

یونش خود به خودی آب و مقیاس pH:

$$H_2O(l) + H_2O(l) \longrightarrow H_3O^+(aq) + OH^-(aq)$$

$$K_{c} = \frac{[H_{3}O^{+}][OH^{-}]}{[H_{2}O]^{2}}$$

The Ion-Product Constant for Water

$$K_c[H_2O]^2 = K_w = [H_3O^+][OH^-] = 1.0 \times 10^{-14} \text{ at } 25^{\circ}C$$

A change in [H₃O⁺] causes an inverse change in [OH⁻].

In an acidic solution, $[H_3O^+] > [OH^-]$ In a basic solution, $[H_3O^+] < [OH^-]$ In a neutral solution, $[H_3O^+] = [OH^-]$

محاسبه غلظت یونهای هیدرونیوم و هیدروکسید در محلول آبی

Sample Problem 18.2

Calculating [H₃O⁺] and [OH·] in an Aqueous Solution

PROBLEM: A research chemist adds a measured amount of HCl gas to pure

water at 25°C and obtains a solution with $[H_3O^+] = 3.0x10^{-4} M$. Calculate $[OH^-]$. Is the solution neutral, acidic, or basic?

PLAN: Use the K_w at 25°C and the [H₃O⁺] to find the corresponding [OH-].

SOLUTION: $K_w = 1.0 \times 10^{-14} = [H_3 O^*] [OH^-]$ so

$$[OH^{-}] = K_{W}/[H_{3}O^{+}] = 1.0 \times 10^{-14}/3.0 \times 10^{-4} = 3.3 \times 10^{-11} M$$

[H₃O⁺] is > [OH⁻] and the solution is acidic.

تعریف pH و مقیاس آن

Figure 18.5

The pH values of some familiar aqueous solutions.

 $pH = -log [H_3O^+]$

محاسبه غلظت یونهای هیدرونیوم و هیدروکسید و تابع p آنها <mark>در محلول اسید قوی</mark>

به عنوان مثال برای محلولهای اسیدی که برای کنده کاری روی صفحات مسی در آثار هنری

به کار می رود:

Sample Problem 18.3

Calculating [H₃O⁺], pH, [OH-], and pOH

PROBLEM: In an art restoration project, a conservator prepares copperplate etching solutions by diluting concentrated HNO₃ to 2.0 *M*, 0.30 *M*, and 0.0063 *M* HNO₃. Calculate [H₃O⁺], pH, [OH⁻], and

pOH of the three solutions at 25°C.

PLAN: HNO₃ is a strong acid so $[H_3O^+] = [HNO_3]$. Use K_w to find the $[OH^-]$

and then convert to pH and pOH.

SOLUTION: For 2.0 M HNO₃, $[H_3O^+] = 2.0$ M and $-log [H_3O^+] = -0.30 = pH$ $[OH^-] = K_w/[H_3O^+] = 1.0x10^{-14}/2.0 = 5.0x10^{-15}$ M; pOH = 14.30

For 0.3 M HNO₃, [H₃O⁺] = 0.30 M and -log [H₃O⁺] = 0.52 = pH [OH-] = K_w / [H₃O⁺] = 1.0x10⁻¹⁴/0.30 = 3.3x10⁻¹⁴ M; pOH = 13.48

For 0.0063 M HNO₃, [H₃O⁺] = 0.0063 M and -log [H₃O⁺] = 2.20 = pH [OH⁻] = K_w / [H₃O⁺] = 1.0x10⁻¹⁴/6.3x10⁻³ = 1.6x10⁻¹² M; pOH = 11.80

محاسبه pH <mark>محلول باز قوی</mark>

تمرين:

محاسبه pH محلولي از سود با غلظت 0/02 مولار

NaOH _____ Na⁺ + OH⁻

اسیدهای ضعیف

- اسید ضعیف مانند استیک اسید
- اسید مزدوج بازهای ضعیف مانند یون آمونیوم

Weak acid:
$$HA(aq) + H_2O(l) \longrightarrow H_3O^+(aq) + A^-(aq)$$

Percent HA dissociation =
$$\frac{[HA]_{dissociated}}{[HA]_{initial}} \times 100$$

% dissociated =
$$4/(5 + 4) \times 100 = 44\%$$

<mark>دو رویکرد در مسائل مربوط به تعادل اسید ضعیف</mark>:

- يافتن K_a از pH محلول

نمونه مسئله 18–7: يافتن K_a محلول 0/12 مولار فنيل استيك اسيد با pH =2.62.

Sample Problem 18.7

Finding the K_a of a Weak Acid from the Solution pH

PROBLEM:

Phenylacetic acid ($C_6H_5CH_2COOH$, simplified here as HPAc) builds up in the blood of persons with phenylketonuria, an inherited disorder that, if untreated, causes mental retardation and death. A study of the acid shows that the pH of 0.12 M HPAc is 2.62. What is the K_a of phenylacetic acid?

Concentration (M)	HPAc(aq) +	H ₂ O(<i>l</i>)	=	H ₃ O ⁺ (aq) +	PAc ⁻ (aq)
Initial	0.12	-		0	0
Change	-X	-		+x	+χ
Equilibrium	0.12 - x	-	\	X	X

 $[H_3O^+] = 10^{-pH} = 2.4x10^{-3} M$ which is >> 10^{-7} (the $[H_3O^+]$ from water)

$$x \approx 2.4 \times 10^{-3} M \approx [H_3 O^+] \approx [PAc^-]$$
 [HPAc]_{equilibrium} = 0.12 - $x \approx 0.12 M$

So
$$K_a = \frac{(2.4 \times 10^{-3}) (2.4 \times 10^{-3})}{0.12} = 4.8 \times 10^{-5}$$

- یافتن غلظتهای تعادلی با داشتن K_a و غلظت اولیه اسید نمونه مسئله 8-8 پروپانوئیک اسید:

Sample Problem 18.8

Determining Concentrations from K_a and Initial [HA]

PROBLEM: Propanoic acid (CH₃CH₂COOH, which we simplify as HPr) is a organic acid whose salts are used to retard mold growth in foods. What is the [H₃O⁺] of 0.10 M HPr ($K_a = 1.3 \times 10^{-5}$)?

PLAN: Write out the dissociation equation and expression; make whateve assumptions about concentration which are necessary; substitute.

Assumptions: For HPr(
$$aq$$
) + H₂O(I) \Longrightarrow H₃O⁺(aq) + Pr⁻(aq)
$$x = [HPr]_{diss} = [H_3O^+]_{from \ HPr} = [Pr^-] \qquad K_a = \underline{[H_3O^+][Pr^-]}$$
SOLUTION: [HPr]

Concentration (M) $HPr(aq) + H_2O(l) \implies H_3O^+(aq) + Pr^-(aq)$

Initial	0.10	-	0	0
Change	-х	-	+x	+x
Equilibrium	0.10 - <i>x</i>	-	X	X

Since K_a is small, we will assume that x << 0.10

1.3x10⁻⁵ =
$$\frac{[H_3O^+][Pr^-]}{[HPr]}$$
 = $\frac{(x)(x)}{0.10}$
 $\mathbf{x} = \sqrt{(0.10)(1.3\mathbf{x}10^{-5})}$ = 1.1x10⁻³ $M = [H_3O^+]$

Check: $[HPr]_{diss} = 1.1 \times 10^{-3} M/0.10 M \times 100 = 1.1\%$

اسیدهای چند پروتونی:

در این اسیدها هر مرحله یونش در pH موثر است ولی اگر ثابت های تعادل دوم و سوم خیلی کوچکتر از ثابت تفکیک اول باشد از مراحل بعدی صرفنظر می شود.

Polyprotic acids

acids with more than one ionizable proton

$$H_{3}PO_{4}(aq) + H_{2}O(l) \Longrightarrow H_{2}PO_{4}(aq) + H_{3}O^{+}(aq) \qquad K_{a1} = \frac{[H_{3}O^{+}][H_{2}PO_{4}]}{[H_{3}PO_{4}]}$$

$$= 7.2\times10^{-3}$$

$$H_{2}PO_{4}(aq) + H_{2}O(l) \Longrightarrow HPO_{4}^{2}(aq) + H_{3}O^{+}(aq) \qquad K_{a2} = \frac{[H_{3}O^{+}][HPO_{4}^{2}]}{[H_{2}PO_{4}]}$$

$$= 6.3\times10^{-8}$$

$$HPO_{4}^{2}(aq) + H_{2}O(l) \Longrightarrow PO_{4}^{3}(aq) + H_{3}O^{+}(aq) \qquad K_{a3} = \frac{[H_{3}O^{+}][PO_{4}^{3}]}{[HPO_{4}^{2}]}$$

$$= 4.2\times10^{-13}$$

نمونه مسئله 18-10: تعیین غلظتهای تعادلی در محلول آسکوربیک اسید0/050 مولار

Sample Problem 18.10

Calculating Equilibrium Concentrations for a **Polyprotic Acid**

PROBLEM: Ascorbic acid (H₂C₆H₆O₆; H₂Asc for this problem), known as vitamin C, is a diprotic acid ($K_{a1} = 1.0 \times 10^{-5}$ and $K_{a2} = 5 \times 10^{-12}$) found in citrus fruit. Calculate [H₂Asc], [HAsc-], [Asc²-], and the pH of $0.050 M H_2 Asc.$

Write out expressions for both dissociations and make assumptions. PLAN:

 $K_{a1} >> K_{a2}$ so the first dissociation produces virtually all of the H_3O^+

$$K_{a1}$$
 is small so $[H_2Asc]_{initial} \approx [H_2Asc]$

After finding the concentrations of various species for the first dissociation, we can use them as initial concentrations for the second dissociation.

SOLUTION:

FOLUTION:

$$H_2Asc(aq) + H_2O(l) \longrightarrow HAsc^{-}(aq) + H_3O^{+}(aq)$$
 $K_{a1} = \frac{[HAsc^{-}][H_3O^{+}]}{[H_2Asc]} = 1.0x10^{-5}$
 $HAsc^{-}(aq) + H_2O(l) \longrightarrow Asc^{2-}(aq) + H_3O^{+}(aq)$
 $K_{a2} = \frac{[Asc^{2-}][H_3O^{+}]}{[HAsc^{-}]} = 5x10^{-12}$

Sample Problem 18.10

Calculating Equilibrium Concentrations for a Polyprotic Acid

Concentration (<i>M</i>)	$H_2Asc(aq) + H_2$	I ₂ O(<i>l</i>) =	C HAsc⁻(aq)	+ H ₃ O ⁺ (aq)	_
Initial	0.050	-	0	0	
Change	-x) -	+χ	+χ	
Equilibrium	0.050 - x	- \	X	X	
X _{a1} = [<u>HAsc</u> -][H ₃ O+]/[I	H ₂ Asc] = 1.0x1	$0^{-5} = (x)(x)$	x)/0.050 M	.تقریب	
$x = \sqrt{(0.050)(1.0x1)}$	$\overline{0^{-5}}$) $x = 7$.	1x10 ⁻⁴ M	pH = -	log(7.1x10 ⁻⁴) =	3.15
concentration (M)		H ₂ O(<i>l</i>) =	Asc²-(aq)	+ H ₃ O ⁺ (aq)	_
Initial	7.1x10 ⁻⁴ M	_	0	7.1x10 ⁻⁴ <i>M</i>	
Change	-x	-	+χ	+χ	_
Equilibrium	7.1x10 ⁻⁴ - <i>x</i>	-	X	7.1x10 ⁻⁴ + x	_
$K_{a2} = [Asc^2-][H_3O^+]/[I_3O^+]$	HAsc ⁻] = 5x10 ⁻¹	$^2 = (x)(7.$.1x10 ⁻⁴ + x// (7	7.1x10 ⁻⁴ - x)	$\neq x$