Chapter 7:

Linear Algebra:
Matrices, Vectors, Determinants. Linear

Systems

E. Kreyszig




7.1. Matrices, \VVectors

Linear algebra is a fairly extensive subject that covers vectors and matrices,

determinants, systems of linear equations, vector spaces and linear transformations,

eigenvalue problems, and other topics.

Matrices, which are rectangular arrays of numbers or functions, and vectors are the
main tools of linear algebra. Matrices are important because they let us express large

amounts of data and functions in an organized and concise form.
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We are given a system of linear equations, briefly a linear system, such as

4)(1 + 6X2 + 9)(3 = 6
6)(1 _2){3:20

5x1 — 89 + x3 =10

A=|6 0 —21|. Weform another matrix A=]|6 0O —2 20

This means that we can just use the augmented matrix to do the calculations needed to

solve the system.




General Concepts and Notations

Let us formalize what we just have discussed. We shall denote matrices by capital boldface
letters A, B, C,---, or by writing the general entry in brackets; thus A = [aj,], and so
on. By an m X n matrix (read m by n matrix) we mean a matrix with m rows and n
columns—rows always come first! m X n is called the size of the matrix. Thus an m X n

matrix is of the form

ail aio T din
ds1  d22 T Qan
A = [aj]
| 9m1  dm2 T Amn_

Each entry in (2) has two subscripts. The first is the row number and the second is the
column number. Thus as; is the entry in Row 2 and Column 1.

If m = n, we call A an n X n square matrix. Then its diagonal containing the entries
a1, Ao, ***, dyy, 18 called the main diagonal of A. Thus the main diagonals of the two
square matrices in (1) are aj, ass, azz and e *, 4x, respectively.

Square matrices are particularly important, as we shall see. A matrix of any size m X n
is called a rectangular matrix; this includes square matrices as a special case.



A vector is a matrix with only one row or column. Its entries are called the components
of the vector. We shall denote vectors by lowercase boldface letters a, b,--- or by its
general component in brackets, a = [g;], and so on. Our special vectors in (1) suggest
that a (general) row vector is of the form

a=|a; as - ayl For instance, a=[-2 5 08 0 1].

A column vector is of the form

b

For instance,




DEFINITION

Equality of Matrices

Two matrices A = [aj; ] and B = [bj;] are equal, written A = B, if and only if
they have the same size and the corresponding entries are equal, that is, a1 = b11,
ai1s = bi9, and so on. Matrices that are not equal are called different. Thus, matrices

of different sizes are always different.

EXAMPLE 3

Equality of Matrices

Let

a1 =4, ajp =
A=B if and only if
agy =3, ags =




DEFINITION

Addition of Matrices

The sum of two matrices A = [a;,| and B = [b;;] of the same size is written
A + B and has the entries a;;, + bj;, obtained by adding the corresponding entries
of A and B. Matrices of different sizes cannot be added.

As a special case, the sum a + b of two row vectors or two column vectors, which

must have the same number of components, is obtained by adding the corresponding
components.

EXAMPLE 4

Addition of Matrices and Vectors

—4 6 3 5 —1 0 1 5 3
If and B = , then A+ B = .
o 1 2 3 1 0 3 2 2

A in Example 3 and our present A cannot be added. If a=[5 7 2] and b=[—6 2 0], then
a+b=[-1 9 2]
An application of matrix addition was suggested in Example 2. Many others will follow. |




DEFINITION

Scalar Multiplication (Multiplication by a Number)

The product of any m X n matrix A = [aj, ] and any scalar ¢ (number c) is written
cA and is the m X n matrix cA = [ca;; | obtained by multiplying each entry of A
by c.

Here (—1)A is simply written —A and is called the negative of A. Similarly, (—k)A is
written —kA. Also, A + (—B) is written A — B and is called the difference of A and B
(which must have the same size!).

EXAMPLE 5
Scalar Multiplication

(27 —18] 27 18]
0 0.9 0 —09

190 —45 =90 45 10

If a matrix B shows the distances between some cities in miles, 1.609B gives these distances in kilometers. H

(&)




Rules for Matrix Addition and Scalar Multiplication

From the familiar laws for the addition of humbers we obtain similar laws for the addition
of matrices of the same size mXn, namely,

(a) A+B=B+A Matrix addition is
3) (b)y A+B)+C=A+ @B+ C) | commutative and associative
() A+0=A

(d) A+ (—A) =0.

Here 0 denotes the zero matrix (of size m X n), that is, the m X n matrix with all entries
zero. If m = 1 or n = 1, this i1s a vector, called a zero vector.

(a) c(A+B)=cA + cB
4) (b) (¢c+ kA =cA + kA
(c) c(kA) = (ck)A (written ckA)
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7.2. Matrix Multiplication

DEFINITION

Multiplication of a Matrix by a Matrix

The product C = AB (in this order) of an m X n matrix A = [aj | times an r X p

matrix B = [bj] is defined if and only if r = n and is then the m X p matrix
C = [¢jx ] with entries

n J = 1, ToC m
(1) i = D, aibye = apbir + ajobor + -+ Ainbuk o
1—1 = , T, p.

The condition » = n means that the second factor, B, must have as many rows as the first
factor has columns, namely n. A diagram of sizes that shows when matrix multiplication

is possible is as follows:
A B = C
[m X n][nXp] =[mXp].



The entry cj, in (1) is obtained by multiplying each entry in the jth row of A by the
corresponding entry in the kth column of B and then adding these n products. For instance,
Co1 = as1by1 + assbsy + -+ + as,b,1, and so on. One calls this briefly a multiplication
of rows into columns. For n = 3, this is illustrated by

EXAMPLE 1

Matrix Multiplication

3
4

| —6

5
0
—3

2

Notations in a product AB = C

a1b,

AB = a2b1

azb,

a 1b2
a2b2

agb,

a1b3
a2b3

agbs

22 =2
26 —16
-9 4

43
14
—37

42
6
—28

Herecy1=3:-2+5:-5+(—1)-9 =22, andsoon. Theentryintheboxiscog =4 -3 +0-7+ 2 -1 = 14.
The product BA is not defined.




EXAMPLE 2

Multiplication of a Matrix and a Vector

4 2113 4-3+2-5 22
= = whereas
1 8|5 1-34+8-5 43

EXAMPLE 3

Products of Row and Column Vectors

8

3 6 = [19],

EXAMPLE 4
CAUTION! Matrix Multiplication Is Not Commutative, AB # BA in General

This 1s illustrated by Examples 1 and 2, where one of the two products is not even defined, and by Example 3,
where the two products have different sizes. But it also holds for square matrices. For instance,

1 1] -1 1 0 0 —1 1 1 1 99 99
= but = .
100 100 1 -1 0 O —1(]100 100 —-99 —-99
It is interesting that this also shows that AB = 0 does not necessarily imply BA = 0or A =0or B = 0. We
shall discuss this further in Sec. 7.8, along with reasons when this happens. []




Our examples show that in matrix products the order of factors must always be observed

very carefully. Otherwise matrix multiplication satisfies rules similar to those for numbers,
namely.

(a) (kA)B = k(AB) = A(kB) written kAB or AkB

associative law  (b) ABC) = (AB)C written ABC
(2)
c) (A+B)C=AC + BC
distributive laws
(d) C(A+B)=CA +CB

Since matrix multiplication is a multiplication of rows into columns, we can write the
defining formula (1) more compactly as

(3) Cik = ajbk, ] = 1, ce

= ajlblk + aj2b2k + -+ ajnbnk.




Parallel processing of products on the computer is facilitated by a variant of (3) for
computing C = AB, which is used by standard algorithms (such as in Lapack). In this
method, A is used as given, B is taken in terms of its column vectors, and the product is
computed columnwise; thus,

(5) AB = A[bl bz b/p] — [Abl Ab2 Ab,p]

Columns of B are then assigned to different processors (individually or several to
each processor), which simultaneously compute the columns of the product matrix
Abq, Abs, etc.

EXAMPLE 6 Computing Products Columnwise by (5)

To obtain
4 1 3 0 7 11 4 34
-5 2] {—1 4 6] B {—17 8 —23]
from (5), calculate the columns

[P IO W 4

of AB and then write them as a single matrix, as shown in the first formula on the right. ||

) BN



We obtain the transpose of a matrix by writing its rows as columns (or equivalently its
columns as rows). This also applies to the transpose of vectors. Thus, a row vector becomes
a column vector and vice versa. In addition, for square matrices, we can also “reflect”
the elements along the main diagonal, that is, interchange entries that are symmetrically
positioned with respect to the main diagonal to obtain the transpose.

EXAMPLE 7 Transposition of Matrices and Vectors

SR
5 -8 1
If A= then A =| -8 0
4 0 0
5 4] [3 o 7" [3 8 1]
5 —8 1|7
=|-8 0/, 8 —1 5! =|lo0 -1 -9/,
4 0 0
1 0] |1 -9 4] K 5 4]
6 | 6|
6 2 3]"=|2]- Conversely, 21 =[6 2 3] []
3] 3 .




DEFINITION

Transposition of Matrices and Vectors

The transpose of an m X n matrix A = [aj| is the n X m matrix A" (read A
transpose) that has the first row of A as its first column, the second row of A as its
second column, and so on. Thus the transpose of A in (2) is A' = |ay;], written out

ajlx dai

dia2  d2y

AT — [akj] -

Aip  d2n " Amn

As a special case, transposition converts row vectors to column vectors and conversely.

Transposition gives us a choice in that we can work either with the matrix or its
transpose, whichever is more convenient.




Rules for transposition are

() AH" = A
b A+B'=A"+BT
(c) (cA)T = cAT

(d) (AB)" = B'A".

CAUTION! Note that in (10d) the transposed matrices are in reversed order. We leave
the proofs as an exercise in Probs. 9 and 10.




Special Matrices

Symmetric and Skew-Symmetric Matrices:

Symmetric matrices are square matrices whose transpose equals the matrix itself.
Skew-symmetric matrices are square matrices whose transpose equals minus the

matrix.
T _ _ T _ _ _
11) A" =A (thusag =ajp), A = —A (thus ay; = —aj, hence a; = 0).
Symmetric Matrix Skew-Symmetric Matrix

EXAMPLE 8 Symmetric and Skew-Symmetric Matrices

[ 20 120 200 0 1 -3
A =120 10 150 is symmetric, and B=|-1 0 -2 is skew-symmetric.

| 200 150 30 3 2 0

18




Triangular Matrices:

 Upper triangular matrices are square matrices that can have nonzero
entries only on and above the main diagonal, whereas any entry below the diagonal
must be zero.

Lower triangular matrices can have nonzero entries only on and below the
main diagonal.

Any entry on the main diagonal of a triangular matrix may be zero or not.

EXAMPLE 9 Upper and Lower Triangular Matrices

3
9
1

1

Upper triangular Lower triangular




Diagonal Matrices:

These are square matrices that can have nonzero entries only on the main diagonal. Any
entry above or below the main diagonal must be zero.

If all the diagonal entries of a diagonal matrix S are equal, say, ¢, we call S a scalar
matrix because multiplication of any square matrix A of the same size by S has the same
effect as the multiplication by a scalar, that is,

(12) AS = SA = cA.

In particular, a scalar matrix, whose entries on the main diagonal are all 1, is called a unit
matrix (or identity matrix) and is denoted by I, or simply by I. For I, formula (12) becomes

(13) AI = TA = A.

EXAMPLE 10 Diagonal Matrix D. Scalar Matrix S. Unit Matrix |




7.3. Linear Systems of Equations

Linear System, Coefficient Matrix, Augmented Matrix

A linear system of m equations in n unknowns xq,---, x,, 1s a set of equations of
the form

a11x1 + o+ A1nXn — bl
as1xX1 + - + AonXn — bz

1)
Am1X1 T T @it = i

The system is called /inear because each variable x; appears in the first power only, just
as in the equation of a straight line. a1, * * -, a;,, are given numbers, called the coefficients
of the system. by, -+, by, on the right are also given numbers. If all the b; are zero, then
(1) is called a homogeneous system. If at least one b; is not zero, then (1) is called a
nonhomogeneous system.
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A solution of (1) is a set of numbers xq,- -, x,, that satisfies all the m equations.
A solution vector of (1) is a vector X whose components form a solution of (1). If the
system (1) is homogeneous, it always has at least the trivial solution x; = 0,---, x,, = 0.

Matrix Form of the Linear System (1). From the definition of matrix multiplication
we see that the m equations of (1) may be written as a single vector equation

2) Ax=b

where the coefficient matrix A = [aj;] is the m X n matrix

X1

are column vectors. We assume that the coefficients a;;, are not all zero, so that A is
not a zero matrix. Note that x has n components, whereas b has m components.




| dm1 Y Amn bm_
is called the augmented matrix of the system (1). The dashed vertical line could be
omitted, as we shall do later. It is merely a reminder that the last column of A did not
come from matrix A but came from vector b. Thus, we augmented the matrix A.

Note that the augmented matrix A determines the syst;’m (1) completely because it
contains all the given numbers appearing in (1).




EXAMPLE 1 Geometric Interpretation. Existence and Uniqueness of Solutions

If m = n = 2, we have two equations in two unknowns x1, xo
ap1x1 + digxe = by
agix1 + agsxs = bs.

If we interpret x1, x5 as coordinates in the xxo-plane, then each of the two equations represents a straight line,
and (x1, x2) i1s a solution if and only if the point P with coordinates x1, x5 lies on both lines. Hence there are
three possible cases (see Fig. 158 on next page):

[ (a) Precisely one solution if the lines intersect ]




[(b) Infinitely many solutions if the lines coincide]

[ (¢) No solution if the lines are parallel




Three equations in three unknowns interpreted as planes in space

Unique solution

Infinitely
many solutions

No solution




Gauss Elimination and Back Substitution

The Gauss elimination method can be motivated as follows. Consider a linear system that
is in triangular form (in full, upper triangular form) such as

2)61 ‘|‘SX2 - 2

13xy = —26

(Triangular means that all the nonzero entries of the corresponding coefficient matrix lie
above the diagonal and form an upside-down 90° triangle.) Then we can solve the system
by back substitution, that is, we solve the last equation for the variable, xg = —=26/13 = =2,
and then work backward, substituting X9 = =2 into the first equation and solving it for xq,
obtaining xge= 5(2 — 5x3) = 2(2 — 5 - (=2)) = 6. This gives us the idea of first reducing
a general system to triangular form. For instance, let the given system be

2)61 + S.X,'z = 2 2 5 2
Its augmented matrix is :
—4xq1 + 3x9 = —30. —1 3 —30



2

Its augmented matrix is
= —30.

We leave the first equation as it i1s. We eliminate xq from the second equation, to get a

triangular system. For this we add twice the first equation to the second, and we do the same

operation on the rows of the augmented matrix. This gives —4x; + 4x1 + 3x9 + 10x9 =
—30 + 2 - 2, that is,

2X1 + 5.X2 2 2 5 2
13x9 = —26 Row2 +2Rowl |0 13

—26

where Row 2 + 2 Row | means “Add twice Row 1 to Row 27 in the original matrix. This

is the Gauss elimination (for 2 equations in 2 unknowns) giving the triangular form, from
which back substitution now yields xo = —2 and xq = 6, as before.

EXAMPLE 2 Gauss Elimination.

X1 — x2+ )C3=0

—X1 + X9 — X3 — 0
Solve the linear system

10x9 + 25x3 = 90

20)6'1 + 10.762 = 80.




Solution by Gauss Elimination.

Augmented Matrix A Equations

_@—1 1 —>— X9 + Xxg =

—1 1 —1 _X1+ X9 — X3

Eliminate 0O 10 25

I
I
I
I
: Eliminate 10x9 + 25x3 =
I

20| 10 0

20x4 + 10x5

Step 1. Elimination of x4
Call the first row of A the pivot row and the first equation the pivot equation. Call the coefficient 1 of its
x1-term the pivot in this step. Use this equation to eliminate x; (get rid of x) in the other equations. For this, do:

This corresponds to row operations on the augmented matrix as indicated in BLUE behind the new matrix in
(3). So the operations are performed on the preceding matrix. The result is

1 -1 1 0 X1 — Xo t = 0
0 0 0 Row 2 + Row 1 0 0

10 25 90 10x9 + 25x3 = 90

Row 4 — 20 Row 1 30x9 — 20x3 = 80.




Step 2. Elimination of x5

The first equation remains as it is. We want the new second equation to serve as the next pivot equation. But
since it has no x,-term (in fact, it is 0 = 0), we must first change the order of the equations and the corresponding
rows of the new matrix. We put 0 = 0 at the end and move the third equation and the fourth equation one place
up. This is called partial pivoting (as opposed to the rarely used total pivoting, in which the order of the
unknowns is also changed). It gives

1 —1 1 X1 — X9 + X3

Pivot 10 =10 (10) 25 Pivot 10 - 25x5 =

Eliminate 30 — [0 |30 —20 Eliminate 30x5 = |30xg — 20x3 =

0 0 0

To eliminate x5, do:

Add =3 times the pivot equation to the third equation.
The result 1s

—1 X1 — X9 + X3 =
10 10x9 + 25x3 =
Row 3 — 3 Row 2 — 95x3

0




X1 — X9t Xx3=
10x9 + 25x3 =

— 95x3

0

Back Substitution. Determination of x5, x2, x1 (in this order)

Working backward from the last to the first equation of this “triangular” system (4), we can now readily find
x3, then xo, and then xq:

— 95x3 = —190 X3
10xs + 25x3 = 90 X9 = 15(90 — 25x3)
X1— Xo+ x3= 0 X1 = X9 — X3 =

where A stands for “amperes.” This is the answer to our problem. The solution is unique.

Unique solution




Elementary Row Operations. Row-Equivalent Systems

Elementary Row Operations for Matrices:

Interchange of two rows
Addition of a constant multiple of one row to another row

Multiplication of a row by a nonzero constant c¢

CAUTION! These operations are for rows, not for columns! They correspond to the
following

Elementary Operations for Equations:

Interchange of two equations
Addition of a constant multiple of one equation to another equation

Multiplication of an equation by a nonzero constant c

We now call a linear system S; row-equivalent to a linear system So if S7; can be
obtained from S5 by (finitely many!) row operations. This justifies Gauss elimination and
establishes the following result.



THEOREM 1

Row-Equivalent Systems

Row-equivalent linear systems have the same set of solutions.

Because of this theorem, systems having the same solution sets are often called
equivalent systems. But note well that we are dealing with row operations. No column
operations on the augmented matrix are permitted in this context because they would

generally alter the solution set.
A linear system (1) is called

+ Overdetermined if it has more equations than unknowns, as in Example 2,
« Determined if m = n, as in Example 1,

» Underdetermined if it has fewer equations than unknowns.

Furthermore, a system (1) is called

« Consistent if it has at least one solution (thus, one solution or infinitely many
solutions),

* Inconsistent if it has no solutions at all.




Gauss Elimination:

The Three Possible Cases of Systems

EXAMPLE 3 Gauss Elimination if Infinitely Many Solutions Exist

Solve the following linear system of three equations in four unknowns whose augmented matrix is

8.0 | + 2.0xg + 2.0x5 — 5.0x4 = 8.0

(30 20 20 =50 |
|

(5) 06 15 15 =54 1| 27| Thus, [0.6xq|+ 1.5xs + 1.5x5 — 5.404 = 2.7
|
|

1.2 =03 -0.3 2.4 2.1 1.2x1] — 03x9 — 0.3x3 + 2.4x4 = 2.1.

Step 1. Elimination of x1 from the second and third equations by adding

—0.6/3.0 = —0.2 times the first equation to the second equation,

—1.2/3.0 = —0.4 times the first equation to the third equation.

This gives the following, in which the pivot of the next step is circled.

30 20 20 —-501 80] 3.0x; + 2.0xs + 2.0x3 — 5.0x, = 8.0

|
|
6) |0 1.1 1.1 —44 1 11| Row2 — 0.2 Row 1 + 1.lxg —44x, = 1.1
| s — s
0 —1.1  —1.1 44 1 —1.1| Row 3 — 0.4 Row 1 —1.1xg |[— 1.1x3 + 4.4x4 = —1.1.




Step 2. Elimination of x5 from the third equation of (6) by adding

1.1/1.1 = 1 times the second equation to the third equation.

This gives

(3.0 2.0 2.0
0 1.1 1.1

0 0 0

3.0x1 + 2.0xg + 2.0x3 — 5.0x4 =

1.1X2 + 11X3 - 4.4X4 =

Row 3 + Row 2 0

Back Substitution. From the second equation, xg = 1 — x3 + 4x4. From this and the first equation,

X1 = 2 — x4. Since x3 and x4 remain arbitrary, we have infinitely many solutions. If we choose a value of xg3
and a value of x4, then the corresponding values of x; and xg are uniquely determined.

On Notation. If unknowns remain arbitrary, it is also customary to denote them by other letters 74, o, - .
In this example we may thus write x;1 =2 — x4 = 2 —to, X9 = 1 —xg3 + 4xqg =1 — 11 + 419, x3 = 11 (first
arbitrary unknown), x4 = f5 (second arbitrary unknown). ||

Infinitely many solutions




EXAMPLE 4 Gauss Elimination if no Solution Exists

What will happen if we apply the Gauss elimination to a linear system that has no solution? The answer is that
in this case the method will show this fact by producing a contradiction. For instance, consider

The false statement 0 = 12 shows that the system has no solution.

3
-2
12

3
0

Row 2 — 2 Row 1

Row 3 — 2 Row 1

Row 3 — 6 Row 2

@+2x2+ x3 =23

1+ x2+ X3—0

6X1 + ZX2 + 4.X3 = 6.

3x1 + 2x9 + x3

+ 5¥3

— 2X2

No solution




Row Echelon Form and Information From It

The original system of m equations in n unknowns has augmented matrix [Alb]. This
is to be row reduced to matrix [ RIf ]. The two systems Ax = b and Rx = f are equivalent:
if either one has a solution, so does the other, and the solutions are identical.

At the end of the Gauss elimination (before the back substitution), the row echelon form
of the augmented matrix will be

_ | -
rln : fl
"on | />
o | :
. |
9) Frn | J;
: ‘r+1
|
| .
i S

Here, r = m, r;; # 0, and all entries in the blue triangle and blue rectangle are zero.

The number of nonzero rows, r, in the row-reduced coefficient matrix R is called the
rank of R and also the rank of A. Here is the method for determining whether Ax = b
has solutions and what they are:



[(a) No solution.] If r 1s less than m (meaning that R actually has at least one row of
all Os) and at least one of the numbers f, 1, fr+9, " "+, [, 1S NOt zero, then the system

Rx = f is inconsistent: No solution is possible. Therefore the system Ax = b is
inconsistent as well. See Example 4, where r = 2 <m =3 and f,,..1 = f3 = 12.

If the system is consistent (either r = m, or r < m and all the numbers f,-, 1, fr19, ", fmn
are zero), then there are solutions.

[(b) Unique solution.] If the system is consistent and r = n, there is exactly one
solution, which can be found by back substitution. See Example 2, where r = n = 3
and m = 4.

ﬁc) Infinitely many solutions.] To obtain any of these solutions, choose values of
Xyr+1,° ", Xy, arbitrarily. Then solve the rth equation for x, (in terms of those
arbitrary values), then the (r — 1)st equation for x,_q, and so on up the line. See
Example 3.

38



Linear Independence and Dependence of Vectors

7.4. Linear Independence. Rank of a Matrix. Vector Space

Given any set of m vectors acqy, * * *, ¢y (With the same number of components), a linear
combination of these vectors is an expression of the form

C1acy T Coace) T+ T Cp@am)
where ¢y, ¢, -, ¢, are any scalars. Now consider the equation

(1) C14(1) + C24(2) S CmAm) = 0.

Clearly, this vector equation (1) holds if we choose all ¢;’s zero, because then it becomes
0 = 0. If this is the only m-tuple of scalars for which (1) holds, then our vectors
a1y, ", Ay are said to form a linearly independent set or, more briefly, we call them
linearly independent. Otherwise, if (1) also holds with scalars not all zero, we call these
vectors linearly dependent.



vectors linearly dependent. This means that we can express at least one of the vectors
as a linear combination of the other vectors. For instance, if (1) holds with, say,
c1 # 0, we can solve (1) for a¢qy:

aqy = koapy + -+ kpam where k; = —cj/cl.

(Some k;’s may be zero. Or even all of them, namely, if ag, = 0.)

EXAMPLE 1 Linear Independence and Dependence

The three vectors

aan) — [ 3 0 2 2]
a9 = [_6 42 24 54]
a3y = [ 21 —21 0 _15]

are linearly dependent because
6aq), — 32 — ag) = 0
A T 24 T AR) :

Although this is easily checked by vector arithmetic (do it!), it is not so easy to discover.




Rank of a Matrix

DEFINITION

The rank of a matrix A is the maximum number of linearly independent row vectors
of A. It is denoted by rank A.

EXAMPLE 2 Rank

The matrix

3 0 2 2
—6 42 24 54

21 =21 0 —15

has rank 2, because Example 1 shows that the first two row vectors are linearly independent, whereas all three
row vectors are linearly dependent.
Note further that rank A = 0 if and only if A = 0. This follows directly from the definition. ||

We call a matrix A; row-equivalent to a matrix Ao if A; can be obtained from Aoy by
(finitely many!) elementary row operations.




Now the maximum number of linearly independent row vectors of a matrix does not
change if we change the order of rows or multiply a row by a nonzero c or take a linear
combination by adding a multiple of a row to another row. This shows that rank is
invariant under elementary row operations:

THEOREM 1

Row-Equivalent Matrices

Row-equivalent matrices have the same rank.

Hence we can determine the rank of a matrix by reducing the matrix to row-echelon
form, as was done in Sec. 7.3. Once the matrix 1s in row-echelon form, we count the
number of nonzero rows, which is precisely the rank of the matrix.




EXAMPLE 3 Determination of Rank

For the matrix in Example 2 we obtain successively

3 0 2
—6 42 24
21 21 0

Row 2 + 2 Row 1

Row 3 — 7Row 1

Row 3 + %Row 2.

The last matrix is in row-echelon form and has two nonzero rows. Hence rank A = 2, as before. N




THEOREM 2

Linear Independence and Dependence of Vectors

Consider p vectors that each have n components. Then these vectors are linearly
independent if the matrix formed, with these vectors as row vectors, has rank p.
However, these vectors are linearly dependent if that matrix has rank less than p.

THEOREM 3

Rank in Terms of Column Vectors

The rank r of a matrix A equals the maximum number of linearly independent

column vectors of A.
Hence A and its transpose AT have the same rank.

Proof in the book

THEOREM 4

Linear Dependence of Vectors

Consider p vectors each having n components. If n < p, then these vectors are

linearly dependent.

Proof in the book




Vector Space

Consider a nonempty set V of vectors where each vector has the same number of
components. If, for any two vectors a and b in V, we have that all their linear combinations
aa + b («, B any real numbers) are also elements of V, and if, furthermore, a and b satisfy
the laws (3a), (3¢), (3d), and (4) in Sec. 7.1, as well as any vectors a, b, ¢ in V satisfy (3b)
then V is a vector space. Note that here we wrote laws (3) and (4) of Sec. 7.1 in lowercase
letters a, b, ¢, which i1s our notation for vectors.

The maximum number of linearly independent vectors in V is called the dimension of
V and i1s denoted by dim V. Here we assume the dimension to be finite;

A linearly independent set in V consisting of a maximum possible number of vectors
in V is called a basis for V. In other words, any largest possible set of independent vectors
in V forms basis for V. That means, if we add one or more vector to that set, the set will
be linearly dependent. Thus, the number of vectors of a basis for V equals dim V. {

The set of all linear combinations of given vectors a(y), - - -, a¢py With the same number
of components is called the span of these vectors. Obviously, a span is a vector space. If
in addition, the given vectors a(y), - - *, a¢p) are linearly independent, then they form a basis
for that vector space.
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This then leads to another equivalent definition of basis. A set of vectors is a basis for |
a vector space V if (1) the vectors in the set are linearly independent, and if (2) any vector |
in V can be expressed as a linear combination of the vectors in the set. If (2) holds, we |
also say that the set of vectors spans the vector space V.

EXAMPLE 5 Vector Space, Dimension, Basis

The span of the three vectors in Example 1 is a vector space of dimension 2. A basis of this vector space consists
of any two of those three vectors, for instance, a(y), a¢2), Or a(1), a(3), etc. []

THEOREM 5

Vector Space R"

The vector space R"™ consisting of all vectors with n components (n real numbers)
has dimension n.

THEOREM 6

Row Space and Column Space

The row space and the column space of a matrix A have the same dimension, equal
to rank A.




Finally, for a given matrix A the solution set of the homogeneous system Ax = 0 is a
vector space, called the null space of A, and its dimension is called the nullity of A. In
the next section we motivate and prove the basic relation

(6) rank A + nullity A = Number of columns of A.

7.5. Solutions of Linear Systems:

Existence, Unigueness

Rank, as just defined, gives complete information about existence, uniqueness, and
general structure of the solution set of linear systems as follows.

A linear system of equations in n unknowns has a

« Unique solution if the coefficient matrix and the augmented matrix have the same
rank n

 Infinitely many solutions if that common rank is less than n
* No solution if those two matrices have different rank .
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THEOREM 1

Fundamental Theorem for Linear Systems

(a) Existence. A linear system of m equations in n unknowns xy,-- -, x,,

ai11X1 + a19X9 + - + AinXn — bl

as1xX1 + asoX 9o + - + QonXn — bz

is consistent, that is, has solutions, if and only if the coefficient matrix A and the
augmented matrix A have the same rank. Here,

ail ain

aiy ce bl




(b) Uniqueness. The system (1) has precisely one solution if and only if this
common rank r of A and A equals n.

(¢) Infinitely many solutions. If this common rank r is less than n, the system
(1) has infinitely many solutions. All of these solutions are obtained by determining
r suitable unknowns (whose submatrix of coefficients must have rank r) in terms of
the remaining n — r unknowns, to which arbitrary values can be assigned. (See
Example 3 in Sec. 7.3.)

(d) Gauss elimination (Sec. 7.3). If solutions exist, they can all be obtained by
the Gauss elimination. (This method will automatically reveal whether or not
solutions exist; see Sec. 7.3.)

Proof in the book

~In Example 2 there is a unique solution since rank
A = rank A = n = 3 (as can be seen from the last matrix in the example). In Example 3
we have rank A =rank A =2 <n =4 and can choose x5 and x4 arbitrarily. In
Example 4 there is no solution because rank A = 2 << rank A =3.
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Homogeneous Linear System

Recall from Sec. 7.3 that a linear system (1) is called homogeneous if all the b;’s are
zero, and nonhomogeneous if one or several b;’s are not zero.

THEOREM 2

Homogeneous Linear System

A homogeneous linear system

ai11X1 + a12X9 ° s 95 NnXn — 0
aa1X1 + do9X9 + - + aAonXn — 0
(4)
Ay1X1 T yoxe + -+ + appx, = 0
always has the trivial solution x; = 0, -- -, x,, = 0. Nontrivial solutions exist if and

only if rank A < n. Ifrank A = r < n, these solutions, together with x = 0, form a
vector space (see Sec. 7.4) of dimension n — r called the solution space of (4). 0




In particular, if X1y and X9y are solution vectors of (4), then X = c1X(1) + coX(9)
with any scalars ¢ and cs is a solution vector of (4). (This does not hold for
nonhomogeneous systems. Also, the term solution space is used for homogeneous
systems only.)

Proof in the book

The solution space of (4) is also called the null space of A because Ax = () for every x in
the solution space of (4). Its dimension is called the nullity of A. Hence Theorem 2 states that

(5) rank A + nullity A = n

where 7 is the number of unknowns (number of columns of A).
Furthermore, by the definition of rank we have rank A = m in (4). Hence if m < n,
then rank A < n. By Theorem 2 this gives the practically important

THEOREM 3

Homogeneous Linear System with Fewer Equations Than Unknowns

A homogeneous linear system with fewer equations than unknowns always has
nontrivial solutions.

'hmmmmmmmmmmmm'



Nonhomogeneous Linear System

THEOREM 4

Nonhomogeneous Linear System

If a nonhomogeneous linear system (1) is consistent, then all of its solutions are
obtained as

(6) X = Xo T+ Xj,

where Xg is any (fixed) solution of (1) and Xy, runs through all the solutions of the
corresponding homogeneous system (4).

PROOF

The difference x5, = x — X¢ of any two solutions of (1) is a solution of (4) because
Ax;, = A(X — xg) = AX — Axg = b — b = 0. Since x is any solution of (1), we get all
the solutions of (1) if in (6) we take any solution x, of (1) and let x;, vary throughout the
solution space of (4). ||
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7.6. For Reference:

Second- and Third-Order Determinants

A determinant of second order is denoted and defined by

(1) D = detA = = dj11d22 — A12491.

dg1 dz2

So here we have bars (whereas a matrix has brackets).

Cramer’s rule for solving linear systems of two equations in two unknowns

(a) apyx1 + ayexs = by

(2)
(b) ag1x1 + agexs = bo
is by as a1 b
3 by age|  brase — ajsbs ag1  ba|  ay1bs — biasy
D D D D

with D as in (1), provided D + (). .



EXAMPLE 1 Cramer’s Rule for Two Equations

4x1 + 3X2 =12
If then X1 =
2x1 + 5x9 = —8

Third-Order Determinants

A determinant of third order can be defined by

ajl a2 a13
dg2 d23 di2 di3 di2 d13
as1 agz ds3z| = di — as + asy

dzz dz3 dzz dszs dgz2  d23

I

(4*) D = ajjageass — ajiagsass + asiaisdss — dgidisdss + dsiaisdss — ds1d13a29.

daz1 dzz d3s3




Cramer’s Rule for Linear Systems of Three Equations

ajixi1 + ajexe + aizxs = by
ag1X1 + agoxs + assxs = by

as1x1 + assXxe + assxs = bs

(6)

with the determinant D of the system given by (4) and
by a2 a3 ajr b1 ais ajl  aig

bz d2g 423 Do = |as; aa3 da1 422

bs azs ass asy ass asy dase

Note that Dq, Do, D3 are obtained by replacing Columns 1, 2, 3, respectively, by the
column of the right sides of (5).




7.7. Determinants. Cramer’s Rule

A determinant of order 7 is a scalar associated with an n X n (hence square!) matrix
A = [aji], and is denoted by

ap1  dn2
For n = 1, this determinant is defined by

(2) D = aii.




For n = 2 by

(3a) D = aj;Cj1 + aj2Cja + -+ + a;,Cjy,

or

(3b) D = a1;.Ci + asiCor + -+ + 4y Cpie (k= 1,2,---,0rn).

Here,

Cire = (=1)" "My
and My is a determinant of order n — 1, namely, the determinant of the submatrix of A
obtained from A by omitting the row and column of the entry a;;, that is, the jth row and
the kth column.

My is called the minor of a;i, in D, and Cji, the cofactor of a;;, in D.
For later use we note that (3) may also be written in terms of minors

n
(4a) D = > (=1 FayMy,
k=1

n
(4b) D = D (=1 Fau My,
j=1




EXAMPLE 1 Minors and Cofactors of a Third-Order Determinant

In (4) of the previous section the minors and cofactors of the entries in the first column can be seen directly.
For the entries in the second row the minors are

a2 13 ailr di13 ailr  dig
Mgy = , Moo = , Myz =

azz dzs azy dss azy dzz

and the cofactors are Coy = —Moq1, Cog = + Moo, and Cog = —Mo3. Similarly for the third row—write these
down yourself. And verify that the signs in C;;, form a checkerboard pattern

EXAMPLE 2 Expansions of a Third-Order Determinant

=1(12—-0) —34 +4) + 00 + 6) = —12.




This is the expansion by the first row. The expansion by the third column is

6 3 13
— 4 +2 =0—-124+0=—12
0 1 0 2 6

Verify that the other four expansions also give the value —12.

EXAMPLE 3 Determinant of a Triangular Matrix

0
0

Inspired by this, can you formulate a little theorem on determinants of triangular matrices? Of diagonal
matrices? H




General Properties of Determinants

THEOREM 1

Behavior of an nth-Order Determinant under Elementary Row Operations

(a) Interchange of two rows multiplies the value of the determinant by —1.

(b) Addition of a multiple of a row to another row does not alter the value of the

determinant.

(¢) Multiplication of a row by a nonzero constant ¢ multiplies the value of the
determinant by c. (This holds also when ¢ = 0, but no longer gives an elementary

row operation.)

Proof in the book

CAUTION! det (cA) = ¢"™ det A (not c det A). Explain why.
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EXAMPLE 4

Evaluation of Determinants by Reduction to Triangular Form

Row 2 — 2 Row

Row4 + 1.5 Ron

2 —4
0 9

0 24 38
0 -0 4725

=2-5-24-4725 = 1134

—4
9
24 38

—11.4 292

Row 4 + 4.75 Row 3

Row 3 — 0.4 Row 2
Row 4 — 1.6 Row 2




THEOREM 2

Further Properties of nth-Order Determinants Proof in the book

(a)—(c) in Theorem 1 hold also for columns.
(d) Transposition leaves the value of a determinant unaltered.
(e) A zero row or column renders the value of a determinant zero.

(f) Proportional rows or columns render the value of a determinant zero. In
particular, a determinant with two identical rows or columns has the value zero.

THEOREM 3

Rank in Terms of Determinants

Consider an m X n matrix A = [a;i|:

(1) A has rank r = 1 if and only if A has an r X r submatrix with a nonzero
determinant.

(2) The determinant of any square submatrix with more than r rows, contained
in A (if such a matrix exists!) has a value equal to zero.

Furthermore, if m = n, we have:

(3) An n X n square matrix A has rank n if and only if

det A # 0. Proof in the book




THEOREM 4

Cramer’s Theorem (Solution of Linear Systems by Determinants)

(@) If a linear system of n equations in the same number of unknowns x1, - -

aj1xy + ajpxg + o+ oaypx, = by

ag1x1 + asgexs + -+ + asgyx, = by

has a nonzero coefficient determinant D = det A, the system has precisely one
solution. This solution is given by the formulas

Dy Do Dy,

7 = —
(7) X1 , X2 =

D (Cramer’s rule)

where Dy, is the determinant obtained from D by replacing in D the kth column by
the column with the entries by, - - -, b,,.

(b) Hence if the system (6) is homogeneous and D + 0, it has only the trivial
solution x1 = 0,x9 = 0,--+,x,, = 0. If D = 0, the homogeneous system also has

nontrivial solutions. Proof in the book




7.8. Inverse of a Matrix.

Gauss—Jordan Elimination

In this section we consider square matrices exclusively.

The inverse of an n X n matrix A = [aj] is denoted by A~ and is an n X n matrix
such that

(1) AAT =AT'A =1

where I is the n X n unit matrix (see Sec. 7.2).

If A has an inverse, then A is called a nonsingular matrix. If A has no inverse, then
A is called a singular matrix.

If A has an inverse, the inverse is unique.

Indeed, if both B and C are inverses of A, then AB = I and CA = 1, so that we obtain
the uniqueness from

B =1B = (CA)B = C(AB) = CI = C.

We prove next that A has an inverse (is nonsingular) if and only if it has maximum
possible rank n.



THEOREM 1

Existence of the Inverse

The inverse A~* of an n X n matrix A exists if and only if rank A = n, thus (by
Theorem 3, Sec. 7.7) if and only if det A # 0. Hence A is nonsingular ifrank A = n,

and is singular if rank A < n. Proof in the book

Determination of the Inverse
by the Gauss—Jordan Method

Using A, we form n linear systems
AXy =eqy, ., AXgy = ey

where the vectors ey, -, €, are the columns of the n X n unit matrix I; thus,
en=1[1 0 - 0],e9=[0 1 0 --- 0], etc. These are n vector equations
in the unknown vectors Xy, " " -, X¢)- We combine them into a single matrix equation

AX = I, with the unknown matrix X having the columns X, * - -, X(5,). Correspondingly,
we combine the n augmented matrices [A eqy], -+, [A eqy] into one wide n X 2n
“augmented matrix” A = [A I]. Now multiplication of AX = I by A~ from the left
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gives X = A”'T = A™'. Hence, to solve AX =1 for X, we can apply the Gauss
elimination to A = [A  I]. This gives a matrix of the form [U H] with upper triangular
U because the Gauss elimination triangularizes systems. The Gauss—Jordan method
reduces U by further elementary row operations to diagonal form, in fact to the unit matrix
I. This is done by eliminating the entries of U above the main diagonal and making the
diagonal entries all 1 by multiplication (see Example 1). Of course, the method operates
on the entire matrix [U H], transforming H into some matrix K, hence the entire [U H |
to [I K]. This is the “augmented matrix” of IX = K. Now IX = X = A%, as shown
before. By comparison, K = A~ so that we can read A™* directly from [I K].

EXAMPLE 1 Finding the Inverse of a Matrix by Gauss—Jordan Elimination

Determine the inverse A~ 1 of _ _

—1 1 2
A=| 3 -1 1
-1 3 4

Solution. We apply the Gauss elimination (Sec. 7.3) to the following n X 2n = 3 X 6 matrix, where BLUE

always refers to the previous matrix.
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This is [U H] as produced by the Gauss elimination. Now follow the additional Gauss—Jordan steps, reducing

—4

0
0

1
-1

1

Row 2 + 3 Row 1

Row 3 — Row 1

Row 3 — Row 2

U to I, that is, to diagonal form with entries 1 on the main diagonal.

1

0
0

-1
1

=2
3.5
1

-1

0

0 —Row 1
0 0.5 Row 2

—02| —02Row3

—04

Row 1l + 2Row 3
0.7
—-0.2

03] Rowl + Row?2

0.7

—0.2

Row 2 —3.5Row 3



The last three columns constitute A~ . Check:

(07 02 03]
~13 —02 07

0.8 02 —02]

Hence AA™! = I Similarly, A™'A = L

Formulas for Inverses

THEOREM 2

Inverse of a Matrix by Determinants

The inverse of a nonsingular n X n matrix A = [aji ] is given by




where Cj;, is the cofactor of aji, in det A (see Sec. 7.7). (CAUTION! Note well that
in A™', the cofactor Cj;, occupies the same place as aj; (not ;) does in A.)
In particular, the inverse of

(4%)

aso —012]

—d2q ai

Proof in the book

EXAMPLE 2 Inverse of a2 X 2 Matrix by Determinants

3 1 1 4 -1 04 —0.1
A = AT = — =
2 4 10| -2 3 —0.2 0.3




EXAMPLE 3 Further lllustration of Theorem 2

Using (4), find the inverse of

Solution. We obtain detA = —1(—=7) — 1 - 13 + 2 - 8 = 10, and in (4),

1 2

Cn1 = =2, C31 = ‘
3 4




Diagonal matrices A = [a;x], aj. = 0 when j # k, have an inverse if and only if all
a;; # 0. Then A lis diagonal, too, with entries 1/aqq, -+, 1/dpy.

EXAMPLE 4 Inverse of a Diagonal Matrix

05 0 0 —2

0 4 0o C—py A'=| o0

0 0 1 0 1

Products can be inverted by taking the inverse of each factor and multiplying these
inverses in reverse order,

(7) (AC)"! = Cc AL

Hence for more than two factors,
(8) (AC---PQ)" 1 =Q~p~t...c71A°L.
We also note that the inverse of the inverse is the given matrix, as you may prove,

9) A™H™1 = A




Unusual Properties of Matrix Multiplication.
Cancellation Laws

[1] Matrix multiplication is not commutative, that is, in general we have

AB # BA.

[2] AB = 0 does not generally imply A = 0 or B = 0 (or BA = 0); for example,

R

[3] AC = AD does not generally imply C = D (even when A # 0).

THEOREM 3

Cancellation Laws
Let A, B, C be n X n matrices. Then:
(@) Ifrank A = n and AB = AC, then B = C.

(b) If rank A = n, then AB = 0 implies B = 0. Hence if AB = 0, but A # 0
as well as B # 0, then rank A < n and rank B < n.

(¢) If A is singular, so are BA and AB.

Proof in the book




Determinants of Matrix Products

The determinant of a matrix product AB or BA can be written as the product of the

determinants of the factors, and it is interesting that[det AB = det Bﬁq, although [AB + BA}

in general. The corresponding formula (10) is needed occasionally and can be obtained
by Gauss—Jordan elimination (see Example 1) and from the theorem just proved.

THEOREM 4

Determinant of a Product of Matrices

For any n X n matrices A and B,

(10) det (AB) = det (BA) = det A det B.

Proof in the book
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7.9. Vector Spaces, Inner Product

Spaces, Linear Transformations

We can generalize this idea by taking all vectors with n real numbers as components
and obtain the very important real n-dimensional vector space R". The vectors are known
as “real vectors.” Thus, each vector in R™ is an ordered n-tuple of real numbers.

Now we can consider special values for n. For n = 2, we obtain R?, the vector space
of all ordered pairs, which correspond to the vectors in the plane. For n = 3, we obtain
R3, the vector space of all ordered triples, which are the vectors in 3-space. These vectors
have wide applications in mechanics, geometry, and calculus and are basic to the engineer
and physicist.

DEFINITION

Real Vector Space

A nonempty set V of elements a, b, - - - is called a real vector space (or real linear
space), and these elements are called vectors (regardless of their nature, which will
come out from the context or will be left arbitrary) if, in V, there are defined two
algebraic operations (called vector addition and scalar multiplication) as follows.




I. Vector addition associates with every pair of vectors a and b of V a unique
vector of V, called the sum of a and b and denoted by a + b, such that the following
axioms are satisfied.

I.1 Commutativity. For any two vectors a and b of V,
a+b=>b+a
1.2 Associativity. For any three vectors a, b, ¢ of V,
(@a+b)+tc=a+ (b + ¢ (written a + b + ¢).

I.3 There is a unique vector in V, called the zero vector and denoted by 0, such
that for every a in V,

a+ 0=a.

I.4 For every a in V there is a unique vector in V that is denoted by —a and is
such that

a-+ (—a)=0.




II. Scalar multiplication. The real numbers are called scalars. Scalar
multiplication associates with every a in V and every scalar ¢ a unique vector of V,
called the product of ¢ and a and denoted by ca (or ac) such that the following
axioms are satisfied.

ILI.1 Distributivity. For every scalar ¢ and vectors a and b in V,

c@+b)=ca+ chb.

I1.2 Distributivity. For all scalars ¢ and k and every a in V,

(c + k)a = ca + ka.
I1.3 Associativity. For all scalars ¢ and k and every a in V,

c(ka) = (ck)a (written cka).
I1.4 For every ain V,

la = a.

If, in the above definition, we take complex numbers as scalars instead of real numbers,

we obtain the axiomatic definition of a complex vector space.
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Inner Product Spaces

If a and b are vectors in R", regarded as column vectors, we can form the product a'b.
This 1s a 1 X 1 matrix, which we can i1dentify with its single entry, that is, with a number.

This product is called the[inner product or dot product]of a and b. Other notations for
it are (a, b) and a * b. Thus

n
a'lb=(a,b)=asb=[a-a,]|: |= Dab=aby + - + ayby.
=1

DEFINITION -

Real Inner Product Space

A real vector space V is called a real inner product space (or real pre-Hilbert*
space) if it has the following property. With every pair of vectors a and b in V there
is associated a real number, which is denoted by (a, b) and is called the inner
product of a and b, such that the following axioms are satisfied.

I. For all scalars ¢g; and ¢, and all vectors a, b, cin V,

(12 + g2b, ©) = q1(a, €) + ga(b, ©) (Linearity).




II. For all vectors a and b in V,
(a,b) = (b, a) (Symmetry).
III. For every a in V,

(a,a) = 0,

} (Positive-definiteness).

(a,a) =0 1ifandonlyif a=20

Vectors whose inner product is zero are called orthogonal.
The length or norm of a vector in V is defined by

(2) lal| = V(a,a) (= 0).

A vector of norm 1 is called a unit vector.

From these axioms and from (2) one can derive the basic inequality

(3) |(a, b)| = ||a|||b|| (Cauchy-Schwarz® inequality).
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From this follows

4) |la + b|| = |a] + ||b] (Triangle inequality).

A simple direct calculation gives

(5) |a + b|* + |a — b|? = 2(|a|? + |[b|)  (Parallelogram equality).

EXAMPLE 3 n-Dimensional Euclidean Space

R"™ with the inner product
(6) (a,b) =a'b =aby + -+ + ab,

(where both a and b are column vectors) is called the n-dimensional Euclidean space and is denoted by E" or
again simply by R". Axioms I-III hold, as direct calculation shows. Equation (2) gives the “Euclidean norm”

(7) lall = V(a,a) = Va'a= Vaf + - +aZ. O




EXAMPLE 4 An Inner Product for Functions. Function Space

The set of all real-valued continuous functions f(x), g(x), ---on a given interval &« = x = B is a real vector
space under the usual addition of functions and multiplication by scalars (real numbers). On this “function
space” we can define an inner product by the integral

B
(&) (f. 8= J f(x) g (x) dx.

o

Axioms I-III can be verified by direct calculation. Equation (2) gives the norm

B
9) Ifll= V1) =4 /Jf(x)zdx- B
Linear Transformations

Let X and Y be any vector spaces. To each vector x in X we assign a unique vector y in
Y. Then we say that a mapping (or transformation or operator) of X into Y is given.
Such a mapping is denoted by a capital letter, say F. The vector y in Y assigned to a vector
x in X is called the image of x under F and 1s denoted by F(x) [or FX, without parentheses].
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F is called a linear mapping or linear transformation if, for all vectors v and x in X
and scalars c,

F(v+x)=F(v)+ F(x)
F(cx) = cF(x).

(10)

Linear Transformation of Space R” into Space R™

From now on we let X = R and Y = R™. Then any real m X n matrix A = [ajx] gives
a transformation of R" into R™,

(1) y = Ax.

Since A(u + x) = Au + Ax and A(cx) = cAx, this transformation is linear.

We show that, conversely, every linear transformation F of R" into R™ can be given
in terms of an m X n matrix A, after a basis for R" and a basis for R have been chosen.
This can be proved as follows.




Let ey, ", €y be any basis for R™. Then every x in R has a unique representation
X = X1€n) + -+ Xn€m)-
Since F is linear, this representation implies for the image F(Xx):

F(X) = F(xle(l) + .-+ xne(n)) = xlF(e(D) + - + an(e(n)).

Hence F is uniquely determined by the images of the vectors of a basis for R". We now
choose for R" the “standard basis”

1
0
0

0 0 |

where e has its jth component equal to 1 and all others 0. We show that we can now
determine an m X n matrix A = [aj] such that for every x in R" and image y = F(x) in
R™,

y = F(x) = Ax. B




O _

Indeed, from the image y F(eq)) of e(1) we get the condition
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from WhICh we can determine the first column of A, namely a;; = y1 , o1 = y(l) cee

= y\b. Similarly, from the image of e, we get the second column of A, and so on.
ThlS completes the proof. N

In three-dimensional Euclidean space E* the standard basis is usually written e, = i,
€ = j, €3 = k. ThUS,

(13)




EXAMPLE 5 Linear Transformations

Interpreted as transformations of Cartesian coordinates in the plane, the matrices
1 1 0 —1
o] [0 -1 | o

(b) (c)

(a) a reflection in the line x, = x4,

(a)

represent

(b) a reflection in the x;-axis,
(c) a reflection in the origin, and

(d) a stretch (when a > 1, or a contraction when 0 < a < 1) in the x, -direction.




EXAMPLE 6 Linear Transformations

Our discussion preceding Example 5 is simpler than it may look at first sight. To see this, find A representing
the linear transformation that maps (xy, x) onto (2xy — 5x9, 3x1 + 4x9).

Solution. Obviously, the transformation is

V1 — 2)(71 - 5.762

Yo = 3)61 + 4JC2.

From this we can directly see that the matrix is

2 =5 y1 2 2)61 — 5.762
A= . Check: = .
3 4 Y2 3 4 3)61 + 4.762

If A in (11) is square, n X n, then (11) maps R" into R". If this A is nonsingular, so that
A1 exists (see Sec. 7.8), then multiplication of (11) by A~ from the left and use of
A™'A = I gives the inverse transformation

(14) x = A ly.

It maps every y = yg onto that x, which by (11) is mapped onto yq. The inverse of a linear
transformation is itself linear, because it is given by a matrix, as (14) shows.




Composition of Linear Transformations

The last operation we want to discuss is composition of linear transformations. Let X,
Y, W be general vector spaces. As before, let F be a linear transformation from X to Y.
Let G be a linear transformation from W to X. Then we denote, by H, the composition
of F and G, that 1is,

H=F-G=FG = F(G),
which means we take transformation G and then apply transformation F to it (in that
order!, i.e. you go from left to right).
Now, to give this a more concrete meaning, if we let w be a vector in W, then G (w)

is a vector in X and F(G(w)) is a vector in Y. Thus, H maps W to Y, and we can write

(15) H(w) = (F° G) (w) = (FG) (W) = F(G(W)),



EXAMPLE 7 The Composition of Linear Transformations Is Linear

To show that H is indeed linear we must show that (10) holds. We have, for two vectors wy, wg in W,

H(wy + wg) = (F o G)(wy + Wa)

= F(G (w1 + wa))

= F(G(wy) + G(wg)) (by linearity of G)
= F(G(wy) + F(G(ws)) (by linearity of F)
= (F o G)(wy) + (F° G)(ws) (by (15))

= H(wy) + H(ws) (by definition of H).

Similarly, H(cws) = (F ° G)(cws) = F(G(cws)) = F(c(G(Ws))

= cF(G(Ws)) = c¢(F o G)(Ws) = cH(Ws). |

Next we want to relate composition of linear transformations to matrix multiplication.
TodosoweletX = R", Y = R™, and W = RP. This choice of particular vector spaces
allows us to represent the linear transformations as matrices and form matrix equations,
as was done in (11). Thus F can be represented by a general real m X n matrix A = [ajy,]
and G by an n X p matrix B = [bj;.]. Then we can write for F, with column vectors x

with n entries, and resulting vector y, with m entries
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(16) y = Ax

and similarly for G, with column vector w with p entries,
(17) x = Bw.
Substituting (17) into (16) gives

(18) y = Ax = A(Bw) = (AB)w = ABw = Cw where C = AB.

This is (15) in a matrix setting, this is, we can define the composition of linear transfor-
mations in the Euclidean spaces as multiplication by matrices. Hence, the real m X p
matrix C represents a linear transformation H which maps R? to R"™ with vector w, a
column vector with p entries.




