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QUANTITY

force

mass

length

mass density
torque or moment
acceleration

accel. of gravity
spring constant k
spring constant K
damping constant ¢
mass moment of inertia

modulus of elasticity

modulus of elasticity of steel

angle

ENGLISH SYSTEM

11b

11b - sec?/ft (slug)
1ft

11b/ft?

11b - in.

1 ft/sec?

32.2 ft/s? = 386 in./sec?
11b/in.

11b - in./rad

11b - sec/in.

1 Ib. in. sec?

10° 1b/in.?

29 X 10° Ib/in.?

1 degree

S.I. SYSTEM

4.448 Newtons (N)
14.59 kg (kilogram)
0.3048 meters (m)
16.02 kg/m?
0.113N'm

0.3048 m /s

9.81 m/s?

1751 N/m
0.113N - m/rad
1751 N - s/m
0.1129 kg m?

6.895 x 10° N /m?
200 X 10° N /m?
1/57.3 radian
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PREFACE

This book is the fifth edition of the Theory of Vibration with Applications. For a classi-
cal subject like Vibration, an explanation for another revision is in order.

Although the subject of Vibration does not greatly change, the development of
new and sophisticated digital techniques keep advancing and increasing the wide vari-
ety of problems to be solved and discussed in class.

MATLAB® is a versatile computer software program-that is commercially avail-
able and adopted by many engineering schools. It is compatible with the previous com-
putational methods of the 4th edition and we have decided to augment and broaden’
the computer capabilities of the 4th edition with its use in the Sth edition. To undertake
this revision, our editor and I have engaged a competent co-author. Dr. Marie D.
Dahleh, of our Engineering Department, to work with me on this task.

The authors recognize that problem solving is a vital part of the learning process,
and the use of a versatile new computer technique will enhance the student’s capabili-
ties not only in the field of Vibration, but to other fields as well. To use MATLAB, or any
other new computer method, it is not necessary to completely understand the detailed
mathematics on which the software program is based. On this point, I am reminded of
a timely quotation by Oliver Heavyside, a famous British mathematician and engineer
of the early 20th century, who was being criticized for his innovative mathematics. His
response to them was; “Should I refuse my dinner because I do not understand the
process of my digestion?”

As in earlier editions, the first four chapters, which deal w1th single-degree-of-
freedom systems, need very few changes. However, wherever appropriate, MATLAB
has been introduced to familiarize the reader with the MATLAB commands that will be
necessary to make use of this facility. At the end of Chapter 4, where the first extensive
calculations with finite difference and Runge-Kutta were made, the MATLAB method
is demonstrated with parallel computations for comparison.

Systems with two or more degrees of freedom, introduced in Chapter 5, offers a
logical opportunity to present the matrix notation. The Mass and the Stiffness Matrices
are defined here and the digital computation in Fortran has been completely replaced

by MATLAB. The importance of normal mode vibration is emphasized in this chapter
and free vibrations are demonstrated to be composed of normal modes with specified
initial conditions. Forced vibrations are again presented in terms of frequency ratio of
forced to normal modes, and the important application of vibration absorbers and
dampers is retained unchanged.

Chapter 6, “Properties of Vibrating Systems,” remains essentially unchanged.
Stiffness of framed structures is again presented to bring out the introductory basics of
the finite element method presented later in Chapter 10. Orthogonality of eigenvec-
tors, the modal matrix and its orthonormal form enable concise presentation of basic

Xi



xii

Preface

equations for the diagonal eigenvalue matrix that forms the basis for the computation
of the eigenvalue-eigenvector problem. They also provide a background for the nor-
mal mode summation method. The chapter concludes with the modal damping and
examples of equal roots and degenerate systems.

Chapter 7 presents the classic method of Lagrange, which is associated with vir-
tual work and generalized coordinates. Included in this chapter is the method of
assumed modes, which enables the determination of eigenvalues and eigenvectors of
continuous systems in terms of smaller equations of discrete system equations. The
Lagrangian method offers an all-encompassing view of the entire field of dynamics, a
knowledge of which should be acquired by all readers interested in a serious study of
dynamics. . o

Chapter 8, “Computational Methods,” examines the basic methods of computa-
tion that are utilized by the digital computer. Most engineering and science students
today acquire knowledge of computers and programming in their freshman year and,
given the basic background for vibration calculation, they can generally follow com-
puter programs for eigenvalues and eigenvectors. Covered in this chapter are the fol-
lowing subjects; Polynomial method, Gauss elimination, Matrix iteration, the Dynamic
matrix, Standard computer form, Cholesky Decomposition, Jacobi Diogonalization,
and the QR Decomposition. As stated earlier, for those who feel intimidated by the
somewhat difficult mathematics may ignore these sections or even skip the entire
Chapter 8 and still acquire the skills of using these newer computer programs. The for-
mer computations made by Fortran are now replaced and plotted by MATLAB. .

Chapter 9, “Vibration of Continuous Systems,” Rods and beams of uniformly dis-
tributed mass and stiffness represent continuous systems of infinite degrees of free-
dom. To analyse the vibration of such system requires the use of partial differential
equation, presented in the first part of this chapter. As example of how these solutions
can be adopted to more complex structures, an example of the vibration of the Tacoma
Narrows suspension bridge is presented. When the continuous structure is discretized
into repeated identical sections, simple analytic expressions are available for the nat-
ural frequencies and mode shapes by the use of difference equations. Here the method
demonstrates the technique of matching boundary conditions.

* Chapter 10, “Introduction to the Finite Element Method,” remains unchanged
except that the computing is done entirely by MATLAB. A few helpful hints have been
injected in some places, and the section on generalized force proportional to displace-
ment has been substantially expanded by detailed computation of rotating helicopter
blades. Brought out by this example is the advantage of forming equal element sec-
tions of length 1 = 1 (all I's can be arbitrarily equated to unity inside of the mass and
stiffness matrices when the elements are of equal lengths) for the compiling of the
mass and stiffness matrices and converting the final results to those of the original sys-
tem only after the computation is completed.

Chapters 11 and 12: These two chapters, “Mode Summation Procedures for
Continuous Systems,” and “Classical Methods” have been retained as in the previous
edition. Being essentially computing methods, MATLAB has been advantageously used.
Holzer and Myklestad methods have been placed into MATLARB files for available use.

Chapter 13. “Random Vibrations”: Random vibration became of interest to the
engineer with the development of jet engines for airplanes. It is a nondeterministic
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phenomena which require a probabilistic solution. The presentation of the subject here
is mainly from the mathematical treatment to familiarize the students with the new
terminology. Progress in this field is largely through instruments developed to make
measurements useful to engineering design.

Chapter 14,“Nonlinear Vibrations”, can be described as a behavior which cannot
be solved mathematically by superposition. The understanding of its behavior is best
studied by means of the phase-plane. Presented in this chapter are some terminology
for nonlinear systems, its stability and limit cycle and the computer programs of
Runge-Kutta used for its digital solution. A number of problems suitable for the com-
puter are listed in the problem section and marked with a capital M.

Finally I wish to acknowledge my appreciation to my coauthor and to Dr Igor
Mezic of our Mechanical Engineering Department, who corrected and assembled the

Solutions Manual for the fifth edition and added several new problems throughout the
text.

William T. Thomson
Marie Dillon Dahleh

Note: To find the M files referenced in the text log on to the
Prentice Hall’s World Wide Web site at: http://www.prenhall.com
and access the ftp files either via the down load libraries on the

1 authors’ catalog page or under the Help topic or directly at
FTP://ftp.prenhall.com.







THE SI SYSTEM OF UNITS

THE SI SYSTEM OF UNITS

The English system of units that has dominated the United States from historical times
is now being replaced by the SI system of units. Major industries throughout the
United States either have already made, or are in the process of making, the transition,
and engineering students and teachers must deal with the new SI units as well as the
present English system. We present here a short discussion of the SI units as they apply

to the vibration field and outline a simple procedure to convert from one set of units to
the other.

The basic units of the SI system are

Units Name Symbol
Length Meter m
Mass Kilogram kg

Time Second S

The following quantities pertinent to the vibration field are derived from these basic
units:

Force Newton N (= kg -m/s?)
Stress ' Pascal - Pa (= N/m?)
Work Joule J(=N-'m)
Power Watt - W(=1]/s)
Frequency Hertz Hz (= 1/s)
Moment of a force N-m (= kg-m?/s?)
Acceleration _ m/s? :
Velocity m/s
Angular velocity 1/s
Moment of inertia (area) m? (mm* X 10~12)
Moment of inertia (mass) “kg-m? (kg-cm? X 107%) -

Because the meter is a large unit of length, it will be more convenient to express
it as the number of millimeters multiplied by 1073. Vibration instruments, such as
accelerometers, are in general calibrated in terms of g=9.81 m/s?, and hence

expressed in nondimensional units. It is advisable to use nondimensional representa-
tion whenever possible. '
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The SI System of Units

In the English system, the weight of an object is generally specified. In the SI sys-
tem, it is more common to specify the mass, a quantity of matter that remains
unchanged with location.

In working with the SI system, it is advisable to think directly in SI units. This w1ll
require some time, but the following rounded numbers will help to develop a feeling of
confidence in the use of ST units.

The newton is a smaller unit of force than the pound. One pound of force is equal
to 4.4482 newtons, or approximately four and a half times the value for the pound. (An
apple weighs approximately ; Ib, or approximately 1 newton.)

One inch is 2.54 cm, or 0.0254 meter. Thus, the acceleration of gravity, which is
386 in./s? in the English system, becomes 386 X 0.0254 = 9.81 m/s?, or approximately

10 m/s.

Table of Approximate Equivalents

11b = 45N
Acceleration of gravity g = 10 m/s?
Mass of 1 slug = 15 kg
1ft = , m

SI conversion. A simple procedure to convert from one set of units to another
follows: Write the desired SI units equal to the English units, and put in canceling unit
factors. For example, if we wish to convert torque in English units into SI units, we pro-
ceed as follows:

EXAMPLE 1
[Torque SI] = [Torque English] X [multiplying factors]
..1(NY/m
= D) ) )
= [Ib-in.](4.448)(0.0254)
= [Ib-in.](0.1129)
, | |

EXAMPLE 2 _

[Moment of inertia SI] = [Moment of inertia English] X [multiplying factors]

g = e+ = 541 )

= [Ib-in.-s?](4.448 X 0.0254)
= [Ib-in.-s?](0.1129)
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EXAMPLE 3
Modulus of Elasticity, E:

K. o \?
ERESHE
b ,
" | in? ](4 448)( 0.0254 )
i ](6 894.7)
|
E of steel N/m? = (29 X 10°1b/in.2) (6894.7) = 200 X 10° N/m?
EXAMPLE 4
Spring Stiffness, K:
[N/m] = [Ib/in.] X (175.13)
Mass, M:
[kg] = [1b-s%/in.] x (175.13) _
|
Conversion Factors* U.S.—British Units to SI Units
To Convert From To Multiply By
Acceleration:
foot/second? (ft/s?) meter/second? (m/s?) 3.048 x 107
inch/second? (in./s?) meter/second? (m/s?) 2.54 X 1072
Area:
foot? (ft?) meter? (m?) 9.2903 x 1072
inch? (in.2) , meter? (m?) 6.4516 X 10~*
yard? (yd?) : meter? (m?) 8.3613 x 10!
Density:
pound mass/inch?® (Ibm/in.3) kilogram/meter® (kg/ m3) © 2.7680 x 10*
pound mass/foct? (Ibm/ft) kilogram/meter? (kg/m?) 1.6018 % 10
Energy, Work:
British thermal unit (Btu) joule (J) 1.0551 x 10?
foot-pound force (ft - 1bf) joule (J) 1.3558
kilowatt-hour (kw - h) joule (J) 3.60 x 105"
Force:
kip (1000 Ibf) newton (N) , 4.4482 X 103
pound force (Ibf) newton (N) 4.4482
ounce force . newton (N) © 27801 x 10!
Length: .
foot (ft) ‘meter (m) 3.048 x 1071
inch (in.) meter (m) 2.54 X 10"

mile (mi) (U.S. statute) meter (m) 1.6093 x 10°
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Conversion Factors* U.S~British Units to SI Units (continued)

To Convert From

To Multiply By
mile (mi) (international nautical) - meter (m) 1.852 X 10**
yard (yd) meter (m) 9.144 x 107 1*
Mass:
pound - mass (Ibm) kilogram (kg) 4.5359 x 107!
slug (1bf - s2/ft) kilogram (kg) 1.4594 x 10
ton (2000 Ibm) kilogram (kg) 9.0718 X 10?
Power: ' _
foot-pound/minute (ft - 1bf/min) watt (W) 22597 x 10~?
horsepower (550 ft - /s) watt (W) 7.4570 X 102
Pressure, stress: '
atmosphere (std) (14.7 1bf/in.2) newton/meter? (N/m? or Pa) 1.0133 X 10°
pound/foot? (Ibf/ft?) newton/meter? (N/m? or Pa) - 4.7880 X 10
pound/inch? (Ibf/in 2, or psi) newton/meter? (N/m? or Pa) 6.8948 % 10°
Velocity: :
foot/minute (ft/min) meter/second (m/s) 5.08 x 1073*
foot/second (ft/s) meter/second (m/s) 3.048 X 1071
knot (nautical mi/h) meter/second (m/s) 5.1444 x 107!
mile /hour (mi/h) meter/second (m/s) 4.4704 X 10~
mile /hour(mi/h) kilometer/hour(km/h) 1.6093
mile/second(mi/s) kilometer/second(km/s) 1.6093
Volume:
_foot? (ft3) meter> (m?) 2.8317 X 1072
inch3 (in.%) meter® (m3) 1.6387 X 1073

*Exact value.

Source: J. L. Meriam, Dynamics, 2nd Ed. (SI Version) (New York: John Wiley, 1975). The International System of Units (SI),
July 1974, National Bureau of Standards, Special Publication 330.



CHAPTER 1

Oscillatory Motion

The study .of vibration is concerned with the oscillatory motions of bodies and the
forces associated with them. All bodies possessing mass and elasticity are capable of
vibration. Thus, most engineering machines and structures experience vibration to some
degree, and their design generally requires consideration of their oscillatory behavior.

Oscillatory systems can be broadly characterized as linear or nonlinear. For linear
systems, the principle of superposition holds, and the mathematical techniques avail-
able for their treatment are well developed. In contrast, techniques for the analysis of
nonlinear systems are less well known, and difficult to apply. However, some knowl-
edge of nonlinear systems is desirable, because all systems tend to become nonlinear
with increasing amphtude of oscillation.

There are two general classes of vibrations—free and forced. Free vibration takes
place when a system oscillates under the action of forces inherent in the system itself,
and when external impressed forces are absent. The system under free vibration will
vibrate at one or more of its natural frequencies, which are properties of the dynamical
system established by its mass and stiffness distribution.

Vibration that takes place under the excitation of ¢xternal forces is called forced
vibration. When the excitation is oscillatory, the system is forced to vibrate at the exci-
tation freguengy If the frequency of excitation coincides with one of the natural fre-
quencies of the system, a condition of resonance is encountered, and dangerously large
oscillations may result. The failure of major structures such as bridges, buildings, or air-
plane wings is an awesome possibility under resonance. Thus, the calculation of the
. natural frequencies is of major importance in the study of vibrations.

~ Vibrating systems are all subject to damping to some degree because energy is
g_1§§lpated by friction and other resistances. If the damping is small, it has very little
influence on the natural frequencies of the system, and hence the calculations for the
natural frequencies are generally made on the basis of no damping. On the other hand,
damping is of great importance in limiting the amplitude of oscillation at resonance.

The number of independent coordinates required to describe the motion of a sys-
tem is called degrees of freedom of the system. Thus, a free particle undergoing general
motion in space will have three degrees of freedom, and a rigid body will have six

5
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et

FIGURE 1.1.1. Recording harmonic motion.

degrees of freedom, i.e., three components of position and three angles defining its ori-
entation. Furthermore, a continuous elastic body will require an infinite number of
coordinates (three for each point on the body) to describe its motion; hence, its
degrees of freedom must be infinite. However, in many cases, parts of such bodies may
be assumed to be rigid, and the system may be considered to be dynamically equiva-
lent to one having finite degrees of freedom. In fact, a surprisingly large number of
vibration problems can be treated with sufficient accuracy by reducing the system to
one having a few degrees of freedom.

1.1  HARMONIC MOTION

—-"M‘
Oscillatory motion ‘may repeat itself regularly, as in the balance wheel of a watch, or
display considerable irregularity, as in earthquakes. When the motion is repeated in
equal intervals of time T, it is called periodic motion. The repetition time 7is called the
period of the oscillation, and its reciprocal, f = 1/7, is called the frequency. If the
motion is designated by the time function x(¢), then any periodic motion must satisfy
the relationship x(¢) = x(t + 7).

The simplest form of periodic motion is harmonic motion. It can be demon-
strated by a mass suspended from a light spring, as shown in Fig. 1.1.1. If the mass is
displaced from its rest position and released, it will oscillate up and down. By placing a
light source on the oscillating mass, its motion can be recorded on a 11ght-sens1t1ve film-

_strip, which is made to move past it at a constant speed.
The motion recorded on the filmstrip can be expressed by the equation

' t
x=Asin2w- (1.1.1)

A sin w!

A

FIGURE 1.1.2. Harmonic motion as a projection of a point moving on a circle.
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where A is the amplitude of oscillation, measured from the equilibrium posmon of the
mass, and 7is the period. The motion is repeated when t = 7.
Harmonic motion is often represented as the projection on a straight line of a
point that is moving on a circle at constant speed, as shown in Fig. 1.1.2. With the angu-
~ lar speed of the line 0—p designated by o, the displacement x can be written as

x = Asin wt (1.1.2)

The quantity w is generally measured in radians per second, and is referred to as

the circular frequency.! Because the motion repeats itself in 27 radians, we have the
relationship

w= 2—: = 2nf (1.13)

where 7and f are the period and frequency of the harmonic motion, usually meaSured
in seconds and cycles per second, respectively.

The velocity and acceleration of harmonic motion can be simply determined by
differentiation of Eq. (1.1.2). Using the dot notation for the derivative, we obtain

X = wA cos wt = wA sin (ot + 7/2) (1.1.4)
X = —w’Asin ot = o*Asin (0t + ) (1.1.5)

Thus, the velocity and acceleration are also harmonic with the same frequency of oscil-
lation, but lead the displacement by 7/2 and = radians, respectively. Figure 1.1.3 shows

both time variation and the vector phase relationship between the displacement, veloc-
ity, and acceleration in harmonic motion.

Examination of Eqgs. (1.1.2) and (1.1.5) reveals that

X =—o’ (1.1.6)

N\

™ /N

N\

&
J>

9 -
|.80° " o w!

e
AR

(a) . (b)

—

K
D
<.

X

FIGURE 1.1.3. In harmonic motion, the velocity and acceleration lead the displacement by
7/2 and . '

The word circular is generally deleted, and w and f are used without distinction for frequency.
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so that in harmonic motion, the acceleration is proportional to the displacement and is
directed toward the origin. Because Newton’s second law of motion states that the
acceleration is proportional to the force, harmonic motion can be expected for systems

with linear springs with force varying as kx.

Exponential form. The trigonomg;;;g tgnctlons of sine and cosine are related to

the exponential function by EuTer s equation

e'® = cos @+ isin @ ‘ (1.1.7)

A vector of amplitude A rotating at constant angular speed w can be represented asa
complex quantity z in the Argand diagram, as shown in Fig. 1.1.4.

z = Aeiml .
= A cos wt + iA sin ot (1.1.8)
=x+iy

The quantity z is referred to as the complex sinusoid, with x and y as the real and imag-
inary components, respectively. The quantity z = Ae"‘"‘ also satisfies the differential
equation (1.1.6) for harmonic motion.

Figure 1.1.5 shows z and its conjugate z* = Ae ™', which is rotating in the nega-
tive direction with angular speed — . It is evident from this diagram that the real com-
ponent x is expressible in terms of z and z* by the equation

=1(z + z*) = A cos wt = Re Ae™ (1.1.9)

where Re stands for the real part of the quantity z. We will find that the exponential
form of the harmonic motion often offers mathematical advantages over the trigono-
metric form.

Some of the rules of exponential operatlons between z; = A,e’ and Z, = A,e
are as follows:

Multiplication 2,2, = A A, el@r )
- Z A o
Division A= (—l) PLURLY (1.1.10)
: 2, A,
y y
Z=npe™
)
~ Aw!
X X
FIGURE 1.1.4. Harmonic motion FIGURE 1.1.5. Vector z and its eonjugate z*.

represented by a rotating vector.
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Powers " = A"

Zl/n = Al/neio/n

1.2 PERIODIC MOTION

It is quite common for vibrations of several different frequencies to exist simultane-
ously. For example, the vibration of a violin string is composed of the fundamentgl_fg_—
quency f and all its harmonics, 2[ 3f, and so forth. Another example is the free
vibration of a multidegree-of-freedom system, to which the vibrations at each natural
frequency contribute. Such vibrations result in a complex waveform, which is repeated
periodically as shown in Fig. 1.2.1.

' The French mathematician J. Fourier (1768-1830) showed that any periodic
motion can be represented by a series of sines and cosines that are harmonically related.
If x(¢) is a periodic function of the period 7, it is represented by the Fourier series

4
x(f) = 5 tacosof + aycos o +

(1.2.1)
+ b, sin w,t + b, sin w,t + -
where
2
(01 = —
T
®, = nw,

To determine the coefficients a, and b, we multiply both sides of Eq. (1.2.1) by cos w,t or
sin o ¢ and th By recognizing the following relations,

2 .
7 0 ifm#n
COS w,f cOS w,fdt =

-2 7/2 ifm=n
/2 . .
: 0 ifm#*n
i tsi tdt = 22
J'_T/Zsm w,t Sin w,, {7/2 dm=n (1.2.2)

x(n|

T

FIGURE 1.2.1. Periodic motion of period 7.
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2 .
K . 0 ifm+#n
€OS w,t Sin w,t dt = e
—p 0 ifm=n

all terms except one on the right side of the equation will be zero, and we obtain the

result
2 (7
a,= = x(t) cos w,t dt
T ~1/2
) 7/2 : o
b,= = J x(t) sin w,t dt 1.23)
T —1/2

The Fourier series can also be represented in terms of the exponential function.
Substituting

COs w, I = %(ei“’n’ + e—iw,,t)
sin w,t = —3i(e’ — o)

in Eq. (1.2.1), we obtain

il

) = 2+ B[4, — ib)e +3a, + ib,)e ]
n=1

= 92—0 + O e + cremion] ‘ 1.2.4)
n=1 .
— 2 c,,e“""’
where
1
¢y = 34
ooy (125)
¢y = 3(a, - ib,)
Substituting for a, and b, from Eq. (1.2.3), we find ¢, to be
' 1 /2
€, = = J x(¢)(cos w,t — isin w,t) dt
TJ-m2
1 7/2
== J "~ x(t)e i dt (12.6)
T -7/2 )

Some computational effort can-be minimized when the function x(¢) is recogniz-
able in terms of the even and odd functions:

() = E@) + o) 127

An even function E(t) is symmetric about the origin, so that E(t) = E(-1), ie.,
cos wt = cos (—wr). An odd function satisfies the relationship O(f) = —O(~1), i.e.,
sin wt = —sin(—wt). The follgwing integrals are then helpful:
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—~90° }» _______ L./ ____________

FIGURE 1.2.2. Fourier spectrum for pulses shown in Prob. 1.16,k = §.

/2 .
J E(f)sinw,tdt =0 (12.8)

—-7/2

7/2
J' O(t) cos wtdt = 0
—7/2

When the coefficients of the Fourier series are plotted against frequency w , the
result is a series of discrete lines called the Fourier spectrum. Generally plotted are the
absolute values |2c,| = Va? + b? and the phase ¢, = tan"'(b,/a,), an example of
which is shown in Fig. 1.2.2. Fourier analysis including the Fourier transform are dis-
cussed in more detail in Chapter 13.

With the aid of the digital computer, harmonic analysis today is efficiently car-
ried out. A computer algorithm known as the fast Fourier transform? (FFT) is com-
monly used to minimize the computation time.

<7
1.3 VIBRATION TERMINOLOGY 7“'\@

Certain terminologies used in vibration analysis need to be represented here. The sim-
plest of these are the peak value and the average value. ,

The peak value generally indicates the maximum stress that the vibrating part is
undergoing. It also places a limitation on the “rattle space” requirement.

The average value indicates agg;g_cly or static value, somewhat like the dc level of
an electrical current. It can be found by the time integral

1 (7
%= lim = J x(0) dt (13.1)
T 0

See J. S. Bendat and A. G. Piersol, Random Data (New York: John Wiley, 1971), pp. 305-306.
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For example, the average value for a complete cycle of a'sine wave, A sin ¢, is zero;
whereas its average value for aﬁgﬁ:ygle/n_s,

_ AT
x= — J sintdt = 24 _ 0.637A4
Itis evident that this is also the average value of the rectified sine wave shown in Fig. 1.3.1.

The square of the displacement generally is associated with the energy of the
vibration for which the mean square value is a measure. The square value of a

time function x(¢) is found from the average of the squared values, integrated over some
time interval T: :

T
— 1
2 - — 2
x* = lim ijx (¢) dt (1.3.2)
For example, if x(r) = A sin wt, its mean square value is
T

— A? 1 1
x* = }'ﬂ? L E(l - COSZwt)dt = EAZ

The root mean square (rms) value is the square root of the mean square value.
From_the previous example, the rms of the sine wave of amplitude A is
A/ V2 = 0.707A. Vibrations are commonly measured by rms meters. v

The decibelis a unit of measurement that is frequently used in vibration mea-
surements. It is defined in terms of a power ratio.

P
dB = 1010 (-—)
) 210 P

2
=10 logm( }—;1 )
2

The second equation results from the fact that power is proportional to the square of

the amplitude or voltage. The decibel is often expressed in terms of the first power of
amplitude or voltage as

(1.33)

dB =20 1ogm(3‘—‘) (13.4)
‘ X2
Thus an amplifier with a voltage gain of 5 has a decibel gain of

20 log,,(5) = +14

x(1)

FIGURE 1.3.1. Average ' f
value of a rectified sine wave.
—




Problems 13

Because the decibel is a logarithmic unit, it compresses or expands the scale.
When the upper limit of a frequency range is twice its lower limit, the frequency

span is said to be an octave. For example, each of the frequency bands in the following
table represents an octave band.

IBand Frequency Range (Hz) Frequency Bandwidth
1 10-20 10
2 2040 . 20
3 40-80 40
4 200400 200

PROBLEMS

1.1. A harmonic motion has an amplitude of 0.20 cm and a period of 0.15 s. Determine the
maximum velocity and acceleration.

1.2. An accelerometer indicates that a structure is vibrating harmonically at 82 cps with a
maximum acceleration of 50 g. Determine the amplitude of vibration.

13. A harmonic motion has a frequency of 10 cps and its maximum velocity is 4.57 m/s.
Determine its amplitude, its period, and its maximum acceleration.

1.4. Find the sum of two harmonic motions of equal amplitude but of slightly different fre-
quencies. Discuss the beating phenomena that result from this sum.

1.5. Express the complex vector 4 + 3i in the exponential form Ae.
1.6. Add two complex vectors (2 + 3i) and (4 — i), expressing the result as A2 6.
1.7. Show that the multiplication of a vector z = Ae' by i rotates it by 90°.

1.8. Determine the sum of two vectors 5¢"™° and 4¢™* and find the angle between the resul-
tant and the first vector.

1.9. Determine the Fourier series for the rectangular wave shown in Fig. P1.9.

FIGURE P1.9.

1.10. If the origin of the square wave of Prob. 1.9 is shifted to the right by /2, determine the
Fourier series.
1.11. Determine the Fourier series for the triangular wave shown in Fig. P1.11.
x(t)
1.0

- O mw 2m 3w wyt

FIGURE P1.11.
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1.12. Determine the Fourier series for the sawtooth curve shown in Fig. P1.12. Express the
result of Prob. 1.12 in the exponential form of Eq. (1.2.4).

x(t)
1.0

-2 . |0 2 ar 6 w, t
FIGURE P1.12.

1.13. Determine the rms value of a wave consisting of the positive portions of a sine wave.

1.14. Determine the mean square value of the sawtooth wave of Prob. 1.12. Do this two ways,
from the squared curve and from the Fourier series.

1.15. Plot the frequency spectrum for the triangular wave of Prob. 1.11.
1L.16. Determine the Fourier serles of a series of rectangular pulses shown in Fig. P1.16. Plot c,

and ¢, versusn when k = §

21r->{ —>|ka wy t

FIGURE P1.16.

1.17. Write the equation for the displacement-s of the piston in the crank-piston mechanism
shown in Fig. P1.17, and determine the harmonic components and their relative magni-
tudes. If r/l = 1, what is the ratio of the second harmonic compared to the first?

FIGURE P1.17. . s~

1.18. Determine the mean square of the rectangular puise shown in Fig. P1.18 for k = 0.10. If
the amplitude is A, what would an rms voltmeter read?

FIGURE P1.18. b—r— ekr
1.19. Determine the mean square value of the triangular wave of Fig. P1.11.-

1.20. An rms voltmeter specifies an accuracy of 0.5 dB. If a vibration of 2.5 mm rms is mea-
sured, determine the millimeter accuracy as read by the voltmeter.



1.21.

1.22.

1.23.

1.24.

1.25.

Problems 15

Amplification factors on a voltmeter used to measure the vibration output from an
accelerometc;r are given as 10, 50, and 100. What are the decibel steps?

The calibration curve of a piezoelectric accelerometer is shown in Fig. P1.22 where the

ordinate is in decibels. If the peak is 32 dB, what is the ratio of the resonance response to
that at some low frequency, say, 1000 cps?

30 [\L

20 LL%
: e 7
g 0 "] (
: \

\

-20 q T] \

100 1000 10000 100000
fu FIGURE P1.22.

Using coordinate paper similar to that of Appendix A, outline the bounds for the follow-

. ing vibration specifications. Max. acceleration = 2 g, max. displacement = 0.08 in., min.

and max. frequencies: 1 Hz and 200 Hz.

Assume a pulse occurs at integer times and lasts for 1 second. It has a random amplitude
with the probability of having the amplitude equal 1 or —1 being p(1) = p(-1) = 1/2.
What is the mean value and the mean square value of the amplitude?

Show that every function f{) can be represented as a sum of an odd function O(¢) and an
even function E(f).



CHAPTER 2

Free Vibration

All systems possessing mass and elasticity are capable of free vibration, or vibration
that takes place in the absence of external excitation. Of primary interest for such a
system is its natural frequency of vibration. Qur objectives here are to learn to write its
equation of motion and evaluate its natural frequency, which is mainly a function of
the mass and stiffness of the system.

Damping in moderate amounts has little influence on the natural frequency and
may be neglected in its calculation. The system can then be considered to be conserva-
tive, and the principle of conservation of energy offers another approach to the calcula-
tion of the natural frequency. The effect of damping is mainly evident in the diminishing
of the vibration amplitude with time. Although there are many models of damping, only
those that lead to simple analytic procedures are considered in this chapter.

2.1 VIBRATION MODEL

The basic vibration model of a simple oscillatory system consists of a mass, a massless
spring, and a damper. The mass is considered to be lumped and measured in the SI sys-
tem as kilograms. In the English system, the mass is m = w/g Ib - s?/in.

The spring supporting the mass is assumed to be of negligible mass. Its force-
deflection relationship is considered to be linear, following Hooke’s law, F = kx, where
the stiffness k is measured in newtons/meter or pounds/inch. |

The viscous damping, generally represented by a dashpot, is described by a
force proportional to the velocity, or f = c¢x.The damping coefficient c is measured in
newtons/meter/second or pounds/inch/second.

2.2 EQUATIONS OF MOTION: NATURAL FREQUENCY

Figure 2.2.1 shows a simple undamped spring-mass system, which is assumed to move
only along the vertical direction. It has 1 degree of freedom (DOF), because its motion
is described by a single coordinate x.

16
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Unstretched

+x)
position Static equilibrium

position
li 1x

FIGURE 2.2.1. Spring-mass system and free-body diagram.

When placed into motion, oscillation will take place at the natural frequency f,,
which is a property of the system. We now examine some of the basic concepts associ-
ated with the free vibration of systems with 1 degree of freedom.

Newton’s second law is the first basis for examining the motion of the system. As
shown in Fig. 2.2.1 the deformation of the spring in the static equilibrium position is A,
and the spring force kA is equal to the gravitational force w acting on mass rm:

kA =w = mg 2.2.1)

By measuring the displacement x from the static equilibrium position, the forces act-
ing on m are k(A + x) and w. With x chosen to be positive in the downward direction,

all quantities—force, velocity, and acceleration—are also positive in the downward
direction.

We now apply Newton’s second law of motion to the mass m:
mx =23F=w — k(A + x)

and because kA = w, we obtain

mx = —kx (22.2)

It is evident that the choice of the static equilibrium position as reference for x has elimi-

nated w, the force due to gravity, and the static spring force kA from the equation of

motion, and the resultant force on m is simply the spring force due to the dlsplacement x.
By defining the circular frequency w, by the equation

W= = 223)
" Eq. (2.2.2) can be written as
F+adx=0 (22.4)

and we conclude by cbmparison with Eq. (1.1.6) that the motion is harmonic. Equa-

tion (2.2.4),a homogeneo%‘\ew linear differential equation, has the follow-
. ing general solution: 4fy . \

W x = Asin w,t + B cos w,t 2.2.5)

where A and B are the two necessary constants, These constants are evaluated from
initial conditions x(0) and x(0), and Eq. (2.2.5) can be shown to reduce to
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x(0)

sin w,t + x(0) cos w,t » (2.2.6)

n

The natural period of the oscillation is established from w,r = 2, or

T= 277\/% ' (22.7)
1 1 k :
fao= 7= 2—7;\/; - (228)

These quantities can be expressed in terms of the statical deflection A by observing
Eq. (2.2.1), kA = mg. Thus, Eq. (2.2.8) can be expressed in terms of the statical deflec-

tion A as A
1 /g
= 229

Note that 7, f ,and », depend only on the mass and stiffness of the system, which are
properties of the system.

~Although our discussion was in terms of the spring-mass system of Fig. 2.2.1, the
results are applicable to all single-DOF systems, including rotation. The spring can be a
beam or torsional member and the mass can be replaced by a mass moment of inertia.

A table of values for the stiffness k for various types of springs is presented at the end”
of the chapter.

and the natural frequency is

EXAMPLE 2.2.1

A }-kg mass is suspended by a spring having a stiffness of 0.1533 N/mm. Determine its natural
frequency in cycles per second. Determine its statical deflection.

Solution The stiffness is

k = 1533 N/m
By substituting into Eq. (2.2.8), the natural frequency is

1 [k 1 [1333
1= 2oVNm = 22\ 0 =304 Hz

The statical deflection of the spring suspending the }-kg mass is obtained from the relationship
mg = kA

A= M8 _ 025 X 9.81
" Knjpm - 0.1533

= 16.0 mm

EXAMPLE 2.2.2

Determine the natural frequency of the mass M on the end of a cantilever beam of negligible
mass shown in Fig. 2.2.2. '
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2 O

FIGURE 2.2.2. Z

Solution The deflection of the cantilever beam under a concentrated end force P is

_ P _P
*T3E Tk

where EI is the flexural rigidity. Thus, the stiffness of the beam is k = 3EI//3, and the natural fre-

quency of the system becomes
1 |[3EI
RRNE]
29 ¥ Ml

EXAMPLE 2.2.3 ) -

An automobile wheel and tire are suspended by a steel rod 0.50 cm in diameter and 2 m long, as
shown in Fig. 2.2.3. When the wheel is given an angular displacement and released, it makes 10
oscillations in 30.2 s. Determine the polar moment of inertia of the wheel and tire.

FIGURE 2.2.3.

Solution The rotational equation of motion corresponding to Newton’s equation is
Jo= —K#@

where J is the rotational mass moment of inertia, K is the rotational stiffness, and 6 is the angle
of rotation in radians. Thus, the natural frequency of oscillation is equal to

w, = 2#% = 2.081 rad/s
The torsional stiffness of the rod is given by the equation K = GI,/I, where I, = wd*/32 =
polar moment of inertia of the circular cross-sectional area of the rod, /= length, and
G = 80 X 10° N/m? = shear modulus of steel.

I

I, %(0.5 x 107%)* = 0.006136 X 10~ m*

80 % 10° X 0.006136 X 10~®
K= 2

= 2.455 N-m/rad
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By substituting into the natural frequency equation, the polar moment of inertia of the wheel
and tire is

K 45
j- K _ 2455

P = W = 0.567kg-m2

EXAMPLE 2.2.4 u

Figure 2.2.4 shows a uniform bar pivoted about point O with springs of equal stiffness k at each
end. The bar is horizontal in the equilibrium position with spring forces P, and P,. Determine the
equation of motion and its natural frequency.

8
k 4 k
c
‘ 5
FIGURE 2.2.4. 7 7

Solution Under rotation 6, the spring force on the left is decreased and that on the right is
increased. With J o as the moment of inertia of the bar about O, the moment equation about O is

S M, = (P, — ka6)a + mgc — (P, + kb6)b = J,0
However, '
Pa + mgc— Pb=0

in the equilibrium position, and hence we need to consider only the moment of the forces due to
displacement 6, which is '

S M, = (—ka? — kb2 = J,0
Thus, the equation of motion can be written as
e 2 2
0+ M 0=
Jo

and, by inspection, the natural frequency of oscillation is

0

-2.3 ENERGY METHOD

In a conservative system, the total energy is constant, and the differential equation of
motion can also be established by the principle of conservation of energy. For the free
vibration of an undamped system, the energy is partly kinetic and partly potential. The
kinetic energy T is stored in the mass by virtue of its velocity, whereas the potential
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energy U is stored in the form of strain energy in elastic deformation or by a spring or
work done in a force field such as gravity. The total energy being constant, its rate of
change is zero, as illustrated by the following equations:

T + U = constant (23.1)
d
y (T+U)=0 (232)

If our interest is only in the natural frequency of the system, it can be determined
by the following considerations. From the principle of conservation of energy, we can

write
n+Uu=T,+U, (2.3.3)

where | and , represent two instances of time. Let | be the time when the mass is pass-
ing through its static equilibrium position and choose U, = 0 as reference for the
potential energy. Let , be the time corresponding to the maximum displacement of the
mass. At this position, the velocity of the mass is zero, and hence T, = 0. We then have

T, +0=0+ U, (2.3.4)

However, if the system is undergoing harmonic motion, then T, and U, are maximum
values, and hence

Thax = Unax (23.5)
The preceding equation leads directly to the natural frequency.

EXAMPLE 2.3.1

Determine the natural frequency of the system shown in Fig. 2.3.1.

Figure 2.3.1.

Solution Assume that the system is vibrating harmonically with amplitude 6 from its static
equilibrium position. The maximum kinetic energy is

Tmax _~= [%182 + %m(rle)z]max
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The maximum potential energy is the energy stored in the spring, which is
Upax = —k(r2 6)?

Equéting the two, the natural frequency is

| kr3
w =
" J + mr?

The student should verify that the loss of potential energy of m due to position r, 8 is can-
celed by the work done by the equilibrium force of the spring in the position 6 = 0.

max

EXAMPLE 2.3.2

A cylinder of weight w and radius r rolls without slipping on a cylindrical surface of radius R, as
shown in Fig. 2.3.2. Determine its differential equation of motion for small oscillations about the
lowest point. For no slipping, we have r¢ = Ru.

Figure 2.3.2. /%j

Solution In determining the kinetic energy of the cylinder, it must be noted that both transla-
tion and rotation take place. The translational velocity of the center of the cylinder is (R - r)G

whereas the rotational velocity is (¢ — 0) = (R/r — 1)6, because ¢ = (R/r)8 for no slipping.
The kinetic energy can now be written as *

r=22(r-nif + J25[ (2 -1)i]

S0 g
where (w/g)(r?/2) is the moment of inertia of the cylinder about its mass center.
The potential energy referred to its lowest position is
' U= w(R - r)(1 - cosd)

which is equal to the negative of the work done by the gravnty force in lifting the cylmder
through the vertical height (R — r)(1 — cos#).
Substituting into Eq. (2.3.2)

[ %15- (R - 120 + w(R ~ r)sino]é =0
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. and letting sin 6 = 6 for small angles, we obtain the familiar equation for harmonic motion

.. zg
+ ——t 9=
0 3(R-7r) 0

By inspection, the circular frequency of oscillation is

2.4 RAYLEIGH METHOD: EFFECTIVE MASS

The energy method can be used for multimass systems or for distributed mass systems,
provided the motion of every point in the system is known. In systems in which masses
are joined by rigid links, levers, or gears, the motion of the various masses can be
-expressed in terms of the motion x of some specific point and the system is simply one

of a single DOF, because only one coordinate is necessary. The kinetic energy can then
be written as

T=1imx> (2.4.1)

where m g is the effective mass or an equivalent lumped mass at the specified point. If
the stiffness at that point is also known, the natural frequency can be calculated from
the simple equation

= 242

! Megs” ( )

In distributed mass systems such as springs and beams, a knowledge of the distri-

bution of the vibration amplitude becomes necessary before the kinetic energy can be

calculated. Rayleigh! showed that with a reasonable assumption for the shape of the

vibration amplitude, it is possible to take into account previously ignored masses and

arrive at a better estimate for the fundamental frequency. The following examples
illustrate the use of both of these methods. '

EXAMPLE 2.4.1

_ Determine the effect of the mass of the spring on the natural frequency of the system shown in
Fig.2.4.1.

Solution With xequal to the velocity of the lumped mass m, we will assume the velocity of a
spring element located a distance y from the fixed end to vary linearly with y as follows:
.y
iz

l

John W. Strutt, Lord Rayleigh, The Theory of Sound, Vol. 1, 2nd rev. ed. (New York: Dover, 1937),
pp-109-110.
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FIGURE 2.4.1.
Effective mass of spring.

The kinetic energy of the spring can then be integrated to
1 .
1 -y\’m im,.
T = = Z) S dy==-—% 2
ad 2,[)(xl)l y=33"

and the effective mass is found to be one-third the mass of the spring. Adding this to the lumped
mass, the revised natural frequency is

EXAMPLE 2.4.2

A simply supported beam of total mass s, has a concentrated mass M at midspan. Determine
the effective mass of the system at midspan and find its fundamental frequency. The deflection
under the load due to a concentrated force P applied at midspan is PI*/48EI. (See Fig. 2.4.2 and
table of stiffness at the end of the chapter.)

fe—272—|
' D— 7
| FIGURE242. X~ .
Effective mass of beam. | 4 _ ' ~|

Solution We will assume the deflection of the beam to be that due to a concentrated load at

midspan or
7] (=3)
= — — — - -
Y= Yma T T 172
The maximum kinetic energy of the beam itself is then

2 3732
Tmax - 2 J-O 1 {.Ymax[ ] 4 ] dx

The effective mass at midspan is then equal to

My = M + 0.4857m,

I}

2 (04857m)
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and its natural frequency becomes

_ 48EI
“n P(M + 0.4857m,)

2.5 PRINCIPLE OF VIRTUAL WORK

We now complement the energy method by another scalar method based on the prin-
ciple of virtual work. The principle of virtual work was first formulated by Johann J.
Bernoulli.? It is especially important for systems of interconnected bodies of higher
DOF, but its brief introduction here will familiarize the reader with its underlying con-
cepts. Further discussion of the principle is given in later chapters.

The principle of virtual work is associated with the equilibrium of bodies, and
may be stated as follows: If a system in equilibrium under the action of a set of forces is
given a virtual displacement, the virtual work done by the forces will be zero.

The terms used in this statement are defined as follows: (1) A virtual displace-
ment &r is an imaginary infinitesimal variation of the coordinate given instantaneously.
The virtual displacement must be compatible with the constraints of the system.
(2) Virtual work 8W is the work done by all the active forces in a virtual displacement.
Because there is no significant change of geometry associated with the virtual displace-
ment, the forces acting on the system are assumed to remain unchanged for the calcu-
lation of éW.

The principle of virtual work as formulated by Bernoulli is a static procedure. Its
‘extension to dynamics was made possible by D’Alembert® (1718-1783), who intro-
duced the concept of the inertia force. Thus, inertia forces are included as active forces
when dynamic problems are considered.

EXAMPLE 2.5.1

Using the virtual work method, determine the equation of motion for the rigid beam of mass M
loaded as shown in Fig.2.5.1. _ :

Solution Draw the beam in the displaced position 6 and place the forces acting on it, includ--

'ing the inertia and damping forces. Give the beam a virtual displacement 86 and determine the
work done by each force. '

Mi? ..
Inertia force W = —( 3 6) 80

. I \1
‘ Spring force W = (k 2 0) 2 86
Damper force 8W = — (cl§)! 56

2Johann J. Bernoulli (1667-1748), Basel, Switzerland.
3D’ Alembert, Traite de dynamique, 1743,
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§:leuf°mw
\L £/2 | £/2

FIGURE 2.5.1.

1

2
Uniform load §W = J. (pof(t) dx)x 80 = p,f(2) IE 89

0
Summing the virtual work and equating to zero gives the differential equation of motion:

M2\ o
(%5 )i+ @i+ kG 0= 350

EXAMPLE 2.5.2

Two simple pendulums are connected together with the bottom mass restricted to vertical
motion in a frictionless guide, as shown in Fig. 2.5.2. Because only one coordinate 6 is necessary,
it represents an interconnected single-DOF system. Using the virtual work method, determine
the equation of motion and its natural frequency.

Z
T\88
—A186sin
W\
156
_fors6sing

Figure 2.5.2. Virtual work of double pendulum with motion of m, restricted along vertical line.
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Solution Sketch the system displaced by a small angle 6 and place on it all forces, including
inertia forces. Next give the coordinate 6 a virtual displacement 6. Due to this displacement, m,
and m,, will undergo vertical displacements of / 80 sin 6 and 2/ 8 sin 6, respectively. (The acceler-
ation of m, can easily be shown to be 2/(fsin 6 + 6%cos 6), and its virtual work will be an order

of mfmltemmaI smaller than that for the gravnty force and can be neglected.) Equating the vir-
tual work to zero, we have

SW = —(m,16)186 — (m,g)! 86 sin 6 — (m,g)2180sin 6 = 0
= —[m,10 + (m, + 2m,)g sin 6}186 = 0

Because 86 is arbitrary, the quantity within the brackets must be zero. Thus, the equation of
motion becomes

6+ (1 2 ) Eg=0
my /1
where sin 6 = @ has been substituted. The natural frequency from the preceding equation is

w, = (1 + 2m2)g
' my 1

2.6 VISCOUSLY DAMPED FREE VIBRATION "
Viscous damping force is expressed by the equation

F,=cx (2.6.1)

where c is a constant of proportionality. Symbolically, it is designated by a dashpot, as
shown in Fig. 2.6.1. From the free-body diagram, the equation of motion is seen to be

mx + cx + kx = F(t) : (2.6.2)

The solution of this equation has two parts. If F(¢) = 0, we have the homogeneous dif-
ferential equation whose solution corresponds physically to that of free-damped vibra-
tion. With F(f) # 0, we obtain the particular solution that is due to the excitation

- irrespective of the homogeneous solution. We will first examine the homogeneous
equation that will give us some understanding of the role of damping.

kfé c ’
) o A_ kTA kx cx
2N R
1' m
w

. Fn FIGURE 2.6.1.
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With the homogeneous equation _
mi + o + kx = 0 | (263)
the traditional approach is to assume a solution of the form
x=ce" (2.64)
where s is a constant. Upon substitution into the differential equation, we obtain
(ms®> + cs + k)e" =0
which is satisfied for all values of t when
2+ Sse Xy (26.5)
m m

Equation (2.6.5), which is known as the characteristic equation, has two roots:

c c \? k
= - — + —_ [ 2:6.6
512 2m ( 2m ) ..m ( )
Hence, the general solution is given by the equation
x = Ae” + Be™ (2.6.7)

where A and B are constants to be evaluated from the initial condltlons x(0) and x(0).
Equation (2.6.6) substituted into (2.6.7) gives

x = e-(e/?m)z(Ae Vie/2mP ~kjm)e 4 Be‘(V(c/Z’”)z’k/m )') (2.6.8)

The first term, e /> is simply an exponentially decaying function of time. The
behavior of the terms in the parentheses, however, depends on whether the numerical
value within the radical is positive, zero, or negative.

When the damping term (c/2m)? is larger than k/m, the exponents in the previ-

ous equation are real numbers and no oscillations are pOSSlble We refer to this case as
overdamped.

When the damping term (c/2m)? is less than k/m, the exponent becomes an imag-

inary number, +i{V k/ m — (c/2m)*t. Because

. N2 2
= Viim=G/amT ) — o —k——(—c—)tiisin i(-—(,\—c—)t
m 2m m Zm
the terms of Eq. (2.6.8) within the parentheses are oscillatory. We refer to this case as
underdamped.

In the limiting case between the oscillatory and nonoscﬂlatory motion,

(c/2m)? = k/m, and the radical is zero. The damping corresponding to this case is called
critical damping, c,

c, = 2m\/-'k; = 2mw, = 2Vkm (2.6.9)

Any damping can then be expressed in terms of the crlllcal dampmg by a nondimen-
sional number ¢, called the damping ratio:
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K3}

{= (2.6.10)

()

c

and we can also express s, , in terms of { as follows:

c c,
m {( 2m

)- e
Equation (2.6.6) then becomes ,
s12=(=¢ =2 V¢ - o, ' (26.11)

The three cases of damping discussed here now depend on whether { is greater
than, less than, or equal to unity. Furthermore, the differential equation of motion can
now be expressed in terms of { and w, as

. : 1 ‘
X+ 2wx + @lx = ;F(t) (26.12)

This form of the equation for single-DOF systems will be found to be helpful in identi-
fying the natural frequency and the damping of the system. We will frequently
encounter this equation in the modal summation for multi-DOF systems.

Figure 2.6.2 shows Eq. (2.6.11) plotted in a complex plane with { along the hori-
zontal axis. If £ = 0, Eq. (2.6.11) reduces to s, ,/w, = =i so that the roots on the imagi-

nary axis correspond to the undamped case. For 0 < ¢ =1, Eq. (2.6.11) can be
rewritten as

%Z =—¢+iV1-¢ for{<l1 -(26.13)

The roots s, and s, are then conjugate complex points on a circular arc converging at
the point s1,2/ o, = —1.0. As { increases beyond unity, the roots separate along the

Imaginary axis

t=0
1.0
i
&
| Wp
h-g2
A Real
L & axis
£=1.0 |I [o)
|
/5
l @n
i
|
-10
t=0

FIGURE 2.6.2.
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horizontal axis and remain real numbers. With this diagram in mind, we are now
ready to examine the solution given by Eq. (2.6.8).

Oscillatory motion. [¢ < 1.0 (Underdamped Case).] By substituting Eq. (2.6.11)

into (2.6.7), the general solution becomes
x = e ti(AVI- 0t 4 BomiVI-lay) (2.6.14)
This equation can also be written in either of the following two forms:
x = Xe sin(V1 — 2wyt + ¢) | (2.6.15)
= e~ (C,sin V1 = {2 w,t + Cycos V1 — {2 wyt) (2.6.16)

‘where the arbitrary constants X, ¢, or C,,C, are determined from initial conditions.
With initial conditions x(0) and £ (0), Eq. (2 6. 16) can be shown to reduce to

x = e_{“’"’(w sin V1 —~ 2 w,t + x(0) cos V1 — §2w,,t> (2.6.17)

0w, V1 - I
The equation indicates that the frequency of damped oscillation is equal to
w; = 2m _ w V1 - (2.6.18)
T4 -

Figure 2.6.3 shows the general nature of the oscillatory motion.

Nonoscillatory motion. [{> 1.0 (Overdamped Case).] As { exceeds unity, the
.two roots remain on the real axis of Fig. 2.6.2 and separate, On ?"mc‘ rea”“ng d the
other decreasing. The general solution then becomes T H

x = A VDo 4 go(-t-Vii-T)uy (2.6.19)

where

#0) + (¢ + V&= 1)w,x(0)

A= 2.6.20
20,V -1 ( )

Xsing

|
i

FIGURE 2.6.3. Damped oscillation { < 1.0.
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\ x(1)

\

N
™ Bel6r x(0)

of————=
/ Be( - V )w,,
// 0 ;
/
/
8f
FIGURE 2.6.4. Aperiodic motion { > 1.0. FIGURE 2.6.5. Critically damped motion { = 1.0.
and

—i(0) — (£ = V2 — 1)w,x(0)
20,V -

The motion is an exponentially decreasing function of time, as shown in Fig. 2.6.4, and
is referred to as aperiodic.
aperioaic.

B:

(2.6.21)

—_—

Critically damped motion. [{=1.0.] For (=1, we obtain a double root,
s, = s, = ~w , and the two terms of Eq. (2.6.7) combine to form a single term, which is
lacking in the number of constants required to satisfy the two initial conditions.

The correct general solution is

x = (A + Bt)e ! : (2.6.22)
which for the initial conditions x(0) and x(0) becomes
x = {x(0) + [x(0) + w,x(0)]t}e~ - (2.6.23)

This can also be found from Eq. (2.6.17) by letting { — 1. Figure 2.6.5 shows three types
of response with initial displacement x(0).

2.7 LOGARITHMIC DECREMENT

A convenient way to determine the amount of damping present in a system is to mea-
~ sure the rate of decay of free oscillations. The larger the damping, the greater will be
the rate of decay.

Consider a damped vibration expressed by the general equation (2.6.15)
x = Xe %sin(V1 — Zo,t + ¢)

which is shown graphically in Fig. 2.7.1. We introduce here a term called the logarith-
mic decrement, which is defined as the natural logarithm of the ratio of any two succes-
sive amplitudes. The expression for the logarithmic decrement then becomes
X, e f“'"sm(\ll—gzwtl+¢)
6=In— =In
X2 e+ ) sin[V1 — 2w,(t + ) + ¢]

(7.1)
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FIGURE 2.7.1. Rate of decay of
oscillation measured by the logarithmic

and because the values of the sines are equal when the time is increased by the
damped period 7,, the preceding relation reduces to
—————————
' — Lwyty
e

&= lnm = |n ef™ = {w,7, (2.7.2)

By substituting for the damped period, 7, = 27/, V1 — {2, the expression for the log-
arithmic decrement becomes

§= —m=— 273
V1-¢22 : _ )
which is an exact equation.
When ¢is small, V1 — ¢? = 1, and an approximate equation
8=2m¢ 2.7.4)

is obtamed Figure 2.7.2 shows a plot of the exact and approximate values of & as a
functlon’of L

EXAMPLE 2.7.1 _ .
The following data are given for a vibrating system with viscous damping: w =10 Ib, k = 30

Ib/in., and ¢ = 0.12 Ib/in./s. Determine the logarithmic decrement and the ratio of any two suc-
cessive amplitudes.

Solution The undamped natural frequency of the system in radians per second is

_ [k [30x386
w, = m—‘——m‘ = 34.0rad/s

The critical damping coefficient c, and damping factor { are

10
_ = - /
¢, =2me, =2 X 336 X 340 = 1761b/m,s
L= ¢ _012 = 0.0681
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The logarithmic decrement, from Eq. (2.7.3),1s

_ 2w _ 27 % 00681
Vi-¢2  V1-(0.0681)

The amplitude ratio for any two consecutive cycles is
. X
= == =154
X2

8

= 0.429

EXAMPLE 2.7.2

Show that the logarithmic decrement is also given by the equation

d= -l-lnﬁ
n o x,

where x, represents the amplitude after n cycles have elapsed. Plot a curve giving the number of
cycles elapsed against ¢ for the amplitude to diminish by 50 percent.

Solution The amplitude ratio for any two consecutive amplitudes is

The ratio x,/x, can be written as

o _ (ﬁ)(ﬁ)(ﬁ)("__l) (= o
Xn Xy /\ X2 /\ X3 Xy
from which the required equation is obtained as

5= Lk

n
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w
L——"]

\.\

Number of cycles for 50% reduction in amplitude

<o 005 010 015 020
FIGURE 2.7.3. (= é= Domping factor

To determine the number of cycles elapsed for a 50-percent reduction in amplitude, we
obtain the following relation from the preceding equation:

1 0.69
8=2m{=-In2= 0.693

ni = 0.693 =(0.110
27

L4
The last equation is that of a rectangular hyperbola and is plotted in Fig. 2.7.3.

2.8 COULOMB DAMPING

Coulomb damping results from the sliding of two dry surfaces. The damping force is
equal to the product of the normal force and the coefficient of friction w and is
assumed to be independent of the velocity, once the motion is initiated. Because the
sign of the damping force is always opposite to that of the velocity, the differential
equation of motion for each sign is valid only for half-cycle intervals.

To determine the decay of amplitude, we resort to the work-energy principle of
equating the work done to the change in kinetic energy. By choosing a half-cycle start-
ing at the extreme position with velocity equal to zero and the amplitude equal to X,
the change in the kinetic energy is zero and the work done on m is also zero.

3h(X?— X2) - F{X,+X_))=0
or
%k(xl - X—1) =F,
where X _, is the amplitude after the half-cycle, as shown in Fig. 2.8.1.
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FIGURE 2.8.1. Free vibration |
with Coulomb damping.

By repeatihg this procedure for the next half-cycle, a further decrease in ampli-
tude of 2F,/k will be found, so that the decay in amplitude per cycle is a constant and
equal to

(2.8.1)

The motion will cease, however, when the amplitude becomes less than A, at
which position the spring force is insufficient to overcome the static friction force, which
is generally greater than the kinetic friction force. It can also be shown that the fre-
quency of oscillation is @, = V'k/m, which is the same as that of the undamped system.

Figure 2.8.1 shows the free vibration of a system with Coulomb damping. It
should be noted that the amplitudes decay linearly with time.

Numerical metheds. Throughout the course of this book numerical techniques
are introduced when appropriate. The finite difference method is discussed in Secs. 4.7
and 5.5. The Runge-Kutta method appears in Secs. 4.8 and 14.8. Chapter 8 is devoted to
computational methods. It includes techniques for finding the roots of a polynomial,
Sec. 8.1; eigenvalues and eigenvectors, Secs 8.2, 8.3, 8.9, and 8.10; and the Cholesky
decomposition, Sec. 8.8. The finite element method is the subject of Chapter 10. The
equations for a bar are contained in Sec. 10.1 and those for a beam are in 10.5. The
Holzer method is found in Secs. 12.4 and 12.5. Sec. 12.6 is devoted to the Myklestad’s
method. A brief discussion of these programs is found in Appendix E. All of these pro-

_grams are written in MATLAB®. An introduction to MATLAB® is provided in Appendix
E.

PROBLEMS

2.1. A 0.453-kg mass attached to a light spring elongates it 7.87 mm. Determine the natural
frequency of the system.

2.2. A spring-mass system, k, and m, has a natural frequency of f,. If a second spring &, is

added in series with the first spring, the natural frequency is lowered to ;f,. Determine k,
in terms of k.
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Table of Spring Stiffness
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2.3. A 4.53-kg mass atfached to the lower end of a spring whose upper end is fixed vibrates

24.

2.5.

2.6.

2.7.

with a natural period of 0.45 s. Determine the natural period when a 2.26-kg mass is
attached to the midpoint of the same spring with the upper and lower ends fixed.

An unknown mass of m kg attached to the end of an unknown spring k has a natural fre-
quency of 94 cpm. When a 0.453-kg mass is added to m, the natural frequency is lowered
to 76.7 cpm. Determine the unknown mass m and the spring constant k£ N/m.

A mass m, hangs from a spring k¥ N/m and is in static equilibrium. A second mass m,

drops through a height / and sticks to m, without rebound, as shown in Fig. P2.5.
Determine the subsequent motion.

FIGURE P2.5. FIGURE P2.7.

The ratio k/m of a spring-mass system is given as 4.0. If the mass is deflected 2 cm down,
measured from its equilibrium position, and given an upward velocity of 8 cm/s, deter-
mine its amplitude and maximum acceleration.

A flywheel weighing 70 Ib was allowed to swing as a pendulum about a knife-edge at the
inner side of the rim, as shown in Fig. P2.7. If the measured period of oscillation was
1.22 5, determine the moment of inertia of the flywheel about its geometric axis.

. A connecting rod weighing 21.35 N oscillates 53 times in 1 min when suspended as shown

in Fig. P2.8. Determine its moment of inertia about its center of gravity, which is located
0.254 m from the point of support.

FIGURE P2.8.
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2.9.

2.10.

2.11.

2.12.

Free Vibration

A flywheel of mass M is suspended in the horizontal plane by three wires of 1.829-m
length equally spaced around a circle of 0.254-m radius. If the period of oscillation about
a vertical axis through the center of the wheel is 2.17 s, determine its radius of gyration.

A wheel and axle assembly of moment of inertia J is inclined from the vertical by an

angle «, as shown in Fig. P2.10. Determine the frequency of oscillation due to a small
unbalance weight w b at a distance a in. from the axle.

FIGURE P2.10. FIGURE P2.11.

A cylinder of mass m and mass moment of inertia J, is free to roll without slipping, but is

restrained by the spring k, as shown in Fig. P2.11. Determine the natural frequency of
oscillation.

A chronograph is to be operated by a 2-s pendulum of length L shown in Fig. P2.12. A
platinum wire attached to the bob completes the electric timing circuit through a drop of
mercury as it swings through the lowest point. (a) What should be the length L of the
pendulum? (b) If the platinum wire is in contact with the mercury for 0.3175 cm of the
swing, what must be the amplitude 6 to limit the duration of contact 0.01 s? (Assume that
the velocity during contact is constant and that the amplitude of oscillation is small.)

FIGURE P2.12.
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A hydrometer float, shown in Fig. P2.13,is used to measure the specific gravity of liquids.
The mass of the floatis 0.0372 kg, and the diameter of the cylindrical section protruding
above the surface is 0.0064 m. Determine the period of vibration when the float is
allowed to bob up and down in a fluid of specific gravity 1.20.

FIGURE P2.13.

A spherical buoy 3 ft in diameter is weighted to float half out of water, as shown in
Fig. P2.14. The center of gravity of the buoy is 8 in. below its geometric center, and the
period of oscillation in rolling motion is 1.3 s. Determine the moment of inertia of the
buoy about its rotational axis.

FIGURE P2.14. FIGURE P2.15.

The oscillatory characteristics of ships in rolling motion depend on the position of the
metacenter M with respect to the center of gravity G. The metacenter M represents the
point of .intersection of the line of action of the buoyant force and the center line of
the ship, and its distance & measured from G is the metacentric height, as shown in Fig.
P2.15. The position of M depends on the shape of the hull and is independent of the
angular inclination 6 of the ship for small values of 6. Show that the period of the rolling

motion is given by
[ J
= 2 —
=2\ Yy

where J is the mass moment of inertia of the ship about its roll axis, and W is the weight
of the ship. In general, the position of the roll axis is unknown and J is obtained from the
period of oscillation determined from a model test.
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2.16.

2.17.

2.18.

2.19.

2.20.

A thin rectangular plate is bent into a semicircular cylinder, as shown in Fig. P2.16.
Determine its period of oscillation if it is allowed to rock on a horizontal surface.

[FRXVISTIINNVRINIRINNG

le— 0 —>

0 h
R/ '
e —
L
0.
FIGURE P2.16. * FIGURE P2.17.

A uniform bar of length L and weight. W is suspended symmetrically by two strings, as
shown in Fig. P2.17. Set up the differential equation of motion for small angular oscilla-
tions of the bar about the vertical axis O— O, and determine its period.

A uniform bar of length L is suspended in the horizontal position by two vertical strings of
equal length attached to the ends. If the period of oscillation in the plane of the bar and
strings is ¢, and the period of oscillation about a vertical line through the center of gravity
of the bar is t,, show that the radius of gyration of the bar about the center of gravity is
given by the expression
L\ L
k_(q)Z

A uniform bar of radius of gyration k about its center of gravity is suspended horizon-
tally by two vertical strings of length A, at distances a and b from the mass center. Prove
that the bar will oscillate about the vertical line through the mass center, and determine
the frequency of oscillation.

A steel shaft 50 in. long and 1; in. in diameter is used as a torsion spring for the wheels of
a light automobile, as shown in Fig. P2.20. Determine the natural frequency of the system
if the weight of the wheel and tire assembly is 38 Ib and its radius of gyration about its

axle is 9.0 in. Discuss the difference in the natural frequency with the wheel locked and
unlocked to the arm.

/4~—2¢

FIGURE P2.20.
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2.21. Using the energy method, show that the natural period of oscillation of the fluid in a U-
tube manometer shown in Fig. P2.21 is

|1
T=27 '22

where [ is the length of the fluid column.

FIGURE P2.21.

2.22. Figure P2.22 shows a simplified model of a single-story building. The columns are
assumed to be rigidly embedded at the ends. Determine its natural period 7. Refer to the
table of stiffness at the end of the chapter.

m
ko ko
U 7 L YL

FIGURE P2.22.

2.23. Determine the effective mass of the columﬂs of Prob. 2.22 assuming the deflection to be
-1 (1 - cos = >
y 2 Ymax I

2.24. Determine the effective mass at point # and its natural frequency for the system shown in
Fig. P2.24. . :

f
_ ‘b
ky .i‘
s I
n

FIGURE P2.24.
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2.25. Determine the effective mass of the rocket engine shown in Fig. P2.25 to be added to the
actuator mass m,.

Sy,
Ol®)-

0——‘

m
WA !

FIGURE P2.25.

2.26. The engine-valve system of Fig. P2.26 consists of a rocker arm of moment of inertia J, a
valve of mass m , and a spring spring of mass m_. Determine its effective mass at A.

ms

FIGURE P2.26. [Engine valve system.

2.27. A uniform cantilever beam of total mass m/ has a concentrated mass M at its free end.
Determine the effective mass of the beam to be added to M assuming the deflection to

be that of a massless beam with a concentrated force at the end, and write the equation
for its fundamental frequency. :
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2.28. Repeat Prob. 2.27 using the static deflection

0= S (1) - 43) 2]

for the uniformly loaded beam, and compare with previous result.

2.29. Determine the effective rotational stiffness of the shaft in Fig. P2.29 and calculate its nat-
ural period. )

i m, k1

Ve N\
!/Rz \\\l
J ’ .
/
\\</J2 U= R1
/ K ~S——1 )
é 1 Kz Kg K \_4
é 3
/ g
é—- \~ Clamped
FIGURE P2.29. ) FIGURE P2.30.

2.30. For purposes of analysis, it is desired to reduce the system of Fig. P2.30 to a simple linear
spring-mass system of effective mass m g and effective stiffness k. Determine m,, and
ki in terms of the given quantities.

2.31. Determine the effective mass moment of inertia for shaft 1 in the system shown in
Fig. P2.31.

eff

k FIGURE P2.31.

2.32. Determine thé kinetic energy of the system shown in Fig. P2.32 in terms of x. Determine
the stiffness at m,, and write the expression for the natural frequency.

AN\

FIGURE P2.32.
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™

2.33.

2.34.

2.35.

2.36.

2.37.

2.38.

2.39.

2.40.

241.

242,

2.43.

Tachometers are a reed-type frequency-measuring instrument consisting of small can-
tilever beams with weights attached at the ends. When the frequency of vibration corre-
sponds to the natural frequency of one of the reeds, it will vibrate, thereby indicating the
frequency. How large a weight must be placed on the end of a reed made of spring steel
0.1016 cm thick, 0.635 cm wide, and 8.890 cm long for a natural frequency of 20 cps?

A mass of 0.907 kg is attached to the end of a spring with a stiffness of 7.0 N/cm.
Determine the critical damping coefficient.

To calibrate a dashpot, the velocity of the plunger was measured when a given force was
applied to it. If a 3-Ib weight produced a constant velocity of 1.20 in./s, determine the
damping factor { when used with the system of Prob. 2.34.

A vibrating system is started under the following initial conditions: x = 0 and x = v,
Determine the equation of motion when (a) { = 2.0, (b) { = 0.50, and (c) { = 1.0. Plot
nondimensional curves for the three cases with w ¢ as abscissa and xw, /2, as ordinate.

In Prob. 2.36, compare the peak values for the three dampings specified. (See Appendix E
for information about MATLAB® and Appendix F for information about the programs.)
A vibrating system consisting of a mass of 2.267 kg and a spring of stiffness 17.5 N/cm is
viscously damped such that the ratio of any two consecutive amplitudes is 1.00 and 0.98.
Determine (a) the natural frequency of the damped system, (b) the logarithmic decre-
ment, (c¢) the damping factor, and (d) the damping coefficient.

A vibrating system consists of a mass of 4.534 kg, a spring of stiffness 35.0 N/cm, and a
dashpot with a damping coefficient of 0.1243 N/cm/s. Find (a) the damping factor, (b) the
logarithmic decrement, and (c) the ratio of any two consecutive amplitudes.

A vibrating system has the following constants: m = 17.5 kg, k = 70.0 N/cm, and ¢ = 0.70
N/cm/s. Determine (a) the damping factor, (b) the natural frequency of damped oscilla-
tion, (c) the logarithmic decrement, and (d) the ratio of any two consecutive amplitudes.
Set up the differential equation of motion for the system shown in Fig. P2.41. Determine

the expression for (a) the critical damping coefficient, and (b) the natural frequency of
damped oscillation.

k

—t 0
F

FIGURE P2.41. FIGURE P2.42.

Write the differential equation of motion for the system shown in Fig. P2.42 and deter-
mine the natural frequency of damped oscillation and the critical damping coefficient.

A spring-mass system with viscous damping is displaced from the equilibrium position
and released. If the amplitude diminished by 5% each cycle, what fraction of the critical -
damping does the system have?
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2.'44.. A rigid uniform bar of mass m and length / is pinned at O and supported by a spring and
viscous damper, as shown in Fig. P2.44. Measuring ¢ from the static equilibrium position,
determine (a) the equation for small 6 (the moment of inertia of the bar about O is

mi?/3), (b) the equation for the undamped natural frequency, and (c) the expression for
critical damping. Use virtual work.

FIGURE P2.44. FIGURE P2.45.

2.45. A thin plate of area A and weight W is attached to the end of a spring and is allowed to
oscillate in a viscous fluid, as shown in Fig. P2.45. If 7, is the natural period of undamped
oscillation (i.e., with the system oscillating in air) and 7, the damped period with the plate
immersed in-the fluid, show that

where the damping force on the plate is F, = u2Av, 24 is the total surface area of the
plate, and vis its velocity.

2.46. A gun barrel weighing 1200 Ib has a recoil spring of stiffness 20,000 Ib/ft. If the barrel
recoils 4 ft on firing, determine (a) the initial recoil velocity of the barrel, (b) the criti-
cal damping coefficient of a dashpot that is engaged at the end of the recoil stroke, and
(c) the time required for the barrel to return to a position 2 in. from its initial position.

2.47. A piston of mass 4.53 kg is traveling in a tube with a velocity of 15.24 m/s and engages a
spring and damper, as shown in Fig. P2.47. Determine the maximum displacement of the
piston after engaging the spring-damper. How many seconds does it take?

v=I524m/s -\ 75Ns/cm

8 [ B&
m=453kg  k=350N/m
FIGURE P2.47.

2.48. A shock absorber is to be designed so that its overshoot is 10% of the initial displace-
ment when released. Determine ¢,. If { is made equal to %{1, what will be the overshoot?

2.49. Determine the equation of motion for Probs. 2.41 and 2.42 using virtual work.
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2.50. Determine the effective stiffness of the springs shown in Flg P2.50.

m

FIGURE P2.50. FIGURE P2.52.

2.51. Determine the flexibility of a simply supported uniform beam of length L at a point § L
from the end.

2.52. Determine the effective stiffness of the system shown in Fig. P2.52, in terms of the dis-
placement x.

2.53. Determine the effective stiffness of the torsional system shown in Fig. P2.53. The two
shafts in series have torsional stiffnesses of k, and k,.

FIGURE P2.53.

2.54. A spring-mass system, m and k, is started with an initial displacement of unity and an ini-
tial velocity of zero. Plot In X versus n, where X is the amplitude at cycle n for (a) viscous
damping with £ = 0.05, and (b) Coulomb damping with damping force F, = 0.05k. When
will the two amplitudes be equal?

2.55. Determine the differential equation of motion and establish the critical damping for the

'

system shown in Fig. P2.55.

NN

m,

DN

FIGURE P2.55.
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2.56. Determine the differential equation of motion for free vibration of the system shown in
Fig. P2.56, using virtual work.

s
\F=R% N
FIGURE P2.56.

2.57. The system shown in Fig. P2.57 has two rigid uniform beams of length / and mass per unit
length m, hinged at the middle and resting on rollers at the test stand. The hinge is
restrained from rotation by.a torsional spring K and supports a mass M held up by

another spring k to a position where the bars are horizontal. Determine the equation of
motion using virtual work.

FIGURE P2.57. FIGURE P2.58.

2.58. Two uniform stiff bars are hinged at the middle and constrained by a spring, as shown in
Fig. P2.58. Using virtual work, set up the equation of motion for its free vibration.
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2.59.

2.60.

2.61.

2.62.

Free Vibration

The equation of motion for the system of Fig. P2.59 with Coulomb damping can be writ-
ten as

mx + kx = u Fsgn(x)

where sgn (x) = =1 (i, sgn (x) = +1 when x is positive and —1 when x is negative).
The general solution to this equation is

x(£) = Asin w,t + B cos w,!
F .
+ pd? sgn (x)

Evaluate the constants A and B if the motion is started with the initial conditions
x(0) = x,and x(0) = 0.

FIGURE P2.59.

If two springs are connected in series, as shown in the first figure in the table of spring
stiffness, derive the resulting spring stiffness and the natural frequency of the motion.

If two springs are connected in parallel, as shown in the second figure in the table of
spring stiffness, derive the resulting spring stiffness and the natural frequency of the
motion.

Write down the equations of motion and find the effective spring constant for the system
shown in Fig. P2.62.

FIGURE P2.62.



CHAPTER 3

Harmonically Excited Vjbration
ﬁ\&f”@w

When a system is subjected to harmonic excitation, it is forced to vibrate at the same
frequency as that of the excitation. Common sources of harmonic excitation are unbal-
ance in rotating machines, forces produced by reciprocating machines, and the motion
of the machine itself. These excitations may be undesirable for equipment whose oper-
ation may be disturbed or for the safety of the structure if large vibration amplitudes
develop. Resonance is to be avoided in most cases, and to prevent large amplitudes
from developing, dampers and absorbers are often used. Discussion of their behavior
is of importance for their intelligent use. Finally, the theory of vibration-measuring
instruments is presented as a tool for vibration analysis.

3.1 FORCED HARMONIC VIBRATION

Harmonic excitation is often encountered in engineering systems. It is commonly pro-
duced by the unbalance in rotation machinery. Although pure harmonic excitation is
less likely to occur than periodic or other types of excitation, understanding the behav-
ior of a system undergoing harmonic excitation is essential in order to comprehend
how the system will respond to more general types of excitation. Harmonic excitation
may be in the form of a force or displacement of some point in the system.

We will first consider a single-DOF system with viscous damping, excited by a
harmonic force Fj sin wt, as shown in Fig. 3.1.1. Its dlfferentlal equatlon of motion is
found from the W to be

mx + cx + kx = Fysin ot (3.1.1)

The solution to this equation consists of two parts, the complementary function,
which is the solution of the homogeneous equation, and the particular integral. The

complementary function, in this case, is a damped free vibration that was discussed in
Chapter 2.

The particular solution to the preceding equation is a steady-state oscillation of
. the same frequency w as that of the excitation. We can assume the particular solution
to be of the form

x = Xsin(wt — ¢) (3.12)
where X is the amplitude of oscillation and ¢ is the phase of the displacement with
respect to the exciting force

e amplitude and phase in the previous equation are found by substituting Eq.
(3.12) into the differential equation (3.1.1). Remembering that in harmonic motion
the phases of the velocity and acceleration are ahead of the displacement by 90° and

49
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Ly

’ﬁft

n< 3

FIGURE 3.1.1. Viscously
damped system with harmomc
Fosinw?t  excitation.

180°, respectively, the terms of the differential equation can also be displayed graphi-
cally, as in Fig. 3.1.2. It is easily seen from this diagram that

Fo

= 313
V(k = mw?)? + (cw)? ( )

and
¢ = tan~! ﬁp (3.1.4)

We now express Egs. (3.1.3) and (3.1.4) in ILondimensiohal form that enables a
concise graphical presentation of these results. D1v1d1ng the numerator and dﬂg_n_llrlg;_

tor of Egs. (3.1.3) and (3.1.4) by k, we obtain
| . Ay MY
. _ F
k
X = — = (3.1.5)
\/(1 __mw) N (ca))
k k
and
cw
k
tan ¢ = ——2 (3.1.6)
Lo met
k
2
mw X wa
Fo
Reference

FIGURE 3.1.2. Vector relationship for
forced vibration with damping.
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These equations can be further expressed in terms of the following quantities:

. k '
w, = \/ — = natural frequency of undamped oscillation
m
¢, = 2mw, = critical damping
c . :
{= P damping factor
c — N,
Cw ¢ Ccw

C C, _ 2
* ok D%,

n
The nondimensional expressions for the amplitude and phase then become

Xk _ 1

SR ECIREE

%(2,)
O
o)

w’l
These equations indicate that the nondimensional amplitude Xk/F, and the phase ¢
are functions only of the frequencv ratio w/w_ and the damping factor and can be
piotted as shown in Fig. 3.1.3. These curves show that the dampmg has a large influence
on the amplitude and phase angle in the frequency region near resonance. Further
“understanding of the behavior of the system can be obtained by studying the force dia-
gram corresponding to Fig. 3.1.2 in the regions w/ w,small, o/ w,=1,and 0/ o, large.

For small values of w/w, <1, both the inertia and dampmg forces are small,
which results in a small phase angle ¢. The magnitude of the impressed force is then
nearly equal to the spring force, as shown in Fig. 3.1.4(a).

For w/w, = 1.0, the phase angle is 90° and the force diagram appears as in
Fig. 3.1.4(b). The inertia force, which is now larger, is balanced by the spring force,
whereas the impressed force overcomes the damping force. The amplitude at reso-
nance can be found, either from Eqs. (3.1.5) or (3.1.7) or from Fig.3.1.4(b), to be

' ' _ K _FK .
X ca, 20k 3.1.9)

At large values of w/w,> 1, ¢ approaches 180°, and the impressed force is

expended almost entirely in overcoming the large inertia force as shown in Fig. 3.1.4(c).

In summary, we can write the differential equation and its complete solution,
including the transient term as
A e

(3.1.7)

and

tan ¢ = (3.1.8)

. . F,
X+ 2w, x + olx = Z" sin ot (3.1.10)



52 Chapter3 Harmonically Excited Vibration

: 180°
ﬂr ol - 0.05
— 0.15
h-N
. }|-0.375 >
30 .05 2 -
0.10 § 90 -——
Y]
0.15 8
=& |
0.25
20 ‘ o] 1 2 ¢ 5
< I o 0.375 Frquency ratio &
> |w (
0.50
1.0 \
1.0
o 1.0 20 30 40 5.C

Frequency ratio g}n

FIGURE 3.1.3. Plot of Egs. (3.1.7) and~(3.1.8).

(0) ww,<<1 (b) w/wy, =1

(€) w/wy>>1

FIGURE 3.1.4. Vector relationship in forced vibration. '

() = 1_;9 sin (wt2— $) :
Je-(T [z

+ X,e~%sin(V1 = Lot + )

Complex frequency response. From the vector force polygon of Fig. 3.1.2, it is
easily seen that the terms of Eq. (3.1.1) are projections of the vectors on the vettical
axis. If the force had been F; cos wt instead of F sin wt, the vector force polygon would
be unchanged and the terms of the equation then would have been the projections of’
the vectors on the horizontal axis. Taking note of this, we could let the harmonic force

be represented by

Fy(cos wt + isin wf) = Fye*

(3.1.11)

(3.1.12)
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This would be equivalent to multiplying the quantities along the vertical axis by
i =V — 1and using complex vectors. The displacement can then be written as

x = Xew=9 = (Xe )™ = Xeit (3.1.13)
where X is a complex displacement vector:
‘ X = Xe™i¢ (3.1.14)

Substituting into the differential equation and canceling from each side of the equa-
tion give the results '

(—e’m + ico + k)X = F,.
and

7 - F,  Egk
T (k- o*m) +ilcw) 1 - (0/w,)+ i(2le/w,)

It is now convenient to introduce the complex frequency response H(w) defined
as the output divided by the input:

. X 1/k
Hl(w) F 1-(0/w)?+i2{w/w,
(Often the factor 1/k is considered together with the force, leaving the frequency
response a nondimensional quantity.) Thus, H(w) depends only on the frequency ratio
and the damping factor.

The real and imaginary parts of H(w) can be identified by multiplying and divid-
ing Eq. (3.1.16) by the complex conjugate of the denominator. The result is

= 1 - (w/@,) . 2w/ o,
W) = T (o/a T + Biolal = @la)T + Blalal O

"This equation shows that at resonance, the real part is zero and the response is given by
the imaginary part, which is

(3.1.15)

(3.1.16)

_ .
H(w) = —i % (3.1.18)
It is easily seen that the phase angle is
_ o/,
e T (w/a,)

3.2 ROTATING UNBALANCE

Unbalance in rotating machines is a common source of vibration excitation. We con-
sider here a spring-mass system constrained to move in the vertical direction and
excited by a rotating machine that is unbalanced, as shown in Fig. 3.2.1. The unbalance
is represented by an eccentric mass m with eccentricity e that is rotating with angular
velocity . By letting x be the displacement of the nonrotating mass (M — m) from the
static equilibrium position, the displacement of m is

x + esin wt
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FIGURE 3.2.1. Harmonic disturbing
force resulting from rotating unbalance.

The equation of motion is then
d? .
(M—m)x+m2172 (x+esinwt) = — kx — cx

which can be rearranged to
MX + cx + kx = (mew?) sin ot (3.2.1)

Itis evident, then, that this equation is identical to Eq. (3.1.1) where F, is replaced by
mea?, and hence the steady-state solution of the previous section can be replaced by

mew?

X= (3.2.2
Vik — Mo?)? + (co)? )
and '
cw
tan ¢ = m (3.2.3)
These can be further reduced to nondimensional form:
| (2]
MX_ n (32.4)
m e

and
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FIGURE 3.2.2. Plot of Egs. (3.2.4) and (3.2.5) for forced vibration with rotating unbalance.

and presented graphically as in Fig. 3.2.2. The complete solution is given by

x(1) = X,e ' sin(V1 — st + &)

mew?

+ Ve T o sin (ot — ¢) (3.2.6)

EXAMPLE 3.2.1

A counterrotating eccentric weight exciter is used to produce the forced oscillation of a spring-
supported mass, as shown in Fig. 3.2.3. By varying the speed of rotation, a resonant amplitude
of 0.60 cm was recorded. When the speed of rotation was increased considerably beyond the

<
>
S

3=
)
3>

7/, FIGURE 3.2.3.
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resonant frequéncy, the amplitude appeared to approach a fixed value of 0.08 cm. Determine
the damping factor of the system.

Solution From Eq. (3.2.4), the resonant amplitude is

me

M
X= —éz- = (.60 cm

When w is very much greater than w,, the same equation becomes

x="%<008cm

M
By solving the two equations simultaneously, the damping factor of the system is
0.08
£= 700 0666

3.3 ROTOR UNBALANCE

In Sec. 3.2 the system was idealized to a spring-mass-damper unit with a rotating
unbalance acting in a single plane. It is more likely that the unbalance in a rotating
wheel or rotor is distributed in several planes. We wish now to distinguish between two
types of rotating unbalance.

Static unbalance. When the unbalanced masses all lie in a single plane, as in the
case of a thin rotor disk, the resultant unbalance is a single radial force. As shown in
Fig. 3.3.1, such unbalance can be detected by a static test in which the wheel-axle
assembly is placed on a pair of horizontal rails. The wheel will roll to a position where
the heavy point is directly below the axle. Because such unbalance can be detected
without spinning the wheel, it is called static unbalance.

Dynamic unbalance. When the unbalance appears in more than one plane, the
resultant is a force and a rocking moment, which is referred to as dynamic unbalance.
As previously described, a static test may detect the resultant force, but the rocking
moment cannot be detected without spinning the rotor. For example, consider a shaft

FIGURE 3.3.1. System with
static unbalance.
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[t

é:- Rotor =§
FIGURE 3.3.2. System FIGURE 3.3.3. A rotor
with dynamic unbalance. balancing machine.

with two disks, as shown in Fig. 3.3.2. If the two unbalanced masses are equal and 180°
apart, the rotor will be statically balanced about the axis of the shaft. However, when
the rotor is spinning, each unbalanced disk would set up a rotating centrifugal force,
tending to rock the shaft on its bearings.

In general, a long rotor, such as a motor armature or an automobile engine
crankshaft, can be considered to be a series of thin disks, each with some unbalance.
Such rotors must be spun in order to detect the unbalance. Machines to detect and cor-
rect the rotor unbalance are called '‘balancing machines. Essentially, the balancing
machine consists of supporting bearings that are spring-mounted so as to detect the
unbalanced forces by their motion, as shown in Fig. 3.3.3. By knowing the amplitude of
each bearing and their relative phase, it is possible to determine the unbalance of the
rotor and correct for them. The problem is that of 2 DOEF because both translation and
angular motion of the shaft take place simultaneously. '

EXAMPLE 3.3.1

Although a thin disk can be balanced statically, it can also be balanced dynamically. We describe
one such test that can be simply performed.

The disk is supported on spring-restrained bearings that can move horlzontally, as shown in
Fig. 3.3.4. With the disk running at any predetermined speed, the amplitude X, and the wheel
position a at maximum excursion are noted. An accelerometer on the bearing and a stroboscope
can be used for this observation. The amplitude X;, due to the original unbalance m, is drawn to
scale on the wheel in the direction from o to a.

-

FIGURE 3.3.4. Experimental balaricing of a thin disk.
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Next, a trial mass m, is added at any point on the wheel and the procedure is repeated at the
same speed. The new amplitude X, and wheel position b, which are due to the original unbalance
m, and the trial mass m,, are represented by the vector ob. The difference vector ab is then the
effect of the trial mass m, alone. If the position of m, is now advanced by the angle ¢ shown in
the vector diagram, and the magnitude of m, is increased to m, (oa/ab), the vector ab will
become equal and opposite to the vector oa. The wheel is now balanced because X, is zero.

EXAMPLE 3.3.2

A thin disk is supported on spring-mounted bearings, as shown in Fig. 3.3.5. When run at 300 rpm
counterclockwise (ccw), the original disk indicates a maximum amplitude of 3.2 mm at 30° cew
from a reference mark on the disk. Next, a trial weight of 2.5 oz is added to the rim at 143° ccw
from the reference mark, and the wheel is again run at 300 rpm ccw. The new amplitude of 7 mm

is then found at 77° ccw from the reference mark. Determine the correction weight to be placed
on the rim to balance the original disk.

Solution The diagrams of Fig. 3.3.5 display the solution graphically. The vectors measured by
the instrument and the position of the trial weight are shown in Fig. 3.3.5(b). Vector ab in Fig.
3.3.5(c) is found graphically to be equal to 5.4 mm, and the angle ¢ is measured to be 107°. If

FIGURE 3.3.5.
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vector ab is rotated 107° ccw, it will be opposite the vector oa. To cancel oa it must be shortened
by oa/ab = 3.2/5.4 = 0.593. Thus, the trial weight W, = 2.5 oz must be rotated 107° ccw and
reduced in size to 2.5 X 0.593 = 1.48 oz. Of course, the graphical solution for ab and ¢ can be
found mathematically by the law of cosines.

Figure 3.3.6 shows a model simulating a long rotor with sensors at the two bearings. The two
end disks may be initially unbalanced by adding weights at any location. By adding a trial weight
at one of the disks and recording the amplitude and phase and then removing the first trial
weight and placing a second trial weight to the other disk and making similar measurements, the
initial unbalance of the simulated rotor can be determined.

FIGURE 3.3.6. The plane-balancing experiment. (Courtesy of UCSB Mechanical
Engineering Undergraduate Laboratory.)

3.4 WHIRLING OF ROTATING SHAFTS

Rotating shafts tend to bow out at certain speeds and whirl in a complicated manner.
Whirling is defined as the rotation of the plane made by the bent shaft and the line of
centers of the bearings. The phenomenon results from such various causes as mass
unbalance, hysteresis damping in the shaft, gyroscopic forces, fluid friction in bearings,
and so on. The whirling of the shaft can take place in the same or opposite direction as

that of the rotation of the shaft and the whirling speed may or may not be equal to the
_ rotation speed. : ‘

We will consider here a single disk of mass m symmetrically located on a shaft sup-
ported by two bearings, as shown in Fig. 3.4.1. The center of mass G of the disk is at a dis-
tance e (eccentricity) from the geometric center S of the disk. The center line of the
bearings intersects the plane of the disk at O, and the shaft center is deflected by r = OS.

We will always assume the shaft (i.e., the line e = SG) to be rotating at a constant
speed o, and in the general case, the line » = OS to be whirling at speed 6 that is not

equal to . For the equation of motion, we can develop the acceleration of the mass
center as follows: -

a; = ag + ag (341)
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FIGURE 3.4.1. Whirling of shaft.

where a g is the acceleration of S and a ¢ is the acceleration of G with respect to S. The
latter term is directed from G to §, because w is constant. Resolving a in the radial
and tangential directions, we have

a; =[(r - r6?) — ew?cos (wt — 0)]i + [(rd + 276) - e_eu2 sin(wt — 0)]j (34.2)

Aside from the restoring force of the shaft, we will assume a viscous damping force ta

be acting at S. The equations of motion resolved in the radial and tangential directions '
then become

— kr — ¢ = m[r — r8* — ew?cos (wt — 6)]
— ¢cr6 = m[r8 + 2/ — ew?sin (wt — 6)]

which can be rearranged to

r+ _C_". + (k. - '02)’. = ew? oS (wt - 0) (3.4.3)
" m m ,
o + (;;—r 4 2i)é = ew?sin (wt ~ 6) (3.4.4)

The general case of whirl as described by the foregoing equations comes under
the classification of self-excited motion, where the exciting forces inducing the motion
are controlled by the motion itself. Because the variables in these equations are r and
0, the problem is that of 2 DOF. However, in the steady-state synchronous whirl, where
6= wand 8 = r = r = 0, the problem reduces to that of 1 DOF.

Synchronous whirl. For the synchronous whirl, the whirling speed 9 is equal to
the rotation speed w, which we have assumed to be constant. Thus, we have
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and on integrating we obtain
0=wt— ¢

where ¢ is the phase angle between e and r, which is now a constant, as shown in Fig.3.4.1.
With § =¥ = r = 0, Egs. (3.4.3) and (3.4.4) reduce to

(-If- - wz)r = ew?cos ¢
m

/

2-
— wr = ew”sin ¢
m

(3.4.5)
Dividing, we obtain the following equation for the phase angle:
% ) 2¢ 2
tan ¢ = = a - , (3.4.6)
e (5
— - w 1-1—
m w,
where w, = Vk/m is the critical speed, and { = ¢/c. Noting from the vector triangle of
Fig. 3.4.2 that
.
0s ¢ = '
CEE
m m

and substituting into the first of Eq. (3.4.5) gives the amplitude equation

_ mew? B | e( wﬂn )2 '
T V= med) + ap \/[1 } (f),;)z]zv+ [2{ (wﬂ) ]2- (34.7)

These equations indicate that the eccentricity line e = SG leads the displace-
ment line r = OS by the phase angle ¢, which depends on the amount of damping and
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w << Wy ' W = Wy w>> Wy

FIGURE 3.4.3. Phase of different rotation speeds.

the rotation speed ratio w/w,. When the rotation speed coincides with the critical
speed w, = Vk/m, or the natural frequency of the shaft in lateral vibration, a condi-
tion of resonance is encountered in which the amplitude is restrained only by the
damping. Figure 3.4.3 shows the disk-shaft system under three different speed condi-
tions. At very high speeds, w > ®,, the center of mass G tends to approach the fixed
point O, and the shaft center S rotates about it in a circle of radius e.

It should be noted that the equations for synchronous whirl appear to be the
same as those of Sec. 3.2. This is not surprising, because in both cases the exciting force
is rotating and equal to mew?. However, in Sec. 3.2 the unbalance was in terms of the
small unbalanced mass m, whereas in this section, the unbalance is defined in terms of
the total mass m with eccentricity e. Thus, Fig. 3.2.2 is applicable to this problem with
the ordinate equal to r/e instead of MX/me. -

EXAMPLE 3.4.1

Turbines operating above the critical speed must run through dangerous speed at resonance
each time they are started or stopped. Assuming the critical speed w, to be reached with ampli-
tude r,, determine the equation for the amplitude buildup with time. Assume zero damping.

Solution We will assume synchronous whirl as before, which makes 9 = w = constant and 8
= 0. However, 7 and r terms must be retained unless shown to be zero. With ¢ = 0 for the
undamped case, the general equations of motion reduce to

. k N,
r+(m w)r—ew.cos¢ .
2rw = ew?sin ¢ (a)

The solution of the second equation with initial deflection equal to r, is

ew
2

Differentiating this equation twice, we find that r = 0; so the first equation with the above solu-
tion for r becomes

r="-

tsin¢g +ry )

m

T T
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N ‘ FIGURE 3.4.4. Amplitude and
S~ phase relationship of synchronous

whirl with viscous damping.

Because the right side of this equation is constant, it is satisfied only if the coefficient of ¢ is zero:

k 2) .
AR = d
(m o’|sin ¢ v (d)
which leaves the remaining terms:
(E - wz) ro = ew’cos ¢ (e)
m

With @ = Vk/m, the first equation is satisfied, but the second equation is satisfied only if
cosp=0o0r¢= /2. Thus, we have shown that at w = V k/m, or at resonance, the phase angle

is 7/2 as before for the damped case, and the amplitude builds up linearly according to the equa-
tion shown in Fig. 3.4.4.

3.5 SUPPORT MOTION

In many cases, the dynamical system is excited by the motion of the support point, as
shown in Fig. 3.5.1. We let y be the harmonic displacement of the support point and
measure the displacement x of the mass m from an inertial reference.

In the displaced position, the unbalanced forces are due to the damper and the
springs, and the differential equation of motion becomes

mi= —k(x—y)—c(x-y) (3.5.1)
By making the substitution £ ‘
‘ 2=x-y (352)
m
X
m
7 cu—y)l l k(x-y)
C
k k
2 2 y

. FIGURE 3.5.1. System excited
7’%/ by motion of support point.
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Eq. (3.5.1) becomes
mz+cz+kz= —my
= mw? Ysin wt (3.5.3)

where y = Y'sin wt has been assumed for the motion of the base. The form of this equa-
tion is identical to that of Eq. (3.2.1), where z replaces x and m«?Y replaces meco?.
Thus, the solution can be immediately written as

z = Zsin (ot — ¢)

ma?’Y
= 354
z \/(k - mcuz)2 + (ca))2 ( )
tan ¢ = ﬁ (3.5.5)

and the curves of Fig. 3.2.2 are applicable with the appropriate change in the ordinate.
If the absolute motion x of the mass is desired, we can solve forx = z + y. Using
the exponential form of harmonic motion gives

y —= Yeiwt
7= Zei(ml*qﬁ) — (Zef'ut)eimr
x = Xel@~¥=(Xe™¥)ei . A (3.56)

Substituting into Eq. (3.5.3), we obtain

. mw*Y
Z e =
¢ k — mo?’+iwc

and

x =(Ze * + Y)e™

k + iwc )
=|—— |Ye™ 3.57
(k—mw2+iwc) ¢ ( )

The steady-state amplitude and phase from this equation are

x| _ k? + (wc)?
‘ . ‘?l - \/(k - mwz)2 + (cw)? (358)
and '
?
tan ¢ = Kk = ::2) T @R (3.59)

which are plotted in Fig. 3.5.2. It should be observed that the amplitude curves for

different damping all have the same value of |X/Y| =10 at the frequency
o/, = V2. ' ‘
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FIGURE 3.5.2. Plot of Eqgs. (3.5.8) and (3.5.9).

3.6 VIBRATION ISOLATION

Vibratory forces generated by machines and other causes are often unavoidable; how-
ever, their effects on a dynamical system can be minimized by proper isolator design.
An isolation system attempts either to protect a delicate object from excessive vibra-
tion transmitted to it from its supporting structure or to prevent vibratory forces gen-
erated by machines from being transmitted to its surroundings. The basic problem is
the same for these two objectives, that of reducing the transmitted force.

Figure 3.5.2 for | X/Y| shows that the motion transmitted from the supporting
structure to the mass m is less than 1 when the ratio o/ w, is greater than /2. This indi-
cates that the natural frequency w, of the supported system must be small compared to -
that of the disturbing frequency w. This requirement can be met by using a soft spring.

' The other problem of reducing the force transmitted by the machine to the sup-
porting structure has the same requirement. The force to be isolated is transmltted
through the spring and damper, as shown in Fig. 3.6.1. Its equation is

Fr=V(kX)? + (cwX)? = kX\(l + (2{0)) (3.6.1)
wn
With the disturbing force equal to F, sin wt, the value of X in the preceding equation is
. Fo/k

" VL= (@/a) T + Era/af (36.1a)
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'FIGURE 3.6.1. Disturbing force transmitted through springs and
damper.
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FIGURE 3.6.2.

The transmissibility 7R, defined as the ratio of the transmitted force to that of the dis-
turbing force, is then '

F 1+ (2w/w,)?
TR=|-TI\ = \f 2 362
Fo| ™ V= (/)T + 20707 (362
Comparison of the preceding equation with Eq.(3.5.8) shows that
F X
TR = || = |=
x=|2|- 7]
- When the damping is negligible, the transmissibility equation reduces to
TR = ——5—— 3.63
(@/w,y — 1 (363)

where it is understood that the value of w/w, to be used is always greater than V2.0n

further replacing w, by A/g, where g is the acceleration of gravity and A is the statical
deflection, Eq. (3.6.3) can be expressed as

1
T @apialg -1

To reduce the amplitude X of the isolated mass m without changing TR, m is
often mounted on a large mass M, as shown in Fig. 3.6.2. The stiffness k¥ must then be
increased to keep the ratio k /(m + M) constant. The amplitude X is, however, reduced
because k appears in the denominator of Eq. (3.6.1a).

Because in the general problem the mass to be isolated may have 6 DOF (three
translation and three rotation), the designer of the isolation system must use his or her
intuition and ingenuity. The results of the single-DOF analysis should, however, serve

TR
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as a useful guide. Shock isolation for pulse excitation is discussed in Secs. 4.5 and 4.6 in
Chapter 4. ‘

EXAMPLE 3.6.1

A machine of 100 kg mass is supported on springs of total stiffness 700 kN/m and has an unbal-
anced rotating element, which results in a disturbing force of 350 N at a speed of 3000 rpm. |
Assuming a damping factor of { = 0.20, determine (a) its amplitude of motion due to the unbal-
ance, (b) the transmissibility, and (c) the transmitted force.
Solution The statical deflection of the system is

100 X 9.81
700 X 10°

and its natural frequency is

1 [ osl ~
fo= 32\ Taol x 103~ 1332 Hz

(a) By substituting into Eq. (3.1.5), the amplitude of vibration is

350
_ 700 X 10°

- 50 \2 T . 50
\/[1 - (13.32) ] + [2 % 0.20 x 13.32]
=379X 10"m

= 0.0379 mm
(b) The transmissibility from Eq. (3.6.2) is

50 \?
\j1+(2X020X ﬁ)

B 50 VT 50\
—_ — . X —
\/[ ! ( 13.32 ) ] * (2 X020 X 1333 )
(c) The transmitted force is the disturbing force multiplied by the transmissibility.

Fpp = 350 X 0137 = 47.89N

= 1.401 X 107*m = 1.401 mm

3.7 ENERGY DISSIPATED BY DAMPING

Damping is present in all oscillatory systems. Its effect is to remove energy from the
system. Energy in a vibrating system is either dissipated into heat or radiated away.
Dissipation of energy into heat can be experienced simply by bending a piece of metal
back and forth a number of times. We are all aware of the sound that is radiated from
an object given a sharp blow. When a buoy is made to bob up and down in the water,
waves radiate out and away from it, thereby resulting in its-loss of energy.

In vibration analysis, we are generally concerned with damping in terms of sys-
tem response. The loss of energy from the oscillatory system results in the decay -of
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amplitude of free vibration. In steady-state forced vibration, the loss of energy is bal-
anced by the energy that is supplied by the excitation.

A vibrating system can encounter many different types of damping forces, from
internal molecular friction to sliding friction and fluid resistance. Generally, their
mathematical description is quite complicated and not suitable for vibration analysis.
Thus, simplified damping models have been developed that in many cases are found to
be adequate in evaluating the system response. For example, we have already used the
viscous damping model, designated by the dashpot, which leads to manageable mathe-
matical solutions.

Energy dissipation is usually determined under conditions of cyclic oscillations.
Depending on the type of damping present, the force-displacement relationship when
plotted can differ greatly. In all cases, however, the force-displacement curve will
enclose an area, referred to as the hysteresis loop, that is proportional to the energy

lost per cycle. The energy lost per cycle due to a damping force F, is computed from the
general equation

W, = 95Fddx (3.7.1)

In general, W, depends on many factors, such as temperature, frequency, or amplitude.

We consider in this section the simplest case of energy dissipation, that of a
spring-mass system with viscous damping. The damping force in this case is F, = cx.
With the steady-state displacement and velocity

x = Xsin (wt — ¢)
x = wX cos (ot — ¢)
the energy dissipated per cycle, from Eq. (3.7.1), becomes

W= et = et

2m/w '
= cw XZJ cos?(wt — ¢) dt = mcwX? (372)
0 - :

Of particular interest is the energy dissipated in forced vibration at resonance. By sub-
stituting w, = Vk/m and ¢ = Z{Vkm, the preceding equation at resonance becomes

W, = 2{mkX? ' (31.3)

The energy dissipated per cycle by the damping force can be represented graphically
as follows. ertmg the velocity in the form

= wXcos(wt ~ ¢) = * wXV1 - sin?(wf — ¢)
= +oVX? - x?
the damping force becomes

Fj=ci= % coVX? - £ - (37.4)
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FIGURE 3.7.1. ‘Energy dissipated by viscous damping,.

By rearranging the foregoing equation to

Fy )2 ' (1 )2 -
(cwX, + x) = 1 (3.7.5)
we recognize it as that of an ellipse with F, and x plotted along the vertical and hori-
zontal axes, respectively, as shown in Fig. 3.7.1(a). The energy dissipated per cycle is
then given by the area enclosed by the ellipse. If we add to F, the force kx of the loss-
less spring, the hysteresis loop is rotated as shown in Fig. 3.7.1(b). This representation
then conforms.to the Voigt model, which consists of a dashpot in parallel with a
spring. '
Damping properties of materials are listed in many different ways, depending on
the technical areas to which they are applied. Of these, we list two relative energy units

that have wide usage. First of these is specific damping capacity, defined as the energy
loss per cycle W, divided by the peak potential energy U:

W, . ‘
T ~ (3.16)

The second quantity is the loss coefficient, defined as the ratio of damping enefgy
loss per radian W /24 divided by the peak potential or strain energy U:

W,
= 3.77
= a0 , ( _)

For the case of linear damping, where the energy loss is proportional to the
square of the strain or amplitude, the hysteresis curve is an ellipse. When the damping

loss is not a quadratic function of the strain or amplitude, the hysteresis curve is no
longer an ellipse. '
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EXAMPLE 3.7.1

Determine the expression for the power developed by a force F = F;sin(wt + ¢) acting.on a
displacement x = X, sin wt.
Solution Power is the rate of doing work, which is the product of the force and velocity.

d.
P= FZ’;‘ = (wX,F,)sin (wt + ) cos ot

= (wX, F,) [cos ¢ - sin wt cos wt + sin ¢ - cos? wt]
= 10X, F,[sin ¢ + sin Qut + )]

The first term is a constant, representing the steady flow of work per unit time. The second
term is a sine wave of twice the frequency, which represents the fluctuating component of power,
the average value of which is zero over any interval of time that is a multiple of the period.

EXAMPLE 3.7.2

A force F = 10sin ot N acts on a displacement of x = 2 sin(#t — #/6) m. Determine (a) the
work done during the first 6 s; (b) the work done during the first ; s.

Solution Rewriting Eq. (3.7.1) as W= [Fxdt and substituting F = Fysinet and
x = X sin(wt — ¢)gives the work done per cycle of

W = nF,Xsin ¢

For the force and displacement given in this problem, F, = 10 N.X=2m,¢= ‘n-/6; and the

period 7= 2 5. Thus, in the 6 s specified in (a), three complete cycles take place, and the work
done is .

W = 3(wF,Xsin ¢) = 37 X 10 X 2 X sin30° = 942N -m
The work done in part (b) is determined by integrating the expression for work between the lim-
itsOand}; s.
12 1/2
W= wFOX(,[ cos 30°J

sin 7t cos t dt + sin 30°j
0

sin’wt dt]
0

. 1/2
= 7% 10 X 2[—0f66cos2m + 0.50(-'- _ S 2’”)]
w

2 4m o

=1651N'm

3.8 EQUIVALENT VISCOUS DAMPING

The primary influence of damping on oscillatory systems is that of limiting the ampli-
tude of response at resonance. As seen from the response curves of Fig. 3.1.3, damping
has little influence on the response in the frequency regions away from resonance.
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In the case of viscous damping, the amplitude at resonance, Eq. (3.1.9), was found
to be
Fy

cw,

X = (3.8.1)
For other types of damping, no such simple expression exists. It is possible, however, to
approximate the resonant amplitude by substituting an equivalent damping c,_ in the
foregoing equation.

The equivalent damping c,, is found by equating the energy dissipated by the vis-

cous damping to that of the nonviscous damping force with assumed harmonic motion.
From Eq. (3.7.2),

TCqwX® =W, (3.8.2)
where W, must be evaluated from the particular type of damping force.

EXAMPLE 3.8.1

Bodies moving with moderate speed (3 to 20 m/s) in fluids such as water or air are resisted by a
damping force that is proportional to the square of the speed. Determine the equivalent damp-
ing for such forces acting on.an oscillatory system, and find its resonant amplitude.
Solution Let the damping force be expressed by the equation ‘

V Fd = =* a)éz

where the negative sign must be used when x is positive, and vice versa. Assuming harmonic
motion with the time measured from the position of extreme negative displacement,

x = —Xcoswt

the energy dissipated per cycie is

W, = 2J ax’dx = 2aw2x3f sin® wt d{ wt)
-x 0
= g aw’X?
The equivalent viscous damping from Eq. (3.8.2) is then -
Coy = 3%7 awX

The amplitude at resonance is found by substituting ¢ = ¢, in Eq.(3.8.1) with 0 = o,

_ ' 3nF,
X= 8aw?

EXAMPLE 3.8.2

Find the equivalent viscous damping for Coulomb damping.
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Solution We assume that under forced sinusoidal excitation, the displacement of the system
with Coulomb damping is sinusoidal and equal to x = X sin wt. The equivalent viscous damping
can then be found from Eq. (3.8.2) by noting that the work done per cycle by the Coulomb force
F,is equal to W, = F, X 4X. Its substitution into Eq. (3.8.2) gives

L. ¢ I=4FX

4F,
‘™ roX
The amplitude of forced vibration can be found by substituting c,_ into Eq. (3.1.3):

Fy
4F, w\?
2 d
\/(k mw) + (‘n'mX)

Xl \/F‘%_ (i%)z RV (:;0)

k- mw k 1_(£>2
w'l

We note here that unlike the system with viscous damping, X/§, goes to © when & = w,,.
For the numerator to remain real, the term 4F,/ wF; must be less than 1.0.

Solving for X, we obtain

n
3.9 STRUCTURAL DAMPING '

‘When materials are cyclically stressed, energy is dissipated internally within the mater-
ial itself. Experiments by several investigators! indicate that for most structural metals,
such as steel or aluminum, the energy dissipated per cycle is independent of the fre-
quency over a wide frequency range and proportional to the square of the amplitude
of vibration. Internal damping fitting this classification is called solid damping or struc-
tural damping. With the energy dissipation per cycle proportional to the square of the
vibration amplitude, the loss coefficient is a constant and the shape of the hysteresis
curve remains unchanged with amplitude and independent of the strain rate.
Energy dissipated by structural damping can be written as

W, = aX? : (39.1)

where a is a constant with units of force/displacement. By using the concept of equiva-
lent viscous damping, Eq. (3.8.2) gives

mequz = aX?
or

Cpg= — ' (3.9.2)

!A. L. Kimball, “Vibration Damping, Including the Case of Solid Damping,” Trans. ASME, APM 51-52-

(1929). Also B. J. Lazan, Damping of Materials and Members in Structural Mechanics (Elmsford NY:
Pergamon Press, 1968).
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By substituting c,, for ¢, the differential equation of motion for a system with structural
damping can be wrltten as

mx + (i ) x + kx = Fysin ot (3.9.3)
mTw

Complex stiffness. In the calculation of the flutter speeds of airplane wings and

tail surfaces, the concept of complex stiffness is used. It is arrived at by assummg the
oscillations to be harmonic, which enables Eq. (3.9.3) to be written as

. .a .
mx + (k+t—)x= Fype'
T

By factoring out the stiffness k and letting y = a/wk, the preceding equation becomes
mx + k(1 + iy) x = Fe™ ' (3.94)

The quantity k(1 + iv) is called the complex stiffness and v is the structural damping
factor.

Using the concept of complex stiffness for problems in structural vibrations is
advantageous in that one needs only to multiply the stiffness terms in the system by
(1 + iy). The method is justified, however, only for harmonic oscillations. With the
solution x = Xe', the steady-state amplitude from Eq. (3.9.4) becomes

X= = ng) + ivk (39:3)
The amplitude at resonance is then
F,
|x| = y—z (3.9.6)
Comparing this with the resonant response of system with viscous damping
x= 52
20k

we conclude that with equal amplitudes at resonance, the structural damping factor is '
equal to twice the viscous damping factor.

Frequency response with structural damping. By startiﬁg with Eq. (3.9.5), the
. complex frequency response for structural damping can be shown to be a circle.

Letting w/w, = r and multiplying and d1v1d1ng by its complex conjugate give a com-
plex frequency response of

1 1-r? , -

y .
B e A (e e (e
where
3 1-r2 d _ - -
N I e N (R k2
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FIGURE 3.9.1. Frequency
response with structural
damping. 4

The following algebra leads to
L1 a-ry-y
YTy T [0+ 4
X 1\ 4y -+ (1 =) =290 - ) +
oo 4]

[0 -r) + T
()

e 3T-()
) Ty
This is a circle of radius 1/2y with center —1/27, as shown in Fig. 3.9.1.

Every point on the circle represents a different frequency ratio » At resonance,
r=1x=0,y=~1/y,and H(r) = —i/¥y.

3.10 SHARPNESS OR RESONANCE

In forced vibration, there is a quantity Q related to damping that is a measure of the

sharpness of resonance. To determine this quantity, we assume viscous damping and
start with Eq. (3.1.7).

When w/w, = 1, the resonant amplitude is x = (F,/k)/2{. We now seek the
two frequencies on either side of resonance (often referred to as sidebands), where X

is 0.707X . These points are also referred to as the half-power points and are shown in
Fig. 3.10.1.

Letting X = 0.707X , and squaring Eq. (3.1.7), we obtain
-1( 1 )2 _ 1
Alar ] T ] 292 2
N T )
wﬂ w’l

(03)4 -2(1 - 2{2)((03’1)2 +(1-89=0 (3.10.1)

or
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Solving for (w /w,)? we have
2
(wﬂ) =1 -2)+xuV1i-¢ (3.102)

Assuming { <1 and neglecting higher-order terms of ¢, we arrive at the result

(3)2 =1+2 (3.10.3)

n

Letting the two frequencies corresponding to the roots of Eq. (3.10.3) be w, and w,, we
obtain

2 2
_ @ Wy, (@2 W
e
n

n

The quantity Q is then defined as

w,

A = fy =—1— (3.104)
wm—w fHL-fi AU

Here, again, equivalent damping can be used to define Q for systems with other forms
of damping. Thus, for structural damping, Q is equal to

.

| Q= (3.10.5)

1
Y

3.11  VIBRATION-MEASURING INSTRUMENTS

The basic element of many vibration-measuring instruments is the seismic unit of
Fig. 3.11.1. Depending on the frequency range utilized, displacement, velocity, or

- acceleration is indicated by the relative motion of the suspended mass with respect

to the case.
To determine the behavior of such instruments, we consider the equation of

. motion of m, which is
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N <

/}J /53 S »}// I,
FIGURE 3.11.1.

mx= —clx—y) —k(x—-y) (3.11.1)
where x and y are the displacement of the seismic mass and the vibrating body, respec-

tively, both measured with respect to an inertial reference. Letting the relative dis-
placement of the mass m and the case attached to the vibrating body be

z=x-Yy (3.11.2)

and assuming sinusoidal motion y = Y sin wt of the vibrating body, we obtain the
equation

mz + cz + kz = mw’Y sin wt (3.11.3)

This equation is identical in form to Eq. (3.2.1) with z and m«?Y replacing x and mec”,
respectively. The steady-state solution z = Z'sin (wf — ¢) is then available from inspec-

tion to be
z= 5 ’""’22’2’ - = O = (3114)
)
. wn w’l N
and .
e
tan ¢ = —— = On (3.11.5)

k — mo? ( ) )2
1 _ _—
’ ) wn
It is evident then that the parameters invclved are the frequency ratio w/w, and the
damping factor ¢. Figure 3.11.2 shows a plot of these equations and is identical to
Fig. 3.3.2 except that Z/Y replaces MX/me. The type of instrument is determined by

the useful range of frequencies with respect to the natural frequency w, of the instru-
ment. ' :

Seismometer: instrument with low natural frequency. When the natural fre-
quency w, of the instrument is low in comparison to the vibration frequency  to be
measured, the ratio w/w, approaches a large number, and the relative displacement Z
approaches Y regardless of the value of the damping ¢, as indicated in Fig. 3.11.2. The

mass m then remains stationary while the supporting case moves with the vibrating
body. Such instruments are called seismometers.
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One of the disadvantages of the seismometer is its large size. Because Z = Y, the
relative motion of the seismic mass must be of the same order of magnitude as that of
the vibration to be measured. '

The relative motion z is usually converted to an electric voltage by making the
seismic mass-a magnet moving relative to coils fixed in the case, as shown in Fig. 3.11.3.
Because the voltage generated is proportional to the rate of cutting of the magnetic
field, the output of the instrument will be proportional to the velocity of the vibrating
‘body. Such instruments are called velometers. A typical instrument of this kind can

have a natural frequency from 1 to 5 Hz and a useful frequency range of 10 to 2000 Hz.
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The sensitivity of such instruments can be in the range of 20 to 350 mV/cm/s, with the
maximum displacement limited to about 0.5 cm peak to peak.

Both the displacement and acceleration are avajlable from the velocity-type
transducer by means of the integrator or the differentiator provided in most signal
conditioner units.

Figure 3.11.4 shows the Ranger seismometer, which because of its high sensitivity
was used in the U.S. lunar space program. The Ranger seismometer incorporates a
velocity-type transducer with the permanent magnet as the seismic mass. Its natural

frequency is nominally 1 Hz with a mass travel of = 1 mm. Its size is 15 cm in diameter
and it weighs 11 Ib. "

Accelerometer: instrument with high natural frequency. When the natural
frequency of the instrument is high compared to that of the vibration to be mea-

FIGURE 3.11.4. Ranger seismometer. (Courtesy of Kinemetrics, Inc., Pasadena, California.)
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sured, the instrument indicates acceleration. Examination of Eq. (3.11.4) shows that

the factor v
272 2
- (2] T+ (e2)

w’l wn

approaches unity for w/w, — 0,so that.

- w?{ _ accelerzation (3.11.6)

w Wy,

Thus, Z becomes proportional to the acceleration of the motion to be measured with a

factor 1/ wf,. The useful range of the accelerometer can be seen from Fig. 3.11.5, which
is a magnified plot of

1

- ()T e

for various values of damping {. The diagram shows that the useful frequency range of
the undamped accelerometer is somewhat limited. However, with { = 0.7, the useful
frequency range is 0 < w/w, < 0.20 with a maximum error less than 0.01 percent. Thus,
an instrument with a natural frequency of 100 Hz has a useful frequency range from 0
to 20 Hz with negligible error. Electromagnetic-type accelerometers generally utilize
damping around { = 0.7, which not only extends the useful frequency range, but also
prevents phase distortion for complex waves, as will be shown later. On the other hand,
very high natural-frequency instruments, such as the piezoelectric crystal accelerome-
ters, have almost zero damping and operate without distortion up to frequencies of
0.06f .

"Several different accelerometers are in use today. The seismic mass accelerome-
ter is often used for low-frequency vibration, and the supporting springs may be four
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FIGURE 3.11.5.  Acceleration error vs. frequency with { as a parameter.
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electric strain gage wires connected in a bridge circuit. A more accurate variation of
this accelerometer is one in which the seismic mass is servo-controlled to have zero rel-
ative displacement; the force necessary to accomplish this becomes a measure of the
acceleration. Both of these instruments require an external source of electric power.

The piezoelectric properties of crystals like quartz or barium titanate are utilized
in accelerometers for higher-frequency measurements. The crystals are mounted so
that under acceleration, they are either compressed or bent to generate an electric
charge. Figure 3.11.6 shows one such arrangement. The natural frequency of such
accelerometers can be made very high, in the 50,000-Hz range, which enables accelera-
tion measurements to be made up to 3000 Hz. The size of the crystal accelerometer is
very small, approximately 1 cm in diameter and height, and it is remarkably rugged
and can stand shocks as high as 10,000 g’s. _

The sensitivity of the crystal accelerometer is given either in terms of charge (pi-
cocoulombs = pC = 10? Coulombs) per g, or in terms of voltage (millivolts =
mV = 1073 V) per g. Because the voltage is related to the charge by the equation
E = Q/C,the capacitance of the crystal, including the shunt capacitance of the connecting
cable, must be specified. Typical sensitivity for a crystal accelerometer is 25 pC/g with
crystal capacitance of 500 pF (picofarads). The equation E = Q/C then gives
25/500 = 0.050 mV/g = 50 mV /g for the sensitivity in terms of voltage. If the accelerom-
eter is connected to a vacuum-tube voltmeter through a 3-m length of cable of capaci-
tance 300 pF, the open-circuit output voltage of the accelerometer will be redli‘ged to

. 500 '
500 + 300

This severe loss of signal can be avoided by using a charge émplifier, in which'casé, the
capacitance of the cable has no effect.

50 =313 mV/g

Phase distortion. To reproduce a complex wave such as the one shown in
Fig. 3.11.7 without changing its shape, the phase of all harmonic components must
remain unchanged with respect to the fundamental. This requires that the phase angle
be zero or that all the harmonic components must be shifted equally. The first case of
zero phase shift corresponds to { = 0 for w/w, < 1. The second case of an equal time-

Mass Piezoelectric
crystal

|

FIGURE 3.11.6. _ FIGURE 3.11.7.

ail

T W22l |4
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wise shift of all harmonics is nearly satisfied for { = 0.70 for w/w, < 1. As shown in
Fig.3.11.2, when £ = 0.70, the phase for «/w, <1 can be expressed by the equation

T W

2 w,
Thus, for £ = 0, or 0.70, the phase distortion is practically eliminated.

EXAMPLE 3.11

Investigate the output of an accelerometer with damping ¢ = 0.70 when used to measure a peri-
odic motion with the displacement given by the equation

y =Y, sin wt + Y,sin w,t

Solution For {=070,¢=7n/2 X w/w,s0that ¢, = 7/2 X w,/w, and ¢, = 7/2 X w,/w,
The output of the accelerometer is then

z = Z;sin (ot — ¢,) + Z,sin (w2 — ¢,)
By substituting for Z, and Z, from Eq. (3.12.6), the output of the instrument is

1 . T . T
z= ;i[w%Ylsmwl(t— 2—0),,) + w%Y2smw2(t— an)]

Because the time functions in both terms are equal (1 — 7/2w,), the shift of both components
along the time axis is equal. Thus, the instrument faithfully reproduces the acceleration y without
distortion. It is obvious that if ¢, and ¢, are both zero, we again obtain zero phase distortion.

- PROBLEMS
s 3.1. A machine part of mass 1.95 kg vibrates in a viscous medium. Determine the damping

coefficient when a harmonic exciting force of 24.46 N results in a resonant amplitude of
1.27 cm with a period of 0.20 s.

If the system of Prob. 3.1 is excited by a harmonic force of frequency 4 cps, what will be

the percentage increase in the amplitude of forced vibration when the dashpot is
removed?

-3.3. A weight attached to a spring of stiffness 525 N/m has a viscous damping device. When

the weight is displaced and released, the period of vibration is 1.80 s, and the ratio of

consecutive amplitudes is 4.2 to 1.0. Determine the amplitude and phase when a force
F = 2 cos 3t acts on the system.

3.2,

3.4. Show that for the dampled spring-mass system, the peak amplitude occurs at a frequency
ratio given by the expression
(2] v
© _
"’p

3.5. A spring-mass is.excited by a force F,sin wt. At resonance, the amplitude is measured to

be 0.58 cm. At 0.80 resonant frequency, the amplitude is measured to be 0.46 cm.
Determine the damping factor { of the system.



82

Chapter 3 Harmonically Excited Vibration

3.6. Plot the real and imaginary parts of Eq. (3.1.17) for { = 0.01 and 0.02. (See Appendix E
for information about Matlab®.)

3.7. For the system shown in Fig. P3.7, set up the equation of motion and solve for the steady-
state amplitude and phase angle by using complex algebra. ,

|‘x| X3 = X, sin wt

c k
m —VW-——e

e e ke caaahaaas

FIGURE P3.7.
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3.8. Shown in Fig. P3.8 is a cylinder of mass m connected to a spring of stiffness k excited
through viscous friction ¢ to a piston with motion y = A sinwt. Determine the amplitude
of the cylinder motion and its phase with respect to the piston.

FIGURE P3.8.

3.9. A thin disk is supported on spring-mounted bearings with vibration pickup and strobo-
tac, as shown in Fig. P3.9. Running at 600 rpm ccw, the original disk indicates a maximum
amplitude of 2.80 mm at 45° cw from a reference mark on the disk. Next a trial weight of
2.0 oz is added at the rim in a position 91.5° cw from the reference mark and run at the
same speed. If now the new unbalance is 6.0 mm at 80° cw from the reference mark,
determine the position and weight necessary to balance the original disk.

FIGURE P3.9.

3.10. If for the same disk of Prob. 3.9, the trial weight of 2 oz is placed at 135° cw from the ref-
erence mark, the new unbalance is found to be 4.3 mm at 111° cw. Show that the correct
balance weight is unchanged.
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3.12.

313.

3.14.

3.15.
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If the wheel of Prob. 3.9 shows resonance at 900 rpm with damping of { = 0.10, deter-

mine the phase lag of the original unbalance and check the vector diagrams of Probs. 3.9
and 3.10.

Prove that a long rotor can be balanced by adding or removing weights in any two paral-
lel planes, and modify the single disk method to balance the long rotor.

A counterrotating eccentric mass exciter shown in Fig. P3.13 is used to determine the
vibrational characteristics of a structure of mass 181.4 kg. At a speed of 900 rpm, a stro-
boscope shows the eccentric masses to be at the top at the instant the structure is moving
upward through its static equilibrium position, and the corresponding amplitude is 21.6
mm. If the unbalance of each wheel of the exciter is 0.0921 kg - m, determine (a) the nat-
ural frequency of the structure, (b) the damping factor of the structure, (c) the amplitude
at 1200 rpm, and (d) the angular position of the eccentrics at the instant the structure is
moving upward through its equilibrium position.

©@

M
k k
2 ¢ 2
77, 7777, 7777777 v
FIGURE P3.13.

Solve Eq. (3.2.1) for the complex amplitude,. ie., let (mew?) sin ot = Fe™ and
“x = Xellot=¢) = (Xe~%)ei = Xei. .
A balanced wheel supported on springs, as shown in Fig. P3.15, is rotating at 1200 rpm. If
a bolt weighing 15 g and located 5 cm from center suddenly comes loose and flies off,

determine the buildup of vibration if the natural frequency of the system is 18 cps with
damping of { = 0.10.

FIGURE P3.15.
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3.16. A solid disk weighing 10 Ib is keyed to the center of a 3-in. steel shaft 2 ft between bear-

3.17.
3.18.

3.19.

3.20.

3.21.

3.22.

ings. Determine the lowest critical speed. (Assume the shaft to be simply supported at
the bearings.)

Convert all units in Prob. 3.16 to the SI system and recalculate the lowest critical speed.

The rotor of a turbine 13.6 kg in mass is supported at the midspan of a shaft with bearings
0.4064 m apart, as shown in Fig. P3.18.The rotor is known to have an unbalance of 0.2879
kg - cm. Determine the forces exerted on the bearings at a speed of 6000,rpm if the diam-
eter of the steel shaft is 2.54 cm. Compare this result with that of the same rotor mounted

on a steel shaft of diameter 1.905 cm. (Assume the shaft to be simply supported at the
bearings.)

!
a
A
, g

; 77

7 / 7
z
z

FIGURE P3.18.

For turbines operating above the critical speed, stops are provided to limit the amplitude
as they run through the critical speed. In the turbine of Prob. 3.18, if the clearance
between the 2.54-cm shaft and the stops is 0.0508 cm, and if the eccentricity is 0.0212 cm,

determine the time required for the shaft to hit the stops. Assume that the critical speed
is reached with zero amplitude.

Figure P3.20 represents a simplified diagram of a spring-supported vehicle traveling over
a rough road. Determine the equation for the amplitude of W as a function of the speed,
and determine the most unfavorable speed.

FIGURE P3.20.

The springs of an automobile trailer are compressed 10.16 cm under its weight. Find the
critical speed when the trailer is traveling over a road with a profile approximated by a
sine wave of amplitude 7.62 cm and wavelength of 14:63 m. What will be the amplitude of
vibration at 64.4 km/h? (Neglect damping.)

The point of suspension of a simple pendulum is given by a harmonic motion
X = X, sin ot along a horizontal line, as shown in Fig, P3.22. Write the differential equa-
tion of motion for a small amplitude of oscillation using the coordinates shown.
Determine the solution for x/x,, and show that when @ = V2w, , the node is found at
the midpoint of /. Show that in general the distance & from the mass to the node is glven
by the relation & = w,/w)?, where w, = Vg/l.
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F“ "“" FIGURE P3.22.

3.23. Derive Egs. (3.5.8) and (3.5.9) for the amplitude and phase by letting y = Y sin wt and
x = X sin(wt — ¢) in the differential equation (3.5.1).

3.24. An aircraft radio weighing 106.75 N is to be isolated from engine vibrations ranging in
frequencies from 1600 to 2200 cpm. What statical deflection must the isolators have for
85% isolation? : '

3.25. A refrigerator unit weighing 65 b is to be supported by three springs of stiffness k Ib/in.
each. If the unit operates at 580 rpm, what should be the value of the spring constant k if
only 10% of the shaking force of the unit is to be transmitted to the supporting structure?

3.26. An industrial machine of mass 453.4 kg is supported on springs with a static deflection of
0.508 cm. If the machine has a rotating unbalance. of 0.2303 kg - m, determine (a) the
force transmitted to the floor at 1200 rpm and (b) the dynamic amplitude at this speed.
(Assume damping to be negligible.) '

3.27. If the machine of Prob. 3.26 is mounted on a large concrete block of mass 1136 kg and the
stiffness of the springs or pads under the block is increased so that the statical deflection
is still 0.508 cm, what will be the dynamic amplitude? -

3.28. An electric motor of mass 68 kg is mounted on an isolator block of mass 1200 kg and the
natural frequency of the total assembly is 160 cpm with a damping factor of { = 0.10 (see
Fig. P3.28). If there is an unbalance in the motor that results in a harmonic force of

F = 100 sin 31.4¢, determine the amplitude of vibration of the block and the force trans-
mitted to the floor.

FIGURE P3.28.

3.29. A sensitive instrument with mass 113 kg is to be installed at a location where the acceler-
ation is 15.24 cm/s? at a frequency of 20 Hz. It is proposed to mount the instrument on a
rubber pad with the following properties: k = 2802 N/cm and { = 0.10. What accelera-
tion is transmitted to the instrument?
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3.30.

M 3.31.

3.32.

3.33.
3.34.
3.35.

3.36.

3.37.
3.38.

3.39.

3.40.
341

If the instrument of Prob. 3.29 can tolerate an acceleration of only 2.03 cm/s?, suggest a

solution assuming that the same rubber pad is the only isolator available. Give numerical
values to substantiate your solution.

For the system shown in Fig. P3.31, verify that the transmissibility TR = |x/ y| is the same

as that for force. Plot the transmissibility in decibels, 20 log | TR| versus w/w, between
wlw, =1.50 to 10 with { = 0.02,0.04, ...,0.10.

1

m
lk__i_i:: ’
y
FIGURE P3.31. L

Show that the energy dissipated per cycle for viscous friction can be expressed by

mF} 2{(w/w,)

k1 - (0/w) ] + R2¢w/w,)]?

Show that for viscous damping, the loss factor 7 is independent of the amplitude and pro-
portional to the frequency.

Express the equation for the free vibration of a single-DOF system in terms of the loss
factor 7 at resonance.

Show that 7,/7, plotted against { is a quarter circle where 7, is the damped natural
period, and 7, is the undamped natural period.
For small damping, the energy dissipated per cycle divided by the peak potential energy
is equal to 28 and also to 1/Q. [See Eq. (3.7.6).] For viscous damping, show that
TCw,

k
In general, the energy loss per cyéle is a function of both amplitude and frequency. State
under what condition the logarithmic decrement & is independent of the amplitude.

Coulomb damping between dry surfaces is a constant D always opposed to the motion.
Determine the equivalent viscous damping.

W, =

8:

Using the result of Prob. 3.38, determine the amplitude of motion of a spring-mass system
with Coulomb damping when excited by a harmonic force £ sin wt. Under what condition
can this motion be maintained? '

Plot the results of Prob. 3.39 in the permjssible range.

The shaft of a torsiograph, shown in Fig. P3.41, undergoes harmonic torsional oscillation

6, sin ot. Determine the expression for the relative amplitude of the outer wheel with
respect to (a) the shaft and (b) a fixed reference.

FIGURE P3.41.
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3.43.

3.44.

3.45.

3.46.

3.47.

3.48.

3.49.

3.50.

3.51.

3.52.

M 353,
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A commercial- -type vibration pickup has a natural frequency of 4.75 cps and a damping
factor { = 0.65. What is the lowest frequency that can be measured with (a) 1% error and
(b) 2% error?
An undamped vibration pickup having a natural frequency of 1 cps is used to measure a
harmonic vibration of 4 cps. If the amplitude indicated by the pickup (relative amplitude
between pickup mass and frame) i_s 0.052 cm, what is the correct amplitude?
A manufacturer of vibration-measuring instruments gives the following specifications
for one of its vibration pickups:
Frequency range: Velocity response flat from 10 to 1000 cps.
Sensitivity: 0.096 V/cm/s, both volts and velocity in rms values,
Amplitude range: Almost no lower limit to maximum stroke between stops of 0.60in.
(a) This instrument was used tc measure the vibration of a machine with a known fre-
quency of 30 cps. If a reading of 0.024 V is indicated, determine the rms amplitude.
(b) Could this instrument be used to measure the vibration of a machine with known
frequency of 12 cps and double amplitude of 0.80 cm? Give reasons.

A vibration pickup has a sensitivity of 40 mV/cm/s from f = 10 to 2000 Hz. If 1 g accel-
eration is maintained over this frequency range, what will be the output voltage at (a) 10
Hz and (b) 2000 Hz?

Using the equations of harmonic motion, obtain the relationship for the velocity versus
frequency applicable to the velocity pickup.

A vibration pickup has a sensitivity of 20 mV /cm/s. Assuming that 3 mV (rms) is the
accuracy limit of the instrument, determine the upper frequency limit of the instrument
for 1 g excitation. What voltage would be generated at 200 Hz?

The sensitivity of a certain crystal accelerometer is given as 18 pC/g, with its capacitance
equal to 450 pF. It is used with a vacuum-tube voltmeter with connecting cable 5 m long
with a capacitance of 50 pF/m. Determine its voltage output per g.

Specific damping capacity W, /U is defined as the energy loss per cycle W, divided by the
peak potential energy U = —kX 2. Show that this quantity is equal to

w, - ®
U - 411'{( o, )
where { = ¢/c,,.

Logarithmic decrement & for small damping is equal to § = 2#{. Show that & is related to
the specific damping capacity by the equation

For a system with hysteresis damping, show that the structural damping factor v is equal
to the loss factor at resonance.

For viscous damping, the complex frequency response can be written as
1

1 -7+ i)

where r = w/w,,and { = ¢/c,. Show that the plot of H = x + iy leads to the equatiol

e (o)
IV ) T\

which cannot be a circle because the center and the radius depend on the frequency ratio.

The following problem uses the programs runga.m and f.m where f.m contains the forcing
function, [force] = sin(z). You should use the following parameters for all of the problem:

H(r) =
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spring constant, k = 1; initial position x(0) = 0; time step, 8t = 0.2; and initial time, ¢, = 0.
Produce a plot for each of the cases considered.
(a) For the next fwo casesm = 1,c¢ = 1, and tfinal = 20.
i. initial velocity x'(0) = 1
ii. initial velocity x'(0) = 10
iii. How does the initial velocity affect the response of the system?
(b) For the next three cases, the initial velocity is fixed x'(0) = 10.
i. ¢=10,m =1, and final = 40.
ii. ¢=1,m =10,and tfinal =
iii. ¢ = 1,m = 10, and tfinal = 100.

iv. Discuss why it takes the two systems different amounts of time to reach the
steady state solution.

Consider the system forced with two frequencies given by

mx + cx + kx = F;sin(wt) + F, sin (o,1).

‘Solve the equations of motion. Find the relationship between the amplitudes of the

3.55.

M 3.56.

™M 357

motion and the ratios of frequencies w, /w, ,/ . Plot the results in Matlab®.

Consider the system shown in Fig. P3.55, with the viscous damping coefficient ¢ and
spring stiffness k. Derive the equation of motion when the system is forced by a sinu-
soidal force Fsin(wt). What is the effective damping for this system? What is the energy
dissipated over one cycle? Comparé this system with the system in which the spring and
the damper are connected in parallel.

FIGURE P3.55. IF: Fq sin{wt)

Consider the problem of Example 3.8.1. Solve the equations of motion numerically in
Matlab® and plot the average amplitude of oscillation versus the frequency ratio.
Compare with the result obtained in Example 3.8.1 where the equivalent viscous damp-
ing approach is used.

A table-tennis ball is jumping on the table that is oscillating periodically in time. The

position of the table is given by y(t) = Asin(t). It is assumed that the coefficient of resti-
tution is 1, so when the ball leaves the table it does so with the velocity V given vy

V=2w-U
where W is the velocity of the table at that moment in time and U is the velocity of the
ball at the impact. Simulate the motion in MATLAB® and plot the results in the following
form: Record the velocity of the ball v, and time t; at every impact with the table. Do this

for different initial conditions and for different forcmg frequencies w. Plot the average of
the amplitude of the ball over time versus the forcing frequency.



CHAPTER 4

Transient Vibration

When a dynamical system is excited by a suddenly applied nonperiodic excitation F(r),
the response to such excitation is called transient response, since steady-state oscilla-
tions are generally not produced. Such oscillations take place at the natural frequen-
cies of the system with the amplitude varying in a manner dependent on the type of
excitation.

We first study the response of a spring-mass system to an impulse excitation
because this case is 1mportant in the understanding of the more general problem of
transients.

4.1 IMPULSE EXCITATION

Impulse is the time integral of the force, and we designate it by the notation F

= JF(t) dt 4.1.1)

We frequently encounter a force of very large magnitude that acts for a very short time

but with a time integral that is finite. Such forces are called impulsive. "
Figure 4.1.1 shows an impulsive force of magnitude F, / e with a time duration of .

As € approaches zero, such forces tend to become infinite; however, the impulse

D— Y, 1Y '_’I

L—e——”« ' FIGURE 4.1.1. '
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defined by its time integral is F, which is considered to be finite. When F is equal to
unity, such a force in the limiting case € — 0 is called the unit impulse, or the delta func-

tion. A delta function at ¢ = £is identified by the symbol 8(t — £) and has the following
properties:

it—¢=0 forallt # £

It

greater than any assumed value for ¢ = ¢

f (t—&dt =10 0<¢<o (4.1.2)
0 :

If 8(t — &) is multiplied by any time function f(¢), as shown in Fig. 4.1.2, the product
will be zero everywhere except at ¢ = £ and its time integral will be

j FO8 - Odi=fH 0 <i<o (413)

Because Fdt = m dv, the impulse F acting on the mass will result in a sudden
change in its velocity equal to F/m without an appreciable change in its displacement.
Under free vibration, we found that the undamped spring-mass system with initial con-
ditions x(0) and x(0) behaved according to the equation

x= *0) sin w,t + x(0)cos w,t
w’l
Hence, the response of a spring-mass system initially at rest and excited by an impulse
Fis ‘
F -
x = —sinwt = Fh(t) (4.1.9)
mw,
where
h(r) = 1 sinw,t ' (4.1.5)
mw, "

is the response to a unit impulse.

—e—| !

FIGURE 4.1.2.
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When damping is present, we can start with the free-vibration equation, Eq. (2.6,17),

with x(0) = 0:
HOe ™ TP
x = sinV1 — oyt
w,V1l - ¢ ¢
Substituting for the initial condition x(0) = F /m, we arrive at the equation ‘
F
= ————— ¢ %sinV1 - Poyt 4.1.6
V1= ‘ (419

The response to the unit impulse is of importance to the problems of transients
and is identified by the special designation h(¢). Thus, in either the damped or
undamped case, the equation for the impulsive response can be expressed in the form

x = Fh(r) (4.1.7)
where the right side of the equation is given by either Eq. (4.1.4) or (4.1.6).

4.2 ARBITRARY EXCITATION

By having the response A(f) to a unit impulse excitation, it is possible to establish the
equation for the response of the system excited by an arbitrary force f(f) . For this
development, we consider the arbitrary force to be a series of impulses, as shown in

Fig. 4.2.1. If we examine one of the impulses (shown crosshatched) at time ¢ = ¢, its
strength is

F=f(¢) A¢

and its contribution to the response at time ¢ is dependent upon the elapsed time

(t - §,or
f(&) AER (e - §)

. F(g)
i T !
. ~£-» <-A€ 'P £=f €
flEIAE
f(E)AE h(t-
£
‘—6 k‘ (t-¢ —!

FIGURE 4.2.1.
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where h(t — §) is the response to a unit impulse started at ¢ = £ Because the system we
are considering is linear, the principle of superposition holds. Thus, by combining all

such contributions, the response to the arbitrary excitation f(r) is represented by the
integral

() = j F(Oh(c - &) de (421)

This integral is called the convolution integral and is sometimes referred to as the
superposition integral.

EXAMPLE 4.2.1

Determine the response of a single-DOF system to the step excitation shown in Fig. 4.2.2.

£(r)

Fo

FIGURE 4.2.2. Step function excitation.

Solution Considering the undamped system, we have
1
h(t) =
mo,
By substituting into Eq.(4.2.1), the response of the undamped system is

x(t) = r:;(:: J sin w,(t — &) d¢

n J0

sin w,!

422)
F,
=3 (1 — cos w,f)

This result indicates that the peak response to the step excitation of magnitude F, is equal to
twice the statical deflection.
For a damped systein, the procedure can be repeated with
——————sin
ma,V1 — ¢

- {w,t
V1~ § ot

or, alternatively, we can simply consider the differential equation

h(t) = ¢

' F
. . .
X+ 2w, x + wyx = -

whose solution is the sum of the solutions to the homogeneous equation and that of the particu-
lar solution, which for this case is Fo/mw;‘:. Thus, the equation
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wpt

FIGURE 4.2.3. Response to a unit step function.

x(2) = Xe%'sin (V1 - 2 ot — ¢) + Fy

2
n

fitted to the initial condition of x(0) = x(0) = 0 will result in the solution, which is given as

—{aw,t
x= %[1 — ﬁcos (V1= Zaot- ¢)] (4.2.3)
where
tan ¢ = ——{
Vi-¢2

Figure 4.2.3 shows a plot of xk/F versus w,t with { as a parameter, and it is evident that the
peak response is less than 2F,/k when damping is present.

Base excitation. Often, the support of the dynamical system is subjected to a
sudden movement specified by its displacement, velocity, or acceleration. The equation

of motion can then be expressed in terms of the relative displacement z = x — y as
follows:

7+ 2wz + olz= -y 4.2.4)

and, hence, all of the results for the force-excited system apply to the base-excited sys-
tem for z when the term F/m is replaced by —y or the negative of the base acceleration.

For an undamped system initially at rest, the solution for the relative displace-
ment becomes

2= - 2 @sma-oas @)

n J0

EXAMPLE 4.2.2

Consider an undamped spring-mass system where the motion of the base is specified by a veloc-
ity pulse of the form

¥(®) = voe ™ "ou(r)

where u(?) is a unit step function. The velocity together with its time rate of change is shown in
Fig.4.24.
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Yo

FIGURE 4.2.4.

Solution The velocity pulse at ¢ = 0 has a sudden jump from zero to vy, and its rate of change

(or acceleration) is infinite. Differentiating y(f) and recognizing that (d/dt)u(f) = 8(f), a delta
function at the origin, we obtain

¥ = e 08(0) ~ “Leu(y)
0

By substituting y into Eq. (4.2.5), the result is

Y%

- [ [emsta(@ - Le-viu@ [sin o, — 0 at
@, Jo )

n

z(p)

_%f 8(&e ¥osinw, (t — &) de + ”0[ J e ¥osin w,(r — ¢§) d§
0

n J0 W, by
Voly i )
= ——F—=(e ™" — w,t,sin w,t — cOS Wl 4.2.6)
1+(w,,t0)2( n*0 n n) (

4.3 LAPLACE TRANSFORM FORMULATION

The Laplace transform method of solving the differential equation provides a com-
plete solution, yielding both transient and forced vibrations. For those unfamiliar with
this method, a brief presentation of the Laplace transform theory is given in Appendix
B. In this section, we illustrate its use by some simple examples.

EXAMPLE 4.3.1

Formulate the Laplace transform solution of a viscously damped Spring—mass system with initial
conditions x(0) and x(0).
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Input F(s) — | H(s) | - Output X(s)

FIGURE 43.1. Block diagram.

- Solution The equation of motion of the system excited by an arbitrary force F(¢) is
mx + cx + kx = F(t)
Taking its Laplace transform, we find
m[s?x(s) — x(0)s — x(0)] + c[sx(s) - x(0)] + kx(s) = F(s)

Solving for x(s), we obtain the subsidiary equation:

%(s) = Hs) N (ms + ¢)x(0) + mx(0)
ms* +cs + k ms?+cs+ k

(4.3.1a)

The response x(¢) is found from the inverse of Eq. (4.3.1); the first term represents the forced
vibration and the second term represents the transient solution due to the initial conditions.
For the more general case, the subsidiary equation can be written in the form

Als)

i(s) = 30) | (43.1b)

where A(s) and B(s) are polynomials and B(s), in general, is of higher order than A(s).
If only the forced solution is considered, we can define the impedance transform as

Fs)

6 =z(s) = ms’+ s+ k : (4.3.1¢)

Its reciprocal is the admittance transform

H(s) = z—(ls—) . (4.3.1d)

Frequently, a block diagram is used to denote input and output, as shown in Fig: 431.The
admittance transform H(s) then can also be considered as the system transfer function,defined as

the ratio in the subsidiary plane of the output over the input with all initial conditions equal to
zero.

EXAMPLE 4.3.2 (Drop Test) ' ‘

. The question of how far a body can be dropped without incurring damage is of frequent interest.
Such considerations are of paramount importance in the landing of airplanes or the cushioning
of packaged articles. In this example, we discuss some of the elementary aspects of this problem
by idealizing the mechanical system in terms of linear spring-mass components.

Consider the spring-mass system of Fig. 4.3.2 dropped thiough a height k. If x is measured
from the position of m at the instant t = 0 when the spring first contacts the floor, the differential
equation of motion for m applicable as long as the spring remains in contact with the floor is

mx + kx = mg (4.3.2a)

Taking the Laplace transform of this equation with the initial conditions x(0) =0 and
x(0) = V2gh, we can write the subsidiary equation as
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2
9
Pl
h m 1 x=2gh o4 g
@?
l ? ¢
X 2gh
T w?
FIGURE 4.3.2. FIGURE 4.3.3.
%(s) = o 28h - (432b)
st+ ok s(s?+ W)

where w, = Vk/m is the natural frequency of the system. From the inverse transformation of

x(s), the displacement equation becomes

x(t) = 2ghsmmt+ —2(1 - coswt\

W,

\/ sm(wt—d)) %

x(t)>0

(4.32¢)

where the relationship is shown in Flg. 4.3.3. By differentiation, the velocity and acceleration are

. 2
xm=%—%+

w,

x(t) = —w?

2
_gi\ cos(w,t — ¢)

sin (o, — ¢)

We recognize here that g/w® = 8

» and that the maximum displacement and acceleration occur at
sin (w,t — ¢) = 1.0. Thus, the maximum acceleration in terms of gravity is found to depend only
on the ratio of the distance dropped to the statical deflection as given by the equation

-2

on ¥

(4324)

A plot of this equation is shown in Fig.4.3.4.

FIGURE 4.3.4.
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EXAMPLE 4.3.3

For a man in a seated position, as when driving an automobile, the single-DOF model of Fig. 435
is often assumed for forensic studies. From extensive biomechanical tests, the spinal stiffness of
81,000 N/m = 458 Ib/in.! is assumed for the spring k supporting the body mass W/g. By assumir.lg
mg = 160 Ib, this results in a static deflection of §, = 160/458 = 0.35 in. Let us assume that in hit-
ting an obstacle, the driver not restrained by a seat belt is thrown upward and drops 3.0 in. in free
fall onto an unpadded stationary seat. Determine the g acceleration transmitted by his spinal cord.

| 1o

FIGURE 4.3.5.

Solution The result for this problem is simply obtained from Eq.(4.3.2) as

——\/%}5 +1= — \fw +1= —426
5, 0.35

4 4 PULSE EXCITATION AND RISE TIME

In this section, we consider the time response of the undamped sprlng mass system to
three different excitations shown in Fig. 4.4.1. For each of these force excitations, the
time response must be considered in two parts, t < ¢, and t > t,.

Rise time. The input can be considered to be the sum of two ramp functions, as
shown in Fig. 4.4.2. For the first ramp function, the terms of the convolution integral are

o=+l

(44.1)

h(t) = sin ot = —sin w,t

mo, " k "

Fo - A Fo N FO
i
!
i

2 ! 1 f f —!
(a) Constant with rise time (b) Rectangular pulse (c) Half-sine pulse
FIGURE 4.4.1.

1See Ref. [5].
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F
| *
| o
| ¥
AN _ '
FIGURE 4.4.2.
and the response becomes
t
x(t) = = j FoLsin w(t - &)de
klJo "4

(44.2)

F,(t sin w,t
=L - - 1<t
k\y W,

For the second ramp function starting at ¢,, the solution can be written by inspec-
tion of the foregoing equation as

() = — _F_O[ -4 sine,(r— ‘1)]
k L w, b

By superimposing these two equations, the response for ¢ > t, becomes

x(t)=%[l—w+ 1 sinwn(t—tl)] t>1 (4.4.3)

w, tl w, tl

Rectangular pulse. The input pulse here can be considered as the sum of two
step functions, as shown in Fig. 4.4.3.
We already have the response to the step function as

% =[1-coswpt] t<t (44.4)
0 : .

The peak response here is obviously equal to 2.0 at ¢ = 3 7.
The response to the second step function started at ¢ = ¢, is

ke —[1 = cos w,(t — ;)] (4.4.5)
FO
Fo ; ]
|
i
0} t
'1
‘FOF_—

FIGURE 4.4.3.
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and by adding, the response in the second interval ¢ > ¢, becomes

kx

Fy

{[1 = cos wt] — [1 = cos w,(t — ¢,)]}
(4.4.6)

—cos w,t + cosw,(t — 1) >4
Half-sine pulse. For a pulse of time duration ¢,, the excitation is .

: . mt ’
F(r) = F, sin—= fort <t
1

44.7)
=0 fort >t

and the differential equation of motion is
. ) F, . '
X+ wpx = - sin wt/ty, 1<t (4.4.8)

. The general solution is the sum of the free vibration and the particular solution

. F, sinpt
)=A t+ B t+ 2= 4.
x() sin w, cos @yt + — pr— (4.4.9)
where p = r/t,. To satisfy the initial conditions x(0) = x(0) = 0, we find
P
F,
B=0 and A=--°—Y% _ >
1 —_ | 2=
\w
and the previous solution reduces to

p

(xk) On sin w,t + 1 sin pt
MV % Ghett ———
R ey 1_(3)2 7
w, , (4.4.10)

2 T

i
XY
ok
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To determine the solution for ¢ > t,, we use Eq. (4.4.10) but with ¢ replaced by
(t — t,). However, we choose a different procedure, noting that for ¢ > ¢,, the excitation
force is zero and we can obtain the solution as a free vibration [see Eq. 2.6.17] with
U =(—-1t).

x(t) = x(e )sm w,t + x(tl) Ccos w, t (4.4.11)

n

The initial values x(¢;) and x(tl) can be obtained from Eq. (4.4.10), notmg that
pt, = m.
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kx(t
x(t) = 2[sinpt1 - (ﬂ) sinwntl] =—1——2[—£-sinwnt1]
g,
w, @,
kx(t) _ 1 4

F, L (L)z [p cos pt; = pcos w,t,] =
wn

Substituting these results into Eq. (4.4.11), we obtain

P
k .
J—;— = a;;’ 5 [(1 + cos w,t,)sin w,t' + sin w,t, cos w,!']
* (3
wn
_pr
= —% [sin w,?’ + sin w,(t' + )] (4.4.12)
1 —_— A
(&)

1 . 2wt . ton\]
= ——— |sin— +sin2nw| - — = t>1
T 4 T
2t T

4.5 SHOCK RESPONSE SPECTRUM

In the previous section, we solved for the time response of an undamped spring-mass
system to pulse excitation of time duration ¢;. When the time duration ¢, is small com-
pared to the natural period 7 of the spring-mass oscillator, the excitation is called a
shock. Such excitation is often encountered by engineering equipment that must
undergo shock-vibration tests for certification of satisfactory design. Of particular
interest is the maximum peak response, which is a measure of the severity of the shock.
In order to categorize all types of shock excitation, the single-DOF undamped oscilla-
tor (spring-mass system) is chosen as a standard.

- Engineers have found the concept of the shock response spectrum to be useful in
design. The shock response spectrum (SRS) is a plot of the maximum peak response of
the single-DOF oscillator as a function of the natural period of the oscillator. The max-
imum of the peaks, often labeled maximax, represents only a single point on the time
response curve. It does not uniquely define the shock input because it is possible for
two different shock pulses to have the same maximum peak response. In spite of this

“limitation, the SRS is a useful concept that is extensively used, especially for prelimi-
nary design. ' '
In Eq. (4.2.1), the response of a system to arbitrary excitation f(f) was expressed in
terms of the impulse response 4(?). For the undamped single-DOF oscillator, we have

1

mao,

h(r) =

Sin )¢
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so that the peak fesponse to be used in the response spectrum plot is given by the
equation

L[ o sina e - 9ae
0

n

X0y =

(4.5.1)

max

In the case where the shock is due to the sudden motion of the support point, f(t) is
replaced by — y(¢), the acceleration of the support point, as in Eq. (4.2.5).

(e = | = j 50 sin w1 — ) dt (452)

n max

With 7 as the natural period of the oscillator, the maximum value of x(¢) or z(¢) is plot-
ted as a function of ¢,/7, where 7is the natural period of the oscillator and ¢, is the pulse
duration time.

To graphically describe the concept of the SRS, we choose the time response to
the rectangular pulse previously given in Sec. 4.4. For ¢ > ¢,, the response is given by
Eq. 4.4.6, which clearly represents two step functions started at times ¢t = 0 and ¢ = ¢,.
These are plotted in Fig. 4.5.1 for t,/7 = ;. Their difference, which is the response of
the oscillator for ¢>¢;, is shown by the dark line and the peak response is
(xk/Fy)max = 0.80 at time ¢,, = 0.327. Thus, we have one point, 0.80, on the SRS plot of
| xk/Fy| max VS- t1/7. _ '

If we change the pulse duration time to #,/7 = 0.40, a similar plot shown in Fig. 4.5.2
indicates that the peak response is now equal to |xk/F;| ., = 1.82 at time ¢,, = 0.457..
This then gives us a second point on the SRS plot, etc.

To avoid the laborious procedure described previously, we can start with Eq. (4.4.6)
and differentiate with respect to time to obtain the peak response as follows:

|=
|-

1

%

N\

/ -
7/

Al
[[]

[
(3]

o
Dl
o=
-

QD

|-

A
N\

NV
" \\// \\

FIGURE 4.5.1. Response for #,/7 = 1/8, which gives (xk/Fy) . = 0.80 at 1,, = 0.327.
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FIGURE 4.5.2. Response for t,/7 = 0.40, which gives (xk/Fo)yy = 1.82 at 1,, = 0.457.

4 (x
Fy

@ ) = w,[sin w,t, = sin wn(tp -t)]=0
where ¢, is the time corresponding to the peak response. It follows then that

sin w,t : 1
t]

t t =. —
AL & — (1 — cos w,t,)

which is shown in Fig. 4.5.3. From this figure, two other relations are found:

sin w, t, = Sty ]
"PV2(1 - cos w,t,) 1

-(1-cosw,t) 1
cos w,t, = =—=V(1 - cos w,1,)
" V2(1 - cos @,t;) V2 ( '

By substituting these results into the equation for (xk/F), the equation for the peak
response becomes

(;,—k) =V2(1 — cos w,y)

0/ max 453)
mty
— t > tl

= 2siniw,t, = 2sin

The SRS for the rectangular pulse given by this equation can now be displayed by the
plot of Fig. 4.5.4. Note the two points x found from the time response plots. The
dashed-line curves are called the residual spectrum, and the upper curve, which is equal
to 2.0 for t,/7> 0.50, represents the envelope of all peaks, including the peaks of the
time response curve for t < 1,, which is easily seen from Eq. (4.2.2).
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FIGURE 4.5.3.
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FIGURE 4.5.4. Shock response spectrum for a rectangular pulse.
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FIGURE 4.5.5. Shock response spectrum for half-sine wave.

Figures 4.5.5 and 4.5.6 show the SRS for the half-sine pulse and the triangular
pulse, which are often good approximations to the actual pulse shapes. :

For the half-since pulse, the equation for the primary shock spectrum (¢ <¢,) is
obtained from the maximum of Eq. (4.4.6):

' ' 2 >n( T)
. ' TR\ —
. (&) - L 24 (454)
FO max 1— T 1+ T :
24 24
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FIGURE 4.5.6. Shock response spectrum for triangular pulse.

whereas for the residual shock spectrum (¢ > ¢;), the maximum values of Eq. (4.4.6) are

(&) S <:os7r—z1 {4.5.5)
F max - .

4.6 SHOCK ISOLATION

For shock isolation, the maximum peak response or the transmissibility must be less
than unity. Thus, for the rectangular pulse, this requires [see Eq. (4.5.3)]

4
2sin—1 < 1.0

T
Tl o T
— <30°= —
T 6
Vibration isolation is then possible for
— < -
T 6
' w, < —
. " 3y

and the natural period of the isolated system must be greater than six times the pulse time.

Next, consider-a more general pulse bounded by a rectangular pulse, such as
those shown in Fig. 4.6.1. The impulse of these force pulses is clearly less than that of
the rectangular pulse. By remembering that the impulse is equal to the change in
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FIGURE 4.6.1.  Shock pulses bounded by a rectangular pulse.

momentum, it is reasonable to assume that the maximum peak response of the rectan-
gular pulse must be the upper bound to that of the enclosed pulse of general shape. We
also find that for small ¢,/7, the peak response occurs in the region ¢ > ¢,. For small val-
ues of t,/7, the response approaches that of a system excited by an impulse and the
shape of the pulse becomes less important other than to determine the magnitude of
the impulse. Such information is, of course, of considerable value to the designer in
avoiding some difficult mathematical calculations.

4.7 FINITE DIFFERENCE NUMERICAL COMPUTATION

When the differential equation cannot be integrated in closed form, numerical meth-
ods must be employed. This may well be the case when the system is nonlinear or if the
system is excited by a force that cannot be expressed by simple analytic functions.

In the finite difference method, the continuous variable ¢ is replaced by the dis-
crete variable f; and the differential equation is solved progressively in time increments
h = At starting from known initial conditions. The solution is approximate, but with a
sufficiently small time increment, a solution of acceptable accuracy is obtainable.

Although there are a number of different finite difference procedures available, in
this chapter, we consider only two methods chosen for their simplicity. Merits of the vari-
ous methods are associated with the accuracy, stability, and length of computation, which
are discussed in a number of texts on numerical analysis listed at the end of the chapter.

The differential equation of motion for a dynamical system, which may be linear
or nonlinear, can be expressed in the following general form:

x = f(x,x,1)
x, = x(0) ‘ ‘ (4.7.1)
x, = x(0)
where the initial conditions x, and x, are presumed to be known. (The subscript 1 is cho-
sen to correspond to ¢ = 0 because most computer languages do not allow subzero.)

In the first method, the second-order €quation is integrated without change in .
form; in the second method, the second-order equation is reduced to two first-order
equations before integration. The equation then takes the form

. iy

. 472
5 = f3,1) @72
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We first discuss the method of solving the second-order equation directly. We also
limit, at first, the discussion to the undamped system, whose equations are

x = f(x,1) -
x; = x(0) 4.7.3)
x.l = x(0)

The following procedure is known as the central difference method, the basis of which
can be developed from the Taylor expansion of x;,, and x,_, about the pivotal point i.

2 3 ‘
xi+1=xi+hxi+—i—xi+—6fxi+... .
' 5 3 4.74)
X 1 =xi—hx'i+75c'[—~6—};+...
where the time interval is A = At. Subtracting and ignoring higher-order terms, we
obtain
. 1 :
X = h (41 = Xi21) (4.75)
Adding, we find
‘ . 1
%= 33 (e — 26 + x4) v 4.7.6)

In both Egs. (4.7.5) and (4.7.6), the ignored terms are of order K%, By substituting from
_the differential equation, Eq. (4.7.3), Eq. (4.7.6) can be rearranged to

Xy =2, — X + hAflx, ) iz2 4.7.7)
which is known as the recurrence formula.

(Starting the computation.) If we let i = 2 in the recurrent equation, we note
that it is not self-starting, i.e., x; is known, but we need x, to find x,. Thus, to start the
computation, we need another equation for x,. This is supplied by the first of Taylor’s

series, Eq. (4.7.4), ignoring higher-order terms, which gives
; h? .. . h?
X =x thi+ X = x4+ —i-f(xl, £ (4.7.8)

Thus, Eq. (4.7.8) enables one to find x, in terms of the initial conditions, after which x,
X4, ... are available from Eq. (4.7.7).

In this development we have ignored higher-order terms that introduce what is
known as truncation errors. Other errors, such as round-off errors, are introduced due
to loss of significant figures. These are all related to the time increment = At in a
rather complicated way, which is beyond the scope of this text. In general, better accu-
racy is obtained by choosing a smaller At, but the number of computations will then
increase together with errors generated in the computation. A safe rule to use with this

" method is to choose & < 7/10, where 7 is the natural period of the system.

A flow diagram for the digital calculation is shown in Fig. 4.7.1. From the given

data in block @, we proceed to block , which is the differential equation. Going to
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Initial Values

X = X() :
X = X)) L Print
At=h Results
I =1

@

N

p S
[= 141 |- = e

T : 1

I=I+1 1
Fn

1®
X(I)
from Diff Eq.

j Eq.(47-3)

Ye oo
X(2) = X(0) +hX(1) + $h2% (1) [+ s XTI +1)= 2X(1)- XU -1 + 2 R(D)

Eq. (47-8) © ‘ Eq.(47-7)

FIGURE 4.7.1. Flow diagram (undamped system).

©for the first time, I is not greater than 1, and hence we proceed to the left, where x, is

calculated. Increasing I by 1, we complete the left loop(B)and @, where I is now equal
to 2, so we proceed to the right to calculate x,. Assuming N intervals of At, the path is to
the No direction and the right loop is repeated N times until / = N + 1, at which time
the results are printed out.

EXAMPLE 4.7.1
Solve numerically the differential equation
: 4x + 2000x = F(t)
_ with initial conditions ‘
A X, =%=0
and the forcing function shown in Fig. 4.7.2.

Solution The natural period of the system is first found as

©= L \fM= 22.36rad/s
T 4

27 '
T= ﬁ =0.281s
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FIGURE 4.7.2. 'FIGURE 4.7.3.
F X
I0OF  0IOf~----- -

o 02 03

=-QlI0}

FIG'JRE 4.7.4.

According to the rule 4 =< 7/10 and for convenience for representing F(t), we choose h = 0.0205 -
From the differential equation, we have

A X = flx,1) = $ F(t) - 500x
Equation (4.7.8) gives x, = 3(25)(0.02)% = 0:005. x, is then found from Eq. (4.7.7).
%3 = 0005 - 0 + (0.02)%(25 — 500 X 0.005) = 0.0190

The following values of x,, x;, etc. are now available from Eq. (4.7.7). ’
The exact solution was obtained by the superposition of the solutions for the step functjqy,

and the ramp function in the following manner. Figure 4.7.3 shows the superposition of forceg
The equations to be superimposed for the exact solution are -
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x, = 0.05(1 — cos22.361) 0=<r=01 (4.7.9)
x, = — [3(¢ - 0.1) — 002236 5in 22.36(r — 0.10)] addat¢ = 0.1 - (4.7.10)
x,= + [3(¢ - 02) - 0.022365in22.36(t — 0.2)] addat:= 02 (4.7.11)

Both computations were carried out with MATLAB® and Figure 4.7.4 shows the computed
values compared with the exact solution.

Initial acceleration and initial conditions zero. If the applied force is zero att =

0 and the initial conditions are zero, x, will also be zero and the computation cannot be
started because Eq. (4.7.8) gives x, = 0. This condition can be rectified by developing
new starting equations based on the assumption that during the first-time interval the
acceleration varies linearly from x; = 0 to x, as follows:

x=0+at
Integrating, we obtain

. [44

x= =t
2
o

x=—-¢
6

Because from the first équation, ft'z = ah, where h = At, the second and third equations
become

. h..

X2 = 5% : (47.12)
R .. ,

x2 = €x2 (4.7.13)

Substituting these equations into the differential equation at time ¢, = h enables one to
solve for x, and x,. Example 4.7.2 illustrates the situation encountered here.

EXAMPLE 4.7.2

Use the digital computer to solve the problem of a spring-mass system excited by a triangular
pulse. The differential equation of motion and the initial conditions are given as

055 + 8% = F(f)

The triangular force is.defined in Fig.4.7.5.

Solution The natural period of the system is

= 2—‘”= 2m = 0.50
o 47

The time increment is chosen as £ = 0.05, and the differential equation is reorganized as

‘'
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F(f)
10O} ------

50} -

|
0 0.20 040 t
FIGURE 4.7.5.

x = f(x,ty = 2F(t) — 16 wx
This equation is to be solved together with the recurrence equation, Eq. (4.7.7),
Xioy =20 = x_y + h¥f(x, 1)

Because the force and the acceleration dre zero at ¢ = 0, it is necessary to start the computa-
tional process with Eqs. (4.7.12) and (4.7.13) and the differential equation:

X, = £ %, (0.05) = 0.000417 %,
X, = 2F(0.05) — 167, = 50 — 158x,

Their simultaneous solution leads to

(0.05)2F(0.05)
= —————= = 0.0195
27 31 84%0.05)?
X, = 4691 :
The flow diagram for the computation is shown in Fig. 4.7.6. With & = 0.05, the time dura-
tion for the force must be divided into regions I = 1to 5, = 6 to 9, and I > 9. The index I con-
trols the computation path on the diagram.

Shown in Fig. 4.7.7 is a plot of the results. A smaller A¢ would have resulted in a smoother
plot.

Damped system. When damping is present, the differential equation contains
an additional term x; and Eq. (4.7.7) is replaced by

Xipg = 2X — X + Rf(x, x,t) i=2 (47.7')
We now need to calculate the velocity at each step as well as the displacement.

Considering again the first three terms of the Taylor series, Eq. (4.7.4), we see
that x, is available from the expansion of x; , , with i = 1:

N h? .
X =x txh+ —Z—f(xl,xl, t,)

~The quantity x, is found from the second equation for x;_; with i = 2:

. h? .
X=X~ th + ?f(xls X3, tz)
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J TIME DISPL ACCLRTN FORCE

1 0.0 0.0 0.0 0.0
2 0.0500 0.020 . 46.9 25.00
3 0.1000 0.156 75.3 50.00
4 0.1500 0.481 73.97 75.00
5 0.2000 0.992 43.44 100.00
6 0.2500 1.610 ~-104.25 75.00
7 0.3000 1.968 -210.78 50.00
8 0.3500 1.799 -234,10 25.00
9 0.4000 1.045 -165.01 0.00
10 0.4500 -0.122 19.22 0.0
1 0.5000 -1.240 195.86 0.0
12 0.5500 ~1.869 295.19 0.0
13 0.6000 -1.760 277.98 0.0
14 0.6500 -0.957 151.04 0.0
15 0,7000 0.225 -35.52 0.0
16 0.7500 1.318 -208.06 0.0
17 0.8000 1.890 -298.47 0.0
18 0.8500 1.717 -271.05 0.0
19 0.9000 0.865 -136.64 0.0
20 0.9500 -0.328 51.72 0.0
21 1.0000 -1.39 219.66 0.0
22 1.0500 -1.906 300.89 0.0
23 1.1000 -1.668 263.33 0.0
24 1.1500 -0.772 121.83 0.0
25 1.2000 0.429 -67.77 0.0

FIGURE 4.7.7.

With these results, x, can be calculated from Eq. (4.7.7"). The procedure is thus
repeated for other values of x; and x; using the Taylor series.

4.8 RUNGE-KUTTA METHOD

The Runge-Kutta computation procedure is popular because it is self-starting and
results in good accuracy. A brief discussion of its basis is presented here.

In the Runge-Kutta method, the second-order differential equation is first
reduced to two first-order equations. As an example, consider the differential equation
for the single-DOF system, which can be written as

= %[f(t) — ke — cd] = Flx, %,1) (4.8.1)
By letting x = ¥, this equation is reduced to the following two first-order equations:
i=y
y = Fx,y,1)

Both x and y in the neighﬁorhood of x; and y; can be expressed in terms of the
Taylor series. Letting the time increment be 4 = At, we have

(4.82)

dx d*c\ h?
=x + |2 — = +
r=x+(F)h ()3
d d%
y= y y

y,-er(:i;)im(F)‘g3 +'.'.. - @83
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Instead of using these expressions, it is possible to replace the first derivative by
an average slope and ignore higher-order derivatives:

dx
b x,. ( ar )mh

Y=Y ( r )mh

If we used Simpson’s rule, the average slope in the.interval & becomes

@) sll@) (@), ()]
Z| =|[Z) +4 = +=)
(\ dt /., 6L\dt], 4 at /sy - \ dt J

t+h

(4.84)

The 4th-order Runge-Kutta method is very similar to the preceding computa-
tions, except that the center term of the given equation is split into two terms and four
values of ¢, x, y, and f are computed for each point i as follows:

t x y=x f=y=%
T, =1 X, =x, Y, =y, F = (T, X, 1))
T2=ti+g X2=Xi+ylg“ Yz":}’i+1"-1’}21 F=f(T,X,Y,)
T3=t,:+l'—2' X3=x,.+ng Y3=y,.+Fzg Fy = f(T3, X5, Y3)
To=t+h  Xy=x,+Ysh ~ Y=y, 4+ Fh  E,=f(T, X, Yy

These quantities are then used in the following recurrence formula:

h
Xipq =X + E(Y‘ +2Y,+2Y;+ Y,) (4.8.5)

Yini =¥t %(Fl +2F, + 2F; + F,) (4.8.6)

where it is recognized that the four values of Y divided by 6 represent an average slope

dx/dt and the four values of F divided by 6 result in an average of dy/dt as defined by
Egs. (4.8.4). '

EXAMPLE 4.8.1 ‘
Solve Example 4.7.1 by the Runge-Kutta method.

Solution The differential equation of motion is

X = 1f(s) — 500x
Let y = x;then

¥ = Fx,1) = 1(0) - 500x
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With 2 = 0.02, the following table is calculated:

t x y=x f
= 0 0 0 25
0.01 0 0.25 25
0.01 - 0.0025 0.25 23.75

= 0.02 0.0050 0.475 22.50

The calculation for x,and y, follows:

.02
X, =0+ OTO (0 + 0.50 + 0.50 + 0.475) = 0.00491667

y, =0+ % (25 + 50 + 47.50 + 22.50) = 0.4833333

To continue to point 3, we repeat the foregoing table:

t x y=x f
= 0.02 0.00491667  0.4833333 22.541665
0.03 0.0097500 0.70874997 20.12500
0.03 0.01200417  0.6845833 18.997915
= 0.04 0.01860834  0.8632913 15.695830

We then calculate x, and y,:
X, = 0.00491667

+ 9&’: (0483333 + 1.4174999 + 13691666 + 0.8632913)

= 0.00491667 + 0.01377764 = 0.01869431
y; = 0.483333 + 0.38827775 = 0.87161075

To complete the calculation, the example was performed in MATLAB® and the results
showed excellent accuracy. Table 4.8.1 gives the numerical values for the central difference
method, which is discussed in Example 4.7.1, and the Runge-Kutta method compared with the
analytical solution (see Egs. 4.7.9-4.7.11).

TABLE 4.8.1 .Comparison of Methods for Example 4.8.1

Time ¢ Exact Solution Central Difference Runge-Kutta
0 0 ) 0 0
0.02 0.00492 ' 0.00500 0.00492
0.04 0.01870 0.01900 ’ 0.01869
0.06 0.03864 0.03920 0.03862
0.08 0.06082 : 0.06159 0.06076
0.10 - 0.08086 0.08167 . 0.08083

0.12 0.09451 0.09541 0.09447

[
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0.14 0.09743 0.09807 0.09741
0.16 0.08710 0.08712 ' - 0.08709
0.18 . 0.06356 0.06274 0.06359
0.20 0.02949 0.02782 0.02956
022 —0.01005 -0.01267 ~0.00955
0.24 -0.04761 —-0.05063 —0.04750
0.26 -0.07581 ~0.07846 -0.0757T1
0.28 -0.08910 : —0.09059 -0.08903
0.30 —0.08486 -0.08461 " —0.08485
0.32 -0.06393 ~0.06171 —0.06400
0.34 - —0.03043 v —0.02646 -0.03056
0.36 0.00906 0.01407 0.00887
0.38 0.04677 0.05180 0.04656
0.40 0.07528 0.07916 0.07509
0.42 0.08898 0.09069 0.08886
0.44 0.08518 0.08409 0.08516
0.46 0.06436 0.06066 0.06473
0.48 © 003136 0.02511 0.03157

Although the Runge-Kutta method does not require the evaluation of derivatives
beyond the first, its higher accuracy is achieved by four evaluations of the first deriva-
tives to obtain agreement with the Taylor series solution through terms of order A*.

Moreover, the versatility of the Runge-Kutta method is evident in that it can be
used for a single variable or several variables.

For two variables, x and y, as in this example, we can let z = l } and write the two

first-order equations as
x y }
z= = =F X, y,t
{y} {f(x,y,'t) (3.1

z=Fx,y,1)

Thus, the vector equation is identical in form to the equatlon in one variable and can
be treated in the same manner.

or

EXAMPLE 4.8.2 ’ :
Solve the equation 2x + 8x + 100x = f(¢) using RUNGA, with f{(t) vs t, as shown in Fig. 4.8.1.

Solution The computer program RUNGA is essentially the same as the one presented in Sec.
4.8.1t includes damping,

The use of the program RUNGA is illustrated here for Example 4.8.2. The program solves
the differential equation
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10

. f(t)
05

o

. . i L
FIGURE 4.8.1. O 025 050 075 . 10 t

The program RUNGA requires a function file called f.m which contains the expression for
the forcing function. The following is a listing for the function in Fig. 4.8.1.

function [force] = f(r)
ifr<0.25

force = 4 x ¢;

elseif r < 0.5

force = =2 % (t — 0.25) + 1.0;
elseif r <1

force = =1 % (¢t — 0.5) + 0.5;
else

force = 0;

end

The computer program asks for the numerical values of m, ¢, and k and the initial position and
velocity which for this problem are-m = 2, ¢ = 8, k = 100, and x(0) = x(0) = 0. With this input
the program calculates the natural period, 7 = 27r\/%—. It then asks the user to input the time
interval 4. The method: generally performs well for a time interval 7/10. The program then pro-
ceeds with the computation of the solution. The results presented are the displacement x(¢) and
the velocity x(f)and a plot for the displacement.

Time Displ. -Vel.
0 0 0
0.0700 0.0001 0.0044
0.1400 0.0008 0.0151
02100 .- 0.0023 0.0285
0.2800 0.0047 0.0399
0.3500 0.0075 - 0.0377
0.4200 0.0097 0.0239
0.4900 0.0107 0.0043
0.5600 0.0104 -0.0147
0.6300 0.0088 —0.0282
0.7000 0.0066 —0.0346
0.7700 0.0041 -0.0343
0.8400 0.0001 —0.0289
0.9100 0.0001 -0.0210
09800  —0.0010 —0.0126
1.0500 —0.0017 —0.0052
1.1200 —0.0018 0.0014
1.1900 -0.0015 0.0061

12600  —0.0010 © 0.0084
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1.3300 —0.0004 0.0084

1.4000 0.0002 0.0066
1.4700 0.0005 0.0039
1.5400 0.0007 0.0010
1.6100 0.0007 —0.0014
1.6800 0.0005 —0.0029
1.7500 0.0003 —0.0034
1.8200 -0.0001 ~ —0.0031
1.8900 —0.0001 —0.0022
1.9600 —0.0002 —-0.0011
2.0300 —0.0003 - —0.0000
2.1000 —0.0003 0.0008
2.1700 —0.0002 0.0013
2.2400 —0.0001 0.0013
2.3100 0.0000 0.0011
2.3800 0.0001 0.0007
2.4500 0.0001 0.0003
2.5200 0.0001 —0.0001
2.5900 0.0001 —0.0004
2.6600 0.0001 -0.0005
2.7300 0.0000 —0.0005
2.8000 —0.0000 —~0.0004
2.8700 —0.0000 —0.0002
2.9400 —0.0000 -0.0000
3.0100 —0.0000 0.0001

Displacement

FIGURE 4.8.2.
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Show that the time ¢, corresponding to the peak response for the impulsively excited
spring-mass system is given by the equation

tanV1 — Pot, = V1 - #/{

Determine the peak displacement for the impulsively excited spring-mass system, and
show that it can be expressed in the form

xeak"km = ex _ 4 tan ~1 "1—;2
F Pl " Vi-¢ {

Plot this result as a function of £.

Show that the time ¢, corresponding to the peak response of the damped spring-mass sys-
tem excited by a step force Fyis w,t, = m/V1 — %

For the system of Prob. 4.3, show that the peak response is equal to

(E) =1+exp( - _{—17)

Fy Vi-g

For the rectangular pulse of time duration ¢, , derive the response equation for ¢ > ¢, using
the free-vibration equation with initial conditions x(t,) and x(¢,). Compare with Eq. 4.4.6).
If an arbitrary force f(r) is applied to an undamped oscillator that has initial conditions
other than zero, show that the solution must be of the form :

L £0) sin w(t — &) de

Uy .
x(f) = xycos wt + —2sin w,t +

n n
Show that the response to a unit step function, designated by g(¢), is related to the impul-
sive response h(t) by the equation h(f) = g(). ‘
Show that the convolution integral can also be written in terms of g(z) as

X(0) = FO)(0) + j FOslt - 8 de

‘where g(#) is the response to a unit step function.

In Sec. 4.3, the subsidiary equation for the viscously damped spring-mass system was

given by Eq. (4.3.1a). Evaluate the second term due to initial conditions by the inverse
transforms.

An undamped spring-mass system is given a base excitation of y(f) = 20(1 — 5¢). If the

natural frequency for the system is w, = 10 s™', determinie the maximum relative dis-
placement. -
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4.11. A half-sine pulse is the result of two sine waves shown in Fig. P4.11. Derive Eq. (4.4.12)
for ¢ > t, from Eq. (4.4.10) and its shifted equation.

N’ <.’

FIGURE P4.11.

4.12. For the triangular pulse shown in Fig. P4.12, show that the response is
(1

X

-

. t
sm27r—>, 0<t<it
o 2my T ‘ ‘

2F, t T . 2w 1 . t
x = T“{l - Z + thl[ZsmT(t~ Etl)_——smbr;]}, in<t<y

F / /
VYo
& /
/N I/
F &/
o ™ & /
N\ A7
i /
AV
l'—‘ '|.\ _‘{ =_I
\4F
\;_'?' ("' *'.‘
FIGURE P4.12. FIGURE P4.13.

4.13. A spring-mass system slides down a smooth 30° inclined plane, as shown in Fig. P4.13.
Determine the time elapsed from first contact of the spring until it breaks contact again.

4.14. A 38.6-1b weight is supported on several springs whose combined stiffness is 6.40 Ib/in. If
the system is lifted so that the bottoms of the springs are just free and released, deter-
mine the maximum displacement of m, and the time for maximum compression.
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4.15. A spring-mass system of Fig. P4.15 has a Coulomb damper, which exerts a constant fric-
tion force f. For a base excitation, show that the solution is '

Gnz 1(1__ﬁ_1

Vg w,h muv,

)(1 — cos w,t) — sin w,¢

where the base velocity shown is assumed.

m %
>
k3 ‘
3 lf o ;
FIGURE P4.15.

4.16. Show that the peak response for Prob. 4.15 is

=
Wy, Zinax — __17(1 _ ﬁ_) i- W, ly muv,
1

Yo . W, muv,

B 2
Ve[
wntl muy, Lo
By dividing by w,t,, the quantity z, /vy, can be plotted as a function of w,t,, with

ft,/mv, as a parameter.
4.17 In Prob. 4.16, the maximum force transmitted to m is

Fmax = f + |kzmax|
To plot this quantity in nondimensional form, multiply by t,/mv, to obtain

Fmaxtl_ ﬁl +( t)z(zmax)
- .l
muy, mu, votl

which again can be plotted as a function of wt, with parameter ft,/mu,. Plot | @, Zpax/Vsl

and |z, /vy, | as a function of w,t, for ft,/mv, equal to 0,0.20, and 1.0.

4.18. For 1 > t,, show that the maximum response of the ramp function of Fig. 4.4.2 is equal -
to v

xk) 1 -
= =1+ V2(1 - cos w,t,)
( FO max a’ntl !

which is plotted as Fig. P4.18.
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wnly

h/t = o7

FIGURE P4.18.

Shown in Fig. P4.5.5 is the response spectrum for the sine pulse. Show that for small val-
ues of t,/, the peak response occurs.in the region ¢ > ;. Determine t,/t; when t,/7 =3

An undamped spring-mass system with w = 16.1 Ib has a natural period of 0.5 s. It is sub-
jected to an impulse of 2.01b - s, which has a triangular shape with time duration of 0.40 s.
Determine the maximum displacement of the mass.

For a triangular pulse of duration ¢,, show that when t,/7 = , the peak response occurs at
t = t;, which can be established from the equation

2t 2t
2 cos "1( 05)—c052w ( —1)—csL"’ =
T 5 T\ T 4

found by differentiating the equation for the displacement for ¢ > t,. The response spec-
trum for the triangular pulse is shown in Fig. P4.21.

2.0

(% )max

10 / -

) W/t
FIGURE P4.21.

4.22. 1f the natural period 7 of the oscillator is large compared to that of pulse duration ¢, the

maximum peak response will occur in the region ¢ > ¢,. For the undamped oscillator, the’
integrals written as

x= % [sinw,,tJ‘ F(£) cos w £ dE — cos w,t j f(&) sin w, ¢ d¢ ]
0 i 0
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HIES)

4.23,

. 4.24,

4.25.

426,

4.27.
4.28.

4.29.

4.30.

do not change for ¢ > ¢, because in this region f(f) = 0. Thus, by making the substitution

Acos ¢ = w, J F(&) cos w,£dE
0

Asin ¢ = m"J If(f) sin w,£d¢

0

the response for ¢ > ¢, isa simple harmonic motion with amplitude A. Discuss the nature
of the response spectrum for this case.

Derive Eqgs. (4.5.4) and (4.5.5) for the half-sine pulse, and verify the primary and the resid-
ual SRS curves of Fig. 4.5.5. (Note that n = 2 for ¢,/7 > 1.5 in the primary SRS equation.)
The base of an undamped spring-mass system, m and k, is given a velocity pulse, as shown

in Fig. P4.24. Show that if the peak occurs at ¢ < ¢,, the response spectrum is given by the
equation

Onma _ 1 1 ol
Vo o 04V1+ (w,h) V1 + (w,1)?
Plot this result.
)
0 /I
FIGURE P4.24.

In Prob. 4.24,if ¢ > ¢,, show that the solution is

o,z . 1
—= = —sinw,t+
Yo

[cos w,(t — t;) — cos w,t]

n*1

Determine the time response for Prob. 4.10 using numerical integration.

Determine the time response for Prob. 4.20 using numerical integration.

Figure P4.28 shows the response spectra for the undamped spring-mass system under
two different base-velocity excitations. Solve the problem for the base-velocity excitation
of y(#) = 60e %1% and verify a few of the points on the spectra.

If the driver of Example 4.3.3 is sitting on a cushion of stiffness k = 51 1b/in., what accel-
eration would be experienced assuming the same drop distance?

During ejection from a military airplane, the pilot’s acceleration must not exceed 16 g if ‘
injury is to be avoided (see Ref. [5]). Assuming the ejection pulse to be triangular, what is
the maximum peak acceleration of the ejection pulse applied to the pilot? Assume as in

Example 4.3.3 that the seated pilot of 160 Ib can be modeled with a spinal spring stiffness
of k = 450 Ib/in. '
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Velocity excitation
X‘ y'___.6oe ~0.107
o y=6001-5¢)

LN

NIS g2 N

7y

]

X

0204 10 2 46

w,,f 1

10 20 4060 100

FIGURE P4.28.

A spring-mass system with viscous damping is initiaily at rest with zero displacement. If
the system is activated by a harmonic force of frequency w = o, = Vk/m, determine the
equation for its motion. ' .

In Prob. 4.31, show that with small damping, the amplitude will build up to a value
(1 — e™') times the steady-state value in time ¢ = 1/f,8(8 = logarithmic decrement).
Assume that a lightly damped system is driven by a force F;sin w,t, where w, is the nat-
ural frequency of the system. Determine the equation if the force is suddenly removed.
Show that the amplitude decays to a value e™! times the initial value in the time ¢ = 1/f,8.
Set up a computer program for Exampie 4.7.1.

Write a MATLAB® program for the damped system excited by base motion y() with ini-
tial conditions x(0) = X, and x(0) = V,. The base motion is a half-sine wave.

Determine the response of an undamped spring-mass system to the alternating square
wave of force shown in Fig. P4.36 by superimposing the solution to the step function and
matching the displacement and velocity at each transition time. Plot the result and show
that the peaks of the response will increase as straight lines from the origin.

A
o) t
kg a ™
o |2 3@
._,.o' -

FIGURE P4.36.
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4.37. For the central difference method, supply the first higher-order term left out in the recur-
rence formula for X, and verify that its error is 0(h2).

4.38. Consider a curve of x = ¢* and determine x,.‘ att = 0.8,0.9,1.0,1.1, and 1.2. Calculate JEm
by using x; = 51}—’ (%11 = x;_,), with k= 020 and k = 0.10, and show that the error is
approximately 0(h?).

4.39. Repeat Prob.4.38 with x; = 1/h(x; — x;_,) and show that the error is approximately 0(k).

4.40. Verify the correctness of the superimposed exact solution in Example 4.7.1, Figure 4.7.4,

4.41. Calculate the problem in Example 4.7.2 by using the Runge-Kutta computer program
RUNGA (see Appendix F).

M 4.42. Using RUNGA, solve the equation
X +1.26x + 9.87x = f(1)
for the force pulses shown in Fig. P4.42.

Sine curve
(1) (1)

G52 04 08 08 7 ' 10 ¢

(a) ' (b)
' FIGURE P4.42.

4.43. A large box of weight W resting on a barge is to be hoisted by a crane, as shown in Fig. P4.43.
Assuming the stiffness of the crane boom to be k,, determine the equation of motion if the
extended point if the boom is given a displacement x = Vt. Use the method of Laplace -
transformation. : ‘ ’

FIGURE P4.43.
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In Example 4.8.1 add damping of ¢ = 0.2c_ and solve using computer program RUNGA.
Compare response with Example 4.8.1.
This problem uses the program runga.m to solve the equation given in Example 4.7.1 the
text with three different forcing functions. These forcing functions can be found with the
programs. To see how these forcing functions differ from the example, plot each one of
them. Produce a plot of the response and discuss how the response differs as the forcing
function is changed. :

(a) The MATLAB® code is forcel.m.

(b) The MATLAB® code is force2.m.

(¢) The MATLAB® code is force3.m. _
Consider the problem of Example 3.8.1. Solve numerically for the transient response of

the system under impulse excitation and ramp excitation (see Figure 4.4.4). Determine
numerically the response spectra.

Consider the equation for the forced oscillation of a damped system with hardening
spring given by
mx + cx + kx + px® = F(1)

(cf. Problem 14.27). Solve this equation numerically in MATLAB® with F(¢) given by the
step function excitation and ramp excitation, m = 1,¢ =05,k =1, and x = 0.01, 0.1, 1.
Compare with the results obtained when u = 0.

The forced Van der Pol oscillator is described by the following equation: .
¥ — pwx(1 = x%) + x = F(r)

(cf. Example 14.4.2). Determine the equivalent damping. Solve this equation numerically

in MATLAB® with F(r) g1ven by the step function excitation and ramp excitation, for
u=0.01,0.1,1.
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CHAPTER 5

Systems with Two or More
Degrees of Freedom

When a system requires more than one coordinate to describe its motion, it is called a
multi-DOF system, or an N-DOF system, where N is the number of coordinates
required. Thus, a 2-DOF system requires two independent coordinates to describe its
motion, and it is the simplest of the N-DOF systems.

The N-DOF system differs from that of the single-DOF system in that it has N
natural frequencies, and for each of the natural frequencies, there corresponds a nat-
ural state of vibration with a displacement configuration known as the normal mode.
Mathematical terms related to these quantities are known as eigenvalues and eigenvec-
tors. They are established from the N simultaneous equations of motion of the system
and possess certain dynamic properties associated with the system.

' Normal mode vibrations are free undamped vibrations that depend only on the
mass and stiffness of the system and how they are distributed. When vibrating at one of
these normal modes, all points in the system undergo simple harmonic motion that
passes through their equilibrium positions simultaneously. To initiate a normal mode
vibration, the system must be given specific initial conditions corresponding to its nor-:
m'al mode. For the more general initial conditions, such as an impulsive blow, the
resulting free vibration may contain all the normal modes simultaneously.

As in the single-DOF system, forced harmonic vibration of the N-DOF system
takes place at the frequency of the excitation. When the excitation frequency coincides
with one of the natural frequencies of the system, a condition of resonance is encoun-
tered, with large amplitudes limited only by the damping. Again, damping is generally
omitted except when its concern is of importance in limiting the amplitude of vibration
or in examining the rate of decay of the free oscillation. -

In this chapter, we begin with the determination of the natural frequencies and
normal modes of the 2-DOF system. All of the fundamental concepts of the multi-DOF
system can be described in terms of the 2-DOF system without becoming burdened



- Section 5.1 The Normal Mode Analysis 127

with the algebraic difficulties of the multi-DOF system. Numerical results are easily
obtained for the 2-DOF system and they provide a simple introduction to the behavior
of systems of higher DOF.

For systems of higher DOF, matrix methods are essential, and although they are
not necessary for the 2-DOF system, we introduce them here as a preliminary to the
material in the chapters to follow. They provide a.compact notation and an organized
procedure for their analysis and solution. For systems of DOF higher than 2, comput-
ers are necessary. A few examples of systems of higher DOF are introduced near the
end of the chapter to iliustrate some of the computational difficulties.

= 51 THE NORMAL MODE ANALYSIS

We now describe the basic method of determining the normal modes of vibration for
any system by means of specific examples. The method is applicable to all multi-DOF
systems, although for systems of higher DOF, there are more efficient methods, which
we will describe in later chapters.

EXAMPLE 5.1.1 Translational System

Figure 5.1.1 shows an undamped 2-DOF system with specific parameters. With coordinates x,
and x, measured from the initial reference, the free-body diagrams of the two masses lead to the
differential equations of motion where all forces to the right are considered positive:

k k k :
m 2m"WW—E
7777 : ’

kX1 m k(X1‘X2) 2m k){2
FIGURE 5.1.1.
mx, = —kx, + k(x, - x,)

5.1.1
2mx, = ~k(x, — x,) — kx, G.L1)

For the normal mode of oscillation, each mass undergoes harmonic motion of the same fre-
quency, passing through the equilibrium position simultaneously. For such motion, we can let

x; = Ajsinet or A

. ) (5.12)
X, = A,sinwt or Ay
Substituting these into the differential equations, we have
(2k — 0'm)A, — kA, =0
o (5.13)

—kA, + (2k — 20"m)A, = 0




128 Chapter5 Systems with Two or More Degrees of Freedom

(2k — o'm) - —k ][A,] [0]
= 514
™ 2k - 20%m) || 4,] = L0 G149
This equation is satisfied for any A, and A, if the determinant of the above equations is zero.
(2k — w*m) ~k . -
= 5.1
ko k- 2am)| O | ©-1.3)

Letting «? = A and multiplying out, the foregoing determinant results in a second -degree algebraic
equation that is called the characteristic equation.

o= () -

The two roots A, and A, of this equation are the eigenvalues of the system:

A= (3 - 1\/5)—:; =0.634£

i i k k (517
=2+ =V3 ) = =2366—
A, (2 + 3 3 o 2366m
and the natural frequencies of the system are
k
W = A2 = 1/0.634 —
m
| k
w, = A= 2.366;
From Eq. (5.1.3), two expressions for the ratio of the amplitudes are found:
_ 2
A _ k - 2k — 20’m (5.1.8)
A, 2k-— om k

Substitution of the natural frequencies in either of these equations leads to the ratio of the
amplitudes. For w? = 0.634k/m, we obtain

®
(Al ) k L _om
A, 2k—wm  2-0634

which is the amplitude ratio corresponding to the first natural frequency.
Similarly, using w2 = 2.366 k/m, we obtain

@ '
(Al ) k 1 o
A, 2% — dm  2- 2366

for the amplitude ratio corresponding to the second natural frequency. Equation (5.1.8) enables
us to ﬁnd only the ratio of the amplitudes and not their absolute values, which are arbitrary.

If one of the amplitudes is chosen equal to 1 or any other number, we say that the amplitude
ratio is normalized to that number. The normalized amplitude ratio is then called the normal
‘mode and is designated by ¢ (x).

The two normal modes of this example, which we can now call eigenvectors, are

- (121} - [27]

Each normal mode oscillation can then be written as

x| ® 0.731] .
{x:} = Al{ 100 ] sin (w,f + ¢)
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o073t 1o m
w2

- k
=0634 % —2.73

wh=2366%

FIGURE 5.1.2. Normal modes of the system shown in Figure 5.1.1.

x|@ —-2.73) .
{x;} = Az{ 100 }sm (wpt + )

These normal modes are displayed graphically in Fig. 5.1.2. In the first normal mode, the two

masses move in phase; in the second mode, the two masses move in opposition, or out of phase
with each other. :

EXAMPLE 5.1.2 Rotational System

We now describe the rotational system shown in Fig. 5.1.3 with coordinates 6, and 6, measured
from the inertial reference. From the free-body diagram of two disks, the torque equations are

Jib, = -K,6, + K,(6, — 6

i (5.1.9)
Jo6, = —K2(92 - 91) - K;6,

FIGURE 5.1.3.

It should be noted that Eqs. (5.1.9) are similar in form to those of Egs. (5.1.1) and only the sym-
bols are different. The rotational moment of inertia J now replaces the mass m, and mstead of
the translational stiffness k, we have the rotational stiffness K.

At this point, we introduce the matrix notation, writing Eqs. (5.1.9) in the concise form:

8 (5 Sl o

By following the rules for matrix operations in Appendlx C, the equivalence of the two equa-
tions can be easily shown. '
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J, 0,
0o J
is known as the mass matrix and the matrix

|:(K1+KZ) —Kz]

_Kz (Kz + Ks)

The matrix

is known as the stiffness matrix. Both of these matrices will be discussed in detail in Chapter 6.

A few points of interest should be noted. The stiffness matrix is symmetric about the diago-
nal and the mass matrix is diagonal. Thus, the square matrices are equal to their transpose, i.e.,
[£]7 = [k],and [m]” = [m]. In additional, for the discrete mass system with coordinates chosen at
each mass, the mass matrix is diagonal and its inverse is simply the inverse of each diagonal ele-
ment, i.e., [m]™' = [1/m].

EXAMPLE 5.1.3 Coupled Pendulum

In Fig. 5.1.4 the two pendulums are coupled by means of a weak spring k, which is unstrained
when the two pendulum rods are in the vertical position. Determine the normal mode vibrations.

my£6,

*  FIGURES.1.4. Coupled pendulum.

Solution Assuming the counterclockwise angular displacements to be positive and taking

moments about the points of suspension, we obtain the following equations of motion for small
oscillations o

mi*g,

—mgl, — ka*(6, — 6,)
—-mgl6, + ka*(6, — 6,)

mi*g,

which in matrix notation becomes

S B R e ivest T HEE )

Assuming the normal mode solutions as
6, =Acoswt or A

6, = A,coswt or A
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the natural frequencies and mode shapes are

w =\ w, =

l

(é—l)(l)—lo (ﬁ)(z)_
A, ’ A,
Thus, in the first mode, the two pendulums move in phase and the spring remains unstretched. In

the second mode, the two. pendulums move in opposition and the coupling spring is actively
involved with a node at its midpoint. Consequently, the natural frequency is higher.

oQ
|
—
= ~ |0
+
N
3=
NIQ
~ [ )

52 INITIAL CONDITIONS

When the normal mode frequencies and mode shapes are known, it is possible to
determine the free vibration of the system for any initial conditions by the proper sum-
mation of the normal modes. For example, we have found the normal modes of the sys-
tem of Fig. (5.1.1) to be

w, = V0.654k/m ¢, = {?‘Z}f}é}

w, = V2366k/m &, = {'12(';) 32}

For free vibration to take place in one of the normal modes for any initial conditions,
the equation of motion for mode i must be of the form

(O
x . .
{x‘} =cpsin(wf+ ) i=1,2 (5.2.1)
2

The constants c; and , are necessary to satisfy the initial conditions, and ¢, ensures that
the amplitude ratio for the free vibration is proportional to that of mode i.

For initial conditions in general, the free vibration contains both modes simulta-
neously and the equations of motion are of the form

x 0.732] . -2.732) .
{xl} = c‘{l.OOO} sin (w;f + ;) + cz{ 1.000 }sm (w2_t +)  (522)

‘where c,, c,, §,, and ¢, are the four necessary constants for the two differential equa-

tions of second order. Constants ¢, and c, establish the amount of each mode, and
phases y, and ¢, allow the freedom of time origin for each mode. To solve for the four

arbitrary constants, we need two more equations, which are available by differentiating
Eq. (5.2.2) for the velocity:

0.732 2.732
{2} = wlcl{l.OOO} cos (wyf + ¢) +,w2c2{ 1000 }cos (of + ) (5.2.3)

By letting ¢ = 0 and specifying the initial conditions, the four constants can be found.
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EXAMPLE 5.2.1

Determine the free vibration for the system of Fig. 5.1.1 for the initial conditions

-] = -1

Substituting these initial conditions into Egs. (5.2.2) and (5.2.3), we have

2.0 0732 . | -2.732] . ‘
= + Lo
{4.0} C‘{Looo} sin ¢y 02{ 1.000 } sin ¢, - G2
0 0.732 -2.732 ‘ o
{O} = wlc‘{l.OOO} cos ¢, + wzcz{ 1,000 ] cos ¥, (5.2.3a)

To determine ¢, sin ¢, we can multiply the second equation of Eq. (5.2.2a) by 2.732 and add
the results to the first equation. To determine ¢, sin ¢, multiply the second equation of Eq. (5.2.2a)
by —0.732 and add the results to the first equation. In similar manner we can solve for o, 1€y COS ¢y
and wyc, cos ¢, to arrive at the following four results:

12.928 = 3.464c, sin ¢
—0.928 = —3.464c, sin ¢,
0 = 3.464wc, cos
0 = —3.464w,c, cos

From the last two of the foregoing equations, it is seen that cos Yy =cos i, = O,0or¢y =y, =
Constants ¢, and c, are then found from the first two of the foregoing equations:

¢, =3.732
¢, = 0.268

and the equations for the free vibration of the system for the initial conditions stated for the
example become

X, 0.73 } { -2 732} '
{Xz} 3 732{1.000 cos w ¢t + 0.268 1.000 [ ©°8 wyt
_ {2.732} co§ -, {-0.732} cos ant
3732 0.268 @2

which clearly shows that the free vibration under the initial condition is the sum of the normal
modes of the system.

These equations show that for the given initial conditions, most of the response is due to the :
first mode ¢,. This is to be expected because the ratio of the initial displacements

{2 _ {0.50}

4 1.00

is somewhat close to that of the first normal mode and quite dlfferent from that of the second
normal mode.
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EXAMPLE52.2  Beating

If the coupled pendulum of Example 5.1.3 is set into motion with initial conditions differing
from those of the normal modes, the oscillations w1ll contain both normal modes simultaneously.

For example, if the initial conditions are 6,(0) = A, 8,(0) = 0, and 61(0) = 8,(0) = 0, the equa-
" tions of motion will be

8,(r) = 3A cos wt + }A cos w,t
6,(t) = 3A cos w,t — 1A cos w,t

Consider the case in which the coupling spring is very weak, and show that a beating phenome-
non takes place between the two pendulums.

Solution The preceding equations can be rewritten as follows:
- +
6,(t) = A cos ( % 5 % )tcos(wl—zw—z)t

- +
0,(t) = —A sin( 0-'1—2‘02_ )t sin ( wl—zwg )t

Because (w, — w,) is very small, 6,(tf) and 8,(r) will behave like cos(w, + w,)t/2 and
sin(w, + w,)t/2 with slowly varying amplitudes, as shown in Fig. 5.2.1. Since the system is conser-
vative, energy is transferred from one pendulum to the other.

NN AT DS
™ \ng_]\uf

‘ / -

-

FIGURE 5.2.1. Exchange‘of energy between pendulums.
The beating sound, which is often audxble, is that of the peak amplitudes, which repeat in 7
. radians. Thus,

27
Wy — W

(wl—wz
2

)7,,=1r or T, =

The beat frequency is then given by the equation

27

Wy = — = W —
b 7 P T Wy

A simple demoristration model is shown in Fig. 5.2.2.
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53

FIGURE 5.2.2 Demonstration model
for exchange of energy by beating.
(Courtesy of UCSB Mechanical Engi-
neering Undergraduate Laboratory.)

COORDINATE COUPLING

The differential equations of motion for the 2-DOF system are in general coupled, in

that both coordinates appear in each equation. In the most general case, the two equa-
tions for the undamped system have the form

myx; + mpX, + kyxy + kipx, =0 (53.1)
Mgy + myxy + kyxy + kX, =0

These equations can bz expressed in matrix form (see Appendix C) as

[mu mlz]{’:{l}_l_[ku ku]{xl}={0} (5.32)
My My iy Ky kg 1lxy 0

which immediately reveals the type of coupling present. Mass or dynamical coupling -

exists if the mass matrix is nondiagonal, whereas stiffness or static coupling exists if the
stiffness matrix is nondiagonal.

’ It is also possible to establish the type of coupling from the expressions for Fhe
kinetic and potential energies. Cross products of coordinates in either expression
denote coupling, dynamic or static, depending on whether they are found in 7 or U.

The choice of coordinates establishes the type of coupling, and both dynamic and st_atic |

coupling may be present.
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It is possible to find a coordinate system that has neither form of coupling. The two
equations are then decoupled and each equation can be solved independently of the
other. Such coordinates are called principal coordinates (also called normal coordinates).

Although it is always possible to decouple the equations of motion for the
undamped system, this is not always the case for a damped system. The following
matrix equations show a system that has zero dynamic and static coupling, but the
coordinates are coupled by the damping matrix.

[ AR o Y ] W H S
0 mylx, t61 Cn X 0 ky|lx, 0

If in the foregoing equation, c,, = ¢,, = 0, then the damping is said to be proportional
(to the stiffness or mass matrix), and the system equations become uncoupled.

EXAMPLE 5.3.1

Figure 5.3.1 shows a rigid bar with its center of mass not coicinding with its geometric center, i.e.,
I, # 1, and supported by two springs, k, and k,. It represents a 2-DOF system, because two coor-
dmates are necessary to describe its motlon The choice of the coordinates will define the type of
coupling that can be immediately determined from the mass and stiffness matrices. Mass or
dynamical coupling exists if the mass matrix is nondiagonal, whereas stiffness or static coupling
exists if the stiffness matrix is nondiagonal. It is also possible to have both forms of coupling.

"

r <
7
FIGURE 5.3.1.

Static coupling. Choosing coordinates x and 6, shown in Fig. 5.3.2, where x is the
linear displacement of the center of mass, the system will have static coupling, as shown
by the matrix equation

[m 0:| {x} . [ (ky + k) (kyly = Kily) {x} B {0}

» 0 J]|l# (koly — ki) (ki1 + kyt3) fL6) .10

If ki, = k,l,, the coupling disappears, and we obtain uncoupled x and 6 vibrations.
‘Dynamic coupling. There'is some point C along the bar where a force applied

normal to the bar produces pure translation; i.e., k,l; = k,/,. (See Fig. 5.3.3.) The
equations of motion in terms of x_and 6 can be shown to be

[r':é I ]{%}_+[(k1;k2) (k? +0k12) ]{x} ={g}

which shows that the coordinates chosen eliminated the static coupling and mtroduced
dynamic coupling:
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Ref.

ki(x~1,6) '

kz(X + 120)
FIGURE 5.3.2. Coordinates leading
to static coupling.

e——1 3—+—;[ ‘—v- _ z

Ky :E CF—G—Pl G h ko I = G ]
mm ky(x. - 130)

e ™3 kz(xc + 140)
FIGURE 5.3.3. Coordinates leading to dynamic coupling.

I-__l—. / o
k1§ kz

FIGURE 5.3.4. Coordinates leading to static and dynamic coupling.

kz(Xf" 10)

Static and dynamic coupling. If we choose x = x, at the end of the bar, as shown in
Fig. 5.3.4, the equations of motion become

£ 5 -1

and both static and dynamic coupling are now present.

EXAMPLE 5.3.2

Detcrmir}e the normal modes of vibration of an automobile simulated .by the simplified 2-DOF
system with the fpllowing numerical values (see Fig. 5.3.5):

W=3201b [ =45ft k =24001b/ft
w : -
J = ’ r* L,=55ft k,=2600Ilb/ft

r=4aft =101t
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/'/. L ) L T———
P — S
— I 8
wg =
P35 _

FIGURE 5.3.5.

The equations of motion indicate static coupling.
mx + ki(x — 1,0) + k,(x + ,6) =0

J b — k(x—1L0), + ky(x + L,o)l, =0
Assuming harmonic motion, we have '

[(kl + ky — w’m) ~(kyl, = kyl,) ]{x} _ {0

. (ki — kb)) (kB + kL~ o) 6 0

From the determinant of the matrix equation, the two natural frequencies are
w, = 6.90rad/s = 1.10 cps

w, = 9.06 rad/s = 1.44 cps

The amplitude ratios for the two frequencies are

(5.
(5.

The mode shapes are illustrated by the diagrams of Fig. 5.3.6.
In interpreting these results, the first mode, w

—14.6 ft/rad = —3.06 in./deg

1.09 ft/rad = 0.288 in./deg

137

, = 6.9 rad/s is largely vertical translation with

very small rotation, whereas the second mode, @, = 9,06 rad/s is mostly rotation. This suggests

that we could have made a rough approximation for these modes as two 1-DOF systems.

FIGURE 5.3.6. Normal modes of
the system shown in Fig. 5.3.5.

TITTTTTTT7777777777777777
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FIGURE 5.3.7. Uncoupled frequencies relative to coupled frequencies.

FIGURE 5.3.8. Two-DOF model of an automobile. The auto body is represented
by the meter stick with adjustable weights. The model is inverted with the springs
and ground above the body. Shakers can be excited individually to simulate the
ground. (Courtesy of UCSB Mechanical Engineering Undergraduate Laboratory.)

‘ __ | total vertical stiffness _ \/5000 _
“= \/ translational mass Y 100. 7.07 rad/s
rotational stiffness \/ 127,250
= - -3 d
@ \/rotational moment of inertia 1600 892ra _ /s

Note that these uncoupled values are inside of the coupled natural frequenc:1es by small
amounts, as shown in Fig. 5.3.7.
One other observation is worth mentioning. For the simplified model used, the wheels and

tires had been omitted. This justification is assigned in Prob. 5.27 with data as to weights of
wheels and stiffness of tires.

Figure 5.3.8 shows an inverted laboratory model of the automobile.
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' 5.4 FORCED HARMONIC VIBRATION

Consider here a system excited by a harmonic force F, sin wt expressed by the matrix

equation
I e
0 my]lx, Ky Ky Ilx 0 N

Because the system is undamped, the solution can be assumed as

)= 5]
Xy X,

Substituting this into the differential equation, we obtain

" alB e

or, in simpler notation,
X _ Fl}
iz} - {5

Premultiplying by [ Z(w)] !, we obtain (see Appendix C)

) -voor {5 - e

5.4.3)
X, lZ(W)‘ (
By referring to Eq. (5.4.2), the determinant | Z(w)| can be expressed as

12()] = mmy(} — o?)(a — ) (5.44)

where w, and w, are the normal mode frequencies. Thus, Eq. (5.4.3) becomes

Gl mal o0 menlls) oo

and the amplitudes of the force vibration are .
(ky — mpw?)F, ]
mym(; — 0*)(@} — @)
‘ —knFy
mymy(} — o”)(@h — @)

(5.4.6)
X, =

EXAMPLE 5.4.1

Apply Egs. (5.4.6) to the system shown in Fig. 5.4. 1 when m, is excited by the force F sin wt. Plot
its frequency response curve.

Solution The equation of motion for the system is

m 0.{§1}+ 2k -k {xi}={Fl}sin .
0 m|l5) |-k 2 ]lx)  lof"®
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F-x Z>x2 ‘
% k @ k E k E
Fisin wt

FIGURE 5.4.1. Forced vibration of a 2-DOF
system. -

FIGURE 5.4.2. Forced response of a 2-DOF system.

Thus, we have k,; = k,, = 2k and k,, = k,, = —k.Equation (5.4.6) then become

¥ = k= mF,
PomNef - 06} - @)
X, = kF,

e = e = ) ,

where w? = k/m and w} = 3k/m are obtained from the determinant of the matrix equation.
When plotted, these results appear as in Fig. 5.4.2.

EXAMPLE 5.4.2 Forced Vibration in Terms of Normal Mode Summation

Express the equations for X, and X, in Example 5.4.1 as the sum of the normal modes.

Solution Consider X, and expand the equation in terms of partial fractions.

@k-mdF, ¢ ., G
m2(w% - wZ)(a% - w2) w% - 0)2 0)% - wZ
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To solve for C,, multiply by (w} ~ w?) andlet w = w:

c, = (2k - me})F,  F|

mY (w3 — wl) 2m

Similarly, C, is evaluated by multiplying by («3 — w?) and letting & = w,:
c - (2k = mw)F, _ F,
2 m¥ el - wd) 2m

An alternative form of X is then
F, 1 1
= +
X m[wf—wz w%—wz]

BT T
T2k 1 - (w/w,)? 3 - (w/w)?

Treating X, in the same manner, its equation is

¥ = F [ 1 _ 1 ]
2 2k[1- (w/w))? 3~ (w/w)?
Amplitudes X, and X, are now expressed as the sum of normal modes, their time solution being
X, = X, sin wt

x, = X, sin wt

5.5 FINITE DIFFERENCE METHOD FOR SYSTEMS OF EQUATIONS

The finite difference method of Sec. 4.7 can easily be extended to the solution of sys-
tems with two DOF. The procedure is illustrated by the following problem, Wthh is
programmed and solved by the digital computer.

The system to be solved is shown in Fig. 5.5.1. To avoid confusion w1th subscrlpts
we let the displacements be x and y.

ky
4 Lo
X

k2
4 [
y

F FIGURE 5.5.1.
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k, = 36 kN/m

k, = 36 kN/m

m, = 100 kg

m, = 25kg

F={4OOON, t>0
0, t<0

Initial conditions:
x=x=y=y=0
The equations of motions are
100% = —36,000x + 36,000(y — x)
25y = —36,000(y —~ x) + F
which can be rearranged to
X = —720x + 360y
y = 1440(x — y) + 160
These equations are to be solved together with thé recurrence equations of Sec. 4.7.
Xie1 = XA 4+ 2%, — x;_4
Yier = VAP + 2y, -y,

Calculations for the natural periods of the system reveal that they do not differ sub-
stantially. They are 7, = 0.3803 and 7, = 0.1462 s. We therefore arbitrarily choose a
value of At = 0.01 s which is smaller than 7,/10.

To start the computation, note that the initial accelerations are x; = 0 and
y; = 160, so that the starting equation, Eq. (4.7.8), can be used only fory.

= AP

For the calculation of x,, the spemal starting equatlon (Eq. 47.13), must be used
together with the differential equations

x2 = Exz At 2
xtz = _720x2 + 360y2
Eliminating X, gives the following equation for X,

60y, AP

27 T4 12087

The flow dlagram for the computation is shown in Flg 55.2. A plot of the com-
puted result is presented in Fig. 5.5.3.
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A1=001
yD=x()=%(1)=0
7(1)=160
~ DO /2,40 || WRITE |
N D YES
. A
yn=tyu-nare | [ 0 =pu-nart+eyz-n-yiu-2))
x(7)= 8o [x(1) = 7087 +2xz-0-x7~2)]
1+120A#°
j/'(!)=1440[x(1)-y(1)]+160 | 1 }"(l)=1440[X(1)-y(1)]+160 i
#(1)=-T20 x(1)+360 y(I) | X(7) =720 x(7)+ 360y(7) |

FIGURE 5.5.2. Flow diagram for computation.

50

ol
o
[ —

Displacement, cm
N
(e}

N
0 o1 0.2 03 \/0.4 05

Time, seconds
FIGURE 5.5.3.

T NA)
v




144 Chapter 5 Systems with Two or More Degrees of Freedom

5.6 VIBRATION ABSORBER

As a practical application of the 2—DOF‘system, we can consider here the spring-mass
system of Fig. 5.6.1. By tuning the system to the frequency of the exciting force such

that w? = k,/m,, the system acts as a vibration absorber and reduces the motion of the
main mass m, to zero. Making the substitution

k k
: K ) _ %
wn T oo wp T
y m,
and assuming the motion to be harmonic, the equation for the amplitude X, can be
shown to be equal to

) 2
Xlgkl _ k [j}ﬂ(@) ] o (5.6.1)
LRS- o N re

Figure 5.6.2 shows a plot of this equation with u = m,/m, as a parameter. Note that k,/
k, = ,u(wzz/ w”)z. Because the system is one of 2 DOF, two natural frequencies exist.
These are shown against p in Fig. 5.6.3. ,

So far nothing has been said about the size of the absorber mass. At w = w,,,
amplitude X, = 0, but the absorber mass has an amplitude equal to

X, = - i—: i (5.6.2)

Because the force acting on m, is-

kX, = w'm,X, = —F,

[0 ]

b
i W}'
! I
L)
i
& 1] il
I' i
- 1‘ I
s } |
x|~ il |‘
‘ ||‘| | 1} |m=020
I I\ | @22 _
1 2 " + ‘ T—
. . / ; \\ I\ 11
. i N
o—"1 o |/ 125 INo
| | b
0] 05 1.0 1.5 2.0 25
FIGURE 5.6.1. - @
Vibration w22
absorber.

FIGURE 5.6.2. Response vs. frequency.

|
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FIGURE 5.6.3 Natural frequencies vs. i vs. m,/m,.

the absorber system k,, m, exerts a force equal and opposite to the disturbing force.
Thus, the size of k, and m, depends on the allowable value of X,.

5.7 CENTRIFUGAL PENDULUM VIBRATION ABSORBER

The vibration absorber of Sec. 5.6 is only effective at one frequency, @ = w,,. Also, with
resonant frequencies on each side of w,,, the usefulness of the spring-mass absorber is
limited to a narrow frequency range.

For a rotating system such as an automobile enginé, the excmng torques are pro-
portional to the rotational speed n, which can vary over a wide range. Thus, for the
absorber to be effective, its natural frequency must also be proportional to the speed.
The characteristics of the centrifugal pendulum are ideally suited for this purpose.

. - Figure 5.7.1 shows the essentials of the centrifugal pendulum. It is a 2-DOF non-
linear system; however, we limit the oscillations to small angles, thereby reducing its
complexity.

By placing the coordmates through point O’ parallel and normal to r, line r
rotates with angular velocity (§ + ). The acceleration of m is equal to the vector sum
of the acceleration of O'and the acceleration of m relative to O'.

= [Rb’sin-q& — Rcos ¢ — r(6 + é)z]i
(5.7.1)
+ [R?)'cos ¢+ RPsing + r(6+ ¢)]]
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FIGURE 5.7.1. Centrifugal pendulum.

Because for the pendulum the moment about O’ is zero, we have, from the j-compo-
nentofa_,

My = m[R6cos ¢ + Ré*sin ¢ + r(6 + ¢)}r = (5.7.2)

Assuming ¢ to be small, we let cos ¢ = 1 and sing = ¢ in Eq. (5.7. 2) and arrive at the
differential equation for the pendulum:

b+ (592)¢= —(R+ ')b’ (5.1.3)

r

If we assume the motion of the wheel to be a steady rotation n plus a small sinu-
soidal oscillation of frequency w, we can write

0 =nt + 6,sin wt

6=n+ wcos wt =n (5.7.4)
6 = — %6, sin wt
Then Eq. (5.7.3) becomes
¢+ (5n2)¢> = (R tr )w200 sin wt (573
r r '

and we recognize the natural frequency of the pendulum to be

v = ,,\/E (575) -
’ :
and its steady-state solution to be

R+ r)/r
» -’ + Rn?/r
The same pendulum in a gravity field would have a natural frequency of Vg/r, so it

can be concluded that for the centrifugal pendulum, the gravity field is replaced by the
centrifugal field Rn?.

= 26, sin wt (5.7.6) .
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We next consider the torque exerted by the pendulum on the wheel. With the j-
component of a, equal to zero, the pendulum force is a tension along r, given by m
times the i-component of a, . By recognizing that the major term of ma,_ is —(R + r)n?,
the torque exerted by the pendulum on the wheel is

T=-m(R + rn’R¢ (577
Substituting for ¢ from Eq. (5.7.6) into the last equation, we obtain
m(R + r)anz‘/r m(R + r)? 5
Rn?/r — ? 1 — rw?/Rn?

Because we can write the torque equation as 7 = Jeﬁb', the pendulum behaves like a
wheel of rotational intertia: :

T= - w6 sin wt = —[

_m(R +r)?

Jg= -
et 1 — rw?/Rn?

(5.7.8)
which can become infinite at its natural frequency.

This poses some difficulties in the design of the pendulum. For example, to sup-
press a disturbing torque of frequency equal to four times the rotational speed n, the
pendulum must meet the requirement w? = (4n)2 = n?R/r, or r/R = 1. Such a short
effective pendulum has been made possible by the Chilton bifilar design (see Prob. 5.43).

- 5.8 VIBRATION DAMPER

In contrast to the vibration absorber, where the exciting force is opposed by the
absorber, energy is dissipated by the vibration damper. Figure 5.8.1 represents a fric-
tion-type vibration damper, commonly known as the Lanchester damper, which has
found practical use in torsional systems such as gas and diesel engines in limiting the

FIGURE 5.8.1. Torsional vibration damper.
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amplitudes of vibration at critical speeds. The damper consists of two flywheels a free
to rotate on the shaft and driven only by means of the friction rings ¥ when the normal
pressure is maintained by the spring-loaded bolts c. »

" When properly adjusted, the flywheels rotate with the shaft for small oscillations.
However, when the torsional oscillations of the shaft tend to become lafge, the fly-
wheels do not follow the shaft because of their large inertia, and energy is dissipated by
friction due to the relative motion. The dissipation of energy thus limits the amplitude
of oscillation, thereby preventing high torsional stresses in the shaft.

In spite of the simplicity of the torsional damper, the mathematical analysis for
its behavior is rather complicated. For instance, the flywheels can slip continuously, for
part of the cycle, or not at all, depending on the pressure exerted by the spring bolts. If

~ the pressure on the friction ring is either too great for slipping or zero, no energy is dis-

sipated, and the damper becomes ineffective. Maximum energy dissipation takes place
at some intermediate pressure, resulting in optimum damper effectiveness.

Obviously, the damper should be placed in a position where the amplitude of
oscillation is the greatest. This position generally is found on the side of the shaft away
from the main flywheel, because the node is usually near the largest mass.

Untuned viscous vibration damper. In this section, we discuss another interesting
application of a vibration damper, which has found practical use in suppressing the
torsional vibrations of automobile engines. In a rotating system such as an automobile
engine, the disturbing frequencies for torsional oscillations are proportional to the
rotational speed. However, there is generally more than one such frequency, and the
centrifugal pendulum has the disadvantage that several pendulums tuned to the order
number of the disturbance must be used. In contrast to the centrifugal pendulum, the
untuned viscous torsional damper is effective over a wide operating range. It consists:
of a free rotational mass within a cylindrical cavity filled with viscous fluid, as shown in
Fig. 5.8.2. Such a system is generally incorporated into the end pulley of a crankshaft
that drives the fan belt, and is often referred to as the Houdaille damper.

We can examine the untuned viscous damper as a 2-DOF system by considering
the crankshaft, to which it is attached, as being fixed at one end with the damper at the
other end. With the torsional stiffness of the shaft equal to K in.-Ib/rad, the damper
can be considered to be excited by a harmonic torque MOe"“”. The damper torque
results from the viscosity of the fluid within the pulley cavity, and we will assume it to

‘

FIGURE 5.8.2.
Untuned viscous
damper.
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be proportional to the relative rotational speed between the pulley and the free
Thus, the two equations of motion for the pulley and the free mass are

JO+ K6+ c(6— &) = Mg
Jb~c(6—¢)=0 - (580

By assuming the solution to be in the form

mass,

0 = e’

¢ —_ d)oeiwl ‘ (582)

where 6, and ¢, are complex amplitudes, their substitution into the differential e.

tions results in , 3
K .Cw icw M
[(7 “"2)“7]"0” Th=T

5, .CW _lcw
—w® + zJ—d ¢ = J—dOo (5.8.3)

By eliminating ¢, between the two equations, the expression for the amplitude ¢ of
the pulley becomes 0

qua-

and’

: L
6 wlJ,; — icw

M, ~ [ (K — Jo))] + icolw, — (K — JoD)] (5.8.4)
Letting «? = K/J and u = J,/J, the critical damping is

¢, =2w, c= Cﬁsz,, = 2w,

c

The amplitude equation then becomes

| Plafo) T37
M, pHw/w,) (1 — */ ) + 4 wlw/w,)* — (1 - o’/ )P

which indicates that | K6,/M,| is a function of three parameters, £, u, and (0/w,).

- This rather complicated equation lends itself to the following simple interpreta.
tion. If { = 0 (zero damping), we have an undamped single-DOF system with resonant
frequency of w; = VK/J.A plot of |K6,/M,| vs. the frequency ratio will approach o
at this frequency. If { = o, the damper mass and the wheel will move together as a sjp,.
_ gle mass, and again we have an undamped single-DOF system, but with a lower pat.

ural frequency of VK/(J + J,). 8t
Thus, like the Lanchester damper of the previous section, there is an optimum
damping ¢, for which the peak amplitude is a minimum, as shown in Fig. 5.8.3. Ty,

result can be presented as a plot of the peak values as a function of { for any given M, as
shown in Fig. 5.8.4.

[w n
2TV + w2+ (58.6)
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FIGURE 5.8.3. Response of an untuned viscous damper (all curves pass through P).
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FIGURE 5.8.6 Two-DOF building
model on a shaking table. (Courtesy
of UCSB Mechanical Engineering
Undergraduate Laboratory.)

and that the peak amplitude for optimum damping is found at a frequency equal to

wﬂ =V2/2 + ) ' (5.8.7)

These conclusions can be arrived at by observing that the curves of Fig. 5.8.3 all

pass through a common point P, regardless of the numerical values of {. Thus, by

equating the equation for|K6,/M |for { = 0 and { = =, Eq. (5.8.7) is found. The curve

for optimum damping then must pass through P with a zero slope, so that if we substi-

tute (o/w,)* = 2/(2 + ) into a derivative of Eq. (5.8.5) equated to zero, the expression

_for ¢, is found. It is evident that these conclusions apply also to the linear spring-mass

system of Fig. 5.8.5, which is a special case of the damped vibration absorber with the
damper spring equal to zero. '

Fig. 5.8.6 shows a laboratory model of a 2-DOF building excited by the ground
motion. ‘
PROBLEMS

5.1. Write the equations of motion for the system shown in Fig. P5.1, and determine its nat-
ural frequencies and mode shapes.
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X2

’4—‘ : .
k nk k
12
z D 0 g g -

FIGURE P5.1. " FIGURE P5.2.

5.2. Determine the normal modes and frequencies of the system shown in Fig. P5.2 when
n=1.

5.3. For the system of Prob. 5.2, determine the natural frequencies as a function of n.

5.4. Determine the natural frequencies and mode shapes of the system shown in Fig. P5.4.

Xy X2
= ‘e A K Ka >
k k 3k 3 : 9, 2
m
{ FIGURE P5.4. ' FIGURE P5.5.

5.5. Determine the normal modes of the torsional system shown in Fig. P5.5 for K, = K, and
J =2/, '
5.6. If K, = 0 in the torsional system of Prob 5.5, the system becomes a degenerate 2-DOF
system with only one natural frequency. Discuss the normal modes of this system as well
as a linear spring-mass system equivalent to it. Show that the system can be treated as

one of a single DOF by using the coordinate ¢ = (6, —6,).

5.7. Determine the natural frequency of the torsional system shown in Fig. P5.7, and draw the
normal mode curve. G = 11.5 X 10 psi.

5 b-in-s2
N 3|bfiﬂ.-52
" 3

1 4
e

e l2"—~—l‘6“-l

FIGURE P5.7.

5.8. An electric train made up of two cars,. each weighing 50,000 Ib, is connected by couplings
of stiffneéss equal to 16,000 lb/in., as shown in Fig. P5.8. Determine the natural frequency
of the system.

E&m&e‘«,‘x.‘h}-wﬁ i



5.9.

5.10.

S1L 7

5.12.

5.13.

5.14.

Problems 153

FIGURE P5.8. FIGURE P5.9.

Assuming small amplitudes, set up the differential equations of motion for the double

pendulum using the coordinates shown in Fig. P5.9. Show that the natural frequencies of
the system are given by the equation

w=\[%(21\/—£)

Determine the ratio of amplitudes x,/x, and locate the nodes for the two modes of
vibration.

Set up the equations of motion of the double pendulum in terms of angles 6, and 6, mea-
sured from the vertical. . '

Two masses, m, and m,, are attached to a light string with tension 7, as shown in Fig. P5.11.
Assuming that 7 remains unchanged when the masses are displaced normal to the string,
write the equations of motion expressed in matrix form.

FIGURE P5.11.

In Prob. 5.11, if the two masses are made equal, show that normal mode frequencies are
o = VT/mland w, = V3T/ml. Establish the configuration for these normal modes.

In Prob.5.11,if m; = 2m and m, = m, determine the normal mode frequencies and mode
shapes.

A torsional system shown in Fig. P5.14 is composed of a shaft of stiffness K|, a hub of radius
r and moment of inertia J, four leaf springs of stiffness k,, and an outer wheel or radius R
and moment of inertia J,. Set up the differential equations for torsional oscillation, assum-
ing one end of the shaft to be fixed. Show that the frequency equation reduces to

.

4_ [ 2 2 J2 21 2 2 2 _

) (wn+w22+1w22w + w3 =0
1

where w,; and w,, are uncpupled frequencies given by the expressions

2
2 = K, _ 4R

—1 d 2
7 A A
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5.15.

5.16.
5.17.
5.18.

5.19.

'5.20.

5.21.

FIGURE P5.14. FIGURE PS5.15.

Two equal pendulums free to rotate about the x—x axis are coupled together by a rubber
hose of torsional stiffness k b - in/rad, as shown in Fig. P5.15. Determine the natural

frequencies for the normal modes of vibration, and dsecribe how these motions may be
started.

If I =193 in.,, mg = 3.86 Ib, and k = 20 Ib_ - in/rad, determine the beat period for a
motion started with 6, = 0 and 6, = 6. Examine carefully the phase of the motion as the
amplitude approaches zero.

Determine the equations of motion for the system of Prob. 5.4 when the initial condi-
tions are x,(0) = 4, x,(0) = x,(0) = 0. '

The double pendulum of Prob. 5.9 is started with the following initial conditions:
x,(0) = x,(0) = X, x,(0) = x,(0) = 0. Determine the equations of motion. -

The lower mass of Prob. 5.1 is given a sharp blow, imparting to it an initial velocity
x,(0) = V. Determine the equation of motion.

If the system of Prob. 5.1 is started with initial conditions x,(0) = 0, x,(0) = 1.0, and
x,(0) = x,(0) = 0, show that the equations of motion are

x,(f) = 0.447 cos w,t — 0.447 cos w,t
x,() = 0.722 cos w,t + 0.278 cos w,t

w, = V0382%/m w, = \V2.618k/m

Choose coordinates x for the displacement of ¢ and 6 clockwise for the rotation of the
uniform barshown in Fig. P5.20, and determine the natural frequencies and mode shapes.

k Ek

4 m LZ
B 2 Jc=mﬁ )
S DU A DU

FIGURE P5.20.

i

D~
Nfe=

Set up the matrix equation of motion for the system shown in Fig. P5.21 using coordi-
nates x, and x, and m and 2m. Determine the equation for the normal mode frequencies
and describe the mode shapes. '
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FIGURE P5.21.

5.22. In Prob. 5.21, if the coordinates x at 7 and 6 are used, what form of coupling will result?

5.23. Compare Probs. 5.9 and 5.10 in matrix form and indicate the type of coupling present in
each coordinate system.

5.24. The following information is given for the automobile shown in Fig. P5.24.
W = 3500 Ib k, = 2000 Ib/ft v
[, =441t k, = 2400 1b/ft
L=56ft
r = 4 ft = radius of gyration about c.g.

Determine the normal modes of vibration and locate the node for each mode.

/'/ .
{ L‘l v' L2 _‘—&—.J\ \
fy— —— W1 S
FIGURE P5.24.

5.25. Referring to Prob. 5.24 prove in general that the uncoupled natural frequencies are
always between the coupled natural frequencies.

5.26. For Prob. 5.24,if we include the mass of the wheels and the stiffness of the tires, the prob-
‘lem becomes that of 4 DOF. Draw the spring-mass model and show that its equation of

motion is
mo
A 0
Emo X
' my |\ X,
ky + k) (koly — kll)' —k, —k, |(=x 0
o |k~ k) (el - dl)t Kl kb JJ 0L _ )]0
—k, kil Y (ko + ky) 0 X, 0
—k, —kl, 1 0 (ko + k)| \x, 0

5.27. To justify the 2-DOF simplified model of the automobile in Example 5.3.2, assume the
weight of each wheel, hub, and tire to be approximately 80 Ib, and the tire stiffness per
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wheel to be 22,000 1b/ft. Determine the natural frequency of its wheel-tire system, and
explain why the simplified model is adequate. ‘

5.28." An airfoil section to be tested in a wind tunnel is supported by a linear spring k and a tor-
sional spring K, as shown in Fig. P5.28. If the center of gravity of the section is a distance e
ahead of the point of support, determine the differential equations of motion of the system.

ky
L Fi=F sinw

FIGURE P5.28. . FIGURE P5.29.

5.29. Determine the natural frequencies and normal modes of the system shown in Fig. P5.29
when

gm, =3861b k, =201b/in.
gm,=1931b , =10 Ib/in.
When forced by F, = F| sin wt, determine the equations for the amplitudes and plot

them against ww,,.

5.30. A rotor is mounted in bearings that are free to move in a single plane, as shown in Fig. P5.30.
The rotor is symmetrical about 0 with total mass M and moment of intertia J, about an axis
perpendicular to the shaft. If a small unbalance mr acts at an axial distance b from its center
0, determine the equations of motion for a rotational speed w.

‘ ;

5.31. A two-story building is represented in Fig. P5.31 by a lumped mass system in which.
my = %mz and k; = %kz. Show that its normal modes are

(ﬁ)(l) —9 W = 1k
X, 2m,

B)=-1 g=2
X2 m,

Dl

Dl

ENES
v

FIGURE P5.30.
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T

k‘l
m2
— x,
k2
/7777, 77X
FIGURE P5.31.

In Prob. 5.31, if a force is applied to m, to deflect it by unity and the system is released
from this position, determine the equation of motion of each mass by the normal mode
summation method.

In Prob. 5.32, determine the ratio of the maximum shear in the first and second stories.
Repeat Prob. 5.32 if the load is applied to m,, displacing it by unity.

Assume in Prob. 5.31 that an earthquake causes the ground to oscillate in the horizontal
direction according to the equation x, = X, sin ot. Determine the response of the build-
ing and plot it against w/w,. o

To simulate the effect of an earthquake on a rigid building, the base is assumed to be con-
nected to the ground through two springs: K, for the translational stiffness, and K| for the
rotational stiffness. If the ground is now given a harmonic motion, Y, = Y sin «t, set up
the equations of motion in terms of the coordinates shown in Fig. P5.36.

Solve the equations of Prob. 5.36 by letting

MWW
Yo 6

DITTTITI7777777777,

FIGURE P5.36.
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The first natural frequency and mode shape are

“_ 0734 and D

= -1.14
Wy, 109 ;

which indicate a motion that is predominantly translational. Establish the second natural
frequency and its mode (Y, = Y, — 2,6, = displacement of top).

5.38. The response and mode configuration for Probs. 5.36 and 5.37 are shown in Fig. P5.38.
Verify the mode shapes for several values of the frequency ratio.

FIGURE P5.38.

5.39. The expansion joints of a concrete highway are 45 ft apart. These joints cause a series of
impulses at equal intervals to affect cars traveling at a constant speed. Determine the
speeds at which pitching motion and up-and-down motion are most apt to arise for the
automobile of Prob. 5.24. ‘

5.40. For the system shown in Fig. P5.40, W, = 200 Ib and the absorber weight W, = 50 Ib. If
W, is excited by a 2 Ib-in. unbalance rotating at 1800 rpm, determine the proper value of
the absorber spring k,. What will be the amplitude of W,? :

= B

W
1 Sk 1
_é- k‘l I Wz | ) E k1

FIGURE P5.40.
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In Prob. 5.40, if a dashpot c is introduced between W, and W,, determine the amplitude
equations by the complex algebra method.

A flywheel with moment of inertia / has a torsional absorber with moment of inertia /
free to rotate on the shaft and connected to the flywheel by four springs of stiffness k 1b/in.,

as shown in Fig. P5.42. Set up the differential equations of motion for the system, and dis-
cuss the response of the system to an oscillatory torque.

FIGURE P5.42. FIGURE P5.43.

The bifilar-type pendulum shown in Fig. P5.43 is used as a centrifugal pendulum to elimi-
nate torsional oscillations. The U-shaped weight fits loosely and rolls on two pins of
diameter d, within two larger holes of equal diameters d,. With respect to the crank, the
counterweight has a motion of curvilinear translation with each point moving in a circu-

lar path or radius r = d, — d,. Prove that the U-shaped weight does indeed move in a cir-

cular pathof r = d, — d,.

A bifilar-type centrifugal pendulum is proposed to eliminate a torsional disturbance of fre-
quency.equal to four times the rotat10na1 speed. If the distance R to the center of gravity of
the pendulum mass is 4.0 in. and d, = 3 3 in., what must be the diameter d, of the pins?

A jig used to size coal contains a screen that recnprocates with a frequency of 600 cpm.
The jig weighs 500 1b and has a fundamental frequency of 400 cpm. If an absorber
weighing 125 1b is to be installed to eliminate the vibration of the jig frame, determine
the absorber spring stiffness. What will be the resulting two natural frequencies of the
system?

In a certain refrigeration plant, a section of pipe carrying the refrigerant vibrated vio-
lently at a compressor speed of 232 rpm. To eliminate this difficulty, it was proposed to
clamp a spring-mass system to the pipe to act as an absorber. For a trial test, a 2.0-lb.
absorber tuned to 232 cpm resulted in two natural frequencies of 198 and 272 cpm. If the
absorber system is to be designed so that the natural frequencies lie outside the region
160 to 320 cpm, what must be the weight and spring stiffness?

A type of damper frequently used on automobile crankshafts is shown in Fig. Pi 47.7
represents a solid disk free to spin on the shaft, and the space between the disk and case
is filled with a silicone oil of coefficient of viscosity u. The damping action results from
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5.48.
5.49.

5.50.
551,

M s.52.

5.53.

any relative motion between the two. Derive an equation for the damping torque exerted
by the disk on the case due to a relative velocity of . ’

.

4

-+

FIGURE P5.47.

For the Houdaille viscous damper with mass ratio u = 0.25, determine the optimum

~damping {, and the frequency at which the damper is most effective. -

If the damping for the viscous damper of Prob. 5.48 is equal to { = 0.10, determine the
peak amplitude as compared to the optimum.

Establish the relationships given by Egs. (5.8.7) and (5.8.6).

Derive the equations of motion for the two masses in Fig. 5.8.5 and follow the parallel
development of the untuned torsional vibration-damper problem.

Develop the MATLAB® program for the computation of the response of the system
shown in Prob. 5.4 when the mass 3m is excited by a rectangular pulse of magnitude 100
1b and duration 67Vm/ks. » '

In Prob. 5.31 assume the-following data: k, = 4 X 10° Ib/in., k, = 6 X 10° Ib/in., and -
m, = m, = 100. Develop the MATLAB® program for the case in which the ground is
given a displacement y = 10" sin 7t for 4 s.

Figure P5.54 shows a degenerate 3 DOF. Its characteristic equation yields one zero root
and two elastic vibration frequencies. Discuss the physical significance that three coordi-
nates are required but only two natural frequencies are obtained.

FIGURE P5.54.
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'5.55. The two uniform rigid bars shown in Fig. P5.55 are of equal length but of different

masses. Determine the equations of motion and the natural frequencies and mode shapes
using matrix methods.

| [
\ %L '| .4 !
2}) .
m™ §k1 mp
. [ A1
Ekz
77
2 4 FIGURE P5.55.

5.56. Show that the normal modes of the system of Prob. 5.54 are orthogonal.

'5.57. For the system shown in Fig. P5.57 choose coordinates x, and x, at the ends of the bar and
determine the type of coupling this introduces.

— ® ]
L1—~{«L2
Ky ko
7. 7. 77

5.58. Using the method of Laplace transforms, solve analytically the problem solved by the
digital computer in Sec. 5.5 and show that the solution is

Xem = 13.01(1 — cos wyf) — 1.90(1 — cos w,t)
Yem = 16.08(1 = cos @,f) + 6.14(1 — cos wyt)

7 FIGURE P5.57.

5.59. Consider the free vibration of any two degrees-of-freedom system with arbitrary initial
conditions, and show by examination of the subsidiary equations of Laplace transforms
that the solution is the sum of normal modes. ’

5.60. Determine by the method of Laplace transformation the solution to the forced-vibration
problem shown in Fig. P5.60. Initial conditions are x,(0), x,(0), x,(0), and x,(0).

Fsinwt

} k k [

b

FIGURE P5.60. . FIGURE P5.61.

5.61. Determine the matrix equation of motion for the system shown in Fig. P5.61.
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5.62.

5.63.

5.64.

5.65.

Determine the matrix equation of motion for the system shown in Fig. P5.62.

y/ k4
WW
ky ko k3
ks
AARA
b—-x b, Fx
FIGURE P5.62. »

Consider the system with two coupled pendula of Example 5.1.3, and do not assume
small displacement from the vertical position. It is assumed that the pendula are cou-
pled via a force varying linearly with the difference in angles of the pendula F = —ka sin
(6, — 6,) being the force on pendulum 1. Derive the equations of motion. Simulate the
system in MATLAB® with different initial conditions. Plot the angles 6, and 6, versus
time. What can you conclude about the exchange of energy between the pendula (cf.
Example 5.2.2)?

Consider the following coupled system for the rectilinear motion of two particles:
X, = filx, %)

fz = fz(xh xz)

Show that if the form of the equations stays the same when x, + ¢, x, + c is inserted

‘instead of x,, x, (i.e., the system is invariant with respect to translations), then the system

reduces to one equation for the variable y = x, — x

y = f(y).

This is an example of using symmetries to reduce the dimensionality of the system. In this
case, we have reduced the number of degrees of freedom by 1.

Consider the system shown in Figure 5.65 that models the motion of seats of a ski-lift.
Determine the equations of motion. Determine the natural frequencies. Should the stiff-
ness of the spring (which models the cable on which the seats are mounted) be high or
low in order for the skiers not to experience very fast oscillations of the seat?

1

FIGURE P5.65.

m;,:;mmv EE .



CHAPTER 6

Properties of Vibrating Systems

The elastic behavior of a system can be expressed either in terms of the stiffness or the

flexibility. So far, we have written the equations of motion for the normal mode vibra-
tion in terms of the stiffness K:

(—wM] + [K]) X} = [0} (@

In the stiffness formulation, the force is expressed in terms of the displacement:
{F} = [K](x} (b

The flexibility is the inverse of the stiffness. The displacement is here written in
terms of the force:

{x} = [K]74F)
= [al{F} | (c)

The equation of motion in terms of the flexibility is easily determined by premultiply-
ing Eq. (a) by [K]™! = [a]:

(—w*a]lM] + Dix} = {0} (d).
where K™K = I = unit matrix.
The choice as to which approach to adopt depends on the problem. Some prob-

“lems are more easily pursued on the basis of stiffness, and for others, the flexibility

approach is desirable. The inverse property of one or the other is an important concept
that is used throughout the theory of vibration.

The orthogonal property of normal modes is one of the most important concepts
in vibration analysis. The orthogonality of normal modes forms the basis of many of
the more efficient methods for the calculation of the natural frequencies and mode
shapes. Associated with these methods is the concept of the modal matrix, whlch is
essentlal in the matrix development of equations.

163
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6.1 FLEXIBILITY INFLUENCE COEFFICIENTS

The flexibility matrix written in terms of its coefficients a;; is

X1 ay ap as || f
ne=lay ap ani|if (6.1.1) .
X3 Gy ap a3y f

The flexibility influence coefficient a is defined as the displacement at i due to a
unit force applied at j with all other forces equal to zero. Thus, the first column of the
foregoing matrix represents the displacements corresponding to f; = land f, = f; = 0.
The second column is equal to the displacements for f, =1 and f, = f; =0, and so on.

Example 6.1.1

Determine the ﬂexibil‘ity matrix for the three-spring system of Fig. 6.1.1.

Solution By applying a unit force f, = 1 at (1) with f, = f, = 0, the displacements, x,, x,, and
x5, are found fqr the first column of the flexibility matrix

X alk, 0 0|(fi=1
Ly=|1k 0 04 0
n) Lk o ofl o

Here springs k, and k; are unstretched and are displaced equally with station (1).
Next, apply forces f; = 0,f, = 1,and f; = 0, to obtain

x 0 ki, 0[]0
X =0 (,%l + ,%2) 0
n) [0 &+g) OULO

In this case, the unit force is transmitted through k, and k,, and k; is unstretched.
~ Inasimilar manner, for f; = 0,f, = 0,and f, = 1, we have

x, 0 0 & 0
1 1
Xy =10 0 k—l k_2 0
1 1 1
X3 0 0 k_1+k_1+k—3 1
ky k2 k3

)] (2) (3

= Y—x ' §‘“’_‘s

Figure 6.1.1.
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The complete flexibility matrix is now the sum of the three prior matrices:

1 1 1
X E & % h
11 1,1 1,1
20k kTR YR £
1 1 1 1 1 1
X3 E mtn ptntnllh

Note the symmetry of the matrix about the diagonal.

Example 6.1.2

Determine the flexibility matrix for the system shown in Fig. 6.1.2.

2k k k
2m m —WW— m
. x'l — xz —>x3
FIGURE 6.1.2.

Solution We have here k, = 2k, k, = k, and k, = k, and the flexibility matrix from Example
6.1.1 becomes

[05 05 05
[a] = £l 05 15 15
05 15 25

Example 6.1.3

Determine the flexibility influence coefficients for stations (1), (2), and (3) of the uniform can-
tilever beam shown in Fig. 6.1.3.

Solution The influence coefficients can be determined by placing unit loads at (1), (2),and (3) .
as shown, and calculating the deflections at these points. By using the area moment method,' the
deflection at the various stations is equal to the moment of the M/EI area about the position in
question. For example, the value of a,, = a,, is found from Fig. 6.1.3 as follows:
' ‘ 171,.,,.77]_ 140D
= —| = X -l|l==—=
2T gy [ 2 @ x 3 ] 3 El
The other values (determined as before) are

27 P 14 P

a 3 EI ay =ap < .3_ EI

'E. P. Popov, Introduction to Mechanics of Solids (Englewood Cliffs, NJ: Prentice-Hall, 1968), p 411.
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FIGURE 6.1.3.
8 I 25 PP
T 3F T4 T 3 g
18 4 P
“@I3E wTWT3E
The flexibility matrix can now be written as
P 27 14 4
a=—|14 8 25
3EI 4 25 1

and the symmetry about the diagonal should be noted.

" Example 6.1.4

The flexibility influence coefficients can be used to set up the equations of a flexible shaft sup-
ported by a rigid bearing at one end with a force P and a moment M at the other end, as shown
in Fig. 6.1.4.

The deflection and slope at the free end is
y=a,P+a,M

(6.1.1)
0=ayuP + apM

FIGURE 6.1.4.
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FIGURE 6.1.5. Demonstration
“gyroscope. (Courtesy of UCSB
Mechanical Engineering
Undergraduate Laboratory.)

which can be expressed by the matrix equation

y ay ap||P
= 6.1.2
{0} [azx azz]{M} ( )
-The influence coefficients in this equation are _
' & P !
T3 ‘T T g 27 (6.13)

The equation presented here could offer a basis for solving the problem of the
gyroscopic whirl of a spinning wheel fixed to the end of an overhanging shaft. P and M
in this case would be replaced by the inertia force and the gyroscopic moment of the
spinning wheel. By including the fiexibility of the supporting bearing, a still more gen-
eral problem can be examined (see Prob. 6.41).

Figure 6.1.5 shows a demonstration gyroscope in gimbals. The mass distribution
of the wheel is adjustable to obtain general moment of inertia configuration other than

~ that of the symmetric wheel resulting in the simple inertia force P and the gyroscopic
moment M shown in Fig.6.1.4. -

6.2 RECIPROCITY THEOREM

The reciprocity theorem states that in a linear system, a; = a;. For the proof of this
theorem, we consider the work done by forces f; and f,, where the order of loading is i fol-

lowed by j and then by its reverse. Reciprocity results when we recognize that the work
" done is independent of the order of loading.
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By applying f, the work done is 5 f2a;. Byapplying f»the work done by f; is 3 f T
However, i undergoes further displacement, a;f, and the additional work done by f;
becomes a;;f;f;. Thus, the total work done is '

S )
- §f1a11 + Zfl i + al]-f]ﬁ
We now reverse the order of loading, in which case the total work done is
, i
- Ef}a]] + Zfl. i + a]l-flf]
Because the work done in the two cases must be equal, we find that

a; = q;

Example 6.2.1

Figure 6.2.1 shows an overhanging beam wnth P first applied at 1 and then at 2. In Fig. 6.2.1(a),
the deflection at 2 is

_ Y2 = ayP
In Fig. 6.2.1(b), the deflection at 1 is
Y1 = app

Because a,;, = a,,, y, will equal y,, i.e., for a linear system, the deflection at 2,due to aload at 1, is
equal to the deflection at 1 when the same load is applied at 2.

FIGURE 6.2.1. @

u
6.3 STIFFNESS INFLUENCE COEFFICIENTS
The stiffness matrix written in terms of the influence coefficients k;; is
fi) ki kp k| [x .
Lt =|ka kn ky|9x (6'3'1)7,
f ky kyp kil \x '

The elements of the stiffness matrix have the following interpretation. If x, = 1. 0
and x, = x; = 0, the forces at 1,2, and 3 that are required to maintain this dlsplacemeﬂt 4

2

?
_31
1




Section 6.3 Stiffness Influence Coefficients 169

according to Eq. (6.3.1) are k;;, k,,, and k; in the first column. Similarly, the forces f,, f,,
and f; required to maintain the displacement configuration x; = 0,x, = 1.0,and x, = 0
are ky,, ky, and k;, in the second column. Thus, the general rule for establishing the
stiffness elements of any column is to set the displacement corresponding to that col-

umn to unity with all other displacements equal -to zero and measure the forces
required at each station.

Example 6.3.1

Figure 6.3.1 shows a 3-DOF system. Determine t

he stiffness matrix and write its equation of
motion. :

k k k
9r—’x, 3—72 ' 3’_’:{3 FIGURE 6.3.1.

Solution Letx,=10andx, = x5 = 0. The forces required at 1,2, and 3, considering forces to
the right as positive, are

hi=k +k=ky

fi= k= ky
fi=0=ky
Repeatk with x, = 1,and x; = x; = 0. The forces are now
fi =k =ky
=k, + ky; =k,
- = ks =ky
For the last column of &’s,let x; = 1 and x; = x, = 0.The forces are
fi=0=ky
f= ks = ky

fi=ks+ kg =ky
The stiffness matrix.can now be written as

(ky + i)~y 0
K=|-k (y+ k) —ks
0 ~ks, (k; + k)

and its equation of motion becomes

m 0 0](x (k+ k) —k 0 x| A
0 my 0 |5 +| -k (ky + k3)  —ky ne=1r
0 0 mlx 0 —k; (ks + kg) | Lxs 5
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Example 6.3.2

Consider the four-story building with rigid floors shown in Fig. 6.3.2. Show diagramatically the .

significance of the terms of the stiffness matrix.

ka3 kaq
4q kai ka2
: /s
3 ks, k3o k3 (k34
: \
> kar k22| \ | ka3 kaq
; \
1 ku k|2 k|3 k|.4
) ~/
272 4 % 7 Z TN, 4.7
(a) (b) ) {d) (e)
FIGURE 6.3.2.

Solution The stiffness matrix for the problem is a 4 X 4 matrix. The elements of the first col-
umn are obtained by giving station 1 a unit displacement with the displacement of all other sta-
tions equal to zero, as shown in Fig. 6.3.2(b). The forces required for this configuration are the
elements of the first column. Similarly, the elements of the second column are the forces neces-
sary to maintain the configuration shown in Fig,. 6.3.2(c)-

It is evident from these diagrams that k, = k;, = k;; and that they can be determined from
the deflection of a fixed-fixed beam of length 2/, which is

ky =ky=ky= %I)Ef = 24%[
The stiffness matrix is then easily found as
24 -12 0 0
K] = EI| -12 24 -12 0
0 -12 24 -12
0 0 -12 12

, [
Example 6.3.3 ,
Determine the stiffness matrix for Example 6.1.2 by inverting the flexibility matrix:
1 0 5 05 0.5
[a] = E 1.5 15
' 0.5 1.5 25

Solution Although the stiffness matrix of this system is easily found by summing forces on

each mass in Fig. 6.1.2, we demonstrate the use of the mathematical equation

o] = |},—|adj [a]
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of Appendix C.The determinant of [a] is found from the minors using the first column.

1 1.5 15 05 05 05 05
ol = k{o's 1.5 2.5‘ i 2.5\ 0345 1.5]
0.5 1 .
= —{15-05+0}=—
;A 1.5 — 05 + 0} %
For the adjoint matrix, we have (see Appendix C)
1.5 -05 0
adjla] =] -05 1.0 -05
0 -05 05
Thus, the inverse of [a] is
1.5 -05 0 3 -1 0
[a] '=[k] =2kl =05 10 -05|=k|[-1 2 -1
0 -05 05 0 -1 1

which is the stiffness matrix.

Example 6.3.4

By using the stiffness matrix developed in Example 6.3.3, determine the equation of motion, its
characteristic determinant, and the characteristic equation.

Solution The equation of motion for the normal modes is

2 0 0ffx 3 -1 0 [x 0
—'m|{0 1 0|{x¢ +k|-1 2 =1|9x =40
0 0 1 lx 0 -1 1] L, 0
from which the characteristic determinant with A = w?m/k becomes
3-20) -1 0
-1 2-2 -1 (=0
0 -1 (1-2)

The characteristic equation from this determinant is
A —450 2 +50~-1=0

The roots of this.equation can be found in MATLAB® by typing the command roots(c)
where c is the vector containing the coefficients of the polynomial in descending order. For this
example ¢ = [1, —4.5,5, —1]. The roots are given by

2.8892, 1.3554, 0.2554

Alternatively, one can compute these numbers by computing the eigenvalues of the
dynamic matrix A = M~! * K. Once the matrices M and K have been input into MATLAB®, the
dynamic matrix is computed by using the following command:

A = inv(M)*K
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The result is

1.5000 —0.5000 0
—-1.000 2.000 —1.0000
0 —1.0000  1.0000

The eigenvalues can now be computed using

D = eig(A).
The result is
D=
1.3554
2.8892
0.2554

Both of these approaches give the same values for the eigenvalues for the normal modes.

6.4 STIFFNESS MATRIX OF BEAM ELEMENTS

Engineering structures are generally composed of beam elements. If the ends of the
elements are rigidly connected to the adjoining structure instead of being pinned,
the element will act like a beam with moments and lateral forces acting at the ends.
For the most part, the relative axial displacements will be small compared to the lat-
eral displacements of the beam and we will assume them to be zero for now.

Figure 6.4.1 shows a uniform beam with arbitrary end displacements, v;, 6; and v,,
8,, taken in the positive sense. These displacements can be considered in terms of the
superposition of four displacements taken separately, as shown in Fig. 6.4.2. Shown
also are the end forces and moments required to maintain the equilibrium of the sepa-

rate displacements, which can be simply determined by the area-moment method.
They relate to the following stiffness matrix:

F ki ki ki ki Uy
M, - ky kp ky o kg 6,
F, ks ks ks ks U
M, ky ki ki kg 6,

where each column represents the force and moment required for each of the displace-
ments taken separately. The positive sense of these coordinates is arbitrary; however,

<

.V2

FIGURE 6.4.1. Beam with arbitrary end displacements.
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4'_= FE
M= 651 v,( - . -
! % M= P
Y126l
6EI e
F=—291
. 9. - ‘ _2E&I
=4_-';791< /Yr—\ )M——l_01
% _6El
F="p b
6EI
_12EI w=SEL
T / 2"
_BEI 2 1261
M 22 VZCAQ - F= l3 v,
6EI 4ET

FIGURE 6.4.2. Stiffness of beam element.

the configuration shown in Fig. 6.4.1 conforms to that generally used in the finite ele-
ment method. ' :

Also presented here are force and moment relationships for a pinned beam.
~ Although the pinned beam does not conform to the usual definition of beam stiffness,
its force and moment relationships are often convenient, and are presented here in
Figure 6.4.2(a).

m=3Lg, A M=0
F=£§ _wei%;
[l F=?-91
M=§1—521"’1(f
F-%ulbiw%:% 121
o 3% "
FIGURE 6.4.2(a).

Example 6.4.1

Determine the stiffness matrix for the square frame of Fig. 6.4.3. Assume the corners to remain
at 90°.
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v
fm @ H 91_(_2|) ~ 592

FIGURE 6.4.3.

Solution The method to be illustrated here provides an introduction to the finite element
method, which is discussed later. Briefly, the displacements at the joints (corners joining the
three beam elements) must be compatible. Ensuring equilibrium of forces at the corners from
the free-body diagrams, the elements of the stiffness matrix are found.

With the applied forces equal to F;, M}, and M,, the displacement of the corners are v,, 8,,
and 6,, and the stiffness matrix relating the force to the displacement is

F ki ko ki v
My =|ky kyp ksz 6,
M, ky ks ks 6,

(@ b ) (c)
FIGURE 6.4.4.

For the determination of the elements of this matrix, the frame is shown with each displacement -
applied separately in Fig. 6.4.4. The first column of the stiffness matrix is found by letting v, = 1
and 6, = 6, = 0, as shown in Fig. 6.4.4(a). By cutting out the corners and imposing the condition.
of equilibrium for the free-body diagram, the results are (see Fig. 6.4.5)

i 12% 12%‘ e
AT g U
6% lg ' 6% EI
Fl 242 o olf1) 123 m—2p
Mp=|62 0 0|0 ‘
M, 6 0 oflo

FIGURE 6.4.5.

Y/
S S R i et 2t
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The second column of the stiffness matrix is found from the configuration of Fig. 6.4.4(b).
Summing forces and moments at the corners we have (see Fig. 6.4.6)

£
o af )
— \
) (\*. Q 5
T el oEl Y
. ? 1
F 0 65 o|]o0 ‘
| ; W
M p=|0 8 0|41
M, ) 0 28 0]|o ' 1
N N
FIGURE 6.4.6.

In like manner, the third column of the stiffness matrix is found from the configuration of
Fig. 6.4.4(c) (see Fig. 6.4.7).

F, 0 0 64|10
M =10 0 2|<0
M, 0 o 8|1

M E1 M
(‘\ 1 T F q 2
— 0 (——) (-
WK 2% }:'I 47'/\—’6%
el i T
FIGURE 6.4.7.

By superpositioning the preceding three configurations, the stiffness matrix for the square frame
with fixed legs is _ : :

~lov
~lo
=

IR

F,

EI
M} = ]
M,

N -
o N
N

~l ~I
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6.5 STATIC CONDENSATION FOR PINNED JOINTS

For pinned joints where the moment is zero, the size of the stiffness matrix can be
reduced by a procedure called static condensation.* The procedure can also be used in
discrete mass systems where the mass moment of inertia is small enough to be ignored.
We here illustrate the procedure by applying it to previous Example 6.4.1 of the square
frame when the fixed support of the lower right leg is replaced by a pinned support.

Example 6.5.1

Determine the stiffness matrix of the square frame shown in Fig. 6.5.1, where the lower right
support is pinned.

W M,
el
(1) (2)
(3)
N N

FIGURE 6.5.1.

Solution Compared to the previous Example 6.4.1, we now have an additional coordinate 6;,
-which results in a 4 X 4 matrix. To the three configurations of the previous problem, we add the
fourth configuration, as shown in Fig. 6.5.2. The new 4 X 4 stiffness is easily determined and is

given as
F % : 1 E% Lo
M\ Er|t 8 2:0()6
Mo |s 2 i)
M, ¢ 0 214] 6
which we partition by the dotted lines and relabel as
[
{_:"’_} - [_’9_1 _E_{fzz_]{.‘_’_} (65.1)
M K, + K5 110
NN
FIGURE 6.5.2.

2 Meirovitch, Computational Methods in Structural Dynamics (Rockville, MD: Sidthoff & }
Noordhoff, 1990), p. 369.

=
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Note here that K, is the stiffness matrix of the previous problem. Multiplying out the new
matrix, we obtain

=K,V +K,®
M=K,V +K,,0O

Because for the pinned end, the moment is zero, we let M = 0 and solve for O in terms of the
other coordinates, thus reducing the size of the 4 X 4 matrix to a 3 X 3 matrix.

(6.5.2)

0 = —K3K,V ' (6.5.3)
Substituting this into the first equation, we have
F = (K, - Kp KZK,)V (6.5.4)

Because the first term of this equation is that of the previous example, we need only to deter-
mine the second term, which is

o
7
KK5 Ky = EIZ 0 [ﬂ[? 0 2]
2]
EI_%— 6 EI% 0 ;
=Z 0 [7 0 2]=—1— 0-0 O
2] 20 .1

Subtracting this from K, we obtain the reduced 3 X 3 stxffness matrix for the square frame with
-one pinned end. .

F B ¢ 3

1 I { i Y
EI

M=~ ¢ 8 2096

M, L3 2 7]\%

Note that the middle column and row remain untouched.

ORTHOGONALITY OF EIGENVECTORS

The normal modes, or the eigenvectors of the system, can be shown to be orthogonal
with respect to the mass and stiffness matrices. By using the notation ¢, for the ith
eigenvector, the normal mode equation for the ith mode is

K¢, = M, (6.6.1)
Premultiplying the ith equation by the transpose d)f, of mode j, we obtain
&K, = ), ¢TM¢, (6.6.2)

If next we start with the equation for the jth mode and premultlplymg by ¢7, we
obtain a similar equation with i and j interchanged:

&K, = A 6 M, (6.6.3)
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Because K and M are symmetric matrices, the following relationships hold.

K Tk -
& | or |¢;= @ | or |, (6.6.4)
M M
Thus, subtracting Eq. (6.6.3) from Eq. (6.6.2), we obtain
| (h = A\)§TM3, = 0 (665)
If A; # A, the foregoing equation requires that :
HTMp; =0 i#] ‘ - (6.6.5)
It is also evident from Eq. (6.6.2) or Eq. (6.6.3) that as a consequence of Eq. (6.6.6),
$K$p;=0 i#]j : (6:6.7)

Equations (6.6.6) and (6.6.7) define the orthogonal character of the normal modes.

Finally, if i = j, (A; — A;) = 0 and Eq. (6.6.5) is satisfied for any finite value of the
products given by Eq. (6.6. 5) or (6.6.6). We therefore have

¢,—TM¢i =M,
¢iTK¢’i = K;

The quantities M; and K, are called the generalized mass and the generalized stiffness,

respectively. We will have many occasmns to refer to the generalized mass and general-
ized stiffness later.

(6.6.8)

Expansion Theorem. Consider the problem of initiating the free_ vibration of a
system with a specified arbitrary displacement. As previously stated, free vibrations are
the superposition of normal modes, which is referred to as the Expansion Theorem. We
now wish to determine how much of each mode will be present in the free vibration.

We will express first the arbltrary displacement at time zero by the equatlon

X(()) =cd + c2¢2 t cypy + i+

where ¢, are the normal modes and ; are the coefficients indicating hew much of each
mode is present. Premultiplying the above equation by ¢/M and taking note of the -
orthogonal property of ¢;, we obtain

$/MX(0)=0+0+0+ - cd/Mp; + 0 +
The coefficient c; of any mode is then found as
_ $iMx(0)

T TeTMe,
Orthonormal modes. If each of the normal modes ¢, is divided by the square:
root of the generalized mass M, it is evident from the first equation of Eqs. (6.6.8) that
the right side of the foregoing equation will be unity. The new normal mode is then

called the weighted normal mode or the orthonormal mode and designated as ¢ Itis
also evident from Eq: (6.6.1) that the right side of the second equation of Eq. (6.6- 8)
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becomes equal to the eigenvalue A;. Thus, in place of Egs. (6.6.8), the orthogonality in
terms of the orthonormal modes becomes

g’iTMg’i =1

K - 2 (6.6.9)

67 MODAL MATRIX P

When the N normal modes (or eigenvectors) are assembled into a square matrix with
each normal mode represented by a column, we call it the modal matrix P. Thus, the
modal matrix for a 3-DOF system can appear as

X, (1) () (3)

X1 X1
P= X2 X, X = [4’1 ¢2¢’3] - (67.1)
X3 X3 X3 '

The modal matrix makes it possible to include all of the orthogonality relations of
Sec. 6.6 into one equation. For this operation, we need also the transpose of P, which is

(x1x2x3)(1)

PT=| (x,0)? | = [, 517 (6.7.2)

(x,x2x3)(3)

with each new row corresponding to a mode. If we now form the product P"MP or
PTKP, the result will be a diagonal matrix, because the off-diagonal terms simply
express the orthogonality relations, which are zero.

For example, consider a 3-DOF system. Performing the indicated operation with
the modal matrix, we have

PTMP = (¢, ¢, 0,1 T [M][ ¢, &, 03]

DM oM My [My 00
= ¢%M & d’%M é, ¢%~M é =] 0 M O (6.7.3)
&M, b3 Mo, d3 M, 0 0 My
In this equation, the off-diagonal terms are zero because of orthogonality, and the
diagonal terms are the generalized mass M. '

It is evident that a similar formation applies also to the stiffness matrix that
results in the following equation: '

Kn O 0 )
PIKP=| 0 K, 0 (6.7.4)
0 0 K,

The diagonal terms here are the generalized stiffness K ;.

When the normal modes ¢, in the P matrix are replaced by the orthonormal
modes ¢, the modal matrix is designated as P. It is easily seen then that the orthogo-
nality relationships are
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P™™P =1 C(6.75)
PTKP = A (6.7.6)
where A is the diagonal matrix of the eigenvalues.
A 00
A=10 A, O ' (6.7.7)
0 0 A

Eq. (6.7.5) and (6.7.6) show that if the eigenvectors are known then one can eas-
ily caiculate the eigenvalues. These relationships will be used in the discussion of
numerical methods for eigenvalues and eigenvectors (see Sec. 8.9).

Example 6.7.1

Verify the results of the system considered in Example 5.1.1 (see Fig. 6.7.1) by substituting them
into the equations of Sec. 6.7.

———XZ

m FVWW— 2m

K

N
x
x

FIGURE 6.7.1.

Solution The mass and stiffness matrices are
1 0 2 -1
L ST

The eigenvalues and eigenvectors for Example 5.1.1 are

2
_ wm _ 0.731}
A k 0.634 ¢, {1.000_
2
_ om _ _ —2.73}
Ay = = =236 ¢, {1.00
F_orming the modal matrix P, we have
P_4'0.73_l —2.73]
‘ | 1.00 1.00
0731 107[1- 07[0.731 -2.73
T =
P MP L-—2.73> 1.0][0 2][1 1 ]
_[253 0 ]'_ [M" 0 ]
L 0 945

0 My
Thus, the generalized mass are 2.53 and 9.45. ’
If instead of P we use the orthonormal modes, we obtain

13=[ 1 {0.731} 1 {—2.73H=[0.459 —0.888]
V253 [ 1.00 /945 | 1.00 0628 0.3252
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PTMP = [ 0459 0.628](1 0][0459 -—0888] _[1.00 0 ]
- L0888 0325]|0 2][0.628 0325 0 1.00
PTKP = [ 0.459 0.628][ 2 -11][0459 ~0.888
—-0888 0325f( -1 2 }[0.628 0.325
_ [0.635 0 ] _ [)\, O]
0 2365] L0 A
Thus, the diagonal terms agree with the eigenvalues of Example 5.1.1.°
]

6.8 DECOUPLING FORCED VIBRATION EQUATIONS

When the normal modes of the system are known, the modal matrix P or P can be

used to decouple the equations of motion. Consider the following general equation of
the forced undamped system:

MX +KX=F (68.1)
By making the coordinate transformation X = PY, the foregoing equation becomes
MPY + KPY = F
Next, premultiply by the transpose P’ to obtain
(PTMP)Y + (PTKP)Y = PTF (6.82)

Because the products P’/MP and P'KP are diagonal matrices due to orthogonality, the
new equations in terms of Y are uncoupled and can be solved as a system of 1 DOF.
The original coordinates X can then be found from the transformation equation

X = PY (6.8.3)

Example 6.8.1

Consider the two-story building of Fig. 6.8.1 excited by a force F(t) at the top. Its equation of

motion is
2 07(% 3 —1](x, {ﬂ
O I o =
mb JLJ %—1 th F

The normal modes of the homogeneous equation are

ol o-f)

P

FIGURE 6.8.1.



182 - Chapter 6 - Properties of-Vibrating Systems

from which the P matrix is assembled as

05. -1
P‘[l '1]

Writing out the terms of Eq. (6.8.2), we have
[ 0.5 1][2 0][0‘5 —1]{&',}
m i
-1 1]l0 1]i1 1]y,
+k[ 0.5 1][ 3 ~1][0.5 —1]{y1}=[ 05 1]{0}
-1 1{-1 1]l 1]y, -1 1]lF

15 0 yl} [0.75 O'J{yl} {FZ}
ot =
m[O 3]{}’2 g 0 6lly F,
which are uncoupled.

The solutions for y, and y, are in the form

or

y( ) PZ sin wt
=y t+ = + - —
Yi y,(O) COS w;t sin w;t 1 ( / )2

which can be expressed in terms of the 0r1g1na1 coordinates by the P matrix as

G0 i

Example 6.8.2

For Example 6.8.1, determine the generalized mass and the P matrix. Numerically, verify
Eqgs. (6.7.5) and (6.7.6).

Solution The calculations for the generalized mass are

M, = (05 1)[3 (1)]{0?} =15

wmconfy 0o

By .dividing the first column of P by VM, and the second column by VM,, the P matrix
becomes

P 0.4083 —0.5773]
~ o865 05773
Equations (6.7.5) and (6.7.6) are simply verified by substitution.

6.9 MODAL DAMPING IN FORCED VIBRATION

The equation of motion of an N-DOF system with viscous dampmg and arbitrary exci-
tation F() can be presented in matrix form:

MX+CX+KX=F (69.1)
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It is generally a set of N coupled equations.
‘We have found that the solution of the homogeneous undamped equation
MX + KX =0 (6.9.2)

leads to eigenvalues and eigenvectors that describe the normal modes of the system and
the modal matrix P or P. If we let X = PY and premultiply Eq. (6.9.1) by PT as in Sec.
6.8, we obtain '

PTMPY + PTCPY + PTKPY = PTF (6.9.3)

We have already shown that PTMP and PTKP are diagonal matrices. In general, PTCP
is not diagonal and the preceding equation is coupled by the damping matrix.

If C is proportional to M or K, it is evident that PTCP becomes diagonal, in which-

case we can say that the system has proportional damping. Equation (6.9.3) is then
completely uncoupled and its ith equation will have the form

j;i + 25,'(0();[ + oty z}i(t) (6.9.4)

Thus, instead of N coupled equations, we would have N uncoupled equations similar to
that of a single-DOF system. :

Rayleigh damping. Rayleigh introduced proportional damping in the form

C=aM + BK (6.9.5)

where « and B are constants. The application of the weighted modal matrix P here
results in

PTCP = oP™MP + BPTKP
(6.9.6)°
=al + BA

where Iis a unit matrix, and A is a diagonal matrix of the eigenvalues [see Eq. 6.7.6)].
2

w0,y
A= “2 (6.9.7)
o,
Thus, instead of Eq. (6.9.4), we obtain for the ith equation
¥+ (a+ By, + oy, = F) (6.98)
.and the modal démping can be defined by the equation
2w, = a + Bo? (6.9.9)

NORMAL MODE SUMMATION
The forced vibration equation for the N-DOF system
MX+CX+KX=F (6.10.1)

31t can be shown that C = aM" + BK" can also be diagonalized (see Probs. 6.29 and 6.30).
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Foo— X = - 400~ = =LA -~ -~ —{- 48,00

—] i [x 1 ‘
-~ X2 :
-— B (0=4x3 ¢,00) /1}3()()

X,

!

1

n
1

7200007 7, 0007 77,

FIGURE 6.10.1. Building displacement represented by normal modes.

can be routinely solved by the digital computer. However, for systems of large num-
bers of degrees of freedom, the computation can be costly. It is possible, however, to
cut down the size of the computation (or reduce the degrees of freedom of the system)
by a procedure known as the mode summation method. Essentially, the displacement
of the structure under forced excitation is approximated by the sum of a limited num-
ber of normal modes of the system multiplied by generalized coordinates.

For example, consider a 50-story building with 50 DOF. The solution of its
undamped homogeneous equation will lead to 50 eigenvalues and 50 eigenvectors that
describe the normal modes of the structure. If we know that the excitation of the build-
ing centers around the lower frequencies, the higher modes will not be excited and we
would be justified in assuming the forced response to be the superposition of only a
few of the lower-frequency modes; perhaps ¢,(x), ¢,(x), and ¢,(x) may be sufficient.
Then the deflection under forced excitation can be written as

5= S0 + 6s()a0) + due)as()  (6102)

or in matrix notation the position of all z floors can be expressed in terms of the modal
matrix P composed of only the three modes. (See Fig. 6.10.1.)

X1 é,(xy) é,(x,) éi(x) (@

i : I ~ (6103)
Xn d’l(xn)_ ¢2(xn) ¢3(xn) 9,

The use of the limited modal matrix then reduces the system to that equal to the num- .

ber of modes used. For example, for the 50-story building, each of the matrices such as.

K is a 50 X 50 matrix; using three normal modes, P is a 50 X 3 matrix and the product -
PTKP becomes :

PTKP = (3 x 50)(50 x 50)(50 X 3) = (3 X 3) matrix
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Thué, instead of solving the 50 coupled equations represented by Eq. (6.10.1), we need
only solve the three by three equations represented by
PT™MKPq + PTCPq + PTKPq = P'F (6.10.4)

If the damping matrix is assumed to be proportional, the preceding equations become

uncoupled, and if the force F(x, 1) is separable to (p(x)f(t), the three equations take the
form

q; + 2Gwg; + wiq, = Tif(1) (6.10.5)
where the term
E ¢i(xj) P(xj) .
Ij= "— (6.10.6)
. 2 mjd)zz(xj)
j .

is called the mode participation factor.

In many cases, we are interested only in the maximum peak value of x;, in which
case, the following procedure has been found to give acceptable results. We first find
the maximum value of each g;(¢) and combine them in the form

Ixiimax = |¢1(xi)ql,max| + \/id’z(xi)‘h, max‘z + id)_%(xi)q?s, maxl2 . (6107)4

Thus, the first mode response is supplemented by the square root of the sum of the
squares of the peaks for the higher modes. For the previous computations, a shock
spectrum for the particular excitation can be used to determine g; . If the predomi-

nant excitation is about a higher frequency, the normal modes centering about that fre-
quency can be used.

Example 6.10.1

Consider the 10-story building of equal rigid floors and equal interstory stiffness. If the foundation
of the building undergoes horizontal translation uy(t), determine the response of the building.

Solution We assume the normal modes of the building to be known. Given are the first three

normal modes, which have been computed from the undamped homogeneous equation and are
as follows:

Floor o, = 0.1495Vk/m w, = 0.4451Vk/m w; = 0.7307Vk/m

&y(x) ) dy(x) 3(x)

10 1.0000 1.0000 1.0000
9 0.9777 . 0.8019 0.4662
8 0.9336 0.4451 —0.3165

4The method is used by the shock and vibration groups in various industries and the military.
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Floor @, =01495Vk/m  w,=04451Vk/m  w, = 0.7307Vk/m

&y(x) y(x) 3(x)
7 0.8686 ’ 0.0000 -0.9303
6 0.7840 —0.4451 —1.0473
S 0.6822 -0.8019 —-0.6052
4 0.5650 —1.0000 1.6010
3 0.4352 —1.0000 0.8398
2 0.2954 -0.8019 1.0711
1 0.1495 -0.4451 ] 0.7307
0 0.0000 0.0000 0.0000

The equation of motion of the building due to ground motion u(¢) is
MX + CX + KX = —Miy(t)

where 1 is a unit vector and X is a 10 X 1 vector. Using the three given modes, we make the
transformation

X =Pq

where Pis a 10 X 3 matrix and g is a 3 X 1 vector, i.e.,

r¢1 (xl) ¢z(x1) 4’3(/‘%)

p= ¢1(:Xz) ¢2(:x2) ¢3(:x2) g = Z;
¢1(x,0) 4’2(«‘10) ¢3(x10) 43

Premultiplying by P7, we obtain
PTMPq + PTCPq + PTKPq = —P"M1u(t)

and by assuming C to be a proportional damping matrix, the foregoing equation results in three

uncoupled equations:
.. . e 10
my g, + ¢yqy + kg, = —iglr) 2 m, (x;)
i=1
.. e 10
My + Cpldy + kp@y = —it(1) D, my(x,)
. i=1
.. - .o 10
M3y + Cypds + kngy = —it(t) X, mia(x)
i=1
where m_, ¢

#» Ci» and k;; are generalized mass, generalized damping, and generalized stiffness. The
q;(t) are then independently solved from each of the foregoing equations. The displacement x; of
any floor must be found from the equation X = Pgq to be

X = ¢1(xi)‘il(t) + dy(x)gy(1) + bs(x)qs()

Thus, the time solution for any floor is composed of the normal modes used.

From the numerical information supplied on the normal modes, we now determine the
numerical values for the first equation, which can be rewritten as




6.11

Section 6.11 Equal Roots 187

"1.1 + 2§1wlq1 = — %Z(i; u(t)
1

We have, for the first mode,

= zmqﬁ = 5.2803m
— =2 = ,/
m, S = 0.299 fl
kyy
— = 002235—
mn

> me, = 6.6912m

The equation for the first mode then becomes

. k. k .
g+ 0.299\/ — 4Gy + 002235~ g, = —1.2672ii(t)

Thus, given the values for k/m and {,, the above equation can be solved for any #¢).

EQUAL ROOTS

When equal roots are found in the characteristic equation,'the corresponding eigen-
vectors are not unique and a linear combination of such eigenvectors may also satisfy
the equation of motion. To illustrate this point, let ¢, and ¢, be eigenvectors belonging

to a common eigenvalue A, and ¢, be a third eigenvector belonging to A, that is differ-
ent from A,. We can then write

Ady = Ay
Ad, = Ao,
Ady = Ay,

By multiplying the second equation by a constant b and addmg it to the first, we obtain
another equation:

Ay + bey) = Aoy + beby)

_ Thus, a new eigenvector ¢, = (¢, + b¢,), which is a linear combination of the first
two, also satisfies the basic equation:

A ¢12 A'0(1)12

and hence no unique mode exists for A,.

Any of the modes corresponding to A, must be orthogonal to ¢, if it is to be a
normal mode. If all three modes are orthogonal, they are linearly independent and can
be combined to describe the free vibration resulting from any initial condition.

The eigenvectors associated with the equal eigenvalues are orthogonal to the
remaining eigenvectors, but they may not be orthogonal to each other.

{
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Example 6.11.1

Consider the system of Fig. 6.11.1 of a flexible beam with three lumped masses. Of the three pos-
sible modes shown, the first two represent rigid body motion of translation and rotation corre-

sponding to zero frequency, and the third mode is that of symmetric v1brat10n of the flexible
beam. With the mass matrix equal to

1.0 0
M=|0 2 0
0 0 1

the modes are easily shown to be orthogonal to each other, i.e.,

Mo, = ¢TMpy = $IMds =0

O — ~0
m 2m m
[ O~ —0 |
-- - E— ¢>1={_1} )\1=O
O ————— O——————— -0 1

- -1
- : 3EI
= = 1 A==

/,
\\_O_—’/

Next, multiply ¢, by a constant b and add it to ¢, to form a new modal vector ¢,,:

FIGURE 6.11.1.

1y [(-1) (1-»
bp=¢ +b={1r+bq 0 =74 1
1 1 1+b

Itis seen that ¢, is orthogonal to ¢, i.e.,

1 0 0|(1-5)"
$IMb,=(-1 1 -1)l0 2 0 1 ¢=0
' 0 0 1|l1+»

Thus, the new eigenvector formed by a linear combination of ¢, and ¢, is orthogonal to ¢s.
However, we find that ¢, and ¢, are not orthogonal to ¢;,. -

1 0 Off1-» ,
oMo, =(1 1 1)l0 2 0 1 }=4+0
000 1J1+» '
1 0 Off1-»
dMp,=(-1 0 1)[0 2 0 1 =2b#0
Lo o 1jl1+b
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'612 UNRESTRAINED (DEGENERATE) SYSTEMS

A vibrational system that is unrestrained is free to move as a rigid body as well as
vibrate. An airplane in flight or a moving train is such an unrestrained system. The
equation of motion for such a system will generally include rigid-body modes as well as
vibrational modes, and its characteristic equation will contain zero frequencies corre-
sponding to the rigid-body modes. '

Example 6.12.1

Figure 6.12.1 shows a three-mass torsional system that is unrestrained to rotate freely in bear-
ings. Its equation of motion is

J, 0 0](8 K, -K, 0 0, 0
0 J, 0386 +|-K (K+K,) -K|{6;=10
0 0 Jy|lég 0 -K, K, 116 0

We will here assume thatJ, = J,=J;, =Jand K, = K; = K, and let A = w?I/K, in which case,
the preceding equation reduces to

1 0 0 1 -1 0o]1]|e 0
-Alo 1 o+~ 2 1|k t={0
0 0 1 -1 1] ]}e 0
J
J J2 ’
DN K Ka AN
" ) [ ) [ 2 r ]
Y s
. 6, 6, s
FIGURE 6.12.1.

The characteristic determinant for the system is
(1 - A) -1 0
~1 @2-2) -1 |=0
‘ 0 -1 a-x
which when multiplied out becomes
AM1=-AM(r-3)=0
Thus, the roots of the eigenvalues for the system are

X =0
=1
Ay =3

To identify the corresponding eigenvectors, each of the A’s is substituted into the equation
of motion: .
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(b)

FIGURE 6.12.2,

(1-2 -1 0 6, 0
0 2-x) -1 6,p =10
0 -1 0-x0]1ls 0

When A, = 0 is substituted, the result is §, = 6, = 6; and its normal mode, or eigenvector, is
1
¢ =191
1

which describes the rigid body motion [see Fig. 6.12.2(a)].
Similarly, the second and third modes [see Figs. 6.12. 2(b) and 6.12. 2(c) respectively] are

found and displayed as
-1 1
¢, = 0 ) L |
1 1
-3
" PROBLEMS

6.1. Determine the flexibility matrix for the spring-mass system shown in Fig. P6-1.

= a——bxz K

ky ka k3 : k
WWW— m, my >

N

SN

FIGURE P6.1. FIGURE P6.2.

6.2. Three equal springs of stiffness k 1b/in. are joined at one end, the other ends being . &
arranged symmetrically at 120° from each other, as shown in Fig. P6.2. Prove that the
influence coefficients of the junction in a direction making an angle 8 with any spring is
independent of @ and equal to 1/1.5k. ;

6.3. A simply supported uniform beam of length / is loaded with weights at positions O. 251 3
and 0.6/. Determine the flexibility influence coefficients for these positions. %
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6.4. Determine the flexibility matrix for the cantilever beam shown in Fig. P6.4 and calculate
the stiffness matrix from its inverse.

NN

Z

FIGURE P6.4. : FIGURE P6.5.

6.5. Determine the influence coefficients for the triple pendulum shown in Fig. P6.5.

6.6. Determine the stiffness matrix for the system shown in Fig. P6.6 and establish the flexibil-
ity matrix by its inverse.

4o J /3 FIGURE P6.6.

6.7. Determine the flexibility matrix for the uniform beam of Fig. P6.7 by using the area- '
moment method. . '

Z ) gz (2)

¢ } 4 | FIGURE P6.7.

6.8. Determine the flexibility matrix for the four-story building of Fig. 6.3.2 and invert it to
arrive at the stiffness matrix given in the text.

6.9. Consider a system with # springs in series as presented in Fig. P6. 9 and show that the
stiffness matrix is a band matrix along the diagonal.

ky ka k3 kg O
™| [ma-sn—{m3 [ma-— - ——fm]
a—’h a_*xz hX3 %Xq - a"x,

FIGURE P6.9.
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6.10. Compare the stiffness of the framed building with rigid floor beams versus that with flex-
ible floor beams. Assume all lengths and ElIs to be equal. If the floor mass is pinned at the
corners as shown in Fig. P6-10(b), what is the ratio of the two natural frequencies?

S il iy

@ (b)
FIGURE P6.10.

6:11. The rectangular frame of Fig. P6.11 is fixed in the ground. Determine the stiffness matrix
for the force system shown.

FIGURE P6.11.

6.12, Determine the stiffness against the force F for the frame of Fig. P6.12, which is pinned at
the top and bottom.

FIGURE P6 12.

6.13. Using the cantilever beam of Fig. P6.13, demonstrate that the remprocny theorem holdS
for moment loads as well as forces. :

4 o @ S

FIGURE P6.13.
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6.14. Verify each of ihe results given in Fig. 6.4.2 by the area-moment method and superposition.

6.15. Using the adjoint matrix, determine the normal modes of the spring-mass system shown
in Fig. P6.15."

Z

FIGURE P6.15. : FIGURE P6.16.

6.16. For the system shown in Fig. P6.16, write the equation of motion in matrix form and
determine the normal modes from the adjoint matrix.

6.17. Determine the modal matrix P and the weighted modal matrix P for the system shown in
Fig. P6.17. Show that P or P will diagonalize the stiffness matrix. '

s

K K :;f"
m
) e L 3 1
S N - 5
FIGURE P6.17. FIGURE P6.18.

6.18. Determine the flexibility matrix for the spring-mass system 6f three DOF shown in
Fig. P6.18 and write its equation of motion in matrix form.

6.19. Determine the modal matrix P and the weighted modal matrix P for the system shown in
Fig, P6.19 and diagonalize the stiffness matrix, thereby decoupling the equations.

k k k
=

FIGURE P6.19.

6.20. Determine P for a double pendulum with coordinates 6, and 6,. Show that P decouples
the equations of motion.
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-6.21.

6.22.
6.23.

6.24.

6.25.

6.26.

6.27.

If in Prob. 6.11 masses and mass moment of inertia, m,,J, and m,, J,, are attached to the -
corners so that they rotate as well as translate, determine the equations of motion and
find the natural frequencies and mode shapes.

Repeat Prob. 6.21 with the frame of Fig. P6.12.

If the lower end of the frame of Prob. 6.12 is rigidly fixed to the ground, the rotation. of
the corners will differ. Determine its stiffness matrix and determine its matrix equation
of motion for m;, J; at the corners.

Determine the damping matrix for the systém presented in Fig. P6.24 and show that it is
not proportional. :

FIGURE P6.24.

Using the modal matrix P, reduce the system of Prob. 6.24 to one that is coupled only by
damping and solve by the Laplace transform method.

Consider the viscoelastically damped system of Fig. P6.26. The system differs from the
viscously damped system by the addition of the spring k,, which introduces one more

coordinate, x;, to the system. The equations of motion for the system in inertial coordi-
nates x and x, are

mx = —kx — c{x —x;) + F
0=clx —x;) — kx,

Write the equation of motion in matrix form.

K
A

Ky

F

77

FIGURE P6.26.

Show, by comparing the viscoelastic system of Fig. P6.26 to the viscously damped system,
that the equivalent viscous damping and equivalent stiffness are :

c = c
eq wCZ
nE
kl

k+(k,+k)(’%)2

eq wCZ
+ .
! (kl)
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6.28. Verify the relationship of Eq. (6.6.7)
K =0 i#j
by applying it to Prob. 6.16.
6.29. Starting with the matrix equation
: Ko, = 0iM,
premultiply first by KM ™! and, using the orthogonality relation ¢’ Mo, = 0, show that
SKM'K$, = 0 o
Repeat to show that
| ¢/ [KM]'K, = 0

for h =1,2,...,n,where n is the number of degrees of freedom of the system.
6.30. In a manner similar to Prob. 6.29, show that

¢TIMK"M$, =0, h=1,2,...
6.31. Evaluate the numerical coefficients for the equations of motion for the second and third
modes of Example 6.10.1.

6.32. If the acceleration i(z) of the ground in Example 6.10.1 is a single sine pulse of amplitude
a, and duration ¢, as shown in Fig. P6.32, determine the maximum g for each mode and
the value of x_,, as given in Sec. 6.10.

et —
FIGURE P6.32.

6.33. The normal modes of the double pendulum of Prob. 5.9 are given as

w = 0.764\@, w, = 1.850\@'

¢ = {e,} _ {0.707}
' Yole)y oo §°

0, -0.707
o-ft)- ()
6,) ) 1.00 _
If the lower mass is given an impulse Fy5(t), determine the response in terms of the nor-
mal modes.

6.34. The normal modes of the three-mass torsional system of Fig. P6.6 are given for
Ji=l,=J,andK, =K,=K;.
0.328 ,
"¢y = 4059 ¢, M=
0.737
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0.737
é, =1 0328 A, = 1.555,
~0.591

0.591
b= =037}, A, = 3247
0328

Determine the equations of motion if a torque M(t) is applied to the free end. If
M(t) = Mgu(t), where u(t) is a unit step function, determine the time solution and the
maximum response of the end mass from the shock spectrum.

6.35. Using two normal modes, set up the equations of motion for the five-story building

whose foundation stiffness in translation and rotation is k, and K, = o, respectively (see
Fig. P6.35).

P
m
¢
7 k'
/Z W77 7 %
K, u
FIGURE P6.35.

6.36. The lateral and torsional oscillations of the system shown in Fig. P6.36 will have equal
natural frequencies for a specific value of a /L. Determine this value, and assuming that
there is an eccentricity e of mass equal to me, determine the equations of motion.

= Uiz

a

— L ——
.- FIGURE P6.36.

6.37. Assume that a three-story building with rigid floor girders has Raylengh damping. If the
modal dampings for the first and second modes are 0.05% and 0.13%, respectively, deter-
mine the modal damping for the third mode.




6.38.

6.39.

6.40.

6.41.

6.42.

6.43.
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The normal modes of a 3-DOF system with m; = m, = m, and k, = k, = k, are given as

0.737 -0.591 0.328
$,=40591}, =1 0328}, ¢, =1-0737
0.328 0.737 0.591

Verify the orthogonal properties of these modes.
The system of Prob. 6.38 is given an initial displacement of

0.520
X =4 -0.100
0.205
and released. Determine how much of each mode will be present in the free vibration.

In general, the free vibration of an undamped system can be represented by the modal
sum

| X(@0) = 2A¢smwt+ EBq’) cos w;t

If the system is started from zero dlsplacement and an arbitrary distribution of velocity
X(0), determine the coefficients A, and B,.

Figure P6.41 shows a shaft supported by a bearing that has translational and rotational flex-

ibility. Show that the left side of the shaft flexibility Eq. (6.1.1) or (6.1.2) of Example 614
should now be replaced by
o2l
6-8

From the relationship between 7, B8, y, 6, and loads P and M, determine the new flexibility

equation
{ } _— l all ) ‘112 l{l ]
9 an a22 fu

FIGURE P6.41.

Set up the matrix equation of motion for the 3-DOF system of Fig. P6.18 in terms of stiff-
ness. Transform it to the standard eigen-problem form, where A is symmetric.

In Example 6.10.1 for the forced vibration of a 10—story building, the equation of motion
for the first mode was given as

q, + 0.299’\/% 4,4, + 0.02235 &ql = —1.26724(7)
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Assume the values Vk/m = 3.0 and ¢; = 0.10, and solve for the time response using
RUNGA when the ground acceleration is given by Fig. P6.43. You will have to write a
function file f.m that contains an expression for the function given in Fig. P6.43.

0.6
04

0.2 -

f(t)

-0.2

-0.4

T

-0.6

—0gL—1 I I ! I 1 1 I ]
01 02 03 04 05 06 07 08 09 1

ot
FIGURE P6.43.

6.44. Determine the stiffness matrix for the system of two pend ula coupled by a rubber hose in
Fig. P5.15.
6.45. Consider the system given in Fig. P6.45, with the damping force proportional to the .

square of the velocity. Is it possible to develop an equivalent damping approach for this'
problem (cf. Sec. 3.8)?

FIGURE P6.45.




CHAPTER 7

Lagrange’s Equation

Joseph L. C. Lagrange (1736-1813) developed a general treatment of dynamical sys-
tems formulated from the scalar quantities of kinetic energy 7, potential energy U, and
work W. Lagrange’s equations are in terms of generalized coordinates, and preliminary

to discussing these equations, we must have clearly in mind the basic concepts of coor-
dinates and their classification.

7.1 GENERALIZED COORDINATES

Generalized coordinates are any set of independent coordinates equal in number to the
degrees of freedom of the system. Thus, the equations of motion of the previous chap-
ter were formulated in terms of generalized coordinates.

In more complex systems, it is often convenient to describe the system in terms of
coordinates, some of which may not be independent. Such coordinates may be related
to each other by constraint equations.

Constraints. Motions of bodies are not always free, and are often constrained
to move in a predetermined manner. As a simple example, the position of the spherical
pendulum of Fig. 7.1.1 can be completely defined by the two independent coordinates

FIGURE 7.1.1.

199
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¢ and ¢. Hence, ¢ and ¢ are generalized coordinates, and the spherical pendulum rep-
resents a system of two degrees of freedom.

The position of the spherical pendulum can also be described by the three rectan-
gular coordinates, x, y, z, which exceed the degrees of freedom of the system by 1.

Coordinates x, y, z are, however, not independent, because they are related by the con-
straint equation: :

x2+y?+22-012=0 (7.1.1)
One of the coordinates can be eliminated by the preceding equatlon thereby reducmg

the number of necessary coordinates to 2.

The excess coordinates exceeding the number of degrees of freedom of the sys-
tem are called superfluous coordinates, and constraint equations equal in number to
the superfluous coordinates are necessary for their elimination. Constraints are called
holonomic if the excess coordinates can be eliminated through equations of constraint.
We will deal only with holonomic systems in this text.

Examine now the problem of defining the position of the double pendulum of
Fig. 7.1.2. The double pendulum has only 2 DOF and the angles 6, and 6, completely
define the position of m, and m,. Thus, 6, and 6, are generalized coordinates, i.e.,
6, =g,and 6, = g,

The position of m, and m, can also be expressed in rectangular coordinates x, y.
However, they are related by the constraint equations

B+
=(x, - x1)2 +(y, = y)?

and hence are not mdependent We can express the rectangular coordmates Xx;, y; in
terms of the generalized coordinates 6, and 6,

x; =1l sin6, x,=1sin6 + l,sin6,
y1 =1l cos 8, y,=1cos 8 +1cos 6,

and these can also be considered as constraint equations.

X2 )2

FIGURE 7.1.2.
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To determine the kinetic energy, the squares of the velocity can be written in
terms of the generalized coordinates:

vi =i +yi=(161)° |
v=x2+yi=[l6,+1 02 cos (6, — 6))] + [L,6, sin (6, — 6))]?
The kinetic energy
T=3 s+ 3 m2 V3
is then a function of both g = ¢and q=6:
T=T(GG0 990 ---) (7.12)

" For the potential energy, the reference can be chosen at the level of the support
point:

U= — m(l cos 8,) — m,(l, cos 8, + I, cos 6,)
The potential energy is then seen to be a function only of the generalized coordinates:

U=U(g,4,---) (7.1.3)

.Example 7.1.1

Consider the plane. mechanism shown in Fig. 7.1.3, where the members are assumed to be rigid.
Describe all possible motions in terms of generalized coordinates.

A% %A / Z 7o
FIGURE 7.1.3.

Solution As shown in Fig. 7.1.3, the displacements can be obtained by the superposition of

- two displacements g, and g,. Because g, and g, are mdependent they are generalized coordi-
nates, and the system has 2 DOF.

Example 7.1.2

The plane frame shown in Flg 7.1.4 has flexible members. Determine a set of generahzed coordi-
" nates of the system. Assume that the corners remain at 90°.

Solution There are two translational modes, g, and g,, and each of the four corners can rotate
independently, making a total of six generalized coordinates, g;, g5, . . . , g;- By allowing each of
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] /
9
7 7, 7 7 7/ 7
q3m 94
9s G
G 7 ” 7. G 7 S \ ”
FIGURE 7.1.4.

these displacements to take place with all others equal to zero, the displacement of the frame
can be seen to be the superposition of the six generalized coordinates.

Example 7.1.3

In defining the motion of a framed structure, the number of coordinates chosen often exceeds
the number of degrees of freedom of the system so that constraint equations are involved. It is
. then desirable to express all of the coordinates u in terms of the fewer generalized coordinates ¢
by a matrix equation of the form

u=Cq

The generalized coordmates g can be chosen arbitrarily from the coordinates u.
As an illustration of this equation, we consider the framed structure of Fig. 7.1.5 con31stmg
of four beam elements. We will be concerned only with the displacement of the joints and not the

stresses in the members, which would require an added consideration of the distribution of the
masses.

FIGURE 7.1.5.
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In Fig. 7.1.5, we have four element members with three joints that can undergo displace-
ment. Two linear displacements and one rotation are possible for each joint. We can label them
u, to u,. For compatibility of displacement, the following constraints are observed

u, = ug = 0 (no axial extension)
U = U (axial length remains unchanged)
(1, c0s 30° — ugcos 60°) — (u,cos 30° — ugcos 60°) = 0
We now disregard u, and ug, which are zero, and rewrite the preceding equations in matrix form:

U

1 0 -1 0 U,

=0

[0 0.866 —0.500 —0.866] s @
. “7J

Thus, the two constraint equations are in the form

[Allu} = 0 (b)
We actually have seven coordinates (ul,u3,u4,u5,u6,u7,u9) and two constraint equations. Thus, the

degrees of freedom of the system are 7 — 2 = 5, indicating that of the seven coordinates, five can
be chosen as generalized coordinates q.

Of the four coordinates in the constraint equation, we choose us and u; as two of the gener-
alized coordinates and partition Eq. (a) as

u
lat 8%} = lalll + lella) = 0 ©)
Thus, the superfiuous coordinates u can be expressed in terms of g as

{u} = — [a] "'[6]lq} | (d)
Applying the preceding procedure to Eq. (a), we have ’

o aaaellhe (s o} -}
(=15 2100 el los U]

By supplying the remaining g, as identities, all the u’s can be expressed in terms of the g’s as
| {ul = [C{g) @)

where the left side includes all the u’s and the right column contains only the generalized coordi-
nates. Thus, in our case, the seven u’s expressed in terms of the five ¢’s become

(v, [0 1 0 0 0]

U 10 0.0 0(u

” 0 058 0 1 0| u

ﬂu5‘=01 0 0 0% u )
ug 00 1 0 0[]y

u, 0 0 0 1 0] u

) oo o0 0 1]

In Eq. (e) or (f), matrix C is the constraint matrix relating u to g.
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Example 7.1.4

In the lumped-mass models we treated earlier, n coordinates were assigned to the n masses of the
n-DOF system, and each coordinate was independent and qualified as a generalized coordinate.
For the flexible continuous body of infinite degrees of freedom, an infinite number of coordinates
is required. Such a body can be treated as a system of a finite number of degrees of freedom by
considering its deflection to be the sum of its normal modes multiplied by generalized coordinates:

yx, 1) = ¢,(x)q,(1) + $,(x)q,(1) + Py(x)gs(e) + - -

Py
@(a)

ér

\
e ¢R
g,
-~ ¢2
FIGURE 7.1.6. [}

In many problems, only a finite number of normal modes are sufficient, and the series can be ter-
minated at n terms, thereby reducing the problem to that of a system of n DOF. For example, the
motion of a slender free-free beam struck by a force P at point (a) can be described in terms of

two rigid-body motions of translation and rotation plus its normal modes of elastic vibration, as
shown in Fig.7.1.6.

y(x, t)>= érqr + drqr + #(x)q, + dy(x)g, +

7.2 VIRTUAL WORK

In Chapter 2, the method of virtual work was briefly introduced with examples for
single-DOF problems. The advantage of the virtual work method over the vector
method is considerably greater for multi-DOF systems. For interconnected bodies of

. many degrees of freedom, Newton’s vector method is burdened with the necessity of -
accounting for all joint and constraint forces in the free-body diagrams, whereas these
forces are excluded in the virtual work method.

In reviewing the method of virtual work, we summarize the virtual work equa-
tion as

W= S F-8, =0 (721

where F; are the applied forces excluding all constraint forces and internal forces of frift- »‘1
tionless joints and dr; are the virtual displacements. By including D’Alembert’s inertia
forces, —m;r;, the procedure is extended to dynamical problems by the equation
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W = z(f-m?)-a;=o | - (122)

This later equatlon leads to Lagrange s equation when the displacement r; is expressed
in terms of generalized coordinates.

The virtual displacements &r; in these equations are arbitrary variations of the
coordinates irrespective of time but compatible with the constraints of the system.
Being an infinitesimal quantity, 87; obeys all the rules of differential calculus. The dif-
ference between 6r; and d7, is that dr, takes place in the time dt, whereas dr; is an arbi-
trary number that may be equal to dr, but is assigned instantaneously irrespective of
time. Although the virtual displacement & is distinguished from dr, the latter is often
substituted for 67 to ensure compatibility of displacement.

Example 7.2.1

‘We first illustrate the virtual work method for a problem of static equilibrium. Figure 7.2.1 shows

a double pendulum with generalized coordinates 6, and 6,. Determine its static equilibrium posi-
tion when a horizontal force P is applied to m,.

FIGURE 7.2.1.

With the system in its equilibrium position, give 8, a virtual displacement 86, [Fig 7.2.1(a)]
and write the equation for the virtual work W of all the applied forces:

8W = —(m,gsin 6,)I 80, + (P cos 6,) 56, = 0

From the equilibrium position (with 86, = 0), give 8, a virtual displacement 86,, as in
" Fig. 7.2.1(b), and write the equation for 6W:

8W = —(m,sin 6))l 86, — (m,g sin 6,)! 86, + (P cos 6,)! 86, = 0
These equations lead to the two equilibrium angles, given as

P
tan 6, = —
mg
tan 6, = S -
' b (my +myg
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Example 7.2.2
Using the virtual work method, determine the equations of motion for the system shown in
Fig.7.2.2. '
. (
7 k
m
A\l
8
FIGURE 7.2.2. F(1)

Solution The generalized coordinates for the problem are x and 6. Sketch the system in the

displaced position with all the active forces and inertia forces. Giving x a virtual displacement &x,
the virtual work equation is '

. Lo
SW =" — [(m; + m)X + kx]ox — (m2§ 9 cos 9)5)‘

lo-y .
+ (mzzf)‘ sin 6)6x + F(t)éx = 0
Because dx is arbitrary, the preceding equation leads to
.- { .. .
(my + myx + mzi(ﬂcos 6 — 6°sin 6) + kx = F(r)

Next, allow a virtual displacement 86. W is then

.

2
W= — (mzé b’)%aa - (mzi—z b’)so — (m,g sin o)%ae

. [
— (m,X cos 0) 2 86 + [F(¢) cos 0]1868 = 0
from which we obtain
.. l.. [ .
my 38+ myzxcos 6+ mygo sin 6 = F(f)lcos 6

These are nonlinear differential equations, which for small angles simplify to

. l..
(my + m)x + my> 6+ kx = F(r)

P, . 1 .
ng 6+ m2—2-x + ngi 0 =1IF(t)
which can be expressed by the matrix equation
1
(my + m,) mys || % k 0 x F(r)
I el ™ el ™ re
mzi ng 0 m8; :

ul
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7 3 LAGRANGE’S EQUATION

In our prevnous discussions, we were able to formulate the equations of motion by

~ three different methods. Newton’s vector method offered a simple approach for sys-
tems of a few degrees of freedom. The necessity for the consideration of forces of con-
straints and free-body diagrams in this method led to algebraic difficulties for systems
of higher degrees of freedom. '

The energy method overcame the difficulties of the vector method. However, the
energy principle in terms of physical coordinates provided only one equation, which
limited its use to single-DOF systems.

» The virtual work method overcame the limitations of both earlier methods and
proved to be a powerful tool for the systems of higher DOF. However, it is not entirely

a scalar procedure in that vector considerations of forces are necessary in determining
the virtual work.

Lagrange’s Equations. Lagrange formulated a scalar procedure starting from

the scalar quantities of kinetic energy, potential energy, and work expressed in terms of
generalized coordinates. It is presented here as

4(3IT)_ o, W
dt\oq,) dq; g
The left side of this equation, when summed for all g, is a statement of the principle of
conservation of energy, and is equivalent to

d(T + U) =
The right side, Q,, is related to the work term done by the nonpotentlal forces, and will
be taken up later.

Lagrange’s equations constitute one of the cornerstones of the imposing edifice
of analytical mechanics, which is dealt with at length in other volumes. Here our treat-
ment is brief, but it is sufficient to introduce the fundamental merits of Lagrange’s
method to those who wish to appreciate its use.

Beginning with the case of a conservative system, where all external forces and

all internal forces have a potential, the sum of the system’s kinetic and potential ener-
gies is a constant.

=0 (7.3.1)

T + U = E = constant
The total differential of E must then be zero.
dE=d(T+ U)=dT +dU =0 _ (73.2)

The kinetic energy T is a function of the generalized coordinates ¢; and the gen-
eralized velocity g;, whereas the potential energy U is a function only of g;.

T =109 9192 - - 4a)

U=U@4y 99, - (133)
The differential of T'is
NooT NoaT .
dT = —dgq; + —dg; (7.3.4)
, E 9q; ? g{ aq 1
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To eliminate the second term with d(j,-, we start with the equation for kinetic energy

2 Zm,,q,q, ’ (13.5)

11]1

Differentiating this equation with respect to g,, multiplying by g, and summing over i
from 1 to N, we obtain the result equal to

oT .
>y - Ezm,,q,q, 2T

11aq1 i=1j=
or

N

2 2.4 (7.3.6)

We now form the differential of 2 T from the precedmg equation by using the product
rule from calculus

: No(dT\. T ..
2T = d( —r )‘L‘ + —dg; (7.3.7)
Z‘i 9q; 9q;

By subtracting Eq. (3.7.4) from this equatibn the second term with dg, is eliminated.

aT dfoT
By shifting the scalar quantity dt, the term d( )dq, becomes — ( — )dq,-, and the

aq; dt \ 3¢q;
result is

NTd{aT oT :
= == |- = |dg. 7.3.8)
ar E[dt(aqi) aq.-] i (

We now consider the term dU in Lagrange’s equation. From Eq. (7.3.3), the dif- -
ferential of U is

NooU
dU= 3 —
i-1 9
Thus Eq. (7.3.3) for the invariance of the total energy becomes
N[ d{(aT 8T aU]
AT+ ) = 2’ [ dt(aq,) ag; ~ ag; |°% (

Because the N generalized coordinates are independent of one another, the dg; can
assume arbitrary values. Therefore the previous equation is satisfied only if
4(dr)_or , ou
dr \ 3g; 9q; - aql
This is Lagrange’s equation for the case in which all the forces have a potential U.
They can be somewhat modified by introducing the Lagrangian L = (T — U). Because .
= 0, Eq. (7.3.10) can be written in terms of L as '
d (6L) L
dt\dq;) og;

=0i=12,-N (7.3.10)

=0i=12-N (7.3.11)
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Nonconservative systems. The right side of Lagrange’s equation (7.3.1) results

from dividing the work term in the dynamical relationship dT = dW into the work
done by the potential and nonpotential forces as follows.

dT = dW, + dW,,, (7.3.12)

The work of the potential forces was shown earlier to be equal to dW, = — dU, which
is included in the left side of Lagrange’s equation. The nonpotential work is equal to
the work done by the nonpotential forces in a virtual displacement expressed in terms

of the generalized coordinates. Thus, Lagrange’s equation, Eq. (7.3.1) is the g, compo-
nent of the energy equation

d(T + U) = 8W,,, (7.3.13)

We can write the right side of this equation as

N
oW = 2 Q8q; = Q:8q; + 0,8, + (7.3.14)
i=1

The quantity Q; is called the generalized force. In spite of its name Q; can have units
other than that of force; i.e., if 8g; is an angle, O, has the units of moment. The only
requirement is that the product Q,8¢; be in the units of work. We now demonstrate the
use of Lagrange’s equation as applied to some simple examples.

Example 7.3.1

Using Lagrange’s method, determine the equation of motion for the 3-DOF system shown in
Fig.7.3.1.

q1—> qz/——“ q3—>
a4 K k Ky
m1 m2 my
FIGURE 7.3.1.

Solution The kinetic energy here is not a function of g; so that the term 97/dq; is zero. We
have the following for the kinetic and potential energies:

T= iml‘h +, Emz‘h + Ems‘h

U= ikgt + 1kila, — )7 + 1kslas — 4)°

and T for this problem is a function of only ¢, and not of g;. .
By substituting into Lagrange’s equation fori = 1,

£—m' d(aT)_m..
o, e g o4, 19

aU

— =kq, — k(g — q))

F) a 141 2\12 1

and the first equation is

myq, + (k, + kg, — kyg, =0
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Fori = 2, we have

iy (2] <
aéz 29> dr aéz 292
U

— =k - -k -
34, 2(‘12 ‘h) 3(‘13 42)

and the second equation becomes
myq, = kyq, + (ky + k3)g, — kyq; =0

Similarly fori = 3,

Ty L)
34 393 dr 343 393
U

&k _

aqa. 3(‘13 ‘12)

with the third equation
mygy = kigy + kyq; =0

" These three equations can now be assembled into matrix form:

mg 0 0 ‘.1’1 (kx + kz) —k, 0 91 0
0 m, 0 |$g,¢+ —k, ky+ k3) —ky|3g,70 =140
0 0 my]lg; 0 —k; ky q; 0

We note from this example that the mass matrix results from the terms (d/dr)(3T/q,)
— 38T /dq; and the stiffness matrix is obtained fromaU/aq,.

. n

Example 7.3.2

Using Lagrange’s method, set up the equations of motion for the system shown in Fig. 7.3.2.

q,
) — 2
& -k
m
r .
> y )M(n
FIGURE 7.3.2. -

-

Solution The kinetic and potential energies are
T = dmg? + 44}
U= %kqf + %K("h - q)?
and from the work done by the external moment, the generalized force is
| W = Mg, - O, = M()
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Substituting into Lagrange’s equation, the equations of motion are
mq, + 2kq, — krg, =0
Ig, — krq, + kriq, = M(2)

which can be rewritten as

i [ R et A P

Example 7.3.3

Figure 7.3.3 shows a simplified model of a two-story building whose foundation is subject to
translation and rotation. Determine T and U and the equations of motion.

FIGURE 7.3.3.

Solution We choose 1 and 6 for the translation and rotation of the foundation and y for the
elastic displacement of the floors. The equations for T and U become

T = mgi® + 10,6% + im (i + ko + y,)* + 11,6
) 2 ;
+ iy + 2h0 + y,) + 31,67
U = jkgu? + 3Ko6% + 1kyy? + Hko(y, — y,)?

where u, 6, y,, and y, are the generalized coordinates. Substituting into Lagrange’s equation, we
obtain, for example, :

aT . . . P
i o+ 7, + 1,00 + mh(u + ho + y,) + m2h(u + 2h6 + y,)
v . _ .

%=Ko.
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The four equations in matrix form become

(my + m, + my,) (m, + 2my)h 5 m,  m, u
myk2m)h (3T A myh? Amph?) L mh 2ok | ] 6
m, mh % m, 0 Y1
m, 2m, Y m, Y2
ke 0 . 0 0 u
t
0 K, 0 0 6
+4 |------t S SR —-- =10
0 01}(k1+k2) —ky 1 o
0 0 -k Kk Y2

It should be noted that the equation represented by the upper left corner of the matrices is that
of rigid-body translation and rotation.

Example 7.3.4

Determine the generalized coordinates for the system shown in Fig. 7.3.4(a) and evaluate the
stiffness and the mass matrices for the equations of motion.

g
m, "Q "I

U1
q.

Z% (a) B (b)

FIGURE 7.3.4. (a)and (b).

Solution Figure 7.3.4(b) shows three generalized coordinates for which the stlffness matrix -
can be written as

F 1 kv ky k13‘| 9,
My =\ky ky ky 92
M, ky  kyp k33_| 93

The elements of each column of this matrix are the forces and moments required when the -
corresponding coordinate is given a value with all other coordinates equal to zero. The configy-
rations for this determination are shown in Fig. 7.3.4(c), and the forces and moments necessary
to maintain these deflections are obtained from the free-body diagrams of Fig. 7.3.4(d) with the ¢
aid of the equations shown in Fig. 6.4.2. .

]
4
B
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a, *9;=0 q,%q,=0 q,24,=0

FIGURE 7.3.4. (c) Generalized coordinates q,, g,, and g, imposed separately.

- €
LA )M, g, 2 @
o 261,
1251, L ety 651, C , (u
—z % 4511 ‘
e 1 /') A 2&1, ((_W)IM‘IZ a,
! ! L BN i £,
1 I
1 | |
| i |
| 1 |
1 | |
| |
i
]
Z : Z T

FIGURE 7.3.4. (d) Forces necessary to maintain equilibrium.

For q,, we have

12EI
Fy li’l 0 0 (a
—6EI
, M} = ?%1 0 0[¢0
M, 0o o0 oJ\o
For 45,
F, 0 '61%“1 0|0
M =0 (ﬂ,rﬂ) 0[{q,
I I,

M, 0 2EL 11512 ol‘\o
: 2
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For gs,
F, 0 0 .0 0
M =10 0 %ﬁ 0
M, 00 A% q3

The stiffness matrix for the system is the superposition of these three results:

12EI 6EI
F, o - 0 9,
ll ll
6EI 4EI, A4EI 2EL
M — |- 1 1 + 2) _ 2
N T ( Lo L L%
2FEI 4EL
M, 0 - 2 2 93
b L,

The mass matrix is found from the kinetic energy:

T= %(ml + mz)‘]% + %114% + %qu'g

d 0T .
— £ = (m, + m,)q,
dt 4q,
d oT .
== =]
dt 34, 192
d oT . P
—_— — =]
dt 3q, 293

The equations of motion for the frame can then be written as

(m1 +m2) 0 0 6‘1‘1

0 Ji 0 ‘.I.z
0 0 J ('1'3
12EI 6EI
31 - 2l 0 US F,
ll 11
| 6EI 4EI, 4EIL 2EL
+ = ( Lt 2) =g =\ M
l] 11 12 ’ 12
1 4FL
0 _%E_z_ —= q;3 M,
173 L

7.4 KINETIC ENERGY, POTENTIAL ENERGY, AND GENERALIZED FORCE
IN TERMS OF GENERALIZED COORDINATE q

In the previous section, the use of Lagrange’s equation was demonstrated for sim-
ple problems. We now discuss the quantities T, U, and Q from a more general point
of view. : E
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Kinetic energy. By représenting the system by N particles, the instantaneous
position of each particle can be expressed in terms of the N generalized coordinates

K= »rj(ql, Qo -2 qN)
The velocity of the jth particle is

ANG) &
J
v, = —q,
h z q;
and the kinetic energy of the system becomes
1Y 1Y & ( N or; ar>
T= - mMv.-v. = — m,__’. 'q“
221 e 221,:2. gl aq; 9q;)"

N

N
E Emijéiéj

i=1j=

)" [m]iq)

(7.4.1)

= N

Potential energy. In a conservative system, the forces can be derived from the
potential energy U, which is a function of the generalized coordinates g;. Expanding U

in a Taylor series about the equilibrium position, we have for a system of n degrees of
freedom

5[ aU 1 & & (U
u="0,+ — g+ = — | qq + -
’ ;=21 (aqi )oq’ 2 Z‘l I=EI (3‘1/341)0%%

In this expression, U, is an arbitrary constant that we can set equal to zero. The
derivatives of U are evaluated at the equilibrium position 0 and are constants when the
g;’s are small quantities equal to zero at the equilibrium position. Because U is a mini-
mum in the equilibrium position, the first derivative (U/ aq,.)o is zero, which leaves
only (6°U/dq;9q,), and higher-order terms.

In the theory of small oscillations about the equilibrium position, terms beyond

. the second order are ignored and the equation for the potential energy reduces to

o*U
0 (s
9q;9q, /
and the potential energy is written in terms of the generalized stiffness k; as
1 n

2 1_21 k,'/‘],-‘h

j=1

la]"[kl{q)

U=

2 (742
] 42)
2
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Generalized force. For the development of the generalized force, we start from
the virtual displacement of the coordinate r;:
or.
or, = —L &g,
! 21 8q; &
and the time ¢ is not involved.

When the system is in equilibrium, the virtual work can now be expressed in
terms of the generalized coordinates g;:

W= > F o = E EF g’
j

By interchanging the order of summation and letting
Q= 2 ¥
J

be defined as the generalized force, the virtual work for the system, expressed in terms
of the generalized coordinates, becomes

W= 3 Q8 (7.4.3)

7.5 ASSUMED MODE SUMMATION

When the displacement is expressed as the sum of shape functions ¢,(x) multiplied by
the generalized coordinates g,(¢), the kinetic energy, the potential energy, and the work
equation lead to convenient expressions for the generalized mass, the generalized stiff-
ness, and the generalized force.

In Chapter 2, a few distributed elastic systems were solved for the fundamental
frequency using an assumed deflection shape and the energy method. For example, the
deflection of a helical spring fixed at one end was assumed to be (y//)x, and for the
simply supported beam, the deflection curve y = y___ [3(x/l) — 4(x/1)?], (x/I) = 3, was
chosen. These assumptions when solved for the kinetic energy led to the effective mass

and the natural frequency of a 1-DOF system. These assumed deﬂectlons can be
expressed by the equation

u(x, 1)-= ¢(x)q,(t)

where g,(?) is the single coordinate of the 1-DOF system.
For the multi-DOF system, this procedure can be expanded to

ue) = 3 6al0)

where g; is the generalized coordinate, and ¢(x) is the assumed mode function. There

are very few restrictions on these shape functions, which need only satisfy the geomet-.

ric boundary conditions.
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Generalized Mass -
We assume the displacement at position x to be represented by the equation

r(x, 1) = $(0g1(0) + $D)g(0) + - - + Gy(X)gn(d)

N
= 2 ¢{x)afo) (75.1)
i=1 :
where ¢,(x) are shape functions of only x.
The velocity is
N
oulx) = 2 o{x)q (1) (75.2)
: i=1
and the kinetic energy becomes
1 N N
r=13 Sid | 600 an
i=1 j=1
1Y X .
== EmijCIz‘ij (7.5.3)
253
Thus, the generalized mass is
= j qSi(x)d)j(x)dm _ (71.54)

where the integration is carried out over the entire system. In case the system consists
of discrete masses, m;; becomes .

N
my; = E_Zlm,,cﬁ,-(x,,)@(xp) (715.5)

Generalized Stiffness (Axial Vibration)

We again represent the displacement of the rod in terms of the assumed modes and the
generalized coordinates:

ux,)) = 2 ¢(x)q(r)
i=1
The potential energy of the rod under axial stress is found from Hooke’s law:

P du
A E%
and the work done, which is,

2
dU = lPd“dx lEA(d—") dx
2 dx

.u=% JAE(%)dx o (75.6)
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Substituting for u(x, ) gives

1
U=3 > Eq.q,jAEw, dx

f (7.5.7)

1

= z - 2}: if qlq]
-where the generalized stiffness is
k= [ AE ¢} ¢} dx ' (7.5.8)
J

Example 7.5.1

Determine the equation of motion and the natural frequencies and normal modes of a fixed—free
uniform rod of Fig. 7.5.1 using assumed modes ,(x) = x/land o,(x) = (x/1)%

. '|

t {

FIGURE 7.5.1.

The equation for the displacement of the rod is

u(x, 1) = ‘Pl(x)‘h(t) + ¢,(x)gy(1)

“ (o (3) o

Note that the assumed modes chosen satisfy the only geometric boundary condition of the prob-

lem, which is (0,r) = 0. Thus, the generalized mass and the generalized stiffness are evaluated
from

my; = J olsv,-(X)qv,-(x)m dx

k; = JEA @} (x) @ (x)dx

1 Ill 1 EA
my=m||=|dc= =ml k,=EA| = -=dx= —
" fo(’) 3 n ol 1 )
] 3 I
X 1 1 2x EA
my, = my mJ(—I') dx-‘zml kn_kz’——EAJOY-FdX:—l_
f 4 )
1 4 4EA
m22~mf(§)dx=§ml k2z—EAj li4dx=—-l—
0 0
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which can be assembled into the following matrices:

\ )
M:,n,[; ] x=FA[1 1
; 1l

The equation of motion for the normal mode vibration then becomes

R HHEE S HHI R

By letting A = w*ml?/EI, the characteristic determinant
=0

b Bl

wis

1-5) 1-i)
(1-30) G-3A)

reduces to the following polynomial equation for the eigenvalues:

AZ — 34.666A + 79.999 = 0

Solving for A, we have

2.486

= =+ =
A =17.333 = 14.847 {32.180

and the natural frequencies are

EA
= 1577\ —;
@, mi?
EA
= 5.672y —
@ mil?
The exact values for this prdblem are
7 |EA EA
T g\ T TN
EA EA
w, = 3m — = 471244 —

which indicates good agreement for the first mode. The second mode frequency is 20.4 percent
high, which is to be expected with only two modes.

From the first equation, the ratio of the amplitudes is
a _ (-
’ 1
9, 1 —3A
By substituting A; = 2.486, the first mode ratio is

g, _ —0378 -10

g, 0171 0453

For the second mode, we substitute A, = 32.18 and obtain
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The displacement equation for each mode can now be written as

wx) = - (’—;) + 0,453_(’—;)2
u(x) = — (f‘l—) + 1.38(’7‘)2

Generalized Stiffness (Beams)

Determine the generalized stiffness for a beam of cross- sectional property EI when
the displacement y(x, t) is represented by the sum

y(x, 1) = D olx)qr) (7.5.9)
i=1
The potential energy of a beam in bending is
2y
U= E {El(d ) dx (7.5.10)
2 / dx
Substituting for
2 x) q{(t)
we obtain

1
= 52 qu]JEIqo" “dx
= 5 2 zkijQiqj
i

(7.5.11)

and the generalized stiffness is

k; J.Elqo" ! dx (7.5.12)

Example 7.5.2 GENERALIZED FORCE

The frame of Fig. 7.1.3 with rigid members is acted upon by the forces and moments shown in
Fig.7.5.2. Determine the generalized forces.

Solution We let 8q, be the virtual displacement of the upper left corner and 8q, be the trans-
lation of the right support hinge. Due to 8g,, the virtual work done is

1
0,59, = Fida, ~ F,7 8q, + (M, — M) g,

a _ 1
Q1 =F1 - 7F2+ 7(M1 - Mz)’
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[—»! bq,

g2
FIGURE 7.5.2.

The virtual work done due to 8q, is
dq
0,8q, = —F(l - 0)% + MzTZ
1
l
It should be noted that the dimension of Q, and Q, is that of a force.

Q= [_Fz(l —a) + Mz]

Example 7.5.3

In Fig. 7.5.3, three forces, Fy, F,, and F;, act at discrete points, x;, x,, and x,, of a structure whose
displacement is expressed by the equation

mﬁ=gdmm

Determine the generalized force Q,.

FIGURE 7.5.3.

Solution The virtual displacement is

®=g%®%

and the virtual work due to this displacement is
3 n .
W = EF,-(E qo.-(x;)Sq,-)
=1 i=1 :

- sl

3
i=1 j

2117j¢i(xj)) - S0,

j=



222 Chapter? Lagrange’s Equation
The generalized force is then equal to §W/8q,, or
3
Q= 2 F}-(p‘-(x,-)
j=1

= Folx) + Fe,(x,) + Fyo,(x3)
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PROBLEMS

7.1. List the displacement coordinates u; for the plane frame of Fig. P7.1 and write the geo-
metric constraint equations. State the number of degrees of freedom for the system.

21

2t

§.L¢

FIGURE P7.1.

7.2. Choose the generalized coordinates g; for the previous problem and express the u; coor-
dinates in terms of g;.

7.3. Using the method of virtual work, determine the equilibrium position of a carpenter’s
square hooked over a peg, as shown in Fig. P7.3.

'

0

FIGURE P7.3. ' FIGURE P7 4.

74. Determine the equilibrium position of the two uniform bars shown in Fig. P7.4 when 2
force P is applied as shown. All surfaces are friction-free.
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7.5. Determine the equilibrium position of two point masses rﬁl and'm2 connected by a mass-
less rod and placed in a smooth hemispherical bowl of radius R, as shown in Fig. P7.5.

FIGURE P7.5. FIGURE P7.6.

7.6. The four masses on the string in Fig. P7.6 are displaced by a horizontal force F.
Determine its equilibrium position by using virtual work.

7.7. A mass m is supported by two springs of unstretched length r, attached to a pin and
slider, as shown in Fig. P7.7. There is coulomb friction with coefficient u between the
massless slider and the rod. Determine its equilibrium position by virtual work.

FIGURE P7.7. : FIGURE P7.8.

7.8. Determine the equilibrium position of m,; and m, attached to strings of equal length, as
shown in Fig. P7.8.

7.9. A rigid uniform rod of length [ is supported by a spring and a smooth floor, as shown in

Fig. P7.9. Determine its equilibrium position by virtual work. The unstretched length of
the spring is k/4.

¢

FIGURE P7.9.

7.10. Determine the equation of motion for small oscillation about the equilibrium position in
Prob. 7.9. '
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7.11. The carpenter’s square of Prob. 7.3 is displaced slightly from its equilibrium position and
released. Determine its equation of oscillation.

7.12. Determine the equation of motion and the natural frequency of oscillation about its
equilibrium position for the system in Prob.7.5.

7.13. In Prob. 7.8, m, is given a small displacement and released. Determine the equation of
oscillation for the system.

7.14. For the system of Fig. P7.14, determine the equilibrium position and its equation of vibra-
tion about it. Spring force = 0 when 6 = 0.

FIGURE P7.14. FIGURE P7.15.

7.15. Write Lagrange’s equations of motion for the system shown in Fig. P7.15.
7.16. The following constants are given for the beam of Fig. P7.16:

EI El k

k=T =N m TN
EI K

=5§= — =5N

K=5=—, -—5=5

Using the modes ¢, = x/! and ¢, = sin(wx/I), determine the equation of motion by
Lagrange’s method, and determine the first two natural frequencies and mode shapes.

L EI,m

Sk
iz
FIGURE P7.16. FIGURE P7.17.

"7.17. Using Lagrange’s method, determine the equations for the small oscillation of the bars '
shown in Fig. P7.17.

7.18. The rigid bar linkages of Example 7.1.1 -are loaded by sbrings and masses, as shown in}
Fig. P7.18. Write Lagrange’s equations of motion.
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22 m,J
H1
12
(H— g1
£
. 7. 7.
FIGURE P7.18. FIGURE P7.19.

7.19. Equal masses are placed at the corners of the frame of Example 7.1.2, as shown in Fig. P7.19.
Determine the stiffness matrix and the matrix equation of motion. (Let I, = I,.)

7.20. Determine the stiffness matrix for the frame shown in Fig. P7.20.

maJe
m1}/4 Ko
Ao Y
n AAAA
/ 7,

FIGURE P7.20. FIGURE P7.21.

7.21. The frame of Prob. 7.20 is loaded by springs and masses, as shown in Fig. P7.21.
Determine the equations of motion and the normal modes of the system.

7.22. Using area moment and superposition, determine M, and R, for the beam shown in
Fig. P7.22. Let EI, = 2EI,

i mydy maJz
¢ — R 7 £ A .
N 1 R, EI P El, Z LJ
4 S49 1 Rz// €I, - EIp %
FIGURE P7.22. FIGURE P7.23.

7.23. With loads m and J placed as shown in Fig. P7.23, set up the equations of motion.

7.24. For the extension of the double pendulum to the dynamic problem, the actual algebra can
become long and tedious. Instead, draw the components of — r as shown. By taking each



226  Chapter?7 Lagrange’s Equation

80 separately, the virtual work equation can be easily determined-visually. Complete the
equations of motion for the system in Fig. P7.24. Compare with Lagrange’s derivation.

Lz
0,

- 281

P

K k k
3m m 7
/ ’
15 }—> q, |_. a,
FIGURE P7.24. FIGURE P7.25.

7.25. Write the Lagrangian for the system shown in Fig. P7.25.

7.26. Determine the equations of motion for the system shown in Fig. P7.26. Solve the equa-

tions numerically in MATLAB® for different initial conditions. (Assume the table does
not rotate.) :

FIGURE P7.26. FIGURE P7.27.

o)

7.27. Determine the equations of motion for the system shown in Fig. P7.27. Solve the equa-,

tions numerically in MATLAB® for different initial conditions. (Assume m, has no mass
and it does not rotate.)



CHAPTER 8

Computational Methods

In the previous chapters, we have discussed the basic procedure for finding the eigen-
values and eigenvectors of a system. In this basic method, the eigenvalues of the sys-
tem are found from the roots of the polynomial equation obtained from the
characteristic determinant. Each of the roots (or eigenvalues) was then substituted,
one at a time, into the equations of motion to determine the mode shape (or eigenvec-
tors) of the system.

Although this method is applicable to any N-DOF system, for systems with DOF
greater than 2, the characteristic equation results in an algebraic equation of degree 3
or higher and the digital computer is essential for the numerical work. :

As an alternative to this procedure, there is an implicit method of transformation
of coordinates coupled with an iteration procedure that results in all the eigenvalues
and eigenvectors simultaneously. In this method, the equation of motion

[-xM + K]xX =0 (a)

‘must be converted to the standard eigenvalue form utilized in most of the computer
programs. This standard form is

[A-My=0 (b)

where A is a square symmetric matrix, and Y is a new displacement vector trans-
formed from X. Because these methods all involve the iteration procedure, we precede

the transformation method with the computer application to the basic method and the
method of matrix iteration. -

8.1 ROOT SOLVING

Figure 8.1.1 shows a 3-DOF system for which the normal modes and natural frequen-
cies are desired. The equation of motion for this system is

2 X, 3 -1 0f([x 0
m 1 t+kl-1 2 —1{{xp =40
1] lx 0 -1  1]lx 0

227
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4 2k k K
2—’\/\/\/\/—2m E—fv\/\/\,—m

—X —X

1 2 3
Figure 8.1.1.
or
{ 2 3 -1 0]\ (x 0
Al 1 +i-1 2 -1||[{xnt =10 (8.1.1)
\ 1 0 -1 1]/ lx 0

where A = w’m/k.

The eigenvalues of the system are found from the characteristic determinant
equated to zero:

B-20) -1 0
-1 2= -1 | =0
0 -1 1-2
This determinant reduces to a third-degree algebraic equation. Using the method of

minors (see Appendix C) and choosing the elements of the first column as pivots, we
have

-1

2-» 0 |_
G-200"_ . (1_”'_0 .

1 (1=

and the characteristic equation becomes

+1

A =450\ +5A-1=0
However, it is a simple matter to rewrite the above equation as
fA) = A3 —450A2+50—-1=0

and plot it as a function of A to finds its zero crossings. This is done in Fig. 8.1.2 and on¢
can see that one root is between [0,.5]; another between [1,1.5]}; and a third root
between [2.5,3]. By using straight lines between these points or Newton intérpolation,
the roots are found easily. Because the computer can carry out thousands of calcula-
tions in a few seconds, AA can be chosen very small, in which case, the interpolation can
. be minimized or even eliminated for the accuracy required.

As a further insight to the root location, we can assume the roots to be known as
Aps Ay, Az, and rewrite the polynomial in the factored form

FA)=A=2)A-2)A-1)=0
Multiplying out the factored form the above equation becomes

F) =2 = (0 + 4+ A2+ (A4, + LA + LA — A0 =0

%@.@«:mrﬁ oL
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12 = T T

10

0 0.5 1 15 2 25 3 35 4
Figure 8.1.2.

and one finds that the coefficient of the next to the highest power of A is always the
sum of the roots regardless of the degrees of freedom of the system. This additional
information can be useful as a check on the roots found.

One can calculate the roots in MATLAB® using the command roots(c) where c is
a vector that contains the coefficients of the polynomial in descending order. For our
example, ¢ = [1,—4.5,5, —1]. The roots of this equation are given by roots
(c) = 2.8892,1.3554, .2554. The location of these roots agrees with the plot.

8.2 EIGENVECTORS BY GAUSS ELIMINATION

In solving for the mode shapes, the eigenvalues are substituted, one at a time, into the.
equation of motion. The Gauss method offers one way in which to solve for the ratio of
amplitudes. Essentially, the Gauss procedure reduces the matrix equation to an upper
triangular form that can be solved for the amplitudes starting from the bottom of the
matrix equation.

Applying the Gauss method to the previous problem, we start with the equation
of motion written in terms of A:

B-22) -1 0 PR

The e;igenvalues solved for the problem were

| . [0225%6
A=w’o = 13554
2.8892
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Substituting A, = 0.25536 into the preceding equation, we have

2489 -1 0 1Y (o
-1 1745 -1 Xt =10
0 -1 0.7446 | | x, 0

In the Gauss method, the first step is to eliminate the terms of the first column in
the second and third rows. Because the first column of the third row is already equal to
zero, we need only to zero the first term of the second row. This is done by dividing the
first row by 2.489 and adding it te the second row, which gives

2489 ~1 0 19 (o
0 1343 -1 X,p =140
0 -1 0.7446 | |x,) Lo

Although it is not necessary to go further in this case, the procedure can be
repeated to eliminate the —1 term of the third row by dividing the second row by 1.343
and adding it to.the third row, which results in

2489 -1 0](x1® (o
0 1343 —1[{x, ¢ =40
0 0 0| Lxs 0

In either this equation or the previous one, the amplltude X, is a551gned the value 1,
which results in the first eigenvector or mode:

)Y (02992
b =1x( =107446
1 1.000

By repeating the procedure with A, and A;, the eigenvectors for the second and third
modes can be found.

Eigenvectors can also be found by the method in Appendix C or by using the
MATLAB® command eig, which will be discussed later in this chapter.

MATRIX ITERATION

With knowledge of orthogonality and the expansion theorem, we are in a position to
discuss the somewhat different approach for finding the eigenvalues and eigenvectors
of a multi-DOF system by the matrix iteration procedure. Although the method is
applicable to the equations of motion formulated by either the ﬂexxblllty or the stiff-
ness matrices, we use the flexibility matrix for demonstratlon .

In terms of the flexibility matrix [a] = K~!, the equation for the normal mode:
vibration is :

AX =X \ | (83.)
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where

A =la]m] = KM
A =1/’

The iteration is started by assuming a set of amplitudes for the left column of
Eq. (8.3.1) and performing the indicated operation, which results in a column of num-
bers. This is then normalized by making one of the amplitudes equal to unity and
dividing each term of the column by the particular amplitude that was normalized.
The procedure is then repeated with the normalized column until the amplitudes sta-
bilize to a definite pattern. When the normalized column no longer differs from that
of the previous iteration, it has converged to the eigenvector corresponding to the
largest eigenvalue, which in this case is that of the smallest natural frequency w,.

Example 8.3.1

For the system shown in Fig. 8.3.1, write the matrix equation based on the flexibility and deter-
mine the lowest natural frequency by iteration.

2m —X,

am —X.

3k

FIGURE 8.3.1.

Solution The mass and the flexibility matrices for the system are

4 0 O 1 1 1 1
[m]=ml0 2 0 [a]=§§ 1 4 4
0 0 1 1 4 7
* and substituting into Eq. (8.3.1), we have
1 171704 0 0] (x NIE
1 4 4110 2 0|§xp=|—7"]3x
1 4 7]lo 0o 1]lx) ™ s
or

14 2 1([x X,

4 8 4fixr=2x

4 8 7]lx X3
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To start the iteration, we arbitrarily assume

X, (0.2

Xi=4x,¢p =406

X5 1.0
4 2 1]f02 3.0 0.238
AX, =14 8 4|06 =14 96 p=12.640762
4 8 71110 12.6 1.000

By using the new normalized column for X, the second iteration yields

[4 2 17](0238 3.476 0.247
AX,=|4 8 420762} =<11.048 » = 14.048 0.786
14 8 7]1.000 14.048 1.000

In a similar manner, the third iteration gives

(4 2 1](0247 3.560 0.249
AX,=|4 8 430786 p = 111276 } = 14.2761 0.790
|4 8 71000 14276 1.000

By repeating this procedure a few more times, the iteration procedure converges to

0.250 x s\ [0250
14.32450.790 ¢ = A4 x, =( ) 0.790

2
1.000 X @M 1.000

=

Thus, the frequency of the lowest mode is

3k k
- = 04574 =
“1 1a3m P o,

0.250
¢, = 1 0.790
1.000

with the mode shape

It should be mentioned here that if the equation of motion was formulated in terms of the
stiffness matrix, the iteration equation would be’

AX = AX
[MTK]X = w?X

Because the iteration procedure always converges to the largest eigenvalue, the stiffness equa-
tion would converge to the highest mode. In vibration analysis, the lower modes are generally of
greater interest than the higher modes, so that the matrix iteration procedure will find its use

mainly for equations formulated in terms of flexibility where the eigenvalues are proportional to
the reciprocal of «*. '
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8.4 CONVERGENCE OF THE ITERATION PROCEDURE

To show that the iteration procedure converges to the largest eigenvalue, which for the
equation formulated in terms of flexibility is the lowest fundamental mode, the

assumed trial vector X is expressed in terms of the normal modes ¢, by the expansion
theorem:

X, = ¢y + Cpy + 3y + 000 + _ T (84.0)
where c, are constants. Multiplying this equation by the dynamic matrix A, we have
AX, =X, = c;Ad + ,Ad, + Ay + - + (84.2)
Because each normal mode satisfies the following equation ’

o 1
A, = M, = = 03 (8.4.3)
the right side of Eq. (8.4.2) becomes '

1 1
X2=cl—w—%¢l+czg¢2-_!-c3g¢3+“'+

which is the new displacement vector X,. Again, premultiplying X, by the dynamic
matrix and using Eq. (8.4.3), the result is

1 1 1
AXz=X3:0134’17L‘32734’2'*'03;,3(1(’3+"'\+
1

Thus, after several repetitions of the procedure, we obtain
AX, —X—ci¢+ci¢+ci¢+-~-+ (8.4.4)
n—1 n lw%n 1 2(1)%" 2 3(1%" 3 M

Because w? > w’_; > '+ > @? > «?, the convergence is to the fundamental mode. For
convergence to higher modes see Appendix G. ' '

8.5 THE DYNAMIC MATRIX

The matrix equation for the normal mode vibration is generally written as
C[-AaM+ Klx =0 ' (85.1)

where M and K are both square symmetric matrices, and A is the eigenvalue related to

the natural frequency by A = w® Premultiplying the preceding equation by M~!, we
have another form of the equation:

[-AI+ AlX =0 (8.5.2)

where A = M 'K and is called the dynamic matrix. In general M~'K is not symmetric.
If next we premultiply Eq. (8.5.1) by K~!, we obtain

[A-2AflxX=0 (8.5.3)
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where A = K~'M is the dynamic matrix, and A = 1/w? = 1/A is the eigenvalue for the
equation.

Although A and A are different, they are both called the dynamic matrix because

the dynamic properties of the system are defined by A or A. Again, matrix A is gener-
ally not symmetric.

If a given system is solved by either Eq. (8.5.2) or (8.5.3), the eigenvalues will be
reciprocally related, but will result in the same natural frequencies. The eigenvectors
for the two equations will also be identical.

8.6 TRANSFORMATION OF COORDINATES (STANDARD
COMPUTER FORM)

In Egs. (8.5.2) or (8.5.3), dynamic matfices A and A are usually unsymmetric. To obtain

the standard form of the equation of motion for the computer, the following transfor-
mation of coordinates

X=UY (8.6.1)
is introduced into the equation '
[-AM+ K]X =0

which results in the transformed equation
[-AMU'+ KU 'lY =0
Premultiplying this equation by the transpose U~!, which is designated as
) =v
we obtain the equation
[-AU™MU'+ UTTKU Y =0 - (86.2)

It is evident here that if we decompose either M or K into UU in the preceding equa-
tion, we would obtain the standard form of the equation of motion.
With M = UTU, Eq. (8.6.2) becomes

=M+ UTTKU 'Y =0 A= o? (8.6.3)
whereas if K = UTU, the equation is
[UT™MUTT =AY =0 A=1/e? (8.64)

Both equations are in the standard form
[-AM+Aly =0
where the dynamic matrix Ais symmetric.
To illustrate the use of the dynamic matrix and the standard computer form, we
can use Matlab® to calculate the eigenvalues and eigenvectors for the 3-DOF system

shown in Figure 8.1.1. First, we need to convert this problem to the standard eigen- g

value problem by multiplying Eq. 8.1.1 by the inverse of the mass matrix. For this
example, the dynamic matrix is given by
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1.5000  —0.5000 0
A =| —1.0000 2.0000 —1.0000
0 -1.0000  1.0000
We can compute both the eigenvalues and eigenvectors in MATLAB® by typing the
command [U,D] = eig(A). The result of this command is two matrices, U and D.

Matrix U contains the eigenvectors as column vectors and D is a diagonal matrix,
which has the eigenvalues on the diagonal. Continuing with our example, we get the

following two matrices
[ 0.7569 03031 0.2333
U=] 02189 -0.8422 0.5808
—-0.6158 0.4458 0.7799

and
1.3554 0 0
D = 0 2.8892 0
0 0 0.2554

8.7 SYSTEMS WITH DISCRETE MASS MATRIX

For the lumped-mass system in which the coordinates are chosen at each-of the
masses, the mass matrix is diagonal and U is simply equal to the square root of each

diagonal term. The inverse of U is then equal to the reciprocal of each term in U, so
that we have

my Vmy,
M= my, U= M7= Vimy,
Mgy A Vimy,
[1/~Vmy,
Ul=uUT= 1/Vmy,
1/Vimy,

Thus, the dynamic matrix A = UTKU ' of Eq. (8.6.3) is simply determined.

Example 8.7.1

Consider the system of Example 6.8.1, which is shown again in Fig. 8.7.1. The mass and stiffness
matrices for the problem are

20 3 -1
M-m[0 1:| K——k[—~1 1:|

We first decompose the mass matrix to M = UTU = M'/2M'/2, Because M is diagonal, the
matrix U is simply found from the square root of the diagonal terms. Its inverse is also found
from the inverse of the diagonal terms, and its transpose is identical to the matrix itself.
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2k

FIGURE 8.7.1.

V2 o 1 [1/v2 o] 1 07071 0
— a2 — ) -1 T o _*_ - :
v=aen = VP oo GV 0 0T

Thus, the terms of the standard equation become
U T™™MU ' = U TUTUU = |

~ k{0707 0 3 ~11/0707 0O k 1.50 -0.707
A= ~T -1 = -
AR P P A R e

By letting A = w’m/k, the equation of motion is then reduced to
H 1.50 ~0.707] _ )‘[1 OH{yl _ {O}
-0.707 1 0 1]]ly, 0
" and its characteristic equation becomes

(1.50) — A)  —0.707 L
=0and A2 —250A +1=0
—0707 (1 -~

The eigenvalues and eigenvectors solved from these equations are

(1)
N 0.707}
A, =050 =
! {)’2} {1-000

@ —1
_ Y1 _ 1.414 }
A, =200 { yz} { 1.000
These are the modes in the y coordinates, and to ¢btain the normal nodes in the original x coor-.

dinates, we first assemble the previous modes into a modal matrix Y from which the modal
matrix in the x coordinates is found.

y = [0707 '—1.414]
L1000  1.000

0707 0 ][0.707 -1.414 050 -1.00
= -1 = =
X=U"y [ 0 1.0][1.00 1.00] [1.00 1.00]

These results are in agreement with those found in Example 6.8.2.

A
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8.8 CHOLESKY DECOMPOSITION

When matrix M or K is full, matrices U and U™! can be found from the Cholesky
decomposition. In this evaluation, we simply write the equation K = U'U (or
M = U"U)'in terms of the upper triangular matrix for U and its transpose.

An example of a 4 X 4 stiffness matrix K is as follows:

0

Up

Un 0 0 || uy Uiz Uy ki ky ki kg
up Uy 00 0 up uy Uy | _|kn kn ky ks
U Uy um 0 0 0 uy uy ks ky ki ks
Uy Uyy Uz U ][0 0 0 uy kg ki ki ky

Because the product matrix is also symmetric, only the upper triangular section is
needed to evaluate U.

2 -
uy, Uy Uy LT U Uyy
2 2
(&, +u3)  (uppuyy + upuy) (upythyy + tpyty,)
2 2 2
(uhy + uhy + 13)  (ug3ttgy + Ugsttgy + Usylis,)

L (s + 0, + 165, + 1)

kll k12 k13 k14

- ky Ky Ky
ks ks
Kk

Equating term for term in the two matrices, we obtain from the first row
' 2 _

uy = ky

Uy = kpp/uy

Uy = kya/uy,

Uy = kig/uy

From the second row, we have '

2 _ 2
Uy = ky — ujp
1

22

(kza - u12u13)

1
“‘24 = E (k24 - “12“14)

Similarly, the third and fourth rows yield

2 _ _ 2 2
Uz = kyy — ujy — uy

1

Uy =
34
u33

(k34 = Uyl — “53“24)

2 _ 2 2 .2
Uy = kyy — uyy — uyy — uj,
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We can now group these equations as follows from which we can write general
expressions for an n X n matrix:
2 1 2 .
uyp = ky — up
2 _ 2 2
usy = kyy — uj; — upy

2 _ 2 2 2
Ugy = Kyq — Uy — Uy — Uy,

i 1/2
uii=(kii—12u12i) i=23,4,...,n
-1

1
Uy = E (kzs - ”12‘413)

: 1
Uy = — (k24 - u12u14)
2
1
Uy = — (k34 T Uy T “23“24)
Uiy
1 i—1
u; = u—( i~ Eu,iu,j)z=2,‘3,4,...,n; j=i+1,i+2,...,n
i =1 )

In Matlab®, we can get the Cholesky factorization of a matrix, A, with the com-

mand U = chol(A).The matrix U is an upper triangular matrix such that U’xU = A. As
an example consider the matrix :

2 -1 0
A=1-1 2 -1
0o -1 2

The Cholesky factorization is given by
U = chol(A)
1.4142 -.7071 0

0 12247 —.8165
0 0 1.1547

Inverse of U

The inverse of the triangular matrix U can be found from the equation:

U - Ul = I
(known) (unknown inverse) (unit matrix)
Uy Uy Wy Uy i Y U3 Uy 1 000
0 uy uy uy 132\1‘\1\’12 vy vl _ |01 00
0 0 uy uy vy R Uy Uy 0 010
0 0 0 |, Uy U U U 0 0 01
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Starting the multiplication of the two matrices on the left from the bottom row of U
with the columns of v; and equating each term to the unit matrix, it will be found that
y; = 0 for i > j, so that the inverse matrix U™ is also an upper triangular matrix. The
following sequence of multiplication will then yield the following results.

Row 4 X columns 1,2, 3, and 4:

Row 3 X columns, 1,2,3, and 4:

Uy = =

-1
Uy : u_ (u34v44)

Row 2 X columns 1, 2,3, and 4:

1.
Up = —
? Uy
-1

Uy = ——(u23u33)
Uy

-1
Uy = — (uzzv.u + u24v44)
Upn

Row 1 X columns 1,2, 3, and 4:

1

v, = —

11

Uy
-1

Uy = _(”12”22)
Uy
-1

Yz = — (u12v23 + “13“33)
Un
-1

Uy = u_'(uu"u + Uy + u14v44)
1

These results are then summarized by the following general equations:

v, = i>j

Example 8.8.1

Solve Example 8.7.1 by decomposing the stiffness matrix. The two matrices for the problem are

2 0 3 -1
M—m[OA 1] K—k[_1 1]
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Solutlon For the 2 X 2 matrix, the algebraic work for the decomposition is small and we carry

out all the steps.
Step 1: _
' UTU = K
[“n 0 ]l:“n ‘412] _ [ uj, Uyl ] — [ 3 —1]
Uy upll 0 uy upy (i, + ) -1 1
uy = V3 =173
uu, = -1 cowy, = —1/1732 = —0.5774

uh=1-u} o upy=V1-(-05774)2 = 08164

1132 —0.5774}
- [0 0.8162

check by substituting back into UTU = K.
Step 2: Find the inverse of U from UU ~ ! =

[1.732 —0.5774][1;1, blz] B [1.7321>11 (1.732b,, - 0.5774b22)] _ [1 0]
0 0.8162 |

b,, 0 0.8164b,, 0 1
b= —— — 05774 b, = —— = 12249
Ty 2708164

b, = —— (0.5774 X 1.2249) = 0.4083

2= 7 732(05 1. 9) 0.

gt 05774 0.4083]
1o 1.2249

Check by substituting back into UU ~ ! = .
Step 3:

~ 0.5774 0 2 0][05774 0.4083 ]
= U-TMU-! = )
A= U"MU [0.4083 1.2249][ 0 1][ 0 1.2249

) _ [0.6668 0.4715]
. 04715 18338

Note that A is symmetric.
Step 4: The equation of motion is now in standard form, but in y coordinates:

[[0.6668 0.4715] _ X[1 0] ]{yl} _ {0} 3= k
0.4715 1.8338 01 Ya 0 w’m

Step 5: For this simple problem, the eigenvalues and eigenvectors in y coordinates are found
from the usual procedure:

(0.6668 — A) 04715 | _
0.4715 (1.8338 — )|

- 2500 +10=0
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7 (1)

A =20 {y ‘} = {0'3537}
Y2 1.000

_ @ _

X, = 0.50 {y1} _ { 2.8267}
¥2 1.000

Step 6: Eigenvalues are not changed by the transformation of coordinates. The eigenvectors
in the original x coordinates are found from the transformation equation.

¢lx) = UTY
o(x) = [0.5774 0.4083][0.3537 ~2.8267
0 122491 1.000  1.000

0.6125 —-12238] _[0.50 —1.00
1.2249 12249 | | 1.00 1.00

[
o= {2 (03]
-]

1

i

Example 8.8.2

Figure 8.8.1 shows a 3-DOF model of a building for which the equation of motion is
4 0 0 4 -1 0

2 X 0
—("’k) 02 ol+]-1 2 -1||{xt=A0
0 0 1 0 -1 1]]lxn 0

Reduce the equation to the standard form by decomposing the stiffness matrix.

Solution The transformation matrix is found from
U'u=K
u; 0 0 Uy Up U 4 -1
Uy Uy 0 0 uy uy|=|-1 2 -
Uiy Uy up L0 0 uy 0 -1
2
ug ;‘uuuz Uy Uy 4 -1 0
Uy Uy, (uyy + uy) (wjuy3 + uzz“zza) =l-1 2 -1
Uy Uys (uppths + upsy) (w3 + upy + uyy) 0 -1 1
m Xy
k
2m —=X5
k
4m —=X
3k

D FIGURE 8.8.1.
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By equating the corresponding terms on each side, U is found:

2 -050 0
U=|0 13228 -0.7559
' 0 0 0.6547
For the inverse of U, we let U™! = [b,] and solve the equation

vut =
2 —-050 0 by, by, by 1 00
0 13228 -07559| 0 b, by 0.1,0
0 o 065470 0 by 0 0 1

Again, equating the terms of the two sides, we obtain

050 01889 02182
Ul =[pl=|0" 07559 08726

0 0 1.5275
The dynamic matrix A using the decomposed stiffness matrix is
' A=UTMU™
[050 0 0 |[4 o 0][o50 01889 02182
=10.1889 0.7559 0 0 2 0}j0 0.7559 0.8726
12182 0.8726 1527510 0 2}{0 0 1.5275

[1.00 03779 04364 ]
=|03779 12857 1.4846
| 0.4363  1.4846 4.0476 |

The standard form is now

-

[-AT+ AlYy =0
where A = k/w’mand X = U”'Y. .

8.9 JACOBI DIAGONALIZATION

In the section on orthogonality, Sec. 6.7 in Chapter 6, the assembling of the orthonor-
mal eigenvectors ¢ into the modal matrix P enabled the mass and the stiffness matri-
ces to be expressed in the basic relationships:

P™P =1

PTKP = A

where I is a unit matrix, and A is a diagonal matrix of the eigenvalues. These relation-

ships indicate that if the eigenvectors of the system are known, the eigenvalue problem
is solved. . -

The Jacobi method is based on the principle that any real symmetric matrix A has

only real eigenvalues and can be diagonalized into the eigenvalue matrix A = [A;] by an

iteration method. In the Jacobi method, this is accomplished by several rotation matrices

(8.9.1)
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R by which the off-diagonal elements of A are zeroed by repeated iterations until martix
A is diagonalized. The method is developed for the standard eigenproblem equation:

(A-Yy=0 (89.2)
and the major advantage of the procedure is that all of the eigenvalues and eigenvec-
tors are found simultaneously.

In the standard eigenproblem, the M and K matrices have already been trans-
posed into a single symmetric dynamic matrix A which is more economical for itera-
tion than two matrices. The kth iteration step is defined by the equations

RZA R, = Ak+1

(8.9.3)
R[+1Ak+1Rk+l = Ak+2» ete.

where R, is the rotation matrix.

Before discussing the general problem of diagonalizing the dynamic matrix A of

nth order, it will be helpful to demonstrate the Jacobi procedure with an elementary
problem of a second-order matrix:

fan ap }

la,, ay

2,

AVZ

The rotation matrix for this case is simply the orthogonal matrix
R = [ cosh = Sine] (89.4)
sinf cosf

used in the transformation of coordinates to rotate the axes through an angle 6, as
illustrated in Fig. 8.9.1.

Matrix R is orthonormal because it satisfies the relationship
RTR=RR" =1

In this case, there is only one off-diagonal element, a,,, and the eigenproblem is solved
in a single step. We have

RTKR=[ cos 6 sin()][a11 alz][cose —sino]z[)tl 0}
PP | —sin® cos@]la, apllsing cosd 0 A

FIGURE 8.9.1.
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Equating the two sides-of this equation, we obtain

A, = aj, cos*@ + 2a,, sinf cosd + a,, sin’6
A, = ay; sin6 — 2a,, sinf cosf + a,, cos*d (8.9.5)
0 = —(a,; — ay,)sinfcosh + a,,(cos’6 — sin2h)
From the last of Eqgs (8.9.5), angle 6 must satisfy the relation
tan 20 = 2
a T ay _ (8'9‘6_)

The two eigenvalues are then obtained from the two remaining equations or directly
from the diagonalized matrix. The eigenvectors corresponding to the two eigenvalues
are represented by the two columns of the rotation matrix R1, which in this case is
equal to P.

For the previous problem there was only one diagonal term g, and no iteration
was necessary. For the more general case of the nth-order matrix, the rotation matrix is
a unit matrix with the rotation matrix superimposed to align with the (i, j) off-diagonal

element to be zeroed. For example, to eliminate the element a, s in a 6 X 6 matrix, the
rotation matrix is

10 0 0 0 O]
0 1 0 0 0 0
0 0 cosf 0. —sind O
= ' 8.9.7
R (U] 0 1 0 0 ( )
0 0 sin6f 0O cosd O
L0 0 0 0 0 1]
and fis determined from the same equation as before.
tan26 = 2855 = 24 (8.9.8)
dy3 — ass a; — a;

If a; = a;, 260 = £90° and 6 = *45°. Althbugh 26 can also be taken in the left half
space, there is no loss of generality in restricting 6 to the range +45°. Due to the sym-
metry of matrix A, this step reduces one pair of the off-diagonal terms to zero, and
must be repeated for every pair of the off-diagonal terms of matrix A. However, in
-reducing the next pair to zero, it introduces a small nonzero term to the previously
zeroed element. So having zeroed all the off-diagonal elements, another sweep of the
process must be made until the size of all the off-diagonal terms is reduced to the
threshold of the specified value. Having reached this level of accuracy, the resulting
diagonal matrix becomes equal to the eigenvalue matrix A, and the eigenvectors are
given by the columns of the products of the rotation matrices. In summary, letting sub-'
script [ stand for the last iteration,

A =R -RIR[_, - -RIR][AJRRy - -Ri_ 1Ry~ Ry = A

(8.9.9)
lli_ﬁanRz"'Rl=P '
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Although the proof of convergence of the Jacobi iteration is beyond the scope of
this text, experience has shown that rapid convergence is generally found, and usually
acceptable results are obtained in less than five sweeps, and often in one or two sweeps
when the off-diagonal elements in the original matrix are small in comparison to the
diagonal elements. The number of calculations is also quite limited in that in spite of
the size of thg matrix, only two rows and two columns are involved for each iteration.

Example 8.9.1

When the mass matrix is decomposed in Fig. 8.8.1, the standard form of the equation of motion
becomes :

1.0 —0.3536 0 1 0
—Al + —0.3536 1.0 —0.7071 yor =40
0 —0.7071 1.0 Y3 0

where A = «?m/k. By using the Jacobi method, diagonalize the dynamic matrix, and determine
the eigenvalues and the eigenvectors for the system.

Solution We first zero the largest off-diagonal term, which is a,, = — 0.7071.
Lo 70336 0 ___|
A=[-035361 10  —07071
L 0 1 -07071 10
10 0
‘R, =10 cosf  —sinf
L0 sinf cos6

an 20 = 285 _ 2(-07071) _ .
apn ~ a4y 1-1
.28 = 90°
9 = 45°
sin 45° = cos 45° = (0.7071
10 0 10, 0
R,=|0 07071 -0.7071 RT=10 07071 07071
0 07071 07071 0 -0.7071 0.7071
A, = RTAR, )
T 0 0 1.0 -03536 O 10 0
=10 07071 07071 || -03536 1.0 -07071 || 0 07071 -0.7071
0 -07071 07071 0 -0.7071 1.0 0 07071  0.7071
1.0  —0250 E 0.250
=170250 __02929] 0
0250 . 0 1.7071
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We thus find that in zeroing the term a,, =a

' Computational Methods

5» We have introduced a new nonzero term

a,; = ay, = 0.250. Next zero the term a,= —0.250.
2a 2(—0.250)
tan 260 = 2_ - = —0.707
an 2= T 10209 077
26 = —35.26°
6=—-1763°
sin 6 = —0.3029°
cos 6 = 0.9530
[ 09530 3029 0
R, =| —03029 0.9530 0
L0 0 1
(1097 0 0.2383
RIAR, =0 02134 0.0757 | = 4,
02383 0.0757 1.7071

To complete the first sweep of all the off-diagonal terms, we next zero the term a

2a,; 2(0.2383)
tanf = = = 07812
= 1097 — 17071
26 = 37.996°
6 = —18.998°
sin = —0.3255
cos 6 = 0.9455
[ 09455 0 0.3255
Ry=| 0 10
| —03255 0 09455
[ 1.0147 —0.0246 —0.000
RTA,R, = | —0.0246 02134 00717 | = 4,
| 0000 00710 1.817

To further reduce the size of the off-diagonal terms, the procedure should be repeated; how-
ever, we stop here and outline the procedure for determining the eigenvalues and eigenvectors ,
of the problem. The eigenvalues are given by the diagonal elements of A and the eigenvectors of
A are calculated from the products of the rotation matrices R, as given by Eq. (8.9.9). These
eigenvectors are of the transformed equation in the y coordinates and must be converted to.the
eigenvectors of the original equation in the x coordinate by Eq. (8.6.1). It should also be noted

that the eigenvalues are not always in the increasing order from 1 to n. In A3, A= w'mfk is
found in the middle of the diagonal.

' AFROMA, COMPUTER VALUES
A =0213 A, = 02094

A=1014 A= 1000

Ay =1817 Ay = 17905
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It is seen here that even with one sweep of the off-diagonal terms, the results are in fair agreement.

For the eigenvectors, we have

Y = RR;R,

1 0 0 09530 03029 O|[ 09455 0 03255
=10 07071 -07071 || —03029 09530 Ol © 10
0 07071  0.7071 0 0 1]] —03255 0 0.9455
[ 09011 03029 03102
=| 00276 06739 -0.7383
| 04327 06739  0.5988
050 0 0 0.9011 03029 03102
X=UY=|0 07071 0 0.0276 06739 —0.7383
Lo 0 1.00 || —0.4327 06739  0.5988
[ 0.4006 0.1515  0.1551
=| 0.0195 04765 —0.5221
| —0.4327 06739  0.5988
‘When normalized to 1.0,
-0.940 0225 0259 _
X=|-0045 0707 —-0872| fromA,
1.00  1.00 1.00
mode2 model mode3
-1.0 025 025
X=( 0 079 -0.79 from the computer
1.00 100  1.00

With the eigenvalues equal to A =

o=

w’m/k, the three natural frequencies are found from

k

k
\f02094— = 045764/ —
m .

’ k k

Z =10+ —

“2 = m m
’ k
1.7905 — —13381 —
m
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8.10 QR METHOD FOR EIGENVALUE AND EIGENVECTOR CALCULATION

. The Matlab® command eig(A) computes the eigenvalues and eigenvectors of a matrix
A using an iterative method based on decomposing the matrix A into an orthogonal
matrix O and an upper triangular matrix R. The basic idea behind this algorithm is to
produce an upper triangular matrix which is similar to the original matrix A. Since sim-
ilarity transformations preserve the eigenvalues of the original matrix, the eigenvalues
can be read off the diagonal of the final matrix. The eigenvalues of the original matrix,
the eigenvalues can be read off from the eigenvectors for the transformed matrix by
multiplying these eigenvectors with the same matrices which were used to make A
upper triangular. ' '

The QR decomposition can be accomplished by the Householder transformation
which will be discussed in detail. Once we know how to decompose a matrix into Q
and R, we use an iteration procedure to produce an upper triangular matrix, which is
similar to the original matrix. The QR decomposition allows one to write the matrix A
as the product of two matrices (i.e., A = Q * R, where Q is orthogonal and R is upper

- triangular). These two matrices can be used to produce another matrix, A, which is
similar to A and given by

since R=Q0'Aand Q7! = Q.The new matrix A, is similar to A and hence it has the
same eigenvalues as A but the eigenvectors have been changed by Q. The eigenvectors
of A, satisfy the equation A,x = Ax, which means that the eigenvectors of A can be
obtained by multiplying the eigenvectors of A,, by Q. This can be seen from the follow-
ing equation AQx = AQx. The process is then repeated by decomposing A, into an
orthogonal matrix O, and an upper triangular matrix R, (ie., A, = Q, * R)). Again O,
and R, can be used to produce a matrix A, which is similar to A, (and consequently
similar to A), by

A, = Ri*Q,

= Q;l *A*Q,

= Q;I*Q_I*A*Q*Ql

= (Q*Ql)_l*A*(Q*Q1)

= (Q*Q])*A*(Q*Q1)
As before, A, has the same eigenvalues as A. If x is an eigenvector of A, (e,
A,x = Ax, then Q * Q x is an eigenvector for A). This process can be continued to pro-
duce a series of similar matrices A, A,,and so on. It can be shown that eventually this

process will produce an upper triangular matrix which is similar to the original matrix
(ie,A,=(Q*0Q,*Q,*...xQ _ ) 'AQ*Q,*Q,*...xQ, _,),and A, is upper tri- -
angular.

In order to speed up the convergence of the above iteration, it is customary to
first convert the matrix A to a matrix which has zeros below the subdiagonal. This type
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of matrix is called a Hessenberg matrix. The following is an example of a 4 X 4
Hessenberg matrix:

S O N
O AW Ww
NCTNe N~ NI )
W N o A

The general n X n Hessenberg matrix has the following general form

a; Gy agy Ay,

ay Gp 4n Ay,
H=10 a3y aj; a3y
0 O ann—l ann

As we will show next, the Householder transformation will produce a Hessenberg
matrix which is similar to the original matrix.
A Householder matrix is given by

H=1-2uu’
for some unit vector u. Note that
H' = (I - 2uu’)’
=1-2u'u
=H

and
HH = (I — 2uu")(I - 2uu’)
=TI - 2uu' — 2uu' +‘ 4uv'uu’
=1 - 4uu' + duu’
=1

since u'u = 1. This shows that H is symmetric and orthogonal; thatis, H = H' = H™L.
Given a matrix 4, in order to construct H so that H-'AH produces a Hessenberg
. matrix, an iteration procedure can be used where each step zeros out the elements

below the subdiagonal for one column. The procedure begins _v)vith the left-hand col-
umn. For example, if the first column is given by the vector a = (a;, a5, a5, . . ., a,)’
then the Householder matrix H applied to a should produce the vector
T= (a, @,0,0,...,0)" In order for H to remain orthogonal, « is determined by the
fact that l|a|| = ||rH The unit vector, u in the Householder transformation is given by
u = [, Where v=a — r.The remaining columns of the matrix can be handled in the
same manner and the Householder matrix which takes the original matrix into

Hessenburg form is given by the produét of each-intermediate matrix. The following
example illustrates this procedure.
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We want to convert the following matrix

4 2 1
A=|4 8 4
4 8 7

into upper Hessenberg form. This means that we want the Householder matrix to take
the vector a = (4,4,4)" into the vector ¥ = (4, &, 0)". We need a'a = r'r for the result-
1ng matrix to be orthogonal. This determmes a which for our example is such that

= V/32. The vector v=a — ris given by v = (0, —1.6569, 4). The length of the vec-
tor squared is 18.7452. This vector produces the Householder matrix

1 0 0
H=|0 7071 7071
0 70711 =707

When this matrix is used to produce a matrix which is similar to A one gets the
Hessenberg matrix

4 21213 07
HAH = | 56569 13500 2.500 (8.10.1)
0  —1500 1500

Because the matrix A is a 3 X 3, it only takes one iteration to convert it to Hessenberg
form. For larger matrices th1s procedure would have to be repeated to clear the
remaining columns.

At this point we want to describe the QR decomposition. Suppose we are given a
matrix A, which we want to decompose into an orthogonal matrix, Q, and an upper tri-
angular matrix, R. The orthogonal matrix is given by the Householder matrix which is
designed so that when it is applied to the matrix A, the result is an upper triangular
matrix (i.e., H * A = R). Since H is orthogonal and symmetric, H * A = R implies
A = H * R which in turn implies that A = Q * R where Q = H. -

We will illustrate this procedure by continuing our example. We want to decom-
pose the matrix in Eq. (8.10.1) into an orthogonal matrix and an upper triangular matrix.
We do this first by constructing an orthogonal matrix which zeros out the elements
below the diagonal in the first column.The matrix which we need should take the vector
3 = (4,5.6560, 0)" to the vector r = (—6.9282, 0, 0)". The vector r,is determined by the
condition a’a = r'r. One is free to choose the sign of 7. This can be achieved by construct-

ing the Householder matrix Q,, = 2|'|"’|'|’z, wherev=a—-r1= (2.9282, —5.6569, 0).
For the matrix HAH we get
-.5773 —.8165 0
0, =| —.8165 5774 0
0 0 -1

When the matrix HAH is premultiplied by the matrix Q,,, we get
| —-6.9282 —12.2474 —2.4495
Q,,* HAH = 0 - 60623 —.8660
0 1.5000  —1.5000
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In order to complete the decomposition, we have to use the same procedure to
clear the element below the diagonal i in the second column of the matrix. The process
Tesults in a matrix Q;, which takes a2 = (—12.2474,6.0623,1.5000) to the vector
T, = (—12.2475, —6. 245 O) Again this comes from the condition a'a = r'r. The
orthogonal matrix O, which when applied to the matrix HAH produces an upper tri-
angular matrix is given by the product of Q,, and Q,,, namely Q, = Q,, * Q,,. For our

example, the QR decomposition is such that HAH = Q, * R, where
—=.57713 7936 —.1961 |
Q, =] —.8165 —.5604 .1387
0 2402 9707
and

—-6.9282 —122475 —2.44495
R, = 0 —6.2450 —.4804
0 0 1.6641
We should point out at this point that the Matlab® command [Q, R = qr(A) produces
the matrices Q and R for a matrix A.

Now that we know how to perform a QR decomposition, we would like to use the
iteration procedure discussed at the beginning of this section to produce an upper tri-
angular matrix. Continuing with our example, the first iteration produces a matrix, A

which is similar to HAH and it is given by
14.0000 7844  —2.7174
A, =R/ * Q, = 50990 3.3846 —1.3323
0 .3997 1.6154
Again one uses the QR decomposition on A, we write A, = Q, * R,andset A, = R, * Q..

. We QR decompose A, and so on. Continuing this iteration 15 times results in Q,, Q,,
Q,s and produces the following upper triangular matrix

14.3246 —5.0645 1.7655
U= 0 3.000 4837
0 0 1.6754
where U= (Q,* Q,*...* Q) * (HAH)*(Q, * Q,...* le).The eigenvalues for this

matrix are the elements along the diagonal. These numbers agree with the eigenvalues
~ which one gets by using the Matlab® command eig(A).

The algorithm which finds the eigenvectors of the original matrix starts by find-
ing the eigenvectors of the upper triangular matrix and transforms them to the eigen-
vectors for HAH by multiplying them by the matrix Q, * O, * ... * O, as described
previously. The eigenvectors for the upper triangular matrix can be found easily by
backsubstitution. Backsubstitution works by computing the values of the vector from
the bottom up. Consider the computation for the first eigenvector: '

143246 —5.0645 1.7655 |[ xy, Xy
0 3.000 4837 || x,, | = 143246 % | x,,
0 0 1.6745 || x5 X3
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Using backsubstitution, one solves this system of equations for x,, first. The last equa-
tion implies that x;, = 0.Then one solves the second equation for x,, to find that x,, = 0.
Finally, the first equation is solved for x,,. This gives x,, = 1. The eigenvector associated
with the eigenvalue 14.3246 is (1, 0, 0). The other two eigenvectors can be found in the
same way. The eigenvector associated with the eigenvalue 3 is (—.4082, —.9129, 0) and
the eigenvector associated with the eigenvalue 1.6754 is (—.2593, —.3313,.9072). These
eigenvectors can be converted into the ones for HAH by multiplying them by the
matrix Q which is given by Q = Q, * Q, * ... * Q,.. These vectors can be converted into
the one for the original matrix A by multiplying them by the matrix H. This process
gives the eigenvectors for the matrix A as the column vectors of the following matrix:

-.1925 -.0701 .1925
E=}-.6086 0.0000 —.6086 (8.10.2)
—.7698  0.7071 7698

In Matlab®, one can compute the eigenvalues and eigenvectors by using the command
[U, D] = eig(A). The matrix U contains the eigenvectors as column vectors and the
matrix D is a diagonal matrix which has the eigenvalues on the diagonal. The column
vectors in Eq. (8.10.2) agree with the eigenvectors that one gets from Matlab®.

Summary of the Algorithm. Given a matrix A, the following algorithm can be
used to compute the eigenvalues and eigenvectors:

1. Convert the matrix A into Hessenberg form by the Householder matrix H (i.e., '

compute A, = HAH, where A, is a Hessenberg matrix).

OR decompose A, (i.e., A, = 0, *R)).

Construct another matrix A, which is similar to ALA, = R1 * Qr
Repeat steps 2 and 3 until A, is an upper triangular matrix.

The eigenvalues for A are located on the diagonal of A,.
Compute the eigenvectors for A using backsubstitution.

Multiply these vectors by the matrix H* O, * Q, * ... * Q, to get the eigenvectors
of A.

N

Ng ks

.
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For the system shown in Fig. P8.1, the flexibility matrix is
Z 2k k k
2m =W~ m m
—X % X
FIGURE P8.1.

05 05 05

[a] = =[05 15 15
05 15 25

Write the equation of motion in terms of the flexibility and derive the characteristic
equation

AN—5A2+450—-1=0

Show agreement with the characteristic equation in Sec. 8.1 by substituting A = 1/Ain
the foregoing equation.

.2. Use Matlab® to solve for A; and ¢, and verify the o, and ¢, given in Sec. 8.1.
8.3.

For the system in Sec. 8.1, the eigenvector for the first mode was determined by the Gauss
elimination method. Complete the problem of finding the second and third eigenvectors

For Prob. 8.1, rewrite the characteristic determinant as
{1 1.5 -05 0
=i, 1 +1 -1 2 -1]|=0
1 0 -1 1

by dividihg the first equation by 2. (See App. C.4.) Note that the new determinant is now
not symmetric and that the sum of the diagonal, or trace, is 4.5, which is the sum of the
eigenvalues:. Determine the eigenvectors from the cofactors as in App. C.4.

In the method of cofactors, App. C.4, the cofactors of the horizontal row, and not of the
column, must be used. Explain why. ’

Write the equations of motion for the 3-DOF system shown in Fig. P8.6, in terms of the
stiffness matrix. By lettingm, = m, = mand k, = k, = k, = k, the roots of the character-
istic equation are A, = 0.198, A, = 1555, and A, = 3.247. Using these results, calculate

the eigenvectors by the method of Gauss elimination and check them against the eigen-
vectors obtained by the computer.
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Y/
ky ka k3
2—1\/\/\&7 m, A my WA my

—x o, —=x; FIGURE P8.6.

8.7. Repeat Prob. 8.6 starting with the flexibility equation.

8.8. Draw a few other diagrams of systems equivalent to Fig. P8.6, and determine the eigen-
values and eigenvectors for k; and m, assigned by your instructor.

8.9. Determine the equation of motion for the system shown in Fig. P8.9 and show that its
characteristic equation is (for equal k_and m )

A =0 3+ 2502210 +3=0

Solve for the eigenvalues and eigenvectors.

FIGURE P8.9.

8.10. Using the eigenvalues of Prob. 8.9, demonstrate the Gauss elimination method.

8.11. In Example 5.3.2, if the automobile wheel mass (m, for the two front wheels and the
same for the two rear wheels) and tire stiffness (k, for the two front tires and the same
for the two rear tires) are included, the 4-DOF equation of motion in matrix form

becomes
1 .o

m i po

A ) A O

0 1M %

: my, fz
(ky +ky)  (kyly— k1) '~k ~k,
(ol — kL) (BB +k,3)0 kil —ksh, |] 6

i
________________________ fmmmmmmmmm e m s ] = {0}
—k, k.l ko + kg 0 Xy
b0 kgt ky |\
Draw the spring-mass diagram for the configuration and derive the foregoing equation.
[M] 8.12. Additional data for Prob. 8.1 are w, = myg = 160 Ib and k, = 38,400 Ib/ft. Using a com-

puter, determine the four natural frequencnes and mode shapes, compare with the results
of Example 5.3.2, and comment on the two.

M] 8.13. The uniform beam of Fig. P8.13 is free to vibrate in the plane shown and has two concen-
trated masses, m, = %1~ 500 kg and m, = w? = 100 kg. Determine the two natural fre-
8

quencies and mode shapes. The flexibility influence coefficients for the problem are
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given as
. _ 13 _1 3 13
T 48 El 6™ ‘2T gEp
pma = L1
12 2T pEr T 3%
W,
/ﬁ‘ 7,
> W,
1 1
i
FIGURE P8.13.

8.14. Determine the influence coefficients for the three-mass system of Fig. P8.14 and calcu-
late the principal modes.

R
4k
3m s
T,
2k
2m X
T,
k
"y Lot etd
) m m m
FIGURE P8.14. FIGURE P8.15.

8.15. Determine the three natural frequencies and modes for the cantilever beam of Fig. P8.15.

Note: The flexibility matrix in Example 6.1.3 is for coordinates given in reverse order to
above problem. . : ' :

[M] 8.16. Determine the natural frequencies and mode shapes of the torsional system of Fig. P8.16.

FIGURE P8.16.
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8.17. In Fig. P8.17 four masses are strung along strings of equal lengths. Assuming the tension
to be constant, determine the natural frequencies and mode shapes.

PAN AN S 7
7 Y 7 Y7 Y v

FIGURE P8.17.

®s

8.18. Decompose the stiffness matrix K = U'U for Fig. P8.18.

<[5 7]

4 k k 3k
AN— My m,

—-—-»)(1 —>X2

FIGURE P8.18.

8.19. Repeat Prob. 8.18 for the system shown in Fig, P8.19.

|3

4 2k K 3m
m, my
———>X1 ——*XZ
FIGURE P8.19. FIGURE P8.20.

8.20. For the system shown in Fig. P8.20, write the equation of motion and convert to the stan-

dard form. »
8.21. The stiffness matrix for the system shown in Fig. P8.21 is given as
3 -1 -1
K=kl -1 2 -1
-1 -1 2

Determine the Choleski decomposition U and U~'.

k
ANWY
2 « K k
m —\WWA\— m m
R —>x1 ———xz —----xzs

FIGURE P8.21.
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8.22.

8.23.

8.24.

8.25.
8.26.

Given the mass and stiffness matrices

Problems

_f3 0 [ 3 -1
M—m[0 2], K—k[_1 2]

determine the natural frequencies and mode shapes using the standard form.

Repeat Example 8.9.1 by decomposing the stiffness matrix and compare the results with

those given in the example.
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Express the following equation in standard form using Choleski decomposition of the

mass matrix.

4 1°0 2
M1 4 1(+) -1
0 1 2 0

-1 0 X, fO
2 -1 =40
-1 1 X5 [0

Repeat Prob. 8.24 by decomposing the stiffness matrix.
Verify the equation of motion for the system of Fig, P8.26:

[ml 0 Hxl} . [(k1 + k, + ky)
0 m,|lx, -k,

FIGURE P8.26.

_kl
(k, + k,)

~ Determine the eigenvalues and eigenvectors.

X2

HX‘} - {O}mi —k =m and k
X, 0 :

— [

FIGURE P8.27.

8.27. The equation of motion for the system shown in Fig. P8.27 is given as

m, X,
2 xz +
s X3
m, | (X,
(k) + ky + ks) -k, —ks 0 - |(x 0
T=ky L (kyt ky) 0 —kg »\_ )0
—ks 0 (ks + ko + k) -k, x| )0
0 —kg ~k, (ky + kg) | Uxs) 0

Determine its eigenvalues and eigenvectors when m, = m and k; = k. Plot the mode
shapes and discuss the action of springs k; and k.



CHAPTER 9

Vibration of Continuous
Systems

The systems to be studied in this chapter have continuously distributed mass and elas-
ticity. These bodies are assumed to be homogeneous and isotropic, obeying Hooke’s
law within the elastic limit. To specify the position of every point in the elastic body, an
infinite number of coordinates is necessary, and such bodies, therefore, possess an infi-
nite number of degrees of freedom.

In general, the free vibration of these bodies is the sum of the principal or normal
modes, as previously stated. For the normal mode vibration, every particle of the body
performs simple harmonic motion at the frequency corresponding to the particular root
of the frequency equation, each particle passing simultaneously through its respective
equilibrium position. If the elastic curve of the body under which the motion is started
coincides exactly with one of the normal modes, only that normal mode will be pro-
duced. However, the elastic curve resulting from a blow or a sudden removal of forces
seldom corresponds to that of a normal mode, and thus all modes are excited. In many
cases, however, a particular normal mode can be excited by proper initial conditions.

For the forced vibration of the continuously distributed system, the mode sum-
mation method, previously touched upon in Chapter 6, makes possible its analysis as 2

system with a finite number of degrees of freedom. Constraints are often treated as

additional supports of the structure, and they alter the normal modes of the system.
The modes used in representing the deflection of the. system need not always be -
orthogonal, and a synthesis of the system using nonorthogonal functions is possible.

9.1 VIBRATING STRING

258

A flexible string of mass p per unit length is stretched under tension T. By assuming °

the lateral deflection y of the string to be small, the change in tension with deflection is
negligible and can be ignored. :
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FIGURE 9.1.1. String
element in lateral
t x  vibration.

In Fig. 9.1.1, a free-body diagram of an elementary length dx of the string is

shown. By assuming small deflections and slopes, the equation of motion in the y-
direction is

90 2
T(6+ —dx)—T9=pdxa Y
dx

ar
or
30 _ pad’y
. T o 9.1.1)
Because the slope of the string is § = dy/dx, the preceding equation reduces to
3’y _ 13%
ax? 2o’ : ©12)

where ¢ = V T/p can be shown to be the velocity of wave propagation along the string.
The general solution of Eq. (9.1.2) can be expressed in the form

y = Fy(ct = x) + Fyct + x) (9.1.3)

where F, and F, are arbitrary functions. Regardless of the type of function F, the argu-
ment (ct = x) upon differentiation leads to the equation

8’F 1 9%F
ol (14

and hence the differential equation is satisfied.

v Considering the component y = F,(ct — x), its value is determined by the argu-
ment (ct — x) and hence by a range of values of ¢ and x. For example, if ¢ = 10, the
equation for y = F,(100) is satisfied by t=0, x = —100; t=1, x = —90; t =2,
x = —80; and so forth. Therefore, the wave profile moves in the positive x-direction
with speed c. In a similar manner, we can show that F,(ct + x) represents a wave mov-
ing toward the negative x-direction with speed c. We therefore refer to c as the veloc-
ity of wave propagation.

One method of solving partial differential equations is that of separation of vari-
ables. In this method, the solution is assumed in the form

x50 = Y()G() @15
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By substitution into Eq. (9.1.2), we obtain
1d*Y 114G
2 = 22 9.1.
Ydx? *G ar? (©-1.6)
Because the left side of this equation is independent of ¢, whereas the right side is inde-

pendent of x, it follows that each side must be a constant. Letting this constant be
—(w/c)?, we obtain two ordinary differential equations:

% + (%)21/ =0 | (9.1.7)
%zt?— + 0’G =0 (9.1.8)
with the general solutions |
Y=Asin~ca3x+Bcos—§x | 9.19)
G = Csin wt + D cos wt (9.1.10)

The arbitrary constants, A, B, C, and D depend on the boundary conditions and
the initial conditions. For example, if the string is stretched between two fixed points
with distance / between them, the boundary conditions are y(0,¢) = y(I, f) = 0. The
condition that y(0, £) = 0 will require that B = 0, so the solution will appear as

y = (Csin wt + D cos wt) sin %x (9.1.11)
The condition y(/, £) = 0 then leads to the equation
’ l
sin= =0
C
or
ol L2 s
I A .

and A = ¢/f is the wavelength and fis the ffequency of oscillation. Each n represents.a
normal mode vibration with natural frequency determined from the equation

n n |T '
= —c= —1|— =1,2,3,... 9.1.12
fn 2l c 21 J;’ n I x 3.’ ( )
The mode shape is sinusoidal with the distribution
Y = sin nwf‘l- (9.1.13)

In the more general case of free vibration initiated in any manner, the solution

will contain many of the normal modes and the equation for the displacement can be
written as '
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y(x, t) = D (C,sin wt + D, cos w,t) sin _mlrx
n=1
o (9.1.14)
(Un = 'l—

By fitting this equation to the initial conditions of y(x,0) and y(x, 0), the C, and D, can
be evaluated.

Exampie 9.1.1

A uniform string of length [ is fixed at the ends and stretched under tension T.If the string is dis-
placed into an arbitrary shape y(x,0) and released, determine C, and D, of Eq. (9.1.14).

Solution At = 0,the displacement and velocity are

y(x,0) = 3 D, sin f‘—;’—x
n=1
3.0 = S w,C,sin == =0

!

n=1 '

If we multiply each equation by sin k7x// and integrate from x = 0 to x = /, all the terms on the
right side will be zero, except the term n = k. Thus, we arrive at the result -

kax

5 (!
D, = YJ' y(x, 0) sin dx
0

C, =0, k=123,...

LONGITUDINAL VIBRATION OF RODS

The rod considered in this section is assumed to be thin and uniform along its length.
Due to axial forces, there will be displacemeénts u along the rod that will be a function
of both position x and time ¢. Because the rod has an infinite number of natural modes
of vibration, the distribution of the displacements will differ with each mode.

Let us consider an element of this rod of length dx (Fig. 9.2.1). If u is the displace-
ment at x, the displacement at x + dx will be u + (du/ax)dx. It is evident then that the
~ element dx in the new position has changed in length by an amount (ou/ox)dx, and

P [P + E ax | ]
xﬁ-\d—x ‘/\u+£dx

‘ v—> .

[ % | | |

dx + ﬂf dx
FIGURE 9.2.1. Displacement of rod element.
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thus the unit strain is du/ax. Because, from Hooke’s law, the ratio of unit stress to unit
strain is equal to the modulus of elasticity E, we can write

ou P ‘
— = — 921
dx AE ( )

where A is the cross-sectional area of the rod. By differentiating with respect to x,
. a%u _ 9P

AE— =
ax 0x

(9.2.2)

We now apply Newton’s law of motion for the element and equate the unbal-
anced force to the product of the mass and acceleration of the element:
2

aP 0
—dx = pAdx “
ox

= (9.2.3)

where p is the density of the rod, mass per unit volume. Eliminating dP/dx between
Egs. (9.2.2) and (9.2.3), we obtain the partial differential equation

2 2
Su (,E_)‘ii; (9.2.4)
ot p/ ox
or
u 1%

It

which is similar to that of Eq. (9.1.2) for the string. The velocity of propagation of the
displacement or stress wave in the rod is then equal to

c= \E (9.2.6)
p

u(x, 1) = Ulx)G(r) (9.2.7)

will result in two ordinary differential equations similar to Egs. (9.1.7) and (9.1.8), with

and a solution of the form

U(x) = A sin %x + B cos %’x (9.2.8)

_ G(t) = Csin wt + D cos ot (9.2.9)

Example 9.2.1

Determine the natural frequencies and mode shapes of a free-free rod (a rod with both ends free).

Solution For such a bar, the stress at the ends must be zero. Because the stress is given by the -
equation Edu/ax, the unit strain at the ends must also be zero; that is,
ou '

— =0 at x=0 and x=1/
ax
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The two equations corresponding to these boundary conditions are, therefore,

&}
(_u) =A2(Csinwt+ Deoswt) =0
0x x=0 C

du ) ol . ol .
(—) = —(Acos——Bsm—)(Csmwt+Dcoswt)=0
0x /oy c c c
Because these equations must be true for any time ¢, A must be equal to zero from the first equa-
tion. Because B must be finite in order to have vibration, the second equation is satisfied when

s
sm£=0
c

w_,,l = w"l\/£= m 2w 3m, . ...
c E
The frequency of vibration is thus given by .
_nm E o JE
DT TNy TN,

where n represents the order of the mode. The solution of the free-free rod with zero initial dis-
placement can then be written as

or

nw nw |E ;
U= Uy cos — xsin — {/ —
0 ] 1 Vop
The amplitude of the longitudinal vibration along the rod is, therefore, a cosine wave having n
nodes.

|
9.3 TORSIONAL VIBRATION OF RODS

The equation of motion of a rod in torsional vibration is similar to that of longitudinal
vibration of rods discussed in the preceding section.

By letting x be measured along the length of the rod, the angle of twist in any
length dx of the rod due to torque T'is

Tdx
= — 93.1
de .G (9.3.1)

where I,G is the torsional stiffness given by the product of the polar moment of iner-
- tial I, of the cross-sectional area and the shear modulus of elasticity G. The torque on

the two faces of the element being T and T + (37, /ax)dx as shown in Fig. 9.3.1, the net
torque from Eq. (9.3.1) becomes

220
—dx = I,,G > dx (932)

By equating this torque to the product of the mass moment of inertia pl, dx of the ele-
ment and the angular acceleration 9%6/d%, where p is the density of the rod in mass per
unit volume, the differential equation of motion becomes
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0D 9
r@‘r + 8 ax

FIGURE 9.3.1. Torque
-»{dx }‘— ] acting on an element dx.

a%6 - .9%8 %6 - ( G\ a%6
lpdx— = 1,6 —dx, — =[(—]|=
plpdx"n = LG Hdy  n (p)ax2

This equation is of the same form as that of longitudinal vibration of rods, where 6 and

G/p replace u and E/p, respectively. The general solution hence can be written immedi-
ately by comparison as

6= (A sin w\[%x + B cos w\[g—x)(C sin wt + D cos wt) 93.4)

'(9.3.3)

Example 9.3.1

Determine the equation for the natural frequencies of a uniform rod in torsional oscillation with
one end fixed and the other end free, as in Fig..9.3.2.

x <

FIGURE 9.3.2.

Solution Starting with equation

6 = (A sin wVp/Gx + B cos oV p/Gx) sin wt
apply the boundary conditions, which are
(1) whenx =0,v=0,
(2) when x = [, torque = 0, or

Q."Q.-
® |l
I
o

Boundary condition (1) results in B = 0.
Boundary condition (2) results in the equation

cos wVp/Gl=0

which is satisfied by the following angles

@,

1_7_1'311' Sw (
2’

1 .
7,—2"",..., n+ E)W

Qle
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The natural frequencies of the bar hence are determined by the equation

s w=(n+l)1’,/9
" 2/ 1 Vp

wheren =0,1,2,3,....

Example 9.3.2

The drill pipe of an oil well terminates at the lower end in a rod containing a cutting bit. Derive
the expression for the natural frequencies, assuming the drill pipe to be uniform and fixed at the

upper end of the rod and cutter to be represented by an end mass of moment of inertia J,, as
shown in Fig. 9.3.3.

2%
Inertia torque - < >
° 6'2 x=1

FIGURE 9.3.3.
Solution The boundary condition at the upper end is x = 0, § = 0, which requires B to be zero
in Eq. (9.3.4).

For the lower end, the torque on the shaft is due to the inertia torque of the end disk, as shown
by the free-body diagram of Fig. 9.3.3.The inertia torque of the disk is —J,(3%6/9%),_, = Jow*(6),_,,
whereas the shaft torque from Eq. (9.3.1) is T, = GI,(d6/dx),., Equating the two, we have

de
GI,,( dx) = Jy0%0,_,
x=I

By substituting from Eq. (9.3.4) with B = 0,

Glpmf cos w\f I = Jyw?sin w\]G
p_ Ip PP Jia |G
t 1\/— = L£4G ——\/ \}—
MolNG = o VOPT 1N T Tl

This equation is of the form

BtanB= " g=ql

T
which can be solved graphically or fiom tables.!

SFT

1See Jahnke and Emde, Tables of Furictions, 4th Ed. (New York: Dover Publications, 1945), Table V, p. 32.
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Example 9.3.3

Using the frequency equation developed in the previous example, determine the first two natural
frequencies of an oil-well drill pipe 500 ft long, fixed at the upper end and terminating at the lower
end to a drill collar 120 ft long. The average values for the drill pipe and drill collar are given as

Drill pipe: outside diameter = 43 in.
inside diameter = 3.83 in.
I, = 0.00094 ft*, I = 5000 ft

0 .
Joa = IppL = 0.00094 X ;;”—2 X 5000 = 71.41b-ft-s?

Drill collar: outside diameter = 73 in.
inside diameter = 2.0 in.

Jy=0244 X 120 ft =293 1b-ft-s?

Solution The equation to be solved is

J
Btanf = 4 =244
Jo

From Table V, p. 32, of Jahnke and Emde, 8 = 1‘1.35,3.722, e

p 490
N = 0.470
B “”\fc; 5000“’\/ 12 X 105 x 12% X 322 @

By solving for w, the first two natural frequencies are

1.135
= —— =24l rad/s = 0.384
© = 5470 241 rad/s 384 cps
3.722
= — =7 = 1.2
© = 5770 793 rad/s 6 cps

9.4 SUSPENSION BRIDGE AS CONTINUOUS SYSTEM

Due to its great flexibility, the Tacoma Narrows Bridge offers a unique example to
demonstrate the applicability of the vibration theory of this section. Figure 9.4.1 shows
the violent torsional oscillation of the Tacoma Narrows Bridge just prior to its collapse
on November 7,1940. The bridge had been plagued by a number of different modes of
vibration under high winds since it was opened on July 1, 1940. During its short life of
only four months, its unusual behavior had been observed and recorded by Professor
F. B. Farquharson of the University of Washington.?

’F. B. Farquharson, Aerodynamic Stability of Suspension Bridges, University of Washington:
Engineering Experiment Station Bulletin, No. 116, Part 1.(1950). .
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FIGURE 9.4.1. Tacoma Narrows Bridge: Torsional oscillation. (Courtesy Special
Collections Division, University of Washington Libraries. Photo by E. B.
Farquharson [Negative No. 4].).

The catastrophic failure of the Tacoma Narrows Bridge has created consider-
able controversy and interest among engineers.® As in the flutter failure of aero-
plane wings, flexible structures subjected to high aerodynamic excitation often
develop self-excited oscillations with negative damping which lead to structural
destruction. '

Although simple resonance theory, itself, is insufficient to describe the failure of
the Tacoma Narrows Bridge, the importance of creating simple vibrational models for
its analysis must be recognized. The suspension bridge is a very flexible structure with
distributed mass and stiffness. Although the floor of thie bridge is generally uniform
_ along its length, the supporting cables, which provide most of the stiffness, vary in slope

and tension between the towers. The following data for the Tacoma Narrows Bridge
were obtained from various sources.*

*K. Y. Billah, and R. H. Scanlan, “Resonance, Tacoma Narrows Bridge Failure, and Undergraduate
Physics Textbooks,” Amer. J. Physics, Vol. 59, No. 2, pp. 118-124 (Feb. 1991).

“W. T.Thomson, “Vibration Periods at Tacoma Narrows,” Engineering News Record, Vol. P477, pp. 61-62
(March 27,1941). '
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Data for the Tacoma Narrows Bridge
Geometric.
[ = 2800 ft = span between towers
h = 232 ft = maximum sag of cables
b = 39 ft = width between cables
~d =17 in. = diameter of cables
h/l = 0.0829 = 1/12 = sag-to-span ratio
b/l = 0.0139 = 1/72 = width—to-span ratio
Weights.
w, = 4300 Ib/ft = floor weight/ft along the bridge
. = 323 Ib/ft = girder weight/cable/ft.

w

T 17\?
w, = 7 X G X 0.082 X 490 = 632 Ib/ft of cable

w, = 1(4300) + 320 + 632 = 3105 Ib/ft = total weight carried per cable
p=w/g=3105/322 = 96.41b-ft>-s*> = total mass/ft/cable

Assumptions and Calculated Quantities

Cable Tension. Figure 9.4.2 shows a free-body diagram of the cable between
the tower and midspan. The cable at midspan is horizontal, which is also the horizontal

component of the cable tension at the tower. Equating the moment at the tower to
zero, we have

SM, = 232T — 3105 X 1400 X 700 = 0
. T=131x10%1b '

The vertical component of the cable tension at the tower is equal to the total downward
force of 3105 X 1400 = 4.347 X 10¢ Ibs. Thus, the total cable tension at the tower is

o = 10°V13.11% + 4.352 = 13.82 X 10° Ibs.

14000 ————

232’

W, x1400

tower

FIGURE 9.4.2.
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l b N
N , ‘ —
632 ’ Cable
4300 - - .
323 | —— | | Girder
/Qi/' Floor
FIGURE 9.4.3.

We, therefore, can neglect the small variation of the cable tension along the span. Also,

the small flexural stiffness of the floor in bending was considered negligible for this
suspension bridge.

Torsicnal mass moment of inertia. Figure 9.4.3 shows the assumed equivalent
cross section of the bridge for the polar mass moment of inertia calculaticn.

2
4320 % (39)

J for the floor = mb*/12 = 320 5

= 17,000

55 2
- J for the girders plus cables = 2 X 9— X (329 ) = 22,400

Total J = 39,400 Ib-s*

Torsional stiffness. For the Tacoma Narrows Bridge, the girders and the floor
are both open sections, and the torsional stiffness provided by them is small in com-
parison to the torsional stiffness provided by the cables. Consider a pair of cables
spaced b ft apart and under tension T. Let three consecutive stations,i — 1,i,i + 1, be
equally spaced along the cable as shown in Fig. 9.4.4. Recalling the definition for the
elements of the stiffness matrix in Sec. 6.3, Eq. (6.3.1), the stiffness at station i is equal
to the lateral force F when displacement y, = 1.0 with all other displacements, includ-
ingy,_,Yp---»equal zero.

Giving the cross section at i a small rotation, 6, we have yi=x¢= (b/2)6 and
the vertical component of tension T is

b THo
F=2T$=2T> 0= —
F’
T ] 9’ Al -T
L —f /
T X X T
e

FIGURE 9.4.4.
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The torque of the cables is then Fb = Th26/x and the torsional stiffness of the cables,
defined as the torque per unit length of the cables, is sz Ib - ft/rad/ft.

TH% = 13.11 X 10°® X 392 = 19,900 X 10°1b-ft?

Example 9.4.1 VERTICAL VIBRATION

With T and p constant, we can analyze the vertical vibration of the bridge as a flexible string of
mass p per unit length stretched under tension 7" between two rigid towers that are [/ ft apart.

With the boundary conditions y(() t) = y(I,t) = 0, the general solution must satisfy the fre-
quency equation

!
sin = =0
C

as shown in Sec. 9.1. This equation is satisfied by

— =q,2%37,...,h7
c

or

n

f,== \/?, n{mode number) = 1,2,3,...
20 ¥ p

€=y = wave propagation velocity
p

When n = 1, we have the fundamental mode; when n = 2, we have the second mode with a node
at the center; etc., as shown in Fig. 9.4.5. Substituting numbers from the data, we have

n , 13.1
[ A %X 108 =
£, X 28 %64 10°=10 0658n cps

= 3.95n cpm = 4n cpm

== ]|— —== Fundomental n=1 £ =4cpm
/"ﬂ_-‘n‘\ ' _ ~
r\\ = Mode 2 n=2 f,=8cpm
! -
/’L‘\
7z TN ~
\\\~/,/ ~_ - Mode 3 n=3 f;=12 cpm
1
PAEREN Vit N
- A 4 AN ‘Mode 4 n=4 f,x16cpm
~ // \\ Va
Se ~— . FIGURE 9.4.5.

F. B. Farquharson reported that several different modes had been observed some of which can
be identified with the computed results here.
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Example 9.4.2 TORSIONAL VIBRATION

On the day of the Tacoma Narrows Bridge collapse, it was reported that high winds of 42 mph
had excited several modes of vibration. The dominant mode was moving vertically with a node
at midspan, which was calculated in the last section. This motion suddenly changed to torsional

motion with a node at midspan and a period of 4 s, which built up to large amplitudes of nearly
45° before collapse.

Considering the bridge as an equlvalent uniform rod, the torsional equation of motion can
be rewritten as:

20 82
]—-— = KdT(z (9.4.1)

The solution is given by

0(x,t) = (A sin w/ %x + B cos w4/ %x)(c sin wt + D cos wt) (9.4.2)

where the term (PI ,,dx) = J is identified as the polar mass moment of inertia, and the term
(I,G dx) = K is the torsional stiffness of length dx.

With the boundary conditions, 8(0, r) = 6(/, ) = 0, the natural frequencies are found from

J
. L=
Sin w =0

For a node at midspan,n = 2:

&

st L 1= 20

[ [39.400
=h/= =2 —— x107?
n =1y = 2%V 5500

=394s

which agrees closely with the observed period of 4 s. Thus, with reasonable development of a
simplified model, reliable calculations can be-obtained.

9.5 EULER EQUATION FOR BEAMS

To determine the differential equation for the lateral vibration of beams, consider the
forces and moments acting on an element of the beam shown in Fig. 9.5.1.

V and M are shear and bending moments, respectively, and p(x) represents the
loading per unit length of the beam.

By summing forces in the y-direction,

dV - p(x)dx = 0 ' (95.1)
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plx) ax

x  FIGURE9.5.1.

By summing moments about any point on the right face of the element,

dM — Vdx — 3p(x)(dx)? = 0 (9.5.2)
In the limiting process, these equations result in the following important relationships:
av am _
953
o —PW oo (9.53)

The first part of Eq. (9.5.3) states that the rate of change of shear along the length
of the beam is equal to the loading per unit length, and the second states that the rate
of change of the moment along the beam is equal to the shear.

From Eq. (9.5.3), we obtain the following:

d’M _ av
ool p(x) (9.5.4)

The bending moment is related to the curvature by the flexure equation, which, for the
coordinates indicated in Fig. 9.5.1, is

d2
M = EI :i—- : (9.5.5)
Substituting this relation into Eq. (9.5.4), we obtain
d2
e (EI P ) p(x) (9.5.6)

For a beam vibrating about its static equilibrium position under its own weight,
the load per unit length is equal to the inertia load due to its mass and acceleration.
Because the inertia force is in the same direction as p(x), as shown in Fig. 9.5.1, we
have, by assuming harmonic motion,

px) = po?y (9.5.7)

where p is the mass per unit length of the beam. By using this relatlon the equation for
the lateral vibration of the beam reduces to »

d° 2 d? '
(EI dx{) ~ paly =0 (9.5.8)
In the special case where the flexural rigidity EI is a constant, the preceding equation .

can be written as

4 : A
El— - pw’y =0 (9.5.9)'
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On substituting
2
4 @
=p= S5.10
| P el (9.5.10)
we obtain the fourth-order differential equation
dty . .
dx? By =0 (9.5.11)

for the vibration of a uniform beam.
The general solution of Eq. (9.5.11) can be shown to be
y = A cosh Bx + Bsinh x + Ccos x + D sin px 1 (9.5.12)
To arrive at this result, we assume a solution of the form
y = ew
which will satisfy the differential equation when
a==B and a= i
Because

cosh Bx =+ sinh Bx
e*P* = cos Bx * isin Bx

the solution in the form of Eq. (9.5.12) is readily established.
The natural frequencies of vibration are found from Eq. (9.5.10) to be

®, = Bﬁ@ = (B fl—ﬁ | (9.5.13)

where the number 8, depends on the boundary conditions of the problem. Table 9.5.1
lists numerical values of (B,/)* for typical end conditions.

TABLE 9.5.1
(B.1)* (B:1)* (B:)*
Beam Configuration Fundamental Second Mode Third Mode
Simply supported " 987 395 88.9
~ Cantilever 352 22.0 61.7
Free-free - . 22.4 61.7 121.0
Clamped-clamped 224 617 121.0
Clamped-hinged 154 50.0 104.0
Hinged-free 0 15.4. 50.0
Example 9.5.1

Determine the natural frequencies of vibration of a uniform beam clamped at one end and free
at the other.
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Solution The boundary conditions are

y=0
Atx =0 Q:»
dx
dz?
M=0 or Z2=0
dx
Atx =1 &y
V=0 —3 =0
or o

Substituting these boundary conditions in the general solution, we obtain

(),eg=A+C=0, ~A=-C

d
(Eﬁ) = BlA sinh Bx + B cosh Bx — Csin Bx + D cos Bx],_, =0
x=0 ’
BB +D]=0, ..B=-D
d’ ’ |
(ﬁ) = B*[A cosh I + Bsinh 8l — Ccos Bl — D sin l] = 0
x=l

A(cosh BI + cos BI) + B(sinh Bl + sin 8l) = 0

3
(%}%) = B*[Asinh Bl + Bcosh Bl + Csin I — D cos fl] = 0
x=1

A(sinh Bi — sin pI) + B(cosh Bl + cos Bl) = 0
From the last two equations, we obtain

cosh Bl + cos Bl . sinh Bl + sin Bl
sinh Bl — sin B/ cosh Bl + cos BI

which reduces to
coshBlcosBl+1=0

This last equation is satisfied by a number of values of S/, corresponding to each normal mode of
oscillation, which for the first and second modes are 1.875 and 4.695, respectively. The natural
frequency for the first mode is hence given by

sy [E 3:5 [EI
Wy [2 p lZ p

Example 9.5.2

. Figure 9.5.2 shows a satellite boom in the process of deployment. The coiled portion, which is>
stored, is rotated and deployed out through straight guides to extend 100 ft or more.
This particular boom has the following properties:

Deployed diameter = 12.50 in.
Bay length = 7.277 in.
Boom weight = 0.0274 Ib/in. of length .
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FIGURE 9.5.2. Satellite boom. (Courtesy of Able
Engineering, Santa Barbara, CA)
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Bending stiffness, EI = 15.03 X 10®Ib-in.% about the neutral axis
Torsional stiffness, GA = 5.50 X 10° Ib-in.?

Determine the natural frequencies in bending and in its free unloaded state if its length is 20 ft.
The boom can be represented as a uniform beam.

Solution The natural frequencies in bending can be found from the equation

EI
w, = (B P

From Table 9.5.1, the first natural frequency becomes

15.03 x 10°
W, = 3.52\/ o02a = 28.12 rad/s

bt X 4
356 (20 x 12)

= 448 cps.

9.6 SYSTEM WITH REPEATED IDENTICAL SECTIONS

Repeated identical sections are often encountered in engineering structures. They rep-
resent a lJumped-mass approximation to the continous structure, such as, the N-story
high-rise building is often built with identical floors of mass m and lateral shear stiff-
ness of k Ib/in., as modeled in Fig. 9.6.1. By applying the method of difference equa-
tions to such structures, simple analytical equations for the natural frequencies and
mode shapes can be found.

By referring to Fig. 9.6.1, the equation of motion for the nth mass is

mx, = k(x,,; — x,) — k(x, = x,.)) (9.6.1)

FIGURE 9.6.1. Repeated
structure for difference
equation analysis.
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which for harmonic motion can be represented in terms of the amplitudes as
5 :
X, - 2(1 e )X,, +X_, =0 (9.62)
2k
The solution to this equation is found by substituting
X, = e (9.6.3)
which leads to the relationship
1 - w2m B eiﬁ + e-ﬂ'ﬁ B
o 5 = cos f3
2
©M _ 51 - cos ) = 4sin? B (9.6.4)
k 2
The general solution for X is
X, = Acos fBn + Bsin Bn (9.6.5)

where A and B are evaluated from the boundary conditions.

Boundary conditions. The difference equation (9.6.2) is restricted to 1 =n =

(N — 1) and must be extended to n = 0 and n = N by the boundary conditions.

At the ground, the amplitude of motion is zero, X, = 0. Equation (9.6.2) for mass
m, then becomes

mao® .
X, - 2(1 ey )Xl =0 | (9.6.6)
Substituting Eq. (9.6.4) and Eq. (9.6.5) into the previous equation, we obtain

(A cos2B + Bsin2B) — 2cos B(A cos B+ BsinB) =0

Alcos 2B — 2 cos?B) + B(sin 2B — 2sin Bcos B) = 0
" Because cos 28 — 2 cos’8 = 1 and sin 28 — 2 sin B cos B = 0, we have
AQ1) + B(0) =0
LA=0

and the general solution for the amplitude reduces to

X, = Bsin fn 9.6.7)
At the top, the boundary equation is

myiy = —k(xy = xy_y)
Because the sections at the two boundaries of the system are outside the domain of the
difference equation, the choice for the value of m » is arbitrary. However, we will soon

see that the choice my = m/2 simplifies the boundary equation at the top. In terms of
the amplitudes, the previous equation becomes '
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w:"m
Xy = (1 - E—)X (9.6.8)

Substituting from Egs. (9.6.4) and (9.6.7), we obtain the following equation for evaluat-
ing the quantity 8:

sin B(N — 1) + cos Bsin BN
_ This equation then reduces to
' sin Bcos BN =0
which is satisfied by

cos BN =0
E _ m 3w 5_7I (Zi -
2 AN’4N4N’ 4N

The natural frequencies are then available from Eq. (9.6.4) as

[k B
w =2 L, Sino A
(21 - 1=
= 2\/ o sinT— | (9.6.9)

If the top mass is m instead of 3, the boundary equation results in a slightly dif-
ferent equation

Il

_B__ 2=V
2 22N +1)

2i - )7
@i = 2\FS 202N + 1)

Figure 9.6.2 shows a graphical representation of these natural frequencies when N = 4.

and

of of

U.IZ
1
ﬂl For mg=2m

wy

Z=——

FIGURE 9.6.2. Natural frequencies of a
" repeated structure with N = 4.
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The method of difference equation presented here is applicable to many other
dynamical systems where repeating sections are present. The natural frequencies aré

always given by Eq. (9.6.9); however, the quantity 8 must be established for each prob-
lem from its boundary conditions.

Example 9.6.1 ' —

Figure 9.6.3 shows a fixed-free rod modeled by N repeated spring-mass sections, Because the dif-
ference equation solution of the N-story building is applicable here, express the natural fre
quency equation in terms of the parameters of the rod for longitudinal vibration.

27 AM, L |
B
%—m—lk }-Jw—lk w1 w1 - —'W—D—'\//H]
m m L— 1_.‘ m m=

FIGURE 9.6.3. Difference equation applied to a longitudinal system,

|3

Solution By letting [ = L/N for the repeating section, the spring stiffness for the section 15
k = AE/! and the mass is m = M/N. Substituting into Eq. (9.6.9), we obtain

_, [AEN" . Qi- D= )
w, = VTR, (a) .
If N is very large, the angle /4N is small and

Q27 _Qi-17
SMTTUN T T 4N

for the lower frequencies. The previous equation can then be approximated by

AL

. k1
w; = (2 1)2 UL’

[ <<N (b)
which is the exact equation for the longitudinal vibration of the uniform rod. For higher frequen”

cies, the assumption sin 6 = 6 will not be valid (see Fig. 9.6.2), and Eq. (a) for the discrete mass
system must be used.

e

PROBLEMS

9.1. Find the wave velocity along a rope whose mass is 0.372 kg/m when stretched to a ten”
sion of 444 N. _

9.2. Derive the equation for the natural frequencies of a uniform cord of length / fixed at th®
two ends. The cord is stretched to a tension T and its mass per unit length is p.

9.3. A cord of length [ and mass per unit length p is under tension T with the left end fixed

and the right end attached to a spring-mass system, as shown in Fig. P9.3. Determine th€
equation for the natural frequencies. ‘ :



280 Chapter9 Vibration of Continuous Systerns

9.4.

9.5,

9.6.

9.7.

FIGURE P9.3.

A harmonic vibration has an amplitude that varies as a cosine function along the x-direc-
tion such that

y = acos kx-sin wt

Show that if another harmonic vibration of same frequency and equal amplitude dis-
placed in space phase and time phase by a quarter wavelength is added to the first vibra-
tion, the resultant vibration will represent a traveling wave with a propagatlon velocity
equal toc = w/k.

Find the velocity of longitudinal waves along a thin steel bar. The modulus of elasticity
and mass per unit volume of steel are 200 X 10° N/m? and 7810 kg/m3, respectively.

Shown in Fig. P9.6 is a flexible cable supported at the upper end and free to oscillate
under the influence of gravity. Show that the equation of lateral motion is

2 2 s
Py e(x 224 2)

at? ax? ax
u,
!
I T+dT
y y
1 !
1/ .
FIGURE P9.6.

In Prob. 9.6, assume a solution of the form y = Y(x) cos w+ and show that Y(x) can be
reduced to a Bessel’s differential equation

d?v(z) L1 dy(x)
dz? z dz

+Y(z)=0
with solution

Y(z) = Jy(z) or

s

by a change in variable z2 = 4w’ /g. ,
A particular satellite consists of two equal masses of m each connected by a cable of'

Aength 2! and mass density p, as shown in Fig. P9.8. The assembly rotates in space with, !
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angular speed w. Show that if the variation in the cable tension is neglected, the differen-
tial equation of lateral motion of the cable is

3y _ _p ﬂ _
ax? mail wy

and that its fundamental frequency of oscillation is

/ 2
2 (7 mwol>_ )
¢ (zz)( p )X

FIGURE P9.8.

9.9. A uniform bar of length / is fixed at one end and free at the other end. Show that the fre-

quencies of normal longitudinal vibrations are f = (n'+ 1)c/2l, where ¢ = VE/p is the
velocity of longitudinal waves in the bar,and n = 0,1,2

A uniform rod of length I and cross-sectional area A is fixed at the upper end and is
loaded with a weight W on the other end. Show that the natural frequencies are deter-

mined from the equation ,
/ P /p Aplg
Iy =t I\ ==—
ol \[ptan ol = W

Show that the fundamental frequency for the system of Prob. 9.10 can be expressed in the
form

9.11.

o, = B,Vk/rM

where

M
'.11[=le rZTI‘Od
A
k= TE, M = end mass

Reducing this system to a spring k and an end mass equal to M + 3 M, ,, determine an

appropriate equation for the fundamental frequency. Show that the ratio of the approx1—
mate frequency to the exact frequency found is

(1/B)V3r/(3 + 1)

The frequency of magnetostriction oscillators is determined by the length of the nickel
alloy rod, which generates an alternating voltage in the surrounding coils equal to the fre-
quency of longitudinal vibration of the rod, as shown in Fig. P9.12. Determine the proper

length of the rod clamped at the middle for a frequency of 20 kcps if the modulus of elas-
ticity and density are given as E =30 X 10°Ib/in.? and p = 0.31 lb/in.

9.12.

3, respectively.

T

FIGURE P9.12.
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9.13. The equation for the longitudinal oscillations of a slender rod with viscous damping is

a%u 9%u ou )
mos = AE pre R p(x)f(t)
where the loadmg per unit length is assumed to be separable. Letting u = 2, 4>(x)q ®
and p(x) = 2,b,¢(x) show that
b J - Ny
u= bt & f(t - 7e {"’*’Slnw 1- ¢ rdr
vy

b= 1 jp(xw,(x) ax

Derive the equatlon for the stress at any point x.

9.14. Show that ¢ = V/G/p p is the velocity of propagation ef torsional strain along the rod.
What is the numerical value of ¢ for steel? _

9.15. Determine the expression for the natural frequencies of torsional oscillations of a uni-
form rod of length / clamped at the middle and free at the two ends.

9.16. Determine the natural frequencies of a torsional system consisting of a uniform shaft of
mass moment inertia /_with a disk of inertia J; attached to each end. Check the funda-
mental frequency by reducmg the uniform shaft to a torsional spring with end masses.

9.17. A uniform bar has these specifications: length /, mass density per unit volume p, and tor-
sional stiffness 1,G, where I, is the polar moment of inertia of the cross section and G the
shear modulus. The end x = 0 is fastened to a torsional spring of stiffness K 1b - in./rad,
and the end [ is fixed, as shown in Fig. P9.17. Determine the transcendental equation
from which natural frequencies can be established. Verify the correctness of this equation
by considering special cases for K =0and K = .

FIGURE P9.17.

9.18. Name some of the factors not accounted for in the method presented in Sec. 9.4 for the
calculation of the natural frequencies of suspension bridges.

9.19. The new Tacoma Narrows Bridge, reopened on October 14,1950, has the following data:’
I'= 2800 ft (between towers)
b = 60 ft (width between cables)
k = 280 ft (maximum sag of cables)
w, = 8570 Ib/lineal ft

J, = — p? (rotational mass moment of inertia)
g
Calculate the new cable tension, the cable torsional stiffness, the new vertical and tor-

sional vibration frequencies, and compare with previous values. (Assume a reasonable
value for the radius of gyration p in determining the torsional mass moment of inertia.)



9.20.

9.21.

9.22.
9.23.

9.24.

9.25.
9.26.

9.27.

9.28.

9.29.

9.30.
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The following data on the Golden Gate Bridge was obtained from reports provided by
the district engineer for the bridge:

1 = 4200 ft
h = 470 ft
b =90 ft

w, = 28,720 Ib/ft (total weight per lineal foot, including cables)
Determine the cable stiffness Tb? in torsion and compare with the old and new cable
stiffnesses of the Tacoma Narrows Bridge found in Prob. 9.19.
For a 1-DOF model of an airplane wing, assume an equation of the form

Jo 6+ co+ k6= fi(v,0) + f,(v, 6)

where 6 is the angle of attack and v is the wind velocity. Discuss the possibility of nega-
tive damping and the importance of the aerodynamic characteristics of the floor and
stiffness girders for suspension bridges.

Determine the expression for the natural frequencies of a free-free bar in lateral vibration.

Determine the node position for the fundamental mode of the free-free beam by
Rayleigh’s method, assuming the curve to be y = sin(mx/l) — b. By equating the
momentum to zero, determine b. Substitute this value of b to find w,.

A concrete test beam 2 X 2 X 12 in., supported at two points 0.224/ from the ends, was
found to resonate at 1690 cps. If the density of concrete is 153 Ib/ft?, determine the modu-
lus of elasticity, assuming the beam to be slender.

Determine the natural frequencies of a uniform beam of length / clamped at both ends.

Determine the natural frequencies of a uniform beam of length /, clamped at one end
and pinned at the other end.

A uniform beam of length / and weight W, is clamped at one end and carries a concen-
trated weight W, at the other end. State the boundary conditions and determine the fre-
quency equation.

Solve Prob. 9.27 for the fundamental frequency by the method of equivalent mass placed
at the free end.

If a satellite boom of uniform weight W, is loaded with concentrated load W, atx = x, and
an end load W, show that its fundamental frequency can be obtained from the equation

3Elg
@ \/ rw

where

e . Y(xl) }2
W=W,+ 0237 W +W{
0 W 1 | ()

The pinned end of a pinned-free beam is given a harmonic motion of amplitude y, per-
pendicular to the beam. Show that the boundary conditions resuit in the equation

Yo _ sinh Bl cos Bl — cosh Blsin pl

i sinh Bl - sin Bl
which, for y,— 0, reduces to

tanh B/ = tan gl
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9.31.

9.34.

9.35.

A simply supported beam has an overhang of length /,, as shown in Fig. P9.31. If the end

of the overhang is free, show that boundary conditions require the deflection equation
for each span to be

_ . _singl )
¢, = C(_sm Bx Sinh Bl al, sinh Bx
cos Bi, + cosh B,

= —+ —
P2 A[COS fx o+ cosh fpx ( sin BL, + sinh B,

)(sin Bx + sinh ,Bx)]

where x is measured from the left and right ends.

¢, ¢, b J n 2 )
b 5y 7 X J
L Z, 1, -
X — <—X—" 0 q 2 : N

FIGURE P9.31. FIGURE P9.32.

Set up the difference equations for the torsional system shown in Fig. P9.32. Determine
the boundary equations and solve for the natural frequencies.

. Set up the difference equations for N equal masses on a string with tension T, as shown in

Fig. P9.33. Determine the boundary equations and the natural frequencies.
. n 1 ,
ao 12 I :
FIGURE P9.33.

Write the difference equations for the spring-mass system shown in Fig. P9.34 and find
the natural frequencies of the system.

K
L] Wl
0 1 2 N

FIGURE P9.34.

An N-mass pendulum is shown in Fig. P9.35. Determine the difference equations, bound-
ary conditions, and the natural frequencies.

FIGURE P9.35.
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9.36. If the left end of the system of Prob. 9.35 is connected to a heavy flywheel, as shown in
Fig. P9.36, show that the boundary conditions lead to the equation

(—sinNBcosB+sinNB)(l +4 Kog ZE) = -2£sinzzsin[3cosNB .

— Sin
K,J 2 J
Jo
J N
Ko 2k |l K ‘ “
FIGURE P9.36.

9.37. If the top story of a building is restrained by a spring or stiffness K, as shown in Fig. P9.37,
determine the natural frequencies of the N-story building.

Ky

FIGURE P9.37.

9.38. A ladder-type structure is fixed at both ends, as shown in Fig. P9.38. Determine the nat-
ural frequencies. ‘

FIGURE P9.38. FIGURE P9.39.

-9.39, If the base of an N-story building is allowed to rotate against a resisting spring K, as
shown in Fig. P9.39, determine the boundary equations and the natural frequencies.

.9.40. The natural frequencies .and normal modes presented for the 10-DOF system of
Example 6.10.1 were obtained from the eigenvalue-eigenvector computer program.
Verify these numbers by the use of Eq.9.6.9 for w, and X,, = B sin Sn for the amplitude.
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9.41. Two beams of the same flexural rigidity EI are connected by a spring of stiffness k as
shown in the Fig. P9.41. Determine the equations of motion. Determine the fundamental
frequency of the antisymmetric mode (i.e., where y, = —y,).

El El

’

FIGURE P9.41.

9.42. A ball hits the baseball bat at its end at time ¢ = 0 with the speed of v m/s. The speed of
the bat at that moment is v m/s in the direction opposite to that of the ball. Assuming
that the player is holding the bat tightly at one end which is not moving, determine the
natural frequency of the first mode. '



CHAPTER 160

Introduction to the Finite
Element Method

In Chapter 6, we were able to determine the stiffness matrix of simple frame structures
by considering the structure as an assemblage of structural elements. With the forces
and moments at the ends of the elements known from structural theory, the joints
between the elements were matched for compatibility of displacements and the forces
and moments at the joints were established by imposing the condition of equilibrium.

In the finite element method, the same procedure is followed, but in a more sys-
tematic way for computer caiculation. Although structures with few elements can be
analyzed simply by the method outlined in Chapter 6, the “bookkeeping” for a large
structure of many elements would soon overcome the patience of the analyst. In the
finite element method, element coordinates and forces are transformed into global
coordinates and the stiffness matrix of the entire structure is presented in a global sys-
tem of common orientation.

The accuracy obtainable from the finite element method depends on being able
to duplicate the vibration mode shapes. Using only one finite element between struc-
tural joints or corners gives good results for the first lowest mode because the static
deflection curve is a good approximation to the lowest dynamic mode shape. For
higher modes, several elements are necessary between structural joints. This leads to
large matrices for which a computer is essential in solving for the eigenvalues and
eigenvectors of the system.

This chapter introduces the reader to the basic ideas of the finite element method

- and also includes the development of the corresponding mass matrix to complete the

equations of motion for the dynamic problem. Only structural elements for the axial

and beam elements are discussed here. For the treatment of plates and shells, the
reader is referred to other texts.

ELEMENT STIFFNESS AND MASS

Axial element. An element with pinned ends can support only axial forces and
hence will act like a spring. Figure 10.1.1 shows a spring and a uniform rod pinned to a

287



288 Chapter 10 Introduction to the Finite Element Method

stationary wall and subjected to a force F.The force-displacement relationships for the
two cases are simply

Spring f=ku

(10.1.1)
Uniformrod F = (E—A) {

] u
In general, these axial elements can be a part of a pin-connected structure that
.allows displacement of both ends. In the finite element method, the displacement and
force at each end of the element must be accounted for with proper sign. Figure 10.1.2
shows an axial element labeled with displacements u,, u,, and forces F;, F,, all in the
positive sense. If we write the force-displacement relationship in terms of the stiffness

matrix, the equation is
{Fl} _ [kn ku]{ux} (10.1.2)
K, ky  ky 1l

The elements of the first column of the stiffness matrix represent the forces at the two
ends when u; = 1 and u, = 0, as shown in Fig. 10.1.3. Thus, F, = ku; and F, = —ku,.

Similarly, by letting u, = 1 and u, = 0, we obtain, as in Fig. 10.1.4, F; = —ku, and
F, = ku,.Thus, Eq. (10.1.2) becomes

=4 Tt @012)

If the spring is replaced by a uniform rod, k = AE/I and the equation becomes

{2} B ETA[—i _1]{2} (10.1.3)

These equations thus define the stiffness matrix for axial elements in terms of axial
coordinates u; and axial forces F;, regardless of the orientation of the axial member.

Mode shape and mass matrix for axial element. With the two ends of the axial
member displaced by u, and u,, the displacement at any point ¢ = x// is assumed to be a

U
£a/t ) 1 B 2
§—_—-——,__. F=(EA/Nu /-'1 —_—— D_./-‘2

—1 | .
FIGURE 10.1.1. . ‘ FIGURE 10.1.2.

k § : k
A= ‘ \ A A ' 5
uy=1 %L=0 4=0 =1
FIGURE 10.1.3. ' FIGURE 10.1.4.
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d dt
. dt ou,
. u
(@ /
l—¢ —
v, ‘P1u1=(1v§)u1
(b} ’/\UZ pz Z:fuz

FIGURE 10.1.5. -

straight line, as shown in Fig. 10.1.5(a). The displacement is, therefore, the superposition
of the two mode shapes shown in Fig. 10.1.5(b). The normalized mode shapes are then

o =(1-¢ and ¢, =¢ (10.1.4)
The mass matrix is found by expressing u as the sum of the two mode shapes:
u=(1- 8u, + &u, (10.1.5)

and writing the equation for the kinetic energy. We here assume uniform mass distribu-
tion m per unit length.

1l 1
T = ljiﬂm dx = 1mJ [(1 - iy + €,) 1de
2 0 2 0

) . (10.1.6)

- Eml(%&% + Sy + %u%)
Because the generalized mass from Lagrange’s equation is
d ar
dt ou;
we find )
d oT 1. 1.
u B_u, = ml(gu1 + guz)
d 8T 1. 1..
Ei a—uz = ml(-éul + guz)
which establishes the mass matrix for the axial element as
ml[2 1
3 [1 2] -(10.1.7)

The terms of the mass matrix are also available from -

m;=_| ¢y, dm
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Example 10.1 1

Determine the equation of motion for the longitudinal vibration of the two-section bar shown in

Fig. 10.1.6.
§ a b
N

FIGURE 10.1.6. 1 2 3

Solution Numbering the joints as 1,2, and 3, we have two axial elements, 1-2, and 2-3, with

displacements u,, u,, and u,. Although u, is zero, we at first allow it to be unrestrained and later
impose its zero value.

The element mass and stiffness terms from Eqs. (10.1.7) and (10.1.3) are as follows:

M |2 1 1 1.
. = k
Element a 5 l:l 2} “I:_l 1}
M2 1 1 -1
Element b: ?b[l 2:‘ k, l: 4 1]

where k, = EA, /I, k, = EA,/I,, M, = m,l,,and M, = m,/,.
The element matrices have a common coordinate u,, and by superimposing them, they can
be assembled into a 3 X 3 matrix as follows:

1 _M_" : M, 0 _-Lf.l_
Mass matrix G M, | 2M, +2M, | M, u2 (10.1.8)
0 M, oM, || i
k, | -~k 0 u,
Stiffness matrix | [~k, | k, + k| —k||< uy (10.1.9)
0 —ky Ky ||| us

We note here that the stiffness matrix is singular and does not have an inverse. This is to be
expected because no limitations have been placed on the displacements. The first and third rows of
the stiffness matrix, as it stands, result in k, (i, — ,) = k,(u, — u;) = 0, which indicates that no rel-
ative motion between coordinates takes place, a situation corresponding to rigid-body translation.

If we fix point 1 so that u, = 0, then the first column of the matrices can be deleted. The sec-

ond and third rows then result in the following equation for the longitudinal vibration of the
two-section bar:

1[2(M, + M) M, {uz} N (k; + kp) ——k,,iHuz} _ {0]
6 M, oM, | iy —ky Ky i 0
Special case. If A, =A,=A, [, =1, = 3L,and M, = M, = {M, the previous
problem becomes that of a uniform bar of total length L and total mass M, solved as a

2-DOF system with coordinates at the midpoint and the free end. The equation of the °
previous problem then becomes

CHN R R R
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If we let A =

w’ML/24EA, the characteristic equation for the natural frequen-
cies becomes

(2 — 4)) —'(1+)\)~0
—(1+2A) Q-2

or

Its solution results in

[EA
16115
_ {0.1082 Yo ML

1.3204 |[EA

-5.6293 VML

The natural frequencies of the uniform bar in longitudinal vibration are known

and are given by the equation w, = (2n + 1)(7/2)V EA/ML . Results computed from
this equation for the first two modes are

(EA
M

4.7124 \/ML

Comparison between the two indicates that the agreement between the results of the
2-DOF finite element model and that of the continuous model is 2.6 percent high for.

the first mode and 19.5 percent high for the second mode. A three-element model will
of course be expected to give closer agreement.

1.5708 \;'

w =

Variable properties. One simple approach to problems of variable properties is
to use many elements of short length. The variation of mass or stiffness over each ele-
ment is then small and can be neglected. The problem then becomes one of constant

-mass and stiffness for each element that simplifies the problem considerably because

these terms can be placed outside of the integrals. Of course, the larger numbers of ele-
ments will lead to equations of larger DOF.

Computer program. The program bar.m is a MATLAB® script file which com-
putes the natural frequencies as determined by a finite element method for a can-
tilever bar. Since it allows the elements to have different properties, this program can
be used to model bars that have variable properties. This program prompts the user to
input the length of the bar; the number of elements desired; the mass of each element;
the elastic modulus of each element; and the cross-sectional area of each element. It
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then constructs the mass matrix and the stiffness matrix for the model. For the 3 X 3
cases these matrices are given in Egs. 10.1.8 and 10.1.9. From these it constructs the
dynamic matrix. The natural frequencies are determined from the eigenvalues of the
dynamic matrix. See Appendix F for more information about this program.

10.2  STIFFNESS AND MASS FOR THE BEAM ELEMENT

Beam stiffness. If the ends of the element are rigidly connected to the adjoining
structure instead of being pinned, the element will act like a beam with moments and
lateral forces acting at the joints. In general, the relative axial displacement u, — u, will
be small compared to the lateral displacement v of the beam and can be assumed to be
zero. When axial forces as well as beam forces and moments must be considered, it is a
simple matter to make additions to the beam stiffness matrix, as we show later.

The local coordinates for the beam element are the lateral displacements and
rotations at the two ends. We consider only the planar structure in this discussion, so
that each joint will have a lateral displacement v and a rotation 6, resulting in four
coordinates, v, 6, and v,, 6,. The positive sense of these coordinates is arbitrary, but for
computer bookkeeping purposes, the diagram of Fig. 10.2.1 is the one accepted by
most structural engineers. Positive senses of the forces and moments also follow the
same diagram.

The preceding displacements can be considered to be the superposition of the
four shapes, labeled ¢,(x), ¢,(x), ¢5(x), and ¢,(x), shown in Fig. 10.2.2. The forces and
moments required at the two ends were found in Chapter 6 and are shown in Fig. 10.2.3
with the factor EI/I® omitted. The diagram immediately leads to the force-stiffness

equation:
Ak b
FIGURE 10.2.1. 1 7 21
Positive sense of beam M, 6, C )Mz' 6,
displacement and forces. £l

V1=1 1\§ @)
9'=1 %\ § pz(x)

Aea =1 #l0

FIGURE 10.2.2. § —
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F, 12 6 1-12 6\
M, EIl 6 4* -6 21)6g

I D L S 10.2.1
F, Pl-12 -6l 12 -6l||w, ( )
M, 6l 2% -6 42|\ e,

Equation (10.2.1) for the stiffness was obtained from the given forces and

moments shown in Fig. 10.2.3. The stiffness matrix as well as the mass matrix can also

- be determined from the potential and kinetic energy, provided the shape functions
@;(x) of the beam are known.

For the development of the general equation of the beam, which is a cubic poly-
nomial, the deflection is expressed in the form -

v(x) = py + ot + pag’ + pet’ (10.2.2)
where
&= % and p, = constants
Differentiating yields the slope equation _
16(x) = p, + 2p ¢ + 3p,¢? (10.2.3)

If we apply the boundary conditions £ = 0 and ¢ = 1, the boundary equatlons can
be expressed by the following matrix equation:

Y 1 0 E 0 0](p,
G _ (9 110 0 (102.4)
v, 1 111 1||ps

16, 0 112 3]\lp,

1F>6¢V1
ag’ (I/\F)ztza

616,

6£v2<§ /é_yj )‘5‘3112

121,

leeg(é 6192

_ )41292
\_‘6/2921

FIGURE 10.2.3.
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With the matrix partitioned as shown, it is evident that p; and p, are related to v, and
16, by a unit matrix. After substituting p, = v, and p, = 16, we can easily solve the last
two rows of the matrix for p, and p,. The desired inverse of Eq. (10.2.4) then becomes

Dy 1 0. 0 0( v,
i l
P2\ _ ___0_-___1__.___0__"_(2 __9_1_ (10.2.5)
D -3 =2 E 3 =1||wv
Pa 2 11-2 11416,

This equation enables the determination of the p; for each of the displacements
equated to unity with all the others equal to zero. That is, for »,(x) = 1 with all other
displacements equal to zero, the first column of Eq. (10.2.5) gives

p1:1’ .p2:0’ P3 = ,_3’ and p4:2

Substituting these into Eq. (10.2.2) gives the shape function for the first configuration
of Fig.10.2.2 of

o (x) =1-3¢+28
Similarly, the second column corresponding to 6, = 1 gives
py=0, p,=1 py=-2/, andp,=1
and -
o,(x) = I6 — 2L + 18

The other two ¢(x) are obtained in a similar manner. In summary, we have the follow-
ing for the four beam shape functions:

o(x) =1-3¢& +2¢
o(x) = 1&g - 28 + 18
@y(x) = 3¢ — 28
@y(x) = =18 + 1€

(10.2.6)

Generalized mass and generalized stiffness. By considering the displacement in

general to be the superposition of the four shape functions shown in Fig. (10.2.2), we
have

y(x) = @y + 0,0, + o, + 0,6,

=@q T 00, T 093 T 94,
where g; has been substituted for the end displacements.

To determine the generalized mass, the preceding equation is substituted into the
equation for the kinetic energy.

1. law -
T= Ejyzmdx=§EZQinJ@i¢jmdx
i
1
2 22y

1

(10.2.7)

(10.2.8)

Be
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Thus, the generalized mass m,;, which forms the elements of the mass matrix, is equal to
!

m; = J eip;m dx (10.2.9)
Jo

Substituting the four beam functions into Eq. (10.2.9), the mass matrix for the
uniform beam element is expressed in terms of the end displacements:

156 221 \ 54 —13]

ml| 20 4r | 13 =37
420 54 131 | 156 22 " (10.2.10)
—131 =3[> ' =221 4’

The matrix is called consistent mass, because it is based on the same beam functions
used for the stiffness matrix.!

10.3 TRANSFORMATION OF COORDINATES (GLOBAL COORDINATES)

In determining the stiffness matrix of the entire structure in terms of local elements, it
is necessary first to match the displacements of the adjacent elements to ensure com-
patibility. In Chapter 6, this was done by examination of each joint, taking account of
the orientations of the adjoining members at each joint.

In the finite element method, this requirement for displacement compatibility is
simplified by resolving the element displacements and forces into a common coordi-
nate system known as global coordinates.

Consider again a planar structure and examine a local element @, @ at an angle
a with the global coordinates u, v, which will be assumed in the horizontal and vertical
directions, as shown in Fig. 10.3.1(a).

The displacement r, of joint O to @’ must be the same in both the local and
global coordinates. This requirement can be expressed by the equatlon

I —u11+v1]—ull+v,J

v . 7

O,
©

(a) (b)
FIGURE 10.3.1.

1], S. Archer, “Consistent Mass Matrix for Distributed Mass Systems,” J. Struct. Div. ASCE, Vol. 89,
. No.STA4 (August 1963), pp. 161-178.
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where i, j and i, j are unit vectors for the two coordinate systems. Forming the dot
product for the preceding equation with i, we obtain

w (1) + v,(j-i) = &,(i-1) + v,(§i)
or
u; + 0 =1u cosa + v, sina
- Next taking the dot product with j, we obtain
' 0+ v, =~y sina + v, cos «

Thus, we can express these results by the matrix equation

{”‘} = [ coser Sn a][f‘} (103.1)
v, —sina cos @ 1“1

The preceding equation expresses the local coordinates u,, ¢, in terms of the global
coordinates u;, v;. These results are readily confirmed geometrically from Fig. 10.3.1(b).

Similarly, the displacement at joint @ in local coordinates can be expressed in
terms of the global coordinates by the same transformation equation. The rotation

angle for the two coordinate systems must be, of course, the same, so that 6 = 0. We

can then include 8in the transformation matrix as

u cosa sina O

u
vy =| —sinae cosa 0| i=1,2 (10.3.2)
0); 0 0 2]|l6):

Thus, the transformation matrix for any element making an angle o measured counter-
clockwise from the horizontal is

'ulw ¢ s 0 .: —\ (i, )

N ~s ¢ 0 i 0 ?1

Lol ol o oni .| 1033)
u, rocos 0 ﬁ U,

v, 0 ': -s ¢ 0],

Lﬂw L b 000 1116,

where ¢ = cos a and s = sin a. It is easily seen that the transformation matrix devel-

oped for displacements also applies for the force vector.

In shorter notation, we can rewrite the transformation 'equations from local to
global coordinates as

r=Tr
F=TF (10.3.4)

where T is the transformation matrix, and r, F and 7, F are the displacement and force

. in the local and global coordinates, respectively. We add to this the relationships

between r and F, which is the stiffness matrix:

F=kr (1035)
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and which we wish to write in the global system as F = kr. From Eq. (10.3.4), we have
F=T'"=TTF (10.3.6)

Here we have taken note that transformation matrices are orthogonal matrices and

T~' = T7.% Substituting for F from the stiffness equation and replacing r in terms of 7,
we obtain )
F=T%r.
— 10.3.7
= T'kTr = kr ( )

Thus, & for local coordinates is transformed to & for global coordinates by the equation

k=TkT (10.3.8)

10.4 ELEMENT STIFFNESS AND ELEMENT MASS IN GLOBAL
COORDINATES

Axial elements. For axial elements, the end moments are zero and the end
forces and displacements are collinear with the element length. Thus, for systems

involving only axial elements, the 6 X 6 transformation matrix reduces to the following
4 X 4 matrix:

c v': 0
- ) .
T=|-2---C S 10.4.1
0 | ¢ )
T s ¢

We note here that the stiffness and mass matrices for the axial element are of order
2 X 2 and, therefore, must be rewritten as a 4 X 4 matrix as follows:

. 1 o1 olfu
{Fl}_EA[ 1 '—1}{%}_&4 0.0 0 0l)w
FI - 1l-1 1flw 1]-1 0! 1 0]y
0 0! 0 0flv,
) (10.4.2)
, 2 011 0][4
Fl e6l1 2l 6|1 012 0]
0-0i0 o]ly,
These 4 X 4 matrices can then be substituted into Eq. (10.3.8) in order to convert them

to the global coordinates:

2See Appendix C.
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¢ cs 1 —c* —cs
_ EA| cs st ) —cs  —s? '

k=TT = =\ T o Ty (1043)

. 52

2¢% 2cs E ¢t —cs

— _ o7 ml|2cs 251 cs s
= = — + 104.4
m=T'mT 6| c e 2 25| ( )

es st 2 2s%_

Example 10.4.1

Determine the stiffness matrix for the 3,4, 5 oriented pinned truss of Fig. 10.4.1.

FIGURE 10.4.1.

Solution The structure is composed of three pinned members a, b, ¢ with joints 1, 2, 3. Each
joint has 2 DOF in the global system, and the six forces and displacements are related by the fol-
lowing equation:

Fl.t El
fly, 51
fo = [I_(] ?2
52)/ )
E3X E3
F3y 53

The global stiffness of each element is determined from Eq. (10.4.3) by substituting sin & ‘
and cos « for the particular member.
Element a (1 to 2):

4 3
C-—g,s—'s'
16 12.-16 -12 [y
R L (EA) 128 iz ~9llw
e 25\ 1)l -16 -121 16 125
-2 -9 12 9]l
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Element b (2 to 3):
c=~-1,5s=0

1 0i-1 0((n

o - (224) 0. 0lo00 ]

PPoNa )l -1 0 1 0|

01 0 0]lv,

Element ¢ (3 to 1):

c=0,5s = -1

1 0
0 -1:0 1 v,
0 010 0 iy
- L(Eé) 0 Fr0 =)
25\ 1/l0 0 0 0 u,
0 _%: 0 % C

These must now be assembled for the 6 X 6 stiffness equation. The matrices for a
and b have a common displacement {?}, and it is easily seen that they fit together with
2
an overlap of the section associated with the common displacement:

[T 16 12 -16 1 12 1 (%
1209 —12 1 -9 3,

(E_A\ -16 -12 76+ 12 -2 0} | ]g
251/ 412 -9 12 1 9 0 0 \3,
P 0 2 0| |u

i L0 o o ol lw

» In order to find the proper location for k., it can be separated into four 2 X 2
matrices, which can be arranged as

0 0 00 ()
0 i 10 =% 1|
EA\| T L
Gl b
0 0 0 0 | |5
[0 -5 0 2 | v,
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Superimposing these three matrices, we see that the stiffness matrix for the truss is

’Tﬂ‘ 16 12 | -6 -12i0 0 |(=)
F, 12 o9+ —12 -9 0 By
B\ (Eay -6 12 Tie+ 2 12 - E;L
ﬁfz >"(2—51) ~12 -9 | 12 9 10 0 ﬁﬁz
F, o 0 L TSETTTUTE TN,
\Fs,, Lo %1 0 0 10 %_bu

We now impose the condition of zero displacement for joints 1 and 3, which
wipes out columns 1,2, 5, and 6, leaving the equation

(F), ) 16 -127]

F, et VAt

0 L= ‘EA\| 16 +3125 12 {ﬂz}
ARE N
F,, -31.25 0

F3y1 L .O 0 .

The middle two rows are

0] _ (54) [ 4725 12 az}
-P 50 12 9]\,
which can be inverted to -

az_(g) 1 [ 9 —12 {0}
v,] ~\EA)28125| -12 4725 ]|-P

Thus, the horizontal and vertical deflections of joint 2 are

_ 251 Pl
= (281.25EA) (12P) = 1.066 72
251 Pi
b, = | === |(-47.25P) = —4.200—
2 (281.25EA )( 47.25P) EA
With these values, the reaction forces at pins 1 and 3 are
- EA Pl Pl
=|— || -16 X 1.066 — + 12 X 4200 — | = 1.333P
L (251)[ 16 1066EA 12X 4 OOEA]
F,y = 1.000P
F,, = —1.333P
Fp, =0

Of course, these reactions are easily found by taking moments about the fixed pins; '

however, this example illustrates the general procedure to be followed for a more com-
plex structure.

e
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Beam element. The stiffness and mass matrices for the beam element are of
order 4 X 4, whereas the transformation matrix is 6 X 6. Thus, to transform these

matrices for the glbbal coordinates, we need to modify them by adding the axial com-
ponents rearranged as follows: '

1 0 0i-1 0 0].41
0 0 0,0 0 0]y
EAL 0.0 010 0 0ls
Il-1 0 0:1 0 0y
0 0 0:0 0 0fy
Lo 0 010 0 0]ls
[2 0 011 0 0}
0 0 0:0 0 O
m|0 0 0i0 0 0
6|11 0 0i2 0 0
0 0 0:0 00
|0 0 0!0 O O]
The element matrices to be used in the transformation then become
R 0 0 1-R 0 0 ]
0 12 6 !0 -12 6l
EI| 0. 6 42:i 0 -6 2P
k= FI R0 TR0 0 (10.4.5)
0 -12 —-6/i 0 12 -6l
L0 6 2210 -6 4
. R_(&)(ﬁ)ﬁ_ﬂ
where 2=\ \Er I
N 0 0 1IN 0 0
0 156 2217 0 54 -13I
. m|O 22 4% 0 13 32 '
"TROIIN 0 0 LN 0 0 (104.6)
0 54 130 156 -—22
0 -131 -31*} 0 -221 4
1\( 420
where N = (T—)(—) = 140
3 ml .

These 6 X 6 element matrices are transformed to global coordinates (with bars
over the letters) by the equations k = TTkT and m = T'mT:
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(=R +12)cs  (—Rs®>—12¢?) —6lc
—6ls 6lc 212

(R = 12)cs (Rs?* + 12¢%) —é6lc
6ls —6lc 412

(Rc* + 1257) (R = 12)cs —6ls } (-Rc* —125%) (=R + 12)cs —6is | u
(R - 12)cs (Rs? + 12c?) 6lc 1 (=R +12)es (~Rs -12¢%) 6lc |v
- EI ~6ls 6l 4% 6l —6lc 2 |8
k=—|~ - mmomrm e e s St L T bttt o 10.4.7
B | (=Rc? - 1257 (—R + 12)cs 6ls ! (Rc? + 125%) (R = 12)cs 6ls | ( )
1
i
t
1

(Nc? +156s2) (N — 156)cs  —22Is | (ANc? + 54s2) (AN — S4)es  13is

(N — 156)cs  (Ns? + 156¢%)  22lc- ': GN = 54)cs  (ANs? + 54c¢?) —13kc

= ml _l__:_2_2£5 _______ . J22Uc 4 o oWs 1Bl ____ ;.31_2_
420| (3Nc? + 545s%) (5N — S4)es  —13ls ' (Nc? + 156s%) (N — 156)cs  22Is

(3N = 54)cs (3Ns?+54c¢?)  13lc ' (N=156)cs  (Ns®+ 156¢?) —22Ic
131s —13Ic =317 221s ~22Ic 472

10.5 VIBRATIONS INVOLVING BEAM ELEMENTS

To illustrate the finite element method for beams, we consider some problems solved
in Chapters 6 and 7. The object here is, first, to show how to assemble the system equa-

tion using two elements and, second, to reduce the degrees of freedom of the equation
by elimination of rotational coordinates.

Example 10.5.1

The beam in Fig. 10.5.1 is considered as two equal elements of length /2, whose stiffness and

mass matrices are given by Eqgs. (10.2.1) and (10.2.10). With /2 substituted for /, the element
matrices are as follows: '

Element a:
12 3 -12 3 v, )
1

8El l 2 1 -31 052 o

Stiffness (1—3) -:3i ST -g- -1-;- -- —_—55 / Displacement vector 1)12

31. 052 -3 P 6,

(a) {b)
il

(2) (3
FIGURE 10.5.1. Uniform cantilever beam.
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156 117 ) 54 —-6.51

Mass (22 (AP besl —07s
840 54 6.5 1 156 —11/
—6.51 —0.751% ! —111 2

Element b: Element b is the same as element a except for the displacement vector, which is

With the global coordinates coinciding with the beam axis, the assembly of the system

matrix is simply that of superimposing the preceding matrices for elements a and b into a 6 X 6
matrix. That is, for the stiffness matrix, we have

["Element a

|

1
| |
1 '
| |
t |
1 1
1 |
1 1
1 p

Because v, = 6, = 0 due-to the constraint of the wall, the first two columns can be ignored. Also,

we are not concerned with the force and moment, F, and M, respectively, in the vibration prob-

lem. We can, therefore, strike out the first two rows as well as the first two columns, leavmg the
equation

~I
1
1
]
|
:

Element bi\6,

312 0 1 54 -6.50 | (v,
mi| 02 65l 0752 |)
840| 54 6.5 1 156 —11 || v,
-651 0751} —111 I 6,
(10.5.1)
24 0 1 -12 3 |[(v F,
(b2 o 2o ostlel )M,
13> 12 =30 12 -3 {)wn [ | R
31057 -3 2 | M,

To solve for the free vibration of the beam, the force vector is made equal to zero and the
_acceleration vector is replaced by —w? times the displacement.

Computer program. The program beam.m is a MATLAB® script file which com-
putes the natural frequencies as determined by a finite element model for the can-
tilever beam. After prompting the user to input the length of the beam; the number of
elements desired; the mass of the beam; the elastic modulus of the beam; and the
moment of inertia of the beam, the program constructs the mass and stiffness matrices
for the model. For a beam composed of two equal elements, these matrices can be
found in Eq. (10.5.1). The dynamic matrix is then constructed from these two matrices.
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The eigenvalues of the dynamic matrix are computed and are used to determine the

natural frequencies of the model. For more information about the program, see
Appendix F. '

Coordinate reduction -
Example 10.5.2

The solution of the preceding equation requires an eigenvalue-eigenvector computer program.
However, we consider a simpler problem of replacing the uniformly distributed mass by lumped
masses at joints 2 and 3. The mass matrix is then a series of Os except for elements m,, and m;.

This suggests rearranging the preceding equation so that the displacement vector is in the
rearranged order '

This is simply accomplished by interchanging columns 2 and 3 and rows 2 and 3, resulting in the
following equation:

(m, 01 0% 24 -120 0 3 (v 0
0 mi il (ser S22 i-3 =3 |fe | )0
U] 6, 1—3) 0. 312k osP)e o
L : o, L 31 -31t052 P |\, 0

_The equation is now in the form
1 X7 1
My 01V | K Ky YL C'} (105.2)
0 10]Le Ky | Kyl LO 0

MV + K,V +K,0=0

which can be written as

KV + Kp0'=0

From the second equation, 6 can be expressed in terms of V:

0= _K2-21K21V
Substituting into the first equation, we have ‘
MV + (K, ~ KK Ky )V =0 (10.5.3)

which in terms of the original quantities becomes

m, 0 {52}+(8_E_I) 24 -12

0 my]l¥, Flll-2 12

[ o 3 22 os| o -3 {vz}_ 0
-3 =3rjlos 2] (30 -3 |l Lo

K, - K, Kn' Ky : (10.54)

The term
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is the reduced stiffness, and its value when multiplied out is

8EI| 96 -30| 48EI|16 -5
71 |30 12 78 |-5 2

Thus, the original 4 X 4 equation has been -r.educed to a2 X 2 equation, the final form being

{mz 0 Hvz} N (48E1)[ 16 —5]{1)2} B {0‘
0 my v, 78 -5 2]y, 0}
An acceptable discrete mass distribution is one in which the mass of each element is divided

into half at each end of the element. Thus, if the total mass of the uniform beam of length / is ml,
the mass of each element is ml/2 and m, = 2(ml/4) = mi/2 and m, = ml/4, as shown in Fig. 10.5.2.

%\f’ /2 @1 2 D

=ml =m =l
"4 m="2 Mmy="4

FIGURE 10.5.2. Two-element discrete mass model of a
uniform cantilever beam.

The equation of motion and solution then becomes
[_A[z 0]+r 16 —5] v, ={0}
o 1] -5 2]l T o

w'ml 1P , 7 (ml“)
A=2" 2 _ 2
4 48E]1 192\ EI

A = 03632 o, =3516 exact value = 3.516

where

Ay = 9.637 @, = 22.033  exact value = 22.034

{0327 _[-1527
4’1_{1.000} 4’2‘{ 1.000}

Example 10.5.3

Determine the equation of free vibration of the portal frame with identical elements.

Solution By labeling the joints as shown in Fig. 10.5.3, the stiffness and mass for each element

are available from Eqgs. (10.4.7) and (10.4.8). Because joints 0 and 3 have zero displacements, we
" write only the terms corresponding to joints 1 and 2.

FIGURE 10.5.3.
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Element 0-1,a@ = 90°,c = 0,5 = 1:

Introduction to the Finite Element Method

=12 0 —61“
i 0 -R 0
— _El L6l 0 27
CEN T 0 6|,
) R 017
L L6l 0 426,
i 540 131}
10 3N 0
o=l pTl 0 ek
Tt 420 L1s6 0 221
.0 0 0
| L2200 4r
Element 1-2, a = 0°,c = 1,5 = 0:
R 0 0 .-R 0 0]g
0 12 6 0 -12 6|3
- EI| 0 6l 41> 0 -6l 2% 6
R by - S I 8
| 2
0 -12 -6/, 0 12 -6l|79,
L 0 6 221 0 -6 42|86,
N 0 0 13N 0 0]
0 156 22010 54 —13I
— _ml| 0 22 4710 13 -3
240N 0N o o
0 5S4 13,0 156 -22
Lo ~130 321 0 -220 4P
Element 2-3,a = 270°, ¢ = 0,s = —1:
12 0 613 1w,
0 R 0! 2,
, he
k= _E?I____6_l__;_9___{l_2_i_,___ X 92
P=127 70 -6l i
0 -R 0! v,
L 6/ 0 2?7 |6
15 0 220! ]
0 N 0 i
m o mi|220 0 4F ]
2737 420 0 i
1
L i
' -

o8
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Assembling these matrices, we have

(12 + R) 0 6/ —R 0 0 g
0 (12+R) 6} 0 -12 6l |,
ENy___ o _______ 6 8L 0 622 |% “
Bl R 0 0:(12+R) 0 6l |
0 12 -6l: 0 (12+R) -6l |5,
0 6 2y el ~6l 82 |5
(1s6+N) 0o 21, IN 0 0]
0 156 201 0 54 131
mhy 20 20 82, 0 131 _ap
ol I o T aser N 0 ®)
0 54 131 0 (156 + N) -221
0 =130 -3, 22 ~221 8% |

We next note that v, = v, = 0, which eliminates columns 2 and S as well as rows 2 and 5. The
equation for free vibration with N = 140 substituted then becomes

(c)
(12+R) 6 -R 0% 0
+E31 _______6£__§13_; ______ 0_220]e | _JoO
I —R 0 :1(12+R) 6l || 0
0 22! 6l 82|16, 0

]

Example 10.5.4

Figure 10.5.4 shows the lowest antisymmetric and the lowest symmetric modes of free vibration
for the portal frame. Determine the natural frequencies for the given modes.

(a) (b)
FIGURE 10.5.4.
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Solution Antisymmetric Mode. The deflection and slope of stations 1 and 2 are identical, i.e.,
u; = u,and 6, = 6,. These conditions are imposed on the preceding equation by adding column

: u
3 to column 1 and column 4 to column 2. This results in identical equations for {%l} and {—2}'
) :

02 ’
[_ w’ml [ 366 221] . 5_1[12 6l H{al} _ {0}
420 |22 s Plel 10°)]l6 0

By letting A = w® mi*/420EI, the determinant® of this equation

(12 = 366A) (6 — 22A)1]| 0
(6 — 222 (10 = 5A)2
results in two roots:
T
A =00245 o, =321 e

| EI
A, = 2.543 = 32. —
2 CUZ 68 m14

The lowest natural frequency corresponds to the simple shape displayed in Fig. 105.4(a) and is of
acceptable accuracy. However, the second antisymmetric mode would be of more complex shape
and w, computed with the few stations used in this example would not be accurate. Several more
stations would be necessary to adequately represent the higher modes.

Symmetric Mode: For the symmetric mode, we have u; = u, = 0 and 6, = —0,. Deleting
columns 1 and 3 and subtracting column 4 from column 2, we obtain just one equation for 6;:
w’ml El
- —— (1% + — (61 ]9 =0
|-t + Ziem g

A and w are then

Example 10.5.5

Figure 10.5.5 shows external loads acting on the portal frame. Examine the boundary condition
and determine the stiffness matrix in terms of the coordinates given.

Solution The condition of no extension of members &, = u, is satisfied by adding column 3 to
column 1 in Eq. (c), Example 10.5.3. This eliminates the extension term R. We can also add row 3
to row 1 and rewrite the stiffness matrix as a 3 X 3 matrix:

3When the determinant is multiplied out, /2 becomes a factor that cancels out. Thus, we can let [ = 1.0
in the matrices of the frequency equation without altering the values of A, and A,.
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s e
82
7
= 7 _
I 6§ 6ﬁ 4,
M, = 1—3 6/ 81+ 2 91
) 6/ 2 381> |l

Comparing the external loads of Fig. 10.5.5 with those of the global system, we have

F, + F, F u, u
M, =4\~ O =46
M, —M, 0, -6,

With F,, = 0 and F,, = %, the stiffness matrix in terms of the given coordinates and given loads is

F 24 -6l —6l|(u
EI 5 3

dyp = 5| -6 8% 26,

Mo -6/ 212 812 |6,

10.6 SPRING CONSTRAINTS ON STRUCTURE

In Chapter 9, spring constraints were treated by virtual work as generalized forces. The
same concept applies in the finite element approach. The point of application of the
spring must be chosen here as a joint station. Thus, the’load on the original structure in
global coordinates is supplemented by the spring force.

Because the spring force is always opposite to the displacement, the force or
moment at the joint is decreased by —kv, or — K6, Thus, the terms, when shifted to the
other side of the equation, become additions to the corresponding stiffness term.

Example 10.6.1

Determine the stiffness matrix for the uniform beam with a linear and rotational spring, as
shown in Fig. 10.6.1(a).

Solution We first establish the stiffness matrix of the beam without the springs [Fig. 10.6.1(b)], but
with loads P and M acting at station 2. The stiffness matrix for each section 1-2 and 2-3 can be
assembled from the beam element matrix, Eq. (10.2.1). Noting that v, = 6, = v, = 6; = 0, we

need only evaluate the portion of the matrix associated with the coordinates v, and 6,, which
becomes :
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® ® 0 fuw

{ - 1
J ) )
y - &Lt,ﬁ-tvo‘

() (b)
FIGURE 10.6.1.

1 1 1 1
- 12(— + —) —6(— - *) _
{Fz } _g| W n T {Uz}
1
) e
ll lz ll lZ
With the springs acting at station 2, the force vector is replaced by
{‘p‘z - kiz}
\]T/IZ - Ko,

Shifting the spring forces to the right side of the equation, we obtain

1
1 1 k 1 1
- A5 +5|+—= -6l — = _
(Bl _m o)t m i a) =)
MZ _6(L —_ L) 4(1 + l) + _1_<_ 02
. [% 17i L b EI

Because the force F, in the global system is positive in the upward direction, and M, is positive
counterclockwise, the previous equation can be rearranged to

) AL T S L
{—P} _EI ;5] El TN {62}
=3 2 2 3 -
M ! _61(1_ _1 ) 412(1 + i) + K116,

VI L L) EI

which defines the stiffness matrix for the beam with the spring constraints.

The equation indicates that the system is decoupled for /; = I, = I/2,in which case the equa-
tion reduces to :

The deflection at the center is then

_ _ —(PP/ED) __ MP/EI
27 192 + kBJEI  * 161> + KI’/EI




Section 10.7 Generalized Force for Distributed Load 311

Example 10.6.2

Determine the natural frequencies of the constrained beam of Example 10.6.1 whenl, = [, = I/2..

Solution For this determination, we need the mass matrix, which can be assembled from Eq.

(10.2.10) as
(ﬁ)‘: 156(1, + ) —22(% - 12) _(ﬂ) 156 0
420/ 220 - 3) 43 +13) | \40/) 0 P

The equation of motion then becomes

2 B
0 16/ El

Kl
+—
_o'ml 1560 . EI (192 EI) 0 {5}_[0}

2
200 p P ( K’ 6, 0

Again, coordinates v, and 8, are decoupled. By letting A = w’ml*/420EI, the equation for v, gives

1 kP 3

kl
= + — | =1. + 0. -
A 156 (192 EI) 1.231 + 0.00641 El

and the natural frequency for this mode is

EI\/ [ kP )
= 22. — /1 +0. —
“ - 2273\/mz4 1 000521 \E )

Similarly, the equation for 6, results in

Ki
A=16+ —
8% &

/EI kl
w, = 81.98 T 1 + 0.0625 (—E

Thus, both natural frequencies are increased by the constraining springs. If X = K = 0, the
exact natural frequencies for the beam with fixed ends are

El EI
2237\/114 w = 6,1.67\j —

so that the error in the finite element approach is 1.61 percent for the first mode and 33.9 percent .
for the second mode. Dividing the beam into shorter elements reduces these errors.

and

10.7 GENERALIZED FORCE FOR DISTRIBUTED LOAD

As discussed in Chapter 7, the generalized force is found from the virtual work of the
applied forces. With the displacement expressed as

y(x) = ¢i(x)y + $,(0)6, + dy(X)v, + b(x)6, (10.7.1)
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the virtual work of the applied distributed force p(x) is

W = L plx) 8y(x) dx

!
~ b, jopmqs](x) dx + 56, fop(xwz(x) ax (1072)

+ 80, fop(x)@(x) dx + 56, jop(xm(x) i

The integrals in Eq. (10.7.2) are the generalized forces.
If the same procedure is applied to the end forces, F, M,, F,, and M,, the virtual

work is
8W = F, 6y + M, 80, + F, bv, + M, 56, (10.7.3)

Equating the virtual work in the previous two cases, we obtain the following relationships:
1

Fy = Llp(x)dn(x)dx F, = Lp(x)¢3(x) dx

, (10.7.4)

M= | P as - ﬂp(xm(x) dx

Thus, for the distributed load, the equivalent finite element loads are the generalized
forces just given.

‘Example 10.7.1

Figure 10.7.1 shows a cantilever beam of length /, with a uniform load p(x) = p Ib/in. over the

outer half of the beam. Determine the deflection and slope at the free end using the method of
this section.

Solution: We use a single element ® ~ @ and first determine the inverse of the stiffness matrix.
Because v, = 6, = 0, the stiffness equation from Eq. (10.2.1) is

F,| _EI[ 12 -6l {vz
M, B-6, 4% |le,)

2

|
b—2—
]
1 @

FIGURE 10.7.1.

@7




]

Section 10.8  Generalized Force Proportional to Displacement

313
Its inverse, using the adjoint rhethod is
{vz} 51 Tar ey l[F
0, EI 1212 6l, 12 || M,
The equivalent finite element forces, from Eq. (10.7.4), are
! 1
‘ , 13
F,= f ~ py(x) dx = —pJ (&) d¢ = —pl, f (3¢ - 2£) dg = -
I 1/2 n?
1 1 8
M, = J ~ p$)l, dé = —plfj (~& + &) de= pl;
1/2 1/2 1536
Substituting these values into the inverted equation, we have
13
v, 1 4 6l —3—£pll
12E1 88
0 l 2 || —=—=p!*
2 6h 12 ]} 1536Ph
52 528
-—— 4+ — 5125
_ph 32 1536 | -plh ,1
12EI) _78 1056 ~ 48E1 | 7.000
3211 15361, L
These results agree with those calculated from the area-moment method.
|

10.8 GENERALIZED FORCE PROPORTIONAL TO DISPLACEMENT

When the generalized force is proportional to the displacement, it can be transferred
to the left side of the equation of motion to combine with the stiffness matrix for the
free vibration. Presented in this section are two cases: (1) for distributed forces normal

to the beam, and (2) for distributed forces parallel to the beam.

Case (1): The term p(x) in the virtual work equation (10.7.2) is replaced by

f(x)y(x), which results in the equation

- Lf(X)_v(x) y(x) dx (108.1)

- With y(x) = D4, ,Where ¢, are the beam functions, and g; are the

element end deflections as in Eq. (10.7.1), the virtual work is

. A
oW = 2 2‘1,‘ SQiJOf(x)(I’i(ﬁj dx (108.2) -

and the generalized force becomes

1
Q= %V = ijj f(x)¢i¢jdx (1083)

i

which is proportional to the displacement.
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Example 10.8.1

Figure 10.8.1 shows a cantilever beam with elastic foundation under the outer half of the beam.
The stiffness of the foundation is ~ky Ibs/in., so that f(x) = —k, a constant. The equation of
motion then takes the form

V, % 0,
mi b, 8EI 6, 0,
—_— . . + ——|K. =
80 ™! v, i LK) v, 0,
b 6, Q,
]
iuz % 2 !
® ® ®
FIGURE 10.8.1.

Evaluating the integral in Eq. (10.8.3) for an element of length /, we have

3

03714 0.524/ 0.1286 —0.03095! v,

(0) = —ki 0'0095,2412 0.03905/ —0.007143/% || 6,
‘ 0.3714 —0.05238! vy
0.009524% | 6

When applied to this problem with / = //2 and transferred to the left side of the equation, the
stiffness of the beam is increased.

Case 2: A distributed force p(x) dx parallel to the beam will do virtual work
p(x) dx - du(x), where u(x) is the horizontal displacement due to deflection y(x)-
Displacement u(x) is equal to the difference between the horizontal projection of the
deflected beam and x: :

u(x) = Jox(ds - dx) = Lx dx 1 + (%)2 —dx | = iny"z dr -

where 7 is a dummy variable for x, and y' = dy/dr. The virtual displacement of x is then
equal to '

X

du(x) = J 16y’ Hdr
0

where the integrand is interpreted as follows:

. %Syiz — %[(yr + 6y1)2 _ yIZ] — yrsyl
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Thus, the virtual work for the distributed force becomes
1

SW = ——Jp(x)J y'8y' drdx (10.8.4)
. 0 0 .
Substituting for y’ in terms of the beam functions, we have
! x
oW = =3 Sq,8. o0 | sgjaran (108.5)
i J 0 0
! x
114
0= 2~ -5 o] wigjaras (10856)
0qg; j 0 0

Example 10.8.2

Rotational element. An example of interest here is the helicopter blade whirling with
angular speed 2, as shown in Fig. 10.8.2. For the first beam element, the loading is Q*m dx and
Eq. {10.8.6) applies without change. For subsequent elements, coordinate x must be measured
from the beginning of the new element to conform to that of the beam functions. The load for the
element is simply Q%(l; + x)m dx, where [, is the distance from the rotation axis to'the beginning of

the new element. Presented here is the generalized force associated with the load Q%xm dx, which
is applicable to the first element.

0.4286 0.01429/  —0.4286 0.06429/ vy

2 — - _ 2
() = —ma? 0.0571412  —-0.01429!  —0.0095241 {] 6,
0.4286 —0.06429! v,
0.0238112 0,

Q3L +x)max

FIGURE 10.8.2.

Example 10.8.3

Using one element, determine the equation of motion of the helicopter blade length / rotating at
speed ). Assume the blade to be rigidly fixed to the rotor shaft.

Solution - The mass and stiffness terms for the single element of length ! are

156 221 v 54 131 | (v,
m| 220 ari 13 =3e\)6|_m
40| 54 1301 1560 220 || 5[ 420
131 =31} =221 42| |G,
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The term due to rotation is found from the generalized force Q glven in Eq. (10.8.6). For its eval-
uation, the integral involved is

! x 1 ¢
mﬂzlJ’ xJ @@ dr-dx = mQZIJ §[J (p;<p;1d§]1d§
o Jo o LJo

where

, 1
¢ = (_6§ + 6§2)7

=1 - 4£+ 38

o 1

Py = (6§ - 6§2)7
@, = —2¢+ 3¢

Substituting these into the previous integral, we obtain the result

0.4286 0014291 1 —0.4286 0.64291 v,
may |--001420 0.057141% } —0.01429 | -0.0095241” |) 6,
L -04286  —0.01429

_ 0.4286 -0.064291 v,
- 0.064291 —0.0095241% | —0.06429! ~ 0.02381/% 0,

Q
ll

= -mQ*HV

The equation of motion can now be written as

w'ml El 2
Pndiibid V= — IHV
M + 13K mQ“IH

By multiplying and dividing the right hand term by EI/I° and transferring it to the left side, we
obtain

2m 274
ULy E—I[K+ mér ! H:|V,=0‘

420 B EIl
or
- Q*mi*
M - )\|: K + £l Hjl =0
where |
1= 420E1
w’ml’

With the boundary conditions v, = t91 = 0, we need only to maintain the lower right quad-
rant of the matrices. Also by remembering that the /; inside the matrices all cancel in the solution
for the eigenvalues and eigenvectors, we can let [ = 1 .0. The final equation of motion is then




Section 10.8 Generalized Force Proportional to Displacement 317

156 —22] 5l 12 —6:| . (sz[“) 04286  —0.06429 |\ |[»,] _ [0

22 41" -6 4 EI -0.06429 —0.02381 6, 0
This equation can be solved for the eigenvalues A by assuming a number for the rotation para-
meter. If we choose O?ml*/EI = 1.0, we obtain

156 —22 _{12.43 -6.064 ||, _ [0
-22 4 -6.064 4024 /l6,] o
(156 — 12431)  —(22 — 6.064A)| _
—(22 — 6.064A) (4 — 4.0241)

The eigenvalues and natural frequencies from the determinant are

= EI
A, = 30,65 =370\ —
- El
A, = 0.345 = 34.89 \|—, —

and the associated eigenvectors and modes are

o = {vz}“) _ {0.545} o = (¥ ® _ [0.0807
! 6, 0.749 2 g, 0.615

For () = 0, the natural frequencies for the single element analysis are

EI
= 353\[ 14

El
= 3481y —

For comparison, the exact values for {} = O are

El
= 35151 —; _—

El

= 20324 —

- which indicates that the single-element analysis results in unacceptable accuracy for the second

mode. The eigenvectors for the single-element analysis, which are deflection and slope at the free

. end, cannot be compared to the more conventional eigenvectors-that display deflection along

the beam.

Examp|e-10.8.4 TWO-ELEMENT BEAM

If we divide the beam into two equal sections, then / is replaced by I/2, and the rotational force
over the second element must be changed to

po(x) = (% +' x)m92 dx
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The generalized force is now
: 12

Q=mQZIJ (é +x)J ;) drdx
0 /o

12

x 12 X
l ’ 13 ’ ’
= szl{J’ ij @i drdx + J xj @ ¢; drqix}
0 0 0 0 ’

The last integral in this expression is the same as that for the one-element beam, except for /
replaced by I/2. The first integral now needs evaluating. In formulating the equation of motion,
this now requires changing all I’s in the matrices to /2. _

We now suggest a different approach of leaving the length of each element equal to [, so
that the total length of the beam is 2/ This results in great savings in computation because the
matrices for each element will remain the same as that for the one-element beam and all the I's
inside the matrices can remain as /, which can be assigned as unity for the eigenvalue computa-
tion as before; i.e., we now solve the problem shown in Fig. 10.8.3. After the eigenvalues are

{
determined, we let [ in the expression for the eigenvalues be replaced by .

S

v U v

FIGURE 10.8.3. 2!

The new integral to be evaluated is

! x
szlf lJ' @;¢; drdx
o Jo

which has been carried out and is equal to

0600 O  —0600  0.100
0100 0 ~0.0166!2

- 2
= mQ 0.600 —0.100! °
0.03331

Assembling Matrices for Two-Element Beam

For the two-element beam, the assembled matrices are 6 X 6. However, because
v; = 6, = 0, the first two columns and rows are eliminated and we obtain a 4 X 4 matrix.

Mass ~
156 22 S4-13 | W/Ul 0)
2 4 13 -3 |

e N 6, =0

mi| 54 130 136722 450 —13],
0 | 156 22 ! o
o3 -3 -2 4 3130 3|0

s 13 156 -~z ||
L L 13 -3 -2 4%




Section 10.8 Generalized Force Proportional to Displacement 319

312 0 54 -13|(w,
_ml| 0 8 13 -3|]g
40| 54 13 156 —22 |] v,

-13 -3 -22 4116

Stiffness

24 0 -12 6|(v,
EIl 0 8 -6 21|)6
P|l-12 -6 12 -6|]v,

6 2 -6 4]le,

Generalized force. From the first integral for Q, we have

0.8572  —0.0500 —0.4286 0.06429
-0.0500 0.0810 —0.01429 -0.009524
-0.4286 —0.01429 10.4286  —0.06429

0.06429 —0.009524 —0.06429 0.02391
From the second integral for O,

1200 -0.100 ~0.600 0.100
—-0.100 0.133 0 —0.0166
—0.600 0 0.600 —0.100

0.100 -0.0166 -0.100 0.0333

By adding the two matrices, the generalized force becomes

—Q%ml

—Q%ml

2057 -0.150 -1.029 0.10643

v,
_g(mmz") —0.150 02143 —001429 —00262 | ] 8,
I\ EI /|-1.029 -001429 1.0286 —0.1643 || 2,
01064 -0.02612 -0.1643 00571 | | 6
EI { Q*ml*
e ( El )HV

It is now necessary to choose a numerical value for the rotation parameter Q*mi*/EI
and combine the previous equation with the stiffness matrix. This was done for rota-
tion parameters 0, 1, 2, and 4 to obtain the computer results for the eigenvalues and
eigenvectors. Because the previous matrices fed into the computer are those for the
two-element beam with each element of length /, the eigenvalues are those for a beam
of length 2. .

Examination of the eigenvalue expression indicates that for a beam of length /
with each element of length //2, the length / must be replaced by //2 in the equation

for w;.
- (m2m14) . \[A 420E1 _, \}420,\,.131
920E) “ ‘m(1/2)" ml?
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i4
Table 10.8.1 Computer Results For Two-Element Rotating Beain of Length

2, 14
L [; il i A for Beamof Length 2! / 420E41 A Exact
1 ml
1 0.001841 3.51 3.515
0 2 0.07348 2222 22.034
3 0.84056 75.15 61.697
4 7.08106 218.1 120.9
1 0.0035169 4.861
1 2 0.08445 23.82
3 0.86754 76.35
4 7.13759 219.0
1 0.0049532 57
2 2 0.095627 25.35
3 0.8947349 77.54
4 7.19323 219.8
1 0.0103809 8.35
4 2 0.158008 3258
3 1.04317 83.72
4 7.83817 i 229.5

With this change, the computer results for A; and the natural frequencies of a two-
element beam of length / are shown in Table 10.8.1. The case for ) = 0 is compared to
exact values, which shows that the results are quite good for the first two modes.

Shown in Figs. 18.8.4 and 10.8.5 are two helicopters of different size. The
Robinson Helicopter, Model R22, shown in Fig. 10.8.4 is a small two-seater vehicle
used mainly for pleasure flying. The descriptive data accompanying the photo indicates
some of its specifications and size. '

In contrast, the commercial helicopter, shown in Fig. 10.8.5, used for hauling
material and workers between shore and oil platforms is a large vehicle capable of

FIGURE 10.8.4. Robinson Helicopter Model R22: Blades 7.2 in. wide and 151 in. long; cantilever period of
approximately 1 s; gross weight of 1370 1b loaded; tip speed of blades 599 ft/s.




FIGURE 10.8.5.

each; cantilever stiffness is 6 £t/100 1b load at the tip; total weight of the helicopter is 7000 Ib empty and
13,000 Ib loaded.
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Commercial helicopter for oil platform service: Blades 24 in. wide and 24 ft long, 200 Ib

transporting a maximum.load of 6000 Ibs. As in all helicopters, the rotor blades are

very flexible. Their rotational speed is governed by the requirement of keeping the tip
speed below the speed of sound.
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Determine the two natural frequencies in axial vibration for the uniform rod, fixed at one
end and free at the other end, using two elements with the intermediate station at //3
from the fixed end. Compare results with those when the station is chosen at midlength.
What conclusions do you come to regarding choice of station location?
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10.2.

10.3.

10.4.

10.5.

10.6.

10.7.

10.8.

19.9

10.10.

10.11.

A tapered rod is modeled as two uniform sections, as shown in Fig. P10.2, where

EA,=2EA, and m; = 2m2 Determine the two natural frequencies of longitudinal
vibration.

EA,, M,

ir2 —-L— {2 J

Set up the equation for the free-free vibration of a uniform rod of length /, using three
axial elements of length /3 each.

Assuming linear variation for the twist of a uniform shaft, determine the finite element

stiffness and mass matrices for the torsional problem. The problem is identical to that of
the axial vibration.

FIGUREP10.2.

Using two equal elements, determine the first two natural frequencies of a fixed-free
shaft in torsional oscillation.

Using two uniform sections in torsional vibration, describe the finite element relation-
ship to the 2-DOF lumped-mass torsional system.

Figure P10.7 shows a corical tube of constant thickness fixed at the large end and free at
the other end. Using one element, determine the equation for its longitudinal vibration.

1
T/ o
| f ! R/2
FIGURE P10.7. %\L/)

Treat the tube of Fig. P10.7 as a two-element problem of equal length in longitudinal
vibration.

. Determine the equation for the tube of Fig. P10.7 in torsional vibration using (a) two ele-

ments and (b) N-stepped uniform elements.
The simple frame of Fig. P10.10 has pinned joints. Determine its stiffness matrix.

FIGURE P10.10. FIGURE P10.11.

In the pinned truss shown in Fig. P10.11, pin 3 is fixed. The pin at 1 is free to move in 2
vertical guide, and the pin at 2 ‘can only move along the horizontal guide. If a force P 15
applied at pin 2 as shown, determine u, and v, in terms of P. Calculate all reaction forces
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at pins 1, 2, and 3, and check to see whéther equilibrium is satisfied. Formulate the stiff-
ness matrix with factor EA/I by the finite element method.

10.12. For the pinned square truss of Fig. P10.12, determine the element stiffness and mass matri-
ces in global coordinates and indicate how they are assembled for the entire structure.

P 4 3

o

~

Z 7
FIGURE P10.12.

Construct the dynamic matrix. Use this to complete the frequencies of the free vibrations
for this structure. :

10.13. For the pinned truss of Fig. P10.13, there are just three orientations of the elements.

Determine the stiffness matrix for each orientation and indicate how each element
matrix is assembled in the global system.

P
/‘\M N

]

N i/2 I {/2

FIGURE P10.13. FIGURE P10.14.

10.14, Using two elements, determine the deflection and slope at midspan of a uniform beam,
fixed at both ends, when loaded as shown in Fig. P10.14. )

-10.15. Determine the consistent mass for the beam of Problem 10.14 and calculate its natural
frequencies.

10.16. Determine the free-vibration equation for the beam of Fig. P10.16.

‘l El, m, EL,, m, g
A Z

L 5, —

1 2
FIGURE P10.16.
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10.17. Using one element, determine the equation of motion, the natural frequencies, and the-

10.18.

10.19.

10.26.

10.21.

10.22.

mode shapes of a pinned-free beam of Fig. P10.17. Compare with the exact values.

% ELL

FIGURE P10.17.

Repeat Prob. 10.17 using two elements.

Repeat Prob. 10.17 using six elements. Does the agreement with the exact values improve
with a larger number of elements?

Determine the stiffness matrix for the frame of Fig. P10. 20 The upper right end is
restricted from rotating but is free to slide in and out.

P
N
2

P
M
N

N
v

2¢

A%
FIGURE P10.20. FIGURE P10.21.

The frame of Fig. P 10.21 is free to rotate and translate at the upper right end. Determine
its stiffness matrix.

Determine the deflection and slope at the load for the frames of Fig. P10.22. Consider the
corners to be rigid. '

(d) S (e
FIGURE P10.22.

(t)
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10.23. The pinned.-free beam of Prob. 10,17 is restrained by a spring of torsional stiffness K

Ib - in./rad at the pin, as shown in Fig. P10.23. Choose the numerical value of K so that under

its static weight, the beam rotates 1/10rad, and make the calculations as in Prob. 10.18. (Use
one and two elements and let Smgl*/ EI = 1.0.)

Y/, K !
: EI

FIGURE P10.23.

10.24. Figure P10.24 shows a pin-ended beam with a linear spring k at midspan and a torsional
spring K at the right end. Determine the stiffness matrix for a two-element analysis.

2 K
%’ t/2 12 %
f

AN N\

FIGURE P10.24.

10.25. Determine the mass matrix for the beam of Prob. 10.24 and find all its natural frequen-
cies and mode shapes when

kPP 1 KPP 1,
£ 2 ™ g

Check the solution of Prob. 10.24 by letting k = K = 0. The eigenvalues should agree
with those of a pinned-pinned beam.

10.26. For the beam of Fig. P10.26, determine the finite element equation of motion. Determine
the eigenvalues and eigenvectors of the beam when kI*/8EI = 1.0 and KI*/EI = 2/%

FIGURE P10.26.

10.27. Determine the free vibration equation for the frames of Fig. P10.27.

£ "f/\r—§

FIGURE P10.27.
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10.28. Using two elements, determine the equivalent junction loads for the distributed forces

for the span in Fig. P10.28(a). For the span of Fig. P10.28(b), determine the deflection and
slope at midspan.

1
- \ | I § l ‘ %
! 0/2 1 02 —J '. t/2 N 12 —

(a) (b)
FIGURE P10.28.

10.29. Set up the two-element equations for the system of Fig. P10.29 in terms of the six coordi-
nates shown and solve the eigenvalues and eigenvectors.

vy
4%
9,/}\ HzA\ % f}\es

!

'E[, mi,

k k
/2 /2 —

Z

FIGURE P10.29.

10.30. For the system of Fig. P10.29, show that the symmetric mode for free vibration reduces to
a 3 X 3 equation. Determine the mass and stiffness matrices for this problem and calcu-
late the natural frequencies and mode shapes.

M] 10.31. Solve for the eigenvalues and eigenvectors for the 4 X 4 beam in Example 10.5.1.

M| 10.32. The uniform beam of Fig. P10.32 is supported on an elastic foundation that exerts 2
restraining force per unit length of —ky(x) over the right half of the beam. Using two ele-
ments, develop the equations of motion. With kI*/8EI = 10, determine the natural fre-
quencies and compare with those without the elastic foundation. Plot the mode shapes

for the first two modes.
%—— 172 —-r—— t/2 —-I

FIGURE‘P10.32.

10.33. Repeat Prob. 10.32 assuming the left end is pinned instead of fixed.
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. M| 10.34. Figure P10.34 shows one of the “ell” beams of a centrifuge that whirls around the vertical

axis O—O with angular speed () rad/s. Using the stations indicated, determine the equa-
tion of motion and its natural frequencies. Compare with the case 0 = 0.

Mass Zunit length=m
mQ21®
ET

=10

FIGURE P10.34.

10.35. If the pinned-free beam with a torsional spring is rotated about the vertical axis, as shown
in Fig. P10.35, determine the new stiffness matrix for the first element of length /,/2.

CJJQ @
.
®

L_* 2 J,_ g2

FIGURE P10.35.

®(

10.36. For the helicopter blade of Fig. P10.35, determine the stiffness equation for the outer half
of the blade.

10.37. Write the complete equation for the two-element blade of Fig. P10.35 and solve for the
natural frequencies and mode shapes.

M] 10.38. For the uniform cantilever beam modeled by three elements shown in Fig. P10.38 the
stiffness matrix is of order 6 X 6. Rearrange the stiffness matrix, determine the 3 X 3

reduced stiffness matrix K* and compute the eigenvalues and eigenvectors. Compare the
results with those of Prob. 8.15. '

§ f { f
1 |
O 1 2 3

FIGURE P10.38.

-

M] 10.39. Repeat Prob. 10.38 with reduced stiffness and corresponding reduced mass. Compare

1 0 0
with assumed 3 X 3 mass matrixof M = mI|0 1 0 |.

0 0 5
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10.40. Repeat Prob. 10.2 with the following values: Azi =1,E=1,1=1,and m, = 1. Consider
each of the two elements as a uniform bar. Model each of these with four elements.
Compute the natural frequencies in the longitudinal vibration.
10.41. Compute the free vibrations for the beam in Example 10.5.1 with the following values:
[=12,m = 1,E = 1,and I = 1. Repeat this calculation using six uniformly spaced elements.
10.42. Consider a 2-section bar with a mass at its end and a spring-damper system attached to the
mass as in Fig. P10.42. Determine the equations of motion for the longitudinal vibration.

FIGURE P10.42.

10.43. Determine the equations of motion for the system shown in Fig. P10.43. The flexural
rigidity of the beam in the center is different from that of the other two beams. Is the
solution y, = y, = y, possible? What are the conditions for its existence?

ky ky

777 /7. 777

FIGURE P10.43.




CHAPTER 11

Mode-Summation Procedures
for Continuous Systems

Structures made up of beams are common in engineering.! They constitute systems of
an infinite number of degrees of freedom, and the mode-summation methods make
possible their analysis as systems of a finite number of degrees of freedom. Constraints
are often found as additional supports of the structure, and they alter the normal
modes of the system. In the use of the mode-summation method, convergence of the
series is of importance, and the mode-acceleration method offers a varied approach.
The modes used in representing the deflection of a system need not always be orthogo-
nal. The synthesis of a system using nonorthogonal functions is illustrated.

' Large structures such as space stations are generally composed of continuous sec-
tions which can be analyzed by the mode participation methods. Shown in Fig. 11.1.1 is
one such design, parts of which offer opportunities for challenging analysis.

11.1 MODE-SUMMATION METHOD

In Sec. 6.8, the equations of motion were decoupled by the modal matrix to obtain the
solution of forced vibration in terms of the normal coordinates of the system. In this

- section, we apply a similar technique to continuous systems by expanding the deflec-
tion in terms of the normal modes of the system. '

_ Consider, for example, the general motion of a beam loaded by a distributed
force p(x, t), whose equation of motion is

[Ely"(x, D)]" + m(x)y(x,t) = p(x, 1) (11.1.1)

The Olympus Satellite, shown in Figure 11.1.1, is one of several configurations proposed for deploy-

ment in space. The large panels of solar cells are deployed by lightweight booms of glass fiber, ingeniously
designed to extend the panels for hundreds of feet.

329
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s

FIGURE 11.1.1. Olympus satellite and deployment boom. (Courtesy- of Astro

Aerospace, Carpinteria, California.)

The normal modes d),-(x) of such a beam must satisfy the equation
(El¢})" — wfm(x)d; = 0 (11.1.2)

and its boundary conditions. The normal modes ¢;(x) are also orthogonal functions sat-
isfying the relation
1

0 forj+i
mggde =1,
s

T (11.1.3)
; forj=i
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By representing the solution to the general problem in terms of ¢,(x)

1) = 2 ¢(x)q (1) (1114)

the generalized coordinate g,(¢) can be determined from Lagrange’s equation by first
establishing the kinetic and potential energies.

Recognizing the orthogonality relation, Eq. (11.1.3), the kinetic energy is

T= % J y(x, )m(x) dx = % 2. ;éi(}jJ’O bipym(x) dx

0
1 . ‘
= EzMiqf (11.1.5)

where the generalized mass M; is defined as

M, = J;) dH(x)m(x) dx | (11.1.6)

Similarly, the potential energy is

! I
) 1
U= f Ely"™(x) dx = 5 3, 3 4.4, J Eleid; dx
0 i 0

i

1 1
= EEK:"I? == D) Ew?Miq? ' (11.1.7)

where the generalized stiffness is
!

K, = f EI[¢!(x))? dx (11.1.8)
0

In addition to T and U, we need the generalized force Q,, which is determined
from the work done by the applied force p(x, t)dx in the virtual displacement 8q,.

W = J:;a(x, t)(E &, Sqi) dx

rl
= > 8q; Lp(m)@(x) dx (11.1.9)

where the generalized force is
!

Q= J px.n)e(x) dx (11.1.10)
(]

Substituting into Lagrange’s equation,
d (BT) aT  oU
+ — =

dt aé: 9q; 9q;
we find the differential equation for g,() to be

0, (11.1.11)

i+ = 5 | P (11112)

t



332

Chapter 11 Mode-Summation Procedures for Co ntinUous Systems

It is convenient at this point to consider the case when the loading per unit length
p(x, t) is separable in the form

- .

plxp) = Top(x)f(t) (11.1.13)
Equation (11.1.12) then reduces to

G+ g, = 2T (11.1.14)

Mi
where
o .
r = % J p(x),(x) dx (11.1.15)
0

is defined as the mode participation factor for mode i. The solution of Eq. (11.1.14) is then

1. .
qt) = g(0) cosw;t + — q,(0) sin w;t
S (11.1.16)
I, "
N (’L;)w,. J (8 sinwlt — &) de
A Mi i 0

Because the ith mode statical deflection [with g,(f) = 0] expanded in terms of ¢;(x) is
P,T',/M,«?, the quantity

Tt

D(1) = 'w,f fOsinwft — §) d¢ (11.1.17)

can be called the dynamic load factor for the ith mode.

Example 11.1

A simply supported uniform beam of mass M, is suddenly loaded by the force shown in Fig. 11.1.2.
Determine the equation of motion.

Solution The normal modes of the beam are

¢, (x) = V2 sin 1_1717_,\

w, = (nm)*VEI/M’

j Wt gW) g(h
Kx ﬂ;%g —T
pr* wo
J._L 1.0

hr

— X—»

. —_—t
1 - 0 1.
FIGURE 11.1.2. . a) (b)

—
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and the generalized mass is

M, nux
M, = TJ0251n e dx = M,
The generalized force is

! 1
Jp(x’t)¢"(x) dx = g(t)j %\/Esinﬂ;f dx
0 0

B wyV2 [sin(mrx/l) _ xcos(narx/l) 7
g 1 (nw/)? nw/l ]0
wo\/-l

—g(1)

cosnm

- —\fzfj" 801y

where g(t) is the time history of the load. The equation for g, is then

0+ oha, = ‘f# (-1)78(0)
which has the solution
q,(t) = ,,\7/71_\/11?:0 ( wl") (1 - coswi) 0=s1=1y
= :'%AZIT:U (-_1’21)" (1 - cosw,t)
2\/n_117u]:;(()w L 1- cos w,( tl)]t1 =

Thus, the deflection of the beam is expressed by the summation

y) = 2 4,()V2 sin T

Example 11.1.2 v ’

- A missile in flight is excited longitudinally by the thrust F(z) of its rocket engine at the end x = 0.
Determine the equation for the displacerhent u(x, t) and the acceleration #(x,r).

Solution We assume the solution for the displacement to be

ulx,) = 3 gDefx)

where ¢,(x) are normal modes of the missile in longitudinal oscillation. The generahzed coordi-
nate g; satisfies the differential equation

1
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If, instead of F(z), a unit impulse acted at x = 0, the preceding equation would have the solu-
tion [, (0)/ M,w,] sin w for initial conditions ¢; = ¢(0) = 0. Thus, the response to the arbitrary
force F(1) is '

o0 = 2 [ K s - 9 4¢
«and the displacement at any point x is

{(x)@(0)
2 b M‘P

1 l

) = [F@ s o~ 04
The acceleration g(t) of mode i can be determined by rewrltmg the differential equation
and substituting the former solution for g,(1):

it = P00

i

_ F0e(0) _ ¢(0)e,
M, M,

] 1

J F(9 sin w(r — £) d¢
Thus, the equation for the acceleration of any point x is found as
iet) = Do)

_ F(z) ;(0)‘Pi(x) ¢i(0)¢i(x)wi
B N TR

LTF(f) s - 8 de|

i

Example 11.1.3

Determine the response of a cantilever beam when its base is given a motion y,(t) normal to the
beam axis, as shown in Fig, 11.1.3.

Solution The differential equation for the beam with base motion is

[Ely"(x, )" + m(0)[y,() + ¥(x, 2)] =
which can be rearranged to

[ERy"(en)]" + m(x)y () = —m(x) y,(1)

Thus, instead of the force per unit length F(x, t) we have the inertial force pér unit length
—m(x)y,(¢). By assuming the solution in the form

e = 3 ql0)ef)

—'4”_.._

X—

AL
A

FIGURE 11.1.3.
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the equation for the generalized coordinate g, becomes

..

! ‘
. 1

g; + olq, = —y,(t) ” J @x) dx

e ‘

1

The solution for g; then differs from that of a simple oscillator only by the factor —1/M; _I}', ox) dx
so that for the initial conditions y(0) = y(0) = 0:

a0 = jolgoi(x) ae] [ 5@ sinufe — ¢

i i Jo

11.2 NORMAL MODES OF CONSTRAINED STRUCTURES .

When a structure is altered by the addition of a mass or a spring, we refer to it as a con-
strained structure. For example, a spring tends to act as a constraint on the motion of
the structure at the point of its application, and possibly increases the natural frequen-
cies of the system. An added mass, on the other hand, can decrease the natural fre-
quencies of the system. Such problems can be formulated in terms of generalized
coordinates and the mode-summation technique.

Consider the forced vibration of any one-dimensional structure (i.e., the points
on the structure defined by one coordinate x) excited by a force per unit length f(x, )
and moment per unit length M(x, ¢). If we know the normal modes of the structure, w;
and ¢,(x), its deflection at any point x can be represented by

y(xt) = qu'(t)%(x) (11.2.1)

where the generalized coordinate g, must satisfy the equation

0+ o = | [fene o+ [Medawa] @122

The right side of this equation is 1/M, times the generalized force Q,, which can be
determined from the virtual work of the applied loads as Q; = §W/8q;. »

If, instead of distributed loads, we have a concentrated force F(a, t) and a concen-
trated moment M(q, t) at some point x = a, the generalized force for such loads is from

W = F(a, 1)dy(a,t) + M(a,1)dy'(a,t)

= F(a,t)2<pi(a)6qi + M(a,t)2<p{(a)6qi (11.2.3)
0= 5 = Fla.0e(a) + Mla. 0¢i(a)
Then, instead of Eq. (11.1.14), we obtain the equation
g0 + oiq(t) = % [F(a, )ola) + M(a, Dei(a)] (11.2.4)

t

These equations form the starting point for the analysis of constrained structures, pro-
vided the constraints are expressible as external loads on the structure.



336

Chapter 11 Mode-Summation Procedures for Continuous Systems

Y

L
E’_
X ——

FIGURE 11.2.1.

o

As an example, let us consider attaching a linear and torsional spring to the sim-
ply supported beam of Fig. 11.2.1. The linear spring exerts a force on the beam equal to

F(a ) = —ky(a,t) = —kE q](t qo](a) (11.2.5)
whereas the torsional spring exerts a moment
M(a,t) = —Ky'(a, 1) —qu,(z)go, (a) (11.2.6)
Substituting these equations into Eq. (11.2.4), we obtam
i+ ofa = 7| kel Sae(@) - Ke@Zagi@] @2
The normal modes of the constrained modes are also harmonic and so we can write
4, = G
The solution to the ith equation is then -

M(wl )[—kqo,-(a)EE,-soj(a)—qu;(a)Ea,go;(a)] (11.2.8)

If we use n modes, there will be n values of g; and n equations such as the preceding
one. The determinant formed by the coefficients of the g; will then lead to the natural
frequencies of the constrained modes, and the mode shapes of the constrained struc-
ture are found by substituting the g; into Eq. (11.2.1).

If, instead of springs, a mass 1, is placed at a point x = a, as shown in Fig. 11.2.2,
the force exerted by m; on the beam is

q;=

Flas) = ~my3as) = ~my S @) (1129)
J .
Thus, in place of Eq. (11.2.8), we obtain the equation
_ 1
qi M(w 2) [w mO(Pl(a) 2 q]‘P/(a)] (11'2'10)
le—— g —»1
| g

—x—
FIGURE 11.2.2.




Section 11.2 Normal Modes of Constrained Structures 337

Example 11.2.1

Give a single-mode approximation for the natural frequency of a simply supported beam when a
mass m, is attached to it at x = /3,

Solution When only a single mode is used, Eq. (11.2.10) reduces to

M, (o] - w?) = w’mypi(a)

(2) - —
w, m
1+ ﬁiﬁ(a)

For the first mode of the unconstrained beam, we have

EI X
2 _— = in —
why ik @,(x) = V2sin i

\fzsin%' =2 x 0.866

Solving for «?, we obtain

W,

o(3)

M, = M = mass of the beam

I

Thus, its substitution into the preceding equation gives the value for the one-mode approxima-
tion for the constrained beam of

Example 11.2.2

A missile is constrained in a test stand by linear and torsional springs, as shown in Fig. 11.2.3.

Formulate the inverse problem of determining its free-free modes from the normal modes of the
constrained missile, which are designated as ®, and Q,.

2ty

=

FIGURE 11.2.3.
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Solution The problem is approached in a manner similar to that of the direct problem in
which, in place of ¢; and w, we use ®; and ;. We now relieve the constraints at the supports by
introducing opposing forces —F(a) and —M(a) equal to ky(a) and Ky'(a).
To carry out this problem in greater detail, we start with the equation
_ —F(a)®(a) - M(a)®}(a)

C MOl - (0/Q)7]
which replaces Eq. (11.2.8). Letting D{(w) = M;Q?[1 — (w0/Q,;)?], the displacement at x = a is

ya) = Do)z, = D ~F(a)®i(a) - ﬁ()a)@.—'(a)o,-(a)

We now replace —F(a) and —M(a) with ky(a) and Ky'(a) and write

y(a) = 2’ ky(a)®7(a) +D1i<();')§a)¢,-' (a)®(a)
via) - 3 D (eh0e) + ky a1

These equations can now be rearranged as

y(a)[l 3 kE ®(a) ] V(a )KE(I) (a)®,(a)

Dw) D{w)
g 5 vl 1-x 3 55 |

The frequency equation then becomes

[ kz gz((a; ][1 - KE Q'Z(a) ] K[E M ]2 iy

i Di(w)

The slope-to-deflection ratio at x = ais

‘Dz(a)
- kE( a)
yla ®i(a fbl a
K2 =D
. The free-free mode shape is then given by
Yy @) + K '((:)) ©:(a)0,x)
W - i Df(w)

Example 11.2.3

Determine the constrained modes of the missile of Fig. 11.2.3, using only the first free-free mode .
¢,(x), w,, together with translation ¢; = 1, Q; = 0 and rotation ¢, = x, Q; = 0, where x is mea-
sured positively toward the tail of the missile.

Solution The generalized mass for each of the three modes is
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MT = J dm =M
My = szdm =] = Mp?

M, = J,qof(x) dm =M
where the p,(x) mode was normalized such that M, = M = actual mass.
The frequency dependent factors D; are
Dy = —Mpe?= —Mw® = —Mao?A
Dy = —Mp’w?® = —Mp*w?A

D, = wa[l - (3)2] = M1 - ))

@y
(2)
— = )\
w,
The frequency équation for this problem is the same as that of Example 11.2.2, except that the

minus k’s are replaced by positive k’s and ¢(x) and  replace ®(x) and . Substituting the previ-
ous quantities into the frequency equation, we have

(osials - -l - =)
e (e e

T M oA 1-A

which can be simplified to

- (3] Ko i@ + slone) - ast@r} -

A number of special cases of the preceding equation are of interest, and we mention one of
. these. If K = 0, the frequency equatlon simplifies to

e (e 5 *“’““)]}*;(w)(l + %)=o0

Here x = a might be taken negatively so that the missile is hanging by a spring.

113 MODE-ACCELERATION METHOD

One of the difficulties encountered in any mode-summation method has to do W1th
the convergence of the procedure If this convergence is poor, a large number of
modes must be used, thereby increasing the order of the frequency determinant. The
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mode-acceleration method tends to overcome this difficulty by improving the conver-
gence so that a fewer number of normal modes is needed.
The mode-acceleration method starts with the same differential equation for

the generalized coordinate g; but rearranged in order. For example, we can start with
Eq. (11.2.4) and write it in the order

o) = F@de@ | Madela) &)

Mok Y > (11.3.1)
Substituting this into Eq. (11.2.1), we obtain
Y1) = Zq,'(t)%(x)
= Fla, I)E ¢.(3¢.2(X) + Mla t)E @} (a)w.(x)
_ 2 ‘Ii(t)‘fz’.-(x) (11.3.2)

We note here that if F(a, t) and M(a, t) were static loads, the last term containing
the acceleratiocn would be zero. Thus, the terms

E q’;(a)‘P.(x) - a(a,x)
3 #lex) qo(a)w,(X)

l

must represent influence functions, where af(a, x) and B(a, x) are the deflections at x

due to a unit load and unit moment at g, respectively. We can, therefore, rewrite
Eq. (11.3.2) as

= Bla,x) - | (11.3.3)

y(x, t) = F(a, tja(a, x) + M(a,)B(a, x) — D, i(i)wi’;&xl (11.34)

Because of «? in the denominator of the terms summed, the convergence is improved
over the mode-summation method.

In the forced-vibration problem in which F(a, t) and M(a, t) are excitations,
Eq. (11.2.4) is first solved for g,(z) in the conventional manner, and then substituted
into Eq. (11.3.4) for the deflection. For the normal modes of constrained structures,
F(a, t) and M(a, t) are again the forces and moments exerted by the constraints, and
the problem is treated in a manner similar to those of Sec. 11.2. However, because of
the improved convergence, fewer number of modes will be found to be necessary.

Example 11.3.1

Using the mode-acceleration method, solve the problem of Fig. 11.2.2 of a concentrated mass
attached to the structure.

St_)luu'on By assuming harmonic oscillations,
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F(a,t) = F(a)e'"
q,-(t) = gge''

y(x 1) = y(x)e
By substituting these equations into Eq. (11.3.4) and letting x = a

p— — ‘. R a
y(a) = F(a)ala,a) + wZE Q,LS)
i w;
Because the force exerted by m, on the structure is
Fla) = myw?y(a)
‘we can eliminate y(a) between the previous two equations, obtaining

a
( V). _ Flaelaa) + w3 420 aei0)
I
or
39(a)
— “’ZE 'al,z
Flg)= —L— 71
5 — oa, a)
myw
If we now substitute this equation into Eq. (11.2.4) and assume harmonic motion, we obtain the
equation
qo(a)
Fla)e(a) o 40,(”)2‘1/ -
(wlz - wz)a,' = A;Pi =
i Mi[ 1 i @ ]
myw
Rearranging, we have
i 4 R —. | a
[1 = mew’a(a, a)(e} - w)g, = = m;f.(a) »d q,ﬁg )

i i i
which represents a set of linear equatlons in g,. The series represented by the summation will,
however, converge rapidly because of o} in the denominator. Offsetting this advantage of

smaller number modes is the disadvantage that these equations are now quartic rather than qua-
dratic in w.

|
11.4 COMPONENT-MODE SYNTHESIS

‘We discuss here another mode-summation procedure, in which the deflection of each
structural subcomponent is represented by the sum of the polynomials instead of nor-
mal modes. These mode functions themselves need not be orthogonal or satisfy the
junction conditions of displacement and force as long as their combined sum allows

these conditions to be satisfied. Lagrange’s equation, and in particular the method of
superfluous coordinates, forms the ba31s for the synthesis process.
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(0]

X "e
wq l
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? : -
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2 0 1 4
og—x— 0/

FIGURE 11.4.1. Beam secﬁons 1 and 2 with their coordinates.

To present the basic ideas of the method of modal synthesis, we consider a sim-
ple beam with a 90° bend, an example that was used by W. Hurty.2 The beam, shown in
Fig. 11.4.1,is considered to vibrate only in the plane of the paper.

We separate the beam into two sections, ® and @, whose coordinates are shown
as wy, X; Wy, x; and u,, x. For part @, we assume the deflection to be

wy(x, 1) = ¢;(x)p,(1) + b (x)py(r) + -+

= (;)21)1 + (;)3;;2 (11.4.1)

. Note that the two mode functions satisfy the geometric and force conditions at the
boundaries of section @ as follows:

w1(0) =0 ' wl(l) =py+p
2 3
wi0)=0 wil) = 7P+ Tps
. MO) 2 M) 2 6
wi(0) = =~ P wi(l) = EI - Eh Y b (11.4.2)
n, V(O) 6 n V(l) 6
wi0) = 27 = pp wil)= 77 = 5P

~ Next consider part @ with the origin of the coordinates w,, x at the free end. The
following functions satisfy the boundary conditions of beam section @:

wz(x, 1) = ¢3(X)P3(t) + G()pa(t) + bs(x)ps(r) + -

4
=1p3+(§)p4+(§)p5 (11.4.?) ‘
uy(x, 1) = plx)pelt) + -+
= 1pg - (11.44) .

*Walter C. Hurty, “Vibrations. of Structural Systems by Componeht Synthesis,” J. Eng. Mech. Div.
Proc. ASCE (August 1960) pp. 51-69.
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where u,(x, t) is the displacement in the x-direction. ’
The next step is to calculate the generalized mass from the equation

my= | m)80(0 dx

For subsection @, we have

ol o .
my, =J ma, ¢, dx = f m( ) dx = 0.20mi
0 0

~|*

! . ! s
mu=Jm@@a=Jn{ﬂcu=m%m=mﬂ
0 0

! {
6
mn=jm%@acjv%§)a=ammm
0 0

The generalized mass for subsection @ is computed in a similar manner using ¢, to ¢
my; = 1.0ml
my, = 0.50ml = m,,

mys = 0.20ml = mg,

my, = 0.333ml

mys = 0.166ml = mg,
mss = 0.111ml

mg = 1.0ml

Because there is no coupling between the longitudinal displacement u, and the lateral
displacement w,, mg; = mg, = mgs = 0.

The generalized stiffness is found from the equation
1

k= I El$;d]dx
0
Thus,
! !
: 2\2 EI
k11=EIj ’{¢'{dx=EIJ (1—2) dx = 4—
0

0 13

1

2\ 6x EI

ky, =k, = EIJ (F)(F)dx: 673—
0

1
%=n%

EI
ks = 28875

-All other kij are zero.



344 Chapter 11 - Mode-Summation Procedures for Continubus Systéms

The results computed for m;; and k; can now be arranged in the mass and stiff-

ness matrlces partitioned as follows

70.2000 0.1666 : 0 0 0 0.
01666 0.1428: 0 0 0 0
0 0 110000 05000 02000 O
= ml S ; v 11.4.5
lm] = m 0 0 105000 03333 0.1666: O ( )
0 0 {02000 01666 01111} 0
L0 0 0 0 0} 1.0000 |
(4 610 0 0 0}
6 12:0 0 0 0
EIl0O 0!0 0 O i0
= = i : 11.4.6
[£] 0 0i0 0 00 ( )
0 0.0 0 288.0]
000 00 0 !0]

where the upper left matrix refers to section @ and the remainder to section @.

At the junction between sections
equations:

w,() + u() =0
wy() =0

wi(l) — wy(l) = 0
Effwi()) + wi(D] =0

Arranged in matrix form, these are

® and @, we have the following constraint

or py+p,tps=0
ps+p,+ps=0
2p, +3p, —py—4ps=0
2p, + 6p, +‘12p5 =0 |

TPJ
1 1 0 0 0 1}|p,
0 0 1 1 1 0})ps
= 11.4.7
2 3 0 -1 -4 0 ) p4’ 0 ( )
2 6 0 0 12 0]|ps
\PsJ

Because the total number of coordinates used is 6 and there are four constraint
equations, the number of generalized coordinates for the system is 2 (i.e., there are four
superfluous coordinates corresponding to the four constraint equations; see Sec. 7.1).
We can thus choose any two of the coordinates to be the generalized coordinates g. Let
P1 = ¢, and pg = g, be the generalized coordinates and express p,, . .. , P in terms of ¢

and g. This is accomplished in the followi

ing steps.

Rearrange Eq. (11.4.7) by shifting columns 1 and 6 to the right side:
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10 0o o0](p -1 -1

01 1 1lpl_| 0 0 ql} (1148)
3.0 -1 —=411p, =2 0 |lg) - '

6 0 0 12]|p; -2 0

In abbreviated notations, the preceding equation is

[S]{Pz—s} = [Q]{‘h,ﬁ}

Premultiply by [s] ™! to obtain
{po-s) = [s]7'[Qllqy. 4
Supply the identity of p; = ¢, and p; = ¢ as follows:
[Pl-é} = [C]{‘h,a}

This constraint equation is now in terms of the generalized coordinates g, and g, as

follows:
plw 1 0 W
I ) -1 -1
Da 2 4.50 |] q, q;
= . = 11.4.
1Ds 0.333 0.50
Ps L 0 T

Returning to the Lagrange equation for the system, which is
.. . EI ’
mim]{p} + e kl{p} =0 (11.4.10)
substitute for {p} in terms of {g} from the constraint equation (11.4.9)
. EI. .
miim][Cl{g} + 75 [K][Clq} = 0.

Premultiply by the transpose [C]':

milclmllclg) + 51V KIcHal =0~ L4

Comparing Egs. (11.4.10) and (11.4.11), we note that in Eq. (11.4.10), the mass
and stiffness matrices are 6 X 6 [see Egs. (11.4.5) and (11.4.6)], whereas the matrices
[C)'[m][C] and [C]'[£][C] in Eq. (11.4.11) are 2 X 2. Thus, we have reduced the size of
the system froma 6 X 6 toa2 X 2 problem.

By letting {g} = —w*{q}, Eq. (11.4.11) is in the form

- [a, - EIb, b q '
wzml[a” an] + __[‘11 12]:\{ 1} =0 11.4.12
l: ay ap| . Plby bylllgs '( H2)
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7 7
First mode Second mode
FIGURE 11.4.2. First and second mode shapes. _
The numerical values of the matrix [a;] and [b;] from Egs. (11.4.5), (11.4.6), and
(11.4.9) are )
, 1.1774 2.6614
A4 =la] = [cVmlic] = [2.6614 7.3206]
7.200 10.800]
B = b = ! k =
[ "] [V klic] [10.800 19.200]
By using MATLAB®, we find the two natural frequencies of the system from
Eq. (11.4.12). This is done by first computing the dynamic matrix, which is given by
D = A™'*B. Then the square root of the eigenvalues of D are computed which results
in the following
' EI
= 11724 —3
@, mi®
El
o, = 3.198 M
Figure 11.4.2 shows the mode shapes corresponding to these ﬁequencies. Since
Eq. (11.4.12) enables the solution of the eigenvectors only in terms of an arbitrary refer-
ence, ¢ can be solved with ¢, = 1.0. The coordinates p are then found from Eq. (11.4.9),
and the mode shapes are obtained from Egs. (11.4.1), (11.4.3), and (11.4.4).
PROBLEMS .

111 Show that the dynamic load factor for a suddenly applied force reaches a ‘maximum
value of 2.0.

11.2 If a suddenly applied constant force is applied to a system for which the damping factor

of the ith mode is ¢ = ¢/c,,, show that the dynamic load factor is given approximately by
the equation

D, =1-¢€"% cos wt

11.3 Determine the mode participation factor for a uniformly distributed force.

11.4 If a.concentrated force acts at x = g, the loading per unit length corresponding to it can
be represented by a delta function /8(x — g). Show that the mode-participation factor
then becomes K; = ¢;(a) and the deflection is expressible as
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ela)elx)
oS, e

where o = (8)*(EI/MP) and (B,) is the eigenvalue of the normal mode equation.

11.5 For a couple of moment M, acting at x = a,show that the loading p(x) is the limiting case

of two delta functions shown in Flg P11.5 as € — 0. Show also that the mode-participa-
tion factor for this case is

y(x, 1) D(r)

defx)
L= = (Bl)g!
K‘ dx =a (Bll)¢l (x)x =a
2 2

Lstx-a) Lox-a-e) rorm

edf T

— : lr- 1 -

FIGURE P11.5. FIGURE P11.6.

11.6 A concentrated force P, f(r) is applied to the center of a simply supported uniform beam,
as shown in Fig. P11.6. Show that the deflection is given by

_ Pli lgo,(x)
Y(xat) EI E (31)4 D,

. X
sin (577 l)

3| sin ( x) sin (3175)
2Py L l
(5m)* Dy(0) ~

= Em | T DO o

N
EI Dy(1)

11.7 A.couple of moment M, is applied at the center of the beam of Prob. 11.6, as shown in
Fig. P11.7. Show that the deflection at any point is given by the equation

_ oa)efx)
yx, 1) = E B’ D{z)

_-n(2 f)
M sin {277

sin(4wfl) - sin (67’7‘)

+ e
g | Gy PO Ty np D0
. N R R Y |
5:' éq A | REEIY.S
b 1 o i
FIGURE P11.7. FIGURE P11.8.

11.8 A simply supported uniform beam has suddenly applied to it the load distribution shown
in Fig. P11.8, where the time variation is a step function. Determine the response y(x, t) in
terms of the normal modes of the beam. Indicate what modes are absent and write down
the first two existing modes.

11.9 A slender rod of length I, free at x = 0 and fixed at x =/, is struck longitudinally by a
time-varying force concentrated .at the end x = 0. Show that all modes are equally
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excited (i.e., that the mode-participation factor is independent of the mode number), the
complete solution being

cos (T3] eos(3E)
2F,l 21 2 1
un) = 2% WDM + et
2
11.10 If the force of Prob. 11.9 is concentrated at x = I/3, determine which modes will be
absent in the solution.

11.11 In Prob.11.10, determine the participation factor of the modes present and obtain a com-
plete solution for an arbitrary time variation of the applied force.

1112 Consider a uniform beam of mass M and length [ supported on equal springs of total
stiffness k, as shown in Fig. P11.12a. Assume the deflection to be

y(x, t) = ‘P1(X)Q1(t) + ‘Pz(x)q:(t)

and choose ¢, = sin(mx/[) and ¢, = 1.0. Using Lagrange’s equation, show that

.. 4 ..
q, + Lk + whq, =0

2 .. .
-+ q, + whq, =0
77_511 q; T wng;
where
w?, = T(EI/MP)

= natural frequency of beam on rigid supports

M1
£3 £
2sS 2
777177‘ (a)
|0: LA ARl LR} Tir LB T lll_- ‘ooo
5f 4500
2 A—200
1.0F ot scole) _;Q&o) 4100
N’_\N 05" i 970 _\&\\ b 50
3 N i &2 ¢ ]
a3 0.2 \.&0 A 20
X g I Tae D/ _
Ol 2085 Jio
.05 15
8 .
0.02 2

0.0‘ Ll Ll 1
ol 02 0S5 10 2 5 10 20 50 100

S w2
FIGURE P11.12. b} R =G
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wh

i

k/M

‘natural frequency of rigid beam on springs
Solve these equations and show that

Ll @)= J®R-12+ 2R
(‘)2 w%z'rr 7 . m

I

2 -8

Let y(x, t) = [b + sinm(x/I)]q and use Rayleigh’s method to obtain

o _, 7 _ R }
L2 _p= 2| (R-1 \/R—l + =
4 8[( )+ 4J( ) —R

(2]
Wy
A plot of the natural frequencies of the system is shown in Fig. P11.12b.

11.13 A uniform beam, clamped at both ends, is excited by a concentrated force P, f(z) at
midspan, as shown in Fig. P11.13. Determine the deflection under the load and the result-
ing bending moment at the clamped ends.

b
RN x
a \/ E %1—.‘1—%1
FIGURE P11.13. ) FIGURE P11.14.

11.14 A spring of stiffness k is attached to a uniform‘beam, as shown in Fig. P11.14. Show that
the one-mode approximation results in the frequency equation

2 3
w . k Ml
(5,_) =1 H'S(A—f)(ﬂzl)

7*El
MP

where
0)1 =

'11.15 Write the equations for the two-mode approximation of Prob. 11.14.
1116 Repeat Prob. 11.15 using the mode-acceleration method.

11.17 Show that for the problem of a spring attached to any point x = @ of a beam, both the
constrained-mode and the mode-acceleration methods result in the same equation when
only one mode is used, this equation being

w\? k

— ] =1+ ——¢}
‘ ( @ ) Mo} ei(@)
* 11.18 The beam shown in Fig. P11.18 has a spring of rotational stiffness K Ib in./rad at the left
end. Using two modes in Eq. (11.2.8), determine the fundamental frequency of the system
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11.19

11.20

11.21

11.22

11.23

11.24

1125

A 1M b (et
ﬁ- . NG

FIGURE P11.18. . - FIGURE P11.20.

as a function of K/Mw?, where o, is the fundamental frequency of the simply supported
beam.

If both ends of the beam of Fig. P11.18 are restrained by springs of stiffness K, determine
the fundamental frequency. As K approaches infinity, the result should approach that of
the clamped ended beam.

An airplane is idealized to a simplified model of a uniform beam of length / and mass per
unit length m with a lumped mass at M, at its center, as shown in Fig. P11.20. Using the
translation of M, as one of the generalized coordinates, write the equations of motion
and establish the natural frequency of the symmetric mode. Use the first cantilever mode
for the wing,

For the system of Prob. 11.20, determine the antisymmetric mode by using the rotation of
the fuselage as one of the generalized coordinates.

If wing tip tanks of mass M, are added to the system of Prob. 11.20, determine the new
frequency. '

Using the method of constrained modes, show that the effect of adding a mass m1;, with
moment of inertia /, to a point x, on the structure changes the first natural frequency w; to

w,

\/1 + frkel(x) + Jhgiin)

and the generalized mass and damping to

M; = M,[l + I‘E(IXI) ’Z(x)]

I,
\/1 + _‘P (x,) + _‘Piz(xl)
where a one-mode approximation is used for the 1nert1a forces.

Formulate the vibration problem of the frame shown in Fig. P11.24 by the component-
mode synthesis. Assume the corners to remain at 90°.

A rod of circular section is'bent at right angels in a horizontal plane as shown in Fig. P11.25.
Using a component-mode synthesis, set up the equations for the vibration perpendicular to
the plane of the rod. Note that member 1 is in flexure and torsion. Assume that it is bending
only in the vertical plane.

lz

la

FIGURE P11.24. FIGURE P11.25.



CHAPTER 12

Classical Methods

The exact analysis for the vibration of systems of many degrees of freedom is generally
difficult and its associated calculations are laborious. Even with high-speed digital
computers that can solve equations of many DOF, the results beyond the first few nor-
mal modes are often unreliable and meaningless. In many cases, all the normal modes

of the system are not required, and an estimate of the fundamental and a few of the
lower modes is sufficient. For this purpose, Rayleigh’s method and Dunkerley’s equa-
tion are of great value and importance.

In many vibrational systems, we can consider the mass to be lumped. A shaft
transmitting torque for several pulleys along its length is an example. Holzer devised a
simple procedure for the calculation of the natural frequencies of such a system.
‘Holzer’s method was extended to beam vibration by Myklestad and both methods
have been matricized into a transfer matrix procedure by Pestel. Many of these proce-
dures were developed in the early years and be considered as classical methods. They

are now routinely processed by digital computer; however, a basic understanding of
each these methods is essential.

12.1 RAYLEIGH METHOD

The fundamental frequency of multi-DOF systems is often of greater interest than its
higher natural frequencies because its forced response in many cases is the largest. In
Chapter 2, under the energy method, Rayleigh’s method was introduced to obtain a
~ better estimate of the fundamental frequency of systems that contained flexible ele-
ments such as springs and beams. In this section, we examine the Rayleigh method in
-light of the matrix techniques presented in previous chapters and show that the
Rayleigh frequency approaches the fundamental frequency from the high side.
Let M and K be the mass and stiffness matrices, respectively, and X the assumed
displacement vector for the amplitude of vibration. Then for harmonic motion, the
maximum kinetic and potential energies can be written as

Tpox = 30°X"™MX (12.1.1)

351
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and
Upe = 3 X'KX (12.1.2)
Equating the two and solving for »?, we obtain the Rayleigh quotient:
T
o 2R (1213)
X'MX

This quotient approaches the lowest natural frequency (or fundamental fre-
quency) from the high side, and its value is somewhat insensitive to the choice of the
assumed amplitudes. To show these qualities, we express the assumed displacement
curve in terms of the normal modes X; as follows

X=X +GCX, + CX, + - (12.1.4)
Then

X'KX = XTKX, + C3XTKX, + CIXTKX, +
and
X™X = XTMX, + CAXIMX, + CIXTMX, + -

where cross terms of the form X7KX and X] TMX have been eliminated by the orthog-
onality conditions.

Noting that

XTKX, = 0’ XTMX, . (12.1.5)
the Rayleigh quotient becomes
w? XIMX.
R PR )___2 2 +] 1216
© wl[ 1 ( pr: -1 TMX, . ( )

If X{MX; is normalized to the same number, this equation reduces to

2
w —w1[1+C2(—-——1) +] (12.1.7)
o}

It is evident, then, that «” is greater than «? because w5/w} > 1. Because C, represents
the deviation of the assumed amplitudes from the exact amplitudes X, the error in th¢
computed frequency is only proportional to the square of the dev1at10n of the assumed
amplitudes from their exact values.

This analysis shows that if the exact fundamental deflection (or mode) X, is
assumed, the fundamental frequency found by this method will be the correct fre-
quency, because C,, C;, and so on, will then be zero. For any other curve, the frequency
determined will be higher than the fundamental. This fact can be explained on the
basis that any deviation from the natural curve requires additional constraints, a condi-
tion that implies greater stiffness and higher frequency. In general, the use of the static ’
deflection curve of the elastic body results in a fairly accurate value of the fundamental

frequency. If greater accuracy is desired, the approximate curve can be repeatedly
improved.
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In our previous discussion of the Rayleigh method, the potential energy was
determined by the work done by the static weights in the assumed deformation. This
work is, of course, stored in the flexible manner as strain energy. For beams, the elastic
strain energy can be calculated in terms of its flexural rigidity EI

By letting M be the bending moment and 6 the slope of the elastic curve, the
strain energy stored in an infinitesimal beam element is

dU = iMdo (12.1.8)

Because the deflection in beams is generally small, the following geometric relations
are assumed to hold (see Fig. 12.1.1):

dy 1 _do _dy
dx R dx dx*

In addition, we have, from the theory of beams, the flexure equation:

1 M
R-El (12.1.9)
where R is the radius of curvature. By substituting for d6 and 1/R, U can be written as
1 Mm? 1 d?y .
Unax = 5 j i) J EI( o~ ) dx (12.1.10)

where the integration is carried out over the entire beam.
The kinetic energy is simply
1]. 1
Toax = 3 jyzdm = EwZJ’yzdm (12.1.11)

where y is the assumed deflection curve. Thus, by equating the kinetic and potential
energies, an alternative equation for the fundamental frequency of the beam is

2 2
151(%) dx
re T 12.12
[y*dm (12.12)

w

FIGURE 12.1.1.
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EXAMPLE 12.1.1

In applying this procedure to a simply supported beam of uniform cross section, shown in Fig.
12.1.2, we assume the deflection to be represented by a sine wave as follows:

LTX
y = (y(,sm —l—) sin wt
where ¥y, is the maximum deflection at midspan. The second derivative then becomes
d% m\?> . wx .
E = - 7 Yo SIn Tsmwt
Substituting into Eq. (12.1.12), we obtain
EI(E)4I;33¥<E' e
SV T LE
L, TX ml*
i

The fundamental frequency, thereforé, is

, [EI
= g2 —
W, ml4
)
L x __4
-« l >
FIGURE 12.1.2.

In this case, the assumed curve happened to be the natural vibration curve, and the exact
frequency is obtained by Rayleigh’s method. Any other curve assumed for the case can be con-
sidered to be the result of additional constraints, or stiffness, which result in a constant greater
than 77 in the frequency equation.

EXAMPLE 12.1.2

If the distance between the ends of the beam of Fig. 12.1.2 is rigidly fixed, a tensile stress o will

be developed by the lateral deflection. Account for this additional strain energy in the frequency
equation.

Solution Due to the lateral deflection, the length dx of the beam is increased by an amount

[V + (ay/dx)? - 1]dx = %(j—i)zdx

The additional strain energy in element dx is

dU = joAedx = ;EAE dx

where A is the cross-sectional area, o is the stress due to tension, and & = 3(dy/dx)? is the unit
strain.
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Equating the kinetic energy to the total strain of bending and tension, we obtain

1 d%y 1 .EA dy \*
2 i - =
wa dm = fEI(dxz)dx+2J . (dx) dx

The preceding equation then leads to the frequency equation:

dzy)2 JEA

EI dx +

, J (d 4(dx)dx
W

1

yidm

‘which contains an additional term due to tension.

Accuracy of the integral method over differentiation. In using Rayleigh’s
method of determining the fundamental frequency, we must choose an assumed curve.
Although the deviation of this assumed deflection curve compared to the exact curve
may be slight, its derivative could be in error by a large amount and hence the strain
energy computed from the equation

1 /dzy 2
==| g1l ZZ
ZJEdeZ) d

may in inaccurate. To avoid this difficulty, the following 1ntegra1 method for evaluating
U is recommended for some beam problems.

We first recognize that the shear V is the integral of the inertia loading mw?y
from the free end of the beam, as indicated by both Figs. 12.1.3 and 12.1.4.

4
V(@) = o | m(en(0ae (12113
14
Because bending moment is related to the shear by the equation
dM '
Ir =V (12.1.14)

the moment at x is found from the integral

I
M(x) = J V(¢ d¢ ' (12.1.15)

w® m{x) y(x)dx

| 1y

7 [} %
| M M+dM
- il - k)
. - V+d
%

Figure 12.1.4. Free-body
FIGURE 12.1.3. diagram of the beam element.
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The strain energy of the beam is then found from

; ‘
1 [ M(x)?
u==z| £y 12.1.16
2 L El o« )

which avoids any differentiation of the assumed deflection curve. -

EXAMPLE 12.1.3

Determine the fundamental frequency of the uniform cantilever beam shown in Fig. 12 1.5 using
the simple curve y = cx?,

=7 IHATTTILILALLLIATLATITLIRTANRL RN L LR LSRR RS

x—] |
e
l

FIGURE 12.1.5.

Solution 1If we use Eq. (12.1.12), we find the result to be very much in error because the previ-
ous curve does not satisfy the boundary conditions at the free end. By using Eq. (12.1.12), we

obtain
w = 4. 47\# Eli
/ EI
w, = 3.52 Tl

Acceptable results using the given curve can be found by the procedure outlined in the pre-
vious section.

whereas the exact value is

2
w mc
— (

.
VQ = o[ megtag = 222 - )
4

and the bending moment becomes

M(x) = j V(g)dg“’ me f '(P - £)dt

wmc

(31“ — 4Px + x%)

The maximum strain energy is found by sub‘stituting M(x) and U_,,:

2 2 !
Uy = 5-1)5‘—[(@1'2'16) J (314 — 4Px + x*)?dx
= i &[9
2 EI 135
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. The maximum Kinetic energy is

f 1
' 11 1 1 &
Toax = 2 L)’zm dx = 'Eczwzmjox4 dx = _Z_czwzm 3

By equating these results, we obtain

1247E1 | EI
O e P

which is very close to the exact result.

Lumped masses. The Rayleigh method can be used to determine the funda-
mental frequency of a beam or shaft represented by a series of lumped masses. At a
first approximation, we assume a static deflection curve due to loads Mg, M,g, M,g,
and so on, with corresponding deflections y,, y,, 3, . . .. The strain energy stored in the
beam is determined from the work done by these loads, and the maximum potential
and kinetic energies become

Unax = 38(M1y, + Myy, + Myy; + ) (12.1.17)
Toax = 30 (MY} + Myys + Mays + ) (12.1.18)
By equating the two, the frequency equation is established as
_ 8XiM,y;
w = S My (12.1.19)

EXAMPLE 12.1.14

Calculate the first approximation to the fundamental frequency of lateral vibration for the sys- .
tem shown in Fig. 12.1.6.

225kg  435kg-

1 W
%}/7 25m U 15m 1.59}; AN
| ! | | | lakie
= B 5.5"! — Z
- FIGURE 12.1.6. ' FIGURE 12.1.7.

Solution Referring to the table at the end of Chapter 2, we see that the deflection of the beam

at any point x (see Fig. 12.1.7) from the left end due to a single load W at a distance b from the
right end is

Wbx
y(x) = m(lz—xz— b)) x=(-b)

The deflections at the loads can be obtained from the superposition of the deflections due to '
each load acting separately.
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Due to the 135-kg mass, we have

[(5.5)2 = (2.5)% = (1.5)2] = 3.273 x %m

, (981 x 135) x 1.5 x 2.5
N 6 X 55EI

, (981X 135) x 1.5 x 4
Y2 6 X 5SEI

103
[(5.5)2 - (4.0)2 - (1.5)2] = 2.889 x M
Due to the 225-kg mass, the deflection at the corresponding points are

, _ (9.81 x 225) x 2.5 X 3.0
"=

[(55)2 - 3.0)2 - (2.5)] = 7.524 % —lg—;m 7

6 X 5.SEI
(9.81 x 225) X 2.5 X 1.5 R , ) 10°
;= 5)2 = (1.5)2 - (25)*| = 5455 X —m
2 6 X 5.5EI (55 - (197 - 257] EI

By adding y’ and y”, the deflections at 1 and 2 become

10° 10°
= 7 . _— = X -
y; = 10.797 X Tk y, = 8.344 7"

By substituting into Eq. (12.1.19), the first approximation to the fundamental frequency is
[ 9.81(225 x 10.797 + 135 X 8.344)EI

- \/[225 x (10.797)2 + 135 x (8.344)*]10°

= 0.03129VEI rad/s

If further accuracy is desired, a better approximation to the dynamic curve can be mgde by
using the dynamic loads me?y. Because the dynamic loads are proportional to the deflection y,
we-can recalculate the deflection with the modified loads gm, and gm,(y,/y,)-

12.2 DUNKERLEY’S EQUATION

The Rayleigh method, which gives the upper bound to the fundamental frequency, can
now be complemented by Dunkerley’s' equation, which results in a lower bound to the
fundamental frequency. For the basis of the Dunkerley equation, we examine the char-
acteristic equation formulated from the flexibility coefficients, which is

1 .
(allml T2 a,,m, Q3
1 =0
amy aypm, — o2 Ayl =
1
a3 my am, azMmy — w2

Expanding this determinant, we obtain the third-degree equation in 1/w?

1S, Dunkerley, “On the Whirliﬁg and Vibration of Shafts,” Phil. Trans. Roy. Soc., Vol. 185 (1895),
Pp- 269-360. . .
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2

1\ ' 1
(;3) - (allml + aym, + a33m3)( ;5) +--=0 (12.2.1)
' “

* Ifthe roots of this equation are 1/w}, 1/w3, and 1/w?, the previous equation can be fac-
tored into the following form: '

(3 3)3- 33 - )
(()2 (.0% (1)2 w% w2 (!)% B

5 A R AT 2
w? o W @)\ @ (1222)
As is well known in algebra, the coefficient of the second highest power is equal to the

sum of the roots of the characteristic equation. It is also equal to the sum of the diago-
nal terms of matrix A, which is called the trace of the matrix (see Appendix C):

L1
trace A =2 -

i=1 \ Wi

or

These relationships are true for n greater than 3, and we can write for an n-DOF
system the following equation:

1 1 1
-+ =+ -+ = =a + + -+ 12.2.
o e w2 1y f’zzmz GpM, (12.2.3)
The estimate to the fundamental frequency is made by recognizing that w,, w;,. ..
" are natural frequencies of higher modes and hence 1/ w3, 1/w3, . . . can be neglected in
the left side of Eq. (12.2.3). The term 1/w? is consequently larger than the true value,
and therefore w, is smaller than the exact value of the fundamental frequency.
Dunkerly’s estimate of the fundamental frequency is then made from the equation
1
—;% <(aym, + ayym, + - + a,,m,) (12.2.4)
Because the left side of the equation has the dimension of the reciprocal of the fre- |
quency squared, each term on the right side must also be of the same dimension. Each
term on the right side must then be considered to be the contribution to 1/w? in the
absence of all other masses, and, for convenience, we let a;m; = 1/w?, or
1 11 1
— <('—'§' + — ++ —2) (1225)
w3 w1y Wy @np '

Thus, the right side becomes the sum of the effect of each mass acting in the absence of
all other masses.

EXAMPLE 12.2.1

Dunkerley’s equation is useful for estimating the fundamental frequency of a structure undergo-
ing vibration testing. Natural frequencies of structures are often determined by attaching an
eccentric mass exciter to the structure and noting the frequencies corresponding to the maximum
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amplitude. The frequencies so measured represent those of the structure plus exciter and can
deviate considerably from the natural frequencies of the structure itself when the mass of the
exciter is a substantial percentage of the total mass. In such cases, the fundamental frequency of
the structure by itself can be determined by the following equation:

1 1 1
===+ (@)
w% “’%1 “’%2

where w; = fundamental frequency of structure plus exciter
o, = fundamental frequency of the structure by itself

w,, = natural frequency of exciter mounted on the structure in the absence of other
masses

It is sometimes convenient to express the equation in another form, for instance,

1

— = 3 tapm, (b)
Wy @y

where m, is the mass of the concentrated weight or exciter, and a,, the influence coefﬁc1ent of
the structure at the point of attachment of the exciter.

EXAMPLE 12.2.2

An airplane rudder tab showed a resonant frequency of 30 cps when vibrated by an eccentric
mass shaker weighing 1.5 Ib. By attaching an additional weight of 1.5 1b to the shaker, the reso-
nant frequency was lowered to 24 cps. Determine the true natural frequency of the tab.

Solution The measured resonant frequencies are those due to the total mass of the tab and

shaker. Letting f;;, be the true natural frequency of the tab and substituting into Eq. (b) of
Example 12.2.1, we obtain

1 1 1.5

= + =
Qmx 30 . Quf,)’ = 3862
1 1 30

Grx 28~ @af,)?  386™
By eliminating a,,, the true natural frequency is
fiy = 453 cps

The rigidity of stiffness of the tab at the point of attachment of the shaker can be determined
from 1/a,,, which from the same equations is found to be
1 1

kz = ﬁ = m = 246 lb/in.

EXAMPLE 12.2.3

Determine the fundamental frequency of a uniformly loaded cantilever. beam with a concen-
trated mass M at the end, equal to the mass of the uniform beam (see Fig. 12.2.1).
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AU

M FIGURE 12.2.1.

Solution The frequency equation for the uniformly loaded beam by itself is
( EI

For the concentrated mass by itself attached to a weightless cantilever beam, we have
El

w%z = 3.00( W )

By substituting into Dunkerley’s formula rearranged in the following form, the natural fre-
quency of the system is determined as

w? = ?ilwgzz _ (3515)% x 3.0(2) _ 2_41(_1:1)
i + wh (35152 + 3.0\ MP M3
This result can be compared to the frequency equation obtained by Rayleigh’s method, which is
(1 + —3—3-)Ml3 M
140

EXAMPLE 12.2.4

The natural frequency of a given airplane wing in torsion is 1600 cpm. What will be the new tor-
sional frequency if a 1000-Ib fuel tank is hung at a position one-sixth of the semispan from the
center line of the airplane such that its moment of inertia about the torsional axis is 1800
Ib - in - 5*? The torsional stiffness of the wing at this point is 60 X 10°1b - in./rad.

Solution The frequency of the tank attached to the weightless wing is

1 |60 X 10°
= — 4 ——""—" =291 = 174
| fz 27\ 1800 9.1 cps 5 cpm
_ The new torsional frequency with the tank, from Eq. (a) of Example 12.2.1, then becomes
| 1 = ! + 1 f1 = 1180 cpm
727 (600 T (mas: P

EXAMPLE 12.2.5

The fundamental frequency of a uniform beam of mass M, simply supported as in Fig. 12.2.2, is

equal to 72V EI/MI®. If a lumped mass m, is attached to the beam at x = I/3, d¢termine the new
fundamental frequency. .
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[

]
FIGURE 12.2.2.

Solution Starting with Eq. (b) of Example 12.2.1, we let w,, be the fundamental frequency of
the uniform beam and o, the m,w fundamental frequency with m, attached to the beam.
Multiplying through Eq. (b) by «?, we have

2 52
wy \ )

1= (—1 ) + azzmomﬂ(—1 )
@1 Wy

or

P TSI
wyy 1 + aymgwy,

The quantity a,, is the influence coefficient at x = /3 due to a unit load applied at the same
point. It can be found from the beam formula in Example 12.1.4 to be

__8 r
%2 = e 81 EI

Substituting w}, = 7*EI/MI’ together with a,,, we obtain the convenient equation

o R marien
N 1 8#‘@ my

EXAMPLE 12.2.6

Determine the fundamental frequency of the three-story building shown in Fig. 12.2.3, where the
foundation is capable of translation.

m3
M2
h.
my L
ko
ﬁ vl 0

FIGURE 12.2.3.
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Solution If a unit force is placed at each floor, the influence coefficients are

1

)

k()
T " 24EL
1R R
T2 = T 4EL " 24EL
_ .1_ . h3 . h3 N h3
% =k, 24EI,  24El, 24EI

The Dunkerley equation then becomes
L—ﬂ+(l+i)m—(l+_}i+i\m
ol Kk k, 24EI ) ' \k, 24El, 24EL ) *
+(—1—+ i + s + s )m
ko, 24EI,  24El, 24EL,) "’

If the columns are of equal stiffness, the preceding equation reduces to

L=—1-(m +m; +m, +m;) +m L - m 2h° +m 3
W kg 0 T T '24EI T "?24El T "P24El

12.3 RAYLEIGH-RITZ METHOD

W. Ritz developed a method that is an extension of Rayleigh’s method. It not only pro-
vides a means of obtaining a more accurate value for the fundamental frequency, but it
also gives approximations to the higher frequencies and mode shapes. _
The Ritz method is essentially the Rayleigh method in which the single shape
function is replaced by a series of shape functions multiplied by constant coefficients.
The coefficients are adjusted by minimizing the frequency with respect to each of the
coefficients, which results in » algebraic equations in w> The solution of these equa-
tions then gives the natural frequencies and mode shapes of the system. As in
Rayleigh’s method, the success of the method depends on the choice of the shape func-
tions that should satisfy the geometric boundary conditions of the problem. The
method shouid also be differentiable, at least to the order of the derivatives appearing
.in the energy equations. The functions, however, can disregard discontinuities such as
those of shear due to concentrated masses that involve third derivatives in beams.

We now outline in a general manner the procedure of the Rayleigh-Ritz method,
starting with Rayleigh’s equation:

U

2 — “max
T e
where the kinetic energy is expressed as w’T¥,,. In the Rayleigh method, a single func-

tion is chosen for the deflection; Ritz, however, assumed the deflection to be a sum of
several functions multiplied by constants, as follows:

(0]

(123.1)
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y(x) = C iy (x) + Cyp(x) + -+ - + C b, (x) (12.3.2)

where ¢,(x) are any admissible functions satisfying the boundary conditions. U,,, and
T .ax are expressible in the form of Eqs. (7.4.1).and (7.4.2):

U= - E Ek,] C; (12.3.3)

Tr* = *Ezmu i~y

~ where k; and m,; depend on the type of problem. For example, for the beam, we have

]

k,‘j = f E[d),'”‘ﬁj" dx and my= jm¢i¢i dx

whereas for the longitudinal oscillation of slender rods,
k= JEAqbi'@f dx and my;= J’mdnl-(;bj dx

We now minimize »* by differentiating it with respect to each of the constants.
For example, the derivative of w” with respect to C, is

T* aUmax - U aT:\ax

sl - T e
which is satisfied by
Wy Upas 0Ths _
3G, Th 4G,
or because U, /T*. = o
?aig_ o "ﬁ ~0 (123.5)

The two terms in this equation are then
max ' aT*ax
Ek,]C and 38, = > mC
and so Eq. (12.3.5) becomes :
- Cylky = o'my) + Cylkyy — @’my) + 20 + Cylky, — o'my,) =0 (1236) -

With i varying from 1 to n, there will be n such equations, Wthh can be arranged in
matrix form as

(kyy — w’myy) (ku = w'my) .. (kg - o'my) |G
ey = w'rmy) ' o 210 (237)
(knl - wzmnl) e (knn - wzmnn) Cn
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The determinant of this equation is an n-degree algebraic equation in w? and its solu-
tion results in the n natural frequencies. The mode shape is also obtained by solving for
the C’s for each natural frequency and substituting into Eq. (12.3.2) for the deflection.

EXAMPLE 12.3.1

Figure 12.3.1 shows a wedge-shaped plate of constant thickness fixed into a rigid wall
Determine the first two natural frequencies and mode shapes in longitudinal oscillation by using
the Rayleigh-Ritz method.

FIGURE 12.3.1.

Solution For the displacement function, we choose the first two longitudinal modes of a uni-
form rod clamped at one end.

. mx . 3mx
u(x) = C, sin =+ ot C, sin T
= C,¢,(x) + Cypyx) (a)

The mass per unit length and the stiffness at x are
mix) = mo(l - f) and EA(x) = EAO(I - ?)
The k;; and the m;; for the longitudinal modes are calculated from the equations

H
k= | EAG04)
0

3
|

!
i J m(x)¢i¢;dx
0

m’ oox T EA, 1
k, = ZI—ZEAO,L(I - 7)(:052—2—1 = 7“( g T -2—)

= 0.86685% | - (b)

i
ki, = _zEAoJ (1 - )cos—cos —dx = 0750
4l 0

9n? !
k= <55 EA L(1 -

= 5.80165 — EAO

3mx  EA, ( 97
2 20 \'8

)

N |
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e X 1 1
my = mOJ (1 — -) sin? ——dx = mol(— — —2) = 0.148679m,l
0 l 21
) sin z—lsin mo( ) 0.101321ml

i
X 3w 1
My, =m 1- —)sm —dx—ml( - —) = (0.238742m]
2 "L( l 21 N4 9

Substituting into Eq. (12.3.7), we obtain

(0 86685540 — 0.14868m,1w? ) ' (0.750% - 0.10132m01w2) |
! I | e,
=0 (c)
EA, E &
(0 750722 — 0.10132mlu? ) (5 80165220 — 0.23874mlw?

Setting the determinant of the preceding equation to zero, we obtain the frequency equation

o* ~ 36.3676aw® + 177.0377* = 0 (d)
where
EA
=— (e)
myl

The two roots of this equation are

=57898a and b= 30.5778a
. Using these results in Eq. (c), we obtain
C, = 0.03689C, for mode 1
C, = —-0.63819C,  for mode 2

The two natural frequencies and mode shapes are then

EA, mX 37x
= 2.4062 lz u{x) = 1.0sin 5 + 0.03689 sin 57

EA, \ X 3mx
= 55297\/ oy u,(x) = —0.63819 sin T 1.0 sin T

.

12.4 HOLZER METHOD

When an undamped system is vibrating freely at any one of its natural frequencies, 10
external force, torque, or moment is necessary to maintain the vibration. Also, the
amphtude of the mode shape is immaterial to the vibration. Recognizing these facts,
Holzer? proposed a method of calculation for the natural frequencies and mode shapes .

?H. Holzer, Die Berechnung der Drehschwingungen (Berlin: Springer-Verlag, 1921).
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J J
h 2 3 Ja
K K3 K3
0‘ 92 93 94
FIGURE 12.4.1

of torsional systems by assuming a frequency and starting with a unit amplitude at one
end of the system and progressively calculating the torque and angular displacement
to the other end. The frequencies that result in zero external torque or compatible
boundary conditions at the other end are the natural frequencies of the system. The
method can be applied to any lumped-mass system, linear spring-mass systems, beams
modeled by discrete masses and beam springs, and so on.

Holzer’s procedure for torsional systems. Figure 12.4.1 shows a torsional sys-
tem represented by a series of disks connected by shafts. By assuming a frequency
and amplitude 6, = 1, the inertia torque of the first disk is

~J,8, = J,0°60, = J,0*1

where harmonic motion is implied. This torque acts through shaft 1 and twists it by

or

. J wZ
6, =1-"—
2 K,
With 6, known, the inertia torque of the second disk is calculated as J,»’6,. The sum of

the first two intertia torques acts through the shaft K,, causing it to twist by
jlwz + JZwZOi
R
K,

In this manner, the amplitude and torque at every disk can be calculated. The resuiting
torque at the far end,

4
Texl = 2 ]iwzoi
i=1

can then be plotted for the chosen w. By repeating the calculation with other values of
w, the natural frequencies are found when T, = 0.The angular displacements 6, corre-
sponding to the natural frequencies are the mode shapes.
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EXAMPLE 12.4.1

Determine the natural frequencies and mode shapés of the system shown in Fig. 12.4.2.

Ky= 0.10x10° K,=0.20x10® Nm/rad
Jy=5.
=50 J,=110
FIGURE 12.4.2. J3=22.0 kg-m?
100
m
o O o w
x 100 200
0y
-100

"' mode W, =123.666
FIGURE 12.43.  2"mode w, =202.658

Table 12.4.1
N . Parameters of the System
‘ Station 1 Station 2 Station 3
J;=5 J,=11 J3=22
K,=010%x10¢ K, =020 X 10° K,=0
Calculation Prdgram
@ 6,=10 6,=1-T,/k, 0, = 0,—T,/k,
o T, = «?6,J, T,=T, + ?6,J, T, =T, + w?8J,
20 1.0 0.980 9484
" 400 20%x10* 6.312 x 10* 14.66 % 103
40 1.0 0.920 0.799
1600 8.0 x 103 . 2419 x10° 52.32 x 103
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'70,2995

-1.0

FIGURE 12.4.4.

Solution Table 12.4.1 defines the parameters of the system and the sequence of calculations,
which can be easily carried out. Presented are calculations for w = 20 and 40. The quantity T is
the torque to the right of disk 3, which must be zero at the natural frequencies. Figure 12.4.3
shows a plot of T; versus w. Several frequencies in the vicinity of T; = 0 were inputted to obtain
accurate values of the first and second shapes displayed in Fig. 12.4.4.

. | B
12.5 DIGITAL COMPUTER PROGRAM FOR THE TORSIONAL SYSTEM

The calculations for the Holzer problem can be greatly speeded up by using a high-speed
digital computer. The problem treated is the general torsional system of Fig. 12.5.1. The
program is written in such a manner that by changmg the data, it is applicable to any
other torsional system.

The quantities of concern here are the torsional displacement 6 of each disk and
the torque T carried by each shaft. We adopt two indexes: N to define the position
along the structure and I for the frequency used.

The equations relating the displacement and torque at the Nth and (N + 1)st sta-
tions are

6(I, N + 1) = 6(I, N) — T(I, N)/K(N) - (12.5.1)
"TU,N+1) =T, N) + AI) *J(N + 1) *60(I,N + 1) (12.5.2)
where A = 02, 0(1,1) = 1, T(I, 1) = A(I) *J(1).

8y Oy 6ny2
K. K,
f ) nY. e Knsz
- lij = ] J - J
Ty . -
JN N+1
JN+1

In+2 FIGURE 12.5.1.
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By starting at N = 1, these two equations are to be solved for 6 and T at each
point N of the structure for various values of A. At the natural frequencies, 6 must be
zero at the fixed end or T must be zero at the free end.

EXAMPLE 12.5.1 '
Determine the natural frequencies and mode shapes for the torsional system of Fig. 12.5.2.

*

00
\S

|5
2=20 ;.30

Ki=2x108  #,=2x10% K3=3x108
FIGURE 12.5.2.
Solution The frequency range can be scanned by choosing an initial  and an increment Aw.
We choose for this problem the frequencies
w = 40,60, 80,...,620
which can be programmed as
o) =40+ (I-1)*20 I=11030
The corresponding A(]) is computed as
M = (1)
The computétion is started with the boundary conditions N = 1:
L) =1
(I, 1) = MD*J(1)

00 N200 3007 400 500 \séo w

1
n
o

T

FIGURE 12.5.3
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Equations (12.5.1) and (12.5.2) then give the values of 6 and T at the next station M = N + 1= 2.
This loop is repeated until M = 4, at which time [ is advanced an integer to the next frequency.
The process is then repeated.

Figure 12.5.3 shows the results of the computer study in which 6, is plotted against w. The

natural frequencies of the system correspond to frequencies for which 6, becomes zero, which
are approximately

‘w; = 160
w, = 356
w; = 552

The mode shapes can be found by printing 6,, for each of the preceding frequencies.

12.6 MYKLESTAD'S METHOD FOR BEAMS

When a beam is replaced by luﬁlped masses connected by massless beam sections, a
method developed by N. O. Myklestad® can be used to progressively compute the

deflection, slope, moment, and shear from one section to the next, in a manner similar
to the Holzer method.

Uncoupled flexural vibration. Figure 12.6.1 shows a typical section of an ideal-
ized beam with lumped masses. By taking the free-body section in the manner indi-
cated, it will be possible to write equations for the shear and moment at i + 1 entirely

in terms of quantities at i. These can then be substituted into the geometric equations
for #and y.

[
m; mi +1
( ) ‘x/\l L |
N/ /
: i i+l
| |
Vi
M 41
mwPy; 641
Mi, mi L —
. 6;
v
Vi \» _ Wisr
FIGURE 12.6.1.

3N. O. Myklestad, “A New Method of Calculating Natural Modes of Uncoupled Bending Vibration of
Airplane Wings and Other Types of Beams,” J. Aero. Sci. (April 1944), pp. 153-162.

N. O. Myklestad, “Vibration Analysis” (New York: McGraw-Hill, 1944).
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From equilibrium considerations, we have

Vi = Vi — moly, (12.6.1)
My = M; = Vil - (1262)

From geometric considerations, using influence coefficients of uniform beam sections,
we have

{ I’ ,
b1 =6+ M:‘+1(E) + VHI(Z—EI) (12.6.3)

s I8
1=yt 6L+ M, (— + V, (—)
Vi1 }1 i :+1\2E1)i l+1\3EI ;
where (I/ET); = slope at i + 1 measured from a tangent at i due to a unit moment at
[ +1; .
(P/2 EI), = slope at i + 1 measured from a tangent at i due to a unit shear at

i + 1 = deflection at i + 1 measured from a tangent at i due to a unit
moment ati + 1;

(P/3EI), = deflection at i + 1 measured from a tangent at i due to a unit shear at
i+ 1. '

(12.6.4)

Thus, Eqgs. (12.6.1) through (12.6.4) in the sequence given enable the calculations to
proceed fromitoi + 1.

Boundary conditions. Of the four boundary conditions at each end, two are
generally known. For example, a cantilever beam with i = 1 at the free end would have
V, = M, = 0. Because the amplitude is arbitrary, we can choose y; = 1.0. Having done

so, the slope 6, is fixed to a value that is yet to be determined. Because of the linear

character of the problem, the four quantities at the far end will be in the form

V.=a + b6
M, = .a2 + b,6,
orx = a3 + b301

Yo = a4 + by6,

where a;, b; are constants and 6, is unknown. Thus, the frequencies that satisfy the
boundary condition 6, = y, = 0 for the cantilever beam will establish 6, and the nat-
- ural frequencies of the beam, i.e., 6, = —a;/b; and y, = a,—(a;/b;)b, = 0. Hence, by
plotting y, versus w, the natural frequencies of the beam can be found.

EXAMPLE 12.6.1

To illustrate the computational procedure, we determine the frequencies of the cantilever beam

shown in Fig. 12.6.2. The massless beam sections are assumed to be identical so that the influence

coefficients for each section are equal. The numerical constants for the problem are given as

m, = 100 kg EI=5X10—6W-

b
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P 1
= . =1. X -6
[=05m 3B 25 X 10 N
? i m
= (.10 X 10*®*N-m? — = 0. X 1076 —
EI' =010 x10 m 3B 0.41666 X 10 N

The computation is started at 1. Because each of the quantities V, M, 8, and y will be in the
form a + b, they are arranged into two columns, each of which can be computed separately. The
calculation for the left column is started with V;, =0, M, =0, 6, =0, and y, = 1.0. The right
columns, which are proportional to 6, are started with the initial values of V, =0, M, =0,
6,=16,and y, = 0. ‘

Table 12.6.1 shows how the computation for Egs. (12.6.1) through (12.6.4) can be carried
out with any programmable calculator. The frequency chosen for this table is @ = 10.

To start the computation, we note that the moment and shear at station 1 are zero. We can
choose the deflection at station 1 to be 1.0, in which case the slope at this point becomes an
unknown 6. We, therefore, carry out two columns of calculations for each quantity, starting with
y, =10, 6, = 0,and y, = 0, 6, = 6. The unknown slope 8, = 8 is found by forcing 6,, at the fixed
end to be zero, after which the deflection y, can be calculated and plotted against w. The natural
frequencies of the system are those for which y, = 0.

To search the natural frequencies, computer calculations were made between w = 10 to
o = 400 at frequency steps of 10 rad/s. Tabulation of y, versus w indicates natural frequencies in
the frequency regions 20 < w, = 30, 130 < w, = 140, and 340 = w; < 350. Further calculations
were carried out in each of these regions with a much smaller frequency step. Because the
lumped-mass model of only three masses could hardly give reliable results for the third mode,
only the first two modes were recomputed; these were found to be w, = 25.03 and w, = 138.98.
The mode shape at w, is plotted in Fig. 12.6.3.

m my=1.5m; m3=2.0m,

£

® ® 06 ®

FIGURE 12.6.2.

Table 12.6.1 ) : ‘ ‘
Q=10 Q2 = 100.

i V (newtons) M (newton - meters) 0 (Radians) y (meters)
1 0 0 0 0 0 0 10 0
2 -10,000. 0 5000. 0 0.0125 1.06 1.002084  0.56
3 —25031. 75000 17515. 37508 0.06879 1.009376 1.0198 1.0015636
4 —45427. 275328 40228. 175166 0.21315 1.06256 1.08555 1.51676
6, = 0.21315 + 1.06256 = 0 6, = —0.2006117

y, = 1.08555 + 1.5167(~0.2006117) = 0.78128 plot vs. w = 10
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Mode shape ot

FIGURE 12.63. w,=138.98
Table 12.6.2
w Y4 @ Y4
10 0.7813 210 1.6170
20 02659 = 220 1.7619
30 -02922“ 230 1.8749
40 -07372 240 1.9531
50  —1.0285 250 1.9936
60  —1.1800 260 1.9941
70 -1.1292 270 19522
80  -11719 280 1.8661
9  —1.0589 290 17340
100  —0.894 300 1.5544
110 —0.6972 310 1.3258
120 -04714 320 1.0472
130 -02278_ 330 0.7177
140 00264 340 03363 _
150 0.2844 35  —00975° 2
160 0.5405 360 —0.5844
170 0.7892 370 —1.1247
180 1.0256 380  -1.7187
190 12451 390 —2.3666
200 1.4436 400  —3.0685
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12.7 COUPLED FLEXURE-TORSION VIBRATION

Natural modes of vibration of airplane wings and other beam structures are often
coupled flexure-torsion vibration, which for higher modes differs considerably from
those of uncoupled modes. To treat such problems, we must model the beam as shown
in Fig. 12.7.1. The elastic axis of the beam about which the torsional rotation takes
place is assumed to be initially straight. It is able to twist, but its bending displacement
is restricted to the vertical plane. The principal axes of bending for all cross sections
are parallel in the undeformed state. Masses are lumped at each station with its center
of gravity at distance ¢; from the elastic axis and J; is the mass moment of intertia of
the section about the elastic axis, i.e.,J; = J, + m;c?.

Figure 12.7.2 shows the ith section, from which the following equations can be

written:
Vi =V, - mw*(y; + c¢;p) (127.1)
My, =M, -V, (12.72)
Jivm/

[2}

m;J; aboutc.g. G

| Q Q CP Q Elastic oxis
Gi
11

y Typical
/ cross section

T77777777777777. at Sta. i
FIGURE 12.7.1.

FIGURE 12.7.2.
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Ty, = T, + J0’e, + mic,w?y, : (12.7.3)
2 l
01 = 6, + Vi+1('2_E—I)i + MHI(EI)i (12.7.4)
P I?
yi+l = yi + eili + Vi+](ﬁ)i + M,'+1(2_E_I)i (12.75)
@1 = ¢ T Tiihy (12.7.6)

where T = the torque
h = the torsional influence coefficient = I/GI,
¢ = the torsional rotation of elastic axis

For free-ended beams, we have the following boundary conditions to start the
computation:

Vi=M,=T,=0
0,=19 y; =10 ¢ =@

Here again, the quantities of interest at any station are linearly related to 6; and
¢, and can be expressed in the form

a+ bo, + ce, (12.7.7)

Natural frequencies are established by the satisfaction of the boundary conditions at
the other end. Often, for symmetric beams such as the airplane wing, only one-half the
beam need be considered. The satisfaction of the boundary conditions for the symmet-
ric and antisymmetric modes enables sufficient equations for the solution.

12.8 TRANSFER MATRICES

The Holzer and Myklestad methods can be recast in terms of transfer matrices.* The
transfer matrix defines the geometric and dynamic relationships of the element

between the two stations and allows the state vector for the force and displacement to
be transferred from one station to the next station.

: Torsional system. Signs are often a source of confusion in rotating systems, and
' it is necessary to clearly define the sense of positive quantities. The coordinate along
the rotational axis is considered positive toward the right. If a cut is made along the
-shaft, the face with the outward normal toward the positive coordinate direction is
called the positive face. Positive torques and positive angular displacements are indi-
cated on the positive face by arrows pointing positively according to the right-hand
screw rule, as shown in Fig. 12.8.1. '
With the stations numbered from left to right, the nth element is represented by

- the massless shaft of torsional stiffness K, and the mass of polar moment of inertia J,,,
- as shown in Fig. 12.8.2.

“E. C. Pestel and F. A. Leckie, “Matrix Methods in Elastomechanics” (New York: McGraw-Hill, 1963).
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T T
———p— —_—
T8 6
FIGURE 12.8.1.
n-1 n
[ 1«1, I
|— Jn-1 Jn :
Jn
T A A A4
e I — g — | =
8F., gt Jnw?6,
FIGURE 12.8.2.

Separating the shaft from the rotating mass, we can write the following equations

and express them in matrix form. Superscripts L and R represent the left and right
sides of the members.

For the mass:

0F = o} ok _[ 1 o]fel b
™o Ti= -, T/, L-¥ 117/, (128.1)

For the shaft:

1
K(0F—07-)=Tq| [olr_|1 —|[6]F
A 73 _ ! 7l = K|ip (12.82)
n— Lp-1 n 0 1 N n-1
The matrix pertaining to the mass is called the point matrix and the matrix associ-

- ated with the shaft, the field matrix. The two can be combined to establish the transfer
matrix for the nth element, which is

R 1 —l '
{9} = K 0| (128.3)
LBPT Y (1 _ “’_21) T),-s
. K

In the development so far, the stations were numbered in increasing order from .
‘left to right with the transfer matrix also progressing to the right. The arrow under the
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equal sign indicates this direction of progression. In some problems, it is convenient to
proceed with the transfer matrix in the opposite direction, in which case we need only
to invert Eq. (12.8.3). We then obtain the relationship

2J 1
e _[(-=2) L]y
{ } = K K , (12.8.4)
T n—1 2
wJ 1
The arrow now indicates that the transfer matrix progresses from right to left with the

order of the station numbering unchanged. The reader should verify this equation,
starting with the free-body development.

12.9 SYSTEMS WITH DAMPING

When damping is included, the form of the transfer matrix is not altered, but the mass
and stiffness elements become complex quantities. This can be easily shown by writing
the equations for the nth subsystem shown in Fig. 12.9.1. The torque equation for disk
nis

-0i,0, =T - Tt - iwc,0,

or
(iwc, — 0*J,)0, = TR — TE (129.1)
The elastic equation for the nth shaft is '
Ttl; = Kn(en - Gn—l) + iwgn(en - on—l) (1292)

= (Kn + iwgn)(en - 6n-l)

Jn-'l gn “In gn-H Jn+1

9, n
ng :
TR 1 I Ta TR
=1 T,f -— ——
—_— > r— — 2
gn-i 9,, iu)C,,@,, J"w 9,,
K,

FIGURE 12.9.1. Torsional system with damping.
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Thus, the point matrix and the field matrix for the damped system become

{;}R - [(iwc ! W) 2]{% (12.9.3)

1
L 1 [ R
o[ ] {9 1296
n 0 1 n—1

n

which are identical to the undamped case. except for the mass and stiffness elements;
these elements are now complex.

EXAMPLE 12.9.1

The torsional system of Fig. 12.9.2 is excited by a harmonic torque at a point to the right of disk
4. Determine the torque—frequency curve and establish the first natural frequency of the system.

J, = J, = 500-1b-in.-s?
Jy=J, = 1000-1b-in. s
K,=K;=K, = 10%ib-in./rad
¢, = 10*lb-in.-s/rad

g = 2 X 10%b-in.-s/rad

Jy J2 J3 g Ja .
3 Tsincwt
Kz K3 Ka %:
C2
FIGURE 12.9.2.

Solution The numerical computations for w? = 1000 are shown in Table 12.9.1. The complex
mass and stiffness terms are first tabulated for each station n. By substituting into the point and

- field matrices, i.e., Eqs. (12.9.3) and (12.9.4), the complex amplitude and torque for each station
are found, as Table 12.9.2.

Table 12.9.1

n (&,—iwc)l07% (K, +iwg,)1078

1 0.50 + 0.0

2 - 0.50 — 9.316i 1.0 + 0.0i

3 1.0-0.0i 1.0 + 0.0

4 1.0 + 0.0 1.0 + 0.635i
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FIGURE 12.9.3. Torsion—frequency curve for the damped
torsional system of figure of Fig. 12.9.2

Table 12.9.2

n 0, TR (for w? = 1000)

1 1.0 + 0.0i (—0.50 + 0.0{) x 10°

2 0.50 + 0.0: (—0.750 + 0.158i) x 10°
3 ~0.250 + 0.158i (—0.50 + 0.0) x 10°

4

—0.607 + 0.384i (0.107 — 0.384i) X 10*

These computations are repeated for a sufficient number of frequencies to plot the
torque—frequency curve of Fig. 12.9.3. The plot shows the real and imaginary parts of 7% as well
as thelr resultant, which in this problem is the exciting torque. For example, the resultant torque
at «? = 1000 is 106\/(0 107)? + (0.3874)2 = 0.394 X 108 in.-Ib. The first natural frequency of
the system from this diagram is found to be approximately @ = V930 = 30.5 rad/s, where the

natural frequency is defined as that frequency of the undamped system that requires no torque
to sustain the motion.

EXAMPLE 12.9.2 ]
In Fig. 12.9.2,if T = 2000 in. - Ib. and w = 31.6 rad/s, determine the amplitude of the second disk.

Solution Table 12.9.2 indicates that a torque of 394,000 in. - Ib produces an amplitude of
8, = 0.50 rad. Because amplitude is proportional to torque, the amplitude of the second disk for
the specified torque is 0.50 X 2/394 = 0. 00254 rad.

GEARED SYSTEM

Consider the geared torsional system of Fig. 12.10.1, where the speed ratio of shaft 2

to shaft 1 is n. The system can be reduced to an equlvalent single shaft system as fol-
lows.
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‘/1
&D _‘J
2
1 K,
”D:
G
A nd,
2
A, n°K,

FIGURE 12.10.1. Geared system and its
equivalent single-shaft system.

With the speed of shaft 2 equal to 6, = n#,, the kinetic energy of the system is
T =1J,6% + i,n*n%6? (12.10.1)
Thus, the equivalent intertia of disk 2 referred to shaft 1 is n%J,.
To determine the equivalent stiffness of shaft 2 referred to shaft 1, clamp disks 1

and 2 and apply a torque to gear 1, rotating it through an angle. 6,. Gear 2 will then

rotate through the angle 6, = nf,, which will also be the twist in shaft 2. The potential
energy of the system is then

U = 3iK,0% + 1K,6° (12.10.2)

and the equivalent stiffness of shaft 2 referred to shaft 1 is n’K,.

The rule for geared systems is thus quite simple: Multiply all stiffness and inertias

of the geared shaft by n’, where n is the speed ratio of the geared shaft to the reference
shaft. ’

BRANCHED SYSTEMS

Branched systems are frequently encountered; some common examples are the dual
propeller system of a marine installation and the drive shaft and differential of an
automobile, which are shown in Fig. 12.11.1.

FIGURE 12.11.1. Examples of branched torsional systems.
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FIGURE 12.11.2. Branched system reduced to
common speeds by 1-to-1 gears.

Such systems can be reduced to the form with 1-to-1 gears shown in Fig. 12.11.2
by multiplying all the inertias and stiffnesses of the branches by the square of their
speed ratios.

EXAMPLE 12.11.1
Outline the matrix procedure for solving the torsional branched system of Fig. 12.11.3.
Solution We first convert to a system having 1-to-1 gears by multiplying the stiffness and

intertia of branch B by n?% as shown in Fig, 12.11.3(b). We can then proceed from station 0
through to station 3, taking note that gear B introduces a torque T%, on gear A.

Ja
j Kz | | Ky Y3
(1 '
(o) R
!
7 , il iR
: nKa [I: |
! ' 4 !
L i 1)
i L =
! S B
0 5 3

(b)

FIGURE 12.11.3. Branched system and reduced
system.
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R

— 7B
—-—.—»-eﬂ
a1

L
7-1114——— R

R a—
g1

FIGURE 12.11.4.

Figure 12.11.4 shows the free-body diagram of the two gears. With T%, shown as positive

torque, the torque exerted on gear A by gear B is negative as shown. The torque balance on gear
Ais then

Tﬁl = Tfﬂ + Tgl (a)

and we need now to express T%, in terms of the angular displacement §, of shaft A.
Using Eq. (12.8.4) and noting that 7%, = 0, we have for shaft B

9 R (1 _ a)2n2.14) -1 P R
{TB} = Y flqu n2K4 { OB} (b)
51 w’n3f, 1 4
Because 6%, = —6%, = — 6%, we obtain
w?J '
o = (1 - %2 o = -o% L ©
. .
TR = w?n?J,08, (d)
By eliminating 6%,
2.2
TR = _w—n“__gL
Bl 1 - oi,/K, Al . (e)

By substituting Eq. (¢) into Eq. (a), the transfer function of shaft A across the gears becomes

Bt . ikl :
T, 5 Lo/ - wi/K) 1]\ T, @

It is now possible to proceed along shaft A from 1R to 3R in the usual manner.

TRANSFER MATRICES FOR BEAMS

The algebraic equation of Sec. 12.6 can be rearranged so that the four quantities at sta-
tion i + 1 are expressed in terms of the same four quantities at station i. When such
equations are presented in matrix form, they are known as transfer matrices. In this

section, we present a procedure for the formulation and assembly of the matrix equa-
tion in terms of its boundary conditions.
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FIGURE 12.12.1. Beam sections for transfer matrices.

Figure 12.12.1 shows the same ith section of the beam of Fig. 12.6.1 broken down
further into a point mass and a massless beam by cutting the beam just right of the
mass. We designate the quantities to the left and right of the mass by superscripts L
and R, respectively.

Considering, first, the massless beam section, the following equations can be

written:
ViL+i = V;R
M:L+l =M|R_.V§li_ ,
L =of+ ML, (- L (F 12121
0i+1_01+Mi+IEIi+Vi+12_EIi ( 1)
? B
yin =yf+6f + M"L“(z_ﬂ),. + V"L+‘(§E_I),.

Substituting for VL, and ML, from the first two equations into the last two and
arranging the results in matrix form, we obtain what is referred to as the field matrix:

(-vY* T 1.0 o0 o](-v)©
M I 1 o0 ol M
= | ! (12.12.2)
26l El |
PP
L 2 1
(Y ) | 6Er 2E1 _Lyw

In this equation, a minus sign has been inserted for V in order to make the elements of
the field matrix all positive,

Next, consider the point mass for which the following equations can be written:

Vf =Vi— m."wz}’i-

e
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MR = ML
0f = 6f (12.12.3)
JR =yt

In matrix form, these equations become

—V R 1 0 0 mo -V\*
M 0 1-0 0 M
o[ |0 o0 1 o0 ) (12.12.4)
Ly Ji 0 0 0 1 y )i

which is known as the point matrix.

Substituting Eq. (12.12.4) into Eq.‘(12.12.2) and fnultiplying, we obtain the
* assembled equation for the ith section:

(VY 1 0 0 me? ! (V)"
M I1 0 mawl M L
ﬁ R Y R | 9 (12.12.5)
2El  El 2E1 |
13 12 mw213
(Y ) e 2m ! (H 6EI>_L.yJ.-

The square matrix in this equation is called the transfer matrix, because the state
vector at i is transferred to the state vector at i + 1 through this matrix. It is evident
then that it is possible to progress through the structure so that the state vector at the
far end is related to the state vector at the starting end by an equation of the form

-V Uy Up — Uy -V
M —_ = = — M L
= 12.12.6
0 —_— = = — 0 ( )
Y Jn Uy Up — Uy Yy J1

where matrix [u] is the product of all the transfer matrices of the structure.

The advantage of the transfer matrix lies in the fact that the unknown quantity at
1, i.e., 6,, for the cantilever beam, need not be carried through each station as in the
algebraic set of equations. The multiplication of the 4 X 4 matrices by the digital com-
puter is a routine problem. Also, the boundary equations are clearly evident in the
matrix equation. For example, the assembled equation for the cantilever beam is

-v):* | — — = __ 0
M — — — —1}o

= (12.12.7)
0. Jx — Uy Uy 1)
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and the natural frequencies must satisfy the equations
0= us0 + uy,
0= uy0 + uy,
or
Uz

Yo = T T Uy + Uy = 0 (1212.8)

Uz

In a plot of y, vs. w, the natural frequencies correspond to the zeros of the curve.

PROBLEMS

12.1 Write the kinetic and potential energy expressions for the system of Fig. P12.1 and deter-
mine the equation for »? by equating the two energies. Letting x,/x, = n, plot w? versus
n. Pick the maximum and minimum values of w? and the corresponding values of 7, and
show that they represent the two natural modes of the system.

/ k 3k 2k
m 2m
/Z
X1-—> X2—+
FIGURE P12.1.

12.2 Using Rayleigh’s method, estimate the fundamental frequency of the lumped-mass sys-
tem shown in Fig. P12.2.

M, £ I = constant

S

FIGURE P12.2.

12.3 Estimate the fundamental frequency of the lumped-mass cantilever beam shown in
- Fig. P12.3.

1.5M, M, kg
: !E

DY JOREY SN

FIGURE P12.3.

AN

I=constant

12.4 Verify the results of Example 12.1.4 by using Eq. (12.1.3).
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Another form of Rayleigh’s quotient for the fundarﬁental frequency can be obtained by
starting from the equation of motion based on the flexibility influence coefficient

X = aMX
= w’aMX
Premultiplying by X" M, we obtain
X"™MX = 0’X"MaMX
and the Rayleigh quotient becomes
1o X ™™MX
X"™MaMX

Solve for w, in Example 12.1.4 by using the foregoing equation and compare the results
with those of Prob. 12.4.

Using the curve

w

y(x) = 3I—E31 G)z

solve Prob. 12.3 by using the method of integration. Hint: Draw shear and moment dia-
grams based on intertia loads.

Using the deflection
Y(x) = Yoy sin (mx/1),

determine the fundamental frequency of the beam shown in Fig. P12.7 (a) if EL, = EI,
and (b) if EI, = 4EI,.

el e |2
reag 2 T3
FIGURE P12.7.

Repeat Prob. 12.7, but use the curve

_ 4x( X
y(x) - ymaxl \1 1)

A uniform cantilever beam of mass m per unit length has its free end pinned to two

springs of stiffness k and mass m, each, as shown in Fig. P12.9. Using Rayleigh’s method,
find its natural frequency w,. ‘

'.mtp
EI

NARN TARNY

FIGURE P12.9.
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12.10 A uniform beam of mass M and stiffness K = EI/I?, shown in Fig. P12.10,is supported on
equal springs with total vertical stiffness of k Ib/in. Using Rayleigh’s method with the
deflection y,,,, = sin (wx/l) + b, show that the frequency equation becomes

Kat b
, 2k k 4 2
W= = =
M| 1 4b 5
-+ — +5b

2 T

By dw?/ab = 0, show that the lowest fréquency results when
T (1 Kﬁ) \/ w (1 K7r4> ]2 'K
b=——=\|z—-——|=|ZTlz~—=| vt 5
4\2 2% 2\2 2k 2k

LM

32
Z

22

FIGURE P12.10.

12.11 Assuming a static deflection curve

X x\? |
y(x) =ymax|:3(7) - 4(7) ]’ 0 \x\z

determine the lowest natural frequency of a simply supported beam of constant £7 and a
mass distribution of

X x
m(x) = m07(1 - l)
by the Rayleigh method.

12.12 Using Dunkerley’s equation, determine the fundamental frequency of the three-mass
cantilever beam shown in Fig. P12.12.

w2
W, B W3

L J

- | %>

o—to 'QL__\

FIGURE P12.12. : FIGURE P12.13.

L

~_ L
4 1
a m

12.13 Using Dunkerley’s equation, determine the fundamental frequency of the beam shown
in Fig. P12.13.

W, =W,  W,=4W, Wy=2W

12.14 A load of 100 Ib at the wing tip of a fighter plane produced a corresponding deﬂecti.on of
0.78 in. If the fundamental bending frequency of the same wing is 622 cpm, approximate.
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the new bending frequency when-a 320-1b fuel tank (including fuel) is attached to the
wing tip.

A given beam was vibrated by an eccentric mass shaker of mass 5.44 kg at the midspan,
and resonance was found at 435 cps. With an additional mass of 4.52 kg, the resonant fre-
quency was lowered to 398 cps. Determine the natural frequency of the beam.

Using the Rayleigh-Ritz method and assuming modes x// and sin(x/l), determine the

two natural frequencies and modes of a uniform beam pinned at the right end and
attached to a spring of stiffness k at the left end (Fig. P12.16).

LELm

%//

FIGURE P12.16.

For the wedge-shaped plate of Example 12.3.1, determine the first two natural frequen-
cies and mode shapes for bending vibration by using the Ritz deflection function
y=Cux*+ Cyx>

Using the Rayleigh-Ritz method, determine the first two natural frequencies and mode
shapes for the longitudinal vibration of a uniform rod with a spring of stiffness k;

attached to the free end, as shown in Fig. P12.18. Use the first two normal modes of the
fixed-free rod in longitudinal motion.

7 AE ko . 4 £, AE
4 3 gx o

FIGURE P12.18. * FIGURE P12.19.

Repeat Prob. 12.18, but this time, the spring is replaced by a mass m,, as shown in Fig.
P12.19. _

For the simply supported variable mass beam of Prob. 12.11, assume the deflection to be
made up of the first two modes of the uniform beam and solve for the two natural fre-
quencies and mode shapes by the Rayleigh—Ritz method.

A uniform rod hangs freely from a hinge at the top. Using the three modes o, = x/l,
¢, = sin(smx/l), and ¢; = sin(2mx/l), determine the characteristic equation by using the
Rayleigh—Ritz method.

Using Holzer’s method, determine the natural frequencies and mode shapes of the tor-
sional system of Fig. P12.22 whenJ = 1.0 kg - m? and K = 0.20 X 10° Nm/rad.

0 @ (3)

2K 3K

)

FIGURE P12.22.
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12,23 Using Holzer’s method, determine the first two natural frequencies and mode shapes of

12.24

12.25
12.26

12.27

M 12.28

the torsional system shown in Fig. P12.23 with the following values of J and K:
Jy=J,=J;=113kg -m?
J,=226kg -m?
K, = K, = 0169 Nm/rad x 108
K; = 0.226 Nm/rad X 10°

my
kq
@ o o0 me
K, K, Ks ko
ma
(7] ) ks
JI Jz Js
Ja 4
FIGURE P12.23. FIGURE P12.24.

Determine the natural frequencies and mode shapes of the three-story building of
Fig. P12.24 by using Holzer’s method for all m; = m and all k, = k.

Repeat Prob. 12.24 when m, = m,m, = 2m,m; = 3m,k, = k, k, = k,and k; = 2k.
Compare the equations of motion for the linear spring-mass system versus the torsional
system with the same mass and stiffness distribution. Show that they are similar.

Determine the natural frequencies and mode shapes of the spring-mass system of
Fig. P12.27 by the Holzer method when all masses are equal and stiffnesses are equal.

ky ky ks
my A mjp AW my AW my
- 02 0 o) [o] e [o] [o] [o]
T /i
FIGURE P12.27.

A fighter-plane wing is reduced to a series of disks and shafts for Holzer’s analysis, as
shown in Fig. P12.28. Determine the first two natural frequencies for symmetric and anti-

symmetric torsional oscillations of the wings, and plot the torsional mode corresponding
to each.

n Jlbin. - s? K1b-in./rad
1 50 ° . 15x 108
2 138 ' 30

3 145 2

4 181 36

5 260 120

6 1 x140,000
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0 40" 70" 105" 145" 200"

NN

FIGURE P12.28.

Determine the natural modes of the simplified model of an alrplane shown in Fig. P12.29
where M/m = n and the beam length /is uniform.

O )0 S5

FIGURE P12.29. FIGURE P12.30.

Using Myklestad’s method, determine the natural frequencies and mode shapes of the

two-lumped-mass cantilever beam of Fig. P12.30. Compare with previous results by using
influence coefficients.

Determine the first two natural frequencies and mode shapes of the three-mass can-
tilever of Fig. P12.31.

m_m m b 12 3 .
r ¢t et ¥V OO

FIGURE P12.31. FIGURE P12.32.

Using Myklestad’s method, determine the boundary equations for the simply supported
beam of Fig. P12.32. ‘

For the beam of Fig. P12.33, check that the boundary condition of zero deflection at the
left end is-satisfied for these natural frequencies when Myklestad’s method is used. That

is, check the deflection for change in sign when frequencies above and below the natural
frequency are used.

500 kg 100kg
A @; 5 O
i) 1 27 g
"_ I" 2 = 2_’1

FIGURE P12.33.
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12.34 Determine the flexure-torsion vibration for the system shown in Fig. P12.34.

msy

FIGURE P12.34, FIGURE P12.35.

12.35 Shown in Fig. P12.35 is a linear system with damping between masses 1 and 2. Carry out a
computer analysis for numerical values assigned by the instructor, and determine the
amplitude and phase of each mass at a specified frequency.

12.36 A torsional system with a torsional damper is shown in Fig. P12.36. Determine the
torque—frequency curve for the system.

gy =10
‘ l x;-s:n‘—wxacto’ ~
 — -
Km0 ] ¥
, J3=10
Jy=20 Ja=30
V=10

'FIGURE P12.36.

12.37 Determine the equivalent torsional system for the geared system shown in Fig. P12.37
and find its natural frequency.

g=1f U 40";

FIGURE P12.37. Jp=24
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12.38 If the small and large gears of Prob. 12.37 have the inertias J* = 2 and J” = 6, determine
the equivalent single shaft system and establish the natural frequencies.

12.39 Determine the lowest natural frequencies of the torsional system shown in Fig. P12.39 for
the following values of J, K, and n:

J, =151 - in. -s?
K, =2x10°1b - in./rad
J,=101b-in.- s?

K, = 1.6 X 10°Ib- in./rad
J,=181b- in. -5

K, =1x10%1lb- in./rad
J,=61b-in.'s?

K, =4x10°lb- in./rad
Speed ratio of the drive shaft to axle = 4to 1

What are the amplitude ratios of J, to J; at the natural frequencies?

J2 FIGURE P12.39.

12.40 Reduce the torsional system of the automobile shown in Fig. P12.40(a) to the equivalent

torsional system shown in Fig. P12 40(b) The necessary information is as follows:
J of each rear wheel = 9.21b - s?

J of flywheel = 12.31b - in. -

Transmission of speed ratio (drnve shaft of engine speed) =1.0t03.0
Differential speed ratio (axle to drive shaft) = 1.0 to 3.5

Axle dimensions = 1} in. diameter, 25 in. long (each)

Drive shaft dimensions = 1j in. diameter, 74 in. long

Stiffness of crankshaft between cylinders, measured experimentally = 6.1 X 10°
Ib - in./rad

Stiffness of crankshaft between cylinder 4 and fiywheel = 4.5 X 10°1b - in./rad

(

Je

(a)
FIGURE P12.40.
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M 12.41

12.42

12.43

12.44

12.45

12.46

1247

12.48
12.49

12.50

Assume that the J of each cylinder of Prob. 12.40 = 0.20 1b “in. - s? and determine the
natural frequencies of the system.

Determine the equations for the torsional system shown in Flg P12.42. Solve for the
principal modes of oscillation.

5
4 \ 0
3 2 { 40m 2m L
504 1 N N ———— - 13 -
k k k _ 2E!L
|
Georsrotio L L \,\
=51t01 ————A———-- ——TEN -
° J J J
4 I : O
FIGURE P12.42. FIGURE P12.45.

Apply the matrix method to a cantilever beam of length / and mass m at the end, and
show that the natural frequency equation is directly obtained.

Apply the matrix method to a cantilever beam with two equal masses spaced equally a dis-
tance /. Show that the boundary conditions of zero slope and deflection lead to the equation
ImwlK(S + imw*l’K)
L+ 3°Kma?
_ 1 +3me’’K + GmeI’K)’
2l + ime*’K

where K = I/El. Obtain the frequency equation from the foregoing relationship and
determine the two natural frequencies.

Using the matrix formulation, establish the boundary conditions for the symmetric and
antisymmetric bending modes for the system shown in Fig. P12.45. Plot the boundary
determinant against the frequency  to establish the natural frequencies, and draw the
first two mode shapes.

Do the same analysis as in Problem 12.30 with two jet engines of the plane placed various
distances from the body. How do the results depend on /, the distance?

Do the same analysis as in Problem 12.30 with four jet engines of the plane placed symmet-
rically about the body. The first pair is placed an arbitrary distance /, from the body and the
second pair is placed at the distance /, from the first. How do the results depend on [, /,?
Determine the fundamental frequency for the problem shown in Fig. P12.48 using the
Rayleigh method. Plot the dependency of the frequency on /.

Determine the fundamental frequency for the problem shown in Fig. P12.49 using
Dunkerley’s equation. Plot the dependency of the frequency on [, and [,.

Estimate the fundamental frequency for the two previous problems using the Rayleigh-
Ritz method.

6, =

\._4__‘
m

P SR
L

FIGURE P12.47. FIGURE P12.48.



CHAPTER 13

Random Vibrations

The types of functions we have considered up to now can be classified as deterministic,
i.e., mathematical expressions can be written that will determine their instantaneous
values at any time . There are, however, a number of physical phenomena that result in
nondeterministic data for which future instantaneous values cannot be predicted in a
deterministic sense. As examples, we can mention the noise of a jet engine, the heights
of waves in a choppy sea, ground motion during an earthquake, and pressure gusts
encountered by an airplane in flight. These phenomena all have one thing in common:
the unpredictability of their instantaneous value at any future time. Nondeterministic
data of this type are referred to as random time functions.

3.1 RANDOM PHENOMENA

A sample of a typical random time function is shown in Fig. 13.1.1. In spite of the irreg-

~ ular character of the function, many random phenomena exhibit some degree of statis-
tical regularity, and certain averaging procedures can be applied to establish gross
characteristics useful in engineering design.

In any statistical method, a large amount of data is necessary to establish reliabil-
ity. For example, to establish the statistics of the pressure fluctuation due to air turbu-
lence over a certain air route, an airplane may collect hundreds of records of the type
shown in Fig. 13.1.2.

Each record is called a sample, and the total collectlon of samples is called the
ensemble. We can compute the ensemble average of the instantaneous pressures in
each sample at time ¢,. We can also multiply the instantaneous pressures in each sam-
ple at times ¢, and ¢, + 7, and average these results for the ensemble. If such averages
do not differ as we choose different values of 7, then the random process described by
this ensemble is said to be stationary.

If the ensemble averages are replaced next by time averages, and if the results
computed from each sample are the same as those of any other sample and equal to
the ensemble average, then the random process is said to be ergodic.

395
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x(1)

FIGURE 13.1.1. A record of random time functions.

FIGURE 13.1.2. An ensemble of random time functions.

Thus, for a stationary ergodic random phenomenon, its statistical properties are
available from a single time function of a sufficiently long time period. Although such
random phenomena may exist only theoretically, its assumption greatly simplifies the
task of dealing with random variables. This chapter treats only this class of stationary
ergodic random functions.

13.2 TIME AVERAGING AND EXPECTED VALUE

Expected value. In random vibrations, we repeatedly encounter the concept of
time averaging over a long period of time. The most common notation for this opera-
tion is defined by the following equation in which x(¢) is the variable.

’ T
= = 1 — . .1
x(£) = (x(?)) lim 7 L x(2) dt (13.2.1)
This number is also equal to the expected value of x(t), which is written as
- ) T

Blx(0] = tim © fo A d 1322
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It is the average or mean value of a quantity sampled over a long t1me In the case of
discrete variables x,, the expected value is given by the equation

Elx] = lim ; Ex,. (13.2.3)
n—ow i=] .

Mean square value. These average operations can be applied to any vari_able
such as x2(¢f) or x(t) y(r). The mean square value, designated by the notation x? or
E[x%(t)],is found by integrating x*(f) over a time interval 7 and takmg its average value
according to the equation

T

Elx¥ ()] = x* = = lim —17: Jr x*de : - (13.24)

Variance and standard deviation. It is often desirable to consider the time
series in terms of the mean and its fluctuation from the mean. A property of impor-
tance describing the fluctuation is the variance o2, which is the mean square value
about the mean, given by the equation

T
1 _

o’ = lim —J’ (x —x)*dt ‘ (13.2.5)
Ty

Tow

By expanding the above equation, it is easily seen that

o =x2 - (x)? (13.2.6)

so that the variance is equal to the mean square value minus the square of the mean.
The positive square root of the variance is the standard deviation, o.

Fourier series. 'Generally, random time functions contain oscillations of many
frequencies, which approach a continuous spectrum. Although random time functions
are generally not periodic, their representations by Fourier series, in which the periods
are extended to a large value approaching infinity, offers a logical approach.

In Chapter 1, the exponential form of the Fourier series was shown to be

x(t) = Deemt =y + (et + creminon) (13.2.7)
—w n=1

This series, which is a real function, involves a summation over negative and positive
frequencies, and it also contains a constant term c,. The constant term ¢, is the average
value of x() and because it can be dealt with separately, we exclude it in future consid-
erations. Moreover, actual measurements are made in terms of positive frequenc1es
and it would be more desirable to work with the equation

x(t) = Re Ec,,e""wi' (13.2.8)
n=1

The one-sided summation.in the previous equation is complex and, hence, the
real part of the series must be stipulated for x(7) real. Because the real part of a vector
is one-half the sum of the vector and its conjugate [see Eq. (1.1.9)],
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x() = Re D, Ce™ = = (Ce' + Cle ")
n=1 =1

N =
k)

By comparison with Eq. (1.2.6), we find

)
C,=2,= j  x(f)em et gt

s (132.9)

o

=a, —ib,

EXAMPLE 13.2.1

Determine the mean square value of a record of random vibration x(#) containing many discrete
frequencies.

Solution Because the record is periodic, we can represent it by the real part of the Fourier

series:

x(f) = Re >, C e

n=1

i * pinwgl 4 C*e——inwut)
n

A Ni=

n=
where C, is a complex number, and C} i
square value is

is its complex conjugate. [See Eq. (13.2.9).] Its mean

2 : 1 1$ ©, —inw 2
xt = Jim T,[ 32 (e + Cre )t
© 1 C2er2nmﬂr C*2e—i2nw0r T
=1 -z +2C.Cr + —"—)
T 21 4( ine T TG T TonaT ),

NI'—‘

Siaa=3ilck-3a

In this equation, e* e for any ¢, is bounded between =1, and due to T — «in the denqmina-
tor, the first and last terms become zero. The middle term, however, is independent of 7. Thus,
the mean square value of the periodic function is simply the sum of the mean square value of
each harmonic component present.

'13.3 FREQUENCY RESPONSE FUNCTION

In any linear system, there is a direct linear relatlonshlp between the inpyg and the out-
put. This relationship, which also holds for random functions, is represented by the
block diagram of Fig. 13.3.1.

In the time domain, the system behavior can be determined in terms of the sys-
tem impulse response h(f) used in the convolution integral of Eq. (4.2.1).

W) = L H(Oh(t - &) d¢ | @3
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Input ~(7) System Output y(#)
h(t)

FIGURE 13.3.1. Input-output relationship
of a linear system.

A much simpler relationship is available for the frequency domain in terms of the fre-
quency response function H(w), which we can define as the ratio of the output to the
input under steady-state conditions, with the input equal to a harmonic time function
of unit amplitude. The transient solution is thus excluded in this consideration. In ran-
dom vibrations, the initial conditions and the phase have little meaning and are there-

fore ignored. We are mainly concerned with the average energy, which we can
associate with the mean square value.

Applying this definition to a single-DOF system,
my + cy + ky = x(¢) (13.3.2)

let the input be x(f) = e’“’. The steady-state output will then be y = H{w)e!*!, where

H(w) is a complex function. Substituting these into the differential equation and can-
celing e’ from each side, we obtain

(-mw? + icw + k)H(w) = 1
The frequency response function is then
1
k — mo? + icw
1 1
k1-(0/w)+i2dw/w,)

" As mentioned in Chapter 3, we will absorb the factor 1/k in with the force. H(w) is then
anondimensional function of w/w, and the damping factor .

The input-output relationship in terms of the frequency-response function can
be written as

H(w)
(13.3.3)

y(f) = H(w)F e : - (1334)

where Fe'“! is a harmonic function.

For the mean square response, we follow the procedure of Example 13.2.1 and

write
y = ;F,(He™ + H*e ™) (133.5)
Thus, by squaring and substituting into Eq. (13.2.4), we find the mean square value of y is
— F2 l T
2= —1lim ~ J (H%™" + 2HH* + H*e™2*") dt
4 75=TJ,

(13.3.6)
F

= B fw)r(e) = RIHW)?
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In the preceding equation, the first and last terms become zero because of T - oo
in the denominator, whereas the middle term is independent of 7. Equation (13.3.6)
indicates that the mean square value of the response is equal to the mean square exci-
tation multiplied by the square of the absolute values of the frequency response func-
tion. For excitations expressed in terms of Fourier series with many frequencies, the
response is the sum of terms similar to Eq. (13.3.6). :

EXAMPLE 13.3.1

A single-DOF system with natural frequency w, = Vk/m and damping ¢ = 0.20 is excited by
the force

F(t) = Fcosjw, + Fcos w,t + Fcosiwt

= 2 Fcos mw,t

m=1/2,1,3/2

Determine the mean square response and compare the output spectrum with that of the
input.

Solution The response of the system is simply the sum of the response of the single-DOF sys-
tem to each of the harmonic components of the exciting force.

x()= D |Hmo)|Fcos (mw,t — ¢,)
m=1/2.1.3/2 _
where
1/k 129
H(L = — = = 7
| (an)i A /9/16 + (020)2 k
1/k 2.50
H - Rk &R
|H(w,)| oo -k
| 1/k 0.72
HE = =
(e, V25/16 + 9(020)> kK
b= taﬂ—l%{ = 0.0837

¢, = tan"'wo = 0.507r

¢, =tan”! %25 = —0.1427

Substituting these values into x(t), we obtain the equation
F
x(1) = e [1.29 cos (0.5t — 0.0837)

+ 2.50 cos (w,t — 0.507)]

+ 0.72 cos (1.5w,t + 0.142m)]
“The mean square response is’then

X = 25,:—2 [(129)? + (250)* + (0.72)]
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Mean square
input

o 0.5 10 5
. w/w,

output

|
0.5 1.0 1.5

w/w,

FIGURE 13.3.2. Input and output
spectra with discrete frequencies.

Mean square

o

Figure 13.3.2 shows the input and output spectra for the problem. The components of the
mean square input are the same for each frequency and equal to F2/2. The output spectrum is
modified by the system frequency-response function.

13.4 PROBABILITY DISTRIBUTION

By referring to the random time function of Fig. 13.4.1, what is the probability of its
instantaneous value being less than (more negative than) some specified value x,? To
answer this question, we draw a horizontal line at the specified value x, and sum the

* time intervals At; during which x(¢) is less than x,. This sum divided by the total time
then represents the fraction of the total time that x(t) is less than x,, which is the prob-
ability that x(¢) will be found less than x,.

P(x;) = Prob[x(z) < x;]
13.4.1
= lim = > Ay ( :

teee f

If a large negative number is chosen for x,, none of the curve will extend negatively
beyond x,, and, hence, P(x; — —c) = 0. As the horizontal line corresponding to x, is
moved up, more of x() will extend negatively beyond x,, and the fraction of the total

x(1)

Pix)

o
1
-

At aty ~atg

FIGURE 13.4.1. Calculation of cumulative probability.
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(a) - Plx)

()

FIGURE 13.4.2. (a) Cumulative
probability, (b) Probability density.

time in which x(¢) extends below x, must increase, as shown in Fig. 13.4.2(a). As x — oo,
all x(¢) wili lie in the region less than x = =, and, hence, the probability of x(f) being less
than x = = is certain, or P(x = ) = 1.0. Thus, the curve of Fig. 13.4.2(a), which is
cumulative toward positive x, must increase monotonically from 0 atx = —~ to 1.0 at
x = + =, The curve is called the cumulative probability distribution function P(x).

If next we wish to determine the probability of x(¢) lying between the values x;,
and x, + Ax, all we need to do is subtract P(x,) from P(x, + Ax), which is also propor-
tional to the time occupied by x(¢) in the zone x, to x, + Ax.

We now define the probability density function p(x) as

P(x + Ax) — P(x) _ dP(x)
Ax T dx

and it is evident from Fig. 13.4.2(b) that p(x) is the slope of the cumulative probability
distribution P(x). From the preceding equation, we can also write

(13.4.2)

P(x,) = f Ip()c) dx (13.4.3)

The area under the probability density curve of Fig. 13.4.2(b) between two values
of x represents the probability of the variable being in this interval. Because the proba-
b111ty of x(f) being between x = = is certain,

+oo

P(°°)=J' p()dx=10 (13.4.4)

and the total area under the p(x) curve must be unity. Figure 13.4.3 again illustrates the
probability density p(x), which is the fraction of the time occupied by x(¢) in the inter-
valx tox + dx.

The mean and the mean square value, previously défined in terms of the time
average, are related to the probability density function in the following manner. The
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FIGURE 13.4.3.

plx)
e
S E—- X
Ax
e — % — o

FIGURE 13.4.4. First and second
moments of p(x).

mean value X coincides with the centroid of the area under the probability density
curve p(x), as shown in Fig.13.4.4. Therefore, it can be determined by the first moment:

x= J xp(x) dx (134.5)

Likewise, the mean square value is determined from the second moment

x? = J x?p(x) dx | (13.4.6)

which is analogous to the moment of inertia of the area under the probabllity densnty
curve about x = 0.

The variance o2, previously defined as the mean square value about the mean, is

o= r (x — x)°p(x) dx

= [ a2 [ parr @ [ p9ac an
2 -+ @
- @

I
=

I
=l
™~
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The standard deviation o is the positive square root of the variance. When the mean

value is zero, ¢ = V x2, and the standard deviation is equal to the root-mean-square
(rms) value. '

Gaussian and Rayleigh distributions. Certain distributions that occur fre-
quently in nature are the Gaussian (or normal) distribution and the Rayleigh distribu-
tion, both of which can be expressed mathematically. The Gaussian distribution is a

bell-shaped curve, symmetric about the mean value (which will be assumed to be zero)
with the following equation:

plx) = \}5_ g X2 (13.4.8)
o T

The standard deviation o is a measure of the spread about the mean value; the smaller

the value of o, the narrower the p(x) curve (remember that the total area = 1.0), as
shown in Fig. 13.4.5(a).

In Fig. 13.4.5(b), the Gaussian distribution is plotted nondimensionally in terms

of x/a. The probability of x(f) being between +Ag, where A is any positive number, is
found from the equation

1
oV2r

The following table presents numerical values associated with A = 1,2, and 3.

Ao
Prob [~Ac = x(1) = Ac] = [ e X129 dx (13.4.9)
J —Ao

A Prob[-Ac=x(t) =As]  Prob[jx| > Ad]
1 68.3% 31.7%
2 95.4% 4.6%
3 99.7% 0.3%

. pix)
0.393

X —3-24 0 1 2 3

. (a) (b)
FIGURE 13.4.5. Normal distribution.

Q=
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The probability of x(¢) lying outside + Ao is the probability of |x| exceeding A, which is
1.0 minus the preceding values, or the equation

2 Jme_xz/zgz dx = erfc(—A") (13.4.10)
oV2m i \/E . o

Random variables restricted to positive values, such as thé absolute value A of

the amplitude, often tend to follow the Rayleigh distribution, which is defined by the
equation

Prob [|x| > Ag] =

A A2/ 2 . i
plA) = —e™7  A>0 (13.4.11)

The probability density p(A4) is zero here for A < 0 and has the shape shown in Fig. 13.4.6.
The mean and mean square values for the Rayleigh distribution can be found
from the first and second moments to be

o

— ” Ar /
A=J Ap(A)dA=J — e A 4A = o
0 0 O

g (134.12)

— A3
A= J A p(A)dA = J f‘—z-e-A"/zvsz =202
0 0 O

]

[3S]

The variance associated with the Rayleigh distribution is

oy =AY (AP = (4;17)02
(13.4.13
g = 2 )
SOy = 3 a
Also, the probability of A exceeding a specified value Ao is
" TA
Prob [A > Ag] = j —e A da (13.4.14)
AT

p(A)
1|
i Roy,eigh distribution

\
\

[ 4
g/

04
0.3

02 I

ol NNy
-0 2 3 4
FIGURE 13.4.6. Rayleigh distribution.

T~
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which has the following numerical values:

A PlA > \d]
0, 100%
1’ 60.7%
2 - 13.5%
3 12%

Three important examples of time records frequently encountered in practice
are shown in Fig. 13.4.7, where the mean value is arbitrarily chosen to be zero. The
cumulative probability distribution for the sine wave is easily shown to be

P(x) = % + }Tsin"'%
and its probability density, by differentiation, is
1
plx) = Yyt el < A
=0 x| > A

For the wide-band record, the amplitude, phase, and frequency all vary randomly
and an analytical expression is not possible for its instantaneous value. Such functions
are encountered in radio noise, jet engine pressure fluctuation, atmospheric turbu-
lence, and so on, and a most likely probability distribution for such records is the
Gaussian distribution. .

When a wide-band record is put through a narrow-band filter, or a resonance sys-
tem in which the filter bandwidth is small compared to its central frequency f, we
obtain the third type of wave, which is essentially a constant-frequency oscillation with

Sine wave Wide-band record Narrow-band record

X

-A 9] A
FIGURE 13.4.7. Probability functions for three types of records.

%{éﬁ-_ B
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slowly varying amplitude and phase. The probability distribution for its instantaneous
values is the same as that for the wide-band random function. However, the absolute
values of its peaks, corresponding to the envelope, will have a Rayleigh distribution.

Another quantity of great interest is the distribution of the peak values. Rice!
shows that the distribution of the peak values depends on'a quantity N, /2M, where N,
is the number of zero crossings, and 2M is the number of positive and negative peaks.
For a sine wave or a narrow band, N is equal to 2M, so that the ratio N;/2M = 1.For a
wide-band random record, the number of peaks will greatly exceed the number of zero
crossings, so that N,/2M tends to approach zero. When N,/2M = 0, the probability
density distribution of peak values turns out to be Gaussian, whereas when
N,/2M = 1,as in the narrow-band case, the probability density distribution of the peak
values tends to a Rayleigh distribution.

13.5 CORRELATION -

Correlation is a measure of the similarity between two quantities. As it applies to
vibration waveforms, correlation is a time-domain analysis useful for detecting hidden
periodic signals buried in measurement noise, propagation time through the structure,
and for determining other information related to the structure’s spectral characteris-
tics, which are better discussed under Fourier transforms.

Suppose we have two records, x,(f) and x,(t), as shown in Fig. 13.5.1. The correla-
tion between them is computed by multiplying the ordinates of the two records at each
time ¢ and determining the average value {(x,(¢)x,(¢)) by dividing the sum of the prod-
ucts by the number of products. It is evident that the correlation so found will be
largest when the two records are similar or identical. For dissimilar records, some of
the products will be positive and others will be negative, so their sum will be smaller.

Next, consider the case in which x,(¢) is identical to x,(¢) but shifted to the left by
a time 7, as shown in Fig. 13.5.2. Then, at time (), when x, is x(¢), the value of x, is

x(t + 1), and the correlation is given by {(x(t)x(t + 7)). Here, if 7 = 0, we have complete
correlation. As tincreases, the correlation decreases. '

x4(t)

™\ ~

N t

<7~ ,
N AN
A/ S S G

xa(t)

FIGURE 13.5.1. Correlation between x,(f) and x,(1).

!See Ref. [8].
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N VAN

|‘T°l \J\/J ~ t
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eV =

FIGURE 13.5.2. Function x(¢) shifted by 7.

It is evident that this result can be computed from a single record by multiplying
the ordinates at time  and ¢ + 7 and determining the average. We then call this result

the autocorrelation and designate it by R(7). It is also the expected value of the product
x()x(t + 7), or

" R(7) = Elx()x(r + 7\] = (x()x(t + 7))
' T 5.1
= lim lTJ ?x(t)x(t + 7)dt (1331

-T/2

When 7 = 0, this definition reduces to the mean square value:
R(0) = x2 = &? (1352)

Because the second record of Fig. 13.5.2 can be considered to be delayed with respect to
the first record, or the first record advanced with respect to the second record, it is evi-
dent that R(7) = R(— ) is symmetric about the origin 7 = 0 and is always less than R(0).

Highly random functions, such as the wide-band noise shown in Fig. 13.5.3, soon
lose their similarity within a short time shift. Its autocorrelation, therefore is a sharp
spike at 7 = 0 that drops off rapidly with *r7 as shown. It implies that wide-band ran-
dom records have little or no correlation except near 7 = 0.

For the special case of a periodic wave, the autocorrelation must be periodic of
the same period, because shifting the wave one period brings the wave into coinci-
dence again. Figure 13.5.4 shows a sine wave and its autocorrelation.

For the narrow-band record shown in Fig. 13.5.5, the autocorrelation has some of
the characteristics found for the sine wave in that it is again an even function with a
maximum at 7= 0 and frequency o, corresponding to the dominant or central fre-
quency. The difference appears in the fact that R(7) approaches zero for large 7 for the
narrow-band record. It is evident from this discussion that hidden periodicities in 2
noisy random record can be detected by correlating the record with a sinusoid. There
will be almost no correlation between the sinusoid and the noise that will be sup-
pressed. By exploring with sinusoids of differing frequencies, the hidden periodic sig-
nal can be detected. Figure 13.5.6 shows a block diagram for the determination of the
autocorrelation. The signal x(¢) is delayed by = and multiplied, after which it is inte-
grated and averaged. The delay time ris fixed during each run and is changed in step$
or is continuously changed by a slow sweeping technique. If the record is on magnetic
tape, the time delay 7 can be accomplished by passing the tape between two identical
pickup units, as shown in Fig. 13.5.7.
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Rir)
Wide-band noise x(1)

vqu—f
) T

FIGURE 13.5.3. Highly random function and its autocorrelation.

Type of record Autocorrelation

.
_A
Sine weve x()=Asin (wqt +6) R(r) = 5cos wgr

NAN
IAVAVAV

- FIGURE 13.5.4. Sine wave and its autocorrelation.

R(r)=ce ™ ¢cos wg!

Narrow-band response

FIGURE 13.5.5. Autocorrelation for the narrow-band record.

x(t)

x(t) x(t +7) |Integrator | R(r)
—>= and [

averager

Multiplier

Time delay||x(s + 7)
T

FIGURE 13.5.6. Block diagram of the autocorrelation analyzer.

f—T—

J [ &
il Mt —
FIGURE 13.5.7. Time delay for
autocorrelation.
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FIGURE 13.58. /A

Cross correlation. Consider two random quantities x(f) and y(¢). The correla-
tion between these two quantiiies is defined by the equation
R,(7) = Elx(dy(t + ] = (x(t)y(z + 7))
1 (™" (13.5.3)
lim T J x()y(t + 7) dt

T ~T/2

which can also be called the cross correlation between the quantities x and y.

Such quantities often arise in dynamical problems. For example, let x(¢) be the
deflection at the end of a beam due to a load F,() at some specified point. y(¢) is the
deflection at the same point, due to a second load F,(¢) at a different point than the first,
as illustrated in Fig. 13.5.8. The deflection due to both loads is then z(¢) = x(¢) + y(¢),
and the autocorrelation of z(¢) as a result of the two loads is

R(7) = (z(n)z(¢ + 7))
= ([x(&) + yOllx(t + 7) + y(t + 7))
= (x()x(t + 7)) + (x(y(t + 7)) (13.5.4)
+ (y(0x(e + 7)) + (Y(Oy(e + 7))
= R(7) + R (1) + R (1) + R(7) -

Thus, the autocorrelation of a deflection at a given point due to separate loads F,(¢)
and F,(¢) cannot be determined simply by adding the autocorrelations R (7) and R y( T)
resulting from each load acting separately. R, (7) and Ryx(T) are here referred to as
cross correlation, and, in general, they are not equal.

EXAMPLE 13.5.1

Show that the autocorrelation of the rectangular gating function shown in Fig. 13.5.9 is a triangle.

Y A2

e r— |
- — 1

FIGURE 13.5.9. Autocorrelation of a rectangle is a triangle.




Section 13.6 Power Spectrum and Power Spectral Density 411

Solut_ion If the rectangular pulse is shifted in either direction by 7, its product with the origi-
nal pulse is A%(T — 7). It is easily seen then that starting with 7 = 0, the autocorrelation curve is a
straight line that forms a triangle with height A and base equal to 27..

POWER SPECTRUM AND POWER SPECTRAL DENSITY

The frequency composition of a random function can be described in terms of the
spectral density of the mean square value. We found in Example 13.2.1 that the mean
square value of a periodic time function is the sum of the mean square value of the
individual harmonic component present.

i 1
2
Thus x? is made up of discrete contrlbutlons in each frequency interval Af.

We first define the contribution to the mean square in the frequency interval Af
as the power spectrum G(f):

G(f,) = C,Cx (136.1)
The mean square value is then '

x2 = i G(f) (13.6.2)

n=1

We now define the discrete power spectral density S(f,) as the power spectrum
divided by the frequency interval Af:

G _ GCx
S(f) = Y 2af (13.6.3)
The mean square value can then be written as
= > S(f)Af (13.6.4)
n=1

The power spectrum and the power spectral density will hereafter be abbreviated as
PS and PSD, respectively.

An example of discrete PSD is shown in Fig. 13.6.1. When x(¢) contains a very large
number of frequency components, the lines of the discrete spectrum become closer

S(fn)
| Af!
|<4£1 lcncn*
} } 2 T Af
' \I |
1] ]
0 ]

FIGURE 13.6.1. Discrete spectrum.
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together and they more nearly resemble a continuous spectrum, as shown in Fig. 13.6.2.

We now define the PSD, S(f), for a continuous spectrum as the limiting case of S(f,) as.

Af — 0.
lim S(£,) = S(f) (136.5)
The mean square value is then
xi= J S(f) df (13.6.6)
0 .

To illustrate the meaning of PS and PSD, the following experiment is described.
A Xtal accelerometer is attached to a shaker, and its output is amplified, filtered, and
read by a rms voltmeter, as shown by the block diagram of Fig. 13.6.3. The rms volt-
meter should have a long time constant, which corresponds to a long averaging time.

We excite the shaker by a wide-band random input that is constant over the fre-
quency range 0 to 2000 Hz. If the filter is bypassed, the rms voltmeter will read the rms
vibration in the entire frequency spectrum. By assuming an ideal filter that will pass
all vibrations of frequencies within the passband, the output of the filter represents a
narrow-band vibration.

We consider a central frequency of 500 Hz and first set the upper and lower cut-
off frequencies at 580 and 420 Hz, respectively. The rms meter will now read only the
vibration within this 160-Hz band. Let us say that the reading is 8g. The mean square
value is then G(f,) = 64g? and its spectral density is S(f,) = 64g%/160 = 0.40g?>/Hz.

We next reduce the passband to 40 Hz by setting the upper and lower filter fre-
quencies to 520 and 480 Hz, respectively. The mean square value passed by the filter is
now one-quarter of the previous value, or 16g2, and the rms meter reads 4g.

S(f)

S(f)df

O kg

FIGURE 13.6.2. Continuous spectrum.

- —— G

Xtal . RMS
Accel Amp! Filter | meter

FIGURE 13.6.3. Measurement of random data.
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By reducing the passband further to 10 Hz, between 505 Hz and 495 Hz, the rms
meter reading becomes 2g, as shown in the following tabulation:

Frequencies Band- RMS Meter Filtered Spectral
S width Reading Mean Square Density
—=t - A(x?
f af Ve(x?) ar)=ad) sy =2 f)
580-420 160 8g 64g? 0.40g*/Hz
520-480 40 4g 16g2 0.40g?/Hz
505495 10 2g 4g? 0.40g%/Hz

Note that as the bandwidth is reduced, the mean square value passed by the filter, or

G(f,), is reduced proportionally. However, by dividing by the bandwidth, the density

of the mean square value, S(f,), remains constant. The example clearly points out the
advantage of plotting S(f, ) instead of G(f,).

The PSD can also be expressed in terms of the delta function. As seen from

- Fig. 13.6.4, the area of a rectangular pulse of height 1/Af and width Afis always unity,

and in the limiting case, when Af — 0, it becomes a delta function. Thus, S(f) becomes

o e G(f) B
S(f) = l}TOS(fﬁ) = lim A G(f) &(f - f3)

Typical spectral density functions for two common types of random records are
shown in Figs, 13.6.5 and 13.6.6. The first is a wide-band noise-type of record that has a

Af
el
KR limpgrog =
a Mar—~o 8=t
AF
i
0 f o 7 f

n

FIGURE 13.6.4. LimA,_,(,Zl—}-r = &(f - f,)-
F() ﬂ ‘ p" !m -
’

S

f

FIGURE 13.6.5. Wide-band record and its
spectral density.
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sir)
FIGURE 13.6.6. Narrow-band record and its spectral
density.
f + 4f
feaf
. ] % |
x(t) Filter ¢ _| Squarer| © J¢
Af " |averager ~ S(f)af
Division
S(f) by 4f

FIGURE 13.6.7. Power spectral density analyzer.

broad spectral density function. The second is a narrow-band random record that is
typical of a response of a sharply resonant system to a wide-band input. Its spectral
density function is concentrated around the frequency of the mstantaneous variation
within the envelope. .

The spectral density of a glven record can be rneasured electronically by the cir-
cuit of Fig. 13.6.7. Here the spectral density is noted as the contribution of the mean
square value in the frequency interval Af which is divided by Af.

A(x?)

S(f) = lim = 7

The band-pass filter of passband B = Af passes x(¢) in the frequency interval f to
f+ Af, and the output is squared, averaged, and divided by Af. '
For high resolution, Af should be made as narrow as possible; however, the pass-

band of the filter cannot be reduced indefinitely without losing the reliability of the.
measurement. Also, a long record is required for the true estimate of the mean square
value, but actual records are always of finite length. It is evident now that a parameter

of importance is the product of the record length and the bandwidth, 2 BT, which must
sufficiently large.2

(13.6.7)

2See J. S. Bendat, and A. G. Piersol, Random Data (New York: John Wiley & Sons, 1971), p. 96.
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EXAMPLE 13.6.1
A random signal has a spectral density that is a constant
S(f) = 0.004 cm?/cps

between 20 and 1200 cps and that is zero outside this frequency range. Its mean value is 2.0 cm.
Determine its rms value and its standard deviation.

Solution The mean square value is found from

. £ 1200
ﬁzfﬂﬂ#=J‘wm#=m2
0

20

and the rms value is
rms = \/?=\/ﬁ=2.17cm
The variance o? is defined by Eq. (13.2.6):
o =x? - (x)?
=472 -22=072
and the standard deviation becomes
o=V072 = 0.85cm

The problem is graphically displayed by Fig. 13.6.8, which shows the time variation of the signal
and its probability distribution.

x(1)

2.0

FIGURE 13.6.8.

EXAMPLE 13.6.2

Determine the Fcuricr coefficients C, and the power spectral density of the periodic function
shown in Fig. 13.6.9.

(1)

)

|

N O

o W~——r——»| i
FIGURE 13.6.9.

—_
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Solution The periodis 2T and C, are

) T/2
Co= —J’ Fdé=F,

2T -T2
T/2 .
2 y sin (n/2) ]
= — F, "“l’o‘fd = - 7
Cr 2T J—T/Z o ¢ FO[ nm/2

Numerical values of C, are computed as in the folloWing table and plotted in Fig. 13.6.10.

n =z sin 5 ic,
0 0 0 LB =10%
1 3 1 (2)% =o0636%
2 T 0 S 0
I ( Fq Fy
3 F -1 (-2)% =o0212%
4 2 0
0
T 0 I'H
5 1 (2)% =0127%
Ca
Fo
1.0
”~ T .
77 o636
/| \ ‘
P S yd I . T AS| ,L-g"llgl-l "
- N o 1 2~1--% 5 6
_ -0.212

FIGURE 13.6.10. Fourier coefficients versus n. -

The mean square value is determined from the equation

x2 =

im
— o

—

N,
N[

J TTx 1) dt

J’ Z [ 2 (C"ei"‘"‘“ + C:e—inmor)] dt

T n

i
'f..'—.:
8
N
~1|"

C ~
2

= *

]
Ms
;ﬁ

X
1
—_

0
and because x? = J

©

S{(w) dw, the spectral density function can be represented by a series of
delta functions:

'Sf(w) = i C,,2C,",‘ 8w — nwy)

n=1

e
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3.7 FOURIER TRANSFORMS

The discrete frequency spectrum of periodic functions becomes a continuous one
when the period T is extended to infinity. Random vibrations are generally not peri-
odic and the determination of its continuous frequency spectrum requires the use of
the Fourier integral, which can be regarded as a limiting case of the Fourier series as
the period approaches infinity. '

The Fourier transform has become the underlying operation for the modern time
series analysis. In many.of the modern instruments for spectral analysis, the calculation
performed is that of determining the amplitude and phase of a given record.

The Fourier integral is defined by the equation

o

x(t) = J X(f)e" df (13.7.1)

In contrast to the summation of the discrete spectrum of sinusoids in the Fourier series,
the Fourier integral can be regarded as a summation of the continuous spectrum of

sinusoids. The quantity X(f) in the previous equation is called the Fourier transform of
x(t), which can be evaluated from the equation

o

X(f) = J x(H)e 271 dy (13.7.2)

—00

Like the Fourier coefficient C , X( f) is a complex quantity which is a continuous func-
“tion of f from —o to +o. Equation (13.7.2) resolves the function x(f) into harmonic
components X(f) whereas Eq. (13.7.1) synthesizes these harmonic components to the

original time function x(#). The two previous equations above are referred to as the
Fourier transform pair.

Fourier transform (FT) of basic functions. To demonstrate the spectral charac-
ter of the FT, we consider the FT of some basic functions. - :

EXAMPLE 13.7.1

x(f) = Ae'2™f (a)
From Eq.(13.7.1), we have

Aelhi = J x(e™" df

©

Recognizing the properties of a delta function, this equation is satisfied if

X(f) = As(f-f,) (b)
Substituting into Eq. (13.7.2), we obtain

S(f—fn) — J e—izﬂ'(f_fn)l d

-

/
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X(f)

AS(f-1,)

—f
) f, f

FIGURE 13.7.1. FT of Ae?™.

The FT of x(t) is displayed in Fig. 13.7.1, which demonstrates its spectral character.

=
EXAMPLE 13.7.2
x(t) = a, cos 2nf,t) (a)
Because .
cos 2mf,t = (e + ¢~i2mh)
the result of Example 13.7.1 immediately gives
X(f) = FL8(F = £) + o + £)] | (b)

Figure 13.7.2 shows that X( f) is a two-sided function of f.
X (f) reat axis

9n 9ngif_
S 601+ £,) 2 5(f - 1)

~f —f, -0 o f
FIGURE 13.7.2. FTofa, cos 27f 1.
In a similar manner, the FT of b, sin 27t is
N
X(f) = =i (37~ £) - 8(F + £)]
which is shown on the imaginary plane of Fig. 13.7.3.

X(f) i-axis

’ b—é’ blr+f,)

—fp 0

>
-

b
—25'- o(F=1)
FIGURE 13.7.3. Ftof b, sin 2xf.
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FIGURE 13.7.4 FTofa, cos2uf,t + b, sin 2af 1.

If we put the two FTs together in perpendicular planes, as shown in Fig. 13.7.4, we obtain
the complex conjugate coefficients C, = a, — ib, and C} = a, + ib,. Thus, the product
G.Cr

1
e Z(ﬂﬁ +bl) = c,ct

is the square of the magnitude of the Fourier series, which is generally plotted at = f.

EXAMPLE 13.7.3

We next determine the FT of a rectangular pulse, which is an example of an aperiodic function.
(See Fig.13.7.5.) Its FT is

x()= |

—oo

0

T2

x()e 2" dy = J

Ae M gt = AT( sin mfT T)
-T/2

7fT

x(t) x(f)

A\

JV

ni~
[e)
N~

|
|
|
|
|
!
|
J

FIGURE 13.7.5. Rectangular pulse and its spectra.

Note that the FT is now a continuous function instead of a discontinuous function. The product

XX*, which is a real number, is also plotted here. Later it will be shown to be equal to the spec-
tral density function.
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FTs of derivatives. When the FT is expressed in terms of w instead of f, a factor
1/24ris introduced in the equation for x(¢):

x(6) = il;J X(w)e do (137.3)

X(w) = J x(t)e ™ dt (13.7.4)

This form is sometimes preferred in developing mathematical relationships. For exam-
ple, if we differentiate Eq. (13.7.3) with respect to ¢, we obtain the FT pair:
r <]

() = %T J [i0X(w)]e® do

iwX(w) = J x(t)e @ dt
Thus, the FT of a derivative is simply the FT of the function multiplied by iw:
FT[x(t)] = iwFT[x(1)] (13.7.5)
Differentiating again, we obtain
FT[x(t)] = —w*FT[x(1)] (13.7.6)

These equations enable one to conveniently take the FT of differential equations. For
example, if we take the FT of the differential equation

my + ¢y + ky = x(t)

we obtain

(—mw? + iwc + k)Y () = X(w)
where X(w) and Y(w) are the FT of x(f) and Y(¢), respectively.

Parseval's theorem. Parseval’s theorem is a useful tool for converting time inte-
gration into frequency integration. If X,(f) and X,(f) are Fourier transforms of real
time functions x,(¢) and x,(¢), respectively, Parseval’s theorem states that
| a@e@a= | xoxoa
- N (13.7.7)
*

- [ Kmna

This relationship may be proved using the Fourier transform as follows:

210 = x,00) J X,(f)e df

J ;xl(t)xz(t) dt = J_ x(1) f X,(f)e 1" df di

.
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= fm X, ( f)[ fmxz(t)e‘?"ff' dt] df

- [ xxpa

All the previous formulas for the mean square value, autocorrelation, and cross corre-
lation can now be expressed in terms of the Fourier transform by Parseval’s theorem.

EXAMPLE 13.7.4

Express the mean square value in terms of the Fourier transform. Lettmg x,(t) = x,(t) = x(¢),
and averaging over T, which is allowed to go to «, we obtain

T/2
X2 = lim lT J x2(t) dt = J:m lim lTX( HX*(f)df

-T/2

Comparing this with Eq. (13.6.6), we obtain the relationship

S(£.) = lim ZX(XA() - ' (1378)

where S(f.) is the spectral density function over positive and negative frequencies.

EXAMPLE 13.7.5

Express the autocorrelation in terms of the Fourier transform. We begin with the Fourier trans-
form of x(t + 7):

x(t+7) = J X(f)ei2r D gf
Substituting this into the expression for the autocorrelation, we obtain

R(7)

lim 1 j x(Ox(t + 7) dt

lim —'J x(1) J X(f)e? eI dfdy

f lT[ j x(@)ei " dt:IX( fer™ df

= [ [im Zxeptp |eroray

By substituting from Eq. (13.7.8) the preceding equation becomes

R(7) = f S(f)ei2™’* df (13.79)
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The inverse of the preceding equation is also available from the Fourier transform:

©

S(f) = J R(7)e?"" dr (13.7.10)

Because R(7) is symmetric about 7 = 0, the last equation can also be written as

®

S(f) = 2j R(7) cos 2mwfrdr ' (13.7.11)
0

These are the Wiener—Khintchine equations, and they state that the spectral density function is
the FT of the autocorrelation function.

As a parallel to the Wiener-Khintchine equations, we can define the cross correlation
between two quantities x(f) and y(t) as

1 "
Ry(1) = (x(y(c + ) = tim + j yle + 7 di

Tox -T2

= J’ lim %X*(f)Y(f)e"z"f’df (137.12)

o

R(1) = f 5. (f)e df

where the cross-spectral density is defined as

S,() = lim ZX (DY) —m<f<o’

. X 13.7.13
lim = X(f)Y*(f) o )

= 85(f) = 8,(=f)

Its inverse from the Fourier transform is

©

5,(f) = J R (ne *"I"dr (13.7.14)

which is parallel to Eq. (13.7.10). Unlike the autocorrelation, the cross-correlation and the cross-
spectral density functions are, in general, not even functions; hence, the limits — o to + o are .
retained.

EXAMPLE 13.7.6
Using the relationship -

S(f) = 2rR(r) cos 2mfrdr

0
and the results of Example 13.5.1,

R(r) = A¥T - 1)
find S(f) for the rectangular pulse.
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Solution Because R(7) = 0 for 7outside =T, we have
T

S(f) = 2J' AT — 1) cos 2nfrdr
o .

T T
=2A2TJ' c0527rf'rd'r—2A2J 7cos 27 fr dt
0 X 0

_ o q2pSin2afr|t 2[ c0s27rf'r+ T . 1
2A°T 27t |, 2A ——(wa)z —27Tfsm27rf'r_ ,

247 o 2(sinwa)2

= (27770)2(1 cos 2mrfT) = A’T —

Thus, the power spectral density of a rectangular pulse using Eq. (13.7.11) is
. T\
s =A2T2<Sm f )
) e
Note from Example 13.7.3 that this is also equal to X(£)X*(f) = | X(f)|%

EXAMPLE 13.7.7

Show that the frequency reéponse function H(w) is the Fourier transform of the impulse
response function A(f).

Solution From the convolution integral, Eq. (4.2.1), the response equation in terms of the
impulse response function is

w0 = | somtc- 9ae

where the lower limit has been extended to — % to account for all past excitations. By letting
7= (t — £),the last integral becomes

x(1) = L f(t = Dh(r) dr

For a harmonic excitation f(r) = e, the preceding equation becomes

x() =J ei”('_’)h(f) dr
0

= e“‘"J h(v)e "7 dr
0

Because the steady-state output for the input y(f) = ei*! is x = H(w)ei*", the frequency-response
function is ‘

o o

H(w) = J h(n)e ™ dr = J' wh(T)e'ide

0 —_

which is the FT of the impulse response function A(t). The lower limit in the preceding integral
has been changed from 0 to — o because h(f) = 0 for negative 1.
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13.8 FTS AND RESPONSE

In engineering design, we often need to know the relationship between different points
in the system. For example, how much of the roughness of a typical road is transmitted
through the suspension system to the body of an automobile? (Here the term transfer
function® is often used for the frequency-response function.) Furthermore, it is often
not possible to introduce a harmonic excitation to the input point of the system. It may
be necessary to accept measurements x(¢) and y(¢) at two different points in the system
for which the frequency response function is desired. The frequency response function

for these points can be obtained by taking the FT of the input and output. The quantity
H(w) is then available from

Y(w) _ FT of output
X(w) ~ FTof input
where X(w) and Y(w) are the FT of x(f) and y(¢).

H(o) = (13.8.1)

If we multiply and d1v1de this equatlon by the complex conjugate X*(w), the
result is

Y(w)X*(w)
X(0)X*(w)
The denominator X(w)X*(w) is now a real quantity. The numerator is the cross spec-

trum Y(w)X*(w) between the input and the output and is a complex quantity. The

phase of H(w) is then found from the real and i 1magmary parts of the cross spectrum,
which is simply

Hw) = (13.8.2)

()| /9, 1X*(0)] /b, = |Y()X*(w)| /8, = &

Another useful relationship can be found by multiplying H(w) by its conjugate
H*(w). The result is

Y(0)Y*(w) = |H(0)|2X(0)X*() (1354)

Thus, the output power spectrum is equal to the square of the system transfer function
multiplied by the input power spectrum. Obviously, each side of the previous equation
- is real and the phase does not enter in. '
We wish now to examine the mean square value of the response. From Eq. (13.7.8),
the mean square value of the input x(f) is

e f S.1.) df = j lim = X(7)X*() df

3Strn‘:tly speaking, the transfer function is the ratio of the Laplace transform of the output to the .

Laplace transform of the input. In the frequency domain, however, the real part of s = & + iwis zero,and the
LT becomes the FT.
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The mean squafe value of the output y(r) is

yi= f S,(F) df = f lim = ¥(H)Y*(f) df
Substituting YY* = IH(f)| X X*, we obtain

f [H()? [ lim ;X(f)X*(f)] df

_ J |H(PPs) af

which is the mean square value of the response in terms of the system response func-
tion and the spectral density of the input.

In these expressions, S(f. ) are the two-sided spectral density functions over both
the positive and negative frequencies. Also, S( f,) are even functions. In actual practice,

it is desirable to work with spectral densities over only the positive frequencies.
Equation (13.8.5) can then be written as

(13.8.5)

= J H(PS.(f,) df (13.86)

and because the two expressions must result in the same value for the mean square
‘value, the relationship between the two must be '

S(f.) = 8(f) = 25(f.) (13.87)

Some authors also use the expression

y2 = J |H()|*S () do ' (13.8.8)
0
Again, the equations must result in the same mean square value so that .
27S8(w) = S(f) (13.8.9)
For a single-DOF system, we have
. 1/k
H(f) = . 13.8.10
=GR + i (138.10)

If the system is lightly damped, the response function H(f) is peaked steeply at reso-
nance, and the system acts like a narrow-band filter. If the spectral density of excitation

is broad, as in Fig. 13.8.1, the mean square response for the single-DOF system can be
approximated by the equation
’= If(—S (f) (13.8.11)

where

o J i d(f/f,)
4 Jo 1= (70T + /1))
and S,(f,) is the spectral density of the excitation at frequency f,.
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]
i
1
3
|
1
1
i
|
A f
FIGURE 13.8.1. S(f) and H(f)
leading to y* of Equation 13.7.9.

EXAMPLE 13.8.1

The response of any structure to a single-point random excitation can be computed by a simple
numerical procedure, provided the spectral density of the excitation and the frequency response
curve of the structure are known. For example, consider the structure of Fig. 13.8.2(a), whose
base is subjected to a random acceleration input with the power spectral density function shown
in Fig. 13.8.2(b). It is desired to compute the response of the point p and establish the probability
of exceeding any specifiéd acceleration.

The frequency response function H(f) for the point p can be obtained experimentally by
applying to the base a variable frequency sinusoidal shaker with a constant acceleration input a,,
and measuring the acceleration response at p. Dividing the measured acceleration by a,, H(f)
may appear as in Fig. 13.8.2(c). __

The mean square response a at p is calculated numerically from the equation

a; = ES(f)IH(f)lef

Table 13.8.1 illustrates the computational procedure.
The probability of exceeding specified accelerations are

plla| > 26.6g] = 31.7%
p[apeak > 26~6g] = 60.7%

oy ‘ Sif) {b)

&
& S(£)
o
< %’ < O :f, f
< 3 ’ i
H(f) : (c)
o !
% 3 N i
o 1H4MA' Qo
(a) ' o - f

FIGURE 13.8.2.
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Table 13.8.1 NUMERICAL EXAMPLE

- f Af S(f) |H(F)| |H(f,) PAf S H(f)*Af
(cps)  (cps) (g%/cps) (Nondimensional) (cps) (g? units)
0 10 0 1.0 10. 0
10 10 0 1.0 10. 0
20 10 0.2 1.1 : 121 24
30 10 0.6 14 19.6 11.8
40 10 1.2 2.0 40. 48.0
50 10 1.8 13 16.9 30.5
60 10 1.8 : 13 16.9 30.5 .
70 -10 1.1 20 40. 44.0
80 10 0.9 37 137. 123.
90 10 1.1 54 291. 320.
100 10 12 22 48.4 57.7
110 10 1.1 13 16.9 18.6
120 10 0.8 08 6.4 5.1
130 10 0.6 0.6 3.6 22
140 10 03 0.5 2.5 0.8
150 10 0.2 0.6 3.6 0.7
160 10 0.2 0.7 49 0.1
170 10 0.1 13 16.9 1.7
180 10 0.1 1.1 12.1 1.2
190 0 05 0.7 49 23
200 10 0 0.5 25 . 0
210 10 0 04 1.6 0
a® = 700.6g2
= V700.6g> = 26.6¢
{la| > 79.8¢] = 0.3%
p[aPeak > 798¢ = 1.2%
[ |
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Give examples of random data and indicate classifications for each example.
Discuss the differences between nonstationary, stationary, and ergodic data.

Discuss what we mean by the expected value. What is the expected number of heads
when eight coins are thrown 100 times; 1000 times? What is the probability for tails?
Throw a coin 50 times, recording 1 for head and O for tail. Determine the probability of
obtaining heads by dividing the cumulative heads by the number of throws and plot this
number as a function of the number of throws. The curve should approach 0.5.

For the series of triangular waves shown in Fig. P13.5, determine the mean and the mean
square values.

FIGURE P13.5.

A sine wave with a steady component has the equation
' ' ‘ x=A0+'Alsinwt
Determine the expected valués E(x) and E(x?).

Determine the mean and mean square values for the rectified sine wave.

Discuss why the probability distribution of the peak values of a random function should
follow the Rayleigh distribution or one similar in shape to it.

Show that for the Gaussian probability distribution p(x), the central moments are given by
E(x") = J x"p(x) dx
_ {0 for n odd
“|1+3:5-+-(n - 1)¢" forneven
Derive the equations for the cumulative probability and the probability density functions
of the sine wave. Plot these results.

What would the cumulative probability and the probability density curves look like for
the rectangular wave shown in Fig. P13.11?

FIGURE P13.11.
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13.12 Determine the autocorrelation of a cosine wave x(f) = A cos't, and plot it against .
13.13 Determine the autocorrelation of the rectangular wave shown in Fig, P13.13.

Yy

—T A

FIGURE P13.13.

13.14 Determine the autocorrelation of the rectangular pulse and plot it against .

13.15 Determine the autocorrelation of the binary sequence shown in Fig. P13.15. Suggestion:
Trace the wave on transparent graph paper and shift it through 7.

e U T

01 2345678910112 t FIGURE P13.15.

13.16 Determine the autocorrelation of the triangular wave shown in Fig. P13.16.

7 .
\/ C FIGURE P13.16.

13.17 Figure P13.17 shows the acceleration spectral density plot of a random vibration.
Approximate the area by a rectangle and determine the rms value in m/s?.

g2/Hz

|
|
1
0 50 550 Hz  FIGURE P13.17.

‘

13.18 Determine the rms value of the spectral density plot shown in Fig. P13.18.

g%/Hz _
2 ______ f—

100 1000 2000 FIGURE P13.18.
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13.19 The power spectral density plot of a random vibration is shown in Fig. P13.19. The slopes
represent a 6-dB/octave. Replot the result on a linear scale and estimate the rms value.

0.25

0.10

1000 2000 Hz

FIGURE P13.19.

13.20 Determine the spectral density function for the waves in Fig. P13.20.

(c) (d)
FIGURE P13.20.

13.21 A random signal is found to have a constant spectral density of S(f) = 0.002 in.?/cps
between 20 and 2000 cps. Outside this range, the spectral density is zero. Determine the
standard deviation and the rms value if the mean value is 1.732 in. Plot this result.

13.22 Derive the equation for the coefficients C_ of the periodic function
Cf) =Re I Ceirnt
n=0 '
13.23 Show that for Prob.13.22,C_, =c *, and that f{r) can be written as

=3 Cem

n=-ow
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1 L
Tk

* FIGURE P13.24.

13.24 Determine the Fourier series for the sawtooth wave shown in Fig. P13.24 and plot its
spectral density.

FIGURE P13.25.

13.25 Determine the complex form of the Fourier series for the wave shown in Fig. P13.25 and
plot its spectral density.

13.26 Determine the complex form of the Fourier series for the rectangular wave shown in
Fig. P13.13 and plot its spectral density.

13.27 The sharpness of the frequency-response curve near resonance is often expressed in
terms of Q = 3{. Points on either side of resonance where the response falls to a value
1 /\/E are called half-power points. Determine the respective frequencies of the half-
power points in terms of @, and Q.

13.28 Show that

o dn o
J:) = 772)2 " (2{7})2 = az for{ << 1

13.29 The differential equation of a system with structural damping is given as
mx + k(1 + iy)x = F(1)
Determine the frequency-response function.

13.30 A single-DOF system with natural frequency , and damping factor { = 0.10 is excited
by the force '

F(t) = Fcos (0.5w,t — 6,) + Fcos (w,t — 6% + Fcos 2wt — 6;) ‘
Show that the mean square response is

= 1/{ F\?
y2=(1.74 + 250 + 0.110)5 %

F 2
= 13.43( % )

13.31 In Example 13.7.3, what is the probability of the instantaneous acceleration exceeding a
value 53.2g? Of the peak value exceeding this value?

13.32 A large hydraulic press stamping out metal parts is operating under a series of forces
approximated by Fig. P13.32. The mass of the press on its foundation is 40 kg and its
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13.33

13.34

13.35

=T

FIGURE P13.32. =4s

natural frequency is 2.20 Hz. Determine the Founer spectrum of the excitation and the
mean square value of the response.

For a single-DOF system, the substitution of Eq. (13.8.10) into Eq. (13.8.6) results in
: 1 d
= J Sx(f+) P 2 Zf 2
0 (1 = (/1071 + [24(£/1,)]

where S (f,) is the spectral density of the excitation force. When the damping ¢ is small
and the variation of S (f, ) is gradual, the last equation becomes

N d(f/f,)
=5 )

V=)l f [~ (iA)T + RAHET
= Sx(fn) k_nZ 4_7;‘

which is Eq. (13.8.11). Derive a similar equation for the mean square value of the relative
motion z of a single-DOF system excited by the base motion, in terms of the spectral den-
sity S, ( f.) of the base acceleration. (See Sec. 3.5.) If the spectral density of the base accel-
eratlon is constant over a given frequency range, what must be the expression for 22

Referring to Sec. 3.5, we can write the equation for the absolute acceleration of the mass
undergoing base excitation as

V= k + iwc
k — ma? + iwc °

Determine the equation for the mean square acceleration X2. Establish a numerical inte- -
gration technique for the computer evaluation of x2.

A radar dish with a mass of 60 kg is subject to wind loads with the spectral density shown
in Fig. P13.35. The dish-support system has a natural frequency of 4 Hz. Determine the

S{w) = N

100 x103

) T 25 Hz
FIGURE P13.35.
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mean square response and the probability of the dish exceeding a vibration amplitude of
0.132 m. Assume { = 0.05.

A jet engine with a mass of 272 kg is tested on a stand, which results in a natural fre-
quency of 26 Hz. The spectral density of the jet force under test is shown in Fig. P13.36.

Determine the probability of the vibration amplitude in the axial direction of the jet
thrust exceeding 0.012 m. Assume ¢ = 0.10.

NZ
S(f)ﬁ;
4 x108] l |
ol | |
1 10 15 100 Hz

FIGURE P13.36.

An SDF system with viscous damping ¢ = 0.03 is excited by white-noise excitation F{(r)

having a constant power spectral density of 5 X 106 N?/Hz. The system has a natural fre-
querncy of w, = 30 rad/s and a mass of 1500 kg. Determine . Assuming Rayleigh distri-

bution for peaks, determine the probability that the maximum peak response will
exceed 0.037 m.

Starting with the relationship
w0 = [ s- om@ae
0
and using the FT technique, show that

X(iw) = Fliw)H(iw)

and

7= | sl do
where
Sp(w) = lim —— Flio)F*(iw)
A Tow 29T
Starting with the relationship )
H(iw) = |H(ia))|eid’(“’)
show that

H(iw)

= ei2.¢(w)
H*(iw)
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13.40 Find the frequency Spectrum of the rectangular pulse shown in Fig. P13.40.

£(1)

r~j—

_LoL t
203

FIGURE P13.40.

13.41 Show that the unit step function has no Fourier transform. Hint: Examine

[ 1ota

13.42 Starting with the equations

1 .
SFX(“)) = lTi_%mF*(iw)X(iw)

H

1
im —— F(FH) = S;H
lim 27TTF( H) = Sk

T
and
, . 1
Sydw) = lim mX*F
= lim L'(F*H*)F = S.H*
Toe 20T F
show that
Sex(@) = 20
er(w)
and

SF(W) - pr(w)
Syr(w) Sp(w)

13.43 The differential equation for the longitudinal motion of a uniform slender rod is

= H(iw)

2 2
u d
at ax

[~1]
I

8

Show that for an arbitrary axial force at the end x = 0, with the other end x = [/ free, the
Laplace transform of the response is
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1347

13.48

13.49

13.50

13.51
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—cF(s)e s

ulxs) = SAE(1 — e-2(/0)

[e(S/C)(x—I) ¥ e—(s/::)(s—l)]

If the force in Prob. 13.43 is harmonic and equal to F(f) = Fie'’, show that

(o) = cFye' cos [(wl/c)(x/1 — )]
wnt) = wAE sin (wl/c)

and

oy _ —sin[(al/c)(x/l = 1)] F, gl
olxt) = sin (wl/c) A’

where o is the stress.

With S(w) as the spectral density of the excitation stress at x = 0, show that the mean
square stress in Prob. 13.43 is

E L ®,) sin .
~ l )

where structural damping is assumed. The normal modes of the problem are

¢ (x) = V2 cos mr()—c -~ 1),

l
wonnls), o=
: L) m

Determine the FT of x(z—¢) and show that it is equal to e 2"/.X(f), where
X(f) = FT[x(1)].
Prove that the FT of a convolution is the product of the separate FT.

FTx(0)*y(0)] = X(£)Y(f)

Using the derivative theorem, show that the FT of the derivative of a rectangular pulse is
asine wave.

For some random variables the integral in Eq. (13.4.4) does not converge. Consider a
function givenby

plx) =

b+x

’

For which values of a and b is this a probability density function? The resulting probabil-
ity distribution is called the Cauchy distribution. Does it have finite variance?

The exponential distribution is given by P(x) = 1 — exp(—Ax). Derive its probability
density function, mean and the variance. This distribution often occurs in practice as a
description of the time elapsing between unpredictable events.

The ski-lift system of Problem 5.65 is forced by wind on the mass. The force has white-

noise characteristics, and o = 0.5. Determine the probability that the maximum peak
response will exceed 10°. .
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Nonlinear Vibrations

Linear system analysis serves to explain much of the behavior of oscillatory systems.
However, there are a number of oscillatory phenomena that cannot be predicted or
explained by the linear theory.

In the linear systems that we have studied, cause and effect are related linearly;
i.e., if we double the load, the response is doubled. In a nonlinear system, this rela-
tionship between cause and effect is no longer proportional. For example, the center
of an oil can may move proportionally to the force for small loads, but at a certain
critical load, it will snap over to a large displacement. The same phenomenon is also
encountered in the buckling of columns, electrical oscillations of circuits containing
inductance with an iron core, and vibration of mechanical systems with nonlinear
restoring forces.

The differential equation describing a nonlinear oscillatory system can have the
general form

x+ fix,x,)=0

Such equations are distinguished from linear equations in that the principle of super-
position does not hold for their solution. ‘

Analytical procedures for the treatment of nonlinear differential equations are
difficult and require extensive mathematical study. Exact solutions that are known are
relatively few, and a large part of the progress in the knowledge of nonlinear systems
comes from approximate and graphical solutions and from studies made on computing
machines. Much can be learned about a nonlinear system, however, by using the state
space approach and studying the motion presented in the phase plane.

14.1 PHASE PLANE

In an autonomous system, time ¢ does not appear explicitly in the differential equation
of motion. Thus, only the differential of time, dt, appears in such an equation.

436
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We first study an autonomous system with the differential equation

X+ flx,%) =0 ' (14.1.1)
where f(x, x) can be a nonlinear function of x and x. In the method of state space, we
express the last equation in terms of two first-order equations as follows:

i=y

y = —f(x,y)
If x and y are Cartesian coordinates, the xy-plane is called the phase plane. The state of
the system is defined by the coordinate x and y = x, which represents a point on the

phase plane. As the state of the system changes, the point on the phase plane moves,
thereby generating a curve that is called the trajectory.

Another useful concept is the state speed V defined by the equation
V=Vx?+y? (14.1.3)

When the state speed is zero, an equilibrium state is reached in that both the velocity of
x and the acceleration y = X are zero.

Dividing the second of Eq. (14.1.2) by the first, we obtain the relation

dy _ —flx,y)
dx y

(1412)

= ¢(x, y) (14.1.4)

Thus, for every point x, y in the phase plane for which ¢(x, y) is not indeterminate,
there is a unique slope of the trajectory.

If y = 0 (i.e., points along the x-axis) and f(x, y) # 0, the slope of the trajectory
is infinite. Thus, all trajectories corresponding to such points must cross the x-axis at
right angles.

If y = 0 and f(x, y) = 0, the slope is indeterminate. We define such points as sin-
gular points. Smgular pomts correspond to a state of equilibrium in that both the
velocity y = x and the force x = y = —f(x, y) are zero. Further discussion is required

to establish whether the equilibrium represented by the singular point is stable or
unstable. \ '

EXAMPLE 14.1.1 '
Determine the phase plane of a single-DOF oscillator:

X+ aw*x=0

Solution With y = x, this equation is written in terms of two first-order equations:

y = -0
x=y
Dividing, we obtain '
| dy _ o
dx y
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(&

FIGURE 14.1.1.

Separating variables and integrating
Y2+ wix?=C

which is a series of ellipses, the size of which is determined by C. The preceding equation is also
that of conservation of energy:

Ymx? + thkx? = C'

Because the singular point is at x = y = 0, the phase plane plot appears as in Fig. 14.1.1. If y/w is
plotted in place of y, the ellipses of Fig. 14.1.1 reduce to circles.

. .
14.2 CONSERVATIVE SYSTEMS

In a conservative system the total energy remains constant. Summing the kinetic and
potential energies per unit mass, we have

2x? + Ul{x) = E = constant (14.2.1)
Solving for y = x, the ordinate of the phase plane is given by the equation_
y=x=*V2[E - Ukx)] - (14.2.2)

It is evident from this equation that the trajectories of a conservative system must be -
symmetric about the x-axis.

The differential equation of motion for a conservative system can be shown to
have the form ' '

% = f(x) (14.2.3)
Because x = x(dx/dx), the last equation can be written as

xdi — f(x)dx =0 ' (1424)
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Integrating, we have

éi—fﬂﬂw=E ' (14.2.5)
2 0

and by comparison with Eq. (14.2.1) we find

X

Ulx) = ~Lf(x)dx

dUu

flx) = i

(14.2.6)

Thus, for a conservative system, the force is equal to the negative gradient of the
potential energy. '

With y = x, Eq. (14.2.4) in the state space becomes

.d—y = @ (142.7)
dx- y

We note from this equation that singular points correspond to f(x) = 0andy = x = 0,
and hence are equilibrium points. Equation (14.2.6) then indicates that at the equilib-
rium points, the slope of the potential energy curve U(x) must be zero. It can be shown
that the minima of U(x) are stable equilibrium positions, whereas the saddle points
corresponding to the maxima of U(x) are positions of unstable equilibrium.

Stability of equiljibrium. By examining Eq. (14.2.2), the value of E is deter-
mined by the initial conditions of x(0) and y(0) = x(0). If the initial conditions are
large, E will also be large. For every position x, there is a potential U(x); for motion to
take place, E must be greater than U(x). Otherwise, Eq. (14.2.2) shows that the velocity

= x is imaginary.

Figure 14.2.1 shows a general plot of U(x) and the trajectory y vs. x for various
values of E computed in Table 14.2.1 from Eq. (14.2.2).

For E = 7, U(x) lies below E = 7 only between x =0 to 1.2, x = 3.8 t0 5.9, and
x =7 to 8.7. The trajectories corresponding to E = 7 are closed curves and the period
associated with them can be found from Eq. (14.2.2) by integration:

| v
=2 —F/—
Xy 2[E - U(X)]
where x,; and x, are extreme points of the trajectory on the x-axis.

For smaller initial conditions, these closed trajectories become smaller. For E = 6,
the trajectory about the equilibrium points x = 7.5 contracts to a point, whereas the tra-
jectory about the equilibrium point x = 5 is a closed curve between x = 4.2t0 5.7.

For E = 8 one of the maxima U(x) at x = 6.5 is tangent to E = 8§ and the trajec-
tory at this point has four branches. The point x = 6.5 is a saddle point for £ = 8 and
the motion is unstable. The saddle point trajectories are called separatrices.

For E > 8, the trajectories may or may not be closed. E = 9 shows a closed tra-
jectory between x =3.3 to 10.2. Note that at x = 6.5, dU/dx = —f(x) = 0 and
y = x # Ofor E = 9, and hence equilibrium does not exist.
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E=9 E=ll E£=9 E=1l
4 E=8 (£=6 /E=8 £=8

E=7 =7 E=7
3 £=5 £=6
2

3

R X
R
AL/

FIGURE 14.2.1.

Table 14.2.1 Computation of Phase Plane for U(x) Given in.

Fig. 14.2.1
y = = V2[E - U(x)]
*yat *yat *yat *yat
x U(x) E= E=38§ E=9 E=1
0 5.0 20 245 2.83 3.46
1.0 6.3 1.18 1.84 232
15 8.0 imag 0 1.41 2.45
2.0 9.6 imag imag imag
3.0 10.0 imag imag imag 1.41
35 80 imag 0 1.41 2.45
4.0 6.5 1.0 1.73 224
5.0 5.0 20 2.45 2.83 3.46
55 5.9 1.61 224 2.57
6.0 72 imag 126 1.90
6.5 8.0 imag 0 1.41 2.45
7.0 1.0 0. 1.41 2.0
7.5 6.0 1.41 .20 245 3.16
8.0 6.3 1.18 1.84 232
9.0 7.4 imag 1.09 1.79
9.5 8.0 imag 0 141

10.0 8.8 imag imag 0.63
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STABILITY OF EQUILIBRIUM

Expressed in the general form

dy _ Plx,y) :
- = 143.1
& = 0(cy) (1431
the singular points (x,, y,) of the equation are identified by
P(x,y) = Q(x,y) =0 , (14.32)
Equation (14.3.1), of course, is equivalent to the two equations '
k dx -
)
(14.33)
dy _
5 = Py

from which the time dt has been eliminated. A study of these equations in the neighbor-
hood of the singular point provides us with answers as to the stability of equilibrium.

Recognizing that the slope dy/dx of the trajectories does not vary with transla-
tion of the coordinate axes, we translate the u, v axis to one of the singular points to be
studied, as shown in Fig. 14.3.1. We then have

x=x,+tu

Y EYt (143.4)
dy _ dv

dx du

If P(x, y) and Q(x,y) are now expanded in terms of the Taylor series about the singular
point (x,, y,), we obtain for Q(x, y)

O(x,y) = Q(x,, y,) + (?Q)Su + (a_g)sv + (fg).:uz + oo (14.3.5)

ou v u?

and a similar equation for P(x, y). Because Q(x,, y,) is zero and (3Q/ ou), and (8Q/ov),
are constants, Eq. (14.3.1) in the region of the singularity becomes
dv _ cu+ev

°2r - 14.3.
du au + bv ( 6)

[(Xs.y,) u

FIGURE 14.3.1.
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where the higher-order derivatives of P and Q have been omitted. Thus, a study of the
singularity at (x,, y,) is possible by studying Eq. (14.3.6) for small « and v.

Returning to Eq. (14.3.3) and taking note of Eqs. (14.3.4) and (14.3.5), Eq. (14.3.6)
is seen to be equivalent to

d
?L; =au + bv
(14.3.7)
dv u + ev
= =
dt :

which can be.rewritten in matrix form:

{iﬁ} - [’i ﬂm (143.8)

It was shown in Sec. 6.7 that if the eigenvalues and eigenvectors of a matrix equa-
tion such as Eq. (14.3.8) are known, a transformation

BRGHRIHNIN] 1439)

where [P] is a modal matrix of the eigenvector columns, will decouple the equation to

the form
HE S P

Because Eq. (14.3.10) has the solution
' £=eM (14.3.11)

n = eM

the solution for u and v are

u = ule)‘" + uze)\z:
(143.12)
v = veM + vt

It is evident, then, that the stability of the singular point depends on the eigenvalues A,
and A, determined from the characteristic equation

(a— ) b
c (e —A)

AL2=(“Ze)t'\/(”;e)z—(ae—bc) ' (14.3.13)

=0

or

Thus

. + e\’
if (ae — bc) > (?——2—5) , the motion is oscillatory;
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2
if (ae — bc) < (a ) , the motion is aperiodic;

if (a + €) > 0, the system is unstable;
if (a + e) < 0, the system is stable.

The type of trajectories in the neighborhood of the singular point can be deter-
mined by first examining Eq. (14.3.10) in the form

¢ _ M ¢
- == 143.14
dn A ( )
which has the solution
£= (m
we use the transformation of Eq. (14.3.9) to plot v vs. u.
14.4 METHOD OF ISOCLINES
Consider the autonomous system with the equation
dy _ _fx,y)
oy = ¢(x, y) (14.4.1)

that was discussed in Sec. 14.1, Eq. (14.1.4). In the method of isoclines, we fix the slope
dy/dx by giving it a definite number «, and solve for the curve

d(x,y) = o (1442)

With a family of such curves drawn, it is possible to sketch in a trajectory startmg at
any point x, y as shown in Fig. 14.4.1.

FIGURE 14.4.1.

EXAMPLE 14.4.1

Determine the isoclines for the simple pendulum.
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Solution: The equation for the simple pendulum is

i

b+ gl-sin 9=0 (a)
Lettingx = 6and y = 6 = x, we obtain

dy __gsinx (b)
dx Iy

Thus, for dy/dx = a, a constant, the equation for the isocline, Eq. (14.4.2), becomes

y=-—(1~g&)sinx - (c)

It is evident from Eq. (b) that the singular points lie along the x-axis at x = 0, £ 7, £ 2, and
so on. Figure 14.4.2 shows isoclines in the first quadrant that correspond to negative values of a.

By starting at an arbitrary point x(0), y(0), the trajectory can be sketched by proceeding tangen-
tially to the slope segments.

__\ Ulx)
>
/"

FIGURE 14.4.2. Isocline
curves for the simple
pendulum.

In this case the integral of Eq. (a) is readily available as

2
y _ & =
2 lcosx E

v

where E is a constant of integration corresponding to the total energy [see Eq. (14.2.1)]. We also
have U(x) = —(g/!) cos x and the discussions of Sec. 14.2 apply. For the motion to exist, E must
be greater than —g/I. E = g/l corresponds to the separatrix, and for E > g/I, the trajectory does
not close. This means that the initial conditions are large enough to cause the pendulum to con-

tinue past 6 = 2.

 EXAMPLE 14.42

One of the interesting nonlinear equations that has been studied extensively is the van der Pol
equation: ’ :

x-wi(l-x)+x=0
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FIGURE 14.4.3. Isocline
. | ! ) curves for van der Pol’s
-3 -2 -1 © 12 3 equation with u = 1.0.

The equation somewhat resembles that of free vibration of a spring-mass system with viscous
damping; however, the damping term of this equation is nonlinear in that it depends on both the
velocity and the displacement. For small oscillations (x < 1), the damping is negative, and the
amplitude increases with time. For x > 1, the damping is positive, and the amplitude diminishes
with time. If the system is initiated with x(0) and x(0), the amplitude will increase or decrease,
depending on whether x is small or large, and it will finally reach a stable state known as the limit
cycle, graphically displayed by the phase plane plot of Fig. 14.4.3.

14.5 PERTURBATION METHOD

The perturbation method is applicable to problems in which a small parameter u is
associated with the nonlinear term of the differential equation. The solution is formed
in terms of a series of the perturbation parameter u, the result being a development in
the neighborhood of the solution of the linearized problem. If the solution of the lin-
earized problem is periodic, and if u is small, we can expect the perturbed solution to
be periodic also. We can reason from the phase plane that the periodic solution must
represent a closed trajectory. The period, which depends on the initial conditions, is
- then a function of the amplitude of vibration.

Consider the free oscillation of a mass on a nonlinear spring, Wthh is defined by
the equation

X+ @x+ ux*=0 (145.1) .
with initial conditions x(0) = A and %(0) = 0. When g = 0, the frequency of oscilla
tion is that of the linear system, w, = Vk/m.

We seek a solution in the form of an mﬁmte series of the perturbatlon parameter
u as follows:

x = xt) + pn(t) + p(0) + o 52
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Furthermore, we know that the frequency of the nonlinear oscillation will depend on
the amplitude of oscillation as well as on w. We express this fact also in terms of a
series in w: : '

] (1)2 — w%z +_“a1 + #2(12 4 - (145.3)

where the o, are as yet undefined functions of the amplitude, and  is the frequency of
the nonlinear oscillations. '

We consider only the first two terms of Egs. (14.5.2) and (14.5.3), which will ade-
- quately illustrate the procedure. Substituting these into Eq. (14.5.1), we obtain
X + ux + (07 = pe)(xy + px) + pl + 3pxdx, + ) =0 (14.54)

Because the perturbation parameter u could have been chosen arbitrarily, the coeffi-
cients of the various powers of w must be equated to zero. This leads to a system of
equations that can be solved successively:

c L 2
To @ (145.5)
x; + w2x1 = Xy — xé
The solution to the first equation, subject to the initial conditions x(0) = A, and
x(0) = 0is
4 x, = A cos wt ‘ (14.5.6)
which is called the generating solution. Substituting this into the right side of the sec- '
ond equation in Eq. (14.5.5), we obtain
. X + w’x; = a,A cos ot — A cos’wt
(14.5.7)

3 A’
(al - ZAZ)A cOS wf — = oS 3ot

where cos’wt = 2 cost + 3 cos 3wt has been used. We note here that the forcing term
cos wt would lead to a secular term ¢ cos wt in the solution for x, (i.e., we have a condi-
tion of resonance). Such terms violate the initial stipulation that the motion is to be
periodic; hence, we impose the condition

@ — %AZ =0
Thus, a,, which we stated earlier to be some function of the amplitude A, is evaluated
to be
o = 147 | (145.8)

With the forcing termi cos wf eliminated from the right side of the equation, the
general solution for x; is '

3
x; = C; sin ot + C, cos wt + Tt 8 3wt 1459)

S
!

= o + T pa?
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By imposing the initial conditions x,(0) = x,(0) = 0, constants C, and C, are

. A3
C, =0 C, =
! 2 32_w
Thus,
A’ '
X = 5 (cos 3wt — cos wt) (14.5.10)

and the solution at this point from Eq. (14.5.2) becomes

3

2 2

5 (14.5.11)
0= w1l + g’-&
4 a)o

The solution is thus found to be periodic, and the fundamental frequency w is found to
increase with the amplitude, as expected for a hardening spring.

x = Acos wt + u——r (cos 3wt — cos wt)

Mathieu equation. Consider the nonlinear equation

X+ o’x + ux® = Fcos wt (145.12)
and assume a perturbation solution
x = x,(t) + &() (14.5.13)
Substituting Eq. (14.5.13) into (14.5.12), we obtain the following fwo equations:
X, + wlx, + ux3 = Fcos wt (14.5.14)
E+ (o + u3xd)E=0 (14.5.15)
If w is assumed to be small, we can let
_ - X, = A sin wt (14.5.16)
and substitute it into Eq. (14.5.15), which becomes
£+ [(wf, + %’LAZ) - %LAZ cos 2wt]§ =0 (14.5.17)
" This equation is of the form
d’y
e + (a—2bcos2z)y =0 (14.5.18)

which is known as the Mathieu equation. The stable and unstable regions of the
Mathieu equation depend on the parameters a and b, and are shown in Fig. 14.5.1.

1See Ref. [4], pp. 259-273.



448 Chapter 14 Nonlinear Vibrations

N _i | A T1
6\ Unstable

% v
a // N _Z
2 / 74
-4 Stabl '
FIGURE 14.5.1. Stable region of % /20//;/
Mathieu equation indicated by the -2 2 4 6 8

shaded area, which is symmetric ! [ ! ! | '
about the horizontal axis.

14.6 METHOD OF ITERATION
Duffing’ made an exhaustive study of the eduation
mx + cx + kx = ux® = Fcos ot

which represents a mass on a cubic spring, excited harmonically. The *+ sign signifies a

hardening or softening spring. The equation is nonautonomous in that the time ¢
appears explicitly in the forcing term.

In this section, we wish to examine a simpler equation where damping is zero,
written in the form

X+ olx + ux®=Fcoswf (14.6.1)

We seek only the steady-state harmonic solution by the method of iteration, which is
essentially a process of successive approximation. An assumed solution is substituted
into the differential equation, which is integrated to obtain a solution of improved

accuracy. The procedure can be repeated any number of times to achieve the desired
accuracy. '

For the first assumed solution, let

Xy = A cos wt (14.6.2)
and substitute into the differential equation
X=—wAcoswtF MA3(§ cos wt + 3 COS 3wt) + F cos wt

(—w?A F3uA% + F)cos wt F A cos 3wt

i

In integrating this equation, it is necessary to set the constants of integration to zero if

the solution is to be harmonic with period 7 = 27/ w. Thus, we obtain for the improved
solution ;

1

X = —
1
)

(wf,A + %pA3 - F) cos wt F 7+ (14.6.3)

where the higher harmonic term is ignored.

See Ref. [6].
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The procedure can be repeated, but we will not go any further. Duffing reasoned
at this point that if the first and second approximations are reasonable solutions to the
problem, then the coefficients of cos wt in Egs. (14.6.2) and (14.6.3) must not differ
greatly. Thus, by equating these coefficients, we obtain

1 -3
A= (wf,A + ‘—‘Wﬂ B F) (14.6.4)
which can be solved for w*:

0=l * %qu - (14.6.5)

It is evident from this equation that if the nonlinear parameter is zero, we obtain the
exact result for the linear system

F

2 _ 2
w, — w

A=

For u # 0, the frequency w is a function of u, F, and A. It is evident that when
F = 0, we obtain the frequency equation for free vibration
w_z =1 =+ g 14_2
w? e o
discussed in the previous section. Here we see that the frequency increases with ampli-
tude for the hardening spring (+) and decreases for the softening spring (—). ‘
For n # 0 and F# 0, it is convenient to hold both p and F constant and plot |A|
against w/w,. In the construction of these curves, it is helpful to rearrange Eq. (14.6.5) to

w,

3 A3 w? F

Z“;ﬁ = (l - Z)E)A - = (14.6.6)
each side of which can be plotted against A, as shown in Fig. 14.6.1. The left side of this
equation is a cubic, whereas the right side is a straight line of slope {1 — w?/w?) and
intercept —F/w,zl. For w/w, < 1, the two curves intersect at three points, 1, 2, and 3,
which are also shown in the amplitude—frequency plot. As w/w, increases toward unity,
points 2 and 3 approach each other, after which only one value of the amplitude satis-
fies Eq. (14:6.6). When w/w, = 1, or when w/w, > 1, these points are 4 or 5.

The jump phenomenon. In problems of this type, it is found that amplitude A
undergoes a sudden discontinuous jump near resonance. The jump phenomenon can
be described as follows. For the softening spring, with increasing frequency of excita-
tion, the amplitude gradually increases until point a in Fig. 14.6.2 is reached. It then
suddenly jumps to a larger value indicated by point b, and diminishes along the curve
to its right. In decreasing the frequency from some point c, the amplitude continues to
increase beyond b to point d, and suddenly drops to a smaller value at e. The shaded
region in the amplitude—frequency plot is unstable; the extent of unstableness depends
on a number of factors such as the amount of damping present and the rate of change
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FIGURE 14.6.1. Solution of Eq. (14.6.6).

4]
14|
o) 0
Wy
FIGURE 14.6.2. The jump phenomenon FIGURE 14.6.3. The jump phenomenon for the
for the softening spring. : hardening spring.

of the exciting frequency. If a hardening spring had been chosen instead of a softening
spring, the same type of analysis would be applicable and the result would be a curve
of the type shown in Fig. 14.6.3.

Effect of damping. In the undamped case, the amplitude-frequency curves
approach the backbone curve (shown dashed) asymptotically. This is also the case for
the linear system, where the backbone curve is the vertical line at w/w, = 1.0. _

With a small amount of damping present, the behavior of the system cannot dif-
fer appreciably from that of the undamped system. The upper end of the curve, instead
of approaching the backbone curve asymptotically, crosses in a continuous curve, as
shown in Fig. 14.6.4. The jump phenomenon is also present here, but damping gener-
ally tends to reduce the size of the unstable region. .

The method of successive approximation is also applicable to the damped vibra-
tion case. The major difference in its treatment lies in the phase angle between the
force and the displacement, which is no longer 0° or 180° as in the undamped problem.
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14|

w/wn FIGURE 14.6.4.

It is found that by introducing the phase in the force term rather than the displace-
ment, the algebraic work is somewhat simplified. The differential equation can then be
written as

X+ cx + wix + ux® = Fcos (wt + ¢) '
. (14.6.7)
= A, cos wt — B sin wt
where the magnitude of the force is

F=VA,+ B} (14.6.8)
and the phase can be determined from

tan ¢ = By
AO

By assuming the first approximation to be
Xy = A cos wt

its substitution into the differential equation results in
(0?2 — 0?)A + FuA?] cos wf — cwA sin wf + TA3 cos 3wt
. (14.6.9)

= A,cos wt — Bjsin wt

We again ignore the cos 3wt term and equate coefficients of cos wt and sin wt to obtain
(? — w?)A + %,u.Ab3 = A,
cwA = B,

By squaring and adding these results, the relationship between the frequency, ampli-
tude, and force becomes

(14.6.10)

F2=[(f — o)A + 347 + [cd]?  (146.11)

By fixing u, ¢, and F, the frequency ratio w/w, can be computed for assigned values of A.

14.7 SELF-EXCITED OSCILLATIONS

Oscillations that depend on the motion itself are called self-excited. The shimmy of
automobile wheels, the flutter of airplane wings, and the oscillations of the van der Pol
equation are some examples.
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/

FIGURE 14.7.1. System g
with apparent damping

¢(x) = (x) - Fx).

Self-excited oscillations may occur in a linear or a nonlinear system. The motion
is induced by an excitation that is some function of the velocity or of the velocity and
the displacement. If the motion of the system tends to increase the energy of the sys-
tem, the amplitude will increase, and the system may become unstable.

As an example, consider a viscously damped single-DOF linear system excited by
a force that is some function of the velocity. Its equation of motion is

mx + cx + kx = F(x) (14.7.1)
Rearranging the equation to the form
mx + [ex — F(x)] + kx = 0 (14.7.2)

we can recognize the possibility of negative damping if F(x) becomes greater than cx.
Suppose that ¢(x) = cx — F(x) in the preceding equations varies as in Fig. 14.7.1.
For small velocities, the apparent damping ¢(x) is negative, and the amplitude of oscilla-

tion increases. For large velocities, the opposite is true, and hence the oscillations tend to
a limit cycle.

EXAMPLE 14.7.1

The coefficient of kinetic friction y, is generally less than the coefficient of static f{iction 1, this
difference increasing somewhat with the velocity. Thus, if the belt of Fig. 14.7.2 is started, the
mass will move with the belt until the spring force is balanced by the static friction.

. k : . force
4—ww—{ m |
Relotive velocity

Spring force

FIGURE 14.7.2. Coulomb friction between belt and mass.
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kxy= p.mg (a)
At this point, the mass starts to move back to the left, and the forces are again balanced on the
basis of kinetic friction when
k(xo -x)= Mg

From these two equations, the amplitude of oscillation is

mg _ (ke = 1)
—_— kg "‘—Z/‘Lklg (b)
w? ,

X =

While the mass is moving to the left, the relative velocity between it and the belt is greater
than when it is moving to the right; thus, u,, is less than u,,, where subscripts / and r refer to left
and right, respectively. It is evident then that the work done by the friction force while moving to
the right is greater than that while moving to the left; so more energy is put into the spririg-mass

system than taken out. This then represents one type of self-excited oscillation and the ampli-
tude continues to increase.

The work done by the spring from2to3is -
—3k[(x, + Ax) + (x, — 2x)](2x + Ax)
The work done by friction from 2 to 3 is
w,,mg(2x + Ax)
Equating the net work done between 2 and 3 to the change in kinetic energy, which is zero,
~k(2xy — 2x+ Ax) + p,,mg =0 (©)
By substituting (a) and (b) into (c), the increase in amplitude per cycle of oscillation is

Ax = _Zg(/“’kr 2_ P'kl_) (d)
w

n

RUNGE-KUTTA METHOD

The Runge-Kutta method discussed in Chapter 4 can be used to solve nonlinear differ-
ential equations. We consider the nonlinear equation

2,
i— +04é +x + 0.5x> = 0.5cos 0.57 (14.8.1)
dr? dr _
and rewrite it in first-order form by letting
y = dx/dt (14.82)
as follows:
dy
=05c0os0.57— x — 0.5x3 — 0.4y = F(r,x,y) (14.8.3)
T

The computational equations to be used are programmed for the digital computer in
the following order: '
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7 x y F

L=m ky = x, 8§ =N fi=Fy, k1)
=1 +h/2 ky = x, + gh/2 & =y, + fih/2 fo = Flty ky )
=1+ h/2 ky=x, + gh/2 g =y + Hh/2 hHi= F(t,‘h k3,g3)
L,=T1+h kg =x, + g3h 8=y *fh f4=F(t4,k4,g4)

From these results, the values of x and y are determined from the following recurrence
equations, where h = At:

h ‘ .

Xigp = X F 5 (g + 28 + 28, + 8.) (14.8.4)
h .

Yisr =yt g(f] +2f +2f, + f) (14.8.5)

Thus, with i = 1, x, and y, are found, and with 7, = 7, + Ar, the previous table of ¢, k, g,
and fis computed and again substituted into the recurrence equations to find x; and y,.

The error in the fourth-order Runge-Kutta method is of order h° = (A7)°. Also,
the method avoids the necessity of calculating derivatives and hence excellent accu-
racy is obtained.

Equation (14.8.1) was solved in MATLAB® using the built in function ode45. This
function consists of an automatic step-size Runge-Kutta-Fehlberg integration method
which is a combination of a fourth- and fifth-order method. In order to use this func-
tion to solve a differential equation, the equation must first be written as a system of
first order equations. Equations (14.8.2) and (14.8.3) are the system of equations which
comes from Eq. (14.8.1). These equations need to be put in a function file, which ode45

can access. For this example, the function file is called nonlin.m and it contains the fol-
lowing commands:

function xdot = nonlin(t, x) '
xdot = [0.5%cos(0.5.%1) — x(2) ~ 0.5*x(2) "3 ~ 0.4*x(1); x(1)];

'The function ode45 also needs to be given an initial time #,, a final time #,,and a column

vector of initial conditions x,. Figure 14.8.1 is the result of the following commands in
MATLAB®:

0 =0
tf = 40;
0 = [0, 0.05]";
[t,x] = oded5("nonlin’, 10, ¢f, x0)
x1 = x(:,1);
x2 = x(:,2);

plot ( x2,x1)

It is evident that the limit cycle was reached in less than two cycles.

A
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X FIGURE 14.8.1.

xdot
o - N w
T T T
>
| | 1

x FIGURE 14.8.2.

Figure 14.8.2 is obtained from the van der Pol equation:
x—pux(l=x) +x=0
This equation can be rewritten as the following system of first-order equations:
x, = pux,(1 - x3) - X
Xy = Xy

Figure 14.8.2 is the result of usi'ng odedS with u = 1.5 and the initial conditions x; = 0
and x, = 0.05. The effect of the nonlinearity is quite evident in this figure.
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Using the nonlinear equation

x+x3=0
show that if x, and x, are solutions satisfying the differential equation, their superposi-
tion (x, + x,) is not a solution.

A mass is attached to the midpoint of a string of length 2/, as shown in Fig. P14.2.

Determine the differentiai equation of motion for large deflection. Assume string tension
tobe T.

FIGURE P14.2.
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14.3 A buoy is composed of two cones of diameter 2r and height A, as shown in Fig. P14.3. A
weight attached to the bottom allows it to float in the equilibrium position x,. Establish
the differential equation of motion for vertical oscillation.

—

|

FIGURE P14.3.

14.4 Determine the differential equation of motion for the spring-mass system with the dis-
continuous stiffness resulting from the free gaps of Fig. P14.4.

—fxo f+  Hxop—

FIGURE P14.4.

14.5 The cord of a simple pendulum is wrapped around a fixed cylinder of radius R such that
its length is / when in the vertical position, as shown in Fig. P14.5. Determine the differen-
tial equation of motion.

v

FIGURE P14.5.
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14.6

14.7

14.8

M 14.10

14.11

1412

14.13

14.14

14.15
14.16
14.17

EE

14.18

Plot the phase plane trajectory for the undamped spring-mass system, including the
potential energy curve U(x). Discuss the initial conditions associated with the plot.

From the plot of U(x) vs. x of Prob. 14.6, determine the period from the equation

X,
i dx .
Ay
o V2[E - Ux)]
(Remember that £ in the text was for a unit mass.)
For the undamped spring-mass system with initial conditions x(0) = A .and x(0) =0,
determine the equation for the state speed V and state under what condition the system
is in equilibrium.
The solution to a certain linear differential equation is given as
X = cos wt + sin 27t
Determine y = x and plot a phase plane diagram.
Determine the phase plane equation for the damped spring-mass system
X+ 2w, x + @?x =0
and plot one of the trajectories with v = y/w, and x as coordinates.
If the potential energy of a simple pendulum is given with the positive sign

U(e) = + % cos 6

determine which of the singular points are stable or unstable and explain their physical
implications. Compare the phase plane with Fig. 14.4.2.

Given the potential U(x) = 8 = 2 cos mx/4, plot the phase plane trajectories for E = 6,
7,8,10,and 12, and discuss the curves.

Determine the eigenvalues and eigenvectors of the equations
c=5x—y
y=2x+2y

Determine the modal transformation of the equations of Prob. 14.13, which will decouple
them to the form

E=M\¢

n =27
Plot the £, m phase plane trajectories of Prob. 14.14 for A,/A, = 0.5 and 2.0.

For A,/A, = 2.0 in Prob. 14.15, plot the trajectory y vs. x.

If A, and A, of Prob. 14.14 are complex conjugates —a + i, show that the equation in the
u, v plane becomes '

dv _ pPu+av
du = au— Pv

Using the transformation u = p cos 6 and v = psin 0,‘show that the phase plane equa-
tion for Prob. 14.17 becomes

a
£ =246
B
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with the trajectories identified as logarithmic spirals

p= ela/B)e

14.19 Near a singular point in the xy-plane, the trajectories appear as shown in Fig. P14.19.

Determine the form of the phase plane equation and the corresponding trajectories in
the én-plane.

_

FIGURE P14.19.

14.20 The phase plane trajectories in the vicinity of a singularity of an overdamped system

(¢ > 1) are shown in Fig. P14.20. Identify the phase plane equation and plot the corre-
sponding trajectories in the £7-plane.

[ | "

FIGURE P14.20.

14.21 Show that the solution of the equation

dy _ —x—y

dx x + 3y

is x2 + 2xy + 3y? = C, which is a family of ellipses with axes rotated from the x, y coor-
dinates. Determine the rotation of the semimajor axis and plot one of the ellipses.

14.22 Show that the isoclines of the linear differential equation of second order are straight
lines.

14.23 Draw the isoclines for the equation

dy
o =xy(y - 2)



460

Chapter 14 Nonlinear Vibrations

EE

14.24

14.25
14.26

14.27

14.28 7]

14.29

14.30

14.31

14.32

14.33

14.34

14.35

14.36

Consider the nonlinear equation
X+ olx+puxt=0

Replacing x by y(dy/dx), where y = x, gives the integral

¥+ x4+ tuxt = 2E
With y = 0 when x = A, show that the period is available from

A
e 4 J’ dx
7 o V2[E - U(x)]

‘What do the isoclines of Prob. 14.24 look like?
Plot the isoclines of the van der Pol’s equation

x—ux(l-x)+x=0
for u = 2.0 and dy/dx = 0, —1 and +1.
The equation for the free oscillation of a damped system with a hardening spring is

' mx+cx+kx+puxi=0

Express this equation in the phase plane form.

Ihe following numerical values are given for the equation in Prob. 14.27:
=X 295 S og =20 =5
m m m

Plot the phase trajectory for the initial conditions x(0) = 4.0, x(0) = 0.
Plot the phase plane tra]ectory for the simple pendulum with the initial conditions
6(0) = 60° and 6(0) =

Determine the period of the pendulum of Prob. 14.29 and compare with that of the linear
system.

The equation of motion for a spring-mass system with constant Coulomb damping can be
written as

X+ wix+ Csgn{x)=0
where sgn (%) signifies either a positive or negative sign equal to that of the sign of x.

Express this equation in a form suitable for the phase plane.

A system with Coulomb damping has the following numerical values: k = 3.60 Ib/in.,
m = 0101b-s?in.”!, and u = 0.20. Using the phase plane, plot the trajectory for
x(0) = 20in., x(0) = 0.

Consider the motion of the simple pendulum with viscous damping and determine the
singular points. With the aid of Fig. 14.4.2, and the knowledge that the tra]ectones must
spiral into the origin, draw some approximate trajectories.

Apply the perturbation method to the simple pendulum with sin 6 replaced by 6 — 103
Use only the first two terms of the series for x and .

From the perturbation method, what is the equation for the period of the simple pendu-
lum as a function of amplitude?

For a given system, the numerical values of Eq. (14.7.7) are

C X+ 0.15x + 10x + x3 = Scos (wf + @)

“Plot A vs. w from Eq. (14.7.11) by first assuming a value of A and solving for »’.

Biis
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Determine the phase angle ¢ vs. w for Prob. 14.36.

The supporting end of a simple pendulum is given a motion, as shown in Fig. P14.38.
Show that the equation of motion is

2
i‘)‘.+ (%—w—l& cosZwt)sinf):O

Yo €OS 2wt

FIGURE P14.38.

For a given value of g//, determine the frequencies of the excitation for which the simple
pendulum of Prob. 14.38 with a stiff arm / will be stable in the inverted position.

Determine the perturbation solution for the system shown in Fig. P14.40 leading to a
Mathieu equation. Use initial conditions x(0) = 0, x(0) = A.

m

oy

4

v

FIGURE P14.40.

Using the Runge—Kutta routine and g/!/ = 1.0, calculate the angle-6 for the simple pen-
dulum of Prob. 14.29.

With damping added to Prob. 14.41, the equation of motion is
6 + 0306 + sin § = 0
Using the Runge-Kutta method, solve for the initial conditions 6(0) = 60°, 6(0) = 0.

Obtain a numerical solution for the system of Prob. 14.40 by using (a) the central differ-
ence method and (b) the Runge-Kutta method.

Consider the large-amplitude motion of the pendulum of mass m and length I, forced by
sinusoidal forcing of frequency €} and-amplitude F;. The Poincaré plot of the motion is
obtained by plotting the initial position and velocity and then plotting the position and
velocity of the pendulum after time T, 2T, 3T, ... has elapsed. The angle 6 must be pre-
sented on the fundamental interval [0, 2m]. Simulate the motion for various initial condi-
tions in MATLAB®, for the amplitude of perturbation ranging from very small to 1 and
for different frequencies of forcing. If the amplitude of the perturbation is non-zero, is
the transition from the oscillatory to rotational motion possible?

Consider the forced and damped Duffing oscillator described in Sec. 14.6. Simulate the
equation of motion in MATLAB® for ¢ = 0.2, F =03,k = 1,u =1, and w = 1. Make
the Poincaré plot. What do you observe?
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Specifications of Vibration
Bounds

Specifications for vibrations are often based on harmonic motion.
X = xgsinwt

The velocity and acceleration are then available from differentiation and the following
relationships for the peak values can be written.

x =27 fx,
Xy = —4mw? flx, = -2 fx,
These equations can be repreéented on log-log paper by rewriting them in the form
' In %, = Inx, + In 27f
Inx, = —Inx, — In2#f

By letting x, = constant, the plot of In x,, against In 2ifis a straight line slope equal to
+1. By letting x, = constant, the plot of x, vs. In 27f is again a straight line of slope
—1. These lines are shown graphically in Fig. A.1. The graph is often used to specify
bounds for the vibration. Shown in heavy lines are bounds for a maximum acceleration
of 10g, minimum and maximum frequencies of 5 and 500 cps, and an upper limit for the
displacement of 0.30 in.
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APPENDIX B

Introduction to Laplace
Transformation

Definition
If £(¢) is a known function of ¢ for values of ¢ > 0, its Laplace transform (LT), f(s), is
defined by the equation '

©

7(s) = j e~ F(0) di = (1) » (B1)

]

where s is a complex variable. The integral exists for the real part of s > 0 provided f(¢)
is an absolutely integrable function of ¢ in the time interval 0 to «.

EXAMPLE B.1
Let f(¢) be a constant c for ¢ > 0.Its LT is
SBc=Jce"’dt= - =<
0 S o S
which exists for R(s) > 0.
u
EXAMPLE B.2
Let f (£) = t.1ts LT is found by ihtegration by parts, letting
u=t du = dt
—-st
dv=e"dt v= -
s
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The result is

+1J’ e""dt=-1—2 R(s) >0
o s .

LT of derivatives. If £f(r) = f(s) exists, where f(¢) is continuous, then f(¢) tends
to f(0) as t — 0 and the LT of its derivative f'(r) = df(¢)/dt is equal to
£f'(1) = sf(s) — £(0) (B2)

This relation is found by integration by parts

er e f () dt = e f()| +
0 0

s J e ' f(¢) dt
0
Similarly, the LT of the second derivative can be shown to be

2F(0) = s°F (s) - sf(0) — £(0) B3

Shifting Theorem -

Consider the LT of the function e® x(¢).

Levx(t) = J e le“x(1)] dt = J e S x() di
0 0
We conclude from this expression that

Pex(t) = X(s — a) (BA4)

where £x(r) = x(s) Thus, the multiplication of x(¢) by e® shifts the transform by a,
where a can be any number, real or complex.

Transformation of Ordinary Differential Equations
Consider the differential equation

mx + cx + kx = F(t) (B.5)
ItsLTis '

mls2%(s) — sx(0) — %(0))] +c[s%(s) - x(0)] + kE(s) = F(s)

which can be rearranged to

3(s) = F(s) . (ms + ¢)x(0) + mx(0)

T msitos+k ms:+cs+k _(B'6)

The last equation is called the subsidiary equation of the differential equation. The
response x(¢) is found from the inverse transformation, the first term representing the
forced response and the second term the response due to the initial conditions.
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For the more general case, the subsidiary equation can be written in the form

- A(s)
= - B.7

where A(s) and B(s) are polynomials. B(s) is in general of higher order than A(s).
Transforms Having Simple Poles
Considering the subsidiary equation

_ A(s)

x(s) = B()
we examine the case where B(s) is factorable in terms of 7 roots a,, which are distinct
(simple poles).

B(s) = (s — a)(s - az)"' (s - an)
The subsidiary equation can then be expanded in the following partial fractions:
: C
x(s) = ak) _ G PR B — (B.3)

B(s) s-a s-—a s—a,

To determine the constants C,, we multiply both sides of the preceding equation

by (s — a;) and let s = g,. Every term on the right wjll then be zero except C, and we
arrive at the result

Als) ‘
= i — — B.9
Ci = lim(s — a) B6) | (B9)
Because £ 7'C,/(s — a,) = C,e®', the inverse transform of X(s) becomes
4 Als) ..
) = : —_ a BlO
x(t) kE=l Sh_r)x“llk(s a,) B() (B.10)

Another expression for the last equation becomes apparent by noting that
B(s) = (s — a,)By(s)

B'(s) = (s — ak)B;(s) + B1(S)
lim B'(s) = By(a,) '
Because (s — a,)A(s)/B(s) = A(s)/B(s),.it is evident that

W0-3 3((;)) o | 1)

Transforms Having Poles of Higher Order
If in the subsidary equation
' A
x(s) = —(S)

B(s)



Appendix B Introduction to Laplace Transformation 467

a factor in B(s) is repeated m times, we say that x(s) has an mth-order pole. Assuming
that there is an m-th order pole at a,, B(s) will have the form

B(s) = (s —a)™s — a))(s — a;)
The partial fraction expansion of X(s) then becomes
Cy Cp
x(s) = (s—a)"‘ (s—al)'"‘l o |
' B.12
o c, c, (B.12)
+ + + +
(s — al) (s —a,) (s — a3)

The coefficient C,; is determined by multiplying both sides of the equation by (s — a,)"
and letting s = a,

(5 - a])mf(s) =C, + (S - a1)C12 +

+ (s —a)™'Cy, + (s —a)" C + (B.13) -

s—a,
Cy=[s- a1)m3_c(s)]s=a,

The coefficient C,, is determined by differentiating the equation for (s — a;)"x(s)
with respect to s and then letting s = a;,

d o
qz[zu—@)ﬂg] (B14)
s S=a, .
- It is evident then that
1 dar 1 i .
Cin = (n—1)! [ = (s — a))" x(s) ]Fa] (B.15)
The remaining coefficients C,,Cs, . . ., are evaluated as in the previous section for sim-
ple poles. )
Because by the shifting theorem,
@ . 1 " -1

G-a)y  (-%
the inverse transform of x(s) becomes
X(t) = [C + C,ym—m—mm et .
"(m - 1) ) 2lm—2n "] (B.16)
+ C,e® + Cye™ +

Most ordinary differential equations can be solved by the elementary theory of
LT. Table B.1 gives the LT of simple functions. The table is also used to establish the
inverse LT, because if

£f(r) = f(s)

then

() = SE“f ()
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Table B.1 Short Table of Laplace Transforms

fls) f@
) 1 &(t) = unit impulse at¢t = 0
1 . .
2 3 AU(f) = unit step function att =0
1 tn—)
Pl =1 IR
® S =1,2,) —
1 .
@ —
1
©) (s + a)? . te™
1 — ; n—1_-ar
©  GraTL2) P
' l 1 -at
) s(s + a) a(l ¢ )
(8) L —l-(e"” +at—1)
s%s + a) a?
s
) i cos at
(10) ) j p cosh at
1 1.
(11) 2+ a2 ;sm at
1 1
- sinh at
(12) pE R ~sinha
1 1
(13) D) = (1 — cos ar)
14 _r i(at — sin at)
(14) sz(;z + ) PE a
(15) L L (sin ar — at cos at)
2+ )2 23
16 V s —t—s' at
(16) 52+ ad)? 2a n
s?—a% ‘
17 Gz":'az—)z tcos at
(18) S L— ! et sin V1 — £t
! 52+ 2fwys + o} m “

REFERENCE

[1] Tuomson, W.T. Laplace Transformdtion, 2nd Ed. Englewood Cliffs, NJ: Prentice-Hall,
1960. '



"APPENDIX C

Determinants and Matrices

C.1 DETERMINANT

A determinant of the second order and its numerical evaluation are defined by the fol-
lowing notation and operation

b
d

An nth-order determinant has n rows and »n columns, and in order to identify the
position of its elements, the following notation is adopted:

D=" " =ad - be
C

ay 4 43 ay,
a4y 4 4apn a4
anl an?. an3 ann

Minors

A minor M;; of the element a; is a determinant formed by deleting the ith row and
the jth column from the original determinant.

Cofactor

The cofactor C;; of the element a; is defined by the equation

G = (_1)‘+]Mij
EXAMPLE C.1.1
Given the third-order determinant
2 1 5
4 2 1
2 0 3

469
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The minor of the term a,; = 4 1s

2 15
15
Myof |4 2 1=|0 3‘*3
2 0 3

and its cofactor is

Gy = (=113 -3

Expansion of a Determinant

The order of a determinant can be reduced by 1 by expanding any row or column in
terms of its cofactors. -

EXAMPLE C.1.2

The determinant of the previous example is expanded in terms of the second column as

213 4 1 25
D=4 2 1 :1(_1)1+22 3 +2(_1)2+22 3\
2 0 3 )
2 s
+0(-1)%*2
g ]
=-10-8= ~—-18

Properties of Determinants

The following properties of determinants are stated without proof:
1
2.
3.

Interchange of any two columns or rows changes the sign of the determinant.
If two rows or two columns are identical, the determinant is zero.

Any row or column may be multiplied by a constant and added to another row Ot
column without changing the value of the determinant.

C.2 MATRICES

Matrix. A rectangular array of terms arranged in m rows and n columns 1S
called a matrix. For example,

ay G a3 Oy
A=tay ap ay ay
CLay ap ayn ay
isa3 X 4 matrix.
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Square matrix. A square matrix is one in which the number of rows is equal to.
the number of columns. It is referred to as an n X n matrix or a matrix of order n.

Symmetric matrix. A square matrix is said to be symmetric if the elements on
the upper right half can be obtained by flipping the matrix about the diagonal.

2 1 3
A=|1 5 0|=symmetric matrix
3 01

Trace. The sum of the diagonal elements of a square matrix is called the trace.
For the previous matrix,

Trace A=2+5+4+1=8

Singular matrix. If the determinant of a matrix is zero, the matrix is said to be
singular.

Row matrix. A row matrix hasm = 1.
B = [bl bz b}]

Column matrix. A column matrix hasn = 1.

G

Zero matrix. The zero matrix is defined as one in which all-elements are zero.

[0 0 0]
O"Lo 0 0]
Unit matrix. The unit matrix
1 0 0]
I=10 1 0
L0 0 1]

is a square matrix in which the diagonal elements from the top left to the bottom right
are unity with all other elements equal to zero. )

Diagonal matrix. A square matrix having elements a; along the diagonal with
all other elements equal to zero is a diagonal matrix.

a;, 0 0
.[aii]= 0 ay O
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Transpose. The transpose A7 of a matrix A is oné in which the rows and
columns are interchanged. For example,

a a a ay 4y

_ |9 12 a3 T _
A= A'=la, ap
a3 4y

The transpose of a column matrix is a row matrix.

Minor. A minor M; of a matrix A is formed by deleting the ith row and the jth
column from the determinant of the original matrix. ‘ '

LetA =| ay,

a;p 4 Gy

My lay, ay ap| =

az; 4z 433

Cofactor. The cofactor C; is equal to the signed minor (—1)"*/M,;. From the pre-
vious example, '

C,= (_1)1+2M12 = -M

Adjoint matrix. An adjoint matrix of a square matrix A is a transpose of the
matrix of cofactors of A.

Let cofactor matrix of A be

Chi Cpn Gy

[Cij] =[Gy Cp Gy

Gy Cp Cy
Ch Gy Gy
adjA = [Cij]T = [Cji] =[Ch G Gy
Cs Cu Gy

Inverse matrix. The inverse A~! of a matrix A satisfies the relationship

ATA=AAT =]

Orthogonal matrix. An orthogonal matrix A satisfies the relationship
 ATA=AAT=]

From the definition of an inverse matrix, it is evident that for an orthogonal matrix
AT= A1, : -



Appendix C Determinants and Matrices 473

C.3 RULES OF MATRIX OPERATIONS
Addition. Two matrices having the same number of rows and columns can be

added by summing the corresponding elements.

EXAMPLE C3.1-

The product of two matrices A and B is another matrix C.
AB=C

The element C;; of Cis determined by multiplying the elements of the ith row in A by the
elements of the jth column in B according to the rule

G = 2 ay by
k

Multiplication.

EXAMPLE C.3.2

1 1 1 2
LetA=|1 2 2 B=|0
1 2 3 3 -
1 1142 5 0
AB = 1 2 2940 8 0|=C
1 2 3.3 11 -1

ie.,
€y =1X2+2X0+2X3=8
It is evident that the number of columns in A must equal the number of rows in B, or that the

matrices must be conformable. We also note that AB # BA.
The postmultiplication of a matrix by a column matrix results in a column matrix.

EXAMPLE C.3.3

1 1 141 6
1 5§ 2193p=420
2 1 3112 11

Premultiplication of a matrix by a row matrix (or transpose of a column matrix) results in a row

matrix.
|
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EXAMPLE C.3.4.

1 1 1]
1 3 2]t 5 2|=[8 18 13]
2 1 3
The transpose of a product AB = Cis CT = BTA”.
|
EXAMPLE C.3.5
1 1 2 1
-t 52 1]
L 32 T_TT_2112=37}
C_AB”LS] =A== 1 o3 25
]
Inversion of a matrix. Consider a set of equations.
apx; tapX; ¥ apx; =y,
ay Xyt apX; * apx; =y, (C3.1)
Ay Xy T apXy + ayX3 = Yy
which can be expressed in the matrix form
' AX=Y (C3.2)
Premultiplying by the inverse A~!, we obtain the solution _
X=A1 (C3.3)

We can identify the term A~ by the Cramer’s rule as follows. The solution for x, is

1 Yi G A3

X1 = T4 |Y2 Gn axn
|A|

Y3 Gxp asxy

a, axp ap 4y a;;, Oy

}

=¥ ty3

=L{
IAI N

1
= m b’]Cu + 3Gyt J'3C31l

ay 4s az Aas Ay Gxn

where A is the determinant of the coefficient matrix A, and Cy;, Cy;, and Cy are 'the

cofactors of A corresponding to elements 11, 21, and 31. We can also write similar

expressions for x, and x; by replacing the second and third columns by the y column,
. respectively. Thus, the complete solution can be written in matrix form as
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Xq Ch Gy Gy Y1

1 X
X r = m Ch Cp Cy Y2 (C3.4)
X, Ciy Gy Gy Y3
or
(= =[Gl = o [adi Ally)
R R " it

Thus, by comparison with Eq. (C.3.3), we arrive at the result .

1
ATl= —adjA C3.5
i (C35)
EXAMPLE C.3.6
Find the inverse of the matrix
1 1 1
A=|1 2 2
1 0 3
(a) The determinant of A is |A| = 3.
(b) The minors of A are
2 2 1 2
Mll::\o 3 =6$ Mllz\l 3'217‘”

(c) Supply the signs (—1)**/ to the minors to form the cofactors

6 -1 -2
[cl=]-3 2 1
0 -1 1

(d) The adjoint matrix is the transpose of the cofactor matrix, or [CiT = [C;], Thus, the inverse
Alis '

1 1 6 -3 0
Al= Wade= 31712 -1
, -2 1 1 .
‘(e) The result can be checked as follows:

1 6 -2 0 1 1
AT'A = 3 -1 2 =11 2 2
(-2 1 1Jl1 0 3

1F3 0 0 1 00

=3 0 3 0|=|0 1 0

0 0 3 00 1

It should be noted that for an inverse to exist, the determinant |A| must not be zero.
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Equation (C.3.5) for the inverse -offers another means of evaluating a determinant.
Premultiply Eq. (C.3.5) by A:

AA™ = ﬁade =1

Thus, we obtain the expression

|A|l = A adj A (C3.6)

Transpose of a Product
The following operations are given without proof:

(AB)T = BTAT

(C3.7)
(A+B)T=AT+ BT
Orthogonal transformation. A matrix P is orthogonai if
ptl=pT
The determinant of an orthogonal matrix is equal to +1.1f A = symmetric matrix, then
PT'AP = D = PTAP adiagonal matrix (C3.8)
If A is a symmetric matrix, then
PTA = AP '
(C3.9)
{x}74 = Alx]

Partitioned Matrices

A matrix can be partitioned into submatrices by horizontal and vertical lines, as shown
by the following example:

2 41-1
0 -3 4|_[[a][B]
1 21 2| Lldiio]
3 -11-5
where the submatrices are

2 4 -1
A= -3 B= 4

1 2 2

c=[3 -1 bD=[-5]

Partitioned matrices obey the normal rules of matrix algebra and can be added, sub-
tracted, and multiplied as though the submatrices were ordinary matrix elements. Thus,
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[AB]{} _ [A{x} + Bm}
CiD]ly Clx} + D{y}

A B\ EVF|_[AE+BG: AF+BH
C'D||G'H CE + DG'! CF+ DH

C.4 DETERMINATION OF EIGENVECTORS

The eigenvector X; corresponding to the eigenvalue A; can be found from the cofac-
tors of any row of the characteristic equation.

Let [A — A, ]X; = 0 be written out for a third-order system as

(au - A1) ap a3 X
a4y (ay = &) 3 X0 =0 (C41)
as, as; (a33 - )‘i) X3)

Its characteristic equation |A — A| = 0 written out in determinant form is

(‘111 - ’\i) ap ag;
an (a — 1) ay =0 (C42)
as as; (aas - )‘f)

The determinant expanded in terms of the cofactors of the first row is
(a1 = M)Cyy + a,Chy + a13C13 = 0 (C4.3)

Next replace the first row of the determinant by the second row, leaving the other
two rows unchanged. The value of the determinant is still zero because of two identical

TOWS:
an (azz - )‘i) ax
asn (azz - Ai) ay; =0 (C4a4)
as as (aas - )\i) ‘

Again expand in terms of the cofactors of the first row, which are identical to the cofac-
tors of the previous determinant:

a,Cyy + (ay — A)Cpy + apCy3 =0 (C4.5)

Finally, replace the first row by the third row and expand in terms of the first row
of the new determinant.

as ap, (a3 —A)
ay (anp— ) ay, [=0 (C4.6)
ay ap (a3 - A)

ayCyy + anCy + (a3 — A)C;3 =0 - (C4T)

Equations (C.4.3), (C4.5),and (C.4.7) can now be assembled in a single matrix equation:
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(a;, — ) ay, a, Cu
ay () ay Cpp =0 (C.4.8)
a3 ay (a33 -0 ICy

Comparison of Egs. (C.4.1) and (C.4.8) indicates that the eigenvector X, can be deter-
mined from the cofactors of the characteristic equation with A = A;. Because the eigen-

vectors are relative to a normalized coordinate, the column of cofactors can differ by a
multiplying factor.

Xy [ Cy

X3 Cis
Instead of the first row, any other row may have been used for the determination of the
cofactors.

e



APPENDIX D

Norma! Modes of Uniform
Beams

We assume the free vibrations of a uniform beam to be governed by Euler’s differen-
tial equation.

3y 3%y :
El— +m— = D.1
Ixl m 92 0 (D.1)
To determine the normal modes of vibration, the solution in the form
| o) = 6, (e (®2)
is substituted into Eq. (D.1) to obtain the equation
d*¢,(x)
it Brda(x) =0 ‘ (D3)

where
¢,(x) = characteristic function describing the deflection of the nth mode
m = mass density per unit length
B = ma},/EI
w, = (8,1)* VEI/ml* = natural frequency of the nth mode

The characteristic functions ¢,(x) and the normal mode frequencies w, depend
on the boundary conditions and have been tabulated by Young and Felgar. An abbre-
viated summary taken from this work! is presented here.

! D. Young, and R. P. Felgar, Jr., Tables of Characteristic Functions Represeming'Normal Modes of
Vibration of a Uniform Beam. The University of Texas Publication No. 4913, July 1,1949.
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D.1 CLAMPED-CLAMPED BEAM

NN

v n Bnl (Bﬂl)2 wn/wl
1 4.7300 22.3733 1.0006
2 7.8532 61.6728 2.7565
3 10.9956 120.9034 5.4039

D.2 FREE-FREE BEAM

The natural frequencies of the free-free beam are equal to those of the clamped-
clamped beam. The characteristic functions of the free-free beam are related to those

of the clamped-clamped beam as follows:

~_ - free-free clamped-::lamped
\-/ d)n = ¢n
B b, = ¢,
¢, = N
7 ~— N br = én
D.3 CLAMPED-FREE BEAM
n Bn { (Bn 1)2 wn/""l
1 1.8751 3.5160 1.0000
2 4.6941 22.0345 6.2669
3 7.8548 61.6972 17.5475
D.4 CLAMPED-PINNED BEAM
b/ . '
n ﬁ,.l V (Bnl)2 (I)"/(l)l
1 3.9266 15.4182 1.0000
2 7.0686 49.9645 3.2406
3 10.2101 104.2477 6.7613

D.5 FREE-PINNED BEAM

The natural frequencies of the free-pinned beam are equal to those of the clamped-
pinned beam. The characteristic functions of the free-pinned beam are related to those

of the clamped-pinned beam as follows:
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free-pinned clamped-pinned
o8 = ¢,
¢, o= ¢,
& = b,
¢ = 6,

TABLE D.1 Characteristic Functions and Derivatives
Clamped-Clamped Beam

First Mode

x o o1 dd . 1d'¢ w_1d'¢

! i A A e
0.00 0.00000 0.00000 2.00000 —1.96500
0.04 0.03358 0.34324 1.62832 -1.96285
0.08 0.12545 0.61624 1.25802 —1.94862
0.12 0.26237 0.81956 0.89234 ~1.91254
0.16 0.43126 0.95451 053615 —1.84732
0.20 0.61939 1.02342 0.19545 —1.74814
0.24 0.81459 1.02986 ~0.12305 ~1.61250
0.28 1.00546 0.97870 —0.41240 —1.44017
0.32 1.18168 0.87608 -0.66581 —1.23296
0.36 1.33419 0.72992 —0.87699 —0.99452
0.40 145545 054723 ~1.04050 ~0.73007
0.44 1.53962 0.33897 -1.15202 -0.44611
0.48 1.58271 0.11478 —1.20854 ~0.15007
0.52 1.58271 —0.11478 -1.20854 ' 0.15007
0.56 1.53962 -0.33897 -1.15202 04611
0.60 1.45545 —0.54723 —1.04050 0.73007
0.64 1.33419 -0.72992 —0.87699 0.99452
0.68 1.18168 —0.87608 ~0.66581 1.23296
072 100546 —0.97870 —0.41240 1.44017
0.76 0.81459 -1.02986 - —0.12305 1.61250.
0.80 0.61939 -1.02342 0.19545 1.74814
0.84 0.43126 —0.95451 0.53615 1.84732
0.88 0.26237 ~0.81956 0.89234 1.91254
0.92 0.12545 —0.61624 1.25802 1.94862
0.96 0.03358 —034324 1.62832 1.96285

1.00 0.00000 0.00000 2.00000 1.96500
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TABLE D.2 Characteristic Functions and Derivatives
Clamped-Clamped Beam

Second Mode
X , _ 1ldd, ,_ 1 d*¢, w1 d*¢,
! * % =B dx e
0.00 0.00000 0.00000 2.00000 —2.00155
0.04 0.08834 0.52955 1.37202 ~1.99205
0.08 0.31214 0.86296 0.75386 —1.93186
0.12 0.61058 1.06644 0.16713 —1.78813
0.16 0.92602 0.97427 -0.35923 —1.54652
0.20 1.20674 0.79030 —0.79450 —1.21002
0.24 1.41005 0.48755 —-1.11133 —-0.79651
0.28 1.50485 0.10660 —1.28991 —0.33555
0.32 1.47357 -0.30736 -1.32106 0.13566
0.36 1.31314 —-0.70819 —1.20786 0.57665
0.40 1.03457 —-1.05271 —0.96605 0.94823
0.44 0.66150 —1.30448 —0.62296 1.21670
0.48 0.22751 —1.43728 -0.21508 1.35744
0.52 ~0.22751 —1.43728 0.21508 1.35744
0.56 - —0.66150 —1.30448 0.62296 1.21670
0.60 —1.03457 ~1.05271 0.96605 0.94823
0.64 -1.31314 —0.70819 1.20786 0.57665
0.68 —1.47357 —0.30736 - 1.32106 0.13566
0.72 —1.50485 0.10660 1.28991 —0.33555
0.76 -1.41005 0.48755 1.11133 ~0.79651
' 0.80 —-1.20674 0.70930 0.79450 -1.21002
0.84 —0.92602 0.97427 0.35923 —1.54652
0.88 -0.61058 1.00644 -0.16713 —1.78813
0.92 -0.31214 0.86296 -0.75386 -1.93186
0.96 —0.08834 0.52955 -1.37202 -1.99205

1.00 0.00000 0.00000 ~2.00000 —2.00155
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TABLE D.3 Characteristic Functions and Derivatives

Clamped-Clamped Beam

First Mode
x , _1dé . _1d%¢, .. 1d¢
/ ¢1 d)l - Bl dx ¢l B% de ¢1 - B:l; dx3
0.00 0.00000 0.00000 2.00000 -1.45819
0.04 0.00552 0.14588 1.88988 —1.46805
0.08 0.02168 0.28350 1.77980 -1.46710
0.12 0.04784 0.41286 1.66985 —1.46455
0.16 0.08340 0.53400 1.56016 —1.45968
0.20 0.12774 0.64692 1.45096 ~1.45182
0.24 0.18024 0.75167 1.34247 —1.44032
0.28 0.24030 0.84832 1.23500 —1.42459
0.32 0.30730 0.93696 1.23889 - —1.40410
0.36 0.38065 1.01771 1.02451 —1.37834
0.40 0.45977 1.09070 0.92227 —1.34685
0.44 0.54408 1.15612 0.82262 —1.30924
0.48 0.63301 1.21418 0.72603 —1.26512
- 052 0.72603 1.26512 V 0.63301 —1.21418
0.56 0.82262 1.30924 0.54408 -1.15612
0.60 0.92227 1.34685 0.45977 -1.09070
0.64 1.02451 1.37834 0.38065 —-1.01771
0.68 1.12889 1.40410 0.30730 —0.93696
0.72 1.23500 1.42459 0.24030 —0.84832
0.76 1.34247 1.44032 0.18024 -0.75167
0.80 1.45096 1.45182 0.12774 —0.64692
0.84 1.56016 1.45968 0.08340 —0.53400
0.88 - 1.66985 1.46455 0.04784 - —0.41286
0.92 1.77980 1.46710 0.02168 —0.28350
0.96 1.88988 1.46805 0.00552 —0.14588
1.00 2.00000 1.46819 0.00000 0.()()000
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TABLE D.4 Characteristic Functions and Derivatives
Clamped-Clamped Beam

Second Mode
x , _ 1do, o 1d w _ L&
I d’z ¢z - Bz dx ‘bz - ‘3% dx? . ¢2 - 5% dx3

0.00 0.00000 0.00000 2.00000 -2.03693
0.04 0.03301 0.33962 1.61764 —2.03483
0.08 0.12305 0.60754 1.23660 —2.02097
0.12 0.25670 0.80728 0.86004 —1.98590
0.16 0.42070 0.93108 0.49261 —1.92267
0.20 0.60211 0.99020 0.14007 —1.82682
0.24 0.78852 0.98502 -0.19123 —1.69625
0.28 | 0.96827 0.92013 —0.49475 —1.53113
0.32 1.13068 0.80136 -0.76419 —-1.33373
0.36 1.26626 0.63565 —0.99384 —1.10821
0.40 1.36694 0.43094 —1.17895 —0.86040
0.44 1.42619 0.19593 —1.31600 —0.59748
0.48 1.43920 —0.06012 —1.40289 —-0.32772
0.52 1.40289 -0.32772 —1.43920 -0.06012
0.56 1.31600 —0.59748 —1.42619 0.19593
0.60 1.17895 ~0.86040 —1.36693 0.43094
0.64 0.99384 -1.10821 ~1.26626 0.63565
0.68 0.76419 . —1.33373 —1.13068 0.80136
0.72 0.49475 —-1.53113 —0.96827 0.92013
0.76 0.19123 -1.69625 —0.78852 0.98502
0.80 —0.14007 —1.82682 —0.60211 0:99020
0.84 ~0.49261 —-1.92267 -0.42070 0.93108
0.88 —0.86004 —1.98590 —0.25670 0.80428
0.92 ~1.23660 —2.02097 -0.12305 0.60754
0.96 -1.61764 —2.03483 ~0.03301 0.33962
1.00 —2.00000 -2.03693 0.00000 0.00000
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Normal Modes of Uniform Beams

TABLE D.5 Characteristic Functions and Derivatives

Clamped-Clamped Beam

First Mode
X ' __Ld'h o _ 1 dzd’l Lo 1 d3¢1
1 4)1 ¢1 Bl dx ¢1 - B% dx? 4’1 - B? dx3
0.00 0.00000 0.00000 2.00000 —2.00155
0.04 0.02338 0.29844 1.68568 —2.00031
0.08 0.08834 0.52955 1.37202 ~1.99203
0.12 0.18715 0.72055 1.06060 -1.97079
0.16 0.31214 0.86296 0.75386 —1.93187
0.20 0.45574 0.95776 0.45486 -1.87177
0.24 0.61058 1.00643 0.16712 —1.78812
0.28 0.76958 1.01105 —0.10554 -1.67975
0.32 0.92601 0.97427 -0.35923 ~1.54652
0.36 1.07363 0.89940 —0.59009 —1.38932
0.40 " 1.20675 0.79029 —0.79450 -1.21002
0.44 1.32032 0.65138 —0.96918 ~1.01128
0.48 1.41006 0.48755 . -1.11133 —0.79652
0.52 1.47245 0.30410 —1.21875 -0.56977
0.56 1.50485 0.10661 -1.28992 —0.33555
0.60 1.50550 —0.09916 -1.32402 -0.09872
0.64 1.47357 —0.30736 —1.32106 0.13566
0.68 1.40913 ~0.51224 —1.28180 0.36247
0.72 1.31313 —0.70820 —-1.20786 0.57666
0.76 1.18741 —0.88996 —1.10157 0.77340
. 0.80 1.03457 —-1.05270 —0.96606 0.94823
0.84 0.85795 —-1.19210 -0.80507 1.09714
0.88 0.66151 —1.30448 -0.62295 1.21670
0.92 0.44974 —1.38692 —0.42455 1.30414
0.96 0.22752 -0.22752 —0.21507 1.35743
1.00 0.000(_)0 —1.45420 0.00000 1.37533
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TABLE D.6 Characteristic Functions and Derivatives
Clamped-Clamped Beam

Second Mode
x ,_1do, ,_1d’¢, w_1d¢
1 ¢2 d)z—ﬁzdx 2”ﬂ% dx? ¢2_B% dx3

0.00 0.00000 0.00000 2.00000 —2.00000
0.04 0.07241 0.48557 1.43502 —1.99300
0.08 0.25958 0.81207 0.87658 —1.94824
0.12 0.51697 0.98325 0.33937 *1.8396(']
0.16 0.80176 1.00789 —0.15633 -1.65333
0.20 1.07449 0.90888 —0.58802 —1.38736
0.24 1.30078 0.68345 -0.93412 —1.05012
0.28 1.45308 0.38242 -1.17673 —0.65879
0.32 1.51208 0.02894 —1.30380 -0.23724
0.36 1.46765 —0.34350 -1.31068 0.18649
0.40 1.31923 -0.70122 -1.20092 0.58286
044 1.07550 —1.01270 —0.98634 0.92349
0.48 0.75348 ~1.25090 —0.68631 1.18364
0.52 0.37700 -1.39515 —0.32640 1.34442
0.56 —0.02536 —1.43265 0.06348 . 1.39438
0.60 —0.42268 —1.35944 0.45136 1.33056
0.64 —0.78413 —1.18058 0.80569 1.15876
0.68 -1.08158 —-0.90972 1.09776 0.89319
0.72 -1.29186 -0.56793 1.30395 0.55537
0.76 —1.39848 —0.18205 1.40755 0.17245
0.80 -1.39351 0.21752 1.40010 ’ —0.22494
0.84 —=1.27727 0.59923 1.28198 ) —0.60506
0.88 —1.05919 0.93288 1.06244 -0.93759
0.92 —0.75676 1.19208 0.75879 —1.19604
0.96 —0.39406 1.35629 0.39504 - —1.35983

1.00 0.00000 1.41251 - 0.00000 —1.41592




APPENDIX E

Introduction to MATLAB®

MATLAB® is a commercially available interactive software package that can be used
along with the programs included with this text to solve many problems in vibrations.
The programs for this text work with The Student Edition of MATLAB®. The individual
programs will be discussed as they are needed. The following can be considered as a
general introduction to MATLAB®. For the purposes of this introduction we will con-
centrate on the commands that one will need throughout the rest of the book. For a
complete description of MATLAB®, the reader should consult The Student Edition of
MATLAB®. .

Upon entering MATLAB®, one should see the prompt >>. This prompt distin-
guishes a MATLAB® command line. Inside MATLAB®, one can get information about a
command by typing “help” followed by the command name. It is important to note
that MATLAB® is case sensitive, so all commands and variables need to be in the appro-
priate case.

MATLAB® works with either arrays of numbers or matrices. In order to create an
array of numbers youcan use the command

X:y:1

that gives an array of numbers starting at X and incremented by Yy until z or the closest
number that is less than or equal to z. For example, the command

‘

0:1:3
generates the array
0123
and the command _
0= -1

generates the array

0-1-2-3-4-5-6-7-8-9-.

487



488 Appendix E Introduction to MATLAB®
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Figure E.1. Plot of cos(x).

Functions can be applied to an entire array, for example, the following two commands
x=0:5:7
y = cos(x)
generate the arrays
x = 0.0000 0.5000 1.000 1.500 2.000 2.5000 3.0000

and
y = 1.0000 0.8776 0.5403 0.0707 —0.4141 —0.801f —0.9900.

One can plot these two arrays in MATLAB® by using the command plot (x,y). The
result of this command is shown in Figure E.1. ‘

A few of the functions which are available in MATLAB® are given in the following
table. MATLAB® assumes that the argument of a trigonometric function is in radians.

Function Effect
sin () Gives the sine of each element in an array or matrix.
cos () Gives the cosine of each element in an array or matrix.
exp () Gives the exponential function of each element in an array or matrix.

’

A matrix can be input easily into MATLAB®. For example, consider the matrix

05 05 05
A=105 15 15
05 15 25
This matrix can be input into MATLAB® by typing the following on a MATLAB® com-

mand line:

A =[05050.5;051.51.5;051.52.5]

where there is a space between each element and a semi-colon at the end of each row.
Alternatively, you can separate matrix elements by commas instead of spaces and you
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can indicate the end of each row by a carriage return. MATLAB® can efficiently imple-
ment many functions of matrices. A few functions are:

Function T Effect
eig () Gives the eigenvalues and eigenvectors of a matrix.
inv () Gives the inverse of a matrix.
det () Gives the determinant of a matrix.

For example, consider the computation of the eigenvalues for the following matrix

4= ||:f52 —11]

The eigenvalues are the values of A which satisfy
(=2-1) 1

5 (<1-)] 70

This calculation results in the following characteristic polynomial:
A+ +15=0

In MATLAB®, the roots of this equation can be computed by typing the command
roots(c) where c is the vector containing the coefficients of the polynomial in descend-
ing order. For this example,

c =11, 3, 1.5]
and the command A = roots(c) results in the following:
' |- [—2.3660]
—0.6340

You can compute the eigenvalues in MATLAB®, directly from the matrix A using the
command

y = eig(A)

| —2.3660
Y7 | ~0.6340
In order to compute both the eigenvalues and eigenvectors we use the command

[U, D] = eig(A)

This command produces two matrices. D is a diagonal matrix with the eigenvalues
along the diagonal and U contains the corresponding eigenvectors as column vectors.
For the above matrix we get

‘U_ -0.9392 - —0.5907
0.3437 —0.8069

which produces
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and
D= [—2.3660 0 ]
0 —0.6340
The inverse of this matrix can be computed using the command

I =inv(A)
The result for the example matrix is

[ = [ —0.6667 —.6667]
) —03333 —1.3333 ]

It is possible to have operations on pairs of matrices or arrays. Array operations
act componentwise. The following table illustrates such operations:

Matrix Operations Array Operations
+ addition + addition
— subtraction — subtraction
* multiplication * multiplication
/ division ./ division
* power N power
’ conjugate transpose . conjugate transpose

Consider the arrays x = [1,1,2,4] and the matrix
1 1 1

A=11 3 3
1 3 5

The command that generates an array y whose components are the squares of
the components of x is

y =x"2
For the above example, this command produces
y =111, 4, 16]

If this operation is used with a matrix instead of a vector, the result is each el_ement of
the matrix is squared. For the matrix A above, the following command

A2 =A"2
produces the matrix
1 1 1
A2=11 9 9
1 9 25

Contrast this with the matrix operation that is obtained from the vector opera-
tion by deleting the period. The matrix command is B = A*2 and it will generate a
matrix that is the matrix product of A times A. It is given by:
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37 9
B=[7 19 25
9 25 35

These basic commands along with the programs provided will allow you to solve
many vibrations problems. As you become more familiar with MATLAB®, its versatility
and power will become evident.

PROBLEMS

E.1. Generate an array containing 10 elements between 6 and . Generate a second array
that contains the cosine of these elements.

E.2. Produce a plot for the sin function.
E.3. Given the matrices

1 2 2]
A={2 4 3
2 3 5]
11 1]
B=|0 3 3
[0 0 5]

produce the matrix C = A + B. What are the eigenvalues of C?

E.4. Construct the characteristic polynomial for the matrix C and compute the roots of this
polynomial.
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APPENDIX F

Computer Programs

This appendix describes how to run the programs which accompany this text. A brief
discussion about the program can be found at the beginning of each program.

Program RUNGA solves the differential equation
mx + cx + kx = f(t)

using the fourth-order Runge-Kutta method. Which is described in detail in Sec. 4.8 of
Chapter 4. For a complete discussion of this method, see this section of the main text.
The program RUNGA.m is a MATLAB® script file. Script files are the MATLAB®
equivalent of a main program. This program can be run from the command window by
typing RUNGA at the prompt. The program will ask the user to input the values.of m,
¢, and k, h, the timestep and the initial values x(0) and x(0). See Fig. F.1 for the flow
chart for this program. It requires a function file that contains the function f{t). For
example, if we want to solve the equation

mx + cx+ kx = sin(t),

we would need to create a function file containing the following commands

function [force] = f(t)
force=sin(t)
end

This function file must be named f.m. There are several function files available. Since
the program RUNGA.m requires the function file to be named f.m, the user must copy
whichever function file he wants to use to a file named f.m. Any function files
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INPUT
m, ¢, k, F(1)
*(0), X(0)=y(0) :

T()=t+h/2
X(j)=x+h/2*Y(j-1)

- Y ()= x+h/2 *F(j~1)

he F(j)= (F[TU) - oY) =KX )} /m
T(4)=t+h

X(@) =x+hY(3)
Y@ =x+hF(3)
F(@) ={f[T@)]-cY(@)- kX (D)} /m

o

OUTPUT
t, X, X

T(h=t

t=t+h
o x=x+ (h/&)Y(1)+2Y(2) + 2(3) +1(4)]
FU= {F[T(] ~eY(—kxX(D} /m x=x+(h/6)[F(1) + 2F(2) + 2F(3) + F(4)]
i
FIGURE F.1.

that the user creates to use with RUNGA.m must also be named f.m. The program
RUNGA.m outputs both numerical data and a plot.

POLY

The three options available for the program POLY are shown by the block labeled choice.
See Fig. F.2. In option ©®, mass M and stiffness K are inputted, and the characteristic deter-
minant IM — AKl = 0 is reduced to the polynomial form ¢;,A" + ¢,A" ! + -+ + ¢, = 0in
the block Polcof: The coefficients c; of the polynomial are then outputted.

If no further information is sought, option @ is now complete. If, however, the roots
of the polynomial equation are desired, the decision block sends the coefficients to
option @, where the search for the roots is carried out in the block Polroot and outputted
as the eigenvalues A.

If the eigenvectors are also desired, the eigenvalues are sent to option ®, where
the eigenvectors ¢ are found.

When the coefficients ¢; are initially available, option @ can be used directly for
the eigenvalues A. '

When M, K, and A are initially available, option ® can be used directly to deter-
_ mine the eigenvectors ¢.
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CHOICE?
INPUT ole) 1e INPUT

M, K , f M, K, \

: INPUT
POLCOF OF COEFFICIENTS
17N c

ROOTS?

YES

NO POLROOT OF
CNIN'+Cv=-0 T4 o e
<o +CUN+CO)=0

YES

GAUSSIAN
ELIMINATION OF
(M= \K)$=0

- OUTPUT
¢

*Only if continuing
frem step 1. END

FIGURE F.2.

Iteration

In the flow diagram for the iteration method (see Fig. F.3), the method input block
shows matrix order N, mass matrix M, and stiffness matrix K. The equation of motion
is expressed in the form K~'MX = AX, and the stiffness matrix K = Q7Q is first
decomposed by the Cholesky method for the determination of Q, Q~, and QT and
the dynamic matrix A = K~'M = Q~'Q~TM, which in this case is generally unsym-
metric. The sweeping matrix S is introduced as a unit matrix / for the first mode.
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ITERATE

et

CHOLESKY
DECOMPOSION

K=

{

4=Q"'¢m

Computer Programs

FIGURE F.3.
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The iteration procedure follows in the block ASX;,, = = A, X,, which is normal-
ized in the next block and tested for convergence in the dec151on block and looped
back for further iteration. When the difference [A,,, — A reaches a value smaller
than the tolerance, the first mode A; and its eigenvector ¢ is complete and the calcula-

tion is sent back to the left loop for the determination of the sweeping matrix and iter-
ation for the second mode, etc.

CHOLJAC

The program CHOLJAC offers three options. See Fig F.4. Optlon ) determmes the
product M * K of any two square matrices M and K. The user 1nputs the N X N matri-
ces M and K.

Option @ determines the eigenvalues and eigenvectors of A — Al where Ais
the symmetric dynamic matrix. The user inputs the matrix A and Jacobi iteration is
applied to diagonalize the matrix A.The eigenvalues A and the eigenvectors ¢ are

outputted.

CHOICE?

INPUT O 1@ |@ INPUT
M, K M, K
INPUT
SYMMETRIC

A

MATRIX JACOBI CHOLESKY
PRODUCT DIAGONALIZATION DECOMPOSITION
MeK OF 4 k=Q'0

3 !

OUTPUT OUTPUT P S
ek f NP / A=Q"TMQ
JACOBI
DIAGONALIZATION
OF A

OUTRUT
A

END

FIGURE F.4.
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Option @ starts with the input of the mass and stiffness matrices M and K. By
using Cholesky decomposition and Jacobi diagonalization, the eigenvalues and eigen-
vectors of (M — AK)¢ are determined. The program decomposes the first matrix
inputted, which for the flow diagram shown is the stiffness matrix. The eigenvalues are
then proportional to the reciprocal of the natural frequencies w?.

BAR AND BEAM

These two programs use the finite element approach presented in Chapter 10 to pro-
duce the natural frequencies for the cantilever bar and the uniform beam. See Sec. 10.1
for a complete discussion of the finite element method for the BAR and Section 10.5 for
a discussion of this method for the BEAM. For the flow charts for these two programs
see Figs. E.5 and E6, respectively. Both programs construct the mass and the stiffness

kk(i, i-1) =~-k(i-1)
kk(i, i) = k(i- 1) + k(i)
kk(i, i + 1) = k(i)

(i) = ¢€/n kk(n+ 1, n) =-k(n)
m(i) = mass(i) X €(i) kk(n+1,n+1)=k(n)
k(i) = E(i)a(i)/€(i) mr=mmR2n+1,2:n+1)
kr=kk2:n+1,2:n+1) -
aa = inv(mr) X kr
lambda = eig(aa)
. mm=zeros(n+ 1) | omega = sqrt(lambda)

kk = zeros(n+ 1)
mm(l, 1) =2m(¢)
m(1, 2) = m(¢)

mmi, i-1) = m(i- 1)
mm(i, i) = 2m(i- 1) + 2m(i)
mmdi, i + 1) = m(i)

==

mm(n+ 1, n) = m(n)
mmn+1,n+1)=2m(n)
mm=(1/6)mm

kk(1, 1) = k(1)

kk(1, 2) =-k(1).

£
FIGURE F5.

OUTPUT
Omega

END
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i=lin-1

,a

INPUT
len, n, mass,
E I

mRi+ 1:2i+2,2i-1:2i) = my
mQi+ 1:2i+2,2i+ 1:2i+2)=m; + m,
m2i+ 1:2i+2,2i+3:2i+4) =

= ¢en/n
mcof = mass*¢#¢/420
kcof = El/ ¢¢3

N

m=zeros(2 X (n+ 1)) m2n+1:2n+2,2n-1:2n)=my
k= zeros(2 X {n+1)) . m2n+1:2n+.2,2n+12n+2)=m,
ky =1[12,6¢¢, 6¢¢, 4¢¢%] mr=mcof*m(2:2(n+ 1), 2:2(n + 1))
ko =[-12,6¢¢,-6¢¢, 2¢¢%) kr = kcof*k(2:2(n + 1), 2:2(n + 1))
ky =[-12,-6¢¢; 6¢¢, 2662 aa = inv(mr) X kr

kg =[12,-6¢¢, -6¢¢, 4¢¢%] lambda = eig(aa)

k(1:2,1:2) = omega = sqrt{lambda)

k(1:2, 3:4) = ko :

OUTPUT
i=ln-1 Omega

K(Q2i+1:2i+2,2i- 1:20) = ky
KQi+1:2i+2,2i+ 1:2i +2) = k, + k,
K(Qi+1:2i+2, 2i+ 3:2i + 4) = k,

k(2n+1:2n+2,2n-1:2n)=k;
k2n+1:2n+2,2n+1:2n+2) =
m, = [156, 22¢¢; 22¢¢, 4¢¢2]
m, = [54,-13¢¢; 13¢¢,-3¢¢7]
my = (54, 13¢¢; -13¢¢,-3¢¢2]
my =[156,-22¢¢;-22¢¢, 4¢¢2)
m(1:2,1:2) =

m(l:2, 3:4) =

2]
zZ
a—

T

FIGURE F.6.

matrix for the finite element configuration. From this the dynamic matrix, which is
given by the inverse of the mass matrix times the stiffness matrix, is computed. Finally,
the eigenvalues of the dynamic matrix are computed. The natural frequencies of the
mode] are given by the square root of the eigenvalues of the dynamic matrix. _

In order to run the program BAR, the user types BAR at the MATLAB® com-
mand line. The program will prompt the user to input the length of the bar; the number
of elements desired; the mass of each element; the elastic modulus of each element;
and the cross-sectional area of each element. The program outputs the natural fre-
quencies of the finite element model.

The program beam runs very similarly to the program bar. It prompts the user to
input the length of the beam; the number of elements desired; the mass of the beam;
the elastic modulus of the beam; and the moment of inertia of the beam. The program
outputs the natural frequency of the finite element model.
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(1) = 40
A1) = 1600
61, 1)=1

M) = (D)

| D =40+(-1)*20 |

[0, M) = 60, N) - TU N)/KN) ]

1
[ TU, M) = TU, N) + A) X J(M) X 601, M) |

No Yes

FIGURE F.7.

This program uses Holzer’s method to compute the natural frequencies of a torsional
system (see Fig. F.7). This method is discussed in Secs. 12.4 and 12.5. This program com-
putes the torsional displacement of each disk, 6, and the torque carried by each shaft,
T, for a range of frequencies. The quantities are determined by the equations

0(Z, N+ 1) =6 N) - T(U,N)/K(N)
TUN+1)=TIN) +rAI)*J(N+1)*0(I,N +1)

The natural frequency has been found if § = 0 at the fixed end or T = 0 at the free end.

This program uses the lumped mass approach to determine the natural frequencies of
the cantilever beam. This method is known as Myklestad’s method and it is discussed
in detail in Sec. 12.6. Figure F.8 gives the flow chart for the program. The natural fre-
quencies for this system are given by the values of omega for which the deflection y, is
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INPUT
n, mass, ¢

i

=0.1e6
coef = ¢/ei
coef2 = ¢2/2ei
coef3 = ¢3/3ei

omega(j) =j

Ve(l)=0
m,(1)=0

theta,(1) =
Va(l)=1

i=1:n

V(i + 1) = v, (i) - mass(i) omega(j)? y

my(i+ 1) =my(i) - v(i+ 1) X ¢
theta,(i + 1) = theta,(i) + my(i + 1)coef +

yp(i + 1)coef2

vpli + 1) = y,(i) + ¢theta,(i) +
m,(i + 1)coef2 + v, (i + 1)coef3

p(1)

?

theta,

ya(J) =

= —theta,(4)/theta,(4)
ya(4) + y,(4) thetay

Vali+ 1) = v, (i) -
my(i+ 1) = my(i) - v, (i+ 1)¢
theta, (i + 1) = theta, (i) + m,(i + 1)coef + v (i + 1)coef2
vali+ 1) = y, (i) + ¢ X theta, (i) + m,(i + 1)coef2 + v, (i + 1)coef3

mass(iy*omega(j)?y,(i)

-®

OUTPUT
Va

zero. The method proceeds by systematically calculating the values of y, for a series of
values of omega.

This program prompts the user to input the number of masses; the value of each
mass; the spacing between the masses; the initial value of omega; the final value of
omega; and the spacing of the omegas. The program outputs a table of omega versus Y4

and a plot.
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FIGURE F.8.
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APPENDIX G

Convergence to Higher
Modes

In Sec. 8.4, we have shown that when the equation of motion is formulated in terms of
-flexibility, the iteration procedure converges to the lowest mode. It is evident that if the
lowest mode is absent in the assumed deflection, the iteration will converge to the next
lowest, or the second, mode. However, because round-off errors will aiways reintro-
duce a small component of ¢, during each iteration, it will be necessary to remove this
component from each iterated vector in order for the iteration to converge to ¢,.

' To accomplish this removal procedure, we again start with the expansion theorem:

X=c¢ + ¢, + 35+ + (G.1)

Next, premultiply this equation by ¢ M, where ¢, is the first normal mode, which was
already found:

OIMX = ¢, ¢M¢, + c,dTM, + c;6TMp, + -+ + (G2)

Due to orthogonality, all the terms on the right side of this equation except the first are
zero and we have

dIMX = ¢ ¢] Mgy . (G3)

We note from Eq. (G.1) that if ¢; = 0, we have a displacement free from ¢;. Also
because ¢7M¢, cannot be zero, with ¢, = 0, Eq. (G.3) is reduced to

) TMX=0 (G4)

which is the constraint equation.
Writing out this equation for a 3 X 3 problem, we have

, m, X

¢ MX = (’C(ll)x(z1 )x:(;l)) my X2

. m; | | x,

= maix, + myxx, + myxVx, = 0

501
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where x( xgl), and xg” are known, and the x; without the superscript belong to

the ith 1terated vector X. From the preceding equation, we obtain

my \( x, W ms \( x; Y
x==|=Z=Z] ,-|=2Z2] x
my J\ Xy myJ\ X

=X
X3 =Xy

where the last two equations have been introduced as ldentmes Expressed in matrix
form, this equation is

o] e e [
{(x,y=10 1 0 ﬁxzk (G5)
Lx; 0 0 1 X

] L

- /

[s]{x}

This is the constraint equation for removing the first mode, and [S] is the sweeping

matrix. By replacing X on the left side of Eq. (8.3.1) by this constraint equation, it
becomes

ASX = \X - (G6)
Iteration of this equation now sweeps out the undesired ¢, component in each itera-
tion step and converges to the second mode ¢,.

For the third and higher modes, the sweeping procedure is repeated with the nor-
mal modes already found. This reduces the order of the matrix equation by 1 each
time. Thus, the matrix [ A §] is referred to as the deflated matrix.

It is well to mention that the convergence for higher modes becomes more criti-
cal if impurities are introduced through the sweeping matrix, i.e., the lower modes used

for the sweeping matrix must be accurately found. The highest mode can be checked

by the inversion of the original equation, which is the equation formulated in terms of
the stiffness matrix.

COMPUTER NOTES

To program the iteration pfocedure for the digital computer, it is convenient to

develop another form of the sweeping matrix S based on the Gram-Schmidt orthogo-
nalization.! Rewriting Eq. (8.4.2) as

X,=X, — ajb, = c,b, + 3, + - + (G.7)

Wilson E. Klus-Jurgen Bathe, Numerical Methods in Finite Element Analysis (Englewood Cliffs, NJ:
Prentice-Hall, 1976), p. 440.
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where a; ¢, is the unwanted ¢, component, we again premultiply this equation by ¢] M
to obtain

HIM(X, — ady) = 0
The constant «, then becomes
L elMx,
' M,
which substituted into Eq. (G.7) gives
X, =X~ o =X, ~ da

(G8)

T™MX
- v _ 1 MXy
0 0 eme,
S PRy
=X, - X, =|1- 242 1y
P Mg, BTMe, |
Thus,
i |
S = [1 - a8
HM,

is another expression for the sweeping matrix, which can be more easily programmed.

EXAMPLE G.1

Consider the same system of Example 8.3.1,in which the eigenvalue and eigenvector for the first
mode were found as

1" (0250
A=1432 ¢, =43x¢ =14079
X 1.000

To determine the second mode, we form the sweeping matrix given by Eq. (G.3):

1/0.79 1/1.00 :
—Z(Eg) _4(0_£5>—| 0 -158 -1
. §$=10 1 0 =10 1 - 0

0 0 1 0 0 1

The new equation for the second mode iteration is found from Eq. (G.6):

[AS]X = aXx
4 2 140 -158 -1|[x Xy
4 8 4]0 1 Olyx ¢ =2Ayx,
4 8 7]L0 0 1]x, X3
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or ‘
0 —-432 -=30|(x X,
0 167 0 |[Sxp=Ax
0 1.67 30 | Lx X3
Knowing that the second mode would have a node, we might start the iteration with an arbitrary
test column:
0.5
X=<¢-02
|l 1.0
The first iteration then becomes
0 —-432 -30 0.5 -2.136 -0.801
0 1.67 0 —02 ¢ =< —0334 > = 26665 — 0.125
o 18 30 1.0 2.666 1.00
With this normalized column, the second iteration becomes
0 -432 -3.0/([-0.801 —2.46 —0.881
0 1.67 0 -0.125 p; =< ~0.21 » = 2.79¢3 —-0.075
0 1.67 3.0 1.00. 2.79 1.00
The third iteration gives
0 -432 —3.0|(-0.881 —2.68 -0.933)"
0 1.67 0 —-0.075 p = { —0.125 ; = 2.874 —0.044
0 1.67 3.0 1.00 2.87 1.00

After a few more iterations, the convergence is to

-1.0
304 O
1.0

Thus, the eigenvalue and eigenvector for the second mode are

%= =k _3p w2=\/§

w’m

-1.0)9@
$=1 0

1.0

For the determination of the third mode, we impose the condition ¢, = ¢, = 0 from the
orthogonality equation:

3 . .
a = > mlx)Vx, = 4(0.25)x, + 2(0.79)x; + 1(1.0)x; = 0

i=1

i=1

s ,
&= mlx)Px, = 4(=1.0)x;, + 2(0)x, + 1(1.0)x; = 0
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" From these two equations, we obtain ,
x; = 0.25x3 x, = —0.79x,

which can be expressed by the matrix equation

X 0 0 025 || x,
xne=10 0 -079 [Kx,
X3 0 0 . 1.00(xs

This matrix is'devoid of the first two modes and can be used as a sweeping matrix for the third
mode. Applying this to the original equation, we obtain

4 2 1o 0 025](x, INE]
4 8 4]0 0 -079 $x¢ = 5, |1 %
4 8 7Jl0 o 100]lx, Y

This equation results immediately in the third mode, which is

0.25 X X,
1.684 —0.79 p = (-2—) x,
1.00 X3

The natural frequency of the third mode is then found to be

3k k
=\ = =134y =
“s 1.68m 13 m

These natural frequencies were checked by solving the stiffness equation, which is

4 0 0(% 4 -1 0\(x
mo0 2 0|95 +kl -1 2 —1|qx,¢=0
o 0 1]l% 0 -1 1lxn

With A = mw?/k, the determinant of this equation set equal to zero gives

81-A2-5(1-A)=(Q1- A)[S(l —A)2—5:|=0

Its solutions are

p 0.250

A= 02094 w =04576\ — ¢ = {0791
m

: 1.000

\ -1
k
Ay =10000 @ =100004 ~  §=4 0

p 0.250
A= 17906  w,= 1.3381\/; gy =1 —0791




Answers to Selected
Problems

Chapter 1

L1 x,, =838cm/s; X, = 350.9 cm/s’

13 x,,, =727cm, 7=010s, X, =278.1m/s?
L5 7 = 5¢0645

1.8 R = 8.697, 6 = 13.29°

af. 1. 1.
1.9 x(t) = ;(sm wyt + ':;Sln 3wt + -5-51n 5“’1? + )

1 4 1 1
L1 x(r) = - + — (sin @l + 33008 Zwyt + 5308 Swt + )
™

2
L3 Va2 =42
114 x> =1/3
2
116 a,=1/3, b, = -1—(1 —coszﬂ), 4 — L n2™"
- " nw 3 nawr 3
118 rms = 0.31624
1.20 Error = £0.148 mm
122 X0y /X100 = 398
Chapter 2
2.1 5.62Hz
2.3 0.159s
m,g m,V2gh .
25 x(f) = =22 (1 - cos wt) + ——2=——=>—ssin wt
) k ) Vi(m, + m,)

2.7 J,=9301bin"s?
29 k= 04507 m

} k
211 o= W

213 7=197s

506
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J
2.1 = —
. 5 r=27 Wh
217 v= 277'£ \Ii
a V3g .
1 gab
219 f= —\[>—
! 27 \ hi?

|1
221 r=2 —
T ™ 28

3
223 my = 3 ml for each column, m/ = mass of column

33

2.27 Mg = mml
KK

2.29 K. = E:‘_.ZK. + K,
1 2

2
231 J =1, +1, (ﬁ)
r

2.33 M = 0.0289 kg
235 [ =145
238 w, = 27.78, &=00202, ¢=0003215 ¢ =0.405

2.42 cud="\[k (b)z (C Y, 2b\/—

3k cl 2 a
244 0= T\ 4km ce= 57 V3km

246 %, =9266ft/s, t= 0.214 s
248 [, =059, «x = 0379

overshoot
13

2.51 Flex1b111ty 243 El

2.56 (0.854ml + 0.5625M)x + 0.5625kx + %cx =0

2.57 (Ml2 + %mlz)b' + (kI* +2K)o=0

Chapter 3

31 ¢ =61.3Ns/m

33 X=0797cm, ¢ =5143°

35 ¢=0.1847

3.9 Add1.38 oz at 121.6° clockwise from trial weight position
313 f,=15Hz, (=0023505, X=0231cm ¢ =1754°
3.16 f= 1028 rpm
318 F=1273N, F=2411N ford = 1905cm
L [k

320 V= —
2@ \'m
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3.25 k = 18.8 Ib/in. each spring

328 X = 0.01105cm, Fr=420N
329 »’X = 3.166 cm/s?

338 ¢ = 4D/mwx

342 (a) 159 cps, (b)7.45 cps

345 (a)6245m.v, (b)3.123 mw.
348 E=257m.v./g

Chapter 4

F,
45 x = f [cos w,(t — 1) — coswt] >4,

100 20
410 z = — (1 — cosw,t) — —sinw,t
[

n n

z =@rl_;]_ﬁﬁi_

mex _wi[ V25 + ol ®, V25 +
413 tan we = 8k
s — mg/dk .

414 x, = 1208in, =0392s
420 x, = 234in.

4.29

430 y,. = 10.7¢g

=,
431 x(t) = ci‘: {\/e—l—_—?sin(\/l —Cuwt+sin”' V1 - 2) - cos w,,t}

y |4
445 y(t) = y(0) cos wt + X(P—) sin wt + — (wt — sin wf) — %(1 — cos wt)
w w

Chapter 5

52 o = k/m, (X,/X,), =1
& =3k/m, (X,/X,),= -1
54 o2 = 0570k/m, (X,/X,), = 3.43
o} = 4.09k/m, (X,/X,), = —0.096
58 w, =15.72rad/s
5.10 4, + 2g/16, — g/16, =0
6, +0,+g/l6,=0
513 w, = 0.796VT/ml, (Y,/Y,), = 1.365
w, = 1.538VT/mi, (Y,/Y,), = —0.366

515 o= J% #(_1 + 1), beat period = 53.02's
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m 0|(x 2k ki/4 1 (x x down
5. L+ =
20 |: 0 J:H 0} |:kl/4 5k12/16] {0} o} 6 clockwise

5.22 Both static and dynamic coupling present.
5.24 f, = 0963 Hz, node 10.9 ft forward of cg
f, =133 Hz, node1.48ftaftofcg

529 w, =31.6rad/s, (X,/X;), =050
w, = 634rad/s, (X,/X,),= —-1.00

8 1 4
532 x, = 9 cos wyt + 9 Cos wyt; X, = g cos wt — 3 COS w,t
5.33 shear ratio 1%/2™ story = 2.0
537 (w/w,), = 273, (Y,/Y,), = —0.74
539 V, =433ft/s, V,=603ft/s
5.44 d, = 1/2in.
546 w=1141b, k=1791b/in.
5.48 {, = 0.105, w/w,=0.943
9 9 :
E LTI
5.55 e+ =
I
167 \16 ' 477
2 7
.]1 =m,§-, .12 %mzlz
m, X (ky + Ky + k5) -k, —ks X 0
5.62 m, X p + —k, (ky + ky + k) —k; xt=40
my | X, —k, —k, (ks + ks) | Lx, 0
Chapter 6
+ k k Lt
61 ay = Sl btk

= = —2 =
Skk 2T T S 27 TSk,
63 a, = 00114P/El, a, = ay, = 00130P/EL,  ay = 0.0192P%/EI

(K, + K,) -K, 0
66 [Kl=| -K, (K,+K;) -K,
0 . -K, K,
1/K, 1/K,; 1/K,
[a] = 1/K1 (1/K1 + I/Kz) (1/K1 + 1/K2)

L1/K, (UK, +1/K;) (/K +1/K, + 1/Ky)

o Pl9% 18
67 lal = Fl[l/s 5/6:|

111 1
B l1 2 2 2

68 [a] = — :
8 lal=omili 23 3
1 2 3 4
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F, 24EL/1} ~6EL/I} —6EL/1} u,
611 < M, =| —6EL/I} (4ElL /I, + 4EL/1,) 2EL /1, 0,
M, —6EL /1 2EL/1L, - (4EL/I, + 4EL/L)| | 6,
1.44/1 —8.40/1
17 P =
617 P [1.00 1.00 }
~ [0207 -1.208
620 P = [0293 1.70721
+m2) 0 0 x | 6/ 3/ =3/ [«
J, 0 ]{ -8 +f 3/ 7 2 -6, » =1{0)
0 J, 6, -3/1 2 7 6,

M, " M, ™

24 (K] = kl:_i ﬁi] cl = le’i _ﬂ . not proportionat

k+(k+k (—wl;—)
6.27 F = )

(i

631 g, + 0.8902{2\/ 3 4, + 0.1981 iqz - 0.406811,(1)

wcC

1+ x = k(1 + iy)x

k+ (k + kl)(‘;’c—f)z

. [k . k .
g> + 1461445\ — g5 + 05339 — g, = —0.32681(t)
kx(lO) |-

4

6.32 |——| = 1.90 + V(0.610) + (0.369%) = 2.61

637 a= 2‘01“)2({21&)2 _2 ) , B= 2(52“;2 - C;“-H)
w; T @ w; — Wy
+ Ba?
(=21 BY L oase
2w;

6.39 C, = 08985, C,= —0.1477, C;= 03886

641 @, =

I
|
+
I
+
|

ap=ay = T ¢

=tz

Chapter 7

7.1 Constraints i, = us = 0
Uy = Uy
Uy = U
System has 2 DOF.
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72 Let'? _ ql{us} - [1 0]{%}
Ug = gy Ug 0 1[g,

l 2
7.3 tan § = —1)
b

7.5 tanO—(mz—ml) !
my + my) 2R} + 12
7.7 tan0=l
o
. 3h mg
7. = _==
dsinb6= 727" 3

3 (l% cos 8, + 2 sin 6,
7. ~+=
L S

712 (m, + m,)R*6..

l
+ g{(m1 + my)VR? + (1/2)?cos 6, + (m, — ml)E sin 90]6~ =0

>0~ =0 where tan§, = (/,/1,)*

715 my(¥ — r6%) + k(r — ry) = mygcos 6
" .. .. {
myr(ré + 2r6) + mmdg 6 + myg(r — ry)sin 6 + Mrog8 S sin =0
718 [J, + (m, + m)alflq, + [K + Pk, + 4ky)lq, + 4l%k,q, = 0
Joq, + 4ky(q, + q,) = 0

EIl 2043 -5251
720 K] = 1_3[—5.251 7.0 ]

P(3/3 + 121,/2) + M(1%/2 + L1)
22 R= M=R(l,+L)=P,-M
722 R (R/3 +283/3 + B, + 1,13) (h+5)=Ph

Chapter 8
05 05 052 _ .
8105 15 15 1 |-M|=0, A= —
L0s5 15 25 1

82 A, =3916 A, =07378 A, = 03461

k k
w; = 0.5053 x @, = 1.1642\ —  w; = 1.69984/ —
m m m
- [k ~ 12474/ X - [k
8.6 w, = 0.445 w2 1.247 ol 1.802 =

my
89 |-A M
my
m,

(k) + ky + ks) —k, ~ks 0

-k, (k2 + k3) —k;, 0
+ = 0

—ks —k, (ky + ky + k) —k,

0 ‘ 0 —k, k,

511
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100 0 i 0
0 1600, _________
8.12 1-A i4.969 0
0 0 4969
5000 3500 | —2400  —2600

—2400 10,800 | 40,800 0
—2600 14300 | 0 41,000

Solution by CHOLJAC with A = ? ,

A = 5037 A, =7877 A, =8208 A, = 8256 ’

w, = 7.097 w, = 887  w,=90.59 w,=90.86

fi=1130cps f,=1413 f = 1443 f, = 1447

EI ~1.00 [ET 1.00
813 o, = 0.223\{?, ¢ = { > sag } w = 04774y 5. & = {+1.932}
k
8.14 w, = 0.584/ 5, w, = 1.200\/5, w, = 1642, —
m ' m m

EI EI EI
815 w, = 0.2925\/—"1?, w, = 1.916\/——3, a = 5.146\/ —

1
[}

3500 127,250 } 10,800 -14,300
[}

ml
1.0000 1.0000 1.0000
B ={05318}, b, =4 ~-1507 }, ¢ =1{-32481
0.1565 | ~1.2687 4.6471
1414 —0.707"
18 UTU = =
818 U'U=K, U [0 1_875]
1.667  —0.5774 ma?
8.20 ‘[—0.5774 2.0 :l —M ‘ =0 A=

2
K
822 A= T 4 = 0769 5, w = 1187\ &
k m m

[0.816 ~0.816
¢ = il.OO } ¢2 ={ 1.00}

[ 050  -03873  0.519 X, 0 2
824 || ~03873 07000 06667 |~ A/ |{x, 0 =40p, A=——
0.1519 —0.6667  0.9923 X, 0 ,
827 o = 0.613\/5, w, = 1.543\/%, w; = 1.618\/—7:;, w, = 2.149\/5
0.3717 -0.3717 -0.6015
_ ] 06015 _ ] —0.6015 ] 0317
¢ = 0.3717 2= osn7( %7\ -o06015
0.6015 0.6015 . 03717
0.6015 '
_ ] -03717
$ =1\ —0.6015

0.3717
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Chapter 9 ‘
n | T
9.2 f—'z'i\IY, n=1273,...
ol
9.3 tanﬂl: —(I-> —Ci, w, = \E—
c ki 1_(3) m
‘ o,

9.5 4792 X 10° m/s :
9.15 w":(Zn—l)%T\/g, n=123,...
p

9.16 tan— =
c

9.19 T =29.99 X 10%1b, Th% = 107,980 X 10°1b-ft®/rad
fi=359cpm, 7,=3.06sec

920 7h% = 1091.4 X 10°1b- ft?/rad = 10 times that of new Tacoma Bridge

9.24 E = 3.48 x 10°1b/in.?

9.27 w = B*V El/p, where B is determined from

(1 + cosh BI-cos BI) = Bl (smh Bl-cos Bl — cosh BI-sin Bl)
[ 3E1q
928 o1 =\ o+ 023TW,
_ ’ (2k — )7
9.33 w, =24/~ sin 20N+ 1)

: k nm
935 w, = 2\/ sin 2N + 1)

: 1y . B Ky .
A — + - _ =
9.38 —2cos ﬁ(N 2 ) 51.n > X sin BN

Chapter 10
EA, [w) _ [0577
w2 0 - vam(E (4] _[057)
{ul} _ {—0.526}
u,J, | 1.000

2 -1 01| u, 0
3ETA -1 2 -1 Ru,p=+<0
0 -1 11| u, 0

513
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| E [ E
108 w, = 2.368 o w, = 8.604 P p = mass density

Pl Pl
10.11 v, = 0.1333 — =0.563 —
v, =0 333AE, u, 0563AE
B 0.5 0.5 W
1+ —= = 1 0
I
3x T 0.5 0.5 Uz
, _ = 1+-= o o}l=
10.12 F3y =0 = E_A V2 ( \/7) 23
F=P { 0 Lo 4|
-1 1 —
F,=0) . v, )
: 0 0 0 1
16.14 o, = - b o———Ml
T 1921 7 16E1
[EI [ El
10.15 o, = 22.74V o T 81.67 o
El [El
10.17. w =0, o =1754 \/m:l“ wy = Vm714
\ [EI [EI
exact valuesw;, =0, w,=154 ey w; = 50.0 VF
-P EI (25R +6) 05(R-12) 8484 ||u,
10.20 0} = e 0.5(R —12) (0.5R +30) 15.521 |{ %, ¢
8.4841 15.521 40.02 || o,
‘4 Al?
R =
(7
0 12 -6l 0 0 |(7,
-M EI|-6/ 82 6l 202 1] o
10.21 = — . 2
©3 o Flo 6 2+49 e |\a
0 0 22 6l 4% |\ o,
K0P : EI [EI
1022 k = 5mgl2, — = 1.0/ =.\}— =19.024 —,
0.22 k = Smgl?, I 1.012, W 1.55 i o 19.0  r*
El
=718y —
©s ml*
F, 0.2875
M -0.22711
10.27 22 = —
@) 7 Py 00375
M, 0.01461
4
10.27 (b) ¥, = — 0.2031 pl’
192 EI
__0.0286 pI°
2 16 EI
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Chapter 11

!
113 T; = % J &(x) dx
0

4p,l 2x
118 y(x,1) = #i;’wz sin Tw(l ~ cOS w,t)
2 .

11.10 Modes absent are 2nd, 5th, 8th, etc.
1111 T = V2cos(2n — 1)m/6, D, = (1 — cos w,f)
_ 2Fl [ cos (7/6) cos (m/2)(x/1) cos (51/6) cos (577/2)(x/l)
2 Dy + 2 Dy + -
AE (m/2) v (5m/2) :

. !

1114 T, = % J ,(x)dx = 0.784
1 !

r, 7 J'thz(x)dx = 0434
1 !

r;= 7 f $5(x)dx = 0.254

119 {1 * Wflf@—g/—m)] Hl iy [Ifﬁzg?o)/m }
- ‘{ M«Eﬁi@fﬁm Hl ’ Mwlg[f{(f)ﬁfz)z)ﬂ }

Q= V2 sin wa o = 77T 2 cos 7TT)C,etc.
One-mode approximation gives
2 el

w, Mo \1)" ! MP?

11.20 One-mode approximation

(&) -l
, Mu)1 1

11.21 Using one-free mode and translation mode of M,

- o
o) T M+ Myg0) - (Mg 0)/ (M, + 2mi)]

' | _EI
where M1 = Icpf(x)mdx = 2ml, Wy = 22.4 m
Chapter 12

El
22 o = 463\IM13

El

= 1.62

123 o, =16 ‘/MP

_ 3EIJP +2%
33 2
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El
1211 o, = 9'96\/(0.T8mol)l3 , where 0.2188ml = total mass
3EI 1
2 (221 R
1212 o, ( IE ) 27m, + 8m, + m,

12.15 f,, = 495.2 cps

1 1 N2 (77 EI ) 2 T EI
A - - = + — =
12.16 (6. Trz)(mlm) T (mlw?) s k=0

o 2] fof ) (5

lEA (37
[2<) k" k=

6, 1.000
1223 w, = 0. 629\/ = 6, 0.604
6, 0.287
X, 1.000
1225 o, = 0. sa5,/ £ X, b = <0802
m
x), L0445
=[x ~1.000
w, = 1247( X, ¢ =14 0.555¢
), 1247
- X 1.000
w, = 1.802 % X, p =3 —2247
X, 1.802

fﬁEI n
12.30 Wy = W(l + 5), yl/yZ = —n/2

El yl} {0.320}
31 o = =
12.3 1651y 5. _{y2 = 11000
1233 u, - 28 -
Uy
1238 o = 227

1239 o, = 225, ©, =523
1242 o, = 1012, w,= 1836

f fK
1243 w, = 0.5375 %, w; = 1.805 7

6, 1.000) (6, 1.000
6,{ _ ) o074l Je | _J-2270
6| . 0239 | 6| 1.870
), \-0326) \6), (-0141
Chapter 13

135 ¥ = 0.50, x2=0333
136 T=A, x2=Al+i4

§)
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13.14 A triangle of twice the base, symmetric about ¢ = 0.
13.15 R(7) = 5at 7 = 0 and linearly decrease to R(1) = 1.
13.18 rms = 53.85g = 528.3 m/s?

13.21 rms = 1.99in., o = 0.9798

2 1 1
1324 f(r) = = (sin wt — = sin 2wt + = sin 3wt — )
™ .

2 3
1 2 1
Sw = 236720
— 2A < 1 inw! — .
13.26 x(1) = - > e n = odd |

4A (| 1 . 1 .
= sin wt + 3 sin 3w,t + 5 sin Swit + -
C,Cx  4A?
S((un) = 44 = 5

2 nlm

13.27 £, = f, (1 T L)

13.31 53.2¢g = 20, P|x > 2¢] = 4.6 percent
P[X > 20] = 13.5 percent

o1 < 2 . . 2_71'
13.32 F(r) = 10 (4+ Enﬂ_al 4 cosn Tt)

1335 P = o2 = 05T _ 00438, o = 0.0662m

Plly| > 0.132] = 20 = 4.6 percent
1336 ¢ = 0.0039m, P[|y| > 0.012] = 0.3 percent

_ N

Chapter 14

. 2T, 1(EA x\?
14.2 + =L + 2=~ )(-)]=0
mx 0 x[l 2(T0 1 ]

2
143 my + ﬁ[m - x)? = (h - x,)]
ry = radius of circle at water line
p = wt/vol of water
148 V = Vy? + wix?, x =y = 0for equilibrium
14.11 Shift origin of phase to 7 in Fig. 14.4.2

R N iR
wis (-3
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Answers to Selected Problems

. 2 + 2 d
125 y - Xt o dy

bl - = C

C X

d —(x +
121 2 - —(X—S—), where 5=(£y+ £ x3)
dx y m w,m
w? = k/m
VR
U
60° w/2
! de l de
1430 =4 —J 4 _[ 4 __
"8 Jo V2(cos@ — cos8,) VgJo V1-k’sin’ ¢

14.34

14.40

6, 6
where k = sin;o, sin 5 = ksinqb

g 15
= = + —
@ \fz(1 16 0")

2
ms, + (-2——T—O)xl + (ﬁf)xi =0, T=T,+K>
Iy K ly

Second approximation

. 2T, : 2K
inx, + (I_O)Xz + 3axix, =0, a= l_(z)
0

mx, + [(Q + —aAz) + %czA2 cos 2(unt]x2 =0



Index

A

Acceleration, 1
Accelerometer, 78-80
crystal, 80
seismic mass, 79-80
Adjoint matrix, 472
Angular velocity, 1
Answers to selected problems,
506-18
Aperiodic motion, 31
Arbitrary excitation, 91-94
Autocorrelation, 408
time delay for, 409
Average value, 11-12
Axial element, 287-88
mode shape and mass matrix
for,288-91

B

Balancing machines, 57
BAR and BEAM, 497-98
Bar.m computer program,
291-92
Base excitation, 93
Beam elements:
stiffness/mass in, 292-95,
301-2
stiffness matrix of, 172-75
vibrations involving, 302-9
beam.m computer program,
3034
beam.m computer program,
3034

Beams:

with arbitrary end displace-

ments, 172-73

Euler equation for,271-76

transfer matrices for, 383-86
Beam stiffness, 292-94
Bernoulli, Johann J.,, 25
Branched systems, 38183

C

Central difference method, 106
Centrifugal pendulum vibration
absorber, 145-47
Characteristic equation, 28,
128
Chilton bifilar design, 147
Cholesky decomposition,
23742
inverse of U, 238-39
CHOLJAC, 496-97
Circular frequency, 7
Clamped-clamped beam, 480
characteristic functions and
derivatives:
first mode, 481, 483, 485
second mode, 482, 484,486
Clampe8-free beam, 480
Clamped-pinned beam, 480
Classical methods, 351-94
branched systems, 381-83
coupled flexure-torsion
vibration, 375-76
digital computer program for
torsional system, 369-71

Dunkerley’s equation,
358-63
geared system, 380-81
Holzer method, 366—69
Myklestad’s method for
beams, 371-74
Rayleigh method, 351-58
Rayleigh-Ritz method,
363-66
systems with damping, 378-80
transfer matrices, 376-78
for beams, 383-86
Cofactor,472
Column matrix, 471
Complementary function, 50
Complex sinusoid, 8
Complex stiffness, 73
Component-mode synthesis,
34146
Computation methods, 227-57
Cholesky decomposition,
237-42
convergence of the iteration
procedure, 233
discrete mass matrix, systems
with, 235-36
dynamic matrix, 233-34
eigenvectors by Gauss elimi-
nation, 229-30
Jacobi diagonalization,
242-47
matrix iteration, 230-32
QR method for
eigenvalue/eigenvector
calculation, 247-52
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root solving, 227-29
transformation of coordi-
“nates, 234-35
Computer programs, 492-500 .
BAR and BEAM, 497-98
CHOLIJAC, 496-97
MYKL, 499-500
POLY, 493-96
RUNGA, 492-93
TOR, 499 _
Constrained structures, normal
modes of, 335-39
Constraint equations, 199-204,
501
Continuous systems, vibration
of, 258-86
Convergence to higher modes,
501-5
Convolution integrat, 92
Coordinate reduction, 304-5
Correlation, 407-11
autocorrelation, 408
time delay for, 409
cross, 410-11
Coulomb damping, 34-35
Coupled flexure-torsion vibra-
tion, 375-76
Critically damped motion, vis-
cously damped
free vibration, 31
Cross correlation, 410-11
Crystal accelerometer, 80

D

Damping, 5

Coulomb, 34-35

energy dissipated by, 67-70

equivalent viscous, 70-72

and method of iteration,
450-51 ,

modal, in forced vibration,
182-83

proportional, 135,183

ratio, 28-29

Rayleigh, 183

solid, 72-74

specific damping capacity, 69

structural, 72-74

systems with, 378-80

Damping ratio, 28-29

Decibel, 12

Decoupling forced vibration
equations, 181-82

Degrees of freedom, 5-6

Delta function, 90

Determinants, 469-70

Diagonal matrix, 471

Digital computer program, for
torsional system, 369-71

Discrete mass matrix, systems
with, 235-36

Drop test, 95-96

Dunkerley’s equation, 358-63

Dynamical coupling, 134,
135-38

\ Dynamic matrix, 233-34

Dynamic unbalance, rotors,
56-57

E

Effective mass, 23-25
Eigenvalues, 126,128
OR method for calculating,
247-52
Eigenvectors, 126,128

by Gauss elimination, 229-30

determination of, 477-78
orthogonality of, 177-79
expansion theorem, 178
orthonormal modes,
178-79
QR method for calculating,
247-52
Element stiffness/mass, 287-92
axial element, 287-88
mode shape and mass
matrix for, 288-90
bar.m computer program,
291-92
variable properties, 291
Energy method, 20-23
Ensemble, 395
Equal roots, 187-88
Equivalent lumped mass, 23-25
Equivalent viscous damping,
70-72
Ergodic process, 395
Excitation:

arbitrary, 91-94

base, 93

impulse, 89-91

pulse, and rise time, 97-100
Expansion Theorem, 178
Expected value, 396-97

F

Field matrix, 377
Finite difference numerical
computation, 105-12
damped system, 110-12
initial acceleration/initial
conditions zero, 109-10
Finite element method, 287-328
coordinate reduction, 304-5
element stiffness/mass,
287-92
axial element, 287-88
bar.m computer program,
291-92
mode shape and mass
matrix for axial element,
288-90
special case, 290-91
" variable properties, 291
generalized force:
for distributed load,
311-13
proportional to displace-
ment, 313-21
global coordinates, 295-97
element stiffness/mass in,
297-302
spring constraints on struc-
ture, 309-11
. stiffness/mass for beam ele-
ment:
beam stiffness, 292-94
generalized mass/general-
ized stiffness, 294-95
transformation of coordi-
nates, 295-97
vibrations involving beam
elements, 302-9
beam.m computer pro-
gram, 3034
Flexibility influence coeffi-
cients, 16467



Force, 1 :
Forced harmonic vibration,
49-53,139-41
complex frequency response,
52-53
and normal mode summa-
tion, 140-41
Forced vibration, 5
modal damping in, 182-83
Fourier series, 397-98
Fourier transforms, 417-23
of basic functions, 417-19
of derivatives, 420
Fourier integral, 417
Fourier transform pair, 417
Parseval’s theorem, 420-21
and response, 424-27
Free-damped vibration, 27
Free-free beam, 480
Free-pinned beam, 480-81
Free vibration, 5, 1648
" Coulomb damping, 34-35
energy method, 20-23
equations of motion, 16-20
logarithmic decrement, 31-34
Rayleigh method, 23-25
vibration model, 16
virtual work, principle of,
25-217 '
viscously damped free
vibration, 27-31
Frequency, 1,6
circular, 7
Frequency of damped oscilla-
tion, 30 ‘
Frequency response function,
398-401

G
Gaussian distribution, 404-7
Geared system, 380-81
Generalized coordinates,
199-204
constraint equations, 199-204
Generalized force, 216,220-22
for distributed load, 311-13
proportional to displace-

ment, 313-21
two-element beam, 317-21

Generalized mass, 178,215,217,
294-95

Generalized stiffness, 178,215,
217-20,294-95

Generating solution, 46

Global coordinates, 295-97

element stiffness/mass in,

297-302
axial elements, 297-300
‘beam element, 301-2

H

Half-power points, 74
Half-sine pulse, 99-100
Harmonicaily excited vibration,
49-88
damping:
energy dissipated by, 67-70
structural, 72-74
equivalent viscous damping,
70-72
forced harmonic vibration,
49-53
rotating shafts, whirling of,
59-63
rotating unbalance, 53-56
rotor unbalance, 5659
sharpness/resonance, 74-75
support motion, 63-64
vibration isolation, 65-67
vibration-measuring instru-
ments, 75-81

" Harmonic motion, 6-8

Hertz, 1
Holonomic constraints, 200
Holzer method, 366-69
procedure for torsional sys-
tems, 367-69
Houdaille damper, 148
Hysteresis loop, 68

Impedance transform, 95
Impulse excitation, 89-91
Impulsive forces, 89
Inverse matrix, 472
Isoclines, method of, 443-45

Index 521

J

Jacobi diagonalization, 242-47
Joule, 1
Jump phenomenon, 449-50

K
Kinetic energy, 215

L

Lagrange’s equation, 199-226
assumed mode summation,
216-22
generalized force, 220-22
generalized mass, 217
generalized stiffness (axial
vibration), 217-20
generalized stiffness
(beams), 220
generalized coordinates,
199-204
constraint equations,
199-204 »
generalized force, 216
kinetic energy, 215
nonconservative systems,
209-14
potential energy, 215
virtual work, 204-6
LaPlace transformation, 464-68
definition, 464-65
shifting theorem, 465
short table of Laplace trans-
forms, 468
transiormation of ordinary
differential equations,
465-66 - :
transforms having poles of
higher order, 46667
transforms having simple
poles, 466
Laplace transform formulation,
94-97
Length,1
Linear oscillatory systems, S
Logarithmic decrement, 31-34
Longitudinal vibration of rods,
261-63
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Lumped masses, 357-58
equivalent, 23-25

M

Mass, 1
Mathieu equation, 447-48
MATLAB, 487-91
Matrices, 470-77
adjoint matrix, 472
cofactor, 472
column matrix, 471
definition of, 470
diagonal matrix, 471
inverse matrix, 472
inversion of, 474-76
minor of, 472
operations, 473-77
addition, 473
multiplication, 473-74
orthogonal matrix, 472
orthogonal transformations,
476
partitioned, 476-77
row matrix, 471
singular matrix, 471
square matrix, 471
symmetric matrix, 471
trace, 471
transpose, 472,476
types of, 471-72
unit matrix, 471
zero matrix, 471
Matrix iteration, 230-32
Maximax, 100 R
Mean square value, 12,397
Method of isoclines, 443-45
Method of iteration, 448-51
effect of damping, 450-51
jump phenomenon, 449-50
successive approximation, 448
Minor, of a matrix, 472
Modal damping, in forced
vibration, 182-83
Modal matrix P, 179-81
free vibration, 30-31
Normal mode, 126, 128
Normal modes of constrained
structures, 335-39

Normal mode summation,
183-87

Normal modes of uniform
beams, 479-86

Normal mode vibrations, 126

o

Octave, 13
Ode4S5 function, 454
Olympus Satellite, 329fn
Orthogonality of eigenvectors,
177-79
Expansion Theorem, 178
orthonormal modes, 178-79
Orthogonal matrix, 472
Orthogonal property of normal
modes, 163
Orthogonal transformations, 476
Orthonormal modes, 178-79
Oscillatory motion, 5-15
harmonic motion, 6-8
periodic motion, 9-11
vibration terminology, 11-13
viscously damped free vibra-
tion, 30

P

Parseval’s theorem, 420-21

Particular integral, 50

Partitioned matrices, 476-77

Pascal, 1

Peak value, 11

Periodic motion, 6,9-11

Perturbation method, 445-48
Mathieu equation, 447-48

Phase distortion, 80-81

Phase plane, 436-38

Pinned joints, static condensa-

tion for, 176-77
Point matrix, 377
POLY, 493-96

.Potential energy, 215

Power, 1 .

Power spectral density, 411-16

Power spectrum, 411-16

Probability density function,
402

Probability distribution, 401-7

Proportional damping, 135, 183

Pulse excitation, and rise time,
97-100

Q

OR method for
eigenvalue/eigenvector
calculation, 247-52

Random time functions, 395
Random vibrations, 395-435
correlation, 407-11
cross, 410-11
expected value, 396-97
Fourier transforms, 417-23
and response, 424-27
frequency response function,
398-401
Gaussian distribution, 404-7
power spectral density, 411-16
power spectrum, 411-16
probability distribution,
401-7
Rayleigh distribution, 4047
standard deviation, 397, 404
time averaging, 396-98
variance, 403
Ranger seismometer, 78
Rayleigh damping, 183
Rayleigh distribution, 404-7
Rayleigh method, 23-25,351-58
accuracy of, compared to dif-
ferentiation, 355-57
lumped masses, 357-58
Rayleigh-Ritz method, 363-66
Reciprocity theorem, 167-68
Rectangular pulse, 98-99
Recurrence formula, 106
Repeated identical sections,
276-79
Residual shock spectrum, 102,
104
Resonance, 74-75
Rise time, 97-98
and pulse excitation, 97-100



Rods:
longitudinal vibration of,
261-63
torsional vibration of, 263-66
Root mean square (rms), 12
Rotating shafts, whirling of,
59-63
Rotating unbalance, 53-56
Rotor unbalance, 56-59
dynamic unbalance, 56-57
static unbalance, 56
Row matrix, 471
RUNGA,492-93 |
Runge-Kutta method, 112-17,
453-55

S

Samples, 395

Seismic mass accelerometer,
79-80

Seismometer, 76-78

Self-excited oscillations, 451-53

Sharpness, 74-75

Shock, 100

Shock isolation, 104-5

Shock response spectrum
(SRS), 100-104

SI conversion, 2-4

Sidebands, 74

Singular matrix, 471

SI system of units, 1-4

Solid damping, See Structural
damping

Specification of vibration
bounds, 462-63

Specific damping capacity, 69

Square matrix, 471

Stability of equilibrium, 439,
441-43 ‘

Standard deviation, 397, 404

Static condensation for pinned
joints, 176-77

Static coupling, 134,135-38 -

Static unbalance, rotors, 56

Stationary ensemble, 395

Statis coupling, 134, 135-38

Stiffness influence coefficients,
168-72

Stiffness matrix of beam ele-
ments, 172-75
Stress, 1
Structural damping, 72-74
complex stiffness, 73
frequency response with,
73-74
Structural damping factor, 73
Subsidiary equation, 95
Successive approximation,
448
Superfluous coordinates, 200
Superposition integral, 92
Support motion, 63-64
Suspension bridge as continu-
ous system, 266-71
See also Tacoma Narrows
Bridge
Symmetric matrix, 471
Systems with multiple degrees
of freedom, See
Multi-DOF systems
System transfer function, 95

T

Tacoma Narrows Bridge:
assumptions/calculated quan-
tities, 268-70
catastrophic failure of, 267
data for, 268
torsional mass moment of
inertia, 269
torsional stiffness, 269-70
torsional vibration, 271
vertical vibration, 270
Time, 1
Time averaging, 396-98
TOR, 499
Torsional vibration of rods,
263-66
Trace, 471
Transfer matrices, 376-78
for beams, 383-86
Transformation of coordinates,
295-97
Transient response, 89
Transient vibration, 89-125
arbitrary excitation, 91-94

‘

Index 523

finite difference numerical
computation, 105-12
impulse excitation, 89-91
Laplace transform formula-
tion, 94-97
pulse excitation and rise
time, 97-100
Runge-Kutta method, 112-17
shock isolation, 104-5
shock response spectrum
(SRS), 100-104
Transpose, 472
Truncation errors, 106

u

Uniform beams, normal modes
of, 479-86

Unit impulse, 90

Unit matrix, 471

Unrestrained (degenerate) sys-
tems, 189-90

Untuned viscous vibration
damper, 148-51

\'%

Variance, 297
Velocity, 1
Velometers, 77--78
Vibrating system properties,
163-98
decoupling forced vibration
equations, 181-82
equal roots, 187-88
flexibility influence coeffi-
cients, 164-67
modal damping in forced
vibration, 182-83
modal matrix P, 179-81
normal mode summation,
183-87 -
orthogonality of eigenvec-
tors, 177-79
reciprocity theorem, 167-68
static condensation for
pinned joints, 176-77
stiffness influence coeffi-
cients, 168-72
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stiffness matrix of beam ele-
ments, 172~75
unrestrained (degenerate)
systems, 189-90
Vibration absorber, 14445

centrifugal pendulum, 145-47

Vibration bounds, specification
of, 46263
Vibration of continuous sys-
tems, 258-86
Euler equation for beams,
271-76
repeated identical sections,
system with, 276-79
rods:
longitudinal vibration of,
261-63
torsional vibration of,
263-66
suspension bridge, 266-71
vibrating string, 258-61

Vibration damper, 147-51
untuned viscous, 148-51
Vibration isolation, 65-67
Vibration-measuring instru-
ments, 75-81
accelerometer, 78-80
phase distortion, 80-81
seismometer, 76-78
Vibration model, 16
Vibrations:
classes of, 5
free, 1648
harmonically excited, 49-88
nonlinear, 436-61
random, 395-435
terminology, 11-13
transient, 89-125
Virtual work, 204-6
principle of, 25-27
Viscously damped free vibra-
tion, 27-31

critically damped motion, 31
nonoscillatory motion, 30-31
oscillatory motion, 30

Voigt model, 69

w

Watt, 1

Weighted normal mode, 178-79

Whirling of rotating shafts,
59-63

synchronous whirl, 60-63

Wiener-Khintchine equations,
422

Work, 1

Z

Zero matrix, 471
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