ} \quad$ 39. (a) $2.1 \mathrm{~m} / \mathrm{s}$; (b) 10 N ; (c) $+x$ direction; (d) 5.7 m ; (e) 30 N ; (f) $-x$ direction 41. (a) -3.7 J ; (c) 1.3 m ; (d) 9.1 m ; (e) 2.2 J ; (f) 4.0 m ; (g) $(4-x) e^{-x / 4}$; (h) $4.0 \mathrm{~m} \quad$ 43. (a) 5.6 J ; (b) $3.5 \mathrm{~J} \quad$ 45. (a) 30.1 J ; (b) 30.1 J ; (c) 0.225 47. $0.53 \mathrm{~J} \quad$ 49. (a) -2.9 kJ ; (b) $3.9 \times 10^{2} \mathrm{~J}$; (c) $2.1 \times 10^{2} \mathrm{~N} \quad \mathbf{5 1}$. (a) 1.5 MJ ; (b) 0.51 MJ ; (c) 1.0 MJ ; (d) $63 \mathrm{~m} / \mathrm{s} \quad 53$. (a) 67 J ; (b) 67 J ; (c) $46 \mathrm{~cm} \quad$ 55. (a) -0.90 J ; (b) 0.46 J ; (c) $1.0 \mathrm{~m} / \mathrm{s} \quad \mathbf{5 7 . 1 . 2 \mathrm { m } \quad 5 9 .}$ (a) 19.4 m ; (b) $19.0 \mathrm{~m} / \mathrm{s} \quad$ 61. (a) $1.5 \times 10^{-2} \mathrm{~N}$; (b) $\left(3.8 \times 10^{2}\right) g$ 63. (a) $7.4 \mathrm{~m} / \mathrm{s}$; (b) 90 cm ; (c) 2.8 m ; (d) $15 \mathrm{~m} \quad \mathbf{6 5 . 2 0} \mathrm{~cm} \quad \mathbf{6 7}$. (a) 7.0 J ; (b) $22 \mathrm{~J} \quad 69.3 .7 \mathrm{~J} \quad 71.4 .33 \mathrm{~m} / \mathrm{s} \quad 73.25 \mathrm{~J} \quad$ 75. (a) $4.9 \mathrm{~m} / \mathrm{s}$; (b) 4.5 N ; (c) 71°; (d) same 77. (a) 4.8 N ; (b) $+x$ direction; (c) 1.5 m ; (d) 13.5 m ; (e) $3.5 \mathrm{~m} / \mathrm{s} \quad$ 79. (a) 24 kJ ; (b) $4.7 \times 10^{2} \mathrm{~N} \quad$ 81. (a) 5.00 J ; (b) 9.00 J ; (c) 11.0 J ; (d) 3.00 J ; (e) 12.0 J ; (f) 2.00 J ; (g) 13.0 J ; (h) 1.00 J ; (i) 13.0 J ; (j) 1.00 J ; (l$) 11.0 \mathrm{~J}$; (m) 10.8 m ; (n) It returns to $x=0$ and stops. 83. (a) 6.0 kJ ; (b) $6.0 \times 10^{2} \mathrm{~W}$; (c) $3.0 \times 10^{2} \mathrm{~W}$;
(d) $9.0 \times 10^{2} \mathrm{~W}$ 85.880 MW 87. (a) $v_{0}=(2 g L)^{0.5}$; (b) 5 mg ; (c) $-m g L$; (d) $-2 m g L$ 89. (a) 109 J ; (b) 60.3 J ; (c) 68.2 J ; (d) 41.0 J 91. (a) 2.7 J ; (b) 1.8 J ; (c) $0.39 \mathrm{~m} \quad$ 93. (a) 10 m ; (b) 49 N ; (c) 4.1 m ; (d) $1.2 \times 10^{2} \mathrm{~N} \quad$ 95. (a) $5.5 \mathrm{~m} / \mathrm{s}$; (b) 5.4 m ; (c) same $97.80 \mathrm{~mJ} \quad \mathbf{9 9}$. 24 W 101. $-12 \mathrm{~J} \quad 103$. (a) $8.8 \mathrm{~m} / \mathrm{s}$; (b) 2.6 kJ ; (c) 1.6 kW 105. (a) $7.4 \times 10^{2} \mathrm{~J}$; (b) $2.4 \times 10^{2} \mathrm{~J} \quad \mathbf{1 0 7 .} 15 \mathrm{~J} \quad \mathbf{1 0 9}$. (a) $2.35 \times 10^{3} \mathrm{~J}$; (b) $352 \mathrm{~J} \quad 111.738 \mathrm{~m} \quad 113$. (a) -3.8 kJ ; (b) $31 \mathrm{kN} \quad 115$. (a) 300 J ; (b) 93.8 J ; (c) $6.38 \mathrm{~m} \quad$ 117. (a) 5.6 J ; (b) 12 J ; (c) $13 \mathrm{~J} \quad \mathbf{1 1 9 .}$. (a) 1.2 J ; (b) $11 \mathrm{~m} / \mathrm{s}$; (c) no; (d) no 121. (a) $2.1 \times 10^{6} \mathrm{~kg}$; (b) $(100+1.5 t)^{0.5}$ m / s; (c) $\left(1.5 \times 10^{6}\right) /(100+1.5 t)^{0.5} \mathrm{~N}$; (d) $6.7 \mathrm{~km} \quad \mathbf{1 2 3 . 5 4 \%} \quad 125$. (a) $2.7 \times 10^{9} \mathrm{~J}$; (b) $2.7 \times 10^{9} \mathrm{~W}$; (c) $\$ 2.4 \times 10^{8} \quad \mathbf{1 2 7 . 5 . 4} \mathrm{~kJ} \quad \mathbf{1 2 9 . 3 . 1} \times$ $10^{11} \mathrm{~W}$ 131. because your force on the cabbage (as you lower it) does work 135. (a) 8.6 kJ ; (b) $8.6 \times 10^{2} \mathrm{~W}$; (c) $4.3 \times 10^{2} \mathrm{~W}$;
(d) 1.3 kW

Chapter 9

CP 1. (a) origin; (b) fourth quadrant; (c) on y axis below origin; (d) origin; (e) third quadrant; (f) origin 2. (a) - (c) at the center of mass, still at the origin (their forces are internal to the system and cannot move the center of mass) 3. (Consider slopes and Eq. 9-23.) (a) 1,3, and then 2 and 4 tie (zero force); (b) 3 4. (a) unchanged; (b) unchanged (see Eq. 9-32); (c) decrease (Eq. 9-35) 5. (a) zero; (b) positive (initial p_{y} down y; final p_{y} up y); (c) positive direction of y 6. (No net external force; \vec{P} conserved.) (a) 0 ; (b) no; (c) $-x \quad$ 7. (a) $10 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$; (b) $14 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$; (c) $6 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$ 8. (a) $4 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$; (b) $8 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$; (c) $3 \mathrm{~J} \quad$ 9. (a) $2 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$ (conserve momentum along x); (b) $3 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$ (conserve momentum along y) Q 1. (a) 2 N , rightward; (b) 2 N , rightward; (c) greater than 2 N , rightward 3.b, c, a 5. (a) x yes, y no; (b) x yes, y no; (c) x no, y yes 7. (a) c, kinetic energy cannot be negative; d, total kinetic energy cannot increase; (b) a; (c) b 9. (a) one was stationary; (b) 2; (c) 5; (d) equal (pool player's result) 11. (a) C; (b) B; (c) 3 P 1. (a) -1.50 m ; (b) $-1.43 \mathrm{~m} \quad$ 3. (a) -6.5 cm ; (b) 8.3 cm ; (c) 1.4 cm 5. (a) -0.45 cm ; (b) $-2.0 \mathrm{~cm} \quad$ 7. (a) 0 ; (b) $3.13 \times 10^{-11} \mathrm{~m}$
 (a) $(2.35 \hat{\mathrm{i}}-1.57 \hat{\mathrm{j}}) \mathrm{m} / \mathrm{s}^{2}$; (b) $(2.35 \hat{\mathrm{i}}-1.57 \hat{\mathrm{j}}) t \mathrm{~m} / \mathrm{s}$, with t in seconds; (d) $\begin{array}{lll}\text { straight, at downward angle } 34^{\circ} & \mathbf{1 7 . 4 . 2} \mathrm{m} & \text { 19. (a) } 7.5 \times 10^{4} \mathrm{~J} \text {; }\end{array}$ (b) $3.8 \times 10^{4} \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$; (c) 39° south of due east 21. (a) $5.0 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$;
 (b) $2.1 \mathrm{kN} \quad 27$. (a) $67 \mathrm{~m} / \mathrm{s}$; (b) $-x$; (c) 1.2 kN ; (d) $-x \quad 29.5 \mathrm{~N}$ 31. (a) $2.39 \times 10^{3} \mathrm{~N} \cdot \mathrm{~s}$; (b) $4.78 \times 10^{5} \mathrm{~N}$; (c) $1.76 \times 10^{3} \mathrm{~N} \cdot \mathrm{~s}$; (d) $3.52 \times 10^{5} \mathrm{~N} \quad$ 33. (a) $5.86 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$; (b) 59.8°; (c) 2.93 kN ; (d) 59.8° $35.9 .9 \times 10^{2} \mathrm{~N} \quad$ 37. (a) $9.0 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$; (b) 3.0 kN ; (c) 4.5 kN ; (d) $20 \mathrm{~m} / \mathrm{s}$ $39.3 .0 \mathrm{~mm} / \mathrm{s} \quad$ 41. (a) $-(0.15 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{i}}$; (b) $0.18 \mathrm{~m} \quad 43.55 \mathrm{~cm} \quad$ 45. (a) ($1.00 \hat{\mathrm{i}}-0.167 \mathrm{j}$) km / s; (b) 3.23 MJ 47. (a) $14 \mathrm{~m} / \mathrm{s}$; (b) $45^{\circ} 49$. $3.1 \times 10^{2} \mathrm{~m} / \mathrm{s} \quad$ 51. (a) $721 \mathrm{~m} / \mathrm{s}$; (b) $937 \mathrm{~m} / \mathrm{s} \quad$ 53. (a) 33%; (b) 23%; (c) decreases 55. (a) $+2.0 \mathrm{~m} / \mathrm{s}$; (b) -1.3 J ; (c) +40 J ; (d) system got energy from some source, such as a small explosion $\quad \mathbf{5 7}$. (a) $4.4 \mathrm{~m} / \mathrm{s}$; (b) $0.80 \quad \mathbf{5 9 . 2 5 \mathrm { cm } \quad \text { 61. (a) } 9 9 \mathrm { g } \text { ; (b) } 1 . 9 \mathrm { m } / \mathrm { s } \text { ; (c) } 0 . 9 3 \mathrm { m } / \mathrm { s } \quad \text { 63. (a) }}$ $3.00 \mathrm{~m} / \mathrm{s}$; (b) $6.00 \mathrm{~m} / \mathrm{s} \quad \mathbf{6 5}$. (a) 1.2 kg ; (b) $2.5 \mathrm{~m} / \mathrm{s} \quad \mathbf{6 7 .}-28 \mathrm{~cm} \quad \mathbf{6 9}$. (a) 0.21 kg ; (b) $7.2 \mathrm{~m} \quad$ 71. (a) $4.15 \times 10^{5} \mathrm{~m} / \mathrm{s}$; (b) $4.84 \times 10^{5} \mathrm{~m} / \mathrm{s}$ 73. $120^{\circ} \quad$ 75. (a) $433 \mathrm{~m} / \mathrm{s}$; (b) $250 \mathrm{~m} / \mathrm{s} \quad 77$. (a) 46 N ; (b) none 79. (a) $1.57 \times 10^{6} \mathrm{~N}$; (b) $1.35 \times 10^{5} \mathrm{~kg}$; (c) $2.08 \mathrm{~km} / \mathrm{s} \quad$ 81. (a) $7290 \mathrm{~m} / \mathrm{s}$; (b) $8200 \mathrm{~m} / \mathrm{s}$; (c) $1.271 \times 10^{10} \mathrm{~J}$; (d) $1.275 \times 10^{10} \mathrm{~J} \quad \mathbf{8 3}$. (a) 1.92 m ; (b) $0.640 \mathrm{~m} \quad$ 85. (a) $1.78 \mathrm{~m} / \mathrm{s}$; (b) less; (c) less; (d) greater 87. (a) $3.7 \mathrm{~m} / \mathrm{s}$; (b) $1.3 \mathrm{~N} \cdot \mathrm{~s}$; (c) $1.8 \times 10^{2} \mathrm{~N} \quad \mathbf{8 9}$. (a) $\left(7.4 \times 10^{3} \mathrm{~N} \cdot \mathrm{~s}\right) \hat{\mathrm{i}}-$ $\left(7.4 \times 10^{3} \mathrm{~N} \cdot \mathrm{~s}\right) \hat{\mathrm{j}} ;$ (b) $\left(-7.4 \times 10^{3} \mathrm{~N} \cdot \mathrm{~s}\right) \hat{\mathrm{i}} ;$ (c) $2.3 \times 10^{3} \mathrm{~N}$; (d) $2.1 \times 10^{4} \mathrm{~N}$; (e) $-45^{\circ} \quad$ 91. $+4.4 \mathrm{~m} / \mathrm{s} \quad 93.1 .18 \times 10^{4} \mathrm{~kg} \quad 95$. (a) $1.9 \mathrm{~m} / \mathrm{s}$; (b) -30°; (c) elastic 97. (a) $6.9 \mathrm{~m} / \mathrm{s}$; (b) 30°; (c) $6.9 \mathrm{~m} / \mathrm{s}$; (d) -30°; (e) $2.0 \mathrm{~m} / \mathrm{s}$; (f) $-180^{\circ} \quad 99$. (a) 25 mm ; (b) 26 mm ; (c) down; (d) $1.6 \times 10^{-2} \mathrm{~m} / \mathrm{s}^{2} \quad 101.29 \mathrm{~J} \quad 103.2 .2 \mathrm{~kg} \quad 105.5 .0 \mathrm{~kg} \quad 107$. (a) 50 kg / s; (b) $1.6 \times 10^{2} \mathrm{~kg} / \mathrm{s} \quad 109$. (a) $4.6 \times 10^{3} \mathrm{~km}$; (b) $73 \% \quad \mathbf{1 1 1 . 1 9 0 ~ m} / \mathrm{s}$
113.28.8 N 115. (a) 0.745 mm ; (b) 153°; (c) 1.67 mJ 117. (a) $(2.67 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{i}}+(-3.00 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{j}}$; (b) $4.01 \mathrm{~m} / \mathrm{s}$; (c) $48.4^{\circ} \quad$ 119. (a) -0.50 m ; (b) -1.8 cm ; (c) $0.50 \mathrm{~m} \quad \mathbf{1 2 1 .} 0.22 \% \quad \mathbf{1 2 3 .} 36.5 \mathrm{~km} / \mathrm{s}$ 125. (a) $\left(-1.00 \times 10^{-19} \hat{\mathrm{i}}+0.67 \times 10^{-19} \hat{\mathrm{j}}\right) \mathrm{kg} \cdot \mathrm{m} / \mathrm{s}$; (b) $1.19 \times 10^{-12} \mathrm{~J}$ 127. 2.2×10^{-3}

Chapter 10

CP 1.b and c 2. (a) and (d) ($\alpha=d^{2} \theta / d t^{2}$ must be a constant) 3. (a) yes; (b) no; (c) yes; (d) yes 4. all tie 5.1,2,4,3 (see Eq. 10-36) 6. (see Eq. 10-40) 1 and 3 tie, 4 , then 2 and 5 tie (zero) 7. (a) downward in the figure ($\tau_{\text {net }}=0$); (b) less (consider moment arms) Q 1. (a) c, a, then b and d tie; (b) b, then a and c tie, then d 3. all tie 5. (a) decrease; (b) clockwise; (c) counterclockwise 7. larger 9. c, a, b 11. less

P 1. 14 rev 3. (a) $4.0 \mathrm{rad} / \mathrm{s}$; (b) $11.9 \mathrm{rad} / \mathrm{s} \quad \mathbf{5 . 1 1 \mathrm { rad } / \mathrm { s }} \quad$ 7. (a) 4.0 m / s; (b) no 9. (a) 3.00 s ; (b) $18.9 \mathrm{rad} \quad \mathbf{1 1}$. (a) 30 s ; (b) $1.8 \times 10^{3} \mathrm{rad}$ 13. (a) $3.4 \times 10^{2} \mathrm{~s}$; (b) $-4.5 \times 10^{-3} \mathrm{rad} / \mathrm{s}^{2}$; (c) $98 \mathrm{~s} \quad 15.8 .0 \mathrm{~s}$ 17. (a) 44 rad ; (b) 5.5 s ; (c) 32 s ; (d) -2.1 s ; (e) $40 \mathrm{~s} \quad$ 19. (a) $2.50 \times$ $10^{-3} \mathrm{rad} / \mathrm{s}$; (b) $20.2 \mathrm{~m} / \mathrm{s}^{2}$; (c) $0 \quad 21.6 .9 \times 10^{-13} \mathrm{rad} / \mathrm{s} \quad$ 23. (a) 20.9 $\mathrm{rad} / \mathrm{s}$; (b) $12.5 \mathrm{~m} / \mathrm{s}$; (c) $800 \mathrm{rev} / \mathrm{min}^{2}$; (d) 600 rev 25. (a) 7.3×10^{-5} $\mathrm{rad} / \mathrm{s}$; (b) $3.5 \times 10^{2} \mathrm{~m} / \mathrm{s}$; (c) $7.3 \times 10^{-5} \mathrm{rad} / \mathrm{s}$; (d) $4.6 \times 10^{2} \mathrm{~m} / \mathrm{s} \quad 27$. (a) $73 \mathrm{~cm} / \mathrm{s}^{2}$; (b) 0.075 ; (c) $0.11 \quad$ 29. (a) $3.8 \times 10^{3} \mathrm{rad} / \mathrm{s}$; (b) 1.9×10^{2} $\mathrm{m} / \mathrm{s} \quad$ 31. (a) 40 s ; (b) $2.0 \mathrm{rad} / \mathrm{s}^{2} \quad 33.12 .3 \mathrm{~kg} \cdot \mathrm{~m}^{2} \quad$ 35. (a) 1.1 kJ ; (b) $9.7 \mathrm{~kJ} \quad 37.0 .097 \mathrm{~kg} \cdot \mathrm{~m}^{2} \quad$ 39. (a) 49 MJ ; (b) $1.0 \times 10^{2} \mathrm{~min} \quad$ 41. (a) $0.023 \mathrm{~kg} \cdot \mathrm{~m}^{2}$; (b) $1.1 \mathrm{~mJ} \quad 43.4 .7 \times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2} \quad 45 .-3.85 \mathrm{~N} \cdot \mathrm{~m}$ $\begin{array}{lll}47.4 .6 \mathrm{~N} \cdot \mathrm{~m} & \text { 49. (a) } 28.2 \mathrm{rad} / \mathrm{s}^{2} \text {; (b) } 338 \mathrm{~N} \cdot \mathrm{~m} & \text { 51. (a) } 6.00 \mathrm{~cm} / \mathrm{s}^{2} \text {; }\end{array}$ (b) 4.87 N ; (c) 4.54 N ; (d) $1.20 \mathrm{rad} / \mathrm{s}^{2}$; (e) $0.0138 \mathrm{~kg} \cdot \mathrm{~m}^{2} \quad 53.0 .140 \mathrm{~N}$ 55. $2.51 \times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2} \quad$ 57. (a) $4.2 \times 10^{2} \mathrm{rad} / \mathrm{s}^{2}$; (b) $5.0 \times 10^{2} \mathrm{rad} / \mathrm{s}$ 59. $396 \mathrm{~N} \cdot \mathrm{~m} \quad$ 61. (a) -19.8 kJ ; (b) $1.32 \mathrm{~kW} \quad \mathbf{6 3 . 5 . 4 2 \mathrm { m } / \mathrm { s } \quad \text { 65. (a) }}$ $5.32 \mathrm{~m} / \mathrm{s}^{2}$; (b) $8.43 \mathrm{~m} / \mathrm{s}^{2}$; (c) $41.8^{\circ} \quad \mathbf{6 7 . 9} .82 \mathrm{rad} / \mathrm{s} \quad \mathbf{6 9 .} 6.16 \times 10^{-5}$ $\mathrm{kg} \cdot \mathrm{m}^{2} \quad$ 71. (a) $31.4 \mathrm{rad} / \mathrm{s}^{2}$; (b) $0.754 \mathrm{~m} / \mathrm{s}^{2}$; (c) 56.1 N ; (d) 55.1 N 73. (a) $4.81 \times 10^{5} \mathrm{~N}$; (b) $1.12 \times 10^{4} \mathrm{~N} \cdot \mathrm{~m}$; (c) $1.25 \times 10^{6} \mathrm{~J}$ 75. (a) $2.3 \mathrm{rad} / \mathrm{s}^{2}$; (b) $1.4 \mathrm{rad} / \mathrm{s}^{2} \quad$ 77. (a) $-67 \mathrm{rev} / \mathrm{min}^{2}$; (b) 8.3 rev $\mathbf{8 1 . 3 . 1} \mathrm{rad} / \mathrm{s} \quad \mathbf{8 3}$. (a) $1.57 \mathrm{~m} / \mathrm{s}^{2}$; (b) 4.55 N ; (c) $4.94 \mathrm{~N} \quad \mathbf{8 5 . 3 0} \mathrm{rev}$ 87. $0.054 \mathrm{~kg} \cdot \mathrm{~m}^{2} \quad \mathbf{8 9 . 1 . 4} \times 10^{2} \mathrm{~N} \cdot \mathrm{~m} \quad$ 91. (a) 10 J ; (b) 0.27 m 93.4.6 rad $/ \mathrm{s}^{2} \quad 95.2 .6 \mathrm{~J} \quad 97$. (a) $5.92 \times 10^{4} \mathrm{~m} / \mathrm{s}^{2}$; (b) $4.39 \times 10^{4} \mathrm{~s}^{-2}$ 99. (a) $0.791 \mathrm{~kg} \cdot \mathrm{~m}^{2}$; (b) $1.79 \times 10^{-2} \mathrm{~N} \cdot \mathrm{~m} \quad$ 101. (a) $1.5 \times 10^{2} \mathrm{~cm} / \mathrm{s}$; (b) $15 \mathrm{rad} / \mathrm{s}$; (c) $15 \mathrm{rad} / \mathrm{s}$; (d) $75 \mathrm{~cm} / \mathrm{s}$; (e) $3.0 \mathrm{rad} / \mathrm{s} \quad 103$. (a) $7.0 \mathrm{~kg} \cdot \mathrm{~m}^{2}$; (b) $7.2 \mathrm{~m} / \mathrm{s}$; (c) $71^{\circ} \quad$ 105. (a) $0.32 \mathrm{rad} / \mathrm{s}$; (b) $1.0 \times 10^{2} \mathrm{~km} / \mathrm{h}$ 107. (a) $1.4 \times 10^{2} \mathrm{rad}$; (b) 14 s

Chapter 11

CP 1. (a) same; (b) less 2. less (consider the transfer of energy from rotational kinetic energy to gravitational potential energy) 3. (draw the vectors, use right-hand rule) (a) $\pm z$; (b) $+y$; (c) $-x$ 4. (see Eq. 11-21) (a) 1 and 3 tie; then 2 and 4 tie, then 5 (zero); (b) 2 and 3 5. (see Eqs. 11-23 and 11-16) (a) 3, 1; then 2 and 4 tie (zero); (b) 3 6. (a) all tie (same τ, same t, thus same ΔL); (b) sphere, disk, hoop (reverse order of I) 7. (a) decreases; (b) same ($\tau_{\text {net }}=0$, so L is conserved); (c) increases
Q 1. a, then b and c tie, then e, d (zero) 3. (a) spins in place; (b) rolls toward you; (c) rolls away from you 5. (a) 1,2,3 (zero); (b) 1 and 2 tie, then 3; (c) 1 and 3 tie, then 2 7. (a) same; (b) increase; (c) decrease; (d) same, decrease, increase $9 . D, B$, then A and C tie 11. (a) same; (b) same

P 1. (a) 0 ; (b) $(22 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{i}}$; (c) ($-22 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{i}}$; (d) $0 ;$ (e) $1.5 \times 10^{3} \mathrm{~m} / \mathrm{s}^{2}$; (f) $1.5 \times 10^{3} \mathrm{~m} / \mathrm{s}^{2}$; (g) $(22 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{i}}$; (h) $(44 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{i}}$; (i) 0 ; (j) 0 ; (k) $1.5 \times 10^{3} \mathrm{~m} / \mathrm{s}^{2}$; $\begin{array}{llll}\text { (l) } 1.5 \times 10^{3} \mathrm{~m} / \mathrm{s}^{2} & \text { 3. }-3.15 \mathrm{~J} \quad \text { 5.0.020 } & \text { 7. (a) } 63 \mathrm{rad} / \mathrm{s} \text {; (b) } 4.0 \mathrm{~m}\end{array}$ 9.4 .8 m 11. (a) $(-4.0 \mathrm{~N}) \hat{\mathrm{i}}$; (b) $0.60 \mathrm{~kg} \cdot \mathrm{~m}^{2} \quad$ 13. $0.50 \quad$ 15. (a) $-(0.11 \mathrm{~m}) \omega$; (b) $-2.1 \mathrm{~m} / \mathrm{s}^{2}$; (c) $-47 \mathrm{rad} / \mathrm{s}^{2}$; (d) 1.2 s ; (e) 8.6 m ; (f) 6.1 m / s 17. (a) $13 \mathrm{~cm} / \mathrm{s}^{2}$; (b) 4.4 s ; (c) $55 \mathrm{~cm} / \mathrm{s}$; (d) 18 mJ ; (e) 1.4 J ; (f) 27 $\mathrm{rev} / \mathrm{s} \quad$ 19. $(-2.0 \mathrm{~N} \cdot \mathrm{~m}) \hat{\mathrm{i}} \quad$ 21. (a) $(6.0 \mathrm{~N} \cdot \mathrm{~m}) \hat{\mathrm{j}}+(8.0 \mathrm{~N} \cdot \mathrm{~m}) \hat{\mathrm{k}} ;(\mathrm{b})$
$(-22 \mathrm{~N} \cdot \mathrm{~m}) \hat{\mathrm{i}}$ 23. (a) $(-1.5 \mathrm{~N} \cdot \mathrm{~m}) \hat{\mathrm{i}}-(4.0 \mathrm{~N} \cdot \mathrm{~m}) \hat{\mathrm{j}}-(1.0 \mathrm{~N} \cdot \mathrm{~m}) \hat{\mathrm{k}}$; (b) $(-1.5 \mathrm{~N} \cdot \mathrm{~m}) \hat{\mathrm{i}}-(4.0 \mathrm{~N} \cdot \mathrm{~m}) \hat{\mathrm{j}}-(1.0 \mathrm{~N} \cdot \mathrm{~m}) \hat{\mathrm{k}} \quad$ 25. (a) $(50 \mathrm{~N} \cdot \mathrm{~m}) \hat{\mathrm{k}}$; (b) $90^{\circ} \quad$ 27. (a) $0 ;$ (b) $(8.0 \mathrm{~N} \cdot \mathrm{~m}) \hat{\mathrm{i}}+(8.0 \mathrm{~N} \cdot \mathrm{~m}) \hat{\mathrm{k}} \quad$ 29. (a) $9.8 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}$;
(b) $+z$ direction 31. (a) 0 ; (b) $-22.6 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}$; (c) $-7.84 \mathrm{~N} \cdot \mathrm{~m}$;
(d) $-7.84 \mathrm{~N} \cdot \mathrm{~m} \quad$ 33. (a) $\left(-1.7 \times 10^{2} \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}\right) \hat{\mathrm{k}}$; (b) $(+56 \mathrm{~N} \cdot \mathrm{~m}) \hat{\mathrm{k}}$;
(c) $\left(+56 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}^{2}\right) \hat{\mathrm{k}} \quad 35$. (a) $48 t \hat{\mathrm{k}} \mathrm{N} \cdot \mathrm{m}$; (b) increasing 37. (a) $4.6 \times$ $10^{-3} \mathrm{~kg} \cdot \mathrm{~m}^{2}$; (b) $1.1 \times 10^{-3} \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}$; (c) $3.9 \times 10^{-3} \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}$
39. (a) $1.47 \mathrm{~N} \cdot \mathrm{~m}$; (b) 20.4 rad ; (c) -29.9 J ; (d) $19.9 \mathrm{~W} \quad$ 41. (a) 1.6 $\mathrm{kg} \cdot \mathrm{m}^{2}$; (b) $4.0 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s} \quad$ 43. (a) 1.5 m ; (b) $0.93 \mathrm{rad} / \mathrm{s}$; (c) 98 J ; (d) 8.4 $\mathrm{rad} / \mathrm{s}$; (e) $8.8 \times 10^{2} \mathrm{~J}$; (f) internal energy of the skaters 45 . (a) 3.6 $\mathrm{rev} / \mathrm{s}$; (b) 3.0; (c) forces on the bricks from the man transferred energy from the man's internal energy to kinetic energy $\quad 47.0 .17 \mathrm{rad} / \mathrm{s}$ 49. (a) $750 \mathrm{rev} / \mathrm{min}$; (b) $450 \mathrm{rev} / \mathrm{min}$; (c) clockwise 51. (a) $267 \mathrm{rev} / \mathrm{min}$; (b) $0.667 \quad \mathbf{5 3 . 1 . 3} \times 10^{3} \mathrm{~m} / \mathrm{s} \quad \mathbf{5 5 . 3 . 4} \mathrm{rad} / \mathrm{s} \quad \mathbf{5 7}$. (a) $18 \mathrm{rad} / \mathrm{s}$; (b) 0.92 59. $11.0 \mathrm{~m} / \mathrm{s} \quad \mathbf{6 1 . 1 . 5 ~ r a d} / \mathrm{s} \quad \mathbf{6 3 . 0 . 0 7 0} \mathrm{rad} / \mathrm{s} \quad$ 65. (a) $0.148 \mathrm{rad} / \mathrm{s}$; (b) 0.0123 ; (c) $181^{\circ} \quad$ 67. (a) 0.180 m ; (b) clockwise $\quad \mathbf{6 9 . 0 . 0 4 1 ~ \mathrm { rad } / \mathrm { s } \quad 7 1 .}$ (a) $1.6 \mathrm{~m} / \mathrm{s}^{2}$; (b) $16 \mathrm{rad} / \mathrm{s}^{2}$; (c) (4.0 N$) \hat{\mathrm{i}}$ 73. (a) 0 ; (b) 0 ; (c) $-30 t^{3} \hat{\mathrm{k}}$ $\mathrm{kg} \cdot \mathrm{m}^{2} / \mathrm{s}$; (d) $-90 t^{2} \hat{\mathrm{k}} \mathrm{N} \cdot \mathrm{m}$; (e) $30 t^{2} \hat{\mathrm{k}} \mathrm{kg} \cdot \mathrm{m}^{2} / \mathrm{s}$; (f) $90 t^{2} \hat{\mathrm{k}} \mathrm{N} \cdot \mathrm{m} \quad$ 75. (a) $149 \mathrm{~kg} \cdot \mathrm{~m}^{2}$; (b) $158 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}$; (c) $0.744 \mathrm{rad} / \mathrm{s} \quad 77$. (a) 6.65×10^{-5} $\mathrm{kg} \cdot \mathrm{m}^{2} / \mathrm{s}$; (b) no; (c) 0 ; (d) yes 79. (a) 0.333 ; (b) 0.111 81. (a) 58.8 J ; (b) 39.2 J 83. (a) 61.7 J ; (b) 3.43 m ; (c) no 85. (a) $m v R /\left(I+M R^{2}\right.$); (b) $m v R^{2} /\left(I+M R^{2}\right)$

[^0]: Stephen Dalton/Photo Researchers, Inc.

[^1]: *Adapted from "The International System of Units (SI)," National Bureau of Standards Special Publication 330,1972 edition. The definitions above were adopted by the General Conference of Weights and Measures, an international body, on the dates shown. In this book we do not use the candela.

[^2]: ${ }^{a}$ Values given in this column should be given the same unit and power of 10 as the computational value.
 ${ }^{b}$ Parts per million.
 ${ }^{c}$ Masses given in u are in unified atomic mass units, where $1 \mathrm{u}=1.660538782 \times 10^{-27} \mathrm{~kg}$.
 ${ }^{d}$ STP means standard temperature and pressure: $0^{\circ} \mathrm{C}$ and $1.0 \mathrm{~atm}(0.1 \mathrm{MPa})$.

[^3]: *The values in this table were selected from the 1998 CODATA recommended values (www.physics.nist.gov).

