「

$$
: l^{\circ}
$$

- y y

$$
\sim 1 \vee \approx \sim
$$

rgum

$$
\begin{aligned}
& \underline{1} 0 \rightarrow \underline{r}_{\mu \mu}: y^{\left.()^{\prime \prime}\right)}+\left(y^{\prime \prime}\right)^{r}=x \cdot \underline{0} \cdot y^{\prime \prime}-r y^{\prime}+r y=0 \\
& \text { pre, pر مر: }\left(y^{\prime}\right)^{r}+y^{t}=x^{\infty} \quad \perp ?: \frac{d v}{d t}+t \cdot v=v^{r} \\
& 0^{0}\left(0 \underline{Y}(\rho) \quad(1,) \cdot\left(y^{(r)}\right)^{r}+\left(y^{\prime \prime}\right)^{\infty}+(\sin x) y=\cos x\right.
\end{aligned}
$$

$$
=-1 y^{\prime}=\cos x \text {, } y=\sin x
$$

$F\left(x, y, y^{\prime}, \ldots, y^{(n)}\right)=0 ، n \underset{\sim}{\sim}$

$$
?!\text { ? } g\left(x, y, c_{1}, c_{2}, \ldots, c_{n}\right)=0 \text { bisp } \sin
$$

$: J \hat{\omega}$

- $y^{\prime}=\cos x \quad$, 6eo (pece - 1? $\quad y_{g}=c+\sin x$

$$
\begin{aligned}
& \text { - ا, }
\end{aligned}
$$

$$
\begin{aligned}
& F\left(x, \varphi(x), \varphi^{\prime}(x), \ldots, \varphi^{(n)}(x)\right)=0
\end{aligned}
$$

$$
\begin{aligned}
& \forall i=1, \ldots, n \text { lo } c_{i} \sim(\text { inipr, leo }
\end{aligned}
$$

$$
\begin{aligned}
& \text { - rooulei y H } \\
& \text { - jus }
\end{aligned}
$$

$$
\begin{aligned}
& \Vdash^{\prime} y_{s}=r e^{r_{x}}, \quad \text {, } L_{0}, \ln \operatorname{ser}-1, y_{y}=c_{1} e^{r_{x}}+c_{f} e^{r_{x}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { insonem url? …, }
\end{aligned}
$$

$$
\begin{aligned}
& \text { - J00 }
\end{aligned}
$$

$$
\begin{aligned}
& \text { WTor -r orser }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ro, رِّ } \\
& =j^{\hat{\omega}}
\end{aligned}
$$

$$
\begin{aligned}
& y=(x+c)^{r} \underset{c}{\sim \sim} 0=r(x+c) \longrightarrow c=-x
\end{aligned}
$$

$$
\begin{aligned}
& y=(x+c)^{r}=(x+(-x))^{r}=0 \longrightarrow \frac{y=0}{(6,1), ?}
\end{aligned}
$$

$$
\begin{aligned}
& \therefore \text { 以上リ } \\
& (x-c)^{r}+y^{r}=r \xrightarrow[c_{i}]{\stackrel{-j}{-\sim}}-r(x-c)+0=0 \longrightarrow c=x \\
& (x-c)^{r}+y^{r}=r \underset{c=x}{\longrightarrow}(x-x)^{r}+y^{r}=r \longrightarrow \frac{y= \pm r}{6,4,-9}
\end{aligned}
$$

（（1）$\left(\sec ^{2}-n x\right.$

$$
\begin{aligned}
& \frac{\partial g}{\partial x} \cdot \frac{\partial x}{\partial x}+\frac{\partial g}{\partial y} \cdot \frac{\partial y}{\partial x}=0 \\
& \rightarrow g_{x}+g_{y} \cdot y^{\prime}=0 \text { (II) }
\end{aligned}
$$

$$
\cdot r_{-} \gg 0 \cdot F\left(x, y, y^{\prime}\right)=0
$$

NL，$y=c x^{r}$ Jily，并，Joo

$$
\begin{aligned}
& y=c x^{r} \stackrel{=-\sigma_{r}^{-n}}{\sim} y^{\prime}=r c x \\
& \text { rajovc=i-y,y wit }
\end{aligned}
$$

$$
\begin{aligned}
& \text { - Nレ, } y=\cos (c x) \text { jintertas. J } \hat{\text { us }} \\
& y=\cos (c x) \xrightarrow[x+-\dot{\sigma}-2]{\sigma^{-1}} y^{\prime}=-c \sin (c x)=-c \sqrt{1-\cos ^{2}(c x)}= \\
& -c \sqrt{1-y^{r}} \longrightarrow y^{\prime}=-c \sqrt{1-y^{r}} \longrightarrow c=\frac{-y^{\prime}}{\sqrt{1-y^{r}}} * \\
& y=\cos \left(\frac{-y^{\prime}}{\sqrt{1-y^{r}}} \cdot x\right) \quad \text { r, }, y=\cos (c x), * * \operatorname{ren}^{\prime} 0 \leq 0
\end{aligned}
$$

HL_ $y=c_{1} \sin x+c_{k} \cos x$,

$$
\left.\begin{array}{l}
y=c_{1} \sin x+c_{r} \cos x \\
y^{\prime}=c_{1} \cos x-c_{r} \sin x \\
y^{\prime \prime}=-c_{1} \sin x-c_{r} \cos x
\end{array}\right\} \leadsto y^{\prime \prime}=-y \leadsto y^{\prime \prime}+y=0
$$

$$
\begin{aligned}
& \left|\begin{array}{lllll}
y & y^{\prime} & y^{\prime \prime} & \cdots & y^{(n)} \\
y_{1} & y_{1}^{\prime} & y_{1}^{\prime \prime} & \cdots & y_{1}^{(n)} \\
\vdots & & & \\
y_{n} & y_{n}^{\prime} & y_{n}^{\prime \prime} & \cdots & y_{n}^{(n)}
\end{array}\right|=0
\end{aligned}
$$

$$
\begin{aligned}
& y=c_{1} \sin x+c_{r} \cos x \\
&\left|\begin{array}{ccc}
y & y^{\prime} & y^{\prime \prime} \\
\sin x & \cos x & -\sin x \\
\cos x & -\sin x & -\cos x
\end{array}\right|=0 \\
&\left.y\left(-\cos x-\sin ^{r} x\right)-y^{\prime}(-\sin x \cos x+\sin x c) x\right)+y^{\prime \prime}\left(-\sin ^{r} x-\cos ^{r} x\right) \\
& \longrightarrow-y-y^{\prime \prime}=0 \longrightarrow y+y^{\prime \prime}=0
\end{aligned}
$$

$$
y
$$

$$
\begin{aligned}
& y=a x^{x}+b e^{-x} \\
& y^{\prime}=r a x-b e^{-x} \\
& y^{\prime \prime}=r a+b e^{-x} \longrightarrow \frac{b e^{-x}=y^{\prime \prime}-r a}{*} \\
& \text { 1. 「少, } y^{\prime}=r a x-b e^{-x} \text { (III) * rero:d } \\
& y^{\prime}=r a x-y^{\prime \prime}+r a \sim y^{\prime}=-y^{\prime \prime}+r a(x+1) \longrightarrow \\
& a=\frac{\frac{y^{\prime}+y^{\prime \prime}}{r(x+1)}}{* *}
\end{aligned}
$$

$$
(x-a)^{r}+(y-0)^{r}=r^{r}
$$

$$
b=0 \quad \text { on }
$$

$$
\begin{aligned}
& r(x-a)+r y y^{\prime}=0 \\
& r+r y^{\prime}+r y y^{\prime \prime}=0
\end{aligned}
$$

$$
\begin{aligned}
& \text { : } \mathrm{er}^{5}
\end{aligned}
$$

$$
\begin{aligned}
& c ?-\frac{1}{c} \quad 0=1 \\
& \dot{x} \\
& \text { 多 }
\end{aligned}
$$

$$
\begin{aligned}
& \rightarrow m=-x
\end{aligned}
$$

$$
\begin{aligned}
& 2 x^{2}+2(-x) x+(-x)^{2}=x y-y \\
& x^{2}=y(x-1) \leadsto y=\frac{x^{2}}{x-1}
\end{aligned}
$$

$$
x^{2}+(y-b)^{2}=r^{2} \xrightarrow[x]{ } 2 x+2 y^{\prime}(y-b)=0
$$

$$
\begin{aligned}
& y-b=\frac{-x}{y^{\prime}} \circledast \\
& 2+2\left(y^{\prime \prime}\left(\frac{-x}{y^{\prime}}\right)+y^{\prime \prime}\right)=0 \\
& \Rightarrow y^{\prime}-x y^{\prime \prime}+y^{\prime 3}=0
\end{aligned}
$$

$$
\text { 以1, } y=\ln \cos \left(x-c_{1}\right)+c_{2} \cos , j, 1 j, e, b \cdot d c
$$

$$
\begin{equation*}
\stackrel{\because}{\because r} 2+2\left(y^{\prime \prime}(y-b)+y^{\prime 2}\right)=0 \mathbb{\pi} \tag{I}
\end{equation*}
$$

$$
\left\{\begin{array}{l}
y=\ln \cos \left(x-c_{1}\right)+c_{2} \\
y^{\prime}=\frac{-\sin \left(x-c_{1}\right)}{\cos \left(x-c_{1}\right)}=-\tan \left(x-c_{1}\right) \\
y^{\prime \prime}=-\left(1+\tan ^{2}\left(x-c_{1}\right)\right) \\
\left.y^{\prime \prime}=-\left(1+y^{\prime}\right) \leadsto y^{\prime \prime}+y^{\prime^{2}}+1=0\right)
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
x \sin \alpha+y \cos \alpha=1 \\
\sin \alpha+y^{\prime} \cos \alpha=0
\end{array}\right.
$$

10

$$
\begin{aligned}
& \sin \alpha=\frac{\left|\begin{array}{ll}
1 & y \\
0 & y^{\prime}
\end{array}\right|}{\left|\begin{array}{ll}
x & y \\
1 & y^{\prime}
\end{array}\right|}=\frac{y^{\prime}}{x y^{\prime}-y} \\
& \cos \alpha=\frac{\left|\begin{array}{ll}
x & y \\
1 & 0
\end{array}\right|}{\left|\begin{array}{ll}
x & y \\
1 & y^{\prime}
\end{array}\right|}=\frac{-1}{x y^{\prime}-y}
\end{aligned}
$$

$$
\begin{aligned}
& \sin ^{2} \alpha+\cos ^{2} \alpha=1 \\
& \left(\frac{y^{\prime}}{x y^{\prime}-y}\right)^{2}+\left(\frac{-1}{x y^{\prime}-y}\right)^{2}=1 \rightarrow \frac{y^{\prime}+1}{\left(x y^{\prime}-y\right)^{2}}=1 \\
& y^{\prime^{2}}+1=\left(x y^{\prime}-y\right)^{2}
\end{aligned}
$$

$\because \pi=r=c(1+\sin \theta)$ ón 二厶, diveren:di

$$
c=\frac{r}{1+\sin \theta} \overbrace{\theta \rightarrow \infty}=\frac{\frac{d r}{d \theta}(1+\sin \theta)-\cos \theta(r)}{(1+\sin \theta)^{2}}
$$

11

 , $M(x, y) d x+N(x, y) d y=0$, $(\sin y) d x+(\cos x+e y) d y=0!y^{\prime}=\sqrt{x^{2}+y^{2}} \quad$ Jí of

$$
\because \text { •水 }
$$

(

$$
\left.\int M(x) d x+\int N y\right) d y=C
$$

1) $y^{\prime}=e^{x+y} \quad y(0)=0$

$$
\begin{aligned}
\frac{d y}{d x}=e^{x} \cdot e^{y} \longrightarrow \frac{d y}{e^{y}}=e^{x} d x & \nsim-e^{-y}=e^{x}+c \\
& \leadsto e^{x}+e^{-y}=c
\end{aligned}
$$

II

US, $y\left(.1=0 \sim e^{i}+\dot{e}=c \leadsto c=2\right.$

$$
\begin{aligned}
& e^{x}+e^{-y}=2 \\
& \sin y=1
\end{aligned}
$$

2)

$$
\begin{aligned}
& y^{\prime}=1+x^{2}+y^{2}+x^{2} y^{2} \\
& y^{\prime},\left(1+x^{2}\right)\left(1+y^{2}\right) \longrightarrow \frac{d y}{d x}=\left(1+x^{2}\right)\left(1+y^{2}\right) \\
& \frac{d y}{1+y^{2}}=\left(1+x^{2}\right) d x \stackrel{\tan ^{-1} y=x+\frac{x^{3}}{3}+C}{\sim} \quad
\end{aligned}
$$

$$
\begin{aligned}
& \text { 3) } x y^{\prime}+x^{2}=4 \longrightarrow x y^{\prime}=4-x^{2} \longrightarrow y^{\prime}=\frac{4-x^{2}}{x} \leadsto \frac{d y}{d x}=\frac{4-x^{2}}{x} \\
& \sim d y=\frac{4-x^{2}}{x} d x \longrightarrow d y=\left(\frac{4}{x}-x\right) d x \sim\left(\frac{1}{x}=1\right. \\
& y=4 \ln |x|-\frac{x^{2}}{2}+c \\
& \text { 4) } y^{\prime}=\sqrt{1+x+y+x y}
\end{aligned}
$$

$$
\frac{d y}{d x}=\sqrt{(1+x)(1+y)} \longrightarrow \frac{d y}{d x}, \sqrt{1+x} \sqrt{1+y} \longrightarrow
$$

$$
\frac{d y}{\sqrt{1+y}}=\sqrt{1+x} d x \longrightarrow(1+y)^{-\frac{1}{2}} d y=(1+x)^{\frac{1}{2}} d x
$$

$$
\stackrel{0^{\prime}-1}{=} 2(1+y)^{\frac{1}{2}}=\frac{2}{3}(1+x)^{\frac{3}{2}}+c
$$

II
5) $x y^{\prime}+y^{2}=4 \longrightarrow x y^{\prime}=4-y^{2} \longrightarrow$ g'x $x \frac{d y}{d x}=4-y^{2}$

$$
\begin{aligned}
& \frac{d y}{4-y^{2}}=\frac{d x}{x} \xrightarrow{y^{\prime}-\frac{d y}{\longrightarrow}} \frac{d y}{(2-y)(2+y)}=\int \frac{d x}{x} \longrightarrow-\frac{1}{4} \ln (2-y)+\frac{1}{4} \ln (2+y)= \\
& \int\left(\frac{1}{2-y}+\frac{\frac{1}{4}}{2+y}\right) d y=\int \frac{d x}{x} \longrightarrow \ln (2-y)^{-\frac{1}{4}}+\ln (2+y)^{\frac{1}{4}}=\ln x c \\
& \ln x+\ln c \longrightarrow \sqrt[4]{\frac{2+y}{2-y}}=c x \\
& \left.\ln (2-y)^{-\frac{1}{4}}(2+y)^{\frac{1}{4}}=\ln c x \sim \frac{2+y}{2-y}=c^{\prime} x^{4}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \text { ? } \int \frac{d y}{(2-y)(2+y)}=\text { ? } \\
& \frac{A}{2-y}+\frac{B}{2+y}=\frac{1}{(2-y)(2+y)} \Rightarrow 2 A+A y+2 B-B y=(2+g)(2+x) \\
& \left.\Rightarrow(A-B) y+2 A+2 B=1 \leadsto A=B \rightarrow A>B=\frac{1}{4} \right\rvert\,
\end{aligned}
$$

1) $(y+1) d x-\tan x d y=0$
2) $\left(1+x^{3}\right) d y-x^{2} y d x=0$
3) $\left(4 x+x y^{2}\right) d x+\left(y+x^{2} y\right) d y=0$
4) $y^{\prime}=e^{3 x-2 y}+x^{2} e^{-2 y}$

If
5) $y^{\prime}=\frac{y \ln y}{x}$
6) $y^{\prime}=y$
7) $y^{\prime}=x$
6) $y \ln y d x+\left(1+x^{2}\right) d y=0$
9) $e^{x} d y+y e^{x} d x+x^{2} d y+2 x y d x=0 \quad y(0)=1$

- ar lime pés,

$$
\begin{aligned}
& \forall \lambda \in R \Rightarrow f(\lambda x, \lambda y)=\lambda^{n} f(x, y) \\
& f(\lambda x, \lambda y)=(\lambda x)^{2}+(\lambda y)^{2}=\lambda^{2} x^{2}+\lambda^{2} y^{2}=\lambda^{2}\left(x^{2}+y^{2}\right) \\
& \lambda^{2} f(x, y) \\
& \left(3 e r=f(x) f(x, y)=x y^{2} \ln \left(\frac{y}{x}\right)+x^{3} \sin \left(\frac{x}{y}\right)\right. \\
& f(\lambda x, \lambda y)=(\lambda x)(\lambda y)^{2} \ln \left(\frac{\lambda y}{\lambda x}\right)+(\lambda x)^{3} \sin \left(\frac{\lambda x}{\lambda y}\right) \\
& =\lambda^{3} x y^{2} \ln \left(\frac{y}{x}\right)+\lambda^{3} x^{3} \sin \left(\frac{x}{y}\right) \\
& =
\end{aligned}
$$

 - Nutre
$\underline{2}$ en 2xy

$$
\int_{I}^{\left(x^{2}+y\right) d x+2 x y d y=0 \quad 2 \%}
$$

$$
\begin{aligned}
& \frac{\left(x^{2}+\frac{y^{2}}{2}\right)}{2} d x+\frac{2 x^{2} y}{3} d y=0 \\
& \text {-icra }
\end{aligned}
$$

$$
\begin{aligned}
& \frac{(y}{1}+\left(\frac{\sqrt{x^{2}+y^{2}}}{1}\right) d x-\frac{x d y}{1}=0 \\
& \sqrt{\lambda^{2} x^{2}+\lambda^{2} y^{2}}=\sqrt{\lambda^{2}\left(x^{2}+y^{2}\right)}=\lambda \sqrt{x^{2}+y^{2}}=\lambda f(x, y) \\
& \text { iv } \\
& y^{\prime}=\frac{x^{2}+y^{2}}{x-y}=0 \\
& 1!20
\end{aligned}
$$

$$
y^{\prime}=\frac{\underbrace{\frac{-3 x^{2} y}{x^{3}}+\underbrace{3 x y^{2}}_{3}}_{3}}{3}
$$

$$
\begin{aligned}
& \left.\frac{\left(x^{2}+y^{2}\right.}{2}\right) d x+\frac{2 x y d y}{2} d y \quad y(1)=-1 \quad j^{2} d v 1, v, v_{0}: J c_{0} \\
& y=x v \rightarrow\left(x^{2}+x^{2} v^{2}\right) d x+2 x(x v)(x d v+v d x)=0 \\
& \Rightarrow x^{2}\left(1+v^{2}\right) d x+2 x^{2} v(x d v+v d x)=0 \\
& \Rightarrow x^{2}\left(1+v^{2}\right) d x+2 x^{3} v d v+2 x^{2} v^{2} d x=0 \\
& \Rightarrow x^{2}\left(1+3 v^{2}\right) d x+2 v x^{3} d v=0 \\
& \Rightarrow\left(1+3 v^{2}\right) d x+2 x v d v=0 \\
& \Rightarrow\left(1+3 v^{2}\right) d x=-2 x v d v \\
& \left.\Rightarrow \frac{d x}{x}=\frac{-2 v d v}{1+3 v^{2}} \Rightarrow \right\rvert\, \frac{d x}{x}=\int \frac{-2 v d v}{1+3 v^{2}} \\
& \left.\Rightarrow \ln \ln \left|=-\frac{1}{3} \ln \right| 1+3 v^{2} \right\rvert\,+\ln c \\
& \Rightarrow 3 \ln \ln \left|=\ln \frac{c}{1+3 v^{2}} \Rightarrow \ln \ln \right|=\ln \left|\frac{c}{1+3 v^{2}}\right| \\
& \Rightarrow x^{3}\left(1+3 v^{2}\right)=c \Rightarrow x^{3}\left(1+3 \frac{y^{2}}{x^{2}}\right)=c \Rightarrow x^{3}+3 x y^{2}=c
\end{aligned}
$$

iv Moser, es: dao

$$
\begin{aligned}
& y^{\prime}=\frac{y+x}{y-x} \\
& y=v^{\prime} \longrightarrow y^{\prime}=v+v^{\prime} x \\
& v+v^{\prime} x=\frac{v x+x}{v x-x} \Rightarrow v+v_{x}^{\prime}=\frac{v+1}{v-1} \Rightarrow v^{\prime} x^{2} \frac{v+1}{v-1}-v \\
& \Rightarrow v^{\prime} x=\frac{v+1-v^{2}+v}{v-1} \Rightarrow v^{\prime} x=\frac{-v^{2}+2 v+1}{v-1} \Rightarrow \frac{d v}{d x} x=\frac{-v^{2}+2 v+1}{v-1} \\
& \Rightarrow \frac{v-1}{v^{2}+2 v+1} d v=\frac{d x}{x} \Rightarrow \int \frac{v-1}{-v^{2}+2 v+1} d v, \int \frac{d x}{x} \Rightarrow
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \quad 1+3(1)(-1)^{2}=c \quad \Rightarrow c=4 \\
& y(1)=-1 \\
& \Rightarrow \frac{x^{3}+3 x y^{2}=4}{\text { loger - }!} \\
& x \cdot \sin \left(\frac{y}{x}\right) y^{\prime}=y \sin \left(\frac{y}{x}\right)+x \\
& y=x v, \quad y^{\prime}=v+v^{\prime} x \\
& x \cdot \sin \left(\frac{v x}{x}\right)\left(v+v^{\prime} x\right)=x v \sin \left(\frac{v x}{x}\right)+x \Rightarrow \\
& x \sin v\left(v+v^{\prime} x\right)=x v \sin v+x \Rightarrow \\
& x v \sin v+x^{2} v^{\prime} \sin v=n v \sin v+x \Rightarrow \\
& x^{2} v^{\prime} \sin v=x \quad \Rightarrow x v^{\prime} \sin v=1 \quad \Rightarrow \\
& x \frac{d v}{d x} \sin v=1 \Rightarrow \sin v d v=\frac{d x}{x} \Rightarrow \\
& \int \sin v d r=\int \frac{d x}{x} \Rightarrow-\cos r=\ln x+c \\
& \Rightarrow-\cos \frac{y}{x}=\ln x+c
\end{aligned}
$$

$$
\begin{aligned}
& \left.-v^{2}+2 v+1=u \rightarrow(-2 v+2) d v=d u \Rightarrow-2(v-1) d v\right) d u \\
& (v-1) d v=\frac{d u}{-2} \int \\
& \int \frac{v-1}{-v^{2}+2 v+1} d v=\int \frac{d x}{x} \Rightarrow \int \frac{d u}{-2 u}=\int \frac{d x}{x} \Rightarrow \\
& -\frac{1}{2} \ln u=\ln x+\ln c \Rightarrow \ln u^{-\frac{1}{2}}=\ln c x \Rightarrow \\
& \frac{-1}{2}=c x \Rightarrow \frac{1}{\sqrt{-v^{2}+2 v+1}}=c x \Rightarrow c x \\
& \frac{1}{\sqrt{-\frac{y^{2}}{x^{2}}+\frac{2 y}{x}+1}}=c
\end{aligned}
$$

 - in vel

$$
\begin{array}{ll}
\left(y^{4}-3 x^{2}\right) d y+x y d x=0 & \frac{y=2^{\alpha} \rightarrow y^{\prime}=\alpha z^{\prime} z^{\alpha-1}}{, d y=\alpha z^{\alpha-1} d z} \\
\left(z^{4 \alpha}-3 x^{2}\right)\left(\alpha z^{\alpha-1} d z\right)+x z^{\alpha} d x=0 & \\
\Rightarrow\left(\alpha z^{5 \alpha-1}-3 \alpha x^{2} z^{\alpha-1}\right) d z+x z^{\alpha} d x=0 \circledast
\end{array}
$$

$$
\begin{aligned}
& 5 \alpha-1=\alpha+1 \Rightarrow 4 \alpha=2 \Rightarrow \alpha=\frac{1}{2} \\
& \left(\frac{1}{2} z^{\frac{5}{2}-1}-3 \frac{1}{2} x^{2} z^{\frac{1}{2}-1}\right) d z+x z^{\frac{1}{2}} d x=0
\end{aligned}
$$

$$
\begin{aligned}
& \stackrel{x 2}{\Rightarrow}\left(z^{\frac{3}{2}}-3 x x^{2} z^{-\frac{1}{2}}\right) d z+2 x z^{\frac{1}{2}} d x=0 \\
& \xrightarrow{x z^{\frac{1}{2}}}\left(z^{2}-3 x^{2}\right) d z+2 x z d x=0 \\
& z=x v \leadsto d z=v d x+x d v \\
& \left((x v)^{2}-3 x^{2}\right)(v d x+x d v)+2 x^{2} v d x=0 \\
& \Rightarrow\left(x^{2} v^{3}-3 x^{2} v\right) d x+\left(x^{3} v^{2}-3 x^{3}\right) d v+2 x^{2} v d x, \\
& \Rightarrow\left(x^{2} v^{3}-x^{2} v\right) d x+\left(x^{3} v^{2}-3 x^{3}\right) d v=0 \Rightarrow \\
& x^{2}\left(v^{3}-v\right) d x+x^{3}\left(v^{2}-3\right) d v=0 \Rightarrow \\
& \left(v^{3}-v\right) d x+x\left(v^{2}-3\right) d v=0 \quad \Rightarrow \\
& -\frac{1}{x} d x=\frac{v^{2}-3}{-v+v^{3}} \cdot d v \Rightarrow v^{2} d v^{2}-1 ; \therefore \\
& \int-\frac{1}{x} d x=\int \frac{v^{2}-3}{v^{3}-v} d v \Rightarrow \\
& -\int \frac{1}{x} d x=\int\left(\frac{3}{v}-\frac{2 v}{v^{2}-1}\right) d v \Rightarrow-\ln x=3 \ln v-\ln \left(v^{2}-1\right)+ \\
& \Rightarrow \ln \frac{1}{x}=\ln \left(\frac{c v^{3}}{v^{2}-1}\right) \Rightarrow v^{2}-1=c x v^{3} \Rightarrow \ln c=\frac{2}{x} \\
& \left(\frac{z}{x}\right)^{2}-1=c x\left(\frac{2}{x}\right)^{3} \Rightarrow \frac{z^{2}-x^{2}}{x^{2}}=\frac{c z^{3}}{x^{2}} \Rightarrow \\
& z^{2}-x^{2}=c z^{3}
\end{aligned}
$$

Y

$$
\begin{aligned}
& \int \frac{v^{2}-3}{v^{3}-v} d v \stackrel{?}{\dot{?}} \int\left(\frac{3}{v}-\frac{2 v}{v^{2}-1}\right) d v \\
& v\left(v^{2}-1\right) \\
& \frac{A}{v}+\frac{B v+C}{v^{2}-1}=\frac{v^{2}-3}{v\left(v^{2}-1\right)} \Rightarrow A v^{2}-A+B v^{2}+C v=v^{2}-3 \\
& \Rightarrow(A+B) V^{2}+C V-A=V^{2}-3 \\
& \Rightarrow A+B=1, C=0, A=3] \Rightarrow B=-2 \\
& \int \frac{v^{2}-3}{v^{3}-v} d v=\int\left(\frac{3}{v}+\frac{-2 v}{v^{2}-1}\right) d v \\
& \left(\begin{array}{l}
\left(y+\sqrt{x^{2}+y^{2}}\right) d x-x d y=0 \\
y=x v \longrightarrow d y=x d r+v d x \\
\left(x v \sqrt{x^{2}+x^{2} v^{2}}\right) d x-x(x d r
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \text { I }\left(x v+\sqrt{x^{2}+x^{2} v^{2}}\right) d x-x(x d v+v d x)=0 \\
& \Rightarrow\left(x v+\sqrt{x^{2}\left(1+v^{2}\right)}-x v\right) d x-x^{2} d v=0 \\
& \Rightarrow\left(x\left(v+\sqrt{1+v^{2}}-v\right)\right) d x-x^{2} d v=0 \\
& \Rightarrow \sqrt{1+v^{2}} d x-x d v=0 \Rightarrow \frac{1}{x} d x=\frac{1}{\sqrt{1+v^{2}}} d v \Rightarrow \\
& \int \frac{1}{x} d x=\int \frac{1}{\sqrt{1+v^{2}}} d v \Rightarrow \ln x=\ln \left|\sqrt{1+v^{2}}+v\right|+\ln c \\
& \Rightarrow x=c\left(\sqrt{1+\left(\frac{y}{x}\right)^{2}}+\frac{y}{x}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \int \frac{1}{\sqrt{1+v^{2}}} d v \frac{?}{=} \ln \left|\sqrt{1+v^{2}}+v\right|+C \\
& v=\tan \theta \Rightarrow d v>\sec ^{2} \theta d \theta \\
& \int \frac{1}{\sqrt{1+v^{2}}} d v=\int \frac{\sec ^{2} \theta d \theta}{\sqrt{1+\tan ^{2} \theta}}=\int \frac{\sec ^{2} \theta}{\sec \theta} d \theta=\int \sec \theta d \theta= \\
& \ln |\sec \theta+\tan \theta|+C=\ln \left|\frac{1}{\frac{1}{\sqrt{1+v^{2}}}}+v\right|+c \\
& \sqrt{1+v^{2} / \mid} \mid v
\end{aligned}
$$

1) $y^{\prime}-\frac{y}{x}+\csc \frac{y}{x}=0$
2) $\left(x \tan \frac{y}{x}+y\right) d x-x d y=0$
3) $\left(\frac{y}{x} \cos \frac{y}{x}\right) d x-\left(\frac{x}{y} \sin \frac{y}{x}+\cos \frac{y}{x}\right) d y=0$
4) $y^{\prime}=\frac{-3 x^{2} y+y^{3}}{x^{3}+3 x y^{2}}$
5) $\left(x^{2}+y^{2}\right) d x-\left(x^{2}+x y\right) d y=0$
b) $(x+y) d x-(x-y) d y=0$
共

$$
\begin{aligned}
& d f(x, y)=M(x, y) d x+N(x, y) d y \\
& \quad \operatorname{cov}\left\{\begin{array}{l}
f_{x}(x, y)=M(x, y) \\
f_{y}(x, y)=N(x, y)
\end{array}\right. \\
& d f(x, y)=M(x, y) d x+N(x, y)
\end{aligned}
$$

位 $M(x y) d x+N(x, y) d y=0$ 首共

$$
\frac{3 x^{2}}{M(x(y)} d x+\frac{2 y}{N(x(y)} d y=0
$$

YE

$$
\begin{aligned}
& M_{y}^{(x, y)}=N_{x}(x, y)
\end{aligned}
$$

$$
d f(x, y)=M(x, y) d x+N(x, y) d y \Rightarrow
$$

$$
f_{x} d x+f_{y} d y=\left(2 y^{2}-4 x+5\right) d x+(4-2 y+4 x y) d y
$$

$$
\Rightarrow\left\{\begin{array}{l}
f x=2 y^{2}-4 x+5 \Longrightarrow f(x y)=\int\left(2 y^{2}-4 x+5\right) d x= \\
f y=4-2 y+4 x y
\end{array}\right.
$$

$$
f(x, y)=\int(4-2 y+4 x y) d y=\frac{4 y-y^{2}+2 x y^{2}}{H}
$$

(I), (II) $\Rightarrow f(x y), 2 x y^{2}-2 x^{2}+5 x+4 y-y^{2} \Rightarrow$ $2 x y^{2}-2 x^{2}+5 x+4 y-y^{2}=C$
10

$$
\begin{aligned}
& d f\left(x_{y}\right)=M(x, y) d x+N(x, y) d y \Rightarrow \\
& f_{x}(x y) d x+f_{y}(x, y) d y=3 x^{2} d x+2 y d y
\end{aligned}
$$

$$
\begin{aligned}
& f(x, y)=x^{3}+y^{2} \Rightarrow \frac{x^{3}+y^{2}=C}{\text { r, 60 (ex)- ? ? }} \\
& \frac{\left(2 y^{2}-4 x+5\right)}{M} d x+\frac{(4-2 y+4 x y)}{N} d y=0 \\
& \text { (20 } 0 \text { os } \\
& M_{y}=4 y, N_{x}=4 y \Rightarrow M_{y} \leq N_{x} \Rightarrow V_{j b}{ }^{\prime} c_{0} \Rightarrow
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{2+y e^{x y}}{2 y-x e^{x y}} \Rightarrow\left(2+y e^{x y}\right) d x-\left(2 y-x e^{x y}\right) d y=0 \\
& \Rightarrow\left\{\begin{array} { l }
{ M (x , y) = 2 + y e ^ { x y } } \\
{ N (x , y) = - (2 y - x e ^ { x y }) }
\end{array} \Rightarrow \left\{\begin{array}{l}
M y=e^{x y}+x y e^{x y} \\
N_{x}=e^{x y}+x y e^{x y} \Rightarrow
\end{array}\right.\right. \\
& M_{y}=N_{x} \Rightarrow=f(x, y) \text { s.t. }
\end{aligned}
$$

$$
d f(x, y)=M(x, y) d x+N(x, y) d y \Rightarrow
$$

$$
f_{x} d x+f_{y} d y=\left(2+y e^{x y}\right) d x-\left(2 y-x e^{x y}\right) d y \Rightarrow
$$

$$
f(x, y)=e^{x y}+2 x-y^{2} \Rightarrow \frac{e^{x y}+2 x-y^{2}=c}{(\text { ere }-1 x}
$$

$$
\text { * } \int\left(2+y e^{x y}\right) d x=2 x+\frac{\int y e^{x y} d x}{=i y, x+i_{0}}=\frac{2 x+e^{x y}+c}{}
$$

$$
y \int e^{k y} d x
$$

* $\int e^{3 x} d x=\frac{1}{3} e^{3 x}+c \quad y \cdot \frac{1}{y} e^{x y}+c$

PY

$$
\begin{aligned}
& \text { (3xin} \left.y-x^{2}\right) \cos y d y=0 \\
& \sin y=u \rightarrow \cos y d y=d u \quad *
\end{aligned}
$$

$$
\begin{aligned}
& \left(4 x^{3} u^{3}-2 x u\right) d x+\left(3 x^{4} u^{2}-x^{2}\right) d u=0 \\
& M y=12 x^{3} u^{2}-2 x \\
& N_{x}=12 x^{3} u^{2}-2 x \Rightarrow M_{u}=N_{n} \Longrightarrow y_{1} \text { b́r, } \\
& \text { No, } \\
& d f(x, y)=M(x, y) d x+v(x, y) d y \Rightarrow \\
& f_{x} d x+f_{y} d y=\left(4 x^{3} u^{3}-2 x u\right) d x+\left(3 x^{4} u^{2}-x^{2}\right) d u \Rightarrow \\
& \left\{\begin{array}{l}
f_{x}=4 x^{3} u^{3}-2 x u \xrightarrow[x]{\Longrightarrow} \Rightarrow f(x, y)=x^{4} u^{3}-x^{2} u \\
f_{u}=3 x^{4} u^{2}-x^{2} \because f(x, y)=x^{4} u^{3}-x^{2} u
\end{array} \Longrightarrow\right. \\
& f(x, u)=x^{4} u^{3}-x^{2} u \Rightarrow u=\sin y \quad f(x, y)=x^{4} \sin ^{3} y-x^{2} \sin y \\
& \Rightarrow x^{4} \sin ^{3} y-x^{2} \sin y=c \quad\left(0,-\frac{1}{2}\right.
\end{aligned}
$$

رتّه

$\mu(x, y) M(x, y) d x+\mu(x, y) \sim(x, y) d y=$ o II

\therefore; קנקס

$$
\begin{aligned}
& (\mu \cdot M)_{y}=(\mu \cdot N)_{x} \Rightarrow \mu_{y} \cdot M+M_{y} \cdot \mu=\mu_{x} \cdot N+N_{x} \cdot \mu \\
& \Rightarrow \mu_{y} \cdot M-\mu_{x} \cdot N=\mu\left(N_{x}-M_{y}\right) \pm
\end{aligned}
$$

S院

$$
\begin{aligned}
& \mu_{y} \cdot M-\mu_{n} \cdot N=\mu^{\prime}(z) \cdot z_{y} \cdot M-\mu^{\prime}(z) \cdot z_{n} \cdot N \quad * * \\
& \mu^{\prime}(2) \cdot z_{y} \cdot \mu-\mu^{\prime}(2) \cdot z_{x} \cdot N=\mu\left(N_{n}-M_{y}\right) \Rightarrow ;\left(N^{* *}-\frac{*}{-2}\right. \\
& \mu^{\prime}(2)\left(z_{y} \cdot M-z_{n} \cdot N\right)=\mu\left(N_{n}-M_{y}\right) \Rightarrow \\
& \frac{\mu^{\prime}(z)}{\mu(2)}=\frac{M_{n}-M y}{M 2_{y}-N Z_{x}} \Rightarrow \frac{d M / d z}{\mu(2)}=\frac{N_{x}-M_{y}}{M Z_{y}-N Z_{n}}
\end{aligned}
$$

$$
\begin{aligned}
& \mu(z)=e^{\int \frac{N x-M y}{M z_{y}-N^{2} x}} d z \\
& \text {; }
\end{aligned}
$$

: Oecolo $-\pi$

$$
\begin{aligned}
& d z=d x \& z_{y}=0 \& z_{x}=1 \Rightarrow \mu(x)=e^{\int \frac{N_{x}-M y}{M z_{y}-N z_{x}} d x} d x= \\
& \Rightarrow \mu(x)=e^{\int \frac{\mu_{x}-M_{y}}{-N} d x} \\
& \int_{e} \frac{M_{x}-M_{y}}{-N} d x \\
& \text { : 小ر/, } \\
& d z=d y, z_{n}=0, z_{0}=1 \Rightarrow \mu(y)=e^{1} \\
& \int \frac{N_{x}-\bar{M}_{y}}{M} d y
\end{aligned}
$$

$$
\begin{align*}
& \left(y-x y^{2}\right) d x-\left(x+x^{2} y\right) d y=0 \\
& * z_{y}=x, z_{x}=y, M_{y}=1-2 x y, M_{x}=-(1+2 x y) \\
& * N_{x}-M_{y}=-(1+2 x y)-(1-2 x y \mid=-2 \\
& * M z_{y}-N z_{x}=\left(y-x y^{2}\right) x-\left(-\left(x+x^{2} y\right)\right) y=x y-x^{2} y^{2}+x y+ \\
& x^{2} y^{2}=2 x y \\
& \mu(z)=e \int \frac{N x-M y}{M z_{y}-N z_{n}} d z=\int \frac{-2}{2(x y)_{z}} d z=e e_{z}^{2}=e-\ln |2| \\
& =\frac{1}{|x y|}
\end{align*}
$$

- F, ه 0 b'

$$
\frac{1}{x y}\left(y-x y^{2}\right) d x-\frac{1}{x y}\left(x+x^{2} y\right) d y=0 \Rightarrow
$$

<q

$$
\begin{aligned}
& \underbrace{\left(\frac{1}{x}-y\right)}_{M} d x-\underbrace{-\left(\frac{1}{y}+x\right)}_{N} d y=0 \\
& M_{y}=-1, N_{x}=-1 \Rightarrow M_{y}=N_{x} \Rightarrow N H^{\prime} \Rightarrow
\end{aligned}
$$

$$
\begin{aligned}
& d f(x, y)=M(x y) d x+N(x, y) d y \Rightarrow \\
& f_{x} d x+f_{y} d y=\left(\frac{1}{x}-y\right) d x-\left(\frac{1}{y}+x\right) d y
\end{aligned}
$$

$$
\begin{aligned}
& f(x, y)=\ln |x|-\ln |y|-x y \Rightarrow \ln |n|-\frac{\ln |y|-x y=c \mid}{\log -1,2} \\
& \frac{(x-y \ln y+y \ln x)}{M} d x \underbrace{\operatorname{tx}(\ln y-\ln x)}_{N} d y=0 \text { in Jots; tice (2) Nio } \\
& M y=-\ln y-1+\ln x \\
& N_{x}=\ln y-\ln x-1 \Rightarrow N_{x}-M_{y}=\ln y-\ln x-1-(-\ln y-1+\ln x) \\
& =-2 \ln x+2 \ln y=2(\ln y-\ln x) . \\
& \frac{N_{x}-M_{y}}{-N}=\frac{2(\ln y-\ln x)}{-x(\ln y-\ln x)}=\frac{-2}{x} \Rightarrow \mu(x) s e^{\int \frac{-2}{x} d x}=\frac{1}{x^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \left(\frac{1}{x}-\frac{y \ln y}{x^{2}}+\frac{y \ln x}{x^{2}}\right) d x+\left(\frac{\ln y}{x}-\frac{\ln x}{x}\right) d y=0 \\
& \exists f(x, y) \text { s.t } \quad d f(x, y)=M(x, y) d x+v(x \cos) a l y \Rightarrow \\
& f_{x} d x+f_{y} d y=\left(\frac{1}{x}-\frac{y \ln y}{x^{2}}+\frac{y \ln x}{x^{2}}\right) d x+\left(\frac{\ln y}{x}-\frac{\ln x}{x}\right) d y \\
& \Rightarrow f_{x}=\frac{1}{x}-\frac{y \ln y}{x^{2}}+\frac{y \ln x}{x^{2}} \xlongequal[x]{\Longrightarrow} f(x, y), \int\left(\frac{1}{x}-\frac{y \ln y}{x^{2}}+\frac{y \ln x}{x^{2}} d\right. \\
& =\ln x+\frac{y \ln y}{x}-y \cdot\left(\frac{\ln x}{x}+\frac{1}{x}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{x}(y \ln y-y)-y \frac{\ln x}{x} \\
& \Rightarrow f(x, y)=\ln x+\frac{y \ln y}{x}-\frac{y \ln x}{x}-\frac{y}{x} \Rightarrow \\
& \left.\ln x+\frac{y}{x}(\ln y-\ln x-1)=c\right) \quad(\rho, 5,1,0 \\
& \frac{\left(x y+y^{2}+y\right)}{\mu} d x+\frac{\left(x^{2}+3 x y+2 x\right) d y=0}{N} \quad \text { in } \\
& \begin{array}{l}
M_{y}=x+2 y+1 . \Rightarrow N_{x}-M_{y}=x+y+1 . \\
N_{x}=2 x+3 y+2
\end{array} \\
& N x=2 x+3 y+2 \\
& \frac{N_{x}-M y}{M}=\frac{x+y+1}{y(x+y+1)}=\frac{1}{y}
\end{aligned}
$$

$$
\frac{(1+3 x \sin y)}{n} d x-\frac{x^{2} \cos y d y}{\sim}=0 \text { iw } d x
$$

$$
\begin{aligned}
& M_{y}=3 x \cos y \\
& N_{x}=-2 x \cos y
\end{aligned} \quad \Rightarrow N_{x}-M_{y} s-5 x \cos y
$$

$$
\frac{N_{x}-N_{y}}{-N}=\frac{-5 x \cos y}{-\left(-x^{2} \cos y\right)}=\frac{-5}{x} \Rightarrow \mu(x) s e^{\int \frac{N_{x}-M_{y}}{-N} d x}
$$

$$
=e^{\int \frac{-5}{x}}=e^{-5 \ln x}=\frac{1}{x^{5}} .
$$

凹]

$$
\begin{aligned}
& \mu(y)=\int_{e} \frac{N_{x}-\mu_{y}}{\mu} d y, e^{\frac{1}{y} d y}=e^{\ln y}, y \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\left(x y^{2}+y^{3}+y^{2}\right)}{m} d x+\frac{\left(x^{2} y+3 x y^{2}+2 x y\right)}{N} d y=0 \\
& f_{x}=x y^{2}+y^{3}+y^{2} \xlongequal[x]{\Longrightarrow} f(x, y)=\frac{1}{2} x^{2} y^{2}+x y^{3}+x y^{2} \\
& f y=x^{2} y+3 x y^{2}+2 x y \xrightarrow[y]{\sim} f(x, y)=\frac{1}{2} x^{2} y^{2}+x y^{3}+x y^{2} \\
& \Rightarrow f(x, y)=\frac{1}{2} x^{2} y^{2}+x y^{3}+x y^{2} \quad \Rightarrow \\
& \left.\frac{1}{2} x^{2} y^{2}+x y^{3}+x y^{2}=c\right) \quad \text { (2ace }
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \frac{1}{x^{5}}(1+3 x \sin y) d x-\frac{1}{x^{5}}\left(x^{2}(0, y) d y=0\right. \\
& \Rightarrow\left(\frac{1}{n^{5}}+\frac{3}{n^{4}} \sin y\right) d n-\frac{1}{n^{3}} \cos y d y=0
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{-1}{4} x^{-4}-x^{-3} \sin y . \\
& f_{y}=-\frac{1}{x^{3}} \cos y \xrightarrow[y:-y_{0}^{\prime \prime-i}]{\sim} f_{(x, y)=}=-\frac{1}{x^{3}} \cos y d y=-x^{-3} \sin y \\
& \Rightarrow f(x, y)=-\frac{1}{4 x^{4}}-\frac{1}{x^{3}} \sin y \Rightarrow \\
& \left.-\left(\frac{1}{4 x^{4}}+\frac{\sin y}{x^{3}}\right)=C\right] \quad \cos -1,0
\end{aligned}
$$

$$
\begin{aligned}
& \left(3 y+4 x y^{2}\right) d x+\left(2 x+3 x^{2} y\right) d y=0
\end{aligned}
$$

$$
\begin{aligned}
& x^{m} y^{n}\left(3 y+4 x y^{2}\right) d x+x^{m} y^{n}\left(2 x+3 x^{2} y\right) d y=0 \Rightarrow \\
& \underbrace{\left(3 x^{m} y^{n+1}+4 x^{m+1} y^{n+2}\right)}_{M} d x+\underbrace{\left(2 x^{m+1} y^{n}+3 x^{m+2} y^{n+1}\right)}_{N} d y=.
\end{aligned}
$$

$$
\begin{aligned}
& \left\{\begin{array}{l}
M y=3(n+1) x^{m} y^{n}+4(n+2) x^{m+1} y^{n+1} \quad \begin{array}{l}
M_{y}=N_{x} \\
N_{x}=2(m+1) x^{m} y^{n}+3(m+2) x^{m+1} y^{n+1}
\end{array} \quad \Longrightarrow \quad
\end{array}\right. \\
& \left\{\begin{array} { l }
{ 3 (n + 1) = 2 (m + 1) } \\
{ 4 (n + 2) = 3 (m + 2) }
\end{array} \Rightarrow \left\{\begin{array} { l }
{ 3 n - 2 m = - 1 } \\
{ 4 n - 3 m = - 2 }
\end{array} \Rightarrow \left\{\begin{array}{l}
m=2 \\
n=1
\end{array}\right.\right.\right. \\
& \text { rer }
\end{aligned}
$$

(土) = N

$$
e^{\int p(x) d x}\left(y^{\prime}+p(x) \cdot y\right)=q(x) \cdot e^{\int p(x) d x}
$$

$$
y^{\prime} \cdot e^{\int p(x) d x}+p(x) \cdot y \cdot e^{\int p(x) d x}=q(x) \cdot e^{\int p^{\prime}(x) d x} \rightarrow
$$

$$
\left(y \cdot e^{\int p(x) d x}\right)^{\prime}=q(x) \cdot e^{\int p(x) d x} \xrightarrow[x]{\sim=\sim / \int_{j}^{\prime-j}}
$$

$$
y e^{\int p(x) d x}=\int q(x) \cdot e^{\int p(x) d x} d x+c \rightarrow
$$

$$
y_{g}=e^{-\int p(x) d x}\left\{\int q(x) \cdot e^{\int p(x) d x} d x+c\right\}
$$

$$
\begin{aligned}
& P(x) \neq 0 \\
& \text { : (1) (9) (5) redo do } \\
& y^{\prime}+p(x) \cdot y=q(x) \rightarrow \frac{d y}{d x}+p(x) \cdot y=q(x) \rightarrow \frac{d y}{d x}=q(x)-p(x) \cdot y \\
& \rightarrow \underbrace{(q(x)-p(x) \cdot y)}_{M} d x \underbrace{-d y=0}_{N} \Rightarrow\left\{\begin{array}{l}
M_{y}=-p(x) \\
N_{x}=0
\end{array} \Rightarrow\right. \\
& N_{x}-M_{y}=p(x) \rightarrow \mu(x)=e^{\int \frac{N_{x}-M_{y}}{-N} d x}=e^{\int \frac{p(x)}{-(-1)} d x}=e^{\int p(x) d x}
\end{aligned}
$$

$$
\begin{aligned}
& y^{\prime}-2 x y=4 x e^{x^{2}} \\
& \left\{\begin{array}{l}
p(x)=-2 x \\
q(x)=4 x e^{x^{2}} \longrightarrow y_{g}=e^{-\int p(n) d x}\left\{\int q(x) e^{\int p(x) d x} d x+c\right\}= \\
d x
\end{array}\right] \\
& e^{-\int(-2 x) d x}\left\{\int 4 x e^{x^{2}} \cdot e^{\int-2 x d x} d x+c\right\}= \\
& e^{x^{2}}\left\{\int 4 x e^{x^{2}} \cdot e^{-x^{2}} d x+c\right\}= \\
& e^{x^{2}}\left(2 x^{2}+c\right)=2 x^{2} \cdot e^{x^{2}}+c \cdot e^{x^{2}} \\
& y d x+\left(x \ln y+y e^{-\frac{\ln ^{2} y}{2}}\right) d y=0 \\
& 12 \mathrm{Jin} \\
& y d x=-\left(x \ln y+y e^{-\frac{\ln ^{2} y}{2}}\right) d y \rightarrow \frac{d y}{d x}=\frac{y}{\left.-\ln \ln y+y e^{-\frac{\ln ^{2} y}{2}}\right)} \\
& \longrightarrow \frac{d x}{d y}=\frac{-\left(x \ln y+y e^{\left.-\frac{\ln ^{2} y}{2}\right)}\right.}{y} \rightarrow \frac{d x}{d y}=-\frac{\ln y}{y} x-e^{-\frac{\ln ^{2} y}{2}} \\
& \rightarrow x^{\prime}+\frac{\ln y}{y} x=-\frac{1}{y} e^{-\frac{\ln ^{2} y}{2}} \quad y^{\prime}+p(x) \cdot y=q(x) \quad * \\
& x_{g}=e^{-\int \frac{\ln y}{y} d y}\left\{\int-e^{-\frac{\ln ^{2} y}{2}} \cdot e^{\int \frac{\operatorname{ly}}{y} d y} d y\right. \\
& \left.-\frac{\ln ^{2} y}{2},+c\right\} \\
& \left.=e^{-\frac{\ln y}{2}}\left\{\int-e^{-\frac{\ln ^{2} y}{2}} \cdot e^{\frac{\ln ^{2} y}{2}} d y+c\right\} \right\rvert\, \\
& \frac{x^{\prime}+p(y) \cdot x}{[L}=q(y) \\
& x_{g}=e^{-\int p^{L}(y) d y}\left[\int q(y) e^{\int p(y) d y} d y+c\right\} \\
& =-e^{-\ln ^{2} y} 2\{-y+c\}=-y e^{-\frac{\ln ^{2} y}{2}}+c e^{-\frac{\ln ^{2} y}{2}} \text {. }
\end{aligned}
$$

$$
\begin{gathered}
y^{\prime}=\frac{1}{x+\cos y} \quad\left(y^{\prime} \cdot \frac{d y}{d x}\right. \\
\frac{d y}{d x}=\frac{1}{x+\cos y} \Rightarrow \frac{d x}{d y}=x+\cos y \Rightarrow x^{\prime}-x=\cos y \rightarrow\left\{\begin{array}{l}
p(y) s-1 \\
q(y) s \\
\cos y
\end{array}\right. \\
x g=e^{-\int-\cos y}\left\{\int \cos y e^{\int-d y} d y+c\right\}= \\
e^{y}\left\{\int \cos y \cdot e^{-y} d y+c\right\}=e^{y}\left(\frac{e^{-y} \sin y-e^{-y} \cos y}{2}+c\right) \\
=\frac{\sin y-\cos y}{2}+c e^{y}
\end{gathered}
$$

I)

$$
\begin{equation*}
\int \cos y \cdot e^{-y} d y=e^{-y} \cdot \sin y-\int \sin y \cdot\left(-e^{-y}\right) d y= \tag{III}
\end{equation*}
$$

* $\int u d v s u \cdot v-\int v d u=e^{-y} \cdot \sin y+\int e^{-y} \cdot \sin y d y$

$$
\begin{aligned}
& u=e^{-y} \longrightarrow d u s-e^{-y} d y \\
& d v=\cos y \longrightarrow v=\sin y
\end{aligned}
$$

$$
=e^{-y} \sin y-\cos y e^{-y}-I
$$

$$
\begin{aligned}
& \left\{\begin{array}{l}
e^{-y} \cdot \sin y d y \Rightarrow-\cos y \cdot e^{-y}-\int(-\cos y)\left(-e^{-y}\right) d y \\
I
\end{array}\right. \\
& \text { * } \begin{array}{l}
u=e^{-y} \longrightarrow d u s-e^{-y} \\
d v \sin y \longrightarrow v=-\cos y
\end{array} \\
& \Rightarrow I=e^{-y} \sin y-\cos y \cdot e^{-y}-I \Rightarrow I=\frac{e^{-y} \sin y-e^{-y} \cos y}{2}
\end{aligned}
$$

爫
Scanned by CamScanner

$$
\begin{aligned}
& x^{2} d y-x y d x=(x-2) e^{x} d x \\
& x^{2} d y=\left((x-2) e^{x}+x y\right) d x \rightarrow y^{\prime}=\frac{d(x-2)}{x^{2}} e^{x}+\frac{1}{x} y \longrightarrow \\
& \begin{array}{l}
y^{\prime}-\frac{1}{x} y=\frac{x-2}{x^{2}} e^{x} \Rightarrow\left\{\begin{array}{l}
p(x)=\frac{-1}{x} \\
q(x)=\frac{x-2}{x^{2}} e^{x}
\end{array}\right. \\
y_{g=}=-\int-\frac{1}{x} d x
\end{array}\left\{\int \frac{x-2}{x^{2}} e^{x} \cdot e^{\int-\frac{1}{x} d x} d x+c\right\}=-1 . \\
& e^{\ln x}\left\{\int \frac{x-2}{x^{2}} e^{x} \cdot\left(e^{-\tan x} d x+c\right\}=x\left(\int \frac{(x-2) e^{x}}{x^{3}} d x+c\right)\right. \\
& =x\left(\int\left(\frac{1}{x^{2}}-\frac{2}{x^{3}}\right) e^{x} d x=x\left(\int \frac{1}{x^{2}} e^{x} d x+\int \frac{-2}{x^{3}} e^{x} d x\right)\right. \\
& =x\left(\frac{e^{x}}{x^{2}}+c\right)=\frac{e^{x}}{x}+c x \\
& \text { * } \int x^{-2} \cdot e^{x} d x=x^{-2} \cdot e^{x}-\int e^{x} \cdot(-2) x^{-3} d x \\
& u=n^{-2} \longrightarrow d u s-2 x^{-3} d x \\
& d v=e^{x} d x \longrightarrow v=e^{x} \\
& \int\left(x^{-2} e^{x}-\csc 2 x^{-3} e^{x}\right) d x=\int x^{-2} e^{x} d x+\int-2 x^{-3} e^{x} d x \\
& \stackrel{*}{*} x^{-2} e^{x}+\int 2 x^{-3} e^{x} d x-\int 2 x^{-3} e^{x} d x=\frac{1}{x^{2}} e^{x}
\end{aligned}
$$

$$
\begin{aligned}
& (n \neq 0,1)<y^{\prime} y^{\prime}+p(n) \cdot y=q(n) \cdot y^{n}=\text { Er, jer, wodor } \\
& \text { if } n=0 \longrightarrow y^{\prime}+p(x) \cdot y=f(x) \quad \text { 分 }=\sqrt{2}=0 \\
& \text { if } n=1 \longrightarrow y^{\prime}+p(n) \cdot y=q(n) \cdot y \leadsto y^{\prime}+(p(x)-q(x)) y=0 \\
& \text {-rirloreror }
\end{aligned}
$$

$$
\begin{aligned}
& y^{\prime} y^{-n}=\frac{u^{\prime}}{1-n} \text { v } u^{\prime}=(1-n) y^{\prime} y^{-n} \longleftrightarrow u=y^{1-n} \text { : }
\end{aligned}
$$

$$
\begin{aligned}
& \frac{u^{\prime}}{1-n}+p(n) \cdot u=q(n) \xrightarrow{x(1-n)} u^{\prime}+(1-n) p(n) u=(1-n) q(n)
\end{aligned}
$$

$$
\begin{aligned}
& x y^{\prime}-\frac{y}{2 \ln x}=y^{2} \\
& y^{\prime}-\frac{y}{2 x \ln x}=\frac{1}{x} y^{2} \xrightarrow[y^{-2}]{2-i \operatorname{cop}} y^{-2} \cdot y^{\prime}-\frac{1}{2 x \ln x} y^{-1}=\frac{1}{x} \int^{*}
\end{aligned}
$$

let $u=y^{-1} \longrightarrow u^{\prime}=-y^{\prime} y^{-2}$
(1) 1 ino

$$
\begin{aligned}
& -u^{\prime}-\frac{1}{2 x \ln x} u=\frac{1}{x} \longrightarrow u^{\prime}+\frac{1}{2 x \ln x} u=-\frac{1}{x} \\
& \sim\left\{\begin{array}{l}
p(x)=\frac{1}{2 x \ln x} \\
q_{(x)}-\frac{1}{x}
\end{array} \Rightarrow u_{g}^{(x)}=e^{-\int \frac{1}{2 x \ln x} d x}\left\{\int-\frac{1}{x} e^{\int \frac{1}{2 x \ln x} d x} d x+c\right\}\right.
\end{aligned}
$$

$$
\begin{align*}
& \Rightarrow u_{g}(x) \cdot e^{-\frac{1}{2} \ln (\ln x)}\left\{\int-\frac{1}{x} e^{\frac{1}{2} \ln (\ln x)} d x+c\right\} \\
& =(\ln x)^{-\frac{1}{2}}\left\{\int \frac{(\ln x)^{\frac{1}{2}}}{-x} d x+c\right\} \\
& =(\ln x)^{-\frac{1}{2}}\left\{-\frac{2}{3}(\ln x)^{\frac{3}{2}}+c\right\}=-\frac{2}{3} \ln x+c(\ln x)^{-\frac{1}{2}} \\
& u=y^{-1} \\
& \Rightarrow y^{-1}=-\frac{2}{3} \ln x+c(\ln x)^{-\frac{1}{2}} \Rightarrow \\
& y=\frac{1}{-\frac{2}{3} \ln x+c(\ln x)^{-\frac{1}{2}}} \\
& y^{\prime}=\frac{y}{x}+\frac{2 x^{3} \cos x^{2}}{y} \\
& y^{\prime}-\frac{1}{x} y=2 x^{3} \cos x^{2} \cdot y^{-1} \xrightarrow{y x \operatorname{sen}} y y^{\prime}-\frac{1}{x} y^{2}=2 x^{3} \cos x^{2} \\
& \Rightarrow \text { let } u=y^{2} \longrightarrow u^{\prime}, 2 y y^{\prime} \\
& \frac{u^{\prime}}{2}-\frac{1}{x} u=2 x^{3} \cos x^{2} \rightarrow u^{\prime}-\frac{2}{x} u=4 x^{3} \cos x^{2} \\
& -\int-\frac{2}{x} d x\left\{\int 4 x^{3} \cos x^{2} \int-\frac{2}{x} d x\right. \text { णرios 这化, u. } \\
& u(x)=e^{-\int-\frac{2}{x} d x}\left\{\int 4 x^{3} \cos x^{2} \cdot e^{\int-\frac{2}{x} d x} d x+c\right\} \\
& =e^{2 \ln x}\left\{\int 4 x^{3} \cos x^{2} \cdot e^{-2 \ln x} d x+c\right\} \\
& =x^{2}\left\{\int 4 x^{3} \cos x^{2} \cdot \frac{1}{x^{2}} d x+c\right\}=x^{2}\left\{\int 4 x \cdot \cos x^{2} d x+c\right\}
\end{align*}
$$

$$
\begin{aligned}
& x^{2}\left(2 \sin x^{2}+c\right)=2 x^{2} \sin x^{2}+c x^{2} \xrightarrow{4=y^{2}} \\
& \left.y^{2}(x)=2 x^{2} \sin x^{2}+c x^{2}\right] \\
& \text { * } \int x \cos x^{2} d x=\int \frac{1}{2} \cos u d u=\frac{1}{2} \sin u+c \\
& x^{2}=4 \\
& =\frac{1}{2} \sin x^{2}+c \\
& 2 x d x \text { sely } \\
& y^{\prime}=\frac{2 x y}{x^{2}-y^{2}-4} \\
& \underbrace{x^{\prime}+p(y) n=7(y) n^{n}} 13 \mathrm{dm} \\
& \frac{d y}{d x}=\frac{2 x y}{x^{2}-y^{2}-4} \rightarrow \frac{d x}{d y}=\frac{x^{2}-y^{2}-4}{2 x y} \rightarrow \frac{d x}{d y}=\frac{x^{2}}{2 x y}-\left(\frac{y^{2}-4}{2 x y}\right) \\
& \rightarrow x^{\prime}-\frac{1}{2 y} x=-\left(\frac{y^{2}-4}{2 y}\right) x^{-1} \\
& \xrightarrow{x \times 3} x x^{\prime}-\frac{1}{2 y} x^{2}=-\frac{y}{2}-\frac{2}{y} \\
& x^{2}=4 \\
& 2 n x^{\prime}=u^{\prime} \\
& \frac{u^{\prime}}{2}-\frac{1}{2 y} u=-\frac{y}{2}-\frac{2}{y} \rightarrow u^{\prime}-\frac{1}{y} u=-y-\frac{4}{y} \\
& u(y)=e^{-\int-\frac{1}{y} d y}\left\{\int\left(-y-\frac{4}{y}\right) e^{\int-\frac{1}{y} d y} d y+c\right\} \\
& =e^{\ln y}\left\{\int\left(-y-\frac{4}{y}\right) e^{-\ln y} d y+c\right\} \\
& =y\left\{\int\left(-1-\frac{4}{y^{2}}\right) d y+c\right\}=y\left(-y+\frac{4}{y}+c\right) \\
& \xrightarrow{u=x^{2}} \quad x^{2}(y)=-y^{2}+4+c y
\end{aligned}
$$

F.
 ，رlasi）

 $y^{\prime}=2 \sec x \cdot \tan x-y^{2} \sin x \quad, \quad y_{1}=\sec x$ （8） ，弟的的．

$$
y_{g}^{\prime}(x)=\sec x \cdot \tan x-\frac{V^{\prime}(x)}{v^{2}(x)}
$$

＊
 $\sec x \cdot \tan x-\frac{v^{\prime}(x)}{v^{2}(x)}=2 \sec x \cdot \tan x-\left(\sec x+\frac{1}{v(x)}\right)^{2} \sin x \rightarrow$

$$
\begin{aligned}
& \qquad-\frac{v^{\prime}(x)}{v^{2}(x)}=\sec x \cdot \tan x-\left(\sec ^{2} x+2 \sec x \cdot \frac{1}{v(x)}+\frac{1}{v^{2}(x)}\right) \sin x \\
& \rightarrow-\frac{v^{\prime}}{v^{2}}=\sec x \cdot \tan x-\sec ^{2} x \cdot \sin x-2 \sec x \cdot \frac{\sin x}{v a}+\frac{\sin x}{v^{2}} \\
& \rightarrow-\frac{v^{\prime}}{v^{2}}=-2 \tan x \cdot \frac{1}{v}-\frac{\sin x}{v^{2}} \rightarrow-v^{\prime}=-2 \tan x \cdot v-\sin x
\end{aligned}
$$

$$
\begin{aligned}
& \rightarrow v^{\prime}-2 \tan x \cdot v= \sin x \quad\left\{\begin{array}{l}
p(x)=-2 \tan x \\
q_{(x)}
\end{array}=\sin x\right. \\
& d^{n}, \quad f-2 \tan x d x
\end{aligned}
$$

（ر）（1）

$$
V(x)=e^{-\int-2 \tan x} d x\left\{\int \sin x \cdot e^{f-2 \tan x d x} d x+c\right\}
$$

$$
\begin{aligned}
& =-2 \ln |\cos x| \\
& \left.=e^{2 \ln |\cos x|} d x+c\right\}
\end{aligned}
$$

1／

$$
\begin{aligned}
& =e^{\ln \cos ^{-2} x}\left\{\mid \sin x \cdot e^{\ln \cos ^{2} x} d x+c\right\} \\
& =\sec ^{2} x\left\{\left(\sin x \cdot \cos ^{2} x d x+c\right\}\right. \\
& =\sec ^{2} x\left(-\frac{\cos ^{3} x}{3}+c\right)=-\frac{\cos x}{3}+c \sec ^{2} x \\
& \Rightarrow V(x)=-\frac{\cos x}{3}+c \sec ^{2} x \nRightarrow \\
& \quad(\sqrt{*}) y_{y}=\sec x+\frac{1}{v(x)} \\
& y_{g(x)} \operatorname{s\operatorname {sec}x+\frac {1}{-\frac {\operatorname {cos}x}{3}+\operatorname {csc}^{2}x}}
\end{aligned}
$$

$$
\begin{aligned}
& y^{\prime}=\frac{1}{x^{2}}-\frac{y}{x}-y^{2} \quad y_{1}(x)=\frac{1}{x} \quad\left\{\begin{array}{l}
p(x)=\frac{1}{x} \\
q(x)
\end{array}, \quad, \quad R(x)=\frac{1}{x^{2}}\right. \\
& \Rightarrow y_{g}(x)=\frac{1}{x}+\frac{1}{v(x)}, \quad y_{g}^{\prime}(x)=\frac{-1}{x^{2}}-\frac{V^{\prime}(x)}{v^{2}(x)} \quad y_{g}^{\prime}=-\frac{1}{x^{2}}-\frac{V^{\prime}}{v^{2}}
\end{aligned}
$$

$$
-\frac{1}{n^{2}}-\frac{v^{\prime}}{v^{2}}=\frac{1}{n^{2}}-\frac{\frac{1}{n}+\frac{1}{v}}{n}-\left(\frac{1}{n}+\frac{1}{v}\right)^{2}(1,1, \infty, \infty)
$$

$$
-\frac{1}{r^{2}}-\frac{v^{\prime}}{v^{2}}=\frac{y}{x^{2}}-\frac{1}{x^{2}}-\frac{1}{v x}-\frac{1}{x^{2}}-\frac{2}{x v}-\frac{1}{v^{2}} \longrightarrow
$$

$$
\begin{aligned}
& -\frac{1}{x^{2}}-v^{2}=x^{2} \text { vx } x^{2} x v v^{2}, v^{\prime}=\frac{3 v}{x}+1 \leadsto v^{\prime}-\frac{3}{x} v=1 \\
& -\frac{v^{\prime}}{v^{2}}=\frac{-3}{x v}-\frac{1}{v^{2}} \rightarrow\left(-\frac{3}{x} d x\right. \\
& \left.\left(-\frac{3}{d}\right)(\operatorname{tax}), e^{e} d x+c\right\}
\end{aligned}
$$

ant？

$$
y^{\prime}+\frac{1}{x} y-\frac{1}{x^{2}} y^{2}=1 \quad, y_{1}(x)=x \quad \Rightarrow y_{y}=x+\frac{1}{V}
$$

$$
\left.\Leftrightarrow y_{0}^{\prime}=1-\frac{v^{\prime}}{v^{2}}\right]
$$

tr

$$
\begin{aligned}
& \begin{array}{l}
\text { 'L } y^{\prime}=e^{-x} y^{2}+y-e^{x} \\
y^{\prime}-y-e^{-x} y^{2}=-e^{x} \\
y_{g}=e^{x}+\frac{1}{v} \Rightarrow y_{g}^{\prime}=e^{x}-\frac{v^{\prime}}{v^{2}}
\end{array} \\
& \begin{array}{l}
\text { 'L } y^{\prime}=e^{-x} y^{2}+y-e^{x} \quad \text { and, } 6,-e^{\prime} \\
y^{\prime}-y-e^{-x} y^{2}=-e^{x} \\
y_{g}=e^{x}+\frac{1}{v} \Rightarrow y_{g}^{\prime}=e^{x}-\frac{v^{\prime}}{v^{2}}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
e^{x}-\frac{v^{\prime}}{v^{2}}=e^{-x}\left(e^{x}+\frac{1}{v}\right)^{2}+\left(e^{x}+\frac{1}{v}\right)-e^{x} \quad \Rightarrow \\
e^{x}-\frac{v^{\prime}}{v^{2}}=e^{-x}\left(e^{2 x}+\frac{1}{v^{2}}+2 \frac{e^{x}}{v}\right)+\left(e^{x}+\frac{1}{v}\right)-e^{x} \Rightarrow
\end{array} \\
& \begin{array}{l}
e^{x}-\frac{v^{\prime}}{v^{2}}=e^{-x}\left(e^{2 x}+\frac{1}{v^{2}}+2 \frac{e^{x}}{v}\right)+\left(e^{x}+\frac{1}{v}\right)-e^{x} \\
e^{x}-\frac{v^{\prime}}{v^{2}}=e^{x}+\frac{e^{-x}}{v^{2}}+\frac{2}{v}+e^{x}+\frac{1}{v}-e^{x} \Rightarrow
\end{array} \\
& -\frac{v^{\prime}}{v^{2}}=\frac{e^{-x}}{v^{2}}+\frac{3}{v} \stackrel{x v^{2}}{\Rightarrow}-v^{\prime}=e^{-x}+3 v \Rightarrow v^{\prime}+3 v=-e^{-x} \\
& \begin{aligned}
& V(x)=e^{-\int 3 d x}\left\{\int-e^{-x} \cdot e^{\int 3 d x} d x+c\right\}=e^{-3 x}\left\{\int-e^{-x} \cdot e^{3 x} d x+c\right\} \\
&=-3 x
\end{aligned} \\
& =e^{-3 x}\left(-\frac{1}{2} e^{2 x}+c\right)=-\frac{1}{2} e^{-x}+c e^{-3 x} \quad-e^{2 x} \\
& \Rightarrow y_{g}=e^{x}+\frac{1}{V} \Rightarrow y_{g}=e^{x}+\frac{1}{-\frac{1}{2} e^{-x}+c e^{-3 x}} \\
& \text { ッレンケロッドァ }
\end{aligned}
$$

$$
\begin{aligned}
& \left(1-\frac{v^{\prime}}{v^{2}}\right)=1-\frac{1}{n}\left(x+\frac{1}{v}\right)+\frac{1}{x^{2}}\left(x+\frac{1}{v}\right)^{2} \Rightarrow \\
& 1-\frac{v^{\prime}}{v^{2}}=1-1-\frac{1}{x v}+\frac{1}{x^{2}}\left(x^{2}+\frac{2 n}{v}+\frac{1}{v^{2}}\right) \Rightarrow \\
& 1-\frac{v^{\prime}}{v^{2}}=-\frac{1}{n v}+1+\frac{2}{n v}+\frac{1}{n^{2} v^{2}} \Rightarrow-\frac{v^{\prime}}{v^{2}}=\frac{1}{n v}+\frac{1}{n^{2} v^{2}} \xrightarrow{v^{2} \times \text { 人 }} \\
& -v^{\prime}=\frac{1}{x} v+\frac{1}{x^{2}} \Rightarrow v^{\prime}=-\frac{1}{x} v+\frac{1}{x^{2}} \Rightarrow v^{\prime}+\frac{1}{x} v=\frac{-1}{x^{2}} \\
& V(x)=e^{-\int \frac{1}{n} d x}\left\{\int \frac{-1}{n^{2}} e^{\int \frac{1}{x} d x} d x+c\right\}=e^{-\ln x}\left\{\int \frac{-1}{n^{2}}\left(e^{\ln x} d x+c\right\}\right. \\
& =\frac{1}{x}\left(-\frac{\ln x}{x}+c\right)=\frac{-\ln x}{x}+\frac{c}{x} \Rightarrow y_{g}, x+\frac{1}{x} \\
& -\frac{\ln x}{x}+\frac{c}{x}
\end{aligned}
$$

\mathcal{E}

此

$$
\left\{\begin{array}{l}
a_{1} x+b_{1} y+c_{1}=\cdots \\
a_{2} x+b_{2} y+c_{2}=0
\end{array}\right.
$$

$$
\text { , } 0,1,=x \text { v }
$$

 －y－k rour，y fr，x－h rarノ $a, 14=a_{1} x+b, y \quad=10(2$四

$$
\begin{aligned}
& y^{\prime}=\frac{x+y+2}{x-y-4} \\
& \left|\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right|=-2 f 0 \\
& y^{\prime}=\frac{x+1+y-3+2}{x+1-y+3-4}
\end{aligned} \Rightarrow\left\{\begin{array}{l}
x+y+2=0 \\
x-y-4=0
\end{array} \rightarrow\left\{\begin{array}{l}
x=1 \\
y=-3
\end{array}\right]\right.
$$

let $y-x V \rightarrow y^{\prime}+v+V x$

$$
\begin{aligned}
& v+v x=\frac{x+x v}{x-x v} \Rightarrow v+v^{\prime} x=\frac{x(1+v)}{x(1-v)} \Rightarrow v^{\prime} x=\frac{1+v}{1-v}-v \\
& \Rightarrow v^{\prime} x=\frac{1+v^{2}}{1-v} \Rightarrow \frac{d v}{d x} x=\frac{1+v^{2}}{1-v} \Rightarrow \frac{1-v}{1+v^{2}} d v=\frac{1}{x} d x \\
& \stackrel{y}{1+v^{2}} d v-\int \frac{v d v}{1+v^{2}}=\int \frac{1}{x} d x \Rightarrow \\
& \tan ^{-1} v-\frac{1}{2} \ln \left(1+v^{2}\right)=\ln x+c \xrightarrow{\frac{1}{2}} \stackrel{y=x r}{\Longrightarrow} \\
& \tan ^{-1} \frac{-1}{x}-\ln \left(1+\frac{y^{2}}{x^{2}}\right)^{\frac{1}{2}}=\ln x+C \quad I
\end{aligned}
$$

$$
\begin{aligned}
& \tan ^{-1} \frac{y+3}{x-1}-\ln \left(1+\left(\frac{y+3}{x-1}\right)^{2}\right)^{\frac{1}{2}}=\ln (x-1)+C \\
& y^{\prime}=(9 x+4 y+1)^{2} \quad\left|\begin{array}{ll}
9 & 4 \\
0 & y
\end{array}\right|=0 \quad \Rightarrow \quad(2 \mathrm{cmo} \\
& u=9 x+4 y \Rightarrow x^{\prime}, 9+4 y^{\prime} \Rightarrow y^{\prime}=\frac{4^{\prime}-9}{4} \\
& \frac{u^{\prime}-9}{4}=(u+1)^{2} \Rightarrow u^{\prime}=4(u+1)^{2}+9 \text { riso } \\
& \frac{d u}{d x}=4(4+1)^{2}+9 \Rightarrow \frac{d 4}{4(4+1)^{2}+9}=d x \xrightarrow{0}
\end{aligned}
$$

$t 4$

$$
\begin{aligned}
& \int \frac{d u}{4(u+1)^{2}+9}=\int d x \Rightarrow \frac{1}{4} \int \frac{d u}{(u+1)^{2}+\left(\frac{3}{2}\right)^{2}}=\int d x \\
& \frac{1}{4}\left(\frac{2}{3} \tan ^{-1}\left(\frac{4+1}{\frac{3}{2}}\right)\right)=x+c \Rightarrow \\
& \frac{1}{6}\left(\tan ^{-1}\left(\frac{2(4+1)}{3}\right)=x+C \Rightarrow \frac{1}{6} \tan ^{-1}\left(\frac{2(3 x+4 y+1)}{3}\right)\right. \\
& =-\frac{d y}{u^{2}+a^{2}}=\frac{1}{a} \tan ^{-1}\left(\frac{y}{a}\right)+C=x+C \\
& \left\{\begin{array}{l}
\sin y=u \\
\cos y d y=d u
\end{array}\right. \\
& (x-2 u+3) d x+(2 x-4 u-3) d u=0 \quad \Rightarrow \\
& u^{\prime}=\frac{x-2 u+3}{-(2 x-4 u-3)} \\
& \left|\begin{array}{cc}
1 & -2 \\
-2 & 4
\end{array}\right|=4-4=0 \\
& t=x-2 u \Rightarrow t^{\prime}=1-2 u^{\prime} \Rightarrow u^{\prime}=\frac{1-t^{\prime}}{2} \\
& \text { - (原) } \\
& \frac{1-t^{\prime}}{2}=\frac{t+3}{-2 t+3} \Rightarrow 1-t^{\prime}=\frac{2 t+6}{-2 t+3} \Rightarrow t^{\prime}=\frac{-4 t-3}{-2 t+3} \\
& \frac{d t}{d x}=\frac{-4 t-3}{-2 t+3} \Rightarrow \frac{-2 t+3}{-4 t-3} d t=d x \Rightarrow \\
& \int \frac{-2 t+3}{-4 t-3} d t=\int d x \Rightarrow \int \frac{-2 t-\frac{3}{2}+\frac{9}{2}}{-4 t-3} d t=\int d x \\
& \text { cv }
\end{aligned}
$$

$$
\cos (x+y) d x=x \sin (x+y) d x+x \sin (x+y) d y+4 \int
$$

$$
x+y=u \rightarrow 1+y^{\prime}=u^{\prime} \leq d x+d y \operatorname{sd} u
$$

$$
\Rightarrow \cos u d x=x \sin u d x+x \sin u(d u-d x) \Rightarrow
$$

$$
\cos u d x-x \sin u d x+x \sin u d x=x \sin u d u \Rightarrow
$$

$$
\begin{aligned}
& \cos u d x=x \sin u d u \Rightarrow \frac{d x}{x}=\frac{\sin u d u}{\cos u} \Rightarrow \sin ^{\prime \prime} \sim i \\
& \ln x=-\ln \cos u+\ln ^{\prime} c \Rightarrow \ln x=\ln \frac{c}{\cos u} \Rightarrow \\
& x=\frac{c}{\cos 4} \stackrel{u=x+y}{\sim} x=\frac{c}{\cos (x+y)} \Rightarrow \frac{\cos u}{C_{0}(x+y)-c}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \int\left(\frac{-2 t-\frac{3}{2}}{-4 t-3}+\frac{\frac{2}{2}}{-(4 t+3)}\right) d t=\int d x \quad \Rightarrow \\
& \frac{1}{2} t-\frac{9}{2} \times \frac{1}{4} \ln (-4 t+3)=x+C \\
& \iint \frac{2}{2} d t=\frac{9}{4 t+3} \times \frac{1}{4} \int \frac{d s}{s}=\frac{9}{8} \ln s+C \\
& \left\{\begin{array}{l}
+4 t+3=5 \\
+4 d t=d s
\end{array}\right. \\
& d t>\frac{d s}{+4} \\
& t=x-24 \\
& u=\sin y \quad \Rightarrow t=x-2 \sin y \\
& \Longrightarrow \\
& \frac{1}{2}(x-2 \sin y)-\frac{9}{8} \ln (4(x-2 \sin y)+3)=x+C
\end{aligned}
$$

