PROBLEMS

- 3-1.1. Show that the maximum instantaneous energy stored in the circuit of Fig. 3-1 at resonance is $L(I_{max})^2/2$. Use this value in (3-4) to verify (3-5).
- 3-1.2. For the circuit shown in Fig. 3-1, prove that $V_C = QV$ at the resonance frequency.
- 3-1.3. In the circuit of Fig. 3-1, let $L = 100 \,\mu\text{H}$, $C = 100 \,\text{pF}$, and $R = 5 \,\text{ohms}$. Find:
- (a) The resonance frequency f_o .
- (b) The circuit Q at resonance.
- (c) The voltage V_C at resonance if $V = 10 \mu V$.
- 3-1.4. For the circuit values given in Problem 3-1.3, determine the values of the complex zeros $(\gamma = \alpha \pm j\beta)$ of input impedance Z(s). Sketch the zero-pole diagram and show by a graphical method that the radian-frequency interval $\omega_2 \omega_1$ between half-power points is approximately equal to 2α , and that $\beta \approx \omega_0$. The value of Q is now approximated as $Q \approx \beta/2\alpha$. Would this approximation hold if $\beta = 3\alpha$?
- (a) The circuit of Fig. 3-5 has $R_t = 2000$ ohms, $f_o = 10^7$ Hz, and bandwidth B = 250 kHz. Find the values of Q_t , L, and C.
- (b) If the circuit is driven with I = 2 mA(rms), what is the magnitude of I_C ?

 3-3.1. A tuned transistor amplifier requires a collector load resistance
- $R_t = 2000$ ohms at f = 1.6 MHz. The output capacitance of the transistor is $C_o = 20$ pF. A load $R_L = 5$ ohms is to be transformed to R_t with the circuit shown in Fig. P3-3.1.
- (a) Assume that the coil resistance r_c is negligible. Determine the values of L and C and the bandwidth B.
- (b) If the inductor in the circuit is tuned with a ferrite slug, its Q_L may be as low as 50. Find the corresponding value of r_c for the inductance value used in part (a). How will this alter the value of R_t ?
- (c) Let $Q_L = 50$ for the coil. Solve for new values of L and C that will produce $R_t = 2000$ ohms.
 - 3-3.2. The circuit of Fig. P3-3.2 is to be designed to transform $R_1 = 5$ ohms

Fig. P3-3.1

to $R_t = 4 \text{ k}\Omega$ at $f_o = 20 \text{ MHz}$. Assume infinite Q_L for the coil. Find the values of L, C, Q_t , and B.

3-3.3. Use the L and C values found in Problem 3-3.2, but let the coil have a value of $Q_L = 50$. Find the coil resistance r_c , and the new values of R_t , Q_t , and B.

3-3.4. If the circuit of Problem 3-3.2 is driven by a current source with internal resistance $R_s = 6 \text{ k}\Omega$, what is the bandwidth of the overall circuit?

3-3.5 Derive the exact expressions for ω_0 and R_t found in Table 3-3.2.

3-6.1. An interstage matching network is required to transform a load resistance $R_2 = 400$ ohms into $R_1 = 1 \text{ k}\Omega$ at $f_0 = 5 \text{ MHz}$ with bandwidth B =50 kHz. Inductance coils with $L \approx 2 \mu H$ are desired if feasible. Neglect the coil resistance. Try the circuit of Fig. P3-6.1. Find the values of L, C_1 , and C_2 .

3-6.2. The values found in Problem 3-6.1 may be unsuitable. Hence a double-tapped circuit as shown in Fig. P3-6.2 is indicated. The value of R₂ is transformed up to an R_t sufficiently large to provide a reasonable value of L,

Fig. P.3-6.1

Fig. P3-6.2

are $L_{12} = 4 \mu H$, $L_{23} = 2 \mu H$, and $L_{13} = 9 \mu H$.

coupling between L_1 and L_2 . Find L_1 , L_2 , C_1 , and C_2 .

(a) Find the values of the mutual inductance M and the coefficient of coupling k between the two parts of the coil. (b) If $V_{13} = 10$ volts is applied across the coil, what are the values of V_{12} and

and then transformed down to the desired $R_1 = 1 \text{ k}\Omega$. Assume no mutual

3.7.1. Measured inductance values for the tapped coil shown in Fig. P3-7.1

 V_{23} ? 3-7.2. Design a tapped-coil circuit like that of Fig. 3-16 to transform

 $R_2 = 10$ ohms to $R_1 = 250$ ohms at $f_0 = 4$ MHz. Use a coil with $L = 2 \mu$ H and coupling coefficient k = 0.25. Find the tap location and necessary tuning

capacitance with the help of the curves in Section 3-7. 3-7.3. Repeat Problem 3-7.2 with $R_2 = 50$ ohms, $R_t = 200$ ohms, $f_o =$ 30 MHz, $L = 2 \mu H$, and k = 0.1. 3-8.1. A single-tuned transformer (Fig. 3-26) is to be designed to transform

 $R_2 = 1 \text{ k}\Omega$ to $R_t = 10 \text{ k}\Omega$ at $f_o = 16 \text{ MHz}$ with bandwidth B = 160 kHz. (a) Determine the values for L_1 , L_2 , M, k, and C for $Q_p = 1$.

(b) Repeat for $Q_p = 10$. 3-8.2. Solve Problem 3-6.1 by the use of a single-tuned transformer to see

whether it offers any advantage.

3-8.3. Figure P3-8.3a shows two transistors coupled by an interstage matching network that is to be designed to provide a voltage gain, $|A_v|$ =

 $|V_2/V_1| = 50$, from the base to the collector of Q1 at center frequency $f_0 =$

5 MHz, with bandwidth B = 50 kHz. The collector load impedance for Q2 will be assumed identical with that for Q1 so that both stages have the same input impedance. Base-biasing resistors (not shown) are assumed to be so large that their effect can be ignored. For the desired operating point, $V_{CE} = 10 \text{ V}$ and $I_C = 1 \text{ mA}$, the data sheet for the transistors gives $h_{ie} = 2500 \text{ ohms}$ and $h_{fe} = 1 \text{ mA}$

100, measured at f = 1 kHz. Also, for $V_{CE} = 20 \text{ V}$, $I_C = 10 \text{ mA}$, and f = 1 kHz100 MHz the data sheet gives $|h_{te}| = 3$. At $V_{CB} = 5$ V the value of $C_{obo} = 4$ pF, which represents a high-side estimate of C_{μ} for use in the simplified hybrid-pi equivalent circuit of Fig. 3-8.3b. (See Fig. 4-3 for more information on the hybrid-pi circuit.)

Fig. P3-7.1 1 0-

Resonant Circuits and Impedance Transformation

Fig P3-8.3

- (a) In the hybrid-pi circuit, let $r_{\pi} = h_{ie} = 2500$ ohms and $C_{\mu} = 4$ pF. From the above data, compute the values of f_T and C_{π} at $I_C = 10$ mA. Then estimate the value of C_{π} and g_m at $I_C = 1$ mA.
- (b) From the hybrid-pi model, derive expressions for the voltage gain, $A_v = V_2/V_1$, and input admittance, $Y_i = G_i + jB_i = I_1/V_1$. Use the values from part (a) to determine the load resistance R_L needed for $A_v = 50$ and the complex value of Y_i that results when this load is used.
- (c) Find the equivalent parallel resistance R_p and capacitance C_p represented by Y_i . $(Y_i = 1/R_p + j\omega C_p)$. These values represent the load that the matching network sees between point d and ground in Fig. P3-8.3a. Similarly, R_L is the load presented to the collector of Q1 at point b.
- (d) Choose a value for the inductance L. Assume that it has a value of $Q_L = 200$. Find the values of C_1 and C_2 to obtain the specified bandwidth. Take the coil losses into account but ignore the effect of the output impedance of Q_1 .
- (e) Find the position of the tap (point b) on the inductor to provide the proper load for the transistor.