مسایل تکمیلی انتخاب شده:

FOLLOW-UP PROBLEM 21.2 In one compartment of a voltaic cell, a graphite rod dips into an acidic solution of $K_2Cr_2O_7$ and $Cr(NO_3)_3$; in the other compartment, a tin bar dips into a $Sn(NO_3)_2$ solution. A KNO₃ salt bridge joins them. The tin electrode is negative relative to the graphite. Draw a diagram of the cell, show the balanced equations, and write the cell notation.

$$6K_2MnO_4(aq) + KIO_3(aq) + 3H_2O(l)$$

$$Sn(s) \longrightarrow Sn^{2+}(aq) + 2e^{-}$$

[anode; oxidation]

$$6e^{-} + 14H^{+}(aq) + Cr_2O_7^{2-}(aq) \longrightarrow 2Cr^{3+}(aq) + 7H_2O(l)$$

[cathode; reduction]

$$3Sn(s) + Cr_2O_7^{2-}(aq) + 14H^{+}(aq) \longrightarrow$$

Cell notation: $3Sn^{2+}(aq) + 2Cr^{3+}(aq) + 7H_2O(l) \quad \text{[overall]}$

 $\operatorname{Sn}(s) | \operatorname{Sn}^{2+}(aq) | | \operatorname{H}^{+}(aq), \operatorname{Cr}_{2}\operatorname{O}_{7}^{2-}(aq), \operatorname{Cr}^{3+}(aq) | \text{graphite}$

FOLLOW-UP PROBLEM 21.4 Is the following reaction spontaneous as written? $3Fe^{2+}(aq) \longrightarrow Fe(s) + 2Fe^{3+}(aq)$

If not, write the equation for the spontaneous reaction, calculate E_{cell}° , and rank the three species of iron in order of decreasing reducing strength.

21.4
$$\operatorname{Fe}^{2+}(aq) + 2e^{-} \longrightarrow \operatorname{Fe}(s)$$

$$E^{\circ} = -0.44 \text{ V}$$

$$2[\operatorname{Fe}^{2+}(aq) \longrightarrow \operatorname{Fe}^{3+}(aq) + e^{-}]$$

$$E^{\circ} = 0.77 \text{ V}$$

$$3\operatorname{Fe}^{2+}(aq) \longrightarrow 2\operatorname{Fe}^{3+}(aq) + \operatorname{Fe}(s)$$

$$E^{\circ}_{cell} = -0.44 \text{ V} - 0.77 \text{ V} = -1.21 \text{ V}$$
The reaction is nonspontaneous. The spontaneous reaction is
$$2\operatorname{Fe}^{3+}(aq) + \operatorname{Fe}(s) \longrightarrow 3\operatorname{Fe}^{2+}(aq)$$

$$E^{\circ}_{cell} = 1.21 \text{ V}$$

$$\operatorname{Fe} > \operatorname{Fe}^{2+} > \operatorname{Fe}^{3+}$$

FOLLOW-UP PROBLEM 21.6 Consider a voltaic cell based on the following reaction: $Fe(s) + Cu^{2+}(aq) \Longrightarrow Fe^{2+}(aq) + Cu(s)$. If $[Cu^{2+}] = 0.30 M$, what must $[Fe^{2+}]$ be to increase E_{cell} by 0.25 V above E_{cell}° at 25°C?

21.6 Fe(s)
$$\longrightarrow$$
 Fe²⁺(aq) + 2e⁻ $E^{\circ} = -0.44 \text{ V}$

$$\frac{\text{Cu}^{2+}(aq) + 2e^{-} \longrightarrow \text{Cu}(s)}{\text{Fe}(s) + \text{Cu}^{2+}(aq) \longrightarrow \text{Fe}^{2+}(aq) + \text{Cu}(s)} \qquad E^{\circ}_{\text{cell}} = 0.34 \text{ V}$$
So $E_{\text{cell}} = 0.78 \text{ V} + 0.25 \text{ V} = 1.03 \text{ V}$
1.03 V = 0.78 V $-\frac{0.0592 \text{ V}}{2} \log \frac{[\text{Fe}^{2+}]}{[\text{Cu}^{2+}]}$

$$\frac{[\text{Fe}^{2+}]}{[\text{Cu}^{2+}]} = 3.6 \times 10^{-9}$$
[Fe²⁺] = $3.6 \times 10^{-9} \times 0.30 \text{ M} = 1.1 \times 10^{-9} \text{ M}$
21.7 Au³⁺(aq; $2.5 \times 10^{-2} \text{ M}$) [B] \longrightarrow
Au³⁺(aq; $7.0 \times 10^{-4} \text{ M}$) [A]
 $E_{\text{cell}} = 0 \text{ V} - \left(\frac{0.0592 \text{ V}}{3} \times \log \frac{7.0 \times 10^{-4}}{2.5 \times 10^{-2}}\right) = 0.0306 \text{ V}$

FOLLOW-UP PROBLEM 21.8 Write half-reactions showing the products you predict will form in the electrolysis of aqueous AuBr₃.

21.8 The reduction with the more positive electrode potential is $Au^{3+}(aq) + 3e^- \longrightarrow Au(s); E^\circ = 1.50 V$ [cathode; reduction] Because of overvoltage, O₂ will not form at the anode, so Br₂ will form: $2Br^-(aq) \longrightarrow Br_2(l) + 2e^-; E^\circ = 1.07 V$ [anode; oxidation] **FOLLOW-UP PROBLEM 21.9** Using a current of 4.75 A, how many minutes does it take to plate onto a sculpture 1.50 g of Cu from a CuSO₄ solution?

21.9 Cu²⁺(aq) + 2e⁻ → Cu(s); therefore,
2 mol e⁻/1 mol Cu = 2 mol e⁻/63.55 g Cu
Time (min) = 1.50 g Cu ×
$$\frac{2 \text{ mol e}^{-}}{63.55 \text{ g Cu}}$$

× $\frac{9.65 \times 10^4 \text{ C}}{1 \text{ mol e}^{-}} \times \frac{1 \text{ s}}{4.75 \text{ C}} \times \frac{1 \text{ min}}{60 \text{ s}} = 16.0 \text{ min}$

مسایل انتخاب شده

21.7 Balance the following skeleton reactions and identify the oxidizing and reducing agents:

- (a) $\operatorname{ClO}_3^-(aq) + \operatorname{I}^-(aq) \longrightarrow \operatorname{I}_2(s) + \operatorname{Cl}^-(aq)$ [acidic] (b) $\operatorname{MnO}_4^-(aq) + \operatorname{SO}_3^{2-}(aq) \longrightarrow$
- (b) $\operatorname{MnO}_4(aq) + \operatorname{SO}_3^-(aq) \longrightarrow$ $\operatorname{MnO}_2(s) + \operatorname{SO}_4^{2-}(aq) \text{ [basic]}$ (c) $\operatorname{MnO}_4^-(aq) + \operatorname{H}_2\operatorname{O}_2(aq) \longrightarrow \operatorname{Mn}^{2+}(aq) + \operatorname{O}_2(g) \text{ [acidic]}$

21.16 What is the difference between an active and an inactive electrode? Why are inactive electrodes used? Name two substances commonly used for inactive electrodes.

21.22 Write the cell notation for the voltaic cell that incorporates each of the following redox reactions:

(a)
$$\operatorname{Al}(s) + \operatorname{Cr}^{3^+}(aq) \longrightarrow \operatorname{Al}^{3^+}(aq) + \operatorname{Cr}(s)$$

(b) $\operatorname{Cu}^{2^+}(aq) + \operatorname{SO}_2(g) + 2\operatorname{H}_2\operatorname{O}(l) \longrightarrow$
 $\operatorname{Cu}(s) + \operatorname{SO}_4^{2^-}(aq) + 4\operatorname{H}^+(aq)$