

Electrochemistry

- A redox reaction can be separated into its ½-reactions and allowed to react in separate chambers that are connected by a wire and a salt bridge.
- Electrons are "pushed" along the wire from the ½-cell where oxidation occurs to the reduction ½cell.
- Charge balance is maintained for the ½-cells by a salt bridge.
- The oxidation ¹/₂-cell is called the ANODE.
- The reduction ¹/₂-cell is called the CATHODE.

Voltaic / Galvanic Cell The following electrochemical cell produces energy by the reaction of Cu²⁺ ions with Zn metal.

 A cell that produces energy when a spontaneous reaction occurs is called a voltaic or galvanic cell.

Electrical Potential

- Electromotive force (emf) is the driving or pushing of electrons from the anode to the cathode.
- Electrons always flow from the electrode with the lower reduction potential to the electrode with the higher reduction potential.
- Cell potential (£°) is related to electrical work (Joules) as charge (coulombs) flows in a circuit:

Volt (V) = Joule (J) / coulomb (C)

• A coulomb is the amount of charge that passes a single point in an electrical circuit when one ampere of current flows for 1 second.

1 Coulomb = 1 Ampere • second

1 Coulomb = charge of 6.24 x 10¹⁸ electrons charge of 1 electron = 1.602 x 10⁻¹⁹ C

Electrochemical Cell with Cu and SHE

- Cu has a standard reduction potential of + 0.34 V.
- Will copper be oxidized or reduced in a cell with SHE?
- Diagram a standard cell that could be used to find the standard reduction potential of copper. Use SHE as one electrode in the cell.

Relationship of Free Energy and Cell Potential • The free energy change for a reaction relares to the maximum amount of work that can be done by a chemical system: $\Delta G = w_{max}$ • Electrical work is related to cell potential and the number of electrons transferred in a chemical process: $w_{max} = -nFE$ • Combining these two equations, we can relate free energy change and cell potential: $\Delta G = -nFE$

Where n = # electrons transferred (as determined from the balanced reaction), and F = Faraday constant:

 $F = 96,485 \frac{J}{V \cdot mol(electron)} = 96,485 \frac{C}{mol(electron)}$

$$E^\circ = --- \ln K$$

 nF

$$E^\circ = \frac{0.0257}{n} \ln K$$

Standard and Non-Standard Cell Potentials

$$E_{cell}^{o} = E_{red}^{o} + E_{oxid}^{o}$$

$$E_{cell} = E_{red} + E_{oxid}$$
Book's Method :

$$E_{cell} = E_{red,CATHODE} - E_{red,ANODE}$$

Electrochemical Cell Diagrams

Diagram a functional voltaic cell with the following couple under standard conditions:

 $\{Fe^{+2} / Fe\}$ {OCI⁻_(aq) / CI⁻_(aq) (in basic solution)}

Be sure to include all of the following in the diagram:

- Label cathode and anode
- Appropriate metal electrodes
- Concentrations of important SPECIES in each cell.
- BALANCED half reaction occurring in each cell.
- All components required to have an operating Circuit.

Fe²⁺ / OCI⁻ Cell diagram (cont.)

- Write the balanced overall reaction for the cell.
- > Calculate \mathcal{E}° for the cell.
- $\succ~$ Calculate ΔG° for the reaction.
- > Calculate K for the reaction.
- > Calculate \mathcal{E}_{cell} (at 298 K) if:

[OCI⁻] = 0.25 *M*

[CI⁻] = 0.50 M

pH = 12.00

[Fe²⁺] = 0.10 M

Electrochemical Cell Diagram

Diagram a functional voltaic cell with the following couple under standard conditions:

 $\{Cu^{+2} / Cu\} = \{MnO_4^{-}_{(aq)} / Mn^{2+}_{(aq)} \text{ (in acidic solution)}\}$

Be sure to include all of the following in the diagram:

- Label cathode and anode
- Appropriate metal electrodes
- Concentrations of important SPECIES in each cell.
- BALANCED half reaction occurring in each cell.
- All components required to have an operating circuit.

Cu²⁺ / MnO₄⁻ Cell diagram (continued)

- > Write the balanced overall reaction for the cell.
- > Calculate \mathcal{E}° for the cell.
- Calculate ΔG° for the reaction.
- Calculate K for the reaction.
- > Calculate \mathcal{E}_{cell} (at 298 K) if:

 $\begin{bmatrix} Cu^{2+} \end{bmatrix} = 2.0 M$ $\begin{bmatrix} MnO_4^{-} \end{bmatrix} = 0.10 M$ $\begin{bmatrix} Mn^{2+} \end{bmatrix} = 0.50 M$ $\begin{bmatrix} H^+ \end{bmatrix} = 1.0 M$

The Nernst Equation and non-standard half-cells

- Calculate the E_{red} for a Ni²⁺/Ni_(s) ½-cell when [Ni²⁺] = 0.001 *M*.
- Calculate the E_{red} for a Ni²⁺/Ni_(s) ½-cell when [Ni²⁺] = 5.0 *M*.
- Calculate the *E_{oxid}* for a Sn⁴⁺/ Sn²⁺ ½-cell when [Sn⁴⁺] = 0.50 *M* & [Sn²⁺] = 0.00025 *M*.

Concentration Cells

Equilibrium Constant & Cell potentials

Based on cell potentials, calculate K for the following reactions at 25°C:

Equilibrium Constant & Cell potentials

- Based on cell potentials for the following ¹/₂-reactions, calculate the K_{sp} value for AgBr at 25°C.
- Compare this to the listed value in the book.

Electrolysis

- Electrolysis is the use of an applied electrical current to bring about chemical change.
- A voltaic (or galvanic) cell produces electrical energy as a spontaneous reaction occurs.
- An electrolytic cell uses electrical energy to drive the non-spontaneous chemical process.

Formation of CuBr₂

- Elemental bromine reacts with metal copper in a highly product favored reaction:
- Based on the ½-cell potentials, estimate a value of K for this reaction.

Electrolysis of CuBr₂

- CuBr₂ does not spontaneously decompose to Cu_(s) and Br_{2(l)}. Consider the reaction:
- If we wish to drive this reaction, we must change the conditions to make this process favorable.
- We can apply an external voltage from a power source.
- The voltage we apply must be greater in magnitude than the cell potential for the spontaneous reaction, and applied in the reverse polarity.

Electrolysis of CuBr₂ (continued)

- What minimum voltage must be applied to electrolyze copper (II) bromide?
- Consider a diagram of the electrolytic cell:
- Note that the electrolytic cell need not be separated into individual compartments.

Electrolysis of H₂O

- Consider the electrolysis of water under neutral conditions with a strong electrolyte like KCl in solution (to increase the conductivity of the water). View quicktime movie.
- Diagram the electrolytic cell.
- Write both ½-reactions.
- Determine the minimum potential needed to electrolyze the water.

Electrolysis of H₂O (continued)

If we try to electrolyze other compounds in water, we must consider whether the electrolysis of water or of the ion in solution is more favorable at that electrode.

Electrolysis of KBr

- To determine if KBr can be electrolyzed to K_(s) and Br_{2(l)} in aqueous solution, we must consider all potential reactions at the cathode and anode.
- CATHODE:
- ANODE:

Electrolysis of KBr (continued)

- Based on the cathode and anode reactions that are most favorable, write the overall reactions for the electrolysis of a KBr solution.
- Calculate the minimum applied voltage to drive this reaction.

Electrolysis of KBr (continued)

- In order to separate KBr into its elements, molten KBr must be electrolyzed. Because of the high temperature required, special equipment is needed.
- Consider a diagram of the electrolysis of molten KBr:
- Estimate the minimum applied voltage to drive the reaction.

Electrolysis & Current

- Electrolytic processes are important in the production of a number of important industrial chemicals: aluminum metal, copper metal, chlorine gas, sodium hydroxide, and many others.
- To determine the mass that is formed when an electrolytic process takes place, we must know the current applied and the time it is applied.
- Current (ampere) is the flow of charge.

1 ampere (A) = 1 coulomb (C) / second (s)

Reduction Half-Reaction		£° (V)
F ₂ (g) + 2 e ⁻		+2.87
$H_2O_2(aq) + 2 H^*(aq) + 2 e^{-1}$	$\longrightarrow 2 H_2O(\ell)$	+1.77
$PbO_2(s) + SO_4^{2-}(aq) + 4 M^{-}(aq) + 2 e^{-}$	$\longrightarrow PbSO_4(s) + 2 H_2O(\ell)$	+1.685
MnO ₄ ⁻ (aq) + 8 H ⁺ (aq) + 5 e ⁻	$\longrightarrow Mn^{2+}(aq) + 4 H_2O(\ell)$	+1.52
Au ³⁺ (aq) + 3 e	> Au(s)	+1.50
$Cl_2(g) + 2 e^-$		+1.360
$Cr_2O_7^{2-}(aq) + 14 H^{+}(aq) + 6 e^{-}$	$\longrightarrow 2 \operatorname{Cr}^{3+}(aq) + 7 \operatorname{H}_20(\ell)$	+1.33
$\theta_2(g) + 4 H^*(aq) + 4 e^-$	$\rightarrow 2 H_2O(\ell)$	+1.229
Br₂(ℓ) + 2 e ⁻		+1.08
NO3"(aq) + 4 H ⁺ (aq) + 3 e	$\longrightarrow NO(g) + 2 H_2O(\ell)$	+0.95
$\frac{1}{2}$ OCL ⁻ (aq) + H ₂ O(ℓ) + 2 e ⁻	> Cl ⁻ (aq) + 2 OH ⁻ (aq)	+0.89
⁶ Hg ²⁺ (aq) + 2 e	$\longrightarrow Hg(\ell)$	+0.855 f
" Ag" (aq) + e	$\longrightarrow Ag(s)$	+0.80
$Hg_2^{2^+}(aq) + 2 e^-$	> 2 Hg(ℓ)	+0.789
Fe ³⁺ (aq) + e	> Fe ²⁺ (aq)	+0.771
$I_2(s) + 2 e^{-1}$	> 2 1 ⁻ (aq)	+0.535
$O_2(g) + 2 H_2O(\ell) + 4 e^{-1}$	> 4 0H [−] (aq)	+0.40
Cu ²⁺ (aq) + 2 e ⁻	$\rightarrow Cu(s)$	+0.337
r Sn ⁴⁺ (aq) + 2 e ⁻	\rightarrow Sn ²⁺ (aq)	+0.15
2 H'(aq) + 2 e	$\longrightarrow H_2(g)$	0.00
Sn ²⁺ (aq) + 2 e ⁻		-0.14
Ni ²⁺ (aq) + 2 e ⁻	$\rightarrow Ni(s)$	-0.25
V ³⁺ (aq) + e ⁻	$\longrightarrow V^{2+}(aq)$	-0.255
PbSO ₄ (s) + 2 e ⁻	\rightarrow Pb(s) + S0 ₄ ² (ag)	-0.356
Cd ²⁺ (aq) + 2 e ⁻	$\longrightarrow Cd(s)$	-0.40
Fe ²⁺ (aq) + 2 e ⁻		-0.44
Zn ²⁺ (aq) + 2 e	\rightarrow Zn(s)	-0.763
2 H ₂ O(ℓ) + 2 e ⁻	→ H ₂ (q) + 2 0H ⁻ (aq)	-0.8277
Al ³ (aq) + 3 e ⁻	$\rightarrow Al(s)$	-1.66
Mg ²⁺ (aq) + 2 e	$\longrightarrow Mq(s)$	-2.37
Na*(ag) + e ⁻	$\rightarrow Na(s)$	-2.714
K"(aq) + e ⁻	$\longrightarrow K(s)$	-2.925
Li ⁺ (aq) + e ⁻	$\longrightarrow Li(s)$	-3.045