

یونش خود به خودی آب و مقیاس pH:

$$H_{2}O(l) + H_{2}O(l) = H_{3}O^{+}(aq) + OH^{-}(aq)$$
$$K_{c} = \frac{[H_{3}O^{+}][OH^{-}]}{[H_{2}O]^{2}}$$

The Ion-Product Constant for Water

 $K_{c}[H_{2}O]^{2} = K_{w} = [H_{3}O^{+}][OH^{-}] = 1.0 \times 10^{-14} \text{ at } 25^{\circ}C$

A change in $[H_3O^+]$ causes an inverse change in $[OH^-]$.

In an acidic solution, $[H_3O^+] > [OH^-]$ In a basic solution, $[H_3O^+] < [OH^-]$ In a neutral solution, $[H_3O^+] = [OH^-]$

محاسبه غلظت يونهاى هيدرونيوم و هيدروكسيد در محلول آبى

Sample Problem 18.2 Calculating [H₃O⁺] and [OH⁻] in an Aqueous Solution

- **PROBLEM:** A research chemist adds a measured amount of HCl gas to pure water at 25°C and obtains a solution with $[H_3O^+] = 3.0x10^{-4} M$. Calculate [OH⁻]. Is the solution neutral, acidic, or basic?
- **PLAN:** Use the K_w at 25°C and the [H₃O⁺] to find the corresponding [OH⁻].
- **SOLUTION:** $K_w = 1.0 \times 10^{-14} = [H_3O^+] [OH^-]$ so

 $[OH^{-}] = K_w / [H_3O^{+}] = 1.0 \times 10^{-14} / 3.0 \times 10^{-4} = 3.3 \times 10^{-11} M$

 $[H_3O^+]$ is > $[OH^-]$ and the solution is acidic.

محاسبه غلظت یونهای هیدرونیوم و هیدروکسید و تابع p آنها <mark>در محلول اسید قوی</mark>

به عنوان مثال برای محلولهای اسیدی که برای کنده کاری روی صفحات مسی در آثار هنری

به کار می رود:

Sample Problem 18.3 Calculating $[H_3O^+]$, pH, $[OH^-]$, and pOH

- **PROBLEM:** In an art restoration project, a conservator prepares copperplate etching solutions by diluting concentrated HNO₃ to 2.0 *M*, 0.30 *M*, and 0.0063 *M* HNO₃. Calculate [H₃O⁺], pH, [OH⁻], and pOH of the three solutions at 25°C.
- **PLAN:** HNO₃ is a strong acid so $[H_3O^+] = [HNO_3]$. Use K_w to find the [OH⁻] and then convert to pH and pOH.
- **SOLUTION:** For 2.0 *M* HNO₃, $[H_3O^+] = 2.0$ *M* and $-\log [H_3O^+] = -0.30 = pH$ [OH⁻] = $K_w/$ [H₃O⁺] = 1.0x10⁻¹⁴/2.0 = 5.0x10⁻¹⁵ *M*; pOH = 14.30

For 0.3 *M* HNO₃, $[H_3O^+] = 0.30$ *M* and $-\log [H_3O^+] = 0.52 = pH$ [OH⁻] = *K*_w/ $[H_3O^+] = 1.0x10^{-14}/0.30 = 3.3x10^{-14}$ *M*; pOH = 13.48

For 0.0063 *M* HNO₃, $[H_3O^+] = 0.0063$ *M* and $-\log [H_3O^+] = 2.20 = pH$ [OH-] = K_w / $[H_3O^+] = 1.0x10^{-14}/6.3x10^{-3} = 1.6x10^{-12}$ *M*; pOH = 11.80

محاسبه pH <mark>محلول باز قوی</mark>

تمرين:

NaOH _____ Na⁺ + OH⁻

اسیدهای ضعیف

- اسید ضعیف مانند استیک اسید
- اسید مزدوج بازهای ضعیف مانند یون آمونیوم

Weak acid: $HA(aq) + H_2O(l) \implies H_3O^+(aq) + A^-(aq)$

Percent HA dissociation = $\frac{[HA]_{dissociated}}{[HA]_{initial}} \times 100$

% dissociated = 4/(5 + 4) x 100 = 44%

دو رویکرد در مسائل مربوط به تعادل اسید ضعیف:

– یافتن K_a از pH محلول

نمونه مسئله 18–7: يافتن K_a محلول 0/12 مولار فنيل استيک اسيد با pH =2.62.

Sample Problem 18.7 Finding the K_a of a Weak Acid from the Solution pH

PROBLEM: Phenylacetic acid ($C_6H_5CH_2COOH$, simplified here as HPAc) builds up in the blood of persons with phenylketonuria, an inherited disorder that, if untreated, causes mental retardation and death. A study of the acid shows that the pH of 0.12 *M* HPAc is 2.62. What is the K_a of phenylacetic acid?

Concentration (M)	HPAc(aq) +	H ₂ O(<i>l</i>)	1	$H_3O^+(aq)$ +	PAc⁻(<i>aq</i>)
Initial	0.12	-		0	0
Change	-X	-		+ <i>x</i>	+ <i>x</i>
Equilibrium	0.12 - <i>x</i>	-		X	X

 $[H_3O^+] = 10^{-pH} = 2.4 \times 10^{-3} M$ which is >> 10⁻⁷ (the $[H_3O^+]$ from water)

 $x \approx 2.4 \times 10^{-3} M \approx [H_3 O^+] \approx [PAc^-]$ [HPAc]_{equilibrium} = 0.12 - $x \approx 0.12 M$

So
$$K_a = \frac{(2.4 \times 10^{-3})(2.4 \times 10^{-3})}{0.12} = 4.8 \times 10^{-5}$$

یافتن غلظتهای تعادلی با داشتن К_а و غلظت اولیه اسید

نمونه مسئله 18-8 پروپانوئيک اسيد:

Sample Problem 18.8 Determining Concentrations from *K*_a and Initial [HA]

- **PROBLEM:** Propanoic acid (CH₃CH₂COOH, which we simplify as HPr) is a organic acid whose salts are used to retard mold growth in foods. What is the [H₃O⁺] of 0.10 *M* HPr ($K_a = 1.3 \times 10^{-5}$)?
- **PLAN:** Write out the dissociation equation and expression; make whateve assumptions about concentration which are necessary; substitute.

Assumptions: For HPr(
$$aq$$
) + H₂O(l) \implies H₃O⁺(aq) + Pr⁻(aq)
 $x = [HPr]_{diss} = [H_3O^+]_{from HPr} = [Pr^-]$ $K_a = [H_3O^+][Pr^-]$
SOLUTION: [HPr]

Concentration (M)	HPr(<i>aq</i>) +	H ₂ O(<i>l</i>)	\longrightarrow H ₃ O ⁺ (<i>aq</i>) +	+ Pr⁻(<i>aq</i>)
Initial	0.10	-	0	0
Change	- <i>x</i>	-	+ <i>x</i>	+ <i>x</i>
Equilibrium	0.10 - <i>x</i>	-	x	X

Since K_a is small, we will assume that $x \le 0.10$

1

$$1.3x10^{-5} = \frac{[H_3O^+][Pr^-]}{[HPr]} = \frac{(x)(x)}{0.10}$$
$$\mathbf{x} = \sqrt{(0.10)(1.3x10^{-5})} = 1.1x10^{-3} M = [H_3O^+]$$

Check: [HPr]_{diss} = 1.1x10⁻³ *M*/0.10 *M* x 100 = 1.1%

اسیدهای چند پروتونی:

در این اسیدها هر مرحله یونش در pH موثر است ولی اگر ثابت های تعادل دوم و سوم خیلی کوچکتر از ثابت تفکیک اول باشد از مراحل بعدی صرفنظر می شود. **Polyprotic acids**

acids with more than one ionizable proton

 $H_{3}PO_{4}(aq) + H_{2}O(l) \implies H_{2}PO_{4}(aq) + H_{3}O^{+}(aq) \qquad K_{a1} = \frac{[H_{3}O^{+}][H_{2}PO_{4}]}{[H_{3}PO_{4}]} = 7.2 \times 10^{-3}$ $H_{2}PO_{4}(aq) + H_{2}O(l) \implies HPO_{4}^{2}(aq) + H_{3}O^{+}(aq) \qquad K_{a2} = \frac{[H_{3}O^{+}][HPO_{4}^{2}]}{[H_{2}PO_{4}]} = 6.3 \times 10^{-3}$ $HPO_{4}^{2}(aq) + H_{2}O(l) \implies PO_{4}^{3}(aq) + H_{3}O^{+}(aq) \qquad K_{a3} = \frac{[H_{3}O^{+}][PO_{4}^{3}]}{[HPO_{4}^{2}]} = 4.2 \times 10^{-13}$

(اسید دو ظرفیتی)

Sample Problem 18.10 Calculating Equilibrium Concentrations for a Polyprotic Acid

PROBLEM: Ascorbic acid ($H_2C_6H_6O_6$; H_2Asc for this problem), known as vitamin C, is a diprotic acid ($K_{a1} = 1.0x10^{-5}$ and $K_{a2} = 5x10^{-12}$) found in citrus fruit. Calculate [H_2Asc], [HAsc-], [Asc²-], and the pH of 0.050 *M* H_2Asc .

PLAN: Write out expressions for both dissociations and make assumptions.

 $K_{a1} >> K_{a2}$ so the first dissociation produces virtually all of the H₃O⁺.

 K_{a1} is small so $[H_2Asc]_{initial} \approx [H_2Asc]$

After finding the concentrations of various species for the بقوية الع عنوية الع عنوية بالع عنوية بالع عنوية بالع we can use them as initial concentrations for the second dissociation.

SOLUTION:

$$H_{2}Asc(aq) + H_{2}O(l) \implies HAsc^{-}(aq) + H_{3}O^{+}(aq) \qquad K_{a1} = \frac{[HAsc^{-}][H_{3}O^{+}]}{[H_{2}Asc]} = 1.0x10^{-5}$$

$$HAsc^{-}(aq) + H_{2}O(l) \implies Asc^{2-}(aq) + H_{3}O^{+}(aq) \qquad K_{a2} = \frac{[Asc^{2-}][H_{3}O^{+}]}{[HAsc^{-}]} = 5x10^{-12}$$

		ulating E protic Ac	-	concentrations for
Concentration (M)	H ₂ Asc(<i>aq</i>) + I	H ₂ O(<i>l</i>) =	➡ HAsc ⁻ (aq)	+ H₃O⁺(<i>aq</i>)
Initial	0.050	-	0	0
Change	- <i>X</i>	-	+χ	+χ
Equilibrium	0.050 - <i>x</i>	-	x	x
$x = \sqrt{(0.050)(1.0x)}$	10^{-3}) $x = 7$.1x10 ⁻⁴ <i>M</i>	pH = -	log(7.1x10⁻⁴) = 3
Concentration (M)				
Concentration (M)	HAsc ⁻ (<i>aq</i>) +		→Asc²-(aq)	
Concentration (<i>M</i>) Initial	HAsc ⁻ (<i>aq</i>) + 1 7.1x10 ⁻⁴ M		→Asc²-(<i>aq</i>) 0	+ H ₃ O⁺(<i>aq</i>) 7.1x10 ⁻⁴ M
Concentration (<i>M</i>) Initial Change	HAsc (<i>aq</i>) + 1 7.1x10 ⁻⁴ M - <i>x</i> 7.1x10 ⁻⁴ - <i>x</i>	H ₂ O(<i>l</i>) =	►Asc ² -(aq) 0 +x x	$ + H_{3}O^{+}(aq) 7.1x10^{-4} M +x 7.1x10^{-4} + x 7.1x10^{-4} + x $