Chapter 8:

Linear Algebra:

Matrix Eigenvalue Problems

E. Kreyszig



8.1. The Matrix Eigenvalue Problem.

Determining Eigenvalues and Eigenvectors

A matrix eigenvalue problem considers the vector equation
(1) AX = AXx.

Here A is a given square matrix, A an unknown scalar, and x an unknown vector. In a
matrix eigenvalue problem, the task i1s to determine A’s and X’s that satisfy (1). Since
x = 0 is always a solution for any A and thus not interesting, we only admit solutions
with x # (.

The solutions to (1) are given the following names: The A’s that satisfy (1) are called
eigenvalues of A and the corresponding nonzero x’s that also satisfy (1) are called
eigenvectors of A.
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Consider multiplying nonzero vectors by a given square matrix, such as

B g A

We want to see what influence the multiplication of the given matrix has on the vectors.
In the first case, we get a totally new vector with a different direction and different length
when compared to the original vector. This is what usually happens and is of no interest
here. In the second case something interesting happens. The multiplication produces a
vector [30 40]T = 10[3 4]T, which means the new vector has the same direction as
the original vector. The scale constant, which we denote by A 1s 10. The problem of
systematically finding such N’s and nonzero vectors for a given square matrix will be the
theme of this chapter. It is called the matrix eigenvalue problem or, more commonly, the
eigenvalue problem.

We formalize our observation. Let A = [a;;] be a given nonzero square matrix of
dimension n X n. Consider the following vector equation:

(1) Ax = Ax.

The problem of finding nonzero x’s and A’s that satisfy equation (1) is called an eigenvalue
problem.



Remark. So A is a given square (!) matrix, X is an unknown vector, and A is an
unknown scalar. Our task is to find A’s and nonzero x’s that satisfy (1). Geometrically,
we are looking for vectors, X, for which the multiplication by A has the same effect as
the multiplication by a scalar A; in other words, Ax should be proportional to X. Thus,
the multiplication has the effect of producing, from the original vector X, a new vector
Ax that has the same or opposite (minus sign) direction as the original vector.

We introduce more terminology. A value of A, for which (1) has a solution x # 0, 1s
called an eigenvalue or characteristic value of the matrix A. Another term for A is a latent
root. (“Eigen” is German and means “proper” or “characteristic.”). The corresponding
solutions x # 0 of (1) are called the eigenvectors or characteristic vectors of A
corresponding to that eigenvalue A. The set of all the eigenvalues of A is called the
spectrum of A. We shall see that the spectrum consists of at least one eigenvalue and at
most of n numerically different eigenvalues. The largest of the absolute values of the
eigenvalues of A is called the spectral radius of A, a name to be motivated later.
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How to Find Eigenvalues and Eigenvectors

Eigenvalues have a very large number of applications in diverse fields such as in
engineering, geometry, physics, mathematics, biology, environmental science, economics,
psychology, and other areas. You will encounter applications for elastic membranes,
Markov processes, population models, and others in this chapter.

Since, from the viewpoint of engineering applications, eigenvalue problems are the most
important problems in connection with matrices, the student should carefully follow our
discussion.

Example 1 demonstrates how to systematically solve a simple eigenvalue problem.

EXAMPLE 1 Determination of Eigenvalues and Eigenvectors

We illustrate all the steps in terms of the matrix s 5
A= :
2 =2

Solution. (a) Eigenvalues. These must be determined first. Equation (1) is

X1 X1 —le + 2)62 = /\x1
= A : in components,
X9 X9 2)61 - 2)62 = A)Cz.

-5 2
Ax =

2 -2
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Transferring the terms on the right to the left, we get

(=5 — AMxq + 2xo =0
(2%)
2x1 + (=2 — AMxy = 0.
This can be written in matrix notation

(3%) (A—ADx=0

because (1) is Ax — Ax = Ax — AIx = (A — ADx = 0, which gives (3*). We see that this is a homogeneous
linear system. By Cramer’s theorem in Sec. 7.7 it has a nontrivial solution x # 0 (an eigenvector of A we are
looking for) if and only if its coefficient determinant is zero, that is,

—5—A 2

4*)  D(A) = det(A — AI) =| =(=5-M(-2-X)—-4=A2+T7Ax+6=0.
2 —2—-A

We call D(A) the characteristic determinant or, if expanded, the characteristic polynomial, and D(A) = 0
the characteristic equation of A. The solutions of this quadratic equation are A; = —1 and A9 = —6. These
are the eigenvalues of A.

(by) Eigenvector of A corresponding to Ay. This vector is obtained from (2*) with A = Ay = —1, that is,

_4X1 + 2.X2 =0

2X1_ X2=0.




A solution is x9 = 2x1, as we see from either of the two equations, so that we need only one of them. This
determines an eigenvector corresponding to A; = —1 up to a scalar multiple. If we choose x; = 1, we obtain

the eigenvector
-5 2|1 —1
, Check: Ax; = = = (—Dx7 = A\x3.
2 =22 —2

(bo) Eigenvector of A corresponding to Ao. For A = Ay = —6, equation (2*) becomes

x1+2x9 =0

2)(71 + 4)(2 = (.

A solution is xg = —x1/2 with arbitrary xy. If we choose x; = 2, we get x5 = —1. Thus an eigenvector of A
corresponding to Ag = —6 1s

-5 2 2 —12
], Check: AXy = { ” ] = { ] = (—0)X9 = AsXs.
2 =21 —1 6

For the matrix in the intuitive opening example at the start of Sec. 8.1, the characteristic equation is
A2 — 131 + 30 = (A — 10)(A — 3) = 0. The eigenvalues are {10, 3}. Corresponding eigenvectors are
[3 4] and[—1 1]T, respectively. The reader may want to verify this. ||
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This example illustrates the general case as follows. Equation (1) written in components is
ai11X1 + -+ ANnXn —

as1xX1 + - + Ao Xn =

ap1X1 T 0t AupXa = Ax,.

Transferring the terms on the right side to the left side, we have

(ag1 = Mx1 +  ajoxo + o0+ aipxy,

as1X1 + (agg — AM)xg + -+ +

In matrix notation,

3) (A — ADx = 0.




By Cramer’s theorem in Sec. 7.7, this homogeneous linear system of equations has a
nontrivial solution if and only if the corresponding determinant of the coefficients is zero:

ajp — A ao

asy age — A
4) D(A) = det(A — Al =

ani1 an2 T app — A

A — Al is called the characteristic matrix and D (A) the characteristic determinant of

A. Equation (4) is called the characteristic equation of A. By developing D(A) we obtain
a polynomial of nth degree in A. This is called the characteristic polynomial of A.
This proves the following important theorem.

THEOREM 1

Eigenvalues

The eigenvalues of a square matrix A are the roots of the characteristic equation
(4) of A.

Hence an n X n matrix has at least one eigenvalue and at most n numerically
different eigenvalues.




THEOREM 2

Eigenvectors, Eigenspace

If w and x are eigenvectors of a matrix A corresponding to the same eigenvalue A,

so are w + X (provided x # —w) and kx for any k # Q.
Hence the eigenvectors corresponding to one and the same eigenvalue A of A,

together with 0, form a vector space (cf. Sec. 7.4), called the eigenspace of A
corresponding to that A.

PROOF
Aw = Aw and Ax = Ax imply A(w + X) = Aw + Ax = Aw + Ax = AM(w + X) and

A (kw) = k(Aw) = k(Aw) = A(kw); hence A (kw + €x) = A(kw + €X). []

In particular, an eigenvector X is determined only up to a constant factor. Hence we
can normalize x, that is, multiply it by a scalar to get a unit vector (see Sec. 7.9). For
instance, x; = [1 2]" in Example 1 has the length |jx1| = V1% + 2% = \/5; hence

[1/V5 2/V/5]" is a normalized eigenvector (a unit eigenvector).




EXAMPLE 2 Multiple Eigenvalues

Find the eigenvalues and eigenvectors of

Solution. For our matrix, the characteristic determinant gives the characteristic equation
—A3 =A%+ 210 + 45 =0.

The roots (eigenvalues of A) are Ay = 5, Ao = A3 = —3. (If you have trouble finding roots, you may want to
use a root finding algorithm such as Newton’s method (Sec. 19.2). Your CAS or scientific calculator can find
roots. However, to really learn and remember this material, you have to do some exercises with paper and pencil.)
To find eigenvectors, we apply the Gauss elimination (Sec. 7.3) to the system (A — ADx = 0, first with A = 5
and then with A = —3. For A = 5 the characteristic matrix is

—7 2 =3
A—AN=A-5I= 2 -4 —6/. It row-reduces to

-1 -2 =5

Hence it has rank 2. Choosing x3 = —1 we have x5 = 2 from —27—4x2 — %xg = 0 and then xy = 1 from

—7Tx1 + 2x9 — 3x3 = 0. Hence an eigenvector of A corresponding to A = 5isx3 = [1 2 —l]T.




For A = —3 the characteristic matrix

A—ANM=A+3I= row-reduces to

—1 0

Hence it has rank 1. From x; + 2x9 — 3x3 = 0 we have x; = —2x2 + 3x3. Choosing xo = 1,x3 = 0 and
x9 = 0,x3 = 1, we obtain two linearly independent eigenvectors of A corresponding to A = —3 [as they must
exist by (5), Sec. 7.5, with rank = 1 and n = 3],




EXAMPLE 4 Real Matrices with Complex Eigenvalues and Eigenvectors

Since real polynomials may have complex roots (which then occur in conjugate pairs), a real matrix may have
complex eigenvalues and eigenvectors. For instance, the characteristic equation of the skew-symmetric matrix

1 —A

-1 —A

] 18 det (A — Al) =
0

It gives the eigenvalues A; = i (= V—1), Ao = —i. Eigenvectors are obtained from —ix; + xo = 0 and
ix1 + xo = 0, respectively, and we can choose x; = 1 to get

l

THEOREM 3

Eigenvalues of the Transpose

The transpose A" of a square matrix A has the same eigenvalues as A.




8.2. Symmetric, Skew-Symmetric, and Orthogonal Matrices

DEFINITIONS

Symmetric, Skew-Symmetric, and Orthogonal Matrices

A real square matrix A = [a;;] is called
symmetric if transposition leaves it unchanged,

(1) AT = A, thus arj = Qi
skew-symmetric if transposition gives the negative of A,

(2) Al = —A, thus ax; = —aj,

orthogonal if transposition gives the inverse of A,




EXAMPLE 1 Symmetric, Skew-Symmetric, and Orthogonal Matrices

The matrices

W= Wi Wi

W Wi Wi
Wby W= I

are symmetric, skew-symmetri¢, and orthogonal,"tespectively, as you should verify.

Any real square matrix A may be written as the sum of a symmetric matrix R and a skew-
symmetric matrix S, where

(4) R=3A+A") and S=3A-A.

EXAMPLE 2 Illustration of Formula (4)

9 5 2 (00 35 35| 0 15 —15
A=|2 3 —8|=R+S=|35 30 —-20|+|-15 0 —60

5 4 3 3.5 —20 3.0 15 60 0




THEOREM 1

Eigenvalues of Symmetric and Skew-Symmetric Matrices

(@) The eigenvalues of a symmetric matrix are real.

(b) The eigenvalues of a skew-symmetric matrix are pure imaginary or zero.

Orthogonal Transformations and Orthogonal Matrices

Orthogonal transformations are transformations

(5) [ y = Ax ] where A 1s an orthogonal matrix.

With each vector x in R" such a transformation assigns a vector y in R". For instance,
the plane rotation through an angle 6

V1 cosf —sinf||xy
(6) y = =
Vo, sin 0 cos O || xo

i1s an orthogonal transformation. It can be shown that any orthogonal transformation in
the plane or in three-dimensional space is a rotation



THEOREM 2

Invariance of Inner Product

An orthogonal transformation preserves the value of the inner product of vectors
a and b in R", defined by

(7) a*b=ab=1[a; - a,]

That is, for any a and b in R", orthogonal n X n matrix A, and u = Aa,v = Ab
we have u*v = a-*b.

Hence the transformation also preserves the length or norm of any vector a in
R"™ given by

®) lal = Vaca="Va'

PROOF

Let A be orthogonal. Let u = Aa and v = Ab. We must show that u*v = a *b. Now
(Aa)" = a"AT by (10d) in Sec. 7.2 and ATA = A7!A = I by (3). Hence

(9) u*v=u'v=(Aa)')Ab=a'ATAb=a'lb=a'b=a-b.




THEOREM 3

Orthonormality of Column and Row Vectors

A real square matrix is orthogonal if and only if its column vectors aq,
also its row vectors) form an orthonormal system, that is,

0 if j#k

(10) a;ca; = ajTak = {

1 if j=k

THEOREM 4

Determinant of an Orthogonal Matrix

The determinant of an orthogonal matrix has the value +1 or —1.

THEOREM 5

Eigenvalues of an Orthogonal Matrix

The eigenvalues of an orthogonal matrix A are real or complex conjugates in pairs
and have absolute value 1.




EXAMPLE 5 Eigenvalues of an Orthogonal Matrix

The orthogonal matrix in Example 1

Wi Wi WIN

I
W= Wi Wi

win Wi W=

has the characteristic equation

-+ +2r-1=0.

e

—1
eigenvalues (5 +iVID/6

(5 —iV11)/6




8.5 Complex Matrices and Forms

The three classes of matrices in Sec. 8.3 have complex counterparts which are of practical
interest in certain applications, for instance, in quantum mechanics.

Notations

A= |aj] is obtained from A = [agj,] by replacing each entry aj = a + i
(o, B real) with its complex conjugate aj;, = a — if3. Also,AT = | ay; | is the transpose
of A, hence the conjugate transpose of A.

EXAMPLE 1 Notations

3+ 4i I —1i 3 —4i 6

o
=
o,
>
[l

If A= then A =

6 2 — 50| 1+ 2+ 5i|



DEFINITION

Hermitian, Skew-Hermitian, and Unitary Matrices

A square matrix A = [ag;] is called

Hermitian it A = A, thatis,  axj = ajx
skew-Hermitian if A ' = —A, that is, ai; = —ajx
unitary if Al =A"1

From the definitions we see the following. If A is Hermitian, the entries on the main
diagonal must satisfy aj; = ay;; that is, they are . Similarly, if A 1s skew-Hermitian,
thena;; = —ay;. If we setaj; = a + i, thisbecomes o — i = —(«a + iB3). Hence a = 0,
so that a;; must be[pure imaginary or O}

EXAMPLE 2 Hermitian, Skew-Hermitian, and Unitary Matrices

- 1 —3i

A = C —

D= D=

l
V3

D= D=

1 + 3i 7



If a Hermitian matrix is real, then XT = A" = A. Hence a real Hermitian matrix is a

symmetric matrix (Sec. 8.3).
Similarly, if a skew-Hermitian matrix is real, then AT = AT = —A. Hence a real skew-

Hermitian matrix is a skew-symmetric matrlx
Finally, if a unitary matrix is real, then A" = AT = A™L. Hence a real unitary matrix

is an orthogonal matrix.

This shows that Hermitian, skew-Hermitian, and unitary matrices generalize symmetric,
skew-symmetric, and orthogonal matrices, respectively.

THEOREM 1

Eigenvalues

(a) The eigenvalues of a Hermitian matrix (and thus of a symmetric matrix)
are real.

(b) The ceigenvalues of a skew-Hermitian matrix (and thus of a skew-symmetric
matrix) are pure imaginary or zero.

(¢) The eigenvalues of a unitary matrix (and thus of an orthogonal matrix) have
absolute value 1.




v Skew-Hermitian (skew-symmetric)

/Umtary (orthogonal)

/ Hermitian (symmetric)

1 Re i

Fig. 163. Location of the eigenvalues of Hermitian, skew-Hermitian }
and unitary matrices in the complex A-plane 4//

EXAMPLE 3

Illustration of Theorem 1

For the matrices in Example 2 we find by direct calculation

Matrix

Characteristic Equation Eigenvalues

C Unitary

A Hermitian A2 —1IA+18=0 9, 2
B Skew-Hermitian A =2 +8=0 4i, —2i

M —ix—-1=0 V3 + L




Key properties of orthogonal matrices (invariance of the inner product, orthonormality of
rows and columns; see Sec. 8.3) generalize to unitary matrices in a remarkable way.

To see this, instead of R we now use the complex vector space C™ of all complex
vectors with n complex numbers as components, and complex numbers as scalars. For
such complex vectors the inner product is defined by (note the overbar for the complex

conjugate)
(4) a*b=a'b.

The length or norm of such a complex vector is a real number defined by

(5) ||a||= Vaea= \/ﬁjT =\/51a1+~-+5nan=\/|a1|2+---+ |an|2.

THEOREM 2

Invariance of Inner Product

A unitary transformation, that is, y = AX with a unitary matrix A, preserves the
value of the inner product (4), hence also the norm (5).

PROOF u*v=uv=@Aa)'Ab=a'A'Ab=2a'lb=a'b=a-bh. 5y
'hmmmwmmmmmmmmml



DEFINITION

Unitary System

A unitary system is a set of complex vectors satisfying the relationships

0 if j+k

(6) aj *ar — 5}-3k — {

1 if j=k

THEOREM 3

Unitary Systems of Column and Row Vectors

A complex square matrix is unitary if and only if its column vectors (and also its
row vectors) form a unitary system.

THEOREM 4

Determinant of a Unitary Matrix

Let A be a unitary matrix. Then its determinant has absolute value one, that is,

|det A| = 1.




EXAMPLE 4

Unitary Matrix Illustrating Theorems 1c and 2—4

Forthe vectorsa' = [2  —iJandb' = [1 +i 4i]Jwegeta =[2 i]'anda'b=2(1 +i) —4= -2+ 2i
and with

0.8i 0.6 ] —0.8 + 3.2;
A= also Aa = ,
0.6 0.8i —2.6 + 0.6

as one can readily verify. This gives (Aa)TAb = —2 + 2;, illustrating Theorem 2. The matrix is unitary. Its
columns form a unitary system,

aia; = —0.8i- 0.8 + 062 =1, aias = —0.8i- 0.6 + 0.6 0.8/ = 0,
asa, = 0.62 + (—0.8)0.8i = 1

and so do its rows. Also, det A = —1. The eigenvalues are 0.6 + 0.8iand —0.6 + 0.8, with eigenvectors | 1 T

and [1  —1]7, respectively. []




