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PREFACE

In the past half century we have seen an explosive growth in the study of chem-
ical reaction dynamics, spurred by advances in both experimental and theoretical
techniques. Chemical processes are now measured on timescales as long as many
years and as short as several femtoseconds, and in environments ranging from high
vacuum isolated encounters to condensed phases at elevated pressures. This large
variety of conditions has lead to the evolution of two branches of theoretical studies.
On one hand, “bare” chemical reactions involving isolated molecular species are
studied with regard to the effect of initial conditions and of molecular parameters
associated with the relevant potential surface(s). On the other, the study of chem-
ical reactions in high-pressure gases and in condensed phases is strongly associated
with the issue of environmental effects. Here the bare chemical process is assumed
to be well understood, and the focus is on the way it is modified by the interaction
with the environment.

It is important to realize that not only does the solvent environment modify the
equilibrium properties and the dynamics of the chemical process, it often changes
the nature of the process and therefore the questions we ask about it. The principal
object in a bimolecular gas phase reaction is the collision process between the
molecules involved. In studying such processes we focus on the relation between
the final states of the products and the initial states of the reactants, averaging
over the latter when needed. Questions of interest include energy flow between
different degrees of freedom, mode selectivity, and yields of different channels.
Such questions could be asked also in condensed phase reactions, however, in
most circumstances the associated observable cannot be directly monitored. Instead
questions concerning the effect of solvent dynamics on the reaction process and
the inter-relations between reaction dynamics and solvation, diffusion and heat
transport become central.

As a particular example consider photodissociation of iodine I2 ↔ I + I that was
studied by many authors in the past 70 years.1 In the gas phase, following optical
excitation at wavelength∼500 nm the I2 molecule dissociates and this is the end of
the story as far as we are concerned. In solutions the process is much more complex.
The molecular absorption at ∼500 nm is first bleached (evidence of depletion of
ground state molecules) but recovers after 100–200 ps. Also some transient state

1 For a review see A. L. Harris, J. K. Brown, and C. B. Harris, Ann. Rev. Phys. Chem. 39, 341
(1988).
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Fig. 0.1 A simplified energy level diagram for I2 (right), with the processes discussed in the text
(left). (Based on Harris et al. (see footnote 1).)

which absorbs at ∼350 nm seems to be formed. Its lifetime strongly depends on
the solvent (60 ps in alkane solvents, 2700 ps (=2.7 ns) in CCl4). Transient IR
absorption is also observed and can be assigned to two intermediate species. These
observations can be interpreted in terms of the schematic potential energy diagram
shown in Fig. 0.1 which depicts several electronic states: The ground state X,
bound excited states A and B and a repulsive state that correlates with the ground
state of the dissociated species. A highly excited state corresponding to the ionic
configuration I+I− is also shown. Note that the energy of the latter will be very
sensitive to the solvent polarity. Also note that these are just a few representative
electronic states of the I2 molecule. The ground state absorption, which peaks at
500 nm, corresponds to the X→B transition, which in the low-pressure gas phase
leads to molecular dissociation after crossing to the repulsive state. In solution the
dissociated pair finds itself in a solvent cage, with a finite probability to recombine.
This recombination yields an iodine molecule in the excited A state or in the higher
vibrational levels of the ground X states. These are the intermediates that give rise
to the transient absorption signals.

Several solvent induced relaxation processes are involved in this process:
Diffusion, trapping, geminate recombination, and vibrational relaxation. In addi-
tion, the A→X transition represents the important class of nonadiabatic reactions,
here induced by the solute–solvent interaction. Furthermore, the interaction
between the molecular species and the radiation field, used to initiate and to
monitor the process, is modified by the solvent environment. Other important
solvent induced processes: Diffusion controlled reactions, charge (electron, proton)
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transfer, solvation dynamics, barrier crossing and more, play important roles in other
condensed phase chemical dynamics phenomena.

In modeling such processes our general strategy is to include, to the largest
extent possible, the influence of the environment in the dynamical description of
the system, while avoiding, as much as possible, a specific description of the envir-
onment itself. On the most elementary level this strategy results in the appearance of
phenomenological coefficients, for example dielectric constants, in the forces that
enter the equations of motion. In other cases the equations of motions are modified
more drastically, for example, replacing the fundamental Newton equations by the
phenomenological diffusion law. On more microscopic levels we use tools such as
coarse graining, projections, and stochastic equations of motion.

How much about the environment do we need to know? The answer to this
question depends on the process under study and on the nature of the knowledge
required about this process. A student can go through a full course of chemical
kinetics without ever bringing out the solvent as a participant in the game—all
that is needed is a set of rate coefficients (sometimes called “constants”). When
we start asking questions about the origin of these coefficients and investigate
their dependence on the nature of the solvent and on external parameters such
as temperature and pressure, then some knowledge of the environment becomes
essential.

Timescales are a principle issue in deciding this matter. In fact, the need for
more microscopic theories arises from our ability to follow processes on shorter
timescales. To see how time becomes of essence consider the example shown in
Fig. 0.2 that depicts a dog trying to engage a hamburger. In order to do so it has to
go across a barrier that is made of steps of the following property: When you stand
on a step for more than 1 s the following step drops to the level on which you stand.
The (hungry) dog moves at constant speed but if it runs too fast he will spend less
than one second on each step and will have to work hard to climb the barrier. On the
other hand, moving slowly enough it will find itself walking effortlessly through
a plane.

In this example, the 1 second timescale represents the characteristic relaxation
time of the environment—here the barrier. The dog experiences, when it moves

Fig. 0.2 The hamburger–dog dilemma as a lesson in the importance of timescales.
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Fig. 0.3 Typical condensed phase molecular timescales in chemistry and biology. (Adapted from
G. R. Fleming and P. G. Wolynes, Physics Today, p. 36, May 1990).

slowly or quickly relative to this timescale, very different interactions with this
environment. A major theme in the study of molecular processes in condensed
phases is to gauge the characteristic molecular times with characteristic times of
the environment. Some important molecular processes and their characteristic times
are shown in Fig. 0.3.

The study of chemical dynamics in condensed phases therefore requires the
understanding of solids, liquids, high-pressure gases, and interfaces between them,
as well as of radiation–matter interaction, relaxation and transport processes in
these environments. Obviously such a broad range of subjects cannot be treated
comprehensively in any single text. Instead, I have undertaken to present several
selected prototype processes in depth, together with enough coverage of the neces-
sary background to make this book self contained. The reader will be directed to
other available texts for more thorough coverage of background subjects.

The subjects covered by this text fall into three categories. The first five chapters
provide background material in quantum dynamics, radiation–matter interaction,
solids and liquids. Many readers will already have this background, but it is my
experience that many others will find at least part of it useful. Chapters 6–12 cover
mainly methodologies although some applications are brought in as examples. In
terms of methodologies this is an intermediate level text, covering needed subjects
from nonequilibrium statistical mechanics in the classical and quantum regime as
well as needed elements from the theory of stochastic processes, however, without
going into advanced subjects such as path integrals, Liouville-space Green functions
or Keldysh nonequilibrium Green functions.
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The third part of this text focuses on several important dynamical processes in
condensed phase molecular systems. These are vibrational relaxation (Chapter 13),
Chemical reactions in the barrier controlled and diffusion controlled regimes
(Chapter 14), solvation dynamics in dielectric environments (Chapter 15), electron
transfer in bulk (Chapter 16), and interfacial (Chapter 17) systems and spectroscopy
(Chapter 18). These subjects pertain to theoretical and experimental developments
of the last half century; some such as single molecule spectroscopy and molecular
conduction—of the last decade.

I have used this material in graduate teaching in several ways. Chapters 2 and 9
are parts of my core course in quantum dynamics. Chapters 6–12 constitute the
bulk of my course on nonequilibrium statistical mechanics and its applications.
Increasingly over the last 15 years I have been using selected parts of Chapters
6–12 with parts from Chapters 13 to 18 in the course “Chemical Dynamics in
Condensed Phases” that I taught at Tel Aviv and Northwestern Universities.

A text of this nature is characterized not only by what it includes but also by
what it does not, and many important phenomena belonging to this vast field were
left out in order to make this book-project finite in length and time. Proton trans-
fer, diffusion in restricted geometries and electromagnetic interactions involving
molecules at interfaces are a few examples. The subject of numerical simulations,
an important tool in the arsenal of methodologies, is not covered as an independent
topic, however, a few specific applications are discussed in the different chapters
of Part 3.
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BACKGROUND
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1

REVIEW OF SOME MATHEMATICAL AND PHYSICAL
SUBJECTS

The lawyers plead in court or draw up briefs,
The generals wage wars, the mariners
Fight with their ancient enemy the wind,
And I keep doing what I am doing here:
Try to learn about the way things are
And set my findings down in Latin verse . . .

Such things as this require a basic course
In fundamentals, and a long approach
By various devious ways, so, all the more,
I need your full attention . . .

Lucretius (c.99–c.55 bce) “The way things are”
translated by Rolfe Humphries, Indiana University Press, 1968.

This chapter reviews some subjects in mathematics and physics that are used in
different contexts throughout this book. The selection of subjects and the level of
their coverage reflect the author’s perception of what potential users of this text
were exposed to in their earlier studies. Therefore, only brief overview is given of
some subjects while somewhat more comprehensive discussion is given of others.
In neither case can the coverage provided substitute for the actual learning of these
subjects that are covered in detail by many textbooks.

1.1 Mathematical background

1.1.1 Random variables and probability distributions

A random variable is an observable whose repeated determination yields a series
of numerical values (“realizations” of the random variable) that vary from trial to
trial in a way characteristic of the observable. The outcomes of tossing a coin or
throwing a die are familiar examples of discrete random variables. The position of a
dust particle in air and the lifetime of a light bulb are continuous random variables.
Discrete random variables are characterized by probability distributions; Pn denotes
the probability that a realization of the given random variable is n. Continuous
random variables are associated with probability density functions P(x): P(x1)dx
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denotes the probability that the realization of the variable x will be in the interval
x1 . . . x1+dx. By their nature, probability distributions have to be normalized, that is,∑

n

Pn = 1;
∫

dxP(x) = 1 (1.1)

The jth moments of these distributions are

Mj = 〈xj〉 ≡
∫

dx xjP(x) or 〈nj〉 ≡
∑

n

njPn (1.2)

Obviously, M0 = 1 and M1 is the average value of the corresponding random
variable. In what follows we will focus on the continuous case. The second moment
is usually expressed by the variance,

〈δx2〉 ≡ 〈(x − 〈x〉)2〉 = M2 − M 2
1 (1.3)

The standard deviation

〈δx2〉1/2 =
√

M2 − M 2
1 (1.4)

is a measure of the spread of the fluctuations about the average M1. The generating
function1 for the moments of the distribution P(x) is defined as the average

g(α) = 〈eαx〉 =
∫

dxP(x)eαx (1.5)

the name generating function stems from the identity (obtained by expanding eαx

inside the integral)

g(α) = 1 + α〈x〉 + (1/2)α2〈x2〉 + · · · + (1/n!)αn〈xn〉 + · · · (1.6)

which implies that all moments 〈xn〉 of P(x) can be obtained from g(α) according to

〈xn〉 =
[

∂n

∂αn g(α)

]
α=0

(1.7)

Following are some examples of frequently encountered probability distributions:
Poisson distribution. This is the discrete distribution

P(n) = ane−a

n! n = 0, 1, . . . (1.8)

1 Sometimes referred to also as the characteristic function of the given distribution.
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which is normalized because
∑

n an/n! = ea. It can be easily verified that

〈n〉 = 〈δn2〉 = a (1.9)

Binomial distribution. This is a discrete distribution in finite space: The prob-
ability that the random variable n takes any integer value between 0 and N is
given by

P(n) = N !pnqN−n

n!(N − n)! ; p + q = 1; n = 0, 1, . . . , N (1.10)

The normalization condition is satisfied by the binomial theorem since∑N
n=0 P(n) = (p+ q)N . We discuss properties of this distribution in Section 7.3.3.
Gaussian distribution. The probability density associated with this continuous

distribution is

P(x) = 1√
2πσ 2

exp(−[(x − x̄)2/2σ 2]); −∞ < x < ∞ (1.11)

with average and variance

〈x〉 = x̄, 〈�x2〉 = σ 2 (1.12)

In the limit of zero variance this function approaches a δ function (see Section 1.1.5)

P(x)−→
σ→0

δ(x − x̄) (1.13)

Lorentzian distribution. This continuous distribution is defined by

P(x) = γ /π

(x − x̄)2 + γ 2 ; −∞ < x < ∞ (1.14)

The average is 〈x〉 = x̄ and a δ function, δ(x − x̄), is approached as γ → 0,
however higher moments of this distribution diverge. This appears to suggest that
such a distribution cannot reasonably describe physical observables, but we will see
that, on the contrary it is, along with the Gaussian distribution quite pervasive in our
discussions, though indeed as a common physical approximation to observations
made near the peak of the distribution. Note that even though the second moment
diverges, γ measures the width at half height of this distribution.

A general phenomenon associated with sums of many random variables has
far reaching implications on the random nature of many physical observables. Its
mathematical expression is known as the central limit theorem. Let x1, x2, . . . , xn
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(n 
 1) be independent random variables with 〈xj〉 = 0 and 〈x2
j 〉 = σ 2

j . Consider
the sum

Xn = x1 + x2 + · · · + xn (1.15)

Under certain conditions that may be qualitatively stated by (1) all variables are
alike, that is, there are no few variables that dominate the others, and (2) certain
convergence criteria (see below) are satisfied, the probability distribution function
F(Xn) of Xn is given by2

F(Xn) ∼= 1

Sn
√

2π
exp

(
− X 2

n

2S2
n

)
(1.16)

where

S2
n = σ 2

1 + σ 2
2 + · · · + σ 2

n (1.17)

This result is independent of the forms of the probability distributions fj(xj) of the
variables xj provided they satisfy, as stated above, some convergence criteria. A
sufficient (but not absolutely necessary) condition is that all moments

∫
dxjxn

j f (xj)

of these distributions exist and are of the same order of magnitude.
In applications of these concepts to many particle systems, for example in statist-

ical mechanics, we encounter the need to approximate discrete distributions such as
in Eq. (1.10), in the limit of large values of their arguments by continuous functions.
The Stirling Approximation

N ! ∼ eN ln N−N when N →∞ (1.18)

is a very useful tool in such cases.

1.1.2 Constrained extrema

In many applications we need to find the maxima or minima of a given function
f (x1, x2, . . . , xn) subject to some constraints. These constraints are expressed as
given relationships between the variables that we express by

gk(x1, x2 . . . xn) = 0; k = 1, 2, . . . , m (for m constraints) (1.19)

2 If 〈xj〉 = aj �= 0 and An = a1 + a2 + · · · + an then Eq. (1.16) is replaced by F(Xn) ∼=
(Sn

√
2π)−1 exp(−(Xn − An)

2/2S2
n ).
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Such constrained extrema can be found by the Lagrange multipliers method: One
form the “Lagrangian”

L(x1, . . . , xn) = f (x1, . . . , xn)−
m∑

k=1

λkgk(x1, . . . , xn) (1.20)

with m unknown constants {λk}. The set of n + m equations

∂L

∂x1
= · · · = ∂L

∂xn
= 0

g1 = 0, . . . , gm = 0

⎫⎬
⎭ (1.21)

then yield the extremum points (x1, . . . , xn) and the associated Lagrange multipli-
ers {λk}.

1.1.3 Vector and fields

1.1.3.1 Vectors

Our discussion here refers to vectors in three-dimensional Euclidean space, so
vectors are written in one of the equivalent forms a = (a1, a2, a3) or (ax, ay, az).
Two products involving such vectors often appear in our text. The scalar (or dot)
product is

a · b =
3∑

n=1

anbn (1.22)

and the vector product is

a × b = −b × a =
∣∣∣∣∣∣
u1 u2 u3
a1 a2 a3
b1 b2 b2

∣∣∣∣∣∣ (1.23)

where uj(j = 1, 2, 3) are unit vectors in the three cartesian directions and where | |
denotes a determinant. Useful identities involving scalar and vector products are

a · (b × c) = (a × b) · c = b · (c × a) (1.24)

a × (b × c) = b(a · c)− c(a · b) (1.25)

1.1.3.2 Fields

A field is a quantity that depends on one or more continuous variables. We will
usually think of the coordinates that define a position of space as these variables, and
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the rest of our discussion is done in this language. A scalar field is a map that assigns
a scalar to any position in space. Similarly, a vector field is a map that assigns a vector
to any such position, that is, is a vector function of position. Here we summarize
some definitions and properties of scalar and vector fields.

The gradient, ∇S, of a scalar function S(r), and the divergence, ∇ ·F, and rotor
(curl), ∇ × F, of a vector field F(r) are given in cartesian coordinates by

∇S = ∂S

∂x
ux + ∂S

∂y
uy + ∂S

∂z
uz (1.26)

∇ · F = ∂Fx

∂x
+ ∂Fy

∂y
+ ∂Fz

∂z
(1.27)

∇ × F =
∣∣∣∣∣∣

ux uy uz
∂/∂x ∂/∂y ∂/∂z
Fx Fy Fz

∣∣∣∣∣∣ = ux

(
∂Fz

∂y
− ∂Fy

∂z

)
− uy

(
∂Fz

∂x
− ∂Fx

∂z

)

+ uz

(
∂Fy

∂x
− ∂Fx

∂y

)
(1.28)

where ux, uy, uz are again unit vectors in the x, y, z directions. Some identities
involving these objects are

∇ × (∇ × F) = ∇(∇ · F)− ∇2F (1.29)

∇ · (SF) = F · ∇S + S∇ · F (1.30)

∇ · (∇ × F) = 0 (1.31)

∇ × (∇S) = 0 (1.32)

The Helmholtz theorem states that any vector field F can be written as a sum of its
transverse F⊥ and longitudinal F‖ components

F = F⊥ + F‖ (1.33)

which have the properties

∇ · F⊥ = 0 (1.34a)

∇ × F‖ = 0 (1.34b)
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that is, the transverse component has zero divergence while the longitudinal
component has zero curl. Explicit expressions for these components are

F⊥(r) = 1

4π
∇ ×

∫
d3r′ ∇

′ × F(r′)
|r − r′| (1.35a)

F‖(r) = 1

4π
∇

∫
d3r′ ∇

′ · F(r′)
|r − r′| (1.35b)

1.1.3.3 Integral relations

Let V (S) be a volume bounded by a closed surface S. Denote a three-dimensional
volume element by d3r and a surface vector element by dS. dS has the magnitude
of the corresponding surface area and direction along its normal, facing outward.
We sometimes write dS = n̂d2x where n̂ is an outward normal unit vector. Then
for any vector and scalar functions of position, F(r) and φ(r), respectively

∫
V

d3r(∇ · F) =
∮
S

dS · F (Gauss’s divergence theorem) (1.36)

∫
V

d3r(∇φ) =
∮
S

dSφ (1.37)

∫
V

d3r(∇ × F) =
∮
S

dS × F (1.38)

In these equations
∮

S denotes an integral over the surface S.
Finally, the following theorem concerning the integral in (1.37) is of interest:

Let φ(r) be a periodic function in three dimensions, so that φ(r) = φ(r+R) with
R = n1a1+n2a2+n3a3 with aj(j = 1, 2, 3) being three vectors that characterize the
three-dimensional periodicity and nj any integers (see Section 4.1). The function is
therefore characterized by its values in one unit cell defined by the three a vectors.
Then the integral (1.37) vanishes if the volume of integration is exactly one unit cell.

To prove this statement consider the integral over a unit cell

I(r′) =
∫
V

d3rφ(r + r′) (1.39)
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Since φ is periodic and the integral is over one period, the result should not depend
on r′. Therefore,

0 = ∇r′I(r
′) =

∫
V

d3r∇r′φ(r + r′) =
∫
V

d3r∇rφ(r + r′) =
∫
V

d3r∇φ(r)

(1.40)

which concludes the proof.

1.1.4 Continuity equation for the flow of conserved entities

We will repeatedly encounter in this book processes that involve the flow of con-
served quantities. An easily visualized example is the diffusion of nonreactive
particles, but it should be emphasized at the outset that the motion involved can
be of any type and the moving object(s) do not have to be particles. The essential
ingredient in the following discussion is a conserved entity Q whose distribution
in space is described by some time-dependent density function ρQ(r, t) so that its
amount within some finite volume V is given by

Q(t) =
∫
V

d3rρQ(r, t) (1.41)

The conservation of Q implies that any change in Q(t) can result only from flow of
Q through the boundary of volume V . Let S be the surface that encloses the volume
V , and dS—a vector surface element whose direction is normal to the surface in the
outward direction. Denote by JQ(r, t) the flux of Q, that is, the amount of Q moving
in the direction of JQ per unit time and per unit area of the surface perpendicular to
JQ. The Q conservation law can then be written in the following mathematical form

dQ

dt
=

∫
V

d3r
∂ρQ(r, t)

∂t
= −

∫
S

dS · JQ(r, t) (1.42)

Using Eq. (1.36) this can be recast as∫
V

d3r
∂ρQ(r, t)

∂t
= −

∫
V

d3r∇ · JQ (1.43)

which implies, since the volume V is arbitrary

∂ρQ(r, t)

∂t
= −∇ · JQ (1.44)
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Equation (1.44), the local form of Eq. (1.42), is the continuity equation for the
conserved Q. Note that in terms of the velocity field v(r, t) = ṙ(r, t) associated
with the Q motion we have

JQ(r, t) = v(r, t)ρQ(r, t) (1.45)

It is important to realize that the derivation above does not involve any physics.
It is a mathematical expression of conservation of entities that that can change their
position but are not created or destroyed in time. Also, it is not limited to entities
distributed in space and could be applied to objects moving in other dimensions.
For example, let the function ρ1(r, v, t) be the particles density in position and
velocity space (i.e. ρ1(r, v, t)d3rd3v is the number of particles whose position and
velocity are respectively within the volume element d3r about r and the velocity
element d3v about v). The total number, N = ∫

d3r
∫

d3vρ(r, v, t), is fixed. The
change of ρ1 in time can then be described by Eq. (1.44) in the form

∂ρ1(r, v, t)

∂t
= −∇r · (vρ1)− ∇v(v̇ρ1) (1.46)

where ∇r = (∂/∂x, ∂/∂y, ∂/∂z) is the gradient in position space and ∇v =
(∂/∂vx, ∂/∂vy, ∂/∂vz) is the gradient in velocity space. Note that vρ is a flux in
position space, while v̇ρ is a flux in velocity space.

1.1.5 Delta functions

The delta function3 (or: Dirac’s delta function) is a generalized function that is
obtained as a limit when a normalized function

∫∞
−∞ dxf (x) = 1 becomes zero

everywhere except at one point. For example,

δ(x) = lim
a→∞

√
a

π
e−ax2

or δ(x) = lim
a→0

a/π

x2 + a2 or

δ(x) = lim
a→∞

sin(ax)

πx
(1.47)

Another way to view this function is as the derivative of the Heaviside step function
(η(x) = 0 for x < 0 and η(x) = 1 for x ≥ 0):

δ(x) = d

dx
η(x) (1.48)

3 Further reading: http://mathworld.wolfram.com/DeltaFunction.html and references therein.

http://mathworld.wolfram.com/DeltaFunction.html
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In what follows we list a few properties of this function

b∫
a

dx f (x) δ(x − x0) =

⎧⎪⎨
⎪⎩

f (x0) if a < x0 < b

0 if x0 < a or x0 > b

(1/2)f (x0) if x0 = a or x0 = b

(1.49)

δ[g(x)] =
∑

j

δ(x − xj)

|g′(xj)| (1.50)

where xj are the roots of g(x) = 0, for example,

δ(ax) = 1

|a|δ(x) (1.51)

and

δ(x2 − a2) = 1

2|a|(δ(x + a)+ δ(x − a)) (1.52)

The derivative of the δ function is also a useful concept. It satisfies (from integration
by parts) ∫

dx f (x) δ′(x − x0) = −f ′(x0) (1.53)

and more generally ∫
dxf (x)δ(n)(x) = −

∫
dx

∂f

∂x
δ(n−1)(x) (1.54)

Also (from checking integrals involving the two sides)

xδ′(x) = −δ(x) (1.55)

x2δ′(x) = 0 (1.56)

Since for −π < a < π we have

π∫
−π

dx cos(nx)δ(x − a) = cos(na) and

π∫
−π

dx sin(nx)δ(x − a) = sin(na)

(1.57)
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it follows that the Fourier series expansion of the δ function is

δ(x − a) = 1

2π
+ 1

π

∞∑
n=1

[cos(na) cos(nx)+ sin(na) sin(nx)]

= 1

2π
+ 1

π

∞∑
n=1

cos(n(x − a)) (1.58)

Also since

∞∫
−∞

dxeikxδ(x − a) = eika (1.59)

it follows that

δ(x − a) = 1

2π

∞∫
−∞

dke−ik(x−a) = 1

2π

∞∫
−∞

dkeik(x−a) (1.60)

Extending δ functions to two and three dimensions is simple in cartesian coordinates

δ2(r) = δ(x)δ(y)

δ3(r) = δ(x)δ(y)δ(z)
(1.61)

In spherical coordinates care has to be taken of the integration element. The result is

δ2(r) = δ(r)

πr
(1.62)

δ3(r) = δ(r)

2πr2 (1.63)

1.1.6 Complex integration

Integration in the complex plane is a powerful technique for evaluating a certain
class of integrals, including those encountered in the solution of the time-dependent
Schrödinger equation (or other linear initial value problems) by the Laplace trans-
form method (see next subsection). At the core of this technique are the Cauchy
theorem which states that the integral along a closed contour of a function g(z),
which is analytic on the contour and the region enclosed by it, is zero:∮

dzg(z) = 0 (1.64)
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and the Cauchy integral formula—valid for a function g(z) with the properties
defined above, ∮

dz
g(z)

z − α
= 2π ig(α) (1.65)

where the integration contour surrounds the point z = α at which the integrand has
a simple singularity, and the integration is done in the counter-clockwise direction
(reversing the direction yields the result with opposite sign).

Both the theorem and the integral formula are very useful for many applications:
the Cauchy theorem implies that any integration path can be distorted in the complex
plane as long as the area enclosed between the original and modified path does not
contain any singularities of the integrand. This makes it often possible to modify
integration paths in order to make evaluation easier. The Cauchy integral formula
is often used to evaluate integrals over unclosed path—if the contour can be closed
along a line on which the integral is either zero or easily evaluated. An example is
shown below, where the integral (1.78) is evaluated by this method.

Problem 1.1. Use complex integration to obtain the identity for ε > 0

1

2π

∞∫
−∞

dωe−iωt 1

ω − ω0 + iε
=

{
0 for t < 0

−ie−iω0t−εt for t > 0
(1.66)

In quantum dynamics applications we often encounter this identity in the limit
ε → 0. We can rewrite it in the form

1

2π

∞∫
−∞

dωe−iωt 1

ω − ω0 + iε
ε→0+−→ −iη(t)e−iω0t (1.67)

where η(t) is the step function defined above Eq. (1.48).
Another useful identity is associated with integrals involving the function (ω−

ω0 + iε)−1 and a real function f (x). Consider

b∫
a

dω
f (ω)

ω − ω0 + iε
=

b∫
a

dω
(ω − ω0)f (ω)

(ω − ω0)2 + ε2 − i

b∫
a

dω
ε

(ω − ω0)2 + ε2 f (ω)

(1.68)

where the integration is on the real ω axis and where a < ω0 < b. Again we are
interested in the limit ε → 0. The imaginary term in (1.68) is easily evaluated



Mathematical background 15

to be −iπ f (ω0) by noting that the limiting form of the Lorentzian function that
multiplies f (ω) is a delta-function (see Eq. (1.47)). The real part is identified as

b∫
a

dω
(ω − ω0)f (ω)

(ω − ω0)2 + ε2
ε→0−→ PP

b∫
a

dω
f (ω)

ω − ω0
(1.69)

Here PP stands for the so-called Cauchy principal part (or principal value) of the
integral about the singular point ω0. In general, the Cauchy principal value of a
finite integral of a function f (x) about a point x0 with a < x0 < b is given by

PP

b∫
a

dxf (x) = lim
ε→0+

⎧⎨
⎩

x0−ε∫
a

dxf (x)+
b∫

x0+ε

dxf (x)

⎫⎬
⎭ (1.70)

We sometimes express the information contained in Eqs (1.68)–(1.70) and (1.47)
in the concise form

1

ω − ω0 + iε
ε→0+−→ PP

1

ω − ω0
− iπδ(ω − ω0) (1.71)

1.1.7 Laplace transform

A function f (t) and its Laplace transform f̃ (z) are related by

f̃ (z) =
∞∫

0

dte−zt f (t) (1.72)

f (t) = 1

2π i

∞i+ε∫
−∞i+ε

dzezt f̃ (z) (1.73)

where ε is chosen so that the integration path is to the right of all singularities of
f̃ (z). In particular, if the singularities of f̃ (z) are all on the imaginary axis, ε can be
taken arbitrarily small, that is, the limit ε → 0+ may be considered. We will see
below that this is in fact the situation encountered in solving the time-dependent
Schrödinger equation.

Laplace transforms are useful for initial value problems because of identities
such as

∞∫
0

dte−zt df

dt
= [e−zt f ]∞0 + z

∞∫
0

dte−zt f (t) = zf̃ (z)− f (t = 0) (1.74)
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and

∞∫
0

dte−zt d2f

dt2 = z2 f̃ (z)− zf (t = 0)− f ′(t = 0) (1.75)

which are easily verified using integration by parts. As an example consider the
equation

df

dt
= −αf (1.76)

Taking Laplace transform we get

zf̃ (z)− f (0) = −αf̃ (z) (1.77)

that is,

f̃ (z) = (z + α)−1f (0) and f (t) = (2π i)−1

ε+i∞∫
ε−i∞

dzezt(z + α)−1f (0).

(1.78)

If α is real and positive ε can be taken as 0, and evaluating the integral by closing
a counter-clockwise contour on the negative-real half z plane4 leads to

f (t) = e−αt f (0) (1.79)

1.1.8 The Schwarz inequality

In its simplest form the Schwarz inequality expressed an obvious relation between
the products of magnitudes of two real vectors c1 and c2 and their scalar product

c1c2 ≥ c1 · c2 (1.80)

It is less obvious to show that this inequality holds also for complex vectors,
provided that the scalar product of two complex vectors e and f is defined by
e∗ · f . The inequality is of the form

|e||f | ≥ |e∗ · f | (1.81)

4 The contour is closed at z →−∞ where the integrand is zero. In fact the integrand has to vanish
faster than z−2 as z →−∞ because the length of the added path diverges like z2 in that limit.
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Note that in the scalar product e∗ · f the order is important, that is, e∗ · f = (f∗ · e)∗.
To prove the inequality (1.81) we start from

(a∗e∗ − b∗f∗) · (ae − bf) ≥ 0 (1.82)

which holds for any scalars a and b. Using the choice

a = √
(f∗ · f)(e∗ · f) and b = √

(e∗ · e)(f∗ · e) (1.83)

in Eq. (1.82) leads after some algebra to
√
(e∗ · e)(f∗ · f) ≥ |e∗ · f |, which implies

(1.81).
Equation (1.80) can be applied also to real functions that can be viewed as

vectors with a continuous ordering index. We can make the identification ck =
(ck · ck)

1/2 ⇒ (
∫

dxc2
k(x))

1/2; k = 1, 2 and c1 · c2 ⇒
∫

dxc1(x)c2(x) to get

(∫
dxc2

1(x)

)(∫
dxc2

2(x)

)
≥

(∫
dxc1(x)c2(x)

)2

(1.84)

The same development can be done for Hilbert space vectors. The result is

〈ψ |ψ〉〈φ|φ〉 ≥ |〈ψ |φ〉|2 (1.85)

where ψ and φ are complex functions so that 〈ψ |φ〉 = ∫
drψ∗(r)φ(r). To prove

Eq. (1.85) define a function y(r) = ψ(r)+ λφ(r) where λ is a complex constant.
The following inequality is obviously satisfied∫

dr y∗(r) y(r) ≥ 0

This leads to∫
drψ∗(r)ψ(r)+ λ

∫
drψ∗(r)φ(r)+ λ∗

∫
drφ∗(r)ψ(r)

+ λ∗λ
∫

drφ∗(r)φ(r) ≥ 0 (1.86)

or

〈ψ |ψ〉 + λ〈ψ |φ〉 + λ∗〈φ|ψ〉 + |λ|2〈φ|φ〉 ≥ 0 (1.87)

Now choose

λ = −〈φ|ψ〉〈φ|φ〉 ; λ∗ = −〈ψ |φ〉〈φ|φ〉 (1.88)
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and also multiply (1.87) by 〈φ|φ〉 to get

〈ψ |ψ〉〈φ|φ〉 − |〈ψ |φ〉|2 − |〈φ|ψ〉|2 + |〈ψ |φ〉|2 ≥ 0 (1.89)

which leads to (1.85).
An interesting implication of the Schwarz inequality appears in the relationship

between averages and correlations involving two observables A and B. Let Pn
be the probability that the system is in state n and let An and Bn be the values
of these observables in this state. Then 〈A2〉 = ∑

n PnA2
n, 〈B2〉 = ∑

n PnB2
n, and

〈AB〉 = ∑
n PnAnBn. The Schwarz inequality now implies

〈A2〉〈B2〉 ≥ 〈AB〉2 (1.90)

Indeed, Eq. (1.90) is identical to Eq. (1.80) written in the form (a ·a)(b·b) ≥ (a ·b)2

where a and b are the vectors an = √
PnAn; bn = √

PnBn.

1.2 Classical mechanics

1.2.1 Classical equations of motion

Time evolution in classical mechanics is described by the Newton equations

ṙi = 1

mi
pi

ṗi = Fi = −∇iU
(1.91)

ri and pi are the position and momentum vectors of particle i of mass mi, Fi is the
force acting on the particle, U is the potential, and ∇i is the gradient with respect
to the position of this particle. These equations of motion can be obtained from the
Lagrangian

L = K({ẋ})− U ({x}) (1.92)

where K and U are, respectively, the total kinetic and potential energies and {x},
{ẋ} stands for all the position and velocity coordinates. The Lagrange equations of
motion are

d

dt

∂L

∂ ẋi
= ∂L

∂xi
(and same for y, z) (1.93)

The significance of this form of the Newton equations is its invariance to coordinate
transformation.
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Another useful way to express the Newton equations of motion is in the
Hamiltonian representation. One starts with the generalized momenta

pj = ∂L

∂ ẋj
(1.94)

and define the Hamiltonian according to

H = −
⎡
⎣L({x}, {ẋ})−

∑
j

pjẋj

⎤
⎦ (1.95)

The mathematical operation done in (1.95) transforms the function L of variables
{x}, {ẋ} to a new function H of the variables {x}, {p}.5 The resulting function,
H ({x}, {p}), is the Hamiltonian, which is readily shown to satisfy

H = U + K (1.96)

that is, it is the total energy of the system, and

ẋj = ∂H

∂pj
; ṗj = −∂H

∂qj
(1.97)

which is the Hamiltonian form of the Newton equations. In a many-particle system
the index j goes over all generalized positions and momenta of all particles.

The specification of all positions and momenta of all particles in the system
defines the dynamical state of the system. Any dynamical variable, that is, a func-
tion of these positions and momenta, can be computed given this state. Dynamical
variables are precursors of macroscopic observables that are defined as suitable
averages over such variables and calculated using the machinery of statistical
mechanics.

1.2.2 Phase space, the classical distribution function, and the Liouville equation

In what follows we will consider an N particle system in Euclidian space. The
classical equations of motion are written in the form

ṙN = ∂H (rN , pN )

∂pN ; ṗN = −∂H (rN , pN )

∂rN (1.98)

5 This type of transformation is called a Legendre transform.
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which describe the time evolution of all coordinates and momenta in the sys-
tem. In these equations rN and pN are the 3N -dimensional vectors of coordinates
and momenta of the N particles. The 6N -dimensional space whose axes are
these coordinates and momenta is refereed to as the phase space of the sys-
tem. A phase point (rN , pN ) in this space describes the instantaneous state
of the system. The probability distribution function f (rN , pN ; t) is defined
such that f (rN , pN ; t)drN dpN is the probability at time t that the phase point
will be inside the volume drN dpN in phase space. This implies that in an
ensemble containing a large number N of identical systems the number of those
characterized by positions and momenta within the drN dpN neighborhood is
N f (rN , pN ; t)drN dpN . Here and below we use a shorthand notation in which, for
example, drN = dr1dr2 . . . drN = dx1dx2dx3dx4dx5dx6, . . . , dx3N−2dx3N−1dx3N

and, (∂F/∂rN )(∂G/∂pN ) = ∑3N
j=1(∂F/∂xj)(∂G/∂pj).

As the system evolves in time according to Eq. (1.98) the distribution function
evolves accordingly. We want to derive an equation of motion for this distribution.
To this end consider first any dynamical variable A(rN , pN ). Its time evolution is
given by

dA
dt

= ∂A
∂rN ṙN + ∂A

∂pN ṗN = ∂A
∂rN

∂H

∂pN − ∂A
∂pN

∂H

∂rN = {H , A} ≡ iLA

L = −i{H , }
(1.99)

The second equality in Eq. (1.99) defines the Poisson brackets and L is called the
(classical) Liouville operator. Consider next the ensemble average A(t) = 〈A〉t
of the dynamical variable A. This average, a time-dependent observable, can be
expressed in two ways that bring out two different, though equivalent, roles played
by the function A(rN , pN ). First, it is a function in phase space that gets a distinct
numerical value at each phase point. Its average at time t is therefore given by

A(t) =
∫

drN
∫

dpN f (rN , pN ; t)A(rN , pN ) (1.100)

At the same time the value of A at time t is given by A(rN (t), pN (t)) and is
determined uniquely by the initial conditions (rN (0), pN (0)). Therefore,

A(t) =
∫

drN
∫

dpN f (rN , pN ; 0)A(rN (t), pN (t)) (1.101)



Classical mechanics 21

An equation of motion for f can be obtained by equating the time derivatives of
Eqs (1.100) and (1.101):∫

drN
∫

dpN ∂f (rN , pN ; t)

∂t
A(rN , pN ) =

∫
drN

∫
dpN f (rN , pN ; 0)

dA
dt

=
∫

drN
∫

dpN f (rN , pN ; 0)
(

∂A
∂rN

∂H

∂pN − ∂A
∂pN

∂H

∂rN

)
(1.102)

Using integration by parts while assuming that f vanishes at the boundary of phase
space, the right-hand side of (1.102) may be transformed according to∫

drN
∫

dpN f (rN , pN ; 0)
(

∂A
∂rN

∂H

∂pN − ∂A
∂pN

∂H

∂rN

)

=
∫

drN
∫

dpN
(

∂H

∂rN

∂f

∂pN − ∂H

∂pN

∂f

∂rN

)
A(rN , pN )

=
∫

drN
∫

dpN (−iLf )A(rN , pN )

(1.103)

Comparing this to the left-hand side of Eq. (1.102) we get

∂f (rN , pN ; t)

∂t
= −iLf = −

3N∑
j=1

{
∂f

∂xj

∂H

∂pj
− ∂f

∂pj

∂H

∂xj

}

= −
3N∑
j=1

{
∂f

∂xj
ẋj + ∂f

∂pj
ṗj

} (1.104)

This is the classical Liouville equation. An alternative derivation of this equation
that sheds additional light on the nature of the phase space distribution function
f (rN , pN ; t) is given in Appendix 1A.

An important attribute of the phase space distribution function f is that it is
globally constant. Let us see first what this statement means mathematically. Using

d

dt
= ∂

∂t
+ ṙN ∂

∂rN + ṗN ∂

∂pN = ∂

∂t
+ ∂H

∂pN

∂

∂rN − ∂H

∂rN

∂

∂pN = ∂

∂t
+ iL

(1.105)

Equation (1.104) implies that

df

dt
= 0 (1.106)
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that is, f has to satisfy the following identity:

f (rN (0), pN (0); t = 0) = f (rN (t), pN (t); t) (1.107)

As the ensemble of systems evolves in time, each phase point moves along the
trajectory (rN (t), pN (t)). Equation (1.107) states that the density of phase points
appears constant when observed along the trajectory.

Another important outcome of these considerations is the following. The unique-
ness of solutions of the Newton equations of motion implies that phase point
trajectories do not cross. If we follow the motions of phase points that started at a
given volume element in phase space we will therefore see all these points evolving
in time into an equivalent volume element, not necessarily of the same geometrical
shape. The number of points in this new volume is the same as the original one, and
Eq. (1.107) implies that also their density is the same. Therefore, the new volume
(again, not necessarily the shape) is the same as the original one. If we think of this
set of points as molecules of some multidimensional fluid, the nature of the time
evolution implies that this fluid is totally incompressible. Equation (1.107) is the
mathematical expression of this incompressibility property.

1.3 Quantum mechanics

In quantum mechanics the state of a many-particle system is represented by a
wavefunction �(rN , t), observables correspond to hermitian operators6 and results
of measurements are represented by expectation values of these operators,

〈A〉(t) = 〈�(rN , t)|Â|�(rN , t)〉
=

∫
drN�∗(rN , t)Â�(rN , t)

(1.108)

When Â is substituted with the unity operator, Eq. (1.108) shows that acceptable
wavefunctions should be normalized to 1, that is, 〈ψ |ψ〉 = 1. A central problem is
the calculation of the wavefunction, �(rN , t), that describes the time-dependent
state of the system. This wavefunction is the solution of the time-dependent

6 The hermitian conjugatre of an operator Â is the operator Â† that satisfies∫
drNφ∗(rN )Âψ(rN ) =

∫
drN (Â†φ(rN ))∗ψ(rN )

for all φ and ψ in the hilbert state of the system.
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Schrödinger equation

∂�

∂t
= − i

h̄
Ĥ� (1.109)

where the Hamiltonian Ĥ is the operator that corresponds to the energy observable,
and in analogy to Eq. (1.196) is given by

Ĥ = K̂ + Û (rN ) (1.110)

In the so-called coordinate representation the potential energy operator Û amounts
to a simple product, that is, Û (rN )�(rN , t) = U (rN )�(rN , t) where U (rN ) is
the classical potential energy. The kinetic energy operator is given in cartesian
coordinates by

K̂ = −h̄2
N∑

j=1

1

2mj
∇2

j (1.111)

where the Laplacian operator is defined by

∇2
j =

∂2

∂x2
j

+ ∂2

∂y2
j

+ ∂2

∂z2
j

(1.112)

Alternatively Eq. (1.111) can be written in the form

K̂ =
N∑

j=1

p̂2
j

2mj
=

N∑
j=1

p̂j · p̂j

2mj
(1.113)

where the momentum vector operator is

p̂j = h̄

i

(
∂

∂xj
,

∂

∂yj
,
∂

∂zj

)
; i = √−1 (1.114)

The solution of Eq. (1.109) can be written in the form

�(rN , t) =
∑

n

ψn(rN )e−iEnt/h̄ (1.115)

where ψn and En are solutions of the time-independent Schrödinger equation

Ĥψn = Enψn (1.116)
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Equation (1.116) is an eigenvalue equation, and ψn and En are eigenfunctions and
corresponding eigenvalues of the Hamiltonian. If at time t = 0 the system is in a
state which is one of these eigenfunctions, that is,

�(rN , t = 0) = ψn(rn) (1.117)

then its future (and past) evolution is obtained from (1.109) to be

�(rN , t) = ψn(rN )e−iEnt/h̄ (1.118)

Equation (1.108) then implies that all observables are constant in time, and the
eigenstates of Ĥ thus constitute stationary states of the system.

The set of energy eigenvalues of a given Hamiltonian, that is, the energies that
characterize the stationary states of the corresponding system is called the spectrum
of the Hamiltonian and plays a critical role in both equilibrium and dynamical
properties of the system. Some elementary examples of single particle Hamiltonian
spectra are:

A particle of mass m in a one-dimensional box of infinite depth and width a,

En = (2π h̄)2n2

8ma2 ; n = 1, 2 . . . (1.119)

A particle of mass m moving in a one-dimensional harmonic potential U (x) =
(1/2)kx2,

En = h̄ω

(
n + 1

2

)
n = 0, 1 . . . ; ω = √

k/m (1.120)

A rigid rotator with moment of inertia I ,

En = n(n + 1)h̄2

2I
; wn = 2n + 1 (1.121)

where wn is the degeneracy of level n. Degeneracy is the number of different
eigenfunctions that have the same eigenenergy.

An important difference between quantum and classical mechanics is that in
classical mechanics stationary states exist at all energies while in quantum mech-
anics of finite systems the spectrum is discrete as shown in the examples above. This
difference disappears when the system becomes large. Even for a single particle
system, the spacings between allowed energy levels become increasingly smaller
as the size of accessible spatial extent of the system increases, as seen, for example,
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in Eq. (1.119) in the limit of large a. This effect is tremendously amplified when
the number of degrees of freedom increases. For example the three-dimensional
analog of (1.119), that is, the spectrum of the Hamiltonian describing a particle in
a three-dimensional infinitely deep rectangular box of side lengths a, b, c is

E(nx, ny, nz) = (2π h̄)2

8m

(
n2

x

a2 +
n2

y

b2 +
n2

z

c2

)
; nx, ny, nz = 1, 2, . . . (1.122)

showing that in any energy interval the number of possible states is much larger
because of the various possibilities to divide the energy among the three degrees
of freedom.

For a many particle system this argument is compounded many times and the
spectrum becomes essentially continuous. In this limit the details of the energy
levels are no longer important. Instead, the density of states ρE(E) becomes the
important characteristic of the system spectral properties. ρE(E) is defined such
that ρE(E)�E is the number of system eigenstates with energy in the interval
E, . . . , E + �E. For an example of application of this function see, for example,
Section 2.8.2. Note that the density of states function can be defined also for a
system with a dense but discrete spectrum, see Eqs (1.181) and (1.182) below.

1.4 Thermodynamics and statistical mechanics

1.4.1 Thermodynamics

The first law of thermodynamics is a statement of the law of energy conservation.
The change in the system energy when its state changes from A to B is written as the
sum of the work W done on the system, and the heat flow Q into the system, during
the process. The mathematical statement of the first law is then

�E = EB − EA = Q + W (1.123)

The differential form of this statement is

dE = TdS − Pd� (1.124)

where S is the system entropy, T is the temperature, P is the pressure, and � is the
system volume, respectively, and where we have assumed that all the mechanical
work is an expansion against some pressure, that is, dW = −Pd�. If the material
composition in the system changes during the process a corresponding contribution
to the energy appears and Eq. (1.124) becomes

dE = TdS − Pd�+
∑

j

µjdNj (1.125)
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where Nj is the number of molecules of species j and µj is the chemical potential of
this species. An important observation is that while the energy is a function of the
state of the system, the components of its change, W and Q are not—they depend
on the path taken to reach that state. The entropy S is also a function of state; its
difference between two equilibrium states of the system is

�S =
B∫

A

(
dQ

T

)
rev

(1.126)

where ( )rev denotes a reversible process—a change that is slow relative to the
timescale of molecular relaxation processes, so that at each point along the way the
system can be assumed to be at equilibrium.

When conditions for reversibility are not satisfied, that is, when the transition
from A to B is not much slower than the internal system relaxation, the system
cannot be assumed in equilibrium and in particular its temperature may not be well
defined during the process. Still �S = SB − SA is well defined as the difference
between entropies of two equilibrium states of the system. The second law of
thermodynamics states that for a nonreversible path between states A and B

�S >

B∫
A

dQ

T
(1.127)

where T is the temperature of the surroundings (that of the system is not well
defined in such an irreversible process).

Finally, the third law of thermodynamics states that the entropy of perfect
crystalline substances vanishes at the absolute zero temperature.

The presentation so far describes an equilibrium system in terms of the extensive
variables (i.e. variables proportional to the size of the system) E,�, S, {Nj; j =
1, . . . , n}. The intensive (size-independent) variables P, T , {µj; j = 1, . . . , N } can
be defined according to Eq. (1.125)

T =
(
∂E

∂S

)
�,{N }

; P = −
(
∂E

∂�

)
S,{N }

; µj =
(

∂E

∂Nj

)
S,�,{N }�=Nj

(1.128)

however, the independent variables in this representation are E (or S), � and {Nj}
that characterize a closed system.

Other representations are possible. The enthalpy

H = E + P� (1.129)



Thermodynamics and statistical mechanics 27

is a function of the independent variables S, P, and {Nj}, as can be seen by using
Eq. (1.125) in dH = dE +�dP + Pd� to get

dH = TdS +�dP +
∑

j

µjdNj (1.130)

The Helmholtz free energy

F = E − TS (1.131)

similarly satisfies

dF = −SdT − Pd�+
∑

j

µjdNj (1.132)

This characterizes it as a function of the variables T , �, and {Nj}. The Gibbs free
energy

G = E + P�− TS (1.133)

is then a function of T , P, and {Nj}. Indeed

dG = −SdT + VdP +
∑

j

µjdNj (1.134)

These thermodynamic functions can be shown to satisfy important extremum
principles. The entropy of a closed system (characterized by the variables E, �, and
{Nj}) at equilibrium is maximum in the sense that it is greater than the entropy of any
other closed system characterized by the same extensive variables but with more
internal restrictions. (A restriction can be, for example, a wall dividing the system
and forcing molecules to stay on either one or the other side of it.) The energy
of a closed equilibrium system with given entropy, volume, and particle numbers,
is smaller than that of any similar system that is subjected to additional internal
restrictions. The most useful statements are however those concerning the free
energies. The Helmholtz free energy assumes a minimum value for an equilib-
rium system characterized by a given volume, given particle numbers, and a given
temperature, again compared to similar systems with more imposed restrictions.
Finally, the Gibbs free energy is minimal (in the same sense) for systems with given
temperature, pressure, and particle numbers.

The study of thermodynamics involves the need to navigate in a space of
many-variables, to transform between these variables, and to identify physically
meaningful subspaces. Some mathematical theorems are useful in this respect. The
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Euler theorem concerns the so-called homogeneous functions of order n, defined
by the property

f (λx1 . . . λxN ) = λnf (x1, . . . , xN ) (1.135)

It states that such functions satisfy

N∑
j=1

xj
∂f (x1, . . . , xN )

∂xj
= nf (x1, . . . , xN ) (1.136)

We can use this theorem to address extensive functions of extensive variables, which
are obviously homogeneous functions of order 1 in these variables, for example,
the expression

E(λS, λ�, {λNj}) = λE(S,�, {Nj}) (1.137)

just says that all quantities here are proportional to the system size. Using (1.136)
with n = 1 then yields

E = S
∂E

∂S
+�

∂E

∂�
+

∑
j

Nj
∂E

∂Nj
(1.138)

Using (1.128) then leads to

E = TS − P�+
∑

j

Njµj (1.139)

and, from (1.33)

G =
∑

j

Njµj (1.140)

Furthermore, since at constant T and P (from (1.134))

(dG)T ,P =
∑

j

µjdNj (1.141)

it follows, using (1.140) and (1.141) that∑
j

Nj(dµj)T ,P = 0 (1.142)

The result (1.142) is the Gibbs–Duhem equation, the starting point in the derivation
of the equations of chemical equilibria.
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1.4.2 Statistical mechanics

Statistical mechanics is the branch of physical science that studies properties of mac-
roscopic systems from the microscopic starting point. For definiteness we focus on
the dynamics of an N -particle system as our underlying microscopic description. In
classical mechanics the set of coordinates and momenta, (rN , pN ) represents a state
of the system, and the microscopic representation of observables is provided by the
dynamical variables, A(rN , pN , t). The equivalent quantum mechanical objects are
the quantum state |j〉 of the system and the associated expectation value Aj = 〈j|Â|j〉
of the operator Â that corresponds to the classical variable A. The corresponding
observables can be thought of as time averages

〈A〉t = lim
t→∞

1

2t

t∫
−t

dt′A(t′) (1.143)

or as ensemble averages: if we consider an ensemble of N macroscopically identical
systems, the ensemble average is

〈A〉e = lim
N→∞

1

N

N∑
j=1

Aj (1.144)

Obviously the time average (1.143) is useful only for stationary systems, that is,
systems that do not macroscopically evolve in time. The ergodic hypothesis (some-
times called ergodic theorem) assumes that for large stationary systems the two
averages, (1.143) and (1.144) are the same. In what follows we discuss equilibrium
systems, but still focus on ensemble averages that lead to more tractable theoret-
ical descriptions. Time averages are very useful in analyzing results of computer
simulations.

The formulation of statistical mechanics from ensemble averages can take dif-
ferent routes depending on the ensemble used. Our intuition tells us that if we focus
attention on a small (but still macroscopic) part of a large system, say a glass of
water from the Atlantic ocean, its thermodynamic properties will be the same when
open to the rest of the ocean, that is, exchanging energy and matter with the out-
side world, as when closed to it. Three theoretical constructs correspond to these
scenarios. The microcanonical ensemble is a collection of microscopically identical
closed systems characterized by energy, E, volume �, and number of particles N .
The canonical ensemble is a collection of systems characterized by their volume and
number of particles, and by their temperature; the latter is determined by keeping
open the possibility to exchange energy with a thermal bath of temperature T . The
grand canonical ensemble is a collection of systems that are in equilibrium and can



30 Review of some mathematical and physical subjects

exchange both energy and matter with a bath characterized by a given temperature
T and a chemical potential of the material system, µ.

For each of these ensembles of N systems let fj(N ) be the fraction of systems
occupying a given microscopic state j. The ensemble probability Pj is defined
by Pj = limN→∞ fj(N ). The macroscopic observable that corresponds to the
dynamical variable A is then

〈A〉e =
∑

j

PjAj (1.145)

In the grand canonical formulation the sum over j should be taken to include also
a sum over number of particles.

1.4.2.1 Microcanonical ensemble

The probability that a system is found in a state of energy Ej is given by

Pj = 1

ρE(E,�, N )
δ(E − Ej) (1.146)

where ρE(E,�, N ) is the density of energy states, the same function that was
discussed at the end of Section 1.3. Its formal definition

ρE(E,�, N ) =
∑

j

δ(E − Ej(�, N )) (1.147)

insures that Pj is normalized and makes it clear that the integral∫ E+�E
E dEρE(E,�, N ) gives the number of energy states in the interval between E

and E +�E. Equation (1.146) expresses a basic postulate of statistical mechanics,
that all microscopic states of the same energy have the same probability.

One thing that should be appreciated about the density of states of a macroscopic
system is how huge it is. For a system of N structureless (i.e. no internal states)
particles of mass m confined to a volume � but otherwise moving freely it is
given by7

ρE(E,�, N ) = 1

�(N + 1)�(3N/2)

(
m

2π h̄2

)3N/2

�N E(3N/2)−1 (1.148)

where � are gamma-functions (�(N ) = (N − 1)! for an integer N ) that for large
N can be evaluated from the Stirling formula (1.18). For a system of linear size

7 D. A. McQuarrie, Statistical Mechanics (Harper and Row, New York, 1976), Chapter 1.
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l = 1 cm (� = l3) and energy E = 3NkBT/2 with m = 10−22 g, N = 1023,
and T = 300 K, the dimensionless parameter ξ = ml2E/(2π h̄2) is ∼1041 so that
ρE = E−1(1041)3N/2/e(5/2)N ln N ∼ 103N E−1.

In the present context ρE(E,�, N ) is the microcanonical partition function—a
sum over the un-normalized probabilities. This function is in turn directly related
to the system entropy

S(E,�, N ) = kB ln ρE(E,�, N ) (1.149)

where kB is the Boltzmann constant. From (1.125), written in the form

dS = 1

T
dE + P

T
d�− µ

T
dN (1.150)

it immediately follows that

1

kBT
=

(
∂ ln ρE

∂E

)
N ,�

(1.151)

P

kBT
=

(
∂ ln ρE

∂�

)
N ,E

(1.152)

µ

kBT
= −

(
∂ ln ρE

∂N

)
�,E

(1.153)

1.4.2.2 Canonical ensemble

For an ensemble of systems that are in equilibrium with an external heat bath of
temperature T , the probability to find a system in state j of energy Ej is given by

Pj = e−βEj/Q (1.154)

where

Q(T ,�, N ) =
∑

j

e−βEj(�,N ); β = (kBT )−1 (1.155)

is the canonical partition function. For a macroscopic system the energy spectrum
is continuous and Eq. (1.155) can be rewritten as (setting the energy scale so that
the ground state energy is nonnegative)

Q(T ,�, N ) =
∞∫

0

dEρE(E,�, N )e−βE(�,N ) (1.156)
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The canonical partition function is found to be most simply related to the Helmholtz
free energy

F = −kBT ln Q (1.157)

Using (1.132) it follows that

S = kBT

(
∂ ln Q

∂T

)
N ,�

+ kB ln Q (1.158)

P = kBT

(
∂ ln Q

∂�

)
N ,T

(1.159)

µ = −kBT

(
∂ ln Q

∂N

)
�,T

(1.160)

In addition, it follows from Eqs (1.154) and (1.155) that the average energy in the
system is

E =
∑

j

EjPj = kBT 2
(
∂ ln Q

∂T

)
N ,�

(1.161)

It is easily verified that that the analog expression for the pressure

P = −
∑

j

∂Ej

∂�
Pj (1.162)

is consistent with Eq. (1.159).
It is important to understand the conceptual difference between the quantities E

and S in Eqs (1.161) and (1.158), and the corresponding quantities in Eq. (1.149). In
the microcanonical case E, S, and the other derived quantities (P, T ,µ) are unique
numbers. In the canonical case these, except for T which is defined by the external
bath, are ensemble averages. Even T as defined by Eq. (1.151) is not the same as
T in the canonical ensemble. Equation (1.151) defines a temperature for a closed
equilibrium system of a given total energy while as just said, in the canonical
ensemble T is determined by the external bath. For macroscopic observations we
often disregard the difference between average quantities that characterize a system
open to its environment and the deterministic values of these parameters in the
equivalent closed system. Note however that fluctuations from the average are
themselves often related to physical observables and should be discussed within
their proper ensemble.
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An interesting microscopic view of the first law of thermodynamics is obtained
from using (1.161) to write

dE = d
∑

j

EjPj =
∑

j

EjdPj

︸ ︷︷ ︸
reversible
heat

+
∑

j

PjdEj

︸ ︷︷ ︸
reversible
work

(1.163)

The use of the word “reversible” here is natural: any infinitesimal process is by
definition reversible. The change in the average energy of a system is seen to be
made of a contribution associated with the change in the occupation probability
of different energy states—which is what we associate with changing temperature,
that is, reversible heat exchange with the surrounding, and another contribution in
which these occupation probabilities are fixed but the energies of the state them-
selves change—as will be the case if the volume of the system changed as a result
of mechanical work.

1.4.2.3 Grand-canonical ensemble

For an ensemble of systems that are in contact equilibrium with both heat and
matter reservoirs characterized by a temperature T and a chemical potential µ,
respectively, the probability to find a system with N particles and in the energy
level EjN (�) is given by

PjN = e−β(EjN (�)−µN )

�
(1.164)

where the grand-canonical partition function is

� = �(T ,�,µ) =
∑

N

∑
j

e−βEjN (�)eβµN

=
∞∑

N=0

Q(�, T , N )λN ; λ = eβµ
(1.165)

Its connection to average thermodynamic observables can be obtained from the
fundamental relationship

P� = kBT ln � (1.166)

and the identity

d(P�) = SdT + Pd�+ Ndµ (1.167)
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Together (1.166) and (1.167) imply

S = kB ln �+ kBT

(
∂(ln �)

∂T

)
�,µ

(1.168)

P̄ = kBT

(
∂ ln �

∂�

)
T ,µ

(1.169)

and

N̄ = kBT

(
∂ ln �

∂µ

)
T ,�

(1.170)

1.4.3 Quantum distributions

The quantum analogs of the phase space distribution function and the Liouville
equation discussed in Section 1.2.2 are the density operator and the quantum
Liouville equation discussed in Chapter 10. Here we mention for future refer-
ence the particularly simple results obtained for equilibrium systems of identical
noninteracting particles. If the particles are distinguishable, for example, atoms
attached to their lattice sites, then the canonical partitions function is, for a system
of N particles

Q(T ,�, N ) = qN ; q =
∑

i

e−βεi (1.171)

where εi is the energy of the single particle state i and q is the single particle
partition function. If the particles are non-distinguishable, we need to account for
the fact that interchanging between them does not produce a new state. In the
high-temperature limit, where the number of energetically accessible states greatly
exceeds the number of particles this leads to

Q(T ,�, N ) = qN

N ! (1.172)

Using Eq. (1.161), both Eqs (1.171) and (1.172) lead to the same expression for the
average system energy

Ē = N
∑

i

εifi (1.173)

where fi, the probability that a molecule occupies the state i, is

fi = e−βεi/q (1.174)
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At low temperature the situation is complicated by the fact that the difference
between distinguishable and indistinguishable particles enters only when they
occupy different states. This leads to different statistics between fermions and
bosons and to the generalization of (1.174) to

fi = 1

eβ(εi−µ) ± 1
(1.175)

where µ is the chemical potential and where the (+) sign is for fermions while the
(−) is for bosons. µ is determined from the condition

∑
i fi = 1. This condition

also implies that when T →∞ individual occupation probabilities should approach
zero, which means that µ →−∞ so that

fi
T→∞−→ e−β(εi−µ) and µ

T→∞−→ −kBT ln

(∑
i

e−βεi

)
(1.176)

1.4.4 Coarse graining

Consider the local density, ρ(r, t), of particles distributed and moving in space.
We explicitly indicate the position and time dependence of this quantity in order
to express the fact the system may be non-homogeneous and out of equilibrium.
To define the local density we count the number of particles n(r, t) in a volume
�� about position r at time t (for definiteness we may think of a spherical volume
centered about r). The density

ρ��(r, t) = n(r, t)/�� (1.177)

is obviously a fluctuating variable that depends on the size of ��. To define a
meaningful local density �� should be large relative to the interparticle spacing
and small relative to the scale of inhomogeneities in the local density that we
wish to describe. Alternatively, we can get a meaningful density by averaging the
instantaneous density over predefined time intervals.

We can make these statements more quantitative by defining the dynamical
density variable (see Section 1.2.1) according to

ρ(r, t) = ρ(r, {ri(t)}) ≡
∑

i

δ(r − ri(t)) (1.178)

where δ is the three-dimensional Dirac delta function, ri(t) is the position of
particle i at time t and the sum is over all particles. This dynamical variable depends
on the positions of all particles in the system and does not depend on their momenta.
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The local density defined in Eq. (1.177) is then given by

ρ��(r, t) = 1

��

∫
��

dr′ρ(r′, {ri(t)}) (1.179)

where the integral is over a volume �� about the point r. Furthermore, for an
equilibrium system we could also perform a local time average

ρ��,�t(r, t) = 1

�t

t+�t/2∫
t−�t/2

dt′ρ��(r, t′) (1.180)

The processes (1.179) and (1.180) by which we transformed the dynamical variable
ρ(r, t) to its “smoother” counterpart ρ��(r, t) is an example of coarse graining.8

What was achieved by this coarse-graining process? Consider the spatial coarse
graining (1.179). As a function of r,ρ of Eq. (1.178) varies strongly on a length scale
of the order of a particle size—showing a spike at the position of each particle,9

however variations on these length scales are rarely of interest. Instead we are often
interested in more systematic inhomogeneities that are observed in hydrodynamics
or in electrochemistry, or those that can be probed by light scattering (with typical
length-scale determined by the radiation wavelength). Such variations, without
the irrelevant spiky structure, are fully contained in ρ�� provided that the volume
elements �� are taken large relative to the inter-particle distance and small relative
to the inhomogeneous features of interest. Clearly, ρ��(r) cannot describe the
system structure on a length scale smaller than l ∼ (��)1/3, but it provides a
simpler description of those system properties that depend on longer length scales.

Coarse graining in time is similarly useful. It converts a function that is spiky (or
has other irregularities) in time to a function that is smooth on timescales shorter
than�t, but reproduces the relevant slower variations of this function. This serves to
achieve a mathematically simpler description of a physical system on the timescale
of interest. The attribute “of interest” may be determined by the experiment—it is

8 Another systematic way to coarse grain a function f (r) is to express it as a truncated version of
its Fourier transform

f cg(r) =
∫

|k|<kc

dkf̂ (k)eik·r where f̂ (k) = (1/(2π)3)

∫
drf (r)e−ik·r

where kc is some cutoff that filters high k components out of the coarse-grained function f cg(r).
9 In fact, if we were interested on variations on such length scales, we should have replaced the

delta function in Eq. (1.178) by a function that reflects this size, for example, zero outside the volume
�� occupied by the particle, and (��)−1 inside this volume.
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often useless to describe a system on a timescale shorter than what is measurable.
Our brain performs such coarse graining when we watch motion pictures, so we
sense a continuously changing picture rather than jumping frames.

It should be noticed that coarse graining is a reduction process: We effectively
reduce the number of random variables used to describe a system. This statement
may appear contradictory at first glance. In (1.179) we convert the function ρ(r, t),
Eq. (1.178), which is completely specified by 3N position variables (of N particles)
to the function ρ��(r, t) that appears to depend on any point in continuous space.
However, spatial variations in the latter exists only over length scales larger than
(��)1/3, so the actual number of independent variables in the coarse-grained sys-
tem is of order �/�� where � is the system volume. This number is much smaller
than N if (as we usually take) (��)1/3 is much larger than both molecular size and
intermolecular spacing.

Finally, consider the eigenvalues {Ej} of some Hamiltonian Ĥ of interest. We
can define the density of states function

ρ(E) =
∑

j

δ(E − Ej) (1.181)

that has the property that the integral
∫ Eb

Ea
dEρ(E) gives the number of energy

eigenvalues in the interval Ea, . . . , Eb. When the spectrum of Ĥ becomes very
dense it is useful to define a continuous coarse-grained analog of (1.181)

ρ(E) → 1

�E

E+(1/2)�E∫
E−(1/2)�E

ρ(E)dE (1.182)

where �E is large relative to the spacing between consecutive Ejs. This coarse-
grained density of states is useful in applications where the spectrum is dense
enough so that �E can be taken small relative to any experimentally meaning-
ful energy interval. In such applications ρ(E) in (1.181) and (1.182) can be used
interchangeably, and we will use the same notation for both.

The central limit theorem of probability theory (Section 1.1.1) finds its most
useful application in statistical mechanics through applications of the coarse-
graining idea. The coarse-graining procedure essentially amounts to generating
a new “coarse grained” random variable by summing up many random variables in
a certain interval. Indeed the reduction (1.179) amounts to replacing a group of ran-
dom variables (ρ(r) for all r in the interval ��) by their sum. If this interval is large
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relative to the correlation distance10 between these variables, and if the probability
distribution that governs these variables satisfies the required convergence condi-
tions, then the probability distribution for the coarse-grained variable is Gaussian.
An example is given in Chapter 7 by the derivation of Eq. (7.37).

1.5 Physical observables as random variables

1.5.1 Origin of randomness in physical systems

Classical mechanics is a deterministic theory, in which the time evolution is
uniquely determined for any given initial condition by the Newton equations (1.98).
In quantum mechanics, the physical information associated with a given wave-
function has an inherent probabilistic character, however the wavefunction itself is
uniquely determined, again from any given initial wavefunction, by the Schrödinger
equation (1.109). Nevertheless, many processes in nature appear to involve a ran-
dom component in addition to their systematic evolution. What is the origin of this
random character? There are two answers to this question, both related to the way
we observe physical systems:

1. The initial conditions are not well characterized. This is the usual starting
point of statistical mechanics. While it is true that given the time evolution of a
physical system is uniquely defined by the initial state, a full specification of this
state includes all positions and momenta of all N particles of a classical system or
the full N -particle wavefunction of the quantum system. Realistic initial conditions
are never specified in this way—only a few averaged system properties (e.g. tem-
perature, volume) are given. Even studies of microscopic phenomena start with a
specification of a few coordinates that are judged to be interesting, while the effect
of all others is again specified in terms of macroscopic averages. Repeating the
experiment (or the calculation) under such ill-defined initial conditions amounts
to working with an ensemble of systems characterized by these conditions. The
observables are now random variables that should be averaged over this ensemble.

2. We use a reduced description of the system (or process) of interest. In many
cases, we seek simplified descriptions of physical processes by focusing on a small
subsystem or on a few observables that characterize the process of interest. These
observables can be macroscopic, for example, the energy, pressure, temperature,
etc., or microscopic, for example, the center of mass position, a particular bond
length, or the internal energy of a single molecule. In the reduced space of these
“important” observables, the microscopic influence of the other ∼1023 degrees of

10 The correlation distance rcor for ρ(r) is defined as the distance above which ρ(r) and ρ(r+n̂rcor)

are statistically independent (n̂ is a unit vector in any direction).
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freedom appears as random fluctuations that give these observables an apparently
random character. For example, the energy of an individual molecule behaves as a
random function of time (i.e. a stochastic process) even in a closed system whose
total energy is strictly constant.

1.5.2 Joint probabilities, conditional probabilities, and reduced descriptions

Most readers of this text have been exposed to probability theory concepts
(Section 1.1.1) in an elementary course in statistical thermodynamics. As outlined
in Section 1.2.2, a state of a classical N -particle system is fully characterized by the
6N -dimensional vector (rN , pN ) ≡ (r1, r2, . . . , rN , p1, p2, . . .pN ) (a point in the
6N -dimensional phase space). A probability density function f (rN , pN ) character-
izes the equilibrium state of the system, so that f (rN , pN )drN dpN is the probability
to find the system in the neighborhood drN dpN = dr1, . . . , dpN of the correspond-
ing phase point. In a canonical ensemble of equilibrium systems characterized by
a temperature T the function f (rN , pN ) is given by

f (rN , pN ) = e−βH (rN ,pN )∫
drN

∫
dpN e−βH (rN ,PN )

; β = (kBT )−1 (1.183)

where kB is the Boltzmann constant and H is the system Hamiltonian

H (rN , pN ) =
N∑

i=1

p2
i

2mi
+ U (rN ) (1.184)

Here p2
i = p2

ix + p2
iy + p2

iz and U is the potential associated with the inter-particle

interaction. The function f (rN , pN ) is an example of a joint probability density
function (see below). The structure of the Hamiltonian (1.184) implies that f can
be factorized into a term that depends only on the particles’ positions and terms that
depend only on their momenta. This implies, as explained below, that at equilibrium
positions and momenta are statistically independent. In fact, Eqs (1.183) and (1.184)
imply that individual particle momenta are also statistically independent and so are
the different cartesian components of the momenta of each particle.

Let us consider these issues more explicitly. Consider two random variables x
and y. The joint probability density P2(x, y) is defined so that P2(x, y)dxdy is the
probability of finding the variable x at x, . . . , x + dx and y at y, . . . , y + dy. We
refer by the name reduced description to a description of the system in terms of
partial specification of its state. For example, the probability that the variable x is
at the interval x, . . . , x+ dx irrespective of the value of y is P(x)

1 (x) = ∫
dyP2(x, y).

Similarly, P(y)
1 (y) = ∫

dxP2(x, y). Note that the functional forms of P(x)
1 and P(y)

1 are
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not necessarily the same. Also note that all these functions satisfy the normalization
conditions ∫

dxdyP2(x, y) =
∫

dxP(x)
1 (x) =

∫
dyP(y)

1 (y) = 1 (1.185)

The two random variables x and y are called independent or uncorrelated if

P2(x, y) = P(x)
1 (x)P(y)

1 (y) (1.186)

The conditional probability distribution P(x|y) is defined so that P(x|y)dx is the
probability that the value of x is in the interval x, . . . , x+ dx given that the variable
y takes the value y. From this definition it follows that

P(x|y) = P2(x, y)

P(y)
1 (y)

; P(y|x) = P2(x, y)

P(x)
1 (x)

(1.187)

or rather

P(x|y)dx · P(y)
1 (y)dy = P(x, y)dxdy (1.188)

The term P(x|y)dx is the probability that if y has a given value then x is in the
range x, . . . , x + dx. The term P(y)

1 (y)dy is the probability that y is in the range
y, . . . , y + dy. Their product is the joint probability that x and y have particular
values within their respective intervals.

Problem 1.2. Show that if x and y are independent random variables then P(x|y)
does not depend on y.

Reduced descriptions are not necessarily obtained in terms of the original ran-
dom variables. For example, given the probability density P(x, y) we may want the
probability of the random variable

z = x + y (1.189)

This is given by

P(z)
1 (z) =

∫
dxP2(x, z − x) (1.190)

More generally, if z = f (x, y) then

P(z)
1 (z) =

∫
dx

∫
dyδ(z − f (x, y))P2(x, y) (1.191)
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1.5.3 Random functions

Consider a set of random variables, x1, x2, . . . , xN and the associated probabil-
ity density PN (x1, . . . , xN ). Here, the ordering indices n = 1, . . . , N are integers.
Alternatively, the ordering index may be continuous so that, for example, x(ν) is
a random variable for each real ν. We say that x(ν) is a random function of ν: a
random function assigns a random variable to each value of its argument(s). The
corresponding joint probability density P[x(ν)] is a functional of this function.

The most common continuous ordering parameters in physics and chemistry
are position and time. For example, the water height in a lake on a windy day is
a random function h(x, y, t) of the positions x and y in the two-dimensional lake
plane and of the time. For any particular choice, say x1, y1, t1 of position and time
h(x1, y1, t1) is a random variable in the usual sense that its repeated measurements
(over an ensemble of lakes or in different days with the same wind characteristics)
will yield different results, predictable only in a probabilistic sense.

1.5.4 Correlations

When Eq. (1.186) does not hold, the variables x and y are said to be correlated. In
this case the probability to realize a certain value of x depends on the value realized
by y, as expressed by the conditional probability density P(x|y). When x and y are
not correlated Eqs (1.186) and (1.187) imply that P(x|y) = P(x)

1 (x).
The moments of P2(x,y) are defined by integrals such as

〈xk〉 =
∫

dxdyxkP2(x, y) =
∫

dxxkP(x)
1 (x)

〈yk〉 =
∫

dxdyykP2(x, y) =
∫

dyykP(y)
1 (y)

〈xkyl〉 =
∫

dxdyxkylP2(x, y)

(1.192)

Again, if x and y are uncorrelated then

〈xkyl〉 =
∫

dxxkP(x)
1 (x)

∫
dyylP(y)

1 (y) = 〈xk〉〈yl〉

The difference

〈xkyl〉 − 〈xk〉〈yl〉 (1.193)

therefore measures the correlation between the random variables x and y.
In particular, if x and y are random functions of some variable z, then
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Cxy(z1, z2) = 〈x(z1)y(z2)〉 − 〈x(z1)〉〈y(z2)〉 is referred to as the correlation function
of these variables.

Two types of correlation functions are particularly important in the description
of physical and chemical systems:

1. Spatial correlation functions. Consider, for example, the density of liquid
molecules as a function of position, ρ(r). In macroscopic thermodynamics ρ(r) is
an ensemble average. However, if we actually count the number of molecules n(r)
in a given volume �V about r, then

ρ�V (r) = n(r)/�V (1.194)

is a random variable, and, taken as a function of r, is a random function of position.
It should be emphasized that the random variable defined in this way depends on
the coarse graining (see Section 1.4.3) volume �V , however for the rest of this
section we will suppress the superscript denoting this fact.

In a homogeneous equilibrium system the ensemble average 〈ρ(r)〉 = ρ is
independent of r, and the difference δρ(r) ≡ ρ(r) − ρ is a random function
of position that measures local fluctuations from the average density. Obviously
〈δρ(r)〉 = 0, while a measure of the magnitude of density fluctuations is given by
〈δρ2〉 = 〈ρ2〉−〈ρ〉2. The density–density spatial correlation function measures the
correlation between the random variables δρ(r′) and δρ(r′′), that is, C(r′, r′′) =
〈δρ(r′)δρ(r′′)〉. In a homogeneous system it depends only on the distance r′ − r′′,
that is,

C(r′, r′′) = C(r) = 〈δρ(r)δρ(0)〉 = 〈δρ(0)δρ(r)〉; r = r′ − r′′ (1.195)

and in an isotropic system—only on its absolute value r = |r|. Both 〈δρ2〉 and C(r)
are measurable and contain important information on the equilibrium system.

Problem 1.3. Show that in a homogeneous system

〈δρ(r′)δρ(r′′)〉 = 〈ρ(r′)ρ(r′′)〉 − ρ2

2. Time correlation functions. If we look at δρ(r, t) at a given r as a function of
time, its time evolution is an example of a stochastic process (see Chapter 7). In a
given time t1 the variables ρ(r, t1) and δρ(r, t1) = ρ(r, t1)−ρ are random variables
in the sense that repeated measurements done on different identical systems will
give different realizations for these variables about the average ρ. Again, for the
random variables x = δρ(r, t′) and y = δρ(r, t′′) we can look at the correlation
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function 〈xy〉. This function

C(r, t′, t′′) = 〈δρ(r, t′)δρ(r, t′′)〉 = 〈ρ(r, t′)ρ(r, t′′)〉 − ρ2 (1.196)

is the time correlation function. In a stationary system, for example, at equilibrium,
this function depends only on the time difference

C(r, t′, t′′) = C(r, t); t = t′ − t′′ (1.197)

Many time correlation functions are observables and contain important information
on dynamical system properties. We can also study time and space correlation
functions

C(r − r′, t − t′) = 〈ρ(r, t)ρ(r′, t′)〉 − ρ2 (1.198)

that contain information on the time evolution of the system’s structure.

1.5.5 Diffusion

As a demonstration of the use of the concepts introduced above consider the well
known process of diffusion. Consider a system of diffusing particles and let P(r, t)
be the probability density to find a particle in position r at time t, that is, P(r, t)d3r
is the probability that a particle is in the neighborhood d3r of r at this time. P(r, t)
is related to the concentration c(r, t) by a change of normalization

c(r, t) = NP(r, t) (1.199)

where N is the total number of particles. The way by which c(r, t) and P(r, t) evolve
with time is known from experimental observation to be given by the diffusion
equation. In one dimension

∂P(x, t)

∂t
= D

∂2

∂x2 P(x, t) (1.200)

This evolution equation demonstrates the way in which a reduced description (see
Section 1.5.1) yields dynamics that is qualitatively different than the fundamental
one: A complete description of the assumed classical system involves the solution of
a huge number of coupled Newton equations for all particles. Focusing on the posi-
tion of one particle and realizing that the ensuing description has to be probabilistic,
we find (in the present case experimentally) that the evolution is fundamentally dif-
ferent. For example, in the absence of external forces the particle position changes
linearly with time, x = vt, while (see below) Eq. (1.200) implies that the mean
square displacement 〈x2〉 changes linearly with time. Clearly the reason for this is
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that microscopically, the evolution of the particle position involves multiple colli-
sions with many other particles whose detailed motions do not appear in (1.200).
Consequently, Eq. (1.200) is valid only on timescales long relative to the time
between collisions and on length scales long relative to the mean free path, that is,
it is a coarse-grained description of the particle’s motion.

If the distribution depends on time, so do its moments. Suppose the particle
starts at the origin, x = 0. Its average position at time t is given by

〈x〉t =
∞∫

−∞
dxxP(x, t) (1.201)

Therefore,

∂〈x〉
∂t

= D

∞∫
−∞

dxx
∂2

∂x2 P(x, t) (1.202)

Integrating on the right-hand side by parts, using the fact that P and its derivatives
have to vanish at |x| → ∞, leads to11

∂〈x〉
∂t

= 0, that is, 〈x〉 = 0 at all times (1.203)

Consider now the second moment

〈x2〉t =
∞∫

−∞
dxx2P(x, t) (1.204)

whose time evolution is given by

∂〈x2〉
∂t

= D

∞∫
−∞

dxx2 ∂
2P

∂x2 (1.205)

11 To obtain Eqs (1.203) and (1.206) we need to assume that P vanishes as x →∞ faster than x−2.
Physically this must be so because a particle that starts at x = 0 cannot reach beyond some finite
distance at any finite time if only because its speed cannot exceed the speed of light. Of course, the
diffusion equation does not know the restrictions imposed by the Einstein relativity theory (similarly,
the Maxwell–Boltzmann distribution assigns finite probabilities to find particles with speeds that
exceed the speed of light). The real mathematical reason why P has to vanish faster than x−2 is that in
the equivalent three-dimensional formulation P(r) has to vanish faster than r−2 as r →∞ in order
to be normalizable.
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Again, integration by parts of the right-hand side and using the boundary conditions
at infinity, that is,

∞∫
−∞

dxx2 ∂
2P

∂x2 =
[

x2 ∂P

∂x

]∞
−∞

−
∞∫

−∞
dx · 2x

∂P

∂x
= −2[xP]∞−∞ + 2

∞∫
−∞

dxP = 2

(1.206)

leads to ∂〈x2〉/∂t = 2D, therefore, since 〈x2〉0 = 0,

〈x2〉t = 2Dt (1.207)

For three-dimensional diffusion in an isotropic system the motions in the x, y, and z
directions are independent (the equation ∂P(r, t)/∂t = D(∂2/∂x2 + ∂2/∂y2 +
∂2/∂z2)P(r, t) is separable), so

〈r2〉t = 〈x2〉t + 〈y2〉t + 〈z2〉t = 6Dt (1.208)

This exact solution of the diffusion equation is valid only at long times because
the diffusion equation itself holds for such times. The diffusion coefficient may
therefore be calculated from

D = lim
t→∞

1

6t
〈(r(t)− r(0))2〉 (1.209)

1.6 Electrostatics

1.6.1 Fundamental equations of electrostatics

Unless otherwise stated, we follow here and elsewhere the electrostatic system of
units. The electric field at position r associated with a distribution of point charges
qi at positions ri in vacuum is given by the Coulomb law

E(r) =
n∑

i=1

qi
(r − ri)

|r − ri|3 (1.210)

For a continuous charge distribution ρ(r) the equivalent expression is

E(r) =
∫

dr′ ρ(r′) (r − r′)
|r − r′|3 (1.211)

Note that taking ρ to be a distribution of point charges, ρ(r) = ∑
i qiδ(r − ri),

leads to Eq. (1.210).
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Another expression of the Coulomb law is the Gauss law, which states that the
electric field associated with a charge distribution ρ(r) satisfies the relationship∮

S

ds E · n = 4π
∫
�

drρ(r) (1.212)

In (1.212)� denotes a volume that is enclosed by the surface S, n is a unit vector at a
surface element ds of S in the outward direction and

∮
S is an integral over the surface

S. The Gauss law (1.212) relates the surface-integrated field on the boundary of
a volume to the total net charge inside the volume. Using the divergence theorem∮

S B · nda = ∫
�
∇ ·B dr for any vector field B leads to the differential form of the

Gauss theorem

∇ · E = 4πρ (1.213)

The electrostatic potential � is related to the electrostatic field by

E = −∇� (1.214)

This and Eq. (1.211) imply that

�(r) =
∫

dr′ ρ(r′)
|r − r′| (1.215)

Equations (1.213) and (1.214) together yield

∇2� = −4πρ (1.216)

which is the Poisson equation. In regions of space in which ρ = 0 this becomes
the Laplace equation, ∇2� = 0.

The energy needed to bring a charge q from a position where � = 0 to a position
with an electrostatic potential � is q�. This can be used to obtain the energy needed
to assemble a charge distribution ρ(r):

W = 1

2

∫
dr

∫
dr′ρ(r)ρ(r

′)
|r − r′| = 1

2

∫
drρ(r)�(r) (1.217)

Using (1.216) we get

W = − 1

8π

∫
dr �(r)∇2�(r) (1.218)
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and, upon integrating by parts while assuming that � = 0 on the boundary of the
system (e.g. at infinity) this leads to

W = 1

8π

∫
dr|∇�|2 = 1

8π

∫
dr|E(r)|2 (1.219)

we can thus identify the energy density w in an electrostatic field:

w(r) = 1

8π
|E(r)|2 (1.220)

Consider now the electrostatic potential, Eq. (1.215), whose source is a charge
distribution ρ(r′). Assume that ρ(r′) is localized within some small volume whose
center is at r0, and that r is outside this volume and far from r0. In this case we can
expand

1

|r − r′| =
1

|r − r0 − (r′ − r0)| =
1

|r − r0| − (r′ − r0) · ∇r
1

|r − r0| + · · ·
(1.221)

Disregarding the higher-order terms and inserting into (1.215) leads to

�(r) =
[∫

dr′ρ(r′)
]

1

|r − r0| −
[∫

dr′ρ(r′)(r′ − r0)

]
· ∇r

1

|r − r0|
= q(r0)

|r − r0| +
d(r0) · (r − r0)

|r − r0|3
(1.222)

where q(r0) =
∫

dr′ρ(r′) is the net charge about r0 and d(r0) =
∫

dr′ρ(r′)(r′−r0)

is the net dipole about that point. Higher-order terms will involve higher moments
(multipoles) of the charge distribution ρ(r), and the resulting expansion is referred
to as the multipole expansion. In the next section this expansion is used as a starting
point of a brief overview of dielectric continua.

1.6.2 Electrostatics in continuous dielectric media

The description of electrostatic phenomena in condensed molecular environments
rests on the observation that charges appear in two kinds. First, molecular electrons
are confined to the molecular volume so that molecules move as neutral polarizable
bodies. Second, free mobile charges (e.g. ions) may exist. In a continuum descrip-
tion the effect of the polarizable background is expressed by the dielectric response
of such environments.

Consider such an infinite environment (in real systems we assume that the effects
of the system boundary can be disregarded). Divide it into small nonoverlapping
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volumes �3r that are large relative to molecular size and consider the electrostatic
potential at point r, taken to be far from the center of all these volumes.12 Using
Eq. (1.222) we can write

�(r) =
∑

j

⎛
⎜⎜⎝
∫
r′j

dr′jρ(r′j)
1

|r − rj| +
[∫

dr′jρ(r′j)(r′j − rj)

]
· ∇r

1

|r − rj|

⎞
⎟⎟⎠

=
∑

j

(
q(rj)

|r − rj| + d(rj) · ∇r
1

|r − rj|
)

(1.223)

where
∫

dr′j is an integral over the small volume j whose center is at rj, and where
the sum is over all such volumes. For what follows it is convenient to write q(rj) =
ρ(rj)�

3r and d(rj) = P(rj)�
3r where ρ(rj) and P(rj) are coarse-grained charge

and dipole density. The later is also called polarization. In the continuum limit the
sum over j is replaced by an integral over the system volume.

�(r) =
∫

dr′
(

ρ(r′)
|r − r′| + P(r′) · ∇r

1

|r − r′|
)
=

∫
dr′

(
ρ(r′)
|r − r′| −

∇r′ · P(r′)
|r − r′|

)
(1.224)

To obtain the second equality we have integrated by parts using Eq. (1.30). Accord-
ing to (1.224) the electrostatic potential field is seen to arise from two charge
densities: the “regular” ρ(r) and an additional contribution associated with the
dipole density ρP(r) ≡ −∇r · P(r). We will refer to ρ(r) as the external charge
density. This reflects a picture of a dielectric solvent with added ionic charges.

Equation (1.224) together with (1.214) imply that the Poisson equation (1.216)
now takes the form

∇ · E = 4π(ρ + ρP) = 4π(ρ − ∇ · P) (1.225)

that is, the electric field originates not only from the external charges but also
from the polarization. It is convenient to define an additional field, the electric
displacement, which is associated with the external charges only:

∇ ·D = 4πρ, that is, D = E + 4πP (1.226)

12 We disregard the fact that there is at least one volume, that surrounding r, for which this assumption
cannot be made.
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The electric field E and the electrostatic potential � continue to have the mean-
ing taught in elementary courses: E(r)δq is the force experienced by an infinitesimal
charge δq added at position r, and�(r)δq is the work to add this charge. (The reason
this statement is formulated with an infinitesimal charge δq is that in a dielectric
medium a finite charge q can cause a change in E and �.) E , however, has a contri-
bution that arises from the polarization P. The latter, an expression of microscopic
separation of bound positive and negative charges within the molecules, may be
considered as the response of the dielectric system to the external field D. A fun-
damental ingredient of linear dielectric theory is the assumption that this response
P depends linearly on its cause �, that is,

P(r, t) =
∫

dr′
∫

dt′α(r, r′; t, t′)D(r′, t′) (1.227)

α is the polarizability tensor. The tensor character of α expresses the fact that the
direction of P can be different from that of D. In an isotropic system the response
is the same in all directions, so P and D are parallel and α = αI where α is a
scalar and I is the unit tensor. In a homogeneous (all positions equivalent) and
stationary (all times equivalent) system, α(r, r′; t, t′) = α(r − r′; t − t′). The time
dependence of α(r, t) reflects the fact that an external field at some position at some
time can cause a response at other positions and times (e.g. a sudden switch-on of
a field in position r can cause a molecular dipole at that position to rotate, thereby
affecting the field seen at a later time at a different place). In many experimental
situations we can approximate α(r − r′; t − t′) by αδ(r − r′)δ(t − t′), that is, take
P(r, t) = αD(r, t). This is the case when the time and length scales of interest are
large relative to those that characterize α(r− r′; t − t′). We refer to the response in
such cases as local in time and place. A common approximation used for molecular
system is to take α to be local in space but not in time,

α(r − r′; t − t′) = α(t − t′)δ(r − r′) (1.228)

Proceeding for simplicity with a homogeneous and isotropic system and with
local and isotropic response, P = αD, and defining the dielectric constant ε from
ε−1 = 1 − 4πα, we get from (1.226)

E = 1

ε
D (1.229)

From (1.226) it also follows that

P = ε − 1

4π
E ≡ χE (1.230)
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The linear response coefficient χ is called the dielectric susceptibility.
Equivalent expressions can be obtained when describing systems that are homo-

geneous and isotropic but whose response is not local in space and time. This is
done by taking the Fourier transform (r → k, t → ω) of

P(r, t) =
∫

dr′
∫

dt′α(r − r′; t − t′)D(r′, t′) (1.231)

to get

P(k,ω) = α(k,ω)D(k,ω)

E(k,ω) = ε−1(k,ω)D(k,ω)

P(k,ω) = χ(k,ω)E(k,ω)

(1.232)

with

ε−1(k,ω) = 1 − 4πα(k,ω)

χ(k,ω) = (ε(k,ω)− 1)/4π
(1.233)

Problem 1.4. Show that if the response is local in space but not in time the
equivalent expressions for homogeneous stationary systems are

P(r, t) =
∫

dt′α(r; t − t′)D(r, t′) (1.234)

P(r,ω) = α(ω)D(r,ω)

E(r,ω) = ε−1(ω)D(r,ω)

P(r,ω) = χ(ω)E(r,ω)

(1.235)

ε−1(ω) = 1 − 4πα(ω)

χ(ω) = (ε(ω)− 1)/4π
(1.236)

Explain the equality α(ω) = limk→0 α(k,ω) (and similarly for ε(ω) and χ(ω)).

In molecular systems the polarization P results from the individual molecular
dipoles and has two main contributions. One is associated with the average orienta-
tion induced by an external field in the distribution of permanent molecular dipoles.
The other results from the dipoles induced in each individual molecule by the local
electrostatic field. The characteristic timescale associated with the first effect is
that of nuclear orientational relaxation, τn, typically 10−11 s for small molecule
fluids at room temperature. The other effect arises mostly from the distortion of
the molecular electronic charge distribution by the external field, and its typical
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response time τe is of the order 10−16 s. Accordingly, we can define three dielectric
response constants:

P = (αe + αn)D ≡ αsD (1.237)

αe expresses the electronic response (induced dipoles), αn is associated with the
average orientation induced in the distribution of permanent molecular dipoles, and
αs denotes the total response. These contributions can in principle be monitored
experimentally: Immediately following a sudden switch-on of an external field
D, the instantaneous locally averaged induced dipole is zero, however after a time
large relative to τe but small with respect to τn the polarization becomes Pe = αeD.
Equation (1.237) is satisfied only after a time long relative to τn. Similarly we can
define two dielectric constants, εe and εs such that E = ε−1

e D and Pe = [(εe −
1)/4π ]E are satisfied for te � t � tn while E = ε−1

s D and P = [(εs − 1)/4π ]E
hold for t 
 tn.

Problem 1.5. Show that for t 
 tn the contribution to the polarization of a
dielectric solvent that arises from the orientation of permanent dipoles is given by

Pn = P − Pe = 1

4π

(
1

εe
− 1

εs

)
D (1.238)

Note: The factor CPekar = (1/εe)− (1/εs) is often referred to as the Pekar factor.

1.6.2.1 Electrostatic energy

Equation (1.219) was an expression for the energy in an electrostatic field in
vacuum. How is it modified in a dielectric environment?

Starting from a system with given (position-dependent) electric, electric
displacement, and polarization fields, the change in energy upon adding an
infinitesimal charge distribution δρ(r) is

δW =
∫

dr δρ(r)�(r) (1.239)

The corresponding change in the electric displacement δD satisfies the Poisson
equation ∇ · δD = 4πδρ. Therefore, δW = (4π)−1

∫
dr �(r)∇ · δD. Integrating

by parts, assuming that δρ is local so δD → 0 at infinity and using (1.214), yields

δW = 1

4π

∫
drE · δD = 1

8π

∫
drδ(E ·D) (1.240)
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To obtain the second equality we have made the assumption that the dielec-
tric response is linear and local, that is, E(r)δD(r) = ε(r)E(r)δE(r) =
(1/2)ε(r)δ(E(r) · E(r)). Now assume that all the buildup of the E and D fields
in the system results from the added charge. This means that integrating over the
added charge will give the total energy

W = 1

8π

∫
dr E(r) ·D(r) (1.241)

Accordingly, the energy density is w(r) = (D(r))2/(8πε(r)).
As an application of these results consider the work needed to charge a con-

ducting sphere of radius a in a dielectric environment characterized by a dielectric
constant ε. Taking the center of the sphere to be at the origin and to carry a charge q,
the electric displacement outside the sphere is q/r2 and the electric field is q/(εr2).
Equation (1.241) then yields

q2

8πε

∞∫
a

dr
1

r4 =
q2

2ε

∞∫
a

dr
1

r2 =
q2

2εa
(1.242)

The energy needed to move a charged sphere from vacuum (ε = 1) to the interior
of a dielectric medium is therefore,

WB = −q2

2a

(
1 − 1

ε

)
(1.243)

This is the Born expression for the dielectric solvation energy.

1.6.3 Screening by mobile charges

Next consider the implications of the existence of mobile charge carriers in the
system. These can be ions in an electrolyte solution or in molten salts, electrons in
metals and semiconductors, and electrons and ions in plasmas. For specificity we
consider an ionic solution characterized by bulk densities nB+ and nB− of positive
and negative ions. The ionic charges are

q+ = z+e and q− = −z−e (1.244)

where e is the absolute value of the electron charge. On a coarse-grained level of
description in which we consider quantities averaged over length scales that contain
many such ions the system is locally electroneutral

ρq = nB+q+ + nB−q− = 0 (1.245)
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Consider now such a semi-infinite system, confined on one side by an infinite
planar surface, and assume that a given potential �S is imposed on this surface.
The interior bulk potential is denoted �B. Having �S �= �B implies that the mobile
charges move under the resulting electric field until drift and diffusion balance each
other. The resulting equilibrium densities n+ and n− are different from their bulk
values and may depend on the distance from the surface. At issue is the question
how do the electrostatic potential and these ionic densities approach their bulk
values as we go from the surface into the interior of this solution.

In what follows we take that the direction perpendicular to the surface and
pointing into the solution as the positive x direction. At any point the potential
δ�(x) = �(x)−�B may be found as the solution of the Poisson equation (1.226),
written in the form

∂2δ�(x)

∂x2 = −4π

ε
δρq(x) (1.246)

where ε is the dielectric constant and where the excess charge δρq is given by

δρq(x) = (n+(x)− nB+)q+ + (n−(x)− nB−)q− = n+(x)q+ + n−(x)q− (1.247)

In the second equality we have used Eq. (1.245). The densities n+/−(x) are related
to their bulk value by the Boltzmann equilibrium relations

n+ = nB+e−βq+δ� q+δ��kBT−−−−−−→ nB+(1 − βq+δ�)

n− = nB−e−βq−δ� q−δ��kBT−−−−−−→ nB−(1 − βq−δ�)
(1.248)

We continue with the assumption that the conditions for expanding the exponential
Boltzmann factors to linear order as in (1.248) hold, and that the expansion to first
order is valid. Using this together with (1.245) in (1.247) leads to

δρq(x) = −βδ�(x)(nB+q2+ + nB−q2−)

= −βδ�(x)nB+q+(q+ − q−) = −βδ�(x)nB+z+e2(z+ + z−) (1.249)

We can improve the appearance of this result by symmetrizing it, using
(cf. Eqs (1.244) and (1.245)) nB+z+ = (1/2)(nB+z+ + nB−z−). We finally get

δρq(x) = −1

2
β(nB+z+ + nB−z−)e2(z+ + z−)δ�(x) (1.250)

Using this in (1.246) leads to

∂2δ�

∂x2 = κ2δ�, (1.251)
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where

κ2 = 2πe2

kBTε
(z+ + z−)(z+nB+ + z−nB−) (1.252)

The solution of (1.251) that satisfies the boundary condition δ�(x = 0) = �S−�B
and δ�(x →∞) = 0 is δ� = (�S −�B)

−κx, that is,

�(x) = �B + (�S −�B)e
−κx (1.253)

We have found that in an electrolyte solution the potential on the surface approaches
its bulk value on a length scale κ−1, known as the Debye screening length.

The theory outlined above is a takeoff on the Debye Huckel theory of ionic
solvation. In the electrochemistry literature it is known as the Gouy–Chapman
theory. The Debye screening length is seen to depend linearly on

√
T and to decrease

as (z+nB++z−nB−)−1/2 with increasing ionic densities. For a solution of monovalent
salt, where z+ = z− = 1 and nB+ = nB− ≡ nB, this length is given by

κ−1 =
(

kBTε

8πe2nB

)1/2

(1.254)

Typical screening lengths in aqueous ionic solutions are in the range of 10–100 Å.
At T = 300 K, and using ε = 80 and salt concentration 0.01 M, that is, n ∼
6 × 1018 cm−3, yields a length of the order ∼30 Å.

Appendix 1A Derivation of the classical Liouville equation
as a conservation law

Here we describe an alternative derivation of the Liouville equation (1.104) for the
time evolution of the phase space distribution function f (rN , pN ; t). The derivation
below is based on two observations: First, a change in f reflects only the change in
positions and momenta of particles in the system, that is, of motion of phase points
in phase space, and second, that phase points are conserved, neither created nor
destroyed.

Consider an ensemble of N macroscopically identical systems that are repres-
ented by N points moving in phase space. Consider a given volume υ in this space.
The number of systems (phase points) within this volume at time t is

n(t) = N
∫
υ

dpN drN f (rN (t), pN (t); t) (1.255)
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and the rate at which it changes is given by

dn

dt
= N

∫
υ

dpN drN ∂f

∂t
(1.256)

Since phase points are neither created nor destroyed, this rate should be equal to the
rate at which phase points flow into the volume υ (negative rate means flowing out
of the volume). The velocity of a phase point, i.e., the rate at which its “position”
in the 6N -dimensional phase space is changing, is represented by the 6N velocity
vector u = (ṙN , ṗN ). The flux of phase points at phase-space “position” is N f u.13

Therefore,

dn

dt
= −N

∫
S

f u · dS (1.257)

where the integral is over the phase-space surface surrounding the volume υ, and
where dS is a surface element vector whose direction is normal to the surface in
the outward direction. Using Gauss theorem to transform the surface integral into
a volume integral we get

dn

dt
= −N

∫
υ

∇ · (f u)drN dpN (1.258)

(Note that Eq. (1.258)) is the multidimensional analog of Eq. (1.36)). Comparing
to (1.256) and noting that the volume υ is arbitrary, we find that

∂f

∂t
= −∇ · (f u)) = −

3N∑
j=1

{
∂

∂xj
(f ẋj)+ ∂

∂pj
(f ṗj)

}

= −
3N∑
j=1

{
∂f

∂xj
ẋj + ∂f

∂pj
ṗj

}
−

3N∑
j=1

{
∂ ẋj

∂xj
+ ∂ ṗj

∂pj

}
f

(1.259)

Note that the first line of (1.259) and the way it was derived are analogous to the
derivation of the continuity equation in Section 1.1.4. Equation (1.259) expresses

13 “Position” in phase space is the 6N -dimensional point q = (rN , pN ). Phase point velocity is
u = q̇ = (ṙN , ṗN ). The flux of moving particles (number of particles going through a unit area
normal to the flux vector per unit time) is given by the product of particle velocity and particle
density, in the present case of u and N f .
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the fact that the number of points in phase space, that is, systems in our ensemble,
is conserved. In the present case we obtain an additional simplification, noting that
the Hamilton equations (1.98) imply that ∂ ẋj/∂xj + ∂ ṗj/∂pj = 0. Equation (1.259)
then becomes

∂f

∂t
= −

3N∑
j=1

{
∂f

∂xj

∂H

∂pj
− ∂f

∂pj

∂H

∂xj

}
(1.260)

which is again the Liouville equation. This additional step from (1.259) to (1.260)
expresses the incompressibility property of the “Liouville space fluid” discussed
at the end of Section 1.2.2.



2

QUANTUM DYNAMICS USING THE
TIME-DEPENDENT SCHRÖDINGER EQUATION

I have taught how everything begins,
The nature of those first particles, their shape,
Their differences, their voluntary course,
Their everlasting motion and the way
Things are created by them…

Lucretius (c.99–c.55 bce) “The way things are” translated by
Rolfe Humphries, Indiana University Press, 1968.

This chapter focuses on the time-dependent Schrödinger equation and its solutions
for several prototype systems. It provides the basis for discussing and understanding
quantum dynamics in condensed phases, however, a full picture can be obtained
only by including also dynamical processes that destroy the quantum mechan-
ical phase. Such a full description of quantum dynamics cannot be handled by
the Schrödinger equation alone; a more general approach based on the quantum
Liouville equation is needed. This important part of the theory of quantum dynamics
is discussed in Chapter 10.

2.1 Formal solutions

Given a system characterized by a Hamiltonian Ĥ , the time-dependent Schrödinger
equation is

∂�

∂t
= − i

h̄
Ĥ� (2.1)

For a closed, isolated system Ĥ is time independent; time dependence in the
Hamiltonian enters via effect of time-dependent external forces. Here we focus
on the earlier case. Equation (1) is a first-order linear differential equation that can
be solved as an initial value problem. If �(t0) is known, a formal solution to Eq. (1)
is given by

�(t) = Û (t, t0)�(t0) (2.2)
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where the time evolution operator Û is1

Û (t, t0) = e−(i/h̄)Ĥ (t−t0) (2.3)

A more useful solution for �(t) may be obtained by expanding it in the complete
orthonormal basis of eigenstates of Ĥ , {ψn}, which satisfy

Ĥψn = Enψn (2.4)

Writing

�(t0) =
∑

n
cn(t0)ψn with cn(t0) = 〈ψn|�(t0)〉 (2.5)

we get either from (2.1) or from (2.2) the result

�(t) =
∑

n

cn(t)ψn with cn(t) = e−(i/h̄)En(t−t0)cn(t0) (2.6)

Problem 2.1. Show how Eq. (2.6) is obtained from Eq. (2.1) and how it is obtained
from Eq. (2.2)

A solution of the time-dependent Schrödinger equation may be obtained also in
terms of any complete orthonormal basis {φn}, not necessarily the one that diagon-
alizes the Hamiltonian Ĥ . In this basis the Hamiltonian is represented as a matrix
Hnm = 〈φn|H |φm〉 and the wavefunction �(t) is written as

�(t) =
∑

n

bn(t)φn (2.7)

Inserting (2.7) into (2.1) and using the orthonormality conditions 〈φn|φm〉 = δnm
leads to a set of equations for the b coefficients

dbn

dt
= − i

h̄

∑
m

Hnmbm (2.8)

or in obvious vector-matrix notation

d

dt
b = − i

h̄
Hb (2.9)

1 If F(x) is an analytical function of x in a given domain that contains the point x = 0, the
function F̂(Â) of an operator Â is defined in the same domain by the Taylor expansion F̂(Â) =∑

n (1/n!)F(n)(x = 0)Ân where F(n) is the nth derivative of F .
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Problem 2.2.

1. Derive Eqs (2.8) and (2.9)
2. Show that the time evolution defined by Eqs (2.2) and (2.3) corresponds

to solving Eqs (2.8) (or equivalently (2.9) with the initial conditions

bn(t0) = 〈φn|�(t0)〉 (2.10)

Problem 2.3. Let �(r,t) be the solution of a 1-particle Schrödinger equation with
the Hamiltonian Ĥ = −(h̄2/2m)∇2 + V (r), and let ρ(r, t) = |�(r, t)|2 be the
corresponding probability density. Prove the identity

∂ρ

∂t
= −∇ · J; J ≡ h̄

2im
(�∗∇� −�∇�∗) = h̄

m
Im(�∗∇�) (2.11)

The first equality in (2.11) has the form of a continuity equation (see
Section 1.1.4) that establishes J as a flux (henceforth referred to as a probability
flux).

2.2 An example: The two-level system

Consider a two-level system whose Hamiltonian is a sum of a “simple” part, Ĥ0,
and a “perturbation” V̂ .

Ĥ = Ĥ0 + V̂ (2.12)

The eigenfunctions of Ĥ0 are |φa〉, |φb〉, with the corresponding eigenvalues Ea,
Eb. We will interchangeably use the notation 〈i|Ô|j〉 = 〈φi|Ô|φj〉 = Oi,j for any
operator Ô. Without loss of generality we may assume that Va,a = Vb,b = 0
(otherwise we may include the diagonal part of V in H0). In the basis of the functions
|φa〉 and |φb〉 Ĥ is then represented by the matrix

Ĥ =
(

Ea Va,b
Vb,a Eb

)
; Va,b = V ∗

b,a = 〈φa|V |φb〉 (2.13)

The coupling elements Vi,j are in principle complex, and we express them as

Va,b = Ve−iη; V ∗
b,a = Veiη (2.14)
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with V taken real and positive. It should be emphasized that the two-level problem
represented by Ĥ is not more difficult to solve than that given by Ĥ0, however, there
are situations where it helps to discuss the problem in terms of both Hamiltonians.
For example, the system may be represented by the Hamiltonian Ĥ0 and exists in
the stationary state φa, then at some time taken to be t = 0 the perturbation V̂ is
switched on. A typical question is what is the probability Pb(t) to find the system
in state b following this switch-on of the perturbation that couples between the two
eigenstates of Ĥ0.

The simplest approach to solving this problem is to diagonalize the Hamiltonian
Ĥ , that is, to find its eigenstates, denoted ψ+ and ψ−, and eigenvalues E+ and E−,
respectively.

Problem 2.4. Show that given Pa(t = 0) = 1; Pb(t = 0) = 1 − Pa(t = 0) = 0,
then the probability to find the system in state b at time t is given in terms of the
eigenstates and eigenvalues of Ĥ by the form

Pb(t) =
∣∣∣〈φb|ψ+〉 〈ψ+|φa〉 e−(i/h̄)E+t + 〈φb|ψ−〉 〈ψ−|φa〉 e−(i/h̄)E−t

∣∣∣2
(2.15)

Diagonalization of Ĥ . The functions ψ+ and ψ− and eigenvalues E+ and E−
are solutions of the time-independent Schrödinger equation Ĥψ = Eψ . They are
found by writing a general solution in the form

|ψ〉 = ca |φa〉 + cb |φb〉 (2.16)

which in the basis of |φa〉 and |φb〉 is represented by the vector
(

ca
cb

)
. The

Schrödinger equation in this representation is(
Ea Va,b

Vb,a Eb

)(
ca
cb

)
= E

(
ca
cb

)
(2.17)

The requirement of existence of a nontrivial solution leads to the secular equation

(Ea − E) (Eb − E) = V 2 (2.18)

which yields two solutions for E, given by

E± = Ea + Eb ±
√
(Ea − Eb)

2 + 4V 2

2
(2.19)
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The following identities

E+ − Ea

V
= V

E+ − Eb
= V

Ea − E−
≡ X (2.20)

where X is real and positive, are also easily verified. The coefficients ca and cb
satisfy

cb = −Ea − E

V
eiηca (2.21)

For the absolute values we have

|cb|
|ca| =

|Ea − E|
V

; |ca|2 + |cb|2 = 1 (2.22)

Consider first E = E+

|ca|2 = 1

1 + X 2 ; |cb|2 = X 2

1 + X 2 (2.23)

The phase factor eiη in (2.21) may be distributed at will between ca and cb and a
particular choice is expressed by

|ψ+〉 = cos θe−iη/2|φa〉 + sin θeiη/2|φb〉 (2.24a)

|ψ−〉 = − sin θe−iη/2|φa〉 + cos θeiη/2|φb〉 (2.24b)

or (|ψ+〉
|ψ−〉

)
=

(
cos θ sin θ

− sin θ cos θ

)(|φa〉 e−iη/2

|φb〉 eiη/2

)
(2.25)

where

θ ≡ arctan X ; 0 < θ < π/2 (2.26)

or

sin θ = X(
1 + X 2

)1/2 ; cos θ = 1(
1 + X 2

)1/2 (2.27)
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X1

u

x
y

Y1

X2

Y2

Figure 2.1 The components
(

x1
y1

)
and

(
x2
y2

)
of a vector expressed in the two systems of

coordinates 1 and 2 shown are related to each other by the transformation(
x2
y2

)
=

(
cos θ sin θ

− sin θ cos θ

)(
x1
y1

)
.

The inverse transformation is

|φa〉 = (cos θ |ψ+〉 − sin θ |ψ−〉)eiη/2 (2.28a)

|φb〉 = (sin θ |ψ+〉 + cos θ |ψ−〉)e−iη/2 (2.28b)

Some readers may note that that Eqs (2.25) and (2.28) constitute a rotation in
two-dimensional space as seen in Fig. 2.1.

Calculating the time evolution. The required time evolution is now obtained
from Eq. (2.15). Using (cf. (2.24) and (2.28))

〈φb|ψ+〉 = − 〈ψ−|φa〉 = sin(θ)eiη/2

〈φb|ψ−〉 = 〈ψ+|φa〉 = cos(θ)eiη/2
(2.29)

we get

Pb(t) = |〈φb|�(t)〉|2 =
∣∣∣sin θ cos θ(e−iE+t/h̄ − e−iE−t/h̄)

∣∣∣2 (2.30)

and

Pa(t) = |〈φa|�(t)〉|2 =
∣∣∣cos2 θe−iE+t/h̄ + sin2 θe−iE−t/h̄

∣∣∣2 = 1 − Pb (2.31)

Using Eqs (2.19), (2.20), and (2.26), Eq. (2.30) can be recast in the form

Pb(t) = 4 |Vab|2
(Ea − Eb)

2 + 4 |Vab|2
sin2

[
�R

2
t

]
(2.32)
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where

�R = 1

h̄

√
(Ea − Eb)

2 + 4|Vab|2 (2.33)

is known as the Rabi frequency.

2.3 Time-dependent Hamiltonians

Much of the formal discussion below, as well as the two-level example dis-
cussed above deal with systems and processes characterized by time-independent
Hamiltonians. Many processes of interest, however, are described using time-
dependent Hamiltonians; a familiar example is the semi-classical description of
a system interacting with the radiation field. In this latter case the system-field
interaction can be described by a time-dependent potential, for example,

Ĥ = Ĥ0 + µ̂ · E(t) (2.34)

where µ̂ is the dipole moment operator of the system and E is the electric field
associated with the external time-dependent classical radiation field. The emphasis
here is on the word “external”: The electromagnetic field is taken as an entity outside
the system, affecting the system but not affected by it, and its physical character
is assumed to be described by the classical Maxwell theory. This is of course an
approximation, even if intuitively appealing and quite useful (see Sections 10.5.2
and 18.7). An exact description can be obtained (see Chapter 3) only by taking the
field to be part of the system.

We can formalize this type of approximation in the following way. Consider a
Hamiltonian that describes two interacting systems, 1 and 2. In what follows we
use M1, R1 and M2, R2 as shorthand notations for the masses and coordinates of
systems 1 and 2, which are generally many-body systems

Ĥ = Ĥ1 + Ĥ2 + V̂12(R̂1, R̂2)

Ĥk = − h̄2

2Mk
∇2

k + V̂k(R̂k); k = 1, 2
(2.35)

In writing (2.35) we have deviated from our standard loose notation that does not
usually mark the difference between a coordinate and the corresponding operator.
For reasons that become clear below we emphasize that R̂1, R̂2 are operators, on
equal footings with other operators such as Ĥ or ∇.

Next we assume that the solution of the time-dependent Schrödinger equation
can be written as a simple product of normalized wavefunctions that describe the
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individual systems, that is,

�(t) = �1(t)�2(t) (2.36)

where each function �k(t); k = 1, 2 satisfies the corresponding Schrödinger
equation

ih̄
∂�k

∂t
= Ĥk�k (2.37)

The time-dependent Schrödinger equation for the overall system is

ih̄

(
�2

∂�1

∂t
+�1

∂�2

∂t

)
= �2Ĥ1�1 +�1Ĥ2�2 + V̂12�1�2 (2.38)

Multiplying (2.38) by �∗
2 and integrating over the coordinates of system 2 yields

ih̄

(
∂�1

∂t
+�1

〈
�2

∣∣∣∣∂�2

∂t

〉
2

)
= Ĥ1�1 +�1

〈
�2| Ĥ2 |�2

〉
2
+ 〈�2| V̂12 |�2〉2 �1

(2.39)

where the subscript k in 〈 〉k indicates that the integration is taken over the subspace
of system k (k = 1, 2). Using (2.37) with k = 2 this yields

ih̄
∂�1

∂t
=

(
− h̄2

2M1
∇2

1 + V̂1,eff (R̂1)

)
�1 (2.40a)

with an effective potential for system 1 given by

V̂1,eff (R̂1) = V̂1(R1)+
〈
�2

∣∣∣V̂12

∣∣∣�2

〉
2

(2.41a)

similarly, for system 2 we get

ih̄
∂�2

∂t
=

(
− h̄2

2M2
∇2

2 + V̂2,eff (R2)

)
�2 (2.40b)

V̂2,eff (R2) = V̂2(R2)+
〈
�1

∣∣∣V̂12

∣∣∣�1

〉
1

(2.41b)
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The result, Eq. (2.40) is known as the time-dependent mean field or time-dependent
Hartree approximation. In this approximation each system is moving in the average
field of the other system.

At this point the two systems are treated on the quantum level, however if
there is reason to believe that classical mechanics provides a good approximation
for the dynamics of system 2, say, we may replace Eq. (2.40b) by its classical
counterpart

R̈2 = − 1

M2
∇V2,eff (R2) (2.42)

and at the same time replace 〈�2|V12|�2〉2 in Eq. (2.41a) by V̂12(R̂1; R2(t)), that is,
the interaction potential is taken to be parametrically dependent on the instantaneous
configuration R2 of the classical system. In V̂12(R̂1; R2(t)) R̂1 is an operator while
R2(t) is a classical quantity. The equation describing the dynamics of system 1

ih̄
∂�1

∂t
=

(
− h̄2

2M1
∇2

1 + V̂1,eff (R̂1, R2(t))

)
�1

V̂1,eff (R̂1, R2(t)) = V̂1(R̂1)+ V̂12(R̂1; R2(t))

(2.43)

together with Eq. (2.42) now describe a set of coupled quantum and classical
equations of motion that can be solved self-consistently: The quantum system 1
moves in a potential that depends on the configuration of the classical system 2,
while the latter moves in an effective potential that is the expectation value of V̂12
with the instantaneous wavefunction �1(t).

The validity of this mixed quantum-classical scheme is far from obvious, and
important questions regarding its applicability may be raised. For example, does
this coupled system of quantum and classical degrees of freedom conserve the total
energy as it should (the answer is a qualified yes: it may be shown that the sum
of the energy of the classical system and the instantaneous expectation value of
the Hamiltonian of the quantum system is a constant of motion of this dynamics).
Experience shows that in many cases this scheme provides a good approximation,
at least for the short-time dynamics.

A further approximation is possible: There are situations in which we may
have reason to believe that while system 1 is strongly affected by system 2, the
opposite is not so, and the classical dynamics of system 2 may be treated while
disregarding system 1. In this case, R2(t) is a classical function of time obtained as
the solution of the independent equation R̈2 = −(1/M2)∇V2(R2) and Eq. (2.43) is
a Schrödinger equation for system 1 with a time-dependent Hamiltonian, similar
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in spirit to Eq. (2.34). System 2 now became “external” and the issue of energy
conservation is not relevant anymore: we are interested only in the energy of system
1 which is obviously not conserved.

We can intuitively identify possible conditions under which such an approxim-
ation may be useful. The interaction of a system with a radiation field is a familiar
example. If we are interested in the probability that a molecule absorbs a photon
from the radiation field, it feels “right” to assume that the field is not affected by the
loss of a photon, so its dynamics might be described with no regard to the molecule.
Similarly, when a heavy and a light particles exchange a given amount of energy
upon collision, the trajectory of the light particle is changed considerably while the
heavy particle is hardly affected, again a reason to disregard the light particle when
considering the motion of the heavy one. It should be kept in mind, however, that
the success of any approximation may depend on the observable under study. For
example, Eq. (2.34) can be useful for describing absorption or induced emission
by a molecule interacting with the radiation field, but it cannot describe the phe-
nomenon of spontaneous emission. Indeed, the latter process can add a photon to
an empty (no photons or “vacuum”) field, and an approximation that disregards
the effect of the molecule on the field can hardly be expected to describe such a
change in the field state. On the other hand, when favorable conditions exist, this
approximation is very successful in describing short-time phenomena such as the
outcome of single collision events.

2.4 A two-level system in a time-dependent field

As a specific example, consider again the two-level model, but now with a time-
dependent Hamiltonian affected by some external force. There are three frequently
encountered problems of this kind:

1. A two-level system, Eq. (2.13), where V̂ is a periodic function of time, for
example,

V̂ (t) = µ̂ · E0 cos(ωt) (2.44)

so that in Eq. (2.13) is Vab = µ̂ab ·E0 cos(ωt). This is a standard semiclassical
model for describing atoms and molecules in a radiation field that will be
further discussed in Chapter 18.

2. A two-level system, Eq. (2.13), with a coupling that simulates a collision
process, that is, V̂ (t) = V̂0f (t) where f (t) is a function that has a maximum
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at (say) t = 0 and satisfies f (t) → 0 as |t| → ∞. Writing �(t) = ca(t)φa +
cb(t)φb (see Eq. (2.16)), a typical concern is the values of |ca(t)|2 and |cb(t)|2
at t →∞ given that, say, ca(t →−∞) = 1 (hence cb(t →−∞) = 0).2

3. The Landau Zener (LZ) problem:3 The two-level Hamiltonian as well as the
basis used to describe it are taken to depend on a parameter R in the form

Ĥ = Ĥ0 + V̂

Ĥ0 = Ea(R) |φa〉 〈φa| + Eb(R) |φb〉 〈φb|
V̂ = Vab |φa〉 〈φb| + Vba |φb〉 〈φa|

(2.45)

and the parameter R is a known function of time, for example it may cor-
respond to the distance between two molecules colliding with each other. In
this respect this problem is similar to the previous one, however, the follow-
ing detail characterizes the LZ problem: The time dependence is such that at
t = 0 (say), where R(t = 0) = R∗, the zero order energies are equal, Ea = Eb,
while at t → ±∞|Ea − Eb| is much larger than |Vab|. In reality the basis
functions φa,φb as well as the coupling elements Vab can also depend on R,
but this dependence is assumed weak, and is disregarded in what follows.
The question posed is as before: given that at t → −∞ the system starts at
state φa, what is the probability that it will cross into state φb at t →∞.

We dwell briefly on the last problem that will be relevant to later discussions. The
picture described above constitutes a semiclassical model for nonadiabatic trans-
itions between two electronic states. In this model R may represent the coordinate(s)
of the nuclear system, while a and b denote two electronic states obtained for each
nuclear configuration by disregarding the nuclear kinetic energy as well as other
residual interactions V (e.g. spin–orbit coupling). The resulting electronic energies
Ea(R) and Eb(R) constitute potential surfaces for the nuclear motions in these elec-
tronic states. (The reader may consult the following section for further discussion of
potential energy surfaces.) These surfaces cross as R = R∗,4 see Fig. 2.2. The time
dependence of R is depicted in this figure in a way that represents a collision pro-
cess. The motion starts at t → −∞, R → −∞ and proceeds to t → ∞, R → ∞
after going through a configuration R = R∗ (at time set to be t = 0) in which

2 For an example of using such an approach to model collisional transitions in the semiclassical
approximation see F. E. Heidrich, K. R. Wilson, and D. Rapp 1971, J. Chem. Phys., 54, 3885.

3 L. Landau, 1932, Phyz. Z. Sowjetunion 1, 89; 1932, 2, 46; C. Zener, 1933, Proc. Roy. Soc. A137,
696; 1933, A140, 660; E. C. G. Stueckelberg 1932, Hel. Phys. Acta 5, 369. For an update of recent
development of this subject see H. Nakamura, Nonadiabatic Transitions (World Scientific, Singapore,
2002).

4 The subspace defined by R = R∗ is not necessarily a point, but a lower dimensionality surface.
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t
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Fig. 2.2 A schematic description of the LZ problem: Two quantum states and the coupling between
them depend parametrically on a classical variable R. The energies of the zero-order states a and b
cross at R = R∗. The energies obtained by diagonalizing the Hamiltonian at any point R (adiabatic
states) are E1(R) and E2(R).

interaction between the two colliding particles has caused Ea and Eb to become
equal. The corresponding states φa and φb are sometime referred to as diabatic.
The exact adiabatic energies E1(R), E2(R) and wavefunctions φ1, φ2 are obtained
by diagonalizing the Hamiltonian at each nuclear configuration R. In the case of a
one-dimensional motion the diagonalized surfaces do not cross (the non-crossing
rule); instead, the approach of the surfaces E1(R) and E2(R) into close proximity
is the avoided crossing seen in Fig. 2.2. In a higher dimensional system crossing
may occur, but only on a lower dimensionality surface.

We already know that when |Vab| � |Ea − Eb| the transition between states a
and b can be disregarded (see Eq. (2.32)). Thus, the transition probability effect-
ively vanishes at t → ±∞. In particular, if the slopes |(dEa(R)/dR)R∗ | and
|(dEb(R)/dR)R∗ | are sufficiently different from each other and if |Vab| is small
enough the transition will be limited to a small neighborhood of R∗. (This is an
argument for disregarding the R dependence of Vab(R),φa(R), and φb(R) by setting
R = R∗ in these functions.) Outside this neighborhood the effect of the coupling
Vab is negligible; the adiabatic and diabatic representations are essentially identical.
Thus, a system that starts at t → −∞ in state a (or equivalently state 1) moves
initially on the potential surface Ea(R) (equivalently E1(R)).

The description (not the actual physics) of the subsequent time evolution depends
on the representation used. Because of the coupling Vab and/or the time dependence
of R, transitions between states can take place, so that at each point R (or equivalently
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time t) the state of the system is a linear combination

ψ(R) = C1(R)ψ1(R)+ C2(R)ψ2(R) = Ca(R)φa(R)+ Cb(R)φb(R) (2.46)

with |C1(R)|2 + |C2(R)|2 = 1, |Ca(R)|2 + |Cb(R)|2 = 1, and |C1(R →−∞)|2 =
|Ca(R →−∞)|2 = 1. At t → ∞ (R → ∞) the two states are again effectively
noninteracting, the transition process has ended and the transition probabilities
can be determined. As seen in Fig. 2.2, the diabatic state a is in this limit the
same as the adiabatic state 2, so that |Ca(R →∞)|2 = |C2(R →∞)|2 represents
the probability Pa←a to stay in the same diabatic state a but also the probabil-
ity P2←1 to cross into the other adiabatic state. (We sometimes say that hopping
between the two adiabatic potential surfaces occurred with probability P2←1.) Sim-
ilarly |Cb(R →∞)|2 = |C1(R →∞)|2 is the probability Pb←a to change diabatic
state but also the probability P1←1 to stay on the original adiabatic surface. The
LZ approximate solution to this problem is

P1←1 = Pb←a = 1 − exp
{
− 2π |Vab|2

h̄|(d/dt)(Ea(R)− Eb(R))|
}

R=R∗
(2.47)

where the time dependence of the energy spacing between states a and b stems
from their dependence on R. Consequently,

d

dt
(Ea(R)− Eb(R)) = Ṙ|Fb − Fa| (2.48)

where Ṙ is the nuclear velocity and Fi = −∂Ei/∂R is the force on the system when
it moves on the potential surface Ei. All quantities are to be evaluated at the crossing
point R = R∗.

Two limits of the result (2.47) are particularly simple. In the weak coupling/high
speed limit, 2π |Vab|2 � h̄Ṙ|Fb − Fa| we get5

P1←1 = Pb←a =
{

2π |Vab|2
h̄Ṙ |Fb − Fa|

}
R=R∗

(2.49)

The probability to remain on the adiabatic surface 1 is very small in this limit,
and it is more appealing to think of the process as a low probability non-adiabatic
transition between the diabatic states a and b. This case is often referred to as
the non-adiabatic limit of the LZ problem. In the opposite limit (large coupling,
slow motion—adiabatic limit) we get P1←1 = Pb←a = 1, namely, the system
moves adiabatically on a single potential surface.

5 In many dimensions Ṙ|Fb − Fa| stands for a scalar product of the vectors Ṙ and |Fb − Fa|.
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Fig. 2.3 Motion through the potential-crossing region depicted in the adiabatic representation (right)
and in the diabatic representation (left).

Even though the above discussion of curve crossing dynamics was presented
in terms of a collision process, the same phenomenology applies in other situ-
ations encountered in molecular physics. Figure 2.3 depicts the potential energy
surfaces for the nuclear motion associated with two stable electronic states.
Such states are usually obtained from a level of description (e.g. the Born–
Oppenheimer approximation) that neglects some small coupling terms in the
molecular Hamiltonian. The smallness of the terms neglected is gauged against
the interstate energy spacing, and when this spacing vanishes (at R = R∗) the
coupling becomes important. The left and right panels show respectively the dia-
batic and adiabatic picture of this situation. Both pictures show potential energy
surfaces that are obtained from a Born–Oppenheimer approximation—neglecting
the effect of nuclear motion (not to be confused with nuclear position) on the elec-
tronic states and energies, however, the “diabatic” picture is obtained by further
neglecting terms in the electronic Hamiltonian that couple the states on the left and
the right (for a more detailed discussion of this point see Section 2.5). The arrow
indicates the reaction under discussion. When the interaction is small, the diabatic
picture is more convenient; the reaction is regarded as a non-adiabatic transition
a → b. In the opposite limit the adiabatic picture may be more convenient. Indeed,
if the interaction is large enough the splitting between the adiabatic surfaces 1 and
2 is large and transitions between them may be disregarded. At low temperature the
presence of state 2 may be disregarded altogether, and the reaction may be regarded
as a barrier crossing process taking place on the adiabatic potential surface 1.

Reaction rates. In studying processes of this kind it is often the case that the relevant
observable is not the transition probability (2.47) but the reaction rate. How are
the two connected?
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In the non-adiabatic limit, where the a → b transition probability is small, the
system may oscillate in the reactant well a for a relatively long time, occasionally
passing through the transition point (or lower dimensionality subspace) R∗, that is,
through a configuration in which the a → b transition probability may be signific-
ant. We refer to such as passage as an “attempt” to cross over to the product state b.
If we assume that successive crossing attempts are independent of each other, and
if the number of such attempts per unit time is ν, then the rate is roughly given by

kb←a = νPb←a

This is a crude description. As we have seen, the probability Pb←a depends on the
crossing speed, and a proper thermal averaging must be taken. We will come back
to these issues in Sections 14.3.5 and 16.2.

2.5 A digression on nuclear potential surfaces

The basis for separating the electronic and nuclear dynamics of, say, a molecular
system is the Born–Oppenheimer (BO) approximation. A system of electrons and
nuclei is described by the Hamiltonian

Ĥ = Ĥel(r)+ ĤN(R)+ V̂el–N(r, R)

Ĥel = T̂el + V̂el(r); ĤN = T̂N + V̂N(R)
(2.50)

Here Ĥel is the Hamiltonian of the electronic subsystem, ĤN—that of the nuc-
lear subsystem (each a sum of kinetic energy and potential energy operators)
and Vel–N(r, R) is the electrons–nuclei (electrostatic) interaction that depends on
the electronic coordinates r and the nuclear coordinates R. The BO approxima-
tion relies on the large mass difference between electron and nuclei that in turn
implies that electrons move on a much faster timescale than nuclei. Exploring
this viewpoint leads one to look for solutions for eigenstates of Ĥ of the form
ψn,ν(r, R) = φn(r, R)χ

(n)
ν (R), or a linear combination of such products. Here

φ(r, R) are solutions of the electronic Schrödinger equation in which the nuclear
configuration Ris taken constant

(Ĥel + V̂el–N(r, R))φn(r, R) = E(n)
el (R)φn(r, R) (2.51)

while χ
(n)
ν (R) are solutions of the nuclear Schrödinger equation with E(n)

el (R) as a
potential

(T̂N + VN(R)+ E(n)
el (R))χ(n)

ν (R) = Enνχ
(n)
ν (R) (2.52)
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The function En(R) = VN(R)+ E(n)
el (R) is the adiabatic potential surface for the

nuclear motion when the system is in electronic state n. The wavefunctionsφn(r, R)

are referred to as the adiabatic electronic wavefunctions and the electronic-nuclear
wavefunctions ψn,ν(r, R) = φn(r, R)χ

(n)
ν (R) represent vibronic states in the adia-

batic representation. The non-adiabatic coupling between vibronic states stems
from the parametric dependence of the electronic wavefunctions on R. Specifying
for simplicity to a single nuclear coordinate it is given by (for n �= n′)

〈
ψ(n)

ν (r, R)

∣∣∣ Ĥ
∣∣∣ψ(n′)

ν′ (r, R)
〉
=

〈
χ(n)
ν (R)

∣∣∣ 〈φn(r, R)| T̂N |φn′(r, R)〉r
∣∣∣χ(n′)

ν′ (R)
〉
R

= − h̄2

2M

∫
dRχ(n)

ν

∗
(R)χ

(n′)
ν′ (R)

〈
φn(r, R)

∣∣∣∣ ∂2

∂R2

∣∣∣∣φn′(r, R)

〉
r

− h̄2

M

∫
dRχ(n)

ν

∗
(R)

∂

∂R
χ

(n′)
ν′ (R)

〈
φn(r, R)

∣∣∣∣ ∂

∂R

∣∣∣∣φn′(r, R)

〉
r

(2.53)

where the subscripts R and r denote integrations in the nuclear or electronic spaces,
respectively.

Diabatic states are obtained from a similar approach, except that additional term
(or terms) in the Hamiltonian are disregarded in order to adopt a specific physical
picture. For example, suppose we want to describe a process where an electron e
is transferred between two centers of attraction, A and B, of a molecular systems.
We may choose to work in a basis of vibronic states obtained for the e-A system
in the absence of e-B attraction, and for the e-B system in the absence of the e-A
attraction. To get these vibronic states we again use a Born–Oppenheimer pro-
cedure as described above. The potential surfaces for the nuclear motion obtained
in this approximation are the corresponding diabatic potentials. By the nature of
the approximation made, these potentials will correspond to electronic states that
describe an electron localized on A or on B, and electron transfer between centers
A and B implies that the system has crossed from one diabatic potential surface to
the other.

To clarify these general statements lets consider a simple example (Fig. 2.4). A
single electron can move between two identical atoms X, fixed in space. A single
nuclear coordinate is exemplified by the angle θ of the orientation of a dipole that
represents a solvent molecule.

Consider first the two-center system without the “solvent” dipole. Denote the
ground state of the electron about the isolated left center by φL(r) and the equi-
valent ground state about the isolated right center by φR(r). φL(r) is the electronic
ground state of a Hamiltonian in which the interaction of the electron with the
right center was neglected. Similarly, φR(r) corresponds to the Hamiltonian that
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X X–

+

–

Fig. 2.4 An example that demonstrates the origin of diabatic potential surfaces and the difference
between them and the corresponding adiabatic surfaces. The process is an electron transfer between
the two centers X, witnessed by a nuclear coordinates represented by the orientation θ of a “solvent
dipole”.

does not contain the electron interaction with the left center. These functions
describe an electron localized about the left center and the right center, respectively.
Suppose also that other electronic states are far higher in energy and can be disreg-
arded. When both centers are present the true ground state is a linear combination
2−1/2(φL(r)+ φR(r)) which describes an electron with equal amplitudes on these
centers.

Next consider the two-center system together with the “solvent.” Let us construct
a Born–Oppenheimer description of the electronic ground state. When only the right
center is present the electronic functionφR(r, θ) still represents an electron localized
about the right center. The corresponding ground state energy ER(θ) constitutes
a potential surface for the orientational motion of the dipole in the presence of
this center. This surface has a single minimum, attained when the angle θ is such
that the dipole is oriented toward the negative charge, as shown in the figure.
Similarly φL(r, θ) and EL(θ) are the ground electronic state and the corresponding
orientational potential surface when the electron is localized about the left center.
ER(θ) and EL(θ) are the two diabatic potential surfaces. In contrast the adiabatic
ground electronic state is the exact ground state of the full Hamiltonian, that is,
2−1/2(φL(r, θ)+ φR(r, θ)). The corresponding ground state adiabatic potential,
E(θ), will have two symmetric minima as a function of θ , reflecting the fact that
the dipole equally prefers to be oriented toward either one of the partial charges on
the two centers.

The first picture above yields two diabatic potential surfaces, each with a min-
imum reflecting the tendency of the dipole to point toward the localized electron.
The second yields the lower adiabatic potential surface—a double minimum poten-
tial. The relationship between these surfaces can be understood by noting that the
most important effect of the residual interaction (i.e. the originally neglected inter-
action of the electron on the left center with the right center and vice versa) on the
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electronic energy is to split the degeneracy at the point θ∗ when the two diabatic
surfaces cross. This leads to the picture seen in Figs 2.2 and 2.3.

Which representation is “better”? The answer depends on our objective. If this
objective is to find accurate energy levels of a molecular system in order to predict a
molecular spectrum, say, then the adiabatic representation gives us a starting point
closer to our ultimate goal. On the other end, it often happens that a system is initially
prepared in a state which is more closely represented by a diabatic basis as in the
example discussed above, and the ensuing transfer process is investigated. In this
case the diabatic picture provides a more physical description of the transfer process,
though the adiabatic representation remains useful in the strong coupling limit.

2.6 Expressing the time evolution in terms of the Green’s operator

We now return to time-independent Hamiltonians and describe another method for
solving the time-dependent Schrödinger equation. Linear initial value problems
described by time-independent operators are conveniently solved using Laplace
transforms (Section 1.1.7). In Section 1.1.7 we have seen an example where the
equation

df

dt
= −αf ; α real and positive (2.54)

was solved by such a procedure. The solution could be expressed as the inverse
Laplace transform, Eq. (1.78), which could be evaluated for α real and positive by
closing a counter-clockwise contour on the negative-real half plane of z, leading to
the result (1.79). To make the procedure more similar to that used below we repeat
that development in a slightly different form: Define z = −iω, so that dz = −idω.
In terms of the new integration variable ω, Eq. (1.78) becomes

f (t) = − 1

2π i

∞+iε∫
−∞+iε

dωe−iωt 1

ω + iα
f (0) (2.55)

Closing a clockwise contour in the lower half complex plane along Im(z) →−∞,
leads again to the result (1.79).

Consider now the initial value problem represented by Eq. (2.1) with a given
�(t0 = 0). The Laplace transform of Eq. (2.1) is

z�̃(z)−�(0) = −i

h̄
Ĥ �̃(z) (2.56)
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which leads to6

�̃(z) = 1

z + (i/h̄)Ĥ
�(0) (2.57)

The time-dependent solution �(t) of Eq. (2.1) is obtained from the inverse Laplace
transform of (2.57)

�(t) = 1

2π i

∞i+ε∫
−∞i+ε

dzezt 1

z + (i/h̄)Ĥ
�(0) (2.58)

with ε > 0. Here ε may be taken as small as we wish because the eigenvalues
of Ĥ are all real and consequently all singularities of the integrand in (2.58) are
on the imaginary z axis. It is again convenient to use the substitution z = −iω,
dz = −idω, which transforms Eq. (2.58) to

�(t) = − 1

2π i

∞+iε∫
−∞+iε

dωe−iωt 1

ω − Ĥ/h̄
�(0)

or, changing integration variable according to E = h̄(ω − iε)

�(t) = − 1

2π i

∞∫
−∞

dEe−i(E+iε)t/h̄ 1

E − Ĥ + iε
�(0); ε → 0 (2.59)

where ε was redefined with an additional factor h̄. The iε term in the exponent
can be disregarded in the ε →0 limit, however, the corresponding term in the
denominator has to be handled more carefully since the spectrum of Ĥ is real.
The time-dependent wavefunction is seen to be essentially a Fourier transform of
the function Ĝ(E)�(t = 0), where Ĝ(E) ≡ (E − Ĥ + iε)−1 is the retarded Green’s
function (or, rather, Green’s operator). In particular, the probability amplitude for
the system to remain in state �(0) at time t is given by the Fourier transform of a

6 Throughout this text we use operator expressions such as (z − Ĥ )−1 with a scalar z to denote
(zÎ − Ĥ )−1 where Î is the unit operator.
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diagonal matrix element of this operator

〈�(0)|�(t)〉 = − 1

2π i

∞∫
−∞

dEe−iEt/h̄G+
00(E) (2.60)

G+
00(E) =

〈
�(0)

∣∣∣∣ 1

E − Ĥ + iε

∣∣∣∣�(0)
〉
; ε → 0 (2.61)

Equations (2.59)–(2.61) constitute a formal solution of the time-dependent
Schrödinger equation, expressed in terms of the Green operator. We will later see
how this formal solution can be applied.

2.7 Representations

2.7.1 The Schrödinger and Heisenberg representations

Consider again the time evolution equations (2.1)–(2.3). If Â is an operator repres-
enting a physical observable, the expectation value of this observable at time t is
〈A〉t = 〈�(t)|Â|�(t)〉. We can express this same quantity differently. Define

�H ≡ Û †(t)�(t) (2.62a)

ÂH(t) = Û †(t)ÂÛ (t) (2.62b)

where

Û (t) ≡ Û (t, 0) = e−(i/h̄)Ĥ t (2.63)

Obviously, �H is simply �(t = 0) and is by definition time independent.
Equation (2.62) is a unitary transformation on the wavefunctions and the oper-
ators at time t. The original representation in which the wavefunctions are time
dependent while the operators are not, is transformed to another representation in
which the operators depend on time while the wavefunctions do not. The original
formulation is referred to as the Schrödinger representation, while the one obtained
using (2.62) is called the Heisenberg representation. We sometimes use the sub-
script S to emphasize the Schrödinger representation nature of a wavefunction or
an operator, that is,

�S(t) = �(t); ÂS(t) = ÂH(t = 0) = Â (2.64)

Either representation can be used to describe the time evolution of any observable
quantity. Indeed

〈Â〉t = 〈�(t)|Â|�(t)〉 = 〈�H|ÂH(t)|�H〉 (2.65)
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Problem 2.5. Prove this identity.

Note that the invariance of quantum observables under unitary transformations
has enabled us to represent quantum time evolutions either as an evolution of
the wavefunction with the operator fixed, or as an evolution of the operator with
constant wavefunctions. Equation (2.1) describes the time evolution of wavefunc-
tions in the Schrödinger picture. In the Heisenberg picture the wavefunctions do
not evolve in time. Instead we have a time evolution equation for the Heisenberg
operators:

d

dt
ÂH(t) = i

h̄

[
Ĥ , ÂH(t)

]
(2.66)

Problem 2.6. Use Eqs (2.62)–(2.63) to prove Eq. (2.66)

Equation (2.66) is referred to as the Heisenberg equation of motion. Note that
it should be solved as an initial value problem, given that ÂH(t = 0) = Â. In fact,
Eq. (2.62b) can be regarded as the formal solution of the Heisenberg equation (2.66)
in the same way that the expression �(t) = e−(i/h̄)Ĥ t�(t = 0) is a formal solution
to the Schrödinger equation (2.1).

To end this section we note that the entire time evolution referred to in the above
discussion arises from the Schrödinger equation. In general the operator Â may have
an explicit dependence on time, in which case the transformation to the Heisenberg
representation may again be carried out, however, the resulting Heisenberg equation
is

d

dt
ÂH(t) = i

h̄

[
Ĥ , ÂH(t)

]
+ ∂ÂH(t)

∂t
(2.67)

Problem 2.7. Use the definition ÂH(t) = exp(iĤ t/h̄)ÂS(t) exp(−iĤ t/h̄) to
verify (2.67).

2.7.2 The interaction representation

Obviously, any unitary transformation can be applied to the wavefunctions and
operators and used to our advantage. In particular, for any Hamiltonian that is
written as

Ĥ = Ĥ0 + V̂ (2.68)
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the interaction representation is defined by the transformation

ÂI(t) = e(i/h̄)Ĥ0t Âe−(i/h̄)Ĥ0t (2.69)

�I(t) = e(i/h̄)Ĥ0t�S(t) = e(i/h̄)Ĥ0te−(i/h̄)Ĥ t�(0) (2.70)

Problem 2.8. Show that

〈�S(t)|ÂS|�S(t)〉 = 〈�H|ÂH(t)|�H〉 = 〈�I(t)|ÂI(t)|�I(t)〉 (2.71)

The time evolution equations in the interaction representation are easily derived
from these definitions

dÂI

dt
= i

h̄

[
Ĥ0, ÂI

]
(2.72)

and

d�I

dt
= i

h̄
e(i/h̄)Ĥ0t(Ĥ0 − Ĥ )e−(i/h̄)Ĥ t�(0)

= − i

h̄
e(i/h̄)Ĥ0tVe−(i/h̄)Ĥ0te(i/h̄)Ĥ0te−(i/h̄)Ĥ t�(0)

= − i

h̄
V̂I(t)�I(t) (2.73)

Equations (2.72) and (2.73) indicate that in the interaction representation the time
evolution of the operators is carried by Ĥ0, while that of the wavefunctions is
determined by the interaction V̂ , or rather by its interaction representation that is
itself a time-dependent operator.

2.7.3 Time-dependent perturbation theory

Equation (2.73) is particularly useful in cases where the time evolution carried by
Ĥ0 can be easily evaluated, and the effect of V̂ is to be determined perturbatively.
Equation (2.73) is a direct route to such a perturbation expansion. We start by
integrating it to get

�I(t) = �I(0)− i

h̄

t∫
0

dt1V̂I(t1)�I(t1) (2.74)
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and continue by substituting the same expression (2.74) for �I(t1) on the right.
This yields

�I(t) = �I(0)+
(
− i

h̄

) t∫
0

dt1V̂I(t1)�I(0)

+
(
− i

h̄

)2 t∫
0

dt1

t1∫
0

dt2V̂I(t1)V̂I(t2)�I(t2) (2.75)

�I(t) =
⎛
⎝1 +

∞∑
n=1

(
− i

h̄

)n t∫
0

dt1

t1∫
0

dt2 · · ·
tn−1∫
0

dtnV̂I(t1)V̂I(t2) · · · V̂I(tn)

⎞
⎠�I(0)

(2.76)

Note that the order of the operators VI(t) inside the integrand is important: These
operators do not in general commute with each other because they are associated
with different times. It is seen from Eq. (2.76) that the order is such that operators
associated with later times appear more to the left.

Problem 2.9. Show that Eq. (2.74) is equivalent to the operator identity

e−(i/h̄)Ĥ t = e−(i/h̄)Ĥ0t − i

h̄

t∫
0

dt′e−(i/h̄)Ĥ0(t−t′)V̂ e−(i/h̄)Ĥ t′ (2.77)

Problem 2.10. Confirm the following operator identity

exp[β(Ŝ + R̂)] = exp(βŜ)

⎛
⎝1 +

β∫
0

dλe−λŜ R̂e[λ(Ŝ+R̂)]
⎞
⎠ (2.78)

by multiplying both sides by exp(−βŜ) and taking derivative with respect to β.
Verify that Eqs (2.78) and (2.77) are equivalent.
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2.8 Quantum dynamics of the free particles

2.8.1 Free particle eigenfunctions

The Hamiltonian of a free particle of mass m is

Ĥ = − h̄2

2m
∇2 (2.79)

and the corresponding time-independent Schrödinger equation is

∇2ψ = −k2ψ ; k2 = 2mE

h̄2 (2.80)

It is convenient to use the set of eigenfunctions normalized in a box of dimensions
(Lx, Ly, Lz) with periodic boundary conditions

�(x, y, z) = �(x + nxLx, y + nyLy, z + nzLz); n = 0,±1,±2, . . . (2.81)

A set of such functions is

|k〉 ≡ ψk(r) = 1√
�

eik·r; k = (kx, ky, kz)

kj = 2π

Lj
nj; nj = 0,±1, . . . ; j = x, y, z

� = LxLyLz

(2.82)

with the eigenvalues

Ek = h̄2k2

2m
(2.83)

These functions constitute an orthonormal set

〈
k|k′〉 ≡ ∫

�

d3rψ∗
k(r)ψk′(r) = δk,k′ (2.84)

and can be used to express the time evolution of any function �(r, t = 0) that
satisfies the periodic boundary conditions (2.81). Following Eqs (2.5) and (2.6)
we get

�(r, t) =
∑

k

〈ψk|�(r, 0)〉e−(i/h̄)[h̄2k2/(2m)]t|ψk〉 (2.85)
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where

〈ψk | �(r, 0)〉 = 1√
�

∫
�

d3re−ik·r�(r, 0) (2.86)

We have seen that the normalization condition
∫
�

dx|ψ(x)|2 = 1 implies that
free particle wavefunctions vanish everywhere like ψ(x) ∼ �−1/2 as � →∞. The
probability |ψ(x)|2dx to find the particle at position x . . . x+dx vanishes like �−1

in this limit. As such, these functions are by themselves meaningless. We will see
that meaningful physics can be obtained in two scenarios: First, if we think of the
process as undergone by a distribution of N identical independent particles where
the number N is proportional to the volume � so that the density ρ(x) = N |ψ(x)|2
is finite. We may thus work with the single particle wavefunctions, keeping in mind
that (1) such functions are normalized by �−1/2 and (2) that physically meaningful
quantities are obtained by multiplying observables by the total number of particles
to get the single particle density factored in.

Second, several observables are obtained as products of matrix elements that
scale like ψ(x)2 (therefore like �−1) and the density of states that scales like �

(Eq. (2.95) or (2.97) below). A well-known example is the golden rule formula
(9.25) for the inverse lifetime of a local state interacting with a continuum. Such
products remain finite and physically meaningful even when � →∞.

Anticipating such scenarios, we use in many applications periodic boundary con-
ditions as a trick to represent infinite systems by taking the periodic box dimensions
to infinity at the end of the calculation. We will see several examples below.

Problem 2.11. Show that if the wavefunction �(r, t = 0) is square-integrable
(i.e.

∫
d3r|�(r, t = 0)|2 (integral over all space) is finite, so is �(r, t) at any

later time.

Problem 2.12. For the function

ψ(x) = 1

(2πD2)1/4 exp
[
− x2

4D2

]
(2.87)

Consider the expansion in terms of the one-dimensional free particle eigenstates

ψ(x) =
∑

k

ckψk(x) (2.88)

ψk(x) = L−1/2eikx; k = (2π/L)n; n = 0,±1, . . . (2.89)
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Explain why this expansion is meaningful only in the limit L 
 D. Show that
in this limit

ck =
(

8πD2

L2

)1/4

e−D2k2
(2.90)

2.8.2 Free particle density of states

The density of states concept was introduced in Section 1.3. For any operator
Â characterized by the eigenvalue spectrum {aj} we can define a density function
ρA(a) such that the number of eigenvalues that satisfy a ≤ aj ≤ a+�a is ρA(a)�a.
Such a density can be introduced for a discrete spectrum

ρA(a) =
∑

j

δ(a − aj) (2.91)

but it is most useful when the spectrum becomes so dense that either our meas-
urement cannot resolve the individual eigenvalues or we are not interested in
these high resolution details. This is obviously the case for the momentum oper-
ator whose eigenfunctions are the free particle wavefunctions (2.82), in the limit
Lx, Ly, Lz →∞.

In what follows we describe one possible way to obtain the density of momentum
states for this problem. Consider Eqs (2.87)–(2.90). Obviously the identity

∑
k

|ck |2 = 1 (2.92)

has to be satisfied. Using (2.90) in (2.92) we get

√
8πD

L

∑
k

exp[−2D2k2] =
√

8πDρ

L

∞∫
−∞

dk exp[−2D2k2] = 1 (2.93)

where the conversion to an integral is suggested by the fact that when � →∞ the
allowed values of the wavevectors k constitute a dense set (cf. Eq. (2.82)). ρ is the
desired density of states in this set, defined such that ρ�k is the number of allowed
states, (kj = (2π/L)n; n = 0,±1, . . .) in the interval k . . . k + �k . In principle ρ

could depend on k, but it does not in the present case: this is seen from the fact that
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the spacing 2π/L between allowed values of k is a constant independent of k . On
evaluating the Gaussian integral in (2.93) we can find the explicit expression for ρ,

ρ = L

2π
(2.94)

The same reasoning in three dimensions will yield

ρ = LxLyLz

(2π)3 = �

(2π)3 (2.95)

This number, multiplied by d3k = dkxdkydkz is the number of quantum states in the
k-space volume between kx and kx + dkx, ky and ky + dky, and kz and kz + dkz. The
fact that this result does not depend on k = (kx, ky, kz) implies that the distribution
of free particle eigenstates in k-space is homogeneous.

It is useful also to cast the density of states in other representations, most notably
the energy. We may thus seek a density ρE so that the number of states with energy
between E and E+�E is ρE�E. In one dimension the indicated energy interval cor-
responds to the k-axis interval 2h̄−1(

√
2m(E + dE)−√

2mE) = h̄−1(2m/E)1/2dE
(the factor 2 comes from the fact that a given interval in E corresponds to two
intervals in k , for positive and negative values) so that

ρE = L

2π h̄

√
2m

E
; (d = 1) (2.96)

We can get the same result from the formal connection ρkdk = ρEdE, which
implies that ρE = ρk(dE/dk)−1. In three dimensions the interval between E
and E +�E corresponds in k-space to a spherical shell whose surface area is
4πk2 and width is �k , where k2 = 2mE/h̄2 and �k = (dE/dk)−1�E =
h̄−1(m/(2E))1/2�E. This yields

ρE = �

(2π)3 × 4π
2mE

h̄2 × 1

h̄

( m

2E

)1/2 = �

2π2

m

h̄3

√
2mE; (d = 3) (2.97)

Note that ρE is a function of the energy E.

2.8.3 Time evolution of a one-dimensional free particle wavepacket

Consider now the time evolution of a free particle moving in one dimension that
starts at t = 0 in the normalized state

�(x, t = 0) = 1

(2πD2)1/4 exp

[
−(x − x0)

2

4D2 + ip0x

h̄

]
(2.98)
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We refer to the wavefunction (2.98) in the present context as a wavepacket: It is
a local function in position space that can obviously be expanded in the complete
set of free particle waves (2.82).7 Below we see that this function is also localized
in momentum space.

Problem 2.15. Show that for the wavefunction (2.98) the expectation values of
the position and momentum are

〈x〉t=0 =
∞∫

−∞
dx�∗(x, t = 0)x̂�(x, t = 0) = x0 (2.99)

and

〈p〉t=0 =
∞∫

−∞
dx�∗(x, t = 0)

(
−ih̄

∂

∂x

)
�(x, t = 0) = p0 (2.100)

Also show that the position variance associated with this wavefunction is

〈(x − 〈x〉)2〉t=0 = 〈x2〉 − x2
0 = D2 (2.101)

and that the momentum variance is

〈(p − 〈p〉)2〉t=0 = 〈p2〉 − p2
0 =

h̄2

4D2 (2.102)

Note that �x0 ≡ [〈(x − 〈x〉)2〉t=0]1/2 and �p0 ≡ [〈(p − 〈p〉)2〉t=0]1/2 satisfy
the Heisenberg uncertainty rule as an equality: �x0�p0 = h̄/2. For this reason
we refer to (2.98) as a minimum uncertainty wavepacket.

The expansion of (2.98) in the set of eigenstates ψk(x) = L−(1/2)eik·x yields

�(x, t = 0) = 1√
L

∑
k

ckeikx (2.103)

7 The periodic boundary conditions are inconsequential here provided that the range in which this
wavefunction is significantly different from zero is far smaller than L.
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where

ck = 〈ψk | �(x, 0)〉 = 1(
2πL2D2

)1/4

∞∫
−∞

dx exp

[
−(x − x0)

2

4D2 − i (k − k0) x

]

(2.104)

where k0 = p0/h̄. Evaluating the Fourier transform in (2.104) we get

ck =
(

8πD2

L2

)1/4

exp[−D2(k − k0)
2 − ix0(k − k0)] (2.105)

This implies that for a particle whose quantum state is (2.98), the probability to
find it with momentum h̄k is

|ck |2 =
√

8πD

L
exp[−2D2(k − k0)

2] (2.106)

Note that Eqs (2.87)–(2.90) represent a special case of these results.
The time evolution that follows from Eq. (2.98) may now be found by using

Eq. (2.85). In one dimension it becomes

�(x, t) = 1√
L

∑
k

ckeikx−(i/h̄)[h̄2k2/(2m)]t (2.107)

The probability that the system described initially by �(x, t = 0) stays in this initial
state is given by

P(t) = |〈�(x, t = 0) | �(x, t)〉|2 (2.108)

Using Eqs (2.103) and (2.107) as well as the one-dimensional version of (2.84)
yields

P(t) =
∣∣∣∣∣∑

k

|ck |2 e−(i/h̄)[h̄2k2/(2m)]t
∣∣∣∣∣
2

(2.109)

Inserting Eq. (2.106) and converting the sum over k to an integral,
∑

k →
(L/(2π))

∫
dk finally leads to

P(t) =
∣∣∣∣∣∣
√

2

π
D

∞∫
−∞

dk exp
[
− ih̄

2m
tk2 − 2D2(k − k0)

2
]∣∣∣∣∣∣

2

(2.110)



86 Quantum dynamics using the time-dependent Schrödinger equation

Note that the dependence on L does not appear in any observable calculated
above.

We can also find the time-dependent wavefunction explicitly. Combining
Eqs (2.107), (2.105), and (2.94), and converting again the sum over k to an integral
leads to

�(x, t) =
(

D2

2π3

)1/4

eik0x0

∞∫
−∞

dk exp
[

ik(x − x0)− D2(k − k0)
2 − ih̄k2

2m
t

]
(2.111)

This Gaussian integral can be evaluated in a straightforward way. To get some
physical insight consider the result obtained from the initial wavepacket with x0 =
p0 = k0 = 0. In this case (2.111) yields

�(x, t) =
(

1

2π

)1/4 (
D + ih̄t

2mD

)−1/2

exp
[
− x2

4D2 + 2ih̄t/m

]
(2.112)

that leads to

|�(x, t)|2 =
{

2π

[
D2 + h̄2t2

4m2D2

]}−1/2

exp
[
− x2

2[D2 + h̄2t2/(4m2D2)]
]

(2.113)

This wavepacket remains at the peak position x = 0, with its width increases
with time according to

〈(�x)2〉1/2 = [D2 + h̄2t2/(4m2D2)]1/2 t→∞−→ h̄t

2mD
(2.114)

2.8.4 The quantum mechanical flux

In a classical system of moving particles the magnitude of the flux vector is the
number of particles going per unit time through a unit area perpendicular to that
vector. If ρ(r) and v(r) are the density and average speed of particles at point r,
the flux is given by

J(r) = v(r)ρ(r) (2.115a)

It can be written as a classical dynamical variable, that is, a function of positions
and momenta of all particles in the system, in the form

J(r) =
∑

j

(
pj/mj

)
δ(r − rj) (2.115b)

where the sum is over all particles.
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The quantum analog of this observable should be an operator. To find it we
start for simplicity in one dimension and consider the time-dependent Schrödinger
equation and its complex conjugate

∂�

∂t
= − i

h̄

[
− h̄2

2m

∂2

∂x2� + V (x)�

]
(2.116)

∂�∗

∂t
= i

h̄

[
− h̄2

2m

∂2

∂x2�
∗ + V (x)�∗

]
(2.117)

Multiply (2.116) by �∗ and (2.117) by � and add the resulting equations to get

∂(�∗�)

∂t
= ih̄

2m

(
�∗ ∂2

∂x2� −�
∂2

∂x2�
∗
)

(2.118)

We next integrate this equation between two points, x1 and x2. �∗(x, t)�(x, t)dx
is the probability at time t to find the particle in x . . . x + dx, hence the integral on
the left yields the rate of change of the probability P1–2 to find the particle in the
range between x1 and x2. We therefore get

dP1–2 (t)

dt
= ih̄

2m

x2∫
x1

dx

(
�∗ ∂2�

∂x2 −�
∂2�∗

∂x2

)
= ih̄

2m

x2∫
x1

dx
∂

∂x

(
�∗ ∂�

∂x
−�

∂�∗

∂x

)

= − h̄

m

x2∫
x1

dx
∂

∂x

(
Im

[
�∗ (x, t)

∂� (x, t)

∂x

])
(2.119)

This can be integrated to give

dP1–2 (t)

dt
= J (x1, t)− J (x2, t) (2.120)

where

J (x, t) ≡ h̄

m
Im

[
�∗ (x, t)

∂� (x, t)

∂x

]
= h̄

2mi

(
�∗ ∂�

∂x
−�

∂�∗

∂x

)
(2.121)

is defined as the probability flux at point x. Note that while J in Eq. (2.115) is a
particle flux, Eq. (2.121) is the probability flux, and should be multiplied by N (in
a system of N noninteracting particles) to give the particle flux.

Equation (2.120) may be recognized as a conservation law: NP1–2 is the number
of particles in the (x1,x2) interval and NJ (x) is the number of particles moving per
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unit time through point x. Equation (2.120) tells us that a change in number of
particles in the x1, . . . , x2 interval is caused by particles entering or leaving at the
boundaries x1 and x2, that is, particles cannot be created or destroyed.

Problem 2.14. Use the results above to prove that at steady state of a one-
dimensional system the flux has to be independent of both position and time.

Note that in our one-dimensional formulation the dimensionality of � is
[length]−1/2 and the flux J has dimensionality of t−1. The generalization of (2.121)
to more than one dimension is found by repeating the procedure of Eqs (2.116)–
(2.121), with the gradient operator∇ replacing ∂/∂x everywhere. Equations (2.119)
and (2.120) become

dP� (t)

dt
= − h̄

m

∫
�

d3r∇ · (Im [
�∗ (r, t)∇� (r, t)

])

= − h̄

m

∫
S�

dsns · Im
[
�∗ (r, t)∇� (r, t)

]
(2.122)

where � here denotes a finite volume whose boundary is the surface S�, and
where ns is a unit vector normal to the surface element ds in the outward direction.
In getting the second line of Eq. (2.122) we have used the divergence theorem
(Eq. (1.36)). In fact, the mathematical structure of Eq. (2.122) reflects the fact that
in a closed system the quantum mechanical probability is a globally conserved
quantity (See Section 1.1.4). It also enables us to identify the probability flux: The
second line of (2.122) is the analog of the right-hand side of Eq. (2.120), where the
flux is now defined by the analog of Eq. (2.121).

J (r, t) = h̄

2mi

[
�∗(r, t) (∇�(r, t))−�(r, t)

(∇�∗(r, t)
)]

(2.123)

In three dimensions � has the dimensionality [length]−3/2 and the dimension of
flux is [tl2]−1. When multiplied by the total number of particles N , the flux vector
gives the number of particles that cross a unit area normal to its direction per unit
time.

As an example consider the free particle wavefunctions ψ1(r) = A exp(ik · r)
and ψ2(r) = A cos(k · r). From Eq. (2.123) it is clear that the flux associated with
ψ2 is zero. This is true for any wavefunction that is real or can be made real by
multiplication by a position independent phase factor. On the other hand, using
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�=ψ1 in (2.123) yields

J(r) = h̄k
m
|A|2 = v|A|2 (2.124)

The flux is defined up to the constant A. Taking |A|2 = �−1 (a single particle
wavefunction normalized in the volume �) implies that the relevant observable
is N J(r), that is, is the particle flux for a system with a total of N particles with
N ∼ �. Sometimes it is convenient to normalize the wavefunction to unit flux,
J = 1 by choosing A = √

m/(h̄k).

2.9 Quantum dynamics of the harmonic oscillator

2.9.1 Elementary considerations

The classical Hamiltonian for a one-dimensional harmonic oscillator of mass m
centered about x = 0,

H = p2

2m
+ 1

2
kx2 (2.125)

implies the classical equations of motion

ẋ = p/m; ṗ = −mω2x with ω =
√

k

m
(2.126)

It is convenient for future reference to define the dimensionless position ξ and
momentum φ

ξ = αx where α =
√

mω

h̄
(2.127)

φ = p/
√

h̄mω (2.128)

In terms of these variables the Hamiltonian (2.125) takes the form

H = h̄ω

2
(ξ2 + φ2) (2.129)

and the classical equations of motion become

ξ̇ = ωφ; φ̇ = −ωξ (2.130)
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In quantum mechanics the momentum corresponds to the operator p̂ = −ih̄∂/∂x, or

φ̂ = −i∂/∂ξ (2.131)

the position and momentum operator satisfy the familiar commutation relationship

[x̂, p̂] = ih̄ → [ξ̂ , φ̂] = i (2.132)

and the quantum Hamiltonian is

Ĥ = − h̄2

2m

d2

dx2 +
1

2
mω2x̂2 (2.133)

or in dimensionless form

Ĥ

h̄ω
= 1

2

(
− ∂2

∂ξ2 + ξ̂2
)

(2.134)

The solutions of the time-independent Schrödinger equation Ĥψ = Eψ are the
(orthonormal) eigenfunctions and the corresponding eigenvalues

ψn(x) = NnHn (αx) e−(1/2)(αx)2
En = (n + 1/2) h̄ω (2.135)

where Hn(ξ) are the Hermit polynomials that can be obtained from

Hn+1(ξ) = 2ξHn(ξ)− 2nHn−1(ξ) (2.136)

H0(ξ) = 1; H1(ξ) = 2ξ (2.137)

and Nn is the normalization factor

Nn =
√

α

π1/22nn! (2.138)
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chosen so that
∞∫

−∞
dxψ2

n (x) = 1. In particular the ground state wavefunction and

energy are

ψ0(x) =
√

α√
π

e−(1/2)α2x2
; E0 = (1/2)h̄ω (2.139)

The Hermite polynomials also satisfy the identity

d

dξ
Hn(ξ) = 2nHn−1(ξ) (2.140)

and the eigenfunctions satisfy

〈ψn|x̂|ψm〉 =
∞∫

−∞
dxxψn(x)ψm(x) =

⎧⎪⎨
⎪⎩
α−1√(n + 1) /2; m = n + 1

α−1√n/2; m = n − 1

0 otherwise

(2.141)

Consider now solutions of the time-dependent Schrödinger equation

∂�(x, t)

∂t
= − i

h̄

(
− h̄2

2m

d2

dx2 +
1

2
mω2x2

)
�(x, t) (2.142)

Knowing the eigenfunctions and eigenvalues implies that any solution to this
equation can be written in the form (2.6), with the coefficients determined from
the initial condition according to cn(t0) = 〈ψn(x)|�(x, t0〉. The following problem
demonstrates an important property of properly chosen wavepackets of harmonic
oscillator wavefunctions.

Problem 2.15.

1. Show by direct substitution that the solution of (2.142) with the initial
condition

�(x, t = 0) =
√

α√
π

e−(1/2)α2(x−x0)
2 = ψ0 (x − x0) (2.143)

is given by

�(x, t) =
√

α√
π

e−(1/2)iωte−(1/2)α2[x−x̄(t)]2+(i/h̄)p̄(t)[x−(1/2)x̄(t)] (2.144)
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where

x̄(t) = x0 cos (ωt) ; p̄(t) = −mωx0 sin (ωt) (2.145)

satisfy the classical equation of motions (2.126), that is, ˙̄x = p̄/m
and ˙̄p = −mω2x̄. (Note that in terms of the reduced position ξ̄ (t) and
momentum φ̄(t), Eq. (2.144) takes the form

�(x, t) =
√

α√
π

e−(1/2)iωte−(1/2)[ξ−ξ̄ (t)]2+iφ̄(t)[ξ−(1/2)ξ̄ (t)] (2.146)

where ξ̄ (t) = ξ0 cos(ωt) and φ̄(t) = −ξ0 sin(ωt) (with ξ0 = αx0) satisfy
Eq. (2.130).)

2. Show that the t = 0 wavepacket (2.143) is just the ground state wave-
function of the harmonic oscillator (Eq. (2.135) with n = 0) with the
equilibrium position shifted from 0 to x0.

3. Show that at time t the average position and momentum associated with
the wavefunction (2.144) satisfy

〈x〉(t) ≡
∞∫

−∞
dx�∗(x, t)x̂�(x, t) = x̄(t) (2.147)

〈p〉(t) ≡
∞∫

−∞
dx�∗(x, t)p̂�(x, t) = p̄(t) (2.148)

while the variances

(�x(t))2 ≡
∞∫

−∞
dx�∗(x, t)(x̂ − 〈x〉)2�(x, t) (2.149)

(�p(t))2 ≡
∞∫

−∞
dx�∗(x, t)(p̂ − 〈p〉)2�(x, t) (2.150)

do not depend on time and satisfy Eqs (2.101) and (2.102), respectively,
with α2 = (2D2)−1. (Note that consequently, the uncertainty �x · �p =
(1/2)h̄ is also time independent.)
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Thus, the solution (2.144) oscillates with frequency ω in a way that resembles the
classical motion: First, the expectation values of the position and momentum oscil-
late, as implied by Eqs (2.145), according to the corresponding classical equations
of motion. Second, the wavepacket as a whole executes such oscillations, as can
be most clearly seen from the probability distribution

|�(x, t)|2 = α√
π

e−α2[x−x̄(t)]2
(2.151)

that is, the wavepacket oscillates just by shifting the position of its center in a way
that satisfies the classical Newton equations. In particular, unlike in the free particle
case (see Eq. (2.114)), the width of this wavepacket does not change with time.

2.9.2 The raising/lowering operators formalism

Focusing again on Eqs (2.125)–(2.134) it is convenient to define a pair of operators,
linear combinations of the position and momentum, according to

â =
√

mω

2h̄
x̂ + i√

2h̄mω
p̂ = 1√

2
(ξ̂ + iφ̂)

â† =
√

mω

2h̄
x̂ − i√

2h̄mω
p̂ = 1√

2
(ξ̂ − iφ̂) (2.152)

so that

x̂ =
√

h̄

2mω
(â† + â); p̂ = i

√
mh̄ω

2
(â† − â) (2.153)

Using Eq. (2.132) we find that â and â† satisfy

[â, â†] = 1 (2.154)

and can be used to rewrite the Hamiltonian in the form

Ĥ = h̄ω

(
â†â + 1

2

)
= h̄ω

(
N̂ + 1

2

)
(2.155)

Here N̂ = â†â is called the “number operator” for reasons given below. This
operator satisfies the commutation relations

[N̂ , â] = −â

[N̂ , â†] = â† (2.156)
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To see the significance of these operators we use Eqs (2.131), (2.135), (2.136)
and (2.140) to derive the following identities:

ξ̂ψn = 1√
2
(
√

nψn−1 +
√

n + 1ψn+1)

φ̂ψn = 1

i
√

2
(
√

nψn−1 −
√

n + 1ψn+1) (2.157)

Using Eqs (2.152) this implies

â |n〉 = √
n |n − 1〉 ; â† |n〉 = √

n + 1 |n + 1〉 (2.158)

where we have used |n〉 to denote ψn. The operators â† and â are seen to have
the property that when operating on an eigenfunction of the Harmonic oscillator
Hamiltonian they yield the eigenfunction just above or below it, respectively. â† and
â will therefore be referred to as the harmonic oscillator raising (or creation) and
lowering (or annihilation) operators, respectively.8

Equation (2.152) also leads to

N̂ |n〉 = n |n〉 (2.159)

(hence the name “number operator”) and to the representation of the nth eigenstate
in the form

|n〉 = 1√
n!(â

†)n |0〉 (2.160)

Furthermore it is easy to derive the following useful relations:

〈n| â = √
n + 1 〈n + 1|

〈n| â† = √
n 〈n − 1|

(2.161)

〈
n′|â|n〉 = √

nδn′,n−1〈
n′|â†|n

〉
= √

n + 1δn′,n+1
(2.162)

8 The terms “creation” and “annihilation” arise in applications where the system of interest is a
group of harmonic oscillators with a given distribution of frequencies. Photons in the radiation field
and phonons in an elastic field (see Chapters 3 and 4 respectively) correspond to excitations of such

oscillators. â†
ω is then said to create a phonon (or a photon) of frequency ω and âω destroys such a

“particle.”
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Problem 2.16. Use Eqs (2.153), (2.154), and (2.161) to prove that

〈
n|x|n′〉 = √

h̄

2mω
(
√

n + 1δn′,n+1 +
√

nδn′,n−1) (2.163)

2.9.3 The Heisenberg equations of motion

An important advantage of formulating harmonic oscillators problems in terms of
raising and lowering operators is that these operators evolve very simply in time.
Using the Heisenberg equations of motion (2.66), the expression (2.155) and the
commutation relations for â and â† leads to

˙̂a(t) = −iω0â(t); ˙̂a†(t) = iω0â†(t) (2.164)

where now â(t) and â†(t) are in the Heisenberg representation. To simplify notation
we will often omit the subscript H that denotes this representation (see Eq. (2.66))
when the identity of operators as Heisenberg representation operators is clear from
the text. Eq. (2.164) yields the explicit time dependence for these operators

â(t) = âe−iωt ; â†(t) = â†eiωt (2.165)

Consequently, the Heisenberg representations of the position and momentum
operators are

x̂(t) =
√

h̄

2mω
(â†eiωt + âe−iωt); p̂(t) = i

√
mh̄ω

2
(â†eiωt − âe−iωt) (2.166)

As an example for the use of this formulation let us calculate the (in-principle
time-dependent) variance, 〈�x(t)2〉, defined by Eq. (2.149) for a Harmonic oscil-
lator in its ground state. Using the expression for position operator in the Heisenberg
representation from Eq. (2.166) and the fact that 〈0|�x(t)2|0〉 = 〈0|x(t)2|0〉 for an
oscillator centered at the origin, this can be written in the from

〈0|�x(t)2 |0〉 = h̄

2mω
〈0| (â†eiωt + âe−iωt)2 |0〉 = h̄

2mω
〈0| â†â + ââ† |0〉

= h̄

2mω
〈0| 2â†â + 1 |0〉 = h̄

2mω
(2.167)

where we have also used the commutation relation (2.154). A reader that evalu-
ates Eq. (2.149) using the explicit wavefunction (2.139) can appreciate the great
simplification offered by this formulation.
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2.9.4 The shifted harmonic oscillator

Problems involving harmonic oscillators that are shifted in their equilibrium pos-
itions relative to some preset origin are ubiquitous in simple models of quantum
dynamical processes. We consider a few examples in this section.

2.9.4.1 Harmonic oscillator under an additional constant force

Consider a particle of charge q moving in one dimension (along the x-axis, say) in
a harmonic potential. The Hamiltonian describing its motion is

Ĥ = p̂2

2m
+ 1

2
mω2x̂2 (2.168)

Let us switch on an external uniform electrostatic field E along the same direction.
The Hamiltonian becomes

Ĥs = p̂2

2m
+ 1

2
mω2x̂2 − qE x̂ (2.169)

It is easy to find the eigenfunctions and eigenvalues of the Hamiltonian (2.169)
given the corresponding eigenfunctions and eigenvalues of (2.168). Making the
transformation

x̄ = x − qE
mω2 (2.170)

the Hamiltonian (2.169) becomes

Ĥs = p̂2

2m
+ 1

2
mω2 ˆ̄x2 − q2E2

2mω2 (2.171)

In Eqs (2.169) and (2.171) p̂ = −ih̄∂/∂x = −ih̄∂/∂ x̄. The Hamiltonian (2.169)
is thus shown to represent a harmonic oscillator in the absence of external field
with an energy spectrum that is shifted uniformly by the last term on the right of
(2.171), and whose equilibrium position is shifted according to Eq. (2.170). The
new eigenstates are therefore shifted harmonic oscillator wavefunctions:

ψs(x; ε) = ψ

(
x − qE

mω2 ; 0
)

(2.172)

The position shift operator. Consider the operator

Û (λ) ≡ e−λ(∂/∂x) (2.173)
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Since the operator ∂/∂x is anti-hermitian (i.e. (∂/∂x)† = −∂/∂x) Û (λ) is unitary
(Û † = Û−1) for real λ. The identity

e−λ(∂/∂x)ψ(x)=
(

1 − λ
∂

∂x
+ 1

2
λ2 ∂2

∂x2 + · · · (−1)n

n! λn ∂n

∂xn + · · ·
)
ψ(x)=ψ(x − λ)

(2.174)

identifies this unitary operator as the position shift operator. In terms of the operators
a and a† this operator takes the form

Û (λ) = eλ̄(â
†−â) (2.175)

with

λ̄ = λ

√
mω

2h̄
(2.176)

Under the unitary transformation defined by Û the position and momentum oper-
ators transform in a simple way. For example, since Û is unitary, the following
identity must hold for all functions ψ(x) and φ(x)〈

ψ(x)|x̂|φ(x)
〉 = 〈Ûψ(x)|Û x̂Û †|Ûφ(x)〉 = 〈ψ(x − λ)|Û x̂Û †|φ(x − λ)〉

(2.177)

For this identity to be true we must have

Û (λ)x̂Û †(λ) = x̂ − λ (2.178a)

Also, since p̂ and Û commute it follows that

Û (λ)p̂Û †(λ) = p̂ (2.178b)

Using Eqs (2.178) and (2.152) it is easy to show also that

Û (λ)âÛ †(λ) = â − λ̄

Û (λ)â†Û+(λ) = â† − λ̄
(2.179)

Appendix 2A (see entry 6) presents a more direct proof of these equalities using
operator algebra relationships obtained there.

Franck–Condon factors. As an application of the raising and lowering operator
formalism we next calculate the Franck–Condon factor in a model of shifted har-
monic potential surfaces. Franck–Condon factors are absolute square overlap integ-
rals between nuclear wavefunctions associated with different electronic potential
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surfaces. Such overlap integrals appear in calculations of transition rates between
molecular electronic states, for example they determine the relative intensities of
vibrational transitions that dress electronic spectral lineshapes: such intensities
are determined by matrix elements of the dipole moment operator between two
molecular vibronic states µnν,n′ν′ = 〈φn(r, R)χ

(n)
ν (R)|µ̂(r̂)|φn′(r, R)χ

(n′)
ν′ (R)〉r,R

where φn(r, R) and χ
(n)
ν (R) are electronic and nuclear wavefunctions, respect-

ively, obtained in the Born–Oppenheimer approximation (see Section 2.5), r and
R are electronic and nuclear coordinates, respectively, and 〈 〉r,R indicates that
integration is both in the nuclear and the electronic subspaces. In the so called
Condon approximation one assumes that the dependence of the electronic integral
µn,n′(R) = 〈φn(r, R)|µ̂(r̂)|φn′(r, R)〉r on the nuclear coordinate R is small and
removes this term from the integral over R, leading to

µnν,n′ν′ = µn,n′ 〈χ(n)
ν (R)|χ(n′)

ν′ (R)〉R ⇒ |µnν,n′ν′ |2 = |µn,n′ |2(FC)
(n,n′)
ν,ν′

We will calculate the Franck–Condon factor in a model where the nuclear poten-
tial surfaces are identical one-dimensional harmonic potentials that are horizontally
shifted with respect to each other, that is,

V1(x) = (1/2)mω2x2; V2(x) = (1/2)mω2 (x − λ)2 (2.180)

The FC factors arising from the overlap integral between νth excited state on the
harmonic potential 1, say, and ν′th excited state on the harmonic potential 2 is

(FC)
(1,2)
ν,ν′ =

∣∣∣∣∣∣
∞∫

−∞
dxχ(1)∗

ν (x)χ(2)
ν′ (x)

∣∣∣∣∣∣
2

(2.181)

For simplicity we will consider the case where ν′ = 0, that is, where χ
(2)
ν′ (x) is

the ground vibrational state on the harmonic surface 2. Now, from Eq. (2.180) it
follows that χ(2)

ν′ (x) = χ
(1)
ν′ (x − λ). The desired FC factor is therefore

(FC)
(1,2)
ν,0 = (FC)ν,0 (λ) =

∣∣∣∣∣∣
∞∫

−∞
dxχ∗ν (x)χ0(x − λ)

∣∣∣∣∣∣
2

(2.182)

where both wavefunctions are defined on the same potential surface 1 whose explicit
designation is now omitted. Note that the only relevant information concerning the
electronic states 1 and 2 is the relative shift of their corresponding potential surfaces.
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Now, from Eqs (2.174)–(2.175) we have χ0(x − λ) = eλ̄(â
†−â)χ0(x), therefore

I ≡
∞∫

−∞
dxχ∗ν (x)χ0(x − λ) = 〈ν| eλ̄(â†−â) |0〉 (2.183)

Note |ν〉 and |0〉 are states defined on the same harmonic potential and are not
shifted with respect to each other. Using Eq. (2.225) to replace exp(λ̄(â† − â)) by
exp(−(1/2)λ̄2) exp(λ̄â†) exp(−λ̄â), and using the Taylor expansion to verify that
exp(−λ̄â)|0〉 = |0〉 this leads to

I = e−(1/2)λ̄2〈ν|eλ̄â† |0〉 (2.184)

Again making a Taylor expansion, now of the operator exp(λ̄â†), it is easily seen
that the only term that contributes is (λ̄ν/ν!)(â†)ν . Using also Eq. (2.160) leads to

I = e−(1/2)λ̄2 λ̄ν

√
ν! (2.185)

Using also Eq. (2.176) finally yields the result

(FC)ν,0 (λ) = |I |2 = exp
(
−mωλ2

2h̄

) (
mωλ2/2h̄

)ν
ν! (2.186)

Time evolution of a shifted oscillator. We have already considered (see Problem
2.15) the time evolution of a state obtained by shifting the equilibrium position of
the ground state |0〉 of a harmonic oscillator, that is,

�(x, t = 0) =
√

α√
π

e−(1/2)α2(x−λ)2 = ψ0 (x − λ) (2.187)

Let us repeat it using the shift operator (2.175). The initial shifted state takes the
form

�(t = 0) = eλ̄(â
†−â) |0〉 ≡ ∣∣λ̄〉 (2.188)

which can be rewritten, using Eq. (2.225), in the form

|λ̄〉 = e−(1/2)|λ̄|2eλ̄â† |0〉; λ̄ = λ

√
mω

2h̄
(2.189)

Such a state is sometimes referred to as a coherent state of the Harmonic oscillator.
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Problem 2.17.

1. Show that a coherent state (2.189) is an eigenstate of the lowering operator.
Specifically

â
∣∣λ̄〉 = λ̄

∣∣λ̄〉 (2.190)

2. Show that the coherent state (2.189) is normalized〈
λ̄|λ̄〉 = 1 (2.191)

The time evolution of this state can be now calculated in a straightforward way

�(t) = e−(i/h̄)Ĥ te−(1/2)|λ̄|2eλ̄â† |0〉 = e−(1/2)|λ̄|2e−(i/h̄)Ĥ teλ̄â†
e(i/h̄)Ĥ te−(i/h̄)Ĥ t|0〉

(2.192)

Using e−(i/h̄)Ĥ t|0〉 = e−(i/2)ωt|0〉 and e−(i/h̄)Ĥ teλ̄â†
e(i/h̄)Ĥ t = eλ̄e−iωt â†

this leads to

�(t) = e−(1/2)iωte−(1/2)|λ̄|2eλ̄e−iωt â† |0〉 = e−(1/2)iωt|λ̄e−iωt〉 (2.193)

Except for a phase factor, the time evolution is given by an oscillating position
shift, λ̄ → λ̄e−iωt . Using this and (2.176) in (2.187) yields the result

�(x, t = 0) =
√

α√
π

e−(1/2)iωte−(1/2)α2(x−λ(t))2
; λ(t) = λe−iωt (2.194)

Problem 2.18. Show that (2.194) is identical to (2.144)–(2.145).

2.9.5 Harmonic oscillator at thermal equilibrium

Harmonic oscillators are often used as approximate models for realistic systems.
A common application is their use as convenient models for the thermal environ-
ments of systems of interest (see Section 6.5). Such models are mathematically
simple, yet able to account for the important physical attributes of a thermal bath:
temperature, coupling distribution over the bath normal modes, and characteristic
timescales. Their prominence in such applications is one reason why we study them
in such detail in this chapter.

The treatment of quantum systems in thermal equilibrium, and of systems inter-
acting with their thermal environments is expanded on in Chapter 10. For now
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it is enough to recall the statistical mechanics result for the average energy of a
harmonic oscillator of frequency ω at thermal equilibrium

E = h̄ω

(
〈n〉T + 1

2

)
(2.195)

where 〈n〉T is the average excitation, that is, the average number of quanta h̄ω in
the oscillator, given by

〈n〉T = 〈a†a〉T =
∑

n e−βnh̄ω〈n|a†a|n〉∑
n e−βnh̄ω

= 1

eβh̄ω − 1
(2.196)

In addition we may write

〈â〉T = 〈â†〉T = 〈ââ〉T = 〈â†â†〉T = 0 (2.197)

because the diagonal elements of the operators involved are zero.

Problem 2.19.

1. Show that 〈aa†〉T = 1/(1 − e−βh̄ω).
2. Use these results to find the thermal averages 〈x̂2〉T and 〈p̂2〉T , of the

squared position and momentum operators.

2.10 Tunneling

In classical mechanics a particle with total energy E cannot penetrate a spatial
regions r with potential energy V (r) > E. Such a region therefore constitutes an
impenetrable barrier for this particle. In quantum mechanics this is not so, and
the possibility of the quantum wavefunction to penetrate into classically forbidden
regions leads to the phenomenon of tunneling, whereupon a particle located at one
side of a classically impenetrable barrier may, with a finite probability, appear on
the other side.

2.10.1 Tunneling through a square barrier

Figure 2.5 depicts a simple example. A particle with energy E collides with a
rectangular potential barrier of height UB > E. In classical mechanics it will be
simply reflected back. In reality there is a finite probability that it will tunnel to the
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a

E

xRxL

UB

I II III

Fig. 2.5 Tunneling through a rectangular potential barrier characterized by a width a and a height
UB. E is the energy of the tunneling particle relative to the bottom of the potential shown.

other side of the barrier. This probability is expressed in terms of a transmission
coefficient, a property of the barrier/particle system that is defined below.

Our problem is defined by the Hamiltonian

Ĥ = − h̄2

2m

∂2

∂x2 + V̂ (x) (2.198)

with

V (x) =
{

0; x < xL; x > xR (region I)
UB; xL ≤ x ≤ xR = xL + a (regions II, III)

(2.199)

Consider the solution of the time-independent Schrödinger equation Ĥψ = Eψ

for a given energy E. In regions I and III, where UB = 0, it is the free particle
equations whose solutions are

ψI(x) = Aeikx + Be−ikx; (x < xL) (2.200)

ψIII(x) = Ceikx + De−ikx; (x > xR) (2.201)

In both regions, k corresponds to the given energy

k = 1

h̄

√
2mE (2.202)

In the barrier region II the wavefunction is a solution of the equation

− h̄2

2m

∂2

∂x2ψ = (E − UB)ψ ; (xL ≥ x ≤ xR) (2.203)

Denoting (since we are interested primarily in the case E < UB)

κ = 1

h̄

√
2m (UB − E) (2.204)
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this becomes d2ψ/dx2 = κ2ψ , which yields

ψII(x) = Feκx + Ge−κx (2.205)

In Eqs (2.200), (2.201), and (2.205), the coefficients A, B, C, D, F , and G are
constants that should be determined from the boundary conditions. Such condi-
tions stem from the requirement that the wavefunction and its derivative should be
continuous everywhere, in particular at the boundaries x = xL and x = xR, that is,

ψI(xL) = ψII(xL); [dψI(x)/dx]x=xL
= [dψII(x)/dx]x=xL

(2.206)

and the same with xR and ψIII replacing xL and ψI. This leads to the four equations

AeikxL + Be−ikxL = FeκxL + Ge−κxL

ikAeikxL − ikBe−ikxL = κFeκxL − κGe−κxL

CeikxR + De−ikxR = FeκxR + Ge−κxR

ikCeikxR − ikDe−ikxR = κFeκxR − κGe−κxR

(2.207)

Note that we have only four conditions but six coefficients. The other two coeffi-
cients should be determined from the physical nature of the problem, for example,
the boundary conditions at ±∞.9 In the present case we may choose, for example,
D = 0 to describe a process in which an incident particle comes from the left. The
wavefunction then has an incident (exp(ikx)) and reflected (exp(−ikx)) compon-
ents in region I, and a transmitted component (exp(ikx)) in region III. Dividing the
four equations (2.207) by A, we see that we have just enough equations to determine
the four quantities B/A, C/A, F/A, and G/A. As discussed below, the first two are
physically significant. We obtain for this case

B

A
=

(
k2 + κ2

) (
1 − e−2κa

)
e2ikxL

(k + iκ)2 − (k − iκ)2 e−2κa
;

C

A
= 4ikκe−ika−κa

(k + iκ)2 − (k − iκ)2 e−2κa

(2.208)

whence

R(E) ≡
∣∣∣∣B

A

∣∣∣∣2 = 1

1 + (4E (UB − E)/U 2
B sinh2 (κa))

(2.209)

9 For example, the free particle wavefunction (2.200), a solution of a differential equation of the
second-order, is also characterized by two coefficients, and we may choose B = 0 to describe a particle
going in the positive x direction or A = 0 to describe a particle going in the opposite direction. The
other coefficient can be chosen to express normalization as was done in Eq. (2.82).
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and

T (E) ≡
∣∣∣∣C

A

∣∣∣∣2 = 1

1 + (U 2
B sinh2 (κa)/4E (UB − E))

(2.210)

so that

R(E)+ T (E) = 1 (2.211)

Obviously, another solution of the same Schrödinger equation with A = 0
corresponds to a similar process, where the incident particle comes onto the barrier
from the right, and would yield results similar to (2.209) and (2.210) for |D/C|2
and |B/C|2, respectively.

The ratios R and T are called reflection and transmission coefficients,
respectively. In the deep tunneling limit, κa 
 1, these coefficients take the forms

T = 16E (UB − E)

U 2
B

e−2κa; R = 1 − T (2.212)

Tunneling, a classically forbidden process, is seen to be a very low probability
process when the barrier is substantial, that is, wide and high, and when the particle
is more classical-like, that is, heavier. For a typical molecular distance, a = 3 Å,
and barrier height UB−E = 0.1eV we find for the exponential factor exp(−2κa) =
exp[−(2a/h̄)

√
2m(UB − E)] the values∼0.38 for an electron (m = 9.11×10−28 g),

∼8.4 × 10−19 for a hydrogen atom (m = 1.67 · 10−24 g) and ∼2.4 × 10−63 for
a carbon atom (m = 2 · 10−23 g). Tunneling is seen to be potentially important
for electron dynamics and sometimes (for shorter distances and/or lower barriers)
also for proton or hydrogen atom dynamics, but it rarely appears as a factor of
importance in processes involving other atomic species.

Very few potential barrier models, including the rectangular barrier model dis-
cussed above, yield exact results for the tunneling problem. In general one needs to
resort to numerical calculations or approximations. A very useful approximation is
the WKB formula,10 which generalizes the solution exp(±ikx) of the free particle
Schrödinger equation to the form

ψ(x) ∼ 1√
k(x)

e±i
∫

dxk(x); k(x) =
{

h̄−1√2m [E − U (x)]; E ≥ U (x)

−ih̄−1√2m [U (x)− E]; E ≤ U (x)
(2.213)

10 Named after G. Wentzel [Zeits. f. Phys, 38, 518 (1926)], H. A. Kramers [Zeits. f. Phys, 39, 828
(1926)] and L. Brillouin [Comptes Rendus 183, 24 (1926)] who independently applied this method
to problems involving the Schrödinger equation in the early days of quantum mechanics.
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in the presence of a potential U (x), provided that the potential varies smoothly
so that dk(x)/dx � k2(x). These WKB wavefunctions, constructed for parts I, II,
and III of the one-dimensional space as in Eqs (2.200)–(2.205) can be used again
to construct the full tunneling wavefunction. The resulting transmission coefficient
in the WKB approximation is

T ∼ exp

⎡
⎣−2

xr∫
−xL

dx |k (x)|
⎤
⎦ (2.214)

2.10.2 Some observations

2.10.2.1 Normalization

The problem solved above is an example of a scattering process, treated here within a
one-dimensional model. Unlike bound state systems such as the harmonic oscillator
of Section 2.9, in a scattering process all energies are possible and we seek a
solution at a given energy E, so we do not solve an eigenvalue problem. The
wavefunction does not vanish at infinity, therefore normalization as a requirement
that

∫∞
−∞ dx|ψ(x)|2 = 1 is meaningless.

Still, as discussed in Section 2.8.1, normalization is in some sense still a useful
concept even for such processes. As we saw in Section 2.8.1, we may think of an
infinite system as a � →∞ limit of a finite system of volume �. Intuition suggests
that a scattering process characterized by a short range potential should not depend
on system size. On the other hand the normalization condition

∫
�

dx|ψ(x)|2 = 1
implies that scattering wavefunctions will vanish everywhere like ψ(x) ∼ �−1/2

as � → ∞. We have noted (Section 2.8) that physically meaningful results are
associated either with products such as N |ψ(x)|2 or ρ|ψ(x)|2, where N , the total
number of particles, and ρ, the density of states, are both proportional to �. Thus,
for physical observables the volume factor cancels.

2.10.2.2 Steady states

The process discussed above has an intuitively clear history: A particle incident
on the barrier from the left emerges later as a reflected particle on the left or a
transmitted particle on the right. This sounds as a problem that should be (and
indeed can be) described in a time-dependent framework. However, the theoretical
treatment above does not explicitly depend on time. How can a time-independent
wavefunction ψ = [ψI (in region I), ψII (in II), ψIII (in III)] describe a process that
appears to have a past and a future as described above?

The answer lies in the realization that the time-independent Schrödinger equation
can describe stationary states of two kinds. The first are states characterized by
zero flux, where not only the wavefunction is constant except for a phase factor
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exp(−iEt/h̄), but also all currents are zero. (See Section 2.8.4 for a discussion
of quantum currents.) The Eigenfunctions of a system Hamiltonian that describe
bound states are always of this kind. States of the other kind are also constant in
time, but they describe systems with constant finite fluxes. Such states are desig-
nated as steady states. Time-independent scattering theory, including the procedure
described by Eqs (2.198)–(2.210), is in fact a theory for steady-state processes (see
also Section 9.5).

To be specific, Eq. (2.208) may be understood as the answer to the following
question: What is the steady state in a system in which a constant flux of particles,
described by the incident wavefunction ψI(x) = Aeikx, impinges on the barrier
from the left in region I? This solution is given not by specifying quantum states
and their energies (which is what is usually required for zero flux problems), but
rather by finding the way in which the incident flux is distributed between different
channels, in the present case the transmission and reflection channels.

Consider now the steady-state solution of our tunneling problem. For the solution
ψI(x) = Aeikx + Be−ikx, and ψIII(x) = Ceikx associated with the case of a particle
incident from the left, we find from Eq. (2.121) the fluxes in regions I and III to be

JI = h̄k

m

(
|A|2 − |B|2

)
(2.215)

and

JIII = h̄k

m
|C|2 (2.216)

At steady state the current has to be the same everywhere (See Problem 2.15),
implying the identity

|A|2 − |B|2 = |C|2 (2.217)

which is indeed satisfied by our solution (2.208). In the form |A|2 = |B|2+|C|2 this
identity implies that the incident flux, whose intensity is proportional to |A|2, is split
during the scattering process into two components: The reflected flux, proportional
to |B|2 and the transmitted flux given by |C|2. The designation of the ratios R =
|B|2/|A|2 and T = |C|2/|A|2 as the corresponding reflection and transmission
coefficients, respectively, thus become clear as ratios between fluxes. The identity
(2.217) is again an expression of particle (or probability) conservation.

2.10.2.3 Tunneling observables

Consider the tunneling problems represented by the three potentials depicted in
Figure 2.6. Figure 2.6a represents a scattering problem similar to that solved above.
For a general potential surface it can be solved numerically or, for a smooth barrier
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|E > UB

UB

|1>

UB

|1> |2>

(a)

(b)

(c)

Fig. 2.6 Three different tunneling processes. (a) Tunneling through a simple barrier in a scattering
event. (b) Tunneling induced escape from a single well (c) Tunneling in a double well structure.

in the WKB approximation, to give the transmission probability T (E) that depends
on the mass of the tunneling particle and on the barrier height and width as discussed
above.

Figure 2.6b corresponds to a problem of a different kind. Here a particle is
initially in the well on the left, and can tunnel outside through the potential barrier.
Such a problem is encountered, for example, in autoionization of excited atoms and
in radioactive decay of unstable nuclei. The relevant observable is not a transmission
coefficient but the decay rate, that is, the rate at which the probability to find the
particle in the well decreases.

Figure 2.6c describes yet a another problem, where a particle initially localized in
the left well can appear on the right due to tunneling through the separating barrier.
This is a bound state problem and the dynamics can be evaluated by solving for the
eigenstates of the corresponding Hamiltonian (such eigenstates have amplitudes in
both wells), expanding the initial states in these eigenstates and employing Eq. (5).
In particular, in the symmetric double well problem, if the wells are deep (i.e. the
barrier between them is high) and if the particle starts in the lowest energy state
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|1〉 supported by the left well, it is reasonable to expect that the only relevant state
in the right well is the lowest energy state |2〉. These local states are conveniently
described by the ground states of the corresponding wells when they decouple from
each other, for example, when the barrier width becomes infinite. In the actual finite
barrier case these two zero order states are coupled to each other and the problem
becomes identical to the two-state problem of Section 2.2. The resulting dynamics
shows the particle oscillating between the two wells (cf. Eq. (2.32)) with a frequency
proportional to the coupling (cf. Eq. (2.33) with Ea = Eb). The explicit magnitude
of this coupling is not immediately obvious, however, as shown in Section 2.2, this
oscillation frequency corresponds to the energy splitting between the two exact
eigenstates of the double-barrier problem. Experimentally this tunneling splitting
frequency can be measured either by monitoring the dynamics, or spectroscopically
if the two states can be resolved energetically. An important observation is that this
frequency is essentially a measure of the tunneling coupling between states localized
in the individual wells.

It should be appreciated that the three phenomena described above correspond
to very different physical processes: scattering, decay of an initially localized state
and dynamics in a bound state system that can be often approximated as a two state
system. The relevant observables are different as well: Transmission coefficient,
lifetime, or decay rate and tunnel-splitting. Common to these processes is the fact
that they are all associated with tunneling through a potential barrier and will
therefore show a characteristic dependence on the mass of the tunneling particle
(an attribute usually explored experimentally in processes involving tunneling by
hydrogen and its isotopes) and on the barrier height and width.

An interesting observation can be made without further computation. Assuming
that the same “tunneling coupling” Vtun controls the three processes described
above, we already saw (cf. Eq. (2.19) with Ea = Eb) that the tunnel splitting
between the eigenstates in Fig. 2.6c is proportional to Vtun. On the other hand the
decay rate of a particle tunneling out of a well, Fig. 2.6b, is a problem of a discrete
state interacting with a continuum of states (see Section 9.1) where the “golden
rule formula”, (Eq. 9.25), implies that the decay rate should be proportional to
V 2

tun. The same holds for the transmission coefficient of Fig. 2.6a (see Section 9.5).
From the WKB theory we expect that

Vtun(E) ∼ exp

⎧⎨
⎩−1

h̄

x2∫
x1

dx
√

2m [U (x)− E]

⎫⎬
⎭ (2.218)

so the tunneling splitting in Fig. 2.6c is proportional to this factor while the trans-
mission coefficient in Fig. 2.6a and the decay rate in Fig. 2.6b are proportional to
its square.
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Appendix 2A: Some operator identities

Here we derive some operator identities involving the raising and lowering oper-
ators of the harmonic oscillators, which are used in Section 2.9 and in many
applications discussed in this book.

1.

[â, (â†)n] = [â, â†]n(â†)n−1 = n(â†)n−1 (2.219a)

[â†, ân] = [â†, â]nân−1 = −nân−1 (2.219b)

(note that (2.219b) is the Hermitian conjugate of (2.219a)). The proof can be
carried by induction. Assume that Eq. (2.219a) holds and show that

[â, (â†)n+1] = (n + 1)(â†)n (2.220)

follows. The left-hand side of (2.220) can be manipulated as follows:

[â, (â†)n+1] = â(â†)n+1︸ ︷︷ ︸
↓

−(â†)n+1â

â(â†)n+1 = â(â†)nâ† = [(â†)nâ + n(â†)n−1]â†

= (â†)n ââ†︸︷︷︸
â†â+1︸ ︷︷ ︸

(â†)n+1â+(â†)n

+ n(â†)n = (â†)n+1â + (n + 1)(â†)n

which yields the right-hand side of (2.219a).
2. A corollary follows after observing that (2.219a) (say) can be written as

[â, (â†)n] = [(d/dx)xn]x=â† . Since a function f (a†) is defined by its Taylor
series, we have, for every analytic function f

[â, f (â†)] =
[

d

dx
f (x)

]
x=â+

(2.221a)

and similarly

[â†, f (â)] =
[
− d

dx
f (x)

]
x=â

(2.221b)

3. The identities (2.221) are special cases of the following theorem: If the oper-
ators Â and B̂ commute with their commutator [Â, B̂], that is, [Â, [Â, B̂]] =
[B̂, [Â, B̂]] = 0, then

[Â, F(B̂)] = [Â, B̂]F ′(B̂) (2.222)
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To prove this identity we note that since F̂(B̂) can be expanded in powers
of B̂ it suffices, as in proving (2.221), to show that [Â, B̂n] = [Â, B̂]nB̂n−1.
This is shown by repeated use of the commutation relation to get ÂB̂n =
B̂ÂB̂n−1 + [Â, B̂]B̂n−1 = · · · = B̂nÂ + n[Â, B̂]B̂n−1.

4. We can use induction as above to prove the following identity

(â†a)nâ† = â†(â†â + 1)n (2.223)

and consequently also for an analytical function f (x)

f (â†â)â† = â†f (â†â + 1)

âf (â†â) = f (â†â + 1)â
(2.224)

5. The following important identity holds for any two operators Â and B̂ under
the condition that, as in 3 above, both commute with their commutator:

eÂ+B̂ = eÂeB̂e−
1
2 [Â,B̂] (2.225)

In particular Â and B̂ can be any linear combination of x̂, p̂, â, and â†.
To prove (2.225) consider the operator F̂(t) = eÂteB̂t defined in terms of

two operators Â and B̂, and a parameter t. Take its derivative with respect to t

dF̂

dt
= ÂeÂteB̂t + eÂteB̂t B̂ = (Â + eÂtBe−Ât)F̂(t) (2.226)

Next, use the identity [B̂, e−Ât] = [B̂, Â](−t)e−Ât that follows from (2.222).
From this and the fact that [B̂, Â] commutes with Â it follows that B̂e−Ât =
e−Ât B̂ − te−Ât[B̂, Â]. Using the last identity in (2.226) leads to

dF̂

dt
= (Â + B̂ + t[Â, B̂])F̂(t) (2.227)

The two operators, Â+ B̂ and [Â, B̂] commute with each other, and can be
viewed as scalars when integrating this equation. We get

F̂(t) = F̂(0)e(Â+B̂)t+ 1
2 [Â,B̂]t2 = e(Â+B̂)te

1
2 [Â,B̂]t2

(2.228)

It remains to substitute t = 1 in Eq. (2.228) to obtain (2.225).
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6. The identities (2.179) can now be verified directly. For example

Û (λ)âÛ †(λ) = e+λ̄(â†−â)âe−λ̄(â†−â)

1−→ e+λ̄(â†−â)âe+λ̄âe−λ̄â†
e(1/2)λ̄2[â,â†] = e(1/2)λ̄2

e+λ̄(â†−â)e+λ̄ââe−λ̄â†

2−→ e(1/2)λ̄2
e+λ̄(â†−â)e+λ̄âe−λ̄â†

(â − λ̄)
3−→ e+λ̄(â†−â)e−λ̄(â†−â)(â − λ)

= â − λ (2.229)

where, in the steps marked 1 and 3 we used (2.228) and in the step marked 2
we used (2.221a).
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AN OVERVIEW OF QUANTUM ELECTRODYNAMICS
AND MATTER–RADIATION FIELD INTERACTION

For light is much more mobile, is composed
Of finer particles, yet has more power,
And once it clears the roadways of the eyes,
Removing the dark barriers and blocks,
At once the images of things begin
To move in our direction, driving on
Out of the light to help us see. From light
We can not see into darkness, for that air
Is slower moving, thicker, bound to fill
All opening, so no image can move
Across the solid massiveness of dark. . .

Lucretius (c.99–c.55 BCE) “The way things are”
translated by Rolfe Humphries, Indiana University Press, 1968

Many dynamical processes of interest are either initiated or probed by light,
and their understanding requires some knowledge of this subject. This chapter
is included in order to make this text self contained by providing an overview
of subjects that are used in various applications later in the text. In particular,
it aims to supplement the elementary view of radiation–matter interaction as a
time-dependent perturbation in the Hamiltonian, by describing some aspects of the
quantum nature of the radiation field. This is done on two levels: The main body
of this chapter is an essentially qualitative overview that ends with a treatment of
spontaneous emission as an example. The Appendix gives some more details on
the mathematical structure of the theory.

3.1 Introduction

In elementary treatments of the interaction of atoms and molecules with light, the
radiation field is taken as a classical phenomenon. Its interaction with a molecule
is often expressed by

ĤMR = −µ̂ · E(t), (3.1)
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where µ̂ is the molecular dipole operator while E(t) is the time-dependent electric
field associated with the local electromagnetic field at the position of the molecule.
In fact, much can be accomplished with this approach including most applica-
tions discussed in this text. One reason to go beyond this simple description of
radiation-field–matter interaction is that, as will be seen, the formalism of quantum
electrodynamics is sometimes simpler to handle. However, more important is the
fact that the quantum description provides a picture of the radiation–matter interac-
tion which is conceptually different from the classical one, including the possibility
to describe the state of the field in terms of particles (photons).

An important conceptual issue already appears in the classical description.
According to Eq. (3.1) the interaction between a material system and the elec-
tromagnetic field vanishes when the field E is zero. We know that this is not so, or
else spontaneous emission of radiation from an excited atom, or from a classical
oscillating dipole, would not occur. The fact that it does occur implies not only that
the presence of a field can change the state of the system but also that the presence
of a system can change the state of the radiation field, creating radiation where
it did not exist before. One needs to reconcile Eq. (3.1) with this observation. In
fact, all we need is to realize that one should distinguish between the presence of a
field and the state of this field in much the same way that this is done for material
systems, and that the magnitude of E is a designation of the state, not existence, of
the field.

As an example consider two particles, 1 and 2 with coordinates x1 and x2, and
suppose that the interaction between them has the formαx1x2. The statement x2 = 0
refers not to the existence of particle 2, only to its state in position space. When
particle 1 has a finite energy it can transfer some of it to particle 2 even if initially
the state of the latter is x2 = 0. In a similar way, the entity called “electromagnetic
field” always exists and E in Eq. (3.1) plays the role of a coordinate that may be
zero in some state. In the lowest energy (ground) state of this entity the amplitudes
of both the electric field E and the magnetic field H are zero, while excited states
correspond to nonzero values of these amplitudes. Indeed, classical electromagnetic
theory yields the following expression for the energy associated with the electro-
magnetic field in homogeneous space with local dielectric constant ε and magnetic
permeability µ1

E = 1

8π

∫
dr(ε|E(r)|2 + µ|H(r)|2) (3.2)

1 While we usually attempt not to use overlapping notations, because magnetic susceptibility does
not appear in this text beyond this chapter we denote it by µ, the same symbol used for the dipole
moment. The distinction between these variables should be clear from the text.
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This picture is developed to a high level of sophistication within the classical
theory of the electromagnetic field, where dynamics is described by the Maxwell
equations. Some basics of this theory are described in Appendix 3A. Here we briefly
outline some of the important results of this theory that are needed to understand
the nature of the interaction between a radiation field and a molecular system.

3.2 The quantum radiation field

3.2.1 Classical electrodynamics

When we study processes that involve interaction between two systems, it is almost
always a prerequisite to understand each system separately. For definiteness we
consider one molecule in the radiation field, and assume that the molecular problem
has been solved in the sense that we know the eigenfunctions and eigenvalues of
the molecular Hamiltonian. We require similar knowledge of the radiation field,
that is, we need to solve the Maxwell equations, Eqs (3.32(a–d)) of Appendix 3A,
for some given boundary conditions. The way this solution is obtained is described
in Appendix 3A. There are many representations (“gauges”) in which this can be
done and in a particular one, the Coulomb gauge, one can represent the solutions of
the Maxwell equations in terms of one transverse (see Appendix) vector function
A(r, t), called the vector potential. A(r, t), itself a solution of a vector differential
equation (Appendix 3A, Eq. (3.46)), yields the physical electric and magnetic fields
via the relationships (in gaussian units; cf. Appendix 3A, Eq. (3.47))

B = ∇ × A; E = −1

c

∂A
∂t

(3.3)

where c is the speed of light. For linear (paramagnetic or diamagnetic) media the
magnetic induction B is related to the magnetic field H by B = µH. Furthermore,
A is found to be conveniently represented as a superposition of contributions from
independent degrees of freedom (modes) in the form

A(r, t) =
∑
k,σk

Ak,σk (r, t) (3.4)

where k and σ k are wave vectors and polarization vectors, respectively (see below).
The functional form of terms Ak,σk (r, t) depends on the boundary conditions. For an
infinite homogeneous system it is convenient to use periodic boundary conditions
within a rectangular box of volume � = LxLyLz, and to set � →∞ at the end of
a calculation. In this case we find

Ak,σk (r, t) = c

√
2π h̄

ε�ωk
σ k(ak,σk (t)e

ik·r + a∗k,σk
(t)e−ik·r) (3.5)
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where

ak,σk (t) = ak,σk e−iωk t ; a∗k,σk
(t) = a∗k,σk

e−iωk t (3.6)

with ωk = kc/
√
µε and k = |k|. Here the amplitudes ak,σ are scalar constants

whose magnitudes reflect the degree of excitation of the corresponding modes.
The components kj(j = x, y, z) of the vector k have to be integer multiples of the
corresponding factors 2π/Lj in order to satisfy the periodic boundary conditions.

Equation (3.5) implies that different modes are distinguished by their time and
space dependence, characterized by two vectors: A wave vector k that points to
the direction of spatial modulation of Ak,σk (r, t) and a polarization unit-vector σ k ,
that specifies the direction of A itself. The transversality of A expresses the fact
that k and A are perpendicular to each other, that is,

σ k · k = 0 (3.7)

Thus, for every wave vector there are two possible polarization directions
perpendicular to it.

Given A, that is given ak,σk for every (k, σ k), the electric and magnetic fields
can be found as sums over modes using Eqs (3.4) and (3.3). For example, this
leads to

E(r, t) = i
∑

k

∑
σk

√
2π h̄ωk

ε�
σ k(ak,σk e−iωk t+ik·r − a∗k,σk

eiωk t−ik·r) (3.8)

Using (3.8), and the similar equation derived from (3.3) for H = B/µ, in Eq. (3.2)
leads to

E =
∑
k,σk

h̄ωk|ak,σk |2 =
1

2

∑
k,σk

h̄ωk(a
∗
k,σk

ak,σk + ak,σk a∗k,σk
) (3.9)

The second form of this result is written in anticipation of the analogous quantum
result.

3.2.2 Quantum electrodynamics

A crucial step motivated by experimental observations and theoretical considera-
tions is the quantization of the radiation field, whereupon the electric and magnetic
fields assume operator character. We first notice that the functions q(t) and p(t)
defined for each (k, σ k) by

q(t) =
√

h̄

2ω
(a∗(t)+ a(t)); p(t) = i

√
h̄ω

2
(a∗(t)− a(t)) (3.10)
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satisfy (as seen from (3.6)) the time evolution equations

q̇ = p; ṗ = −ω2q (3.11)

These equations have the form of harmonic oscillator equations of motion for a
“coordinate” q and “momentum” p. Indeed, Eqs (3.11) can be derived from the
Hamiltonian

h = (1/2)(p2 + ω2q2) (3.12)

using the Hamilton equations q̇ = ∂h/∂p; ṗ = −∂h/∂q. It turns out that the
correct quantization of the radiation field is achieved by replacing these coordinates
and momenta by the corresponding quantum operators that obey the commutation
relations

[q̂k,σk , p̂k,σk ] = ih̄ (3.13)

with operators associated with different modes taken to commute with each other.
The classical functions a(t) and a∗(t) also become operators, â(t) and â†(t)
(see Eqs (3.62)) that satisfy equations similar to (2.154)

[âk,σk , â†
k′,σ ′

k′
] = δk,k′δσk ,σ ′

k′
(3.14)

[âk,σk , âk′,σ ′
k′
] = [â†

k,σk
, â†

k′,σ ′
k′
] = 0 (3.15)

This identifies â and â† as lowering and raising operators of the corresponding
harmonic modes. Equation (3.6) is recognized as the Heisenberg representation of
these operators

âk,σk (t) = âk,σk e−iωk t ; â†
k,σk

(t) = â†
k,σk

eiωk t (3.16)

and the energy in the radiation field, Eq. (3.9) becomes the Hamiltonian

ĤR =
∑
k,σk

h̄ωk(â
†
k,σk

âk,σk + 1/2) (3.17)

which describes a system of independent harmonic modes. A mode (k, σ k) of fre-
quency ωk can therefore be in any one of an infinite number of discrete states of
energies h̄ωknk,σk . The degree of excitation, nk,σk , is referred to as the occupation
number or number of photons in the corresponding mode. Note that (k, σ k) is col-
lection of five numbers characterizing the wavevector and polarization associated
with the particular mode. The vector potential A and the fields derived from it by
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Eq. (3.3) become operators whose Schrödinger representations are

Â = c
∑

k

∑
σk

√
2π h̄

ε�ωk
σ k(âk,σk eik·r + â†

k,σk
e−ik·r) (3.18)

and

Ê = i
∑

k

∑
σk

√
2π h̄ωk

ε�
σ k(âk,σk eik·r − a†

k,σk
e−ik·r) (3.19)

In many applications we encounter such sums of contributions from different
modes, and because in the limit � → ∞ the spectrum of modes is continuous,
such sums are converted to integrals where the density of modes enters as a weight
function. An important attribute of the radiation field is therefore the density of
modes per unit volume in k-space, ρk , per unit frequency range, ρω, or per unit
energy, ρE (E = h̄ω). We find (see Appendix 3A)

ρk(k) = 2
�

(2π)3 (3.20a)

ρω(ω) = h̄ρE(E) = (µε)3/2

π2

ω2

c3 � (3.20b)

Note that expression (3.20a) is the same result as Eq. (2.95), obtained for the
density of states of a free quantum particle except for the additional factor 2 in
(3.20a) that reflects the existence of two polarization modes for a given k vector.
Eq (3.20b) is obtained from (3.20a) by using ω = |k|c̄ where c̄ = c/

√
εµ to get

ρω(ω) = [4πk2dk × ρkdk]k=ω/c̄ (compare to the derivation of Eq (2.97)).
To see the physical significance of these results consider the Hamiltonian that

describes the radiation field, a single two-level molecule located at the origin,
and the interaction between them, using for the latter the fully quantum analog of
Eq. (3.1) in the Schrödinger representation

Ĥ = ĤM + ĤR + ĤMR (3.21)

ĤM = E1|1〉〈1| + E2|2〉〈2| (3.22)

ĤR =
∑
k,σk

h̄ωk â†
k,σk

âk,σk (3.23)

ĤMR = −µ̂ · Ê(r = 0) (3.24)

Taking r = 0 in (3.24) implies that the variation of Ê(r = 0) over the molecule is
neglected. This approximation is valid if the mode wavelength λ = 2π/k is much
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larger than the molecular size for all relevant modes. This holds for most cases
encountered in molecular spectroscopy, and for this reason the factors exp(ik · r)
can be approximated by unities.2 In the basis of molecular eigenstates the interaction
(3.24) is

ĤMR = −Ê(0)
2∑

j=1

2∑
l=1

〈j|µ̂|l〉|j〉〈l| (3.25)

In this approximation we get using (3.19)

Ê(0) · 〈j|µ̂|l〉 = i
∑

k

∑
σk

√
2π h̄ωk

ε�
(µjl · σ k)(âk,σk − â†

k,σk
) (3.26)

Next, assuming that the molecule has no permanent dipole in either of its two
states, the dipole operator µ̂ can have only non-diagonal matrix elements in the
molecular basis representation. Equation (3.25) then becomes

ĤMR = −i
∑

k

∑
σk

√
2π h̄ωk

ε�
[(µ12 · σ k)|1〉〈2| + (µ21 · σ k)|2〉〈1|](âk,σk − â†

k,σk
)

(3.27)

The molecule–radiation-field interaction is seen to be a sum, over all the field
modes, of products of two terms, one that changes the molecular state and another
that changes the photon number in different modes.

Problem 3.1. Write, under the same approximation, the interaction equivalent to
(3.27) for the case of a multilevel molecule.

The interaction (3.27) couples between eigenstates of Ĥ0 = ĤM + ĤR. Such
states are direct products of eigenstates of ĤM and of ĤR and may be written as
|j, {n}〉where the index j (in our model j = 1, 2) denotes the molecular state and {n}
is the set of photon occupation numbers. From (3.27) we see that V̂MR is a sum of
terms that couple between states of this kind that differ both in their molecular-state
character and in the occupation number of one mode.

Suppose now that in (3.22) E2 > E1. Equation (3.27) displays two kinds of terms:
|2〉〈1|âk,σk and |1〉〈2|â†

k,σk
describe physical processes that are “acceptable” in the

2 Note that this approximation does not hold when the states j and l belong to different molecules
unless the distance between these molecules is much smaller than the radiation wavelength.
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sense that they may conserve energy: They describe a molecule going up while
absorbing a photon or down while emitting one. The other two terms |2〉〈1|âk,σk

and |1〉〈2|â†
k,σk

are in this sense “unphysical”: They describe the molecule going
up while emitting a photon or down while absorbing one. It should be emphasized
that these designations are much too simplistic. In terms of perturbation theory the
apparently unphysical interaction terms can contribute to physical processes when
considered in higher than first-order. On the other hand, if we expect a process to be
well described within low-order perturbation theory, we may disregard terms in the
interaction that cannot conserve energy on this low-order level. This approximation
is known as the rotating wave approximation (RWA). It leads to an approximate
interaction operator of the form (for E2 > E1)

Ĥ (RWA)
MR = −i

∑
k

∑
σk

√
2π h̄ωk

ε�
[(µ21 · σ k)|2〉〈1|âk,σk − (µ12 · σ k)|1〉〈2|â†

k,σk
]

(3.28)

3.2.3 Spontaneous emission

As an application to the results obtained above we consider the spontaneous emis-
sion rate from our molecule after it is prepared in the excited state |2〉. In terms of
zero-order states of the Hamiltonian Ĥ0 = ĤM + ĤR the initial state is |2, {0}〉
and it is coupled by the interaction (3.28) to a continuum of 1-photon states
|1, {0 . . . 0, 1, 0, . . . , 0}〉. The decay rate is given by the golden rule formula

kR = 2π

h̄
|V |2ρ (3.29)

where V is the coupling matrix elements calculated for final states with photon fre-
quency ω21 = E21/h̄ = (E2−E1)/h̄ and where ρ = ρ(E21) is the density (number
per unit energy) of such 1-photon states. More details on the origin of the golden
rule formula in the present context are given in Chapter 9 and in Section 9.2.3.
From Eq. (3.28) we find3

|V |2 = 2π h̄ω12

ε�
|µ21|2 (3.30)

3 Care need to be taken in order to accommodate the vector nature of µ and of the incident field. For
spherically symmetric molecules, each of the two directions perpendicular to the wavevector k of a
given mode contributes equally: We can use for µ̂ any component, say µx , of the transition dipole,
and the density of states used below takes an extra factor of 2 for the two possible directions of the
polarization.
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Now consider the density ρ of 1-photon states. Because each of these states is
characterized by one mode being in the first excited state while all others are in
the ground state, the number of states is the same as the number of modes and the
required density of states per unit energy is given by ρE of Eq. (3.20). Using this,
together with (3.30) in (3.29) leads to

kR = 2ε1/2µ3/2

h̄

(ω21

c

)3 |µ12|2 (3.31)

As an order of magnitude estimate, take typical values for electronic transitions,
for example, ω21 = 20 000 cm−1 ≈ 4 × 1015 s−1, |µ12| = 10−17 esu cm and
ε = µ = 1 to find kR � 4 × 108 s−1.

Several observations should be made regarding this result. First, while regular
chemical solvents are characterized by µ � 1, different solvents can differ consid-
erably in their dielectric constants ε, and Eq. (3.31) predicts the way in which the
radiative lifetime changes with ε. Note that a dependence on ε may appear also in
ω12 because different molecular states may respond differently to solvation, so a
test of this prediction should be made by monitoring both kR and ω21 as functions
of the dielectric constant in different embedding solvents.

Second, the dependence on ω3 is a very significant property of the radiative
decay rates. Assuming similar transition dipoles for allowed transitions, Eq. (3.31)
predicts that lifetimes of electronically excited states (ω21 of order 104cm−1) are
shorter by a factor of ∼103 than those of vibrational excitations (ω21 of order
103cm−1), while the latter are ∼103 shorter than those of rotational excitations
(ω21 of order 102cm−1), as indeed observed.

Finally, we have obtained the result (3.31) by using expression (3.1) for the
molecule–radiation field interaction. This form, written as an extension of an elec-
trostatic energy term to the case of time varying field, is an approximation, that is
discussed further in the appendix.

Appendix 3A: The radiation field and its interaction with matter

We start with the Maxwell equations, themselves a concise summary of many
experimental observations. In gaussian units these are

∇ ·D = 4πρ (3.32a)

∇ ·B = 0 (3.32b)

∇ × E + 1

c

∂B
∂t

= 0 (3.32c)

∇ ×H− 1

c

∂D
∂t

= 4π

c
J (3.32d)
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where ρ and J are the charge density and current density associated with free
charges in the system and where the electric fields E and displacement D, and the
magnetic field H and induction B are related through the polarization P (electric
dipole density) and the magnetization M (magnetic dipole density) in the medium
according to

E = D−4πP (3.33a)

H = B−4πM (3.33b)

Equation (3.32a) is a differential form of Coulomb’s law. Equation (3.32b) is an
equivalent equation for the magnetic case, except that, since magnetic monopoles
do not exist, the “magnetic charge” density is zero. Equation (3.32c) expresses
Faraday’s law (varying magnetic flux induces a circular electric field) in a differ-
ential form and, finally, Eq. (3.32d) is Maxwell’s generalization of Ampere’s law
(induction of a magnetic field by a current). We usually assume a linear relationship
between the dipole densities and the corresponding local fields. For example, for
simple homogeneous systems we take

P = χeE; M = χhH (3.34)

so that

D = εE; B = µH (3.35)

where

ε = 1 + 4πχe; µ = 1 + 4πχh (3.36)

are constants. The energy in the field may be shown to be given by

E = 1

8π

∫
dr(ε|E(r)|2 + µ|H(r)|2) (3.37)

It is important to realize that Eqs (3.32) are macroscopic equations, where bound
atomic and molecular charges have been coarse grained to yield the macroscopic
electric and magnetic dipole densities P and M.4 Such coarse-graining operation
(see Section 1.4.4) involves averaging over a length scale l that is assumed to be
(1) small relative to distances encountered in the applications of the resulting mac-
roscopic equations and (2) large relative to atomic dimensions over which these

4 See J. D. Jackson, Classical Electrodynamics, 2nd Edition (Wiley, New York, 1975, section 6.7),
for details of this averaging procedure.
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bound charges are moving. This implies that l should be larger than, say, 10 Å,
which makes questionable the use of such equations for applications involving
individual molecules. The same question arises with respect to the use of mac-
roscopic electrostatic models to describe molecular phenomena and constitutes a
continuing enigma in many models constructed to treat chemical energetics and
dynamics in dielectric media. We will confront this issue again in later chapters.

In what follows we use some results from the calculus of vector fields that are
summarized in Section 1.1.3. The solution of Eqs (3.32) is facilitated by introducing
the so called scalar potential �(r, t) and vector potential A(r, t), in terms of which

B = ∇ × A (3.38)

E = −∇�− 1

c

∂A
∂t

(3.39)

The forms (3.38) and (3.39) automatically satisfy Eqs (3.32b) and (3.32c). It is
important to remember that the physical fields are E and B, while A and � are
mathematical constructs defined for convenience. In fact, infinitely many choices
of these fields give the same B and E: Any scalar function of space and time S(r, t)
can be used to transform between these choices as follows:

A(r, t) → A(r, t)+ ∇S(r, t) (3.40a)

�(r, t) → �(r, t)− 1

c

∂S(r, t)

∂t
(3.40b)

The transformation (3.40) is called gauge transformation, and a solution obtained
with a particular choice of S is referred to as the solution in the corresponding
gauge.

Problem 3.2. Show, using the identity (1.32), that Eqs (3.38) and (3.39) are
indeed invariant to this transformation.

For the discussion of free radiation fields and their quantization a particular
choice of gauge, called the Coulomb (or transverse) gauge, is useful. It is defined
by the requirement (which can always be satisfied with a proper choice of S) that

∇ · A = 0 (3.41)

Note that Eq. (3.38) than implies (using Eqs (1.31)–(1.34)) that in this gauge B =
B⊥ is a transversal field, while the two contributions to E in (3.39) are its transversal
and longitudinal components

E⊥ = −1

c

∂A
∂t

; E‖ = −∇� (3.42)



Appendix 3A 123

Limiting ourselves to homogeneous systems, for which Eqs (3.35) are valid with
constant ε and µ, Eqs (3.32a) and (3.39) then imply

∇2� = −4πρ

ε
(3.43)

This is the Poisson equation, known from electrostatics as the differential form of
Coulomb’s law. Also, Eqs (3.32d), (3.38), (3.41), and (1.29) lead to

∇2A − εµ

c2

∂2A
∂t2 = −4πµ

c
J + εµ

c
∇ ∂�

∂t
(3.44)

Equation (3.43) identifies the scalar potential in this gauge as the (instantaneous)
Coulomb potential associated with free charges in the system. Its solution is the
familiar Coulomb-law expression

�(r, t) =
∫

d3r′ ρ(r
′, t)

|r − r′| (3.45)

In (3.44), the terms on the right-hand side can be viewed as the sources of the
radiation field. Two sources are seen: A current (moving charge) and a time variation
in the magnitude of the charge. If A = 0 (ground state of the radiation field) and
such sources are absent, the field will remain in this ground state. Obviously there
exist other states of the free radiation field, solutions of Eq. (3.44) in the absence
of sources,

∇2A = 1

c̄2

∂2A
∂t2 ; c̄ = c/

√
εµ (3.46)

Before considering the solutions of this equation we note that given these solutions,
the physical fields are obtained from (3.38) and (3.39). In particular, in the absence
of free charges (ρ = 0, hence � = constant)

B = ∇ × A; E = −1

c

∂A
∂t

(3.47)

and the energy in the field, Eq. (3.37), is given by

E = 1

8πµ

∫
dr

(
1

c̄2

(
∂A
∂t

)2

+ (∇ × A)2

)
(3.48)

Consider now the solutions of (3.46), which is a wave equation. In order to get
a feeling for its properties lets consider a one-dimensional version,

∂2A

∂x2 = 1

c̄2

∂2A

∂t2 (3.49)
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The obvious existence of solutions of the form A(x, t) = A(x ± c̄t) shows that c̄
plays the role of a propagation speed. Explicit solutions may be found by separ-
ating variables. Assuming solutions of the form A(x, t) = αb(x)q(t), α being any
constant, we get after inserting into (3.49)

1

b(x)

d2b(x)

dx2 = 1

c̄2

1

q(t)

d2q(t)

dt2 (3.50)

This implies that each side of this equation is a constant. A negative constant, to
be denoted −k2 with real k , will yield wave-like solutions. A is in general a linear
combination of such solutions, that is,

A(x, t) = α
∑

l

ql(t)bl(x) (3.51)

d2ql

dt2 + ω2
l ql = 0; ωl = c̄kl (3.52)

d2bl

dx2 + k2
l bl = 0 (3.53)

Equation (3.51) expresses the general solution for A(x, t) as a sum over inde-
pendent “normal modes.” ql(t), obtained from Eq. (3.52), determines the time
evolution of a mode, while bl(x), the solution to Eq. (3.53), determines its spa-
tial structure in much the same way as the time-independent Schrödinger equation
determine the intrinsic eigenfunctions of a given system. In fact, Eq. (3.53) has the
same structure as the time-independent Schrödinger equation for a free particle,
Eq. (2.80). It admits similar solutions that depend on the imposed boundary con-
ditions. If we use periodic boundary conditions with period L we find, in analogy
to (2.82),

bl(x) = 1√
L

eiklx; kl = 2π

L
l; (l = 0,±1,±2 . . .) (3.54)

Furthermore, as in the free particle case, Eq. (3.54) implies that the density of modes
(i.e. the number, per unit interval along the k-axis, of possible values of k) is L/2π .
Obviously, different solution are orthogonal to each other,

∫
L b∗l (x)bl′(x)dx = δl,l′ ,

and the choice of normalization can be arbitrary because the amplitude of the mode
is determined by the solution of Eq. (3.52).
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In the general case, where A is a vector and (3.49) is a three-dimensional vector
equation, a generalization of (3.51)5

A(r, t) =
√

4π

ε
c
∑

l

ql(t)bl(r) (3.55)

yields again Eq. (3.52) and a generalization of Eq. (3.53)

d2ql

dt2 + ω2
l ql = 0; ωl = c̄kl (3.56)

∇2bl +
ω2

l

c̄2 bl = 0 (3.57)

If bl(r) was a scalar function bl(r), (3.57) would be equivalent to the Schrödinger
equation for a three-dimensional free particle, yielding, for periodic boundary
conditions, solutions of the form

bl(r) = �−1/2eikl ·r (� = LxLyLz) (3.58)

characterized by a wavevector k that satisfies |kl| = ωl c̄ with components of the
form (3.54). This remains true also when b is a vector, however, in addition to the
three numbers comprising the wavevector kl , the mode is also characterized by
the direction of bl . This extra information, called polarization, can be conveyed
by a unit vector, σ l , in the direction of bl , that is, bl = �−1/2σleikl ·r. This form,
together with the Coulomb gauge property (3.41), implies that σl has to satisfy the
transversality condition σl · kl = 0. (This results from Eq. (1.22) and the identity
∇eik·r = ikeik·r.)

Additional important insight is obtained by using Eqs (3.55), (3.47), and (3.37) to
find the energy contained in the field. Because different bl(r) functions constitute
an orthogonal set, different modes contribute independently. This calculation is
rather technical even if conceptually straightforward. The result is

E =
∑

l

El ; El = (1/2)(q̇2
l + ω2

l q2
l ) (3.59)

We recall that q(t) is just the time-dependent amplitude of the vector potential,
and by (3.47) q̇(t) is related to the electric field. On the other hand, Eq. (3.56) has

5 In (3.55) we chose a particular value for the constant α in order to simplify the form of subsequent
expressions. This choice is in effect a scaling of q that yields the simple form of Eq. (3.59).
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the form of the Newton equation for a harmonic oscillator of frequency ωl with
coordinate ql and momentum pl = q̇l derived from the Hamiltonian

hl = (1/2)(p2
l + ω2

l q2
l ) (3.60)

in which ql plays the role of coordinate while pl is the conjugated momentum. Note
that these coordinate and momentum are related to the standard quantities by mass
renormalization so that their dimensionalities are m1/2l and m1/2l/t, respectively.

If we take this seriously, the radiation field appears to have the character of a
harmonic medium described by a set of normal modes {ql} and by the (still classical)
Hamiltonian

H =
∑

l

(1/2)(p2
l + ω2

l q2
l ) (3.61)

When such a mode is excited a time-dependent oscillation is set up in the system as
determined by Eq. (3.56). The oscillating object is an electromagnetic field whose
spatial variation is determined by Eq. (3.57). This spatial dependence is character-
ized by a wavevector kl and a polarization σl that satisfy the conditions ωl = c̄|kl|
and σl · kl = 0. The mode index l represents the five numbers that determine kl
and σl . The energy associated with the mode is determined by Eq. (3.59).

Should we take it seriously? Experiments such as studies of blackbody radiation
not only answer in the affirmative, but tell us that we should go one step further
and assign a quantum character to the field, where each normal mode is taken to
represent a quantum oscillator characterized by operator analog of Eq. (3.60) in
which q and p become operators, q̂ and p̂, that satisfy [q̂, p̂] = ih̄. This follows from
the observation that the thermal properties of blackbody radiation can be understood
only if we assume that a mode of frequency ω can be only in states of energies nh̄ω,
with interger n, above the ground state. We refer to a mode in such state as being
occupied by n photons. The state of the overall field is then characterized by the
set {nl} of occupation numbers of all modes, where the ground state corresponds
to nl = 0 for all l. Note that the vector potential A then becomes an operator (since
ql(t) in (3.55) are now operators; the time dependence should be interpreted as
the corresponding Heisenberg representation), and the derived fields E and B in
Eq. (3.47) are operators as well.

It is convenient to use raising and lowering operators in this context. Define

âl = 1√
2h̄ωl

(ωl q̂l + ip̂l); â†
l =

1√
2h̄ωl

(ωl q̂l − ip̂l) (3.62)
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that obey the commutation relation [âl , â†
l ] = 1, with the inverse transformation

q̂l =
√

h̄

2ωl
(â†

l + âl); p̂l = i

√
h̄ωl

2
(â†

l − âl) (3.63)

The Hamiltonian (3.61) than becomes

Ĥ =
∑

l

h̄ωl(â
†
l âl + (1/2)) (3.64)

the corresponding time-dependent (Heisenberg) operators are

âl(t) = âle
−iωl t ; â†

l (t) = â†
l eiωl t (3.65)

and the vector potential operator takes the form (cf. Eq. (3.55))

Â(r, t) = c

√
4π

ε

∑
l

σ lbl(r)q̂l(t)

= c
∑

l

σ l

√
2π h̄

εωl
bl(r)(â

†
l eiωl t + âle

−iωl t)

(3.66)

When periodic boundary conditions are used, the spatial functions bl(r) are given
by Eq. (3.58). Because we look for real solutions of the Maxwell equation Â takes
the form analogous to the corresponding real classical solution

Â(r, t) = c
∑

l

√
2π h̄

ε�ωl
σ l(âle

−iωl t+ikl ·r + â†
l eiωl t−ikl ·r) (3.67)

(The assignment of −ikl to +iωl is arbitrary because the sum over l implies sum-
mation over all positive and negative k components). Since l encompasses the five
numbers (k, σ ) we can write (3.67) in the alternative form

Â(r, t) = c
∑

k

∑
σk

√
2π h̄

ε�ωk
σ k(âk,σk e−iωk t+ik·r + â†

k,σk
eiωk t−ik·r) (3.68)

with ωk = kc̄ and k = |k|. Consequently the electric field operator is, from
Eq. (3.47)

Ê(r, t) = i
∑

k

∑
σk

√
2π h̄ωk

ε�
σ k(âk,σk e−iωk t+ik·r − â†

k,σk
eiωk t−ik·r) (3.69)
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As noted above this is the Heisenberg representation. The corresponding
Schrödinger form is

Ê(r) = i
∑

k

∑
σk

√
2π h̄ωk

ε�
σ k(âk,σk eik·r − â†

k,σk
e−ik·r) (3.70)

Finally consider the interaction between a molecule (or any system of particles)
and the radiation field. A simple expression for this interaction is provided by
Eq. (3.1) or, when applied to a single molecule, by the simpler version (3.24). From
(3.24) and (3.70) we finally get Eq. (3.26) for the desired interaction operator.

We will be using this form of the molecule–field interaction repeatedly in this
text, however, it should be kept in mind that it is an approximation on several counts.
Already Eq. (3.1), an electrostatic energy expression used with a time varying field,
is an approximation. Even in this electrostatic limit, Eq. (3.1) is just the first term in
an infinite multipole expansion in which the higher-order terms depend on higher
spatial derivatives of the electric field.

ĤMR = q�− µ · E(0)− 1

6

∑
i

∑
j

Qij
∂Ei

∂xj
(0)+ · · · (3.71)

were Qij is the molecular quadrupole tensor and (0) denotes the molecular center.
Other contributions to the interaction are associated with the motion of charged
particles in a magnetic field. Another approximation is associated with the fact that
the radiation field equations and the field operators were constructed from the mac-
roscopic forms of the Maxwell equations, where the phenomenological constants
ε and µ already contain elements of field–matter interaction. This corresponds to
a picture in which both the atomic system of interest and the radiation field exist
in an ambient medium characterized by these dielectric and magnetic response
constants. A fully microscopic theory would start with the microscopic Maxwell
equations and from a fundamental form for matter–radiation field interaction, and
derive these results in a systematic way.

Such a general theory of interaction of radiation with matter has been formulated.
It yields the following expression for the Hamiltonian of a system that comprises
matter (say a molecule) and radiation

Ĥ =
∑

j

(p̂j − (qj/c)Â(rj))
2

2mj
+ ÛM({rj})+ ĤR (3.72)

Here ÛM({rj}) is the molecular potential operator that depend on all electronic
and nuclear coordinates, and p̂j, r̂j, and qj are respectively the momentum and
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coordinate operators and the charge associated with molecular particle j. Nothing
reminiscent of the form (3.1) appears in Eq. (3.72), still it may be shown that the
interaction−∑

j(qj/mjc)p̂j ·Â(rj) implied by Eq. (3.72) yields the same interaction
matrix elements needed in the calculation of optical transitions, provided that the
conditions that lead to Eq. (3.26) are satisfied, that is, λ = 2π/k 
 molecular
dimension.6

More generally, it can be shown that if magnetic interactions are disregarded
then, in a semiclassical approximation in which the electromagnetic field is treated
classically while the material degrees of freedom retain their quantum nature,
Eq. (3.72) yields the following Hamiltonian for the material system

Ĥ = ĤM −
∫

drP̂(r) · E⊥(r, t) (3.73)

where E⊥(r, t) is the transverse part of the electric field and P̂(r) is the dipole
density operator. In the limit of molecular point dipoles (i.e. when (3.24) applies
for any molecule taken at the origin), this operator is given by

P̂(r) =
∑

m

µ̂mδ(rm − r) (3.74)

where the sum is over all molecules. For a single molecule Eqs (3.73) and (3.74)
yield Eq. (3.24). In the many molecules case the molecular part, ĤM, must include
also the dipole–dipole interaction operators between the molecules.

The Hamiltonian (3.73) is a time-dependent operator for the molecular sys-
tem, where the electromagnetic field appears through the time-dependent electric
field. A useful starting point for analyzing nonlinear optical processes in molecu-
lar systems is obtained by supplementing (3.73) by an equation of motion for this
time-dependent electric field. Such an equation can be derived from the Maxwell
equations (3.32) and (3.33). Limiting ourselves to systems without free charges, so
that ρ and J are zero, and to non-magnetic materials so that M = 0 and H = B,
Eq. (3.32d) with (3.33a) and (3.32c) yield

∇ × ∇ × E(r, t)+ 1

c2

∂2E(r, t)

∂t2 = −4π

c2

∂2〈P(r, t)〉
∂t2 (3.75)

Note that if E is transverse, that is, ∇ ·E = 0, then ∇ ×∇×E(r, t) = −∇2E(r, t).
Equations (3.73) and (3.75) together with the definition 〈P(r, t)〉 = Tr[ρ̂P̂]where ρ̂

6 An interesting difference is that while in Eq. (3.27) we find the photon frequency ωk as a multiply-
ing factor, in the calculation based on the interaction −∑

j(qj/mjc)p̂j ·A(rj) we get instead a factor
of ωss′—the transition frequency between the molecular states involved. For physical processes that
conserve energy the two are equal.



130 Futher reading

is the density operator (see Chapter 10) constitute the desired closed set of equation
for the molecular system and for the classical radiation field, which should now be
solved self consistently.

Further reading

C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Atom–Photon Interactions: Basic Processes
and Applications (Wiley, New York, 1992).

J. D. Jackson, Classical Electrodynamics 2nd edn, (Wiley, NYC, 1975, chapter 6).
W. H. Louisell, Quantum Statistical Properties of Radiation (Wiley, New York, 1973).
S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford University Press, Oxford, 1995).



4

INTRODUCTION TO SOLIDS AND THEIR
INTERFACES

Tight-knit, must have more barbs and hooks to hold them,
Must be more interwoven, like thorny branches
In a closed hedgerow; in this class of things
We find, say, adamant, flint, iron, bronze
That shrieks in protest if you try to force
The stout oak door against the holding bars…

Lucretius (c.99–c.55 bce) “The way things are”
translated by Rolfe Humphries, Indiana University Press, 1968

The study of dynamics of molecular processes in condensed phases necessarily
involves properties of the condensed environment that surrounds the system under
consideration. This chapter provides some essential background on the properties
of solids while the next chapter does the same for liquids. No attempt is made to
provide a comprehensive discussion of these subjects. Rather, this chapter only
aims to provide enough background as needed in later chapters in order to take
into consideration two essential attributes of the solid environment: Its interaction
with the molecular system of interest and the relevant timescales associated with
this interaction. This would entail the need to have some familiarity with the rel-
evant degrees of freedom, the nature of their interaction with a guest molecule,
the corresponding densities of states or modes, and the associated characteristic
timescales. Focusing on the solid crystal environment we thus need to have some
understanding of its electronic and nuclear dynamics.

4.1 Lattice periodicity

The geometry of a crystal is defined with respect to a given lattice by picturing
the crystal as made of periodically repeating unit cells. The atomic structure within
the cell is a property of the particular structure (e.g. each cell can contain one or
more molecules, or several atoms arranged within the cell volume in some given
way), however, the cells themselves are assigned to lattice points that determine the
periodicity. This periodicity is characterized by three lattice vectors, ai, i = 1, 2, 3,
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that determine the primitive lattice cell—a parallelepiped defined by these three
vectors. The lattice itself is then the collection of all points (or all vectors) defined by

R = n1a1 + n2a2 + n3a3 (4.1)

where (here and below) n1, n2, n3 are all integers. It will prove useful to define also
the reciprocal lattice: The collection of all vectors G that satisfy

R · G = 2πm, m integer (4.2)

It can be shown that these vectors G are of the form

G = n1b1 + n2b2 + n3b3 (4.3)

with the primitive vectors of the reciprocal lattice given by

b1 = 2π
a2 × a3

a1 (a2 × a3)
; b2 = 2π

a3 × a1

a1 · a2 × a3
; b3 = 2π

a1 × a2

a1 · a2 × a3
(4.4)

For example, in one-dimension the direct lattice is na and the reciprocal lattice is
(2π/a)n (n = 0, ±1, ±2, . . .). The First Brillouin zone is a cell in the reciprocal
lattice that encloses points closer to the origin (n1, n2, n3 = 0) than to any other
lattice point.1 Obviously, for a one-dimensional lattice the first Brilloin zone is
−(π/a) . . . (π/a).

4.2 Lattice vibrations

Periodicity is an important attribute of crystals with significant implications for
their properties. Another important property of these systems is the fact that the
amplitudes of atomic motions about their equilibrium positions are small enough to
allow a harmonic approximation of the interatomic potential. The resulting theory of
atomic motion in harmonic crystals constitutes the simplest example for many-body
dynamics, which is discussed in this section.

4.2.1 Normal modes of harmonic systems

As in molecules, the starting point of a study of atomic motions in solid is the
potential surface on which the atoms move. This potential is obtained in principle
from the Born–Oppenheimer approximation (see Section 2.5). Once given, the

1 Such a cell is also called a Wigner–Seitz cell.
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many-body atomic motion in a system of N atoms is described by a Hamiltonian
of the form

H =
N∑

j=1

p2
j

2mj
+ V (x1, x2, . . . , xj, . . . , xN ) (4.5)

A harmonic approximation is obtained by expanding the potential about the
minimum energy configuration and neglecting terms above second order. This
leads to

V (xN ) = V (xN
0 )+ 1

2

∑
i,j

ki,j(xi − xi0)(xj − xj0) (4.6)

where we use the notation xN = (x1, x2, . . . , xN ) and where ki,j = (∂2V /∂xi∂xj)xN
0

.
The resulting Hamiltonian corresponds to a set of particles of mass mj, attached to
each other by harmonic springs characterized by a force constants kj,l . The classical
equations of motion are

ẍj = − 1

mj

∑
l

kj,l(xl − xl,0) (4.7)

In (4.6) and (4.7) x0 are the equilibrium positions. For simplicity we will redefine
xj ≡ xj − xj0. So

ẍj = − 1

mj

∑
l

kj,lxl (4.8)

In terms of the renormalized positions and force constants

yj = √
mjxj; Kj,l = kj,l√

mjml
(4.9)

we get ÿj = −∑
l Kj,lyl or

ÿ = −Ky (4.10)

K is a real symmetric matrix, hence its eigenvalues are real. Stability requires that
these eigenvalues are positive; otherwise small deviations from equilibrium will
spontaneously grow in time. We will denote these eigenvalues by ω2

j , that is,

TKT−1 =

⎛
⎜⎜⎜⎜⎝
ω2

1 0

ω2
2

...
. . .

...
0 · · · · · · ω2

N

⎞
⎟⎟⎟⎟⎠ ; u = Ty (4.11)
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where T is the unitary transformation that diagonalizes K. The components of u
are the amplitudes of the normal modes of the system defined by Eqs. (4.5) and
(4.6). Their equations of motion are those of independent harmonic oscillators

üj = −ω2
j uj (4.12)

The individual atomic motions are now obtained from the inverse transformation

yj =
∑

k

(T−1)jkuk ; xj = (mj)
−1/2yj (4.13)

This linear problem is thus exactly soluble. On the practical level, however, one can-
not carry out the diagonalization (4.11) for macroscopic systems without additional
considerations, for example, by invoking the lattice periodicity as shown below.
The important physical message at this point is that atomic motions in solids can
be described, in the harmonic approximation, as motion of independent harmonic
oscillators. It is important to note that even though we used a classical mechan-
ics language above, what was actually done is to replace the interatomic potential
by its expansion to quadratic order. Therefore, an identical independent harmonic
oscillator picture holds also in the quantum regime.

4.2.2 Simple harmonic crystal in one dimension

As a simple example we consider a monatomic one-dimensional solid with identical
atoms, one per unit cell, characterized by the Hamiltonian

H =
N∑

n=1

m

2
ẋ2

n +
N∑

n=1

1

2
κ(xn − xn−1)

2 (4.14)

where xn is the deviation of the nth atom from its equilibrium position. It is
convenient to use periodic boundary conditions by imposing

xn+N = xn (4.15)

and to take the limit N →∞ at the end of the calculation. This makes our system
a ring of N elastically bound atoms. The equations of motion for xn

mẍn = κ(xn+1 + xn−1 − 2xn); n = 1, . . . , N (4.16)

are solved by using the ansatz

xn(t) = uφ(t) einφ (4.17)
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in (4.16). This leads to

müφ = κuφ(e
iφ + e−iφ − 2) = −

(
4κ sin2 φ

2

)
uφ (4.18)

which is an equation of motion for a harmonic oscillator, üφ = −ω2(φ)uφ ,
characterized by the frequency

ω(φ) = 2ω0 sin
φ

2
(4.19)

where

ω0 =
√

κ

m
(4.20)

It is convenient to define a wave-vector k in the direction of the particle’s motion,
whose magnitude is φ/a, where a is the lattice spacing

einφ = ei(φ/a)na = eikna; k = φ

a
(4.21)

na is the characteristic position of an atom in the chain. Thus, for each value of
k we got an independent equation of motion

ük = −ω2(k)uk (4.22)

whose solution can be written in terms of initial conditions for u and u̇

uk(t) = uk(0) cos(ωk t)+ u̇k(0)

ωk
sin(ωk t) (4.23)

These are the normal modes of this harmonic system. A motion of this type is a
collective motion of all atoms according to (from (4.17))

xn(t) = uk(t) eikna (4.24)

Each such oscillation constitutes a wave of wavelength λ = 2π/|k| and a
corresponding frequency2

ωk = 2ω0|sin[ka/2]| (4.25)

These modes of motion with wavelengths and frequencies determined by k are
called phonons. A relationship such as (4.25) between k and ω is called a dispersion

2 From Eq. (4.23) we see that it is enough to consider positive frequencies.
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relation. The allowed values of k are determined from the periodicity of the model
and the imposed boundary conditions. First note that eikna remains the same if k is
shifted according to k → k+(2π/a)j, where j is any integer. Therefore, independent
solutions are obtained only for values of k within an interval k0 . . . k0 + 2π/a. If
we choose k0 = −π/a, then

−π

a
≤ k ≤ π

a
(4.26)

namely, all physically different values of k are represented within the first Brillouin
zone of the reciprocal lattice. Second, Eq. (4.15) implies that eikNa = 1. To satisfy
this k must be of the form (2π/Na)l, with integer l. Together with (4.26) this implies

k = 2π

Na
l; l = 0,±1,±2, . . . ,±N − 1

2
, (+ or −)

N

2
(4.27)

When the lattice becomes infinitely long, N → ∞, k becomes a continuous
parameter. In the long wavelength (small k) limit these phonons should become the
familiar sound waves. In this limit, k → 0, we can expand Eq. (4.25)

ωk = 2ω0 sin
|k|a

2
→ ω0a|k| (4.28)

This is indeed a dispersion relation for a sound wave of speed

c = ω0a (4.29)

Typically ω0 = 1013 s−1 and a = 10−8 cm, therefore c ∼ 105cm/s−1. This is
indeed the order of magnitude of sound velocity in solids. When k increases ω(k)
becomes nonlinear in k , that is, the “velocity”3 dω/dk depends on k .

What was achieved above is an implementation of the general solution of
Section 4.2.1 for a system of harmonically connected atoms whose equilibrium
positions lie on a one-dimensional periodic lattice. Indeed, Eq. (4.24) connects (up
to a normalization constant) between the amplitude of each atomic motion and that
of each normal mode. Consequently, the transformation (4.11) has the explicit form

Tnk = 1√
N

eikna; (T−1)nk = 1√
N

e−ikna (4.30)

The normalization constant (
√

N )−1 is needed to satisfy the unitarity requirement
(TT+)mn = δnm (see also Problem 4.1 below).

3 ∂ω/∂k is known as the group velocity of the wave motion.
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Problem 4.1. Consider the transformation (cf. Eq. (4.24)), written for the dis-
placement xn of the atom at site n when many phonon modes are excited in a
one-dimensional lattice of N sites

xn =
∑

k

ukeikna (4.31)

Prove the identity
∑

n eikna = Nδk ,0 (the sum is over all lattice points) and use it
to show that (4.31) implies uk = N−1 ∑

n xne−ikna. (Note that k takes only the
values (4.27)). It is convenient to redefine the normal-mode coordinates accord-
ing to

√
Nuk → uk so that the transformation takes the more symmetric form

xn = (
√

N )−1 ∑
k ukeikna and uk = (

√
N )−1 ∑

n xne−ikna as implied by (4.30).

4.2.3 Density of modes

In problems addressed in this text, solids appear not as the system of principal
interest but as an environment, a host, of our system. We therefore focus on those
properties of solids that are associated with their effect on a molecular guest. One
such property is the density of modes, a function g(ω) defined such that the number
of modes in any frequency interval ω1 ≤ ω ≤ ω2 is

∫ ω2
ω1

dω g(ω). As a formal
definition we may write

g(ω) ≡
∑

j

δ(ω − ωj) (4.32)

In fact, this function dominates also thermal and optical properties of the solids
themselves because experimental probes do not address individual normal modes
but rather collective mode motions that manifest themselves through the mode
density. For example, the vibrational energy of a harmonic solid is given by

E =
∑

j

h̄ωj(nj + 1

2
) =

∫
dωg(ω)h̄ω

(
〈n(ω)〉 + 1

2

)
(4.33)

where nj is the occupation of the mode j. Note that the density of modes g(ω)

is an analog of the density of states, Eq. (1.181), and its use in (4.83) results
from a coarse-graining process equivalent to (1.182). The second equality in (4.33)
becomes exact in the infinite system limit where the spectrum of normal mode
frequencies is continuous.

At thermal equilibrium

〈n(ω)〉 = 1

eβh̄ω − 1
(4.34)
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The heat capacity is the derivative of E with respect to T . We get

CV =
(
∂E

∂T

)
V ,N

= kB

∫
dωg(ω)

(
h̄ω

kBT

)2 eβh̄ω

(eβh̄ω − 1)2
(4.35)

The density of modes is seen to be the only solid property needed for a complete
evaluation of these thermodynamic quantities. In what follows we consider this
function within the one-dimensional model of Section 4.2.2.

Consider the one-dimensional solid analyzed in Section 4.2.2. From the expres-
sion for the allowed value of k = (2π/Na)l, l = 0,±1, . . . we find that the number
of possible k values in the interval k , . . . , k +�k is (Na/2π)�k , so the density of
modes per unit interval in k is

g(k) = Na

2π
, that is g(|k|) = Na

π
(4.36)

The difference between these two forms stems from the fact that in one dimension
there are two values of k for a given |k|. The density of modes in frequency space
is obtained from the requirement that the number of modes in a given interval of
|k| is the same as in the corresponding interval of ω,

g(|k|)d|k| = g(ω)dω (4.37)

so that

g(ω) = Na

π

(
dω

d|k|
)−1

(4.38)

and using the dispersion relation, Eq (4.28)

g(ω) = N

πω0 cos(|k|a/2)
= N

πω0
√

1 − (ω/2ω0)2
(4.39)

In the long wavelength limit ω = ck; c = ω0a, g(ω) = N/πω0. For larger k ,
that is, larger ω, g(ω) depends on ω and becomes singular at the Brillouin zone
boundary k = ±π/a, |ω| = 2ω0.

While a one-dimensional model is not very realistic, the analytical result (4.39)
shows an important feature of a general nature—the fact that the phonon spectrum is
bound: There are no modes of frequency larger than 2ω0. Note that this upper bound
is associated with wavevectors at the Brillouin zone boundary, that is, wavelengths
comparable to the interatomic distance.

Next, consider the three-dimensional case, focusing on a simple cubic lattice.
Rewriting Eq. (4.36) in the form g(k) = L/(2π) where L = Na is the lattice length,
the three-dimensional analog is clearly LxLyLz/(2π)3 = �/(2π)3 where � is the



Lattice vibrations 139

volume. In terms of the absolute value of the wavevector k the number of modes
in the interval between |k| and |k| + d|k| is

g(|k|)d|k| = 4πk2 �

(2π)3 d|k| (4.40)

Using again Eq. (4.37) we now get

g(ω) = 4πk2 �

(2π)3

(
dω

d|k|
)−1

(4.41)

To proceed, we need the dispersion relation ω = ω(|k|) in three dimensions. At
this point one can either resort to numerical evaluation of this function, or to a
simple model constructed according to available data and physical insight. In the
next section we take the second route.

4.2.4 Phonons in higher dimensions and the heat capacity of solids

The analysis that leads to Eq. (4.39) can be repeated for three-dimensional systems
and for solids with more than one atom per unit cell, however analytical results can
be obtained only for simple models. Here we discuss two such models and their
implications with regard to thermal properties of solids. We will focus on the heat
capacity, Eq. (4.35), keeping in mind that the integral in this expression is actu-
ally bound by the maximum frequency. Additional information on this maximum
frequency is available via the obvious sum rule

ωmax∫
0

dωg(ω) = 3N − 6 � 3N (4.42)

where 3N -6 is the number of vibrational degrees of freedom atoms in the N -
atom crystal. In what follows we consider two simple models for g(ω) and their
implications for the heat capacity.

4.2.4.1 The Einstein model

This model assumes that all the normal mode frequencies are the same. Taking
Eq. (4.42) into account the density of modes then takes the form

g(ω) = 3Nδ(ω − ωe) (4.43)

Using this in (4.35) yields

CV = 3NkB

(
h̄ωe

kBT

)2 eβh̄ωe

(eβh̄ωe − 1)2
(4.44)
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For T →∞ this gives CV = 3NkB. This result is known as the Dulong–Petit law
that is approximately obeyed for many solids at high temperature. This law reflects
the thermodynamic result that in a system of classical oscillators, each vibrational
degree of freedom contributes an amount kB ((1/2)kB for each kinetic and each
positional mode of motion) to the overall heat capacity.

In the low temperature limit Eq. (4.44) predicts that the heat capacity van-
ishes like

CV
T→0−→ e−h̄ω/kBT (4.45)

This is in qualitative agreement with experimental results. The heat capacity indeed
goes to zero at low T—reflecting the fact that a quantum oscillator of frequency ω

cannot accept energy from its thermal environment if kBT � h̄ω. However, the
observed low temperature behavior of the heat capacity of nonconducting solids is
CV ∼ T 3.

4.2.4.2 The Debye model

The fact that a quantum oscillator of frequency ω does not interact effectively with a
bath of temperature smaller than h̄ω/kB implies that if the low temperature behavior
of the solid heat capacity is associated with vibrational motions, it must be related
to the low frequency phonon modes. The Debye model combines this observation
with two additional physical ideas: One is the fact that the low frequency (long
wavelength) limit of the dispersion relation must be

ω = c|k| (4.46)

with c being the speed of sound, and the other is the existence of the sum rule (4.42).
Using (4.41) with (4.46) leads to

1

�
g(ω)dω = ω2

2π2c3 dω (4.47)

More rigorously, there are three branches of modes associated with each |k|: Two
transverse, with polarization perpendicular to k, and one longitudinal, with polar-
ization along the k direction. The speed associated with the transverse modes, ct
is somewhat different from that of the longitudinal mode, cl . For our purpose this
distinction is immaterial, and we take

1

�
g(ω)dω =

(
2

c3
t

+ 1

c3
�

)
ω2

2π2 dω ≡ 3ω2

2π2c3 dω (4.48)

The last equality defines the average speed of sound c.
We know that Eq. (4.48) describes correctly the low frequency limit. We also

know that the total number of modes is 3N and that there is an upper bound to
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the frequency spectrum. The Debye model determines this upper bound by fitting
Eq. (4.48) to the sum rule (4.42). Denoting the maximum frequency ωD (Debye
frequency) this implies

3

2π2c3

ωD∫
0

dωω2 = 3N

�
(4.49)

whence

ωD =
(

6π2N

�

)1/3

c (4.50)

and
1

�
g(ω) = 9N

�

ω2

ω3
D

(4.51)

To reiterate the statements made above, this model shares two important features
with reality: First g (ω) ∼ ω2 as ω → 0, and second, the existence of a charac-
teristic cutoff associated with the total number of normal modes. The fact that the
model accounts for the low-frequency spectrum of lattice vibrations enables it to
describe correctly the low-temperature behavior of the phonon contribution to the
heat capacity. Indeed, using (4.51) in (4.35) leads to

CV = 9kBN

ω3
D

ωD∫
0

dωω2
(

h̄ω

kBT

)2 eh̄ω/(kBT )

(eh̄ω/(kBT ) − 1)2
(4.52)

Denoting h̄ω/(kBT ) = x and defining the Debye temperature

�D ≡ h̄ωD

kB
(4.53)

(4.52) becomes

CV = 9kBN

(
T

�D

)3
(�D/T )∫

0

dx x4 ex

(ex − 1)2 (4.54)

Note that all the properties of the particular crystal enter only through �D and that
CV in this model is a universal function of T/�D. In the high T limit, �D/T → 0,
the relevant x in the integrand of (4.54) is small

x4ex

(ex − 1)2 ∼ x2 (4.55)
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g (v)

5 10 × 1012
s–1

Fig. 4.1 Density of modes in lead. Full line – numerical calculation based on lattice geometry and
interatomic potential of lead. Dashed line: The Debye model fitted to the density and speed of sound of
lead. (From the Cornell Solid State Simulation site, R.H. Silbee, http://www.physics.cornell.edu/sss/.)

leading to the Dulong–Petit law

CV = 9kBN

(
T

�D

)3
(�D/T )∫

0

dx x2 = 3kBN (4.56)

In the opposite limit the integral in (4.54) becomes

∞∫
0

dx x4 ex

(ex − 1)2 =
4π4

15
(4.57)

and does not depend on T , so that Eq. (4.56) shows the expected T 3 dependence
of CV, in agreement with experiment.

It should be emphasized that although this success of the Debye model has made
it a standard starting point for qualitative discussions of solid properties associated
with lattice vibrations, it is only a qualitative model with little resemblance to real
normal-mode spectra of solids. Figure 4.1 shows the numerically calculated density
of modes of lead in comparison with the Debye model for this metal as obtained
from the experimental speed of sound. Table 4.1 list the Debye temperature for a
few selected solids.

http://www.physics.cornell.edu/sss/
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Table 4.1 Debye temperatures of several solids.

Solid Debye temperature (K)
Na 158
Ag 215
Cu 315
Al 398
Ar (solid) 82

4.3 Electronic structure of solids

In addition to the thermal bath of nuclear motions, important groups of solids—
metals and semiconductors provide continua of electronic states that can dominate
the dynamical behavior of adsorbed molecules. For example, the primary relaxa-
tion route of an electronically excited molecule positioned near a metal surface is
electron and/or energy transfer involving the electronic degrees of freedom in the
metal. In this section we briefly outline some concepts from the electronic struc-
ture of solids that are needed to understand the interactions of molecules with such
environments.

4.3.1 The free electron theory of metals: Energetics

The simplest electronic theory of metals regards a metallic object as a box filled with
noninteracting electrons. (A slightly more elaborate picture is the jellium model in
which the free electrons are moving on the background of a continuous positive
uniform charge distribution that represents the nuclei.) The Drude model, built on
this picture, is characterized by two parameters: The density of electrons n (number
per unit volume) and the relaxation time τ . The density n is sometimes expressed
in terms of the radius rs of a sphere whose volume is the volume per electron in the
metal

rs =
(

3

4πn

)1/3

(4.58)

The density of states of a free particle as a function of its energy E was obtained
in Section 2.8.2. It is given by

ρ(E) = �

π2

m

h̄3

√
2mE (d = 3) (4.59)

where � is the volume and m is the particle mass. The additional multiplicative
factor of 2 added to the result (2.97) accounts for the electronic spin states.

Let N be the total number of free electrons and n their density, so that N = n�.
Being Fermions, we can have at most one electron per state. This implies that at
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T = 0 the highest occupied energy, the Fermi energy EF, has to satisfy

EF∫
0

dEρ(E) = N (4.60)

which implies

EF =
(

9π4

8

)1/3
h̄2

m
n2/3 (4.61)

Problem 4.2. Show that the ground state energy of this N electron system is
given by

E0 = 3

5
NEF (4.62)

At finite temperature the picture described above changes slightly. The probab-
ility that a single electron level of energy E is occupied is given by the Fermi–Dirac
distribution

f (E) = 1

eβ(E−µ) + 1
; β = (kBT )−1 (4.63)

where µ is the chemical potential of the free electron system, which is in principle
obtained from the equation

N =
∑

j

f (Ej) =
∞∫

0

dEρ(E)f (E) (4.64)

It is important to get a notion of the energy scales involved. Taking sodium metal
as an example, using the mass density 0.97 g cm−3 and assuming that each sodium
atom contributes one free electron to the system, we get using Eq. (4.61) EF =
3.1 eV. For T = 300 K we find that EF/(kBT ) ∼ 118.6. Noting that according
to Eq. (4.63) f (E) falls from 1 to 0 in an energy interval of the order kBT , it
follows that at room temperature the Fermi–Dirac distribution still carries many
characteristics of the zero-temperature step function. In particular, the electronic
chemical potential µ is approximated well by the Fermi energy. It may indeed be
shown that

µ = EF

(
1 − O

(
kBT

EF

)2
)

(4.65)

The quantum distribution of electrons in metals has a profound effect on many of
their properties. As an example consider their contribution to a metal heat capacity.
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The molar heat capacity of a gas of classical structureless noninteracting particles,
that is, a classical ideal gas, is (3/2)R where R is the gas constant, R = kBA, where
A is the Avogadro’s number. This is because each degree of freedom that can accept
energy contributes (1/2)kB to the heat capacity. In a quantum ideal low temperature
(kBT � EF) Fermi gas most particles cannot accept energy since their state cannot
change to that of an occupied level. The only electrons that can accept energy are
those in a range ∼kBT about the Fermi level, that is, only a fraction ∼kBT/EF of
the total number.

This observation has two consequences that can be confirmed by a rigorous
calculation:

1. The molar heat capacity of electrons in metal is about a factor ∼kBT/EF
smaller than that of a classical ideal gas.

2. This electronic contribution to the heat capacity is linear in the temperat-
ure T . This should be contrasted with the cubic form of the low temperature
dependence of the phonon contribution, Eqs (4.54) and (4.57).

4.3.2 The free electron theory of metals: Motion

Next consider the motion of these electrons. It was already mentioned that in addi-
tion to their density, metallic electrons are characterized, at this level of theory, by
a relaxation time τ . In the Drude theory this enters via a simple friction force by
assuming that under a given force f(t) the electron moves according to

ṙ = v

dv
dt

= 1

m
f(t)− 1

τ
v(t)

(4.66)

This implies that at steady state under a constant force the electron moves with a
constant speed v = m−1τ f . Using f = −eE where E is the electric field and −e is
the electron charge, and the expression for the electric current density in terms of
the electron density n, charge −e and speed v,

j = −nev (4.67)

we find

j = ne2τ

m
E (4.68)
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The coefficient that relates the current density to the electric field is the conductiv-
ity4 σ . We found

σ = ne2τ

m
(4.69)

The conductivity obtained from the Drude model is seen to be proportional to
the electron density and to the relaxation time, and inversely proportional to the
electron mass.

Note that the conductivity σ has the dimensionality of inverse time. The Drude
model is characterized by two time parameters: τ , that can be thought of as the
time between collision suffered by the electron, and σ . Typical values of metallic
resistivities are in the range of 10−6� cm, that is, σ = 106(� cm)−1 = 1018 s−1.
Using this in (4.69) together n ∼ 1023 cm−3, e ∼ 4.8 × 10−10 esu and m ∼
9 × 10−28 g leads to τ of the order ∼10−14 s. Several points should be made:

1. The arguments used to get Eq. (4.69) and consequently the estimate τ ∼
10−14 s are classical, and their validity for metallic electrons cannot be taken
for granted without further justification.

2. The conductivity (4.69) depends on the carrier charge as e2, therefore a
measurement of electric conductivity cannot identify the sign of this charge.

Information about the sign of the mobile charge may be obtained from another
observable, the Hall coefficient. The Hall effect is observed when a current carrying
conductor (current in direction x, say) is placed in a magnetic field H perpendicular
to the current direction, the z direction say. An electric field E is formed in the
direction y perpendicular to both the current and to the applied magnetic field, and
the ratio RH = Ey/jxHz is the Hall coefficient. A theory done on the same classical
level as used above leads to

RH = − 1

nec
(4.70)

where c is the speed of light. Here the sign of the charge carriers is seen to matter,
and Hall effect measurements gave the first indications that charge carriers in metals
(e.g. Al) can be effectively positive. Such an observation cannot be explained in
the framework of the classical theory described above. Understanding this, as well
as many other electronic properties of crystalline solids, requires a more detailed
electronic structure theory of solids that takes into account their periodic structure.

4 The conductivity σ is the inverse of the resistivity—the resistance per unit length of a conductor
of unit surface cross-section. Equation (4.68) is a local version of Ohm’s law.



Electronic structure of solids 147

4.3.3 Electronic structure of periodic solids: Bloch theory

In order to study the implications of the periodic structure of lattices on the electronic
structure of the corresponding solids we consider a single electron Hamiltonian of
the form

Ĥ = T̂ + Û (r) (4.71)

where T̂ and Û are respectively kinetic and potential energy operators, and where
periodicity enters through

U (r + R) = U (r) (4.72)

with any lattice vector R, given by Eq. (4.1).
It is convenient to use periodic boundary conditions. For simplicity we consider

a cubic lattice, so we take the system to be a rectangular prism with sides L1 =
N1a1, L2 = N2a2, L3 = N3a3, that is infinitely reproduced to form infinite space.
As in the free particle problem (Section 2.8) this is used just for mathematical
convenience, assuming that bulk properties of the system do not depend on the
boundary conditions for L1, L2, L3 →∞.

In the absence of the periodic potential our problem is reduced again to that
of a free particle. Eigenfunctions of Ĥ = T̂ that satisfy the periodic boundary
conditions are of the form

eik·r = eik1x1eik2x2eik3x3 (4.73)

and the wavevector k = (k1, k2, k3) needs to satisfy

eikj(xj+Lj) = eikjxj , that is eikjLj = 1; j = 1, 2, 3 (4.74)

This in turn implies that the allowed values of kj are5

kj = 2π

Lj
nj = 2π

aj

nj

Nj
; j = 1, 2, 3, nj = 0,±1,±2, . . . (4.75)

These waves satisfy the orthonormality relation:

L1∫
0

dx1ei(2π/L1)n1x1e−i(2π/L1)n
,
1x1 = L1δn1,n′1 (4.76)

5 This is a result for a cubic lattice. The generalization for any lattice is k = ∑3
j=1 (nj/Nj)b̂j , where

b̂j (j = 1, 2, 3) are the primitive vectors of the reciprocal lattice.
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and in three dimensions∫
L1L2L3

d3rei(k−k′)·ri = δk,k′L1L2L3 = δk,k′� (4.77)

The presence of the periodic potential U (r) has important consequences with
regard to the solutions of the time-independent Schrödinger equation associated
with the Hamiltonian (4.71). In particular, a fundamental property of eigenfunctions
of such a Hamiltonian is expressed by the Bloch theorem.

4.3.3.1 Bloch’s theorem

The Bloch theorem states that the eigenfunctions of the Hamiltonian (4.71), (4.72)
are products of a wave of the form (4.73) and a function that is periodic on the
lattice, that is,

ψnk(r) = eik·runk(r) (4.78)

unk(r) = unk(r + R) (4.79)

A corollary of Eqs (4.78) and (4.79) is that such functions also satisfy

ψnk(r + R) = eik·Rψnk(r) (4.80)

where R is a lattice vector. For a free particle unk is constant and Eqs (4.78)–(4.80)
are satisfied for all R. The vector k and the number(s) n are quantum numbers: k is
associated with the wave property of these functions, while n stands for any quantum
number needed to specify the wavefunction beyond the information contained in k.

The proof of Bloch’s theorem can be found in any text of solid state physics
and will not be reproduced here. In the course of that proof it is shown that the
eigenfunctions ψnk (r) can be written in the form

ψnk(r) = eik·r ∑
G

C(n)
k−Ge−iG·r (4.81)

where C(n)
k are constant coefficients and where the sum is over all vectors G of the

reciprocal lattice. By definition, the function unk(r) = ∑
G C(n)

k−Ge−iG·r satisfies
unk(r) = unk(r + R), so ψk(r) of Eq. (4.81) is indeed a Bloch function.

Several consequences follow immediately:

1. From (4.81) it follows that

ψn,k+G′(r) = eik·r ∑
G

C(n)
k−(G−G′)e

−i(G−G′)·r = ψn,k(r) (4.82)
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(The last equality follows from the fact that a sum over G and over G − G′
are identical—both cover the whole reciprocal space.) Furthermore, from
ψn,k+G = ψn,k we find that the eigenenergies also satisfy

En,k+G = En,k (4.83)

that is, both the eigenfunctions ψ and eigenvalues E are periodic in the
wavevector k with the periodicity of the reciprocal lattice.

2. Under the imposed periodic boundary conditions, the wave component
exp(ikr) again has to satisfy exp(ikjLj) = 1 (j = 1, 2, 3), with the same
implications for the possible values of k as above, that is, Eq. (4.75) for a
cubic lattice. Furthermore, Eqs (4.82) and (4.83) imply that for any recip-
rocal lattice vector G the wavevectors k and k + G are equivalent. This
implies that all different k vectors can be mapped into a single unit cell,
for example the first Brillouin zone, of the reciprocal lattice. In partic-
ular, for a one-dimensional lattice, they can be mapped into the range
−(π/a) . . . (π/a). The different values of k are then k = (2π/a)(n/N ),
where N = L/a (L is the length that defines the periodic boundary condi-
tions) is chosen even and where the integer n takes the N different values
n = −(N/2),−(N/2)+ 1, . . . , (N/2)− 1.

3. Even though in similarity to free particle wavefunctions the Bloch wavefunc-
tions are characterized by the wavevector k, and even though Eq. (4.80) is
reminiscent of free particle behavior, the functions ψnk(r) are not eigenfunc-
tions of the momentum operator. Indeed for the Bloch function (Eqs (4.78)
and (4.79)) we have

p̂ψk = h̄

i
∇ψk = h̄

i
∇(eik·ruk(r)) = h̄kψ + eik·r h̄

i
∇uk(r) (4.84)

that is, ψk is not an eigenfunction of the momentum operator. h̄k is sometimes
called the crystal momentum.

Problem 4.3. Show that in a three-dimensional lattice the number of distinctly
different k vectors is N1N2N3. Since these vectors can all be mapped into the
first Brillouin zone whose volume is b1 · (b2 × b3) = (2π)3/w where w =
a1 · (a2 × a3) is the volume of the primitive unit cell of the direct lattice, we can
infer that per unit volume of the reciprocal lattice there are N1N2N3/[(2π)3/w] =
wN1N2N3/(2π)3 = �/(2π)3 states, where � = L1L2L3 is the system volume.
Show that this implies that the density (in k-space) of allowed k states is 1/(2π)3

per unit system volume, same result as for free particle.
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4.3.4 The one-dimensional tight binding model

This model consists of a row of identical atoms arranged so that their centers lie
on a one-dimensional lattice (along the x-axis, say) with lattice-spacing a. Denote
the electronic Hamiltonian for atom j by ĥj and the corresponding atomic orbitals
by φjn

ĥjφjn = ε0
nφjn (4.85)

where ε0
n are the energy levels of an individual atom. By symmetry

φjn(r) = φn(x − ja, y, z) (4.86)

The Hamiltonian of the full system is Ĥ = �j ĥj + V̂ , where V̂ is the interatomic
interaction. We focus on the low-energy regime where the atomic orbitals are well
localized about their corresponding atomic centers, and use this set of electronic
states as a basis for the representation of the full problem. When a → ∞, that is,
the atoms are infinitely far from each other, V̂ → 0 and we have

〈φjn|Ĥ |φj′n′ 〉 = ε0
nδjj′δnn′ (4.87)

For finite a both diagonal and non-diagonal elements of Ĥ change, and in particular
〈φjn|Ĥ |φj′n′ 〉 �= 0.

Consider then the Hamiltonian matrix in this atomic orbital representation. We
denote

〈φjn|Ĥ |φjn〉 = εn (4.88)

By symmetry, these diagonal elements do not depend on j. We see that in the sub-
matrix of Ĥ associated with the same atomic level n defined on each atom, all
diagonal elements are the same εn. Non-diagonal elements of Ĥ result from the
interatomic coupling, and if the atomic centers are not too close to each other these
elements will be small relative to the spacings between different εn’s, that is,

〈φjn|Ĥ |φj′n′ 〉 � |εn − εn′ |
(Note that we take the atomic levels n and n′ to be nondegenerate. Degenerate
levels have to be included within the same sub-matrix). In this case the existence of
the non-diagonal matrix elements of Ĥ will have an appreciable effect only within
the sub-matrices defined above. Disregarding non-diagonal matrix elements of H
outside these blocks constitutes the tight binding model. Explicitly, we take

〈φjn|Ĥ |φj′n′ 〉 = 0 for j �= j′ unless n = n′ (4.89)

In this case our problem is reduced to diagonalizing each Hamiltonian sub-matrix
associated with the same atomic level n (or with a group of degenerate atomic
levels) and with the different atomic centers.
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Further simplification is achieved by an additional approximation. When the
atomic orbitals are closely localized about their corresponding centers it is reas-
onable to assume that interatomic couplings are appreciable only between nearest
neighbors

〈φjn|Ĥ |φj′n〉 = εnδjj′ + βnδj,j′±1 (4.90)

From now on we drop the index n and denote εn = α,βn = β. The corresponding
Hamiltonian sub-matrix is

Ĥ =

⎛
⎜⎜⎜⎝

. . . β 0 0
β α β 0
0 β α β

0 0 β
. . .

⎞
⎟⎟⎟⎠ (4.91)

and the Schrödinger equation⎛
⎜⎜⎜⎝

. . . β 0 0
β α − E β 0
0 β α − E β

0 0 β
. . .

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

...
Cj

Cj+1
...

⎞
⎟⎟⎟⎠ = 0 (4.92)

will yield the coefficients of the expansion of the eigenfunctions in terms of the
atomic orbitals

ψk(r) =
∑

j

Ckjφj(r) (4.93)

and the corresponding eigenvalues Ek . The index k corresponds to the different
solutions of (4.92).

Now, Eq. (4.92) is equivalent to the set of coupled equations

βCj−1 + (α − E)Cj + βCj+1 = 0 (for all integer j) (4.94)

whose solutions are

Ckj = (eija)k = eikxj (xj = ja is the position of atomic center j) (4.95)

Inserting (4.95) to (4.94) leads to an equation for the eigenvalue E(k)

βe−ika + (α − E(k))+ βeika = 0 (4.96)

which yields
E(k) = α + 2β cos ka (4.97)
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An explicit form for the eigenfunctions is obtained from (4.95), (4.93), and (4.86)

ψk(r) =
∑

j

eikjaφj(r) =
∑

j

eikjaφ(x − ja, y, z) (4.98)

For any lattice vector R = la (l integer) this function satisfies

ψk(x + R, y, z) =
∑

j

eikjaφ(x − ja + R, y, z)

= eikR
∑

j

eik( ja−R)φ(x − (ja − R), y, z) = eikRψk(x, y, z) (4.99)

comparing to Eq. (4.80) we see that this is a Bloch function in one dimension.
Alternatively, we can rewrite Eq. (4.98) in the form

ψk(r) = eikxu(r) (4.100)

and show that u(r) = ∑
i e−ik(x−ja)φ(x − ja, y, z) has the periodicity of the lattice,

satisfying the Bloch condition (4.79) on the one-dimensional lattice.

Problem 4.4. Show that u(r) defined above satisfies u(x + la, y, z) = u(x, y, z)

Going back to the eigenvalues, Eq. (4.97) three observations can be made. First,
when the atoms are far from each other β = 0 and E(k) = α. This is our zero-order
solution—all states associated with the same quantum level on the different atomic
centers are degenerate. Second, when the coupling β between nearest neighbor
atoms is switched on, this degeneracy is lifted. The infinite number of degenerate
levels now become a band of states spanning a range of energies of width 4β
between α − 2β and α + 2β. Finally, as a function of k , E(k) is periodic, with the
period 2π/a—a special case of Eq. (4.83).

4.3.5 The nearly free particle model

In the tight binding model we start from electronic states localized on individual
atoms and explore the consequence of coupling between these atomic centers. Here
our starting point is the free electron, and the periodic lattice potential enters as a
small perturbation. Thus, writing

H = H0 + H1 with H0 = T ; H1 = U (r) = U (r + R) (4.101)

the free particle model draws its simplicity from the assumption that H1 is
small. This smallness should be measured relative to the energy range considered,
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that is, if
Hψ = Eψ (4.102)

we assume that U � E.
How can we use this to simplify our problem in the present context? Consider

one of the eigenfunctions of the unperturbed Hamiltonian H0

ψk = eik·r; Ek = h̄2

2m
k2 (4.103)

We have found that the perturbation U couples each such eigenfunction to other
zero-order wavefunctions according to (cf. Eq. (4.81))

eik·r →
∑

G

Ck−Gei(k−G)·r = Ckeik·r +
∑
G �=0

Ck−Gei(k−G)·r (4.104)

Inserting (4.104) into the Schrödinger equation, Ĥψ = Eψ we find that the
coefficients Ck are the solutions of(

h̄2

2m
k2 − E

)
Ck +

∑
G

UGCk−G = 0 (4.105)

where G belongs to the reciprocal lattice and where

UG = 1

�PC

∫
�PC

d3re−iG·rU (r) (integral over the primitive cell) (4.106)

Here �PC is the volume of the primitive cell. Note that we can take U0 = 0 without
loss of generality. This just means that we have taken the average lattice potential
to be zero, that is,

∫
�PC

d3rU (r) = 0. Equation (4.105) represents a set of coupled
equations for all the coefficients Ck associated with the original k and all the k′
derived from it by k′ = k − G.

Suppose for the moment that only G = 0 and one other reciprocal lattice vector
are involved. The coupled equations are(

h̄2k2

2m
− E

)
Ck + UGCk−G = 0 (4.107)

(
h̄2 (k − G)2

2m
− E

)
Ck−G + U ∗

GCk = 0 (4.108)
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where we have used U−G = U ∗
G. The condition for a nontrivial solution is a secular

equation for E that yields

E = 1

2

(
ε0

k + ε0
k−G

)
±

⎡
⎣(

ε0
k − ε0

k−G

2

)2

+ |UG|2
⎤
⎦1/2

; ε0
k =

h̄2k2

2m
(4.109)

If |UG|2 is much smaller than (ε0
k − ε0

k−G)2 we can expand in their ratio to get the
two solutions

E1 = ε0
k +

|UG|2
ε0

k − ε0
k−G

; E2 = ε0
k−G − |UG|2

ε0
k − ε0

k−G

(4.110)

showing small corrections to the free particle energies. In the other extreme limit,
if ε0

k = ε0
k−G ≡ ε0 we get

E1 = ε0 + UG; E2 = ε0 − UG (4.111)

This splitting has the same origin as the splitting that takes place between any two
coupled levels that are degenerate in zero order, see, for example, the treatment
of Section 2.2. Indeed Eq. (4.109) is the same as Eq. (2.19) with Ea, Eb replaced
by ε0

k , ε0
k−G, and V12 replaced by UG. In summary we may say that in the “almost

free particle limit” the free particle energies are only slightly modified (Eq. (4.110))
except when k satisfies for some reciprocal lattice vector G the equality ε0

k = ε0
k−G.

This condition implies that k2 = (k − G)2, that is, 2k · G = G2 or

k · Ĝ = 1

2
G (4.112)

where Ĝ = G/G is a unit vector in the direction of G.
What is the physical meaning of this condition? In one-dimension it implies

that k = ±(1/2)G, and since G = (2π/a)n (n integer or zero) the smallest k
that satisfies this condition is k = ±π/a. Since distinct values of k lie in the
range −π/a, . . . ,π/a (the first Brillouin zone) we find that the one-dimensional
equivalent to (4.112) is the statement that k lies at the edge of the Brillouin zone.

Equation (4.112) is a generalization of this statement to three dimensions. The
set of equations (4.105) represent, in the weak periodic potential limit, a set of
uncoupled waves (i.e. we can practically disregard the second term on the left-hand
side of (4.105)) except when (4.112) is satisfied, namely when k is at the edge of
the Brillouin zone. At that point the zero-order energies associated with the waves
k and k − G (and just these two waves) are the same, therefore these states are
strongly coupled, leading to the energy splitting given by Eq. (4.111).
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Fig. 4.2 A graphic display of the origin of band structure in the nearly free electron model.

k

E

Fig. 4.3 The origin of band structure in the nearly free electron model: An extended picture that
shows also the origin of the k-periodicity of E(k).

A graphical interpretation of this situation is shown in Fig. 4.2. The energy as a
function of k is shown for two waves whose origins in k-space differ by G = 2π/a.
Each energy curve corresponds to the free particle parabola. Their coupling by the
periodic potential does not appreciably change them except in the neighborhood of
k = π/a. The effective strong coupling in this neighborhood leads to the splitting
shown.

An extended picture of this situation is depicted in Fig. 4.3. Here we show the
parabolas representing the free particle energies associated with each of the k vectors
(in one-dimension) that are coupled to each other according to Eq. (4.105), that is, k ,
k ± 2π/a, k ± 4π/a, . . . . At each point where two parabolas cross, the energy
spacing between the two zero-order energies is small relative to the amplitude of
the periodic potential. This leads to splitting and to the band structure in the energy
spectrum. Also, the emergence of the reciprocal lattice periodicity of E(k) is clearly
seen. Again we note that a reduced picture may be obtained by focusing on the first
Brillouin zone (marked in Fig. 4.3 as the shaded area)—the equivalent zones in
k-space represent physically equivalent descriptions.

4.3.6 Intermediate summary: Free electrons versus noninteracting electrons in a
periodic potential

Let us summarize the important differences between the free electron model of a
metal and models based on the electronic band structure as discussed above. The
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first disregards, while the second takes into account, the periodic lattice potential
on which the electrons move. The electron spin will not be an issue; we just keep in
mind that a factor of 2 in the single electron density of state arises for the multiplicity
of spin states.

1. In the free electron model the electronic wavefunctions are characterized by
a wavevector k (−∞ < k1, k2, k3 < ∞) and can be chosen to be also
eigenfunctions of the momentum operator with eigenvalues h̄k. The eigen-
states of an electron moving in a periodic potential are also characterized by
a wavevector k (the crystal momentum) whose independent values lie within
a single primitive cell of the reciprocal lattice. Another quantum number n
take discrete integer values and distinguishes between different bands.

2. The eigenfunctions of the free particle Hamiltonian can be written as free
waves, ψk(r) = �−1/2 exp(ik · r). Bloch states have the form ψn,k (r) =
eik·run,k(r) where u has the lattice periodicity, that is, un,k(r + R) = un,k (r)
where R is any lattice vector.

3. The energy eigenvalues of the free particle are E(k) = h̄2k2/(2m) where
m is the particle mass. As such, the energy is a continuous variable that can
take values in the interval (0, ∞). The energy eigenvalues that correspond
to Bloch states satisfy En(k + G) = En(k) and, as seen in Sections 4.3.4
and 4.3.5, are arranged in bands separated by forbidden energy gaps.

4. For free particles, h̄k is the momentum and the corresponding velocity is
h̄k/m = h̄−1∇E(k). These momentum and speed change under the operation
of an external force Fexternal. It may be shown that as long as this force does
not change too fast in space and time, a classical-like equation of motion

h̄k̇ = Fext (4.113)

holds.6 Indeed, we have used equivalent expressions, for example, (4.66), in
the analysis of Section 4.3.2. As pointed out above, the “crystal momentum”
h̄k is not really an eigenvalue of the electron’s momentum operator. Still,
under certain conditions it is possible to show that the function

vn(k) = h̄−1∇En(k) (4.114)

still represents the speed of the electron in the state (n, k), that is, in a given
band and with a given crystal momentum. Furthermore, Eq. (4.113) for the
rate of change of the crystal momentum remains approximately valid under

6 The validity of Eq. (4.113) is a nontrivial issue that should be examined carefully under any given
conditions.
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these conditions. Equations (4.113) and (4.114) constitute the basis to what
is known as the semiclassical model of electron dynamics.

Problem 4.5. Show that if the external force Fext is derived from a time-
independent potential, Fext = −∇Uext(r), and if the total energy of an electron
in Bloch state (n, k) that moves in this external potential is taken as

Etot(r) = En(k)+ Uext(r) (4.115)

than Eq. (4.113) follows from (4.114) and the requirement that energy is
conserved.

Solution: Conservation of Etot(r) during the electron motion implies

0 = dEtot(r)
dt

= k̇ · ∇kEn(k)+ ṙ · ∇rUext(r) (4.116)

We have used subscripts k and r to distinguish between the corresponding
gradient. Using (4.114) in the form ṙ = h̄−1∇kEn(k) we get h̄k̇ = −∇r
Uext (r) = Fext.

4.3.7 Further dynamical implications of the electronic band structure of solids

An immediate and most important consequence of the band structure of crystalline
solids is the distinction between metals and nonmetals that reflects the position
of the Fermi energy vis-à-vis the band energy. Before addressing this issue it is
important to consider the energy scales involved. The following points are relevant
for this consideration:

1. In atoms and molecules the characteristic electronic energy scale is typically
a few electronvolts. This is the order of energy spacing between the lower
electronic energies of atoms and molecules. It is also the order of interatomic
coupling (e.g. interaction of electrons on one atom with the nucleus of its
nearest neighbor, that is, the β parameter in (4.91)) and of the Fermi energy
calculated from (4.61). We thus expect the bandwidths and band gaps to be
of the same order of up to a few electron volts.

2. These characteristic energies scales are larger by about two orders of mag-
nitude than another important energy scale—the thermal energy. Indeed, at
T = 300 K we have 1 eV/(kBT ) = 38.7.
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These two observations imply that most electrons in a solid cannot contribute to
dynamical processes that require energy exchange of magnitude kBT or less—the
argument is similar to that made in Section 4.3.1. One can furthermore assert that
filled bands, that is, band for which all states lie below the Fermi energy do not
contribute to the electric or thermal conduction of a solid. To see this note first that
when a small electric field or a small temperature gradient is applied, the energies
involved are not sufficient to add or remove electrons to/from the band. The energy
and electrical fluxes associated with a filled band are then given by

j = − e

�

∫
dkρ(k)v(k) (4.117)

and

jE = 1

�

∫
dkρ(k)E(k)v(k) (4.118)

where ρ(k) = 2 × �/(2π)3 is the density of states per unit volume of k-space
(the factor 2 comes from the spin multiplicity) and � is the system volume. Using
Eq. (4.114) for the electron speed, these expressions become

j = −e

h̄

∫
dk
4π3∇E(k) (4.119)

and

jE = 1

2h̄

∫
dk
4π3∇E2(k) (4.120)

These integrals are done over the volume of a primitive cell of the reciprocal lattice.
Using a theorem (see Section 1.1.3) that states that the integral over a period of the
gradient of a periodic function is zero, we find that both j and jE vanish.

Thus, we have found that filled bands do not contribute to the charge and energy
transport properties of solids. Empty bands obviously do not contribute either. We
may conclude that solids in which all bands are either full or empty are insulators.
In this case the Fermi energy, or more generally the electronic chemical potential,
is located in the gap, far (relative to kBT ) from the nearest bands above and below
it, so that all lower bands are fully occupied and all upper ones are empty.

In the other extreme case the Fermi energy is found in the interior of a band and
we are dealing with a metal. As long as it is far (relative to kBT ) from the band
edges, the situation is not much different from that described by the free electron
model discussed in Sections 4.3.1 and 4.3.2, and this model provides a reasonable
simple approximation for the transport properties.

In the interesting case where the Fermi energy is in the gap but its distance from
the nearest band is not very large, this band may be thermally populated. This leads
to a characteristic temperature dependence of the density of mobile charge carriers
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and the associated transport properties. Such solids are called semiconductors, and
are discussed next.

4.3.8 Semiconductors

When T = 0 semiconductors are insulator in which the gap between the highest
filled band (henceforth referred to as valence band) and the lowest empty one
(referred to as conduction band) is relatively small. At elevated temperatures that are
still lower than the melting point enough electrons are transferred from the valence
to the conduction band and form a population of mobile charges that contributes to
electronic transport. Alternatively, the source of electrons in the conduction band
and/or their deficiency in the valence band can be the result of electron transfer
to/from impurity species as discussed below.

Figure 4.4 displays a schematic electronic structure showing the valence and
conduction bands and the gap between them. The two bands are arranged in a way
that is reminiscent of what was seen in the nearly free electron model, Fig. 4.3,
except that in general the minimum conduction band energy and the maximum
valence band energy are not necessarily aligned vertically above each other.7 Real
band structure diagrams are far more complex both because different bands can
overlap in energy and because in the three-dimensional k-space E(k) can behave
differently in different k directions. Still, this simple picture suffices for conveying
some fundamental issues:

1. Semiconductors are low bandgap insulators. “Low” is defined qualitatively, so
that an appreciable density of electrons can be thermally excited into the conduction
band at temperatures that are technologically relevant. In silicon, a large gap semi-
conductor (Eg = 1.12 eV; exp(−Eg/kBT ) ∼ 1.6× 10−19 at 300 K), this density is
very small at room temperature. Germanium (Eg = 0.67) and indium-antimonide
(InSb, Eg = 0.16 eV; exp(−Eg/kBT ) ∼ 2× 10−3 at 300 K) are examples of lower
gap semiconductors. For comparison, in diamond Eg = 5.5 eV.

2. When electrons are excited, thermally or optically to the bottom of the con-
duction band they behave essentially as free mobile charge carriers. Indeed, we
may expand the conduction band energy Ec(k) about the bottom, at k = kc, of the

7 This observation is experimentally significant. It can be shown that photoinduced electronic excit-
ation from the valence to the conduction band obeys a selection rule by which the k vector remains
essentially unchanged. When the minimum valence band energy and the maximum conduction band
energy are aligned exactly above each other in this diagram, the minimum absorption energy determ-
ines the band gap. Otherwise, when the minima and maxima occur at different points in k-space,
the minimum absorption energy is larger than the band gap. In the semiconductor literature these
processes are referred to as direct transitions and indirect transitions, respectively.
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Conduction band

Valence band

Fig. 4.4 A portion of a schematic band structure diagram showing the energy as a function of k in a
particular direction of k-space, for the valence and conduction bands. The minimum energy difference
Eg is the band gap. µ is the electron chemical potential.

conduction band in the form

Ec(k) = Ec + h̄2(k − kc)
2

2mc
(4.121)

mc is defined from this expansion.8 The electron near the bottom of the conduction
band may be regarded as a free particle of mass mc. We refer to this mass parameter
as the effective mass of the conduction band electron.

3. As discussed in Section 4.3.2, mobile charge carriers move as free particles
between scattering events. The conductivity σ , Eq. (4.69), depends on their density
n and on the relaxation time τ . In metals n does not depend on temperature while τ

decreases with increasing T because it is partly determined by electron–phonon
scattering that increases at higher temperatures. Therefore, metallic conduction
decreases with increasing T . In semiconductors, the strong exponential temperat-
ure dependence of the density n of mobile charge carriers dominates the temperature
dependence of the conductivity, which therefore increases with temperature.

4. The above discussion pertains to conduction by electrons in the conduction
band without addressing their source, and would remain the same also if these elec-
trons are injected into the conduction band from the outside. It should be intuitively
clear that if, instead, we remove electrons from the valence band the resulting “elec-
tron vacancies” or “holes” contribute to the conduction in a similar way: Electrons

8 Equation (4.121) is a simplified form. The general expansion takes the form

Ec(k) = Ec + (1/2)h̄2
3∑

i,j=1

(ki − kci)(m
−1
c )i,j(kj − kcj)

and defines the effective mass tensor m.
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move to fill the vacancies, which amounts to an effective motion of positive holes
in the opposite direction. The rigorous formulation of this statement rests on two
points:

a) Writing Eq. (4.117) in the form

j = −e
∫

occupied
band states

dk
4π3 v(k); v(k) = h̄−1∇E(k) (4.122)

and using the fact that when the integral in (4.122) is carried over all states in
the band the result vanishes, imply that the current density j is also given by

j = e
∫

unoccupied
band states

dk
4π3 v (k) (4.123)

Rather than looking at the occupied states in the almost filled valence band
we can focus on the few empty states. The current density is given according
to (4.123) as an integral over these unoccupied states, or “states occupied by
holes,” and its form is the same as (4.122) except with positive, rather than
negative, charge.

b) The dispersion relationship for these states, near the top of the valence band, is
obtained by expanding the band energy Ev(k) about its maximum at k = kv,
leading to an equation similar to (4.121)

Ev(k) = Ev − h̄2(k − kv)
2

2mv
(4.124)

(again a more general expression should usually be used8). The important
thing to note is that since we now expand near the band maximum, the
curvature of the dispersion curve is negative, that is, the particle behaves
as if its effective mass is −mv. This means that an external force in a given
direction should induce motion in the opposite direction (h̄k̇ = Fext and
v̇ = −(1/mv)h̄k̇). Equivalently, since the forces relevant to the problem are
derived from the interaction of the electrons with electrostatic or electromag-
netic fields, they are proportional to the particle charge. The resulting hole
acceleration can therefore be taken to correspond to a particle of positive
mass mv but with a charge of opposite, that is, positive, sign. Referring to
Eq. (4.123) we may conclude that the motion of holes, that is, the acceleration
resulting from the action of an external field, reflect particles carrying posit-
ive charge. An additional factor e is needed to get the electric current so this
current is proportional to e2 as was already asserted in discussing Eq. (4.69).
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We may conclude that electron and holes contribute additively to the observed
conductivity of the semiconductor, σ = σe + σh. The contributions σe of the
electron density in the conduction band and σv of holes in the valence band can be
approximately assessed from Eq. (4.69),

σe = nce2τc

mc
; σh = pve2τv

mv
(4.125)

where the densities of electron and holes in conduction and valence bands are
denoted nc and pv, respectively.

5. In the picture portrayed so far, the existence of electrons in the conduction
band must result from thermal excitation of these electrons out of the valence band,
hence

nc = pv (intrinsic semiconductors) (4.126)

This always holds when the semiconductor is clean, without any added impurities.
Such semiconductors are called intrinsic. The balance (4.126) can be changed by
adding impurities that can selectively ionize to release electrons into the conduction
band or holes into the valence band. Consider, for example, an arsenic impurity
(with five valence electrons) in germanium (four valence electrons). The arsenic
impurity acts as an electron donor and tends to release an electron into the system
conduction band. Similarly, a gallium impurity (three valence electrons) acts as an
acceptor, and tends to take an electron out of the valence band. The overall system
remains neutral, however now nc �= pv and the difference is balanced by the
immobile ionized impurity centers that are randomly distributed in the system. We
refer to the resulting systems as doped or extrinsic semiconductors and to the added
impurities as dopants. Extrinsic semiconductors with excess electrons are called
n-type. In these systems the negatively charged electrons constitute the majority
carrier. Semiconductors in which holes are the majority carriers are called p-type.

6. The main variables that determine the transport and screening (see below) of
both intrinsic and extrinsic semiconductors are the mobile carrier densities nc and
pv. Given the energetic information, that is, the electronic band structure, and the
dopant concentrations, these densities can be evaluated from equilibrium statistical
mechanics. For example, the density of electrons in the conduction band is

nc = 1

�

∞∫
Ec

dEρc(E)
1

eβ(E−µ) + 1
(4.127)

where� is the system volume and ρc(E) is the density of single electron states in the
conduction band. The determination of the chemical potential µ is discussed below.
In what follows we will denote by ρ̄ = ρ/� the density of states for unit volume.



Electronic structure of solids 163

In the effective mass approximation we assume that the expansion (4.121) is valid
in the energy range (near the conduction band edge) for which the integrand in
(4.127) is appreciable. In this case we can use for ρc(E) the free particle expression
(cf. Eq. (4.59))

ρc(E) = �

π2

mc

h̄3

√
2mc(E − Ec) ≡ �ρ̄c(E) (4.128)

Similarly

pv =
Ev∫

−∞
dEρ̄v(E)(1 − 1

eβ(E−µ) + 1
) =

Ev∫
−∞

dEρ̄v(E)
1

eβ(µ−E) + 1
(4.129)

where, again in the effective mass approximation, the hole density of states is given
by an equation like (4.128) with mv and |E − Ev| replacing mc and E−Ec. Note that
the function fh(E) = [exp(β(µ− E))+ 1]−1 that appears in (4.129) can be thought
of as the average hole occupation of a level at energy E.

We have seen that for most room temperature semiconductors Eg 
 kBT .
Simpler expressions may be obtained in the often encountered situation when the
inequalities

Ec − µ 
 kBT ; µ− Ev 
 kBT (4.130)

are also satisfied. In this case we can simplify the occupation factors according to

1

eβ(E−µ) + 1
≈ e−β(E−µ); E > Ec (conduction band) (4.131a)

1

eβ(µ−E) + 1
≈ e−β(µ−E); E < Ev(valence band) (4.131b)

In this case Eqs (4.127) and (4.128) take the simpler forms

nc(T ) = Nc(T )e−β(Ec−µ) (4.132a)

pv(T ) = Pv(T )e−β(µ−Ev) (4.132b)

where

Nc(T ) =
∞∫

Ec

dEρ̄c(E)e−β(E−Ec) (4.133a)

Pv(T ) =
Ev∫

−∞
dEρ̄v(E)e−β(Ev−E) (4.133b)



164 Introduction to solids

Problem 4.6.

1. Show that under the approximation that leads to (4.132) we can write

ncpv = NcPve−βEg (4.134)

2. Show that in the effective mass approximation

Nc(T ) = 1

4

(
2mckBT

π h̄2

)3/2

(4.135a)

Pv(T ) = 1

4

(
2mvkBT

π h̄2

)3/2

(4.135b)

Using expressions (4.135) with the free electron mass replacing mc or mv yields
2.5 × 1019 cm−3 at T = 300 K for these parameters.

The only yet unknown quantity in Eqs (4.132) is the chemical potential µ. It
can be determined from the condition of local charge neutrality, which for intrinsic
semiconductors is simply nc = pv.

Problem 4.7. Show that for intrinsic semiconductors, assuming the validity of
(4.132),

µ = 1

2

[
(Ev + Ec)+ kBT ln

(
Pv

Nc

)]
(4.136)

In the extrinsic case, the expression of overall charge neutrality should take into
account the existence of immobile positive centers of donors that lost electrons
and/or negative centers of acceptors that gained electrons. Also, the validity of the
approximations (4.131) may some times become questionable. We will not dwell
on the details of these calculations but it should be clear that they have now been
reduced to merely technical issues.

4.4 The work function

Chapter 17 of this text focuses on the interface between molecular systems and
metals or semiconductors and in particular on electron exchange processes at such
interfaces. Electron injection or removal processes into/from metals and semicon-
ductors underline many other important phenomena such as contact potentials (the
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potential gradient formed at the contact between two different metals), thermionic
emission (electron ejection out of hot metals), and the photoelectric effect (electron
emission induced by photon absorption). Two energetic quantities are central to the
understanding of these phenomena: The electron chemical potential and the work
function.

Let us start from individual atoms. The minimum energy required to remove
an electron from a given atom is the atomic ionization potential, IP. The energy
released upon inserting an electron to the atom is the electron affinity, EA, of that
atom. (A negative electron affinity implies that energy is required to insert the
electron.) For a given atom IP �= EA because different electronic energy levels of
the atom are involved in the two processes: An electron is removed from the highest
occupied atomic orbital and is inserted to the lowest unoccupied one. Obviously,
the electron affinity of a given atom is equal to the ionization potential of the
corresponding negative ion.

Things are somewhat more complicated already with molecules. While the con-
cepts of ionization potential and electron affinity remain the same, the underlying
nuclear motion can affect the observed energies. Two issues are at play: First, the
equilibrium nuclear configuration of a molecule is usually different from that of the
corresponding molecular ions, and second, that the timescale for nuclear motions is
much slower than that which characterizes the electronic process. For this reason,
what is usually observed is the sudden, or vertical, energy to remove the electron,
which is larger than the actual, so called adiabatic, ionization potential. Figure 4.5
depicts the difference between these quantities.

A macroscopic solid can be regarded as a very large molecule, and the situation
pictured above remains in principle the same. Some differences however should be
noted:

1. In metals, the ionization potential and the electron affinity are the same,
and are given by the electron chemical potential (or the Fermi energy at T = 0)
measured with respect to the vacuum energy.9 To be specific we write, for T = 0,

(IP)metal = −EF (4.137)

where the vacuum energy is taken as the energy origin. In a zero-temperature
semiconductor the ionization potential is the difference between vacuum energy
and the top of the valence band, while the electron affinity is the corresponding
difference between vacuum and the bottom of the conduction band. This implies that

IP − EA = Eg

9 Unless otherwise stated, the term “vacuum energy” is taken to refer to the ground state energy of
a single free electron in infinite space.
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(IP)V

(IP)A

Nuclear potential 
surface of the

molecular
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Nuclear potential surface 
of neutral molecule

Fig. 4.5 A comparison between the vertical and the adiabatic molecular ionization potentials. The
parabolas represent the nuclear potential surfaces of the molecule and the molecular ion. The horizontal
shifts correspond to the different equilibrium nuclear configurations of these species. Electronic
energies are measured from the corresponding ground vibrational levels. (IP)v and (IP)A are the
vertical and adiabatic ionization potentials, respectively.

2. The nuclear relaxation energy (the difference between the vertical and adia-
batic ionization potentials) is expected to be negligible for metals: The electronic
states involved in losing or gaining an electron by the metal are delocalized and the
effect on the nuclear configuration of removing or adding a single electron to the
system is therefore negligible.

3. The energy needed to remove an electron from the interior of a metal to
vacuum at infinity is given by (4.137). However, in practical measurements, the
probe that determines electron exit from the molecule (in, say, photoemission or
thermionic emission experiments) is located at distances from the metal surface that
are small relative to the metal size. At such distances the measured workfunction
(as determined, for example, from the photocurrent energy threshold in a photoe-
mission experiment) depends on the excess charge density on the metal surface.
Such excess charge results from the fact that the metal surface provides a different
local environment for the metal electrons than the bulk, therefore if electrons were
distributed homogeneously in all parts of the metal including its surface, the local
electron chemical potential at the surface would be different then in the bulk. This
leads to a redistribution of the electron density and to excess (positive or negative)
surface charge. In this case the workfunction is given by

W = −EF + Ws (4.138)

where Ws is the additional work associated with this surface charge. This additional
contribution to the electron removal energy can be in the order of 5–10% of the
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workfunction, and usually depends on the particular metal surface involved in the
experiment. In qualitative estimates we often disregard this issue and use quoted
experimental values of the workfunction as measures of the true ionization potential
(or Fermi energy) of the metal.

4.5 Surface potential and screening

4.5.1 General considerations

Metals, semiconductors, electrolyte solutions, and molten salts have in common the
fact that they contain given or variable densities of mobile charge carriers. These
carriers move to screen externally imposed or internal electrostatic fields, thus
substantially affecting the physics and chemistry of such systems. The Debye–
Huckel theory of screening of an ionic charge in an electrolyte solution is an example
familiar to many readers.

When two such phases come into contact, charge may be transferred between
them, creating a potential difference between the two phases. This is already
observed when two different metals come into contact. At equilibrium we should
be able to move an electron through this contact without energy cost. However,
if the work to extract an electron from one metal is its work function W1, and the
work gained by inserting the electron to the other metal is the second work function
W2, then energy conservation implies that there must be an interfacial electric field
that does work W1 −W2 on the electron, that is, a potential difference between the
two metal faces (called contact potential) given by

−e�� = W1 − W2 (4.139)

A potential difference may be also imposed externally. One may expect intuit-
ively that far enough from the interface the system exhibits the properties of a pure
homogeneous system with no potential gradients (this statement is a rephrasing of
the familiar principle that the electrostatic field must vanish in a homogeneous sys-
tem containing mobile charge carriers). Therefore, the potential change (the terms
“potential distribution” or “potential fall” are often used) must take place near
the interface. The following example demonstrates the importance of knowing the
way the potential is distributed across such interfaces: We consider a molecule
seated near a semiconductor surface (Fig. 4.6). The molecule is characterized by
its highest occupied molecular orbital (HOMO) and lowest unoccupied molecular
orbital (LUMO), and the semiconductor is characterized by its valence and con-
duction bands, VB and CB, and their edges, Ev and Ec, respectively. Suppose we
are interested in the possibility to transfer an electron from the molecule to the
semiconductor following an optical excitation that transfers an electron from the
HOMO to the LUMO molecular level. When the energy relationships are as shown
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Fig. 4.6 A molecule (represented by its HOMO and LUMO levels) next to a semiconductor surface
characterized by its conduction and valence band edges, Ec and Ev. Following excitation that populates
the HOMO, electron transfer into the conduction band of the semiconductor can take place when the
alignment of molecular and semiconductor levels are as in (b), but not (a) (see also Fig. 4.8).

in panel (a) electron transfer is energetically forbidden because the LUMO is posi-
tioned next to the semiconductor band gap with no available levels to accept the
electron. Electron transfer could take place after populating the LUMO if Elumo was
higher than Ec so the LUMO is energetically degenerate with empty conduction
band states in the semiconductor. This could happen if a potential bias is imposed
between the molecule and the semiconductor, so that the molecule side is at negative
potential bias relative to the semiconductor surface as shown in panel (b).

Now, a potential bias can be practically imposed only between the interiors
of the semiconductor and the molecular phases. The implications for the process
under discussion are related to the way this bias is reflected in the potential fall
at the semiconductor-molecule interface. This is the issue under consideration.
Before addressing this issue we need to understand how an electrostatic potential
is distributed in each phase separately.

4.5.2 The Thomas–Fermi theory of screening by metallic electrons

It should be appreciated that in contrast to the simple free electron models used
in much of our discussion of metals and semiconductors, a treatment of screening
necessarily involves taking into account, on some level, the interaction between
charge carriers. In the Thomas–Fermi theory this is done by combining a semiclas-
sical approximation for the response of the electron density to an external potential
with a mean field approximation on the Hartree level—assuming that each electron
is moving in the mean electrostatic potential of the other electrons.

Consider a semi-infinite metal represented by the gray area in Fig. 4.7. The
homogeneous bulk metal is taken to be locally neutral, the electronic charge is
compensated by the positive background and the potential is constant. Near impur-
ities or at the surface this is not necessarily so. Suppose that the potential is given
to be �S on the metal surface and �B in its interior and consider the potential
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�S
�B

Xx = 0

Fig. 4.7 A semi-infinite metal with a surface potential �(x = 0) = �S and bulk potential
�(x →∞) = �B: A model for discussing metallic screening.

distribution in between these regions and what is the charge associated with this
distribution.

The system is infinite in the y and z directions, so our problem is one-
dimensional. In the absence of potential bias we have free electrons that occupy
eigenstates of the kinetic energy operator up to the Fermi energy. The density of
states per unit volume is (cf. Eq. (4.59))

ρ̄(E) = 1

π2

√
2m3/2

h̄3

√
E (4.140)

In the presence of an external potential we use a semiclassical argument as in
(4.115), by which the electronic states remain the free wave eigenstates of the
kinetic energy operator associated with eigenvalues EK, however the corresponding
electronic energies become position-dependent according to

E(x) = EK − e(�(x)−�B) = EK − eδ�(x) (4.141)

The Fermi energy is the same everywhere, however (4.141) implies that the ground
state energy becomes position-dependent. Equivalently, we may regard the zero
energy as uniformly fixed everywhere in the system but the Fermi energy becoming
position-dependent

EF → EF + eδ�(x) (4.142)

The excess density of electrons at position x is therefore given by

δn(x) =
EF+eδ�(x)∫

0

dEρ̄(E)−
EF∫

0

dEρ̄(E) (4.143)
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which, using (4.140) yields

δn(x) = (2m)3/2

3π2h̄3 [(EF + eδ�)3/2 − E3/2
F ]

e��EF−→ (2m)3/2e
√

EF

2π2h̄3 δ�(x)
(4.144)

The excess charge density associated with the surface potential is therefore

δρq(x) = −eδn(x) = −(2m)3/2e2√EF

2π2h̄3 δ�(x) (4.145)

Using the one-dimensional version of the Poisson equation (1.216), ∂2δ�/∂x2 =
−4πδρq, this yields an equation for the potential distribution

∂2δ�

∂x2 = κ2
TFδ� (4.146)

where κTF is the inverse Thomas Fermi screening length

kTF = 4πe

(2π h̄)3/2 (2m)3/4E1/4
F (4.147)

The general solution of (4.146) is δ�(x) = A exp(kTFx)+B exp(−kTFx) and using
δ�(x = 0) = �S−�B and δ�(x →∞) = 0 leads to the final solution in the form

�(x) = �B + (�S −�B)e
−κTFx (4.148)

The Thomas–Fermi length, k−1
TF characterizes screening by metallic electrons:

Given the potential on the metal surface, the potential inside the metal approaches
its bulk value within this length scale. Using the electron charge and mass together
with a value for EF in the range of, say, 5 eV, yields ∼0.6 Å for this length. The
metal is seen to screen efficiently any potential imposed on its surface: The interior
of the metal does not see the surface potential beyond a “skin depth” of the order
of ∼1 Å.

4.5.3 Semiconductor interfaces

Contacts between semiconductors on one side, and metals, electrolyte solutions, and
other semiconductors are pervasive in today’s technology. Contacts between semi-
conductors and various types of molecular environments are increasingly found in
advanced application such as organic light-emitting diodes. Understanding the elec-
trical properties of semiconductor interfaces starts again with the relatively simple
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example of Fig. 4.7: Taking the gray area in this figure to be a semiconductor
of known properties (band structure, doping, dielectric constant, and temperature)
and given a difference between the surface electrostatic potential �S and the bulk
potential �B, how is the potential distributed at the semiconductor interface (here
assumed planar), namely what is the dependence of the potential on the distance x
from the surface going inwards toward to interior?

A detailed answer to this question can be found in many texts on semiconductors
and semiconductor interfaces. Here we just outline the main points of this theory
and make a few observations that will be referred to elsewhere in this text:

1. As in Section 4.5.2, the solution to this problem is obtained from the Poisson
equation (1.219), which is again needed in one dimension

∂2δ�(x)

∂x2 = −4π

ε
δρq(x) (4.149)

where ε is the dielectric constant10 and δρq is the excess charge density.
2. In turn, the excess charge density δρq(x) depends on the local potential. To see

this consider Eqs (4.127) and (4.129) for the densities of electrons in the conduction
band and holes in the valence bands. These equations where written for a system
where the potential is uniform everywhere (and can therefore be taken zero). The
presence of an additional potential δ�(x) at position x has the effect of shifting the
local electron energy by −eδ�(x).11 Under the approximation that yields (4.132)
the corresponding local electron and hole densities become

nc(x; T ) = Nc(T )e−β(Ec−eδ�(x)−µ) (4.150a)

and
pv(x; T ) = Pv(T )e−β(µ−Ev+eδ�(x)) (4.150b)

3. For intrinsic semiconductors the net excess charge is

δρq(x) = nc(x)+ pv(x) (4.151)

This case is completely analogous to the case of ionic solution that was treated in
Section 1.6.3. Indeed, Eq. (4.151) is identical to (1.247). For |eδ�| � kBT we can
proceed along the same lines as in that treatment to obtain (cf. Eq. (1.253))

�(x) = �B + (�S −�B)e
−κx (4.152)

10 Note that in the corresponding equation used in the Thomas–Fermi theory, Section 4.5.2, one
takes ε = 1: It is assumed that the dielectric response is dominated by the free metallic electrons,
which are treated explicitly.

11 Here we apply the same semiclassical approximation that was used in (4.115) and (4.141).
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HOMO
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m

Fig. 4.8 A molecule (represented by its HOMO and LUMO levels next to a semiconductor surface)
characterized by its conduction and valence band edges, Ec and Ev—same as Fig. 4.6, except that the
common effect of an interfacial electrostatic potential is shown in the semiconductor band bending
near its surface. In the case shown the surface potential is lower than in the semiconductor bulk,
leading to up-bending of the band edges.

where κ is a screening length given by Eq. (1.252) with z+ = z− = 1, nB− →
Nce−β(Ec−µ), nB+ → Pv(T )e−β(µ−Ev).

4. For extrinsic semiconductors the calculation is somewhat more involved
because of the presence of immobile charged centers, but as long as linearization
of Eq. (4.150) in δ� can be implemented the result will again be similar in form
to (4.152) with a screening length which is essentially of the same form (1.252).
It again depends on the density of mobile carriers densities, which may now be
dominated by the doping characteristics of the semiconductor.

5. Equation (4.150) reveals an important characteristic of semiconductor sur-
faces: The effect of the surface potential can be represented by defining local band
edges,

Ec, Ev → Ec − eδ�(x), Ev − eδ�(x) (4.153)

Since the electronic properties of semiconductors are determined by the relative
positioning of the electronic chemical potential and the band edges, this would imply
that the surface potential modifies the electronic behavior of semiconductor sur-
faces relative to their bulk, including the surface charge density and the propensity
for accepting or releasing electrons. An example is shown in Fig. (4.8). Note that
at equilibrium the electronic chemical potential is a position-independent constant
over all the semiconductor volume. While we will not develop this subject further
here, it should be evident that understanding electrostatic effects on band struc-
tures at semiconductor interfaces is a prerequisite to understanding charge transfer
reactions at semiconductor surfaces.12

12 For further reading see A. Many, Semiconductor Surfaces (North Holland, New York, 1965) or
W. Mönch, Semiconductor Surfaces and Interfaces (Springer, Berlin, 1995).
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Fig. 4.9 The potential bias distribution in an interface between two systems containing mobile
charges.

6. It is of interest to compare screening in a “typical” semiconductor to that found
in a “typical” ionic solution, keeping in mind that the screening length is inversely
proportional to the square root of the mobile charge density. In a 1M fully ionized
monovalent salt solution the total carrier density is of the order ∼1021 ions cm−3.
In most intrinsic semiconductors the number is smaller by orders of magnitude,
as can be seen from Eqs (4.134) and (4.135) and the estimates underneath which
imply nc = pv = √

NcPve−βEg/2 ≈ 2.5×1019 e−βEg/2. For highly doped extrinsic
semiconductors the density of majority carriers is approximately determined by the
density of the corresponding impurities and can be as high as 1019 cm−3, same as
in a 0.01 M electrolyte solution. We may conclude that the screening length in a
semiconductor is at most comparable to that of ∼10 mM electrolyte solution.

4.5.4 Interfacial potential distributions

It is remarkable that the surface potential fall toward its bulk value is a similar
exponential function, (4.148) or (4.152), in the semiclassical Thomas–Fermi the-
ory of electronic screening in the Debye–Huckel/Gouy–Chapman theory of ionic
screening and at semiconductor interfaces. Here we consider the following issue:
When two such phases come into contact as in Fig. 4.9, and a potential bias is set
between their interiors, how is the potential drop distributed at the interface?

Denote the two systems by L and R and let their corresponding inverse screening
lengths be κL and κR. The potentials in the interior bulk systems are given as �L
and �R, respectively. �S denotes the yet unknown potential at the interface, where
x = 0. At issue is the magnitudes of the partial contributions �L−�S and �S−�R
to the overall potential bias �L −�R.

Using (4.152) we can write

�L(x) = �L + (�S −�L)e
κLx; x ≤ 0 (4.154a)

�R(x) = �R + (�S −�R)e
−κRx; x ≥ 0 (4.154b)
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This form contains the information concerning the bulk potentials and also the fact
that �L(x = 0) = �R(x = 0) = �S. To find �S in terms of �L and �R we use the
electrostatic continuity relationship(

∂�L

∂x

)
x=0

=
(
∂�R

∂x

)
x=0

(4.155)

This leads to

�S = κR�R + κL�L

κL + κR
(4.156)

and to
�S −�R

�L −�R
= κL

κL + κR
= κ−1

R

κ−1
L + κ−1

R
�L −�S

�L −�R
= κR

κL + κR
= κ−1

L

κ−1
L + κ−1

R

(4.157)

Equation (4.157) is the mathematical expression of the intuitive result: The inter-
facial potential between two phases in contact is distributed between these two
phases in proportion to the corresponding screening lengths.

Further reading

N. W. Ashcroft and N. D. Mermin, Solid State Physics (Brooke Cole, Philadelphia, 1976).
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INTRODUCTION TO LIQUIDS1

Fluid substances must be composed
Of smooth and rounded particles. Poppy seeds
Might serve as an example, being round
And small and smooth, mercurial as drops
Of water, almost never held together…

Lucretius (c. 99–c. 55 bce) “The way things are” translated by
Rolfe Humphries, Indiana University Press, 1968.

The statistical mechanics of atomic motion in gases and solids have convenient
starting points. For gases it is the ideal gas limit where intermolecular interac-
tions are disregarded. In solids, the equilibrium structure is pre-determined, the
dynamics at normal temperature is characterized by small amplitude motions about
this structure and the starting point for the description of such motions is the har-
monic approximation that makes it possible to describe the system in terms of
noninteracting normal modes (phonons). Liquids are considerably more difficult
to describe on the atomic/molecular level: their densities are of the same order as
those of the corresponding solids, however, they lack symmetry and rigidity and,
with time, their particles execute large-scale motions. Expansion about a noninter-
acting particle picture is therefore not an option for liquids. On the other hand, with
the exclusion of low molecular mass liquids such as hydrogen and helium, and of
liquid metals where some properties are dominated by the conduction electrons,
classical mechanics usually provides a reasonable approximation for liquids at and
above room temperature.2 For such systems concepts from probability theory (see
Section 1.1.1) will be seen to be quite useful.

1 This chapter follows closely part of D. Chandler’s Introduction to Modern Statistical Mechanics,
(Oxford University Press, 1987, chapter 7).

2 An often used criterion for the validity of classical mechanics is that the De Broglie wavelength
λ=h/p (h is the Planck constant and p—the particle momentum) should be small relative to the inter-
molecular length scale. If we use {p = 〈|p|〉T } (where 〈〉T denotes thermal averaging) this becomes
essentially the thermal De Broglie wavelength, λ ≈ λT ≡ h̄

√
2π/(mkBT ). At 300 K and for a

molecular weight of nitrogen, say, we get λ = 0.18 Å, small compared to characteristic distances in
liquids—atomic sizes and range of interatomic potentials.
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This chapter introduces the reader to basic concepts in the theory of classical
liquids. It should be emphasized that the theory itself is general and can be applied
to classical solids and gases as well, as exemplified by the derivation of the virial
expansion is Section 5.6 below. We shall limit ourselves only to concepts and
methods needed for the rest of our discussion of dynamical processes in such
environments.

5.1 Statistical mechanics of classical liquids

The microscopic state of a classical system of N atoms is characterized by a
point in phase space, (rN , pN ) ≡ (p1, p2, . . . , pN , r1, r2, . . . , rN ). The classical
Hamiltonian is

H (rN , pN ) =
N∑

i=1

p2
i

2mi
+ U (rN ) (5.1)

where U is the potential energy which depends on the positions of all atoms in
the system. The probability to find the system in the neighborhood drN dpN of the
point (rN , pN ) is f (rN , pN )drN dpN , where

f (rN , pN ) = e−βH∫
drN

∫
dpN e−βH

(5.2)

The denominator in Eq. (5.2) is related to the classical canonical partition function.3

Using Eq. (5.1) this distribution function can be written as a product of
momentum and position parts

f (rN , pN ) = �(pN )P(rN ) (5.3)

where

�(pN ) = e−β
∑

i p2
i /2m∫

dpN e−β
∑

i p2
i /2m

(5.4)

is the probability distribution for the momentum sub-space, itself separable into a
product of factors associated with individual degrees of freedom

�(pN ) =
3N∏
i=1

φ(pi); φ(pi) = e−βp2
i /2m

∞∫
−∞

dpie−βp2
i /2m

= (2πmkBT )−1/2e−βp2
i /2m

(5.5)

3 Quantum mechanics implies the uncertainty restriction on the determination of positions and
momenta, limiting the number of possible quantum states. This leads to the canonical partition function

for a system of N identical particles Q = (N !h3N )−1 ∫
drN dpN e−βH (rN, pN ).
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and where

P(rN ) = e−βU (rN )∫
drN e−βU (rN )

(5.6)

is the probability distribution to observe the system at configuration phase
point rN . The denominator in Eq. (5.6), ZN ≡ ∫

drN e−βU (rN ) the Configurational
partition function.

The potential U (rN ) is a sum over all intra- and intermolecular interactions
in the fluid, and is assumed known. In most applications it is approximated as a
sum of binary interactions, U (rN ) = ∑

i>j u(rij) where rij is the vector distance
from particle i to particle j. Some generic models are often used. For atomic fluids
the simplest of these is the hard sphere model, in which u(r) = 0 for r > a and
u(r) = ∞ for r ≤ a , where a is the hard sphere radius. A more sophisticated
model is the Lennard Jones potential

u(r) = 4ε
[(σ

r

)12 −
(σ

r

)6
]

(5.7)

Here σ is the collision diameter and ε is the depth of the potential well at the min-
imum of u(r). For molecules we often use combinations of atomic pair potentials,
adding several body potentials that describe bending or torsion when needed. For
dipolar fluids we have to add dipole–dipole interactions (or, in a more sophisticated
description, Coulomb interactions between partial charges on the atoms) and for
ionic solutions also Coulomb interactions between the ionic charges.

5.2 Time and ensemble average

Consider an equilibrium thermodynamic ensemble, say a set of atomic systems char-
acterized by the macroscopic variables T (temperature),� (volume), and N (number
of particles). Each system in this ensemble contains N atoms whose positions and
momenta are assigned according to the distribution function (5.2) subjected to the
volume restriction. At some given time each system in this ensemble is in a par-
ticular microscopic state that corresponds to a point (rN , pN ) in phase space. As
the system evolves in time such a point moves according to the Newton equations
of motion, defining what we call a phase space trajectory (see Section 1.2.2). The
ensemble corresponds to a set of such trajectories, defined by their starting point
and by the Newton equations. Due to the uniqueness of solutions of the Newton’s
equations, these trajectories do not intersect with themselves or with each other.

In this microscopic picture, any dynamical property of the system is represented
by a dynamical variable—a function of the positions and momenta of all particles,

A = A(rN , pN ) (5.8)
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The associated thermodynamic property is the ensemble average

A = 〈A(rN , pN )〉 = A(�, T , N ) (5.9)

that is,

A(�, T , N ) =
∫ ∫

drN dpN f (rN , pN )A(rN , pN )

=
∫ ∫

drN dpN e−βH (rN ,pN )A(rN , pN )∫ ∫
drN dpN e−βH (rN ,pN )

(5.10)

Equation (5.10) defines an ensemble average. Alternatively we could consider
another definition of the thermodynamic quantity, using a time average

A(�, T , N ) = lim
τ→∞

⎛
⎝1

τ

τ∫
0

A(rN (t)pN (t))dt

⎞
⎠ (5.11)

The ergodic “theorem” of statistical mechanics (see also Section 1.4.2) states
that, for “realistic” systems, these two kinds of averaging, Eqs (5.10) and (5.11)
yield identical results. As example of an application of this theorem consider the
total kinetic energy of the system. The corresponding dynamical variable is

A = 1

2

N∑
i=1

p2
i

mi
; p2

i = p2
ix + p2

iy + p2
iz (5.12)

Using Eqs (5.3)–(5.5), Eqs (5.10) and (5.12) yield

A(�, T , N ) = 3

2
NkBT (5.13)

Therefore, under the ergodic theorem, Eq. (5.11) implies that

T = 1

3NkB
lim

τ→∞
1

τ

τ∫
0

dt
N∑

i=1

pi(t)2

mi
(5.14)

This observation has an important practical consequence: In numerical simulation
we usually follow a single-system trajectory in time, and the system temperature
can be obtained from such an equilibrium trajectory using Eq. (5.14).4 Note that

4 In practice, the operation limτ→∞(1/τ)
∫ τ

0 dτ is replaced by an average over a finite number of
points sampled along the equilibrium trajectory.
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Eq. (5.14) holds separately for each atom, that is,

T = 1

3kB
lim

τ→∞
1

τ

τ∫
0

pi(t)2

mi

for any atom i.

5.3 Reduced configurational distribution functions

Consider the configuration space distribution function P(rN ), Eq. (5.6). Mathemat-
ically, it is the joint distribution function (see Section 1.5.2) to find the N particles
of the system in their respective positions in configuration space, that is, P(rN )drN

is the probability to find particle 1 in the range dr1 near r1, and particle 2 in the
range dr2 near r2, and particle 3 in the range dr3 near r3, and so on.

We may also define a reduced distribution (see Section 1.5.2). The probability
to find particle 1, say, in the neighborhood dr1 of r1 irrespective of the positions
of all other particles is P(1/N )(r1)dr1, where

P(1/N )(r1) =
∫

dr2dr3dr4, . . . , drN P(rN ) (5.15)

In a homogeneous system of volume � this is obviously P(1/N )(r1) = 1/�. We
may similarly define a reduced joint distribution function to find the two particles
1 and 2 at location r1, r2, respectively, irrespective of the positions of all other
particles

P(2/N )(r1, r2) =
∫

dr3dr4, . . . , drN P(rN ) (5.16)

Note that P(2/N ) is normalized, that is,∫
dr1dr2P(2/N )(r1, r2) =

∫
drN P(rN ) = 1 (5.17)

If all the particles in the system are identical then r1 and r2 can be the coordinates of
any two particles in the system. It is sometimes convenient to use a normalization
that will express the fact that, if we look at the corresponding neighborhoods of r1
and r2, the probability to find these neighborhoods occupied by any two particles
increases in a statistically determined way with the number of particles in the
system. This is achieved by multiplying the joint distribution function P(2/N )(r1, r2)

by the number, N (N − 1), of distinct pairs in the system. This yields the pair
distribution function

ρ(2/N )(r1, r2) = N (N − 1)P(2/N )(r1, r2). (5.18)
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Noting that N (N − 1) is the total number of pairs in the system, ρ(2/N ) represents
the density of such pairs per unit volume. This concept can be generalized: the
reduced joint distribution function for particles 1, . . . , n is given by

P(n/N )(r1, . . . , rn) =
∫

drn+1, drn+2, . . . , drN P(rN ) (5.19)

and the n particle distribution function is defined by

ρ(n/N )(r1, . . . , rn) = N !
(N − n)!P

(n/N )(r1, . . . , rn)

= N !
(N − n)!

∫
drN−n e−βU (rN )∫

drN e−βU (rN )
(5.20)

where drN−n = drn+1, . . . , drN . To get a better intuition about these density func-
tions it is useful to note that the relation of ρ(2/N )(r1, r2) to P(2/N )(r1, r2)is the
analog of the relationship (in a homogeneous system) between ρ(1/N ) = N/� and
P(1/N ) = 1/�. The distributions P(n/N ) are always normalized to 1. On the other
hand, ρ(1/N ) is normalized to the number of particles N , ρ(2/N ) is normalized to
the number of pairs, N (N − 1), etc. (Note that, for indistinguishable particles, the
number of distinct pairs is N (N − 1)/2. The normalization we chose is convenient
because it satisfies relations such as Eq. (5.23) below).

As already noted, in a homogeneous fluid P(1/N ) does not depend on the
particle’s position and therefore

P(1/N ) = 1

�
; ρ(1/N ) = N

�
= ρ (5.21)

that is, ρ(1/N ) is just the density ρ. In an ideal gas there are no correlations between
particles, therefore in an isotropic system

P(2/N )(r1, r2) = P(1/N )(r1)P
(1/N )(r2) = 1

�2 (5.22)

Hence, the pair distribution function for an isotropic ideal gas is given by

ρ(2/N )(r1, r2) = N (N − 1)

�2 ≈ ρ2 (5.23)

Correlations in the system caused by deviation from ideality can be measured by
the pair correlation functions

g(r1, r2) = ρ(2/N )(r1, r2)/ρ
2 (5.24)
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or

h(r1, r2) = ρ(2/N ) − ρ2

ρ2 = g(r1, r2)− 1 (5.25)

It should be intuitively clear that the correlation between any two particles vanishes
as |r1 − r2| → ∞. Therefore g → 1 and h → 0 in this limit. For homogeneous
fluids all positions are equivalent, and it follows that g(r1, r2) = g(r1 − r2). For
homogeneous-isotropic fluids g(r1, r2) = g(|r1 − r2|), and similarly for h. In this
case we refer to these functions as radial distribution functions.

The physical meaning of the pair correlation function g can be elucidated by
using the conditional probability concept introduced in Section 1.5.2. In ana-
logy with Eq. (1.187), the single particle conditional distribution function in a
homogeneous system is given by

P(1/N )(r1 | r2)dr1 = P(2/N )(r1, r2)

P(1/N )(r2)
dr1 = �P(2/N )(r1, r2)dr1 (5.26)

(the second equality follows from Eq. (5.21) that holds for homogeneous systems).
P(1/N )(r1 | r2)dr1 is the conditional probability to find particle 1 in the neighbor-
hood dr1 of r1 given that particle 2 (or, if all particles are identical, any particle) is
at r2. Using Eqs (5.18) and (5.24) this can be rewritten in the form

ρg(r1, r2) = NP(1/N )(r1 | r2) (5.27)

The product on the right is the conditional density (number of particles per unit
volume) of particles at r1 given that a particle is at r2. For a homogeneous system
this can be rephrased as follows:

ρg(r) is the density of particles at r given that a particle is located at the origin
r = 0.

If the system is also isotropic, g depends only on the modulus r of r. In the absence
of correlations between particles, g = 1 and the conditional density is simply ρ

irrespective of whether there is a particle at the origin or not. When correlations
exist, g describes their effect on the fluid structure.

Figure 5.1 shows the pair correlation function of a typical Lennard–Jones liquid.
Two general features are seen: First, the short range structure that shows that atoms
in liquids arrange themselves about a central atom in a way that reflects their atomic
diameters (here expressed by the Lennard–Jones parameter σ), and, second, the
relative fast decay of this short-range order, expressed by the rapid approach of
g(r) to 1.
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Fig. 5.1 The pair correlation function of a Lennard–Jones fluid.
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Fig. 5.2 A schematic view of a wave scattering off an atom.

5.4 Observable implications of the pair correlation function

5.4.1 X-ray scattering

For normal liquids the characteristic structural distance is of order ∼1 Å. A probe
of liquid structure should therefore have a characteristic wavelength λ in this range.
This calls for using X-rays or light atomic particles as probes. In liquids we are
interested in the short-range structure, on the scale of intermolecular distances. This
implies the need to apply short range interactions and therefore the use of particles
should be limited to neutral ones, such as neutrons.

To see how g can be measured by X-rays or neutron scattering consider the
scheme of a scattering experiment shown in Figure 5.2. An atom A at rA scatters an
incoming wave with wavevector kin and the scattered wave with wavevector kout
is monitored by the detector at RD. The scattering angle is θ , as shown. In what
follows we consider elastic scattering only, that is, |kin| = |kout|.

The scattered wave at the detector is

S = f (k)
1

|RD − rA|e
ikin·rA+ikout ·(RD−rA) ≈ f (k)

|RD − RC|e
ikout ·RDe−ik·rA (5.28)
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where f (k) is an atomic scattering factor, k = kout − kin and RC is the center of
the scattering sample. All vectors are related to some origin at (0,0,0). Note the
approximation that was made in order to obtain the last part of Eq. (5.28) (see
Problem 5.1). The appearance in the denominator of the distance between the atom
and the detector results from the fact that the scattered amplitude depends inversely
on this distance.

Problem 5.1. Discuss the approximation made in Eq. (5.28). (a) Under what
conditions can we replace rA by RC in the denominator, as done? (b) Why is it
impossible to make this substitution in the phase factor e−ik·rA ?

Because |kin| = |kout|, the scattering angle θ and the modulus of the scattered
wavevector are related to each other by

k = 2|kin| sin
θ

2
= 4π

λ
sin

θ

2
(5.29)

The total scattered intensity is the absolute-value square of the scattered amplitude,
which is in turn a combination of scattered waves like Eq. (5.28) summed over all
scattering centers. The signal at the detector is therefore

I(θ) =
∣∣∣∣∣∣f (k)

eikout ·RD

|RC − RD|
N∑

j=1

e−ik·rj

∣∣∣∣∣∣
2

= |f (k)|2
|RC − RD|2 NS(k) (5.30)

where S is the structure factor, the factor in I (θ ) that depends on the fluid structure:

S(k) ≡ 1

N

〈
N∑

l,j=1

eik·(rl−rj)

〉
(5.31)

To find a more useful form for S(k) we first separate it to its diagonal (l = j)
and non-diagonal parts. The diagonal part yields unity. In a homogeneous isotropic
system all N (N − 1) non-diagonal terms are identical. We get

S(k) = 1 + 1

N
N (N − 1)〈eik·(r1−r2)〉

= 1 + N (N − 1)

N

∫
drN eik·(r1−r2)e−βU∫

drN e−βU

= 1 + 1

N

∫
dr1

∫
dr2ρ

(2/N )(r1, r2)e
ik·(r1−r2) (5.32)
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The last equality was obtained using Eqs (5.16) and (5.18). Since the system is
homogeneous we have ρ(2/N )(r1, r2) = ρ2g(r12) with r12 = r1 − r2. Therefore
the integrand is a function of r12 only and

∫
dr1

∫
dr2 =

∫
dr12

∫
dr1 = �

∫
dr12.

This yields

S(k) = 1 +
∫

dr12ρg(r12)e
ik·r12 (5.33)

This identifies S(k) with the Fourier transform of the pair correlation function,
so the latter may be obtained from the structure factor by inverting the transform.
Finally, denoting r = |r12| and using, for an isotropic system, g(r12) = g(r) we get

S(k) = 1 + 2πρ

∞∫
0

dr r2g(r)

π∫
0

dθ sin θeikr cos θ

= 1 + 4πρ

k

∞∫
0

dr r sin(kr)g(r) (5.34)

5.4.2 The average energy

Because some of the important interactions used to model atomic and molecular
fluids are binary, the corresponding averages that define macroscopic thermody-
namic quantities can be expressed in terms of the pair correlation function. The
following calculation of the average energy is an example. We consider the aver-
age potential energy in a homogeneous atomic fluid of identical particles with an
interatomic potential given by

U (rN ) =
∑

i

∑
j

u(rij) (5.35)

We already know that the average kinetic energy is (3/2)NkBT , so once the average
potential energy has been calculated we will have a full microscopic expression for
the macroscopic energy of the system. This average potential energy is

〈U 〉 =
∑
i>j

〈u(rij)〉 = N (N − 1)

2
〈u(r12)〉

= 1

2

N (N − 1)
∫

drN u(r12)e−βu(rN )∫
drN e−βU (rN )

= N (N − 1)

2

∫
dr1dr2u(r12)

∫
drN−2e−βu(rN )∫
drN e−βu(rN )

(5.36)
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Using again the definition of the pair correlation function g, this leads to

〈U 〉 = 1

2
ρ2

∫
dr1

∫
dr2g(r12)u(r12)

= 1

2
ρN

∫
drg(r)u(r) = 2πρN

∞∫
0

drr2g(r)u(r) (5.37)

The last equality holds for an isotropic and homogeneous system. This result can
be understood intuitively: For each of the N particles in the system (taken to be at
the origin), the potential energy is obtained as a volume integral over the density
of interaction energy associated with this particle. The latter is ρg(r) (density of
other particles at position r), multiplied by u(r). This will lead to double-counting
of all interactions and should therefore be divided by 2. The result is (5.37).

5.4.3 Pressure

Next consider the pressure. It may be obtained from the canonical partition function

P = kBT

(
∂ ln Q

∂�

)
N ,T

= kBT

(
∂ ln ZN

∂�

)
N ,T

(5.38)

The second equality results form the fact that in the expression for Q

Q = Qinternal

N !
(

2πmkBT

h2

)3N/2

ZN ; ZN =
∫

drN e−βU (rN ) (5.39)

Z is the only term that depends on the volume. Since we expect that the macroscopic
properties of the system will not depend on the shape of the container, we can
consider a cubic box of dimension �1/3. To make this dependence explicit we will
scale all coordinates by �1/3 where V is the volume, so that xk = �1/3x̄k . In terms
of the new coordinates x̄, ZN is

ZN = �N

1∫
0

. . .

1∫
0

e−βŪ (r̄N )d r̄N (5.40)

where
Ū (r̄N ) =

∑
i<j

u(�1/3r̄ij) (5.41)
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With the dependence of Z on � expressed explicitly we can take the derivative

∂ZN

∂�
= N

�
ZN +�N d

d�

⎛
⎝ 1∫

0

. . .

1∫
0

d r̄N e−β
∑

i<j u(�1/3r̄ij)

⎞
⎠ (5.42)

In the second term on the right the derivative with respect to volume may be found
as follows:

d

d�

⎛
⎝ 1∫

0

. . .

1∫
0

d r̄N e−β
∑

i<j u(�1/3r̄ij)

⎞
⎠

= −β

1∫
0

. . .

1∫
0

d r̄N
∑
i<j

(u′(�1/3r̄ij)(1/3)�−2/3 · r̄ij)e
−β

∑
i<j u(�1/3r̄ij)

going back to unscaled coordinates−−−−−−−−−−−−−−−−−−−→ − β

3�N+1

∫
drN

∑
i<j

(u′(rij) · rij)e
−β

∑
i<j u(rij)

= − β

6�N+1 N (N − 1)
∫

drN r12 · u′(r12)e
−βU (5.43)

Here we have used the notation u′(r) = ∇u(r). Using this in (5.42) yields

∂ ln ZN

∂�
= 1

ZN

∂ZN

∂�
= N

�
− 1

6kBT�
N (N − 1)〈r12u′(r12)〉 (5.44)

Using the same arguments that led to N (N − 1)〈u(r12)〉 = ρN
∫

drg(r)u(r), (see
Eqs (5.36) and (5.37)) we now get N (N − 1)〈r12u′(r12)〉 = ρN

∫
dr g(r) r · u′(r),

so

P

kBT
=

(
∂ ln ZN

∂�

)
N ,T

= ρ − ρ2

6kBT

∞∫
0

drg(r) r · u′(r) (5.45)

To get explicit results for the thermodynamic quantities discussed above (energy,
pressure) we need an expression for g(r). This is considered next.

5.5 The potential of mean force and the reversible work theorem

Consider again our equilibrium system of N interacting particles in a given volume
V at temperature T . The average force exerted on particle 1 by particle 2 is
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defined by

〈F12〉 (r1, r2) = −
〈

∂

∂r1
U (rN )

〉
r1,r2

= −
∫

dr3 . . .
∫

drN (∂U/∂r1)e−βU∫
dr3 . . .

∫
drN e−βU

(5.46)

Here the total force acting on particle 1 was averaged over all of the system’s
configurations in which particles 1 and 2 are fixed in their positions r1 and r2,
respectively. In an isotropic system this mean force depends only on the vector
distance, r12, between particles 1 and 2, and if the particles are structureless only
on the magnitude of this distance.

Knowing 〈F12〉(r12) makes it possible to integrate it in order to calculate the
reversible work needed to bring particles 1 and 2 from infinite mutual distance
to a relative distance r between them, while averaging over the positions of all
other particles. The latter are assumed to be at equilibrium for any instantan-
eous configuration of particles 1 and 2. Note that the word “reversible” enters
here as it enters in thermodynamics: A reversible process is one where a system
changes slowly enough so that equilibrium prevails throughout the process. This
work W (T ,�, N ; r) is called the potential of mean force. It is intuitively clear that
its dependence on � and N enters only through their ratio, ρ = N/�. As defined,
W satisfies

dW (r12)

dr1
= −F12 (5.47)

and from Eq. (5.46) we get

dW

dr1
=

∫
dr3 . . .

∫
drN (∂U/∂r1)e−βU∫

dr3 . . .
∫

drN e−βU
= −kBT

(d/dr1)
∫

dr3 . . .
∫

drN e−βU∫
dr3 . . .

∫
drN e−βU

= −kBT
d

dr1

[
ln

∫
dr3 . . .

∫
drN e−βU

]
(5.48)

Next we change the integral on the RHS of Eq. (5.48) in the following way:∫
dr3 . . .

∫
drN e−βU ⇒ N (N − 1)

ρ2
∫

dr1 . . .
∫

drN e−βU

∫
dr3 . . .

∫
drN e−βU

(5.49)
This can be done because the added factors do not depend on r1. Using the definition
of the pair correlation function g(r) we find

dW (r12)

dr1
= −kBT

d

dr1
ln g(r12) (5.50)

In particular, for isotropic systems where g(r12) = g(|r12|)
dW (r)

dr
= −kBT

d

dr
ln g(r) (5.51)
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and integrating between some distance r between two particles and infinity (where
W = 0 and g = 1) yields

W (r) = −kBT ln g(r) (5.52)

For an isotropic system at equilibrium at given T , �, N we then have

g(r) = e−βW (r) (5.53)

As defined, W (r) is the reversible (minimal) work needed to bring two tagged
particles in the system from infinite separation to a distance r between them. For
our equilibrium system at a given volume and temperature this is the change in
Helmholtz free energy of the system in this process. If the particles repel each other
we need to put work into this process, and the change in free energy is positive,
that is, W > 0. In the opposite case of attraction between the particles W < 0.
Expression (5.53) reflects the corresponding change in the probability to find two
such particles with a distance r between them relative to the completely uncorrelated
case where g = 1.

In the low density limit the work W (r) is dominated by the two-body potential,
so W (r) → u(r). Therefore the low density limit of g(r) is

g(r)
ρ→0−→ exp(−βu(r)). (5.54)

5.6 The virial expansion—the second virial coefficient

In the absence of inter-atomic interactions the system is an ideal gas that satisfies
P/(kBT ) = ρ. The virial expansion is an expansion of P/(kBT ) in a power series
in ρ:

P

kBT
= ρ + B2ρ

2 + . . . (5.55)

We can get the first correction from Eq. (5.45) by using the fact that the potential of
mean force between two atoms in the fluid is the bare interaction potential corrected
by a term that vanishes with the fluid density

g(r) = e−βW (r); W (r) = u(r)+ O(ρ) (5.56)

Therefore in Eq. (5.45) it is sufficient to use W = u in order to get the first-order
correction to the ideal gas law. We find

B2 = − 1

6kBT

∫
dre−βu(r)u′(r) · r = 1

6

∫
dr(∇e−βu(r) · r) (5.57)
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and for an isotropic system

B2 = 4π

6

∞∫
0

dr r3 d

dr
e−βu(r) (5.58)

This can be simplified by performing integration by parts, leading to the final result
for the second virial coefficient

B2 = −2π

∞∫
0

drr2(e−βu(r) − 1) (5.59)

Further reading

U. Balucani and M. Zoppi, Dynamics of the Liquid State (Clarendon Press, Oxford, 1994).
D. Chandler, Introduction to Modern Statistical Mechanics (Oxford University Press, Oxford, 1987).
J. P. Hansen and I. R. McDonald, Theory of Simple Liquids, 2nd Edition (Elsevier, London, 1986).



This page intentionally left blank 



PART II

METHODS



This page intentionally left blank 



6

TIME CORRELATION FUNCTIONS

It is no wonder
That while the atoms are in constant motion
Their total seems to be at total rest,
Save here and there some individual stir.
Their nature lies beyond our range of sense,
Far far beyond. Since you can not get to see
The things themselves, they are bound to hide their moves,
Especially since things we can see, often
Conceal their movement too when at a distance…

Lucretius (c. 99–c. 55 BCE) “The way things are”
translated by Rolfe Humphries, Indiana University Press, 1968

In the previous chapter we have seen how spatial correlation functions express
useful structural information about our system. This chapter focuses on time cor-
relation functions (see also Section 1.5.4) that, as will be seen, convey important
dynamical information. Time correlation functions will repeatedly appear in our
future discussions of reduced descriptions of physical systems. A typical task is
to derive dynamical equations for the time evolution of an interesting subsystem,
in which only relevant information about the surrounding thermal environment
(bath) is included. We will see that dynamic aspects of this relevant information
usually enter via time correlation functions involving bath variables. Another type
of reduction aims to derive equations for the evolution of macroscopic variables by
averaging out microscopic information. This leads to kinetic equations that involve
rates and transport coefficients, which are also expressed as time correlation func-
tions of microscopic variables. Such functions are therefore instrumental in all
discussions that relate macroscopic dynamics to microscopic equations of motion.

6.1 Stationary systems

It is important to keep in mind that dynamical properties are not exclusively relevant
only to nonequilibrium system. One may naively think that dynamics is unimportant
at equilibrium because in this state there is no evolution on the average. Indeed
in such systems all times are equivalent, in analogy to the fact that in spatially
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homogeneous systems all positions are equivalent. On the other hand, just as in
the previous chapter we analyzed equilibrium structures by examining correlations
between particles located at different spatial points, also here we can gain dynamical
information by looking at the correlations between events that occur at different
temporal points.

Time correlation functions are our main tools for conveying this information in
stationary systems. These are systems at thermodynamic equilibrium or at steady
state with steady fluxes present. In such systems macroscopic observables do not
evolve in time and there is no time origin that specifies the “beginning” of a
process. However, it is meaningful to consider conditional probabilities such as
P(B, t2 | A, t1)dB—the probability that a dynamical variable B will have a value
in the range (B, . . . , B + dB) at time t2 if another dynamical variable A had
the value A at time t1, and the joint probability P(B, t2; A, t1)dBdA that A will
be in the range (A, . . . , A + dA) at time t = t1 and B will be in (B, . . . , B + dB) at
time t2. These two probabilities are connected by the usual relation (cf. Eq. (1.188))

P(B, t2; A, t1) = P(B, t2 | A, t1)P(A, t1) (6.1)

where P(A, t1)dA is the probability that A has a value in the range (A, . . . , A + dA)

at time t1. In a stationary system the latter obviously does not depend on time,
P(A, t1) = P(A) and the conditional and joint probabilities depend only on the time
difference

P(B, t2; A, t1) = P(B, t2 − t1; A, 0); P(B, t2 | A, t1) = P(B, t2 − t1 | A, 0) (6.2)

where t = 0 is arbitrary.
The time correlation function of two dynamical variables A and B can formally

be defined by (see also Eq. (7.42a))

CAB(t1, t2) = 〈A(t1)B(t2)〉 =
∫ ∫

dAdB AB P(B, t2; A, t1) (6.3)

In a stationary system it is a function of the time difference only

〈A(t1)B(t2)〉 = 〈A(0)B(t)〉 = 〈A(−t)B(0)〉; t = t2 − t1 (6.4)

Regarding Eq. (6.3), note that we did not say anything about the joint probability
function. While it seems intuitively clear that such function exists, its evaluation
involves analysis of the time evolution of the system. To see this more clearly let
us focus on classical mechanics, and recall that the observables A and B correspond
to dynamical variables A and B that are function of positions and momenta of all
particles in the system

A(t) = A[rN (t), pN (t)]; B(t) = B[rN (t), pN (t)] (6.5)



Simple examples 195

The phase space trajectory rN (t), pN (t) is uniquely determined by the initial con-
ditions rN (t = 0) = rN ; pN (t = 0) = pN . There are therefore no probabilistic
issues in the time evolution from t = 0 to t. The only uncertainty stems from the
fact that our knowledge of the initial condition is probabilistic in nature. The phase
space definition of the equilibrium time correlation function is therefore,

CAB(t1, t2) =
∫

drN dpN f (rN , pN )A[t1; rN , pN , t = 0]B[t2; rN , pN , t = 0]
(6.6)

where, for example, A[t1; rN , pN , t = 0] is the value of A at time t1, that is,
A[rN (t1), pN (t1)], given that the state of the system was (rN , pN ) at t = 0, and
where f (rN , pN ) is the phase space distribution function for this initial state. In
stationary system this “initial” state distribution does not depend on time.

How do the definitions (6.3) and (6.6) relate to each other? While a formal
connection can be made, it is more important at this stage to understand their range of
applicability. The definition (6.6) involves the detailed time evolution of all particles
in the system. Equation (6.3) becomes useful in reduced descriptions of the system
of interest. In the present case, if we are interested only in the mutual dynamics of
the observables A and B we may seek a description in the subspace of these variables
and include the effect of the huge number of all other microscopic variables only
to the extent that it affects the dynamics of interest. This leads to a reduced space
dynamics that is probabilistic in nature, where the functions P(B, t2; A, t1) and
P(B, t2 | A, t1) emerge. We will dwell more on these issues in Chapter 7. Common
procedures for evaluating time correlation functions are discussed in Section 7.4.1.

6.2 Simple examples

Here we describe two simple examples, one based on classical and the other on
quantum mechanics, that demonstrate the power of time correlation functions in
addressing important observables.

6.2.1 The diffusion coefficient

The diffusion coefficient describes the coarse-grained dynamics of particles in
condensed systems (see Section 1.5.5). To get an explicit expression we start from
(cf. Eq. (1.209))

D = lim
t→∞

1

6t
〈(r(t)− r(0))2〉 (6.7)
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and use

r(t)− r(0) =
t∫

0

dt′v(t′) (6.8)

to get

〈(r(t)− r(0))2〉 =
t∫

0

dt′
t∫

0

dt"〈v(t′′) · v(t′)〉 = 2

t∫
0

dt′
t′∫

0

dt′′〈v(t′′) · v(t′)〉

(6.9)

The last equality holds because Cv(t) ≡ 〈v(t1) · v(t1 + t)〉 = 〈v(t1 + t) · v(t1)〉 =
Cv(−t). Note that we rely here on the classical identity v(t1) · v(t1 + t) = v(t1 +
t) · v(t1). Therefore,

D = lim
t→∞

1

3t

t∫
0

dt′′
t′′∫

0

dt′Cv(t
′′ − t′) (6.10)

This can be simplified by changing variables: θ = t′′ − t′, with θ goes from t′′ to
0 and dt′ = −dθ . This leads to

3D = lim
t→∞

1

t

t∫
0

dt′′
t′′∫

0

dθCv(θ) (6.11)

The integral is done over the shaded area in Fig. 6.1. Using this picture it is
easily seen that the order of integration in (6.11) may be changed so as to give

3D = lim
t→∞

1

t

t∫
0

dθ

t∫
θ

dt′′Cv(θ)

= lim
t→∞

1

t

t∫
0

dθ(t − θ)Cv(θ) (6.12)

The correlation function Cv(t) ≡ 〈v(0) · v(t)〉 vanishes at long time because
velocities at different times become quickly (on a timescale of a few collisions)
uncorrelated which implies 〈v(0) · v(t)〉 → 〈v(0)〉〈v(t)〉 = 0. For this reason the
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t"= u

u

t

t"

Fig. 6.1 The integration interval for Eq. (6.11).

range of θ that contributes in (6.12) is limited to such rather short times. Therefore,
when t →∞ Eq. (6.12) yields

3D = lim
t→∞

1

t

t∫
0

dθ(t − θ)Cv(θ) =
∞∫

0

dθCv(θ) (6.13)

A time correlation function that involves the same observable at two different
times is called an autocorrelation function. We have found that the self-diffusion
coefficient is the time integral of the velocity auto-correlation function

D = 1

3

∞∫
0

dt〈v(t) · v(0)〉 = 1

6

∞∫
−∞

dt〈v(t) · v(0)〉 = 1

6
C̃v(ω = 0) (6.14)

where

C̃v(ω) =
∫ ∞

−∞
dtCv(t)e

iωt =
∫ ∞

−∞
dt〈v(t) · v(0)〉eiωt (6.15)

Equation (6.14) associates the zero frequency component of the velocity time cor-
relation function with the long-time diffusive dynamics. We will later find (see
Section 6.5.4) that the high frequency part of the same Fourier transform, Eq. (6.15),
is related to the short-time dynamics of the same system as expressed by its spectrum
of instantaneous normal modes.

6.2.2 Golden rule rates

The golden rule rate expression is a standard quantum-mechanical result for the
relaxation rate of a prepared state |i〉 interacting with a continuous manifold of
states {|f 〉}. The result, derived in Section 9.1, for this rate is the Fermi golden rule
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formula according to which the rate is ki = �i/h̄ where (cf. Eq. (9.28))

�i = 2π(|Vif |2ρf )Ef =Ei = 2π
∑

f

|Vif |2δ(Ei − Ef ) (6.16)

where Vif = 〈i|V̂ |f 〉 and V̂ is the coupling responsible for the relaxation, and where
ρf is the density of states in the manifold {f }. If at t = 0 the system is represented
by a thermal ensemble of initial states, the decay rate is the average1

� = 2π
∑

i

Pi

∑
f

|Vif |2δ(Ei − Ef ) (6.17a)

Pi = Q−1e−βEi ; Q =
∑

i

e−βEi ; β = (kBT )−1 (6.17b)

From (cf. Eq. (1.60)) 2πδ(Ei − Ef ) = h̄−1 ∫∞
−∞ dt exp(i(Ei − Ef )t/h̄) and Ek |k〉 =

Ĥ0|k〉 (k = i, f ) we get

2πδ(Ei − Ef )e
−βEi〈i|V̂ |f 〉 = h̄−1

∞∫
−∞

dt〈i|e−βĤ0(eiĤ0t/h̄V̂ e−iĤ0t/h̄)|f 〉

=h̄−1

∞∫
−∞

dt〈i|e−βĤ0V̂I (t)|f 〉 (6.18)

where V̂I (t) = eiĤ0t/h̄V̂ e−iĤ0t/h̄ is the interaction representation of the operator V̂ .
Inserting (6.18) into (6.17) and using2∑

f

|f 〉〈f | = Î −
∑

i

|i〉〈i|; 〈i|V̂ |i′〉 = 0 (6.19)

where Î is the unit operator, we get

� = h̄−1

∞∫
−∞

dt〈V̂I (t)V̂I (0)〉T (6.20)

1 In fact what is needed for Eq. (6.17) to be a meaningful transition rate is that thermal relaxation
(caused by interaction with the thermal environment) in the manifold of initial states is fast relative
to �. See Section 12.4 for further discussion.

2 The equality 〈i|V̂ |i′〉 = 0 for all i, i′ is a model assumption: The picture is of two manifolds of
states, {i} and {f } and an interaction that couples between, but not within, them.
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Here 〈. . .〉T is the quantum thermal average, 〈. . .〉T = Tr[e−βĤ0 . . .]/Tr[e−βĤ0],
and Tr denotes a trace over the initial manifold {i}. We have thus identified the
golden rule rate as an integral over time of a quantum time correlation function
associated with the interaction representation of the coupling operator.

6.2.3 Optical absorption lineshapes

A variation on the same theme is the optical absorption lineshape, where the trans-
ition from the group of levels {i} to the group {f } is accompanied by the absorption
of a photon of frequency ω. The transition rate monitored as a function of ω is
essentially the absorption lineshape L(ω). Except of the fact that the process is
accompanied by the absorption of a photon, the rate is again given by the golden rule
expression (6.16) modified to account for the given energetics and with coupling
that is proportional to the dipole moment operator (for dipole allowed transitions) µ̂,

L(ω) = A
∑

i

Pi

∑
f

|〈i|µ̂|f 〉|2δ(Ei − Ef + h̄ω) (6.21)

where Pi = e−βEi/
∑

i e−βEi , µ̂ is the dipole moment operator, and A is a numerical
constant. The same procedure that leads to (6.21) now yields

L(ω) ∼ A

2π h̄

∞∫
−∞

dteiωt〈µ̂(t)µ̂(0)〉; µ̂(t) = eiĤ0t/h̄µ̂e−iĤ0t/h̄ (6.22)

where Ĥ0 is the system Hamiltonian that does not include the interaction with the
radiation field Eq. (6.22) is an expression for the golden rule rate of a process that
involves absorption of energy h̄ω from an external source.

In many applications we use models that are more explicit about the nature of the
initial and final states involved in this transition. A common model (see Chapter 12)
is a two-level system that interacts with its thermal environment. The lineshape of
interest then corresponds to the photon-induced transition from state 1 to state 2,
dressed by states of the thermal environment. The initial and final states are now
|i〉 = |1,α〉 and |f 〉 = |2,α′〉 where α and α′ are states of the bath. Equation (6.21)
can then be rewritten as3

L(ω) = A
∑
α

Pα

∑
α′
|µ1α,2α′ |2δ(E1 + εα − E2 − εα′ + h̄ω) (6.23)

3 The form (6.23) relies on a weak system-bath coupling, whereupon the energies are written as
additive contributions, for example, E1 + εα , of these subsystems.



200 Time correlation functions

where we have used Pi = e−β(E1+εα)/
∑

α e−β(E1+εα) = e−βεα/
∑

α e−βεα = Pα

and µ1α,2α′ = 〈1α|µ̂|2α′〉. The operator µ̂ can be expressed in the form

µ̂ = µ̂12|1〉〈2| + µ̂21|2〉〈1| (6.24)

in which µ̂12 and µ̂21 are operators in the bath subspace. Denoting h̄ω21 = E2−E1
and repeating the procedure that leads to (6.20) gives

L(ω) = A

2π h̄

∞∫
−∞

dte−i(ω−ω21)t
∑
α

Pα

∑
α′
〈α|µ̂12|α′〉〈α′|eiĤBt/h̄µ̂21e−iĤBt/h̄|α〉

= A

2π h̄

∞∫
−∞

dte−i(ω−ω21)t〈µ̂12µ̂21(t)〉B (6.25)

Let us have a closer look at the two forms, (6.22) and (6.25). The form (6.22)
was obtained from a picture that looked at a system as a whole, and follows from
a golden-rule type expression (Eq. (6.21)) for the transition between two groups
of states, {i} and { f }, separated along the energy axis by the photon energy h̄ω.
Equation (6.25) was obtained for a model in which these groups of states are chosen
in a particular way that looks at our overall system as a two-level system interacting
with a bath. In (6.22) the time evolution and averaging is done in the space of the
overall system. In contrast, in (6.25) the operators µ̂12, µ̂21 are bath operators and
the correlation function is defined in the bath subspace. If the two-level system is
not coupled to its environment then µ̂21(t) becomes a time-independent scalar and
(6.25) gives L(ω) ∼ δ(ω − ω21). The result is a δ-function because in the model
as defined above no source of broadening except the coupling to the thermal bath
was taken into account. The environmental broadening originates from the fact
that in the presence of system-bath coupling the correlation function 〈µ̂12µ̂21(t)〉B
depends on time in a way that reflects the effect of the bath dynamics on the system.

The simplest model for the time-dependent dipole correlation function is an
exponentially decaying function, 〈µ̂(t)µ̂(0)〉 ∼ exp(−�|t|).4 This form leads to a
Lorentzian lineshape

L(ω) ∼
∞∫

−∞
dte−i(ω−ω21)te−�|t| = 2�

(ω − ω21)2 + �2 (6.26)

4 This is a useful model but we should keep in mind its limitations: (1) It cannot describe the correct
dynamics near t = 0 because the function exp(−�|t|) is not analytic at that point. Also, it does not
obey the fundamental identity (6.72), and therefore corresponds to a high temperature approximation.
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Such Lorentzian lineshapes will be also obtained from microscopic quantum
(Section 9.3; see Eq. (9.49)) and classical (Section 8.2.4; Eq. (8.41)) models.

6.3 Classical time correlation functions

The time correlation function of two observables, A and B was defined as

CAB(t1, t2) = 〈A(t1)B(t2)〉 (6.27)

where, in phase space the average should be understood as an ensemble average
over the initial distribution as detailed in Eq. (6.6).

For a stationary (e.g. equilibrium) system the time origin is irrelevant and

CAB(t1, t2) = CAB(t1 − t2) (6.28)

In this case the correlation function can also be calculated as the time average

CAB(t1, t2) = lim
τ→∞

1

2τ

τ∫
−τ

A(t1 + t)B(t2 + t)dt (6.29)

The equality between the averages computed by Eqs (6.27) and (6.29) is implied
by the ergodic “theorem” of statistical mechanics (see Section 1.4.2).

At t → 0 the correlation function, CAB(t) becomes the static correlation function
CAB(0) = 〈AB〉. In the opposite limit t → ∞ we may assume that correlations
vanish so that

lim
t→∞CAB(t) = 〈A〉〈B〉 (6.30)

We will often measure dynamical variables relative to their average values, that is,
use A − 〈A〉 rather than A. Under such convention the limit in (6.30) vanishes. In
what follows we list some other properties of classical time correlation functions
that will be useful in our future discussions.

1. The stationarity property (6.28) implies that 〈A(t + s)B(s)〉 does not depend
on s. It follows that

0 = d

ds
〈A(t + s)B(s)〉 = 〈Ȧ(t + s)B(s)〉 + 〈A(t + s)Ḃ(s)〉

= 〈Ȧ(t)B(0)〉 + 〈A(t)Ḃ(0)〉 (6.31)

Thus, we have found that for a stationary system

〈Ȧ(t)B(0)〉 = −〈A(t)Ḃ(0)〉 (6.32)
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An alternative proof provides insight into the nature of time averaging: From
Eq. (6.29) we have

〈Ȧ(t)B(0)〉 = lim
τ→∞

1

τ

τ∫
0

Ȧ(t + t′)B(t′)dt′ (6.33)

Integrating by parts leads to

= lim
τ→∞

1

τ
[A(t + t′)B(t′)]t′=τ

t′=0 − lim
τ→∞

1

τ

τ∫
0

A(t + t′)Ḃ(t′)dt = −〈A(t)Ḃ〉 (6.34)

(the first term vanishes because A and B, being physical variables, are bounded).
We will henceforth use the notation B ≡ B(t = 0).

2. An immediate corollary of (6.32) is that the equal time correlation of a classical
dynamical variable with its time derivative is zero

〈AȦ〉 = 0. (6.35)

Problem 6.1. Using similar reasoning as in (6.31) and (6.34) show that

〈Ä(t)B〉 = −〈Ȧ(t)Ḃ〉 (6.36)

and more generally

〈A(2n)(t)B〉 = (−1)n〈A(n)(t)B(n)〉 (6.37)

where A(n) denotes the nth time derivative.

Problem 6.2. For a classical harmonic oscillator whose position and momentum
are x and p define the complex amplitude

a(t) = x(t)+ (i/(mω))p(t) (6.38)

so that x = (1/2)(a + a∗) and p = −(imω/2)(a − a∗). a and a∗evolve accord-
ing to ȧ = −iωa; ȧ∗ = iωa∗. Show that for a harmonic oscillator at thermal
equilibrium

〈a2〉 = 〈(a∗)2〉 = 0; 〈|a|2〉 = 2kBT/(mω2) (6.39)

Use it to show that 〈x(t)x(0)〉 = (kBT/mω2) cos(ωt).
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3. An important property of time correlation functions is derived from the time
reversal symmetry of the equations of motion. The time reversal operation, that is,
inverting simultaneously the sign of time and of all momenta, reverses the direction
of the system’s trajectory in phase space. At the moment the transformation is made
each dynamical variable is therefore transformed according to

A → εAA (6.40)

where εA = +1 or −1 depending on whether A is even or odd in the combined
power of the momenta. Except for that, the dependence of A on r and p remains
the same and, since the time-reversed trajectory is a legitimate system’s trajectory,
it samples in equilibrium the same system’s states as the original trajectory. This
yields the same result for Eq. (6.29). It follows that

CAB(t) = 〈A(t)B(0)〉 = εAεB〈A(−t)B(0)〉 = εAεB〈A(0)B(t)〉 = εAεBCBA(t)
(6.41)

It also follows that autocorrelation functions (A = B) are even functions of time

CAA(t) = CAA(−t) (6.42)

4. Dynamical variables that correspond to observables are real, however it is
sometimes convenient to work with complex quantities such as the variables a and
a∗ in Eq. (6.38). For a complex dynamical variable the autocorrelation function is
conventionally defined as

CAA(t) = 〈A(t)A∗〉 (6.43)

This insures that CAA(t) is a real function of t because, by the same argument as
in (6.41)

CAA(t) = 〈A(t)A∗〉 = 〈A(−t)A∗〉 = 〈AA∗(t)〉 = 〈A∗(t)A〉 = CAA(t)
∗ (6.44)

Note that this reasoning assumes that A and A∗(t) commute, and therefore holds
only in classical mechanics.

5. An important property of all correlation functions follows from the Schwarz’s
inequality, Eq. (1.87)

〈AB〉2 ≤ 〈AA〉〈BB〉 (6.45)

or, if A and B are complex,

|〈AB∗〉|2 ≤ 〈AA∗〉〈BB∗〉 (6.46)

From this it follows that
|CAA(t)| ≤ |CAA(0)| (6.47)
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that is, the magnitude of an autocorrelation function is never larger than its initial
value.

6. Consider the Fourier transform of an autocorrelation function

C̃AA(ω) =
∞∫

−∞
dteiωtCAA(t) (6.48)

This function is sometimes called the power spectrum or the spectral function of the
observable A(t), and can be related to the absolute square of the Fourier transform
of A(t) itself. To show this start from

AT (ω) =
T∫

−T

eiωtA(t)dt (6.49)

whence

〈|AT (ω)|2〉 =
T∫

−T

dt

T∫
−T

dt′eiω(t−t′)〈A(t − t′)A∗(0)〉 T→∞−→ 2T

∞∫
−∞

dτeiωτCAA(τ )

(6.50)
This result is known as the Wiener–Khintchine theorem (see also Section 7.5.2).

From the obvious inequality 〈|AT (ω)|2〉 ≥ 0 it follows that

CAA(ω) ≥ 0 (6.51)

that is, the spectrum of an autocorrelation function is nonnegative.
7. Consider again the autocorrelation function

CAA(t) = 〈A(t)A∗〉

In real systems, where the interaction potential is continuous and finite for all relev-
ant interatomic distances, all forces are finite and the time evolution is continuous.
CAA(t) is then an analytical function of time, and in particular can be expanded about
t = 0. From CAA(t) = CAA(−t) it follows that only even powers of t contribute to
this expansion:

CAA(t) =
∞∑

n=0

t2n

(2n)! 〈A
(2n)A∗〉 =

∞∑
n=0

(−1)n t2n

(2n)! 〈|A
(n)|2〉 (6.52)
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where again A(n) is the nth time derivative of A, and where we have used Eq. (6.37).
For the velocity autocorrelation function of a given particle this leads to

〈v(t) · v〉 = 3kBT

m
(1 − 1

2
�2

0t2 + · · · ) (6.53)

where

�2
0 =

m

3kBT
〈v̇ · v̇〉 = 1

3mkBT
〈|∇U |2〉 (6.54)

where U is the potential and −∇U is a gradient with respect to the position of
the particle, that is, the total force on that particle. For a fluid of identical particles
�0 is sometimes referred to as the “Einstein frequency” of the fluid. This is the
frequency at which a tagged particle would vibrate for small amplitude oscillations
in the averaged (over all frozen configurations) potential well created by all other
particles. Since the forces in liquids are similar to those in solids, we expect this
frequency to be of the same order as the Debye frequency of solids, of the order of
1013–1014 s−1.

Problem 6.3. Show that

�2
0 =

1

3m
〈∇2U 〉 (6.55)

and use this result to show that if the potential U is a sum of binary interactions,
U = (1/2)

∑
i,j u(rij) then

�2
0 =

2πρ

3m

∞∫
0

∇2u(r)g(r)r2dr (6.56)

where g(r) is the (radial) pair correlation function.

Solution: Start from 〈|∇1U |2〉 = ∫
drN e−βU (rN )∇1U (rN ) · ∇1U (rN )/∫

drN e−βU (rN ), where the subscript 1 refers to the tagged particle that serves to
specify the force, and rewrite it in the form

〈|∇1U |2〉 = − 1

β

∫
drN∇1e−βU (rN ) · ∇1U (rN )∫

drN e−βU (rN )
(6.57)



206 Time correlation functions

The expression in the numerator is
∫

drN∇1e−βU (rN ) · ∇1U (rN ) =∫
drN (∇1 · (e−βU∇1U )) − ∫

drN e−βU∇2
1 U and the contribution of first term

on the right may be shown to be zero. Indeed, from the divergence theorem
(Eq. (1.36))∫

drN (∇1 · (e−βU∇1U ))

/∫
drN e−βU (rN )

=
∫

drN−1
∫
S1

ds1e−βU (n̂ · ∇1U )

/∫
drN e−βU (rN ) (6.58)

Where n̂ is a unit vector in the subspace of the tagged particle in the direction
normal to the surface S1 of this subspace. The integrand in (6.58) is seen to be
the averaged force exerted on the system’s surface by the tagged particle. For
a system with short-range forces this quantity will vanish like (system size)−1

which is the ratio between the number of particles near the surface to the total
number of particles. This implies that 〈|∇U |2〉 = kBT 〈∇2U 〉 from which follows
(6.55). To obtain the expression (6.56) one follows the procedure of Section 5.4.2,
except that the relevant sum is not over all pairs but only over pairs that involve
the tagged particle.

Problem 6.4. Show that the short time expansion of the position autocorrelation
function is

〈r(t) · r(0)〉 = 〈r2〉 − 1

2
t2〈v2〉 + · · · = 〈r2〉 − 3

2

kBT

m
t2 + · · · (6.59)

Note that the negative sign in the O(t2) term is compatible with the inequal-
ity (6.47).

6.4 Quantum time correlation functions

The quantum mechanical analog of the equilibrium correlation function (6.6) is

CAB(t1, t2) = 〈Â(t1)B̂(t2)〉 = Tr

(
e−βĤ

Q
Â(t1)B̂(t2)

)
(6.60)

where Q = Tr(e−βĤ ) and where X̂ (t) = X̂H(t) = eiĤ t/h̄X̂ e−iĤ t/h̄ (X̂H denotes
the Heisenberg representation, see Section 2.7.1, however for notational simplicity
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we will suppress this subscript in the remainder of this section). The quantum
mechanical thermal average and the quantum density operator ρ̂ = Q−1 exp(−βĤ )

are discussed in more detail in Section 10.1.5. Several properties follow directly:

1. From the cyclic property of the trace and the fact that the equilibrium dens-
ity operator ρ̂ = Q−1 exp(−βĤ ) commutes with the time evolution operator
exp(−iĤ t/h̄) it follows that

〈Â(t1)B̂(t2)〉 = 〈Â(t1 − t2)B̂(0)〉 or CAB(t1, t2) = CAB(t1 − t2) (6.61)

and that
〈Â(t)B̂(0)〉 = 〈Â(0)B̂(−t)〉 (6.62)

These identities are identical to their classical counterparts, for example, (6.28).
2. If Â and B̂ are real operators

〈Â(t)B̂(0)〉 = 〈Â(−t)B̂(0)〉∗ (6.63)

3. If Â and B̂ are hermitian operators then the identities

CBA(−t) = 〈B̂(−t)Â(0)〉 = 〈B̂(0)Â(t)〉 = 〈(B̂(0)Â(t))†〉∗ = 〈Â(t)B̂(0)〉∗

(where we have used the identity (10.37)) implies that for such operators

〈Â(t)B̂(0)〉 = 〈B̂(0)Â(t)〉∗, that is, CAB(t) = C∗
BA(−t) (6.64)

A special case of the identity (6.64) is 〈Â(t)Â(0)〉 = 〈Â(−t)Â(0)〉∗. This shows
that (6.63) holds also for the autocorrelation function of a hermitian (not necessarily
real) operator.

4. For hermitian Â and B̂, the Fourier transform

C̃AB(ω) =
∞∫

−∞
dteiωtCAB(t) (6.65)

satisfies the symmetry property

C̃AB(−ω) =
∞∫

−∞
dte−iωtCAB(t)

t→−t−→
∞∫

−∞
dteiωtCAB(−t)

=
∞∫

−∞
dteiωtC∗

BA(t) = C̃∗
BA(ω) (6.66)
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The reader should notice the difference between C̃∗
BA(ω) = ∫∞

−∞ dteiωtC∗
BA(t) and

(C̃BA(ω))∗ = ∫∞
−∞ dte−iωtC∗

BA(t).

Problem 6.5. For the real and imaginary part of the quantum correlation function

C+
AB(t) ≡ CAB(t)+ C∗

AB(t) = 2ReCAB(t)

C−
AB(t) ≡ CAB(t)− C∗

AB(t) = 2iImCAB(t)
(6.67)

Show that
C+

AB(−t) = C+
BA(t), C−

AB(−t) = −C−
BA(t) (6.68)

and

C̃+
AB(ω) =

∞∫
−∞

dteiωtC+
AB(t) = C̃AB(ω)+ C̃BA(−ω)

C̃−
AB(ω) = C̃AB(ω)− C̃BA(−ω)

(6.69)

5. In the representation defined by the complete set of eigenstates of the
Hamiltonian Eqs (6.60) and (6.65) yield

C̃AB(ω) =
∞∫

−∞
dteiωt〈Â(t)B̂(0)〉 =

∞∫
−∞

dteiωtTr

(
e−βĤ

Q
eiĤ t/h̄Âe−iĤ t/h̄B̂

)

= 1

Q

∞∫
−∞

dteiωt
∑

n

∑
m

e−βEnei(En−Em)t/h̄AnmBmn (6.70)

The integral over time yields 2π h̄δ(En − Em + h̄ω), so

C̃AB(ω) = 2π h̄

Q

∑
n

e−βEn
∑

m

AnmBmnδ(En − Em + h̄ω) (6.71)

from this follows the following interesting identities

C̃AB(ω) = eβh̄ωC̃BA(−ω) (6.72)
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or

∞∫
−∞

dteiωt〈Â(t)B̂(0)〉 = eβh̄ω

∞∫
−∞

dte−iωt〈B̂(t)Â(0)〉 = eβh̄ω

∞∫
−∞

dteiωt〈B̂(0)Â(t)〉

(6.73)
Equations (6.72) and (6.73) are obtained by replacing in (6.70) exp(−βEn) →
exp(−β(Em − h̄ω)). The possibility for this substitution is implied by (6.71). We
then get

∞∫
−∞

dteiωt〈Â(t)B̂(0)〉 = eβh̄ω

∞∫
−∞

dteiωt
∑

n

∑
m

e−βEm

Q
〈m|B̂|n〉〈n|eiĤ t/h̄Âe−iĤ t/h̄|m〉

= eβh̄ω

∞∫
−∞

dteiωtTr

(
e−βĤ

Q
B̂eiĤ t/h̄Âe−iĤ t/h̄

)
(6.74)

which is the expression on the right-hand side of (6.73). The middle form in (6.73)
is obtained by transforming the integration variable t →−t. For B̂ = Â Eq. (6.73)
becomes

∞∫
−∞

dteiωt〈Â(t)Â(0)〉 = eβh̄ω

∞∫
−∞

dteiωt〈Â(−t)Â(0)〉

= eβh̄ω

∞∫
−∞

dte−iωt〈Â(t)Â(0)〉 (6.75)

Note that in classical mechanics the mutual commutativity of A(t) and A(0) implies
that these identities are satisfied without the factors eβh̄ω. This is consistent with
the fact that the classical limit is achieved when βh̄ω � 1. We will see that the
identities (6.73) and (6.75) imply the existence of detailed balance in thermally
equilibrated systems.

6.5 Harmonic reservoir

The Debye model discussed in Section 4.2.4 rests on three physical observations:
The fact that an atomic system characterized by small oscillations about the point
of minimum energy can be described as a system of independent harmonic oscillat-
ors, the observation that the small frequency limit of the dispersion relation stems
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from the characterization of long wavelength modes as sound waves and the real-
ization that an upper frequency cutoff is suggested by the finite number of atoms
and the finite interatomic distance. None of these features rely on some underlying
crystal periodicity. Indeed, in describing systems interacting with their condensed
thermal environment we often model the latter as a bath of harmonic oscillators
even when this environment is not a periodic solid or even a solid at all. This model-
ing is suggested by the mathematical simplicity of the harmonic oscillator problem
on one hand, and by timescale considerations on the other. We will return to the
latter issue below. In what follows we assume the thermal environment (referred
to as “bath” below) may indeed be described by a set of independent oscillators
(“modes”) and explore the dynamical properties of such an environment.

6.5.1 Classical bath

We consider a classical equilibrium system of independent harmonic oscillators
whose positions and velocities are denoted xj, vj = ẋj, respectively. In fact, deal-
ing with normal modes implies that we have gone through the linearization and
diagonalization procedure described in Section 4.2.1. In this procedure it is con-
venient to work in mass-normalized coordinates, in particular when the problem
involves different particle masses. This would lead to mass weighted position and
velocities, yj = √

mjxj; ẏj = √
mjvj and to the normal modes coordinates (uj, u̇j),5

in terms of which the bath Hamiltonian is

H = (1/2)
∑

j
(u̇2

j + ω2
j u2

j ). (6.76)

The phase space probability distribution is

P({u̇k , uk}) =
∏

k

Pk(u̇k , uk)

Pk(u̇k , uk) = βωk

2π
e−(1/2)β(u̇2

k+ω2
k u2

k )

(6.77)

5 The normal modes are derived from the mass weighted coordinates, therefore u has the dimen-
sionality [l][m]1/2. In a system of identical atoms it is sometimes convenient to derive the normal
modes from the original coordinates so as to keep the conventional dimensionality of u and u̇. In this
case the Hamiltonian is H = (m/2)

∑
j (u̇

2
j + ω2

j u2
j ) and Eqs (6.78) take the forms

〈uk uk ′ 〉 = kBT/(mω2)δkk ′ ; 〈u̇k u̇k ′ 〉 = (kBT/m)δkk ′
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The coefficient in front of the exponent is a normalization factor. This leads to

〈ukuk ′ 〉 = kBT

ω2
k

δkk ′ ; 〈u̇k u̇k ′ 〉 = kBTδkk ′ ; 〈uk u̇k〉 = 0 (6.78)

This bath is characterized by the density of modes function, g(ω), defined such that
g(ω)dω is the number of modes whose frequency lies in the interval ω, . . . ,ω +
dω. Let

A =
∑

j
cjuj, B =

∑
j
cju̇j = Ȧ (6.79)

and consider the time correlation functions

CAA(t) = 〈A(t)A(0)〉, CBB(t) = 〈B(t)B(0)〉, and CAB(t) = 〈A(t)B(0)〉

(6.80)

Such correlation functions are often encountered in treatments of systems coupled to
their thermal environment, where the model for the system–bath interaction is taken
as a product of A or B with a system variable. In such treatments the coefficients
cj reflect the distribution of the system–bath coupling among the different modes.
In classical mechanics these functions can be easily evaluated explicitly from the
definition (6.6) by using the general solution of the harmonic oscillator equations
of motion

uj(t) = uj(0) cos(ωjt)+ ω−1
j

u̇j(0) sin(ωjt) (6.81a)

u̇j(t) = −ωjuj(0) sin(ωjt)+ u̇j(0) cos(ωjt) (6.81b)

Problem 6.6.

(1) Show that if Eq. (6.78) holds for uj(t = 0) and u̇j(t = 0) then it holds at
any time, for example, ω2

j 〈uj(t)uj′(t)〉 = 〈u̇j(t)u̇j′(t)〉 = kBTδj,j′ .
(2) Using Eqs (6.81) show that the velocity time correlation function of a

classical harmonic oscillator in thermal equilibrium satisfies

〈u̇j(0)u̇j′(t)〉 = kBT cos(ωjt)δj,j′ (6.82)
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(3) Use Eq. (2.166) to show that the quantum analog of (6.82) is

〈u̇j(0)u̇j(t)〉 = h̄ωj

eβh̄ωj − 1
cos(ωjt)+ h̄ωj

2
eiωj t (6.83)

(4) Show that in an isotropic harmonic system of N identical atoms with
atomic mass m the density of normal modes is related to the atomic
velocity correlation function by

g(ω)

N
= 3m

πkBT

∞∫
−∞

dt〈ẋ(0)ẋ(t)〉e−iωt (6.84)

Solution to 6(4). Derivation of Eq. (6.84):
From Eqs (4.13) and (6.81) it follows that

〈ẏj(0)ẏj′(t)〉 =
∑

k

∑
k ′

(T−1)jk(T
−1)j′k ′ 〈u̇k(0)u̇k ′(t)〉

= kBT
∑

k

(T−1)jkTkj′ cos(ωk t) (6.85)

In the second equality we have used the unitarity of T. Using also∑
j (T

−1)jkTkj = 1 we get from (6.85)

∑
j

〈ẏj(0)ẏj(t)〉 = kBT
∑

k

cosωk t = kBT

∞∫
0

dωg(ω) cos(ωt) (6.86)

If all atoms are identical, the left-hand side of (6.86) is 3Nm〈ẋ(0)ẋ(t)〉where ẋ is
the atomic velocity (see Eq. (4.9)). Defining g(−ω) = g(ω), we rewrite (6.86)
in the form

〈ẋ(0)ẋ(t)〉 = kBT

6mN

∞∫
−∞

dωg(ω)eiωt (6.87)

which leads, by inverting the Fourier transform, to (6.84).
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Using Eqs (6.81) and (6.78) in (6.80) yields

CAA(t) = kBT
∑

j

c2
j

ω2
j

cos(ωjt) = 2kBT

π

∞∫
0

dω
J (ω)

ω
cos(ωt) (6.88a)

CBB(t) = kBT
∑

j

c2
j cos(ωjt) = 2kBT

π

∞∫
0

dωωJ (ω) cos(ωt) (6.88b)

and

CAB(t) = kBT
∑

j

c2
j

ωj
sin(ωjt) cos(ωjt) = 2kBT

π

∞∫
0

dωJ (ω) sin(ωt) cos(ωt)

(6.89)
where J (ω) is the bath spectral density, defined by

J (ω) ≡ π

2

∑
j

c2
j

ωj
δ(ω − ωj) (6.90)

The function is defined as a sum of delta-functions, however for macroscopic
systems this sum can be handled as a continuous function of ω in the same way that
the density of modes, g(ω) = ∑

j δ(ω − ωj) is.6 Defining the coupling density by

c2(ω)g(ω) ≡
∑

j
c2

j δ(ω − ωj) (6.91)

Equation (6.90) can also be written as

J (ω) = πg(ω)c2(ω)

2ω
(6.92)

6.5.2 The spectral density

The spectral density, Eqs (6.90) and (6.92) is seen to be a weighted density of modes
that includes as weights the coupling strengths c2(ω). The harmonic frequencies ωj

6 This is a coarse-graining procedure that is valid if the spacing between frequencies ωj is much
smaller than the inverse time resolution of any conceivable observation. See Section 1.4.4 and
Eq. (1.182).
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are obviously positive, therefore by this narrow definition J (ω) (and g(ω)) are zero
for negative values of the frequency. It is sometimes useful to extend these functions
to negative frequencies by defining g(−ω)c2(−ω) ≡ g(ω)c2(ω). From (6.90) or
(6.92) it follows that under this definition J (ω) is an antisymmetric function of ω,

J (−ω) = −J (ω) (6.93)

The spectral density (see also Sections (7-5.2) and (8-2.5)) plays a prominent
role in models of thermal relaxation that use harmonic oscillators description of
the thermal environment and where the system-bath coupling is taken linear in the
bath coordinates and/or momenta. We will see (an explicit example is given in
Section 8.2.5) that J (ω) characterizes the dynamics of the thermal environment as
seen by the relaxing system, and consequently determines the relaxation behavior
of the system itself. Two simple models for this function are often used:

The Ohmic spectral density

J (ω) = ηω exp(−|ω|/ωc) (6.94)

is characterized by a cutoff frequency ωc, a linear dependence on ω for ω � ωc
and an exponential drop to zero for ω > ωc. We will see in Section 8.2.5 that in the
limit where ω−1

c is smaller than all the characteristic system timescales this model
bath affects a simple constant friction on the system.

The Drude (sometimes called Debye) spectral density

J (ω) = ηω

1 + (ω/ωc)2 (6.95)

also grows linearly with ω for ω � ωc, however it vanishes as ω−1 when ω →∞.

Problem 6.7. In Section 8.2.5 we will encounter the “memory function” Z(t) =
(2/πm)

∫∞
0 dω(J (ω)/ω) cos(ωt). Calculate the memory functions associated

with the Ohmic and the Drude models and compare their time evolutions.

6.5.3 Quantum bath

For a system of harmonic oscillators it is easy to derive the quantum equival-
ents of the results obtained above, as was already exemplified by Problem 6.6(3).
By way of demonstration we focus on the time correlation function, CAA(t) =∑

j c2
j 〈ûj(t)ûj(0)〉. The normal mode position operator can be written in terms of

the raising and lowering operators (cf. Eq. (2.153); note that the mass factor does
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not appear below because normal modes coordinates are mass weighted variables)

ûj =
√

h̄/(2ωj)(â
†
j + âj) (6.96)

Using Eqs (2.165) and (2.196), (2.197) we get

CAA(t) =
∑

j

h̄c2
j

2ωj
((nj + 1)e−iωj t + nje

iωj t)

= h̄

π

∞∫
0

dωJ (ω)[(n(ω)+ 1)e−iωt + n(ω)eiωt] (6.97)

where nj = n(ωj) = (eβh̄ωj − 1)−1. In the classical limit where
n(ω) = (kBT/h̄ω) 
 1 this leads again to (6.88a). CBB(t) and
CAB(t) are obtained along similar lines, and for example, CAB(t) =
(ih̄/π)

∫∞
0 dωωJ (ω)[(n(ω)+ 1)e−iωt − n(ω)eiωt]. At time t = 0 this gives

CAB(0) = (ih̄/π)
∫∞

0 ωJ (ω), demonstrating that the identity (6.35) does not hold
for quantum correlation functions.

Problem 6.8.

(1) Show that CAA(t) satisfies the identity (6.64).
(2) Show that

∫∞
−∞ dteiωtCAA(t) = 2h̄[J (ω)(n(ω)− n(−ω)+ 1)].

(3) Show that
∫∞
−∞ dteiωtCAA(t) = eβh̄ω

∫∞
−∞ dteiωtCAA(−t) =

eβh̄ω
∫∞
−∞ dte−iωtCAA(t) as implied by Eq. (6.73).

6.5.4 Why are harmonic baths models useful?

Consider Eq. (6.84). This result was obtained for a harmonic system of identical
and equivalent atoms. We could however reverse our reasoning and define a vibra-
tional spectrum for a dense atomic system from the velocity autocorrelation function
according to Eq. (6.84). Since this function can be computed for all systems, includ-
ing liquids and disordered solids, we may use (6.84) as a definition of a spectrum
that may be interpreted as density of modes function for such media. We can then
use it in expressions such as (4.33), and (6.92). Is this approach to dynamics in
condensed phases any good?

We can also take another route. Obviously, we can repeat the development
that lead to Eq. (4.12) for any harmonic system. We can define such a system by
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expanding of the interatomic potential about some configuration xN
0 , not neces-

sarily a minimum point, and neglecting higher-order terms, as in (4.6). This can
be done also for liquids, taking xN

0 to be any instantaneous configuration. The
matrix K, Eq. (4.9), is again diagonalized and the spectrum of eigenvalues in (4.11)
is used to construct the density of modes. The resulting 〈ginst(ω)〉, averaged over
all relevant configurations (usually a thermal distribution) is the averaged density
of instantaneous normal modes of the liquid.

The two distributions, g(ω) defined by (6.84) and 〈ginst(ω)〉, are not identical,
and neither should be taken as a representation of a real harmonic system. Indeed,
while the eigenvalues defined by Eq. (4.11) are all positive, so that the corres-
ponding frequencies are real, there is no reason to expect that this will be the case
for the “instantaneous frequencies.” Imaginary instantaneous frequencies (negat-
ive eigenvalues in (4.11)) just reflect the fact that configurations other than local
minimum points of the potential surface may have negative curvature in some
directions. As for the velocity correlation function, while intuition tells us that high-
frequency Fourier components in (6.84) indeed reflect a local oscillatory motion,
low-frequency ones seem more likely to reflect longer-range motion. Indeed, the
zero frequency Fourier transform

∫∞
−∞ dt〈ẋ(0)ẋ(t)〉 has been shown (see Eq. (6.14))

to be related to the diffusion coefficient of the corresponding particle.
Still, these concepts are found to be useful and their usefulness stems from times-

cale considerations. We will repeatedly see that for many chemical processes the
relevant timescales for environmental interactions are short. This does not mean that
the system sees its environment for just a short time, but that the dynamics is
determined by a succession of short time interactions. If subsequent interactions
are uncorrelated with each other, each can be treated separately and for this treat-
ment a harmonic bath picture might suffice. Two conditions need to be satisfied for
this to be a good approximation:

1. In the instantaneous normal mode picture, the density should be high enough
and the temperature low enough so that the solvent stays not too far from
its equilibrium configuration and therefore the contribution of modes of
imaginary frequencies can be disregarded.

2. The timescale of environmental (solvent) motions that determine the solvent
dynamical effect on the process of interest should be shorter than the timescale
on which the solvent can be described as a harmonic medium.

Figure 6.2 shows an example where these ideas were applied to water as a solvent.
The process under investigation is solvation dynamics (see Chapter 15), in this par-
ticular case—solvation of electron in water. Figure 6.2(a) shows the instantaneous
normal mode density for water at 300 K obtained from numerical simulations. By
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Fig. 6.2 (a) Instantaneous normal modes in room temperature water as obtained from molecular
dynamics simulations. The negative frequency axis is used to show the density of imaginary frequen-
cies. (b) The solvation response function (see Chapter 15) for electron solvation in water, calculated
from direct classical MD simulations (full line), from the instantaneous normal mode representation
of water (dash-dotted line), and from a similar instantaneous normal mode representation in which
the imaginary frequency modes were excluded (dashed line). The inset in Fig. 6.2 shows the short
time behavior of the same data. (From C.-Y. Yang, K. F. Wong, M. S. Skaf, and P. J. Rossky, J. Chem.
Phys. 114, 3598 (2001).)

convention the modes of imaginary frequency are shown on the negative side of
the ω axis. The peaks about 1700 cm−1 and 3600 cm−1 correspond to the internal
vibrational modes of water. Figure 6.2(b) shows the result of a calculation per-
taining to solvation dynamics of electron in water, comparing the result of a full
calculation (full line) to results obtained by representing water as a normal mode
fluid with normal mode density taken from Fig. 6.2(a) (dashed-dotted-line) and
from a similar calculation (dashed line) that uses only the real frequency modes.
The agreement, for up to t ≈ 100 fs, between the full calculation and the calculation
based on instantaneous normal modes of real frequencies, suggests that at least as
a practical tool a harmonic view of water can be useful for describing processes
whose dynamics is determined by shorter timescales.
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The use of harmonic baths to model the thermal environment of molecular
systems does not rest only on such timescale arguments. We have seen in Chapter 3
that the radiation field constitutes an harmonic environment that determines the
radiative relaxation properties of all material systems. We will see in Chapters 15
and 16 that dielectric solvents can be modeled as harmonic environments in which
the harmonic modes are motions of the polarization field. In the latter case the
harmonic environment picture does not rely on a short time approximation, but
rather stems from the long wavelength nature of the motions involved that makes
it possible to view the solvent as a continuum dielectric.

Further reading

J. P. Hansen and I. R. McDonald, Theory of Simple Liquids, 2nd edition (Elsevier, London, 1986)
Chapter 7.

D. A. McQuarrie, Statistical Mechanics (Harper and Row, New York, 1976) Chapters 21–22.



7

INTRODUCTION TO STOCHASTIC PROCESSES

Once you make
The count of atoms limited, what follows
Is just this kind of tossing, being tossed,
Flotsam and jetsam through the seas of time,
Never allowed to join in peace, to dwell
In peace, estranged from amity and growth…

Lucretius (c.99–c.55 bce) “The way things are” translated by
Rolfe Humphries, Indiana University Press, 1968

As discussed in Section 1.5, the characterization of observables as random vari-
ables is ubiquitous in descriptions of physical phenomena. This is not immediately
obvious in view of the fact that the physical equations of motion are deterministic
and this issue was discussed in Section 1.5.1. Random functions, ordered sequences
of random variable, were discussed in Section 1.5.3. The focus of this chapter is a
particular class of random functions, stochastic processes, for which the ordering
parameter is time. Time is a continuous ordering parameter, however in many prac-
tical situations observations of the random function z(t) are made at discrete time
0 < t1 < t2, . . . ,< tn < T . In this case the sequence {z(ti)} is a discrete sample of
the stochastic process z(t).

7.1 The nature of stochastic processes

Let us start with an example. Consider a stretch of highway between two intersec-
tions, and let the variable of interest be the number of cars within this road segment
at any given time, N (t). This number is obviously a random function of time whose
properties can be deduced from observation and also from experience and intuition.
First, this function takes positive integer values but this is of no significance: we
could redefine N → N − 〈N 〉 and the new variable will assume both positive and
negative values. Second and more significantly, this function is characterized by
several timescales:

1. Let τ1 is the average time it takes a car to go through this road segment, for
example 1 min, and compare N (t) and N (t +�t) for �t � τ1 and �t 
 τ1.
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Fig. 7.1 An illustrative example of stochastic processes: The number of cars in a given road segment
during a period of 30 min. Sampling is taken every 1 min which is the average time it takes a car to
pass through this road segment.
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Fig. 7.2 The same process as in Fig. 7.1, observed over a longer timescale. Sampling is taken every
3 h over a period of 24 h.

Obviously N (t) ≈ N (t + �t) for �t � τ1 while in the opposite case the
random numbers N (t) and N (t+�t) will be almost uncorrelated. Figure 7.1
shows a typical result of one observation of this kind. The apparent lack
of correlations between successive points in this data set expresses the fact
that numbers sampled at intervals equal to or longer than the time it takes to
traverse the given distance are not correlated.

2. The apparent lack of systematic component in the time series displayed here
reflects only a relatively short-time behavior. For time exceeding another
characteristic time, τ2, typically of the order∼1 h for this problem, we observe
what appears to be a systematic trend as seen in Fig. 7.2.

Here sampling is made every 3 h over a period of 24 hours and the line
connecting the results has been added to aid the eye. Alternatively, we may
perform coarse graining in the spirit of Eq. (1.180) using time intervals of,
say, �t = τ2 = 1 h, which will lead to a smoother display. The systematic
trend shows the high and low traffic volumes at different times of day.

3. If we extend our observation to longer times we will see other trends that
occur on longer timescales. In this example, we may distinguish between
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long timescale (multi-year) evolution associated with changing population
characteristics, monthly evolution related to seasons, daily evolution associ-
ated with work-weekend schedules, hourly evolution (timescale τ 2) related to
day/night and working hours, and short time evolution (timescale τ 1) asso-
ciated with individual driver’s timings. All but the last one are systematic
phenomena that could be analyzed and predicted. This last stochastic com-
ponent could be eliminated from our considerations by coarse graining over
time period longer than τ1 and shorter than τ2. The resulting description
will be adequate for many practical applications, for example, planning the
highway system.

Note that in the example considered above, the systematic behavior and the
stochastic fluctuations arise from different causes. Sometimes the random motion
itself gives, in time, a systematic signal. If we put an ink drop at the center
of a pool of water the systematic spread of the ink by diffusion is caused by
random motions of the individual molecules, each characterized by zero mean
displacement.

Consider another example where the variable of interest is the number n of
molecules in some small volume �V about a point r in a homogeneous equilib-
rium fluid. Again, this is a random variable that can be monitored as a function of
time, and the result n(t) is again a stochastic process. In the homogeneous fluid
all spatial positions are equivalent and we may regard a set of such points {rj}
and volumes �V about them, sufficiently far from each other so that these small
volumes are statistically independent. This defines an ensemble of identical sys-
tems. The corresponding ensemble of stochastic trajectories, nj(t); j = 1 , . . . , N ,
is a collection of different realizations of the stochastic process under considera-
tion. We can also obtain such different realizations if we focus on a single system
and generate trajectories n(t) from different starting times. The equivalence of both
ways for generating realizations stems from the fact that the stochastic process
under discussion is stationary, displaying no average (systematic) time evolution.

The following table represents a data set collected at discrete time points for N
such systems

t1 = 0 t2 = t1 +�t t3 = t1 + 2�t . . .

n1 n1(t1) n1(t2) n1(t3) . . .

n2 n2(t1) n2(t2) n2(t3) . . .
...

...
...

... . . .

nN nN (t1) nN (t2) nN (t3) . . .
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Each line in this set represents a realization of our stochastic process. In fact each
set of numbers starting at any time, for example, n1(t3), n1(t4− t3), n1(t5− t3), . . . ,
represents such a realization. Each column, for example, nj(t1); j = 1, . . . , N ,
contains different realizations of the random variable that represents the number of
particles in volume �V at the given time.

Two important observations can now be made

1. The data set given above can be used to generate the probability distribution
associated with the random variable n. For each column (i.e. at each time t)
we can count the number of systems in the ensemble, Sn(t), that contain at
time t exactly n molecules. A plot of Sn against n is called histogram. The
required probability distribution at time t is given by this histogram after
normalization

P(n, t) = lim
N→∞

Sn(t)∑
n Sn(t)

= lim
N→∞

Sn(t)

N
(7.1)

In practical applications a finite large N is used. In a stationary system like
our equilibrium fluid, where P(n, t) = P(n) does not depend on time, we can
reduce statistical errors by further averaging (7.1) over different time data
(i.e. different columns).

Problem 7.1. Consider the observation of the number of cars on a road
segment as a function of time discussed above. In order to obtain the
distribution P(n, t) for this process one needs to obtain a representative set
of stochastic trajectories. Using the timescales scenario discussed above
for this system, suggest a procedure for obtaining an approximation for
P(n, t).

2. The stationary nature of our system and the ergodic theorem (see
Section 1.4.2) imply that time and ensemble averaging are equivalent. This
by no means implies that the statistical information in a row of the table
above is equivalent to that in a column. As defined, the different systems
j = 1, . . . , N are statistically independent, so, for example, 〈n1(t1)n2(t1)〉 =
〈n1(t1)〉〈n2(t1)〉. In contrast, when two times, t1 and t2, are close to each
other the numbers n1(t1) and n1(t2) may not be statistically independent so
that 〈n1(t1)n1(t2)〉 �= 〈n1(t1)〉〈n1(t2)〉. The time series provide information
about time correlations that is absent from a single time ensemble data. The
stationary nature of our system does imply, as discussed in Section 6.1, that
〈n1(t1)n1(t2)〉 depends only on the time difference t2 − t1.



Stochastic modeling of physical processes 223

More generally, while in a stationary system P(n, t) = P(n) contains no
dynamical information, such information is contained in joint distributions like
P(n2, t2; n1, t1) (the probability to observe n1 molecules at time t1 and n2 molecules
at time t2) and conditional distributions such as P(n2, t2 | n1, t1) (the probability to
observe n2 molecules at time t2 given that n1 molecules were observed at time t1).
We will expand on these issues in Section 7.4.

7.2 Stochastic modeling of physical processes

Given the initial conditions of a classical system of N particles (i.e. all initial 3N pos-
itions and 3N momenta) its time evolution is determined by the Newton equations
of motion. For a quantum system, the corresponding N -particle wavefunction is
determined by evolving the initial wavefunction according to the Schrödinger
equation. In fact these initial conditions are generally not known but can often
be characterized by a probability distribution (e.g. the Boltzmann distribution for
an equilibrium system). The (completely deterministic) time evolution associated
with any given initial state should be averaged over this distribution. This is an
ensemble average of deterministic trajectories.

As discussed in Section 1.5.1, we often seek simplified descriptions of physical
processes by focusing on a small subsystem or on a few observables that charac-
terize the process of interest, and these variables then assume random character.
As a particular example consider the center of mass position ri of an isotopically
substituted molecule i in a homogeneous equilibrium fluid containing a macro-
scopic number N of normal molecules. The trajectory ri(t) of this molecule shows
an erratic behavior, changing direction (and velocity) after each collision. This tra-
jectory is just a projection of a deterministic trajectory in the 6N -dimensional phase
space on the coordinate of interest, however solving this 6N -dimensional problem
may be intractable and, moreover, may constitute a huge waste of effort because it
yields the time dependence of 6Nmomenta and positions of all N particles while we
are interested only in the position ri(t) of a particular particle i. Instead we may look
for a reduced description of ri(t) only. We may attempt to get it by a systematical
reduction of the 6N -coupled equations of motion. Alternatively, we may construct
a phenomenological model for the motion of this coordinate under the influence of
all other motions. As we shall see, both ways lead to the characterization of ri(t) as
a stochastic process.

As another example consider the internal vibrational energy of a diatomic
solute molecule, for example, CO, in a simple atomic solvent (e.g. Ar). This
energy can be monitored by spectroscopic methods, and we can follow processes
such as thermal (or optical) excitation and relaxation, energy transfer, and energy
migration. The observable of interest may be the time evolution of the average
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vibrational energy per molecule, where the average is taken over all molecules of
this type in the system (or in the observation zone). At low concentration these
molecules do not affect each other and all the information can be obtained by
observing (or theorizing on) the energy Ej(t) of a single molecule j. The aver-
age molecular energy 〈E(t)〉 is obtained as an ensemble average of Ej(t) over
many such molecules, or over repeated independent observations on a single
molecule.

With respect to the average vibrational energy, it is often observed following
vibrational excitation that this observable relaxes as an exponential function of time,
〈E(t)〉 = E(0) exp(−γ t). A single trajectory Ej(t) (also observable in principle by
a technique called single molecule spectroscopy, see Section 18.6.3) is however
much more complicated. As before, to predict its exact course of evolution we
need to know the initial positions and velocities of all the particles in the system
(in quantum mechanics—the initial many-particle wavefunction), then to solve the
Newton or the Schrödinger equation with these initial conditions. Again, the res-
ulting trajectory in phase space is completely deterministic, however Ej(t) appears
random. In particular, it will look different in repeated experiments because in set-
ting up such experiments only the initial value of Ej is specified, while the other
degrees of freedom are subjected only to a few conditions (such as temperature and
density). In this reduced description Ej(t) may be viewed as a stochastic variable.
The role of the theory is to determine its statistical properties and to investigate
their consequences.

Obviously, for a given physical process, different stochastic models can be
considered by employing different levels of reduction, that is, different subspaces
in which the process is described. For example, the time evolution of the vibrational
energy of a single diatomic molecule can be described as a stochastic evolution
of just this variable, or by studying the stochastic dynamics in the subspace of the
coordinate (the internuclear distance) and momentum of the intramolecular nuclear
motion, or by focusing on the atomic coordinates and velocities associated with
the molecule and its nearest neighbors, etc. These increasingly detailed reduced
descriptions lead to greater accuracy at the cost of bigger calculations. The choice
of the level of reduction is guided by the information designated as relevant based
on available experiments, and by considerations of accuracy based on physical
arguments. In particular, timescale and interaction-range considerations are central
to the theory and practice of reduced descriptions.

The relevance of stochastic descriptions brings out the issue of their the-
oretical and numerical evaluation. Instead of solving the equations of motion
for ∼6×1023 degrees of freedom we now face the much less demanding,
but still challenging need to construct and to solve stochastic equations of
motion for the few relevant variables. The next section describes a particular
example.
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7.3 The random walk problem

Random walk is a stochastic process that represents a reduced molecular description
of diffusion, in which a particle starts from a given position and executes a stochastic
motion, occasionally changing direction in a random way. This random change in
direction represents a collision process, after which the particle assumes a new,
randomly chosen, direction, moves a certain length �x (of the order of the mean
free path) until the next collision. As a simple example consider a one-dimensional
lattice model with lattice spacing �x, in which the particle moves between nearest
neighbor lattice points. During a time interval �t the particle may move to the
right with probability pr = kr�t and to the left with probability pl = kl�t. The
probability that it stays in its original position is 1 − pr − pl . kl and kr are rate
coefficients, measuring the probabilities per unit time that the corresponding events
will occur. In an isotropic homogeneous system the rates to move to the right and the
left are the same, kl = kr , and are position-independent. Inequality may reflect the
existence of some force that makes these rates different from each other. Obviously
pl and pr are linear in �t only for �t sufficiently small, so that these numbers are
substantially less than 1.

7.3.1 Time evolution

Starting from t = 0, we want to know the probability P(n, t) = P(n, N ,�t) that
the particle has made a net number n of steps to the right (a negative n implies that
the particle has actually moved to the left) after time t = N�t. In other words, for
a particle that starts at position n = 0 we seek the probability to find it at position
n (i.e. at distance n�l from the origin) at time t, after making at total of N steps.
An equation for P(n, t) can be found by considering the propagation from time t to
t +�t:

P(n, t+�t) = P(n, t)+kr�t (P(n − 1, t)− P(n, t))+kl�t (P(n + 1, t)− P(n, t))
(7.2)

In Eq. (7.2) the terms that add to P(n, t) on the right hand side result from the walk.
Thus, for example, kr�tP(n−1, t)is the increase in P(n, t) due to the possibility of a
jump from position n-1 to position n during a time interval �t, while −kr�tP(n, t)
is the decrease in P(n, t) because of transition from n to n+1 in the same period.
Rearranging Eq. (7.2) and dividing by �t we get, when �t → 0,

∂P(n, t)

∂t
= kr (P(n − 1, t)− P(n, t))+ kl (P(n + 1, t)− P(n, t)) (7.3)

Note that in (7.3) time is a continuous variable, while the position n is discrete.
We may go into a continuous representation also in position space by substituting
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n → n�x = x, n − 1 → x −�x, n + 1 → x +�x, to get

∂P(x, t)

∂t
= kr (P(x −�x, t)− P(x, t))+ kl (P(x +�x, t)− P(x, t)) (7.4)

Here P(x, t) may be understood as the probability to find the particle in an interval
of length �x about x. Introducing the density f (x, t) so that P(x, t) = f (x, t)�x and
expanding the right hand side of (7.4) up to second order in �x we obtain

∂f (x, t)

∂t
= −v

∂f (x, t)

∂x
+ D

∂2f (x, t)

∂x2 (7.5)

where
v = (kr − kl)�x = (pr − pl) (�x/�t) (7.6)

and where
D = (1/2)(kr + kl)�x2 = (pr + pl)[�x2/(2�t)] (7.7)

Note that even though in (7.5) we use a continuous representation of position and
time, the nature of our physical problem implies that �x and �t are finite, of the
order of the mean free path and the mean free time, respectively.

To get a feeling for the nature of the solution of Eq. (7.5) consider first the
case D = 0 (that is also obtained if we truncate the expansion that led to (7.5)
after first order). The solutions of the equation ∂f /∂t = −v∂f /∂x have the form
f (x, t) = f (x − vt), that is, any structure defined by f moves to the right with
speed v (drift velocity). This behavior is expected under the influence of a constant
force that makes kr and kl different. The first term of (7.5) reflects the effect of the
systematic motion resulting from this force.

Problem 7.2.

(1) Under what physical circumstances does a constant force lead to motion
with a constant speed that depends linearly on the force?

(2) Suppose the force on the particles is derived from a potential U = −Fx.
Assume that the rates kr and kl satisfy

k(x→x+�x)=
{
A exp[−β(U (x+�x)− U (x))] for U (x +�x)>U (x)
A for U (x +�x) ≤ U (x)

where β = (kBT )−1. Assuming that |F�x| � kBT derive an expression
for the mobility u, a (temperature-dependent) parameter defined by v = uF .
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Next consider Eq. (7.5) for the case v =0, that is, when kr = kl . In this case Eq. (7.5)
becomes the diffusion equation

∂f (x, t)

∂t
= D

∂2f (x, t)

∂x2 (7.8)

The solution of this equation for the initial condition f (x, 0) = δ(x − x0) is

f (x, t | x0, t = 0) = 1

(4πDt)1/2 exp

(
−(x − x0)

2

4Dt

)
(7.9)

Note that the left-hand side is written as a conditional probability density. This is
the probability density about point x at time t given that the particle was at x0 at
time t = 0. Note also that the initial density f (x, 0) = δ(x − x0) reflects the initial
condition that the particle was, with probability 1, at x0. The diffusion process is
the actual manifestation of the random walk that leads to a symmetric spread of the
density about the initial position.

Problem 7.3.

(1) Show that the transformation x − vt → x transforms Eq. (7.5) into the
form (7.8). What is the implication of this observation?

(2) Show that the solution of (7.5) under the initial condition f (x, 0) = δ(x −
x0) is

f (x, t | x0, t = 0) = 1

(4πDt)1/2 exp

(
−(x − vt − x0)

2

4Dt

)
(7.10)

The solution (7.10) shows both drift and the diffusion spread.

7.3.2 Moments

Further insight into the nature of this drift–diffusion process can be obtained by
considering the moments of this probability distribution. Equation (7.3) readily
yields equations that describe the time evolution of these moments.
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Problem 7.4. Show that both sides of Eq. (7.3) yield zero when summed over all
n from – ∞ to ∞, while multiplying this equation by n and n2 then performing
the summation lead to

d〈n〉
dt

= kr − kl (7.11)

and

d〈n2〉
dt

= 2 〈n〉 (kr − kl)+ kr + kl (7.12)

Assuming 〈n〉(t = 0) = 〈n2〉(t = 0) = 0, that is, that the particle starts its walk
from the origin, n = 0, Eq. (7.11) results in

〈n〉t = (kr − kl)t (7.13)

while Eq. (7.12) leads to

〈n2〉t = (kr − kl)
2t2 + (kr + kl)t (7.14)

From Eqs (7.13) and (7.14) it follows that

〈δn2〉t = 〈n2〉t − 〈n〉2t = (kr + kl)t = (pr + pl)
t

�t
= (pr + pl)N (7.15)

for a walker that has executed a total of N steps during time t = N�t.
Similar results may be obtained from Eq. (7.5). Suppose the particle starts at the

origin, x = 0. Its average position at time t is given by

〈x〉t =
∞∫

−∞
dxxf (x, t) (7.16)

Therefore,

∂ 〈x〉
∂t

= −v

∞∫
−∞

dx x
∂

∂x
f (x, t)+ D

∞∫
−∞

dx x
∂2

∂x2 f (x, t) (7.17)
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Integrating on the right-hand side by parts, using the fact that f and its derivatives
have to vanish at |x| → ∞, leads to1

∂ 〈x〉
∂t

= v, that is, 〈x〉 = vt at all times (7.18)

Consider now the second moment

〈x2〉t =
∞∫

−∞
dxx2f (x, t) (7.19)

whose time evolution is given by

∂〈x2〉
∂t

= −v

∞∫
−∞

dxx2 ∂f (x, t)

∂x
+ D

∞∫
−∞

dxx2 ∂
2f (x, t)

∂x2 (7.20)

Again, integration by parts of the terms on the right-hand side and using the above
boundary conditions at infinity, that is,

∞∫
−∞

dxx2 ∂f

∂x
=

[
x2f

]∞
−∞ −

∞∫
−∞

dx2xf = −2 〈x〉t

∞∫
−∞

dxx2 ∂
2f

∂x2 =
[

x2 ∂f

∂x

]∞
−∞

−
∞∫

−∞
dx2x

∂f

∂x
= −2 [xf ]∞−∞ + 2

∞∫
−∞

dxf = 2

(7.21)

leads to ∂〈x2〉/∂t = 2v2t + 2D, therefore, since 〈x2〉0 = 0,

〈x2〉t = v2t2 + 2Dt = 〈x〉2t + 2Dt (7.22)

or
〈δx2〉t = 2Dt (7.23)

1 To obtain Eqs (7.18) and (7.21) we need to assume that f vanishes as x → ∞ faster than x−2.
Physically this must be so because a particle that starts at x = 0 cannot reach beyond some finite
distance at any finite time if only because its speed cannot exceed the speed of light. Of course, the
diffusion equation does not know the restrictions imposed by the Einstein relativity theory (similarly,
the Maxwell–Boltzmann distribution assigns finite probabilities to find particles with speeds that
exceed the speed of light). The real mathematical reason why f has to vanish faster than x−2 is that in
the equivalent three-dimensional formulation f (r) has to vanish faster than r−2 as r → ∞ in order
to be normalizable.
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Problem 7.5. Show using x = n�x that Eqs (7.13) and (7.15) lead directly to
Eqs. (7.18) and (7.23), respectively.

Together Eqs (7.18) and (7.23) express the essential features of biased random
walk: A drift with speed v associated with the bias kr �= kl , and a spread with
a diffusion coefficient D. The linear dependence of the spread 〈δx2〉 on time is
a characteristic feature of normal diffusion. Note that for a random walk in an
isotropic three-dimensional space the corresponding relationship is

〈δr2〉 = 〈δx2〉 + 〈δy2〉 + 〈δz2〉 = 6Dt (7.24)

7.3.3 The probability distribution

Next consider the probability distribution itself. The solutions to the approximate
Eqs (7.8) and (7.5) are the probability densities in Eqs (7.9) and (7.10), respectively,
which are Gaussian functions. To gain insight on the nature of the approximation
involved we consider, for simplicity, a model slightly different from that considered
above, where jumps to the left or the right occur in every time-step, so that pr +
pl = 1. Let the total number of steps taken by the particle be N . The probability for
a particular walk with exactly nr steps to the right (i.e. nl = N −nr steps to the left,
so that the final position relative to the origin is n�x ; n = nr − nl = 2nr − N ) is

WN (nr) = N !
nr!(N − nr)!p

nr
r pN−nr

l (7.25)

The coefficient N !/[nr!(N − nr)!] is the number of distinct walks characterized by
the given nr. Note that the form (7.25) is normalized

N∑
nr=0

WN (nr) =
N∑

nr=0

N !
nr!(N − nr)!p

nr
r pN−nr

l = (pr + pl)
N = 1 (7.26)

The distribution (7.25) is called binomial. Its most frequent textbook example is
the outcome of flipping a coin with probabilities to win and lose given by pr and pl ,
respectively. The probability to have nr successes out of N coin flips is then given
by the binomial distribution (7.25).

The first moment of the distribution (7.25) can be computed according to

〈nr〉 =
N∑

nr=1

N !
nr!(N − nr)!p

nr
r pN−nr

l nr = pr
∂

∂pr

N∑
nr=1

N !
nr!(N − nr)!p

nr
r pN−nr

l

= pr
∂

∂pr
(pr + pl)

N = prN (pr + pl)
N−1 = prN (7.27)
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Note that the identity pr + Pl = 1 was used after the derivative with respect to pr
was taken.

Problem 7.6. Show that the second moment of the binomial distribution
(7.25) is

〈n2
r 〉 =

(
pr

∂

∂pr

)2

(pr + pl)
N = (Npr)

2 + Nprpl

so that the variance is 〈
δn2

r

〉
= Nprpl (7.28)

The net distance (in number of steps) that the particle walks from its original position
is n = nr − nl = 2nr − N . Obviously,

〈n〉 = (2pr − 1)N (7.29)

while 〈n2〉 = 4〈n2
r 〉−4〈nr〉N +N 2 = 4p2

r N 2+4Nprpl−4prN 2+N 2. This leads to

〈δn2〉 = 〈n2〉 − 〈n〉2 = 4Nprpl = 4Npr(1 − pr) (7.30)

Note the difference between this result and Eq. (7.15). This difference reflects the
fact that the model that leads to (7.15) is different from the present one that leads
to (7.25) and consequently to (7.30): In the former pr + pl = (kr + kl)�t can be
considerably smaller than 1, while in the latter pl+pr = 1. Equation (7.30) implies
that if pr = 0 or 1 there is no uncertainty in the walk so 〈δn2〉 = 0. In contrast,
Eq. (7.15) implies that uncertainty remains also when pr or pl (but not both) vanish
because at each step the particle can move or not. For pure (unbiased) diffusion
where pr = pl = 1/2 Eqs (7.15) and (7.30) yield identical results.

Consider now the distribution (7.25) in the limit N 
 1. In this limit the length
of the walk, n�x is much larger than the step size �x, which was the basis for the
expansion made in order to transform Eq. (7.4) to the form (7.5). In this limit the
factorial factors in WN (n), Eq. (7.25) can be approximated by the Stirling formula,
ln(N !) ≈ N ln N − N , leading to

ln[WN (nr)] = N ln N − nr ln nr − (N − nr) ln(N − nr)

+ nr ln pr + (N − nr) ln pl (7.31)

Further simplification is obtained if we expand WN (nr) about its maximum at n∗r .
n∗r is the solution of ∂ ln[WN (nr)]/∂nr = 0, which yields n∗r = Npr = 〈nr〉. The
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nature of this extremum is identified as a maximum using

∂2 ln W

∂n2
r

= − 1

nr
− 1

N − nr
= − N

nr(N − nr)
< 0 (7.32)

When evaluated at n∗r this gives ∂2 ln W/∂n2
r | n∗r = −1/(Nprpl). It is important to

note that higher derivatives of ln W are negligibly small if evaluated at or near n∗r .
For example,

∂3 ln W

∂n3
r

∣∣∣∣
n∗r
= 1

n∗2
r

− 1

(N − n∗r )2 =
1

N 2

(
1

p2
r
− 1

p2
l

)
(7.33)

and, generally, derivatives of order k will scale as (1/N )k−1. Therefore, for large N ,
WN can be approximated by truncating the expansion after the first nonvanishing,
second-order, term:

ln WN (nr) ∼= ln W (n∗r )−
(nr − n∗r )2

2Nprpl
= ln W (n∗r )−

(nr − n∗r )2

2〈δn2
r 〉

(7.34)

where in the last step we have used Eq. (7.28). This leads to the Gaussian form

WN (nr) ∼= 1√
2π〈δn2

r 〉
exp

[
−(nr − 〈nr〉)2

2〈δn2
r 〉

]
; 〈nr〉 = Npr , 〈δn2

r 〉 = Nprpl

(7.35)

The pre-exponential term was taken to make the resulting Gaussian distribution
normalized in the range (−∞,∞) by replacing the sum over all nr by an integral.
In fact, nr is bounded between 0 and N , however unless pr is very close to 1 or 0,
the distribution is vanishingly small near these boundaries and extending the limits
of integration to ±∞ is an excellent approximation. For the variable n = 2nr − N
we get

PN (n) ≡ WN

(
N + n

2

)

≈ exp
{
−[n − N (pr − pl)]2

8Nprpl

}
→ 1√

2π〈δn2〉 exp

{
−(n − 〈n〉)2

2
〈
δn2

〉
}

(7.36)

Again, in the last step we have calculated the normalization factor by replacing the
sum over n by an integral in (−∞,∞). The fact that starting from (7.25) we have
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obtained Gaussian distributions in the large N limit is an example of the central
limit theorem of probability theory (see Section 1.1.1).

Finally, recalling that position and time are related to n and N by x = n�x and
t = N�t we get from (7.36)

P(x, t) = 1√
2π〈δx2〉 exp

{
−(x − 〈x〉)2

2〈δx2〉
}

(7.37)

with

〈x〉 = (pr − pl)�x

�t
t = vt; 〈δx2〉 = 4prpl

(�x)2

�t
t ≡ 2Dt (7.38)

Again, the result for the diffusion coefficient D = 2prpl(�x)2/�t is the same as
in Eq. (7.7) only when pr = pl = 1/2. The important observation is, again, that a
Gaussian distribution was obtained as an approximation to the actual binomial one
in the large N limit.

7.4 Some concepts from the general theory of stochastic processes

7.4.1 Distributions and correlation functions

In Section 7.1 we have defined a stochastic process as a time series, z(t), of random
variables. If observations are made at discrete times 0 < t1 < t2, . . . ,< tn, then the
sequence {z(ti)} is a discrete sample of the continuous function z(t). In examples
discussed in Sections 7.1 and 7.3 z(t) was respectively the number of cars at time
t on a given stretch of highway and the position at time t of a particle executing a
one-dimensional random walk.

We can measure and discuss z(t) directly, keeping in mind that we will obtain
different realizations (stochastic trajectories) of this function from different exper-
iments performed under identical conditions. Alternatively, we can characterize
the process using the probability distributions associated with it. P(z, t)dz is the
probability that the realization of the random variable z at time t is in the interval
between z and z+dz. P2(z2t2; z1t1)dz1dz2 is the probability that z will have a value
between z1 and z1 + dz1 at t1 and between z2 and z2 + dz2 at t2, etc. The time
evolution of the process, if recorded in times t0, t1, t2, . . . , tn is most generally rep-
resented by the joint probability distribution P(zntn; . . . ; z0t0). Note that any such
joint distribution function can be expressed as a reduced higher-order function, for
example,

P(z3t3; z1t1) =
∫

dz2P(z3t3; z2t2; z1t1) (7.39)
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As discussed in Section 1.5.2, it is useful to introduce the corresponding
conditional probabilities. For example,

P1(z1t1 | z0t0)dz1 = P2(z1t1; z0t0)dz1

P1(z0t0)
(7.40)

is the probability that the variable z will have a value in the interval z1, . . . , z1+dz1
at time t1 given that it assumed the value z0 at time t0. Similarly,

P2(z4t4; z3t3 | z2t2; z1t1)dz3dz4 = P4(z4t4; z3t3; z2t2; z1t1)

P2(z2t2; z1t1)
dz3dz4 (7.41)

is the conditional probability that z is in z4, . . . , z4+dz4 at t4 and is in z3, . . . , z3+dz3
at t3, given that its values were z2 at t2 and z1 at t1.

In the absence of time correlations, the values taken by z(t) at different times
are independent. In this case P(zntn; zn−1tn−1; . . . ; z0t0) = ∏n

k=0 P(zk , tk) and time
correlation functions, for example, C(t2, t1) = 〈z(t2)z(t1)〉, are given by products
of simple averages C(t2, t1) = 〈z(t2)〉〈z(t1)〉, where 〈z(t1)〉 =

∫
dz z P1(z, t1).This

is often the case when the sampling times tk are placed far from each other—farther
than the longest correlation time of the process. More generally, the time correlation
functions can be obtained from the joint distributions using the obvious expressions

C(t2, t1) =
∫

dz1

∫
dz2z2z1P2(z2t2; z1t1) (7.42a)

C(t3, t2, t1) =
∫

dz1

∫
dz2

∫
dz3z3z2z1P3(z3t3; z2t2; z1t1) (7.42b)

In practice, numerical values of time correlations functions are obtained by aver-
aging over an ensemble of realizations. Let z(k)(t) be the kth realization of the
random function z(t). Such realizations are obtained by observing z as a func-
tion of time in many experiments done under identical conditions. The correlation
function C(t2, t1) is then given by

C(t2, t1) = lim
N→∞

1

N

N∑
k=1

〈z(k)(t2)z(k)(t1)〉 (7.43)

If the stochastic process is stationary, the time origin is of no import-
ance. In this case P1(z1, t1) = P1(z1) does not depend on time, while
P2(z2t2; z1t1) = P2(z2, t2 − t1; z1, 0) depends only on the time difference �t21 =
t2 − t1. In this case the correlation function C(t2, t1) = C(�t21) can be obtained
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by taking a time average over different origins along a single stochastic trajectory
according to

C(t) = lim
N→∞

1

N

N∑
k=1

〈z(tk + t)z(tk)〉 (7.44)

Here the average is over a sample of reference times that span a region of time that
is much larger than the longest correlation time of the process.

Further progress can be made by specifying particular kinds of processes of phys-
ical interest. In the following two sections we discuss two such kinds: Markovian
and Gaussian.

7.4.2 Markovian stochastic processes

The process z(t) is called Markovian if the knowledge of the value of z (say z1) at a
given time (say t1) fully determines the probability of observing z at any later time

P(z2t2 | z1t1; z0t0) = P(z2t2 | z1t1); t2 > t1 > t0 (7.45)

Markov processes have no memory of earlier information. Newton equations
describe deterministic Markovian processes by this definition, since knowledge
of system state (all positions and momenta) at a given time is sufficient in order to
determine it at any later time. The random walk problem discussed in Section 7.3
is an example of a stochastic Markov process.

The Markovian property can be expressed by

P(z2t2; z1t1; z0t0) = P(z2t2 | z1t1)P(z1t1; z0t0); for t0 < t1 < t2 (7.46)

or

P(z2t2; z1t1 | z0t0) = P(z2t2 | z1t1)P(z1t1 | z0t0); for t0 < t1 < t2 (7.47)

because, by definition, the probability to go from (z1,t1) to (z2,t2) is independent of
the probability to go from (z0,t0) to (z1,t1). The above relation holds for any inter-
mediate point between (z0,t0) and (z2,t2). As with any joint probability, integrating
the left-hand side of Eq. (7.47) over z1 yields P(z2t2 | z0t0). Thus for a Markovian
process

P(z2t2 | z0t0) =
∫

dz1P(z2t2 | z1t1)P(z1t1 | z0t0) (7.48)

This is the Chapman–Kolmogorov equation.
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Problem 7.7. Show that for a Markovian process

PN (zN tN ; zN−1tN−1; . . . ; z1t1; z0t0) = P1(z0, t0)
N∏

n=1

P2(zntn | zn−1tn−1)

(7.49)

The time evolution in a Markovian stochastic process is therefore fully described
by the transition probability P2(zt | z′t′).

What is the significance of the Markovian property of a physical process? Note
that the Newton equations of motion as well as the time-dependent Schrödinger
equation are Markovian in the sense that the future evolution of a system described
by these equations is fully determined by the present (“initial”) state of the system.
Non-Markovian dynamics results from reduction procedures used in order to focus
on a “relevant” subsystem as discussed in Section 7.2, the same procedures that led
us to consider stochastic time evolution. To see this consider a “universe” described
by two variables, z1 and z2, which satisfy the Markovian equations of motion

dz1

dt
= F1 (z1(t), z2(t), t) (7.50a)

dz2

dt
= F2 (z1(t), z2(t), t)

assumed−→ F2 (z1(t), t) (7.50b)

For simplicity we have taken F2 to depend only on z1(t). If z1 is the “relevant”
subsystem, a description of the dynamics in the subspace of this variable can be
achieved if we integrate Eq. (7.50b) to get

z2(t) = z2(t = 0)+
t∫

0

dt′F2(z1(t
′), t′) (7.51)

Inserting this into (7.50a) gives

dz1

dt
= z1(t = 0)+ F1

⎛
⎝z1(t), z2(t = 0)+

t∫
0

dt′F2
(
z1(t

′), t′
)
, t

⎞
⎠ (7.52)

This equation describes the dynamics in the z1 subspace, and its non-
Markovian nature is evident. Starting at time t, the future evolution of z1
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is seen to depend not only on its value at time t, but also on its past his-
tory, since the right-hand side depends on all values of z1(t′) starting from
t′ = 0.2

Why has the Markovian time evolution (7.50) of a system with two degrees
of freedom become a non-Markovian description in the subspace of one of them?
Equation (7.51) shows that this results from the fact that z2(t) responds to the
historical time evolution of z1, and therefore depends on past values of z1, not only
on its value at time t. More generally, consider a system A + B made of a part
(subsystem) A that is relevant to us as observers, and another part, B, that affects
the relevant subsystem through mutual interaction but is otherwise uninteresting.
The non-Markovian behavior of the reduced description of the physical subsystem
A reflects the fact that at any time t subsystem A interacts with the rest of the
total system, that is, with B, whose state is affected by its past interaction with A.
In effect, the present state of B carries the memory of past states of the relevant
subsystem A.

This observation is very important because it points to a way to consider this
memory as a qualitative attribute of system B (the environment or the bath) that
determines the physical behavior of system A. In the example of Eq. (7.50), where
system B comprises one degree of freedom z2, its dynamics is solely determined
by its interaction with system A represented by the coordinate z1, and the memory
can be as long as our observation. In practical applications, however, system A
represents only a few degrees of freedom, while B is the macroscopic surrounding
environment. B is so large relative to A that its dynamics may be dominated by
interactions between B particles. Our physical experience tells us that if we disturb
B then leave it to itself, it relaxes back to thermal equilibrium with a characteristic
relaxation time τB. In other words, B “forgets” the disturbance it underwent on this
timescale. If this remains true also in the case where A and B interact continuously
(which says that also in this case τB is dominated by the internal dynamics of B),
then the state of B at time t does not depend on disturbances in B that were caused
by A at times earlier than t′ = t− τB. Consequently, dynamics in the A subspace at
time t will depend on the history of A at earlier times going back only as far as this
t′. The relaxation time τB can be therefore identified with the memory time of the
environment B.

2 Equation (7.52) shows also the origin of the stochastic nature of reduced descriptions. Focusing
on z1, we have no knowledge of the initial state z2(t = 0) of the “rest of the universe.” At most we
may know the distribution (e.g. Boltzmann) of different initial states. Different values of z2(t = 0)
correspond to different realizations of the “relevant” trajectory z1(t). When the number of “irrelevant”
degrees of freedom increases, this trajectory assumes an increasingly stochastic character in the sense
that we can infer less and less about its evolution from the knowledge of its behavior along any given
time segment.
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We can now state the condition for the reduced dynamics of subsystem A to be
Markovian: This will be the case if the characteristic timescale of the evolution of A
is slow relative to the characteristic relaxation time associated with the environment
B. When this condition holds, measurable changes in the A subsystem occur slowly
enough so that on this relevant timescale B appears to be always at thermal equi-
librium, and independent of its historical interaction with A. To reiterate, denoting
the characteristic time for the evolution of subsystem A by τA, the condition for
the time evolution within the A subspace to be Markovian is

τB � τA (7.53)

While Markovian stochastic processes play important role in modeling molecu-
lar dynamics in condensed phases, their applicability is limited to processes that
involve relatively slow degrees of freedom. Most intramolecular degrees of free-
dom are characterized by timescales that are comparable or faster than characteristic
environmental times, so that the inequality (7.53) often does not hold. Another
class of stochastic processes that are amenable to analytic descriptions also in
non-Markovian situations is discussed next.

7.4.3 Gaussian stochastic processes

The special status of the Gaussian (“normal”) distribution in reduced descriptions
of physical processes was discussed in Section 1.4.4. It stems from the central
limit theorem of probability theory and the fact that random variables that appear
in coarse-grained descriptions of physical processes are themselves combinations
of many more or less independent random variables. The same argument can be
made for the transition probability associated with the time evolution step in a
stochastic description of coarse-grained systems, assuming that the corresponding
probability is affected by many random events. It leads to the conclusion that
taking a Gaussian form for this probability is in many cases a reasonable model.
A succession of such evolution steps, whether Markovian or not, constitutes a
Gaussian stochastic process. As a general definition, a stochastic process z(t) is
Gaussian if the probability distribution of its observed values z1, z2, . . . , zn at any n
time points t1, t2, . . . , tn (for any value of the integer n) is an n-dimensional Gaussian
distribution.

Pn(z1t1; z2t2; . . . ; zntn) = ce−(1/2)
∑n

j=1
∑n

k=1 ajk (zj−mj)(zk−mk ); −∞ < zj < ∞
(7.54)

where mj = (j = 1, . . . n) are constants and the matrix (ajk) = A is symmetric and
positive definite (i.e. u†Au > 0 for any vector u) and where c is a normalization
factor.
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A Gaussian process can be Markovian. As an example consider the Markovian
process characterized by the transition probability

P(zk tk | zltl) = 1√
2π�kl

exp

[
−(zk − zl)

2

2�2
kl

]
(7.55)

This process is Gaussian by definition, since (7.54) is satisfied for any pair of times.
The distribution (7.55) satisfies

∫
dz1P(z2t2 | z1t1)P(z1t1 | z0t0) = 1√

2π(�2
21 +�2

10)

exp

[
− (z2 − z0)

2

2(�2
21 +�2

10)

]

(7.56)
Therefore the Markovian property (7.48) is satisfied provided that

�2
20 = �2

21 +�2
10 (7.57)

If we further assume that �kl is a function only of the time difference tk − tl , that
is, �kl = �(tk − tl), it follows that its form must be

�(t) = √
2Dt (7.58)

where D is some constant. Noting that �2
10 is the variance of the probability dis-

tribution in Eq. (7.55), we have found that in a Markovian process described by
(7.55) this variance is proportional to the elapsed time. Comparing this result with
(7.9) we see that we have just identified regular diffusion as a Gaussian Markovian
stochastic process.

Taken independently of the time ordering information, the distribution (7.54) is
a multivariable, n-dimensional, Gaussian distribution

Pn(z1, z2, . . . , zn) = ce−(1/2)
∑n

j=1
∑n

k=1 ajk (zj−mj)(zk−mk ); −∞ < zj < ∞
(7.59)

In Appendix 7A we show that this distribution satisfies

〈zj〉 = mj;
〈
δzjδzk

〉 = [
(A)−1

]
j,k

(where δz = z − 〈z〉) (7.60)

This shows that a Gaussian distribution is completely characterized by the
first two moments of its variables. Furthermore, we show in Appendix 7A
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that the so-called characteristic function of the n-variable Gaussian distribution,
�n(x1, x2, . . . , xn), defined as the Fourier transform of this distribution

�n(x1, . . . , xn) =
∞∫

−∞
dz1, . . . ,

∞∫
−∞

dznPn(z1, z2, . . . , zn)e
i
∑n

j=1 xjzj

= 〈ei
∑n

j=1 xjzj 〉 (7.61)

is given by

�n(x) = 〈eix·z〉 = eim·x−(1/2)x·A−1·x (7.62)

where the vectors z, x, and m are defined as z = (z1, z2, . . . , zn) m =
(m1, m2, . . . , mn), and x = (x1, x2, . . . , xn). More explicitly, this implies the
following identity for the multivariable (z1, z2, . . . , zn) Gaussian distribution

〈
ei

∑
j xjzj

〉
= ei

∑
j xj〈zj〉−(1/2)

∑
j
∑

k xj〈δzjδzk〉xk (7.63)

where {xj, j = 1, . . . , n} are any constants.

Problem 7.8. For a two-variable distribution of the type (7.54)

P2(z1, z2) = ce−(1/2)
∑2

j=1
∑2

k=1 ajk (zj−mj)(zk−mk ); −∞ < zj < ∞
show that

〈ez1〉 = exp
[
〈z1〉 + 1

2
〈(δz1)

2〉
]

and

〈ez1+z2〉 = exp
{
〈z1〉 + 〈z2〉 + 1

2
[〈(δz1)

2〉 + 〈(δz2)
2〉 + 2〈(δz1)(δz2)〉]

}

Equations (7.60)–(7.63) describe general properties of many-variable Gaussian
distributions. For a Gaussian random process the set {zj} corresponds to a sample
{zj,tj} from this process. This observation can be used to convert Eq. (7.63) to a
general identity for a Gaussian stochastic process z(t) and a general function of
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time x(t) (see Appendix 7B)

〈
exp

⎛
⎝i

t∫
t0

dt′x(t′)z(t′)

⎞
⎠〉

= exp

⎛
⎝i

t∫
t0

dt′x(t′)m(t′)− 1

2

t∫
t0

dt1

×
t∫

t0

dt2Cz(t1, t2)x(t1)x(t2)

⎞
⎠ (7.64)

where

m(t) = 〈z(t)〉
Cz(t1, t2) = 〈δz(t1)δz(t2)〉 stationary process−−−−−−−−−→ Cz(t1 − t2)

δz(t) = z(t)− m(t)

(7.65)

Equation (7.64) is a general identity for a Gaussian stochastic process charac-
terized by its average m(t) and the time correlation functions Cz(t1, t2). In many
applications the stochastic process under study is stationary. In such cases 〈z〉 = m
does not depend on time while Cz(t1, t2) = Cz(t1 − t2) depends only on the time
difference.

7.4.4 A digression on cumulant expansions

The identities (7.63) and (7.64) are very useful because exponential functions of
random variables of the forms that appear on the left sides of these identities are
frequently encountered in practical applications. For example, we have seen (cf.
Eq. (1.5)) that the average 〈eαz〉, regarded as a function ofα, is a generating function
for the moments of the random variable z (see also Section 7.5.4 for a physical
example). In this respect it is useful to consider extensions of (7.63) and (7.64)
to non-Gaussian random variables and stochastic processes. Indeed, the identity
(compare Problem 7.8)

〈eαz〉 = exp[α〈z〉 + (1/2)α2〈(δz)2〉] (7.66)

that holds for a Gaussian distribution is a special case of the so-called cumulant
expansion (valid for any distribution)

〈eαz〉 = exp[α〈z〉c + (1/2)α2〈z2〉c + · · · + (1/n!)αn〈zn〉c + · · ·] (7.67)

where the cumulants 〈zn〉ccan be expressed in terms of the moments 〈zn〉 such that
the cumulant of order n is given by a linear combinations of moments of order n
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and lower. For example, the first three cumulants are given by

〈z〉c = 〈z〉
〈z2〉c = 〈z2〉 − 〈z〉2 = 〈δz2〉
〈z3〉c = 〈z3〉 − 3〈z〉〈z2〉 + 2〈z〉3

(7.68)

and for a Gaussian distribution all cumulants of order higher than 2 can be shown to
vanish (which leads to Eq. (7.66)). For further discussion of cumulant expansions
see Appendix 7C.

Problem 7.9. Use the procedure described in Appendix 7C to express the
fourth cumulant 〈z4〉c in terms of the moments 〈zn〉; n = 1, 2, 3, 4. Show that
the third and fourth cumulants of the Gaussian distribution function P(z) =√
(α/π) exp[−αz2]; z = −∞, . . . ,∞ vanish.

7.5 Harmonic analysis

Just as a random variable is characterized by the moments of its distribution, a
stochastic process is characterized by its time correlation functions of various
orders. In general, there are an infinite number of such functions, however we
have seen that for the important class of Gaussian processes the first moments and
the two-time correlation functions, simply referred to as time correlation functions,
fully characterize the process. Another way to characterize a stationary stochastic
process is by its spectral properties. This is the subject of this section.

7.5.1 The power spectrum

Consider a general stationary stochastic process x(t), a sample of which is observed
in the interval 0≤ t ≤ T . Expand it in Fourier series

x(t) =
∞∑

n=−∞
xneiωnt ωn = 2πn

T
, n = 0,±1 . . . (7.69)

where xn are determined from

xn = 1

T

T∫
0

dtx(t)e−iωnt (7.70)
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If x(t) is real then xn = x∗−n. Equation (7.69) resolves x(t) into its spectral
components, and associates with it a set of coefficients {xn} such that |xn|2 is the
strength or intensity of the spectral component of frequency ωn. However, since
each realization of x(t) in the interval 0, . . . , T yields a different set {xn}, the
variables xn are themselves random, and characterized by some (joint) probability
function P({xn}). This distribution in turn is characterized by its moments, and
these can be related to properties of the stochastic process x(t). For example, the
averages 〈xn〉 satisfy

〈xn〉 = 1

T

T∫
0

dt 〈x(t)〉 e−iωnt (7.71)

and since 〈x(t)〉 = 〈x〉 does not depend on t (x(t) being a stationary process), this
implies

〈xn〉 = 〈x〉
T

T∫
0

dte−i(2πn/T )t = 〈x〉 δn,0 (7.72)

Note that from Eq. (7.70) x0 = (1/T )
∫ T

0 x(t) ≡ x̄T is the time average of x(t) for
any particular sampling on the interval T . For an ergodic process limT→∞ x̄T = 〈x〉
we thus find that x0

T→∞−→ 〈x0〉 = 〈x〉.
For our purpose the important moments are 〈|xn|2〉, sometimes referred to as

the average strengths of the Fourier components ωn. The power spectrum I(ω) of
the stochastic process is defined as the T → ∞ limit of the average intensity at
frequency ω:

I(ω) = lim
T→∞

(∑
n∈W�ω

〈|xn|2
〉

�ω

)
;

W�ω = {n |ω −�ω/2 < (2πn/T ) ≤ ω +�ω/2} (7.73)

where n ∈ W�ω encompasses all n with corresponding frequencies ωn = (2π/T )n
in the interval ω, . . . ,ω ±�ω/2. If T is large enough we can use frequency inter-
vals �ω that are large enough so that they contain many Fourier components
�ω/(2π/T ) = (T/2π)�ω 
 1, but small enough so that the strengths |xn|2 do
not appreciably change within the interval. In this case the sum on the right-hand
side of (7.73) may be represented by 〈|xn|2〉(T/2π)�ω. This implies

I(ω) = lim
T→∞

T

2π
〈|xn|2〉; n = ωT

2π
(7.74)

Note that, as defined, I(ω) is a real function that satisfies I(−ω) = I(ω).
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Problem 7.10. Show that another expression for the power spectrum is

I(ω) = lim
T→∞

∑
n

〈|xn|2〉δ(ω − ωn); ωn = 2π

T
n (7.75)

7.5.2 The Wiener–Khintchine theorem

An important relationship between I (ω) and the time correlation function C(t) =
〈x(τ )x(t + τ)〉 = 〈x(0)x(t)〉 of x(t) is the Wiener–Khintchine theorem, which states
that

I(ω) = 1

2π

∞∫
−∞

dte−iωtC(t) or C(t) =
∞∫

−∞
dωeiωt I(ω) (7.76)

If x is a complex function, this theorem holds for C(t) = 〈x∗(0)x(t)〉. The proof
of this relationship is given in Appendix 7D. The power spectrum of a given
stochastic process is thus identified as the Fourier transform of the corresponding
time correlation function.

The power spectrum was defined here as a property of a given stochastic process.
In the physics literature it is customary to consider a closely related function that
focuses on the properties of the thermal environment that couples to the system
of interest and affects the stochastic nature of its evolution. This is the spectral
density that was discussed in Section 6.5.2. (see also Section 8.2.6). To see the
connection between these functions we recall that in applications of the theory of
stochastic processes to physical phenomena, the stochastic process x(t) represents a
physical observable A, say a coordinate or a momentum of some observed particle.
Suppose that this observable can be expanded in harmonic normal modes {uj} as
in Eq. (6.79)

A(t) =
∑

j

c(A)
j uj(t) (7.77)

where c(A)
j are the corresponding weights. The correlation function CAA(t) =

〈A(t)A(0)〉 is therefore given by (cf. Eq. (6.88))

CAA(t) = kBT
∑

j

(c(A)
j )2

ω2
j

cos(ωjt) = 2kBT

π

∞∫
0

dω
JA(ω)

ω
cos(ωt) (7.78)

where (cf. Eq. (6.92))

JA(ω) = πg(ω)(c(A)(ω))2/(2ω) (7.79)
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was identified as the bath spectral density, and we have used the subscript A to
emphasize the fact that JA(ω) characterizes both the bath and the variable A. Because
(cf. Eq. (6.93)) JA(−ω) = −JA(ω), Eq. (7.78) may be rewritten as

CAA(t) = kBT

π

∞∫
−∞

dω
JA(ω)

ω
eiωt (7.80)

so that

IA (ω) = kBT

π

JA(ω)

ω
(7.81)

The two functions IA(ω) and JA(ω) are seen to convey the same physical information
and their coexistence in the literature just reflects traditions of different scientific
communities. The important thing is to understand their physical contents: we have
found that the power spectrum is a function that associates the dynamics of an
observable A with the dynamics of a reference harmonic system with density of
modes given by (7.81) and (7.79).

7.5.3 Application to absorption

More insight into the significance of the power spectrum/spectral function concept
can be gained by considering the rate at which a system absorbs energy from an
external driving field. Assume that our system is driven by an external periodic
force, F cosωt that is coupled to some system coordinate A, that is, it is derived
from a potential −AF cosωt. Taking A again to be the superposition (7.77) of
system normal modes, the equation of motion of each normal mode is

üj = −ω2
j uj + cjF cosωt (7.82)

To simplify notation we have removed the superscript (A) from the coefficients cj.
Consider the rate at which such mode absorbs energy from the external field. It is
convenient to assume the presence of a small damping term ηu̇j, taking η to zero
at the end of the calculation. This makes it possible to treat the energy absorption
as a steady-state process. The equation of motion is then

üj = −ω2
j uj − ηu̇j + cjF cosωt (7.83)

Multiplying Eq. (7.83) by u̇j leads to

dEj

dt
= −ηu̇2

j + cjFu̇j cosωt (7.84)

where

Ej = 1

2
(u̇2

j + ω2
j u2

j ) (7.85)
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is the oscillator energy (see Eq. (6.76)). At steady state, the average oscillator energy
does not change in time, so Eq. (7.85) yields

dEj

dt
= 0 = −ηu̇2

j + cjFu̇j cos (ωt) (7.86)

where the overbars represent time averages. The two terms on the right, the first
representing the time-averaged dissipation and the second corresponding to the
time-averaged pumping, must balance each other. The pumping rate expressed as
a function of the pumping frequency ω is the contribution, Lj(ω), of the mode j to
the absorption lineshape. Thus,

Lj(ω) ∼ ηu̇2
j (7.87)

At steady state uj oscillates with the same frequency of the driving field. Its motion
is obtained from (7.83) by looking for a solution of the form uj(t) = Re(Ujeiωt)

and solving for Uj. We get3

uj(t) = Re

[
cjF

ω2
j − ω2 + iωη

eiωt

]
(7.88a)

u̇j(t) = Re

[
iωcjF

ω2
j − ω2 + iωη

eiωt

]
(7.88b)

Using cos2(ωt) = sin2(ωt) =(1/2) and sin(ωt) cos(ωt) = 0, Eqs (7.87) and
(7.88b) yield

Lj(ω) ∼ ηu̇2
j =

c2
j F2

2

ηω2

(ω2
j − ω2)2 + (ωη)2

(7.89)

When η � ωj the absorption is dominated by frequencies ω close to ωj and we
may approximate (ω2

j − ω2) = (ωj − ω)(ωj + ω) ∼= 2ω(ωj − ω). This leads to

Lj(ω) ∼ c2
j F2

4

η/2

(ωj − ω)2 + (η/2)2

η→0−→ πc2
j F2

4
δ(ωj − ω) (7.90)

Summing over all modes yields

L(ω) =
∑

j

Lj(ω) = πF2c2(ω)

4
g(ω) ∼ ω2IA(ω) (7.91)

We have found that up to constant factors, the absorption lineshape is determined
by the power spectrum that characterizes the coordinate that couples to the external

3 The result (7.88) is most easily obtained by solving variants of (7.83) with driving terms
(1/2)CjFe±iωt then combining the corresponding solutions
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field. Note that this power spectrum is associated with the motion of this coordinate
in the absence of the driving field.

7.5.4 The power spectrum of a randomly modulated harmonic oscillator

Having found a relationship between the absorption lineshape associated with a
periodically modulated system variable and the power spectrum of this variable, we
now consider a specific example. Consider a harmonic oscillator which is randomly
perturbed so that its frequency changes in time as:

ω(t) = ω0 + δω(t) (7.92)

where δω(t) is a stochastic process. This is a model for a system interacting with
its thermal environment, where we assume that this interaction is expressed by
Eq. (7.92). It is convenient to use the complex amplitude a(t) defined in Eq. (6.38)

a(t) = x(t)+ i

mω
p(t) (7.93)

so that the variables x and p can be replaced by a and a∗. In what follows we will
calculate the power spectrum of these variables.4

Problem 7.11. Show that |a(t)|2 = 2E/(mω2), where E is the oscillator energy.

The equation of motion for a(t) is

ȧ(t) = −iω(t)a(t) (7.94)

whose solution is (putting a0 = a(t = 0))

a(t) = a0 exp
[
−i

t∫
0

dt′ω(t′)
]

(7.95)

Since δω (t) is a stochastic process, so are a(t) and x(t) = (1/2)[a(t)+ a∗(t)].
Consider the time correlation function

〈a∗(0)a(t)〉 =
〈
|a0|2 exp

[
−i

t∫
0

dt′ω(t′)
]〉

(7.96)

4 Since x = (1/2)(a + a∗) we have 〈x(0)x(t)〉 ∼ 2Re
(〈a(0)a(t)〉 + 〈a∗(0)a(t)〉). The term

〈a(0)a(t)〉 = 〈(a(0))2〉〈exp
[
−i

∫ t
0 dt′ω(t′)

]
〉 can be disregarded because (using Eq. (7.93) and assum-

ing thermal equilibrium at t = 0)〈(a(0))2〉 = 0. Therefore 〈x(0)x(t)〉 ∼ 2Re
(〈a∗(0)a(t)〉) and the

power spectra of x(t) and of a(t) are essentially the same.
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The initial value a(0) is assumed independent of the process ω(t), so

〈a∗(0)a(t)〉〈|a(0)|2〉 =
〈

exp
[
−i

t∫
0

dt′ω(t′)
]〉

= e−iω0tφ(t) (7.97)

where

φ(t) =
〈

exp
[
−i

t∫
0

dt′ δω(t′)
]〉

(7.98)

Once we evaluateφ(t)we can obtain the power spectrum of the randomly modulated
harmonic oscillator using the Wiener–Khintchine theorem (7.76)

Ia(ω) = 1

2π

∞∫
−∞

〈
a∗(0)a(t)

〉
e−iωtdt = |a0|2

2π

∞∫
−∞

φ(t)e−iω′tdt,

ω′ = ω + ω0 (7.99)

We now assume that the stochastic frequency modulation δω(t) is a stationary
Gaussian process with 〈δω(t)〉 = 0 and 〈δω(t0)δω(t0 + t)〉 = 〈δω2〉s(t), where
s(t) = s(−t) is defined by this relationship. The parameter 〈δω2〉 and the function
s(t) characterize the physics of the random frequency modulations and are assumed
known. From Eq. (7.64) we get

φ(t) =
〈

exp
(
−i

t∫
0

dt′ δω(t′)
)〉

= e−(1/2)〈δω2〉 ∫ t
0 dt1

∫ t
0 dt2s(t1−t2) (7.100)

The integral in the exponent may be transformed as follows:

1

2

t∫
0

dt1

t∫
0

dt2 s(t1 − t2) =
t∫

0

dt1

t1∫
0

dt2 s(t1 − t2) =
t∫

0

dt1

t1∫
0

dτ s(τ )

=
t∫

0

dτ(t − τ) s(τ ) (7.101)

The last equality is obtained by changing the order of integration as in the
transition from (7.127) to (7.128) in Appendix 7D. Equation (7.100) then becomes

φ(t) = exp

⎛
⎝−〈δω2〉

t∫
0

dτ(t − τ) s(τ )

⎞
⎠ (7.102)
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The resulting physical behavior is determined by the interplay between two physical
parameters. First, � = 〈δω2〉1/2 measures the amplitude of the random frequency
modulations. Second, τc =

∫∞
0 dτ s(τ ) = 〈δω2〉−1

∫∞
0 dτ 〈δω(0)δω(τ)〉measures

the correlation time of these modulations. Depending on their relative magnitude
we can get qualitatively different spectra.

To see this in detail consider the simple model

s(t) = e−t/τc (7.103)

Using (7.103) in (7.102) results in

φ(t) = exp
[
−α2

(
t

τc
− 1 + e−t/τc

)]
(7.104)

where
α = τc� (7.105)

In the limit α →∞ φ(t) vanishes unless t is very small. We can therefore expand
the exponent in (7.104) in power of t up to order t2. This leads to

φ(t) = e−(1/2)�2t2
(7.106)

and Ia(ω) is a Gaussian5

Ia(ω) = 1

2π

∞∫
−∞

dtφ(t)e−iωt = 1

�
√

2π
exp

(
− ω2

2�2

)
(7.107)

In the opposite limit, α → 0, the main contribution to the integral (7.99) will come
from large t. In this case φ(t) may be approximated by

φ(t) = exp
(
−α2 t

τc

)
= exp

(
−τc�

2t
)

(7.108)

and the spectral function (7.99) is a Lorentzian, (γ /π)/(ω2 + γ 2), with γ = τc�
2.

We have seen in Section 7.5.3 that the power spectrum of a given system
is closely associated with the absorption lineshape in that system. The analysis
presented above indicates that the spectral lineshape of a stochastically modulated
oscillator assumes qualitatively different forms depending on the amplitude and
timescale of the modulation. We will return to these issues in Chapter 18.

5 Equation (7.107) holds for ω large relative to �, but not in the asymptotic limit ω → ∞. It can
be shown that the Fourier transform of (7.104) approaches asymptotically a ω−6 behavior.
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Appendix 7A: Moments of the Gaussian distribution

Consider the n-dimensional Gaussian distribution (7.54). Here it is shown that this
distribution satisfies

〈zj〉 = mj; 〈δzjδzk〉 = [(A)−1]j,k (where δz = z − 〈z〉) (7.109)

The time ordering information in (7.54) is not relevant here. Equation (7.109)
obviously holds for n = 1, where W (z) = ce−(1/2)a(z−m)2

gives 〈z〉 = m
and 〈(z − m)2〉 = −2(d/da)(ln

∫∞
−∞ dze−(1/2)az2

) = a−1. In the general n-
variable case we introduce the characteristic function of n variables �n(x1, . . . , xn),
essentially the Fourier transform of the probability function

�n (x1 . . . xn) =
∞∫

−∞
dz1 . . .

∞∫
−∞

dznPn (z1, z2, . . . , zn) ei
∑n

j=1 xjzj

=
〈
ei

∑n
j=1 xjzj

〉
(7.110)

The characteristic function can be used to generate the moments of the distribution
Wn according to (compare Eqs (1.5)–(1.7))

〈
zj
〉 = −i

(
∂�n

∂xj

)
x=0

;
〈
zjzj′

〉 = −
(

∂2�n

∂xj∂xj′

)
x=0

(7.111)

It is convenient to use a vector notation

z = (z1, . . . , zn); x = (x1, . . . , xn); m = (m1, . . . , mn) (7.112)

define y = z − m. Using also (7.54), the characteristic function takes the form

�(x) = c

∞∫
−∞

dze−(1/2)y·A·y+ix·z = c

∞∫
−∞

dye−(1/2)y·A·y+ix·y+ix·m (7.113)

Next we change variable y → u+ ib, where b is a constant vector to be determined
below. The expression in the exponent transforms to

−(1/2)y · A · y + ix · y + ix · m →
−(1/2)u · A · u−iu · A · b︸ ︷︷ ︸+(1/2)b · A · b︸ ︷︷ ︸+ix · u︸ ︷︷ ︸−x · b︸ ︷︷ ︸+ix · m

1 2 1 2

(7.114)
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Now choose b so that A ·b = x or b = A−1 ·x. Then the terms marked 1 in (7.114)
cancel while the terms marked 2 give −(1/2)x · A−1x. This finally results in

�(x) = eim·x−(1/2)x·A−1·xc

∞∫
−∞

due−(1/2)u·A·u = eim·x−(1/2)x·A−1·x (7.115)

The second equality results from the fact that Wn = ce−(1/2)y·A·y is normalized to
unity. We found

�(x) = 〈
eix·z〉 = eim·x−(1/2)x·A−1·x (7.116)

A Taylor expansion about x=0 yields

1+ix·〈z〉− 1

2
x·〈zz〉·x+· · · = 1+ix·m− 1

2
x·(mm)·x− 1

2
x·A−1 ·x+· · · (7.117)

Here zz is a short-hand notation for the matrix Zij = zizj, and similarly for mm.
By equating coefficients of equal powers of x in (7.117) we find (see

also (7.109))
〈z〉 = m, that is, zj = mj

and

〈zz〉 = mm + A−1, that is, 〈(zj − mj)(zj′ − mj′)〉 = (A−1)j,j′ (7.118)

which is equivalent to (7.109).

Appendix 7B: Proof of Eqs (7.64) and (7.65)

Here we prove, for a Gaussian stochastic processes z(t) and a general function of
time x(t) the results (7.64) and (7.65). Our starting point is (cf. Eq. (7.63))〈

ei
∑

j xjzj
〉
= ei

∑
j xj〈zj〉−(1/2)

∑
j
∑

k xj〈δzjδzk〉xk (7.119)

where the sums are over the n random variables. Noting that this relationship holds
for any set of constants {xj}, we redefine these constants by setting

xj → x(tj)�tj (7.120)

and take the limit �tj → 0 and n →∞ in the interval t0 < t1 < t2 < · · · < tn. Then

n∑
j=1

xj〈zj〉 →
t∫

t0

dt′x(t′)〈z(t′)〉
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and

n∑
j=1

n∑
k=1

xj〈zjzk〉xk →
t∫

t0

t∫
t0

dt1dt2〈z(t1)z(t2)〉x(t1)x(t2)

This immediately yields (7.64) and (7.65).

Appendix 7C: Cumulant expansions

Let z be a random variable and consider the function eαz. The average 〈eαz〉 is a
generating function (see Eqs (1.5)–(1.7)) for the moments 〈zn〉:

〈eαz〉 = 1 + α〈z〉 + (1/2)α2〈z2〉 + · · · + (1/n!)αn〈zn〉 + · · · (7.121)

The cumulants 〈zn〉c are defined by

〈eαz〉 = exp[α〈z〉c + (1/2)α2〈z2〉c + · · · + (1/n!)αn〈zn〉c + · · ·] (7.122)

We can express the cumulant of order n as a linear combinations of moments of
order m ≤ n by expanding the right hand side of Eq. (7.122) in a Taylor series, and
equating equal powers of α in the resulting expansion and in (7.121). This leads to

〈z〉c = 〈z〉
〈z2〉c = 〈z2〉 − 〈z〉2 = 〈δz2〉
〈z3〉c = 〈z3〉 − 3〈z〉〈z2〉 + 2〈z〉3

(7.123)

We can generalize this to many random variables and even to a continuous array
of such variable s. Starting from the left-hand side of (7.64) and using a Taylor
expansion we have

〈
exp

(
i

t∫
t0

dt′x(t′)z(t′)
)〉

= 1 + i

t∫
t0

dt′x(t′)
〈
z(t′)

〉− 1

2

t∫
t0

dt′

×
t∫

t0

dt′′x(t′)x(t′′)
〈
z(t′)z(t′′)

〉+ · · · (7.124)
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The cumulant expansion is defined in analogy to (7.122)

〈
exp

(
i

t∫
t0

dt′x(t′)z(t′)
)〉

= exp
(

i

t∫
t0

dt′x(t′)〈z(t′)〉c − 1

2

t∫
t0

dt′

×
t∫

t0

dt′′x(t′)x(t′′)〈z(t′)z(t′′)〉c + · · ·
)

(7.125)

Again, expanding the exponent in (7.125) in a power series and comparing similar
orders of x(t) in the resulting series with Eq. (7.124) we find

〈z(t)〉c = 〈z(t)〉
〈z(t′)z(t′′)〉c = 〈δz(t′)δz(t′′)〉; δz(t) = z(t)− 〈z(t)〉 (7.126)

A common approximation is to truncate the cumulant expansion at some order,
usually the second. Comparing to Eqs (7.63) and (7.64) we see that for a Gaussian
process this approximation is exact. In fact, it may be shown that for a Gaussian
process not only does the sum of all higher cumulants vanish, but every cumulant
higher than the second is zero.

Appendix 7D: Proof of the Wiener–Khintchine theorem

Starting from Eq. (7.70) we have

〈|xn|2〉 = 1

T 2

T∫
0

dt1

T∫
0

dt2〈x(t2)x(t1)〉e−iωn(t1−t2)

= 1

T 2

T∫
0

dt1

⎛
⎝ t1∫

0

dt2 +
T∫

t1

dt2

⎞
⎠C(t1 − t2)e

−iωn(t1−t2)

= 1

T 2

T∫
0

dt1

t1∫
0

dtC(t)e−iωnt + 1

T 2

T∫
0

dt1

T−t1∫
0

dtC(−t)eiωnt (7.127)

Note that if x(t) is a complex function the same relationships hold for C(t) =
〈x∗(0)x(t)〉. The integration regions corresponding to the two integrals in (7.127)
are shown in Fig. 7.3, where the arrows show the direction taken by the inner
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T t1

x = t1
x

T

x

T

t1T

Fig. 7.3 The integration regions and procedures taken for the two integrals in Eq. (7.127)

integrals. By changing the integration direction we can change the orders of these
integrations to get

〈|xn|2〉 = 1

T 2

⎡
⎣ T∫

0

dt(T − t)C(t)e−iωnt+
T∫

0

dt(T − t)C(−t)eiωnt

⎤
⎦ (7.128)

Using the definition (7.74) of I (ω), we get

I(ωn) = lim
T→∞

1

2πT

⎡
⎣ T∫

0

dt(T − t)C(t)e−iωnt +
T∫

0

dt(T − t)C(−t)eiωnt

⎤
⎦

(7.129)

assuming that the integrals
∫∞

0 dtC(t)eiωntand
∫∞

0 dt tC(t)eiωntare finite, this yields

I(ω) = 1

2π

⎛
⎝ ∞∫

0

dtC(t)e−iωt +
∞∫

0

dtC(−t)eiωt

⎞
⎠ = 1

2π

∞∫
−∞

dtC(t)e−iωt (7.130)

This concludes the proof.

Further reading

See end of Chapter 8.
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STOCHASTIC EQUATIONS OF MOTION

Never suppose the atoms had a plan,
Not with wise intelligence imposed
An order on themselves, nor in some pact
Agreed what movements each should generate.
No, it was all fortuitous…

Lucretius (c.99–c.55 bce) “The way things are” translated by
Rolfe Humphries, Indiana University Press, 1968

We have already observed that the full phase space description of a system of
N particles (taking all 6N coordinates and velocities into account) requires the
solution of the deterministic Newton (or Schrödinger) equations of motion, while
the time evolution of a small subsystem is stochastic in nature. Focusing on the
latter, we would like to derive or construct appropriate equations of motion that
will describe this stochastic motion. This chapter discusses some methodologies
used for this purpose, focusing on classical mechanics as the underlying dynamical
theory. In Chapter 10 we will address similar issues in quantum mechanics.

8.1 Introduction

The time evolution of stochastic processes can be described in two ways:

1. Time evolution in probability space. In this approach we seek an equation
(or equations) for the time evolution of relevant probability distributions.
In the most general case we deal with an infinite hierarchy of functions,
P(zntn; zn−1tn−1; . . . ; z1t1) as discussed in Section 7.4.1, but simpler cases
exist, for example, for Markov processes the evolution of a single func-
tion, P(z, t; z0t0), fully characterizes the stochastic dynamics. Note that the
stochastic variable z stands in general for all the variables that determine the
state of our system.

2. Time evolution in variable space. In this approach we seek an equation of
motion that describes the evolution of the stochastic variable z(t) itself (or
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equations of motion for several such variables). Such equations of motions
will yield stochastic trajectories z(t) that are realizations of the stochastic
process under study. The stochastic nature of these equations is expressed by
the fact that for any initial condition z0 at t = t0 they yield infinitely many
such realizations in the same way that measurements of z(t) in the laboratory
will yield different such realizations.

Two routes can be taken to obtain such stochastic equations of motions, of
either kind:

1. Derive such equations from first principles. In this approach, we start with the
deterministic equations of motion for the entire system, and derive equations
of motion for the subsystem of interest. The stochastic nature of the latter
stems from the fact that the state of the complementary system, “the rest of
the world,” is not known precisely, and is given only in probabilistic terms.

2. Construct phenomenological stochastic equations using physical arguments,
experimental observations, and intuition.

In this chapter we will usually take the second route (see Section 8.2.5 for an
example of first principle derivation).

In Chapter 7 we saw examples of evolution equations in probability space that
were constructed via the phenomenological route. Equation (7.3) for the nearest
neighbor random walk problem,

∂P(n, t)

∂t
= kr(P(n − 1, t)− P(n, t))+ kl(P(n + 1, t)− P(n, t)) (8.1)

which describes the time evolution of the probability distribution in terms of the
transition rates between different “states” of the system is one example. Another
is the diffusion equation (the three-dimensional analog of Eq. (7.8))

∂P(r, t)

∂t
= D∇2P(r, t) (8.2)

The fact that under these equations the probability distribution at time t is fully
determined by the distribution at any earlier time implies that these processes are
Markovian.

Equations (8.1) and (8.2) should be solved under given initial conditions, P(n, 0)
and P(r, 0), respectively. If these are given by P(n, t = 0) = δn,n0 and P(r, t) =
δ(r − r0) the resulting solutions are the conditional probabilities P(n, t | n0, t0) and
P(r, t | r0, t0) to be at n or r given that the system started at n0 or r0, respectively.
In the present context these can be identified as the transition probabilities of the
corresponding stochastic processes—from n0 to n or from r0 to r. A Markovian
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process is completely determined by these transition probabilities. We can thus
rewrite Eq. (8.2), for example, in a more specific way as

∂P(r, t | r0, t0)

∂t
= D∇2P(r, t | r0, t0); P(r, t0 | r0, t0) = δ(r − r0) (8.3)

Problem 8.1. Show that for the initial condition P(r, t = t0) = δ(r − r0) the
solution of Eq. (8.2) is

P(r, t | r0, t0) = 1

(4πD(t − t0))3/2 exp

(
− (r − r0)

2

4D(t − t0)

)
; t > t′ (8.4)

A stochastic process whose transition probability P(r, t | r0, t0) satisfies Eq. (8.3)
is called a Wiener process. Another well-known Markovian stochastic process is
the Orenstein–Uhlenbeck process, for which the transition probability satisfies the
equation (in one-dimension)

∂P(x, t | x0, t0)

∂t
= γ

∂

∂x
(xP(x, t | x0, t0))+ D

∂2

∂x2 P(x, t | x0, t0) (8.5)

with γ > 0. The solution of this equation (again with P(r, t0 | r0, t0) = δ(r − r0))

is the Gaussian distribution

P(xt | x0t0) =
√

γ

2πD(1 − a2)
exp

[
−γ (x − ax0)

2

2D(1 − a2)

]
; a = e−γ (t−t0) (8.6)

In the limit γ → 0 this becomes a Wiener process. Both Eqs (8.3) and (8.5) are
special cases of the Fokker–Planck equation(see Section 8.4).

Problem 8.2. Calculate the equilibrium correlation function 〈x(t)x(0)〉 for a
system undergoing the Orenstein–Uhlenbeck process.

Solution: The equilibrium distribution implied by Eq. (8.5) is the t − t0 → ∞
limit of Eq. (8.6). In this limit Eq. (8.6) becomes

Peq(x) = P(x, t →∞| x0, t0) =
√

γ

2πD
exp[−γ x2/(2D)] (8.7)



258 Stochastic equations of motion

Therefore the equilibrium joint probability distribution for the stochastic variable
to take the value x at time t and x′ at time t′ in equilibrium is (from Eqs (7.40)
and (8.7))

P2(x, t; x′, t′) = P(x, t | x′, t′)Peq(x
′) = γ

2πD
√

1 − a2
exp

[
−γ

x2 + x′2 − 2xx′a
2D(1 − a2)

]
(8.8)

Here we may treat t and t′ on equal footing by taking a = e−γ |t−t′|. The
correlation function can be obtained from (cf. Eq. (7.42a))

〈x(t)x(0)〉 =
∫

dx
∫

dx′xx′P2(x, t; x′, t′) (8.9)

which yields after some algebra

〈x(t)x(0)〉 = Da

γ
= 〈x2〉e−γ |t−t′| (8.10)

Equations (8.1) and (8.2) are two examples of equations that describe a
Markovian stochastic process in terms of the time evolution of its transition prob-
ability, P(n, t|n0, t0) or P(r, t | r0, t0) given the initial conditions P(n, t0 | n0, t0) =
δn,n0 and P(r, t0|r0, t0) = δ(r − r0). Apart from the actual form (that depends on
the physical nature of the process) they differ from each other in that the system
described by (8.1) has a discrete set of states {n} while in (8.2) the state space is
continuous. In correspondence P(n, t | n0, t0) is a probability, while P(r, t | r0, t0)
is a probability density. As seen in Section 7.3.1 these equations may describe
the same physical process, with (8.2) obtained from a coarse-graining procedure
applied to (8.1). Many times however, the use of discrete distributions appears in
descriptions of physical processes in the space of the energy states of systems with
discrete spectra, while continuous distributions appear when describing processes
in position-momentum space. More important is to note that because continuous
formulations usually involve coarse-graining, that is, collapsing many observables
within the resolution window of our observation into a single coarse-grained vari-
able, it follows from the central limit theorem of probability theory (Section 1.1.1)
that the distributions involved are Gaussian, which is why modeling of physical pro-
cesses in terms of Wiener or Orenstein–Uhlenbeck processes is often useful. Even
when the process is not Gaussian, a continuous representation often leads to a time
evolution equation, called a Fokker–Planck equation (see Section 8.4), whose form
(a generalization of Eq. (8.5)) stems from the common situation where transitions
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involving a given state are dominated by states in its immediate neighborhood. A
more general description of time evolution in probability space is often referred
to as a master equation (Section 8.3). Before addressing these types of stochastic
equations of motion we consider in the next section an alternative description in
the space of the stochastic variable itself, the so called Langevin equation.

8.2 The Langevin equation

8.2.1 General considerations

Sometimes we find it advantageous to focus our stochastic description not on the
probability but on the random variable itself. This makes it possible to address
more directly the source of randomness in the system and its effect on the time
evolution of the interesting subsystem. In this case the basic stochastic input is
not a set of transition probabilities or rates, but the actual effect of the “environ-
ment” on the “interesting subsystem.” Obviously this effect is random in nature,
reflecting the fact that we do not have a complete microscopic description of the
environment.

As discussed in Section 8.1, we could attempt to derive these stochastic
equations of motion from first principles, that is, from the full Hamiltonian of
the system+environment. Alternatively we can attempt to construct the equation of
motion using intuitive arguments and as much of the available physical inform-
ation as possible. Again, this section takes the second route. As an example
consider the equation of motion of a particle moving in a one-dimensional
potential,

ẍ = − 1

m

∂V (x)

∂x
(8.11)

and consider the effect on this particle’s dynamics of putting it in contact with a
“thermal environment.” Obviously the effect depends on the strength of interaction
between the particle and this environment. A useful measure of the latter within
a simple intuitive model is the friction force, proportional to the particle velocity,
which acts to slow down the particle:

ẍ = − 1

m

∂V (x)

∂x
− γ ẋ (8.12)

The effect of friction is to damp the particle energy. This can most easily be seen by
multiplying Eq. (8.12) by mẋ, using mẋẍ + ẋ(∂V (x)/∂x) = (d/dt)[EK + EP] = Ė
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to get Ė = −2γEk . Here E, EK, and EP are respectively the total particle
energy and its kinetic and potential components. Equation (8.12) thus describes
a process of energy dissipation, and leads to zero energy, measured from a local
minimum on the potential surface, at infinite time. It therefore cannot in itself
describe the time evolution of a particle in thermal equilibrium. What is missing
is the random “kicks” that the particle occasionally receives from the surround-
ing thermal particles. These kicks can be modeled by an additional random force
in Eq. (8.12)

ẍ = − 1

m

∂V (x)

∂x
− γ ẋ + 1

m
R(t) (8.13)

The function R(t) describes the effects of random collisions between our subsystem
(henceforth referred to as “system”), that may sometimes be a single particle or a
single degree of freedom, and the molecules of the thermal environment (“bath”).
This force is obviously a stochastic process, and a full stochastic description of our
system is obtained once we define its statistical nature.

What can be said about the statistical character of the stochastic process R(t)?
First, from symmetry arguments valid for stationary systems, 〈R(t)〉 = 0, where
the average can be either time or ensemble average. Second, since Eq. (8.12) seems
to describe the relaxation of the system at temperature T = 0, R should be related
to the finite temperature of the thermal environment. Next, at T = 0, the time
evolution of x according to Eq. (8.12) is Markovian (knowledge of x and ẋ fully
determines the future of x), so the system-bath coupling introduced in (8.12) is of
Markovian nature. This implies that the action of the bath on the system at time t
does not depend on history of the system or the bath; in particular, the bath has no
memory of what the system did in the past (see Section 7.4.2). The additional finite
temperature term R(t) has to be consistent with the Markovian form of the damping
term. Finally, in the absence of further knowledge and because R is envisioned as
a combined effect of many environmental motions, it makes sense to assume that,
for each time t, R(t) is a Gaussian random variable, and that the stochastic process
R(t) is a Gaussian process (Section 7.4.3).

We have already argued (Section 7.4.2) that the Markovian nature of the system
evolution implies that the relaxation dynamics of the bath is much faster than that
of the system. The bath loses its memory on the timescale of interest for the system
dynamics. Still the timescale for the bath motion is not unimportant. If, for example,
the sign of R(t) changes infinitely fast, it makes no effect on the system. Indeed,
in order for a finite force R to move the particle it has to have a finite duration.
It is convenient to introduce a timescale τB, which characterizes the bath motion,
and to consider an approximate picture in which R(t) is constant in the interval
[t, t + τB], while R(t1) and R(t2) are independent Gaussian random variables if
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|t1 − t2| ≥ (1/2)τB. Accordingly,

〈R(t1)R(t1 + t)〉 = CS(t) (8.14)

where S(t) is 1 if |t| < (1/2)τB, and is 0 otherwise. Since R(t) was assumed to be
a Gaussian process, the first two moments specify completely its statistical nature.
The assumption that the bath is fast relative to the timescales that characterize the
system implies that τB is much shorter than all timescales (inverse frequencies)
derived from the potential V (x) and much smaller than the relaxation time γ−1 for
dissipation of the system energy.

In Eqs (8.13) and (8.14), both γ and C originate from the system–bath coupling,
and should therefore be somehow related to each other. In order to obtain this
relation it is sufficient to consider Eq. (8.13) for the case where V does not depend
on position, whereupon

v̇ = −γ v + 1

m
R(t) (8.15)

(v = ẋ is the particle velocity). This equation can be solved as a first-order
inhomogeneous differential equation, to yield

v(t) = v(t = 0)e−γ t + 1

m

t∫
0

dt′e−γ (t−t′)R(t′) (8.16)

For long times, as the system reaches equilibrium, only the second-term on the right
of (8.16) contributes. For the average 〈u〉 at thermal equilibrium this gives zero,
while for 〈v2〉 we get

〈v2〉 = 1

m2

t∫
0

dt′
t∫

0

dt′′e−γ (t−t′)−γ (t−t′′)CS(t′ − t′′) (8.17)

Since the integrand is negligible unless |t′ − t"| ≤ τB � 1/γ , 〈v2〉 in Eq. (8.17)
can be approximated by

〈v2〉 = 1

m2

t∫
0

dt′e−2γ (t−t′)
t∫

0

dt′′CS(t′ − t′′) = 1

2m2γ
CτB (8.18)

To get the final result we took the limit t → ∞. Since in this limit the system
should be in thermal equilibrium we have 〈v2〉 = kBT/m, whence

C = 2mγ kBT

τB
(8.19)
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Using this result in Eq. (8.14) we find that the correlation function of the
Gaussian random force R has the form

〈R(t1)R(t1 + t)〉 = 2mγ kBT
S(t)

τB

τB→0−−−→ 2mγ kBTδ(t) (8.20)

For the system’s motion to be Markovian τB has to be much shorter than the
relevant system’s timescales. Equation (8.20) indicates that its actual magnitude is
not important and the random force may be thought of as δ-correlated. The limiting
process described above indicates that mathematical consistency requires that as
τB → 0 the second moment of the random force diverge, and the proper limiting
form of the correlation function is a Dirac δ function in the time difference. Usually
in analytical treatments of the Langevin equation this limiting form is convenient.
In numerical solutions however, the random force is generated at time intervals
�t, determined by the integration routine. The random force is then generated as a
Gaussian random variable with zero average and variance equal to 2mγ kBT/�t.

We have thus seen that the requirement that the friction γ and the random force
R(t) together act to bring the system to thermal equilibrium at long time, naturally
leads to a relation between them, expressed by Eq. (8.20). This is a relation between
fluctuations and dissipation in the system, which constitutes an example of the
fluctuation–dissipation theorem (see also Chapter 11). In effect, the requirement
that Eq. (8.20) holds is equivalent to the condition of detailed balance, imposed
on transition rates in models described by master equations, in order to satisfy the
requirement that thermal equilibrium is reached at long time (see Section 8.3).

8.2.2 The high friction limit

The friction coefficient γ defines the timescale, γ−1 of thermal relaxation in the
system described by (8.13). A simpler stochastic description can be obtained for a
system in which this time is shorter than any other characteristic timescale of our
system.1 This high friction situation is often referred to as the overdamped limit.
In this limit of large γ , the velocity relaxation is fast and it may be assumed to
quickly reaches a steady state for any value of the applied force, that is, v̇ = ẍ = 0.
This statement is not obvious, and a supporting (though not rigorous) argument is
provided below. If true then Eqs (8.13) and (8.20) yield

dx

dt
= 1

γm

(
−dV

dx
+ R(t)

)
; 〈R〉 = 0; 〈R(0)R(t)〉 = 2mγ kBTδ(t)

(8.21)

1 But, as discussed in Section 8–2.1, not relative to the environmental relaxation time.
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This is a Langevin type equation that describes strong coupling between the system
and its environment. Obviously, the limit γ → 0 of deterministic motion cannot
be identified here.

Why can we, in this limit, neglect the acceleration term in (8.13)? Con-
sider a particular realization of the random force in this equation and denote
−dV /dx + R(t) = F(t). Consider then Eq. (8.13) in the form

v̇ = −γ v + 1

m
F(t) (8.22)

If F is constant then after some transient period (short for large γ ) the solution of
(8.22) reaches the constant velocity state

v = F

mγ
(8.23)

The neglect of the v̇ term in (8.22) is equivalent to the assumption that Eq. (8.23)
provides a good approximation for the solution of (8.22) also when F depends
on time. To find the conditions under which this assumption holds consider the
solution of (8.22) for a particular Fourier component of the time-dependent force

F(t) = Fωeiωt (8.24)

Disregarding any initial transient amounts to looking for a solution of (8.22) of
the form

v(t) = vωeiωt (8.25)

Inserting (8.24) and (8.25) into (8.22) we find

vω = Fω/m

iω + γ
= Fω

mγ

1

1 + iω/γ
(8.26)

which implies

v(t) = F(t)

mγ
(1 + O(ω/γ )) (8.27)

We found that Eq. (8.23) holds, with corrections of order ω/γ . It should be emphas-
ized that this argument is not rigorous because the random part of F(t) is in principle
fast, that is, contain Fourier components with large ω. More rigorously, the trans-
ition from Eq. (8.13) to (8.21) should be regarded as coarse-graining in time to get
a description in which the fast components of the random force are averaged to zero
and velocity distribution is assumed to follow the remaining instantaneous applied
force.
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8.2.3 Harmonic analysis of the Langevin equation

If R(t) satisfies the Markovian property (8.20), it follows from the Wiener–
Khintchine theorem (7.76) that its spectral density is constant

IR(ω) = constant ≡ IR (8.28)

CR(t) =
∞∫

−∞
dωeiωt IR(ω) = 2π IRδ(t) (8.29)

IR = mγ kBT

π
(8.30)

Equation (8.28) implies that all frequencies are equally presented in this random
force spectrum. A stochastic process of this type is called a white noise.

From the spectral density of R(t) we can find the spectral density of stochastic
observables that are related to R via linear Langevin equations. For example,
consider the Langevin equation (8.13) with V (x) = (1/2)mω2

0x2 (the so called
Brownian harmonic oscillator)

d2x

dt2 + γ
dx

dt
+ ω2

0x = 1

m
R(t) (8.31)

and apply the Fourier expansion (7.69) to R, x, and v = dx/dt

R(t) =
∞∑

n=−∞
Rneiωnt ; x(t) =

∞∑
n=−∞

xneiωnt ;

v(t) =
∞∑

n=−∞
vneiωnt ; vn = iωnxn (8.32)

Using these expansions in (8.31) yields

xn = 1(
ω2

0 − ω2
n + iωnγ

)
m

Rn; vn = iωn(
ω2

0 − ω2
n + iωnγ

)
m

Rn (8.33)

The power spectrum of any of these stationary processes is given by Eq. (7.74).
Therefore, Eq. (8.33) implies a relation between these spectra

Ix(ω) = 1∣∣ω2
0 − ω2 + iγω

∣∣2 IR(ω)

m2 = 1(
ω2

0 − ω2
)2 + γ 2ω2

IR(ω)

m2 (8.34a)

Iv(ω) = ω2(
ω2

0 − ω2
)2 + γ 2ω2

IR(ω)

m2 (8.34b)
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In the absence of an external potential (free Brownian motion; ω0 = 0) Eq. (8.34b)
becomes

Iv(ω) = 1

m2
(
ω2 + γ 2

) IR(ω) (8.35)

In the Markovian case IR(ω) = IR is independent of ω.2 Together with Eq. (8.30)
these are explicit expressions for the corresponding power spectra.

As an application consider the velocity time correlation function for the simple
Brownian motion. Using Eqs (7.76), (8.30), and (8.35) we get

Cv(t2 − t1) ≡ 〈v(t1)v(t2)〉 = IR

m2

∞∫
−∞

dω eiω(t2−t1) 1

ω2 + γ 2

= π IR

m2γ
e−γ |t1−t2| = kBT

m
e−γ |t1−t2| (8.36)

−an exponential decay with a pre-exponential coefficient given by the equilibrium
value of 〈v2〉, as expected. Similarly, for the harmonic Brownian motion, we get
using Eqs (7.76) and (8.34a)

Cx(t) ≡ 〈x(0)x(t)〉 = IR

m2

∞∫
−∞

dω eiωt 1

(ω2
0 − ω2)2 + γ 2ω2

(8.37)

This integral is most easily done by complex integration, where the poles of the

integrand are ω = ±(i/2)γ ± ω1 with ω1 =
√
ω2

0 − γ 2/4. It leads to

Cx(t) = π IR

m2γω2
0

(
cosω1t + γ

2ω1
sin ω1t

)
e−γ t/2 for t > 0 (8.38)

For t = 0 we have 〈x2〉 = π IR(m2γω2
0)
−1 and using (8.30) we get mω2

0〈x2〉 = kBT ,
again as expected.

8.2.4 The absorption lineshape of a harmonic oscillator

The Langevin equation (8.31), with R(t) taken to be a Gaussian random force that
satisfies 〈R〉 = 0 and 〈R(0)R(t)〉 = 2mγ kBTδ(t), is a model for the effect of a
thermal environment on the motion of a classical harmonic oscillator, for example,
the nuclear motion of the internal coordinate of a diatomic molecule in solution.

2 It is important to note that Eq. (8.31), with a constant γ , is valid only in the Markovian case. Its
generalization to non-Markovian situations is discussed in Section 8.2.6.
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A standard experimental probe of this motion is infrared spectroscopy. We may
use the results of Sections 7.5 and 8.2.3 to examine the effect of interaction with
the thermal environment on the absorption lineshape. The simplest model for the
coupling of a molecular system to the radiation field is expressed by a term −µ ·E
in the Hamiltonian, where µ is the molecular dipole, and E(t) is the oscillating
electric field (see Section 3.1). For a one-dimensional oscillator, assuming that
µ is proportional to the oscillator displacement from its equilibrium position and
taking E(t) ∼ cos(ωt), we find that the coupling of the oscillator to the thermal
environment and the radiation field can be modeled by Eq. (8.31) supplemented by
a term (F/m) cos(ωt) where F denotes the radiation induced driving force. We can
use the resulting equation to compute the radiation energy absorbed by the oscillator
following the procedure of Section 7.5.3. Alternatively, Eq. (8.31) implies that our
oscillator can be described as a superposition of normal modes of the overall system
including the bath (see Sect. 8.2.5). In this sense the coordinate x that couples to the
radiation field is equivalent to the coordinate A (Eq. (7.77)) used in Section 7.5.3.
This implies, using Eq. (7.91), the absorption lineshape

L(ω) ∼ ω2Ix(ω) = ω2

(ω2
0 − ω2)2 + (γω)2

γ kBT

πm
(8.39)

In the underdamped limit γ � ω0, which is relevant for molecules in condensed
phases, L(ω) is strongly peaked about ω = ω0. Near the peak we can approximate
the denominator in (8.39) by (ω2

0 −ω2)2+ (ωγ )2 ∼= 4ω2
0(ω−ω0)

2+ω2
0γ

2, so that

L̃(ω) = L(ω)/

∫ ∞

−∞
dωL(ω) = 1

π

γ/2

(ω0 − ω)2 + (γ /2)2 (8.40)

This is a Lorentzian lineshape whose width is determined by the friction. The lat-
ter, in turn, corresponds to the rate of energy dissipation. It is significant that the
normalized lineshape (characterized by its center and width) does not depend on
the temperature. This result is associated with the fact that the harmonic oscillator is
characterized by an energy level structure with constant spacing, or classically–with
and energy independent frequency.

In Section 6.2.3 we have seen that a simple quantum mechanical theory based
on the golden rule yields an expression for the absorption lineshape that is given
essentially by the Fourier transform of the relevant dipole correlation function
〈µ(0)µ(t)〉. Assuming again that µ is proportional to the displacement x of the
oscillator from its equilibrium position we have

L(ω) = α

∞∫
−∞

dte−iωt〈x(0)x(t)〉 (8.41)

that, using (7.76) and (8.37) leads again to the result (8.40).
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Another point of interest is the close similarity between the lineshapes associated
with the quantum damped two-level system, Eq. (9.40), and the classical damped
harmonic oscillator. We will return to this issue in Section 9.3.

Problem 8.3. Show that

L̃(ω) = L(ω)/

∞∫
−∞

dωL(ω) =
(

2π
〈
x2
〉)−1

∞∫
−∞

dte−iωt 〈x(0)x(t)〉 (8.42)

Problem 8.4.

(1) If z(t) is a real stationary stochastic process so that 〈z(t1)z(t2)〉 = Cz(t1−t2)
show that z(ω) = ∫∞

−∞ dte−iωtz(t) satisfies

〈z(ω1)z(ω2)〉 = 2πδ(ω1 + ω2)Cz(ω2) (8.43)

Cz(ω) =
∞∫

−∞
dte−iωtCz(t) = Cz(−ω) = C∗

z (ω) (8.44)

In particular, verify that 〈R(ω1)R(ω2)〉 = 4πmkBTγ δ(ω1 + ω2).
(2) For the position correlation function of a harmonic oscillator use these

results together with (cf. Eq. (8.33))

x(ω) = m−1R(ω)

ω2
0 − ω2 + iωγ

(8.45)

to show that

Cx(ω) = 2kBTγ /m

(ω2
0 − ω2)2 + (ωγ )2

(8.46)

This is another route to the corresponding absorption lineshape.

8.2.5 Derivation of the Langevin equation from a microscopic model

The stochastic equation of motion (8.13) was introduced as a phenomenological
model based on the combination of experience and intuition. We shall now attempt
to derive such an equation from “first principles,” namely starting from the Newton
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equations for a particular microscopic model.3 In this model the “system” is a
one-dimensional particle of mass m moving in a potential V (x), and the bath is a
collection of independent harmonic oscillators. The Hamiltonian is taken to be

H = p2

2m
+ V (x)+ Hbath + Hint (8.47)

with the bath and system–bath interaction Hamiltonians given by

Hbath + Hint = 1

2

∑
j

mj

⎡
⎣q̇2

j + ω2
j

(
qj + cj

mjω
2
j

x

)2
⎤
⎦ (8.48)

The “interaction” that appears in (8.48) contains, in addition to a linear coupling
term x

∑
j cjqj, also a “compensating term”

∑
j (cjx)2/(2mjω

2
j ) that has the effect

that the minimum potential experienced by the particle at any point x along the
x-axis is V (x). This minimum is achieved when all bath coordinates qj adjust to the
position x of the particle, that is, take the values −[cj/(mjω

2
j )]x.

The equations of motion for the “system” and the bath particles are

ẍ = − 1

m

∂V

∂x
− 1

m

∑
j

cj

(
cj

mjω
2
j

x + qj

)
(8.49)

and

q̈j = −ω2
j qj − cj

mj
x (8.50)

Equation (8.50) is an inhomogeneous differential equation for qj(t), whose solution
can be written as

qj(t) = Qj(t)+ q̃j(t) (8.51)

where

Qj(t) = qj0 cos
(
ωjt

)+ q̇j0

ωj
sin

(
ωjt

)
(8.52)

3 For the equivalent quantum mechanical derivation of the “quantum Langevin equation” see
G. W. Ford and M. Kac, J. Stat. Phys. 46, 803 (1987); G. W. Ford, J. T. Lewis, and R. F. O’Connell,
Phys. Rev. A 37, 4419 (1988).
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is the solution of the corresponding homogeneous equation in which qj0 and q̇j0
should be sampled from the equilibrium distribution of the free bath, and where q̃j(t)
is a solution of the inhomogeneous equation. A rather nontrivial such solution is4

q̃j(t) = − cj

mjω
2
j

x(t)+ cj

mjω
2
j

t∫
0

dτ cos
(
ωj(t − τ)

)
ẋ(τ ) (8.53)

Using (8.51)–(8.53) in (8.49) now leads to

ẍ = − 1

m

∂V (x)

∂x
−

t∫
0

dτZ(t − τ)ẋ(τ )+ 1

m
R(t) (8.54)

Z(t) = 1

m

∑
j

c2
j

mjω
2
j

cos(ωjt) (8.55)

R(t) = −
∑

j

cj

(
qj0 cos(ωjt)+ q̇j0

ωj
sin(ωjt)

)
(8.56)

The following points are noteworthy:

1. The function R(t), which is mathematically identical to the variable A of
Section 6.5.1,5 represents a stochastic force that acts on the system coordinate
x. Its stochastic nature stems from the lack of information about qj0 and q̇j0.
All we know about these quantities is that, since the thermal bath is assumed to
remain in equilibrium throughout the process, they should be sampled from

4 Eqs. (8.52) and (8.53) imply that the initial state of the bath modes is sampled from a thermal
distribution in presence of the system. To check that (8.53) satisfies (8.50) write it in the form

q̃j(t) = − cj

mjω
2
j

x(t)+ cj

mjω
2
j

ReF ; F = eiωj t
t∫

0

dτe−iωjτ ẋ(τ )

so that ¨̃qj = −(cj/(mjω
2
j ))(ẍ − ReF̈), and prove the identity F̈ = iωḞ+ẍ. This, together with the fact

that x and its time derivatives are real lead to ¨̃qj = (cj/(mjω
2
j ))Re(iωj Ḟ). Using also Ḟ = iωjF + ẋ

leads to ¨̃qj = −(cj/mj)ReF , which (using the equation that relates qj to ReF above) is identical
to (8.50)

5 See Eqs (6.79), (6.81a), where the mass weighted normal coordinates uj was used instead of qj .
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an equilibrium Boltzmann distribution,6 that is, they are Gaussian random
variables that satisfy

〈qj0〉 = 〈q̇j0〉 = 0

(1/2)mj〈q̇j0q̇j′0〉 = (1/2)mjω
2
j 〈qj0qj′0〉 = (1/2)kBTδj,j′

〈qj0q̇j′0〉 = 0 (8.57)

2. The system–bath interaction term in (8.48) is xf, where f = ∑
j cjqjis the

force exerted by the thermal environment on the system. The random force
R(t), Eq. (8.56) is seen to have a similar form,

R(t) =
∑

j

cjq
(0)
j (t) (8.58)

where q(0)
j (t) = qj0 cos(ωjt) + ω−1

j q̇j0 sin(ωjt) represents the motion of a
free bath mode, undisturbed by the system.

3. Using Eqs (8.56) and (8.57) we can easily verify that

〈R(0)R(t)〉 = mkBTZ(t) (8.59)

Comparing Eqs (7.77)–(7.79) we see that Z(t) is essentially the Fourier trans-
form of the spectral density associated with the system–bath interaction. The
differences are only semantic, originating from the fact that in Eqs (7.77)–
(7.79) we used mass renormalized coordinates while here we have associated
a mass mj with each harmonic bath mode j.

Equation (8.54) is a stochastic equation of motion similar to Eq. (8.13). However,
we see an important difference: Eq. (8.54) is an integro-differential equation in
which the term γ ẋ of Eq. (8.13) is replaced by the integral

∫ t
0 dτZ(t − τ)ẋ(τ ). At

the same time the relationship between the random force R(t) and the damping,
Eq. (8.20), is now replaced by (8.59). Equation (8.54) is in fact the non-Markovian
generalization of Eq. (8.13), where the effect of the thermal environment on the
system is not instantaneous but characterized by a memory—at time t it depends
on the past interactions between them. These past interactions are important during
a memory time, given by the lifetime of the memory kernel Z(t). The Markovian
limit is obtained when this kernel is instantaneous

Markovian limit : Z(t) = 2γ δ(t) (8.60)

6 This is in fact a subtle point, because by choosing the solution (8.53) we affect the choice of
qj(0) and q̇j(0). For further discussion of this point see P. Hanggi, in Stochastic Dynamics, edited by
L. Schimansky-Geier and T. Poschel (Springer Verlag, Berlin, 1997), Lecture notes in Physics Vol.
484, p. 15.
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in which case Eqs (8.13) and (8.20) are recovered from Eqs (8.54)
and (8.59).

8.2.6 The generalized Langevin equation

As discussed in Section 8.2.1, the Langevin equation (8.13) describes a Markovian
stochastic process: The evolution of the stochastic system variable x(t) is determ-
ined by the state of the system and the bath at the same time t. The instantaneous
response of the bath is expressed by the appearance of a constant damping
coefficient γ and by the white-noise character of the random force R(t).

The microscopic model described in the previous section leads to Eqs (8.54)–
(8.56) as precursors of this Markovian picture. The latter is obtained in the limit
where the timescale for relaxation of the thermal environment is short relative to
all characteristic system times, as expressed mathematically by Eq. (8.60). This
limit, however, is far from obvious. The characteristic times in molecular systems
are associated with electronic processes (typical timescale 10−15–10−16 s), vibra-
tional motions (10−14–10−15 s), librations, rotations, and center of mass motions
(>10−12 s). This should be compared with typical thermal relaxation times in con-
densed phases that can be estimated in several ways. The simplest estimate, obtained
from dividing a typical intermolecular distance (10−8 cm) by a typical thermal velo-
city (104 cm s−1) give a result, 10−12 s that agrees with other estimates. Obviously
this timescale is longer than characteristic vibrational and electronic motions in
molecular systems. A similar picture is obtained by comparing the characteristic
frequencies (spacing between energy levels) associated with molecular electronic
motions (1–4 eV) and intramolecular vibrational motions (∼0.1 eV) with char-
acteristic cutoff (Debye) frequencies that are of order 0.01–0.1 eV for molecular
environments. One could dismiss electronic processes as unimportant for room tem-
perature systems in the absence of light, still intramolecular motions important in
describing the dynamics of chemical reaction processes are also often considerably
faster than typical environmental relaxation times.

The Markovian picture cannot be used to describe such motions. The generalized
Langevin equation

ẍ = − 1

m

∂V (x)

∂x
−

t∫
0

dτZ(t − τ)ẋ(τ )+ 1

m
R(t) (8.61)

with R(t) being a Gaussian random force that satisfies

〈R〉 = 0; 〈R(0)R(t)〉 = mkBTZ(t) (8.62)

is a useful model for such situations. While its derivation in the previous section
has invoked a harmonic model for the thermal bath, this model is general enough
for most purposes (see Section 6.5). The simple damping term −γ ẋ in Eq. (8.13)
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is now replaced by the non-Markovian friction term − ∫ t
0 dτZ(t − τ)ẋ(τ ) with the

memory kernel Z(t) that satisfies Eq. (8.62). The time dependence of Z character-
izes the memory of the bath—the way its response is affected by past influences.
A characteristic “memory time” can be defined by

τmem = 1

Z(0)

∞∫
0

dtZ(t) (8.63)

provided this integral converges.
It is important to point out that this does not imply that Markovian stochastic

equations cannot be used in descriptions of condensed phase molecular processes.
On the contrary, such equations are often applied successfully. The recipe for a
successful application is to be aware of what can and what cannot be described
with such approach. Recall that stochastic dynamics emerge when seeking coarse-
grained or reduced descriptions of physical processes. The message from the
timescales comparison made above is that Markovian descriptions are valid for
molecular processes that are slow relative to environmental relaxation rates. Thus,
with Markovian equations of motion we cannot describe molecular nuclear motions
in detail, because vibrational periods (10−14 s) are short relative to environmental
relaxation rates, but we should be able to describe vibrational relaxation processes
that are often much slower, as is shown in Section 8.3.3.

Coming back to the non-Markovian equations (8.61) and (8.62), and their
Markovian limiting form obtained when Z(t) satisfies Eq. (8.60), we next seek to
quantify the properties of the thermal environment that will determine its Markovian
or non-Markovian nature.

Problem 8.5. Show that Eq. (8.55) can be written in the form

Z(t) = 2

πm

∞∫
0

dω
J (ω)

ω
cos(ωt) (8.64)

where

J (ω) = π

2

∑
j

c2
j

mjωj
δ
(
ω − ωj

)
(8.65)

is the spectral density associated with the system–bath interaction.7

7 Note the difference between Eqs (8.65) and (6.90) or (7.79). The mass mj appears explicitly in
(8.65) because here we did not use mass weighted normal mode coordinates as we did in Chapters 6
and 7. In practice this is just a redefinition of the coupling coefficient cj .
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The relaxation induced by the bath is seen to be entirely determined by the
properties of this spectral function. In particular, a Ohmic bath is defined to have
the property

J (ω) = ηω (8.66)

where η is a constant. For such a bath Eq. (8.64) gives Eq. (8.60) with γ = η/m.
In reality, the Ohmic property, J (ω) ∼ ω can be satisfied only approximately

because from (7.80) it follows that
∫∞

0 dω(J (ω)/ω) has to be finite. A practical
definition of Ohmic spectral density is

J (ω) = ηωe−ω/ωc (8.67)

from which, using (8.64), it follows that

Z(t) = 2η

m

ωc/π

1 + (ωct)2 (8.68)

ωc represents a cutoff frequency beyond which the bath density of modes falls
sharply. It is equivalent to the Debye frequency of Section 4.2.4, whose existence
was implied by the discrete nature of atomic environments or equivalently by the
finite density per unit volume of bath modes. Here it represents the fastest timescale
associated with the thermal environment and the bath characteristic memory time
(indeed Eqs (8.63) and (8.68) yield τmem = π/2ωc). The Markovian requirement
that the bath is fast relative to the system can be also expressed by requiring that
ωc is larger than all relevant system frequencies or energy spacings.

Problem 8.6. Show that the power spectrum (Section 7.5.1) of the stochastic
process R(t) is IR(ω) = kBTJ (ω)/(πω).

8.3 Master equations

As discussed in Section 8.1, a phenomenological stochastic evolution equation can
be constructed by using a model to describe the relevant states of the system and the
transition rates between them. For example, in the one-dimensional random walk
problem discussed in Section 7.3 we have described the position of the walker
by equally spaced points n�x; (n = −∞, . . . ,∞) on the real axis. Denoting by
P(n, t) the probability that the particle is at position n at time t and by kr and kl
the probabilities per unit time (i.e. the rates) that the particle moves from a given
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site to the neighboring site on its right and left, respectively, we obtained a kinetic
Eq. (7.3) for the time evolution of P(n, t):

∂P(n, t)

∂t
= kr(P(n − 1, t)− P(n, t))+ kl(P(n + 1, t)− P(n, t)) (8.69)

This is an example of a master equation.8 More generally, the transition rates can
be defined between any two states, and the master equation takes the form

∂P(m, t)

∂t
=

∑
n

n�=m

kmnP(n, t)−
∑

n
n�=m

knmP(m, t) (8.70)

where kmn ≡ km←n is the rate to go from state n to state m. Equation (8.70) can be
rewritten in the compact form

∂P(m, t)

∂t
=

∑
n

KmnP(n, t); that is,
∂P
∂t

= KP (8.71)

provided we define

Kmn = kmn for m �= n; Kmm = −
∑

n
n�=m

knm (8.72)

Note that (8.72) implies that
∑

m Kmn = 0 for all n. This is compatible with the fact
that

∑
m P(m, t) = 1 is independent of time. The nearest neighbor random walk

process is described by a special case of this master equation with

Kmn = klδn,m+1 + krδn,m−1 (8.73)

In what follows we consider several examples.

8.3.1 The random walk problem revisited

The one-dimensional random walk problem described by Eq. (8.69) was discussed
in Section 7.3. It was pointed out that summing either side of this equation over

8 Many science texts refer to a 1928 paper by W. Pauli [W. Pauli, Festschrift zum 60. Geburtstage
A. Sommerfelds (Hirzel, Leipzig, 1928) p. 30] as the first derivation of this type of Kinetic equation.
Pauli has used this approach to construct a model for the time evolution of a many-sate quantum
system, using transition rates obtained from quantum perturbation theory.
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all n from −∞ to ∞ yields zero, while multiplying this equation by n or n2 then
performing the summation yields (cf. Eqs (7.11), (7.12))

∂ 〈n〉
∂t

= kr − kl (8.74)

and
∂
〈
n2

〉
∂t

= 2 〈n〉 (kr − kl)+ kr + kl (8.75)

For the initial conditions 〈n〉 (t = 0) = 〈
n2

〉
(t = 0) = 0, that is, for a particle

that starts its walk from the origin, n = 0, these equations lead to (cf. (7.13), (7.15))

〈n〉t = (kr − kl)t = (pr − pl)N (8.76)〈
δn2

〉
t
=

〈
n2

〉
t
− 〈n〉2t = (kr + kl)t = (pr + pl)N (8.77)

for a walker that has executed a total of N steps of duration�t during time t = N�t,
with probabilities pr = kr�t and pl = kl�t to jump to the right and to the left,
respectively, at each step.

More can be achieved by introducing the generating function, defined by9

F(s, t) =
∞∑

n=−∞
P(n, t)sn; 0 < |s| < 1 (8.78)

which can be used to generate all moments of the probability distribution
according to: [(

s
∂

∂s

)k

F(s, t)

]
s=1

=
〈
nk

〉
(8.79)

We can get an equation for the time evolution of F by multiplying the master
equation (8.69) by sn and summing over all n. Using

∑∞
n=−∞ snP(n − 1, t) = sF(s)

and
∑∞

n=−∞ snP(n + 1, t) = F(s)/s leads to

∂F(s, t)

∂t
= krsF(s, t)+ kl

1

s
F(s, t)− (kr + kl)F(s, t) (8.80)

whose solution is
F(s, t) = Ae[krs+(kl/s)−(kr+kl)]t (8.81)

9 Note that (8.78) is a discrete analog of Eq. (1.5) with s = eα .
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If the particle starts from n = 0, that is, P(n, t = 0) = δn,0, Eq. (8.78) implies
that F(s, t = 0) = 1. In this case the integration constant in Eq. (8.81) is A =1. It
is easily verified that using (8.81) in Eq (8.79) with k = 1, 2 leads to Eqs (8.76)
and (8.77). Using it with larger k’s leads to higher moments of the time-dependent
distribution.

Problem 8.7. Equation (8.81) implies that F(s = 1, t) = 1 for all t. Using the
definition of the generating function show that this result holds generally, not
only for the generating function of Eq. (8.69).

8.3.2 Chemical kinetics

Consider the simple first-order chemical reaction, A
k−→ B. The corresponding

kinetic equation,

d 〈A〉
dt

= −k 〈A〉 ⇒ 〈A〉 (t) = 〈A〉 (t = 0)e−kt (8.82)

describes the time evolution of the average number of molecules A in the system.10

Without averaging the time evolution of this number is a random process, because
the moment at which a specific A molecule transforms into B is undetermined.
The stochastic nature of radioactive decay, which is described by similar first-order
kinetics, can be realized by listening to a Geiger counter. Fluctuations from the
average can also be observed if we monitor the reaction in a small enough volume,
for example, in a biological well.

Let P(n, t) be the probability that the number of A molecules in the system at
time t is n. We can derive a master equation for this probability by following a
procedure similar to that used in Section 7.3.1 to derive Eq. (7.3) or (8.69):

P(n, t +�t) = P(n, t)+ k(n + 1)P(n + 1, t)�t − knP(n, t)�t

⇒ ∂P(n, t)

∂t
= k(n + 1)P(n + 1, t)− knP(n, t) (8.83)

Unlike in the random walk problem, the transition rate out of a given state n depends
on n: The probability per unit time to go from n+1 to n is k(n+1), and the probability
per unit time to go from n to n− 1 is kn. The process described by Eq. (8.83) is an
example of a birth-and-death process. In this particular example there is no source
feeding A molecules into the system, so only death steps take place.

10 For detailed discussion and more examples see D. A. McQuarrie, A Stochastic Approach to
Chemical Kinetics, J. Appl. Probability 4, 413 (1967).
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Problem 8.8. How should Eq. (8.83) be modified if molecules A are inserted into
the system with the characteristic constant insertion rate ka (i.e. the probability
that a molecule A is inserted during a small time interval �t is ka�t)?

The solution of Eq. (8.83) is easily achieved using the generating function
method. The random variable n can take only non-negative integer values, and
the generating function is therefore

F(s, t) =
∞∑

n=0

snP(n, t) (8.84)

Multiplying (8.83) by sn and doing the summation leads to

∂F(s, t)

∂t
= k

∂F

∂s
− ks

∂F

∂s
= k(1 − s)

∂F

∂s
(8.85)

where we have used identities such as
∞∑

n=0

snnP(n, t) = s
∂

∂s
F(s, t) (8.86)

and
∞∑

n=0

sn(n + 1)P(n + 1, t) =
∞∑

n=1

sn−1nP(n, t) = ∂F

∂s
(8.87)

If P(n, t = 0) = δn,n0 then F(s, t = 0) = sn0 . It is easily verified by direct
substitution that for this initial condition the solution of Eq. (8.85) is

F(s, t) =
[
1 + (s − 1)e−kt

]n0
(8.88)

This will again give all the moments using Eq. (8.79).

Problem 8.9. Show that for this process

〈n〉t = n0e−kt (8.89)

〈δn2〉t = n0e−kt(1 − e−kt) (8.90)

The first moment, (8.89), gives the familiar evolution of the average A popula-
tion. The second moment describes fluctuations about this average. It shows that
the variance of these fluctuations is zero at t = 0 and t = ∞, and goes through a
maximum at some intermediate time.
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8.3.3 The relaxation of a system of harmonic oscillators

In this example the master equation formalism is applied to the process of vibrational
relaxation of a diatomic molecule represented by a quantum harmonic oscillator.11

In a reduced approach we focus on the dynamics of just this oscillator, and in fact
only on its energy. The relaxation described on this level is therefore a particular
kind of random walk in the space of the energy levels of this oscillator. It should
again be emphasized that this description is constructed in a phenomenological
way, and should be regarded as a model. In the construction of such models one
tries to build in all available information. In the present case the model relies on
quantum mechanics in the weak interaction limit that yields the relevant transition
matrix elements between harmonic oscillator levels, and on input from statistical
mechanics that imposes a certain condition (detailed balance) on the transition rates.

We consider an ensemble of such oscillators contained in a large excess of
chemically inert gas which acts as a constant temperature heat bath throughout the
relaxation process. We assume that these oscillators are far from each other and
do not interact among themselves, so that the energy exchange which controls the
relaxation takes place primarily between the oscillators and the “solvent” gas.

The most important physical inputs into the stochastic model are the transition
probabilities per unit time between any two vibrational levels. Naturally these
transition rates will be proportional to the number Z of collisions undergone by the
molecule per unit time. For each collision we assume that the transition probability
between oscillator states n and m is proportional to Qmn, the absolute square of the
matrix element of the oscillator coordinate q between these states,12 given by (cf.
Eq. (2.141)):

Qnm = Qmn = |qnm|2 = |q01|2[nδn,m+1 + mδn,m−1] (8.91)

Finally, the transition probability between levels n and m must contain a factor
that depends on the temperature and on the energy difference between these states.
This factor, denoted below by f (En − Em), conveys information about the energy
available for the transition, for example, telling us that a transition from a lower

11 This section is based on E. W. Montroll and K. E. Shuler, J. Chem. Phys. 26, 454 (1957).
12 This assumption relies on the fact that the amplitude q of molecular vibrations about the equi-

librium nuclear configuration xeq is small. The interaction V (xeq + q, B) between the oscillator and
the surrounding bath B can then be expanded in powers of q, keeping terms up to first order. This
yields V = C − Fq where C = V (xeq, B) is a constant and F = −(∂V /∂q)q=0. When the effective
interaction −Fq is used in the golden rule formula (9.25) for quantum transition rates, we find that
the rate between states i and j is proportional to | qij |2. This is true also for radiative transition
probabilities, therefore the same formalism can be applied to model the interaction of the oscillator
with the radiation field.
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energy to a higher energy state is impossible at zero temperature. The transition
probability per unit time between two levels n and m can now be written in the
form:

knm = ZQnmf (Enm); Enm = En − Em (8.92)

These rates can be used in the master equation (8.70) for the probability P(n, t)
(denoted below Pn(t)) to find the oscillator in its nth level at time t:

∂Pm(t)

∂t
=

∑
n

(kmnPn(t)− knmPm(t)) (8.93)

Equation (8.91) implies that the transitions occur only between levels adjacent to
each other. More information about the rates (8.92) is obtained from the condition
of detailed balance: At thermal equilibrium any two levels must be in thermal
equilibrium with respect to each other. Therefore

knmPeq
m − kmnPeq

n = 0 (8.94)

so that (since qnm = qmn)

f (Enm)

f (Emn)
= Pn

Pm
= exp[−β(En − Em)]; β = (kBT )−1 (8.95)

If we assume that the probability of going down in energy does not depend on the
temperature (since no activation is needed) we can denote f (En,n+1) = κ so that
f (En+1,n) = κe−βε, where ε = h̄ω is the energy spacing between adjacent levels.
Using also Eqs (8.91) and (8.92) we can write

kn,n+1 = ZQ01κ(n + 1) (8.96a)

kn+1,n = ZQ01κ(n + 1)e−βε (8.96b)

kn,m = 0 unless m = n ± 1 (8.96c)

Using these rates in the master equation (8.93) we have

∂Pn

∂t
= kn,n+1Pn+1 + kn,n−1Pn−1 − kn+1,nPn − kn−1,nPn (8.97)

and redefining ZQ01κt ≡ τ , we get

∂Pn

∂τ
= (n + 1)Pn+1 + ne−βεPn−1 − [(n + 1)e−βε + n]Pn (8.98)
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Equation (8.98) describes the thermal relaxation of the internal nuclear motion
of a diatomic molecule modeled as a harmonic oscillator. It is interesting to note
that in addition to the physical parameter βε that appears explicitly in (8.98), the
time evolution associated with this relaxation is given explicitly in terms of only
one additional parameter, the product ZQ01κ that relates the time variable τ to the
real physical time t.

The full solution of Eq. (8.98) is described in the paper by E. W. Montroll and
K. E. Shuler (see footnote 11). Here we focus on the time evolution of the first
moment 〈n〉(t). Multiplying Eq. (8.98) by n and summing over all n between 0 and
∞ leads to

∂〈n〉
∂τ

= A + e−βεB (8.99)

with

A =
∞∑

n=0

(n(n + 1)Pn+1 − n2Pn) = −
∞∑

n=0

(n + 1)Pn+1 = −〈n〉 (8.100)

and

B =
∞∑

n=0

(n2Pn−1 − n(n + 1)Pn) =
∞∑

n=0

((n − 1)nPn−1 + nPn−1 − n(n + 1)Pn)

=
∞∑

n=0

nPn−1 = 〈n〉 + 1 (8.101)

Using (8.100) and (8.101) leads to

∂〈n〉
∂τ

= −k̄v〈n〉 + c (8.102a)

k̄v = 1 − e−βε; c = e−βε (8.102b)

The solution of (8.102) for the initial condition 〈n〉 = 〈n〉0 at t = 0 is easily
found to be

〈n〉t = 〈n〉0e−k̄vτ + c

k̄v
(1 − e−k̄vτ )

= 〈n〉0e−kvt + c

k̄v
(1 − e−kvt) (8.103)

where
kv =

(
1 − e−βε

)
ZQ01κ (8.104)
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Noting that

c

k̄v
= 1

eβε − 1
= 〈n〉eq (8.105)

is the equilibrium thermal population of the oscillator, we can write (8.103) in the
physically appealing form

〈n〉t = 〈n〉0e−kvt + 〈n〉eq(1 − e−kvt) (8.106)

The relaxation to thermal equilibrium is seen to be exponential, with a rate given by
(8.104). It is interesting to note that in the infinite temperature limit, where kv = 0,
Eq. (8.102) describes a constant heating rate of the oscillator. It is also interesting
to compare the result (8.106) to the result (9.65) of the very different quantum
formalism presented in Section 9.4; see the discussion at the end of Section 9.4 of
this point.

For completeness we also cite from the same paper (see footnote 11) the
expression for the variance σ(t) = 〈n2〉t − 〈n〉2t

σ(t) = σeq + [σ0 − σeq]e−2kvt + [〈n〉0 − 〈n〉eq][1 + 2〈n〉eq]e−kvt(1 − e−kvt)

(8.107)

where

σeq = 〈n〉eq(1 + 〈n〉eq) (8.108)

The result (8.107) shows that in the course of the relaxation process the width
of the energy level distribution increases (due to the last term in (8.107)) before
decreasing again. This effect is more pronounced for larger [〈n〉0 − 〈n〉eq], that is,
when the initial excitation energy is much larger than kBT .

8.4 The Fokker–Planck equation

In many practical situations the random process under observation is continuous in
the sense that (1) the space of possible states is continuous (or it can be transformed
to a continuous-like representation by a coarse-graining procedure), and (2) the
change in the system state during a small time interval is small, that is, if the system
is found in state x at time t then the probability to find it in state y �= x at time
t + δt vanishes when δt → 0.13 When these, and some other conditions detailed
below, are satisfied, we can derive a partial differential equation for the probability
distribution, the Fokker–Planck equation, which is discussed in this Section.

13 In fact we will require that this probability vanishes faster than δt when δt → 0.
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8.4.1 A simple example

As an example without rigorous mathematical justification consider the master
equation for the random walk problem

∂P(n, t)

∂t
= krP(n − 1, t)+ klP(n + 1, t)− (kr + kl)P(n, t)

= −kr(P(n, t)− P(n − 1, t))− kl(P(n, t)− P(n + 1, t))

= −kr(1 − e−(∂/∂n))P(n, t)− kl(1 − e(∂/∂n))P(n, t) (8.109)

In the last step we have regarded n as a continuous variable and have used the
Taylor expansion

ea(∂/∂n)P(n) = 1 + a
∂P

∂n
+ 1

2
a2 ∂

2P

∂n2 + · · · = P(n + a) (8.110)

In practical situations n is a very large number—it is the number of microscopic steps
taken on the timescale of a macroscopic observation. This implies that ∂kP/∂nk 

∂k+1P/∂nk+1.14 We therefore expand the exponential operators according to

1 − e±(∂/∂n) = ∓ ∂

∂n
− 1

2

∂2

∂n2 (8.111)

and neglect higher-order terms, to get

∂P(n, t)

∂t
= −A

∂P(n, t)

∂n
+ B

∂2P(n, t)

∂n2 (8.112)

where A = kr − kl and B = (kr + kl)/2. We can give this result a more physical
form by transforming from the number-of-steps variable n to the position variable
x = n�x where �x is the step size. At this point we need to distinguish between
Pn(n), the probability in the space of position indices, which is used without the
subscript n in (8.112), and the probability density on the x-axis, Px(x) = Pn(n)/�x,
that is used without the subscript x below. We omit these subscripts above and below
because the nature of the distribution is clear from the text. This transformation leads
to

∂P(x, t)

∂t
= −v

∂P(x, t)

∂x
+ D

∂2P(x, t)

∂x2 (8.113)

14 For example if f (n) = na then ∂f /∂n = ana−1 which is of order f /n. The situation is less obvious
in cases such as the Gausssian distribution f (n) ∼ exp((n − 〈n〉)2/2〈δn2〉). Here the derivatives with
respect to n adds a factor ∼(n − 〈n〉)/〈δn2〉 that is much smaller than 1 as long as n − 〈n〉 � 〈n〉
because 〈δn2〉 is of order 〈n〉.
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where v = �xA and D = �x2B. Note that we have just repeated, using a somewhat
different procedure, the derivation of Eq. (7.5). The result (8.113) (or (7.5)) is a
Fokker–Planck type equation.

As already discussed below Eq. (7.5), Eq. (8.113) describes a drift diffusion
process: For a symmetric walk, kr = kl , v = 0 and (8.113) becomes the diffusion
equation with the diffusion coefficient D = �x2(kr + kl)/2 = �x2/2τ . Here τ

is the hopping time defined from τ = (kr + kl)
−1. When kr �= kl the parameter v

is nonzero and represents the drift velocity that is induced in the system when an
external force creates a flow asymmetry in the system. More insight into this process
can be obtained from the first and second moment of the probability distribution
P(x, t) as was done in Eqs (7.16)–(7.23).

8.4.2 The probability flux

Additional insight can be obtained by rewriting Eq. (8.113) in the form:

∂P(x, t)

∂t
= −∂J (x, t)

∂x
(8.114a)

J (x, t) = vP(x, t)− D
∂P(x, t)

∂x
(8.114b)

Equations (8.114a) and (8.114b) represent a simple example of the continu-
ity equation for conserved quantities discussed in Section 1.1.4. In particular
Eq. (8.114a) expresses the fact that the probability distribution P is a conserved
quantity and therefore its time dependence can stem only from boundary fluxes.
Indeed, from (8.114a) it follows that Pab(t) = ∫ b

a dxP(x, t); a < b satisfies
dPab(t)/dt = J (a, t) − J (b, t), which identifies J (x, t) as the probability flux at
point x: J (a, t) is the flux entering (for positive J ) at a, J (b, t)—the flux leaving (if
positive) at b. In one-dimension J is of dimensionality t−1, and when multiplied by
the total number of walkers gives the number of such walkers that pass the point x
per unit time in the direction determined by the sign of J . Equation (8.114b) shows
that J is a combination of the drift flux, vP, associated with the net local velocity
v, and the diffusion flux, D∂P/∂x associated with the spatial inhomogeneity of the
distribution. In a three-dimensional system the analog of Eq. (8.114) is

∂P(r, t)

∂t
= −∇ · J(r, t)

J(r, t) = vP(r, t)− D∇P(r, t) (8.115)

Now P(r, t) is of dimensionality l−3. The flux vector J has the dimensionality
l−2t−1 and expresses the passage of walkers per unit time and area in the J direction.
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It is important to emphasize that, again, the first of Eqs (8.115) is just a conservation
law. Integrating it over some volume � enclosed by a surface S� and denoting

P�(t) =
∫
�

d�P(r, t) (8.116)

we find, using the divergence theorem of vector calculus, Eq. (1.36),

dP�(t)/dt = −
∫

S�

dS · J(r, t) (8.117)

where dS is a vector whose magnitude is a surface element and its direction
is a vector normal to this element in the direction outward of the volume �.15

Equation (8.117) states that the change in P inside the region � is given by the
balance of fluxes that enter and leave this region.

8.4.3 Derivation of the Fokker–Planck equation from the
Chapman–Kolmogorov equation

The derivation of the Fokker–Planck (FP) equation described above is far from
rigorous since the conditions for neglecting higher-order terms in the expansion of
exp(±∂/∂x) were not established. Appendix 8A outlines a rigorous derivation of
the FP equation for a Markov process that starts from the Chapman–Kolmogorov
equation

P(x3t3 | x1t1) =
∫

dx2P(x3t3 | x2t2)P(x2t2 | x1t1) t3 ≥ t2 ≥ t1 (8.118)

In the most general case x = {xj; j = a, b, . . .} is a multivariable stochastic process.
This derivation requires that the following conditions should be satisfied:

(a) The Markov process is continuous, that is, for any ε > 0

lim
�t→0

1

�t

∫
|x−y|>ε

dxP(x, t +�t | y, t) = 0 (8.119)

Namely, the probability for the final state x to be different from the initial
state y vanishes faster then �t as �t → 0.

15 The minus sign in (8.117) enters because, by convention, a vector (e.g. the flux) normal to a
surface that defines a closed sub-space is taken positive when it points in the outward direction.
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(b) The following functions

Ai(x, t) = lim
�t→0

1

�t

∫
dz(zi − xi)P(z, t +�t | x, t) (8.120a)

Bi,j(x, t) = lim
�t→0

1

�t

∫
dz(zi − xi)(zj − xj)P(z, t +�t | x, t) (8.120b)

exist for all x. Note that the integral in (8.120a) is the average vector-distance
that the random variable makes during time �t, which is indeed expected to
be linear in �t for any systematic motion (it vanishes for pure diffusion). The
integral in (8.120b) on the other hand is expected to be of order (�t)2 for
systematic motion, in which case Bi,j = 0, but can be linear in �t (implying
nonzero Bi,j) for stochastic motion such as diffusion.

In Appendix 8A we show that when these conditions are satisfied, the Chapman–
Kolmogorov integral equation (8.118) leads to two partial differential equations.
The Fokker–Planck equation describes the future evolution of the probability
distribution

∂

∂t
P(x, t | y, t0) = −

∑
i

∂

∂xi
[Ai(x, t)P(x, t | y, t0)]

+ 1

2

∑
ij

∂2

∂xi∂xj
[Bij(x, t)P(x, t | y, t0)] (8.121)

and the “backward” Fokker–Planck equation describes its evolution towards
the past

∂P(x, t | y, t0)

∂t0
= −

∑
i

Ai(y, t0)
∂P(x, t | y, t0)

∂yi
− 1

2

∑
ij

Bij(y, t0)
∂2P(x, t | y, t0)

∂yi∂yj

(8.122)

Each of Eqs (8.121) and (8.122) is fully equivalent, under the conditions spe-
cified, to the Chapman–Kolmogorov equation. Furthermore, if the functions Ai and
Bij are time independent, the conditional probability P(x, t | y, t0) depends only on
the time interval t − t0 and therefore ∂P(x, t | y, t0)/∂t0 = −∂P(x, t | y, t0)/∂t. In
this case Eqs (8.121) and (8.122) relate to each other in the following way. Writing
the former in the form

∂

∂t
P(x, t | y, t0) = L̂ (x)P(x, t | y, t0) (8.123a)
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where the operator L̂(x) is defined by the right-hand side of (8.121), then
Eq. (8.122) is

∂

∂t
P(x, t | y, t0) = L̂† (y)P(x, t | y, t0) (8.123b)

where the operator L̂† is the adjoint of L̂.
To gain some insight into the physical significance of these equations consider

the case where Bi,j = 0 for all i and j. Equation (8.121) then becomes

∂

∂t
P(x, t | y, t0) = −

∑
i

∂

∂xi
[Ai(x, t)P(x, t | y, t0)] (8.124)

It is easily realized that this equation describes the completely deterministic motion

dxi

dt
= Ai(x(t), t); xi(t = t0) = yi (all i) (8.125)

To see this note that if (8.125) holds then

Ji = (dxi/dt)P(x, t | y, t0) = Ai(x, t)P(x, t | y, t0)

is the probability flux in the direction xi.16 Equation (8.124) can therefore be
written as

∂P(x, t | y, t0)

∂t
= −

∑
i

∂

∂xi
Ji(x, t) = −∇ · J (8.126)

which, as discussed above Eq. (8.115), is a statement on the conservation of prob-
ability. The one-dimensional analog to this is Eq. (8.114) for the case D = 0. In
that case ẋP(x, t) = vP(x, t) became the probability flux, and the rate of change of
P in time is given by (∂/∂x)[ẋP(x)] = v(∂/∂x)P(x, t).

We may conclude that Eq. (8.124) is a probabilistic reformulation of the inform-
ation contained in the deterministic time evolution. This implies that not only
P(x, t0 | y, t0) = δ(x − y), but for a later time

P(x, t | y, t0) = δ(x − x(t | y, t0)) (8.127)

where x(t | y, t0) is the (deterministic) solution to Eq. (8.125). Under Eq. (8.124) the
conditional probability distribution P(x, t | y, t0) remains a δ function at all time.

16 For example, if x = (x1, x2, x3) denotes a position in space and P(x, t | y, t0) is the probability
to find a particle at this position given that it was at position y at time t0, then for a total particle
number N , N (dxi/dt)P(x, t | y, t0) is the particle flux in the direction xi (number of particles moving
per second through a unit cross-sectional area normal to xi) which, when divided by N , yields the
probability flux in that direction.
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The stochastic spread of the distribution about the deterministic path results from
the B terms in Eqs (8.121) and (8.122) in analogy with the D term in Eq. (8.113).

Problem 8.10. Show that P(x, t | y, t0) given by Eq. (8.127) satisfies Eq. (8.124)

Problem 8.11. Let the vector x in (8.124) be (pN , rN ), that is, a point in the
phase space of a Hamiltonian system with N particles, and let Eqs (8.125) be
the Hamilton equations of motion (this is a statement about the functions A(x)).
Show that in this case Eq. (8.124) becomes the Liouville equation for the phase
space density f (pN , rN ; t), that is, (c.f. Eq. (1.104))

∂f (rN , pN ; t)

∂t
= −

(
∂f

∂rN

∂H

∂pN − ∂f

∂pN

∂H

∂rN

)
(8.128)

8.4.4 Derivation of the Smoluchowski equation from the Langevin equation:
The overdamped limit

Another route to the Fokker–Planck equation starts from the Langevin equation.
Since the latter describes a continuous stochastic process, a Fokker–Planck equation
is indeed expected in the Markovian case. We note in passing that using general-
ized Langevin equations such as Eq. (8.54) as starting points makes it possible to
consider also non-Markovian situations, however, we shall limit ourselves to the
one-dimensional Markovian case. The general case, which starts from Eqs (8.13)
and (8.20), is taken up in the next section. Here we consider the simpler high friction
limit, where the Langevin equation takes the form (cf. Eq. (8.21))

dx

dt
= 1

γm

(
−dV

dx
+ R(t)

)
(8.129)

with
〈R〉 = 0; 〈R(0)R(t)〉 = 2mγ kBTδ(t) (8.130)

Our aim is to find the corresponding equation for P(x, t), the probability density to
find the particle position at x; the velocity distribution is assumed equilibrated on
the timescale considered. Note that in Section 8.1 we have distinguished between
stochastic equations of motion that describe the time evolution of a system in state
space (here x), and those that describe this evolution in probability space. We now
deal with the transformation between such two descriptions.
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The starting point for this task is an expression of the fact that the integrated
probability is conserved. As already discussed, this implies that the time derivative
of P should be given by the gradient of the flux ẋP, that is,

∂P(x, t)

∂t
= − ∂

∂x
(ẋP) = �̂P (8.131a)

where, using (8.129), the operator �̂ is given by

�̂ = − 1

γm

∂

∂x

[(
−dV

dx
+ R(t)

)]
(8.131b)

The essence of the calculation that leads to the desired Fokker–Planck equation,
known in this limit as the Smoluchowski equation, is a coarse-grained average of
the time evolution (8.131) over the fast variation of R(t). This procedure, described
in Appendix 8B, leads to

∂P(x, t)

∂t
= D

∂

∂x

(
β
∂V

∂x
+ ∂

∂x

)
P(x, t); β = 1

kBT
(8.132)

D = kBT

mγ
(8.133)

which is the desired Smoluchowski equation. When the potential V is constant it
becomes the well-known diffusion equation. Equation (8.133) is a relation between
the diffusion constant D and the friction coefficient γ , which in turn is related to
the fluctuations in the system via the fluctuation–dissipation relation (8.130). We
discuss this relation further in Section 11.2.4.

Next we consider some properties of Eq. (8.132). First note that it can be
rewritten in the form

∂P(x, t)

∂t
= − ∂

∂x
J (x, t) (8.134)

where the probability flux J is given by

J = −D

(
∂

∂x
+ β

∂V

∂x

)
P(x, t) (8.135)

As discussed above (see Eq. (8.114) and the discussion below it), Eq. (8.134) has
the form of a conservation rule, related to the fact that the overall probability is
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conserved.17 The three-dimensional generalization of (8.132)

∂P(x, t)

∂t
= D∇ · (β∇V + ∇)P(r, t) (8.136)

can similarly be written as a divergence of a flux

∂P(r, t)

∂t
= −∇ · J (8.137a)

J = −D(β∇V + ∇)P(r, t) (8.137b)

Again, as discussed in Section 8.4.2, Eq. (8.137a) is just a conservation law,
equivalent to the integral form (8.117)

dP�

dt
= −

∫
S�

J(r) · dS (8.138)

where P�, the probability that the particle is in the volume �, is given by (8.116).
Second, the flux is seen to be a sum of two terms, J = JD + JF , where JD =

−D∂P/∂x (or, in three dimensions, JD = −D∇P) is the diffusion flux, while
JF = Dβ(−∂V /∂x)P (or , in three dimensions, JF = βD(−∇V )P) is the flux
caused by the force F = −∂V /∂x (or F = −∇V ). The latter corresponds to the
term vP in (8.114b), where the drift velocity v is proportional to the force, that is,
JF = uFP. This identifies the mobility u as

u = βD = (mγ )−1 (8.139)

Again, this relation is discussed further in Section 11.2.4.
Finally note that at equilibrium the flux should be zero. Equation (8.135) then

leads to a Boltzmann distribution.

∂P

∂x
= −β

∂V

∂x
P ⇒ P(x) = const · e−βV (x) (8.140)

17 If N is the total number of particles then NP(x) is the particles number density. The conservation
of the integrated probability, that is, ∫ dxP(x, t) = 1 is a statement that the total number of particles
is conserved: In the process under discussion particles are neither destroyed nor created, only move
in position space.
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8.4.5 Derivation of the Fokker–Planck equation from the Langevin equation:
General case

Next consider the general one-dimensional Langevin Eq. (8.13)

ẋ = v

v̇ = − 1

m

∂V (x)

∂x
− γ v + 1

m
R(t) (8.141)

with a Gaussian random force R(t) that again satisfies (8.130). Here x and v = ẋ
are respectively the position and velocity of a Brownian particle. We now seek
an equation for P(x, v, t), the joint probability density that the particle position and
velocity at time t are x and v, respectively. The starting point is the two-dimensional
analog of Eq. (8.131)

∂P(x, v, t)

∂t
= − ∂

∂x
(ẋP)− ∂

∂v
(v̇P) (8.142)

Again, this is just a statement about the conservation of probability. To show this
multiply both sides by the phase space volume element dxdv. On the left the term
∂/∂t[P(x, v)dxdv] is the rate of change of the probability that the particle occupies
this infinitesimal phase space volume. The two terms on the right represent the
two contributions to this rate from fluxes in the x and v directions: For example,
−ẋ∂P/∂x× dxdv = −[ẋP(x + dx, v)− ẋP(x, v)]dv is a contribution to the change
in Pdxdv per unit time due to particles that enter (when v > 0) the element dxdv
at position x and exit the same volume element at position x + dx. Similarly,
−v̇∂P/∂v × dxdv = [v̇(x, v)P(x, v)− v̇(x, v + dv)P(x, v + dv)]dx is the change
per unit time arising from particles changing their velocity (see Fig. 8.1).

Using Eqs (8.141) and (8.142) we now have

∂P(x, v, t)

∂t
= �̂(t)P

�̂(t) = −v
∂

∂x
+ 1

m

∂V

∂x

∂

∂v
+ ∂

∂v
(γ v − 1

m
R(t)) (8.143)

which has a form similar to (8.131), only with a different operator �̂(t) and can be
treated in an analogous way. Repeating the procedure that lead to Eq. (8.132) (see
further details in Appendix 8C) now leads to the Fokker–Planck equation

∂P(x, v, t)

∂t
=

[
−v

∂

∂x
+ 1

m

∂V

∂x

∂

∂v
+ γ

∂

∂v

(
v + kBT

m

∂

∂v

)]
P(x, v, t) (8.144)
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x x+ dx

1 2

3

4

v

v + dv

Fig. 8.1 The probability that the particle is at the position range x, . . . , x + dx and at the velocity
range v, . . . , v+ dv (the shaded area of phase space shown in the figure) is P(x, v)dxdv. It is changing
by the four fluxes shown in the figure. The rate at which probability flows into the shaded area
through the left boundary is J1dv = vP(x, v)dv where J1 is the flux entering (or leaving if v < 0)
at the left boundary. This change reflects particles changing their position near position x. Similarly
J2dv = vP(x + dx, v)dv is the rate at which probability flows by particles changing position near the
x+ dx boundary. J3dx = v̇(x, v)P(x, v)dx is the rate at which probability flows by particles changing
their velocity near v, and J4dx = v̇(x, v + dv)P(x, v + dv)dx is the corresponding rate at v + dv.

Problem 8.12. Show that the Boltzmann distribution P ∼ e−β((1/2)mv2+V (x))

satisfies Eq. (8.144) with ∂P/∂t = 0.

In order to understand the physical content of this equation consider first the
case where γ vanishes. In this case the Langevin equation (8.141) becomes the
deterministic Newton equation ẋ = v; v̇ = −(1/m)∂V /∂x, and Eq. (8.144) with
γ = 0 is just Eq. (8.142), that is, an expression for the conservation of probability,
written for the deterministic Newtonian case. The reader may note that in this case
Eq. (8.142) is in fact the Liouville equation (1.104) for this one-dimensional single
particle system.

In the general case, the conservation of probability is still expressed by an
equation that identifies the time derivative of P as a divergence of a probability flux

∂P(x, v, t)

∂t
= −∇ · J = − ∂

∂x
Jx − ∂

∂v
Jv (8.145)

where

Jx = vP(x, v, t) (8.146)
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and

Jv = J nwt
v + J dis

v (8.147a)

J nwt
v = − 1

m

∂V

∂x
P (x, v, t) (8.147b)

J dis
v = −γ

(
v + kBT

m

∂

∂v

)
P(x, v, t) (8.147c)

The flux in the x direction is associated with the particles velocity, as in the determ-
inistic case. The flux in the v direction consists of two parts. The deterministic
Newtonian part, J nwt

v , results from the acceleration associated with the potential V ,
and the dissipative part, J dis

v , results from the coupling to the thermal environment.
Note that this dissipative flux does not depend on the potential V .

Problem 8.13. Show that for the Boltzmann distribution P ∼ e−β((1/2)mv2+V (x))

the dissipative flux J dis
v (x, v) vanishes at every position x.

8.4.6 The multidimensional Fokker–Planck equation

The above analysis was done for a single particle moving in one dimension, but
can be extended to higher dimensions using the same procedure. The starting point
is the multidimensional analog of Eq. (8.141), given by

ẍj = − 1

m

∂V (xN )

∂xj
−

∑
l

γjl ẋl + 1

m
Rj(t)

〈Rj〉 = 0; 〈Rj(0)Rl(t)〉 = 2mγjlkBTδ(t)

(8.148)

Problem 8.14. Show that the second of Eqs (8.148) is indeed the correct
relationship between fluctuation and dissipation for such a system.
(To do this consider the case in which V = 0, and use the transformation that
diagonalizes γjl .)

Note that the form of Eq. (8.148) expresses the possibility that the different
degrees of freedom xj are coupled to each other not only via their interaction poten-
tial V , but in principle also through their mutual coupling to the environment.
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Constructing the corresponding Fokker–Planck equation now proceeds as before.
A particularly simple model is the one in which the coupling between the vari-
ables {xj} through their interaction with the environment is neglected. In this case
γjl = γjδjl and a straightforward application of the procedure described above
leads to

∂P(xN , vN , t)

∂t
=

∑
j

[
−vj

∂

∂xj
+ 1

m

∂V

∂xj

∂

∂vj
+ γj

∂

∂vj

(
vj + kBT

m

∂

∂vj

)]
P(xN , vN , t)

(8.149)

8.5 Passage time distributions and the mean first passage time

We have already noted the difference between the Langevin description of stochastic
processes in terms of the stochastic variables, and the master or Fokker–Planck
equations that focus on their probabilities. Still, these descriptions are equivalent to
each other when applied to the same process and variables. It should be possible to
extract information on the dynamics of stochastic variables from the time evolution
of their probability distribution, for example, the Fokker–Planck equation. Here we
show that this is indeed so by addressing the passage time distribution associated
with a given stochastic process. In particular we will see (problem 14.3) that the
first moment of this distribution, the mean first passage time, is very useful for
calculating rates.

We consider a system described in terms of a stochastic variable x whose
probability distribution evolves according to

∂P(x, t|x0)

∂t
= L̂(x)P(x, t|x0) (8.150)

L̂(x) can be the Fokker–Planck operator, the difference operator in a master
equation, etc., and x, that may stand for a group of variables, represents a point
(state) in the state space of the system. P (x, t|x0) is the probability density to find
the system in state x at time t given that it started in state x0 at time t = 0. We seek
an answer to the following question: Given this initial condition (particle starts at
state x0 at t = 0), what is the probability �(x1, t|x0)dt that it will reach the state x1
for the first time between times t and t+dt? When the problem is multidimensional,
that is, when x represents several stochastic variables, the language should be modi-
fied somewhat: We will usually ask about reaching a surface, not a point in the space
of these variables. In what follows we focus for simplicity on the single variable
case and continue this discussion using the language of a particle moving along
the x-axis.
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For specificity we take x1 > x0. Because the question involves the first time
of the particle arrival to x1, we may impose absorbing boundary conditions at this
point, that is, P(x1, t) = 0 for all t. Given this boundary condition, the integrated
probability to make this first arrival at x1 between times 0 and t is equal to the
probability to remain in the interval (−∞, x1) at time t, that is,

t∫
0

dt′�(x1, t′|x0) = 1 −
x1∫

−∞
dxP(x, t|x0) (8.151)

This in turn implies that

�(x1, t|x0) = −
x1∫

−∞
dx

∂

∂t
P(x, t|x0) (8.152)

Note that for such absorbing boundary problem P(x, t → ∞|x0) → 0 for x in
(−∞, x1).

Problem 8.15. Show that�(x1, t|x0) is normalized, that is,
∫∞

0 dt�(x1, t|x0) = 1.

Equation (8.152) is an expression for the passage time distribution �(x1, t|x0).
The mean first passage time τ(x1, x0) is its first moment

τ(x1, x0) =
∞∫

0

dt t�(x1, t|x0) (8.153)

Inserting Eq. (8.152) and integrating by parts then leads to

τ(x1, x0) =
x1∫

−∞
dx

∞∫
0

dtP(x, t|x0) (8.154)

Obviously, if P(x, t|x0) is known we can compute the mean first passage time
from Eq. (8.154). We can also find an equation for this function, by operating
with backward evolution operator L̂†(x0) on both sides of Eq. (8.154). Recall that
when the operator L̂ is time independent the backward equation (8.122) takes the
form (cf. Eq. (8.123b)) ∂P(x, t|x0)/∂t = L̂†(x0)P(x, t|x0) where L̂† is the adjoint
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operator. Applying it to (8.154) leads to

L†(x0)τ (x1, x0) =
x1∫

−∞
dx

∞∫
0

dt
∂P

∂t
=

x1∫
−∞

dx(−P(x, t = 0)) = −1 (8.155)

where we have used the fact that P(x, t = 0) is normalized in (−∞, x1). Thus we
have a differential equation for the mean first passage time

L†(x0)τ (x1, x0) = −1 (8.156)

that should be solved with the boundary condition τ(x1, x0 = x1) = 0.
As an example consider the following form for the operator L̂

L̂(x) = − d

dx

[
a(x)− b(x)

d

dx

]
(8.157)

which, for a(x) = −βD∂V /∂x and b(x) = D is the Smoluchowski operator (8.132).
The equation for τ(x1, x0) is

L̂†(x0)τ (x1, x0) = a(x0)
dτ(x1, x0)

dx0
+ d

dx0

(
b(x0)

dτ (x1, x0)

dx0

)
= −1 (8.158)

This differential equation can be easily solved,18 or it can be checked by direct
substitution that its solution is

τ(x1, x0) = −
x0∫

c2

dx′[b(x′)f (x′)]−1

x∫
c1

′
dx′′f (x′′) (8.159a)

f (x) = exp

⎛
⎝ x∫

dx′ a(x
′)

b(x′)

⎞
⎠ (8.159b)

where c1 and c2 are integration constants that should be determined from the bound-
ary conditions. In particular, the choice c2 = x1 has to be made in order to satisfy
the requirement that τ should vanish if x0 = x1. c1 is the point where dτ(x1, x0)/dx1
vanishes. Note that f (x) is the equilibrium solution of Eq. (8.150) with the operator
L̂ given by (8.157).

Passage time distributions and the mean first passage time provide a useful way
for analyzing the time evolution of stochastic processes. An application to chemical
reactions dominated by barrier crossing is given in Section 14.4.2 and Problem 14.3.

18 To solve this equation define y(x) = b(x)[dτ(x)/dx] and solve (a(x)/b(x))y(x)+dy(x)/dx = −1
by making the substitution y(x) = u(x) exp[− ∫ x dx′a(x′)/b(x′)].



296 Stochastic equations of motion

Appendix 8A: Obtaining the Fokker–Planck equation from
the Chapman–Kolmogorov equation

We start from the Chapman–Kolmogorov equation

P(x3t3 | x1t1) =
∫

dx2P(x3t3 | x2t2)P(x2t2 | x1t1) t3 ≥ t2 ≥ t1 (8.160)

where in general x is a multivariable stochastic process. Recall that this is a general
property (in fact can be viewed as the definition) of Markovian stochastic processes.
We further assume that the following conditions are satisfied:

1. The Markov process is continuous, that is, for any ε > 0

lim
�t→0

1

�t

∫
|x−y|>ε

dx P(x, t +�t | y, t) = 0 (8.161)

Namely, the probability for the final state x to be different from the initial
state y vanishes faster than �t as �t → 0.

2. The following functions

Ai(x, t) = lim
�t→0

1

�t

∫
dz(zi − xi)P(z, t +�t | x, t)

Bi,j(x, t) = lim
�t→0

1

�t

∫
dz(zi − xi)(zj − xj)P(z, t +�t | x, t) (8.162)

exist for all x. Note that since the process is continuous, the contributions to
these integrals come from regions of z infinitesimally close to x. Also note
that higher moments of the form

Cijk ≡ lim
�t→0

1

�t

∫
dz(zi − xi)(zj − xj)(zk − xk)P(z, t +�t | x, t) (8.163)

(and higher) must be zero. To show this define

C(a) =
∑
ijk

aiajakCijk (8.164)

Knowing C(a) we can get Cijk from

Cijk = 1

3!
∂3

∂ai∂aj∂ak
C(a) (8.165)
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We will show that C(a) = 0 for all a. This is because

C(a) = lim
�t→0

1

�t

∫
dz[(z − x) · a]3P(z, t +�t | x, t)

≤ lim
�t→0

1

�t

∫
dz |(z − x) · a | ((z − x) · a)2P(z, t +�t | x, t)

≤ ε | a | lim
�t→0

1

�t

∫
dz((z − x) · a)2P(z, t +�t | x, t) (8.166)

where ε →0 when �t →0. In the last expression ε | a | is multiplied by
a · B · a which is finite, so C(a) is 0 for all a and therefore Cijk = 0. The
same argument holds for any moment of order 3 or higher.19

The forward equation: The Fokker–Planck equation is now derived as the
differential form of the Chapman–Kolmogorov equation: For any function f (x)

∂

∂t

∫
dzf (z)P(z, t | y, t0) = lim

�t→0

1

�t

∫
dzf (z) [P(z, t +�t | y, t0)− P(z, t | y, t0)]

= lim
�t→0

1

�t

{∫
dz

∫
dxf (z)P(z, t +�t | x, t)P(x, t | y, t0)

−
∫

dxf (x)P(x, t | y, t0)

}
(8.167)

In the first integral replace f (z) by its Taylor expansion about x,

f (z) = f (x)+
∑

i

∂f (x)
∂xi

(zi − xi)+
∑
i,j

1

2

∂2f

∂xi∂xj
(zi − xi)(zj − xj) (8.168)

We have seen above that higher-order terms do not contribute. The term arising from
f (x) and the last integral in (8.167) cancels because

∫
dzP(z, t +�t | x, t) = 1,

19 In Eq. (8.161) we could write Ai(x, t) ≤ lim
�t→0

1
�t

∫
dz | zi − xi | P, but we cannot go further

because both |zi − xi| and �t are infinitesimal.
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so (8.167) becomes

∂

∂t

∫
dzf (z)P (z, t | y, t0) = lim

�t→0

1

�t

{∫
dz

∫
dx

×
⎡
⎣∑

i

(zi − xi)
∂f

∂xi
+ 1

2

∑
i,j

(zi − xi)(zj − xj)
∂2f

∂xi∂xj

⎤
⎦

× P (z, t +�t | x, t)P(x, t | y, t0)}

=
∫

dx

⎡
⎣∑

i

Ai(x)
∂f

∂xi
+ 1

2

∑
i,j

Bij(x)
∂2f

∂xi∂xj

⎤
⎦P (x, t | y, t0) (8.169)

Next we integrate the right-hand side of Eq. (8.169) by parts. Since f was an
arbitrary function we can assume that f and its first and second derivatives vanish
on the surface of our system. Hence

∂

∂t

∫
dxf (x)P(x, t | y, t0) =

∫
dxf (x)

[
−

∑
i

∂

∂xi
[Ai(x, t)P(x, t | y, t0)]

+
∑

i

∑
j

1

2

∂2

∂xi∂xj
[Bij(x, t)P(x, t | y, t0)]

]
(8.170)

So for a continuous Markov process,

∂

∂t
P(x, t | y, t0) = −

∑
i

∂

∂xi
[Ai(x, t)P(x, t | y, t0)]

+ 1

2

∑
i,j

∂2

∂xi∂xj

[
Bij(x, t)P(x, t | y, t0)

]
(8.171)

This is the Fokker–Planck equation that corresponds, under the conditions specified,
to the Chapman–Kolmogorov equation (8.118).

The backward equation. Now consider

∂

∂t0
P(x, t | y, t0) = lim

�t0→0

1

�t0
[P(x, t | y, t0 +�t0)− P(x, t | y, t0)] (8.172)

Multiplying the first term on the right by 1 = ∫
dzP(z, t0 +�t0 | y, t0) and writing

the second term in the form
∫

dzP(x, t | z, t0 +�t0)P(z, t0 +�t0 | y, t0) yields the
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right-hand side of (8.172) in the form

lim
�t0→0

1

�t0

{∫
dzP(z, t0 +�t0 | y, t0) [P(x, t | y, t0 +�t0)

−P(x, t | z, t0 +�t0)]} (8.173)

Inside the square brackets we may put �t0 = 0 and use a Taylor expansion to get

P(x, t | y, t0)− P(x, t | z, t0) = −
∑

i

∂P(x, t | y, t0)

∂yi
(zi − yi)

− 1

2

∑
i

∑
j

∂2P(x, t | y, t0)

∂yi∂yj
(zi − yi)(zj − yj)− · · ·

(8.174)

This again leads to limits of the form

lim
�t0→0

(1/�t0)
∫

dzP(z, t0 +�t0 | y, t0)
∏

j
(zj − yj)

that are evaluated as before. Using the definitions (8.162) and the fact that moments
of this kind of order higher than 2 vanish, we finally get the backward Fokker–
Planck equation

∂P(x, t | y, t0)

∂t0
= −

∑
i

Ai(y, t0)
∂P(x, t | y, t0)

∂yi
− 1

2

∑
ij

Bij(y, t0)
∂2P(x, t | y, t0)

∂yi∂yj

(8.175)

Appendix 8B: Obtaining the Smoluchowski equation from
the overdamped Langevin equation

Our starting point is Eqs (8.129) and (8.130). It is convenient to redefine the
timescale

τ = t/(γm) (8.176)

Denoting the random force on this timescale by ρ(τ) = R(t), we have
〈ρ(τ1)ρ(τ2)〉 = 2mγ kBTδ(t1 − t2) = 2kBTδ(τ1 − τ2). The new Langevin
equation becomes

dx

dτ
= −dV (x)

dx
+ ρ(τ) (8.177a)

〈ρ〉 = 0 〈ρ(0)ρ(τ )〉 = 2kBTδ(τ ) (8.177b)
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The friction γ does not appear in these scaled equations, but any rate evaluated
from this scheme will be inversely proportional to γ when described on the real
(i.e. unscaled) time axis.

In these scaled time variable Eqs (8.131) take the forms

∂P(x, τ)

∂τ
= �̂(τ )P

�̂(τ ) = ∂

∂x

(
∂V

∂x
− ρ(τ)

)
(8.178)

Integrate between τ and τ +�τ to get

P(x, τ +�τ) = P(x, τ)+
τ+�τ∫
τ

dτ1�̂(τ1)P(x, τ1) (8.179)

The operator �̂ contains the random function ρ(τ). Repeated iterations in the
integral and averaging over all realizations of ρ lead to

P(x, τ +�τ)− P(x, τ) =
[ τ+�τ∫

τ

dτ1〈�̂(τ1)〉

+
τ+�τ∫
τ

dτ1

τ1∫
τ

dτ2〈�̂(τ1)�̂(τ2)〉 + · · ·
]

P(x, τ)

(8.180)

our aim now is to take these averages using the statistical properties of ρ and to
carry out the required integrations keeping only terms of order �τ . To this end we
note that �̂ is of the form �̂(τ ) = Â + B̂ρ(τ) where Â and B̂ are the deterministic
operators ∂/∂x(∂V (x)/∂x) and ∂/∂x, respectively. Since 〈ρ〉 = 0 the first term in
the square bracket is simply

Â�τ = ∂

∂x

∂V (x)

∂x
�τ (8.181)

where the operator ∂/∂x is understood to operate on everything on its right. The
integrand in the second term inside the square brackets contains terms of the forms
AA, AB〈ρ〉 = 0, and B2〈ρ(τ1)ρ(τ2)〉. The double time integrals with the determin-
istic AA integrand are of order �τ 2 and may be neglected. The only contributions
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of order �τ come from the BB terms, which, using Eq. (8.177b), lead to

τ+�τ∫
τ

dτ1

τ1∫
τ

dτ2 〈ρ(τ1)ρ(τ2)〉 ∂2

∂x2 =
τ+�τ∫
τ

dτ1kBT
∂2

∂x2 = kBT
∂2

∂x2�τ (8.182)

With a little effort we can convince ourselves that higher-order terms in the expan-
sion (8.180) contribute only terms of order �t2 or higher. Consider for example the
third-order term

∫ τ+�τ

τ
dτ1

∫ τ1
τ

dτ2
∫ τ2
τ

dτ3〈�̂(τ1)�̂(τ2)�̂(τ3)〉 that yields integ-
rals involving AAA, AAB, ABB, and BBB terms. The integral with the deterministic
AAA term is of order �τ 3 and can be disregarded. The AAB and BBB terms lead
to results that contain 〈ρ〉 and 〈ρρρ〉 which are zero. The only terms that may
potentially contribute are of the type ABB. However, they do not: The integrands
that involve such terms appear with functions such as 〈ρ(τ1)ρ(τ2)〉, which yields a
δ-function that eliminates one of the three time integrals. The remaining two time
integrals yield a �τ 2 term and do not contribute to order �τ .

Similar considerations show that all higher-order terms in Eq. (8.180) may be
disregarded. Equations (8.181) and (8.182) finally lead to

∂P(x, τ)

∂τ
=

(
∂

∂x

dV

dx
+ kBT

∂2

∂x2

)
P(x, τ) (8.183)

Transforming back to the original time variable t = γmτ yields the Smoluchowski
equation (8.132) and (8.133).

Appendix 8C: Derivation of the Fokker–Planck equation from
the Langevin equation

Our starting point is Eq. (8.143)

∂P(x, v, t)

∂t
= �̂P = −v

∂P

∂x
+ 1

m

∂V

∂x

∂

∂v
P − ∂

∂v

[(
−γ v + 1

m
R(t)

)
P

]
(8.184)

As in (8.178), the operator �̂ is of the form �̂(τ ) = Â + B̂R(t) in which Â and
B̂ are deterministic operators and R(t) is a random function of known statistical
properties. We can therefore proceed in exactly the same way as in Appendix 8B.
In what follows we will simplify this task by noting that the right-hand side of
(8.184) contains additive contributions of Newtonian and dissipative terms. The
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former is just the Liouville equation(
∂P(x, v, t)

∂t

)
nwt

= −v
∂P

∂x
+ 1

m

∂V

∂x

∂

∂v
P (8.185)

The dissipative part (terms that vanish when γ = 0, including the R(t) term) does
not depend on the potential V , and we should be able to derive its contribution to the
Fokker–Planck equation for a system in which V is constant, that is, ∂V /∂x = 0.
In this case we can focus on the Langevin equation for the velocity

v̇ = −γ v + 1

m
R(t) (8.186)

and look for an equation for the probability P(v, t) associated with this stochastic
differential equation. In analogy to (8.131) we now have(

∂P(v, t)

∂t

)
dis
= − ∂

∂v
[v̇P] = − ∂

∂v

[(
−γ v + 1

m
R(t)

)
P(v, t)

]
(8.187)

that we rewrite in the form

∂P(v, t)

∂t
= �̂(t)P

�̂(t) = ∂

∂v

(
γ v − 1

m
R(t)

)
(8.188)

Integrating between t and t +�t and iterating leads to

P(v, t +�t) = P(v, t)+
t+�t∫
t

dt1�̂(t1)P(v, t1) =
⎡
⎣1 + t+�t∫

t

dt1�̂(t1)

+
�t∫
t

dt1�̂(t1)

t1∫
t

dt2�̂(t2)+ · · ·
⎤
⎦P(v, t) (8.189)

The rest of the calculation is done in complete analogy to the transition from (8.178)
and (8.180) to (8.183). In the present case we get

P(v, t +�t) =
(

1 + ∂

∂v
(γ v)�t + γ kBT

m

∂2

∂v2�t

)
P(v, t)

⇒
(
∂P(v, t)

∂t

)
dis
= ∂

∂v
γ

[
v + kBT

m

∂

∂v

]
P(v, t) (8.190)
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which is the dissipative part of the time evolution. The full Fokker–Planck equation
is obtained by adding the Liouville terms (8.185), leading to Eq. (8.144).

Further Reading (Chapters 7 and 8)

C. W. Gardiner, Handbook of Stochastic Methods, 3rd edn (Springer, Berlin, 2004).
R. Kubo, M. Toda, and N. Hashitsume, Statistical Physics II , 2nd edn (Springer, Berlin, 2003).
H. Risken, The Fokker–Planck Equation, 2nd edn (Springer, Berlin, 1989).
Z. Schuss, Theory and Applications of Stochastic Differential Equations (Wiley, New York, 1980).
N. G. van Kampen, Stochastic Processes in Physics and Chemistry (North-Holland, Amsterdam,

1992).
R. Zwanzig, Non Equilibrium Statistical Mechanics (Oxford University Press, Oxford, 2001).
N. Wiener, J. Math. Phys. 2, 131–174 (1923) (on the foundations of the theory of stochastic processes

– for the mathematically oriented reader)
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INTRODUCTION TO QUANTUM RELAXATION
PROCESSES

Since earth and water,
Air and fire, those elements which form
The sums of things are, all of them, composed
Of matter that is born and dies, we must
Conclude that likewise all the universe
Must be of mortal nature. Any time
We see that parts are transient substances
We know that their total is as fugitive,
And when the main components of the world
Exhaust themselves or come to birth again
Before our very eyes, we may be sure
That heaven and earth will end, as certainly
As ever they once began…

Lucretius (c.99–c.55 bce) “The way things are”
translated by Rolfe Humphries, Indiana University Press, 1968

The first question to ask about the phenomenon of relaxation is why it occurs
at all. Both the Newton and the Schrödinger equations are symmetrical under
time reversal: The Newton equation, dx/dt = v ; dv/dt = −∂V /∂x, implies that
particles obeying this law of motion will retrace their trajectory back in time after
changing the sign of both the time t and the particle velocities v. The Schrödinger
equation, ∂ψ/∂t = −(i/h̄)Ĥψ , implies that if (ψ(t) is a solution then ψ∗(−t) is
also one, so that observables which depend on |ψ |2 are symmetric in time. On the
other hand, nature clearly evolves asymmetrically as asserted by the second law
of thermodynamics. How does this asymmetry arise in a system that obeys tem-
poral symmetry in its time evolution? Readers with background in thermodynamics
and statistical mechanics have encountered the intuitive answer: Irreversibility in a
system with many degrees of freedom is essentially a manifestation of the system
“getting lost in phase space”: A system starts from a given state and evolves in time.
If the number of accessible states is huge, the probability that the system will find its
way back to the initial state in finite time is vanishingly small, so that an observer
who monitors properties associated with the initial state will see an irreversible
evolution. The question is how is this irreversible behavior manifested through the
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|1>

V1,l

{|l >}

Fig. 9.1 A model for quantum mechanical relaxation: A single zero-order level |1〉 is initially pop-
ulated. This level is coupled to, and energetically overlaps with, a continuous manifold of other
zero-order levels represented by the shaded area. This manifold (here {|l〉} ) is sometimes denoted in
the text by the corresponding capital letter L.

reversible equations of motion, and how does it show in the quantitative description
of the time evolution. This chapter provides an introduction to this subject using the
time-dependent Schrödinger equation as a starting point. Chapter 10 discusses more
advanced aspects of this problem within the framework of the quantum Liouville
equation and the density operator formalism.

9.1 A simple quantum-mechanical model for relaxation

In what follows we consider a simple quantum-mechanical model for irreversibility.
In addition to providing a simple demonstration of how irreversibility arises in
quantum mechanics, we will see that this model can be used as a prototype of many
physical situations, showing not only the property of irreversible relaxation but also
many of its observable consequences.

We consider a Hamiltonian written as a sum

Ĥ = Ĥ0 + V̂ (9.1)

and use the set of eigenstates of Ĥ0 as a basis. We assume that this set is given by a
single state |1〉 of zero-order energy E1 and a manifold of states {|l〉} (l = 2, 3, . . .)
with zero-order energies El , see Fig. 9.1. The set |1〉, {|l〉} is taken to be orthonormal,
that is, 〈1|1〉 = 1, 〈1|l〉 = 0 for all l and 〈l|l′〉 = δl,l′ for all l and l′. These states
are coupled by the “perturbation” V . We consider a model in which V1,1 = Vll = 0
for all l, however V1,l �= 0 so the state 1 is coupled to all states in the manifold {l}.
This information is contained in the following expressions for Ĥ0 and V̂ :

Ĥ0 = E1|1〉〈1| +∑
l

El|l〉〈l|
V̂ = ∑

l
(V1,l|1〉〈l| + Vl,1|l〉〈1|) (9.2)
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Another way to express this information is by writing the matrix representation of
Ĥ in the given basis.

H =

⎛
⎜⎜⎜⎜⎝

E1 V1,2 V1,3 V1,4 · · ·
V2,1 E2 0 0 · · ·
V3,1 0 E3 0 · · ·
V4,1 0 0 E4 0

...
...

... 0
. . .

⎞
⎟⎟⎟⎟⎠ (9.3)

We want to solve the time-dependent Schrödinger equation

dψ(t)

dt
= − i

h̄
Ĥψ(t) (9.4)

under the assumption that the system is initially in state |1〉. In particular, we want
to evaluate the probability P1(t) to find the system in state 1 at time t.

Before setting to solve this mathematical problem, we should note that while
the model is mathematically sound and the question asked is meaningful, it cannot
represent a complete physical system. If the Hamiltonian was a real representation
of a physical system we could never prepare the system in state |1〉. Still, we shall
see that this model represents a situation which is ubiquitous in molecular systems,
not necessarily in condensed phase. Below we outline a few physical problems in
which our model constitutes a key element:

1. Consider the generic two-level model, Eq. (2.13), with the levels now denoted
g and s with energies Es > Eg . An extended system that includes also the environ-
ment may be represented by states that will be denoted |s, {e}〉, |g, {e}〉 where {e}
defines states of the environment. A common phrase is to say that these molecu-
lar states are “dressed” by the environment. Now consider this generic molecule in
state s and assume that the environment is at zero temperature. In this case {e} = {e}g
is the ground state of the environment. Obviously the initial state |s, {e}g〉 is ener-
getically embedded in a continuum of states |g, {e}x〉 where {e}x are excited states
of the environment. This is exactly the situation represented in Fig. 9.1, where level
|1〉 represents the state |s, {e}g〉while levels |l〉 are the states |g, {e}x〉with different
excited state of the environment. An important aspect common to all models of
this type is that the continuous manifold of states {|l〉} is bound from below: State
|g, {e}g〉 is obviously its lowest energy state.

2. The generality of this picture is emphasized by the observation that even for a
single atom or molecule in vacuum the ever present radiation field constitutes such
an environment (see Section 9.2.3 below). Any excited molecular state is coupled
to lower molecular states dressed by photons.

3. In an isolated large molecule, each excited electronic state is coupled to a
dense manifold of vibrational levels associated with lower electronic states. This
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can lead to the appearance of radiationless relaxation (no photon emitted) in single
isolated molecules (see Section 9.2.2).

All these physical examples can be described by the model of Fig. 9.1 and
Eq. (9.2). Let us now return to this simple model and address the probability P1(t)
to find the system in state 1 at time t given that P1(t = 0) = 1.

We start by writing the general solution of the time-dependent Schrödinger
equation in the form

ψ(t) = C1(t)|1〉 +
∑

l

Cl(t)|l〉 (9.5)

Insert (9.5) into (9.4), then multiply the resulting equation by 〈1| or 〈l| to get

h̄
d

dt
C1 = −iE1C1 − i

∑
l

V1,lCl (9.6)

h̄
d

dt
Cl = −iElCl − iVl,1C1; for each l (9.7)

This set of equations should be solved under the initial condition C1(t = 0) = 1;
Cl(t = 0) = 0 for all l. We want to find the probability P1(t) = |C1(t)|2 that the
system is still in state 1 at time t.

Equations (9.6) and (9.7) constitute a linear initial value problem that can con-
veniently be solved using Laplace transforms as described in Section 2.6. The
formal answer to our problem has already been obtained, Eqs (2.60) and (2.61),
which imply

C1(t) = − 1

2π i

∞∫
−∞

dEe−iEt/h̄G1,1(E + iε); ε → 0+ (9.8a)

G1,1(z) = 〈1| 1

z − H
|1〉 (9.8b)

This is a Fourier transform of the diagonal 1, 1 matrix element of the Green’s
operator Ĝ(E + iε) where

Ĝ(z) = 1

z − Ĥ
= 1

z − Ĥ0 − V̂
(9.9)

A convenient way to evaluate this matrix element starts by defining also

G0(z) = 1

z − H0
(9.10)
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so that (G0)1,1 = (z − E1)
−1, (G0)l,l′ = (z − El)

−1δl,l′ , and (G0)1,l = 0. Ĝ(z)
satisfies the so-called Dyson identities.1

Ĝ(z) = Ĝ0(z)+ Ĝ0(z)V̂ Ĝ(z) = Ĝ0(z)+ Ĝ(z)V̂ Ĝ0(z) (9.11)

Starting from the first identity in (9.11) we take its 1,1 and l, 1 matrix elements,
that is, G1,1 = (G0)1,1 + (Ĝ0V̂ Ĝ)1,1 and Gl,1 = (Ĝ0V̂ Ĝ)l,1. Using the resolution
of the identity operator

|1〉〈1| +
∑

l

|l〉〈l| = 1 (9.12)

leads to

G1,1 = (G0)1,1 + (G0)1,1

∑
l

V1,lGl,1 (9.13)

Gl,1 = (G0)l,lVl,1G1,1 (9.14)

Inserting (9.14) into (9.13) and using the identities below (9.10) it follows that

G1,1(z) = 1

z − E1
+ 1

z − E1

(∑
l

|V1,l|2
z − El

)
G1,1(z) (9.15)

that is, (putting z = E + iε and taking the limit ε → 0),

G1,1(E) = lim
ε→0

1

E + iε − E1 −∑
l |V1,l|2/(E − El + iε)

(9.16)

This is the function to be Fourier transformed according to Eq. (9.8).
Before continuing with this task we make the following observation: Our prob-

lem deals with Hamiltonian whose spectrum spans infinitely many energy levels,
however the physics of interest focuses on a small local (in energy) part of this
infinite Hilbert space—the energetic neighborhood of the initially prepared level
|1〉 , that affects its future evolution. The Green function element G1,1 contains the
information on level |1〉 in an explicit way, while the effect of all other (infinitely
many!) levels appears only in a sum

B1(E) =
∑

l

|V1,l|2
E − El + iε

(9.17)

1 For example, starting from Ĝ−1
0 = Ĝ−1 + V̂ and multiplying it by Ĝ from the left and by Ĝ0

from the right yields the second identity of Eq. (9.11).
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that is often characterized (as will be seen below) by just a few parameters.
Focusing on the interesting subspace of an overall system and attempting to

characterize its behavior while discarding uninteresting information on the rest
of the system has been a repeating motif in our discussions. Mathematically, this
is often done by “projecting” the dynamics encoded in our equations of motion,
here the Schrödinger equation, onto the interesting subspace.2 Techniques based
on projection operators are very useful in this respect. In Appendix 9A we repeat
the derivation of Eq. (9.16) using this technique.

As a prelude to evaluating the Fourier transform (9.8) let us consider first the
function B1(E) and assume that the manifold {l} constitutes a continuum of states.
In this case the summation over l corresponds to the integral

∑
l

→
∞∫

−∞
dElρL(El) (9.18)

where ρL(E) denotes the density of states in the {l}manifold. Note that the fact that
we took the integration limits to be (−∞ . . .∞) does not necessarily mean that the
eigenvalues {El} extend between these limits. The actual information concerning
this eigenvalue spectrum is in the density of states ρL(El) that can be zero below
some threshold. Equation (9.17) now takes the form

B1(E) =
∞∫

−∞
dEl

(|V1,l|2)ElρL(El)

E − El + iε
= 1

2π

∞∫
−∞

dEl
�1(El)

E − El + iε
(9.19)

where (|V1,l|2)E is the average of the squared coupling over all continuum levels l
that have energy E,3 and where

�1(E) ≡ 2π(|V1,l|2)EρL(E) (9.20)

Consider first the particularly simple case where the manifold {|l〉} extends in
energy from −∞ to ∞ and where �1(E) does not depend on E. In this case

B1(E) = (�1/2π)

∞∫
−∞

dx
1

E − x + iε
= (�1/2π)

∞∫
−∞

dx
E − x − iε

(E − x)2 + ε2 (9.21)

2 Much like projecting forces acting on a given body onto the direction of interest.
3 A formal definition is (|V1,l |2)E = ∑

l |V1l |2δ(E − El)/
∑

l δ(E − El) =
(ρL(E))−1 ∑

l |V1l |2δ(E − El).
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The real part vanishes by symmetry and, using
∫∞
−∞ dxε/(x2 + ε2) = π , we get

B1(E) = −1

2
i�1 (9.22)

Using this with (9.16) in (9.8) yields4 (see Sections 1.1.6 and 2.6)

C1(t) = − 1

2π i

∞∫
−∞

dE
e−i(E+iε)t/h̄

E − E1 + (1/2)i�1
= e−iE1t/h̄−(1/2)�1t/h̄ (9.23)

So finally

C1(t) = C1(0) exp(−iE1t/h̄ − (1/2)�1t/h̄), (9.24a)

and

|C1(t)|2 = e−�1t/h̄ = e−k1t (9.24b)

Our model assumptions lead to exponential decay of the probability that the system
remains in the initial state, where the decay rate k1 is given by the so-called Fermi
“golden rule” formula,

k1 ≡ �1

h̄
= 2π

h̄
|V1,l|2ρL (9.25)

Note that k1 has the dimension [time]−1 while �s is of dimensionality [energy].
It is important to emphasize that the assumptions that |V |2ρ is a constant and

that the {l}manifold extends from−∞ to∞ are not essential for irreversibility but
only for the simple single exponential decay (9.24). In fact, as discussed above, the
spectrum {El} never extends to−∞ because it is bounded from below by the ground
state. A more general evaluation starts from and uses the identity (cf. Eq. (1.71))

1

E − El + iε
ε→0+−−−→ PP

1

E − El
− iπδ(E − El) (9.26)

where PP is the principal part of the integral (Section 1.1.6). This identity is
meaningful only inside an integral. Using it in (9.17) or (9.19) leads to

B1(E) = !1(E)− (1/2)i�1(E) (9.27)

4 Note that the infinitesimal term iε in Eq. (9.16) can be disregarded relative to (1/2)i�1.
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where !1(E) and !1(E) are the real functions

�1(E) = 2π
∑

l

|V1,l|2δ(E − El) =2π(|V1,l|2ρL(El))El=E (9.28)

and

!1(E) = PP
∑

l

|V1,l|2
E − El

= PP

∞∫
−∞

dEl
|V1,l|2ρL(El)

E − El
(9.29)

The structure of the integrand in Eq. (9.8), as implied by Eqs. (9.16), (9.17) and
(9.27), suggests that !1 corresponds to a shift in the unperturbed energy E1, while
the presence of an imaginary term in the denominator of this integrand is the origin of
the resulting relaxation behavior. A strong dependence of these functions on E will
lead to a relaxation process characterized by a nonexponential decay. In practice,
exponential decay is observed in many situations, suggesting that assumptions
similar to those made above are good approximations to reality.5

More insight into the nature of the result obtained above may be gained by
making the following observation: The Green function element

G1,1(E) = lim
ε→0

1

E + iε − E1 − B1(E)
(9.30)

was seen to be an instrument for studying the time evolution in the subspace of the
Hilbert space spanned by the state |1〉− starting from |1〉, the probability amplitude
to remain in this state is given by (9.8). When |1〉 is an eigenstate of the Hamiltonian
(i.e. when V̂ = 0), B1(E) = 0 and G1,1(E) is really a property of the state |1〉
alone. When this is not so the function B1(E) is seen to represent the effect of
the rest of the Hilbert space on the time evolution within the 1 subspace. This
function is referred to as the self energy associated with the level 1. In particular,
we have seen that when it is approximately independent of E, the real part of B1
contributes a shift in E1, while its imaginary part represents the decay rate of the
probability that the system remains in this state. In a sense the complex number
E1 + Re(B1) + iIm(B1) = Ẽ1 − (1/2)i�1 may be thought of as a renormalized
(complex) energy eigenvalue associated with the state |1〉. Indeed, from the point
of view of the “interesting state” |1〉, the effect of adding the coupling V̂ to the

5 One of these assumption was that the continuum {l} extends from −∞ to ∞. This is often a good
approximation to the situation where the edge(s) of the continuum is(are) far from the energetic region
of interest, in this case the energy E1. In the solid state physics literature this is sometimes referred
to as the wide band approximation.
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Hamiltonian Ĥ0 was to affect the following change on the corresponding Green
function element

1

E − E1 + iε
⇒ 1

E − Ẽ1 + (1/2)i�1
; (ε → 0) (9.31)

We will see in Section 9.3 that in addition to representing a decay rate of state |1〉,
�1 also defines an energy width of this state.

9.2 The origin of irreversibility

Did the analysis in Section 9.1 demonstrate irreversibility? It should be emphasized
that while the dynamics of the system is completely reversible, as implied by the
underlying equations of motion, the appearance of irreversibility has resulted from
the particular question asked. This section focuses on understanding this and other
aspects of quantum irreversibility.

9.2.1 Irreversibility reflects restricted observation

By their nature, the dynamics governed by either the Newton or the Schrödinger
equations are fully reversible. The fact that the probability (9.24b) to find the
system in the initial state |1〉 decays with time reflects the restricted character of the
observation. In many situations such restricted observations are associated naturally
with the physics of the system: We are interested in the state of a small part of a large
system, and the evolution of this small part appears irreversible. We often use the
term “system” to denote those degrees of freedom that we are specifically interested
in, and the term “bath” for the rest of the (much larger) system. In a classical analogy,
a small subsystem at temperature T1 in contact with a large “thermal bath” with
temperature T2 will relax irreversibly until T1 becomes equal to T2, while a state
of the overall system given in terms of the position and momentum of every atom
will evolve in a systematic (and reversible) way.

9.2.2 Relaxation in isolated molecules

We are quite used to these observations in macroscopic phenomena. What may
appear as a surprise is that such situations are also encountered in microscopic
systems, including single molecules. For example, an optical transition of a large
molecule into an excited electronic state is often followed by relaxation of the elec-
tronic energy due to coupling to nuclear (vibrational) levels associated with lower
electronic states, in a way which appears to be “radiationless” (no photon emitted)
and “collisionless” (take place on a timescale shorter than collision times at the
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given pressure). Figure 12.3 shows a schematic example. In Fig. 9.1 level 1 can
represent one of the vibronic levels in the excited electronic state 2 of Fig. 12.3,
while the manifold {l} corresponds to the manifold {|1, v〉} of vibronic states associ-
ated with the ground electronic state 1 of that figure. In a large molecule the density
of such levels can be enormous (see Section 12.4.1 and Problem 12.2), making this
manifold an effective continuum.

Another relaxation process encountered in isolated molecules is the phenomenon
of intramolecular vibrational relaxation. Following excitation of a high-lying vibra-
tional level associated with a particular molecular mode, the excitation energy can
rapidly spread to other nuclear modes. This is again a case of an initially prepared
single state decaying into an effective continuum.

In both cases, because of restrictions imposed on the excitation process (e.g.
optical selection rules), the initially excited state is not an exact eigenstate of the
molecular Hamiltonian (see below). At the same time, if the molecule is large
enough, this initially prepared zero-order excited state is embedded in a “bath” of a
very large number of other states. Interaction between these zero-order states results
from residual molecular interactions such as corrections to the Born Oppenheimer
approximation in the first example and anharmonic corrections to nuclear potential
surfaces in the second. These exist even in the absence of interactions with other
molecules, giving rise to relaxation even in isolated (large) molecules. The quasi-
continuous manifolds of states are sometimes referred to as “molecular heat baths.”
The fact that these states are initially not populated implies that these “baths” are
at zero temperature.

Problem 9.1. In the analysis that led to the result (9.24) for the decay of the
initially prepared state |1〉we have used the representation defined by the eigen-
states of Ĥ0. In the alternative representation defined by the full set of eigenstates
{|j〉} of Ĥ the initial state is given by

�(t = 0) = |1〉 =
∑

j

Cj|j >; Cj = 〈1|j〉 (9.32)

Show that in terms of the coefficients Cj the probability P1(t) that the system
remains in the initial state is given by

P1(t) =
∣∣∣∣∣∣

∞∫
−∞

dE(ρJ (Ej)|Cj|2)Ej=Ee−iEt/h̄

∣∣∣∣∣∣
2

(9.33)
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whereρJ (Ej) is the density of states in the manifold of eigenstates of Ĥ and where

(ρJ (Ej)|Cj|2)Ej=E ≡ L(E) is a coarse-grained average (see Section (1.4.4)) of
ρJ (Ej)|Cj|2 in the neighborhood of the energy E. What can you infer from this
result on the functional form of the function L(E). Can you offer a physical
interpretation of this function?

9.2.3 Spontaneous emission

Even the excited states of a single atom are embedded in a continuum of other
states. As discussed in Section 3.2.3 this continuum corresponds to the states of
the radiation field sitting on lower atomic states. Casting that discussion in our
present notation we have (cf. Eqs (3.21)–(3.24)) Ĥ0 = ĤM + ĤR, Ĥ = Ĥ0 + ĤMR,
where ĤM and ĤR are the Hamiltonians of the molecule and of the free radiation
field, respectively, and ĤMR is their mutual interaction. The Hamiltonian ĤR
was shown to represent a collection of modes—degrees of freedom that are
characterized by a frequency ω, a polarization vector σ , and a wavevector k,
which satisfy the relations σ · k = 0 and ω = ck with c being the speed of
light.

To simplify our notation, we will suppress in what follows the polarization
vector σ , that is, the vector k will be taken to denote both wavevector and polar-
ization. The time evolution of a mode k of frequency ωk is determined by a
harmonic oscillator Hamiltonian, ĥk = h̄ωk â†

k âk , and its quantum state—by the
corresponding occupation number nk , the numbers of photons in this mode. The
state of the radiation field is determined by the set {nk} of occupation numbers
of the different modes, and the ground (“vacuum”) state of the field is given by
{n} = {0} = (0, . . . , 0). The eigenstates of Ĥ0 may be denoted |j; {n}〉 where
the index j denotes the molecular state. We refer to such states as “dressed,” for
example the state |j; (0, . . . , 0, 1k , 0, . . . , 0)〉 is the molecular state j dressed by one
photon in mode k. Again, to simplify notation we will often represent such one-
photon states by |j; 1k〉 or |j; k〉, and sometimes, if our concern is only the photon
frequency, by |j;ω〉. The corresponding zero-photon state |j; {0}〉 will usually be
written simply as |j〉.

The model of Fig. 9.1 may thus represent the decay of an excited molecular state
with no photons, |1〉 = |x, {0}〉, to the continuum of states {|l〉} = {|g, 1k〉} that
combine the ground molecular state with a continuum of single photon states of the
radiation field. The relaxation |1〉 → {|l〉} is then the process of spontaneous emis-
sion, and the rate will then yield the radiative relaxation rate of the corresponding
excited molecular state, as discussed in detail in Section 3.2.3.
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9.2.4 Preparation of the initial state

An important ingredient in our analysis was the characterization of the initial state
of the system |1〉 as a nonstationary state. Otherwise, if |1〉 was an eigenstate of Ĥ ,
its time evolution would satisfy ψ(t) = e−iĤ t/h̄ψ(0) = e−iE1t/h̄|1〉, and |C1(t)|2 =
|〈1|e−iĤ t/h̄|1〉|2 = 1. How can the system be put into such a nonstationary
state?

The answer is not unique, but a general statement can be made: A short time
external perturbation exerted on a system in a stationary state (i.e. an eigenstate
of the system’s Hamiltonian) will generally move the system into a nonstationary
state provided that the duration of this perturbation is short relative to h̄/�E, where
�E is a typical spacing between the system’s energy levels in the spectral range of
interest. In what follows we describe a particular example.

Consider a molecule in its ground state ψg, an exact eigenstate of the molecular
Hamiltonian, subjected to the very short external perturbation M̂δ(t) (such as caused
by a very short radiation pulse, in which case M̂ is proportional to the dipole moment
operator). From Eq. (2.74) truncated at the level of first-order perturbation theory

�I (t) = �I (0)− i

h̄

t∫
0

dt1V̂I (t1)�I (0) (9.34)

we find, using also �I (t) = exp(iĤMt/h̄)�(t) (see Eq. 2.70) that6

�(t) = e−(i/h̄)ĤMt
(
ψg − i

h̄
M̂ψg

)
= e−(i/h̄)Egtψg − i

h̄
e−(i/h̄)ĤMtM̂ψg; (t > 0)

(9.35)

Therefore, the excited component in the resulting state arises from M̂ψg. Now, if,
because of selection rules, 〈1|M̂ |g〉 �= 0 but 〈l|M̂ |g〉 = 0 for all l, the excited state
of the system following this sudden excitation will be the non stationary state |1〉.

6 A reader keen on technical details may wonder about an apparently missing factor of 1
2 , since∫∞

0 dtδ(t) = 1/2. However the proper integral to take starts infinitesimally below zero, since we want
the state obtained after the system that started in ψg before the onset of the pulse, has experienced
the full pulse.
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9.3 The effect of relaxation on absorption lineshapes

A very important result of the theory of quantum dynamics is the connection
between the time evolution in a given spectral region and the absorption lineshape
into the same region. That such a connection exists is to be expected, because
the time evolution is determined by the distribution of initial amplitudes among
exact eigenstates according to Eq. (2.6), while the absorption process, in principle,
prepares these initial amplitudes in the spectral region of interest.

To see this connection in more detail we extend the model of Figs 9.1 and
Eq. (9.2) to include two discrete states, the ground state |g〉 and an excited state
|s〉, and a continuum of states {|l〉} that may represent the ground state dressed by
environmental or radiation field states. We assume that |s〉 is the only excited state
in the relevant spectral region that is radiatively coupled to the ground state |g〉
so it can be initially prepared as explained in Section 9.2.4. In the subspace that
encompasses the state |s〉 and the continuum {|l〉}, the former plays the same role
as state |1〉 in Fig. 9.1. We now focus on the excitation from g to s; specifically we
pose the question: What is the corresponding absorption lineshape?

The molecular model, shown in Fig. 9.2, is now given by

ĤM = Ĥ0M + V̂ (9.36a)

H0M = Eg|g〉〈g| + Es|s〉〈s| +
∑

l

El|l〉〈l| (9.36b)

V =
∑

l

(Vs,l|s〉〈l| + Vl,s|l〉〈s|) (9.36c)

It should be stated at the outset that the models of Figs 9.1 and 9.2 are too simple
for most cases of interest for the simple reason that, following the excitation of any
system, at least two relaxation channels are available. We have already argued that
every excited molecular state can interact with the continuum of photon-dressed
states associated with lower molecular states, leading to spontaneous emission.
This is a radiative relaxation channel. In addition there are usually several nonradi-
ative channels where the molecule relaxes to lower states by transferring energy to
nonradiative modes such as intramolecular and intermolecular nuclear motions.7

We will see (see Problem 9.2 below) that extending the model of Fig. 9.1 to more
relaxation channels is a simple matter as long as different relaxation processes are
independent of each other. We consider first the simple, single channel model, but

7 However, for excited atoms in collisionless conditions only the radiative relaxation channel is
open. Here “collisionless” means that the time between collisions is much longer than the radiative
relaxation time.
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|g>

|s>

{|l>}

Vs,l

HMR

Fig. 9.2 The model of Fig. 9.1, extended to show how a state |s〉 (equivalent to |1〉 in Fig. 9.1)
may be prepared from the ground state |g〉 by optical excitation. ĤMR, the molecule–radiation field
interaction is assumed to couple states |g〉 and |s〉 but not states |g〉 and |l〉. V̂ couples between |s〉 and
states in the manifold {|l〉} so that if |s〉 was initially prepared the ensuing time evolution is obtained
from the formalism of Section 9.1.

keep in mind that the |s〉 → {|l〉} relaxation can describe different type of relaxation
depending on the physical nature of the manifold {|l〉}.

Coming back to the model of Fig. 9.2, we already know that the coupling V̂
between the state |s〉 and the manifold {|l〉} leads to the decay of |s〉 following an
initial preparation of the system in this state. We are also given that the ground
state |g〉 is coupled radiatively only to |s〉 but not to {|l〉}, that is, 〈s|µ̂|g〉 �= 0
and 〈l|µ̂|g〉 = 0, where µ̂ is the molecular dipole moment operator. When such
situations arise, the state |s〉 is sometimes referred to as a doorway state.

The complete system under consideration now comprises both the molecule and
the radiation field, and the corresponding Hamiltonian is

Ĥ = Ĥ0M + V̂ + ĤR + ĤMR = Ĥ0 + V̂ + ĤMR; Ĥ0 = Ĥ0M + ĤR (9.37)

As was indicated above, a state of the radiation field is defined by specifying
population of each mode, and in particular single photon states (one photon in
mode k of frequency ω, no photons in other modes) will be denoted by |1k〉 , |k〉,
or |ω〉 as will be convenient. We will sometimes use |vac〉 = |0, . . . , 0, 0, 0 . . .〉 to
denote the “vacuum” or ground state of the radiation field, that is, the state with no
photons.

The absorption lineshape corresponds to the photon-energy dependence of the
rate at which the photon is absorbed by the molecule. We consider absorption under
conditions where it is a linear process, that is, where the rate at which the molecular
system absorbs energy from the radiation field at frequency ω is proportional to the
radiation intensity (number of photons) at this frequency.8 Under such conditions it
is enough to consider the rate of absorption from a single photon state and to use the

8 This is the condition of validity of the Beer–Lambert law of absorption.
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basis of zero and one-photon eigenstates of the Hamiltonian Ĥ0 = Ĥ0M + ĤR. In
particular we are interested in the rate at which the initial 1-photon state |0〉 ≡ |g, k〉
(the molecule in the ground state and the radiation field in the state |k〉) of energy

E0 = Eg + h̄ωk (9.38)

disappears due to coupling via ĤMR to the state |s, vac〉, the excited molecular
state s with no photons.9 For simplicity of notation we will use |s〉 both for the
excited molecular state (eigenstate of Ĥ0M) and as a shorthand notation for |s, vac〉
(eigenstate of Ĥ0 = Ĥ0M + ĤR); the distinction between these entities should be
clear from the text.

The full Hamiltonian for the process of interest, written in the dressed state
basis is

Ĥ = Ĥ0 + V̂ + ĤMR (9.39a)

Ĥ0 = E0|0〉〈0| + Es|s〉〈s| +
∑

l

El|l〉〈l| + ĤR (9.39b)

V̂ =
∑

l

(Vs,l|s〉〈l| + Vl,s|l〉〈s|) (9.39c)

ĤMR = α(µs,g|s〉〈0| + µg,s|0〉〈s|) (9.39d)

and the corresponding level scheme is shown in Fig. 9.3. In Eq. (9.39d) we have
used the fact that matrix element of ĤMR between the dressed states |0〉 = |g, k〉
and |s, vac〉 are proportional to matrix elements of the molecular dipole moment
operator µ̂ between the corresponding molecular states |g〉 and |s〉, and have written
α for the proportionality coefficient. Also for simplicity we disregard the vector
nature of µ̂.

Note that in Fig. 9.2 |s〉 represents a molecular state, while in Fig. 9.3 it stands for
the dressed state |s, vac〉. Note also that the physical nature of the continuum {|l〉}
and the coupling Vs,l depends on the physical process under consideration. In the
dressed state picture of Fig. 9.3 this continuum may represent the radiative channel
{|g, k〉} or a nonradiative channel, for example, {|g, v; vac〉} of vibrational levels
v associated with the electronic ground state g. In the former case the coupling

9 If, alternatively, we take |0〉 = |g, nk 〉, a state with nk photons in the mode k, then |s〉 is a state
with one less photon than in |0〉. nk is a measure of the intensity of the incident beam. One can then
show, using Eqs (3.1), (3.70), and (2.157), that α in Eq. (9.39d) is proportional to

√
nk , so that the

rate of absorbing photons, Eq. (9.40), is proportional to nk . Keeping this in mind it is sufficient to
consider the transition from one-photon ground state to zero-photon excited state.
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|s>
|0>

{|l>}
Vs,lamg,s

Fig. 9.3 Same as Fig. 9.2, now cast in the dressed states (eigenstates of ĤM+ĤR) form. |0〉 = |g; k〉
corresponds to the molecule in the ground state with a single photon of mode k. |s〉 describes the
molecule in an excited state and the radiation field in its vacuum state. The coupling between |0〉 and
|s〉 is proportional to the dipole matrix element µg,s between the corresponding molecular states.

V̂ is identical to ĤMR.10 The exact nature of {|l〉} is however unimportant for the
continuation of our discussion.

We are interested in the rate at which the dressed state |0〉 = |g, k〉, or rather the
probability that the system remains in this state, decays because of its coupling to
the state |s, vac〉 and through it to the continuum {|l〉}. The absorption lineshape is
this rate, displayed as a function of ω = kc. This rate is evaluated in Appendix 9B
and leads to the following expression for the absorption lineshape

L(ω) ∝ α2|µg,s|2(�s/2)

(Eg + h̄ω − Ẽs)2 + (�s/2)2
(9.40)

This is a Lorentzian centered at a shifted energy of the state s, Ẽs = Es + !s,
whose width at half height is �s, where !s = !s(Es) and �s = �s(Es) are given by
Eqs (9.29) and (9.28), respectively (with the subscript 1 replaced by s everywhere).

Problem 9.2. Consider the model where the doorway state |s〉 is coupled to two
different continua, R and L (see Fig. 9.4).

Show that under the same model assumptions used above the absorption
lineshape is Lorentzian and the decay rate of state |s〉 after it is initially prepared is
exponential. Also show that the decay rate is�s/h̄ and the width of the Lorentzian
is �s with

�s = �s,R + �s,L = 2π [|Vs,R|2ρR + |Vs,L|2ρL]Es (9.41)

10 Note the subtle difference between this radiative coupling which is a sum over all modes of
the radiation field, and the coupling (9.39d) which involves only the particular mode that enters in
state |0〉.
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|g>

|s>
{|r>}

m

{|l >}

RL

Vs,rVs,l

Fig. 9.4 Same as Fig. 9.2, except that the doorway state |s〉 is now coupled to two relaxation channels
represented by the continua L and R.

where R and L stand for the corresponding manifolds and where []Es has the
same meaning with respect to each manifold as in Eq. (9.28).

Also show that, under these conditions, the yield of the “L product” is

YL = �s,L

�s,L + �s,R
(9.42)

We end this discussion by noting the following points:

1. The simple exponential decay and Lorentzian lineshape obtained above result
from the simple model assumptions used, in particular the infinite energy
extent of the continuum {|l〉} and the weak dependence on the energy E of
�s(E) and !s(E).

2. In the procedure (Appendix 9B) to evaluate the lineshape (9.40) we use the
representation defined by the states {|j〉} that diagonalize the Hamiltonian in
the (|s〉, {|l〉}) subspace. Of course any basis can be used for a mathematical
analysis. It was important and useful to state the physical problem in terms
of the zero-order states |s〉 and {|l〉} because an important attribute of the
model was that in the latter representation the ground state |g〉 is coupled by
the radiation field only to the state |s〉, which therefore has the status of a
doorway state. This state is also referred to as a resonance state, a name used
for the spectral feature associated with an underlying picture of a discrete
zero-order state embedded in and coupled to a continuous manifold of such
states.

3. For the initial value problem with ψ(t = 0) = |s〉 we got an exponential
decay with the characteristic relaxation rate ks = �s/h̄. For the absorp-
tion lineshape into state |s〉 we got a Lorentzian with linewidth given by the
same �s. There appears to be a fundamental relationship between the lifetime
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and linewidth associated with such resonance state. More specifically, these
results, Eqs (9.25) and (9.40), have the characteristic of the Heisenberg uncer-
tainty principle: The lifetime (ks)

−1 of a level (in a sense the minimum
uncertainty in the time at which it may be observed) and the linewidth �s
associated with this level (the minimum uncertainty in its energy) are related
by (ks)

−1�s = h̄.
4. Is the last observation an inherently quantum-mechanical result? A negat-

ive answer is obtained from the calculation (Section 8.2.4) of the lineshape
associated with a classical underdamped harmonic oscillator. The normalized
lineshape is obtained (see Eq. (8.40) in the form

L̃(ω) = γ /π

(ω0 − ω)2 + γ 2 (9.43)

where γ , the linewidth in this classical result is the friction coefficient, that is,
the rate at which the oscillator loses energy by friction with it environment. In
both quantum and classical systems the linewidth is seen to be just the inverse
of the relaxation time. In fact, the only quantum element seen in Eq. (9.40)
is the association of the energy E with the frequency ω through the Planck
relationship, E = h̄ω. Otherwise these systems have common characterist-
ics, and intuition obtained from classical harmonic oscillator problems is
often useful for the corresponding quantum two-level problems. This useful
analogy breaks when the dynamics of the two-level system involves satura-
tion, a common situation in pumped two-level systems that does not have an
equivalent in the harmonic oscillator case.

5. We have seen (Section 6.2.3) that a Lorentzian lineshape corres-
ponds to an exponentially decaying dipole autocorrelation function.
For the Hamiltonian of Eqs (9.36) and (9.39) this correlation func-
tion is Cµ(t) = 〈g|eiĤMt/h̄µ̂e−iĤMt/h̄µ̂|g〉 = eiEgt/h̄〈g|µ̂e−iĤMt/h̄µ̂|g〉 =∑

j ei(Eg−Ej)t/h̄|〈g|µ̂|j〉|2 = |〈g|µ̂|s〉|2 ∑j |〈s|j〉|2ei(Eg−Ej)t/h̄, where the states

|j〉 are exact eigenstates of ĤM. The reader may attempt to show that the same
conditions that lead to exponential relaxation of state |s〉 after it is initially
prepared also imply that |Cµ(t)| is an exponentially decaying function, both
with the same decay rate �s/h̄.

The quantum relaxation problems discussed above correspond to zero
temperature situations. This is seen from the fact that the initial population
of level |s〉 was not obtained thermally, otherwise the levels {l} in the same
energy neighborhood would be equally populated. The fact that these levels
carry zero probability at t = 0 is a manifestation of zero temperature. In the
next section we consider another quantum relaxation problem, the relaxation
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of a quantum oscillator coupled to a thermal bath of similar oscillators, where
finite temperature effects are taken into account.

9.4 Relaxation of a quantum harmonic oscillator

We next consider another example of quantum-mechanical relaxation. In this
example an isolated harmonic mode, which is regarded as our system, is weakly
coupled to an infinite bath of other harmonic modes. This example is most easily
analyzed using the boson operator formalism (Section 2.9.2), with the Hamiltonian

Ĥ = h̄ω0â†â + h̄
∑

j

ωj b̂
†
j b̂j + h̄

∑
j

{ujâ
†b̂j + u∗j âb̂†

j } (9.44)

The first two terms on the right describe the system and the “bath”, respectively,
and the last term is the system–bath interaction. This interaction consists of terms
that annihilate a phonon in one subsystem and simultaneously create a phonon
in the other.11 The creation and annihilation operators in Eq. (9.44) satisfy the
commutation relations:

[â, â†] = 1; [â, â] = 0; [â†, â†] = 0; (9.45a)

â, â† commutes with all b̂, b̂†

[b̂j, b̂†
j ] = 1; [b̂j, b̂j] = 0; [b̂†

j , b̂†
j ] = 0; (9.45b)

b̂j, b̂†
j commutes with all b̂j′ , b̂†

j′ for j �= j′

The Heisenberg equations of motion, ˆ̇A = (i/h̄)[Ĥ , Â] for the Heisenberg-
representation operators a(t) and b(t) are derived using these commutations

11 Transforming to coordinate and momentum operators using Eqs (2.152), the interaction term
in (9.44) is seen to depend on the momenta. A more standard interaction expressed in terms of the
coordinates only, say x1x2, when transformed into the creation and annihilation operator representation

will contain the four products a†
1a2, a1a†

2, a†
1a†

2, and a1a2. The neglect of the last two terms in Eq. (9.44)
is known as the rotating wave approximation (RWA). (See also Section 3.2.2 and the derivation of
Eq. (3.28).) It is justified for weak coupling by the observation that such terms cannot conserve
energy in low order. The use of this approximation in the present context should be exercised with
caution: It can be shown that for small ω0 the lowest eigenvalues of this Hamiltonian imply imaginary
frequencies. Still, the treatment presented here should serve as an introduction to the somewhat more
involved treatment needed if the RWA is avoided (see K. Lindenberg, and B. J. West, Phys. Rev. A,
30, 568–582 (1984) and G. W. Ford, , J. T. Lewis, et al., Phys. Rev. A , 37, 4419–4428 (1988). These
references treat the same problem without resorting to the RWA).
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relations. We get:

ˆ̇a(t) = −iω0â(t)− i
∑

j

ujb̂j(t) (9.46a)

ˆ̇bj(t) = −iωj b̂j(t)− iu∗j â(t) (9.46b)

The initial conditions at t = 0 are the corresponding Schrödinger operators. This
model is seen to be particularly simple: All operators in Eq. (9.46) commute with
each other, therefore this set of equations can be solved as if these operators are
scalars.

Note that Eqs (9.46) are completely identical to the set of equations (9.6)
and (9.7). The problem of a single oscillator coupled linearly to a set of other
oscillators that are otherwise independent is found to be isomorphic, in the rotating
wave approximation, to the problem of a quantum level coupled to a manifold of
other levels. There is one important difference between these problems though.
Equations (9.6) and (9.7) were solved for the initial conditions C0(t = 0) = 1,
Cl(t = 0) = 0, while here â(t = 0) and b̂j(t = 0) are the Schrödinger repres-
entation counterparts of â(t) and b̂j(t). Still, Eqs (9.46) can be solved by Laplace
transform following the route used to solve (9.6) and (9.7).

In what follows we take a different route (that can be also applied to (9.6)
and (9.7)) that sheds more light on the nature of the model assumptions involved.
We start by writing the solution of Eq. (9.46b) in the form

b̂j(t) = b̂j(0)e−iωj t − iu∗j

t∫
0

dτe−iωj(t−τ)â(τ ) (9.47)

Inserting this into the equation for a yields

ˆ̇a(t) = −iω0â − i
∑

j

ujb̂j(0)e−iωj t −
∑

j

|uj|2
t∫

0

dτe−iωj(t−τ)â(τ ) (9.48)

which, by transforming according to â =ˆ̃ae−iω0t , becomes

ˆ̃̇a(t) = −i
∑

j

ujb̂j(0)e−i(ωj−ω0)t −
t∫

0

dτ ˆ̃a(τ )S(ω0, t − τ) (9.49)

with

S(ω0, t) =
∑

j

|uj|2e−i(ωj−ω0)t (9.50)
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Note that interchanging the order of the finite integration and the, in principle,
infinite series S is permitted provided the latter converges, and we assume that it
does. In fact, we will assume that S(t) vanishes everywhere except near t = 0 and
that this range near t = 0 is small enough so that (1) in (9.49) a(τ ) may be taken
as a constant, a(t), out of the integral and (2) the lower limit of integration can be
extended to −∞. This leads to

ˆ̃̇a(t) = −i
∑

j

ujb̂j(0)e−i(ωj−ω0)t − ˆ̃a(t)
∞∫

0

dτS(ω0, τ) (9.51)

where we have further used
∫ t
−∞ dτS(t − τ) = ∫∞

0 dτS(τ ).
What is the justification for the assumption that S(t) vanishes unless t is very

close to zero? For an answer let us rewrite Eq. (9.50) in the form

S(ω0, t) =
∞∫

−∞
dωe−i(ω−ω0)t

∑
j

|uj|2δ(ω − ωj) ≡
∞∫

−∞
dωe−i(ω−ω0)tC(ω)

=
∞∫

−∞
dωeiωtC(ω0 − ω) (9.52)

The function S(ω0, t) is seen to be the Fourier transform of the coupling density12

C(ω) ≡
∑

j

|uj|2δ(ω − ωj) = |u(ω)|2g(ω) (9.53)

where |u(ω)|2 = (|uj|2)ωj=ω, with the bar denoting an average over intervals of ω
that are large relative to the spacing between subsequent ωj’s, and where g(ω) is
the density of modes at frequency ω, defined by Eq. (4.32). The second equality in
(9.53) becomes exact in the infinite bath limit where the spectrum of normal mode
frequencies is continuous.

Consider now Eq. (9.52). The behavior of S as a function of time depends on
the behavior of C(ω) about ω0. If C(ω) was constant in all range −∞ < ω < ∞
we could take it out of the integral in (9.52) to get S(ω0, t) = 2πCδ(t). This
constitutes the wide band approximation. In reality C(ω) may be different from
zero, and approximated by a constant, only in some finite frequency interval about

12 In Section 6.5.2 we introduce the closely related spectral density function, J (ω) =
πg(ω)u2(ω)/(2ω).
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ω0 characterized by a width ωc. This leads to a function S(ω0, t) that vanishes only
beyond some finite value of t, of order ω−1

c . For example, if C(ω) ∼ e−((ω−ω0)/ωc)
2

then S(ω0, t) ∼ e−(ωct/2)2
. Therefore, to be able to approximate ã(τ ) in (9.49) by

ã(t) we need to assume that ã(τ ) does not change appreciably during the time
interval of order (ωc)

−1. What helps at this point is the fact that we have already
eliminated the fast oscillations e−iω0t by the transformation a → ã. The remaining
time dependence of ã(t) stems from the relaxation induced by the bath of b modes,
so what we assume in effect is that this relaxation is slow relative to (ωc)

−1—a weak
coupling approximation. When this assumption holds, Eq. (9.49) may indeed be
approximated by (9.51).

Next consider the function

F(ω0) =
∞∫

0

dτS(ω0, τ) =
∞∫

0

dτ
∑

j

|uj|2e−i(ωj−ω0)τ (9.54)

Since the integrand is strongly peaked about τ = 0, we may multiply it by a factor
e−ητ with a very small positive η without affecting the result. This, however, makes
it possible to perform the τ integral before the summation, leading to (in analogy
to the treatment that leads from (9.17) to (9.27)–(9.29))

F(ω0) = lim
η→0

(
i
∑

j

|uj|2
ω0 − ωj + iη

)
= iδω0 + 1

2
γ (9.55)

where

δω0 ≡ PP
∫

dω
|u(ω)|2g(ω)

ω0 − ω
(9.56)

is the principal part integral defined in Section 1.1.6 and where

γ ≡ 2πC(ω) = 2π(|u(ω)|2g(ω))ω=ω0 (9.57)

Equation (9.52) now becomes

ˆ̇̃a(t) = (−iδω0 − (1/2)γ )̂̃a(t)− i
∑

j

ujb̂j(0)e−i(ωj−ω0)t (9.58)

which is equivalent to (putting ω̃0 = ω0 + δω0)

ˆ̇a(t) = −i(ω̃0 − (1/2)iγ )â(t)− i
∑

j

ujb̂j(0)e−iωj t (9.59)
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We have found that the linear coupling of the modeω0 to the continuum of modes
{ωj} leads to a shift δω0 in ω0 as well as to an imaginary contribution, (1/2)iγ to
this frequency. The latter amounts to a damping effect. In addition the coupling
leads to an inhomogeneous time-dependent term in the equation of motion for â(t)
that brings in the effect of the free time evolution of all the bath modes. These three
effects: A frequency shift, damping, and a time-dependent function of the free bath
motion (to be later interpreted as “noise” exerted by the bath) constitute the essence
of the effect of coupling to the bath on the motion of our system. We have seen
(Section 8.2) that similar effects characterize the behavior of the equivalent classical
system in a formalism that leads to the Langevin equation for the evolution of a
system interacting with its thermal environment. Indeed, Eq. (9.59) is an example
of a quantum Langevin equation.

Using the solution of ẏ(t) = −ky + f (t) in the form y(t) = y(0)e−kt +∫ t
0 dt′e−k(t−t′)f (t′) we get the solution of Eq. (9.59)

â(t) = e−iω̃0t−(1/2)γ t â(0)+
∑

j

uj
e−iω̃0t−(1/2)γ t − e−iωj t

ω̃0 − ωj − (1/2)iγ
b̂j(0) (9.60a)

and, taking the complex conjugate

â†(t) = eiω̃0t−(1/2)γ t â†(0)+
∑

j

u∗j
eiω̃0t−(1/2)γ t − eiωj t

ω̃0 − ωj + (1/2)iγ
b̂†

j (0) (9.60b)

This is our final result. In comparison with the result obtained for the decay of a
prepared state, Eq. (9.24a), we see that the essential difference lies in the fact that in
that problem the initial condition Cl(t = 0) = 0 was naturally used and therefore
did not appear in the final result, while here, equally naturally, bj(t = 0) �= 0.

Problem 9.3. Show that â(t) and a†(t) give by Equations (9.60) satisfy the
commutation relations (9.45a)

To see the significance of this result, consider the time evolution of the aver-
age population of the system oscillator, 〈n(t)〉 = 〈a†(t)a(t)〉. In the spirit of
the Heisenberg representation of time-dependent quantum mechanics, this aver-
age is over the initial state of the system. From Eqs (9.60) we see that four
averages are encountered. First 〈a†(t = 0)bj(t = 0)〉 = 〈b†

j (t = 0)a(t = 0)〉 = 0
express an assumption that initially the system and bath are uncorrelated, so that,
for example, 〈a†(t = 0)b(t = 0)〉 = 〈a†(t = 0)〉〈b(t = 0)〉 = 0. (The equalities
〈b(t = 0)〉 = 〈b†(t = 0)〉 = 0 reflect the fact that the bath is initially at thermal
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equilibrium (see Eq. (2.197)). Second, 〈a†(t = 0)a(t = 0)〉 = n0 where n0 is the
initial state of the system oscillator. Finally, 〈b†

j (t = 0)bj(t = 0)〉 = 〈nj〉T , where

〈nj〉T = 〈n(ωj)〉T = 1

e(h̄ωj/kBT ) − 1
(9.61)

also expresses the model assumption that the bath is initially at thermal equilibrium.
Using Eqs (9.60) we now get

〈n(t)〉 =n0e−γ t +
∑

j

|uj|2〈nj〉T
(ω̃0 − ωj)2 + ((1/2)γ )2

× (1 + e−γ t − 2e−(1/2)γ t cos[(ω̃0 − ωj)t]) (9.62)

Consider first the t →∞ limit. In this case

〈n(t →∞)〉 =
∑

j

|uj|2〈nj〉
(ω̃0 − ωj)2 + ((1/2)γ )2

=
∫

dωj〈n(ωj)〉 γ /2π

(ω̃0 − ωj)2 + ((1/2)γ )2

∼= 〈n(ω̃0)〉T
∫

dω
γ/2π

(ω̃0 − ω)2 + ((1/2)γ )2 = 〈n(ω̃0)〉T

= 1

e(h̄ω̃0/kBT ) − 1
(9.63)

In the last steps we have again used the assumption that γ is small so that the
Lorentzian in the integrand is strongly peaked about ω0.

The same approximation can be applied to the second term in Eq. (9.62). Using

∞∫
−∞

dω
γ/2π

ω2 + ((1/2)γ )2 cos(ωt) = e−(1/2)γ |t| (9.64)

then leads to

〈n(t)〉 = n0e−γ t + 〈n〉T (1 − e−γ t) (9.65)
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We have found that due to its coupling with the thermal bath our system relaxes
to a final thermal equilibrium at temperature T irrespective of its initial state. The
relaxation process is exponential and the rate is given by γ , Eq. (9.57). Note that
in the model studied this rate does not depend on the temperature.13

It is remarkable that with relatively modest theoretical tools we have been able to
account for the problem of thermal relaxation from a microscopic approach. Still,
one should keep in mind the approximations made above when trying to relate
these results to the real world. Our main assumption (made in the paragraph above
Eq. (9.54)) was that C(ω) is finite and fairly constant in a sizable neighborhood
about ω0. In particular, we have assumed that γ is much smaller than the extent of
this neighborhood. C(ω) in turn is dominated by the mode density g(ω) which in
crystals can be quite structured as a function of ω. Our theory will fail if ω0 is very
close to 0 or to a sharp feature in g(ω).

A most important observation for molecular vibrational relaxation is the fact that
molecular frequencies are usually larger than the upper cutoff ωD beyond which
g(ω) and subsequently C(ω) vanish (see Section 4.2.4). The existence of such a
cutoff, which is a direct consequence of the discrete nature of matter, implies that
by the theory presented above the relaxation rates of most molecular vibrations in
monoatomic environments vanish.14 Indeed, it is found experimentally that relax-
ation processes in which the “system” frequency is smaller than the host cutoff
frequency are much faster than those in which the opposite is true. However, it is
also found that the rate of the latter processes is not zero. This implies the existence
of relaxation mechanisms not described by the model presented by Eq. (9.44). We
will come back to this issue in Chapter 13.

Finally, it is also interesting to compare the result (9.65) to the result (8.106) of the
very different semiclassical formalism presented in Section (8.3.3). If we identify
γ of the present treatment with the factor ZQ01κ Eq. (8.96)15 the two results are
identical for ε = h̄ω 
 kBT . The rotating wave approximation used in the model
(9.44) cannot reproduce the correct result in the opposite, classical, limit. Most
studies of vibrational relaxation in molecular systems are done at temperatures con-
siderably lower than ε/kB, where both approaches predict temperature-independent
relaxation. We will see in Chapter 13 that temperature-dependent rates that are
often observed experimentally are associated with anharmonic interactions that
often dominate molecular vibrational relaxation.

13 This holds as long as h̄ω > kBT . In the opposite, classical, limit the rotating wave approximation
invoked here cannot be used. This can be seen by comparing Eq. (9.65) to Eqs (8.104) and (8.106).

14 Polyatomic solids have of course high frequencies associated with their intramolecular motions.
15 Indeed, both represent, in their corresponding models, the zero temperature transition rate from

level n = 1 to level n = 0 of the harmonic oscillator.
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9.5 Quantum mechanics of steady states

Both experimentally and theoretically, the study of dynamical processes can pro-
ceed along two main routes. We can either monitor the time evolution of a system
after it starts at t = 0 in some nonequilibrium state and follow its relaxation to equi-
librium, or we can observe the system under the influence of some force (or forces)16

and monitor fluxes that develop in response to these forces. Equation (9.24) is an
answer to a problem of the first kind, mathematically a solution to a given initial
value problem. Even though not formulated in this way, Eq. (9.40) is an answer to
a problem of the second kind, giving the flux going from the ground to an excited
molecular state that results from driving by an external electromagnetic field. The
purpose of this section is to formalize the treatment of quantum dynamical problems
of the second kind.

9.5.1 Quantum description of steady-state processes

The time-dependent Schrödinger equation can be evaluated to yield stationary
solutions of the form

�(r, t) = ψk(r) exp(−(i/h̄)Ekt) (9.66)

leading to the time-independent Schrödinger equation for the eigenfunctionsψk and
the eigenvalues Ek . Alternatively, it can be solved as an initial value problem that
yieldsψ(r, t) givenψ(r, t = 0). In both cases the solutions are obtained under given
boundary conditions. Note that the word “stationary” applied to Eq. (9.66) does not
imply that this solution is time-independent, only that observables associated with
it are constant in time. For closed systems in the absence of external forces, another
important attribute of the states is that they carry no flux. Both attributes also
characterize classical equilibrium states.

In classical physics we are familiar with another kind of stationary states,
so-called steady states, for which observables are still constant in time however
fluxes do exist. A system can asymptotically reach such a state when the bound-
ary conditions are not compatible with equilibrium, for example, when it is put in
contact with two heat reservoirs at different temperatures or matter reservoirs with
different chemical potentials. Classical kinetic theory and nonequilibrium statist-
ical mechanics deal with the relationships between given boundary conditions and
the resulting steady-state fluxes. The time-independent formulation of scattering
theory is in fact a quantum theory of a similar nature (see Section 2.10).

16 A “force” should be understood here in a generalized way as any influence that drives the system
away from equilibrium.
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In addition to studying actual steady-state phenomena, it is sometime useful
to use them as routes for evaluating rates. Consider, for example, the first-order
reaction A → P and suppose we have a theory that relates A(t) to A(t = 0). A rate
coefficient can then be defined by k(t) = −t−1 ln{[A(t = 0)]−1A(t)}, though its
usefulness is usually limited to situations where k is time-independent, that is, when
A obeys first-order kinetics, A(t) ∼ exp(−kt) , at least for long times. In the latter
case we may consider the steady state that is established when A is restricted to
be constant while P is restricted to be zero (these restrictions may be regarded as
boundary conditions), implying that a constant current, J = kA, exists in the system.
A theory that relates the constants A and J in such a steady state is therefore a route
for finding k . The approximate evaluation of the rate associated with the Lindemann
mechanism of chemical reactions (see Section 14.2) is a simple example of such a
procedure. Less trivial applications of the same idea are found in Section 14.4.

What is the quantum mechanical analog of this approach? Consider the simple
example that describes the decay of a single level coupled to a continuum, Fig. 9.1
and Eq. (9.2). The time-dependent wavefunction for this model isψ(t) = C1(t)|1〉+∑

l Cl(t)|l〉, where the time-dependent coefficients satisfy (cf. Eqs (9.6) and (9.7))

h̄
d

dt
C1 = −iE1C1 − i

∑
l

V1,lCl

h̄
d

dt
Cl = −iElCl − iVl,1C1; all l

(9.67)

The result (9.24) is obtained by solving this as an initial value problem, given that
C1(t = 0) = 1. Alternatively, suppose that the population in state |1〉 remains
always constant so that C1(t) = c1 exp(−(i/h̄)E1t). In this case the first equation
in (9.67) is replaced by Eq. (9.68a) below, where we have also supplemented the
second equation by an infinitesimal absorbing term, so that

h̄
d

dt
C1 = −iE1C1 ⇒ C1(t) = c1 exp(−(i/h̄)E1t) (9.68a)

h̄
d

dt
Cl = −iElCl − iVl,1C1(t)− (1/2)ηCl

= −iElCl − iVl,1c1 exp(−(i/h̄)E1t)− (1/2)ηCl (9.68b)

η will be put to zero at the end of the calculation. Equation (9.68b) admits a steady-
state solution of the form

Cl(t) = cle
−(i/h̄)E1t (9.69)
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where

cl = Vl,1c1

E1 − El + iη/2
(9.70)

This steady-state solution results from the balance in Eq. (9.68b) between the
“driving term” Vl,1c1 exp(−(i/h̄)E1t) that pumps the amplitude of state l and the
term (1/2)ηCl that damps it. Note that at steady state it is the observable |Cl|2,
not the amplitude Cl(t), which remains constant in time. The total flux through the
system in this steady state can be calculated by observing that it must be equal to
the rate at which population disappears in the continuum

J =(η/h̄)
∑

l

|Cl|2 = |C1|2
∑

l

|Vl,1|2 η/h̄

(E1 − El)
2 + (η/2)2

η→0−→|C1|2 2π

h̄

∑
l

|Vl,1|2δ(E1 − El) (9.71)

This flux corresponds to the steady-state rate

k = J

|C1|2 =
2π

h̄

∑
l

|Vl,1|2δ(E1 − El) = 2π

h̄
(|Vl,1|2ρL)El=E1 = �1/h̄ (9.72)

This simple steady-state argument thus leads to the same golden rule rate expression,
Eq. (9.25), obtained before for this model.

Let us now repeat the same derivation for the slightly more complicated example
described by the Hamiltonian

Ĥ = Ĥ0 + V̂ (9.73)

Ĥ0 = E0|0〉〈0| + E1|1〉〈1| +
∑

l

El|l〉〈l| +
∑

r

Er|r〉〈r| (9.74)

V̂ =V0,1|0〉〈1| + V1,0|1〉〈0| +
∑

l

(Vl,1|l〉〈1| + V1,l|1〉〈l|)

+
∑

r

(Vr,1|r〉〈1| + V1,r|1〉〈r|) (9.75)

Here it is the level |0〉 that is taken as the “driving state,” and the flux is carried
through another level |1〉 coupled to two continua, L = {l} and R = {r}. Looking
for a solution to the time-dependent Schrödinger equation of the form

ψ(t) = C0(t)|0〉 + C1(t)|1〉 +
∑

l

Cl(t)|l〉 +
∑

r

Cr(t)|r〉 (9.76)
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the equations equivalent to (9.67) are

h̄Ċ0 = −iE0C0 − iV0,1C1

h̄Ċ1 = −iE1C1 − iV1,0C0 − i
∑

l V1,lCl − i
∑

r V1,rCr

h̄Ċl = −iElCl − iVl,1C1

h̄Ċr = −iErCr − iVr,1C1

(9.77)

while those corresponding to (9.67) are

h̄Ċ0 = −iE0C0 ⇒ C0(t) = c0e−(i/h̄)E0t (9.78a)

h̄Ċ1 = −iE1C1 − iV1,0c0e−(i/h̄)E0t − i
∑

l

V1,lCl − i
∑

r

V1,rCr (9.78b)

h̄Ċl = −iElCl − iVl,1C1 − (η/2)Cl (9.78c)

h̄Ċr = −iErCr − iVr,1C1 − (η/2)Cr (9.78d)

At t → ∞ we again reach a steady state where the amplitudes are Cj(t) =
cj exp(−(i/h̄)E0t) (j = 0, 1, {l}, {r}), and the coefficients cj satisfy

0 = i(E0 − E1)c1 − iV1,0c0 − i
∑

l

V1,lcl − i
∑

r

V1,rcr (9.79a)

0 = i(E0 − El)cl − iVl,1c1 − (η/2)cl (9.79b)

0 = i(E0 − Er)cr − iVr,1c1 − (η/2)cr (9.79c)

The solution of (9.79c)

cr = Vr,1c1

E0 − Er + iη/2
(9.80)

is now substituted in the last term of (9.79a). Repeating procedures from Section 9.1
(compare (9.17), (9.19), (9.27)–(9.29)), we have

−i
∑

r

V1,rcr ≡ −iB1R(E0)c1 (9.81)

B1R(E) ≡ lim
η→0

∑
r

|V1r|2
E − Er + iη/2

= !1R(E)− (1/2)i�1R(E)

�1R(E) = 2π(|V1r|2ρR(Er))Er=E

!1R(E) = PP

∞∫
−∞

dEr
|V1r|2ρR(Er)

E − Er

(9.82)
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B1R(E) is the self energy of level |1〉 due to its interaction with the continuum R.
Similar results, with L, l replacing R, r, are obtained by inserting the solution for cl
from Eq. (9.79b) into (9.79a), leading to an additional contribution B1L(E) to the
self energy of this level due to its interaction with the continuum L. Using these
results in (9.79a) leads to

c1 = V1,0c0

E0 − Ẽ1 + (i/2)�1(E0)
(9.83)

where

�1(E) = �1L(E)+ �1R(E) (9.84)

and

Ẽ1 = Ẽ1(E) = E1 +!1R(E)+!1L(E) (9.85)

Using (9.83) in (9.79b) and (9.79c) now yields

|cr|2 = |Cr|2 = |Vr,1|2
(E0 − Er)2 + (η/2)2

|V1,0|2|c0|2
(E0 − Ẽ1)2 + (�1(E0)/2)2

(9.86)

Equation (9.86), and the equivalent expression (with r replaced by l everywhere)
for |cl|2 = |Cl|2 give the steady-state population of individual levels, r and l, in the
continua. This steady state was obtained by assigning to each such level a decay
rate η. Therefore, the total steady-state flux out of the system through the continuum
(channel) R is, in analogy to (9.71)

J0→R = (η/h̄)
∑

r

|cr|2 η→0−−→ |V1,0|2
(E0 − Ẽ1)2 + (�1(E0)/2)2

�1R(E0)

h̄
|c0|2 (9.87)

and the corresponding steady-state rate is J0→R/|c0|2. Again similar results are
obtained for the channel L, so finally

k0→K = J0→K

|c0|2 = |V1,0|2
(E0 − Ẽ1)2 + (�1(E0)/2)2

�1K (E0)

h̄
; K = L, R (9.88)

Problem 9.4. Using Eq. (9.78d) to derive an equation for (d/dt)|Cr|2. Show that
the flux J0→R is also given by

J0→R = 2

h̄
Im

(∑
r

Vr1C∗
r C1

)
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The result (9.88) gives the decay rates of a state |0〉 that is coupled to two
relaxation channels L and R via an intermediate state |1〉. Viewed as functions of
the initial energy E0, these rates peak when this energy is equal to the (shifted)
energy Ẽ1 of the intermediate state. In the present context the intermediate level
|1〉 is sometimes referred to as a resonance level. Note that the decay rates � in
these expressions are defined at the energy E0 of the driving state, not E1 of the
resonance state.

9.5.2 Steady-state absorption

The model (9.73)–(9.75) was presented as an initial value problem: We were inter-
ested in the rate at which a system in state |0〉 decays into the continua L and
R and have used the steady-state analysis as a trick. The same approach can be
more directly applied to genuine steady state processes such as energy resolved
(also referred to as “continuous wave”) absorption and scattering. Consider, for
example, the absorption lineshape problem defined by Fig. 9.4. We may identify
state |0〉 as the photon-dressed ground state, state |1〉 as a zero-photon excited
state and the continua R and L with the radiative and nonradiative decay channels,
respectively. The interactions V1,0 and V1,r correspond to radiative (e.g. dipole)
coupling elements between the zero photon excited state |1〉 and the ground state
(or other lower molecular states) dressed by one photon. The radiative quantum
yield is given by the flux ratio YR = J0→R/(J0→R + J0→L) = �1R/(�1R + �1L).

Note that in such spectroscopic or scattering processes the “pumping state” |0〉
represents a particular state of energy E0 out of a continuous manifold. In most cases
this state belongs to one of the manifolds R and L. For example, in the absorption
lineshape problem this photon-dressed ground state is one particular state of the
radiative (R) continuum of such states.

9.5.3 Resonance tunneling

Consider a one-dimensional tunneling problem where a particle coming from the
left encounters a double barrier potential as seen in Fig. 9.5. This is a potential scat-
tering problem, usually analyzed in terms of scattering functions that are naturally
traveling waves. However, when the tunneling process is dominated by resonance
state(s) in the barrier region, or in other words the scattering is dominated by quasi-
bound states in the scattering region, it is sometimes advantageous to formulate the
problem in terms of basis states that are confined to different regions of space.17

In this “local basis” approach the zero-order problem is defined in terms of
states localized on the left side of the barrier (the L continuum), the right side (the

17 Such an approach to quantum tunneling was first formulated by Bardeen, Phys. Rev. Letters, 6,
59 (1961).
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Fig. 9.5 A double barrier model of resonance tunneling. Starting from state |0〉 on the left, our
problem is to compute the fluxes into the continua L and R, defined in terms of basis states that are
restricted to the left and right sides of the barrier, respectively. Below the barrier energy such states
can be taken as eigenstates of a particle moving in the potentials (a) and (b) respectively, which are
shown on the right. The basis is supplemented by state |1〉, taken as the bound eigenstate of a particle
in the potential (c)

R continuum), and in the intermediate well. For example, for energies lower than
the top of the barrier these can be taken as eigenstates of Hamiltonians defined
with the potentials (a), (b), and (c) shown on the right of Fig. 9.5. The results
obtained above then correspond to the case where direct coupling between the L
and R states can be disregarded and where it is assumed that the intermediate well
between the two barriers can support only one state |1〉. J0→R, Eq. (9.87), and J0→L
(Eq. (9.87) with L replacing R everywhere) are then the transmitted and reflected
fluxes, respectively, associated with one state |0〉 in the L continuum.18,19

Before turning to analyze the solution , it is important to keep in mind that this
is not a general solution to the scattering problem represented in Fig. 9.5. Rather,
we are interested in the tunneling flux in energy regions where it is dominated

18 The eigenstates of the Hamiltonians defined by the potentials (a), (b), and (c) in Fig. 9.5 constitute
in fact a non-orthogonal basis, because they are derived from different Hamiltonians. The time-
dependent Schrödinger equation can be easily represented with such a basis and it may easily be
verified that Eqs (9.79) remain of the same form, except that each Vij is replaced by Ṽij = Vij −ESij ,

where Vij = 〈i|Ĥ |j〉 (Ĥ being the full Hamiltonian) and Sij = 〈i|j〉. With this substitution all results
obtained in this section can be extended to this more general case.

19 Readers familiar with scattering theory may be confused by the lack of distinction between the
so-called incoming and outgoing states. Indeed, the present formulation of the transmission problem
is expressed in terms of states that are localized on the two sides of the barrier, essentially standing
waves that cannot be labeled as incoming or outgoing but are combinations of both. This local state
representation is convenient for resonance transmission problems because it allows for a natural
description of the resonance state as a state that is localized on the barrier in the zero-order level of
description. Note, however, that this formulation is useful only for energies well below the barrier
where the localized basis states provide a good physical starting point.
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by a particular resonance state. We can then limit ourselves to energies close to
the zero-order energy of this state (the eigenvalue of the corresponding bound
state of the potential (c) in Fig. 9.5). When this state is well below the barrier
top, the corresponding continuum states (eigenfunctions of Hamiltonian with the
potentials (a) and (b) in Fig. 9.5) are well localized on their respective sides of the
barrier, and the local basis approach provides a useful description of the tunneling
problem.

Consider then the transmitted flux J0→R, given by Eq. (9.87) or (9.88) with
K = R. The flux per unit initial energy is obtained by multiplying it by ρL(E0)—the
density of states in the L continuum. Using

�1L(E0) = 2π |V1,0|2ρL(E0) (9.89)

we get the transmission flux per unit energy in the form(
dJL→R(E)

dE

)
E=E0

= 1

2π h̄
T (E0)|c0|2 (9.90)

with

T (E) = �1L(E)�1R(E)

(E − Ẽ1(E))2 + (�1(E)/2)2
(9.91)

To see the physical significance of the function T (E) return to Eq. (9.87) which
expresses the transmitted flux associated with a single state of energy E0 and
momentum p0 = √

2mE0 where m is the mass of the transmitted particle. The
incident flux per particle is p0/2mL̄ where L̄ is the normalization length of the
single particle wavefunction (so that L̄−1 is the corresponding single particle dens-
ity). The factor two in the denominator reflects the fact that in the standing wave
representation that is used here only half the particles of energy E0 move in the
direction of the barrier. Now, Eq. (9.87) can be written in the form

J0→R = (incident flux)× T (E0) = |c0|2 p0

2mL̄
T (E0) (9.92)

To see this note that p0/(2mL) can be cast in terms of the one-dimensional density
of states in the form (from Eq. (2.96) using E = p2/2m)

p0

2mL̄
= (2π h̄ρL(E0))

−1 (9.93)

Using (9.89), (9.91), and (9.93) in (9.92) indeed leads to (9.87). Equation (9.92)
implies that T (E0) is the transmission coefficient (ratio between transmitted and
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incident fluxes) at energy E0. This coefficient is seen to be symmetric in both
directions, as required by microscopic reversibility.

Some more observations can be made at this point:

1. The transmission coefficient at energy E0 has been expressed in terms of this
incident energy, the (shifted) energy of the intermediate barrier state |1〉, and
the widths associated with the decay rates of that barrier state into the left
and right sides of the barrier. It is interesting to note that these widths should
be calculated not at energy E1 (that will normally be used in calculating the
decay rate of this resonance state if initially prepared) but at the incident
energy E0.

2. For a symmetric barrier �1L = �1R Eq. (9.91) shows that the maximum trans-
mission, obtained on resonance (E0 = Ẽ1), is 1, irrespective of the coupling
strengths that determine �1L and �1R. These couplings, in turn, determine
the linewidth of the peak observed when the transmission is monitored as a
function of E0.

3. The population |c0|2 of the state that pumps the system does not appear
in the rate expression (9.88), however it determines the observed flux
through Eqns (9.90) or (9.92). In the particular application (Section 17.2.2)
to the problem of electronic conduction, when the left and right continua
represent the free electron states of metal electrodes |c0|2 will be identi-
fied as the Fermi–Dirac equilibrium occupation probability at energy E0,
f (E0) = [exp((E0 − µ)/kBT )+ 1]−1, where µ is the chemical potential of
the corresponding electrode.

4. The transmission problem analyzed above is one-dimensional: Incident and
transmitted states were characterized only by their energy. In three dimensions
these states may be characterized in terms of the total energy E0 and by the
wavevectors ky, kz in the directions perpendicular to the incident (x)direction,
so that the incident energy and the magnitude of the momentum in the incident
direction are

Ex = E0 − (h̄2/2m)(k2
y + k2

z ); px =
√

2mEx (9.94)

A particular transmission event at energy E0 can involve the incident states E0, ky, kz
and the transmitted state E0, k′y, k′z, (referred to as channels in the present context.
Note that any such channel corresponds to the continuum of kinetic energy states
associated with motion in the x direction). In Appendix 9C it is shown that the
total transmitted flux per unit energy between all possible channels is again given
by Eq. (9.90) where �1L(E) and �1R(E) are, as before, the decay rates of the
resonance state |1〉 into the left and right (three-dimensional) continua. Also derived
in Appendix 9C is a generalization of the present treatment to the situation where



338 Introduction to quantum relaxation processes

transmission is promoted through N barrier states. The result is again of the form
for the transmitted flux density, however with a generalized expression for the
transmission coefficient

T (E) = Tr[�̂(L)(E)Ĝ(B)†(E)�̂(R)(E)Ĝ(B)(E)] (9.95)

where the barrier Green’s operator is

Ĝ(B)(E) = (EÎ (B) − Ĥ (B))−1 (9.96)

In (9.96) Î (B) is an N × N unit matrix and Ĥ (B) is the barrier Hamiltonian, an
N × N matrix defined by H (B)

n,n′ = Hn,n′ + Bn,n′ , where B̂ = B̂(L) + B̂(R) is the self
energy matrix, a generalization of the function B1R(E) + B1L(E) (e.g. Eq. (9.82))
now defined by Eq. (9.133), and where �̂(K) = −2ImB̂(K), K = L, R.

Problem 9.5. Show that the barrier Hamiltonian can be written in the form Ĥ (B) =
P̂Ĥ P̂ + B̂ where B̂ is defined as above and P̂ is a projection operator on the
subspace of the barrier, that is, P̂ = ∑N

n=1 |n〉〈n| where |n〉, n = 1, . . . , N is a
basis that spans the barrier’s subspace.

Appendix 9A: Using projection operators

The mathematical analysis of the dynamics of systems interacting with encom-
passing reservoirs, whose detailed dynamics is of no direct interest, is facilitated
by the use of projection operators or projectors. A simple example is provided by
the use of such projectors to rearrange a system of linear equations. Let

A =
⎛
⎝a11 . . . a1N

aN 1 . . . aNN

⎞
⎠ ; x =

⎛
⎜⎝x1

...
xN

⎞
⎟⎠ ; u =

⎛
⎜⎝u1

...
uN

⎞
⎟⎠ (9.97)

be and N × N matrix and N -vectors. Consider the system of linear equations

Ax = u (9.98)

and define the projector matrices

P =
(

1n 0
0 0N−n

)
; Q =

(
0n 0
0 1N−n

)
(9.99)
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where 1n is an n × n identity matrix (and similarly 1N−n is an (N − n)× (N − n)
identity matrix). P projects onto the upper left n × n part of A while Q projects
onto the lower right (N − n)× (N − n) part. Obviously the relationship P+Q = 1
(the N × N identity matrix), P2 = P, Q2 = Q, and PQ = 0 are all satisfied. We
can use identities such as

x = (P + Q)x (9.100)

for a vector x, and

A = (P + Q)A(P + Q) (9.101)

for a matrix A to separate the set of coupled linear equations (9.98) into two
distinct sets

PAP · Px + PAQ · Qx = Pu (9.102)

QAP · Px + QAQ · Qx = Qu (9.103)

We may now formally solve Eq. (9.103) for Qx and insert in (9.102). This leads
to a set of equations in the “P subspace.” A common situation is where u is in the
P subspace, that is, Qu = 0.20 In this case we find Qx = −(QAQ)−1QAP · Px
which leads to

Px = (PAP − PAQ(QAQ)−1QAP)−1Pu (9.104)

Since we have explicit forms for all terms on the right, Eq. (9.104) provides an
explicit solution for the “interesting” part, P-part, of our system.

Problem 9.6. Show that a matrix A can be formally written in the form

A =
(

PAP PAQ
QAP QAQ

)
(9.105)

20 The mathematical problem was to find the vector x given the vector u. The physical problem
may have identified the subspace P as the “interesting subspace” because the initial information u is
given in that space (i.e. Qu = 0) and information about x is needed also in that space (i.e. we require
only sPx).
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Problem 9.7. Show that

(A−1)PP ≡ PA−1P = (APP − APQ(AQQ)−1AQP)
−1 (9.106)

To show this use the identity AA−1 = 1 in the form(
APP APQ
AQP AQQ

)(
(A−1)PP (A−1)PQ

(A−1)QP (A−1)QQ

)
= I (9.107)

Equation (9.107) constitutes a set of the four equations. Two of them are

APP(A−1)PP + APQ(A−1)QP = IP

AQP(A−1)PP + AQQ(A−1)QP = 0
(9.108)

Solving these for PA−1P yields (9.106).

As an example of an application of this formalism consider again the problem
of the decay of an initially prepared level |1〉 coupled to a continuum {|l〉} as in
Eqs (9.2)–(9.7) and Fig. 9.1. Let

P̂ = |1〉〈1|; Q̂ = 1 − P =
∑

l

|l〉〈l| (9.109)

so that (H0)PQ = (H0)QP = 0 and VPP = VQQ = 0. Let Â = EI − Ĥ0 − V̂ , so that
Â−1 = Ĝ is the Green operator. Use Eq. (9.106) to obtain

GPP =
(

EP − H0P − VPQ
1

EQ − H0Q
VQP

)−1

(9.110)

Using (9.109) this may be written explicitly

G1,1 = 1

E − E1 −∑
l V1,l(E − El)

−1Vl,1
(9.111)

which is what was found before (see Eq. (9.16)). Note that we now have a more
general and powerful way to obtain the Green function for any given subsystem,
because P̂ and Q̂ can be chosen in more general ways.
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Appendix 9B: Evaluation of the absorption lineshape for the model of
Figs 9.2 and 9.3

The model under consideration is given in the dressed state representation in
Fig. 9.3. It comprises a level |0〉 coupled to a level |s〉 which in turn is coupled
to a continuum {|l〉}. As far as the relaxation of |0〉 is concerned the representation
used for the subsystem of states (|s〉, {|l〉}) is immaterial; we could equally well use
a basis of states {j}, each a linear combination of |s〉 and {|l〉} states, that diagonalize
the Hamiltonian in this subspace. Explicitly

|j〉 = Cj,s|s〉 +∑
l

Cj,l|l〉
(Ĥ0 + V̂ )|j〉 = Ej|j〉

(9.112)

The calculation of the decay rate of |0〉 in this representation amounts to repeating
the problem represented by the model of Fig. 9.1 and Eq. (9.2), where states 1 and
{l} are now replaced by 0 and {j}, respectively. One needed element is the coupling
between states |0〉 and |j〉. Using (9.112) and the fact that 〈0|Ĥ |l〉 = 0 we find that

〈0|Ĥ |j〉 = αµg,sCj,s (9.113)

where the constant α was introduced in Eq. (9.39d).
As discussed in Section 9.1, the required decay rate is obtained under certain

conditions as (−) the imaginary part of the self energy B0(E0) of the state |0〉. The
latter is defined from

G0,0(E) ≡ 〈0| 1

E − Ĥ + iε
|0〉 = 1

E − E0 − B0(E)
(9.114)

An approximate expression for B0(E) is found using the Dyson equation (9.11)
and the coupling scheme of Fig. 9.3. Noting that the Dyson equation is valid for
any separation of the Hamiltonian to two additive contributions, we now use the
separation

Ĥ = [Ĥ − α(µg,s|0〉〈s| + µs,g|s〉〈0|)] + α(µg,s|0〉〈s| + µs,g|s〉〈0|) (9.115)

and use the term in square bracket as “Ĥ0” and the last term on the right as the
“coupling,” to write

G0,0 = Ḡ0,0 + Ḡ0,0αµg,sGs,0 (9.116a)

Gs,0 = Ḡs,sαµs,gG0,0 (9.116b)



342 Introduction to quantum relaxation processes

Here Ḡ ≡ [E − (Ĥ − α(µg,s|0〉〈s| + µs,g|s〉〈0|))+ iε]−1 is the Green’s function
associated with the Hamiltonian without the term (9.39d) that couples the molecule
to the incident mode of the radiation field. Eliminating Gs,0 from (9.116) we get

G0,0(E) = 1

E − E0 − α2|µg,s|2Ḡs,s(E)
(9.117)

It is easily realized that Ḡs,s here is the same as Gs,s defined by Eqs (9.30) and
(9.27) (where state 1 plays the same role as state s here). This implies that, if the
assumptions leading to Eq. (9.31) hold then,

B0(E0) = α2|µg,s|2
E0 − Ẽs + (1/2)i�s

(9.118)

Recalling that E0 = Eg + h̄ω we find that the absorption lineshape is given by

L(ω) ∝ −ImB0(E0) = α2|µg,s|2(�s/2)

(Eg + h̄ω − Ẽs)2 + (�s/2)2
(9.119)

which is Eq. (9.40).

Appendix 9C: Resonance tunneling in three dimensions

Here we generalize the transmission problem of Section 9.5.3 to three dimensions
and to many barrier states. Consider first the three-dimensional problem with a
single barrier state. The barrier is taken to be rectangular and of a finite width
in the transmission (x) direction, so it divides our infinite system into two semi-
infinite parts, right (R) and left (L). The transmission is again assumed to result
from interactions between free particle states in the L and R subspaces and a single
state |1〉 localized in the barrier, as seen in Fig. 9.5. These free particle states are
plane waves in the y and z directions, and can be characterized by the total energy
E0 and by the wavevectors ky, kz, so that the incident energy and the magnitude of
the momentum in the direction x normal to the barrier are

Ex = E0 − (h̄2/2m)(k2
y + k2

z ); px =
√

2mEx (9.120)

With these notations, Eq. (9.87) can be rewritten in the form

J(ky ,kz ,E0)→R =
|V1,(ky ,kz ,E0)|2

(E0 − Ẽ1)2 + (�1(E0)/2)2

�1R(E0)

h̄
|c0|2 (9.121)

This is an expression for the steady-state rate of population transfer from a driving
state in a particular one-dimensional channel (ky, kz, E0) on the left of the barrier
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into the right (now three-dimensional) continuum. The corresponding density of
such one-dimensional states is ρx(Ex) = mL/(π h̄px). The flux per unit energy
associated with this channel is thus21

J(ky ,kz ,E0)→Rρx(Ex) = 1

(2π h̄)

�
(ky ,kz)

1L (E0)�1R(E0)

(E0 − Ẽ1)2 + (�1(E0)/2)2
|c0|2 (9.122)

where

�
(ky ,kz)

1L (E0) = 2π |V1,(ky ,kz ,E0)|2ρx(Ex) (9.123)

Finally, the total flux from all channels of total energy E0 is obtained by summing
over all ky, kz for which Ex of Eq. (9.120) is nonnegative. This yields the total flux
per unit energy at energy E0 in a form similar to (9.90)(

dJL→R(E)

dE

)
E=E0

= 1

2π h̄
T (E0)|c0|2 = 1

(2π h̄)

�1L(E0)�1R(E0)

(E0 − Ẽ1)2 + (�1(E0)/2)2
|c0|2

(9.124)

where

�1L(E0) =
∑
ky ,kz

�
(ky ,kz)

1L (E0) (9.125)

is the leftward decay rate of state |1〉 into the left continuum, here expressed as sum
of rates of decay into the individual one-dimensional channels. Note that �1R can
be expressed in a similar way, though we did not need to use it in the derivation
above.

Further insight into the structure of this solution may be obtained by denote
these channels by the collective indices α so that Eq. (9.125) takes the form

�1L(E) =
∑
α

�α
1L(E) (and same for �1R) (9.126)

This implies that

T1(E0) =
∑
α,α′

Tα,α′(E0) (9.127)

21 We assume that all states of energy E0 are associated with the same probability |c0|2, as expected
if the continua represented bulk system at thermal equilibrium.
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where

Tα,α′(E) = �α
1L(E)�α′

1R(E)

(E − Ẽ1(E))2 + (�1(E)/2)2
(9.128)

Expressions such as (9.124) are sometimes called “all to all” microcanonical trans-
ition rates (or, in this case, differential transition fluxes), since they express that
total flux due to all states of energy E.

Next we generalize these results to the case where transmission is induced by
many barrier-localized states, |1〉, |2〉, . . . , |N 〉. The transition under consideration
is then between a left manifold of states {l} and a right manifold {r} due to their
mutual coupling with barrier states {n}, n = 1, 2, . . . , N . These states are not neces-
sarily eigenstates of the Hamiltonian, so in the derivation below we will encounter
matrix elements such as Hn,n′ = 〈n|Ĥ |n′〉. We will however assume for simplicity
that all states are orthogonal to each other, 〈n|n′〉 = δn,n′ (see footnote 18 about
the more general case). Again we consider a driving state |0〉 that couples to the
barrier states, and the fluxes following from this into the left and right continua.
The generalization of Eqs (9.78) into the present case reads

h̄Ċn = −iHn,nCn − iHn,0C0(t)− i
∑
n′ �=n

Hn,n′Cn′ − i
∑

l

Hn,lCl − i
∑

r

Hn,rCr;

n, n′ = 1, . . . , N
(9.129a)

h̄Ċk = −iHk ,kCk −
N∑

n=1

iHk ,nCn − (η/2)Ck ; k = l, r (9.129b)

with C0(t) = c0 exp(−(i/h̄)E0t). Again we look for steady-state solutions of
the forms Cj(t) = cj exp(−(i/h̄)E0t) (j = {n}, {l}, {r}), and get the equations
equivalent to (9.79)

0 = i(E0 − Hn,n)cn − iHn,0c0 − i
∑
n′ �=n

Hn,n′cn′

−i
∑

l

Hn,lcl − i
∑

r

Hn,rcr n, n′ = 1, . . . , N
(9.130a)

0 = i(E0 − Hk ,k)ck −
N∑

n=1

iHk ,ncn − (η/2)ck ; k = l, r (9.130b)
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Equation (9.130b) yields

ck =
∑N

n=1 Hk ,ncn

E0 − Hk ,k + i(η/2)
; k = l, r (9.131)

and inserting this into (9.130a) leads to

0 = i(E0 − Hn,n)cn − iHn,0c0 − i
∑
n′ �=n

Hn,n′cn′ − i
∑

n′
Bn,n′(E0)cn′ (9.132)

with

Bn,n′(E) = B(L)
n,n′(E)+ B(R)

n,n′(E)

B(K)

n,n′(E) ≡
∑
k∈K

Hn,kHk ,n′

E − Hk ,k + iη/2
= !

(K)

n,n′(E)− 1

2
i�(K)

n,n′ (E); K = L, R

�
(K)

n,n′ (E) = 2π(Hn,kHk ,n′ρK (Ek))Ek=E ; k ∈ K , K = L, R

!
(K)

n,n′(E) = PP

∞∫
−∞

dEk
Hn,kHk ,n′ρK (Ek)

E − Ek
; k ∈ K , K = L, R

(9.133)

Note that the self energy defined above, Eq. (9.82), has now become a non-diagonal
matrix.

We now define an effective Hamiltonian matrix Ĥ (B) in the subspace of the
barrier states (a N × N matrix)

H (B)

n,n′ = Hn,n′ + Bn,n′ (9.134)

and a corresponding barrier Green’s operator

G(B)(E) = (EÎ (B) − Ĥ (B))−1 (9.135)

and obtain a solution for the coefficients cn (n = 1, . . . , N ) in the form (Î (B) is an
N × N unit matrix)

cn = c0

∑
n′

G(B)

n,n′Hn′,0 (9.136)

Using this in (9.131) yields, for example, for the R continuum

cr =
∑N

n=1
∑N

n′=1 Hr,nG(B)

n,n′Hn′,0

E0 − Hr,r + i(η/2)
c0 (9.137)



346 Introduction to quantum relaxation processes

The flux through the R continuum is now obtained in the form (compare (9.87))

J0→R =(η/h̄)
∑

r

|cr|2 η→0−→ h̄−1|c0|2

×
∑

r

2πδ(E0 − Hrr)

N∑
n1=1

N∑
n′1=1

N∑
n=1

N∑
n′=1

H0,n′1G(B)†
n′1,n1

Hn1,rHr,nG(B)

n,n′Hn′,0

=h̄−1 |c0|2
N∑

n1=1

N∑
n′1=1

N∑
n=1

N∑
n′=1

H0,n′1G(B)†
n′1,n1

�(R)
n1,nG(B)

n,n′Hn′,0 (9.138)

Finally, repeating the steps that lead from (9.121) to (9.124) we now find

(
dJL→R(E)

dE

)
E=E0

=|c0|2
2π h̄

N∑
n1=1

N∑
n′1=1

N∑
n=1

N∑
n′=1

�
(L)
n′,n′1

G(B)†
n′1,n1

�(R)
n1,nG(B)

n,n′

=|c0|2
2π h̄

Tr[�̂(L)(E0)Ĝ
(B)†(E0)�̂

(R)(E0)Ĝ
(B)(E0)] (9.139)

where the trace operation denotes a sum over barrier states {n} of the diagonal
elements of the matrix �̂(L)Ĝ†�̂(R)Ĝ. This is a product of four N × N matrices,
all defined in the subspace of the barrier states. This concludes our derivation of
Eqs (9.90) and (9.95) for the present model.
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THE QUANTUM MECHANICAL DENSITY OPERATOR
AND ITS TIME EVOLUTION: QUANTUM DYNAMICS

USING THE QUANTUM LIOUVILLE EQUATION

Surely the atoms never began by forming
A conscious pact, a treaty with each other,
Where they should stay apart, where they come together.
More likely, being so many, in many ways
Harassed and driven through the universe
From an infinity of time, by trying
All kind of motion, every combination,
They came at last into such disposition
As now establishes the sum of things…

Lucretius (c.99–c.55 BCE) “The way things are”
translated by Rolfe Humphries, Indiana University Press, 1968

The starting point of the classical description of motion is the Newton equations
that yield a phase space trajectory (rN (t), pN (t)) for a given initial condition
(rN (0), pN (0)). Alternatively one may describe classical motion in the framework
of the Liouville equation (Section (1.2.2)) that describes the time evolution of the
phase space probability density f (rN , pN ; t). For a closed system fully described
in terms of a well specified initial condition, the two descriptions are completely
equivalent. Probabilistic treatment becomes essential in reduced descriptions that
focus on parts of an overall system, as was demonstrated in Sections 5.1–5.3 for
equilibrium systems, and in Chapters 7 and 8 that focus on the time evolution of
classical systems that interact with their thermal environments.

This chapter deals with the analogous quantum mechanical problem. Within
the limitations imposed by its nature as expressed, for example, by Heisenberg-
type uncertainty principles, the Schrödinger equation is deterministic. Obviously
it describes a deterministic evolution of the quantum mechanical wavefunction.
The analog of the phase space probability density f (rN , pN ; t) is now the quantum
mechanical density operator (often referred to as the “density matrix”), whose time
evolution is determined by the quantum Liouville equation. Again, when the system
is fully described in terms of a well specified initial wavefunction, the two descrip-
tions are equivalent. The density operator formalism can, however, be carried over
to situations where the initial state of the system is not well characterized and/or
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a reduced description of part of the overall system is desired. Such situations are
considered later in this chapter.

10.1 The density operator and the quantum Liouville equation

10.1.1 The density matrix for a pure system

Consider a system characterized by a given Hamiltonian operator Ĥ , an orthonormal
basis {φn} (also denoted {|n〉}) that spans the corresponding Hilbert space and a time
dependent wavefunction �(t)—a normalized solution of the Schrödinger equation.
The latter may be represented in terms of the basis functions as

�(t) =
∑

n

Cn(t)φn (10.1)

The normalization of �(t) implies that
∑

n |Cn|2 = 1. When the state of the system
is given in terms of such wavefunction we say that the system is in a pure state.

Consider also a dynamical variable A that is represented by an operator Â. Its
expectation value at time t is given by

〈A〉t = 〈�(t)|Â|�(t)〉 =
∑
n,n′

Cn′(t)C
∗
n (t)An,n′ ≡

∑
n,n′

ρn′,n(t)An,n′ (10.2)

The coefficients ρn,n′ in (10.2) define the matrix elements of the density operator
ρ̂ in the given basis. For a pure state ρ̂ can be written explicitly as

ρ̂(t) ≡ |�(t)〉〈�(t)| =
∑
n,n′

Cn(t)C
∗
n′(t)|n〉〈n′| (10.3)

so that indeed
ρn,n′(t) =〈φn|ρ̂(t)|φn′ 〉=Cn(t)C

∗
n′(t) (10.4)

Using the completeness of the basis, that is,
∑

n |n〉〈n| = 1, Eq. (10.2) is seen to
be equivalent to

〈A〉t = Tr[ρ̂Â] (10.5)

which is the quantum analog of Eq. (1.100) if ρ̂ is perceived as a quantum analog
of the distribution function f . Another element in this analogy is provided by the
equivalence∫

drN
∫

dpN f (rN , pN ; t) = 1 ⇔ Tr[ρ̂] =
∑

n

ρnn = 1 (10.6)

which follows from (10.3).
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The time evolution of the density operator can be found from the time evolution
of �(t) and the definition (10.3):

d

dt
ρ̂(t) = d

dt
(|�(t)〉〈�(t)|) =

(
d

dt
|�(t)〉

)
〈�(t)| + |�(t)〉

(
d

dt
〈�(t)|

)

=− i

�
Ĥ |�(t)〉〈�(t)| + i

�
|�(t)〉〈�(t)|Ĥ (10.7)

or
d

dt
ρ̂(t) = − i

�
[Ĥ , ρ̂(t)] ≡ −iLρ̂(t) (10.8)

where L ≡ �
−1[Ĥ ,] is the quantum Liouville operator.

Equation (10.8) may be compared with the Heisenberg equation of motion (2.66)
for the Heisenberg representation ÂH(t) = exp((i/�)Ĥ t)Â exp(−(i/�)Ĥ t) of the
operator Â

d

dt
ÂH(t) = i

�
[Ĥ , ÂH(t)] = iLÂH(t) (10.9)

We see that the density operator ρ̂(t), the quantum analog of the classical phase
space distribution f (rN , pN ; t), is different from other operators that represent
dynamical variables. The same difference in time evolution properties was already
encountered in classical mechanics between dynamical variables and the distribu-
tion function, as can be seen by comparing Eq. (10.8) with (1.104) and Eq. (10.9)
with (1.99). This comparison also emphasizes the correspondence between the
classical and quantum Liouville operators.

Two other properties of the density operators follow from its definition (10.3).
First, it is Hermitian, that is, ρ̂†(t) = ρ̂(t). Second it is idempotent, that is, satisfies
the property

ρ̂2 = ρ̂ (10.10)

10.1.2 Statistical mixtures

As defined above, the density operator provides an alternative but equivalent
description of the information contained in a pure quantum mechanical state. Its
real advantage emerges when we encounter systems whose state is not known
completely. For example, we may know the probabilities Pn = |Cn|2 to be in the
different states n (defined in terms of some basis set {φn}), without knowing the
actual state ψ = ∑

n Cnφn that requires knowledge of the phases of the complex
numbers Cn. In the extreme case of such ignorance all phases are equally possible
and should be averaged upon in any calculation. In this case Eq. (10.4) becomes

ρnn′ = |Cn|2δn,n′ = Pnδn,n′ (10.11)
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We refer to such a state as a statistical mixture. An example is a system in thermal
equilibrium whose eigenfunctions constitute the basis {φn}. The probabilities Pn
are then given by the Boltzmann distribution and all microscopic states compatible
with these probabilities (i.e. all phases of the complex coefficients Cn) are assumed
to be equally probable.

It should be obvious that a pure state and the statistical mixture with the same
|Cn| are not equivalent. For example, the average value of an observable A in the
pure state is 〈ψ |Â|ψ〉 = ∑

n,n′ C∗
n Cn′An,n′ , where An,n′ = 〈n|A|n′〉, while in the

corresponding statistical mixture 〈A〉 = ∑
n PnAn,n = ∑

n |Cn|2An,n.
Above we have contrasted the pure state with a statistical mixture represented

by a diagonal density matrix. We now make these statements more general:

1. In the representation defined with a basis {φn}, ρ̂ is a matrix with elements
ρn,n′ . The diagonal elements, ρnn = Pn, are the probabilities that the system
is in states n. In the pure state ψ = ∑

n Cnφn we found that

Pn = |Cn|2 and ρn,n′ = CnC∗
n′ (10.12)

2. In the statistical mixture the last equality is not satisfied. This does not neces-
sarily mean that in a statistical mixture ρ̂ has to be diagonal. If it is diagonal in
the basis {φn}, that is, ρ̂ = ∑

n Pn|φn〉〈φn|, we can go to another representation
{ψk} such that φn = ∑

k ankψk in which ρ̂ takes the non-diagonal form

ρ̂ =
∑

n

Pn

∑
k ,k ′

anka∗nk ′ |ψk〉〈ψk ′ | =
∑
k ,k ′

ρkk ′ |ψk〉〈ψk ′ | (10.13)

where ρkk ′ = ∑
n Pnanka∗nk ′ .

3. So how is a pure state different from a mixed state? In the former the elements
of the corresponding density matrix are related to each other in a specific
way, Eq. (10.12), resulting from their association with the amplitudes of the
expansion of the pure state in terms of the given basis. In a mixed state such
a relationship does not exist.

4. An operational statement of the difference between a pure state and a stat-
istical mixture can be made with respect to their diagonal representations. In
such representation the pure state density matrix will have only one nonzero
element on its diagonal, that will obviously take the value 1. A diagonal dens-
ity matrix representing a statistical mixture must have at least two elements
(whose sum is 1) on its diagonal.
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An important observation is that several, but not all, properties of the pure state
density operator remain also in mixed states:

1 ρ̂ is Hermitian and its diagonal elements ρnn are real and positive. These
elements represent the average probabilities to find the system in the
corresponding state (see also 6 below).

2. Trρ̂ = 1.
3. For any observable represented by an operator Â

〈A〉 = Tr(ρ̂Â) (10.14)

This follows from the fact that this relation has to hold for the diagonal
representation and from the fact that the Trace operation does not depend on
the representation used.

4. The time evolution of the density operator is described by the Liouville
equation

d

dt
ρ̂(t) = − i

�
[Ĥ , ρ̂(t)] = −iLρ̂(t) (10.15)

To show that this remains true for mixed states consider the diagonal repres-
entation of the initial state, ρ̂(t = 0) = ∑

n Pn|ψn〉〈ψn|. This describes
a mixed state in which the probability to be in the pure state ψn is Pn.
In the following time evolution each pure state evolves according to the
time-dependent Schrödinger equation so that �n(t) = exp(−(i/�)Ĥ t)ψn(0)
and therefore Pn also represents the probability to be in state �n(t) at time t.
It follows that ρ̂(t) = ∑

n Pn|�n(t)〉〈�n(t)| so that

ρ̂(t) = e−(i/�)Ĥ t ρ̂(0)e(i/�)Ĥ t (10.16)

from which (10.15) follows. Eq. (10.16) is sometimes written as a formal
solution of Eq. (10.15), that is,

ρ̂(t) = e−iLtρ(0) ≡ e−(i/�)Ĥ t ρ̂(0)e(i/�)Ĥ t (10.17)

5. In general ρ̂ does not satisfy ρ̂2 = ρ̂. This identity holds only for a pure state.
6. Given that ρ̂ is diagonal in the representation {ψj}, then for any state ψ

we have 〈ψ |ρ̂|ψ〉 = ∑
j Pj|〈ψ |ψj〉|2 ≥ 0. ρ̂ is therefore a positive operator.

〈ψ |ρ̂|ψ〉 is seen to be the average probability to find the system in state ψ .

10.1.3 Representations

The time evolution of the density operator, Eqs (10.15) and (10.16), stems from
the time dependence of the wavefunctions, and describes the time evolution of ρ̂
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in the Schrödinger representation. (As usual, we omit the subscript “S” from the
Schrödinger ρ̂ as long as its identity may be inferred from the text. Below, however,
we sometimes write this subscript explicitly). In the corresponding Heisenberg
representation

ρ̂H = ρ̂S(t = 0) = e(i/�)Ĥ t ρ̂S(t)e
−(i/�)Ĥ t = eiLt ρ̂S(t) (10.18)

ρ̂H does not depend on t just as the wavefunction ψH does not. It will prove useful
to consider also the time evolution of the density operator in the interaction rep-
resentation associated with some suitable decomposition of Ĥ , Ĥ = Ĥ0 + V̂ . This
representation of ρ̂ is defined by

ρ̂I(t) ≡ eiĤ0t/�ρ̂S(t)e
−iĤ0t/� (10.19a)

= eiĤ0t/�e−iĤ t/�ρ̂(t = 0)eiĤ t/�e−iĤ0t/� (10.19b)

To obtain the corresponding equation of motion take time derivative of (10.19a):

dρ̂I

dt
= e(i/�)Ĥ0t

[
i

�
Ĥ0ρ̂S(t)− i

�
ρ̂S(t)Ĥ0 + dρ̂S

dt

]
e−(i/�)Ĥ0t

= e(i/�)Ĥ0t
[

i

�
Ĥ0ρ̂S(t)− i

�
ρ̂S(t)Ĥ0 −

(
i

�
Ĥ ρ̂S(t)− i

�
ρ̂S(t)Ĥ

)]
e−(i/�)Ĥ0t

= e(i/�)Ĥ0t
[
− i

�
V̂ ρ̂S(t)+ i

�
ρ̂S(t)V̂

]
e−(i/�)Ĥ0t = − i

�
[V̂I(t), ρ̂I(t)]

(10.20)

Thus

dρ̂I

dt
= − i

�
[V̂I(t), ρ̂I(t)] (10.21)

Note that an equation similar to (10.19a) that relates the interaction representation
of any other operator to the Schrödinger representation

ÂI(t) = e(i/�)Ĥ0tASe−(i/�)Ĥ0t (10.22)

leads to

dÂI

dt
= i

�
[Ĥ0, ÂI] (10.23)

which is obviously different from (10.21). The origin of this difference is the fact
that in the Schrödinger representation AS is time independent (unless A has intrinsic
time dependence) while ρS(t) depends on time.

Table 10.1 summarizes our findings, as well as those from Sections 2.7.1 and
2.7.2, by comparing the different transformations and the corresponding equations



Density operator and quantum Liouville equation 353

Table 10.1 The Schrödinger, Heisenberg, and interaction representations of the quantum time
evolution.

Schrödinger representation Heisenberg representation Interaction representation

�S(t) = e−iĤ t/��(t = 0) �H(t) = eiĤ t/��S(t) = �S(t = 0) �I(t) = eiĤ0t/��S(t)
∂�S

∂t
= −(i/�)Ĥ�S (time independent)

∂�I

∂t
= −(i/�)V̂I(t)�I

ÂS = Â(t = 0) ÂH(t) = e(i/�)Ĥ t ÂSe−(i/�)Ĥ t ÂI(t) = e(i/�)Ĥ0tASe−(i/�)Ĥ0t

(time independent)
dÂH(t)

dt
= i

�
[Ĥ , ÂH(t)] dÂI(t)

dt
= i

�
[Ĥ0, ÂI(t)]

ρ̂S(t) = e−(i/�)Ĥ t ρ̂(0)e(i/�)Ĥ t ρ̂H = e(i/�)Ĥ t ρ̂S(t)e
−(i/�)Ĥ t ρ̂I(t) = eiĤ0t/�ρ̂S(t)e

−iĤ0t/�

d

dt
ρ̂S(t) = − i

�
[Ĥ , ρ̂S(t)] = ρ̂(t = 0) (time independent)

dρ̂I

dt
= − i

�
[V̂I(t), ρ̂I(t)]

of motion for the quantum mechanical wavefunction, the density operator, and
a “regular” operator (i.e. an operator that represent a dynamical variable) in the
absence of explicit time dependence, that is, in the absence of time-dependent
external forces.

Note that the time-dependent average of an operator Â is the same in all
representations

〈A〉t = Tr[ρ̂HÂH(t)] = Tr[ρ̂S(t)ÂS] = Tr[ρ̂I(t)ÂI(t)] (10.24)

as of course should be.

Problem 10.1.

(1) Show that the trace of ρ̂2 is 1 for a pure state and smaller than 1 for a
mixed state.

(2) Show that for a pure state Tr(ρ̂2) cannot be larger than 1; that in fact if
Tr(ρ̂) = 1 and Tr(ρ̂2) > 1 then ρ̂ has negative eigenvalues, that is, is
unphysical.

Problem 10.2. Let Ĥ = Ĥ0 + Ĥ1(t). Show by direct differentiation with
respect to t that the solution to the Liouville equation (d/dt)ρ̂(t) =
−(i/�)[Ĥ0 + Ĥ1(t), ρ̂(t)] = −i(L0 + L1(t))ρ̂(t) may be written in the form

ρ̂(t) = e−i(t−t0)L0 ρ̂(t0)− i

t∫
t0

dt′e−i(t−t′)L0L1(t
′)ρ̂(t′) (10.25)

(Hint: Multiply both sides by exp(itL0) before taking derivative).
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10.1.4 Coherences

In a general representation ρ̂ is non-diagonal. In terms of the basis {ψj} that
diagonalizes ρ we may write

ρnn′ =
∑

j

Pj〈n|ψj〉〈ψj|n′〉 (10.26)

If |n〉 = ∑
j Cnjψj and |n′〉 = ∑

j Cn′jψj we find

ρnn′ =
∑

j

PjC
∗
njCn′j = 〈C∗

njCn′j〉 (10.27)

We see that the non-diagonal element ρnn′ of the density matrix is the averaged
product of cross terms between states n and n′. These elements, which appear in
calculations of interference effects between these states, are referred to as “coher-
ences.” If ρnn′ in Eq. (10.27) is found to vanish, the corresponding interference is
averaged out.

Problem 10.3. Show that in the basis of eigenstates of H

d

dt
ρnn = 0;

d

dt
ρnm = − i

�
(En − Em)ρnm (10.28)

Problem 10.4. Consider a system for which the Hamiltonian is Ĥ = Ĥ0 + V̂ ,
or, in the representation defined by the eigenstates of Ĥ0, Ĥ = ∑

m Em|m〉〈m| +∑∑
m�=n Vm,n|m〉〈n|. In the same representation the density operator is ρ̂ =∑

m

∑
n

ρm,n|m〉〈n|. Show that in this representation the Liouville equation is

dρm,n

dt
= − i

�
Em,nρm,n − i

�

∑
l

(Vm,lρl,n − Vl,nρm,l) (10.29)

where Em,n = Em − En.

Problem 10.5. Show that in any basis

ρnnρmm ≥ |ρnm|2 (equality holds for a pure state) (10.30)

Solution: To prove the inequality (10.30) we first note that for a pure state
ρ̂ = |ψ〉〈ψ |, and Eq. (10.30) is satisfied as an identity, with each side equal to
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|〈n|ψ〉|2 |〈m|ψ〉|2. In the more general case ρ̂ may still be expressed in the
diagonal representation,

ρ =
∑

j

aj|ψj〉〈ψj|; aj ≥ 0;
∑

j

aj = 1 (10.31)

The inequality (10.30) then takes the form⎛
⎝∑

j

aj|〈n|ψj〉|2
⎞
⎠

⎛
⎝∑

j

aj|〈m|ψj〉|2
⎞
⎠ ≥

∣∣∣∣∣∣
∑

j

aj〈n|ψj〉〈ψj|m〉
∣∣∣∣∣∣
2

(10.32)

This, however, is just the Schwarz inequality (Section 1.1.8). Indeed, Eq. (10.32)
is identical to the inequality satisfied by two complex vectors, (cf. Eq. (1.81)),
|e|2 |f |2 ≥ |e∗ · f |2, if we identify ej = √

aj〈n|ψj〉 and fj = √
aj〈m|ψj〉. Another

proof of (10.30) is obtained by defining the wavefunctions |ψ〉 = ρ̂1/2|n〉;
|φ〉 = ρ̂1/2|m〉 and realizing the Eq. (10.30) can then be rewritten in the form
〈ψ |ψ〉〈φ|φ〉 ≥ |〈ψ |φ〉|2 which is another expression, Eq. (1.85), of the Schwarz
inequality.

10.1.5 Thermodynamic equilibrium

The expression for the classical distribution function in thermodynamic equilibrium
reflects the Boltzmann equilibrium property

f (rN , pN ) = e−βH (rN ,pN )∫
drN

∫
dpN e−βH (rN ,pN )

(10.33)

Similarly, for a quantum system in thermal equilibrium, the populations of station-
ary states are given by the Boltzmann factors Pk ∼ e−βEk , and coherences between
such states are zero. This implies that in the basis of eigenstates of the system
Hamiltonian Ĥ

ρ̂eq =
∑

j e−βEj |ψj〉〈ψj|∑
j e−βEj

(10.34)

and more generally,

ρ̂eq = Z−1e−βĤ ; Z = Tr[ρ̂eq] (10.35)
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The thermal average of an observable represented by an operator Â is, according
to Eq. (10.14)

〈A〉T = Tr[ρ̂eqÂ] = Tr[e−βĤ Â]
Tr[e−βĤ ] (10.36)

Problem 10.6. Show that
〈A〉T = 〈A†〉∗T (10.37)

For future reference we cite here without proof a useful identity that involves the
harmonic oscillator Hamiltonian Ĥ = p̂2/2m+ (1/2)mω2q̂2 and an operator of the
general form Â = exp[α1p̂ + α2q̂] with constant parameters α1 and α2, that is, the
exponential of a linear combination of the momentum and coordinate operators. The
identity, known as the Bloch theorem, states that the thermal average 〈Â〉T (under the
harmonic oscillator Hamiltonian) is related to the thermal average 〈(α1p̂ + α2q̂)2〉T
according to

〈eα1p̂+α2q̂〉T = e(1/2)〈(α1p̂+α2q̂)2〉T (10.38)

Problem 10.7. Prove the classical analog of (10.38), that is,

〈exp(α1p + α2q)〉T = exp[(1/2)〈(α1p + α2q)2〉T]

where 〈A(p, q)〉T =
∫

dp
∫

dqA(p, q) exp(−βH (p, q))/
∫

dp
∫

dq exp(−βH (p, q))
and H (p, q) is the classical harmonic oscillator Hamiltonian. (Note: the needed
two-dimensional integrations can be done directly, or you can use the general
relationship (7.63)).

10.2 An example: The time evolution of a two-level system in the density
matrix formalism

In Section 2.2 we have used the two coupled states model as a simple playground for
investigating time evolution in quantum mechanics. Here we reformulate this prob-
lem in the density matrix language as an example for using the quantum Liouville
equation

dρ̂

dt
= − i

�
[Ĥ , ρ̂(t)] (10.39)
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The Hamiltonian is taken in the form

Ĥ = H11|1〉〈1| + H22|2〉〈2| + H12|1〉〈2| + H21|2〉〈1| (10.40)

and the density operator is

ρ̂ = ρ11(t)|1〉〈1| + ρ22(t)|2〉〈2| + ρ12(t)|1〉〈2| + ρ21(t)|2〉〈1| (10.41)

Using

[Ĥ , ρ̂] =H11(ρ12|1〉〈2| − ρ21|2〉〈1|)+ H22(ρ21|2〉〈1| − ρ12|1〉〈2|)
+ H12[−ρ11|1〉〈2| + ρ22|1〉〈2| + ρ21|1〉〈1| − ρ21|2〉〈2|]
+ H21[ρ11|2〉〈1| − ρ22|2〉〈1| + ρ12|2〉〈2| − ρ12|1〉〈1|] (10.42)

we get

�
dρ11

dt
= −iH12ρ21 + iH21ρ12 (10.43a)

�
dρ22

dt
= iH12ρ21 − iH21ρ12 (10.43b)

�
dρ12

dt
= − iH11ρ12 + iH22ρ12 + iH12ρ11 − iH12ρ22

= − iE12ρ12 + iH12ρ11 − iH12ρ22 (10.43c)

�
dρ21

dt
= iH11ρ21 − iH22ρ21 − iH21ρ11 + iH21ρ22

= − iE21ρ21 − iH21ρ11 + iH21ρ22 (10.43d)

where we have denoted E21 = −E12 = H22−H11. Note that the sum of Eqs (10.43a)
and (10.43b) vanishes, because ρ11 + ρ22 = 1. There are therefore only three
independent variables. Defining

σz(t) ≡ ρ11(t)− ρ22(t) (10.44)

σ+(t) ≡ ρ21(t) (10.45)

σ−(t) ≡ ρ12(t) (10.46)
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we obtain from Eqs (10.43) the following equations of motion for these new
variables

dσz

dt
= 2

i

�
H21σ− − 2

i

�
H12σ+

= i

�
[(H12 + H21)− (H12 − H21)]σ− − i

�
[(H12 + H21)+ (H12 − H21)]σ+

(10.47a)

dσ+
dt

= iωσ+ − i

�
H21σz (10.47b)

dσ−
dt

= −iωσ− + i

�
H12σz (10.47c)

where ω = E12/�.

Problem 10.8. Show that σz(t), σ+(t), and σ−(t) are the expectation values of
the operators

σ̂z = |1〉〈1| − |2〉〈2| (10.48a)

σ̂+ = |1〉〈2| (10.48b)

σ̂− = |2〉〈1| (10.48c)

For example, σz(t) = Tr(ρ̂(t)σ̂z), etc.

In terms of
σx = σ+ + σ−; σy = −i(σ+ − σ−) (10.49)

these evolution equations take the forms

dσx

dt
= ωσy + i

�
(H12 − H21)σz (10.50a)

dσy

dt
= −ωσx − 1

�
(H12 + H21)σz (10.50b)

dσz

dt
= − i

�
(H12 − H21)σx + 1

�
(H12 + H21)σy (10.50c)

Equations (10.47) or (10.50) do not have a mathematical or numerical advantage
over Eqs (10.43), however, they show an interesting analogy with another physical
system, a spin 1

2 particle in a magnetic field. This is shown in Appendix 10A. A more
important observation is that as they stand, Eqs (10.43) and their equivalents (10.47)
and (10.50) do not contain information that was not available in the regular time-
dependent Schrödinger equation whose solution for this problem was discussed in
Section 2.2. The real advantage of the Liouville equation appears in the description
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of processes in which the time evolution of the density matrix cannot be associated
with that of wavefunctions. Such cases are discussed below.

10.3 Reduced descriptions

Nothing is less real than realism . . . Details are confusing. It is only by selection, by elimination, by
emphasis, that we get at the real meaning of things. (Georgia O’Keeffe)

In Chapter 7 (see in particular Section 7.2) we have motivated the use of reduced
descriptions of dynamical processes, where we focus on the dynamics of the sub-
system of interest under the influence of its environment. This leads to reduced
descriptions of dynamical processes whose stochastic nature stems from the incom-
plete knowledge of the state of the bath. The essence of a reduction process is
exemplified by the relationship

P(x1) =
∫

dx2P(x1, x2) (10.51)

between the joint probability distribution for two variables x1 and x2 and the prob-
ability distribution of the variable x1 alone, irrespective of the value of x2. Extensive
use of such reduction procedures was done in Section 5.3 in conjunction with the
theory of classical liquids. Obviously, the same concept and the same need exist
also in quantum mechanics, and the density operator, the quantum analog of the
classical phase space distribution function is the natural starting point for such con-
siderations. In what follows we discuss such reduction procedures in the quantum
mechanical framework.

10.3.1 General considerations

Let S be the quantum system of interest and let B be the surrounding bath, also a
quantum system. The Hamiltonian is

Ĥ = ĤS + ĤB + ĤSB = Ĥ0 + V̂ (10.52)

where V̂ = ĤSB will denote here the system–bath interaction. Let {|s〉} and {|b〉}
be the (assumed orthonormal) sets of eigenstates of ĤS and ĤB, respectively. Then
the density operator ρ̂ of the overall system–bath super-system may be written in
the representation defined by the product states |sb〉 = |s〉|b〉 as

ρ̂ =
∑
s,b

∑
s′,b′

ρsb,s′b′ |sb〉〈s′b′|

ρsb,s′b′ = 〈sb|ρ̂|s′b′〉
(10.53)
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A reduced description of the subsystem S alone will provide a density operator

σ̂ =
∑
s,s′

σs,s′ |s〉〈s′|

σs,s′ = 〈s|σ̂ |s′〉
(10.54)

in the system sub-space. Such a density operator has to have the property that the
average of any system operator Â = ∑

s,s′ As,s′ |s〉〈s′| is given by

〈A〉 = TrS[σ̂ Â] (10.55)

The same average can be taken in the overall system

〈A〉 = TrS+B[ρ̂Â] =
∑
sb

〈sb|ρ̂Â|sb〉 =
∑
sb

∑
s′b′

〈sb|ρ̂|s′b′〉〈s′b′|Â|sb〉 (10.56)

However, Â, being an operator on the system only satisfies 〈s′b′|Â|sb〉 = As,s′δb,b′ .
Equation (10.56) therefore implies

〈A〉 =
∑
s,s′

∑
b

〈sb|ρ̂|s′b〉〈s′|Â|s〉 = TrS[(TrBρ̂)Â] (10.57)

Comparing (10.57) with (10.55) we conclude

σ̂ = TrBρ̂ (10.58)

Equation (10.58) is the quantum mechanical analog of Eq. (10.51).

Problem 10.9. A system that comprises a two-level sub-system and a bath is found
in a pure state, characterized by finite probabilities to exist in states 1 and 2 of the
two-level subsystem where each of them is associated with a different bath state,
b1 and b2, respectively. Show that the corresponding reduced density matrix of
the 2-level subsystem does not describe a pure state but a statistical mixture.
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Solution: In the basis of direct products |j, b〉 = |j〉|b〉 of eigenstates of the
isolated 2-level subsystem and the bath, the given pure state is ψ = C1|1, b1〉 +
C2|2, b2〉, so that the probabilities that the subsystem is in states |1〉 or |2〉 are
|C1|2 and |C2|2 respectively. The corresponding density operator is

ρ̂ = |C1|2|1, b1〉〈1, b1| + |C2|2|2, b2〉〈2, b2| + C1C∗
2 |1, b1〉〈2, b2|

+ C∗
1 C2|2, b2〉〈1, b1|

The reduced density matrix of the subsystem alone is (using 〈b1|b2〉 = 0)

σ̂ = TrBρ̂ = 〈b1|ρ̂|b1〉 + 〈b2|ρ̂|b2〉 = |C1|2|1〉〈1| + |C2|2|2〉〈2|
which obviously describes a mixed state.

Problem 10.10. Show that Eq. (10.58) is satisfied for ρ̂ and σ̂ defined by
Eqs (10.53) and (10.54) provided that

σs,s′ =
∑

b

ρsb,s′b (10.59)

Note that the same results apply to time-dependent density operators, that is,
Eq. (10.59) holds for the corresponding σs,s′(t) and ρsb,s′b(t), whether their time
dependence is intrinsic as in Eq. (10.16) or stems from external perturbations.

Using this reduction operation we may obtain interesting relationships by taking
traces over bath states of the equations of motion (10.15) and (10.21). Consider
for example the Liouville equation in the Schrödinger representation, Eq. (10.15).
(Note: below, an operator Â in the interaction representation is denoted ÂI while
in the Schrödinger representation it carries no label. Labels S and B denote system
and bath.)

dρ̂

dt
= − i

�
[Ĥ , ρ̂] = − i

�
[ĤS, ρ̂] − i

�
[ĤB, ρ̂] − i

�
[V̂ , ρ̂] (10.60)

Taking TrB of both sides we note that TrB[ĤS, ρ̂] = [ĤS, TrBρ̂] = [ĤS, σ̂ ] while
TrB([ĤB, ρ̂]) = ∑

b [Eb, ρ̂] = 0. This leads to

dσ̂

dt
= − i

�
[ĤS, σ̂ ] − i

�
TrB([V̂ , ρ̂]) (10.61)
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Next consider the same time evolution in the interaction representation. For the
overall system we have (cf. Eq. (10.21))

dρ̂I

dt
= − i

�
[V̂I(t), ρ̂I(t)] (10.62)

where
ρ̂I(t) = e(i/�)Ĥ0t ρ̂(t)e−(i/�)Ĥ0t (10.63a)

V̂I(t) = e(i/�)Ĥ0t V̂ e−(i/�)Ĥ0t (10.63b)

Defining, in analogy to (10.58)

σ̂I(t) ≡ TrBρ̂I(t) (10.64)

it follows from (10.63a) that

σ̂I(t) = e(i/�)ĤSt σ̂ (t)e−(i/�)ĤSt = e(i/�)ĤSt(TrBρ̂(t))e
−(i/�)ĤSt (10.65)

Problem 10.11. (1) Show that (10.65) follows from (10.63a). (2) Use Eqs (10.65)
and (10.61) together with the definitions (10.63) to prove the following identity

dσ̂I(t)

dt
= − i

�
TrB([V̂I(t), ρ̂I(t)]) (10.66)

Proof of (10.66): Take the time derivative of (10.65) to get

dσ̂I(t)

dt
= i

�
[ĤS, σ̂I(t)] + e(i/�)ĤSt dσ̂ (t)

dt
e−(i/�)ĤSt (10.67)

then use Eq. (10.61) to find that the second term on the right in (10.67) is
−(i/�)[ĤS, σ̂I(t)] − (i/�)e(i/�)ĤStTrB([V̂ , ρ̂])e−(i/�)ĤSt . Equation (10.67) can
therefore be written as

dσ̂I(t)

dt
= − i

�
e(i/�)ĤStTrB([V̂ , ρ̂])e−(i/�)ĤSt

= − i

�
TrB(e

(i/�)ĤSt[V̂ , ρ̂]e−(i/�)ĤSt) = − i

�
TrB(e

(i/�)Ĥ0t[V̂ , ρ̂]e−(i/�)Ĥ0t)

(10.68)

which, using (10.63) gives (10.66).

Our goal is to describe the dynamics of our subsystem by constructing an
equation of motion for σ̂ . This equation should show the influence of coupling
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to the thermal reservoir, however, we desire that our dynamical description will be
self contained in the sense that elements of the overall density operator ρ̂ will not
explicitly appear in it. Equation (10.66) is obviously not yet of such a form, but
will be used as a starting point for our later discussion (see Section 10.4.3).

10.3.2 A simple example—the quantum mechanical basis for macroscopic rate
equations

Consider two coupled multilevel systems L and R, characterized by their spectrum of
eigenvectors and eigenvalues. The Hamiltonian without the intersystem coupling is

Ĥ0 = ĤL + ĤR (10.69)

ĤL =
∑

l

El|l〉〈l|; ĤR =
∑

r

Er|r〉〈r| (10.70)

We assume that V̂ , the operator that couples systems L and R to each other, mixes
only l and r states, that is, Vl,l′ = Vr,r′ = 0. We are interested in the transition
between these two subsystems, induced by V̂ . We assume that: (1) the coupling
V̂ is weak coupling in a sense explained below, and (2) the relaxation process
that brings each subsystem by itself (in the absence of the other) into thermal
equilibrium is much faster that the transition induced by V̂ between them. Note
that assumption (2), which implies a separation of timescales between the L � R
transition and the thermal relaxation within the L and R subsystems, is consistent
with assumption (1).

In the absence of V̂ the subsystems reach their own thermal equilibrium so that
their density matrices are diagonal, with elements given by

ρk ,k ≡ Pk = fK (Ek); fK (E) = e−βE

Tr(e−βHK )
; k = l, r; K = L, R (10.71)

When V̂ �= 0 transitions between L and R can take place, and their populations
evolve in time. Defining the total L and R populations by PK (t) = ∑

k Pk(t),
our goal is to characterize the kinetics of the L � R process. This is a reduced
description because we are not interested in the dynamics of individual level |l〉
and |r〉, only in the overall dynamics associated with transitions between the L and
R “species.” Note that “reduction” can be done on different levels, and the present
focus is on PL and PR and the transitions between them. This reduction is not done
by limiting attention to a small physical subsystem, but by focusing on a subset of
density-matrix elements or, rather, their combinations.
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We start from the Liouville equation (10.29) written in the basis of the |l〉 and
|r〉 states,

dρk ,k ′

dt
= − i

�
Ek ,k ′ρk ,k ′ − i

�

∑
k ′′

(Vk ,k ′′ρk ′′,k ′ − Vk ′′,k ′ρk ,k ′′); k , k ′, k ′′ = l, r

(10.72)

where Ek ,k ′ = Ek − Ek ′ , and write it separately for the diagonal and non-diagonal
elements of ρ̂. Recalling that V̂ couples only between states of different subsystems
we get

dρl,l

dt
= dPl

dt
= − i

�

∑
r

(Vl,rρr,l − Vr,lρl,r) = −2

�
Im

∑
r

Vr,lρl,r (10.73)

(and a similar equation with l ↔ r)

dρl,r

dt
= − i

�
El,rρl,r − i

�
(Vl,rρr,r − Vl,rρl,l)+

[
V × terms containing
non-diagonal ρ elements

]
(10.74)

In what follows we will disregard the terms containing non-diagonal elements of
ρ̂ multiplying elements of V̂ on the right-hand side of (10.74). The rationale for
this approximation is that provided assumptions (1) and (2) above are valid, ρ̂

remains close to the diagonal form obtained when V̂ = 0; with non-diagonal terms
of order V̂ .

Below we will use the timescale separation between the (fast) thermal relaxation
within the L and R subsystems and the (slow) transition between them in one
additional way: We will assume that relative equilibrium within each subsystem is
maintained, that is,

Pl(t) = PL(t)fL(El)

Pr(t) = PR(t)fR(Er)
(10.75)

Assume now that at the distant past, t → −∞, the two systems L and R were
uncoupled from each other and at their internal thermal equilibrium states (10.71).
This also implies that ρr,l(t = −∞) = 0. At that point in the distant past the
intersystem coupling V̂ was switched on. Propagation according to (10.74) yields

ρl,r(t) = − i

�
Vl,r

t∫
−∞

dτe−i(El,r/�)(t−τ)(Pr(τ )− Pl(τ )) (10.76)
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where El,r = El − Er . Upon inserting into (10.73) this leads to

dPl

dt
=

∑
r

t∫
−∞

dτSl,r(t − τ)(Pr(τ )− Pl(τ )) (10.77)

where

Sl,r(t − τ) ≡ 2

�2 Re|Vl,r|2e−i(El,r/�)(t−τ) = 2

�2 |Vl,r|2 cos
(

El,r

�
(t − τ)

)
(10.78)

Finally, summing Eq. (10.77) over all l and using (10.75) we get

dPL

dt
=

t∫
−∞

dτKL←R(t − τ)PR(τ )−
t∫

−∞
dτKR←L(t − τ)PL(τ ) (10.79)

with

KL←R(t) = 2

�2

∑
r

fR(Er)
∑

l

|Vl,r|2 cos
(

1

�
El,rt

)
(10.80)

and

KR←L(t) = 2

�2

∑
l

fL(El)
∑

r

|Vl,r|2 cos
(

1

�
El,rt

)
(10.81)

Problem 10.12. Show that

KR←L(t = 0) = (2/�2)
∑

l
fL(El)〈l|V̂ 2|l〉 (10.82)

(and a similar relation in which r ↔ l for KL←R(t = 0)).

The kinetic Eq. (10.79) is non-Markovian: the rate at which PL(t) changes
depends on its earlier values, going back over a time period characterized by the
“memory time”—times above which KR←L(t), KL←R(t) ∼ 0. To understand the
microscopic origin of this memory consider, for example, the function KR←L(t).
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We assume that the manifold of states {|r〉} is a continuum, that is, that the corres-
ponding eigenvalues {Er} span a continuous energy range. Let Er0 be the center of
this range, then

∑
r

|Vl,r|2 cos
(

1

�
El,rt

)
=Re

∫
dErρ(Er)|Vl,r|2 exp

(
i

�
El,rt

)

=Re
{

e(i/�)(El−Er0)t

∞∫
−∞

dErρ(Er)|Vl,r|2

× exp
(
− i

�
(Er − Er0)t

)}
(10.83)

Provided that ρ(Er)|Vl,r|2 is a relatively smooth function of Er , the Fourier trans-
form in (10.83) decays to zero on the timescale �W−1

R , where WR is the spectral
width of the manifold {Er}. A similar argument holds for KL←R(t), which decays to
zero on a timescale �W−1

L . If these timescales are much smaller than the character-
istic L � R transition time, that is, if the spectral widths of the L and R manifolds
are large relative to the inverse reaction rate (multiplied by �) we can replace PR(τ )

and PL(τ ) in (10.79) by PR(t) and PL(t), respectively, to get

dPL

dt
= kL←RPR − kR←LPL (10.84)

where

kR←L =
∞∫

0

dτKR←L(τ ); kL←R =
∞∫

0

dτKL←R(τ ) (10.85)

The approximation that leads to from Eq. (10.79) to (10.84), which relies on the large
spectral width and the smooth spectral functions of the state manifolds involved, is
sometimes referred to as the wide band approximation. Similar arguments were used
in Section 9.1 in treating the decay of a single state coupled to a continuous manifold
of states, in order to obtain a constant decay rate given by the golden rule formula,
Eq. (9.25). Also in the present case, under the approximations invoked above, the
rates (10.85) can be written as thermally averaged golden-rule expressions (see
Problem 10.13 below).
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Problem 10.13. Show that

kR←L =
∞∫

0

dτKR←L(τ ) =
∑

l

fL(El)k{r}←l (10.86)

where k{r}←l = (2π/�)
∑

r |Vl,r|2δ(El − Er) has the form of a simple golden-
rule type rate to go from state l into a continuous manifold {r}. Therefore kR←L
is just the thermal average of this rate over the thermal distribution of l states.
kL←R may be interpreted in an equivalent way.

Equations (10.79)–(10.85) provide the basis for many macroscopic rate theories,
for example, the kinetic theory of chemical reaction rates. Obviously it was formu-
lated above for a very simple situation that in the language of chemical reaction
rates corresponds to unimolecular inter-conversion. Still, the concepts that were
introduced are general, and can be used in more complex situations. We have relied
on two key ideas: First, the separation of timescales between the (small) transition
rate under discussion and the (fast) thermal relaxation rate has made it possible to
focus on the transition between two subsystems defined by manifolds of energy
states, and avoid the need to address individual transitions between all microscopic
levels. The use of the density matrix formalism was critical at this stage, as it has
made it possible to consider separately the diagonal and non-diagonal elements of
the density matrix and to invoke the consequence of the timescale separation dis-
cussed above with regard to their relative sizes. This leads to Eq. (10.79). Second,
we have used arguments similar to those encountered in our discussion of the decay
of a level coupled to a broad continuum in order to go over to the Markovian limit,
Eq. (10.84). These arguments again rely on timescale separation, now between the
(relatively short) time, W−1, associated with the spectral structure of the continu-
ous level manifolds that affect irreversible decay, and the (relatively long) time that
characterizes the process of interest.

The above derivation has relied in an essential way on the smallness of the non-
diagonal elements of the density matrix in the energy representation that was chosen
in accord with our physical picture of the system. Without explicitly stating the fact,
we have assumed that dephasing, that is, the damping of coherences reflected in
the non-diagonal density matrix elements, is fast. In what follows we explore more
general applications of the density matrix formalism, where the existence of the
thermal environment and the coupling of system of interest to this environment are
considered explicitly. This will make it possible address directly population and
phase relaxation and the dependence of their rates on the physical characteristics
of the system.
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10.4 Time evolution equations for reduced density operators:
The quantum master equation

Let us state our goal again. The system of interest is in contact with its thermal
environment. This environment is interesting to us only as much as it affects
the dynamics of our system. We want to derive closed equations of motion for the
system, where “closed” implies that only relevant variables, those belonging to the
system’s subspace, appear explicitly. The density matrix formalism provides a con-
venient quantum mechanical framework for this task, where we seek an equation of
motion for σ̂ = TrBρ̂, the so called quantum master equation. An analogous meth-
odology that starts from the classical distribution function f (rN , pN ; t) is equally
useful in classical mechanics, however, with the exception of deriving a classical
Langevin equation for a system interacting with a harmonic bath (Section 8.2.5), the
reduced equations of motion advanced in Chapter 8 were constructed phenomen-
ologically. The derivation of equation (10.84) can be seen as a microscopic basis
for the phenomenological master equations used in Section 8.3. Now we aim for
a more general microscopic derivation which, as we will see, not only provides
the foundation for such reduced descriptions, but can also identify new dynamical
issues not easily come by in a phenomenological approach. Projection operators,
operators that project onto the subspace of interest, are very useful for carrying out
this task.

10.4.1 Using projection operators

We have already encountered the projection operator formalism in Appendix 9A,
where an application to the simplest system–bath problem—a single level interact-
ing with a continuum, was demonstrated. This formalism is general can be applied
in different ways and flavors. In general, a projection operator (or projector) P̂ is
defined with respect to a certain sub-space whose choice is dictated by the physical
problem. By definition it should satisfy the relationship P̂2 = P̂ (operators that
satisfy this relationship are called idempotent), but other than that can be chosen
to suit our physical intuition or mathematical approach. For problems involving a
system interacting with its equilibrium thermal environment a particularly conveni-
ent choice is the thermal projector: An operator that projects the total system–bath
density operator on a product of the system’s reduced density operator and the
equilibrium density operator of the bath, ρ̂(B)

eq

P̂ρ̂ = ρ̂(B)
eq TrBρ̂ = ρ̂(B)

eq σ̂ (10.87)

Since TrBρ̂
(B)
eq = 1 P̂ is indeed idempotent, P̂2 = P̂. The complementary projector

Q̂ is defined simply by Q̂ = 1 − P̂.
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Problem 10.14. Using the definitions (10.63a) and (10.58) show that

P̂ρ̂I(t) = ρ̂(B)
eq σ̂I(t) (10.88)

The projection operator P̂ is chosen according to our stated need: We want an
equation of motion that will describe the time evolution of a system in contact with
a thermally equilibrated bath. P̂ρ̂ of Eq. (10.87) is the density operator of just this
system, and its dynamics is determined by the time evolution of the system’s density
operator σ̂ . Finding an equation of motion for this evolution is our next task.

10.4.2 The Nakajima–Zwanzig equation

It is actually simple to find a formal time evolution equation “in P space.” This
formal simplicity stems from the fact that the fundamental equations of quantum
dynamics, the time-dependent Schrödinger equation or the Liouville equation, are
linear. Starting from the quantum Liouville equation (10.8) for the overall system—
system and bath,

d

dt
ρ̂(t) = − i

�
[Ĥ , ρ̂(t)] ≡ −iLρ̂(t); L ≡ �

−1[Ĥ ,] (10.89)

we want to find an equation of motion for the density matrix of a chosen subsystem.
Let P̂ be a projector on this relevant part of the overall system and let Q̂ = 1 − P̂.
Then (10.89) trivially leads to

d

dt
P̂ρ̂ = −iP̂Lρ̂ = −iP̂LP̂ρ̂ − iP̂LQ̂ρ̂ (10.90)

d

dt
Q̂ρ̂ = −iQ̂Lρ̂ = −iQ̂LP̂ρ̂ − iQ̂LQ̂ρ̂ (10.91)

These equations look complicated, however, in form (as opposed to in physical
contents) they are very simple. We need to remember that in any representation
that uses a discrete basis set ρ̂ is a vector and L is a matrix. The projectors P̂ and Q̂
are also matrices that project on parts of the vector space (see Appendix 9A). For
example, in the simplest situation

P̂ρ̂ =
(
ρP
0

)
; Q̂ρ̂ =

(
0
ρQ

)
; ρ̂ = P̂ρ̂ + Q̂ρ̂ =

(
ρP
ρQ

)
(10.92)

where ρP is just that part of ρ̂ that belongs to the P space, etc. Similarly

P̂LP̂ =
(

LPP 0
0 0

)
; P̂LQ̂ =

(
0 LPQ
0 0

)
, etc. (10.93)
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where we should keep in mind that LPQ is not necessarily a square matrix because
the two complementary subspaces defined by P̂ and Q̂ are not usually of equal
dimensions. Writing Eq. (10.89) in the form

d

dt

(
ρP
ρQ

)
= −i

(
LPP LPQ
LQP LQQ

)(
ρP
ρQ

)
(10.94a)

Equations (10.90) and (10.91) are seen to be just the equivalent set of equations
for ρP and ρQ. One word of caution is needed in the face of possible confusion:
To avoid too many notations it has become customary to use P̂ρ̂ also to denote ρP ,
P̂LP̂ also to denote LPP , etc., and to let the reader decide from the context what
these structures mean. With this convention Eq. (10.94a) is written in the form

d

dt

(
P̂ρ̂

Q̂ρ̂

)
= −i

(
P̂LP̂ P̂LQ̂
Q̂LP̂ Q̂LQ̂

)(
P̂ρ̂

Q̂ρ̂

)
(10.94b)

Indeed, Eqs (10.90) and (10.91) are written in this form.
We proceed by integrating Eq. (10.91) and inserting the result into (10.90).

Again the procedure is simple in form. If P̂ρ̂ = x and Q̂ρ̂ = y were two scalar
variables and all other terms were scalar coefficients, this would be a set of two
coupled first order differential equations

d

dt
x = Ax + By (10.95)

d

dt
y = Cx + Dy (10.96)

and we could proceed by solving (10.96) to get (as can be verified by taking the
time derivative)

y(t) = eD(t−t0)y(t0)+
t∫

t0

dτeD(t−τ)Cx(τ ) (10.97)

and inserting into (10.95) to get

d

dt
x = Ax + B

t∫
t0

dτeD(t−τ)Cx(τ )+ BeD(t−t0)y(t0) (10.98)

We will be doing exactly the same thing with Eqs. (10.90) and (10.91). Integration
of (10.91) yields

Q̂ρ̂(t) = e−iQ̂L(t−t0)Q̂ρ̂(t0)− i

t∫
t0

dτe−iQ̂L(t−τ)Q̂LP̂ρ̂(τ ) (10.99)
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(this can again be verified by taking time derivative) and inserting this into (10.90)
leads to

d

dt
P̂ρ̂(t) = −iP̂LP̂ρ̂(t)−

t∫
t0

dτ P̂Le−iQ̂L(t−τ)Q̂LP̂ρ̂(τ )− iP̂Le−iQ̂L(t−t0)Q̂ρ̂(t0)

(10.100)

The identity (10.100) is the Nakajima–Zwanzig equation. It describes the time
evolution of the “relevant part” P̂ρ̂(t) of the density operator. This time evolution
is determined by the three terms on the right. Let us try to understand their physical
contents. In what follows we refer to the relevant and irrelevant parts of the overall
system as “system” and “bath” respectively.

The first term, −iP̂LP̂ρ̂(t) describes the time evolution that would be observed
if the system was uncoupled from the bath throughout the process (i.e. if Q̂LP̂ =
P̂LQ̂ = 0). The second term is the additional contribution to the time evolution of
the system that results from its coupling to the bath. This contribution appears as a
memory term that depends on the past history, P̂ρ̂(τ ), of the system. Consider the
integrand in this term, written in the form1

P̂LQ̂︸ ︷︷ ︸
4

× e−iQ̂LQ̂(t−τ)︸ ︷︷ ︸
3

× Q̂LP̂︸ ︷︷ ︸
2

× P̂ρ̂(τ )︸ ︷︷ ︸
1

It shows the relevant (system) part of the density operator at time τ (1) coupled
to the bath (2), propagated in the bath subspace from time τ to time t (3) and
affecting again the system via the system-bath coupling (4). This is a mathematical
expression of what we often refer to as a reaction field effect: The system at some
time τ appears to act on itself at some later time t, and the origin of this action is
the reaction of the system at time t to the effect made by the same system on the
bath at some earlier time τ .

The last term on the right-hand side of Eq. (10.100) also has a clear physical
interpretation: This is a contribution to force exerted on the system at time t, associ-
ated with the initial (t = t0) correlations between the system and the bath embedded
in the term Q̂ρ̂(t0). There are many situations where this contribution to the relevant
time evolution can be disregarded, at least at long time, and it is identically zero
if Q̂ρ̂(t0) = 0. The last situation appears when P̂ is the thermal projector (10.87)
if we assume that until time t0 the system and bath were uncoupled with the bath
kept at thermal equilibrium.

1 Note that exp(Q̂LQ̂t)Q̂ρ̂ = exp(Q̂Lt)Q̂ρ̂.
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We end this discussion with two comments. First, we note that the Nakajima–
Zwanzig equation (10.100) is exact; no approximations whatever were made in
its derivation. Second, this identity can be used in many ways, depending on the
choice of the projection operator P̂. The thermal projector (10.87) is a physically
motivated choice. In what follows we present a detailed derivation of the quantum
master equation using this projector and following steps similar to those taken
above, however, we will sacrifice generality in order to get practical usable results.

10.4.3 Derivation of the quantum master equation using the thermal projector

Practical solutions of dynamical problems are almost always perturbative. We are
interested in the effect of the thermal environment on the dynamical behavior of a
given system, so a natural viewpoint is to assume that the dynamics of the system
alone is known and to take the system–bath coupling as the perturbation. We have
seen (Section 2.7.3) that time dependent perturbation theory in Hilbert space is most
easily discussed in the framework of the interaction representation. Following this
route2 we start from the Liouville equation in this representation (cf. Eq. (10.21))

dρ̂I

dt
= − i

�
[V̂I(t), ρ̂I(t)] (10.101)

and, using P̂ + Q̂ = 1, write the two projected equations

d

dt
P̂ρ̂I = − i

�
P̂[V̂I, (P̂ + Q̂)ρ̂I] (10.102)

d

dt
Q̂ρ̂I = − i

�
Q̂[V̂I, (P̂ + Q̂)ρ̂I] (10.103)

Now use Eqs (10.88) and (10.64) in (10.102) to get

d

dt
σ̂I =− i

�
TrB[V̂I, ρ̂(B)

eq σ̂I] − i

�
TrB[V̂I, Q̂ρ̂I]

=− i

�
[ ˆ̄VI, σ̂I] − i

�
TrB[V̂I, Q̂ρ̂I] (10.104)

where ˆ̄V = TrB(V̂ ρ̂(B)
eq ) (10.105)

and ˆ̄VI = e(i/�)ĤSt ˆ̄Ve−(i/�)ĤSt (10.106)

We shall see below that the last term on the right in (10.104) is second order
and higher in the system–bath interaction V̂ . The time evolution obtained by

2 This derivation follows that of V. May and O. Kühn, Charge and Energy Transfer Dynamics in
Molecular Systems (Wiley-VCH, Berlin, 2000).
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disregarding it
dσ̂I

dt
= − i

�
[ ˆ̄VI, σ̂I] (10.107)

corresponds to a modified system Hamiltonian, where ĤS is replaced by ĤS + ˆ̄V .
Indeed, the equivalent equation in the Schrödinger representation is

dσ̂

dt
= − i

�
[ĤS + ˆ̄V , σ̂ ] (10.108)

The operator ˆ̄V has a very simple interpretation: it is a mean potential that corrects
the system Hamiltonian for the average effect of the bath. Such corrections are very
important, for example, in determining solvent shifts of spectral lines. Such shifts
result from the fact that the average solvent interaction often influences differently
the energies of the ground and excited states of a solvent molecule. At the same
time it is clear that such average interactions can only affect the system eigenstates
and energy levels, but cannot cause relaxation. We see that relaxation phenomena
must be associated with the last term of (10.104) that was neglected in (10.107).

Moreover, when addressing relaxation, we will often disregard the ˆ̄V term: This
amounts to including it in ĤS thus working with a renormalized system Hamiltonian
that includes the energy shifts associated with the average effect of the solvent.

Problem 10.15. Show that TrB[V̂I, ρ̂
(B)
eq σ̂I] = [ ˆ̄VI, σ̂I] where ˆ̄VI is defined by

(10.105) and (10.106).

Consider now this last term, (i/�)TrB[V̂I, Q̂ρ̂I], in (10.104). It contains Q̂ρ̂I
whose time evolution is given by Eq. (10.103). We rewrite this equation in the form

d

dt
Q̂ρ̂I = − i

�
Q̂[V̂I, ρ̂(B)

eq σ̂I] − i

�
Q̂[V̂I, Q̂ρ̂I] (10.109)

5 and formally integrate it to get

Q̂ρ̂I(t) = Q̂ρ̂I(0)− i

�

t∫
0

dt′Q̂[V̂I(t
′), ρ̂(B)

eq σ̂I(t
′)] − i

�

t∫
0

dt′Q̂[V̂I(t
′), Q̂ρ̂I(t

′)]

(10.110)

Thisequationcanbe iteratedby inserting thisexpression for Q̂ρ̂I(t) into the integrand
in the second term on the right, and a perturbative expansion in increasing powers
of V̂ can be obtained by continuing this procedure repeatedly. This is the analog
of the perturbative expansion of the time-dependent wavefunction, Eq. (2.76). The
resulting infinite series for Q̂ρ̂I(t)canbe inserted intoEq. (10.104) toyielda formally
exact equation in P-space. Of course this equation contains the effect of the system–
thermal bath coupling and is generally very difficult to simplify and to solve.
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Fortunately a substantial amount of relevant physics can be extracted by consid-
ering the low-order terms in this expansion. The lowest order is the mean potential
approximation (10.107). The next order is obtained by neglecting the last term on
the right-hand side of (10.110) and inserting the remaining expression for Q̂ρ̂I into
Eq. (10.104). The resulting approximate time evolution equation for the system
density operator σ̂ is what is usually referred to as the quantum master equation.

Problem 10.16. Starting from Eq. (10.66), show that replacing ρ̂I(t) on the right-
hand side by ρ̂I(t) = σ̂I(t)ρ̂

(B)
I (t), where ρ̂

(B)
I (t) = eiĤBt/�ρ̂(B)(t)e−iĤBt/� is the

density operator of the thermal reservoir and σ̂I(t) = eiĤSt/�σ̂ (t)e−iĤSt/�, then
taking TrB of both sides, leads to

dσ̂I(t)

dt
= − i

�
[TrB(V̂I(t)ρ̂

(B)
I (t)), σ̂I(t)] = − i

�
[ ˆ̄VI(t), σ̂I(t)] (10.111)

where ˆ̄V (t) = TrB(V̂ ρ̂(B)(t)) and ˆ̄VI(t) = e(i/�)ĤSt ˆ̄V (t)e−(i/�)ĤSt .
Equation (10.111) has the same form as Eq. (10.107), however, the definition
(10.105) is replaced by a more general definition involving the time-dependent
density operator of the bath.

10.4.4 The quantum master equation in the interaction representation

As just stated, we henceforth use the term “quantum master equation” (QME) to
denote the approximate time evolution equation for the system’s density matrix σ̂

obtained in second order in the system–bath coupling V̂ . To obtain this equation
we start from Eq. (10.104) and use a simplified version of Eq. (10.110)

Q̂ρ̂I(t) = − i

�

t∫
0

dt′Q̂[V̂I(t
′), ρ̂(B)

eq σ̂I(t
′)] (10.112)

in which we have truncated the right-hand side after the term that is lowest order in
V̂ and also disregarded the initial correlation term Q̂ρ̂I(0). The latter approximation
amounts to assuming that ρ̂I(0) is in P space, that is, that initially the system and
the bath are uncorrelated and that the bath is in thermal equilibrium, or at least to
assuming that the effect of initial correlations decays fast relative to the timescale
at which the system is observed. Inserting (10.112) into (10.104) leads to

d

dt
σ̂I = − i

�
[ ˆ̄VI, σ̂I] − 1

�2

t∫
0

dτTrB[V̂I(t), Q̂[V̂I(τ ), ρ̂(B)
eq σ̂I(τ )]] (10.113)
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We note in passing that had we included the bath–average interaction (10.105)
as part of the system’s Hamiltonian, then the first term on the right of (10.113)
would not appear. This is indeed the recommended practice for system-thermal
bath interactions, however, we keep this term explicitly in (10.113) and below
because, as will be seen, an equivalent time-dependent term plays an important
role in describing the interaction of such system with an external electromagnetic
field.

Next consider the integrand in (10.113)

TrB[V̂I(t), Q̂[V̂I(τ ), ρ̂(B)
eq σ̂I(τ )]]

= TrB{V̂I(t)Q̂(V̂I(τ )ρ̂
(B)
eq σ̂I(τ ))− V̂I(t)Q̂(ρ̂(B)

eq σ̂I(τ )V̂I(τ ))

−Q̂(V̂I(τ )ρ̂
(B)
eq σ̂I(τ ))V̂I(t)+ Q̂(ρ̂(B)

eq σ̂I(τ )V̂I(τ ))V̂I(t)} (10.114)

Further simplification is achieved if we assume that the interaction V̂ is a product
of system and bath operators, that is

V̂ = V̂ SV̂ B (10.115)

so that ˆ̄V = V̂ SV̄ B and V̂I(t) = V̂ S
I V̂ B

I ; V̂ S
I = e(i/�)ĤSt V̂ Se−(i/�)ĤSt ; V̂ B

I =
e(i/�)ĤBt V̂ Be−(i/�)ĤBt . To see how the simplification works consider for example
the second term on the right of Eq. (10.114)

TrB{−V̂I(t)Q̂(ρ̂(B)
eq σ̂I(τ )V̂I(τ ))}

= TrB{−V̂I(t)ρ̂
(B)
eq σ̂I(τ )V̂I(τ )} − TrB{−V̂I(t)P̂(ρ̂(B)

eq σ̂I(τ )V̂I(τ ))} (10.116)

Using (10.115) and the cyclic property of the trace, the first term on the right of
(10.116) takes the form

TrB{−V̂I(t)ρ̂
(B)
eq σ̂I(τ )V̂I(τ )} =−TrB(V̂

B
I (τ )V̂ B

I (t)ρ̂(B)
eq ) · V̂ S

I (t)σ̂I(τ )V̂
S
I (τ )

=−〈V̂ B
I (τ )V̂ B

I (t)〉 · V̂ S
I (t)σ̂I(τ )V̂

S
I (τ ) (10.117)

and, using (10.87), the second is

TrB{−V̂I(t)P̂(ρ̂(B)
eq σ̂I(τ )V̂I(τ ))}

= −TrB[V̂ B
I (t)V̂ S

I (t)ρ̂(B)
eq TrB(ρ̂

(B)
eq V̂ B

I (τ )σ̂I(τ )V̂
S
I (τ ))]

= −TrB(V̂
B
I (t)ρ̂(B)

eq )TrB(ρ̂
(B)
eq V̂ B

I (τ ))V̂ S
I (t)σ̂I(τ )V̂

S
I (τ )

= −(V̄ B)2V̂ S
I (t)σ̂I(τ )V̂

S
I (τ ) (10.118)
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where

V̄ B ≡ 〈V̂ B〉 = TrB(V̂
B
I (t)ρ̂(B)

eq ) (10.119)

is time independent. Together, Eqs (10.116)–(10.118) yield

TrB{−V̂I(t)Q̂(ρ̂(B)
eq σ̂I(τ )V̂I(τ ))} = −C(τ − t)V̂ S

I (t)σ̂I(τ )V̂
S
I (τ ) (10.120)

where

C(t − τ) = 〈V̂ B
I (t)V̂ B

I (τ )〉 − (V̄ B)2 = 〈δV̂ B
I (t)δV̂ B

I (τ )〉

δV̂ B ≡ V̂ B − V̄ B
(10.121)

is a bath correlation function. Time correlation functions (Chapter 6) involving
bath operators are seen to emerge naturally in our development. This is the way by
which information about the bath appears in the reduced description of our system.

Problem 10.17. Repeat the procedure used above to get Eq. (10.120), now using
instead of Eq. (10.115) a sum of products of systems and bath operators

V̂ =
∑

n

V̂ S
n V̂ B

n (10.122)

Show that the result equivalent to Eq. (10.120) is in this case

TrB{−V̂I(t)Q̂(ρ̂(B)
eq σ̂I(τ )V̂I(τ ))} = −

∑
n,m

Cnm(τ − t)V̂ S
Im(t)σ̂I(τ )V̂

S
In(τ )

(10.123)

where
Cnm(t) = 〈δV̂ B

In(t)δV̂ B
Im(0)〉 (10.124)

and

V̂ S
In = e(i/�)ĤSt V̂ S

n e−(i/�)ĤSt ; V̂ B
In = e(i/�)ĤBt V̂ B

n e−(i/�)ĤBt (10.125)
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Repeating the procedure that led to (10.120) for all terms in Eq. (10.114) and
collecting the resulting expression leads to the final result

dσ̂I

dt
=− i

�
[ ˆ̄VI, σ̂I]

− 1

�2

t∫
0

dτ {C(t− τ)[V̂ S
I (t), V̂ S

I (τ )σ̂I(τ )]−C∗(t− τ)[V̂ S
I (t), σ̂I(τ )V̂

S
I (τ )]}

(10.126)

where the first term in the integrand results from the first and third terms in
Eq. (10.114), while the second term is obtained from the second and forth terms in
that equation. The equivalent result for the more general case (10.22) is

dσ̂I

dt
= − i

�
[ ˆ̄VI, σ̂I]

− 1

�2

∑
n,m

t∫
0

dτ(Cmn(t − τ)[V̂ S
Im(t), V̂ S

In(τ )σ̂I(τ )]

− C∗
mn(t − τ)[V̂ S

Im(t), σ̂I(τ )V̂
S
In(τ )]) (10.127)

where
Cmn(t) = 〈δV̂ B

Im(t)δV̂ B
In(0)〉 = C∗

nm(−t) (10.128)

The second equality results from the general identity (6.64)

CAB(t) = C∗
BA(−t); where CAB(t) = 〈Â(t)B̂(0)〉 (10.129)

for any two Hermitian bath operators Â and B̂ with X̂ (t) = eiĤBt/�X̂ e−iĤBt/�

(X̂ = Â, B̂).

10.4.5 The quantum master equation in the Schrödinger representation

Equations (10.126) and (10.127) represent the quantum master equation in the
interaction representation. We now transform it to the Schrödinger picture using

σ̂ (t) = e−(i/�)ĤSt σ̂I(t)e
(i/�)ĤSt (10.130)

which yields
dσ̂

dt
= − i

�
[ĤS, σ̂ ] + e−(i/�)ĤSt dσ̂I(t)

dt
e(i/�)ĤSt (10.131)
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Using (10.126) we find

e−(i/�)ĤSt dσ̂I(t)

dt
e(i/�)ĤSt = − i

�
[ ˆ̄V , σ̂ (t)] − 1

�2

t∫
0

dτ {C(t − τ)

× [V̂ S, e−(i/�)ĤS(t−τ)V̂ Sσ̂ (τ )e(i/�)ĤS(t−τ)]
−C∗(t − τ)[V̂ S, e−(i/�)ĤS(t−τ)σ̂ (τ )V̂ Se(i/�)ĤS(t−τ)]}

(10.132)

where all the operators on the right-hand side are in the Schrödinger representation.
Using this in (10.131) and making the transformation t − τ → τ finally leads to

dσ̂ (t)

dt
= −i

�
[ĤS + ˆ̄V , σ̂ ] − 1

�2

t∫
0

dτ {C(τ )[V̂ S, e−(i/�)ĤSτ V̂ Sσ̂ (t − τ)e(i/�)ĤSτ ]

−C∗(τ )[V̂ S, e−(i/�)ĤSτ σ̂ (t − τ)V̂ Se(i/�)ĤSτ ]} (10.133)

Problem 10.18. Show that the equivalent expression in the more general case
(10.113) is

dσ̂ (t)

dt
= −i

�
[ĤS + ˆ̄V , σ̂ ] − 1

�2

∑
m,n

t∫
0

dτ

× {Cmn(τ )[V̂ S
m, e−(i/�)ĤSτ V̂ S

n σ̂ (t − τ)e(i/�)ĤSτ ]
− C∗

mn(τ )[V̂ S
m, e−(i/�)ĤSτ σ̂ (t − τ)V̂ S

n e(i/�)ĤSτ ]} (10.134)

10.4.6 A pause for reflection

What did we achieve so far? We have an equation, (10.133) or (10.134), for the
time evolution of the system’s density operator. All terms in this equation are
strictly defined in the system sub-space; the effect of the bath enters through cor-
relation functions of bath operators that appear in the system–bath interaction.
These correlation functions are properties of the unperturbed equilibrium bath.
Another manifestation of the reduced nature of this equation is the appearance of
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memory: The time evolution of σ̂ at time t is not determined just by σ̂ (t) but by
the past history of σ̂ . As explained in Sections 7.4.2 and 8.2.6, and in analogy to
Eqs (10.95)–(10.98), this non-local temporal character (or non-Markovian beha-
vior) stems from the fact that the system evolves at time t in response to the state of
the bath at that time and the latter is determined by the history of the system–bath
interaction. Equation (10.133) (or (10.134)) results from a low order expansion
of the system–bath interaction, so its validity is expected to be limited to weak
system–bath coupling. The neglect of initial system–bath correlations, expressed
in dropping the term Q̂ρ̂I(0) in Eq. (10.110) constitutes another approximation, or
rather a restriction on the choice of the initial nonequilibrium state. There is a large
class of problems, for example the study of nonequilibrium steady states, for which
this approximation is of no consequence.

10.4.7 System-states representation

Next we express Eq. (10.133) in the ĤS representation, that is, the representa-
tion defined by the eigenstates of the system Hamiltonian ĤS. Using relationships
such as

[ĤS, σ̂ ]ab = (Ea − Eb)σab (10.135)

[ ˆ̄V , σ̂ ]ab =
∑

c

(V̄acσcb − σacV̄cb) (10.136)

[V̂ S, e−(i/�)ĤSτ V̂ Sσ̂ (t − τ)e(i/�)ĤSτ ]ab

=
∑
cd

V S
acV S

cdσdb(t − τ)e(i/�)(Eb−Ec)τ−
∑
cd

V S
acσcd(t − τ)V S

dbe(i/�)(Ed−Ea)τ

(10.137)

with V S
ab = 〈a|V̂S|b〉 and a, b stand for eigenstates of ĤS. We also define the

coupling correlation function

Mab,cd(t) ≡ 1

�2 C(t)V S
abV S

cd (10.138)

which, using (10.129), is easily shown to satisfy

M ∗
ab,cd(t) = Mba,dc(−t) = Mdc,ba(−t) (10.139)

The second equality, which is trivial for this case, was added to show the correspond-
ence to the more general case, Eq. (10.144) below. Using Eqs (10.135)–(10.138),
Eq. (10.133) is expressed in the ĤS representation as

dσab

dt
= −iωabσab − i

�

∑
c

(V̄acσcb − σacV̄cb)+
(

dσab

dt

)
B

(10.140)
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where ωab = (Ea − Eb)/�. The first two terms on the right-hand side constitute
the system-states representation of the mean potential approximation, Eq. (10.108),
and the last term is

(
dσab

dt

)
B
= −

∑
c,d

t∫
0

dτ {Mac,cd(τ )e
iωbcτ σdb(t− τ)+Mcd,db(−τ)eiωdaτ σac(t− τ)}

+
∑
c,d

t∫
0

dτ(Mdb,ac(τ )e
iωdaτ + Mdb,ac(−τ)eiωbcτ )σcd(t − τ)

(10.141)

This last term will be seen to contain the physics of thermal relaxation.

Problem 10.19. For the function Rab,cd(ω) ≡ ∫∞
0 dτMab,cd(τ )eiωτ prove the

identity

Rab,cd(ω)+ R∗dc,ba(ω) =
∞∫

−∞
dteiωtMab,cd(t) (10.142)

Problem 10.20. Show that in the more general case (10.134) we get (10.141) with

Mab,cd(t) = 1

�2

∑
m,n

Cmn(t)V
Sm
ab V Sn

cd (10.143)

that satisfies (using (10.128))

M ∗
ab,cd(t) =

1

�2

∑
m,n

Cnm(−t)V Sm
ba V Sn

dc = Mdc,ba(−t) (10.144)

Note that the result (10.141) satisfies the basic requirement of conservation of
probability, that is

d

dt
TrSσ̂ = 0 that is,

d

dt

∑
a

σaa = 0 (10.145)

at all time. Indeed, it is clearly satisfied by the first two terms (the mean potential
approximation) in (10.140). To show that it is satisfied also by the last (relaxation)
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term put a = b in (10.141) and sum over a to get

∑
a

(
dσaa

dt

)
B
=

∑
a,c,d

t∫
0

dτ {−Mac,cd(τ )e
iωacτ σda(t − τ)

− Mcd,da(−τ)eiωdaτ σac(t − τ)+ Mda,ac(τ )e
iωdaτ σcd(t − τ)

+ Mda,ac(−τ)eiωacτ σcd(t − τ)} (10.146)

It is easy to see by interchanging subscript notations that the first and third terms
on the right of (10.146) cancel each other, as do the second and fourth terms. Other
consistency issues are discussed in Section 10.4.10.

10.4.8 The Markovian limit—the Redfield equation

Simpler and more manageable expressions are obtained in the limit where the
dynamics of the bath is much faster than that of the system. In this limit the func-
tions M (t) (i.e. the bath correlations functions C(t) of Eq. (10.121) or Cmn(t) of
Eq. (10.124)) decay to zero as t →∞ much faster than any characteristic system
timescale. One may be tempted to apply this limit by substituting τ in the elements
σmn(t − τ) in Eq. (10.141) by zero and take these terms out of the integral over τ ,
however this would be wrong because, in addition to their relatively slow physical
time evolution, non-diagonal elements of σ̂ contain a fast phase factor. Consider
for example the integral in first term on the right-hand side of (10.141),

I1 =
t∫

0

dτMac,cd(τ )e
iωbcτ σdb(t − τ) (10.147)

In the free system (i.e. without coupling to the reservoir) σdb(t) = e−iωdbtσdb(0).
This fast phase oscillation, or its remaining signature in the presence of system–bath
coupling, should not be taken out of the integral. We therefore use the interaction
representation of σ̂ (see Eq. (10.65))

σdb(t) = e−iωdbtσ I
db(t) (10.148)

and assume that the relaxation of Mac,cd(τ ) to zero as τ → ∞ is fast relative to
the timescale on which σ I

db changes. We then approximate σ I
db(t − τ) ≈ σ I

db(t) and
take it out of the integral. This yields

I1 = e−iωdbtσ I
db(t)

t∫
0

dτMac,cd(τ )e
iωbcτ+iωdbτ = σdb(t)

t∫
0

dτMac,cd(τ )e
iωdcτ

(10.149)
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In the second equality we have regained the Schrödinger representation of σ̂ (t).
A final approximation, valid for times longer than the relaxation time of M (t), is
to take the upper limit of the time integral in (10.149) to infinity, leading to

I1 = Rac,cd(ωdc)σdb(t) (10.150)

where we denote here and henceforth

Rab,cd(ω) ≡
∞∫

0

dτMab,cd(τ )e
iωτ (10.151)

Proceeding along similar lines, the integral in the second term on the right of
(10.141) is shown to be

I2 =
t∫

0

dτMcd,db(−τ)eiωdaτ σac(t − τ) → σac(t)

∞∫
0

dτMcd,db(−τ)e−iωcdτ

= σac(t)

∞∫
0

dτ(Mbd,dc(τ )e
iωcdτ )∗ = σac(t)R

∗
bd,dc(ωcd) (10.152)

where we have used the symmetry property, Eq. (10.139) or (10.144), of M .
Similarly, the integrals in the third and forth terms are transformed to

I3 =
t∫

0

dτMdb,ac(τ )e
iωdaτ σcd(t − τ) → σcd(t)

∞∫
0

dτMdb,ac(τ )e
iωcaτ

= σcd(t)Rdb,ac(ωca) (10.153)

and

I4 =
t∫

0

dτMdb,ac(−τ)eiωbcτ σcd(t − τ) → σcd(t)

∞∫
0

dτMdb,ac(−τ)eiωbdτ

= σcd(t)R
∗
ca,bd(ωdb) (10.154)
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Combining all terms we get the so called Redfield equation

dσab(t)

dt
= − iωabσab − i

�

∑
c

(V̄acσcb − σacV̄cb)

−
∑
c,d

(Rac,cd(ωdc)σdb(t)+ R∗bd,dc(ωcd)σac(t)

− [Rdb,ac(ωca)+ R∗ca,bd(ωdb)]σcd(t)) (10.155)

that was first introduced by Redfield in the nuclear magnetic resonance literature.3

To summarize:

1. The Redfield equation describes the time evolution of the reduced density
matrix of a system coupled to an equilibrium bath. The effect of the bath

enters via the average coupling ˆ̄V = 〈ĤSB〉 and the “relaxation operator,” the
last sum on the right of Eq. (10.155). The physical implications of this term
will be discussed below.

2 Equation (10.155) is written in the basis of eigenstates of the system Hamilto-
nian, ĤS. A better description is obtained by working in the basis defined by

the eigenstates of ĤS + ˆ̄V . In the latter case the energy differences ωab will
include shifts that result from the average system–bath coupling and second
term on the right of (10.155) (or (10.156a) below) will not appear.

3. Equation (10.155) was obtained under three approximations. The first two
are the neglect of initial correlations and the assumption of weak coupling
that was used to approximate Eq. (10.110) by Eq. (10.112). The third is the
assumption of timescale separation between the (fast) bath and the (slow)
system used to get the final Markovian form.

4. The “kinetic coefficients” R(ω) that appear in the relaxation operator are
given by Fourier–Laplace transforms Rab,cd(ω) = ∫∞

0 dτMab,cd(τ )eiωτ of
the coupling correlation functions M (t). These functions are defined by
Eq. (10.138) and satisfy the symmetry property (10.139). In the more general
case where the system–bath coupling is given by (10.122), these functions
are given by Eq. (10.143) with the symmetry property (10.144).

5. The dynamics of the bath enters through the bath correlation functions, C(t) =
〈δV̂ B

I (t)δV̂ B
I (0)〉 = C∗(−t) or more generally Cmn(t) = 〈δV̂ B

Im(t)δV̂ B
In(0)〉 =

C∗
nm(−t). These functions are properties of the equilibrium bath only, inde-

pendent of any system it might be coupled to. An important observation is
that even though we have assumed that the bath is fast on the timescale of

3 A. G. Redfield, IBM J. Res. Develop. 1, 19 (1957); Adv. Magn. Reson. 1, 1 (1965).
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the system dynamics, the details of its dynamics do matter, that is, we could
not have simply assumed that C(t) ∼ δ(t). The reason for this is that the bath
dynamics is usually slow relative to phase oscillations (related to the inverse
spacing between energy levels) in the system. Indeed, we will see below that
it is through details of the bath dynamics, expressed though relationships
between Fourier transforms of bath correlation functions by equations like
(6.73), that detailed balance enters in the reduced description of the system
dynamics.

Problem 10.21. Verify that Eq. (10.155) can be rewritten in the form

dσab(t)

dt
= −iωabσab − i

�

∑
c

(V̄acσcb − σacV̄cb)−
∑
c,d

Kab,cdσcd(t)

(10.156a)

with

Kab,cd = δbd

∑
e

Rae,ec(ωce)+ δac

∑
e

R∗be,ed(ωde)

− [Rdb,ac(ωca)+ R∗ca,bd(ωdb)] (10.156b)

10.4.9 Implications of the Redfield equation

Next we consider the physical implications of Eq. (10.155). We assume, as dis-
cussed above, that the terms involving V̄ are included with the system Hamiltonian
to produce renormalized energies so that the frequency differences ωab corres-
pond to the spacings between these renormalized levels. This implies that the
second term on the right of Eq. (10.155), the term involving V̄ , does not exist.
We also introduce the following notation for the real and imaginary parts of the
super-matrix R:

Rab,cd(ω) = �ab,cd(ω)+ iDab,cd(ω) (10.157)

We will see below that it is the real part of R that dominates the physics of the
relaxation process.

To get a feeling for the physical content of Eq. (10.155) let us consider first
the time evolution of the diagonal elements of σ̂ in the case where the non-
diagonal elements vanish. In this case Eq. (10.155) (without the term involving V̄ )
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becomes

dσaa(t)

dt
= −

∑
c

[Rac,ca(ωac)+ R∗ac,ca(ωac)]σaa(t)

+
∑

c

[Rca,ac(ωca)+ R∗ca,ac(ωca)]σcc(t)

= − 2
∑

c

�ac,ca(ωac)σaa(t)+ 2
∑

c

�ca,ac(ωca)σcc(t) (10.158)

This is a set of kinetic equations that describe transfer of populations within a group
of levels. The transition rates between any two levels a and c are given by

ka←c = 2�ca,ac(ωca); kc←a = 2�ac,ca(ωac) (10.159)

Using Eqs (10.121), (10.138) and (10.151) we find that these rates are given by

kj←l = 1

�2 |V s
jl|2

∞∫
−∞

dτeiωljτ 〈δV̂ B
I (τ )δV̂ B

I (0)〉 (10.160)

Consequently

ka←c

kc←a
=

∫∞
−∞ dτeiωcaτ 〈δV̂ B

I (τ )δV̂ B
I (0)〉∫∞

−∞ dτeiωacτ 〈δV̂ B
I (τ )δV̂ B

I (0)〉 = eβ�ωca (10.161)

where we have used Eq. (6.75). Here �ωca = Ec − Ea where Ec and Ea are eigen-

values of ĤS + ˆ̄V . We see that the time evolution obtained within the specified
approximations satisfies detailed balance with respect to these energies. This insures
that the system will reach a Boltzmann distribution at equilibrium.

Problem 10.22. Show that Re(Rca,ac(ω)) = (1/2)
∫∞
−∞ dtMca,ac(t)eiωt . Use this

with Eqs (6.71) and (6.72) to show that the relationship (10.161) remains valid
also in the more general case where M is given by (10.143), that is, when, for
example, ka←c = (�2)−1 ∑

m,n V Sm
ca V Sn

ac

∫∞
−∞ dteiωcatCmn(t).

Next, still within our drive to gain physical feeling for the solution of (10.155),
assume that all but one element ofσ is nonzero, and let this element be non-diagonal.
How does it evolve? Taking σi,j = σa,bδi,aδj,b everywhere on the right side of
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Eq. (10.155) leads to

dσab

dt
=−iωabσab −

(∑
c

[Rac,ca(ωac)+ R∗bc,cb(ωbc)]
)
σab

+ (Rbb,aa(0)+ R∗aa,bb(0))σab (10.162)

or, alternatively,

dσab

dt
=−iωabσab −

⎛
⎝∑

c �=a

Rac,ca(ωac)+
∑
c �=b

R∗bc,cb(ωbc)

⎞
⎠ σab

+ (Rbb,aa(0)+ R∗aa,bb(0)− Raa,aa(0)− R∗bb,bb(0))σab (10.163)

Using (10.157) we see that the terms that involve the imaginary part of R just affect
a (small in the weak coupling limit that was already assumed) normalization of the
frequency ωab. The R terms with zero-frequency argument on the right of (10.163)
are all real. Defining

ω̃ab = ωab +
⎛
⎝∑

c �=a

Dac,ca(ωac)+
∑
c �=b

Dbc,cb(ωbc)

⎞
⎠ (10.164)

we can rewrite Eq. (10.163) in the form

dσab

dt
= − iω̃abσab −

⎛
⎝∑

c �=a

�ac,ca(ωac)+
∑
c �=b

�bc,cb(ωbc)

⎞
⎠ σab

+ (Rbb,aa(0)+ Raa,bb(0)− Raa,aa(0)− Rbb,bb(0))σab (10.165)

In addition to the deterministic term −iω̃abσab, we find on the right-hand side
of Eq. (10.165) two relaxation terms. The first can be rewritten in terms of the
transition rates k of Eq. (10.159), �ac,ca(ωac) = (1/2)kc←a. Using Eqs. (10.138)
and (10.151) for the second, we find Rbb,aa(0)+Raa,bb(0)−Raa,aa(0)−Rbb,bb(0) =
−�

−2C̃(0)(V S
aa − V S

bb)
2, where C̃(ω) = ∫∞

0 dteiωtC(t) and C̃(0) is real and
positive. We finally get

dσab

dt
= − iω̃abσab − (1/2)

⎛
⎝∑

c �=a

kc←a +
∑
c �=b

kc←b

⎞
⎠ σab

− �
−2C̃(0)(V S

aa − V S
bb)

2σab (10.166)
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Equation (10.166) shows two mechanisms for the relaxation of non-diagonal ele-
ments of the system density matrix (i.e. coherences). First, population relaxation
out of states a and b with rates ka = ∑

c �=a kc←a and kb = ∑
c �=b kc←b manifests

itself also here, giving rise to the relaxation rate (1/2)(ka + kb). This may be intu-
itively expected as the contribution of population relaxation in states a and b to
the relaxation of their mutual coherence. For example, in terms of the pure state
amplitudes Ca and Cb we have σab = CaC∗

b , cf. Eq. (10.4), and if |Ca|2 ∼ e−kat

then Ca ∼ e−(1/2)kat . This component of the coherence relaxation is sometimes
referred to as “t1 process.” The corresponding rate, k(ab)

1 = (t(ab)
1 )−1 is given by

k(ab)
1 = (1/2)(ka + kb) (10.167)

The other coherence relaxation process, with the rate

k(ab)
2 = (t(ab)

2 )−1 = �
−2C̃(0)(V S

aa − V S
bb)

2 (10.168)

is more interesting. To understand the origin of this relaxation we note that the
difference V S

aa − V S
bb is related to the fluctuations in the energy spacing between

states a and b that result from the system coupling to its thermal environment.
Indeed, the system–bath coupling that appears in Eqs (10.52) and (10.115) may be
written in the form

V̂ = V̂ SV̂ B = V̂ SV̄ B + V̂ SδV̂ B (10.169)

where V̄ B and δV̂ B were defined by (10.119) and (10.121), respectively, and we
have included the V̂ SV̄ B term in a renormalized system Hamiltonian. The remaining
term, V̂ SδV̂ B, is responsible for the t1 relaxation discussed above but also induces
fluctuations in the system energy spacings that can be represented by

�δωab = (V S
aa − V S

bb)δV̂ B (10.170)

This is because for any realization of the operator δV̂ B (that satisfies 〈δV̂ B〉 = 0)
Equation (10.170) expresses a corresponding shift in the a–b energy spacing and
because such realizations correspond to the changing instantaneous state of the
thermal environment adjacent to our system. If δV̂ B is replaced by a stochastic scalar
function r(t) (〈r(t)〉 = 0) then �δωab(t) = (V S

aa − V S
bb)r(t) represents random

modulations of this energy spacing. Indeed, the equation

dσab/dt = −i(ωab + δωab(t))σab (10.171)

was our starting point in analyzing the lineshape of a randomly modulated oscillator
in Section 7.5.4. Equation (10.168) represents a relaxation process of the same type:
k(ab)

2 is a contribution to the relaxation rate of non-diagonal elements of the density
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matrix that results from random modulations of energy spacings that constitute the
phases of these elements. This k(ab)

2 = (t(ab)
2 )−1 process is sometimes referred to

as “pure dephasing” or “pure decoherence,” or simply “t2 relaxation.” The word
“pure” used in the present context implies a contribution to the phase relaxation
that is not associated with population relaxation.

The relaxation terms in the time evolution of non-diagonal elements of the dens-
ity matrix, Eq. (10.166), are thus comprised of population relaxation contributions
embedded in rates such as k(ab)

1 , and pure phase relaxation expressed by rates of the

k(ab)
2 type. An important distinction between pure dephasing and population relax-

ation appears in their temperature dependence. At T → 0 thermal relaxation can
move population from higher to lower energy levels of the system but obviously
not in the opposite direction, as implied by the detailed balance relation (10.161).
The T → 0 limit of the population relaxation rate depends on the energy gap,
the bath density of states, and on details of the system–bath coupling. A particular
example will be discussed in Chapter 13. Dephasing rates were seen to reflect the
modulation of levels spacings in the system due to its interaction with the bath.
Such modulations arise by repeated events of energy exchange between the system
and the bath. A bath whose temperature remains zero at all time cannot affect such
an exchange—it can only take energy out (t1 relaxation) but not put it back into
the system. This implies that pure dephasing vanishes at T → 0, a conclusion
that can be validated by proving that zero frequency transforms C̃(0)of bath time
correlation functions vanish at T = 0.4

10.4.10 Some general issues

The Redfield equation, Eq. (10.155) has resulted from combining a weak system–
bath coupling approximation, a timescale separation assumption, and the energy
state representation. Equivalent time evolution equations valid under similar weak
coupling and timescale separation conditions can be obtained in other representa-
tions. In particular, the position space representation σ(r, r′) and the phase space
representation obtained from it by the Wigner transform

σ(r, p) = 1

(π�)3

∫
dr′σ(r − r′, r + r′)e2ip·r′/� (10.172)

are often encountered in the condensed-phase literature; the expression (10.172)
then serving as a convenient starting point for semiclassical approximations.

4 The subject of zero temperature dephasing has some other subtle aspects that are not addressed
here, and to some extent depends on the observable used to determine loss of phase. For more
discussion of this issue see Y. Imry, arXiv:cond-mat/0202044.
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Whatever representation is used, the reduced density operator σ̂ should satisfy
some basic requirements that can provide important consistency checks. The fact
that Trρ̂(t) = 1 at all time implies that we should have TrSσ̂ (t) = 1, as was indeed
verified in Section 10.4.7. In addition, the reduced density operator σ̂ should satisfy
some other basic requirements:

1. Like any valid density operator it has to be semi-positive (i.e. no negative
eigenvalues) at all time. This is implied by the fact that these eigenvalues
correspond to state probabilities in the diagonal representation. Indeed, if the
overall density operator ρ̂ satisfies this requirement it can be shown that so
does σ̂ = TrBρ̂.

2. If the bath is kept at thermal equilibrium, the system should approach the same
thermal equilibrium at long time. In practical situations we often address this
distribution in the representation defined by the system eigenstates,5 in which
case the statement holds rigorously in the limit of zero coupling.6 Detailed-
balance relationships such as Eq. (10.161) indeed imply that a Boltzmann
thermal distribution is a stationary (dσ/dt = 0) solution of the Redfield
equation.

A third requirement is less absolute but still provide a useful consistency check
for models that reduce to simple Brownian motion in the absence of external
potentials: The dissipation should be invariant to translation (e.g. the resulting
friction coefficient should not depend on position). Although it can be validated
only in representations that depend explicitly on the position coordinate, it can be
shown that Redfield-type time evolution described in such (position or phase space)
representations indeed satisfies this requirement under the required conditions.

The main shortcoming of the Redfield time evolution is that it does not neces-
sarily conserve the positivity property. In fact, it has been shown by Lindblad7 that
a linear Markovian time evolution that satisfies this condition has to be of the form

ˆ̇σ = − i

�
[Ĥ0, σ̂ ] + 1

2

∑
j

([V̂jσ̂ , V̂ †
j ] + [V̂j, σ̂ V̂ †

j ]) (10.173)

where {V̂j} is a set of system operators associated with the system–bath interaction.
When constructing phenomenological relaxation models one often uses this form
as a way to insure positivity. It can be shown that the general Redfield equation

5 As discussed in Sections 10.4.8 and 10.4.9, these eigenstates may be defined in terms of a “system”
Hamiltonian that contains the mean system–bath interaction.

6 Otherwise the thermal distribution is approached with respect to the exact energies that may be
shifted under this interaction.

7 G. Lindblad, Commun. Math. Phys. 48, 119 (1976).
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is not of this form, and indeed it is possible to find, even for simple systems such
as the damped harmonic oscillator, initial conditions for which positivity of the
Redfield evolution is not satisfied. At the same time, it has been shown,8 again for
the damped harmonic oscillator, that the Lindblad equation (10.173) cannot satisfy
together the conditions of translational invariance and detailed balance. It has to
be concluded that no theory can yet yield a fully consistent master equation that
describes thermal relaxation in the weak system–bath coupling. Nevertheless, on
the practical level, Redfield equations and their analogs in different representa-
tions were found very useful for many applications, some of which are discussed
below.

10.5 The two-level system revisited

10.5.1 The two-level system in a thermal environment

Further insight on the implications of the Redfield equation can be obtained by con-
sidering the special case of a two-level system. In the discussion of Section 10.4.10
we have included terms involving V̄ , which arise from the average effect of the bath
on the system, in the system Hamiltonian ĤS. We will keep similar terms explicitly
in the following discussion. They will be used for modeling the coupling between
the system and time-dependent external forces as encountered for example, in the
semiclassical treatment of a system interacting with a radiation field. The picture
is then as follows: The average system/thermal–bath interaction is included in ĤS
so that the eigenstates and eigenvalues of this system Hamiltonian correspond to
the renormalized system that includes the average effect of the thermal bath. At
the same time a deterministic term appears in the Liouville equation in which a
(generally time dependent) system operator F̂ replaces the bath-average thermal

interaction ˆ̄V . F̂ will later represent the effect of an external electromagnetic field
in the semiclassical level of description (Chapter 3), and for simplicity will be
assumed to have no diagonal terms in the representation defined by the eigen-
states of the thermally renormalized system Hamiltonian. Equation (10.155) then
leads to

dσ11

dt
=− i

�
(F12σ21 − F21σ12)

− 2ReR12,21(ω12) σ11 + 2ReR21,12(ω21) σ22

+ (R21,11(0)− R∗12,22(0))σ12 − (R12,22(0)− R∗21,11(0))σ21 (10.174a)

8 G. Lindblad, Rep. Math. Phys. 10, 393 (1976).
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dσ12

dt
=−iω12σ12 − i

�
F12(σ22 − σ11)

+ (R22,11(0)+ R∗11,22(0)− R11,11(0)− R∗22,22(0)

− R12,21(ω12)− R∗21,12(ω21))σ12

+ (R12,12(ω21)+ R∗21,21(ω12))σ21

+ (R∗11,21(ω12)− R∗22,21(ω12)+ R12,11(0)− R∗21,11(0)) σ11

+ (R22,12(ω21)− R11,12(ω21)+ R∗21,22(0)− R12,22(0)) σ22 (10.174b)

and equations for dσ22/dt and dσ21/dt obtained from (10.174(a,b)) by interchan-
ging the indices 1 and 2 everywhere. Note that the structure of these equations is
the same as before, except that Fij has replaced V̄ij.

Problem 10.23. Using (10.151) and (10.138) show that the coefficients of σ11
and σ22 in Eq. (10.174a) satisfy

2ReR12,21(ω12) = |V S
12|2
�2 RC(ω12); 2ReR21,12(ω21) = |V S

12|2
�2 RC(−ω12)

where RC(ω) = ∫∞
−∞ dteiωtC(t).

A useful simplified set of equations can be obtained by invoking an approxim-
ation based on the observation that in Eqs (10.174) there are two kinds of terms
that transform between coherences and populations. The first involves the coupling
F12. The second are terms (last two terms in each of (10.174a) and (10.174b)) that
involve the system–thermal bath interaction. In consistency with our weak thermal
coupling model we will disregard the latter terms, that is, we assume that trans-
itions between coherences and populations are dominated by the interaction with
the external field. For a similar reason we will also drop the term involving σ21
on the right-hand side of Eq. (10.174b). Using the notation introduced in (10.159),
(10.167), and (10.168) we then get

dσ11

dt
= − i

�
(F12σ21 − F21σ12)− k2←1σ11 + k1←2σ22 (10.175a)

dσ12

dt
= −iω12σ12 − i

�
F12(σ22 − σ11)− kdσ12 (10.175b)
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where kd is the dephasing rate

kd = k(12)
1 + k(12)

2 = 1

2
(k2←1 + k1←2)+ �

−2C̃(0)(V S
11 − V S

22)
2

C̃(0) =
∫ ∞

0
dtC(t)

(10.176)

and where, by (10.161),

k2←1

k1←2
= eβ�ω12 (10.177)

We have invoked the assumption that the interaction with the thermal environment is
weak to disregard the difference between ω̃12 andω12. The corresponding equations
for σ22 and σ21 are again obtained by interchanging 1 ↔ 2.

10.5.2 The optically driven two-level system in a thermal environment—the Bloch
equations

Equations (10.174) and (10.175) have the same mathematical structure as
Eqs (10.155) except the specification to a two-level system and the replacement of
V̄ by F̂ . As discussed above, it makes sense to keep the F terms explicitly in these
equations only when they depend on time. In what follows we consider one import-
ant problem of this kind, where F̂(t) → E(t)µ̂ and E(t) = E0 cosωt, as a model
for a two-level system interacting with an incident radiation field. We consider the
special case where the light frequency is near resonance with the two-level system,
that is,

ω ∼ ω21 or η ≡ ω − ω21 � ω (10.178)

where we have denoted ω21 = (E2 − E1)/� > 0 and where η is the detuning
frequency.

We are going to make one additional approximation. First make a transformation
to new variables

σ̃12(t) = e−iωtσ12(t); σ̃21(t) = eiωtσ21(t); σ̃jj(t) = σjj(t); (j = 1, 2)
(10.179)

For the free two-level system σjk(t) = exp(−iωjk t)σjk(0), so by (10.178) the trans-
formed variables are slow functions of the time, where “slow” is measured against
the timescale ω−1

21 ∼ ω−1. Equations (10.175) and the corresponding equations for
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σ22 and σ21 become

dσ11

dt
= − i

�
E0 cos(ωt)(µ12e−iωt σ̃21 − µ21eiωt σ̃12)− k2←1σ11 + k1←2σ22

(10.180a)

dσ22

dt
= − i

�
E0 cos(ωt)(µ21eiωt σ̃12 − µ12e−iωt σ̃21)− k1←2σ22 + k2←1σ11

(10.180b)

dσ̃12

dt
= − iησ̃12 − i

�
E0 cos(ωt)e−iωtµ12(σ22 − σ11)− kdσ̃12 (10.180c)

dσ̃21

dt
= iησ̃21 − i

�
E0 cos(ωt)eiωtµ21(σ11 − σ22)− kdσ̃21 (10.180d)

In Eqs (10.180) the terms that depend explicitly on time originate from
cos(ωt)e±iωt = (1/2)(1 + exp(±2iωt)) and oscillate with frequency 2ω. The other
rates in the problem are the detuning frequency and the thermal rates (population
relaxation and dephasing). For optical transitions these rates are usually much
smaller than ω, for example typical room temperature vibrational relaxation rates
are of order 1012 s−1 while vibrational frequencies are in the range 1014 s−1. The
effect of the fast terms, exp(±2iωt), in Eqs (10.180) is therefore expected to be
small provided that the field is not too strong, and they will be henceforth disreg-
arded.9 This is known as the rotating wave approximation (RWA).10 Under this
approximation Eqs (10.180) become

dσ11

dt
= −dσ22

dt
= − i

2�
E0µ(σ̃21 − σ̃12)− k2←1σ11 + k1←2σ22

(10.181a)

dσ̃12

dt
= −iησ̃12 − i

2�
E0µ(σ22 − σ11)− kdσ̃12 (10.181b)

9 A formal way to do this is a coarse-graining procedure by which we take the average of Eqs (10.180)
over the time interval 2π/2ω. If we assume that all terms except exp(±2iωt) are constant on this
timescale the result is equivalent to dropping out all terms containing these fast oscillating factors.

10 The origin of this name can be understood by considering the product of two time-oscillating
functions, f (t) = f1(t)f2(t) with fj(t) = cos(ωj t) and ω1 � ω2 > 0. If we sit on a time-
frame that rotates with f2(t) we find that in the product f (t) there is a component that moves
very slowly, at a frequency δω = ω1 − ω2, relative to this rotating frame, and another that
moves very fast, with frequency ω1 + ω2 � 2ω2, relative to it. Indeed, cos(ω1t) cos(ω2t) =
(1/2)[cos((ω1 − ω2)t)+ cos((ω1 + ω2)t)]. In the RWA we disregard the latter component.
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dσ̃21

dt
= iησ̃21 + i

2�
E0µ(σ22 − σ11)− kdσ̃21 (10.181c)

We have also denoted µ12 = µ21 ≡ µ, using the fact that the dipole moment
operator is real. Equations (10.181), known as the optical Bloch equations, cor-
respond to an effective two state system with energy spacing ω12 = η and a time
independent interstate coupling E0µ̂/2, subjected to thermal relaxation that itself
characterizes the original two state system and satisfies the detailed balance con-
dition (10.177). We could derive the same set of equations using the dressed-state
approach introduced in Chapter 9. In this approach applied to the present example
we replace the original two-level system coupled to a radiation field with another
two state system—a ground state dressed by a photon (more generally N photons)
and an excited state without photons (or N −1 photons), and disregard the coupling
of these dressed states to the infinite number of differently dressed states. This intu-
itive approach is now validated for near resonance conditions involving relatively
weak fields.

A simpler form of Eqs (10.181) may be obtained by redefining variables
according to Eqs (10.44)–(10.46) and (10.49)

σz(t) ≡ σ11(t)− σ22(t) (10.182)

σ̃x(t) = σ̃12(t)+ σ̃21(t); σ̃y(t) = i(σ̃12(t)− σ̃21(t)) (10.183)

which leads to the optical Bloch equations in the forms11

dσz

dt
= E0µ

�
σ̃y − kr(σz − σz,eq) (10.184a)

dσ̃x

dt
= −ησ̃y − kdσ̃x (10.184b)

dσ̃y

dt
= ησ̃x − E0µ

�
σz − kdσ̃y (10.184c)

where

σz,eq ≡ k1←2 − k2←1

k1←2 + k2←1
(10.185)

is the equilibrium value of σz in the absence of radiation (E0 = 0),12 and

kr ≡ k1←2 + k2←1. (10.186)

11 Note that, as defined, η is equivalent to −ω of Eqs (10.50).
12 The corresponding values of σx and σy are σx,eq = σy,eq = 0.



Appendix 10A 395

The Bloch equations and related approximate models derived using similar prin-
ciples are very useful as simple frameworks for analyzing optical response of
material systems. Some examples for their use are provided in Chapter 18.

Appendix 10A: Analogy of a coupled 2-level system to a spin 1
2 system in a

magnetic field

A particle with a spin S has a magnetic moment M = GS where G is the gyro-
magnetic constant. The energy of such a particle in a static magnetic field B is
ES = −M ·B. A particle of spin 1

2 is a degenerate two-state system; the two states
can be defined according to the spin direction with respect to an arbitrary axis.
The degeneracy of this system is lifted in a magnetic field. Taking the field to be
B = (0, 0, Bz), that is, in the z direction, it is convenient to work in the basis of the
two eigenstates of the z component of the spin operator, denoted |+〉 and |−〉, with
eigenvalues +(1/2)� and −1/2� respectively. These states are also eigenstates of
the Hamiltonian, the corresponding energies are therefore

E± = ∓1

2
�GBz (10.187)

Using a matrix-vector notation with this basis set the two eigenstates are

|+〉 =
(

1
0

)
; |−〉 =

(
0
1

)
(10.188)

On this basis the Hamiltonian is represented by

Ĥ = −GB · Ŝ = −1

2
�GBzσ̂z (10.189)

where the operator σ̂z ≡ (2/�)Ŝz is

σ̂z =
(

1 0
0 −1

)
(10.190)

σ̂z is one of the three Pauli matrices whose mutual commutation relations correspond
to angular momentum algebra. The other two are

σ̂x =
(

0 1
1 0

)
; σ̂y =

(
0 −i
i 0

)
(10.191)

It is easily verified that

[σ̂x, σ̂y] = 2iσ̂z [σ̂y, σ̂z] = 2iσ̂x [σ̂z, σ̂x] = 2iσ̂y (10.192)
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Note that the Pauli matrices are the matrix representations, in the basis of
Eq. (10.188), of the operators defined in Eq. (10.48), provided that we denote
the states |+〉and |−〉 by |1〉 and |2〉, respectively.

σ̂z = |+〉〈+| − |−〉〈−| = |1〉〈1| − |2〉〈2|
σ̂x = |+〉〈−| + |−〉〈+| = |1〉〈2| + |2〉〈1|
σ̂y = i(|−〉〈+| − |+〉〈−|) = i(|2〉〈1| − |1〉〈2|)

(10.193)

In addition we define the operators

σ̂+ = |1〉〈2| = 1

2
(σ̂x + iσ̂y) (10.194)

σ̂− = |2〉〈1| = 1

2
(σ̂x − iσ̂y) (10.195)

whose matrix representations are

σ̂− =
(

0 0
1 0

)
σ̂+ =

(
0 1
0 0

)
(10.196)

The operation of σ̂+ changes the spin from −(1/2)� to +(1/2)�, that is, it moves
the higher energy state to the lower energy state. σ̂− acts in the opposite direction.

Consider now the Hamiltonian (10.40). Using the identities |1〉〈1| = (1/2)(Î +
σ̂z); |2〉〈2| = (1/2)(Î − σ̂z), where Î is the unity operator, we can rewrite it in
the form

Ĥ = 1

2
(H11 − H22)σ̂z + 1

2
(H11 + H22)+ H12σ̂+ + H21σ̂−

= (H11 − H22)
1

2
σ̂z + (H12 + H21)

1

2
σ̂x + i(H12 − H21)

1

2
σ̂y (10.197)

where, in the second line we have disregarded the constant (1/2)(H11 + H22). We
see that, up to the neglected constant energy, this Hamiltonian can be written as a
spin 1

2 system in a magnetic field,

Ĥ = −GB · Ŝ = −(1/2)�G(Bxσ̂x + Byσ̂y + Bzσ̂z), (10.198)
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with the fictitious magnetic field whose components are

Bz = + 1

G�
(H22 − H11) (10.199)

Bx = − 1

G�
(H12 + H21) = − 2

G�
ReH12 (10.200)

By = − i

G�
(H12 − H21) = 2

G�
ImH12 (10.201)

In this representation the difference between the diagonal elements of Ĥ corres-
ponds to the z component of the magnetic field, while the non-diagonal elements
arise from the other components of B, that is Bx and By. In this regard note that

B⊥ ≡
√

B2
x + B2

y =
2

�

∣∣∣∣H12

G

∣∣∣∣ (10.202)

Using the Hamiltonian (10.197), the Heisenberg equations ˆ̇σ = (i/�)[Ĥ , σ̂ ]
and the commutation relations (10.192), we can easily verify that Eqs (10.50) do
not only stand for the averages 〈σ 〉 but also for the Heisenberg operators σ̂H(t) =
e(i/�)Ĥ t σ̂e−(i/�)Ĥ t . Another form of these equations is obtained using Eq. (10.198)

dσ̂x

dt
= GBzσ̂y − GByσ̂z (10.203)

dσ̂y

dt
= GBxσ̂z − GBzσ̂x (10.204)

dσ̂z

dt
= GByσ̂x − GBxσ̂y (10.205)

or

dσ̂

dt
= −GB × σ̂ (10.206)

Equation (10.206) has the form of a classical time evolution equation of the mag-
netic moment associated with an orbiting charge in a magnetic field. Such a charge,
circulating with an angular momentum J, possesses a magnetic moment m = γ J.
In a magnetic field B a torque m×B is exerted on the charge and the corresponding
classical equation of motion is

dJ
dt

= m × B = γ J × B (10.207)
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or
dm
dt

= γm × B (10.208)

Since the scalar product of m × B with either B or m is zero, it follows that

d

dt
(m)2 = d

dt
(m · B) = 0 (10.209)

This implies that m evolves such that its modulus is constant, maintaining a constant
angle with the direction of B. This motion is called precession. The angular velocity
of this precession is ω = γB.

Further reading

K. Blum, Density Matrix Theory and Applications, 2nd edition (plenum, New York, 1996).
C. Cohen-Tannoudji, B. Diu and F. Laloe, Quantum Mechanics (Wiley, New York, 1977).
D. Kohen, C. C. Marston, and D. J. Tannor, J. Chem. Phys. 107, 5326 (1997).
V. May and O. Kühn, Charge and Energy Transfer Dynamics in Molecular Systems (Wiley-VCH,

Berlin, 2000).
R. Zwanzig, Non-Equilibrium Statistical Mechanics (Oxford University Press, Oxford, 2001).



11

LINEAR RESPONSE THEORY

If cause forever follows after cause
In infinite, undeviating sequence,
And a new motion always has to come
Out of an old one by fixed law; if atoms
Do not, by swerving, cause new moves which break
The Laws of fate; if cause forever follows,
In infinite sequence, cause—where would we get
This free will that we have, wrested from fate,
By which we go ahead…

Lucretius (c.99–c.55 bce) “The way things are” translated by
Rolfe Humphries, Indiana University Press, 1968

Equilibrium statistical mechanics is a first principle theory whose fundamental
statements are general and independent of the details associated with individual
systems. No such general theory exists for nonequilibrium systems and for this
reason we often have to resort to ad hoc descriptions, often of phenomenological
nature, as demonstrated by several examples in Chapters 7 and 8. Equilibrium
statistical mechanics can however be extended to describe small deviations from
equilibrium in a way that preserves its general nature. The result is Linear Response
Theory, a statistical mechanical perturbative expansion about equilibrium. In a
standard application we start with a system in thermal equilibrium and attempt to
quantify its response to an applied (static- or time-dependent) perturbation. The
latter is assumed small, allowing us to keep only linear terms in a perturbative
expansion. This leads to a linear relationship between this perturbation and the
resulting response.

Let us make these statements more quantitative. Consider a system character-
ized by the Hamiltonian Ĥ0. An external force acting on this system changes the
Hamiltonian according to

Ĥ0 −→ Ĥ = Ĥ0 + Ĥ1 (11.1)

We take Ĥ1 to be of the form

Ĥ1(t) = −ÂF(t) (11.2)
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where F(t) is the external force that can depend on time and Â is an operator that
represents the dynamical variable A(rN , pN ) (a function of the coordinates rN and
moments pN of all particles in the system) that couples to this force. For example,
for an external electric field E imposed on a one-dimensional classical system with
one charged particle, H1 = −qxE , that is, A = x and F = qE where x and q are
the particle position and charge, respectively. More generally Ĥ1 can be a sum of
such products,

Ĥ1 = −
∑

j

ÂjFj (11.3)

but for simplicity we consider below the simplest case (11.2). Next, we focus on
another dynamical variable B(rN , pN ), represented in quantum mechanics by an
operator B̂, and on the change 〈�B〉 in the expectation value of this variable in
response to the imposed perturbation. Linear response theory aims to character-
ize the linear relationship between the imposed small force F and the ensuing
response 〈�B〉.

It should be noted that in addition to mechanical forces such as electric or mag-
netic fields that couple to charges and polarization in our system, other kinds of
forces exist whose effect cannot be expressed by Eq. (11.2). For example, temper-
ature or chemical potential gradients can be imposed on the system and thermal or
material fluxes can form in response. In what follows we limit ourselves first to
linear response to mechanical forces whose effect on the Hamiltonian is described
by Eqs (11.2) or (11.3).

11.1 Classical linear response theory

11.1.1 Static response

In previous chapters it was sometimes useful to use different notations for an observ-
able A and the corresponding dynamical variable A(rN , pN ). In this chapter we will
not make this distinction because it makes the presentation somewhat cumbersome.
The difference between these entities should be clear from the text.

Consider first the response to a static perturbation, that is, we take F = constant
in Eq. (11.2). In this case we are not dealing with a nonequilibrium situation,
only comparing two equilibrium cases. In this case we need to evaluate �〈B〉 =
〈B〉 − 〈B〉0 where

〈B〉0 =
∫

drN
∫

dpN Be−βH0∫
drN

∫
dpN e−βH0

(11.4a)

〈B〉 =
∫

drN
∫

dpN Be−β(H0+H1)∫
drN

∫
dpN e−β(H0+H1)

(11.4b)
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where β = (kBT )−1. In what follows we use
∫∫

to denote
∫

drN
∫

dpN . For a small
perturbation, βH1 � 1, we expand (11.4b) to linear order in this quantity using

e−β(H0+H1) = e−βH0(1 − βH1)+ O(H 2
1 ) (11.5)

to get

〈B〉 =
[∫∫

e−βH0
] {〈B〉0 − β〈H1B〉0}[∫∫

e−βH0
] {1 − β〈H1〉0} = (〈B〉0 − β〈H1B〉0)(1 + β〈H1〉0)

= 〈B〉0 + β〈B〉0〈H1〉0 − β〈H1B〉0 + O[(β�H )2] (11.6)

So, to linear order

�〈B〉 = −β(〈H1B〉0 − 〈H1〉0〈B〉0)
= βF(〈AB〉0 − 〈A〉0〈B〉0) = βF〈δAδB〉0 (11.7)

So we found the remarkable result

�〈B〉 = χBAF

χBA = β〈δAδB〉0 (11.8)

that is, the response function χBA (sometimes called admittance or susceptibility),
the coefficient of the linear relationship between the applied force and the ensuing
system response, is given in terms of a correlation function between the equilib-
rium fluctuations in A and B in the unperturbed system. Note that there are different
susceptibilities, each associated with the way by which forcing one system variable
invokes a response in another. Note also that χBA as defined is the isothermal sus-
ceptibility. We could also study the response of the system under other conditions,
for example, the adiabatic susceptibility measures the linear response under the
condition of constant system energy rather than constant temperature.

11.1.2 Relaxation

In (11.8) χBA is the response coefficient relating a static response in 〈B〉 to a static
perturbation associated with a field F which couples to the system through an addit-
ive term H1 = −FA in the Hamiltonian. Consider next the dynamical experiment
in which the system reached equilibrium with H0 +H1 and then the field suddenly
switched off. How does �〈B〉, the induced deviation of B from its original equi-
librium value 〈B〉0, relax to zero? The essential point in the following derivation is
that the time evolution is carried out under the Hamiltonian H0 (after the field has
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been switched off), while the thermal averaging over initial states is done for the
Hamiltonian H = H0 + H1.

〈B(t)〉 =
∫∫

e−β(H0+H1)B0(t | pN , rN )∫∫
e−β(H0+H1)

(11.9)

Here B0(t | pN , rN ) ≡ B0(pN (t), rN (t) | pN , rN ) is the value of B at time t, after
evolving under the Hamiltonian H0 from the initial system’s configuration (rN , pN ).
Note that ∫ ∫

e−βH0B0(t | pN , rN ) = 〈B〉0
∫ ∫

e−βH0 (11.10)

because we start from equilibrium associated with H0 and propagate the system’s
trajectory with the same Hamiltonian. However,∫ ∫

e−β(H0+H1)B0(t | pN , rN ) �= 〈B〉
∫ ∫

e−β(H0+H1) (11.11)

because we start from equilibrium associated with H0 +H1, but the time evolution
is done under H0.

Starting from Eq. (11.9) we again expand the exponential operators. Once
exp(−β(H0 + H1)) is replaced by exp(−βH0)(1 − βH1) we get a form in which
the time evolution and the averaging are done with the same Hamiltonian H0. We
encounter terms such as∫∫

e−βH0B0(pN (t), rN (t) | pN , rN )∫∫
e−βH0

= 〈B(t)〉0 = 〈B〉0 (11.12)

and ∫∫
e−βH0H1(pN , rN )B0(pN (t), rN (t) | pN , rN )∫∫

e−βH0
= 〈H1(0)B(t)〉0 (11.13)

With this kind of manipulations Eq. (11.9) becomes

〈B(t)〉 = 〈B〉0 − β〈H1(0)B(t)〉0
1 − β〈H1〉0 (11.14)

and to linear order in βH1

�〈B(t)〉 = 〈B(t)〉 − 〈B〉0 = −β(〈H1(0)B(t)〉0 − 〈H1〉0〈B〉0)
= βF〈δA(0)δB(t)〉0 (11.15)

with
δA(0) = A(0)− 〈A〉0; δB(t) = B(t)− 〈B〉0 (11.16)
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On the left side of (11.15) we have the time evolution of a prepared deviation from
equilibrium of the dynamical variable B. On the right side we have a time cor-
relation function of spontaneous equilibrium fluctuations involving the dynamical
variables A, which defined the perturbation, and B. The fact that the two time evol-
utions are the same has been known as the Onsager regression hypothesis. (The
hypothesis was made before the formal proof above was known.)

11.1.3 Dynamic response

Consider next a more general situation where the weak external perturbation is
time-dependent, F = F(t). We assume again that the force is weak so that, again,
the system does not get far from the equilibrium state assumed in its absence. In
this case, depending on the nature of this external force, two scenarios are usually
encountered at long time.

1. When a constant force is imposed on an open system, the system will even-
tually reach a nonequilibrium steady state where the response to the force
appears as a time-independent flux. (A closed system in the same situation
will reach a new equilibrium state, as discussed above.)

2. When the external force oscillates with a given frequency, the system will
eventually reach a dynamic steady state in which system observables oscillate
with the same frequency and often with a characteristic phase shift. The
amplitude of this oscillation characterizes the response; the phase shift is
associated with the imaginary part of this amplitude.

Linear response theory accounts for both scenarios by addressing the assumed
linear relationship between the response of a dynamical variable B (i.e. the change
in its average observed value) and the small driving field F . It is convenient to
represent the long time behavior of the system under this driving by assuming that
the external force has been switched on in the infinite past where the system was
at its unperturbed equilibrium state. In terms of the density operator ρ̂(t) or the
analogous classical distribution function f

(
rN , pN ; t

)
this implies

f
(
rN , pN ;−∞) = e−βH0∫

drN
∫

drN e−βH0
; ρ̂(−∞) = e−βĤ0

Tr
[
e−βĤ0

] (11.17)

The most general linear relationship between the force F(t) and the response
〈�B(t)〉 is then

〈�B(t)〉 =
t∫

−∞
dt′χBA(t − t′)F(t′) (11.18)
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Note that causality, that is, the recognition that the response at time t can depend only
on past perturbations and not on future ones, is built into (11.18). It is convenient
to write

〈�B(t)〉 =
∞∫

−∞
dt′χBA(t − t′)F(t′) (11.19)

by defining the time-dependent susceptibility χ so that χ(t) = 0 for t < 0. For the
following special choice of F(t):

F(t) = F
F(t) = 0

}
t < 0
t ≥ 0

(11.20)

Equation (11.19) should yield the result (11.15), that is, 〈�B(t)〉 =
βF〈δA(0)δB(t)〉0. This implies that for t > 0

β〈δA(0)δB(t)〉0 =
0∫

−∞
dt′χBA(t − t′) =

∞∫
t

dτχAB(τ ) (11.21)

and by taking derivative with respect to time

χBA(t) = −θ(t)β〈δA(0)δḂ(t)〉0 = θ(t)β〈δȦ(0)δB(t)〉0 (11.22)

where the θ function is

θ(t) =
{

1 for t > 0

0 otherwise
(11.23)

The second equality in (11.22) follows from the symmetry property (6.32). We
have found that the dynamic susceptibility is again given in terms of equilibrium
correlation functions, in this case time correlation functions involving one of the
variables A or B and the time derivative of the other. Note (c.f. Eq (1.99)) that if X
is a dynamical variable, that is, a function of (rN , pN ) so is its time derivative.

11.2 Quantum linear response theory

The derivation of the quantum analog of the theory presented above follows essen-
tially the same line, except that care must be taken with the operator algebra
involved.
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11.2.1 Static quantum response

The analogs of Eqs (11.4) are

〈B〉0 = Tr[B̂ρ̂0,eq]; ρ̂0,eq = e−βĤ0

Tr(e−βĤ0)
(11.24a)

〈B〉 = Tr[B̂ρ̂eq]; ρ̂eq = e−β(Ĥ0+Ĥ 1)

Tr(e−β(Ĥ0+Ĥ1))
(11.24b)

and the first-order perturbation expansion analogous to (11.5) is obtained from the
operator identity (cf. Eq. (2.78))

exp
[
−β

(
Ĥ0 + Ĥ1

)]
= exp

(
−βĤ0

)⎛
⎝1 −

β∫
0

dλeλĤ0Ĥ1e
−λ

(
Ĥ0+Ĥ1

)⎞⎠ (11.25)

by replacing, as a lowest order approximation, exp
[
−λ

(
Ĥ0 + Ĥ1

)]
by

exp
(
−λĤ0

)
inside the integral on the right to get

exp
[
−β

(
Ĥ0 + Ĥ1

)]
= exp

(
−βĤ0

) (
1 − βĤ (β)

1

)
+ O

(
Ĥ 2

1

)
(11.26)

Here we have used the notation X̂ (β) for the Kubo transform of an operator X̂
defined by

X̂ (β) = β−1
∫ β

0
dλeλĤ0X̂ e−λĤ0 (11.27)

Problem 11.1. Show that in the basis of eigenstates of Ĥ0, Ĥ0|j〉 = εj|j〉,

(X̂ (β))ij = β−1 eβ(εi−εj) − 1

εi − εj
Xij (11.28)

and that the high-temperature limit is limβ→0 X̂ (β) = X̂ .

When the external force F is small and constant we again seek a linear
dependence of the form

δ〈B〉 = 〈B〉 − 〈B〉0 = χBAF (11.29)
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where χBA is the static quantum isothermal susceptibility. Using (11.26) in (11.24b)
we get

δ〈B̂〉 = βF

(
Tr[B̂e−βĤ0Â(β)]

Tr[e−βĤ0] − Tr[B̂e−βĤ0]
Tr[e−βĤ0]

Tr[e−βĤ0Â(β)]
Tr[e−βĤ0]

)

= β (〈Â(β)B̂〉0 − 〈Â(β)〉0〈B̂〉0)F = β〈δÂ(β)δB̂〉0F (11.30)

So that
χBA = β

〈
δÂ(β)δB̂

〉
0

(11.31)

where for any operator X̂ we define δX̂ = X̂ −〈X̂ 〉0. We see that the classical limit,
Eq. (11.8), is obtained from Eq. (11.31) by replacing X̂ (β) by the corresponding
dynamical variable X , irrespective of β.

Problem 11.2. Show that for any two operators Â and B̂

〈Â(β)B̂〉 = 〈B̂(β)Â〉 (11.32)

Proof: Using Eq. (11.27) we have

〈Â(β)B̂〉 = β−1

∫ β

0 dλTr[e−βĤ0eλĤ0Âe−λĤ0B̂]
Tr[e−βĤ0] (11.33)

Consider the numerator expressed in the basis of eigenstates of Ĥ0∫ β

0
dλTr[e−βĤ0eλĤ0Âe−λĤ0B̂] =

∫ β

0
dλ

∑
j

∑
k

e−βεj eλ(εj−εk) 〈j| Â |k〉 〈k| B̂ |j〉

=
∑

j

∑
k

e−βεk − e−βεj

εj − εk
〈j| Â |k〉 〈k| B̂ |j〉

(11.34)

Interchanging j and k gives∫ β

0
dλTr

[
e−βĤ0eλĤ0Âe−λĤ0B̂

]
=

∑
j

∑
k

e−βεk − e−βεj

εj − εk
〈j| B̂ |k〉 〈k| Â |j〉

=
∫ β

0
dλTr

[
e−βĤ0eλĤ0B̂e−λĤ0Â

]
(11.35)

This, together with (11.33) imply that (11.32) holds.
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11.2.2 Dynamic quantum response

Now let the external force F(t) be time-dependent. We will repeat the procedure
followed in the classical case, assuming that F(t) is given by the step function
(11.20), that is, following the onset of a perturbation Ĥ1 = −FÂ at t = −∞, F
is switched off at t = 0. We want to describe the subsequent relaxation process
of the system as expressed by the evolution of the expectation of an observable B̂
from its value 〈B̂〉 (equilibrium average under Ĥ = Ĥ0 + Ĥ1) at t = 0 to the final
value 〈B̂〉0 at t →∞. In what follows we will follow two routes for describing this
relaxation.

Our first starting point is the equation equivalent to (11.9)

〈B〉(t) = Tr[e−β(Ĥ0+Ĥ1)e(i/h̄)Ĥ0t B̂e−(i/h̄)Ĥ0t]
Tr[e−β(Ĥ0+Ĥ1)] (11.36)

Using the identity (11.25) we expand the thermal operators in (11.36) to first order
in Ĥ1 : exp[−β(Ĥ0 + Ĥ1)] = exp(−βĤ0)(1 −

∫ β

0 dλeλĤ0Ĥ1e−λĤ0). Using the
definition of the interaction representation

B̂I (t) = exp(iĤ0t/h̄)B̂ exp(−iĤ0t/h̄) (11.37)

and the identity Tr[ρ̂0,eqB̂I (t)] = 〈B〉0 that holds for all t, we find

〈B〉(t) = Tr[e−βĤ0B̂I (t)] − Tr[e−βĤ0
∫ β

0 dλeλĤ0Ĥ1e−λĤ0B̂I (t)]
Tr[e−βĤ0](1 − Tr[e−βĤ0

∫ β

0 dλeλĤ0Ĥ1e−λĤ0]/Tr[e−βĤ0])

= 〈B〉0 −
〈∫ β

0
dλeλĤ0Ĥ1e−λĤ0B̂I (t)

〉
0
+ 〈B〉0

〈∫ β

0
dλeλĤ0Ĥ1e−λĤ0

〉
0

(11.38)

or

〈B〉(t)− 〈B〉0 = βF
(〈

Â(β)B̂I (t)
〉
0
− 〈B〉0

〈
Â(β)

〉)
= β

〈
δÂ(β)δB̂I (t)

〉
0

F (11.39)

where the Kubo transform Â(β) is defined by Eq. (11.27). In the classical limit
δÂ(β) = δA and Eq. (11.39) becomes identical to (11.15). The rest of the devel-
opment follows the same steps as those leading to Eq. (11.22) and results in the
linear response equation (11.19) with the quantum expression for the isothermal
susceptibility

χBA(t) = −θ(t)β〈δÂ(β)δ ˆ̇BI (t)〉0 = θ(t)β〈δ ˆ̇A(β)δB̂I (t)〉0 (11.40)
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As in the classical case, the important physical aspect of this result is that the time
dependence in δB̂I (t) as well as the equilibrium thermal average are evaluated with
respect to the Hamiltonian Ĥ0 of the unperturbed system.

Let us now follow a different route, starting from the quantum Liouville equation
for the time evolution of the density operator ρ̂

∂ρ̂(t)

∂t
= −i(L0 + L1(t))ρ̂(t)

L0ρ̂ = h̄−1[Ĥ0, ρ̂]; L1(t)ρ̂ = h̄−1[Ĥ1, ρ̂] = −h̄−1F(t)[Â, ρ̂] (11.41)

Assume as in Eq. (11.17) that the system is at its unperturbed equilibrium state in
the infinite past

ρ̂(−∞) = ρ̂0,eq = e−βĤ0

Tr[e−βĤ0] (11.42)

Using integral equation representation of (11.41) given by Eq. (10.25) and keeping
only the lowest-order correction to ρ̂0,eq leads to

ρ̂(t) = ρ̂0,eq − i

t∫
−∞

dt′e−i(t−t′)L0L1(t
′)ρ̂0,eq

= ρ̂0,eq − i

h̄

t∫
−∞

dt′e−(i/h̄)(t−t′)Ĥ0[Ĥ1(t
′), ρ̂0,eq]e(i/h̄)(t−t′)Ĥ0 (11.43)

where we have also used the identity exp(−iL0t)ρ̂0,eq = ρ̂0,eq. The deviation of an
observable B from its equilibrium value under ρ̂0,eq is given by

δ〈B〉(t) = 〈B(t)〉 − 〈B〉0 = Tr[ρ̂(t)B̂] − Tr[ρ̂0,eqB̂]

= − i

h̄

t∫
−∞

dt′Tr[B̂e−(i/h̄)(t−t′)Ĥ0[Ĥ1(t
′), ρ̂0,eq]e(i/h̄)(t−t′)Ĥ0]

= − i

h̄

t∫
−∞

dt′Tr[B̂I (t − t′)[Ĥ1(t
′), ρ̂0,eq]] (11.44)

where the last equality is obtained by cyclically changing the order of operators
inside the trace and by using the interaction representation (11.37) of the operator
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B̂. Note that since Tr[Ĥ1(t′), ρ̂0,eq] = 0 we can replace B̂I by δB̂I = B̂I − 〈B〉0 in
(11.44) to get

δ〈B〉(t) = − i

h̄

t∫
−∞

dt′Tr[δB̂I (t − t′)[Ĥ1(t
′), ρ̂0,eq]] (11.45)

Next we use Ĥ1(t) = −F(t)Â and the cyclic property of the trace to rewrite
Eq. (11.45) in the form

δ〈B〉(t) = i

h̄

t∫
−∞

dt′F(t′)Tr[δB̂I (t − t′)[Â, ρ̂0,eq]]

= i

h̄

t∫
−∞

dt′F(t′)[〈δB̂I (t − t′)Â〉0 − 〈ÂδB̂I (t − t′)〉0]

= i

h̄

t∫
−∞

dt′F(t′)〈[δB̂I (t − t′), Â]〉0 (11.46)

Finally we note that under the commutator we can replace Â by δÂ = Â − 〈Â〉0.
We have found that in the linear response approximation

δ〈B〉(t) =
t∫

−∞
dt′χBA(t − t′)F(t′) (11.47)

where

χBA(t) = i

h̄
〈[δB̂I (t), δÂ]〉0 (11.48)

or

δ〈B〉(t) =
∞∫

−∞
dt′χBA(t − t′)F(t′) (11.49)

with χBA(t) given by

χBA(t) =
{

i
h̄〈[δB̂I (t), δÂ]〉0
0

t > 0
t < 0

(11.50)
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Problem 11.3. Use the Kubo’s identity (Appendix 11A, Eq. (11.81)) with Ĥ
replaced by Ĥ0 to show that Eqs (11.50) and (11.40) are equivalent

Solution: Indeed

χBA(t) = i

h̄
〈[δB̂I (t), δÂ]〉0 = i

h̄
Tr{ρ̂0,eq[δB̂I (t), δÂ]} = i

h̄
Tr{[δÂ, ρ̂0,eq]δB̂I (t)}

= Tr{ρ̂0,eq

β∫
0

dλδ ˆ̇AI (−ih̄λ)δB̂I (t)} =
β∫

0

dλ〈δ ˆ̇AI (−ih̄λ)δB̂I (t)〉0

= β〈δ ˆ̇A(β)δB̂I (t)〉0 = −β〈δÂ(β)δ ˆ̇BI (t)〉0 (11.51)

11.2.3 Causality and the Kramers–Kronig relations

The fact that the response functions χ(t) in Eqs (11.19) and (11.49) vanish for
t < 0 is physically significant: It implies that an “effect” cannot precede its “cause,”
that is, the “effect” at time t cannot depend on the value of the “cause” at a later
time. This obvious physical property is also reflected in an interesting and use-
ful mathematical property of such response functions. To see this we express the
response function χBA(t) = i

h̄θ(t)〈[δB̂I (t), δÂ]〉0 in terms of the eigenstates (and

corresponding energies) of Ĥ0

χBA(t) = i

h̄
θ (t)Tr{ρ̂0,eq(e

iĤ0t/h̄δB̂e−iĤ0t/h̄δÂ − δÂeiĤ0t/h̄δB̂e−iĤ0t/h̄)}

= i

h̄
θ(t)

∑
k

∑
l

Pk(e
iωkl tδBklδAlk − e−iωkl tδBlkδAkl)

= i

h̄
θ(t)

∑
k

∑
l

(Pk − Pl)e
iωkl tδBklδAlk (11.52)

where Pk = exp(−βεk)/
∑

k exp(−βεk), ωkl = (εk − εl)/h̄, and Xkl = 〈k|X̂ |l〉
for any operator X̂ .
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Now consider the Fourier transform of this function, χ̃(ω) = ∫∞
−∞ dteiωtχ(t).

We use the identity1

∞∫
−∞

dteixtθ(t)eix′t = lim
η→0+

i

x + x′ + iη
(11.53)

to write

χ̃BA(ω) = −1

h̄
lim

η→0+
∑

k

∑
l

(Pk − Pl)
1

ω + ωkl + iη
δBklδAlk (11.54)

The appearance of iη in the denominators here defines the analytical properties of
this function: The fact that χ̃(ω) is analytic on the upper half of the complex ω

plane and has simple poles (associated with the spectrum of Ĥ0) on the lower half is
equivalent to the casual nature of its Fourier transform—the fact that it vanishes for
t < 0. An interesting mathematical property follows. For any function χ(ω) that is
(1) analytic in the half plane Reω > 0 and (2) vanishes fast enough for |ω| → ∞
we can write (see Section 1.1.6)

lim
η→0

∞∫
−∞

dω′ χ(ω′)
ω′ − ω − iη

= 2π iχ(ω) (11.55)

Using (cf. Eq. (1.71)) limη→0(ω
′ − ω − iη)−1 = PP(ω′ − ω)−1+ iπδ(ω′ −ω) we

find for the real and imaginary parts of χ = χ1 + iχ2

χ1(ω) = 1

π
PP

∞∫
−∞

dω′ χ2(ω
′)

ω′ − ω

χ2(ω) = − 1

π
PP

∞∫
−∞

dω′ χ1(ω
′)

ω′ − ω
(11.56)

1 Note that the existence of the θ function is important in this identity. The inverse Fourier
transform is

lim
η→0+

1

2π

∞∫
−∞

dxe−ixt i

x + x′ + iη
= θ(t)eix′t

as is easily shown by contour integration.
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The transformation defined by (11.56) is called Hilbert transform, and we have
found that the real and imaginary parts of a function that is analytic in half of the
complex plane and vanishes at infinity on that plane are Hilbert transforms of each
other. Thus, causality, by which response functions have such analytical properties,
also implies this relation. On the practical level this tells us that if we know the real
(or imaginary) part of a response function we can find its imaginary (or real) part
by using this transform.

Problem 11.4. Note that if χ1(ω) is symmetric under sign inversion of ω, that is,
χ1(ω) = χ1(−ω), then χ2(ω) is antisymmetric, χ2(ω) = −χ2(−ω). Show that
in this case Eqs (11.56) can be rewritten in the form

χ1(ω) = 2

π
PP

∞∫
0

dω′ω
′χ2(ω

′)
ω′2 − ω2

χ2(ω) = −2ω

π
PP

∞∫
0

dω′ χ1(ω
′)

ω′2 − ω2 (11.57)

In this form the equations are known as the Kramers–Kronig relations.

11.2.4 Examples: mobility, conductivity, and diffusion

Consider a homogeneous and isotropic system of classical noninteracting charged
particles under an external, position-independent electric field Ex(t) in the x
direction. In this case

H1 = −q

⎛
⎝∑

j

xj

⎞
⎠Ex(t) (11.58)

where xj is the displacement of particle j in the x direction and q is the particle
charge. In the notation of Eq. (11.2) we now have

F = Ex and A = q
∑

j
xj (11.59)

We want to calculate the response to this force as expressed by the average speed
of a given particle l, and since in equilibrium 〈vl〉0 = 0 we can write

�B = ẋl = vlx (11.60)
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In focusing on the x component of the response we anticipate that the response in
the orthogonal directions vanishes, as can be easily verified using the procedure
below. Equation (11.18) takes the form

〈vlx(t)〉 =
t∫

−∞
dt′χ(t − t′)Ex(t

′) (11.61)

where, using Eq. (11.22) in the form χBA = β〈δȦ(0)δB(t)〉0

χ(t) = βq

〈(∑
j
vjx(0)

)
vlx(t)

〉
0
= βq〈vlx(0)vlx(t)〉0 (11.62)

In the last equality we have used the fact that the equilibrium velocities of different
particles are uncorrelated. For Ex(t) = Ex = constant Eq. (11.61) gives

〈vx〉 =
⎛
⎝βq

∞∫
0

dt〈vx(0)vx(t)〉
⎞
⎠Ex (11.63)

Here and below we have dropped the subscript 0 from the correlation functions.
Indeed, to this lowest order we could take the thermal averages using either H or
H0. We have also dropped the subscript l because this result is obviously the same
for all identical particles. The equivalent quantum result is

〈vx〉 =
⎛
⎝βq

∞∫
0

dt〈v̂(β)x (0)v̂x(t)〉
⎞
⎠Ex (11.64)

For simplicity we continue to consider the classical case. We can now discuss
several equivalent transport functions (or “transport coefficients”):

11.2.4.1 Mobility

The coefficient that multiples the force, qEx, in (11.63) is the mobility u,

u = β

∞∫
0

dt〈vx(0)vx(t)〉 = β

3

∞∫
0

dt〈v(0) · v(t)〉 (11.65)

In the last equality we have used the fact that an isotropic system u does not depend
on direction.
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11.2.4.2 Diffusion

Equation (11.65) is closely related to the expression (6.14) for the diffusion
coefficient D, so that

u = D

kBT
(11.66)

This result is known as the Stokes–Einstein relation. It can also be derived from
elementary considerations: Let a system of noninteracting charged particles be in
thermal equilibrium with a uniform electric field Ex = −∂�/∂x in the x direction,
so that the density of charged particles satisfies ρ(x) ∼ exp(−βq�(x)). In equilib-
rium, the diffusion flux, −D∂ρ/∂x = −βDqρEx and the drift flux, uqExρ should
add to zero. This yields (11.66).

11.2.4.3 Friction

The diffusion coefficient and therefore the mobility are closely related to the friction
coefficient γ that determines the energy loss by the moving particles. Writing the
acceleration v̇x of the moving charged particle as a sum of electrostatic and friction
forces

〈v̇x〉 = 1

m
qEx − γ 〈vx〉 (11.67)

and putting at steady state 〈v̇x〉 = 0, leads to u = (mγ )−1 or

D = kBT

mγ
(11.68)

11.2.4.4 Conductivity

The conductivity σ connects the external electric field Ex and the observed current
〈Jx〉 via 〈Jx〉 = σEx. The average current is 〈Jx〉 = ρq〈vx〉 where ρ is the carrier
density. The average velocity vx is obtained from (11.66) in the form 〈vx〉 = uqEx =
DqEx/kBT . This yields the Nernst–Einstein equation

σ = q2ρ

kBT
D (11.69)

Consider now the time-dependent case. From Eq. (11.63) we get

Jx(t) = ρq〈vx(t)〉 =
∞∫

−∞
dtσ(t − t′)Ex(t) (11.70)

σ(t) =
⎧⎨
⎩ρq2β〈δvx(0)δvx(t)〉 = ρq2

3kBT
〈v(0) · v(t)〉 t > 0

0 t < 0
(11.71)
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In Fourier space, Jx(ω) = ∫∞
−∞ dteiωtJx(t), etc. we get

J(ω) = σ(ω)E(ω) (11.72)

with the frequency-dependent conductivity, σ(ω), which is given by the Fourier–
Laplace transform of the velocity–time correlation function,2

σ(ω) =
∞∫

−∞
dtσ(t)eiωt = ρq2β

3

∞∫
0

dt〈v(0) · v(t)〉eiωt (11.73)

The generalization of these results to anisotropic system is easily done within the
same formalism, see for example, the book by Kubo et al. referred to at the end
of this chapter. The result (11.73) (or the more general expression below) is often
referred to as Kubo’s formula of conductivity.

11.2.4.5 Conductivity and diffusion in a system of interacting particles

If carrier–carrier interactions are not disregarded we cannot obtain the above trans-
port coefficients from the single particle response (11.63). Linear response theory
should now be used for collective variables. Starting from Eqs (11.58) and (11.59)
we seek the response in the current density

Jx(r, t) = q
∑

j

ẋj(t)δ(r − rj) (11.74)

Classical linear response theory now yields σ(t) = β〈δȦδB(t)〉0 (for t > 0) with
δB = Jx(r, t) and δȦ = q

∑
j ẋj =

∫
dr′Jx(r′, 0). This leads to Eq. (11.70) with

σ(t) = β

∫
dr′〈Jx(r′, 0)Jx(r, t)〉0 = β

∫
dr〈Jx(0, 0)Jx(r, t)〉0

= β

3

∫
dr〈J(0, 0) · J(r, t)〉0 (11.75)

while the DC conductivity is given by

σ = β

3

∫
dr

∞∫
0

dt〈J(0, 0) · J(r, t)〉0 (11.76)

2 Note that σ of Eq. (11.69) (or σ(ω) of Eq. (11.73)) have dimensionalities of (time)−1 while σ(t)
of Eq. (11.71) has dimensionality (time)−2.
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In Eqs (11.75) and (11.76) the current density vector is

J(r, t) = q
∑

j

ṙj(t)δ(r − rj) (11.77)

These equations relate the static and dynamic conductivities to the time and space
correlation functions of equilibrium fluctuations in the local current density.

Turning now to the diffusion coefficient, the single particle expression
(Section 6.2.1)

Dtr =
∞∫

0

dt〈vx(0)vx(t)〉 = 1

3

∞∫
0

dt〈v(0) · v(t)〉 (11.78)

still has a meaning in a system of interacting particles, because it is possible to follow
the motion of single particles in such a system. This is done by marking a small
fraction of such particles by, for example, isotope substitution and following the
marked particles. The diffusion coefficient that characterizes the motion observed
in this way is called the tracer diffusion coefficient.

The tracer diffusion coefficient however is not the transport coefficient to be used
in the linear relationship (Fick’s law) Jc = −D∇c between the diffusion current Jc
and the particle concentration c or in the diffusion equation ∂c/∂t = D∇2c. The
coefficient D in these equations does depend on correlations between the motions
of different molecules. We have used the notation Dtr above to distinguish the
tracer diffusion coefficient from the so-called chemical diffusion coefficient D that
appears in the diffusion equation.

A fully microscopic theory of chemical diffusion can be constructed, however,
it requires a careful distinction between the motions of the observed species and the
underlying host, and is made complicated by the fact that, as defined, the diffusion
coefficient relates flux to the concentration gradient while the actual force that drives
diffusion is gradient of the chemical potential. An alternative useful observable is
the so-called conductivity diffusion coefficient, which is defined for the motion of
charged particles by the Nernst–Einstein equation (11.69)

Dσ = kBT

cq2 σ (11.79)

More generally, any force could be used to move the particles, so a more general
definition of this type of transport coefficient will be the “mobility diffusion coef-
ficient,” Du = kBTu (cf. Eq. (11.66)). Note that while this relationship between the
conductivity and the diffusion coefficient was derived for noninteracting carriers,
we now use this equation as a definition also in the presence of interparticle
interactions, when σ is given by Eq. (11.76).
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Fig. 11.1 The Haven ratios, plotted against inverse temperature, for the diffusion of silver ions in
three solid ionic conductors: Ag2S, Ag2Se, and Ag2Te. (From H. Okazaki, J. Phys. Soc. Jpn, 43, 213
(1977).)

It should be realized that Dσ and Du just express the properties of the conductivity
and mobility from which they are derived, and using them in the Fick’s law Jc =
−D∇c is at best a crude approximation. On the other hand they contain information
about interparticle correlations that result from carrier–carrier interactions. A useful
quantity that gauge the importance of such correlations is the Haven ratio

HR ≡ Dtr

Dσ

(11.80)

which is unity in a system of noninteracting particles and deviates from 1 when
carrier–carrier interactions affect the observable Dσ . An example is shown in
Fig. 11.1.

Appendix 11A: The Kubo identity

Here we prove the Kubo’s identity for any operator Â and Hamiltonian Ĥ . It states

[e−βĤ , Â] = e−βĤ

β∫
0

dλeλĤ [Â, Ĥ ]e−λĤ = ih̄e−βĤ

β∫
0

dλeλĤ ˆ̇Ae−λĤ

= ih̄e−βĤ

β∫
0

dλ ˆ̇AH(−ih̄λ) (11.81)
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where ÂH(x) = e(i/h̄)ĤxÂe−(i/h̄)Ĥx is the Heisenberg representation of Â. The first
equality in (11.81) is verified by taking the ij matrix element of the two sides in the
basis of eigenstates of Ĥ . On the left we have 〈i|[e−βĤ , Â]|j〉 = Aij(e−βεi − e−βεj).
The same matrix element on the right is

〈i|e−βĤ

β∫
0

dλeλĤ [Â, Ĥ ]e−λĤ |j〉 = e−βεi

β∫
0

dλeλεi(Aijεj − εiAij)e
−λεj

= Aij(εj − εi)e
−βεi

β∫
0

dλeλ(εi−εj) (11.82)

which is easily shown to be the same. The second equality in (11.81) is based on
the identities

dÂH

dt
= i

h̄
[Ĥ , ÂH(t)] = i

h̄
e(i/h̄)Ĥ t[Ĥ , Â]e−(i/h̄)Ĥ t = e(i/h̄)Ĥ t ˆ̇Ae−(i/h̄)Ĥ t (11.83)

Here ÂH and Â denote respectively the Heisenberg and Schrödinger representations

of the operator. Equation (11.83) implies that ˆ̇AH = dÂH/dt and ˆ̇A are respect-
ively time derivatives of Â in the Heisenberg and the Schrödinger representations.
Eq. (11.81) is a relationship between these representations in which t is replaced
by −ih̄λ.

Further reading

B. J. Berne and R. Pecora, Dynamic Light Scattering (Wiley, New York, 1976).
D. Chandler, Introduction to Modern Statistical Mechanics (Oxford University Press, Oxford, 1986).
R. Kubo, M. Toda, and N. Hashitsume, Statistical Physics II, Springer Series in Solid State Sciences,

2nd ed. (Springer, Berlin, 1995).
R. Zwanzig, Non Equilibrium Statistical Mechanics (Oxford University Press, Oxford, 2001).
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THE SPIN–BOSON MODEL

Sometimes, you know, we can not see dazzling objects
Through an excess of light; whoever heard
Of doorways, portals, outlooks, in such trouble?
Besides, if eyes are doorways, might it not
Be better to remove them, sash, jamb, lintel,
And let the spirit have a wider field?

Lucretius (c.99–c.55 BCE) “The way things are”
translated by Rolfe Humphries, Indiana University Press, 1968

In a generic quantum mechanical description of a molecule interacting with its
thermal environment, the molecule is represented as a few level system (in the
simplest description just two, for example, ground and excited states) and the envir-
onment is often modeled as a bath of harmonic oscillators (see Section 6.5). The
resulting theoretical framework is known as the spin–boson model,1 a term that
seems to have emerged in the Kondo problem literature (which deals with the
behavior of magnetic impurities in metals) during the 1960s, but is now used in a
much broader context. Indeed, it has become one of the central models of theoretical
physics, with applications in physics, chemistry, and biology that range far beyond
the subject of this book. Transitions between molecular electronic states coupled

1 The term “spin–boson model” seems to have emerged in the Kondo problem literature (which deals
with the interactions between an impurity spin in a metal and the surrounding electron bath) during
the 1960s, however fundamental works that use different aspects of this model were published earlier.
In 1953, Wangsness and Bloch (R. K. Wangsness and F. Bloch, Phys. Rev. 89, 728 (1953)) presented
a framework for the theoretical discussion of spin relaxation due to environmental interactions, that
evolved into theory of the Bloch equations in a later paper by Bloch (F. Bloch, Phys. Rev. 105, 1206
(1957)) and the more rigorous description by Redfield (A. G. Redfield, IBM J. Res. Develop. 1,
19 (1957)); see Section 10.4.8). Marcus (R. A. Marcus, J. Chem. Phys. 24, 966; 979 (1956); see
Chapter 16) has laid the foundation of the theory of electron transfer in polar solvents and Holstein
(T. Holstein, Ann. Phys. (NY), 8, 325; 343 (1959)) published his treatise of polaron formation and
dynamics in polar crystals. Much of the later condensed phase literature has been reviewed by Leggett
et al. (A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. A. Fisher, A. Garg, W. Zwerger, Rev. Mod.
Phys. 59, 1 (1987)), see also H. Grabert and A. Nitzan, editors, Chem. Phys. 296(2–3) (2004). In
many ways the problem of a few level system interacting with the radiation field (Chapter 18) also
belong to this class of problems.
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to nuclear vibrations, environmental phonons, and photon modes of the radiation
field fall within this class of problems. The present chapter discusses this model
and some of its mathematical implications. The reader may note that some of the
subjects discussed in Chapter 9 are reiterated here in this more general framework.

12.1 Introduction

In Sections 2.2 and 2.9 we have discussed the dynamics of the two-level system and
of the harmonic oscillator, respectively. These exactly soluble models are often used
as prototypes of important classes of physical system. The harmonic oscillator is an
exact model for a mode of the radiation field (Chapter 3) and provides good start-
ing points for describing nuclear motions in molecules and in solid environments
(Chapter 4). It can also describe the short-time dynamics of liquid environments
via the instantaneous normal mode approach (see Section 6.5.4). In fact, many lin-
ear response treatments in both classical and quantum dynamics lead to harmonic
oscillator models: Linear response implies that forces responsible for the return of
a system to equilibrium depend linearly on the deviation from equilibrium—a har-
monic oscillator property! We will see a specific example of this phenomenology
in our discussion of dielectric response in Section 16.9.

The two-level model is the simplest prototype of a quantum mechanical system
that has no classical analog. A spin 1

2 particle is of course an example, but the
same model is often used also to describe processes in multilevel systems when
the dynamics is dominated by two of the levels. The dynamics of an anharmonic
oscillator at low enough temperatures may be dominated by just the two lowest
energy levels. The electronic response of a molecular system is often dominated by
just the ground and the first excited electronic states. Low temperature tunneling
dynamics in a double well potential can be described in terms of an interacting
two-level system, each level being the ground state on one of the wells when it is
isolated from the other. Finally, as a mathematical model, the two-level dynamics is
often a good starting point for understanding the dynamics of a few level systems.

The prominence of these quantum dynamical models is also exemplified by
the abundance of theoretical pictures based on the spin–boson model—a two
(more generally a few) level system coupled to one or many harmonic oscillat-
ors. Simple examples are an atom (well characterized at room temperature by its
ground and first excited states, that is, a two-level system) interacting with the
radiation field (a collection of harmonic modes) or an electron spin interacting with
the phonon modes of a surrounding lattice, however this model has found many
other applications in a variety of physical and chemical phenomena (and their
extensions into the biological world) such as atoms and molecules interacting with
the radiation field, polaron formation and dynamics in condensed environments,
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electron transfer processes, quantum solvation phenomena, spin–lattice relaxation,
molecular vibrational relaxation, exciton dynamics in solids, impurity relaxa-
tion in solids, interaction of magnetic moments with their magnetic environment,
quantum computing (the need to understand and possibly control relaxation effects
in quantum bits, or qubits), and more. In addition, the spin–boson model has been
extensively used as a playground for developing, exploring, and testing new theor-
etical methods, approximations, and numerical schemes for quantum relaxation
processes, including perturbation methods, exactly solvable models, quantum-
numerical methodologies and semiclassical approximations. A few of these results
and applications are presented below.

12.2 The model

We consider a two-level system coupled to a bath of harmonic oscillators that
will be referred to as a boson field. Two variations of this model, which differ
from each other by the basis used to describe the two-level system, are frequently
encountered. In one, the basis is made of the eigenstates of the two-state Hamiltonian
that describes the isolated system. The full Hamiltonian is then written

Ĥ = Ĥ0 + V̂SB (12.1)

where the zero-order Hamiltonian describes the separated subsystems (see
Fig. 12.1)

Ĥ0 = ĤM + ĤB = E1|1〉〈1| + E2|2〉〈2| +
∑
α

�ωα â†
α âα (12.2a)

and the coupling is taken in the form

V̂SB =
2∑

j,j′=1

∑
α

V α
j,j′ |j〉〈j′|(â†

α + âα) (12.2b)

The rationale behind this choice of system–bath interaction is that it rep-
resents the first term in the expansion of a general interaction between the

E1

E2

�E
VSB

Phonons or
photons

∑ â�
†â�

�

Fig. 12.1 The spin–boson model for a two-level molecule coupled to a system of harmonic
oscillators.
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two-level system and the harmonic bath in the bath normal mode coordinates,
x̂α = √

�/(2mαωα)(â
†
α + âα), that express deviations from the minimum energy

configuration.2 In other situations the coupling takes place through the momentum
operator which is linear in (â†

α − âα). An example is the important case of system–
radiation field coupling. If the system does not have a permanent dipole moment the
coupling V̂SB is non-diagonal in the system states and takes the form (cf. Eq. (3.27))

V̂SB = −i
∑

k

∑
σk

√
2π�ωk

ε�
[(µ̂12 · σk)|1〉〈2| + (µ̂21 · σk)|2〉〈1|](âk,σk − â†

k,σk
)

(12.3)
where µ̂ is the system dipole operator and where the harmonic modes are
characterized in terms of the wavevector k and the polarization vector σk .

In the second model, the basis chosen to describe the two-level (or few level)
system is not made of the system eigenstates. In what follows we denote these states
|L〉 and |R〉

Ĥ = Ĥ0 + V̂S + V̂SB (12.4)

Ĥ0 and V̂SB have the forms (12.2)

Ĥ0 = Ĥ0M + Ĥ0B = EL|L〉〈L| + ER|R〉〈R| +
∑
α

�ωα â†
α âα (12.5a)

V̂SB =
R∑

j,j′=L

∑
α

V α
j,j′ | j〉〈 j′|(â†

α + âα) (12.5b)

and the additional term is the non-diagonal part of the system Hamiltonian

V̂S = V S
LR|L〉〈R| + V S

RL|R〉〈L| (12.6)

Sometimes this is done as a computational strategy, for example, atomic orbitals are
used as a basis set in most molecular computations. In other cases this choice reflects
our physical insight. Consider, for example, tunneling in a double well potential
U , Fig. 12.2(a), where the barrier between the two wells is high relative to both
the thermal energy kBT and the zero-point energy in each well. We have already
indicated that a two-level model can be useful for describing the low-temperature
dynamics of this system. Denoting by ψL and ψR the wavefunctions that represent
the ground states of the separated potentials UL, Fig. 12.2(b), and UR, Fig. 12.2(c),

2 The zero-order term of this expansion, which is independent of xα , just redefines the zero-
order Hamiltonian. Disregarding higher order reflects the expectation that in condensed phases the
deviations xα from the minimum energy configuration are small.
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x

(b)

(c)

(a)

U(x)

UL(x)

UR(x)

Fig. 12.2 A double well potential U (x) (a) and the potentials UL(x) and UR(x), (b) and (c), which
define the states |L〉 and |R〉 used in the local state representation of a 2-level system.

respectively, the two lowest states of the potential U are approximated well by the
even and odd linear combinations, ψ1,2 = ψL±ψR. While ψ1,2 represent the exact
ground states of the potential U (x), tunneling is more readily described in terms of
transitions between the local states ψR and ψL.

It should be emphasized that, while the two models, Eqs (12.1), (12.2) and
(12.4)–(12.6) are mathematically just different representations of what may be seen
as the same Hamiltonian, they are used in different physical contexts. The former
model is used to describe transitions between system eigenstates that are induced
by the interaction of a two-level system with a boson field, as exemplified by the
interaction between a system and a radiation field, Eq. (12.3). In contrast, the latter
model is used to examine the effect of a boson bath on the transition between states
of the system that are (1) coupled to each other also in the absence of this field
and (2) associated with distinctly different polarizations of the boson environment
in the different system states. This is exemplified by the electron transfer problem
discussed in Chapter 16, where states L and R correspond to charge localization at
different spatial positions in a polar solvent. Obviously, a two-level system may be
described in terms of its eigenstates or any other basis, and the dynamics caused
by its coupling to an external field or a thermal bath can be studied in any rep-
resentation. Physical reality often guides us to choose a particular representation.
In the tunneling example discussed above and in the electron transfer problem of
Chapter 16 the local state representation is convenient because the system can be
initially prepared such a local state. We have encountered a similar example in
Chapter 9, where the study of the decay of a prepared “doorway” state coupled to a
continuous manifold of background states was studied in the representation defined
by these states and not by the eigenstates of the system Hamiltonian, because such
a doorway state could be experimentally prepared and monitored.
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Choosing a physically motivated representation is useful in developing phys-
ically guided approximation schemes. A commonly used approximation for the
model (12.4)–(12.6) is to disregard terms with j �= j′ in the system–bath interaction
(12.5b). The overall Hamiltonian then takes the form

Ĥ =
[

EL +
∑
α

V α
L (â†

α + âα)

]
|L〉〈L| +

[
ER +

∑
α

V α
R (â†

α + âα)

]
|R〉〈R|

+ VLR|L〉〈R| + VRL|R〉〈L| +
∑
α

�ωα â†
α âα (12.7)

The spin–boson coupling in this Hamiltonian is diagonal in the local state basis.
The rationale for this model is that in this local state representation bath induced
coupling between different local states is small relative to the interstates coupling
VRL because the corresponding local wavefunctions almost do not overlap. However
the bath affects the system in states L and R in a substantial way. Its effect in the
Hamiltonian (12.7) appears as fluctuations in the local state energies associated with
the instantaneous configurations of the harmonic bath (again expanded to first order
in the bath coordinates). Interestingly, the Hamiltonian (12.7) can be transformed
to a form similar to (12.3) but with a nonlinear coupling to the boson field. This is
shown in the next section.

12.3 The polaron transformation

Consider the n-level equivalent of the Hamiltonian (12.7)

Ĥ =
∑

n

(
En +

∑
α

gnα x̂α

)
|n〉〈n| +

∑
n �=n′

Vn,n′ |n〉〈n′|+ĤB({p̂α , x̂α}) (12.8)

where (using (2.153))

gnα = V α
n

√
2mαωα

�
(12.9)

and where

HB({p̂α , x̂α}) =
∑
α

(
p̂2
α

2mα

+ 1

2
mαω

2
ax̂2

α

)
(12.10)

is the harmonic bath Hamiltonian, with x̂α , p̂α , ωa, and mα denoting the position
and momentum operators, the frequency and mass, respectively, of the harmonic
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bath modes. We now carry the unitary transformation, known as the polaron
transformation

ˆ̃H = Û Ĥ Û−1; Û ≡
∏

n

Ûn (12.11a)

Ûn = exp(−i|n〉〈n|�̂n); �̂n =
∑
α

�̂n,α (12.11b)

�̂n,α = gnα p̂α

�mαω2
α

⇒ i�̂n,α = gnα

mαω2
α

∂

∂xα
(12.11c)

Now use Eq. (2.178) to find

Û ĤBÛ−1 =
∑
α

⎛
⎝ p̂2

α

2mα

+ 1

2
mαω

2
α

(
x̂α −

∑
n

gnα

mαω2
α

|n〉〈n|
)2

⎞
⎠

= ĤB + 1

2

∑
n

(∑
α

g2
nα

mαω2
α

)
|n〉〈n| −

∑
n

(∑
α

gnα x̂α

)
|n〉〈n| (12.12)

Û
∑

n

(
En +

∑
α

gnα x̂α

)
|n〉〈n|Û−1 =

∑
n

(
En +

∑
α

gnα x̂α

)
|n〉〈n|

−
∑

n

∑
α

g2
nα

mαω2
α

|n〉〈n| (12.13)

in deriving (12.12) and (12.13) we have used (|n〉〈n|)2 = |n〉〈n|, and the fact that
when evaluating transformations such as Û x̂αÛ−1 the operator |n〉〈n| in Ûn can be
regarded as a scalar. In addition it is easily verified that

e−i
∑

n |n〉〈n|�̂n |n1〉〈n2|ei
∑

n |n〉〈n|�̂n = e−i|n1〉〈n1|�̂n1 |n1〉〈n2|ei|n2〉〈n2|�̂n2

= e−i�̂n1 |n1〉〈n2|ei�̂n2 = |n1〉〈n2|ei(�̂n2−�̂n1 )

(12.14)

Equations (12.8) and (12.11)–(12.14) yield

ˆ̃H =
∑

n

(
En−

(∑
α

g2
nα

2mαω2
α

))
|n〉〈n|+

∑
n�=n′

Vn,n′e
−i(�̂n−�̂n′ )|n〉〈n′|+ ĤB({pα , xα})

≡ ˆ̃H0 +
∑
n�=n′

Vn,n′e
−i(�̂n−�̂n′ )|n〉〈n′| (12.15)
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In this transformed Hamiltonian ˆ̃H0 again describes uncoupled system and bath;
the new element being a shift in the state energies resulting from the system–bath
interactions. In addition, the interstate coupling operator is transformed to

V̂ = Vn,n′ |n〉〈n′| → ˆ̃V = Vn,n′e
−i(�̂n−�̂n′ )|n〉〈n′| = Vn,n′e

−∑
α λ

n,n′
α (∂/∂xα)|n〉〈n′|

(12.16a)
with

λn,n′
α = λ(n)

α − λ(n′)
α ; λ(n)

α = gnα

mαω2
α

(12.16b)

To see the significance of this result consider a typical matrix element of this

coupling between eigenstates of ˆ̃H0. These eigenstates may be written as |n, v〉 =
|n〉χv({xα}), where the elements vα of the vector v denote the states of different
modes α, that is, χn,v({xα}) = ∏

α χvα (xα) are eigenstates of ĤB and χvα (xα) is
the eigenfunction that corresponds to the vαth state of the single harmonic mode α.
A typical coupling matrix element is then

〈n, v| ˆ̃V |n′, v′〉 = Vn,n′ 〈χv({xα})|e−i(�̂n−�̂n′ )|χv′({xα})〉 (12.17)

that is, the coupling between two vibronic states |n, v〉 and |n′, v′〉 is given by the
bare interstate coupling Vn,n′ “renormalized” by the term

〈χv({xα})|e−i(�̂n−�̂n′ )|χv′({xα})〉 =
∏
α

〈χvα (xα)|e−λ
n,n′
α (∂/∂xα)|χv′α (xα)〉

=
∏
α

〈χvα (xα)|χv′α (xα − λn,n′
α )〉 (12.18)

The absolute square of these term, which depend on v, v′, and the set of shifts
{λn,n′

α }, are known as Franck–Condon factors.

12.3.1 The Born Oppenheimer picture

The polaron transformation, executed on the Hamiltonian (12.8)–(12.10) was seen
to yield a new Hamiltonian, Eq. (12.15), in which the interstate coupling is “renor-
malized” or “dressed” by an operator that shifts the position coordinates associated
with the boson field. This transformation is well known in the solid-state physics
literature, however in much of the chemical literature a similar end is achieved via a
different route based on the Born–Oppenheimer (BO) theory of molecular vibronic
structure (Section 2.5). In the BO approximation, molecular vibronic states are of
the form φn(r, R)χn,v(R) where r and R denote electronic and nuclear coordin-
ates, respectively, φn(r, R) are eigenfunctions of the electronic Hamiltonian (with
corresponding eigenvalues E(n)

el (R)) obtained at fixed nuclear coordinates R and
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χn,v(R) are nuclear wavefunctions associated, for each electronic state n, with a
nuclear potential surface given by E(n)

el (R). These nuclear potential surfaces are
therefore different for different electronic states, and correspond within the har-
monic approximation to different sets of normal modes. Mathematically, for any
given potential surface, we first find the corresponding equilibrium position, that is,
the minimum energy configuration E(n)

el,eq, and make the harmonic approximation by
disregarding higher than quadratic terms in the Taylor expansion of the potentials
about these points. The eigenvectors and eigenvalues of the Hessian matrices of the
nth surface, H(n)

α,α′ = (∂2E(n)
el (R)/∂Rα∂Rα′)eq, yield the normal-mode coordinates,

x(n) ≡ {x(n)α } and the corresponding frequencies {ω(n)
α } of the nuclear motion. In

this harmonic approximation the potential surfaces are then

E(n)
el (R) = En + 1

2

∑
α

mαω
(n)2
α x(n)2α (12.19)

where En ≡ E(n)
el,eq.

The sets of normal modes obtained in this way are in principle different for
different potential surfaces and can be related to each other by a unitary rotation in
the nuclear coordinate space (see further discussion below). An important simpli-
fication is often made at this point: We assume that the normal modes associated
with the two electronic states are the same, {x(n)α } = {xα}, except for a shift in their
equilibrium positions. Equation (12.19) is then replaced by

E(n)
el (R) =En + 1

2

∑
α

mαω
2
α(xα − λ(n)

α )2

=En +
∑
α

�ωα(x̄α − λ̄(n)
α )2 (12.20)

where the dimensionless coordinates and shifts are defined by

x̄α ≡ xα

√
mαωα

2�
; λ̄(n)

α ≡ λ(n)
α

√
mαωα

2�
(12.21)

A schematic view of the two potential surfaces projected onto a single normal
mode is seen in Fig. 12.3. The normal mode shifts λ

(n)
α express the deviation of

the equilibrium configuration of electronic state n from some specified reference
configuration (e.g. the ground state equilibrium), projected onto the normal mode
directions. Other useful parameters are the single mode reorganization energy Eα

r ,
defined by the inset to Fig. 12.3,

Eα
r = �ωαλ̄

2
α (12.22a)
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�E = E2 – E1

l

Fig. 12.3 A schematic view of the shifted potential surfaces model, shown for simplicity as a one-
dimensional (single mode) representation. The inset is a similar figure on a different scale that shows
the reorganization energy Er .

and the corresponding total reorganization energy

Er =
∑
α

Eα
r (12.22b)

What is the justification for this approximation? Our accumulated experience in
molecular spectroscopy involving low-lying electronic states teaches us that many
optical spectra can be interpreted approximately using model nuclear potential
surfaces in which the identities of the normal-mode coordinates do not change
in the electronic transition. A geometrical picture of this observation is that the
harmonic surfaces shift in parallel with each other. Mixing the normal modes will
amount in this picture to a relative rotation of the potential surfaces between the
different electronic states, and the assumption is that this rotation is small and
may be disregarded to first approximation. Note that this does not mean that the
molecular shape remains constant in the transition. Any change in the equilibrium
position of a normal mode that is not totally symmetric in the molecular symmetry
group will lead to a change in molecular shape.

To summarize, the Born–Oppenheimer states are of the form φn(r, R)χn,v(R)

where the vibrational wavefunction χn,v(R) is an eigenstate of the nuclear
Hamiltonian Ĥ (n)

B associated with the electronic state n. In the harmonic approx-

imation these Hamiltonians are separable, Ĥ (n)
B = ∑

α ĥnα , so that χn,v(R) =∏
α χn,vα (xα) where χn,vα are eigenfunctions of the mode Hamiltonians ĥnα . In the

shifted harmonic surfaces model these normal modes keep their identity in different
electronic states, except that their equilibrium positions depend on the electronic



The polaron transformation 429

state. Formally this can be expressed as

ĥ2α = Ûα ĥ1αÛ−1
α (12.23)

where Ûα is the unitary position shift operator (Eqs (2.173) and (2.175))

Ûα = e−λα(∂/∂xα) = eλ̄α(â
†
α−âα) (12.24)

and λα is the shift associated with mode α between the two electronic states (same
as λ

1,2
α in the notation of Eq. (12.16)).

Consider now transition between vibronic levels associated with different elec-
tronic states that are described in the Born–Oppenheimer approximation. Any
residual coupling V̂ (r, R) not taken into account under the BO approximation, as
well as coupling induced by external fields, can cause such transitions. For allowed
optical transitions this is the electronic dipole operator. Electronic radiationless
relaxation following optical excitation in molecular processes is best described
in the full BO picture, whereupon perturbations that lead to interstate coupling
between states of the same spin multiplicity stem from corrections to this picture
(Eq. (2.53)). Charge transfer processes (Chapter 16) are usually described within
a diabatic local state picture, where the dominant interaction is associated with
electrons on one center feeling the other. In either case, a general coupling matrix
element between two vibronic states φn(r, R)χn,v(R) and φn′(r, R)χn′,v′(R) is of
the form

Vn,v;n′,v′ = 〈χn,v|〈φn|V̂ (r, R)|φn′ 〉r|χn′,v′ 〉R (12.25)

where 〈〉r and 〈〉R indicate integrations in the electronic and nuclear subspaces,
respectively. In the so-called Condon approximation the dependence of the
electronic matrix element on the nuclear configuration is disregarded, that is,
〈φn|V̂ (r, R)|φn′ 〉r → Vn,n′ is taken to be independent of R, whereupon

Vn,v;n′,v′ = Vn,n′ 〈χn,v|χn′,v′ 〉R (12.26)

In the shifted harmonic surfaces model χn,v(R) = ∏
α χn,vα (xα) and χn′,v′(R) =∏

α χn′,v′α (xα − λ
n,n′
α ), so Eq. (12.26) is identical to (12.17) and (12.18).

We have thus found that the interstate coupling (12.17) associated with the
Hamiltonian (12.15) is the same as that inferred from the Born–Oppenheimer pic-
ture in the Condon approximation, under the assumption that different potential
surfaces are mutually related by only rigid vertical and horizontal shifts.3 In spite

3 Note that the term
∑

α gnα x̂α in Eq. (12.8) contributes both horizontal and vertical shift: Limiting
ourselves to the contribution of a single mode α we have: En + gαxα = (1/2)mω2

αx2
α + gαxα =

(1/2)mω2
α(xα − λα)

2 − (1/2)mω2
αλ

2
α where λα = gα/(mω2

α). The associated vertical shift is
(1/2)mω2

αλ
2
α = g2

α/(2mω2
α) which is indeed the vertical shift contribution that enters in Eq. (12.15).
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of the approximate nature of the shifted harmonic surfaces picture, this model is
very useful both because of its inherent simplicity and because it can be sometimes
justified on theoretical grounds as in the electron transfer problem (Chapter 16).
The parallel shift parameters λ can be obtained from spectroscopic data or, as again
exemplified by the theory of electron transfer, by theoretical considerations.

12.4 Golden-rule transition rates

12.4.1 The decay of an initially prepared level

Let us now return to the two model Hamiltonians introduced in Section 12.2, and
drop from now on the subscripts S and SB from the coupling operators. Using
the polaron transformation we can describe both models (12.1), (12.2) and (12.4)–
(12.6) in a similar language, where the difference enters in the form of the coupling
to the boson bath

Ĥ = Ĥ0 + V̂ (12.27a)

Ĥ0 = E1|1〉〈1| + E2|2〉〈2| + ĤB

ĤB =
∑
α

�ωα â†
α âα

(12.27b)

In one coupling model we use (12.2b) where, for simplicity, terms with j = j′ are
disregarded

V̂ = |1〉〈2|
∑
α

V α
1,2(â

†
α + âα)+ |2〉〈1|

∑
α

V α
2,1(â

†
α + âα) (12.28a)

Sometimes an additional approximation is invoked by disregarding in (12.28a)
terms that cannot conserve energy in the lowest order treatment. Under this so-called
rotating wave approximation4 the coupling (12.28a) is replaced by (for E2 > E1)

V̂RWA = |1〉〈2|
∑
α

V α
1,2â†

α + |2〉〈1|
∑
α

V α
2,1âα (12.28b)

4 The rationale for this approximation can be seen in the interaction picture in which V̂ becomes

V̂I (t) = exp((i/�)Ĥ0t)V̂ exp(−(i/�)Ĥ0t)

= |1〉〈2| exp((i/�)(E1 − E2)t)
∑
α

Vα
1,2(â

†
α exp(iωα t)+ âα exp(−iωα t))+ h.c.

The RWA keeps only terms for which E1 −E2 ± �ωα can be small, the argument being that strongly
oscillating terms make only a small contribution to the transition rate.



Golden-rule transition rates 431

In the other model, Eq. (12.15) written for a two-state system, Ĥ0 is given again by
(12.27b), however now

V̂ = V1,2ei(�̂2−�̂1)|1〉〈2| + V2,1e−i(�̂2−�̂1)|2〉〈1| (12.29a)

�̂2 − �̂1 =
∑
α

(g2α − g1α)p̂α

�mαω2
α

=
∑
α

iλ̄α(â
†
α − âα) (12.29b)

where we have dropped the tilde notation from the Hamiltonian, denotedλα
2,1 simply

by λα and have redefined the energies En to include the shifts
∑
α

g2
nα/(2mαω

2
α) that

were written explicitly in Eq. (12.15). We have also defined (compare Eq. (2.176))

λ̄α ≡ λα

√
mαωα

2�
= g2α − g1α

mαω2
α

√
mαωα

2�
(12.30)

Equations (12.28) and (12.29) describe different spin-boson models that are
commonly used to describe the dynamics of a two-level system interacting with a
boson bath. Two comments are in order:

(a) The word “bath” implies here two important attributes of the boson subsys-
tem: First, the boson modes are assumed to constitute a continuum, characterized
by a density of modes function g(ω), so that the number of modes in a frequency
range between ω and ω+ dω is given by g(ω)dω. Second, the boson field is large
and relaxes fast relative to the dynamics of the two-level system. It can therefore
be assumed to maintain its equilibrium state throughout the process.

(b) The couplings terms (12.28a) and (12.29a) that characterize the two models
differ from each other in an essential way: When the spin-boson coupling vanishes
(V α

1,2 = 0 for all α in (2.28); g1α = g2α for all α in (2.29)) the exact system

Hamiltonian becomes Ĥ0 in the first case and Ĥ0 + V in the second. The basis
states |1〉 and |2〉 are therefore eigenstates of the free system in the first case, but
can be taken as local states (still coupled by V therefore equivalent to |L〉 and |R〉
in Eq. (12.5)) in the second.

As an example consider, within the model (12.29), the time evolution of the
system when it starts in a specific state of Ĥ0, for example, �(t = 0) = |2, v〉 =
|2〉∏α |vα〉where |vα〉 is an eigenfunctions of the harmonic oscillator Hamiltonian
that represents mode α of the boson bath, with the energy (vα + (1/2))�ωα . In the
absence of coupling to the boson field, namely when λ̄α = 0, that is, �̂2−�̂1 = 0 in
(12.29), the remaining interstate coupling V12 cannot change the state v of the bath
and the problem is reduced to the dynamics of two coupled levels (|2, v〉 and |1, v〉)
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Fig. 12.4 A dressed-states representation of the model of Fig. 12.1.

discussed in Section 2.2, yielding the solution (for �(t = 0) = |2〉; cf. Eq. (2.32))

P2(t) = 1 − P1(t)

P1(t) = 4|V12|2
(E1 − E2)2 + 4|V12|2 sin2

[
�R

2
t

] (12.31)

where �R is the Rabi frequency, �R = (1/�)
√
(E2 − E1)2 + 4|V12|2. Two facts

are evident: (1) The specification of the bath state |v〉 is immaterial here, and (2) in
this case we cannot speak of a rate that characterizes the 1 ↔ 2 transition.

The coupling to the boson bath can change this in a dramatic way because initial
levels of the combined spin–boson system are coupled to a continuum of other
levels. Indeed Fig. 12.1 can be redrawn in order to display this feature, as seen in
Fig. 12.4. Two continuous manifolds of states are seen, “seating” on level 1 and
2, that encompass the states |1, v′〉 = |1〉∏α |v′α〉 and |2, v〉 = |2〉∏α |vα〉 with
zero-order energies E1,v′ and E2,v, respectively, where

En,v = En + Eboson(v) = En +
∑

α
�ωα(vα + (1/2)) (12.32)

The continuous nature of these manifolds stems from the continuous distribution of
boson modes. The picture is altogether similar to the dressed state picture discussed
in Sections 9.2 and 9.3, where states 1 and 2 were ground and excited molecular
electronic states, while the boson subsystem was the radiation field, and where we
have considered a specific case where level 2 with no photons interacts with the
continuum of 1-photon states seating on the ground state 1.

The initial state, �(t = 0) = |2, v〉 = |2〉∏α |vα〉, is a state of the overall
system—a particular level in the state manifold 2. The general considerations of
Section 9.1 (see also Section 10.3.2) have taught us that under certain fairly general
conditions the probability to remain in this level decays exponentially by transfer
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to states in the manifold 1, with a rate given by the golden-rule formula

k1←2v = 2π

�

∑
v′
|〈2, v|V̂ |1, v′〉|2δ(E2,v − E1,v′) (12.33)

The assumption that thermal relaxation in the bath is fast relative to the timescale
determined by this rate (see statement (2) of Problem 12.1) makes it possible to
define also the thermally averaged rate to go from state 2 to state 1

k1←2 = 2π

�

∑
v

Pv

∑
v′
|〈2, v|V̂ |1, v′〉|2δ(E2,v − E1,v′) (12.34)

where (denoting Ev = Eboson(v))

Pv = e−βE2,v

Q2
= e−βEv

Qboson
; β = (kBT )−1 (12.35)

Q2 =
∑

v

e−βE2,v ; Qboson =
∑

v

e−βEv (12.36)

is the canonical distribution that characterizes the boson bath.

Problem 12.1. Refer to the general discussions of Sections 9.1 and 10.3.2 in
order to explain the following two statements: (1) Eq. (12.33) for the par-
tial rates and hence Eq. (12.34) for the thermally averaged rate are valid rate
expressions only if the partial rates (12.33) are larger than the inverse of
�ρ1(E2,v) = �

∑
v′ δ(E2,v − E1,v′). (2) The thermally averaged rate, k2→1 of

Eq. (12.34), is meaningful only if it is much smaller than the rate of thermal
relaxation between the levels v of the initial “2” manifold.

An important observation, made in statement (1) of Problem 12.1, is that we do
not really need a continuous distribution of modes in the boson field in order for
the manifold (1v′) to be practically continuous in the sense that the rate expressions
(12.33) and (12.34) are valid. A large finite number, N 
 1, of modes can provide
a sufficiently large density of states in manifold 1, ρ1(E2,v), with energies E1v′ =∑N

α=1 (v
′
α + 1/2)�ωα in the neighborhood of the energy E2,v, provided the energy

gap E2 − E1 is large enough (a reasonable criterion is E2 − E1 
 �〈ω〉 where
ω is the average mode frequency). This stems from the huge number of possible
combinations of occupation numbers vα that will yield an energy E1,v′ in a finite
neighborhood of any energy E2,v. This is demonstrated by Problem 12.2.
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Problem 12.2. Obtain a rough estimate of the density of vibrational states ρ(E)

as a function of energy, for a molecule that contains 30 harmonic modes of
average frequency ω = 500 cm−1 using the following procedure: Assume first
that all the modes have the same frequency, 500 cm−1. Then the only possible
energy levels (relative to the ground vibrational state) are integer products of
this number, E(L) = 500 × L. Calculate the degeneracy D(L) of the energy
level E(L) and estimate the actual density of states from the results obtained.
How fast does k1←2 need to be for an expression like (12.33) to be valid if
E21 = 10, 000 cm−1?

Solution: For N modes and E = �ωL we have L indistinguishable quanta that
should be distributed among these N modes. The number of possibilities is a
standard problem in combinatorics and the result, (N + L − 1)!/[(N − 1)!L!],
is the degeneracy of a level of energy E. The density of states can be roughly
estimated to be ρ(E) = [(N + E/�ω − 1)!]/[(N − 1)!(E/�ω)!]/�ω. For ω =
500 cm−1 and E = 10 000 cm−1 this is 49!/(29!20!)/500 � 5.7 × 1010 cm,
that is, ρ ∼ 5.7 × 1010 states per wavenumber or ∼2.8 × 1026 states per erg.
This translates into the time t = �ρ ∼ 0.28 s. The rate therefore has to be faster
than 3.6 s−1 for expression (12.33) to hold.

The interstate energy E21, the number of modes N , and the frequency ω used
in the estimate made in Problem 12.2 are typical for moderately large molecules.
This rationalizes the observation that electronically excited large molecules can
relax via radiationless pathways in which population is transferred from the excited
electronic state to higher vibrational levels of lower electronic states. We may con-
clude that large isolated molecules can, in a sense, provide their own boson bath
and relax accordingly. In such cases, however, the validity of the assumption that
thermal relaxation in the boson bath is faster than the 1 ↔ 2 transition dynamics
may not hold. Radiationless transition rates between electronic states of the same
spin multiplicity can be as fast as 109–1015 s−1,5 while thermal relaxation rates vary.
For large molecules in condensed phases thermal equilibrium of nuclear motion is
usually achieved within 1–10 ps. For small molecules and for molecules in the gas
phase this time can be much longer. In such situations the individual rates (12.33)
may have to be considered specifically. We will not consider such cases here.

5 Nonradiative rates that are considerably slower than that will not be observed if the 2→1
transition is optically allowed. In the latter case radiative relaxation (i.e. fluorescence) on timescales
of 10−8–10−9 s will be dominant.
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12.4.2 The thermally averaged rate

We now proceed with the thermally averaged 2 → 1 rate, Eq. (12.34), rewritten in
the form

k1←2 = 2π

�

∑
v

Pv

∑
v′
|〈v|V̂2,1|v′〉|2δ(E2 − E1 + Eboson(v)− Eboson(v

′))

(12.37)
We will evaluate this rate for the two models considered above. In the model of
(12.28a)

V̂1,2 =
∑
α

V α
1,2(â

†
α + âα); V̂2,1 =

∑
α

V α
2,1(â

†
α + âα); V α

2,1 = (V α
1,2)

∗

(12.38)
while from (12.29) in

V̂1,2 = V1,2e
−∑

α
λ̄α(â

†
α−âα)

; V̂2,1 = V2,1e
∑

α λ̄α(â
†
α−âα); V2,1 = V ∗

1,2
(12.39)

Now use the identity δ(x) = (2π�)−1
∫∞
−∞ dteixt/� to rewrite Eq. (12.37) in the form

k1←2 = 1

�2

∑
v

Pv

∑
v′
〈v|V̂2,1|v′〉〈v′|V̂1,2|v〉

∞∫
−∞

dtei(E2v−E1v′ )t/�

= 1

�2

∞∫
−∞

dteiE2,1t/�
∑

v

Pv〈v|eiĤBt/�V̂2,1e−iĤBt/�
∑

v′
(|v′〉〈v′|)V̂1,2|v〉

= 1

�2

∞∫
−∞

dteiE2,1t/�〈V̂2,1(t)V̂1,2〉 (12.40)

where E2,1 = E2 − E1, V̂2,1(t) = eiĤBt/�V̂2,1e−iĤBt/� is the interaction operator
in the Heisenberg representation and where 〈· · · 〉 denotes a thermal average in the
boson subspace. To get this result we have used the fact that

∑
v′ (|v′〉〈v′|) is a unit

operator in the boson subspace.

Problem 12.3. Explain the difference in the forms of Eqs (12.40) and (6.20).

We have thus found that the k1←2 is given by a Fourier transform of a quantum
time correlation function computed at the energy spacing that characterizes the
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two-level system,

k1←2 = 1

�2 C̃21(E2,1/�); C̃21(ω) =
∞∫

−∞
dteiωtC21(t);

C21(t) ≡ 〈V̂2,1(t)V̂1,2〉

(12.41)

Problem 12.4.

(1) Assume that an expression analogous to (12.33) holds also for the
transition |1, v′〉 → 2, that is,

k2←1v′ = 2π

�

∑
v

|〈2, v|V̂ |1, v′〉|2δ(E2,v − E1,v′) (12.42)

(when would you expect this assumption to be valid?), so that the
thermally averaged 1 → 2 rate is

k2←1 = 2π

�

∑
v′

Pv′
∑

v

|〈2, v|V̂ |1, v′〉|2δ(E2v − E1,v′) (12.43)

Using the same procedure as above, show that this leads to

k2←1 = 1

�2

∞∫
−∞

dte−iE2,1t/�C12(t); C12(t) ≡ 〈V̂1,2(t)V̂2,1〉 (12.44)

(2) Use Eqs (12.41), (12.44), and (6.73) to show that

k2←1 = k1←2e−E2,1/kBT (12.45)

that is, the rates calculated from the golden-rule expression satisfy detailed
balance.

12.4.3 Evaluation of rates

For the model (12.28a) V̂1,2 and V̂2,1 are given by Eq. (12.38) and the correspond-

ing Heisenberg representation operator is V̂j,k(t) = ∑
α V α

j,k(â
†
αeiωα t + âαe−iωα t)



Golden-rule transition rates 437

where j = 1, k = 2 or j = 2, k = 1. Using this in (12.41) yields

C21(t) = C12(t) =
∑
α

|V α
2,1|2〈â†

α âαeiωα t + âα â†
αe−iωα t〉

=
∞∫

0

dωg(ω)|V1,2(ω)|2(n(ω)eiωt + (n(ω)+ 1)e−iωt) (12.46)

where n(ω) = (eβ�ω − 1)−1 is the thermal boson occupation number and g(ω) =∑
α δ(ω − ωα) is the density of modes in the boson field.6 We note in passing that

the function
∑

α |V α
1,2|2δ(ω − ωα) = g(ω)|V1,2(ω)|2 is essentially the spectral

density, the coupling weighted density of modes (see Sections 6.5.2, 7.5.2, and
8.2.6), associated with the system–bath coupling. We have discussed several models
for such functions in Sections 6.5.2 and 8.2.6.

Using Eq. (12.46) in (12.41) we find that for E2,1 > 0 the term containing
exp(iωt) in (12.46) does not contribute to k1←2. We get

k1←2 = 2π

�2 g(ω2,1)|V1,2(ω2,1)|2(n(ω2,1)+ 1); ω2,1 = E2,1/� (12.47)

Similarly, Eq. (12.44) yields

k2←1 = 2π

�2 g(ω2,1)|V1,2(ω2,1)|2n(ω2,1) (12.48)

Note that for a model characterized by an upper cutoff in the boson density of
states, for example, the Debye model, these rates vanish when the level spacing
of the two-level system exceeds this cutoff. Note also that the rates (12.47) and
(12.48) satisfy the detailed balance relationship (12.45).

Next consider the model defined by Eqs (12.27) and (12.29). The correlation
functions C21(t) and C12(t) are now

C21(t) = 〈V̂2,1(t)V̂1,2〉 = |V2,1|2
∏
α

Cα
21(t) (12.49a)

where
Cα

21(t) = 〈eλ̄α(â
†
αeiωα t−âαe−iωα t)e−λ̄α(â

†
α−âα)〉 (12.49b)

6 The function V1,2(ω) is defined by a coarse-graining procedure,
∑

ωα∈�ω |Vα
1,2|2 =

�ωg(ω)|V1,2(ω)|2 where ωα ∈ �ω denotes ω + �ω/2 ≥ ωα ≥ ω − �ω/2 and �ω is large
relative to (g(ω))−1. A formal definition is |V12(ω)2| = g−1(ω)

∑
α |Vα

12|2δ(ω − ωα).
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and

C12(t) ≡ 〈V̂1,2(t)V̂2,1〉 = |V2,1|2
∏
α

Cα
12(t) (12.50a)

Cα
12(t) = 〈e−λ̄α(â

†
αeiωα t−âαe−iωα t)eλ̄α(â

†
α−âα)〉 (12.50b)

These quantum thermal averages over an equilibrium boson field can be evalu-
ated by applying the raising and lowering operator algebra that was introduced in
Section 2.9.2.

Problem 12.5. Use the identities

eÂeB̂ = eÂ+B̂e(1/2)[Â,B̂] (12.51)

(for operators Â, B̂ which commute with their commutator [Â, B̂]) and

〈eÂ〉T = e(1/2)〈Â2〉T (Bloch theorem) (12.52)

(for an operator Â that is linear in â and â†) to show that

K ≡ 〈eα1â+β1â†
eα2â+β2â†〉T = e(α1+α2)(β1+β2)(n+1/2)+(1/2)(α1β2−β1α2) (12.53)

where n = 〈â†â〉 = (eβ�ω − 1)−1.

Using (12.53) to evaluate (12.49b) and (12.50b) we get

Cα
21(t) = Cα

12(t) = e−λ̄2
α(2nα+1)+λ̄2

α((nα+1)e−iωα t+nαeiωα t) (12.54)

So that

k1←2 = k(ω21); ω21 = (E2 − E1)/� (12.55a)

k(ω21) = |V12|2
�2 e−

∑
α λ̄2

α(2nα+1)

∞∫
−∞

dteiω21t+∑
α λ̄2

α(nαeiωα t+(nα+1)e−iωα t) (12.55b)

Equations (12.55), sometime referred to as multiphonon transition rates for reasons
that become clear below, are explicit expressions for the golden-rule transitions
rates between two levels coupled to a boson field in the shifted parallel har-
monic potential surfaces model. The rates are seen to depend on the level spacing
E21, the normal mode spectrum {ωα}, the normal mode shift parameters {λ̄α}, the
temperature (through the boson populations {nα}) and the nonadiabatic coupling
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parameter |V12|2. More insight on the dependence on these parameters is obtained
by considering different limits of this expression.

Problem 12.6. Show that in the limit where both λ̄2
α and λ̄2

αnα are much smaller
than 1, Eqs (12.55a) and (12.55b) yield the rates (12.47) and (12.48), respectively,
where |V α

1,2|2 in Eq (12.46) is identified with |V12|2λ̄2
α so that |V12(ω)|2 in (12.48)

is identified with |V12|2λ̄2(ω).

The rate expressions (12.47) and (12.48) are thus seen to be limiting forms of
(12.55), obtained in the low-temperature limit provided that λ̄2

α � 1 for all α.
On the other hand, the rate expression (12.55) is valid if V12 is small enough,
irrespective of the temperature and the magnitudes of the shifts λ̄α .

12.5 Transition between molecular electronic states

Transitions between molecular electronic states are often described by focusing
on the two electronic states involved, thus leading to a two-state model. When
such transitions are coupled to molecular vibrations, environmental phonons or
radiation-field photons the problem becomes a spin–boson-type. The examples
discussed below reiterate the methodology described in this chapter in the con-
text of physical applications pertaining to the dynamics of electronic transitions in
molecular systems.

12.5.1 The optical absorption lineshape

A direct consequence of the observation that Eqs. (12.55) provide also golden-
rule expressions for transition rates between molecular electronic states in the
shifted parallel harmonic potential surfaces model, is that the same theory can
be applied to the calculation of optical absorption spectra. The electronic absorp-
tion lineshape expresses the photon-frequency dependent transition rate from the
molecular ground state dressed by a photon, |ḡ〉 ≡ |g, �ω〉, to an electronically
excited state without a photon, |x〉. This absorption is broadened by electronic–
vibrational coupling, and the resulting spectrum is sometimes referred to as the
Franck–Condon envelope of the absorption lineshape. To see how this spectrum is
obtained from the present formalism we start from the Hamiltonian (12.7) in which
states L and R are replaced by |ḡ〉 and |x〉 and VLR becomes Vḡx—the coupling
between molecule and radiation field. The modes {α} represent intramolecular as
well as intermolecular vibrational motions that couple to the electronic transition
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in the way defined by this Hamiltonian,

Ĥ =
[

Eg + �ω +
∑
α

V α
g (â†

α + âα)

]
|ḡ〉〈ḡ| +

[
Ex +

∑
α

V α
x (â†

α + âα)

]
|x〉〈x|

+ Vḡx|ḡ〉〈x| + Vxḡ|x〉〈ḡ| +
∑
α

�ωα â†
α âα (12.56)

We have already seen that this form of electron–phonon coupling expresses shifts in
the vibrational modes equilibrium positions upon electronic transition, a standard
model in molecular spectroscopy. Applying the polaron transformation to get a
Hamiltonian equivalent to (12.27) and (12.29), then using Eq. (12.34) with E2 =
Eḡ = Eg +�ω and E1 = Ex leads to the electronic absorption lineshape in the form

Labs(ω) ∼
∑

v

Pv

∑
v′
|〈gv|µ̂ei(�̂x−�̂g)|xv′〉|2δ(Eg + �ω−Ex+Evib(v)−Evib(v

′))

= |µgx|2
∑

v

Pv

∑
v′
|〈v|ei(�̂x−�̂g)|v′〉|2δ(Eg +�ω−Ex+Evib(v)−Evib(v

′))

(12.57)

where µ̂ is the electronic dipole operator, the molecular–electronic part of the
molecule–radiation field coupling, and where in the last expression we have invoked
the Condon approximation. As already discussed, the operator ei(�̂x−�̂g) affects a
rigid displacement of the nuclear wavefunctions. The matrix elements

(FC)v,v′ = |〈v|ei(�̂x−�̂g)|v′〉|2 (12.58)

called Franck–Condon factors, are absolute squares of overlap integrals between
nuclear wavefunctions associated with parallel-shifted nuclear potential surfaces.

A word of caution is needed here. The golden-rule expression, Eq. (12.33) or
(12.43), was obtained for the rate of decay of a level interacting with a continuous
manifold (Section 9.1), not as a perturbation theory result7 but under certain con-
ditions (in particular a dense manifold of final states) that are not usually satisfied
for optical absorption. A similar expression is obtained in the weak coupling limit
using time-dependent perturbation theory, in which case other conditions are not

7 This statement should be qualified: The treatment that leads to the golden-rule result for the
exponential decay rate of a state interacting with a continuum is not a short-time theory and in this
sense nonperturbative, however we do require that the continuum will be “broad.” In relaxation
involving two-level systems this implies E21 
 � = 2πV 2ρ, that is, a relatively weak coupling.
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needed. It is in the latter capacity that we apply it here. The distinction between
these applications can be seen already in Eq. (12.33) which, for the zero temper-
ature case (putting v = 0 for the ground vibrational level in the dressed electronic
state |ḡ〉), yields

kx←ḡ0 = 2π

�

∑
v′
|〈ḡ, 0|V̂ |x, v′〉|2δ(Eḡ0 − Exv′) (12.59)

This expression can be interpreted as a decay rate of level |ḡ, 0〉 into the manifold
{|x, v′〉} only if this manifold is (1) continuous or at least dense enough, and (2)
satisfies other requirements specified in Section 9.1. Nevertheless, Eq. (12.59) can
be used as a lineshape expression even when that manifold is sparse, leading to the
zero temperature limit of (12.57)

Labs(ω) ∼ |µgx|2
∑

v′
|〈0|ei(�̂x−�̂g)|v′〉|2δ(Eg + �ω − Ex − Evib(v

′)) (12.60)

It displays a superposition of lines that correspond to the excitation of different
numbers of vibrational quanta during the electronic transition (hence the name
multiphonon transition rate). The relative line intensities are determined by the
corresponding Franck–Condon factors. The fact that the lines appear as δ functions
results from using perturbation theory in the derivation of this expression. In reality
each line will be broadened and simplest theory (see Section 9.3) yields a Lorentzian
lineshape.

Consider now the T → 0 limit of Eq. (12.55b) written for the absorption
lineshape of a diatomic molecule with a single vibrational mode α,

Labs(ω) ∼ |µgx|2e−λ̄2
α

∞∫
−∞

dte−i(ωxg−ω)t+λ̄2
αe−iωα t

= |µgx|2e−λ̄2
α

∞∫
−∞

dte−i(ωxg−ω)t
∞∑

v=0

1

v! λ̄
2v
α e−ivωat

∼ |µgx|2
∞∑

v=0

e−λ̄2
α

v! λ̄2v
α δ(ωxg + vωα − ω) (12.61)

We have seen (Eqs (2.185) and (2.186)) that the coefficients in front of the δ-
functions are the corresponding Franck–Condon factors, so Eq. (12.61) is just
another way to write Eq. (12.60) with the Franck–Condon factors explicitly
evaluated.
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Equations (12.60) and (12.61) are expressions for the low temperature (i.e.
kBT < �ωα) electronic absorption lineshape. The frequency dependence originates
from the individual transition peaks, that in reality are broadened by intramolecular
and intermolecular interactions and may overlap, and from the Franck–Condon
envelope

(FC0,v(ω))v=(ω−ωxg)/ωα
=

{
0 ω < ωxg

e−λ̄2
α λ̄

2[(ω−ωxg)/ωα]
α /[(ω − ωxg)/ωα]! ω > ωxg

(12.62)
This Franck–Condon envelope characterizes the broadening of molecular electronic
spectra due to electronic–vibrational coupling.

12.5.2 Electronic relaxation of excited molecules

When a molecule is prepared in an excited electronic state, the subsequent time
evolution should eventually take the molecule back to the ground state. This res-
ults from the fact that electronic energy spacings �Eel between lower molecular
electronic states are usually much larger than kBT . The corresponding relaxation
process may be radiative—caused by the interaction between the molecule and
the radiation field and accompanied by photon emission, or nonradiative, resulting
from energy transfer from electronic to nuclear degrees of freedom, that is, trans-
ition from an excited electronic state to higher vibrational levels associated with
a lower electronic state. The excess vibrational energy subsequently dissipates by
interaction with the environment (vibrational relaxation, see Chapter 13), leading to
dissipation of the initial excess energy as heat.8 The terms radiative and nonradiative
(or radiationless) transitions are used to distinguish between these two relaxation
routes. Both processes can be described within the spin–boson model: In the radiat-
ive case the radiation field can be represented as a set of harmonic oscillators—the
photons, while in the nonradiative case the underlying nuclear motion associated
with intramolecular and intermolecular vibrations is most simply modeled by a set
of harmonic oscillators.

In what follows we focus on the nonradiative relaxation process (the treatment of
radiative relaxation, namely fluorescence, is similar to that of absorption discussed
in the previous section). An important observation is that the mechanism and con-
sequently the rate of the electronic transition depend critically on how the nuclei
behave during its occurrence. Figure 12.5 depicts a schematic view of this process,

8 It is also possible that the molecule will dispose of excess vibrational energy radiatively, that is,
by infrared emission, however this is not very likely in condensed phases because relaxation to
solvent degrees of freedom is usually much faster. Even in low-pressure samples the relaxation due
to collisions with the walls is usually more efficient than the infrared emission route.
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showing two extreme possibilities for this nuclear motion. In the low-temperature
limit route a has to be taken. This is a nuclear tunneling process that accompanies
the electronic transition. In the opposite, high-temperature case pathway b domin-
ates. This is an activated process, characterized by an activation energy EA shown
in the figure.

We should keep in mind that the two routes: Tunneling in case a and activation
in case b refer to the nuclear motion that underlines the electronic transition. In fact,
the mathematical difference between the rates of these routes stems from the cor-
responding Franck–Condon factors that determine the overlap between the nuclear
wavefunctions involved in the transition. The nuclear wavefunctions associated
with process a are localized in wells that are relatively far from each other and
their mutual overlap in space is small—a typical tunneling situation. In contrast, in
process b the electronic transition takes place at the crossing between the nuclear
potential surfaces where the overlap between the corresponding nuclear wavefunc-
tions is large. This route will therefore dominate if the temperature is high enough
to make this crossing region energetically accessible.

We will see below that the relative importance of these routes depends not
only on the temperature but also on the nuclear shift parameters λ, the electronic
energy gap �E, and the vibrational frequencies. We should also note that these
two routes represent extreme cases. Intermediate mechanisms such as thermally
activated tunneling also exist. Mixed situations, in which some nuclear degrees of
freedom have to be activated and others, characterized by low nuclear masses and
small shifts λ, can tunnel, can also take place.

A particular kind of electronic relaxation process is electron transfer. In this case
(see Chapter 16) the electronic transition is associated with a large rearrangement
of the charge distribution and consequently a pronounced change of the nuclear
configuration, which translate into a large λ. Nuclear tunneling in this case is a very
low-probability event and room temperature electron transfer is usually treated as
an activated process.

12.5.3 The weak coupling limit and the energy gap law

Consider now the application of Eq. (12.55) to the transition rate from an excited
electronic state 2 to a lower state 1 in the absence of any external field. For simplicity
we focus on the low-temperature limit, kBT < �ωmin where ωmin is the lowest
phonon frequency. This implies nα = 0 for all α, so (12.55b) becomes

k1←2(ω21) = |V12|2
�2 e−

∑
α λ̄2

α

∞∫
−∞

dteiω21t+∑
α λ̄2

αe−iωα t
(12.63)
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l

Fig. 12.5 The nuclear tunneling (a) and nuclear activation (b) pathways to nonradiative electronic
relaxation.

where E21 = �ω21 has been denoted �E in Fig. 12.5. For a single mode model,
the analog of Eq. (12.61) is

k1←2(ω21) = 2π |V12|2
�2

∞∑
v=0

e−λ̄2
α

v! λ̄2v
α δ(ω21 − vωα)

≈ 2π |V12|2
�2 e−λ̄2

α
λ̄2v̄
α

v̄! ; v̄ = ω21

ωα

(12.64)

For v̄ 
 1, that is, large energy gap, E2 − E1 
 �ωα , the ω21 dependence is
given by

k1←2(ω21)∼ exp(v̄ ln λ̄2
α − v̄ ln v̄) (12.65)

For λ̄α < 1 this function decreases exponentially or faster with the energy gap.
The same observation can be made also for the general many-mode case, for

which we get

k1←2(ω21) = 2π |V12|2
�2 e−

∑
α λ̄2

α

∑
{vα}

δ
(
ω21 −

∑
α

vαωα

)∏
α

λ̄
2vα
α

vα! (12.66)

where, as usual, {vα} denotes a set of vibrational quantum numbers, vα for mode α,
that specify a molecular vibrational state. Again we consider the large energy gap
limit, ω21 
 ωc where ωc is the highest phonon frequency. We also focus on the
weak electron–phonon coupling limit, λ̄2

α � 1 for all modes. In this case the sum
in (12.66) is dominated by the terms with the smallest vα , that is, by modes with
ωα � ωc. For an order of magnitude estimate we may replace λ̄2

α for these modes
by an average value λ̄2, so

k1←2(ω21) ∼ λ̄2(ω21/ωc)S; S =
∑
{vα}∑

α vα = ω21/ωc

∏
α

1

vα! (12.67)
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where the terms that contribute to S are associated with the group of modes with
frequencies close to ωc. Equation (12.67) shows an exponential decrease (since
λ̄ < 1) of the rate with increasing v̄ ≡ ω21/ωc, that is, with larger electronic energy
gap E21, with corrections that arise from the dependence of S on ω21. v̄ is the
number of vibrational quanta that the nc high-frequency modes must accept from
the electronic motion. If, for example, nc 
 v̄, the most important contributions
to (12.67) are the nc!/v̄! terms with vα = 1 or 0, so that k1←2(ω21) ∼ λ̄2v̄nc!/v̄! is
essentially the same as (12.64) and (12.65).

This “energy gap law”: Inverse exponential decrease of the rate on the gap
between the electronic origins of the two states involved, characterizes the nuc-
lear tunneling route to electronic relaxation. As discussed above, it stems from
the energy gap dependence of the Franck–Condon factors that determine the mag-
nitudes of the dominant contributions to the rate at the given gap. As seen in
Section 2.10, tunneling processes depend exponentially on parameters related to
the potential barrier. The result obtained here has a similar character but is different
in specifics because the electronic energy gap does not reflect a barrier height for
the nuclear tunneling process.

12.5.4 The thermal activation/potential-crossing limit

Consider now the opposite case where the shift parameter λ̄2 and/or the temper-
ature are large. Specifically we assume

∑
α λ̄2

αnα 
 1. In this case the integrand
in Eq. (12.55b) is very short-lived and can be approximated by expanding the
exponential up to second order in the ωαt factors. This short-time approximation
leads to

k1←2 = |V12|2
�2 e−

∑
α λ̄2

α(2nα+1)

∞∫
−∞

dteiω21t+∑
α λ̄2

α((nα+1)e−iωα t+nαeiωα t)

k1←2 = |V12|2
�2

∞∫
−∞

dteiω21t−it
∑

α λ̄2
αωα−(1/2)t2 ∑

α λ̄2
αω

2
α(2nα+1)

= |V12|2
�2

√
π

a
e−(ω21−Er/�)2/4a; a = 1

2

∑
α

(2nα + 1)λ̄2
αω

2
α (12.68)

where Er is the reorganization energy defined by Eqs. (12.22). A simpler equation
is obtained in the classical limit where nα = kBT/�ωα for all modes α, so a =
kBTEr/�

2:

k1←2 = |V12|2
�

√
π

kBTEr
e−(E21−Er)

2/4kBTEr (12.69)
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This result has the form of a thermally activated rate, with activation energy given by

EA = (E21 − Er)
2

4Er
(12.70)

Problem 12.7. Show that EA, Eq. (12.70) is equal to the height of the minimum-
energy crossing point of the two potential surfaces E(1)

el (R) and E(2)
el (R)

(Eq. (12.20)) above the bottom of the E(2)
el (R) potential surface.

Solution: The two N -dimensional potential surfaces (N —number of phonon
modes) cross on an (N − 1)—dimensional surface defined by E(1)

el ({xα}) =
E(2)

el ({xα}) where E(1)
el ({xα}) = ∑

α �ωα(x̄α − λ̄α)
2 − E21 and E(2)

el ({xα}) =∑
α �ωα x̄2

α . Using Eq. (12.22) the equation for this surface is

−2
∑
α

�ωα x̄αλ̄α + Er − E21 = 0 (12.71)

The crossing point of minimum energy can be found as the minimum
of E(2)

el ({xα}) under the condition (12.71). Defining the Lagrangian F =∑
α �ωα x̄2

α + B(−2
∑

α �ωα x̄αλ̄α + Er − E21) the condition for extremum is
found as x̄α = Bλ̄α . Using this in (12.71) yields the Lagrange multiplier
B = −(E21 − Er)/2Er, whence

x(min)
α = −(E21 − Er)λα

2Er
(12.72)

The energy at the lowest energy crossing point is EA = E(2)
el ({xmin

α }). Using
(12.72) and (12.22) leads indeed to (12.70).

We have thus found that in this high temperature, strong electron–phonon coupling
limit the electronic transition is dominated by the lowest crossing point of the
two potential surfaces, that is, the system chooses this pathway for the electronic
transition. It is remarkable that this result, with a strong characteristic of classical
rate theory, was obtained as a limiting form of the quantum golden-rule expression
for the transition rate. Equation (12.69) was first derived by Marcus in the context
of electron transfer theory (Chapter 16).

12.5.5 Spin–lattice relaxation

The evaluation of relaxation rates in the previous sections was based on the assump-
tion that the energy spacing in the two-level system under consideration is large
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1
2

3

Fig. 12.6 A three-level system used in the text to demonstrate the promotion of effective coupling
between spin levels 1 and 2 via their mutual coupling with level 3.

relative to the maximum (cutoff) phonon frequency. This is the common state of
affairs for nonradiative electronic relaxation processes, resulting in the multiphonon
character of these processes. When the two-level energy spacing is smaller than
the boson cutoff frequency, the relaxation is dominated by one-boson processes
and may be studied with the Hamiltonian (12.27) and (12.28). Radiative relaxation
associated with the interaction (12.3) is an example. The rates associated with such
one-boson relaxation processes are given by Eqs (12.47) and (12.48).9 They are
proportional to g(ω21), the boson mode density at the two-level frequency. In the
high-temperature limit, kBT 
 E21, they are also proportional to T .

Consider now the case where the energy spacing E21 is very small. Such cases are
encountered in the study of relaxation between spin levels of atomic ions embedded
in crystal environments, so called spin–lattice relaxation. The spin level degeneracy
is lifted by the local crystal field and relaxation between the split levels, caused
by coupling to crystal acoustical phonons, can be monitored. The relaxation as
obtained from (12.47) and (12.48) is very slow because the density of phonon
modes at the small frequency ω21 is small (recall that g(ω) ∼ ω2).

In fact, when ω21 → 0, other relaxation mechanisms should be considered. It is
possible, for example, that the transition from level 2 to 1 is better routed through
a third, higher-energy level, 3, as depicted in Fig. 12.6, because the transition
rates k3←2 and k1←3 are faster than k1←2. In this case, sometimes referred to as
the Orbach mechanism, the transition 2 → 3 is the rate-determining step and, if
kBT � E32, the observed relaxation will depend exponentially on temperature,
k1←2,apparent = exp(−E32/kBT ). Another relaxation mechanism is a two-phonon
process analogous to Raman light scattering. We note that the one-phonon coupling
(12.2b) is a first-order term in an expansion in bath normal mode coordinate. The
second-order term in this expansion leads to interaction terms such as

V̂SB =
∑
α,β

(V α,β
1,2 |1〉〈2| + V α,β

2,1 |2〉〈1|)(â†
α + âα)(â

†
β + âβ) (12.73)

9 The measured relaxation rate in a process A
k1
�
k2

B is k1 + k2.
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According to Eq. (12.40) the golden-rule rate is now given by

k1←2 = 1

�2

∑
α,β

|V α,β
1,2 |2

∞∫
−∞

dteiω21t〈(â†
αeiωα t + âαe−iωα t)(â†

βeiωβ t + âβe−iωβ t)

× (â†
α + âα)(â

†
β + âβ)〉 (12.74)

Only terms with α �= β that satisfy ωα − ωβ = ±ω21 survive the time integration.
We get

k1←2 = 2π

�2

∑
α,β

|V α,β
1,2 |2(〈â†

α âβ âα â†
β〉δ(ω21 + ωα − ωβ)

+ 〈âα â†
β â†

α âβ〉δ(ω21 − ωα + ωβ))

= 2π

�2

∑
α,β

|V α,β
1,2 |2[n(ωα)(n(ωβ)+ 1)δ(ω21 + ωα − ωβ)

+ (n(ωα)+ 1)n(ωβ)δ(ω21 − ωα + ωβ)]

� 4π

�2

ωD∫
0

dωg2(ω)|V1,2(ω)|2n(ω)(n(ω)+ 1) (12.75)

where n(ω) = (e�ω/kBT − 1)−1, ωD is the Debye frequency and where in the last
step we have converted the double sum to a double integral over the normal modes,
have used the δ functions to do one integration and have approximated the resulting
integrand by taking the limit ω21 → 0. We have also assumed for simplicity that
|V α,β

1,2 |2 depends on α and β only through ωα � ωβ .
Further analysis is possible only if more information on V1,2(ω) is available.

The theory of spin lattice relaxation leads to V1,2(ω) ∼ ω. At low temperature the
integral in (12.75) is dominated by the low-frequency regime where we can use
g(ω) ∼ ω2 (see Section 4.2.4). We then have

k1←2 ∼
ωD∫
0

dωω6n(ω)(n(ω)+ 1) (12.76)

and provided that T � �ωD/kB this leads to (compare to the analysis of the
low-temperature behavior of Eq. (4.52))

k1←2 ∼ T 7 (12.77)
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Indeed, both the exponential temperature dependence that characterize the Orbach
process and the T 7 behavior associated with the Raman type process have been
observed in spin lattice relaxation.10

12.6 Beyond the golden rule

The golden-rule rate expressions obtained and discussed above are very useful for
many processes that involve transitions between individual levels coupled to boson
fields, however there are important problems whose proper description requires
going beyond this simple but powerful treatment. For example, an important attrib-
ute of this formalism is that it focuses on the rate of a given process rather than
on its full time evolution. Consequently, a prerequisite for the success of this
approach is that the process will indeed be dominated by a single rate. In the
model of Figure 12.3, after the molecule is excited to a higher vibrational level of
the electronic state 2 the relaxation back into electronic state 1 is characterized by
the single rate (12.34) only provided that thermal relaxation within the vibrational
subspace in electronic state 2 is faster than the 2 → 1 electronic transition. This is
often the case in condensed phase environments but exceptions have been found
increasingly often since picosecond and femtosecond timescales became experi-
mentally accessible. Generalized golden-rule approaches may still be useful in such
cases.11

In many cases, reliable theoretical descriptions of multi-rate processes can be
obtained by using master equations in which individual rates are obtained from
golden-rule type calculations (see Sections 8.3.3 and 10.4). A condition for the
validity of such an approach is that individual rate processes will proceed inde-
pendently. For example, after evaluating the rates k1←2 and k2←1, Eqs (12.55a) and
(12.55b), a description of the overall dynamics of the coupled two-level system by

the kinetic scheme 1
k2←1
�

k1←2

2 relies on the assumption that after each transition, say

from 1 to 2, the system spends a long enough time in state 2, become equilibrated in
this state (or, more poetically, forgets its past), so that the reverse transition occurs
independently. When this is not the case such simple kinetic schemes fail. Gener-
alized quantum master equations (e.g. Section 10.4.2) can be used in such cases,
however they are often hard to implement. Note that situations in which successive
processes are not decoupled from each other occur also in classical systems.

10 P. L. Scott and C. D. Jeffries, Phys. Rev. 127, 32 (1962); G. H. Larson and C. D. Jeffries, Phys.
Rev. 141, 461 (1966).

11 R. D. Coalson, D. G. Evans, and A. Nitzan, J. Chem. Phys. 101, 436 (1994); M. Cho and
R. J. Silbey, J. Chem. Phys. 103, 595 (1995).
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Other cases that require going beyond the golden-rule involve transitions which
by their nature are of high order in the interaction. Processes studied in conjunction
with nonlinear spectroscopy (see Section 18.7) are obvious examples.

Finally, the golden-rule fails when the basic conditions for its validity are not
satisfied. For a general review of these issues see Leggett et al.12 Conditions for
the validity of the golden-rule involve relatively uniform coupling to a relatively
wide continuum, and one consistency check is that the decaying level, broadened
by the decay width �, is still wholly contained within the continuum. For example,
referring to Fig. 12.4, this is not satisfied for a level near the origin of state 2
if � = 2πV 2ρ > �E. Such “overdamped” cases have to be handled by more
advanced methodologies, for example, path integral methods13 that are beyond the
scope of this text.

12 A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. A. Fisher, A. Garg, and W. Zwerger, Rev. Mod.
Phys. 59, 1 (1987).

13 N. Makri and D. E. Makarov, J. Chem. Phys. 102, 4600 (1995); 102, 4611 (1995); D. G. Evans,
A. Nitzan, and M. A. Ratner, J. Chem. Phys. 108, 6387 (1998).
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13

VIBRATIONAL ENERGY RELAXATION

You see that stones are worn away by time,
Rocks rot, and towers topple, even the shrines
And images of the gods grow very tired,
Develop crack or wrinkles, their holy wills
Unable to extend their fated term,
To litigate against the Laws of Nature…

Lucretius (c.99–c.55 BCE) “The way things are” translated by
Rolfe Humphries, Indiana University Press, 1968

An impurity molecule located as a solute in a condensed solvent, a solid
matrix or a liquid, when put in an excited vibrational state will loose its excess
energy due to its interaction with the surrounding solvent molecules. Vibrational
energy accumulation is a precursor to all thermal chemical reactions. Its release
by vibrational relaxation following a reactive barrier crossing or optically induced
reaction defines the formation of a product state. The direct observation of this pro-
cess by, for example, infrared emission or more often laser induced fluorescence
teaches us about its characteristic timescales and their energetic (i.e. couplings and
frequencies) origin. These issues are discussed in this chapter.

13.1 General observations

Before turning to our main task, which is constructing and analyzing a model for
vibrational relaxation in condensed phases, we make some general observations
about this process. In particular we will contrast condensed phase relaxation with
its gas phase counterpart and will comment on the different relaxation pathways
taken by diatomic and polyatomic molecules.

First, vibrational relaxation takes place also in low density gases. Collisions
involving the vibrationally excited molecule may result in transfer of the excess
vibrational energy to rotational and translational degrees of freedom of the over-
all system. Analysis based on collision theory, with the intermolecular interaction
potential as input, then leads to the cross-section for inelastic collisions in which
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vibrational and translational/rotational energies are exchanged. If C∗ is the con-
centration of vibrationally excited molecules and ρ is the overall gas density, the
relaxation rate coefficient kgas is defined from the bimolecular rate law

dC∗

dt
= −kgasC

∗ρ (13.1)

so that the relaxation time is

(τ (gas))−1 ≡ − 1

C∗
dC∗

dt
= kgasρ (13.2)

When comparing this relaxation to its condensed phase counterpart one should
note a technical difference between the ways relaxation rates are defined in the
two phases. In contrast to the bimolecular rate coefficient kgas, in condensed envir-
onments the density is high and is not easily controlled, so the relaxation rate is
conventionally defined in terms of a unimolecular rate coefficient kcond, defined
from dC∗/dt = −kcondC∗ = −(τ (cond))−1C∗. This difference between the two
definitions should be taken into account in any meaningful comparison between
rates in the two phases.

Next, consider the relaxation of a diatomic molecule, essentially a single oscil-
lator of frequency ω0 interacting with its thermal environment, and contrast its
behavior with a polyatomic molecule placed under similar conditions. The results
of the simple harmonic relaxation model of Section 9.4 may give an indication
about the expected difference. The harmonic oscillator was shown to relax to the
thermal equilibrium defined by its environment, Eq. (9.65), at a rate given by (cf.
Eq. (9.57))

γ = 2π(|u(ω)|2g(ω))ω=ω0 (13.3)

where u is the coupling strength and g(ω) is the density of modes characterizing
the environment that was taken as a bath of harmonic oscillators. For harmonic
environments this mode density function is characterized by an upper cutoff, the
Debye frequency ωD, beyond which modes are not allowed (the cutoff wavelength
is of the order of the nearest interatomic distance). This implies that in harmonic
relaxation models the rate vanishes for ω0 > ωD. In realistic environments this
translates, as we will see, into an exponential falloff of the rate when ω0 increases
beyond ωD. Since typical Debye frequencies are smaller than vibrational frequen-
cies of many diatomic species, we expect vibrational relaxation of such species to
be slow.

In polyatomic molecules, however, other relaxation pathways can show up in
such cases, using combination of intermode energy transfer with relaxation to cir-
cumvent the “Debye restriction.” Consider for example a pair of molecular modes
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1 and 2, of frequencies ω1 and ω2, respectively, such that ω1 is larger than ωD
while both ω2 and ω1−ω2 are smaller than ωD. An initial excitation of mode 1 can
relax by successive steps of transferring quanta of its vibrational energy to mode 2,
with subsequent relaxation of the latter. The energy transferred to the bath at each
relaxation step is either h̄(ω1 − ω2) or h̄ω2, both below the Debye threshold. Such
pathways are characterized by bath-assisted redistribution of intramolecular vibra-
tional energy into low-frequency modes followed by relaxation of the latter into
the thermal environment. They are facilitated by the fact that polyatomic molecules
always have some low-frequency modes associated with relatively heavy segments
of the molecule vibrating against each other. Such pathways multiply and become
more efficient for larger molecules.

It is indeed observed that vibrational relaxation of large molecules is invariably
fast, at the picosecond time range. In contrast, the relaxation of high-frequency
diatomic molecules can be very slow and is often overtaken by competing relax-
ation processes including energy transfer to other molecules that may be present
as impurities or infrared emission which is a relatively slow (typically in the mil-
lisecond time regime for allowed transitions) process by itself. To get a feeling for
what should be considered “slow” or “fast” in these type of processes note that a
typical molecular vibrational period is of the order 10−13–10−14 s. In solution or
in a solid matrix such a molecule is surrounded by molecules of the host environ-
ment at contact distances, and beats against them 1013–1014 times per second.1 The
observation that excess vibrational energy can sometimes survive for milliseconds
or more makes us appreciate the associated relaxation process as very slow indeed.

An example that shows the sometimes intricate role of competing relaxation
mechanisms is given in Fig. 13.1, which depicts the relaxation behavior of sev-
eral vibrational levels of the CN radical embedded in Ne matrix at 4 K. Here the
process that involves repeated solvent assisted transitions between two electronic
manifolds provides a faster relaxation route than pure vibrational transitions. Such
pure transitions do show up on a timescale slower by three orders of magnitude
when the former pathway is not available.

In the rest of this chapter we focus on the “pure” vibrational relaxation problem,
that is, on the relaxation of an oscillator (usually modeled as harmonic) coupled
to its thermal environment. From the theoretical point of view this problem sup-
plements the spin boson model considered in Chapter 12. Indeed, these are the
N = 2 and the N = ∞ limits of an N level system. For a harmonic oscillator
there is an added feature, that these states are equally spaced. In this case individual

1 In addition to this vibrational beating there are additional encounters due to the center of mass
motion. For intermolecular distances of order ∼1 Å this would imply a thermal collision rate of
∼1012 s−1 at room temperature.



456 Vibrational energy relaxation

1.0 1.1 1.2 1.3 1.4

20

18

16

14

12

10

8

6

4

2

v� = 4

v� = 0

3

2

1

0

X2∑+
A2p

8

7

6

5

4

3

2

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
t(ms)

v = 6

v = 5

v = 4

v = 3

0 1.5
r(Å)

22

0

E
(1

0
3
cm

–1
)

Fig. 13.1 Relaxation in the X2�+ (ground electronic state) and A2� (excite electronic state) vibra-
tional manifolds of the CN radical in Ne host matrix at T = 4 K, following excitation into the third
vibrational level of the � state. Populations in individual vibrational levels in both electronic states
are monitored independently by fluorescence (for the � state) and by laser induced fluorescence (for
the � state). The preferred relaxation pathway for energies above the origin of the � state is found
to be medium assisted internal conversion2 as indicated by arrows in the left panel. The right panel
shows the dynamics of population and subsequent decays of the vibrational levels 6, 5, 4, and 3 of
the ground � state. Levels 6 and 5 relax much faster (lifetimes in the order of 1–3 µs) than levels 4
and 3 (lifetimes in the ms range). For the latter the internal conversion-assisted pathway is closed as
seen in the state diagram on the left, so these long lifetimes correspond to pure vibrational transitions.
(From V. E. Bondybey and A. Nitzan, Phys. Rev. Lett. 38, 889 (1977).)

transitions cannot be resolved (though their rate can be calculated) and the only
observable relaxation is that of the total energy. In realistic situations the relaxing
oscillator is anharmonic and individual transitions can be monitored. The choice
between applying a two-level or an N = ∞ level (i.e., a harmonic oscillator)

model to a particular observation depends on whether it involves observable indi-
vidual transitions between pairs of vibrational levels (that can be resolved because

2 Internal conversion is a term used to describe radiationless transition between electronic states of
the same spin multiplicity. Intersystem crossing is the term used of the similar process in which the
spin state changes.



Construction of a model Hamiltonian 457

of the anharmonicity) or whether we follow the relaxation of the overall vibrational
energy. It should be noticed, however, that an important aspect of the two problems
is common to both: they involve the exchange of a well-defined quantum of energy
with the host medium and both are equally sensitive to the issue of whether this
quantum is smaller or larger than that implied by the host Debye frequency.

13.2 Construction of a model Hamiltonian

Our aim is to consider the main physical factors affecting the vibrational relaxation
of a diatomic molecule, embedded as an impurity or a solute in a condensed hosting
environment, by considering a simple model that captures these factors. To this end
we will first impose a drastic simplification (whose failure in some cases will be
discussed later) by avoiding a detailed consideration of local motions, oscillations
and rotations, that may couple to the vibration under study. This is achieved by
(1) considering a mono-atomic solvent, (2) assuming that the molecule resides in
a spherical cavity within this solvent, and (3) making a breathing sphere model
of the diatomic molecule. In this model the molecule is taken to be a sphere with
the molecular mass M , whose radius a+ q vibrates about the equilibrium radius a
with an amplitude q. The center R of this sphere corresponds to the position of the
molecular center of mass. The coordinate q is modeled as a harmonic oscillator of
mass m and frequencyω that corresponds to the reduced mass and the intramolecular
frequency of the diatomic molecule. The interaction between this impurity molecule
and a bath atom j at position rj is, in this model, a function of a single distance
parameter, and may be written in the form V (|rj − R| − a − q). This is obviously
a highly simplified picture because in reality the interaction depends also on the
molecular orientation relative to the molecule–atom distance vector. It appears,
however, to contain the important physical ingredients of the process: the oscillator
mass and frequency, a representative local mode (the center of mass motion of the
molecule in its solvent cage) and the host dynamics through the time-dependent
positions rj(t).

An important simplification can be made at this point by noting that the amp-
litude q of a molecular vibration is usually much smaller than intermolecular
and intramolecular distances. Therefore the interaction potential may be expanded
according to

V (|rj − R| − a − q) ∼= V (|rj − R| − a)+ f (|rj − R| − a)q (13.4)

where

f (|rj − R| − a) = −
(
∂V (x)

∂x

)
x=|rj−R|−a

(13.5)
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is the force exerted on the intramolecular bond, frozen in its equilibrium length
a, by the solvent. Note that this force depends on the instantaneous solvent
configuration {rj}.

The resulting system–bath Hamiltonian can therefore be written in the form

H = HS + HB + HSB (13.6)

where the “system” Hamiltonian, HS, describes the intramolecular motion which
is assumed to be harmonic

HS = p2

2m
+ 1

2
mω2q2 (13.7)

The bath consists of all solvent atoms and the spherical impurity with its internal
motion frozen at q = 0,

HB = P2

2M
+

∑
j

p2
j

2mj
+

∑
j

V (|rj − R| − a)+ UB({rj}) (13.8)

where UB({rj}) is the intermolecular solvent potential. When the bath is a solid
environment all atoms execute small amplitude motions about their equilibrium
positions. We can therefore repeat the procedure of Section 4.2.1: Expand the
potential (the two last terms in (13.8)) in the atomic deviations from these equilib-
rium positions, truncate the expansion at the quadratic level, and diagonalize the
resulting coupled oscillator equations. This leads to the harmonic bath model and
the representation of HB as a sum of normal mode Hamiltonians (cf. Eq. (6.76))

HB = 1

2

∑
k

(p2
k + ω2

ku2
k) (13.9)

These normal modes evolve independently of each other. Their classical equations
of motion are ük = −ω2

kuk , whose general solution is given by Eqs (6.81). This bath
is assumed to remain in thermal equilibrium at all times, implying the phase space
probability distribution (6.77), the thermal averages (6.78), and equilibrium time
correlation functions such as (6.82). The quantum analogs of these relationships
were discussed in Section 6.5.3.

Finally, the oscillator–bath coupling is

HSB = F({rj})q = q
∑

j

f (|rj − R| − a) (13.10)

where F is the total force exerted on the intramolecular bond by the solvent. It is in
principle a function of the position of all solvent atoms, but because intermolecular
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forces are relatively short range, the dominant contributions are from solvent atoms
close to the solute molecule, usually atoms in the first solvation shell.

Equations (13.6), (13.7), (13.9), and (13.10) provide the general structure of our
model. The relaxation process depends on details of this model mainly through the
form and the magnitude of HSB. We will consider in particular two forms for this
interaction. One, which leads to an exactly soluble model, is the bilinear interaction
model in which the force F({rj}) is expanded up to first order in the deviations δrj

of the solvent atoms from their equilibrium positions, F({rj}) = ∑
j F ′({req

j })δrj,
then these deviations are expanded in the normal modes. This eventually leads to a
normal mode expansion of the force F with expansion coefficients determined by
the interactions (13.4) and the transformation that relate the atomic deviations δrj
to the normal modes.

F =
∑

k

Akuk (13.11)

The other, more realistic interaction model is derived from assuming an expo-
nentially repulsive interaction, V (r) = A exp(−αr), in (13.4). Putting r =
|rj − R| − a − q and expanding to first order in q yields

HSB = αAq
∑

j

e−α(|rj−R|−a) (13.12)

This choice is appropriate for the common case where the frequency ω of our
impurity vibration is very high relative to typical bath frequencies (as estimated,
for example, by the bath Debye frequency). In this case only close encoun-
ters between the impurity and the bath molecules can couple efficiently to this
high-frequency motion,3 and such close encounters are indeed dominated by an
exponential repulsion.

In our application of the model (13.12) we will make another simplifying approx-
imation, which is valid for solid environments but can be rationalized also for liquid
solvents.4 Consider one of the contributions to the interaction potential (13.10). For

3 This results from the fact that a time-dependent potential can efficiently affect the motion of an
oscillator of frequency ω only if its spectrum contains similar frequencies, that is, if it varies with
time at rates comparable to these frequencies. Our oscillator can experience such a potential only at
close encounters that explore the steep regimes of the intermolecular interaction.

4 The essence of the simplification discussed here is the assumption that the oscillator–host inter-
action is dominated by the host atoms nearest to the atom, the so-called “first solvation shell” of host
atoms. In a solid host these atoms are fixed, while in a liquid they may interchange with other host
atoms on the timescale of the observed relaxation. However, the argument used here relies mainly on
the number of nearest atoms, not on their identity, and while this number may fluctuate somewhat in
a liquid its average provides a reasonable measure for the interaction experienced by the oscillator.
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this term we can take the x-axis in the direction from R to rj, so that the exponential
function can be written as e−α(xj−X−a). Now assume that (1) xj can be expressed in

terms of deviations from some static equilibrium value x(eq)
j , that is xj = x(eq)

j +δxj;

(2) x(eq)
j −X = |r(eq)

j −R| is the same for all solvent atoms which are nearest neigh-
bors to the impurity molecule; the number of these atoms will be denoted Nnn; (3)
the contributions of all other solvent atoms to HSB is small and can be disregarded.
Under these approximations Eq. (13.12) takes the form

HSB = Be−αδxq (13.13)

where B is a constant given by

B = αANnne−α
(|r(eq)−R|−a

)
(13.14)

and δx is the (radial) deviation of an atom in the first coordination shell about the
solute molecule from its equilibrium position.5

The model defined above will be used below to investigate vibrational relaxation
(VR) of an impurity molecule in a condensed host. This simplified model cannot
be expected to account quantitatively for the observed VR rate, but we can use
it in order to understand the mechanism of this relaxation and the dependence of
the relaxation rate on the nature of the hosting environment, the temperature, the
molecular spectrum (i.e. the energy separation between the levels involved) and
the molecule–solvent interaction.

13.3 The vibrational relaxation rate

The model Hamiltonian (13.6)–(13.8) and (13.13) and (13.14) can be used as a
starting point within classical or quantum mechanics. For most diatomic molecules
of interest h̄ω > kBT , which implies that our treatment must be quantum mechan-
ical. In this case all dynamical variables in Eqs (13.6)–(13.8) and (13.13)–(13.14)
become operators.

5 The rest of the discussion in this chapter just uses B as a constant parameter. Still, it should be noted
that the linear relationship B ∼ Nnn is highly questionable. Since the calculated rate is proportional
to B2 it would imply that the rate goes like N 2

nn. Another equally reasonable model assumption is that
each nearest neighbor acts independently, therefore contributes additively to the rate, in which case
the resulting rate goes like Nnn. One can even envision situations in which different nearest neighbors
interfere destructively, in which case the dependence on Nnn will be sublinear. More than anything, this
uncertainty reflects a shortcoming of the spherical breathing sphere model that disregards the fact that
the interaction of the molecule with its surrounding neighbors depends on their mutual orientations.
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Consider first the transition rate between two molecular levels i and f with
energies Ei and Ef —eigenstates and eigenvalues of ĤS, Eq. (13.7). We use the
golden rule expression (12.34) to evaluate this rate on the basis of eigenstates
of ĤS + ĤB. Denoting by εα and |α〉 the eigenvalues and eigenfunctions of the
bath Hamiltonian, the transition under consideration is between the group of states
{|i,α〉} and {|f ,α′〉}, averaged over the thermal distribution in the {α}manifold and
sum over all final states α′, and the rate is

kf ←i = 2π

h̄

∑
α

e−βεα

Q

∑
α′
|(ĤSB)iα,f α′ |2δ(Ei + εα − Ef − εα′) (13.15)

Q is the bath partition function, Q = ∑
α e−βεα . Following the procedure that leads

from Eq. (12.34) or (12.37) to (12.44) we can recast this rate expression in the time
correlation form

kf ←i = 1

h̄2

∞∫
−∞

dteiEi,f t/h̄〈(ĤSB)i,f (t)(ĤSB)f ,i〉T; Ei,f = Ei − Ef (13.16)

Here the matrix elements in the molecular subspace, for example (ĤSB)i,f are
operators in the bath space, (ĤSB)i,f (t) = exp(iĤBt/h̄)(ĤSB)i,f exp(−iĤBt/h̄) and

〈. . . 〉T = Tr[e−βĤB . . .]/Tr[e−βĤB], where Tr denotes a trace over the eigenstates
of ĤB. At this point expression (13.16) is general. In our case ĤSB = F̂ q̂ where F̂ is
an operator in the bath sub-space and q̂ is the coordinate operator of our oscillator.
This implies that (ĤSB)i,f = qi,f F̂ and consequently

kf ←i = 1

h̄2 |qi,f |2
∞∫

−∞
dteiωi,f t〈F̂(t)F̂(0)〉T (13.17)

with ωi,f = (Ei − Ef )/h̄. The relaxation rate is seen to be given by the ωi,f Fourier
component of the time correlation function of the force exerted by the environment
on the vibrating coordinate when frozen at its equilibrium value.

Note that, using Eq. (12.45) (or applying Eq. (6.75)) we find that this result
satisfies detailed balance, that is, kf ←i = eβh̄ωi,f ki←f . Furthermore, this res-
ult confirms the assertion made above that for large ωi,f only close encounters,
for which the time-dependent force experienced by the vibrating coordinate has
appreciable Fourier component in the corresponding frequency, contribute to the
relaxation.
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For a harmonic oscillator, a transition between levels |n〉 and |n − 1〉 involves
the matrix element |qn,n−1|2 = (h̄/2mω)n, so that Eq. (13.17) becomes

kn−1←n = n

2mh̄ω

∞∫
−∞

dteiωt〈F̂(t)F̂(0)〉T ≡ k↓ (ω) n (13.18a)

kn←n−1 = n

2mh̄ω

∞∫
−∞

dte−iωt〈F̂(t)F̂(0)〉T ≡ k↑(ω)n (13.18b)

with k↑(ω) = k↓(ω) exp(−βh̄ω).

Problem 13.1. Use the detailed balance condition (6.75) to show that k in
Eq. (13.18) is given by

k↓(ω) = 1

2mh̄ω
(1 + e−βh̄ω)−1

∞∫
−∞

dteiωt〈{F̂(t), F̂(0)}〉T (13.19)

where the anti-commutator is defined by {F̂(t), F̂(0)} ≡ F̂(t)F̂(0)+ F̂(0)F̂(t)

.

The fact that symmetrized time correlation functions of the form 〈{F̂(t), F̂(0)}〉T
are insensitive to the order of placing the operators F̂ and F̂(t) suggests that they
can be approximated by their classical counterparts,

〈{F̂(t), F̂(0)}〉q → 2〈F(t)F(0)〉c (13.20)

This leads to the approximation

k↓sc(ω) = 1

mh̄ω
(1 + e−βh̄ω)−1

∞∫
−∞

dteiωt〈F(t)F(0)〉c

= 2

mh̄ω
(1 + e−βh̄ω)−1

∞∫
0

dt cos(ωt)〈F(t)F(0)〉c (13.21a)

k↑sc(ω) = 2

mh̄ω
(1 + eβh̄ω)−1

∞∫
0

dt cos(ωt)〈F(t)F(0)〉c (13.21b)
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In (13.20) and (13.21) the subscripts c and q correspond respectively to the
classical and the quantum time correlation functions and ksc denotes a “semi-
classical” approximation. We refer to the form (13.21) as semiclassical because
it carries aspects of the quantum thermal distribution even though the quantum
time correlation function was replaced by its classical counterpart. On the face
of it this approximation seems to make sense because one could anticipate that
(1) the time correlation functions involved decay to zero on a short timescale (of
order ∼ 1 ps that characterizes solvent configuration variations), and (2) classical
mechanics may provide a reasonable short-time approximation to quantum time
correlation functions. Furthermore note that the rates in (13.21) satisfy detailed
balance.

Note that in continuation of the same line of thought we may take the high
temperature (β → 0) limit of (13.21) and attempt to regard it as a classical
approximation. We see, however, that the result (which no longer satisfies detailed
balance)

k↓c = k↑c ≡ lim
kBT/(h̄ω)→∞

ksc = 1

mh̄ω

∞∫
0

dt cos(ωt)〈F(t)F(0)〉c (13.22)

is not classical in the sense that it depends on h̄. This should not come as a sur-
prise: The transition rate between two levels is a quantum mechanical concept!
Note that the related rate of energy change, kc × h̄ω, does not depend on h̄.
Energy relaxation, however, should be discussed more carefully, as described
below.

Consider now the overall relaxation process. As was done in Section 8.3.3, this
process can be represented by a master equation for the probability Pn to be in
quantum state n of the oscillator,

dPn

dt
= ∂Pn

∂t
= kn,n+1Pn+1 + kn,n−1Pn−1 − (kn+1,n + kn−1,n)Pn (13.23)

where ki,j = ki←j. For the harmonic oscillator we found kn−1←n = nk↓ and
kn←n−1 = nk↓e−βh̄ω, hence Eq. (13.23) has the same form as (8.98) and can
be solved using the procedure described in Section 8.3.3. In particular, multiplying
both sides of (13.23) by n and summing over all n yields

d〈n〉
dt

= −k↓(1 − e−βh̄ω)(〈n〉 − 〈n〉eq) (13.24)

where

〈n〉eq = 1

eβh̄ω − 1
(13.25)
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Since the oscillator energy is E = nh̄ω, it follows from (13.24) that the rate
coefficient for energy relaxation, kE , is

kE = k↓(1 − e−βh̄ω) = 1

mh̄ω
tanh(βh̄ω/2)

∞∫
0

dt cos(ωt)〈{F̂(t), F̂(0)}〉T

(13.26)

Again, using the correspondence (13.20), we may consider the semiclassical and
the classical approximations

kE,sc = 2

mh̄ω
tanh(βh̄ω/2)

∞∫
0

dt cos(ωt)〈F(t)F(0)〉c (13.27)

kE,c = lim
kBT/(h̄ω)→∞

kE,sc = β

m

∞∫
0

dt cos(ωt)〈F(t)F(0)〉c (13.28)

Next we turn to the evaluation of these expressions within specific interaction
models.

13.4 Evaluation of vibrational relaxation rates

In this Section we apply the general formalism developed in Section 13.3 together
with the interaction models discussed in Section 13.2 in order to derive explicit
expressions for the vibrational energy relaxation rate. Our aim is to identify the
molecular and solvent factors that determine the rate. We will start by analyzing
the implications of a linear coupling model, than move on to study more realistic
nonlinear interactions.

13.4.1 The bilinear interaction model

Consider first the model described by Eqs (13.6), (13.7), (13.10), and (13.11)
where the harmonic oscillator under study is coupled bi-linearly to the harmonic
bath. The relevant correlation functions 〈{F̂(t), F̂(0)}〉 and 〈F(t)F(0)〉c should be
calculated with F̂ = ∑

j Ajûj and its classical counterpart, where uj are coordin-
ates of the bath normal modes. Such correlation functions were calculated in
Section 6.5.
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Problem 13.2. For a harmonic thermal bath show that

∞∫
−∞

dteiωt〈F̂(t)F̂(0)〉q = π h̄

ω(1 − e−βh̄ω)
A2(ω)g(ω) (13.29a)

∞∫
−∞

dteiωt〈{F̂(t), F̂(0)}〉q = 2

∞∫
0

dt cos(ωt)〈{F̂(t), F̂(0)}〉q

= π h̄

ω tanh(βh̄ω/2)
A2(ω)g(ω) (13.29b)

while

∞∫
−∞

dteiωt〈F(t)F(0)〉c = 2

∞∫
0

dt cos(ωt)〈F(t)F(0)〉c = πkBT

ω2 A2(ω)g(ω)

(13.30)

where the coupling density is defined by (cf. Eq. (6.91)) A2(ω) ≡∑
k A2

kδ(ω − ωk)/
∑

k δ(ω − ωk), and where g(ω) is the density of bath modes.

Solution: Using the fact that different normal modes are uncorrelated, the
classical correlation function is computed according to

〈F(t)F(0)〉 =
∑

j

A2
j 〈uj(t)uj(0)〉 (13.31)

Using uj(t) = uj(0) cos(ωjt)+[u̇j(0)/ωj] sin(ωjt), and 〈u2
j 〉 = kBT/ω2, 〈uju̇j〉 =

0 we get (13.30). The quantum correlation function is also given by the form
(13.31), with the classical uj replaced by

ûj(t) =
(

h̄

2ωj

)1/2

(â†
j eiωj t + âje

−iωj t) (13.32)

The position correlation function is

〈ûj(t)ûj(0)〉 = h̄

2ωj
(〈nj〉eiωj t + (〈nj〉 + 1)e−iωj t); 〈nj〉 = [exp(βh̄ωj)− 1]−1

(13.33)

which leads to (13.29).
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Note that the bath spectral density associated with the coupling coefficient A
was defined as (cf. Eqs (6.90), (6.92))

JA(ω) = πg(ω)A2(ω)

2ω
(13.34)

Equations (13.26) and (13.29b) now provide an exact result, within the bilinear
coupling model and the weak coupling theory that leads to the golden rule rate
expression, for the vibrational energy relaxation rate. This result is expressed in
terms of the oscillator mass m and frequency ω and in terms of properties of the
bath and the molecule–bath coupling expressed by the coupling density A2(ω)g(ω)

at the oscillator frequency

kE = πA2(ω)g(ω)

2mω2 (13.35)

This rate has two remarkable properties: First, it does not depend on the temperature
and second, it is proportional to the bath density of modes g(ω) and therefore van-
ishes when the oscillator frequency is larger than the bath cutoff frequency (Debye
frequency). Both features were already encountered (Eq. (9.57)) in a somewhat sim-
pler vibrational relaxation model based on bilinear coupling and the rotating wave
approximation. Note that temperature independence is a property of the energy
relaxation rate obtained in this model. The inter-level transition rate, Eq. (13.19),
satisfies (cf. Eq. (13.26)) k↓ = kE(1 − e−βh̄ω)−1 and does depend on temperature.

Equation (13.35) is the exact golden-rule rate expression for the bilinear coup-
ling model. For more realistic interaction models such analytical results cannot be
obtained and we often resort to numerical simulations (see Section 13.6). Because
classical correlation functions are much easier to calculate than their quantum coun-
terparts, it is of interest to compare the approximate rate kE,sc, Eq. (13.27), with the
exact result kE . To this end it is useful to define the quantum correction factor

ξ =
∫∞

0 dt cos(ωt)〈{F̂(t), F̂(0)}〉q∫∞
0 dt cos(ωt)〈{F(t), F(0)}〉c

= (1 + e−βh̄ω)
∫∞
−∞ dteiωt〈F̂(t)F̂(0)〉q

2
∫∞
−∞ dteiωt〈F(t)F(0)〉c

(13.36)

If we had a theory for this factor, we could calculate quantum relaxation rates using
computed classical correlation functions. For the bilinear model (13.11) we get,
using (13.29) and (13.30)

ξ = h̄ω

2kBT

1

tanh(βh̄ω/2)
(13.37)
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One could be tempted to use this factor also for general interaction models, that is
to assume that the following relationship

∞∫
−∞

dteiωt〈F̂(t)F̂(0)〉q ≈ βh̄ω

(1 − e−βh̄ω)

∞∫
−∞

dteiωt〈F(t)F(0)〉c (13.38)

holds approximately also in more general cases. We will see however, Eq. (13.68)
that this ansatz fails badly at low temperatures in the interesting cases where ω is
considerably larger than the medium’s Debye frequency.

Problem 13.3. Show that for the bilinear coupling model, the classical limit rate,
and the exact quantum result are identical, and are both given by6

kE = kE,c = 1

mkBT

∞∫
0

dt cos(ωt)〈F(t)F(0)〉c (13.39)

Equation (13.39) implies that in the bilinear coupling, the vibrational energy relax-
ation rate for a “quantum harmonic oscillator in a quantum harmonic bath” is the
same as that obtained from a fully classical calculation (“a classical harmonic oscil-
lator in a classical harmonic bath”). In contrast, the semiclassical approximation
(13.27) gives an error that diverges in the limit T → 0. Again, this result is specific
to the bilinear coupling model and fails in models where the rate is dominated by
the nonlinear part of the impurity–host interaction.

13.4.2 Nonlinear interaction models

We have seen that vibrational relaxation rates can be evaluated analytically for
the simple model of a harmonic oscillator coupled linearly to a harmonic bath.
Such model may represent a reasonable approximation to physical reality if the
frequency of the oscillator under study, that is the mode that can be excited and
monitored, is well embedded within the spectrum of bath modes. However, many
processes of interest involve molecular vibrations whose frequencies are higher than
the solvent Debye frequency. In this case the linear coupling rate (13.35) vanishes,
reflecting the fact that in a linear coupling model relaxation cannot take place in the
absence of modes that can absorb the dissipated energy. The harmonic Hamiltonian

6 J. S. Bader and B. J. Berne, J. Chem. Phys. 100, 8359 (1994).
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described by Eqs (13.6), (13.7) and (13.9)–(13.11) is, however, an approximation
based on expanding a realistic potential up to quadratic order about the minimum
energy configuration. Relaxation of a high-frequency impurity oscillator can only
take place by exploring regions of the potential surface far from the equilibrium
configuration. This observation stands behind the choice of the interaction form
(13.12) that leads to (13.13).

With this understanding, we can continue in two ways. First we can use
the interaction (13.13) in the golden-rule rate expression—approach we take in
Section 13.4.4. Alternatively, we may use the arguments that (1) transitions between
states of the high-frequency impurity oscillator can occur with appreciable prob-
ability only during close encounters with a bath atom (see footnote 3), and (2)
during such encounters, the interactions of the oscillators with other bath atoms is
relatively small and can be disregarded, in order to view such encounters as binary
collision events. This approach is explored in the next section.

13.4.3 The independent binary collision (IBC) model

Consider first the assumption that those oscillator–bath encounters that lead to
vibrational relaxation can be described as uncorrelated binary collisions.7 It is
sufficient to focus on the rate expression (13.17)

kf ←i = |qi,f |2
h̄2

∞∫
−∞

dteiωi,f t〈F̂(t)F̂(0)〉T (13.40)

which is the basis to all other rates derived in Section 13.3. We proceed by writing
the force operator F̂ as a sum of contributions from all bath atoms

F̂ =
∑
α

f̂α (13.41)

the uncorrelated nature of successive encounters implies that in the force autocor-
relation function

〈F̂(t)F̂(0)〉 =
∑
α

〈 f̂α(t)f̂α(0)〉 +
∑
α

∑
α′ �=α

〈 f̂α(t)f̂α′(0)〉, (13.42)

we can disregard the second term. The resulting autocorrelation function is now
expressed as a sum of contributions from individual bath atoms. Next we want to

7 Further reading: J. Chesnoy and G. M. Gale, Adv. Chem. Phys. 70, 298–355 (1988).
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express each such contribution as resulting from a single collision event. This is
based on the realization that repeated collisions with the same atoms, if uncorrelated,
are no different than collisions with different atoms and can be treated as such as
long as correct counting of the overall collision rate is made. Also, for simplicity
we will use henceforth classical mechanics language but keep in mind that the
correlation functions below should be treated quantum mechanically if needed. To
calculate the correlation function 〈fα(t)fα(0)〉 we write the classical force fα(t) in
the form

fα(t) = fα(rα(t)) = fα(t; rα(0), pα(0)) (13.43)

where rα(t) is the “collision coordinate,” that is, position at time t of the colliding
bath atom relative to the relaxing oscillator, and pα(t) is the associated momentum.
The initial values rα(0) and pα(0) are to be sampled from a Boltzmann distribution.
The collision event is described here loosely: In actual application more than one
coordinate may be needed to describe it. The important feature in the form (13.43)
is that the time-dependent force resulting from interaction with bath particle α is
expressed in terms of an isolated collision, that is, the magnitude of the force exerted
by particle α at time t depends only on its position and momentum relative to the
target. Therefore

〈F(t)F(0)〉 =
∑
α

〈 fα(t; rα , pα)fα(rα)〉

= ρ

∫
d3rg(r)〈f (t; r, p)f (r)〉p (13.44)

and

kf ←i = ρ
|qi,f |2

h̄2

∫
d3rg(r)

∞∫
−∞

dteiωi,f t〈f (t; r, p)f (r)〉p ≡ ρ

∫
d3rg(r)Bi,f (r, T )

(13.45a)

Bi,f (r, T ) = |qi,f |2
h̄2

∞∫
−∞

dteiωi,f t〈 f (t; r, p)f (r)〉p (13.45b)

In the second line of (13.44) and in (13.45) f (r) denotes the force between the relax-
ing coordinate and a single bath atom at distance r away and f (t; r, p) is the same
force, a time t later, given that the initial momentum of the bath atom was p. All
bath atoms are assumed identical and their bulk density is denoted ρ. g(r) is the
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impurity–solvent pair distribution function, 〈 〉p denotes thermal average over ini-
tial momenta and T is the temperature. We have used the fact (see Section 5.3) that
the local density of bath atoms near the relaxing impurity is ρg(r).

The important feature in the final result (13.45) is the fact that all the needed
dynamical information is associated with the time course of a single collision event.
To calculate the correlation function that appears here it is sufficient to consider a
single binary collision with thermal initial conditions. The result is given in terms
of the function B, a two-body property that depends only on the relative position of
the particles (the initial configuration for the collision event) and the temperature.
The host structure as determined by the N -body force enters only through the
configurational average that involves the pair distribution g(r).

Within the IBC approximation the result (13.45) is general. It is particularly
useful for interpretation of vibrational relaxation in pure liquids, because it can be
related immediately to measurement of the same property in the corresponding low
pressure gas phases. To show this define

y(r) = g(r)
ggas(r)

(13.46)

Then

kf ←i = ρ

∫
d3rggas(r)Bi,f (r, T )y(r) (13.47)

The advantage of this form is that ggas(r) already contains the short-range structural
features of g(r), therefore y(r) depends relatively weakly on r. We may define a
mean collision distance R∗ by

∫
d3rggas(r)Bi,f (r, T )(r − R∗) = 0 (13.48)

and expand y(r)s about R∗

y(r) = y(R∗)+ (r − R∗)y′(R∗) (13.49)

to get8

kf ←i = ρy(R∗)kf ←i,gas (13.50)

8 P. K. Davis and I. Oppenheim, J. Chem. Phys. 57, 507 (1972).
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Here kgas is the gas phase VR rate

kf ←i,gas =
∫

d3rggas(r)Bi,f (r, T ) ∼=
∫

d3re−βu(r)Bi,f (r, T ) (13.51)

where u(r) is the two-body potential between the relaxing oscillator and the bath
particle and where we have used Eq. (5.54). The important outcome of this analysis
lies in the fact that kgas is relatively easy to compute or to simulate, and also in
the fact that much of the important physics of the relaxation process is already
contained in kgas: For example, the ratio k/(kgasρ) is of the order of 0.5 … 2 for
many simple fluids (see footnote 7), while k itself varies over several orders of
magnitudes between these fluids.

13.5 Multi-phonon theory of vibrational relaxation

A different approach to the calculation of the rates kf →i, Eq. (13.40), and the related
rates k↑ and kE is to evaluate the force autocorrelation function associated with the
interaction (13.13) and (13.14) and the corresponding force

F̂ = Be−αδx̂ = Be−
∑

k (αk ak+α∗k a†
k ) (13.52)

In the second equality we have expanded the coordinate deviation δx in normal
modes coordinates, and expressed the latter using raising and lowering operators.
The coefficients αk are defined accordingly and are assumed known. They contain
the parameter α, the coefficients of the normal mode expansion and the transform-
ation to raising/lowering operator representation. Note that the inverse square root
of the volume � of the overall system enters in the expansion of a local position
coordinate in normal modes scales,9 hence the coefficients αk scale like �−1/2.

Recall that the interaction form (13.52) was chosen to express the close encounter
nature of a molecule–bath interaction needed to affect a transition in which the
molecular energy change is much larger than h̄ωD where ωD is the Debye cutoff
frequency of the thermal environment. This energy mismatch implies that many
bath phonons are generated in such transition, as will be indeed seen below.

Using (13.52) in (13.40) the transition rate is obtained in the form

kf ←i = |qi,f |2
h̄2 |B|2

∞∫
−∞

dteiωi,f t
∏

k

〈b̂k(t)b̂k(0)〉T (13.53)

9 As a one-dimensional example this was seen in Eq. (4.30) where the transformation coefficients
contain the inverse square root of the total number N of lattice atoms which is proportional to the
lattice volume.
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where

b̂k(t) = e−[αk âk (t)+α∗k â†
k (t)] (13.54)

with

âk(t) = eiĤBt/h̄ake−iĤBt/h̄ = ake−iωk t

â†
k(t) = â†

keiωk t (13.55)

The structure of Eqs. (13.53)–(13.55) is similar to that encountered in the evaluation
of rates in the spin–boson problem, Sections 12-4.2 and 12-4.3 (see Eqs (12.44),
(12.49)–(12.50)) and our evaluation proceeds in the same way. We need to calculate
the thermal average

Ck ≡ 〈e−(αk âk e−iωk t+α∗k â†
k eiωk t)e−(αk âk+α∗k â†

k )〉T (13.56)

This will be accomplished in two stages described in Problem 12-5 and Eq. (12.53).
First we bring all operators onto a single exponent. This leads to

Ck = 〈e−αk âk (1+e−iωk t)−α∗k â†
k (1+eiωk t)e−i|αk |2 sin ωk t〉 (13.57)

Second we use the Bloch theorem (cf. Eq. (10.38)) that states that for a harmonic
system, if Â is linear in the coordinate and momentum operators, then 〈eÂ〉T =
exp[(1/2)〈A2〉T]. In our case

Â = −αk(1 + e−iωk t)âk − α∗k (1 + eiωk t)â†
k (13.58)

so

〈Â2〉T = |αk |2|1 + eiωk t|2(〈âk â†
k〉T + 〈â†

k âk〉T)
= |αk |2|1 + eiωk t|2(2nk + 1) (13.59)

where nk = [exp(βh̄ωk)− 1]−1 is the phonon thermal occupation number. Using
Eqs. (13.58) and (13.59) in (13.57) leads to

Ck = e|αk |2(2nk+1)e|αk |2([nk+1]e−iωk t+nk eiωk t) (13.60)

Inserting in Eq. (13.53) we find the relaxation rate

kf ←i = |qi,f |2
h̄2 |B|2e

∑
k |αk |2(2nk+1)

∞∫
−∞

dteiωi,f t+∑
k |αk |2[(nk+1)e−iωk t+nk eiωk t ] (13.61)
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The result (13.61) has the characteristic form of a multiphonon relaxation rate that
was already encountered in Chapter 12 (compare Eq. (12.55)). Note the appearance
in this result of the important parameters that determine this rate: The coupling
matrix element qi,f between the two system states, the parameters αk that determine
the strength of the system–bath coupling, the energy gapωi,f between the two levels
for which the transition is considered, the phonon frequencies and their thermal
occupation numbers. Several more points are noteworthy:

1. The mathematical derivation of Eqs (13.61) and (12.55) is identical. The
physical origins of the models that were used in these cases were different: The
coupling parameters λ that appear in (12.55) express the strength of electron–
phonon coupling that appear in Eqs (12.8), (12.16b) and were shown to reflect
parallel horizontal shifts of Born–Oppenheimer potential surfaces between different
electronic states. The coupling parameters α in (13.61) originate from the inverse
length that characterizes the range of the exponential repulsion (13.52) associated
with the molecule–bath interaction.

2. In Eq. (13.61) the coupling parameters αk appear in sums of the form∑
k |αk |2 over the bath normal modes. This sum is equivalent to the integral form∫
dω g(ω)α2(ω). As was explained below Eq (13.52), α(ω) ∼ �−1/2 where � is

the overall volume (essentially the volume of the bath). Since the density of bath
modes is linear in � (see, for example, Eq. (4.40) or (4.47)) the final result does
not depend on this volume, as expected.

3. As discussed before with respect to Eq. (12.55), also the rate expression
(13.61) incorporates the restriction of energy conservation: To make the i → f
transition we need to generate or eliminate enough phonons with the correct com-
binations of numbers and frequencies to exactly account for this energy transfer.To
see this consider one of the terms in the Fourier integral of Eq. (13.61) that is
obtained by making a Taylor expansion of the exponent:

1

N !
∞∫

−∞
dteiωi,f t

[∑
k

|αk |2{(nk + 1)e−iωk t + nkeiωk t}
]N

(13.62)

Following this by a multinomial expansion of []N we see that this (and all other
terms) are combinations of terms of the form δ(ωi,f − ∑

k lkωk + ∑
k ′ lk ′ωk ′),

where lk and lk ′ are integers—all possible energy conserving combinations of phon-
ons created and destroyed. These energy conserving terms are weighted by factors
containing powers of nk and (nk+1) because squared matrix elements for phonon
creation or annihilation operators are proportional to these factors. The temperat-
ure dependence of the vibrational relaxation rate results from the presence of these
terms.
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4. A more transparent representation of the temperature dependence can be
obtained in simple models. Consider for example an Einstein-type model where
the phonon spectrum is represented by a single frequency ωa. The rate is loosely
written in this case in the form

kf ←i = |qi,f |2
h̄2 |B|2e|α|2(2na+1)

∞∫
−∞

dteiωi,f t+|α|2(na+1)e−iωat+|α|2naeiωat
(13.63)

with na = [exp(βh̄ωa)− 1]−1. For convenience we specify henceforth to down-
wards transitions, whereupon ωi,f > 0. The Fourier integral can again be evaluated
by making a Taylor expansion followed by a binomial expansion:

I ≡
∞∫

−∞
dteiωi,f t+|α|2(na+1)e−iωat+|α|2naeiωat

=
∞∫

−∞
dteiωi,f t

∞∑
l=0

|α|2l

l! ((na + 1)e−iωat + naeiωat)l

= 2π
∞∑

l=0

|α|2l

l!
l∑

s=0

l!
(l − s)!s!(na + 1)snl−s

a δ(ωi,f − (2s − l)ωa) (13.64)

Consider now the weak coupling limit where |α|2 is very small so that: (1) the
exponent that multiplies the integral I in (13.63) can be disregarded, and (2) only
the term with the smallest l that is compatible with energy conservation in (13.64)
contributes. This is the term

s = l = ωi,f

ωa
(13.65)

that yields

k↓ ∼ |Vi,f |2
h̄2

|α|2(ωi,f /ωa)

(ωi,f /ωa)! (na + 1)(ωi,f /ωa) (13.66)

where Vif = Bqi,f . At low temperature this rate becomes temperature independent,
while as (kBT/h̄ωa) →∞ it diverges like (kBT/h̄ωa)

(ωi,f /ωa). The ratio (ωi,f /ωa)

is the number of phonons participating in the transition, and the onset of temperature
dependence as T increases is at kBT ∼ h̄ωa. Beyond this threshold, the rate increases
very rapidly for large (ωi,f /ωa).
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5. As in the weak coupling limit of the rate (12.55), analyzed in Section 12.5.3,
the weak coupling limit (13.66) of the vibrational relaxation rate also has the char-
acteristic form of an energy-gap law: It decreases exponentially, like |α|2(ωi,f /ωa),
with increasing dimensionless energy gap ωi,f /ωa.

6. For a harmonic oscillator of frequency ω, the ratio k↓(T )/k↓(T →
∞) = [(na(T )+ 1)(h̄ωa/kBT )]ω/ωa is, according to (13.19) and (13.22), equal
to 2(1 + e−βh̄ω)−1ζ where ζ is the quantum correction factors defined in (13.36).
Using (13.66) this implies that for the exponential repulsion model in the weak
coupling approximation

ζ = 1

2
(1 + e−βh̄ω)

[
h̄ωa

kBT
(na + 1)

](ω/ωa)

(13.67)

In the low temperature limit this becomes

ζ
T→0−→ 1

2

(
h̄ωa

kBT

)ω/ωa

(13.68)

indicating the failure of the ansatz (13.38).
Figure 13.2 shows experimental relaxation data for different vibrational levels

of the ground electronic state of Oxygen molecules embedded in a solid Argon
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Fig. 13.2 The relaxation of different vibrational levels of the ground electronic state of 16O2 in a
solid Ar matrix. Analysis of these results indicates that the relaxation of the v < 9 levels is dominated
by radiative decay and possible transfer to impurities. The relaxation of the upper levels probably
takes place by the multiphonon mechanism discussed here. (From A. Salloum and H. Dubust, Chem.
Phys. 189, 179 (1994).)
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matrix. Oxygen is vibrationally excited by energy transfer from IR pumped carbon
monoxide, and its subsequent relaxation is followed by pump-probe spectroscopy,
that is, exciting into a higher electronic state and probing the ensuing fluorescence.
The vibrational frequency of molecular oxygen is ∼ 1500 cm−1 and the Debye
frequency of solid Ar is of the order of 65 cm−1. The high phonon order, 1500/65 =
23, of the process explains the long times seen and the sensitivity to competing
relaxation pathways.

13.6 Effect of supporting modes

As already discussed in Section 13.1, the multiphonon pathway for vibrational
relaxation is a relatively slow relaxation process, and, particularly at low temper-
atures the system will use other relaxation routes where accessible. Polyatomic
molecules take advantage of the existence of relatively small frequency differ-
ences, and relax by subsequent medium assisted vibrational energy transfer between
molecular modes. Small molecules often find other pathways as demonstrated in
Section 13.1 for the relaxation of the CN radical. When the concentration of impurity
molecules is not too low, intermolecular energy transfer often competes success-
fully with local multiphonon relaxation. For example, when a population of CO
molecules in low temperature rare gas matrices is excited to the v = 1 level, the sys-
tem takes advantage of the molecular anharmonicity by undergoing an intermediate
relaxation of the type

CO(v = 1)+ CO(v) → CO(v = 0)+ CO(v + 1)+�E (13.69)

where the excess energy �E = E1 − E0 − (Ev+1 − Ev) > 0 is smaller than the
matrix Debye frequency and is easily deposited into the matrix. When this route is
no longer available, the relaxation from the lower vibrational levels of CO proceeds
radiatively.10

As another interesting example consider vibrational relaxation of an HCl
molecules embedded in an Argon matrix.11 At T = 9 K it is found that trans-
ition rates between the lowest vibrational levels are k0←1 = 8 × 102 s−1 (ω =
2871 cm−1) and k1←2 = 3.8 × 103 s−1 (ω = 2768 cm−1). These transitions are
resolved because of the molecular anharmonicity, and the fact that k0←1 < k1←2
seems to agree with expectations based on the “energy gap law.” On the other

10 H. Dubost in Chemistry and Physics of Matrix Isolated Species, edited by L. Andrews and
M. Moscovits (Elsevier, Amsterdam, 1989).

11 F. Legay, Vibrational Relaxation in Matrices, in Chemical and Biochemical Applications of
Lasers, Vol II (1977), p. 43.
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hand, the observation that for DCl under identical conditions k1←2 = 4× 102 s−1

(ω = 2078 cm−1) is in contradiction with this picture. Similarly, vibrational relax-
ation rates for NH radicals in Ar matrix (T = 4.2 K) are12 k0←1 = 1.2 × 106 s−1

(ω = 2977 cm−1) and k1←2 = 6.2 × 106 s−1 (ω = 2718 cm−1), however for the
deuterated species ND it is found that k0←1 ≤ 2 × 104 s−1(ω = 2217 cm−1).

How can we explain such apparent breakdown of the energy gap law? Again, we
should bear in mind the possibility that the observed relaxation proceeds via altern-
ative routes such as transfer to impurities, as discussed above. These possibilities
should be checked and suppressed by carefully adjusting experimental conditions
while carrying control experiments. Assuming that the results described above rep-
resent “real” vibrational relaxation we should turn for answers to the physical model
considered. To this end note that the simple “Einstein” model considered above fails
if the process is dominated by a relatively strong coupling of the relaxing mode to
a local phonon mode. Local vibrations often emerge when an impurity molecule is
inserted into an otherwise pure host matrix. A simple easy-to-visualize example is
the center of mass motion of the impurity in its solvation cavity. Suppose that such
a mode exists, and suppose further that its frequency is considerably higher than
thermal energy, h̄ω1 
 kBT , so its thermal occupation may be assumed to vanish.
In this case the integral I , Eq. (13.64), will be replaced by

I ≡
∞∫

−∞
dteiωi,f t+|α1|2e−iω1t+|α2|2(n+1)e−iω2t+|α2|2neiω2t

(13.70)

Here the subscript 1 denotes the local mode and the other modes are represented
by the “Einstein frequency” ω2, of the order of the solvent Debye frequency, and
we have assumed that ω1 > ω2.

Now, if α2 was zero, we can use the procedure that leads to Eq. (13.64) to get

I =
∑

l

|α1|2l

l! 2πδ(ωi,f − lω1) (13.71)

However, having only one, or very few, local modes, the probability to match
energy exactly, that is, to have ωi,f − lω1 for some integer l is extremely small.
Instead, the largest contribution to the rate comes from a process in which l local
phonons are generated so that ωi,f = lω1 +�ω, where l is the largest integer that
satisfies ωi,f − lω1 > 0. In other words, the local phonons “fill the energy gap” as
much as possible. The residual energy h̄�ω is dissipated into lattice phonons. The

12 V. E. Bondybey and L. E. Brus, J. Chem. Phys. 63, 794 (1975).
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integral I is therefore, essentially,

I ∼ |α1|2l

l!
∞∫

−∞
dtei(ωi,f −lω1)t+|α2|2[(n2+1)e−iω2t+n2e−iω2t ]

∼ |α1|2l

l!
|α2|2(ωi,f −lω1)/ω2

((ωi,f − lω1)/ω2)!(n2 + 1)(ωi,f −lω1)/ω2 (13.72)

In this case the temperature dependence is expected to be much weaker than before,
Eq. (13.66), because the temperature dependent factor (n2+1) is raised to a much
smaller power. Moreover, the larger is the frequency of the local phonon the smaller
is l, therefore, since α1 � 1, the larger is the rate.

In the examples considered above it has been found that the principal local mode
is the almost free, only slightly hindered, rotation of the H (or D) atom about its
heavy partner, N for NH/ND or Cl for HCl/DCl. This local mode is not a harmonic
oscillator, but the argument proceeds in the same way: Assuming free rotation,
the rotational level l corresponds to the energy h̄Bl(l + 1) ∼= h̄Bl2 where B is the
rotational constant. The minimum number of rotational levels needed to fill the
frequency gap is the maximum integer l that satisfies ωi,f ≥ Bl(l + 1) that is,
l <

√
ωi,f /B. When the H atom in the HX molecule is replaced by a deuterium, the

molecular frequency decreases by a factor
√

2, however, the rotational constant B,
which is inversely proportional to the moment of inertia, decreases by a factor of
∼2. Therefore l is larger in the deuterated molecule, namely more rotational levels
are needed to fill the frequency gap. The rate is therefore expected to be smaller in
this case, as observed.13

13.7 Numerical simulations of vibrational relaxation

Numerical simulations have become a central tool in studies of condensed phase
processes. The science, technique, and art of this tool are subjects of several
excellent texts.14 Here we assume that important problems such as choosing a

13 For a detailed treatment of this model see R. B. Gerber and M. Berkowitz, Phys. Rev. Lett. 39,
1000 (1977).

14 See, for example, M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Oxford Uni-
versity Press, Oxford, 1987); D. C. Rapaport, The Art of Molecular Dynamics Simulation, 2nd edn
(Cambridge University Press, Cambridge, 2004); Daan Frenkel and B. Smit, Understanding Molecu-
lar Simulation, 2nd edn (Academic Press, San Diego, CA, 2002); J. M. Haile, Molecular Dynamics
Simulation: Elementary Methods (Wiley, New York, 1997).
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proper force field for the inter- and intramolecular interactions, using an adequately
large system given the range of intermolecular forces and the phenomenon under
study, avoiding artifacts associated with artificial boundary conditions and adequate
sampling of initial conditions (needed, for example, to represent thermal equilib-
rium at given temperature and volume or pressure), have been handled. We thus
assume that we can generate a table that gives the position and velocity of each
atom in the system as a function of time. This table is a numerical representation of
a phase space trajectory. Naturally, entries in such a numerical table will be given
at discrete time points, determined by a pre-chosen time interval.

Two principal issues remain:

1. Quantum versus classical mechanics. Note that the previous paragraph uses
the language of classical mechanics. The equivalent undertaking in quantum mech-
anics would be to generate a table that gives at subsequent time intervals the
many-particle complex wavefunction or, more generally, the many-particle density
matrix of the system. Such goals are far beyond our reach. Quantum dynamical
simulations can be carried only for very small systems such as encountered in gas
phase processes. Progress in quantum dynamical simulations of condensed phase
processes is being made by developing tools for mixed quantum–classical sim-
ulations, in which one attempts to identify those degrees of freedom for which
quantum mechanics is essential, and compute the quantum dynamics for these
degrees of freedom when coupled to the rest of the system which is treated clas-
sically. Quantum mechanics is evidently essential when the process under study
is strongly influenced by one or more of the following inherently quantum phe-
nomena: (1) interference, (2) tunneling, (3) zero-point motion, and (4) energy level
spacings larger than kBT .

2. Handling co-existing vastly different timescales. The problem of vibrational
relaxation is a good example for demonstrating this point. Disregarding electronic
transitions, the shortest timescale in this problem is the period of the fast impurity
oscillator which is the subject of our relaxation study. For the oxygen molecule in
the experiment of Fig. 13.2 this is of the order of 20 fs. Decent numerical solution of
the Newton equations should use a considerably smaller integration time interval,
say 0.2 fs. On the other hand the measured relaxation time as seen in Fig. 13.2
is of the order of 1–100 s. This implies that a direct numerical observation of this
vibrational relaxation, even within a classical mechanics based simulation, requires
running trajectories of such lengths. Again, this is far beyond our present numerical
abilities.

It should be noted that a similar problem exists also in systems with vastly
different lengthscales. The smallest characteristic lengthscale in atomic-level con-
densed phase simulations is the interatomic distance which is of the same order as
the atomic size. To simulate phenomena that involve much larger lengthscales we
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need to handle systems with huge number of atoms, again a numerical burden that
can easily reach the limits of present abilities. This issue is not an important factor
in numerical simulations of vibrational relaxation, where the dominant forces are
short range. In fact, expecting that the process is dominated by close encounters of
the relaxing molecule with its nearest neighbors, one could focus on a very small
“inner system” that includes the molecule and its neighbors, and take the effect of
the rest of the solvent by imposing random force and damping (i.e. using Langevin
equations, Section 8.2) on the motion for these particles.15 Indeed, the first sim-
ulations of vibrational relaxation where done using such Langevin or Brownian
dynamics simulations.16

Coming back to the timescale issue, it is clear that direct observation of sig-
nals such as shown in Fig. 13.2 cannot be achieved with numerical simulations.
Fortunately an alternative approach is suggested by Eq. (13.26), which provides a
way to compute the vibrational relaxation rate directly. This calculation involves
the autocorrelation function of the force exerted by the solvent atoms on the frozen
oscillator coordinate. Because such correlation functions decay to zero relatively
fast (on timescales in the range of pico to nano seconds depending on temperature),
its numerical evaluation requires much shorter simulations. Several points should
be noted:

1. Given a trajectory table, (rN (t), vN (t)), for all N particles in the system
at successive time points t, the time correlation function of any dynamical
variable is computed essentially as described by Eqs (7.43) and (7.44).

2. The procedure described here is an example for combining theory (that relates
rates and currents to time correlation functions) with numerical simulations to
provide a practical tool for rate evaluation. Note that this calculation assumes
that the process under study is indeed a simple rate process characterized by
a single rate. For example, this level of the theory cannot account for the
nonexponential relaxation of the v = 10 vibrational level of O2 in Argon
matrix as observed in Fig. 13.2.

3. Difficulties associated with disparity of timescales may still be encountered
even within this approach, in cases where the frequency of the impurity
molecule is much larger than the cutoff (Debye) frequency, ωD, of the host.
Note that the rate (13.26) is given by the Fourier transform of the force auto-
correlation function, taken at the frequency of the impurity oscillator. The
time dependence of this correlation function reflects the time dependence of

15 In fact, generalized Langevin equations (Section 8.2.6) need to be used in such applications to
account for the fact that the “system” is usually faster than the “bath.” Indeed, the spectral density,
Eq. (8.65) should reflect the spectral characteristics of the bath, including its Debye frequency.

16 M. Shugard, J. C. Tully, and A. Nitzan, J. Chem. Phys. 69, 336, 2525 (1978).
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the force, which in turn reflects the normal mode frequencies of the host. The
Fourier transform (t → ω) of the force autocorrelation function is typically
large for ω < ωD and decays exponentially for larger ω. For ω 
 ωD, the
evaluation of the required Fourier transform is a problem in numerical signal
analysis—the need to extract a very small meaningful signal in a large noisy
background.17

Finally, let us return to the issue of quantum mechanics. Our impurity vibration is
usually such that h̄ω > kBT so this mode should obviously be handled quantum
mechanically. Indeed, expression (13.26) was derived from the quantum mechanical
golden rule for the transition rate between two levels of this oscillator. The host
medium is characterized by a continuous spectrum, and since no interference or
tunneling seem to be at play, nor does zero point motion appear to be an essential
ingredient, one could perhaps anticipate that a classical description of the host could
be at least a crude approximation expected to become better at higher temperatures.
This is the rational for considering the semiclassical rate expressions (13.21) and
(13.27). However, as indicated by Eq. (13.67) the quantum correction factor ζ(ω)

can be quite large when ω/ωD 
 1. Even though the solvent behaves classically
in many respects, its ability to absorb a quantum of energy much larger than its
natural frequencies shows a distinct quantum mechanical nature.

At low temperature the quantum correction factor can be huge, as seen in
Eq. (13.68). Since quantum correlation functions are not accessible by numerical
simulations, one may evaluate numerically the corresponding classical correlation
function and estimate theoretically the quantum correction factor. Some attempts to
use this procedure appear to give reasonable results,18 however, it is not clear that
the quantum correction factors applied in these works are of general applicability.

13.8 Concluding remarks

Our focus in this chapter was the rate at which a molecule interacting with its
thermal environment releases its vibrational energy. Small diatomic molecules
embedded in condensed monoatomic hosts provide natural choices for studying
this phenomenon. We have found, however, that in many cases their direct vibra-
tional relaxation is very slow and the system finds alternative routes for releasing
its excess nuclear energy. On the other extreme end, relaxation is very fast, in
the ps regime, for polyatomic molecules at room temperature. In such systems

17 D. Rostkier-Edelstein, P. Graf, and A. Nitzan, J. Chem. Phys. 107, 10470 (1997).
18 See, for example, K. F. Everitt, J. L. Skinner, and B. M. Ladanyi, J. Chem. Phys. 116, 179 (2002).
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relaxation takes place through anharmonic interactions that couple two or more
molecular modes with the environmental phonons, making it possible to interact
with the main phonon spectrum of the environment rather than with its very small
high-frequency tail.

An interesting comparison can be made between the relaxation of high-
frequency molecular modes and the spin–lattice relaxation discussed in
Section 12.5.5. In both cases direct relaxation is very slow because of incompatib-
ility between energy spacings in the system and in the bath. Molecular frequencies
are much higher, and spin energy spacings are much lower, than the spectral region
where most of the host phonon spectrum is distributed. Both systems resolve their
difficulties by invoking higher-order terms in their interaction with the environment.

As in the case of electronic relaxation (see Section 12.4.1 and problem 12-2),
once a molecule becomes large enough it can provide enough density of vibrational
modes to act as its own “heat bath.” The ensuing relaxation process is referred to
as intramolecular vibrational relaxation (or redistribution), in which a mode or a
group of modes under observation exchange energy with the rest of the molecular
nuclear space, even though the total molecular energy is unchanged.

Finally, while the focus of our discussion was energy relaxation, we should
keep in mind that phase relaxation is also an important process of measurable
spectroscopic consequences. We have discussed vibrational phase relaxation in
Section 7.5.4 and the concept of dephasing in Section 10.4.9. We will come back
to this issue in Section 18.5.
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14

CHEMICAL REACTIONS IN CONDENSED PHASES

Never suppose the atoms had a plan,
Nor with a wise intelligence imposed
An order on themselves, nor in some pact
Agreed what movements each should generate.
No, it was all fortuitous; for years,
For centuries, for eons all those motes
In infinite varieties of ways
Have always moved, since infinite time began,
Are driven by collisions, are borne on
By their own weight, in every kind of way
Meet and combine, try every possible,
Every conceivable pattern, till at length
Experiment culminates in that array
Which makes great things…

Lucretius (c.99–c.55 bce) “The way things are” translated by
Rolfe Humphries, Indiana University Press, 1968

14.1 Introduction

Understanding chemical reactions in condensed phases is essentially the under-
standing of solvent effects on chemical processes. Such effects appear in many
ways. Some stem from equilibrium properties, for example, solvation energies and
free energy surfaces (see Section 14.3). Others result from dynamical phenomena:
solvent effect on diffusion of reactants toward each other, dynamical cage effects,
solvent-induced energy accumulation and relaxation, and suppression of dynamical
change in molecular configuration by solvent induced friction.

In attempting to sort out these different effects it is useful to note that a chemical
reaction proceeds by two principal dynamical processes that appear in three stages.
In the first and last stages the reactants are brought together and products are
separated from each other. In the middle stage the assembled chemical system
undergoes the structural/chemical change. In a condensed phase the first and last
stages involve diffusion, sometimes (e.g. when the species involved are charged)
in a force field. The middle stage often involves the crossing of a potential barrier.
When the barrier is high the latter process is rate-determining. In unimolecular
reactions the species that undergoes the chemical change is already assembled and
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only the barrier crossing process is relevant.1 On the other hand, in bi-molecular
reactions with low barrier (of order kBT or less), the rate may be dominated by the
diffusion process that brings the reactants together. It is therefore meaningful to
discuss these two ingredients of chemical rate processes separately.

Most of the discussion in this chapter is based on a classical mechanics descrip-
tion of chemical reactions. Such classical pictures are relevant to many condensed
phase reactions at and above room temperature and, as we shall see, can be gener-
alized when needed to take into account the discrete nature of molecular states. In
some situations quantum effects dominate and need to be treated explicitly. This is
the case, for example, when tunneling is a rate determining process. Another import-
ant class is nonadiabatic reactions, where the rate determining process is hopping
(curve crossing) between two electronic states. Such reactions are discussed in
Chapter 16 (see also Section 14.3.5).

14.2 Unimolecular reactions

In addition to their inherent significance as an important class of chemical reac-
tions, unimolecular rate processes in solution have attracted much attention because
they provide convenient testing grounds to theories that describe solvent effect on
barrier crossing irrespective of its additional role of modifying bi-molecular encoun-
ters. The study of such reactions therefore provides a convenient framework for
analyzing solvent effects on barrier crossing phenomena.

A unimolecular process can take place once the reactant molecule has accumu-
lated enough energy. The solvent environment controls energy transfer to and from
this molecule, affects energy flow between different degrees of freedom within the
molecule, and helps to dissipate excess energy in the product species. The way
all these effects combine to yield the overall solvent effect on the unimolecular
reaction rate is the subject of our study.

An important concept in chemical kinetics is the rate coefficient. For a uni-
molecular reaction involving species A, the rate coefficient k appears in the first-
order kinetics law dA/dt = −kA, however we should bear in mind that even for
unimolecular processes the existence of a rate coefficient as a time-independent
constant requires additional assumptions. First, as the process proceeds, the system
itself can change. For example, the solvent temperature may change due to the
energy released or absorbed during the process. The solution composition may
change due to disappearance of reactant and formation of product species. These
potential difficulties can be avoided by using a large excess of solvent and taking
proper care with the experimental design.

1 In some photoinduced unimolecular reactions the barrier may be very small or altogether absent.
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2

1

k12 k21

k1

k2

Fig. 14.1 A two-level model for thermal relaxation effect on chemical reactions.

More importantly, a molecular species A can exist in many quantum states; in
fact the very nature of the required activation energy implies that several excited
nuclear states participate. It is intuitively expected that individual vibrational states
of the reactant will correspond to different reaction rates, so the appearance of a
single macroscopic rate coefficient is not obvious. If such a constant rate is observed
experimentally, it may mean that the process is dominated by just one nuclear
state, or, more likely, that the observed macroscopic rate coefficient is an average
over many microscopic rates. In the latter case k = ∑

i Piki, where ki are rates
associated with individual states and Pi are the corresponding probabilities to be
in these states. The rate coefficient k is therefore time-independent provided that
the probabilities Pi remain constant during the process.2 The situation in which
the relative populations of individual molecular states remains constant even if
the overall population declines is sometimes referred to as a quasi steady state.
This can happen when the relaxation process that maintains thermal equilibrium
between molecular states is fast relative to the chemical process studied. In this case
{Pi} remain thermal (Boltzmann) probabilities at all times. We have made such
assumptions in earlier chapters; see Sections 10.3.2 and 12.4.2. We will see below
that this is one of the conditions for the validity of the so-called transition state
theory of chemical rates. We also show below that this can sometime happen also
under conditions where the time-independent probabilities {Pi} do not correspond
to a Boltzmann distribution.

A simple example can clarify this issue. Suppose that the reactant A is a two-
level molecule. Denote the levels by 1 and 2, the corresponding densities by A1 and
A2 (A1 + A2 = A) and the microscopic rates out of these levels by k1 and k2. Let
there be also an internal rate process with rates k12 = k1←2 and k21 = k2←1, that
would maintain thermal equilibrium in a closed system. This implies k12/k21 =
exp(−β(E1 − E2)). The overall kinetic scheme is shown in Fig. 14.1.

If we further take k1 = 0 this becomes the Lindemann mechanism that is used
to explain the observation that many gas-phase reactions of the type A → product
that appear unimolecular at high pressure change their character to bimolecular at
low pressure. Lindemann has postulated that such unimolecular reactions proceed

2 Note that
∑

i Pi = 1, so the normalized state probabilities do not reflect the change in the overall
number of reactant molecules.
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via an activated state 2 of A which is obtained by collision with surrounding gas
molecules M (so that the corresponding rates are proportional to the gas pressure):

A1 + M
k21�
k12

A2 + M

A2 −→
k2

P (products)
(14.1)

The corresponding chemical rate equations are

dA1

dt
= −k̄21A1 + k̄12A2 (14.2a)

dA2

dt
= k̄21A1 − k̄12A2 − k2A2 = −dA1

dt
− k2A2 (14.2b)

dP

dt
= k2A2 (14.2c)

where k̄ij = kijM . This set of linear first-order differential equations can be solved
exactly, but we will first take a simplified route in which we assume that a quasi
steady state is established in this process. This implies that A1/A2 remains constant
during the time evolution, which in turn implies that (dA2/dt)/(dA1/dt) = A2/A1.
In the common case where A2 � A1 we can disregard dA2/dt relative to dA1/dt in
(14.2b). This leads to

A2 = k̄21A1

k̄12 + k2
(14.3)

and the effective overall rate k = (1/A)dP/dt

k = k̄21k2

k̄12 + k2
(14.4)

k̄21 and k̄12 express the strength of the interaction between the molecule and its
thermal environment; in the present example they are proportional to the gas pres-
sure. In the limit where these rates are large, specifically when k12 
 k2, Eq. (14.4)
yields k = k2(k21/k12) = k2 exp[−β(E2 − E1)], independent of the gas pressure.
This reflects the fact that in this limit the thermal relaxation is much faster than
the rate of product formation, therefore to a good approximation A2 is given by
its equilibrium value A2 = A1 exp[−β(E2 − E1)] � A exp[−β(E2 − E1)]. In the
opposite limit, when the thermal interaction is weak, k̄21 � k̄12 � k2, the rate
becomes k = k̄21 = k21M . In a pure gas A, (i.e. when M and A are the same
species) this implies that the reaction appears to be bimolecular.
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From the mathematical point of view, the dynamics of product formation in the
reaction scheme (14.2) is characterized by two timescales (see below). Our attempt
to identify a single reaction rate amounts to exploring the conditions under which
one of these rates dominates the observed evolution. In the limit of fast thermal
relaxation relative to the rate of product formation, it is the latter slow rate that
dominates the observed process. In the opposite limit it is the excitation process
A1 → A2 that determines the rate. The latter is then dominated by the first of the
reactions in (14.1)—accumulation of energy in A, and is proportional to the strength
of the thermal interaction, for example, the bathing gas pressure.

The results obtained above are limiting cases of the full dynamics. The time
evolution described by Eqs (14.2) is determined by the two roots, α1 ≤ α2 of the
characteristic equation

α2 − α(k2 + k̄21 + k̄12)+ k̄21k2 = 0 (14.5)

and, for the initial condition A1(t = 0) = A(t = 0) = 1, A2(t = 0) = 0 is given by

A1(t) = k̄21

α2 − α1

[(
k2

α1
− 1

)
e−α1t −

(
k2

α2
− 1

)
e−α2t

]

A2(t) = k̄21

α2 − α1

[
e−α1t − e−α2t]

A(t) = A1(t)+ A2(t) = α2e−α1t − α1e−α2t

α2 − α1
(14.6)

To obtain this result we have used (cf. Eq. (14.5)) α1α2 = k̄21k2. The time evolution
will appear unimolecular, with a single time-independent rate, only if α1 � α2.
In this case, following a transient period of order 1/α2, A(t) proceeds to disappear
exponentially

A(t) �
(

α2

α2 − α1

)
e−α1t � e−α1t (14.7)

while the ratio A2/A1 remains time-independent

A2(t)/A1(t) � α1/ (k2 − α1) (14.8)

Note that the relationship α1 � α2 also implies that the amplitude of the fast com-
ponent in the last of Eq. (14.6) is very small, implying that most of the process take
place on the timescale determined by α1 which therefore determines the reaction
rate k . The nature of the constant distribution (14.8) depends on the actual rates.
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Keeping in mind that k̄21 = k̄12e−β(E2−E1) < k̄12, we obtain for both k2 � k̄12
(henceforth case 1) and k2 
 k̄12 (case 2), to a good approximation

α1 = k = k̄21k2

k2 + k̄12 + k̄21
(14.9)

so that (from (14.8))

A2

A1
= k̄21

k̄12 + k2
(14.10)

This implies that in case 1 a Boltzmann distribution is essentially maintained after
the initial fast relaxation, while in case 2 the upper state is strongly depleted relative
to the Boltzmann population. Furthermore, for β(E2 − E1) 
 1 we have again
A1 � A, and the effective unimolecular rate is k = k2A2/A � k2k̄21/(k̄12 + k2),
reproducing Eq. (14.4)

The result (14.4) tells us that as a function of the thermal relaxation rate (e.g. the
gas pressure that determines M ) the rate coefficient k grows until it saturates at the
maximum value k = k2e−β(E2−E1) which no longer depends on M . However, for
very large densities (e.g. in liquids and solids) k2 may depend on M and in fact it is
expected to vanish as M →∞. This is because the process A2 → P is a reaction
in which atoms move to form new configurations a process that can be inhibited
by friction or by lack of available volume needed for atomic motion. The Kramers
model (Section 14.4) describes this effect by taking solvent-induced friction as an
explicit parameter of the theory.

The observations made above emphasize two conditions for a linear multistep
process to appear as a simple single-exponential relaxation: (1) One of the eigen-
values of the relaxation matrix has to be much smaller than the other. (2) This
eigenvalue should dominate the relaxation, that is, the combined amplitudes of the
relaxation modes associated with all other eigenvalues must be small relative to
that associated with the smallest eigenvalue. Another useful observation is that the
inequality α1 � α2 always holds if the reaction rate α1 is much smaller from the
thermal relaxation rate, here given by k̄12 + k̄21, the rate at which a closed system
(k2 = 0) will approach equilibrium. Equation (14.9) shows that this will be satisfied
if the activation energy is large enough, that is, β(E2 − E1) 
 1.

The Lindemann model discussed above provides the simplest framework for
analyzing the dynamical effect of thermal relaxation on chemical reactions. We will
see that similar reasoning applies to the more elaborate models discussed below,
and that the resulting phenomenology is, to a large extent, qualitatively the same.
In particular, the Transition State Theory (TST) of chemical reactions, discussed
in the next section, is in fact a generalization of the fast thermal relaxation limit of
the Lindemann model.



Transition state theory 489

14.3 Transition state theory

14.3.1 Foundations of TST

Consider a system of particles moving in a box at thermal equilibrium, under
their mutual interactions. In the absence of any external forces the system will be
homogenous, characterized by the equilibrium particle density. From the Maxwell
velocity distribution for the particles, we can easily calculate the equilibrium flux
in any direction inside the box, say in the positive x direction, Jx = ρ〈vx〉, where
ρ is the density of particles and 〈vx〉 = (βm/2π)1/2

∫∞
0 dvxvx exp(−βmv2

x/2).
Obviously, this quantity has no relation to the kinetic processes observed in the
corresponding nonequilibrium system. For example, if we disturb the homogeneous
distribution of particles, the rate of the resulting diffusion process is associated with
the net particle flux (difference between fluxes in opposing directions) which is zero
at equilibrium.

There are, however, situations where the equilibrium flux calculated as described
above, through a carefully chosen surface, provides a good approximation for an
observed nonequilibrium rate. The resulting transition state theory of rate pro-
cesses is based on the calculation of just that equilibrium flux. In fact, for many
chemical processes characterized by transitions through high-energy barriers, this
approximation is so successful that dynamical effects to which most of this chapter
is devoted lead to relatively small corrections. The essential ingredients of TST can
be described by referring to the potential of Fig. 14.2, plotted against the reaction
coordinate x. For specificity we regard the wells to the left and right of the barrier as
“reactant” and “product” states, respectively. We consider an ensemble of systems
prepared in the reactant well and examine the phase space trajectories that lead such
a system to cross to the product side. For simplicity we use the word “particles” to

x

V

xB

EB

vB

v0

Fig. 14.2 A one-dimensional model for a barrier crossing process. The potential barrier is charac-
terized by the well and barrier curvatures which determine the frequencies ω0 and ωB, and by the
barrier height EB.
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describe these trajectories. TST is based on two critical assumptions:

1. The reaction process does not disturb the thermal distribution within the
reactant and product wells. This assumption is based on the observation that
the timescale of processes characterized by high barriers is much longer than
the timescale of achieving local thermal equilibrium in the reactants and
products regions. The only quantity which remains in a nonequilibrium state
on this long timescale is the relative concentrations of reactants and products.

2. The rate is determined by the equilibrium flux across the boundary separating
reactants and products. The fact that this boundary is characterized by a high-
energy barrier is again essential here. Suppose that the barrier is infinite at first
and we start with all particles in the “reactant state,” say to the left of the barrier
in Fig. 14.2. On a very short timescale thermal equilibrium is achieved in this
state. Assumption (1) assures us that this thermal equilibrium is maintained
also after we lower the barrier to its actual (large) height. Assumption (2)
suggests that if we count the number of barrier-crossing events per unit time
in the direction reactants → products using the (implied by assumption (1))
Maxwell distribution of velocities, we get a good representation of the rate.
For this to be true, the event of barrier crossing has to be the deciding factor
concerning the transformation of reactants to products.

This is far less simple than it sounds: after a particle has crossed the barrier,
say from left to right, its fate is not yet determined. It is only after subsequent
relaxation leads it toward the bottom of the right well that its identity as a product
is established. If this happens before the particle is reflected back to the left, that
crossing is reactive. Assumption (2) in fact states that all equilibrium trajectories
crossing the barrier are reactive, that is, they go from reactants to products without
being reflected. For this to be a good approximation to reality two conditions should
be satisfied:

1. The barrier region should be small relative to the mean free path of the
particles along the reaction coordinate, so that their transition from a well
defined left to a well defined right is undisturbed and can be calculated from
the thermal velocity.

2. Once a particle crosses the barrier, it relaxes quickly to the final equilibrium
state before being reflected to its well of origin.

These conditions cannot be satisfied exactly. Indeed, they are incompatible with
each other: the fast relaxation required by the latter implies that the mean free
path is small, in contrast to the requirement of the former. In fact, assumption (2)
must fail for processes without barrier. Such processes proceed by diffusion, which
is defined over length scales large relative to the mean free path of the diffusing
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particle. A transition region that defines the “final” location of the particle to its
left or to its right cannot be smaller than this mean free path.

For a transition region located at the top of a high barrier the situation is more
favorable. Once the particle has crossed the barrier, it gains kinetic energy as it goes
into the well region, and since the rate of energy loss due to friction is proportional
to the kinetic energy, the particle may lose energy quickly and become identified as
a product before it is reflected back to the reactant well. This fast energy loss from
the reaction coordinate is strongly accelerated in real chemical systems where the
reaction coordinate is usually strongly coupled, away from the barrier region, to
other nonreactive molecular degrees of freedom. Thus, thermal relaxation may be
disregarded in the small region at the barrier top and assumed fast just out of this
region—exactly the conditions for validity of TST.

14.3.2 Transition state rate of escape from a one-dimensional well

Consider an activated rate process represented by the escape of a particle from a
one-dimensional potential well. The Hamiltonian of the particle is

H = p2

2m
+ V (x) (14.11)

where V (x) is characterized by a potential well with a minimum at x = 0 and a
potential barrier peaked at x = xB > 0, separating reactants (x < xB) from products
(x > xB) (see Fig. 14.2). Under the above assumptions the rate coefficient for the
escape of a particle out of the reactant well is given by the forward flux at the
transition state x = xB

kTST =
∞∫

0

dvvP(xB, v) = 〈vf 〉P(xB) (14.12)

where P(xB)dx is the equilibrium probability that the particle is within dx of xB,

P(xB) = exp(−βEB)∫ xB
−∞ dx exp(−βV (x))

; EB = V (xB) (14.13)

and where 〈vf 〉 is the average of the forward velocity

〈vf 〉 =
∫∞

0 dvve−(1/2)βmv2∫∞
−∞ dve−(1/2)βmv2 =

1√
2πβm

(14.14)

Note that the fact that only half the particles move in the forward direction is taken
into account in the normalization of Eq. (14.14). For a high barrier, most of the
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contribution to the integral in the denominator of (14.13) comes from regions of
the coordinate x for which V (x) is well represented by an harmonic well, V (x) =
(1/2)mω2

0x2. Under this approximation this denominator then becomes

∞∫
−∞

dxe−(1/2)βmω2
0x2 =

√
2π

βmω2
0

(14.15)

Inserting Eqs (14.13)–(14.15) into (14.12) leads to

kTST = ω0

2π
e−βEB (14.16)

The transition state rate is of a typical Arrenius form: a product of a frequency factor
that may be interpreted as the number of attempts, per unit time, that the particle
makes to exit the well, and an activation term associated with the height of the
barrier. It is important to note that it does not depend on the coupling between the
molecule and its environment, only on parameters that determine the equilibrium
distribution.

14.3.3 Transition rate for a multidimensional system

More insight into the nature of TST can be obtained from the generalization of the
above treatment to a multidimensional system. Consider an (N + 1)-dimensional
system defined by the Hamiltonian

H =
N∑

i=0

p̄2
i

2mi
+ V̄ (x̄0, . . . , x̄N ) (14.17)

or, in terms of mass weighted coordinates and momenta

xi = √
mix̄i; pi = p̄i/

√
mi = ẋi

V (x0, . . . , xN ) = V̄ (x̄0, . . . , x̄N )
(14.18)

H =
N∑

i=0

p2
i

2
+ V (xN+1) (14.19)

Here xN+1 denotes the set (x0, x1, . . . , xN ). It is assumed that the potential, V (xN+1),
has a well whose minimum is at some point xN+1

A and which is surrounded by
a domain of attraction, separated from the outside space by a potential barrier.
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f (xN+1) = 0A

B

S

Fig. 14.3 A two dimensional analog of Fig. 14.2 that represents a multidimensional potential surface,
showing two wells, A and B and the saddle point S that corresponds to the barrier. Also shown is the
transition surface f (xN+1) = 0.

Figure 14.3 is a contour plot that shows two such minima, representing the stable
reactant and product configurations, and the transition surface (line in the figure)
that separate their domains of attraction. The minimum of V (xN+1) on this surface
is the saddle point xN+1

S . This dividing N -dimensional surface is defined in the
(N + 1)-dimensional space by the relation

f (xN+1) = 0 (14.20)

such that f (xN+1) < 0 includes xN+1
A and is defined as the reactant (say) part of the

configuration space and f (xN+1) > 0 is the product space defined in an analogous
way. Note that, as defined, the dividing surface includes the saddle point xN+1

S . This
is a helpful but not formally required restriction, and in practical rate calculations
we often use surfaces that do not satisfy this restriction.3

As before, TST assumes that (1) thermal equilibrium exists within the reactant
space, and (2) trajectories that cross the dividing surface from the reactant to the
product space do not recross on the timescale of thermal relaxation in the product
space. A straightforward generalization of the calculation of Section 14.3.2 then
leads to

kTST = Q−1
A

∫
dpN+1dxN+1e−βH δ(f (xN+1))(∇f · pN+1)�(∇f · pN+1)

(14.21)
where pN+1 = (p0, . . . , pN ) is the velocity vector, � is the unit step function, and
where the partition function of the reactant, QA, is defined by

QA =
∫

dpN+1dxN+1e−βH�(−f (xN+1)) (14.22)

3 This happens for the practical reason that the position of the saddle point on a multidimensional
potential surface is not always known.
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While Eq. (14.21) seems much more complicated than its one-dimensional coun-
terpart (14.12), a close scrutiny shows that they contain the same elements. The
δ-function in (14.21) defines the dividing surface, the term ∇f · pN+1 is the com-
ponent of the momentum normal to this surface and the � function selects outwards
going particles. If, for physical reasons, a particular direction, say x0, is identified
as the reaction coordinate, then a standard choice for f in the vicinity of the saddle
point xN+1

S is f (xN+1) = x0− xS0, where xS0 is the value of the reaction coordinate
at that saddle point. This implies ∇f · pN+1 = p0, that is, the component of the
momentum along the reaction coordinate. With this choice Eq. (14.21) becomes

kTST = Q−1
0A

∫
dp0dx0e−β[p2

0/2+W (x0)]δ(x0 − xS0)p0�(p0) (14.23)

where

Q0A =
∫

dp0dx0�[−(x0 − xS0)]e−β[p2
0/2+W (x0)] (14.24)

and where

W (x0) = −β−1 ln
∫

dxN e−βV (xN+1);
∫

dxN =
∫

. . .

∫
dx1dx2 . . . dxN

(14.25)
is the potential of mean force along the reaction coordinate.

Problem 14.1. Show that Eqs (14.23) and (14.24) are equivalent to Eqs (14.12)–
(14.14) if the one-dimensional potential in (14.12)–(14.14) is identified as W (x).

This re-derivation of the one-dimensional TST result emphasizes the effective
character of the potential used in one-dimensional treatments of barrier crossing
problems. The one-dimensional model, Eq. (14.11), will yield the correct TST
result provided that the potential V (x) is taken as the effective potential of the
reaction coordinate, that is, the potential of mean force along this coordinate where
all other degrees of freedom are in thermal equilibrium at any given position of this
coordinate.4 It should be stressed, however, that this choice of the one-dimensional
effective potential assumes that such a coordinate can be identified and that a point
along this coordinate can be identified as the transition point that separates reactants
from products.

4 D. Chandler, J. Chem. Phys. 68, 2959 (1978).
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A more conventional form of the TST rate is obtained by inserting Eq. (14.24)
into (14.23) and carrying out the integrations over p0. This leads to

kTST = 1√
2πβ

∫
dxN+1e−βV (xN+1)δ(x0 − xS0)∫

dxN+1e−βV (xN+1)�[−(x0 − xS0)]
(14.26)

For a high barrier, βEB 
 1, the dominant contribution to the denominator come
from the vicinity of the well bottom, xN+1

A . We can therefore replace V (xN+1) in
the denominator by

V (xN+1) = 1

2

N∑
i=0

ω2
Aix

2
Ai (14.27)

where xAi are the modes which diagonalize the Hessian of the potential at xN+1
A .

Similarly, the dominant contribution to the numerator comes from the neighborhood
of the saddle point, xN+1

S , where the potential may be expanded in the form

V (xN+1) = EB − 1

2
ω2

Bx2
B +

1

2

N∑
i=1

ω2
Six

2
Si (14.28)

Here xSi are the modes which diagonalize the Hessian at the saddle point xN+1
S and

we have denoted the saddle point mode of imaginary frequency by the subscript B.
Using (14.27) and (14.28) in (14.26) finally yields

kTST = 1

2π

∏N
i=0 ωAi∏N
i=1 ωSi

e−βEB (14.29)

Note that the product of frequencies in the denominator goes over the stable modes
associated with the saddle point S, and exclude the imaginary frequency ωB asso-
ciated with the reaction coordinate. If the mode associated with this coordinate
could also be identified in the well region, say the mode with frequency ωA0, then
Eq. (14.29) can be rewritten in the form

kTST = ωA0

2π
e−βFB; β = (kBT )−1 (14.30a)

where FB = W (xS0) is the activation free energy, given by

FB = EB − TSB and SB = kB ln

(∏N
i=1 ωAi∏N
i=1 ωSi

)
(14.30b)

In the one-dimensional form (14.30) FB and SB can be identified as the activa-
tion free energy and its entropic component, respectively, thus making explicit the
observations already made in Eqs (14.23)–(14.25) and problem 14-1.
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14.3.4 Some observations

In view of the simplifying assumptions which form the basis for TST, its success
in many practical situations may come as a surprise. Bear in mind, however, that
transition state theory accounts quantitatively for the most important factor affecting
the rate—the activation energy. Dynamical theories which account for deviations
from TST often deal with effects which are orders of magnitude smaller than that
determined by the activation barrier. Environmental effects on the dynamics of
chemical reactions in solution are therefore often masked by solvent effect on the
activation free energy,W (xS0), with W (x) given by Eq. (14.25).

Transition state theory is important in one additional respect: It is clear from
the formulation above that the rate (14.16), (14.26), or (14.29) constitutes an upper
bound to the exact rate. The reason for this is that the correction factor discussed
above, essentially the probability that an escaping equilibrium trajectory is indeed
a reactive trajectory, is smaller than unity. This observation forms the basis to the
so-called variational TST, 5 which exploits the freedom of choosing the divid-
ing surface between reactants and products: Since any dividing surface will yield
an upper bound to the exact rate, the best choice is that which minimizes the
TST rate.

Corrections to TST arise from dynamical effects on the rate and may become
significant when the coupling to the thermal environment is either too large or too
small. In the first case the total outgoing flux out of the reactant region is not a
good representative of the reactive flux because most of the trajectories cross the
dividing surface many times—a general characteristic of a diffusive process. In
the extreme strong coupling case the system cannot execute any large amplitude
motion, and the actual rate vanishes even though the transition state rate is still given
by the expressions derived above. In the opposite limit of a very small coupling
between the system and its thermal environment it is the assumption that thermal
equilibrium is maintained in the reactant region that breaks down.6 In the extreme
limit of this situation the rate is controlled not by the time it takes a thermal particle
to traverse the barrier, but by the time it takes the reactant particle to accumulate
enough energy to reach the barrier. This transition from barrier dynamics to well
dynamics is the basis for the Lindemann mechanism discussed in Section 14.2.
Indeed, we can rewrite Eq. (14.4) using k̄21 = k21M = k12e−βE21M , where M is

5 E. Pollak, Variational Transition State Theory for dissipative systems, in Activated Barrier
Crossing, edited by Fleming, G. R. and Hänggi, P. (World Scientific, 1993), pp. 5–41.

6 If the product space is bound as in the case of an isomerization rather than dissociation reaction,
another source of error is the breakdown of the assumption of fast equilibration in the product region.
Unrelaxed trajectories may find their way back into the reactant subspace.
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a b
1

1
2

R*

Adiabatic
R*

Diabatic

Fig. 14.4 A schematic display of a curve crossing reaction in the diabatic and adiabatic representa-
tions. See Section 2.4 for further details. (Note: This is same as Fig. 2.3).

the density of molecules in the bathing gas, to get

k = e−βE21Mk12k2

Mk12 + k2
(14.31)

k12, the downhill rate, may be assumed to be temperature-independent. We see
that depending on the magnitude of M the nature of k changes: For large M it
becomes independent of M , in analogy to the TST rate which does not depend on
the system–bath coupling. For M →0 it is dominated by the first of the reactions
in (14.1), accumulation of energy in A, and is proportional to M . Obviously, the
extreme limit of very large system-environment coupling (e.g. the stoppage of all
motion in the large M limit) is not described by this model.

The above discussion, as most of this chapter, is based on a classical picture
of the chemical reactions. Quantum mechanical transition state theory is far less
obvious; even a transition state cannot be well defined. A particularly simple case
that can be formulated within TST is described next.

14.3.5 TST for nonadiabatic transitions

Consider again the TST rate expression (14.12) for a reaction a → b, and assume
that the assumptions underlying TST hold except that for a particle that crosses
the transition point xB with forward speed v (direction a → b) there is a finite
probability Pb←a(v) to end up in state b. In this case expression (14.12) should be
modified to read

kTST =
∞∫

0

dvvP(xB, v)Pb←a(v) (14.32)

Consider now the reaction depicted in Fig. 14.4 that was discussed in Section 2.4.
The classical picture treated in Section 14.3.4 may be thought as the extreme adia-
batic limit where the splitting between the adiabatic states 1 and 2 (right panel
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of Fig. 14.4) is large relative to the thermal energy kBT so that excitation to the
upper potential surface 2 can be disregarded, and in fact this surface may be dis-
regarded altogether. In the nonadiabatic limit the diabatic representation (left panel
of Fig. 14.4) is more useful. The reaction a → b may be described by the Landau–
Zener theory (Section 2.4) where the transition probability, Eq. (2.47), is dominated
by the dynamics at the surface crossing point R∗:

Pb←a = 1 − exp

{
−2π |Vab|2

�
∣∣Ṙ�F

∣∣
}

R=R∗
(14.33)

Here Vab is the coupling between the two states and �F ≡ Fb − Fa with Fi =
−∂Ei/∂R being the force that the system experiences while moving on the surface
Ei. Using this in Eq. (14.32) where the crossing point R∗ replaces the barrier point
xB the transition rate takes the form

k =
∞∫

0

dṘṘP(R∗, Ṙ)Pb←a(Ṙ) (14.34)

In the adiabatic limit Pb←a → 1 and k becomes the standard TST rate that can
be evaluated as above to yield Eq. (14.16) with ωa, the frequency associated with
the motion at the bottom of well a, replacing ω0, and with EB taken as the barrier
height on the adiabatic surface 1 of Fig. 14.4 (right panel). In the non-adiabatic
limit Pb←a = (2π |Vab|2/�|Ṙ�F |)R=R∗ . The rate (14.34) can be evaluated in this
limit by using

P(R∗, Ṙ) = Z−1 exp
(−βEa(R

∗)
)

exp
(
−(1/2)βmṘ2

)

Z =
∞∫

−∞
dR

∞∫
−∞

dṘe−βEa(R)e−(1/2)βmṘ2
(14.35)

The partition function Z may be evaluated as in the derivation of (14.15), by taking
Ea(R) � (1/2)mω2

aR2 to give Z = 2π/βmωa. Using (14.35) in (14.34) then leads to

k = |Vab|2
√

πβm

2

ωa

� |�F |R=R∗
e−βEa(R∗) (14.36)

Note that Ea(R∗) is the height of the curve-crossing energy above the bottom of
the reactant well a. It is also noteworthy that in the non-adiabatic limit the rate
depends explicitly on the interstate coupling Vab (in additional to its dependence
on the characteristic frequency ωa and the slopes at the crossing point via �F). In
the adiabatic limit dependence on Vab enters only indirectly, through its effect on
the adiabatic barrier height.



Dynamical effects in barrier crossing 499

Problem 14.2. Show that the barrier height EB in the adiabatic limit is related to
that of the nonadiabatic limit by EB ∼= Ea(R∗)− 2|Va,b|.

14.3.6 TST with tunneling

One can continue the same line of thought that leads to Eq. (14.32) to include tun-
neling transitions. For definiteness, consider a thermal population of free electrons
on the left side of the barrier and let the tunneling transmission coefficient from left
to right at energy E be T (E) (see Section 2.10). Standard TST assumptions: thermal
equilibrium in the reactant well and no reflection following transition across the
barrier, lead to the following expression for the number of electrons crossing per
unit time in one dimension

dN

dt
= 1

2

∞∫
0

dEv(E)n(E)T (E) (14.37)

where v(E) and n(E) are the speed and density of electrons of energy E. The factor
half comes from the fact that only half the electrons move in the barrier direction.
The electron density is n(E) = ρ(E)f (E)/L, where ρ(E) is the density of states, L
is the the normalization length, and f (E) is the Fermi–Dirac distribution function.
Using Eq. (2.96) for the one-dimensional density of states and v(E) = √

2E/m we
find ρv/L = (π�)−1 so that

dN

dt
= 1

π�

∞∫
0

dEf (E)T (E) (14.38)

where we have multiplied by another factor of 2 to account for the electron spin
multiplicity. The escape rate (14.38) can be multiplied by the electron charge e to
give the electric current going out of the well. When applied to metals under the
effect of an electric field this gives and expression for the field emission current.

14.4 Dynamical effects in barrier crossing—The Kramers model

The Arrenius expression for the rate of a unimolecular reaction, k =
κ exp(−EB/kBT ), expresses the rate in terms of the activation energy EB and a pre-
exponential coefficient κ . The activation energy reflects the height of the barrier
that separates the reactant and product configurations. The equilibrium-based ana-
lysis of Section 14.3.3 emphasizes the fact that the potential experienced by the
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reaction coordinate is a free energy surface associated with a free energy barrier.
We have already made the observation that much of the solvent influence on the
rate of chemical reactions stems from its effect on this free energy barrier. We have
also indicated that dynamical solvent effect should show up in the limits where the
system is coupled either very strongly or very weakly to its thermal environment.
We already have some intuitive expectation about these effects. For weak system–
bath coupling the rate determining step will be the accumulation of energy inside
the well so the rate should increase with increasing system–bath coupling. In the
fast thermal relaxation limit thermal equilibrium will prevail in the well, and the
process will be dominated by the escape dynamics near the barrier. These modes of
behavior were already seen in the two-level model of Section 14.2. We also expect
a mode of behavior not described by that model: cessation of reaction when the
system–bath coupling is so strong so that escape across the barrier is hindered by
what is essentially solvent induced friction. For definiteness we will use the terms
strong and weak coupling, or high and low friction to refer to situations in which
TST fails for the reasons just indicated, and refer by intermediate coupling or inter-
mediate friction to cases where the fundamental assumptions of TST approximately
hold. The Kramers theory7 described below provides a framework for analyzing
these modes of behavior and the transitions between them.

14.4.1 Escape from a one-dimensional well

The starting point of the Kramers theory of activated rate processes is the one-
dimensional Markovian Langevin equation, Eq. (8.13)

ẋ = v

v̇ = − 1

m

dV (x)

dx
− γ v + 1

m
R(t) (14.39)

which is a Newton equation supplemented by random noise and damping which
represent the effect of the thermal environment. They are related by the fluctuation
dissipation theorem, Eq. (8.20),

〈R(0)R(t)〉 = 2γmkBTδ(t); 〈R〉 = 0 (14.40)

Equations (14.39) and (14.40) describe a one-dimensional Brownian particle mov-
ing under the influence of a systematic force associated with the potential V (x) and
a random force and the associated damping that mimic the influence of a thermal
environment. In applying it as a model for chemical reactions it is assumed that this

7 H. A. Kramers, Physica (Utrecht) 7, 284 (1940)
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particle represents the reaction coordinate, and that all other molecular and environ-
mental coordinates can be represented by the stochastic input ingrained in R(t) and
γ . This is obviously a highly simplified model in several respects: it assumes that
the essential dynamics is one-dimensional, it makes the Markovian approximation
with respect to the thermal environment, it characterizes this environment with a
single parameter—the temperature T , and it describes the system–bath coupling
with a single parameter, the friction γ . No realistic model of chemical reaction in
condensed phases can be achieved without improving on these drastic simplifica-
tions. Still, we will see that even this simple model can give important insight on
the way by which solvent dynamics affects chemical reactions.

We have already seen that Eqs (14.39) and (14.40) are equivalent to the Fokker–
Planck equation, Eq. (8.144),

∂P(x, v; t)

∂t
= 1

m

dV

dx

∂P

∂v
− v

∂P

∂x
+ γ

[
∂

∂v
(vP)+ kBT

m

∂2P

∂v2

]
(14.41)

In the present context, Eq. (14.41) is sometimes referred to as the Kramers equation.
We have also found that the Boltzmann distribution

Peq = N exp
[
−β

(
(1/2)mv2 + V (x)

)]
(14.42)

where N is a normalization constant, is a stationary zero current solution to this
equation. It is convenient to make the substitution

P(x, v; t) = Peq(x, v)f (x, v; t) (14.43)

so that the function f (x, v, t) represents the deviation from equilibrium. This leads to

∂f

∂t
= 1

m

dV

dx

∂f

∂v
− v

∂f

∂x
+ γ

(
kBT

m

∂2f

∂v2 − v
∂f

∂v

)
(14.44)

As before, it is assumed that the potential V is characterized by a reactant region,
a potential well, separated from the product region by a high potential barrier, see
Fig. 14.2. We want to calculate the reaction rate, defined within this model as the
rate at which the particle escapes from this well.

The probability that the Brownian particle remains in the initial well at time t is
given by A(t) ≡ ∫

well dxP(x, t). Following the general discussion in Section 14.2,
the rate coefficient for escape from the initial well is given by k = A−1(−dA/dt)
provided that this quantity is time-independent. For this to happen in an experi-
mentally meaningful time, the timescale associated with the escape out of the well
should be much longer than the time it takes to reach the quasi-steady-state char-
acterized by a constant distribution (apart from overall normalization) in the well
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subspace. In analogy to the model of Section 14.2, we expect that the first time is
dominated by the activation factor exp(βEB), while the second does not depend on
this factor. We may conclude that the inequality βEB 
 1, the high barrier limit, is
sufficient to insure the conditions needed for a simple time evolution characterized
by a constant rate. We therefore limit ourselves to this high barrier limit.

With this realization we may evaluate the rate by considering an artificial situ-
ation in which A is maintained strictly constant (so the quasi-steady-state is replaced
by a true one) by imposing a source inside the well and a sink outside it. This source
does not have to be described in detail: We simply impose the condition that the
population (or probability) inside the well, far from the barrier region, is fixed,
while outside the well we impose the condition that it is zero. Under such condi-
tions the system will approach, at long time, a steady state in which ∂P/∂t = 0
but J �= 0. The desired rate k is then given by J/A. We will use this strategy to
calculate the escape rate associated with Eq. (14.44).

Once the rate is found, the different modes of behavior expected for weak and
strong system–bath coupling should reveal themselves through its dependence on
the friction γ . As indicated above we expect the rate to increase with γ in the
low friction limit, to decrease with increasing γ in the high friction regime and,
perhaps, to approach the prediction of TST in intermediate cases. In what follows
we start with the high friction limit which is mathematically the simplest, and will
later work our way to lower friction regimes.

14.4.2 The overdamped case

The physical manifestation of friction is the relaxation of velocity. In the high fric-
tion limit velocity relaxes on a timescale much faster than any relevant observation
time, and can therefore be removed from the dynamical equation, leading to a
solvable equation in the position variable only, as discussed in Section 8.4.4. The
Fokker–Planck or Kramers equation (14.41) then takes its simpler, Smoluchowski
form, Eq. (8.132)

∂P(x, t)

∂t
= − ∂

∂x
J (x, t) (14.45a)

J (x, t) = −D

(
∂

∂x
+ β

dV

dx

)
P(x, t) (14.45b)

where D is the diffusion constant, related to the friction γ by

D = kBT

mγ
(14.46)

and where J is identified as the probability flux. At steady state J (x, t) = J is a
constant which can be viewed as one of the integration constants to be determined
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by the boundary conditions. We then need to solve the equation

D

(
β

dV

dx
+ d

dx

)
Pss(x) = −J (14.47)

where Pss denotes the steady-state probability distribution. We may also consider
the more general case of a position-dependent diffusion coefficient, D = D(x). The
equation for Pss(x) is then(

β
dV

dx
+ d

dx

)
Pss(x) = − J

D(x)
(14.48)

As discussed above, we expect that a solution characterized by a constant nonzero
flux out of the well will exist for imposed source and sink boundary conditions.
In the model of Fig. 14.2 the source should be imposed in the well while the sink
is imposed by requesting a solution with the property Pss(x)

x→∞−→0. Looking for a
solution of the form

Pss(x) = f (x)e−βV (x) (14.49)

we find
df

dx
= − J

D(x)
eβV (x) (14.50)

which integrates to give the particular solution

f (x) = −J

x∫
∞

dx′ e
βV (x′)

D(x′)
= J

∞∫
x

dx′ e
βV (x′)

D(x′)
(14.51)

The choice of ∞ as the upper integration limit corresponds to the needed sink
boundary condition, f (x →∞) = 0, while assuming a time-independent solution
in the presence of such sink is equivalent to imposing a source. Equations (14.49)
and (14.51) lead to

Pss(x) = Je−βV (x)

∞∫
x

dx′ e
βV (x′)

D(x′)
(14.52)

and integrating both sides from x = −∞ to x = xB finally yields

k = J∫ xB
−∞ dxPss(x)

=
⎡
⎣ xB∫
−∞

dxe−βV (x)

∞∫
x

dx′ e
βV (x′)

D(x′)

⎤
⎦−1

(14.53)

This result can be further simplified by using the high barrier assumption,
β(V (xB)− V (0)) 
 1, that was already recognized as a condition for meaningful
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unimolecular behavior with a time-independent rate constant. In this case the largest
contribution to the inner integral in Eq. (14.53) comes from the neighborhood of the
barrier, x = xB, so exp[βV (x)] can be replaced by exp[β(EB−(1/2)mω2

B(x−xB)
2)],

while the main contribution to the outer integral comes from the bottom of the well
at x = 0, so the exp[−βV (x)] can be replaced by exp(−(1/2)βmω2

0x2). This then
gives

k =
⎡
⎣ ∞∫
−∞

dxe−(1/2)βmω2
0x2

∞∫
−∞

dx
eβ

[
EB−(1/2)mω2

B(x−xB)
2]

D(xB)

⎤
⎦−1

(14.54)

The integrals are now straightforward, and the result is (using D = (βmγ )−1)

k = ω0ωB

2πγ
e−βEB = ωB

γ
kTST (14.55)

The resulting rate is expressed as a corrected TST rate. Recall that we have con-
sidered a situation where the damping γ is faster than any other characteristic rate
in the system. Therefore, the correction term is smaller than unity, as expected.

Problem 14.3. Use the discussion in Section 8.5 to show that the rate, Eq. (14.53)
or (14.55) can be obtained as the inverse mean first passage time to arrive at some
point x1, well to the right of the barrier (the well is on the left as in Fig. 14.2),
starting from position x0, well to the left of it. Quantify the meaning of the phrases
“well to the right,” and “well to the left.”

Solution. The Smoluchowski equation (14.45) is of the form

∂P (x, t; x0)

∂t
= − d

dx

[
a(x)− b(x)

d

dx

]
P (x, t; x0) ; P (x, t = 0; x0) = δ (x − x0)

(14.56)
where b(x) = D(x) and a(x) = βD(x)[−dV (x)/dx]. Its equilibrium solution is,
up to a normalization constant

Peq(x) = exp

⎛
⎝ x∫

dx′ a(x
′)

b(x′)

⎞
⎠ (14.57)
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The mean first passage time τ(x1, x0) to reach x1 starting from x0 is given by
Eq. (8.159):

τ(x1, x0) =
x1∫

x0

dx′
[
D(x′)Peq(x

′)
]−1

x′∫
xc

dx′′Peq(x
′′) (14.58)

The constant xc is the point at which (dτ(x1, x0)/dx1)x1=xc = 0. We apply this
result to a problem in which x0 and x1 on opposite sides of a high barrier so
that both |V (xB)− V (x0)| and |V (xB)− V (x1)| are much larger than kBT . This
implies that in the outer integral in (14.58) the dominant contribution comes
from x′ = xB. The inner integral is then

∫ xB
xc

dx′′Peq(x′′), and will not depend on
xc if the latter is placed anywhere on the other side of the well opposite to xB
and far enough from the well bottom. This is so because in that case the inner
integral is dominated by the neighborhood of the well bottom where Peq(x) has
a sharp maximum. For the potential of Fig. 14.2 we can take xc = −∞ so that

τ(x1; x0) =
x1∫

x0

dx′
[
D(x′)Peq(x

′)
]−1

xB∫
−∞

dx′′Peq(x
′′) (14.59)

where the integral between x0 and x1 is dominated by the barrier and that from
−∞ to xB is dominated by the well. This result is essentially the inverse of
(14.53).

We do not, however, need to solve Eq. (14.45) to reach the most important
conclusion about this high friction limit. The structure of Eq. (14.45) implies at the
outset that the time can be scaled by the diffusion coefficient, so any calculated rate
should be proportional to D, and by (14.46) inversely proportional to the friction
γ . The rate is predicted to vanish like γ−1 as γ → ∞. Recalling that the TST
rate does not depend on γ it is of interest to ask how the transition between these
different modes of behavior takes place. We address this issue next.

14.4.3 Moderate-to-large damping

When the relaxation is not overdamped we need to consider the full Kramers
equation (14.41) or, using Eqs (14.42) and (14.43), Eq. (14.44) for f . In contrast to
Eq. (14.45) that describes the overdamped limit in terms of the stochastic position
variable x, we now need to consider two stochastic variables, x and v, and their
probability distribution. The solution of this more difficult problem is facilitated
by invoking another simplification procedure, based on the observation that if the
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damping is not too low, then deep in the well thermal equilibrium prevails. Equilib-
rium is disturbed, and dynamical effects need to be considered, only near the barrier
where we now place the origin, i.e., xB = 0. We may therefore attempt to solve the
dynamical problem by considering, near the barrier, a steady-state distribution that
satisfies the boundary conditions:

Pss(x, v) → Peq(x, v) for x →−∞ (reactant region)

Pss(x, v) → 0 for x →∞ (product region) (14.60)

Furthermore, for high barrier, these boundary conditions are satisfied already quite
close to the barrier on both sides. In the relevant close neighborhood of the barrier
we expand the potential up to quadratic terms and neglect higher-order terms,

V (x) = EB − 1

2
mω2

Bx2 (14.61)

Using this together with a steady-state condition (∂P/∂t = ∂f /∂t = 0) in
Eq. (14.44) leads to

v
∂f

∂x
+ ω2

Bx
∂f

∂v
= γ

kBT

m

∂2f

∂v2 − γ v
∂f

∂v
(14.62)

with f satisfying the boundary conditions derived from (14.43) and (14.60)

f (x →∞) = 0 and f (x →−∞) = 1 (14.63)

Note that with the simplified potential (14.61) our problem becomes mathematically
similar to that of a harmonic oscillator, albeit with a negative force constant. Because
of its linear character we may anticipate that a linear transformation on the variables
x and v can lead to a separation of variables. With this in mind we follow Kramers
by making the ansatz that Eq. (14.62) may be satisfied by a function f of one linear
combination of x and v, that is, we seek a solution of the form

f (x, v) = f (v + �x) ≡ f (u) (14.64)

Such solution may indeed be found; see Appendix 14A for technical details. The
function f (v, x) is found in the form

f (x, v) =
√

αm

2πkBT

v+�x∫
−∞

dze(−αmz2/2kBT ) (14.65)

where

α = −� + γ

γ
(14.66a)
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and where the constant � is determined to be

� = −
{
γ

2
+

[(γ
2

)2 + ω2
B

]1/2
}

(14.66b)

Thus, finally,

P(B)
ss (x, v) =

√
αm

2πkBT
Peq(x, v)

v−|�|x∫
−∞

dze(−αmz2/2kBT ) (14.67)

where the superscript (B) indicates that this result is valid near the barrier top. Also
in the barrier neighborhood, Peq(x,v) takes the (unnormalized) form

P(B)
eq (x, v) = e−β(EB−(1/2)mω2

Bx2)−(1/2)βmv2
(14.68)

Equations (14.67) and (14.68) constitutes a full steady-state solution to Eqs (14.41)
and (14.60) near the top of the barrier. They can be used to compute the steady-state
current

J =
∞∫

−∞
dvvP(B)

ss (x, v) =
√

αm

2πkBT

(
kBT

m

)3/2 ( 2π

α + 1

)1/2

e−βEB (14.69)

This result is obtained by integration by parts, using vPeq(x, v) =
−(βm)−1∂Peq(x, v)/∂v. Note that the constant α is given explicitly, in terms of
γ and ωB, by Eqs (14.66). Also note that J is independent of the position x, as
expected from the current at steady state. Indeed, because the steady-state current
is position independent, the result (14.69) is valid everywhere even though it was
obtained from the distribution (14.67) that is valid only near the barrier top.

We are now in a position to calculate the steady-state escape rate, given by

k = N−1J (14.70)

where

N =
∫

well

dx

∞∫
−∞

dvPss(x, v) (14.71)

is the integrated probability to be in the reactant subspace. In the present
one-dimensional problem

∫
well dx = ∫ xB

−∞ dx. This integral is dominated by the
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bottom of the well, were the Maxwell Boltzmann form is a good approximation for
the steady state-distribution and where the potential can be expanded to quadratic
order near the well bottom (now taken as the origin)

P(W )
ss (x, v) = Peq(x, v) = e−β((1/2)mv2+(1/2)mω2

0x2) (14.72)

Using (14.72) in (14.71) yields N ∼= 2π/βmω0, and using this in (14.70) together
with Eq. (14.69) for J and (14.66) for α finally leads to

k = ωr

ωB

ω0

2π
e−βEB = kTST

ωr

ωB
(14.73)

where

ωr =
(
ω2

B +
γ 2

4

)1/2

− γ

2
(14.74)

Again we got the rate as a corrected TST expression. Examination of (14.74) shows
that the correction factor ωr/ωB becomes ωB/γ when γ →∞, yielding the large
friction limit result (14.55). When γ → 0, ωr → ωB, and k → kTST.

The results (14.73) and (14.74) are seen to bridge between the TST solution and
the overdamped solution, but cannot describe the expected vanishing of the rate
when γ → 0. The reason for this failure is that in using the boundary condition

Pss(x, v)
x→−∞−→ Peq(x, v) we have assumed that thermal equilibrium always pre-

vails in the well. This can be true only if thermal relaxation in the well is fast enough
to maintain this equilibrium in spite of the escape of the more energetic particles. It
is this assumption that breaks down in the small friction limit. This limit therefore
requires special handling to which we now turn.

14.4.4 The low damping limit

We start again from the one-dimensional Langevin equation (14.39), (14.40), but
focus on the low friction, γ → 0, limit. To understand the nature of this limit lets go
back to the simple model, Figure 14.1, discussed in Section 14.2. We may use this
model as a particularly simple analog to our problem by taking state 1 to represent
the bottom of the well, therefore putting k1 = 0, and state 2 as the barrier top. The
rates k21 = k12e−βE21 measure the system–thermal bath coupling (also their ratio
conveys the information that the bath is in thermal equilibrium) and as such are
equivalent to the friction γ . k2 is the rate of escape once the barrier top is reached.

In the simple two-level model we have distinguished between two limits: The
case k2 � k12 where thermal equilibrium prevails in the well and the reaction rate
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is dominated by k2, and the opposite limit k2 
 k12 where the rate was found to
be controlled by the thermal relaxation between the states 1 and 2. The first of
these is the analog of the relatively strong friction cases considered above, where
thermal equilibrium was assumed to prevail in the well. The second corresponds
to the γ → 0 where the rate determining process is the energy accumulation and
relaxation inside the reactant well. Note that unlike k12 and k21 that express rates
of energy change in the system, γ expresses just the system–bath coupling strength
and the rate of energy exchange is yet to be calculated.

This rate of energy exchange between an oscillator and the thermal environment
was the focus of Chapter 13, where we have used a quantum harmonic oscillator
model for the well motion. In the γ → 0 limit of the Kramers model we are dealing
with energy relaxation of a classical anharmonic oscillator. One may justifiably
question the use of Markovian classical dynamics in this part of the problem, and
we will come to this issue later. For now we focus on the solution of the mathematical
problem posed by the low friction limit of the Kramers problem.

Our starting point is again Eqs (14.39)–(14.40) or (14.41), however we already
know that our focus should be the energy variable. Recall that in the overdamped
limit (Section 14.4.2) we have used the fact that the particle’s velocity relaxes fast in
order to derive a Fokker–Planck type equation (the Smoluchowski equation) for the
position coordinate alone, and have argued that this equation is sufficient to describe
the escape process on the relevant timescale. Here we have a similar situation with
different variables: the oscillations inside the reactant well are characterized by a
rapidly changing phase and a slowly changing (for γ → 0) energy. More rigorously,
this limit is characterized by the following inequalities between the fundamental
rates in the system

k � γ � ω (14.75)

where k is the escape rate, the friction γ determines the energy relaxation, and ω is
the well frequency—the rate at which phase changes. Again we consider the high
barrier case for which k is the smallest rate in the system. The inequality γ � ω,
which characterizes the underdamped nature of the system in this limit, implies
that the particle oscillates in the well many times during the characteristic time for
energy loss. Therefore, if we use the energy E and phase φ as dynamical variables,
we should be able to average the corresponding dynamical equations over the fast
phase oscillations and get in this way an equation for E.

To accomplish this we transform to action–angle variables (x, v → K ,φ). Recall
that the action K is related to the energy E by

dE

dK
= ω(K) (14.76a)
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that is,

E(K) =
K∫

0

dK ′ω(K ′); K(E) =
E∫

0

dE′ω−1(E′) (14.76b)

and that the dependence of ω on K (or on E) reflects the well anharmonicity. After
the stochastic evolution is expressed in terms of these variables an average over the
fast phase oscillations yields the coarse-grained evolution in terms of K or E. This
procedure, described in Appendix 14B, yields the following Smoluchowski-like
equation for the probability density P(E) to find the particle moving in the well
with energy E

∂P(E)

∂t
= ∂

∂E

[
D(E)

(
1 + kBT

∂

∂E

)
ω(E)P(E)

]
(14.77)

where the energy diffusion function D(E) is

D(E) = γK(E) (14.78)

For a harmonic oscillator, where the frequency ω is constant, Eq. (14.76) implies
that E = Kω so the action K is the classical equivalent to the number of oscillator
quanta. The linear relationship between D and K is the classical analog of the fact
that the rate of relaxation out of the nth level of a harmonic oscillator, Eq. (13.18),
is proportional to n.

Problem 14.4.

1. Show that the function JE defined by

JE(E) = −D(E)

(
1 + kBT

∂

∂E

)
ω(E)P(E) (14.79)

can be identified as the energy flux.
2. Show that the equilibrium solution of (14.77) is

P(E) ∼ ω(E)−1 exp(−βE) (14.80)

Note that the pre-exponential factor ω−1 in (14.80) is proportional in this one-
dimensional model to the density of states on the energy axis (the classical analog
of the inverse of the quantum level spacing).

The escape rate in this low damping limit can be found if we assume that
Eq. (14.77) remains valid up to the barrier energy EB, and that this energy provides
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an absorbing boundary, that is, escape takes place whenever the energy EB is
reached. In analogy with the procedure used in Section 14.4.2, we consider the
following steady state situation: Particles are injected near the bottom of the well
(the exact injection energy is immaterial), and every particle which reaches the
energy barrier EB is absorbed, so that P(EB) = 0.

In this state the flux JE does not depend on E.8 Starting from

D(E)

(
1 + kBT

d

dE

)
ω(E)Pss(E) = −JE (14.81)

denote ω(E)Pss(E) = y(E) to get

y(E) = −βJEe−βE

E∫
EB

dE′eβE′ 1

D(E′)
(14.82)

The choice of the lower limit in this integration is determined by the P(EB) = 0
boundary condition. Equation (14.82) leads to

Pss(E) = βJEe−βE

ω(E)

EB∫
E

dE′eβE′ 1

D (E′)
(14.83)

The escape rate is given by

k = JE

EB∫
0

dE′Pss (E′)
= 1

β

⎡
⎣ EB∫

0

dE

ω(E)
e−βE

EB∫
E

dE′

D (E′)
eβE′

⎤
⎦
−1

(14.84)

For βEB 
 1 we can simplify this expression by noting that the integrands are
heavily biased by the exponential factors: the outer integral is dominated by the well
bottom, E ≈ 0, where the frequency is ω0, while the inner integral is dominated by
the neighborhood of E′ = EB. Therefore

k � ω0D(EB)

β

⎡
⎣ EB∫

0

dEe−βE

EB∫
0

dE′eβE′
⎤
⎦
−1

� ω0D(EB)

β
β2e−βEB (14.85)

8 This is equivalent to the independence of the flux J in Eqs (14.47) and (14.69) on the position x.
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and, using also (14.78)
k = βω0K(EB)γ e−βEB (14.86)

This is the Kramers low friction result for the escape rate k . As anticipated, the
rate in this limit is proportional to the friction γ which determines the efficiency of
energy accumulation and loss in the well.

Problem 14.5. Show that the escape rate (14.86) is equal to the inverse mean first
passage time to reach EB after starting in the well with energy well below EB.

To end this discussion, it should be emphasized that using the Langevin equations
(14.39) and (14.40) or the equivalent Kramers equation (14.41) in the low fric-
tion limit has led to the energy diffusion equation (14.77). An analogous energy
relaxation process in a quantum harmonic oscillator model is the master equation
treatment of Section 8.3.3. Such models can be classified as “weak collision” pro-
cesses because energy is assumed to change in a continuous manner in Eq. (14.77)
and by jumps between nearest harmonic oscillator levels in the analogous quantum
case. Other, “strong collision,” models were discussed in the literature, in which
a collision event is assumed to cause immediate thermalization of the molecule.
For example, for the master equation (8.93), the rate expressions (8.96) represent
the weak collision model. Taking the strong collision model for the same master
equation would mean to assume km←n = kmn = αPeq(m) where α is a constant.
For more details on the use and implications of such models see the review paper
by Hänggi, Talkner, and Borkovec cited at the end of this chapter.

14.5 Observations and extensions

The results (14.73)–(14.74) and (14.86) for the unimolecular reaction rate in the
moderate-high and low friction limits, respectively, where obtained by Kramers in
1940 (see footnote 7). As a quantitative tool for evaluating such rates this theory
is useless. Its great importance stems from its conceptual value. It has provided a
framework within which dynamic medium effects on thermal chemical reactions
(and other barrier controlled rate processes) may be analyzed and discussed and
which can be generalized and extended to cover realistic situations. Moreover,
it gives insight about the different ways thermal interactions may affect barrier
crossing processes. Whatever its failing as a quantitative theory (which it was
never meant to be), the insight obtained through these considerations, has remained
a key component in later development of this subject. In what follows we discuss
the implications of Kramers theory, and outline some of the extensions developed
since its inception.
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14.5.1 Implications and shortcomings of the Kramers theory

Figure 14.5 shows how dynamical solvent effects (corrections to the TST rate)
behave as a function of molecule–solvent interactions. Several observations should
be pointed out:

1. The rate of a barrier crossing reaction decreases like γ in the γ → 0 limit and
decreases like γ−1 when γ →∞, where the friction γ measures the strength
of the molecule–solvent interaction, or rather the interaction between the
reaction coordinate and its environment.

2. As a function of γ the rate goes through a maximum which is smaller than
the TST rate.

3. While not seen explicitly in the figure we have learned that in the low fric-
tion limit where k ∼ γ the rate is controlled by energy diffusion, essentially
vertical motion in the well of Fig. 14.2, while in the moderate-strong fric-
tion regime it stems from configuration change—motion along the reaction
coordinate.

4. While the general behavior displayed in Fig. 14.5 always has regimes where
dynamical effects are important and TST fails, we can expect conditions
under which TST will work well. Let the full line in the figure express the
behavior of the model as developed above. Suppose now that we have another
control parameter by which we can enhance the energy relaxation in the well
without affecting the solvent friction, that is, without changing the molecule–
solvent coupling and through that the hindrance to motion along the reaction
coordinate. In this case thermal equilibration in the well (the condition whose
breach causes the low friction failure of TST) becomes more efficient, and
the resulting behavior of rate versus friction will be represented by the dotted
line. While we do not have a practical control parameter that can accom-
plish this, we do have a conceptual one. We have seen in Chapter 13 that
vibrational energy relaxation in small molecules is relatively inefficient, and
can be very slow (timescale in the range of 1–10−6 s) in clean atomic hosts
at low temperatures. In contrast, large molecules relax very quickly, on the
picoseconds timescale. This difference between small and large molecules
stems not from the strength of their coupling to the environment but because
of the availability in large molecules of relaxation routes that release energy
in relatively small quanta. As a result, thermal equilibration in the well is
much more efficient in large molecule, resulting in the behavior shown by
the dotted line in Fig. 14.5.

The last observation concerning the difference between small and large
molecules points out one direction in which the one-dimensional Kramers theory
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Fig. 14.5 The thermal rate, in units of kTST, displayed as a function of the solvent friction γ . This
dependence is characterized by a turnover from the low friction behavior k ∼ γ to the high friction
behavior k ∼ γ−1. In the intermediate regime the rate approaches kTST from below. The full line
characterizes the behavior of a small molecule, where relaxation in the well is slow. The dotted line
represents the expected behavior of a large molecule where, because of considerably faster energy
relaxation in the well, the low friction regime turns over to a TST behavior at much smaller γ .

needs to be extended.9 However, the most serious drawback of this theory, when
considered against realistic situations involving molecular systems, is the use of
Markovian stochastic models. The use of delta-correlated noise and the associ-
ated constant friction in Eq. (14.39) and (14.40) amount to the assumption that the
timescale associated with the motion of the thermal environment is much shorter
than the timescales associated with the molecular motion. In fact, the opposite is
true. The shortest timescales in the problem are associated with the molecular fre-
quencies which are typically in the range of 1014±1 s−1, while the timescales of
intermolecular motions associated with molecule–solvent interactions are in the
range of 1012±1 s−1. A Markovian theory of vibrational energy relaxation can
overestimate the rate of this process by many orders of magnitude, rendering as
meaningless the quantitative aspect of the Kramers rate in the low friction limit.
The moderate-high friction result (14.73) and (14.74) may be more reliable: here
the bath timescale should be compared to the barrier frequency ωB that may be con-
siderably lower than the well frequency ω0. Still, non-Markovian effects should be
considered also in this case. We expand on this issue below.

Problem 14.6. Examine the theory of vibrational energy relaxation of Chapter 13
in order to explain the above statement that a Markovian theory of vibrational
energy relaxation can overestimate the rate of this process by many orders of
magnitude.

9 A. Nitzan and Z. Schuss, Multidimensional barrier crossing, in Fleming, G. R. and Hänggi, P. eds,
Activated Barrier Crossing (World Scientific, London, 1993).
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Another obvious shortcoming of the theory is its classical nature. The need for
quantum mechanics can arise in two ways. First and obvious is the possibility that
the transition of interest is affected by tunneling or by nonadiabatic curve-crossing
transitions. We have discussed the TST aspects of these phenomena in Sections
14.3.5 and 14.3.6.10 Less obvious is the fact that, as discussed in Sections 13.4.1
and 13.6, quantum mechanical effects in the vibrational energy relaxation of small
molecules can be very large. Both these manifestations of quantum effects in barrier
crossing become important, in particular, at low temperatures.

Finally, Kramers solution to the barrier crossing problem consists of two expres-
sions: Eqs (14.73) and (14.74) correspond to moderate-to-high damping and span
the range of behaviors between that corresponding to TST and the large damping
regime, and Eq. (14.86) describes the low damping behavior. A practical bridging
formula is

1

k
= 1

klow damping
+ 1

kmoderate to large damping
(14.87)

Given the qualitative character of the theory with regard to realistic situations, such
ad hoc approach is both reasonable and practical. A rigorous theoretical treatment11

is based on the normal mode approach to the barrier dynamics (see Section 14.5.3
below) supplemented by incorporating the rate at which the reactive barrier mode
exchanges energy with other modes in the well. It yields the expression

k = kTST
ωr

ωB
exp

⎧⎨
⎩ 1

π

∞∫
−∞

dy
ln

[
1 − exp

(−(δ/4)
(
1 + y2

))]
1 + y2

⎫⎬
⎭ (14.88)

where ωB and ωr are given by Eqs (14.61) and (14.74), respectively, and δ =
D(EB)/kBT with D(E) given by (14.78).12 Note that when δ increases beyond 1
the exponential correction term becomes unity and Eq. (14.73) is recovered.

10 Dynamical corrections to rates associated with tunneling barrier crossing have been subjects of
extensive theoretical studies. These are reviewed in the papers by Hänggi et al. and by Melnikov,
cited at the end of this chapter.

11 E. Pollak, H. Grabert, and P. Hänggi, J. Chem. Phys. 91, 4073 (1989).
12 The general result of this work9 is of the same form (14.88) but the expression for δ , the

dimensionless average energy loss by the reactive mode during its excursion into the well and back
to the barrier top, is more general.
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14.5.2 Non-Markovian effects

The starting point of a non-Markovian theory of barrier crossing is the generalized
Langevin equation (cf. Eqs (8.61) and (8.62))

ẍ = − 1

m

∂V (x)

∂x
−

t∫
0

dτZ(t − τ)ẋ(τ )+ 1

m
R(t) (14.89)

where the stationary stochastic force R(t) and the friction kernel Z(t) satisfy 〈R〉 = 0
and 〈R(0)R(t)〉 = mkBTZ(t). We have seen (Section 8.2.5) that this equation can
be derived from the microscopic Hamiltonian, Eqs (8.47) and (8.48), in which a
harmonic bath is assumed to couple linearly to the system of interest, in our case
the reaction coordinate. In this case R(t) and Z(t) are found (Eqs (8.55) and (8.56))
in terms of the spectral properties of the system–bath coupling.

The dynamical contents of Eq. (14.89) is much more involved than its Markovian
counterpart. Indeed, non-Markovian evolution is a manifestation of multidimen-
sional dynamics, since the appearance of a memory kernel in an equation of motion
signifies the existence of variables, not considered explicitly, that change on the
same timescale. Still, the physical characteristics of the barrier crossing process
remain the same, leading to similar modes of behavior:

1. In the barrier controlled regime, thermal relaxation in the well is assumed fast
and the rate determining step is the barrier crossing itself. The problem can
be solved using the simplified potential (14.61) and calculating the steady-
state current for the same boundary conditions used in Section 14.4.3, that is,
thermal distribution on the reactant side of the barrier and absorbing boundary
(i.e. zero probability) on the product side. The result is of the same form as
Eq. (14.73), except that the reactive frequency ωr is different. It is given13 as
the largest (real and positive) root of the equation

λ2 − ω2
B + λZ̃ (λ) = 0 (14.90a)

where Z̃(λ) is the Laplace transform of the memory kernel

Z̃ (λ) =
∞∫

0

dte−λtZ (t) (14.90b)

2. In the low damping limit the rate determining step is again the energy accumu-
lation in the well. The idea that one can average over the fast phase oscillations

13 R. F. Grote and J. T. Hynes, J. Chem. Phys. 73, 2715 (1980); 74, 4465 (1981).
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in order to derive an energy diffusion equation for this process is still valid.
Indeed, the same Eq. (14.77) is obtained, where the energy diffusion function
D(E) now given by14

D(E) = m

ω(E)

∞∫
0

dtZ(t)〈v(0)v(t)〉E (14.91)

where 〈v(0)v(t)〉E is the microcanonical average, over the initial phase at
a given energy, of the velocity product v(0)v(t) for the isolated particle.
For a harmonic oscillator this microcanonical correlation function is just
(E/m) cos(ωt) and using E/ω = K(E) we get

D(E) = (1/2)K(E)

∫ ∞

−∞
dteiωtZ(t) (14.92)

This result is akin to Eq. (13.22), which relates the vibrational relaxation rate
of a single harmonic oscillator of frequency ω to the Fourier transform of
the force autocorrelation function at that frequency. In the Markovian limit,
where (cf. Eq. (8.60)) Z(t) = 2γ δ(t), we recover Eq. (14.78).

The general behavior of the barrier crossing rate as a function of coupling
strength to the surrounding environment, shown in Fig. 14.5, follows from general
considerations that remain valid also in the non-Markovian case. There is however
an interesting difference in the underlying physics that governs the high friction
limit. To see this consider the model

Z(t) = γ

τc
e−|t|/τc (14.93)

in which τc stands for the bath correlation time. From (14.92) we get for
this model

D(E) = K(E)
γ

(ωτc)
2 + 1

(14.94)

Now, if γ → ∞ at constant τc, the energy diffusion becomes faster, the well dis-
tribution is rapidly thermalized and becomes irrelevant for the crossing dynamics.
This is the moderate-high friction regime discussed above. However, increasing γ

while maintaining a constant τc/γ ratio actually leads to decreasing D. Such a limit
is potentially relevant: the experimental parameter pertaining to liquid friction is
the liquid viscosity, and highly viscous, overdamped fluids are characterized by
sluggish, large τc motions. When such a limit is approached, the assumption that

14 B. Carmeli and A. Nitzan, Phys. Rev. Lett. 49, 423 (1982); Chem. Phys. Lett., 102, 517 (1983).
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the well motion is quickly thermalized breaks down and the well dynamics may
become rate determining again, as first discovered in numerical simulations.15 The
behavior in Fig. 14.5 is still expected, but the decreasing of the rate in the high
friction limit may result from this different physical origin.

14.5.3 The normal mode representation

Many discussions in this text start by separating an overall system to a system of
interest, referred to as “the system” and the “rest of the world,” related to “the
bath.” The properties assigned to the bath, for example, assuming that it remains
in thermal equilibrium throughout the process studied, constitute part of the model
assumptions used to deal with a particular problem.

Obviously, the separation itself is not an approximation and can be done arbit-
rarily, in the same way that the Hamiltonian Ĥof a given system can be separated
into components Ĥ0 and V̂ in many ways. Different routes chosen in this way to
treat the same problem should, and do, give the same result if treated rigorously.
Sometimes, however identical results are conveyed in ways that show different
physical aspects of the problem. Consider, for example, the decay of a discrete
state, energetically embedded in, and coupled to, a continuous manifold of states.
This model was discussed in Section 9.1. We have analyzed the problem by sep-
arating the Hamiltonian according to Ĥ = Ĥ0 + V̂ , defining the discrete state
|1〉 and the manifold {|l〉} as eigenstates of Ĥ0 and have assigned some properties
to the coupling elements V1,l and the density of states in the {l} manifold. These
model assumptions have led to exponential relaxation of the initially prepared state
|1〉. The same problem can be done (see Problem 9.1) by working in the basis of
exact eigenstates of Ĥ . In the standard time evolution according to Eq. (2.6) the
relaxation appears as destructive interference between the components of an initial
wavepacket. A similar observation can be made in the simple model for vibrational
relaxation advanced in Section 9.4. In the particular representation chosen, where
the systems and bath oscillators are linearly coupled, the initially excited system
oscillator is damped by this coupling to the bath. However, the Hamiltonian (9.44)
is bilinear in the oscillator coordinates, implying that we could diagonalize it to find
a set of exact normal modes. Again, what appears as damping in one representation
is just a destructive interference within an initially prepared packet of such modes.16

15 J. E. Straub, M. Berkovec, and B. J. Berne, J. Chem. Phys. 83, 3172; 84, 1788 (1986).
16 This statement holds at zero temperature. At finite T we assign to the bath an additional property—

being at thermal equilibrium at this temperature throughout the process. It is hard, though not
impossible to use this attribute of the model in the exact normal mode basis. Also, if the coup-
ling was nonlinear we could no longer cast the problem in terms of modes of an exactly separable
Hamiltonian.
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Consider now the barrier crossing problem in the barrier controlled regime dis-
cussed in Section 14.4.3. The result, the rate expressions (14.73) and (14.74), as well
as its non-Markovian generalization in which ωr is replaced by λ of Eq. (14.90),
has the structure of a corrected TST rate. TST is exact, and the correction factor
becomes 1, if all trajectories that traverse the barrier top along the “reaction coordin-
ate” (x of Eq. (14.39)) proceed to a well-defined product state without recrossing
back. Crossing back is easily visualized as caused by collisions with solvent atoms,
for example, by solvent-induced friction.

This physical picture is perfectly reasonable, however the mathematical repres-
entation of friction in Section 8.2.5 as originated from linear coupling to a bath
of harmonic oscillators makes it possible to construct an equivalent mathematical
model.17 In the barrier region the dynamics of the reaction coordinate is governed
by the potential (14.61), a harmonic potential with an imaginary frequency. This is
true for a general molecular system: the potential near the saddle point that marks the
lowest energy path between the reactant and product configurations can be expan-
ded about this point to quadratic order. If, in addition, solvent-induced friction is
also represented by linear coupling to a harmonic bath as in Eqs (8.47) and (8.48),
the Hamiltonian of this overall system is bilinear and can be diagonalized to yield
true normal modes. In this new representation there is no coupling between degrees
of freedom, therefore no friction. A reaction coordinate can still be identified as an
imaginary frequency mode. Indeed, if the overall multidimensional potential sur-
face (in the space of all system and bath degrees of freedom) supports two separate
reactant and product configurations, there must be a saddle point that represents the
minimum energy path between these configurations. The new set of independent
modes are simply the normal modes obtained by diagonalizing this overall mul-
tidimensional Hamiltonian (as opposed to just the molecular Hamiltonian) after
expanding the potential to quadratic order about this saddle point. Compared with
the original reaction coordinate which resides in the molecular subspace, the new
one will be rotated toward the bath subspace, that is, contain some components of
the bath modes.

Consider now the motion along this reaction coordinate. This is a motion that
(1) connects between the reactant and the product basins of attraction, and (2)
proceeds at the top of the barrier, that is, through the saddle point, with no coupling
to other modes therefore no interactions or “collisions” that may cause reflection.
This implies, given the original assumption that thermal equilibrium prevails in the
reactant well, that TST must hold exactly. In other words, by choosing the correct
reaction coordinate, the Kramers model in the barrier-controlled regime can be cast
in terms of TST.

17 E. Pollak, J. Chem. Phys. 85, 865 (1986).
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This observation suggests a practical way for evaluating the barrier crossing rate
in the moderate–large friction regime. Following the steps taken in Section 14.3.3,
we need to diagonalize the harmonic Hamiltonians associated with the bottom of
the reactant well and with the barrier, both in the overall space that includes the
harmonic bath and the system–bath coupling Eqs (8.47) and (8.48). Following diag-
onalization, we should use the resulting frequencies in expression (14.29). It can be
shown (footnote 16), that this procedure yields again the result (14.73) and (14.74)
in the Markovian limit, and the same result with ωr replaced by λ of Eq. (14.90) in
the general case. The extension of this approach to the low friction regime requires
additional considerations and leads to Eq. (14.88) as discussed above.

14.6 Some experimental observations

The qualitative aspects of barrier crossing dynamics, as expressed by Fig. 14.5, are
model-independent. Once explained, it seems inevitable that the effect of solute–
solvent interaction should behave in the way shown. Indeed, the high friction
behavior is often observed as expected—rates do decrease with increasing solvent
friction, as expressed, for example, by its viscosity. The search for the “Kramers
turnover,” that is, the transition from the low to high friction behavior has proven
considerably more challenging. Figures 14.7 and 14.8 show experimental results
for the rate of isomerization of excited trans-stilbene (see Fig. 14.6), identified as
the nonradiative decay rate of this species. Figure 14.7 summarizes data obtained
in various experiments in different gas and liquid phases, which show the rate as a
function of the inverse self-diffusion coefficient of the solvent, taken as a measure
of the friction (see Eq. (11.68)). The Kramers turnover is seen to be located at the
borderline between gas and liquid so that solution phase reactions appear to belong
to the overdamped Kramers regime. This explains why early attempts to find this
turnover behavior in low viscosity solvents were unsuccessful, and is also compat-
ible with the observation (Section 14.5.1) that vibrational energy relaxation in large
molecules in solution is fast and can hardly expected to become rate-limiting.

Going into details, however, proves both difficult and illuminating. The strength
of the Kramers theory originates from its generic character. This is also its weakness,
as it cannot account for specific solvent effects that can mask generic trends. It
was pointed out (see discussion below Eq. (14.25)) that the barrier experienced
by the reaction coordinate has the character of a free energy barrier18 and may
reflect features that stem from the solute–solvent interaction. Figure 14.8 shows
that the activation energy in the stilbene isomerization reaction does depend on

18 This statement is rigorous only within TST.
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Fig. 14.6 Schematic one-dimensional potential surfaces showing the energy barriers for ground state
stilbene (lower curve) and excited (S1) state stilbene (upper curve). The arrow through the structure
diagram of each isomer shows the direction of the transition dipole moment between the ground and
excited state. The reaction coordinate involves twisting about the carbon–carbon double bond. A large
barrier separates the cis and trans isomers on the ground state surface but not on the excited state curve.
The cis-trans transition in the excited state is believed to proceed via an intermediate for which this
twisting angle θ is 90◦. The times indicated refer to measurements in Hexane. The experimental results
reported below refer to the barrier crossing between the excited trans-stilbene and the intermediate
90◦ configuration on the excited state surface. (From G. R. Fleming and P. G. Wolynes, Phys. Tod.
p. 36, May 1990).

solvent properties. This has to be taken into account in comparing predictions of
the Kramers theory to experiments, and rationalizes the solvent-dependent results
seen in Fig. 14.9. An interesting observation is that the deviations from the large
friction Kramers behavior in Fig. 14.7, that could be attributed to non-Markovian
effects, are absent in Fig. 14.9 that use solvent-specific fitting parameters.

We end this brief excursion into the experimental literature by noting that other
issues should be of concern in addition to the uncertainties discussed above:

1. To what extent does “macroscopic friction”, as indicated by solvent viscosity
or by inverse self-diffusion coefficient, really reflects the microscopic friction
experienced by the reaction coordinate?



522 Chemical reactions in condensed phases

Gas Liquid

1011

109

Is
om

er
iz

at
io

n 
ra

te
 (

s–1
)

102 104

Friction (s cm–2)
1 106

Fig. 14.7 A compilation of gas and liquid phase data showing the turnover of the photoisomerization
rate of trans-stilbene as a function of the “friction” expressed as the inverse self-diffusion coefficient of
the solvent, where the latter is varied over six orders of magnitude in systems ranging from supersonic
expansion to low- and high-pressure gases and liquid solutions. The turnover occurs at the borderline
between gas and liquid. (From G. R. Fleming and P. G. Wolynes, Phys. Tod. p. 36, May 1990. The
solid line is a theoretical fit based on J. Schroeder and J. Troe, Ann. Rev. Phys. Chem. 38, 163 (1987)).
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Fig. 14.8 The dependence of the activation energy of the trans-stilbene isomerization reaction on
solvent (n-hexane) viscosity, η, and polarity expressed in terms of the refractive index n as shown.
The input for this graph is obtained from rate, viscosity, and refraction index data over a wide range
of temperature and pressure. (From J. Schroeder, J. Troe, and P. Vöhringer, Chem. Phys. Lett. 203,
255 (1993)).

2. How do we know that the reaction under study proceeds adiabatically? An
observed barrier can actually signify avoided crossing as in Fig. 14.4.

3. In applying ultrafast spectroscopy to kinetic measurements as done in the
excited trans-stilbene isomerization, do we really look at thermal reaction
rates? The alternative is that the reaction proceeds before complete vibrational
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Fig. 14.9 The isomerization rate on trans-stilbene displayed as a function of the inverse self-diffusion
coefficient of the solvent at T = 298 K. The measurements are done at different pressures in super-
critical and liquid alkane solvents: Ethane (circles), propane (triangles), and n-butane (squares). The
solid lines represent fit to the Markovian Kramers theory that use solvent modified barrier height (EB)

and barrier frequency (ωB). From Jörg Schroeder, Ber. Bunsenges. Phys. Chem. 95, 233 (1991).

relaxation in the excited state has taken place and therefore depends on the
way the reactant is prepared, thus distorting the interpretation of the observed
results.

Besides indicating areas for future concern, these questions exemplify the ever-
present tension between our desire to explain observations by the most general
and generic models, and between the ever-present system-specific and experiment-
specific features.

14.7 Numerical simulation of barrier crossing

Why (said the queen), sometimes I’ve believed as many as six impossible things before breakfast.
(Alice’s Adventures in Wonderland—Lewis Carrol)

One way to bridge the gap between simple models used for insight, in the present
case the Kramers model and its extensions, and realistic systems, is to use numer-
ical simulations. Given a suitable force field for the molecule, the solvent, and
their interaction we could run molecular dynamic simulations hoping to reproduce
experimental results like those discussed in the previous section. Numerical sim-
ulations are also often used to test approximate solutions to model problems, for
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example, given the Langevin equations (14.39) and (14.40) for a particle moving
in a potential V under the influence of random force and damping, and given that V
is characterized by a high barrier separating two domains of attractions, we may try
to examine numerically the dependence of the transition rate on the friction γ . In
both cases the computer generates a trajectory, a series of positions and velocities
of the entity that represents the reaction coordinate at successive time intervals.19

So, in principle we can start each trajectory by putting the particle (i.e. the
reaction coordinate) in the well and generate the subsequent evolution. The particle
will start near the bottom of the well and we can compute the average escape time
〈τ 〉, which is the mean first passage time (see Section 8.5) to reach the product
side of the barrier. 〈τ 〉 is computed by (1) running a trajectory until the particle
exits the well, (2) recording the time it took for this to happen, (3) repeating the
calculation many times and averaging this exit time over all trajectories, that is, over
all realizations of the stochastic force or over all molecular dynamic trajectories with
initial conditions compatible with the solvent density and temperature. A criterion
for “exit” has to be defined.20 Once 〈τ 〉 is computed, the rate is given by k = 〈τ 〉−1

(see Problem 14.3).
For high barriers, E 
 kBT , this numerical approach is very difficult. The rate

is very small in this case, being proportional to exp(−βEB), so we have to integrate
for a very long time before we see an exit event. And then we need to average over
many such events. We face a problem analogous to that discussed in Section 13.6:
We need to integrate using time steps short relative to 2π/ω0 where ω0 is the
frequency of the oscillations in the well—a characteristic molecular frequency. At
the same time we need to run trajectories as long as the exit time. The essence of

19 To generate the trajectories that result from stochastic equations of motion (14.39) and (14.40) one
needs to be able to properly address the stochastic input. For Eqs (14.39) and (14.40) we have to move
the particle under the influence of the potential V (x), the friction force—γ vm and a time-dependent
random force R(t). The latter is obtained by generating a Gaussian random variable at each time step.
Algorithms for generating realizations of such variables are available in the applied mathematics or
numerical methods literature. The needed input for these algorithms are the two moments, 〈R〉 and
〈R2〉. In our case 〈R〉 = 0, and (cf. Eq. (8.19)) 〈R2(t)〉 = 2mγ kBT/�t, where �t is the time interval
used by the integration routine, and 〈R(t1)R(t2)〉 = 0 for t1 and t2 from different time intervals. Given
these moments, the required sequence that represents R(t) can be generated and Eq. (14.39) can be
solved in standard ways. Obviously we need to generate many solutions with different realizations
R(t) and average every calculated result over this ensemble of solutions.

20 As indicated in the solution to Problem 14.3, for high barrier, EB 
 kBT , the starting point x0
and the end point x1 (where “exit” is decided) can be taken anywhere well in the reactant region,
and well in the product region, respectively. “Well” in these region imply a position x at which the
potential is considerably lower (relative to kBT ) than its value at the barrier top. Variations in x0 and
x1 that adhere to this condition affect the computed rate only marginally.
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Fig. 14.10 A model for a barrier crossing reaction showing reactive and nonreactive trajectories.

our problem is that we need to follow the system in great detail in order to extract
information about very rare highly improbable events.

A way to overcome this difficulty is to realize that the factor e−βEB that makes
exit events extremely rare has no dynamical origin. To put this observation to
practice we reformulate our problem: Rather than attempting to calculate the rate
k we look for the correction α to the TST rate

k = αkTST (14.95)

where in the model (14.39) kTST = (ω0/2π) exp(−βEB), and in any case can be
computed from equilibrium considerations. The correction α contains the friction-
dependent dynamical information. It can be found from the following argument
below.

Consider the system at equilibrium. The TST rate is obtained from the equi-
librium flux in the outer direction, by dividing it by the well population. It was
already argued that this is actually an upper bound to the true rate. One way to
see this is to realize that only part of the trajectories that go out of the well are in
fact reactive. This is seen in Fig. 14.10 which depicts a single well process as in
dissociation or desorption.21 Obviously, the correction factor α is the fraction of
reactive trajectories relative to the total equilibrium flux.

An easy way to find this correction factor is to look at the history of an exit
trajectory. This history is followed by starting at x = xB trajectories with velocity
sampled from a Maxwell–Boltzmann distribution in the outward direction—these
represent the outgoing equilibrium flux, then inverting the velocity (v → −v) so
that the particle is heading into the well, and integrating the equations of motion

21 The argument is easily extended to a double well situation. In this case “reactive trajectories”
should not only start deep enough inside the reactant well but should end deep enough in the product
well.
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with these new initial conditions. In other words, we send a thermal distribution of
particles from xB into the well. The resulting trajectories trace back the history of
the exiting trajectories that constitute the equilibrium flux. Part of these trajectories
will hit the inner wall, bounce back and eventually exit the well without being
trapped (say, before loosing at least kBT energy). The others will become trapped
(by the same criterion) before exiting the well. For the single well problem α is
simply the fraction of trapped trajectories.22

As a numerical simulation problem the computation of α is easy since it involves
following short-time trajectories: these trajectories start at the barrier top going into
the well, and end either by going through the barrier in the outward direction, or
by loosing a predefined amount of energy, of the order kBT that practically insures
their trapping.

Problem 14.7. Describe how the correction factor α should be computed in
calculating the reaction rate in a double well potential.

Another way to apply the same idea can be derived from formal considerations.23

We now consider a double well system that correspond to the reaction R � P and
suppose that we can generate trajectories as before. Define the population function

h (x) =
{

1; x > xB (P region)
0; x < xB (R region)

(14.96)

so that 〈h〉 = f is the equilibrium probability that the system is in the P state. Define
q(t) = x(t)− xB and let q(0) = 0. Now consider the function

C (t) = Peq(xB)〈ẋ(0)h[q(t)]〉 (14.97)

For t infinitesimally larger than zero, h[q(t = 0+)] is 1 if ẋ > 0 and is zero
otherwise. Therefore,

C(0+) = Peq(xB)〈ẋ θ(ẋ)〉 (14.98)

This is the total equilibrium flux out of the R region, and if divided by the normalized
equilibrium population of R, that is, 1 − f , will give the transition state rate from

22 In some systems α itself may be an observable: In surface physics it is known as the sticking
coefficient, the fraction of particles that get stuck and adsorb on a surface upon hitting it. Note that
trapping does not mean that the particle will never exit or desorb, only that it will equilibrate in the
well before doing so.

23 D. Chandler, A Story of rare events: From barriers to electrons to unknown pathways, in Classical
and Quantum Dynamics in Condensed Phase Simulations, edited by B. J. Berne, G. Ciccotti, and
D. F. Coker, Proceedings of the International School of Physics on Classical and Quantum Condensed
Phase Simulations, 1997.
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Fig. 14.11 The reactive flux correlation function, Eq. (14.99) plotted against time. After the initial
transient period this function becomes essentially constant on the time scale shown.

R to P. Also, in the infinite time limit C(t →∞) → 0 because at long time ẋ(0)
and h[q(t)] are not correlated. However, this relaxation to zero is very slow, of the
order of the reaction rate k , because losing this correlation implies that the trajectory
has to go several times between the wells.

Next consider the function

k(t) = C(t)

(1 − f )
= Peq(xB)

1 − f
〈ẋ(0)h[q(t)]〉 (14.99)

This function is expected to behave as seen in Fig. 14.11. As just argued, at t = 0+
it includes all the equilibrium flux, therefore k(t = 0) = kTST. There follows a
relative short time period during which the trajectory may be reflected before it
relaxes. After this short transient time we reach a situation where the trajectory
is well inside the R or the P regions. This is where we would have stopped the
simulation for finding the sticking coefficient described above. The correlation
function continues to relax to zero on the relatively long reaction timescale, however
already at this “plateau” we have a good approximation (better for a higher barrier)
for the reaction rate k .

14.8 Diffusion-controlled reactions

Our focus so far was on unimolecular reactions and on solvent effects on the
dynamics of barrier crossing. Another important manifestation of the interaction
between the reaction system and the surrounding condensed phase comes into play
in bimolecular reactions where the process by which the reactants approach each
other needs to be considered. We can focus on this aspect of the process by consid-
ering bimolecular reactions characterized by the absence of an activation barrier, or
by a barrier small relative to kBT . In this case the stage in which reactants approach
each other becomes the rate determining step of the overall process.

In condensed phases the spatial motion of reactants takes place by diffusion,
which is described by the Smoluchowski equation. To be specific we consider a
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particular reaction model: The reactants are two species, A and B, where the A
molecules are assumed to be static while the B molecules undergo diffusion char-
acterized by a diffusion coefficient D.24 A chemical reaction in which B disappears
occurs when B reaches a critical distance R∗ from A. We will assume that A remains
intact in this reaction. The macroscopic rate equation is

d[B]
dt

= −k[B][A] (14.100)

where [A] and [B] are molar concentrations. Our aim is to relate the rate coefficient
k to the diffusion coefficient D.

It is convenient to define A = A[A] and B = A[B], where A is the Avogadro
number and A and B are molecular number densities of the two species. In terms
of these quantities Eq. (14.100) takes the form

dB

dt
= −kBA

A (14.101)

Macroscopically the system is homogeneous. Microscopically however, as the reac-
tion proceeds, the concentration of B near any A center becomes depleted and the
rate becomes dominated by the diffusion process that brings fresh supply of B into
the neighborhood of A. Focusing on one particular A molecule we consider the dis-
tribution of B molecules, B(r) = NBP(r) in its neighborhood. Here NB is the total
number of B molecules and P(r) is the probability density for finding a B molecule
at position r given that an A molecule resides at the origin. P(r) and therefore B(r)
satisfy the Smoluchowski equation (cf. Eq. (8.137))

∂B(r, t)

∂t
= −∇ · J J = −D(β∇V + ∇)B(x, t) (14.102)

where V is the A–B interaction potential.
In order to obtain an expression of the bimolecular rate coefficient associated

with this process we follow a similar route as in the barrier crossing problem, by
considering the flux associated with a steady state that is approached at long time by
a system subjected to the following boundary conditions: (1) the bulk concentration
of B remains constant and (2) B disappears when it reacts with A at a distance R∗

24 It can be shown that if the molecules A diffuse as well, the same formalism applies, with D
replaced by DA + DB.
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from A’s center (placed at the origin).25 For simplicity we assume that the A and
B molecules are spherical, so that the interaction between them depends only on
their relative distance r. Consequently the steady-state distribution is spherically
symmetric. This implies that only the radial part of the flux J is nonzero

J (r) = −D

[
β

(
d

dr
V (r)

)
+ d

dr

]
B(r) (14.103)

At steady state, the number of B molecules in each spherical shell surrounding A
remains constant. This implies that the integral of J (r) over any sphere centered
about A is a constant independent of the sphere radius. Denoting this constant by
−J0 gives26

J (r) = − J0

4πr2 (14.104)

Using this in Eq. (14.103) leads to

J0 = 4πDr2
[
β

(
d

dr
V (r)

)
+ d

dr

]
B(r) (14.105)

It is convenient at this point to change variable, putting B(r) =
b(r) exp(−βV (r)). Equation (14.105) then becomes

db(r)

dr
= J0

4πD

eβV (r)

r2 (14.106)

which may be integrated from R∗ to ∞ to yield

b(∞)− b(R∗) = J0

4πDλ
; with λ−1 ≡

∞∫
R∗

dr
eβV (r)

r2 (14.107)

λ is a parameter of dimension length. Note that in the absence of an A–B interaction,
that is, when V (r) = 0, λ = R∗. In any case, the A–B interaction vanishes at large

25 The rationale for this steady-state approach is the same as used in the barrier crossing problem:
The assumption is that the system reaches a “quasi-steady-state” in which the overall number of B
molecules reduces slowly, but the distribution of B in the space about A remains otherwise constant.
There is another underlying assumption—that this approach to quasi-steady-state is fast relative to
the timescale of the reaction itself. When this assumption does not hold, that is, if the reaction takes
place in the transient period before steady state is established, the rate coefficient is not well defined
(or may be defined as a function of time).

26 This is the radial equivalent to the statement that in a one-dimensional flow the steady-state flux
does not depend on position.
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distances, that is, V (r) → 0 as r → ∞. This implies that b(∞) = B(∞) = B,
where B the bulk number density of the B species. Denoting B∗ = B(R∗) and
V ∗ = V (R∗), Eq. (14.107) finally gives

B∗ =
(

B − J0

4πDλ

)
e−βV ∗

(14.108)

Consider now Eq. (14.101). The rate dB/dt at which B is consumed (per unit
volume) is equal to the integrated B flux towards any A center, multiplied by the
number of such centers per unit volume

−kB
A

A = −4πr2J (r)A = −J0A (14.109)

whence

J0 = kB

A (14.110)

Using this in Eq. (14.108) leads to

B∗ = Be−βV ∗
(

1 − k

4πDλA

)
(14.111)

If upon reactive contact, that is, when r = R∗, reaction occurs instantaneously with
unit probability, then B∗ = 0. The steady-state rate is then

k = 4πADλ (14.112)

More generally, it is possible that B disappears at R∗ with a rate that is proportional
to B∗, that is,

dB

dt
= −kB

A

A = −k∗B∗ A

A , that is, kB = k∗B∗ (14.113)

Using this in Eq. (14.111) leads to

k = 4πDλA
1 + (4πDλA/k∗e−βV ∗

)
(14.114)

which yields the result (14.112) in the limit k∗e−βV ∗ → ∞. V ∗ is the interaction
potential between the A and B species at the critical separation distance R∗ (on
a scale where V (∞) = 0), and can be positive or negative. A strongly positive
V ∗ amounts to a potential barrier to reaction. In the limit k∗e−βV ∗ → 0 we get
k = k∗e−βV ∗

.
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The result (14.114) gives the bimolecular rate k in terms of the intermolecular
diffusion constant D and the intermolecular potential V (r). The rate coefficient k∗
associated with the reaction between the A and B species after they are assembled at
the critical separation R∗ is a parameter of this theory. If we regard the assembled A–
B complex as a single molecule we could in principle calculate k∗ as a unimolecular
rate involving this complex, using the methodologies discussed in Sections 14.4
and 14.5.

Finally, it should be kept in mind that we have treated diffusion-controlled
reactions within a particular simple model. More complex situations arise when
the diffusion itself is more complex, for example when it proceeds on restricted
pathways27 or when it is controlled by gating.28 Also, the assumption that reaction
occurs at one fixed distance does not always hold, as is the case when the species
B are excited molecules that disappear by fluorescence quenching.

Appendix 14A: Solution of Eqs (14.62) and (14.63)

Here we seek a solution of the form f (x, v) = f (u) with u = v+�x to Eq. (14.62).
� is an unknown constant at this stage. This form implies that ∂f /∂x = ∂f /∂u · �
and ∂f /∂v = ∂f /∂u. Using these relationships in (14.62) leads to

γ−1
[
(� + γ )v + ω2

Bx
] df

du
= kBT

m

d2f

du2 (14.115)

To be consistent with our ansatz, that is, in order for f to be a function of the single
variable u only, the coefficient of df /du on the left-hand side should be proportional
to u, that is,

γ−1[(� + γ )v + ω2
Bx] = −αu = −αv − α�x (14.116)

Equating the coefficients of x and v, that is, taking �+γ = −αγ and ω2
B/γ = −α�

and eliminating α from these equations leads to an equation for �

�2 + γ� − ω2
B = 0 (14.117)

which yields the solutions

� =
−γ ±

√
γ 2 + 4ω2

B

2
(14.118)

27 D. Ben-Avraham and S. Havlin, Diffusion and Reactions in Fractals and Disordered Systems,
(Cambridge University Press, Cambridge 2000).

28 A. Szabo, D. Shoup, S. H. Northrup, and J. A. McCammon, Stochastically gated diffusion-
influenced reactions, J. Chem. Phys. 77, 4484 (1982).
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The choice between these solutions will be made by the requirements imposed by
the boundary conditions. Proceeding with Eq. (14.115) in the form

kBT

m

d2f

du2 + αu
df

du
= 0; α = −� + γ

γ
(14.119)

we can write its general solution

f (u) = F1 + F2

u∫
0

dze(−αmz2/2kBT ) (14.120)

where F1 and F2 are to be determined by the boundary conditions and the choice of
α, that is, of � made accordingly. First note that since f (u) should not diverge for
|u| → ∞, α must be positive. Therefore, �+ γ should be negative, which implies
that the physically acceptable solution of (14.117) is that with the minus sign in
(14.118). Thus our final result for � is

� = −
{
γ

2
+

[(γ
2

)2 + ω2
B

]1/2
}

(14.121)

Next, for any velocity v we require f (x →∞, v) = 0. This implies that f (u →
−∞) = 0 (note that because � was determined to be negative, u → −∞ is
equivalent to x →∞). Using this in (14.120) leads to

F1 = −F2

−∞∫
0

dze(−αmz2/2kBT ) =
[
πkBT

2αm

]1/2

F2 (14.122)

We actually use just the intermediate result in (14.122) to get

f (x, v) = F2

⎧⎨
⎩

0∫
−∞

dze(−αmz2/2kBT ) +
u∫

0

dze(−αmz2/2kBT )

⎫⎬
⎭

= F2

v−|�|x∫
−∞

dze(−αmz2/2kBT ) (14.123)

(recall that � is negative so u = v+�x = v−|�|x). Now we can use the boundary
condition f (x →−∞) = 1 to get F2 =

√
αm/2πkBT . So, finally,

f (x, v) =
√

αm

2πkBT

v−|�|x∫
−∞

dze(−αmz2/2kBT ) (14.124)
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Appendix 14B: Derivation of the energy Smoluchowski equation

It is convenient to use a Langevin starting point, so we begin with Eq. (14.39). We
transform to action–angle variables (K ,φ):

x(K ,φ) =
∞∑

n=−∞
xn(K)einφ (14.125a)

v(K ,φ) =
∞∑

n=−∞
vn(K)einφ (14.125b)

vn(K) = inω(K)xn(K); ω(K) = φ̇ (14.125c)

where, since x and v are real, x−n = x∗n and v−n = v∗n . The action K is related to
the energy E by

dE

dK
= ω(K) (14.126)

and to the motion in phase space by

K = m

2π

∮
v(x)dx = m

2π

2π∫
0

v(K ,φ)
∂x(K ,φ)

∂φ
dφ (14.127)

where
∮

denotes integration over an oscillation period. Inserting (14.125) into

(14.127) and using
∫ 2π

0 dφei(n+l)φ = 2πδn,−l leads to an explicit expression for K
in terms of x and v:

K = mω(K)
∑

n

n2|xn|2 = m

ω(K)

∑
n

|vn|2 (14.128)

In order to derive a Langevin equation for E (or K) we start with Eq. (14.39),

mẍ = −∂V

∂x
− mγ v + R (14.129)

multiply both sides by ẋ = v and use E = (1/2)mv2 + V (x) to get

dE

dt
= ω

dK

dt
= −mγ v2 + vR (14.130)
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From (14.125b) we get, after averaging over phase oscillations and using
(14.128)

v2 =
( ∞∑

n=−∞
vn(K)einφ

)2

∼=
∞∑

n=−∞
|vn(K)|2 = ωK

m
(14.131)

which, with (14.130) gives

dK

dt
= −γK + S(t) (14.132)

where

S(t) = R(t)

ω(K)

∑
n

vneinφ (14.133)

note that all the fast variables, R(t) and φ now appear only in S(t), which may be
regarded as a random noise source in (14.132). It satisfies

〈S〉 = 0

〈S(t1)S(t2)〉 = 2γmkBT

ω2(K)

(∑
n

vneinφ

)2

δ(t1 − t2) = 2γ kBTK

ω(k)
δ(t1 − t2)

(14.134)

Here the average was done both on R(t) and on the phase oscillations, and we have
used again Eq. (14.128). Equation (14.132) is a Langevin-type equation charac-
terized by a random noise S(t) whose statistical properties are given by (14.134).
It is similar to others we had before, with one important difference: The random
“force” S(t) depends on the state K of the system. We can repeat the procedure we
used in Section 8.4.4 to get a Fokker–Planck equation, but more caution has to be
exercised in doing so.29 The result for the probability P(K , t)dK to find the action
in the range K . . .K + dK is

∂P(K , t)

∂t
= γ

∂

∂K

(
K + KkBT

ω(K)

∂

∂K

)
P(K , t) (14.135)

Equation (14.135) has the form ∂P/∂t = −(∂/∂K)JK , where

JK (K) ≡ −γK

(
1 + kBT

ω(K)

∂

∂K

)
P (14.136)

29 The term γ ∂/∂K(KP), that remains as T →0, is obtained as before. Extra care is needed in
deriving the second term, in assessing the proper positions of the two K-derivatives with respect to
the term KkBT/ω(K).
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is the action flux. At equilibrium this flux is zero, that is, ∂P/∂K = −(ω(K)/kBT )P,
leading to the Boltzmann distribution,

P(K) ∝ exp

⎛
⎝−β

K∫
dK ′ω(K ′)

⎞
⎠ = exp (−βE(K)) (14.137)

It is useful to recast Eq. (14.135) in terms of the more familiar energy variable
E. To this end use ∂/∂K = ω(∂/∂E) and P(K , t) = ω(E)P(E, t).30 Denoting
γK(E) ≡ D(E) this leads to the energy Smoluchowski equation,

∂P(E)

∂t
= ∂

∂E

[
D(E)

(
1 + kBT

∂

∂E

)
ω(E)P(E)

]
(14.138)
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30 For simplicity of the presentation we use the same notation for the probability densities P(E)

in energy space and P(K) in action space, even though they have different functional forms. A
more rigorous notation would be PE(E) for the former and PK (K) for the latter, which satisfy
(dE/dK)PE(E) = PK (K).
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SOLVATION DYNAMICS

There are many things for which it’s not enough
To specify one cause, although the fact
Is that there’s only one. But just suppose
You saw a corpse somewhere, you’d better name
Every contingency—how could you say
Whether he died of cold, or of cold still,
Of poison, or disease? The one thing sure
Is that he’s dead. It seems to work this way
In many instances . . .

Lucretius (c.99–c.55 BCE) “The way things are”
translated by Rolfe Humphries, Indiana University

Solvent dynamical effects on relaxation and reaction process were considered in
Chapters 13 and 14. These effects are usually associated with small amplitude
solvent motions that do not appreciably change its configuration. However, the most
important solvent effect is often equilibrium in nature — modifying the free energies
of the reactants, products, and transition states, thereby affecting the free energy of
activation and sometime even the course of the chemical process. Solvation ener-
gies relevant to these modifications can be studied experimentally by calorimetric
and spectroscopic methods, and theoretically by methods of equilibrium statistical
mechanics.

With advances of experimental techniques that made it possible to observe time-
scales down to the femtosecond regime, the dynamics of solvation itself became
accessible and therefore an interesting subject of study. Moreover, we are now
able to probe molecular processes that occur on the same timescale as solva-
tion, making it necessary to address solvation as dynamic in addition to energetic
phenomenon. This chapter focuses on the important and most studied subclass
of these phenomena—solvation dynamics involving charged and polar solutes in
dielectric environments. In addition to their intrinsic importance, these phenom-
ena play a central role in all processes involving molecular charge rearrangement,
most profoundly in electron transfer processes that are discussed in the next
chapter.
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q = +e q = +eq = 0

(a) (b) (c)

Fig. 15.1 A schematic view of instantaneous configurations of (a) solvent dipolar molecules about
initial uncharged solute at equilibrium, (b) the same molecules following a sudden change of solute
charge, and (c) solvent dipoles in the final equilibrium state. Solvent dipoles are represented by the
small ellipses whose negative side is denoted by white color.

15.1 Dielectric solvation

Consider, as a particular example, a neutral (q = 0) atomic solute embedded in a
dielectric solvent, that undergoes a sudden change of its charge to q = e, where
e is the magnitude of the electron charge. This can be achieved, for example, by
photoionization. The dipolar solvent molecules respond to this change in the local
charge distribution by rotating in order to make their negative end point, on the
average, to the just formed positive ion (see Fig. 15.1). Thus, the solvent configur-
ation changes in response to the sudden change in a local charge distribution. The
driving force for this change is the lowering of overall free energy that accompanies
the buildup of solvent polarization.

Consider this process in more detail. Figure 15.1 describes it under the assump-
tion that the ionization process is fast relative to the timescale of solvent motion.
Shown are snapshots of the system configuration just before (a) and just after (b) the
ionization event, as well as a snapshot from the final equilibrium state (c). Because
the solvent is slow relative to the ionization process, its configurations in (a) and (b)
are the same.1 This is followed by the process (b)→(c) in which the newly formed
ion is “solvated” by surrounding dipoles. Denoting by Ea, Eb, and Ec the energies
of the system in these states, the difference 〈Eb − Ea〉 is referred to as the ver-
tical ionization energy while 〈Ec − Ea〉 is the adiabatic ionization energy. Both
are in principle experimentally observable. The former is obtained from the peak
of the absorption lineshape associated with the photoionization process. The lat-
ter is essentially the free energy difference between two equilibrium configurations

1 The actual situation is in fact more complicated, because solvent response about a newly formed
charge distribution is characterized by more than one timescale. In particular, solvent polarization
has a substantial electronic component whose characteristic timescale is fast or comparable to that
of electronic transitions in the solute, and a nuclear component, here associated with the orientation
of solvent dipoles, that is slow relative to that timescale. In the present introductory discussion we
disregard the fast electronic component of the solvent response, but it is taken into account later.
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Fig. 15.2 Emission spectra of Coumarin 153 in formamide at different times. The times shown here
are (in order of increasing peak-wavelength) 0, 0.05, 0.1, 0.2, 0.5, 1, 2, 5, and 50 ps (M. L. Horng,
J. A. Gardecki, A. Papazyan, and M. Maroncelli, J. Phys. Chem. 99, 17311 (1995)).

that can be estimates from experimental heats of solvation.2 The difference between
these energies ER ≡ 〈Eb − Ec〉 is called the solvent reorganization energy (see also
Chapter 16). Ultrafast spectroscopy has recently made the time evolution (“solva-
tion dynamics”) of the (b) → (c) process accessible to experimental observation.
This process is the subject of this chapter.

Problem 15.1. (1) Suggest the reason why the average energy differences
〈Eb − Ea〉 and 〈Ec − Ea〉 are called vertical and adiabatic, respectively. (2) Why
is 〈Eb − Ea〉 related to the peak energy of the corresponding absorption
lineshape? (3) What is the distribution over which these averages are taken?

Solvation dynamics experiments probe the evolution of solvent structure follow-
ing a sudden change in the solute. Most often the change is in the electronic charge
density following an optical transition3 and, as in the example discussed above,
the subsequent rearrangement is most dramatic in polar solvents. An experimental
manifestation of this evolution is shown in Fig. 15.2, where the solvation process
is seen as an evolving red shift in the emission spectrum of the excited solute. Note
that a shift to longer wavelengths indicates that the excited state of the fluorescing

2 Solvation free energies are usually related to state in which the ion is out of, and far from, the
solvent. To estimate the difference 〈Ec − Ea〉 one would need to construct a Born cycle that includes
the process of vacuum ionization as well as the solvation of the neutral species.

3 In most experimental studies this change is not an ionization process as in Fig. 15.1 but a change
in the molecular dipole upon excitation to a different electronic state.
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solute molecule is stabilized relative to the ground state, a likely scenario in a pro-
cess in which the solvent responds to the excited state charge distribution. In the
following sections we will develop a theoretical framework for discussing such
phenomena.

15.2 Solvation in a continuum dielectric environment

15.2.1 General observations

We consider a polar solvent characterized by its dielectric response function ε(ω).
Upon a sudden change in the charge distribution inside this solvent a relaxation
process follows in which the solvent adjusts to the new charge distribution. We
want to describe this relaxation process in terms of the (assumed known) dielectric
response function.4

It should be emphasized that this description of solvation as a purely electrostatic
process is greatly over-simplified. Short-range interactions exist as well, and the
physical exclusion of the solvent from the space occupied by the solute must have
its own dynamics. Still, for solvation of ions and dipolar molecules in polar solvents
electrostatic solvent–solute and solvent–solvent interactions dominate, and disreg-
arding short-range effects turns out to be a reasonable approximation.5 Of main
concern should be the use of continuum electrostatics to describe a local molecular
process and the fact that the tool chosen is a linear response theory. We will come
to these points later.

In a typical experiment the solute charge distribution is assumed to change
abruptly, at t = 0, say, from ρ1(r) to ρ2(r), then stays constant. This means that
the dielectric displacement, related to ρ(r) by the Poisson equation ∇ ·D = 4πρ,
is also switched from D1 to D2 at t = 0. In the process that follows the solvent
structure adjusts itself to the new charge distribution. In our continuum model this
appears as a local relaxation of the solvent polarization, which over time changes
from P1 to P2.

This polarization is made of two contributions: electronic, Pe, and nuclear, Pn,
characterized by relatively short and long response times. In what follows we
assume that the response time of the electronic polarization is shorter than all other
system timescales, including that on which ρ(r) was changed. This implies that the

4 Our discussion follows A. Mozumder in Electron-solvent and anion-solvent interactions, L. Kevan
and B. Webster, Editors (Elsevier, Amsterdam, 1976).

5 To get a feeling of the relevant orders of magnitude compare typical electrostatic Born solvation
energies (q2/2a)[1 − (1/εs)] ≈1–2 eV (where q is the ionic charge and εs is the static dielectric
constant) to the pressure–volume work needed to form a cavity of radius a at atmospheric pressure,
of order 10−6 eV for a ∼= 2Å.



540 Solvation dynamics

onset of electronic polarization in the solvent follows the change in ρ immediately:
It changes instantly, at t = 0, from P1e to P2e. The relaxation of the nuclear polariz-
ation follows more slowly. These induced polarizations affect the local electrostatic
field at the solute, therefore its energy. We want to relate the time evolution of this
local electrostatic field to the given ε(ω).

15.2.2 Dielectric relaxation and the Debye model

Assuming the validity of standard linear dielectric response theory, the electrostatic
displacement D, and the electrostatic field E in a dielectric medium are related to
each other by

D(r, t) =
∫

dr′
t∫

−∞
dt′ε(r − r′, t − t′)E(r′, t′) (15.1a)

In what follows we assume that the response is local, that is, ε(r − r′, t − t′) =
ε(r, t − t′)δ(r − r′). This assumption is not really valid for dielectric response
on molecular lengthscales, but the errors that result from it appear to be small in
many cases while the mathematical simplification is considerable. Also, while in
general the dielectric response ε is a tensor, we take it for simplicity to be a scalar,
that is, we consider only isotropic systems. In this case it is sufficient to consider
the magnitudes D and E of D and E . Thus, our starting point is the local scalar
relationship

D(r, t) =
t∫

−∞
dt′ε(t − t′)E(r, t′) (15.1b)

and its Fourier transform (defining, for example, E(ω) = ∫∞
−∞ dteiωtE(t))

D(ω) = ε(ω)E(ω) (15.2)

where

ε(ω) ≡
∞∫

0

dteiωtε(t) (15.3)

To account for the fast and slow components of the dielectric response we take ε(t)
in the form

ε(t) = 2εeδ(t)+ ε̃(t) (15.4)

to get

D(t) = εeE(t)+
∫ t

−∞
dt′ε̃(t − t′)E(t′) (15.5)

D(ω) = εeE(ω)+ ε̃(ω)E(ω) (15.6)
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The Debye model takes for the slow part of the dielectric response the form

ε̃(t) = εs − εe

τD
e−t/τD (15.7)

so that

ε(ω) = εe +
∞∫

0

dt
εs − εe

τD
e−t/τDeiωt = εe + εs − εe

1 − iωτD
(15.8)

The dielectric response in this model is thus characterized by three parameters: the
electronic εe and static εs response constants, and the Debye relaxation time τD.

What are the experimental implications of this dielectric relaxation model? To
answer this question let us start again from

D(t) = εeE(t)+
t∫

−∞
dt′ε̃(t − t′)E(t′) (15.9)

and take the time derivative of both sides with respect to t

dD
dt

= εe
dE
dt

+ E(t)ε̃(0)+
t∫

−∞
dt′

(
d ε̃

dt

)
t−t′

E(t′) (15.10)

Next use the relations ε̃(0) = (εs − εe)/τD and

t∫
−∞

dt′
(

d ε̃

dt

)
t−t′

E(t′) = − 1

τD

t∫
−∞

dt′ε̃(t − t′)E(t′) = − 1

τD
(D(t)− εeE(t))

(15.11)
(cf. Eq. (15.7)), to get

d

dt
(D − εeE) = − 1

τD
(D − εsE) (15.12)

An interesting outcome of (15.12) is that the implied relaxation depends on the
way the experiment is conducted. Consider first a step function change in the
electrostatic field:

E(t) =
{

0, t < 0,
E , t ≥ 0

(15.13)

after which E remains constant so that D evolves in time under a constant E .
Equarton (15.12) then becomes

dD
dt

= − 1

τD
D + εs

τD
E (15.14)
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whose solution is

D(t) = D(t = 0)e−t/τD + εsE(1 − e−t/τD) (15.15)

At long time, t →∞, D assumes its equilibrium value εsE . However, immediately
after the field jump the solvent can respond only with the εe component of its
dielectric function, so D(t = 0) = εeE . Equation (15.15) therefore becomes

D(t) = [εs(1 − e−t/τD)+ εee−t/τD]E (15.16)

This result could also be obtained from (15.5) and (15.7). The displacement field
D its seen to relax from its initial value εeE to its final equilibrium value εsE
with the characteristic relaxation time τD. The experimental realization of this
situation is, for example, a capacitor in which a dielectric solvent fills the space
between two planar electrodes and a potential difference between the electrodes
is suddenly switched on, then held constant while the solvent polarization relaxes.
This relaxation proceeds at constant electric field (determined by the given potential
difference divided by the distance between the electrodes). To keep the field constant
as the solvent polarization changes the surface charge density on the electrodes must
change—the needed charge is supplied by the voltage source. The Poisson equation,
∇ ·D = 4πρ, then tells us that D must change, as given explicitly by (15.16).

It was already stated in Section 15.2.1 that the experimental conditions pertaining
to the observation of solvation dynamics are different. The jump is not in the voltage
but in the charge distribution. This implies a jump in the dielectric displacement,
so, Eq. (15.13) is replaced by

D(t) =
{

0, t < 0,
D, t ≥ 0

(15.17)

In this case Eq. (15.12) describes the evolution of E under the constant displace-
ment D,

d

dt
E = − εs

εeτD

(
E − 1

εs
D
)

; t > 0 (15.18)

which implies that at equilibrium (dE/dt = 0), E = ε−1
s D. Immediately following

the jump in D, however, the electric field is E(t = 0) = ε−1
e D. The corresponding

solution of (15.18) is now

E(t) = 1

εs
D +

(
1

εe
− 1

εs

)
De−t/τL (15.19)
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where τL is the longitudinal relaxation time6

τL = εe

εs
τD (15.20)

We see that in this case the relaxation is characterized by the time τL which can be
very different from τD: For example in water εe/εs ∼= 1/40 and while τD ∼= 8 ps,
τL is of the order of 0.2 ps!

15.3 Linear response theory of solvation

The continuum dielectric theory used above is a linear response theory,7 as
expressed by the linear relation between the perturbation D and the response E ,
Eq. (15.1b). Thus, our treatment of solvation dynamics was done within a linear
response framework. Linear response theory of solvation dynamics may be cast in a
general form that does not depend on the model used for the dielectric environment
and can therefore be applied also in molecular (as opposed to continuum) level
theories. Here we derive this general formalism. For simplicity we disregard the
fast electronic response of the solvent and focus on the observed nuclear dielectric
relaxation.

Our starting point (see Eqs (11.1)–(11.3)) is the classical Hamiltonian for the
atomic motions

H = H0 + H1 (15.21)

where H0 describes the unperturbed system that is characterized by a given potential
surface on which the nuclei move, and where

H1 = −
∑

j

AjFj(t) (15.22)

is some perturbation written as a sum of products of system variables Aj and external
time dependent perturbations Fj(t). The detailed structure of A and F depend on
the particular experiment. If for example the perturbation is caused by a point
charge q(t) at position rj, q(t)δ(r − rj), we may identify Fj(t) with this charge

6 The origin of the terms “transverse” and “longitudinal” dielectric relaxation times lies in the
molecular theory of dielectric relaxation, where one finds that the decay of correlation functions
involving transverse and longitudinal components of the induced polarization vector are characterized
by different time constants. In a Debye fluid the relaxation times that characterize the transverse
and longitudinal components of the polarization are τD and τL = (εe/εs)τD, respectively. See, for
example, P. Madden and D. Kivelson, J. Phys. Chem. 86, 4244 (1982).

7 M. Maronelli and G. R. Fleming J. Chem. Phys. 89, 5044 (1988); E. A. Carter and J. T. Hynes
J. Chem. Phys. 94, 2084 (1991).
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and the corresponding Aj is minus the electrostatic potential at the charge posi-
tion, Aj = −�(rj).8 For a continuous distribution ρ(r, t) of such charge we may
write H1 = ∫

d3r�(r)ρ(r, t), and for ρ(r, t) = ∑
j qj(t)δ(r − rj) this becomes∑

j �(rj)qj(t). In this case ρ(r) is the “external force” and �(r) is the correspond-
ing system response. Alternatively we may find it convenient to express the charge
distribution in terms of point moments (dipoles, quadrupoles, etc.) coupled to the
corresponding local potential gradient tensors, for example, H1 will contain terms
of the form µ · ∇� and Q:∇∇�·, where µ and Q are point dipoles and quadrupoles
respectively.

In linear response theory the solvation energies are proportional to the cor-
responding products q〈�〉, µ · 〈∇�〉, and Q:〈∇∇�〉 where 〈 〉 denotes the usual
average of the given observable in the presence of the perturbation. For example,
the average potential 〈�〉 formed in response to a charge q is proportional in linear
response to this charge q, 〈�(q)〉 = αq. The energy needed to create the charge q
is therefore

∫ q

0
dq′〈�(q′)〉 =

∫ q

0
dq′αq′ = 1

2
αq2 = 1

2
q〈�〉 (15.23)

We now apply linear response theory to the relaxation that follows a sudden
change in the external force, see Section 11.1.2. Focusing on the simple case where
H1 = −AF(t), we consider F(t) of the following form

F(t) =
{−q, t < 0,

0, t ≥ 0
(15.24)

which amounts to a sudden increase of the charge at a given position, where−A = �

is the potential in that position. We will use Eq. (11.15) with B replaced by� because
we are interested in the response of the electrostatic potential at the position of the
charge. We also insert a slight change in notation: 〈B〉0, the average observable B
under the Hamiltonian H0, is also the value approached by 〈B(t)〉 at t → ∞. We
can therefore write 〈B(∞)〉 instead of 〈B〉0. Equation (11.15) now becomes, using
B = �, A = −�, and F = −q

〈�(t)〉 − 〈�(∞)〉 = βq〈δ�(0)δ�(t)〉0 (15.25)

8 In Chapter 11 we discussed examples with essentially same perturbation H1 but with a different
assignment of terms: the electrostatic field was the external perturbation and the coordinate of a
charged particle was the internal dynamic variable.
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The subscript 0 on the right denotes that the average is taken with the unper-
turbed Hamiltonian, here taken as H0 — the Hamiltonian at t > 0, however,
within linear response theory we could equally take the Hamiltonian H =
H0 + H1 for this purpose. Mathematically this is seen from the fact that
βq(〈δ�(0)δ�(t)〉H0 − 〈δ�(0)δ�(t)〉H ) must be of order q2. Physically, we could
repeat the calculation, going from F(t) = 0 for t < 0 to F(t) = −q for t > 0,
thereby interchanging the roles of H0 and H without changing the linear response
result.

We have found that upon a sudden change of the charge at some point in the
solvent by q the potential at that point changes according to

〈�(t)〉 − 〈�(∞)〉 = q

kBT
(〈�(0)�(t)〉 − 〈�〉2) = q

kBT
〈δ�(0)δ�(t)〉 (15.26)

The left-hand side of (15.26) is, by Eq. (15.23), a linear response approximation
of the corresponding solvation energies difference. This makes it possible for us to
write a linear response expression for the solvation function which is defined by

S(t) ≡ Esolv(t)− Esolv(∞)

Esolv(0)− Esolv(∞)
(15.27)

In linear response this becomes

S(t)LR 〈�(t)〉 − 〈�(∞)〉
〈�(0)〉 − 〈�(∞)〉 (15.28)

and using (15.26) we find

S(t)LR C(t) ≡ 〈δ�(0)δ�(t)〉
〈δ�2〉 (15.29)

The nonequilibrium solvation function S(t), which is directly observable (e.g. by
monitoring dynamic line shifts as in Fig. 15.2), is seen to be equal in the linear
response approximation to the time correlation function, C(t), of equilibrium fluctu-
ations in the solvent response potential at the position of the solute ion. This provides
a route for generalizing the continuum dielectric response theory of Section 15.2
and also a convenient numerical tool that we discuss further in the next section.

The relationship (15.29) was found for the case of charge solvation. Solvation
of higher moments of a given charge distribution can be treated in the same way.
For dipole solvation we will find a similar relationship, except that the electrostatic
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potential in C(t) is replaced by the electric field (because H1 = q� is replaced by
H1 = −µ · E). Similarly, higher gradients of the electrostatic potential will enter
when solvation of higher moments of the charge distribution is considered.

15.4 More aspects of solvation dynamics

There are two ways in which polar solvation dynamics enters into our considera-
tions. First, it must play an essential role in the dynamics of charge rearrangement
processes, including and foremost the very important class of charge transfer reac-
tions that are discussed in the next chapter. Second, we can use this process to
learn about the short-time dynamics of the solvent themselves. With the second
goal in mind we regard the solute molecule as a probe that is used, aided by a
fast excitation and detection system, to study the solvent. An ideal probe would be
an inert body of controllable size whose charge state can be changed at will. We
could use it to study the limitations of the continuum dielectric picture of solvation
dynamics, the adequacy or inadequacy of linear response theory and the nature
of the solvent motions responsible for solvation dynamics on different time and
length scales. Practically, the charge distribution of a molecular probe is changed
by optical excitation. Realistic probes that absorb in convenient spectral ranges
are however large molecules, forcing us to address other questions concerning the
effect of the probe on the observed results. How does the probe size and the detailed
charge distribution within it affect the results? How much of the observed signal
results from the probe intramolecular vibrational relaxation9 and what is the role
played by specific probe–solvent interactions.

There are several ways by which these issues can be addressed:

(1) Continuum dielectric models of solvation can be generalized to include some
aspects of the solvent molecularity. This has lead to the dynamic mean spher-
ical approximation10 which improves the agreement between these kind of
theories and experimental observations.11

(2) The linear response formalism discussed in the previous section makes
it possible to develop molecular level theoretical approaches to solvation

9 In Chapter 11 we discussed examples with essentially same perturbation H1 but with a different
assignment of terms: the electrostatic field was the external perturbation and the coordinate of a
charged particle was the internal dynamic variable.

10 P. G. Wolynes, J. Chem. Phys. 86, 5133 (1987); I. Rips, J. Klafter, and J. Jortner, J. Chem. Phys.
89, 4288 (1988); A. L. Nichols and D. F. Calef, J. Chem. Phys. 89, 3783 (1988).

11 M. L. Horng, J. A. Gardecki, A. Papazyan, and M. Maroncelli, J. Phys. Chem. 99, 17311 (1995).



More aspects of solvation dynamics 547

S 0 → S +

S +→ S 0

0.5
0.0

1.0

1.0

S(
t)

,C
(t

)
S(

t)
,C

(t
)

0.0 1.0
Time (ps)

Fig. 15.3 The nonequilibrium solvation function S(t) (full lines) and the solvation correlation func-
tions C(t) for a model solute ion of diameter 3.1 Å in acetonitrile computed with the positive
solute (dotted line) and neutral solute (dashed line). (From M. Maroncelli, J. Chem. Phys. 94, 2084
(1991).)

dynamics.12 Such methods have the capacity to address specific aspects of
the solvent molecular structure.

(3) Molecular dynamic simulations are very useful for solvation dynamic stud-
ies. In contrast to the difficulties described in applying numerical methods
to the problems of vibrational relaxation (Section 13.6) and barrier cross-
ing (Section 14.7), solvation dynamics is a short-time downhill process
that takes place (in pure simple solvents) on timescales easily accessible to
numerical work.

Such simulations can lead to new physical insight. Dielectric relaxation on
timescales of ps and longer is a diffusive process. This implies that documented
dielectric relaxation times inferred from relatively long-time measurements reflect
solvent diffusive motion. The short timescales now accessible by ultrafast spec-
troscopy are shorter than characteristic times for solvent–solvent interactions, and
dielectric response data may not contain the fast, and perhaps short lengthscale
components relevant to this motion.

Figure 15.3 shows the results of computer simulations of solvation of a model ion
in acetonitrile (CH3CN). The simulations produce the solvation function S(t) for

12 See, for example, N. Nandi, S. Roy, and B. Bagchi, J. Chem. Phys. 102, 1390 (1995);
H. L. Friedman, F. O. Raineri, F. Hirata, and B. C. Perng, J. Stat. Phys. 78, 239 (1955).
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Fig. 15.4 The experimental solvation function for water using sodium salt of coumarin-343 as a
probe. The line marked “expt.” is the experimental solvation function S(t) obtained from the shift in
the fluorescence spectrum. The line marked “�q” is a simulation result based on the linear response
function C(t). The line Marked S0 is the linear response function for a neutral atomic solute with
Lennard Jones parameters of the oxygen atom. (From R. Jimenez, G. R. Fleming, P. V. Kumar, and
M. Maroncelli, Nature 369, 471 (1994).)

the transitions 0 → +e and +e → 0, as well as the solvation correlation function
C(t) computed for a neutral and a charged solute. The differences between the
curves show interesting deviations from linear response functions, but the most
interesting observation is the prominent fast (50–100 fs) component that account
for about 70% of the total solvation energy13 and was not predicted at the time
by dielectric solvation theory. Close examination of the simulated trajectory shows
that this fast component results mainly from ballistic rotations of solvent molecules
in the first solvation shell about the solute, on a timescale (following the charging of
the probe ion) faster than intermolecular collisions. Figure 15.4 shows experimental
data for Coumarin anion in water, showing that a fast (∼50 fs) relaxation component
indeed shows up in such processes.

13 This number may be artificially enhanced because of the small sample, a few hundred solvent
molecules, used in the simulations.
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Fig. 15.5 The first observation of hydration dynamics of electron. Absorption profiles of the electron
during its hydration are shown at 0, 0.08, 0.2, 0.4, 0.7, 1, and 2 ps. The absorption changes its character
in a way that suggests that two species are involved, the one that absorbs in the infrared is generated
immediately and converted in time to the fully solvated electron that absorbs near 700 nm. (From
A. Migus, Y. Gauduel, J. L. Martin, and A. Antonetti, Phys. Rev Lett. 58, 1559 (1987).) For later
developments in this subject see, for example, K. Yokoyama, C. Silva, D. Hee Son, P. K. Walhout,
and P. F. Barbara, J. Phys. Chem. A, 102, 6957 (1998).)

15.5 Quantum solvation

How would solvation proceed if the solvated particle is an electron rather than
essentially classical ion or dipole?

Experimentally, electrons can be injected into and dissolve in molecular liquids.
In liquid ammonia solvated electrons form blue, relatively stable, solutions. In
water, solvated electrons can be created by photoionizing solute anions or even
neat water. These electrons eventually disappear by recombining with the parent
species, but live long enough as distinct species with a typical absorption peak near
7000 Å. Provided that the injection and subsequent probing are done with ultrafast
time resolution, it is possible to follow the solvation process of the electron via its
evolving spectrum.

This fascinating subject has attracted much experimental and theoretical effort
for the past two decades, but a conclusive word may still lie ahead. We will not
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discuss it in detail except to leave the reader with some observations on the differ-
ence between quantum and classical solvation. For definiteness, we will compare
the solvation of an electron to that of an ion in, say, water.

(1) The ion size remains practically constant during the solvation. The electron
size, measured for example by

〈(r − 〈r〉)2〉1/2 = 〈�(r, t)|(r − 〈r〉)2|�(r, t)〉1/2 (15.30)

where �(r, t) is the electron wavefunction, decreases substantially during
the solvation. Electron solvation is in fact a localization process, in this case
by polaron formation.14

(2) Related to (1) is the fact that, while ion solvation is basically a relaxation
of its potential energy, electron solvation involves both potential and kinetic
energies. In fact, two forms of kinetic energy are involved at different stages
of the process. An electron is usually injected into the liquid with excess
kinetic energy associated with its center of mass motion, and proceeds to
lose it at the initial stage of its accommodation in the liquid. As localization
(or polaron formation) proceeds, the kinetic energy of the electron actually
increases due to its localization.

(3) Ion solvation is essentially a classical process (though in water there must
be some quantum effect associated with the motion of hydrogen atoms) that
proceeds on a well-defined potential surface. Electron solvation involves
several electronic states and proceeds by a combination of adiabatic relaxa-
tion on a single potential surface and nonadiabatic crossing between different
surfaces. Indeed, theoretical analysis suggests that the two species whose
spectroscopic signatures are seen in Fig. 15.5 are ground and excited states
of the electron in its forming solvent cavity.

In addition to the intrinsic interest of quantum solvation phenomena, the process
of electron solvation offers another example of a localized quantum process taking
place in an otherwise essentially classical environment.15 We have encountered a
similar situation in the vibrational relaxation of high-frequency diatomic molecules

14 A polaron is an electron attached to, and moving with, the polarization induced by it in a polar
environment. This concept is used mostly in solid state physics; the liquid analog is the solvated
electron.

15 F. Webster, P. J. Rossky, and R. A. Friezner, Comp. Phys. Comm. 63, 494 (1991); O. V. Prezhdo
and P. J. Rossky, J. Chem. Phys. 107, 5863 (1997); E. Neria and A. Nitzan, J. Chem. Phys. 99, 1109
(1993).



Further reading 551

(Chapter 13) and will see this again in electron transfer reactions discussed in the
next chapter.

Further Reading

B. Ladanyi and M. S. Skaf, Annu. Rev. Phys. Chem. 44, 335 (1993).
M. Maroncelli, J. Mol. Liq. 57, 1 (1993).
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ELECTRON TRANSFER PROCESSES

I might not know a thing about atoms,
But this much I can say, from what I see
Of heaven’s way and many other features:
The nature of the world just could not be
A product of the god’s devising; no,
There are too many things the matter with it…

Lucretius (c. 99–c. 55bce) “The way things are”
translated by Rolfe Humphries, Indiana University Press, 1968

Electron transfer processes are at the core of all oxidation–reduction reactions,
including those associated with electrochemistry and corrosion. Photoelectrochem-
istry and solar energy conversion, organic light emitting diodes, and molecular
electronic devices, all dominated by electron transfer and electron transmission in
molecular systems, are presently subjects of intensive research at the interface of sci-
ence and technology. Similarly, electron transfer processes constitute fundamental
steps in important biological phenomena such as photosynthesis and vision. This
chapter is an introduction to the general phenomenology and theoretical concepts
associated with these processes.

16.1 Introduction

Electron transfer is one of the most important, and most studied, elementary chem-
ical processes. This most fundamental oxidation–reduction process lies at the core
of many chemical phenomena ranging from photosynthesis to electrochemistry and
from the essential steps governing vision to the chemical processes controlling cor-
rosion. As other molecular phenomena that involve charges and charged particles,
the natural environment for such processes is a polar solution; the solvation energy
associated with the polarization of the environment is a major component in the
energetics of such processes. Noting that in vacuum typical molecular ionization
potentials are of the order of (100–400)kBT for T = 300 K, it appears that the
stabilization of ionic species by the solvent environment is the reason why electron
transfer processes in solution can take place at room temperature.



Introduction 553

When we try to go beyond this general statement, questions arise. Consider for
example, the following self-exchange electron transfer reaction:

Fe+3 + Fe+2 → Fe+2 + Fe+3 (16.1)

or the cross electron transfer reaction

Fe+2 + Ce+4 → Fe+3 + Ce+3 (16.2)

both in, say, aqueous environment. In the first reaction the reactants and the products
are the same (they can still be distinguished by using different isotopes), while in the
second they are different. We will see later that the relative thermodynamic stability
of reactants and products influences the reaction rate in an important way. Com-
paring these reactions to those discussed in Chapter 14, several other observations
can be made:

1. No bonds are formed or broken in these reactions.
2. The reaction results in a substantial rearrangement of charge density.
3. As a consequence of (2), the reaction is expected to involve a substantial

configurational change in the surrounding polar solvent.
4. Because electrons and nuclei move at very different speeds, their relative

characteristic timescales may affect the reaction dynamics.

Let us consider the last point. The reader is already familiar with two important
implications of the timescale separation between electronic and nuclear motions
in molecular systems: One is the Born–Oppenheimer principle which provides the
foundation for the concept of potential energy surfaces for the nuclear motion. The
other is the prominent role played by the Franck–Condon principle and Franck–
Condon factors (overlap of nuclear wavefunctions) in the vibrational structure of
molecular electronic spectra. Indeed this principle, stating that electronic trans-
itions occur at fixed nuclear positions, is a direct consequence of the observation
that electronic motion takes place on a timescale short relative to that of the
nuclei.

Accepting this as a guiding principle immediately points to an important ener-
getic consequence: In the reactions (16.1) or (16.2) the structure of the polar solvent
surrounding the reactants is very different from the corresponding structure about
the products. This is most easily seen in the case where one side of the reaction
involves neutral species, for example, A → A+, see Fig. 15.1. Consequently, if the
electronic charge distribution changes on a timescale in which the solvent has not
moved, the solvent configuration is no longer the most stable configuration. The
free energy that would be released in the subsequent solvent relaxation to its stable
configuration under the new charge distribution (the second stage in Fig. 15.1;
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q =1q = 0 q = 0q =1
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q = 0 q =1 q =1 q = 0

Fig. 16.1 The Marcus picture of electron transfer reaction. The initial and final states are described by
the two upper diagrams, however the transition between them cannot take place directly because such
a direct transition will involve simultaneous motions of electron and solvent dipoles. Instead the trans-
itions proceeds through steps 1—preparation of a suitable solvation configuration, 2—electron transfer
at fixed solvent polarization, and 3—relaxation of the solvent polarization in the final electronic
state.

see also Fig. 16.1) is called the solvent reorganization energy of the given charge
transfer process. This picture seems to suggest that the larger is the solvent reor-
ganization energy the more uphill is the charge redistribution process, implying
larger activation energy and a smaller rate. Indeed, in the early days of electron
transfer studies such correlations were discussed. For example, electron transfer
processes involving small ions are often slower than similar processes with bulky
ions, perhaps because a smaller ion size, that is, a shorter distance between the
centers of the ion and the nearest solvent molecules, implies a stronger Coulomb
field and consequently larger reorganization energy.

There is however a fundamental flaw in this picture: Because the envisioned
fast electronic transition, as described, would not conserve energy. In the reaction
(16.1) it would generate a system with excess energy equal to the reorganization
energy, of order of 0.1–1 eV in aqueous solutions, considerably larger than kBT at
room temperature. The same situation is encountered in photoinduced electronic
transitions, however there the needed energy is supplied by the absorbed photon.
In the present case, where the only available energy is thermal, the mechanism has
to be different.

This observation, first made by Marcus, has led to his Nobel Prize work on
electron transfer. The basic idea is simple: In a closed system with two modes
of motion, one fast and one slow, a change of state of the fast mode can take
place only in such configuration(s) of the slow mode for which the fast transition
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is energy-conserving.1 In our particular example, the transition between the two
electronic states involved in the electron transfer reaction can take place only in
nuclear configurations for which these states are degenerate. The subspace of these
configurations therefore constitutes the transition state for the reaction and the
dynamics that determines the rate includes the nuclear dynamics that brings the
system to the transition state. The overall processes will include, in addition to
the electron transfer—step 2 in Fig. 16.1—also the initial and final changes in the
nuclear configuration—steps 1 and 3 in that figure.

Problem 16.1. Explain the following statement: In a symmetrical electron transfer
process, where the donor and acceptor species comprise identical ionic centers,
for example, Eq. (16.1), the “transition state” is given by all configurations that
are in equilibrium with the donor and acceptor species when both are carrying a
charge q = 0.5 (qdonor + qacceptor).

16.2 A primitive model

To see the consequence of Marcus’ observation let us first consider a simple example
in which the solvent configuration is represented by a single nuclear coordinate X .
We consider two electronic states, a and b, that are assumed to be coupled to each
other by the full electronic Hamiltonian of the system, that is, Ha,b ≡ Va,b �= 0.2

Each electronic state corresponds to a stable solvent configuration—a point along
the X coordinate at which the electronic energy, that is, the potential energy
surface for the nuclear motion, is a minimum. We further assume that the elec-
tronic energy is a quadratic function of the deviation from this minimum. Thus,
the two electronic states a and b correspond to two parabolic nuclear poten-
tial surfaces, Wa(X ) and Wb(X ), whose minima are at the stable configurations
Xa and Xb. In classical mechanics these surfaces determine the probability for
fluctuations of the solvent configuration from its most stable state, for example,
Pa(X ) ∼ exp(−β(Wa(X )− Wa(Xa)). These two surfaces can differ in their min-
imum energy and in their minimum energy configuration, however we assume for

1 Obviously any process in a closed system must conserve the overall energy. The transition
described here has to conserve the energy of the fast mode since, because of the timescale separation,
energy cannot be exchanged between the two modes.

2 This may result, for example, when considering electron transfer between two molecular species
and working in a representation derived from the eigenstates of a system in which these species do not
interact (e.g. are far from each other). The coupling results from the residual interaction that increases
when the two species come closer to each other.
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Fig. 16.2 A model for the energetics of electron transfer reactions. The two potential surfaces are
associated with two electronic states that transform to each other when the electron is transferred. The
coordinate X stands for the nuclear configuration. The model may be characterized by the curvature
of these surfaces, by the energy gap �E between the two electronic origins and by the reorganization
energy Er . Other important parameters that can be expressed in terms of these are the equilibrium
configuration shift Xb − Xa and the activation energy EA.

simplicity that their curvatures are the same. Thus (see Fig. 16.2)

Wa(X ) = Ea + (1/2)K(X − Xa)
2; Wb(X ) = Eb + (1/2)K(X − Xb)

2 (16.3)

As argued above, starting, say, in state a, the coupling Va,b cannot affect a trans-
ition to state b unless the electronic energy is conserved, that is, when the two poten-
tial surfaces cross at X = Xtr ≡ (Eb − Ea + (1/2)K(X 2

b − X 2
a ))/K(Xb − Xa). In

the neighborhood of this configuration the electronic states are nearly degenerate
and the electron transfer process can take place. The configuration represented by
Xtr is therefore the transition state for this reaction and the activation energy for the
reaction a → b is Wa(Xtr)− Wa(Xa).3 This yields

EA = [(Ea − Eb)− Er]2
4Er

; Er = (1/2)K(Xa − Xb)
2 (16.4)

Note that Er is the amount of nuclear energy which should be released following
a vertical (i.e. without changing X ) electronic transition from state a to b (in fact

3 In fact, the degeneracy at Xtr is removed by the coupling Va,b (the noncrossing rule). This correction
may be important in the adiabatic limit (see Section 2.4) where the activation energy along the adiabatic
surface is (cf. Eq. (2.19)) EA − Va,b.
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also from state b to a). It is therefore, by definition, the reorganization energy in
this model.

As a model for a rate process, the surface crossing picture described above
can be treated within the Landau–Zener theory (Section 2.4) that yields the
probability that a transition between the two electronic states occurs during one
dynamical crossing event. Here Xtr stands for R∗ of Section 2.4. Using this
theory to evaluate the rate of such electron transfer processes involves several
assumptions:

1. The basic assumptions of the Landau–Zener theory need to be satisfied.
These involve the applicability of classical mechanics (e.g. the neglect of
tunneling) for the nuclear dynamics and the locality of the curve crossing
event.

2. Thermal relaxation (solvent reorganization) is fast relative to the reaction rate,
so that the distribution of nuclear configurations remains thermal throughout
the reaction.

3. The dynamical interaction with the solvent can be disregarded on the time-
scale of a single surface crossing event. Furthermore, subsequent crossing
events may be treated independently of each other. This makes it possible to
use the Landau–Zener expression for the transition probability at each such
event.

Note that assumptions (2) and (3) are about timescales. Denoting by τr, τs, and
τLZ the characteristic times (inverse rates) of the electron transfer reaction, the
solvent relaxation, and the Landau–Zener transition, respectively, (the latter is the
duration of a single curve-crossing event) we are assuming that the inequalities
τr 
 τs 
 τLZ hold. The validity of this assumption has to be addressed, but for
now let us consider its consequences. When assumptions (1)–(3) are satisfied we
can invoke the extended transition-state theory of Section 14.3.5 that leads to an
expression for the electron transfer rate coefficient of the form (cf. Eq. 14.32)

k =
∞∫

0

dẊ Ẋ P(Xtr , Ẋ )Pb←a(Ẋ ) (16.5)

where Pb←a(Ẋ ) is the Landau–Zener transition probability, Eqs (2.47) and (2.48),

Pb←a(Ẋ ) = 1 − exp
{
−2π |Va,b|2

�|Ẋ�F |
}

X=Xtr

(16.6)
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and where (for the a → b transition)

P(Xtr , Ẋ ) =
(
βm

2π

)1/2

e−βmẊ 2/2 exp(−βEA)∫ Xtr
−∞ dX exp(−β(Wa(X )− Ea))

= β

2π
(mK)1/2 exp(−βEA)e−βmẊ 2/2 (16.7)

is the Boltzmann probability density to reach the configuration Xtr with speed Ẋ .
Here m is the mass associated with the reaction coordinate X . The last equality in
(16.7) is obtained by replacing Xtr by ∞ in the integral over X , an approximation
that is valid if EA is large relative to kBT .

Problem 16.2. Show that for the present model |�F | in Eq. (16.6) is given by
|�F | = K(Xb − Xa).

In the adiabatic limit (see Section 2.4) Pb←a → 1 and Eq. (16.5) yields the standard
transition state theory result, Eq. (14.16)

kad = ωs

2π
e−βẼA ; ωs =

(
K

m

)1/2

(16.8)

where ẼA = EA − |Va,b| is the barrier height on the adiabatic potential surface. In
the nonadiabatic limit we get (cf. Eq. (14.36))

kna =
√

πβK

2

|Va,b|2
�|�F |X=Xtr

e−βEA ; |�F | = K(Xb − Xa) (16.9)

Remarkably, this result depends on the force constant K , but not on the mass m,
and its dependence on the square of the nonadiabatic coupling characterizes it as a
perturbation theory expression.

In the continuation of our discussion we face two tasks. First, we need to replace
the simple two-parabola model described above by a realistic model that uses input
from the energetic and dynamic properties of the solvent. Second, we have to
provide a reliable description of the process that takes place when the electronic
states become nearly degenerate, that is, of the electronic transition itself, taking
into account the quantum mechanical nature of motion on two coupled potential
energy surfaces.
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16.3 Continuum dielectric theory of electron transfer processes

16.3.1 The problem

An electron transfer process is essentially a change in the electronic charge distri-
bution in the molecular system. For example, an electron transfer between species
A and B is schematically described by the following transition from the electronic
states 0 and 1

q(0)
A q(0)

B → q(1)
A q(1)

B (16.10)

Charge conservation implies that q(0)
A + q(0)

B = q(1)
A + q(1)

B .
As discussed above, this process involves a substantial reorganization of the

surrounding dielectric environment. In the last section each electronic state was
associated with a parabolic potential surface—a simple way to relate each such
state to a stable configuration of the environment and to the energetic cost of devi-
ating from it. However, the physical significance of such a surface is as yet unclear.
In particular, the coordinate X used to express distance in Fig. 16.2 has not been spe-
cified. We have, it appears, a reasonable abstract picture that is still unconnected to
the physical world. Marcus theory of electron transfer makes this connection using
a continuum dielectric picture of the polar solvent. This macroscopic and classical
approach to the energetics is then supplemented, when needed, by a dynamical
theory that describes the electronic transition itself.

As in our simple treatment of solvation dynamics in Chapter 15, the solvent in
Marcus theory is taken as a dielectric continuum characterized by a local dielectric
function ε(ω). Thus, the relation between the source, D (electrostatic displacement)
and the response, E (electric field) is (cf. Eqs (15.1) and (15.2))

D(ω) = ε(ω)E(ω)

D(t) =
t∫

−∞
dτε(t − τ)E(τ )

(16.11)

Following Marcus, we simplify this picture by assuming that the solvent is char-
acterized by only two timescales, fast and slow, associated, respectively with
its electronic and the nuclear response. Correspondingly, the solvent dielectric
response function is represented by the total, or static, dielectric coefficient εs and
by its fast electronic component εe (sometimes called optical response and related
to the refraction index n by εe = n2). εs includes, in addition to the fast electronic
component, also contributions from solvent motions on slower nuclear timescales:
Translational, rotational, and vibrational motions. The working assumption of the
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Marcus theory is that the actual change in the electronic charge distribution of the
ET system is fast relative to the nuclear motions underlying the static response,
but is slow relative to the electronic motions which determine εe. In other words
the electron transfer occurs at constant nuclear polarization, or at fixed nuclear
positions. This is an expression of the Franck–Condon principle in this continuum
dielectric theory of electronic transitions.

Problem 16.3. If the electronic degrees of freedom did not exist, the only contri-
bution to εs would come from nuclear motions, so in this case εs can be identified
as the nuclear contribution εn. However, in the real system we cannot identify
εs−εe as the nuclear contribution to the dielectric response, that is, εn �= εs−εe.
Explain why.

16.3.2 Equilibrium electrostatics

Let us examine the electrostatic consequence of this assumption. The Poisson
equation, ∇ ·D = 4πρ gives the electrostatic displacement D for a given electro-
static charge density ρ. This is the bare electrostatic field, a free space property,
which is not related in any way to the presence of the solvent. The electrostatic
field E is determined by the solvent response via the relation

E = D − 4πP, (16.12)

where P is the polarization (dipole density) induced in the solvent. For simplicity
of notation we will assume that the dielectric response of the solvent is a scalar, so
all relations between D, E , and P may be written for the corresponding magnitudes.
At equilibrium P is related to E through the relation

P = χE = εs − 1

4π
E (16.13)

so that

D = εsE (16.14)

The polarization P can be viewed as originating from two sources: Electronic (e)
and nuclear (n): P = Pn + Pe. We may write

Pe = εe − 1

4π
E ; therefore Pn = εs − εe

4π
E (16.15)
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16.3.3 Transition assisted by dielectric fluctuations

Let us reiterate the Marcus dilemma stated in Section 16.1. In vacuum, to remove
a charge from the donor and put it on the acceptor is a process of very large
activation energy. In solution, if we try to execute such a process without solvent
motion the situation will be worse: The solvent is initially polarized in response to
the original charge distribution of the donor/acceptor pair and an attempt to change
this distribution in a frozen solvent will take us to a state of much higher energy.
Since the electron transition itself occurs at fixed nuclear positions, it is not clear
how this can possibly happen.

The answer to this dilemma is that the electronic transition can take place if
the following conditions are satisfied: (1) the energies of the states immediately
before and after the transition are equal, and (2) nuclear positions (therefore the
nuclear polarization Pn) are fixed. Therefore, this transition can occur only after a
fluctuation in the nuclear positions into a configuration in which condition (1) is
satisfied. This fluctuation has to occur before the electronic transition took place,
namely at constant charge distribution.

We are therefore interested in changes in solvent configuration that take place
at constant solute charge distribution ρ that have the following characteristics:

1. Pn fluctuates because of thermal motion of solvent nuclei;
2. Pe, as a fast variable, satisfies the equilibrium relationship Pe =

((εe − 1)/4π)E ;
3. D = constant (depends on ρ only).

Note that the relations E = D − 4πP; P = Pn + Pe are always satisfied per
definition. However, in general D �= εsE ; equality between these quantities holds
only at equilibrium.

16.3.4 Thermodynamics with restrictions

How do we calculate the probability of a fluctuation about an equilibrium state?
Consider a system characterized by a classical Hamiltonian H (rN , pN ) where pN

and rN denote the momenta and positions of all particles. The phase space probab-
ility distribution is f (rN , pN ) = Q−1 exp(−βH (rN , pN )), where Q is the canonical
partition function,

Q =
∫∫

drN dpN e−βH (rN ,pN ) = e−βF (16.16)

and F is the Helmholtz free energy. We may also write a partition function for a
system in which a particular dynamical variable, X (rN , pN ) is restricted to have a
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fixed value X̄

Q̄(X̄ ) =
∫∫

drN dpN e−βH (rN ,pN )δ(X̄ − X (rN , pN )) ≡ e−βF̄(X̄ ) (16.17)

Q and Q̄ are obviously related by

Q =
∫

dX̄ Q̄(X̄ ) =
∫

dX̄ e−βF̄(X̄ ) (16.18)

Now, by definition, the probability PX̄ (X̄ ) that the dynamical variable X (rN , pN )

will assume the value X̄ is given by

PX̄ (X̄ ) =
∫∫

drN dpN f (rN , pN )δ(X̄ − X (rN , pN )) = Q̄(X̄ )/Q (16.19)

or
PX̄ (X̄ ) = e−β[F̄(X̄ )−F] (16.20)

F̄(X̄ )−F is the difference between two equilibrium free energies: F is the regular
equilibrium free energy of the system and F̄(X̄ ) is the free energy of a fictitious equi-
librium state in which the dynamical variable X was restricted to have a particular
value X̄ .

Note that the above formalism could be repeated for a system characterized
not by given temperature and volume but by given temperature and pressure. This
would lead to a similar result, except that the Helmholtz free energies F and F̄ are
replaced by Gibbs free energies G and Ḡ that are defined in an analogous way.

16.3.5 Dielectric fluctuations

We are interested in fluctuations of the nuclear polarization. As we have just seen,
the probability for such a fluctuation is determined by the difference between the
free energy of our equilibrium system and the free energy of a fictitious equilibrium
state in which Pn was restricted by some means to a given value. In addition,
we assume that the fluctuations relevant to our process are those for which the
instantaneous value of Pn corresponds to some charge distribution ρ of the solute
that will produce this value of Pn at equilibrium. We are particularly interested in
such fluctuations of Pn because, as will be seen, these are the ones that lead to the
charge rearrangement.

Specifically, let the initial state of our system (“state 0”) be characterized by
an electronic charge distribution ρ0 and by the nuclear polarization Pn0 that is in
equilibrium with it. In the final state (“state 1”) the electronic charge distribution
is ρ1 and the nuclear polarization is Pn1. Starting in state 0 we are interested in
fluctuations in the nuclear polarization about Pn0 in the “direction” from ρ0 to ρ1.
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We will assign to such fluctuations a parameter θ that defines a fictitious charge
distribution ρθ according to

ρθ = ρ0 + θ(ρ1 − ρ0) (16.21)

In turn ρθ defines a nuclear polarization Pnθ as that polarization obtained in an
equilibrium system (state θ ) in which the charge distribution is ρθ . Now, in state 0
(where ρ = ρ0) this Pnθ is a fluctuation from equilibrium that is characterized by
the parameters ρ1 and θ .

To obtain the probability for such a fluctuation we introduce another state, state
t, which is a fictitious restricted equilibrium system in which (1) the charge distribu-
tion is ρ0 and (2) the nuclear polarization is Pnθ , that is same as in the equilibrium
state θ in which the charge density is ρθ . We want to calculate the free energy
difference, �G0→t , between the restricted equilibrium state t and the fully equilib-
rated state 0. This is the reversible work needed to go, at constant temperature and
pressure, from state 0 to state t.

The required difference is calculated in terms of two other free energy
differences:

�G0→t = �Gθ→t −�Gθ→0 (16.22)

Three states are involved here: The two equilibrium states 0 and θ , and the
nonequilibrium state t. Consider these states in more detail:

Equilibrium state 0.

ρ = ρ0 implies D = D0 such that ∇ ·D0 = 4πρ0

E = E0 satisfies E0 = ε−1
s D0 and E0 = D0 − 4πP0

P0 = P0n + P0e where

P0e = (εe − 1)

4π
E0 ; P0n = (εs − εe)

4π
E0 ; P0 = (εs − 1)

4π
E0

(16.23)

Equilibrium state θ .

ρ = ρθ = ρ0 + θ(ρ1 − ρ0) implies D = Dθ such that ∇ ·Dθ = 4πρθ

E = Eθ satisfies Eθ = ε−1
s Dθ and Eθ = Dθ − 4πPθ

Pθ = Pθn + Pθe where

Pθe = (εe − 1)
4π

Eθ ; Pθn = (εs − εe)

4π
Eθ ; Pθ = (εs − 1)

4π
Eθ

(16.24)
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These are the same relations as in Eq. (16.23), with θ replacing 0 everywhere.

Restricted equilibrium state t.

ρ = ρt = ρ0 implies D = Dt = D0 such that ∇ ·D0 = 4πρ0

E = E t satisfies E t = Dt − 4πPt text(but not E t = ε−1
s Dt)

Pt = Ptn + Pte where

Pte = εe − 1

4π
E t ; Ptn = εs − εe

4π
Eθ

(16.25)

Note that ρ, D, E , and P are all functions of position. Two types of relation-
ships appear in these equations: First (terms with white background) there are
those that stem from electrostatic definitions. Another type (terms with light-grey
background) are constitutive linear response relationships that are assumed valid at
equilibrium. In the equilibrium states described by Eqs (16.23) and (16.24) both are
satisfied. The restricted equilibrium state described by Eq. (16.25) is characterized
by the fact that the nuclear polarization is not “allowed” to relax to its equilibrium
value for the given electric field, but instead restricted to the same value it would
have in the equilibrium state θ (last equation in (16.25)with dark-grey background).

To see the consequences of these relationships we will focus first on a particular
simple example, where the system contains one spherical ion of charge q and radius
a in equilibrium with an infinite dielectric solvent characterized by the dielectric
constants εe and εs. The different states “0” and “θ” correspond to different values
of the ion charge, q0 and qθ .

16.3.5.1 Calculation of �Gθ→t

The free energy difference �Gθ→t is the reversible work associated with the trans-
ition from state θ to state t at constant temperature and pressure. In the initial state
θ the potential on the surface of the ion is written as a sum of a bare (vacuum) term
and a term derived from the solvent polarization

�θ = qθ

εsa
= qθ

a
+

(
1

εs
− 1

)
qθ

a
(16.26)

If we consider the associated radial field

qθ

εsa2 =
qθ

a2 +
(

1

εs
− 1

)
qθ

a2 (16.27)

the first term on the right is the displacement field D and the second one is 4πP. Now
add to the ion a small amount, ξ , of charge, under the condition that the nuclear
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polarization remains fixed. Under this condition only the electronic polarization
responds. The resulting potential on the ion surface is

�(ξ) = qθ

a
+

(
1

εs
− 1

)
qθ

a
+ ξ

a
+

(
1

εe
− 1

)
ξ

a
= qθ

εsa
+ ξ

εea
(16.28)

When this charging process proceeds until ξ = q0 − qθ the state of the system will
become t. To get the reversible work that affects this change we need to integrate
�(ξ)dξ from ξ = 0 to ξ = q0 − qθ . This leads to

�Gθ→t =
q0−qθ∫

0

dξ�(ξ) = qθ (q0 − qθ )

εsa
+ (q0 − qθ )

2

2εea
(16.29)

We may substitute here relation (16.21) in the form qθ = q0 + θ(q1 − q0) to get

�Gθ→t = q0(q0 − q1)

εsa
θ + (q1 − q0)

2

a

(
1

2εe
− 1

εs

)
θ2 (16.30)

16.3.5.2 Calculation of �Gθ→0

The process θ → 0 is a transition between two unrestricted equilibrium states,
and the change in free energy is again calculated from the corresponding reversible
work. Consider a general equilibrium state θ ′ with charge qθ ′ . The potential on the
ion surface in this state is:

�′
θ =

qθ ′

εsa
(16.31)

and the charging work is
∫ q0

qθ
dqθ ′�θ ′ . This leads to

�Gθ→0 = (q0 − q1)q0

εsa
θ − (q0 − q1)

2θ2

2εsa
(16.32)

16.3.5.3 Evaluation of �G0→t and its significance

Finally, using (16.22), (16.30), and (16.32), we get a “potential surface” for fluc-
tuations of the nuclear polarization of the solvent about the equilibrium state 0 in
which the charging state of the solute is q0,

W0(θ) ≡ �G0→t = (q1 − q0)
2

2a

(
1

εe
− 1

εs

)
θ2 (16.33)

This is thus the physical picture that underlines the abstract potential surfaces
of Section 16.2. It is important to emphasize that W0(θ) is a free energy surface,
useful for evaluating probabilities: The probability that in the equilibrium associated
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with the solute at charging state q0, the nuclear polarization will assume a value
associated with another equilibrium state in which the charging state is q0+θ(q1−
q0), satisfies P0(θ)/P0(0) = exp(−βW0(θ)), with β = (kBT )−1. This form is
analogous to the corresponding result for a particle moving in a harmonic potential
W (X ) = (1/2)KX 2, where the thermal probability P(X ) to be at position X satisfies
P(X )/P(0) = exp(−βW (X )). The analogy is only partial however: In the latter
case the potential surface has also dynamical implications while in our case it was
derived solely from equilibrium considerations.

We end this discussion with several observations:

1. Continuum dielectric-linear response theory yields a free energy surface for
dielectric fluctuations which is a parabola in the “reaction coordinate” θ . This
“harmonic oscillator property” is quite nonobvious and very significant.

2. This theory gives us the “force constant” associated with this parabola in
terms of physical parameters: The dielectric response parameters εe and εs,
the initial and final charge distributions and a geometric factor, here the ionic
radius a. Note that the dimensionality of this force constant is energy, in
correspondence with the dimensionless nature of the reaction coordinate θ .

3. We could repeat the above calculation using state 1, where the ion charge is
q1, as the reference point. The corresponding free energy surface is

W1(θ) = (q1 − q0)
2

2a

(
1

εe
− 1

εs

)
(1 − θ)2 (16.34)

so that the probability for a fluctuation in the dielectric environment
into a polarization state that would have been in equilibrium with an
ion in charging state q0 + (1 − θ)(q1 − q0) = q1 + θ(q0 − q1) is
P1(θ)/P1(0) = exp(−βW1(θ)). Now θ designates the state of the dielectric
environment using the equilibrium state 1 as a reference.

To complete the energetic picture it is natural to use a single energy
reference, and to measure the free energies of both states 0 and 1 relative to
this common reference. Equations (16.33) and (16.34) then become

W0(θ) =E0 + (q1 − q0)
2

2a

(
1

εe
− 1

εs

)
θ2 (16.35a)

W1(θ) =E1 + (q1 − q0)
2

2a

(
1

εe
− 1

εs

)
(1 − θ)2 (16.35b)

The energies E0 = W0(θ = 0) and E1 = W1(θ = 1) are sometimes referred
to as the electronic origins of the states 0 and 1, respectively. These energies
are properties of the corresponding ions that do not result from the present
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theory but rather from a quantum mechanical calculation of the ground state
energies of these species in the given dielectric environment. Note that the
forms of the expressions for the fluctuations probabilities should be modified
accordingly, for example, P0(θ)/P0(0) = exp[−β(W0(θ)− E0)].

4. The terms (16.33) and (16.34), that add to E0 and E1 in the right-hand sides
of Eqs. (16.35), can be regarded as the nuclear energy components of the
total state energies. Indeed, these are energies associated with changes in the
nuclear polarization of the solvent from its equilibrium values in these states,
and are therefore analogs of the nuclear energy as defined in molecular spec-
troscopy. Obviously, this is only part of the total nuclear energy, associated
with the solvent environment in the continuum dielectric model.

5. In constructing the free energy surface we have specified the kind of dielectric
fluctuations of interest by limiting considerations only to the subspace of
nuclear polarization fields associated with the state of a single charged ion.
This is why the resulting surface is specified in terms of one ionic radius. (Note
that specifying q0 and q1 as the initial and final charges does not impose any
limitations; using other values would just amount to rescaling the reaction
coordinate θ .) A different example is discussed in the next section.

16.3.6 Energetics of electron transfer between two ionic centers

We shall now repeat the above calculation for the process (16.10) in which electronic
charge is transferred between two atomic centers A and B. In this case

ρ0 = (q(0)
A , q(0)

B ) → ρ1 = (q(1)
A , q(1)

B ) (16.36)

and charge conservation implies

q(0)
A + q(0)

B = q(1)
A + q(1)

B (16.37)

We consider two ions of radii RA and RB positioned at a distance RAB between them.
We assume that RAB 
 RA, RB so that simple electrostatic relations can be used.
The relevant fluctuations of the nuclear polarization about state 0 are those that take
place in the “direction” of state 1. The reaction coordinate θ defines equilibrium
states along this direction according to Eq. (16.21), that is,

qθA = q(0)
A + θ

[
q(1)

A − q(0)
A

]
qθB = q(0)

B + θ
[
q(1)

B − q(0)
B

] (16.38)

So that q0A = q(0)
A ; q1A = q(1)

A and same for B. The same calculation as in
Section 16.3.5 is now repeated, however with two modifications. First, the potential
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on the surface of A has a contribution also from ion B, so an equation such as (16.31)
is replaced by:

�θA = qθA

εsRA
+ qθB

εsRAB
(16.39)

Second, the required charging work is a sum of the works done to charge both A
and B. Even though these two charging processes always occur simultaneously, we
may calculate their contribution to the overall charging energy separately.

Consider the contribution to the free energy change from changing the charging
state of A. As before, we first consider the reversible work needed to go from
an unrestricted equilibrium state θ to a restricted state t. For the present process
this restricted state is obtained, starting from the state θ , by moving an amount of
charge ξ from B to A (or −ξ from A to B) while keeping the nuclear polarization
frozen. The process is complete when ξ = ξfinal = q0A − qθA = qθB − q0B (so that
the final charges on A and B are q0A and q0B). The equation analogous to (16.28)
is now

�A(ξ) = qθA

εsRA
+ ξ

εeRA
+ qθB

εsRAB
− ξ

εeRAB
(16.40)

and integrating over ξ from ξ = 0 to ξ = ξfinal results in

�GA
θ→t =

(
qθA

εsRA
+ qθB

εsRAB

)
(q0A − qθA)+

(
1

2εeRA
− 1

2εeRAB

)
(q0A − qθA)

2

(16.41)

Next, for the transition θ → 0 between the two equilibrium states θ and 0, ξ varies
in the same way but the potential on A is

�A(ξ) = qθA + ξ

εsRA
+ qθB − ξ

εsRAB
(16.42)

and the charging energy in the process where ξ goes from 0 to ξfinal is

�GA
θ→0 =

(
qθA

εsRA
+ qθB

εsRAB

)
(q0A − qθA)+

(
1

2εsRA
− 1

2εsRAB

)
(q0A − qθA)

2

(16.43)

Subtracting (16.43) from (16.41) and putting (q0A − qθA)
2 = (q0B − qθB)

2 ≡
(q0 − q1)

2θ2 leads to

�GA
0→t =

(
1

εe
− 1

εs

)(
1

2RA
− 1

2RAB

)
�q2θ2 (16.44)
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�q = |q0 − q1| is the amount of charge transferred between A and B in the 0→1
process.

Equation (16.44) is the contribution to the free energy difference between states
t and 0 that is associated with the work involved in the reversible change of the
charging state of A from q(0)

A = q0A to qθA. The equivalent work involved in
changing the charging state of B is obtained from (16.44) by interchanging A and
B everywhere. Their sum, the reversible work needed to go from state 0 to state t
gives the free energy for this process

�G0→t =
(

1

εe
− 1

εs

)(
1

2RA
+ 1

2RB
− 1

RAB

)
�q2θ2 (16.45)

Comparing this with the result (16.33) obtained for the single ion case, we see again
a parabolic free energy surface with a different force constant. The difference is
seen to arise from a different geometric factor.

The free energy surface (16.45) is associated with fluctuations about state
0 = (q(0)

A , q(0)
B ). Repeating the argument that leads to Eq. (16.35), we denote the

minimum energy on this surface, that is, the energy at θ = 0, by E0.4 The free
energy surface associated with state 0 is therefore,

W0(θ) = E0 + (1/2)Kθ2

K = 2
(

1

εe
− 1

εs

)(
1

2RA
+ 1

2RB
− 1

RAB

)
�q2

(16.46)

This free energy can be used to calculate the probability for fluctuations in the
dielectric environment about state 0 = (q(0)

A , q(0)
B ) of the solute system. Note again

that the variable θ specifies the state of the dielectric environment: It is a state with
such polarization as will be in equilibrium with the solute system in charging state
(q(0)

A + θ(q(1)
A − q(0)

A ), q(0)
B + θ(q(1)

B − q(0)
B )).

Obviously, the same calculation could be done about state 1 = (q(1)
A , q(1)

B ). This
state has a different electronic origin E1, and the most stable state of the dielectric
environment is θ = 1. The corresponding free energy surface is therefore,

W1(θ) = E1 + (1/2)K(1 − θ)2 (16.47)

with the same force constant K . Note again that K has the dimensionality [energy].

4 In this chapter we use the notation Ej and E(j)
el interchangeably to denote the electronic origin of

state j. Note that Er is used exclusively to denote reorganization energy.
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16.3.7 The electron transfer rate

Now compare the results (16.46) and (16.47) to the model considered in
Section 16.2. There we have constructed an abstract model for an electron transfer
reaction, where the electronic states a and b were associated with potential energy
surfaces given as a functions of the solvent configuration, represented by a coordin-
ate X . Here we identified these potential surfaces as free energy surfaces, Wa(θ)

and Wb(θ), expressed in terms of a coordinate θ that characterizes the nuclear polar-
ization of the solvent. Now “a” and “b” replace “0” and “1” as state designators.
Furthermore, the assumption made in Section 16.2, that the two surfaces are equal
curvature parabolas, has turned out to be a property of our electrostatic model! We
can now identify the reorganization and activation energies (cf. Eq. (16.4), noting
that the distance between the minima of the surfaces Wa(θ) and Wb(θ) is 1) for this
electron transfer reaction

Er =
(

1

εe
− 1

εs

)(
1

2RA
+ 1

2RB
− 1

RAB

)
�q2 (16.48)

EA = [(Ea − Eb)− Er]2
4Er

; for the a → b transition (16.49)

and we have already found the force constant K , Eq. (16.46), that characterizes the
electron transfer rate. We have found two expressions for this rate. In the adiabatic
limit we have (cf. Eq. (16.8))

kad = ωs

2π
e−βẼA ; ωs =

(
K

m

)1/2

; ẼA = EA − |Va,b| (16.50)

and the nonadiabatic rate, using Eq. (16.9), is

kna =
√

πβK

2

|Va,b|2
�K

e−βEA (16.51)

At this stage, the theory did not yield the “mass” (a parameter of dimensionality
[mass]× [length]2) associated with the dielectric fluctuations, which is needed to
determineωs that appears in the adiabatic rate expression. On the other hand, short of
the nonadiabatic coupling itself, all parameters needed to calculate the nonadiabatic
rate from Eq. (16.51) have been identified within this dielectric theory.

16.4 A molecular theory of the nonadiabatic electron transfer rate

Equation (16.51) was derived from the Landau–Zener theory for transitions between
electronic states at the crossing of the corresponding potential surfaces, however
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the use of free energy rather than potential energy surfaces as input for a rate expres-
sion of the Landau–Zener type is far from obvious. We can derive an alternative
expression for the nonadiabatic rate, using as input only the activation energy EA.
The starting point for this derivation is the Fermi golden-rule for the transition rate
between two electronic states a and b, Eq. (12.34), written in the form

kb←a(Eab) = 2π

�
|Va,b|2 1

Qa

∑
i

e−βEa,i
∑

f

|〈χa,i|χb,f 〉|2δ(Eab + Ea,i − Eb,f )

(16.52)

where Ea,i are the energies of vibrational levels on the multidimensional nuclear
potential energy surface of electronic state a measured from the bottom (referred
to as the electronic origin) of that surface, and χa,i are the corresponding nuclear
wavefunctions. A similar notation applies to Eb,f and χb,f . The terms |〈χa,i|χb,f 〉|2
are the Franck–Condon (FC) factors associated with this electronic transition. Also,
Eab = Ea−Eb ≡ �E is the difference between the electronic origins of states a and
b and Qa = ∑

i exp(−βEa,i) is the nuclear partition function in electronic state a.
In writing Eq. (16.52) we have invoked the Condon approximation, Eq. (12.26), by
which the coupling matrix element between any two vibronic wavefunctions in the
a and b states was written as a product of the electronic matrix element Va,b and a
nuclear overlap function.

Now, Eq. (16.52) can be written in the form

kb←a(Eab) = 2π

�
|Va,b|2F(Eab) (16.53)

where the function

F(�E) = 1

Qa

∑
i

e−βEa,i
∑

f

|〈χa,i|χb,f 〉|2δ(�E + Ea,i − Eb,f ) (16.54)

is the thermally averaged Franck–Condon factor. This function satisfies the
sum rule ∞∫

−∞
d(�E)F(�E) = 1 (16.55)

and the detailed balance relation

F(�E) = F(−�E)× eβ�E ; β = kBT (16.56)

In addition, in the absence of coupling between the electronic and vibrational
motions it becomes

F(�E) = δ(�E) (16.57)
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Problem 16.4. Prove Eqs (16.55)–(16.57).

It is important to realize that the only approximations that enter into this rate
expression is the use of the Fermi golden-rule, which is compatible with the weak
coupling nonadiabatic limit, and the Condon approximation which is known to
be successful in applications to electronic spectroscopy. The solvent effect on
the electronic process, including the slow dielectric response, must arise from the
FC factor that contains contributions from all the surrounding intermolecular and
intramolecular nuclear degrees of freedom. In fact, if the nuclear component of the
solvent polarization was the only important nuclear motion in the system, then on
the classical level of treatment used by Marcus Eqs (16.53) and (16.51) with EA
given by (16.49) should be equivalent. This implies that in this case

F(�E) = 1√
4πErkBT

exp
(
−(�E − Er)

2

4ErkBT

)
(16.58)

where the pre-exponential term was taken according to the sum rule (16.55).
Equations (16.53) and (16.58) constitute the required rate expression, that is,

kb←a,na(�E) = 1

�

√
π

ErkBT
|Va,b|2 exp

(
−(Eab − Er)

2

4ErkBT

)
(16.59)

where the subscript “na” again emphasizes the nonadiabatic character of the process
considered. Remarkably, this result is identical to Eq. (12.69), obtained for the
transition rate between two molecular electronic states in the spin–boson model
in the thermal activation limit. The treatment of Chapter 12 was not based on a
continuum dielectric model and the reorganization energy, cf. Eq. (12.22)

Er = �

∑
α

ωαλ̄
2
α , (16.60)

expressed in terms of frequencies and coupling coefficients associated with the
normal modes of the nuclear subsystem, did not necessarily stem from dielectric
relaxation. Geometrically, however, as can be seen by comparing Figs 16.2 and 12.3,
the reorganization energies that appear in Chapters 12 and 16 are similar.

Problem 16.5. Verify that F(�E), Eq. (16.58), satisfies the equality (16.56)
and (16.57).

We have thus found that the reorganization of the nuclear environment that
accompanies electron transfer involves the change in the molecular configuration,
that is, shifts in the equilibrium positions of the nuclei between the two electronic
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states, as well as the dielectric response of the solvent. Equation (16.52) represents
the effect of both, and in the thermal activation limit it leads to (16.59) in which
both kinds of nuclear reorganization contribute additively to the reorganization
energy.5 These two contributions are sometimes referred to as inner shell and outer
shell response. It should be emphasized that the separation between molecular and
solvent nuclear degrees of freedom is to some extent a matter of choice. We may, for
example, include solvent motions within the first solvation shell about the molecule
with the molecular subsystem.

Equation (16.59) was obtained from (16.52) in the thermal activation limit
described in Section 12.5.4, which is valid in high-temperature strong-coupling situ-
ations. It is expected to hold at room temperature for the solvent dielectric response
that involve mostly intermolecular low-frequency motions that are strongly coupled
to the electronic charge distribution. On the other hand, intramolecular motions
involve high-frequency modes for which the high-temperature approximation is
questionable.6 In fact, the behavior of such modes may be better described by the
nuclear tunneling limit of Section 12.5.3. With this in mind we can reformulate
Eq. (16.52) so as to make it possible to use different limits for different groups of
modes. To this end we assume that the nuclear wavefunctions can be written as
products of high-frequency and low-frequency components, for example,

χa,i = χh
a,iχ

l
a,i

and accordingly

Ea,i = Eh
a,i + El

a,i and Qa = Qh
aQl

a (16.61)

Using δ(�E + Eh
a,i + El

a,i − Eh
b,i − El

b,i) = ∫
duδ(�E − u + Eh

a,i − Eh
b,i)δ(u+

El
a,i − El

b,i) it is easily shown that

kb←a,na(�E) = 2π

�
|Va,b|2

∫
du Fh(�E − u)Fl(u) (16.62)

where the functions F(E) are defined as in Eq. (16.54), except that Fh and Fl contain
modes from the high- and low-frequency groups, respectively. Equation (16.62) can

5 This statement is obviously subject to the assumption that molecular nuclear reorganization can
be described by the electron–phonon model used in Chapter 12. Readers accustomed to notations
used in the electron transfer literature should note that λ, commonly used in that literature for the
reorganization energy (here denoted Er), is used here (and in Chapter 12) to denote nuclear shift.

6 The terms inner sphere and outer sphere are sometimes used to distinguish between the contri-
butions to the solvent response associated with motions close to the charge transfer centers (e.g. the
first solvation shell) and the bulk of the solvent, respectively. Intramolecular motions are in this sense
part of the inner sphere response.
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be used as a starting point for treatments that use different approximation schemes
for Fh and Fl .7

16.5 Comparison with experimental results

The assumptions underlying the theory of electron transfer, most strongly the
dielectric continuum model of the solvent and the assumed linearity of dielectric
response on the molecular scale, together with the fact that the electronic coupling
matrix elements involved are usually not known, direct us to seek experimental
verifications not in its absolute quantitative predictions but in relative quantit-
ies, qualitative aspects, and expected trends. Indeed, the theory has been very
successful on this level of predictive power. An early demonstration of its suc-
cess was its ability to predict the rates of cross exchange reactions, for example,
A+B → (A+e)+(B−e) from measured rates of the corresponding self-exchange
reactions X + X → (X + e) + (X − e) with X = A or X = B. The argument
is based on the fact that in rate expressions such as (16.53) the electronic coup-
ling elements between different species of about the same size may be assumed
to be approximately equal, and on the observation that the reorganization energies
E(AB)

r , E(AA)
r , E(BB)

r of the above reactions satisfy

E(AB)
r = E(AA)

r + E(BB)
r

2
(16.63)

This follows from expressions such as (16.60), and more generally from the
harmonic medium representation of dielectric response (Section 16.9) in which
Er is made of additive contributions of independent normal modes including
intramolecular modes.

Consider now the implications of (16.63) with regards to the four rates defined
by the following rate diagrams

A + B
kba
�
kab

(A + e)+ (B − e) (16.64)

A + A
kaa−→ (A + e)+ (A − e)

B + B
kbb−→ (B + e)+ (B − e)

(16.65)

The reorganization energy associated with either rate in (16.64) will be denoted
E(ab)

r (= E(ba)
r ), and the corresponding energies associated with the processes in

7 See, for example, J. Jortner, J. Chem. Phys. 64, 4860 (1976).
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(16.65) will be denoted E(aa)
r for the first, and E(bb)

r for the second. We will also
denote the electronic energy gap EA+B − E(A+e)+(B−e) by �E so that

Ke = kba

kab
= exp (β�E) ; �E = Ea − Eb (16.66)

Following Eq. (16.53) and assuming that the electronic coupling is the same for all
these reactions8 we also have

kij = 2π

�
|V |2Fij(�E) (16.67)

where

Fba = C exp

(
−β

(�E − E(ab)
r )2

4E(ab)
r

)
; Fab = C exp

(
−β

(�E + E(ab)
r )2

4E(ab)
r

)
(16.68a)

Fii = C exp

(
−β

E(ii)
r

4

)
; i = a, b (16.68b)

Equations (16.67) and (16.68) together with (16.63) written in the form E(ab)
r =

(E(aa)
r + E(bb)

r )/2 can now be used to write the following equality:

kba

(kaakbb)
1/2 =

Fba

(FaaFbb)
1/2

= exp

[
−β

(
(�E − (E(aa)

r + E(bb)
r )/2)2

2(E(aa)
r + E(bb)

r )
− E(aa)

r

8
− E(bb)

r

8

)]

= exp

(
−β

�E2

2(E(aa)
r + E(bb)

r )

)
exp(+β�E/2) (16.69)

or

kba = (kaakbbKe)
1/2 exp

(
−β

�E2

2(E(aa)
r + E(bb)

r )

)
(16.70)

Therefore kba can be predicted from the equilibrium constant of the reaction (16.64)
together with parameters that characterize the rates of the reactions (16.65). The

8 This assumption can of course fail, in particular for nonadiabatic electron transfer.
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Fig. 16.3 (a) Change of activation energy (vertical dotted lines) from positive (‘normal regime’,
left), to zero (middle) and back to positive (‘inverted regime’, right) as the driving free energy
gap (�E; double arrowed vedrtical lines) is increased. Right: Electron transfer rate for a series of
molecules characterized by different energy gaps, displayed against the energy gap (From J. R. Miller,
L. Calcaterra and G. L. Closs, J. Am. Chem. Soc. 106, 3047 (1984), where the (free) energy gap (�E
in our notation) is denoted −�G0.)

success of such predictions (L. E. Bennett, Prog. Inorg. Chem. 18, 1 (1973)) has
provided a strong early support to the validity of this theory.

A more dramatic prediction is the existence of the “inverted regime” in the
dependence of kb←a on the “driving force” Eab = Ea − Eb. Equation (16.59)
shows that the rate increases as Eab grows from zero, however beyond Eab = Er this
dependence is inverted, and the rate decreases with further increase in this “force.”
Reflection on the geometrical origin of this observation shows it to be related to the
way by which the crossing point between two shifted parabolas changes when one
of these parabolas move vertically with respect to the other, see Fig. 16.3(a). The
verification of this prediction, pictorially displayed in Fig. 16.3(b) has provided a
dramatic evidence in support of this picture.9

It is of interest to note another characteristic of the inverted regime: The anti-
correlation between the nuclear shift λ and the activation energy EA as seen from
Eq. (16.49) and from the fact that Er scales like λ2. In this limit of small nuclear

9 The inclusion of high-frequency molecular modes in the spirit of Eq. (16.62) is critical for the
quantitative aspects of this behavior, in particular in the inverted regime (see Fig. 13 in the Review
by Bixon and Jortner cited at the end of this chapter).
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shifts and large activation energy we may expect the Marcus theory to break down
because of the onset of nuclear tunneling. In this limit and at low temperatures the
weak coupling formalism of Section 12.5.3 may provide a better description of the
electronic transition rate.

16.6 Solvent-controlled electron transfer dynamics

The Marcus theory, as described above, is a transition state theory (TST, see
Section 14.3) by which the rate of an electron transfer process (in both the adiabatic
and nonadiabatic limits) is assumed to be determined by the probability to reach
a subset of solvent configurations defined by a certain value of the reaction
coordinate. The rate expressions (16.50) for adiabatic, and (16.59) or (16.51) for
nonadiabatic electron transfer were obtained by making the TST assumptions that
(1) the probability to reach transition state configuration(s) is thermal, and (2) once
the reaction coordinate reaches its transition state value, the electron transfer reac-
tion proceeds to completion. Both assumptions rely on the supposition that the
overall reaction is slow relative to the thermal relaxation of the nuclear environ-
ment. We have seen in Sections 14.4.2 and 14.4.4 that the breakdown of this picture
leads to dynamic solvent effects, that in the Markovian limit can be characterized by
a friction coefficient γ : The rate is proportional to γ in the low friction, γ → 0, limit
where assumption (1) breaks down, and varies like γ−1 when γ →∞ and assump-
tion (2) does. What stands in common to these situations is that in these opposing
limits the solvent affects dynamically the reaction rate. Solvent effects in TST
appear only through its effect on the free energy surface of the reactant subspace.

How will similar considerations manifest themselves in electron transfer reac-
tions? It should be obvious that the above limits of solvent controlled rates should
still exist. This follows from the fact that any activated molecular reaction can be
reduced to a succession of processes (that in reality are not necessarily temporally
distinguishable): (1) preparation of the transition configuration in the reactant sub-
space, (2) evolution of the transition configuration from reactants to products, and
(3) relaxation of the product to final equilibrium. Irrespective of details this remains
true also here, as shown in Fig. 16.1. When solvent-induced relaxation (namely steps
1 and 3 above and in Fig. 16.1) is fast enough to keep the reactant(s) in thermal
equilibrium and to affect efficient relaxation in the product subspace, TST holds
and the rate expressions (16.50) and (16.59), (16.51) are valid in their appropriate
limits. When the solvent relaxation cannot “keep up” with the intrinsic charge trans-
fer process it becomes the rate determining step. In this limit the observed rate will
reflect the relaxation properties of the nuclear environment, whose manifestation in
the context of solvation dynamics was discussed in Chapter 15. Figure 16.4 shows
an example of this behavior, where the fluorescence that follows a charge transfer
transitions in two molecules is used to monitor the rate of that transition.
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If electron transfer was indeed a combination of three consecutive rate processes,
the overall rate should satisfy a relationship of the kind k−1 = k−1

1 + k−1
2 + k−1

3 .
As in Eq. (14.87) this is an oversimplification which still conveys the qualitative
nature of the process. It also emphasizes an important observation, that the rate
of the overall process cannot be faster than any of its individual components. In
particular, given that at least one of the processes involved is the solvent reorgan-
ization, we might have expected that the inverse dielectric relaxation time (τL)

−1

will constitute an upper limit to the observed rate.10 Two counter arguments can
be raised, however. First, as indicated by the discussion of Section 15.4, dielec-
tric relaxation theory, at least in its usually practiced long wavelength limit, does
not describe correctly the fast, inertial component of solvent relaxation associated
with a sudden change of a solute charge distribution. Second, as was indicated in
Section 16.3.7, in addition to the solvent dielectric response, a substantial contri-
bution to the nuclear reorganization arises from intramolecular nuclear motion that

10 In the Markovian Kramers model discussed in Section 14.4, the friction coefficient γ describes
the coupling of the reaction coordinate to the thermal environment. In the low friction (underdamped)
limit it is equal to the thermal relaxation rate in the reactant well, which is equivalent in the present
case to the solvation well of the initial charge distribution. More generally, this rate should depend
also on the frequency ωs of this well. The theory of solvation dynamics, Chapter 15, does not use a
Langevin equation such as (14.39) as a starting point, however it still yields an equivalent relaxation
rate, the inverse solvation time (τL)

−1, which is used in the present discussion.
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involves high-frequency molecular modes. The existence of these fast relaxation
modes of the nuclear environment of the elecronic system may be the origin of
several recent observations of electron transfer rates that are considerably faster
than the dielectric relaxation time of the host solvent. Such behavior is particularly
likely to be encountered in the inverted regime, where electron tunneling may be
assisted by nuclear tunneling. An example is shown in the following table.

Electron transfer rates in betaine-30 correlated with solvent
dielectric relaxation

E. Åkesson et al., J. Chem. Phys. 95, 4188 (1991)

Solvent ket (1012 s−1) 1/τL (1012 s−1)

Propylene carbonate 0.91 0.29
Acetonitrile 2.0 2.0
Acetone 1.4 1.2
Benzonitrile 0.27 0.21
Triacetin 263 K 0.22 10−4

Triacetin 293 K 0.29 0.01

In this system electron transfer is believed to be in the inverted regime. The transfer
rate is seen to correlate with the solvent dielectric relaxation when this relaxation
is fast enough, but decouples from it in a slow solvent, in this case triacetine.

16.7 A general expression for the dielectric reorganization energy

The reorganization energy was seen to be a characteristic attribute of molecular
electron transfer processes. Equation (16.48) gives an expression for the dielectric
solvent contribution to this energy for electron transfer between two atomic centers
embedded in a dielectric environment. For completeness we give below the general
result for the reorganization energy associated with a general change in the charge
distribution from ρ0(r) to ρ1(r). The corresponding electric displacement vectors
are the solutions of the Poisson equation ∇ · Di = 4πρi and the reorganization
energy is obtained in the form11

Er = 1

8π

(
1

εe
− 1

εs

)∫
dr (D0(r)−D1(r))2 (16.71)

11 This result is obtained by using the general electrostatic theory reviewed in Section 1.6.2 along
lines similar to that used to obtained Eq. (16.48).
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Problem 16.6. Show that for the charge transfer (16.36) between two spherical
centers A and B, Eq. (16.71) yields the result (16.48).

Solution: For the reaction ρ0 = (q(0)
A , q(0)

B ) → ρ1 = (q(1)
A , q(1)

B ) we have

D0 = q(0)
A (r − rA)

|r − rA|3 + q(0)
B (r − rB)

|r − rB|3 (16.72a)

D1 = q(1)
A (r − rA)

|r − rA|3 + q(1)
B (r − rB)

|r − rB|3 (16.72b)

∫
dr(D0(r)−D1(r))2 = 4π(q(0)

A − q(1)
A )2

∞∫
aA

dr
1

r2 + 4π(q(0)
B − q(1)

B )2

∞∫
aB

dr
1

r2

− 2(q(0)
A − q(1)

A )(q(0)
B − q(1)

B )

∫
dr

(
∇ · 1

|r − rA|
)(

∇ · 1

|r − rB|
)
(16.73)

Using �q = q(0)
A − q(1)

A = q(1)
B − q(0)

B we get∫
dr(D0(r)−D1(r))2 = 4π(�q)2

(
1

aA
+ 1

aB

)

+ 2(�q)2
∫

dr
(
∇ · 1

|r − rA|
)(

∇ · 1

|r − rB|
)

(16.74)

The integral in the last term can be done by using∇φ ·∇ψ = ∇·(φ∇ψ)−φ∇2ψ ,
where φ and ψ are scalar functions. Using the divergence theorem the integral∫

dr∇ · (φ∇ψ) is shown to vanish, so∫
dr

(
∇ · 1

|r − rA|
)(

∇ · 1

|r − rB|
)

=
∫

dr
(

1

|r − rA|
)(

∇2 1

|r − rB|
)
= 4π

|rA − rB| (16.75)

The last equality was obtained by using ∇2(|r − rB|−1) = 4πδ(r − rB).
Equations (16.71), (16.74), and (16.75) indeed lead to (16.48).
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16.8 The Marcus parabolas

The result (16.46) is remarkable in its apparent simplicity. Not only do we get an
expression for the free energy needed to distort the nuclear configuration about the
reactant charge distribution, but we can also use the resulting expression to find a
complete expression for the nonadiabatic transfer rate. This simplicity is however
not without important caveats. We have already identified one difficulty—the use
of free energy rather than potential energy surfaces. Also, the reaction coordinate θ

that was used to characterize solvent configurations has not been defined in terms
of the microscopic solvent structure. Finally, the parabolic form of the free energy
was obtained from a continuum model using linear dielectric response, and it is not
clear that these assumptions hold on the molecular scale.

It is possible to define the reaction coordinate as an explicit function of the
solvent structure in the following way. Let Vθ (RN ; RAB) be the potential energy
surface of the system, a function of the nuclear configuration RN = (R1, . . . , RN )

(N is the number of all nuclear centers, including those associated with the donor
and acceptor species), when A and B are held at a fixed distance RAB and when the
electronic charge distribution is ρθ(r), Eq. (16.21).12 Also define a new variable,
the difference in potential energies,

X (RN ) = V1(RN )− V0(RN ) (16.76)

and the probability to observe a particular value X of X (RN ) in state θ ,

Pθ (X ; RAB) =
∫

dRN e−βVθ (RN )δ(RAB − |RA − RB|)δ(X − X (RN ))∫
dRN e−βVθ (RN )δ(RAB − |RA − RB|)

(16.77)

We now define X as the reaction coordinate for the electron transfer reaction for
any given RAB. In what follows we suppress the label RAB but the presence of this
parameter as an important factor in the transfer reaction should be kept in mind.
Note that a given fixed RAB is also implicit in the calculations of Section 16.3.6
and 16.4. By the discussion of Section 16.3.4, the functions

W0(X ) = E0 − kBT ln P0(X ) (16.78a)

W1(X ) = E1 − kBT ln P1(X ) (16.78b)

are the corresponding free energy surfaces analogous to (16.46) and (16.47), with
X replacing θ as the reaction coordinate. The constants E0 and E1 are chosen so that

12 For θ = 0 or θ = 1 this is the Born–Oppenheimer nuclear potential surface of the corresponding
electronic state. We assume that we can define an analogous potential surface for any θ . In fact, the
treatment here makes use only of the standard surfaces V0 and V1.
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the maximum values of ln P0(X ) and ln P1(X ) are zeros. The point X = 0 along this
reaction coordinate is the transition point for the electron transfer reaction because
at this point the two electronic states are degenerate by definition.

As defined, the new reaction coordinate X is different from the reaction coordin-
ate θ defined and used in Sections 16.3.5 and 16.3.6. However, if the potential
surfaces W0(X ) and W1(X ) also turned out to be shifted parabolas as the corres-
ponding functions of θ were in Eqs (16.46) and (16.47) it has to follow that X
and θ are proportional to each other, so they can be used equivalently as reaction
coordinates. This argument can be reversed: The validity of the Marcus theory,
which relies heavily on the parabolic form of Marcus’ free energy surfaces, implies
that W0(X ) and W1(X ) should be quadratic functions of X .

The parabolic form of the Marcus surfaces was obtained from a linear response
theory applied to a dielectric continuum model, and we are now in a position
to verify this form by using the microscopic definition (16.76) of the reaction
coordinate, that is, by verifying that ln(P(X )), where P(X ) is defined by (16.77),
is quadratic in X . Evaluating P(X ) is relatively simple in systems where the initial
and final charge distributions ρ0 and ρ1 are well localized at the donor and acceptor
sites so that ρ0(r) = q(0)

A δ(r − rA)+ q(0)
B δ(r − rB) and ρ1(r) = q(1)

A δ(r − rA)+
q(1)

B δ(r − rB). In this case, and for transfer of one electron, X (RN ) = ��(RN )

is the difference between the electrostatic potentials at the A and B centers that is
easily evaluated in numerical simulations.13,14 An example of such result, the free
energy surfaces for electron transfer within the Fe+2/Fe+3 redox pair, is shown in
Fig. 16.5. The resulting curves are fitted very well by identical shifted parabolas.
Results of such numerical simulations indicate that the origin of the parabolic form
of these free energy curves is more fundamental than what is implied by continuum
linear dielectric theory.

16.9 Harmonic field representation of dielectric response

In Sections (16.3) and (16.4) we have seen that the description of motion along
the reaction coordinate in the two electronic states involved contains elements of
displaced harmonic potential surfaces. Here15 we develop this picture in greater

13 J.-K. Hwang and A. Warshel, Microscopic examination of free-energy relationships for electron
transfer in polar solvents, J . Am. Chem. Soc. 109, 715 (1987).

14 R. A. Kuharski, J. S. Bader, D. Chandler, M. Sprik, M. L. Klein, and R. W. Impey, Molecular
model for aqueous ferrous–ferric electron transfer, J. Chem. Phys. 89, 3248 (1988).

15 V. G. Levich and R. R. Dogonadze, Doklady. Akad. Nauk. USSR 124, 123 (1954); Coll. Czech.
Chem. Comm. 26, 293 (1961).



Harmonic field representation of dielectric response 583

40.

30.

20.

10.

0.
–150. –100. –50. 0. 50. 100. 150.

Fig. 16.5 The diabatic free energy curves (W (X )) plotted against X , Eq. (16.76) (both energies
in Kcal mol−1) obtained from a numerical simulation of the Fe+2/Fe+3 � Fe+3/Fe+2 electron
transfer reaction in water. The distance between the iron centers is RAB = 6.5 Å, and the temperature
is T = 298 K. The simulation (Kuharski et al.14) was done with the SPC water force-field and an
umbrella technique was used to sample nonequilibrium configurations.

detail with the purpose of identifying the origin and the physical significance of
this behavior.

Our starting point is the expression for the reorganization energy Er, Eq. (16.71).
We use it in a more general form that expresses the energy that will be released
when we start from a fluctuation in the nuclear polarization about a given charge
distribution and let the system relax to equilibrium:

E(l)
r = 1

8π

(
1

εe
− 1

εs

)∫
dr (D(r)−Dl(r))

2 (16.79)

Here the index l is used to denote a particular charge distribution (i.e. a particular
electronic state of the system). The displacement field Dl(r) represents a charge
distribution ρl(r) according to the Poisson equation ∇ · Dl = 4πρl . In (16.79)
D(r) and the associated ρ(r) represent a fluctuation in the nuclear polarization,
defined by the equilibrium relationship between the nuclear polarization and the
displacement vector (cf. Eqs (16.14) and (16.15))

Pn(r) = εe

4π

(
1

εe
− 1

εs

)
D(r) (16.80)

Thus, in terms of the fluctuation Pn(r)−P(l)
n (r) away from the equilibrium nuclear

polarization P(l)
n (r), Eq. (16.79) reads

E(l)
r = 2πε−2

e

(1/εe)− (1/εs)

∫
d3r(Pn(r)− P(l)

n (r))2 (16.81)
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As before, we limit ourselves only to a subspace of such fluctuations that can
be characterized as equilibrium values under some other charge distribution ρ(r)
(i.e. some other D(r)).

Written in this way, E(l)
r can be interpreted as the potential energy associated

with the corresponding fluctuation. We rewrite Eq. (16.81) in the form

Wl[Xl(r)] = 2πC

ε2
e

∫
d3rXl(r)

2; Xl = Pn − P(l)
n (16.82)

1

C
= 1

εe
− 1

εs
(16.83)

Xl(r) is the coordinate that measures polarization fluctuation at position r when the
system is in electronic state l, and Wl[Xl(r)] which is a functional of Xl(r) is the
corresponding energy. The integral over r is a sum over many such coordinates and
the potential energy Wl is seen to be a quadratic function of these coordinates, that is,
a harmonic field. Note that if we assume that all coordinates Pn(r) change together,
say according to Pn = P(l)

n + θ(P(1)
n − P(l)

n ), then Eq. (16.82) yields W (θ) = λθ2

with λ = 2πCε−2
e

∫
d3r(P(1)

n − P(l)
n )2, that is, a potential surface defined in terms

of a single variable θ , as in Sections 16.3.5 and 16.3.6. Equation (16.82) defines
this potential surface in terms of the infinitely many local variables Xl(r).

Consider now one of these variable and its contribution to the potential energy,
Wl(r) = 2πε−2

e CXl(r)2. This is the potential energy of a three-dimensional iso-
tropic harmonic oscillator. The total potential energy, Eq. (16.82) is essentially a
sum over such contributions. This additive form indicates that these oscillators
are independent of each other. Furthermore, all oscillators are characterized by the
same force constant. We now also assume that all masses associated with these
oscillators are the same, namely we postulate the existence of a single frequency
ωs, sometimes referred to as the “Einstein frequency” of the solvent polarization
fluctuations. ms and ωs are related as usual by the force constant

ms = 4πC

ε2
eω

2
s

(16.84)

so that

Wl(r) = 1

2
msω

2
s Xl(r)

2 (16.85)

We can now define a Hamiltonian hl(r) for the local polarization coordinate Xl

hl(r) ≡ 1

2
msẊl(r)

2 + Wl(r)

= 2πC

ε2
e

(Xl(r)
2 + ω−2

s Ẋl(r)
2) (16.86)
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which implies that the entire dielectric environment can be associated with the total
Hamiltonian

Hl = 2πC

ε2
e

∫
d3r(Xl(r)

2 + ω−2
s Ẋl(r)

2)

Xl(r) = Pn(r)− P(l)
n (r)

(16.87)

This is a Hamiltonian for independent harmonic oscillators specified by the
continuous index r. The equilibrium nuclear polarization P(l)

n (r) (which is determ-
ined by the given charge distribution through the Poisson equation together with
Eq. (16.80)) defines the equilibrium position of the local oscillator at r. Hence, chan-
ging the charge distribution corresponds to changing these equilibrium positions.
Taking into account that a change in the charge distribution in a molecular system is
also usually associated with a change in the energy origin, we can write the nuclear
polarization Hamiltonian that corresponds to a charge distribution associated with
a given electronic state l in the form4

H (l) = E(l)
el +

2πC

ε2
e

∫
d3r[(Pn(r)− P(l)

n (r))2 + ω−2
s Ṗn(r)2] (16.88)

Problem 16.7. Show that the reorganization energy associated with the transition
between two electronic states l and l′ described in this way is

E(l,l′)
r = 2πC

ε2
e

∫
d3r(P(l)

n (r)− P(l′)
n (r))2 (16.89)

To summarize, we have found that the dielectric response of a polar medium can
be described in terms of the Hamiltonian (16.88) that corresponds to a system of
independent harmonic oscillators indexed by the spatial poison r.16 These oscillat-
ors are characterized by given equilibrium “positions” P(l)

n (r) that depend on the
electronic state l. Therefore a change in electronic state corresponds to shifts in
these equilibrium positions.

The Hamiltonian (16.88) describes a system of classical harmonic oscillators.
It is reasonable to assume that it represents a classical approximation to a more
fundamental quantum theory. Such a theory may be obtained in analogy to the
quantization of the electromagnetic field carried in Section 3.2.2, by “quantizing”

16 Advanced readers will notice that in case of nonlocal response where, for example, P(r) =∫
d3r′χ(r − r′)E(r), a similar harmonic field Hamiltonian is obtained in k-space.
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this harmonic field, that is, replacing the Hamiltonian (16.88) by its quantum ana-
log. The result is a system of independent quantum harmonic oscillators whose
interaction with the electronic system is expressed by the fact that a change in
the electronic charge distribution affects a parallel17 shift of the harmonic potential
surfaces. This is exactly the model used in Chapter 12, see in particular Section 12.3.

Electron transfer processes, more generally transitions that involve charge reor-
ganization in dielectric solvents, are thus shown to fall within the general category of
shifted harmonic oscillator models for the thermal environment that were discussed
at length in Chapter 12. This is a result of linear dielectric response theory, which
moreover implies that the dielectric response frequency ωs does not depend on the
electronic charge distribution, namely on the electronic state. This rationalizes the
result (16.59) of the dielectric theory of electron transfer, which is identical to the
rate (12.69) obtained from what we now find to be an equivalent spin–boson model.

We end our discussion of this quasi-microscopic electron transfer theory with
two important comments: First, once electron transfer was identified as a charge
reorganization process accompanied by shifting equilibrium positions of an under-
lying harmonic oscillator field, it can be generalized in an obvious way to take into
account also the role played by the intramolecular nuclear motions of the molecu-
lar species involved. The dielectric solvent dynamics (“outer sphere” dynamics)
and the intramolecular nuclear motions (“inner sphere” dynamics) correspond in
such a unified theory to two groups of harmonic modes whose coupling to the
electronic transition is characterized by shifting their equilibrium positions. Rate
expressions such as (12.34) apply, with both groups of modes included. In evalu-
ating these rates we may use representations such as Eq. (16.62) to apply different
approximation schemes to different modes, based, for example, on the recogni-
tion that intramolecular motions are characterized by much higher frequencies than
intermolecular dynamics.

Second, we note that the dynamical aspect of the dielectric response is still
incomplete in the above treatment, since (1) no information was provided about
the dielectric response frequency ωs

18 and (2) a harmonic oscillator model for the
local dielectric response is oversimplified and a damped oscillator may provide a
more complete description. These dynamical aspects are not important in equilib-
rium considerations such as our transition-state-theory level treatment, but become
so in other limits such as solvent-control electron-transfer reactions discussed in
Section 16.6.

17 As in Chapter 12 the word “parallel” implies that the harmonic frequencies remain unchanged.
18 Note that this frequency appears in Eqs (16.8) and (16.50), where it was expressed in terms of

some unknown “dielectric response mass.” It is possible to address the magnitude of ωs numerically,
see, for example, E. A. Carter and J. T. Hynes, J. Phys. Chem. 93, 2184 (1989).
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Problem 16.8. Let us use the superscript (0) for the state of the dielectric
system where the charge distribution is zero. This implies that P(0)

n (r) = 0
so that the reorganization energy of any other state relative to this one is
E(l,0)

r = (2πC/ε2
e )

∫
d3r(P(l)

n (r))2. This reorganization energy can be then iden-
tified as the contribution of the nuclear dielectric response to the solvation energy
associated with the corresponding charge distribution

W (l)
n = −2πC

ε2
e

∫
d3r(P(l)

n (r))2 (16.90)

Show that this energy can be written in the form

W (l)
n = − 1

8π

(
1

εe
− 1

εs

)∫
d3rD2

l (r) (16.91)

and that the full solvation energy of the charge distribution associated with Dl
(ρl = (4π)−1∇ ·Dl) is

W (l)
sol = − 1

8π

(
1 − 1

εs

)∫
d3rD2

l (r) (16.92)

what is the significance of the difference

W (l)
sol − W (l)

n = − 1

8π

(
1 − 1

εe

)∫
d3rD2

l (r) (16.93)

Solution: Using Eq. (16.80)

P(l)
n (r) = εe

4πC
Dl(r) (16.94)

in (16.90) leads directly to (16.91). The total energy in an electrostatic field
inside a dielectric medium is

W = 1

8π

∫
d3rE ·D = 1

8πεs

∫
d3rD2

(16.95)

So the solvation energy, the energy difference between assembling a charge
distribution in vacuum and inside a dielectric is given by (16.92). Since (16.91)
is the contribution of the nuclear dielectric response to this solvation energy, the
contribution (16.93) is the contribution from the solvent electronic polarization.
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16.10 The nonadiabatic coupling

In the expression for the nonadiabatic electron transfer rate (cf. Eqs (16.53)
and (16.58))

kb←a = 2π

�
|Va,b|2 1√

4πErkBT
exp

(
−(�E − Er)

2

4ErkBT

)
(16.96)

�E can be determined spectroscopically and the reorganization energy Er is evalu-
ated from, for example, (16.48) or more generally (16.71). Thus the only unknown
parameter is the nonadiabatic coupling Va,b. In fact this parameter can sometimes
also be evaluated from spectroscopical data. This is the case where the initial and
final states of the electron transfer process are two diabatic states (see Sections 2.4
and 2.5) that can be expressed as linear combinations of two adiabatic states that con-
stitute the initial and final states of optical absorption. The corresponding absorption
lineshape, a charge transfer optical transition, can be analyzed to yield the needed
electronic coupling. This is shown in Appendix 16A where we derive an expres-
sion relating the coupling between two nonadiabatic electronic states a and b to the
optical transition dipole between the corresponding adiabatic states 1 and 2

|µ1,2| = |Va,b|
(E2 − E1)

|µb − µa| = e|Va,b|rab

�ωmax
(16.97)

where µa and µb are the dipole moments of the localized diabatic states

µa = −e〈ψa|
∑

i

ri |ψa〉 ; µb = −e 〈ψb|
∑

i

ri |ψb〉 (16.98)

and where in the second equality of (16.97) we represented E2−E1 by the frequency
ωmax of the maximum absorption in the optical transition from 1 to 2, and have
defined

rab ≡
∣∣∣∣µb − µa

e

∣∣∣∣ (16.99)

If the only change in the molecular charge distribution between the states a and b
is the position of the transferred electron (i.e. if we assume that the other electrons
are not affected) then rab is the transfer distance, that is, the separation between the
donor and acceptor centers. Eq. (16.97) is known as the Mulliken–Hush formula.

Equation (16.97) is useful for estimating the nonadiabatic coupling associated
with electron transfer reactions mirrored by an equivalent optical transition.19 An

19 The derivation of this formula, outlined in Appendix 16A, is limited by the assumption that
the electronic coupling can be described in a two-state framework. For a discussion of this point and
extension to more general situations see the paper by Bixon and Jortner cited at the end of this chapter.
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important application is also found in bridge-mediated electron transfer transitions
(see next section). In such processes the transition between a donor site D and
an acceptor site A is promoted by their mutual coupling with a connecting ligand
bridge B (see Fig. 16.7). In this case and under conditions discussed below, the
effective DA coupling is obtained from Eq. (16.113). For a single bridge site it
takes the form

V eff
AD = VABVBD

�E
(16.100)

In this case the donor acceptor coupling V eff
AD may be obtained by using (16.97)–

(16.99) to estimate the couplings VAB and VBD from spectroscopic parameters
obtained from charge transfer donor-to-ligand and acceptor-to-ligand transitions.

To end this section it should be mentioned that another route to the nonadiabatic
electronic coupling can be found in theory. Ab initio quantum chemical calculations
of this coupling in medium-size systems are now feasible,20 and semi-empirical
calculations are also becoming increasingly reliable.21

16.11 The distance dependence of electron transfer rates

How do electron transfer rates depend on the donor acceptor distance RDA? It will
be useful to consider this question from the point of view of the transferred electron.
In reality we are obviously not concerned with a single electron but with electronic
states comprising many electrons, however to obtain a simple picture it helps to
think of the transfer process as a single electron event. Particularly simple descrip-
tions are obtained for the case where the donor and acceptor centers are far from each
other. Figure 16.6 depicts these centers as two potential wells for the transferring
electron. The lower and upper diagrams correspond to different nuclear configur-
ations: In the lower diagram the nuclear configuration is in equilibrium with the
electronic charge distribution, while the upper diagram corresponds to the transition
state where the energies of electronic states localized on the donor and the acceptor
are equal, that is, to the crossing point (Xtr , Etr) in the Marcus picture, Fig. 16.2. It
is important to realize that these diagrams, showing the electron potential energy

20 M. D. Newton, Quantum chemical probes of electron-transfer kinetics—the nature of donor–
acceptor interactions, Chem. Rev. 91, 767 (1991).

21 S. S. Skourtis and D. Beratan, Theories for structure-function relationships for bridge-mediated
electron transfer reactions, in Electron Transfer—From Isolated Molecules to Biomolecules, edited
by M. Bixon and J. Jortner, Advances in Chemical Physics, Vol. 106 (Wiley, New York, 1999), Part I,
p. 377.
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D

D

A

A

Fig. 16.6 A schematic representation of the potential surface for the electron between two centers
(D—donor, A—acceptor). Shown also are the relevant diabatic electronic wavefunctions, localized
on each center. The lower diagram corresponds to a stable nuclear configuration and the upper one—
to a nuclear fluctuation that brings the system into the transition state where the diabatic electronic
energies are equal. The electronic transition probability depends on the overlap between the electronic
wavefunctions ψD and ψA in this transition state.

as a function of its position, have nothing to do with the Marcus parabolas that
are nuclear potential surfaces. The latter show the nuclear potential energy dis-
played as function of nuclear configuration expressed in terms of some reaction
coordinate.

In the diagrams of Fig. 16.6, the diabatic states shown are the electronic states
obtained as eigenstates of one electronic well, in the absence of the other. The non-
adiabatic coupling is the matrix element of the full electronic Hamiltonian (kinetic
energy plus potential energy of the two wells) between such states localized in
different wells. As discussed in Section 16.10 we can estimate the magnitude of
this coupling from spectroscopic data, however let us now consider this prob-
lem theoretically. The desired coupling determines the tunneling rate between
the two centers, which was seen in Section 2.10 to be proportional to the factor
exp(−2�

−1
∫

dx
√

2me(U (x)− E)). Here me is the electron mass, U is the potential,
and the integral is calculated over the barrier separating the wells between the two
turning points at energy E. This calculation should be done in the transition state
configuration (upper diagram of Fig. (16.6)). If the two centers are far enough from
each other it is reasonable to approximate the barrier by a rectangular shape of width
RAD and height above the ground state of the donor (say) given by the donor ioniz-
ation potential ID. For the D → A transfer one might think that U −E is equivalent
ID−Etr(D)where both the donor ionization potential ID and the transition energy are
measured from the ground state donor energy. However, recalling the fundamental
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assumption that the electronic transition takes place at a fixed nuclear configura-
tion, the solvent configuration about the donor immediately before and immediately
after the electron tunneling is the same; in other words, the energy Etr cannot be
“used” to overcome the ionization barrier.22 Therefore,

∫
dx
√

2me(U − E) should
be evaluated for U −E = ID, which yields RDA

√
2meID and the relevant tunneling

factor then becomes exp(−β ′RAD) where23

β ′ ∼ 2�
−1

√
2meID. (16.101)

Note that ID is the donor ionization potential in the polar solvent that may be
different from the vacuum value.

Note that this tunneling factor is not the only term in the nonadiabatic elec-
tron transfer rate expression (16.96) that depends on the donor–acceptor distance.
The reorganization energy Er also depends on this distance as seen, for example,
in Eq. (16.48). Still, the exponential form of the tunneling factor dominates the
distance dependence at large separations. We finally get rate ∼ exp(−β ′RDA), or

|Va,b| = V0e−(1/2)β ′RDA (16.102)

16.12 Bridge-mediated long-range electron transfer

The appearance of the ionization potential in (16.101) reflects the understanding
that for transfer to take place over large distances the electron has to traverse the
space between the donor/acceptor centers, that is, to move in free space outside these
centers. If we use a vacuum-based estimate ID ≈ 5 eV we find β ′ ≈ (2.3 Å)−1.
This implies that the coupling effectively vanishes for distances larger than just a
few angstroms. Experiments show, however, that in suitable environments electron
transfer can take place over considerably longer distances.

It is not difficult to point out a plausible reason for this observation when we
realize that in order to move an electron out of any of the wells in Fig. 16.6 it is not
necessary to move it energetically up to the vacuum levels. In fact any unoccupied
molecular levels of the solvent can supply the needed transient residence at a lower
cost of energy. An example is shown in Fig. 16.7(a). D and A represent the electronic
potential wells on the donor and acceptor centers, while Bi, i = 1, 2, . . . represent

22 The term vertical transition is often used to describe an electronic transition that takes place at
fixed nuclear configuration.

23 In much of the electron transfer literature the inverse range parameter that characterizes bridge
mediated electron transfer reactions is denoted β. In the present text we use the notation β ′ to
distinguish it from the usual notation for the inverse temperature β = (kBT )−1.
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V12 V23

V3A

Fig. 16.7 Bridge-assisted electron transfer. (a) The existence of intermediate electron binding sites
between the donor and acceptor changes the effective tunneling barrier and can promote the transfer
rate. (b) In a simple model of bridge-assisted transfer each of the donor, acceptor, and intermediate
sites are represented by a single electronic level.

similar wells on atomic or molecular centers along the path connecting these centers.
A schematic representation of a corresponding electronic Hamiltonian is shown in
Fig. 16.7(b), where, as before, we have represented A and D by a single electronic
state on each center (e.g. the ground electronic state in the corresponding well), and
similarly represented each bridge site by its lowest electronic state (ground state
of the isolated bridge unit). The coupling matrix elements between these states are
the non-diagonal elements of the total electronic Hamiltonian in the chosen basis
set of one level per well.

Some clarification concerning the nature of these states is needed here. As
already emphasized, the initial and final states involved in the electron transfer
process are many electron states characterized by an excess electron localized ini-
tially on the donor and finally on the acceptor. The intermediate states 1, 2, . . . are
similarly many-electron states that can be described in different representations. In
the local site representation we designate consecutive molecular segments along
the bridge as “bridge sites” and the bridge states 1, 2, . . . are the lowest energy
site states—each a ground state of a site with one excess electron.24 The relative
energies displayed in Fig. 16.7(a) and (b) express the actual state of affairs in many
real situations, where the donor and acceptor electronic states are lower in energy

24 The number of sites on the bridge is a matter of choice, although physically motivated choices
often lead to simpler analysis. It is also possible to take the whole bridge as a single site, which
amounts to using the many-electron basis of the bridge Hamiltonian.
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than local bridge states with an excess electron.25 Still these states often provide
a lower energy path, hence a lower tunneling barrier, than vacuum. For histor-
ical reasons this mechanism is often referred to as “superexchange.” Particularly
simple pictures, convenient for qualitative discussions, are obtained by disregard-
ing electron–electron interaction except for Pauli spin exclusion. In this case the
transfer is described in a one-electron language by which an electron goes from
the highest occupied molecular orbital (HOMO) on the donor site to the lowest
unoccupied molecular orbital (LUMO) on the acceptor side through a sequence of
LUMO orbitals of the bridge sites.25

Let us consider a general N -level bridge and assume that a model with nearest-
level interactions is sufficient. The model Hamiltonian is

Ĥ = ED|D〉〈D| +
N∑

j=1
Ej|j〉〈j| + EA|A〉〈A|

+VD1|D〉〈1| + V1D|1〉〈D| + VAN |A〉〈N | + VN A|N 〉〈A|
+

N−1∑
j=1

(Vj,j+1|j〉〈j + 1| + Vj+1,j|j + 1〉〈j|)
(16.103)

We will focus on the case where the group of bridge levels {j} is energetically distinct
from the donor and acceptor levels, so that, denoting by EB the mean energy of a
bridge level we have

|Ej − EB|, |Vj,j+1| � |EB − ED/A| (16.104)

(note that ED = EA ≡ ED/A at the transition state). In this case the electron transfer
still takes place between the D and A states because the bridge states cannot be
populated, being so different in energy. We therefore expect that the process may
still be described as a two-states problem, with an effective coupling between the
A and D states.

To find this effective coupling we look for an eigenstates of the Hamiltonian
(16.103) in the form ψ = cDψD + cAψA +∑N

j=1 cjψj. The Schrödinger equation

25 The actual situation may be more involved than what is shown in Fig. 16.7. First the coupling may
be longer range than shown, for example, one may have to consider 1–3 coupling, etc. Neglecting
such coupling is usually not a bad approximation since 〈φi|Ĥ |φj〉 quickly vanishes with increasing
distance between the centers on which the orbitals i and j are located. More important is to realize that
a route for electron transfer is provided not only by bridge states with an excess electron (or bridge
LUMOs), but also by bridge states that miss an electron (or bridge HOMOs). In the language of solid-
state physics (Chapter 4), one can have a transition dominated by electrons, holes, or combination of
both.
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Ĥψ = Eψ takes the form⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ED − E VD1 0 0 · · · 0
V1D E1 − E V12 0 · · · 0

0 V21 E2 − E V23
...

0 0 V32
. . . . . . 0

...
...

. . . EN − E VN A
0 0 · · · 0 VAN EA − E

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

cD
c1
c2
...
cN
cA

⎞
⎟⎟⎟⎟⎟⎟⎠ = 0

(16.105)
or, alternatively⎛

⎜⎜⎜⎜⎜⎜⎝

E1 − E V12 0 · · · 0

V21 E2 − E V23
...

0 V32
. . . 0

... EN−1 − E VN−1,N
0 · · · 0 VN ,N−1 EN − E

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

c1
c2
...
...
cN

⎞
⎟⎟⎟⎟⎟⎠ = −

⎛
⎜⎜⎜⎜⎝

V1DcD
0
...
0
VN AcA

⎞
⎟⎟⎟⎟⎠

(16.106)
(ED − E)cD + VD1c1 = 0
(EA − E)cA + VAN cN = 0

(16.107)

Equation (16.106) is a nonhomogeneous equation for the coefficients of the bridge
states. We can write it in the compact form

(ĤB − EIB)cB = u (16.108)

where ĤB is the bridge Hamiltonian (in the absence of coupling to the D/A system),
IB is a unit operator in the bridge subspace, cB is the vector of bridge coefficients, and
u is the vector on the right side of (16.106). If E is outside the range of eigenvalues
of ĤB the solution of (16.108) is cB = −Ĝ(B)u where

Ĝ(B) = (EIB − ĤB)
−1 (16.109)

In fact, in (16.107) we need only c1 and cN , which are given by

c1 = G(B)
11 V1DcD + G(B)

1N VN AcA

cN = G(B)
N1 V1DcD + G(B)

NN VN AcA

(16.110)

Using these in (16.107) leads to

(ẼD − E)cD + ṼDAcA = 0

(ẼA − E)cA + ṼADcD = 0
(16.111)
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where

ẼD = ED + VD1G(B)
11 V1D; ẼA = EA + VAN G(B)

NN VNA (16.112)

are donor and acceptor energies, slightly shifted because of their couplings to the
bridge, and where

ṼDA = VD1G(B)
1N VNA; ṼAD = VAN G(B)

N1 V1D = Ṽ ∗
DA (16.113)

is the desired effective coupling that should be used in the rate expression (cf. (16.53)
and (16.58))

kA←D = 2π

�
|ṼDA|2F(�E); F(�E) = 1√

4πErkBT
exp

(
−(�E − Er)

2

4ErkBT

)
(16.114)

Unlike a “regular” coupling, the effective coupling ṼDA depends on the energy
E through the Green’s function (16.109), however since we are interested in the
D/A subspace and because the two eigenvalues in this subspace are expected,
under the inequalities (16.104), to remain close to ED/A we can substitute E by
ED/A in (16.113). Furthermore, these inequalities imply that we can retain only the

lowest-order term in the Dyson expansion, Eq. (9.11),26 applied to Ĝ(B)
1N

G(B)
1N = 1

(ED/A − E1)
V12

1

(ED/A − E2)
V23 . . .

1

(ED/A − EN−1)
VN−1,N

× 1

(ED/A − EN )
(16.115)

where, again, ED/A stands for the equal donor and acceptor energies at the transition
configuration. In many applications the bridge is made of connected identical units.
Within our model this will be represented by taking all coupling elements the
same, denoted VB, and all energy denominators equal to ED/A − EB. This leads

to G(B)
1N = (VB)

N−1(ED/A − EB)
−N and the effective coupling (16.113) then takes

the form

ṼDA = VD1VNA

VB

(
VB

ED/A − EB

)N

(16.116)

26 The Dyson expansion starts form the identity (9.11), for example, Ĝ(z) = Ĝ0(z)+ Ĝ0(z)V̂ Ĝ(z)
and uses repeated substitutions to get the perturbation series Ĝ(z) = Ĝ0(z) + Ĝ0(z)V̂ Ĝ0(z) +
Ĝ0(z)V̂ Ĝ0(z)V̂ Ĝ0(z)+. . .. Equation (16.115) is the lowest-order term in this series that can contribute

to the Green function matrix element G(B)
1N .
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Fig. 16.8 Charge recombination lifetimes in the compounds shown in the inset in dioxane solvent.
(J. M. Warman, M. P. de Haas, J. W. Verhoeven, and M. N. Paddon-Row, Adv. Chem. Phys. 106,
Electron transfer—from isolated molecules to bio-molecules, Part I, edited by J. Jortner and M. Bixon
(Wiley, New York, 1999). The technique used is time-resolved microwave conductivity (TRMC), in
which the change in dielectric response of a solution is monitored following photoinduced electron
transfer—a charge separation process that changes the solute molecular dipole. The lifetimes shown
as a function of bridge length (number of σ -bonds separating the donor and acceptor sites in the
compounds shown in the inset) are for the back electron transfer (charge recombination) process.

Comparing to Eq. (16.102) and using (16.114) we see that, in this model,

ket ∼ exp(−β ′L); β ′ = −2

b
ln

∣∣∣∣ VB

ED/A − EB

∣∣∣∣ (16.117)

where b is the length, in the tunneling direction, of a single bridge unit.
The prediction of exponential dependence of ket on the bridge length L has

been repeatedly verified in many systems and values of β ′ have been tabulated for
different bridge types. An example is shown in Fig. 16.8, where a value β ′ = 1 Å−1

was inferred from the distance-dependent lifetimes.

16.13 Electron tranport by hopping

The bridge-assisted electron transfer discussed above is a coherent quantum-
mechanical process. Its tunneling nature is manifested by the exponentially
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decreasing rate with increasing donor acceptor distance, and limits observable trans-
fer phenomena of this kind to relatively short bridges. Another mode of transfer,
more akin to electron transport in macroscopic systems, may become important for
longer bridges and at higher temperatures. In this mode the electron, if thermally
activated onto the bridge, can migrate along the bridge by successive transfer steps.
Thus, transitions between intermediate centers such as shown in Fig. 16.7 can
be viewed as individual electron transfer steps characterized by rates that can be
obtained from the Marcus theory. The overall D→A electron transfer then becomes
a successive hopping process that may be described by the coupled kinetic equations
(a master equation, see Section 8.3)

Ṗ0 = −k1,0P0 + k0,1P1

Ṗ1 = −(k0,1 + k2,1)P1 + k1,0P0 + k1,2P2
...

ṖN = −(kN−1,N + kN+1,N )PN + kN ,N−1PN−1 + kN ,N+1PN+1

ṖN+1 = −kN ,N+1PN+1 + kN+1,N PN

(16.118)

or
Ṗ = KP (16.119)

where P is the vector with elements Pj and K is the matrix of kinetic coefficients.
Here Pj is the probability to be in the center j, where j = 0 and j = N + 1
denote the donor and acceptor centers, respectively, and ki,j = ki←j is the hop-
ping rate coefficient from center j to center i. These rate coefficients are not all
independent; detailed balance (see Section 8.3.3) requires that ratios between for-
ward and backward rates should be compatible with Boltzmann statistics, that is,
ki,j/kj,i = exp((Ej − Ei)/kBT ) where Ej and Ei are energies of the corresponding
states.

Problem 16.9. Show that the matrix K has one zero eigenvalue, and that
the corresponding eigenvector is the equilibrium state that satisfies Pi/Pj =
exp((Ej − Ei)/kBT ).

In general, the time evolution inferred from such a model is characterized by
N + 1 characteristic times, or rate coefficients, associated with the nonvanishing
eigenvalues of the kinetic matrix K. In our application, however, the energies of
the donor and acceptor states j = 0, N + 1 are considerably lower than those of the
bridge states. Specifically, we assume that the inequalities

Ej − E0, Ej − EN+1 
 kBT (16.120)

hold for all j �= 0, N +1. Under such conditions the transition between states 0 and
N +1 is a discrete version of the barrier crossing problem discussed in Chapter 14,
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and the transition D→A will be dominated by a single rate coefficient kA←D.
Starting from P0 = 1 at t = 0 we will observe (after a short transient period)
an exponential decay, P0(t) = exp(−kA←Dt), and an equivalent increase in the
acceptor population PN+1(t). There is one caveat in this description: It is based
on the assumption that to a good approximation P0(t)+ PN+1(t) = 1 at all times,
that is, that the population in the intermediate bridge states is very small. This is
usually justified by the inequality (16.120), however may not hold if the bridge is
too long. In the latter case the process may become dominated by diffusion on the
bridge and simple first-order kinetics will not apply.

Barring this possibility, we proceed to evaluate the effective transfer rate kA←D.
We will use the steady-state flux method, now a classical version of the scheme
developed in Section 9.5. In this approach we consider the steady-state obtained
at long time under the restriction that state 0 is a constant source (P0 = constant)
while state N + 1 is a drain (PN+1 = 0). We also limit ourselves to the case where
all rate coefficients that are not associated with species 0 and N+1 are the same,
denoted k . Equations (16.118), without the first and last equations, then lead to the
N steady-state equations

0 = −(k0,1 + k)P1 + k1,0P0 + kP2
0 = −2kP2 + k(P1 + P3)

...
0 = −2kPN−1 + k(PN−2 + PN )

0 = −(k + kN+1,N )PN + kPN−1

(16.121)

while the last equation in (16.118) is rewritten in the form

ṖN+1 = 0 = kN+1,N PN − J (16.122)

Here J is the flux through the system that drains population out of state N+1. At
steady state this flux also satisfies

J = kA←DP0 (16.123)

that defines the effective transfer rate kA←D. To solve the system of N equations
(16.121) we first create another set of N equations as the sums, for n = N , N −
1, . . . , 1, of the last n equations in the set (16.121). This yields

0 = −k01P1 + k10P0 − kN+1,N PN
0 = −kP2 + kP1 − kN+1,N PN
0 = −kP3 + kP2 − kN+1,N PN

...
0 = −kPN−1 + kPN−2 − kN+1,N PN
0 = −kPN + kPN−1 − kN+1,N PN

(16.124)
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(the last equations in the sets (16.121) and (16.124) are identical). The first equation
in (16.124) and the sum of the last N − 1 equations in this set yield the set of two
equations

0 = −k01P1 + k10P0 − kN+1,N PN

0 = kP1 − [k + (N − 1)kN+1,N ]PN
(16.125)

that can be solved to yield the steady-state relationship between PN and P0

PN = (k/kN+1,N )(k1,0/k0,1)P0

(k/kN+1,N )+ (k/k0,1)+ N − 1
(16.126)

whence, using (16.122) and (16.123),

kA←D = e−(EBD/kBT )

1/(kA←N )+ 1/(kD←1)+ (N − 1)/k
(16.127)

In obtaining the form (16.127) we have used the detailed balance relation k1,0/k0,1 =
exp(−EBD/kBT ) where EBD = E1 − E0 is the “barrier height” above the donor
energy, and have identified k0,1 and kN+1,N as the rate coefficients kD←1 and kA←N
to go from the first and last bridge sites to the donor and acceptor, respectively.

The rate coefficient kA←D, Eq. (16.127), is seen to have an Arrhenius form,
with an activation energy associated with the thermal population of the bridge and
a pre-exponential coefficient which is the inverse of a sum of three times. Two of
them, (kD←1)

−1 and (kA←N)−1 are, respectively the lifetimes of the electron on the
edge bridge states for going into the donor and acceptor levels. Recalling that D and
A denote stabilized donor and acceptor states (the bottoms of the corresponding
Marcus parabolas) we may be tempted to identify states 1 and N of the bridge as
nonequilibrium donor and acceptor states raised by a solvent fluctuation to a height
for which transfer to the bridge is possible. In this case kD←1 and kA←N are the
corresponding solvent relaxation (solvation) rates. The third time, (N − 1)/k , a
product of the hopping time k−1 and the number of hops N − 1 in the bridge may
be interpreted as the time spent on the bridge itself.27

Consider now the bridge-length dependence of such electron transfer processes.
For short bridges a tunneling-dominated transfer will show an exponential length
dependence. However, for long bridges we expect the behavior shown in (16.127):
A weak N dependence that becomes 1/N for long bridges. Figure 16.9 shows
an experimental example in which the donor and acceptor species are placed at

27 When the process becomes dominated by diffusion on the bridge the actual time spent on the
bridge should be derived from the diffusion law, and is proportional to N−2. As discussed above,
when we apply the steady-state formalism to calculate a rate, we in fact assume that the bridge is not
long enough to yield this limit.
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Fig. 16.9 Electron transfer rates in DNA: Shown are the yields for transfer between guanine (G) and
GGG groups separated by Adenine–Thymine (A) bridges for different bridge lengths. The transition
from exponential dependence on bridge length to practically bridge independent rates (on this scale)
marks the transition from tunneling to hopping transfer. (From B. Giese, J. Amaudrut, A.-K. Koehler,
M. Spormann, and S. Wessely, Nature 412, 318 (2001).

different distances on the backbone of a DNA molecule. The electron transfer yield
displayed as a function of distance (expressed in terms of amino acid segments)
shows what appears to be a crossover from tunneling to hopping behavior with
increasing distance.

The transition from tunneling to activated transport can be manifested also by the
temperature dependence of the process. One expects that at low temperature such
processes will be dominated by tunneling, therefore show weak or no dependence
on temperature. As the temperature increases we expect a crossover to the activated
mode of transport, characterized by an Arrhenius behavior. Fig. 16.10 shows an
example of such crossover phenomenon.

16.14 Proton transfer

Proton transfer could certainly be another full chapter in this book. With applic-
ations ranging from photosynthesis to fuel cells this is one of the most important
elementary reactions and as such was and is intensively investigated. This section
does not pretend to provide any coverage of this process, and is included here mainly
as a reminder that this important reaction should be on the mind of a researcher in
condensed phase chemical dynamics. It is also of interest to point out an interesting
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Fig. 16.10 The electron transfer time (inverse rate) in a chemically modified photoreaction center
of bacteriochlorophyll, showing a crossover from thermally activated sequential hopping behavior
at high temperature to a “superexchange” tunneling behavior at low temperature. (Open circles are
experimental data from M. E. Michel-Beyerle et al., unpublished; full and dashed lines are theoretical
fits from the articles by M. Bixon and J. Jortner cited at the end of this chapter.)

conceptual dilemma related to the placement of this reaction relative to two other
processes studied in this text: electron transfer in this chapter and barrier crossing
in Chapter 14.

For specificity let us focus on a reaction of the form

AH . . .B → A− . . . HB+ (16.128)

The question is: Should we better regard proton transfer in the same framework as
electron transfer, namely solvent rearrangement as a precursor to tunneling trans-
ition, or is it better to use a description more akin to the barrier crossing reactions
discussed in Chapter 14? In the first case the reaction coordinate is associated with
the solvent rearrangement as was the case for electron transfer. In the second—it
is the position of the proton on its way across the barrier separating its two binding
sites on A or on B. In either case the motion across this barrier can be classical-like
or tunneling-like depending on the barrier height relative to the zero point energy
of the proton in its local well.
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What makes this reaction conceptually special is that there is no simple answer
to this question. Rather, proton transfer should probably be described with respect
to two coordinates: The solvent reorganization energy that constituted the reaction
coordinate of electron transfer reactions and the proton position between its two
sites. On this two-dimensional free energy surface one coordinate (proton posi-
tion) is quantum. The other (solvent reorganization) is essentially classical. This
combination of higher dimensionality and mixed quantum and classical dynamics,
together with the availability of an additional observable—the kinetic isotope effect
associated with the reaction, make proton transfer a unique process.28

Appendix 16A: Derivation of the Mulliken–Hush formula

Here we present the derivation29 of the expression (16.97) that relates the coupling
between two nonadiabatic electronic states a and b to the optical transition dipole
between the corresponding adiabatic states 1 and 2, as described in Section 16.10.

Our discussion refers to a given fixed nuclear configuration. The electron transfer
reaction is assumed to take place between two states, a state a localized on the
center A and a state b localized on the center B. ψa and ψb are the corresponding
wavefunctions with the energies Ea and Eb, respectively. We assume that Sab =
〈ψa|ψb〉 = 0, an assumption valid when these centers are far enough from each
other. These states diagonalize that part of the system’s Hamiltonian from which the
interaction V that leads to the electron transfer is excluded. In the literature one often
refers to these zero-order states as “diabatic” states, and to the representation defined
by this basis as the diabatic representation (see Section 2.5). We further assume that
the coupling V that leads to transition between these states has no diagonal elements
(i.e. does not modify the zero-order energies). The full Hamiltonian in the diabatic
representation is then

H =
(

Ea Vab
Vba Eb

)
(16.129)

The eigenstates ψ1 and ψ2 of this Hamiltonian are, by definition, the adiabatic
states, which are exact states in the Born–Oppenheimer approximation. They are

28 Further reading: K. D. Kreuer, Proton conductivity: Materials and applications, Chem. Mater.
8, 610 (1996); K. Ando and J. T. Hynes, Adv. Chem. Phys. 110, 381 (1999); Philip M. Kiefer and
J. T. Hynes, Sol. St. Ionics, 168, 219 (2004).

29 R. S. Mulliken, J. Am. Chem. Soc. 64, 811–824 (1952); R. S. Mulliken and W. B. Persson,
Molecular Complexes (Wiley, New York, 1969); N. S. Hush, Prog. Inorg. Chem. 8, 391–444 (1967);
N. S. Hush, Electrochim. Acta, 13, 1005–1023 (1968); C. Creutz, M. D. Newton, and N. Sutin,
Photochem. Photobiol. A: Chem., 82, 47–59 (1994).
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written as
ψ1 = caψa + c∗bψb

ψ2 = −cbψa + c∗aψb
(16.130)

normalized so that |ca|2 + |cb|2 = 1. The corresponding energies E1 and E2 are
solutions of the secular equation∣∣∣∣Ea − E Vab

Vba Eb − E

∣∣∣∣ = 0 (16.131)

Denote
Eab = Eb − Ea ≥ 0 (16.132)

Then

E1 = (Ea + Eb)

2
− (E2

ab + 4V 2
ab)

1/2

2
(16.133)

E2 = (Ea + Eb)

2
+ (E2

ab + 4V 2
ab)

1/2

2
(16.134)

E2 − E1 = +
√

E2
ab + 4V 2

ab (16.135)

The critical assumption in the following derivation is that an optical transition,
that is, absorption or emission of a photon, takes place between the exact eigenstates
1 and 2.

This statement is not obvious. We consider two transitions: Electron transfer and
photon absorption, and state that the former is a transition between states a and b
while the latter takes place between states 1 and 2. Why should these transitions
viewed as processes that transfer populations between different states?

The answer lies in the realization that light absorption is a process that starts
with a system in equilibrium, disturbed only by the external radiation field. At low
temperature the initial molecular state is the electronic ground state, an eigen-
state of the full molecular Hamiltonian. On the other hand, in many experimental
situations electron transfer takes place in a system that was brought into a nonequi-
librium state by some preparation event (e.g. a would-be donor was suddenly
brought into the neighborhood of a potential acceptor or, more easily, a donor
state was prepared optically). There are no external perturbations; the only reason
for the transition that follows is that the system was not prepared in an eigenstate.
This nonequilibrium initial state may be taken as an eigenstate of some zero-order
Hamiltonian—that Hamiltonian in which the terms responsible for the electron
transfer process are not included.

In most situations we do not find this Hamiltonian by an analytical pro-
cess. Rather, we first identify the donor state a and the acceptor state b using
chemical intuition. Their assumed (approximate) mutual orthogonality is based
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on their physical character: They are localized on donor and acceptor sites
that are relatively far from each other. The zero-order Hamiltonian may be
then formally written as Ea|a〉〈a| + Eb|b〉〈b|. The full system Hamiltonian can
be formally written in the representation defined by these states, in the form
Ea|a〉〈a| + Eb|b〉〈b| + Hab|a〉〈b| + Hba|b〉〈a| (equivalent to Eq. (16.129) with
Vab = Hab). The adiabatic states 1 and 2 are obviously those that diagonalize the
full Hamiltonian, leading to the final conclusions that these are the states between
which optical transitions take place.

The equations for the coefficients ca and cb of Eq. (16.130) are(
Ea − E1 Vab

Vba Eb − E1

)(
ca
c∗b

)
= 0

(
Ea − E2 Vab

Vba Eb − E2

)(−cb
c∗a

)
= 0

(16.136)

that yield

E1 = Ea + c∗b
ca

Vab (16.137a)

= Eb + ca

c∗b
Vba (16.137b)

E2 =Ea − c∗a
cb

Vab (16.138a)

=Eb − cb

c∗a
Vba (16.138b)

(Note that the corrections to the zero-order energies must be real numbers and their
signs are determined by our choice E1 < Ea < Eb and E2 > Eb > Ea.) From
(16.137a) and (16.138a) or from (16.137b) and (16.138b) we get that

E2 − E1 = − Vab

cacb
= − Vba

c∗ac∗b
(real) (16.139)

or

|cacb| = |Vab|
(E2 − E1)

= 1

2

[
1 −

(
Eab

E2 − E1

)2
]1/2

(16.140)

Consider now the absorption lineshape, which, as discussed above, corresponds
to an optical transition between states 1 and 2. What is measured is the extinction
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coefficient, ε(ν), that determines the reduction in light intensity as a beam of fre-
quency ν travels a distance d through a sample of concentration C according to
I = I0e−ε(ν)Cd . The oscillator strength, essentially a measure for the integrated
lineshape is defined by

fosc = 2.303 × 103mec2

πAe2

∫
dνε(ν) (16.141)

where me and e are the electron mass and charge, c is the speed of light, and A is
the Avogadro number. (The numerical factors corresponds to the integral

∫
dνε(ν)

evaluated in cgs length unit: ε in cm2 and ν in cm−1. fosc itself is dimensionless,
and if ε and ν are expressed in these units we get fosc = 4.33×10−9

∫
dνε(ν)). For

dipole-allowed absorption the oscillator strength is related to the absolute-squared
transition dipole matrix element, |µ12|2, between states 1 and 2 according to

fosc = 4πmeνmax

3�e2 |µ12|2 (νmax is in inverse time units) (16.142)

= 1.08 × 10−5νmax|µ12|2 (νmax is in cm−1) (16.143)

Thus, a measurement of fosc yields |µ12|. What we need is a relationship between
|µ12| and Hab. To this end we start with the expression for the electronic-dipole
matrix element,

µ12 = −e 〈ψ1|
∑

i

ri |ψ2〉 (16.144)

where the sum is over all electrons, and use Eq. (16.130) together with the assump-
tion made above that Sab = 〈ψa|ψb〉 = 0 and the equivalent assumption that
µab = −e〈ψa|∑i ri|ψb〉 = 0 (both assumptions rely on the locality of the a and
b states on their corresponding centers, which are assumed to be far enough from
each other). We get

µ12 = c∗acb(µb − µa) (16.145a)

where

µa = −e〈ψa|
∑

i

ri|ψa〉; µb = −e〈ψb|
∑

i

ri|ψb〉 (16.145b)

are the dipole moments of the localized zero-order states. Using Eq. (16.140) we
find

|µ12| = |Vab|
(E2 − E1)

|µb − µa| = e|Vab|rab

�ωmax
(16.146)
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where in the second equality we represented E2 − E1 by the frequency ωmax =
2πνmax of maximum absorption and have defined

rab ≡
∣∣∣∣µb − µa

e

∣∣∣∣ (16.147)

If the only change in the molecular charge distribution between the states a and b
is the position of the transferred electron (i.e. if we assume that the other electrons
are not affected) then rab is the transfer distance, that is, the separation between the
donor and acceptor centers.

Further reading

M. Bixon and J. Jortner, editors, Electron transfer – from isolated molecules to biomolecules, Advances
in Chemical Physics, Vol. 106 (Wiley, New York, 1999) Parts I and II.

M. Bixon and J. Jortner in Electron transfer – from isolated molecules to biomolecules, edited by M.
Bixon and J. Jortner, Advances in Chemical Physics, Vol. 106 (Wiley, New York, 1999) Parts I,
pp. 35–202.

A. M. Kuznetsov, Charge Transfer in Physics, Chemistry and Biology: Physical Mechanisms of
Elementary Processes and an Introduction to the Theory (Gordon & Breach, New York, 1995).

A. M. Kuznetsov and J. Ulstrup, Electron Transfer in Chemistry and Biology: An Introduction to the
Theory (Wiley, New York, 1999).
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ELECTRON TRANSFER AND TRANSMISSION AT
MOLECULE–METAL AND

MOLECULE–SEMICONDUCTOR INTERFACES

Our world I think is very young,
Has hardly more than started; some of our arts
Are in the polishing stage, and some are still
In the early phases of their growth; we see
Novel equipments on our ships, we hear
New sound in our music, new philosophies …

Lucretius (c.99–c.55 bce) “The way things are”
translated by Rolfe Humphries, Indiana University Press, 1968

This chapter continues our discussion of electron transfer processes, now focus-
ing on the interface between molecular systems and solid conductors. Interest
in such processes has recently surged within the emerging field of molecular
electronics, itself part of a general multidisciplinary effort on nanotechnology. Not-
withstanding new concepts, new experimental and theoretical methods, and new
terminology, the start of this interest dates back to the early days of electrochem-
istry, marked by the famous experiments of Galvani and Volta in the late eighteenth
century. The first part of this chapter discusses electron transfer in what might now
be called “traditional” electrochemistry where the fundamental process is electron
transfer between a molecule or a molecular ion and a metal electrode. The second
part constitutes an introduction to molecular electronics, focusing on the problem of
molecular conduction, which is essentially electron transfer (in this context better
termed electron transmission) between two metal electrodes through a molecular
layer or sometimes even a single molecule.

17.1 Electrochemical electron transfer

17.1.1 Introduction

In Chapter 16 we have focused on electron transfer processes of the following
characteristics: (1) Two electronic states, one associated with the donor species,
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the other with the acceptor, are involved. (2) Energetics is determined by the
electronic energies of the donor and acceptor states and by the electrostatic solvation
of the initial and final charge distributions in their electronic and nuclear environ-
ments. (3) The energy barrier to the transfer process originates from the fact that
electronic and nuclear motions occur on vastly different timescales. (4) Irrevers-
ibility is driven by nuclear relaxation about the initial and final electronic charge
distributions.

How will this change if one of the two electronic species is replaced by a
metal? We can imagine an electron transfer process between a metal substrate and
a molecule adsorbed on its surface, however the most common process of this
kind takes place at the interface between a metal electrode and an electrolyte solu-
tion, where the molecular species is an ion residing in the electrolyte, near the
metal surface. Electron transfer in this configuration is the fundamental process
of electrochemistry. Knowledge of the atomic and electrostatic structure of metal–
electrolyte interfaces (more generally interfaces between an ionic conductor such as
an electrolyte or a molten salt and an electronic conductor such as a metal or a semi-
conductor) is a prerequisite to understanding electron transfer at such interfaces.
In the present discussion we assume that this knowledge is available and focus
on the electron transfer itself. At issue is the comparison between a process such
as (16.1)

Fe+3 (solution) + Fe+2 (solution) ⇀↽ Fe+2 (solution) + Fe+3 (solution) (17.1)

in which the electron is transferred between solvated molecular species and the
analogous process

Fe+3 (solution) + e-(metal) ⇀↽ Fe+2 (solution) (17.2)

where the electron is transferred between a solvated molecular species and the
metal. Note that we could write (17.2) in analogy to (17.1) in the form

Fe+3 (solution) + metal (N ) ⇀↽ Fe+2 (solution) + metal (N−1) (17.3)

where N is the number of electrons on the metal. The form (17.3) is similar to
(17.1) except that the metal replaces one of the reactants. There are, however, three
important differences between these two processes:

1. While the process (17.1) involves two electronic states, one on each reactant,
a macroscopic metal electrode is characterized by a continuum of electronic
states with average occupation given by the Fermi function in terms of the
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electronic chemical potential µ,

f (E) = 1

eβ(E−µ) + 1
(17.4)

2. In a typical electrochemical setup the potential difference between the interi-
ors of the metal and the solution is controlled, so that the direction and rate
of electron transfer can be monitored as functions of this voltage.

3. In addition to providing this new control parameter, this setup also provides
a new observable: the electronic current flowing under a given voltage. It
is this element of electrochemical electron transfer that makes Eq. (17.2)
a better representation of this process: First, the electron current is the
direct observable and second, the state of the metal remains unchanged
during the process. This results from the fact that at a given voltage the
electron density in the metal is constantly readjusted by the source of this
voltage.

The current flowing under a given applied voltage is the most important observ-
able of an electrochemical system, and understanding the factors that determine
and control it is the central issue of electrochemistry. It is not always the case that
the observed current is directly related to the electron transfer rate; for example, the
rate determining process may be diffusion of redox components toward the work-
ing electrode. As stated above, in the following discussion we limit ourselves to a
simpler question, just focusing on the rate of electron transfer. Given a molecule or
an ionic species in solution at a given distance from the metal surface, our aim is
to evaluate the electron transfer rate, the equivalent of the rate of electron transfer
between two species in solution given by Eqs (16.50–16.59).

17.1.2 The electrochemical measurement

Before addressing the rate issue we need to understand the way in which such
rates are measured, keeping in mind that the observable in a typical experiment is
electrical current measured as a function of voltage.

Let us consider the voltage first. When a metal electrode M (— the electrode
whose interface with the solution we investigate; henceforth referred to the work-
ing electrode) is dipped into an electrolyte solution and equilibrium is established,
an electrostatic potential is established between the two phases. What is usually
measured (see Fig. 17.1) is the potential difference � between this electrode and a
reference half cell, R—say a platinum electrode in contact with some fixed redox
solution which in turn is connected by a capillary to the close neighborhood of
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A

CM

R

�

Fig. 17.1 An electrochemical measurement with a three-electrode configuration: M is the working
electrode, C is the counter electrode, and R is the reference electrode. In a typical measurement the
current between M and C is measured against the voltage between M and R.

the working electrode.1 At equilibrium � = �0. In a typical electrochemical
experiment the current flows between the working electrode M and a counter elec-
trode C (the current between M and R is negligible in comparison) and is measured
as a function of �. When we change � we affect the potential difference between
M and the molecular species in its solution neighborhood and consequently affect
the rate of electron exchange between them as discussed below. The difference
η = �−�0 between the potential � and the equilibrium potential �0 is referred
to as the overpotential. In this chapter a positive η corresponds to the electrode
biased positively relative to the solution.

It should be intuitively obvious (and is further clarified below) that the effect
of applied potential on the electron transfer rate between the electrode M and a
molecular species S in its solution neighborhood reflects the way by which this
potential translates into a potential drop between M and S. This follows from the
fact that the rate depends on the relative positions of electronic levels in the electrode
and the molecule, which in turn depend on this drop. In much of the electrochemical
literature it is assumed that when the electrode potential changes by δ� so does this
potential drop. This amounts to the assumption that the species S does not feel the
potential change on M, that is, that the electrolyte solution effectively screens the
electrode potential at the relevant S–M distance. Such an assumption holds at high
supporting electrolyte concentration2 (order of 1 mole per liter). However, even

1 In this arrangement variations in � imply similar variations in the potential between the working
electrode and the solution, irrespective of what happens at the counter electrode.

2 The term “supporting electrolyte” refers to an electrolyte species in the solution that is inert to the
electrode process under consideration.
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at lower electrolyte concentrations the corrections to this behavior are small, and
will be disregarded below. Indeed, assuming that the molecular species is separated
from the metal surface by two hydration shells (one surrounding the ion and one
on the metal) a typical distance between S and M is 5–6 Å, (the so-called outer
Helmholtz plane) and most of the potential falls within this range.

17.1.3 The electron transfer process

Consider now the electron transfer process. In contrast to the problem discussed in
Sections 16.3 and 16.4, of electron transfer between molecular donor and acceptor
states, where the role of nuclear motion was critical for converting a two-state
dynamics into a rate process, in the present situation a rate exists even in the absence
of nuclear relaxation because of the presence of a continuum of metal levels. We
will start by considering this problem, disregarding nuclear motion.

17.1.3.1 Electron transfer to/from a metal electrode without nuclear relaxation

The theoretical treatment in this case is similar to that of a level interacting with a
continuum (Section 9.1) but with some new twists. The result will have a golden-
rule form, that is, contains a product V 2ρ, but we need to identify the coupling and
the density of states involved.

We use a simple picture in which the molecular species S is a two-state system,
where the oxidized state |a〉 has one electron more than the reduced state |b〉. The
corresponding energies are Ea and Eb, and their difference is denoted Eab = Ea−Eb.
For the metal electrode we use a free electron model, so that a state of the metal is
specified by a set of occupation numbers m = (m1, m2, . . .) of the single electron
levels. For the single electron level j of energy Ej, mj = 1 with probability f (Ej)

and mj = 0 with probability 1 − f (Ej), where f (E) is given by (17.4). A basis of
states for the overall SM system is written |s, m〉 = |s〉 |m〉 where s = a, b and |m〉
is an antisymmetrized product of single electron metal states.

Consider the coupling that gives rise to electron tunneling between molecule
and metal. We assume that it is independent of the spin state of the electron, so
consideration of spin and spin multiplicity appears only in the electron density
of states. We will not go into details of this coupling (suitable models can be
constructed using pictures like Fig. 12.2 and using a basis of electronic states
localized on the molecules or in the metal); except for assuming that it can be
written as a sum of one-electron coupling terms

V̂ =
∑

s=a,b

∑
m

∑
j

V m
a0j ,b1j

|a, (m, 0j)〉〈b, (m, 1j)| (17.5)

where |a, (m, 0j)〉 = |a〉|m, 0j〉 describes the molecule in state a and the metal in
state m, with 0j emphasizing that no electron occupies the single electron level j in
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the metal, while |b, (m, 1j)〉 = |b〉|m, 1j〉 is the state obtained from it by transferring
an electron from the molecule to the metallic level j.

Next consider the rate of such electron transfer process. The golden-rule
expression for this rate is

kb←a = 2π

h̄

∑
m

∑
j

P(m, 0j)|V m
a0j ,b1j

|2δ(Eab − Ej) (17.6a)

ka←b = 2π

h̄

∑
m

∑
j

P(m, 1j)|V m
a0j ,b1j

|2δ(Eba + Ej) (17.6b)

where P(m, nj) is the thermal probability to find the metal in the electronic state|m, nj〉 (nj = 0 or 1). In what follows we assume that the coupling elements
V m

a0j ,b1j
do not depend on m. This amounts to the assumption that the electron tunnel-

ing between the molecule and the metal is a purely one-electron process that does
not depend on the state of the other electrons. In this case we can use the identities∑

m

P(m, 0j) = 1 − f (Ej);
∑

m

P(m, 1j) = f (Ej) (17.7)

so that Eqs (17.6) may be written in the forms

kb←a = 2π

h̄

∑
j

(1 − f (Ej))|Va,b|2δ(Eab − Ej) (17.8a)

ka←b = 2π

h̄

∑
j

f (Ej)|Va,b|2δ(Eba + Ej) (17.8b)

Note that the δ functions that appear in Eqs. (17.6) and (17.8) are all identical. The
different forms become meaningful when nuclear relaxation is taken into account
(see below). In writing Eqs (17.8) in these forms we have assumed that the coupling
element Va0j ,b1j depends on j only through the energy Ej, which is already specified
by the a and b indices. We can convert the sums in these equations into integrals,
using the density ρM(E) of single electron states in the metal

kb←a =
∫

dE�(E)(1 − f (E))δ(E − Eab) = �(Eab)(1 − f (Eab)) (17.9a)

and similarly
ka←b = �(Eab)f (Eab) (17.9b)

where
�(Eab) = 2π

h̄
|Va,b|2ρM (Eab)

is the rate of electron transfer from S to M for the case where all single electron
levels on M are unoccupied (or from M to S if all these levels were occupied) in
the absence of nuclear relaxation effects.
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17.1.3.2 The effect of nuclear relaxation

Equations (17.8) and (17.9) were obtained under the assumption that electron trans-
fer takes place in the absence of nuclear motions. How do such motions, that were
found to play a central role in molecular electron transfer, affect the dynamics in
the present case? In analogy to Eq. (16.52) we can now write for electron transfer
to the metal

kb←a =2π

h̄

∑
j

(1 − f (Ej))
1

Qa

×
∑

i

e−βEa,i
∑

f

|Vai,bf |2δ(Ea,b − Ej + Ea,i − Eb,f )

=2π

h̄
|Va,b|2

∑
j

(1 − f (Ej))
1

Qa

∑
i

e−βEa,i

×
∑

f

|〈χ(a)
i |χ(b)

f 〉|2δ(Ea,b − Ej + EEa,i − EEb,f )

=2π

h̄
|Va,b|2

∑
j

(1 − f (Ej))F(Ea,b − Ej) (17.10)

where the sums over i and f are for the nuclear states associated with the molecular
electronic states a and b, respectively, and where the function F(E) was defined by
(16.54) with a high-temperature/strong electron–phonon coupling limit given by
(16.58). Converting again the sum over single electron metal levels to an integral
we now get

kb←a =2π

h̄
|Va,b|2

∫
dEρM (E)(1 − f (E))F(Eab − E)

=
∫

dE �(E)(1 − f (E))F(Eab − E) (17.11)

The equivalent expression for electron transfer from the metal is obtained by
repeating the same procedure starting from Eq. (17.8b). This leads to

ka←b =2π

h̄
|Va,b|2

∫
dEρM (E)f (E)F(Eba + E)

=
∫

dE�(E)f (E)F(Eba + E) (17.12)

Note that while the δ-functions in the two equations (17.8) are equivalent, that is,
δ(Eab − Ej) = δ(Eba + Ej), including nuclear transitions leads to the F functions
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for which F(Eab − E) �= F(Eba + E). Also note that in the absence of nuclear
relaxation F(E) = δ(E) (see Eq. (16.57)) and Eqs (17.11) and (17.12) lead back
to (17.9).

17.1.4 The nuclear reorganization

In the high-temperature/strong electron–phonon coupling limit the functions F(E)

take the form (16.58).

F(x) = 1√
4πErkBT

exp

(
−(x − Er)

2

4ErkBT

)
(17.13)

where Er is the reorganization energy. It is important to note that while Er is
defined exactly as before, for example, Eq. (16.60), its magnitude for electrode
reactions is smaller than in molecular electron transfer in solution. The reason
is that when the electron transfer takes place between two molecular species in
solution more nuclear modes are involved in the ensuing reorganization. A rough
estimate, valid when the transfer takes place between two species that are far
enough from each other so that their contributions to the solvent reorganization
are additive, is that when one of them is replaced by an electrode, its contribution
to the reorganization energy is eliminated. By this argument, the solvent reor-
ganization energy for the process (17.2) should be roughly half of that for the
process (17.1).

This difference stems from an important difference in the nature of electron
transfer in the two cases. In (17.1), as in any molecular electron transfer, the elec-
tron moves from one localized state to another. The reorganization energy is in
fact the energy that is released when the solvent starts in a configuration that was
in equilibrium with the electron on one localization center, and relaxes to a con-
figuration equilibrated with the electron on another center. In contrast, an electron
on the metal is not localized, and after electron transfer to or from the metal, the
excess charge created spread in the metal on a timescale fast relative to solvent
motion. The solvent therefore responds to the electronic charge only when it loc-
alizes on the molecule, and only this localization contributes to the reorganization
energy.

17.1.5 Dependence on the electrode potential: Tafel plots

In deriving Eqs (17.11) and (17.12) we did not address the imposed electrode poten-
tial but the information must implicitly exist in the electronic energies that appear
in these equations. To make this information explicit we redefine the electronic
energies Ea, Eb, Ej, as the values at equilibrium relative to some specified fixed
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reference (e.g. ground state of electron in vacuum), keeping in mind that already
at equilibrium there is usually some electrostatic potential difference between the
metal and the bulk electrolyte. We are concerned with the additional overpotential
η. As discussed at the end of Section 17.1.2, we assume that the full bias η falls in
the electrolyte side of the interface, between the metal M and the molecular species
S, and take η > 0 to mean that the metal is biased positively relative to the solution.
Since in state a the molecular species S has one electron more than in state b this
implies that with the new definition of the energy scale Eab → Eab + eη where e
is the magnitude of the electron charge. We then have

kb←a =
∞∫

−∞
dE �(E) (1 − f (E))F (Eab + eη − E) (17.14a)

ka←b =
∞∫

−∞
dE�(E)f (E)F (Eba − eη + E) (17.14b)

Taking the integration limits to infinity rests on the assumption that the integrand
is well contained within the metallic band.

Eqs. (17.14) can be used together with expressions (17.4) for the Fermi function
and (17.13) for the function F to evaluate the rates. These expressions can be cast
in alternative forms that bring out the dependence on physical parameters. First
note again that as the metal electrode comes to contact with the redox solution
some charge is transferred until the system comes to equilibrium in which some
potential bias has been established between the metal and the molecular species.
This potential bias has to be of just such magnitude that stops further charge transfer
between the molecular and metallic phases. This implies that the free energy for
removing an electron from a molecule in state a and putting it on the metal, µ−Eab
has to vanish, which implies that, Eab = µ.3 Taking this as one approximation
and assuming also that the energy dependence of �(E) can be disregarded, we can
change the energy variable in (17.14) so as to measure all energies from the metal
chemical potential µ, for example,

kb←a ≈ �√
4πErkBT

∞∫
−∞

dE
exp(E/(kBT ))

exp(E/(kBT ))+ 1
exp

[
−(Er + E − eη)2

4ErkBT

]
(17.15)

3 This argument is used in the electrochemistry literature, but it is only qualitative since it disregards
the role of the reorganization energy in determining the free energy. Indeed, if we use the zero-
temperature approximation for the Fermi functions in (17.14) we find that the equality kb←a = ka←b,
which must be satisfied at equilibrium, leads to Eab = µ only for Er → 0.
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If the reorganization energy Er is large relative to kBT while −eη is small,4 we can
use the fact that the integrand vanishes quickly when E− eη increases beyond kBT
to make the expansion (Er + E − eη)2 = E2

r + 2Er (E − eη), which leads to

kb←a ≈ �√
4πErkBT

exp
(
−Er − 2eη

4kBT

)

×
∞∫

−∞
dE

1

exp(E/(2kBT ))+ exp(−E/(2kBT ))

=�

√
πkBT

4Er
exp

(
−Er − 2eη

4kBT

)
(17.16)

The current at the electrode where oxidation a → b takes place is referred to as the
anodic current. If the density ca of the reduced species a is kept constant near the
electrode, the current is IA = ekb←aca. The result (17.16) predicts that under
the specified conditions (large Er , small η) a logarithmic plot of the current with
respect to eη/(kBT ) increases linearly with the overpotential η, with a slope 1/2.
This behavior is known in electrochemistry as Tafel’s law, and the corresponding
slope is related to the so called Tafel’s slope.5 An example where this “law” is
quantitatively observed is shown in Fig. 17.2. In fact, a linear dependence of log(I)
on the overpotential is often seen, however the observed slope can considerably
deviate from 1

2 and is sometimes temperature-dependent. Observed deviations are
usually associated with the approximations made in deriving (17.16) from (17.15)
and may be also related to the assumption made above that all the overpotential
is realized as a potential drop between the molecule and the metal, an assumption
that is better satisfied when the ionic strength of the solution increases.

17.1.6 Electron transfer at the semiconductor–electrolyte interface

With respect to electron transfer processes, semiconductor electrodes are different
from their metal counterparts in two ways. First, the band structure, character-
ized by a band gap separating the conduction and valence band, will express

4 Note that |eη| should not be too small—the Tafel law holds only beyond a bias that satisfies
|eη| > kBT . When η → 0 the net current which results from the balance between the direct and
reverse reactions, must vanish like η. This implies that the Tafel behavior is always preceded by a
low bias Ohmic regime.

5 The Tafel slope is defined in the electrochemistry literature as b ≡ (∂η/∂ log I)c,T = 2.3kBT/(αe)
whereα is the slope defined above (sometimes referred to as the transfer coefficient), which this theory
predicts to take the value 0.5.
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Fig. 17.2 Tafel plots for the (normalized, dimensionless) current, jN , that accompanies hydrogen
evolution in a solution containing 3.4 mM HCl + 1.0 M KCl, corrected for diffuse-double-layer effects,
mass transport controlled kinetics and ohmic potential drop, measured at three temperatures (5, 45,
75◦C; all results fall on the same line of this reduced plot) at a dropping mercury electrode. The slope
obtained from this plot is 0.52, independent of temperature. (Based on data from E. Kirowa-Eisner,
M. Schwarz, M. Rosenblum, and E. Gileadi, J. Electroanal. Chem. 381, 29 (1995) and reproduced by
the authors.)
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Fig. 17.3 An unbiased (left) and biased (right) semiconductor—electrolyte interface, showing the
semiconductor to the left of the electrolyte, and a molecule represented by its HOMO and LUMO,
respectively, in the solution. The potential bias (here the semiconductor is biased positively relative
to the electrolyte) is assumed to fall on the semiconductor side of the interface. The dashed line
represents the electronic chemical potential µ of the semiconductor.

itself in applying Eqs (17.11) and (17.12) to this interface. Second, in most cases
the semiconductor screening length (see Section 4.5) is much larger than that of
the electrolyte solution, implying that a given voltage between the bulks of these
phases falls mostly on the semiconductor side of their interface (see Eq. (4.157)).

Let us assume for simplicity that all the potential falls on the semiconductor. In
this case (Fig. 17.3) the energy levels on the electrolyte side remain unchanged with
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respect to the semiconductor valence and conduction band edges at the interface,
which means that their alignment relative to the semiconductor chemical potential
changes according to the given bias. If we assume that the electron transfer takes
place between the molecule and the semiconductor surface, the rates equivalent to
(17.14) are now

kb←a =
Ev+eη∫
−∞

dE �(E) (1 − f (E))F (Eab + eη − E)

+
∞∫

Ec+eη

dE �(E) (1 − f (E))F (Eab + eη − E) (17.17a)

and

ka←b =
Ev+eη∫
−∞

dE�(E)f (E)F (Eba − eη + E)

+
∞∫

Ec+eη

dE�(E)f (E)F (Eba − eη + E) (17.17b)

Again, in taking infinities as limits we assume that the energy range between the
bottom of the valence band and the top of the conduction band fully encompasses
the range in which the integrands in (17.17) are nonzero.

17.2 Molecular conduction

The last decade of the twentieth century has been revolutionary in the study of
molecular electron transfer processes. For the preceding century scientists have
investigated three types of such processes: transfer between a donor and an acceptor
species, transfer between two sites on the same molecule and transfer between a
molecular species in solution and a metal or a semiconductor electrode. The main
observable in such studies is the electron transfer rate, though in studies of pho-
toinduced electron transfer processes the quantum yield, defined as the number of
electrons transferred per photon absorbed, is also a useful observable. The invention
of the tunneling microscope and later experimental developments have now made it
possible to investigate another manifestation of electron transfer: electronic conduc-
tion by a molecule connecting two bulk metal or semiconductor electrodes. In this
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section we outline the theoretical description of this phenomenon, its relationship
to “traditional” electron transfer processes and its experimental realization.

17.2.1 Electronic structure models of molecular conduction

Figure 17.4 shows a cartoon of an experimental setup of a junction in which a
molecule connects between two metal leads, themselves extensions of two bulk
electrodes (sometimes referred to as “source” and “drain” leads). An ideal experi-
mental setup will have an additional electrode, a “gate,” which does not carry current
but can affect the junction energetics by imposing an external potential. Such “three-
terminal molecular devices” are now starting to be realized. Figure 17.5 shows a
theoretical model for treating such systems. These are energy level diagrams that
depict the right and left electrodes with their corresponding Fermi energies, and
some of the molecular levels. Let us consider the different scenarios shown here.
For simplicity of the following discussion we take the metals on the two sides to
be the same and the temperature to be zero, and consider an independent electron
model where electronic correlations are disregarded.

In Fig. 17.5(a) the junction is at equilibrium: the Fermi energies on the two
sides are equal, EFL = EFR = EF , and the molecular levels are arranged so that the
energy of the highest occupied molecular orbital (HOMO) is below, while that of
the lowest unoccupied molecular orbital (LUMO) is above EF. Figures 17.5(b) and
(c) show biased junctions. The potential bias � appears as the difference between
the local Fermi-energies or the electrochemical potentials on the left and the right
electrodes, e� = e(�L −�R) = EFR −EFL, where e is the magnitude of the elec-
tron charge. When the bias is large enough so that either the HOMO or the LUMO
enters into the energy window between the right and left Fermi energies, current
can flow as indicated by the arrows. In Fig. 17.5(b) the LUMO level is first filled
by the right electrode, then can transfer its electron to the left. In Fig. 17.5(c) an
electron has to move first from the HOMO level to the right electrode, creating an
electron vacancy that can be filled by an electron from the left. We sometimes use
the names “electron conduction” and “hole conduction” for the processes depicted
in Figs 17.5(b) and (c), respectively. As long as the potential bias between the two
sides is maintained, current will flow through the system as the molecule tries (and
fails) to reach equilibrium with both electrodes.

Several comments should be made at this point. First, the simple
independent electron picture discussed above is only useful for qualitative
descriptions of electron transport in such systems; electron–electron interactions
and electronic correlations should be taken into account in realistic treatments.
Second, the discussion above is appropriate at zero temperature. For finite temper-
ature the Fermi energies should be replaced by the corresponding electron chemical
potentials on the two sides, and the energy thresholds will be broadened by the
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Fig. 17.4 A schematic three-terminal molecular junction, made of a molecule that connects between
two (source and drain) electrodes, with a third electrode that functions as a gate. (From J. Park,
A. N. Pasupathy, J. I. Goldsmith, C. Chang, Y. Yaish, J. R. Petta, M. Rinkoski, J. P. Sethna,
H. D. Abruna, P. L. McEuen, and D. C. Ralph, Nature 417, 722 (2002).)
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Fig. 17.5 Electron transmission through a molecular bridge connecting two metal leads. (a) An
unbiased junction, (b) electron conduction, (c) hole conduction, (d) a local representation/nearest
neighbor coupling model of a molecular bridge.

thermal distributions. Next, note that current can flow in the system also for poten-
tial bias smaller than the threshold needed to position the HOMO or LUMO in the
window between the Fermi levels. This will be a tunneling current, assisted by the
molecular levels but not occurring through them—an analog of the bridge assisted
electron transfer in the super-exchange model discussed in Section 16.12.
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Finally, we note that in Figs 17.5(a)–(c) the molecule is represented by the set
of its eigenstates. It is often instructive to use an alternative picture, of local states
(e.g. atomic orbitals) that are coupled to each other and to the electrodes, as seen in
Fig. 17.5(d). This representation is akin to our description of bridge-assisted elec-
tron transfer in Section 16.12. In the simplest model of this kind it is assumed that
only nearest neighbor states are coupled to each other, as indicated in Fig. 17.5(d).
This is the nearest-neighbor tight binding approximation discussed in Section 4.3.4,
also known in the chemistry literature as the Huckel model. The theoretical analysis
described below can be carried using any of these representations.

17.2.2 Conduction of a molecular junction

In most models of molecular conduction the system is divided into three subregions
associated with the two leads and the molecule(s) that bridge them. This division is
not unique and different choices can be made according to the chosen calculation
strategy. In particular, it is often advantageous to combine the molecular bridge,
the molecule–metal bond, and small sections of the leads themselves into a “super-
molecule” that connects between the remaining (still infinite) parts of the leads. In
accordance, the Hamiltonian of the overall junction is written as

Ĥ = ĤS + ĤL + ĤR + ĤSL + ĤSR (17.18)

where ĤS, ĤL, and ĤR are the Hamiltonians of the molecular bridge, the left, and
the right leads, respectively, while ĤSL and ĤSR are the interactions between these
subsystems. Direct interactions between the left and right leads are disregarded.
These operators can be expressed in terms of any suitable basis sets that span the
corresponding subsystems; most simply the eigenstates of ĤS, ĤL, and ĤR that are
localized in the corresponding regions6

ĤS =
∑

n

En|n〉〈n|; ĤL =
∑

l

El|l〉〈l|; ĤR =
∑

r

Er|r〉〈r| (17.19a)

ĤSL =
∑
n,l

(Hn,l|n〉〈l| + Hl,n|l〉〈n|); ĤSR =
∑
n,r

(Hn,r|n〉〈r| + Hr,n|r〉〈n|)

(17.19b)

Alternatively, one often uses for the bridge a local representation, where the
basis {|n〉} comprises functions that are localized on different bridge segments.

6 In most practical applications different basis sets are used, for example, atomic orbitals associated
or other wavefunctions localized in the different subsystems.
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The model (17.19) remains the same, except that ĤS is written in this non-diagonal
representation as

ĤS =
∑

n

∑
n′

Hn,n′ |n〉〈n′| (17.19c)

By the nature of our problem, the molecular subsystem S is a finite system, and
we will assume that it can be adequately described by a finite basis {|n〉} , n =
1, 2, . . . , N . The leads are obviously infinite, at least in the direction of current flow,
and consequently the eigenvalue spectra {El} and {Er} constitute continuous sets
that are characterized by density of states functions ρL(E) and ρR(E), respectively.
Below we also use the index k to denote states belonging to either the L or the R leads.

From the results of Section 9.5.3 and Appendix 9C we can obtain an expression
for the conduction of this model system. Indeed, using Eq. (9.139) and noting that
the electron flux acquires an additional factor of 2 because of contributions from
the two spin populations, we get the unidirectional transmitted flux per unit energy
in the form (

dJL→R(E)

dE

)
E=E0

= 1

π h̄
T (E0)fL(E0) (17.20)

where we have identified the population |c0|2 with the Fermi–Dirac distribution

|c0|2 = fL(E0) = 1

e(E0−µL)/kBT + 1
(17.21a)

µL = µ− eφL (17.21b)

(µL is the electrochemical potential of electrons in the left lead in the presence of
a bias potential φL) and where T (E0) is the “all-to-all” transmission coefficient at
energy E0

T (E) =
∑
α,α′

Tα,α′(E) = TrS

[
�̂(L)(E)Ĝ(B)†(E)�̂(R)(E)Ĝ(B)(E)

]
(17.22)

This transmission coefficient, a scattering property, contains all the dynamical
information relevant to the conduction process under discussion. In (17.22) it is
given in two forms:

1. As explained in Appendix 9C, the double-sum form of T (E) expresses
its “all-to-all” nature. The initial and final states of the transmission pro-
cess are enumerated by the indices α and α′, respectively, that characterize
the electronic states in directions perpendicular to the transmission pro-
cess, and Tα,α′(E) is the coefficient of transmission between these states.
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This notation is useful in particular when the perpendicular dimensions
of the leads are finite so these states constitute discrete sets. When these
dimensions become infinite these indices become continuous parameters
that may denote the incident and outgoing directions of the transmission
process.

2. The other form of T (E) in (17.22) is remarkable in that it is expressed as
a trace of some operator over states defined on the scattering zone, that is,
the molecular species S, only. The operator �̂(E)Ĝ(B)†(E)�̂(E)Ĝ(B)(E) is
expressed in terms of the bridge’s Green operator

G(B)(E) = (EÎ (B) − Ĥ (B))−1; Ĥ (B) = ĤS + B̂; B̂ = B̂(L) + B̂(R)

(17.23)

B̂ and �̂ are the self energy operator and minus twice its imaginary part,
defined by (cf. Eqs (9.133))

Bn,n′(E) = B(L)
n,n′(E)+ B(R)

n,n′(E)

B(K)

n,n′(E) ≡
∑
k∈K

Hn,kHk ,n′

E − Hk ,k + iη/2
= !

(K)

n,n′(E)− 1

2
i�(K)

n,n′ (E); K = L, R

�
(K)

n,n′ (E) = 2π(Hn,kHk ,n′ρK (Ek))Ek=E ; k ∈ K , K = L, R

!
(K)

n,n′(E) = PP

∞∫
−∞

dEk
Hn,kHk ,n′ρK (Ek)

E − Ek
; k ∈ K , K = L, R (17.24)

�̂is associated with the imaginary part of B̂ via �̂ = −2ImB̂. Note that B̂ and �̂ are
operators in the molecular bridge subspace. If this subspace is spanned by a finite
basis of N states, then these operators are represented as N ×N matrices. Examples
of specific models are described below.

The net electronic current in the junction is now obtained by (1) multiplying the
particle flux (17.20) by the electron charge −e, (2) taking the difference between
the leftward and rightward fluxes, and (3) integrating over all energies. This yields

I = e

π h̄

∞∫
−∞

dET (E) (fR(E)− fL(E)) (17.25)

Note that, as defined, the current will be positive (i.e. going from left to right with
electrons flowing leftwards) when � = �L − �R is positive, that is, when the
Fermi energy on the left electrode is lower then on the right. In metals µ 
 kBT ,
so the Fermi functions are nearly step functions.
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Consider now the case where the potential bias � is small, |e�| � kBT . We
can then use the expansion

fR(E)− fL(E) = 1

eβ(E−µ+e�R) + 1
− 1

eβ(E−µ+e�L) + 1

≈ δ(E − µ)e� (17.26)

to get the final low bias expression, the Landauer formula7

I = e2

π h̄
T (E = µ)� (17.27)

or

g ≡ I

�
= e2

π h̄
T (E = µ) (17.28)

Equation (17.27) implies that at low bias the junction response is linear: the current
is proportional to the bias voltage and the proportionality coefficient is given by
the conductance g, Eq. (17.28). It is given as the product of a universal constant

g0 = e2

π h̄
= (1.290 × 104 �)−1 (17.29)

and the all-to-all transmission coefficient evaluated at the electrode’s chemical
potential (or, at T = 0, at the electrode’s Fermi energy). At finite bias one may
define the voltage dependent differential conductance

g (�) = dI

d�
(17.30)

with I given by (17.25).
Equation (17.25), together with (17.22)–(17.24) and the definition of the Fermi

functions

fK (E) = 1

e(E−µ+e�K/kBT ) + 1
; K = L, R (17.31)

provide a theoretical framework for evaluating the conduction properties of molecu-
lar junctions. Molecular information (geometry and electronic structure) enters in
these expressions through the elements of the Green operators while metal prop-
erties as well as the molecule–metal interaction enter via the self energy terms, all

7 R. Landauer, IBM J. Res. Dev. 1, 223 (1957); Phil. Mag. 21, 863–867 (1970).
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defined by Eqs (17.23) and (17.24). The actual calculations needed in order to eval-
uate these terms are however not simple. A reader familiar with standard molecular
electronic structure calculations may appreciate the nature of the problem. Such
calculations are usually done for a closed molecular system, where the number of
electrons is a given constant. Here we require electronic structure information for a
molecular bridge that is, (1) open to its electronic environment so that the electronic
chemical potential, not the number of electrons, is given, and (2) in contact with
two or more “electron baths” that may be out of equilibrium with each other, that
is, characterized by different chemical potentials. A full solution of this problem
should yield the total charge, the charge density distribution as well as the elec-
trostatic potential distribution on the molecular bridge under the applied bias, and
in addition to the matrix elements required for the evaluation of the transmission
function T and the current I . An immediate result from such calculations is that the
molecular electronic structure and consequently the function T depends, sometime
critically, on the applied voltage.

This is a formidable problem, a subject of current research, which will not be
discussed further here. Instead, we limit ourselves in what follows to some simple
examples and qualitative observations.

17.2.3 The bias potential

As indicated above, when the junction is biased by a finite potential � Eq. (17.25)
applies, however the transmission function T depends on the bridge’s electronic
structure which in turn depends on the bias �. To make this explicit we rewrite
Eq. (17.25) in the form

I(�) = e

π h̄

∞∫
−∞

dET (E,�) (fR(E,�)− fL(E,�)) (17.32)

At T = 0 this becomes

I(�) = e

π h̄

µ−e�R∫
µ−e�L

dET (E,�) = e

π h̄

e(�R+�)∫
e�R

dET (µ− E,�) (17.33)

with �L −�R = �.
The actual way by which an imposed potential bias distributes itself on the

molecular bridge depends on the molecular response to this bias, and constitutes
part of the electronic structure problem. Starting from the unbiased junction in
Fig. 17.6(a) (shown in the local representation of a tight binding model similar to
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Fig. 17.6 Different scenarios for the way the potential bias is distributed (dotted line) along a molecu-
lar conductor. (a) An unbiased junction; (b) the potential drops linearly along the molecular bridge;
(c) the potential drops only at the molecule–metal contacts.

Fig. 17.5(d)), two extreme limits can be distinguished. In Fig. 17.6(b) the poten-
tial drops linearly along the molecular bridge, as it would be if there was vacuum
(or any other unpolarizable medium) between the electrodes. In Fig. 17.6(c) the
potential drops only at the electrode–molecule interface, while remaining constant
along the molecule. This behavior characterizes an easily polarizable object, for
example, a metal rod, weakly bonded to the electrodes. These potential distribu-
tions are reflected in the energies associated with local electronic bridge orbitals as
shown in Figs 17.6(b) and (c) that enter in the calculation of the transmission func-
tion via Eqs (17.22)–(17.24). A particular example is discussed in the following
section.

17.2.4 The one-level bridge model

Further insight can be gained by considering specific cases of the transmission func-
tion T (E), Eq. (17.22). Here we consider the case where the bridge is adequately
represented by a single level, |1〉, with energy E1 (see Fig. 17.7). In this case the
matrices Ĝ(B) and �̂(K); K = L, R are scalar functions. From Eqs (17.23) and
(17.24) we get

G(B)(E) = 1

E − Ẽ1 + (1/2)i�1(E)
(17.34)
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Fig. 17.7 A single-level bridge between two leads at different bias potentials: (a) An unbiased
junction, (b) the right electrode is negatively biased, and (c) the left electrode is negatively biased.

�1(E) = �
(L)
1 (E)+ �
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(K)
1 (E) = 2π

∑
k∈K

|H1,k |2δ(E − Ek) = 2π
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|H1,k |2ρK (Ek)

)
Ek=E

; K = L, R
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1 (E) (17.35c)
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∞∫
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dEk
�1(Ek)

E − Ek
; k ∈ K , K = L, R (17.35d)

Equation (17.34) implies thatT (E) is small except for E in the neighborhood (within
a distance of order�1) of Ẽ1. If the function�1(E) does not change appreciably with
E in this neighborhood it is reasonable to replace it by the constant �1 ≡ �1(E1).
Consequently, in Eq. (17.35c) !1 can be disregarded so that Ẽ1 = E1. We refer
to this procedure as the wide band approximation, valid when the continua L and
R are wide and the coupling H1,k (k ∈ L, R) is weakly dependent on k . From Eqs
(17.22) and (17.34) it then follows that

T (E) = �
(L)
1 �

(R)
1 G(B)†(E)G(B)(E) = �

(L)
1 �

(R)
1

(E − E1)
2 + [(1/2)�1]2 (17.36)

in agreement with Eq. (9.91). The following observations can now be made:

1. The low bias conductance, Eq. (17.28) is given by

g = e2

π h̄

�
(L)
1 �

(R)
1

(µ− E1)
2 + [(1/2)�1]2 (17.37)

where µ is the chemical potential of the electrons in the electrodes.
2. On resonance, where E1 = µ, and in the symmetric case, �(L)

1 = �
(R)
1 =

(1/2)�1 the transmission coefficient is 1 irrespective of the coupling strength.
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f

Fig. 17.8 Current I (full line) and differential conduction g(�) = dI/d� (dotted line) displayed as
a function of voltage for a junction characterized by a single resonance state.

The zero-bias conduction in this case is given by the “quantum conductance
unit” e2/(π h̄).

3. Viewed as a function of the potential bias � (the source–drain potential), the
molecular conduction also shows resonance behavior. This can be realized
by examining the integral in Eq. (17.33). The transmission function T (E,�)

is given by Eq. (17.36), perhaps with a bias-dependent resonance energy,
E1 = E1(�), as explained in Section 17.2.3. At any bias � the magnitude of
the integral in (17.33) depends on whether the resonance position E1(�) is
located in the integration window. When � is small, the resonance is outside
this window and the resulting current is small. As � increases beyond some
threshold value the resonance enters the integration window as seen in Fig.
17.7, so as a function of � we will see a step increase in the current. The
current-voltage characteristic of this one level bridge model therefore assumes
the form seen in Fig. 17.8. Obviously, the differential conductance g(�), Eq.
(17.30), will show a peak at the same position where the I(�) steps up.

4. Viewed as a function of E1 (that in principle can be changed with a gate
potential), the conductance again shows an upward step whenever E1 enters
into the window between the two Fermi energies, and a downward step when
it exits this range. For small bias (e� � �1) these positive and negative steps
coalesce into a peak (in the conduction (or current) displayed against the gate
voltage) whose width is determined by �1 at low T.

5. The position of the resonance seen in Fig. 17.8 marks the onset potential
beyond which the resonant level enters into the window between the left and
right Fermi energies as seen in Fig. 17.7. The width of this conducting feature
is determined at low temperature by the inverse lifetime, �1, that an electron
would remain on the resonant level if placed there at t = 0. An additional
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Fig. 17.9 The bias-dependent energy level structure in a one-level bridge model in which the bridge
level is assumed pinned to the left electrode. The potential distribution in the junction is represented
by the thick dotted line.

contribution to the width may arise from the bias dependence of E1, and, at
higher temperatures, from the increasing width of the Fermi step.

6. The entrance of the resonant level into the window between the left and right
Fermi energies generally takes place under both directions of the bias potential
as seen in Figs 17.7(b) and (c). This leads to the appearance of two resonance
peaks in the conductance as shown in Fig. 17.8. However, depending on the
way in which the bias potential is distributed along the junction, the I(�)

behavior does not have to be symmetric under bias reversal. As an extreme
example consider the situation depicted in Fig. 17.9. Here the potential bias
drops exclusively at the interface between the molecule and the right lead
and the position of E1 relative to EFL does not change. In this case we say
that the molecular level is pinned to the left electrode, that is, the potential
bias moves the energies E1 and EFL together. Alternatively the applied bias
can be thought of as a change in EFR while EFL and E1 remain fixed. Now,
Fig. 17.9(a) describes the result of putting a positive bias on the right electrode.
This cannot cause level 1 to enter the window between EFL and EFR. On the
other hand, putting a negative bias on that electrode (Fig. 17.9(b)) does lead to
such a situation. This then is a model for a current rectifier, however it should
be kept in mind that reality is more complex since many more molecular
levels, both occupied and empty, can contribute to the conduction.

17.2.5 A bridge with several independent levels

Consider next a model with several molecular levels bridging between the two
electrodes, and assume that these levels contribute independently to the conduction.
These independent levels can be identified as the molecular eigenstates, provided
that their mixing by the coupling to the electrodes can be disregarded, that is, that
non-diagonal elements in the molecular eigenstates representation of the self-energy
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g

�

Fig. 17.10 A schematic display of molecular conduction. The full line represents the overall con-
ductance of a molecular junction, as expected from Eqs (17.38), (17.25), and (17.30). The thin dotted
lines trace individual resonances.

matrix, Eq. (17.24), are negligible. In this case the generalization of Eq. (17.36) is
simply

T (E) =
∑

j

�
(L)
j �

(R)
j

(E − Ej)2 + [(1/2)�j]2 (17.38)

where the sum is over all relevant bridge levels. Using this expression in (17.33)
yields again the current voltage characteristic, with the same qualitative features
of the conduction process that we found for a single resonant level, except that
both occupied (HOMO and below) and unoccupied (LUMO and above) levels may
contribute.

At small bias the Fermi levels on of the metal electrodes are positioned in the
HOMO-LUMO gap of the bridge, as shown in Fig. 17.5(a). As the bias grows
the current increases in steps as additional levels enter into the window between
the electrodes’ Fermi energies. The resulting conduction spectrum may look as in
Fig. 17.10 (though the symmetry with respect to voltage inversion is a special case,
expected only for ideally symmetric junction structures). The most prominent fea-
ture is the low voltage conduction gap that characterizes the molecular behavior as
semiconducting in nature. As indicated by the discussion of Fig. 17.5, this gap may
reflect the HOMO-LUMO gap of the molecule. Quantitative relationship is not to
be expected both because the energy level structure of an isolated molecule is quite
different from that of a molecule between metal surfaces and because the HOMO-
LUMO gap of an isolated molecule reflects the electronic structure of the neutral
molecule while the conduction gap is associated with the energy to put an excess
electron or an excess hole on the molecule. It is also important to realize that the
observed conduction gap may be unrelated to the distance between the molecular
HOMO and LUMO. Figures 17.5 and 17.9 display a particular case (that character-
izes scanning tunneling microscope geometries) where a bias potential moves the
Fermi energy of one electrode relative to the molecular levels that remain “pinned"
to the other electrode. In another common situation, which characterizes symmetric
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Fig. 17.11 The current (right axis) and conductance (left axis) of a molecular junction plotted against
the applied voltage. Each plot shows several sweeps of the potential. The different plots correspond
to different junctions prepared by the mechanically controlled break junction technique using gold
contacts with the molecule shown. (From H. B. Weber, J. Reichert, F. Weigend, R. Ochs, D. Beckmann,
M. Mayor, R. Ahlrichs, and H.v. Löhneysen, Chem. Phys. 281, 113 (2002).)

junctions, the Fermi energies of the two electrodes are displaced symmetrically with
respect to the molecular levels. It is easy to realize that in this case, exemplified by
Fig. 17.8, the conduction gap is expected to be twice the smaller of the distances
between the molecular HOMO and LUMO energies and the Fermi energy of the
unbiased junction.

Beyond the onset of conduction, its voltage dependence is associated with the
molecular level structure, though overlap between levels and experimental noise
wash out much of this structure as shown schematically in figure 17.10.

As may be expected, experimental reality is not as neat as the results of theor-
etical toy models. Figure 17.11 shows such results obtained using a mechanically
controlled break junction technique with gold contacts and the molecule shown.
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The semiconducting character of molecular junctions, expressed by the low con-
duction regime at low bias followed by a conduction threshold, and the subsequent
conduction spectrum beyond this threshold, are manifestations of the discrete
quantum level structure of small molecular systems. However, the small system
nature of molecular junctions inevitably expresses itself in the appearance of noise
and relatively poor reproducibility.

17.2.6 Experimental statistics

Noise and poor reproducibility are the main drawbacks of using single molecule
junctions as components of electronic devices. Their existence also suggests
that useful analysis of experimental results must rely on the statistics of many
experiments. Figure 17.12 shows an example. The conducting molecule is 1,8-
octane-dithiol. Such molecules are inserted into a monolayer of octanethiol on a
gold substrate. The other metallic conduct is a gold nanoparticle, which connects
to the rest of the circuit via the tip of a conducting atomic force microscope. The
resulting current–voltage signals from many such junctions fall into groups that can
scale into a single line by dividing by different integers (see inset). This suggests
that one main origin of irreproducibility in these junctions is the different num-
bers of dithiol molecules that are found between the gold substrate and the gold
nanodot.
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Fig. 17.12 Current–voltage characteristics of different gold–octanedithiol–gold junctions. The res-
ults fall into distinct groups that can be scaled into a single line (inset) by dividing by different integers.
(From X. D. Cui, A. Primak, X. Zarate, J. Tomfohr, O. F. Sankey, A. L. Moore, T. A. Moore, D. Gust,
G. Harris, and S. M. Lindsay, Science 294, 571 (2001).)
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Fig. 17.13 Conductance of gold–bipyridine–gold junctions. (a) The decrease of conductance during
pullout of a gold tip from a gold substrate in solution. (b) Conductance histogram for gold–gold
contacts. (c) After the gold chain breaks, a much lower conductance that decreases in successive
steps with pullout is observed, suggesting the presence of molecular bridges between the gold leads
(d) ‘Conductance histogram in the molecular regime, suggesting a transmission coefficient∼0.01 for
the molecular bridge. (From B. Xu and N. J. Tao, Science 301, 1221 (2003).)

Another example is shown in Fig. 17.13. Here individual molecular junctions
are formed by repeatedly moving a gold scanning tunneling microscope into and
out of contact with a gold substrate in a solution containing 4, 4′ bipyridine. Both
in the absence and presence of this molecule one observes a stepwise decrease
of the conductance when the tip is pulled away from contact, with successive
steps occurring preferentially at an integer multiples of the conductance quantum
g0 = e2/π h̄ = 2e2/h (Fig. 17.13(a)). A histogram constructed from many such
results shows pronounced peaks at 1g0, 2g0, and 3g0 (Fig. 17.13(b)) suggesting that
repeated loss of gold atoms, each contributing a conduction channel with near unity
transmission, results in these steps. After the last chain of gold atoms is broken the
signal appears to go to zero, but in fact the same phenomenon seems to repeat itself
on a different scale, now with conductance units of ∼0.01G0 (Figs 17.13(c) and
(d)). The last phenomenon (which is not observed in the absence of bipyridine)
suggests that after the breakup of the gold contacts, different numbers of bipyridine
molecules may still connect between the separated gold leads; the number decreases
in successive order as pulling continues. The conduction histogram in this regime
shows pronounced peaks at 1×, 2×, and 3 × 0.01G0.

17.2.7 The tight-binding bridge model

As a last example consider a model of molecular bridge similar to that used in the
electron transfer problem in Section 16.12. We consider the model of Fig. 17.6(a)



634 Electron transfer and transmission

where a tight-binding model for the molecular bridge in the local representation
comprises N + 2 levels with nearest-neighbor coupling. Furthermore, we focus
on the low bias case and assume that the bridge levels are energetically distinct
from the leads’ Fermi energy. The local character of these bridge levels makes it
reasonable to disregard intersite coupling beyond nearest neighbor. In particular,
we assume that only level 0 couples to the left lead and only level N + 1 couples
to the right lead. The Hamiltonian (17.18) and (17.19) now takes the form

Ĥ = ĤL + ĤR + ĤS + ĤSL + ĤSR (17.39)

where

ĤS =E0|0〉〈0| +
N∑

j=1

Ej|j〉〈j| + EN+1|N + 1〉〈N + 1|

+ V01|0〉〈1| + V10|1〉〈0| + VN+1,N |N + 1〉〈N | + VN ,N+1|N 〉〈N + 1|

+
N−1∑
j=1

(Vj,j+1| j〉〈j + 1| + Vj+1,j|j + 1〉〈 j|) (17.40)

is the bridge (molecular) Hamiltonian,

ĤL =
∑

l

El|l〉〈l|; ĤR =
∑

r

Er|r〉〈r| (17.41)

are Hamiltonians of the free (or Bloch) electron states on the left and right electrodes,
and

ĤSL =
∑

l

(H0,l|0〉〈l| + Hl,0|l〉〈0|); ĤSR =
∑

r

(H0,r|0〉〈r| + Hr,0|r〉〈0|)
(17.42)

are the operators that couple the bridge with the left and right leads. We will
use ES, VS, and EF to denote the order of magnitudes of the bridge energies (E0,
E1, …, EN+1), the bridge couplings (V0,1, …, VN ,N+1) and Fermi energies (EFL,
EFR), respectively, so the model assumption concerning the energetic separation of
the bridge from the Fermi energies can be expressed by the inequality (analog of
(16.104)

|ES − EF| 
 VS (17.43)

In the local representation the self-energy matrix B̂, Eq. (17.24), is an (N + 2) ×
(N +2) matrix with only two nonzero terms, B0,0 = −(1/2)i�(L)

0 and BN+1,N+1 =
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−(1/2)i�(R)
N+1, where

�
(L)
0 ≡ �

(L)
0,0 = 2π(|H0,l|2ρL(El))El=ES

�
(R)
N+1 ≡ �

(R)
N+1,N+1 = 2π(|HN+1,r|2ρR(Er))Er=ES

(17.44)

Note that in writing Eqs (17.44) we have invoked the wide band approximation
(Section 9.1). The bridge Green’s function, Eq. (17.23), then satisfies

(Ĝ(B)(E))−1 =⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

E − E0 + (1/2)i�(L)
0 V01 0 0 · · · 0

V10 E − E1 V12 0 · · · 0

0 V21 E − E2 V23
...

0 0 V32
. . .

. . . 0
...

...
. . . E − EN VN ,N+1

0 0 · · · 0 VN+1,N E − EN+1 + (1/2)i�(R)
N+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(17.45)

and the transmission coefficient, Eq. (17.22), evaluated at the electrodes’
electrochemical potential µ (or Fermi energy EF) takes the form

T (EF) = TrB[�̂(L)Ĝ(B)†(EF)�̂
(R)Ĝ(B)(EF)] = �

(L)
0 �R

N+1|G(B)
0,N+1(EF)|2 (17.46)

The inequality (17.43) suggests that the needed Green function matrix element
can be evaluated to lowest order in |VS/(ES − EF)| using the Dyson expansion
(compare Eq. (16.115))

G(B)
0,N+1(EF) = 1

(EF − E0 + (1/2)i�(L)
0 )

V01

× 1

(EF − E1)
V12

1

(EF − E2)
V23 . . .

1

(EF − EN−1)
VN−1,N

1

(EF − EN )

× VN ,N+1
1

(EF − EN+1 + (1/2)i�(R)
N+1)

(17.47)
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This can be rewritten in the form

G(B)
0,N+1(EF) = 1

(EF − E0 + (1/2)i�(L)
0 )

× V01G(B)
1,N (EF)VN ,N+1

1

(EF − EN+1 + (1/2)i�(R)
N+1)

(17.48)

leading to the final expression for the low bias conduction

g = e2

π h̄
|V01VN ,N+1|2|G(B)

1,N (EF)|2χ

χ = �
(L)
0 �

(R)
N+1

((EF − E0)2 + (�
(L)
0 /2)2)((EF − EN+1)2 + (�

(R)
N+1/2)2)

≈ �
(L)
0 �

(R)
N+1

((EF − ES)2 + (�
(L)
0 /2)2)((EF − ES)2 + (�

(R)
N+1/2)2)

(17.49)

It is instructive to compare this result for the conduction through an N + 2
level bridge to the parallel expression for the bridge-assisted electron transfer rate
(cf. Eqs (16.114) and (16.113)

kA←D = 2π

h̄
|VD1VN A|2|G(B)

1N (EA/D)|2F(�E)

F(�E) = 1√
4πErkBT

exp
(
−(�E − Er)

2

4ErkBT

)
(17.50)

Both were obtained in the “super-exchange” limit, where inequalities (16.104)
and (17.43) are satisfied. Both involve factors that convey information about the
electronic structure of the (N + 2)-level molecular system, where the donor and
acceptor levels D and A in the electron transfer case are replaced by the levels 0
and N + 1 that couple directly to the electrodes. These factors are essentially the
same: a product of coupling elements from the edge levels onto the center bridge,
and a Green function element connecting sites 1 and N of this center bridge. In the
electron transfer case this Green function element is calculated at the energy EA/D
at which the Marcus parabolas cross, while in the low bias conduction case it is
evaluated at the electronic chemical potential of the electrodes. In both cases these
are the energies at which the electron transfer process actually takes place.
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The main difference between these expressions lies in the factorsχ of Eq. (17.49)
and F of Eq. (17.50), that express the different ways by which the processes are
terminated. The word “termination” is used here to express the relaxation mechan-
ism that makes the transition a ⇀↽ b between two stable species a and b different
from the two-state dynamics of Section 2.2. In the latter case, starting from state
a, the system oscillates coherently and forever between states a and b. In contrast,
the present case corresponds to a process where the a → b transition is followed
by a fast stabilization (or “termination”) that establishes b as a distinct species and
makes the reverse transition b → a an independent rate process.

In the electron transfer case, the termination of the D→A (or A→D) electron
transfer process is caused by the solvent reorganization about the newly formed
charge distribution. This reorganization dissipates electronic energy into a con-
tinuum of nuclear modes and establishes both sides of the redox reaction as distinct
stable species, so that the direct and reverse processes have no memory of each other
and proceed independently. This stabilization also implies that the transition must
be thermally activated. In the rate expression (17.50) this process expresses itself
via the factor F that depends on the reorganization energy and on the temperature
through a distinct activation term.

In the conduction process the termination has a completely different origin.
Instead of a continuum of nuclear modes, an electron on the edge levels 0 and
N + 1 sees the continuum of quasi-free electronic states of the metal electrodes.
An electron reaching one of these edge states can proceed into the electrodes and
is lost as far as the transport process is concerned. The process is thus irreversible
in the sense that the reverse process again takes place completely independently.
In expression (17.49) for the conduction this termination expresses itself via the
factor χ that depends on the inverse lifetimes, �(L)

0 and �
(R)
N+1, for electrons on the

edge states to decay into the metals.
The appearance of the factor

G(B)
1,N (EF) = 1

EF − E1
V12

1

EF − E2
V23 . . .

1

EF − EN−1
VN−1,N

1

EF − EN

≈ 1

VS

(
VS

EF − ES

)N

(17.51)

in Eq. (17.49) has the same important experimental implication for the bridge-length
dependence of the low bias conductance as we found before (see Eq. (16.117)) for
the bridge-assisted electron transfer rate, namely both depend exponentially on this



638 Electron transfer and transmission

0.9 V

0.7 V
0.5 V

0.3 V

0.1 V

A

8

4

2

0

6 10
N

6

–2

L
n(

I/
nA

)

Fig. 17.14 Same experiment as described in Fig. 17.12 using as molecular species three alkanes:
hexanedithiol (N = 6), octanedithiol (N = 8) and decanedithiol (N = 10). The lowest peaks in
conductance histograms are 0.0012g0, 0.00025g0, and 0.00002g0, which satisfy Eq. (17.52) with
β ′b = 1.00 + 0.05. Note the weak dependence of β ′ on the applied voltage.

length. In analogy to Eq. (16.117) we find

g ∼ e−β ′L (17.52a)

β ′ = −2

b
ln

∣∣∣∣ VS

EF − ES

∣∣∣∣ (17.52b)

where b is the length of a bridge unit and L = bN is the bridge length. Figure 17.14
shows an experimental example of this behavior.

Finally we note that our treatment of conduction was based on viewing the
electron transport as a coherent quantum-mechanical transition that acquires an
irreversible character only because of the dissipative nature of the macroscopic
electrodes. As in the electron transfer case, another mode of conduction exists at
higher temperatures and longer chain lengths, namely thermally activated hopping.
In this case, the exponential dependence on bridge length, Eq. (17.52), is replaced
by the algebraic dependence

g ∼ 1

α1 + α2L
(17.53)

that originates from solving hopping equations similar to (16.118) (compare
Eq. (16.127)). We see that g becomes inversely proportional to the length L for
long bridges, establishing a connection to the macroscopic Ohm’s law.
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SPECTROSCOPY

Since, without light, color cannot exist,
And since the atoms never reach the light,
They must be colorless. In the blind dark
What color could they have? Even in a bright day
Hues change as light-fall comes direct or slanting.
The plumage of a dove, at nape or throat,
Seems in the sunlight sometimes ruby-red
And sometimes emerald-green suffused with coral.
A peacock’s tail, in the full blaze of light,
Changes in color as he moves and turns.
Since the light’s impact causes this, we know
Color depends on light…

Lucretius (c.99–c.55 BCE) “The way things are”
translated by Rolfe Humphries, Indiana University Press, 1968

The interaction of light with matter provides some of the most important tools
for studying structure and dynamics on the microscopic scale. Atomic and molecu-
lar spectroscopy in the low pressure gas phase probes this interaction essentially on
the single particle level and yields information about energy levels, state symmet-
ries, and intramolecular potential surfaces. Understanding environmental effects
in spectroscopy is important both as a fundamental problem in quantum statistical
mechanics and as a prerequisite to the intelligent use of spectroscopic tools to probe
and analyze molecular interactions and processes in condensed phases.

Spectroscopic observables can be categorized in several ways. We can follow
a temporal profile or a frequency resolved spectrum; we may distinguish between
observables that reflect linear or nonlinear response to the probe beam; we can
study different energy domains and different timescales and we can look at reson-
ant and nonresonant response. This chapter discusses some concepts, issues, and
methodologies that pertain to the effect of a condensed phase environment on these
observables. For an in-depth look at these issues the reader may consult many texts
that focus on particular spectroscopies.1

1 A unified theoretical approach to many of these phenomena is provided in the text by Mukamel
cited at the end of this chapter.
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18.1 Introduction

With focus on the optical response of molecular systems, effects of condensed phase
environments can be broadly discussed within four categories:

1. Several important effects are equilibrium in nature, for example spectral shifts
associated with solvent induced changes in solute energy levels are equilib-
rium properties of the solvent–solute system. Obviously, such observables
may themselves be associated with dynamical phenomena, in the example
of solvent shifts it is the dynamics of solvation that affects their dynamical
evolution (see Chapter 15). Another class of equilibrium effects on radiation–
matter interaction includes properties derived from symmetry rules. A solvent
can affect a change in the equilibrium configuration of a chromophore solute
and consequently the associated selection rules for a given optical transition.
Some optical phenomena are sensitive to the symmetry of the environment,
for example, surface versus bulk geometry.

2. The environment affects the properties of the radiation field; the simplest
example is the appearance of the dielectric coefficient ε in the theory of
radiation–matter interaction (e.g. see Eq. (3.27)). Particularly interesting
are effects derived from the behavior of the local electromagnetic field in
inhomogeneous environments. For example, Raman scattering by molecules
adsorbed on rough surfaces of certain metals is strongly affected by the
fact that the local field can be strongly enhanced at certain wavelengths for
distances comparable to the characteristic lengthscale of roughness features.

3. The environment induces relaxation processes of many kinds and at many
timescales. Spectroscopy, a sensitive probe of molecular energy levels, their
populations, and sometimes their relative phases, is also a sensitive probe of
population and phase relaxation.

4. Spectroscopy is a sensitive probe of the interactions between chromophores
that can be very important at distances characteristic of condensed phases.
Excitation transfer between chromophores is a simple example. In pure phases
of excitable molecules we observe coherent many-body effects. The inter-
esting excitation transport, localization and dephasing phenomena that take
place in such systems are largely beyond the scope of this text but they are
obviously important manifestations of optical response of condensed phase
molecular systems.

In addition, two other aspects of spectroscopy in condensed phases should be
mentioned. First, the density of chromophore molecules is usually high enough
that many such molecules may exist within the coherence length of the incident
radiation field and consequently respond coherently as a group. This gives rise to



642 Spectroscopy

optical response phenomena associated with the formation and subsequent destruc-
tion of a relative phase between chromophore molecules. On the other hand, in low
temperature condensed phases molecules are localized within their small neighbor-
hood making it possible, using advanced techniques, to monitor the optical response
of single molecules.

Some fundamental concepts pertaining to our subject were discussed in earlier
chapters. The necessary concepts from electromagnetic theory and radiation–matter
interaction were discussed in Chapter 3. A simple framework suitable for treating
linear spectroscopy phenomena was described in Sections 9.2 and 9.3. A prototype
model for many problems in optical spectroscopy involves two electronic states,
ground and excited, and at least two continuous manifolds of states associated
with the radiative and nonradiative environments. Such models were discussed in
Sections 9.3 and 10.5.2.

In these discussions we have used two representations for the radiation field and
its interaction with the molecular system: (1) In the derivation of the Bloch equations
in Section 10.5.2 we described the radiation field as an external oscillating field
E(t) = E0 cosωt that couples to the system dipole operator, resulting in the term
V̄ →−E(t)µ̂ in the Hamiltonian. (2) In Section 9.3 we have used a picture based
on a truncated dressed states basis |m, p〉 of zero-order states, where m stands
for the molecular state and p denotes the state of the radiation field expressed
in terms of the number of photons pk in each mode k.2 The usefulness of the
latter approach stems from the fact that the corresponding equations of motion are
derived from time-independent Hamiltonians and from the ability to use truncated
basis representations tailored to given physical conditions. For example, in linear
spectroscopy problems and near resonance between the incident radiation and a
particular molecular transition, we can use a model that involves only molecular
states that are coupled by the radiation field (and possible other states that provide
relaxation channels) and apply arguments based on the rotating wave approximation
(see Section 10.5.2) to consider only transitions that (nearly) conserve energy. The
study of molecular absorption then involves the interaction between a state |g, 1k〉—
a lower energy molecular state dressed by one photon in mode k of frequency
ω = kc (c is the speed of light), and the state |s, 0〉—an higher-energy molecular
state with no photons. The energies of the bare molecular states |g〉 and |s〉 satisfy
Es − Eg � �ω.3

2 To simplify notation we will specify the photon state by the wavevector k, and suppress, unless
otherwise needed, the polarization vector σ .

3 Note that in Section 9.3 we have used the notations g and s for the ground and excited states. Here
we use 1 and 2 for the ground and excited electronic states, keeping labels such as s, l, and g for
individual vibronic levels.
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It should be noted that instead of dressing the molecular states g and s by 1
and 0 photons, respectively, we could use any photon numbers p and p − 1. The
corresponding matrix elements are than proportional to p. In processes pertaining
to linear spectroscopy it is convenient to stick with photon populations 1 and 0,
keeping in mind that all observed fluxes should be proportional to the incident
photon number p or, more physically, to the incident field intensity |E0|2. With this
in mind we will henceforth use the notation |g, k〉 (or |g,ω〉 if the incident direction
is not important for the discussion) as a substitute for |g, 1k〉.

In Section 9.3 we have used this truncated dressed state picture to discuss photo-
absorption and subsequent relaxation in a model described by a zero-order basis
that includes the following states: a molecular ground state with one photon of
frequency ω, |0〉 = |g,ω〉, an excited “doorway” state with no-photons, |s, 0〉, and
a continuous manifold of states {|l〉} that drives the relaxation. This model is useful
for atomic spectroscopy, however, in molecular spectroscopy applications it has
to be generalized in an essential way—by accounting also for molecular nuclear
motions. In the following section we make this generalization before turning to
consider effects due to interaction with the thermal environment.

18.2 Molecular spectroscopy in the dressed-state picture

Because processes of interest to us take place in condensed phases, we can usually
exclude rotational levels from our discussion: gas phase rotational motions become
in the condensed phase librations and intermolecular vibrations associated with the
molecular motion in its solvent cage.4

We therefore envision the molecule as an entity characterized by its vibronic
spectrum, interacting with a dissipative environment. As indicated above, a useful
characteristic of the truncated dressed state approach is the simplification provided
by considering only states that pertain to the process considered.5 In experiments
involving a weak incident field of frequency ω these states are found in the energy
range about �ω above the molecular ground state. For simplicity we assume that
in this range there is only one excited electronic state. We therefore focus in what
follows on a model characterized by two electronic states (See Fig. 18.1) and
include also their associated vibrational manifolds. The lower molecular state |g〉

4 In some cases involving diatomic hydrides HX embedded in solid low temperature matrices
rotational motion is only slightly perturbed and explicit consideration of this motion is useful, see
Chapter 13.

5 One should keep in mind the dangerous aspect of this practice: In selecting the model we already
make an assumption about the nature of the process under discussion. Our results are then relevant
to the chosen model, and their relevance to the physical system under discussion is assumed.
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Fig. 18.1 A dressed-state model that is used in the text to describe absorption, emission, and elastic
(Rayleigh) and inelastic (Raman) light scattering. |g〉 and |s〉 represent particular vibronic levels
associated with the lower (1) and upper (2) electronic states, respectively. These are levels associated
with the nuclear potential surfaces of electronic states 1 and 2 (schematically represented by the
parabolas). Rj are radiative continua—1-photon-dressed vibronic levels of the lower electronic states.
The quasi-continuum L represents a nonradiative channel—the high-energy regime of the vibronic
manifold of electronic state 1. Note that the molecular dipole operator µ̂ couples ground (g) and
excited (s) molecular states, but the ensuing process occurs between quasi-degenerate dressed states
|g, k〉 and |s, 0〉.

now becomes a manifold of vibronic levels |1, v1〉 associated with the ground
electronic state |1〉 and shown on the left of the figure. For a large molecule6

and high energy this manifold becomes dense and turns into the quasi-continuum7

of levels L = {|l〉}, also shown in the figure. Each of these vibronic levels provides a
baseline for a radiative continuum |1, v1, k〉 (see footnote 2). The first few radiative
continua, denoted R1, R2, and R3, are shown in the right of the figure. In a similar
way, the higher-energy molecular level |s〉 has now become a manifold of vibronic
levels |2, v2〉 associated with the excited electronic state |2〉.

Before continuing, we pause for a remark on notation. Our discussion uses a
basis of zero-order states that are eigenfunctions of a Hamiltonian given by a sum
of the molecular Hamiltonian in the Born–Oppenheimer approximation and the
Hamiltonian of the radiation field. As noted above, for linear spectroscopy prob-
lem we can limit ourselves to the 0- and 1-photon states of the latter. We will use

6 Depending on the particular process under observation, what we call a “molecule” here can be a
“supermolecule” comprised of the entity of interest together with its immediate environment.

7 The term “quasi-continuum” is used to describe a dense discrete manifold of energy levels under
circumstances where the effective broadening of these level (from physical origins or because of poor
experimental resolution) is larger than their spacing.
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|1, v1〉 and |2, v2〉 interchangeably with |1, v1, 0〉 and |2, v2, 0〉 to denote zero-photon
vibronic states, while vibronic levels of the ground electronic state dressed by one
photon k will be written |1, v1, k〉. When convenient, we will also continue to use
|g〉 and |s〉 to denote particular vibronic levels |1, v1〉 and |2, v2〉, respectively, in
the lower and upper molecular manifolds. Also, we will use |r〉 to denote individual
states in the radiative channels Ri, and |l〉 to denote individual states in the nonra-
diative channel L. Thus |r〉 is a state of the type |1, v1, k〉 while |l〉 belongs to the
|1, v1〉 = |1, v1, 0〉 group. Note that with this notation, |g〉 and |l〉 are respectively
low and high-energy vibronic levels of the electronic state 1. The energies of these
states are sums of contributions from the different degrees of freedom involved. For
example, the energy of state |r〉 = |1, v1, k〉 is Er = E1,v1,k = E(1)

el +E(1)
v1 +�ω(k)

(ω(k) = kc with c being the speed of light) and the energy of |s〉 = |2, v2〉 is
Es = E2,v2 = E(2)

el + E(2)
v2 , where E(n)

el stands for the electronic origin of state n
(in our two electronic states model n = 1, 2) and where, for harmonic molecules,
E(n)

vn = ∑
α �ω

(n)
α (v(n)α + 1/2) with the sum going over all normal modes α. Here vn

stands for the set of occupation numbers {v(n)α } and ω
(n)
α is the frequency of normal

mode α in the electronic state n.
Consider now a particular vibronic level |s〉 = |2, v2〉 in the excited electronic

state, |2〉. As seen in Fig. 18.1 this state is energetically embedded within continuous
manifolds of states associated with the lower electronic state |1〉. These include the
radiative continua Ri and the nonradiative manifold L of higher vibrational levels
|1, v1〉 of the lower electronic state that, at this high energy, constitute an effective
continuum.8 As discussed in Section 9.1 (see also below), the coupling of |s〉 to
these continua implies that a system prepared in this state will relax—radiatively
(with the emission of a photon) into the R channels and nonradiatively into the L
channel. Concerning the latter, it should be noted that, in addition to highly lying
bound vibrational levels of the lower electronic state, other nonradiative relaxation
pathways may exist, for example, dissociation if Es is larger than the molecular
dissociation threshold, or ionization if it exceeds the molecular ionization potential.
While below we refer to the L manifold as a dense vibrational manifold, the general
formalism apply also to these other cases.

We can use this model to describe several fundamental optical processes. For
example, absorption is the transition from the 1-photon-dressed lower vibrational
levels of the ground electronic state |1, v1, k〉 to the no-photon state |s〉 = |2, v2〉,
which can also be written as |s, 0〉 or |2, v2, 0〉 to emphasize that this is a zero-photon

8 A dense manifold of states is effectively continuous in the relevant energy regime if the level
spacing (inverse density of states) is smaller than the inverse experimental timescale. The latter is
determined in the present case by the decay rate �s of the level s, implying the condition, for example,
for the manifold L, �sρL(Es) 
 1.
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state. This state is broadened by its interaction with the radiative continua Ri and the
nonradiative manifold L. Spontaneous emission (i.e. fluorescence) is the process in
which the state |s〉 decays into the radiative continua Ri, that is, to vibronic levels
of the ground electronic states plus a photon. A competitive decay channel is the
nonradiative decay of |s〉 into the nonradiative manifold(s) L. Light scattering is a
process that starts with a 1-photon level of the ground electronic state and ends in
another such state, that is, |1, v1, k〉 → |1, v′1, k′〉. The elastic process v1 = v′1 and
|k| = |k′| is called Rayleigh scattering. The inelastic process where these equalities
are not satisfied is Raman scattering.

These processes are associated with corresponding coupling terms in the
Hamiltonian. The radiative coupling Vsr involves the operator ĤMR, Eq. (3.27), that
couples the two electronic states via the dipole operator µ̂ and changes the number
of photons by one. Nonradiative interactions between molecular electronic states,
which arise from the effect of intramolecular or intermolecular nuclear motions
on the molecular electronic structure, give rise to the Vsl coupling elements. In
the intramolecular context these interactions are associated with corrections to the
Born–Oppenheimer approximation or, for states of different spin multiplicity, with
spin–orbit coupling. In the common case where the L channel involves vibrational
states, a popular model for this coupling is the electron–phonon interaction given by
Eqs (12.16) or (12.29) that represent horizontally shifted nuclear potential surfaces
between the two electronic states.

It is important to note that the model of Fig. 18.1 cannot account for thermal
interactions between the molecule and its environment. As discussed above, it con-
tains elements of relaxation, and if the continuum {l} represents excited states of the
environment the transition s → {l} describes relaxation by energy transfer from
the molecule to environmental motions. However, the opposite process of heat-
ing the molecule by energy transfer from a hot environment cannot be described
in this way. The R and L continua can represent only zero-temperature radiat-
ive and nonradiative baths. The theory is therefore applicable to zero temperature
situations only.

Deferring to later the consideration of finite temperature effects, several exper-
imental observables can be described by this picture. Some of these observables
were already discussed in preliminary ways in Chapters 9 and 12:

1. Following an initial preparation of state |s〉, it will subsequently decay into
the radiative and the non radiative channels. Under specified conditions discussed
in Section 9.1 this relaxation is exponential, that is, the probability to stay in state
|s〉 at time t is

Ps(t) = e−kst ; ks = �s/� (18.1)
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where �s is a sum,

�s = �L←s + �R←s (18.2)

with

�J←s = 2π
∑

j

|Vsj|2δ(Es−Ej)= 2π(|Vsj|2ρJ (Ej))Ej=Es ; j = l, r J = L, R

(18.3)

and where ρL and ρR are the corresponding densities of states. Note that �R←s is a
sum over the different radiative channels, �R←s = ∑

j �Rj←s, each associated with
a different vibronic origin v1, with states |r〉 = |1, v1, k〉. In each such channel the
sum over r is a sum over photon wavevectors k and the density of states is given by
Eq. (3.20). In the nonradiative channel the states are |l〉 = |1, v1〉 and the density
ρL is a density of vibrational levels.

Note this difference between the physical origins of L and R continua. Each Ri
continuum is characterized by a single vibronic origin and its continuous character
stems from the photon states. On the other hand, the effectively continuous nature of
the L continuum originates from the fact that, with no photon emitted, the vibrational
energy involved is high and, for large molecules, the corresponding density of
vibrational states is huge.

2. The state |s〉 is a particular vibronic level |2, v2〉 in the upper electronic state.
If thermal relaxation within this electronic manifold is fast relative to the timescale
�−1

s , then the overall population in this electronic manifold decays into channel
J (J = L, Ri ) at a rate given by the thermal average of (18.3), that is, (compare
Eqs (12.34) and (12.35))

�J←2 =
∑

s

Ps�J←s; Ps = exp(−βEs)

/∑
s

exp(−βEs) (18.4)

For example, the thermally averaged nonradiative transition rate from electronic
state 2 to state 1 is

kL←2 = �L←2

�
= 2π

�

∑
v2

Pv2

∑
v1

|〈2, v2|V̂ |1, v1〉|2δ(E2,v2 − E1,v1) (18.5)

while the equivalent radiative emission (fluorescence) rate is

kR←2 =�R←2

�

=2π

�

∑
v2

Pv2

∑
v1

|〈2, v2, 0|ĤMR|1, v1,ω〉|2ρR(ω = (E2,v2 − E1,v1)/�)

(18.6)
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where ρR(ω) is the density of radiation field modes at frequency ω. We have seen
(Sections 6.2.2 and 10.5.2) that these rates can be cast in forms of Fourier transforms
of appropriate correlation functions.

3. Experimentally, the total decay rate is obtained by following the time evolution
of the fluorescence, that is counting the total number of photons emitted per unit
time. Let kR←s = ∑

i kRi←s be the total radiative decay rate out of the state |s〉,
so that the flux of emitted light at time t per excited molecule following its initial
preparation at t = 0 is

IR(t) = kR←sPs(t) (18.7)

Using (18.1) and integrating from t = 0 to infinity yields the quantum yield for
photon emission

YR←s = kR←s

ks
= �R←s

�R←s + �L←s
(18.8)

which measures the fraction of the absorbed radiation that is re-emitted as fluores-
cence. Measuring both YR←s and �s yield both the radiative and the nonradiative
decay rates of state s. It is easily seen that a similar ratio between thermally averaged
rates of the form (18.5) results in the quantum yield for emission from the excited
electronic state 2 in the limit where thermal relaxation within a given electronic
manifold is fast relative to the emission process.

4. Starting from a particular vibronic level of the ground electronic state, the
absorption lineshape is obtained by monitoring the attenuation of transmission as
a function of incident photon wavelength and using the Beer–Lambert law. For
the transition between two individual vibronic levels |g〉 and |s〉 the lineshape was
predicted (see Section 9.3) to be Lorentzian with a width �s that reflects the inverse
lifetime �/�s of level |s〉, peaked about a slightly shifted energy Ẽs.

Ls←g(ω) ∝ |µgs|2�s

(Eg + �ω − Ẽs)2 + (�s/2)2
(18.9)

The shift is given by contributions of the form (9.29) (with 1 replaced by s) for
each continuous manifold that interacts with level s.

5. An interesting variation on the result (18.9) is that if the initial level is also
characterized by a Lorentzian width, �g , then the total width associated with the
transition is the sum �s + �g . One way to see this is to realize that in this case the



Molecular spectroscopy in the dressed-state picture 649

observed lineshape is a convolution

Ls←g(ω) ∝ |µg,s|2
∫ ∞

−∞
dx

�g/2π

(x − Eg)2 + (�g/2)2

�s

(x + �ω − Ẽs)2 + (�s/2)2

= |µg,s|2 �g + �s

(Eg + �ω − Ẽs)2 + ((�g + �s)/2)2
(18.10)

6. Actual molecular spectra usually involve superpositions of such terms. In large
molecules and in molecules embedded in condensed host environments individual
vibronic transitions cannot usually be resolved (unless the host is a low temperature
solid matrix). The relevant spectrum is then the full vibronic lineshape for the given
electronic transition.

L2←1(ω) ∝ 1

�

∑
v1

Pv1

∑
v2

|〈2, v2|µ̂|1, v1〉|2

× �
(2)
v2 + �

(1)
v1

(E2,1 + E(2)
v2 − E(1)

v1 − �ω)2 + ((�
(2)
v2 + �

(1)
v1 )/2)2

Condon approx−→ |µ12|2
�

∑
v1

Pv1

∑
v2

|〈v2|v1〉|2

× �
(2)
v2 + �

(1)
v1

(E2,1 + E(2)
v2 − E(1)

v1 − �ω)2 + ((�
(2)
v2 + �

(1)
v1 )/2)2

(18.11)

where E2,1 = E(2)
el − E(1)

el . This expression is similar to Eq. (12.60),9 except that
it is written for finite temperature and that the δ functions associated with indi-
vidual vibronic transitions are replaced by Lorentzian profiles with widths that
depend on the excited vibronic levels. As already said, in most spectra involving
large molecules in condensed phases these individual transitions cannot be resolved
and therefore the exact Lorentzian forms in (18.11) are not important. For prac-
tical purposes expressions like (18.11) are often replaced by similar expressions
in which �

(2)
v2 + �

(1)
v1 are substituted by a constant � independent of the particu-

lar vibronic level, or even disregarded altogether. The expression obtained in the

9 Expressions of the forms |〈v2|ei(�̂x−�̂g)|v1〉|2 used in (12.60) and |〈v2|v1〉|2 that appears in
(18.11) are different representations of the same quantity.
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limit � → 0

L2←1(ω) ∝ 2π

�

∑
v1

Pv1

∑
v2

|〈2, v2|µ̂|1, v1〉|2δ(E2,1 + E(2)
v2

− E(1)
v1

− �ω)

(18.12)

is mathematically meaningful only when we deal with real continua, but we often
use such expressions even for dense discrete spectra that were referred to as “quasi-
continua.” In practical evaluation each δ function is replaced by a Lorentzian whose
width is inconsequential as long as it is larger than the average level spacing.

Problem 18.1. Show that if the δ functions in golden-rule rate expressions like
(18.5) are replaced by Lorentzians with constant width � independent of the
individual transitions, the corresponding correlation function expressions for
these rates, for example, Eqs (12.41) and (12.44) become

k1←2 =
∞∫

−∞
dteiE2,1t/�e−(�/2)|t|/�C21(t);

k2←1 = 1

�2

∞∫
−∞

dte−iE2,1t/�e−(�/2)|t|/�C12(t)

(18.13)

Problem 18.2. A well-known result from the theory of optical absorption
lineshapes is that the integrated lineshape associated with the transition between
two quantum levels is equal, up to known numerical factors, to the squared radi-
ative coupling element between these levels. For example, using Eq. (18.9) or
(18.10) yields

∫
dωL(ω) ∝ |µ1,2|2. Show that, under the Condon approxima-

tion, the integrated absorption lineshape of an overall transition between two
vibronic manifolds of two electronic states 1 and 2 is also proportional to the
squared radiative electronic coupling |µ1,2|2.

Solution The absorption lineshape is given by Eq. (18.11). Without invoking yet
the Condon approximation it reads

L2←1(ω) ∝
∑
v1

Pv1

∑
v2

|〈2, v2|µ̂|1, v1〉|2

× �
(2)
v2 + �

(1)
v1

(E2,1 + E(2)
v2 − E(1)

v1 − �ω)2 + ((�
(2)
v2 + �

(1)
v1 )/2)2

(18.14)
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Integrating over ω we get∫
dωL2←1(ω) ∝

∑
v1

Pv1

∑
v2

|〈2, v2|µ̂|1, v1〉|2

=
∑
v1

Pv1

∑
v2

|〈v2|µ̂1,2(R)|v1〉|2 (18.15)

where µ̂1,2(R) = 〈1|µ̂|2〉 is a matrix element in the electronic subspace and is
an operator in the nuclear configuration R. Summing over v2, that is, over all the
vibronic levels of the excited electronic manifold and using

∑
v2
|v2〉〈v2| = ÎN

(unit operator in nuclear space) leads to∫
dωL2←1(ω) ∝

∑
v1

Pv1〈v1||µ1,2(R)|2|v1〉 (18.16)

which is the thermal average of |µ1,2(R)|2 over the nuclear configurations of
electronic state 1. In the Condon approximation the R dependence of the latter
is disregarded, leading to ∫

dωL2←1(ω) ∝ |µ1,2|2 (18.17)

Note that this result is obtained irrespective of the distribution Pv1 .

18.3 Resonance Raman scattering

Here we use the level structure of Fig. 18.1 as a simplified model for light scatter-
ing. Within this model such a process can be described as the transition between
two 1-photon-dressed vibronic states that belong to the ground electronic state,
|1, v1, k1〉 → |1, v, k〉. In this process the molecule scatters a photon from state k1
to state k while possibly changing its own vibrational state from v1 to v. In Rayleigh
(elastic) scattering v = v1 and the initial and final states of the scattering process
belong to the same radiative continuum in Fig. 18.1. In Raman scattering v �= v1
and these states belong to different radiative continua.

Such processes can be realized experimentally both in the time domain and in the
energy domain. We may send a pulse of light of finite width, that is a wavepacket in
momentum and energy spaces, onto the molecular system and monitor the scattered
light as a function of frequency, direction, and time. Alternatively we may use
a continuous wave (CW) field, a wave of infinite duration (relative to relevant
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experimental timescales) with a well-defined frequency and propagation direction
and monitor the light scattered at different frequencies and directions. These choices
represent a general dichotomy in spectroscopic probing of molecular systems: Both
time domain and frequency domain spectroscopies are important tools that often
yield complementary information.

In what follows we focus on long time, frequency-domain Raman scattering,
which is easier to analyze. To simplify notation we denote the initial state, |1, v1, k1〉
by |in〉 and the final state |1, v, k〉 by |out〉. We also assume that a single zero-photon
excited state |s〉 = |2, v2, 0〉 is close to resonance with the incident radiation, that is,
Ein(v1,ω1) = E1,v1 + �ω1 � Es = E2,v2 , where ω1 = |k1|c and c is the speed of
light. This state therefore dominates the scattering and other states of the electronic
manifold 2 will be disregarded. The mathematical problem then is to describe the
transition between states |in〉 and |out〉 due to their mutual couplings to state |s〉
with the corresponding coupling elements Vin,s and Vout,s. In addition |s〉 is coupled
to radiative and nonradiative continua, as discussed above. The Hamiltonian in the
truncated dressed-state-basis is

Ĥ =Ein|in〉〈in| + Eout|out〉〈out| + Es|s〉〈s| + Vin,s|in〉〈s| + Vs,in|s〉〈in|
+ Vout,s|out〉〈s| + Vs,out|s〉〈out| +

∑
j �=out

(Vj,s|j〉〈s| + Vs,j|s〉〈j|) (18.18)

In (18.18) we have lumped together all the relevant continuous state manifolds that
overlap with Es into the group {j}. In fact, the state |out〉 formally belongs to this
group as a member of the radiative continua, however, it has special status as the
outgoing state of the process under discussion.

Before proceeding, let us consider the expected dependence on the intensity of
the incident field. The scattering process is obviously not linear in the molecule–
field interaction, however, it is intuitively expected that for weak incident radiation
the scattering signal will be linear in the incident intensity. To see this note that
as in the previous section we simplify the theory by considering the scattering
process |1, v1, k1〉 → (|s〉 = |2, v2, 0〉) → |1, v, k〉, while in reality the process
is |1, v1, nk1〉 → (|s〉 = |2, v2, nk1 − 1〉) → |1, v, (nk1 − 1), 1k〉 with nk1 photons
in the incident mode k1. (In out notation |1, v, k〉 and |1, v, 1k〉 are equivalent
descriptions of a 1-photon state). Therefore the matrix element of the molecule–
radiation field coupling operator (3.27) between |in〉 and |s〉 is proportional to
〈nk1 |â†

k1
|nk1−1〉 ∼ (nk1)

1/2, which is essentially the incident field amplitude, while

the corresponding matrix element between states |out〉 and |s〉 is ∼ 〈1k|â†
k|0〉 = 1.

We will see below (Eq. (18.23)) that the scattering intensity is proportional to the
absolute square of the product of these elements, and will be therefore linear in nk1 ,
that is in the incident intensity.
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Consider now the time evolution under the Hamiltonian (18.18). Writing a gen-
eral solution of the time-dependent Schrödinger equation as a linear combination,
�(t) = ∑

k Ck(t)|k〉 ; k = in, out, s, {j}, we get the following equations for the
time evolution of the coefficients Ck(t)

�Ċin = −iEinCin − iVin,sCs (18.19a)

�Ċs = −iEsCs − iVs,inCin − iVs,outCout − i
∑

j �=out

VsjCj (18.19b)

�Ċout = −iEoutCout − iVout,sCs − ηout

2
Cout (18.19c)

�Ċj = −iEjCj − iVjsCs − ηj

2
Cj (18.19d)

where, as in Section 9.5, we have added damping terms with rates (1/2)ηout and
(1/2)ηj that force outgoing boundary conditions in the corresponding channels.
These damping terms will be taken to zero at the end of the calculation. We are
interested in the long-time behavior of this system when driven by a weak incident
field. This driving can be accounted for by solving Eqs (18.19b)–(18.19c) under
the “driving boundary condition” cin(t) = exp(−iEint/�)cin(0) that expresses the
fact that state in, the molecular initial state dressed by the incident field, drives the
system dynamics. The observable of interest is then the outgoing steady state flux,
given by

Jout = lim
ηout→0

ηout

�
|Cout|2 (18.20)

We have solved a steady state problem of this kind in Section 9.5. Indeed,
Eqs (18.19) are identical to Eqs (9.77) in which level 1 plays the same role as
level s here and where the continuous manifold of states L = {l} and R = {r}
that may represent nonradiative and radiative relaxation channels, are now lumped
together in {j}. There is a difference in the question asked. In solving Eqs. (9.77)
we were interested in the total flux into manifolds L and R. Here we are interested
in the flux into one state, out, of the radiative manifold—the state selected by the
detector which is positioned to detect scattered photons of particular frequency
and propagation direction. We follow the steps taken in Eqs (9.78)–(9.88) and use
Eqs (9.80) and (9.83) with cin, cout and cs replacing c0, cr and c1, respectively
(ck = Ck(t) exp(−iEint/�) for all k), to get

cout = Vout,s

Ein − Eout + iηout/2

Vs,incin

Ein − Ẽs + (i/2)�s(Ein)
(18.21)
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or (an equation equivalent to (9.86))

|Cout|2 = |Vout,s|2
(Ein − Eout)2 + (ηout/2)2

|Vs,in|2|Cin|2
(Ein − Ẽs)2 + (�s(Ein)/2)2

(18.22)

Here, in analogy to Eqs (9.84)–(9.85), �s(E) is the total width of state s which is an
additive combination of contributions from all relaxation channels (i.e. continuous
state-manifolds), and Ẽs = Ẽs(Ein) = Es +!1(Ein) where !1(E) is the level shift
function, also expressed by additive contributions from the different relaxation
channels. Inserting (18.22) into (18.20) and taking the limit ηout/((Ein − Eout)

2 +
(ηout/2)2)

ηout→0−→ 2πδ(Ein − Eout) yields the scattered flux per molecule

Jout = 2π

�
|Cin|2 |Vout,s|2|Vs,in|2

(Ein − Ẽs)2 + (�s(Ein)/2)2
δ(Ein − Eout) (18.23)

Apart from numerical constants this result is a product of three terms. The delta-
function conveys the expected conservation of the total energy, Ein = E1,v1+�ω1 =
Eout = E1,v + �ω, where ω1 = |k1|c, ω = |k|c. The expression preceding it
tells us that in the present case, where light scattering is dominated by a single
excited level s that is close to resonance with the incident radiation, the scattering
probability is proportional to the absorption lineshape into this resonance level
(compare, e.g. Eq. (18.9)) and to the absolute square of the product of coupling
elements between the intermediate level s and the in and out states. Finally |Cin|2 is
the probability that the in state is populated. If the molecule is thermally equilibrated
in the initial (ground) electronic manifold Eq. (18.23) is replaced by

Jout = 2π

�

∑
v1

P(1)
v1

|Vout,s|2|Vs,in(v1)|2
(Ein(v1)− Ẽs)2 + (�s(Ein(v1))/2)2

δ(Ein(v1)− Eout)

(18.24)

where we have emphasized the dependence of different incident states on v1, and
where Pv = exp(−βE(1)

v )/
∑

v exp(−βE(1)
v ).

The form of the result (18.23) suggests an interpretation of resonance light
scattering as a 2-stage process—preparation of the intermediate level s followed by
emission out of this level. We will see, however, that such a picture is too simplistic.
For example, if several intermediate levels s contribute to the light scattering an
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approximate generalization of (18.21) is10

cout = cin

Ein − Eout + iηout/2

∑
s

Vout,sVs,in

Ein − Ẽs + (i/2)�s(Ein)
(18.25)

which leads to

Jout = 2π

�
|Cin|2

∣∣∣∣∣∑
s

Vout,sVs,in

Ein − Ẽs + (i/2)�s(Ein)

∣∣∣∣∣
2

δ(Ein − Eout) (18.26)

Here the scattering amplitudes associated with the different levels s add coherently
to form the total scattering flux, and a picture of additive two-step processes in →
s → out clearly does not hold.

In fact, two scenarios can appear as two limiting cases of the resonance light
scattering phenomenon. In one, described by (18.26), the scattering process is coher-
ent. This coherence is expressed by the fact that the scattering amplitude, hence the
scattering intensity, depends on the way by which the intermediate electronic state
2 interacts with the photon-dressed ground state. In Eq. (18.25) this determines the
way by which different amplitudes superimpose to yield the total scattering amp-
litude. In the other extreme case, coherence is destroyed by interaction with the
thermal environment and the process is a truly two-stage process in the sense that
state 2 relaxes by photon emission in a way (Eq. (18.6)) that does not depend on
how it was prepared. Measurement-wise, these two modes of molecular response
to an incident radiation field are observed in the same way—by sending a photon
onto the molecular system, and monitoring the light that comes out. We refer to
the inelastic (v1 �= v) signal observed in the coherent case as resonance Raman
scattering, and to the light seen in the incoherent limit where the light emission
is decoupled from the excitation process as resonance fluorescence. Resonance
Raman scattering results from the system response to the incident radiation in the
absence of thermal interactions, while resonance fluorescence is the light emis-
sion process that takes place after the molecular excited state defines itself as an
independent species by thermal interaction with the environment.

The reader should ponder about this last phrase: “defines itself as an independent
species by thermal interaction with the environment.” As long as the process is

10 This can be obtained by extending the set of equations (18.19) to include several levels {s} that
couple to states in and out with an additional approximation of disregarding cross coupling between
levels s due to their mutual interaction with the continuous manifold {j}.
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fully coherent, that is, in the absence of phase destroying thermal interactions,
the intermediate electronic states 2 cannot be regarded as an independent excited
species because it carries phase relationships with the ground state that depend on
details of the excitation process. It is only after these phases are destroyed that
state 2 is established as an independent species that does not depend on how it
was prepared. It is the emission from this independent species that we refer to as
fluorescence.

Two additional points should be made. First, as was already pointed out, the
coherence of a process does not require the absence of a thermal environment, only
that the timescale for decoherence is longer than the time, τ , that characterizes
the optical response of the molecular system. For a process involving a photon
of frequency ω interacting with a molecule characterized by ground and excited
levels 1 and 2 respectively, an energy gap E21 and a lifetime �/� of level 2, we
can qualitatively estimate this time from the Heisenberg uncertainty principle in
the form τ ≈ �/|E21 − �ω + i�|.11 This implies that for off-resonance processes
where E21 − �ω 
 � the timescale for optical response is determined by the
inverse off-resonance energy gap (E21 − �ω)−1 while for resonance processes
where E21−�ω � � it is determined by �−1. Therefore off resonance or “regular”
Raman scattering, where E21 − �ω is of the order ∼1 eV (while � is typically of
order 10−3–10−2 eV) and τ is of order ∼1 fs, is practically always a coherent
scattering process while resonance scattering may be either coherent or incoherent.

Second, we should keep in mind that between the two extreme limits discussed
above there exists a regime of intermediate behavior, where dephasing/decoherence
and molecular response occur on comparable timescales. In this case the scatter-
ing process may exhibit partial coherence. Detailed description of such situations
requires treatment of optical response within a formalism that explicitly includes
thermal interactions between the system and its environment. In Section 18.5 we
will address these issues using the Bloch–Redfield theory of Section 10.5.2.

18.4 Resonance energy transfer

When two molecular species reside in proximity to each other and one is excited,
the excitation energy can be transferred to the other. In the simplest experimental
observation of this kind the emission from the originally excited species (donor)
decreases, and emission from the other species (acceptor) increases with increasing
acceptor concentration. This phenomenon, first analyzed theoretically by Förster,12

plays a central role in several fundamental processes such as sensitization and

11 This statement is not obvious, but can be shown to be correct.
12 Th Förster, Ann. Phys. 2, 55 (1948).
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1D
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Donor
emission

Fig. 18.2 A schematic description of energy transfer according to Förster: De-excitation of the donor
molecule is accompanied by excitation of an acceptor molecule. The rate is shown (See Eq. (18.33))
to be proportional to the overlap integral between the emission profile of the donor molecule and the
absorption profile of the other.

photosynthesis that are initiated by light absorption by a chromophore site followed
by energy transfer to the reaction center. It has found widespread applications, many
based on fluorescence resonance energy transfer (FRET), in which the detection of
fluorescence from the acceptor molecule is used to measure distances and distance
distributions between fluorescent tags in proteins and other polymers. Time resolved
FRET is similarly used to observe the kinetics of conformational changes in such
systems, for example to follow the folding of proteins. Natural and artificial light
harvesting systems is an arena of current research and development work that relies
principally on this phenomenon (Fig. 18.2).

In what follows we derive the Förster expression for the rate of electronic energy
transfer between two chromophore molecules. We consider two such molecules,
donor D and acceptor A, each represented by its ground and excited electronic
states and the associated vibrational manifolds: {|1D,χ(1D)

d 〉}, {|2D,χ(2D)

d ′ 〉} for the

ground and excited state manifolds of molecule D and {|1A,χ(1A)
a 〉}, {|2A,χ(2A)

a′ 〉}
for the corresponding states of molecule A, where d, d ′, a, a′ are used as vibronic
state indices (equivalent to the vector indices v used above). As in similar treat-
ments above, these vibrational manifolds correspond to both intramolecular and
environmental modes. Starting from the electronic state |2D1A〉 in which the donor
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is in the excited state and the acceptor in the ground state we seek an expression
for the rate at which the system converts into the electronic state |1D2A〉.

Förster theory relies on the following assumptions:

1. The distance between the two molecules D and A is large enough so that
the relevant intermolecular coupling is electrostatic. Moreover, the inter-
molecular distance is assumed large relative to the spatial extent of the
individual molecular charge distributions. Under these circumstances the
dominant electrostatic interaction is dipole–dipole coupling

V̂ = µ̂D · µ̂A − 3(µ̂D · uR)(µ̂A · uR)

R3 (18.27)

where µ̂D and µ̂A are the dipole operators associated with the donor and
acceptor molecules and uR is a unit vector in the direction from donor to
acceptor.

2. In the absence of this coupling the two-molecule Hamiltonian is the sum of
Hamiltonians of the individual chromophores. Consequently, the zero-order
wavefunctions are products of terms associated with the individual molecules,
for example,

|1Dχ
(1D)
d , 2Aχ(2A)

a 〉 = |1D,χ(1D)
d 〉|2A,χ(2A)

a 〉 (18.28a)

Furthermore the Born-Oppenheimer approximation is used to describe the
wavefunctions of the individual molecules, that is,

|1D,χ(1D)
d 〉 = |1D〉|χ(1D)

d 〉; |2A,χ(2A)
a 〉 = |2A〉|χ(2A)

a 〉 (18.28b)

3. The rate can be calculated by the Golden-rule formula. As discussed at length
in Chapter 9, this assumes that the quasi-continuum of final states is broad
and relatively unstructured.

4. The energy transfer process within a pair of donor acceptor molecules D and
A does not depends on the existence of other donor and acceptor molecules
in the system.

Evaluation of the golden-rule rate involves the absolute square of matrix ele-
ments of the form 〈2Dχ

(2D)

d ′ , 1Aχ
(1A)
a |V̂ |1Dχ

(1D)
d , 2Aχ

(2A)

a′ 〉. Equations (18.27) and
(18.28) imply that such matrix elements can be constructed from dipole matrix
elements of the individual molecules that take forms like 〈2D,χd ′ |µ̂D|1D,χd〉uD,
〈1A,χa|µ̂A|2A,χa′ 〉uA, etc., where the matrix elements of the vector dipole oper-
ators were written as the corresponding magnitudes multiplied by unit vectors in
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the corresponding directions. This in turn implies that

|〈2Dχ
(2D)

d ′ , 1Aχ(1A)
a |V̂ |1Dχ

(1D)
d , 2Aχ

(2A)

a′ 〉|2

= |〈2D,χd ′ |µ̂D|1D,χd〉|2|〈1A,χa|µ̂A|2A,χa′ 〉|2 × κ2(�D,�A)

R6 (18.29)

where

κ(�D,�A) = uD · uA − 3(uD · uR)(uA · uR) (18.30)

depends on the spatial orientation of the two molecules (denoted �D, �A); in fact
only on their relative orientations. We thus find that the golden-rule expression for
the energy transfer rate can be written in the form

kET = 2π

�

κ2(�D,�A)

R6

∑
a,a′,d,d ′

P(2D)

d ′ P(1A)
a |〈2D,χd ′ |µ̂D|1D,χd〉|2

× |〈1A,χa|µ̂A|2A,χa′ 〉|2δ(E(1D)
d + E(2A)

a′ − E(2D)

d ′ − E(1A)
a ) (18.31)

where the product P(2D)

d ′ P(1A)
a is the thermal probability that the donor molecule is

in the vibrational state d ′ of its excited electronic state while the acceptor molecule
is in the vibrational state a of its ground electronic state. Next use

δ
(
E(1D)

d + E(2A)

a′ − E(2D)

d ′ − E(1A)
a

)
=

∞∫
−∞

dEδ
(
E + E(1A)

a − E(2A)

a′
)
δ
(
E + E(1D)

d − E(2D)

d ′
)

(18.32)

in (18.31), to get

kET = κ2(�D,�A)

R6

�

2π

∞∫
−∞

dE kA
2←1(E)kD

1←2(E) (18.33)

where

kD
1←2(E) = 2π

�

∑
d,d ′

P(2D)

d ′ |〈2D,χd ′ |µ̂D|1D,χd〉|2δ
(
E + E(1D)

d − E(2D)

d ′
)

(18.34a)
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is the emission lineshape of the donor, while

kA
2←1(E) = 2π

�

∑
a,a′

P(1A)
a |〈2A,χa′ |µ̂A|1A,χa〉|2δ

(
E + E(1A)

a − E(2A)

a′
)

(18.34b)

is the absorption lineshape for the acceptor. The energy transfer rate is seen in
(18.33) to be proportional to the overlap between these lineshapes.

It is convenient to recast Eq. (18.33) in terms of the distance R0 at which kET

is equal to the decay rate k(0)
D of the donor molecule in the absence of acceptor

molecules,

kET = k(0)
D

(
R0

R

)6

(18.35a)

(R0)
6 =

(
k(0)

D

)−1
κ2(�D,�A)

�

2π

∞∫
−∞

dE kA
2←1(E)kD

1←2(E) (18.35b)

R0 is referred to as the Förster radius.13

The observables of an energy transfer measurement are rates and yields of the
different relaxation processes that follow the donor excitation. In the absence of
acceptor molecules the overall relaxation rate of the donor is

k(0)
D = kD,r + kD,nr (18.36)

where the subscripts r and nr denote radiative and nonradiative processes, respect-
ively. Here and above the superscript (0) marks the absence of acceptor molecules,
and we assume that kD,r = k(0)

D,r and kD,nr = k(0)
D,nr , that is, the presence of the

acceptor does not affect the relaxation channels that exist in its absence. The donor
emission yield, that is, the fraction of absorbed energy that is reemitted by the donor,
is in this case

Y (0)
D,r =

kD,r

k(0)
D

= kD,r

kD,r + kD,nr
(18.37)

13 In some texts R0 is defined by (R0)
6 = (k(0)D,r)

−1κ2(�D,�A)(�/2π)
∫∞
−∞ dE kA

2←1(E)kD
1←2(E)

where k0
D,r = Y (0)

D,r/τ
(0)
D is the radiative decay rate of the donor in the absence of acceptor molecules

(Y (0)
D,r is the emission yield and τ

(0)
D is the lifetime of the excited donor in the absence of acceptor). With

this definition, kET = k(0)D,r(R0/R)6. Note that elsewhere in our treatment we assume that k(0)D,r = kD,r ,
that is, the radiative relaxation rate of the donor is not affected by the acceptor.
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When acceptor molecules are present the overall relaxation rate becomes

kD = k(0)
D + kET (18.38)

and the yields, YET of the energy transfer process and YD,r of donor radiative
emission, are given by

YET = kET

kD
= 1

(k(0)
D /kET)+ 1

(18.39)

YD,r = kD,r

kD
= kD,r

k(0)
D + kET

(18.40)

Problem 18.3.

(1) Show that R0 can be defined as the donor–acceptor distance for which half
the energy absorbed by the donor is transferred to the acceptor molecule.

(2) Show that the quantum yield of the energy transfer, YET, is given by

YET = 1 − YD,r

Y (0)
D,r

= R6
0

R6 + R6
0

(18.41)

Solution The first equality in (18.41) is obtained by using YD,r = kD,r/kD and
Y (0)

D,r = kD,r/k(0)
D to find 1 − YD,r/Y (0)

D,r = 1 − k(0)
D /kD = kET/kD = YET. The

second equality is obtained from

YET = kET

kD
= 1

(k(0)
D /kET)+ 1

= 1

(R/R0)6 + 1
= R6

0

R6 + R6
0

where we have used (18.35a).

Figure 18.3 is an example of an experimental verification of the distance
dependence predicted by the Förster theory. Some more points are notable:

1. In (18.27) we have used the vacuum expression for the dipole–dipole inter-
action. If the process takes place in a medium of dielectric constant ε, then
a factor ε−1 enters in this expression. Consequently, the factor κ should be
redefined to

κ(�D,�A) = uD · uA − 3(uD · uR)(uA · uR)

ε
(18.42)
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Fig. 18.3 An early experimental verification of Eq. (18.41), showing (circles) the energy transfer
yield between two chromophores (1-dimethylaminonaphtalene-5-sulfonyl group and a α-naphthyl
group) connected by a molecular bridge (olygomers of poly-L-proline) of variable length (inset) as
a function of distance, and a fit to (18.41) with R0 ≈ 32 Å. The straight line in the right panel has a
slope of 5.9. (From L. Stryer and R. P. Haugland, PNAS, 58, 719 (1967).)

For the optical frequencies associated with electronic transitions, ε = n2

where n is the refractive index.
2. The energy transfer process occurs also in the gas phase. However in this

environment a primary source for energy transport are molecules that carry
their excitation energy as they move. Intermolecular transfer is usually dom-
inated by molecular collisions, that is, at such small distances for which
the dipole–dipole interaction is not necessarily the dominant coupling (see
below).

3. Continuing on a related theme, the practical importance of observations such
as FRET is their ability to convey information about the spatial distribu-
tions of chromophores and consequently structural information about the
condensed phase under study. It is important to keep in mind that diffusion of
the donor and acceptor species, if taking place on the fluorescence timescale,
will influence the observed kinetics.

4. The dipole–dipole coupling, an essential ingredient in the Förster theory, is a
convenient approximation, valid when the donor and acceptor molecules are
far enough (relative to their molecular sizes) from each other. The obvious
correction to take, in situations where the donor–acceptor distance becomes
comparable to molecular size, is the inclusion of higher-multipole interac-
tions. Without going into details, one can readily infer that such corrections
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to the rate (18.33) will fall off as R−2n, n = 4, 5, . . .. At even smaller dis-
tances, when the overlap between the electronic densities of the two molecules
becomes significant, we expect that this overlap contributes an important
interaction term that will fall exponentially with intermolecular distance,
V ∼ exp(−αR). This short-range mechanism for energy exchange is known
as the Dexter version of the theory.14 A related mechanism of energy transfer
which also stems from orbital overlap is the 2-electron exchange mechanism
that dominates triplet–triplet energy transfer.15

5. The dipole–dipole interaction (18.27) is the electrostatic approximation to
a more general result of electromagnetic theory, which includes retardation
effects associated with the finite speed of light. The electrostatic approxim-
ation is valid for donor–acceptor distances that are much smaller than the
radiation wavelength λ at the frequency of the transition under discussion. In
the opposite limit, where the distance greatly exceeds λ, one should use the
general electrodynamics formulation to describe the energy transfer. Not sur-
prisingly, energy transfer in this limit becomes simply a photon emission by
the donor followed by its absorption by the acceptor. The qualitative differ-
ence between the two limits becomes evident by noting that the rate of photon
emission followed by absorption should fall with distance like the intensity
of the emitted radiation, that is, R−2, while the electrostatic treatment yields
the R−6 falloff seen above.

Yet other mechanisms for long-range energy exchange are the analog of
the superexchange mechanism of bridge mediated electron transfer discussed
in Section 16.12 (it should be noted though that Fig. 18.3 represents a case
in which the Förster mechanism dominates), and the analog of the electron
hopping mechanism described in Section 16.13.

6. Another analogy to electron transfer can be drawn by considering the exten-
sion of the scenario in which an electron is exchanged between two centers
to the case of an electron moving in an infinite chain (or a three-dimensional
array) of repeated identical centers, for example, a crystal. The electronic
problem becomes in this limit the electronic band structure theory of solid
crystals (Section 4.3.3). In analogy, the model of electronic energy transfer
yields, in the same limit, a picture of energy bands associated with deloc-
alized excitation modes called excitons. In both cases we find that in this

14 D. L. Dexter, J. Chem. Phys. 21, 836 (1953).
15 Triplet-triplet, or T-T energy transfer is a transition of the type 3(3D∗ 1A)→3(1D 3A∗). It is

overall spin allowed, however a coupling such as 〈3D∗|µD|1D〉 is zero because of the orthogonality
of the spin states. The coupling that promotes such a transition amounts to simultaneous exchange
of two electrons in opposite directions between the donor and the acceptor molecules, and depends
strongly on orbital overlap between the two molecules.
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infinite crystal limit the physics is better described in terms of delocalized
states (Bloch states in one case, excitons in the other) rather than local ones.

7. The energy transfer rate, Eq. (18.33) or (18.35) pertains to a donor interact-
ing with a single acceptor. The contribution of this process to the overall
relaxation of the excited donor is obtained by summing this rates over all
relevant acceptor molecules. For high homogeneous density ρ of acceptors
this amounts to replacing the factor R−6 by ρ · 4π ∫∞

a dRR−4 = (4/3)πρ/a3

where a is some characteristic distance of nearest approach (assuming that
the theory is valid at this distance). More interesting is the opposite limit of
low acceptor density. In this case the relaxation due to energy transfer of any
donor molecule is dominated by one or just a few acceptor molecules and
we expect a large distribution of lifetimes that reflect particular realizations
of acceptor positions about individual donor molecules. This is the lifetime
equivalent of inhomogeneous line broadening (discussed in Section 18.5.5),
and we can take advantage of single molecule spectroscopy techniques
(Section 18.6.3) that are suitable for studying such distributed phenomena
to probe the distribution of donor–acceptor pairs in our sample.

Further reading

Th. Förster, Intermolecular Energy Migration and Fluorescence, Ann. Phys. 2, 55 (1948).
J. R. Lakowicz, Energy transfer, In Principles of Fluorescence Spectroscopy, 2nd ed (Plenum, New

York, 1999, p. 367).
G. D. Scholes, Long Range Resonance Energy Transfer in Molecular Systems, Ann. Rev. Phys. Chem.

54, 57 (2003).
T. Ha, Single-Molecule Fluorescence Resonance Energy Transfer, Methods 25, 78 (2001).

18.5 Thermal relaxation and dephasing

In the previous sections we have considered basic processes: Absorption, relaxation
of excited states, fluorescence, light scattering and energy transfer. We have taken
into account the fact that highly excited molecular states are embedded in, and
interact with, continuous manifolds of states that induce relaxation processes. Such
processes affect the width of excitation spectra, the lifetimes of excited states and
the yield of re-emission in the forms of fluorescence and light scattering. We have
argued that modeling relaxation channels in this way amounts to assuming that
the system interacts with the corresponding baths at T = 0. We have also noted
that a clear distinction between a coherent light scattering process and the two-
step process of absorption of radiation followed by emission can be made only
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for systems that undergo dephasing interactions with their thermal environment. In
this section we treat this thermal interaction explicitly by considering the optical
response of a molecule that interacts both with the radiation field and with its
thermal environment.

18.5.1 The Bloch equations

As before we limit ourselves to near resonance processes involving weak radiation
fields and model the molecule as a two-state system: the ground state and an excited
state selected by the frequency of the incident radiation. Hence, our starting point
are the Bloch equations, Eqs. (10.181), for the reduced density matrixσij (i, j = 1, 2)
of such systems

dσ11

dt
= −dσ22

dt
= − i

2
�(σ̃21 − σ̃12)− k2←1σ11 + k1←2σ22 (18.43a)

dσ̃12

dt
= −iησ̃12 − i

2
�(σ22 − σ11)− kdσ̃12 (18.43b)

dσ̃21

dt
= iησ̃21 + i

2
�(σ22 − σ11)− kdσ̃21 (18.43c)

where � = E0µ/� denotes the radiative coupling. Here σ̃12(t) =
e−iωtσ12(t), σ̃21(t) = eiωtσ21(t), σ̃ii(t) = σii(t); (i = 1, 2), and η = ω − (E2 −
E1)/� = ω − ω21 correspond to an implementation of the dressed-state pic-
ture: given the molecular states |1〉 and |2〉 with energy spacing E21 = E2 − E1,
Eqs (18.43) are written for the density matrix elements in the representation of the
dressed states |1,ω〉 (the molecular state 1 plus a photon of frequency ω ) and |2, 0〉
(molecular state 2 with no photons) whose spacing is η.

It should be kept in mind that, as already noted, the 2 states system is greatly
oversimplified as a molecular model. We will nevertheless see that it provides
important insight that remains useful also for realistic molecular applications. In
what follows we consider the implications of Eqs (18.43) on the optical observables
that were discussed in Sections 18.2 and 18.3.

18.5.2 Relaxation of a prepared state

Suppose that following the excitation pulse the system was somehow prepared in
the excited state |2〉, so that at t = 0, the starting time of our observation, � = 0 and
the only non-vanishing element of σ̂ is σ22 = 1. Keeping in mind that σ11+σ22 = 1,
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the time evolution implied by Eq. (18.43a) is

σ22 = exp[−(k1←2 + k2←1)t] (18.44)

The rates k1←2 and k2←1 satisfy the detailed balance condition k1←2/k2←1 =
exp(β(E2 − E1)) and both may depend on the temperature T . The limit of zero
temperature in which k2←1 = 0 is often relevant in optical spectroscopy, even at
room temperature if E2 − E1 
 kBT . In this case, k1←2 is the total decay rate of
level 2—sum of rates associated with different relaxation channels represented by
the continuous state manifolds of the model of Fig. 18.1. However, as discussed
below, pure dephasing does not exist in this limit.

In some cases the model of Eqs (18.43) may be modified by replacing Eq.
(18.43a) by

dσ11

dt
= − i

2
�(σ̃21 − σ̃12)− k2←1σ11 + k1←2σ22 (18.45a)

dσ22

dt
= i

2
�(σ̃21 − σ̃12)+ k2←1σ11 − k1←2σ22 − Kσ22 (18.45b)

where the second equation contains an additional damping term with damping rate
K . In correspondence, Eqs (18.43b) and (18.43c) are augmented by adding the
corresponding damping terms −(1/2)Kσ12 and −(1/2)Kσ21, respectively, to their
right-hand sides. In this way we account for processes that destroy the system
(note that σ11 + σ22 is no longer conserved) in the upper state, for example, by
ionization or dissociation. This is a trivial modification of the treatment and will
not be henceforth considered.

18.5.3 Dephasing (decoherence)

If at time zero, after the field has been switched off, the system is found in a
state with nonvanishing coherences, σij (i �= j), Eqs (18.43b,c) tell us that these
coherences decay with the dephasing rate constant kd. kd was shown in turn to
consist of two parts (cf. Eq. (10.176): The lifetime contribution to the decay rate
of σij is the sum of half the population relaxation rates out of states i and j, in the
present case for σ12 and σ21 this is (1/2)(k2←1 + k1←2). Another contribution that
we called “pure dephasing” is of the form (again from (10.176)) �

−2C̃(0)(V S
11 −

V S
22)

2. V̂ S is the system operator that couples to the thermal bath so that V S
11 − V S

22
represents modulation in the system energy spacing E21 due to this coupling. C̃(0)
is the zero frequency Fourier transform of the time correlation function of the
bath operator that couples to the system, as determined by the dynamics in the
unperturbed bath subspace. We have argued (see last paragraph of Sect. 10.4.9) that
pure dephasing vanishes at zero temperature. Consequently, only zero temperature
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population relaxation rates, that can be obtained by modeling relaxation channels
as continua of states, are relevant in this limit.

18.5.4 The absorption lineshape

We next consider the effect of thermal relaxation on the absorption lineshape. We
start with the Bloch equations in the form (10.184),

dσz

dt
= E0µ

�
σ̃y − kr(σz − σz,eq) (18.46a)

dσ̃x

dt
= −ησ̃y − kdσ̃x (18.46b)

dσ̃y

dt
= ησ̃x − E0µ

�
σz − kdσ̃y (18.46c)

where σz,eq and kr are given by Eqs. (10.185) and (10.186), respectively. Let us
assume that the system has reached a steady state under a constant field E0, and
consider the rate at which it absorbs energy from the field. We can identify this rate
by observing that in (18.46a) there are two kinds of terms that cancel each other
when dσz/dt = 0,

E0µ

�
σ̃y,ss = kr(σz,ss − σz,eq) (18.47)

We use the subscript ‘ss’ to denote steady state. The rate of energy change in the
system is −�ω21(dσz/dt). �ω21kr(σz,ss − σz,eq) must therefore be the rate at which
energy is being dissipated, while −ω21E0µσ̃y,ss is the rate at which it is absorbed
from the radiation field. To find an explicit expression we solve (18.46b,c) for
steady state, that is, with the time derivatives put to zero, and find

σ̃y,ss = −E0µ

�

kd

η2 + k2
d

σz,ss (18.48)

so that (
dσz

dt

)
absorption

= ω21(E0µ)2 �kd

[�(ω − ω21)]2 + (�kd)
2σz,ss (18.49)

The resulting absorption rate is proportional to the population difference σz,ss =
σ11,ss−σ22,ss, as may have been expected. We have obtained a Lorentzian lineshape
whose width is determined by the total phase relaxation rate kd, Eq. (10.176).
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18.5.5 Homogeneous and inhomogeneous broadening

The fact that the lineshape (18.49) is Lorentzian is a direct consequence of the
fact that our starting point, the Redfield equations (10.174) correspond to the limit
were the thermal bath is fast relative to the system dynamics. A similar result
was obtained in this limit from the stochastic approach that uses Eq. (10.171) as a
starting point for the classical treatment of Section 7.5.4. In the latter case we were
also able to consider the opposite limit of slow bath that was shown to yield, in the
model considered, a Gaussian lineshape.

To understand the physical difference between these limits we have to realize
that interaction with the environment can affect the spectral behavior of a molecular
system in two ways, static and dynamic, both derived from the random character
of this interaction:

1. In the static limit the medium is much slower than all relevant molecular
processes, and can be regarded frozen on the experimental timescale. Medium
induced population relaxation cannot take place in this limit because a static medium
cannot exchange energy with the molecule. Medium induced line broadening still
takes place in an ensemble of molecules because each molecule sees a slightly
different local configuration of the medium surrounding it. It therefore experiences
a slightly different interaction with its local environment and consequently a slightly
different frequency shift. If we could perform an experiment on a single molecule,
we would observe a narrow absorption lineshape (upper panel of Fig. 18.4) whose
width is determined by processes unrelated to the thermal environment (radiative
decay, intramolecular relaxation, etc), with peak positions different for different
molecules (Fig. 18.4, middle panel). These lines superimpose in the observed many-
molecule spectrum to yield the broad absorption profile seen in the lower panel of
Fig. 18.4. The lineshape in this case is called inhomogeneous and the broadening
is referred to as inhomogeneous broadening.

It is important to understand that the origin of the different frequency shifts
experienced by different molecules is the same stochastic frequency modulation
δω(t) of Eq. (10.171), only that in the limit considered each molecule encounters a
different instantaneous realization of this stochastic variable, which persists on the
timescale of the measurement. In this limit the observed lineshape is determined not
by the dynamics of ω(t) but by the probability P(ω′) that at any time the molecule
is characterized by the instantaneous transition frequency ω′. If the normalized
absorption profile of an individual molecule is given by a(ω − ω′), where a(ω)

peaks at ω = 0 and
∫∞
−∞ dωa(ω) = 1, the observed lineshape is

L(ω) =
∞∫

−∞
dωP(ω′)a(ω − ω′) � P(ω) (18.50)
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Fig. 18.4 The spectrum of a single molecule (upper panel) is superimposed on similar spectra of
other molecules (middle panel) to yield the inhomogeneously broadened line shape (lower panel).

where the second equality was written under the assumption that the a(ω) profile
is much narrower than the distribution P(ω). The Gaussian lineshape, Eq. (7.107)
that results in the static limit of the stochastic theory of lineshape (Section 7.5.4)
reflects the assumption made there that δω is a Gaussian stochastic variable so that
P(ω) is a Gaussian function, in accord with Eq. (18.50).

2. Now consider the opposite limit where the thermal motion in the environment
is fast relative to the molecular processes under discussion, in particular relative to
the timescale of the molecule–photon interaction that leads to absorption. Now each
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single molecule experiences, on the relevant experimental timescale, all the possible
configurations of its local neighborhood. Consequently, each molecule provides a
full representation of the molecular ensemble. Therefore the ensemble-averaged
lineshape is the same as what would be observed by monitoring a single molecule.
We refer to the lineshape and the broadening in this limit as homogeneous.

The Redfield equations that lead to Eqs (18.43) or (18.46) were obtained under
the assumption that thermal environment is fast relative to the system and there-
fore correspond to this homogeneous limit. Consequently the absorption spectrum
(18.49) obtained from these equations corresponds to a homogeneous lineshape.
In contrast, the classical stochastic theory of lineshape, Section 7.5.4, can account
for both limits and the transition between them. We will see in the next section
that an equivalent theory can be also constructed as an extension of the Bloch
equations (18.43).

18.5.6 Motional narrowing

An important consequence of the lineshape theory discussed above concerns the
effect of the bath dynamics on the linewidths of spectral lines. We have already
seen this in the discussion of Section 7.5.4, where a Gaussian power spectrum has
evolved into a Lorentzian when the timescale associated with random frequency
modulations became fast. Let us see how this effect appears in the context of our
present discussion based on the Bloch–Redfield theory.

As noted above, in their straightforward implementation, the Bloch equations
correspond to the homogeneous broadening limit. To account for contributions to
the linewidth that do not originate from the thermal environment, for example,
radiative and intramolecular relaxation, we may replace kd in Eq. (18.49) by k̄d =
kd+ki where ki is the combined rate of these other relaxation processes that will be
taken constant in the following discussion. In what follows we focus on the width
kd which is associated with the thermal environment.

This width is affected by the dynamics of the thermal bath through the
bath correlation function C(t), Eq. (10.121). According to Eq. (10.176) two
components of the transform C̃(ω) = ∫∞

0 dτeiωτC(τ ) are involved: C̃(0) =∫∞
0 dτC(τ ) determines the “pure dephasing” k(12)

2 according to Eq. (10.168), while

ReC̃(±ω12) determines the lifetime contribution to the dephasing, k(12)
1 , as implied

by Eqs (10.167) and (10.160).
An important characteristic of the bath dynamics is its correlation time, essen-

tially the lifetime of the correlation function C(t). Using the simple model
C(t) = C(0)e−t/τc we find C̃(ω) = −C(0)(iω − τ−1

c )−1,16 so that k(12)
2 ∼ τc

16 Note that this result is a high-temperature approximation, since C̃(ω) has to satisfy Eq. (6.72),
that is, ReC̃(ω)/ReC̃(−ω) = exp(β�ω). This, however, does not affect the present discussion.
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and k(12)
1 ∼ τc/((ωτc)

2 + 1). Both vanish when τc → 0, implying that the absorp-
tion profile (18.49) narrows when the bath moves faster and its width approaches
k̄d → ki in this limit. This is a manifestation of a phenomenon known as motional
narrowing. In reality however, for optical transitions, the inequality ωτc 
 1
holds: Thermal motions in condensed phase molecular systems are characterized
by τc ∼ 10−10 − 10−12 s at room temperature, while frequencies associated with
vibrational and electronic transitions satisfy ω > 1013 s. Therefore we are usually
in a situation where k(12)

2 ∼ τc while k(12)
1 ∼ τ−1

c , that is, the width associated
with pure dephasing decreases, while lifetime broadening increases, when the bath
becomes faster. Still in the common situation where pure dephasing dominates an
observed linewidth, a faster bath dynamics may lead to a narrower line. It should
be kept in mind, however, that because the only parameter at our disposal for con-
trolling the dynamics of a thermal bath is the temperature, the effect described
above may be obscured by other temperature-dependent phenomena. For example
the effective strength (as opposed to the timescale) of the system–bath interaction
can be stronger at higher temperatures because of larger amplitudes of motions and
larger collision velocities. For this reason motional narrowing is usually observed
in a different dynamical regime—during the transition from inhomogeneous to
homogeneous line broadening, as discussed below.

Before turning to this other interesting case we briefly dwell on a potential source
of confusion. We have seen above that in the extreme (and unphysical) τc → 0
limit all spectral broadening associated with the system–bath interaction vanishes.
This seems to contradict a popular stochastic model, the Langevin equation dis-
cussed in Section 8.2, where the random force associated with the thermal bath
was taken to be δ-correlated in time (Eq. (8.20)). We can resolve this apparent
contradiction by noting that a model with a δ-correlated random force is just a con-
venient mathematical framework. We get this description of the physical system
in the mathematical limit where the force correlation time is infinitely short but its
amplitude is infinitely large (as again seen in Eq. (8.20)). This yields a mathemat-
ically simple stochastic equation that describes the system dynamics on timescale
long relative to τc. Again, this mathematical model compensates for the vanishing
correlation time by taking an appropriately diverging force. In contrast, in the above
analysis we have considered the physical limit in which τc → 0 with the forces
remaining within their fixed physical range. We find that in this case the dynamic
system–bath coupling effectively vanishes. Indeed, in this extremely fast bath limit
the system cannot follow the bath motion and the latter appears to it as a static
environment characterized by its averaged configuration.

Our discussion of motional narrowing has focused so far on the homogeneous
spectrum described by the Bloch–Redfield theory, which is valid only when the bath
is fast relative to the system timescale. In this case we could investigate the τc → 0
limit, but the opposite case, τc → ∞, cannot be taken. In contrast, the classical
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stochastic theory of lineshapes (Section 7.5.4) holds in both limits and can describe
the transition between them. In what follows we develop an equivalent picture
from a generalization of the Bloch equations, and use it to demonstrate motional
narrowing that accompanies a change in the character of the bath from “slow” to
“fast.”

Let the two-level molecule of interest be embedded in a solvent that itself can
be in either of two states, a and b,17 and let the corresponding molecular transition
frequency beωa

21 orωb
21, respectively. Assuming that the molecular transition dipole

is the same in these two states and denoting � = E0µ/�, Eq. (18.43b) is

dσ̃ a
12

dt
= −iηaσ̃ a

12 −
i

2
�(σ a

22 − σ a
11)− kdσ̃

a
12 (18.51)

when the solvent (or the molecule) is in configuration a, and a similar equation with
b replacing a when it is in configuration b. We assume that thermal fluctuations
cause transitions a � b between these configurations, characterized by a rate k . We
further assume that this dynamics is not fast enough to affect transitions between
the molecular states 1 and 2, so that σ a

22 − σ a
11 = σ b

22 − σ b
11 = −σz is constant.18

This dynamics is then expressed by the two coupled equations

dσ̃ a
12

dt
= −iηaσ̃ a

12 +
i

2
�σz − kdσ̃

a
12 − k(σ̃ a

12 − σ̃ b
12) (18.52a)

dσ̃ b
12

dt
= −iηbσ̃ b

12 +
i

2
�σz − kdσ̃

b
12 − k

(
σ̃ b

12 − σ̃ a
12

)
(18.52b)

The steady state (dσ̃ a
12/dt = dσ̃ b

12/dt = 0) solution of these equations is

σ a
12 =

(i/2)�(iηb + kd + 2k)

(iηa + kd + k)(iηb + kd + k)− k2
σz

σ b
12 =

(i/2)�(iηa + kd + 2k)

(iηa + kd + k)(iηb + kd + k)− k2
σz

(18.53)

17 This may happen when the close environment of the molecule, for example, the cage in which it
is trapped, can have two conformations.

18 It is important to realize that we are not discussing a transition between two molecular conforma-
tions. The molecule remains the same; only the way in which the non-diagonal elements of its density

matrix evolve is changing because of the change in its environment. σ (a)
12 and σ

(b)
12 do not represent

elements of different density matrices, but of the same density matrix that evolve differently in time
because of the change in frequency.
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The rate at which energy is absorbed from the radiation field is, in analogy to
Eq. (18.49)(

dE

dt

)
abs

= �(�ωa
21Imσ a

12 + �ωb
21Imσ b

12)σz ≈ ��ω21(Imσ a
12 + Imσ b

12)σz

(18.54)

In the inhomogeneous limit k → 0 this yields(
dE

dt

)
abs

= 1

2
�2

�ω21

(
kd

(ηa)2 + k2
d

+ kd

(ηb)2 + k2
d

)
σz (18.55)

that is, a sum of the two Lorentzian lineshapes. In the opposite, homogeneous limit
where k →∞ we get(

dE

dt

)
abs

= �2
�ω21

kd

[(ηa + ηb)/2]2 + k2
d

σz (18.56)

that is, a single Lorentzian lineshape peaked about the average frequency. The
absorption lineshape obtained from this model for different values of the exchange
rate k is displayed in Fig. 18.5.

In general, many more than two configurations will be involved in inhomogen-
eous broadening, but the physics that leads to the collapse of a broad envelope of

1 2 3 4v 1 2 3 4v
1 2 3 4v

1 2 3 4v1 2 3 4v1 2 3 4v

k = 0

k = 0.125 k = 0.250

k = 0.375

k = 1.0 k = 5.0

Fig. 18.5 Absorption lineshape (arbitrary units) from Eq. (18.54): Demonstration of motional
narrowing using ωa

21 = ω21 − 0.5, ωb
21 = ω21 + 0.5 (ω21 
 1), and kd = 0.15.
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Fig. 18.6 The NMR linewidth (in gauss) of sodium in sodium metal (from H. S. Gutowsky, Phys. Rev.
83, 1073 (1951)). The thermal motion that causes the observed narrowing at elevated temperature
is due to self diffusion of sodium atoms that create local fluctuations in the magnetic field, and
consequently in the spin splitting.

lines to a single relatively narrow feature remains the same. Experimental manifest-
ations of this effect have long been known in the NMR literature. Figure 18.6 shows
an example in which the NMR linewidth of sodium atom in sodium metal narrows
at higher temperatures. The original inhomogeneous broadening arises from small
random variations in the local magnetic field, and the narrowing reflects the increas-
ing rate of diffusion (hence more rapid changes in the local configuration and the
local magnetic field) of sodium atoms at higher temperatures. k in Eqs (18.52) is
related in this case to the hopping rate between lattice sites. Furthermore, according
to (18.53) the transition out of the inhomogeneous limit occurs when k becomes of
order ηa, ηb in the relevant frequency range, namely of the order of the inhomogen-
eous width.19 We can therefore use results such as Fig. 18.6 to estimate hopping
rates. In particular, the temperature dependence of k can provide an estimate for
the activation energy of hopping, that is, for diffusion.

18.5.7 Thermal effects in resonance Raman scattering

We have already argued that the phenomena of Raman scattering and fluorescence
cannot be distinguished from each other unless the system interacts with its thermal
environment. Next we extend the model discussed in Section 18.3 to explicitly
include thermal relaxation effects. Our model now consists of four levels: The
incoming state |in〉 = |1, v1, k1〉 with energy Ein = E(1)

el + E(1)
v1 + �ω1 (ω1 = c|k1|

19 In the two-configuration model (Eqs (18.52)) of inhomogeneous broadening a natural choice is
to take ηa = −ηb where |ηa| is of the order of the inhomogeneous width.
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Fig. 18.7 A schematic display of light scattering/excitation-fluorescence process. Shown are the
relevant molecular states and the dressed states |in〉 and |out〉 used in the calculation. The arrows
denote thermal population transfer within the intermediate state manifold. The shading on levels p
and s corresponds to energy level fluctuations that leads to pure dephasing.

where c is the speed of light) is a vibronic state of the ground electronic manifold
dressed by a photon whose quantum state is defined by the wavevector k1. |out〉 =
|1, v, k〉 with energy Eout = E(1)

el + E(1)
v + �ω (ω = c|k|) is another vibronic state

of the same electronic manifold dressed by another photon. |p〉 = |2, vp, 0〉 and

|s〉 = |2, vs, 0〉 with energies Ep = E(2)
el + E(2)

vp and Es = E(2)
el + E(2)

vs , respectively
are vibronic levels of the excited electronic state. For specificity we will think
of states |p〉 and |s〉 as the lowest and a higher-vibrational levels of the excited
electronic manifold. The incoming photon is assumed to be in resonance with the
state |s〉, that is, Ein � Es, so we will disregard the interaction between states
|in〉 and |p〉. In the presence of such incident radiation we expect that outgoing
radiation originates by three routes (see Fig. 18.7): First, scattering of light by the
molecule, second, absorption into state |s〉 followed by emission from the same state
(resonance fluorescence) and, third, absorption into state |s〉 followed by thermal
relaxation and emission from state |p〉 (relaxed or thermalized fluorescence). We
want to see how these processes appear in a quantum mechanical treatment of the
relevant dynamics. We emphasize that the model is far too primitive to describe
realistic systems that have far more than two ground and two excited state levels,
however, the principles involved remain the same in more complex situations, as
will be demonstrated below.
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The Hamiltonian of the truncated state model described above is

Ĥ =Ein|in〉〈in| + Eout|out〉〈out| + Ep|p〉〈p| + Es|s〉〈s|
+ Vin,s|in〉〈s| + Vs,in|s〉〈in| + Vs,out|s〉〈out| + Vout,s|out〉〈s| (18.57)

+ Vp,out|p〉〈out| + Vout,p|out〉〈p|
The coupling elements Vi,j = V ∗

j,i (i, j = in, out, p, s) are products of the electric
field of the incident radiation and the dipole coupling elements between the corres-
ponding molecular states. The steady-state light scattering process is described by
letting state |in〉 drive the system, and finding the flux carried by state |out〉 under
steady-state conditions. This again constitutes a quantum mechanical steady-state
problem, however, unlike in Sections 9.5 and 18.3 where such problems were
handled using the Schrödinger equations for amplitudes, now in the presence
of thermal interactions we have to formulate such problem within the Liouville
equation for the density matrix.

A proper way to proceed would be to add to the Hamiltonian (18.57) terms
that describe the thermal environment and its interaction with the system, then to
derive kinetic equations akin to the Redfield approximation (Section 10.4.8) using
the rotating wave approximation to get the Bloch form of the Redfield equations in
the presence of the driving field (as in Section 10.5.2). The desired flux would then
be obtained by solving the resulting generalized Bloch equations at steady state
to yield an analog of the steady-state dynamics scheme used in Section 18.3 as
described by Eqs (18.19). Instead of following such rigorous but tedious procedure
we will use a phenomenological shortcut. We start from the general form of the
Liouville equation ˆ̇σ = −iLσ̂ + Rσ̂ , where L ≡ �

−1[Ĥ ,] is the Liouville oper-
ator associated with the Hamiltonian (18.57). Rather than deriving the relaxation
terms that constitute Rσ̂ from, for example, the Redfield procedure, we postulate a
reasonable form for these terms based on the experience gained from deriving the
Bloch equations before (Section 10.5.2). The resulting set of Liouville equations is

�
dσin,in

dt
= −2Im(Vs,inσin,s) (18.58a)

�
dσs,s

dt
= 2Im(Vs,inσin,s)+ 2Im(Vs,outσout,s) −kpsσs,s + kspσp,p − �sσs,s

(18.58b)

�
dσp,p

dt
= 2Im(Vp,outσout,p) +kpsσs,s − kspσp,p − �pσp,p (18.58c)

�
dσout,out

dt
= −2Im(Vp,outσout,p)− 2Im(Vs,outσout,s)− ησout,out (18.58d)
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�
dσin,out

dt
=−iEin,outσin,out−iVin,sσs,out + iVs,outσin,s+iVp,outσin,p − (1/2)ησin,out

(18.58e)

�
dσin,s

dt
= −iEin,sσin,s + iVin,s(σin,in −σs,s)+ iVout,sσin,out −(1/2)γsσin,s

(18.58f )

�
dσout,s

dt
= −iEout,sσout,s + iVin,sσout,in − iVout,s(σs,s−σout,out)

−iVout,pσp,s −(1/2)γsσout,s (18.58g)

�
dσout,p

dt
= −iEout,pσout,p − iVout,p(σp,p−σout,out)− iVout,sσs,p −(1/2)γpσout,p

(18.58h)

In these equations Ei,j = Ei − Ej. The terms with white as well as light-grey back-
grounds arise from −i[Ĥ , σ̂ ] with Ĥ given by (18.57). The terms with dark-grey
backgrounds that describe relaxation processes were added phenomenologically as
follows:

1. Thermal transitions (population relaxation) between levels s and p is accoun-
ted for by the rates ksp = ks←p and kps = kp←s that connect between
σs,s and σp,p. These rates should satisfy the detailed balance condition
ksp/kps = exp(−βEsp).

2. The molecule in the excited electronic state (levels p and s) can undergo
nonthermal relaxation processes, for example, dissociation, ionization, and
radiative damping. These processes are irreversible because their products
are removed from the system, and they are accounted for by the damping
rates �s and �p in Eqs (18.58b) and (18.58c), respectively.

3. Non-diagonal elements ofσ that involve levels s and p relax with rates derived
from the population relaxation processes described above. In addition, pure
dephasing associated with thermal fluctuations of molecular energy spacing is
assigned for simplicity to the upper levels s and p (i.e. we picture these levels
as fluctuating against a static ground state). Correspondingly, the relaxation
rates γs and γp that appear in Eqs (18.58f–h) are given by

γp = κp + ksp + �p; γs = κs + kps + �s (18.59)
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where κp and κs are the pure dephasing rates assigned to levels p and s,
respectively.

4. As in Eqs (18.19) we impose outgoing boundary conditions on the |out〉 state,
by assigning a small damping rate η to this channel. The corresponding terms
containing η that appear in (18.58d,e) insure that a steady state is achieved if
we also impose a constant σin,in on the dynamics (equivalent to the driving
boundary condition cin(t) = exp(−iEint/�)cin(0) imposed on Eqs (18.19)).

The solution of Eqs (18.58) for this steady state will be obtained in the lowest
order of the interaction between the molecule and the driving radiation field.
Since the resonant light scattering process involves a photon coming in then going
out, the lowest order for the scattering amplitude is 2, and therefore the lowest
order for the observed scattering flux is 4. In Appendix 18A we show that the terms
marked by light-grey backgrounds in Eqs (18.58) can then be disregarded since they
contribute only in higher order. The steady-state solution of (18.58) is obtained by
disregarding Eq. (18.58a), imposing a constant σin,in on the other equations and
putting all time derivatives on the left to zero.

Once the steady-state solution is obtained, we seek an expression for the out-
going flux Fout under the constant driving imposed by σin,in. This flux contributes
to dσout,out/dt in Eq. (18.58d), and can be evaluated (see Appendix 18A) as the
steady state value of the term−2Im(Vp,outσout,p)−2Im(Vs,outσout,s) in that equation.
Further technical details are given in Appendix 18A. The result is

Fout

σin,in
= 2π

�

|Vin,s|2|Vout,s|2
(E2

in,s + ((1/2)γs)2)

(
δ(Ein − Eout)+ κ̃s

�̃s

γs/2π

(E2
out,s + ((1/2)γs)2)

+ |Vout,p|2
|Vout,s|2

γs

�̃s

kps

ksp + �p

γp/2π

(E2
out,p + ((1/2)γp)2)

)
(18.60)

where �̃s and κ̃s are constants defined by Eqs. (18.128) and (18.138), respectively.
In the absence of thermal relaxation from s to p, that is, if kps vanishes, the scattered
flux contains only the first two terms. The first of these, which remains when also
the pure dephasing rate of level s, κs, vanishes, strictly conserves energy as implied
by the δ(Ein−Eout) term. This contribution can be interpreted as resonance Raman
scattering. (Note that our result does not contain off-resonance scattering from level
p because we have disregarded the corresponding radiative coupling Vin,p). The
other term, proportional to κs in which the δ-function is replaced by a Lorentzian
of width γs, can be identified as resonance fluorescence—emission of light after
absorption into |s〉.

The last term, proportional to the population relaxation rate kps and broadened
by γp rather than γs is obviously relaxed fluorescence. Note that all terms are
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proportional to the absorption lineshape (a Lorentzian of width γs), as expected.
In fact, the ability to monitor resonance light scattering/resonance fluorescence
as a function of the incident frequency is an important technique for measuring
absorption lineshapes.

18.5.8 A case study: resonance Raman scattering and fluorescence from Azulene in
a Naphthalene matrix

In matrix isolation spectroscopy chromophore molecules are embedded in a low
temperature inert host matrix at low enough density so that intermolecular interac-
tions between them can be disregarded. Because rotational motions are inhibited and
since at the low temperatures studied the molecule occupies its lowest vibronic level,
the absorption and fluorescence/Raman scattering spectra are relatively “clean”
and simple. The electronic transition associated with the 0–0 line (i.e. transition
between the ground vibrational levels of the molecule in the two electronic states)
is characterized by a zero-phonon peak and a “phonon sideband” on its high energy
side. This sideband is equivalent to excitation into higher vibrational states of the
molecule, except that these vibrations are phonons of the embedding host matrix
whose frequencies are considerably lower than those of most molecular vibrational
modes.

Figure 18.8 shows the emission spectrum observed following excitation of Azu-
lene embedded in a Naphthalene matrix at 2 K. Note that E on the horizontal axis
corresponds to Eout in Eq. (18.60) while the “excitation energy” is our Ein. The upper
panel shows the spectrum obtained following excitation into the zero-phonon line
while the lower panel shows the spectrum obtained after excitation with energy
higher by 30 cm−1, that is, into the phonon sideband. In the latter spectrum lines
appear in pairs separated by 30 cm−1 with the lower energy line having the same
energy as the corresponding emission following the zero-phonon excitation (upper
panel). What we are seeing in the lower panel spectrum are emission peaks that
originate at the excited region (those are marked “R” and assigned by the authors
to resonant Raman scattering) and those that correspond to fluorescence following
relaxation into the zero-phonon level (“0”). Note that some peaks, marked “NR,”
are assigned to the Naphthalene host and are not relevant to our discussion. In the
spirit of Eq. (18.60) the lower peaks in each pair correspond to the third term, relaxed
fluorescence. The upper peak must be a combination of the first two contributions,
Raman and resonant fluorescence, in Eq. (18.60).

The resonance Raman and resonance fluorescence contributions are seen sep-
arated in the closer look seen in Fig. 18.9. The observed spectrum is assigned to
emission from the origin of the electronic excited state onto a particular vibronic
level in the ground electronic state. For reasons irrelevant to our discussion the
Raman line appears as a doublet in this high-resolution spectrum. The emission
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Fig. 18.8 The emission spectrum observed following excitation of Azulene in Naphthalene matrix
at T = 2 K. Upper panel: emission following excitation into the zero phonon line. Lower panel—
emission following excitation into the phonon sideband, 30 cm−1 above the zero-phonon line. (Fig. 1
of R. M. Hochstrasser and C. A. Nyi, J. Chem. Phys. 70, 1112 (1979).)

spectrum is shown for different incident frequencies and we see that the Raman
doublet shifts in correspondence with this frequency, as expected for the first term
of (18.60) that peaks when Eout = Ein. We also see a broad low peak that does not
follow the excitation frequency (the shaded rectangle is added to guide the eye onto
this peak). This appears to be the resonance fluorescence peak, associated with the
second term of (18.60), with expected maximum at Eout = Es independent of the
excitation frequency.
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Fig. 18.9 An enlarged view of a narrow spectral region out of the spectrum of Fig. 18.8, assigned
to emission from the vibrational origin of the excited electronic state onto the fundamental of the
825 cm−1 mode in the ground electronic state at T = 30 K. In this high-resolution spectrum the
Raman line appears as a doublet that shifts with the excitation wavelength. In addition, a broader
emission that does not shift with the excitation frequency is seen (its location on the energy axis is
emphasized by the shaded rectangle). (Fig. 7 of R. M. Hochstrasser and C. A. Nyi, J. Chem. Phys.
70, 1112 (1979).)

Further support for this interpretation is given by the temperature dependence
of the same emission spectrum shown in Fig. 18.10. At T = 4 K we see only the
doublet that corresponds to the Raman scattering signal. As T increases this coherent
peak is reduced, and intensity is growing in the broad resonance fluorescence peak
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Fig. 18.10 The temperature dependence of the emission seen in Fig. 18.9. (Fig. 8 of R. M. Hoch-
strasser and C. A. Nyi, J. Chem. Phys. 70, 1112 (1979).)

seen on its low energy (left) side. Both the reduction in the Raman signal and the
increase in the resonance fluorescence are compatible with the expectation that the
pure dephasing rate κs in Eq. (18.60) increases for increasing temperature. This is
obvious for the resonance fluorescence which vanishes when κs = 0. The reduction
in the Raman intensity with increasing γs and therefore with increasing κs (which
adds additively to γs) also follows from (18.60) if Ein = Es.

18.6 Probing inhomogeneous bands

In Section 9.3 we have seen that there is in principle a close relationship between
an absorption lineshape and the underlying dynamics of a molecule excited to the
corresponding spectral region. The discussion in the previous section however has
taught us that life is less simple: In many systems the absorption lineshape is an aver-
age over many individual molecules that experience different local environments,
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and is not directly associated with any molecular relaxation process. Still, we have
seen that the homogeneous and inhomogeneous contributions to line broadening
can be told apart, for example, by their dependence on the temperature. The ques-
tion that we pose now is, can we go further in uncovering the dynamical information
that lies underneath inhomogeneous spectra? We note in passing that in gas phase
spectroscopy a similar problem exists. Doppler broadening, resulting from the fact
that molecules moving at different velocities absorb at slightly different frequen-
cies, is an inhomogeneous contribution to gas phase spectral linewidth. However,
Doppler free spectroscopy can be achieved. It is based on saturation of the optical
transition by zero-speed molecules interacting with two laser beams traveling in
opposite directions, and demonstrates that one can indeed use physical principles
to probe underneath inhomogeneous broadening effects. In this section we briefly
discuss three different techniques that can achieve this goal in condensed phase
spectroscopy.

18.6.1 Hole burning spectroscopy

An inhomogeneously broadened spectral band is obviously just a superposition
of individual contributions from different molecules in our sample (Fig. 18.11,
upper panel). The width of each individual lineshape is the homogeneous linewidth.
Suppose now that we have at our disposal a light source whose spectral width is
narrower than this homogeneous width, and suppose this light source is intense
enough to destroy or transform those molecules that absorbed it. Then the effect of
illuminating our sample with such light is to effectively remove from the sample
a subset of molecules whose interaction with their immediate neighborhood has
put their transition frequency within that of the light source. If, following this illu-
mination, we interrogate our system with a second tunable narrow-band light we
should see a hole in the inhomogeneous envelope—hence the name hole burn-
ing (Fig. 18.11, bottom panel).20 Ideally the spectral width of this hole is the
homogeneous linewidth.

Note that the same concept could be used differently: If molecules that are
excited by the first light beam fluoresce, we would expect the fluorescence spectrum
observed following such excitation to be considerably narrower than what would
be normally observed after exciting the full inhomogeneous band.

Both this ‘fluorescence line narrowing’ and hole burning spectroscopy are
conceptually trivial. Still, they can provide very useful information on the homo-
geneously broadened lines as illustrated in Fig. 18.11. What makes life less simple
and more interesting is that other dynamical effects can express themselves in this

20 For further reading see S. Völker, Ann. Rev Phys. Chem. 40, 499–530 (1989).



684 Spectroscopy

A
bs

or
pt

io
n

A
bs

or
pt

io
n

v1 v0

v1 v0

la
se

r

Hole

v

Photoproduct

	hom

	inh

Fig. 18.11 Upper panel: Diagram of an inhomogeneously broadened absorption band of width �inh,
consisting of a superposition of individual transitions of homogeneous width �hom. Bottom: Laser
induced hole burnt at low temperature and absorption of the photoproduct. (Fig. 1 from S. Völker,
Ann. Rev Phys. Chem. 40, 499–530 (1989).)

kind of spectroscopy. The extent and importance of these effects depend on the
lifetime of the hole vis-à-vis the timescale of the measurement. For example, if the
hole formation results from transferring population from the ground state, through
the excited state of interest, to a metastable state (e.g. a long living triplet state),
the lifetime of the hole corresponds to the lifetime of the metastable state.

Another reason for a finite hole lifetime is the phenomenon of spectral diffusion.
We have already noted that the distinction between homogeneous broadening and
inhomogeneous broadening is to some extent the artificial division of dynamical
phenomena to those that are faster than the timescale of our measurement, and those
that are slower. “Spectral diffusion” is a phrase used to describe spectral changes
resulting from motions that cannot be put into these categories because they take
place on a timescale comparable to that of our experiment. Thus a hole formed
within an inhomogeneous spectral band may eventually fill up due to environmental
motions that change the chromophore neighborhood. Monitoring this fill-up time
as a function of temperature is another potentially valuable source of information
on the nature of the interaction of a chromophore molecule with its environment.

Finally, even if small amplitude configuration changes about the chromophore
molecules are not sufficient for filling up the hole on the experimental lifetime,
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Fig. 18.12 Frequency shift and broadening of the hole burnt in the B1 site of the 0–0 transition of
free-base porphin in n-octane. Shown are excitation spectra of hole burnt at 1.6 K (the deeper hole)
and 3.9 K. (Fig. 4 from S. Völker, Ann. Rev Phys. Chem. 40, 499–530 (1989).)

they can induce temperature dependent shift and broadening of the hole, as seen in
Fig. 18.12.

18.6.2 Photon echoes

The photon echo phenomenon is perhaps the most dramatic manifestation of using
physical principles to overcome what appears to be the erasure of molecular
information caused by inhomogeneous broadening. The effect was first demon-
strated by Hahn in NMR spectroscopy (Phys. Rev. 80, 580 (1950)) and extended to
optical spectroscopy by Kernit, Abella and Hartmann (Phys. Rev. Letters, 13, 567
(1964)).21 Here we only outline its basic physical principle.

Consider a system of N two-level molecules, characterized by level spacing
E2 − E1 = �ω21 and transition dipole moment µ = µ12 = µ21, and subjected to
a light source represented by E(t) = E0 cos(ωt). We assume that the dynamics of
this system can be described by the Bloch equations (18.46),

dσz

dt
= E0µ

�
σ̃y − kr(σz − σz,eq) (18.61a)

dσ̃x

dt
= −ησ̃y − kdσ̃x (18.61b)

dσ̃y

dt
= ησ̃x − E0µ

�
σz − kdσ̃y (18.61c)

21 See also U. Kh. Kopvillem and V. R. Nagibarov, Fiz. Metal i Matlloved. 15, 313 (1963).
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where

σz ≡ σ11 − σ22

σ̃x = σ12e−iωt + σ21eiωt

σ̃y = i(σ12e−iωt − σ21eiωt)

(18.62)

are elements of the molecular density matrix and η ≡ ω−ω21 � ω is the detuning.
In Eqs (18.61) kd = (1/2)kr + (pure dephasing rate) is the total dephasing rate so
that �/kd is the corresponding homogeneous broadening.

The Bloch equations by themselves cannot describe spontaneous emission,
because they contain the effect of the electromagnetic field on the molecule but
not vice versa. To include the effect of the molecules on the radiation field within
the semiclassical formalism that led to these equations we should supplement them
by a description of the radiation field using the Maxwell equations in the presence of
the molecular sources, as described in Appendix 3A (see Eq. (3.75). For our present
purpose we can however make a shortcut. We know that one result of Eq. (3.75) is
that an oscillating dipole emits radiation, so we can obtain the intensity of emitted
radiation by calculating the expectation value P(t) of the oscillating dipole induced
in the system and evaluate the emission intensity (energy per unit time) from the
classical formula

I = |P|2ω4
21/(3c3). (18.63)

Consider first the case N = 1. Using µ̂ = µ(|1〉〈2| + |2〉〈1|) and σ̂ (t) =∑2
i,j=1 σi,j(t)|i〉〈j| we find that the dipole induced in the system is given by

〈µ̂〉(t) = Tr(µ̂σ̂ (t)) = µ(σ12(t)+ σ21(t)) ≡ P1(t) (18.64)

To find the needed density matrix element we start from Eqs (18.61) and disregard
for now the relaxation terms involving kr and kd. Let the molecule start at t = 0 in
state 1, so σi,j(t = 0) = δ1,iδ1,j, that is, σz(t = 0) = 1 and σx(t = 0) = σy(t =
0) = 0. Now apply a light pulse of frequency ω, whose duration τ satisfies ητ � 1.
On this timescale, terms in (18.61) that involve η can be disregarded. The dynamics
during the pulse is then described by

dσz

dt
= E0µ

�
σ̃y;

dσ̃y

dt
= −E0µ

�
σz (18.65)

which yields

σz(t) = cos
(E0µ

�
t

)
; σ̃y(t) = − sin

(E0µ

�
t

)
(18.66)
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For definiteness, let us take the pulse duration τ to be such that (E0µ/�)τ = π/2.
At the end of such pulse we have σz = 0 and σ̃y = −1. Note that the condition
ητ � 1 implies η � 2E0µ/(π�) that can always be achieved with a suitable choice
of light intensity.

The two-level system then evolves freely in time, starting from σ̃y(t = 0) = −1
and σ̃x(t = 0) = σz(t = 0) = 0, where t = 0 now refers to the time when the pulse
stopped. The time evolution is now given by

dσ̃x

dt
= −ησ̃y;

dσ̃y

dt
= ησ̃x (18.67)

that is, σy(t) = − cos ηt and σx(t) = sin ηt. From (18.62) we get

σ1,2(t) = σ ∗2,1(t) =
1

2
eiωt(σx(t)− iσy(t)) = 1

2
ieiωte−iηt = 1

2
ieiω21t (18.68)

Now consider the N molecules case. For simplicity we assume that the spatial
extent of this N molecule system is much smaller than the radiation wavelength. In
this case all molecules are subject to the same incident beam and respond coherently.
Following the short pulse of duration τ = π�/(2E0µ) the density matrix of each
molecule j evolves as before. The density matrix of the whole system is a direct
product of these molecular contributions. The expectation value of the total system
dipole operator P̂N = ∑N

j=1 µ̂j is

PN (t) ≡ 〈P̂N 〉(t) =
N∑

j=1

〈µ̂j〉(t) = 2µRe
N∑

j=1

σ
(j)
12 (t) = −µIm

⎛
⎝eiωt

N∑
j=1

e−iηj t

⎞
⎠

(18.69)

where t again measures the time following the termination of the light pulse. A distri-
bution of detuning frequencies ηj is a manifestation of inhomogeneous broadening

where each molecule is characterized by a slightly different ω(j)
21 = ω − ηj.

Equation (18.69) tells us that following the termination of the exciting pulse the
system is found in a state characterized by a macroscopic dipole, PN (t = 0) =
NP1(t = 0). Such state is called superradiant. In the absence of inhomogeneous
broadening all ω( j)

21 are the same so that PN (t) = NP1(t) and the emitted intensity
(18.63) is seen to be proportional to N 2. This stands in contrast to regular fluor-
escence where no phase relationships exist between individual molecules, so each
molecule emits individually implying that the signal is simply proportional to the
number of molecules N .

Now, in the presence of inhomogeneous broadening this coherent signal disap-
pears quickly because terms oscillating at different frequencies go out of phase. It
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Fig. 18.13 Dephasing and rephasing of superradiance emission (see text).

is easier to analyze this behavior using the complex analog of (18.69), PN (t) =
µeiωt ∑N

j=1 e−iηj t , which yields

|PN (t)|2 = µ2

⎛
⎝N +

∑
j

∑
j′ �=j

ei(ηj−ηj′ )t

⎞
⎠ (18.70)

The second contribution on the right vanishes on a timescale of the order of the
inverse inhomogeneous width, leaving the first term, of order N , that corresponds
to regular fluorescence.

This disappearance of the superradiance emission is due to dephasing of the
coherently excited macroscopic dipole initially induced in the system. The math-
ematical origin of this dephasing was seen in Eqs (18.67)–(18.68) and an intuitive
picture is displayed in Fig. 18.13. Each of the four panels in this figure describes a
process that starts in the state described by the thick-dashed arrow and ends up in the
state characterized by the thick-full arrow. Panel (a) describes the operation of the
pulse on the system, Eq. (18.65)–(18.66) that changes the state of the system from
σz = 1, σx = σy = 0 to σy = −1, σx = σz = 0. The vector (σx, σy, σz) has simply
rotated in the (σy, σz) plane from its original (dashed) orientation to its final (full)
one. This final configuration appears as an initial (dashed) one on panel (b). The pro-
cess shown in panel (b) is the dephasing process described by Eqs (18.67)–(18.68),
that corresponds for positive η to a rotation in the counterclockwise direction by the
angle ηt (grey arrow in panel (b)), leading to the orientation assumed by the full-line
vector. The dephasing process is expressed by the fact that different molecules are
associated with different angular speeds η—the two thick and thin full-line vectors
in panel (b) represent the states of two such molecules.

Suppose now that after such time t during which the system evolves freely and
this dephasing of the macroscopic polarization takes place, the molecule experi-
ences interaction with another light pulse, and suppose that the duration of that
light is short enough so that the dynamics associated with the terms involving η

in Eqs (18.61) can again be disregarded. The process undergone by the molecule
is then described again by Eqs (18.65)–(18.66), that is, a rotation in the (σy, σz)
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Fig. 18.14 One of the first photon echo experiments, showing the effect in Ruby (N. A. Kernit,
I. D. Abella and S. R. Hartmann, Phys. Rev. 141, 391 (1966). Time increases to the right. The first
two peaks shown are the excitation pulses. The third one is the echo.

plane. Assume furthermore that the duration τ ′ of the second pulse is chosen so
that (E0µ/�)τ = π . This amounts to sign reversal shown in panel (c)—a process
in which (σx, σy, σz) → (σx,−σy, σz). The result of this sign reversal in the (σx, σy)

plane is shown in panel (d): The dashed-line arrows result from flipping the sign
of the y-component of the full-line arrows in panel (b).

Following the second pulse the systems proceed with its free evolution marked
by the grey arrow in panel (d). However, this free evolution now causes rephasing
of the dephased molecular dipoles! After time t, which is equal to the time elapsed
between the two light pulses, the system will be completely rephased as indicated
by the final (full-line) vector in panel (d). This analysis then predicts that at that
point in time the superradiance emission by the molecular system will resume. In
other words, following a second light-pulse at time t after the first pulse, the system
will respond with an “echo” at time 2t. An experimental example is shown in
Fig. 18.14.

Note that the above analysis was simplified by disregarding the relaxation terms
in Eq. (18.61). Indeed, it should be expected that the amplitude of the echo signal
will be lower than that of the initial emission burst by an amount that will reflect
the relaxation that take places during the time 2t.

18.6.3 Single molecule spectroscopy

If the photon echo effect is a most dramatic way to probe underneath inhomogen-
eous spectral bands, single molecule spectroscopy is undoubtedly the most direct
approach. Clearly, if we could observe in each measurement just a single molecule
from the given sample, the issue of inhomogeneous broadening would be reflec-
ted very differently: Rather than seeing the average response of many molecules,
we would, by repeated measurements, obtain a full distribution of responses from
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Fig. 18.15 Spectroscopy of single pentacene molecules in p-terphenyl crystal (W. P. Ambrose, Th.
Basche and W. E. Moerner, J. Chem. Phys. 95, 7150 (1991). (a) Fluorescence excitation spectrum
of a single molecule at 1.5 K (0 MHz detuning = 592.407 nm, at the wing of the inhomogeneous
lineshape) (b) Fluorescence excitation spectrum of the full inhomogeneous line at 1.5 K. (c) The
dependence of the single molecule homogeneous linewidth on temperature (the solid line is a fit to
the data). (d) Two views of spectral diffusion: The upper panel shows a time sequence of excitation
spectra (each taken over a period of 1s). The lower panel shows the jumps in the peak frequency as a
function of time.

different molecules. We could still take an average, but we could also look at
new aspects of the distribution. For example, the standard way of thinking about
inhomogeneous lineshapes is to assume that molecules at different sites of the host
environment absorb at slightly different frequencies, however the average lineshape
cannot distinguish between contributions by many sites absorbing weakly or a few
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sites with strong absorption, while a full distribution of single molecule responses
will easily tell the difference. Perhaps more significant is the fact that by observing
single molecules we could also follow their local dynamics, albeit within restrictions
imposed by the experimental time resolution.

Single molecule spectroscopy is the branch of spectroscopy that has developed
from the realization that such single molecule detection is in fact possible. This
combines two factors: insuring that the density of absorbing molecules is low
enough so that only a single molecule is bound within the illuminating region,
and improving the detection techniques while eliminating as much as possible the
noise associated with the optical response of the far greater number of the nominally
transparent host molecules.

Single molecules spectra are usually studied in the wing of the inhomogeneous
absorption line; one way to address a smaller density of molecules in resonance with
the incident laser beam. An example is shown in Fig. 18.15, which displays the fluor-
escence excitation spectrum (i.e. fluorescence intensity plotted against the exciting
laser frequency) for single pentacene molecules embedded in p-terphenyl crystal
at low (1–10 K) temperature. The single molecule spectrum (18.15(a)) should be
compared to the much broader full inhomogeneous absorption (18.15(b)). The abil-
ity to observe a single homogeneous line makes it possible to study, for example,
its dependence on temperature (18.15(c)). Spectral diffusion is clearly observed
(18.15(d)) as “jumps” in the peak-position of the fluorescence excitation spectrum.
Obviously using the word “jumps” with respect to the observed time evolution
merely expresses the time resolution (1 s) of this experiment. In any case, the
observed “telegraphic noise” reflects the existence of several considerably different
timescales in this evolution.

18.7 Optical response functions

Our discussion in the previous section was based on the conceptual framework
of the Bloch–Redfield theory using the dressed-state approach within the rotating
wave approximation (RWA). This limits our considerations to weak radiation fields,
consistent with the application to processes linear in the incident field. Also, apart
from our discussions of inhomogeneous broadening, we have focused on single
molecule models that are often not sufficient for discussing the dynamical response
of the system as a whole. This section provides an introduction to a more general
treatment of optical response of molecular systems in the framework of optical
response functions (ORFs). Our aim is not to obtain new results pertaining to
nonlinear optical phenomena, only to introduce a formalism that can be used to
reproduce the results of linear spectroscopy and can be generalized to the much
richer realm of nonlinear optical response.
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18.7.1 The Hamiltonian

Our starting point is again the Hamiltonian for the molecular system, M , the
radiation field, R, and their mutual interaction,

Ĥ = ĤM + ĤR + ĤMR (18.71)

where the molecular Hamiltonian ĤM now refers to the full molecular system,
that is, a collection of molecules. Again we could attempt to treat the problem
fully quantum mechanically, with ĤR describing a collection of bosons (photons),
Eq. (3.64), and Ĥ given by Eq. (3.72). However, since we no longer limit ourselves
to weak radiation fields22 and to the RWA, we adopt the semiclassical level of
description, treating the radiation field as a classical object. In this case our starting
point is the Hamiltonian for the material system under the influence of an external
oscillating field (cf. Eq. 3.73)

Ĥ = ĤM + V̂ (t)

V̂ (t) = −
∫

drP̂(r) · E⊥(r, t)
(18.72)

in which E⊥(r, t) is the transverse part of the classical electric field and P̂(r) is the
polarization density operator. The latter is given, in the point dipole approximation
(cf. Eq. (3.74)), by

P̂(r) =
∑

m

µ̂mδ(r − rm) (18.73)

where µ̂m is the dipole operator of the mth molecule. We should keep in mind that
ĤM, the Hamiltonian of the material system, corresponds in principle not only to
the molecular system of interest but also to the thermal environment in which this
molecular system is embedded.

The Hamiltonian (18.72) has the form (11.3), generalized to the continuous
case, Ĥ1 = −∑

j ÂjFj → − ∫
drÂ(r)F(r), that was the starting point of our

discussion of linear response theory. Linear spectroscopy processes (e.g. absorp-
tion, but not light scattering) can be treated within this framework, however many
important spectroscopical methods are derived from the nonlinear optical response
of the material system and their description makes it necessary to go beyond linear

22 In fact, we continue to assume that the field is weak enough to allow the use of a perturbation
series in the field–molecule interaction to any desired order.
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response. We therefore present below the general formulation before specifying
again to the linear response level.

18.7.2 Response functions at the single molecule level

In what follows we will simplify notation in several ways, one of which is to drop
the ⊥ superscript on the transverse electric field. Let us assume for the moment
that only a single chromophore molecule exists, so that

V̂ = −µ̂m · E(rm) (18.74)

Both µ̂ and E are generally vectors and V̂ is their scalar product, however again to
simplify notation we will suppress this aspect in the formulation below.

Our starting point is the equation of motion (10.21) for the density operator ρ̂

of the overall system in the interaction representation

dρ̂I

dt
= − i

�
[V̂I (t), ρ̂I (t)] (18.75)

where

ρ̂I (t) ≡ eiĤMt/�ρ̂(t)e−iĤMt/� (18.76)

and

V̂I (t) ≡ eiĤMt/�V̂ e−iĤMt/� (18.77)

are the interaction representation forms of ρ̂ and V̂ . Note that, as defined, ĤM con-
tains the molecule, its thermal environment and the interaction between them. To
further simplify notation we will drop henceforth the subscript I from all operat-
ors except ρ̂, and keep in mind that all the time-dependent operators encountered
in this section are defined as in Eqs (18.76) and (18.77).23 The formal solution
of (18.75) is

ρ̂I (t0) = ρ̂I (tp)− i

�

∫ t0

tp
dt1[V̂ (t1), ρ̂I (t1)] (18.78)

23 The notation is kept for ρ̂ in order to distinguish between ρ̂(t) in the Schrödinger representation
and ρ̂I (t) in the interaction representation. Any other operator Â will appear as such in the Schrödinger
representation, and as Â(t) in the interaction representation.
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This equation can be iterated (similar to the solution (2.76) of Eq. (2.73)) to give
the interaction representation of the density operator at time t0 starting from some
time tp in the past

ρ̂I (t0) = ρ̂I (tp)+
∞∑

n=1

(
− i

�

)n ∫ t0

tp
dt1

∫ t1

tp
dt2 · · ·

∫ tn−1

tp
dtn[V̂ (t1), [V̂ (t2), . . . ,

× [V̂ (tn), ρ̂I (tp)] · · · ]] (18.79)

We will consider a process in which the external field is switched on at the dis-
tant past, when the system was at thermal equilibrium, ρ̂(tp → −∞) = ρ̂eq =
exp(−βĤM)/Tr exp(−βĤM). Referring to this initial time, Eq. (18.79) represents
the deviation from thermal equilibrium caused by the external field, written as a
sum of terms of increasing orders in this field

ρ̂I (t) =
∞∑

n=0

ρ̂
(n)
I (t) = ρ̂eq +

∞∑
n=1

ρ̂
(n)
I (t) (18.80)

where

ρ̂
(n)
I (t) =

(
− i

�

)n ∫ t

−∞
dtn

∫ tn

−∞
dtn−1 · · ·

×
∫ t2

−∞
dt1[V̂ (tn), [V̂ (tn−1), . . . , [V̂ (t1), ρ̂eq] · · · ]]; n = 1, 2 . . .

(18.81)

is the nth order response to the external field. In writing this expression we have
renamed the time variables according to t0 → t and tk → tn−(k−1); (k = 1, . . . , n).
Using (18.74) this can be recast in the form

ρ̂
(n)
I (t) =

(
i

�

)n ∫ t

−∞
dtn

∫ tn

−∞
dtn−1 · · ·

∫ t2

−∞
dt1E(tn)E(tn−1) · · · E(t1)

× [µ̂(tn), [µ̂(tn−1), . . . , [µ(t̂1), ρ̂eq] · · · ]] (18.82)

where µ̂(t) ≡ eiĤMt/�µ̂e−iĤMt/�. We have suppressed here the molecular index m,
but will keep in mind that the dipole operator above is µ̂m and E(t) = E(rm, t) is
the electric field at the position of the molecule m. Now go back to the Schrödinger



Optical response functions 695

representation

ρ̂(n)(t) =
(

i

�

)n ∫ t

tp
dtn

∫ tn

tp
dtn−1 . . .

∫ t2

tp
dt1E(tn)E(tn−1) · · · E(t1)

× e−iĤMt/�[µ̂(tn), [µ̂(tn−1), . . . , [µ(t̂1), ρ̂eq] · · · ]]eiĤMt/�

=
(

i

�

)n ∫ t

tp
dtn

∫ tn

tp
dtn−1 . . .

∫ t2

tp
dt1E(tn)E(tn−1), . . . , E(t1)

× [µ̂(tn − t), [µ̂(tn−1 − t), . . . , [µ(t̂1 − t), ρ̂eq] · · · ]] (18.83)

and change variables τn = t − tn and τk = tk+1 − tk ; k = 1, 2, . . . , n − 1 to get

ρ̂(n)(t) =
(

i

�

)n ∫ ∞

0
dτn

∫ ∞

0
dτn−1 · · ·

×
∫ ∞

0
dτ1E(t − τn)E(t − τn − τn−1) . . . E(t − τn − · · · − τ1)

× [µ̂(−τn), [µ̂(−τn − τn−1), . . . , [µ(−τn − τn−1 · · · − τ1), ρ̂eq] · · · ]]
(18.84)

The molecular response pertaining to its optical properties is the dipole induced in
the molecule, that can be calculated from

〈µ〉 = Tr(µ̂ρ̂) =
∞∑

n=1

〈µ〉(n) (18.85)

where

〈µ〉(n) = Tr(µ̂ρ̂(n)) (18.86)

In writing Eqs (18.85)–(18.86) we have assumed that the molecule has no permanent
dipole moment, that is Tr(µ̂ρ̂eq) = 0. From (18.84) we then find

〈µ〉(n)(t) =
∫ ∞

−∞
dτn

∫ ∞

−∞
dτn−1 · · ·

∫ ∞

−∞
dτ1E(t − τn)E(t − τn − τn−1) · · ·

× E(t − τn − · · · − τ1)α
(n)(τ1, . . . , τn) (18.87)
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where the nth order single molecule response functions are

α(n)(τ1, . . . , τn) =
(

i

�

)n

θ(τ1)θ(τ2) · · · θ(τn)

× Tr{µ̂(0)[µ̂(−τn), [µ̂(−τn − τn−1), . . . ,

× [µ̂(−τn − τn−1 · · · − τ1), ρ̂eq] · · · ]]}

=
(

i

�

)n

θ(τ1)θ(τ2) · · · θ(τn)

× Tr{µ̂(τn + τn−1 + . . .+ τ1)[µ̂(τn−1 + · · · + τ1),

× [µ̂(τn−2 + · · · + τ1), . . . , [µ̂(τ1)[µ(0), ρ̂eq]] · · · ]]}

=
(

i

�

)n

θ(τ1)θ(τ2) · · · θ(τn)

× Tr{[[· · · [[µ̂(τn + τn−1 + . . .+ τ1), µ̂(τn−1 · · · + τ1)],
× µ̂(τn−2 + · · · + τ1)], . . . , µ̂(τ1)],µ(0)]ρ̂eq}

(18.88)

Problem 18.4. Show that 〈Â(tA)B̂(tB)Ĉ(tC) · · · 〉 = Tr{Â(tA)B̂(tB)Ĉ(tC) · · · ρ̂eq}
is invariant to a uniform time shift, that is, equal to Tr{Â(tA + t)B̂(tB + t)Ĉ(tC +
t) · · · ρ̂eq}. The second equality in (18.88) is based on this identity.

Problem 18.5. Show that Tr(Â[B̂, [Ĉ, D̂]]) = Tr([[Â, B̂], Ĉ]D). The third equality
in (18.88) is based on a generalization of this identity.

18.7.3 Many body response theory

How should Eqs (18.87) and (18.88) be modified when the system contains many
molecules {m} at various position rm? In this case V̂ (t) = − ∫

drP̂(r) · E(r, t) =
−∑

m µ̂m · E(rm, t) replaces V̂ = −µ̂m · E(rm, t) in the derivation above, but the
procedure can proceed in the same way. Using the integral expression for V̂ (t),
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Eq. (18.82) takes the form

ρ̂
(n)
I (r, t) =

(
i

�

)n ∫
drn · · ·

∫
dr1

∫ t

tp
dtn

∫ tn

tp
dtn−1 · · ·

×
∫ t2

tp
dt1E(rn, tn)E(rn−1, tn−1) · · · E(r1, t1)

× [P̂(rn, tn), [P̂(rn−1, tn−1), . . . , [P̂(r1, t1), ρ̂eq] · · · ]] (18.89)

Following the steps that lead to (18.85) and (18.87) now yields

〈P(r)〉 =
∞∑

n=1

〈P(r)〉(n) (18.90)

〈P(r)〉(n)(t) =
∫

drn

∫
drn−1 · · ·

∫
dr1

∫ ∞

−∞
dτn

∫ ∞

−∞
dτn−1 · · ·

∫ ∞

−∞
dτ1

× E(rn, t − τn)E(rn−1, t − τn − τn−1) . . . E(r1, t − τn − · · · − τ1)

χ(n)(r; r1, . . . , rn, τ1, . . . , τn) (18.91)

with the many-body response function

χ(n)(r; r1, . . . , rn, τ1, . . . , τn)

=
(

i

�

)n

θ(τ1)θ(τ2) · · · θ(τn)

× Tr{[[· · · [[P̂(r, τn + τn−1 · · · + τ1), P̂(rn, τn−1 · · · + τ1)]
× P̂(rn−1, τn−2 + · · · + τ1)], . . . , P̂(r2, τ1)], P̂(r1, 0)]ρ̂eq} (18.92)

Note that the many-body response functions are in general non-local, implying that
the response (i.e. the polarization) at point r depends on the electric field at other
locations. This makes sense: In a system of interacting molecules the response
of molecules at location r arises not only from the field at that location, but also
from molecules located elsewhere that were polarized by the field, then affected
other molecules by their mutual interactions. Also note that by not stressing the
vector forms of E and P̂ we have sacrificed notational rigor for relative notational
simplicity. In reality the response function is a tensor whose components are derived
from the components of the polarization vector, and the tensor product EE . . .Eχ

is the corresponding sum over vector components of E and tensor components of χ .
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Equations (18.90)–(18.92) (and their Liouville space equivalents) can be used
as the starting point for a general treatment of nonlinear spectroscopy phenomena.
On the linear response level this will yield absorption, dielectric response, and
propagation of electromagnetic waves. In second order we can use this approach to
describe, for example, second harmonic generation (more generally sum-frequency
generation) and in third order this will yield a variety of four wave mixing phe-
nomena. A detailed discussion of these phenomena together with practical methods
for calculating the corresponding optical response functions is given in the book
by Mukamel cited at the end of this chapter. Here we will only consider the rela-
tionship of this approach to our earlier discussion of the linear optical properties of
noninteracting molecular species.

18.7.4 Independent particles

First, consider a homogeneous system in which the molecular dipoles do not interact
with each other, either directly or through their interaction with the thermal envir-
onment. This approximation becomes better for lower molecular density. In this
case ĤM is a sum over individual terms, ĤM = ∑

m ĥm, each associated with a dif-
ferent molecular dipole and its thermal environment. This implies that in P̂(r, t) =∑

m µ̂m(t)δ(r−rm), the different operators µ̂m(t) = exp(iĥmt/�)µ̂m exp(−iĥmt/�)
commute with each other. In this case

[· · · [[P̂(r, τn + τn−1 · · · + τ1), P̂(rn, τn−1 · · · + τ1)],
P̂(rn−1, τn−2 + · · · + τ1)], . . . , P̂(r2, τ1)], P̂(r1, 0)]

=
∑

m

δ(r − rm)δ(rn − rm)δ(rn−1 − rm) · · · δ(r2 − rm)δ(r1 − rm)

× [[· · · [[µ̂m(τn + τn−1 · · · + τ1), µ̂m(τn−1 · · · + τ1)], µ̂m(τn−2 + · · · + τ1)]
, · · · , µ̂m(τ1)], µ̂m(0)] (18.93)

Next we use (18.93) and (18.88) together with∑
m

δ(r − rm)δ(rn − rm)δ(rn−1 − rm) · · · δ(r2 − rm)δ(r1 − rm)

= δ(rn − r)δ(rn−1 − r) · · · δ(r2 − r)δ(r1 − r)
∑

m

δ(r − rm)

= δ(rn − r) · · · δ(r1 − r)ρ(r) (18.94)

to find

χ(n)(r; r1, . . . , rn, τ1, . . . , τn) = δ(rn − r) · · · δ(r1 − r)χ(n)(r; τ1, . . . , τn)

(18.95)
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with

χ(n)(r; τ1, . . . , τn) = ρ(r)α(n)(τ1, . . . , τn) (18.96)

where α(n)(τ1, . . . , τn) is the single molecule response function of Eq. (18.88).
Here and in (18.94) ρ(r) = ∑

m δ(r − rm) is the density of diploes at position r.
Furthermore, Eqs (18.91), (18.95), and (18.96) imply that

〈P(r)〉(n)(t) = ρ(r)
∫ ∞

−∞
dτn

∫ ∞

−∞
dτn−1 · · ·

∫ ∞

−∞
dτ1

× E(r, t − τn)E(r, t − τn − τn−1) · · · E(r, t − τn − · · · − τ1)

× χ(n)(τ1, . . . , τn) = ρ(r)〈µ〉(n)(t) (18.97)

We have thus found that in a system of noninteracting particles the response is local
and of an intuitively obvious form: The polarization at position r (in any order of the
calculation) is the induced dipole on a single molecule at that position, multiplied
by the local density.

18.7.5 Linear response

Next consider the lowest order response function. Using the last form of (18.88)
we find that

α(1)(t) =
(

i

�

)
θ(t)Tr{[µ̂(t), µ̂(0)]ρ̂eq}

=
(

i

�

)
θ(t)(〈µ̂(t)µ̂(0)〉 − 〈µ̂(0)µ̂(t)〉) =

(
i

�

)
θ(t)(J (t)− J ∗(t))

(18.98)

where

J (t) = 〈µ̂(t)µ̂(0)〉 = 〈µ̂(0)µ̂(t)〉∗ (18.99)

Problem 18.6. Show that in the basis of eigenstates of ĤM Eq. (18.98) takes
the form

α(1)(t) = 2
θ(t)

�

∑
a

Pa

∑
b

|µab|2 sin(ωbat) (18.100)

where Pa = e−βEa/
∑

a′ e−βEa′ , HM|l〉 = El|l〉(l = a, b, . . .), ωba = (Eb −
Ea)/� and µab = 〈a|µ̂|b〉
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In this order Eq. (18.97) yields

〈P(r)〉(1)(t) =
∫ ∞

−∞
dτ1χ

(1)(τ1)E(r, t − τ1); χ(1)(t) = ρα(1)(t) (18.101)

and, by taking Fourier transform of all time-dependent functions, for example,
E(ω) = ∫∞

−∞ dteiωtE(t),

〈P(r)〉(1)(ω) = χ(1)(ω)E(r,ω) (18.102)

Using Eqs (18.100) together with the identity24

∫ ∞

−∞
dteixt(θ(t)eix′t) = lim

η→0+
i

x + x′ + iη
(18.103)

leads to

α(1)(ω) = 1

�

∑
a

Pa

∑
b

|µab|2
(

1

ω + ωba + iη
− 1

ω − ωba + iη

)
(18.104)

In continuum electrostatic theory the response function χ(1) is known as the
susceptibility. A more common linear response function, the dielectric response, is
defined by the linear expression

D(t) =
∫ t

−∞
dt′ε(t − t′)E(t′) (18.105)

or

D(ω) = ε(ω)E(ω) (18.106)

with

ε(ω) =
∫ ∞

0
dteiωtε(t), (18.107)

24 Note that the existence of the θ function is important in the identity (18.103). The inverse Fourier
transform is

lim
η→0+

1

2π

∫ ∞
−∞

dxe−ixt i

x + x′ + iη
= θ(t)eix′t

as is easily shown by contour integration.
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relating the electric and displacement fields. Together with the relationship

E = D − 4πP (18.108)

this leads to

ε(ω) = 1 + 4πχ(1)(ω) (18.109)

Thus, Eqs (18.98)–(18.109) provide a microscopic expression for the dielectric
response function in a system of noninteracting particles

ε(ω) = 1 + 4πρ
i

�

∫ ∞

0
dteiωt(J (t)− J ∗(t)) (18.110)

Problem 18.7. Repeat the derivation of these linear response equations tak-
ing the vector nature of E and µ̂ into account, so that Eq. (18.74) is V̂ =
−µ̂m · E(rm) = −∑

j=x,y,z µmjE j(rm) and show that Eq. (18.102) becomes

〈P(r)〉(1)(ω) = χ (1)(ω) · E(r,ω) where χ is the matrix χ = ρα with the
matrix α defined as in (18.98) except that the matrix J replaces J , with
Jj,j′(t) = 〈µ̂j(t)µ̂j′(0)〉; (j, j′ = x, y, z), and J∗ replaced by J†.

18.7.6 Linear response theory of propagation and absorption

Having obtained expressions for the dielectric susceptibility and the dielectric
response functions in terms of microscopic variables, we may proceed to express
other observables in microscopic terms. Consider an electromagnetic mode whose
electric component is described by a plane wave propagating in the x direction
in an isotropic medium, and assume that the field is weak enough to make linear
response theory valid. The field is given by

E(x, t) = E0eikx−iωt (18.111)

and should be a solution of the Maxwell equation. Start with Eq. (3.75)

∇ × ∇ × E(r, t)+ 1

c2

∂2E(r, t)

∂t2 = −4π

c2

∂2〈P(r, t)〉
∂t2 (18.112)

and recall that the electric field above is transverse, Er = E⊥, so that (from (1.29)
and (1.34a)) ∇ × ∇ × E⊥(r, t) = −∇2E⊥(r, t). Using (18.108) and (18.105), and
keeping in mind that χ and ε are scalars in an isotropic medium, then leads to

− ∂2

∂x2 E(x, t)+ 1

c2

∂2

∂t2

(∫ t

−∞
ε(t − t′)E(x, t′)

)
= 0 (18.113)
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which indeed yields (18.111) as a solution, provided that the following dispersion
relationship (dependence of ω on k)

k2 − ω2

c2 ε(ω) = 0, or
kc

ω
= √

ε(ω) (18.114)

is satisfied.
Next, the complex character of ε is taken into account by writing (18.114) in

the form

kc

ω
= n(ω)+ iκ(ω) (18.115)

where n is called index of refraction and κ is the extinction coefficient. Rewriting
(18.115) as k = ωn(ω)/c + iωκ(ω)/c we find that the position dependence in
(18.111) translates into the position dependence of the intensity I = |E |2 in the
form

I(x) = I0e−a(ω)ρx (18.116)

where the absorption coefficient is

a(ω) ≡ 2ωκ(ω)

cρ
(18.117)

Here ρ is the number density of the absorbing species. We have selected this form
with the expectation that a(ω) as defined by (18.117) does not depend on ρ, so that
absorption, as defined by (18.116), depends linearly on the density of absorbers.

Next we find a relationship between a(ω) and the susceptibility. To
this end we write the susceptibility χ in terms of its real and imagin-
ary parts, χ(1) = χ ′ + iχ ′′ and use (18.109) to rewrite Eq. (18.115) in
the form

√
ε = √

1 + 4π(χ ′ + iχ ′′) = n + iκ (18.118)

or 1 + 4πχ ′ + 4π iχ ′′ = n2 − κ2 + 2inκ whence

κ = 2πχ ′′

n
or a(ω) ≡ 4πω

n(ω)cρ
χ ′′(ω) (18.119)

namely, the absorption coefficient is proportional to the imaginary part of the
susceptibility. Also, in the common case where n2 
 κ2, we find n(ω) =√

1 + 4πχ ′(ω). Note that from Eq. (18.101) and its frequency space equivalent,
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χ(1)(ω) = ρα(1)(ω), and defining α(1) = α′ + iα′′, we can rewrite (18.119) in the
form

a(ω) ≡ 4πω

n(ω)c
α′′(ω) (18.120)

An explicit expression for the absorption coefficient can be obtained using the
imaginary part of Eq. (18.104)

α′′(ω) = Im(α(1)(ω)) = π

�

∑
a

Pa

∑
b

|µab|2(δ(ω − ωba)− δ(ω + ωba))

= π

�

∑
a

∑
b

(Pa − Pb)|µab|2δ(ω − ωba) (18.121)

We have obtained what is essentially the golden rule, except that both stimulated
absorption and emission processes contribute to give the net absorption rate.

Appendix 18A. Steady-state solution of Eqs (18.58): the Raman
scattering flux

Here we outline the procedure by which the steady-state solution of Eqs. (18.58)
is obtained, en route to evaluate the steady-state scattering flux. The calculation is
facilitated by making an approximation—disregarding all the terms with light-grey
background in these equations. The rationale for this approximation is that we want
to evaluate the scattered flux in the lowest order of interaction between the molecule
and the driving field. Obviously, the lowest order in which the scattering amplitude
can be obtained is 2, therefore the observed flux is of order 4 in this interaction.
This can be pictorially seen in Fig. 18.16 which outlines the propagation from the
in state (σin,in) to the out state (σout,out). In this diagram each junction represents a
particular matrix element of σ̂ and each line joining these junctions represents an
operation by the coupling V̂ . En route from σin,in to σout,out we have to go through
other matrix elements of σ̂ : Each operation by the coupling V̂ can change only
one of the two indices in σi,j. Lowest order transitions are obtained by following
routes in which all transitions take place in the direction of the arrows. Going
against the arrow implies the need to go back, increasing the order of the calculated
amplitude. It is easily seen that the terms with light-grey background in Eqs (18.58)
express such backward transitions, for example the corresponding term in (18.58c)
affects the transition σout,p → σp,p. (To see that the terms involving σsp and σps
are of this type write down their equations of motion). This is the rationale for
disregarding them in what follows.
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in,in a,a

in,a

a,in

in,out

out,in

out,out

a,out

out,a

Fig. 18.16 A Liouville space pathway diagram describing the σin,in → σout,out transition. The state
a represents either p or s (one can think of two diagrams like this, one for p the other for s, which are
connected only at the (σp,p ↔ σs,s) junction.

Under this approximation, imposing a constant σin,in (thus disregarding
Eq. (18.58a) and putting all time derivatives on the left to zero, we obtain the
following set of steady-state equations in Liouville space

0 = 2Im(Vs,inσin,s)− kpsσs,s + kspσp,p − �sσs,s (18.122a)

0 = kpsσs,s − kspσp,p − �pσp,p (18.122b)

0 = −2Im(Vp,outσout,p)− 2Im(Vs,outσout,s)− ησout,out (18.122c)

0 = −iEin,outσin,out + iVs,outσin,s − (1/2)ησin,out (18.122d)

0 = −iEin,sσin,s + iVin,sσin,in − (1/2)γsσin,s (18.122e)

0 = −iEout,sσout,s + iVin,sσout,in − iVout,sσs,s − (1/2)γsσout,s (18.122f )

0 = −iEout,pσout,p − iVout,pσp,p − (1/2)γpσout,p (18.122g)

Equation (18.122c) give dσout,out/dt = 0 as a balance of two fluxes,

−η

�
σout,out = 1

�
(2Im(Vp,outσout,p)+ 2Im(Vs,outσout,s)) (18.123)
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each of which can be used as the steady-state scattering flux. The required flux is
then

Fout = Fp
out + Fs

out = −1

�
(2Im(Vp,outσout,p)+ 2Im(Vs,outσout,s)) (18.124)

This is a sum of terms that can be interpreted as fluxes through the intermediate
states p and s.

Consider first the flux through the intermediate state p

Fp
out =

2

�
Im(Vp,outσout,p) (18.125)

σout,p is obtained from (18.122g) in terms of σp,p

σout,p = Vout,pσp,p

Ep,out + (1/2)iγp
(18.126)

while σp,p and σs,s are obtained from solving (18.122a,b) in terms of X ≡
2Im(Vs,inσin,s)

σp,p = kps

ksp + �p

X

�̃s
; σss = X

�̃s
(18.127)

where

�̃s = �s + kps − kspkps

ksp + �p
(18.128)

X can be obtained from (18.122e) in terms of σin,in

X = γs|Vs,in|2
E2

s,in + ((1/2)γs)2
σin,in (18.129)

Combining Eqs (18.125)–(18.129) finally yields

Fp
out

σin,in
= 1

�

γp|Vp,out|2
E2

p,out + ((1/2)γp)2

γs|Vs,in|2
E2

s,in + ((1/2)γs)2

kps

(ksp + �p)�̃s
(18.130)

Next, consider the contribution Fs
out to the total scattered flux

Fs
out =

2

�
Im(Vs,outσout,s) (18.131)
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σout,s is obtained from (18.122f) in terms of σout,in and σs,s

σout,s = Vin,sσout,in − Vout,sσs,s

Eout,s − (1/2)iγs
(18.132)

σs,s is already known in terms of σin,in via Eqs (18.127) and (18.129), so let us focus
attention on the term that contains σout,in. The latter element of σ̂ is obtained from
the complex conjugate of (18.122d) in terms of σs,in

σout,in = Vout,sσs,in

Ein,out + (1/2)iη
(18.133)

and σs,in is obtained from the complex conjugate of (18.122e)

σs,in = Vs,inσin,in

Ein,s + (1/2)iγs
(18.134)

Using Eqs (18.127), (18.129), and (18.132)–(18.134) in (18.131) leads to

Fs
out

σin,in
= −2

�
|Vin,s|2|Vout,s|2Im

×
(

1

(Ein,s + (1/2)iγs)(Eout,s − (1/2)iγs)(Ein,out + (1/2)iη)

)

+ 1

�

γs|Vs,out|2
E2

s,out + (γs/2)2

|Vs,in|
E2

s,in + (γs/2)2

γs

�̃s
(18.135)

Consider now the term

Im
(

1

(Ein,s + (1/2)iγs)(Eout,s − (1/2)iγs)(Ein,out + (1/2)iη)

)

= Im[(Ein,s − (1/2)iγs)(Eout,s + (1/2)iγs)(in,out−(1/2)iη)]
(E2

in,s + (γs/2)2)(E2
out,s + (γs/2)2)(E2

in,out + (η/2)2)
(18.136)

The term linear in η yields, in the limit η → 0,−πδ(Ein−Eout)(E2
in,s+(γs/2)2)−1.

The other term is easily simplified to

lim
η→0

Im[(Ein,s − (1/2)iγs)(Eout,s + (1/2)iγs)Ein,out]
(E2

in,s + (γs/2)2)(E2
out,s + (γs/2)2)(E2

in,out + (η/2)2)

= (1/2)γs

(E2
in,s + (γs/2)2)(E2

out,s + (γs/2)2)
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Using these in (18.135) we get after some algebra

Fs
out

σin,in
= 2π

�
δ(Ein − Eout)

|Vin,s|2|Vout,s|2
(E2

in,s + ((1/2)γs)2)

+ 1

�

κ̃s

�̃s

|Vin,s|2|Vout,s|2γs

(E2
in,s + ((1/2)γs)2)(E2

out,s + ((1/2)γs)2)
(18.137)

where

κ̃s = κs + κspκps

κsp + �p
(18.138)

and where Eq. (18.59) has been used. Combining (18.130) and (18.137) finally
gives Eq. (18.60).

Further reading

L. Allen and J. H. Eberly, Optical Resonance and Two-Level Atoms. (Wiley, New York, 1975)
C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Atom-Photon Interactions: Basic Processes

and Applications (Wiley, New York, 1998).
W. H. Louisell, Quantum Statistical Properties of Radiation (Wiley, New York, 1973).
S. Mukamel, Nonlinear Optical Spectroscopy (Oxford University Press, Oxford, 1995).
M. Orszag, A quantum statistical model of interacting two level systems and radiation (Worcester

Polytechnic Institute, 1973).
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motional narrowing 670–4
Mulliken–Hush formula 588

derivation 602–6
multipole expansion 47

Nakajima–Zwanzig equation 369–72
nearly free particle model 152–5

band structure 155
Nernst–Einstein equation 414
Newton’s equations of motion 18

symmetry under time reversal 304
non-adiabatic coupling between vibronic states

72
non-adiabatic electron transfer 558
non-adiabatic limit of LZ problem 69, 70
non-Markovian generalization 270
nonstationary state 315–16
normal modes of harmonic

systems 132–4
n-type semiconductors 162
nuclear tunneling 444
number operator 93–4

Ohm’s law 638
Ohmic bath 273
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Ohmic spectral density 214
Onsager regression hypothesis 403
optical absorption 199–201
optical response functions (ORFs) 690–1

independent particles 698–9
linear response 699–701
linear response theory of propagation and

absorption 701–3
many body response theory 696–8
single molecular level 693–6

Orbach mechanism 447
Orenstein–Uhlenbeck process 257–8
outer shell solvent response 573, 586
overdamped limit 262
overpotential 610
oxygen, electronic ground state 475, 476

pair correlation functions 180–1
observable implications

average energy 184–5
potential of mean force and reversible

work function 186–8
pressure 185–6
virial expansion and second virial

coefficient 188–9
X-ray scattering 182–4, 182

pair distribution function 179–80
passage time distribution 293–5
periodic solids 147–8
phase space 19–20, 176
phonons 135

higher dimensions and heat capacity of solids
139

Debye model 140–2, 142
Einstein model 139–40

photon echoes 685–9, 689
dephasing and rephasing of superradiance

emission 688
physical observables as random variables

correlations 41–2
diffusion 43–5
joint probabilities, conditional probabilities

and reduced descriptions 39–40
origin of randomness 38–9
random functions 41

Poisson brackets 20
Poisson distribution 4
Poisson equation 46, 123, 583
polarizability tensor 49
polarization 48, 125

nuclear and electronic polarization 560
polaron 549

polaron transformation 424–30, 428
position shift operator 96–7
potential of mean force 186–8
power spectrum 242–3

randomly modulated oscillator 247–9
primitive lattice cell 131–2
probability distributions 3–6, 230–3
probability flux 87, 283–4
projection operators 309, 338–40

quantum master equation (QME) 368–9
propylene carbonate

electron transfer rate 579
proton transfer 600–2
p-type semiconductors 162
pure dephasing 388, 670
pure state 348

quantum correction factor 466
quantum distributions 34–5
quantum dynamics using time-dependent

Schrödinger equation 57
formal solutions 57–8
Green’s operator for time evolution 74–6
harmonic oscillators

elementary considerations 89–93
Heisenberg equations of motion 95
raising/lowering operators formalism 93–5
shifted harmonic oscilators 96–100
thermal equilibrium 100–1

nuclear potential surfaces 71–4
operator identities 109–11
Time-dependent Hamiltonians 63–6
tunneling 101

normalization 105
steady states 105–6
through square barriers 101–5, 102
tunneling observables 106–8, 107

two-level system in time-dependent field
66–71

quantum electrodynamics 112–14
see also classical electrodynamics
energy of an electromagnetic field 113
interaction between molecules and radiation

fields 112
quantum radiation field 115–19
radiation field interactions with matter

120–30
spontaneous emission 119–20

quantum mechanical density operator 347–8
quantum Liouville equation

coherences 354–5
density matrix for pure system 348–9
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quantum mechanical density operator (cont.)
representations 352–3
statistical mixtures 349–52
thermodynamic equilibrium 356–7

quantum master equation (QME) 368, 378–9
general issues 388–90
implications of Redfield equation 384–8
interaction representation 374–7
Markovian limit 381–4
Nakajima–Zwanzig equation 369–72
projection operators 368–9
Schrödinger representation 377–8
system-states representation 379–81
thermal projector 372–4

reduced descriptions 359–60
general considerations 360–3
macroscopic rate equations 363–7

time evolution of two-level system in density
matrix formalism 357–9

two-level system
analogy with spin 1

2 system in a magnetic
field 395–8

optically driven system in thermal
environment 392–5

thermal environment 390–2
quantum mechanics 22–5

see also classical mechanics; statistical
mechanics

quantum relaxation processes 304–5
effect on absorption lineshapes 316–22, 319,

320
origin of irreversibility 312–13

initial state 315–16
relaxation in isolated molecules 313–14
restricted observation 313
spontaneous emission 314–15

quantum harmonic oscillator 322–9
simple quantum-mechanical model 305–12,

305, 306
steady states 329

quantum description of steady-state
processes 329–34

resonance tunneling 334–8, 342–6
steady-state absorption 334

quantum yield for photon emission 648
quasi continuum 313, 650
quasi steady state 485

Rabi frequency 63, 432
radial distribution functions 181
radiationless relaxation 307, 312
radiative relaxation 119–20, 343, 646

radiative emission 646
Raman scattering 641, 644, 646, 651–6

steady state solution 703–7, 704
thermal effects 674–9, 675

azuline in naphtaline matrix 679–82, 680,
681, 682

random variables 3–6
random walks 225

master equations 274–6
moments 227–30
probability distribution 230–3
time evolution 225–7

randomness in physical systems
correlations 41–2
diffusion 43–5
joint probabilities, conditional probabilities

and reduced descriptions 39–40
origin of randomness 38–9
random functions 41

rate coefficient 484
Rayleigh scattering 644, 646
reaction coordinate 489

electron transfer reaction 558, 566
reaction field effect 371
reaction rate 70–1
reactive frequency 516
realizations (stochastic trajectories) 221, 233,

234
Redfield equation 383–4, 670

implications 384–8
reduced description 39
reduced descriptions 359–60

general considerations 360–3
macroscopic rate equations 363–7

reflection coefficients 104
refraction, index of 702
Reorganization energy 427–8, 554, 572, 574–5,

579–80
representations

interaction representation 77–8
Schrödinger and Heisenberg

representations 76–7
resonance state 321
resonance tunneling 334–8

three-dimensional 342–6
resonance

energy transfer 656–64
(resonance) fluorescence 675, 678–82
Raman scattering 651–6

case study – azuline in naphtaline matrix
679–82, 680, 681, 682

thermal effects 674–9, 675
retardation 663
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reversible heat 33
reversible work 33
reversible work function 186–8
rotating wave approximation (RWA) 119, 393,

430, 676

Schrödinger equation 23
see also quantum dynamics using

time-dependent Schrödinger equation
symmetry under time reversal 304
time-dependent form 306–12

Schrödinger representation 76–7, 352, 354
quantum master equation (QME) 377–8

Schwarz inequality 16–18
screening 52–4, 67–8, 167–8

Thomas–Fermi theory of screening by
metallic electrons 168–70, 169

screening length 54, 170
second virial coefficient 188–9
self energy 312, 623
self-exchange electron transfer 553
semiconductor–electrolyte interfaces, electron

transfer 616–18
semiconductors 159–64, 160

intrinsic and extrinsic 162
surface potential at interfaces 170–3, 172

silver
Debye temperature 143

single molecule spectroscopy 224, 689–90
Smoluchowski equation

derivation from overdamped Langevin
equation 287–9, 299–301

dynamical effects in barrier crossing 502
energy derivation 533–5

sodium
Debye temperature 143
NMR linewidth 674

solids 131
electronic structure 143

dynamical implication of electronic band
structure 157–9

free electron theory of metals, energetics
143–5

free electron theory of metals, motion
145–6

free electrons vs noninteracting electrons
155–7

nearly free particle model 152–5, 155
one-dimensional tight binding model

150–2
periodic solids and Bloch theory 147–50
semiconductors 159–64, 160

lattice periodicity 131–2
lattice vibrations 132

density of modes 137–9
normal modes of harmonic systems 132–4
phonons in higher dimensions and heat

capacity of solids 139–42
simple harmonic crystal in one dimension

134–6
surface potential and screening 167–8

interfacial potential distributions 173–4
semiconductor interfaces 170–3, 172
Thomas–Fermi theory of screening by

metallic electrons 168–70, 169
work function 164–7

solvation dynamics 536
continuum dielectric environment

dielectric relaxation and the Debye model
540–3

general observations 539–40
dielectric solvation 537–9, 537
linear response theory 543–5
quantum solvation 548–51

solvation function 545, 547
water 548

solvent reorganization 538
solvent reorganization energy 538, 554, 614
solvent-controlled electron transfer dynamics

577–9, 578
electron transfer rates 579

source lead 619
source-drain potential 628
spatial correlation functions 42
spectral density 213–14, 244
spectral diffusion 684
spectral shift 641
spectroscopy 640–3

dressed-states 643–50, 644
optical response functions (ORFs) 690–1

Hamiltonian 692–3
independent particles 698–9
linear response 699–701
linear response theory of propagation and

absorption 701–3
many body response theory 696–8
single molecular level 693–6

probing inhomogeneous bands 682–3
hole burning spectroscopy 683–5, 684,

685
photon echoes 685–9, 688, 689
single molecule spectroscopy 689–90, 691

resonance energy transfer 656–64
resonance Raman scattering 651–6
thermal relaxation 664–5
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spectroscopy (cont.)
Bloch equations 665
case study – azuline in naphtaline matrix

679–82, 680, 681, 682
dephasing (decoherence) 666–7
homogeneous and inhomogeneous

broadening 668–70, 669
motional narrowing 670–4
relaxation of prepared state 665–6
thermal effects in resonance Raman

scattering 674–9, 675
spin–boson model 419–21

basic description 421–4, 421, 423
golden-rule transition rates

decay of initially prepared level 430–4
evaluation of rates 436–9
thermally averaged rate 435–6

polaron transformation 424–30, 428
transition between molecular states 439

beyond the golden rule 449–50
electronic relaxation of excited molecules

442–3
optical absorption lineshape 439–42
spin–lattice relaxation 446–9, 447
thermal activation/potential-crossing limit

445–6
weak coupling limit and energy gap law

443–5, 444
spin–lattice relaxation 446–9, 447
spontaneous emission 119–20, 314–15
standard deviation 4
stationary solutions 329
stationary states 24
stationary systems 193–5
statistical mechanics 29–30

see also classical mechanics; quantum
mechanics

canonical ensemble 31–3
grand-canonical ensemble 33–4
liquids, classical 176–7
microcanonical ensemble 30–1

statistical mixtures 349–52
steady states 105–6, 329

quantum description of steady-state processes
329–34

Raman scattering flux 653–6, 703–7, 704
resonance tunneling 334–8

three-dimensional 342–6
steady-state absorption 334

stilbene, energy barrier for isomers 521, 522,
523

Stirling formula 231
stochastic equations of motion 255–9

Fokker–Planck equation 281
derivation from Chapman–Kolmogorov

equation 284–7, 296–9
derivation from Langevin equation 290–2,

291, 301–3
derivation of Smoluchowski equation from

overdamped Langevin equation 287–9
multidimensional form 292–3
probability flux 283–4
simple example 282–3

Langevin equation
absorption lineshape of harmonic oscillator

265–7
derivation from microscopic model

267–71
general considerations 259–62
generalized form 271–3
harmonic analysis 264–5
high friction limit 262–3

master equations 259, 273–4
chemical kinetics 276–7
random walks 274–6
relaxation of harmonic oscillators 278–81

passage time distribution and mean first
passage time 293–5

stochastic processes 219
general theory

cumulant expansions 241–2, 252–3
distributions and correlation functions

233–5
Gaussian stochastic processes 238–41
Markovian stochastic processes 235–8

harmonic analysis 242
absorption, application to 245–7
power spectrum 242–3
power spectrum of randomly modulated

oscillator 247–9
Wiener–Khintchine theorem 244–5, 253–4

modeling physical processes 223–4
nature of stochastic processes 219–23, 220
random walk problem 225

moments 227–30
probability distribution 230–3
time evolution 225–7

Stokes–Einstein relation 414
Striling Approximation (formula) 6
structure factor 183
superexchange 593, 601, 636
superradiant state 687

dephasing and rephasing 688
supporting electrolyte 610
surface potential 167–8

semiconductor interfaces 170–3, 172
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Tafel law 616
Tafel plots 614–16, 617
telegraphic noise 690
thermal equilibrium 279
thermal operator

quantum master equation (QME) 372–4
thermal projector 368
thermodynamics 25–8

with restrictions 561
Thomas–Fermi theory of screening by metallic

electrons 168–70, 169
Thomas–Fermi screening length 170

tight binding model 150
bridge 633

time average 178
time correlation functions 42–3, 193

classical time correlation functions 201–5
harmonic reservoir 209–10

classical bath 210–13
quantum bath 214–15
spectral density 213–14
usefulness of bath models 215–18

quantum time correlation functions 206–9
simple examples 195

diffusion coefficient 195–7
golden rule rates 197–9
optical absorption lineshapes 199–201

stationary systems 193–5
time dependent mean field (Hartree)

approximation 65
time-dependent perturbation theory 78–9
time evolution operator 58, 62–3
time-resolved microwave conductivity 596
tracer diffusion coefficient 416
transition probability 236
transition state theory (TST) of chemical

reactions 485, 488
Electron transfer reactions 558
escape from one-dimensional

well 491–2
foundations 489–91, 491
multidimensional system 492–5
nonadiabatic transitions 497–8
observations 496–7
variational 496
tunneling 499

transmission coefficients 102, 104

triacetin
electron transfer rate 579

triplet-triplet energy transfer 663
tunnel splitting frequency 108
tunneling, quantum mechanical 101

normalization 105
steady states 105–6
through square barriers 101–5, 102
tunneling observables 106–8, 107

two-level system 59–63

vacuum energy 165
valence band 159, 160, 172
variational transition state theory 496
vector potential 117
vectors 7
vertical ionization potential 165, 166, 537
vertical transition 591
vibrational energy relaxation 453, 481–2

construction of model Hamiltonian 457–60
effect of supporting modes 475–8
evaluation of vibrational relaxation rates 464

bilinear interaction model 464–7
independent binary collision (IBC) model

468–71
nonlinear interaction models 467–8

general observations 453–7, 456
multiple phonon theory 471–5
numerical simulations 478–81
vibrational relaxation rate 460–4

vibronic states 72
virial expansion and second virial coefficient

188–9

water
solvation function 548

wavefunction 58
white noise 264
wide band approximation 325, 366, 627
Wiener process 257
Wiener–Khintchine theorem 204, 244–5

proof 253–4
Wigner transform 388
WKB formula 104–5
work function 164–7
working electrode 609

X-ray scattering 182–4, 182




