$$
\begin{aligned}
& D^{-1}=\frac{1}{D}=\int \\
& D^{-\mu^{\prime \prime}}(x)=\text { ? } \\
& \text { ر: } \quad D^{-r}(x)=D^{-r} D^{-1}(x)=D^{-r} \int x d x=D^{-r}\left(\frac{x^{r}}{r}+c_{1}\right) \\
& =D^{-1} D^{-1}\left(\frac{x^{r}}{r}+c_{1}\right)=D^{-1} \int\left(\frac{x^{r}}{r}+c_{1}\right) d x \\
& =D^{-1}\left(\frac{x^{r}}{4}+c_{1} x+c_{r}\right)=\int\left(\frac{x^{r}}{4}+c_{1} x+c_{p}\right) d x \\
& =\frac{x^{r}}{r \varepsilon}+c_{1} \frac{x^{r}}{r}+c_{r} x+c_{r} \\
& D^{-1}(\sin x)=\int \sin x d x=-\cos x+c \\
& L(D) e^{\alpha x}=L(\alpha) e^{\alpha x} \\
& \text { 位 } \\
& \text { : Jis } \\
& \left(7 D^{r}+r D+1\right) e^{r x}=? \\
& \text { ر.: }\left(T(r)^{r}+r(r)+1\right) e^{r x}=7 \varepsilon e^{r_{x}}
\end{aligned}
$$

$L(D)\left(e^{\alpha x} v(x)\right)=e^{\alpha x} L(D+\alpha) v(x)$

$$
\begin{aligned}
&\left(D^{r}-r D-1\right)\left(e^{r x} x\right)^{r}=e^{r x}\left((D+r)^{r}-r(D+r)+1\right) x^{r} \\
&=e^{r x}\left(D^{r}+r D+\varepsilon-\varepsilon D-\lambda+1\right) x^{r} \\
&=e^{r x}\left(D^{r}-r\right) x^{r} \\
&=e^{r x}\left(\tau x-r x_{0}^{r}\right) \\
& L\left(D^{r}\right) \sin \beta x=L\left(-\beta^{r}\right) \sin \beta x \\
& L\left(D^{r}\right) \cos \beta x=L\left(-\beta^{r}\right) \cos \beta x \\
&\left(D^{r}+r D^{r}+1\right) \sin r x=? \\
&\left(D^{r}+r^{r} D^{r}+1\right) \sin r x=\left(\left(D^{r}\right)^{r}+r D^{r}+1\right) \sin r x \\
&=\left(\left(-r^{r}\right)^{r}+r\left(-r^{r}\right)+1\right) \sin r x \\
&=(14-(r+1) \sin r x \\
&=\leqslant \sin r x
\end{aligned}
$$

 روشَ

jo

$$
\begin{aligned}
& 1+D+D^{r}+D^{r}+\cdots+D^{n}=\frac{1-D^{n+1}}{1-D} \\
& \frac{1}{1-D} f(x)=\left(1+D+D^{r}+\cdots+D^{n}\right) f(x) \\
& \frac{1}{1+D} f(n)=\left(1-D+D^{r}-D^{r}+\cdots+D^{n}\right) f(x) \\
& y^{\equiv}+r y^{\prime \prime}=d x^{r}-r
\end{aligned}
$$

.

$$
\begin{aligned}
& \begin{array}{l}
r^{r}+r r^{r}=0 \Rightarrow r^{r}(r+r)=\cdot \Rightarrow r_{1}=r_{r}=- \\
r_{r}=-r
\end{array} \\
& y_{g}=c_{1}+c_{r} x+c_{r} e^{-r x} \\
& \left(D^{r}+r D^{r}\right) y=\Delta x^{r}+r \Rightarrow y_{p}=\frac{1}{D^{r}(D+r)}\left(\Delta x^{r}+v\right) \\
& y_{p}=D^{-r}\left(\frac{1}{r} \frac{1}{1+D / r}\left(d x^{r}+v\right)\right)=D^{-r}\left[\frac{1}{r}\left(1-\frac{D}{r}+\frac{D^{r}}{r}-\frac{D^{r}}{\Lambda}\right)\left(\Delta x^{r}-v\right)\right] \\
& =D^{-r}\left[\left(\frac{1}{r}-\frac{D}{r}+\frac{D^{r}}{\Lambda}-\frac{D^{r}}{1 Y}\right)\left(\Delta x^{r}-v\right)\right] \\
& =D^{-r}\left[\frac{\Delta}{r} x^{r}-\frac{v}{r}-\frac{1 \Delta x^{r}}{r}+\frac{1 \Delta x}{r^{r}}-\frac{r \cdot}{14}\right]=D^{-1}\left(\frac{\Delta x^{r}}{\lambda}-\frac{v}{r} x-\frac{1 \Delta x^{r}}{1 r}+\frac{1 \partial x^{r}}{\lambda}-\frac{r}{14} x\right] \\
& y_{p}=\frac{1}{\Lambda} x^{\omega}-\frac{\Delta}{14} x^{r}+\frac{\Delta}{\Lambda} x^{r}-\frac{\varepsilon r}{14} x^{r} \text { drep } \quad y=y_{g}+y_{p}
\end{aligned}
$$

$$
\begin{aligned}
& f(x)=A e^{\alpha x}, \quad L(\alpha) \neq \cdot \\
& \text { 2, ه1; } y_{p}=\frac{A e^{\alpha x}}{L(\alpha)} \\
& \text { 的 }
\end{aligned}
$$

$$
\begin{aligned}
& y^{\prime \prime}+y^{\prime}+y=r e^{-x} \\
& y_{i} r^{r}+r+1=0 \rightarrow r=-\frac{1}{r} \pm \frac{\sqrt{r}}{r} i \quad\left(y_{g}=e^{-1 / r n}\left(c_{1} c \frac{\sqrt{r}}{r} x+c_{r} \sin \frac{\sqrt{r}}{r} x\right)\right) \\
& \left(D^{r}+D+1\right) y=r e^{-x} \Rightarrow y_{p}=\frac{r e^{-x}}{D^{r}+D+1}=\frac{r e^{-x}}{(-1)^{r}=1+1}=r e^{-x} \\
& y_{p}=r e^{r n} \\
& y=y_{g}+y_{p} \\
& L\left(D^{r}\right) y=k \sin \beta x
\end{aligned}
$$

$$
\begin{aligned}
& L\left(D^{r} / y=k \cos \beta x\right.
\end{aligned}
$$

$$
\begin{aligned}
& \sin \beta x s^{\prime}, x \Rightarrow y_{p}=\frac{k \sin \beta x}{L\left(-\beta^{r}\right)} \\
& \cos \beta n \text { s }^{\prime} r \Rightarrow y_{p}=\frac{k \cos \beta x}{L\left(-\beta^{r}\right)}
\end{aligned}
$$

品
${ }^{d \varepsilon}$

$$
\begin{aligned}
& y^{\prime \prime}+y^{\prime}-r y=\cos r x \\
& \text { do: } r^{r}+r-r=\cdot \rightarrow(r+r)(r-1)=\cdot \longrightarrow r=-r \\
& \left(D^{r}+D-r\right) y=\cos r x \Rightarrow y_{p}=\frac{1}{D^{r}+D-r} \cos r x \\
& \Rightarrow y_{\rho}=\frac{1}{(-r)^{r}+D-r} \cos x \\
& =\frac{1}{D-4} \operatorname{csrx} \\
& =\frac{1}{D-4} \times \frac{D+4}{D+4} \cos 4 x \\
& =(D+4) \frac{1}{D^{r}-r y} \cos x \\
& =(D+4) \frac{1}{\left(-r^{r}\right)-r 4} \operatorname{cosr} \\
& =(D+4) \frac{\cos r x}{-50} \\
& =\frac{\sin r x}{r}-\frac{r}{r} \cos r x \\
& \Rightarrow y_{p}=\frac{\sin r x}{r_{0}}-\frac{r}{r_{0}} \cos r x \\
& y=y_{g}+y_{p}
\end{aligned}
$$

+

