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• Course Purpose:

Turbulent flows, with emphasis on engineering methods. Governing equations for 

momentum, energy, and species transfer. Turbulence: its production, dissipation, and 
scaling laws. Reynolds averaged equations for momentum, energy, and species transfer. 

Simple closure approaches for free and bounded turbulent shear flows. Applications to jets, 

pipe and channel flows, boundary layers, buoyant plumes and thermals, and Taylor dispersion, 
etc., including heat and species transport as well as flow fields. Introduction to more complex 

closure schemes, including the k-epsilon, and statistical methods in turbulence.

Course Outline (tentative and not exactly sorted)

• Review of flow and transport equations, with particular emphasis on the energy equation and the 
role of viscous dissipation. 

• Instability and transition. 

• Fundamental concepts in turbulence; approaches to closure and turbulence modeling. 

• Jets, wakes, etc. modeled via simple closure schemes. Scalar transport in free flows (temperature, 

concentration). 

• Turbulent flow over walls: general near-wall scaling laws; flows in pipes, channels, etc. 

• Boundary layers. 

• Transient dispersion in laminar and turbulent shear flows (Taylor dispersion). 

• Turbulence models and their application. 

• Buoyant plumes, transient thermals, etc. 

• Additional topics (if time).
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• Course project:

Each student has to do a project specific title agreed with the instructor in advance. 
Please talk me individually four weeks before ending of the term in order to finalize 
it. The Project deadline is the last week of the current term. Take it Serious.

• Marking Strategy:

Activity Mark

Homework and Quiz (30)%

Midterm Exam and/or Term Project (40)%

Final Exam (30)%

A. Sarreshtehdari
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  آن  به  كه  جايى  تا بايد مى پردازد، دانشى  آموختن  به  كس  هر كه  است  معتقد و مى كند تقسيم  دسته  3 به  را علوم  مبادي  ارسطو•
  .كند حاصل  آن ها در شناختهايى  مى يابد، ارتباط دانش 

  :از عبارتند مبادي  اين •
،) تعاريف يا( حدود▫
  و متعارفه  اصول  ▫
.موضوعه  اصول ▫

.مى شوند واقع  محمول  و موضوع  ، خاص دانشى  گزاره هاي  در كه  مى كند بيان  را الفاظى  معانى  و چيزهاست  ماهيت  بيانگر حد•
Definitions

  مى شود، بيان  گزاره  قالب  در آنكه  با آنها تعريف  گيرد، قرار بحث  مورد علم  آن  از ديگري  جاي  در معانى  آن  عدم  يا وجود هرچند ، بنابراين
. هندسه علم  در  » راست خط« مثلاً  .مى رود شمار به  علم  » تصوري« مبادي ِ از بلكه  باشد، اثبات  نيازمند خود كه  نيست  حكمى 

  تصديق  واسطه  بدون  را آنها سليم  عقل  و است  ثابت  و يقينى  خود خودي  به  آنها درستى  كه  هستند قضايايى  متعارفه  اصول •
Axioms .مى كند

  باشند، كه  موضوعى  هر از جديد، معلومات  روابط كه  معنا بدين  مى دهند، تشكيل  را علمى  شناخت  هرگونه  بر حاكم  قواعد قضايا اينگونه 
  پذيرش  بدون  كه  است  تناقض  امتناع  اصل  ، متعارف اصل  بنيادي ترين  .مى دهد گواهى  آنها به  ذاتى  نحو به  عقل  كه  است  عام  اصول  اين  تابع  ضرورتاً
.جز از كل بودن بزرگتر مثلا . نيست امكان پذير شناختى  هيچ  آن  ضمنى 

  مى شود پذيرفته  استدلال  بدون  خاص  دانشى  در اما ، نيست اثبات  از بى نياز ذاتاً كه  بديهى  غير و كلى  است  قضيه اي  موضوع  اصل •
Postulates .مى گيرد صورت  آن  پاية بر ديگر احكام  استنتاج  و

 اگر و ، است علم  آن  حوزة از بيرون  مقدماتى  بر مبتنى  آن  زيرااثبات  ، نيست اثبات  قابل  مى گيرد، اصل  را آن  كه  علمى  در قضيه اي  چنين 
.اقليدسي هندسه موضوعه اصول مثل .كرد تلقى  اصل  بايد را همانها دارد، وجود علم  آن  در مقدماتى  چنين  كه  شود فرض 
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).برهان(آنچه از مبادي فوق نتايج قطعي و يقيني جديد به دست مي دهد : استدلال رياضي•

مدل رياضي•
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Physical 
World

Simplifica
tion of 
reality

Values, 
Geometry, 
Figures, 

Motion, Size, 
F

Ignore the 
Details &

Emphasize 
on 

Important 
Properties 

Physical 
Modeling

Contracts, Signs, 
Definitions, Axioms, 

Postulates, Structural 
and Global laws 

Mathematics 
Modeling

Relations Dependencies, 
Known and unknowns 

definitions

Analytical and 
Numerical 

Mathematics 
methods

Achieve to 
unknown 

parameters 

Analysis Techniques of Turbulence Problems

Status

Methods Now Past

• Numerical Methods ***** **

• Experimental **** ***

• Analytical Methods *** ****

A. Sarreshtehdari
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Deterministic Chaos

• A chaotic system is defined as one in which the solution is extremely
sensitive to initial conditions (or solutions are aperiodic).

• Consider following PDE:                                           (Lorenz equation)

• a)

• b)

A. Sarreshtehdari
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Instability

• Smooth  laminar flows are stable to small disturbances only 
when certain conditions are satisfied. 

• when the flow becomes a superposition of various large
disturbances of random phases, and reaches a chaotic condition 
that is commonly described as “turbulent.” 

• A real flow may be stable to infinitesimal disturbances (linearly 
stable), but still can be unstable to sufficiently large disturbances 
(nonlinearly unstable)

• The method of linear stability analysis consists of introducing
sinusoidal disturbances on a basic state (background or initial 
state), which is the flow whose stability is being investigated. 

A. Sarreshtehdari
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Orr–Sommerfeld Equation

• flow along x direction, vary in the y: U =[U(y), 0, 0]

Decompose as: basic flow plus the perturbation:

background and the perturbed flows satisfy the Navier–Stokes
equations.

The perturbed flow satisfies the x-momentum equation:

NOTE! Nondimensionalized by: 

L (the width of flow), U0 (the maximum velocity of the basic flow);

time is scaled by L/U0 and the pressure is scaled by ρU0^2 . The Reynolds 
number is defined as Re = U0L/ν.

A. Sarreshtehdari
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• The background flow satisfies

• Subtracting from last equation and neglecting terms nonlinear in the 
perturbations, the x-momentum equation for the perturbations:

• Similarly the y-momentum, z-momentum, and continuity equations:

• Squire’s Theorem, 1933, showing that to each unstable three-
dimensional disturbance there corresponds a more unstable two-

dimensional one. 

• The critical Reynolds number at which the instability starts is lower for 
two-dimensional disturbances. 

A. Sarreshtehdari
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Is the well-known Orr–Sommerfeld equation, which governs the stability of 
nearly parallel viscous flows such as those in a straight channel or in a 
boundary layer.

• Rayleigh’s Inflection Point Criterion

A necessary (but not sufficient) criterion for instability of an inviscid
parallel flow is that the basic velocity profile U(y) has a point of 

inflection.

• Fjortoft’s Theorem

A necessary condition for instability of inviscid parallel flows is that

Uyy (U − U1)< 0 somewhere in the flow, where U1 is the value of U at the

point of inflection.

Note! an alternate way of stating Fjortoft’s theorem is that the magnitude of 
vorticity of the basic flow must have a maximum within the region of flow, 
not at the boundary.

A. Sarreshtehdari
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• Examples of parallel 
flows.

Points of inflection are 
denoted by I. 

Only (e) and (f) satisfy 
Fjortoft’s criterion of 
inviscid instability.

A. Sarreshtehdari
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• Plane Poiseuille Flow
� Channel flow with parabolic velocity distribution (no point of inflection and 

is inviscidly stable) -> complicated solution of Sommerfeld eq.

� linear viscous calculations: flow becomes unstable at a critical Reynolds 
number of 5780

�Nonlinear calculations: give a critical number of 2510 (which agrees better 
with the observed transition)

Note! In flows with inflection points, viscosity acts as a singular
perturbation. Instability caused waves in these flows are called 
Tollmien–Schlichting waves.

• pipe Flow

▫ Absence of an inflection point -> Inviscidly stable.

▫ Stability calculations of the viscous problem have also shown stable 
flow to small disturbances.

▫ In contrast, most experiments show that the transition to turbulence 
takes place at about Re ∼∼∼∼ 3000 . 

▫ Careful experiments, have been able to maintain laminar flow until 
Re = 50,000.

A. Sarreshtehdari
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Some Results of Parallel Viscous Flows

• Transition attributed to:

(1) It could be a finite amplitude effect; 

(2) the turbulence may be initiated at the entrance of the tube by 
boundary layer instability 

(3) the instability could be caused by a slow rotation of the inlet flow
shown to result in instability

Note! New insights into the instability and transition of pipe
flow were described by Eckhardt et al. (2007) by analysis via 
dynamical systems theory and comparison with recent very 
carefully crafted experiments by them and others.

• Boundary Layers with Pressure Gradients
� pressure falling in the flow direction: “favorable” gradient,

� pressure rising in the flow direction:“adverse” gradient.

▫ Adverse pressure gradient provide a inflection point in the 
velocity profile.

A. Sarreshtehdari
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• stable flow for low Reynolds and unstable at higher Reynolds numbers.

• Increasing viscosity effects on stabilizing in this range. 

• For zero pressure gradient boundary layers (Blasius flow) or a favorable
pressure gradient, the instability loop shrinks to zero as Reδ→∞ (these 
flows do not have a point of inflection in the velocity profile and are therefore 
inviscidly stable).

• For an adverse pressure gradient boundary layers, the instability loop
does not shrink to zero.

• Upper branch of the curve becomes flat (with a limiting value of k∞ as 
Reδ→∞).

A. Sarreshtehdari
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Sketch of marginal stability curves for a 
boundary layer with favorable and adverse 

pressure gradients.

Note! critical Reynolds number 
is lower for flows with adverse 
pressure gradients.
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• The first two flows have points of inflection and are inviscidly
unstable; (viscous solution shows zero or a small critical 
Reynolds number).

• The remaining flows are stable in the inviscid limit. 

• Blasius boundary layer and the plane Poiseuille flow are 
unstable in the presence of viscosity, but have high critical 
Reynolds numbers.

A. Sarreshtehdari

21

Linear Stability Results of Common Viscous Parallel Flows
Experimental Verification of Boundary Layer Instability

• The first calculations of the Blasius flow based on an analysis of the
Orr–Sommerfeld equation were performed by Tollmien in 1929 and 
Schlichting in 1933 using the profile:

Unstable (Tollmien–Schlichting) waves

appear when the Reynolds number is high

enough.

A. Sarreshtehdari
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Marginal stability curve for a Blasius boundary layer. Theoretical solutions of 
Shen and Schlichting are compared with experimental data of Schubauer
and Skramstad.

Transition

• The process by which a laminar flow changes to a turbulent one is 
called transition.

• The process of transition is greatly affected by such experimental
conditions as intensity of fluctuations of the free stream, roughness of 

the walls, and shape of the inlet.

• The basic state of wall-bounded parallel shear flows becomes unstable to 
two-dimensional TS waves, which grow and eventually reach 
equilibrium at some finite amplitude. This steady state can be considered a 

new background state, and calculations show that it is generally unstable to 
three-dimensional waves of short wavelength, which vary in the 
“spanwise” direction (secondary instability).

Note! If x is the direction of flow and y is the directed normal to the 
boundary, then the z-axis is spanwise.

A. Sarreshtehdari
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Three-dimensional unstable waves initiated by vibrating ribbon. Measured distributions 
of intensity of the u-fluctuation at two distances from the ribbon are shown.

A. Sarreshtehdari
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Three-dimensional deformation of the ring vortex (a) as compared to 
that of the Tollmien-Schlichting wave in a boundary layer (b): 3D 
bursts (1), longitudinal disturbances (2), ring vortex (3), 3D distortion 
of the 2D instability wave (4), roughness elements (5).

• Smoke visualization of the jet cross sections at 
x/h = 0.5, 2.5, 4.5, 6.5 and 8.5 from the nozzle 
exit (left to right); nozzle width h = 10 mm, jet 
core velocity U0 = 3 m/s, Reh = 2000.

A. Sarreshtehdari
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airfoil flow; M=0.7, Re=1 million

A. Sarreshtehdari
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Idealized sketch of the transition process from White (1991)

Turbulence

• Most flows encountered in engineering practice and in nature are 
turbulent.

• Turbulence is not easy to define precisely.

• Lesieur (1987) :“turbulence is a dangerous topic which is at the origin 
of serious fights in scientific meetings since it represents extremely 
different points of view, all of which have in common their 
complexity, as well as an inability to solve the problem. It is even 
difficult to agree on what exactly is the problem to be solved.”

A. Sarreshtehdari
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Turbulence

In fluid 
dynamics, turbulence or turbulent flow is a 
flow regime characterized by chaotic 
property changes. This includes low 
momentum diffusion, high momentum 
convection, and rapid variation of pressure 
and flow velocity in space and time.
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Turbulence

• Definition of Turbulence. Hinze (1959): 
“Turbulent fluid motion is an irregular condition of flow in which the 
various quantities show a random variation with time and space 
coordinates, so that statistically distinct average values can be discerned.”

A. Sarreshtehdari
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Some of turbulence’s characteristics
• (1) Randomness: Turbulent flows seem irregular, chaotic, and unpredictable.

• (2) Nonlinearity: Turbulent flows are highly nonlinear. 

▫ Note! Two purposes of nonlinearity :

� it causes the relevant nonlinearity parameter, (e.g. Re)

� nonlinearity of a turbulent flow results in vortex stretching, a key process by which three-dimensional 
turbulent flows maintain their vorticity.

A. Sarreshtehdari
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Some of turbulence’s characteristics

• (3) Diffusivity: Due to the macroscopic mixing of fluid particles, turbulent flows are 
characterized by a rapid rate of diffusion of momentum and heat.

A. Sarreshtehdari
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Some of turbulence’s characteristics
• (4) Vorticity: Turbulence is characterized by high levels of fluctuating vorticity.

▫ Note! The identifiable structures in a turbulent flow are vaguely called eddies. A 
characteristic feature of turbulence is the existence of an enormous
range of eddy sizes. 

▫ The large eddies have a size of order of the width of the region of turbulent 
flow. 

▫ The large eddies contain most of the energy. 

▫ The energy is handed down from large to small eddies by nonlinear
interactions, until it is dissipated by viscous diffusion in the smallest eddies, 
whose size is of the order of millimeters.

A. Sarreshtehdari
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• 5. Dissipation: The vortex transfers energy and vorticity stretching 
mechanism to increasingly smaller scales, until the gradients become so 
large that they are smeared out (i.e., dissipated) by viscosity. 

▫ Note! Turbulent flows therefore require a continuous supply of 

energy to make up for the viscous losses.

A. Sarreshtehdari
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Turbulent flow in a boundary layer, showing that a large eddy has a size of the order of 
boundary layer thickness.

• many flows that seem “random,” such as gravity waves in the ocean or 
the atmosphere, are not turbulent because they are not dissipative, 
vortical, and nonlinear.

• The turbulent flow variables are not deterministic in details and have 
to be treated as stochastic or random variables.

• Averaging

A. Sarreshtehdari
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Mean and fluctuating components 
of a flow property in a turbulent flow

• Averaging

• Time-Average

▫ appropriate for stationary turbulence which is the one whose time average 

does not vary with time.

▫ Characteristics of  time-average:

• Spatial-Average

▫ appropriate for homogeneous turbulence, i.e., the one whose space average is 
uniform in all flow directions.

A. Sarreshtehdari
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• Ensemble-Average

▫ is the most general average and is also valid for time dependent mean 

flows.

▫ N denotes large number of identical experiments.

A. Sarreshtehdari
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• For stationary and homogeneous turbulent flow, the three 
averages are equal.

A. Sarreshtehdari

41

Steady and unsteady mean 
turbulent flows

A. Sarreshtehdari
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Note! For a stationary process the time average can be shown to equal the 
ensemble average.

• The mean square value of a variable is called the variance.

• The square root of variance is called the root-mean-square (rms).

• The rms value of the fluctuation is called the standard deviation.

• The autocorrelation of a single variable u(t) at two times t1 and t2 is 
defined as:

• For a stationary process the statistics (i.e., the various kinds of averages) 
are independent of the origin of time, 

• normalized autocorrelation function:

A. Sarreshtehdari

43

Correlations and Spectra

A. Sarreshtehdari

44

Note! Under normal conditions r goes to  

0 as τ →∞, because a process becomes 

uncorrelated with itself after a long time.

Is measure of the time over which u(t) is highly correlated

with itself or measure of the “memory” of the process.
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• If S(ω) : Fourier transform of R(τ)

Taylor ’s hypothesis 

• The assumption that the turbulent fluctuations at a point are 
caused by the advection of a frozen field past the point. 

• If the turbulence field is “frozen” and does not change during the 
measurement it is possible to transfer time series u(t), to a 
spatial series u(x) by replacing t by x/U0 . 

A. Sarreshtehdari
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S(ω)dω: energy (variance) in a frequency band dω centered at ω. 

S(ω): represents the way energy is distributed as a function of frequency ω. 

S(ω) is the energy spectrum

Spectrum value at zero frequency is 

proportional to the integral time scale.

• cross-correlation function between two stationary variables u(t) and 
v(t):

• is not a symmetric function of the time lag τ,

Note! cross-correlation at zero lag:              , simply written:            
(“correlation” of u and v).

Averaged Equations of Motion

A. Sarreshtehdari
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(symmetric tensor)
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• In isotropic turbulent, the off-diagonal components of vanish, 
and

• Isotropic: there is not any directional preference.

• The average value of the product uv is zero in isotropic 
turbulence . 

A. Sarreshtehdari
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• Exercise: 

regard to following fig. describe: why the average product of the velocity 
fluctuations in a turbulent flow is not expected to be zero.  

• Reynolds stress is that it is the rate of mean momentum transfer by

turbulent fluctuations.

A. Sarreshtehdari
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Kinetic Energy Budget of Mean Flow

• A kinetic energy equation can be obtained by multiplying the 
equation for DU/Dt by U .

The equation of motion for the mean flow,

Multiplying by Ui,

A. Sarreshtehdari
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0 (Continuity)

•The first term: transport of mean

kinetic energy by the mean

pressure, the second by the mean 

viscous stresses , and the third by 

Reynolds stresses.

• product of the mean strain

rate and the mean viscous

stress. It is a loss at every 

point, (direct viscous

dissipation). The energy is 

lost to heat.

• loss of mean kinetic energy and 

a gain of turbulent kinetic 

energy (the shear production of

turbulence by the interaction of 

Reynolds stresses and the mean

shear).

• the work done by

gravity on the mean 

vertical motion.

Exercise: describe 
the physical meaning 
of this Zero term. 
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• The two viscous terms, namely, the viscous transport and the 
viscous dissipation, are small in a fully turbulent flow at high 
Reynolds numbers.(e.g.) Compare, the viscous dissipation and the shear 

production terms:

• The mean flow loses energy to the turbulent field by means of 
the shear production; the turbulent kinetic energy so generated
is then dissipated by viscosity.

Kinetic Energy Budget of Turbulent Flow

A. Sarreshtehdari
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multiplying this equation by ui and averaging.

A. Sarreshtehdari
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• the viscous dissipation ε is of the order of the 

turbulence production terms 

in most locations.

Turbulence Production and Cascade

• The kinetic energy is cascaded down from large to small eddies in a series of small steps. 
This process of energy cascade is essentially inviscid, as the vortex stretching mechanism 

arises from the nonlinear terms of the equations of motion .

•Order of largest eddies: width of the shear flow. 

•These eddies extract kinetic energy from the mean field.

•The smaller eddies are strained by the velocity field of the largest eddies, and extract

energy from the larger eddies by the same mechanism of vortex stretching. 

•The much smaller eddies are essentially advected in the velocity field of the large eddies.

•The small eddies do not interact with either the large eddies or the mean field.



Instructor: A. Sarreshtehdari 3/1/2020

Instructor: A. Sarreshtehdari 15

• In a completely isotropic field the off-diagonal components of the 
Reynolds stress are zero and no turbulent energy can be extracted
from the mean field. Therefore, 

turbulence must develop anisotropy if it has to sustain itself against 
viscous dissipation.

• viscosity does not affect the shear production, however, determine the 
scales at which turbulent energy is dissipated into heat.

• The continuous stretching and cascade generate long and thin
filaments, “spaghetti.” When they become thin enough, molecular 

diffusive effects are able to smear out their velocity gradients.

• ε is determined by the inviscid properties of the large eddies.

A. Sarreshtehdari
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if l is a typical length scale of the large eddies, and 

u is a typical scale of the fluctuating velocity, the 

dissipation rate must then be of order

Kolmogorov suggested in 1941 that the size of the dissipating eddies depends On smallest

eddies parameters. i.e. ε and the diffusivity ν. 

Dimensional reasoning shows that the length scale formed from ε and ν is:

Spectrum of Turbulence in Inertial Subrange

Wavenumber spectrum S(K ), representing turbulent kinetic energy as a function of the 

wavenumber vector K . In isotropic turbulence, it is independent of the orientation of the 

wavenumber vector and depends on its magnitude K only, 

• Somewhat vaguely, a wavenumber K associate with an eddy of size K^−1.

• In small scales there is no direct interaction between the turbulence and the 

motion of the large, energy-containing eddies. 

• The spectrum here does not depend on how much energy is present at large 

scales, it depends only on the small-scale flow nature.

• The spectrum in the range of large wave numbers is nearly isotropic and usually

called the equilibrium range .

A. Sarreshtehdari
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A typical wavenumber spectrum observed in the ocean, plotted on a log–log scale. 
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Nearly parallel shear flows

• wall-free shear flows

(such as jets, wakes, and shear layers)

• wall-bounded shear flows

Three types of wall-free turbulent 

flows: 

(a) jet; 

(b) wake; and

(c) shear layer.

• A flow can slowly pull the surrounding irrotational fluid inward
by “frictional” effects; the process is called entrainment.

• The source of this “friction” is viscous in laminar flow and 
inertial in turbulent flow.

• Experiments: Far downstream, the mean field in a wall-free 
shear flow becomes approximately self-similar at various
downstream distances(“moving equilibrium”).

• When both the mean and the turbulent fields are determined 
solely by the local scales of length and velocity is called (self-
preservation).
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• In the self-similar state, the mean velocity at various downstream 
distances:
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The kinetic energy budget For a two-dimensional jet under the boundary layer assumption

∂/∂x << ∂/∂y:

Sketch of observed kinetic energy budget in a turbulent jet. Turbulent transport is indicated by T .
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•The shear production is zero at the center where both ∂U/∂y and uv are zero, and reaches a 

maximum close to the position of the maximum Reynolds stress. 

•Near the center, the dissipation is primarily balanced by the downstream advection, which is 

positive because the turbulent intensity q^2 decays downstream. 

•Away from the center, but not too close to the outer edge of the jet, the production and 

dissipation terms balance.

•In the outer parts of the jet, the transport term balances the cross-stream advection where V is 

negative (i.e., toward the center) due to entrainment of the surrounding fluid, (q^2 decreases 

with y).

Conclusion:

The gross characteristics of free shear flows, are independent of viscosity.

A. Sarreshtehdari

67

Nearly parallel shear flows

• wall-free shear flows

• wall-bounded shear flows

(e.g. channel flows)

The mean equation of motion:

The stress distribution is linear

Variation of shear stress across a channel and a boundary layer: (a) channel; and (b) boundary layer.
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Inner Layer: Law of the Wall

Consider : the wall bounded flow near the wall 

• U∞: the free-stream velocity ( or the centerline velocity)

• δ   : the width of flow

• wall : is smooth

The near wall velocity profile depends only on near wall parameters (not on U∞ or δ)

friction velocity 

only ρ and τ0 involve the dimension of mass, so occur together in any nondimensional

group.
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4 variables involving (length and time)    pi theorem     only 4 − 2 = 2 nondimensional groups 

U/u∗ and yu∗/ν

The inner part of the wall layer is dominated by viscous effects (viscous sublayer

or “laminar sublayer,” until experiments revealed the presence of considerable 

fluctuations within the layer).

No-slip boundary condition,
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Outer Layer: Velocity Defect Law

Characteristics: 

•Inviscid

•wall-free 

•Reynolds stresses generates a velocity defect (U∞ − U), proportional to the wall friction 

(u∗). 

In the outer region:

Overlap Layer: Logarithmic Law

•Distances in the outer part are scaled by δ

• in the inner part are measured by the much smaller viscous scale ν/u∗. 

• The small distances in the inner layer are magnified by expressing them as yu∗∗∗∗/ν. 

•The inner and outer solutions are matched together in a region of over-lap by taking the 

limits y+ →∞ and ξ → 0 simultaneously . 
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Logarithmic velocity distributions near smooth and rough 

surfaces: (a) smooth wall; and (b) rough wall.

y0 is a measure of the 

roughness heights and is 

defined as the value of y at 

which the logarithmic 

distribution gives U = 0 . 

in

Rough Surface
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Sketch of observed variation of turbulent intensity and Reynolds stress across a channel of half-

width δ. The left panels are plots as functions of the inner variable y+, while the right panels are 

plots as functions of the outer variable y/δ.

Variation of Turbulent Intensity

• The turbulent velocity fluctuations are of order u∗∗∗∗.

• The longitudinal fluctuations are the largest because:

▫ the shear production initially feeds the energy into the u-component;

▫ subsequently distributed into the lateral components v and w.

• The turbulent intensity initially rises as the wall is approached,

• It goes to zero right at the wall in a very thin wall layer.

• The normal component vrms starts to feel the wall effect earlier.

• The distribution, close to the wall, becomes clear only when the 
distances are magnified by the viscous scaling ν/u∗∗∗∗.

• The Reynolds stress profile shows: the stresses are negligible within 
the viscous sublayer (y+ < 5), 

• The Reynolds stress is nearly constant throughout the wall layer. (the 
constant stress layer).
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Eddy Viscosity and Mixing Length

• The mean motion equations, cannot be solved for Ui (x ) unless to 
have an expression relating the Reynolds stresses in terms of the mean
velocity field.

• Semiempirical theories (e.g. Prandtl and von Karman ) based on an 
analogy between the momentum exchanges both in turbulent and in
laminar flows.

• in a unidirectional laminar flow U(y), the shear stress is

• where ν is a property of the fluid.

• The diffusive properties of a gas are due to the molecular motions, It can be 
shown that the viscosity of a gas is of order

• where a is the rms speed of molecular motion, and λ is the mean free
path defined as: 

▫ the average distance traveled by a molecule between collisions. 

� The proportionalityconstant in equation is of order 1.

A. Sarreshtehdari

76



Instructor: A. Sarreshtehdari 3/1/2020

Instructor: A. Sarreshtehdari 20

• Boussinesq speculated that the diffusive behavior of a turbulent flow
may be qualitatively similar to that of a laminar flow and may simply 
be represented by a much larger diffusivity:

where νe is the eddy viscosity. 

• Note: whereas ν is a known property of the fluid, but νe depends on the 
conditions of the flow .
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Mechanics of streak break up. S. J. 

Kline et al., Journal of Fluid 

Mechanics 30: 741–773, 1967 
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Top view of near-wall structure (at y+ = 2 .7) in a turbulent boundary layer on a horizontal flat plate. The flow

is visualized by hydrogen bubbles. S. J. Kline et al., Journal of Fluid Mechanics 30 :741–773, 1967

Boussinesq Approximation Based Models 

• Boussinesq approximation:

▫ the Reynolds stresses can be expressed in terms of the mean strain rate 

▫ or turbulent momentum transport is assumed proportional to the mean 

strain rate).

• key issue: the computation of the eddy viscosity, by using a suitable 
prescription. 

• Note! The eddy viscosity is a flow property and not a fluid property
(unlike molecular viscosity) and therefore depends on flow characteristics. 

• The turbulent transport of heat, mass or other scalar quantities            
is modeled similar to that for momentum (proportional to the 
gradient of mean value of the transported quantity):
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Proportionality constant: 

turbulent diffusivity of a
scalar variable.

• Turbulent transport of momentum or heat or mass is due to the same 
mechanism, (i.e. eddy mixing).

▫ turbulent Prandtl number (Prt) for heat transfer 

▫ turbulent Schmidt number (Sct) for mass transfer

Models Based on Boussinesq Approximation

• Turbulence simplified by the Boussinesq approximation:

▫ Reynolds stresses and turbulent transport quantities are related to the mean 
flow And scalar fields, respectively.

• Boussinesq models based on transport equations used to compute the eddy 
viscosity. 

▫ Models types :

� (a) zero equation (or mixing length) models; 

� (b) one equation models; 

� (c) two equation models.
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• The first two require the specification of flow at least one flow variable
for a particular flow configuration and therefore are incomplete models.

• Two equation models are the simplest complete models and therefore 
are widely used.

Mixing Length Models

• It assumed that the eddy viscosity can be expressed as a product of a 
turbulent velocity scale (related to the mean flow properties ) and a 
length scale (related to some typical width of the flow).

• The Prandtl’s (1925) mixing length model (for a thin-shear layer (such 
as, boundary-layer, jet and plume):

where lmix denotes the mixing length.

• The hypothesis idea: Turbulent moving eddies, typically retain their 
momentum in x-direction over a distance in the y-direction equal to the 

mixing length (lmix). 
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• Mixing length models
▫ need modifications to damp the eddy viscosity near wall and the outer

intermittent region.

▫ Can be used to predict turbulent diffusivity for the transport of a scalar 
variable by using turbulent Prandtl number or turbulent Schmidt number 
approximately equal to one.

Where, c: coefficient of proportionality 

l: width of the flow
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Constant of proportionality for different turbulent free-shear flows

• For the wall bounded flows in the inner region, the mixing length:

lmix = ky, 

k: the von Karman constant 

y: the distance from the wall.

• Damping function is included to damp the near wall eddy viscosity.

• Since no additional transport equation is used, such models are called 
the zero equation or algebraic model.

• Baldwin and Lomax (1978) and Cebeci and Smith (1974) Mixing length 
models are the most widely used turbulent models for the 
aerodynamics.

• Cebeci and Smith (1974) two-layer model :

outer eddy viscosity is more than the inner viscosity.
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Deficiencies of the zero equations models:

• do not directly account for the flow history effects, as the eddy 

viscosity is related to local mean flow properties.

• Eddy viscosity reduces to zero when the mean strain rate equals zero, 
but this condition may not be valid in all cases.

• Cannot be directly applied to three-dimensional flows without any 
modification.

• Incomplete models because the mixing length needs to be specified.

• The mixing length prescription is not unique and depends on a 
particular flow configuration being studied.

• The formulation of the model becomes difficult if there is a sudden
change in the flow conditions (e.g. Mixing length for separation flow on 
airfoil).
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One Equation Model

• One transport equation in addition to the continuity and momentum
equations is solved. 

• The extra transport equation used can be for any turbulence variable. 

• The most widely used one equation models are based on the transport equation 
for turbulence kinetic energy.

from the trace of transport equation for the Reynolds stress tensor
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Is a symmetric in tensor i and j, by substituting i = j :

From left to right:

(a) time rate of change of turbulence kinetic energy; 

(b) convection of turbulence kinetic energy by the mean flow; 

(c) molecular diffusion of turbulence kinetic energy; 

(d) dissipation of turbulence kinetic energy which denotes its conversion to thermal

energy due to viscous effects; 

(e) production of turbulence kinetic energy by Reynolds stress acting on mean velocity 
gradient;

(f) transport of turbulence kinetic energy by fluctuating velocity and by pressure-velocity 
correlation.

The second and last terms on the RHS require modeling and,
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The rate of dissipation of turbulence kinetic energy is modeled as:

CD: is a model constant

l: a turbulent length scale that needs to be specified.

The sum of the turbulent transport and pressure fluctuation term is modeled

based on the gradient diffusion hypothesis as:

The turbulent Prandtl number for turbulence kinetic energy (a flow property and 
not a fluid property).

• Modeled transport equation for turbulence kinetic energy:

• Major disadvantage: this model is is an incomplete model, since we need to 
specify the length scale l. Further no unique prescription of the length scale can 
be specified.
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Two Equation Models

• At least two variables (for example, velocity and length scales) are needed to 
characterize turbulent flows completely. 

• Therefore, two equation models are the simplest complete models

• The standard k-e model is one of the most widely used turbulence models. 

Limitations of Boussinesq Approximation

• The key assumption that the turbulent stresses are proportional to the mean strain 
rate may not hold true in many situations. 

• assume an isotropic eddy viscosity (i.e. which is same in all the directions) and this 
assumptionmay also fail in some situations. 

Proper cases

Zero equation models work well in simple flows (which do not separate and where 
thin shear layer assumption is valid) such as 

• jets, mixing layers, wakes,

• boundary layer flow, flow through pipe,

• flow between parallel plates, etc.
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k–ε and Other Two Equations Models

• Standard k–ε Model (Jones and Launder (1972))

▫ The exact transport equation for the rate of dissipation of turbulence 
kinetic energy (ε), obtained from mathematical operation:
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• More complex compared to the exact equation

for turbulent kinetic energy.  

• On LHS: the standard unsteady and convection terms. 

• On the RHS:

▫ the production of dissipation,

▫ dissipation of dissipation,

▫ turbulent transport 

▫ molecular diffusion of dissipation. 

• The unsteady, convection and molecular diffusion terms do not
require any modeling.

• The remaining seven terms require modeling.

• The modeled form of the dissipation equation used in the literature is a 
major weakness of the k–e model.

Modelled Transport Equations for k and e
The modeled transport equation for turbulent kinetic energy (k):
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• The modeled transport equation for the dissipation:

• in the expanded form:

• where Pk denotes the rate of shear production of k and is:
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Features of the k–e Model

• It is a high turbulence Reynolds number  model.

• It cannot be applied without suitable modifications in the low Re regions.

• The solution of two separate transport equations for k and e allows the turbulent 
velocity and length scales to be independently determined.

• Each term of the modeled transport equation for k almost accurately
represents the corresponding term in the exact equation. 

• However, the gross effect of several terms in the exact dissipation equation is
modeled by few terms.

• Or there is no one to one correspondence between different terms in the 
modeled and exact transport equations for dissipation.
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Boundary Conditions

1. Inlet: It is difficult to obtain values of k and e at the inlet, based on an approximation from 

the turbulent intensity Ti and a characteristic length L of the flow configuration:
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Treatment of Wall
▫ Turbulence major complexities because of zero turbulence at the wall.

(a)Wall Functions Approach

(b) Low Reynolds Number Models

(a)Wall Functions Approach
� Standard Wall Functions

• It is not universal. e.g., in separating and reattaching flows and flows with strong curvature, 

the law of the wall is invalid.

• A user needs to ensure that the location of the first grid point is in the logarithmic region. 

However, this cannot be determined a priori because the value of y+ depends on the skin 
friction coefficient.
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� Non-Equilibrium Wall Functions

It uses the modified log-law for the mean velocity to account for the effects of 
the pressure gradient ( two-layer approach to calculate the turbulence kinetic 
energy in the cells close to the wall). 
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(b) Low Reynolds Number Models
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• Additional terms vanish far away from the wall and the model reduces to the 
standard model.

Variants of k–e Model

(To enhance the range of applicability of this model).

RNG k–e Model

Yakhot and Orszag (1986) using a statistical technique (called the 

renormalization group).

Similar in form to the standard k–e model, but includes refinements: 

(1) It has an additional term in its dissipation equation that is supposed to 

improve the accuracy for rapidly strained flows.

(2) The effect of swirl on turbulence is included in the RNG model.

The RNG theory provides an analytical formula for turbulent Prandtl
numbers, (standard k–e model uses the constant values).
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RNG also provides an analytically-derived differential formula for the 
effective viscosity that accounts for low-Reynolds-number effects. 

The transport equations for turbulent kinetic energy and its dissipation
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Realizable k–e Model

• By Shih et al. (1995) and differs from the standard k–e model :

(1) It contains a new formulation for the turbulent viscosity 

(2) it has a new transport equation for the dissipation rate (derived from 
an exact equation for the transport of the mean-square vorticity
fluctuation).

For normal Reynolds stress in an incompressible strained mean flow, 
(using the Boussinesq relationship and the standard expression for the eddy 
viscosity)
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k–ω Model
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• This k–ω model is an improved version of the original model proposed 
by Kolmogorov (1942), (inclusion of the molecular diffusion and 
production terms). 

• Performance compare of the k–e model and k–ω model:

• The k–e model:
� does not accurately predict the characteristics of far wakes and mixing layers and the 

spreading rate of axisymmetric jets in stagnant surrounding is also overpredicted. 

� it can be improved by making ad hoc adjustments to the model constants. The model also 

has problems in swirling flows and flows with large strains (e.g.,highly curved boundary 

layers and diverging passages). 

• k–ω model:
� reproduce the behaviour within viscous sublayer without the need for any corrections. 

� However, it sensitive to the free-stream conditions for the free-shear flows.
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Comparison of growth rates of four typical free shear flows predicted by k–e and k–ω models (Wilcox 2006)
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V2f Model

• By Durbin (1991), based on the root mean square normal velocity 
fluctuations (  as the velocity scale rather than turbulence kinetic energy k).

• Capable of handling the wall region without the need for the additional 
damping functions. (because the normal velocity fluctuations are known to be quite sensitive 

to the presence of wall, like a natural damper).
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• The term kf redistributes turbulence kinetic energy from the streamwise
velocity component. The eddy viscosity can be written as
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It suggested that the model has a good potential for turbo-machinery applications.

Shear Stress Transport k–ω Model

• By Menter (1994) to take advantage of accurate formulation of the k–ω
model in the near-wall region with the free-stream independence of 
the k–e model in the far field.

• It is similar to the standard k–ω model, but includes three refinements:

(1) This model incorporates a damped cross-diffusion derivative term in the ω
equation. 

(2) The turbulent viscosity definition is modified to account for the 

transport of the turbulent shear stress.

(3) The model constants are different. There is no need for a special
treatment for the viscosity affected wall region because of the low-
Reynolds correction in the k–ω and k–ω SST models. 

The transport equations for k and ω:
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Concludion

• Two equation models with the Boussinesq assumption are widely used for 
predicting turbulent flows encountered in industry. 

• The standard k–e model is the most widely used turbulence model. 

• The wall functions approach for treating turbulence in the vicinity of a solid wall 
has some limitations.

• The wall function approach is likely to fail in the following situations: 

(1) Blowing/suction through the wall; 

(2) Large pressure gradients; 

(3) Strong body forces (e.g., flow near a rotating body); 

(4) High three-dimensionality near the walls (e.g., strongly skewed flows). 
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Reynolds-Stress and Scalar Flux Transport Model

• solving transport equations for different Reynolds stresses components

• (Wilcox 2006):
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• Modeling of Turbulent Transport

• Modeling of Pressure Strain

• Modeling of Dissipation
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Features of Reynolds-Stress and Scalar Flux Transport Model

• This is the most complex turbulence model.

• The RSSFT model closes the Reynolds-averaged Navier–Stokes equations by solving 
transport equations for the Reynolds stresses and scalar fluxes, together with an 
equation for the dissipation rate. 

• Four additional transport equations 
� two Reynolds normal stresses,

� one Reynolds shear stress 

� one for dissipation) are required in a two-dimensional mean flow

� seven additional transport equations (three Reynolds shear stresses, three Reynolds normal stresses, and 
one for dissipation) must be solved in a three-dimensional mean flow.

• Accounts for the effects of streamline curvature, swirl, rotation, and rapid
changes in strain rate in a more physical manner than that by one-equation and 
two-equation models.

• Good potential to provide accurate predictions of complex flows. 

• It is used for computing cyclone flows, swirling flows in combustors, rotating flow
passages, and the stress-induced secondary flows in ducts. 
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• The assumption of isotropic eddy viscosity (Mixing length and k-e models) may 
not be valid in many situations and therefore the use of RSSFT model is 
advisable in such situations. 

• Use of a RSSFT model significantly increases the computational cost due to the 
employment of seven additional partial differential equations.

• However, RSSFT models are not as widely used as the k-e model. 
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Concludion

• The second order closure is the most complex and physically the 
most realistic among all other closure options that can be used. 

• However, the additional complexity does not necessarily mean that 

the predictions using a Reynolds stress and scalar flux transport model will 
be more accurate compared to those obtained using other simpler 
models.

• This anomaly arises due to the uncertainty involved in modeling
complex double and triple correlations in the transport equation for the 
Reynolds stress tensor and turbulent scalar flux.
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