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Two occurrences in the second part of the 20th century have radically changed the 
nature of the field of dynamics. The first is the increased need to model and analyze 
complex, multibodied and often elastic-bodied structures, such as satellites, robot 
manipulators, and vehicles. The second is the proliferation of the digital computer, 
which has led to the development of numerical techniques to derive the describing 
equations of a system, integrate the equations of motion, and obtain the response. 
This new computational capability has encouraged scientists and engineers to model 
and numerically analyze complex dynamical systems which in the past either could 
not be analyzed, or were analyzed using gross simplifications. 

The prospect of using computational techniques to model a dynarnical system 
has also led dynamicists to reconsider existing methods of obtaining equations of 
motion. When evaluated in terms of systematic application, ease of implementation 
by computers, and computational effort, some of the traditional approaches lose part 
of their appeal. For example, to obtain Lagrange's equations, one is traditionally 
taught first to generate a scalar function called the Lagrangian and then to perform 
a series of differentiations. This approach is computationally inefficient. Moreover, 
certain terms in the differentiation of the kinetic energy cancel each other, resulting 
in wasted manipulations. 

As a result of the reevaluation of the methods used in dynamics, new approaches 
have been proposed and certain older approaches that were not commonly used in the 
past have been brought back into the limelight. What has followed in the literature 
is a series of papers and books containing claims by proponents of certain methods, 
each extolling the virtues of one approach over the other without a fair and balanced 
analysis. This, at least in the opinion of this author, has not led to a healthy envi- 
ronment and fruitful exchange of ideas. It is now possible for basic graduate level 
courses in dynamics to be taught at different schools with entirely different subject 
material. 

These developments of recent years have inspired me to compile my lecture 
notes into a textbook. Realizing that much of the research done lately in the field of 
dynamics has been reported very subjectively, I have tried to present in this book 
a fair and balanced description of dynamics problems and formulations, from the 
classical methods to the newer techniques used in today's multibody environments. 
I have emphasized the need to know both the classical methods as well as the newer 
techniques and have shown that these approaches are really complementary. Having 
the knowledge and experience to look at a problem in a number of ways not only 
facilitates the solution but also provides a better perspective. For example, the book 
discusses Euler parameters, which lead to fewer singularities in the solution and 
which lend themselves to more efficient computer implementation. 

xiii 



The focus of this book is primarily the kinematics and derivation of the describ- 
ing equations of dynamics. We also consider the qualitative analysis of the response. 
We discuss a special case of quantitative analysis, namely the response of motion 
linearized about equilibrium. 

We discuss means to analyze the kinematics and to describe the equations of mo- 
tion. We study force and moment balances, as well as analytical methods. In most 
dynamics problems, the resulting equations of motion are nonlinear and lengthy, so 
that closed-form solutions are generally not available. We discuss analytical solu- 
tions, motion integrals and basic stability concepts. We make use of integrals of the 
motion, which are derived quantities that give qualitative information about the sys- 
tem without having to solve for the exact solution. 

For linearized systems, we discuss the closed-form response. We outline con- 
cepts from vibration theory and eigenvector expansions. This also is done for contin- 
uous systems, in the last chapter of the book. We discuss the importance of numerical 
solutions. 

The book is organized into eleven chapters and three appendixes. The first eight 
chapters are intended for an introductory level graduate or advanced undergraduate 
course. The later chapters of the book can be used as part of a second, more ad- 
vanced graduate level course. The book follows a classical approach, in which one 
first deals with particle mechanics and then extends the concepts into rigid bodies. 
The Lagrange's equations are initially discussed for a system of particles and plane 
motion of rigid bodies. 

We follow in this book this school of thought for a number of reasons. First, 
graduate students come from a variety of backgrounds. Many times, students have 
not considered dynamics since the sophomore dynamics, or the freshman physics 
course. Also, this organization presents a more natural flow of the concepts used 
in dynamics. Nevertheless, the book is suitable also for instructors who prefer to 
teach three-dimensional rigid body dynamics before introducing analytical methods. 
Following is a description of the chapters: 

In Chapter 1 we study fundamental concepts of dynamics and see their appli- 
cations to particle mechanics problems. We discuss Newton's laws and energy and 
momentum principles. We look at integrals of motion and basic ideas from stability 
theory. The chapter outlines the response of linearized systems, which forms an in- 
troduction to vibration theory. This chapter should be covered in detail if the course 
is an undergraduate one. Less time should be spent on it for a graduate course or if 
the students taking the course are familiar with the basic ideas. 

gular velocities, and angular accelerations are introduced. The significance of taking 
time derivatives in different coordinate systems is emphasized. We derive the rela- 
tive motion equations and consider motion with respect to the rotating earth. 

Chapter 3 is a chapter on systems of particles and plane kinetics of rigid bodies. 
It is primarily included for pedagogical considerations. I recommend its use for an 
undergraduate course; for a graduate level course, it should serve as independent 



reading. A number of sections in this chapter are devoted to an introduction to ce- 
lestial mechanics problems, namely the two-body problem. The sections on plane 
kinetics of rigid bodies basically review the sophomore level material. This review 
is included here mainly because the approaches in the next chapter are described in 
terms of particles and plane motion of rigid bodies. 

The subject of classical analytical mechanics is discussed in Chapters 4 and 
5. Chapter 4 introduces the basic concepts, covering generalized coordinates, 
constraints, and degrees of freedom. We derive the principle of virtual work, 
D'Alembert's principle, and Hamilton's principle and then we develop Lagrange's 
equations. Analytical mechanics makes use of the calculus of variations, a subject 
covered separately in Appendix B. While Chapters 4 and 5 are written so that one 
does not absolutely need to learn the calculus of variations as a separate subject, it 
has been the experience of this author that some initial exposure of students to the 
calculus of variations is very helpful. 

Chapter 5 revisits the concept of equilibrium and outlines the distinction be- 
tween natural and nonnatural systems. We derive the linearized equations about 
equilibrium. The response of linearized systems is analyzed, which in essence is 
vibration theory for multidegree of freedom systems. Generalized momenta and mo- 
tion integrals are considered. 

In Chapter 6, we discuss the internal properties of a rigid body. In a departure 
from traditional approaches, we discuss moments of inertia independent of the ki- 
netic energy and angular momentum. 

Chapter 7 is devoted to a detailed analysis of the kinematics of a rigid body, 
where we learn of methods of quantifying the angular velocity vector. We present a 
discussion of Euler angles and Euler parameters. We then discuss constraints acting 
on the motion and quantify these constraints and the resulting kinematic relations. 

Chapter 8 explores basic ideas associated with the kinetics of rigid bodies. 
We first begin with the application of force and moment balances. We express the 
equations of motion in terms of both the Euler angles and angular velocities. We 
discuss the relative merits of deriving the equations of motion in terms of gener- 
alized coordinates as well as in terms of angular velocity components. We ana- 
lyze impulse-momentum and work-energy principles. We discuss the physical in- 
terpretation of Lagrange's equations and integrals of the motion associated with the 
Lagrangian. 

Chapter 9 introduces more advanced concepts in the analysis of rigid body mo- 
tion. We analyze the modified Euler's equations and then consider the moment equa- 
tions about an arbitrary point. We discuss quasi-velocities, also known as generalized 
speeds, and their applications. We demonstrate that such coordinates are desirable 
when dealing with nonholonomic systems. We demonstrate the equivalence of the 
Gibbs-Appell and Kane's equations and discuss momentum balances in terms of the 
generalized speeds. 

Many of the analytical methods described in this chapter could have been intro- 
duced in Chapters 4 or 5. However, the power of these methods, which are equally 
applicable to both particles and rigid bodies, is better appreciated when we consider 
applications to complex rigid body problems. 

Chapter 10 covers the qualitative analysis of rigid body motion, and in particular 
gyroscopic effects. The chapter initially goes into a qualitative study of torque-free 



motion and the differences in the response between axisymrnetric and arbitrary bod- 
ies. We then discuss interesting classical applications of gyroscopic motion, such as 
a spinning top, a rolling disk, and gyroscopes. 

Chapter 11 investigates the subject of dynamics of lightly flexible bodies. Re- 
cent problems in dynamics have demonstrated the importance of including the elas- 
ticity of a body in the describing equations. The emphasis is the analysis of bodies 
that undergo combined rigid and elastic motion, typical examples being robot ma- 
nipulators and spacecraft with appendages. We derive the classical boundary value 
problem and examine a shortcoming in the traditional formulation. The combined 
large-angle rigid and elastic motions are modeled in terms of the superposition of a 
primary motion, as the motion of a moving reference frame, and a secondary motion, 
the motion of the body as observed from the moving reference frame. 

Appendix A is a historical survey of dynamics and a synopsis of the work of the 
many people who contributed to this field. 

Appendix B presents an introduction to the calculus of variations. It is recom- 
mended that at least part of this appendix be studied before Chapter 4. However, 
Chapter 4 is written such that a brief introduction to virtual displacements should be 
sufficient to understand basic concepts from analytical mechanics. 

Appendix C gives the mass moments of inertia of common shapes. 

The book contains several examples and homework problems. It has been my ex- 
perience that students understand a subject best when they see many examples. I 
encourage anyone teaching dynamics, either at the undergraduate or the graduate 
level, to use as many examples as possible. 

Another pedagogical tool emphasized in the book is computational techniques. 
While we do not go into details of numerical integration, we discuss the numerical 
integration of equations of motion. Many of the examples and homework problems 
in the book can be assigned as computer projects. I encourage every student to keep 
pace with new advances in scientific software, such as symbolic manipulators, be- 
cause, as discussed earlier, the availability of computational tools has changed the 
nature of dynamics. 

The book is supplemented by an Instructor's Solutions Manual which includes de- 
tailed solutions to all of the problems in the book. 

Writing a textbook is a lengthy and difficult task and I would like to acknowledge 
the support of many people. First, I am richly indebted to all the teachers I have 
had in my life, from my elementary school teacher in Istanbul, Mrs. Cahide Sen, 
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rors and improve the text. Many thanks are due to McGraw-Hill, and especially to 
Senior Editor Debra Riegert, who gave me the opportunity to publish with them. 
Victoria St. Ambrogio was an outstanding copy editor and the competent staff of 
McGraw-Hill and Publication Services facilitated the production of the book. 
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c h a p t e r  

This chapter discusses basic principles and concepts used in the field of dynamics. It 
describes these principles and concepts within the context of particles. First, we look 
at the systems of units commonly used in dynamics. Then, we analyze the kinemat- 
ics of a particle and outline the coordinate systems used to describe the motion. We 
distinguish between coordinate systems that deal with components of the motion in 
fixed directions and coordinate systems based on the properties of the path followed 
by the particle. The kinematic analysis is followed by the kinetics of a particle, and 
Newton's laws are given. We move on to analyze the concept of force and discuss the 
integration of the equations of motion. The distinction is drawn between the quali- 
tative and quantitative analysis of the motion. Integration of the equations of motion 
lead to energy and momentum expressions and in some cases to other integrals of 
the motion, which are useful in analyzing the nature of the motion. There is an intro- 
duction to the concepts of equilibrium and stability, and the closed-form integration 
of linearized equations of motion. This subject forms the basis of vibration analysis. 

This chapter is a collection of the fundamental principles that one uses in obtain- 
ing the equations of motion and in analyzing these equations of motion. The devel- 
opments in subsequent chapters in this book are built on these principles. The reader 
is encouraged to understand all the concepts discussed in this chapter thoroughly 
before continuing with the rest of the text. 

While anyone can develop a set of units to describe the evolution of a dynamical 
system, in classical mechanics two basic sets are widely used: Systkme International 
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(SI), or metric, and U.S. Customary. The primary difference between these systems 
is that the SI system is universal and absolute, and the U.S. system is local (or gravi- 
tational), that is, valid on earth. Today, most countries in the world have adopted the 
SI system as their standard. 

To describe the evolution of a body, three fundamental quantities are needed. 
In all commonly used systems there is agreement on two: length and time, whose 
dimensions are denoted by L and T, respectively. The U.S. and SI systems differ on 
the nature of the third quantity. The SI system uses mass (M), defined as the amount 
of matter (absolute) contained in a body. By contrast, the U.S. system uses force (F). 
The justification for this system is that the weight of a body, as the force with which 
the body is pulled toward the center of mass of the coordinate system (in our case, 
earth), is easier to visualize. Weight is a relative quantity. It changes depending on 
the amount of gravitational attraction. 

Corresponding to each fundamental quantity there is a base unit1 that describes 
standardized amounts of a fundamental quantity. Evolution of the base units has 
been in many cases based on convenience (e.g., foot), but in some cases a rational 
explanation is not available. The base units are usually abbreviated by symbols. The 
fundamental quantities and corresponding base units in the U.S. and SI systems are 
as follows (the dimensions and symbols are denoted in the parentheses): 

SI Units U.S. Customary Units 

Mass (M): kilogram (kg) Force (F): pound (lb) 

Length (L) :  meter (m) Length ( L ) :  foot (ft) 

Time (T ) :  second ( s )  Time (T):  second (sec or s )  

In the SI system, force is a derived quantity. The base unit of force ( F  = 
MLIT~)  is denoted by a newton (N), where 1 N = 1 kg m/s2. In the U.S. system, 
mass is a derived quantity, and the unit of mass (M = FT~IL)  is denoted by a slug, 
with 1 slug = 1 lb*sec2/ft. When using the SI system many people commonly, and 
at the same time erroneously, refer to mass as a unit of weight. This is due to the 
perpetuation of the original definition of kilogram as a unit of weight. The lulogram 
was formally redefined as a unit of mass in the year 1859. 

The selection of base units in a given system of units is not absolute. In many 
cases one switches to a different system of units to describe the motion. For example, 
the speed of an automobile is usually described in kilometers per hour (or miles per 
hour), and the speed of a ship is described by knots (1 knot = 1 nautical rnilelhr, 
where 1 nautical mile = 1.852 krn). 

To describe rotational displacements one may use degrees (") or radians (rad). 
Going around a full circle takes 360 degrees or 27r radians and is referred to as a 
revolution. A radian is a dimensionless unit. The angle of 1 radian = 57.2958" is 
depicted in Fig. 1.1. 

I 'Some refer to the fundamental quantities as base units and to the base units as dimensions. 



Figure 1. I One radian 

An interesting source of debate has been the need to reexamine and to recal- 
ibrate the standards used in defining the base units. Many precision calculations 
require formal definitions for several quantities. For example, one meter was origi- 
nally defined as one 10-millionth of the distance from one of the earth's poles to the 
equator. The current formal definition of a meter is the distance that light travels in 
one 299,792,458th of a second. One inch is defined as being exactly equal to 2.54 
cm. The current formal definition of a second is the time it takes for 9,192,63 1,770 
vibrations to occur in cesium atoms excited by microwave. A second was originally 
defined as 1/60 of a minute, which is 1/60 of an hour, which is 1/24 of a day. A 
kilogram is defined as the mass of water contained in a volume of one liter and at a 
temperature of 4" Celsius. A block with a mass of 1 kg is maintained in a vault in 
Paris as the standard kilogram. At the time of writing of this text, there was ongoing 
debate on revising the formal definition of the kilogram. 

To relate the mass of an object to its weight, we make use of the gravitational 
constant. The gravitational constant is denoted by g and it has the units of accelera- 
tion. The general form for this constant will be given in Section 1.4. On earth at sea 
level the value of g is approximated as g = 9.81 m/s2 or g = 32.2 ft/sec2. On earth 
an object of mass 1 kg weighs 9.81 N, and an object of weight 1 lb has a mass of 
1132.2 slugs. It is interesting that the weight of a medium-sized apple is about one 
newton. 

We have so far treated the three fundamental quantities as independent of each 
other. This is a correct assumption as long as relativistic effects are ignored (when 
the speeds involved are much less than the speed of light). As the speeds involved 
approach the speed of light, mass, length, and time become interrelated. This is the 
foundation of relativistic mechanics and it will not be pursued in this text. 

It is always important to check that the dimensions of the quantities being ma- 
nipulated match. Equations of motion and equilibrium equations must have all of 
their terms with the same dimension. Checking dimensional homogeneity is a good 
way of spotting errors. 

Analogous to the preceding discussion regarding standards, one must also be 
careful in the accuracy of the solution and rounding off numbers when solving a 
problem. Many engineering problems require an accuracy of about one part in a 
thousand or better. Accordingly, in most problems in this text we will retain four 



and sometimes five significant digits in the solution (e.g., 0.7655, 8.975, 12.34 or 
0.76549, 8.9762, 12.345). Following this line of thought, we note that the standard 
assumptions for the gravitational constant given above are not extremely accurate. 
In celestial mechanics problems, which we will discuss in Chapter 3, one needs to 
go to much higher levels of accuracy. 

Example I Suppose a new coordinate system is developed such that the density of water and the accel- 
1.1 eration of gravity are both of unit magnitude. If the pound is taken as the unit of force, how 

do the units of length and time in the new system compare with the U.S. Customary system? 

Solution 
Denote the base units in the old system by lb, ft, and sec and the units in the new system by 
Ib, ft', and s*. We are given that 

Acceleration of gravity g = 32.2 ft/sec2 = 1 f t* / (~*)~  [a] 

Density of water y = Specific wtlgravity = (62.8 lb/ft3)/(32.2 ft/sec2) 

= I ib/w2/(i f t * / ~ * ~ )  

-+ 1.950 Ib sec2/ft4 = 1 Ib ( ~ * ) ~ / ( f t ' ) ~  Cbl 

These two relations are two equations that can be solved for the two unknowns ft* and s*. 
From the first relation, 1 ft* = 32.2 ft ( ~ * ) ~ / s e c ~ .  Substituting this into the second relation, 
we obtain 

1.950 lb sec2/ft4 = 1 Ib (s*12/[32.2 ft ( ~ * ) ~ / s e c ~ ] ~  [@I 
which can be solved to give 1 sec/s8 = 11.31. Substitution of this result into the first relation 
yields 1 ft/ft* = 3.973. 

In this section we review the sets of coordinates and associated unit vectors com- 
monly used in dynamics. As with systems of units, one can develop a specific set 
of vectors to describe the orientation of a body. The study of dynamics uses two ba- 
sic types of coordinates: rectilinear and curvilinear. Rectilinear coordinates describe 
the components of the motion in fixed directions. Curvilinear coordinate systems 
incorporate the properties of the path that the particle follows. 

In a coordinate system, one defines a set of three principal directions. The co- 
ordinate axes and associated unit vectors are directed along the principal directions. 
When a set of unit vectors el,  e;?, e3 obeys the cross product rule ei X e j  = Eijkek 
where q j k  = 1 if i, j ,  k are in order (i = 1, j = 2, k = 3, or i = 2, j = 3, k = 1, 
o r i = 3 , j =  1 , k = 2 ) , c i j k =  - l i f i , j , k a r e n o t i n o r d e r ( i =  1 , j = 3 , k = 2 ,  
or i = 2, j = 1, k = 3, or i = 3, j = 2, k = I), and cijk = 0 if any two indices 
are repeated, the set is referred to as a mutually orthogonal triad. The coordinate 
system that uses these unit vectors is called a right-handed coordinate system. 



In this coordinate system, the origin and the principal directions remain fixed. These 
directions are usually referred to as x ,  y, and z axes or X, Y, and Z axes, with as- 
sociated unit vectors i, j, and k or I, J, and K, respectively. These unit vectors are 
time invariant. Because the unit vectors are independent of the path followed, this 
coordinate system is called extrinsic. 

Consider Fig. 1.2, where a particle P is moving along a curve. The displacement 
vector r ( t )  that describes the location of point P is 

The distance r from the origin 0 to point P then becomes 

Denoting the position of the particle at time t  + At by r( t  + At), the velocity of the 
particle is defined by 

( )  - ( 1  = lim r( t  + ~ t )  - r ( t )  v ( t )  = - - 
d t At-0  At 

Introduction of Eq. [1.3.1] into Eq. [1.3.3] yields 

Because the unit vectors are time invariant, their derivatives vanish. In a similar 
fashion, one can obtain expressions for the acceleration 

This set of coordinates is useful when the components of the motion can be 
analyzed separately from each other. Projectile motion problems provide a classical 
example. 

C 

Figure 1.2 



Let us investigate a few interesting cases for motion in one direction, also known 
as rectilinear motion. Taking the displacement variable as x, we can express the ac- 
celeration in the most general case as a = a(x, x, t ) .  If the acceleration is constant, 
a = c, then we can obtain the velocity and displacement by direct integration as 
v(t) = vo + ct, x(t) = xo + vot + ct212, with xo and vo denoting the initial displace- 
ment and initial velocity. Direct integration can again be used if the acceleration is 
only a function of time, a = f ( t) .  If the acceleration is a function of the displace- 
ment only, a = f (x) ,  one uses the transformation a = dvldt = f (x ) .  Multiplying 
both sides by dx ,  we obtain 

dv 
f ( x ) d x  = -dx = V ~ V  [ 1 A61  

dt 

where each side is a function of x or v only. It follows that each side can be integrated 
separately from the other. If the acceleration is a function of velocity alone, a = f (v), 
we write a = dvldt = f (v) .  Carrying the dt term to the right side and the f (v)  term 
to the left, we obtain 

where we have again separated the variables so that each side of the above equation 
can be integrated independently of the other. 

The case when a = f (x,  x)  is left as a homework exercise. Any other combina- 
tion lends itself to more complicated problems. The situation gets worse when there 
is two- or three-dimensional motion, and the -acceleration in one direction is related 
to motion in more than one direction, such as a,  = f (x ,  y). One has to then go into 
coordinate systems that take advantage of the properties of the path followed by the 
particle, as we will see next. 

Example I A projectile is thrown from an inclined surface with an initial velocity vo and an angle of 
1.2 8 = 30" from the incline, as shown in Fig. 1.3. The plane of the incline makes an angle of 

4 = 15' with the horizontal. Find the time elapsed before the particle falls to the ground and 
the distance traveled along the incline. 



Soluiion 
The equations of motion in the horizontal and vertical directions are independent of each other 
and have the form 

m a , = O  m a , = - m g  [a1 

which can be integrated directly to yield the velocity and displacement relations 

v,(t) = u,o = constant x(t) = v,ot 

where v,o and v,o are the components of the initial velocity. From Fig. 1.3, the initial velocities 
are 

v,o = uo cos(8 - 4 )  = vo cos 15" u,o = vo sin(8 - 4 )  = uo sin 15" [@I 
Denote the time it takes for the projectile to touch the ground by tf and the coordinates 

of that point by xf = x(tf) and zf = z(tf). From Fig. 1.4 (not drawn to scale) we can relate 
zf and xf by 

Substituting the values for xf and zf from Eq. [b], we obtain 

which leads to the following equation for tf: 

Solving for tf for the final time, we obtain 

[dl 

[el 

c f I 

Figure 1.4 



The final distance traveled is calculated by substituting the value for t f  into Eqs. [b] and 
[dl, and we have 

4 4  sin 15" cos 15" - ug 
~ ( t f )  = v,ot, = - - 

g g 

Properties of the path followed by a particle turn out to be extremely useful quantities 
for understanding the nature of the motion. This observation has led to the develop- 
ment of curvilinear coordinate systems. There are several such coordinate systems 
that one can develop. We will begin with a coordinate system that is entirely based 
on the properties of the path. We will then study two commonly used coordinate 
systems that make use of the properties of the path as well as the position of the par- 
ticle. Curvilinear coordinate systems are referred to as intrinsic, as these coordinate 
systems depend on the path followed by the particle. 

Normal-Tangential Coordinates This coordinate system is attached to the 
particle whose motion is considered (see Fig. 1.5). The distance traversed along the 
path is designated by s, measured from a reference position. This coordinate system 
is primarily used to describe the nature of the path followed by the pa r t i~ l e .~  The 
variables used are referred to as path variables. 

While it may appear to be more desirable from a mathematical perspective to 
just look at the distance between the initial and final positions, considering the path 

21n this regard, the normal-tangential coordinates do not constitute a coordinate system that can describe displace- 
ment, velocity, or acceleration. Rather, they are a means of obtaining information about the path followed by the 
particle. The other curvilinear coordinates that we will study in this section can, in essence, be derived from the 
path variables. 



followed and the total distance traversed along the path is very important. Someone 
traveling from one location to another, say by driving, usually selects a route that 
minimizes the distance traveled along the road (the path). 

We define two principal directions to describe the motion. The first is along the 
tangent to the c w e  and along the direction of the motion. This direction is called 
the tangential direction. We denote the unit vector associated with this direction as 
e,. Consider Fig. 1.5 and the position of the particle after it has traveled distances of 
s and s + As. The associated position vectors, measured from a fixed location, are 
denoted as r(s) and r(s + As), respectively. Define by Ar the difference between r(s) 
and r(s + As), thus 

From Fig. 1.5, as As becomes small Ar and As have the same length and become 
parallel to each other. Further, Ar becomes aligned with the tangential direction. We 
hence define the unit vector in the tangential direction as 

The unit vector e, changes direction as the particle moves. We can obtain the 
velocity of the particle by differentiating the displacement vector with respect to 
time. Using the chain rule for differentiation, 

Now using the definition of e, from Eq. [1.3.9] and noting that the speed v is the rate 
of change of the distance traveled along the path, v = dsldt, we obtain 

The second principal direction is defined as being normal to the curve and di- 
rected toward the center of curvature of the path, as shown in Fig. 1.6. This direction 
is defined as the nomzal direction. The associated unit vector is denoted by en. The 
center of curvature of a path associated with a certain point on the path lies along 
a line perpendicular to the path at that point. An infinitesimal arc in the vicinity of 
that point can be viewed as a circular path, with the center of curvature as the center 
of the circle. The radius of the circle is called the radius of curvature. Because the 
normal to the curve is perpendicular to the tangential direction, the two unit vectors 
are orthogonal, that is, e, en = 0. 

Differentiation of Eq. [1.3.11] with respect to time gives the acceleration of the 
particle a(t) as 

To obtain the derivative of e, we displace the particle by an infinitesimal distance 
ds, and refer to the unit vectors associated with the new location by et(s + ds), as 
shown in Fig. 1.6. The center of curvature associated with all points on the arc is the 
same. The arc length can be expressed as ds = p d 4 ;  d 4  is the infinitesimal angle 



e,(s + ds) 

J Center of 
curvature n 

Figure 1.6 Figulv 1 .I 

traversed as the particle moves by a distance ds. Defining the vector connecting et(s) 
and et(s + ds) by de,, we can write de, = e,(s + ds) - e,(s). From Fig. 1.7, the angle 
between et(s + ds) and e,(s) is very small, so that 

ds 
Ide,l = sin d+let(s)( = d+le,l = - [I 3.1 31 

P 

The radius of curvature is a measure of how much the curve bends. For motion along 
a straight line, the curve does not bend and the radius of curvature has the value 
of infinity. For plane motion, using the coordinates x and y such that the curve is 
described by y = y(x) ,  the expression for the radius of curvature can be shown to 
be 

The absolute value sign in this equation is necessary because we defined the radius 
of curvature as a positive quantity. Considering the sign convention that we adopted 
above, we have 

Using the chain rule, we obtain the time derivative of e, as 



Introduction of this relation into Eq. [1.3.12] yields 

u2 
a(t) = v(t)  = ire, + -en 

P 

The first term on the right in this equation is the component of the acceleration 
due to a change in speed, referred to as tangential acceleration (a,).  The second term 
is the contribution due to a change in direction, referred to as the normal acceleration 
or centripetal acceleration (a,).  The acceleration expression can be written as 

a(t) = ate, + a,e, 

with 

It is a common misconception to treat an object moving along a curved path 
with constant speed as having no acceleration. Note that the normal component of 
the acceleration is always directed toward the center of curvature. 

The normal and tangential directions define the plane of the motion for that par- 
ticular instant. This instantaneous plane of motion is called the osculating plane 
(after the Italian word osculari, which means to kiss). The orientation of the oscu- 
lating plane changes as the particle moves. This is referred to as the twisting of the 
osculating plane. The unit vector eb, referred to as the unit vector in the binormal 
direction and defined as eb = et X en, is perpendicular to the osculating plane. Con- 
sider, for the sake of illustration, plane motion as shown in Fig. 1.8. The direction 
of eb and hence the osculating plane alternates as the curvature of the path switches 
from convex to concave. 

The unit vector in the binormal direction is used to obtain the derivative of the 
unit vector in the normal direction. While eb is not needed to describe the velocity or 
acceleration, it is used to describe the evolution of the plane of motion. The twisting 
of the osculating plane is a path parameter. 



To analyze the movement of the plane of motion, we investigate the derivatives 
of en and eb with respect to s. To this end, we take the derivative of eb using the 
definition of the cross product as 

den de, d'b = e t x - + - ~ e n  
ds ds ds 

Using Eq. [1.3.16], detlds = enlp, so that the second term in the right side of 
the above equation vanishes. From the first term on the right side we conclude that 
the rate of change of eb along the path has no tangential component. To show that 
deb/ds has no component in the binormal direction either, we differentiate the dot 
product eb eb = 1 ,  with the obvious result 

It follows that deb/ds can only have a component in the normal direction. This 
can be explained physically the same way we explained Eqs. [1.3.13] through 
[1.3.16]. We define a quantity denoted by r ,  which is called the torsion of the curve, 
as 

The torsion of the curve is a measure of how much the plane of motion twists, or 
how the osculating plane changes direction. For plane motion, while the curve may 
change from convex to concave, the binormal direction does not change and hence 
r is equal to infinity. 

We next obtain the derivative of en with respect to s. From the above discussion 
we know that denlds cannot have a component in the normal direction. We proceed 
to write this as 

in which cl and c2 are coefficients to be determined. We make use of the property 
that the unit vectors are orthogonal to each other and write 

e n a e , = O  e n 0 e b = O  [1.3.21] 

Differentiation of these equations with respect to s and using Eqs. [1.3.16] and 
11.3.231 yields 

Taking the dot product of Eq. [1.3.24] with et and eb and comparing with Eqs. 
[1.3.26], we obtain 



We are now in a position to write the rate of change of the unit vectors in the 
normal-tangential coordinate system as 

Eqs. [1.3.28a,b,c] are known as FrenetS formulas. They enable us to describe how 
the curve and the associated unit vectors change. 

Note that up to now, we derived the unit vectors and their derivatives as a func- 
tion of s,  the distance traversed along the path. But we did not find an expression for 
s  itself. To accomplish this, we need to express position in terms of a path variable. 
Denoting this variable by a,  we can write the position vector as 

r  = r ( a )  = x(a)i + y(a)j + z (a)k  [ I  -3.291 

Using the definition of e, in Eq. r1.3.291, we obtain 

d r  d r d a  d a  
[1.3.30] 

We then take the dot product of e,  with itself: 

which can be solved to yield 

Integrating this expression, we obtain 

where a0 is the initial value of the path parameter. When the path parameter is time, 
we get the familiar expression of displacement being the integral of the velocity over 
time. 

We next express the radius of curvature, torsion, and the unit vectors in terms of 
the path variables. We first write the unit vector in the tangential direction and the 
derivative of the position vector as 

Primes denote differentiation with respect to the path variable a .  Differentiation of 
Eq. [1.3.34b] with respect to the path parameter a,  and using Eq. [1.3.16], yields 

de, d s  (s'I2 r'' = S''et + - = + ---en 
ds  d a  P 



As one would expect, if the path variable is selected as time, Eqs. [1.3.34b] 
and [1.3.35] yield the expressions for velocity and acceleration. To express the unit 
vector in the normal direction in terms of the path variables, we multiply Eq. [1.3.35] 
by s' and subtract from it Eq. [1.3.34b] multiplied by s", with the result 

It is customary to express en in terms of the first derivative of s. Noting from Eqs. 
[1.3.34b] and [1.3.35] that r" * r '  = s's" and substituting this relationship in the 
above equation, we obtain 

To find the unit vector in the binormal direction, we use the definition eb = 

e, X en and substitute the values for et and en from Eqs. [1.3.34a] and [1.3.36], with 
the result 

Finding the radius of curvature and the torsion requires manipulation of the 
above equations. The radius of curvature is found by making use of Eq. C1.3.371 and 
the property that the norm of en is 1. To find the torsion r we invoke Eq. [1.3.28c] 
and carry out the algebra. The results are 

The derivations are left as an exercise. Note that to find p one needs the second 
derivative of r with respect to the path variable, whereas to find the torsion T the 
third derivative of r is required. This can be explained by the following observation: 
Let time be the path variable. Given the velocity and acceleration of a particle at a 
point in time, one can determine what the plane of the motion is and the radius of 
curvature, but not how the plane of motion is twisting. 

Finally, in terms of the derivatives with respect to s, we can write 

We now compare the two coordinate systems that we have seen so far. With rec- 
tilinear coordinates, one describes velocity and acceleration as the rate of change of 
absolute distance from an origin. With normal-tangential coordinates, one describes 
velocity and acceleration using properties of the path that the particle follows. The 
distance from an origin does not come into the picture. The two descriptions can be 
used together to give a better understanding of the nature of the motion. 

Example 1 A particle moves on a path on the xy plane defined by the curve y = 3x2, where x varies 
1.3 with the relation x = sin a. Find the radius of curvature of the path and the unit vectors in 

the normal and tangential directions when a = d 6 .  



Solution 

The position vector can be written as 

r = sin a i  + 3 sin2 a j  

so that the unit vector in the tangential direction is 

where sf = dslda. Noting that the magnitude of e, is 1, we write 

To find the radius of curvature we use Eq. [1.3.39a], which requires expressions for r' 
and r". These derivatives are 

d r  d2r 
- - sin a i  + 6(cos2 a - sin2 a ) j  [dl r t = - = c o s a i + 6 s i n a c o s a j  r " = - - - -  

d a  d a 2  

Evaluating these expressions at a = d 6 ,  we obtain 

which, when substituted into Eq. [1.3.39a] yields 

1 - - - - J(r" rU)sl2 - (rf r1r)2 = 0.1897 
p (st)3 

[f I 

When a = d 6 ,  the unit vector in the tangential direction has the value 

To find the unit vector in the normal direction we need to use Eq. [1.3.37], which yields 

P en = - ( r " (~ ' )~  - r'(rl' r ) )  = -0.9487i + 0.3 l62j 
(s'I4 

Chl 

Note that we determined all the path parameters using their given formulas. We could 
have solved this problem by assuming that the parameter a is time and by using the expres- 
sions for the normal and tangential accelerations. 

The motion of a particle is described in Cartesian coordinates as I Example 
1.4 

~ ( t )  = 2t2 + 4t ~ ( t )  = 0. it3 + COS t ~ ( t )  = 3t [a] 

Find the radius of curvature and the torsion of the path at time t = 0. 

Solu~lon 

From Eq. [1.3.20b], the radius of curvature is related to the speed of the particle and its normal 
acceleration as 



and the components of the acceleration in the normal-tangential and Cartesian coordinates 
are related by 

a2 = a; + a: = a: + a$ + a: [GI 
We can obtain the components of the velocity and acceleration by differentiating Eq. [a]: 

x(t) = 4t + 4 y(t) = 0.3t2 - sint i(t) = 3 
[dl 

x( t )  = 4 y(t) = 0.6t - cos t ~ ( t )  = 0 

The square of the speed of the particle at t = 0 is 

The tangential acceleration can be found by differentiating the expression for the speed 

At t = 0, we have 

Substituting the numerical values into Eq. [c], we obtain 

which can be solved for p to yield 

Next, we find the radius of curvature using Eq. [1.3.39a]. Noting that the path variable 
is time, at t = 0 we have 

Substituting these values into Eq. [1.3.39a] we obtain 

which gives the same result as the one obtained in Eq. [i]. 
To find the torsion of the curve we make use of Eq. [1.3.39b]. We note that the third 

derivative of the position vector is required. From Eq. [dl we obtain 

rrl' = r(t) = (0.6 + sin t)j [I1 
so that at t = 0, r(t) = 0.6j. Introducing this and the expressions for r' and r" into Eq. 
[1.3.39b] we obtain 



so that the torsion of the curve at T = 0 is T = 110.04260. = 23.47. Comparing with the 
value of the radius of curvature, we see that the curve is bending more than it is twisting at 
this instant. 

The above analysis could also be camed out using a vector approach from the begin- 
ning. We can write the velocity as v = 4i + 3k, from which we obtain the unit vector in the 
tangential direction as 

The component of the acceleration in the tangential and normal directions can then be 
computed as 

a, = a el a, = la - (a e,)e,l = Jm [el 
For the problem at hand, a = 4i - j, so that substituting it into the above equation yields 

the results that we obtained earlier. This latter approach is in many cases more efficient in 
obtaining the path parameters. 

Cylindrical Coordinates This set of coordinates is particularly useful if the 
particle is moving along a curved path, the position of the particle is of interest, and 
one component of the motion can be separated from the other two. 

Fig. 1.9 describes this coordinate system. The inertial coordinate system xyz  is 
chosen such that the component of the motion that can be separated from the other 
two is defined as the z  direction. We take the path of the particle and project it onto 
the x y plane. The parameters describing the motion are: 

1. The height z. 
2. The absolute distance from the origin of the coordinate system to the projection 

of the path of the particle on the x y  plane, denoted by R or r. 

Original 
path 

' I  

Y i yo" 
Y 

Projection 
onto xy plane 



3. On the xy plane, the amount of counterclockwise rotation from a starting line 
(usually selected as the x axis) to reach the line joining the origin and projection 
of the particle on the xy plane. Denoted by 0 and measured in radians. 

The selection of the origin of the coordinate system is very important when using 
cylindrical coordinates, as R and 0 change by changing the location of the origin. The 
first principal direction is fixed, and it is the z direction, with associated unit vector 
k. To describe the component of the motion in the xy plane, we define two perpen- 
dicular directions. The radial direction is defined as outward from the origin of the 
coordinate system to the projection of the particle on the xy plane. The associated 
unit vector is referred to as e,. The transverse direction is perpendicular to the ra- 
dial direction and it is denoted by 0, with unit vector e8. Essentially, the radial and 
transverse directions are obtained by rotating the x and y axes counterclockwise by 
0 about the z axis. The unit vectors e,, e8, and k form a mutually orthogonal triad, 
with e, X e8 = k. For plane motion, these coordinates are referred to as polar coor- 
dinates. The unit vectors can be expressed in terms of the unit vectors in Cartesian 
coordinates as 

e, = cos 8i + sin 0 j  e8 = - sin Oi + cos O j  [l.3.41] 

The position of a particle is expressed in cylindrical coordinates as 

r(t) = Re, + zk = RcosOi + RsinOj + zk = xi + yj + zk [1.3.42] 

To obtain the velocity we differentiate this equation, to get 

v(t) = i(t) = ~ e ,  + Re, + i k  [1 3.431 

which requires the derivative of the unit vector in the radial direction. To calculate 
this derivative, consider the particle at a point P', as shown in Fig. 1.10. The coordi- 
nate system has rotated by an angle of AO. Denoting the unit vectors associated with 
the new position as er(8 + A8) and eO(O + AO), we relate them to e,(O) and ed0)  by 

e,(O + AO) = e,(O) cos A0 + ee(0) sin A0 

eO(O + A0) = -er(0) sin A0 + ee(0) cos A0 [1.3.44] 

Figure 1.1 0 



Using a small angles assumption of sin A0 = AO, cos A0 = 1, and taking the limit 
as A0 approaches zero, we obtain 

Using the chain rule of differentiation and Eq. [1.3.44], we obtain 

. de, d0 . . deo d0 e = - - - = o e  
do dt 

0 e O = - - = - O e ,  
do dt 

[1.3.46] 

which, when substituted in the expression for the velocity, yield 

The first term on the right side of this expression corresponds to a change in the radial 
direction and the second term to a change in angle. The third term is the component 
of the velocity in the z direction. 

In a similar fashion we can find the expression for acceleration. Differentiation 
of Eq. [1.3.47] yields 

a(t) = i?(t) = ~ e ,  + Re, + R9ee + ~ 8 e ~  + R8e0 + itk [1.3.48] 

Substituting in the values for the derivatives of the unit vectors and combining terms, 
we obtain 

We can attribute a physical meaning to the acceleration terms. The first term, 
R, describes the rate of the change of the component of the velocity in the radial 
direction. The second term, ~ 8 ~ ,  is the centripetal acceleration. It is always in the 
negative radial direction as R is a positive quantity. The term RO describes the accel- 
eration due to the change in the angle 0 .  The last term, 2 ~ 8 ,  is known as the Coriolis 
acceleration, named after the French military engineer Gustave Coriolis, who first 
explained the significance and existence of this component of the acceleration. It 
results from two effects: The first effect is due to the differentiation of the e, term 
in Re,, and it is associated with a change in direction. The second effect is due to 
the differentiation of R in the expression R6ee, and it is associated with a change in 
magnitude. 

A car travels with constant speed u on a spiraling path along a mountain. The shape of the I Example 
mountain is approximated as a paraboloid with base radius a and height h, as shown in Fig. 1 .S 
1.11. It takes the car exactly six full turns around the mountain to reach the top. Find the 
velocity of the car as a function of its radial distance R from the center of the mountain. 



Solution 
The height reached by the car is related to the radial distance by the relation 

The height is also related to the angle traversed by 

One can express the height and the angle traversed as a function of the radial distance R as 

Differentiating Eqs. [c] and introducing into the expression for velocity, we obtain 

and 

R ~ R  R R 
v = Re, + Roee + i k  = Re, - 24.rr-eO - 2h-k = ve, 

a2 a2 [el 

We are given that the speed is constant, so that we take the magnitude of the velocity as 

Defining the variable G as 

we can write R = v/G. Equation [f] gives the relation for the rate of change of the radial 
distance as a function of the radial distance itself. 

In a similar fashion, we can come up with an expression for the magnitude of the accel- 
eration. 



Figure 1.1 2 

Spherical Coordinates When neither one of the components of the motion is 
separable from the other and a path-related coordinate system is needed, spherical 
coordinates are suitable. The configuration of this coordinate system is shown in Fig. 
1.12. The parameters describing the path are the absolute distance from the origin of 
the coordinate system to the particle, denoted by R, and two angles 8 and 4, referred 
to as the polar and azimuthal angles, respectively. Note that the parameter R used 
here is different from the parameter R used in cylindrical coordinates. 

The principal directions are referred to as the radial, pola?; and azimuthal. The 
radial direction is defined as outward from the origin to the particle. The correspond- 
ing unit vector is denoted by e ~ .  The other directions depend on the polar angle 8 
and the azimuthal angle 4. The azimuthal angle is the angle between r and the z 
axis, and the polar angle 0 is the angle between the x axis and the projection of r 
on the x y  plane. Note the similarity between the polar angle 8 and the transverse 
angle when using cylindrical coordinates. It follows that the polar direction, with the 
unit vector ee, is tangent to the circle obtained by traversing the component of r ( t )  
in the x y  plane. The unit vector associated with the azimuthal direction is denoted 
by e+, and it is tangent to the circle on the x 'z  plane, which is obtained by rotating 
the xz plane about the z  axis by an angle of 0. The three unit vectors are mutually 
orthogonal, with the relation 

e~ X e+ = ee [I  .3.101 

We express the coordinates of a particle as 

and the displacement vector has the form 

r = ReR 

To obtain the velocity, we differentiate the above equation, 



indicating that the derivatives of e~ must be found with respect to both angles. To 
accomplish this, we will obtain the derivatives of eR using their expressions in Carte- 
sian coordinates. From Eqs. [1.3.51] and [1.3.52], we can write 

e~ = sin 4 cos Oi + sin 4 sin Oj + cos 4k  C1.3.541 

Differentiation of this equation with respect to 0 and 4 yields 

- aeR - - - sin 4 sin Oi + sin 4 cos Oj = sin +(- sin Oi + cos Oj) C1.3.551 
do 

- deR - - cos 4 cos Oi + cos 4 sin Oj - sin +k = cos &cos Oi + sin Oj) - sin +k 
d4 

From Fig. 1.12, we can express the unit vectors in the polar and azimuthal di- 
rections as 

ee = - sin Oi + cos Oj e+ = cos +(cos Oi + sin Oj) - sin 4k [ I  AS61 

Note that when the azimuthal angle 4 = 90°, spherical and cylindrical coordi- 
nates coincide. Indeed, we have 

eR(+ = 90°) = e, ee(4 = 90") = ee e+(+ = 90") = -k Cl.3.571 

Introducing Eqs. [1.3.56] into [1.3.55] we obtain 

The above relations can be used to obtain the time derivative of e~ as 

As a result, one expresses the velocity as 

v(t) = ReR + sin 4ee + R&e4 [ I  .3.60] 

To obtain the acceleration, we need to generate the time derivatives of the unit 
vectors in the polar and azimuthal directions. Using a procedure similar to the above, 
we obtain 

dee 
- = -0 sin 4eR - 0 cos 4e4 
dt 

Using this equation and manipulating the algebra, the expression for the accel- 
eration has the form 

a(t) = r(t) = (R - Re2 sin2 4 - R & ~ ) ~ R  + (Re sin 4 + 2 ~ e  sin 4 + 2Re4 cos 4)ee 

+ (R$ + 2 ~ 6  - Rb2 sin4cos 4)ed C1.3.621 



In Eq. r1.3.621, the terms having the squares of the first derivatives correspond to 
the centripetal accelerations, and the mixed first derivative terms correspond to the 
Coriolis accelerations. The second derivatives indicate accelerations in the radial 
direction and in the polar and azimuthal angles. 

The length of the spherical pendulum shown in Fig. 1.13 varies by the relation L = 2 + I Exampla 
sin .rrt m. The pendulum spins with the constant rate of e = 2 r d s .  We are given that the 1.6 
angle P is related to the length of the pendulum and 8 by 

Assuming that P is always in the range - d 2  5 fl 5 ~ 1 2 ,  find the velocity of the tip 
of the pendulum at t = 0.1 s. 

Solution 
We attach a set of spherical coordinates to the pendulum. Note that according to our definition 
of the polar and azimuthal angles, + and P are related by P = .rr - 4. We observe that 
sinp = sin+. Fig. 1.14 shows the coordinate system in side view using the z and radial 
axes. 

Considering the range of P ,  we can obtain the expression for sin P from Eq. [a] as 

8 - sin@ = Jz - 2 
2 + sin .rrt 

To find 8, we differentiate this equation, with the result 

27r cos .rrt 1 - 2 7 ~  cos .rrt 
cospb  = - -+ 

( 2  + sin ~ t ) ~  8=J- 1 - sin2 p ( 2  + sin .rrt)= 
161 

The expression for the velocity is given by Eq. [1.3.60]. We identify the individual values 
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(e, inside paper) 



At t = 0.1 s, we have 

R = 2 + sin(0. l n )  = 2.309 m R = n cos(0. l n )  = 2.988 m sin 4 = sin p[m] 

which, when substituted in Eq. [1.3.60], yields 

v(t) = ReR + RB, sin&?o + R&?+ = 2.988eR + 4.000e0 + 5.179e+ m/s [ fl 

Equation [a] is an angular momentum conservation relation. This relationship arises be- 
cause the speed of the pendulum can be written as 

u = J R ~  + ~ ~ ( e ~  sin2 4 + j 2 )  [d 
The speed u is independent of 0. Many systems in dynamics have this property. 

Mixed Descriptions As discussed earlier, in certain cases it may not be suffi- 
cient to use a single set of coordinates to solve a problem; one may also need to take 
advantage of another coordinate system. The different coordinate systems provide 
different types of information about the motion, and the added information arising 
from the use of more than one coordinate system facilitates our understanding of the 
nature of that motion. Usually, one exploits the relationships between the two coor- 
dinate systems by first writing the unit vectors of the coordinate systems in terms of 
the motion variables. Then, one considers the relationship between the unit vectors 
in the different coordinate systems. 

One question that arises is whether one can use any set of parameters to de- 
fine a coordinate system. The answer to this question is positive, provided that three 
parameters pl ,  pz, pj can be found such that there exists a unique transformation 
between the components of the motion in rectilinear coordinates x ,  y, and z (or any 
other proper coordinate system) and pl ,  p2, and p3. For example, for cylindrical co- 
ordinates, p~ = R, p~ = 8, and pg = Z. The transformations from x ,  y, and z to R, 
8, and z are given in Eq. [1.3.42]. Considering these equations and Fig. 1.9, we can 
relate R, 8, and z to x ,  y, and z as 

where the range of interest in the inverse tangent is ( -d2 ,  d 2 ) .  A proper selection 
of the coordinate frame is crucial to the understanding of the problem and to the 
solution. 

There are several other parabolic and hyperbolic coordinate systems that facil- 
itate derivation of the governing equations, as well as the solution, for a specific 
problem. Examples can be found not only from motion analysis but from other prob- 
lems such as heat transfer. To develop a coordinate system with orthogonality prop- 
erties among its components, additional requirements need to be introduced. These 
requirements are described in the text by Ginsberg listed in the reference section at 
the end of the chapter. 



The reader is always encouraged to explore the possibility of using more than 
one coordinate system when tackling a dynamics problem. One note of caution is 
in order, though. When selecting coordinate systems and the variables associated 
with them, be careful to avoid the ambiguities that can result from an improper se- 
lection of the variables. A good way to avoid this problem is to make sure that the 
transformation from one set of variables to another is indeed unique. 

In Fig. 1.15, the pin attached to the circle of 6-inch radius is sliding in the slot with the constant I Example 
speed of v = 2 inlsec. Find the values of 8, and at the instant when 4 = 90". 1.7 

Solution 

We will make use of polar as well as normal-tangential coordinates. The geometry of the 
system is shown in Fig 1.16. The expressions for R and 9 are 

R = = 10.82 in 9 = tan-' [a] 

The relationship between the two sets of unit vectors can be written as 

e,  = cos Be, - sin %eB en = - cos %ee - sin %eR [bl 

where sin% = 0.5547, cos 9 = 0.8321. Writing the expression for velocity in the two coor- 
dinate systems, 

v = ve, = Re, + Roee [GI 
so that to find R and 0 we take the inner product of v with e ,  and ee, thus 

v e ,  = R = vet e ,  = v cos 9 = 2(0.8321) = 1.664 inlsec 

v ee = R% = ve, ee = - v sin 9 = -2(0.5547) = - 1.109 inlsec [dl 

with the conclusion 

1.109 1.109 
- - - = -0.1025 radlsec ~ = 1 . 6 6 4 i n / s e c  % = - -  

R 10.82 [el 
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To find the acceleration, we make use of the fact that the speed is constant, so that the 
acceleration has the form 

with the radius of curvature being p = 6 in. Taking the inner product of a and e8 we obtain 

Solving for 9 we obtain 

Newtonian mechanics is based upon the three laws of Newton, and the counterpart 
of Newton's second law for rotational motion. It is valid for reference systems at rest 
or moving with uniform velocity with respect to each other. Such reference systems 
are known as inertial. The best approximation to an inertial reference frame is to 
consider the distant stars fixed. A less accurate approximation is to consider the sun 
fixed. In the vicinity of the earth, if the velocities involved are much less than the 
escape ~e loc i t y ,~  or if the distances traversed are much smaller than the radius of the 
earth, and if the duration of the motion is not long, the earth is used as an inertial 
reference frame. 

Isaac Newton developed his three laws while he was working on the motion of 
rigid bodies. While the laws govern the motion of the center of mass of a body, they 
do not account for the rotational motion. The rotational equations relate the moments 
applied to a body to the change in angular momentum; these were developed by Euler 
around 1750. (Newton published his three laws in his Principia in 1687, but he had 
developed them about 20 years before, while he was at Cambridge University. ) Here, 
we will consider Newton's equations within the context of particles. To this end, we 
first describe what we mean by a particle. 

A particle is defined as a body with no physical dimensions, implying that the 
entire mass of the particle is concentrated at one point. This, of course, is an ideal- 
ization and it is a valid assumption only when the physical dimensions of the body 
are small compared to its weight. Neglecting the physical dimensions implies that 
the rotational motion of the body is ignored. 

Consider a particle of mass m and let F(t) denote the sum of all forces acting 
on the particle. Define the linear momentum of the particle by p(t) = mv(r). The 

I 3The escape velocity of a spacecraft is the speed that the spacecraft must attain in order to escape from the 
gravitational attraction of the celestial body it is orbiting and to assume a parabolic orbit. 



physical explanation of linear momentum is the tendency of the body to continue to 
translate. The mass of the body is its resistance to translation. Newton's laws can be 
stated as follows. 

First law: If no forces act on a particle, the particle retains its linear momen- 
tum. If the particle is at rest it remains at rest, and if it is moving, it moves with 
constant linear momentum. A particle of constant mass moves along a straight line 
with constant velocity. In other words, F = 0 + v(t) = constant. 

Second law: The rate of change of the linear momentum of a particle is equal 
to the sum of all forces acting on it. 

For a particle whose mass remains constant, the above relation reduces to 

Newton's first law is a special case of his second law. Fig. 1.17 illustrates this 
law. We will treat variable mass systems in Chapter 3. 

Third law: When two particles exert forces upon each other, these forces are 
equal in magnitude and opposite in direction, and they lie along the line joining the 
two particles. 

Denoting by Fij the force exerted on particle i by particle j, we arrive at the 
conclusion that F i j  = - F j i .  Consider, for example, Fig. 1.18, a dog pulling a cart. 
The free-body diagrams of the dog and cart are given in Fig. 1.19. The friction 
between the dog's legs and the ground provides the forward thrust. The dog and 
cart exert forces on each other that are equal in magnitude and opposite in direc- 
tion. 

Figun 1.1 8 Figure 1.19 



A very important application of Newton's third law is in celestial mechanics. 
The forces that two bodies exert on each other, as shown in Fig. 1.20, are governed 
by Newton's law of gravitation as 

in which G is the universal constant of gravitation, and r is the distance between 
the particles. The value of G is G = 6.673(10-11) m3/kg* s2 in SI units, and G = 

3.439(10d8) ft4/lb sec4 in U.S. Customary units. Because G is such a small quantity, 
for any two small bodies the gravitational attraction is extremely small. The gravi- 
tational force becomes significant when at least one of the bodies involved is very 
large, such as in an analysis of motion in the vicinity of a celestial body. Equation 
[1.4.3] can be expressed in vector form as 

where r is the position vector between the centers of mass of the two bodies. For 
motion near the earth, using the values of mass of the earth as me = 5.976(1024) kg 
and mean radius as re = 6,378 krn, we assume that the distance of the body from the 
surface of the earth is negligible compared to the radius. Defining the gravitational 
constant as g = ~ m , l r ? ,  we obtain the force of gravity as F = mzg, where the mean 
value for the gravitational constant is 

Using the above equation to calculate the gravitational constant g is not accu- 
rate. Equation [1.4.5] is based on treating the earth as a particle (or as a rigid uniform 
sphere), and it ignores centrifugal effects due to the rotation of the earth. Further- 
more, gravitational effects due to the sun and moon also affect the value of g. The 
radius of the earth is not constant? and its density is not uniform, resulting in dif- 
ferent values of g at different points on the earth. For dynamics problems that do 
not require a substantial amount of precision, average values of g = 9.81 (or 9.807) 
m/s2 or g = 32.2 (or 32.17) ft/sec2 are used at sea level. 

I 4The actual shape of the earth is an oblate spheroid. The earth looks more like an apple, with the radius larger 
around the equator, smaller at the poles, and with the poles slightly pressed in. 



A more accurate approximation is the 1980 International Gravity Formula. It 
assumes that the earth is a rigid ellipsoid and takes into consideration the rotation of 
the earth. The approximation for g is given as a function of the latitude as 

where A = 90 - Qj is the latitude angle, with 4 being the azimuthal angle defined 
when we considered spherical coordinates in Fig. 1.12. Even this approximation is 
not exactly accurate, because it fails to take into consideration both the dip in the 
earth's shape at the poles and the nonrigidity of the earth. At a latitude of 45" and at 
sea level, the commonly used value of g to 5-digit accuracy is g = 9.8066 m/s2 or 
32.174 ft/sec2. 

We introduced above the concept of a force without rigorously defining what it 
is. It turns out that we know of the existence of forces and we know their effects, 
but we cannot rigorously define what a force is. Here is a commonly used defini- 
tion: 

IA force is the effect of one body on another.1 

We also note that no method exists to directly measure a force. We have de- 
veloped theories on how forces affect systems and have validated those theories by 
measuring the effects of the forces in the form of deformations or accelerations. In 
essence, in dynamics we use cause and effect relationships. For example, people 
weighing themselves on a mechanical bathroom scale read an output of the spring 
deflection caused by their weight, multiplied by the spring constant. 

We can categorize the forces acting on bodies into two general types: (1) Con- 
tact forces, such as friction, impact, spring, dashpot, and so forth. These forces are 
applied to a point or an area on the body. (2) Field forces, such as gravitational and 
electromagnetic. These forces are applied to the body uniformly. 

A special class of force that is of importance in dynamics is friction. Friction 
forces are developed when a body in contact with another moving or fixed body 
has a tendency to slide (slip) over that other body. The contact force between the 
two bodies is the normal force, hence a reaction force. The amount of slippage de- 
pends on the material properties and surface characteristics (rough, smooth, etc.) 
of the contacting bodies. The study of friction is a very complex subject, and an 
accurate representation of friction forces is difficult. Often, we use the model known 
as dry friction or Coulomb friction to describe friction. This model approximates 
the friction force as a coefficient of friction multiplied by the normal force. The 
coefficient of friction, denoted by p, is an approximate quantity whose value de- 
pends on the material properties of the contacting bodies, the relative speed of 
the contacting bodies, and to a lesser degree, the temperature. Many engineering 
handbooks have tables of the coefficient of friction for a variety of materials and 
surfaces. 

Another factor that affects the value of the coefficient of friction is whether the 
point of contact is moving or not. If there is slip between the point of contact and the 



surface, one uses the coefficient of kinetic friction. Mathematically, 

where Ff is the friction force, N is the normal force, and pk is the coefficient of 
kinetic friction. If there is no slip between the contacting bodies the friction force 
is a quantity less than or equal to the static coefficient of friction multiplied by the 
normal force, and it can be expressed as 

in which p, is the static coefficient of friction. In general, pk 5 ps.  (When no other 
information is given, one assumes pk = ps.) Sliding begins when the friction force 
reaches psN, and after that point pk is used to describe the amount of friction. 

The friction force acting on a body always opposes the impending motion. For 
moving bodies the friction force opposes the velocity of the contacting point relative 
to the point of contact. Fig. 1.21 illustrates this concept. The friction force can be 
represented in vector form as 

For rectilinear motion one can write 

in which 

The friction force is a nonlinear function. When solving problems involving 
friction one must be careful in determining the direction the friction force should be 
acting and whether there is slipping or not. In many cases the direction of the friction 
force may not be obvious. To determine whether there is slipping, one can begin by 
assuming that there is slipping (or that there is no slipping) and then check the va- 
lidity of this assumption. For example, if one assumes no slipping, one can calculate 



the magnitude of the friction force and compare it with the maximum magnitude the 
friction force can attain. 

When solving a dynamics problem one should: 

1. Isolate the bodies involved. 

2. Select a coordinate system and positive directions, and draw free-body dia- 
grams. 

3. Write the force balances. 

4. Use the kinematics of the problem to eliminate redundant variables. 

If the objective is an instantaneous analysis, the accelerations and reaction forces 
are calculated. If one desires to solve for the response, the kinematics is used fur- 
ther to eliminate the reaction forces. The resulting equation(s) are differential equa- 
tions in terms of the motion variables only. Such equations are called equations 
of motion. 

When considering the response, one first needs to decide whether to obtain a 
qualitative or a quantitative solution of the equations of motion. A quantitative solu- 
tion implies actual solution of the differential equations of motion and it depends on 
the nature of the differential equation of motion as well as the form of the forcing F. 
The tremendous evolution in the field of differential equations in the past few cen- 
turies has produced several methods of solution. Several approximate methods have 
also been developed that can be implemented on digital computers. 

A qualitative solution gives information about the nature of the response, or it 
gives the response at specific points in time and space, without having to solve for 
the response explicitly. Such qualitative analysis includes 

1. Impulse-momentum relationships 

2. Work-energy relationships 

3. Other motion integrals 

4. Equilibrium and stability 

We will discuss these approaches in the remaining sections of this chapter. 

A collar of mass m slides in a circular track of radius R, as shown in Fig. 1.22. The coefficient I Example 
of friction between the collar and the track is p. The collar is given an initial velocity vo. Find 1 -8 
the distance traveled by the collar when it comes to a rest. 

SoluHon 

We can use either normal-tangential or cylindrical coordinates to solve this problem. The 
free-body diagram of the collar is given in Fig. 1.23. Summing forces perpendicular to the 
plane of the motion yields 

where N 1  is the component of the normal force perpendicular to the plane of the motion. 
Summing forces in the normal and tangential directions, we obtain 



Figure 1.22 Figure 1.23 

dv  
Ft = ma, = m- = - p N  

dt  [el 

where N2 is the component in the normal direction and N  is the total normal force 

Introducing Eq. [dl into Eq. [c] and eliminating the mass term, we obtain 

which represents the equation of motion. It can be solved by moving the d t  term to the right 
and the radical to the left. The problem, however, asks us to find the distance traveled, so that 
we seek to convert Eq. [el to one in terms of the displacement, as 

Equation [g] can be integrated from the initial velocity vo to the final velocity 0 to yield 



which can be solved for the distance traveled by the collar as 

The distance traveled is inversely proportional to the coefficient of friction. 

Ihe  mass-spring system shown in Fig. 1.24 consists of a block of mass m attached to a wall I ExampIe 
with a spring of constant k. The coefficient of friction between the block and the surface it 1.9 
slides on is p. A force F(t) acts on the block. Find the equation of motion. 

Solution 
We draw the free-body diagrams in Figs. 1.25 and 1.26. Summing forces in the vertical di- 
rection yields 

N = mg [a1 

To find the friction force we multiply the normal force with the friction coefficient. To 
find the direction of the friction force, we note that the block moves back and forth, so that 
the friction force is in a different direction depending on the velocity of the block. We have 
that 

whenx>O, Ff = -pN = - Pmg [bl 

whenx<O,  Ff = pN = pmg [el 
so that the equation of motion can be written considering the two regimes as 

when x > 0, mx + kx  = F - pmg [dl 
when x < 0, mx + kx  = F + pmg [el 

where we note that both equations of motion are linear. The two equations of motion [dl and 
[el can be combined into a single nonlinear equation by 

mx + kx  = F - pmg sign(x) [fl 

In the beginning of this chapter we  studied coordinate systems commonly used in 
dynamics. Three physical coordinates were required to specify the position of a 

P 
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particle. In the previous section we studied Newton's second law, which related the 
resultant acceleration of a particle to the applied force. Equation [1.4.2] is a vector 
relationship, and it can be separated into three scalar components. 

In many circumstances the motion of a particle is constrained to move in a sub- 
set of the three-dimensional configuration space. Examples of this include a vehicle 
moving along a track or on a fixed surface. In these cases, it is not necessary to use 
all three coordinates associated with a reference frame to describe the motion; de- 
pending on the constraints, one or two coordinates are sufficient. For example, if the 
particle shown in Fig. 1.27 is constrained to move along a surface whose mathemat- 
ical description is 

f (x, y, z t )  = 0 [1.5.11 

then two coordinates are sufficient to describe the motion. Selecting them as x and y, 
the z coordinate can be ascertained by solving Eq. [1.5.1]. A constraint of the form 
above is known as a configuration constraint. A more general form of a constraint 
is when the constraint is expressed in the form of differentials, such as 

a,dx+a,dy+a,dz+a, - ,d t  = 0 11 -5.21 

or, dividing Eq. [1.5.2] by dt, 

in which the coefficients ao, a,, a,, and a, are functions of x, y, and z. We will see 
a more complete analysis of constraints in Chapter 4. 

A constraint equation is a geometric or kinematic representation of the restric- 
tions on the motion of a body. What causes the body to execute such restricted mo- 
tion is the constraint force associated with the constraint. When the constraint can 
be represented as a surface, as in Eq. [1.5.1], the associated constraint force is al- 
ways normal to the surface. While we will prove this formally in Chapter 4, we can 
explain it physically here by noting that the particle velocity is always tangent to 
the surface. Hence, the particle cannot have a motion normal to the surface. This is 
caused by the constraint force. 



We define by degree of freedom the minimum number of independent coordi- 
nates necessary to describe the configuration of a system. Each constraint applied to 
a system reduces the number of degrees of freedom by one. For example, the orienta- 
tion of a vehicle moving up a spiral in Example l .5 can be described using cylindrical 
coordinates. The radius is a function of the angle traversed, which constitutes one 
constraint. The rise of the spiral is also described in terms of the angle, which con- 
stitutes another constraint. Hence, only one of the coordinates R, 8, or z is sufficient 
to describe the motion. The number of degrees of freedom can be calculated using 
the relationship 

No. of degrees of freedom = No. of coordinates - No. of constraints [I 3.41 

Newton's second law for a particle yields three scalar equations. The number 
of equations of motion is determined by the number of constraints. If one (or two) 
constraints act on a particle there will be two (or one) equations of motion and the 
remaining equations will represent reactions. The reaction equations can usually be 
identified easily. We will see a more complete analysis of constraints in Chapter 4. 

The system shown in Fig. 1.28 consists of a vehicle undergoing rectilinear motion. A pendu- 1 E ~ a n r p k  
lum is attached to the vehicle. Find the equations of motion. 1 .I 0 

Solution 

This is a two degree of freedom problem. If unrestricted, the vehicle has one degree of free- 
dom and the mass has three. The wire restricts the motion of the pendulum. Denoting the 
displacements of the pendulum in the horizontal and vertical directions by xp and yp, we can 
express them as 

x p = x + L s i n f 3  y p = - L c o s e  [a] 

which constitutes two constraint equations. Hence, the combined system has two degrees of 
freedom. 

The free-body diagrams of the vehicle and pendulum are given in Fig. 1.29. For the 
vehicle, summing forces along the horizontal we obtain 

M i  = TsinO + F Cbl 

For the pendulum, we have the force balances in the horizontal and vertical directions as 

mip  = -TsinO or m ( i + ~ d c o s e - - ~ e ~ s i n e )  = -Tsine [a] 

mjip = T cos - mg or m ( ~ d  sin 8 + LO' cos e) = T cos - mg [dl 



Eqs. [a], [c], and [dl are three equations that contain the constraint force (in this case the 
tension in the pendulum) explicitly. We can eliminate T from the above equations and obtain 
two equations of motion, the same number of equations as the degrees of freedom. This can 
be accomplished in a number of ways. One way is as follows: First, we introduce Eq. [c] into 
Eq [b], which yields 

Then, we multiply Eq. [c] by cos0 and Eq. [dl by sin 0 and add the resulting expressions. 
Doing so yields 

which can be put into a more familiar form by multiplying it with L, so that 

m ~ ' 8  + m ~ i  cos 0 + m g ~  sin 0 = O 191 

Equations [el and [g] are the two equations of motion in terms of the two independent 
variables x and 0. 

1 1 -6 IMPULSE AND MOMENTUM 

Newton's second law states that the rate of change of the linear momentum of a 
particle is equal to the applied force, or 

If we multiply the above equation by d t  and integrate from an initial time tl to final 
time t2, we obtain 

Eq. [I .6.2] is the impulse-momentum theorem for a particle. The term on the left 
is called the impulse, which is equal to the change in linear m~men tum.~  The unit of 
linear momentum is mass times velocity, MLIT. In the U.S. system one commonly 
uses lb sec and in the SI system, N s. 

When there is more than one particle, the linear momentum of the entire system 
is obtained by adding up the linear momentum of each particle that comprises the 
system. For example, for a system of two particles of masses ml and mz, the linear 
momentum is obtained by simply adding the linear momenta of each particle, p = 
mlvl + mzv2. 

An interesting special case is when F(t) = 0, or over the interval ( t l ,  t2)  the 
integral of F(t) is zero. It follows that in such cases the initial and final values of 

I SNote that this definition is different than the common use of the word. 



1.6 IMPULSE AND MOMENTUM 

the linear momentum are the same, p(t2) = p(tl),  which denotes the principle of 
conservation of linear momentum. The principle states that if the net effect of forces 
acting on a particle is zero over a time period, then the linear momentum of the 
particle has the same values at the beginning and end of the interval. 

The principle of conservation of linear momentum is generally of more use when 
more than one particle is involved. Note that linear momentum of a system can be 
conserved in a certain direction of the motion only and not be conserved in the other 
directions. Defining a unit vector e along the direction the linear momentum is con- 
served and taking the dot product of Eq. [1.6.2] with e, we obtain 

An interesting application of the impulse-momentum theorem is when the dura- 
tion of the applied force is very short. A large force applied through a very short time 
period is defined as an impulsive force. Denoting by E the duration of the impulse, 
and taking the limit as s approaches to zero, we have 

where F is the impulsive force and has the dimension of force X time. Theoretically, 
the amplitude of the impulsive force approaches infinity. To mathematically describe 
an impulsive force we make use of the Dirac delta function. 

Consider Fig. 1.30. The Dirac delta function at point t = a is denoted by &(t - - a)  
and is defined as6 

8(t  - a)  = 0 when t  # a - 

Figu- 1 3 0  Dirac delta function 

I 6We are using a different notation than the traditional delta to differentiate between the Dirac delta, the Kronecker 
delta, and the variation functions. 



The value of &(t - a)  at t  = a approaches infinity. Therefore, this function is defined 
not by what %s amplitude is but by what its integral is. When a function f (t) gets 
multiplied by the Dirac delta function and integrated, the result is 

r m  r m  r 

] f (t)& - a)  dt = ] f (a)& - a)  dt = f (a)  j S(t - a)  dt = f (a)  
-m -m -m 

[I .6.6] 

so that multiplying f ( t )  by the Dirac delta function at point a and integrating yields 
the value off  ( t )  at t  = a. This is similar to taking a snapshot of the function f ( t )  at 
t  = a. 

The impulsive force in Eq. [1.6.4] can be expressed as a continuous (in time) 
function as 

~ ( t )  = F& - t l )  [I .6.7] 

The Dirac delta function is not a discontinuous function. Rather, it can be shown 
to arise from a limiting process of a continuous function, and it obeys the laws of dif- 
ferentiation. This implies that the derivative of B(t - - a)  exists. Denoting the deriva- 
tive of the Dirac delta function by $(t - a), we multiply it with the function f ( t )  and 
integrate by parts, which yields the relation 

The interested reader is referred to the text by Greenberg for more details. 
The effect of an impulsive force is a sudden change in velocity, with no apparent 

change in position. To demonstrate this, consider motion in one direction and write 
the equation of motion in the general form 

mx(t) + g(x(t), x(t)) = F(t) [ 1.6.91 

in which g(x(t), x(t)) is the sum of all forces acting on the particle that are a function 
of x(t) and x(t). Examples of such forces include gravity, springs, and dashpots. 
When the force F(t) is impulsive and it is applied at t  = 0, multiplying Eq. [1.6.9] 
by dt,  integrating from t  = 0 to t  = E ,  and taking the limit as E + 0, we obtain 

1-8 r E 

lim {mx(t) + g(x(t), ~ ( t ) ) )  dt = lim j F(t) dt J [1.6.10] 
"-0 0 "-0 0 

The first term on the left side becomes 

Using Eq. [1.6.4], the right side of Eq. [l.6.10] becomes equal to $(o). The second 
term on the left side of Eq. [1.6.10] vanishes when integrated over the time period 
E.  This is because finite time is required for a displacement to develop. Recall that 
g(x(t), x(t)) is a force of finite magnitude. Hence, the limit of its integral over the 
duration of the impulse is zero. It follows that immediately after the impulse we have 
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z 

Figure 1 -3 1 

In real situations, one does not have actual impulsive forces, but forces of large 
magnitude applied over very short periods of time. Hence, the consideration of a 
force as impulsive is an approximation. The validity of this approximation should 
always be checked, especially when friction forces are involved. 

Let us next consider the motion of constrained bodies subjected to impulsive 
forces. As an example, consider the system in Fig. 1.28 and the tension in the pendu- 
lum. When the force F applied to the mass is impulsive, the tension T also becomes 
impulsive, while the weight of the pendulum does not. If a body or series of bod- 
ies is constrained in some fashion, the impulsive force applied to one body will be 
transferred to the other interconnected bodies by means of impulsive reaction forces. 

Next, we define angular momentum. Consider Fig. 1.3 1 and denote the position 
of the particle as measured from point 0 by r and its absolute velocity by v .  The 
angular momentum about point 0 (denoted by Ho), which is also referred to as the 
moment of the linear momentum vector about point 0, is defined as 

where r is the vector connecting the reference point 0 to the particle. Angular mo- 
mentum is a vector perpendicular to both the linear momentum vector and the posi- 
tion vector from the reference point 0 to the particle. Angular momentum about 0 
can be physically explained as the tendency of a particle to rotate about point 0. If 
r and p are in the same direction, there is no tendency to rotate about 0. 

The dimension of angular momentum is M L ~ I T  or FLT. In the SI system one 
usually uses N-rn-s or kg-m2/s, and in the U.S. system, lb-ft-sec. 

While linear momentum is an absolute quantity, one calculates angular momen- 
tum about a specific point, an indication that it is a relative quantity. The choice 
of this point is important when solving dynamics problems. A basic guideline is to 
choose a point that is fixed, or to select 0 such that the angular momentum term has 
a physical significance or is simplified. 

Now, differentiate Eq. [1.6.13], which yields 

dHo - d ( r  x mv) - -  
dt  dt  



The quantity on the right side of this equation is recognized as the moment of the 
resultant of the external forces about point 0, Mo = r X F, so that 

The rate of change of angular momentum of a particle about a point is equal to the 
applied moment about that point. The above equation is of considerably more use 
when dealing with systems of particles. 

There is debate among scientists on whether Eq. [1.6.15] is a derived relation- 
ship or a stated principle, like Newton's second law. The argument in support of 
the stated principle viewpoint is based on the idea that shear forces are neglected in 
the derivation, and that every physical body has a nonzero volume. What makes the 
derivation above possible is the assumption that a particle has no physical dimen- 
sions. 

Similar to the linear momentum case, we can integrate Eq. [1.6.15] over time, 
yielding the angular impulse-momentum theorem as 

The term on the left is defined as the angular impulse. As with linear momentum, 
if the integral over time of the moment about a point is zero, angular momentum 
is conserved about that point. Also, because Eq. [1.6.16] is a vector relationship, 
angular momentum may be conserved in a particular direction while not conserved 
in another direction. 

If the applied moment is impulsive, that is, its duration is infinitesimally short, 
the angular impulse-momentum relationship for zero initial conditions becomes 

An impulsive angular moment can be generated by a very large torque applied 
over a very small interval, or by an impulsive force applied through a moment 
arm. For particle mechanics problems, the commonly used coordinates for angular 
momentum problems are cylindrical coordinates. The central force problem, as 
demonstrated in Example 1.12, is a classic case. Remember that when we discussed 
cylindrical coordinates, we emphasized the importance of attentively selecting the 
origin of the coordinate frame. The same argument is valid when selecting the point 
about which to calculate the angular momentum. 

Example I One of the earliest industrial applications of the principle of conservation of angular momen- 
1.1 1 tum is the centrifugal governor. James Watt used the centrifugal governor to control flow in 

steam engines. Fig. 1.32 shows a typical governor. As the speed of the governor changes, the 
arms of the governor move. Because the only external force acting on the governor IS along 
the shaft, the angular momentum about a point along the axis of the shaft is conserved. 

The links are of length L = 0.2 m and assumed to be massless. The balls are 0.6 kg 
each. The governor is originally rotating at 50 rpm and the arms make an angle of 8 = 30" 
with the vertical. What is the value of 0 when the governor's speed becomes 75 rpm? 
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Figure 1.32 

Solution 
Consider point 0 as the moment center. The angular momentum of the balls about 0 is along 
the vertical to the fixed plane of rotation, so it can be expressed in scalar form. The magnitude 
of the angular momentum is 

where w is the angular velocity and r is the horizontal distance from the shaft to the balls, 
r = L sin 8. We can then write the conservation of momentum relationship as 

2 [w sin elt=,, = [w sin2 8],=,, 

which can be solved for 8(t2) as 

Substituting the given values we obtain 

so that 8(t2) = sin-'( J0.1667) = 24.10". Notice that a small change in the angle 8 leads 
to a substantial change in the angular velocity. The same phenomenon occurs when figure 
skaters bring their arms inward to increase their rotational speed. 

CENTRAL FORCE FIELD PROBLEMS A very interesting example of the conser- 1 Exampla 
vation of angular momentum is in central force field problems. Consider a particle moving 1.12 
along a path, as shown in Fig. 1.33. It is acted upon by a force F that is always directed toward 
a point 0 (hence, the name central force). Selecting point 0 as the origin of the coordinate 
frame, and using cylindrical coordinates, we express the applied force as 

F = Fe, [a] 

The moment that force F causes about 0 is 

Mo = r x F = re, x Fe, = 0 [bl 



which is an obvious result: as the line of force passes through point 0 it does not cause a mo- 
ment about 0. It follows from Eq. [1.16.16] that the angular momentum about 0 is conserved, 
and Ho = constant. 

Because the angular momentum is constant in both magnitude and direction, the particle 
can only move in a plane perpendicular to the angular momentum. We select the z. direction 
as the direction of the angular momentum. Using Eq. [1.6.13], we obtain 

Ho = r X mv = re, X m[Le, + reeel = m?ek = constant 

We can express the angular momentum per unit mass, h, as 

where the value of h depends on the initial conditions. 
Equation [dl can also be derived by directly integrating Newton's second law expressed 

in polar coordinates. Indeed, writing Newton's second law in the radial and transverse com- 
ponents as 

and considering the derivative of r2e, 

We conclude that r% is constant when the force always lies along the line connecting 
the particle and point 0. A typical example of central force problems is in orbital mechanics, 
as the gravitational attraction between two bodies is along the line joining the centers of mass 
of the two hodies. In the absence of other external disturbances, the motion of one body with 
respect to t:he other (that is, the orbit) lies on a fixed plane. 
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In the previous section, we integrated Newton's second law over time to obtain mo- 
mentum relationships. Here, we integrate it over the spatial variable. To this end, we 
consider a particle whose position is described by the vector r and which is acted 
upon by a force F, as shown in Fig. 1.34. We define by dW the incremental work 
that the force does on the particle as the particle moves by an incremental distance 
d r  as 

dW = F * d r  = IFJldrlcoscC, = m a - d r  [1.7.1] 

where is the angle between F and d r .  Recalling that v = drldt and a = dvldt,  
and multiplying and dividing the right side of the above equation by dt, we obtain 

d v  d r  d v 1 dW = F - d r  = m - 0 - d t  = m- wvdt = m v - d v  = - m d ( v * v )  [1.7.2] 
dt  d t  dt  2 

We next define by T the kinetic energy of the particle as 

where u = f i  is the speed. The incremental change in kinetic energy is dT = 

md(v v)l2 = mv * d v .  The kinetic energy is an absolute quantity and, hence, dT is 
a perfect differential. We then write Eq. [1.7.2] as 

dW = dT [ 1.7.41 

The work done on the system by the force F is denoted by W1-2 ,  and it is 
obtained by integrating the motion from point 1 to point 2, hence 

which gives the work-energy theorem: 

T1 + W I - . ~  = T2 



We distinguish between cases when dW is a perfect differential and when it is 
not. When d W is not a perfect differential, we cannot express it as the differential of 
a function, but merely as an infinitesimal element. The necessary condition for d W 
to be a perfect differential is that the force depends on the position vector alone, F = 
F(r) (although there are cases when F = F(r) and d W is not a perfect differential). 

One can take advantage of cases when some of the forces acting on a body lead 
to perfect differentials. Such forces are known as conservative forces. Examples 
of conservative forces include spring forces, gravitational forces, and certain elec- 
tromagnetic forces. The incremental work can be expressed as the derivative of a 
potential function as 

dW = F(r) * d r  = -dV(r) [I -7.71 

where the potential function V is an explicit function of r only. Because d W is a per- 
fect differential, its integral is independent of the path followed and it is dependent 
only on the end points of the integration. Over a closed path the value of the integral 
is zero, or 

Moreover, Eq. [1.7.7] can be evaluated by integrating from a reference position r~ 
(or datum) to the location of the particle to yield 

[ 1.7.91 

The potential function V(r) is also known as the potential energy. Physically, 
potential energy is explained as the potential of a body to do work, or the stored 
energy. 

Note that while kinetic energy is an absolute quantity, potential energy is rela- 
tive: its value depends on the reference point about which it is measured. Because 
the interest is in increments of potential energy, selection of the reference point does 
not make any difference. One selects the datum to either simplify computations or 
to give the problem at hand a better physical interpretation. 

The dimension of work, kinetic energy, and potential energy is force times dis- 
tance, FL, or ML'/T'. In the SI system one commonly uses the units N-m. A joule 
(J) is defined as a unit of energy as 1 J = 1 N m. In the U.S. Customary system 
the commonly used unit is ft lb. Do not confuse the unit of energy with the unit of 
a moment, which has the same dimension as energy. In the U.S. system, the unit of 
a moment is usually denoted by lb- ft. Also, joule is never used as a unit of moment 
in the SI system. 

We now consider three types of forces that lead to potential energy. 

The gravitational attraction force between two bodies was given in Eq. [I .4.3] as 
F = ~ m ~ m ~ / $ ,  where G is the universal gravitational constant, ml and m;! are the 
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masses of the two bodies, and r is the distance between the two bodies. Consider ml 
to be a celestial body. The incremental work d W done by ml on m2 can be expressed 
as a perfect differential, so that the potential energy can be written as 

The reference value the potential energy is measured from is commonly chosen as 
the distant stars, so that r~ = m, which leads to the expression for the gravitational 
potential energy: 

Around the surface of the earth, we can calculate the expression for gravitational 
potential energy in a number of ways. One way is to write the gravitational force as 
- m g ,  as derived in Section 1.4. Denoting by z the height of the particle from the 
surface of the earth, we obtain for the potential energy 

r z  

Another way is to substitute for ml the mass of the earth me and express r as 
r = re + z, where re is the mean radius of the earth and z is the distance of the particle 
to the surface of the earth (altitude). Note that r is being measured from the center 
of the earth, as shown in Fig. 1.35. Equation [1.7.11] can then be written as 

which, by considering that near the surface of the earth z is much smaller than re, 
can be approximated as 

There are two terms in the above expression; one is a constant, and the other 
is a function of z. The constant term, Gmem21re, can be eliminated, and doing so 

Figure 1.35 



moves the datum to the surface of the earth. Considering the definition of the gravita- 
tional constant from Sec. 1.4, g = ~ m , l r $ ,  the potential energy expression becomes 
Eq. [1.7.12]. 

We will be concerned here with two types of discrete springs, axial and torsional. The 
subject of continuous springs, which exert their forces over an area, will be covered 
in Chapter 11. Consider an axial spring that is compressed (or stretched) by a distance 
x, as shown in Fig. 1.36, and the associated free-body diagram. The simplest model 
for an axial spring is a linear axial spring.' Such a spring exerts a resisting force 
approximated as linearly proportional to its deflection, F = - kx ,  where k is the 
spring constant. The dimension of the spring constant is forceldistance. It is easy to 
see that the spring force is conservative, and the potential energy becomes 

When dealing with spring deflections, the datum point for the potential energy 
has to be taken as the undeformed position of the spring. The potential energy of a 
spring is the same when the spring is stretched or compressed by the same amount. 

Torsional springs resist rotational motion and hence exert a moment on the body 
they act on, as Fig. 1.37 shows. When the spring deforms by an angle 8, the moment 
exerted by the spring has the form 

M(8) = - k ~ 8  [I .7.16] 

Undeformed 
position 

Figure 1.36 Axial spring Figure 1.37 Torsional spring 

'We prefer the terminology axial so as to not cause confusion between an axial spring and a linearly varying 
spring force. 



where kT is the torsional spring constant, having the dimension of moment = 
force x distance. The spatial variable is the angle 8, and the potential energy can be 
written as 

As in the axial spring case, the datum point for a torsional spring must be selected 
as the undeformed position. 

Equation [1.7.16] and F = - kx, representing the resistive moments and forces 
of torsional and axial springs, are linear approximations to the actual spring force 
and moment. The linearity assumptions are valid when the spring deflections are 
within a certain range. This range, referred to as the linear range, is a property of 
the material the spring is made of, the size of the spring, and the range of operation. 
The range of operation is a function of the applied forces. 

More accurate models of springs have nonlinear expressions that describe the 
resistance of the springs. Two such models are softening and stiffening springs. 
Figure 1.38 shows the spring force as a function of the spring deflection. A stiff- 
ening spring is one whose resistive force increases more than that of a linear spring 
as the applied load increases. A common model of a stiffening axial spring is 

with kl a positive constant. By contrast, the resistive force of a softening spring 
decreases as the spring deflection increases. The spring force here is commonly ex- 
pressed as 

in which k2 is positive. This model is accurate only until the resistive force F ( x )  
becomes zero at a point x # 0; after that, either the spring provides no resistance or 
it breaks. 

Softening 
spring 

Figure 1.38 



This form of potential energy is associated with the elasticity of a deformable body. 
We will study this subject in more detail in Chapter 11. For now, we write the strain 
energy for a simple case and draw analogies with discrete springs. Consider the axial 
deformation of an element, such as of the rod as shown in Fig. 1.39. Using standard 
assumptions from linear elasticity theory, the only component of strain is in the axial 
direction. 

The axial strain at any point is defined as the change of length per unit length. 
The strain in the x direction is denoted by ex,. For small deformations, it can be 
approximated as E,, = du(x)ldx, where u(x) is the axial elongation of the rod at 
point x.  The associated axial stress is denoted by a,, and, in the linear range, it is 
related to the strain by Hooke's law, a,, = EE,,, with E denoting the modulus of 
elasticity (Young's modulus). The modulus of elasticity is a measure of the stiffness 
of the material used. It is analogous to the spring constant k. 

We next consider the potential energy associated with the deformation, called 
the strain energy. Consider a differential element of the rod shown in Fig. 1.40. 
In the linear range, the strain energy has the form 

The factor of one half comes from the fact that the stress is integrated over the strain 
to get the strain energy per unit volume. This is entirely analogous to integrating the 
spring force over the displacement for a discrete spring. 

We next relate conservative forces and potential energy. Because Eq. [1.7.8] involves 
a line integral, we can invoke Stokes's t h e ~ r e m , ~  

V X F = O  [1.7.21] 

where V is the del operator. This term is zero only if F can be expressed as the 
gradient of a function. It is easy to show that this function is the negative of the 
potential energy. We then have 

F(r) = -VV(r) c1.7.221 

Figure 1.39 Figure 1.40 

8f A. dr = I,[v x A) ds, where A is any vector, f denotes a line integral, and I, denotes a surface integral. 
Stokes's theorem converts a line integral into a surface integral. 



In the Cartesian coordinate system, the del operator has the form 

so that, expressing the force vector as F = Fxi + Fyj + FZk, one relates the compo- 
nents of the force to the potential energy as 

When using cylindrical coordinates the del operator has the form 

and the components of the force are related to the potential energy by 

Now consider that some of the forces acting on a particle are conservative and 
some are not. Forces that are not conservative are referred to as nonconservative. 
Express the force vector as F = F, + F,,, the notation being obvious. It follows that 
the incremental work done by the force also can be divided into two parts; that is, 

dW = dWc + d W , ,  = - d V + d W , ,  [1.7.27] 

where d W,, = F,, d r  is the work done by the nonconservative forces. We obtain 
the total work by integrating the overall work as 

where the work done by the nonconservative forces is 

Substituting Eqs. [1.7.28] and [1.7.29] into Eq. [I .7.6] yields 

T I  + V1 + Wnq-2 = T2 + V2 [I .7.30] 

The total energy of the system is defined as E = T + V .  One writes the energy 
balance as 

El + Wnq-2 = E2 [1.7.31] 

The total energy of a dynamical system under the influence of nonconservative 
forces changes as the system moves. If all the forces acting on the body that do 
work are conservative, Eq. C1.7.311 indicates that its total energy remains the same. 
This is known as the principle of conservation of energy, and it explains the name 
conservative force. This principle can be written as 

El = E2 [t.T.32] 



It is sometimes more convenient to express work as an integral over time. We 
divide and multiply the integrand in the expression for work by dt ,  so that 

in which tl and t2 denote initial and final times, respectively. The integrand on the 
right side of the above equation is defined as powel; and it is denoted by P, 

Power is basically the measure of how fast a force can do work. The dimension 
of power is worldtime. In the SI system, the unit watt (W) is defined to represent 
power as 1 W = 1 Jls = 1 N mls. The U.S. system represents power using either 
ft lblrnin or horsepower (Hp), where 1 Hp = 550 ft lblsec. We have 

Some texts define work as the integral of power over time. The above equation 
can also be viewed as the integral of the expression 

over time. It indicates that the rate of change of the total energy (rate of work done) 
is equal to the power of the nonconservative forces acting on the body. 

A special category of forces comprises the forces that do no work. From 
Eq. [1.7.1], for a nonzero force to not do any work, either d r  = 0, or F is per- 
pendicular to dr .  Included in this category are normal forces, other reaction forces 
perpendicular to the direction of motion (perpendicular to the tangential direction), 
and forces applied to points that have zero velocity. Obviously, if a force is applied 
to a stationary point, there is no work done. A very important force that does no work 
is the friction force in a rigid body rolling without slip. 

Example I Consider the 30 m long incline of 15" shown in Fig. 1.41. Along the incline there are two 
1 -1 3 paths, one a straight line and the other a semicircle. A mass of 0.5 kg is released at the bottom 

with an initial speed of 15 mls, first along the straight path and next along the circular path. 
The coefficients of friction between the mass and the incline are w,  = pk = 0.1. What will 
be the speed of the mass as it reaches the top of the incline following the straight path, and 
then, following the circular path? 

Soldon 
This problem can be solved using the work-energy theorem. From the free-body diagram on 
Fig. 1.42, the forces acting on the mass are gravity, contributing to the potential energy; the 
normal force N, which does no work; and the friction force F, a nonconservative force. From 
the force balance along the incline we obtain 

N = ~ ~ C O S  150 = 0.5(9.807)(0.9660) = 4.736 N [a1 



F i g u n  1.4 1 F i g u n  1.42 

so that the friction force is 

F = pkN = 0.1 mgcos 15" = 0.1(0.5)(9.807)(0.9660) = 0.4736 N [bl 

Note that the friction force is in the direction opposing the motion. We assume that friction 
acts only at the bottom of the paths and that the walls of the path are frictionless. Hence, the 
magnitude of the friction force is the same for both paths, even though its direction is different 
for the two paths. We take as a datum point for the potential energy the bottom of the incline. 
This way, VI = 0. The initial kinetic energy is 

Let us first consider the motion of the mass along the straight path. Assuming that the 
mass reaches the top, the potential energy at the top of the incline is 

VZ = 3Omg sin 15" = 38.07 N m Cdl 

The work done by the nonconservative force can be expressed as 

Using the work-energy theorem, we obtain 

T2 = T1 + VI + W1-2 - VZ = 56.25 + 0 - 14.21 - 38.07 = 3.970 N*m Cfl 

and we calculate the velocity as 

Considering motion along the semicircular path, V2 remains the same, but the nonconser- 
vative work changes, as the path is longer. To reach the top, the path length that is traversed is 
the circumference of a semicircle of radius 15 m, so that the nonconservative work becomes 

Comparing Eqs. [c], [dl, and [h], we conclude that the mass does not reach the top of the 
incline, as the value of kinetic energy at that point would be negative. We then ask how far 
the mass travels along the incline before it comes to a stop. To find this value, it is preferable 
to work with the angle 4, as shown in Fig. 1.43. The mass has traveled a distance of R4,  



with R being the radius of 15 m. The height of the mass is R(l - cos 4) sin 15". It follows that 
the potential energy and nonconservative work become 

Noting that T2 = 0 when the mass comes to a rest, we write the work-energy theorem 
as 

The solution of Eq. Ij] can be obtained numerically, and it can be shown to be 

4 = 2.756 rad = 157.9" I k l  

One can next ask whether the mass, after coming to a rest, slides back or not. To examine 
this issue, we need to perform a force balance along a line tangent to the path at 4 = 157.9". 
Fig. 1.43 shows the configuration. We define the plane of the incline as the xz plane, with 
they direction perpendicular to the incline. The normal force and the magnitude of friction 
force remain the same as before. However, we are now summing forces along the tangential 
direction, that is, the direction of impending motion. We write the gravity force as 

The mass will move if the component of the gravity force along the tangential direction is 
larger than the friction force. From Fig. 1.43 we express the unit vector i in terms of normal- 
tangential coordinates as 

i = - sin qe, - cos @en Iml 

in which + = 180" - 4 = 22. lo. The component of gravity along the path becomes 

F, e, = mg sin 15" sin 22. 1" = 0.4773 N [d 

Comparing Eq. [nl with Eq. @] we conclude that the mass moves back, as the component 
of gravity in the tangential direction is greater than the friction force. 



Consider the system in Fig. 1.28. The pendulum is released from rest from the position 0 = I Example 
d 2 .  Find a relation for the velocity of the base as a function of 0, for F = 0. 1.14 

Solution 
We treat the two masses as one system. The only forces external to the system are gravity and 
the normal force acting on the cart. We conclude that ( 1 )  there are no nonconservative forces 
that do work, so energy is conserved, and (2) there are no external forces in the horizontal 
direction, so the linear momentum in the horizontal direction is conserved. 

Using as datum the horizontal position of the pendulum, we can obtain the total energy 
by considering the initial condition as 

where T 0 = - = 0, as there is no initial motion and V = 0. It follows that the total energy ;i 
is E = 0 '= consiant. We next take an arbitrary position of the pendulum and write the kinetic 
and potential energies 

where v; = u;, + u;?py and 

Substituting Eqs. [b] and [c] into Eq. [a] we obtain for the total energy 

1 1 
E = 0 = - (M + m ) i 2  + - r n ~ ~ 6 ~  + mLk6 cos 0 - mgL cos 0 

2 2 [dl 

We next look at the conservation of linear momentum in the horizontal direction. The 
initial linear momentum is zero. The linear momentum for any value of 0 is 

which can be rewritten as 

( M  + m)x = - m ~ 6  cos 0 

or 

( M + m ) i  0 = -  
mL cos 0 

We eliminate 6 from Eq. [dl by substituting Eq. [g] into Eq. [dl and simplifying, which 
yields 

1 1 ( M  + m)2x2 
- I ( M  + m)x2 + - - mgL cos 0 = 0 

2m cos20 

When cos 8 = 0, the above relation cannot be used. However, from the initial conditions 
and Eq. [f], when cos 8 = 0 then x = 0 as well. Also, note that Eq. [h] is in terms of x 2 .  The 
sign of the velocity of the cart can be determined from Eq. [f]. 



1 1 .8  EQUILIBRIUM AND STABILITY 

Equilibrium is an essential and very useful concept in dynamics. For a system of 
particles or interconnected bodies, static equilibrium is defined as the state when all 
the particles and bodies comprising the system are at rest. Both the velocity v(t) and 
the acceleration a(t) of each body are zero at equilibrium. 

When discussing the equilibrium of a system, two important questions come to 
mind: (1) How does one calculate the equilibrium position? (2) What happens to the 
system if it is displaced from equilibrium? 

To calculate the equilibrium position one can use Newton's second law. Setting 
the acceleration to zero results in the equilibrium relation 

where F is the sum of all the external forces. An alternate procedure that gives more 
of a qualitative insight is to look at the energy. Consider a particle and the case 
when the kinetic energy is only quadratic in terms of the velocity of the pa r t i~ l e .~  
We take the differential form of the work-energy principle and remove from it all 
velocity- and time-dependent terms (including the kinetic energy as well as all 
time-dependent parts of the nonconservative force). From Eq. [1.7.28] we 
have 

dW = (F, + F,,)*dr = -dV + dW,, = 0 [1.8.21 

The right side of this equation is zero because at equilibrium the particle is not mov- 
ing; hence, no work is done on it by the external forces. The equilibrium equation 
then becomes 

When the system is conservative, the equilibrium condition is defined as 

which can be interpreted as the potential energy having a stationary value at equi- 
librium. For a single degree of freedom system, Eq. [1.8.3] can be solved easily, and 
it is the preferred approach for systems consisting of interconnected components. 
In Chapter 4 we will derive the general form of Eq. [1.8.3] for multiple degree of 
freedom systems. 

Now consider the second question: What happens to the particle when it is dis- 
turbed from equilibrium? Three scenarios are possible: 

1. The particle returns to the equilibrium position and stays there. In this case, the 
equilibrium position is called stable, or asymptotically stable. 

I 9The relevance of this requirement will be discussed in Chapter 5. 



2. The particle hovers around equilibrium without staying at one point, but it does 
not return to or get away from the equilibrium position. The equilibrium position is 
referred to as critically stable, merely stable, or neutrally stable. 

3. The particle moves away from the equilibrium point and it never returns there. 
The equilibrium position is called unstable. 

There are several approaches that enable one to examine behavior in the vicinity 
of an equilibrium position. The simplest is to linearize the equations of motion about 
the equilibrium position. A theorem from stability theory states that if the linearized 
equations of motion in the neighborhood of equilibrium reveal signijicant behavior 
(continuous decaying or growing in amplitude), then the general motion (in the large) 
is governed by this significant behavior. 

Consider a particle of mass m, and write the equation of motion as 

At equilibrium, all the velocity and acceleration terms are zero; therefore, the 
equilibrium condition is obtained by 

f (xe? 0) = 0 [ I  .8A] 

where x, denotes the equilibrium position. Depending on the nature of function f ,  
there can be more than one equilibrium position. We now define a local variable 
E = x - x,, and expand each term in the equation of motion about the equilibrium 
position x = x,, x, = 0, x, = 0. The term x(t) simply becomes ~ ( t ) .  We expand 
the right side of Eq. [1.8.5] in a Taylor series and retain the linear terms: 

The first term on the right side of Eq. [1.8.7] is zero by definition of the equilib- 
rium relation in Eq. [1.8.6]. Defining by y l  and y2 the partial derivatives evaluated 
at the equilibrium position, 

and using the local variable E, we can express f (x, x) as 

This results in the linearized equation of motion for small motions (local behavior) 
around equilibrium, 

&(t) + Y&) + yl&(t) = 0 [1.8.10] 

Note that all coefficients in the above equation are constant. Consider a time- 
dependent solution of ~ ( t )  = Ee", where A denotes the time dependency and E is 
the amplitude. Substitution of this into Eq. [1.8.10], yields 



I Unstable 

Because ~ e "  cannot be zero for a nontrivial solution, one must have 

This is known as the characteristic equation, whose roots are 

The behavior in the neighborhood of equilibrium is dictated by the roots of the 
characteristic equation. If the roots A are both real negative or complex with negative 
real parts, ~ ( t )  decays exponentially and the equilibrium position is stable. If any one 
of the roots has a positive real part, then ~ ( t )  grows exponentially. The equilibrium 
position is unstable. If the A roots are purely imaginary, then ~ ( t )  oscillates with 
constant amplitude. The linearized equations in this case do not represent signijicant 
behavior and they are not conclusive. One has to conduct additional analyses to 
determine the nature of the motion. Such analyses include qualitative approaches 
such as energy theorems, the Liapunov method, or quantitative analyses such as 
numerical integration. 

More advanced concepts from stability theory are beyond the scope of this text. 
We will discuss one important stability theorem here, referred to as the potential 
energy theorem. The theorem states that 

for conservative systems, ifthe potential energy has a minimum in the equilibrium 
position, then the equilibrium position is critically stable. Otherwise, it is unstable. 

The theorem is illustrated conceptually in Fig. 1.44. 

Example I Find the equilibrium position for the two links attached to a spring in Fig. 1.45. The spring is 
1.15 not stretched when the links are horizontal. 

Solution 
We have a conservative, single degree of freedom system. The displacement of every compo- 
nent (both links and the spring) can be expressed in terms of the angle 8. Denoting the spring 
deflection by x, we can write 
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Figure 1 -45 

To solve for the equilibrium position by a vector approach, we need to draw a free-body 
diagram for each link and invoke the equilibrium relations. This is quite cumbersome, as we 
need to model and include in our calculations the reaction forces at the joints. It is preferable 
to seek a scalar solution by means of the potential energy function. The free-body diagram of 
the system is shown in Fig. 1.46. There are three external forces that do work acting on the 
system. Two of these are the force of gravity on the rods; we denote them by 

and they act at the midpoints of the beams. The third force is the spring force and it is ex- 
pressed in the form 

F3 = - kxi = - kL(l - cos O)i [dl 

We write the potential energy as 

We obtain the equilibrium position by differentiating the potential energy and setting it 
to zero; thus, 

dV 
0 = - = 4 k ~ ' ( 1  - cos 0) sin 0 - mgL cos 0 

d 0  
If1 

Upon rearranging, this gives 

sin 0 mgL - mg 
-(I -cos0) = - - - 
cos 0 4kL2 4kL 

to solve for 0. Solution of Eq. [g] can be obtained numerically. 

Figure 1.46 



Example I A particle of mass m = 1 is acted upon by an excitation F ( x )  = - x  + x2/4.  Find the equi- 
1.16 librium positions and determine their stability. 

Solution 

This problem is similar to a mass-spring system with a nonlinear spring constant. We can find 
the equilibrium position by setting F ( x )  = 0 ,  with the result 

We have two equilibrium positions. To find the linearized equations, we expand f ( x )  
about equilibrium. From Eq. [1.8.8], y2 = 0 for all positions, as there are no terms in f that 
are functions of x. Differentiating Eq. [a] with respect to x we obtain f ' ( x )  = - 1 + x/2. We 
then evaluate yl for each of the equilibrium positions to yield 

so that the linearized equations of motion about equilibrium become 

For x, = 0, &(t )  + ~ ( t )  = 0 

For x, = 4, &( t )  - ~ ( t )  = 0 

Equation [c] represents a simple sinusoid, so that the linearized equations do not exhibit 
significant behavior. One can further analyze this case using the potential energy theorem. 
The potential energy has a minimum at that point, as from Eqs. [1.7.24] and [1.8.8] the term 
y 1 describes the second derivative of the potential energy. Hence, the equilibrium position 
is critically stable. By contrast, the equilibrium position x, = 4 is unstable, as it has an in- 
creasing exponential solution. The characteristic equation for this case is 

A ~ - ~ = O  1.1 

which has the solution A = .C 1, indicating one real positive root. One can also physically 
explain this result: If - f ( x )  is regarded as the spring force, once the variable x passes the 
equilibrium point x, = 4, the spring force becomes negative, thus offering negative resis- 
tance. Of course, in an actual mass-spring system, once the point x, = 4 is crossed there 
would no longer be a spring. 

One can verify the result for x, = 4 by invoking the energy theorem. The second deriva- 
tive for the potential energy is negative, indicating a local maximum and an unstable equi- 
librium position. 

In previous sections we obtained the equations of motion and equilibrium, and then 
linearized the equation of motion about equilibrium. We now consider the explicit 
response of a linear (or linearized), constant coefficient, single degree of freedom 
system. 

In this section, we shall analyze the free response, that is, when there are no 
external forces. The linearized equation of motion of a system with one degree of 



freedom is given in Eq. [1.8.10]. Introducing the notation on = f i  and 5 = 
y2/2w,, and the variable x to describe the motion in the vicinity of equilibrium, we 
rewrite Eq. [1.8.10] as 

x(t)  + 2[wnx(t)  + w;x(t)  = 0 [1.9.1] 

The quantities w ,  and 5 are known as natural frequency and damping factor, respec- 
tively. The natural frequency is a measure of the amount of stiffness versus mass in a 
system. It is related to the potential energy. The damping factor 5 is a measure of the 
energy dissipation in the system. Energy dissipation is caused by internal friction, 
as well as by dissipative forces, such as forces generated by a dashpot. When 6 = 0 
the motion is referred to as undamped and when 5 > 0, the motion is called damped. 

To observe the physical significance of these expressions, we begin by consid- 
ering the mass-spring-dashpot system in Fig. 1.47. Consider a linear model for the 
spring and dashpot, so that the spring force is described by F, = - kx(t)  and the 
dashpot force is in the form Fd = -cx( t ) ,  with c referred to as the viscous damp- 
ing coeflcient. This coefficient indicates the strength of the dashpot. This way of 
modeling dissipative force acting on a body is convenient, as it leads to equations 
of motion that are linear. The external force is denoted by F. Summing forces, we 
obtain 

In the above equation, w ,  = Jklm and 5 = c/2&. We analyze the natural 
frequency as m and k are varied. As the spring constant is increased, we have a stiffer 
system, and the natural frequency becomes larger. As the mass increases the system 
gets heavier, so the natural frequency decreases. 

We first consider systems with no damping, 5 = 0. The equation of motion re- 
duces to 

x(t)  + w;x(t)  = 0 [1.9.3] 

To solve this equation, we introduce the general solution x(t)  = Xe" and collect 
terms, so 

(h2 + w i ) ~ e "  = 0 [ 1.9.41 

For there to be a nontrivial solution, Xe" cannot be zero, from which we con- 
clude that 

h2 + m i  = 0 [1.9.6] 

which is recognized as the characteristic equation. The roots of the characteristic 
equation are = kiw, ,  where i2 = - 1. Complex roots indicate an oscillatory 



system. The response can be expressed as 

X(t) = xleiwn' + xZe- '@nt  

where XI and X2 are complex constants of integration. Because x(t) is real and eiwn' 
and eCi"n' are complex conjugates, XI and X2 must be complex conjugates of each 
other as well. Introducing the real valued constants amplitude A and phase angle 4 
such that 

and substituting in Eq. [1.9.6], we obtain 

The constants A and 4 are determined from the initial conditions. Given initial 
conditions of x(0) = xo and x(0) = vo, it is easy to show that 

and that the response can also be expressed as 

vo x(t) = xo cos wnt + - sinwnt [I  . 9 . 10 ]  
0 n 

The nature of the motion is harmonic, repeating itself in cycles. Using the rela- 
tion 

A cos(wnt - 4 )  = A c o s ( 2 ~  + wnt - 4 )  [1 .9 .11]  

the amplitude of the motion attains the same value after a time of period T so that 

The value of T is known as the period of oscillation; it is usually measured in 
seconds, and it describes the length of a cycle. The units of natural frequency are 
in radianslsecond. Another quantity commonly used to describe harmonic motion is 
the frequency, fn, defined as 

The unit of frequency is cycles per second (cps) or hertz (Hz). A frequency of 
1 Hz = 2.rr radls. Fig. 1.48 shows a plot of x(t). An interesting property of the nat- 
ural frequency of a system is that it is a quantity dependent on the parameters of a 
system and not on the initial conditions. 

We next consider the case when the damping is not zero. Introducing x(t) = 

xeA' to Eq. [1.9.1] and using the same line of thought, we obtain the characteristic 
equation 

A' + 25wnA + w: = 0 [1.9.14] 



Figure 1.48 Undamped response Figure 1.49 Damped response 

whose roots are 

The nature of the motion depends on the values of the damping coefficient. We 
identify the following five cases: 

1. When 6 > 1, the roots are real, negative, and distinct. The motion is in the form 
of a decaying exponential and it is not periodic. Such a system is called overdamped. 
The response has the general form 

with A l  and A2 being real quantities whose values depend on the initial conditions. 
The above equation can also be expressed in terms of hyperbolic sines and cosines. 
2. When 0 < 6 < 1, the roots are complex conjugates with negative real parts in 
the form 

where wd = w n , / m  is the damped natural frequency. This quantity basically 
represents the frequency of oscillation of the damped system. 

To obtain the response, we note the identity e(a+b) = eaeb, SO that 

Following the approach used for the undamped system, one can express this equation 
as 

x(t) = ~ e - ~ ~ " '  cos(wd; - 4) [1.9.191 

The motion is in the form of a decaying sinusoidal, with an exponential decay 
envelope, as shown in Fig. 1.49. Such a system is known as underdamped. One can 
show that, in terms of the initial displacement xo and initial velocity vo, the response 
has the form 



vo + Swnxo sin wdt  C1.9.201 
wd 

Note that, similar to the natural frequency, the damping factor is also not dependent 
on the initial conditions, but it is a function of the system parameters. 

3. The case 6 = 1 represents the border between underdamped and overdamped 
systems. It is called critically damped. The roots of the characteristic equation are 
real, negative, and equal to each other, A1 = h2 = -w,.  The motion is in the form 
of a decaying exponential. The response has the form 

in which both A and A2 are real. 
4. The case 3 = 0 represents the undamped case that we saw above. Here, od = 
w,,  and Eq. [1.9.20] reduces to the undamped response of Eq. [1.9.10]. 
5. When 6 < 0, the roots of the characteristic equation Oave positive real parts, 
and they may or may not be complex. A positive real root implies an exponentially 
growing solution and instability, as we saw in the previous section. Such a system is 
sometimes called negatively damped. 

Example 1 Consider Fig. 1.47. The block weighs 20 1b and the spring is of constant k = 5 lblin. Damping 
1.17 is negligible and F = 0. The block is released from rest with an initial displacement of xo = 3 

in. Find its position and velocity after four seconds. 

Solution 
The equation of motion is 

with m = 20/g = 20132.2 = 0.6211 slugs = 0.6211 lb sec2/ft = 0.05176 lb* sec2/in. The 
natural frequency is 

w. = /A = /& = 9.829 radlsec 

From Eq. [1.9.10] we can write the response to an initial displacement as 

so that at t = 4 sec we have 

In this section we consider single degree of freedom systems subjected to harmonic 
excitation. Rather than studying the general case of response to arbitrary excitation 



first and then considering the special case of harmonic excitation, we prefer to study 
harmonic excitation independently. The reason for this is twofold: First, excitations 
of a harmonic nature play a very important role in engineering. For example, most 
machines have rotating parts, which generate harmonic forces on their supports or 
other bodies they are in contact with. Second, one can study response to harmonic 
excitation using the steady state motion approach, where one is primarily concerned 
with the motion amplitudes and phase angles, rather than with initial conditions. 

Consider a dynarnical system, whose linearized equations of motion have the 
form 

X ( t )  + X w , ~ ( t )  + wix(t)  = f ( t )  [l.lO.l] 

where f ( t )  is the external excitation. For harmonic excitation with a single driving 
frequency w ,  f (t) can be written in the general compact complex form 

f ( t )  = ~ w ; e ~ " '  [l.l0.2] 

One of the advantages in writing the excitation in this form is that the excitation 
amplitude A has the same units as x(t). For example, for translational mechanical 
systems f ( t )  has the units of forcelmass and A has units of displacement. Also, be- 
cause eiut = cos wt + i sin wt, one can solve for the response for a cosine or a sine 
excitation simultaneously. The response to a complex excitation will also be com- 
plex, so that the real part of the solution will be the response to a cosine excitation, 
and the imaginary part, response to a sine excitation. 

We are interested in the steady state motion. At steady state, all effects due 
to transient sources, such as initial conditions and impulsive forces, have died out, 
and the response is only due to the external harmonic excitation. Hence, we assume 
that the response is of the same nature as the excitation and consider a steady state 
solution in the form x(t) = ~ ( i w  )ei"'. Introducing this solution and Eq. [ l  .10.2] into 
Eq. [I. 10. I] and collecting the coefficients, we obtain 

which can be rearranged and solved for X(iw) as 

The amplitude X(iw) can be characterized by the ratio of the excitation ampli- 
tude A multiplied by a nondimensional ratio. This ratio dictates the amplitude of the 
response, so we define it as 

where G(iw) is called the frequency response. Recalling that a complex number 
a + ib can be expressed as ~ e ' $ ,  where M = Jm and rC, = tan-'(bla), we 
can express the frequency response as 



where 

[1.10.71 

The quantity IG( io) (  is referred to as the magnijicafion factor, and the angle + 
is the phase angle, not to be confused with the phase angle d, defined in the previous 
section. The steady state response can then bewritten as 

x,(t) = ~ ( ~ ( i o ) l e ' ( ~ ' - * )  [1.10.8] 

The value of the magnification factor is affected by the amount of damping, as 
well as by the ratio of the driving frequency to the natural frequency. A plot of IG(iw)l 
versus w l o ,  is given in Fig. 1 S O  for various values of the damping factor. The mag- 
nification factor becomes smaller with increasing amounts of damping, as one would 
expect. For a given amount of damping, the magnification factor becomes larger as 
do,  approaches unity. For an undamped system when d o ,  = 1 the magnifica- 
tion factor becomes infinity. This phenomenon, called resonance, manifests itself as 
very high amplitude vibrations when the driving frequency becomes very close to 
the natural frequency. 

Dynarnical systems subjected to harmonic excitation are designed such that res- 
onant frequencies are avoided, or encountered as briefly as possible. Furthermore, 

C i g u ~  1 .SO Magnification factor 



such systems have a certain amount of damping to reduce vibration amplitudes. A 
poorly designed system can experience dangerous levels of vibration, which can 
cause physical damage, discomfort to occupants, and reduction in precision. 

A plot of the phase angle $ versus olw,  is given in Fig. 1.5 1. The phase angle 
is always less than 90" when olo, < 1 and greater than 90" when o/o, > 1. The 
resonance point becomes the defining factor for the phase angle, as all curves go 
through the point JI = T and w/w, = 1. 

When olw,  < 1, the response has the same sign as the excitation. In this case 
the response is referred to as being in phase with the excitation. By contrast, when 
do, > 1, the response has the opposite sign as the excitation, indicating that it is 
out of phase with the excitation. 

An interesting special case to analyze is that of undamped vibration. Here, set- 
ting ( = 0 we can write the steady state response as 

When olo, = 1 and f ( t )  = AW; COS*~, the response can be shown to be 

indicating that the amplitude of the response increases with time in a linear am- 
plification envelope. Fig. 1.52 shows the response. An infinite amplitude is never 

Figurn 1 .S 1 Phase angle 



Example l- 
1.18 

Figurn 1-52 Resonance 

reached in reality. As the amplitude increases, either the mathematical analysis be- 
comes invalid and nonlinear and other effects begin to dominate the motion, or the 
amplitudes become high enough to damage the system. Also, all physical systems 
have some energy dissipation mechanism, in the form of viscous damping or in some 
other form, which helps reduce vibration amplitudes. 

A very interesting application of response to harmonic excitation is the motion of a vehicle 
over a wavy terrain. Consider such a vehicle, modeled as a single degree of freedom system, 
traveling with constant speed v over a road that has a sinusoidal shape, as shown in Fig. 1.53. 
Derive the magnification factor. 

The road surface can be modeled as 



where Y and L denote the amplitude and length of the wave. Because the vehicle is traveling 
at constant speed v, we can express its location on the x axis as x(t) = vt. Substituting this 
into the above equation, we obtain 

y(t) = Ysin ( 2 ~ t )  - = Ysinot 

where o = 2rrvlL. The problem now is reduced to one of a mass-spring-damper system 
whose base is undergoing a prescribed harmonic motion. The speed of the vehicle dictates 
the frequency of the excitation. 

Consider the free-body diagram of the vehicle. The deflection of the spring is 6 ( t )  = 

z(t) - y(t). Writing Newton's second law, we obtain 

which leads to the equation of motion as 

We divide this equation by m and make use of the expressions for natural frequency and the 
damping factor. Further, we can put y(t) and y(t) into exponential form as y(t) = Y Im(eio'), 
y(t) = Y Im(ioeio'), and write the equation of motion as 

The first term on the right side has the effect of lowering the mass by a height of g/oi = 

mglk. It is the static deformation of the mass due to its own weight. Measuring z(t) from static 
equilibrium, we have two terms for the excitation, so that the response also consists of two 
terms 

where 

is the frequency response of this system. The magnification factor (also known as transmis- 
sibility for this problem) is the magnitude of H(io). Recalling from complex algebra that 
((a + ib)(c + id)( = ((a + ib)( x ((c + id)(, we have 

Fig. 1.54 plots the transmissibility for various values of the damping factor. As expected, 
as the driving frequency gets close to the natural frequency, the transmissibility becomes very 
large. Peak values occur at frequencies slightly lower than the natural frequencies. It is inter- 
esting to note that as do, gets larger-that is, as the vehicle goes faster-the transmissibility 
becomes less than 1 and approaches zero. Also, this ratio goes to zero faster when the damping 
factor becomes smaller. 

Anyone can observe these results when driving a vehicle. As a vehicle goes faster, the 
effects of uneven terrain and of potholes are felt less by the passengers. (It should be cautioned 
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w/w, 

F i g u ~  1.14 Transmissability 

We will obtain the general response of a linear system by making use of its response 
to impulsive loading. Consider the system in Eq. [ l  .lo. 11 subjected to an impulsive 
excitation f = p / m  at time t = 0 

in which f ( t )  is the impulsive force per unit mass. In Section 1.6 we learned that 
an impulsive force applied to a system results in a sudden change in velocity. For a 
system originally at rest, from Eq. C1.6.121, the position and velocity immediately 
after the impulse are 

One can view the response of the system after the application of the impulse 
as the free response with the position and velocity right after the impulse as initial 
conditions. From Eq. [1.9.20], for zero initial displacement, the response has the 
form 



We generalize this result to the case when the amplitude of the impulsive force 
is unity by calling it impulse response g(t) as 

We next represent an arbitrary force as a summation of impulses. Consider a 
force f ( t ) ,  as shown in Fig. 1.55. At any point t = a,  the impulse due to the force 
applied over a time period of Aa has the form f ( t  - a )  = f (a)Aa. Considering that 
Aa is very small, we can treat f (a)Aa as impulsive and, from the above equation, 
give the response to an impulse applied at t = a the form 

where the subscript in x,(t) signifies that it is the part of the response due to the 
impulse at t = a, and u(t - a )  is the unit step function, defined as 

u(t - a )  = 1 when t 2 a 

u(t - a )  = 0 when t < a 

To find the response to the entire excitation, we sum Eq. [1.11.5] over all the 
impulses. As Aa becomes smaller, the summation is replaced by integration and 
we get 

Equation [I.  11.61 is known as the convolution integral. By a proper change of vari- 
ables (say, t - a = T, a = t - T ,  d a  = - d r ) ,  one can show that 

When solving for the response, one can use either form of Eq. [1.11.7]. One bases 
the selection of which form to use on the ease with which the convolution integral 
can be evaluated. For example, if the excitation is constant, use of the form with 
f ( t  - 7 )  is preferable. 



Note that the response obtained from the convolution integral is the response of 
the system to zero initial conditions. To find the total response, we superpose this 
with the response to initial conditions only, given in Eq. [1.9.20], with the result 

For an undamped system, the general response reduces to 

As stated earlier, there are other ways of solving Eq. [1.10.1]. One way is the 
homogeneous plus particular solution approach (obtain the homogeneous solution, 
the particular solution, add them up and then impose the initial conditions), and the 
other is the Laplace transform solution. Actually, the Laplace transform solution is 
equivalent to the convolution integral. Note that with this approach we obtain the so- 
lution as the sum of two quantities, the response of an otherwise free system with the 
given initial conditions plus the response to the excitation for zero initial conditions. 

Example I An interesting special case is the response of systems subjected to Coulomb type frictional 
1.1 9 forces, such as the mass-spring system in Fig. 1.24 in Example 1.9. While the friction force 

is nonlinear, the equation of motion can be split into two linear equations, depending on the 
value of the velocity. Ignoring the external force F ,  Eqs. [dl and [el in Example 1.9 can be 
written as 

when x > 0, Y + w:x = - p g  [a] 

when i < 0, x + w i x  = p g  [bl 

Consider as initial conditions an initial displacement xo and zero initial velocity. We first 
need to determine whether motion will take place or not. This depends on whether the spring 
force is larger than the friction force. At the point when the velocity is zero, there will be 
subsequent motion if 

Assuming that at the onset of motion, the spring force is larger than the friction force, 
the velocity first encountered will be negative. Therefore, we use Eq. [b] as the equation of 
motion. From Eq. [I. 11.91 we obtain 

The velocity becomes zero at a half cycle, t = TI2 = d w , .  The displacement at this point 
is 



F i g u ~  I .S6 Response to Coulomb friction 

We now switch to Eq. [a] as the equation of motion, as long as Eq. [c] holds. The response 
in the second half cycle can be shown to be 

When t = T = 2dw, ,  the velocity is again zero, at which point the displacement has the 
value 

[el 

It turns out that at every half cycle the amplitude of vibration is reduced by 2pg/w;.  
Hence, the response subject to Coulomb friction is in the form of a decaying curve, with the 
decay envelope in the form of two straight lines of slope 2 p g l ~ o , .  A typical response curve 
is shown in Fig. 1.56. The motion stops when the velocity is zero and the spring force is less 
than the friction force. 

The problem with dealing with Coulomb friction is that the solution has to be obtained 
for every half cycle individually, making the analysis cumbersome. Often, engineers replace 
the Coulomb friction model with an equivalent viscous damping model and use linear equa- 
tions. While this is a gross simplification, if one considers the uncertainties in determining 
the friction force and the damping factor, the simplification does not look as bad. It is difficult 
to model the damping properties of a system accurately. 

In preceding sections we learned about quantities that were derived by integrating 
Newton's second law. For the linear and angular momenta, Newton's second law 
was integrated over time, and for energy, the integration was carried over the dis- 
placement variable. We also studied the circumstances under which energy and mo- 
mentum were conserved. 

When applicable, the principles of conservation of momentum and energy give 
qualitative information about the motion without solving for the response explic- 
itly. This is a desirable feature, especially for systems with complicated equations 
of motion and when one needs to know the nature of the motion but not the ex- 
plicit response. When they are conserved we refer to energy, linear momentum, and 



angular momentum as j rs t  integrals, or integrals of the motion. The terminology is 
due to the equations of motion being integrated once to arrive at the first integrals. 
First integrals involve expressions in which the highest order derivative is one less 
than the highest order derivative in the equations of motion. 

Energy and momentum are not the only first integrals that can be found for a 
dynamical system. There exist other first integrals such as the Jacobi integral and 
generalized momenta associated with ignorable coordinates. In most cases, integrals 
of the motion have physical explanations, even though one can generate a first inte- 
gral that may not have an obvious physical interpretation. First integrals also come 
in handy when integrating the equations of motion numerically, as they can be used 
to check the accuracy of the numerical integration. One of the first steps when ana- 
lyzing a dynamical system should be to search for the existence of first integrals in 
order to ascertain the qualitative description of the system behavior. 

First integrals areAalso used for thegeometric &alysis of motion. A typical ex- 
ample of this is phase plane analysis, where one plots the dependent variable versus 
its time derivative. We will not go into this subject in detail but will outline some of 
the uses of the phase portrait when dealing with conservative systems. 

Consider, for example, a particle of mass m moving in one direction and being 
acted upon by a force F(x). From Newton's second law, we have mx(t) = F(x). 
Energy is conserved. One can arrive at this conclusion by integrating the equation 
of motion over x, which yields 

x2 - G(x) = C = constant Cl.12.11 

where dG(x)ldx = 2F(x)lm. C is basically a measure of the total energy, and it 
depends on the initial conditions. We can rewrite Eq. [I.  12.11 to show the relationship 
between x and x as 

From Eq. [I .12.2], thephaseportrait of x versus x has a number of properties: It 
is symmetric about the x axis. Also, the phase portrait is continuous with continuous 
derivatives, so that there are no sharp corners in the phase portrait. For conservative 
systems, each curve of the phase portrait corresponds to a specific energy level. One 
can plot the phase portraits for different energy levels and analyze the motion. It 
can be shown that phase portrait curves below (or above) the x axis corresponding 
to different energy levels never cross each other.'' If the phase portraits did cross 
each other, one would not know the energy level associated with the point where the 
curves met. 

The phase portrait is also a useful tool for systems that do not admit integrals 
of the motion. In such systems, the phase portrait will not be symmetric about the x 
axis. Phase plane analysis is one of the cornerstones of nonlinear stability theory; it 
is widely used in mechanical and other systems (electrical, chemical, etc.) as well 
as in control theory. 

I0Except a curve that crosses the x axis, which ends up intersecting its symmetric counterpart. Such a curve defines 
critical points and regions on the ~ h a s e  space, separating stable and unstable regions of the phase space. It is 
called a seporatrix. 





For case (1) when disturbed from unstable equilibrium (in this case for 1x1 < 3), the 
particle leaves the vicinity of the unstable equilibrium point and moves toward the stable 
equilibrium point. This is typical of systems that have stable and unstable equilibrium posi- 
tions. 

Example I A particle of mass m, shown in Fig. 1.59, is acted upon by a force expressed in polar coordi- 
1-21 nates as F = k/$e,, where r is the distance from the origin to the particle. Find the integrals 

of the motion. 

Solution 
This problem is similar to the central force problem discussed in Example 1.12. The angular 
momentum about the origin 0 is conserved, so that it is an integral of the motion. To show 
that this indeed is the case, we write Newton's second law in polar coordinates as 

We resolve Eq. [a] into its radial and transverse components as 

m(re + 2i.i)) = 0 

We first manipulate Eq. [c] and note that 

d -(2e) = 2e + 2ri-8, = r(r8 + 2i-e) = 0 
dt 

[dl 

which implies that 3.28) is constant. Hence, one integral of the motion is 

2e = h = constant 1.1 

This first integral has a physical significance, as it is the angular momentum of the particle 
about the origin of the coordinate system 



Ho = r x mv = re, x m(i-e, + rbes) = mr%k [I] 

This integral of the motion can be directly identified by noting that the applied force F does 
not create a moment around 0. Next, consider Eq. [b] and eliminate the 0 term from it using 
Eq. [el. Writing Eq. [el as 0 = h l 2 ,  and introducing it into Eq. [b], we obtain 

The above equation describes a conservative system, with F(r)  denoting the conservative 
force. The energy is conserved, and it has the form 

1 1 mh2 k 
-mi2 + -- + - = E = constant 
2 2 r2 r 

We identify the above expression as another integral of the motion. For general central force 
problems, F = f (r)e,,  Eq. [h] becomes +mr2 + $mh2/r2 + V ( r )  = E ,  where 

V ( r )  = - f ( r )  dr J,: 
For orbital mechanics problems it is convenient to introduce the variable u = I/r and 

to analyze the equations of motion in terms of u. We will study this subject in more detail in 
Chapter 3. 

In previous sections, we saw closed-form approaches for obtaining the response of a 
single degree of freedom system described by linear, constant coefficient equations. 
Such equations are almost always approximations to more complex equations, often 
about equilibrium. Even then, if the external excitation is a complicated function, 
finding a closed-form solution of the convolution integral may become prohibitive. 
In cases when no analytical tool is available to obtain the response, numerical inte- 
gration of the equations of motion by means of a digital computer is often a viable 
alternative. 

There are several types of computational methods for integrating the equations 
of motion of a system and getting its response. The different types of methods are use- 
ful in treating different types of equations. We will not go into the various approaches 
here, but we will discuss the general principles behind numerical integration. 

Dynamical systems are governed by differential equations, where the excitation 
and response are usually continuous functions of time. Digital computers are de- 
signed to deal with discrete phenomena. Hence, integration of equations of motion 
on a digital computer needs to be discretized and carried out on an incremental basis. 
The basic idea is as follows: Consider the equation of motion 

x(t) = h(x(t), x(t))  + f ( t )  [l .*&I]  

We select a time increment, say A, and initial time, say to. The time increment 
A is also called the sampling period. We feed the computer the initial conditions 
for position and velocity at t = to, x(to), and x(to), as well as the value of the 



external force, f ( to) ,  and invoke the numerical integration routine. The output of the 
numerical integration routine will be approximations to the position and velocity at 
t  = to + A, x(to + A) and i ( t o  + A). This is considered as one step of the integration. 

We then go to the second step of the integration. Values generated for the dis- 
placement and velocity at the end of the first step, x(to + A) and x(to + A). are fed 
into the computer as initial conditions, together with the external force f (to + A). 
The output is approximations to the position and velocity at the end of the second 
step, x(to + 2 8 )  and x(to + 2A).  The process continues until the final time or other 
selected condition is reached. 

Two obvious questions involve the selection of the numerical integration ap- 
proach, and the selection of the time increment A. One selects the numerical inte- 
gration approach based on the nature of h(x(t) ,  x ( t ) )  as well as of f ( t ) .  One selects 
the sampling period such that the results of the numerical integration are accurate. 
A very small value of A increases the computational effort quite a bit, while a large 
value of A leads to inaccuracies. Often, the nature of the equations of motion gives 
guidelines for the selection of A. For example, in a vibrating system like the one 
considered in Sections 1.9-1.11, the sampling period A should be less than T/6 ,  one 
sixth of the period of vibration. 

It turns out that almost all numerical integration methods require that the 
describing equations be cast into what is known as state form. In state form, 
the system is represented by first-order differential equations. The left side of 
the equations contain first-order derivatives of the variables and the right side 
of the equations do not have any time derivatives. For example, to write the vibrat- 
ing system of Eq. [I. 10.11 in state form, we introduce two new variables, 

~ l ( t )  = x( t )  z d t )  = ~ ( t )  [I .13.2] 

and write the equation of motion in state form as the two equations 

i l ( t )  = z2W 

For multidegree of freedom systems we have a set of variables {z ( t ) )  = 

[ z l ( t ) ,  z 2 ( t ) .  . . zm(t)lT,  and can write the state equations as 

Ci(0) = [A({z(t)))l + [B({z( t ) ) ) l { f  ( t ) )  [I. 13.41 

in which { f (t)} is the excitation vector. When linear, constant coefficient systems are 
expressed in state form, the equations have the form 

m )  = [Al{Z(t)) + [mf 0 ) )  [ I .  13.51 

where [A]  and [B]  are constant coefficient matrices. 

Example I Identify the [ A ]  and [B]  matrices for the system described by Eqs. [ I .  13.31. 
1.22 Solution 

We have one input, f ( t ) ,  so that {f (t)) is a scalar. Thus, [ A ]  is a 2 X 2 matrix, and [B]  is a 
matrix of order 2 x 1 ,  hence a vector of order 2. We have 
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1 .  Given the values for g = 32.174 ft/secz and that a block of mass 1 kg has a 
weight of 2.2046 lb, determine how many newtons equals a force of 1 lb. 

2. Show that the radius of curvature of a projectile's trajectory reaches a minimum 
at the top of the trajectory. 

3. Consider normal and tangential coordinates and show that the radius of curvature 
and torsion are related to the path variables by Eqs. [1.3.39]. Then, consider two- 
dimensional motion (x, y) and derive the expression for the radius of curvature 
given in Eq. [1.3.15]. 

4. A pin is constrained to move in a guide slot whose curve is defined by y = 
-x2 + X, as shown in Fig. 1.60. The pin is being pushed by a motor such that it 

Figure 1.60 



has an acceleration f ( t )  = 1 + 0.2t. The initial conditions are at t = 0 ,  x(0) = 
-0.6, x(0) = 0 .  Find the acceleration of the particle when t = 0.5 s, and find 
the radius of curvature at that instant. 

5. A particle moves along a surface defined by z = 2xy, such that x = 3 sina 
and y = 3 cos a ,  in which a is a parameter. Find the unit vectors in the normal, 
tangential, and binormal directions, as well as the radius of curvature and torsion 
of the curve when a = d4. 

6 .  At a certain instant, the velocity and acceleration of a particle are defined by 
v = 3i + 4j - 6k m/s and a = -2i + 3k m/s2. Find the radius of curvature and 
change of speed of the particle at that instant. 

7. Consider Example 1.3 and find the distance traveled by the particle on the curve 
between the points a = 0 and a = ~ 1 6 .  

8. A vehicle modeled as a particle of mass m is moving up a spiraled road of con- 
stant radius R, as shown in Fig. 1.61. It takes the vehicle five full circles to reach 
the top, which is at a height h from the bottom. 
a. Express the position, velocity, and acceleration of the particle using 

cylindrical coordinates. 
b. Obtain the relationships between the unit vectors in the cylindrical 

coordinates and the normal-tangential coordinates. What is the radius of 
curvature? 

9. Using a spherical coordinate system, express R, 8, and 4 in terms of x ,  y, and 
z. In other words, find the counterpart of Eq. [1.3.63] in spherical coordinates. 

10. A particle is traveling along an elliptic path, described by the equation x2/a2 + 
y2/b2 = 1 ,  with a r b. Show-using path variables-that an approximate so- 
lution for the perimeter of the ellipse is 2~ d m ,  and that the solution 
becomes exact when a = b. Hint: You will need to use elliptic integrals and 
their tables to arrive at your result. 

11. Equations [I .3.32] and r1.3.331 relate the distance traversed along the path in 
terms of the rectilinear coordinates x, y, and z as well as the path parameter a. 
Derive the equivalent expressions for ds in terms of spherical and cylindrical 
coordinates. 



F i ~ u n  1.62 F i g u n  1.65 

12. A rod is attached to two sliders moving in guide bars by universal joints as shown 
in Fig. 1.62. Find the velocity of slider B when slider A is at a height of 25 in. 
and is sliding down with a speed of 3 ids.  

13. A rod is attached to two sliders moving in guide bars by universal joints as shown 
in Fig. 1.63. Find the velocity of slider B when slider A is at a height of 60 cm 
and it is sliding up with a speed of 20 cmls. 

14. Using spherical coordinates, find the equations of motion of the pendulum in 
Fig. 1.13. 

15. Find the equations of motion for the double pendulum in Fig. 1.64. 

16. Consider the vehicle moving up a spiraled road of problem 1.8. There is a coef- 
ficient of friction of p between the road and the vehicle. Derive the equation of 
motion. First, use all three cylindrical coordinates as motion variables and gen- 
erate three constrained equations. Then, using the traversed angle as the motion 
variable, reduce the equations of motion to one. Treat the vehicle as a bead slid- 
ing around a helical wire. A force pushes the vehicle up. 



Figun 1.6s Figure 1.66 Figure 1.67 

17. A vehicle modeled as a particle of mass m is moving with constant speed v along 
a curved road with radius of curvature p, as shown in Fig. 1.65. The coefficient 
of friction between the road surface and the vehicle is p. In order to reduce 
slipping, the road is banked by an angle 8. Find a relationship between I(. and 8 
that will prevent the vehicle from slipping when the brakes are applied and the 
vehicle slows down with deceleration a. 

18. A bead of mass m slides without friction on a wire shaped as the curve z = x2/4, 
as shown in Fig. 1.66. Find the equation of motion for the bead. 

19. Find the equation of motion for the mass sliding with friction over a disk of 
radius R, as shown in Fig. 1.67. A spring connects the mass with the top of the 
disk. The spring is unstretched when 8 = 0 .  

20. A particle of mass m is being acted upon by a force F(x, x, t) = xx. Find its 
response using initial conditions x(0) = xo, x(0) = vo. Consider two cases: (a)  
vo > x$2m, and (b) vo < xiI2m. 

21. Find the equation of motion of the system in Fig. 1.68. The two sliders have mass 
m and the link is massless. Friction affects only the slider moving horizontally. 

22. A steel ball of mass 0.2 kg is released into the frictionless inner surface of a 
cone with an apex angle of 15", at a distance of 65 cm from the apex, as shown 

Figure 1-68 Figure 1.69 
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Figure 1.70 

in Fig 1.69. What should be the initial speed of the ball, so that the ball does not 
fall to the bottom of the cone and its elevation remains the same? Use spherical 
coordinates. 

23. The wedge (15") in Fig. 1.70 of mass M rests on a rough platform with coefficient 
of friction p. A mass ml is suspended by a string and is attached by a pulley to 
another mass m2 which slides without friction on the wedge. 
a. Solve for the accelerations of ml, m2, and the tension in the string when p 

is sufficient to keep the wedge from moving. 
b. Find the smallest value of p for which the wedge remains at rest. 

24. Determine the number of degrees of freedom for the systems shown in Figs. 
1.71 and 1.72. 

Figure 1.71 Figure 1.72 



Figure 1.73 

25. A fugitive who weighs 180 lb is running on top of a train. The train car weighs 
10,000 lb and is moving at a speed of 5 mph, as shown in Fig. 1.73. The fugitive's 
goal is to jump onto the next car, which has the same mass and speed and which 
has just separated from the car behind it. As the fugitive jumps, he resembles a 
projectile which has left the ground with an angle of 30" and a speed of 20 mph 
relative to the train. What is the speed of the second car after the fugitive jumps 
on it and he comes to a stop on the train? 

26. Consider the double pendulum in Fig. 1.64. An impulsive force f is applied 
to in;? in the horizontal direction. Find h1 and 8 2  immediately after the im- 
pulse. 

27. The forces acting on a particle, expressed in the Cartesian coordinate system, 
are F, = 2x + 3x2y - y3 + 4, F,, = 2y + x3 - 3xy2 + 1, FZ = 0. What is the 
potential energy V? 

28. Find the period of oscillation of a simple pendulum for arbitrary motions of the 
pendulum. 

29. A particle slides over a circular cylinder of radius R, as shown in Fig. 1.74. 
The angle that the line connecting the center of the cylinder with the particle 
makes with the vertical is denoted by 6. The particle is slightly tilted with speed 

' x  

(a) 

Figure 1.74 



vo in the x direction at the top of the cylinder. Find the value of the angle 8 when 
the particle and cylinder lose contact. 

30. Consider the particle in the previous problem. The particle is released from the 
top with an initial velocity of v o  = v,,i + v,,j, and p = 0.1. Derive the equa- 
tions of motion, and discuss the difficulties in solving for the value of 8 when 
the particle loses contact with the cylinder. 

3 1. Find the equilibrium position for the system in Fig. 1.72. 

32. Find the equilibrium position(s) of a particle of mass m = 1, which is acted 
upon by the forces: 
a. F(x,x)  = 0 . 6 ~  + x -0.1x3 b. F(x,x)  = -0.4i + x + x2 +0.05x2 

33. A particle of mass m is at the tip of a massless rod of length L and is being used 
as an inverted pendulum attached to two springs, as shown in Fig. 1.75. Find the 
equilibrium positions for the mass and check for their stability. Assume small 
motions and that the springs always deflect horizontally. 

34. Assess the stability of the equilibrium points associated with the mass in Prob- 
lem 1.32. 

Obtain the equation of motion for the system shown in Fig. 1.76. The rod is 
massless. Then, assume small motions and linearize. 
Obtain the equation of motion and calculate the natural frequency of the two- 
pulley system shown in Fig. 1.77. Assume that the pulleys are smooth and 
massless. 

Consider Example 1.17 and that a dashpot of constant c = 0.3 lb seclin act- 
ing on the mass-spring system. Find the displacement and velocity after two 
seconds. 

Figure 1.75 Figure 1-76 



38. A machine of weight 50 lb is mounted on a 110 lb table (vibration isolator), 
which is supported by three springs of constant 500 lblin each, as shown in 
Fig. 1.78. The rotor inside the machine rotates with a speed of 1000 rpm, and it 
generates a force that varies harmonically between - 30 and 30 lbs. Find the am- 
plitude of the response, assuming that the table has no rotational motion. What 
is the force transmitted to the support? 

39. A machine with rotating components is to be placed on four springs and four 
dashpots. The machine weighs 200 lb and it operates at 600 rpm. Design the 
spring and dashpot constants such that only 50 percent of the shaking force of 
the unit is transmitted to the supporting structure, and ( = 0.3. 

40. A mass-spring-damper system has a mass of 10 kg and spring constant of 500 
Nlm. The viscous damping coefficient is not known and is to be determined ex- 
perimentally from the frequency response. When the system is excited by a fre- 
quency o = 14.5 radls, the magnification factor is observed to be 0.3, and when 
o = 11 radls, the magnification factor is 0.65. Find the damping coefficient that 
will give values for the magnification factor closest to the two measurements. 

41. In Fig. 1.28, the mass M moves according to the relation x(t) = xo cos of. Find 
the equation of motion for the pendulum, assuming that 8 remains small at all 
times. 

42. Consider the small motions of the double pendulum in Fig. 1.64. Let 8 be spec- 
ified and find the resonance condition for 82. Then let 82 be specified and find 
the resonance condition for 8,. 

43. The step response of a system is the response to the excitation f (t) = lu(t) in 
Eq. [ l .  10.11, with zero initial conditions. Find the step response for an undamped 



system and show that the derivative of the step response is the impulse response 
g w .  

44. An undamped mass-spring system (mf + kx = F )  is subjected to the excitation 
F( t )  = tu(t), with zero initial conditions. Find the response. 

45. An undamped mass-spring system is subjected to the excitation F ( t )  = Fo ( 0  I 
t 5 to) and no excitation after t > to. The initial displacement is xo = - Fo/3 k,  
with no initial velocity. Find the response. 

46. An undamped mass-spring system is subjected to the excitation F( t )  = 

Fo sin 2w,t, with zero initial conditions. Derive an expression for the response. 
Compare this expression with the frequency response in Section 1.10 and com- 
ment on the difference. 

47. A particle of mass m is being acted on by a force expressed in polar coordinates 
as F = kOlr eo,  where k is a constant. Find the integrals of motion of this system. 

48. A particle of mass m is being acted on by a force expressed in spherical coordi- 
nates as F = kReR, where k is a constant. Find the integrals of motion of this 
system. 

49. Find the integrals of the motion for the pendulum shown in Fig. 1.13. 





c h a p t e r  

When motion is observed from an inertial frame, the expressions for velocity 
and acceleration have simple forms. Often it is necessary or advantageous to ob- 
serve motion from a moving reference frame rather than an inertial frame. One 
can find examples of this from, among other cases, machine dynamics, vehicle 
dynamics, and motion relative to the rotating earth. In machine dynamics, one 
needs to relate the motion of one component to the other. Measurement of motion 
from a moving vehicle or platform is a common necessity. And, in an expanded 
sense, all motion measured on the earth is with respect to a rotating coordinate 
system. 

Ignoring the earth's rotation is a realistic assumption in a number of problems. 
Motion over short distances and over short time intervals can be accurately analyzed 
without considering the earth's rotation. In a number of cases, though, the effect of 
having a noninertial reference frame must be considered. For example, for computa- 
tions associated with weather patterns and ocean dynamics, and just about any type 
of motion over long time periods, neglecting to consider rotation of the earth gives 
incorrect results. 

In this chapter we consider the motion of reference frames with respect to each 
other and establish relative motion equations. A major difference between an inertial 
and a noninertial reference frame arises when we calculate the derivatives of vec- 
tors. We distinguish between local derivatives, that is, derivatives calculated from 
moving reference frames, and global (or total) derivatives, which are calculated with 
respect to inertial reference frames. We discuss the differences in form between the 
translational velocity vector and angular velocity vector and emphasize that angular 
velocity is a defined vector, rather than the derivative of another vector. We consider 
motion involving the rotating earth. Within this context, the reader is introduced to a 
basic perturbation technique to obtain approximate solutions to complex problems. 

87 



Consider two coordinate frames: XYZ, a fixed frame with origin at 0, and xyz, a 
moving frame with origin at B, as shown in Fig. 2.1. We define the unit vectors 
along the fixed axes X, Y, and Z by I, J, and K and along the moving axes x, y, and 
z by i, j, and k, respectively. 

We are primarily interested in the case when the moving xyz frame rotates. Con- 
sider the motion of a point P. One can observe the displacement of P from the inertial 
frame, using the vector rp, or from the relative frame, by the vector rp/B. From vector 
calculus we write 

For the sake of discussion, assume that points 0 and B coincide, and drop the 
subscript P. One can express r = rp as r = XI + YJ + ZK oi r = x i  + yj + zk. 
To investigate the relationships between the velocities as observed from the differ- 
ent frames, we differentiate r with respect to time. In terms of the inertial frame 
components, because the unit vectors I, J, and K are fixed in direction, we have 

and in terms of the moving frame 

The first three terms on the right in Eq. [2.2.3] describe the velocity as observed 
from the relative frame. The last three terms describe the rate of change of the unit 
vectors and, hence, the contribution due to the motion of the relative frame itself. The 
normal-tangential, cylindrical, and spherical coordinates that we studied in Chapter 
1 are in essence rotating coordinate systems. 

We identify two types of terms: the local derivative terms, taken in the relative 
frame, and an added set of terms that depend on the motion of the relative frame. The 
local derivatives together with the added terms constitute the global derivative terms, 
measured in the inertial frame. From this comes the simple but important conclusion 
that derivatives of a vector are different quantities when taken in different reference 
frames. One must clearly specify which reference frame the derivative is taken in. 

Figure 2.1 



Using a similar approach, we obtain the expression for the acceleration of point 
P as 

d 
a = -v = f i  + jjj + & +  x'i+ y;+ zk+ 2 ( i i +  + ik) c2.2.41 

d t 

The first three terms on the right in this equation describe the acceleration as 
observed from the relative frame. They constitute the local second derivative. The 
next three terms describe the acceleration of the relative frame. The last three terms 
exist because there is motion with respect to a moving reference frame. These terms 
arise from two sources: the differentiation in time of the unit vectors in the expression 
xi + yj + ik, and the differentiation of the displacement variables in the expression 
xi + yj + zk. These are known as the Coriolis terms. 

We obtained Eqs. [2.2.3] and [2.2.4] by a straightforward differentiation of the 
displacement expressions. We followed this procedure in Chapter 1 when obtaining 
derivatives of unit vectors associated with the coordinate systems we were consid- 
ering. One may ask whether there is a more general way to obtain derivatives of 
vectors. Indeed, there is, as we will see later on in this chapter. 

When selecting a moving coordinate system, one must establish the relationship 
between the inertial and the moving coordinate systems. A simple illustration of a 
coordinate transformation is given in the example that follows. 

Water is flowing out of the garden sprinkler in Fig. 2.2 with the constant speed of 2 m/s.  The / Example 
sprinkler arm rotates counterclockwise at the constant rate of 2017~ rpm. As it exits the sprin- 2.1 
kler, the water makes an angle of 15" with the horizontal. Find the velocity and acceleration 
of a particle of water as it leaves the sprinkler arm, and the velocity 0.05 seconds later. 

Solution 
We have two convenient locations to define the origin of the relative axes: to place point B at 
the pivot, or to place point B at the tip of the sprinkler. Let us locate point B at the pivot, so 
that rg = 0, VB = 0. We define the inertial coordinate frame with the Z direction along the 
vertical. The orientation of the relative axes is selected such that the Z and z axes coincide 
and that the projection of the sprinkler on the XY plane is along the x axis. Defining the angle 
between the X and x axes by 6, the xyz frame is obtained by a counterclockwise rotation about 
the Z axis by 6, as shown in Fig 2.3. We have 

i=cosBI+sinOJ j=cosOJ-sin61 k = K  [a] 

Figure 2.2 Figure 2.3 



Differentiation of Eq. [a] with respect to time yields the rates of change of the unit vectors 
i, j, and k as 

indicating that the component of the motion in the z-direction is not affected by the motion of 
the relative frame. The rotation of the moving frame is described by 

20 rev lmin 2mad 2 0 = ---- - - - radh 9 = 0 
P mm 60s rev 3 

It is useful to write the position vector associated with a water particle inside the sprink- 
ler as 

rp = r p , ~  = xi + zk [dl 

so that the coordinate y and all its derivatives are zero. Using this information, Eqs. [2.2.3], 
r2.2.41, and the vector derivatives in Eqs. [b], 

v p  = Xi + i k  + xi = i i  + i k  + xbj [@I 
ap = xi + ik + x'i' + 2 i i  = i i  + ik + x(8j - b2i) + 2 i b j  [(I 

As the water particle is about to leave the sprinkler, we have from Fig. 2.2, 

x = 0 . 4 m  z = 0 . 3 m  x = 2 ~ o s 1 5 ~ = 1 . 9 3 2 m / s  

z =  2sin15" =0.5176m/s f = z = O  191 

Substituting the above values into Eqs. [el and [f], we obtain 

v p  = 1.9323 + 0.2667j + 0.5176k m/s [hl 

Because the xyz axes are continuously changing direction, the velocity and acceleration can 
be expressed more meaningfully using their components in the vertical and in the horizontal 
plane. We can hence write 

As soon as the water particle leaves the nozzle, the only force that acts on it is gravity. 
Also, we are no longer viewing motion from a set of rotating coordinates. It is more convenient 
now to look at the horizontal and vertical components of the velocity. Ignoring air resistance, 
the horizontal component of the velocity does not change. The vertical component changes 
due to gravity, which we can express as a = -9.807K m/s2. After 0.05 seconds, the vertical 
component of the velocity becomes 

indicating that the water particle is about to start going down. 



In this section we describe different ways of representing vectors. Consider a rec- 
tilinear coordinate system with unit vectors e l ,  e2, and e3 and two vectors r and u 
defined as 

We will refer a set of vectors described this way as geometric vectors or spatial 
vectors. The dot and cross products of these vectors yield the results 

r X u = (r2u3 - r3u2)i + (r3u1 - r1u3)j + (r1u2 - r2ul)k [2.3.21 

We also express the vectors r and u in column vector format as 

The column vectors {r}  and {u} are also referred to as algebraic vectors. Using this 
description, we can express the dot product of two geometric vectors in column vec- 
tor format by 

r u -, {r}* {u}  C2.3.41 

where T denotes the matrix transpose. To express the cross product r X u using 
column vectors, we introduce the skew-symmetric matrix [ F j  associated with the 
vector r, and write 

so that 

Hence, the geometric vector operation of r x u and the column vector operation 
of [ q {u }  are equivalent. Note that because r x u = - u  X r, we can also write 
[ m u }  = -[EI{r}. 

In dynamics, one frequently encounters the vector product r X (r X u),  which is 
used to describe centripetal acceleration. The expression is commonly shortened to 
r X r X u ,  with the understanding that the cross product between r and u is performed 
first. Using the notation introduced above, 

and we note that the matrix multiplications in [fl[Fj{u} can be performed in any order. 



The relations derived above are only valid when all vectors involved are ex- 
pressed in the same coordinate system. If the vectors r and u are not represented in 
the same coordinate system, Eqs. [2.3.4] and [2.3.6] no longer hold. For example, if 
we have two coordinate systems with unit vectors ele2e3 and e;e;e; and two spatial 
vectors r and u in the form 

their dot product becomes 

in which r and u are given in Eq. [2.3.1] and the matrix [c] has the form 

The expression [c]{u) can be viewed as the column vector representation of u using 
the eleze3 triad. Conversely, the expression {r)T[c]  can be viewed as the transpose of 
[clT{r), the column vector representation of r in the e;e;ej triad. In the next section, 
we will formally define the entries of [c]  as direction cosmes. 

It should be noted that sets of geometric vectors can also be represented in col- 
umn vector format. The elements of the column vector will be geometric vectors. 
For instance, the triad ele2e3 can be written as 

This form is also useful when taking dot or cross products of unit vectors. For exam- 
ple, the expression g = glel + g2e2 + g3e3, where gi(i = 1,2,3)  are scalars, can be 
written using the column vector format as g = {e)T{g) in which { g )  = [gl g:! g 3 ] T .  

The column vector notation is not restricted to describing geometric vectors. 
This formulation is commonly used to represent variables in a Euclidean space. 

Next, consider differentiation of scalars and vectors with respect to other vec- 
tors. This procedure can be conveniently illustrated using column vectors. Consider 
the scalar S and a vector {q)  = [ql q2 . . . qnlT of dimension n, where the el- 
ements ql, 92, . . . , q, are independent of each other. The derivative of S with re- 
spect to {q)  is defined as the n-dimensional row vector dSld{q), whose elements have 
the form 

In compact form, dSld{q) is also written as S{,). When {q)  is the column vector rep- 
resentation of a geometric vector in rectilinear coordinates, the above operation be- 
comes similar to the gradient operation. We can write VS = [ d ~ l d { q ) ] ~ .  



In a similar fashion, we obtain the derivative of a column vector with respect to 
T another. Given the column vector {u} of order m, where {u}  = [ul u2 . . . urn] , 

the derivative of {u}  with respect to a vector {q}  of order n is obtained by differenti- 
ating every element of {u)  with respect to every element of {q).  The end result is the 
m X n matrix, referred to as the Jacobian, and denoted by [ { u ) { ~ ~ ]  or by lug] ,  having 
the form 

. . . 

We now investigate some of the special forms of the scalar S and its derivative 
with respect to a vector. Consider, for example, the n-dimensional column vectors 
{v )  = [v l  V Z  . . . vnlT and {q}  and define the scalar S as 

in which vk(k = 1,2, . . . , n) are the elements of {v}  and qk(k = 1,2, . . . , n) are the 
elements of {q). Taking the derivative of S with respect to {q), we obtain 

For the special case when the elements of {v )  are not functions of q k ,  vj # v j ( q k ) ,  
( j ,  k  = 1,2, . . . , n) we obtain 

If we write the vector {v )  as {v )  = [D]{h)  where [Dl is a square matrix of order 
n and {h) is an n-dimensional vector, so that S = { h ) T [ ~ ] T { q )  = { q ) T [ ~ ] { h }  and 
consider the case where none of the elements of [Dl and {h} are a function of {q},  
then 

It follows that if [Dl is not a function of {h} the derivative of S with respect to {h} is 

In mechanics, one commonly encounters scalar quantities that are quadratic in 
terms of the motion variables, such as kinetic and potential energy. Define S as 



S = {qIT [D]{q}. The derivative of S with respect to {q} in this case has the form 

and when the matrix D is symmetric, this becomes 

Consider the symmetric form above and the case when the matrix [Dl has ele- 
ments that are functions of {q}. We frequently encounter this situation in Lagrangian 
mechanics. The derivative of a matrix with respect to a vector is a tensor of order 
three. We can avoid dealing with tensors of order three by taking the derivative of 
the product [D]{q}, so that we now have 

Next, let us obtain the derivatives of functions of several variables with respect 
to time. Consider the scalar x, which is a function of n variables ql, q2, . . . , qn and 
time t, so that x = x(q1, q2, . . . , q,, t ) .  The derivative of x with respect to time is 
obtained using the chain rule as 

We can express this relationship in column vector format. Indeed, introducing the 
column vector {q} = [ql q . ~  . . . qnlT, we write Eq. [2.3.22] as 

where we recall that the derivative of a scalar with respect to a column vector is a 
row vector. Extending this to the case when the time derivative of a column vector {r}  
is sought, where {r}  = [rl r2 . . . rmlT, where r, = r j (q l ,  92,.  . . , qn, t ) ,  ( j  = 
1,2, . . . , m) we obtain 

in which [{r}{,}] = [r,] is recognized to be a matrix of order m X n. When {r}  is the 
column vector representation of a geometric vector, m = 3 and [r,] becomes a 3 x n 
matrix with [rqIjk = drj/dqk ( j  = 1,2,3; k = 1,2, . . . , n). To visualize this better 
we express the vector {r} in terms of a set of unit vectors as 

{r}  = [rl r2 r31T r = rlel + r2e2 + r3e3 t2.3.251 

so that 



To evaluate the second derivative of {r} ,  we use the chain rule again. We wish to 
avoid taking the partial derivative of a matrix with respect to a vector, so we make 
use of Eq. [2.3.21] and write 

The second term on the right side of this equation can also be expressed as 

in which the elements of the matrices [ r jqq] ( j  = 1,2,3) are 

It is important to remember that the differentiation operation is conducted in 
the same reference frame as the vector r is measured in. In the above equations we 
considered an inertial frame. 

Consider the two coordinate systems XYZ and xyz, with unit vectors IJK and ijk. The xyr co- I Exampk 
ordinate system is obtained by rotating the XYZ system first by an angle of 30" counterclock- 2.2 
wise about the Z axis and then rotating the resulting intermediate x'y'z '  coordinate system 
by 45" clockwise about the y' axis. Fig. 2.4 shows the rotation sequence. Given the vectors 
a = 31+4J+6Kandb = 2 i + j  +2k,finda*bandthematrix[c]. 

Solution 
We first represent the unit vectors ijk in terms of WK. From Fig. 2.4, we can write the unit 
vectors of the intermediate x'y'z '  axes as 

i' = cos 30'1 + sin 30°J j' = - sin30°1 + cos 30'5 k' = K [a] 

The x y z  coordinate system is related to the intermediate axes by a clockwise rotation of 
45" about the y' axis, so that-using the short notation for the sine (s) and cosine (c) of an 



angle-the unit vectors in the coordinate systems are related by 

J z J i  i = c 45"i' + s 45"k' = c 45"(c 30'1 + s 30'5) + s 45°K = -I + -J + -K [b] 4 4 2 

[dl 
Introducing these expressions to the vector b, we obtain 

We can now find the dot product of a and b as 

Let us now generate the direction cosine matrix and write 

To find the dot product using column vectors we use Eq. [2.3.9], which yields 

which, of course is the same as the result in Eq. [f]. 

Example I Figure 2.5 shows a door opened at an angle 0. On the door at point C is an ant that starts 
2.3 crawling upwards in a straight line. Its path makes an angle +, which is fixed, with the bottom 

of the door. Determine the position of the ant, and obtain the velocity of the ant using Eqs. 
[2.3.23] through [2.3.26]. 

Solution 

We attach the inertial coordinates X Y Z  to the door frame and the moving coordinates x y z  to 
the door, as shown in Fig. 2.6. The x y z  axes are obtained by a clockwise rotation of X Y Z  by 
an angle of 0 about the Z axis. The position of the ant is 

r = - L k + h i + s ( - c o s + i + s i n + k ) = ( h - s c o s + ) i + ( - L + s s i n + ) k  [a] 

We relate the inertial and moving coordinates by 

k = K i = cos(-0)1 + sin(-0)J = cos0I - sin0J [bl 



Figure 2.5 Figure 2.6 

which, when introduced into Eq. [a], yields 

r = (h - s cos 4 )  cos 01 - (h - s cos 4 )  sin OJ + (- L + s sin 4)K [el 
Two variables that can describe the motion are 0 and s so that {q) = [O sIT. To find the 

velocity of the ant, we write the position vector in column vector form. We then find [r,], 
which will be a 3 X 2 matrix, with its columns containing derivatives of {r) with respect to 0 
and s. We thus have 

I (h - s cos 4 )  cos 0 -(h-scos~$)sinO -cos$~cosO 

{r} = -(h - s cos 4 )  sin 0 4 )  cos 0 cos 4 sin 0 
- L  + s s i n 4  sin 4 

Noting that there is no explicit time dependence in the position vector, we can write the 
velocity as 

[-(h - s;s&sinO-cos+cosO 
{v, = [rq]{,, = - - s c o  4 )  c o  0 cos 4 ,in 0 1  

sin 4 

-(/I - s cos 4 )  sin ee - cos 4 cos 03 
-(h-scos4)cos00 +cos+sinOi 

sin 4 s  

While one can obtain the above relation by direct differentiation of Eq. [c], the use of 
Eq. [2.3.24] lends itself to efficient computer implementation and is preferred for more com- 
plex problems. 

Consider two coordinate frames, ~ 1 ~ 2 x 3  with unit vectors el, e2, and e3; and xi xix; 
with unit vectors e;, e;, and e;. Without loss of generality we select the frames such 



Figure 2.7 

that their origins coincide, as shown in Fig. 2.7. The position vector to a point P can 
be expressed as 

r = xlel + x2e2 + x3e3 = x;e; + x;e; + x;e; r2.4.11 

in which 

These terms can be generalized to resolve the vector r into its components along a 
coordinate system with unit vectors ele2e3 as 

In a similar fashion, we can express unit vectors in the two coordinate systems 
in terms of each other. For example, we express the primed unit vectors as 

Let us now examine the nature of the dot product terms in Eqs. [2.4.4]. Take, 
for example, e; e2 = e2 e; . Evaluating that expression, we obtain 

e; e2 = e2 e; = lei 1 le2l cos 821 = cos 021 r2.4.51 

where 021 is the angle between the x2 and xi axes (Fig. 2.7). The dot product 
between two unit vectors is equal to the cosine of the angle between them. We define 
a quantity called direction cosine between the two axes xi and xj by the cosine 
of the angle between the xi and X;  axes, and denote it by cij = ei * e )  = cosBij 
(i, j = 1,2,3). The angles that the coordinate axes make with the axes of another 
coordinate system are called direction angles. Considering the preceding relations, 



one can write for xi 

Similar expressions are derived for x; and xi .  Define the column vectors { r }  and { r ' )  
as 

{ r )  = [x l  x2 x31T {r')  = [xi X; x;lT [2.4.7] 

and the direction cosine matrix [ c ]  as 

which leads to the relationship between {r')  and { r )  as 

Next, we express xl , x2, x3 in terms of xi ,  x i ,  x i .  Following the same procedure 
as above, we obtain 

which can be written as 

Equation [2.4.9] can be inverted to yield { r }  = [ ~ ] - ~ { r ' } .  Comparing with Eq. 
[ 2 . 4 . l l ] ,  we conclude that the direction cosine matrix is a unitary (also called or- 
t h o n o m l )  matrix, that is, its inverse is equal to its transpose, or 

where [I ]  is the identity matrix. 
Observe from the preceding equations that the unit vectors can also be expressed 

in terms of each other using the direction cosine matrix. Defining the column vectors 

it is easy to show that 

Be aware that the definition of direction cosine we are using here is not univer- 
sally accepted. Some texts instead define the direction cosine as cij = ei e,. 

We defined one direction cosine for each angle between the ith and jth coordinate 
axes, for a total of nine. The question arises as to how many of the direction cosines 



are independent of each other. Equation [2.4.12b] represents six independent equa- 
tions that relate the direction cosines (six because of the symmetry of the equations), 
reducing the number of independent direction cosines cij, and hence independent 
angles Oij, to three.' It follows that, at most, three parameters are necessary to rep- 
resent the transformation from any given configuration of coordinate axes to another 
one. 

The important question is how to select these parameters. One possibility is to 
use three rotation angles. In this case, any two successive rotations need to be about 
nonparallel axes. Otherwise the rotation angles will not be distinguishable. Another 
possibility is to use a single rotation about a particular axis. We will make use of this 
case in Chapter 7. 

Let us consider three rotation angles and analyze how one can accomplish rota- 
tions of coordinate systems, and explore means of expressing rotations of coordinate 
systems and the rates of change of these rotations. To this end, we identify two ap- 
proaches: a body-fixed rotation sequence and a space-fixed rotation sequence. 

To carry out a body-jked rotation sequence, begin with an initial frame and 
rotate it about one of its axes. Make the next rotation about one of the axes of the 
rotated coordinate system, which leads to a third coordinate system. Then rotate this 
third coordinate system about one of its axes to obtain the final frame. This rotation 
sequence can be visualized by imagining a box attached to the moving reference 
frame. Each rotation is performed along one of the edges of the box. The position of 
the box with respect to the final rotated coordinate frame is the same as its position 
with respect to the initial frame. 

Consider an initial frame x1 X2X3 as shown in Fig. 2.8, and rotate it by an angle 
of O1 about the xl axis. Denoting the resulting frame by ylyzy3, we have 

i i g ~ ~  2.8 A 1 rotation 

'One can demonstrate this by writing [c] as three column vectors [{al} {q} {a3}]. These vectors are orthonormal 
vectors, and they represent the direction angles of the axes of the transformed coordinates. Equation [2.14.12b] 
represents the six possible dot products among these vectors. 



or, in matrix form, 

in which 

where [R1] is referred to as the rotation matrix. We recognize that [R1] is the trans- 
pose of the direction cosine matrix between the two coordinate systems, [ c l ]  = 

[ R , ] ~ .  The above transformation is also known as a 1 rotation, denoting the axis 
about which the rotation takes place. 

Take the yly2y3 axes and rotate them by an angle O2 about the y3 axis (Fig. 2.9). 
This type of rotation is called a 3 rotation. Denoting the resulting frame by 21~223, 
we can show that 

in which 

cos02 sin" '1 
{ z  = [ I  [R2] = [ -  sin 0; cos O2 

0 0 1 

The rotation matrix [R2] is the transpose of the direction cosine matrix between {z) 
and {y). Finally, rotate the ~ 1 ~ 2 ~ 3  axes by O3 about the 22 axis (a 2 rotation) to obtain 
the xixixi axes (Fig. 2.10). Similar to the previous rotations, we have 

Plane of zlz3 and X~X; 

Plane of y ly2 and zlz2 z2, x i  

z2 

Y2 

Figun 2.9 A 3 rotation Figun 2.1 0 A 2 rotation 
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in which 

cos03 0 - sin03 
{ x }  = [ [R3] = [ 0 1 

sin03 0 cos03 O 1 
To obtain the x;x;x; axes from the ~ 1 ~ 2 x 3  axes, we combine Eqs. [2.4.16] 

through [2.4.2 11, which yields 

in which [R] is the rotation matrix between the unprimed and primed coordinates. 
It is clear that [R] = [cIT, where [c] = [c1][c2][c3]. The transformation we have 
just performed is referred to as a 1-3-2 rotation sequence, describing the order of the 
axes about which the coordinate systems are transformed. 

We can continue to perform more rotations of the kind above, and in some cases 
it may be convenient to do so. However, performing more rotations than three intro- 
duces a redundancy. As an illustration, consider again the same rotation sequence. 
Given the direction cosine matrix between the initial and rotated frames, and what 
the rotation sequence is, one can uniquely determine angles 01, 82, and 83. This is 
because Eq. [2.4.12b] describes three independent equations which can be solved 
for the three unknowns 01, 02, 83. If we have a fourth rotation, with an angle 04, 
we still have three independent equations; but now we have four unknowns with no 
unique solution. 

All rotation matrices [Ri] (i = 1,2,3) have determinants equal to 1, that is, 
det[Ri] = 1. From linear algebra, 

so that the combined transformation from {x} to {x'} is carried out by a matrix whose 
determinant is equal to 1. This implies that the direction cosine matrix between {x} 
and {x'} has a determinant of unity. The determinant of a general orthogonal matrix 
is ? 1, so that we have in effect shown that for an orthonormal matrix to represent a 
direction cosine matrix, its determinant must be equal to unity. One can show inde- 
pendently of the preceding argument that the direction cosine matrix between any 
two right-handed coordinate systems has a determinant equal to 1. 

The second approach mentioned for describing rotation transformations between 
coordinate systems is by means of the space-fied rotation sequence, where the ro- 
tation transformations are carried out about the initial axes. Consider a set of initial 
coordinates ~ 1 ~ 2 x 3 .  We first rotate this frame about the xl axis by an angle 8 ,  to 
obtain the yly2y3 axes and call this rotation matrix [R1]. Then, we rotate the yly2y3 
coordinates about the x2 axis by an angle O2 to obtain zlzzz3 coordinates. We de- 
note this transformation matrix by [R2]. In a similar fashion, we perform the third 
transformation about the x3 axis by O3 to obtain the final coordinate system xixixi. 
Denoting the rotation matrix by [R3], one can show that the final coordinates are 
related to the original coordinates by 



Rotation 
by 90' about xl  

Y2  

Rotation 
by 90" about y, 

(b)  

Rotation 
by 90' about x3 

y3 
Y2 

Y1 

(el 

Rotation 
by 90' about y 

z2 

Figure 2.1 1 Finite rotations do not commute 

Looking at Eq. [2.4.24], we see that the final transformation matrix is in reverse 
order compared with the transformation matrix for body-fixed transformations. 

In general, one uses body-fixed transformations to relate one coordinate system 
to another. It is usually more convenient and meaningful to visualize the motion and 
to express angular velocities and accelerations in terms of a set of axes attached to 
the body. Nevertheless, space-fixed rotations provide an alternate description, and 
they help one to visualize the rotation angles. 

We are interested in expressing transformations from one coordinate system to 
another as vectors. We can see from the preceding analysis that the order in which 
the rotations are performed makes a difference in the orientation of the transformed 
coordinate system. One can verify this visually, by just taking a book and rotating 
it about two axes in different sequences. The concept is illustrated in Fig. 2.11 for 
a body-fixed rotation sequence. One can illustrate this concept using a space-fixed 
rotation sequence as well. Therefore, it is not possible to represent rotations of coor- 
dinate systems by finite angles as vector operations, because the commutativity rule 
will not hold. 

We analyze the minimum amount of information needed to determine the direction cosine I Exalpb 
matrix uniquely. We begin with a set of axes ~ 1 ~ 2 x 3  and transform it into x;x;x;. We have 2.4 
nine direction cosines and six independent equations resulting from Eq. [2.4.12b], so that 
three of the direction cosines have to be specified. Consider first the case where the following 



information is given: 

Angle between the xl  and xi  axes is 60" 

Angle between the xl  and x i  axes is 45" 

Angle between the xl  and x; axes is 60" 

We are given the task of finding the direction cosines. We need to first check to see if 
the information given is consistent, or, in other words, geometrically compatible. Given the 
angle between two axes, the locus of points that are compatible defines a right circular cone 
with the apex angle as the angle between the two axes, as shown in Fig. 2.12. In this example, 
the axis x; defines a right circular cone about xl with apex angle 60". Similarly, the x i  axis 
defines a cone about xl  with apex angle 45". It follows that the maximum angle between any 
two lines on the cones is 105", making it possible for the angle between the x i  and xi  axes 
to be 90". In a similar fashion, it is possible to have a 90" angle between the xi  and x i  axes 
and the x i  and x; axes. Therefore, the information given is compatible with a right-handed 
coordinate system. 

(As an illustration of a geometrically incompatible case, suppose we were given the 
problem above, except that the angle between the XI and xi  axes is 30". It follows that the 
maximum angle that one can have between the xi  and x i  axes is 75", making it impossible 
to have a right angle between xi  and xi.) 

Returning to the original problem, once we determine that the information we have is 
consistent, we proceed with finding the direction cosines. From the above relations 

Equation [2.4.12b] written in terms of ci, results in the six equations 

cfl + cf2 + c:~  = 1 C& + cZ2 + c ; ~  = 1 cil + c : ~  + ci3 = 1 

The values in Eq. [a] satisfy the first of Eqs. [b] uniquely, so that we are reduced to 
five equations for the six unknown direction cosines. Hence, the direction cosines cannot be 
solved for. The physical explanation of this is that only the xl  axis is uniquely specified with 



respect to the x ; x ; x j  frame. The x2 and x3 axes are not specified at all. A coordinate system 
obtained by any amount of rotation about the xl axes will satisfy Eq. [b]. 

The conclusion is that, to define the direction cosines, one needs consistent and compati- 
ble information about the direction angles of at least two different axes in any frame. Consider 
now the following information: 

Angle between the x3 and x j  axes is 15" 

Angle between the x2 and x; axes is 35" 

Angle between the xl and x; axes is 125" 

This information results in the direction cosines 

c33 = 0.9659 c p  = 0.8192 clz = -0.5736 [@I 
A quick examination of cl2 and ~ 2 2  indicates that ~ 3 2  = 0, SO that the x l  axis lies on 

the plane generated by the X I  and x2 axes. The transformation from ~ 1 ~ 2 x 3  to x;x ;x ;  is 
accomplished in two rotations. The first is a counterclockwise rotation about the x3 axis by 
an angle of 35", resulting in the intermediate coordinate system yly2y3. The second rotation 
is about the y2 axis by an angle of 15". What we do not know at this point is whether this 
second rotation is clockwise or counterclockwise. Fig. 2.13 illustrates the rotations. It follows 
that in this case, we need one more piece of information to uniquely determine the transformed 
coordinates. This additional information can be in the form of a sketch. 

One way to visualize body-fixed rotation transformations is to attach an imaginary box to the I Examp10 
coordinate frame and observe what happens to the box as the coordinate system is rotated. 3.5 
Consider the box in Fig. 2.14. Rotate the box about line OA clockwise by 30°, then about line 
OB counterclockwise by 105". What are the coordinates of point D in the initial frame after 
these rotations? 

Solution 

The relative frame is attached to the box. We denote the initial frame by XYZ. The interme- 
diate frame after rotation about OA (the X axis) is denoted by x 'y 'z ' ,  as shown in Fig. 2.15. 
The final configuration xyz  is obtained by a counterclockwise rotation about OB (the y' axis) 
by 10SO, as shown in Fig. 2.16. 

x; X 3 . Y 3  

Figure 2.1 4 
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Using rotation transformation equations, we write the relations between the coordinate 
frames as 

so that the relation between the original and the rotated frames is 

in which 

I -0.2588 -0.4830 -0.8365 
[Rl = [R2l[R1l = 0 0.8660 -0.5000 I [dl 

0.9659 -0.1294 -0.2241 

is the final transformation matrix. Equation [c] is valid when relating the initial, as well as 
the final, orientations of points on the box as the box is moved. Denoting these initial values 
by the subscript i and the final coordinates by the subscript f ,  we can write 

On the other hand, because the moving frame is attached to the box, the coordinates of 
a point on the box before rotations in the initial frame are the same as the coordinates of that 



point in the rotated frame after rotations. We therefore have 

Introducing the inverse of Eq. [f] into Eq. [g], we obtain 

To find the coordinates of point D, we denote the initial and final positions of point D as 
Di and Df. The initial coordinates of point D are (0,2, 1); thus, its final coordinates are 

In the previous section we saw that consecutive rotations of coordinate frames by 
finite angles do not lend themselves to representation as vectors. Hence, one does 
not have a vector to differentiate in order to represent rotation rates. To express rates 
of rotations, we begin by analyzing infinitesimal rotations. Consider, for example, a 
1-2-3 body-fixed rotation sequence with rotation angles of 01, 82, and O3 (01 about 
xl, O2 about y2, and O 3  about z 3 )  The final transformation matrix can be shown to 
be 

Now, consider that all the rotation angles 01, 82, and O3 are very small, and 
replace them with AOl, A02, and A03.  We also assume that these small rotations 
take place during a short time period of At. Invoking the small angle assumption of 
sin AOi = AOi, cos A0i = 1, and neglecting second- and higher-order terms in AOi, 
the rotation matrix becomes 

It should be stressed that AO1, A02, and A03 are not the differentials of finite 
expressions but differential quantities themselves. This observation is critical to 
understanding the definition of angular velocity. Examining Eqs. [2.5.1] and [2.5.2] 
more closely, it becomes clear that no matter what the order of transformation is, 
[R]  in Eq. [2.5.2] has the same form, indicating that infinitesimal rotations are 



commutative. The orientation of the transformed coordinate system does not depend 
on the sequence of the infinitesimal rotations. 

Let us explore ways to express infinitesimal rotations, and their rates, as vectors. 
We write the relation between the coordinates of a point in terms of the initial and 
transformed coordinates as 

{x') = [ R W  {x) = [RIT{x') [2.5.3] 

We express the rotation matrix as [R] = [I] - [AO], in which [ l ]  is the identity 
matrix, and 

is a skew-symmetric matrix, that is, [AOIT = -[LO]. It follows that [RIT = [I] + 
LAO]. 

We now obtain a relationship between the initial and final coordinates of a point 
as the reference frame is transformed. Denoting quantities pertinent to the initial and 
final positions by the subscripts i and f ,  

Next, we define by {Ax') the change in the coordinates by 

Now, dropping the subscript i ,  and using the relation [RIT = [I] + [AO], we can 
express {Ax') as 

{AX') = [R]~{x') - {XI) = ([I] + [AO]){X') - {x') = [AO]{X') [2.S.7] 

Note that we could have derived the equivalent of Eq. [2.5.7] in terms of the 
initial coordinates ~ 1 ~ 2 x 3 .  Indeed, defining the change in coordinates as {Ax) = 
{xf) - {xi) and substituting into Eqs. [2.5.5], one obtains {Ax) = [AO]{x). 

Eq. [2.5.7] can be viewed as the column vector representation of the relation 

where 

is an infinitesimal rotation vectors2 The concept is illustrated in Fig. 2.17. The ro- 
tation takes place about an axis passing through the vector A8. The rotation is by 
an amount AO, which is the magnitude of A@. Note that the boldface in the above 
equation, indicating that the quantity is a vector, is over the entire expression A8 and 
not just over the 8. This signifies that A8 is not the infinitesimal value of a vector 
but a defined quantity consisting of a collection of infinitesimal rotations. 

2We defined by Eq. [2.5.9] the infinitesimal rotation vector without rigorously roving that it indeed is a vector. I The proof requires that certain transformation properties be satisfied. It can be $und in the text by Meirovitch. 



Rotation 

Let us divide Eq. [2.5.8] by the time increment At during which the rotations 
take place, and take the limit as At approaches zero. The left side leads to a simple 
derivative term, written 

To evaluate the right side, we take Eq. [2.5.9] ,  divide it by At, and take the limit 
as At approaches zero. We define the resulting expression as the angular velocity of 
the moving frame with respect to the initial frame and write it as 

A0 
o = lim - 

A t - 0  At 

where 

in which 

AOi 
oi= l im- i = 1 , 2 , 3  

A t - 0  At 

are the components of the angular velocity, also referred to as the instantaneous 
angular velocities of the rotating frame. 

We have shied away from writing the right side of Eq. [ 2 S .  1 11 as a derivative. 
What should be emphasized is that angular velocity is a dejned quantity and that 
it is not the derivative of any vector. For this reason, the angular velocity vector is 
referred to as nonholonomic, a term that is associated with expressions that cannot 
be expressed as derivatives of other terms. A nonholonomic expression cannot be 
integrated to another expression. The way one arrives at the angular velocity vector is 
completely different from the derivation of the expression for translational velocity, 
or the rate of change of any defined vector. 



In view of this discussion, one can write the rate of change of the position vec- 
tor as 

in which [9] is the matrix representation of the angular velocity vector o,  

It should be reiterated that r is a vector whose components are fixed in the rel- 
ative frame x i x i x i .  Equation [2.5.14] is illustrated in Fig. 2.18. The change in r is 
due to a change in direction, and hence, r is orthogonal to r. It is also orthogonal to 
the angular velocity vector, as r can be visualized as rotating about the axis generated 
by the angular velocity vector. By definition of the cross product, r is perpendicular 
to the plane generated by the vectors o and r. 

Now that we have defined angular velocity as a vector, we can obtain the angular 
velocity of a reference frame by adding up the angular velocities associated with the 
rotations that lead to the orientation of the reference frame. 

Equation [2.5.14] is valid not only for a vector describing the velocity of a point, 
but for any vector u whose components are constant relative to the moving frame. 
We have 

u = o X u  [2.5.16] 

An example is when u is a unit vector. For the unit vectors considered in this section, 
we have 

Plane generated by 
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Note that the magnitude of the time derivative of a unit vector, le:l ( i  = 1,2,3), is 
not equal to unity. 

The preceding definition of angular velocity is not the only way angular velocity 
can be defined. In the following, we present a more abstract definition. Consider a 
moving reference frame which is rotating with respect to a fixed reference frame. 
The angular velocity of the rotating frame is defined as the vector o, which, when 
crossed into any vector fixed in the moving frame, gives the rate of change of that 
vector viewed from the inertial frame. The angular velocity of the relative frame o 
is the quantity that makes the relationship [2.5.16] hold. 

Using the unit vectors of the moving reference frame, which in this section we 
have taken as e;, e;, and e;, and their rates of change, one can define the angular 
velocity vector as 

This definition can be verified by analyzing the expressions for the rates of change 
of the unit vectors from Eqs. [2.5.17]. While this definition is more abstract than 
the way we arrived at Eq. [2.5.12], it is mathematically more sound, and it can be 
substituted more easily in mathematical operations that involve angular velocity. In 
Chapter 7 we will see yet another definition of angular velocity. 

Note that in this section so far, we have defined angular velocity in a number of 
ways, discussed what it is physically, and derived expressions for rotating reference 
frames. What we have not done is to come up with a general way to quantify angular 
velocity as a function of rotational parameters. We will analyze the quantification 
issue for the general case in Chapter 7, within the context of rigid bodies. 

Now let us discuss a special case of angular velocity. Previously, we defined an- 
gular velocity as a vector with certain properties and stated that it is not the deriva- 
tive of any quantity but rather it is a defined one. There is an exception to this. When 
angular velocity is along a fixed direction, then angular velocity is called simple 
angular velocity, and it becomes the time derivative of the rotation angle about the 
fixed dirgction. 

If we denote the unit vector along this fixed direction by, say, J, we can express 
the angular velocity by o = wJ, and can write w as an exact differential in the form 

Here, 0 is the angular displacement about the fixed axis. The commonly studied 
special cases of plane motion and rotation about a fixed axis involve simple angular 
velocity. 

Let us next consider more than one relative reference frame. We begin with a 
fixed frame XYZ and rotate it by an angle O1 about the X axis to obtain the x'y'z' 
frame. The angular velocity of the x'y'z' frame with respect to the inertial frame is 
recognized as simple angular velocity. Denoting it by ol, we can write 

We then rotate the x'y'z' frame about the z' axis by O2 and obtain the xyz frame. The 
angular velocity of the xyz frame with respect to the x'y'z' frame, which we will 
denote by 02, is also "simple" when this second rotation is considered by itself, thus 



The angular velocity of the rotated frame x y z  can be written by adding the angular 
velocity terms associated with the two rotations as 

Let us express the angular velocity in terms of the different reference frames. 
First, consider the final relative frame. We find i' by reading the first column of Eq. 
[2.4.19] as I = i' = cos 02i - sin 84. We introduce this into Eq. [2.5.22] and obtain 

We observe that o cannot be expressed as the derivative of another vector. Hence, it 
cannot be classified as simple angular velocity, although both ol and 0 2  are simple 
angular velocities when considered individually. This can be explained by noting that 
while ol is about a set of fixed axes, 0 2  is actually with respect to a set of rotating 
axes. The situation does not change when we express the angular velocity vector 
using the unit vectors of the inertial frame. Indeed, if we use, from Eq. [2.4.17], the 
relation k = k' = - sin O1 J + cos OIK and substitute it into Eq. (2.5.22), we obtain 

We hence conclude that for a sequence of rotations about nonparallel axes, the com- 
bined angular velocity will not be "simple." 

Example I A momentum wheel is a useful classroom tool to demonstrate angular momentum conserva- 
2.6 tion. It is basically like a bicycle wheel with a thickened rim and handles along the spin axis. 

The angular momentum principles are illustrated by asking a student to hold the wheel and 
spin it, and then to move the wheel around or stand on a platform that is free to rotate, as 
shown in Fig. 2.19. 

At a given instant, the momentum wheel is spinning counterclockwise (viewed from the 
right) with angular velocity of 3 radls, and the student holding the wheel is leaning left with 
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an angular velocity of 0.2 radh and making an angle of 15" with the vertical. At the same 
time, the platform is rotating with a clockwise angular velocity of 0.5 rads. Find the total 
angular velocity of the wheel. 

Solution 
Figure 2.20 illustrates the reference frames involved. We attach the frame x'y'z' to the plat- 
form. The inertial Z axis is in the vertical, and it is aligned with the z' axis. The orientation 
of the wheel can be obtained by rotating the x'y'z' axes by an angle of 15" counterclockwise 
about the x' axis. Referring to this coordinate system by xyz, the momentum wheel's spin is 
in the y direction. We write the angular velocity as 

o = Wp~atform + Wstudent/platform + Wwhee~student = -0.5k1 + 0.2if + 3j  rads [a] 

At the instant shown, the unit vectors in the xyz and x'y'z' coordinate frames are related by 

0 0 

] = [ cos 15" sin 15" ] [El 
0 -sinl5" c o s l f  

Using the inverse of Eq. [b], we have k' = sin 15"j + cos 15"k = 0.2588j + 0.9659k and 
i' = i, so we can express the angular velocity in terms of a set of coordinates attached to the 
momentum wheel as 

o = -0.5(0.2588j + 0.9659k) + 0.2i + 3j  = 0.2i + 2.87063 - 0.4830k rads [el 
Note that to express o in terms of the unit vectors associated with an inertial reference 

frame X Y Z  requires that the exact relationship between the coordinates xyz and X Y Z  be 
known. In this problem, we conducted an instantaneous analysis and did not specify the her- 
tial X Y Z  axes, except for the vertical direction. Expressing o in terms of a moving coordinate 
system is more meaningful. 

The robot arm makes an angle of 40" with the rotating shaft, which oscillates about the y' I Exa.yk 
axis with the relation B( t )  = 5 cos 2t rad, as shown in Figs. 2.21 through 2.23. The shaft has 2-7 
an angular velocity of w l  = 0.5 rads. At the tip of the arm, there is another shaft. A disk is 
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spinning counterclockwise with w3 = 7 rads about this shaft. Find the angular velocity of 
the disk at t = 3 s. 

Solution 
As shown in Fig. 2.22, the Z axis is the vertical, and the X'Y'Z axes are attached to the shaft. 
The x'y'z' axes are obtained by rotating the X'Y'Z' axes about the X' axis. The y' axis is 
along the robot arm. We use a rotation about the y' axis by 0 to go from the x'y'z' axes to the 
xyz axes of the second shaft, about which the disk turns. We have 

i = cos Bi' - sin 8k' j = j' k = sin ei' + cos 8k' [a1 

The angular velocity of the disk can be written as 

0 = 0 1  + 0 2  + 0 3  

in which 

wl = 0.5K = 0.5(sin40°k' - cos40°j') = -0.3830j1 + 0.3214k1 rads 

At t = 3 s, O(3) = 0.1508 rad, so that 

k' = - sin 8i + cos 0k = -0.1502i + 0.9887k [dl 

and we can express the total angular velocity in terms of the xyz coordinates as 

w = 0.3214(-0.1502i + 0.9887k) - 0.3830j + 0.08778j + 7i 

= 6.9523 - 0.29523 + 0.3178k rads [el 

Note that in this example, as well as in the previous one, we did not express the angular 
velocity in terms of a set of coordinates attached to the rotating body. Rather, we used the 
xyz coordinates attached to the spin axis of the disk. This is commonly done when analyzing 
axisymmetric bodies, as we will see in Chapters 7 and 8. 



Obtain the derivatives of the unit vectors in the cylindrical, spherical, and normal-tangential I Example 
coordinates using Eq. [2.5.16] and compare with the results in Chapter 1. 2.8 

Solution 
We begin by examining the angular parameters associated with the coordinate systems. First 
consider cylindrical coordinates, as shown in Fig. 1.9. The z direction is fixed and the coor- 
dinate frame rotates in the xy plane with angular speed e, so that o = ek. The unit vectors 
are expressed as the mutually orthogonal triad e,, ee, and k .  For the time derivatives we then 
have 

For spherical coordinates (Fig. 1.12), the mutually orthogonal unit vectors are e ~ ,  e+, 
and ee. Denoting the unit vectors in the inertial frame by i, j, k and those in the rotated frame 
by i', j', k t ,  from Fig. 1.12 we can write 

From Fig. 1.12, there are two angular components, 0 about the z axis and + about the polar 
axis. The combined body-fixed rotation matrix [R] is 

Using Eq. [2.4.9], we obtain for the unit vectors 

e+ = cos + cos Oi + cos 4 sin Oj - sin 4 k  
ee = - sin8i + cosOj 

e~ = sin 4 cos 8i  + sin 4 sin Oi + cos +k [dl 

which are the same as Eqs. [I .3.54] and [1.3.56]. The angular velocity vector is a superposi- 
tion of the two angular velocities, so that 

Expressing the unit vector in the z direction as k = cos 4eR -sin &+, we arrive at the angular 
velocity of the coordinate frame in terms of the unit vectors in spherical coordinates as 

leading to the derivative expressions 

eR = (6 cos +R - 6 sin +e+ + 4ee)xeR = 6 sin 4ee + &+ 
it+ = (6 cos 4eR - 6 sin ++ + +e)Xe+ = 6 cos +es - 4eR 

These are the same as Eqs. [1.3.59] through I1.3.611. 
For the normal and tangential coordinates, the unit vectors are e,, en, and eb = e, X en. 

We showed in Chapter 1 that 



where p is the radius of curvature. We can write the angular velocity vector in its general 
form as 

w = wlei + w,e, + Wbeb Cil 
where we have yet to determine of,  w,, and wb, the components of the angular velocity in 
the tangential, normal, and binormal directions. Fig. 2.24 shows the angular velocities. We 
obtain the time derivative of e, using Eq. [2.5.16] as 

e, = (w,e, + one,  + wbeb) x e, = -w,eb + wbe, Cil 
Comparing Eqs. [h] and Ij], we conclude that 

v 
@b = - wn = 0 

P 
Ckl 

The above relations can be explained physically and by inspecting Fig. 2.24 more closely. 
Because the binormal direction is perpendicular to the osculating plane, the component of the 
angular velocity in the binormal direction is the speed divided by the radius of curvature, 
or the rate at which the path bends. That on = 0 can be deduced from the same argument. 
Because at any point the motion of the particle can be considered as going along a circu- 
lar path whose center is the center of curvature, there is no rotation in the normal direc- 
tion. 

We next consider the time derivatives of the normal and binormal unit vectors, and write 

Recalling the definition of the torsion of the curve as ldebl = d s h ,  and how the torsion is 
linked to the twisting of the osculating plane, we obtain the component of the angular velocity 
in the tangential direction as 

As the torsion 7 gets larger, the plane of the curve twists less. Equation [l] indicates that the 
rate of change of the unit vector in the normal direction depends on the way the curve bends 
as well as on the amount by which it twists, an expected result. The angular velocity of the 
reference frame can thus be written as 



Consider a vector u observed from a moving coordinate system xyz .  The coordinate 
system is rotating with angular velocity w. The vector u is expressed as 

u = uxi + uyj + uZk [2.6.1] 

The time derivative of u can be found by differentiating Eq. [2.6.1] as 

u = u,i + uyj + u,k + u,i + uyj + uzk [2.6.2] 

The first three terms on the right side of this equation denote the change in u as 
viewed by an observer on the moving frame. Hence, the differentiation is carried out 
in the moving frame. We denote this local derivative term by 

The next three terms on the right side of Eq. [2.6.2] denote the change in u due to the 
rotation of the coordinate system. Considering Eq. [2.5.16], we can express them as 

uXi + uyj + u,k = uXw X i + uyw X j + u p  X k = w X u [2.6.4] 

leading to the relation 

This relation is known as the transport theorem. In column vector format we can 
write it as 

In operator notation the transport theorem is written as 

The physical interpretation of the transport theorem is that the rate of change of 
a vector is a different quantity when viewed from different reference frames. When 
dealing with moving reference frames, one must be careful that the differentiation 
operation is carried out in the proper reference frame. 

A natural application of the transport theorem is the calculation of the derivative 
of the angular velocity, known as the angular acceleration. The angular acceleration 
of a coordinate frame, denoted by a, is defined as 

Note that the time derivative is being taken here in the inertial reference frame. We 
write the angular velocity and acceleration in terms of the unit vectors of the relative 



frame as 

Differentiating the angular velocity, we obtain 

If we write the angular velocity in terms of the unit vectors of the inertial frame as 
o = oxI + o yJ + ozK, the angular acceleration has the form 

In both Eqs. [2.6.10] and [2.6.11], the components of the angular acceleration 
are the rates of change of the angular velocity, ai = hi ( i  = x ,  y, 2, or i = X, Y ,  Z). 
We draw the following important conclusion: 

If the angular velocity components of a moving coordinate frame are expressed 
in terms of inertial coordinates or in terms of the coordinates of the moving frame, 
the components of the angular acceleration can be obtained by a simple differenti- 
ation of the angular velocity components. 

When the angular velocity of the reference frame is expressed in terms of the 
unit vectors of another frame that is not attached to the relative frame and is rotating 
with angular velocity, say, a, where # o, then the expression for the angular 
acceleration has the form 

Note that in this case, ai # hi. 
An interesting application of the transport theorem is in systems involving more 

than one reference frame. Consider the disk in Fig. 2.25. As the disk spins, the axis 
about which it rotates also turns. We attach a moving reference frame to the axis and 
find the angular acceleration of the wheel. 

Denote the angular velocity of the disk with respect to its axis by 0 2  and the 
angular velocity of the axis as ol. An observer sitting on the axis of the disk sees 
it rotating with angular velocity 0 2 .  The total angular velocity of the wheel is o = 

0 1  + 0 2 .  



To find the angular acceleration of the wheel, we differentiate the angular ve- 
locity expression 

The first term on the right side of Eq. [2.6.13] is the angular acceleration of the 
axis about which the wheel is rotating. This term can be obtained by straightforward 
differentiation. 

To obtain the angular velocity of the second frame, we invoke the transport the- 
orem. Using Eq. [2.6.5], we obtain 

We get the total angular acceleration by adding Eqs. [2.6.13] and [2.6.14]; thus 

Let us contrast the difference between Eqs. [2.6.15] and [2.6.10]. In Eq. [2.6.10] 
we have a straightforward form for the angular acceleration, because the angular ve- 
locity of the frame (the disk) was expressed in terms of the reference frame attached 
to the disk only. The derivations that led to Eq. [2.6.15] are based on an intermediate 
frame attached to the disk axis, rotating with ol. 

To illustrate the point further, consider the coordinate frame transformation in the 
previous section with an inertial frame XYZ, an intermediate frame x'y'z' obtained 
by a rotation B1 about X, and the final relative frame xyz obtained by a rotation B2 
about 2'. From Eq. [2.5.22], the angular velocities of the two frames are 

in which I = i' = cos B2i - sin B j  so that using Eq. [2.6.15], the angular accelera- 
tion has the form 

= el(cos e2i - sin BZj) + e2k + 8 1 8 2 ( ~ ~ ~  B2i - sin 8 4 )  x k 

= (el cos B2 - 01b2 sin B2)i - (el sin B2 + 0 ~ 0 ~  cos B2)j + e2k C2.6.171 

Next, let us obtain the angular acceleration by direct differentiation of Eq. [2.5.23], 
and write 

which, of course, is the same answer as Eq. [2.6.17]. 
The transport theorem is most often the preferred approach for obtaining deriva- 

tives, especially for complex problems, and it is more adaptable to implementation 
by digital computers. 

When analyzing the relative motion of bodies and especially when studying 
three-dimensional rotation problems, one may need to transform velocities and 
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accelerations from one reference frame to another several times. The resulting ex- 
pressions can become quite complicated. To avoid confusion, we are going to adopt 
the following notation for dealing with multiple reference frames. 

We will denote reference frames by capital letters, such as A, B, C, and so on. In 
general, the A frame will be inertial and the B frame will be relative, and when rigid 
bodies are involved, this frame will be attached to the body. The coordinate axes 
in these frames will be defined with lowercase letters corresponding to the frames. 
For example, for the A frame, the axes will be denoted by a , ,  a2, and as, and the 
corresponding unit vectors by a1 , az, and a3. The origins of the relative frames will 
usually be denoted by the same capital letter used to denote the reference frame. The 
origin of the inertial frame will usually be denoted by 0. The frames A and B are 
illustrated in Fig. 2.26. 

The angular velocity and angular acceleration of one frame with respect to an- 
other, say of frame B with respect to frame A, will be denoted by AoB and AaB, 
respectively. When describing translational velocities and accelerations, as well as 
the differentiation operation, the frame in which the differentiation is performed will 
be denoted by a superscript on the left side of these vectors. The differentiation oper- 
ation can be written as A $u, B $ ~ ,  where u is a vector. Expressions for the velocity 
of point P, where the position vector is r = rp, have the form 

Consider the transport theorem, Eq. [2.6.5]. Using the notation introduced above 
and using the A and B frames as the inertial and relative frames, we can write Eq. 
[2.6.5] as 

It is clear that the transport theorem can be used to relate derivatives in any two 
reference frames. We will denote the expression on the left side of Eq. [2.6.20] as 
the rate of change of the vector in frame A, the first expression on the right as the 
rate of change of the vector in frame B, and the second term on the right side as the 



transport term. In operator form we can write the transport theorem as 

Equations [2.6.20] and [2.6.21] describe the transport theorem between any two 
reference frames with no need to have or to identify an inertial frame. Considering 
how we defined angular velocity previously, the notation introduced here is more 
general. For example, the transport theorem between the B and A frames becomes 

which, when compared with Eq. [2.6.21], leads to the expected conclusion that 
BoA = -AmB 

When there are a number of intermediate frames of reference between the A and 
B frames, say A2, A3, . . . , A N ,  one can express the angular velocity of frame B with 
respect to the A frame as 

The second derivative of a vector u in the A and B frames using this notation is 
A $ (1 $u), B$ ('$u). Note that in both expressions, all the derivative terms are con- 
sistently in the same frame. Following this argument one can write the acceleration 
of point P as 

In dynamics, one frequently encounters the need to take the derivative of an 
expression in one frame that has been derived by differentiation in another frame. 
In such cases we again invoke the transport theorem. For example, given a vector 
obtained by taking the derivative of a vector u in the B frame, we use the transport 
theorem and obtain 

One can show that 

When more than one derivative is taken in different reference frames, changing the 
order of the differentiation gives digerent results. This applies not only to differen- 
tiation with respect to time, but to differentiation with respect to other variables as 
well. Consider, for example, a vector u that is a function of the variables ql, 92, . . ., 
q,. We denote the time derivative of u in frame A by 



When considering the second derivatives of u, one can show that 

Also, be aware that a vector u may be a function of a variable qj in one reference 
frame and not in another. 

Consider next the derivative of Eq. [2.6.23]. We differentiate each term individ- 
ually to find the angular acceleration. The first term is measured from the inertial 
frame, thus its derivative is straightforward. To obtain the derivatives of the subse- 
quent terms we use the above relation. For example, for two intermediate frames, 
we have 

The expression for the angular acceleration for the general case of several frames 
is left as an exercise. 

We end this section with an important note. It is crucial that one be able to dis- 
tinguish between the reference frame in which a derivative is taken and the coordi- 
nates of the reference frame in which the differentiated vector is resolved. Usually, 
one expresses a vector to be differentiated in a particular reference frame in terms 
of the unit vectors of the frame. However, exceptions to this general procedure do 
exist. 

Example I Consider the robot arm in Example 2.7 and find the angular acceleration of the disk, given 
2.9 that o l  and ~ 3  are both constant. 

Solution 
From Example 2.7, the angular velocity of the disk is written as 

0 = 0 1  + 0 2  + 0 3  

in which 

0 1  = 0.5K = -0.048271 - 0.38303 + 0.3178k rads 
0 2  = 0.08778j rads 0 3  = 7i radk 

We use the transport theorem to get the angular acceleration, which gives 

so that the angular acceleration becomes 



We now evaluate the individual terms in the above equation. Given that B ( t )  = 5 cos 2t 
rad, we have at t = 3 s 

IT 7T 
&el = - - cos 2tj rad/s2 = - - cos 6j rad/s2 = -0.6033j rad/s2 5 5 

ol X (02 + w3) = (-0.048273 - 0.3830j + 0.3178k) X (7i + 0.08778j) 

= -0.02789i + 2.225j + 2.677k rad/s2 

0 2  X 0 3  = 0.08778j X 7i = -0.6145k rad/s2 [el 

Adding the individual terms, we obtain the total acceleration as 

a = -0.027891 + 1.622j + 2.063k rad/s2 If] 

Find the angular acceleration of the disk shown in Fig. 2.27, which is spinning at the constant / Example 
rate of 60/.rr rpm. The disk is attached to a collar, which is rotating at the rate of 311~ rpm, 2.1 0 
with the rotation rate increasing by 0.611~ rpdmin. A rod connects the disk to the collar and 
it is pinned to the collar. It makes an angle of 30" with the vertical, which is increasing at the 
constant rate of 18/.rr0/sec. Express the angular acceleration in terms of a reference frame 
attached to the collar. 

Solution 

We attach an x'y'z' coordinate system to the collar, with the Z = z' direction denoting the 
fixed vertical. The y coordinate attached to the arm is obtained by rotating the x'y'z' axes 
about the x' axis counterclockwise by an angle of 60°, so that j = sin 30°j' - cos 30°k'. We 
write the total angular velocity of the disk as 

3 
o,,~l, = - K rpm = k' rads = 0.1 k' rads 

IT 

18.10 18 IT 
~ , d / ~ ~ l l ~  = -I IS = - - if  rad/s = 0. li' rad/s 

7~ .rr (180) 

60 0 I 2IT wdiswrd = gj rpm = -(sin 30°jt - cos 30 k )- rads = j' - h k '  rads [b] 
IT IT 60 



To find the angular accelerations, we differentiate each of the angular velocity terms sep- 
arately. Since the angular velocity of the collar is measured from a fixed frame, its derivative 
is obtained through straightforward differentiation as 

The angular velocity of the rod is measured from a frame that is rotating with the angular 
velocity of the collar, so we can express the angular acceleration as 

(Yrod/collar = cbrod/collar rel + wcollar x OmdIcollar = 0 + O. lk' x O. lif = O.O1j1 rad/s2 [dl 
The angular velocity of the disk is relative to the rod; thus we can write its angular acceleration 
as 

J3 
= -0. li' + - j' + 0. lk' rad/s2 

10 [el 

Adding Eqs. [c]-[el, we obtain the total angular acceleration of the disk as 
a d i S k  = -0. lit + 0. 1832jf + 0. 1003kf rad/s2 If] 

Note that, as discussed before, this selection of the coordinate axes makes it much easier 
to visualize the motion than would a reference frame attached to the disk. 

Consider the two reference frames shown in Fig. 2.26. The position of point P is 
expressed as 

The vectors r p  and r~ are measured from the inertial frame, and r p l ~  is measured 
from the relative frame. To obtain the velocity, we differentiate Eq. [2.7.1] for 

We find the expression for Vp/B by means of the transport theorem as 

The difference in derivatives is because r p  and r~ are measured from the inertial 
frame, while r p l ~  is measured from the rotating frame. Introducing Eq. [2.7.3 1 into 
Eq. [2.7.2], we obtain the relative velocity expression, written 

The first term on the right side of this equation, VB, is known as the base velocity; 
it denotes the absolute velocity of the origin of the moving frame. The second term, 
V p l ~ , ,  , is known as the relative velocity, as it denotes the velocity of point P as viewed 
by an observer attached to the relative frame. The third term, o X r p / &  is called the 



transport velocity; it describes the change in the position vector r p l ~  as the relative 
frame rotates. 

Equation [2.7.4] can also be written in terms of a point Q, which is coincident 
with point P but is not moving with respect to the rotating frame. We write 

V P  = VQ + V P I Q  [2.7.S] 

where VQ is the absolute velocity of point Q, and V p l ~  is the relative velocity of P 
with respect to Q, having the forms 

VQ = V B  + 0 x ~ P I B  VPIQ = V P I B , ~  [2.7.6a,b] 

When analyzing the relative motion of two points both fixed on the same reference 
frame, the relative velocity term V p l ~  vanishes, P = Q represents the same point, 
and we use Eq. [2.7.6a] to relate the velocities. 

To find the acceleration of point P, we differentiate Eq. [2.7.4] once more, with 
the result 

Differentiation of the left side of Eq. [2.7.7] and the first term on the right side is 
straightforward: 

Differentiation of the second and third terms requires that we invoke the transport 
theorem for each of these terms. with the result 

Introducing Eqs. [2.7.8]-[2.7.9] into Eq. [2.7.7] and combining terms, we obtain 

a p  = + a x r p / ~  + X (O X rplB) + ~ P / B , ~  + 2 0  X V P I B , ~  [2-7-10] 

The term a X r p / ~  is due to the angular acceleration of the rotating frame, while 
o X (o X rplB) is the centripetal acceleration of point P. For the general case of 
three-dimensional motion o x (o X rplB) lies on the plane generated by the angular 
velocity o and r p l ~ .  For the special case of plane motion, the centripetal acceleration 
takes the form 

The fourth term a p l ~ , ,  = (TPIB),1 is the acceleration of point P as measured by 
an observer located on the moving frame. The fifth term, 2 0  X V p l ~ , , ,  is known as 
the Coriolis acceleration. It is due to two effects: a directional change in VPIB, , ,  and 
in o x r p l ~ ,  a change in magnitude of r p / B  Both terms contributing to the Coriolis 
effect arise because there is translational motion with respect to a relative frame. 



The direction of the Coriolis acceleration is perpendicular to the plane generated 
by o and (vP/B)rel9 SO that it always results in a change in direction from ( v ~ ~ ~ ) ~ ~ ~ ,  
as shown in Fig. 2.28. Even in cases when the magnitude of this acceleration is 
small, because it always causes a change in direction the Coriolis acceleration must 
be considered in the analysis of several systems. 

Equation [2.7.10] can also be expressed in terms of a point Q coincident with 
point P but not moving with respect to the coordinate frame as 

in which 

The term a~ is the absolute acceleration of point Q. The term a p l ~  is the accel- 
eration of point P due to its motion with respect to the reference frame. Unlike v p / Q ,  

it contains two terms. The difference is the Coriolis acceleration. 
When there is no motion with respect to the moving frame, such as with the 

motion of two points fixed on a rigid body, the relative motion equations reduce to 
Eq. [2.7.13a], and one replaces Q with P 

Now let us write the relative velocity and acceleration expressions using the 
notation introduced in the previous section. For the relative velocity expression from 
Eq. [2.7.4] we write 

and, for the relative acceleration from Eq. [2.7.10], we write 

with 

Plane of 
0, v 
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The most effective way of dealing with problems where more than one reference 
frame is involved is to systematically break the problem into several parts and to 
calculate the terms for each part individually. 

We next discuss two very important issues associated with the kinematics of rel- 
ative motion: how to select the origin of the relative frame(s), and how to select the 
orientation of the relative frame(s). There is no clear-cut answer to these questions. 
One guideline is to select, if possible, the origin and orientation of the relative frame 
so that it minimizes the number of expressions in the relative motion equations. Con- 
sidering Fig. 2.26, if B is selected so that it coincides with P (B = Q), then r p , ~  = 0. 
If B is selected such that it coincides with the origin of the coordinate system 0, then 
VB = 0 and a~ = 0. Another guideline is to select the relative frames so that the 
number of relative frames is minimized and the angles that have to be calculated are 
simple. The way to learn how to select reference frames is by gaining experience 
and solving problems. 

When there is more than one reference system involved, the relative motion 
expressions can become lengthy and complicated. One way to avoid confusion is to 
select a tabulation approach when obtaining the components of the relative motion 
expression. 

The platform in Fig. 2.29 is rotating with a constant angular velocity of o = 0.2 rads. Piv- I Examp1e 
oted on the platform is a tube oscillating according to the relationship 8(t) = 2 sin 2t rad. 2.1 1 
A particle of mass m slides without friction inside the tube. The particle is attached to the 
ends of the tube by a spring of constant k and dashpot of constant c. Find the velocity of the 
particle at t = 3.6 s, at which point it is given that y = 40 cm and y = -30 crnls. Also find 
a general expression for its acceleration. 

Solution 
Consider an X'Y'Z' coordinate system moving with the platform and an xyz coordinate sys- 
tem attached to the tube, as shown in Fig. 2.30. The Z' = Z axis is the vertical. When 8 = 0 ,  
the y and Y' axes coincide. The coordinate axes are related to each other by 

We have 

o = W K + ~ I '  = ~ i + w s i n 8 j + w c o s 8 k  r = yj v,, = jlj Cbl 

Figure 2.29 F igun  2.30 



Because the origins of the coordinate frames coincide, the relative velocity expression be- 
comes 

v = v I e ~ + o ~ r = j j + ( ( e + w s i n O j + w c o s O k ) ~ y j  

= - yw cos Oi + jj + +ek [el 

At t = 3.6s,0(3.6) = 0.4156rad, sin0 = 0.4037,cosO = 0.9149, b(3.6) = cos7.2 = 

0.6371 rads. Substituting in these values, we obtain for the velocity at t = 3.6 s 

v = -0.073191 - 0.3j + 0.254813 m/s [dl 

The relative acceleration expression for this problem is 

a = a I e l + a X r + o X ( o X r ) + 2 o X v K l  [el 

in which 

a, l=jj j  a = 8 i + w b c o s 0 j - w e s i n 0 k  C f I 

Note that we obtained the angular acceleration expression by direct differentiation of the 
angular velocity expression in Eq. [b], rather than using the transport theorem. It was possible 
to do this because in Eq. [b] the components of o were expressed in terms of the coordinates 
of the relative frame. 

We perform the cross products, writing 

Introducing these expressions into the relative acceleration, we obtain 

i: = (2wbys0 - 2jwcO)i + ( j ;  - b2y - w2yc28)j + (2jb + wZYsOcO + ey)k [h] 

Example I An airplane, shown in Fig. 2.31, is moving with a speed of 420 mph. A flight attendant who 
2-12 weighs 120 Ib is standing 15 ft from the center of mass. To avoid a turbulent region, the pilot 

initiates an emergency maneuver. The aircraft begins to pitch upward at the constant rate of 
0.1 radsec, and it begins to pursue a curved trajectory toward the left of the pilot with a radius 
of curvature of 30,000 ft. The speed of the center of mass of the airplane does not change with 
these maneuvers. Find the forces exerted on the flight attendant's feet if the attendant wishes 
to move forward with a speed of 2 ftlsec. 

Solution 

We consider two reference frames. The first frame is associated with the curved trajectory 
and has an angular velocity of 420(88/60)/(30,000) = 0.02053 rads. The second frame is 
attached to the airplane, and its angular velocity is the pitch rate of 0.1 r a d ~ . ~  At the instant 
considered, the two reference frames coincide. We can write the angular velocity and angular 

31n order to sim lify this problem, we do not consider any roll of the aircrah. In general, when an airplane makes a 
turn the pilot rolE the aircrah so that the resultant acceleration vector due to the turn and due to gravity lies as much 
as possible alon the local vertical direction, through the spinal cords of the passengers. This way, passengers 
experience less &.comfort. 
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acceleration as 

w = 0. l j  - 0.02053k rad/sec a = -0.02053k X 0. l j  = 0.0020533 rad/sec2 [a] 

We write the relative acceleration relation as 

and identify each term. The acceleration of the center of mass is due to the change in curvature 
and can be written as (60 mph = 88 ft/sec) 

or, in aeronautics terminology, 12.65132.17 = 0.3932g. The angular acceleration term is very 
small and can be ignored. The centripetal acceleration term becomes 

The next term, (aplB)rel, is zero, because we are assuming a constant speed for the flight 
attendant inside the aircraft. The last term is the Coriolis term, which has the form 

As can be seen from Eqs. [b] through [el, the dominant term in the acceleration is 
the normal acceleration due to the change in curvature. The Coriolis term has the smallest 
magnitude, and it is also in the direction of the gravitational attraction. The total accelera- 
tion is 

Let us now draw a free-body diagram of the flight attendant (Fig. 2.32), treating the 
attendant as a point mass. The forces that the airplane exerts on the flight attendant are trans- 
mitted by the normal force N and the friction forces F, and F,. Using Newton's second law, 
we have 

map = m(-0.1563i - 12.73j - 0.4k) = F,i + F,j + (mg - N)k Ib 191 

Figure 2.3 1 Figure 2.32 



Solving for the unknowns 

120 
N = rng + 0.4m = 120 + 0.4- = 121.5 lb 

32.17 

Note that the coefficient of friction between the attendant's shoes and the airplane floor 
must be large enough to permit the resultant of F, and Fy to be less than the normal force times 
the coefficient of friction. Even then, because of the large forces acting on the attendant, it is 
very difficult for the attendant to keep standing or to walk. The Coriolis acceleration makes 
the flight attendant feel heavier, and for someone further away from the center of mass of 
the airplane the centrifugal force becomes much larger. Even for passengers who are sitting 
down, any change in the curvature of the path of the airplane causes a substantial amount of 
discomfort. It is for all these reasons that pilots navigate aircraft such that the path followed 
by the center of mass of the airplane is as close to a straight path as possible and any angular 
velocity is very small. 

Exampla I Consider the robot in Fig. 2.33 mounted on a rotating shaft. The robot arm is attached to the 
2.1 3 shaft with a pin joint (in robotics terminology, a revolute joint). With a motion similar to that 

of an automobile antenna, a second arm can extend from the outer end of the first (in robotics 
terminology, a prismatic joint). Given that the shaft angle 8(t) and first arm angle 4(t) vary 
with the relationships 8(t) = 0.2t rad, +(t) = 7d4 (1 + sin ~ t )  rad and that the second arm 
is extending with the relation r = 3t cm, find the angular velocity and angular acceleration 
of the robot arm as well as the velocity and acceleration of the tip. 

We solve this problem using two approaches. In the first approach we use two relative frames, 
one attached to the shaft and rotating with e ,  the other attached to the robot arm and rotating 
with with respect to the shaft. In the second approach we use a single relative frame attached 
to the robot arm. 

First Approach The two relative coordinate frames are denoted by H and B, as depicted 
in Fig. 2.34. The inertial frame is denoted by A. The H frame is attached to the rotating shaft, 

Figure 2.33 Figure 2.34 
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and the B frame is taken such that the bz axis is along the extending arm and attached to the 
tip of the first arm. The angular velocities of the reference frames can be written as 

?12 
AoH=1)h3=0.2h3rad/s  H o B = $ h  1 - - - cos r t  hl  rads 

4 [a1 

Considering first the B frame, we can express the position and relative velocity of P as 

TP,B = 0.03tbz m Bvp = 0.03b2 id s  Cbl 

where the unit vectors of the B and H frames are related by 

bl = hl b2 = sin 4h2 - cos 4h3 b3 = cos 4h2 + sin 4h3 [el 

The relative velocity expression for the H and B frames is 

H ~ p  = H ~ B  + H ~ B  X r p / ~  + B ~ p  Id] 

in which 

H v ~  = 0.6 $b3 rads Bvp = 0.03b2 m/s 

HoB X r p / ~  = $bl X 0.03tbz = 0.03t$b3 m/s 1.1 
so that 

H ~ p  = (0.6 + 0.03t)$b3 + 0.03b2 m/s [f 1 

Now transfer the velocity of point P to the inertial frame. The relative velocity equation 
between the A and H frames is 

Noting that a3 = - cos 4b2 + sin 4b3, we obtain for the velocity of point P 

A ~ p  = -1) sin+(0.6 + 0.03t)bl + 0.03b2 + (0.6 + 0.03t)$b3 m/s [I] 

Second Approach The angular velocity of the single frame is 

AoB =A H o + HoB = 1)(t)h3 + &t)bl = $bl - 1) cos 4b2 + 1) sin 4b3 [il 
and the relative velocity expression is 

A v ~  = X ~ B I H  = ($b~ - 1) cos 4b2 + 1) sin 4b3) x 0.6b2 = -0.61) sin 4bl  + 0.6$b3 
A B o x ~ P I B  = ($b~ - 1) cos 4b2 + 1) sin 4b3) X 0.03tb2 = -0.03t1) sin 4bl + 0.03t$b3 

'VP = 0.03b2 m/s [I] 

which, when added up, yields Eq. [i]. Note that if we attach the relative frame to point H, 
A~~ = 0. Or, if the relative frame is attached to the tip of the protruding arm, then r p / ~  = 0. 



Acceleration To find the acceleration of point P, let us use the single coordinate frame 
approach. The angular acceleration between the A and B frames has the form 

A a B  = A a H  + HcwB + AOH x H O B  
11111 

in which 

7r3 
AcwH = 0 HaB = - - sin nthl  

4 
AmH X ' m B  = oh3 X $hl = 8,$h2 = 0 . 0 5 ~ ~  cos r t h 2  [nl 

so that we find 

7r3 
A a B  = - - sin nthl  + 0.057r2 cos 7rth2 

4 [ @ I  

The expression for the acceleration then becomes 

= AaB + AcwB x r p l B  + AmB x A m B  X r p l ~  + 2AmB x B v p  + B a p  [ P I  

The term Bap = 0, as Bvp is constant in the B frame. We find the absolute acceleration of 
point B using 

AaB = AaB X ~ B / H  + X X ~ B / H  141 

so that the first three terms on the right in Eq. [p] can be expressed as 

AaB + AcwB x r p l ~  + AmB x x rplB = AaB x r p l ~  + AmB x AmB x r p l ~  [r]  

Evaluating the individual terms, we have 

sin ntbl  + 0.057r2(sin 4b2 + cos 4b3) 

5-3 
-0.05n2 cos 4b l  - - sin ntb3 mls2 

4 I 
X AmB x ~ P I H  = ($bl - 8, cos 4b2 + 8, sin 4b3) x ($bl - 8, cos 4b2 + 8, sin4bn) 

= (0.6 + 0.03t)t-8,$ cos 4b l  - (6' + 8,' sin2 4)b2 - 8,' cos 4 sin 4b3] 

2 A ~ B  X ' v p  = 2($bl - 8, cos 4b2 + 8, sin4b3) X 0.03b2 = 0.06$b3 - 0.068, sin4blm/s2 
1.1 

so that the acceleration of the tip of the robot becomes 

sin 7rt + 8,' cos 4 sin 4 
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In many cases, either by choice or by necessity, one observes motion from a mov- 
ing reference frame and manipulates the equations of motion within that reference 
frame. Typical examples are motion with respect to the earth and measurement taken 
from a moving platform. When one cannot measure absolute velocities and accel- 
erations, one has to take relative measurements and to use the relative velocity and 
acceleration equations to find the actual accelerations. Similarly, when analyzing or 
integrating the equations of motion, one has to use the variables associated with the 
relative motion. 

We first apply the relative motion equations to Newton's second law, which is 
valid for inertial frames. Given the inertial and relative coordinates from the preced- 
ing section, we write the equations of motion for P as 

F = map = m(aB + a p l ~ , ~  + (Y X rplB + 0 X 0 X r p / ~  + 2 0  X VplB,,,) 
[2.8.l] 

where F is the sum of all external forces acting on the particle. We can rewrite the 
above equation as 

m a p l ~ , ~  = F + F* [2.8.2] 

where F* = -m(aB + CY x r p / ~  + w X 0 X rp/B + 2 0  X vplB,,), which is the resultant 
of all forces that need to be considered due to the motion of the moving reference 
frame. In general, it is preferable to write the equations of motion by placing on the 
left side every term that includes variables associated with the relative frame. Doing 
so, we obtain for Newton's second law 

A word of caution is in order. Often, we analyze motion with respect to a moving 
frame by assuming that the motion characteristics of the moving frame are known 
and that the motion of the body with respect to the relative frame does not affect the 
motion characteristics of that frame. For example, for a car traveling on the earth, 
we can safely assume that the motion of the car does not affect the rotation of the 
earth. While this assumption is valid where the mass of the body to which the relative 
frame is attached is much larger than the mass of the body whose motion is analyzed, 
the assumption begins to lose its validity as the bodies involved become comparable 
in mass. Be cautious when assuming that the motion observed from a relative frame 
does not change the characteristics of that frame. 

One of the most common applications of analyzing motion from a moving frame 
is motion with respect to the rotating earth. As stated earlier, motion over short dis- 
tances or with small velocities and involving short time periods can be analyzed rel- 
atively accurately without considering the motion of the earth. Otherwise, the earth's 
rotation needs to be included in calculations. 

Consider a particle near the surface of the earth, as shown in Fig. 2.35, and attach 
the moving frame B to the surface of the earth using an xyz coordinate system. The 
z direction is the vertical, the x direction is toward the north, and the y direction is 



North pole 

x (North) 

Figure 2.36 

toward the west. We assume that the earth is rotating about its own axis with constant 
angular velocity In. Fig. 2.36 shows the coordinate system from the side view. To 
calculate the spin rate of the earth, we note that it takes the earth about 365.25 days to 
orbit the sun, and that the earth rotates about its own axis at the rate of one revolution 
per day.4 Both rotations are counterclockwise, which leads to 

so that, considering Fig. 2.36, one can describe the angular velocity of the earth in 
vector form as 

= In(sin Ak + cos hi) [t.8.5] 

where A is the latitude. We ignore the angular acceleration of the earth and set a = 0. 
This assumption and the assumption that the rotation rate of the earth are constant 
are not exactly true. The earth's rotation about itself is not along a fixed axis. The 
axis about which the earth rotates exhibits a small wobbling motion with a period 
of 433 days, primarily because the earth is not totally rigid and not totally spherical. 
The rate of the earth's rotation is not constant; it is slowing down at an extremely low 
rate. In addition, we ignore the inclination between the equatorial plane (the plane 
generated by the equator) and the ecliptic plane (the plane generated by the orbit of 
the earth around the sun). We also ignore any subsequent relative motion of the sun 
with respect to the fixed stars. 

4The measured orbital period of the earth is 365.256 360 5 do s The difference in the third decimal place from 
the commonly used value of 365.25 days leads to a difference ordne day about every 150 years. The Gregorian 
calendar was adopted to compensate for this difference. In this system, in a 400yeor period, three years that 
normally should be leap ears are not considered as leap years. These years are selected at the beginning of 
centuries. For example, i e  year 2000 C.E. is a leap year, while the years 2100, 2200, 2300 will not be 
considered as leap years. The year 2400 will be a leap year. 
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Using these assumptions, we calculate acceleration of a point on the surface of 
the earth (origin of the relative frame) as 

where r e  = rek, denoting the vector from the center of the earth to the surface of 
the earth. Using Newton's second law, the absolute acceleration of point P is written 
as 

map = F + Fi 12.8.71 

where Fi is the gravitational force and F denotes the sum of all other external forces 
acting on the particle. Introducing Eqs. [2.8.6] and [2.8.7] into Eq. [2.8.3], we obtain 
the equations of motion in terms of the relative coordinates as 

As discussed in Chapter 1, we include the centrifugal force - m a  X ( a  X re) in 
the gravitational force and define the term F, as the augmented gravitational force 
and approximate it as 

This simplification is possible because the radius of the earth is almost a constant, 
making the term X ( a  X rB) = R2r,(- cos2 Ak + sin A cos Ai) nearly constant 
in magnitude. The component along the vertical (z direction) is used to augment 
the gravitational force. The component in the x direction (North) is usually ignored. 
The maximum value of the centripetal acceleration is R2re  = 3.39 cm/s2, which is 
achieved at the equator. 

The effect of the centripetal acceleration is to make the earth more squat. How- 
ever, because the earth is not made up of fluid only, the flattening occurs mostly 
around the equator. Around the equator, the combined effects of flattening and cen- 
tripetal acceleration make the value of g about 0.53% less than its value at the poles. 

One can then write the equations of motion of a particle in the vicinity of the 
earth as 

m a p l ~ ~ ,  + 2 m a  X VPIB,, + m a  X ( a  X rplB) = F - mgk 12.8.1 01 

Writing the equations of motion in terms of relative quantities is mathematically 
equivalent to applying a different force than the external forces. The equations of 
motion can be written as 

where the effective force Feff denotes the force felt on the surface of the earth. It has 
the form 



After all the simplifications have been made with regard to the nature of the 
angular velocity of the earth and with regard to gravity, the difference between the 
actual and effective forces consists of a centrifugal force, - m o  X ( o  X rplB), and the 
Coriolis force, - 2 m a  X vpl~,,. The centrifugal force is very small: it is a function 
of the square of the earth's rotational rate, and rp/B is usually very small compared 
to the radius of the earth. 

The Coriolis force has a distinctively more pronounced effect. The magnitude of 
the Coriolis force is dependent on both the velocity of the particle and on the latitude. 
Considering Eq. [2.8.5], for a particle moving in the east-west direction, maximum 
values of the Coriolis force are observed at the North and South Poles. The maximum 
value of the Coriolis force per unit mass is 2 a v  = 1.5 X 10-~v, where v is the speed 
with respect to the earth. 

While the magnitude of the Coriolis force is very small, its direction is always 
perpendicular to the velocity; thus, this force causes a change in direction. If there 
are no significant forces acting perpendicular to the velocity, the effect of the Coriolis 
force builds over time. The Coriolis force for the Northern Hemisphere is depicted 
in Fig. 2.37. It causes a particle to veer to the right. Note that this analysis ignores 
the vertical component of the Coriolis force, as this component is much less than the 
effect of gravity. 

The Coriolis effect is used to account for several kinds of natural and physical 
phenomena. Pertinent to weather analysis, the motion of air masses in the atmo- 
sphere is affected by the Coriolis force. For example, in the Northern Hemisphere, 
the spin of the air masses in cyclones and hurricanes is counterclockwise as shown in 
Fig. 2.38. A hurricane occurs when a low pressure center attracts air particles inward 
with large speeds. In the Southern Hemisphere, the spin of a cyclone is clockwise. 
Rossby waves, which include the Coriolis effect, are widely used to predict wave 
motion in the oceans as well as for weather analysis. The motion of projectiles such 
as missiles is affected substantially by Coriolis forces. And the Coriolis effect influ- 
ences the whirl of water as it goes down the sink. 

Low pressure & 
/ L (North) 

\ Northern Hemisphere 

Figulv 2.37 Coriolis force Figure 2.38 Hurricane formation 



We next consider the motion of a particle of mass m acted upon by an external 
force F = F,i + F y j  + F z k .  Writing the position vector as r p , ~  = xi  + yj + zk and 
introducing these terms into Eq. [2.8.10], and separating into components in the x, 
y, and z directions, we obtain 

We can perform a qualitative analysis to investigate the magnitudes of the com- 
ponents of the motion with respect to the rotating earth. Consider, for example, the 
case of free motion, F,  = F y  = F, = 0 and a particle thrown upward, with ini- 
tial conditions in the z direction only. Because R is a small quantity, terms of order 
Q, namely the Coriolis terms, will dominate terms of order Q2. We thus ignore the 
centrifugal terms. In Eq. [2.8.13c], the gravitational acceleration g will dominate 
the response. We conclude that the component of the motion in the z direction is of 
order 1. 

From Eq. [2.8.13b], the response in the y direction will be influenced by the 
motion in the x and z directions. That is, 

Investigation of Eq. [2.8.13a] shows that the component of the motion in the 
x direction is influenced by the motion in the y direction and can be considered as 
being of order O(x) = O(RO(y)). This implies that motion in the x direction will be 
much smaller than the motion in the y direction. Hence, from Eq. [2.8.14], motion 
in the y direction will be dominated by the motion in the z direction and it will be of 
order R. It follows that the motion in the x direction will be of order R2. Because 
the y axis denotes the west and the x direction denotes the north, for a freely moving 
particle the Coriolis effect will be much more significant in the east-west direction, 
and much less along the north-south direction. 

The results of the above dimensional analysis will be different when there are 
external forces in the x ,  y, or z directions and for initial conditions. 

Find the equation of motion of the mass sliding in the tube in Example 2.11. I Example 

Solution 2.14 

We will make use of Eq. [2.8.3]. We introduce the acceleration expression from Eq. [h] of 
Example 2.11 into Eq. [2.8.3], which yields 

[m(ha)ysO - 2w9ycO)i + m(j; - eZy - ~ ~ y c ' O ) j  + m(2ye + wZysOcO + 8y)k] = F 
[a1 

To find the forces acting on the mass, we draw a free-body diagram (Fig. 2.39). The 
forces acting on the particle can be classified into three groups: 



1. Gravity: -mgK = -mg sin Oj - mg cos Ok 

2. Normal reaction forces that the tube exerts on the particle: Fxi + F,k 

3. Spring and dashpot: -(ky + cy)j 

The total force thus becomes 

F = F,i + (-mg sin 6 - ky - cj) j  + (F, - mgcos 0)k [bl 

The reaction forces arise from the fact that the particle is constrained to move inside the tube. 
Introducing Eq. [b] into Eq. [a] and separating into the components along the x, y, and z 
directions, we find the force balances to be 

In x direction: m(2dys in0  - 2weycos0) = F, [@I 
In y direction: m ( j i - 8 2 y - w 2 y c o s 2 0 ) = - m g s i n O - k y - c y  [dl 
In z direction: m(2ji) + 02 sin 0 cos 0 + 8 y) = F, - mg cos 0 1.1 

Of the three force balances, Eq. [dl represents the equation of motion and Eqs. Ic] and 
[el give expressions for the reaction forces Fx and F,, that is, the constraint forces. Note that 
we have a single degree of freedom, because the motion of the platform and tube are defined 
as known quantities. The only variable is the motion of the particle inside the tube, described 
by y. In essence, Eqs. [c]-[el represent an equation of motion and two constraint equations. 

As stated earlier, it is customary to write the equation of motion by placing all of the 
dependent variables on the left side of the equation. Doing so, we rewrite Eq. [dl as 

mj; + c j  + (k - me2 - m2 cos2 6)y = -mg sin 6 If1 

Example I MOTION ANALYSIS USING PERTURBATION THEORY Equations [2.8.13] 
2.1 s are a set of nonlinear equations, which cannot be integrated analytically. If quadratic terms in 

the angular velocity R are neglected, these equations become linear. Their qualitative anal- 
ysis requires solution of an eigenvalue problem, and their integration requires simultaneous 
integration of three equations. The integrals of the motion for this set of equations do not give 
much additional insight. One can conduct a numerical integration of the equations of motion, 
but doing so gives answers for the particular set of forcing and initial conditions. It turns out 
that there is yet another analytical approach to analyzing the equations of motion. Because fl 
is a very small quantity, Eqs. [2.8.13] can be analyzed by means of a perturbation approach 
by treating R as the perturbation parameter. 
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Here, we cany out what is known as a straighqonvard expansion and demonstrate per- 
turbation analysis.5 We assume that the solutions in x, y, and z can be expressed in a pertur- 
bation series in terms of the perturbation parameter R as 

where the subscripts indicate the order of the solution (zeroth, first, second, . . .). Given the 
initial conditions x(O), x(O), y(O), y(O), z(O), z(O), we consider them as the initial conditions 
associated with the zeroth-order problem. All initial conditions associated with the higher- 
order solutions are zero. Substituting Eqs. [a] into Eqs. [2.8.13] and neglecting terms of order 
higher than R2,  we obtain 

jto + a x ,  + R2x2 + .. .  - 2RsinA(yo + Ryl  + ...) 
F* - R2(xo sin2 A - zo sin A cos A + . . .) = - 
rn 

yo + f ly1 + f12ji2 + . . . + 2R(x0sinA + R x l  sinA 

FY - iocos A - R i l  cos A + . . .) - R2(yo + . . .) = - 
rn 

Collecting terms of like orders in R ,  we obtain a set of linear differential equations in 
the form 

Order R 0  

Order fl 

X1 = 2 sin Ayo 

jil = -2(xo sin A - io cos A) 

i'l = -2cosAyo 

Order R 2  

X2 = 2 sin A j l  + xo sin2 A - zo sin A cos A 

yz = -2(x1 sinA - il cos A) + yo 
t.2 = -2 cos Ayl + z.0 cos2 A - xo sin A cos A [el 

'The field of analysis is very broad and several perturbation techniques exist. An indepth treatment 
of the subject is beyond the scope of this text. The straightforward expansion we use here is the simplest form of 
perturbation expansions. 



We observe that xo and yo depend on the external force, and zo depends on both the external 
force and gravity. The first- and second-order equations indicate which terms dominate the 
motion. The order R equations are due to the Coriolis effect, and the order R 2  equations are 
due to both Coriolis and centrifugal effects. 

Let us select the case of projectile motion, and consider a projectile launched in the 
Northern Hemisphere with speed v toward the west and at an angle of 8 with the vertical. We 
have the following initial conditions: 

We assume that the external force consists of gravity only, neglecting the effects of wind 
resistance. The zeroth-order problem yields 

f o = O  xo(0)=O f o ( 0 ) = O  + x o ( t ) = O  

yo = 0 yo(0) = 0 yo(0) = vsin8 3 yo(t) = v sin(8)t 
io = -g zo(0) = 0 io(0) = vcos 0 3 zo(t) = v cos(8)t - gt2/2 [g] 

Recalling that the higher-order solutions all have zero initial conditions, substitution of the 
zeroth-order solution into the first-order equations yields 

f = 2 sin Ayo = 2v sin A sin 8 + xl (t) = v sin A sin(8)t2 

j4 = -2(f o sin A - io cos A) = 2 cos A(v cos 8 - gt) + y (t) = cos A(V cos(8)t2 - gt3/3) 

ZI=-2cosAyo=-2vcosAsin8 3zl ( r )=-vcoshsin(8) t2  
Chl 

Combining Eqs. [g] and [h], we obtain the first-order approximation to the solution as 

x(t) = Rv sin A sin(8)t2 

y(t) = v sin(8)t + R cos A 
3 

This above solution is valid for 0 5 t 5 tf, with tf denoting the time at which the projectile 
falls to the ground. The first-order approximation to tf can be found by setting z(t) = 0 in 
the above equation, which gives 

which yields the final time as 

v cos 8 
tf = 

g/2 + Rv cos A sin 8 

Note that in the absence of the Coriolis effect, the final time becomes the well-known re- 
sult of tf = 2v cos 8/g. The Coriolis effect, for this particular set of initial conditions, reduces 
the time the projectile stays in the air. 

The Coriolis deflection in the x direction can be found by introducing the expression for 
the final time to the response, with the result 

v cos 8 
x(tf) = R v s i n ~ s i n O t ~  = h s i n  Asin8 

gl2 + Rv cos A sin 8 



As expected, the magnitude of x(tf) is dictated by the latitude angle A. In the Northern Hemi- 
sphere, where A is greater than zero, x(tf) is positive, indicating a Coriolis deflection to the 
right. By contrast, in the Southern Hemisphere, where A is negative, x(tf) is less than zero, 
indicating a deflection to the left. These results agree with the discussion on the Coriolis 
deflection in the previous section. 

FOUCAULT'S PENDULUM Another interesting application of motion with respect I Example 
to the rotating earth is the Foucault pendulum (Fig. 2.40). This pendulum consists of a large 2.1 6 
concentrated mass, usually in the form of a sphere, suspended from a very high ceiling by a 
thin wire.5 As the pendulum swings, its swing plane rotates slowly in the clockwise direction. 
This rotating motion may seem hard to explain, because the motion of a pendulum is expected 
to be along a fixed plane or a fixed elliptical path. (The initial conditions dictate whether the 
swing motion is along a plane or an ellipse.) 

We see the swing plane of the pendulum rotate because of the rotation of the earth and 
the resulting Coriolis acceleration. To an observer in an inertial frame, the pendulum executes 
swing motion along a fixed plane or a fixed elliptical path. 

From the free-body diagram in Fig. 2.41, the external forces F,, F,, and F, are due to 
the tension in the wire. Denoting the tension in the wire by T ,  and its components by T,, T,, 
and T,, we have 

where x, y, and z denote the coordinates of the pendulum. We next make use of the great 
length of the pendulum and assume that (L - z)lL - 1. We hence treat the amplitude of the 
motion in the z direction as negligible, and write zlL .= 0, i = 0, i' = 0. In essence, we are 
assuming that the pendulum is moving on the xy plane only. In addition, we assume that 

Figure 2.40 Figure 2.4 1 

51n the United States, there is a Foucault pendulum in the United Nations building in New York City, at the American 
Museum of Natural History in Washington, D.C., at the Franklin Institute in Philadelphia, and at the Museum of 
Science and Industry in Chicago. 
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because the wire is very thin, its mass is negligible compared to the mass of the sphere, 
and that air resistance is negligible. Using these assumptions, introducing Eqs. [a] into Eqs. 
[2.8.13], and neglecting terms quadratic in R ,  we obtain 

Rewriting Eq. [c] as T = m(g + 2Ry cos A), introducing it into Eq. [b] and ignoring terms 
quadratic in x and y, we obtain the linearized equations of motion as 

g g x - 2 R s i n A y + - x = O  j i+2Cls inAx+-y=O 
L L [dl 

Equations [dl represent a gyroscopic system where the rate of rotation is governed by 
R sin A. We note that R sin A is the component of the angular velocity of the earth in the 
vertical direction. To analyze the nature of the response, we assume a solution in the form 

where X and Y are amplitudes. Introducing Eqs. [el into Eqs. [dl and collecting powers of 
e'"', we obtain 

In order for Eq. [f] to hold, the determinant of the coefficient matrix must vanish. Setting 
the determinant equal to zero leads to the characteristic equation 

Solving the characteristic equation for w, we obtain four values as 

The response x(t) and y(t) is harmonic with frequency w. The quantity inside the radical in 
Eq. [h] is always positive. It follows that all values of w are real and very close to each other. 
After carrying out the algebra, the response can be expressed in the general form 

x(t) = C1 cos(w,t + 41) + C2 c0s(w2t + 42) 

y(t) = -C1 sin(wlt + 41) + C2 sin(w2t + 42) [il 
where C, and +i (i = 1,2) depend on the initial conditions, and 

are the frequencies. Because the angular velocity of the earth is much smaller compared to 
glL, glL dominates the roots of the characteristic equation. Indeed, approximating w 1 and w2 
using a Taylor series expansion, we get 



If we ignore the rotation of the earth and set R = 0, then wl = ~ 2 ,  and it becomes clear 
from Eqs. [i] that the motion of the pendulum is an ellipse or a straight line. 

We next examine the effects of the rotating earth. We concluded earlier that the two 
roots ol and wz are very close to each other. The type of motion of a system when two of 
its frequencies are very close to each other is the classical case of the beat phenomenon. We 
introduce the expressions 

where w, is the average frequency and wb the beat frequency. The average frequency is the 
frequency of the pendulum as observed from an inertial reference frame (of order 1) plus a 
very small change (of order R 2 )  due to the rotation of the earth. The beat frequency is of 
order R ,  the same as the coefficient of the middle terms in Eqs. [dl and the component of the 
angular velocity of the earth in the z direction. One can express wl and w2 in terms of the 
average and beat frequencies as 

Without loss of generality, we consider the case where the local motion of the pendulum 
is on a swing plane. For this, we specify the initial conditions on the velocity as 

Furthermore, at t = 0 only one of x or y has to be nonzero. We select the swing plane as the 
xz plane, so that the remaining initial conditions are 

Introducing these initial conditions into Eqs. [i] and solving, we obtain 

Using Eqs. [I] and [m], the constants [p], as well as the trigonometric identities cos(a + b) = 
cos a cos b - sin a sin b, sin(a + b) = sin a cos b + cos a sin b, we can express Eqs. [i] as 

W b  . -C(cosw,t sin wbt - - sm W , ~ C O S W ~ ~ )  
Wa 

[(I] 

To get a feel for the motion, we note that wb is an order of magnitude smaller than w,, and 
we ignore the terms with the coefficient wblwa from the right side of the above equations. This 
simplification leads to an interesting explanation of the motion to a first-order approximation: 
The motion of the Foucault pendulum can be explained as an amplitude modulated swing 
motion for both x and y where the amplitude of the swing varies with the rate wb = R sin A. 



X 

Swing plane of pendulum 

Figure 2.42 Rotation of Foucault's 
pendulum 

Furthermore, if we take the ratio of y( t )  over x( t ) ,  we obtain 

tan(wbt) = - tan(a sin A t )  

which indicates that the plane of the pendulum rotates at the angular rate wb = f l  sin A, as 
depicted in Fig. 2.42. Because of the negative sign, the direction of rotation in the Northern 
Hemisphere is clockwise and opposite to the rotation of the earth, a conclusion we can visu- 
alize easily. One intuitively expects the pendulum to rotate in the opposite direction of the 
rotation of the earth. While the terms that were ignored in Eq. [r] change this interpretation 
slightly, the main result is the same. 

At the North Pole, as A becomes 90°, the Coriolis effect is the most pronounced. At the 
equator, the Coriolis effect disappears. 
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1. A coordinate system XYZ is transformed into a coordinate system x y z  by the 
following series of transformations: First, a counterclockwise rotation of 45" 
about the Y axis, resulting in the x'y 'z '  coordinate system, and then a clockwise 



rotation of 30" about the x' axis, resulting in the x y z  coordinate system. Find 
the coordinates in the inertial frame of a vector which originally is r = 21 + 35 
and moves with the transformed coordinate system. Then, find the components 
of a vector p = -3i + 4k in terms of the inertial system and the components of 
the vector v = -4j + 1.2K in both the XYZ and x y z  coordinate systems. 

2. A coordinate system XYZ is transformed into an x y z  coordinate system, first by 
a rotation of O 1  about the Z axis, which gives the x'y 'z '  coordinates, and then 
by a rotation $2 about the y' axis. Express the unit vectors i, j, and k and their 
derivatives in terms of the unit vectors of the XYZ coordinates. 

3. Given the column vector {q}  = [ql 42 qg q4IT, the matrix [Dl as 

and the quadratic form S = {qlT [ ~ ] { q } ,  evaluate S. Then, calculate dSld{q} and 
show that the value you obtain is identical to what would be obtained using Eq. 
[2.3.20]. 

4. The motion of the double pendulum in Fig. 2.43 is described by the angles 
and 02.  Find expressions for the position vector r associated with the motion of 
the tip of the pendulum, as well as the velocity v and acceleration a of the tip, 
using Eqs. [2.3.23]-[2.3.28], and verify Eq. [2.3.29]. 

5. Given the column vector {q}  = [ql q z ] T ,  the matrix [Dl is 



and the quadratic form S = {qIT [ ~ ] { q ) ,  evaluate S. Then calculate dSld{q) and 
show that the value you obtain is identical to what would be obtained using Eq. 
[2.3.21]. 

6. Show (independently of the arguments in this chapter) that the determinant of 
the direction cosine matrix [c] between two coordinate systems is always equal 
to 1. 

7. Two coordinate systems XYZ and xyz are related to each other as shown in 
Fig. 2.44. Find the direction cosine matrix between the two coordinate systems. 

8. The direction cosine matrix resulting from a 3-1-3 body fixed transformation (8, 
about x3, 62 about yl, and O3 about z3) is given below. Find the values of the 
rotation angles 01,  82, and 83. 

9. The rectangular box in Fig. 2.14 is first rotated clockwise by 15" about the line 
OA and then by 45" counterclockwise about line OB. Find the coordinates of 
point C after this rotation sequence. 

10. The rectangular box in Fig. 2.14 is rotated counterclockwise by 45" about a line 
passing through points A and B (viewed from B). Find the coordinates of point 
C after this rotation sequence. 

11. The rectangular box shown in Fig. 2.45 is rotated counterclockwise by an angle 
of 30" about the axis passing through points 0 and B. Find the coordinates of 
point A after this rotation in terms of the inertial coordinates. 

Figure 2.44 Figure 2.45 



12. Consider the double-link robot mounted on a rotating base shown in Fig. 2.46, 
with the angles 81 and 82 measured from the vertical. Find the position of the 
tip of the robot arm in terms of inertial coordinates when 4 = 30°, 01 = 60°, 
and 82 = - 15'. The XYZ coordinates are inertial. 

13. A robotic sander shown in Fig. 2.47 has a sanding disk that spins at the constant 
rate of 1500 rpm. The arms AD and DB, which are used to position the sander, 
make angles of 4 and + with the vertical. At the instant shown, their values 
are 4 = 90°, I,!J = 60°, and they are moving with the constant angular speeds 
of 6 = 0.2 rad/s and = -0.3 rads. Find the angular velocity and angular 
acceleration of the sanding disk in terms of inertial coordinates. 

14. Consider the airplane in Fig. 2.31. The airplane is moving with speed of 600 
mph in a curved trajectory p = 3000 ft. At the same time, the airplane is pitch- 
ing upwards at the rate of 0.1 rads (constant). The propeller is spinning with 
the constant counterclockwise angular rate of 4000 rpm. Find the total angular 
acceleration of the propeller. 

15. The disk shown in Fig. 2.48 rotates with angular velocity 8 2  = 0 2  = 15 radh 
and angular acceleration "2 = 1.2 rad/s2 about a rotating shaft. The shaft is 
bent, and it rotates with angular velocity w l  = 4 rads and angular accelera- 
tion hl  = -3 rad/s2. At this instant, the center of the disk coincides with its 
undeformed position. Find the angular acceleration of the disk. 

16. Find a general expression for the angular acceleration given the relation 
,‘I 0 ll = A W A ~  + A2mA3 + ... + A ~ g B .  

17. A single gimbal gyroscope (inner gimbal not moving), such as the one shown in 
Fig. 2.49, is used to measure the angular motion of vehicles. The spin rate of the 

Figure 2.46 Figure 2.47 



rotor is denoted by 4 while the gimbal makes an angle of 8 with the platform. 
The angular velocities of the platform are ox, wy,  and oz. Find expressions for 
the angular velocity and angular acceleration of the rotor using a set of relative 
coordinates attached to the outer gimbal. 

18. Find the angular acceleration of the momentum wheel in Example 2.6, given 
that all angular velocities are constant. 

19. Consider Problem 2 and solve for the angular velocity and angular acceleration 
of the moving frame using the transport theorem. 

20. The flywheel of the gyroscope shown in Fig. 2.50 has a constant angular velocity 
of w3 = 5000 rpm about its axis. The outer gimbal has an angular velocity of 
ol = 3 rad/s, which is decreasing at the rate of 1.8 rad/s2. The inner gimbal 
is at a position such that the angle between the outer gimbal axis and flywheel 
axis is 8 = 75", with 8, = 0 ,0  = 3 rad/s2. Find the angular acceleration of the 
flywheel. 

Figure 2.49 Figure 2.50 



A bead of mass m is free to slide on a hoop of radius R (Fig. 2.5 1). The hoop spins 
with a constant angular velocity C? about the vertical axis. Find the acceleration 
of the bead. 

Consider Example 2.1, and using the relative velocity and acceleration relations 
find the velocity and acceleration of a water particle as it exits the rotating sprin- 
kler. 
Consider Example 2.3. This time, the ant has started moving from point C along 
a circular path with point D as the center of the circle with constant speed v. 
Find the acceleration of the ant. 

A spring pendulum is attached to a rotating shaft by an arm of distance d, as 
shown in Fig. 2.52. At the instant shown, the shaft is rotating with the constant 
angular velocity 0 = 0.4 rads, 8 = 30°, 8 = 0.3 radls, 0 = 2 rad/s2. The 
length of the pendulum is L = 1.3 m and it is getting shorter at the constant rate 
of 0.1 mls. Given also is that d = 0.8 m. Find the acceleration of the tip of the 
pendulum. 
Consider the bent shaft in problem 17. Now, the shaft is bent such that its defor- 
mation can be expressed by the relation d(x) = 0.18 sin(rxI2) m, as shown in 
Fig. 2.53. The disk is located at x = 0.9 m. Find the velocity and acceleration 
of point B. Then derive an expression for the acceleration of an arbitrary point 
on the edge of the disk. Assume the angular velocity of w ,  is constant and the 
disk is of radius R. 

26. A hunter shown in Fig. 2.54 is aiming at a moving target with her rifle. The 
hunter is moving the rifle upwards with a constant angular velocity of 8 = 

10°/sec and pulls the trigger when 8 = 105". The bullet, which weighs 118 lb, 
leaves the barrel with a constant speed of 900 mph relative to the rifle. Find the 
total velocity and acceleration of the bullet. 

Figure 2.5 1 Figure 2.52 



Figure 2.53 Figure 2.54 

27. Consider the previous problem and find the average force exerted by the rifle on 
the hunter as the hunter pulls the trigger, assuming that it takes the bullet 0.01 
seconds to reach its speed of 900 mph. 

28. Consider the hunter in Problem 26 and find the velocity and acceleration of the 
bullet if the hunter is also turning at the constant angular speed of 4 = 15"Is at 
the instant the bullet is about to leave the rifle. 

29. Consider the two-link robot mounted on a rotating base in Fig. 2.46. Given that 
the base and arm angles vary with the relationships +(t) = 0.1 sin t rad, 8 1 ( t )  = 

0.3t rad, B2(t) = -0. lt2 rad, find the angular velocity and angular acceleration 
of the robot arms and the velocity of the tip at t = 2 seconds. 

30. A disk of radius R shown in Fig. 2.55 spins at the constant rate of w2 = 6, about 
an axle held by a fork-ended horizontal rod that rotates itself at the rate w I = 4. 
An ant is walking toward the center of the disk with constant speed u with respect 
to the disk. Find the acceleration of the ant as a function of the angle 8 and when 
the ant is at the edge of the disk (at point P). 

3 1 .  An airplane, shown in Fig. 2.56, is flying at a speed of 500 kmh. The airplane 
has a constant pitch rate (w,) of 0.05 rads and a constant roll rate (ox) of 0.01 
rads with no yaw, oz = 0. The trailing edge flaps are being extended to give 
the airplane more lift at the constant rate of 0.04 mls. Find the velocity and 
acceleration of point C on the flap. 

Figun 2.55 



Figure 2.56 

32. An airplane, shown in Fig. 2.56, is executing a circular turn with a radius of 
4000 m, while flying at a speed of 600 krn/h. The airplane has a constant pitch 
rate of o, = 0.04 rads and a constant roll rate of ox = 0.01 rads. The trailing 
edge flaps are being extended to give the airplane more lift at the constant rate 
of 0.05 mls. Find the velocity and acceleration of point Con the flap. 

33. Find the equation of motion of the bead in Problem 21 using Newton's second 
law. 

34. Figure 2.57 shows a bead of mass m sliding without friction over a thin wire 
shaped in the form of a parabola governed by the equation z = x2/2. The thin 
wire is rotating about the z axis with the constant angular velocity cR. There is a 
spring acting on the bead of constant k that deforms only in the vertical direction. 
Derive the equation of motion of the bead using Newton's second law. 



z (Vertical) 

35. A satellite in space has angular velocities ox,  o,, and o, about the x, y, and z 
axes, which are attached to the satellite at point 0, as shown in Fig 2.58. On 
the xy plane, making an angle of 30" with the x axis and going through 0, is a 
tube, inside which a particle slides without friction. The particle is attached by a 
spring and a dashpot to each end of the tube. The spring is unstretched when the 
particle is at point 0. Find the equation of motion of the particle, using Newton's 
second law. 

36. Consider a 90-ft-long bowling alley in Rio de Janeiro, Brazil. A bowler releases 
the ball with a constant velocity of 20 ft/sec, aimed directly at the pocket. What 
is the Coriolis deflection, and in which direction is it? 

37. Integrate the perturbation expressions to find the deflection of a stone thrown in 
the air vertically with speed v as it falls to the ground. Then compare this result 
with the exact solution. 



c h a p t e r  

This chapter serves three purposes. First, it extends the developments of Chapter 1 to 
systems with more than one particle. Second, it prepares the reader for the analysis 
of rigid bodies, addressing the most basic form of rigid body motion, that is, plane 
kinetics of a rigid body. Third, it introduces basic concepts in orbital mechanics. 

Analysis of systems of particles and rigid bodies is greatly simplified when the 
concept of center of mass is introduced. Newton's laws of translational motion and 
Euler's law of rotational motion for a single particle can be expressed in the same 
form for a system of particles as well as for rigid bodies in terms of the center of 
mass. 

This chapter is written such that one can skip it and go directly into analytical 
mechanics or into rigid body dynamics. This chapter actually belongs with Chapter 
1, as it is an extension of the basic concepts studied in that chapter. For pedagogical 
considerations the developments here are presented separately. 

The sections in this chapter on plane lunetics are intended to serve as a review 
of this special case of rigid body motion. This review is essential, especially for 
those who have not studied the plane kinetics of rigid bodies for a long time. Plane 
kinetics is relevant to Chapter 4, where we carry out the developments in analytical 
mechanics for particle motion or rigid body motion on a plane. 

In this section, we extend the developments in Newtonian particle mechanics to sys- 
tems consisting of several particles. Consider a system of N particles, as shown in 



Fig. 3.1. Each particle is of mass mi (i = 1,2, . . . , N) and is located by the displace- 
ment vector ri. The motion of the individual particles is not necessarily independent 
of each other, as there may be forces that relate the behavior of some of the particles 
to each other. 

We next introduce the concept of center of mass. Denoting by m the total mass 
of the system 

Denoting the center of mass by the point G and locating it by the vector r(;,,it is 
defined as 

We can express the position of the ith particle relative to the center of mass as 

in which pi is the vector connecting the center of mass with the ith particle. Intro- 
ducing Eq. [3.2.3] into Eq. [3.2.2], we obtain 

which leads to the conclusion 
N 

x m i p i  = 0 [3.2.8] 
i =  1 

One can differentiate the above equations to find expressions for the velocity and 
acceleration of the center of mass, which we will denote by vc and ac, respectively. 



Differentiating Eq. C3.2.21 with respect to time, we obtain 
. N 

which leads to the relation for the relative velocity 

From this we find the linear momentum p of a system of particles to have the 
form 

where pi = mivi (i = 1,2, . . . , N) is the linear momentum of the ith particle. 
In a similar fashion, we find the acceleration of the center of mass as 

leading to the relation for the relative acceleration terms 
N 

Next, we apply Newton's second law to a system of particles. We separate the 
total force acting on the ith particle into two parts:1 (I)  forces acting on the ith par- 
ticle from outside the system of particles, referred to as the external or impressed 
forces and denoted by Fi (i = 1,2, . . . , N), and (2) forces exerted on mi by the other 
particles within the system, referred to as internal or constraint forces, and denoted 
by Fi. Newton's second law for each particle is 

The N equations above are usually not independent of each other, so that it is not 
possible to analyze the motion of each particle individually. The number of degrees 
of freedom, denoted by n, is in general smaller than the number of coordinates (for the 
case here 3N). The reduction is due to the action of one particle on the other and from 
the restrictions in the motion of the particles that they cause. These actions constrain 
the motion of the particles within the system. The internal forces Fi (i = 1,2, . . . , N) 
are the forces associated with the constraints. 

Considering the system as a whole, we sum the force balances for all of the 
particles, thus 

I ' W e  will see this separation also in Chapter 4, when we study the principle of virtual work. 



Substitution of Eq. [3.2.3] to the left side of this equation yields 

Now evaluating the right side of Eq. r3.2.121, because F: (i = 1,2, . . . , N) rep- 
resents the forces that one particle exerts on another, their sum over all particles must 
be zero, by virtue of Newton's third law. Defining by F the sum of all external forces 
over all particles, 

we obtain Newton's second law for a system of particles as 

Another way of writing Newton's second law for a system of particles is to com- 
bine Eqs. [3.2.13] and [3.2.15] to yield 

2 miai = F C3.2.161 
i =  1 

Depending on the need and on the problem, one can use Eqs. [3.2.11], [3.2.15], or 
[3.2.16] to describe the force balance of a system of particles. 

- - - 

Exampk 1 The two masses ml and m2 are connected by a massless rod, and they are acted upon by a 
3.1 force P, as shown in Fig. 3.2. Write Newton's second law using Eqs. [3.2.11], [3.2.15], and 

[3.2.16], and evaluate if these equations qualify as equations of motion. 
Solution 

We first separate the two masses and draw free-body diagrams, shown in Fig. 3.3. We denote 
the displacements of the masses by xi and yi ( i  = 1,2). F, and F, are internal reaction forces. 
Using Eqs. [3.2.11] we obtain the four equations 

ml%l = Fx m 2 f 2  = -Fx m l y l  = F, + P m2y2 = -F,  la] 

in terms of the reaction forces. 

Figure 3.2 Figure 3.3 

(b) (c) 

Free body diagrams 



To use Eq. [3.2.15], we first need to locate the center of mass G. It is easy to show that 
the distance from ml to the center of mass is L 1  = mzLl(ml + m2). Considering the system 
as a whole, the only external force is P. Denoting the displacements of the center of mass by 
xc and yc, Newton's second law becomes 

Finally, we add the first two of Eqs. [a] and the last two, to obtain Newton's second law 
in the form of Eq. [3.2.16] as 

Let us now investigate the nature of these equations. Eqs. [a] have four equations and 
each of Eqs. [b] and [c] have two. To find if any of these equations qualify as equations of 
motion we calculate the number of degrees of freedom, which can be shown to be 3. Hence, we 
need three differential equations, void of internal forces, to describe the system. We conclude 
that Eqs. [b] represent two of the equations of motion, in terms of xc and yc, associated with 
the translation of the center of mass. Similarly, Eqs. [c] represent the same, but in terms of xi 
and yi ( i  = 1,2). We still need a third equation. 

To find the equations of motion, we need to find expressions for F, and F, in Eq. [a] 
and write one of XI, x2, yl, or y2 in terms of the other three variables. The procedure is 
tedious at best, especially if one realizes that this problem is ideally suited for treatment with 
angular coordinates and angular momentum balances. We discuss this approach in the next 
section. 

3.3 LINEAR AND ANGULAR MOMENTUM 
The linear momentum of a system of particles is defined in Eq. [3.2.8] and, as 
discussed in Chapter 1, it is an absolute quantity. We can integrate the equa- 
tions of motion for a system of particles over time to obtain impulse-momentum 
relationships. Indeed, following the approach in Section 1.6, we can integrate 
Eqs. C3.2.111, [3.2.15], and [3.2.16] over a time period ( t l ,  t2)  to obtain the linear 
impulse-momentum relationships, writing 

In order to solve for the individual velocities of each particle, one has to integrate 
all of Eqs. r3.3.1 b]. One may not be able to eliminate the Fl(t) terms directly; hence, 
a number of constraint forces may have to be solved for. 

When the sum of all external forces acting on a system of particles is zero or 
its integral over a time period is zero, the linear momentum of the system remains 



unchanged, which is the statement of the principle of conservation of linear momen- 
tum for a system of particles. The principle can be written as 

These equations are vector relationships. If the sum of forces or their integral 
over a time period is zero along a certain direction, the linear momentum is conserved 
only along that particular direction. For example, if linear momentum is conserved 
along a certain direction, and we express the unit vector in that direction by e, the 
conservation of linear momentum equations become 

N N 
mvG(tl) e = mvc(t2) e 1 mivi(tl) e = 1 mivi(t2) e [3.3.4] 

i=  1 i =  1 

Impulsive forces are treated the same way as in Chapter 1. 
We next define the angular momentum, or moment of the linear momentum, of 

a particle mi about a point B by 

where rai is the vector connecting point B and the ith particle (Fig. 3.1). Unlike linear 
momentum, which is an absolute quantity, angular momentum is relative: its value 
depends on the point about which it is calculated. The total angular momentum of a 
system of particles about point B is denoted by HE and is expressed as 

We next relate the angular momentum of a system of particles to the center of 
mass motion. From Fig. 3.1, we write rw in terms of the center of mass as rei = 
r c l~  + Pi (i = 1,2, . . . , N). For the ith particle, we write the angular momentum 
expressions as 

We sum the individual angular momenta about point B and obtain the angular mo- 
mentum of the system of particles about point B as 

Considering the definition of the center of mass, this equation reduces to 

where the first term on the right is associated with the motion of the center of mass, 
and the second is due to motion with respect to the center of mass. The second term 
is also referred to as the apparent angular momentum. Differentiation of Eq. [3.3.9] 



yields 

The moment about point B of all the forces acting on the ith particle is defined 
by 

MBi = r ~ i  x Fi = r ~ i  x mia; i = 1,2, . . . , N [3.3.11] 

The total of all of the moments acting on the system of particles can be obtained by 
summing the individual moments, which yields 

Invoking the definition of the center of mass, Eq. [3.3.12] reduces to 
N 

MB = ~ G , B  x m a ~  + 1 P; x mipi [3.3.13] 
i =  1 

The second term on the right side of Eq. [3.3.10] can be written as 

so that introducing Eqs. [3.3.13] and [3.3.14] into Eq. [3.3.10], we obtain the angular 
momentum balance for a system of particles as 

Equation [3.3.15] is a general relation describing the angular momentum bal- 
ance about a point B, whether B is fixed or moving. Under certain circumstances, 
and depending on the choice of point B, the equation can be further simplified: 

1. When the point B is selected as the center of mass, B = G, then VGIB vanishes 
and we have 

2. When the point B is fixed in an inertial coordinate frame, then VB = 0, the second 
term in Eq. [3.3.15] vanishes, and we get 

HB = MB [3.3.17] 

3. When VG/B is parallel to VG (for any reason), the cross product in Eq. [3.3.15] 
vanishes. This mathematical possibility is not of any physical significance. 

Integration of the moment balance over time yields the angular impulse- 
momentum relationships. For each particle mi and considering a fixed point B 
or about the center of mass (denoting such a point by D), 



Evaluation of this equation for each mass mi (i = 1,2, . . . , N) requires that the in- 
ternal forces acting on the particles be calculated, reducing its usefulness. When 
we consider the entire system and either a fixed point B or the center of mass G, 
summation of Eq. [3.3.18] over all particles yields 

If the applied moment about the fixed point B or center of mass is zero. or the 
integral of MD(t)  over the interval ( t l ,  t2)  vanishes, we have 

which is the principle of conservation of angular momentum for a system of parti- 
cles. 

Example I Consider Example 3.1. The system is initially at rest with 8 = 30' when it is hit by the 
3.2 impulsive force p. Find the velocities of the two masses immediately after the impulsive 

force acts. 

Solution 
It is more convenient to use center of mass coordinates XG and yc. Hence, Eqs. [b] in Example 
3.1 become two of the equations of motion. To find the third equation, we make use of the 
angle 8. We write the displacements of the two masses in terms of the coordinates of the 
center of mass as 

where 

so that the velocities of the masses can be written as 

vl = ( fc  + Llesin8)i + (yc - ~ ~ e c o s 8 ) j  

v2 = ( i G  - ~ 2 8 )  sin 8)i + ( jG  + ~ 2 8  cos 8)j [#I 
The position vectors from the center of mass to the individual masses are 

so that the angular momentum about G becomes (after a few manipulations) 

The moment generated about the center of mass is simply MG = - PL1 cos Ok, so we 
can say that the impulsive moment due to the impulsive force is MG = -PL1 cos 8. 

From the linear impulse-momentum theorem applied to Eqs. [b] of Example 3.1, we 
obtain immediately after the impulse 



The angular impulse-momentum problem yields the third equation 

Substituting Eqs. [f] and [g] into Eqs. [c] yields the velocities of the individual masses 
right after the impulse, thus 

This example illustrates the considerable advantage of using the center of mass. If we 
wanted to solve this problem using Eqs. [a] in Example 3.1, we would have to first solve for 
the impulsive reaction forces and substitute into the impulse-momentum relations, which is 
a tedious procedure. 

From Chapter 1, the incremental work done by all forces acting on the ith particle is 
denoted by dWi (i = 1,2, . . . , N) and has the form 

From the work-energy theorem, we write for the ith particle 

dWi = dTi [3.4.2] 

where Ti is the kinetic energy associated with the ith particle 

To express the work done by all forces on the system of particles, write dri in 
terms of the center of mass as 

Introducing this expression into Eq. [3.4.1] and separating the total force into its 
internal and external components, we obtain 

We find the total work done by all forces acting on the system by summing the 
individual incremental work for each particle and integrating over the displacement 
of each particle. Denoting by r i l  and ri2 the initial and final locations of the ith 
particle, the total work is 

N N 

W I - I  = 1 d ~ i  = 2 /'"(F~ + F:) (drG + d p , )  13.4.61 
i =  1 i =  1 '$1 



Using Eq. r3.2.141, we can simplify the expression for work to 

The first term on the right in this equation describes the work done due to the 
motion of the center of mass. The second term includes the contribution due to 
the motion with respect to the center of mass. Note that this second term contains 
Fj (i = 1,2, . . . , N ) ,  indicating that the constraint forces between the particles may 
contribute to the work done. Although these internal forces cancel each other when 
we are summing forces to get the equations of motion, they do not necessarily vanish 
when the work is calculated. 

As we did for a single particle, we can write the expression for work as an inte- 
gral over time. Multiplying and dividing each term in Eq. [3.4.7] by dt ,  we obtain 

where tl and t2 denote the times at which the particles are at positions ril and ri29 
respectively. 

We next evaluate the expression for kinetic energy by summing the individual 
kinetic energies 

N 

T = CT, [3.4.91 
i = l  

in which Ti is defined in Eq. [3.4.3]. Substituting the expression vi = vc + pi in the 
above equation, we obtain 

The first term, Tern = mvc *vG/2, is due to the translation of the center of mass, and 
the second term, Tmt, is due to the motion of the individual particles with respect to 
the center of mass. 

The potential energy of a system of particles does not lend itself to a special 
formulation, and we use the expressions in Chapter 1. In general, the potential energy 
is due to elastic forces between particles, such as interconnecting springs, and due to 
gravity. The gravitational potential energy for a system of particles can be expressed 
in terms of the potential energy of each particle, 

in which hi is the height of each particle from a common datum. One can show that 
the potential energy of a system of particles can also be written in terms of the height 
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hG of its center of mass as 

The work-energy theorem for a system of particles can be expressed in terms of 
each particle as 

T i l + V i ~ + W i n c , - - ~ = T ~ ~ + V ~ ~  i = 1 , 2  ,..., N [3.4.13] 

or in terms of the system of particles as 

where W,,,,+, denotes the work done by all nonconservative forces and the sub- 
scripts denote the initial and final stages of the motion. When all the forces acting 
on a system of particles are conservative, the total energy of a system of particles is 
conserved, and we write 

E = T + V = constant [3.4.1 I ]  

A bullet of mass 0.05 kg is shot with speed 400 rn/s at a target on wheels of mass 3 kg, shown 1 Example 
in Fig. 3.4, which has a plate in it that is attached to a spring of constant k = 80,000 N/m. 3.3 
The target is initially at rest and it can slide without friction. Find the maximum compression 
of the spring, after the bullet hits the target. 

Solution 
The motion takes place as follows. The bullet hits the target and begins to compress the spring. 
The maximum compression of the spring is reached when the target and bullet are moving 
with the same speed. Because there are no forces external to the bullet-target system, linear 
momentum is conserved along the horizontal. At the point of maximum compression 

where the subscripts b and t correspond to the bullet and target, respectively, and v is the com- 
mon velocity at the instant of maximum deflection of the spring. Substituting in the values, 
we obtain 

- 
Massless .J 

k - 



There is no loss of energy, as the energy transfer between the bullet and the target in- 
volves the spring and the bullet does not get lodged in the target. We thus invoke the conser- 
vation of energy between the initial state and the maximum deformation of the spring as 

in which 

so that the deflection of the spring is found as 

A = J m &  - ( y  + mt)u2 

Substituting in the values, we obtain 

[dl 

[el 

If1 

There are many ways two bodies come in contact with each other. The contact may 
take place at an isolated point, over a line, or over a surface. The contact between 
two bodies generates a constraint or reaction force on both bodies. From Newton's 
third law, the constraint force on each body is equal in magnitude and opposite in 
direction. In this section, we consider the special case of collision of two particles, 
that of impact. Chapter 8 conducts a general study of impact of rigid bodies. 

In order to have a better understanding of impact, we initially assume that each 
particle is a solid sphere. We consider two spheres of masses ml and mz that have 
velocities (of their centers of mass) of vl and vz before impact and ul and u2 after 
impact, as shown in Fig. 3.5. The changes in velocity, as they occur in a very short 
period of time, must be caused by impulsive forces, from which we conclude that 
impact generates an impulsive reaction (or impulsive constraint force) @ on each of 
the two spheres. This impulsive constraint lies along the line connecting the center 
points of the spheres and the point of contact; it is illustrated in Fig. 3.6. The line 
joining the two centers is commonly referred to as the line of impact and its direc- 
tion the normal direction. The normal direction here should not be confused with 
the normal direction associated with normal and tangential coordinates. Because the 
impulsive constraint force is along the center of each sphere, there is no change in 
the linear momentum about the centers of mass of both spheres. 

The impulsive force @ can be expressed as 

where n is the unit vector along the line of impact. 



Figure 3.5 Colliding particles 

The linear impulse-momentum relation for the two masses can be written as 

We add the two equations above to obtain the conservation of linear momentum 
relationship for the system of the colliding particles as 

Equation [3.5.3] can also be written directly by using the impulse-momentum re- 
lationship for a system of particles, Eq. [3.3.lb]. Noting that during impact there 
is no impulse external to the system of the two spheres, the linear momentum 
of the system of two particles is conserved. Equation [3.5.3] indicates that the 
center of mass of the system of two spheres does not change position during the 
impact. Because the impulse is only in the normal direction, the components of 
the velocities of both masses in the plane perpendicular to the normal direction do 
not change, either. We separate the components of the velocities along the line of 
impact as v; = vin + vip, ui = u;n + uip ( i  = 1,2), in which vi and u; denote the 
components of v and u along the line of impact. From Eqs. [3.5.2] and [3.5.3], we 
write for the velocities perpendicular to the line of impact 

and along the line of impact, the linear momentum expression becomes 

Equation [3.5.5] is a relation in terms of two unknowns, ul and u2. To solve 
for the two unknowns, we need another relation. This relation is derived from Pois- 
son S hypothesis. Poisson's hypothesis is based on the assumption that the contacting 
bodies are not exactly rigid, and it states that the impact takes place in two stages. 
In the first stage, called the period of compression, the bodies compress each other 
until the relative velocity between the colliding particles becomes zero along the 



Figure 3.7 The stages of impact 

line of impact. In the next stage, called the period of restitution, the bodies regain 
their original shapes, as shown in Fig. 3.7. The ratio of the strength of the two im- 
pulses is denoted by the coeficient of restitution e. We separate the impulsive force 
F into two parts associated with the compression and restitution periods as 

F, during the compression stage 

Fr during the restitution stage 

Because the entire impact is in one direction, the absolute values of the strengths can 
be expressed as P ,  PC, and fir',. 

The coefficient of restitution is defined as 

which leads to the relations 

in which E = PC + Pr is the total strength of the impact. To find the velocities of the 
colliding bodies along the line of impact, we integrate the equations of motion for 
the two stages of impact. Denoting the velocity at the end of the compression period 
by v,, the linear momentum balances along the line of impact become 

Mass 1 Compression: mlvl - PC = m1v, Restitution: mlv, - pr = mlul 

Mass 2 Compression: m2v2 + PC = m2v, Restitution: mzv, + Er = mzu2 
c3.s.91 

Introducing Eqs. [3.5.8] to these equations and eliminating the total force p, we 
obtain 

u1 - u2 = e(v2 - v l )  [3.1.101 

which is the commonly seen relation. The interpretation of this equation is that the 
coefficient of restitution represents the ratio of the relative velocity after impact to the 
relative velocity before impact. The relation [3.5.10] was first observed by Newton. 



Poisson generalized Newton's result to bodies of any shape. We will make use of 
Eqs. [3.5.8] in Chapter 8, when dealing with the impact of rigid bodies. 

Solving Eqs. [3.5.5] and [3.5.10] simultaneously yields the results 

where m = ml + m2 is the total mass of the colliding particles. 
The coefficient of restitution e is a quantity in the range 0 5 e I 1 that is 

dependent on the material properties of the colliding particles, as well as on the 
relative speed of the colliding masses. The coefficient of restitution decreases in 
value as the relative speed of impact gets higher. The special case of e = 1 is known 
as perfectly elastic impact. In this case, the strength of the impact is the same in the 
compression and restitution stages, and there is no energy loss. The case of e = 0 is 
referred to as plastic impact. Setting e = 0 in Eq. [3.5.11], we obtain 

leading to the conclusion that in this case ul = 4.  After impact, the colliding par- 
ticles have the same velocity along the line of impact. 

We next examine the energy loss associated with impact. The energy loss oc- 
curs because the strength of the impact diminishes in the restitution phase. The lost 
energy gets transferred to the colliding bodies through internal vibrations as well as 
a temperature increase. 

One can show that the energy loss is due to the change in the relative velocities 
of the colliding particles. For perfectly elastic impact there is no energy loss. On the 
other hand, when there is plastic impact, e = 0, all of the kinetic energy associated 
with the relative motion of the colliding masses is lost. 

Be aware that the above derivation of impact relations represents a gross sim- 
plification of what actually happens when two bodies collide. First, we assume that 
the collision takes place in a very short period of time. This is possible if the speeds 
associated with the impact are large. Then, we implicitly assume that there is no 
material damage due to impact. For this to hold, the speeds involved should not be 
large. In realistic impact situations, the impact takes place over a finite time period, 
albeit small. As we discussed in Chapter 1, one should always check the validity of 
the assumptions used during impact. The coefficient of restitution itself is an approx- 
imation, as it is determined experimentally. As discussed earlier, its value depends 
on a variety of factors. 

Another assumption whose validity comes into question is regarding the compo- 
nent of the motion orthogonal to the line of impact, especially when frictional forces 
are involved. For example, consider a ball thrown from a certain height with a hor- 
izontal velocity, as shown in Fig. 3.8. As the ball collides with the ground, it has 
both a horizontal as well as a vertical velocity. The line of impact is perpendicular 
to the ground. The impact results in an impulsive normal force. The impulsive nor- 
mal force leads to an impulsive friction force. In this section, we assume that the 
impulsive friction force is zero. This assumption may not be valid in all cases. 



Figun 3.8 

Example I A sphere of mass m and radius R is dropped from a height h onto another sphere of mass 2m 
3.4 and radius ISR, which is at the bottom of an inextensible cord, as shown in Fig. 3.9. Find the 

velocities of the spheres immediately after impact, given that the coefficient of restitution is 
e = 0.9. 

Solution 
Figure 3.10 shows the geometry of the impact and the free body diagram. Denoting the 
spheres by A and B, the angle 4 with which impact takes place is 

The line of impact joins the centers of the spheres, and the components of velocities before 
and after impact are 

where the subscripts n and t denote the components along the line of impact and perpendicular 
to it. After impact, the velocity of B is in the horizontal direction. 



Consider the free-body diagrams of spheres A and B. Of the two forces acting on A, 
only one force is impulsive, p, and of the three forces acting on B, two are impulsive, E 
and the impulsive tension in the string, denoted by f. Hence, there is no conservation of 
linear momentum for the two spheres. We need to write the impulse-momentum relationships 
individually for each sphere. 

We denote the components of the velocity after impact by U A  and us.  Because U B  is 
horizontal, it can be expressed in terms of its components as 

We can write the total impulsive force as 

fin - 2' cos 4 n  + f sin +t [dl 

Considering the linear momentum balances in the n and t directions, we have 

Sphere A, n direction mvAn - fi = m U A n  [*I 
Sphere A, t direction ~ V A ,  = [ f 1 
Sphere B, n direction 2mvBn + $ - f cos 4 = 2muBn = 2muB sin 4 [!I] 
Sphere B, t direction 2mvB, + f sin 4 = 2muBf = 2muB cos 4 [hl 

The components of the velocities along the line of impact are related by 

We then solve equations [el-[i] for the unknowns, U B ,  UA,,,  U A , ,  2, and f. Equation [f] 
gives UA, directly. Multiplying Eq. [g] by s in4 and Eq. [h] by cos4 and adding the two 
equations, we obtain 

- 2muB 
F = -  

sin 4 
which, when introduced into Eq. [el yields 

Equations [k] and [i] can be solved together for uB as 

where D = 2 1  sin 4 + sin 4 = 5.4, so that the velocity of sphere B immediately after impact 
is 

The value of v can be obtained using the work-energy relationship of 

v = J 2 g h  in1 

To find UA, ,  we make use of Eq. [i] 



Hence, the velocity of sphere A immediately after the impact is 

1 3.6 VAFUABLE MASS AND MASS FLOW SYSTEMS 
Two interesting applications of impulse-momentum principles are variable mass and 
mass flow systems. In such systems, either the mass of the bodies involved changes 
or mass flows in and it flows out of a body at a certain rate. A typical application 
of variable mass systems is the rocket problem, depicted in Fig. 3.11. A rocket 
gains speed not only because of the thrust generated but also because the thrust 
results in loss of mass. In mass flow systems, air enters the system in a certain di- 
rection with a certain speed and comes out in a different direction with a different 
speed. 

To analyze variable mass systems, we use the linear impulse-momentum rela- 
tionship in its general form 

[3.6.1] 

Consider a single particle of mass m(t),  acted upon by an external force F(t), as 
shown in Fig. 3.11. The initial mass of the particle at t  = tl is m(tl ) ,  and its initial 
velocity is v ( t l ) .  The initial linear momentum is p( t l )  = m(t l )v ( t l ) .  The velocity 
of the particle at time t2 is denoted by v( t2)  and its mass by m(t2). The relationship 
between the mass at tl and the mass at t2 can be written as m(t l )  + Am = m(t2). Note 
from the figure that Am is defined as a negative quantity and that we are treating 
the body and the lost mass as one system. The linear momentum of the system at 
t  = t2 is 
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where v, is the exit velocity of the mass that has left the particle. We can write the 
linear momentum balance as 

with v&) = v ( t )  - v , ( t )  denoting the relative velocity of the exiting mass. 
To solve the above equation, we need to know how the change in mass takes 

place and the exit velocity of the mass leaving the system. This requirement of 
knowledge about the characteristics of the separation is analogous to the need to 
know the coefficient of restitution of colliding bodies. We need to have information 
on how the separation takes place. Now, assume that the time interval is small and in- 
troduce the notation At = t2 - tl , and approximate the integral in the above equation 
by F(tl)At.  This approximation is valid as long as F is not impulsive. Introducing 
next the notation Av = v ( t z )  - v ( r l )  into Eq. [3.6.3] and dropping the subscripts 1 
and 2, we obtain 

F(t)ht = m(t)Av + Amvml [3.6.4] 

Dividing both sides of this equation by At and taking the limit as At approaches 
zero gives 

This is the general equation of motion for a variable mass system. Note that this 
equation is different than F(t) = d[m(t)v( t ) ] ld t .  This is because the body which is 
losing mass and the lost mass are considered together as one system. 

Next, consider mass flow systems. We restrict our analysis to steady mass flow 
systems, such that the rate of mass flowing into the system is the same as the rate 
of mass flowing out. Consider, for example, the air-blowing machine shown in 
Fig. 3.12. Air enters the container through a duct of cross-sectional area A1 with 
speed vl and density pl.  It leaves through a duct of cross-sectional area A2 with 
speed v2 and density p2. We denote the mass flow rate by m', recognizing that m' 



is not the rate of change of mass, but it is the rate of mass flow in and out of the 
system. The mass flow rate can be expressed as 

The external forces acting on the system are the reaction and support forces 
that hold the container in its place. These forces counteract the change in linear and 
angular momentum due to the flow of mass. We denote the resultant of all forces 
by F and the resultant of all moments through a fixed point 0 by Mo (or about the 
center of mass). The change in linear momentum is due to the change in speed and 
direction of the mass flow. Denote the amount of mass that flows in and out of the 
system in a time period At by Am, such that 

Am 
m' = lim - 13.6.71 

At-0  At 

The change in linear momentum during At can be expressed as 

Ap = Amv2 - Amvl 13.6.61 

Dividing the above equation by At, taking the limit as At approaches zero, and equat- 
ing the change in linear momentum to the resultant force yields 

We relate the resultant moment about a fixed point 0 (or center of mass) to 
the change in angular momentum in a similar fashion. Denoting by t l  and t2 the 
vectors from 0 to the centers of the entry and exit ducts, the sum of moments about 
0 becomes 

Mo = Ho = m 1 ( t 2  X v:! - el X v l )  [3.6.10] 

IExampb I Find an expression for the speed of the rocket fired vertically shown in Fig. 3.13. 
3.5 Solution 

We assume that the motion takes place along a straight line and drop the vector notation. We 
recognize the term i ( t ) v E l  as the thrust. The external force F acting on the rocket is mainly 
due to three sources: the pressure differential between the exit nozzle and air, friction due to 
air resistance, and gravity. The force due to the pressure differential can be expressed as 

F = peA [a] 

where p, is the pressure difference at the exit nozzle and A is the cross-sectional area of the 
exit nozzle. It is customary to assume that the rate of change of mass is constant and that 
therefore the mass of the rocket can be written as 

m(t) = q - bt 1bl 

where mo is the initial mass and b is the mass loss rate. It follows that muEl = -bum, . The 
force of gravity is simply -m(t)g. Introducing this and Eqs. [a] and [b] into Eq. [3.6.5], we 

I I obtain, for a rocket moving vertically, 

u .re1 m(t)v(t) + m(t)g = F, = peA + bv,l 

Figun 3.1 3 The term F, is referred to as the static thrust. 
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We next calculate the velocity of the rocket when all the fuel is expended (burnout). 
Denoting the mass of the propellant by m,, and using the constant mass loss rate m = b, it 
takes the rocket a time of t b  = mplb to use up all its fuel. We write Eq. [c] in terms of m(t) 
and divide by m(t), which yields 

Multiplying both sides by dt and noting from Eq. [b] that dt = -dmlb we obtain 

Both sides in the above equation are expressed in differential form, so that Eq. [el can be 
integrated to yield 

Cfl 

where uo is the initial velocity. Substituting the expression for m(t) in the above equation 
gives 

and the final velocity is found by substituting tb = m,lb into this equation. 
Equation [g] may look misleading at first, because of the two negative terms. However, 

mlmo is always less than unity and its natural logarithm is a negative quantity, thus giving the 
rocket its upward velocity. It should also be noted that Eqs. [f] and [g] are derived by assuming 
that the gravitational constant remains the same during ascent of the rocket. A more accurate 
expression for the velocity should include the change in the gravitational attraction as a result 
of increased altitude. as well as the air resistance. 

3 7 CONCEPTS FROM ORBITAL MECHANICS: 
THE TWO BODY PROBLEM 

A key problem in mechanics is that of the motion of two celestial bodies moving 
under the gravitational attraction of each other. The class of problems is referred to 
as the two body problem. The two bodies are depicted in Fig. 3.14. Typical exam- 
ples include the earth-moon, the earth-satellite, and the sun-planet pairs. For our 
purposes we assume that the only force acting on each body is the gravitational at- 
traction due to the other. We ignore the gravitational force exerted by other bodies. 
For example, if we are considering the earth-satellite problem, we ignore the effects 
of the moon and the sun. This assumption is valid only as long as the distance be- 
tween the satellite and earth is much smaller than the distance between the earth and 
moon, or any other planet, or the sun. 

The only force acting on the particles is the gravitational attraction in the form 



Figure 3.1 4 

where r = r2 - rl is the vector connecting the two masses. Newton's second law 
for each particle is 

To manipulate the equations of motion, consider the center of mass of the two 
particle system. From Eq. [3.2.2] we have that 

Adding Eqs. [3.7.2] and differentiating Eq. [3.7.3] with respect to time, we conclude 
that 

We can see that the center of mass of the system of two particles does not have 
an acceleration, an expected result because we originally assumed that there are no 
forces acting externally on the system of two particles. 

Equation [3.7.4] hints that one may simplify the governing equations, by con- 
sidering the motion of the two masses relative to each other. Actually, we are more 
interested in this relative motion of the masses than the absolute motion of each body. 
Let us express the equations of motion in terms of the vector r connecting the two 
bodies. 

Dividing Eqs. [3.7.2a] and [3.7.2b] by ml and m2, respectively, and subtracting 
Eq. [3.7.2a] from [3.7.2b], we obtain 

If we introduce the gravitational parameter p = G(ml + m2), we can express the 
relative motion as the differential equation 



The question may be asked as to what information was given up when we re- 
duced the two equations of motion into a single equation. The answer is: the location 
and the motion of the center of mass of the two body system. Using Eq. [3.7.6] 
alone, one cannot analyze the motion of the center of mass. In many orbital me- 
chanics problems, one is not interested in the location of the center of mass but in 
the relative motions of the two masses. Also, in several celestial mechanics applica- 
tions, the mass of one body is much smaller than the mass of the other, and one can 
safely ignore the mass of the smaller body when calculating the center of mass. The 
center of the larger body is assumed to be the center of mass of the two body system. 
Kepler made this assumption when he stated his laws of planetary motion. 

Equation [3.7.6] represents a central force problem, as discussed in Chapter 1. 
It is conveniently analyzed by polar coordinates. Attaching a set of polar coordinates 
to the center of mass and separating the motion into the radial and transverse com- 
ponents, we write the radial and transverse components of the equation of motion 
as 

Example 1.12 showed that the angular momentum associated with a central 
force is conserved and that r2i) = h is constant. That is, the angular momentum 
about the center of mass is conserved. As we will see later, this is the mathematical 
statement of Kepler's second law. Note that the angular momentum considered here 
is actually the apparent angular momentum. Because the acting force is conserva- 
tive, the energy of this system is also conserved. Indeed, introducing the expression 
i) = hlr2 into Eq. [3.7.7a] we obtain 

which can be integrated to yield the energy integral 

1 1 h2 1 -p+---- = E =constant or - u 2 - -  
2 
' = E = constant [3.7.91 

2 2 r 2  r r 

where v2 = k2 + h21r2 is recognized as the square of the total velocity. This expres- 
sion of the energy integral is for the relative motion with respect to the center of 
mass. However, because the center of mass executes motion with constant velocity, 
the energy associated with the center of mass motion can be absorbed in the constant 
on the right side of Eq. [3.7.9]. (This is entirely analogous to Eq. [3.4.10], which 
gives the kinetic energy for a system of particles.) It should also be noted that the 
energy and momentum expressions are per unit mass. 

We can calculate the energy integral from the expressions for the kinetic and 
potential energies. The kinetic energy has the form 



The potential energy is obtained by integrating Eq. [3.7.1]. The gravitational force is 
in the radial direction and r = re,, so that dr = dre, + r deeo. We select the datum 
position for the potential energy as the distant stars, ro = 03, so that 

Adding Eqs. [3.7.10] and [3.7.11], and dividing by mlm21(ml + m2) yields 
Eq. [3.7.9]. 

As Chapter 1 mentions, many celestial mechanics problems require higher ac- 
curacy than most engineering problems. Many times one manipulates very large 
numbers and obtains a very small number as a result. For this reason, it may be 
necessary to use more than four significant figures. Here are pertinent celestial data: 

Universal gravitational constant: 6.668462(10-11) m3/kg s2 

Mass of earth: 5.977414(1OZ4) kg, Average radius of earth: 6,378.1 km 

For earth, p = 3.986(1014) m3/s2, Mass of sun: 1.987323(10 30) kg 

Example I A particle is thrown from the surface of the earth with a very large initial velocity, as shown 
3.6 in Fig. 3.15. Calculate the maximum height reached by the particle. 

Solution 

Because the initial velocity is very high, we will dispense with standard projectile motion 
equations, and we will use concepts from celestial mechanics. We denote the initial com- 
ponents of the velocity by v, and v,. Actually, at the onset of motion the x and z axes are 
basically the radial and transverse directions. When the particle reaches its maximum height, 
the component of the velocity in the vertical direction is zero. The velocity now is purely in 
the transverse direction. We denote its vertical velocity by w. 

We have conservation of energy as well as conservation of angular momentum about the 
center of the earth. Denoting the maximum altitude reached by L, we describe the conserva- 
tion of angular momentum by 



where R is the radius of the earth. This yields an expression for the velocity at maximum 
altitude by 

The components of the kinetic and potential energy are 

\ 

The work-energy theorem gives 

which represents a nonlinear equation for L. To obtain an approximate, but still meaningful, 
solution, we note that L is much less than R. Defining by e = LIR, we linearize the terms 
involving L as 

Introducing Eqs. [el into Eq. [dl and solving for e we obtain 

so the maximum height reached is 

It is interesting to note that if v, is set to zero, that is, if the particle is launched vertically, 
the height it reaches becomes 

which is the same equation obtained from projectile motion analysis. The value for the height 
L in Eq. [g] is higher than the value for L in Eq. [h], an expected result. 

When we consider the total motion of the body, we see that it has some sort of orbital 
motion, although the particle cannot complete an orbit but falls to the earth. This situation is 
sometimes encountered in the launching of spacecraft, when the booster rockets malfunction 
and fail to place the spacecraft into a sufficiently high orbit. 

We now wish to determine what kind of motion the masses execute with respect to 
each other. We will accomplish this by solving the equations of motion, Eqs. [3.7.7], 



and by making use of the energy and momentum integrals. Consider the equation of 
motion in the radial direction, Eq. [3.7.7a]. This equation is nonlinear. It turns out 
that Eq. [3.7.7] can be put in a simpler form if we introduce the transformation 

and replace differentiation with respect to time with differentiation with respect to 
the transverse variable 8.  Noting that the rate of change of the transverse angle can 
be written as b = hl?, we express the time derivative of r as 

Taking the derivative of u with respect to 8 

so that 

In a similar fashion, we write the second derivative of r with respect to time as 

The remaining terms in Eq. [3.7.7a] can be expressed in terms of u as 

which, when introduced together with Eq. [3.8.5] in Eq. [3.7.7a], yield 

This relationship is in the form of a second-order differential equation with con- 
stant coefficients. It is considerably simpler to solve than Eq. [3.7.7a]. The solution 
of Eq. [3.8.7] can be written as 

where a and Oi depend on the initial conditions. This solution is used to find r(8).  
We are interested in the value of the magnitude of the radial distance r as a function 
of the transverse angle 8 ,  as well as r as a function of time. 

The energy integral in Eq. [3.7.9] can be expressed in terms of u as 



3.8 THE NATURE OF THE ORBIT 

This expression can also be obtained by integrating Eq. [3.8.7] over 0. Recall 
that the energy expressions here have units of energy per unit mass. We explore the 
relationship between the energy E and the amplitude a. Introducing Eq. [3.8.8] into 
Eq. [3.8.9] and carrying out the algebra, we obtain 

which we can rewrite as 

Introducing the variable E = Jq, the above equation can be expressed 
as 

and substituting Eq. [3.8.12] into Eq. [3.8.8], we write the solution for u, 

It follows that the solution for r is 

Equation [3.8.14] represents the equation of a conic section, with the value of 
E, referred to as the eccentricity of the section, determining its shape, with the val- 
ues of E = 0 and E = 1 being the critical values. If E < 1, the conic section is a 
closed one, in the form of an ellipse, as the values for r(0) remain finite. The conic 
section becomes a circle when E = 0. When E r 1, r(0) assumes infinite values, 
as in a parabola or hyperbola. The term h2lP is called the semilatus rectum; it de- 
fines the size of the conic section. The sernilatus rectum is a function of the angular 
momentum. The initial condition Oi is usually selected as zero. 

Using Eq. [3.8.12], we can write the energy as 

or, we can make use of the nondimensional ratio E* = 2 ~ h ~ / , ~ ~  = e2 - 1.  
We next consider the different types of conic sections. When E < 1, the tra- 

jectory is an ellipse, with the center of mass as a focus of the ellipse, as shown in 
Fig. 3.16, and the motion is periodic with a closed orbit. An ellipse is defined by its 
two foci, its semimajor axis a and semiminor axis b. The point on the ellipse closest 
to a focus is called pericentel; and the point farthest away, apocentel: The pericenter 
and apocenter are known as the apsides (plural of apsis) of the ellipse. An apsis is 
defined as the point where drld0 = 0. This definition of apsis is valid for any conic 



Apocenter 

Cigun 3.1 6 Elliptic orbit 

section and is not limited to ellipses. Considering the motion of the body on the orbit, 
the angle y between the transverse and tangential directions is referred to as thejight 
path angle. This angle is easier to measure than other orbital quantities and, hence, 
is useful in determining the nature of an orbit. 

When dealing with two masses of comparable magnitude, the focus of the el- 
lipse is the center of mass of the two body system; the ellipse describes the trajectory 
of the distance between the two masses. For sun-planet or earth-satellite type prob- 
lems, because of the very large difference in the mass ratios, one can assume that the 
larger mass is located on a focus. The situation is different when the earth-moon pair 
is considered. The mass ratio between the earth and moon is 81.30, and the mean 
distance between the two bodies is 384,400 km. The center of mass of the earth- 
moon system lies 4670 km from the center of the earth, roughly W3 the mean radius 
of the earth. 

It has become customary to use different names for the apsides when motion 
about the earth and sun are considered. Table 3.1 gives the names used for the apsides 
and the names of commonly used coordinate systems when the earth and sun are 
assumed to be on a focus. 

Denoting the distances from the focus to the pericenter and apocenter by rp 
and ra, respectively, and without loss of generality selecting the initial condition as 
8 - 8i = 0, so that 8 is measured from the pericenter, we obtain 

Tclbla 3.1 Nomenclature for celestial motion problems 

'&pes of Orbit Apsis Near Apsis Far Away Coordinate System 

Generic ellipse Pencenter Apocenter 

Earth as focus Perigee Apogee Geocentric-equatorial or perifocal 
Sun as focus Perihelion Aphelion Heliocentric-ecliptic 
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From these equations, and noting from simple geometry that a = (r, + r,)/2, we 
obtain for the semimajor axis 

If we consider Eqs. [3.7.9] and [3.8.15], we can express the energy as 

so that the semimajor axis is a measure of the energy in the system. In a similar 
fashion, one can show that the serniminor axis is of length b = a J S .  Also, 
using Eqs. [3.8.16] and [3.8.17], we obtain 

We can then write the equation for the ellipse as 

At this point, we consider Kepler's laws of planetary motion. The astronomer 
Johannes Kepler, after studying the observations of Galileo and Tyco Brahe and the 
motion of planets, developed the following laws for the motion of planets (his cal- 
culations were based on the motion of Mars) in the solar system. 

Law 1: Each planet revolves in an elliptic orbit about the sun, with the sun at 
one focus of the ellipse. 

Law 2: Equal areas are swept per unit time by the line joining the sun to the 
planet. 

Law 3: The squares of the periods of the planets are proportional to the cubes 
of the semimajor axes of the ellipses. 

The first two laws of Kepler were published in 1609 and the third in 16 19. These 
laws predate Newton's laws, (first published in 1687) by over 70 years. Kepler did 
not know about Newton's laws of motion when he formulated his laws. Newton's 
three laws of motion and his law of gravitation are based in part on Kepler's laws. It 
is interesting that we traditionally study Newton's laws first and then Kepler's laws, 
in more natural order but in reverse historical order. 

Kepler's first law becomes correct when the mass of the smaller second body 
(e.g., planet in sun-planet, moon in earth-moon, satellite in earth-satellite) is ne- 
glected from p. 

To demonstrate Kepler's second law, consider Fig. 3.17 and write an expression 
for the area swept by the position vector r as 

The areal rate-the area swept per unit time-is found by differentiating the area 
with respect to time. Noting from earlier that r% = h = constant, we obtain the 



areal rate 

h 
A = - = constant 

2 

which is proof of Kepler's second law. 
The period of the orbit can be obtained from Kepler's second law by noting that 

the period 7 is equal to the area of the elliptic orbit divided by the areal rate, 

where r a b  is the area of the ellipse. Introducing b  = a ,/= into the above equa- 
tion and noting from Eq. [3.8.l7] that 

we obtain 

This is the mathematical statement of Kepler's third law. 
The special case of E = 0 corresponds to a circular orbit. Circular orbits became 

very important in the second half of the 20th century, as satellites were placed into 
circular orbits around the earth. A circular orbit in which the relative position of the 
satellite with respect to the earth does not change is called geosynchronous. As of 
this writing there were several communications satellites in geosynchronous orbit 
about the equator. 

In a circular orbit, the body has constant velocity, which can easily be obtained 
from the energy expression. From Eq. 13.8.151 for a circular orbit, E = -p2/2h2. 
We verify this by writing the energy expression as 

so that we obtain the velocity in circular orbit, u,, as 

We next consider the case when the eccentricity is greater than or equal to 1, re- 
sulting in an open orbit. When E = 1 the orbit is parabolic, and when E > 1 the orbit 



is hyperbolic. Parabolic orbits rarely exist, as they describe a limiting case between 
an open and closed orbit. Fig. 3.18 depicts a parabolic orbit. From Eqs. [3.8.16], as 
E approaches 1, the semimajor axis becomes longer. When E = 1,  the orbit becomes 
an open one. The orbit equation, setting E = 1 in Eq. [3.8.14], becomes 

The expression for energy for a parabolic orbit gives insight into the nature of 
the orbit. Setting E = 1 in Eq. [3.8.15] yields, for the energy, E = 0, so that we can 
write 

The velocity required to achieve a parabolic orbit and escape the gravitational 
attraction of the large mass is called the escape velocity. From the above equation, 
for a spacecraft to transfer from an elliptic to a parabolic orbit it must have the escape 
velocity, denoted by v,, as 

[3.8.30] 

The minimum value of the escape velocity is at the perigee. Many orbital maneuvers 
that involve a change of orbits are carried out at the perigee. It is interesting to note 
what happens as the satellite keeps moving in a parabolic orbit. As r approaches 
infinity, from Eq. [3.8.30] the velocity approaches zero. This implies that if a body 
can achieve a true parabolic orbit and there are no other disturbances acting on it, 
that body would eventually come to a rest. Physically this never happens. 

When the eccentricity is greater than 1, the resulting orbit is hyperbolic. Space- 
craft launched on interplanetary missions are given hyperbolic orbits. Fig. 3.19 
shows a hyperbolic orbit. From Eq. [3.8.15], the energy for a hyperbolic orbit is 

I 

Pigun 3.1 8 Parabolic orbit l igun 3.1 9 Hyperbolic orbit 



lbbk 3.2 Types of orbits and associated 
eccentricities 

'Qpe of Orbit Eccentricity E Energy Ratio E' 

Circular 0 - 1 

Elliptic 0 < ~ < 1  - 1 < E ' < O  

Parabolic 1 0 

Hyperbolic € > I  E ' > O  

positive, and the energy expression can be written as 

implying that as r approaches infinity, the speed of the body is not zero, but ap- 
proaches a finite value. This value is called the hyperbolic excess speed. Table 3.2 
summarizes the relation between orbits and eccentricity. 

Two essential problems in space mechanics are 

1. To place a satellite in a desired orbit and to change the path of the satellite from 
one orbit to another. 

2. To determine the orbit of a satellite or a planet from measurements of its location 
and motion. 

Analysis of both subjects is very lengthy and beyond the scope of this text. For more 
details on these subjects, the reader is referred to texts on orbital mechanics. In the 
following examples we illustrate two simple approaches. 

Example I At the burnout of a rocket, the following data are given: r = 6500 km, v = 9750 mls, flight 
3.7 path angle y = 16.4". Has the rocket achieved an earth orbit or will it crash into the earth? 

Solution 
The orbit of the rocket is shown in Fig. 3.20. We need to find the properties of the orbit 
and determine if the distance to the perigee is less than the radius of the earth. The angular 
momentum and energy per unit mass are 

h = rvcosy = (6.5 X 106)(9.75 x 103)(cos 16.4") = 6.0797 X 1 0 ' ~ m ~ / s  [a] 

We next calculate the eccentricity. We have 

so that from Eq. r3.8.151 

E = J 1  - 0.64172 = 0.59857 



I , Burnout 

Impact 

Figure 3.20 

From Eq. [3.8.18], the semimajor axis is 

rth 

and from Eq. [3.8.19b], the distance to perigee is 

rp = a(] - e) = 14.45 x 106(1 - 0.59857) = 5.8008 X 106m If1 

which, unfortunately, is smaller than the radius of the earth. The rocket crashes into the earth 
on its w w  back. 

HOHMANN TRANSFER A Hohmann transfer is a common way of moving a space- I Example 
craft in a circular orbit to another circular orbit that lies on the same plane. The transfer 3.8 
involves applying two impulses to the spacecraft. Denote the radii of the first and second or- 
bits by rl and r2, as shown in Fig 3.21. The first impulse changes the initial orbit to an elliptic 
orbit, called the transfer orbit, whose semimajor axis is of length (rl + rz)/2. 

Consider the case when r2 > rl . The location of the first impulse becomes the perigee of 
the transfer orbit (apogee when 1-2 < rl). The second impulse, applied at the apogee (perigee 
when r2 < rl)  of the transfer orbit, moves the spacecraft to the desired circular orbit. 

The velocity in the first circular orbit, denoted by ul, is found noting that a = rl, with 
the result 

Immediately after the impulse is applied to move the spacecraft into the transfer orbit, 
r = r, = rl and 2a = rl + 12, SO that denoting the velocity at perigee by up, the energy 
integral becomes 



Figun 3.2 1 Hohmann transfer 

which can be solved for up as 

so that the impulse needed at the first step is 

The second impulse is applied at the apogee of the transfer orbit. The velocity at apogee 
before the impulse can be found from the angular momentum conservation 

where v, denotes the velocity at apogee and has the form 

Because the desired final orbit is circular, the velocity in orbit should be 

so that the second impulse is of magnitude 

Consider the issue of what happens when the impulses are not applied at the proper 
places in the orbit. For the first impulse, the location of the impulse defines the perigee 



of the transfer orbit. This location is not critical. The critical impulse is the second. If the 
second impulse is not applied at apogee, the resulting orbit will not be circular. 

In the previous section, we showed that the general solution of the orbital problem 
is a conic section. Based on the two integrals of the motion, angular momentum and 
energy, we developed two quantities, sernimajor axis a and eccentricity E.  Given 
initial conditions, one can determine the nature of the orbit by calculating a and E.  

The orbital problem as given in Eq. [3.7.6] requires six initial conditions or constants 
of integration, as it is a second-order differential equation in three dimensions. 

Given a set of initial conditions, one can solve Eq. [3.7.6] and obtain a solution. 
This solution, while being a mathematical answer, does not describe the properties 
of the orbit. It is desirable to express the position and velocity of the body in orbit in 
terms of parameters that lend themselves to a physical explanation. It turns out that 
we can find four parameters in addition to a and E that orient the orbit in space and 
the body on the orbit. Of these four parameters, two describe the orientation of the 
orbital plahe, one describes the orientation of the orbit on the orbital plane, and the 
last one locates the body on the orbit and introduces time. The six parameters are 
referred to as the orbital parameters or orbital elements. 

We begin by describing the position of the body on the orbit. Our primary in- 
terest is in closed orbits. The angle 8, referred to as the true anomaly, is measured 
from one of the foci of the ellipse. It is the angle between the line joining the focus 
to the body and the semimajor axis, relative to the pericenter. A more convenient 
way of measuring the orientation of the particle is to introduce the variable eccentric 
anomaly, denoted by 8 and shown in Fig. 3.22. We draw a circle of radius a with 
the same center as the ellipse. The eccentric anomaly is measured positive counter- 
clockwise from the sernimajor axis. It is the angle between the semimajor axis and 
the line that connects point P' and the center of the ellipse, in which point P' is the 
intersection between the circle and the vertical line perpendicular to the semimajor 
axis. This line goes through point P, with P denoting the position of the mass. 

Orbit 



Denoting the coordinates of P by x and y, from Fig. 3.22 we can write 

Recalling the equation of the ellipse x2/a2 + y2/b2 = 1, and that b = a dl - e2, 
and introducing Eq. [3.9.la] into the ellipse equation, we obtain 

rsine = a J S s i n %  p.9.21 

Combining Eqs. [3.9. lc] and [3.9.2] gives 

which is a simpler equation to deal with than Eq. [3.8.20]. In a similar fashion, we 
relate the true and eccentric anomalies. Introducing Eq. [3.9.3] into Eq. [3.9. lc], we 
obtain 

Using Eq. [3.9.4] with the trigonometric identity tan2(8/2) = (1 - cos 8)/(1+ cos 8), 
we write 

from which we conclude that 

We now introduce time into the formulation. Differentiating the two expressions 
for r in Eqs. [3.9.3] and [3.8.20] and using the expression for the momentum integral 
h = $9, we obtain 

i. = as  sin %% 

f = 
as(1 - s2) sin 89 - r2es sin 8 hs sin 8 - - - [3.9.7a,b] 

(1 + E cos 8)2 a(l  - s2) a(l  - s2) 

We rewrite Eq. [3.9.2] as 

sin8 = 
a J F - 2  sin 8 - JF-2 sin % - 

r (1 - E cos %) 

introduce it into Eq. [3.9.7b], and equate the result with Eq. [3.9.7a]. We express % 
as d8ldt and collect all the terms involving d 8  on one side, with the result 

Define by n = 2 ~ 1 ~  the mean angular velocity, in which T is the period of the 
orbit given by Eq. [3.8.25], T = 2wa3"lp1". Recalling that h = d m ,  we 



can express the right side of Eq. [3.9.9] as 

n dt  [3.9.101 

end, we select the initial conditions It remains to integrate Eq. [3.9.9]. To this 
to coincide with the position of the body at the pericenter. At that location % = 0, 
and the time is selected as 9, defined as the time of pericenter passage. We then 
have 

/ ; ( ~ - E C O S % ) ~ % =  [3.9.11] 

with the result 

This is known as Kepler S equation. We define the mean anomaly Ad by 

so that Kepler's equation becomes 

The mean anomaly basically describes the angle that would have been described 
by the position of the particle if the motion was uniform, as in a circular orbit 
with mean angular velocity n. Using Kepler's equation, one can calculate the mean 
anomaly M if the eccentric anomaly % and the eccentricity E are given. Often, one 
knows E and can measure M more easily than the other parameters, so one needs 
to calculate % and 8. This requires the solution of Eq. [3.9.14], which usually is 
accomplished numerically. 

We have defined a constant of integration that permits us to find the exact loca- 
tion of a mass on the ellipse. We have yet to locate the ellipse on the orbital plane. 
Denoting the plane of the orbit as the x'y' plane, the xy axes, which are along the 
semimajor and semiminor axes of the ellipse, are obtained by a counterclockwise 
rotation about the z' axis. The angle of rotation is denoted by w (not to be confused 
with angular velocity) and is called argument of the pericentel: 

Next, we orient the orbital plane with respect to an inertial frame. We need to 
define both the origin and orientation of the inertial frame. There are several choices, 
depending on the bodies being analyzed: 

1. For planetary motion, the sun is selected as the origin and the reference frame 
is called heliocentric-ecliptic. The coordinate axes, denoted by XYZ, are selected 
such that the XY plane coincides with the plane of the orbit of the earth around the 
sun (the ecliptic plane), shown in Fig. 3.23. The XY plane is also referred to as the 
fundamental plane, and the positive Z axis is referred to as the north polar axis. The 
X axis is selected as being toward the vernal equinox, also called the first point of 
Aries. On the first day of autumn, the line joining the centers of the sun and earth 
points toward the vernal equinox. 
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Figure 3.23 Heliocentricecliptic coordinate system 

Because the XYZ plane is assumed to be inertial, the vernal equinox is assumed 
to be fixed as well, even though it is actually precessing very slowly. The causes of 
the precession are the disturbing effects of the moon, as well as the fact that the earth 
is not a perfect sphere, both of which add terms to the equations of motion describing 
the motion of the earth with respect to the sun. The period of precession can be shown 
to be, and has been observed as, about 26,000 years. When the vernal equinox was 
first defined, it was pointing toward the constellation Aries. At the writing of this 
text, it was pointing toward Pisces. 

2. For satellite motion, a geocentric-equatorial or a perifocal coordinate system 
is often used. We describe here the geocentric-equatorial system. The origin of the 
coordinate system is selected as the center of the earth. The Z axis is selected toward 
the North Pole. The XY plane is the equatorial plane, and the X direction is selected 
toward the vernal equinox. 

We are ready to orient the orbit. It turns out that this orientation is accom- 
plished by a 3-1-3 coordinate transformation. Consider an inertial frame as shown 
in Fig. 3.24 and a sphere. The first rotation is about the Z axis. The rotation angle is 
called the longitude of the ascending node and is denoted by R. The ascending node 
is defined as the point at which the orbital plane crosses the fundamental plane with 
a northerly velocity, that is, moving in the positive Z direction. The descending node 
is defined as the point at which the orbital plane crosses the fundamental plane, mov- 
ing in the negative Z direction. The line joining the ascending and descending nodes 
is called the line of nodes. Denoting the rotated coordinates by X'Y'Z', the line of 
nodes is the X' axis, and it describes the intersection of the orbital plane and the fun- 
damental plane. Historically, the term line of nodes originated from this coordinate 
transformation sequence. 

The second rotation is about the X' axis. The rotation angle, denoted by i ,  is 
called the orbital inclination. The resulting coordinate axes are denoted by .r1y'z',  
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Line of nodes 

Flgun 3.24 Orbital parameters 

with the x'y '  plane describing the orbital plane. The angle i hence describes the 
inclination between the fundamental plane and the orbital plane (or the angle be- 
tween the Z and z' axes). The angular momentum is in the z' direction. Finally, the 
x'y'z'  axes are rotated about the z' axis by the argument of the pericentel; denoted 
by w to orient the orbit on the orbital plane. 

The remaining three orbital parameters are the semimajor axis a, eccentricity e,  
and perigee passage 9. In many cases, and especially in problems involving orbits 
about the sun, the mean anomaly At is used instead of 5. 

The transformation from the three displacement and three velocity coordinates 
of the body on the orbit to the orbital parameters is a unique transformation. That 
is, given all three displacement and velocity components at a certain instant, one 
can determine the orbital parameters, and vice versa. For the ideal two body prob- 
lem, where there are no disturbing effects of other bodies, the orbital plane as well 
as the size and orientation of the orbit are all constants. However, when there are 
disturbing functions, such as gravitational forces of other bodies and atmospheric 
drag, the right side of Eq. [3.7.6] is no longer zero. In addition, the equations 
derived in this section assume that the bodies involved are perfect and homoge- 
neous spheres. Any deviation in geometry from a homogeneous sphere results in 
additional gravitational terms. Furthermore, the rotational motion of the bodies in- 
volved also must be considered. The analysis of these effects is beyond the scope of 
this text. 



Example I Consider Example 3.7 and calculate the time elapsed after burnout until the rocket crashes. 
5.9 SolWion 

We will make use of the eccentric anomaly to solve this problem. First, we find the transverse 
angle 8 the rocket makes at burnout. Denoting this angle by 81, we use Eq. [3.8.20] to find it 
as 

from which we get 

= cos-'(0.71266) = 0.77751 rad = 44.548" [bl 

From Eq. [3.9.6] we have the eccentric anomaly at burnout as 

t a n > =  ( ) - tan (2) = /=tan (22.274') = 0.50112(0.40962) = 0.20527 

so that 

We now make use of Kepler's equation, Eq. [3.9.12]. Setting the initial time as 9 = 0, and 
using Eq. [3.8.24], we can solve for time as 

and,/$ = ,/- = J7.5695 x lo6 = 2.7513 X lo3 s. Denoting by tl the time 
3.986 X 1014 

at burnout and using Eq. [el, we obtain 
- 

= 2.7513 x 103(0.40492 - 0.59857sin(0.40492)) = 465.3 seconds [ f 1 
We next find the above parameters at impact, and denote them with the subscript 2. To 

find the angle 8' we make use of Eq. [a], with r replaced by R = 6378.1 km 

a(l  - e2) - R - 14450(1 - 0.59857') - 6378.1 
cos 8' = - 

6378.1(0.59857) 
= 0.75821 [g] RE 

Noting that the rocket crashes in the fourth quadrant, we can find the angle 8' from 

The corresponding eccentric anomaly is found from 



or, by adding 27r to the value we obtain 

x2 = -0.45216 + 257 = 5.8310rad = -25.910" + 360" = 334.09" [il 

Introducing the mean anomaly to Kepler's equation, we obtain for the time 

r, = E ( 1 ,  - E sin&) = 2.7513 r 10'(5.8310 - OS!%57 sin 5.8310) [k] 

= 16,762 seconds 

Subtracting tl from t z ,  we obtain the time the rocket stays in orbit before it crashes as 

t2 - tl = 16,762 - 465s = 16,297s = 4.527hr [I] 

In this section we analyze the kinetics of rigid bodies that move on a plane. In 
essence, this section and the ones following it constitute a review of sophomore- 
level dynamics. This review is primarily aimed at refamiliarizing the reader with 
some basic concepts, as the developments in the following chapter are described 
in terms of particles or plane motion of rigid bodies. A detailed analysis of the 
lnematics and kinetics of three-dimensional rigid body motion is carried out in 
Chapters 7 and 8. 

We denote the inertial frame by XYZ and consider the XY plane as the plane of 
motion. The moving reference frame x y z ,  obtained by rotating the XYZ frame about 
the Z axis by 8, is attached to the body. The angular velocity and angular acceleration 
have one component each: 

We begin with defining the center of mass. Consider a system of N particles, 
as shown in Fig. 3.1. The center of mass is denoted by the point G and defined by 
Eq. [3.2.2]. A rigid body can be considered as a collection of particles in which the 
number of particles approaches infinity and in which the distance between the indi- 
vidual masses remains the same. As N approaches infinity, each particle is treated as 
a differential mass element, mi + dm, and the summation in Eq. [3.2.2] is replaced 
by integration over the body. We then define the center of mass G as 

r~ = r d m  
body 

where r is the vector from the origin 0 to differential element dm and 

is the mass of the body. Considering Figs. 3.1 and 3.25, for a system of particles 
we write ri = rc + pi, and for a rigid body, r = r~ + p. Introducing this term in 



Figure 3-26 

Eq. [3.10.2], we obtain 

leading to the conclusion that 

L pdm = 0 

This equation indicates that the weighted average of the displacement vector about 
the center of mass is zero. 

The center of mass is a very important quantity, as its use simplifies the analysis 
of rigid bodies considerably. To see this, let us write the rigid body equivalent of the 
combined equations of motion. Considering the differential element and its equation 
of motion 

adm = dF [3.10.61 

where dF is the total force acting on the differential element. We write for the entire 
body, 

a d m  = dF = F 
fbody 

[3.10.7] 

in which F is the resultant of all forces. This resultant contains contributions 
only from the external forces, as the internal forces cancel each other. Introducing 
Eq. [3.10.4] into Eq. [3.10.7] gives the translational equations of motion of a rigid 
body, that is, Newton's second law for a rigid body, as 

The derivation of the translational equations of motion above is valid for the 
general motion of a rigid body. For plane motion, we define the moment of all forces 
acting on the body about the center of mass as 



where MG is the resultant moment about the center of mass. Next, introduce 
Eq. [3.10.6] to the above equation. Before doing that, we express the velocity and 
acceleration of the differential element as 

and proceed, so that 

The first term inside the brackets vanishes because of the definition of the center of 
mass and the third term vanishes because of the cross product. To evaluate the middle 
term, consider that the cross product a X p is on the plane of motion, perpendicular 
to p, and it has the magnitude lapl. Hence, the cross product between p and a X p is 
perpendicular to the plane of motion, parallel to a, and with magnitude a p 2 .  Thus, 
Eq. [3.10.11] can be written as 

The integral on the right side of this equation is not dependent on time or any 
displacement variable, so that it can be evaluated independently of the angular ac- 
celeration. We define it as the mass moment of inertia of the body about the center 
of mass, and denote it by IG, SO that 

[3.10.13] 

The mass moment of inertia is a property of the body itself; it is a measure of 
how the mass of the body is distributed about an axis passing through the center of 
mass and perpendicular to the plane of motion. We discuss ways of calculating the 
mass moment of inertia in Chapter 6. Figure 3.26 gives the centroidal mass moment 
of inertia for two common shapes. Appendix C gives a more comprehensive list. 

Combining Eqs. [3.10.12] and [3.10.13], we obtain the rotational equation of 
motion 

Thin dirk: I ,  = Slender rod: I  - mL2 ,- 12 



This equation, together with the two equations in Eq. [3.10.8], gives the three equa- 
tions of motion for the plane motion of a rigid body. The rotational equation of motion 
can also be represented in terms of the angular momentum. Indeed, we define the 
angular momentum about the center of mass as 

For plane motion, considering the integral in Eq. [3.10.12] and the definition of the 
mass moment of inertia, we can write 

and the rotational equation of motion can be written as 

just as the translational equations of motion can be written as 

in which p = m v ~  is the linear momentum of the body. It should be noted that while 
we derived Eq. [3.10.17] for plane motion, this relationship in vector form holds for 
the general three-dimensional rotational motion of a body. As discussed in Chapter 
1, there is debate about whether Eq. [3.10.17] is a derived relationship, or a stated 
law of motion. 

The equations of motion can be illustrated by means of equivalent free-body 
and resultant force diagrams, as shown in Fig. 3.27. The sum of the external forces 
is equal to the resultant, which is equal to the rates of change of the linear and angular 
momentum. 

Up to now, we considered the angular momentum and sum of moments about 
the center of mass. It turns out that under certain circumstances, it becomes more 
convenient to write the rotational equations of motion about another point. For ex- 
ample, such a case arises when motion about a fixed point is considered. To analyze 
the moment equation about an arbitrary point, consider the third part of Fig. 3.27 and 
sum moments about an arbitrary point D. We have 

External input Resultant Accelerations 



F i g u ~  3.28 Rotation about a 
fixed point 

in which d is the perpendicular distance from D to the acceleration vector for the 
center of mass G. 

A special application of the above equation is for rotation about a fixed point. 
Consider Fig. 3.28, where the rigid body rotates about point 0. It follows that the 
acceleration of the center of mass can be expressed in terms of the distance between 
points 0 and G, which we denote by b, as 

2 ac = ac, + act = bw en + bae, [3.10.201 

The component of ac in the normal direction does not affect the moment about 
0. Hence, we can write the sum of moments about 0 as 

lo is the mass moment of inertia about point 0, and we have written the parallel axis 
theorem, described in detail in Chapter 6. This theorem essentially relates the mass 
moments of inertia of a body about the center of mass G and another point D by 

where d is the distance between the two points. Another way of describing the inertia 
properties of a body is by means of the radius of gyration, denoted by K ,  such that 
I = m ~ ~ .  The radius of gyration is often used when dealing with complex bodies, 
and it is usually listed as a property of a body. 

When solving plane kinetics problems, one should select the moment center 
such that the number of reactions to be solved and the total number of calculations 
become a minimum. The procedure in solving plane kinetics problems is the same 
as the procedure outlined in Chapter 1 for particle motion. The only difference is that 
one must invoke the rotational equations of motion. 

Rod OA is of length 0.4 m and has a mass of 3 kg, while rod AB is of mass 12 kg and length I Example 
1 m. The two rods are released from rest from the configuration shown in Fig. 3.29. Find the 3.1 0 
angular accelerations of both rods at this instant. There is no friction at point B. 



Figun 3.29 

Solution 
We first isolate the two bodies and draw free-body diagrams, shown in Fig. 3.30. Note that 
mangle DBA is a 3-4-5 triangle. The next task is to write the force and moment balances. 
For rod OA it is convenient to write the sum of moments about point 0 as (counterclockwise 
positive) 

The force balance equations merely give relations for the reactions for 0, and O,, so 
they are not of much use, unless one wishes to calculate those reactions. Introducing the 
expressions lo = IG + m($)2 = &mL2 + a r n ~ ~  = mL2/3 = 3(0.42)/3 = 0.16 kg.m2 into 
Eq. [a1 

0 . 1 6 ~ ~ ~  = 0.4Ay - 0.6g Cbl 

Figun 3.30 



For rod AB, there are three unknown reactions, A,, A,, and N. Considering that the 
sum of forces in the horizontal and vertical directions and the sum of moments about the 
center of mass involve all three unknowns, we prefer writing the moment balance about 
point D, a point about which N and A, do not exert a moment. To do this, we need an 
expression for the acceleration of point G. We will obtain the acceleration of point G by 
first writing a relative acceleration relation between points A and B and then a relation 
between B and G. 

Consider points A and B first. Because motion is just being initiated, the angular veloci- 
ties of OA and AB are both zero. Also, point B moves in the horizontal plane. We hence write 
the accelerations of points A and B as 

and the relative acceleration relation becomes 

from which we conclude that 

Next, write the relative acceleration relation between points B and G 

a ~  = ae + a 2  X r c l ~  = 0.8a2i + a 2 k  X (0.3i + 0.4j) = 0.4a2i + 0 . 3 ~ ~ 4  [f] 

We are now in a position to write the moment equation about point D. Because a ~  has 
components in both x and y directions, we write Eq. [3.10.21] in vector form as 

in which IG is the mass moment of inertia of rod AB, having the value of 12 X 12/12 = 

1 kg.m2 and r c / ~  = 0.3i - 0.4j m. Substituting in these values to the above equation, 

which reduces to 

(1 + 1.08 + 1 . 9 2 ) ~ ~ ~  = 4a2 = -3.6g - 0.6A, [I] 

Equations [b] and [i] are two equations with the unknowns a I ,  a2, and A,. From the first 
part of Eq. [el we have 

so that Eq. [b] can be written as 

Multiplying Eq. [k] by 1.5 and adding it to Eq. [i], we obtain for a 2  

Using Eq. Ij] we obtain al  as a1 = 1 . 5 ~ ~ ~  = 15.18 rads. 



1 3.1 1 INSTANT CENTERS AND ROLLING 

An important concept associated with the plane motion of rigid bodies is that of an 
instant center. At any instant of the motion, there exists an axis perpendicular to the 
plane of motion, called the instantaneous axis of zero velocity, such that the body 
can be viewed as rotating about that axis at that instant. The intersection of this axis 
and the plane of motion is called the instantaneous center of zero velocity, or instant 
centet: In general, the instant center of a rigid body is located by visual inspection. 
To establish the location of the instant center, one needs to know the velocities of 
two points on the body. If the velocities are not in the same direction, one draws two 
lines, beginning at the points at which the velocities are known and perpendicular to 
the velocities. Their intersection is the instant center. Figure 3.31 illustrates. If the 
velocities of the two points are in the same direction, one again draws two lines: one 
joining the points at which the velocities are known and the other joining the tips 
of the velocity vectors (drawn to scale). Their intersection gives the instant center, 
as shown in Fig. 3.32. In Chapter 7, we prove the existence of the instant center for 
plane motion. 

It should be noted that while the instant center has zero velocity, its location at 
every time instant is different, and its acceleration is not zero. Hence, Eq. [3.10.21], 
the moment equation about a fixed point, cannot be written about an instant center. 

An interesting case of motion is that of a body rolling over another body or over a 
fixed surface. For rolling to take place between two bodies, a continuous sequence of 
points on one of the bodies must be in continuous contact with a continuous sequence 
of points on the other body. For continuous contact to take place, the contacting bod- 
ies must have smooth contours, with no jumps. 

Rolling can occur in a variety of ways, as Chapter 7 will show in detail. In this 
section we consider roll of a circular body over a fixed surface. The surface can be 
planar or curved. Consider Fig. 3.33. We denote by o = -ok the angular velocity. 
The contact point is denoted by C, with velocity of vc. Let n denote the unit vector 
perpendicular to the plane of contact. The kinematic relation describing rolling is 

"A 

Figure 3.3 1 Figurn 3.32 Figure 3.33 



3.1 1 INSTANT CENTERS AND ROLLING 20 1 

If the contact point has a finite velocity along the plane of contact, the motion 
is referred to as roll with slip. If the contact point has zero velocity, the motion is 
referred to as roll without slip. Whether slipping exists or not depends on the forces 
acting on the rolling bodies, as well as the friction between the rolling bodies. Math- 
ematically, the no slip condition is represented as 

Because the velocity of the contact point is zero, the contact point can be treated 
as an instant center. However, the acceleration of the contact point is not zero, 
whether there is slipping or not. The contact point approaches the plane of contact, 
it has contact, and then it moves away. The constraint associated with the contact is 
applied to the contacting points only during the instant of contact. 

Consider rolling without slipping and a point P on the body. The velocity of a 
point P on the body can be expressed as 

V p  = Vc + o X f p l ~  [a. 1 1.31 

We write the above equation for the point of contact C, with the result 

vc = 0 = vc + X r ~ / c  [3.11.4] 

which we can use to express the velocity of the center of mass as 

This equation can be physically explained by noting that the point of contact Cis  the 
instant center. 

A sphere of mass m and radius r rolls without slip inside a circular curved surface with radius 1 Example 
R, as shown in Fig. 3.34. Obtain the equation of motion as a function of 8. 3.1 1 



Solution 

The free-body diagram of the sphere is given in Fig. 3.35. We write the force balance using 
normal and tangential coordinates, thus 

mac, = mg sin 8 - Ff [a] 

mu; 
 ma^, = N - mgcos 8 = - 

P 
[bl 

where p is the radius of curvature for point G and Ff is the friction force. The center of 
curvature is the center 0 of the curved surface and the radius of curvature is constant and 
has the value p = R - r. The moment balance about the center of mass is (counterclockwise 
positive) 

Because we assume rolling without slipping, the speed and tangential acceleration of the 
center of the sphere are 

where w is the angular speed of the sphere and a = .b. Solving for Ff in Eq. [a] and using 
the expression for act in Eq. [dl, we obtain 

Ff = mg sin 0 - mra [d 

which, when introduced into Eq. [c], yields 

(IG + m2)a  = mgr sin 8 [(I 

To obtain the equation of motion, we need to express the angular acceleration of the 
sphere in terms of 8. We make use of the property that the center of mass of the sphere can 
also be considered as moving about the center of curvature of the surface, so that we can write 



from which we obtain 

R - r . .  
(Y = -- 

r  
e Chl 

And introducing Eq. [h] into Eq. [f], we write the equation of motion as 

( IG + rn2)(~ - r)8 + rng? sin 0 = 0 [il 

Note that whenever one assumes roll without slip, one must check the validity of 
the assumption. This can be done by calculating the magnitude of the friction force 
and comparing it with the maximum value of the friction force. If this maximum is 
exceeded, one must redefine the problem as a roll with slip problem. 

3.1 2 ENERGY AND MOMENTUM 1 
The kinetic energy of a rigid body is defined as 

T = 1 v - v d m  
2  

[3.12.1] 

body 

If we introduce the expression of the velocity in terms of the center of mass to this 
equation, we obtain 

The first term on the right side of this equation gives m v ~  vc/2. The second 
term vanishes due to the definition of the center of mass. To evaluate the third term, 
we note that the cross product of o and p  is a vector of magnitude po,  so that 

I ( o x p ) * ( m ~ p ) d m =  I p 2 ~ 2 d m = ~ G ~  c3.12.31 
body body 

and the kinetic energy of a rigid body undergoing plane motion can be written as 

When the rigid body is rotating about a fixed point C, its kinetic energy becomes 



The kinetic energy can be written in this form about the instant center, as the instant 
center has zero velocity. When the body is rotating about a point C that is moving, 
Eq. [3.12.5] is not valid. 

The gravitational potential energy for a rigid body is 

in which hG is the perpendicular distance between the center of mass and the datum 
line. All the other potential energy expressions are the same as we have seen them 
before for particles. The work-energy theorem discussed in Chapter 1 is valid for all 
types of bodies. 

An interesting property of bodies undergoing rolling without slipping is that the 
friction force does no work. This can be easily shown using the definition of work 
as a time integral. Because the friction force is always applied to a point with zero 
velocity, the power of the force P = Ff -vc  is zero. Hence, the work done, which is 
the integral of power over time, is zero. 

We obtain the impulse-momentum relations the same way we did for particles, 
by integrating the equations of motion over time. Doing so between two time points 
tl and t2 gives 

mvc(tl)+ Fdt  = mvG(t2) P c3.12.71 

The integrals in Eqs. [3.12.7] and [3.12.8] are known as the impulse and 
the angular impulse, respectively. A very interesting application of the impulse- 
momentum relationships is in cases where the integral of the sum of moments or the 
sum of forces vanishes. In such cases, we have conservation of linear momentum or 
conservation of angular momentum. 

Example I A solid uniform sphere of mass rn and radius R is placed on top of a fixed sphere of the same 
3.1 2 radius, and it is slightly tipped (Fig. 3.36). Find the value of the angle 8 at which sliding 

begins as a function of the coefficient of friction p.  

Solution 

The displaced position of the sphere and its free-body diagram are depicted in Fig. 3.37. We 
denote by 8 the angle made by the line joining the centers of the spheres and the vertical. By 
4 we denote the angular displacement of the top sphere. The friction force F is less than pN 
for no slipping, where N is the normal force. When there is slipping, F = pN. The speed of 
the center of the sphere is given by 

VG = 2 ~ 0  

and for no slip 



Figure 3.36 Figure 3.37 

so that for the no-slip case the two angles are related to each other by 

6 = 20 [el 
Continuing to consider no slip, and noting from Appendix C that the centroidal mass moment 
of inertia of a sphere is IG = 2mR2/5, we can write the kinetic energy about the point of 
rolling contact 

where lB = lG + mR2 is the mass moment of inertia about the point of contact. Considering 
the center of the lower sphere as the datum, the potential energy has the form 

The sum of forces in the normal direction is 

mu$ - m(2R~!l)~ 2 F, = ma, + mg cos 6 - N = - - ----- = 2 m ~ 0 '  
P 2R 

The sum of the kinetic and potential energies is constant. Therefore, 

14 mR2e2 + 2mgRcos 0 = E 
5 191 

and noting that when 6 = 0, 0 is also equal to zero, we can evaluate E as 

E = 2mgR [hl 
Now using Eqs. [g] and [h], the relation between C) and 0 can be expressed as 

Substituting Eq. [i] into Eq. [f] we obtain an expression for the normal force N in terms of 6 
as 

5g mg N = mg cos 0 - 2mRe2 = mg cos 0 - 2mR-(1 - cos 0) = -(I7 cos 0 - 10) [/I 
7 R  7 



Summing moments about the center of mass of the sphere we obtain 

which relates the friction force F to 4. We sum forces in the tangential direction, thus 

ma, = -F  + mgsin0 [I] 

Noting that a, = 2 ~ 6  and introducing Eq. [k] into Eq. [l] we obtain 

Combining Eqs. [k] and [m] we write an expression for the friction force in terms of 0 as 

The instant slipping begins, F = p N .  Hence, considering Eqs. Ij] and [n], we obtain a 
relation for 0 at the instant slip begins, 

This can be solved for 0 given a value of p .  
It should be noted that the solution is independent of the mass and radius of the sphere. 

For very small values of p , we can solve Eq. [o] using a small angles assumption of sin 0 = 0, 
cos 0 = 1, which yields the result 0 = 7 ~ 1 2 .  For larger values of the coefficient of friction, 
one can use a numerical approach. For example, when p = 0.5, 0 can be found to be 0 = 
41.5". The case of having a rough contact between the spheres, that is, when the coefficient 
of friction is p = m, is of interest. Dividing both sides of Eq. [o] by p and setting p = m, 

we obtain 

which has the answer cos0 = 10117, or 0 = 53.97". We observe from Eqs. lj] and [o] that 
Eq. [o] basically implies that the normal force is zero. Therefore, at 0 = 53.97', the top sphere 
loses contact with the lower sphere and goes into a free-fall mode. 
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1. The blocks shown in Fig. 3.38 are released from rest. Find the acceleration of 
each block. The pulleys are massless. 

2. A chain of length 0.7 m is at rest over two slopes, as shown in Fig. 3.39. First, 
assume there is no friction between the chain and slopes. If the chain is released 
from rest, which end of it will rise, and what will its speed be when it reaches 
the top? Then, assume that there is friction and calculate the minimum amount 
of friction necessary to prevent the chain from moving. 

3. The pulley system in Fig. 3.40 is released from rest with the spring unstretched. 
Find the acceleration of each block. The pulleys and the cord are massless and 
frictionless. 

Figure 3.38 Figun 3.39 

Figun 3.40 



4. The three masses in Fig. 3.41 are connected by links of negligible mass. A force 
of magnitude F is applied as shown. Find the acceleration of the center of mass, 
as well as the acceleration of the individual masses. 

5. Find the direction of sliding in Problem 2 using energy methods for the (case of 
no friction). 

6. A ball is released from a height h from a plane. The coefficient of restitution 
between the ball and the lane is e. Show that the time it takes for the ball to 
stop bouncing is t = P 2hlg(l + e)l(l - e). 

7. Two spheres, made of the same material, the lower with radius 2b and upper 
of radius b, are dropped from a height h, as shown in Fig. 3.42. Assuming the 
centers of the spheres lie on a vertical line and all collisions between the spheres 
and the ground are elastic, find the maximum height the upper sphere reaches 
after impact. Assume that the lower sphere collides with the ground first and it 
then collides with the second sphere. 

8. Four small spheres of equal size and weight are aligned in a straight line and are 
spaced equally (L), as shown in Fig. 3.43. Sphere A is given an initial velocity 
v along the line. The coefficient of restitution e = 0.8 is the same for all the 
spheres. Find the velocities of the spheres after 5 collisions have taken place, 
and the position of sphere A. 
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9 .  Figure 3.44 shows five pendulums of equal mass and length arranged so that 
they touch each other when they are at rest. If someone takes the pendulum at 
the very left, swings it, and lets it go, only one pendulum at the very right will 
swing out. If one takes N pendulums and swings them, N pendulums swing out. 
Explain why. Also, explain why, if two of the pendulums are glued together and 
then released, the above phenomenon is not observed. 

10. In a pool game, a player must hit the cue ball and bounce it from a wall (e = 0.9) ,  
so that the cue ball hits the 8 ball head on and the 8 ball falls into the pocket, as 
illustrated in Fig. 3.45. Find the direction in which the player must hit the cue 
ball and location of cue ball on the table. 

1 L" 
Lo 1 1 .  A mass m is attached to a massless rod. The mass is at rest in the position shown 

2m 
in Fig. 3.46 when it is hit by another body of mass 2m and velocity v (e = 0.8) .  
Find the angular velocity of the rod immediately after impact. Figure 3.46 

12. Using the results of Example 3.5, calculate the altitude reached by a vertically 
fired rocket at burnout. Half of the rocket's weight is its propellant. Assume that 
p,Alb = 0.1 v,, = constant. 

13. A rocket is fired vertically such that dmldt and u,l are both constant. Derive 
expressions for the velocity and position as functions of time given that initial 
value of the acceleration is zero. 

14. A bucket of mass 1.5 kg is filled with 3 kg of water and is being pulled up a 
well. The tension Tin  the rope is kept constant at T = 30 N .  The bucket has a 
hole in it which lets the water leak out at a steady rate, and the bucket becomes 
empty in 38 seconds. Find the speed of the bucket at this instant. 

15. A spacecraft of mass mo and cross-sectional area A is moving with speed vo, 
as it encounters a dust cloud, as shown in Fig. 3.47. The dust cloud has density 
of p. As the spacecraft moves inside the cloud, dust begins to stick on its cross 
section. Derive an expression for the speed of the spacecraft as a function of 
time. Assume the dust offers no resistance to the spacecraft. 



dust cloud 

Figure 3.47 Figure 3.48 

16. A performer wants to keep a ping pong ball afloat by blowing on it, as shown in 
Fig. 3.48. Given is that when he blows on the ball, the opening of his mouth is 
of area A, the speed is v, and the density of the air is p. Find the largest mass of 
the ball that he can keep afloat. 

17. The cart in Fig. 3.49 is of mass 1250 kg and is moved by the action of a water 
jet. The water jet is of radius 0.08 m, and it squirts water with the speed of 200 
mls. Find the speed of the cart 3 seconds after the water jet is turned on. The 
cart has a coefficient of friction of p = 0.08. Hint: First develop an expression 
for the force acting on the cart as a function of the flow rate. 

18. Calculate the gravitational potential energy of a small mass inside a uniform 
sphere of mass m and radius R (Fig. 3.50). The distance of the mass from the 
center of the sphere is h, with h < R. Hint: Consider the sphere as consisting of 
an infinite number of thin spherical shells and calculate the potential energy of 
each shell. 

19. A tube of length 500 km is dug inside the earth from one city to another, as 
shown in Fig. 3.51 (not drawn to scale). The inside of the tube is frictionless. A 
mass is released from rest from one end of the tube. Find the maximum speed 
the mass attains in the tube. 

Figure 3.49 eig~re 3.50 ~igure 3.5 1 



20. Calculate the period of the earth's rotation around the sun using Kepler's third 
law and Eq. r3.8.251 and compare with the value given in Chapter 2. 

21. Calculate the altitude of a satellite in geosynchronous orbit (geo) about the equa- 
tor. Then, calculate how much time it takes for an electrical signal to travel be- 
tween the equator and the satellite. Determine the minimum number of satellites 
in geo required to make it possible for any two people on earth to have a tele- 
phone conversation via satellite. 

22. A satellite is launched into earth orbit. Burnout is at the perigee at an altitude of 
2.2(105) m, at which point the satellite is parallel to the earth's surface and has 
a speed of v = 9000 mls. Find the properties of the orbit. 

23. A satellite of mass 800 kg is to be placed at circular orbit around the earth of 
altitude 400 km. Find the energy required, as well as the period of the orbit. 

24. A spacecraft is in elliptic orbit with E = 0.5 and r, = 2R, where R is the radius 
of the earth. It is desired to change this orbit into a circular one with radius 
r,. Find the impulse required to accomplish this maneuver. Then, calculate the 
properties of the resulting orbit if the impulse is applied incorrectly at 6 = 185". 

25. Calculate the speed and flight path angle arocket must have at burnout at altitude 
200 km so that it can achieve an orbit with r, = 5400 krn and E = 0.7. 

26. A meteorite is at a circular orbit around the earth with an altitude of 3500 
km. The meteorite collides with another meteorite, and in doing so loses 3 
percent of its kinetic energy. Find the properties of the orbit after this col- 
lision. 

27. A satellite is in orbit and its position and velocity at a certain instant are measured 
to be r = 30001 + 20005 + 6500K krn and v = 52221 - 40005 + 6000K m/s 
where the origin is at a focus. Find the orbital parameters associated with this 
orbit. 

28. A satellite is in an elliptic earth orbit with E = 0.6 and r, = 8R, where R is 
the radius of the earth. Calculate how long it takes for the satellite to go from 
6 = 15" to 6 = 135'. Compare your answer with the period of the orbit. 

29. Consider the mechanism shown in Fig. 3.52, consisting of a rod of mass m and 
length L and disk of mass m and radius R = Ll4. The mechanism is held in 
place with the pin joint at 0 and the string. Suddenly, the string breaks. Find the 
angular acceleration of the rod at that instant if 
a. The disk is welded to the rod. 
b. The disk is attached to the rod with a pin joint. 



string 

Cigun 3.52 Cigun 3.53 

30. The two bars of equal length and mass are connected by pin joints and they 
are supported by a string at point B, as shown in Fig. 3.53. Find the angular 
acceleration of each bar when the string breaks. 

3 1. Figure 3.54 shows the schematic of a car. Explain why the body of the car rotates 
counterclockwise when the car is accelerated. 

32. The disk in Fig. 3.55 rotates with constant angular velocity o = 5 radls. The 
pin attached to it moves in the slotted bar OA. Bar OA has a mass of 10 kg and 
centroidal mass moment of inertia of 1.4 kg m2. Determine magnitude of the 
force exerted by the pin on rod OA when rod OA makes an angle of 10' with the 
horizontal. The coefficient of friction between the pin and the slot is p = 0.15. 

33. A bar of mass m and length L (Fig. 3.56) is connected to a disk of mass 2m and 
radius R = Ll2. The assembly is released from rest with 8 = 30'. Given that 
friction between the disk and the surface is sufficient to prevent slipping, find 
the angular acceleration of the disk at this instant. 

34. Consider Fig. 3.53. Let the string be broken and the following parameters ap- 
ply: L = 0.6 m, ve = 0.1 mls downwards. Find the instant center and angular 
velocity of the link AB. 

35. The arm AOC rotates with angular velocity 3 rads ccw, with point 0 stationary, 
as shown in Fig. 3.57. Gears A, B, and Care of the same radius R. Use instant 
centers to find the angular velocity of gear B if (a) gear D is fixed, and (b) gear 
D is not fixed but is rotating clockwise with o~ = 2.5 rads. 

~ i g u n  3.54 Figun 3.51 



Figure 3.56 Figun 3.57 Figure 3.58 

36. Consider Example 3.11. Find the minimum value of the coefficient of friction 
that will prevent slipping as a function of 6.  

37. Consider the bar attached to a disk in Problem 35, which is released from rest 
at 6 = 30". Find the velocity of the center of the disk when the rod becomes 
horizontal. 

38. Two rods of equal length and mass are connected by a pin joint and they are at 
rest, as shown in Fig. 3.58. An impulsive force $ is applied at point A perpen- 
dicular to the line AB. Find the angular velocities of the rods immediately after 
the impulse. 

39. Consider Example 3.12, and assume that friction is sufficient to prevent slip at 
all times. 
a. If the spheres involved were of different diameter, would the angle at 

which the spheres lose contact be different than in Example 3.12? 
b. Consider now that the cylinder is rolling over a cylinder. How would the 

final results change if (a) the sphere and cylinder have the same radius and 
(b) the sphere and cylinder have different radii? 





c h a p t e r  

This chapter and Chapter 5 introduce analytical techniques for describing the motion 
of dynamical systems. The dynamical system is considered as a whole and scalar 
quantities such as energy and work are used. Constraint forces and moments are 
treated differently than in Newtonian mechanics. Constraint forces that do no work 
do not appear in the formulation, and they are accounted for by appropriately se- 
lecting the variables used to describe the motion. Sometimes, one may need to find 
out the magnitudes of the constraint forces. This can be accomplished by calculating 
the magnitudes of the constraint forces after the problem is solved, or by leaving 
the constraints in the system formulation by means of Lagrange multipliers. The 
approaches described in this chapter are analytical approaches and they are based 
on the principles of variational calculus. Appendix B provides a more detailed look 
at variational principles. Generalized coordinates, which do not necessarily have to 
be physical coordinates, are used as motion variables. This makes the analytical ap- 
proach more flexible than the Newtonian, as the Newtonian approach is implemented 
using physical coordinates. 

We derive the analytical equations of motion in this chapter for particles 
and for plane motion of rigid bodies, though these equations are valid for three- 
dimensional rigid body motion and deformable bodies as well. Chapter 8 will 
deal with D' Alembert's principle and Lagrange's equations for the general three- 
dimensional motion of rigid bodies. 

One question often asked is whether it is more convenient to use a Newtonian 
technique or an analytical one when obtaining the equations of motion. There is no set 
answer to this question, with the possible exception of dynamical systems consisting 
of several interconnected components. When the number of coordinates needed to 



describe the system is much less than the number of components, it is usually prefer- 
able to use analytical techniques. When amplitudes of reaction forces are sought, it 
is usually better to use a Newtonian analysis. Looking at the problem from both the 
Newtonian and analytical points of view gives one more insight and a better under- 
standing. 

Analytical techniques use scalar functions like work and energy in the formu- 
lation, rather than vector quantities. While this approach makes a lot of sense, the 
experiences of dynamicists in recent years have shown that vector approaches com- 
bined with analytical techniques are more desirable when modeling complex sys- 
tems. One advantage of a vector approach is that it can be implemented on a digital 
computer more readily. 

A system of N particles requires 3N physical coordinates to specify the system's po- 
sition. Consider an inertial coordinate system and let the vector ri = ri(xi, yi, zi) be 
the mapping of the ith particle in this coordinate system.' We express ri as (Fig. 4.1) 

The 3N coordinates required to represent the system span a 3N-dimensional space, 
which is called the conjiguration space of dimension n = 3N. In many cases, as 
we will soon see, it is more advantageous to use a different set of variables than the 
physical coordinates to describe the motion. This approach is analogous to that of 
using different coordinate systems that we saw in Chapter 1. We introduce a set of 
variables ql, 42,. . . , qn, related to the physical coordinates by 

We will refer to a set of variables that can completely describe the position of 
a dynamical system as generalized coordinates. The space spanned by the general- 
ized coordinates is the conjguration space. As an illustration, consider the spherical 
pendulum in Fig. 4.2, whose length can change. The motion of the pendulum can be 
described by the Cartesian coordinates x, y, and z, or by ql, 42, and qs, where ql = L 
describes the length of the pendulum, and 42 = 8 and q 3  = 4 describe the angular 

'If a noninertial coordinate system is used, one has to include the variables describing the motion of the reference 
frame in the set of coordinates that describe the motion, unless the characteristics of the reference frame are treated 
as known. 
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Figure 4.1 A system of N particles Figure 4.2 A spherical pendulum 
whose length changes 

displacement. The choice of L, 8, and 4 as generalized coordinates is equivalent to 
using spherical coordinates. The two sets of coordinates are related by 

z = -41 cos q3 = - L cos 4 [4.2.3] 

If the length of the pendulum is constant, ql = L = constant, we do not need 
to use it as a variable; 42 = 8 and q3 = 4 are sufficient. If we use the coordinates 
x ,  y, and z to describe the motion, we have to relate them employing the constraint 
relation 

x2 + y2 + z2 = L~ = constant [4.2.4] 

Constraint relations, such as the one in this equation, indicate that the generalized 
coordinates are related to each other, and that the system can be analyzed by a smaller 
number of coordinates. The double link in Fig. 4.3, where the lengths of the rods are 
constant, requires at least two generalized coordinates to describe the configuration 
of the two rods. One can conveniently select them as the angles 81 and 82. 

Figure 4.3 A double link 



We hence need to distinguish between sets of generalized coordinates where 
each coordinate is independent of the others and where these variables are not inde- 
pendent.2 In general, if a system of N particles has m constraint equations acting on 
it, we can describe the system uniquely by p independent generalized coordinates 
qk, ( k  = 1,2,. . . , p), where 

in which p is called the number of degrees of freedom of the system. The term de- 
gree of freedom can be defined as the minimum number of independent coordinates 
necessary to describe a system uniquely. Sets of generalized coordinates where each 
coordinate is not independent of the others are called constrained generalized coor- 
dinates or dependent generalized coordinates. The number of degrees of freedom is 
a characteristic of the dynamical system and is independent of the coordinates used 
to describe the motion. While one can select the number and types of generalized 
coordinates and associated constraints in more than one way, p = n - m is invariant. 

The rate of change of a generalized coordinate with respect to time is called the 
generalized velocity and is denoted by qk(t)  (k = 1,2, . . . , n). The 2n-dimensional 
space spanned by the generalized coordinates and generalized velocities is called the 
state space. 

For the pendulum in Fig. 4.2 we generated two sets of generalized coordinates. 
We could select other sets of generalized coordinates as well. For example, we could 
select the generalized coordinates as L, 4, andx. However, this would introduce some 
ambiguity into the description of the pendulum, as x has the same value when the 
angle 8 is positive or negative. Such coordinates are known as ambiguous general- 
ized coordinates. Another example of ambiguous generalized coordinates would be 
to use the coordinates xp and yp of the endpoint P of the double link in Fig. 4.3. One 
can easily show that a given coordinate of the endpoint can be reached by two dif- 
ferent configurations of the links, the two being mirror images about the line joining 
points 0 and P, as shown in Fig. 4.4. 

P 
Second configuration 

21n this regard, the definition of generalized coordinate here is slight1 different than the traditional definition in I older texts, which often restrict the term's meaning to only an independent set. 



We draw two conclusions from the above. First, the generalized coordinates, 
whether they are independent or not, do not constitute a unique set. This actually is a 
tremendous advantage, as it gives a lot of flexibility. Second, one must exercise care 
when selecting generalized coordinates, especially independent generalized coordi- 
nates, to avoid redundancies and ambiguities. A poor choice of generalized coordi- 
nates can make the problem formulation and solution unnecessarily difficult. 

The discussion here with regards to generalized coordinates is similar to the 
analysis of coordinate systems in Chapter 1. When we go from Cartesian to cylin- 
drical or spherical coordinates, all we are doing is going from one set of generalized 
coordinates to another. We choose the coordinate system so that it simplifies the for- 
mulation. 

In this section we analyze constraints that act on dynamical systems. We describe 
the constraints in terms of physical as well as generalized coordinates. The interest 
is primarily in equality constraints. 

In dynamical systems, constraints are usually encountered as a result of contact 
between two (or more) bodies. Constraints restrict the motion of the bodies on which 
they act. Associated with a constraint are a constraint equation and a constraint 
force. The constraint equation describes the geometry andlor kinematics of the con- 
tact. The constraint force is the contact force, also called the reaction. (Constraint 
equations can also be written when the motion is viewed from a moving reference 
frame and there is no contact. The relative motion equation becomes the constraint 
equation.) 

Consider Fig. 4.5 and a particle moving on a smooth surface whose shape is 
described by 

where f has continuous second derivatives in all its variables. The motion of the par- 
ticle over the surface can be viewed as the motion of an otherwise free particle sub- 
jected to the constraint of moving on that particular surface. Hence, f ( x ,  y, z, t )  = 

0 represents a constraint equation. The constraint equation [4.3.1] is referred to 
as a conjguration constraint. For a system described in terms of n generalized 

Figun 4.5 A particle moving o n  a smooth surface 



coordinates, we can express a configuration constraint as 

The differential of the constraint f (in terms of physical and generalized coordinates) 
is 

The expressions [4.3.3] are said to be constraint relations in PfafJian form. (A 
constraint in Pfaffian form is one that is expressed in the form of differentials.) Di- 
viding these equations by dt, we write the constraint equations in velocity form (also 
called velocity constraints or motion constraints) as 

The general form of a velocity constraint can be written in terms of physical coordi- 
nates as 

and, in terms of a system with n generalized coordinates subjected to m constraints, 

where a,, a,, a,, ao, and ajk and ajo ( j  = 1,2, . . . , m; k = 1,2, . . . , n) are functions 
of the generalized coordinates and time, for example, a j k  = a jk(ql, 92, . . . , q,, t). 
Note that once the constraints are imposed to a set of independent generalized coor- 
dinates, these coordinates are no longer independent. 

A constraint that can be expressed as both a configuration constraint as well as 
in velocity form is called holonomic. Constraints that do not have this property are 
called nonholonomic. In other words, nonholonomic constraints cannot be expressed 
as configuration constraints. 

An unconstrained dynarnical system or one subjected to a holonomic constraint that 
is not an explicit function of time, for example, fj(ql, 92, . . . , q,) = 0, is called a 
scleronomic system. If the holonomic constraint is an explicit function of time, the 
system is called rheonomic. Throughout this text we will deal mostly with sclero- 
nomic systems, as they constitute the majority of situations encountered in engineer- 
ing applications. 



Consider the single particle discussed above and the case when the holonomic 
constraint f is not an explicit function of time. That is, the plane defined by the 
constraint is fixed. Elimination of the d f  ld t  term from Eq. [4.3.4a] yields 

Denote the position and velocity of the particle by r ( t )  = x(t) i  + y(t) j  + z ( t ) k  
and v ( t )  = i f t )  = x(t) i  + y(t)j + i ( t ) k .  The gradient of the constraint is 

Taking the dot product between the gradient of the constraint and velocity v ( t )  
gives 

which, when compared with Eq. [4.3.4a], yields 

with the expected result that the particle velocity is always tangent to the ~u r face .~  
The same relation can be derived for generalized coordinates. 

Given the holonomic constraint of a particle moving on a surface, the question 
then arises as to what keeps the particle on the surface. The answer is a constraint 
force normal to the surface, as shown in Fig. 4.6. To every constraint relation corre- 
sponds a constraint force. Considering a single particle and denoting the constraint 
force by F', one can express it as 

F' = F'n C4.3.111 

where n is a unit vector representing the direction perpendicular to the surface, usu- 
ally referred to as the normal direction. (This direction is similar to the normal direc- 
tion in normal-tangential coordinates, but here it can be taken as in either direction 
perpendicular to the surface.) Since F' is perpendicular to the surface, it must be per- 
pendicular to the velocity. It follows from Eq. [4.3.9] that the unit vector n, which is 

3Recall the derivation in Chapter 1 when analyzing path variables that the particle velocity is always tangent to I the path. 



normal to the surface, should be parallel to Vf. One can define n as 

Since the constraint force is expressed as 

F' = F:i + F$ + F:k 

when we compare Eqs. [4.3.12] and [4.3.13] we conclude that the components of 
the constraint force must be proportional to the partial derivatives of the constraint, 
or 

Now, consider the work done by the constraint force as the particle moves 
from position r to r + dr .  Denoting this incremental work by dW and considering 
Eqs. [4.3.11] and [4.3.12], we obtain 

This relation indicates that the work done by a holonomic constraint force which is 
independent of time in any possible displacement is zero. Such constraints are re- 
ferred to as workless constraints. This result is to be expected, because the constraint 
force is always perpendicular to the velocity. 

Note that, while the total work done by the constraint forces that are independent 
of time is zero, the individual constraint forces are doing work themselves. This work 
is in the form of transfening energy from one component of the system to the other. 
The sum of the transferred energies is zero. To visualize this, consider the double link 
in Fig. 4.3, whose free-body diagram is given in Fig. 4.7. If the first link is given an 
initial motion, the second link will begin moving, and vice versa. The motion of the 
second link is initiated by the constraint forces acting at point B. 

Figun 4.7 Freebody diagram of double link 



Considering Fig. 4.7, reaction forces, such as the forces at the pin at 0 and at 
point B, are holonomic constraint forces. Normal forces are also holonomic constraint 
forces. However, friction forces are not constraint forces, even though their magni- 
tude is directly dependent on a constraint force. Nevertheless, for static problems one 
can treat friction as a reaction force, because in such cases friction prevents motion. 

Next consider a holonomic constraint that is an explicit function of time. For the 
particle considered earlier, this implies that the surface is moving and the constraint 
is in the form f = f ( x ,  y, z, t ) .  Using Eqs. [4.3.4a] and [4.3.9] we obtain 

which implies that Vf * d r  # 0. It follows that the incremental work d W ,  which now 
is not a perfect differential as time is explicitly involved, is not zero. The incremental 
work has the form 

When the holonomic constraint is time dependent, the work performed by the 
corresponding constraint force is not zero. The path followed by the particle can no 
longer be described by the path variables associated with the surface. The vector n 
describes the normal to the surface, but it is not the normal to the path followed by 
the particle. 

When the constraint is nonholonomic, it can only be expressed in the form of 
Eqs. [4.3.5] or [4.3.6], as an integrating factor does not exist to permit expres- 
sion in the form of Eqs. [4.3.1] or [4.3.2]. Consequently, none of the preceding 
results we obtained regarding the work done by the constraint force are valid for 
nonholonomic constraints. The constraint force associated with a nonholonomic 
constraint cannot be expressed as a force normal to a surface, as the nonholonomic 
constraint does not define a surface. One can go into the space spanned by qi(t)  and 
qi(t) (i = 1,2, . . . , n) and define a surface there, but this does not give any physical 
insight or significant results. Hence, there is no general expression for the constraint 
force when the constraint is nonholonomic. 

A common example of a nonholonomic constraint is the rolling without slipping 
of a body with no sharp comers or edges, such as a disk or a sphere. 

In general, constraint equations in terms of relative velocities and especially 
those involving angular velocities that are not "simple" turn out to be nonholonomic. 
Recall the discussion of angular velocity in Chapter 2. When a reference frame is de- 
scribed by successive rotations about nonparallel axes, the resulting angular velocity 
cannot be described as the derivative of a vector. 

Other examples of nonholonomic systems are from vehicle dynamics. Included 
in this category are the motions of ships, missiles, airplanes, automobiles, wheel- 
barrows, shopping carts, and sleds. Figure 4.8 is a simplified illustration of such 
a vehicle undergoing plane motion, such as a sled. Vehicles usually have a plane 



Figun 4.8 Generic model of a vehicle 

of symmetry, and they are propelled in a way that the guiding forces act primarily 
along the symmetry plane, with a very small component of the force used to change 
direction. A steering mechanism usually accomplishes the change in direction. 

One then makes the assumption that there is a point along the plane of symmetry, 
denoted by A, such that the velocity of pointA is always along the plane of symmetry. 
The location of this point depends on the vehicle and the types of forces that prevent 
point A from having a velocity component perpendicular to the plane of symmetry. 
In a tricycle or automobile, the point A is in the middle between the rear wheels. In 
a boat, the hydrodynamic forces determine the location of A. 

Consider the vehicle in Fig. 4.8. The configuration of this system can be de- 
scribed by the coordinates of point A, XA and Y A ,  and by the angle the body makes 
with the inertial X axis, denoted by 8. The nonholonomic constraint is associated 
with the translational velocity of point A. Denoting this velocity by VA, we write it as 

The constraint is written as 

where j = cos 8J - sin 81. Introducing Eq. [4.3.19] into Eq. [4.3.18], we obtain 

This equation can conveniently be expressed as 

YA X A - - = O  
tan 8 

It is clear that this constraint is nonholonomic. The associated constraint force 
is basically the resistance of point A to have any motion perpendicular to the line 



of motion. In an automobile, for example, this force would be the friction force be- 
tween the rear tires and the road surface in the direction perpendicular to the velocity 
of the tires. A very strong wind in the lateral direction, collision with another vehicle, 
or taking a turn with high speed would violate this constraint. 

In general, the constraint force associated with a nonholonomic constraint per- 
forms work. A special case when this is not valid is rolling without slipping, where 
the friction force is applied to a point with zero velocity. For roll without slip, friction 
becomes a constraint force, as it reduces the number of degrees of freedom. 

We next look into determining whether a constraint is holonomic or not. In gen- 
eral, whether it is or is not can be ascertained by visual inspection. Mathematically, 
in order for a constraint in Pfaffian or velocity form to be integrable to configura- 
tion form, the constraint relation must satisfy differentiability conditions. The con- 
straint must represent an exact differential. Consider Eq. [4.3.6]. If the jth constraint 
equation is holonomic, one should be able to write it as f j (q l ,  42, . . . , q,, t )  = 0. 
Taking the differential of f j  and, for the most general case, dividing it by an inte- 
grating factor gj(q l ,  q2, . . . , q,) we obtain Eq. [4.3.3b]. Comparing Eq. [4.3.4b] with 
Eq. [4.3.6], we obtain for the general case of a holonomic constraint 

For a constraint given by Eq. [4.3.6] to be holonomic, there must be a function 
f, and an integrating factor gj(q l ,  92,. . . , q,) ( j  = 1,2, .  . ., m) where the partial 
derivatives of f j ( j  = 1,2, . . . , m) satisfy Eq. [4.3.22]. To check this, we evaluate 
the second derivatives of f j .  Indeed, considering an index r, we obtain 

d 2 f j  -- 
d  d 

d 2 f ~  - -(gjajr)  f4.3.231 - - ( g j a j k )  and -- 
dqkaqr dqr aqkdqr dqk 

d 2 f  d d 2 f .  d  
> = - ( g j a j o )  and L =  -(gjajr) 
dqrdt dqr dqrdt at 

From Eqs. [4.3.23] and [4.3.24] if an integrating factor gj exists such that ajk 
and ajo satisfy the relations 

then the constraint is holonomic. The problem with using the above procedure is that 
it may not be easy to find the integrating factor, especially for systems having more 
than three degrees of freedom. 

A constraint of the form f  (q l ,  q2, . . . , q,, t )  r 0, or 2 akqk + a0 2 0, that is, 
an inequality constraint, is nonholonomic because it cannot be reduced to a form 
f  (41 ,  q2, . . . , q,, t) = 0. Such constraints require a different treatment than equality 
constraints. We also encounter constraints that are valid in some positions of the body 



or during certain intervals of the motion. Such constraints can also be classified as 
inequality constraints. They can be found in problems involving contact. 

Consider now a system that originally has n degrees of freedom and is sub.jected 
to m holonomic constraints. Introduction of m constraints reduces the degrees of 
freedom by m to p = n - m, resulting in a set of m excess, or surplus, coordinates. 

It is possible, at least mathematically, to eliminate the surplus coordinates from 
the formulation, which results in an unconstrained system of order n - m. Because 
of this, unconstrained systems are referred to as holonomic. 

By contrast, a nonholonomic constraint constrains only the generalized veloci- 
ties, without affecting the generalized coordinates. In such systems there are n inde- 
pendent generalized coordinates and n - m independent generalized velocities. 

Example I A bead is sliding in a tube, whose shape is given by the equation y = 1 - xZ, as shown in 
4.1 Fig. 4.9. Find the direction of the normal to the tube. 

Solution 
One can solve this problem in a number of ways. We first consider the problem from a physical 
standpoint. Because the bead is sliding in the tube, the equation defining the shape of the tube 
becomes the constraint equation, and it has the form 

Taking the partial derivatives off, 'we obtain 

so that, using Eq. [4.3.8], the gradient off has the form Vf = 2xi + j. From Eq. [4.3.12], the 
unit vector in the normal direction (chosen, for convenience, positive outward) becomes 

As expected, because the constraint is not an explicit function of time, neither is the direction 
of the constraint force. The constraint is, of course, holonomic. 

To solve this problem geometrically, we define the angle 0 between the horizontal and 
the tangent to the curve. The tangent of O(x) describes the slope of the tube, and 

Bead sliding inside a tube 



We find the sine and cosine of 0 by 

2x 
sin 0 = cos0 = - 

1 

JiTS JS 
Now we can express the unit vector describing the normal as 

We can also determine the normal direction directly from the geometry, using the ap- 
proach in Chapter 1 ,  without going into any constraint equations. Denoting the path variable 
by x, we write the position vector as 

r = xi  + ( 1  - x2)j IS] 

and the expressions for the slope and the unit vector in the tangential direction become 

Use of Eq. [1.3.36] yields n. When the path parameters associated with the motion of a body 
are specified, in essence a constraint has been imposed on an otherwise free body. 

A block of mass rn is attached to a cord of original length L and is rotating about a thin hub, I Examplo 
as shown in Fig. 4.10. Friction is negligible. Find the constraint force if (a) the cord is not 4.2 
wrapping around the hub, and (b) the cord is wrapping around the hub. 

Solution 
a. When the cord is not wrapping around the hub, the constraint is holonornic and independent 
of time. The constraint equation basically describes that the length of the cord is constant, and 
it has the form 

Figurn 4.10 Mass rotating around a thin hub (a) Cord is not 
wrapping around hub (b) Cord is wrapping 
around hub 



Once motion is initiated, the mass keeps rotating with the same speed and the energy of the 
particle does not change. The constraint force is the tension in the rope, and it does no work. 

b. The situation is quite different when the rope wraps around the hub. Assuming that the hub 
radius is very small, the tension in the rope is directed toward point 0. Summing moments 
about 0, we obtain 

so that the angular momentum about 0 is conserved. In essence, we have a central force 
problem. Let us use polar coordinates r and 8. Consider that the length of the rope, denoted 
by r, reduces continuously by the relation 

where ro is the radius of the hub. In one revolution of the mass, the rope shortens by 2 m 0 .  
The angular momentum about 0 is given by Ho = m 9 8 .  Because the angular momen- 

tum is conserved, 

128 = constant = h [dl 
where we note that the constant h is always greater than zero, h > 0, and that h is a function 
of the initial condition. Differentiating the relation between r and 8,  we write 

and substituting the above relation into Eq. [dl, we obtain 

or 

?i. = -ror% = -roh = C C < 0 191 
where C is constant. Now, let us find the response r(t).  We can rewrite Eq. [g] as 

? d r  = C d t  [hl 

which, when integrated, gives 

where D is a constant of integration, determined from the initial conditions. We note that at 
t = 0, r = L ,  and from Eq. [i] $13 = D, so that D = L3/3. Considering that the length of 
the rope is related to x and y by 9 = x2 + y2, we can write Eq. [i] as 

The constraint is a time-dependent holonomic constraint, that is, a rheonomic constraint. 
The constraint force, which is the tension in the rope, does perform work. To show that the 
constraint force does indeed perform work, we consider the configuration vector r and its 
derivative 

r = re, i- = k, + roee [kl 



The constraint force (the tension in the rope) can be expressed as F' = - Fe,, so that the 
dot product between the constraint force and the particle velocity becomes 

which is not zero. Note that for the case when the length of the rope is not changing, k = 0, and 
the work done by the constraint is zero. Also note that in order to find an explicit expression 
for r(t), the initial angular velocity must be specified. 

Given a system with generalized coordinates ql and 92 and the constraint equation I Example 
4.3 

determine whether the constraint is holonomic or not. 

Solution 
The constraint equation is holonomic if there exists an integrating factor g(ql, q2), such that 
Eq. [4.3.22] holds, or 

We observe that if g(ql, 42) = ql,  then 

Integrating the two expressions, we obtain 

where hl and hZ are functions that appear as a result of the integration over ql and 42, respec- 
tively, and C1 and C2 are constants. Comparing the two integrated terms, we conclude that 
h2(ql) = and hl(q2) = 0 and that the constants are related by C1 = C2. The constraint, 
therefore, is holonomic and has the form 

where C is a constant. For this problem the integrating factor was found by visual inspection. 
In general, there are no set guidelines for finding the integrating factor. 

The tip of the double-link mechanism in Fig. 4.11 is constrained to lie on the inclined plane. I Example 
Derive the constraint equation and express it in velocity form. 4.4 

Solution 
This is a single degree of freedom system. We use 01 and 82 as generalized coordinates. 
Hence, we need one constraint equation. We can simplify the formulation by expressing the 
position of the tip along the incline by the variable s. To derive the constraint equation we 
write the position vector of the tip in two ways: using the links and using the incline. Using 
the links, the position vector has the form 

r p  = (L1 cos 01 + L2 cos 023 + (L1 sin 01 + L2 sin 02)j [a] 



and using the incline, it has the form 

~ L I  r p  = ----i+scosJli+ssin$j 
2 

[bl 

We equate the above two expressions and separate components in the x and y directions, thus 

To obtain the constraint equation, we eliminate s by multiplying Eq. [c] by sin J, and Eq. [dl 
by -cos + and adding the two equations. Dividing the result by L1 sin +, we obtain 

L2 1 cos 8, + - C O S O ~  - - 
3 

L2 sine2 = - sinel - --- 
tan* L1 tan* 2 

[*I 
L1 

which is recognized as the holonomic constraint equation. To express this constraint in ve- 
locity form, we differentiate Eq. [el with respect to time, with the result 

At this point, we introduce the variational notation. The variational notation is ide- 
ally suited for dynamics problems because it makes the formulation concise, and 
it has a meaningful physical interpretation. When applied to dynamical systems, 
the variations of displacements are known as virtual displacements, denoted by 
ax,  6y,  62, etc. In terms of generalized coordinates, the virtual displacements 
have the form 6ql ,  6q2, .  . . , Sq,. The variations of the velocities are denoted 
by Sx, 6y ,  Si for physical coordinates and Sqk (k = 1,2, . . . , n) for generalized 
velocities. 



Virtual displacements have the following properties: 

They are infinitesimal displacements. 
They are consistent with the system constraints, but are arbitrary otherwise. 

The variation of displacements (or velocities, etc.) is obtained by holding time 
fixed; therefore, virtual displacements can be considered as occumng instanta- 
neously, and time is not involved in their applications. 

Dealing with virtual displacements is like imagining the system in a different po- 
sition that is physically realizable, while freezing time. It is as if a different set of 
forces were applied and, as a result, the system moved to another location by one of 
the admissible paths it can follow. 

The rules for calculating virtual displacements are intimately related to the rules 
of differentiation. For the position vector r = x(t)i + y(t)j + z(t)k, or r = r(ql ,  
92,. . . , qnr t) ,  the variation of r becomes 

Figure 4.12 depicts the concept of a variation (for the coordinate y). When expressing 
the motion r = xi + yj + zk in which x, y, and z are all functions of the generalized 
coordinates, the variation of r has the form 

As discussed in Appendix B, we distinguish between dependent and indepen- 
dent variables. For dynamical systems, time is the independent variable. The co- 
ordinates x, y, z, as well ql, g ~ ,  . . . , q, are functions of time and are referred to as 
the dependent variables. The term dependent is used here to denote explicit depen- 
dence of the generalized coordinates on time, rather than on each other. It follows 
that one can interchange the time differentiation and the variation operators. That is, 
6qk = 6(dqk/dt) = d(6qk)ldt (k = 1,2,.  . ., n). 

The variation of a position vector can be obtained in two different ways. One way 
is by obtaining an analytical expression for the position vector and taking its variation 

Figure 4.1 2 Variation of y 



by differentiating with respect to the generalized coordinates. Basically this is the 
use of Eq. [4.4. lb]; it is known as the analytical approach. This approach may lead 
to lengthy expressions for certain complex problems. When r  is expressed in terms 
of the coordinates of a moving reference frame, one must also take the variation of 
the unit vectors of the moving reference frame. The exception to this is when the 
motion of the relative frame is prespecified as a known quantity and is not treated as 
a motion variable. 

In the second way, known as the kinematical approach, one explores sirnilari- 
ties between velocities and virtual displacements. When taking the variation of an 
expression, the independent variable is not varied. We use this property, as time is 
the independent variable. The time derivative of r  is 

Elimination of the partial derivative of r with respect to time, elimination of 
all expressions explicit in time, and replacement of x by a x ,  y by Sy,  i by Sz in 
Eq. [4.4.3a] and of qk ( k  = 1,2,. . . , n) with 6qk in Eq. [4.4.3b] yields the variation 
of r. This implies that if the expression for the velocity is known, the associated 
virtual displacement can be obtained directly from it. This approach of calculating 
virtual displacements from velocities is especially useful when the velocity of a point 
can be found using an instant center or a relative velocity expression, such as 

The variation of the displacement of point B is 

where we note that the ~ B I A  term is left intact and that 68 represents the variation 
of an infinitesimal rotation. Also, keeping in line with the developments in Chapter 
2, we extend the boldface to the entire term 68 to denote that 68 is a variation of a 
rotation and that it is not obtained by differentiating a vector. 

Consider Eq. [4.4.3b] and the derivative of r with respect to qk. Of all the terms 
in Eq. [4.4.3b] only one survives and we obtain the important relationship 

so that the variation of r  can be expressed as 

Note that Eq. [4.4.7] is in essence the mathematical representation of the kine- 
matical method of calculating virtual displacements. Next, consider the holonomic 
constraint f (x ,  y, z, t )  = 0 and obtain its variation, which has the form 



Because time is held fixed while f is varied, Sf has the same form whether the 
constraint is time dependent or not. When a constraint is given in velocity form by 
Eqs. [4.3.5] and [4.3.6], in terms of physical coordinates the virtual displacements 
satisfy 

and, in terms of generalized coordinates and the jth constraint, they satisfy 

Let us next consider the work done by a force over a virtual displacement. Con- 
sider a body acted upon by a force F and the virtual displacement associated with 
the point at which the force F is applied. We define the work done by the force over 
the virtual displacement 6 r  as the virtual work or variation of work and denote it by 
S W. Hence 

We will examine the virtual work associated with a general force in the next 
section. For now, let us consider the holonornic constraint f(x, y, z, t )  = 0 and the 
associated virtual work. Recall that whether the constraint is time dependent or not 
is immaterial. From Eqs. [4.3.11]-[4.3.14], the constraint force F'  has the form 

We define by 6 W' the work performed by the constraint force in any virtual dis- 
placement virtual work due to constraint forces, as 

6W' = F' * S r  = F!& + F;Sy + FiSz [4.4.13] 

Using Eqs. [4.4.1] and [4.4.8] we conclude that 

so that the work pe$ormed by a holonomic constraint force in any virtual displace- 
ment is zero. 

A disk of radius R rolls without slipping on a rod of length L pivoted at one end, as shown in I Example 
Fig. 4.13. Denoting the pivot angle by 6 and the angular displacement of the disk by 4, find 4.5 
the virtual displacement of the center of the disk. 

Solution 

We will solve this problem using both a kinematical and an analytical approach. We begin 
with the kinematical approach. We select an inertial frame X Y Z  and a relative frame x y z ,  
such that the x y z  axes are obtained by rotating the X Y Z  frame by an angle 8 counterclockwise 
about the Z  axis. 

The velocity of point G can be written as 



Figura 4.1 3 Disk rolling over bar 

in which VB = 0, o = 8k, and 

rclB = rc = (L - R4)i + Rj v,, = - R& 

Substituting the above values into Eq. [a] we obtain 

v, = e k  x [(L - R+)i + Rj] - R& = -R($ + e)i + ( L ~ J  - ~ @ ) j  [dl 

Thus, we write the variation of r~ as 

SrG = -R(6+ + 68)i + (L 68 - R+ S8)j 

Now we will find the variation of r~ analytically. The position vector r~ is given in 
Eq. [b]. There are two ways to obtain its variation. In the first, we express r~ in terms of the 
inertial coordinate frame and then differentiate. In the second, we take the variation of Eq. 
[b] directly, which requires the variation of the unit vectors i and j of the moving frame. The 
relation between the unit vectors of the inertial and relative frames is 

k = K  
[;I = [ cos 8 sine] [ I ]  

- sine cos8 J 

Introducing this into Eq. [b], we obtain 

r~ = [(L - R+) cos 8 - R sin 811 + [(L - R4) sin 8 + R cos 8]J 191 
The virtual displacement then becomes 

SrG = [-(L - R+) sin8 68 - Rcos 8 6 4  - Rcos 8 6811 
+ [(L - R4) cos 8 68 - R sin 8 6 4  - R sin 8 68]J [hl 

To convert the virtual displacement in terms of the relative frame, we introduce the relation- 
ships 

I = cos Oi - sin O j  J = sin 8i + cos 8 j  [il 

into Eq. [h], which gives Eq. [el. 



Next, take the variation of Eq. [b] directly, with the result 

6rG = - R 6 4 i + ( L  - R + ) 6 i +  R 6 j  

From Eq. [f], the variations of the unit vectors have the form 

Equations [k] can also be obtained directly from the rates of change of the unit vectors. 
Indeed, recalling that the angular velocity is w = 9k, the derivatives of the unit vectors are 

from which the variations can be calculated easily. Introducing Eqs. [k] into Eq. Ij], we obtain 
Eq. [el. 

We have thus obtained the variation of rG three different ways. It is clear that the number 
of manipulations is the least when we obtain the variation of r e  from the velocity expressions. 

Consider the two-link mechanism in Fig. 4.3. A force F  is acting at point P. Find the virtual I Example 
work expression for each link and demonstrate that Eq. [4.4.14] holds. 4.6 
SoluHon 

The free-body diagrams of the link are shown in Fig. 4.7. For the first link, the forces that 
contribute to the virtual work are the reactions at point B and the force of gravity at the mass 
center GI.  The forces can be expressed in vector form as 

The associated displacement vectors are 

Cbl 

so that the virtual displacements become 

We thus find the virtual work for the first link as 

For the second link, the virtual work is due to the reactions at point B, gravity acting 
through the center of mass of the link G2, and the external force F  at the tip P. The forces at 
B are equal and opposite of FB. The other forces can be expressed by 

F = F x i + F y j  F G 2 = - m 2 g j  [el 

with associated displacements 



whose variations are 

8 rp  = (L1 c 01601 + L2 c 02S02)i + (LI s01801 + L2 s02802)j 

We now find the virtual work for the second link as 

6Wlink2 = -FB SrB + F 6rp - mzgj arc, 

The virtual work of the entire system is found by adding Eqs. [dl and [h], with the result 

The only terms that contribute to the virtual work are those associated with the external 
forces. The contribution of the holonomic constraint forces (in this case the reaction at point 
B) to the virtual work is zero. 

Taking the dot products, we write Eq. [i] in terms of the generalized coordinates as 

Consider next the problem of having not a pinned joint at point B, but a joint that permits 
sliding motion, such as the collar shown in Fig. 4.14. Such a joint, as we will see in more detail 
in Chapter 7, is called aprismatic joint. The free-body diagram is illustrated in Fig. 4.15. The 
friction force at the sliding joint must be considered, and the forces that the two bodies exert 
on each other are split into two parts: a normal force N and a friction force F'. Introducing 
the unit vectors el and e2 along and perpendicular to the link, we express the normal and 

Figure 4.14 Prismatic joint Figure 4.1 5 Freebody diagrams 



friction forces on the two rods as 

FN = Nel Ff = Ffe2 

Note also that because of sliding, the points B on the first link and on the collar do not 
have the same velocity. Denoting these points by B1 and B2 and introducing a generalized 
coordinate q to describe the sliding of link 2, the position vectors for B1 and B2 become 

The virtual work expression has the form 

8Wlinkl = (FN + F f ) * 8 r s I  - 

6Wlid = -(FN + F f ) * 8 r B 2  + F * 8 r p  - m2gj *8rG2 [ml 

so that the virtual work for the entire system is 

The contribution of the friction force to the virtual work is clear. Note that in order to 
determine the magnitude of the friction force, we need to have the normal force, which is 
absent from the above expression. This, basically, is the typical problem encountered when 
formulating problems involving friction. Also note that the position vectors for the center 
of mass and for the tip of the second rod change when the sliding joint is introduced to the 
problem. 

Consider the system of particles in Fig. 4.16. The jth particle exerts a force of F i j  
on the ith particle (i, j = 1,2, . . . , N). The resultant of all forces acting on the ith 
particle is denoted by Ri and has the form 

N 

Ri = F i + F I  = F i + X ~ i j  i =  1,2, ..., N c4.5.11 
j = l  



where Fi denotes the sum of all external (impressed, applied) forces exerted on the 
ith particle and F; is the sum of all internal forces (constraint or reaction forces that 
one particle exerts on the other). 

The virtual work for each particle is defined as 

SWi = Ri*Sri  [4.S.2] 

One obtains the virtual work for the entire system by summing over the individual 
particles 

Substituting Eq. [4.5.1] into Eq. [4.5.3], 

We showed in Eq. [4.4.14] that the total work performed by the constraint forces in 
any virtual displacement is zero. It follows that the second term on the right side of 
the above equation vanishes because 

T F ; * S r i  = 0 [4.S.S] 
i=  l 

and the expression for the virtual work becomes 

It is of interest to examine the virtual work in terms of generalized coordinates. 
We express the displacement of each particle in terms of a set of n generalized coor- 
dinates qk (k = 1,2, . . . , n) as ri = ri(ql, 92, . . . , qn, t ) ,  (i = 1,2, . . . , N). The vari- 
ation of ri is 

Substitution of Eq. [4.5.7] into the expression for virtual work yields 

We define the term inside the fences in the above equation as generalized forces and 
write 



where Qk is the generalized force associated with the kth generalized coordinate. 
We can then express the virtual work as 

The relation between a generalized coordinate and a generalized force is anal- 
ogous to the relation between a physical coordinate and the force applied in the 
direction of that coordinate. Also, the dimensional relation between generalized co- 
ordinates and generalized forces is worth noting. The product of Qk and 6qk has the 
same units as the variation of energy. For example, if the generalized coordinate de- 
scribes a displacement, the generalized force has the units of force. If the generalized 
coordinate describes a rotation, the generalized force becomes a moment. 

Recalling from the previous section that the variations are often calculated with 
more ease by velocity relations, we make use of Eq. [4.4.6] 

to express the generalized forces as 

Another way of calculating generalized forces is based on the nature of the ap- 
plied forces. For a conservative system, because dW is a perfect differential, the 
virtual work can be written as the variation of the negative of the potential energy, 

in which V is the potential jknction, or the potential energy. The variation of the 
potential energy in terms of physical coordinates is 

When there are no constraints acting on the system, xi, yi, and zi (i = 1,2, . . . , N) 
are independent. It follows that axi ,  Syi and Szi are arbitrary, and using Eqs. [4.5.13] 
and [4.5.14], we obtain 

In terms of independent generalized coordinates, and when all the applied forces 
are conservative, the virtual work expression can be written as 



Comparing Eqs. [4.5.16] and [4.5.10], and considering the independence of the 
variations of the generalized coordinates, we conclude that the generalized forces 
are related to the potential energy by 

In the presence of both conservative and nonconservative forces, the virtual work 
and generalized forces can be written as 

6 W  = -6V + 6Wnc [4.S. 1 81 

where the notation is obvious. When they are constant, nonconservative forces can 
be treated as conservative. 

In summary, one can use a number of ways to calculate generalized forces: 

1. Write Eq. [4.5.6] and after the virtual work is calculated collect coefficients of 
6qk (k = 1,2,. . . , n). 

2. Calculate drildqk (or dCildqk) and use Eq. [4.5.12]. 

3. Take advantage of the potential energy and use Eq. [4.5.17] for the conservative 
forces. 

The reader is encouraged to use and compare all three approaches. 

-- 

Lxample I Find the generalized forces for the mechanism in Fig. 4.3 (Example 4.6). 
4.7 Solution 

The generalized coordinates are 81 and 82. We will calculate the generalized forces in a num- 
ber of ways. First, we take the expression for virtual work from Eq. Ij] in Example 4.6, thus 

so that we can identify the generalized forces as 

Next, consider each force and drildqk. For the first link we have one external force, 
gravity, and 
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so that 

drc, - L1 L1 a rc  - - - c O l i + - s e l j  d = O  ael 2 2 ae2 
There are two external forces acting on the second link, written 

F = F , ~ + F , ~  r p = ( L 1 s 0 1 + L 2 s e 2 ) i - ( L 1 c 8 t + L 2 c e 2 ) j  

Fc2 = -m2gj rc2 = ( ~ ~ ~ 0 ~  + 

so that 

- -  - LlcOli  + L~ s e l j  - - - ~ ~ c e ~ i +  ~ ~ s e j  
6% 1 

a rc  = - ~ ~ c e ~ i +  1 - ~ ~ s e j  1 --A = Ll cOli + L1 s e 1 j  - 
I do2 2 2 

Applying Eq. [4.5.12] we obtain 

a rc  arp arc, 
Ql = FG,.-- +F.-  +FG2.-- 

30 l ae I ae I 
1 

= --mtgLl s e t  - m2gL1 s e t  + FxL1cel + FyLl s o l  2 
arc Jrp arc, Q2 = F G , * A  + F * -  + F c z 0 -  
do2 do2 do2 

1 
= - -m2gL2 s 82 + FxL2 c 82 + FyL2 s 82 

2 

which are the same as Eq. [b]. 
Finally, we make use of the potential energy to calculate the portion of the generalized 

forces associated with the gravitational forces. Taking point 0 as the datum, we write the 
potential energy as 

L1 L2 V = -mlg- eel - m2gLl c91 - mzg- c02 
2 2 

[hl 

hence, the generalized forces due to the conservative forces become 

It is easy to see that the use of potential energy simplifies the calculation of the general- 
ized forces. 

4.6 ~ C L E  OF VIRTUAL WORK FOR STATIC EQUILIBRIUM 1 
Let us now consider static equilibrium. For a dynamical system, static equilibrium 
is described as the state where all components of the system are at rest, with zero 



velocity and zero acceleration. To find the equilibrium position, one can write the 
equilibrium equations using Newton's second law and solve these equations. The 
disadvantage of doing so is that if the motions of any two components are related to 
each other with a constraint relation, then the associated constraint forces must be 
calculated in the process. This may become tedious for systems with several inter- 
connected components. Encouraged by the results of the previous section, we seek 
a different solution to the equilibrium problem that does not require one to solve for 
the constraint equations. 

At equilibrium, the resultant force on each component of a system must be zero. 
Hence, we have Ri = 0 (i = 1,2, . . . , N). It follows from Eq. [4.5.3] that since every 
resultant Ri = 0, the virtual work must vanish as well and we must have 6 W = 0. 
Introducing this into Eq. [4.5.6] gives 

The above equation, first formulated by Johann Bernoulli, is known as the 
principle of virtual work for static equilibrium. It basically states that, at static 
equilibrium, the work performed by the external, impressed forces through virtual 
displacements compatible with the system constraints is zero. It can easily be ex- 
tended to rigid bodies if we consider ri to be the displacement of the point on the 
body to which the force Fi is applied. 

Let us consider the principle of virtual work in terms of generalized forces. It 
follows from Eq. [4.5.10] that at equilibrium 

When the system is represented in terms of independent generalized coordinates, 
because the generalized coordinates are independent of each other, their variations 
6qk also are independent. Therefore, for Eq. [4.6.2] to hold, each of the coefficients 
of 6qk, that is, Qk, must vanish individually. We write 

In the presence of conservative forces we can take advantage of the potential energy 
and write 

The above results can also be interpreted as follows: Because independent general- 
ized coordinates represent the independent motion of each degree of freedom, their 
corresponding generalized forces must vanish at equilibrium. 

As in the previous section, one can follow two approaches when solving static 
equilibrium problems using the principle of virtual work: 
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1. One can work with physical coordinates and use Eq. [4.6.1]. 

2. One can select a set of generalized coordinates, calculate the associated gener- 
alized forces, and use Eq. [4.6.3] or [4.6.4]. 

In the second approach, Eq. 14.6.41 is usually recommended over Eq. 14.6.31 in 
the presence of conservative forces, as it makes use of the potential energy. On the 
other hand, computation of dri/dqk or di i ldqk (i = 1,2, . . . , N; k = 1,2, . . . , n) in 
Eq. [4.6.3] can be done in a systematic fashion and tabulated, thereby mechanizing 
the derivation of the equilibrium equations. 

Next, consider the principle of virtual work in terms of constrained generalized 
coordinates. To this end, write the constraint equations in Pfaffian form as 

Now write the variation of the generalized coordinates as 

We add this relation to the principle of virtual work via the Lagrange multipliers 
A, ( j  = 1,2, . . . , m), resulting in the expression for the augmented virtual work as 

Rearranging this equation as 

and by selecting the Lagrange multipliers such that the coefficients of 6qk vanish 
individually, we write the equilibrium equations as 

In the presence of conservative forces, we introduce Eq. [4.6.4] to this equation, 
which leads to 

Find the equilibrium position of the two links in Fig. 4.17. The springs are unstretched when I Example 
both rods are horizontal. Both springs deflect only vertically. 4.8 



l o l w t i o m  
Because this problem involves two interconnected bodies and it is conservative, it is prefer- 
able to use potential energy to find the equilibrium position. Noting that the spring deflections 
are L sin 8 and L 1 sin 8 + L2 sin 82, and taking as the datum position the horizontal position 
of both links, the potential energy is 

The equilibrium positions are found from 

and, taking the partial derivatives of V, we obtain 

We introduce Eqs. [cl into Eqs. [b]. Because cos 81 and cos 82 are common to the first 
and second of Eqs. [c], respectively, we eliminate them from Eqs. [c] and obtain 

1 
(kl + kz)~;s81 + k 2 L 1 L 2 ~ 8 2  = -mlgLl + mzgLl 

2 [dl 

Note that by eliminating cos 8, and cos O2 from the formulation, we are concluding that 
cos 81 = 0 and cos e2 = 0 represent equilibrium positions themselves. This basically is the 
vertical position of the links. k t  equilibrium either both links can be vertical, or one can. If 
link 1 is vertical, then the equilibrium position for link 2 is found by solving the second of 
Eqs. [dl, and vice versa. To find the equilibrium positions where neither link is vertical, we 
solve Eqs. [dl simultaneously. To this end, we express Eqs. [dl in matrix form by 



which can be written as [K]{q}  = {Q}, and whose solution is {q} = [K] - ' {Q} .  The solution 
can be shown to be 

An interesting case arises when kl is set to zero, or when there is no spring attached to the 
middle link. In this case, det[K] = 0, which implies that one cannot solve for the equilibrium 
position by inverting Eq. [el. The double link can assume an infinite number of equilibrium 
positions. 

D'Alembert's principle extends the principle of virtual work from the static to the 
dynamic case. Consider the system of N particles discussed in the previous sec- 
tions. If the system is not at rest, we can write Newton's second law for the ith par- 
ticle as 

where pi = mvi is the linear momentum of the ith particle and Ri is the resultant 
of all forces acting on the ith particle. As in the static case, we split the resultant Ri 
into the sum of the externally applied and constraint forces as 

Introducing Eq. 14.7.21 into Eq. [4.7.1], we obtain 

Fi + Ff - pi = 0 

This equation is known as the dynamic equilibrium relation, where the neg- 
ative of the rate of change of linear momentum, -pi = -miai, is treated as a 
force, referred to as the inertia force, that provides equilibrium. We can now treat 
the dynamic system as if it is a static system and invoke the principle of virtual 
work. Equation [4.7.3] is sometimes referred to as D'Alembert's principle. We 
proceed with the dot product of Eq. [4.7.3] and the variation in the displacement, 
and write 

Summing over all the particles gives 



Recalling from Section 4.4 that work done by the constraint forces over virtual dis- 
placements is zero, or 

and subtracting Eq. [4.7.6] from Eq. [4.7.5], we arrive at 

This we call the generalizedprinciple of D'Alembert, or D'Alembert 'sprinciple. We 
observe immediately that the principle of virtual work, given in Eq. [4.6.1], becomes 
a special case of D'Alembert's principle. 

D' Alembert's principle is a fundamental principle that provides a complete for- 
mulation of all of the problems of mechanics. Hamilton's principle and Lagrange's 
equations are all derived from D'Alembert's principle, as will be shown in the next 
sections. The advantage of using D' Alembert's principle over a Newtonian approach 
is that constraint forces and interacting forces between particles are eliminated from 
the formulation. This advantage becomes more pronounced for systems with several 
degrees of freedom. 

We next extend D'Alembert's principle to rigid bodies. We consider here plane 
motion only (the general three-dimensional case will be derived in Chapter 8). We 
treat a rigid body as a collection of particles, so that in Eq. [4.7.7], N approaches 
infinity. Define the angular velocity of the rigid body as w = b. Also, we express 
the position, velocity, and acceleration in terms of the center of mass motion as 

where o = ek, cu = ek, so that the variation of ri can be written as 

and we recognize that 60 = SO k. Introducing Eqs. [4.7.8] and [4.7.9] into D' Alembert's 
principle, we obtain 

Now, consider that the number of particles approaches infinity. The summation 
is replaced by integration, and mi, pi, and Fi are replaced by dm, p, and dF, respec- 
tively. Evaluating the individual terms and using the definitions of center of mass 
and mass moment of inertia, we obtain 



where m is the total mass, F is the resultant of all forces, IG is the centroidal mass 
moment of inertia, and MG is the sum of moments about the center of mass. All other 
remaining terms in Eq. [4.7.10] are zero. It follows that D'Alembert's principle for 
a rigid body in plane motion is 

For a system of N rigid bodies in plane motion, D' Alembert's principle becomes 

where the subscript i now denotes the ith rigid body. 
Up until the second half of the 20th century, the property of D'Alembert's 

principle being a vector relationship was usually viewed as a disadvantage, and 
D'Alembert's principle was primarily considered as a tool to obtain Hamilton's 
principle and Lagrange's equations. Equations [4.7.7] or [4.7.13] were rarely used 
in the form given here. The need to deal with complex multibody problems and 
the availability of digital computers has led scientists and engineers to take another 
look at D'Alembert's principle as a primary method of solution. For example, if we 
introduce Eq. [4.4.lb] into Eq. [4.7.7], we obtain 

When we have a set of independent generalized coordinates, the coefficients of Sqk 
must vanish independently, with the result 

Extending this to the case of N rigid bodies in plane motion, we obtain 

Equations [4.7.15] and [4.7.16] represent direct use of D'Alembert's principle 
to derive equations of motion. 

Consider a bead of mass 
The ring is rotating with 
D'Alembert's principle. 

rn free to slide on a ring (hoop) of radius R, as shown in Fig. 4.18. 1 Exampla 
the constant angular velocity 0. Find the equation of motion using 4.9 

Solution 
Because we are dealing with a single particle, we drop the subscript in Eq. [4.7.7] and write 
it as 



Figurn 4.1 8 Bead on a Figurn 4.1 9 Free-body 
rotating ring diagram 

The free-body diagram is given in Fig. 4.19. The blb2b3 axes are attached to the hoop. The 
generalized coordinate is selected as 8. We first derive an expression for the acceleration. The 
moving frame is attached to the ring. The position vector is 

so its variation is 

Because the motion of the relative frame, that is, of the hoop, is treated as a known 
quantity, its variation is zero. Hence, it is possible to calculate the variation of r in the relative 
frame. To see this better, write the velocity of the bead as 

= cos 8bz + sin 8b3 - R n  sin Bbl 

Since fl is a constant and it is not the derivative of a motion variable, it cannot be expressed 
in terms of a variation. Consequently, the third term on the right side of Eq. [dl does not 
contribute to the virtual displacement. 

Because the angular velocity is constant, the expression for the acceleration has the form 

a = a , l + o ~ o ~ r + 2 w ~ v , l  = ~ 8 c o s 8 b ~ + ~ 8 s i n 8 b ~ - ~ ~ ~ s i n 8 b ~ + ~ e ~ c o s ~ b ~  

+ fib3 X flb3 X (R sin 8b2 - Rcos 8b3) + 2flb3 X (Re cos 8b2 + sin 8b3) 

a = -2Refl cos 8bl + (-R sin 8(e2 + f12) + R8 cos 8)b2 + (Re2 cos 8 + R8 sin 8)b3 [el 

The only force acting on the system which is not a constraint force is gravity, and it has the 
form F = -mgb3. 

Substituting Eqs. [c] and [el into the generalized principle of D'Alembert yields 

(F - ma) 6 r  = [-mgb3 + m(R sin 8(e2 + f12) - Re cos 8)b2 

- m(Re2 cos 8 + R8 sin 8)b3 - 2mRefl cos 8 bll 

( R c o s 8 6 8 b 2  + Rsin868b3) = 0 



After evaluating the dot product and setting the coefficient of 60 equal to zero, we obtain the 
equation of motion as 

Let us compare the procedure we used in this example with a Newtonian ap- 
proach. From the free-body diagram, there are two normal (reaction) forces, N1 and 
N2. After applying Newton's second law, we get three equations and we need to elim- 
inate the reactions. It is obvious that using D'Alembert's principle is simpler. The 
difference becomes more pronounced where there are several degrees of freedom. 

From D' Alembert's principle we develop the scalar variational principles that pro- 
vide a complete formulation of the problems of mechanics. These principles were 
stated for the most general case of motion by Sir William Rowan Hamilton. 

Consider a system of N particles and D'Alembert's principle 

We denote by 6 W  = Fi 6ri the virtual work of all the impressed forces. To 
manipulate the first term in the above equation, consider the expression 

The second term on the right in Eq. [4.8.2] can be recognized as 

The kinetic energy of the ith particle is 

so that the variation of the kinetic energy of the ith particle becomes 

and we can express Eq. [4.8.2] as 



The variation in the total kinetic energy of the system is 
N 1 

ST = 2 ST,. = x - m i S ( r i * r i )  
i = l  i = l  

2 

Using Eq. [4.8.6], we express D'Alembert's principle as 

so that we have an expression for the variation of the kinetic and potential energies 

Next, we integrate the right side of Eq. [4.8.9] over two points in time, say, tl and 
t 2 ,  thus 

The term miri is recognized as the partial derivative of Ti with respect to ri, so that 
we may write 

which, when introduced back into Eq. r4.8.101, yields 

This equation is known as Hamilton S principle (or law) of varying action. One 
can put this principle into more general form, by expressing it in terms of generalized 
coordinates alone. Introducing Eq. r4.4.71 into Eq. [4.8.11], we obtain 

Introducing Eq. r4.8.131 into Eq. [4.8.12] we write Hamilton's principle of varying 
action as 

Note that the derivation above does not put any restrictions on the time instances tl 
and t2. 



A special case of Hamilton's principle of varying action is obtained when we 
consider the variation of ri as time is held fixed. We reexamine Fig. 4.12, which is 
analogous to Fig. B 1 in Appendix B. The varied path can take any value within the set 
of admissible displacements of the system, and it coincides with the true path at the 
end points. It follows that the variation of the displacement 6ri  and of the generalized 
coordinates have values of zero at t = tl and t = t;?, provided r is specified at tl and 
tz. Of interest is the case when ri ( i  = 1,2, . . . , N) are specified, which eliminates 
the integrated term in Hamilton's principle of varying action, resulting in 

This equation is known as the extended Hamilton S principle. Writing the virtual 
work as 6 W = 6 W,, - 6 V, one can express the extended Hamilton's principle also 
as 

Even though we derived it here for a system of particles, the extended Harnil- 
ton's principle is valid both for particles and for rigid or elastic bodies. It is, again, 
a fundamental principle of mechanics from which the motion of all bodies can be 
described. In this sense, the extended Hamilton's principle is not exactly a derived 
principle. Rather, it is more like a law of nature, in the same way that Newton's sec- 
ond law is a law of nature. Further, only scalar quantities like work and energy are 
needed. No acceleration terms need to be calculated to invoke this principle. 

Introduce the Lagrangian L such that L = T - V. For conservative systems, 
6 W = -6 V, and we can write 

and Eq. [4.8.17] is referred to as Hamilton'sprinciple. This principle was first stated 
by Lagrange and originally called Principle of least action. When the system is holo- 
nomic, one can interchange the integration and variation operations, which yields 

Hamilton's principle for a holonomic system basically states that among all the 
paths that a system can take, the actual path followed renders the definite integral 
I = I," L d t  stationary. This integral is also known as the action integral. 

  he implementation of the extended Hamilton's principle for finding the equa- 
tions of motion requires the evaluation of the variations of the kinetic and potential 
energies. The procedure can become tedious, primarily because of the large number 
of integrations by parts that one must perform to relate the variations of general- 
ized velocities to the variations of the generalized coordinates. A simpler and more 



general procedure for deriving the equations of motion for systems with a finite num- 
ber of degrees of freedom is by means of Lagrange's equations, as we will see in the 
next section. 

The direct use of the extended Hamilton's principle is effective when deriving 
the equations of motion of deformable bodies, such as for the vibrations of beams, 
plates, and shells. In such problems, the extended Hamilton's principle yields the 
equations of motion in the form of partial differential equations with accompany- 
ing boundary conditions. We will investigate the dynamics of deformable bodies in 
Chapter 11. Hamilton's principle is also used in transformation theory and in optimal 
control theory. 

One may wonder why we list two major principles in this section that encompass 
nonconservative forces when the first, Hamilton's law of varying action, is length- 
ier and has the appearance of being redundant when compared with the extended 
principle. The difference between the two principles is in how they treat the time 
instances tl and t 2 .  

If we view tl and t 2  as arbitrary time instances, we obtain the extended Hamil- 
ton's principle from Hamilton's law of varying action and the two principles become 
the same. But if we view tl as a point at which we know the values of the gener- 
alized coordinates, then we can make use of Eq. [4.8.14] to find the values of the 
generalized coordinates at time t 2 .  To do this we do not need to derive any equations 
of motion, just the variation of the Lagrangian and the virtual work. This approach 
comes in handy in numerical integration, as t* can be taken as tl + A, in which A is 
a small time increment. 

Example I Obtain the equation of motion of the bead problem in Example 4.9 using the extended Harnil- 
4.10 ton's principle. 

Solution 
To find the kinetic energy, we need the velocity of the bead. From Example 4.9 we have 

r = Rsin8b2 - Rcos8b3 

v = - RO sin 8bl + ~e cos 8b2 + ~9 sin 8b3 

The kinetic energy is 

1 1 mR2 mR2 
T = -mv v = -m[(O R sin 8)2 + (Re cos 8)' + (RB) sin 8)'] = -a2 sin2 8 + --e2 

2 2 2 2 

Using the position of the bead at the bottom of the ring (8 = 0) as the datum, the potential 
energy becomes 

V = mgR(1 - cos 8) [dl 
so that the Lagrangian has the form 



The variation of the Lagrangian is 

d L 
[f] 

R 

The second term in this equation is in terms of 68. To invoke the extended Hamilton 
principle, we have to express all the terms in terms of 68. To accomplish this, we integrate 
this second term by parts and write 

The integrated term on the right side of Eq. [g] vanishes by virtue of the definition 
of the variation operation. (The values of the variation at the beginning and end of the path 
are zero.) The second term, when used with Eq. [f] and the Extended Hamilton's Principle, 
yields 

It: [ - m R 2 ~  + mR2 sin 0 cos 8 - - sin 8 60 dt = 0 
R "1 [hl 

In order for the equality to hold, the integrand must vanish at all times. Because 68 is 
arbitrary, for the integrand to be zero the coefficient of 68 must be identically zero. Thus we 
recognize as the equation of motion 

Let us review the operations we carried out. After obtaining the kinetic and po- 
tential energies and taking the partial derivatives, we performed an integration by 
parts on the term b 68. We could have done the integration by parts on the general 
expression 2 SO rather than the corresponding specific term in this problem, 8 SO.  
The question then arises as to whether, manipulating the extended Hamilton's princi- 
ple, one can perform the integrations by part in advance and develop a general form 
for the equations of motion. This is the question we will explore in the next section. 

From Hamilton's principle, we derive Lagrange's equations, which present them- 
selves as a convenient way of deriving the equations of motion. The extended Hamil- 
ton's principle can be expressed as 

The Lagrangian L can be written in terms of generalized coordinates q k  and 
generalized velocities qk (k = 1,2, . . . , n) as L = L(ql, 42, . . . , q,, q l ,  q2, . . . , q,, t). 



The variation of L is 

and, using Eqs. [4.5.10] and [4.5.19], the variation of the nonconservative work is 
written in terms of the generalized forces as 

n 

SWnc = 2 Qknc 6qk ~4.9.31 
k =  1 

Making use of the property that the variation and differentiation (with regard 
to time) operations can be interchanged, we integrate by parts the second term in 
Eq. [4.9.2] and obtain 

The integrated term requires evaluation of 6qk (k = 1,2, . . . ,n) at the beginning 
and the end of the time intervals. By the definition of the variation, the varied path 
vanishes at the end points, thus 8qk(tl) = 6qk(t2) = 0 for all values of k. Consider- 
ing this, and introducing Eqs. [4.9.2]-[4.9.4] into the extended Hamilton's principle, 
we obtain 

For the integral over time to vanish at all times, the integrand must be identically 
equal to zero, which can be expressed as 

It should be noted that this equation can be directly obtained from D'Alembert's 
principle, without using Hamilton's principle. Because of this, Eq. [4.9.6] is some- 
times referred to as Lugrange's form of D'Alembert's principle. 

Consider now a set of independent generalized coordinates. It follows that the 
only way Eq. C4.9.61 can be equal to zero is if the coefficients of 6qk vanish individ- 
ually for all values of the index k. Setting the coefficients equal to zero, we obtain 
Lugrange's equations of motion 

Equation [4.9.7] is the most general form of Lagrange's equations. They can also 
be expressed in terms of the kinetic and potential energies. Noting that the potential 
energy is not a function of the generalized velocities (except for electromagnetic 



systems), we write Eq. [4.9.7] as 

This form of Lagrange's equations is preferred by many, as it reduces the possibility 
of making a sign error when evaluating the partial derivatives. It also is similar to 
the format Lagrange first presented these equations in 1788. Under certain circum- 
stances it is more convenient to write Lagrange's equations in terms of the kinetic 
energy alone, in the form of 

where the values of Qk contain contributions from the conservative as well as non- 
conservative forces. The principle of virtual work given by Eq. [4.6.4], is a special 
case of Lagrange's equations. In the static case, the first two terms in Eq. [4.9.8] 
vanish. 

For a holonomic conservative system, one can use Eq. [4.8.15] directly in con- 
junction with the Euler-Lagrange equation in Appendix B to derive Lagrange's equa- 
tions. The order of variation and integration can be exchanged, and one seeks the 
stationary values of the integral I = I,: L dt ,  leading to 

Lagrange's equations can conveniently be expressed in column vector for- 
mat. Introducing the n-dimensional generalized coordinate and generalized force 
vectors 

we can write Lagrange's equations as 

Let us now compare the steps involved in obtaining the equations of motion us- 
ing Lagrange's equations and using the Newtonian approach. When using Newton's 
second law, we 

1. Isolate the different bodies involved. 

2. Select a coordinate system and draw free-body diagrams. 

3. Relate the sum of forces and sum of moments to the translational and angular 
accelerations. 

4. Use kinematics to express the accelerations in terms of translational and angular 
parameters. 

5. Eliminate the constraint and reaction forces and derive the equations of motion. 



When using the Lagrangian approach, we 

1. Determine the number of degrees of freedom and select a set of independent 
generalized coordinates. The free-body diagram is a useful tool for this. 

2. Use the kinematical relations to find the velocities and virtual displacements 
involved. 

3. Identify the forces that are conservative and those that are not. 
4. Write the kinetic and potential energies, as well as the virtual work. 

5. Apply Lagrange's equations. 

There are two distinct differences between the two approaches. The first dif- 
ference is in the order of the steps involved: In the Newtonian approach, one first 
writes the force and moment balances for all bodies separately and then uses kine- 
matical relations and the constraint forces to reduce the number of equations. In the 
Lagrangian approach, one considers the constraints and kinematics of the problem 
first. Then, the equations of motion are written, one for each degree of freedom. 
The bulk of the work involved in Lagrangian mechanics is to find a proper set of 
generalized coordinates and to express the kinematics. Once this is done, the rest is 
straightforward. 

The second difference is that the Lagrangian approach uses velocities and scalar 
quantities, whereas the Newtonian approach uses accelerations and vector quantities. 
Dealing with velocities involves considerably less algebra than dealing with accel- 
erations. 

It may appear, from the above discussion, that Lagrange's equations should be 
preferable to the Newtonian approach at all times; but this is not so. By eliminating 
the constraint forces from the formulation, the Lagrangian approach does not cal- 
culate the amplitudes of these forces. While this may be acceptable for classroom 
examples, it certainly is not in many real-life applications, where one must know 
the amplitudes of the reaction and other contact forces acting on a body. Further- 
more, for certain geometries a Newtonian approach is more suitable. The best way 
to determine which approach is most suited to one's needs is by gaining experience 
in solving mechanics problems. In many cases, looking at a problem from both a 
Lagrangian and Newtonian point of view increases the physical insight and makes 
it easier to understand the characteristics of the system. 

We should add here that the historical development of analytical mechanics did 
not follow the sequence in which it is presented in this chapter. Lagrange's equations 
were derived before the extended Hamilton's principle, and they were derived for 
conservative systems only. It was Hamilton, born after Lagrange, who put together 
the developments in variational mechanics and Lagrange's equations to develop a 
general scalar principle from which all the equations of motion can be derived. 

Example I For the system in Fig. 4.20, find the equations of motion using Lagrange's equations. Assume 
4.1 1 that the spring and dashpot deflect only horizontally and that the force F is always applied 

horizontally. 



Figure 4.20 Figure 4.2 1 Free body diagram 

Solution 
This is a two degree of freedom system, and we select the generalized coordinates as the 
displacement of the mass x and rotation of the bar 13. The free-body diagram of the entire 
system is shown in Fig. 4.21. The kinetic energy of the cart is T,, = i M x 2 .  The kinetic 
energy of the bar is due to the translation and rotation and can be expressed as 

where IG is the mass moment of inertia about the center of mass, IG = mb2/12, and ux and 
u, are the velocities of the center of mass of the bar, found as 

The total kinetic energy is 

1 1 1 
= - ( M  + m ) i 2  + -mben  cos 0 + -mb2e2 

2 2 6 [el 

The potential energy is due to the deflection of the spring and the vertical movement of 
the center of mass of the bar, written 

[dl 

The virtual work of the nonconservative forces is due to the external force F and the 
dashpot, so 



from which we recognize the generalized forces as 

1 1 1 .  
Qx = F - cf  - -cbcos O Qo = ~ b c o s O  - -cb2e cos2 8 - -cbx cos 6 [f] 2 4 2 

Taking the appropriate derivatives, we obtain 

Substituting the above values into Lagrange's equations we obtain the equations of mo- 
tion as 

Figure 4.22 shows a collar of mass m sliding outside a long, slender rod of mass M and length 
L. The coefficient of friction between the rod and collar is p. There is a force F acting at the 
tip of the rod. Find the equations of motion. 

Solution 

We will solve this problem as a two degree of freedom unconstrained system. Polar coordi- 
nates are suitable as generalized coordinates. The free-body diagrams are given in Fig. 4.23. 
There are four external forces: two gravity forces, which we will account for in the potential 
energy, the friction force, and the force at the tip. 

F i ~ u n  4.22 Collar slid- Cig~m 4.23 Freebody diagram 
ing on a rod 



The position and velocity of the collar are 

r = re, v = i-e, + r8ee 

The virtual work associated with the two external forces can be written as 

in which 

F = F cos $el + F sin $eo Ff = -Ff sign (i.)e, Sr = Sre, + r SOeo Srp = L SOeo 
[el 

so that the virtual work becomes 

SW = -Ff sign(L)6r + FLsin$SO = QrSr + QoSO [dl 

with Qr = -Ff sign (r) and Qo = F L  sin $ as the generalized forces due to the nonconser- 
vative forces. 

The kinetic energy is 

and the potential energy is 

Application of Lagrange's equations yields the equations of motion as 

mi: - mre2 - mg cos 0 = - Ff sign (i.) 191 

The friction force is related to the normal force N between the collar and rod by Ff = 

pN.  However, at this point we do not know what the normal force is. To find the nonnd force, 
we need to go to a Newtonian analysis. Reconsidering the free-body diagram and summing 
forces along the transverse direction, we obtain 

from which we obtain the magnitude of the normal force as 

N = m(re + 2i.8 + g sin 0 )  

We can eliminate the normal force from the equations of motion by introducing Eq. Ij] 
into Eq. [g]. Note that the friction force is always a positive quantity, as it is proportional to 
the magnitude of the normal force. The expression involving N in Eq. Lj] can lead to both 
positive and negative values. Therefore, we express the friction force as 

F~ = ~ I N I  = pmlre + 2i.8 + gsinol [kI 

and use Eq. [k] in the equations of motion. 



The preceding example illustrates the problems that one encounters when deal- 
ing with problems involving friction. As stated earlier, friction is not a constraint 
force, but its magnitude depends on a constraint force. If we select a set of uncon- 
strained generalized coordinates to describe the motion, as we did in this example, 
we cannot obtain the magnitudes of the friction force without an additional Newto- 
nian analysis. In the next section, we will see an analytical approach that calculates 
magnitudes of constraint forces. 

The formulation of Lagrange's equations in the previous section was for uncon- 
strained systems and for constrained systems where the generalized coordinates are 
selected such that all constraints are accounted for and the surplus coordinates elim- 
inated. This approach is not feasible under a number of circumstances: 

1. When the constraints are nonholonomic. Because nonholonomic constraints in- 
volve velocity expressions that cannot be integrated to displacement expres- 
sions, one cannot find a set of unconstrained generalized coordinates. 

2. When the constraints are holonomic and one cannot eliminate the surplus coor- 
dinates easily, for one of the following reasons: 
a. The constraint equation is complicated. 
b. Finding the transformations that lead to unconstrained equations makes the 

equations of motion very complicated. 
c. Some of the forces acting on the system are functions of constraint forces. 

3. When the constraints are holonomic but one does not want to eliminate the sur- 
plus coordinates from the formulation, usually because of the need to know the 
amplitudes of the reaction forces. 

Consider a system originally of n degrees of freedom, to which m constraints 
are applied. For the most general case, we express the constraints in velocity form 
as 

whose variation is 

Multiplying Eq. r4.10.21 by the Lagrange multipliers A j  ( j  = 1,2, . . . , m) and in- 
troducing these constraints to the extended Hamilton's principle, we obtain 

When the constraints are holonomic, the coordinates ql, qz, . . . , qn no longer 
constitute a set of independent generalized coordinates. They are now constrained 



generalized coordinates. When the constraints are nonholonomic, only the gener- 
alized velocities are constrained, while the generalized coordinates are still inde- 
pendent. In both cases, the variations of the generalized coordinates are constrained. 
Following the same procedure as when deriving Lagrange's equations for the uncon- 
strained case, we take the appropriate partial derivatives and perform the integrations 
by parts to obtain 

As in the static case, we select the Lagrange multipliers A,  such that the coeffi- 
cients of 6qk ( k  = 1, 2, . . . , n) vanish, which leads to a modified form of Lagrange's 
equations, written 

where Ajajk are the generalized constraint forces. They have the same units as the 
generalized forces (which do not necessarily have the units of force). In column 
vector notation, Eq. [4.10.5] is expressed as 

in which [a] is a matrix of order m X n whose entries are ajk and { A }  is a column 
vector of order m that contains the Lagrange multipliers. 

After obtaining the equations of motion, one has two courses of action for finding 
a solution. The first is to eliminate the Lagrange multipliers from the equations of 
motion and obtain a set of n - m unconstrained equations. One accomplishes this by 
algebraic manipulation of the equations of motion. Many times, such an approach 
results in complicated expressions. 

The second course of action is to take the n equations of motion in Eq. [4.10.5] 
and the m constraint relations in Eq. [4.10.1] and then to solve them together for the 
n + m = p + 2m unknowns ql, 9 2 ,  . . . , qn, A 1 ,  A2, . . . , Am. The resulting n + m equa- 
tions are not a set of differential equations, as there is no derivative of the Lagrange 
multipliers involved. Such equations are known as differential-algebraic equations. 
Their analysis requires a different treatment than that for differential equations. 

When the constraints are holonomic and expressed in the configuration form 
[4.3.2], one can add them to the extended Hamilton's principle by 

and obtain the contribution of the constraint by replacing ajk  in Eq. [4.10.5] with 
dcjldqk. Or, we can add them directly to the Lagrangian as 



When the objective is to obtain the amplitude of a constraint force, an analyt- 
ical approach that can be used is the constraint relaxation method. This method is 
mathematically equivalent to the Lagrange multiplier approach. However, it is more 
intuitive and it is particularly useful when dealing with holonornic constraints ex- 
pressed in configuration form. Following is a description of the method. 

We relax the constraint from the formulation and represent the effects of the 
constraint by a constraint force. Then, we write the Lagrangian and virtual work. The 
constraint force enters the formulation via the virtual work. We invoke Lagrange's 
equations and obtain the equations of motion. We next impose the constraint, which 
enables us to calculate the magnitude of the constraint force. 

Example I Consider Example 4.12, in which a collar of mass m is sliding on a rod of mass M and length 
4.1 3 L. The coefficient of friction between the rod and collar is p. Obtain the equations of motion 

using constrained generalized coordinates and find the value of the normal force N. 

Solution 
To describe this system in terms of constrained generalized coordinates, consider the rod and 
the collar separately. We express the motion of the collar using polar coordinates, r and 0, 
as in Example 4.12. To express the motion of the rod, we introduce another angl'e, 4. The 
constraint equation is 

The kinetic and potential energy has the same form as in Example 4.12. We write them here 
in terms of the constrained generalized coordinates as 

1 1 L 
T = -ML'@ + -m(? + r2e2) V = -mgrcos 0 - Mg- cos+ 

6 2 2 [bl 

The normal force N acts in the transverse direction and it contributes to thevirtual work. 
Considering that the velocity of the collar in the transverse direction is ve = roee, we write 
the virtual work expression as 

6W = -Ffsign(t)6r + FLsinIC,60 + Nr(60 - 64) [el 
We obtain the Lagrange's equations as 

For r + my - mre2 - mg cos 6 = - Ff sign(:) [dl 
For 0 + rn?8 + 2mri-e + mgr sin 0 = Nr [el 

These equations have to be solved together with Eq. [a]. Equation [dl is the same as 
Eq. [g] in Example 4.12, and if we add Eqs. [el and [f] and use the constraint equation [a] 
we eliminate the normal force and obtain Eq. [h] in Example 4.12. From Eq. [el, we find the 
normal force as 

which is the same value obtained in Example 4.12. The friction force is given in Eq. [k] of 
Example 4.12. 



The difference between the approach here and the approach in Example 4.12 is that here 
we calculated the normal force directly from the Lagrange's equations, while in Example 4.12 
we conducted a force balance in addition to the Lagrange's equations. 

Consider the vehicle in Fig. 4.8. Given that the velocity of point A is along the line of syrn- / Exmnpb 
metry of the vehicle, derive the equations of motion. Gravity acts perpendicular to the plane 4.1 4 
of motion. 

Solution 
We denote the coordinates of the center of mass by X and Y and select the generalized coor- 
dinates as X, Y, and 0. The kinetic energy of the vehicle is 

where m is the mass and IG is the centroidal mass moment of inertia. There is no potential 
energy, and the virtual work expression involves the two forces Fc and FD. We can find 
the virtual work conveniently by calculating the velocities of points C and D. Defining a 
coordinate system xy  attached to the vehicle, we write the velocities of points G and A as 

vc = XI + = (X cos 0 + Y sin O)i + (-x sin 0 + Y cos 0)j 

VA = vG + 8 k x  -Li = ( X C O S ~  + ~ s i n O ) i + ( - ~ s i n 0 +  Y C O S O  - ~ 8 ) j  

The constraint is defined as 

f = v A * j  = - ~ s i n 0 + ~ c o s 0 -  ~8 = 0 

thus the velocity of A reduces to 

VA = ( X  cos o + Y sin 0)i 

and the variation of the constraint becomes 

Sf = sin06X-cos06Y + L 6 6  = 0 

Hence, the velocities of C and D become 

vc = VA + 8k x hj = (Xcos0 + ~ s i n 0  - h8)i 

vD = VA + 8k x (-hj) = (Xcos 0 + sin 0 + h8)i 

The external forces are Fc = Fci, FD = FDi, so the virtual work expression becomes 

SW = Fc*6rc  + F D 0 6 r D  + A6f 

= (Fc + FD)c0s06X + (Fc + F~)s inO6Y + (FD - Fc)h60 

+ A(6Xsin0 - 6Ycos0 + LS0) 

Cbl 

[el 

[dl 

[el 

Cfl 
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The physical interpretation of the Lagrange multiplier is that it is the resultant of 
all forces that keep VA along the x axis, and it acts in a direction perpendicular to this 
axis. Introducing Eqs. [a] and [i] into Lagrange's equations, we obtain the equations of 
motion as 



m~ = (Fc + FD) cos 0 + A sin 0 [iI 
mY = (Fc + FD) sin 0 - A cos 0 

zce = (FD - Fc)h + LA 

Note that while deriving the equations of motion we did not introduce Eq. [dl directly into 
the expression for the kinetic energy, thus eliminating one of the generalized coordinates from 
the outset. Had we done so, we would have eliminated the contribution due to the variation 
of that coordinate and ended up with an incorrect representation. This procedure is crucial to 
the treatment of nonholonomic constraints. 

Even if we eliminated one of the generalized velocities and the Lagrange multiplier, 
writing the equations of motion in terms of Y and 0 (or X and 0 )  would not give the most 
meaningful description of the motion. A quantity critical to the understanding of the motion 
is the speed of point A. If the equations of motion can be expressed in terms of that speed, one 
gets a clearer picture of the nature of the motion. One can introduce U A  to Eqs. ti]-[1] with a 
substitution. 

Indeed, if we multiply Eq. ti] by cos 0 and Eq. [k] by sin 0 and add the two we obtain 

m ( ~  cos 0 + Y sin 0) = Fc + FD [ml 

Recalling from Eq. [el that U A  = (X  cos 0 + Y sin 0) ,  differentiating this expression we 
obtain 

Introducing Eq. [dl to Eq. [n] we can write 

so that Eq. [m] can be written as 

m(uA - L i 2 )  = F~ + FD 

which is recognized as the force balance along the x direction. 
We next find an expression for the Lagrange multiplier A and introduce it to Eq. [el. 

To this end, we multiply Eq. Ij] with sin 0 and Eq. [k] by - cos 0 and add the two, with the 
result 

m ( ~  sin 0 - Y cos 0 )  = A [ql 
We can introduce this relationship to Eq. [I], but a more meaningful expression can be gen- 
erated if we consider Eq. [dl and differentiate it 

Considering Eq. [q], we express the Lagrange multiplier as 

A = -mvA8, - ~ L B  
Introducing this equation into Eq. [l] we obtain 

which we recognize as the moment balance about point A. Equations [p] and [t] are the two 
independent equations of motion of the vehicle. 
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The four-bar linkage in Fig. 4.24 is a single degree of freedom system. Show 
that this is so by separating the mechanism into its three components and by 
writing the constraint equations that relate the configurations of the links. 

A bead slides up a spiral of constant radius R and height h, as shown in Fig. 4.25. 
It takes the bead six full turns to reach the top. Express the characteristics of the 
path of the bead as a constraint relation. 

A particle slides inside a smooth paraboloid of revolution described by z = ?/b, 
as shown in Fig. 4.26. Using cylindrical coordinates, find an expression for the 
constraint force on the particle. 

The radar tracking of a moving vehicle by another moving vehicle is a common 
problem. Consider the two vehicles A and B in Fig. 4.27. The orientation of vehi- 
cle A must always be toward vehicle B. Express the constraint relation between 
the velocities and distance between the two vehicles and determine whether this 
is a holonomic constraint or not. 

Figure 4.24 Four-bar Figure 4.25 
linkage 



Figure 4.26 Figure 4.27 

5 .  Consider the double pendulum in Fig. 4.3. It is desired to have the velocity of 
the tip of the pendulum point toward the pinned end 0. Express this condition 
as a constraint and determine whether the constraint is holonomic or not. 

6. Consider a particle moving along a path and the description of motion by path 
variables. Express the force keeping the particle moving along the path in terms 
of its components in the tangential, normal, and binormal directions and evaluate 
the virtual work expression. Identify which of these forces are constraint forces 
and verify Eq. [4.4.14]. 

7. Find the virtual displacement of point P in Fig. 4.28. The mass is suspended 
from an arm which is attached to a rotating column. The pendulum swings in 
the plane generated by the column and arm. 

Figure 4.28 



Figurn 4.29 Slidercrank mechanism Figure 4.30 

Express the virtual displacement of the slider in the slider-crank mechanism 
shown in Fig. 4.29 using (a) the relative velocity relations, and (b) the analytical 
expressions. 

A uniform solid cylinder of radius R rolls without slip on a horizontal plane 
and an identical cylinder rolls without slip on it (Fig. 4.30). Find the virtual 
displacements of the centers of the cylinders. 

Consider Fig. 4.2 and the case when the cord is getting pulled down by an ex- 
ternal force, such that the length of the cord varies by L(t)  = ~ ~ e - ~ . * ' .  Find the 
virtual displacement of the mass. 

Find the generalized force associated with the system in Fig. 4.29. 

The spherical pendulum of mass m shown in Fig. 4.2 has its length being reduced 
by a force F, according to the relationship L(t) = Lo - bt, where Lo is the 
initial length and b is a constant. Calculate the generalized forces using spherical 
coordinates as generalized coordinates. 
Consider Fig. 4.13, and calculate the associated generalized forces. The disk is 
of mass m and the rod is of mass 2m. There is a moment M acting on the rod at 
the pin joint. 

14. For the two links attached to a spring as shown in Fig. 4.3 1, find the equilibrium 
position. The spring is not stretched when the rods are horizontal. 

15. Find the equilibrium position of the rod of mass m and length L  sliding in the 
guide bars shown in Fig. 4.32. The spring is not stretched when the rod is ver- 
tical. The sliders are massless and the contact between the horizontal slider and 
the guide bar involves friction with coefficient p. 

16. Find the equilibrium position for the system shown in Fig. 4.33, with the middle 
mass equal to zero. Assume that the displacements are small, and that the springs 



Figure 4.3 1 Cigun 4.32 

deflect only in the vertical direction. Use as generalized coordinates the transla- 
tion of the center of the rod and the rotation of the rod. Then, use the deflections 
of the springs at A and B as generalized coordinates and obtain the equilibrium 
configuration. Compare the results. 

17. Consider the two systems in Figs. 4.3 and 4.14 and set up the equations to find 
the magnitude and direction of the force F necessary to keep the systems at 
equilibrium at 8 ,  = 30°, O2 = 15". 

18. Find the equilibrium position of the system in Fig. 4.34. 
19. Find the equilibrium position of the pulley system in Fig. 1.77 (Problem 1.36). 

Use the constrained coordinate approach. 

Cigun 4.33 Figurv 4.34 



20. Find the equation of motion of the rod in Fig. 4.32 using D' Alembert's principle. 

21. Find the equations of motion of the pulley system in Fig. 3.40 using D' Alembert's 
principle. The pulleys are massless. 

22. Find the equation of motion of the system mechanism in Fig. 4.34 by Hamilton's 
principle. 

23. Find the equation of motion of the rod in Fig. 4.32 by Hamilton's principle. 

24. Find the equations of motion of the system in Fig. 4.35 using Lagrange's equa- 
tions. 

25. Use iagrange7s equations to derive the equations of motion for the Foucault's 
pendulum in Chapter 2. 

26. Figure 4.36 depicts a simplified illustration of a spacecraft to which a robot arm 
is attached at the center of mass. The robot arm moves by a moment T exerted 
to it at the pin joint by a motor on the spacecraft. Considering only plane motion 
for both the spacecraft and the robot arm, derive the equations of motion by 
a. Separating the two masses, writing force and moment balances, and 

eliminating constraints. 
b. Using Lagrange's equations. Compare the complexity in both cases. 

27. A block of mass m and length L is positioned over a semicircular block 
(Fig. 4.37). It is given that friction is sufficient to prevent slipping. Derive 
the equation of the rod as it rocks over the semicircular block. 

Figure 4-31 Figure 4-36 



Figure 4.37 Figun 4.38 

28. A cylinder of mass mz and radius R rolls without slipping on a wedge of mass 
ml (Fig. 4.38). The wedge is moving under the influence of the force F with no 
friction. Obtain the equations of motion. 

29. Find the equation of motion of the rod in Fig. 4.32 using Lagrange's equations. 

30. Find the equations of motion of the pulley system in Fig. 3.40 using Lagrange's 
equations. 

3 1. Find the equation of motion of the bead in Fig. 4.39 sliding without friction in 
the parabolic tube described by z = x2/4, while the tube is rotating about the z 
axis with constant angular velocity R. 

32. Find the equations of motion of the system in Fig. 4.33, using Lagrange's equa- 
tions. Assume small motions and that the springs and dashpots deflect only ver- 
tically. 

33. A particle of mass m is constrained to slide without friction down a channel 
attached to a cone spinning with constant angular velocity a, as shown in 
Fig. 4.40. Derive the following: 
a. A differential equation of motion describing the motion of P using Newton's 

second law. 
b. The equation of motion using Lagrange's equations. 

Am 
Flgun 4.39 Figun 4.40 



Figure 4.4 1 

34. Consider the pendulum in Fig. 4.28 of mass m, L 1  = L,  L2 = 2L. The pendu- 
lum swings in the plane generated by the column and arm. Derive the equations 
of motion, using the pendulum angle 8 and rotation angle 4 of the shaft as gen- 
eralized coordinates. The combined mass moment of inertia of the column and 
arm about the Z axis is I. 

35. Consider the particle in Problem 3. Find the equations of motion. 

36. Consider the four-bar linkage mechanism in Fig. 4.24 and derive the equations 
of motion using constrained generalized coordinates. Consider each link sepa- 
rately. A moment M acts on the first link. 

37. Consider the platform robot in Fig. 4.41. Derive the equations of motion using 
constrained coordinates for the following cases: (a) each link is considered sepa- 
rately; and (b) links l and 2 and links 4 and 5 are each considered as one system 
each. 

38. Given the two-link system in Fig. 4.3, derive the equations of motion using the 
constrained coordinate formulation and using as generalized coordinates 8 1, 82, 
xp, and yp. Calculate the kinetic energy of the second link using the motion of 
its center of mass, expressed in terms of e2, xp, and yp. 

39. Consider the vehicle in Fig. 4.8. We are given the constraint that the velocity 
of the tip of the vehicle, that is, point E, is along the x direction. Derive the 
equations of motion using constrained generalized coordinates. 

40. Consider the pendulum in Fig. 4.28. The angular velocity of the column is kept 
constant at 6 = fl by a motor that generates a moment about the Z axis. Find the 
equation of motion of the pendulum and using the constraint relaxation method 
find the moment necessary to maintain the constant angular velocity of the col- 
umn. 

41. Find the equation of motion of the rod in Fig. 4.32 using the constraint relaxation 
method. 





c h a p t e r  

This chapter continues with the analytical techniques discussed in the previous chap- 
ter and introduces additional concepts. We first discuss natural and nonnatural sys- 
tems, and revisit the concept of equilibrium. We consider small motions around 
equilibrium and derive the linearized equations of motion about equilibrium. A new 
way of describing damped systems is introduced. We analyze the response of lin- 
earized systems, which in essence is multidegree of freedom vibrations. We look at 
cyclic coordinates and generalized momenta and discuss integrals of the motion. We 
develop Routh's method to eliminate cyclic coordinates. Then we revisit the idea of 
impulsive motion from a Lagrangian perspective. 

We continue with Hamilton's canonical equations. These constitute an alterna- 
tive to Lagrange's equations and have the advantage of being first-order equations. 
The chapter ends with a look at computational issues involving the derivation and 
integration of the equations of motion and with the introduction of additional differ- 
ential variational principles, namely Jourdain's and Gauss's. These additional vari- 
ational principles make it easier to analyze nonholonomic systems. 

The concepts in this chapter enhance the understanding of the principles studied 
in Chapter 4, as well as providing additional insight and perspective. The reader is 
always encouraged to analyze a problem using more than one perspective. 

Consider the kinetic energy of a system of N particles that has n degrees of freedom 



For the most general case, the position vector of particle i can be expressed as 

ri = ri (41,  42, . . ., qnt t )  [S.2.2] 

We have not excluded the possibility that displacements ri (i = 1,2, . . . , N) 
have an explicit dependence on time. This may seem strange at first, as the gener- 
alized coordinates should be sufficient to describe the evolution of the system com- 
pletely. Viewing ri also as explicit functions of time implies that the system has a 
prescribed motion or that part of the motion is treated as known. From Newton's 
third law, the motion of each body is related to the motion of every other body that it 
interacts with; thus, in absolute reality such prescribed motion does not exist. How- 
ever, in several cases reasonable approximations can be made. For example, when 
we analyze the motion of a body on the surface of the earth, the motion of that body 
is influenced by the motion of the earth. The motion of the earth is not affected by 
the motion of the body, and it is treated as known. 

The time derivative of ri is 

Introducing Eq. [5.2.4] into Eq. [5.2.1], we obtain 

Denoting by 

where ah, Pk, and T are functions of the generalized coordinates and time, one can 
express the kinetic energy as 

T = T2 + T I  + To fS.2.71 

in which 



Examining the nature of the terms that contribute to the kinetic energy, we no- 
tice that T2 is quadratic in the generalized velocities. T 1  is linear in the generalized 
velocities and it is usually related to Coriolis effects. To has no generalized velocity 
terms and is usually related to centrifugal effects. Both T I  and To exist because of 
the explicit time dependence of ri due to a component of the motion being treated as 
known. 

The kinetic energy can be expressed in matrix form as 

in which {q) = [gl q2 . . . qnIT is the generalized velocity vector, { P )  = [ P I  P2 . . . &IT 
is referred to as the gyroscopic vector; and the matrix 

is referred to as the mass matrix or the inertia matrix. One can show that [MI is 
symmetric and positive definite. 

When T I  = To = 0, the system is called a natural system, and when T 1  or To 
are not zero the system is called nonnatural. The name nonnatural is associated 
with the fact that in a nonnatural system, a component of the motion is treated andlor 
assumed as known; hence, the system being observed is artificial and not a natural 
one. One should always keep in mind the procedures used and the assumptions made 
when viewing a system as nonnatural and evaluate whether the assumptions are 
realistic or not. 

The Foucault's pendulum studied in Chapter 2 represents a nonnatural system, 
as we treat the motion of the earth as known and unaffected by the motion of the 
pendulum. So is the bead on a hoop example considered in Chapter 4, where we 
assume that the motion of the bead does not affect the rotation of the hoop. 

As an illustration of what constitutes a nonnatural system, consider a particle 
of mass m sliding along an incline o with speed q,  as shown in Fig. 5.1. The in- 
cline (of mass M )  is moving in the horizontal direction with speed w. The total 

Figurn S.1 Mass sliding on a moving 
wedge 



velocity of the particle is 

v = wi + q cos ui - q sin uj 

so the kinetic energy becomes 

Whether this system is natural or not depends on how the velocity of the in- 
clined surface is treated. If we consider the velocity w to be known a priori, then 
there is only one generalized coordinate, q, and the system is nonnatural. The term 
2qw cos 0 becomes linear in the generalized velocities. In addition, w2 has no gen- 
eralized velocity terms. On the other hand, if we treat w as a variable, the system 
has two degrees of freedom and every term in the kinetic energy is quadratic in the 
generalized velocities. The system becomes a natural system. 

Nonnatural systems can be categorized into two distinct groups: (1) when both 
T I  and To are nonzero, and (2) when only To is nonzero. The second case can ba- 
sically be treated as an otherwise natural system with an equivalent kinetic energy 
T2 and equivalent potential energy U = V - To, referred to as mod@ed potential 
energy or dynamic potential. The Lagrangian for such a system can be written as 

Recall that T2 is quadratic in generalized velocities. The case when T 1  # 0 usually 
describes more complex problems; its response characteristics are quite different 
than when T1 = 0. 

We now reexamine the equilibrium of a dynarnical system. We considered static 
equilibrium in Chapters 1 and 4 and defined it as the state at which velocities and 
accelerations of all parts of the system are zero. All of the components of the system 
are at rest. Of course, because all physical velocities and accelerations are zero, so 
are the generalized velocities and accelerations. 

For a nonnatural system equilibrium is defined as the state where all generalized 
velocities and accelerations are zero. The velocities and accelerations of certain 
parts of the system are not zero at equilibrium. For example, for a nonnatural system 
where there is motion with respect to a moving frame, at equilibrium, only the motion 
viewed from the moving frame is at rest. 

Consider an n degree of freedom system with generalized coordinates ql ,  
92, . . . , qn. At equilibrium, all generalized velocities are zero, and all forces and 
moments acting on the system are not functions of time, that is, Qk,, # f (time). 
It follows that Lagrange's equations become 

For a nonnatural system, because T2 and T I  are functions of the generalized veloci- 
ties, they vanish at equilibrium, which results in the equilibrium condition 



For a natural system T = T2. T I  = To = 0, so Eq. [5.2.15] reduces to Eq. [4.6.4], 
and the equilibrium position is given by 

dV - -  - Qknc 
&lk 

When all forces acting on the system are derivable from a potential, the equilib- 
rium position for a nonnatural system corresponds to the point where the dynamic 
potential has a stationary value, that is, 

For natural systems this relation reduces to dV/dqk = 0, which is the relation ob- 
tained in Chapter 4 when deriving the principle of virtual work for static equilibrium. 

- -- - 

We return to the bead problem considered in Chapter 4. However, here we treat the rotation of 
the hoop as another degree of freedom. Let us write the rotation rate n as $. The Lagrangian, 
which we derived in Example 4.10, can now be written as 

I Example 
5.1 

where I is the mass moment of inertia of the hoop about the axis of rotation. With the term 
$14~ we have included the kinetic energy associated with the rotation of the hoop. 

The hoop-bead system can now be treated as a natural system. Observe that 4 is absent 
from the Lagrangian. This puts the problem at hand into a special category, which we will 
analyze later on in this chapter. We evaluate the partial derivatives of the Lagrangian, writing 

- - dL 
d L  - mR2@ sin 0 cos 8 - mgR sin 8 = mR2e 
d8 d8 [bl 

Introducing Eqs. [b] into Lagrange's equations we obtain the equation of motion for 8 as 

To evaluate the equation of motion for 4 ,  we note that dLld4 = 0, thus 

We then have an integral of the motion as 

- d L  - - I$ + m ~ ~ &  sin2 8 = constant 
a i  

[dl 



Equations [dl and [f] need to be integrated simultaneously to obtain the response. How- 
ever, we can simplify this problem if we take advantage of the fact that d ~ l d (  = constant. 
Denoting this constant by C, where C depends on the initial conditions, we can express ( as 

The constant C is an integral of the motion. Introducing Eq. [g] into Eq. [dl, we rewrite 
the equation of motion for 0 as 

Equation [h] can be solved by itself, and the value of ( at any point in time can be 
ascertained by substituting the value of 0 into Eq. [g]. 

We can treat the angular velocity of the hoop as a constant in two ways. The first is in 
the presence of a motor that keeps the angular velocity ( constant. In *is case, we have a 
nonnatural system. In the second way, we assume that ( remains constant on its own. Let 
us analyze the accuracy of this assumption. The mass moment of inertia of the hoop is I = 
MR2/2, where M is the mass of the hoop. Introducing the mass ratio p = mlM, Eq. [g] can 
be rewritten as 

When p is small, one can expand Eq. [h] in a Taylor series 

It is clear from Eq. 01 that how much of a variable 4 is depends on the mass ratio. 
When p is very small, one can assume that ( is constant and treat the problem as nonnatural 
with a single degree of freedom. The initial conditions on 0 also affect the accuracy of this 
approximation. 

Let us next analyze the equilibrium positions for this problem. When we consider the 
rotation of the hoop as a variable, the equilibrium positions are 

4 = constant sine = O [kl 

That is, the hoop is not rotating, and 0, = 0 or m, that is, the bead is either in the top or at the 
bottom of the hoop. 

When we consider the motion of the hoop as a known quantity, say f l ,  the dynamic 
potential U is 

1 
U = V - To = mgR(1 - cos 8 )  - - r n ~ ~ f l ~  sin2 8 

2 HI 

Taking the variation of U and setting it to zero, we obtain the position describing equilibrium 
as 

d U 
6U = - 66 = (mgRsin8 - r n ~ ' f l ~  sine cos 8)68 = 0 ae [ml 

leading to the equilibrium equation 



Note that for this problem, setting the partial derivative of V with respect to 9 equal to zero 
to find the equilibrium position would give incorrect results. Solving for the equilibrium po- 
sitions, we obtain 

g sin9 = 0 cos 9 = -- 
RR2 Col 

leading to the equilibrium angles 

Let us next analyze the moment that is necessary to maintain a constant angular velocity 
4. To this end, we make use of the constraint relaxation method described in Section 4.10 
and consider that a moment T is acting on the hoop. The associated virtual work expression 
is 6 W = T 64, so that considering Eq. [f] the equation of motion of the hoop becomes 

Imposing the constraint that 4 = R = constant, the moment required to maintain the 
constant angular velocity becomes 

T = 2rnR2Ri) sin 8 cos 8 [el 

As discussed in Chapter 1, the behavior of a system in the neighborhood of equilib- 
rium is of utmost interest. Here, we extend the developments of Chapter 1 to multi- 
degree of freedom systems. We derive the equations of motion, find the equilibrium 
positions, denoted by q,, and q,, = 0 ( r  = 1,2, . . . , n), and linearize by a Taylor 
series expansion.' As we saw in Chapter 1, if the linearized equations exhibit sig- 
nificant behavior, then the nature of the motion in the neighborhood of equilibrium 
is governed by this significant behavior. Otherwise, one must perform higher-level 
stability analyses. 

Another physically intuitive way of analyzing motion in the neighborhood of 
equilibrium is to expand the kinetic and potential energies in the neighborhood of 
equilibrium. Let us consider a system with no nonconservative forces and express 
the potential energy V (or modified potential energy U) in a Taylor series expansion 
about the equilibrium position. Noting that V = V ( q l ,  92, . . . , q,),  and denoting the 
equilibrium positions by ql,, qz,, . . . , q,,, the Taylor series expansion of V has the 

'Note that we are switching to the index r for the generalized coordinates, to avoid confusion with the symbol k 
that denotes stiffness. 



form 

where Ve = V(qle ,  qz,, . . . , qne) is the value of the potential energy at equilibrium. 
Without loss of generality, we select the datum position for the potential energy as 
being zero at equilibrium, so that Ve = 0. We measure the generalized coordinates 
from equilibrium, so that qre = 0 ( r  = 1,2, . . . , n). Recalling that for a conservative 
system at static equilibrium all the first derivatives of V vanish, 

so that Eq. [5.3.1] reduces to 

in which 

are referred to as stifSness coefficients. This name is used in analogy with the potential 
energy of a spring. For nonnatural systems, at equilibrium dUldqr vanishes and the 
stiffness coefficients have the form 

Making use of the generalized coordinate vector {q )  = [ql qz . . . q J T ,  one 
can write the quadratic approximation to the potential energy in matrix form as 

in which [K] is known as the stifSness matrix. The stiffness matrix is symmetric. Fur- 
thermore, if for a conservative system [K] is positive definite, the potential energy 
has a minimum at the equilibrium configuration. This can be concluded by com- 
p&ng the potential energy V with the developments in Appendix B regarding the 
minimization of a function. The Hessian matrix in Appendix B becomes the stiffness 
matrix when the function whose stationary values are sought is the potential energy. 
A positive semidefinite stiffness matrix is usually an indication that the system pos- 
sesses rigid body motion. It should be reiterated that Eq. [5.3.6] is valid when the 
generalized coordinates assume small values, and that it is for small motions about 
equilibrium only. 



A theorem from stability theory states that for a natural conservative system, if 
the potential energy has a local minimum at equilibrium, then the equilibrium posi- 
tion is stable, implying that if the system is disturbed from its equilibrium position it 
either returns to the equilibrium position or oscillates around it. The instability theo- 
rem states that if the potential energy does not have a local minimum at equilibrium, 
the equilibrium position is unstable. We conclude that the equilibrium position of 
a natural conservative system is stable if the stiffness matrix associated with that 
equilibrium position is positive definite. 

For nonnatural conservative systems, the corresponding stability theorem is dif- 
ferent. When T I  = 0, the system is treated as an otherwise natural system with 
kinetic energy T2 and potential energy U. However, the situation changes when 
T I  # 0. The theorem states that when U = V - To is a local minimum at equilib- 
rium, the equilibrium position is stable. But when U does not have a local minimum 
at equilibrium, the equilibrium position is not necessarily unstable. This concept can 
be explained physically by noting that gyroscopic effects usually increase the sta- 
bility properties. Table 5.1 summarizes the stability theorems. 

We next investigate linearization of the kinetic energy. For natural systems, the 
kinetic energy is 

where we note that it is already in quadratic form. It follows that, for small motions 
about equilibrium, the kinetic energy can be expressed as 

where the subscript e denotes that the inertia matrix is evaluated at the equilibrium 
position. 

We conclude that, for small motions of a natural system about equilibrium, the 
Lagrangian can be written as 

Tabla 5.1 Summary of stability theorems 
for conservative dynamical systems 

Is Dynamic Potential U Minimum? 
Or, 1.9 [ K ]  Positive Definite? 

Yes No 

Natural systems Stable Unstable 

Nonnatural systems 

T ,  = 0 Stable Unstable 

T I  # 0 Stable No conclusion 



Lagrange's equations in column vector format are given in Eq. [4.9.12]. Using the 
properties in Chapter 2 of the derivative of a scalar with respect to a column vector, 
we have 

Introducing Eqs. [5.3.10] into Eq. [4.9.12] we obtain the linearized equations of mo- 
tion in matrix form as 

so that after calculating the kinetic and potential energies about equilibrium, one can 
use them directly to derive the equations of motion. 

Next, consider nonnatural systems. The kinetic energy is T  = T2 + T 1  + TO. The 
To term is absorbed into the modified potential energy U ,  and it enters the stiffness 
matrix via Eq. [5.3.5]. The T2 term is treated the same way the entire kinetic energy 
is treated in a natural system. It follows that, for the case where T 1  = 0 ,  Eq. [5.3.11] 
is still the linearized equation of motion, with the entries of [a obtained by using 
Eq. [5.3.5] and [Me] obtained from T2.  

When T 1  = { p ) T { q )  = C Prqr is not zero, the equations of motion have an 
added term. Noting that the gyroscopic vector { P )  = [ P I P 2  . . . PnlT is a function of 
the generalized coordinates, we write the Taylor series expansion of T1 as 

Of all the terms on the right side of this equation, only two survive: the third 
term and the last. The first, second, and fourth terms vanish because {q , )  = ( 0 )  at 
equilibrium, and the fifth term vanishes because T1 is not quadratic in the generalized 
velocities. Introducing the notation P,, as the value of Pr at equilibrium and BSr = 
dPsldqr evaluated at equilibrium, and noting that 

we obtain the approximation to T I  in the neighborhood of equilibrium as 

or, in column vector format, 

T I  {PelT{ql+ GIT [ B I { ~ )  



where the entries of [B] are B,,. We now introduce T I  into the Lagrangian and write 

Taking the appropriate derivatives, we obtain 

which leads to the equations of motion as 

It is of interest to note the coefficient of the generalized velocity vector {q). A 
matrix subtracted from its transpose results in a skew-symmetric matrix (a null ma- 
trix if the original matrix is symmetric). Denoting [B] - [BIT by [GI, where [GI 
is called the gyroscopic matrix, we write the linearized equations of motion for a 
nonnatural system as 

[Me1{9} ;)+ [GIM + [ K ] { d  = {Qnc> [5.3.19] 

For relative motion problems when the motion of the relative frame is treated as 
known, T I  leads to the Coriolis effect. For linear or linearized systems, the Coriolis 
effect is manifested in a skew-symmetric matrix. Note that in Example 2.16, the 
Foucault's pendulum, the linearized equations of motion in column vector format 
have a skew-symmetric matrix as the coefficient of the velocity vector. The same 
can be said about the projectile motion example, Example 2.15. 

The first step associated with understanding the nature of motion in the neigh- 
borhood of equilibrium is to linearize the equations of motion about equilibrium and 
see if the linearized equations imply significant behavior. If there is no significant 
behavior, then higher-order analyses need to be conducted, including the stability 
theorems summarized in Table 5.1 . 

Examine the stability of the equilibrium positions of the bead problem by analyzing the motion I Example 
in the neighborhood of equilibrium. 5.2 

Solution 
For this problem, T I  = 0 and the second derivative of U is 

Noting that T2 = mR202/2, and E = 0 - O , ,  the linearized equation of motion about equilib- 
rium has the form 

Substituting the values of 0 at equilibrium, we obtain 



For 0, = T 

d2 U 
For 0, = COS-' - k = - (A)  d, 

For the equilibrium point to be stable, k must be positive. For the position 0, = 0, which 
corresponds to the bead lying on the bottom of the hoop, to be stable 1 - Rf12/g must be 
positive, or 

The second equilibrium position, 8, = T, which corresponds to the bead being at the 
top, is unstable, as the value of dZ UldeZ is always negative. This result is easily verified from 
a physical point of view, as the bead will always fall from the highest point on the hoop. 

From Eq. [el, the third equilibrium position is stable when 

The motion of the bead can be explained as follows. When the angular velocity of the hoop 
is less than m, the only stable equilibrium position is the bottom of the hoop, 0, = 0. The 
bead oscillates around that equilibrium point. As the angular velocity of the hoop becomes 
greater than &@, the stable equilibrium position becomes 8, = c o ~ - ' ( ~ l R R ~ )  and the bead 
begins to oscillate about 8,. The equilibrium point 0, = 0 is no longer a stable equilibrium 
point. The angular velocity fi = is the critical angular velocity that dictates which 
equilibrium point is stable. Note that until the critical angular velocity is reached the equi- 
librium point is still 0, = 0. As the angular velocity increases over m, the location of 
the stable equilibrium point moves up. The highest stable equilibrium position approaches 
0, = d 2  for very high values of fl. 

Example I Consider the three mass-spring-damper system shown in Fig. 5.2, and obtain the equatins of 
5.3 motion directly from the energy expressions. 

Solution 

We will solve for the equations of motion of this linear system by expressing the kinetic and 
potential energies in matrix form. The generalized coordinates gl, 92, and 93 represent the 

Cigun S.2 Free-body diagrams 



Figure 1.3 Freebody diagrams 

displacements of the masses. From Fig. 5.3 the kinetic and potential energies have the form 

Introducing the column vector {q} = [ql q;! q31T, we can write the kinetic and potential 
energies in matrix form as 

where the mass and stiffness matrices have the form 

Note that [ K ]  is positive semidefinite. The dashpots exert forces of magnitude c1 (92 - ql) 
and c2(q3 - 92) to the masses. The virtual work is given by 

in which 

so that the generalized force vector has the form 

I cl(92 - 91) 
{QncI = C I ( ~ I  - 92) + c2(93 - q2) 

-~2(93 - 92) + F 

Using Eq. [5.3.11], the equations of motion become 

In the next section we will learn about a simpler way to handle the dissipative forces 
generated by a dashpot: 



An important class of nonconservative forces is the class of forces that dissipate 
energy. A common way of approximating energy-dissipating forces is by friction. 
Two models of friction are widely used, even though both are crude simplifications 
of a complex phenomenon: The first is dry or Coulomb friction, where the friction 
force opposing the impending motion has the magnitude of the friction coefficient 
times the normal force, and it opposes the velocity. As we saw in Chapter 1, 

where Ff is the friction force, N is the normal force, v is the relative sliding velocity 
between the contacting points, and p is the coefficient of friction. In general, p 
is approximated by two values, the static coefficient of friction and the dynamic 
coefficient of friction. Equation [5.4.1] represents a nonlinear relationship. 

The second approximation is viscous damping, where the damping force is mod- 
eled as opposing the velocity and proportional to it. The special case of linear pro- 
portionality is commonly used. In this case, the friction force is assumed to be in the 
form 

in which c is the viscous damping coefficient. This approximation is used especially 
when modeling light amounts of damping, because it is a linear approximation and 
easier to deal with mathematically. Its applications include modeling of shock ab- 
sorbers (dashpots). 

In analytical mechanics, a convenient way of treating viscous damping forces is 
by the use of Rayleigh's dissipation function. Consider a single particle moving in 
one direction, such as a mass-spring-dashpot system. In terms of the generalized co- 
ordinate x, the viscous damping force is given by Fd = -cx .  Rayleigh's dissipation 
function 8 is defined as 

and the generalized force Q is obtained by 

Note the similarity between the expression for potential energy of springs 
(kx2/2) and Rayleigh's dissipation function. We extend this definition to multiple 
dashpots by 

where ci(i = 1,2, . . . , Nd)  are the viscous damping coefficients and vi and vi- 1 de- 
note the components of the velocities of the points connected to the ith dashpot. 



The Rayleigh's dissipation function can be written in terms of the generalized 
coordinates as 

where the coefficients dkr depend on the viscous damping coefficients. The con- 
tribution of viscous damping forces to Lagrange's equations can be obtained from 
Rayleigh's dissipation function by 

One can then express Lagrange's equations in the presence of viscous friction forces 
as 

where Qknc no longer include contributions from viscous damping forces. Note that, 
using the column vector {q)  = [ql q2 . . . qnlT, we can write Rayleigh's dissi- 
pation function as 

in which [Dl is the damping matrix with entries dkr.  It can be shown that the damping 
matrix is symmetric and positive semidefinite. 

Another class of dissipative forces is the circulatory forces. Circulatory forces 
occur in power transmission devices, pipes, and as constraint damping in structures 
undergoing rotational motion. For systems subjected to circulatory forces, the dissi- 
pation function has the general form 

where [HI is the circulatory matrix. 
To analyze the effect of viscous damping and circulatory forces for small motions 

in the neighborhood of equilibrium, we note that 9 is quadratic in the generalized 
coordinates and velocities. Considering the developments in Section 5.3, a Taylor 
series expansion of 9 in Eq. [5.4.10] up to quadratic terms has the form 

1 
9 = 4 4 1 T  [ ~ e l { 4 }  + {PIT  [ ~ e l { q I  2 

[5.4.11 I 

where [D,] is the damping matrix and [He] is the circulatory matrix, both evaluated 
at the equilibrium position. [D,] is symmetric and positive semidefinite and [He] 
is skew symmetric. It follows that the equations of motion in the neighborhood of 
equilibrium can be expressed as 



Finally, we examine the units of Rayleigh's dissipation function 3". Consider a 
single dashpot, with 9 = cx2/2. The damping force is F = -cx. It follows that the 
unit of Rayleigh's dissipation function is force X velocity, or power. 

Example 1 Consider Example 5.3 and obtain the equations of motion using Rayleigh's dissipation func- 
5.4 tion. 

Solution 
Rayleigh's dissipation function is given by 

which can be expressed in the matrix form 

where the damping matrix is 

It follows that the equations of motion are given by 

where [MI and [ K ]  are defined in Example 5.3. For this example, because all nonconservative 
forces are accounted for in the Rayleigh's dissipation function, the generalized forces vector 
is {en,) = [O 0 FIT .  A brief examination of Eq. [dl and Eq. [i] in Example 5.3 indicates that 
they are equivalent. 

Example 1 Consider the system in Example 4.11. Obtain Rayleigh's dissipation function, linearize it 
5.5 around equilibrium, and obtain the [D,] matrix. 

Soldon 

From Fig. 4.21 Rayleigh's dissipation function can be written as 

[a] 

The equilibrium points can be obtained by visual inspection as x, = 0 ,0 ,  = 0, n. We 
consider the position 0 ,  = 0. In the neighborhood of equilibrium 9 becomes 

and, considering that the generalized coordinate vector can be written as {q} = [x B I T ,  the 
damping matrix becomes 

[Del = c 



5.5 E~GENVALUE PROBLEM FOR LINEARIZED SYSTEMS 

In the previous sections we saw the linearized equations of motion for dynarnical 
systems. Here, we obtain the solution of the linearized equations, analogous to the 
treatment of a single degree of freedom system. The developments in Sections 1.9 
through 1.11 and the developments of this and the next two sections constitute the 
basis of linear vibration theory. 

The equations of motion of a linearized undamped, nongyroscopic system are 
given in Eq. [5.3.11].  To obtain the response, we first consider the free vibration case, 
that is, {Qn,} = {O} .  Dropping subscript e from [ M , ] ,  the equations of motion have 
the form 

where [MI and [ K ]  are constant coefficient matrices of order n x n. As in Chap- 
ter 1, we are interested in analyzing stable motion about equilibrium, so we consider 
cases when the stiffness matrix [ K ]  is positive definite or positive semidefinite. Such 
systems are basically vibratory systems. The case of a positive semidefinite [ K ]  is 
encountered in systems admitting rigid body motion. 

The above equations represent n second-order coupled differential equations. To 
analyze the response, we make the synchronous motion assumption and express the 
solution in the form 

where {u} is an n-dimensional vector and A is a scalar. The synchronous motion 
assumption is based on the observation that the response of every component of the 
dynamical system has the same time variation. The amplitudes are different, but 
the nature of the motion is the same. Hence, A describes the time variation and {u} 
describes the different amplitudes. 

We introduce Eq. [5.5.2] into [5.5.1] and collect terms, which gives 

For a nontrivial solution, {u}e" cannot be zero. It follows that Eq. [5.5.3] vanishes 
only if 

Equation [5.5.4] converts the problem to a set of n homogenous algebraic equa- 
tions for the parameters {u} and A2. The task at hand is to find the values of h2 
and corresponding values of {u }  for which Eq. [5.5.4] has a nontrivial solution. This 
problem is known as the eigenvalue problem. 

For the set of n equations [5.5.4] to have a nontrivial solution, the determinant 
of the coefficient matrix must vanish, that is 

det(A2[M] + [ K ] )  = lA2[M] + [ K ] ]  = 0 [S.s.S] 

This is known as the characteristic equation, completely analogous to the de- 
velopments and definitions in Sec. 1.9. It represents an nth order polynomial in A2, 



known as the characteristic polynomial. The characteristic polynomial has n roots, 
denoted by A; ( r  = 1,2, . . . , n), and known as eigenvalues or characteristic  value^.^ 

It follows that for each root A; of the characteristic equation, there is a vector 
{u,) such that 

is satisfied, in which {u,) is the solution of the eigenvalue problem corresponding to 
A;. The term {u,) is called the eigenvector belonging to the rth eigenvalue, or the rth 
eigenvector. 

Let us examine the nature of the eigenvalues and eigenvectors. We know from 
the previous section that [MI is positive definite, and we are considering cases where 
[K] is positive definite or positive semidefinite. A theorem from linear algebra states 
that the eigenvalues and eigenvectors of a symmetric matrix are real. Further, if the 
matrix is positive definite, all eigenvalues > 0. Also, the eigenvalues of the general 
eigenvalue problem 

where [ A ]  is positive definite and [B]  is positive semidefinite, are real and nonneg- 
ative. It follows that the eigenvalues of Eq. [5.5.6], A; ( r  = 1,2, . . . , n), are all real 
and nonpositive. Hence +A, are all pure imaginary. This is to be expected, because 
we are dealing with a critically stable system. Introducing 

where or is a positive quantity called the rth naturalfrequency, the response can be 
represented as a summation of the individual frequencies multiplied by the eigen- 
vectors 

where X, and Y, depend on the initial conditions. Because {q(t)) and {ur) are real- 
valued quantities, following an argument similar to the one in Sec. 1.9 we conclude 
that X, and Y ,  are complex conjugates of each other, so that the free response can be 
written as 

with A, and 4, being the amplitude and the phase angle corresponding to the rth 
natural frequency, and their values depend on the initial conditions. 

Before analyzing the amplitudes and phase angles, let us discuss the physical 
interpretation of the eigenvalue problem. The eigenvalue problem has as its solution 
n natural frequencies (for systems admitting rigid body motion, one or more of the 
natural frequencies is usually zero) and corresponding eigenvectors. The n natural 
frequencies describe the n unique ways (or modes) the system can vibrate. For a 

I 2The word eigenvalue comes from the German word eigen, meaning characteristic. 



single degree of freedom system we had one natural frequency, and for an n degree 
of freedom system there are n natural frequencies. 

In each mode of the motion, the free response is harmonic (except for a rigid body 
mode with zero frequency). The eigenvector corresponding to a particular mode rep- 
resents the ,amplitude ratios of the generalized coordinates. That is, it describes the 
shape of the motion when the system vibrates with that particular mode. The eigen- 
vectors are also referred to as modal vectors or natural modes. Note that, from Eq. 
C5.5.61, the amplitudes of the modal vectors are not unique. A modal vector multi- 
plied by a nonzero constant is still a modal vector. It is useful to adopt a procedure to 
specify the magnitudes of the modal vectors, and we will do exactly that in the next 
section, via a procedure called normalization. 

Obtain the natural frequencies and eigenvalues associated with the system in Example 5.3. 1 Exanyk 
for the values ml = m2 = ms = m, k l  = k2 = k, cl = c2 = 0.  5.6 

Solution 
From Eq. [5.5.4], the eigenvalue problem is 

Dividing the above equation by k, and introducing the quantity y  = - A2mlk = w2mlk, 
the characteristic equation becomes 

y - 1  1 : 1 = 0  [b] 
0  - 1  0  1 y - 1  

Evaluating the determinant gives a third-order polynomial in y  in the form 

whose roots are (listed for convenience in ascending order, which is the common way of 
ranking them) 

Yl = o  y 2 =  1 Y3 = 3 [dl 

It should be noted that the characteristic equation for most systems is much harder to 
solve than the example here. Recalling the definition of y above, the natural frequencies can 
be written as w ,  = Jy,klm ( r  = 1,2,3), with the result 

One of the eigenvalues is zero, indicating a rigid body mode. We can verify the presence 
of a rigid body mode visually, by noting that the two ends of the mass-spring system are free. 
Hence, if t i l ~  system is given an initial velocity, it will keep translating, until opposing forces 
are applied or friction takes its toll. 

Next, we calculate the eigenvectors. For each mode of the motion there exists a unique 
eigenvector. To solve for the eigenvectors, we make use of Eq. [5.5.6], which can be 



CHAPTER a ANALY~CAL ~MECHANICS: ADDITIONAL TOPICS 

written as 

The coefficient matrix in the above equation is singular, so that the three equations ob- 
tained from Eq. [f] are not independent. Equation [f] gives only two independent equations, 
which raises the question of how to obtain the three elements of {u,}. It turns out that only 
two of the elements of {u,) can be found, and the third is expressed as a ratio. 

Writing {u,} as {u,} = [ulr u2, u3,1T, we obtain for r = 1, yl = 0 

Taking the first and third equations as the independent ones, we obtain 

which leads to the conclusion 

This result can be confirmed by substituting in the second equation in Eq. [g]. Hence, 
the first eigenvector can be expressed as 

where a1 is an amplitude ratio. Let us examine this first eigenvector. Recall that the elements 
of the eigenvectors denote the amplitudes of the generalized coordinates, the displacements of 
the three masses in this problem. For the rigid body mode, all of the elements of the eigenvec- 
tor are the same, indicating that all three masses move with the same amplitude. It follows that 
the springs between the masses are not stretched, and the entire mass-spring system moves 
as one piece, as if it is a single rigid body with no moving parts. 

For the second mode we have y2 = 1 and 

and we take the first two equations from above 

thus, the second eigenvector can be written as 

For the third mode we have y3 = 3 and 



5.6 ~THOGONALITY AND NORMALIZATION 

Figure 5.4 Plot of the eigen- 
vectors 

Using the first and second equations 

so that the third eigenvector becomes 

The three eigenvectors are plotted in Fig. 5.4. We see that all of the elements of the first 
eigenvector have the same sign, elements of the second eigenvector have one sign change, and 
in the third eigenvector there are two sign changes. This is a common feature of modal vectors, 
which can be generalized to a system of order n as: When the eigenvalues are arranged in 
ascending order, the rth eigenvector has r - 1 zero crossings. 

5.6 ~ T H O G O N A L I T Y  AND NORMALIZATION I 
The natural modes possess an important property called orthogonality. Consider the 
eigenvalue problem in Eq. [5.5.5] and two of its solutions, say the rth and sth modes 
with r # s and w ,  # o,. A theorem from linear algebra states that 

This relation is true for any two nonequal natural frequencies. In the case of 
repeated eigenvalues (or = w,, r # s), the associated modal vectors are not unique. 
Any linear combination of two such modal vectors is a modal vector itself. However, 
it is possible to select the modal vectors associated with repeating eigenvalues such 
that Eq. [5.6.1] holds. In Chapter 6, we will see an interesting application of repeated 
eigenvalues. 



When r = s, the product { u ~ ) ~ [ M ] { u ~ }  > 0 ,  and the magnitude of the product 
depends on the magnitude of the modal vector. Because these amplitudes are arbi- 
trary, a common way to deal with them is to normalize them. One way of normalizing 
the eigenvectors is to set the above product to unity 

{ ~ r ) ~ [ M l { ~ r }  = 1 [5.6.2] 

This equation is one way of normalizing the modal vectors. There are other ap- 
proaches, such as { u ~ ) ~ { u ~ )  = 1 .  In this text we use Eq. [5.6.2]. Using this equation, 
and Eq. C5.5.61, one can show that 

2 {urIT [ K I { u ~ )  = ~r [5.6.3] 

Equations [5.6.1]-[5.6.3] can be combined to give the so-called orthonormality 
relations 

{ U ~ } ~ [ M I { U S )  = S r s  { u ~ ) ~ [ K I { u ~ }  = ~ ? S r s  [5.6.4] 

where 6, is the Kronecker delta, defined as 

6, = 1 when r = s 

6, = 0 when r Z s [5.6.5] 

A corollary of the result above is that the modal vectors constitute an indepen- 
dent set. This implies that any vector of order n can be expressed as a linear com- 
bination of the eigenvectors multiplied by appropriate coefficients. Hence, given an 
n-dimensional vector {z) ,  one can expand it as 

where ak 
[5.5.10]. 
For this, 
equation 

are the coefficients of the expansion. Note the similarity of Eqs. [5.6.6] and 
The question becomes that of given {z} ,  determining a k  ( k  = 1,2, . . . , n). 
we make use of orthogonality, and left-multiply both sides of the above 
by { u , ) ~ [ M ]  (r = 1,2, . . . , n) with the result 

We conclude that any vector { z )  of order n can be expressed in terms of the modal 
vectors 

This equation is known as the expansion theorem. A very important application 
of the expansion theorem is in obtaining the response of a vibrating system, as we 
will discuss in the next section. 

Example I Consider Examples 5.3 and 5.6, and demonstrate that the orthogonality relations hold. Nor- 
S.7 malize the eigenvectors. Then, take the vector {b) = [l 2 SIT and expand it in terms of 

the eigenvectors. 
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Solution 

The mass matrix for this problem can be written as [MI = m [ l ] ,  where [ I ]  is the identity 
matrix. Hence, the orthogonality relations in Eq. [5.6.1] reduce to 

{ ~ r ) ~ [ ~ l { ~ s l  = m { d ' { u s 1  r, = 1,2,3 [a1 

Evaluating the possible combinations, we get 

Next, we normalize the eigenvectors according to Eq. [5.6.2]. For the first mode we have 

{ u ~ ) ~ [ M ] { u ~ }  = ma:(l + 1 + 1) = 3ma: = 1 [el 

which can be solved for a 1 as 

The choice of the plus and minus sign is up to the analyst. Let us select the positive value. 
For the second and third modes we have 

from which we obtain 

and we select the positive values for a2 and ag. 
Let us now consider the vector {b)  = [ l  2 SIT and expand it as 

where the coefficients ai (i = 1,2,3) are found from Eq. [5.6.8]. We then have 

so that {b)  is expanded as 



Consider the undamped vibration problem, repeated here as 

subject to the initial conditions {q(O)) and {q(O)). We will make use of the devel- 
opments of the previous sections to find the response. We first solve the eigenvalue 
problem and find the natural frequencies and the modal vectors. We then apply the 
expansion theorem to the generalized coordinates and expand {q(t)) as 

n 

M t ) }  = qk( t ) {~k}  [5.7.2] 
k =  1 

where qk( t )  are known as modal coordinates or principal coordinates. Note that be- 
cause {q(t)) is a function of time, so are the coefficients of its expansion in terms of 
the modal vectors. In essence, the principal coordinates ql (t),  qz(t),  . . . qn( t )  consti- 
tute another set of generalized coordinates. 

Next, we introduce Eq. [5.7.2] into Eq. [5.7.1]. Obviously, we wish to make 
use of the orthogonality properties, so we left-multiply both sides of Eq. [5.7.1] by 
{ ~ , ) ~ ( r  = 1,2, . . . , n), with the result 

n n 

{urIT [MI 1 qk(t){uk) + {urjT [KI 1 qk( t ) {~k)  = { ~ r ) ~ { Q ( t ) )  [s-7-31 
k =  l k =  1 

which can be rewritten as 

Invoking the orthonormality relations in Eq. [5.6.4], we see that of all the terms 
on the left side of Eq. [5.7.4], two terms survive, those corresponding to r = k. We 
define the quantity modal force Nr(t), where 

so that the describing equations become 

We have converted the equations of motion from a set of n coupled second- 
order differential equations to n independent equations of motion. This conversion 
serves a number of purposes. It permits the user to view the equations of motion as a 
collection of single oscillators. It also makes it much simpler to obtain the solution. 
Indeed, rather than solving a set of n coupled differential equations, one solves n 
independent equations. For each modal coordinate, from Sec. 1.1 1, the response has 
the form of the convolution sum 

i S 0 )  qr(t)  = qr(0) cos o r t  + - s h o r t  + - Nr(t - a) s inorada  [S.7.7] 
m r o r  I' o 



where q r ( 0 )  and + ( O )  are the initial conditions. They can be obtained from the initial 
conditions on the generalized coordinates {q(O)) and {q(O)) by means of the expansion 
theorem as 

Once the response of each modal coordinate is obtained, Eq. [5.7.2] is invoked and 
the response of the principal coordinates is found. 

In the presence of a rigid body mode with zero frequency (denoted by R), the 
modal equation of motion is 

subject to the initial conditions q R ( 0 )  = { u ~ ) ~ [ M ] { ~ ( O ) ) ,  jlR(0) = { u ~ ) ~ [ M I { ~ ( O ) ) .  
The response can be shown to be 

For damped systems, the eigensolution associated with the undamped part of the 
system does not usually lead to a decoupled set of equations. Let us add a [D]{q( t ) )  
term to the left side of Eq. [5.7.1],  thus 

[M1{9@)) + [ D M t ) }  + [Kl{q(t)}  = {Q<t>> [5.7.11] 

Introduce Eq. [5.7.2] into it and left-multiply by {urIT. This yields 

which can be reduced to 

where 

As a result, the modal equations of motion are no longer independent but are 
coupled through the damping terms. There are cases when the damping matrix has 
a special form that decouples the modal equations. One such case is proportional 
damping, where the damping matrix is a linear combination of the mass and stiffness 
matrices in the form 

so that the values of dkr become 

Actually, proportional damping is more of a mathematical convenience and not a 
very realistic model. When the amount of damping in a system is small, a simplifying 



assumption is to ignore the values of dkr when k # r. This assumption decouples 
the modal equations. One can justify such an assumption by noting that the damp- 
ing matrix [Dl is itself a gross approximation and that the damping is not known 
accurately. 

The decoupled modal equations can then be written in the form 

where 2Lrwr = drr ( r  = 1,2, . . . , n). The response for each mode is obtained by 
Eq. [1.11.8]. 

Gyroscopic and circulatory systems require a different analysis. One has to ex- 
press the equations of motion in state form and then solve the associated eigenvalue 
problem. This same analysis can be carried out for damped systems as well. It truns 
out that for undamped gyroscopic systems, there is a very elegant solution. The in- 
terested reader is referred to the texts by Meirovitch. 

Example 1 Consider the undamped mass-spring system in the previous examples. A uniform force F is 
5.8 applied to the third mass. The initial conditions are {q(O)} = L[l 0 - 1IT, (q(0)) = (0). Find 

the response. 

Soldon 
The generalized force vector is written as {Q} = [0 0 FIT, and using Eq. [5.7.5], the modal 
forces become 

The initial conditions are 



S.7 MODAL EQUATIONS OF MOTION AND RESPONSE 

One can ascertain by simply looking at {q(O)) that ~ ~ ( 0 )  and v3(0)  should both be zero. This 
is because the initial condition is recognized as a constant times the second eigenvector, so 
that it should have no contribution to the first and third modes. 

Hence, we have for the first mode, 

whose response is 

For the second mode we have 

whose response can be shown to be 

Cfl 

q2(t) = JGL cosw2t - Jim -- :2 lof sin 0 2 ~  du 

which, upon introduction of the value of w: = klm can be written as 

Chl 

In a similar fashion, noting that wj  = 3klm, the response of the third mode becomes 

The total system response is then written as 

Let us conduct a dimensional analysis of the terms in the response. The coefficient of 
the first eigenvector has units of force X time2/mass = length. For the coefficients of the 
second eigenvector, the component due to the initial condition has units of length, and the 
component due to forcing has units of forcelspring constant. But the spring constant has units 
of forcetlength, so that the component due to forcing has units of length, also. The same can 
be said about the contribution of the third mode, so that all of the terms in the above equation 
have the unit of length. As always, such dimensional analysis is a good way of spotting errors. 



As discussed in Chapter 1, first integrals are expressions that involve derivatives up 
to one order less than the highest derivative in the equations of motion. They come in 
handy when analyzing the behavior of a dynarnical system qualitatively, instead of 
solving explicitly for the response. We investigate here first integrals associated with 
Lagrangian mechanics. We first define by .rrk the generalized momentum associated 
with the kth generalized coordinate as 

The relationship between the generalized coordinates and the generalized mo- 
menta is very similar to the relationship between a translational coordinate and linear 
momentum or between a rotation angle and angular momentum. Because the poten- 
tial energy does not contain any terms in the generalized velocities (except for in 
electromagnetic systems), one can express the generalized momentum as 

Consider now a system where the lth generalized coordinate ql does not appear 
in the Lagrangian. Such a coordinate is referred to as cyclic or ignorable. The name 
cyclic is due to the fact that such coordinates are encountered mostly in rotational 
motion. It follows that in the lth equation of motion, dLldql = 0, and Lagrange's 
equations become 

When the generalized coordinate is cyclic, the rate of change of the generalized 
momentum is equal to the generalized force. One can integrate Eq. 15.8.31 over time 
to obtain the generalized momentum. In the special case when the generalized force 
associated with the ignorable coordinate is zero, we obtain from Eq. [5.8.3] that 

d d (C) = 0 = - + .rr, = constant 
d t  

[5.8.4] 
dt  aq, 

When a generalized coordinate is absent from the Lagrangian, and the external 
excitation is not a function of that generalized coordinate, the associated generalized 
momentum is conserved. This is an integral of the motion. One can then raise the 
question as to whether it is possible to take advantage of the cyclic coordinates and 
simplify the equations of motion. The answer to this is positive. If a system has n 
degrees of freedom and 1 cyclic coordinates, the n equations of motion can be re- 
duced to n - 1 equations of motion that can be solved independently of the cyclic 
coordinates, plus 1 first integrals associated with the cyclic coordinates. We actu- 
ally carried out such a procedure in Example 5.1. One way to identify and separate 
ignorable coordinates is described in Section 5.9. 



We encounter an interesting integral of the motion when the Lagrangian is not 
an explicit function of time and when no nonconservative forces act on the system. In 
this case, considering that L = L(ql ,  92, . . . , q,, q l ,  4 2 ,  . . . , q,), the time derivative 
of the Lagrangian becomes3 

Next, we rewrite Lagrange's equations in the absence of nonconservative forces as 

Introducing Eq. [5.8.6] into Eq. [5.8.5] we obtain 

And, integrating this equation, we obtain the Jacobi integral h, defined as 

dL  n 

h = 1 -qk - L = 2 vkqk  - L = constant [S.8.91 
k = ,  dqk k =  1 

The Jacobi integral is yet another integral of the motion. But h can be expressed 
in a simpler form: We first write the generalized momenta in column vector format 
as {n-) = [rl 7r2 . . . rnlT, and using Eqs. [5 3.21 and [5.2.9], we have 

so that 

Introducing this into Eq. [5.8.9], we obtain 

For a natural system To = 0 and T2 = T, so the Jacobi integral becomes 

I 3Note the similarity between this approach and the procedure in Appendix B to find first integrals. 



h = T2 + V = T + V = constant CS.8.131 

Thus, for a natural system, the Jacobi integral is the system energy. 
We next demonstrate that the generalized momenta are indeed a set of inde- 

pendent variables that are derivable from the generalized velocities, and vice versa. 
The relation between the generalized momenta and generalized velocities is given 
in Eq. [5.8.10]. Inverting it, we can express the generalized velocities in terms of the 
generalized momenta as 

(4) = [MI-' ((4 - {P I )  [S.8.14] 

For Eq. [5.8.14] to hold, [MI must be nonsingular. It was stated earlier that [MI 
is positive definite, so it is guaranteed to be nonsingular. Equation [5.8.14] leads to 
the conclusion that the generalized momenta and generalized velocities are related to 
each other by a linear one-to-one relationship and that they can be used interchange- 
ably in the problem formulation. We had earlier expressed the Lagrangian in terms 
of the generalized coordinates and generalized velocities as 

Based on the discussions above, we can now also represent the Lagrangian as 

It follows that one can use any combination of generalized velocities and gen- 
eralized momenta. (We cannot use .rrk and qk(k = 1,2, . . . , n) together, though, as 
they would constitute a redundant set.) 

Example 
5.9 

I Consider the bead problem again. The Jacobi integral is given by Eq. [5.8.12] so that it has 
the form 

m R 2 .  mR2 h = T2 + U = ,-0' + mgR(1 - cos9) - ,-a2 sin2 9 = constant [a] 

which obviously is different than the sum of the kinetic and potential energies of the bead, 
signifying that for nonnatural systems the energy integral is not the sum of the kinetic and 
potential energies. 

If a system has n degrees of freedom and 1 of those coordinates are cyclic, Routh's 
method permits one to reduce the n equations of motion to n - 1 equations that can 
be solved separately from the cyclic coordinates. The reduced set of n - 1 equations 
is usually easier to solve than the full set of n equations. The remaining 1 equations 
associated with the cyclic coordinates are expressed as first integrals. 

Consider a scleronomic conservative system that has n degrees of freedom, with 
1 of them cyclic. Order the generalized coordinates such that the first n - 1 coordinates 



q k ( k  = 1,2  ,..., n-l)arenotcyclic,andthenextqk(k = n - l + l , n - 1 + 2  , . . . ,  n)  
are. The generalized momenta ni, ( k  = n  - 1 + 1 ,  n - 1 + 2, . . . , n)  associated with 
the cyclic coordinates are constant. We will write the Lagrangian in terms of the 
generalized coordinates and the generalized momenta. This is perfectly acceptable 
because, as demonstrated in the previous section, generalized momenta are indepen- 
dent variables. 

For a natural system with no cyclic coordinates the Lagrangian can be expressed 
in terms of the generalized momenta as 

In the presence of 1 cyclic coordinates, we write the Lagrangian in terms of the gen- 
eralized velocities for the coordinates that are not cyclic and in terms of the gen- 
eralized momenta for the coordinates that are cyclic. For the cyclic coordinates the 
generalized coordinates are absent from the Lagrangian 

L = L(ql ,q2, .  . . , qn-1, q 1 , q 2 . .  . . , q n - l ,  vn-l+l, nn-1+2,. . . , .rrn) [5.9.21 

and 

T, , -~+  = constant k = 1,2 ,  . . . , 1 [S.9.31 

We next introduce the Routhian, denoted by 3, as 

Comparing the Lagrangian and Routhian, we observe for the coordinates that 
are not cyclic 

and for the coordinates that are cyclic 

The last term on the right of this equation can be written using the chain law for 
differentiation as 

which, when introduced into Eq. 15.9.61 yields 

= 0 k = l , 2 ,  . . . ,  n - l  



Equations [5.9.9] and [5.9.8] represent two sets of equations, of orders n - 1 and 
I ,  respectively, which can be solved'separately from each other. One first solves Eqs. 
[5.9.9] for the generalized coordinates and velocities ql,  92, . . . , qn-[, q l ,  q2, . . . , qn-[ 
associated with the noncyclic coordinates. The results are then substituted into Eqs. 
[5.9.8] to solve for the generalized velocities associated with the cyclic coordinates. 
The values for the constants T , , - I + ~ ,  7rn-1+2, . . . , T,, are obtained from the initial 
conditions. 

The motivation behind defining the Routhian comes from Harniltonian mechan- 
ics, as we will see in Sec. 5.11. 

Example I Return again to the bead problem. As in Example 5.1, we treat the rotation of the hoop as 
5.10 another degree of freedom. Writing the rotation rate fl as 4, the Lagrangian becomes 

where I is the mass moment of inertia of the hoop. 
We observe that 4 is absent from the Lagrangian, which makes it an ignorable coordi- 

nate. The generalized momentum associated with 4 is constant. The partial derivatives of the 
Lagrangian are 

d L 
= mR2@ sin0 cos 0 - mgRsint3 - = mR29 ae de Cbl 

- '4 - - I /  + mR2/ sin2 0 = (I  + rnR2 sin2 8)/ = .rr+ = constant [@I 
a4 

One can seek a physical explanation of the generalized momentum. Indeed, .rrb is the 
component of the angular momentum of the hoop-bead system along the axis of the hoop. 

We derived the equations of motion in Example 5.1. To obtain the equation of motion 
using Routh's method, we calculate the Routhian as 

Using the expression for .rr+ the Routhian can be expressed without / by 

1 .  4 ~ 4  
3 = -mR2e2 - mgR(1 - cos 8) - - 

2 2 
1 

= -mR2e2 - mgR(1 - cos 8) - 4 
2 2(1+ mR2 sin2 0) [el 

The linear impulse-momentum relationship for a particle of mass m acted upon by a 
force F(t) is obtained by integrating Newton's second law over time, for 



We saw in Chapter 1 that if a true impulsive force were applied, the particle veloc- 
ity would change immediately after the impulse but the position would not change. 
Displacements require finite time to develop. 

We now consider Lagrange's equations and impulsive external excitation. Simi- 
lar to the approach in Chapter 1, we integrate the equations of motion. In general, in- 
tegration of Lagrange's equations over time does not yield important results. But the 
situation is different when the applied forces are impulsive. We rewrite Lagrange's 
equations in the form of Eq. [4.9.8] as 

Assume an impulsive force is applied at time t = to. Integrating the above equa- 
tion from to to to + E and taking the limit as E approaches zero, we obtain for each 
term 

[S. 10.31 

QknC = Q~ k = 1,2, .. . , n  [S. 10.51 

Equations [5.10.4] are both equal to zero because dT/dqk and dV/dqk have fi- 
nite magnitudes. We refer to Q~ as the generalized impulse. The only forces that 
contribute to the generalized impulse are impulsive forces, as the contribution of all 
other forces disappears as the duration of the impulse becomes infinitesimally small. 
Chapter 1 presented this same argument. It follows that 

A r k  = Q~ k = 1,2, . . . ,  n [S. 1 0.61 

so that the change in generalized momentum is equal to the generalized impulse, a 
result totally analogous to the impulse-momentum theorem for particles. The virtual 
work expression in terms of impulsive forces becomes 



so that the generalized impulse has the form 

[S. 10.81 

Equation [5.10.6] can be expressed in matrix form. Noting that {T) = [M]{q) + 
{P}, and assuming that the inertia matrix and the {p) vector do not change during 
the impulse, we can write Eq. [5.10.6] as 

[MI{Agl = {QI 1s. 1 0.91 

in which {Q} = [ Q ~  Q2 . . . &JT is the generalized impulse vector. Hence, 
given the impulsive forces, one can calculate the generalized impulses, and by in- 
verting Eq. [5.10.9] one calculates the generalized velocities immediately after the 
impulse as 

Note that if an impulsive force is applied to a body subject to constraints, the 
constraint forces, such as reaction forces, also become impulsive. One should exer- 
cise caution in determining those forces that are impulsive and those that are not. 
Also, as discussed in Chapter 1, always keep in mind the fact that Eq. [5.10.6] is an 
approximation, as it assumes the ideal situation of the impulse taking place in zero 
time. In reality, impulses take place over finite time, so that there is some change of 
position as well. 

Example 1 The massless collar in Fig. 5.5 is free to slide over a guide bar. Attached to the collar with 
5.1 1 a pin joint is a rod of mass m and length L. A ball of mass M is attached to the tip of the 

rod. The system is at rest when an impulsive force fi is applied to the mass at the tip of the 
rod in the horizontal direction. Find the velocity of the collar and angular velocity of the rod 
immediately after the impulsive force is applied. 

Solution 
This system has two degrees of freedom. We select the generalized coordinates as the trans- 
lation of the collar and the rotation angle 8. The configuration of the system disturbed from 
equilibrium is shown in Fig. 5.6, together with the external forces. The kinetic energy is due 
to the kinetic energy of the ball and the kinetic energy of the rod 

Figure 5.5 Figure 5.6 



1 1 1 .  
T = - M(&, + uL,) + -m(vf + ut) + I&' 

2 2 [a1 

where uMx and vMy are the velocities of the ball in the x and y directions, v, and u, are the 
velocities of the center of mass of the rod, and IG is the centroidal mass moment of inertia of 
the rod, IG = mL2/12. From Fig. 5.6, we can express the displacements of the center of mass 
of the rod and of the ball as 

L L 
X G = X + - s i n 6  y c = - - c o s 6  x ~ = x + L s i n O  y M = - L c o s O  [b] 

2 2 

Differentiating the above terms, we obtain the velocities in the x and y directions as 

Substituting Eqs. [c] into Eq. [a] we obtain 

The change in potential energy during the impulse is zero, as we assume that the position 
of the system does not change during the impulse. Using Eq. [5.8.2], the generalized momenta 
have the form 

The virtual work is 

6 W = F 6 x M = F 6 ( x + L s i n 6 ) = F 6 x + F L c o s 6 6 6 = ~ x 6 x + ~ 0 6 6  [f] 

so that the generalized impulses are 

Q, = fi Qo = fiLcos6 191 

At the point of application of the impulse, the rod is vertical and 6 = 0. Combining Eqs. 
[el and [g], we obtain two equations for the two unknowns i and 8 as 

Solving Eqs. [h] for the values of i and 8 immediately after the impulse, we obtain 

Note that the velocity of the collar right after the impulse is in the opposite direction of 
the impulse. 



Hamilton's equations have the property that they directly yield 2n first-order equa- 
tions of motion that are in state form. They also find applications in the stability 
analysis of dynarnical systems, in transformation theory, and in control systems. 

Consider the generalized momenta, { T )  = [M]{q)  + {P) .  It follows that La- 
grange's equations can be written in terms of the generalized momenta as 

{+I + { g )  = {Qncl [S.11.1] 

where {g)T = -dLld{q). It follows that one can express Lagrange's equations in 
state form as 

(4 )  = [ ~ l - ' ( { . r r )  - {PI)  = - {g)  + {Qnc) 1s-11 .%bI 

The equations in the above form can be derived from a scalar function called 
the Hamiltonian, defined in a way similar to the Jacobi integral and the Routhian as 

Considering Eq. [5.8.12] we can write 

X = T 2 + U = T 2 - T o + V  [S. 1 I A] 

As { q )  can be expressed in terms of {T) ,  the variation of X can be written using 
{ q )  and { T )  as the independent variables, thus 

If we take the variation of X using its definition in Eq. [5.11.3], we obtain 

Because the generalized momenta are defined as {T)' = dLld{q), the second and 
third terms on the right side of this expression cancel each other. Equating Eqs. 
[5.11.5] to the remaining terms in Eq. [5.11.6], we write 

Now introducing Eq. [5.11.7b] into Eq. [5.11.2b], we obtain Hamilton's canon- 
ical equations written as 

or, in scalar form, as 



Equations [5.11.9] constitute 2n first-order equations with all time derivatives 
being on the left side. Hence, the equations of motion are in state form. 

The rationale behind defining the Hamiltonian as in Eq. [5.11.3] is as fol- 
lows. Lagrange's equations are a set of second-order differential equations, with the 
second-order derivative terms arising from the expression a (k  = 1,2,  . . . , n). j d L  
One then ponders the possibility of having an augmented form of the Lagrangian, 
denoted by X ,  such that dXldqk = 0. Consequently, second-order derivatives are 
eliminated. The Hamiltonian is defined in a similar way to the Routhian, but consid- 
ering all the generalized coordinates. Another rationale comes from the definition of 
the Jacobi integral, which uses the expression n;cqk. Yet another motivation comes 
from Legendre's dual transformation, to which Lagrangian mechanics and gener- 
alized velocities and momenta are an application. It should be noted that Hamilton 
lived much before Routh and that it was Routh who was inspired from the Hamilto- 
nian to develop the Routhian. 

It can be shown easily that when all forces acting on the system can be derived 
from a potential, so that Qk,, = 0 ( k  = 1,2, . . . , n), we have 

For a holonomic conservative system, if the Hamiltonian does not depend on 
time explicitly, its time derivative is zero, d X l d t  = 0, and the Hamiltonian becomes 
the Jacobi integral h, an integral of the motion. One advantage of Hamilton's equa- 
tions is that they make it easier to identify integrals of the motion. Hamilton's equa- 
tions are also useful in the stability analysis of dynamical systems. However, it may 
not be so simple to obtain Hamilton's equations, especially when a large number 
of degrees of freedom are involved. Also, from an algebraic standpoint, Hamilton's 
equations are usually lengthier than Lagrange's equations, limiting their usefulness 
to low-order systems. Hamilton's equations are viewed more as a tool to extract in- 
formation from the system and to identify integrals of the motion. 

Figure 5.7 describes a spring pendulum, where the length of the pendulum varies because I Example 
it is acted upon by two springs of constant kl2 each and a dashpot of constant c. Find the 5-12 
equations of motion using Hamilton's canonical equations. 

Figuw 5.7 A swing 
pendulum 



Solution 
We use polar coordimtes to describe the motion, as described in Fig. 5.8. We denote the 
unstretched length of the spring as a. The velocity of the mass is 

v = ie ,  + ree, [a1 
leading to the kinetic energy expression 

k r + c  

1 1 
T = -mv v = -m(P + ?e2) 

2 2 

The potential energy is due to the stretch of the spring and due to gravity, thus 
Cigun 5.8 
Freebody 1 
diagram 

V = -k(r - a)' - mgrcosO 
2 

[el 

The dashpot gives rise to the Rayleigh's dissipation function term 

We next find the generalized momenta terms using Eq. [5.8.2], which yields 

From Eqs. [el we can express i and i)  as 

and, using these expressions, we write the Hamiltonian in terms of the generalized coordinates 
and generalized momenta as 

- 7r2 1 7r2 1 7r; 1 - L + & - - L - - -  + - k(r - a)' - mgr cos 0 
rn mr2 2 rn 2 mr2 2 

The Rayleigh's dissipation function leads to the generalized forces associated with the 
nonconsewative forces acting on the system as 

d 9  C T r  
Q = -- = - . f =  -- 

as 
rnc Qenc = - - = 0 

d i  m ae 
Using the Hamilton's canonical equations in conjunction with Eqs. [g] and [h], we obtain 

the equations of motion 

ax i r e =  -- + Qenc = - mgr sin 0 
do 



S. 1 2 C~MPUTAT~ONAL QNSWERATIONS : ALTERNATE I)EscRIFT~oNs OF THE MOTION EQUATIONS 31 1 

With the advent of digital computers and powerful software, it has become possible 
to derive the equations of motion, as well as to solve them, using computational 
techniques. We discuss here issues associated with the derivation and integration of 
equations of motion from a computational standpoint. We begin with derivation of 
the equations of motion. 

The classical derivation of the equations of motion in terms of Lagrange's equa- 
tions is elegant, and it gives a lot of physical insight. As the number of degrees 
of freedom become larger, however, using Lagrange's equations directly to derive 
the equations of motion becomes increasingly difficult and time consuming. This is 
true for hand calculations as well as for derivations performed by a computer, using 
symbolic manipulation software. To make matters worse, an experienced user of La- 
grange's equations will notice that some of the terms in the evaluation of dTldqk(k = 

1,2, . . . , n) cancel terms in d(dTldqk)ldt, resulting in excess, wasted manipulations. 
An alternative way to derive the equations of motion is to use D'Alembert's 

principle directly (Eq. [4.7.16]). The advantages of using D' Alembert's principle are 
that the kinetic energy does not need to be calculated, and, because the entire process 
involves vectors, the derivation process can be mechanized and accomplished more 
efficiently by digital computers. The disadvantage is that acceleration terms must 
be calculated, which requires more effort than the velocity terms used in Lagrange's 
equations. 

Consider a system of N bodies having n degrees of freedom undergoing plane 
motion. We express the position of the center of mass of the ith body in column vector 
format {ri)  (i = 1,2, . . . , N )  where {ri)  = {ri(ql ,  q2, . . . , q,, t ) )  is a column vector of 
order 3. Similarly, the angles O i  (i = 1,2, . . . , N) can be expressed in terms of the 
generalized coordinates as Oi = Oi(ql, qz, . . . , q,, t ) .  The time derivatives of {ri)  and 
B i  are 

where { o ~ , ) ~  = [dOildql dOildq2 . . . dOildq,]. The expression for {i;.) is the 
column vector representation of Eq. [5.2.4]. Note that [rig] is a matrix of dimension 
3 X n. 

From the above equation, we write the variations of {ri)  and O i  as 

In a similar fashion, we obtain the translational and angular acceleration of the 
ith body as 



where [6iqIks = d20ildqk dq, (k ,  s = 1,2, . . . , n). The generalized work expression 
can be written as 

We next combine all these relations. D'Alembert's principle in column vector 
format is 

Introducing Eqs. [5.12.2]-[5.12.4] into this equation, and considering the general 
case of constrained systems, we obtain 

[S. 12.61 

in which [a] is the constraint matrix of order m X n. The above equation, of course, 
needs to be solved simultaneously with the constraint equation, Eq. [4.10.1]. It is 
clear that calculation of the [riq] matrix and {Oiq} vector is crucial to obtaining the 
equations of motion. 

Considering the above derivation, one may question why we study Lagrange's 
equations in the first place, if the equations of motion can be more conveniently 
derived using Eq. [5.12.6]. There are several answers to this question. Lagrange's 
equations are based on D'Alembert's and Hamilton's principles, and one can derive 
the equations of motion using variational principles and from scalar functions. Doing 
so gives a very powerful result, putting in better perspective the relation between the 
equations of motion and energy. It points to an order in dynamical systems. It gives 
a better understanding of the nature of the motion, what the integrals of the motion 
are; and it makes it easier to establish these integrals. 

Next, we consider numerical integration of the equations of motion. As dis- 
cussed in Chapter 1, the equations of motion have to be cast in state form, which 
implies that they have to be first-order differential equations. In each equation there 
must be a single derivative term, on the left side. Neither Lagrange's equations nor 
the direct application of D'Alembert's principle yields equations of motion in state 
form. On the other hand, Hamilton's equations are in state form. 

One way to convert Lagrange's equations into state form is to introduce the .n 
variables zk = qk ( k  = 1,2, .., n). Then, realizing that the equations of motion can 
be written as 



we write the equations as 

The 2n first-order equations are obtained as the inverse of Eq. [5.12.8], which 
provides n of the equations, together with the relationship between {z) and {q), which 
provides the other n equations. They can be expressed as 

Recall that [MI is a function of the generalized coordinates only, so its calculation 
and inversion do not involve velocity expressions. 

Another way to convert the equations of motion into state form is to define {z) 
as 

where [TI is a nonsingular matrix of order n X n and {y) is a vector of order n. 
We introduce this transformation into the equations of motion. When [TI = [I] and 
{y) = (0) we get Eqs. [5.12.9]. When [TI = [MI and {y} = {PI, {z) becomes the 
generalized momentum vector and we obtain Hamilton's equations. In general, the 
selection of [TI depends on the nature of the problem. 

We next discuss integration of the equations of motion of constrained systems. 
We repeat Eqs. [4.10.1] and [4.10.5] here as 

which can be written in matrix form as 

in which [A] is a matrix of order m X n, whose elements are ajk, as defined in Section 
4.10. It is preferable to combine the two expressions in Eqs. [5.12.12]. The highest- 
order derivative in Eq. [5.12.12a] is of order one, while Eq. [5.12.12b] has time 
derivatives of order two. Differentiating Eq. [5.12.12a] with respect to time yields 

This can now be combined with Eq. [5.12.12b] to give one matrix equation of order 
n + m a s  

where all the terms not involving second derivatives of qi (i = 1,2, . . . , n) are moved 
to the left side of Eq. [5.12.14]. The coefficient matrix on the left side of the above 
equation is symmetric, but it is no longer positive definite. However, it can be shown 
to be nonsingular. Equation [5.12.14] represents a set of hybrid equations, com- 
bining differential and algebraic equations. They are called differential-algebraic 



equations. Several new methods have been developed in recent years to solve these 
equations. The interested reader is referred to the texts by Brenan et al., and by Haug. 

Previous developments in this chapter and in Chapter 4 are based on variational prin- 
ciples, namely D'Alembert's and Hamilton's principles and the special case of static 
problems, the principle of virtual work. These principles are based on the variation 
of the displacement coordinates while keeping time fixed. In this section we ana- 
lyze the variational principles that one can derive using variations of velocities and 
accelerations. 

Consider D'Alembert's principle for a system of N particles 
N 

C ( m i r i  - F ~ )  6 r i  = o [S.13.1] 
i =  1 

where we note that the variation is taken by keeping the dependent variable, which 
is the time t ,  constant. We now look at the position vector r i ( t )  (i = 1,2, . . . , N )  at 
an increment of time At later. Given the value of the position vector associated with 
the ith particle at time t, r i ( t ) ,  one can obtain its value at t = t + At, by means of a 
Taylor series approximation as 

( A 0 3  r i ( t  + At) = r i ( t )  + i i ( t )A t  + I i ( t ) s  + i i ( t ) - !  + . . . [S.13.1] 
2 3 

The variation of ri(t + At), using time fixed at t ,  becomes 

Substitution of this equation into Eq. [5.13.1] yields 

Obviously, taking the limit as At + 0 gets one back to Eq. [5.13.1]. Now, con- 
sider a different variation: one obtained by setting Sri ( t )  = 0 .  We will denote this 
variation by the subscript 1, so that we write S1ri = 0 ( i  = 1,2, . . . , N ) .  Using this 
variation and keeping in mind that Gri(t) = 0, dividing Eq. [5.13.4] by At, and tak- 
ing the limit as At approaches zero, we obtain 

N 

x ( m i f i  - Fi)  Slr i  = 0 (S l r i  = 0 )  [S. 1 3.51 

where we note that the evaluation took place at t = t + At. Equation [5.13.5] is 
known as JourdainS variational principle. Note that Slii # Sri ( i  = 1,2, . . . , N ) ,  
because Sri,  which are used in Hamilton's principle and Lagrange's equations, are 
obtained by taking the variation of ri holding only time fixed, with no restriction 
on r i .  



Jourdain's variational principle can be used to deal with systems subjected to 
nonholonomic constraints. One can show that Eq. [5.13.5] leads to the relation 

[S. 1 3.61 

For a holonomic system that is unconstrained and qk are chosen as indepen- 
dent, the variations of the generalized coordinates are also independent and the above 
equation yields Lagrange's equations. In the presence of nonholonomic constraints 
Sqk are no longer independent, but one can introduce the constraint into the formula- 
tion using Eq. [5.13.6]. Hence, Lagrange's equations can be considered as a special 
case of Eq. [5.13.6]. 

In a similar fashion, consider a second variation, denoted by the subscript 2, 
during which both ri and ri are held fixed, such that 62ri = 0, 62i.i = 0. Divide Eq. 
[5.13.4] by (At)' and take the limit as At approaches zero to obtain 

m . r  . - I  - Fi) S2ri = 0 (S2ri = 0, a2ri = 0) Cs.13.71 
i = l  

This is known as Gauss's variational principle or Gauss 's principle of least con- 
straint. This principle can be shown to lead to a least squares interpretation of the 
minimization of the quantity Z as 

Indeed, taking the variation of Z we obtain Eq. [5.13.7]. The variations of Fi (i = 

1,2, . . . , N) are zero as the forcing is a known quantity. We conclude that of all ac- 
celerations that are compatible with the constraint equations, the actual accelerations 
make the quantity Z a minimum and, hence, constitute the solution. 

In practice, one uses the variational principle that yields the equations of mo- 
tion with the most ease. For unconstrained holonomic systems, there is usually no 
need to use the Gauss or Jourdain variations. The advantage of using Jourdain's or 
Gauss's variational principle becomes more pronounced for systems that are non- 
holonomically constrained. Because nonholonomic constraints can only be written 
in velocity form, one can impose these constraints using the Gauss and Jourdain vari- 
ations, without manipulating the generalized coordinates. We will discuss this issue 
further in Chapter 9. 

It is interesting to note that D' Alembert's principle is dated to the year 1743, and 
Gauss's principle was stated in 1829, while Jourdain's principle-which establishes 
the link between the other two principles-was stated in 1909. 

Consider the vehicle in Example 4.14 and apply Jourdain's variational principle to it. I Exampb 

Solution 5.13 

The vehicle is shown in Fig. 4.8. The nonholonornic constraint is that the velocity of point A 
can only be in the x direction. The constraint equation is written in terms of the generalized 



coordinates X, Y, and 0 as 

We will use Eq. [5.13.6]. To this end, we write the kinetic energy as 

and the generalized forces as 

Qx = (Fc + FD) cos 0 QY = (Fc + FD) sin 0 Qe = (FD - Fc)h Ccl 

so that Eq. [5.13.6] has the form 

The Jourdain variation of the constraint has the form 

We can manipulate this expression and express the variation of one of the variables in terms of 
the other. Expressing the Jourdain variation of 0 in terms of the Jourdain variations of X and Y 
is futile, because in this problem X and Yare not sufficient to describe the motion completely. 
Hence, we eliminate the variation of either X or Y. Let us select Y, so we can write 

We multiply Eq. [dl by cos 8 and introduce Eq. [f] to it, which yields 

(mX - (Fc + FD) cos 8) cos 8 61X + (mY - (Fc + FD) sin @)(sin 8 61X + L 61 I$) 

+ (r,e - (FD - F C ) ~ )  cos e 618, = o Is1 
Because the Jourdain variations of X and 0 are independent, their coefficients must van- 

ish independently, which yields 

mXcos0 + mYsin0 = Fc + FD 

lG8 cos 0 + r n Y ~  = (Fc + FD)L sin 8 + (FD - Fc)h cos 8 Chl 

These equations still contain derivatives of three variables. To simplify, consider incor- 
porating the velocity of A as a motion variable. The velocity of point A can be written as 

V A  = vAi = (XCOS 0 + Y sin6)i UI 
The acceleration of A then becomes 

Differentiating vA and using Eq. [a], we obtain 

~ A = X ~ ~ ~ 8 + ~ s i n 8 - ~ 8 , s i n 8 + ~ 8 , c o s 8 = ~ c o s 0 + ~ s i n 8 + ~ 8 , 2  [k] 

which, when introduced into the first of Eqs. [h] yields 



In a similar fashion, one can show that the second of Eqs. [h] can be written as 

(IG + mL2)6 + m L 6 v ~  = (FD - Fc)h [ml 
so that Eqs. [l] and [m] constitute the two equations of motion in terms of v~ and 8. Upon 
closer examination, one recognizes Eq. [I] as the force balance in the x direction, and Eq. 
[m] as the moment balance about point A.  These equations are, of course, the same as the 
equations of motion obtained in Example 4.14. 
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1. A link of mass m and length L is pinned to the edge of a disk of mass M and 
radius R, as shown in Fig. 5.9. A servomotor keeps the angular velocity of the 



Figure 5.10 Figure 5.1 1 Figun 5.1 2 

disk constant at a value of Q. Find the equilibrium position for 6 as a function 
of the angular velocity of the disk. 

2. Find the equilibrium equations for the rotating double pendulum in Fig. 5.10. 
The angular velocity of the shaft Q is constant. 

3. Consider the rotating spring pendulum in Fig. 5.11 and obtain the equilibrium 
positions when 4 = Q is a constant and c = 0. 

4. Find the equilibrium position of the bead shown in Fig. 5.12 for Q = constant. 

5. Consider the equations of motion for the double pendulum in Fig. 4.3. Linearize 
them in the neighborhood of the equilibrium position(s). 

6. Consider Example 4.11 and linearize the equations of motion about the equilib- 
rium point x, = 0,8, = 0.  

7. Consider Problem 3 and evaluate the stability of the equilibrium points. 

8. Given the bead problem considered earlier, plot the dynamic potential U as a 
function of 8 for the following conditions: (a) Q2 = 0.5glR, (b) Q2 = 1.5glR. 
Verify that the stability relations discussed in Sec. 5.3 hold. 

9. A particle of mass m moves on a smooth surface described by the relation z = 
x2 + Y 2  - xy, with the z axis being the vertical. Derive the equations of motion 
and obtain the linearized equations about equilibrium. 

10. For the mass-spring system shown in Fig. 5.13, calculate the expressions for the 
kinetic and potential energies, as well as the Rayleigh's dissipation function. 
Then, write the equations of motion in matrix form directly from the energy 
terms, without using Lagrange's equations or Newton's second law. 
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11. A thin square metal plate, of mass m and sides L, hangs from its corners attached 
to two springs, each of constant k, as shown in Fig. 5.14. Find the equations of 
motion for small oscillations, as well as the natural frequencies. The horizontal 
motion of the center of mass is negligible. 

12. Find the equations of motion, natural frequencies, and eigenvectors of the sys- 
tem shown in Fig. 5.13 for kl = k2 = k, k3 = 2k, ml = m, m:! = 2m and no 
damping. 

13. Find the linearized equations of motion, natural frequencies, and eigenvectors 
of the system shown in Fig. 5.15. The system consists of two links of the same 
length and mass, attached by a spring. Assume small motions and consider only 
the horizontal deformation of the spring. 

14. Consider Problem 5 and obtain the natural frequencies and modal vectors for 
ml = m:! = m, L1 = L2 = L.  

15. Consider Problem 6 and obtain the natural frequencies and modal vectors for 
M = 2m and k = mglb. 

16. Four identical masses are connected to four identical springs and constrained to 
move in a circle, as shown in Fig. 5.16. The springs are unstretched when the 
masses are all equidistant. How many rigid body modes does this system have? 
Find the natural frequencies. 

Figure 5.1 5 Figure 5.1 6 



17. Check for the orthogonality of the natural modes in Problem 12. 

18. Check for the orthogonality of the natural modes in Problem 14. 

19. Consider Problem 13 and the case when the spring is weak, that is, the poten- 
tial energy of the spring is much less than the potential energy due to gravity. 
Approximate the two natural frequencies and plot the response to zero initial 
conditions. 

20. Obtain the response of the system in Problem 12 to a unit impulse on mass 1. 
Initial conditions are zero. 

21. Consider the double pendulum in Fig 4.3. Set ml = m2 = m, L1 = L2 = L 
and find the response to the initial conditions 8 (0) = 30°, 02(0) = 0'. Calcu- 
late the maximum value of the amplitude of &(t). 

22. Identify the integrals of the motion for the pendulum in Problem 3 for (a) $I is a 
variable, and (b) $I is a constant = a. Take c = 0 in both cases. 

23. Identify the integrals of the motion for the Foucault's pendulum. 
24. Find the integrals of the motion for the rotating double pendulum in Fig. 5.10. 

25. Consider the rotating spring pendulum in Problem 3 and obtain the Routhian. 

26. Obtain the velocity of the collar shown in Fig. 5.17 immediately after an impul- 
sive force of is applied to the bottom of the disk of radius R = Ll6. At the 
instant the impulse is applied, 0 = 0, and the disk is not rotating. 

27. Two rods of equal length and mass are connected by a pin joint, and they are 
at rest, as shown in Fig. 5.18. An impulsive force is applied at point B and per- 
pendicular to the line AB. Find the angular velocities of the rods immediately 
after the impulse. Hint: Include the coordinates of point A in the generalized 
coordinates. 

28. The double pendulum in Fig. 4.3 is at rest when an impulsive force fl is applied 
in the horizontal direction to the bottom of the second rod. Find the ensuing 
angular velocities. 
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29. Derive the equation of motion of the bead on a hoop that we have considered ear- 
lier using Hamilton's equations. Consider the rotation of the hoop & as a variable. 

30. Consider the system in Example 4.11 and derive the equations of motion using 
the direct application of D'Alembert's principle by Eq. [5.12.6]. 

31. Solve Problem 30 using D' Alembert's principle, but without explicitly calculat- 
ing the [ri,] matrices. Compare the ease with which the solution is obtained with 
the solution obtained by using Eq. [5.12.6] and by using Lagrange's equations. 

32. Solve Problem 4.41 using Jourdain's variational principle. 

33. Find the equation of motion of the rod in Fig. 5.19 using Jourdain's variational 
principle. Friction is negligible and the rod maintains contact with the wall. 





c h a p t e r  

In this chapter we consider the geometrical properties of rigid bodies. The term 
rigid is in reality a mathematical idealization, because all bodies deform by a cer- 
tain amount under the application of loads. If the deformation is small compared to 
the overall dimensions of the body, and energy dissipation due to elastic effects is 
negligible, the rigid body assumption can safely be used. 

Let us distinguish between particles and rigid bodies. A particle was defined 
earlier as a body with no physical dimensions. This definition, of course, is also an 
idealization, as all bodies have physical dimensions. If the dimensions of the body are 
much smaller than the path followed by the body, it becomes possible to neglect the 
physical dimensions of the body. One does not consider any rotational motion, and 
three translational degrees of freedom are sufficient to describe the motion. Whether 
one can use this approximation depends on the conditions under which the motion 
takes place, the loading, as well as the material properties of the bodies involved. 

A rigid body is defined as a body with physical dimensions where the distances 
between the particles that constitute the body remain unchanged. One needs to con- 
sider the rotational motion of a rigid body; thus, six degrees of freedom, three transla- 
tional and three rotational, are required to completely describe its motion. In addition, 
one needs to develop quantities that give information regarding the distribution of 
mass along the body. Just as the mass of a body represents its resistance to transla- 
tional motion, the distribution of the mass about a certain axis represents the body's 
resistance to rotational motion about that axis. 

Consider a system of N particles viewed from a fixed reference frame with origin 
0, as shown in Fig. 6.1. The term mi denotes the mass of the ith particle (i = 1, 
2,. . . , N) and ri its distance from 0. In Chapter 3, the center of mass of a system of 



A system of 
particles 

G 

Differential 
element for 
a rigid body 

particles was denoted by the point G, and its location was defined as 

in which m denotes the total mass 

A rigid body can be considered as a collection of particles in which the number 
of particles approaches infinity and in which the distances between the individual 
masses remain the same. As N + m, each particle can be treated as a differential 
mass element, as shown in Fig. 6.2, mi + dm, and the summations in the above two 
equations are replaced by integrations over the body. We then define the location of 
the center of mass G as 

where r is the vector from the origin to the differential element dm, and 

is the mass of the rigid body. Considering Figs. 6.1 and 6.2, for a system of particles 
we can write ri = rc + pi, and for a rigid body r = rc + p. Introducing this term 
into Eq. [6.2.3], we obtain 

rdm = - (rG + p)dm = rc + l 1  pdm [6.2.5] 'I MY body 

leading to the conclusion that 

L pdm = 0 



This equation indicates that the weighted average of the displacement vector 
about the center of mass is zero. Considering concepts from statistics, one can re- 
fer to the definition of the center of mass as the first moment of the mass distribu- 
tion. Naturally, Eq. [6.2.6] is identical to its counterpart for a system of particles, 
Eq. [3.2.5]. 

The center of mass is a very important quantity, as its use simplifies the anal- 
ysis of bodies considerably. One has to perform the integrations in Eqs. [6.2.3] and 
[6.2.4] in order to find the center of mass. These integrations are in general triple 
integrations. Many times, the body that one is dealing with consists of parts that are 
uniform in density and that have shapes whose masses and centers of mass are known 
in advance or found more easily. Under such circumstances, one can calculate the 
center of mass of the composite body by using the center of masses of the individual 
bodies. If the body is separated into N components, and the mass and center of mass 
of each component is denoted by mi and rci (i = 1,2, . . . , N) the center of mass can 
be found from 

When dealing with several components, we will also use the notation of denoting 
the center of mass by an overbar. The velocity and acceleration of the center of mass 
can be obtained by differentiating the expression for position and integrating it over 
the body. Using the expression for r c  in Eq. [6.2.3] we obtain 

v c  = - i-dm a c  = - ' I  body in ' I  body ? d m  
[6.2.8] 

The velocity and acceleration of a point can be expressed in terms of the center of 
mass as 

Introducing these expressions to Eqs. [6.2.8] and performing the integrations gives 

pdm = 0 jidm = 0 [6.2.10] 
IbOdy 

Figure 6.3 shows a decorative pencil holder, made of uniform material of thickness 0.4 cm. I E x a ~ p b  
Find the center of mass. 6.1 

We first select the coordinate frame. For convenience, we attach it to point 0. The pencil 
holder can be analyzed as consisting of three parts: the base, the hollow cylinder that holds 
the pencils, and the circular hole. As the entire pencil holder is made of uniform material, we 
dispense with the density and base our calculations on the volume. For each component, we 
will determine the volume and location of center of mass. We thus have: 



I 
8 cm hole (radius 2 cm) 

For the base: Volume V1 = 18(12)(0.4) = 86.4 cm3 PI = 9i + 6j + 0.2k cm 
For the cylinder: Volume V2 = 4 3 '  - 2.6')(8) = 56.30 cm3 P2 = 9i + 6j + 4.4k cm 
For the circular 

hole: Volume V3 = ~r(2~)(0.4) = 5.027 cm3 P3 = 1% + 8j + 0.2k cm 

Combining all these values, we obtain 

so that the center of mass is located at 

While the center of mass provides valuable infomation and simplifies the analysis 
of translational motion, it gives no measure of the way the mass is distributed on the 
body. The mass of a body describes the amount of matter contained in the body and 
the resistance of the body to translational motion. We know of the need to develop 
a quantity that describes the resistance of a body to rotation. Such a quantity is de- 
pendent on how the mass is distributed. As the center of mass is located using the 
first moment of the mass distribution, we consider the second moment of the mass 
distribution. 



Figure 6.4 

We select a coordinate system xyz fixed to a point on the body and describe 
the configuration of a differential mass element by the vector r = xi + yj + zk, 
also written as the column vector {r}  = [x y zlT. Such a selection of the coor- 
dinate frame is possible because the body is assumed to be rigid. We are primarily 
concerned with two types of quantities: the distribution of the mass with respect to a 
certain axis; and the distribution of the mass with respect to a certain plane. Consider 
the x axis first. From Fig. distance of a differential element 
dm from the x axis is R, the mass moment of inertia about 
the x axis as 

In a similar fashion, the mass moments of inertia about they and z axes are defined as 

I =  dm = / (x2 + y2)dm [6.3.21 
body body 

One quick observation is that the mass moment of inertia of a body about a 
certain axis becomes larger as the axis is selected further away from the body. This is 
an indication that mass moments of inertia will be useful in describing the rotational 
motion of a body. 

Considering the distribution of the mass with respect to the xy, xz, and yz planes, 
we introduce the three products of inertia 

It is clear that I,, = I,,, and so forth. In general, the products of inertia do 
not contribute too much to the physical description of the mass distribution, unless 
there are certain symmetry properties with respect to the coordinate axes. If any two 
coordinate axes form a plane of symmetry for the body, then the products of inertia 



figun 6.5 A body symmetric about the 
yz plane 

associated with coordinates normal to that plane vanish. That is, 

If there is symmetry with respect to the yz plane, then I,, = I,, = 0. 
If there is symmetry with respect to the xz plane, then Z x y  = Zyz = 0. 

If there is symmetry with respect to the x y  plane, then I,, = I,, = 0. 

The concept is illustrated in Fig. 6.5. Assume there is symmetry with respect to the 
yz plane. Then, for each point defined by the coordinates (x ,  y, z )  there corresponds 
the point ( - x ,  y, z ) .  It follows that the products of inertia I,, and I,, vanish because 
both terms require integration over x, and the contribution of the differential mass 
on the left side of the yz plane is countered by the mass on the right side. If a body 
is almost symmetric about a certain plane, then the corresponding product of inertia 
will be a small quantity. However, the converse is not necessarily true. The sign of 
a product of inertia does not usually give much insight, either. 

If a rigid body is symmetric about an axis then it must have symmetry about 
at least two planes. Thus for a body that has an axis of symmetry, all products of 
inertia vanish when one of the coordinate axes is along the symmetry axis. It should 
be noted that a body need not have planes or axes of symmetry for the products of 
inertia to vanish. A proper orientation of the xyz axes leads to the same result, as we 
will see later. 

The moments and products of inertia form the so called inertia matrix, denoted 
by [ I ]  and defined as 

Note that the inertia matrix is symmetric. Furthermore, it is positive definite. To 
demonstrate the positive definiteness of [ I ] ,  one can use Sylvester S criterion, which 
states that for a symmetric matrix to be positive definite, all the diagonal elements 
and all principal minor determinants must be positive. The diagonal elements of 
[ I ]  are the principal moments of inertia and they are all positive quantities, each 
obtained by integration of a positive integrand. The first principal minor determinant 



is I,,Iyy - I:,. To show that it is greater than zero, consider the Schwartz inequality, 
which states that for any two functions f ( x )  and g(x)  continuous over an interval 
[a, bl, 

The equality holds only when f ( x )  = yg(x) ,  where y is a constant. Considering 
an integral over the rigid body, and the products of inertia, we can write 

so that I:, < Z y y l x , ,  which shows that the first principal minor determinant is greater 
than zero. In a similar fashion, one can show that the determinant of [ I ]  > 0. In some 
cases, such as when dealing with slender rods or thin plates, the components of the 
inertia matrix about certain axes will be very small compared with the inertia compo- 
nents about other axes. Then, one can assume that the very small inertia components 
are negligible. For example, a slender rod is assumed to have zero moment of inertia 
about an axis along the rod. 

The positive definiteness of the inertia matrix is to be expected, because it de- 
scribes the distribution of the mass about a certain set of axes. The expression from 
statistics analogous to mass moments of inertia is variance. Two rigid bodies may 
have the same inertia matrix and not the same shape. Such bodies are called equimo- 
mental. 

If the coordinate axes are selected such that the products of inertia vanish, the 
coordinate axes are referred to as principal axes and the corresponding mass mo- 
ments of inertia are called principal moments of inertia. For an axisyrnrnetric body 
the axis of symmetry is a principal axis. 

The units of mass moments of inertia are mass x length squared. The moments 
of inertia of a body are usually written as the mass of the body multiplied by a length 
squared parameter and an appropriate constant. For example, the mass moment of 
inertia of a disk about the symmetry axis is written as m ~ ~ 1 2 ,  where m is the mass 
and R is the radius of the disk. 

The mass, center of mass, and inertia matrix of a rigid body specify what are 
called the internal properties of the body completely. For an elastic body, one needs 
to know measures of the resistance of the body to deformation, in addition to the 
internal properties. We will study these in Chapter 11. 

We next calculate the entries of the inertia matrix. This is dependent on the 
choice of the differential element to be integrated. We have two choices: 

1. Select the differential element as a differential mass element and perform a 
triple integration. For Cartesian coordinates xyz, the differential element is dm = 

pdx d y d z ,  with p being the density. Polar coordinates come in handy for bodies 
with circular cross sections. The differential element is dm = prdr d e  dz .  



Pigum 6.6 Differential element as a rod or a thin plate Hgum 6.7 Differential element as a thin plate 

2. One or two of the sides of the differential element has a finite size. Select the 
differential element as a thin rod or as a thin plate, as shown in Figs. 6.6 and 6.7. 
The differential element then has a finite mass moment of inertia about one or two 
axes. The expression for mass moment of inertia is written about such an axis as 
(say, about the z axis) 

in which dlz, is the mass moment of inertia of the differential element about the z 
axis. 

The advantage of using such elements is that the number of integrations is re- 
duced. When the differential element is a rod, one can perform a double integration, 
and when the differential element is a plate, one can evaluate the mass moment of 
inertia by a single integral. 

Consider a thin flat plate of thickness t as shown in Fig. 6.8. We take a differential 
element in the form dm = pt d x  dy .  The mass moment of inertia about the z axis 
becomes 

where Jz is recognized as the area polar moment of inertia about the z axis. As- 
suming that the thickness is small, the moment of inertia about the x axis can be 
approximated as 

in which I, is the area moment of inertia of the plate about the x axis. In a similar 
fashion, one can show that I,, = ptl,. From area moments of inertia, we know that 
Jz = I ,  + I,. Considering Eqs. [6.3.8] and [6.3.9], for a thin flat plate oriented as in 
Fig. 6.8, Izz = I x x  + I,,. 



X 

Figurn 6.8 Differential element on a thin plate 

Now, consider the differential element in Fig. 6.7, specifically a slice of the 
cross section with an infinitesimal thickness, say dz .  Denoting by x*y*z* the set of 
coordinate axes that are attached to its center of mass, the differential element has a. 
moment of inertia of d l z z  = dl,,,, + dl,,,,. One then finds I,, using 

The mass moment of inertia I,, is thus obtained by a single integral. If there is some 
sort of symmetry in the body, one can select the coordinate axes to exploit this sym- 
metry and have dl,,,, = dl,,,,, such that dl,, = 2dl,,,,. This helps determine I,, 
as well. 

To calculate I,, and I,, we have to use the parallel axis theorem, which relates 
the moments of inertia of a body about two axes that are parallel to each other with 
one of the axes centroidal. The theorem was stated in Chapter 3, and its general form 
is derived in the Section 6.4. Here, we state it between the x and x* axes, which are 
separated by a distance of z, as shown in Fig. 6.7. If the z axis is the symmetry axis, 
hence a centroidal axis, dl,, can be expressed as 

For a circular plate as the differential element, dl,,,, = dIzz /2  and 

which, when integrated, gives the mass moment of inertia about the x axis (and y 
axis) as 

I,, = I,, = $ + r2 d m  [6.3. 1 31 

The above approach is most appealing when there is a symmetry axis, as the 
products of inertia vanish. For bodies where there is no symmetry axis, then dl,,,, # 
dIZz/2,  and it must be evaluated independently. Further, as the products of inertia do 
not vanish in such cases, the above approach is of little use. 

An interesting property of a mass moment of inertia is that it is an additive 
quantity. Given the task of finding the mass moment of inertia of a body (about an 



axis or a plane), one can accomplish it by taking advantage of the fact that an integral 
from one point to another can be expressed as the sum of two or more integrals, by 
appropriately separating the domain of the integration. The procedure is analogous 
to obtaining the center of mass of a composite body. The body is separated into more 
than one part. The moment of inertia of the entire body is calculated as the sum of 
the moments of inertia of the individual parts. To see this, take a body, separate it 
into N parts (bodyl, body2, . . . ,  body^), and consider any of the inertia expressions. 
We then have, say, for I,, 

N 

in which Zixx is the mass moment of inertia of the ith body about the x axis. For 
bodies that can be broken down into simple parts whose individual inertia properties 
are known or easily calculated, one can obtain the moments of inertia of each of the 
parts and add them together to find the moment of inertia of the entire body. This 
process is facilitated by use of the parallel axis theorem. Mass moments of inertia of 
bodies with common shapes are given in Appendix C. 

A useful quantity when dealing with mass moments of inertia is the radius of 
gyration. The radius of gyration about the x, y, and z axes is defined as 

and it represents the distance that an equivalent particle of mass m would have to be 
placed from an axis so that it would have the same mass moment of inertia as the 
entire body. Hence, the mass moments of inertia are expressed as I,, = m~:, . . . . 
The radius of gyration is frequently used in engineering practice when tabulating 
the inertia properties of commonly used components such as I-beams and brackets. 
One can define the radius of gyration for the products of inertia as well, thus 

with the understanding that K ~ ~ K ~ ~  # K : ~ .  

~ x a r ~ l ~  h i n d  themass moments of inertia of the shown in F&. 6.9 about the x  and y axes. 
6.2 The paraboloid is obtained by rotating the parabola xlL = ( y l ~ ) 2  (0 5 y  5 R)  about the x 

axis. 
Solution 
The differential element for the paraboloid is taken as a thin disk of thickness d x .  At a distance 
of x  (0 5 x  I L), the radius of the disk is r = ~ m .  The mass and mass moment of 
inertia of the differential element are 



To find the mass moment of inertia I,,, we integrate Eq.  [b] over x,  which yields 

The mass of the paraboloid is found by integrating Eq. [a] over x,  thus 

Introduction of Eq. [dl into Eq. [c] yields the mass moment of inertia about the x axis as 

1 
Ixx  = -mR2 

3 [el 

To find the moment of inertia about the y axis, attach an xy*z8  axis to the center of the 
differential element. The y axis is separated by a distance x from the y* axis, so that using 
Eq. [6.3.13] gives 

Using Eq. [a], the second term on the right becomes 

and the mass moment of inertia about the y axis (and z axis) becomes 

1 1 
I,, = I,, = -mR2 + - m ~ ~  

6 2 
Because of the axial symmetry, all products of inertia are zero. 

Find the mass moments of inertia and products of inertia of the right triangular prism of I Exampla 
uniform density p shown in Fig. 6.10. 6.3 

Solution 

We first find the mass of the prism as m = pV, where the volume V = abcI2, so that the 
mass of the prism is 

pabc m = -  
2 



To find the moments of inertia, we need to calculate the expressions I x2 dm, I y2 dm, 
1 z2 dm. Using a rectangular differential element, we write 

d m  = p d z d y d x  Cbl 
We now evaluate I x2 dm, I y2 dm, and 1 z2 dm. Note that we perform the integrations in the 
order over the z, y, and x axes. 

The mass moments of inertia then become 

Note the similarity between I,, and I,,. We next find the products of inertia 

b - k x  c pazb2c mab 
- 1 ,  = lo P r Y d z d y d x  = ~ \ o a x ( b - $ x ~ d x  = - -- 

0 0 2 12 cgl 

b - i x  c pa2bc2 - mac 
1 ,  = l a  lo P ~ z d z d y d x  = - x b -  - x  d x  = - - -- 

o o z )  12 6 [hl 

b - ! X  c pab2c2 mbc 
- I ~ , = / ~ [  o o ~ o p y z d z d y d x = ~ ~ o a ( b - $ x ~ d x = - - - -  4 12 6 [il 

Note again the similarity between I,, and I,,. 

Given the inertia properties of a body about a point and a certain orientation of the 
set of axes, it is desirable to relate these properties to the inertia matrix obtained 



about a different point or a different orientation of the coordinate axes. This permits 
one to find the mass moments of inertia once and to then use the transformation 
equations to find the moments of inertia about other points and about other sets of 
axes, without having to perform the necessary integrations again. Also, moments of 
inertia read from tables are given in terms of a specific set of axes. We will first 
see how the inertia properties change as the coordinate system is translated and then 
as the coordinate system is rotated. Recall that in the previous section there were 
no restrictions on the location of the origin and on the orientation of the coordinate 
frame about which the inertia properties were calculated. 

First, note that the inertia matrix can be expressed in column vector format and 
in terms of the position vector {r}  as 

[ I ]  = ( { r T { r [ l ]  - {rXr}T)dm = I ( ? [ I ]  - {rXr}T) dm 16.4.1 I I 
in which r2 = {rjT{r} = r  r .  The inertia matrix can also be expressed as 

where [d is the skew-symmetric matrix formed from the elements of the column 
vector {r}  = [x  y  zlT. We will use the above definition of the inertia matrix when 
we discuss dynamics of rigid bodies. 

Yet another way of expressing the elements of the inertia matrix is as follows. 
Denote the unit vectors associated with the coordinate frame by el,  ez, and e3, so that 
r  = riel + r2e2 + r3e3. The ijth element of the inertia matrix can be expressed as 

One can derive Eq. [6.4.1] from Eq. [6.4.3] by using the vector identity ( a  x b ) .  
( c X d )  = (a*c)(b*d)-(a*d)(b*c)andbysettinga = c = r , b  = ei,d = e , .  

Denote the origin of the coordinate system by 0 and consider a different coordinate 
system x"yUz", which is parallel to the xyz system and has its origin at point B 
with coordinates (d,, d,, d,), as shown in Fig. 6.1 1 .  That is, x = x" + d,, y  = y" + 
d,, z = z" + d,,  or r ~ , o  = d,i + dyj  + d,k. The moment of inertia about the x" axis 
is found from 

IBx,,,,, = ( y r r 2  + z t r2)dm = [ ( y  - dy )2  + ( Z  - dZ12] dm I I 
= I ( y 2  + z2)dm + (d: + d:)dm - 2d, zdm - 2d, y  dm 16.4.41 I I I 

The first term on the right side of this expression is recognized as I, , .  The second 
term reduces to m(d; + d:). The third and fourth terms are basically the first moments 
of the mass distribution. If the axes xyz are selected as centroidal axes, 0 = G, these 



Figure 6.1 1 Translation of coordinates 

terms vanish. We then obtain the parallel axis theorem, which states that 

where IGxx denotes that the moment of inertia is calculated with respect to the x axis 
passing through the center of mass. Equation [6.4.5] also indicates that the point 
about which the moments of inertia of a body are the smallest is the center of mass. 
Note that we have modified the notation for the mass moment of inertia by indicating 
the point about which it is calculated by the first subscript. 

We calculate the remaining moments and products of inertia associated with the 
x"yUz" axes in a similar fashion. For example, for the product of inertia term IBx, , , , , ,  
we have 

= IGxy + mdxdy [6.4.6] 

We can express the parallel axis theorem in matrix form as 

Using column vector notation, denoting by {r") the position vector associated 
with a point with the primed axes, such that {r") = { r )  - {d) ,  in which { d )  = 
[d ,  d ,  dZlT,  we obtain 



Considering the centroidal axes, { r )  dm vanishes, and we end up with 

(2 + d2)[11 - {rXr)T - {dXdIT d m  I 
where d = {d)T{d} .  

The above relation is significant in that it permits a simple calculation of the 
moments of inertia about any set of axes parallel to the centroidal axes, as long as the 
inertia matrix about the centroidal axes is known. For bodies with complex shapes, 
one splits the body into smaller parts whose centroidal moments of inertia can be 
calculated easily or looked up in a handbook. The total moment of inertia of the 
body is found by using the parallel axis theorem and by adding up the individual 
moments of inertia. Appendix C gives the mass moments of inertia of bodies with 
commonly found shapes. 

Consider now a set of axes x'y'z', obtained by applying a set of rotations to the 
original coordinate system xyz. The origins of the two coordinate systems coincide. 
The position vector of a point is {r'). From Chapter 2, using the direction cosine 
matrix [c]  or transformation matrix [R] ,  one can relate the vectors { r }  and {r'} by the 
relationship 

{r'} = [clT{r} or { r f }  = [R]{r) C6.4.101 

The distance of the differential element from the origin is the same in both co- 
ordinate frames, rf2 = {r'}T{r'} = { r }T[c] [c ]T{r}  = {r}T{r} = ?. Consider now a 
differential element whose location is described by {r') .  The inertia matrix about the 
primed axes is defined as 

Substituting Eq. [6.4.10] into this expression, and noting that r2[1]  = 

[ ~ ] ~ r ~ [ l ] [ c ] ,  we obtain 

[ I f ]  = I ( [ c l ~ 2 [ 1 1 [ c l  - [ c 1 ~ { r X 3 ~ 1 c l )  dm = [ I T  ~ [ I I  - {rX?')dm[cl 
[6.4.12] 

Recognizing the term in the middle as [ I ] ,  we obtain the result 

[ I f ]  = [ C ] ~ [ I ] [ C ]  or [ I f ]  = [ R ] [ I ] [ R ] ~  [6.4.13a,b] 

Note that for a rotational transformation, it is not necessary to begin with a 
centroidal set of axes. Any set of axes will do. In general, when calculating mass 
moments of inertia, select the xyz axes such that the calculation of the moments 
of inertia is simpler (e.g., using symmetry axes or symmetry planes) and then 



use a coordinate transformation to obtain the moments of inertia about the desired 
axes. 

A very important coordinate transformation is one that yields a diagonal inertia 
matrix. The question then arises as to whether and how a transformation matrix [R] 
can be found such that the resulting inertia matrix is diagonal. We will show in 
Section 6.5 that the transformation matrix can be found by solving an eigenvalue 
problem. 

When the coordinate axes must be both translated and rotated, the order of these 
operations does not affect the final result. 

Example I Oiven the rod of mass rn with the square cross section to which a concentrated mass m/4 is 
6.4 attached at point C, as shown in Fig. 6.12, find the mass moment of inertia about a set of axes 

x"yUz" which are parallel to the sides of the rod and which pass through point A. 

Solution 
There are two approaches to solve this problem. The first is to find the center of mass of 
the rod combined with the concentrated mass and to then use the parallel axis theorem. The 
second is to treat the rod and the concentrated mass separately, find their mass moments of 
inertia about the x"yUz" axes, and then add the two moments of inertia. We demonstrate the 
latter approach first as it is usually simpler, and is so for this example, because one needs to 
use the parallel axis theorem only once for each component. 

Using the second approach, we find the inertia matrices associated with the bar and point 
mass separately and then use the parallel axis theorem. For the bar, we attach the x y z  axes 
to the center of mass, as shown in Fig. 6.12. We denote the center of mass of the bar by 



0 = GbW From Appendix C, the inertia matrix is diagonal' with its elements 

[m(azl; L2 )  ma2 m(a2 + L') 
[IGbar] = [ I0 ]  = diag - 

6 12 1 [a1 

Points A and 0 are related by 

so that the x"y"zU axes are apart from the xyz axes by d, = a12, d ,  = Ll2, d, = -a/2. 
Using Eq. [6.4.7] the combined inertia matrix becomes 

For the point mass, the inertia matrix about the center of mass is a null matrix. The 
coordinates of point C in the xUy"z" axes are ~ C / A  = -a/2i - Lj + ak. so that 

Use of Eq. [6.4.7] yields the inertia matrix 

Addition of the two inertia matrices yields 

[dl 

1 8a2 
24aL ] [I] 

19a2 + 28L2 

In the other approach, we first find the center of mass of the combined system, the asso- 
ciated inertia matrix, and then the inertia matrix about point A. To find the center of mass we 
select the xyz frame. The properties of the bar and point mass can now be written as 

where we have denoted the position of the centers of mass of the rod and point mass by an 
overbar. The center of mass of the combined system, denoted by G, has the coordinates 



Next, we need to find the inertia matrix about the center of mass by using the parallel 
axis theorem on each component. The vectors from the centers of mass of the individual 
components to the center of mass are 

For the rod: 

2L 2a 
Forthepointmass: r c l c = - - j + - k -  " P , )  -- j+-k =- - - j+ -k  5 

5 2 2 

so that for the bar we have dx = 0, dy = LAO, d, = -a/10, and for the point mass d, = 
0, dy = -2Ll5, d, = 2~15. Introducing these values into the parallel axis theorem, we obtain 

[IG] = [kbar + [ICmass1 [i] 
in which 

and 

To find the moment of inertia about point A, we calculate the distances between points 
GandAas 

so that 

The inertia matrix about point A becomes 

Adding Eq. [o] to Eqs. [k] and [l] gives Eq. [f]. Note that this approach is much lengthier 
than when we dealt with the individual components directly. On the other hand, it gives us 
the location of the center of mass as well as the centroidal inertia matrix of the composite 
body. 

Example I Oiven the mass moments of inertia of a body, find the resulting moments and products of 
6.5 inertia when the coordinate system is rotated about the z axis by an angle of 8. 



Solution 

We can approach this problem in two ways. The first is to find the direction cosine matrix 
between the two coordinate systems and to then use Eq. [6.4.13]. The second is to take ad- 
vantage of the simplicity of the coordinate transformation and to obtain the moments and 
products of inertia by direct substitution. We will show the second approach first. 

Consider the two sets of axes xyz and x'y'z', with the primed axes obtained by rotating 
the unprimed axes by an angle 8 about the z axis. The two sets of axes are related by 

Substitution of Eqs. [a] into the moment of inertia expressions about the primed axes 
gives 

I,,,, = (yf2 + zf2) dm = [(-x sin 8 + y cos 8)' + z2] dm I 
= 1 (xi sin2 0 + y2 cos2 6 - 2xy sin 8 cos 8 + z2) dm 

We write z2 as z2 sin2 8 + z2 cos2 8, which, when substituted into Eq. [b], yields 

I,,,, = sin2 8 (x2 + z2)dm + cos2 0 (y2 + z2)dm - 2sinO cost) x y  dm I I I 
= I,, sin2 8 + I,, cos2 8 - ,Ixy sin 6 cos 0 

To simplify Eq. [c] further, we make use of the trigonometric identities 

1 - cos 20 1 + cos 2 0  
sin2 0 = 

2 
c0s2 0 = 

2 

and substituting Eqs. [dl into Eq. [c] we get 

I, , , ,  = - I x x  + I y y  + I - I x x  cos 28 - I X y  sin 20 
2 2 

which are the familiar relations from the transformation of coordinates. In a similar way, we 
can obtain I, , , , .  Because the rotation of the axes is about the z axis, the mass moment of inertia 
about the z' axis is the same as the moment of inertia about the z axis. 

The products of inertia are found the same way. For I,,,, we obtain 

= I [(y2 - xi) sin 0 cos 0 + xy(cod 0 - sin2 B)] dm 

Ixx - I,, . 
= I, ,  cos 20 + ---- 

2 
sm 28 [fl 

The remaining products of inertia, I, , , ,  and I, , , , ,  can be shown to become 

We can also solve this problem by generating the direction cosine matrix [c] and by using 
Eq. [6.4.13a]. The direction cosine matrix [c] has the form 



which, when substituted into Eq. [6.4.13a], yield the inertia terms derived above. 
Suppose now that we are told that I,, and I,, are both zero. Given the entries of the inertia 

matrix associated with the transformed system, we can calculate the rotation angle that will 
yield the principal axes by setting I,,,, equal to zero and solving for 8. Setting Eq. [f] equal 
to zero yields 

211, tan 28 = --- 
z y y  - I x x  

which is the same result obtained from a Mohr's circle analysis (of stress or area moments of 
inertia) for a two-dimensional system. 

I Consider the right Viangular prism in Example 6.3. Given that m = 1, a = 2, b = 1, c = 3, 
find the elements of the inertia matrix associated with a set of coordinates obtained by rotating 
the x y z  axes about the z axis such that the x' axis is parallel with the incline. 

The configuration is shown in Fig. 6.13. The rotation is clockwise with rotation angle 8 = 
tan-'(bla) = tan-'(112) = 26.57". From Example 6.3, the inertia matrix has the form 

The rotation matrix between the x y z  and x'y'z' coordinates is 

0.8944 -0.4472 0 
[R] = 1.44: 0.8944 0 

0 1 

From Eq. [6.4.13b], the inertia matrix associated with the transformed coordinates is 

- -  x' Figun 6.13 Side view of prism 



As can be seen I,,,, is the same as I,,, by virtue of the fact that the coordinate transfor- 
mation is a rotation about the z axis. However, the products of inertia involving the z axis (I, ,  
and I,,) do change, because of the change in the x and y coordinates. 

As we will see in Chapter 8, it is desirable to work with an inertia matrix that is 
diagonal. The equations for rotational motion become substantially simpler. When 
the coordinate axes x, y, and z are chosen such that the products of inertia vanish, 
the x, y, and z axes are called the principal axes, and the moments of inertia I,,, I,, , 
and I,, are called the principal moments of inertia. 

There are two ways of finding the principal moments of inertia. The first is by 
visual inspection. For example, if the coordinate axes are selected such that they lie 
on a plane of symmetry, then at least two of the products of inertia vanish. If one of 
the coordinate axes is an axis of symmetry, all products of inertia vanish. 

The second method of finding principal moments of inertia is by solving the 
eigenvalue problem associated with the inertia matrix. Since [ I ]  is symmetric and 
positive definite, all of its eigenvalues are real and positive. Its eigenvectors are real, 
as well. 

Examining Eq. [6.4.13a] and considering the case where [ I1 ]  is a diagonal ma- 
trix, we observe that the transformation equation for the inertia matrix represents 
an orthogonal transformation. Because the direction cosine matrix is orthogonal, 
Eq. [6.4.l3a] can be written as 

These equations are essentially the mathematical description of the eigenvalue 
problem associated with the matrix [ I ] .  The diagonal matrix [ I 1 ]  contains the eigen- 
values in its diagonal elements, and [c]  is the normalized eigenvector matrix with the 
eigenvectors as the columns of [ c ] .  To verify this, consider the eigenvalue problem 
associated with [ I ] ,  

where A denotes the eigenvalues and {u} the eigenvectors. Equation [6.5.2] can also 
be expressed as ( [ I ]  - A[l]){u} = (0). A solution to the above equation exists if 
( [ I ]  - A[ l ] )  is singular, hence 

This is called the characteristic equation, and it is a third-order polynomial in A. 
Solution of the characteristic equation yields three eigenvalues Ai (i  = 1,2 ,3)  and 
associated eigenvectors {ui}. The eigenvectors are orthogonal to each other, such that 

and, as we saw in Chapter 5,  they can be normalized to yield { U ~ } ~ { U ~ )  = 1 ( i  = 

1,2,3) .  It follows that { u ~ } ~ [ I ] { u ~ }  = Ai. We then form the eigenvector matrix 
[ U ]  = [ {u l }  {u2} { u ~ } ] .  The eigenvector matrix is an orthogonal matrix, such that 



[UIT [u] = [ I ] .  The orthogonality relations with respect to the inertia matrix can be 
written in compact form as 

[ U I ~ [ I I [ U I  = [ A ]  = [ I1 ]  [UI*[UI  = [ I ]  [6.S.S] 

in which [ A ]  is a diagonal matrix containing the eigenvalues, which are the principal 
moments of inertia. Eq. [6.5.5] can be inverted to yield 

[ W W J I ~  = [ I ]  [6.S.6] 

We conclude by comparing Eq. [6.5.5] and Eq. [6.5.1] that the direction cosine 
matrix [c ]  that leads to the principal axes is the same as the eigenvector matrix [ U ]  
obtained by solving the eigenvalue problem associated with the inertia matrix. The 
eigenvalues of [ I ]  are the principal moments of inertia. The eigenvectors {u,}  ( i  = 

1,2,3) are the direction cosines associated with the principal directions. 
Care must be taken when relating the eigenvector matrix to the direction cosine 

matrix [c ]  that leads to the principal axes. In Chapter 2, we learned that for [c ]  to 
describe a proper rotation, its determinant must be equal to 1. The determinant of the 
normalized eigenvector matrix is + 1, with the choice of plus or minus depending 
on the analyst. This is because if {ui} is an eigenvector associated with Ai, so is 
-{ui}. For [ U ]  to represent a proper transformation matrix, the eigenvectors should 
be normalized such that det [ U ]  = 1. 

Another issue to consider is the ordering of the eigenvalues and eigenvectors. In 
general, in eigenvalue problems associated with real symmetric matrices, one writes 
the eigenvalues in ascending (or descending) order and constructs the eigenvector 
matrix accordingly. This is primarily done for convenience, as we did in the vibration 
problems in Chapter 5 .  In vibration problems, the lower frequencies are usually of 
more interest than the higher frequencies. When dealing with inertia matrices there 
is no such need. One can select the order of eigenvectors entirely arbitrarily. One 
guideline for selection is to look at the magnitudes of the diagonal elements of [ I ]  
and then to order the eigenvalues such that they are similar to the order of the diagonal 
elements of [ I ] .  When the products of inertia are small quantities, such an approach 
usually leads to the smallest rotation angles between the original coordinates and the 
principal axes. 

An interesting special case in eigenvalue analysis is that of systems possess- 
ing repeated eigenvalues. In mathematics, a matrix that has repeated eigenvalues 
is referred to as degenerate. Inertia matrices having repeated eigenvalues have an 
elegant physical interpretation in dynamics. 

Consider a symmetric matrix that has two repeated eigenvalues Ai = A,,  with 
corresponding eigenvectors {ui}  and {u j } .  Because the eigenvalues are repeated, 
there is a certain amount of arbitrariness in {ui}  and {u j } .  Any linear combination of 
these two eigenvectors is also an eigenvector belonging to hi, that is, Pl{ui)  + P2{uj} 
is an eigenvector for any pl and p2. There is no unique eigenvector {ui} or {u j } .  One 
usually selects these two eigenvectors so that { u ~ } ~ { u , }  = 0. 

Consider next a rigid body that has two of its principal moments of inertia the 
same, say Il and 12. Such a body is referred to as inertially symmetric. The most 
common case when such a situation is encountered is in axisymmetric bodies, such 
as disks, circular rods, or an American football. Mathematically, inertial symmetry 



can exist for bodies that have no physical symmetry properties. Using a set of axes 
blb2b3 attached to the body, the symmetry axis is the b3 axis. The blb2 plane is 
referred to as the principal plane. If we take a rotation of the coordinate axes about 
the symmetry axis b3, we see that the rotated coordinate axes also constitute a set of 
principal axes. There is no unique way of defining the principal axes, the same as 
with the eigenvectors associated with repeated eigenvalues. 

We shall see in Chapter 8 that bodies possessing inertial symmetry have better 
stability properties than arbitrary bodies. Bodies that spin are usually designed to be 
axisymmetric, with the spin axis and the symmetry axis coinciding. 

Given a rigid body with the inertia matrix 

[I] = 0 350 0 kg*m2 1-:: -:3 
find the principal moments of inertia and the transformation (or direction cosine) matrix that 
diagonalizes [I]. 

Solution 

Two of the products of inertia are zero, I,, = 0 and I,, = 0, in this problem, leading to the 
conclusion that we are probably dealing with a body which has symmetry about the xz plane, 
as depicted in Fig. 6.14. The eigenvalue problem is defined in Eq. [6.5.3] as 

which requires that the determinant det([I] - A[l]) = 0, or 

leading to the characteristic equation 

the solution of which yields the eigenvalues, which are the principal moments of inertia, as 

I Example 
6.7 



Note that we ordered the eigenvalues such that they follow the order of the diagonal 
elements of [I], which in this case happens to be in descending order. To find the corre- 
sponding eigenvectors, we use Eq. [a] in conjunction with the eigenvalues. Using the notation 
{UI} = [ull ~ 2 1  u31lT, we have for the first eigenvalue Al = 445.26 kg*m2 

400-A1 0 - 125 
0 350 - Al 0 ][:::I = {0} [a] [ -125 0 100 - Al 

which leads to the simultaneous equations 

As discussed in Chapter 5, only two of the equations are independent, so that the eigenvectors 
can be determined to a multiplicative constant. Eqs. [f] yield 

where dl  is a normalization parameter. We normalize the eigenvectors such that { U ~ } ~ { U  I} = 1 

so that the value of dl = 20.9403. When selecting the sign of di(i = 1,2,3) we must take 
into consideration that the eigenvector matrix [U] = [{ul} {UZ} {u3}] must have a deter- 
minant equal to 1. 

The second eigenvalue is 350 kge m2, unchanged from 122. Actually, one can observe 
this from the symmetry about the xz plane. The second eigenvector is {u2) = +[0 1 0IT. 
The logical choice is {UZ) = [O 1 OIT. This choice implies that the y axis is not changed 
after the rotation, whereas selecting {uz} = [0 - 10IT would havcresulted in a 180" rotation. 
The y axis is a principal axis. It follows that the coordinate transformation that leads to the 
principal axes is a rotation about they axis, also known as a 2 rotation. 

Using the same procedure as the one for the first eigenvalue, the third normalized eigen- 
vector is found to be 

We construct the eigenvector matrix keeping in mind that its determinant has to be 
equal to 1. Considering what a rotation about the y axis looks like, we write the eigenvector 
matrix as 

Comparing [U] with the transformation matrix for a 2 rotation, the cosine of the rotation 
angle is 0.9403 and its sine is 0.3404. The rotation is counterclockwise and the rotation angle 
turns out to be 19.90". The rotation is shown in Fig. 6.15. 

Had we selected {uz} as [O - 1 OIT, the sequence of rotations that leads to the principal 
coordinates would not be the single clockwise rotation about they axis, but a more compli- 
cated one. Also, when the eigenvector matrix [U] is fully populated there is no set way of 
finding the transformation to obtain the principal coordinates. This further demonstrates that 
there is no unique way of transforming one coordinate system into another. 



1,' \ ' 
Principal axes 

Figure 6 .1  5 Principal axes of the 
vehicle 

The eigenvalue problem associated with the inertia matrix is given in Eq. [6.5.2]. 
Left-multiplying it by {uIT gives 

mT [ I I { U )  = ~ { U ) ~ { U )  [6 .6 .1]  

If we use a coordinate system xyz and the expansion {u}  = [x y z lT,  Eq. [6.6.1] 
can be expressed as 

This equation represents the intersection of two closed quadratic surfaces, the 
left an ellipsoid and the right a sphere. This is because the expressions on either 
side of the equation are positive definite. The ellipsoid on the left side is called the 
inertia ellipsoid. The inertia ellipsoid is fixed to the body and is dependent on the 
point about which the inertia matrix is considered. 

Let us next normalize the vector {u)  such that 

{ u ) ~ { u }  = x2 + y2 + z2 = 1 [6.6.3] 

Now we have reduced our points of interest to the locus of all points that define a 
sphere of unit radius. As we vary the parameter A, the shape of the ellipsoid does 
not change, but its size varies. For each value of A, the ellipsoid and sphere intersect 
at different points. Without loss of generality, ordering the principal moments of 
inertia such that I ,  I I2 5 13, one can show that the values of h are bounded by the 
principal moments of inertia 

The smallest ellipsoid of inertia is obtained when h = I 1 .  In this case, the longest 
axis of the ellipsoid has a length of unity and lies tangent to the sphere, and the 
entire ellipsoid lies inside the unit sphere. The largest ellipsoid is obtained when 
h = 13, when the shortest axis of the ellipsoid is of length unity and is tangent to 
the unit sphere, with all of the sphere lying inside the ellipsoid. When A = 12, the 
intermediate axis of the ellipsoid becomes tangent to the sphere, with the smallest 
axis of the ellipsoid lying entirely inside the sphere and the largest axis extending 



Figurn 6.1 6 Inertia ellipsoid in two dimensions 

outside the sphere. Fig. 6.16 illustrates this concept in two dimensions. We refer to 
the longest, shortest, and intermediate axes of the ellipsoid as the major axes. 

The major axes of the ellipsoid correspond to the eigenvectors of the inertia 
matrix. One can ascertain this from the discussion above, as well as by writing 
Eq. [6.6.2] when the coordinate axes are selected as the principal axes. Denoting 
the coordinates associated with the principal axes as ul, u2 and u3, the inertia ellip- 
soid equation reduces to 

The sphere equation is simply u: + u; + u; = 1. Now examine the relationship 
between the lengths of the axes of the ellipsoid, which are the principal axes, and 
the principal moments of inertia. At the tip of the ellipsoid along each principal 
direction, only one of ul ,  u;! or u3 has a value of unity, and the rest are zero. This 
confirms that the axes of the ellipsoid are the principal axes. 

The normalization in Eq. [6.6.3] and the associated inertia ellipsoid equation 
are not unique. The normalization we used gives a good physical explanation of the 
inertia properties, but it has the disadvantage of dealing with ellipsoids of different 
sizes. An alternate normalization is to use 

which leads to the ellipsoid equation written 

or, in terms of principal coordinates 

In this case, as shown in Fig. 6.17, the size of the ellipsoid is fixed but the sphere 
with which the ellipsoid intersects is no longer of unit radius, but of radius Jllh. 
The length of the axes of this ellipsoid is equal to JTZ'jl ( i  = 1,2,3), so that the axis 
about which the moment of inertia is the largest will have the smallest axis in the 
inertia ellipsoid, and vice versa. Equation [6.6.7] is commonly used when relating 
the inertia ellipsoid and the kinetic energy of a rigid body. 



Smallest sphere 

R =  

Figure 6.1 7 Inertia ellipsoid of fixed size 

Construct the inertia ellipsoid for the rectangular prism shown in Fig. 6.18 about the center I Example 
of mass, and about point A. 6.8 

Solution 
Using the xyz  axes attached to the center of mass, the inertia matrix is diagonal with 

Point A and the center of mass are separated by d, = al2, d, = 0, d, = -c/2, so that 
the inertia matrix about point A becomes 

- a -  

Figure 6.1 8 



Using an xUy"z" coordinate system attached to point A and parallel to the xyz coordinates, 
the inertia ellipsoid equation can be written as 

The inertia ellipsoid about point G is relatively simple to draw. The ellipsoid has its 
major axes about the x,  y, and z axes, as these axes are principal axes. The largest axis of the 
ellipsoid corresponds to the smallest moment of inertia. 

The inertia ellipsoid associated with point A is harder to draw, as two of the axes of the 
ellipsoid no longer lie parallel to the x", y", or z" axes. Only one of its axes is parallel to the 
y" axis. 

Looking at Eq. [b] and comparing it with the results of Example 6.7, we conclude that 
the principal axes are obtained by a rotation of the xyz  axes about the y axis. The rotation 
angle can be found by solving the associated eigenvalue problem. Note also that because 
the inertia matrix is recognized as one obtained by rotating a set of principal axes about the 
y axis, the y component of the inertia ellipsoid is not going to yield any significant results. 
Because of this, and because visualization in two dimensions is simpler, we plot and com- 
pare the inertia ellipsoids associated with points G and A for the value y = 0. Doing so, 
and assigning the parameters m = 1, a = 1, b = 2, c = 3, we obtain the following ellipsoid 
equations: 

For point G (with y = 0): 

For point A (with y" = 0): 

Figures 6.19 and 6.20 show the ellipsoids associated with Eqs. [dl and [el. In Fig. 6.20 
the points in which the ellipsoid intersect the x and z axes are at x = +J12/13 = 0.9608 
and z = +J12/5 = 1.549. To find where the ellipsoid associated with Fig. 6.20 intersects 
the principal axes, we can carry out a graphical analysis and visually find these points. Or, 
we solve the eigenvalue problem associated with the inertia matrix and determine the exact 
location of the principal axes. Solving the eigenvalue problem gives the eigenvalues as 3.550 
and 1.283. Note again that we have ordered the eigenvectors similar to the diagonal elements 

Figun 6.1 9 Inertia ellipsoid for [I;] Figun 6.20 Inertia ellipsoid for [IA] 



of [IA]. The normalized eigenvector matrix is written 

Recalling that we are dealing with a rotation about they axis, we conclude that the rota- 
tion from the x'y'z' axes to the principal axes is a clockwise rotation of 0 = cos-'(0.95 10) = 

18.01". One can verify the rotation angle and the lengths of the major axes of the ellipse from 
Fig. 6.20. A clockwise rotation of 71.99" also leads to a set of principal axes. 

Ginsberg, J. H. Advanced Engineering Dynamics. New York: Harper & Row, 1988. 
Greenwood, D. T. Principles of Dynamics. 2nd ed. Englewood Cliffs, NJ: Prentice-Hall, 1988. 
Kane, T. R., and D. A. Levinson. Dynamics: Theory andApplications. New York: McGraw-Hill, 1985. 
Meirovitch, L. Methods of Analytical Dynamics. New York: McGraw-Hill, 1970. 

SECTION 6.2 

1. Find the center of mass of the body shown in Fig. 6.21. 

SECTION 6.3 

2. Find the elements of  the inertia matrix associated with the figure shown in 
Fig. 6.22 about point 0 and using the xyz axes. 



z 

Figure 6.22 

3. 

Figure 6.23 

Calculate the mass moment of inertia about the x, y and z axes of the body of 
revolution generated by rotating about the y axis the area between the curves 
y = x2/4 and y = x ,  where 0 5 x 5 2,0 5 y 5 1, as shown in Fig. 6.23. 

Find by direct integration the inertia matrix associated with the paraboloid in 
Example 6.2. Use a differential element in the form dm = pr d r  d6 d x .  
Calculate the mass moment of inertia of a torus of mass m, mean radius R, and 
core radius of the inner cross section a about the generating axis (Fig. 6.24). 
Find the mass moment of inertia of the body shown in Fig. 6.25 about the x,  y, 
and z axes. 

Consider the composite shape in Fig. 6.21, without the hole. Determine the in- 
ertia matrix about point 0. 

Determine Izz and I,, of the square plate shown in Fig. 6.26 with three circular 
holes cut in it. 

I 

Figure 6.24 

z 

Figure 6.25 



4 L. 

Figure 6.26 

Consider the rectangular box in Fig. 6.27 and determine its inertia matrix about 
point 0, using the x'y'z' axes. The x' axis goes through points 0 and D. The 
x'y'z' axes are obtained by rotating the xyz axes about the y axis by 01, and then 
rotating the resulting frame about the z" axis by 02.  

Consider the right circular cone in Fig. 6.28. Find the elements of the inertia 
matrix about point 0 and a coordinate system x'y'z' obtained by rotating the 
x y z  coordinates about the z axis, so that the x' axis goes through point B. Let 
RIL = 0.2041. 

Calculate the inertia matrix of the body in Fig. 6.29 about point 0, using the x, 
y, and z axes. The body is composed of thin slender rods. 

Z 

Figure 6.28 

z 

Figure 6.29 



Figure 6.30 Figure 6.3 1 

12. Using the x'y'z' axes, find the mass moments of inertia of the triangular prism 
in Fig. 6.30 about 0. The x' axis goes through points 0 and B and it is obtained 
by a counterclockwise rotation about the z axis. 

13. Find the inertia matrix of the composite body shown in Figure 6.31 about point 
0 and using the xyz axes. The body consists of a thin triangular plate attached 
to a solid shaft. 

SECTIONS 6.5 AND 6.6 

14. Find the principal moments of inertia of a body whose inertia matrix is given 
below for a = 7. Then, suggest a set of rotations that will transform the inertial 
axes into the principal axes. Next, find the principal moments of inertia and 
transformation matrix for a = 0 and compare the results. 

15. Find the principal moments of inertia of the box in Fig. 6.27 about point 0. 
Sketch the principal axes. 

16. Find the principal moments of inertia of the shape in Problem 7. 
17. Find the principal moments of inertia of the composite body shown in Fig- 

ure 6.3 1 about point 0. Sketch the inertia ellipsoid. 

18. Find the principal moments of inertia of the body in Fig. 6.30, about point 0. 
Sketch the inertia ellipsoid. 



In this chapter we consider kmematical relations that describe the motion of rigid 
bodies. The analysis follows the developments of reference frames and relative mo- 
tion equations inChapter 2. To extend these concepts to rigid bodies, we attach mov- 
ing reference frames to the bodies and express the angular motion components using 
the moving frames. We also quantify the angular velocity by means of Euler angles, 
as well as Euler parameters, the latter being quantities that eliminate the singulari- 
ties associated with the Euler angles. We then discuss commonly encountered con- 
straints when rigid bodies are interconnected or when they move against each other. 
The chapter ends with a discussion of rolling. 

The field of kinematics can be viewed as consisting of two major components: 
analysis and synthesis. The focus of this chapter is kinematic analysis. Kinematic 
synthesis is usually needed when designing interconnected bodies and mechanisms. 
It is mostly a specialty field and is beyond the scope of this text. 

We can classify the general motion of a rigid body into three categories: 

Pure translation 

Pure rotation 

Combined translation and rotation 

To describe the kinematics, we make use of the relative motion equations de- 
veloped in Chapter 2. The velocity of a point P, whose motion is observed from 



a rotating coordinate system with origin at B, is 

V p  = Vg + v p l g  = Vg + 0 X r p l g  + vrel [7.2.1] 

where v g  is the velocity of the origin of the reference frame, o is the angular velocity 
of the reference frame, and vrel is the velocity of point P as observed from the moving 
reference frame. The expression for the acceleration of P is 

a p  = a g  + X r p / g  + O X (O X r p l B )  + 2~ X Vrel + arel [7.2.21 

with the terms having their obvious meaning. 
These two equations have a significant application for rigid bodies. The moving 

reference frame can be attached to a point on the body and it moves with the body. 
In this configuration, the relative axes are referred to as the body-fied axes, or the 
body axes. The origin of the reference frame is usually selected as the center of mass 
or, if it exists, the center of rotation. 

The angular velocity and angular acceleration of the body are then the angular 
velocity and angular acceleration, respectively, of the reference frame and v,l and 
arel become the velocity and acceleration of point P with respect to the body. If P is 
a point fixed on the rigid body, then vrel = 0 and a,l = 0. 

In the majority of dynamics problems involving three-dimensional motion, one 
attaches the relative axes to the body. We will later see a special case of employing a 
relative frame not attached to the body. The study of axisymmetric bodies primarily 
makes use of this special case. 

In this case, the rigid body moves with no angular velocity and no angular accel- 
eration, that is, o = 0, a = 0. Every point on the body has the same translational 
velocity and acceleration, so that three translational parameters are sufficient to de- 
scribe the motion. For the most general case we have three degrees of freedom. It 
should be noted that a rigid body is capable of moving along a curved trajectory 
without any rigid body rotation. An example of this is landing of an aircraft. 

Here, the motion of the rigid body is described using rotational parameters alone. 
The velocity and acceleration of any point on the body can be expressed in terms 
of the angular velocity, angular acceleration, and the distance of the point from the 
rotation center. We separate this type of motion into two categories: 

Rotation about a fixed axis. 

Rotation about a fixed point. 

Rotation about a fixed axis is a special case of rotation about a fixed point. For two- 
dimensional motion, the above two categories coincide. 

Rotation About a Fixed Axis Consider a body rotating about a fixed axis h. 
The direction of the angular velocity vector o is along the fixed axis, as shown in 



Fig. 7.1. According to the definition in Chapter 2, the angular velocity is "simple." 
Denoting by eh the unit vector along the fixed axis, we can write 

The unit vector eh is similar to the binormal vector we considered in Chapter 1 
in conjunction with normal and tangential coordinates, the difference here being that 
the direction of eh is fixed. Consider a point P on the body and express its position in 
terms of its components along the h axis and the plane perpendicular to the h axis. 
We write rp as 

in which h = heh and b = -be,, where b is the perpendicular distance from point 
P to the axis of rotation and en is the associated unit vector. We recognize that en is 
in the normal direction. 

When P is fixed on the body, its velocity is 

vp = o X rp = oeh X (h  + b )  = weh X (heh - be,) = wbe, [7.2.S] 

The magnitude of the velocity is bw, leading to the conclusion that the velocity 
of a point on the body is dependent only on the perpendicular distance between that 
point and the axis of rotation. Rotation about a fixed axis is a single degree of freedom 
problem. 

We differentiate Eq. [7.2.5] and write the acceleration of point P as 

which is recognized as the sum of the tangential plus normal components. We have 

ap = a, + a, C7.2.71 

where 

a, = cu x rp a, = w X ( w  X rp) C7.2.81 

The magnitude of the tangential component of the acceleration is a, = ab,  and of 
the normal component it is a, = 02b .  The components of the acceleration can be 

Figure 7.1 Rotation about 
a fixed axis 
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expressed as 

a, = bae, a, = -w2b = bw2en 17.2.91 

Rotation About a Fixed Point In this case, the angular velocity vector o 
does not lie on a fixed axis. The rate of change of the angular velocity depends on a 
change in direction as well as a change in magnitude. A body rotating about a fixed 
point has three degrees of freedom, and the angular velocity is usually a combination 
of two or more rotation components. Consider the cylinder in Fig. 7.3. The shaft is 
rotating about the fixed Z axis with angular velocity w 1. The cylinder is spinning 
with angular velocity 0 3  about an axis h, which lies on the yz plane and makes an 
angle of P with the rod. The angular velocity of the cylinder can be expressed as 

In general, w3 is known as the spin rate and ol as theprecession rate. The angle 
p is referred to as the nutation angle. The rate of change of P is called the nutation 
rate. We will formally quantify these rotational parameters in the next two sections. 

Even if the spin rate and precession rate are constant-that is, the components 
of the angular velocity are constant in magnitude-the angular acceleration of the 
body is not zero, because the direction of the angular velocity vector is changing. 
Indeed, applying the transport theorem we obtain 

The last two terms in this equation are also known as gyroscopic ejfects. Figure 7.4 
shows this effect for 0 2  = 0. The terms hl + h3 describe the change in the magni- 
tude of the angular velocity vector, and o1 X 0 3  describes the change in direction. 

Figun 7.3 Rotation about a fixed Figun 7.4 Angular velocities and 
point gyroscopic effect 



The line specifying the direction of the angular velocity vector o is known as 
the instantaneous axis of acceleration, or the instantaneous axis of rotation. The 
unit vector along this axis is defined as 

in which o = lo1 is the magnitude of the angular velocity. The rigid body can be 
viewed as rotating about the axis defined by o ( t )  at a particular instant. 

The trajectory of the instantaneous axis of rotation defines the body and space 
cones. Body and space cones are helpful in visualizing the motion of rigid bodies. 
When the trajectory of the axis of rotation is viewed from the rotating body (the body- 
fixed axes), the cone that is generated by the angular velocity vector is the body cone. 
When the trajectory of the axis of rotation is viewed from an inertial frame, the space 
cone is generated. The body and space cones are always in contact with each other. 
The line of contact is the angular velocity vector o, which is also referred to as the 
generatrix. Figure 7.5 shows body and space cones for an arbitrary body. We will 
study body and space cones for axisymmetric bodies in Chapter 10. 

7-23 COMBINED TRANSLATION AND ROTATION 

A body undergoing combined translation and rotation requires both translational and 
angular parameters to describe its motion. The unrestricted three-dimensional mo- 
tion of a rigid body is a six degree of freedom problem. 

Combined translation and rotation of an arbitrary rigid body is too general to be 
described in broad terms. Chapter 3 presents the special case of plane motion. An 
interesting concept associated with plane motion is the existence of an instant center. 
Once the instant center is located, the velocity of a point P on the body can be found 
from the relation 

vp = o X q  [7.2.13] 

where q = r p , ~ ,  and C i s  the instant center. 

,q' Space 

F i ~ u r o  7.5 Body and space cones for an arbitrary 
body 



The situation is quite different for three-dimensional motion. One can prove the 
existence of an instantaneous axis of rotation, as we will do in Section 7.3. How- 
ever, barring a few exceptions, a center of instantaneous velocity does not exist for 
three-dimensional motion. In three dimensions, Eq. [7.2.13] has an infinite number 
of solutions. Using the column vector notation from Chapter 2, Eq. [7.2.13] can be 
written as 

The matrix [0] is a singular matrix of rank 2, another proof that Eq. [7.2.13] has an 
infinite number of solutions. 

1 7.3 EULER 'S AND ~ ~ A S L E S  'S THEOREMS 

A rigid body has three rotational degrees of freedom. From this, and+rom the devel- 
opments of Chapter 2, we deduce that three rotations (about nonparallel axes) should 
be sufficient to describe the most general transformation from one coordinate system 
to another. According to Euler's theorem, one can view a transformation from one 
coordinate system into another as a single rotation about a certain axis. Specifically, 
Euler's theorem states that: 

The most general displacement of a rigid body with one point fixed can be 
described as a single rotation about some axis through that fixed point, called 
the axis of rotation or principal line. 

The rotation angle is denoted by @. Proof of Euler's theorem can be carried 
out by an eigenvalue analysis. Consider a coordinate system A with coordinate axes 
alaza3. We apply a sequence of rotations, resulting in the frame B with the axes 
bl b2b3. For convenience, we use the same origin for both coordinate systems. We 
denote the unit vector along the principal line by n, and consider an arbitrary vector 
r. The coordinate systems and the principal line are sketched in Fig. 7.6. Note that 

F i g u ~  7.6 Rotation about principal line 



according to Euler's theorem the coordinates of the principal line remain unchanged 
when they are viewed from the A and B frames. The angles 8;  ( i  = 1,2,3) that n 
makes with the ai ( i  = 1,2,3) axes are the same as the angles n makes with the b; 
axes. 

We can express the vector r in terms of the components of the two coordinate 
systems as 

in which the subscript on the left of r identifies the coordinate axes in which the vector 
is resolved. The usual convention is that a vector is resolved along the coordinates 
associated with the reference frame from which it is being viewed. We will use the 
notation in Eq. [7.3.1] only when it is necessary to make a distinction between the 
reference frame from which a vector is viewed and the unit vectors used to resolve it. 

In column vector format we have 

where { ~ r }  = [Brl ~ r 2  gr3IT and {AT} = [Arl ~ r 2  ~ ~ 3 1 ~ .  In a similar fashion, we 
can express the unit vector along the principal line as 

or, in column vector format, as 

The expressions Ani and Bni(i = 1,2,3) are the direction cosines of the principal 
line, An; = n ai, Bni = n bi,  so they are equal to each other. Hence, 

where the vector {c} = [cl c2 c3IT is recognized as the direction cosine vector as- 
sociated with the principal line. Substituting Eq. [7.3.5] into Eq. [7.3.4] we can write 

Mathematically, Eq. [7.3.6] can be explained as {c} = {Bn} = {An} being the 
eigenvector of [elT associated with the eigenvalue A = 1. To prove Euler's theorem 
we need to establish that [c] has an eigenvalue equal to 1. 

Consider the eigenvalue problem associated with [c]" = [R],  where [R] is the 
transformation matrix that relates the blb2b3 axes to the ala2a3 axes. We can write 
the left and right eigenvalue problems as 

Solution of the eigenvalue theorem yields three eigenvalues Al, A2, A3; and cor- 
responding right eigenvectors { q } ,  {x2}, and 1x3) and left eigenvectors {yl}, {y2}, and 
{y3}. We know from Chapter 2 that the determinant of [R] = [elT is equal to one. 
From a theorem in linear algebra the product of the eigenvalues of a matrix is equal 
to the determinant, so that Al h2h3 = 1. 



The relations between the eigenvalues and right and left eigenvectors of [R] can 
be written as 

Now, consider the eigenvalue problem associated with the inverse of [R]. It is 
easy to show that the eigenvalues of the inverse of a matrix are the multiplicative 
inverses of the eigenvalues of the original matrix, while the eigenvectors of the orig- 
inal matrix and its inverse are the same. We can therefore write the right eigenvector 
formulation as 

One can arrive at Eq. [7.3.9] by left-multiplying Eq. [7.3.8a] by [R]-'. But the 
inverse of [R] is equal to its transpose, so that Eqs. [7.3.8b] and [7.3.9] define the 
same eigenvalue problem. Hence, for a unitary matrix, the left and right eigenvectors 
coincide, {xi) = {yi) (i = 1,2,3). Furthermore, we have 

Because det[R] = 1 and the product of the three eigenvalues is unity, there are 
two possible cases: (a) all eigenvalues are real with values 1, 1, 1 or 1, - 1, - 1, and 
(b) one eigenvalue is real and unity, and the other two are complex conjugates with 
moduli equal to 1. The first case when all eigenvalues are real does not make sense 
physically, as it would indicate at least two repeated roots and hence an infinity of 
axes about which a rotation can be performed. This is impossible, as one can always 
find an axis that will not yield the desired rotation. We are left with the second pos- 
sibility. Hence, [R] (or [elT) has one real eigenvalue equal to 1. The corresponding 
eigenvector gives the direction cosines of the principal line. Note that the eigenvec- 
tor must be normalized using the relation {c}T{c} = 1. Also, if {c) is the eigenvector 
associated with the eigenvalue Al = 1, so is -{c). One can take the unit vector 
along the principal line along either of the two directions of the principal line. The 
difference will be the direction of the rotation angle @. 

We next discuss determination of the rotation angle @. Consider an intermediate 
coordinate system dld2d3, where the d l  axis is aligned with the principal line and 
the d2 and d3 axes are selected arbitrarily. We can write the relationship between the 
dld2d3 axes and the A frame as 

where [c*] is the associated direction cosine matrix. Using the relationship between 
the A and B frames, we can write 

Let us now perform the rotation by the angle @ about the d l  axis, which leads 
to the coordinate system dld;d;. It follows that the relation between the ala2a3 and 
dld2d3 axes has to be the same as the relationship between the blb2b3 and dld;d; 



axes. Both coordinate axes were transformed in the same way. We can express this 
relationship as 

However, the relationship between { d )  and {d ' )  is 

where [R'] is a rotation matrix in the form 

Combining Eqs. [7.3.11]-[7.3.13], we can write 

[c*lT [clT [c*] = [R'] c7.3.161 

This equation represents a similarity transformation between [cIT and [R']; thus 
the traces (sum of the diagonal elements) of these two matrices are the same. We can 
now write 

which can be solved for @ to yield the rotation angle. 
It is interesting to note that in Chapter 2 we considered a three-parameter ro- 

tation to describe a general transformation from one set of coordinates to the other, 
whereas in this section we used Euler's theorem and accomplished the transforma- 
tion using four parameters: the three direction cosines associated with the principal 
line, and the rotation angle a. It turns out that one can take advantage of the four- 
parameter description used here to simplify the kinematical equations, as we will 
see in Section 7.7. Before that, we will discuss the relationship between the angular 
velocity vector and the direction cosine matrix, and we will parametrize the angular 
velocity vector in terms of the transformation angles. 

The above developments were for a body with one point fixed. If we consider 
an unrestrained rigid body, we can extend the results of Euler's theorem into what 
is known as Chasles's theorem, which states: 

The most general displacement of a rigid body is equivalent to a translation of 
some point in the body, plus a rotation about an axis through that point. 

Depending on the point selected, the instantaneous axis of rotation will be dif- 
ferent. 

-- - 

The coordinate system alaza, is transformed into the blbibi system by first rotating by an I Example 
angle 4 = 30" about the a3 axis, and then by rotating the resulting a;a;aj frame about 7.1 
the a; axis by 6 = 45". Find the orientation of the principal line, as well as the rotation 
angle. 



Solution 

The rotation matrix associated with the transformation given is 

[Rl = rR21[Rll Cal 
in which 

0.7071 0 -0.7071 1 [ 0 . 7 0 . 5  01 
[R1] = -0.5 0.8660 O Cbl 

0.7071 0 0.7071 0 1 

so that 

The eigenvector associated with the eigenvalue A = 1 can be found manually or numer- 
ically. This eigenvector can be shown to be 

The elements of the eigenvector are the direction cosines of the principal line. The angles the 
principal line makes with the inertial coordinates are then 

To find the rotation angle @, we make use of Eq. [7.3.17], thus 

The transformed coordinates, principal line, and rotation angle are shown in Figs. 7.7 
and 7.8. 



In this section, we explore the relationship between the direction cosine matrix and 
the angular velocity vector. Consider two coordinate frames A and B and associated 
coordinate axes ala2a3 and blb2b3. The origin of the two frames coincide. The rel- 
ative velocity expression for a point whose position is given by r is 

Using the notation in Eq. [7.3.1] of denoting the reference frame in which a 
vector is resolved by a subscript on the left, we can relate the position and velocity 
vectors by 

{ ~ r >  = [clT{Ar> { A T )  = [ C ] { B ~ }  [7.4.2a,b] 

&> = [clT{;u, {;v> = [cl{;v) 

{;u> = [ c I ~ { ~ v )  {:u) = [ c I@)  [7.4.3a,b,c,d] 

where [c ]  is the direction cosine matrix between the A and B frames. 
We next find a relationship between [c ]  and the angular velocity of the B frame 

with respect to the A frame, To this end, we first express AmB along the com- 
ponents of the A frame as 

A B =  
AW Amla1 + AW2a2 + AW3a3 [7.4.4] 

and using the matrix 

0 -AW3 
[;&'I = [ ,4W3 0 

-AW2 A 0 1  0 

we can write the transport theorem as 

In a similar fashion, we write the velocity of a point in terms of the B frame as 

{;u) = {;u) + [;GBl{Br> [7.4.7] 

Left-multiplying Eq. [7.4.6] by [cIT and using Eq. [7.4.7] relates the angular velocity 
matrices expressed in the A and B frames as 

T A - B  {%3B) = [c]  [AW ] L C ]  [7.4.8] 

One should compare this equation, which represents a similarity transformation, 
with Eq. [6.4.13a]. We next obtain a relationship between the direction cosine matrix 
and the angular velocity vector. To this end, we consider Eq. [7.4.2b]. The left side 
of the equation is in terms of a vector resolved in the A frame, and the right side is in 
terms of a vector viewed in the B frame. Therefore, when we take the time derivative 
of Eq. [7.4.2b] we have to differentiate the left side in the A frame and the right side 
in the B frame. Doing so yields 



We convert Eq. [7.4.9] to one expressed in terms of the components of the A frame 
by introducing Eqs. [7.4.2b] and [7.4.3d] into it, which yields 

= + [ ~ I [ c I ~ { A ~  [7.4.10] 

Comparing Eqs. [7.4.6] and [7.4.10], we conclude that 

[$PI = [t][clT [7.4.11] 

In terms of the rotation matrix [R] = [elT, we can express as 

[ $ G ~ ]  = [RITIR] [7.4.12] 

Using Eqs. [7.4.8] and [7.4.12], we obtain the angular velocity matrix expressed 
in terms of its components in the B frame as 

T A  B = [c] ][c] = [c]~[~][c]~[c] = [clT[t] = [R][RIT [7.4.131 

It is usually more convenient to write the components of the angular velocity in 
terms of the body coordinates, so that we will use Eq. [7.4.13] more extensively than 
Eq. [7.4.11]. 

Example I Consider two frames A and B, where the coordinates bl b2b3 are obtained by rotating alazas 
7.2 by an angle el about a3 and then by an angle 82 about a;. Find *oB using Eqs. [7.4.11] and 

[7.4.13]. 

Solution 

Denoting the transformation matrices by [R1] and [Rz], the combined transformation matrix 
is [R] = [R2][R1]. The direction cosine matrices are 

Taking the derivative of [c] with respect to time yields 

Let us first use Eq. [7.4.11] and evaluate [i.][cIT. Right-multiplying Eq. [b] by [cIT = 

[c2IT[c1lT, we obtain 

The right side of Eq. [c] has an interesting interpretation. The second term is what one obtains 
for the angular velocity matrix when there is only one transformation. The first term contains 
the angular velocity expression for the second transformation, [i.2][c21T, with a proper coor- 
dinate transformation by the first rotation angle. 

When the angular velocity is obtained in terms of the B frame we have 

which has a similar explanation as the one for Eq. [c]. 
It remains to calculate the derivative matrices and use them in Eqs. [c] and [dl. The 

derivatives of [cl J and [CZ] are 



Consider writing the angular velocity vector in terms of its components alqng the ala2a3 axes. 
We first evaluate [ C I ] ~ [ C ~ ]  and related terms. Using Eqs. [a] and [el, we have 

0 

which represents the angular velocity matrix associated with a 1 rotation. As expected, we find 
that [t1][c1IT = [cllT[cl]. Performing the same matrix multiplications with 02, we obtain 

These match the entries of the angular velocity matrix in Eq. [h]. In terms of the B frame we 
have 

which is the angular velocity matrix for a 2 rotation. 
Carrying out the algebra we obtain in terms of the A frame 

We confirm this result using the formula for the angular velocity as 

so that 

-e2 -e lse2  o 
In a similar fashion, we write the angular velocity in terms of the coordinates of the B 
frame as 

so that 

which confirms our earlier results in terms of frame B, when we compare this with Eq. [k]. 

We saw earlier that, at most, three successive rotations about nonparallel axes are 
sufficient to define a rotation transformation from one coordinate system to an- 
other. The transformation can be expressed in many ways and is not unique. In this 



section, we quantify the different choices for carrying out the transformation from 
one coordinate frame to the other. 

Let us review what we have done in the previous chapters. In Chapter 1, we studied 
curvilinear coordinates and discussed the rate of change of the unit vectors. This dis- 
cussion was in terms of specific coordinate systems, without a general formulation. 
In Chapter 2, we saw that three transformations about nonparallel axes are sufficient 
to describe the most general transformation from one coordinate system to another. 
We outlined two ways of accomplishing these rotations: body-fixed and space-fixed 
rotations. When the coordinate transformation angles are infinitesimal, the rotations 
can be viewed as vector operations, from which we defined the angular velocity 
vector. We obtained expressions for the rates of change of unit vectors. Most of the 
analysis in Chapter 2 was instantaneous. 

In this section, we use body-fixed rotations and select the nonparallel axes about 
which the rotations are carried out as the coordinate axes of the rotated frames. The 
three angles used for transforming one coordinate set into another are commonly 
referred to as Euler angles. 

In generating three sets of rotations to transform one set of coordinates into an- 
other, say, ala2as to blb2b3, there are twelve choices in which no two adjacent ro- 
tation indices are the same. We begin with the ala2a3 frame and rotate it about one 
of the axes to get the a;aia; frame. Here we have three choices. The next rotation 
is about one of the a ; ,  a;, or a; axes, excluding the axis that coincides with the 
previous rotation. That is, if the first rotation is about the a;! axis, the second rota- 
tion should not be about the a; axis. Hence, we have two possible rotations for each 
previous rotation. We follow the same procedure for the third transformation, result- 
ing in two possible transformations for each previous rotation. As a result, we have 
3 X 2 x 2 = 12 possible combinations: 

The twelve sets are called Euler angle sequences. They can be classified into 
two main categories, each showing similar characteristics. The first category is when 
the first and third indices are the same (e.g., 3-2-3, 1-2-1) and the second category 
consists of rotations where the first and third indices are different (e.g., 1-2-3.3-1-2). 
One selects the sequence depending on the application, such that the sequence used 
gives a better physical visualization and, as we will see later on in this section, leads 
to fewer singularities. 

One of the most commonly used Euler angle sequences is the 3-1-3 sequence, 
often used to describe rotating rigid bodies. In recent years the 3-2-3 transformation 
has been used more widely for such problems. We learned in Chapter 3 that the 3- 1-3 
coordinate transformation has traditionally been used to locate the orbit of a body in 
space. 

For purely historical reasons, we begin our discussion of Euler angles with a 
3-1-3 transformation. (Readers are urged to familiarize themselves with other trans- 



formation sequences, especially the 3-2-3 and the 3-2-1. Properties of the 3-1-3, 3- 
2-3, and 3-2-1 sequences are summarized in Table 7.1 at the end of this chapter.) 

In a 3-1-3 transformation, first, the axes ala2a3 are rotated about a3 by an angle 
4, to yield the a;aia; axes. Then, a rotation is performed about the a; axis by 8 ,  
yielding the a;'a;a;' axes. The a; axis is also known as the line of nodes (see Chap- 
ter 3 for the source of this name). This axis describes the intersection of the ala2 and 
the a','ag planes. Finally, the a','a:a; axes are rotated by J, about the a; axis, which 
results in the bl b2b3 axes. 

For a 3-1-3 transformation, the rotation angles 4, 8, and $ are known as the 
precession, nutation, and spin angles, respectively. For a 3-2-3 transformation, the 
rotation angles are taken as + (precession), 0 (nutation), and c$ (spin). 

To obtain the combined transformation from the A frame to the B frame, we use 
matrix notation and successively apply the transformations. For a 3-1-3 sequence 
the result is 

Combining the three transformations, as shown in Fig. 7.9, we obtain 

{b) = [R3-1-3l{al 

7.5.2 ANGULAR VELOCITY AND ACCELERATION 

We next obtain the angular velocity vector, which has a component due to each ro- 
tation as 

AWE = AOA1 + A1"A" + A""B = ,ja3 + ea; + [7.&4] 

We wish to express the angular velocity in terms of the coordinates of the trans- 
formed frame. From Eq. [7.5.3] we obtain 

The inverse of [R] is its transpose, {a)  = [ ~ ] ~ { b ) ,  so an easy way to obtain a3 is 
to read down the third row of [ R ] ~  or the third column of [R]. To obtain a; we read 
the first row of [ R ] ~  (or the first column of [R])  while setting c$ = 0. Introducing 
Eqs. [7.5.5] into Eq. [7.5.4], we obtain 



I ai,ai 
Plane defined by b,  b2 Line of nodes 

Figun 7.9 3-1 -3 Euler angle sequence 

which can be written in the matrix form as 

in which is the ith component of expressed in terms of the body-fixed axes. 
Equation [7.5.7] can also be written as { w )  = [ B I { ~ } ,  where the notation is obvious. 
A few observations about the matrix [B] that relates the angular velocities to the rates 
of the Euler angles are in order. First of all, [B] is not orthogonal. This is because 
the rotations +,e ,  and JI are performed about the as, a;, and a;' axes, which do not 
form an orthogonal set, even though the rotation angles +,8, and + are independent 
of each other. We also observe that the sines or cosines of the precession angle + are 
absent in Eq. [7.5.7]. 

Second, the matrix [B] becomes singular when 8 is equal to zero or to a multi- 
ple of T .  This can be explained by noting that when sin 8 = 0, the rotation reduces 
to a 3-3 sequence, and that the 4 rotation cannot be distinguished from the + ro- 
tation. Because [B] can become singular at times, the rates of change of the Euler 
angles cannot always be obtained from the components of the angular velocities, 
which causes problems when integrating the equations of motion. To visualize the 
singularity, we invert Eq. [7.5.7], to yield 

in which te = tane. Equation [7.5.8] is referred to as the kinematic differen- 
tial equations relating the angular velocities to the Euler angles. In scalar form, 



Eq. [7.5.8] is 

1 
~ = - ( W ~ S ~ ~ + + W : ! C O S + )  O = W ~ C O S + - W ~ S ~ ~ +  

sin 8 

1 
t,b = - - - ( - W ~ C O S ~ S ~ ~ +  - ~ ~ c o s O c o s + )  +a3 [7.5.91 

sin 0 

where we have adopted the compact notation wi = AoiB(i = 1,2,3). Existence of 
the singularity at 8 = 0 and at multiples of .rr is obvious. Moreover, Eqs. [7.5.9] are 
highly nonlinear, thus reducing their suitability for manipulation in rigid body dy- 
narnical equations, especially for numerical calculations. The singularity associated 
with a particular Euler angle sequence can be overcome by switching to another Eu- 
ler angle sequence in the neighborhood of the singularity, but this makes the analysis 
cumbersome. 

Each of the twelve Euler angle sequences have singularities at certain values of 
the second angle. One of the objectives when selecting an Euler angle sequence is 
to avoid singularities as much as possible. For example, in aircraft or other vehicle 
dynamics problems, usually a 3-2-1 sequence is used. The Euler angle sequences 
where no index is repeated (3-2-1, 1-3-2, etc.) all have a singularity when the second 
angle, 8, has the value 8 = 2 4 2 .  For the most common flight operations, all of 
these angles remain small quantities. The text by Junkins and Turner contains a 
tabulation of the transformation matrices and singular values for all twelve Euler 
angle sequences. 

We next analyze the angular acceleration, extending the results in Chapter 2 to 
rigid bodies. If we express the components of the angular velocity in terms of an 
inertial frame or using a set of body-fixed coordinates, then the angular acceleration 
has a simple form. Mathematically, 

Given the angular velocity components along the body axes in Eq. [7.5.7], it follows 
that the components of the angular acceleration along the body axes are, for a 3- 1-3 
transformation, 

In general, evaluating the components of the angular acceleration along inertial 
axes yields complicated expressions and does not provide much insight. We hence 
continue to see that expressing the angular velocity by its components along body 
axes leads to a more compact form and a more meaningful understanding. This obser- 
vation is totally in line with the results in Chapter 6, that most of the time, expressing 



the inertia properties of a body using a set of axes attached to the body is simpler 
and more meaningful. 

We next consider a case where it is more desirable to view the motion using a set of 
relative axes that do not coincide with the body axes. Such a case arises when deal- 
ing with axisyrnmetric bodies. A suitable choice for analyzing this type of motion is 
to use a reference frame that does not contain the spin angle. That is, if we are using, 
say, a 3-2-3 Euler angle transformation, the relative frame is obtained after the 3-2 
transformation. The motivation behind selecting a reference frame different than the 
body frame stems from the fact that in many problems involving axial symmetry, 
the actual value of the spin angle is not of too much importance, while the spin rate 
is. One is more interested in the velocity and acceleration of the center of mass or of 
another point along the symmetry axis, as well as the angular velocity and angular 
acceleration, than one is in the motion of some specific point on the body. The pre- 
cession and nutation rotations completely describe the orientation of the symmetry 
axis. 

Consider a 3-1-3 transformation. Using the notation above of alaza3 being the 
inertial axes, the coordinate axes associated with the new reference frame become 
the a;'a;'a;' axes, and we can find the angular velocity of the reference frame after 
the 3-1 rotation in Eq. [7.5.4] as 

= $a3 + 8a; = &sin t9a;' + cos gay) + 8a;) I7.6.121 

We will, from now on, refer to this relative reference frame as the F frame, 
denote the associated coordinate axes by fi f2f3, and use the associated unit vectors 
flf2f3. The concept is illustrated in Fig. 7.10 for a spinning top. For axisymmetric 
bodies, viewing the F frame is equivalent to viewing the general shape of a disk or 
top, without following the motion of a specific point on the body. 

We can write the angular velocity of the body as 

Figurn 7.1 0 The F frame 



where = and FoB is the spin, FoB = 4f3. Where appropriate, the above 
notation will be shortened in o b ,  o f ,  and o , ,  where the subscripts b, f ,  and s stand 
for body, frame, and spin, respectively. We then write 

For a 3-1-3 transformation, we can write the angular velocities of the body and 
of the F frame in terms of the components of the F frame as 

o = cob = i(sin0a; + cos 0a;l) + bay + $a; 

= 6fl + 6 sin Of2 + ( 4  cos 0 + 4)f3 

of = &sin Oa;' + cos Oa;') + 6a;' = 6fl + 6 sin Of2 + 6 cos Of3 

us = 4f3 [7.S. 1 S] 

The expression for angular velocity above is noticeably simpler than its counterpart 
in Eq. [7.5.6]. 

Next, consider the expression for the angular acceleration. When using the F 
frame, the angular acceleration of the body can be found using the transport theorem. 
Noting the form of o b  from Eq. [7.5.14], we have 

Expanding Eq. [7.5.16] in terms of the Euler angles using the 3-1-3 set, we obtain 

which is considerably simpler than its counterpart when the spin angle is included, 
Eq. [7.5.11]. The above result can be verified by setting t,b = 0 in Eq. [7.5.11], while 
retaining 4. Note that if one wishes to deal with the actual value of the spin angle t,b, 
one can still use Eq. [7.5.17]. When the manipulations are complete one can switch 
to the coordinate system that includes J/ .  

Derive the angular velocity expressions for aircraft dynamics problems, using a 3-2-1 trans- I Example 
formation. 7.3 

Solution 
The coordinate system traditionally used with aircraft is shown in Fig. 7.11. We will denote 
the inertial coordinates by XYZ and the body-fixed ones by xyz .  The z axis is the local vertical. 
The Euler angle transformations are: 



i 
p X", x 

Pigun 7.1 1 3-2-1 Euler angle sequence 

a. A rotation about the Z axis, by angle IC, (the heading angle), leading to the X'Y'Z' coor- 
dinate system. 

b. A rotation about the Y' axis, by angle 0 (the attitude angle), leading to the X"YUZ" 
coordinate system. 

c. A rotation about the X" axis, by angle 4 (the bank angle), leading to the x y z  coordinate 
system. 

Using this configuration, the x z  plane denotes the plane of symmetry of the aircraft, as 
shown in Fig. 7.12. 

The rotation matrices are 

c* s* 0 
[ R d = [ - : $  c +  IR2I- 

0 1 

w,: Yaw w,: Pitch 
Y 

F ~ ~ U P O  7.1 2 Body axes for an aircraft. The xz plane is the 
plane of symmetry. 



so that the relation between the inertial and body-fixed coordinates is written as 

and the combined transformation matrix [R] is 

The angular velocity vector is written as 

Using the same approach as in the previous section, we obtain K and J' in terms of the 
unit vectors associated with the body axes by reading the third and second columns of [ R ] ,  
respectively, and setting IC, = 0 when reading the second column, which yields 

The body angular velocities o x ,  w,, and o, are commonly referred to as roll, pitch, and 
yaw rates, respectively, as shown in Fig. 7.12. We relate these angles to the heading, attitude, 
and bank angles I), 8, and + using Eq. [el as 

When 0 = d 2 ,  the first and third columns of the coefficient matrix become similar, so 
that a singularity is reached. For civilian aircraft this is not a big problem, as 0 rarely exceeds 
d 2  for most flight operations. 

The spinning symmetric top in Fig. 7.13 has the following rotational parameters: precession I Exampla 
rate 6 = 0.3 radls and increasing with the rate of 0.05 rad/s2, nutation angle 0 = 30°, zero 7-4 
nutation rate e = 0, e = 0, and constant spin rate of * = 5 rad/s. Assuming that the bottom 
point of the top does not move, find the velocity and acceleration of the center of mass of the 
top, as well as its angular velocity and angular acceleration. 

Solution 

We use the 3-1-3 Euler angle transformation sequence and distinguish between the body 
frame and the relative frame, as we are interested in the velocity and acceleration of a point 
lying on the symmetry axis. We can write the angular velocity of the body frame and the 
relative frame in terms of the unit vectors of the F frame as 

o b  = &sin Of2 + cos Of3) + i)fi + *f3 = 0. 15f2 + 5.2598f3 radls [a] 

rnf = $(sin Of2 + cos Of3) + 9fi = 0. 15f2 + 0.2598f3 rads [bl 



Figure 7.1 3 

We can find the angular acceleration by using Eq. [7.5.17] as 

Substituting in the values, we obtain 

cub = 5.0.3.0.5f1 + 0.05 0.5f2 + -f3 = 0.75fi + 0.025f2 + 0.04330f3 rad/s2 [el ( $ 1  
We find the velocity of the center of mass as 

VG = w b  x ~ G I C  = [&sin ef2 + cos ef3) + i f ,  + J l ~ l  x ~f~ 

= L$sin8f1 - Lef2 = 0.15Lfl [ f 1 
To find the acceleration of the center of mass, one can use a number of approaches. One 

approach is to express the velocity in terms of the inertial coordinates and perform a straight- 
forward differentiation. This is lengthy, and it requires that the results then be converted back 
to the body axes. We prefer to use the F frame and transport theorem, which gives 

d 
AaG = F - ~ G  x VG 

dt 

= ~4 sin of, + L@ cos ofl - L B ~ ~  + [&sin8f2 + cos of3) + i f l ]  x (L& sin ofl - ~ i f 2 )  

= (LC$ sin 8 + L& cos 8 + LC@ cos 8)fl 

+ (- ~8 + Lb2 sin 8 cos 8)f2 - (Lb2 sin2 8 + ~ i ' ) f 3  [!dl 
Substituting in the appropriate values, we obtain 

A third approach to solve for the acceleration of the center of mass is to use the formula 
for the rotation about a fixed point, which is 



Substituting in the above equation values for the angular velocity and acceleration parameters 
gives 

which, of course, is the same as the result in Eq. [h]. 

A gyropendulum, consisting of a disk of radius R attached to a shaft of length L, rotates with a I Example 
spin rate of 1/1 about the shaft. The shaft is pivoted to another vertical shaft which itself rotates 7-5 
with the rate 4. The pivot angle is 8, as shown in Fig. 7.14. Find the inertia coefficients of 
the disk about point B, the angular velocity, and the angular acceleration. 

Solution 

Let us define the inertial frame XYZ with the Z-axis along the-precessing shaft, a second 
frame x'y'z '  attached to the precessing shaft, rotating with 4, and a third frame x y z  obtained 
by rotating the shaft about the y' axis by the nutation angle 0 .  In essence, we are using a 3-2 
transformation. The resulting frame is the F frame. 

The mass moments of inertia of the disk about its center of mass are 

with all products of inertia zero. About the center of rotation B, the moments of inertia can be 
found using the parallel axis theorem, which yields 

Noting that the unit vector K = k' can be expressed in the x y z  frame as kt = - sin 8i + 
cos Ok, the angular velocity of the disk and the frame can be written as 

Figure 7.1 4 



wb = $K+8,j1+ Ilk = $k1+8 , j++k  = -$sin8i+8,j+(&+$cos8)k [a] 

of = $K + 6j1 = $kt + 6 j  = -$sin8i + 6j + $cos 8k [dl 

W, = *k [el 

The angular acceleration of the disk is simply 

d 
a b  = dr(wb)rel + q x w, = -($ sin 9 + $8, cos 8)i + b j  + + $cos e - $8, sin 

+ (-$sinei + 8,j + $cos 8k) x (4k) 

= (-$sin 8 - $8, cos 8 + &)i + (b + $* sin8)j + (* + $cos8 - $8, sin8)k [f] 

From Chapter 4, a generalized velocity is obtained by differentiating the correspond- 
ing generalized coordinate with respect to time. The three Euler angles that quantify 
the angular velocity are in essence generalized coordinates, and their time deriva- 
tives are the generalized velocities. However, the components of the angular velocity 
cannot be classified as generalized velocities, as there is no corresponding general- 
ized coordinate. A similar statement is true for a nonholonomic constraint, which 
cannot be expressed as the derivative of a function. 

The questions can then be posed as to how one can classify angular velocities 
and whether there are other cases in dynamics where one deals with such quantities. 
We introduce here a set of variables called quasi-velocities or generalized speeds. 
We define these as linear combinations of the generalized velocities, but they them- 
selves are not necessarily derivatives of any coordinates and thus cannot always be 
integrated to generalized coordinates. Quasi-velocities are not perfect differentials, 
a fact from which their name is derived. We will use both terms, generalized speeds 
and quasi-velocities, interchangeably. 

The introduction of generalized speeds increases the choice of parameters one 
can use to describe motion. Consider a holonomic system having n degrees of free- 
dom, with generalized coordinates ql,  q2, . . . , q, and generalized velocities q l ,  q2, 
. . . , 4,. We define a set of quasi-velocities or generalized speeds ul, u2, . . . , u, as 

where Ykj = Ykj(qlj q2.. . . , q n , t ) ,  Zk = Zk(q1, q2,. . .. qn, t )  (k, j = 1,2,. . ., n) 
are functions of the generalized coordinates and time. In column vector form we 
can write Eq. [7.6.1] as 

In order for the set of generalized speeds to completely describe a system, [Y] 
must be nonsingular. We invert Eq. [7.6.2] to express the generalized velocities in 



terms of the generalized speeds as 

The angular velocities of a body can be classified as quasi-velocities. The rela- 
tion between the body angular velocities and the Euler angles, Eq. [7.5.7], defines a 
valid set of generalized speeds.' By contrast, the angular velocities of the F frame 
do not constitute a set of quasi-velocities, as the relation between them and the Euler 
angles is described by a matrix that is singular at all times. 

Representation of angular velocity as a set of generalized speeds is not the only 
application of these quantities. Generalized speeds are very useful when one deals 
with dynamical systems subjected to nonholonornic constraints and in cases when 
the use of generalized velocities makes the problem formulation cumbersome. We 
saw an example to this in Examples 4.14 and 5.13, where switching to the velocity 
of point A as a motion variable simplifies the equations. 

Consider the position vector r. In terms of the generalized coordinates, one can 
express r as r = r(ql, 42, . . . , q,, t).  Differentiating this expression with respect to 
time, we obtain 

From Eq. [7.6.4], we can write the rate of change of r in terms of the quasi- 
velocities as 

in which vk (k = 1,2, . . . , n) and vt are called partial velocities and have the form 

Throughout this text, we will denote the index associated with partial velocities 
with a superscript. In a similar fashion, we can express the angular velocities asso- 
ciated with a body or systems of bodies in terms of the partial angular velocities ok 
(k = 1,2,.  . ., n) and ot as 

Describe the angular velocities associated with the F frame in terms of the quasi-coordinates I ixampk 
associated with the body frame, and show that they do not constitute a set of generalized 7.6 
speeds. Then find the partial angular velocities associated with o. 

' Eq. r.5.a has a singularity when the second Euler angle reaches a certain value. One can avoid this singularity 
by switching to a different set of Euler an les at that instant. Hence, the transformation between angular veloci- 
ties and Euler angles is considered a valif onetwne transformation between the generalized velocities and the 
generalized speeds. 



Solution 

We will use a 3-1-3 Euler angle set. From Eqs. r7.5.151, the angular velocities of the body 
and frame are 

o = o b = e f 1 + $ s i n 0 f 2 + ( $ c o s 0 + ~ ) f ~  of =efl+$sin0f2+$cos0f3 [a] 

We define the generalized speeds as 

The angular velocities associated with the F frame then can be related to the generalized 
speeds as 

As u3 is not present in the description, the angular velocities of the F frame do not constitute 
a complete set of generalized speeds. 

For the body angular velocity, using the generalized speeds defined in Eq. [b] we have 
3 

6) = Xokuk + 6)' = ~ l f l  + o2f2 + 03f3 [dl 
k =  1 

so that the partial angular velocities are recognized as 

Note that had we selected our generalized speeds as ul = e, u2 = 4, us = ti, the partial 
angular velocities would have the form 

o1 = fl m2 = sin0f2 + cos Of3 o3 = f3 o' = 0 C f I 

We studied Euler angles in the previous sections to relate the angular velocities to the 
rotation angles +,8, + and their rates. As we saw in Section 7.5, these equations are 
highly nonlinear and have singularities, which makes it difficult to integrate them 
and to do any analytical as well as numerical work with them. 

To alleviate these difficulties it is preferable to work with another set, called 
Eulerparameters. These parameters increase the number of variables one deals with 
from three to four, but they eliminate the nonlinearities and many of the numerical 
problems. 

Because a set of three variables (+,O, +) is being expressed in terms of four vari- 
ables, the use of Euler parameters introduces a redundancy. This implies that there is 
no unique way of expressing the Euler parameters, and one can easily come up with 
different sets of parameters. Other commonly used quantities include the Cayley- 
Klein parameters, Rodrigues parameters, and quaternions. All these quantities are, 
essentially, different forms of the Euler parameters. A comparison of these quantities 
can be found in the text by Junkins and Turner. The mathematics of the Euler pa- 
rameters was first introduced by Hamilton in 1843. The vector formulation of Euler 
parameters, which is used with quaternions, was developed by Oliver Heaviside. 



Figuro 7.1 5 Principal line 

Euler parameters are inspired from Euler's theorem, which states that any ro- 
tation of a rigid body about a point can be accomplished by a single rotation by an 
angle @ (principal angle) about a line fixed in the body and passing through the cen- 
ter of rotation (principal line). Euler parameters are in essence a characterization of 
this rotation in terms of the principal angle and direction cosines of the principal line. 

Let us describe the principal line by its direction cosines cl, c2, c3, as shown 
in Fig 7.15. Denoting by 01, 02, O3 the angles the principal line makes with the 
coordinate axes, we have 

The Euler parameters are defined as the four parameters eo, el, e2, and e3 such that 

eo = cos (;) el = cl sin(;) e2 = c2 sin E) e3 = cg sin - G) 
[7.7.2] 

We use the half angle so as to eliminate ambiguities associated with the rotation 
angle. We observe from Eq. [7.7.2] that 

We will relate the Euler parameters and their rates of change to the Euler angles, 
angular velocities, and direction cosines, and vice versa. That is, we will discuss the 
relationships 

ci j  = f (eo, el, e2, e d  i, j = l , 2 , 3  

We denote the unit vector along the principal line by n. Section 7.3 discussed 
that the direction cosine matrix [c] has an eigenvalue A = 1 and that cl, c2, and c3 
are elements of the associated eigenvector. From the eigenvalue problem 

we set A = 1 and find {c) = [cl c2 c31T. 
We now explore each of the relations in Eqs. [7.7.4] individually. 



Consider two coordinate framesA (ala2a3) and B (bl b2b3), where bl b2b3 is obtained 
by rotating ala2a3 by an angle of @ about the unit vector n. We use the notation 
in Section 7.3 and express the unit vector n in terms of its components in the two 
coordinate frames as 

An = Anla1 + An2a2 + An3a3 
~n = ~ n i b l  + ~n2b2 + ~n3b3 C7.7.61 

Naturally, considering Fig. 7.15, Ani = Bni = cos Oi = ci (i = 1,2,3). We can 
relate the unit vectors in the A and B frames and the components of n in the A and B 
frames as 

b = [c]' a lclz ~ n 2  ~7.7.71 

lb:] la:] I:::] = 

Let us consider the vectors a1 and bl and think of an inverted cone with apex 
angle 61 and with the unit vector n as the axis of the cone, as shown in Fig. 7.16. 
Because frame B is obtained by rotating frame A around n, this rotation defines a 
circle of radius sin 6 1 on a plane perpendicular to the vector n. The angle between 
a1 and n is the same as the angle between bl and n, and the projections of a1 and bl 
on n are identical. Mathematically, 

neal  = nebl = cosOl C7.7.81 

We denote by Q the point at which the vector n intersects the circle defined by a1 
and bl . The vector connecting points 0 and Q is defined as X I ,  and it can be expressed 
as xl = cos O1n, as shown in Fig. 7.17. We introduce the vectors yl and zl such that 
yl is along the line connecting point Q to the tip of al, and zl is perpendicular to yl 
such that its tip coincides with the end of bl ,  as shown in Fig. 7.18. We can write 

bl = XI + yl + ZI [7.7.P] 

Figure 7.1 6 Figure 7.1 7 Side view 



P ' 

Figure 7.1 8 Top view 

The objective is to express b l  in terms of the components of the A frame. To 
accomplish this, we consider Fig. 7.18 and the circular arc generated by rotating a1 
into bl  . Introducing the notation yo = sin 0 1, we can write 

y l = l y l l = y o c o s @  z l = l z l l = y o s i n @  

YO = (a1 - X I  1 = Ibi - XI 1 17.7.1 01 

from which we have 

yl = (al - xl)  cos @ = cos @ a l  - cos O l  cos @ n 17.7.1 1 I 

The vector zl is perpendicular to both n and yl. Denoting the unit vector along 
zl by e,, we can express it as 

However, since In X a1 1 = sin O1 = yo, and lzl 1 = sin O1 sin@, we express zl as 

n X a1 
zl = Izl(ez = sinel sin@- = s i n a n  X a1 [7.7.131 

sin 0 

Now combining Eqs. [7.7.9], [7.7.11], and [7.7.13], we have 

Using the half-angle formulas cos @ = 2 cos2(@/2)- 1 , l  -cos @ = 2 sin2(@/2), 
and sin@ = 2 sin(@/2) cos(@R), and Eq. [7.7.6], we can write the above equation as 

Introducing the definition of the Euler parameters given in Eq. [7.7.2] into 
Eq. [7.7.15], we obtain the relation between the vector bl  of the rotated axes and the 
unit vectors of the original coordinate frame in terms of the Euler parameters as 

bl  = (2ei - 1 + 2e:)al + (2ele2 + 2eoe3)a2 + (2ele3 - 2eoe2)a3 [7.7.16] 
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One can repeat the procedure used above to relate the vectors b2 and bs to al, 
az, and a3 by the Euler parameters. The results can be expressed in matrix form as 

Introducing the column vector {e} = [el e2 e31T, we can write Eq. [7.7.17] as 

= ((2ei - 1)[1] + 2{eXeIT - 2eo[~]) [ii 1 [7.7.18] 

The first two terms on the right side of Eq. [7.7.18] are symmetric matrices, 
while the third term is a skew-symmetric matrix. A comparison of Eq. [7.7.18] and 
Eq. [7.7.7] indicates that the direction cosine matrix between the coordinate frames 
A and B, in terms of the Euler parameters, has the form 

[elT = [R] = ((2ei - 1)[1] + 2{eXeIT - 2eo[~l) 

The elements of the direction cosine matrix are quadratic expressions in terms 
of the Euler parameters. When using Euler angles, the direction cosine matrix [c], 
given in Eq. [7.5.3], contains trigonometric and other nonlinear terms, and it leads 
to singularities. There are no singularities in [c] when it is expressed in terms of the 
Euler parameters. For any possible orientation of two coordinate frames there exists, 
and it is possible to find, associated Euler parameters. By contrast, every Euler angle 
transformation sequence has a nonlinearity at which point one cannot determine the 
values of the Euler angles. 

7 2  RELATING THE ~ L E R  PARAMETERS TO ANGULAR VELOCITIES 

In Section 7.4 we derived the relationship between the angular velocities of the co- 
ordinate frame and the direction cosines in Eq. [7.4.13], which we repeat here as 

Equation [7.7.19] gives the direction cosine matrix in terms of the Euler parameters. 
We use those results to obtain the angular velocities in terms of the Euler parameters. 
For example, let us calculate the component of the angular velocity in the bl direc- 
tion, o 1. From Eq. [7.4.13] o 1 is the 3,2 element of [;G B], and it can be obtained by 
multiplying the third row of [elT with the second column of [i]. Mathematically, 



Substituting the values for ci, from Eq. [7.7.19] we obtain 

0 1  = 4(ele3 + eoe2)(ele2 + e2el - eoe3 - e3d.o) 
+ 4(e2e3 - eoel)(eoeo - elel + e2e2 - e3e3) 

+ 2(ei - e: - e; + e:)(ezi3 + e3t2 + eok1 + eleo) [7.7.22] 

Using the identity of Eq. [7.7.3] and its derivative, that is, e: + e: + ei + e: = 1, 
eoeo + elel + e2e2 + e3e3 = 0, Eq. [7.7.22] reduces to 

A B  
wl  = [,6 123 = 2[-eleo + eoel + e3e2 - e2e3] [7.7.23] 

Similar expressions can be developed for 0 2  and 03. Introducing the vectors 
(0.) = [0 0 1 w 2 w3lT and {e) = [eo el e2 e31T, we can express them in matrix 
form as 

or, in compact form 

where the notation is obvious. One can show that the coefficient matrix [E*] is or- 
thonormal, that is, its inverse is equal to its transpose, [E*]-' = [E*lT. Using this 
property one can write 

{e) = 0.5[~*]-'{w*) = O S [ E * ] ~ { ~ * )  [7.7.26] 

and can rearrange this as 

The equations relating the Euler parameters to their derivatives are linear, and 
they contain no singularities, making them easier to deal with both analytically and 
computationally. If Eq. [7.7.27] is compared with Eqs. [7.5.9], the derivatives of the 
Euler angles, the resulting simplification becomes clear. We also observe that the 
coefficient matrix in Eq. [7.7.27] is skew symmetric. 

Noting that the first row of Eq. [7.7.24] is essentially 0 = 0, we can generate a 
new matrix [El of order 3 X 4 by eliminating the first row of [E*], writing 

Thus, Eq. [7.7.25] can be expressed as 



The matrix [El has a few interesting properties. One can show that 

[E][EIT = [ l]  [h] = 2[E][ElT [E]{e) = (0) [7.7.30a,b,c] 

However, note that [EITIE] # [I]. Indeed, one can show that 

The relationships discussed so far have been for the Euler parameters that de- 
scribe the transformation from one coordinate system to another. We next explore the 
relations among the Euler parameters when there is more than one transformation. 
We begin with a frame A and transform it to arrive at frame B. We denote the vector 
of Euler parameters that describe this transformation by {e). Let us assume that the 
transformation from A to B is carried out in two steps: first a transformation from A 
to frame A' with associated Euler parameters {e'), and then a second transformation 
from A' to frame B, with associated Euler parameters {e"). We wish to relate {e) to 
{e') and {e"). 

Denoting by [El*] the counterpart of the [E*] matrix in Eq. [7.7.24] for the Eu- 
ler parameters {e'), we can show that the transformed Euler parameters obey the 
relationship 

{e) = [ ~ ' * ] ~ { e " )  r7.7.321 

This relation can be derived by taking the coordinate transformation matrices 
between the A, A', and B frames. 

This process is in essence the reverse of the process in Sec. 7.7.1. As it is an inver- 
sion, the task can be accomplished in a number of ways. One way is to make use of 
the property of the direction cosine matrix and to note that the direction cosines of 
the principal line are elements of the eigenvector associated with the eigenvalue 1. 
The procedure to follow is this: Obtain the eigenvector matrix corresponding to the 
eigenvalue 1, and calculate the rotation angle @ from Eq. [7.3.17]. 

Another and more straightforward way is to use Eqs. [7.7.2] and [7.7.19], which 
yield 

@ @ 
~ 2 1  - c12 = 4eOe3 = 4c3 cos - sin - = 2c3 sin@ 

2 2 

@ @ c13 - ~ 3 1  = 4eoe2 = 4c2 cos - sin - = 2cz sin@ 
2 2 

@ @ 
C32 - C23 = 4eoel = 4cl cos - sin - = 2cl sin @ 

2 2 

These equations can be manipulated in a number of ways to yield expressions 
for cos @ and sin @. The goal in this algebraic exercise is to come up with relations 



that do not have singularity problems. For example, we can obtain an expression for 
sin@ directly from the first of Eq. [7.7.33] in the form 

which has a singularity when c3 = 0. On the other hand, multiplying the first three 
of Eqs. [7.7.33] with c3, c2, and cl, respectively, and adding them yields 

which exhibits no singularities. Another suitable choice is to use the half-angle for- 
mula cos@ = 2 cos2(W2) - 1 with the last of Eq. [7.7.33], which yields 

@ 
Cl, + C22 + C33 = 4 c0s2 - - 1 = 1 + 2 cos @ 

2 
[7.7.36] 

This is identical to Eq. [7.3.17] and leads to 

A commonly used set of expressions, provided eo is not equal to or close to zero, 
is derived by manipulating the diagonal elements of Eq. [7.7.19] as 

Usually, one first finds from Eqs. [7.7.38] the Euler parameter with the largest 
magnitude. This larger quantity is used together with the off-diagonal elements of 
the direction cosine matrix in Eq. [7.7.19] to solve for the Euler parameters. For 
example, if eo is the largest in magnitude, one uses the value of eo from the first of 
Eq. [7.7.38] and finds the remaining Euler parameters using Eqs. [7.7.33] as 

7.7.4 RELATING THE EULER PARAMETERS TO THE EULER ANGLES 
AND VICE VERSA 

This task can be accomplished by generating the direction cosine matrix for a specific 
Euler angle transformation, and using the relations given in Eqs. [7.7.39] for relating 
the Euler parameters to the direction cosines. The results, of course, vary from one 
set of transformation to another. We dispense with the algebra and give the results 



for a 3-1-3 Euler angle rotation sequence with the transformation angles 4 ,  8, $, 
which are 

4 + $  8 eo = cos - 4 - ' sin 8 
2 

cos - el = cos - 
2 2 2 

. 4 -  8 e2 = sin - sin . 4 + $  
2 

e3 = sin - 
2 

cos - 
2 

[7.7.40] 

Results for the 3-2-3 and 3-2-1 sequences are given in Table 7.1 at the end of 
the chapter. Once the Euler parameters are found, one can use Eq. [7.7.19] to cal- 
culate the direction cosine matrix. The reverse problem-determination of the Euler 
angles from the Euler parameters-is more complicated. It can be accomplished in 
a number of ways. In one way, we calculate the Euler parameters and the direction 
cosine matrix in terms of the Euler parameters. Then, we make use of the algebraic 
relations in the direction cosine matrix in terms of the Euler angles. This procedure 
is usually tedious. 

Another approach for finding the Euler angles from the Euler parameters is by 
direct use of Eq. [7.7.40] or its counterpart for other sequences. For a 3-1-3 sequence 
we manipulate the Euler parameters as 

After taking the inverse tangents of the above terms and manipulating, we obtain 

4 = tan-1 (eO) 2 +tan-' (e l )  2 $ = tan-' (eo) 2 - tan-l (2) C7-7-4N 

To determine the exact values of these angles, that is, the quadrants they lie 
in, we can use Eqs. [7.7.40], or we can compare the results with the entries of the 
direction cosine matrix. The angle 8 can be found by noting that 

so that 

The same approach is used for other Euler angle sequences. 

Yet another advantage of using Euler parameters arises when conducting numerical 
computations. Because the Euler parameters are related to each other by Eq. [7.7.3], 
Eq. [7.7.3] can be used as a constant of the kinematic equations of motion, and it 
can be computed at each step of the numerical integration to check for accuracy and 
numerical stability. Other constants associated with this analysis are the diagonal 
elements of Eq. [7.7.20], which should be zero, by virtue of the skew symmetry of the 
angular velocity matrix. The values of the diagonal elements, [$6*lii (i = 1,2,3), 



can be verified using 

These identities can also be checked to verify the accuracy of the numerical compu- 
tation. 

Disadvantages associated with using Euler parameters include the need to use 
four parameters and four differential equations instead of three for the case of Eu- 
ler angles. However, the linearity of the resulting equations and lack of singulari- 
ties far outweigh the complexities introduced by the additional differential equation. 
Another disadvantage is that Euler parameters do not lend themselves to a simple 
physical interpretation as Euler angles do. But here, too, one can always calculate the 
values of the Euler angles from the Euler parameters at every instant of the motion 
and seek a physical interpretation or visualization. 

We conclude the discussion of Euler parameters with this important generaliza- 
tion and an additional definition of angular velocity. Assume we have a vector r and 
we are rotating r by an angle @ about an axis that passes through the origin. Let n 
be the unit vector in the direction of the axis of rotation and r' be the rotated vector. 
We can write the relationship between r and r' by substituting r for a, and r' for bl 
in Eq. [7.7.14], which yields 

where we recognize that cl = cos O1 in Eq. [7.7.14] is equivalent to n rllrl. This 
equation is a very useful general relation for determining the trajectory of a vector 
that is being rotated. A special application of Eq. [7.7.46] is for small rotations over 
small time intervals for finding the rate at which r changes. Indeed, as Q, approaches 
zero, we have 

which, when substituted into Eq. [7.7.46], yields 

Because the infinitesimal rotation is taken about a single axis at that particular 
instant, we recognize that division of dQ, by dt yields the angular velocity expression 
in the form 

Equation [7.7.48b] is yet another definition of the angular velocity vector. Dividing 
Eq. [7.7.47] by dt and using Eq. [7.7.48b] we obtain 

We have hence showed another way at arriving at the angular velocity of a refer- 
ence frame and the relation describing how the angular velocity of a reference frame 
affects the rate of change of a vector fixed in that reference frame. 



Example I 
7.7 

Consider the transformation sequence in Example 7.1. Obtain the associated Euler param- 
eters, and substitute them into Eq. [7.7.19] to calculate the values of [R] to confirm your 
results. 

Solution 

From Example 7.1, the transformation matrix is 

The rotation angle was calculated as aJ = 53.64" and the direction cosines of the principal 
line were found to be 

The sine and cosine of half the principal angle are 

The Euler parameters for this problem become 

Q, aJ 
e2 = c2 sin - = 0.8192(0.4512) = 0.3696 e3 = c3 sin - = 0.5299(0.4512) = 0.2391 

2 2 
[dl 

We next calculate the entries of the transformation matrix. For example, for RI1 and R23 
we have, from Eq. [7.7.19], 

One can show that the rest of the entries of [R] can be found using Eq. p.7.191 as well. 
Now we will calculate the Euler parameters without using the eigensolution of [R]. To this 
end, it is preferable to find the largest of the Euler parameters and use calculations that involve 
division by that parameter. We can accomplish this by looking at the sines and cosines of half 
the principal angle. Erom Example 7.1 or using Eq. [7.7.35] we determine that Q, = 53.64". 
In Eq. [c] we determined the sine and cosine of the half angle. From that information, we 
conclude that eo = cos(aI2) = 0.8924 is the largest of the Euler parameters. We find the 
remaining Euler parameters using Eqs. [7.7.39] as 

Note that there is a slight difference in the fourth significant figure of some of the results 
in Eqs. [dl and Eqs. [f], due to roundoff error. 



Constrained motion takes place because of contact between one or more points on 
one body with a point or a surface on another body. Such contact between two bodies 
can take place in a number ways: 

Motion restriction or transmission through sliding and interconnections. 
Impact. 

Rolling. 

In this section, we analyze constrained motion from a physical perspective and the 
interconnections that obtain such motion. Chapter 8 will analyze impact of bodies, 
as it cannot be treated using kinematics alone. And Section 7.9 will consider rolling. 

The number of degrees of freedom of a system is equal to the number of coor- 
dinates minus the number of constraints. Constraints generated by contact of bodies 
reduce the number of degrees of freedom. To describe the general three-dimensional 
motion of a rigid body, one needs six degrees of freedom. Plane motion is a three 
degree of freedom problem. 

A set of two or more bodies in contact with each other for the purpose of trans- 
mission of motion from one of the bodies to another is called a mechanism. Compo- 
nents of a mechanism are generally referred to as links. 

A joint basically prevents the bodies it connects to translate with respect to each 
other, while permitting some type of rotational motion between the two bodies. The 
most common joint is the pin joint, also known as a revolute joint, shown in Fig. 
7.19. The contact is over the external surface of the pin. The angular velocity of the 
second body, as viewedfrom thejrst body, is denoted by 0 2  and is along the axis of 
the pin. We express 0 2  as 

Cigun 7.1 9 A revolute ioint 



where n is the unit vector along the axis of the pin. The constraint relation can be 
expressed as 

which represents two rotational constraint  equation^.^ Because the joint does not 
permit translational motion at all, the total number of constraints imposed is five. 
Hence, a rigid body connected to a system of rigid bodies by a revolute joint increases 
the degrees of freedom of the resulting system by one. 

Denoting the angular velocity of the first body by 01, we can express the total 
angular velocity of the second body as the sum of the two angular velocities, thus 

Differentiation of Eq. [7.8.3] yields the angular acceleration expression as 

For multilink bodies in plane motion, one can use Gruebler's equation to de- 
termine the number of degrees of freedom. The formula states that the number of 
degrees of freedomp is related to the number of active links and number of joints by 

where k is the number of active links and f is the number of joints. For example, in 
the linkage shown in Fig. 4.41, there are five active links and six joints, leading to 
the conclusion that there are three degrees of freedom. Gruebler's equation can be 
extended to different types of joints as well. The interested reader is referred to texts 
on kinematics or mechanism theory. It should be noted that Gruebler's equation does 
not take into consideration the lengths of the links. One can find geometries where 
Gruebler's equation states that there are zero degrees of freedom and the mechanism 
can move. 

Another commonly used joint is a ball and socketjoint, also known as a globular 
or sphericalpai~: The joint is shown in Fig. 7.20. Ball and socket joints do not place 
a restriction on the angular velocity of the second body as viewed from the first. The 
angular velocity 02 can have components in any direction. Such joints impose three 
constraints that prevent translational motion at the joint. 

=We deduce that Eq. [7.8.2] mathematically represents two constraint equations by considering Section 7.2. 
Equation [7.8.2] can be written in column vector notation as [L]{n} = (01, which represents three scalar equations. 
Because [L] is a singular matrix with rank 2, only two of the equations are independent. 



An important use of joints is in power transmission. In machine dynamics it is 
often necessary to transfer the rotational motion of a shaft onto another shaft rotating 
in a different direction. A common mechanism used to accomplish this is a univer- 
sal joint. There are several kinds of universal joints available, such as the Cardan, 
Rzeppa, Weiss, and Devos joints. All these joints accomplish the task of power trans- 
mission in different ways; each is useful for specific engineering applications. 

The Cardan joint shown in Fig. 7.21 is one of the common and low-cost universal 
joints. The joint consists of two shafts attached to forks, known as yokes, linked to 
each other by a cross. The two shafts are called the input and output shafrs. The 
relative position of the cross with respect to the yokes can change, as the cross can 
rotate inside each of the yokes, making it possible to align the two shafts in almost 
any direction. This gives the universal joint its tremendous versatility and its name, 
because it can operate in transmission problems where the shafts connected to the 
yokes are not aligned, vibrate, or change orientation. 

A universal joint is a single degree of freedom mechanism, because the angular 
velocity of one of the shafts determines the angular velocity of the other. To explore 
the relationship between the two angular velocities we split the universal joint into 
two parts, A and B, as shown in Fig. 7.22. We select the coordinate axes such that both 
shafts lie on the x y  plane. The input shaft, shaft B, is aligned with the x direction, 
and its angular velocity is - e i ,  with 8 measured from the z axis. We rotate the x y  
axes about the z direction by an angle of /3 to get the x'y' axes and place the output 
shaft A along the negative x' axis. The angular velocity of the output shaft is -$it,  
with 4 measured from the z axis as well. We denote the unit vectors along the sides 
of the cross as a and b, respectively, and express them as 

a = sin 4 j '  + cos 4 k  = - sin 4 sin pi + sin 4 cos /3 j  + cos 4 k  [7.8.S] 

It follows that the two unit vectors must be perpendicular to each other. The dot 
product between the two gives the constraint relation between the angles 8 and 4. 

Input shaft 

shaft 

Figure 7.2 1 A Cordon loin! 



We have 

It is of interest to compare the angular velocities of the input and output shafts. 
We express 4 in terms of 8 and 6 .  We rewrite Eq. [7.8.6] with the 4 and 6 terms on 
opposite sides of the equation as 

sin 4 tan($ = - = - cos 6 
cos 4 sin 6 cos /3 

which, when differentiated, yields 

L= e 
cos2 4 sin2 6 cos P 

To eliminate 4 from this equation we make use of the identity cos2 4 = 141 + 
tan2 4). Substituting the value of tan 4 from Eq. [7.8.7] into this identity and using 
it with Eq. [7.8.8], we obtain the relation between the angular velocities as 

cos p e " 
I - sin2 6 sin2 p 

The angular velocities of the input and output shafts are not linearly related to 
each other, except when p = 0, in which case the joints are aligned. The Cardan 
joint is not what is called a constant velocity joint, making it impractical to use in 
applications such as the steering of front wheel drive automobiles, as it would lead to 
slipping tires and large stresses on power transmission components. In the extreme 
case, when p = 90°, the two shafts are perpendicular and no motion can be trans- 
mitted. This is known as gimbal lock. However, if two Cardan joints are used to join 
two parallel shafts, the angular velocities of the two parallel shafts will be the same. 
It should also be noted that there are several constant velocity joints available such as 



the ones discussed earlier. Many of these joints provide a near constant velocity 
relationship between the input and output shafts for a specific range of operation. 

Here one part of a body slides over another body. The simplest form of sliding is 
to have a point, a line, or a surface on a body sliding on a surface. This surface is 
the contact plane. The associated constraint is the same as the very first constraint 
relations we studied in Chapter 4. The velocity of the contact point does not have a 
component normal to the plane of contact, and the constraint can be written as 

where n is the unit vector in the normal direction at the point of contact. If more than 
one line on the rigid body slides on a surface, then the angular velocity of the body 
can only have a component perpendicular to the plane, so that o is parallel to n. The 
resulting two constraints can be described by 

A special case of sliding on a surface is sliding in a guide or in a slot (Fig. 7.23). 
The joint formed by the sliding components is referred to as a prismatic joint. In 
this case translational motion is possible in only one direction, and there are two 
constraints on the translational motion. Denoting the unit vector in the direction of 
the guide by h, we can write the constraint as 

where we note that Eq. [7.8.12] represents two constraint relations. Further, no rota- 
tion is permitted, so a prismatic joint represents a total of five constraint equations. A 
prismatic joint for translational motion is basically the equivalent of a revolute joint 
for rotational motion. 

In another form of sliding contact, a collar slides on a bar while turning around it. 
The simplest case here is when the collar is not attached to another body, as shown 
in Fig. 7.24. Such a connection is referred to as a slider Denoting the unit vector 
along the rod by h, we note that the collar can only have a velocity in the direction 
of h, vp = vph SO that the constraint associated with the translational motion is Eq. 
[7.8.12]. 

Figurn 7.23 A prismatic joint Figure 7.24 A slider 



In addition, the collar can only have an angular velocity about the axis of the 
rod, ocoll, = wcOll,h, so that the constraint associated with the rotational motion is 

ucollar X h = 0 [7.8.13] 

There are a total of four constraints restricting the motion, so the slider has two 
degrees of freedom: one translational and one rotational. 

In this case, a body is attached to a slider by means of a pin, fork, or universal joint, 
as depicted in Fig. 7.25. These two elements in contact (rod and slider) are also 
referred to as a cylindrical pair. The collar is sliding on and turning around a guide 
bar. Consider the coordinate frame xyz where the x axis is aligned with the collar. 
The angular velocity of the collar becomes o,,ll, = wcoll,i. The coordinate axes 
xy'z' are obtained by rotating the xyz axes about the x axis by an angle 4. It follows 
that wcoll, = 4. The xy '  plane defines the plane of the collar to which the pin joint is 
attached. The body attached to the collar can have an angular velocity in the direction 
perpendicular to the plane of the collar, in the z' direction. We can then write 

o r o d  = 4i + 6k '  = wcOll,i + ~ ~ ~ ~ ~ ~ ~ ~ , k '  = wcoll,i' + wrod/coll,k' C7.8.141 

Thus, the angular velocity of the rod cannot have a component in the y' direction. 
The constraint for the total angular velocity can then be written as 

o r o d  *j' = 0 [7.8.15] 

The total number of constraints on the rod becomes three, two for the transla- 
tional motion and one for the rotational. The angular acceleration of the rod cin be 
obtained by differentiating Eq. [7.8.14], 

Figun 7.21 A cylindrical pair 



When the collar is attached to the rod by a ball and socket joint, there is no 
restriction on the angular motion of the rod with respect to the collar. The rod then 
has four degrees of freedom: one translational and three rotational. 

As an illustration of the constraint relations for combined sliding and rotation, 
first consider plane motion and the rod AB where points A and B rest on collars 
that slide on bars perpendicular to each other, as shown in Fig. 7.26. Each collar 
introduces one constraint on the motion, resulting in a one degree of freedom system. 
The two constraint equations are 

These constraint relations can be expressed in different forms as well. Also, the 
rotational constraint relations associated with the pin did not come into the picture, 
because the rotational motion of the rod is restricted to be perpendicular to the plane 
of motion. 

We next extend the discussion to the three-dimensional case, where we consider 
a rod AB in which points A and B are attached to collars and the collars slide on 
perpendicular guide bars (Fig. 7.27). However, in this case the guide bars are not on 
the same plane. 

Let us analyze the attachments of the points to the collars. If both points A and 
B are attached to the collars with pin joints, we end up with six constraint equa- 
tions, three for each pin joint. It follows that the resulting system has zero degrees 
of freedom. No motion of the rod AB is possible. 

When one of the joints is a ball and socket joint, say, the joint at A, the number 
of constraints is reduced to five, two translational constraints for joint A and three for 
joint B. The system has one degree of freedom. If the motion of any point on rod AB 
is specified, one can determine the characteristics of the motion of the rod, as well 
as the collars. In order to be able to do this we have to generate an expression for the 
angular velocity of the rod. It is preferable to work with collar B, as we will make use 
of the properties of the angular velocity of the rod with respect to the collar. From 

Figurn 7.26 Guide bars on Figun 7.27 Guide bars not on same plane 
same plane 



Eq. [7.8.14] we can write 

%xi =  collar + ~rod/col lat  

The angular velocity of the collar B is 

The angular velocity of the rod as viewed from the pin joint is perpendicular to 
the plane defined by rod AB and the guide bar. The unit vector perpendicular to the 
plane of symmetry of collar B can be obtained by taking the cross product of any two 
vectors along rod AB and the guide bar. For example, taking the vectors as ~ B / A  and 
r ~ 1 0 ,  we obtain the unit vector, denoted by e, as 

The sign of the unit vector can be chosen by convenience. In the xy'z' coordinate 
system (Fig. 7.27) the unit vector in the z' direction, k', can be found using the 
relation 

so that 

Equation r7.8.181 can also be analyzed from an Euler angle point of view. Us- 
ing a 1-3-1 coordinate transformation (similar to 3-1-3 but with x and z changing 
places, and we are starting with coordinates xyz and going into x'y'z'), the angular 
velocity of the collar becomes the precession with the angle 4 and nutation with the 
angle 8, such that 8, = o,d/coll,. Because of the constraints imposed on the rod, the 
precession and nutation rates are related to each other. There is no spin. When both 
the joints are ball and socket joints, the system has two degrees of freedom, with the 
spin of the rod about its own axis constituting the second degree of freedom. 

Ixampk I The rod AB in Fig. 7.27 is constrained to move between the horizontal and vertical guides. 
7.8 Given that the velocity of point A is 2 m/s downward, and a = 6 m, b = 3 m, c = 4 m, find 

the velocity of point B and the angular velocity of the rod. 

Solution 
We write the relative velocity expression for points A and B as 

VB = VA + %d x ~ B I A  

where 

VA = -2j mls ve = vBi m/s ~ B / A  = 6i - 3j + 4k m 



With the unit vector i describing the direction along the collar B, we use Eq. [7.8.21] to 
find k', thus 

so that the angular velocity of the rod can be expressed as 

Comparing the elements of k' and Fig. 7.27 we conclude that 4 has a negative value (clock- 
wise rotation) for this problem. So does the angular velocity of the collar. We introduce Eqs. 
[b] and [dl into Eq. [a], which yields 

Equating the components of Eq. [el in the x, y, and z directions, we have a set of three 
equations and three unknowns oc0ll,, wdcO1l, ,  and VB, in the form 

i components -+ VB = 5 ~ ~ ~ ~ ~ ~ l ,  [ fl 

18 
j components -+ 0 = -2 - 4wcoll, + - ~ ~ o d / ~ ~ l 1 ~  

5 C d  

k components + 0 = - 3 
24 

Wcollar - -Wmdcollar 5 Chl 

Solving Eqs. [fl-[h], we obtain 

1 
w ~ ~ ~ ~ ~ ,  = - rads wcoll, = - 8 radls u p  = 1 mts 

5 25 
Cf I 

Note that we have three equations for the three unknowns, even though the system has a 
single degree of freedom. 

Next, consider finding the angular velocity of the collar A. To accomplish this, we write 
the angular velocity of the rod in terms of the angular velocity of the collar B as 

1 1 
u m d  = wcollaBi + Wrod,col lar~-(3k + 4j) = -(-8i + 4j  + 3k) rads 

5 25 Cil 

The angular velocity can also be expressed by noting that the angular velocity of collar 
A is in the y direction 

Use of the relative velocity relation will not lend any more information, so we need to look 
at the nature of the angular velocity. Previously, we used a 1-3-1 Euler angle transformation 
to quantify the angular velocity and said that there is no spin associated with an axis along the 
length of the rod. When visualizing the angular motion with respect to collar A or collar B, 
we can then quantify this as the constraint o ,dco l l ,~  and o d c o l l , ~  not having a component 



along the axis of rod AB. We can then write 

The second of these equations is automatically satisfied. The first equation can be solved for 
the angular velocity of the collar. Carrying out the calculations, we obtain 

An interesting case of constrained motion of rigid bodies is rolling. A body can roll 
over a fixed surface or over another body. For rolling to take place between two 
bodies, a continuous sequence of points on one of the bodies must be in continuous 
contact with a continuous sequence of points on the other body. A necessary condition 
for the continuity is that the contacting bodies must have smooth contours, so that 
the radii of curvature exist at each contact point on both b ~ d i e s . ~  The contact that 
takes place is point contact (for thin disks and spheres) or line contact (for cylinders 
and thick disks, such as rigid wheels). The contour of a body is considered smooth 
enough to permit rolling if the peaks and dips on its surface are exceedingly small 
with respect to the overall dimensions of the body. The motion of bodies with sharp 
edges or with rough surfaces cannot be classified as rolling. 

Rolling can occur in a variety of ways, as depicted in Figs. 7.28 and 7.29. The 
most common form is for a body to roll over a fixed surface; the surface can be pla- 
nar or curved. A second form of rolling is for two bodies to roll together. Examples 
of this are gear mechanisms and a sphere rolling over another sphere. The contact- 
ing points define the plane of contact, which is tangent to both contacting bodies. 
The rolling constraint is defined as no relative velocity of the contacting points per- 
pendicular to the plane of contact. At the point of contact, the radii of curvature of 

Plane of contact 
/ 

Figun 7.28 Rolling of a body 
over a surface Figure 7.29 Rolling of two bodies 

I 3Note that for a straight line the radius of curvature exists and it is at infinity. 



the contours of the rolling bodies are along the same line. This last statement is a 
geometric constraint that determines whether one body can roll over another. 

Consider two bodies rolling over one another, as shown in Fig. 7.29. The con- 
tacting points are denoted by C1 and C2, with velocities of vc, and vc,, respectively. 
Let n denote the unit vector perpendicular to the plane of contact. The relative ve- 
locity of one contacting point with respect to the other is along the plane of contact. 
The rolling constraint can then be expressed as 

A rolling body is a five degree of freedom system. If the contacting points have 
the same velocity, the motion is referred to as roll without slip. If the contacting 
points have different velocities, the motion is referred to as roll with slip. Whether 
slipping exists or not depends on the forces acting on the rolling bodies, as well as 
on the amount of friction between the rolling bodies. The no-slip condition can be 
expressed as 

A body rolling without slipping has three degrees of freedom. An interesting 
point to note about rolling contact is that the accelerations of the contacting points 
are different, whether there is slipping or not. The contacting points approach each 
other, they have contact, and then they separate and move away from each other. 
The constraint force is applied to the contacting points only for one instant. Also, 
the accelerations of the contacting points usually have components along the contact 
plane. Hence, there is no direct constraint relation associated with the acceleration of 
rolling bodies. This can be remedied by taking into consideration that the shapes of 
the bodies are fixed and that the radius of curvature exists for all contacting points, 
which permits one to write the acceleration expressions for each body. 

Let us first consider plane motion of an axisymmetric body-such as a disk or 
cylinder--of radius R  that rolls on a fixed flat surface as shown in Fig. 7.28. We 
use as generalized coordinates the position of the center of mass, X and Y, and the 
rotation angle 8. The angular velocity of the body is o = - o K ,  where w  = e .  We 
can express the velocity of a point P on the body as 

where r p l ~  is the position vector from the center of mass to P. The path followed by 
a point on the circumference of the rolling boiy is called a cycloid. Fig. 7.30 shows 
a cycloidal path. To find the velocity of the contact point C, we write Eq. [7.9.3] in 
terms of C. The no-slip condition can be expressed as vc = 0. Introducing this into 
Eq. [7.9.3], we obtain 

which we can conveniently write as 

so that x = R o ,  Y = 0, and so roll without slip for plane motion is a single degree 
of freedom problem. Because there is no velocity of the point of contact C, the body 



Figure 7.30 Cycloidal path 

can be visualized as rotating about C at that instant. For roll without slip the point 
of contact is the instant center. 

The acceleration of a point P on the rolling body can be obtained by differenti- 
ating Eq. [7.9.3], 

The acceleration of the center of mass can be expressed as ac = d(Rw1)ldt = 

RaI. The angular acceleration is a = - h K  = - a K .  The acceleration of a point 
on the rolling body is 

ap = RaI + ( - a K  X rplG) - w2rplG [7.9.7] 

If we select point P as the contact point C r p l ~  = - RJ and we obtain 

Now consider roll without slip on a fixed, concave-upward planar curve as 
shown in Fig. 7.31. We use a set of normal and tangential coordinates. It follows 
that we can write the velocity of the center of mass as 

VG = vet = Rwe, [7.9.9] 

The acceleration of the center of mass thus becomes 

v2 R ~ W *  
a~ = vet + -en = Rae, + - en 

P P 

Center of curvature 

Figurn 7.3 1 Rolling inside a concave surface 



Substituting this expression into the relative velocity expression gives the acceler- 
ation of any point on the body. For the special case of the instant center, we have 
~ C / G  = - Ren and 

If the curve on which the disk is rolling is convex, the direction of the unit vector 
in the normal direction is reversed and ~ C / G  = Ren. The acceleration of the instant 
center C becomes 

Next consider rolling in three dimensions. We make use of a 3-1-3 transforma- 
tion sequence to describe the rolling of a flat axisyrnmetric body, such as a thin disk 
or a coin. We begin with an inertial set of axes XYZ, with the initial position of the 
coin as lying flat on the XY plane, as shown in Fig. 7.32. Figures 7.33 and 7.34 de- 
pict the disk after the first two Euler angle transformations have been carried out. 
The generalized coordinates used to describe the general motion of the disk are the 
coordinates of the center of mass X, Y, Z, and the three Euler angles 4 ,  8, and $. 
We use the F frame as the relative frame. From Eq. [7.5.3], the axes xyz and XYZ 
and unit vectors ijk and IJK are related by 

i = c 4 I  + s 4 J  j = -s&81+ c@eJ + s8K 

k = s4s81-  c4sBJ + c 8 K  [7.9.13] 

It should also be noted that the contact point between the disk and the surface is 
along the y axis. The angular velocity of the disk is 

X ' 

Figurt, 7.32 Initial position and precession 



Cigun 7.33 Nutation Cigun 7.34 Side view 

so that ox = 9, oy = $sing, ando,  = 4cos8 + 4. The angular velocity of the 
reference frame is 

wf = e i + $ s i n B j + / c o s 9 k = w X i + o y j + * k  C7.9.151 
tane 

We thus have 

o f x = o X = 0  O ~ ~ = O ~ = ~ S ~ I ~ O  o f Z = -  = 4cos9 C7.9.161 
tane 

First, consider roll with slip. When the disk is rolling and slipping, the point of 
contact C has a nonzero velocity along the roll surface. Let us write the velocity of 
point C using the relative velocity expression between C and the center of mass, and 
express the result in terms of the inertial coordinates. Thus 

The constraint associated with roll with slip states that the velocity of point C 
has no component in the vertical, that is, vc K = 0. Setting the components of vc 
in the Z direction to zero, we obtain 

z = RB cos e [7.9.181 

This constraint is recognized as being the time derivative of 

Z = RsinO C7.9.191 

so that the constraint associated with roll with slip is holonomic. The constraint has 
a physical explanation: it represents the height of the center of mass from the roll 
surface. 



We next consider roll without slip, where the velocity of the contact point C is 
zero. Hence, there are three constraints. Writing vc = 0 in terms of the components 
along the inertial axes X and Y, we obtain from Eq. r7.9.171 

x = R e s + s e  - ~ ( 6 ~ 8  + $)c+ Y = -Recc$s8 - ~ ( 4 ~ 8  + $)s+ 
c7.9.201 

These equations are not perfect differentials and cannot be integrated to a form sim- 
ilar to Eq. [7.9.19]. Hence, constraints associated with the no-slip condition are non- 
holonornic. 

For rolling without slipping, the velocity of the center of mass can be expressed 
in terms of the inertial coordinates as 

We can also express VG by using the relative velocity expression with vc = 0, which 
yields 

VG = cob X ~ G I C  = (9i + 4 s 0 j  + ( 4 c 8  + 4)k) x Rj = ~ e k  - ~ ( 4 ~ 8  + 4)i 
c7.9.221 

In terms of the angular velocity components along the F frame 

Consider the acceleration of the center of the disk. One can calculate a~ in a 
number of ways. The most cumbersome is to differentiate Eq. [7.9.21]. This ap- 
proach does not yield any insight into the nature of the problem, except for the com- 
ponent of the motion in the Z direction. A more convenient approach is to use the F 
frame and to apply the transport theorem to Eq. [7.9.23], which yields 

Substituting the values for v~ and wf into Eq. [7.9.24], we obtain 

W 
a~ = Rhxk - Rh,i + (o,i + oyj + L k )  x (RwXk - Rozi) 

tan 0 

In terms of the Euler angles, we write the expression for the acceleration by 
substituting Eq. [7.9.14] and its derivatives into Eq. [7.9.25], which yields 

The advantages of using a reference frame not attached to the body are obvious. 
Attaching the relative frame to the body would necessitate use of the spin angle J, in 
all calculations. One would not be able to use the relation ac = cllb X rclc + wb x 
(wb X rGIC) to find the acceleration of the center of mass. Point C has a nonzero 



acceleration. Another reason for not using a body-fixed frame is that the position of 
the contact point between the disk and the surface changes with respect to a body- 
fixed frame as the disk rolls. One would have to take into consideration the motion 
of the point of contact. By contrast, viewed from the F frame, the point of contact 
always lies on the XY plane and Fvc K = 0. 

Now consider the acceleration of the contact point C. We first calculate the 
angular acceleration of the body using the transport theorem. Noting that o, = 
o b  - of = (0, - m y /  tan 0 ) k ,  we write 

tan 9 tan 0 

The relative acceleration equation between C and G is 

ac = ac + arb X ~ C I G  + ~b X ( o b  X ~ C I G )  [7.9.28] 

Substituting in the values of ~ C / G  = -Rj and the values for a c ,  o b ,  and a b  

from Eqs. [7.9.26], [7.9.14] and [7.9.27], respectively, and carrying out the algebra, 
we obtain 

Ixampk I The cone shown in Fig. 7.35 is of height L and apex angle /3. It rolls on a smooth surface 
7.9 without slipping. The center of the base has a constant speed v. Find the angular velocity and 

angular acceleration of the cone. 

To find the angular velocity of the cone we make use of instant centers. Figure 7.36 shows the 
geometry. The hl h2h3 axes move with the line of contact between the cone and the horizontal 
surface. They are similar to the F frame. The vertical distance between point B and the surface 



is L sinp.  Because of the no-slip condition, A is an instant center and the velocity of B is 
equal to the angular velocity times the height. The total angular velocity of the cone is then 

u w = -  
L sin p 

We express the angular velocity in vector form as w = -ul(L sin P)h3. To see this, we 
note that VB = uhl and ~ B / A  = L sinph2 and VB = w X TBIA. 

To find the angular acceleration, we visualize the motion of the cone as the superposition 
of two angular velocities. The first angular velocity wl is that of a cone which is only rotating 
in the horizontal plane. The second angular velocity, w2,  is the angular velocity of the cone 
about its symmetry axis. We note that the hl h2h3 coordinates are rotating with angular velocity 
w 1 .  We thus have 

From Fig. 7.36 we find wl as 

u 
0 1  = - 

L cos p h2 

This can be explained by considering the velocity of point B and that point B is rotating about 
the h2 axis. The distance between B and the h2 axis is L cos P .  The total angular velocity is 

where w2 is the spin velocity of the cone. As the direction of this spin is along the symmetry 
axis of the cone, w2 can be expressed as 

0 2  = w2f3 = 0 2  sin ph2 + 0 2  cos p h3 [@I 

We then use Eqs. [c] to [el to relate the angular velocities as 

u 
0 = -- U 

h3 = w l  + w 2  = - h2 + 0 2  sin phz + w2 cos ph3 [fl L sin /3 L cos p 

which can be solved for w2 

u - W 
w2 = - - -- 

L cos p sin p cos P 

Noting that h3 = cos p f 3  - sin pf2 ,  and R = L tan p ,  we can express the angular velocity as 

u U ucosp u u 
0 = -- h3 = - f 2  - - f3 = - f 2  - - f 3  

L sin /3 L Ls inp  L R 

The angular acceleration of the cone can be expressed more easily using the H frame, 
thus 

u u 
a = w l X w 2 = -  hZ X - (sin p h2 + cos /? h3)  

L cos /3 L cos p sin /3 

- - - u2 
L2 cos p sin p hl 

This problem can also be viewed from a Euler angle point of view, with w 1 denoting the 
precession rate, constant nutation angle P ,  and spin rate of w2. 



Example 1 A disk rolls over a horizontal surface while it rotates about a shaft, which is attached by a 
7.1 0 revolute joint to a bar with an arm, as shown in Fig. 7.37. The shaft is rotating with speed ol. 

Find the angular velocity and angular acceleration of the disk. 

Soldon 

The reference frames are shown in Fig. 7.38. We obtain the relative frame fifif3 by rotating 
the reference frame attached to the shaft (rotating with ol = 6 about the fixed a3 axis) by 
an angle of 270" - /3 about the d2 axis. We write 

The angle P ,  which is fixed, is related to the height of the arm by 

The angular velocity of the disk can be written as the sum of the angular velocities of 
the shaft and of the disk with respect to the shaft, or 

in which 

are the respective angular velocities. Note that oz is not known, and it will be found by using 
the rolling constraint. To do this, we obtain an expression for the velocity for the contact point 
as 

where 

V G = - ( L + L C O S ~ ) ~ ~ ~ ~  r c , ~ = - R f ~  [fl 
so that we have 



Solving the above, we obtain 0 2  in terms of w 1 as 

(L + L cos p - R sin p )  
w2 = w1 

R 
We recognize the term in the brackets above to be the horizontal distance between 0 and C. 
Introducing the ratio r = LIR, we can now write the angular velocity of the disk as 

o = wld3 - w2f3 = w1cospf1 - wl(r + rcosp - s inp + sinP)f3 

= w, cos pfl - wlr(l  + cos P)f3 111 

To find the angular acceleration we differentiate Eq. [i] with the result 

a = cjEl + of X o, = h l d 3  - h2f3 + (WI cospfl - w1 sinpf3) X (-w2f3) 111 

Note that h2 is obtained by direct differentiation of Eq. [h]. Substituting in all the values 
and carrying out the algebra we obtain 

We cannot obtain the expression for the angular acceleration by direct differentiation of 
Eq. [i] because fi f2h is not attached to the disk. 

Figures 7.39 and 7.40 show the top and side views of a tricycle. Do a kinematic modeling on I Examplm 
the tricycle and determine the number of degrees of freedom, assuming that all wheels roll 7.1 1 
without slip and the tricycle does not tip or roll. 

Solution 
We select the inertial coordinates XYZ such that the tricycle moves on the XY plane, and 
we attach an x y z  coordinate system to the tricycle at point G. The x y z  axes are obtained by 
rotating the XYZ coordinates by an angle of IC, about the Z axis, as shown in Fig. 7.41. 

The velocity of point G and the angular velocity of the main body are 

and considering that I = cos $i - sin $j, J = cos IC,j + sin +hi, we write the velocity of G in 
the x y z  coordinate system as 

Figure 7.39 Top view of tricycle 
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Flgun 7.40 Side view 

X 

Clgun 7.4 1 

We next calculate the velocity of point D l ,  which is the point to which the right rear 
wheel is connected. Noting that ~ D , / G  = - L j  - hk + L3i, we obtain 

n1 x r,,,, = *k X ( - L l j  - hk + L3i) = ~ l * i  + L& [GI 

and 

The point of contact between back wheel on the right and the ground is denoted by C1.  
The angular velocity of that wheel is expressed as 

and, noting that r c , , ~ ,  = - Rl k ,  the velocity of C I  becomes 

Because of the roll without slip assumption, the velocity of C1 is zero, vc, = 0. This is 
tantamount to two constraint equations 

and we note that both constraints are nonholonomic. We can obtain the expression for the 
velocity of the point of contact for the back wheel on the left, vc,, by substituting - L3 for L3 
and 92 for el  in Eq. [f]. Since that wheel also rolls without slipping, we set vc2 to zero, which 
yields one additional constraint, namely the component of vc2 in they direction 

The component of the velocity of C2 in the x direction is the same as its counterpart for 
C1.  It is interesting to note the velocity of point A, which is obtained by setting Lj  = 0 in 
Eq. [dl as 



However, from Eq. [g], the x component of v~ is zero, leading to the conclusion that 

v, = (Y cos JI - x sin JI)j [kl 

The velocity of point A is always only in they direction, that is, in the direction of the body of 
the tricycle. This is the constraint mentioned in Chapter 4, when discussing vehicle dynamics 
problems. By virtue of the roll without slip approximation, we end up with this constraint. 

Next, consider the steering mechanism. The turning of the wheel is denoted by 4 and 
the rotation of the wheel by 83. We attach a coordinate system x'y'z' to the wheel (obtained 
by rotating the xyz axes about the z axis by an angle 4). The velocity of point E, about which 
the front wheel turns, is obtained by 

in which 

Substitution of all these values into Eq. [l] yields 

v, = (X cos JI + Y sin JI - (L2 + L4 sin j3 cos +)r(, - L4 sin j3 cos 44)i  

+ (Y cos JI - x sin JI - L4 sin j3 sin +(I,& + 4))j [nl 

To find the velocity of the contact point between the front wheel and the ground, we first 
develop an expression for the angular velocity of the front wheel. The wheel is at an angle of 
4 with the body of the tricycle, so that the angular velocity of the wheel becomes 

0 3  = - e3i1 = ( 4  + 4)k - b3i1 = (I/, + 4)k - e3 cos +i - e 3  s in4j [el 

Noting that ~ c , / E  = - R3k, we have 

Combining Eqs. [n] and [p] we obtain for the velocity of C3 

vC3 = VE + 0 3  ~ c ~ I E  

= [ ~ c o s $ +  YsinJI-(L2 + ~ 4 s i n j 3 c o s 4 ) i -  ~4sinj3cos&$+ ~~1$3s in~#~] i  

+ [YcosJI - ~ s i n J I  - ~ 3 8 3 ~ 0 ~ 4  - L4sinj3sin+(4 + 4 ) ~  [q] 

The roll without slip condition states that the velocity of C3 is zero, which yields two 
more constraints that are also nonholonomic, which we write 

Let us now calculate the number of degrees of freedom for this system. We introduced 
seven generalized coordinates: X, Y,  JI, e l ,  02, 4 ,  and 03. We generated five constraints, 
Eqs. [g], [h], [i], [r], and [s]. Hence, the tricycle is a two degree of freedom system. 
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1. The bar in Fig. 7.42 is always in contact with the comer D and the curved path. 
Find the angular velocity and angular acceleration of the bar as a function of the 
angle 8.  

2. For the system shown in Fig. 7.43, find the instantaneous center of the rod AB 
and the angular velocity of the rod. 



3. A coordinate frame B is obtained by rotating frame A by an angle of 75" about 
a line joining the origin and the point (0.5, -0.7,0.4). Find the direction cosine 
matrix [c ]  between the two frames. Then, calculate the direction cosines of the 
principal line from [c] and compare your result with the given information. 

4. A reference frame A is transformed into a reference frame B using a transfor- 
mation consisting of two rotations. First a rotation about the a,  axis, by an angle 
$(t) = 0.3t, and then a transformation about the resulting a; axis by an angle 
8(t)  = 0.6 sin 4 4 .  Using Eq. [7.4.13] find the angular velocity of the frame B 
with reference to frame A at t = 3 seconds. 

5. Solve the previous problem using Euler angles. 

6. A disk of radius R is attached to a rod of length L2,  and it rotates about it with 
angular velocity w (Fig. 7.44). The rod pivots about an arm of length L1 with 
angle 8. This arm is attached to a vertical shaft that is rotating with the constant 
angular velocity of LR. Find the angular velocity and angular acceleration of the 
disk, and the velocity and acceleration of the center of the disk. 

7. Figure 7.45 depicts a spacecraft undergoing general motion. There is a point 
mass sliding inside a frictionless tube along the b2 axis. Using a 3-1-3 Euler an- 
gle transformation (+, 6, $) and denoting the position, velocity, and acceleration 
of the point mass with respect to the symmetry axis of the spacecraft by r, u, and 
a, respectively, derive expressions for the absolute velocity and acceleration of 
the mass. First write these expressions in terms of angular velocity parameters 
wi (i = 1,2,3). Then express them in terms of the Euler angles. 

top view 

Figure 7.44 Figure 7.45 



Figure 7.46 

8. Figure 7.46 depicts a spinning top on a cart. The cart is moving along a curved 
track on the XY plane, the radius of curvature of the apex is p, and the constant 
speed of the apex is v. Find the velocity and acceleration of the center of mass of 
the top using a 3-2-3 transformation (+, 8,4), with the inertial axes as shown. 

9. Consider a 3-2-1 transformation and express the partial angular velocities as- 
sociated with the angular velocity vector, using the components of the angular 
velocity along the body axes as the generalized speeds. 

A coordinate frame B is obtained by rotating frame A by an angle of 75" about a 
line joining the origin and the point (0.5, -0.7,0.4). Find the Euler parameters 
associated with this rotation. From the Euler parameters, calculate the transfor- 
mation matrix [R] between the two coordinate frames. 
The orientation of a rigid body is described by a 3-2-3 Euler angle rotation, with 
the rotation angles +, 8, and 4. At a certain instant, the values of the Euler 
angles and their rates of change are JI = 45", 1/1 = 0.2 rads, 0 = 30", 8) = 

0.1 rads, 4 = 30°, 4 = 1.0 rads. Find the values of the Euler parameters and 
their derivatives for this instant. 
Find the counterpart of Eq. [7.7.40] for a 3-2-1 transformation and for a 3-2-3 
transformation. 

Solve Problem 2.10 using Eq. [7.7.46]. 

Solve Problem 2.11 using Eq. [7.7.46]. 



15. Rodrigues parameters are defined as pi = eileo (i = 1,2,3). The Rodrigues 
vector is defined as p = n tan(W2), where n is the unit vector associated with 
the principal line. Derive an expression for the direction cosine matrix [c] in 
terms of the Rodriguez parameters. 

16. Show using the definition of the Rodrigues vector from Problem 15 that the 
vectors r and r' in Eq. [7.7.46] are related by r' = r - ( r  + r') x p. 

17. Consider the Cardan joint in Fig. 7.21. Plot Eq. [7.8.9] for different values of /.3 
and identify the range in which the Cardan joint can be assumed as a constant 
velocity joint (specified here as less than 3 percent variation in angular velocity). 

18. The collars A and B are attached by a rod of length 30 cm, as shown in Fig. 7.47. 
The joint at A is a ball and socket joint and at B a pin joint. Collar A moves in 
the Z direction, while the guide bar for collar B is on the XY plane. At the point 
shown collar A is at a height of 24 cm and collar B is moving with a speed of 
10 cmls. Find the angular velocity of the rod. 

19. The collars A and B are attached by a rod of length 30 in. The joint at A is a pin 
joint and at B a ball and socket joint, as shown in Fig. 7.48. The motion of collar 
B is restricted to the XY plane. At the instant shown, the rod is at a height of 
25 in and collar A is moving down with the speed of 10 inlsec. Find the velocity 
of collar B and the angular velocity of the rod. 

20. The two guide bars are on the same plane, as shown in Fig. 7.49. A rod of length 
20 in. is attached to two collars, one at each end, by pin joints. Find the velocity 
of collar B if collar A has a speed of 3 in./sec at the position shown. 

21. A sketch of a centrifugal governor is shown in Fig. 7.50. As the angular speed 
fl increases, point D moves upward, forcing the point C to move up as well. 
We are given that f3 = 40°, point D is moving up with speed 0.2 m/s, and the 

eigun 7.47 ~isure 7.48 



Figun 7.49 Figun 7.50 

governor is rotating with R = 200 rpm. Find the angular velocity of the arm 
DE and the velocity of the collar E with respect to the shaft AC. 

22. A cylinder of radius R rolls inside a parabolic surface defined by the relation 
y = kx2,  as shown in Fig. 7.51. Find the critical value of k that pennits the 
cylinder to roll continuously inside the parabola. 

23. Consider the disk in Fig. 7.33. Show that the velocity of the contact point, as 
viewed in the F frame, that is, Fvc, always lies on the XY plane. 

24. Consider the gyropendulum of Fig. 7.14. Here, the disk is rotating without slip- 
ping inside a cylinder of radius D = (&L + R)/2, as shown in Fig. 7.52. Given 
a constant precession rate of 1.8 radls, find the corresponding spin rate, as well 
as the angular velocity and angular acceleration of the disk. 

Figun 7.5 1 Figun 7.12 



Consider the disk in Example 7.10. Now, the shaft arm is moving upward with 
respect to the horizontal surface with the relationship h = constant. This causes 
the point of contact between the disk and the surface to slip in the d l  direction, 
while the rolling motion is still without slipping. Given that w 1 = constant, find 
the angular velocity and angular acceleration of the disk for R = Ll4. 

The disk in Fig. 7.33 is rolling without slipping. Consider that R = 8 in, and that 
when the nutation angle 8 = 75" and is constant, the precession rate is observed 
to be 0.4 radls and the angular velocity of the disk about its symmetry axis is 
15 rad/s. Find the angular velocity of the disk and the velocity of the center of 
the disk. 

The small cone in Fig. 7.53 rolls on the large cone (both cones are right-angled) 
and makes a trip every four seconds. Find the angular velocity and acceleration 
of the small cone. 

Consider the unicycle in Fig. 7.54. The wheel is of mass m and radius R and 
is approximated as a disk, while the rider is modeled as a slender rod of mass 
3m and length 3R. Find the velocity and acceleration of the center of mass of 
the rider in terms of the Euler angles t,h, 8, and 4 and a 3-2-3 transformation. 
Assume roll without slip and that the rider is upright. 

Consider the axle in Fig. 7.55 to which two wheels of identical size are attached. 
The wheels roll about the axle without slipping. Perform a kinematic analysis 

Side view 

Pigure 7.64 

Front view x 

Figure 7.66 
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and determine the number of degrees of freedom. How would you select quasi- 
velocities for this problem? 

30. Consider the bicycle in Fig. 7.56. Considering roll without slip of both wheels, 
determine how many degrees of freedom the bicycle has, and write an expres- 
sion for the velocity of point B. Identify whether the constraints are holonomic 
or not. Begin with the frame and the coordinates of point A. The angle 8 is with 
respect to the XY plane and it represents the tilting of the bicycle. 

3 1. The wheel in Fig. 7.57 rolls without slipping, with its center having the constant 
speed v. Find the velocity and acceleration of the collar as a function of 8. 



Table 7. I Summary of common Euler angle transformations (al a2q to bl &b3, or XYZ to xyz) 

Sequence of Angles I + (precession), 0 (nutation). + (spin) 

Application I Spinning or rolling bodies, orbital parameters 

Names of Angular 
vehcities I 0 3  : spin rate 

'llansforrnation 
Matrices 

c&* - s & ~ s +  s&+ + C&OS+ sos+ 
-cosg - s + ~ c $  -s+s+ + C&*CO S ~ C *  

[Rl = [R31~R~I[Ril 

[B] Matrix 

Body-Fixed 
Reference Frame = (q5sOs9 + ectj)b, + (&sf3c$ - 8~$)b2 

Derivatives of Euler 
Angles in Terms of 
Angular Velocities o = wlc*-wzs* 

I 1 + = - ( - W ~ C ~ S $  - o ~ c ~ c * )  + w3 
sine 

Name of Seauence 

3-2-3 (NASA Standard Aerospace) 

1(1 (precession), 9 (nutation), + (spin) 

Spinning or rolling bodies 

w3 : spin rate 

3-2-1 (NASA Standard Airplane) 

* (heading), 0 (attitude), + (bank) 

Vehicle motion, attitude dynamics 

wl: pitch, 02: roll, 03: yaw 

- - 

o = *a3 + %a; + &bl 

= (-*so + 4)bl + (*c@s+ + ec+)b2 

+ (*COC~ - es+)b3 

. 1 * = cose(02sq5 + ~ 3 ~ 4 4  

8 = 02c+ - w3s4 

1 + = -(o2s8s+ + ojs8c+) + w l  
cos e 





c h a p t e r  

This chapter presents basic concepts associated with the kinetics of rigid bodies. We 
develop the linear and angular momentum expressions. The Newtonian and Eulerian 
laws of motion are introduced as force and moment balances. We discuss analytical 
methods of obtaining equations of motion, such as Lagrange's equations and the di- 
rect application of D'Alembert's principle. We analyze qualitative and quantitative 
integration of the equations of motion, together with motion integrals. The develop- 
ments in this chapter make extensive use of the geometric and kinematic properties 
developed in the previous two chapters. 

When describing the motion of a particle three coordinates are used, one for 
each direction of the motion. For analyzing the motion of a rigid body one needs to 
use angular variables. The kinematics of a rigid body is studied using both inertial 
coordinates and relative coordinates. As we saw in the previous chapter, in most 
cases using a relative frame attached to the body gives better insight; this continues 
to be the case for the kinetics of rigid bodies. The use of body-fixed coordinates 
is attractive, as the moments of inertia of the body with respect to a set of body- 
fixed coordinates remains constant, and it becomes a simple task to differentiate the 
angular velocity. Thus, we derive several forms of the equations of motion, analogous 
to the concept of using different generalized coordinates. We extend the impulse- 
momentum and work-energy relationships to three-dimensional motion. This leads 
to a further study of impact problems, first introduced in Chapter 3. 



Consider a rigid body, such as the one in Fig. 8.1, with center of mass G. Also con- 
sider an arbitrary point B, located on or off the body. The linear momentum of the 
body, denoted by p, is defined as 

The position vector of the differential element is 

r = r ~ + p  C8.2.21 

where p  is the vector connecting the center of mass with the differential element. 
Differentiating the above expression, we obtain the velocity of the differential ele- 
ment as 

where o is the angular velocity of the body. Substituting Eq. [8.2.3] into Eq. [8.2.1], 
we obtain 

P = lMy(vG + P )  dm 

= v ~ l w y d m + o X & p d m  = m v G + o x  p d m  I8.2.41 L 
Recalling the definition of center of mass from Chapter 6, we write 

p d m  = 0 C8.2. b] 

so that introducing Eq. [8.2.5] into Eq. [8.2.4], we obtain the linear momentum as 

p = ~ V G  [8.2.6] 

As expected, the linear momentum of a rigid body is equal to its mass multiplied 
by the velocity of its center of mass. Hence, the translational motion of a rigid body 

0 (fixed) 
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can be treated the same way as the motion of a particle having the same mass as 
the rigid body and where the entire mass of the body is concentrated at the center of 
mass. 

The angular momentum, or moment of linear momentum, of the body about the 
center of mass, denoted by Hc, is defined as 

If we introduce Eq. [8.2.3] into this equation and make use of Eq. [8.2.5], we obtain 

We express the vectors p and w in terms of their components in the body-fixed 
coordinate system xyz as 

p = xi + yj + zk o = w x i  + wyj  + w Z k  [8.2.91 

Using the vector identity 

and expressing HG in terms of its components as 

HG = HGxi + HGyj + HGzk [8.2.111 

and carrying out the algebra, we obtain 

[ (x2  + y2)wZ - xzox - yzwy1 dm ~8.2.121 

Recalling the definitions for mass moments of inertia derived in Chapter 6, Eq. 
[8.2.12] becomes 

HGX = I G X X ~ X  - ICxYwy - I G X Z ~ Z  

Hey = k y y w y  - k x y w x  - Icyzwz 

HGZ = IGZZWZ - I ~ x z ~ x  - ICyzwy  18.2.1 31 

or, in column vector format, 

{HG) = [ I G ] { ~ )  [8.2.14] 

where 

{ H d  = [HGX Hey HczlT {a) = [ W X  W y  wzlT 18.2.1 51 

and [IG] is the inertia matrix defined in Eq. [6.3.4]. 



The expression for the angular momentum about the center of mass can also be 
derived conveniently in column vector format. Writing Eq. [8.2.8] as 

and using Eqs. [2.3.7], we can express Eq. [8.2.16] in column vector format as 

Noting that [p7 is a skew-symmetric matrix and using Eq. [6.4.2], we obtain 

which leads to Eq. [8.2.14]. 
The expression for angular momentum is simplified considerably when the coor- 

dinate axes used coincide with the principal axes or, for axisymmetric bodies, the F 
frame. The products of inertia vanish, and the angular momentum expression about 
the center of mass becomes 

or, using bl b2b3 as the coordinate frame, 

HG = I lo lb l  + 1202b2 + 1303b3 [8.2.20] 

where the body-fixed axes xyz or blb2b3 are aligned with the principal axes. 
A special case of motion is rotation about a fixed axis. For example, for rotation 

about the z axis, o = o k ,  so 

Example I Find the angular momentum about the centroid of the rolling cone shown in Fig. 7.35 using 
8.1 a set of centroidal axes that go through the symmetry axis of the cone. 

boldon 

This cone is the one used in Example 7.9. Noting from Fig. 7.36 that h3 = cos pf3  - sin pf2  
and R = L tan p ,  we can express the angular velocity as 

The centroidal moments of inertia of a right circular cone are 13 = &rnR2, 1, = I2 = 

& m(4R2 + L2).  The angular momentum then becomes 

It is clear that the angular momentum and angular velocity are in different directions. 



The transformation properties associated with angular momentum for a rigid body 
are very similar to the transformation properties associated with mass moments of 
inertia. We will see both the translational and rotational properties in sequence. 

Consider angular momentum expressions about the center of mass and about an ar- 
bitrary point B. From Fig. 8.1 we express the distance from B to the differential 
element as s, where 

Introducing Eq. [8.3.1] into the definition of the angular momentum about B, we 
obtain 

which, when expanded, yields 

The second and third terms on the right side of this equation vanish due to the 
definition of the center of mass. The last term is recognized as the angular momentum 
about the center of mass. The angular momentum about point B can then be writ- 
ten as 

If the body is rotating about a fixed point C on the body, one can express the 
velocity of the *,enter of mass as VG = o X r ~ l c ,  which, when introduced into 
Eq. [8.3.3], yields 

The column vector representation of Eq. [8.3.5] is recognized as the inertia ma- 
trix about point C times the angular velocity vector, or 

Note that if point Cis  not attached to the body, Eq. [8.3.6] does not hold (except 
when point C can be viewed as an extension of the body) and one should use Eq. 
[8.3.4] to calculate the angular momentum. 



While the translation theorem for angular momentum is valid only when one is con- 
sidering the center of mass, the rotation relations are valid for angular momentum 
calculated about any point. Finding mass moments of inertia by rotation of axes can 
be carried out without any restriction on the origin of the coordinate system. We use 
a point B to which a set of coordinates is attached. We are given the a~igular mo- 
mentum of the rigid body about B, and using this set of coordinates we are asked to 
find the components of the angular momentum vector about a rotated set of coordi- 
nates. This is essentially the same question asked in Chapter 2: Given a vector in a 
certain coordinate system, what are the components of that vector in a transformed 
coordinate system? 

Given the angular momentum vector in the xyz coordinates as 

we wish to compute its components in the x'y'z' frame, obtained by rotating the xyz 
frame. We express the angular momentum in the x'y'z' frame as 

Given the direction cosine matrix between the two frames as [ c ]  = [ R ] ~ ,  we 
can write in column vector format that 

{Hh) = [ C I ~ { H B )  = [R ] {HB)  [8.3.9] 

in which 

are the components of the angular momentum in the coordinate system x'y'z'. 
If the point B coincides with the center of mass or if the point B is fixed in 

rotation, we have an interesting result. Denoting, as we did in Chapter 3 ,  such a 
point by D, and considering that { H D )  = [ I D ] { W ) ,  the expression for the angular 
momentum in the xfy'z' frame should have the form 

where 

are the components of the angular velocity vector expressed in the transformed coor- 
dinates and [ I ; ]  is the inertia matrix in terms of the primed coordinates. We proceed 
to show that this is indeed the case. One can relate the angular velocities in the two 
frames as 

Introducing Eq. [8.3.13] into Eq. [8.3.9] ,  we obtain 



Comparing Eq. [8.3.14] with Eq. [8.3.11] we recognize that 

which is the same relation obtained in Eq. [6.4.13] when discussing transformation 
of coordinates. 

Considering the complicated nature of expressions associated with moments of 
inertia and angular momentum, the advantages of using the principal axes of a body 
as reference axes become more obvious. When finding the angular momentum of 
a body about a set of axes not coinciding with the principal axes, it is often more 
desirable to find the angular momentum about the principal axes and to then use Eq. 
[8.3.9] to find the angular momentum about the desired axes. 

Find the angular momentum of the disk in Fig. 2.21 about point 0. The distance from 0 to B 1 Example 
is L, from B to C is Ll3 and the disk is of radius R. 8.2 

Solution 

We will use Eq. [8.3.4] and the F frame to calculate the angular momentum. The reference 
frame is shown in Figs. 2.22-2.23. From Example 2.7 the angular velocity has the form 

where 

K = sin 40°k' - cos 40°j' k' = cos Bk - sin 8i j' = j [bl 

so that the angular velocity has the form 

w = (w3 - w I sin 40" sin 0)i + (8 - w 1 cos 40°)j + w sin 40" cos 0k [el 

The angular momentum about the center of mass (denoted by C in Fig. 2.21) is 

Hc = HG = IGxxwxi + IGyywyj + IGzzwzk [dl 

in which IGxx = mR2/2, IGyy = IGzz = mR2/4. Hence, we write the angular momentum 
about the center of mass as 

mR2 
Hc = - [2(w - w 1 sin 40" sin O)i + (8  - w 1 cos 40°)j + w sin 40" cos Ok] [a] 4 

We next calculate the velocity of C.  We first find the velocity of point B as 

vg = wlK X Lj' = w1(sin40°k' - cos40°j) x Lj' = -Lwl sin40°i' If] 

From Fig. 2.23 we have i' = cos 0i + sin 0k, so that 

vg = - Lw 1 sin 40" cos 0i - Lw 1 sin 40" sin 0k 191 

We find the velocity of the center of the disk as 



in which rc/B = L/3i, so that 

1 1 
= - L o l  sin 40" cos 0j  - - L(e - w 1 cos 40°)k 

3 3 
111 

Hence, the velocity of C becomes 

1 1 
vc = -Lo sin 40' cos 0i + - Lol  sin 40° cos 0j  - - L (e - w (cos 40° - 3 sin 40' sin 0)) k 

3 3 
[il 

We now calculate the second term in Eq. [8.3.4]. We note that rcl0 = Lj + L13i so that 

- o (3 sin 40' sin 0 - cos 400)) j + E L 2 0  1 sin 40° cos 0k [k] 
9 

Multiplying Eq. [k] by m and adding it to Eq. [el gives the angular momentum of the disk 
about point 0. 

Note that Eq. [k] does not have any terms involving w3, the spin of the disk. It is clear 
that using Eq. [8.3.6] would lead to an incorrect result. 

Bxanpk 1 Find the angular momentum associated with the rolling cone in Fig. 7.35 about the pivot point 
8.3 0, using the set of coordinates hl h2h3. 

lolrtion 
We can solve this problem in a number of ways. We can calculate the angular momentum 
directly from Eq. [8.3.9] using the direction cosine matrix. We can find by direct integration 
the inertia elements and use Eq. [8.3.15]. Also, because the cone is rotating about point 0, 
we can find the mass moment of inertia and angular momentum components about 0 using 
the parallel axis theorem. 

We begin with the third approach. First, we use the frame fif2f3 and express the an- 
gular momentum about point 0 using these axes. Given the centroidal moments of inertia in 
Example 8.1, and that the center of mass lies on the f3 axis and is a distance of 3Ll4 away 
from 0, 

with all the products of inertia zero. We proceed to find the inertia matrix about the hlh2h3 
axes. Expressing the unit vectors as 

the direction cosine matrix has the form 

[c] = 0 cos P - sinp 
0 sinp cosp [I O O I 
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Using Eq. [8.3.15] we obtain the inertia matrix in terms of the H frame as 

Note that we are using the notation introduced in Chapter 7 to denote the coordinate axes in 
which quantities of interest are resolved by a subscript on the left. Substituting in the values 
for [c] and carrying out the calculations, we obtain 

0 0 
lO1 cos2 P + 103 sin2 P (Io3 - sin P cos P 

o (Io3 - sin p cos p lo3 cos2 P + sin2 p I 
The angular velocity vector can be expressed in the hl h2h3 frame as 

U 
0 = -- 

L sin p h3 

The angular momentum can now be written as 

U v 
Ho = -(Io3 - 101)  sin P cos P - h2 - (Io3 cos2 P + IO1 sin2 P)- 

L sin p L sin p h3 

Let us compare this result with the direct use of Eq. [8.3.9], which yields 

0 
( lo*  - IO3)u cos pIL 

= [ - I ~ U  s i n  - 103ucos2 ~ I L  sin 6 

which, of course, is the same answer as Eq. [g]. We note that the use of Eq. [8.3.9] is simpler, 
but that the use of Eq. [8.3.15] gives more insight. This is because one sees what the inertia 
matrix associated with the transformed coordinates consists of. 

In many cases, a body is subjected to a multitude of forces and moments, and it 
becomes convenient to express the combined effects of these external excitations. 
These combined effects are called resultant force and resultant moment. 

Consider a system of N particles, in which an external force Fi and internal force 
F: act on each particle. The resultant of all forces is defined by F and given as 



Cigun 8.2 Applied forces and moments 

The internal forces cancel each other. For a rigid body, we use the above relationship 
for N  discrete forces. If there are distributed forces acting on the body, we consider a 
differential mass element with an external force dF acting on it. The resultant force 
is then defined as the sum of all external forces as 

Consider now a body acted upon by N  forces Fi (i = 1,2, . . . , N )  through points 
Pi and M* external moments Mi (i = 1,2, . . . , M*),  as shown in Fig. 8.2. The re- 
sultant moment about point B is defined as 

in which 

is the sum of all external moments acting on the body. Note that because we are 
dealing with bodies that we assume to be rigid, the location of the individual mo- 
ments Mi is immaterial when generating Eq. [8.4.3]. For flexible bodies, this is not 
the case; the location of the applied forces as well as moments becomes important. 

The combined effects of all external excitations are usually expressed as a resul- 
tant force applied through a certain point and the resultant moment about that point. 
A common choice is the center of mass, as shown in Fig. 8.3. In this case, we write 
Eq. [8.4.3] in terms of the center of mass as 

N 

MG = C P i ~ ~ i + ~ *  C8.4.81 
i = l  

When the resultant is expressed using a point other than the center of mass, say, 
B, the resultant moment becomes 

The concept is illustrated in Fig. 8.4. 



Figurn 8.3 Resultant force and moment 

Figure 8.4 Resultant force and moment about B 

In this section we consider a Newtonian approach and write the laws of motion for 
translation as well as rotation. Consider the translational equations first. For a system 
of N particles, the force balance for each particle has the form 

where mi is the mass of the ith particle and Fi is the external force, and Fi is the 
internal force. For a rigid body, we sum the individual equations of motion, and 
take the limit as N -+ m. We replace mi by dm, ai by a, and the summation with 
integration. The left side of Eq. [8.5. I] then becomes 

The right side of Eq. [8.5.1] becomes Eq. [8.4.1]. Thus, for a rigid body, Newton's 
second law is expressed as 

From a historical perspective, Newton developed his laws for the motion of rigid 
bodies, even though we first study them within the context of particles. Defining the 
inertia force acting on the body as -mat, Newton's second law can be described as 
the inertia force being equal and opposite to the applied force. 

The law governing rotational motion was formally stated by Euler in 1775, to- 
gether with Eq. [8.5.3], in its form above. The law states that the rate of change of 
the angular momentum about the center of mass of a rigid body is equal to the sum 
of all applied moments about the center of mass, or 



Equations [8.5.3] and C8.5.41 provide a complete description of the governing 
equations of a body. They constitute the basis of Newtonian mechanics, also known 
as the Newton-Euler formulation. 

Equation [8.5.4] can also be derived from Newton's second law using a differ- 
ential element or particle formulation. Indeed, for a system of N particles, talung the 
cross product of Eq. [8.5.1] with pi, where pi is the distance from the center of mass 
to the ith particle, we obtain 

where the internal forces are not included in the formulation because they drop out. 
The term on the left side of this equation can be written as 

where HGi is the angular momentum about the center of mass associated with the 
ith particle. If we sum Eq. [8.5.6] over N, we obtain the angular momentum of all 
the particles. For a rigid body, if we take the limit as N approaches infinity and add 
to it the sum of all applied moments, we obtain Eq. [8.5.4]. 

As discussed in Chapter 1, there is debate in the literature on whether Eq. [8.5.4] 
is a derived law or a stated law. One can argue that Eq. [8.5.4] is a stated prin- 
ciple, that is a fundamental law of mechanics, because of two major points: The 
internal forces of a rigid body are unknown, and for a deformable body the moment 
balance is a fundamental equation, as it leads to the symmetry of the stress tensor. 
(For a compelling argument in support of this issue, see pp. 259-271 in the text by 
Truesdell.) 

The resultant of the applied forces and moments can be viewed in terms of the 
changes in the linear and angular momentum, as shown in Fig. 8.5. Hence, Figs. 8.2, 
8.3, 8.4, and 8.5 are equivalent. 

We next discuss two issues associated with writing the equations of motion: 

Whether one can write the rotational equations of motion about points other than 
the center of mass. 
What types of variables and reference frames one can use to express the equa- 
tions of motion. 

The translational equations of motion are not about a particular point. Recall 
that linear momentum is an absolute quantity. To obtain the rotational equations of 
motion about a point other than the center of mass, consider the angular momentum 

Figun 8.5 Resultant changes in linear and 
angular momentum 



about an arbitrary point B, given by Eq. [8.3.4]. Recall that B is an arbitrary point 
and not necessarily attached to the body. Differentiating Eq. [8.3.4] we obtain 

The sum of moments about B is given by Eq. [8.4.6], which we can write as 

The last term on the right of Eq. [8.5.7] can also be expressed as 

m(vGIB) X VG = ~ ( V G  - VB) X VG = ~ V G  X VB [8.S.9] 

so that introducing Eq. [8.5.8] into Eq. [8.5.7] and considering Eq. [8.5.9] we obtain 

Equations [8.5.8] and [8S. 101 are the most general forms of the moment balance 
equations. When point B is attached to the body, one can show that 

When the moment balance is written about a point C (on or off the body) that is fixed 
in translation, we have 

We move on to the second issue: selection of the types of coordinates to express 
the equations of motion. For three-dimensional motion, using inertial parameters 
does not give much physical insight. For example, if we use an inertial coordinate 
system XYZ with unit vectors LJK and denote by X, Y, and Z the coordinates of the 
center of mass, the force balances become 

mx = F.1 my = F.J  = F . K  [ 8 A  1 31 

Unless the coordinates X, Y, and Z can be analyzed independently of each other, 
Eqs. [8.5.13] are not convenient to use by themselves. But consider writing these 
equations using a moving coordinate frame, which we will denote by xyz.  Selecting 
the moving frame as a body-fixed frame, we write the components of the velocity, 
angular velocity, and force as 

VG = vxi + vyj + vZk 

o = o,i + oyj  + wzk F = Fxi + F,j + Fzk C8.S. 141 

To obtain the rates of change of the linear and angular velocities, we use the 
transport theorem. For the angular acceleration we have, as shown in Chapter 7, 



SO that ax = hx, ay = hyr aZ = hz for a set of body-fixed coordinates. Differen- 
tiating the expression for the velocity of the center of mass, we obtain 

= (v ,  + uZwy - uywz)i + (vy + vxwz - vzwx)j 

+ (vZ + vyux  - vxwy)k [8.5.16] 

Introducing this expression into Newton's second law, we obtain for the translational 
equations 

m(vx + vzwy - vywZ) = Fx 

In column vector form, the translational equations are written as 

m{vc,l) + m[GI{uc) = { F )  [8.S.l8] 

or, using the notation for multiple reference frames, as 

We obtain the rotational equations in a similar fashion. Consider Eq. [8.5.4]. We 
express the angular momentum vector as 

HG = HGxi + HGyj + HGzk C8.5.201 

in which HGx, HGy, and HGz are defined in Section 8.2. We write the resultant mo- 
ment about the center of mass as 

MG = MGxi + MGyj + MGzk [8.5.211 

Using the transport theorem, the rate of change of the angular momentum vector 
becomes 

The gyroscopic moment is defined as o x HG. Hence, the rotational equations 
can be viewed as the gyroscopic moment plus the relative change in angular mo- 
mentum being equal to the applied moment. In column vector form we have 

{HG> = {&red + [G]{HG> [8.5.23] 

Substitution of Eq. [8.5.22] into Eq. [8.5.4] yields the rotational equations in 
terms of the body-fixed angular velocities as 



In column vector format we have 

and, in the notation for multiple reference frames, we have 

If there is a fixed point C on the body about which the rigid body rotates, the 
rotational equations of motion have the form 

The rotational equations are quite complicated even though there are no transla- 
tional velocity terms in them. The complicated terms arise because both the angular 
momentum and the angular velocity change directions. 

We can achieve significant simplification of the rotational equations of motion if 
we select the body axes as principal axes. In that case, all products of inertia vanish, 
and we have 

where the indices denote the principal directions. Equations [8.5.28] are known as 
Euler S equations of motion, stated originally by Euler in 1750. Except for certain 
special cases, such as some vehicle dynamics problems, Eqs. [8.5.28] are preferred 
over Eqs. [8.5.24]. Note also the order of the mass moments of inertia in this equation, 
which lends itself to an easy way of remembering these equations. 

Euler's equations are for the general three-dimensional motion of a body. In 
many cases, part of the motion of the body is constrained; thus, the body has less 
than three rotational degrees of freedom. In such cases, Euler's equations yield the 
equation(s) of motion as well as expressions for the reactions. 

The equations of motion expressed in terms of body-fixed coordinates give a lot 
of insight. Among their common uses is when conducting an instantaneous analysis, 
such as finding angular accelerations, finding the gyroscopic moment, or calculating 
the reactions at supports. Euler's equations can be integrated qualitatively to come up 
with integrals of the motion as well as for conducting a stability analysis. However, 
one cannot integrate these equations by themselves to find the orientation of the body 
at a given instant. 

The above derivation of Euler's equations was based on using a set of rotating 
axes attached to the body. As discussed in Chapter 7, when dealing with the motion 
of an axisymmetric body, it is more convenient to make use of the F frame. The F 
frame is suitable for axisymmetric bodies, because the inertia matrix is constant in 
the F frame. 

One can use the F frame in conjunction with Euler's equations in two ways: One 
can perform the differentiation in the F frame, or one can express the equations of 



motion using the components of the F frame. When performing the differentiation 
in the F frame, similar to Eq. [8.5.20] the translational equations of motion become 

The rotational equations of motion become 

Equations [8.5.30] are known as the mod$ed Euler equations. We will study 
these equations in more detail in Chapter 9. 

When resolving the equations of motion along the components of the F frame, 
one no longer has ai = hi (i = 1,2,3), and one must calculate {a) using the trans- 
port theorem. We write 

in which 

Examplo I A slender bar of mass m and length L is attached to a vertical shaft, which is rotating with 
8.4 constant angular speed R, as shown in Fig. 8.6. Find the equation of motion for the bar. 

solution 
The only variable in this problem is the angle that the bar makes with the shaft, so that 
the three Euler's equations should yield one equation of motion and two other equations for 
the reactions. Because the bar is rotating about the fixed point B, it is preferable to write the 



Euler's equations about the center of rotation. This way, we avoid calculation of the reaction 
forces at B. 

The free-body diagram of the bar is shown in Fig. 8.7. We express the moment about 
B as 

MB = MI bl + M2b2 + ~ G I B  X mg(cos 8bl - sin 8b2) [a] 

Noting that ~ G / B  = L/2bl, we obtain 

1 
Mn = MI bl + M2b2 - - mgL sin 8b3 

2 [bl 

The angular velocity and angular acceleration have the form 

o = wlbl + w2b2 + w3b3 = -flcosebl + fl sin8b2 + i)bs [el 
a = a l b l  + a2b2  + agb3 = f l 6  sin8bl + fie cos 8b2 + 8b3 [dl 

The mass moments of inertia about B are 

mL2 
1 1 = 0  1 2 = 1 3 = -  

3 1.1 

We now invoke Euler's equations, which yield 

For bl I ~ R B ,  sine = M~ 

For b2 12flecos0 + 1 2 f l e  cos8 = M2 

For b3 1 ~ 8  - 1~f l~s inBcos8  = -*sin8 
2 

Equation [h] is the equation of motion, while Eqs. [f] and [g] give expressions for the 
reactions. We simplify Eq. [h] to 



The expressions for the moment reactions become 

M I  = 0 M2 = 21&e cos 8 [il 

The reaction forces at B can be obtained from a force balance. 

Exampie I Consider the gyropendulum in Example 7.5, repeated here as Fig. 8.8. Derive the equations 
8.5 of motion, assuming there is a moment M acting on the vertical shaft and that both shafts are 

massless. 

Solution 
We will solve this problem in two ways: First, we will use the modified Euler equations. 
Second, we will resolve Euler's equations along the coordinates of the F frame. 

We split the gyropendulum into two parts: the vertical shaft and the disk and smaller 
shaft. The free-body diagram of the disk is shown in Fig. 8.9. Using the relative axes xyz,  
Mx and Mz are components of the reaction moments at point B in the x and z  directions. The 
reaction forces are Fx,  F,, and Fz. 

Because the assembly can be considered as rotating about point B, we can write the 
equations of motion about B. Observe that the xyz  coordinate system describes the F frame, 
and it constitutes a set of principal axes, so that all products of inertia vanish. We have K = 
- sin 8i + cos 8k, and 

Cal 

cob = $K + ejt + (JIk = -$ sin 8i + ej + ((JI + $cos 8)k Cbl 

Figure 8.8 Figure 8.9 



Solution by Modified l u h  Equations The angular momentum about B has 
the form 

1 
H E = - - m  - ~ ~ + ~ ~ + ~ i n e i + m  - R ~ + L ~ ~ ~ + - ~ ~ R ~ ( ~ + c $ c o s ~ ) ~  [dl (: ) (: ) 2 

We next differentiate the expression for the angular momentum. The first term is the 
time derivative of HB in the F frame and it is obtained by simple differentiation of Eq. [dl as 

The second term in the derivative is 

x HB = q x HE 

= (-6 sin8i + ej + &cosOk) 

The external moment vector is 

ME = Mxi + M,k + Lk x mgK = Mxi - mgL sin8j + M,k IS] 

Combining Eqs. [el, [f], and [g] and separating the x, y, and z components, we obtain 

- 2rnL2& cos 8 = Mx [hl 

$2sin8cos8 = -rngLsinO[i] 

We have three degrees of freedom; thus, each one of Eqs. [h], [i], and Ij] is an equation 
of motion. 

Solution by Euim Equations Resolved Around F Frame To obtain the 
solution this way, we first need to obtain the expression for the angular acceleration. Given 

and of in Eqs. [b], we obtain the angular acceleration as 



Substituting the values for the angular velocities in Eq. [b] and angular acceleration in Eq. [k] 
into the Euler's equations, we obtain 

( 4 s i n 0 + i e c o s 0 - e * ) + m  e(*+&oso) = M, [I] 

which can be shown to be the same as Eqs. [h], [i], and ti]. 

Analysis d line Equations The equations of motion in Eqs. [h], [i], and Ij] are in 
terms of the internal reaction moments M, and M,. Further, the external moment M does not 
appear. We relate the external moment M to the internal moments by conducting a moment 
balance for the vertical shaft about the Z axis, as shown in Fig. 8.10. Doing so, we obtain 

We still need another relationship for these moments. This added relationship can be 
obtained by separating the rod and the disk and analyzing the forces and moments these two 
members exert on each other. We will not pursue this, but rather, consider the case when 
there is a motor between the rod and disk, which makes the disk maintain a constant angular 
velocity with respect to the shaft. Such a motor is called a servomotol: 

In the presence of a servomotor that keeps t,b constant so that it is no longer a variable, 
the system is reduced to two degrees of freedom. From Eq. Ij] we get an expression for M, as 

1 
M, = -mR2(4cos 0 - 68 sin 0) 

2 [PI 

which, when substituted into Eq. [o], gives an expression for M, in terms of the external 
excitation M as 

-M+M,cosO 
M, = - - -  - $8 cos e 

sin 0 



Let us next calculate the value of the external torque needed in order to keep the preces- 
sion 4 rate constant. Introducing Eq. [q] into Eq. [h] and setting 4 to zero, we obtain 

In this case we have a single degree of freedom system, and Eq. [i] is the equation of 
motion. 

QUALITATIVE STABILITY ANALYSIS OF ROTATIONAL MOTION Con- 1 Example 
sider a rigid body to which a set of body-fixed principal axes bl b2b3 are attached at the center 8.6 
of mass. The body has an initial motion in the form of a rotation about one of the axes, say, 
b l .  We have wl = wo, 0 2  = ~3 = 0. NO external moments act, so that from Eq. [8.5.28] o o  
remains constant. 

To investigate whether this motion is stable or not, a small moment is applied to the body, 
so that the angular velocities after the application of the moment become 

where E~ (i = 1,2,3) are small quantities. We wish to determine the evolution of these per- 
turbed angular velocities in time. Introducing them into Euler's equations and noting that no 
further moments are applied, we obtain 

Because the change in the angular velocities is small, we linearize the above equations 
by eliminating quadratic and higher-order terns in E; (i = 1,2,3). Noting that o o  is constant, 
we get 

Equation [c] states that ~1 remains constant. To understand the behavior of the remaining 
two angular velocities, we conduct an eigenvalue analysis. Introducing the expansions 

into Eqs. [dl and [el we obtain 

The solution of Eq. [g] requires that the determinant of the coefficient matrix be zero, 
which yields the characteristic equation 
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The solution is 

Two types of solutions are possible. If I2 > II and I3 > I , ,  or if 12 < Il and I3 < 11, both 
roots of the characteristic equation are pure imaginary. Because there are no nonconservative 
forces, the system is critically stable. A higher-level stability analysis indicates that rotation 
about the axes representing rotation about the minimum and maximum moments of inertia 
are indeed stable. That is, if II is the largest or smallest moment of inertia, rotation about the 
bl axis is stable. 

On the other hand, if I2 > I l  and I3 < II or if I2 < I l  and I3 > 11, that is, if axis bl is 
the intermediate moment of inertia axis, the roots of the characteristic equation are real, one 
positive and one negative. Hence, rotation about the intermediate axis of inertia is unstable. 
One or both of the angular velocities grow exponentially to a level such that they can no 
longer be considered as perturbations. A set of equations other than the linearized equations 
must be used after that point. 

Next, consider the special case when two of the mass moments of inertia are the same, 
such as in an axisymmetric body. We have two possibilities. In the first, bl is the symmetry 
axis and I2 = 13. From Eq. [i] all roots A are pure imaginary, so there is critical stability. A 
higher-level stability analysis can be conducted which shows that perturbed angular motion 
of axisymmetric bodies spinning about the symmetry axis is indeed stable. Note that, unlike 
in the case of three distinct moments of inertia, the magnitudes of the moments of inertia did 
not affect this result. 

The second case is descriptive of an axisymrnetric body rotating about a transverse axis. 
That is, if bl is the symmetry axis, the rotation is about b2 or b3. This system leads to zero 
eigenvalues. The motion can be explained as a continuation of the tumbling motion and trans- 
fer of motion between the two transverse axes, with no rotation transferred to about the sym- 
metry axis. 

We can summarize the results as follows. For general bodies, rotation about the axes with 
the minimum and maximum moments of inertia is stable. Rotation about the intermediate axis 
of inertia is unstable. Any initial motion will turn itself into angular motion with components 
along every axis, resulting in some sort of wobbly motion. This phenomenon can readily be 
observed by taking a book or other object with three distinct principal moments of inertia and 
spinning it about its three principal axes, as illustrated in Fig. 8.11. 

03 fi 
b, (unstable) 
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The instability phenomenon is not encountered in axisymmetric bodies. Another way 
of explaining this added stability due to axisyrnmetry (or, for the general case, inertial sym- 
metry) is to recognize that for such a body, every principal axis represents a minimum or 
maximum moment of inertia. In engineering applications, one takes advantage of this sta- 
bility feature and designs rotating components, such as engine parts, as axisymmetric. In 
Chapter 10, we will study stability issues associated with rotating bodies in more detail. 

It turns out that in real-life applications, rotation is stable only around the axis of max- 
imum moment of inertia. This is due to energy loss and transfer due to the flexibility of the 
body, and energy loss as a result of friction. In space mechanics, these issues were brought 
into the limelight after the Explorer satellite was launched in 1958, and nutational instabil- 
ities were observed. Ideally, the shape of a space vehicle would be like a disk. Because of 
practical considerations, satellites launched into space are spherical or slender cylindrical 
bodies. 

8.6 ROTATION ABOUT A FIXED AXIS I 
An important special case is rotation about a fixed axis. Representation of such 
motion requires only one angular velocity component, making the angular velocity 
"simple." 

Two types of rotation about a fixed axis are of interest. One is plane motion. 
Chapter 3 discusses the kinetics of plane motion. In the second type, one is primar- 
ily interested in bodies that spin in a fixed direction, but the axis of rotation is not 
a principal axis. In several situations a body spins about an axis that is fixed, for 
example a shaft used in power transmission, or the wheels of a vehicle. If the ro- 
tating body is not symmetric about the axis of rotation, the angular velocity of the 
body fluctuates or dynamic reactions are generated at the supports. Both of these are 
undesirable. Such behavior increases the loads on the supports, causing unnecessary 
vibration, noise, and possible damage. 

We select the axis of rotation as one of the coordinate axes, say, z, and note that 
this axis is not necessarily a principal axis. That is, the products of inertia do not 
vanish. The components of the angular velocity vector are 

Substituting this into the rotational equations of motion, Eqs. [8.5.24], we obtain 

In this problem there is only one degree of freedom, so that Eqs. [8.6.2] represent 
relations for the reactions, while Eq. [8.6.3] is the equation of motion. It is interest- 
ing to note that the reaction moments M ,  and My are influenced by the square of 
the angular velocity: this means that the problem of the axis of rotation not being a 
principal axis becomes more critical in high-speed situations. 

In many applications, such as the balancing of a wheel or a shaft, weights are 
removed or added to a rotating body. If only static balancing is being done, one aligns 



the center of mass and axis of rotation, but this does not eliminate the products of 
inertia. Dynamic balancing-such that the products of inertia become zero-is a 
more difficult task. 

Example I A disk of mass m and radius R is attached to a rotating shaft, as shown in Fig. 8.12. Due to a 
8.7 manufacturing defect, the symmetry axis of the disk is not aligned with the shaft, but makes 

an angle of y. The shaft rotates with the constant angular velocity 0. Find the reactions at 
the bearings. 

Solution 
We use a set of inertial coordinates XYZ, with the Z axis along the shaft, and a set of xyz 
axes attached to the shaft, so that the z axis is along the shaft. The xry'z' axes are principal 
coordinates for the disk, and they are obtained by rotating the xyz axes clockwise by an angle 
of y about the x axis. Fig. 8.13 shows the configuration and free-body diagram of the system. 

The centroidal mass moments of inertia are I,,,, = I,,,, = mR2/4, I,,,, = mR2/2, with 
all products of inertia zero. From Eqs. [8.6.2] and [8.6.3], because 0 is constant we only need 
to find I,, and I,,. It is easy to show that I,, = 0, as the yz plane is a symmetry plane. To 
find I,,, we use the definition of a product of inertia and express they and z coordinates as 

so that I,, becomes 

I = yzdm = (y'cosy + zlsiny)(-y'siny + zrcosy)dm I I 
1 

= sin y cos y(I,,,, - I,,,,) = - m ~ '  sin y cos y 
4 

Figure 8.1 2 
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Introducing the values of I,, and I,, into Eqs. [8.6.2] yields the moments acting on the 
disk as 

1 
Mx = - ~ R ~ R ~  sin y cos y M y  = 0 

4 [el 

Consequently, the disk exerts a moment -Mx on the shaft. Consider now the reactions 
at the bearings. To this end, we will sum forces and moments for the shaft. To this end we 
express -Mx in terms of its components along the inertial coordinates XYZ as 

where 8 = a t  is the rotation angle between the XYZ and xyz  frames. We are assuming that 
the center of the mass of the disk does not move. Hence, summing forces in the X and Y 
directions we obtain 

Summing moments about G for the shaft gives 

Introducing Eq. [c] into Eq. [dl and solving Eqs. [el and [f] for the reaction forces, we 
obtain 

1 mR2 
F B . ~  = -FAX = - -a2 sin y cos y s i n a t  

4 L 

1 1 mR2 
FAY = -mg + - -R2 sin y cosy cos R t  

2 4 L 

-- I mR2 a2 sin y cos y cos a t  
4 L 

The misalignment between the shaft and disk gives rise to bearing forces. These forces 
are related to the amount of misalignment and to the square of the angular velocity, and they 
are cyclic loads. For high-speed machinery, such misalignment can be detrimental, causing 
damage to the bearings as well as to the rotating parts. 

In the previous two sections we derived the equations of motion. In order to extract 
more information from these equations, and to understand how the motion evolves, 
the equations of motion must be integrated. This integration can be carried out qual- 
itatively or quantitatively. The qualitative integration leads to impulse-momentum 
and work-energy relationships, which we cover in Sections 8.8 and 8.9, as well as in- 
tegrals of the motion. Here, we look into the quantitative integration of the equations 
of motion. 



Integration of rotational equations of motion is usually difficult to carry out by 
hand, except for a few special cases. Computational techniques require that the equa- 
tions of motion be expressed in state form. 

Consider the rotational equations of motion independently from the translational 
equations for the time being, which is a valid assumption as long as the moments 
acting on the body are not functions of the translational velocities. We need to in- 
tegrate Euler's equations, Eqs. [8.5.28], together with a set of equations that relate 
the body-fixed angular velocities wi (i = 1,2,3) to inertial quantities. We saw two 
sets of equations that accomplish this in Chapter 7: the Euler angles and the Euler 
parameters. The relationship between the Euler angles and body-fixed angular ve- 
locities is given in Eqs. [7.5.7]-[7.5.9] for a 3-1-3 transformation and at the table 
at the end of Chapter 7 for the 3-2-3 and 3-2-1 transformations. Let the body-fixed 
axes be the principal axes. One can then combine Eqs. [8.5.28] and [7.5.9] together, 
for a set of six first-order differential equations in terms of the variables +,8,+, o 1, 
02, W 3  as 

1 + = -(wl sin+ + o2cost,b) 
sin 8 

1 + = --(01cos8sin+ + w2cos8cos+) + w3 C8.7.11 
sin 8 

subject to initial conditions wi(to) (i = 1,2,3), +(to), 8(to), and +(to), where to is 
the initial time. If, instead of wi(to), the rates of the Euler angles are given at t = to, 
oi(to) can be found from &to), &to), and $(to) using Eqs. [7.5.7]. If the external 
excitations Mi (i = 1,2,3) are not explicit functions of the Euler angles, then the 
first three of the above equations, the Euler equations, can be integrated separately 
from the second three, the kinematic differential equations. 

One problem associated with the above approach is that Euler angles have dis- 
continuities at certain values of the second rotation angle. For example, a 3-1-3 or 
3-2-3 transformation is discontinuous at 8 = 0 or 8 = tn. The 3-2-1 transforma- 
tion has a singularity when the second transformation angle is + d 2 .  In the neigh- 
borhood of a singularity, one can switch to a different set of Euler angles, but the 
process is tedious. 

By contrast, the Euler parameters discussed in Section 7.7 easily lend them- 
selves to numerical computation. Rather than using the three relations in Eqs. [7.5.9], 



we use the four relations in Eqs. [7.7.27] and have a set of seven first-order differ- 
ential equations in the form 

The initial conditions for the Euler parameters, ej(to) ( j  = 0, 1 ,2 ,3 )  can be 
found from the initial values of the Euler angles using the relationships given in 
Eq. [7.7.40]. The initial conditions from the angular velocities can be input either as 
given quantities, or, if &to), &to) and $(to) are given instead, they can be converted 
to the angular velocities by using Eq. [7.5.7]. 

Note that even though the Euler parameters are related to each other by the 
equation 

one does not need to solve Eqs. [8.7.2] together with Eq. [8.7.3]. Any accurate numer- 
ical solution that begins with an accurate description of ej( to)  ( j  = 0, 1 ,2 ,3 )  should 
lead to the correct solution. In fact, Eq. [8.7.3] can be used to check the accuracy of 
the numerical solution. In this regard, the Rodrigues parameters (see Problems 7.15 
and 7.16) are useful, as they result in six differential equations. Another set of con- 
stants that can be used to check accuracy are the entries of the matrix [$ jB] ,  calcu- 
lated by Eq. [7.7.30b]. Because this matrix is skew symmetric, its diagonal elements 
should be zero. 

Consider next the translational equations. When the equations of motion are 
written in terms of the center of mass, the translational and rotational equations are 
independent of each other, unless coupling exists as a result of the applied external 
forces. Consider a 3-1-3 transformation and the translational equations of motion 
as six first-order equations. As variables, we will use the body-fixed translational 
velocities v l ,  v2, and v3 and the coordinates of the center of mass in the inertial 
frame, which we will denote as Al ,  A2, and A3. 

The translational equations are given in Eq. [8.5.18]. To relate the rates of change 
of the inertial coordinates to the body-fixed velocities, we note that the relation be- 
tween the velocity of the center of mass in inertial coordinates and body-fixed coor- 
dinates is 

in which { ~ v ~ )  = [ A 1  A2 A31T and { B ~ G )  = [vl  v2 v31T and [R]  is the transforma- 
tion matrix, given in Eq. [7.5.3] for a 3-1-3 transformation. Introducing Eq. [7.5.3] 
into Eq. [8.7.4] and using Eq. [8.5.18], we obtain the translational equations of 
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motion in state form as 

AI = (cos 4 cos + - sin c$ cos 0 sin +)vl + (- cos 4 sin + - sin 4 cos 0 cos +)v2 
+ sin 4 sin 0v3 

A, = (sin 4 cos + + cos 4 cos 0 sin +)vl 
+ (- sin 4 sin I(, + cos cos + cos 0)v2 - cos 4 sin 0v3 

= sin 0 sin +vl + sin 8 cos +v2 + cos 0v3 r8.7.11 

Equations [8.7.l]  (or [8.7.2]) can be integrated independently of Eqs. [8.7.5] as 
long as the applied moments Mi (i = 1 ,2 ,3 )  are not functions of vi or Ai (i = I, 5 3 ) .  
Also, even though the latter three of Eqs. [8.7.5] are complicated expressions, they do 
not have the singularity problems that plague Eqs. [8.7.1]. The 12 equations [8.7.1] 
and [8.7.5] (or the 13 equations [8.7.2] and [8.7.5]) comprise the complete equations 
of an unrestrained rigid body in state form. In the presence of constraints, one must 
either obtain the equations of motion in terms of independent coordinates or include 
the constraint equations in the system description. 

In this section, we integrate the translational and rotational equations qualitatively 
with respect to time. Integration of Eqs. [8.5.3] and [8.5.4] over two points in time 
tl and t2 yields 

F d t  3 p(t2) - p(t l )  = F d t  [8.8.1] 

which constitute the linear and the angular impulse-momentum relationships for a 
rigid body, respectively. The angular impulse-momentum equation, Eq. [8.8.2], can 
be written in the same form when the rigid body is rotating about a fixed point. 

The primary uses of Eqs. [8.8.1] and [8.8.2] are for cases when the excitation is a 
function of time, in the presence of impulsive forces and moments, or when momen- 
tum is conserved. The drawbacks associated with working with these relations are 
that they are vector relations and their manipulation often involves calculation of the 
reactions and constraint forces as well as integration of these forces over time. Also, 
when the forces and moments acting on the body are functions of time, Eqs. [8.5.3] 
and [8.5.4] cannot be integrated by themselves. 



When the applied forces and moments are impulsive, the linear and angular 
impulse-momentum relations are extremely useful. One must be careful when deal- 
ing with bodies subjected to impulsive loads, as some of the reactions become im- 
pulsive as well. A special case of impulsive forcing is that of collisions, which we 
discuss in Section 8.12. 

When the applied moment about the center of mass is zero, or its integral over 
time during a certain period of interest is zero, the angular momentum in the begin- 
ning of the period is the same as the angular momentum at the end of the period. 
The angular momentum is conserved. Similarly, if the applied forces or their inte- 
gral over a period of time is zero, the linear momentum is conserved. In some cases, 
linear and angular momentum may be conserved about a certain direction, so that 
only a component of the relations p(t2) = p(tl) or HG(t2) = HG(tl) is used. Denot- 
ing the unit vector along which the linear momentum is conserved by e and the unit 
vector along which the angular momentum is conserved by f, we can write for linear 
momentum 

and for angular momentum conservation 

The impulse and momentum conservation equations are very useful when more 
than one body is involved and motion is transferred from one body to another. A 
typical example is contact--or loss of contact-between two bodies. In the absence 
of external forces, the only forces acting on the bodies are internal for the system 
of two bodies. Hence, the linear momentum of the combined system and its angular 
momentum about the center of mass are preserved. 

The axisymmetric spacecraft shown in Fig. 8.14 consists of a main body and a booster. The I Erclmpl~ 
mass and centroidal radii of gyration of the main body and booster are given in the table. 8.8 
The x y z  coordinates denote the F frame and point C is the center of mass of the combined 
system. Just before burnout, the spacecraft has acquired a velocity of 2500 m/s along the 
symmetry axis and an angular velocity about the symmetry axis of 0.1 radts. At burnout, 
the craft releases its booster. Immediately after the release, the center of mass of the booster 
has a velocity of 2000 m/s along the x direction and 2 m/s in the y direction. The angular 

Y 

1 Booster Main body 

L 

Figun 8.1 4 



velocities of the booster are ox = 0.5 rads, o, = -0.4 raclls, and o, = 0.9 rads. Find the 
angular velocity of the main body and the velocity of its center of mass at this instant. 

Location of Center 
Part Mass of Mass (on x axis) K, KYY = KZ 

Main body 1600 kg 3.5 m from A 0.35 m 2m 

Booster 400 kg 0.5 m from A 0.4 m 0.6 m 

All forces and moments during separation are internal to the original system, which is the 
main body and booster together. Hence, during separation, the linear momentum and angular 
momentum about the center of mass of the spacecraft are conserved. Rather than calculate the 
centroidal mass moments of inertia of the system, we prefer to work with Eq. [8.3.4], which 
relates angular momentum about two points. 

We denote quantities pertaining to the main body, booster, and system by subscripts M, 
B, and S, respectively. First we calculate the center of mass of the system. Using point A as 
the origin, we have 

with the result 

Let us first consider the linear momentum. Before separation the linear momentum is 
p = (mB + m~)2500i  = 5(106)i kg m/s. After separation we are given that VB = 2000i + 2j, 
so that the linear momentum after separation is 

Solving for the components of the velocity of the main body, we obtain 

Next we consider the angular momentum. We write the angular momentum of each body 
about the center of mass of the system, point C, as 

where & and HM denote the angular momenta of the booster and main body about their own 
center of mass, and r ~ l c  = -2.4i m, r ~ / c  = 0.6i m are vectors from the center of mass of 
the combined system to the centers of the mass of the booster and main body, respectively. 
Before separation, both components have a translational velocity in the x direction; thus, the 
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cross products in the above equation vanish and we have 

2 2 HC = HCB + HCM = (IBxx + IMxx)@xi = (mBKgxX + ~ M K M ~ , ) @ X ~  
= (400(0.4') + 1600(0.35~)0.l)i = 26i kg m2/s 

After separation, the angular momentum for the booster and main body are 

HCB = (IBxxwBxi + I B y y ~ B y j  + I B Z p B Z k )  + me(-2.4i) x (2000i + 2j )  

HCM = ( l M x x ~ M x i  + Z M y y ~ M y j  + I M z z ~ M z k )  + mM(0.6i) X (26253 - 0.5j) 

where the mass moment of inertias components are 

2 Isxx = mBKBxx = 400(0.4~) = 64 kg m2 

ley, = ~ B K ; , ,  = 400(0.6~) = 144 kg*m2 

IMxx = mM K$,, = 1600(0.35') = 196 kg m2 

IMyy = mM K$,, = 1600(2') = 6400 kg m2 

and W B ~  = 0.5 radJs, W E ,  = -0.4 rads, and W B ~  = 0.9 rads. Hence, the angular momenta 
after separation are 

Summing the two angular momenta, equating to the angular momentum before separa- 
tion, and solving for the unknown angular velocities, we obtain 

8.9 ENERGY AND WORK I 
In this section we examine the kinetic and potential energy for rigid bodies and de- 
velop expressions for the work done by forces and moments that act on rigid bodies. 
In essence, we extend the developments of Sec. 1.7 to rigid bodies. The kinetic en- 
ergy of a rigid body is defined as 

where v  is the absolute velocity of the differential element. Considering Fig. 8.1 we 
can express the velocity of the differential element in terms of the velocity of an 
arbitrary point B on the body as 

v = v ~ + o X s  [8.9.2] 
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Introducing this into Eq. [8.9.l] and performing the dot product gives 

The first term on the right side in this equation involves a translation, while the 
second term involves a rotation. The last term is a combination of translational and 
rotational terms, and it involves the first moment of the mass distribution. This term 
becomes zero if one of the following holds: 

1.  v~ = 0, implying that the point B, the origin of the body-fixed coordinates, is 
fixed, so that the rigid body is rotating about point B. 

2. o = 0, implying that the body has no rotational motion. 

3. B coincides with the center of mass G. If the origin of the coordinate system is 
selected as the center of mass, then the integral of s d m  vanishes over the body. 

4. If the vectors vg, 0 ,  and s are such that the dot or cross product vanishes. 

The fourth case is mathematically possible, but not practical. Hence, for all prac- 
tical purposes, the kinetic energy expression is simplified if the body is rotating about 
a fixed point, if it is not rotating at all, or if it is expressed in terms of the center of 
mass. 

Let us consider the kinetic energy in terms of the center of mass motion. The 
first term in Eq. [8.9.3] gives the translational part of the kinetic energy, denoted by 
Ttran, as 

The second term in Eq. [8.9.3] gives the rotational component of the kinetic energy, 
denoted by Tmt. To evaluate it we make use of the vector relationship 

so that letting a = o ,  b = p, and c = o X p, we have 

Recalling from Eq. [8.2.8] the definition of angular momentum, we can express the 
rotational kinetic energy as 

This equation can also be obtained using the column vector representation of 
Eq. [8.9.5]. Indeed, noting that 



whose column vector representation is 

( [ a { 4 ) T ( [ a { w ) )  = wT [aT [ P I { @ )  [8.9.81 

and recalling Eq. [6.4.2] we obtain the column vector representation of Eq. [8.9.7] 
as 

Let us summarize the kinetic energy expressions. For the general case of com- 
bined translational and rotational motion we have T = Tw, + Tmt, in which 

If the body is rotating about a fixed point C, we can write the kinetic energy as 

and if the body is only translating, with no rotational motion, we write 

as, for this case, all points on the body have the same velocity v = v c .  For plane 
motion, the kinetic energy can also be written about the instantaneous center of zero 
velocity. However, as the body moves the location of the instant center changes. 
Hence, the inertia matrix can also change, which creates difficulties if one needs to 
manipulate the angular momentum. 

Taking the center of mass as the origin of the body-fixed reference frame, denot- 
ing {vc) = [v, v, vZlT, and considering the inertia matrix and angular velocity 
vector, we get 

If the coordinate axes are selected as the principal axes, the expression for the 
rotational kinetic energy further simplifies to 

in which the indices IGi(i = 1,2,3) denote the principal moments of inertia about the 
center of mass, and oi(i = 1,2,3) are the components of the angular velocity. 



along the principal axes. Observe that Eq. [8.9.10] is another proof that the inertia 
matrix is positive definite. Kinetic energy is an absolute quantity; both the trans- 
lational and rotational kinetic energy are always greater than or equal to zero. The 
only way for {oIT [IG]{o) to be greater than zero for all nonzero values of the angular 
velocity {o) is for [IG] to be a positive definite matrix. 

Next, we write the rotational kinetic energy in terms of the Euler angles. Con- 
sider a 3-1-3 transformation. We recall that the angular velocity expression for a 
3- 1-3 transformation is 

The rotational kinetic energy then becomes 

This relationship can be expressed in column vector form as 

in which {w) = [ ~ ] { 8 ) ,  where (8 )  = [$ 8 *lT denote the time derivatives of the 
Euler angles. The above form is not commonly used, because the corresponding 
inertia matrix, [BIT [IG] [B],  is time dependent. 

For inertially symmetric bodies, say, Il = 12, the expression for rotational ki- 
netic energy simplifies to 

To describe the work done on a rigid body, consider Section 8.4 and assume that 
N  forces Fi (i = 1,2, . . . , N )  at points ri, and M* moments Mi (i = 1,2, ..., M*) 
are acting on the body. Because the body is assumed to be rigid, the location of the 
applied moments is immaterial. 

The incremental work performed by the forces and moments is defined as 

N 
dW = ) : ~ ~ * d r i  + ~ * * d 0  [8.9.19] 

i = l  

in which M* is the sum of all external moments acting on the body, and we have 
treated the incremental angular displacement as a vector quantity by considering d0 
as a vector. It is more convenient to divide the above equation by d t  and work with 
power. Doing so we obtain 

where vi is the velocity of the point to which the force Fi is being applied. 
The expression for power can conveniently be expressed in terms of the motion 

of the center of mass. To this end, we write the velocity vi in terms of the center of 
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mass as 

vi = v ~ + w X p i  i = 1,2, ..., N [8.9.2 11 

and introduce it into 2 Fi vi, which yields 

Introducing this expression into Eq. [8.9.20] and using, from Eq. [8.4.5], the expres- 
sion for the resultant moment MG about the center of mass we write the expression 
for power as 

P = F*vG + M G * w  [8.9.23] 

The work done is the integral of power over time 

We can also write the expression for power in terms of the resultant of the forces 
and moments about an arbitrary point B as 

P = F*vB + M B * w  c8.9.251 

The general work-energy relation is 

As we saw in Chapter 1, some of the forces and moments acting on a body may 
be conservative, that is, derivable from a potential function. It usually is more con- 
venient to work with the potential energy associated with such forces and moments. 
Recalling the potential energy V, such that the infinitesimal work done by conserva- 
tive forces and moments can be expressed as dW, = -dV, we write 

Wq+, = vl - v2 [8.9.27] 

The reader is referred to Chapter 1 for further details. One can then separate the work 
expression into the potential energy and work of the nonconservative forces as 

and write the work-energy theorem as 

The expressions for potential energy for rigid bodies do not lend themselves to 
any special form. The gravitational attraction between two bodies is a body force 
that is applied uniformly to every point on the body. Except for certain celestial 
mechanics or spacecraft dynamics problems, the gravitational attraction between 
two bodies is negligible compared to the gravitational attraction of the earth, and 
the force of gravity is conveniently represented as a single force acting through the 
center of mass. The gravitational potential energy becomes mg times the distance 
from a datum to the center of mass. 

For nonnatural systems, the energy integral is R = T2 - To + V (note that here 
the subscripts denote parts of the kinetic energy), so that in conservation problems 
one should make use of the property that R is constant. 



Example I Find the kinetic and potential energies of the rotating slender bar in Example 8.4 and identify 
8.9 the integrals of the motion. 

Solution 

The angular velocity of the bar is 

The mass moments of inertia about point B are 

so that the kinetic energy is 

Using point B as datum, the potential energy has the form 

We observe that this is a nonnaturd system, and that the external forces and moments 
do not do any work, as they are all reaction moments. Hence, an integral of the motion is the 
Jacobi integral, 

1 1 
= T2 - To + V = -mL2(e2 - fi2 sin2 6) - -mgLcos0 = constant [a] 6 2 

If we are given the value of 8, when 19 = O 1  and are asked to find the value of b when 
6 = 62, we can solve for 92 using 

1 8.1 0 LAGRANGE'S EQUATIONS FOR RIGID BODIES 
The extended Hamilton's principle and Lagrange's equations discussed in Chapter 
4 have the same form whether they are written for particles or rigid bodies. In this 
section, we analyze the generalized forces, quantities suitable to be used as general- 
ized coordinates, and the nature of the Lagrange's equations for rigid body motion. 
We also develop a physical interpretation of generalized momentum expressions. 

8.1 0.1 VIRTUAL WORK AND GENERALIZED FORCES 

One can obtain expressions for the virtual displacements by calculating the velocities 
and can replace time derivatives with the variational notation. To calculate the virtual 
work, we can take the expression for incremental work or for power, and make the 
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appropriate substitution. For example, one way of expressing the incremental work 
done on a rigid body is Eq. [8.9.19], repeated here as 

The virtual work has the form 

We express the virtual work in terms of the generalized coordinates. For a system 
with n independent generalized coordinates, the variation of Sri can be written as 

The problems of dealing with 60 and its derivatives were discussed earlier. We 
also saw in Chapter 4 that if a vector r is a function of n generalized coordinates 
qk (k = 1,2,. . . , n) and time t, we can write d d d q k  = df ldqk .  Introducing this 
substitution into the variation expressions, we obtain 

Substituting this equation into Eq. [8.10.2] gives 

so that the generalized forces have the form 

The expression for the incremental work or power can be expressed in terms 
of the resultant of all forces F acting through the center of mass and the resultant 
moment MG about the center of mass as Eq. [8.9.23]. The associated virtual work 
expression has the form 

and the associated generalized forces become 

When the resultant of forces and moments is expressed as the resultant force F 
about a point B and resultant moment MB about B, as in Eq. [8.9.25], the virtual 



work can be expressed in terms o'f the motion of point B, and the generalized forces 
become 

Depending on the problem at hand, one can use any one of Eqs. [8.10.6], 
[8.10.8], or [8.10.9] to calculate the generalized forces. For a system of N rigid bod- 
ies, Eq. [8.10.83. can be extended as 

in which Fi denotes the resultant of all external forces acting on the ith body, and 
MG, is the resultant moment about the center of mass of the ith body. 

A set of generalized coordinates suitable to describe the translational motion of a 
rigid body are the displacements of its center of mass. However, the associated gen- 
eralized velocities do not give too much insight; it is more suitable to use the compo- 
nents of the velocity in a moving coordinate frame, such as a set of body-fixed axes 
or the F frame. In essence, velocity and angular velocity components in a body frame 
are quasi-velocities (generalized speeds). Lagrange's equations, on the other hand, 
deal with generalized coordinates and generalized velocities. Using quasi-velocities 
is not feasible with the traditional form of Lagrange's equations. 

Consider the Euler angles of precession (4), nutation (0), and spin ($) associated 
with a 3-1-3 Euler angle transformation. For the translational motion, we use the 
inertial coordinates A l ,  A2, and A3 of the center of mass. Recall that the angular 
velocity expression for a 3-1-3 transformation is 

The kinetic energy is 

Note that the precession angle 4 is absent from T, so that 4 can become a cyclic 
coordinate if it is not present in the potential energy and in the virtual work. Differ- 
entiation of the kinetic energy with respect to the Euler angles and their derivatives 
is cumbersome. An alternate way of dealing with the derivatives of the kinetic en- 
ergy is to retain the angular velocity expression in the formulation as long as pos- 
sible, as we will demonstrate. In the next chapter, we will see a modification to the 



Lagrange's equations that makes it possible to derive the equations of motion in 
terms of the angular velocities. 

Consider the physical interpretation of the generalized momenta terms asso- 
ciated with the Euler angles. The rotational kinetic energy is written as Trot = 
o H&?.  Note that because we are considering an unconstrained rigid body the 
translational kinetic energy has no terms involving the derivatives of the Euler an- 
gles. We first analyze the generalized momentum associated with the precession 
angle 4. Differentiating Eq. [8.10.12] with respect to 4 yields 

Recalling the definition of the rotational kinetic energy, we can write .rr+ also as 

The derivatives of the angular velocity vector with respect to the rates of change 
of the Euler angles can be obtained from Eq. [7.5.4] as 

In order to generalize Eq. [8.10.15] to any Euler angle sequence, we denote by 
e+ the unit vector about whose direction the Euler angle transformation with 4 is 
conducted. Considering our coordinate system obtained by a 3-1-3 transformation, 
e+ = a3. Similarly, we define ee and eg as the unit vectors about which the 8 and + 
rotations are performed. For the 3-1-3 system under consideration 

do3 d o  , d o  
e+ = -7 = a3 ee = --; = a, = cos +bl - sin +b2 e,,, = - 

a45 do 

The unit vectors e+, ee, and eg are in essence the partial velocities associated with 
the rates of the Euler angles. Also, from Eq. [7.5.5] we have a3 = sin 0 sin +bl + 
sin 8 cos +bz + cos 8b3, which, in light of Eqs. [8.10.13]-[8.10.15], can be expressed 
as 

dw 1 dm2 do3 as = e+ = ---;-bl + --;-b2 + ?b3 [S. 10.1 71 
d4 a4 d4 

Physically, dwi/d& (i = 1,2, 3) is equivalent to the direction cosine, or, the cosine 
of the angle between the vectors bi and e+. 



Considering Eqs. [8.10.16] and Eq. [8.10.14], one can express the generalized 
momenta associated with the Euler angles as 

Thus, the generalized momenta associated with the Euler angles are the components 
of the angular momentum along the directions about which the Euler angle rotations 
have been pe$ormed. 

The rates of change of the unit vectors e,, ee, and e,,, can be shown to be 

Equations [8.10.19] can be obtained by differentiation of Eqs. [8.10.16] and by 
making the proper substitutions. 

We next examine the generalized forces associated with the Euler angles. The 
virtual work expression can be written as 

where Q,, Qo, and Q+ are the generalized forces. We can write the rotational equa- 
tions of motion as 

Now let us demonstrate that Lagrange's equations for an unconstrained rigid 
body are the angular momentum balances in the directions about which the Euler 
angle transformations are made. 

We begin by showing that Q,, Q,, and Q+ are the components of applied exter- 
nal moment about the center of mass G (or center of rotation C) in the directions of 
the Euler angle rotations. Assuming N forces are applied to the body, we write the 
resultant moment as 

where pi ( i  = 1,2, . . . , N) are the position vectors of the points at which the forces 
are applied. Let us define the components of the external moment about the axes 
through which the Euler angles are transformed as 

Take, for example, a 3-1-3 transformation and the spin angle $. Considering Eq. 
[8.10.22], we can write the component D+ as 
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Recalling the vector identity a (b X c )  = c ( a  X b) we can write 

We next evaluate the expression e* X pi. Recalling the definition of the gener- 
alized force Qk as 

we explore the relationship between eg X pi and dpi ld$ .  To this end, we write pi in 
terms of the body coordinates and in column vector form as 

b p i )  = [&($)][R2(0)1[Rl (+ ) ] {A  pi) [8.10.27] 

so that differentiation of {Bpi) with respect to $ yields 

It is easy to show that 

and then, introducing Eq. [8.10.29] into Eq. [8.10.28],  we obtain 

whose vector counterpart is 

Equation [8.10.3 1 1  is a very useful relationship. Introducing it into Eq. [8.10.25],  
we conclude that Qg is indeed the same as Dg, and it has the form 

In a similar fashion, one can show that Eq. [8.10.32] is applicable to the other 
Euler angles as well, regardless of which Euler angle transformation sequence is 
used, so that the generalized forces associated with the Euler angles are indeed the 
components of the applied moment in the direction of the Euler angle rotation, and 
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Consider the dot product between the rate of change of the angular momentum and 
the unit vectors along the axes about which the Euler angle transformations are made. 
Take, for instance, HG ee, which can be expressed as 

HG-eo = HG*ee + H G * e e  - HG*ee 

Considering Eq. [8.10.19] as well as the definitions of the rotational kinetic energy 
and angular momentum, we obtain 

Introducing Eq. [8.10.35] into Eq. [8.10.34], repeating the procedure for the 
other Euler angles, and considering Eqs. [8.10.32] and [8.10.33], we conclude that 
Lagrange's equations for an unconstrained rigid body can be recognized as the com- 
ponents of the moment balance along the directions about which the Euler angle 
rotations are performed: 

If the motion of the body is constrained in some fashion, Lagrange's equations for 
the rotational motion no longer have this form. Rather, one can only write them in 
their traditional form. Also, for rotation about a fixed point, Lagrange's equations are 
the moment balances about the center of rotation. 

Unlike Euler's equations, Lagrange's equations are angular momentum balances 
about a set of nonorthogonal axes. The decision as to which form of the rotational 
equations to use depends on what type of explanation is sought. In general, if all 
three Euler angles need to be used and they are independent of each other and the 
general motion of the body is analyzed, it is easier to deal with Euler's equations, as 
they are in terms of the angular velocities and lead to simpler expressions. 

The advantage of Lagrange's equations over Euler's equations becomes more 
apparent when one studies the motion of interconnected bodies. With Euler's equa- 
tions, one must separate each component of the body and write the Euler equations 
for each body. Then, one eliminates the reaction forces by combining the individual 
equations. When using Lagrange's equations, one can circumvent part of the labor 
and avoid lengthy expressions by writing the kinetic energy in terms of the angular 
velocity components and then using the partial derivatives of the angular velocity 
with respect to the Euler angles. 
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Another choice for generalized coordinates is the Euler parameters. In this case, 
we deal with a set of constrained generalized coordinates. Recall Eqs. [7.7.29] and 
[7.7.30c], repeated here as 

The rotational kinetic energy and virtual work have the form 

We are not considering the translational kinetic energy, as it is not a function of the 
Euler parameters. Using Eq. [8.10.37a], we can write 

Introduction of this and Eq. [8.10.37a] into Eqs. [8.10.38] yields the kinetic energy 
and virtual work in terms of the Euler parameters as 

Because the Euler parameters are related to each other by {e)T{e) = 1, this ex- 
pression needs to be used as the constraint relation. We proceed with taking the 
partial derivatives of the kinetic energy as 

One can show, by examining the elements of [E], that [ ~ ] { e )  = {0), so the second 
term on the right side of this equation vanishes. To obtain the derivative of the kinetic 
energy with respect to {e), we note from Eq. [8.10.37b] that 

and then, introducing Eq. [8.10.42] into Tmt and differentiating, we obtain 

JTrot - a - -  -2{e)T[ElT [1~1[El{el = 4{elT [ElT [ M E 1  
J{eI JM 

Using Eq. [8.10.42] we can also show that the last term on the right side of 
Eq. [8.10.41] can be written as 

4{eIT [ElT [I~][E] = -4{ejT [ElT [I~][E] [8.10.44] 

The modified virtual work, in the presence of the constraint, has the form 

8 w = ~ { M G ) ~  [~ ]{8e )  + 2 ~ { e ) ~ { ~ e )  [U. 1 0.451 



Combining Eqs. [8.10.41], [8.10.43], and [8.10.45], and taking the transpose 
of the resulting expression, we obtain Lagrange's equations in terms of the Euler 
parameters as 

subject to the constraint { ~ ) ~ { e )  = 1. 

The Lagrangian treatment of dynarnical systems subjected to constraints was dis- 
cussed in Section 4.10. The treatment of three-dimensional motion is essentially the 
same. One basically has to decide how to handle the constraints. 

When the constraint is holonomic, one has a choice: generate a set of indepen- 
dent generalized coordinates that take into account the constraint, or deal with con- 
strained generalized coordinates. When the constraint is nonholonomic, one must 
use constrained generalized coordinates. 

When using constrained generalized coordinates, one has two options: 

a. Introduce the kinematics of the constraint into the problem by means 
of Lagrange multipliers. When the constraint is expressed as a configuration 
constraint, it augments the Lagrangian. When the constraint is expressed in 
velocity form, it augments the virtual work. Both cases lead to a set of equations in 
terms of the Lagrange multipliers. After obtaining the equations, one can seek to 
eliminate the Lagrange multipliers and generate a set of independent equations of 
motion. 
b. Introduce the constraint forces into the formulation. One does this by relaxing 
the constraints and accounting for the effect of the constraints by means of the con- 
straint forces. These forces enter the equations of motion via the virtual work. Once 
the equations of motion are obtained, the kinematics of the constraints are intro- 
duced, and an expression is developed for the constraint force. Mathematically, this 
approach is equivalent to expressing the constraint in velocity form. The constraint 
force is essentially the Lagrange multiplier. While mathematically not any different 
from the others, this approach gives better physical insight. It is particularly useful 
when dealing with holonomic constraints and in the presence of friction forces. It 
also is a suitable approach to calculate the magnitudes of constraint forces that do no 
work. 

Example I Derive the equations of motion for the spinning top shown in Fig. 7.13 using a 3-1-3 Euler 
8.10 angle transformation, and analyze the motion integrals. The centroidal moments of inertia are 

11,  I2 = 11, and 13. The center of mass is at a height of L from the bottom of the top. Assume 
that the point of contact between the top and the ground is stationary. 

Solution 
The motion of the top can be viewed as rotating about the fixed point 0. The kinetic energy is 
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where the components of the mass moment of inertia about point 0 are 

= I ,  + mL2 I~ = I ,  + mL2 103 = [bl 

Introducing the values for the angular velocities for a 3-1-3 transformation from Eq. 
[8.9.15], we obtain for the kinetic energy 

The potential energy is 

V = mgL cos 8 

The only other forces acting on the spinning top are those at the point of contact. They do no 
work, as they are being applied to a fixed point. It follows that the virtual work expression is 
zero. 

Before obtaining the equations of motion, let us first analyze the integrals of the motion. 
The virtual work is zero, the Lagrangian is not an explicit function of time, and all terms in 
the kinetic energy are quadratic in the generalized coordinates. It follows that the first integral 
of the motion is the Jacobi integral, which for this case is the total energy 

T + V = constant 1.1 

Examining Eqs. [c] and [dl closer, we note that the Lagrangian does not have any + 
and I(, dependency. We conclude that the generalized momenta associated with these two 
coordinates are constant, which gives us two more integrals of the motion in the form 

dT 
.rr+ = 7 = 1014 sin2 8 + lo3(& cos 8 + *) cos 8 = constant 

d 4  
If1 

dT 
.rr+ = - = Io3(+ cos 8 + I(,) = constant 

a* 
191 

These first integrals are the components of the angular momentum along the a3 and 
b3 directions. We will discuss their physical interpretation further in Chapter 10. Equation 
[g] is recognized as 0 3  = constant. The first two equations of motion are then obtained by 
differentiating the generalized momenta associated with and $, and they have the form 

We find the equation of motion associated with 8 by invoking Lagrange's equations. We 
have 

dT 
dT - (II  + r n ~ ~ ) & ~  sin 8 cos 8 - 13(& cos 8 + *)& sin 8 = (II  + mL2)e - - 

do d8 

leading to the equation of motion 

(II  + rnL2)9 - ( I I  + mL2 - 1 ~ ) 4 ~  sin 8 cos 8 + 13$* sin 8 - mgL sin 8 = 0 [/I 



Example I The slender bar of mass m and length L, shown in Fig. 8.15, is attached to the arm of a 
8.1 1 shaft which is rotating with a constant speed of a. The length of the arm is a. Find the 

equation of motion for the bar and the equilibrium position(s). Then, analyze the stability of 
the equilibrium. 

Solution 

We attach a blb2b3 coordinate system to the rod and write the angular velocity of the rod as 
the summation of the rate of change of 8 and the angular velocity of the shaft as 

o = -a cos 8bl + sin 8b2 + 8b3 [a] 

The mass moments of inertia about the center of mass are 

To evaluate the kinetic energy, we need to find the velocity of the center of mass. Using 
the relative velocity relation 

where 

L 
v ~ = - f l a b 3  r ~ / ~ = - b ,  

2 
we obtain 

L L sin 8 
= -8bz 2 - a(, + a)b3 

We write the kinetic energy as 
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and, substituting the appropriate terms, we obtain 

Note that we could not have written the kinetic energy as purely rotational about B because 
point B is not fixed. 

The potential energy is 

There are no nonconsewative forces that do work. Application of Lagrange's equations 
yields the equation of motion as 

Finding the equilibrium position requires that we solve Eq. [i] with 8 = 0, for 

Let us assume small motions and approximate sin 8 by 8 and cos 8 by 1. Solving Eq. Ij] 
we obtain for the equilibrium position 8, 

These equations also give a range of validity for the small angle assumption, namely that 
R2 should be less than 3gI2L. Comparing this result with the bead problem in Chapters 4 and 
5, we observe that 0 = 0 is not an equilibrium point as long as the arm length a is not zero. 

Next, we analyze the equilibrium point. From the above equation, as the rotational speed 
fl gets larger, 8, becomes larger. This can be explained by noting that the rod lifts up higher 
as the shaft spins faster. Considering the stability of the equilibrium point, Eqs. [g] and [h] 
indicate that the system is nonnatural, with T I  = 0. The dynamic potential U = V - To has 
the form 

1 L sin 8 
-mRZ 2 (i + a)i 111 

The first derivative of U gives the equilibrium equation (Eq. Ij] divided by 3). The second 
derivative of U is 

For small values of 8,, if we introduce the small angle assumption to this equation, we 
obtain 

From Eq. [k], the first term on the right side of Eq. [n] is greater than zero; thus, the 
second derivative of U is larger than zero for all times when the small angle assumption is 



valid. We, of course, intuitively expected this to happen. Indeed, the stability property is valid 
also for large values of the equilibrium position. 

When a = 0, we get that 8 = 0 is an equilibrium position for the bar as well, and that 
for small values of the rotation speed 8, = 0 represents a stable equilibrium position. To 
understand why 8 = 0 is not an equilibrium position when there is an arm, it is helpful to 
visualize the equilibrium position as a point where the centrifugal force and the gravitational 
force create moments that balance each other out. The instant an arm is placed on the shaft and 
the rod is suspended from that arm, the moment generated by the centrifugal force becomes 
much larger, and the equilibrium position shifts up. 

Example I A spinning top of mass r n l ,  and centroidal moments of inertia II  and 13, where I3 is measured 
8.12 about the symmetry axis, is moving on a cart of mass rn2 which is constrained to move hor- 

izontally and in one direction, as shown in Fig 8.16. Find the equations of motion using a 
Lagrangian approach. 

Solution 
This problem is a four degree of freedom, holonornic problem. We select the translational 
coordinate for the cart and the three Euler angles as the generalized coordinates. We write the 
kinetic and potential energies of the cart and spinning top separately. We select a reference 
frame ala2a3 such that the cart always moves in the a2 direction and use a 3-1-3 Euler angle 
transformation (+,8, $) to orient the top. We take advantage of the symmetry and use the F 
frame. The angular velocity of the top can be expressed as 

Next, let us write the kinetic and potential energies of the cart and top. For the cart we 
have 
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and for the top we have 

where the velocity of the center of mass of the top is 

vc = ya2 + w X rclc = Ya2 + (wlfl + w2f2 + u3f3) X Lf3 

= Ya2 + w2Lfl - w1Lf2 [dl 

We prefer to use (for notational purposes) wl, oz,  and w3 to preserve the compact nature of 
the equations. We can express a2 in terms of the F frame by taking the second column of [R] 
and setting IC, = 0 in Eq. [7.5.3] as 

a2 = sin 4f1 + cos 4 cos Of2 - cos 4 sin Of3 1.1 

which results in the velocity expression for the center of mass of the top, written 

vc = ( ~ s i n 4  + w2L)fl + ( ~ c o s ~ c o s 0  - wlL)f2 - ~cos4sinOf3 [(I 

Substituting the above equation in Eq. [c], carrying out the algebra, and combining with the 
kinetic energy of the cart yields 

We notice that the last term in Eq. [g] provides the coupling between the translational and 
rotational motions. The external force that does work is F, which is along the a2 direction, 
and the moment M, which is along the spin axis, fi. The potential energy and virtual work 
are 

To implement Lagrange's equations, we need to take the partial derivatives with respect 
to the generalized coordinates and generalized velocities. Once we write the angular velocities 
in terms of the Euler angles and start taking partial velocities, the equations become complex 
and lengthy. In addition, it becomes increasingly difficult to attribute a physical meaning 
to the equations of motion. We thus keep the angular velocities in the formulation as long as 
possible. We evaluate the partial derivatives of the angular velocities with respect to the Euler 
angles and their rates of change. Using Eq. [a] we have 



With respect to the precession angle, we have 

= (11 + ml ~ ' ) w 2  sin o + 1303 cos + ml L Y  sin 4 sin 8 

so that, noting the relation wl = 6, the equation of motion associated with the precession 
angle becomes 

(II +rn1L2)(h2s8 + w l o 2 c 8 ) + I 3 h 3 c f l  + r n l ~ ~ s + s 8  -13wlo3se = McO [k] 

With respect to the nutation angle, we have 

Noting that o z  = 4 sin 8, we obtain the equation of motion for the nutation rate as 

For the spin rate, 

so that the equation of motion has the form 

Comparing Eqs. [o] and [k], we observe that Eq. [o] is embedded in Eq. [k]. This is to 
be expected, because the equation of motion for the precession angle 4 is nothing but the 
moment balance about the precession axis (a3), and the equation for the spin angle is the 
moment balance about the b3 axis. The angle between the two axes is 19. We multiply Eq. [o] 
by cos 8, subtract it from Eq. [k], and divide the result by sin 8, which gives 

Finally, with regards to the translational coordinate Y, we note that d o i l d ~  = 0 (i = 
1,2, 3), thus 
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and the equation of motion becomes 

which we can rearrange as 

An interesting observation can be made with regards to the equations of motion. The 
final expressions do not contain a mixed product of Y and one of w l ,  wz, or w3. This is to be 
expected, for two reasons. First, we discussed in Chapter 4 that many of the 8T18qk terms, 
where qk are generalized coordinates, cancel. Second, mixed velocity terms in the equations 
of motion are indicative of Coriolis effects and of motion with respect to a rotating frame. 
While we have mixed angular velocity terms in the equations of motion, there are no mixed 
velocity terms involving Y, because Y is not a rotational coordinate. One can use this property 
when checking the accuracy of the equations of motion. 

Let us now consider the spinning top without the cart. We should be able to derive its 
equations of motion by eliminating all the m2Y terms from the equations of motion. Indeed, 
eliminating the Y terms from Eqs. [m], [o], and [p] and rearranging, we obtain 

w2 (Il + ml ~ ' ) h ,  - o r  (II  + ml L')- - h w r ]  - mlgL sin 0 = 0 
tan 0 

w2 ( I ~  + ml ~ ~ ) h 2  + wl (11 + ml L')- - I ~ U ~  = 0 
tan 0 I 

13h3 = M [*I 

which can also be derived from Eqs. [8.5.30] or [8.5.31], as we did in Example 8.10. 

The above example illustrates some of the difficulties encountered when us- 
ing Lagrange's equations in conjunction with the general three-dimensional motion 
of rigid bodies. In this particular case, we alleviated some of the complexities in a 
roundabout way, by retaining oi ( i  = 1,2,3) in the equations of motion and tak- 
ing their partial derivatives with respect to the Euler angles. If, on the other hand, 
we wanted to apply Euler's equations to this problem directly, we would have to 
separate the top and the cart into two separate systems. We would then write the in- 
dividual equations of motion, which contain the reaction terms. After that, we would 
need to eliminate the reactions and obtain the equations of motion for the system. 
The question arises as to whether there are direct methods that permit the use of the 
body angular velocities in the equations of motion and also at the same time facilitate 
the solution for interconnected bodies. The answer to this question is discussed in 
Chapter 9. 

Derive the equations of motion for a disk of mass m and radius R that is rolling without I Exclmpl. 
slipping on a flat surface. Use Lagrange's equations. 8.1 3 

Solution 

The kinematics of the rolling disk is discussed in Section 7.9. Consider Figures 7.32-7.34, 
and use as generalized coordinates the translation of the center of mass X, Y, and Z, and the 



and, while the expression for the kinetic energy would be correct if this substitution were 
made, the changes in the translational generalized coordinates would not be accounted for 
when the derivatives of the kinetic energy are taken. After deriving the equations of motion, 

Euler angles 4, 8, and t,b in conjunction with a 3-1-3 sequence. The free-body diagram of the 
disk is shown in Fig. 8.17. The force Fz is the normal force and Fu and Fx are friction forces. 

We obtained in Section 7.9 that the motion is governed by one holonomic and two non- 
holonomic constraints of the form 

Z = RsinO [a] 

x = Re sin + sin 0 - R(& cos 8 + *) cos + [bl 
Y = -~ecos+s inO - R(4cosO ++)sin+ [el 

To find the equations of motion using Lagrange's equations, we write the expressions for 
the kinetic and potential energies. For a uniform thin disk we have 

We write the kinetic energy as 

Note that in Eq. [el we did not substitute for the values of x and Y from Eqs. [b] and [c], 
but we substituted the value of Z. This is because the constraints [b] and [c] are nonholonomic 

one can perform the substitution. 1f ~ ~ s . - [ b ]  and [c] are introduced into the kinetic energy and 
Lagrange's equations are invoked, we get an incorrect result. 

The potential energy is 

V = mgR sin O fl 



The virtual work expression is due to the nonholonomic constraints [b] and [c], and it is 
expressed as 

The generalized forces are obtained from the virtual work as 

Q x = A l  Q y = A 2  Q ~ = R c o s ~ c o s 6 A l + R s i n + c o s 6 A 2  

Qg = - R s in4 sin 6Al + Rcos+ sin6A2 Q* = Rcos +A1 + Rsin +A2 [h] 
Applying Lagrange's equations for a constrained system, we obtain five differential 

equations 

m~ = Al [I] 

my = A2 111 

13(&6 - $ 6 ~ 6  + 4) = Rc4AI + Rs+A2 [m] 

The five equations above and the two constraints [b] and [c] can be used together to solve 
for the seven unknowns: the five generalized coordinates and the two Lagrange multipliers. 

One can reduce the number of equations by first introducing Eqs. [i] and Ij] into Eqs. [k], 
[I], and [m]. This eliminates the Lagrange multipliers from the formulation. One can realize a 
further reduction by differentiating Eqs. [b] and [c], and substituting the results into Eqs. [k], 
[I], and [m], which are now in terms of X and Y. As a result, we end up with three equations of 
motion, in terms of the Euler angles. The procedure is tedious; we outline here the procedure 
for the $ equation only. 

Introduction of Eqs. [i] and ti] into Eq. [m] yields 

13(c$cos 6 - $0 sin 6 + $) = rn~ j i cos  + + ~ R Y  s in4 In1 

Differentiation of Eqs. [b] and [c] gives 

X = R8s+s6 - R(&O + $)c+ + 2R$i)c+s6 + Re2s&0 + R$~S&O + R$&$ [o] 

Introduction of Eqs. [o] and [p] into Eq. [n] and carrying out the algebra yields 

(I3 + mR2)($cos 6 - $i) sin 6 + $) - mR2$0 sin 6 = 0 [(I] 

The other two equations of motion are obtained in the same way, and they have the form 

(II + mR2)8 + (I3 + mR2)&0(&6 + 6 )  - 11&.6~6 + mgRd = 0 [e l  

1 ~ 4 ~ 6  + 21~$0c6 - I ~ ~ ( $ c o  + 6) = o 111 



This example further illustrates the difficulties associated with obtaining the 
equations of motion of a system when all three Euler angles are present as general- 
ized coordinates. Given the simplicity of the unconstrained equations, one wonders 
whether there is a more suitable way of obtaining the equations of motion. 

Also, this example is more of a special case, where elimination of the Lagrange 
multipliers and redundant coordinates leads to a simpler set of equations. More often 
than not, one ends up with considerably more complicated equations after eliminat- 
ing the Lagrange multipliers from the formulation. 

Example 1 Consider Example 8.4 and calculate the moment acting on the shaft so that the shaft rotates 
8.1 4 with a constant angular velocity. 

Solution 
We will use the constraint relaxation method. We treat the rotation of the shaft as a variable 
4, and consider a moment M acting on the shaft. From Example 8.9, the rotational kinetic 
energy has the form 

where I is the mass moment of inertia of the shaft about the vertical. The virtual work is due 
to the moment M 

and 4 does not contribute to the potential energy. Invoking Lagrange's equations we obtain 
the equation of motion associated with 4 as 

1 2 
-mL2$sin2 8 + 14 + - r n ~ ~ &  sin8 cos 8 = M 
3 3 [el 

We next invoke the constraint that $ = fl is constant, so that the expression for M 
becomes 

Let us compare this answer with Eq. ti] in Example 8.4, where we obtain the reaction 
moments. Considering Fig. 8.7, we recognize that 

M = M2 sin 8 [el 

which we confirm upon comparing Eq. [dl with Eq. ti] in Example 8.4. 

In Section 5.13 we discussed certain shortcomings associated with Lagrange's equa- 
tions and saw a way of writing the equations of motion for a system of particles di- 
rectly from D'Alembert's principle. In this section, we do the same for rigid bodies. 



8.1 1 D'ALEMBERT'S PRINCIPLE FOR RIGID BODIES 475 

For a system of N particles, D'Alembert's principle is written as 

in which Fi denotes all the forces external to the ith particle. For a rigid body, we 
replace the summation by an integration, mi by dm, Fi by dF, and we drop the 
subscript i, with the result 

a-Srdm = [8.11.2] L , 
Writing from Fig. 8.1 the position vector as r = rc + p, we expand a and 6r in 

terms of the center of mass as 

Sr = 6 r G + 6 0 X p  a = a G + a X p + w X ( o X p )  18.11.3) 

Note that, as before, the variation of the rotation is denoted by 60, indicating that 
this is not a derived quantity, but rather a defined one. Introduction of Eqs. [8.11.3] 
to the left side of Eq. [8.11.2] yields 

All other terms drop out due to the definition of the center of mass. The first term 
on the right side of the above equation is recognized as  ma^ arc. To evaluate the 
second and third terms, we make use of column vector formulation to write 

(a x p) (60 x p) = { W T  [PIT [ f l { f f )  18.1 1 .s] 

and realize from Eq. [8.2.18] that [flT[P]dm = [IG] and that [IG]{a) = 
{dHGldt},l. Manipulation of the last term on the right side of Eq. [8.11.4] is more 
complicated. After a number of manipulations one can show that 

where we recognize the expression that leads to the angular momentum, p X ( o  X p). 
It follows that the second and third terms in Eq. [8.11.4] reduce to 

I body [ ( axP) * (60xP)+ (wx (wXp) ) * (60xp )  1 dm 

Introducing the expression for Sr into the right side of Eq. [8.11.2] and using 
the results from Section 8.4, we obtain 



in which F is the resultant force and MG is the resultant moment about the cen- 
ter of mass. Substituting Eqs. [8.11.7] and [8.11.8] into Eq. [8.11.2], we obtain 
D'Alembert's principle for a rigid body as 

When there is more than one body in the system, D'Alembert's principle be- 
comes 

where all the internal forces and moments that one body exerts on another can- 
cel. Actually, Eq. [8.11.10] is the most general definition of D'Alembert's princi- 
ple. For a system of particles, all one does is to eliminate the rotational terms from 
Eq. [8.11.10]. 

We next consider writing the equations of motion directly from D'Alembert's 
principle. To this end, we express the variation of the centers of mass and of the 
rotations in terms of independent generalized coordinates and velocities as 

We introduce Eqs. [8.11.11] into Eq. [8.11.10], with the result 

We make use of the property that the variations of independent generalized co- 
ordinates are independent themselves. For Eq. [8.11.12] to hold, the coefficients of 
the variations of the generalized coordinates must vanish individually. We hence ob- 
tain the equations of motion, as the coefficients of the variations of the generalized 
coordinates, as 

in which the generalized forces are given by 

Note the similarity of the above equations with Lagrange's equations derived in 
the previous section. The right sides are identical. On the left sides, in Lagrange's 
equations we have derivatives of the kinetic energy, and in Eq. [8.11.13] we have 
vector products. Writing the rotational equations of motion in this form is usually 
more convenient than taking derivatives of the kinetic energy. 



The disadvantage of Eq. [8.11.13] is that the acceleration and rate of change of 
the angular momentum need to be calculated, which involves many more operations 
than computation of the kinetic energy. In a sense, Eq. [8.11.13] is a compromise 
between Lagrange's equations and Euler's equations, combining aspects of both. In 
Chapter 9, we study additional ways of writing the equations of motion that are based 
on D'Alembert's principle. 

An interesting application of the impulse-momentum relations is when two mov- 
ing rigid bodies or a moving body and a stationary object collide. The duration of 
the collision is very important when analyzing the properties of the ensuing motion. 
When the collision takes place in an extremely short period of time, it can be consid- 
ered as impulsive motion. The impulsive reaction forces that are generated form an 
impulsive constraint at the location of the collision. The velocities and angular ve- 
locities before and after the collision are related to each other by linear and angular 
momentum principles, as well as by Poisson's hypothesis. 

A collision takes place along the line of impact, which is perpendicular to the 
surface tangent to both colliding bodies. This surface is defined the same way the 
rolling surface is defined in Chapter 7. For particles, smooth spheres, or disks, 
the line of impact joins the centers of mass of the colliding bodies. 

For collisions of rigid bodies, the line of impact does not necessarily go through 
the centers of mass of the colliding bodies. Rather, the line of impact connects the 
impact point and centers of curvature of the contours of the colliding bodies at the 
point of impact, as shown in Fig 8.18. Also, one of the impacting bodies may not 
have a radius of curvature at the point of impact, because the impacting point is a 

Line of 
impact 



sharp edge. An example is given in Fig. 8.19. The rod on the left is given an initial 
motion by releasing it from an angle. The line of impact is perpendicular to the rod 
on the right. If, at the point of contact, the contours of both colliding bodies do not 
have a radius of curvature, one then has to make a reasonable assumption regarding 
the line of impact. 

As a result of the property that the line of impact does not lie along the line 
joining the centers of mass of the colliding bodies, Poisson's hypothesis, which we 
studied in Chapter 3, does not always reduce to Eq. [3.5.10], repeated here as 

in which e is the coefficient of restitution and Av is the difference in the components 
of the velocities of the colliding points along the line of impact, and the subscripts 1 
and 2 denote before and after the impact, respectively. Also referred to as Newton S 
experimental law,' Eq. [8.12.1], which can be regarded as a kinematic relationship, 
holds for the component of the velocity along the line of impact when the contours 
of the colliding bodies are smooth at the point of impact and there is no friction 
involved. Recall that Poisson's hypothesis states that the impulse takes place in two 
stages: a compression stage, where the bodies compress each other until the relative 
velocity of the two bodies along the line of impact is zero, and a restitution stage, 
where the colliding points split from each other and the bodies regain their original 
shapes. Inherent in this hypothesis is the consideration that the colliding bodies have 
some elasticity in them to permit compression and restitution. 

The coefficient of restitution e indicates the strengths of the two stages of im- 
pact. It varies between 0 and 1, its value depending on the material properties of the 
colliding bodies as well as the circumstances under which contact takes place. When 
e = 1, the collision is known as perfectly elastic impact and there is no energy loss. 
The strengths of the impact during the compression and restitution are the same. A 
value of e between 0 and 1 indicates that the strength of the impact has lessened 
in the restitution phase. This reduction in the strength is due to the elasticity and 

I 'It was Newton who first formulated the velocity relations for impact. Poisson later on generalized what happens 
during impact to what is known as Poisson's hypothesis. 



internal energy dissipation. When e = 0, there is plastic impact and no restitution. 
The colliding bodies do not separate from each other immediately after impact. The 
shapes of the bodies also affect the coefficient of restitution. When the collision takes 
place over a sharp edge, the value of e becomes smaller than its value for impact over 
a smooth surface. 

It should be noted that the coefficient of restitution represents a gross simplifi- 
cation of what happens during impact. Another issue that needs consideration is the 
material damage that may ensue as a result of impact. Since the implicit assump- 
tion is that there is no damage to the colliding bodies as a result of impact, we are 
inherently considering low-velocity impact. This itself challenges the validity of the 
assumption that impact takes place during an extremely small period of time. Yet 
another issue is the presence of frictional forces during impact. Recalling that fric- 
tion forces are obtained from normal forces through the multiplication of coefficients 
of friction and that the coefficients of friction themselves are largely simplifications, 
the issue of dealing with frictional impulsive forces becomes even more compli- 
cated. Take care to see if the assumptions used are correct and whether dealing with 
a frictional impulsive force is realistic. 

Consider a cube resting on a smooth surface, subjected to an impulsive force P ,  as shown in I E x a m ~ k  
Fig. 8.20. Find the velocity of the center of the mass of the cube and its angular velocity after 8.1 5 
impact as a function of the coefficient of restitution e. 

Solution 
We draw in Figs. 8.21-8.22 the free-body diagrams of the cube, during the compression and 
restitution, respectively. The impact of the cube with the smooth surface takes place at point 
C. We conclude this by noting that point C can move horizontally but it cannot move vertically 
because f causes a clockwise rotation of the cube. We denote the impulsive reaction during 
compression by R. 

We denote the components of the velocity of the center of mass and angular velocity at 
the end of the compression period by v,,, v,,, and w,, and after the collision is over, by v,, 
v, and w ,  respectively. After compression, the linear impulse-momentum theorem yields in 
the x and y directions 

Figure 8.20 

I i 
Figure 8.2 1 Compression 



Figurn 8.22 Restitution 

The angular impulse-momentum relationship about the center of mass yields 

where IG = m((2b)2 + (2b)2)/12 = 2mb2/3 is the centroidal mass moment of inertia. Eqs. 
[a] and [b] constitute three equations that need to be solved for the four unknowns v,,, v,,, 
w, ,  and k. The fourth equation comes from the kinematics and from the realization that point 
C has no vertical velocity at the end of the compression period. To this end, we write the 
relative velocity equation between the center of mass and point C as 

where VG = vXci + v y j  and rclc = bi - bj. Noting that the vertical component of v c  is zero, 
we obtain for the component of the motion in the y direction 

Solving Eqs. [a] through [dl simultaneously, we obtain 

Next, we write the impulse-momentum relationships for the restitution phase. From the 
free-body diagram, the velocity in the x direction does not change. In the y direction we have 

Introducing the values for vyc and R into this equation, we obtain 

Similarly, for the angular impulse momentum about the center of mass we have 

IGwC + ekb = IGw [hl 
whose solution is 

The sign of the angular velocity after impact depends on the value of the coefficient 
of restitution. For perfectly elastic impact, the angular velocity is positive, counterclockwise 



by our sign convention. Because there is no energy loss, it is as if the cube bounces back. 
However, as the cube is resting horizontally, a counterclockwise rotation is impossible and 
a second impact is immediately generated by an impulsive force at point B. The cube rocks 
back and forth as it translates forward. 

As the coefficient of restitution becomes smaller, the resistance of the cube to clockwise 
rotation becomes smaller. When e = 213, the angular velocity w becomes zero and the cube 
just acquires a translational velocity with no rotation. When e is less than 213, the cube ac- 
quires a clockwise angular velocity. As the coefficient of restitution becomes even smaller, 
the angular velocity becomes large enough to tip the cube over. 

Note that in order to solve this problem using Eq. [8.12.1], we would have to assume 
that the cube is originally resting an infinitesimal distance above the surface; then we would 
use the kinematic relations as the infinitesimal distance goes to zero. 
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SECTIONS 8.2 AND 8.3 

1. Consider the slender bar i n  Fig. 8.15. Find the angular momentum of the bar 
about point B. 

2. Replace the  slender bar in the previous problem by  a rectangular plate, as shown 
i n  Fig. 8.23. Find the angular momentum about point B. 



Figure 8.24 Figure 8.25 

3. Figure 8.17 shows a disk of radius R rolling without slipping. Using a 3-1-3 
Euler angle transformation, find its linear momentum and angular momentum 
about the center of mass and about the contact point. 

4. The vehicle in Fig. 8.24 has an inertia matrix as given below. If for the instant 
considered the angular velocities of the vehicle are w,  = 0.1 rads, w,  = -0.04 
rads, and w,  = -0.15 rads, find the angular momentum of the vehicle ex- 
pressed in terms of principal axes. 

5. The light shaft of a spherical pendulum is bent as shown in Fig. 8.25. Find the 
angular momentum of the pendulum about B. 

6. Find the angular momentum of the disk in Fig. 2.47 about point A. 

7. Find the equation of motion and magnitudes of the reaction forces for the spin- 
ning pendulum in Fig. 8.15 using Euler 's equations. 

8. Consider Example 8.5. Find the equation of motion when the rod connecting 
the shaft to the disk has a mass of ml2. Both 4 and I) are kept constant by 
servomotors. 

9. Consider the spinning top in Fig. 8.16. The cart is not moving, and at the instant 
shown 8 = 15", 8 = 0 ,8  = 0, and 4 = 0.2 rads and is constant. Find the spin 
rate 4 necessary to maintain this condition. 

10. Consider the rolling cone in Fig. 7.35. Pivot 0 is fixed, and RIL = 0.2. Given 
that friction is sufficient to prevent slipping, find the necessary condition on the 



Figure 8.26 Figure 8.27 

angular velocity of the cone that will prevent the cone from tipping. Hint: Model 
the normal force acting on the cone as a single force acting from a distance d 
from 0 find d and relate the angular velocity to d. 

11.  The disk of mass m and radius R in Fig. 8.26 is being held by a light bar. The disk 
rotates with constant angular velocity R. The other end of the bar is connected 
to a joint at B. The x y z  axes are attached to the bar. Find the external moment 
necessary to have the bar rotate and the reaction moments when the joint permits 
motion about (a) the x axis, (b) the y axis, and (c) the z axis. 

12. Consider the spinning top in Fig. 7.13. Find the equations of motion using Eqs. 
[8.5.31] and [8.5.32]. 

13. The disk in Fig. 8.27 rotates about the light rod BG and it rolls on a horizontal 
surface. The shaft to which point B is attached rotates with the constant an- 
gular velocity LR. Find the reactions at B and the normal force at the point of 
contact C. 

14. Find the equation of motion of the plate in Fig. 8.23 for a = 0, b = d. Calculate 
the reactions at B. 

15. Consider the rolling disk in Example 8.13. Show that when the nutation rate is 
zero, the center of the disk traverses a circular path. Relate the radius of this 
path to the spin rate. 

16. Consider the unicycle in Fig. 7.54. Assume roll without slip and find the normal 
and friction forces at the point of contact. 

17. The triangular plate in Fig 8.28 is attached to a massless rod. The rod spins with 
constant angular velocity R. Find the reactions at the supports and the moment 
that needs to be exerted on the shaft to maintain this angular velocity. 

18. The rectangular plate shown in Fig 8.29 is attached to a massless rod. The rod 
spins with constant angular velocity R. Find the reactions at the supports A 
and B. 
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Figure 8.50 

19. The rectangular prism of mass m is attached to a shaft that goes through points B 
and C (Fig. 8.30). Find the reactions at the supports and the moment necessary 
to exert on the shaft to keep the angular velocity constant. 

20. The rectangular plate of mass 5 kg in Fig. 8.31 is resting on the xz plane on one 
of its edges, which is attached to a spherical joint. Suddenly, the plate is hit by 
an impulsive force of magnitude 300 N s in the negative y direction. Find the 
angular velocities of the plate and the velocity of the center of mass after this 
impulse is applied. 

21. The cylinder in Fig. 8.32 of length L and radius R initially has an angular veloc- 
ity of ox = 0.4 rads. The cylinder breaks into two equal parts at point C, and 
it is observed immediately after the break that the difference in velocities at C 
is vc, - vc, = 0.2 j mls, and the cylinder on the left has angular velocities of 
w,  = 0.2 rads, w,  = -0.1 rads. Find the angular velocity of the cylinder on 
the right. 

22. The slab from Space Odyssey 2001, shown in Fig. 8.33, is tumbling freely in 
space with VG = 0. The slab is of mass 10 kg and has dimensions a = 1 m, 
b = 0.2 m, and c = 0.5 m. Suddenly, a rock of mass 0.5 kg traveling with 
speed 12 m/s in the negative y direction hits the slab and gets lodged in it. Right 
before impact, the slab has angular velocities of ox = 0.1 rads, o, = 0.2 rads, 
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and w,  = 0.4 radls. Find the velocity of the center of mass of the slab and its 
angular velocity immediately after impact. 

23. The double pendulum in Fig. 8.34 is swinging in the local xz plane, which is 
rotating with the constant angular velocity of R. Write the kinetic and poten- 
tial energies and the equilibrium equations, and identify the integral(s) of the 
motion. 

24. Consider Fig. 8.15, with a = 0.3 m, L = 0.6 m, mass m = 2 kg. The shaft is 
rotating with constant angular velocity R1 = 2 radls. Initially, the pin joint at B 
is locked in the position 0 = 90". The lock breaks and the rod begins to swing. 
Calculate the angular velocity of the rod when 0 = 60". 

25. Consider the previous problem, with a = 0, and in the absence of a motor that 
maintains a constant angular velocity of the shaft. Given the same initial condi- 
tions as above, find the angular velocity of the shaft and of the rod when 0 = 60". 
Hint: What are the integrals of the motion? 



26. Derive the equations of motion for a spinning top using a 3-2-3 Euler angle 
transformation and by using Lagrange's equations. Compare your answer with 
the results of Example 8.10. 

27. Find the equation of motion of the gyropendulum in Example 8.5 using La- 
grange's equations. 

28. Find the equation of motion of the spinning plate in Fig. 8.23 using Lagrange's 
equations. 

29. The spacecraft in Fig. 8.35 has the following centroidal inertias: I l  = I2 = 

5 m ~ ~ ,  I3 = r n ~ ~ ,  where K is the radius of gyration. Along the b2 axis there 
is a frictionless tube, inside which a point mass mI10 moves. The point mass 



is connected to the ends of the tube by a spring k and a dashpot c.  An external 
torque M = Mb3 is applied. Derive the equations of motion using a 3-1-3 Euler 
angle sequence. Ignore the translation of the spacecraft. 
The shaft in Fig. 8.23 rotates with constant angular velocity a. Find the moment 
that must be exerted on the shaft to keep its angular velocity constant. Do this 
by treating the rotation of the shaft as a constrained generalized coordinate. Let 
a = 0. 

Consider Example 8.11 and, using constrained generalized coordinates, find the 
moment on the shaft needed to keep Ct constant. 

32. Consider Example 8.10 and derive the equations of motion by using Eq. 
[8.11.13]. 

33. Find the equation of motion of the plate in Fig. 8.23 using Eq. [8.11.13]. 

34. Consider the collision of the two rods in Fig. 8.19. Assume that the rod on the 
left is released from some initial position and calculate the angular velocities of 
the rods after impact as a function of the coefficient of restitution. The rod on the 
left is of mass m and length L,  and the rod on the right of mass 4m and length 
2L. The distance between 0 and 0' is Ll2. 

35. A beam of mass m = 2 kg and length L = 0.6 m hits a table as it is falling 
down (Fig. 8.36). At the time of impact the beam is horizontal, with its center 
of mass having a speed of 0.5 d s  and a clockwise angular velocity of 0.2 radls. 
Find the velocity of the center of mass and angular velocity immediately after 
impactfore = Oande = 1. 

36. The plate in Fig. 8.37 has a mass of 3 kg and width a = 20 cm. It is dropped 
from a height and hits a stationary table at corner P. At the time of im- 
pact the plate is horizontal and it has a vertical velocity of 0.5 d s ,  with no 



angular velocity. Find the velocity of point P and the angular velocity of the 
plate after impact for e = 0.5. 

37. The double pendulum shown in Fig. 8.38 impacts the horizontal surface at the 
instantwhendl = 30°,f12 = 45",i)l = -0.2rad/s,and& = -0.3rads.Find 
the angular velocities immediately after impact, assuming that there is no fric- 
tion between point P and the surface, and e = 0.8. 

38. Consider the slab in Fig. 8.33, except that the impact between the rock and slab 
has a coefficient of restitution of 0.9 and that the slab has no initial angular veloc- 
ity. Find the velocity of the center of mass of the slab and its angular velocities 
immediately after impact. 

39. The coin of weight 0.5 oz and radius 0.4 in, such as the one in Fig. 8.17, is 
dropped onto the ground. At the point of contact, the angular velocities of the 
coin are w,  = 0.5 rads, w,  = 0, w,  = 5 rads, the center of mass has a vertical 
speed of 9 inlsec, and 8 = 60". Assuming perfectly elastic impact, calculate the 
angular velocities of the coin immediately after impact. 



c h a p t e r  

This chapter presents additional methods for deriving the equations of motion of rigid 
bodies. These methods are particularly suitable for bodies subjected to nonholonornic 
constraints, and bodies that are interconnected. These additional equations are based 
on two concepts: First, the rotational equations of motion represent the moment bal- 
ance of a body. The angular momentum of a body can be written in many ways, about 
the center of mass or about an arbitrary point. When differentiating the angular mo- 
mentum, one can use a set of coordinates attached to the body, a set of coordinates 
that take advantage of symmetry of the body (if any), or a totally different set. Fur- 
ther, when expressing the moment balance, one can resolve the equations using the 
body frame or another frame. Each one of these choices leads to a different way of 
writing the equations of motion. 

Second, analytical methods for obtaining the equations of motion, such as in 
Lagrange's equations, are derived based on D' Alembert's and Hamilton's principles. 
As discussed in Chapter 5, there are other variational principles that one can consider, 
and they lead to additional forms of the equations of motion. 

The chapter begins with the modified Euler's equations, discussed briefly in 
Chapter 8 and particularly useful for inertially symmetric bodies. It moves on to a 
discussion of moment equations about an arbitrary point. There is an introduction 
to the equations of motion in terms of quasi-velocities (generalized speeds). The 
Gibbs-Appell and Kane's equations are derived and compared. We demonstrate that 
the two are indeed equivalent. 



When studying the equations of motion in terms of quasi-velocities, one may 
question the reasoning behind introducing such coordinates in association with rigid 
bodies. M e r  all, one can define such quantities associated with a system of parti- 
cles or any other system. These variables and the forms of the equations that make 
use of them could have been introduced in Chapter 4. The reason for introducing 
them here is that generalized speeds are the most useful for nonholonomic or inter- 
connected systems and that such properties are, for the most part, associated with 
three-dimensional rigid body motion. 

The modified Euler's equations are a variant of Euler's equations that are applicable 
to inertially symmetric bodies. They are based on writing the equations of rotational 
motion with respect to a reference frame other than one fixed to the body. 

Consider the rotational motion equations about the center of mass 

If we view the angular momentum from a reference frame N, we can write the 
above equation as 

where the A frame is inertial. When selecting frame N, the objective is to find a 
reference frame that will make the calculations simpler. Particularly appealing is a 
reference frame in which the elements of the inertia matrix remain time invariant. 
A reference frame that satisfies this criterion is one that is attached to the body. The 
rotational equations of motion can then be written as Eq. [8.5.25], or 

[ I G H ~ )  + [~][IG]{W) = {MG) [9.2.1)1 

For inertially symmetric bodies, when one uses the F frame, the elements of the 
inertia matrix are time invariant. As discussed in Chapter 8, one can use the F frame 
in conjunction with the moment balance equations in two ways: One can perform 
the differentiation in the F frame, or one can express Euler's equations using the 
components of the F frame. In this section, we discuss the first approach in more 
detail. 

Consider an inertially symmetric body, with body axes blbZb3, where bs is the 
symmetry axis. It follows that ZI = 12, and the body axes are principal axes. Further, 
any rotation of coordinates about b3 yields another set of principal axes. 

We introduce the F frame to the formulation. Chapter 7 introduced the notations 
of ob, q, and o, to denote the angular velocities of the body, frame, and spin, re- 
spectively. Mathematically, if the body-fixed frame is obtained from, say, a 3-1-3 
transformation, the F frame is obtained after the 3-1 transformation. This type of 
transformation completely describes the orientation of the symmetry axis. For a 
3-1-3 transformation, the angular velocities are 



= ob = o l f l  + 02f2 + 03f3 = ofl + & sinOf2 + (&cos 0 + $)f3 
A o F =  o f = w f l f l + o f 2 f 2 + o f 3 f 3 = i ) f l + $ s i n 8 f 2 + $ c o s ~ f 3  

F o B =  o, = $f3 A = + FoB = of + o, [9.2.4] o 

We then have 

For a 3-2-3 transformation, with the sequence Ji, 19, and 4, the angular velocities 
of the body and frame become 

= -(lI sin ofl + i f 2  + (JI cos 6 + $)f3 

= -*sin Ofl + of2 + 6 cos of3 [9.2.6] 

and we have 

We can write the rotational equations of motion using the angular velocity of the 
F frame as 

where we note that all the column vectors are resolved in the F frame, and 

{HG) = c9.2.91 

The equations of motion become 

Equations [9.2.10] are known as the mod@ed Euler's equations. Denoting the 
inertia matrix by [IG] = diag(ll Il 13) and carrying out the matrix algebra, we can 
express them as 

Also, for rotation about a fixed point C on the body, the modified Euler's equa- 
tions can be written about C as well as the center of mass. Depending on the Euler 
angle transformation sequence used, the modified Euler's equations look slightly 
different when we substitute the value of o f 3  into them. Substituting for o f 3  from 
Eqs. [9.2.5] and [9.2.7], Table 9.1 gives the modified Euler's equations for the 3-1-3 
and 3-2-3 transformations. 
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Table 9.1 Modified Euler equations for 3-1 -3 and 3-2-3 transformations 

3-1-3 'Ransformation Sequence 3-2-3 'Ransformation Sequence 

I l h l  + w2 (13w3 - -) tan 8 = M I  I l h l  + w2 (13.3 + =) tan e = MI 

12h2 - w 3 w 3  - -) tan 0 = M2 ,h2 - w l  ( 1 , ~ ~  + 2) = M2 

I3h3 = M3 13h3 = M3 

Tabk 9.2 Kinematic differential equations for the modified 
Euler's equations 

3-1-3 Transformation Sequence 3-2-3 'Ransformation Sequence 

(I=-"'+ . 01 
tan0 0 3  

$I= - + w j  
tan 0 

To write the associated kinematic differential equations, we solve Eqs. [9.2.5] 
and [9.2.7] for wi (i = 1,2,3) .  Table 9.2 gives the result. 

Be aware that the equations of motion obtained by the modified Euler's equa- 
tions are not a restricted form of what one would obtain using the original Euler's 
equations. Once one has solved Eqs. [9.2.11] together with the kinematic differential 
equations, one has the complete time history of $(t) .  An interesting observation is 
that the singularity at sin 0 = 0 is still present. Furthermore, the modified Euler's 
equations and corresponding kinematic differential equations are coupled through 
the tan 0 term. This coupling diminishes the usefulness of the equations in numer- 
ical analysis. The primary uses of the modified Euler's equations are to derive the 
equations of motion and to aid in a qualitative analysis. 

The modified Euler's equations are for the rotational component of the motion. 
We next investigate the translational equations of motion in terms of a set of axes 
other than the body-fixed axes. Recall that the translational equations of motion are 
given in terms of the body axes by Eq. [8.5.19] as 

B d  -{muG) + m [ A ~ B ] { ~ G )  = { F )  
d t 

[9.2.l2] 

The mass of the body does not change under a coordinate transformation, so that 
Eq. [9.2.12] can be written about any reference frame. Considering the F frame, we 
have 

F d  -{muG) + [A6F]{1)2~~} = { F )  
d t 

[9.2.13] 

Equations [9.2.10] and [9.2.13] can be useful not only to simplify the equations 
of motion of an inertially symmetric body but also to solve nonholonomic problems. 



We can write the above equations in terms of the kinetic energy. Expressing the 
kinetic energy as 

Consider the spinning top in Fig. 7.13. Write the rotational equations of motion about 0. I Example 
Solution 9.1 
The modified Euler's equations are particularly useful, as we have an axisyrnmetric body and 
the external moments are not a function of the spin angle. 

The angular velocities are 

W2 -(icoso [a] o , = e  w 2 = 4 s i n 6  w ~ = ( ~ c o s o + ( G ~  ~ f 3 = - -  
tan 6 

The free-body diagram of the top is given in Fig. 9.1. The external moments about 0 are due 
to gravity and an applied moment about the f3 axis, so that 



Introducing Eqs. [a] and [b] into the modified Euler's e q u a t i o n s , ~ a h o u t  the fixed point 
0, we obtain 

1010 + 4 sin 8(103(* + 4cos 8) - lol4cos 8) = mgL sin 8 [el 

These equations are, of course, identical to those obtained in Example 8.10. Us- 
ing the modified Euler's equations is much simpler than using Lagrange's equations. 
Further, they are much simpler than Euler's equations. Had we used the regular 
Euler's equations, we would have obtained two equations that are combinations of 
Eqs. [c] and [dl multiplied by sin JI and cos t,h, and Eq. [el would be unchanged. 

Example I A dual spin satellite consists of a main body with an attached spinning disk (rotor). Such 
9.2 a satellite is also called a gyrostat.' The spinning disk can be placed outside or inside the 

main body, and it is there primarily for stability and maneuvering purposes. Derive the 
equations of motion for the dual spin satellite shown in Fig. 9.2. The disk is located at the 
center of mass of the main body. The spin axis of the disk is aligned with the principal 
axis bl of the main body. The disk is spinning with an angular velocity of fl with respect 
to the main body, and it is powered by a motor that imparts a moment M along the bl 
axis. 

Figun 9.2 A dual spin 
satellite 

I 'More sophisticated spacecraft have three rotors on nonparallel axes that permit rotational maneuvers in three 
dimensions. 
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Figurn 9.3 Freebody diagrams 

Solution 
We separate the disk and satellite into two bodies and draw the free-body diagrams, as shown 
in Fig. 9.3. A motor exerts a moment M on the disk to keep it rotating about the spin axis, 
and the two bodies exert moments M2 and M3 on each other about the transverse axes. 

The equations of motion for the main body obtained by using Euler's equations have the 
standard form of 

12h2 - (I3 -11 )wIw3  = -M2 + N2 Cbl 

where 11, 12, and 13 are the centroidal moments of inertia of the main body, w 1 ,  w2, and w3 are 
the corresponding body angular velocities, and N1,  N2, and N3 are the excitations external to 
the satellite. 

To derive the equations of motion of the rotor, we view its motion from the main body. 
Hence, the angular velocities of the rotor in the b2 and bs directions are the same as that 
of the main body. These two factors make the modified Euler's equations ideally suited for 
analyzing the motion with the blb2b3 axes as the F frame for the rotor. The angular velocity 
vector for the rotor is written as 

@ and the angular velocity of the reference frame is 

Denoting the centroidal mass moments of inertia of the rotor by J 1 ,  J2 = J 3 ,  the modified 
Euler's equations for the rotor become 

Cfl 



which reduce to 

J l ( h ,  + a )  = M 191 

J 2 h 2  + (J1 - J z ) w ~ o ~  + J l f l ~ 3  = M2 [hl 

J2h3 + (J2 - J 1 ) ~ 1 ~ 2  - Jlflwz = M3 [il 
Equations [a] and [g] are the equations of motion for w 1 and fl. To find the equations 

of motion for w2 and w3, we need to eliminate M2 and M3. To this end, we add Eq. [b] to 
Eq. [h] and Eq. [c] to Eq. [i], with the result 

(I2 + J2)h2 + (Il + J1 - I3 - J 2 ) ~ 1 ~ 3  + J10w3 = N2 [iI 

The four equations of motion are Eqs. [a], [g], Ij], and [k]. One can substitute for hl  in 
Eq. [g] from Eq. [a] to make all the equations of motion have a single angular acceleration 
term, thereby putting them in state form. Doing so yields 

Also, one can add Eqs. [a] and [g] to get an equation for wl as 

When a servomotor is used to keep fl constant, Eqs. ti], [k], and [m] become the describing 
equations of the satellite. 

Example I Consider the rolling (without slipping) disk of mass rn and radius R shown in Fig. 9.4. We 
9.3 will make use of the modified Euler's equations and a 3-1-3 transformation to derive the 

equations of motion. Note that in Example 8.13, we derived the equations of motion for this 
system using Lagrange's equations for constrained coordinates. 



Solution 

We will write both the translational and rotational equations of motion and then use the rolling 
constraint to eliminate three of the variables. This elimination of the nonholonomic constraint 
is possible because we are dealing with the angular velocities of the body. From Eq. r9.2.131 
the translational equations of motion have the form 

where vl ,  u2, and v3 denote the velocities of the center of mass of the disk along the coordinate 
axes of the F  frame. The modified Euler's equations about the center of mass are 

I lk l  + 6J2(136J3 - I1wf3 )  = -F3R [dl 
zlh2 - w ~ ( I ~ ~ ~  - z 1 0 f 3 )  = o 1.1 

13k3 = F I R  [ fl 

The rolling constraint can be expressed as 

VG = mb X r G l ~  3 ~ 1 f 1  + ~ 2 f 2  + ~ 3 f 3  = ( ~ l f l  + 0 2 f 2  + 0 3 f 3 )  X Rf2 
= w I R f 3  - w3Rfl  IS] 

leading to the three constraint equations 

v l = - w 3 R  v 2 = O  v 3 = w 1 R  [hl 
Introduction of Eqs. [h] into Eqs. [a] and [c] yields expressions for F1 and F3 as 

F1 = m(-k3R  + o l o 2 R )  F3 = m ( k l R  + 0 2 w 3 R )  + ~ ~ C O S O  111 
Substituting these values of F1 and F3 into Eqs. [dl and [f] and using the relation o f 3  = 

o 2 /  tan 0, we obtain the equations of motion as 

I 1 4  (11 + rn~' )k l  + (13 + m ~ ~ ) o 2 i o 3  - - = -mgR cos 0 
tan9 [il 

I1ww2 Ilh2 - 1 3 ~ 1 ~ 3  + - = 0 
tan0 [kl 

(I3 + mR2)h3 - mR201w2 = 0 [I] 

If desired, one can write the equations of motion in terms of the Euler angles by substi- 
tuting the values of ol, o 2 ,  and o3 into the above equations, which yields 

( I l + m ~ 2 ) 8 + ( 1 3 + r n ~ 2 ) $ s i n 0 ( $ c o s 0 + ~ ) - ~ 1 $ 2 s i n 9 c o s 0 =  -rngRcos9 [n] 



The Euler's equations and the modified Euler's equations that we have studied so far 
can be written about the center of mass, or, if the body is rotating about a fixed point, 
about that point. In this section, we examine the moment balance equations about 
an arbitrary point. Consider a body whose motion is being viewed from a reference 
frame. We make no restriction on the nature of the reference frame; it can be either 
fixed to the body or not fixed to the body. Furthermore, the origin of the coordinate 
frame, which we denote by B, can move with respect to the body. As discussed in 
Chapter 8, the rotational equations of motion about an arbitrary point can be written 
in several forms. We use the form given in Eq. [8.5.10] and write 

where Me is the sum of all external moments acting on point B, HE is the angular 
momentum about point B, and v~ is the velocity of point B. 

We wish to express Eq. [9.3.1] in column vector format. We use the angular ve- 
locity of the body and the velocity of point B, both expressed in terms of the reference 
frame attached to B, as the motion variables. The angular velocity of the reference 
frame is denoted by ON. It follows that the angular momentum about B can be related 
to the kinetic energy by 

We also express the velocity of the center of mass of the body as 

Introducing Eq. [9.3.2] and [9.3.3] into Eq. [9.3.1] we write the rotational equa- 
tion of motion of a body about an arbitrary point B as 

The translational equation of motion is not dependent on the location of point B. 
It can be expressed in terms of w~ as 



Equations [9.3.4] and [9.3.6] are known as the Boltzmann-Hamel equations. 
Compare Eqs. [9.2.16b] and [9.3.4]. The added term in the moment equation is due 
to the point B not being the center of mass or center of rotation. Also, it should 
be reemphasized that the rate variables in the Boltzmann-Hamel equations are the 
components of the velocity of point B and not the components of the velocity of 
the center of mass, even though to write these equations in compact form we use 
the partial derivatives of the kinetic energy with respect to the velocity of the center 
of mass. 

The moment equations about an arbitrary point make no restrictions on whether 
the body should be inertially symmetric or not. However, their usefulness diminishes 
if the inertia matrix is time varying. We thus identify the following major uses: 

a. If there is no inertial symmetry, one should select the reference frame such that 
it is attached to the body. This implies that o~ = ob. 

b. If there is inertial symmetry, one can select the reference frame as the F frame. 
However, note that the moment center is now a point lying on the reference 
frame and not necessarily on the body and that the moment center can move 
with respect to the body. 

Selection of the moment center is an important issue. In general, one selects the 
point B such that reaction forces do not create a moment around it, or as a point whose 
velocity is described by a simple expression. In this regard, the Boltzmann-Hamel 
equations come in handy for considering the motion of multiple connected bodies. 
Also, as with the Euler's or modified Euler's equations, nonholonomic constraints 
can be dealt with effectively. 

A spinning top of mass rnl and centroidal moments of inertia I1 and 13, where h is about the I Example 
symmetry axis, is moving on a cart of mass rnz which is constrained to move horizontally and 9.4 
in one direction. Find the equations of motion using the Boltzmann-Hamel equations. 

Solution 

This is the same problem considered in Example 8.12. We have four degrees of freedom, and 
we will use the velocity of the cart (Y  = u) and the angular velocities of the top observed from 
a 3-1-3 Euler angle transformation as the rate variables. Refer to Example 8.12 for details. 
The free-body diagram of the top is shown in Fig. 9.1 and of the cart in Fig. 9.5. Note that 
we are conveniently expressing the reaction forces at 0 in terms of both the inertial and F 
frames. 

Figurn 9.5 Freebody diagram of cart 



The kinetic energy of the system has the form 

1 1 1 
T = -(II + ml~')(w: + mi) + - 1 3 ~ :  + -(ml + m2)u2 + mlLu(w2 sin+ - ol cos+cose) 

2 2 2 
[a1 

Taking the partial derivatives, we obtain 

The angular velocity of the reference frame is 

The time derivatives of Eqs. [b] are 

0 2  sin C#J (c) = (tl + m l ~ 2 ) b 1  - mlLicos + C O S ~  + mlLu- + mlLuwl cos+sin8 
dt d o l  tan 0 

w, cos + d (c) = (I1 + m 1 ~ 2 ) b 2  + mILis in+ + mlLu- 
dt do2  sin 8 

The term [6f]{dT/dw) becomes 

The velocity of the point of contact C i s  

and, from Example 8.12, the velocity of the center of mass is 

Note that the velocity of the center of mass is expressed in terms of u and the angular 
velocities. The velocity term in the Boltzmann-Harnel equations yield 
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The moment about point C can be expressed as 

where r ~ l c  = Lf3 and a3 = sin 0 f2 + cos 9 f3, SO that in column vector format we have 

We write the rotational components of the moment equations by combining Eqs. [dl, [el, 
[h], and Ij], which yields 

(Il + r n ] ~ ~ )  h1 - 2 - rn lLucos~cosO + 1 3 ~ 2 ~ 3  - rnlgLsinf3 = 0 [k] ( t:e) 

Next, we obtain the translational equation of motion using Eq. [9.3.6]. We note that 
there is only one degree of freedom involved, Y, which is in the a2 direction. To solve for the 
equations of motion, we can use the relative frame F and deal with all three equations, or we 
can express [ON], {uG}, and d{u~}ldt in the ala2a3 coordinate system and use only the second 
row of Eq. (9.3.6). Another option is to write the sum of the forces in the a2 direction for the 
combined system. Here, we opt for the first approach (primarily for illustrative purposes). 
Looking at the free-body diagram of the cart (Fig. 9 3 ,  we can write the force balance in the 
a;! direction as 

from which we solve for the reaction P2 as P2 = F - m2u. The forces acting on the top have 
the form 

F = Pla l  + P2a2 + P3a3 

= ( F  - rn2u)s in~f l  + ( F  - rn2u)cos~cos8f2  - ( F  - rn2u)cos~sin0f3  

+P1cos+fl + ( - P ~ s i n ~ c o s 8 + P 3 s i n O ) f 2 + ( P 1 s i n ~ s i n o +  P3cos0)f3 [o] 

Introducing the expression for the force into Eq. [9.3.6] and carrying out the algebra 
yields the equations 



We next eliminate P1 and P3. Multiplying Eq. [p] by sin 4, Eq. [q] by cos 4 cos 8, and 
Eq. [r] by cos 4 sin 8, and adding them, we obtain 

Comparing Eqs. [k], [I], [m], and [s] with their counterparts in Example 8.12, we see 
that they are the same. Note that the actual values of the magnitudes of P I ,  P2, and P3 were 
not calculated in this problem, due to selecting the moment center as point C. 

Example I Derive the equations of motion of the rolling disk considered in Example 9.3 using the 
9.S Boltzmann-Hamel equations. 

Solution 
The disk configuration is shown in Fig. 9.4. For roll without slip, the velocity of the contact 
point is zero, which constitutes the nonholonomic constraint. We use the 3-1-3 Euler angle 
transformation and F frame. The kinetic energy can be written as 

where the components of the mass moments of inertia about the contact point and angular 
velocity are 

Icl = Il + m~~ IC2 = Il IC3 = I3 + m~~ 

Note that we have automatically incorporated the nonholonomic velocity constraint into 
the kinetic energy. We proceed with solving the problem as if it were a three degree of freedom 
unconstrained problem. 

Because of roll without slip, the velocity of the contact point is zero. However, recalling 
the argument with regards to the components of the velocity of the moment center, we need 
to have the velocity of a point on the reference frame that coincides with the contact point. 
Denoting that point by C' and noting that C' is always in contact with the rolling surface, we 
write the relative velocity expression between the center of mass and point C' in the F frame. 
We have 

Using the values 

w2 
A ~ G  = -Ru3f l  + Rwlf3  = w l f 1  + w2f2 + - f 3  rGIC, = r c , ~  = Rf2 tan 8 

[dl 
and substitution of these values into Eq. [c] yields the velocity of the moment center as 

This result may seem surprising at first. Imagine a coin rolling without slipping. If we 
look at the bottom point of the coin from a distance we think that point is moving. In reality, 



our eyes are fooled by the change in location of the contact point between the coin and the 
surface. What we do when looking at the motion of the coin is to follow the motion of the F 
frame. We do not visualize the spin of the coin unless there are special markings on the coin 
that draw attention. 

The Boltzmann-Hamel equations are written about point C' as 

-0 0 0 -mgR cos 0 
+mR 0 0 

-0 -W3 + & 0 

Expansion of Eq. [f] gives the equations of motion as 

Il6'; (II + r n ~ ~ ) h 1  + (I3 + mR2)qu3 - - = -mgRcos0 
tan 0 

I16'16 '2 IIh2 - 13w1w3 + - = 0 
tan e 

and we note that they are the same as Eqs. ti]-[1] in Example 9.3. Using the Boltzmann- 
Hamel equations gave the equations of motion much more rapidly than using the modified 
Euler's or Lagrange's equations. By selecting the moment center as coincident with the point 
of contact, we were able to eliminate the contributions of the forces acting there. 

Had we used a body-fixed frame to write the equations of motion, the point of contact 
at a particular instant would be at different locations on the body throughout the motion. 
One would then derive an expression for the velocity of point C and incorporate that into the 
Boltzmann-Harnel equations. The end result would be more complicated expressions. This 
situation is common in rolling problems. 

9.4 ~ASSIFICATION OF THE MOMENT EQUATIONS I 
In Chapter 8 and in the earlier sections of this chapter we saw several ways of for- 
mulating the moment equations. In this section we outline the process of selecting 
the best form for a given problem. The principal choices are with respect to: 

a. Selecting the point about which these equations are written. 

b. Selecting the reference frame in which the differentiation is performed. 

c. Selecting the coordinate axes to resolve these equations. 

For arbitrary bodies one usually differentiates the moment equations and re- 
solves them in a reference frame attached to the body. Otherwise, the inertia ma- 
trix will be time varying-in all probability, any advantages realized from using a 



hble 9.3 Classification of the moment equations 

5 p e  Moment Equations Differentiation Equations Name of Equations, 
of Body about Performed in Resolved in Comments 

Arbitrary Center of mass or Body frame Body frame Euler's [8.5.28] 
center of rotation 

Arbitrary Arbitrary Time-varying inertia matrix 
[9.2.2] 

An arbitrary point Body frame Body frame Boltzmann-Hamel 
r9.3.41, [9.3.6] 

Arbitrary Arbitrary Time-varying inertia matrix 
[9.3.4], [9.3.6] 

Inertially Center of mass or Body frame F frame Euler's [8.5.31], [8.5.32] 
symmetric center of rotation 

F frame F frame Modified Euler's r9.2.31 
An arbitrary point Body frame F frame Boltzmann-Hamel 

Angular acc. term lengthy 

F frame F frame Boltzmann-Hamel 

reference frame different than one attached to the body will be counteracted by the 
time-varying inertia matrix. The choice of a different frame becomes attractive for 
bodies possessing inertial symmetry, in which case one can use the F frame to dif- 
ferentiate or resolve the moment balance equations. One should be careful, though, 
to correctly calculate the velocity of the contact point, especially if it is located along 
the F frame. Table 9.3 summarizes the different possibilities. 

There are a few other possible cases, but those do not have common applica- 
tions. When selecting the approach for writing the equations of motion, take into 
consideration a variety of factors, including the acting forces, the additional terms 
you need to calculate, and the complexity of the resulting equations. Of course, you 
should also compare these different approaches with the analytical techniques to de- 
rive the equations of motion. Experience with a variety of problems is the best way 
to develop guidelines for selecting the method to derive the equations of motion. 

9.5 QUASI-COORDINATES AND QUASI-V ELOCITIES 
(GENERALIZED SPEEDS) 

In the previous sections, we saw additional ways of writing the equations of motion. 
What makes these equations so useful is that they are first-order equations and the 
angular velocity components along the body axes are used directly in the equations 
of motion. We also saw in Chapter 8 that in certain cases it is more convenient to 
retain the angular velocity components in the formulation. Angular velocities are not 
generalized velocities and they are not perfect differentials. 

Recall Examples 4.14 and 5.13, which dealt with a nonholonomic constraint 
in conjunction with a vehicle dynamics problem. We saw that switching to a rate 



variable different than the generalized velocities simplified the equations of motion 
considerably. 

The question arises as to whether one can define other such quantities and make 
use of them in deriving the equations of motion. As we saw in Chapter 7, it is possible 
to define a set of variables called quasi-velocities or generalized speedx2 These are 
quantities that are linear combinations of the generalized velocities but which cannot 
necessarily be integrated to the generalized coordinates. 

We define quasi-coordinates as a set of coordinates whose derivatives are mean- 
ingful quantities (quasi-velocities), but they themselves do not necessarily have a 
physical meaning. We will denote the quasi-coordinates by q ; ,  q;, . . . , q: and the 
quasi-velocities by ul, u2, . . . , u,. Using this definition, generalized velocities be- 
come a subset of the quasi-velocities. An alternate definition for quasi-velocities is 
variables that cannot always be expressed as derivatives of displacement coordi- 
nates. 

Let us first consider a holonornic system having n degrees of freedom, with 
n independent generalized coordinates ql ,  92, . . . , qn and generalized velocities 
q l ,  q2, . . . , qn. We defined earlier a set of independent generalized speeds ul, u2, . . . , 
un as 

where Ykr = Ykr(qljq2,. . . , qnt t ) ,  Zk = &(ql, 92, .  . . , qn, t )  (k ,  r = 1 , 2 , .  . . , n) are 
functions of the generalized coordinates and time. In column vector form we can 
write Eq. [9.5.1] as 

In order for the set of generalized speeds to completely describe the system 
under consideration, it must be defined such that [ Y ]  is nonsingular. For example, 
the relation between the body angular velocities and the Euler angles, Eq. [7.5.7], 
defines a valid set of quasi-vel~cities.~ By contrast, as we saw in Example 7.6,  the 
angular velocities of the F frame do not constitute a set of quasi-velocities, as the 
relation between them and the Euler angles is defined by a matrix that is singular at 
all times. 

Inversion of Eq. [9.5.2] yields 

in which [ W ]  = [ Y ] - I  and { X }  = - [Y] - ' { z ) .  The above equations are referred 
to as kinematic equations or kinematic differential equations for the generalized 
speeds. 

2Each of these names has been used in coniunction with one of two distinct ways to derive equations of motion, 
the GibbsAppell equations and Kane's equations. Because the two methods are equivalent, we use the terms 
interchangeably. 
3Equation [7.5.71 has a singularity when the second Euler angle reaches a certain value. This singulari moy be 
avoided by switching to a dierent set of Euler angles, or by using Euler prameters. Hence, the trankrmotion 
between angular velocities and Euler angles is considered here as a valid transformation between the generalized 
velocities and the quasi-velocities. 



Consider next a position vector r. For an n degree of freedom system r can be 
expressed as r = r (q l ,  92, . . . , q,, t ) .  The time derivative of r has the form 

or, in column vector form, 

in which [r,] is a matrix of order 3 X n whose elements are 

d r )  d{r) 
["I = [a, dqr - . -  "'I d9" 

Further, in Chapter 4 it was derived that 

so that calculation of the matrix [r,] can be accomplished using the position vector 
r or the velocity v .  In the latter case, we have 

d{v) ""' [.,I = [% aq, . ' 
J 9 n  ""'I 

This is a very important result, as it pennits calculation of [r,] when only the 
velocity vector is available, such as in cases involving angular velocities. Introducing 
Eq. [9.5.3] into Eq. [9.5.5], we obtain 

We define the following quantities: 

Partial velocity matrix: [vq] = [r , ][W],  a matrix of order 3 X n 

Time partial velocity vector: {ut) = [r,]{X) + 9, a vector of order 3 

Thus, the velocity can be expressed as 

In algebraic vector format, we can express this relation as 
n 

v = x v k u k  + vt [9.5.11] 
k =  1 

in which vk  is the kth partial velocity of v and v' is the time partial velocity of v . ~  It 
follows that with a properly defined set of generalized speeds, one can express the 

I 4Note that this notation is slightly different than the notation used by Kane. We denote the indices of the partial 
velocities by superscripts, whereas Kane denotes these indices by subscripts. 
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velocity of a point in terms of the generalized speeds and the partial velocities of the 
system. 

Observe that partial velocities can also be expressed as 

This equation can be interpreted as follows: The kth partial velocity denotes the 
direction of the velocity along the direction affected by the kth generalized speed. 
The reader should compare this interpretation with the interpretation in Chap- 
ter 8 of eg, eo, and e+, unit vectors about which Euler angle transformations are 
taken. 

One can also define partial velocities for angular velocities. The procedure is 
the same, where one first expresses the angular velocities in terms of the generalized 
velocities, and then relates the generalized velocities to the generalized speeds, with 
the result 

in which ok and o' are partial angular velocities. Also, we have so far considered 
inertial reference frames and the associated partial velocities. It turns out that partial 
velocities can be calculated for velocities that are measured from relative frames. 
We can then write the above expressions in the more general form 

where A and B denote reference frames. 
Let us now consider the virtual work. For a system of N particles, the virtual 

work is 

In terms of the generalized coordinates, the expression for the virtual work is written 
as 

where the generalized forces are found from 

[O.S. 1 61 



or, in column vector format, 
A1 

where {Fi)  is a column vector of order 3 containing the components of Fi. 
We next express the generalized forces in terms of the generalized speeds. 

Left-multiplying the above equation by [WIT = [YIpT and defining by { U )  = 

[WIT{Q) = [U1 U 2 . .  . u J T ,  we obtain 

Introducing the definition of the partial velocity matrix to the equation, we have 

or, in algebraic vector form, 
N 

Uk = X v f - ~ i  [9.5.21] 

where vf is the kth partial velocity associated with the point to which Fi is applied. 
We refer to Uk as the generalized force associated with the kth generalized speed 
and to { U )  as the generalized force vector associated with generalized speeds. It 
follows that the virtual work can be written in terms of quasi-coordinates as 

Note that we are using the variations of the quasi-coordinates for derivation pur- 
poses only. When the generalized speeds are selected as the generalized velocities, 
uk = qk ( k  = 1,2, . . . , n) the associated generalized forces Uk become the same as 
the generalized forces Qk. 

Next, we express the generalized forces associated with a rigid body. Consider 
a rigid body subjected to N forces Fi ( i  = 1,2, . . . , N )  and M* torques Mi ( i  = 

1,2, . . . , M*). The generalized force for the quasi-velocities takes the form 

We can express the generalized forces in terms of the resultant of all the forces and 
moments. Writing the resultant of all applied forces and moments as force F passing 
through a point B and a moment M B  about B, where 

in which ri is the position vector from point B to the point where Fi is applied, we 
can express Eq. [9.5.23] as 
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When using the center of mass to express the resultant force and moment, we write 

The decision about which of Eqs. [9.5.23], [9.5.25], and [9.5.26] to use depends 
on the number and nature of the forces and moments. For a system of N rigid bodies, 
we extend Eq. [9.5.26] to 

in which Gi denotes the center of mass of the ith body, and Fi and MG, denote the 
resultant of all forces external to the ith body and the resultant moment about the 
center of mass of the ith body due to these external forces. 

Consider the spinning top on a cart in Example 9.4 and find the partial velocities associated I Exmnpk 
with the cart, the center of mass of the top, and the angular velocity of the top. Then, calculate 9.6 
the associated generalized forces. 

Solution 

The free-body diagram of the top and cart are given in Figs. 9.1 and 9.5. The velocities of the 
cart and the center of the top, and the angular velocities of the top are 

We define the generalized speeds as 

so that the velocity and angular velocity expressions can be written as 

vc = uqa2 = u4(sin +fi + cos ~ C O S  f2 - cos 4 sin 8 f3) [el 
vc = - Lulf2 + Lu2fl + u4(sin 4 f l  + cos 4cos 8 f2 - cos sin 8 f3) [(I 

o = ulfl + u2f2 + u3fj [el 
from which we identify the partial velocities as 

v;= 2 -  3 = 0  Vc - Vc v: = a2 = (sin+fi + cos 4cos Of2 - cos 4 sin Of3) [h] 

v;=-Lf2 v i = L f ,  v ; = o  

v i  = a2 = (sin 4fi + cos 4 cos Of2 - cos C#I sin Of3) [il 
~ l = f ,  " 2 = f 2  w 3 = f 3  O ~ = O  111 

The forces external to the system that do work are gravity and the applied force F. The 
cart exerts a moment M about the f3 direction to the top through a motor, and there is a counter 
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moment of equal magnitude applied to the cart by the top. To find the generalized forces we 
use Eqs. i9.5.231 for each force and moment. We identify the external inputs as 

F, = - mga3 = - mg(sin 0  f2 + cos 0  f 3 ) ,  acting through G 

Fc = Fa2 = F(sin 4 f l  + cos 4 cos 0  f2 - cos 4 sin 0  f 3 ) ,  acting through C, and 

M  = M f 3  

The generalized forces are calculated as 

u ~ = v ~ - F ~ + v $ - F ~ + o ~ . M  k = i , 2 , 3 , 4  

Evaluating the individual expressions, we find 

u1 = v & * F , + v ; * F ~  + d - M  
= - mg(sin 0  f2 + cos 0  f 3 )  ( - L f 2 )  + Fa2 0  + M f 3  f l  = mgL sin 0  

u2 = v $ * F ~ + v ; . F ~  + u ~ . M  

= -mg(sinOf2 + c o s O f 3 ) * L f I  + Fa2*O + M f 3 * f 2  = 0 

U3 = V ~ * F ~ + V ~ * F ~ + W ~ * M  = - m g a 3 * O + F a 2 * O + M f 3 * f 3  = M  

U4 = v ~ * F ~ + v ~ * F ~ + w ~ * M  = - m g a 3 * a z + F a 2 - a 2 + M f 3 * 0  = F 

1 9.6 GENERALIZED SPEEDS AND CONSTRAINTS 

Consider a system that originally has n degrees of freedom subjected to m equality 
constraints. We write the constraints in velocity form as 

n 

):ajkgk+aoj = o j = 1,2, ..., m [9.6.1] 
k =  1 

wherethecoefficientsajk(j = 1,2,.  . ., m; k = 1,2, .  . ., n)andaoj(j = 1,2,.  . ., m) 
are functions of the generalized coordinates and of time. When the constraints are 
nonholonomic, one cannot readily eliminate them from the formulation, so we ex- 
plore the use of generalized speeds. We write Eq. [9.6.1] in matrix form as 

Introducing Eq. [9.5.3] into Eq. [9.6.2], we express the constraint in terms of the 
quasi-velocities as 

and we note that the matrix [A] = [a][W] is of order m X n. The generalized veloci- 
ties and the generalized speeds are no longer independent. We now refer to {u) as the 
constrained generalized speeds. Because we have p = n - m degrees of freedom, it 
is of interest to generate a set of p unconstrained (independent) generalized speeds. 

We order the generalized speeds such that the first p are coordinates from 
which the independent generalized speeds are constructed and collect them in a 
vector {up) = [ul u2 . . . up]=. The remaining generalized speeds, called surplus 



generalized speeds, are expressed as {us) = [up+, up+2 . . . uJT. We hence par- 
tition the generalized speeds into 

( 4  = {udTIT [9.6.4] 

We define a set of independent generalized speeds by {ii) = [iil ii2 . . . iiPlT. 
The vector containing the p independent generalized speeds {ii) is related to {up) by 

in which [TI is a nonsingular transformation matrix of order p X p. Without loss of 
generality, we assume here that {ii) and {up) coincide, so that [TI = [I]. We next 
partition the constraint matrix [A] as 

where [A,] is of order rn X p and [As] is of order m X rn. Introduction of this partition 
into Eq. [9.6.3] gives 

Solving for {us), we obtain 

{us) = - [A,]{u,) - [ A ~ ] - ~ { B )  = [Af]{ii) + {B') [9.6.8] 

in which 

[A'] = -[As]-' [A,] {B') = -[A~]-'{B) [9.6.9] 

For Eq. [9.6.8] to hold, [As] must be nonsingular, which is the requirement when 
partitioning the generalized speeds into independent and surplus sets. 

Next, we write the generalized velocities in terms of the independent and surplus 
generalized speeds. The relation between the generalized velocities and the gener- 
alized speeds, Eq. [9.5.3], can be partitioned as 

where [W,] and [Ws] are partitions of [W] of orders n X p and n X rn, respectively, 
[W] = [[W,] [Ws]]. Introducing the expression from Eq. [9.6.8] into the above 
equation, we obtain 

We next extend the concept of independent generalized speeds to the partial 
velocities. We rewrite Eq. [9.5.10] as 

where [V] is of order 3 X n and is the partial velocity matrix associated with {v). We 
partition [V] in terms of the independent and surplus parts as [V] = [[Vp][Vs]] and 
write 



Introducing the expression for {us) from Eq. [9.6.8] to this equation and carrying out 
the algebra gives 

The partial velocity matrix associated with the independent generalized speeds 
can be expressed as 

[VI = [Vpl + [Vsl[A11 [9.6.16] 

Note the similarity in form between Eqs. [9.6.l2] and [9.6.16]. To express the partial 
velocities in algebraic vector form we note that [V,] contains the first p partial ve- 
locities, and [Vs] [A'] the remaining m. Hence, the partial velocities associated with 
the independent partial velocities can be expressed as 

where Aik and B) are the entries of [A'] and {B'), respectively, which were defined in 
Eq. [9.6.9]. When the transformation matrix [TI is not the identity matrix, we have 

[A'] = -[As]-' [A,][T] [w] = [Wp][T] + [Ws][A1] [9.6.18] 

in which Tk, are the entries of [TI. 
We repeat the procedure for independent partial angular velocities. The results 

turn out to be the same as Eqs. [9.6.17], with the v terms replaced by o: 

We now calculate the generalized forces associated with the independent gener- 
alized speeds. To this end, we make use of the quasi-coordinates. From Eq. [9.6.11] 
we write the virtual displacements as 619) = [w]G{~"), where 6{q") are the virtual 
displacements associated with the independent quasi-coordinates. As before, we are 
using this expression only for derivation purposes. Introducing the virtual displace- 
ments into the virtual work, we can write 

6W = { ~ ) ~ 6 { g )  = { Q ) ~ [ w ] ~ { ~ Y ' )  = {O)T6{~') [9.6.2 1 ] 

where 

is a vector of order p in the form {o)T = [ o l  o2 . . . op]. To express the gener- 
alized forces associated with the independent generalized speeds, we partition the 
generalized forces as 



Introducing Eq. [9.6.23] into Eq. [9.6.22] gives 

which can be expressed in scalar form as 
m 

~ k = u k + ~ ~ j + p ~ ~ k  k = 1 , 2 ,  . . . , P  [9.6.21] 
j =  1 

We have eliminated the surplus generalized speeds from the formulation and ar- 
rived at a set of independent generalized speeds, partial velocities, and generalized 
forces. This is a significant advantage of using generalized speeds rather than gener- 
alized velocities. Recall that with Lagrangian mechanics, nonholonomic constraints 
and associated Lagrange multipliers cannot be eliminated from the formulation be- 
fore the equations of motion are derived. Only after deriving the equations of motion 
in constrained form can one use a series of substitutions to eliminate the Lagrange 
multipliers and surplus coordinates. 

One can arrive at a set of independent generalized speeds, partial velocities, 
and generalized forces in two ways. One is by observing the kinematics of the sys- 
tem and directly identifying a set of independent generalized speeds. The other is 
by beginning with a set of constrained generalized speeds and then applying the 
constraint equations derived above. The latter approach is most often a complicated 
task; one is usually better off generating a set of independent generalized speeds 
directly. 

Under certain circumstances, such as in problems involving Coulomb friction, 
it may be more desirable to deal with constrained quasi-velocities than with uncon- 
strained ones. In such cases, one deliberately leaves a constrained coordinate in the 
system formulation. This procedure is similar to the relaxation of constraints using 
Lagrange's equations. 

Consider the rolling disk problem. First consider the case when the disk is rolling and slipping, 
and obtain the partial velocities associated with the center of mass and the partial angular 
velocities. Then, impose the rolling constraint and obtain the corresponding partial velocities 
and partial angular velocities. 

I Example 
9.7 

Solution 
We use the 3-1-3 Euler angle transformation and the F frame. We select the inertial frame 
alaza3 such that the alaz plane is the rolling surface, and the a3 direction is the vertical. We 
invoke the constraint that the disk is always in contact with the surface, so that for roll with 
slip we have five degrees of freedom. We select the quasi-velocities as 

where X and Y denote the coordinates of the center of mass in the a1 and a2 directions, re- 
spectively. Noting that the height of the center of mass is given by the holonomic constraint 
relation Z = R sin 0, the component of the velocity of the center of mass in the a3 direction 
is RO cos 0 = Rul cos 0. The velocity of the center of mass and the angular velocity of the 



body can be written as 

vG = Xal + ya2 + i a 3  = u4al + u5a2 + Rul cos 8 a3 [bl 

0 = u l f 1  + ~ 2 f 2  + ~ 3 f 3  [a] 

The partial velocities and partial angular velocities can now be written as 

v ; = ~ c o s e a ~  v ~ , = v ~ = o  v ' & = a l  v ; = a 2  

o1 = f l  o2 = f2 o3 = f3 o4 = 0 o5 = 0 [dl 

To find the partial velocities associated with the constrained system, we first calculate 
the velocity of the contact point C and set it equal to zero, thus 

As expected, components of the motion in the a3 direction canceled each other. 
We select the independent generalized speeds as i i l  = ul, iiz = u2, and ii3 = u3, SO that 

the surplus coordinates are {us} = [us u51T. We are retaining the angular velocities in the 
formulation. Comparing Eq. [el with Eqs. [9.6.7] and [9.6.8], we have 

- s in4s ine  0 cos+ 
[ A s ] = [ :  y ]  [ A p l = R  cos +sin8 0 sin+ 

- sin+sin8 0 cos+] 
[A'] = - [As] - ' [Ap]  = - [Ap ]  = - R [ cos +sin8 o sin+ 

The matrix [As] is nonsingular; thus, our choice of independent generalized speeds is a 
valid one. Next, we introduce the constraints into the expression for the velocity of the center 
of mass. Introducing the expressions for u4 and us from the right side of Eq. [el into Eq. [b] 
and expressing the result in terms of the F frame, we obtain 

v~ = (Rul sin sin 8 - Rug cos +)a1 

- (Rul cos + sin 8 + Ru3 sin +)az + Rul cos 8 a3 

= -Ru3fl + Rulf3 [d 
which is the well-known result for the velocity of the center of mass. The partial velocities 
associated with the velocity of the center of mass in terms of the independent generalized 
speeds are 

.ii; = Rf3 t2, = 0 = -R f1  [hl 

The independent partial angular velocities remain the same as before and have the form 

We next calculate the partial velocities associated with the independent generalized 
speeds using Eqs. 19.6.171. We find 



9.6 GENERALIZED SPEEDS AND CONSTRAINTS 51 S 

Consider the rolling disk. First analyze the case when the disk is rolling and slipping and I Example 
obtain the generalized forces. Then impose the rolling constraint and obtain the associated 9.8 
generalized forces. 

Soludon 
We will use the expressions generated for the partial velocities in Example 9.7. For roll with 
slip, there are five degrees of freedom. We select the quasi-velocities as in the previous ex- 
ample as 

and can write the velocity of the center of mass and the angular velocity vector as 

vc = u4al + ~ 5 a 2  + Rul cos 8 a3 o = u l f l  + u2f2 + u3f3 Cbl 

The associated partial velocities are 

The forces acting on the disk are the force of gravity, F, = -mga3, and three reaction 
forces at the point of contact, Fc = P i a l  + P2a2 + P3a3 = F I f l  + F2f2 + F3f3,  where PI and F, 
are their components in the A and F frames. We can use two approaches to find the generalized 
forces associated with the quasi-coordinates. One approach is to treat each force separately 
and use Eq. [9.5.23], which requires the partial velocities associated with the individual points 
at which the forces are applied. For the problem under consideration, this requires calculation 
of the velocity of point C and of the center of mass G. As there are no applied torques, there 
is no need for partial angular velocities. 

The second approach is to take the resultant and use Eq. [9.5.26]. Here, one needs to 
calculate the resultant moment, the partial velocities associated with the center of mass, and 
the partial angular velocities. To demonstrate the merits of the two approaches, we will use 
both. 

In the resultant approach, we first calculate the resultant force, F, which has the form 

F = Fc + F, = P l a l  + P2a2 + (P3  - mg)a3 

= Flfl + (F2 - mg sin 0 ) f 2  + (F3 - mg cos 0 ) f 3  [dl 

The resultant moment about the center of mass is 

Note that we are conveniently using unit vectors from both the A and F frames to simplify 
the expressions. The associated generalized forces become 



When treating each force separately, we first find the velocity of the contact point C, 
which is 

vc = VG + o X r c l ~  

= ~ 4 a l  + ~ 5 a 2  + Rul cos 8 a3 + (ulfl + u2f2 + u3f3) X (-HZ) 

= u4al + ~ 5 a 2  + Rul cos 8 a3 + Ru3fl - Rulf3 [ d  

so that the partial velocities associated with the velocity of point C have the form 

vL=-Rf3+Rcos8a3  v g = O  v:=Rfl v i = a l  $ = a 2  Chl 

We proceed to find the generalized forces. Noting that there are no applied torques, we 
write the generalized forces as 

Carrying out the dot products, we obtain 

U1 = -mga3 R cos 8 a3 + (Plal  + P2a2 + P3a3) *(-Rf3 + Rcos 8 a3) 

= -mgRcos8 - F3R + P3Rcos8 

u2 = 0 

U3 = -mga3*0 + (Flfl + F2f2 + F3f3)*Rf1 = FIR 

which is identical to Eqs. [f]. 
Now we impose the no-slip constraint and obtain the generalized forces associated with 

the independent generalized speeds. Here, we use the resultant approach. From Example 9.7, 
the independent partial velocities are 

i;& = ~f~ i;$ = 0 i;; = -Rfl ijl = fl 4' = f2 ij3 = f3 [k] 

so that the generalized forces become 

As expected, the reaction forces at the contact point do not appear in the generalized 
forces. Let us now calculate the generalized forces associated with the independent general- 
ized speeds using the constraint equation, Eq. [9.6.25]. From Example 9.7 we have 

- sin+sin8 0 cos+ 
[A'] = -R 

cosqbsine o sin+ I 
thus, we can write Eq. [9.6.25] as 

0, = UI + A;,U4 + A;,U5 = U1 + U4Rsin+sin8 - U5Rcos+sin8 

= -mgRcos8 - F3R+ P3Rcos8 + P~RsinqbsinO - P~Rcos+sinO 



Noting that F1 = P I  cos 4 + P2 sin 4 and F3 = P I  sin 4 sin 8 - P2 cos 4 sin 0 + P3 cos 8, 
we observe that all the Pi and Fi (i = 1,2,3) expressions cancel from Eqs. [n], and we obtain 
Eq. [ll. 

The Gibbs-Appell method makes use of a scalar function in terms of accelerations 
to derive the equations of motion, analogous to the concept of using kinetic energy 
in Lagrange's equations. We describe the method first for a system of particles and 
then for rigid bodies. Consider a system of N particles that has n degrees of freedom. 
We will initially consider independent quasi-velocities. The force balance for each 
particle can be written as 

miai = Fi + Fi i = 1, 2, . . . , N [9.7.1] 

In order to simplify the derivation and to establish that the Gibbs-Appell and 
Kane's equations are indeed identical, we will carry out the derivation of the Gibbs- 
Appell equations using partial velocities. This way of deriving the Gibbs-Appell 
equations is not the traditional derivation. 

We select a set of n independent quasi-velocities ul,  u2, . . . , un and write the 
velocity and acceleration of each particle. The velocity of each particle can be written 
as 

The acceleration of each particle can be written as 

Define the Gibbs-Appellfunction, denoted by S, as having the form 

1 s=-2 miai ai ~9.7.41 
2 .  r=l 

The Gibbs-Appell function is also referred to as the energy of acceleration or 
the Gibbsfunction. Let us next differentiate S with respect to the time derivative of 
the kth quasi-velocity, which yields 

I SThere is  debate on whether these equations should be called the Gibbs-Appell or the Appell equations. The norne 
Gibbs-Appell is  attributed to Pars. 



Noting from Eq. [9.7.3] that v: and v: do not contain any derivatives of the general- 
ized speeds, we can write 

so that, substituting this result into Eq. [9.7.5] and using the definition of the gener- 
alized forces associated with the quasi-velocities, we obtain 

where the contributions of the reaction forces have canceled out. Equation [9.7.7] 
can be rewritten as 

Equation [9.7.8] represents the Gibbs-Appell equations or Appell equations in 
terms of independent quasi-velocities. They are n first-order equations. When com- 
bined with the kinematic differential equations relating the generalized velocities to 
the generalized speeds, they form a set of 2n first-order equations that describe the 
evolution of the dynamical system completely. 

To write the Gibbs-Appell equations, we first determine the number of degrees 
of freedom of the system and select an appropriate set of independent generalized 
coordinates and quasi-velocities. We proceed with the kinematics of the problem, 
developing expressions for the velocity and for the acceleration of each particle. 
From the velocity terms, we identify the partial velocities. From the acceleration 
terms, we generate the function S. Because we will be taking partial derivatives of 
S with respect to the rates of change of the generalized speeds, we can ignore any 
term in S that does not contain derivatives of generalized speeds. After obtaining S, 
we take the partial derivatives. We obtain the generalized forces Uk after calculating 
the forces acting on each particle. We then invoke Eq. [9.7.8]. 

The term dSlduk can also be calculated by using the second term on the right 
side in Eq. r9.7.71, without the need to calculate S explicitly. Doing so, as we will 
see in the next section, is tantamount to using Kane's equations. 

Let us compare the Gibbs-Appell equations and Lagrange's equations. In La- 
grange's equations, first the kinetic energy is calculated, which is a function of the 
velocities. Lagrange's equations can handle holonomic constraints as-at least in 
theory-one can find a set of independent generalized coordinates that take into ac- 
count the constraints. In the presence of nonholonornic constraints, one cannot elim- 
inate the constraints before deriving the equations of motion. But the Gibbs-Appell 
method uses an acceleration function. Hence, for systems acted upon by nonholo- 
nomic constraints, it becomes possible to find a set of independent quasi-velocities 
that are compatible with the constraints. In such systems, one ends up with n-m = p 
independent equations and n kinematic differential equations, for a total of n + p 
first-order equations. 



Lagrange's equations can be shown to be a special case of the Gibbs-Appell 
equations. Selecting the quasi-velocities to be the same as the generalized velocities, 
uk = qk ( k  = 1,2, . . . , n), we observe that Qk = Uk,  and by manipulating S one can 
show that 

It is for these reasons that the function S is also referred to as the fundamental 
function. 

One might wonder at this point why we bothered to learn about Lagrange's equa- 
tions, if the Gibbs-Appell equations represent the more general case and can handle 
holonomic as well as nonholonomic constraints, as well as leading to equations of 
motion that can be put into state form with greater ease. There are several answers. 
First of all, for holonomic systems, the Gibbs-Appell equations have no advantage 
over Lagrange's equations. The Gibbs-Appell equations are more cumbersome; they 
require the calculation of acceleration terms, as opposed to the velocity terms needed 
for Lagrange's equations. 

From a physical perspective, velocities are easier to visualize than accelerations, 
so that dealing with velocities gives a greater physical insight. Following this line 
of argument, the kinetic and potential energy are quantities that are much easier to 
visualize than the function S, which looks much more abstract. Dealing with energy 
expressions helps one differentiate between natural and nonnatural systems easier, 
and it simplifies the solution of equilibrium problems. Finally, integrals of the motion 
are much more easily derived from the kinetic and potential energy than they are 
from the fundamental function S. 

The definition of S is motivated by Gauss's principle for virtual accelerations, 
which is obtained by considering a special class of variation (see Section 5.13). By 
contrast, Lagrange's equations are based on D' Alembert's principle and its extension 
to scalar functions, the extended Hamilton's principle. 

Another shortcoming of the Gibbs-Appell equations is when deriving the equa- 
tions of motion associated with spatially continuous systems. As we will see in Chap- 
ter 11, for deformable bodies the extended Hamilton's principle leads to both the 
equations of motion and boundary conditions. By contrast, the Gibbs-Appell equa- 
tions can be used only after the flexible motion is discretized. 

We are ready to extend the Gibbs-Appell equations to rigid bodies. The general 
form of the equations of motion is still Eq. [9.7.8], so we develop the expression for 
the fundamental function. Intuitively, we expect it to contain expressions associated 
with the acceleration of the center of mass and with the rate of change of angular 
momentum. From Fig. 8.1, the acceleration of a differential mass element on the 
body is written in terms of the center of mass motion as 

where o and a are the angular velocity and acceleration of the body, respectively, 
and p is the position vector from the center of mass to the differential element. It 
follows that p dm = 0. The Gibbs-Appell function can be written as an integral 



over the entire body as 

S = - a*adm 
2 ' I  [9.7.11 I 

We introduce Eq. [9.7.10] into Eq. [9.7.11] and integrate over the body. All of 
the p dm terms vanish and terms that do not contain any accelerations or angular 
accelerations can be ignored, as they do not contribute to dSlduk. The expression for 
S reduces to 

It is convenient to express Sin terms of the angular momentum. Here, we follow 
an approach similar to the one in Section 8.11. The second term on the right side of 
Eq. [9.7.12] can be expressed as 

and we realize that [plT[p7 dm = [IG]  and that [IG]{a) = {I;rGlrel. Manipulation 
of the last term on the right side of Eq. [9.7.12] is more complicated. After a number 
of manipulations one can show that 

where we recognize the expression that leads to the angular momentum term, p x 
(o X p). Carrying out the integration, we can write the Gibbs-Appell function for a 
rigid body as 

The last two terms in this equation indicate that S is related to the rate of change 
of the angular momentum. In column vector format we have 

When taking the partial derivatives of S with respect to the derivatives of the 
generalized speeds, a simplification takes place when we recall Eq. [9.7.6]. Indeed, 
for the acceleration of the center of mass, one can write 

and, using the same argument for the angular acceleration vector, write 

Taking the partial derivative of S with respect to ik and introducing the above 
two equations into these partial derivatives, we obtain 



so that, as with particles, the partial derivatives of S can be calculated without eval- 
uating S itself. Considering that the expressions for the generalized forces are given 
by Eq. [9.5.26], we can write the Gibbs-Appell equations for a rigid body as 

For a system consisting of several bodies, the Gibbs-Appell equations can be 
written as 

When the body is rotating about a fixed point C, the Gibbs-Appell function can 
be written about that point. The Gibbs-Appell function takes the form 

On the issue of the selection of the quasi-velocities: A good choice of these 
should simplify the equations of motion and, if possible, give the generalized speeds 
a physical interpretation. If there are nonholonomic quantities, such as constraints, 
angular velocities, or body-fixed velocity components, the selection should reflect 
those quantities. 

Derive the translational and rotational equations of motion for a rigid body, using the Gibbs- I Exatnpk 
Appell equations. 9.9 

Solution 
We will use the column vector notation. We select the quasi-velocities as the three angular 
velocities wl,  0 2 ,  and 0 3  of the body and three components of the velocity of the center of 
mass along body-fixed axes, denoted by vl, vz, and v3. Hence, 

To obtain the rates of change of the quasi-velocities, we note that 

and that 

d 
{ a }  = -{w} = [a1 a2 U31T = [ul u2 u31T 

dt [dl 



The partial velocities of the center of mass and the partial angular velocities have the form 

{v;) = {0 )  k = l , 2 , 3  

{ v $ ) = [ 1  0  OIT { v ; ) = [ O  1 OIT { v ; ) = [ O  0 1IT  

{ o l )  = [ l  0  OIT { 0 2 )  = [O 1 OIT { 0 3 )  = [O 0 l lT  

{ o  k ,  = {0}  k = 4 , 5 , 6  [el 

We write the Gibbs-Appell function in column vector format. For a set of body-fixed 
coordinates, 

Consider a resultant force vector { F )  = [Fl F2 F3IT and a resultant moment vector 
{MG) = [MI  M2 M3IT about the center of mass. We calculate the generalized forces, using 
Eq. [9.5.26], as 

Evaluating the expressions, we obtain 

Consider the rotational equations of motion first. They correspond to the first three Gibbs- 
Appell equations associated with ul ,  U Z ,  and u3. Introduce the notation 

It follows that 

To obtain the left side of the Gibbs-Appell equations, we differentiate S with respect to 
the derivatives of the first three generalized speeds. From Eq. [dl this corresponds to differ- 
entiating S with respect to { a ) .  Doing so, we obtain 

From Eq. [h] ,  the right side of the Gibbs-Appell equations associated with the first three 
and last three generalized speeds have the form 

We next consider the translational equations. Differentiating S with respect to the gen- 
eralized speeds associated with translation, we obtain 



because is equal to the identity matrix. Combining Eq. [n] and the second of Eqs. [l] 
yields 

~ @ G I  = m{ac1,1 + ~ [ ~ I { v G }  = {Fl 101 

which are the translational motion equations. 

Consider the vehicle in Example 4.14 and derive the equations of motion using the Gibbs- 1 Exampla 
Appell equations. It is given that the velocity of point A is always along the x-axis. 9.1 0 

Solution 

The vehicle configuration is shown in Fig. 4.8. The orientation of the vehicle can be described 
by three generalized coordinates, X, Y ,  and 8, with X  and Y  denoting the coordinates of the 
center of mass. (Another reasonable choice for the generalized coordinates would be the co- 
ordinates of point A: XA,  Y A ,  and 8.) The nonholonornic constraint indicates that the velocity 
of point A is always in the direction of the vehicle, or 

We select the generalized speeds as ul = v ,  and u2 = e ,  so that v ,  = uli, o = u2k. 
In order to write the generalized forces, we need to calculate the partial velocities associated 
with points of application of the forces, C and D. To derive the fundamental equations without 
calculating S explicitly, we also need the partial velocities of G. The velocities of G, C, and 
D are 

The partial velocities are 

v ; = L j  v & = i  v ; = - h i  

The acceleration of the center of mass is 

The angular momentum is HG = IGu2k, in which IG is the mass moment of inertia about 
the center of mass. The rate of change of angular momentum is simply HG = IGuZk. Be- 
cause this is a plane motion problem, the angular velocity and angular momentum are in the 
same direction; thus, the Gibbs function reduces to 

Taking partial derivatives of S we obtain 



The external forces are Fc = Fci, FD = FDi, so that the right sides of the fundamental 
equations become 

U l  = v ; * F c  +$D*FD = Fc + FD 

U2 = V ; * F ~  + $ , * F D  = h(FD-Fc)  [#I 
Equating Eqs. [f] and [g] gives the equations of motion as 

One can assign a physical interpretation to the equations of motion. Equation [h] is the 
force balance in the x direction. Equation [i] represents the moment balance about A. 

Let us compare the effort to obtain the equations of motion with Example 4.14, where 
Lagrange's equations are used and with Example 5.13, where Jourdain's variational principle 
is used. In both these examples we begin with a set of constrained coordinates and impose 
the constraint. By contrast, when using the Gibbs-Appell equations, we begin with a set of 
independent variables. It is clear that we obtained the equations of motion more easily using 
the Gibbs-Appell equations. 

The kinematic differential equations are obtained by expressing the rates of change of 
the generalized coordinates X, Y, and 8 in terms of the generalized speeds. To this end, we 
write the velocity of the center of mass as 

and equating this equation to the expression of vc in terms of the generalized speeds in 
Eq. [b] we obtain 

Solving these equations for x and Y ,  we reach 

X = ulcos8 - Lu2sin8 

Y = ul sin 8 + Luz cos 8 

The kinematic differential equation for 8 is simply 

8 = U2 

The five equations [h], [i], [I], [m], and [n] constitute the complete set of differential 
equations that describe the motion of this system. 

On the selection of the quasi-velocities for Example 9.10: We selected ul as the 
velocity of A in view of the constraint. Had we selected one of the quasi-velocities 
as x or Y ,  the resulting equations of motion would be quite complicated. Also, com- 
ponents of the velocity along a body-fixed frame provide physical insight. 

Kane's equations can be derived in a variety of ways. One can take a system of 
particles and use the equation of motion of each particle, or one can begin with 



D' Alembert's principle and use the transformation from the generalized velocities to 
the quasi-velocities. In order to establish the equivalence between the Gibbs-Appell 
and Kane's equations, we begin with the first approach. 

Consider a system of N particles that has n degrees of freedom. The equa- 
tion of motion for each particle can be written as Eq. [9.7.1]. We select an 
appropriate set of independent generalized coordinates and quasi-velocities. As- 
sociated with each particle and each quasi-velocity there is a partial velocity vector 
v! (k = 1,2, . . . , n; i = 1,2, . . . , N). To obtain Kane's equations, one takes the dot 
product of each of the N equations of motion with the partial velocities and adds the 
resulting equations, which yields 

The right side of this equation is recognized as the generalized force Uk. We 
define by Fy = -m;a; the inertia force associated with the ith mass, and the sum of 
the inertia forces multiplied by the partial velocities as U;, the generalized inertia 
force, is defined as6 

Introducing this expression into Eq. [9.8.1] yields 

which is known as Kane's equations. To establish the equivalence between the 
Kane's equations and the Gibbs-Appell equations, we focus on Eqs. [9.7.7] and 
[9.8.2], from which 

It is clear that the Gibbs-Appell and Kane's equations are identical. 
For rigid bodies, the generalized inertia forces can be found in a way sim- 

ilar to finding the generalized forces. Indeed, we define a resultant inertia force 
F* = -mat, acting through the center of mass, and a resultant inertia torque M* = 
-dHGldt, similar to the negative of the gyroscopic moment. The generalized inertia 
force has the form 

Compare this equation with Eq. [9.7.19]. For interconnected bodies, one uses the 
resultant acceleration and change in angular momentum for each body and sums, as 
we did for particles, to obtain Eq. [9.7.21]. 

Even though we performed near-identical manipulations to obtain the Gibbs- 
Appell and Kane's equations, the two are inspired from very different viewpoints. 

I 6This definition is different than Kane's definition of generalized inertia force 



The motivation behind the development of the Gibbs-Appell equations was to de- 
velop a fundamental function, in a sense similar to the extended Hamilton's prin- 
ciple but one that can handle nonholonomic constraints. These equations can be 
derived without using partial velocities. On the other hand, Kane's equations are 
based on Kane's initial work with D'Alembert's principle, and on Lagrange's form 
of D'Alembert's principle. 

As discussed before, Kane's equations can be derived from D' Alembert's prin- 
ciple is as follows: We invoke D'Alembert's principle for rigid bodies, derived in 
Section 8.1 1. For a system of N bodies, the principle is written in terms of the gen- 
eralized velocities as 

in which the generalized forces are given by 

We introduce to these two equations the relationships between the generalized 
velocities and the generalized speeds. Making use of column vector notation and 
the partial velocity matrix, we can express the partial derivatives of vci and wi with 
respect to the generalized velocities as 

so that Eq. [9.8.6] can be expressed as 

We right-multiply both sides of this equation by [W], for 

The right side of this equation is recognized as the generalized force vector as- 
sociated with generalized speeds. The left side is recognized as the column vector 
representation of the generalized inertia forces. Hence, Kane's equations can be de- 
rived directly from D'Alembert's principle for rigid bodies, by a simple change of 
variables from the generalized velocities to the generalized speeds. 

Derivation of Kane's equations can also be accomplished without the use of any 
variational principle, such as D'Alembert's or Hamilton's or of variational calculus. 
Nor do they require the development of scalar functions such as energy and S. In this 
regard, they are different than the others that we have studied. 



Another advantage of Kane's equations is that the approach, especially the use 
of partial velocities, is desirable for interconnected and large-order systems. This is 
because the procedure of obtaining the partial velocities and the generalized forces 
can be mechanized and made suitable for computer implementation. 

Rather than adding to the controversy on differences and similarities between the 
Gibbs-Appell and Kane's equations, we will refer to the equations of motion derived 
in this and the previous section as the fundamental equations of motion. We will 
differentiate the forms by referring to the Kane's form of thefundamental equations 
of motion and the Gibbs-Appell form of the fundamental equations of motion. 

Another interesting interpretation of the fundamental equations is as follows. 
Consider that we have one body, whose translational and rotational equations of mo- 
tion are 

The fundamental equations are obtained by taking the dot product of the first of 
Eq. [9.8.11] with v,!j and of the second Eq. [9.8.11] with ok and summing the two 
expressions. This results in the equation of motion for the kth generalized speed. 
In essence, the kth fundamental equation is simply the sum of the components of 
the force and moment balance along the directions of the partial velocities. This 
interpretation should be compared with the interpretation of Lagrange's equations in 
terms of the Euler angles. 

Obtain the equations of motion of a disk rolling without slipping using the fundamental I Example 
equations. 9.1 1 

Solution 
We discussed this problem in Examples 9.3 and 9.5. We begin with a set of independent gen- 
eralized speeds uk = ok (k = 1,2,3) and use the Fframe. First, we calculate the acceleration 
of the center of mass. The velocity of the center of mass is given by 

so that the acceleration becomes 

At this point, we can either invoke the Gibbs-Appell or the Kane's forms of the funda- 
mental equations. Let us use the Gibbs-Appell form and write the Gibbs function 

We will take partial derivatives of each term with respect to the quasi-velocities. We note that 



For the first term of S 

and carrying out the algebra we obtain 

To differentiate the second and third terms of S, we note that d{a)ld{u) = [I]. The deriva- 
tives of the second and third terms in S yield Euler's equations expressed in the F frame, 
Eqs. [8.5.31]. These equations are the same as the modified Euler's equations, as given in 
the left side of Table 9.1. Adding these equations to Eq. [f], and noting that the generalized 
forces are given by Eq. [l] of Example 9.8, we amve at the equations of motion as 

(Il + m ~ ~ ) z i l  - + (I3 + mIt2)u2u3 = -mgRcosB 
tan 0 

Ilir2 + &!!s - 13u1u3 = 0 
tan 0 

Use of the Gibbs-Appell form of the fundamental equations led to a physical interpreta- 
tion. The equations of motion are basically the modified Euler's equations with an additional 
moment term. This additional expression, given in Eq. [f], is in essence the contribution of 
the moment generated about the center of mass by the forces acting on the contact point. 

We have now solved the problem of the rolling disk four times. We first studied 
this problem in Chapter 8, using Lagrange's equations with constraints. Next we 
used the modified Euler's equations, where we discussed both a force and moment 
balance. Then we used the Boltzmann-Hamel equations and summed moments about 
the contact point. Finally, in Example 9.11, we used the fundamental equations. The 
reader is urged to compare all these methods of solution. 

Example I Obtain the equations of motion for the spinning top on a cart using Kane's form of the funda- 
9.12 mental equations. 

Solution 

We saw this problem in Examples 8.12 and 9.4. The forces and moments that do work on the 
combined system are 

F1 = -mga3 applied at G F2 = Fa2 applied at C 

M = Mf3 at C [a] 



Note that the top exerts an equal and opposite moment on the cart. The other forces that 
the cart and top exert on each other do not enter the formulation, as they are internal to the 
system. 

We need to calculate the following partial velocities and partial angular velocities: 

v&, to evaluate Ui and to find the component of Uk due to F1 

o k ,  to evaluate U,I and to find the component of Uk due to M 

vk, to evaluate Ukf and to find the component of Uk due to FZ [bl 
All these partial velocities were calculated in Example 9.6. We summarize the results as 

Generalized speeds: ul = wl u2 = w2 u3 = 0 3  u4 = Y [@I 

Angular velocity: o = w l f l  + w2f2 + m3f3 = u l f 1  + u2f2 + u3f3 [dl 
Partial angular 

velocities: o1 = f l  02 = f2 03 = f3 04 = 0 [el 

Partial velocities for C: v; = v: = v: = 0 

6 = a2 = (sin 4fl + cos 4cos O f 2  - cos 4 sin O f 3 )  [r] 

Velocity of G: VG = - Lf2u1 + Lfluz  

+ (sin 4fl + cos 4cos O f 2  - cos 4 sin 0f3)u4 191 
Partial velocities for G: vk = -Lf2  v i  = L f l  v i  = 0 

v4, = a2 = (sin 4fl + cos 4cos O f 2  - cos 4 sin O f 3 )  [hl 

Generalized forces: U1 = mgLsin0 U2 = 0 U3 = M U4 = F [il 

To derive the equations of motion, we need to obtain the accelerations of G and C, and 
the rate of change of angular momentum. The acceleration of Cis  simply 

ac = u4a2 Cil 
We find the acceleration of G using the relation 

ac = ac + a x ~ G , C  + o x (O x rGIC) [kl 
in which ~ G / C  = Lf3 and 

a = brel + of X 0, = (&fi  + h,f2 + h3f3) + w l f l  + w2f2 + -f3 X 0 3  - - f3 ( tan m2 e ) ( ~ e )  

As mentioned before, this differentiation is necessary because the angular velocity is being 
expressed in the F frame and not a body frame. Carrying out the necessary steps, the accel- 
eration of point G becomes 

+ (-u4 cos 4 sin 0 - LU: - ~ u i ) f ~  [ml 



As expected, all s = w3 terms drop out of the acceleration expression. Taking the dot 
products between the accelerations and the associated partial velocities yields 

L 2 4  
v; aG = -Lf2 aG = L2ul - Lu4 cos 4120s 8 - - 

tan e 
L2u1 u2 

vi*aG = Lfl -aG = L2uz + ~ u 4 s i n # J  + - 
tan 0 

v;.aG = 0 

v$ a~ = (sin 4f1 + cos 4 cos Of2 - cos 4 sin Of3) a~ 
Lulu2 s in4 

= u4 + Lu2 s in4 + 
tan 0 

Lu; cos 4 
- Lul cos+cose + Lu~cos+s ine  + sin 9 

We next find the rate of change of the angular momentum. We derived a general ex- 
pression for this earlier in this chapter, when studying the modified Euler's equations. Using 
Table 9.1, for a 3-1-3 transformation the rate of change of angular momentum of the top is 

HG = [I lhl  + m2 ( 13w3 - - izi)fl + [l2& - ~1 ( W 3  - %)If2 + h h f 3  Irl 

The contribution from angular momentum of the cart is zero, as the cart has zero angular 
velocity. Taking the dot product between HG and the partial angular velocities from Eqs. [el, 
we obtain 

The generalized inertia forces U; are calculated as 

k .  U ; = ~ ~ * r n ~ a ~ + v ~ * m ~ a ~ + o * H ~  k = 1 , 2 , 3 , 4  1 4  

Combining Eqs. [n], [o] and [q] with the generalized forces in Eq. [i], we obtain the 
equations of motion as 

U; = U1 + O + r n l  

2 4 
+ (11 + rnlL2)ul - r n l ~ u 4 c # J c 8  - (11 + mlL )- + I ~ U ~ U ~  - rngL s e  = o [s] te 

u; = U 2 + O + r n l  L ~ ~ z + L u ~ s + + - -  

+ ~ I L U ~  ~4 - I ~ U ~ U ~  = o I*] 
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As we saw in the previous sections, the fundamental equations have the advantage 
that by a judicious choice of the generalized speeds one can account for nonholo- 
nomic constraints in the formulation and obtain equations of motion in terms of in- 
dependent generalized speeds. In certain cases, however, it is desirable or necessary 
to leave the problem formulation in terms of constrained coordinates. 

Consider a system with n degrees of freedom described in terms of n generalized 
coordinates qk (k = 1 , 2 , .  . . , n)  and n generalized speeds uk (k = 1 , 2 , .  . . , n).  We 
now apply m constraints to the system of the form 

where [A]  and { B )  are defined as in Section 9.6. From Eq. [9.5.22], the expression 
for virtual work in terms of the quasi-coordinates is 

As we did in Lagrangian mechanics, we take the variation of the constraint in Eq. 
[9.9.1] and left-multiply it by the Lagrange multipliers {AIT = {A1 A2 . . . Am}, 
with the result 

We then add the above expression to the virtual work and create an augmented virtual 
work function 

8 w = { ~ ) ~ { 8 ~ ' )  + { A ) ~ [ A ] { ~ ~ ' )  = {0 )T{6q ' }  [9.9.4] 

in which 

is a set of generalized forces associated with the constrained generalized coordinates. 
Individually, the elements of ( 0 )  have the form 

This expression for the generalized forces is then used in the Gibbs-Appell equations, 
with the result 



m 

U; = ( I k  + 1 Ajkhj [9.9.8] 
j =  1 

The n equations [9.9.8], the m constraint equations [9.9.1], and the n kinematic 
differential equations [9.5.3] are used to solve for the 2n + m variables ql, q2, . . . , qn, 
~ 1 9  ~21 . .  . t un, A19 A2,. . . Am- 

9.1 0 RELATIONSHIPS BETWEEN THE FUNDAMENTAL 
EQUATIONS AND LAGRANGE' s EQUATIONS 

The relationship between Lagrange's equations and the fundamental equations is 
given in Eq. r9.7.91, for when the system is unconstrained and the generalized speeds 
are selected as the generalized velocities. In this case the generalized forces Qk and 
Uk (k  = 1,2, . . . , n) coincide. If the applied forces are conservative, one can take 
advantage of the potential energy to calculate the generalized forces 

Consider now the case when the generalized speeds and generalized velocities 
are related by Eq. [9.5.3] as 

(4) = [WIb) + {XI [9.10.2] 

We make use of Eq. [9.5.19], which relates the generalized forces by 

and separate the generalized forces into those that can be derived from a potential 
and those that cannot, as 

It follows that 

or, in scalar form, 

We write the Lagrange's equations in matrix form as 



in which {en,) contains the contribution of all external forces not derivable from a 
potential. Right-multiplying the above equation by [W] and using Eq. [9.10.3], we 
obtain 

+ - [W] = {Q,,)~[w] = {u,,)~ [9.10.8] (f & - gi :;I) 
which can be expressed as 

where {u,,)~ = [Uncl Uncz . . . Uric,] is the generalized force vector. If one does 
not wish to make use of the potential energy formulation, the equation becomes 

In the presence of constraints, the relationship between the generalized forces is 
given by Eq. [9.6.22] as 

( 0 )  = [ W T { ~ >  [s.ro.rr] 
Let us right-multiply Eq. [9.10.7] by the [w] matrix. From Eq. [9.6.l2] we have 

in which [ Wp 
of motion 

[ m  = [W,I + [WSNA~I [9.10.121 

and [Ws] are the partitions of [W]. Hence, we obtain for the equations 

A special case of Eq. [9.10.6] arises when the generalized speeds are selected as 
the same as the independent generalized velocities, irk = qk, k = 1,2, . . . , p. In this 
case, OnCk coincide with Qk, and the first p x p partition of the [W] matrix becomes 
an identity matrix, or 

and, as a result, we write Eq. [9.10.8] as 

Equation [9.10.15] in essence represents the removal of the Lagrange multi- 
plier from Lagrange's equations. This procedure, while relatively straightforward 
in derivation, often involves several complicated steps for actual problems and is 
not commonly carried out. Equations [9.10.10] and [9.10.15] are known as the 
Passarello-Huston equations. 



Note that we could have derived Eq. [9.10.15] in Section 4.10, when we dis- 
cussed Lagrange's equations for constrained systems. Instead, we left it for here, so 
that it could be done for both Lagrange's as well as the fundamental equations. 

We next consider Lagrange's equations in terms of quasi-velocities. By substi- 
tuting the quasi-velocities into the kinetic energy, we write the kinetic energy as 

where the overbar denotes that a change of variables has occurred. We also recall 
the relationships 

Using Eq. [9.10.17a], we can express the derivative of the Lagrangian with re- 
spect to the generalized velocities in terms of the generalized speeds as 

which, upon differentiation with respect to time, becomes 

Noting that the generalized speeds are functions of both the generalized coordinates 
and generalized velocities, the derivative of the kinetic energy with respect to the 
generalized coordinates becomes 

In this equation, the first term is the explicit derivative, and the second term uses 
the chain rule to find the contribution from the generalized speeds. Introducing Eqs. 
[9.10.19] and [9.10.20] into Lagrange's equations, we obtain 

We right-multiply this equation by [W] and make use of the relationship for the 
generalized forces {U) = [w]~{Q}, with the result 

in which 

[W] 19.1 0.231 

Equation [9.10.22] is Lagrange's equations for quasi-coordinates. Their pri- 
mary difference from the traditional Lagrange's equations is the calculation of the 
coefficient matrix [%I. One can make use of the several different ways to express 
[%I. One way is to use the preceding definition directly. Once [%I is calculated, if 
it is not in terms of generalized speeds, it can be expressed in terms of them by 
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simple substitutions. The same procedure can be followed when evaluating the time 
derivative of dTld{u). 

Another way to evaluate [%] is as follows. [%I can be written entirely in terms 
of the generalized coordinates and generalized speeds. To demonstrate this, differ- 
entiate an element of [Y], say, Yij, as 

" dY- y .  1 1  = C 2 4  ~=-{~)=-[W]{U}+-{X} ayi, d Yi, ayij i , j = 1 , 2  ,..., n 
d9k a{4) &?} 4 9 >  

and note that this operation is performed for each component of [Y]. We expand 
d{u}ld{q} as 

where each of the column vectors can be expressed as 

In the presence of forces that can be derived from a potential, one can express 
the contribution of these forces using the potential energy V. In this case, Lagrange's 
equations for quasi-coordinates have the form 

For constrained systems, once a set of independent generalized speeds are se- 
lected, Eq. [9.10.23] can still be used, noting that both [Y] and [W] are rectangular 
matrices of orders p X n and n X p, respectively. A Lagrange multiplier matrix enters 
the formulation in the same way that it does in the traditional Lagrange's equations. 

Let us compare Lagrange's equations for quasi-coordinates with the fundamen- 
tal equations. Both sets of equations are fundamental, and they can handle nonholo- 
nomic systems. Other forms of the equations of motion, such as Euler's equations, 
the Boltzmann-Hamel equations, and the traditional form of Lagrange's equations, 
can be derived from them. The right sides of both equations are identical. The ad- 
vantage of Eq. [9.10.22] is that it does not involve calculation of acceleration terms 
or of rate of change of angular momenta. Its disadvantage is the effort required in the 
calculation of [%I. The fundamental equations, especially in the Kane's form, lend 
themselves to efficient calculation of partial velocities, making it more convenient 
to derive the equations of motion in many cases. On the other hand, Eq. [9.10.22] re- 
tains the Lagrangian formulation and has more physical insight. It utilizes the kinetic 
and potential energies and eases the generation of motion integrals. 

One can consider Lagrange's equations for quasi-coordinates as a set of equa- 
tions derived from the extended Hamilton's principle, which is an integral princi- 
ple. By contrast, the fundamental equations are not based on an integral principle. 



Another advantage of the Lagrangian formulation will become evident in Chapter 
11, where we study the dynamics of deformable bodies. 

Similar to the debate about the difference between the Gibbs-Appell and Kane's 
forms of the fundamental equations, there is debate about whether the fundamental 
equations or Lagrange's equations for quasi-coordinates are better and easier to use, 
or more fundamental themselves. 

Example I Again consider the spinning top on cart problem. Obtain the equations of motion using La- 
9.13 grange's equations for quasi-coordinates. 

Solution 
Because the right sides of Lagrange's equations and the fundamental equations are the same, 
we will only calculate the left sides of the equation of motion. The kinetic energy for this 
problem is calculated in Example 8.12 and it has the form (using a 3-1-3 transformation and 
F frame) 

We select the generalized coordinates and speeds as 

so that the kinetic energy is written as 

Noting that the angular velocity vector has the form o = 0 f l  + 4 s Of2  + ( 4 c  0 + *)f3, 
we write the relationship between the generalized speeds and generalized velocities as 

[dl 

and the inverse relationship as 
1 

The coefficient matrices in Eqs. [dl and [el are recognized as [Y] and [W], with {Z} = 

{XI = (0). 
The derivatives of the kinetic energy with respect to the generalized speeds is 
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and the explicit derivatives with respect to the generalized coordinates are 

We next calculate the [%I matrix. The time derivative of [Y] multiplied by [W] is 

To evaluate the second term in Eq. [9.10.23] we note that [Y] contains contributions only 
from the second generalized coordinate, so that 

Also, evaluation of the derivative of [Y] with respect to 92 is similar to the time derivative 
but without the ul terms, so that we obtain 

Thus, combining all generalized coordinates, we obtain 

We can now write the [%I matrix as 

l o o -  
- 

0  0 0 0 0  - 0 0 0 0  
s92 

0  z o o 1  0  0 0  - u2 0 0 0  
= t92 - - t92 w 0  -u2 0  0  0  -- I 1 0  -uz 0 0  0  

-O O 0 ° - - 0  
t 9 2  

0 0 1 -  - 0  0 0 0  



Next, we evaluate the individual expressions in Lagrange's equations. The time deriva- 
tives of the dTlduk are 

The transpose of second term on the left side of Lagrange's equations becomes 

u2 -0 -- u2 0- 
t 92 

(11 + m L 2 h  - miLu4 c ql c 92 
0 - (11 + mlL2)uz + ml Lu4 s ql 

13 u3 
O O O O + m2)W + mlL(u2 s 91 - u1 c 91 c 92) 

L 

and the transpose of third term 

The potential energy and virtual work are 

V = mlgL cost) = mlgL cosq2 6W = M69; + Fag; 



9.1 1  PULSE -MOMENTUM RELATIONSHIPS FOR GENERALIZED SPEEDS 539 

so that the generalized force vector becomes 

{U} = [rnlgL sin q2 0 M F ] ~  [9] 

Combining Eqs. [m], [n], [o], and [q] leads to the equations of motion, for the fourth time. 
The reader should compare these methods of solution and judge, at least for this problem, the 
merits and disadvantages of each method. Note that, as encountered in many cases when using 
the traditional Lagrange's equations, certain terms in Eqs. [m], [n], and [o] canceled each 
other. This is one of the disadvantages of using Lagrange's equations; in many cases they lead 
to wasted manipulations. However, considering the proliferation of symbolic manipulation 
software, this disadvantage loses its importance. 

- -  

9.1  1 IMPULSE-MOMENTUM RELATIONSHIPS 
FOR GENERALIZED SPEEDS 

The impulse and momentum relationships for systems described by generalized 
speeds are very similar to those obtained using generalized velocities. In Section 
5.8, we defined the generalized momentum q (k = 1,2, . . . , n) associated with the 
generalized coordinate q k  as 

In terms of independent generalized speeds, generalized momenta are defined sim- 
ilarly as 

For a system of N particles the generalized momenta can be shown to be 
N 

dk = mivi V: [9.11.3] 
i = l  

We relate the two generalized momenta by noting from Eq. [9.5.3] that {q }  = 
[W]{u)  + { X } ,  so that d{q}ld{u) = [ W ] .  Hence, writing Eq. [9 . l l  . I ]  in column vector 
format as { T } ~  = dT/d{q},  we can invoke the chain rule of differentiation and have 

so that 

The generalized impulse associated with a generalized coordinate was defined 
in Section 5.10 as the integral of the generalized force over time, or 



For generalized forces associated with generalized speeds we define the generalized 
impulse as 

From Eq. [9.5.19] we relate the generalized impulses associated with generalized 
coordinates to those associated with generalized speeds by 

For generalized coordinates, we saw in Sec. 5.10 that for a true impulsive 
force-that is, for a very large force applied over an infinitesimal time instant At- 
the difference in the generalized momenta between any two time instances is equal 
to the generalized impulse, or 

To see the corresponding relationship for generalized speeds, we write this equation 
in column vector form as 

Left-multiplying both sides by [wlT and considering Eqs. r9.11.51 and [9.11.8], we 
obtain 

lim ] ' { U }  d t  = { A d )  
Ar-tO 

indicating that when acted upon an impulsive force, the generalized momenta asso- 
ciated with generalized speeds behave in the same way as the generalized momenta 
associated with generalized coordinates. Hence, when nonholonomic variables such 
as angular velocities are involved, it is more convenient to use Eq. [9.11.1 I ] over 
Eq. [9.11.10]. 

Example I Consider the spinning top on a cart once more. It is given that at a certain instant the top 
9.14 is spinning while the cart is moving. An impulsive force fl is applied to the cart in the a2 

direction. Find the change in the velocity of the cart and in the angular velocities of the top 
immediately after the impulse. 

Soldon 
It is more convenient to use generalized speeds in this problem. From Example 9.13, the 
kinetic energy is 

+ ml Lu4(u2 sin 4 - ul cos 4 cos 8 )  
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so that the generalized momenta associated with the generalized speeds have the form 

dT 
T; = - = (11 + ml ~ ' ) u l  - ml L y cos 4cos 8 

Ju1 

= - dT = (11 + ml L')M + ml l u 4  sin 4 
Ju2 

= - dT = (ml + m2)u4 + ml L(w sin 4 - ul cos 4cos 8) 
a u4 [bl 

From Eq. [m] in Example 9.6, the generalized forces have the form 

Of the applied forces, only F is impulsive, so that only it contributes to the generalized forces 
during the impulse, with the result 

We equate Eqs. [b] and [dl to solve for the generalized speeds after the impulse. This 
gives four equations for the four unknowns AT; (k = 1,2,3,4). We note that u3 only appears 
in one of the equations, so that it can be solved for independently of the others, with the result 
AT; = 0. This indicates that the spin of the top is not affected by the impulse, and 0 3  is 
unchanged. 

To solve for the remaining unknowns, we denote the changes in the generalized speeds 
by Auk and write the balance equations as 

0 - m l L c o s ~ c o s 8  Aul 

I + L ~  s i n  ][Au2]=[%] 1.1 [ - m ~ L ~ ~ 4 L ~ o s  8 ml L sin 4 ml + m2 Au4 

From the first and second of these equations we have 

which, when introduced into the third equation yield 

The change in the horizontal speed of the cart is dependent on the angles 4 and 8, so the 
position of the top influences the velocities and angular velocities after the impulse. 
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1. Using the modified Euler's equations, derive the equations of motion of a 
disk rolling without slipping on a surface that is like a wedge, as shown in 
Fig. 9.6. 

2. Using the modified Euler's equations, derive the equations of motion for the disk 
in Fig. 8.26. The x y z  axes also constitute principal axes for the fork, which has 
a mass m/2 and can be modeled as a slender rod. 

3. Solve Problem 1 using the Boltzmann-Hamel equations. 
4. Obtain the equations of motion of the dual spin spacecraft shown in Fig. 9.7. 

The centers of mass of the rotor and the main body are not at the same point, but 
along the bs axis, which is a principal axis. Use the Boltzmann-Harnel equations 
and consider only the rotational motion of the main body. The shaft connecting 
the main body to the rotor is light. 

5. Find the equation of motion of the gyropendulum in Example 8.5 using the 
Boltzmann-Hamel equations. Assume that both 4 and $ are constant. 



Figure 9.8 Figun 9.9 

SECTIONS 9.5 AND 9.6 

6. Consider the satellite in Fig. 9.8 with the solar panels. The panels are operated 
by motors that exert moments N1 and N2 about the bl axis, and moments MI, 
M2, and M3 act on the main body. Select a set of generalized speeds, and write 
the partial velocities. Consider only rotational motion of the satellite. 

7. Generate the generalized forces and the generalized inertia forces for the pre- 
ceding problem. The main body has mass moments of inertia Il , 12, and I3 about 
the bl  b2b3 axes, which are principal axes, and the solar panels can be treated as 
plates. 

8. Consider the vehicle in Fig. 4.8 and consider that the constraint is that the tip 
of the vehicle moves in the x axis only. Select a set of dependent generalized 
speeds, invoke the constraint, and arrive at a set of independent generalized 
speeds. 

9. Consider the tricycle in Figs. 7.39-7.40. Select as independent generalized 
speeds the speed of point A and 4, and express the partial velocities associ- 
ated with the centers of masses of all components (main body, wheels, and 
handlebars) as well as all the partial angular velocities. 

10. For the preceding problem, can you think of a better choice of generalized 
speeds? Compare with the results of selecting the orientation and speed of the 
front wheel as the variables. 

11. Reconsider problem 10. This time the tricycle is on an incline as shown in 
Fig. 9.9. Calculate the generalized forces. Assume that the handlebar is mass- 
less, the main body of the tricycle has mass m, the rear wheels d l 0  each, and 
the front wheel d 5 .  

12. Consider the rod to which two wheels are attached in Fig. 7.55. The rod is of 
mass m and the wheels are each of mass 2m. Consider the following sets of 
generalized speeds: (a) the angular velocities el and e2 of the wheels, (b) the 
speed of the center of the rod, and the turning rate of the rod. Consider that the 
system is on an incline, like the one in Fig. 9.9. Find the generalized forces for 
both sets of quasi-velocities. 

13. Consider Example 9.7 and express the translation of the disk and the constraint 
equations by beginning with the contact point of the disk. 
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14. Generate the Gibbs-Appell function for Problem 4. 

15. Generate the Gibbs-Appell function for Problem 6. 
16. Solve Problem 2 using the Kane's form of the fundamental equations. 

17. Solve Problem 5 using the Kane's form of the fundamental equations. 

18. Derive Hamilton's equations from the fundamental equations. 

19. Solve the dual spin spacecraft problem in Fig. 9.7 using the fundamental equa- 
tions. Consider rotational motion only. 

20. Figure 9.10 shows a spacecraft that has three rotors of identical size and shape, 
used primarily for attitude maneuvers. Each rotor is driven by its own motor and 
is at a distance L from the center of mass. Derive the equations of motion using 
the fundamental equations. 

21. Consider the spacecraft in Fig. 8.35. Obtain the equations of motion using the 
fundamental equations. 

22. Consider the rod with the two wheels attached in Fig. 7.55. Derive the equations 
of motion, using the two sets of quasi-velocities in Problem 13. 

23. Consider the rotational motion of an axisymrnetric rigid body. Show that the 
modified Euler's equations can be derived from Lagrange's equations for quasi- 
coordinates. 

24. Solve for the equations of motion of the vehicle in Example 9.10 using La- 
grange's equations for quasi-coordinates. 

25. Solve Problem 2 using Lagrange's equations for quasi-coordinates. 

26. Solve Problem 4 using Lagrange's equations for quasi-coordinates. 



27. Consider the tricycle in Figs. 7 .3940 .  The tricycle is at rest on a flat surface, 
with 4 = 15". An impulsive force # is applied at point A along the y axis. Find 
the resulting angular velocities of the wheels, and the velocity of G. Treat the 
wheels as disks and the main body of the tricycle as a plate, and ignore the weight 
of the front handle and connecting rods between the main body and wheels. 

28. Consider the disk in Fig. 9.4, rolling without slipping with a constant nutation 
angle of 45". An impulsive force is applied to the disk in the f3 direction at 
point A. Calculate the resulting precession, nutation, and spin rates immediately 
after the impulse, assuming that the disk is still rolling without slipping after the 
impulsive force is applied. 

29. The ellipsoid of revolution (about the x axis) in Fig. 9.11 is at rest on a horizontal 
surface. It is struck by an impulsive force @ in the z direction and applied through 
the coordinates x = a12, y = bl2. Find the velocity of the center of mass and 
the angular velocity of the ellipsoid, assuming that the ellipsoid rolls without 
slipping on the horizontal surface. 





In this chapter, we analyze the motion of rigid bodies from a qualitative perspective. 
We study the nature of the motion and make use of motion integrals. The main inter- 
est is in gyroscopic motion and on the effects of the gyroscopic moment. Gyroscopic 
motion is commonly described as motion in which the angular momentum and an- 
gular velocity vectors have different directions and one of the components of the 
angular velocity is much larger than the other two. This type of motion is commonly 
encountered in bodies that spin and the direction of the spin axis is not stationary. The 
gyroscopic moment becomes large and this enables tops, disks, and gyroscopes to 
continue their motion and prevents them from falling down. In essence, gyroscopic 
motion is a battle between gravitational moment and gyroscopic moment. A specific 
spin rate is required to overcome the effects of gravity. 

We begin the analysis in this chapter with the simplest case of moment-free 
motion. We study axisymmetric as well as nonsymme& bodies. We focus on bodies 
under the action of forces and moments; the rolling disk and spinning top are studied, 
as well as gyroscopes. 

While the qualitative analysis of gyroscopic motion and of spinning bodies is a 
very useful and important tool, it becomes even more interesting to supplement the 
qualitative analysis with quantitative results. Numerical integration of the equations 
of motion was discussed in Chapter 1. The reader is urged to take advantage of this. 
By numerically integrating the equations of motion one can quantitatively observe 
many of the interesting results that are presented in this chapter. 

This chapter does not have many examples. In essence, each section can be 
considered as an example analyzing a specific situation. 



We begin with the motion of a rigid body that is not subjected to any external mo- 
ments. Since the translational equations are straightforward, we will only analyze 
the rotational equations. Selecting the principal axes as the body coordinates and in 
the absence of external moments, Euler's equations, Eqs. [8.5.28], simplify to 

We next consider the special case where there is inertial symmetry in the struc- 
ture and that two of the principal moments of inertia are the same, say I I  = 12.  This 
assumption not only simplifies the equations of motion but increases the stability 
margin as well. (Example 8.6 analyzed this increased stability.) From a mathemat- 
ical standpoint, an arbitrarily shaped body with two equal principal moments of in- 
ertia will behave in the same way as an axisymmetric body. However, one does not 
frequently encounter this situation. Many times, air flow or resistance by another 
fluid around a body has a substantial effect on the nature of the motion; the shape of 
the body then becomes a significant factor and there is a difference in the response 
of axisymmetric and inertially symmetric bodies. 

Several bodies that undergo rotational motion are specifically designed as ax- 
isymmetric. Examples of this include rockets and satellites, machinery parts, fris- 
bees, and balls such as American footballs and rugby balls. Soccer and ping pong 
balls have all three principal moments of inertia as the same. 

Setting I I  = I2  in Eqs. [10.2.1] yields 

Equation [10.2.2c] indicates that 0 3  is constant, so it is an integral of the motion. 
Introducing the rotation constant rR. 

Eqs. [10.2.2a] and [10.2.2b] can be expressed as 

Equations [10.2.4] describe a gyroscopic system, with being the parame- 
ter describing the gyroscopic properties. They can be written in column vector for- 
mat as 



where we notice that the coefficient matrix is skew symmetric. A skew-symmetric 
coefficient matrix is usually the sign of gyroscopic behavior.' The rotation con- 
stant R describes the rate at which the gyroscopic motion unfolds. Multiplying Eq. 
[10.2.4a] by wl and Eq. [10.2.4b] by w2 and adding the two equations leads to 

from which it is realized that w: + w i  is constant. We define by wl2 = Jw 
the magnitude of the projection of the angular velocity vector on the bl b2 plane, as 
shown in Fig. 10.1. Hence, we have a second integral of the motion. The two first 
integrals can be combined to yield a third integral of the motion, thus 

w: + w; + w$ = constant = lo12 = w2 [10.2.71 

indicating that the magnitude of the angular velocity vector is also constant. 
Because the body is torque free, both the angular momentum about the center of 

mass and the rotational kinetic energy are conserved, pointing to two other integrals 
of the motion as 

HG = I lwlb l  + 11w2b2 + 13w3b3 = constant 

2Tmt = o HG = I1w: + l l w ;  + 13w$ = constant [ I  0.2.81 

in which bi (i = 1,2,3) denote the unit vectors along the principal axes. We use 
the integrals of the motion to explain the motion of the body. Defining the projection 
of the angular momentum vector onto the bl b2 plane by H 1 2 ,  we observe that the 
magnitude of HIZ is 

so that the magnitude of H 1 2  is also constant. The above equations imply that the 
projections of HG and o onto the blb2 plane lie along the same line and hence, 

'The reader is urged to compare Eq. [10.2.5] with the linearized equations for the Foucault's pendulum, Exam 
ple 2.16, Eq. [el. 



as described in Fig. 10.1, the vectors b3, HG, and o must lie on the same plane. 
Defining the axis b12 such that H12 = H12b12, where b12 is the unit vector in the 
b12 direction, this plane is defined by the b3 and b12 axes. Fig. 10.2 depicts the 
plane. 

The motion can be interpreted as the rotation of this plane. The rotation is about 
the angular momentum vector HG, as both the magnitude and direction of this vector 
are constant. The rotation of the angular velocity vector can also be described as the 
movement of two imaginary cones, called the body and space cones, on top of each 
other. The body cone is fixed to the body. It is generated by the rotation of the angular 
velocity vector about the b3 axis (the spin and symmetry axis). The space cone is 
fixed in the inertial space and is generated by the rotation of the angular velocity 
vector about the angular momentum vector. In Chapter 7, we saw that the body and 
space cones can take arbitrary shapes. Because of the inertial symmetry, the cones 
generated here are right circular cones. Figures 10.3 and 10.4 show the body and 
space cones, as well as the orientation of HG and o along the b3 and b12 directions, 
depending on the angles a and P .  We select the inertial frame such that the angular 
momentum vector HG (which is constant in both magnitude and direction) coincides 
with the a3 direction. We thus have 

b3 Space 

cone 

Body 
cone ,' Space 

: ,*' cone 

F i g u r n  10.3 Flat body C i s u r n  10.4 Slender body 



where HG is the magnitude of the angular momentum vector. From Fig. 10.2 the 
angles a and P are constants, and they can be expressed as 

tans = - = - 6J 12 
H12 l l w 1 2  = constant tan p = - = constant 11 0.2.1 I I 
H3 1 3 0 3  w 3 

in which HI2 and H3 are components of the angular momentum along the b12 and 
b3 axes, respectively. The relationship between a and /3 depends on the magnitude 
of the mass moments of inertia Il and 13. We have two possible cases: 

1. If Il < 13, then a < p.  This case corresponds to the motion of a flat body, such 
as a disk. 

2. If II > 13, then a > p.  This case corresponds to the motion of a slender body, 
such as a rod or a football. 

When viewed from the body-fixed frame, o generates the body cone, which has 
an apex angle of P around b3. When viewed from the inertial frame, o generates 
the space cone with an apex angle of IP - al. For a flat body with 1, < 13, the space 
cone rolls inside the body cone, and for a slender body, Il > 13, the body and space 
cones lie outside of each other, as shown in Figs. 10.3-10.4. The space cone is easier 
to visualize, because it shows the direction of the angular velocity vector from an 
inertial frame. The visualization is also simpler for slender bodies. 

Consider, for example, a football being thrown. Under ideal circumstances, 
the ball would just have a spin along its longitudinal axis, implying an angu- 
lar velocity vector for the ball that has constant direction in addition to constant 
magnitude.2 However, if there is a wobble associated with the throw, the angular 
velocity now has two components: the wobble and the spin. Consequently, the an- 
gular velocity vector no longer has a constant direction, but a direction that rotates 
itself. 

We next address the issue of the rate with which 012, the component of the 
angular velocity vector along the bl b2 plane, rotates. This is, of course, the same 
as the rate with which the plane defined by b3, Hlz, and w12 rotates, or how fast a 
body cone is swept. Considering Eqs. [10.2.4], we intuitively expect this rate to be 
the rotation constant IR = w3(13 - I1)/I1. TO verify this, consider Fig. 10.1 and the 
angle y,  which is the angle w 12 makes with the bl axis. The rotation rate is then y .  
Simple geometry indicates that 

sin y 0 2  - 
cosy W l  

Differentiation of both sides of the above equation with respect to time yields 

cos y(y cosy) - sin y(- j sin y) - - wlh2 - w2h1 
[10.2.19] 

cos2 y 4 

I 2The motion of the football is actually a much more complex phenomenon, due to the aerodynamics and gravity 
moment. 



Introducing Eqs. [10.2.4] into Eq. [10.2.13], we obtain 

We observe from Fig. 10.1 that cos2 y = @:I(@; + o!), which leads to the expected 
result that j = a. 

The total motion of the body, as stated earlier, is some kind of wobbling, unless 
motion is initiated with a perfect spin about one of the principal axes. The amount of 
wobble, as observed from the value for a, depends on how the principal moments of 
inertia are different from each other. However, the wobble remains constant, because 
the apex angles of the body and space cones are the same. 

An example of wobbling motion is the rotation of the earth. The earth is not a 
perfect sphere-it is an oblate spheroid. If we attach a set of body axes to the earth 
and select the b3 axis as the polar axis, we have (from measurements that have been 
taken) 

and, taking the angular velocity of the earth as 1 revlday, we get = 0.0033 
revlday. This implies that the earth should sweep one body cone in 110.0033 = 300 
days. 

Astronomers have observed that the polar axis of the Earth indeed has some 
wobbling motion, a phenomenon called variation in latitude. The period of the 
wobble has been measured as 433 days and the radius swept by the poles in one 
body cone as about 4 meters. The difference from the predicted period of 300 
days is attributed to two reasons. The earth is not rigid and not entirely torque 
free. Because it is an oblate spheroid and not a perfect sphere, the gravitational 
attraction of the sun and moon creates a gravity gradient torque. Also, the lack 
of rigidity causes some energy transfer from one component of the rotation to 
another. 

Let us introduce the Euler angles to the formulation. As before, we consider a 
3-1-3 sequence with the rotations of 4 (precession), 8 (nutation), and + (spin). The 
transformation matrix [R]  is such that 

as given in Eq. [7.5.3]. From this we have 

as = sin 8 sin +bl + sin 19 cos +b2 + cos 8b3 [1 0.2.171 

We express the angular momentum in terms of the body-fixed coordinates as 

HG = HGa3 = HG(sin 8 sin +bl + sin 8 cos +b2 + cos 8b3) 



from which we obtain 

Notice from the last of these equations that the nutation angle 0 is constant and 
hence the nutation rate is zero. Indeed, we have 

1 3 ~ 3  cos 19 = - = constant [10.2.20] 
HG 

In addition, we realize that the angle between the a3 and b3 axes is 8, so that 
8 = a. To obtain expressions for the precession and spin rates, we make use of 
the relationship between the body-fixed angular velocities and the Euler angles, Eq. 
[7.5.7] 

In view of the nutation rate being zero, these reduce to 

w l  = ~ S ~ S J I  w2 = & S O C $  w3 = & e $ +  J, [io.2.221 

Comparing Eqs. [10.2.19] and [10.2.22], we conclude that 

. HG 4 = - = constant 
I1 

H~ cos e J, = - i c e +  13 
C O S ~  = w3( l  - -) = constant 

13 I1 

so that the precession and spin rates are constant as well. Combining Eqs. r10.2.231, 
we arrive at the relation between the precession and spin rates as 

This equation states that for torque-free motion of a body with two equal mo- 
ments of inertia, the precession rate 4 and spin rate 4 are proportional to each other. 
The nutation rate is zero. For example, if a football is thrown with a wobble, the mag- 
nitude and angle of the wobble should remain as it is and not change.3 Furthermore, 
the direction of the wobble remains the same. From Eq. [10.2.24] and Figs. 10.3 and 
10.4 we observe that again two cases are possible, depending on the magnitudes of 
the moments of inertia: 

1. When I l  > 13, such as in a slender body, the precession and spin have the same 
sense. This type of motion is called direct precession. The space cone rolls 

I 31n reality, the wobble changes due to aerodynamic and gravitational effects 



outside the body cone as shown in Fig. 10.4. The wobble is in the same direction 
as the spin. 

2. When Il < 13, such as in a flat body, the precession and spin have opposite 
senses. The motion is called retrograde precession. The space cone rolls inside 
the body cone as shown in Fig. 10.3. 

Direct precession is relatively easy to observe, as for a slender body the ratio 
of the largest to smallest moment of inertia can take on any value. Making 11/13 a 
large quantity, such as 4 or 5, one can easily view direct precession. On the other 
hand, because in flat bodies the ratios of the moments of inertia about the principal 
axes are closer to each other than in slender bodies, it is usually more difficult to 
visually observe retrograde precession. For a circular cylinder I3 = rnR2/2 and Il = 
rnR2/4 + r n ~ ~ 1 1 2 .  The maximum value of the inertia ratio is for a thin disk, 13/11 = 2. 
As the disk thickness increases, the two moments of inertia become closer. 

We now relate the values of the body and space cone angles to the Euler angles. 
As stated above, a, the angle between the angular momentum vector and b3 is the 
same as 6, so a = 6. From Eqs. [10.2.11] and [10.2.19] we can write a relationship 
for the angle P as 

0 1 2  HGIIl sin 0 I3 
t a p  = - = = --tan8 

0 3  HG/13 cos 0 Il 

which verifies that whether the angle /3 is larger than a depends on the shape of the 
body. 

We now relate the Euler angles and body angular velocities to each other. Con- 
sidering Eqs. [10.2.10], [10.2.23], and [10.2.25], one can show that 

thus, given the total angular velocity o and the angle P ,  one can determine the an- 
gular momentum, the precession and spin rates, and the nutation angle. 

Torque-free motion of axisymmetric bodies lends itself to an interesting Euler 
parameter description. Because precession and spin rates and the nutation angle are 
constants, one can find closed-form expressions for the Euler parameters in terms 
of the initial conditions. The Euler parameters are expressed in terms of the Euler 
angles in Eq. [7.7.40]. Hence, we obtain for a 3-1-3 transformation 

0 
e = c o s ( t s  el = cos (yt)in; - 



An American football (axially symmetric body) with a mass moment of inertia ratio of I ,  = I Example 
413 is thrown with a spin fl about its axis of symmetry. A player tips the football, and in doing 1 0.1 
so exerts an angular impulse of ~ I l f l  in a transverse direction, where E is a small number. 
The change in the linear momentum is assumed to be negligible. Obtain the precession and 
spin rates after the impulse is applied. 

Without loss of generality, we assume that the angular impulse is applied about the bl axis. 
The angular momentum before the impulse is 

After the impulse, using the angular impulse-momentum theorem, the angular momentum 
becomes 

so that the angular velocity after the impulse is 

We now construct the body and space cones. Because I l  > 13, we have a case of direct 
precession; the body cone lies outside the space cone, a is the angle between b3 and HG, and 
/3 is the angle between b3 and o. Considering Fig. 10.4 we can write 

so that the body and space cones depend on the magnitude of the impulse. From Eqs. [10.2.23] 
we have the precession and spin rates 

and that the nutation angle 8 = a = tan-'(4&). From Eq. [b],  we obtain 

which then leads to the precession and spin rates after the impulse as 

It is interesting to note that the spin rate is independent of the magnitude of the angular 
impulse. The nutation angle and the precession rate depend on the strength of the impulse. 
For very small values of E ,  the precession rate can be approximated as 

indicating that the minimum value of the precession rate after the impulse is a14. 



From Eqs. [g] and [h] we obtain two additional results: First, the precession and spin 
rates depend on the ratios of the mass moments of inertia. Secondly, the spin rate after the 
angular impulse is always less than the spin rate before the impulse, known intuitively to 
players and spectators all around. 

We next analyze the torque-free motion of an arbitrary rigid body whose principal 
moments of inertia are different from each other. Using a 3- 1-3 Euler angle transfor- 
mation, we write the rotational kinetic energy as 

where we note that 4 is absent from the Lagrangian, so that it is a cyclic coordinate. 
Therefore, in the absence of moments about the a3 axis, which is the case considered 
here, .rr+ is an integral of the motion and has the form 

Unlike the axially symmetric bodies studied in the previous section, T $ ,  the 
component of the angular momentum along the spin axis, is not constant. As a result, 
the precession, nutation, and spin rates are no longer constant, either. This makes it 
difficult to visualize the rotational motion of arbitrary rigid bodies. 

Because the motion is torque free, the angular momentum about the center of 
mass is conserved, and it provides three additional integrals of the motion. These 
integrals can be used to obtain relations between the precession, nutation, and spin 
rates. Combining Eqs. [10.2.19] and [10.2.21] gives 

Ilol = I l ( / s inOs in~~  + 6cos$) = HGsinOsin(I, 

z2o2 = 12(4 sin o cos tj - 8 sin $1 = HG sin o cos J, 

13w3 = 13(/cosO + $) = HGcos0 [10.3.3] 

which can be solved for the precession, nutation, and spin rates. The result is 



These represent three first-order differential equations. They are expressions for 
the Euler angles in terms of the integrals of the motion. Because they are in state 
form, they can be integrated once the initial conditions are specified. 

The precession rate is always positive, indicating that even though the preces- 
sion rate of a body may change during motion, the direction of precession does not 
change. The same cannot be said of the nutation and spin rates. These rates can 
oscillate, depending on the initial conditions. Note that we observed this same rela- 
tionship when we conducted a stability analysis in Example 8.6 with regards to the 
stability of rotational motion about different principal axes. 

The nutation rate is dependent on the ratios of the two moments of inertia I I  
and 12. For the same initial conditions the nutation rate will be different depending 
on whether Il is larger than 12. On the other hand, the spin equation is the same for 
general as well as axially symmetric bodies. 

Considering the special case of axisymmetric bodies with I2 = 11, Eqs. [10.3.4] 
reduce to 

which are the same as Eqs. [10.2.23]. The nutation angle is constant for axisymmetric 
bodies, constituting one of the biggest differences between the torque-free motions 
of general and inertially symmetric bodies. 

Observe from this and the previous sections that in order to understand the nature 
of the motion qualitatively, one needs to analyze the motion using variables from 
both the inertial and body-fixed frames. Each of these reference frames provides a 
different kind of insight into the problem. 

An interesting qualitative interpretation of the torque-free rotational motion of arbi- 
trary rigid bodies is due to Poinsot's construction. The approach makes use of the 
energy and angular momentum integrals, as well as the inertia ellipsoid. 

Consider a set of body-fixed coordinates. These coordinates have a general con- 
figuration and they do not have to be principal coordinates. The rotational kinetic 
energy and angular momentum about the center of mass are 

We express the angular velocity vector using the unit vector along which it is directed 
as 

o = we, or { w )  = w{e,) [I  0.4.21 

where e, is the unit vector along the instantaneous axis of rotation. The rotational 
kinetic energy can be expressed as 



where I* = {e,IT [Ic]{e,) is the mass moment of inertia about the instantaneous axis 
of rotation. Note that I* is not constant, and its value changes as the angular velocity 
changes. 

We next compare the expression for the kinetic energy with the inertia ellip- 
soid relations defined in Chapter 6. We defined the quadratic expression {uIT [IcXu), 
where {u)  = [ul u2 u3IT was a vector whose magnitude was 1, { u ) ~ { u )  = 1. We 
saw that the expression 

defined the inertia ellipsoid, a closed quadratic surface (Fig. 6.16). The value of A 
depends on the orientation of the vector {u). When {u)  coincides with the unit vector 
along a principal axis, A becomes the principal moment of inertia corresponding to 
the principal axis. The maximum and minimum moments of inertia are the major 
and minor axes of the ellipsoid of inertia. 

In the expression for kinetic energy in Eq. [10.4.3], {e,) is analogous to {u) in 
Eq. [10.4.4]. Similarly, the term A is analogous to Tmt. It follows that the expression 
for kinetic energy can be described in terms of an ellipsoid of inertia. For a given 
level of kinetic energy, the angular velocity will be smallest about the axis with the 
largest moment of inertia. 

It is useful to express the inertia ellipsoid in terms of normalized quantities. To 
this end, we define a vector p = e,lJI", or e, = pfi. Substituting these expres- 
sions for the kinetic energy yields 

from which we conclude that 

From now on we will use Eq. [10.4.6] to describe the inertia ellipsoid associated 
with the kinetic energy. Note that the inertia ellipsoid is fixed on the body. This 
ellipsoid is illustrated in Fig. 6.17. 

We next explore the relationship between the angular momentum about the cen- 
ter of mass and the inertia ellipsoid. We define the intersection between the inertia 
ellipsoid and the angular velocity vector by P. We denote the unit normal vector to 
the inertia ellipsoid at point P by n, as shown in Fig. 10.5. In Chapter 4, we saw that 
given a surface defined by f ( x ,  y, z )  = 0, we can find the unit vector normal to that 
surface by means of the del operation and by then normalizing the magnitude of the 
found vector. For example, given the equation of a circle of x2 + y2 = R2, the normal 
to the circle is found by Vf = V(x2 + y2 - R2) = dfldxi + df ldyj = 2xi + 2yj.  
Extending this case to the inertia ellipsoid and the column vector representation, we 
can express the normal to the ellipsoid as 



plane 

Figure 10.5 Inertia ellipsoid and the 
invariable plane 

where K is a normalization constant. However, the vectors { w )  and {p }  are parallel, 
and { H G }  = [ IG]{w} .  We can then write 

where K* is yet another constant, showing that the normal to the inertia ellipsoid at 
point P is always parallel to the angular momentum vector. 

Let us analyze the physical interpretation of this result. The vector {p}  lies on 
the instantaneous axis of rotation, so that the rotational motion can be viewed as the 
rolling (without slipping) of the inertia ellipsoid, with the normal to the ellipsoid at 
point P always perpendicular to a plane whose orientation is fixed. This plane is 
called the invariable plane. While this plane can translate, it cannot rotate. 

As discussed before, the point of tangency (contact) between the inertia ellip- 
soid and the invariable plane is on the instantaneous axis of rotation. As the angular 
velocity changes, so does the orientation of the inertia ellipsoid and of the point of 
contact with the invariable plane. The loci of point P, that is, of the tangent points 
on the ellipsoid as it rolls on the invariable plane, are called polhodes, and the loci 
of the tangent points on the invariable plane are called herpolhodes. The polhodes 
are closed curves because the kinetic energy is constant. 

It is of interest to look at the component of p along the fixed direction of the 
angular momentum. From Fig. 10.5, denoting this distance by p~  we can write 

where n is the unit vector along the direction of the angular momentum, n = H G / H G .  
Noting that the vector p can be written as p = w l ( w f i ) ,  and that 2Tmt = I * w ~ ,  



we obtain 

2Trot - 2Tr0t = constant 110.4. lo] 

so that the perpendicular distance from the center of mass to the invariable plane 
is constant. Equation [10.4.10] is yet another integral of the motion and, as other 
integrals of the motion, it depends on the initial conditions with which the body is 
released. 

Up to now, the orientation of the body-fixed coordinate axes was not specified. 
Without loss of generality, and in order to simplify the derivations, we now consider 
the body axes to be the principal axes. The inertia matrix is now diagonal, and 

and, using the relation { w )  = wJI* (p) ,  or oi = o p i f i  (i = 1,2,3), we can write 

which can be rearranged as 

This equation defines yet another closed quadratic surface, that is, another ellipsoid 
of inertia that is attached to the body. Comparing Eqs. [10.4.10] and [10.4.13], we 
conclude that 

We next relate the motion of the ellipsoid defined in Eq. [10.4.13] to the inertia 
ellipsoid defined in Eq. [10.4.6]. The two ellipsoids are in contact with each other at 
point P, leading to the conclusion that as the body rotates the intersection of the two 
ellipsoids describes the polhodes. We can construct the polhode curves by solving 
Eqs. [10.4.6] and [10.4.13] simultaneously. Note that if we consider Eq. [10.4.6] 
as describing a closed surface and Eq. [10.4.13] as a constraint relation, the result 
becomes a set of curves on the closed surface. We get different curves for different 
starting points. 

One can simplify the construction and interpretation of the polhode curves by 
looking at their projections along the principal axes. To this end, we define the vari- 
able 



whose value depends on the initial conditions. It follows from the above discussion 
that I f i ,  s D 5 I,, and that when D = Ii ( i  = 1,2,3) this corresponds to an 
angular motion about the axis bi. Without loss of generality, we select our body axes 
bl b2b3 such that I I  < I2 < 13. This implies that the inertia ellipsoid is longest in the 
bl direction. 

We next find the projections of the polhode curves on the bl b2, blb3,  and b2b3 
planes. Recall that the polhode equations are 

Multiplying the first of Eqs. [10.4.16] by 13 and subtracting the second from it yields 
the projections of the curves on the blb2 plane as 

In a similar fashion, we obtain the polhode equations on the b2b3 and bl b3 planes as 

b2b3 plane: I2(11 - 1 2 ) ~ ;  + I3(11 - 1 3 ) ~ ;  = 11 - D [10.4.181 

bl b3 plane: Id12 - 1 3 ) ~ ;  + I1(I2 - I I )P :  = 12 - D [I  0.4.1 91 

All the coefficients of Eqs. [10.4.17] and [10.4.18] have the same sign, indi- 
cating that these two equations represent ellipses for all values of D. By contrast, 
the coefficients on the left side of Eq. [10.4.19] have differing signs, thus describ- 
ing hyperbolas. Furthermore, the sign of I2 - D depends on the problem. The three 
projections are given in Figs. 10.6. The special case of D = I2 has an interesting 
interpretation. The projection on the blb3 plane is in the form of straight lines that 
separate the hyperbolas. In analogy from stability theory, these lines are called sep- 
aratrices (plural of separatrix), separating different regions of the motion that have 
different properties. 

From the information above, we can construct the polhode curves in three di- 
mensions. For a rigid body with I I  < I2 < 13, the curves are given in Fig. 10.7. 
Note that when D < 12, the polhode curves are closed around the bl axis, and when 

(4 (b)  

Figun 10.6 Polhode proiections. (a) bl b and bh planes, (b) bl h plane. 



~igure 10.7 Figure 10.8 

D > 12, the polhode curves are closed around the b3 axis. The separatrices. which 
are constructed for D = 12, give the limiting cases. As D approaches I l  or 13, the 
polhode curves become smaller in size. The locus of the line joining the center of 
mass and the polhode curves defines the body cones when viewed from a body-fixed 
reference frame. However, unlike the symmetric body considered in Section 10.2, 
the cones have no symmetry. 

We can analyze the motion of the body by examining the polhode curves. Con- 
sider the case where we give a large angular velocity in one direction and much 
smaller angular velocities in the other directions. According to the stability results 
in Example 8.6, initial motion that is predominantly about the largest or smallest 
axes of inertia will be stable, and initial motion about the intermediate axis of iner- 
tia (b2 in our case) will be unstable. In this latter case, angular velocities about the 
other axes will grow with time, and all three angular velocities will become compa- 
rable in magnitude. We can demonstrate this using the polhode curves. The angular 
velocity of the body is along the line connecting the center of mass to the polhode 
curves. When the initial angular velocity is along the bl or b3 axes, the value of D 
is slightly larger than I l  or slightly smaller than 13, respectively. In both cases, the 
polhode curves are small. Hence, the motion retains its characteristics. By contrast, 
if the bulk of the initial angular velocity is along the b2 axis, then D = I2 and the 
polhode curves are close to the separatrices. Hence, the polhode curves are large, 
which means that the magnitude and direction of the angular velocity varies a lot. 
This, in essence, is the explanation for the wobbly motion and also why it is difficult 
to visualize the motion of an arbitrary body. 

Now consider the special case of axisymmetric bodies. Without loss of general- 
ity, we set I I  = I2 and I I  < 13. The inertia and momentum ellipsoids are described 
by 

11(p: + p$) + 1 3 ~ ;  = 1  pi + pi) + 1 3 2 ~ :  = D [10.4.20] 

so that both ellipsoids are symmetric about the b3 axis. It follows that the intersec- 
tion of the ellipsoids defines circles about the b3 axis, with the radius of the circles 
determined by the value of D. Indeed, introducing I l  = I2 into Eq. [10.4.17] 



In this case D varies between I ,  and I3 and D = I2 = I l  no longer represents 
a separatrix. The body cone generated by the locus of the line joining the center 
of mass and the polhode curve is axisyrnmetric. To show that these body cones are 
indeed the same as the cones discussed in Section 10.2, consider Fig. 10.8, which 
shows the ellipsoid for a given value of D. This figure can also be considered as the 
projection of the ellipsoid to the plane generated by the intersection of bs and a3. To 
show that the angles q and P (from the definition of body cone) are the same, we 
need to demonstrate that Eq. [10.2.25] holds, or 

The proof is left as an exercise. The projections of the polhode curves onto the 
b2b3 or blb3 planes represent straight lines and they do not have a special physical 
interpretation. One can show that the cone described by the points G, P, and C is 
the space cone. 

In the previous sections we considered moment-free bodies. We now switch our at- 
tention to bodies subjected to external moments. An interesting case is the motion of 
a spinning top, such as the one shown in Fig. 10.9. A top is basically described as a 
body that possesses inertial symmetry and that terminates at a sharp point along the 
symmetry axis. This point is called an apex or vertex. Tops are designed to be ax- 
isymmetric, as such a construction increases stability and minimizes the friction due 
to the air mass around the top. The motion of the top can be viewed as the balancing 
of the gravitational moment about the apex by the gyroscopic moment. The spin of 
the top gives it its stability. 

We assume that the apex is in continuous contact with a plane in a way that it has 
no translation. (The translational motion of the apex, commonly referred to as drift, 
is due to the initial translational motion given to the top as well as to the unevenness 
and roughness of the plane on which the top moves.) 

The equations of motion for a spinning top were derived in Example 8.10 using 
a 3-1-3 Euler angle transformation. Here, we will analyze the integrals of the motion 

Figure 10.9 



and qualitatively assess the behavior of the top. The top being an axisyrnrnetric body, 
we can write the kinetic energy of the top as 

where the components of the mass moment of inertia are about point 0. Introducing 
the values for the angular velocities for a 3-1-3 transformation, we obtain for the 
kinetic energy 

The potential energy is 

The only other forces acting on the spinning top are those at the point of contact. 
They do no work, as they are being applied to a fixed point. Note that the moment 
about the apex 0 is due to the weight of the top. 

The integrals of motion are the total energy and generalized momenta associ- 
ated with precession and spin. The latter two integrals are recognized by noting that 
neither 4 nor + are present in the Lagrangian. From Example 8.10, these integrals 
of the motion are 

J T  
v,p = --; = 11 4 sin2 8 + 13(4 cos 8 + 4)  cos 8 = constant 

J4 
dT 

v, = , = 13(+cos8 + +) = I3o3 = constant [ 1 0.5.41 
J . 

These integrals of the motion represent the components of the angular momen- 
tum along the a3 and fi axes. The equations of motion associated with the preces- 
sion and spin can be obtained by differentiating the above two equations. Using 
Lagrange's equations, the equation of motion for 8 is 

I1 8 - (II - 13)b2 sin 8 cos 8 + 1344 sin 8 - mgL sin 8 = 0 [I 0.1.51 

From Eqs. [10.5.4] one can solve for the precession and spin rates as 

and substitute into Eq. [10.5.5]. Once the nutation angle is solved for, the precession 
and spin rates can be calculated using Eqs. [10.5.6] and the initial conditions. 

Another way of deriving the equation of motion for 8 is to make use of Routh's 
method for ignorable coordinates, as 4 and + are such coordinates. Defining the 
Routhian as 



and introducing the expressions for 4 and into it, we obtain 

The Routhian can now be treated as the Lagrangian of a single degree of freedom 
natural system with kinetic and potential energies T' and V' of the form 

T1 = - I  , a 2  v r =  ( 7 ~ 4  - 7~~ cos 8)2 n2 

2 
+ + mgL cos 8 [1O.S.9] 

21, sin2 6 213 

Obviously, the energy integral is E = T' + V'. To analyze the energy integral 
in more detail, we introduce the constant quantities 

and the variable u  = cos 6 .  Note that a and b have the units of angular velocity and 
that all of the above quantities are calculated from the initial conditions. Also, u  is 
a nondimensional quantity describing the elevation of a point on the symmetry axis 
that is at a distance of unity from the apex. The energy integral can thus be written 
as a cubic function 

We will study the characteristics of the motion by qualitatively analyzing the 
function f  (u) .  Other methods of analysis include numerical integration of Eq. 
[10.5.11] or of Eq. [10.5.5], as well as a separation of variables. The latter leads to 
an elliptic integral for time in terms of u. 

A very interesting special case is when z i  = 0, as it corresponds to zero nutation 
rate. The values of u  that lead to a zero nutation rate range can be obtained by solving 
f ( u )  = 0. To this end, we consider the characteristics of f  (u ) .  Because u  is defined 
as u  = cos 6 ,  we are interested in the roots of f  ( u )  in the range - 1 5 u 5 1. 
Further, we are interested in the values of u  that are larger than zero, as a negative 
value for u implies that the top is spinning below the platform it is on. We make the 
following observations regarding the roots of f (u ) :  

1. Both f (1) and f (- 1) are less than zero. 
2. As u  becomes larger, f  ( u )  .= /3u3 > 0, since P > 0. 

Hence, f ( u )  has a root for u  > 1 and f  ( u )  < 0 for u  = - 1. This implies 
that in the range of - 1 5 u  5 1 there either are no roots, or there are two roots. 
We discount the possibility that f ( u )  has no roots in this range, as this would 
imply that there are no positive values for the nutation angle. We thus consider 
the case of two roots for f ( u )  in the range -1 5 u  5 1. Fig. 10.10 shows a 
typical plot of f  (u ) .  The two roots, denoted by ul and u2, are in general both 
positive or both negative. Let us consider the case when they are both positive, 
corresponding to an upright top, and order them without any loss of generality as 
ul 5 u2. This way, u2 corresponds to a smaller nutation angle. The physical range 



of the motion of the top is then between ul and u2. The motion can be visual- 
ized as the change in the nutation angle from 82 = cos-'(uz), corresponding to 
the highest elevation of the top, to 8' = cos-'(ul), corresponding to the lowest 
elevation. 

The motion of a point on the symmetry axis of the top at a distance of unity from 
the apex can be viewed as tracing a curve on the unit sphere, as in Fig. 10.11. The 
circles on the sphere that correspond to the locus of all points with 8 = cos- ' (ul) and 
cos-'(u2) are called the bounding circles, and the f3 axis basically moves between 
these circles. The precession rate, from Eq. [10.5.6] can be shown to be 

so that the precession rate depends on the value of a - bu. Let us introduce the 
quantity uo, based on the initial conditions, and defined as 

+ cos O0 [lO.S.131 

Figure 1 0.1 1 Bounding circles 



Figurn 10.1 2 (a) Unidirectional and (b) looping precession 

For the general case of motion, uo # cos eO. It turns out that characteristics of 
the motion of the top depend on the relationship of uo to ul and u2. To find uo one 
begins with the initial conditions $o, 00, and rlro, and the property that go = 0. The 
generalized momenta ~ 4 ,  .rr+, and a and b are calculated using Eqs. [10.5.10] and 
[10.5.4]. The results are substituted into Eq. [10.5.13] to find uo. 

We identify the following different types of motion based on the initial condi- 
tions: 

Unidirectional Precession In this case, uo > u2 (or uo < ul). This case can 
also be described as having the same precession direction at the bounding circles, so 
that a > bu2 (or a < bul). The precession rate is not zero at both bounding circles. 
This kind of motion can be initiated by releasing a top from its highest elevation point 
u = uz, with zero nutation rate and a precession rate high enough to make uo greater 
than 2.42. After the top is released, it begins to fall as a result of the action of gravity. 
In the process, the top attains precessional motion. At u = ul, when the maximum 
kinetic energy is reached, the nutation rate changes sign and the top begins to rise 
until u = 4 ,  and the process repeats itself. The resulting motion is a periodic motion 
of the nutation angle, like a sinusoid, as shown in Fig. 10.12a. 

Looping Precession Here, ul < uo < u2, and the direction of precession is 
different at the bounding circles (Fig. 10.12b). At the bounding circles, the nuta- 
tion rate becomes zero. At the top bounding circle, 8 = 82, the precession rate 
is negative; when 0 = 01, the precession rate is positive. When u becomes equal 
to uo the precession rate becomes zero, which explains the looping nature of the 
motion of the symmetry axis. Such motion can be initiated by releasing the top at 
8 = 62, with a small precession rate and zero nutation rate so as to satisfy ul < uo < 
u2. The top begins with its initial precession, and when the point conresponding to 
8 = cos- ' (alb) = cos-' uo is reached, the precession rate changes sign. The motion 
continues in this fashion until the nutation angle reaches the lower bounding circle 
u = ul. At that point, the elevation of the symmetry axis begins to increase. When 
u = uo is reached, the precession again changes sign. Fig. 10.13 gives a typical plot 
of the precession rate 6. In essence, the precession rate oscillates between its bounds 
at O1 and 82, changing sign at 8 = cos-'(uo). 



Figure 1 0.1 3 Figure 1 0.14 

Cuspidal (or Cuspidial) Motion This is the limiting case between the two 
other types of precession. Here, uo = u2, so that a = bu2. From Eq. [10.5.12] we 
observe that the precession rate becomes zero at u = u2 and is greater than zero at all 
other times. This type of motion can be initiated by releasing the top at u = 4, with 
no initial precessional or nutational motion. The motion characteristics are similar to 
those in unidirectional precession, with the difference being a zero precession rate 
at u = u2. The top is released at u = u2 with zero precession. As the top begins to 
precess, its symmetry axis begins to fall, resulting in an increase of kinetic energy 
and reduction in potential energy. At u = ul, the top begins to rise, and when it 
reaches u = u2 the precession rate becomes zero. The symmetry axis traces cusps, 
as shown in Fig. 10.14. One cannot have cuspidal motion if the top is released with 
uo = ul, because the tendency of the top is to fall. 

To obtain more insight into the nature of the motion of tops, we analyze Eq. 
[10.5.11] further. Recall that all of the above results were obtained for f (u) = u = 
0, which corresponds to zero nutation rate as an initial condition. Because cuspidal 
motion represents a limiting case, consider an initial condition corresponding to this 
type of motion. Hence, we have an initial spin rate of $0 and zero initial precession, 
with an initial nutation angle of 80 and no initial nutation rate. In this special case, uo 
and 80 are related by Eq. [10.5.13] and that uo = cos 80. It follows from Eqs. [10.5.4] 
that T+ = 131/1~ = Z3w3, and 0 3  is constant. We also have as initial conditions 

which, when substituted into Eq. [10.5.11] and f (u) set to zero, yields a = puo. 
Introduction of this into Eq. [10.5.11] yields 

f (u) = (u0 - u)[P(l - u2) - b2(u0 - u)] [I O.S.IS] 

so that one root of f (u), denoted by 142, is u2 = uo. The remaining equation to solve 
for the other roots can be written as 

where 



From a physical perspective, % denotes the ratio of kinetic energy to the gravi- 
tational potential energy, multiplied by the ratio of the mass moments of inertia. The 
kinetic energy is associated with the gyroscopic moment and the potential energy is 
due to gravity. The other two roots are 

Of these roots, ug is greater than one and without physical significance. To show 
this, recall that the magnitude of uo is smaller than 1, so that ,/g2 - 2~0% + 1 > 
,/- = 1% - 11. By the same argument, one can show that lul 1 < 1. If the 
top is given a fast spin as an initial condition, then % >> 1, and ul can be approxi- 
mated using a two-term Taylor series expansion as 

which gives an indication of how the lower bounding circle varies as a function of 
%. Because the difference between ul and uo is not large, one can introduce the 
perturbation parameter E = uo - u to Eq. [10.5.11] and obtain 

Neglecting terms in E that are of higher order than 2, and noting that b2 >> 2p uo for 
fast spin, this equation can be simplified as 

This equation can be solved by converting it into an elliptic integral by taking the 
square roots of both sides and separating variables. A more physically meaningful 
solution can be obtained by differentiating it with respect to time and dividing the 
resulting equation by k ,  which yields 

subject to the initial conditions ~ ( 0 )  = 0, k(0) = 0. This basically is the equation of 
a simple sinusoid subjected to a constant excitation. The solution can be shown to be 

1 - u; 
cos bt) = - 

4% 
(1 - cos bt) [I O.S.231 

Differentiating the above equation and recalling the definition of E ,  we obtain the 
rate of change of u as 

h =  -6sino = - 
b(l - ui) 

4% 
sin bt 

and, because the value of the angle 8 does not change too much during the motion, its 

u2. Hence, an approximate sine can be approximated as sine = ,/- = ,/c 



expression for 8, can be written as 

bJ1- u$ b sin 00 
b(t) = 

4% 
sin bt = - 

4% 
sin bt [I O.S.211 

In a similar fashion, we approximate the precession rate. Introducing Eqs. 
[10.5.23] into Eq. [10.5.12] and using the approximation (1 - u2) = (1 - r c i ) ,  we 
obtain for the precession rate 

b 
&t) = -(1 - cos bt) 

4% [I O.S.261 

The motion can be interpreted as follows. For cuspidal motion the precession rate 
oscillates between 4 = 0 and 4 = b/2%, so that its average value is 

The nutation rate oscillates like a sinusoidal of amplitude b sin 00/4%. The fre- 
quency of oscillation is the same for both nutation and precession. At the point of 
zero nutation, sin bt = 0 and cos bt = 2 1, so that the precession rate is either zero 
(which corresponds to the highest elevation of the top) or at its maximum value 
(which corresponds to the lowest elevation). 

Steady Precession As the initial spin rate of the top is increased, the amplitudes 
of the precession and nutation become smaller, while the frequency of oscillation b 
becomes larger. As a result, ul and u2 become very close to each other, the nutation 
and the oscillatory part of the precession become smaller and more difficult to ob- 
serve visually, which gives the appearance that the top is precessing uniformly with 
no variation in the nutation angle. This case is known as steady precession. 

To analyze steady precession in more detail, we set d = 0 in the equation of 
motion for the nutation angle. We rearrange Eq. [10.5.5] as a quadratic function in 
terms of 4 as 

We solve this equation for 4 to yield 

1303 41, mgL cos 0 41.2 = - + --- [lO.S.29] 
211 cos 0 - 211 cos 0 I+; 

In order to have steady precession, these solutions must be real, which implies that 
the radical in the above equation must be positive. From this we obtain the critical 
angular velocity requirement for steady precession as 

411 mgL cos 0 
0; > 

132 



Equation [10.5.30] describes the minimum angular velocity that must be im- 
parted in the b3 direction for steady precession. For large values of the spin, one can 
treat the term 411mgL c o s O / ( ~ ~ w ~ ) ~  as small and approximate the precession rates 
in Eq. [10.5.29] as 

The two roots correspond to fast and slow precession. The smaller root, &, cor- 
responds to the slow precession rate; it is the same as the average precession rate 
derived for cuspidal motion in Eq. [10.5.27]. The larger root, $1, corresponds to fast 
precession; it is usually not attainable, because of the very high spin rate required 
to achieve this motion. Actually, there is an interesting interpretation of the fast pre- 
cession rate. Expressing it as 

we can relate the precession and spin rates as 

This equation is the same as Eq. [10.2.24], which we derived for torque-free motion. 
The spin in this case is so high that the moment exerted on the top by gravity becomes 
insignificant. 

A special case of steady precession is when the nutation angle 8 is zero, which 
implies that the top is rotating in the upright position. To an observer the top ap- 
pears motionless (the axis of the top and F frame are not moving) unless there are 
distinguishing marks on it. This type of motion is known as the sleeping top. The 
precession and spin rates are added linearly, w3 = 4 + 4, and from Eq. [10.5.30] 
the minimum value of the angular velocity required becomes 

To have the sleeping top motion, the top must be released in an exactly up- 
right position with a minimum rotation rate given in the above equation. This initial 
condition, of course, is hard to achieve. Also, there always is some amount of 
friction at the apex, which slows the top. Most tops, when released almost ver- 
tically and with a high spin, begin their motion as steady precession and with a 
very small nutation angle. As the effects of friction begin to build up over time, 
the spin rate decreases below the critical speed and nutational motion is observed. 
As the spin rate decreases further, the nutation angle gets bigger, until the top 
hits the ground. Table 10.1 summarizes the types of motion that can be achieved 
depending on the initial conditions. Here, we denote by O0 the initial angle with 
which the top is released (note that uo = cos O0 for this special case), and recog- 
nize from Eq. [10.5.17] that the ratio of the initial angular velocity w3 = to 

- 
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Tabla 10.1 Summary of top motions 

Initial Precession Rate & Initial Condition u0 Initial Spin Rate &o Type of Motion 

0 1 $0 = 0 3  Sleeping top 

0 Uo <  1,uo = ul = u~ *o = 0 3  Steady precession 

0 % <  I , &  = u2 $0 = 0 3  Cuspidal motion 
# 0 4 > u2 0 1 . 4  < u1 Unidirectional precession 

Z O  UI < uo < uz Looping precession 

can be expressed as 

Be aware that the values of ul and u2 are dependent on the initial precession 
and spin rates, as well as on the nutation angle. When deciding on the type of initial 
condition to impart to the top, one has to conduct an analysis relating ul and u2 to 
the initial values of the precession nutation and spin. 

Up to now we hardly considered the conditions under which a top will no longer 
spin and fall to the ground. Confining our analysis to tops on horizontal platforms 
without elevated pivots, the instant the side of the top makes contact with the plat- 
form is when the nutation angle 0 plus the half angle of the top becomes equal to 90 
degrees (Fig. 10.15). Once this value of the nutation angle is found, the correspond- 
ing ul is calculated and the remaining conditions are then determined. A simple 
special case is cuspidal motion and setting 8 = 90°, so that u, = 0. Setting ul = 0 
in Eq. [10.5.18] and solving for uo we obtain 

1 211mgL 
Uo = cos oo = - = --- 

2% I;& 
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which can be solved for the initial spin rate as 

Equation [10.5.37] gives some interesting results. If the top is released from 
the upright position, cos O0 = 1, the minimum speed required to prevent the top 

from falling down is 4- = ocrlb. Any initial spin between ocrl& and 
wcr results in a precessional motion. Also, as the initial nutation angle increases, 
the initial angular velocity required to keep the top spinning increases, an expected 
result. 

In Section 7.9 we explained the kinematics of a rolling disk, and in Chapters 8 and 
9 we derived the equations of motion for the case of no slip, using a variety of ap- 
proaches. Here, we qualitatively analyze the equations of motion for the case of no 
slip and investigate the range of validity of the no-slip assumption. As in the spinning 
top discussion, the general motion of a disk can be described as the contest between 
the moment due to gravity and the gyroscopic moment. Intuitively, we know that a 
disk rolled with a higher initial speed will fall down later than a disk rolled with a 
lower initial speed. 

The disk configuration is shown in Fig. 10.16. Because of the no-slip assump- 
tion, the friction force at the contact point does no work, so there are no forces that are 
nonconservative. We hence conclude that energy is conserved. With regards to the 
generalized momenta, recall the kinetic energy expression from Eq. [el in Example 
8.13 as 

Figure 1 0.1 6 



Substituting the values of the velocity components of the center of mass x and Y 
from Eqs. [b] and [c] in Example 8.13 

x = R8 sin 4 sin 6 - R(& cos 6 + 6 )  cos 4 
Y = - ~6 cos 4 sin 6 - R(& cos 6 + 6 )  sin 4 [ l  0.6.21 

we obtain for the kinetic energy 

Even though the kinetic energy does not have contributions from 4 and +, the 
generalized momenta associated with these generalized coordinates are not constant. 
This is because we are dealing with a constrained system, and Lagrange multipliers 
are present in the formulation. 

The equations of motion were derived to be 

(I3  + mR2)(4 cos 0 - &I$ sin 0 + 4 )  - mR2&8 sin 8 = 0 [10.6.4] 

(Il + mR2)B + (I3 + mR2)4 sin 6(& cos 6 + 4)  
- 1 1 ~ 2 s i n 0 c o s ~ + m g R c o s 6  = 0 [10.6.1] 

I1$sin0 + 211&8co~6 - 138(4cos0 + 4)  = 0 [10.6.6] 

These are considerably more complicated than the equations for the spinning 
top. Consequently, it is more difficult to conduct a qualitative analysis. One special 
case is steady motion, with a constant nutation angle 6. To analyze the characteristics 
of this motion, we remove all derivatives of 6 from Eqs. [10.6.4]-[10.6.6], with the 
result 

(I3 + ~ R ~ ) ( $ c o s  6 + 4 )  = 0 [10.6.7] 

(I3 + mR2)& sin 6(& cos 6 + 6 )  - sin 6 cos 6 + mgR cos 6 = 0 [ l  0.6.81 

From Eq. [10.6.9] we conclude that $ is zero, corresponding to a constant pre- 
cession rate &. This is to be expected, as zero nutation results in steady precession in 
axisyrnrnetric bodies. Introducing this to Eq. [10.6.7], we conclude that the spin rate 
4 is also constant. We calculated the velocity of the center of mass for the general 
case in Section 7.9 as 

For steady precession 8 = 0, and because the precession and spin rates are constant, 
one concludes that the velocity of the center of mass has constant amplitude. The 
center of the disk follows a circular path. The radius of this path, denoted by p, is 
basically the speed of the center of mass v divided by the precession rate 



in which 

v = - R(& cos 6 + (CI) [ l O . 6 . 1 2 ]  

is the constant speed of the center of mass. Combining Eqs. [10.6.11] and [10.6.12], 
we can express the spin rate in terms of the precession rate as 

The motion can be described in terms of two parameters, the precession and spin 
rates, or in terms of v and one of p or 6 .  We explore the relationship between v and 
these parameters by introducing Eqs. [lO.6.ll]  and [lO.6.12] into Eq. [10.6.8], with 
the result 

which can be rearranged and solved for v2 as 

v2 = 
m g ~ 2 p 2  cot 6 

( I3  + mR2)p + I 1  Rcos 6 

For a thin disk, the mass moments of inertia can be written as I3 = mK2, I1 = 

mu2/2, where u is the radius of gyration, so that the above equation can be expressed 
as 

v2 = 2 g ~ 2 p 2  cot 8 
2(K2 + R2)p + K ~ R  cos 6 

For a uniformly flat disk, K* = R2/2. Hence, given an initial speed of v and ini- 
tial nutation angle 6 ,  with no nutation rate, one can determine the radius of curvature 
for steady precession from Eq. [10.6.11]. Of course, this relationship holds as long 
as the no-slip assumption is not violated. 

A special case of Eq. [10.6.16] is when the disk is released in the upright po- 
sition. The minimum velocity for this case can be obtained by making appropriate 
substitutions in Eq. [10.6.16] (8 approaches 90 degrees and p approaches 03). An- 
other way is to conduct a perturbation analysis. We expand the nutation angle and 
precession and spin rates about their nominal values by 

in which e is a small parameter. This is tantamount to assuming that the disk, rolling 
with steady precession, is acted upon by an impulsive force and as a result the pre- 
cession, nutation, and spin values have slightly changed. Introducing these perturbed 
values into the equations of motion, Eqs. [10.6.4]-[10.6.6], and ignoring terms that 
are quadratic or higher order in e ,  one gets a set of three linear equations in terms 
of 8,, 41, and ( C I l .  The eigenvalues of these equations are then used to ascertain the 
conditions under which steady precession is possible. 



For the special case of upright release there is no precession, 60 = 0, and the 
nutation angle is 80 = 1~12. We have 

Introducing these values into the equations of motion and neglecting higher-order 
terms, the linearized equations can be shown to be 

Equation [lO.6.19] indicates that $1 is zero, showing, as expected, the constancy 
of the spin rate. Integrating Eq. [10.6.21], we obtain 

which, when introduced into Eq. [10.6.20], yields 

In order for the above equation to have a nondivergent solution, the coefficient 
of 81 must be positive. For this, the initial spin rate must satisfy the condition 

A disk rolled with an initial angular velocity $0 larger than the value given above 
will continue rolling upright. For a disk to roll in an exactly upright position it has to 
be released exactly upright. Otherwise, the disk will attain some precessional motion, 
as evidenced by Eq. [10.6.16]. In reality, because of friction and air resistance a disk 
rolled upright initially will eventually begin to tilt and precess. As this happens, the 
center of the disk no longer follows a circular path, but a path like a spiral. Ultimately 
either the no-slip condition is violated or the angular velocity of the disk becomes 
too small to sustain rolling. 

To analyze the no-slip assumption in more detail, it is useful to look at the mo- 
tion using the X'Y'Z' frame, which is obtained after the first Euler angle rotation. 
Fig. 10.17 shows the free-body diagram for this case. The normal force is in the Z 
direction and the friction forces are shown along the X' and Y' axes. We see that if 
the disk slips, the slip can take place in two forms: One type of slip is along the X' 
direction, which is the line of nodes and basically denotes the tangent to the path of 
the point C'. Point C' is on the F frame and coincides with the contact point at all 
times. Recall from Eq. [f] in Example 9.5 that the velocity of C' is calculated as 



Hence, for slip that occurs along the line of nodes, the disk basically spins in place. 
We refer to this type of slip as spin slip. An example is someone moving a car from 
rest by depressing the accelerator fully or trying to move a car on an icy surface. If 
the friction between the car and road is not sufficient to prevent slip, the tires spin 
in place. Intuitively, we expect that in order for spin slip to occur, a large force or 
moment must be applied to the disk. 

The second type of slip is along the Y' axis, and is very similar to the sliding of a 
body on a surface. We refer to this type of slip as sliding slip, and expect intuitively 
that for a freely rolling disk, if slipping occurs it will be of this type. 

To examine whether slipping occurs or not, we write the translational equations 
of motion of a disk along the X'Y'Z' axes and equate them to the external forces 

 ma^ = F = -FII1 + F2Jr + (N - mg)K [10.6.26] 

in which N is the normal force and the expression for a~ is given in Eq. 17.9.261. 
The relationship between the unit vectors in the F frame ( x y z )  and the X'Y'Z' frame 
is given by 

i = I' j = cos OJ' + sin OK' k = - sin0Jf + cos OK' [ I  0.6.271 

so, introducing Eqs. [10.6.27] into Eq. [7.9.26], the components of Eq. 110.6.261 
become 

The no-slip condition is given by 



where p is the coefficient of friction. After finding the values of F1 and F2, one 
should check if Eq. [10.6.29] holds. If analyzing the motion of the disk by numerical 
simulation, one should check Eq. [10.6.29] at every time step. 

Let us examine the physical significance of Eqs. [10.6.28]. The Z component 
depends only on the change in nutation. This is logical, as only the change of ele- 
vation of the disk should affect the value of the normal force. The first term for F1 
describes the rate of change of w,, the angular velocity in the z direction. In the ab- 
sence of large torques applied to the disk, this change will be small. The second term 
for F1 is the product of the precession rate multiplied by the nutation rate, so that 
if the nutation rate is small, this term is small also. We conclude that unless large 
torques are applied along the z axis, Ft is usually a small quantity, corroborating the 
earlier intuitive comments regarding spin slip. By contrast, the first term for F2 has 
the precession rate multiplied by the spin rate, a much larger term than the preces- 
sion rate multiplied by the nutation rate. Hence, in the absence of large torques about 
the z axis, the friction force in the Y' direction uses up most of the available friction 
force. 

An interesting application of these results is for steady motion. In this case, the 
nutation angle and precession and spin rates are constant. Using Eqs. [10.6.11] and 
[10.6.12], Eqs. [10.6.28] reduce to 

Hence, there is no spin slip in this case and the friction force is required to only 
prevent sliding slip. The normal force is equal to the gravitational force. This is to 
be expected, because as the elevation of the disk does not change, the normal force 
remains the same. The last term in Eq. [10.6.30] is the same expression as the cen- 
tripetal acceleration for constant speed. Indeed, examining Fig. 10.17 and consider- 
ing steady precession we see that the X' axis corresponds to the tangential direction 
and the Y' axis to the normal direction. The binormal direction is the vertical. 

The above results can be visualized by taking a coin and rolling it with different 
initial values of 0 and different initial speeds of the center of the coin. Above a certain 
elevation of the coin, if the initial speed is large enough, the coin will roll. Below 
a certain elevation or if the initial speed is not large enough, the coin will slip and, 
depending on the initial speed, will exhibit a rolling motion with a very small radius 
of curvature or just fall flat down. 

Example I A disk of radius 12 cm is released with a speed of its center of mass of 5 rn/s and at a nutation 
10.2 angle 80 = 15" and zero nutation rate. Determine the radius of curvature tracked by the center 

of the disk and the minimum value of the coefficient of friction required to prevent slipping. 

Solution 
We assume the disk to be perfectly thin, so that the radius of gyration is related to the radius 
by K~ = R2/2, and Eq. [lO.6.16] becomes 

"2 = 
4gp2 cote 

6 p  + R cos 8 



which can be written as a quadratic expression in terms of the radius of curvature as 

Introducing the given information, we obtain 

4g cot 0 = 146.4 m/s2 6v2 = 150 m2/s2 RV' cos 0 = 2.898 m3/s2 [el 

We solve the quadratic equation for p. The result is a positive and negative root. We discard 
the negative root, as it has no physical significance. The positive root is p = 1.044 m. 

Because we have steady precession, the friction force is F1 = 0, so that the total friction 
force is F2. Also, the normal force is equal to the force of gravity. Introducing the values for 
v and p into the force balance, we obtain for the limiting case of friction 

We can solve this equation for the friction coefficient p to prevent slipping 

which indeed is a very high friction coefficient. This is to be expected, because the initial 
nutation angle was very low. To try a more realistic case, we set Oo = 60°, which gives 

4g cot 0 = 22.65 m/s2 6v2 = 150 m2/s2 Rv2 cos 0 = 1.5 m3/s2 [fl 

and solve for p, with the result p = 6.633 m. It follows that the minimum coefficient of 
friction needed to sustain the no-slip condition is 

An examination of Eqs. [c] and [f] shows that for this choice of disk radius (12 cm, 
indicating a small disk) and for other problems when R/p is small, the Rv2 cos 0 term will 
always be much smaller than the other terms. For such a case only, we can drop the last term 
in Eq. [b] and approximate the radius of curvature as 

3v2 tan 0 
P=- 

2g 
Chl 

so that the friction coefficient necessary to prevent slippage becomes 

For example, when 0 = IS0, Eq. [i] gives the approximate value for p = 2.49, and 
when 0 = 60°, p = 0.38, which match the results above very closely. This indicates that 
for a small disk, the friction coefficient required to sustain no slip is dependent primarily on 
the nutation angle with which the disk is released. For a larger disk, the speed becomes more 
important as the factor to sustain the no-slip condition. 

If we compare the roll of a coin to the free roll of an automobile tire (not attached to the 
automobile), we have two important distinctions. The radius of the coin is much smaller and 
the coefficient of friction between the tire and any platform is higher than that of the coin 
and the platform. Hence, given some initial motion, the tire keeps rolling for much longer 
distances, a fact known to people who have chased a tire or watched one roll off a racing car. 
The higher coefficient of friction and the size of the tire keeps the tire rolling more. 



Gyroscopes have traditionally been integral parts of vehicles as navigation systems 
and as devices that provide guidance by measuring directions and angular velocities. 
A gyroscope basically consists of a rotor spinning rapidly about its symmetry axis. 
The symmetry axis is allowed to rotate through a system of gimbals. When there are 
two gimbals, the outer gimbal permits precessional motion and the inner gimbal, to 
which the symmetry axis is attached, permits the nutational motion. In essence, the 
F frame is attached to the inner gimbal. The location of the rotor on the symmetry 
axis, the number, weight, and inertia properties of the gimbals, as well as weights, 
springs, and dashpots attached to the gimbals determine the nature of the motion. 

As inertial guidance systems for vehicles, gyroscopes provide an inertial refer- 
ence frame that moves with the vehicle. A gyrocompass is designed such that its 
precession rate is the same as that of the earth, so that it always points in the same 
direction. Gyroscopes that measure angular velocities are usually designed as single- 
axis gyroscopes. 

Gyroscopes used for navigation are manufactured to very high precision stan- 
dards. The analysis here can be considered as a gross simplification. From a histor- 
ical standpoint, towards the end of the 20th century the importance of the classical 
gyroscopes-those with rotors and gimbals-somewhat diminished. This is because 
of the development of satellite-based navigational systems, as well as the manufac- 
ture of certain types of gyroscopes out of piezoelectric materials, with fewer moving 
parts. 

In this section we study the free gyroscope, the gyrocompass, and the single- 
axis gyroscope. Except where noted, we ignore the mass and inertia properties of 
the gimbals. For a more complete analysis of gyroscopes, the reader is encouraged 
to consult the references at the end of this chapter. 

A free gyroscope is illustrated in Fig. 10.18, with L denoting the distance of the cen- 
ter of the rotor from the center of the inner gimbal. When L = 0, the gyroscope is 
referred to as a balanced gyroscope. Such gyroscopes are used for inertial naviga- 
tion systems. In this case, the rotor can rotate without any precession and nutation. 
The symmetry axis of the rotor is fixed in rotation, which provides the navigational 
requirement of a translating reference frame. The orientation of the vehicle is mea- 
sured with respect to this reference frame. This measurement is also used to drive 
servomotors that maintain a platform inside the vehicle in a fixed orientation with re- 
spect to the earth. Accelerometers on the platform measure the translational motion 
of the platform with respect to the earth. It is obvious that the design and operation 
of such a device requires tremendous precision. 

When L # 0, and the center of the rotor is above the center of the gyroscope, 
the gyroscope behaves like a spinning top. Unless the initial conditions are specified 
as those of a sleeping top, any motion of the gyroscope involves precession and nu- 
tation. When the center of the rotor is below the center of the gyroscope, we have a 
gyropendulum, such as the one considered in Example 8.5. 
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An interesting case is a gyroscope in steady precession when a disturbance is 
encountered. To analyze this case, we use the Routhian in Eq. [10.5.8] and derive the 
equation of motion in terms of the generalized momenta. The result can be shown 
to be 

where a and b are defined in Eq. [10.5.10]. Let us now take the case when the an- 
gle 8 is disturbed from its steady value and analyze the ensuing motion. We can 
accomplish this in two ways. One is to take the expression for V in Eq. [10.5.9], dif- 
ferentiate it twice, and substitute the value of 8 for steady precession. This approach 
is based on the developments in Chapter 5, for small motions about equilibrium. A 
second and simpler way is to replace 8 in Eq. [10.7.1] with 8, + E ,  where E is a small 
parameter and 8, is the nutation angle at steady state. We expand the transcendental 
functions in Eq. [10.7.1] and retain terms linear in E ,  with the result 

cos 8 = cos(8, + E) = cos 8, - E sin 8, sin 8 = sin($, + E) = sin 8, + E cos 6,  
[ 1 0.7.21 

We introduce Eqs. [10.7.2] into Eq. [10.7.1] and recognize that the terms not in- 
volving E describe the steady precession condition, so that they vanish. After some 
manipulation, we obtain the linear equation 



where 

in which 4 2  is the value of the precession rate for slow steady precession, given 
in Eq. [10.5.31]. As the system is conservative, from the potential energy theorem, 
the ensuing motion will be stable if R2 > 0. We show that this is indeed so, by 
considering from Eq. [10.5.30], the critical value of the angular velocity for which 
steady precession is possible. Considering the definition of b as b = 13w3/11, we 
rewrite Eq. [10.5.30] as 

b2 - 4mgL cos 8, > 0 
I1 

Comparing Eq. [10.7.5] with Eq. [10.7.4], once motion is initiated with steady 
precession, R2 will be larger than zero. We conclude that a free gyroscope subjected 
to a small impulsive moment will oscillate about the steady precession position. In 
reality, as the friction and air resistance take effect, the small oscillation eventually 
dies out and the motion reverts to that of steady precession. We can actually visual- 
ize this by taking a spinning top and putting it into motion with steady precession. 
Tipping the top slightly will make the symmetry axis oscillate a bit, with the oscil- 
lation dying out. In this case, because the apex of the top is not attached, there is 
energy loss associated with the translation of the apex. This energy loss changes the 
nutation angle, as well as damping out the oscillation of the symmetry axis. 

The gyrocompass is a device designed to determine the direction of true north (or 
south). Unlike a free gyroscope, whose symmetry axis is fixed in space, the gyro- 
compass is designed to always point to the north. This is accomplished by adding a 
counterweight under the inner gimbal, which results in precessional motion that can 
be adjusted to match the precession of the earth. 

Fig. 10.19 shows a schematic of the gyrocompass. The rotor is placed at the 
middle of the inner gimbal and a pendulous mass m is attached to the bottom of the 
inner gimbal. We use a coordinate system ele2e3 attached to the earth, where el is 
in the north, e2 is toward the west, and e3 is the local vertical. This system is the 
same as the x y z  coordinate system attached to the earth that we used in Chapter 2. 
The angular velocity of this coordinate system is 

*oE = W,(COS he1 + sin he3) [I 0.7.61 

where h is the latitude and we is the angular velocity of the earth, we = 7.292(1oP5) 
radls. As before, the inner gimbal-the F frame-is obtained by a 3-1 transforma- 
tion, so that the angular velocity of the rotor with respect to the earth is 

= i)fl + 4 sin of2 + (4 cos e + *)f3 [ 1 0.7.71 



e3 (vertical) 
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Using Table 7.1 at the end of Chapter 7, we find the unit vectors in the E and F 
frames are related by 

el = cos +fl - sin 4 cos Of2 + sin 4 sin Of3 e3 = sin 8f2 + cos Of3 [10.7.8] 

so we can write the angular velocity of the rotor as 

where 

W ~ = ~ , C O S A C O S + + ~  ~ ~ = - w e ~ 0 ~ h s i n + c o s 8 + w e s i n h s i n 8 + ~ s i n 8  

w3 = wecosAsin4sin8 + wesinAcos8 + 4cos8  + 4 [l 0.7. lo] 

Because the precession and nutation rates are slow, we ignore the kinetic energy 
of the pendulous mass, so that the kinetic energy of the system is only due to the 
rotor. Further, we ignore terms quadratic in we, as the angular velocity of the earth 
is very small. Recalling that our objective is to see if there is a set of precession and 
nutation angles for which the rotor axis and spin rate are constant, we consider the 
precession and nutation rates to be zero. Ignoring also the gimbal inertias, the kinetic 
energy becomes 

1 1 
T = - 11 (w: + w;) + - 13w; = 4' + ~ ~ , ~ w , ( c o s  h sin 4 sin 8 + sin A cos 8) 

2 2 
[10.7.111 



The potential energy is due to the pendulous mass as 

We next invoke Lagrange's equations for 4 and 6 ,  noting that the precession, 
nutation, and spin rates are constant. We obtain 

d  L 
for 6 ,  - = 0 + I3$oe(cos A sin 4 cos 8 - sin A sin 6 )  + mgL cos 8 = 0 

do 

For the spin angle, we note that the associated generalized momentum, T+, is 
constant, which we can express as 

$ + w,(cos A sin 4 sin 6  + sin A cos 6 )  = constant [I 0.7.141 

We are interested in the values of 4 and 8 that make Eqs. [10.7.13] valid. For 
the first equation to hold, either cos 4 = 0 or sin 6  = 0. The case when sin 6  = 0 is 
not meaningful, as it corresponds to the case where the inner gimbal has not moved. 
We then consider that cos 4 = 0. This is possible for 4 = + d 2 .  Let us take the 
case when 4 = d 2 ,  so that sin 4 = 1. We introduce this value into the second of 
Eqs. [10.7.13] and solve for 6,  with the result 

I3 $we sin A 
cot 6  = 

~ ~ $ 0 ,  cos A + mgL 

so that if the gyrocompass is released from rest with the initial nutation angle given 
in Eq. [10.7.15], it will acquire a precession rate that is equal to the component of 
the angular velocity of the earth along the local horizontal. 

We can simplify the expression for the nutation angle by noting that mgL is 
much larger than 13$we, and that the mgL term dominates the above equation. Fur- 
ther, cot 6  is very small, and 6  is very close to d 2 .  Introducing the expression 

where E is small, we can simplify Eq. [10.7.15] to 

I~$w, sin A 
& = 

mgL 

One can show that upon the application of a small impulsive moment, the 
gyrocompass retains its stability. The translational motion of the gyrocompass is 
neglected from the above analysis. It turns out that translational motion of the gy- 
rocompass, especially motion along a curved trajectory, reduces the accuracy of the 
gyrocompass even more. For this reason, gyrocompasses are more widely used in 
slowly moving vehicles, such as ships. 



A single-axis gyroscope is a useful tool for measuring the angular velocity of a vehi- 
cle in a particular direction. This gyroscope consists of a platform, which is attached 
to the vehicle, a single gimbal, and a rotor attached to the gimbal, as shown in Fig. 
10.20. The symmetry axis of the rotor is normal to the axis of the gimbal. Further- 
more, a torsional spring of constant k and torsional dashpot of constant c are attached 
to the gimbal, such that they resist the motion of the gimbal. We denote by XYZ the 
reference frame attached to the vehicle, with the F frame ( x y z  or fi f2 f3) attached 
to the gimbal, rotating about the X axis by an angle 8. The angular velocities of the 
vehicle, gimbal, and rotor are 

o = of + J/k = (wx + 9)i + ( o r  cos 8 + wz sin 8)j 
+(-wysin8 +wzcos8 + &)k [I 0.7.1 81 

We use a Lagrangian approach to analyze the system. To this end, we note that 
the angular velocities of the vehicle are given quantities and not generalized coordi- 
nates. Hence, we have a two degree of freedom system. 

Ignoring the gimbal inertia and the effects due to the translational motion of the 
vehicle, the kinetic energy has the form 

1 + -I3(-wy sin8 + oz cos 8 + J/ )2 
2 



The potential energy and Rayleigh's dissipation function have the form 

from which we notice that IC, is a cyclic coordinate and that the associated generalized 
momentum is constant 

Invoking Lagrange's equations, we obtain the equation of motion for 8 as 

Assuming that 6 is small and that the spin of the rotor is much larger than the 
angular velocities of the platform, we can linearize the above equation to 

which represents the equation of motion of a damped oscillator. For steady motion 
of the vehicle in the X direction, or when hx is either small or it takes place over 
a short period of time, its effect damps out. The transient effects also die out over 
time, and the steady-state solution of Eq. [10.7.23] becomes 

Thus, the gimbal of the rotor is tilted by an angle proportional to the angular ve- 
locity of the platform in the Y direction, that is, perpendicular to the plane of 
the platform. By placing three such gyroscopes on each of the XY, XZ, and YZ 
planes, one can measure the angular velocities of the vehicle about the X, Y ,  and 
Z axes. 

Returning to the gyroscope in Fig. 10.20, if the spring is removed, then one 
can obtain a value of 8 by integrating the angular velocity. Indeed, using either a 
convolution integral or a Laplace transform solution, the response of 6 can be shown 
to be 

where we note that w y ( t )  does not need to be constant. If the damping ratio is high, 
the second term on the right side of the above equation vanishes rapidly and we 
have 

so that the tilt of the gimbal is proportional to the integral of the angular velocity my 
over time. Such a gyroscope is called an integrating gyroscope. 
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1. A football (mass 400 g, radii of gyration 4.5 cm, 6 cm) is thrown and at the 
instant considered has an angular velocity about the longitudinal axis of 4 rads, 
and its center of mass has a speed of 100 krnlhr. A player tips the football, and 
observers can see that the football begins to wobble with a nutation angle of 
15'. Assuming that the tipping of the ball can be treated as an impulse, find 
(a) the angular velocity and velocity of the center of mass, (b) the angle P ,  
and precession as well as spin rates, (c) if the impulse took 0.05 seconds, the 
magnitude of the applied force by the tip. 

2. In Problem 8.39 sketch the body and space cones before and after impact. 

3. An axisymmetric spacecraft, with 11/13 = 2.5 has a precession rate of 0.2 rads 
and spin rate of 0.3 rads. It is desired to eliminate the precession by firing rockets 
attached to the satellite. The rockets exert impulsive moments on the spacecraft. 
Find the minimum value of the angular impulse that the rockets need to exert. 
What is the spin rate afterwards? 

4. Consider a rigid body with three distinct moments of inertia (II < I2 < 13), and 
where I2 = I ,  + E .  Solve for the precession, nutation, and spin rates in terms of 
E ,  and find a value for E such that the body can be treated as axisymrnetric. 

5. Show that Eq. [10.4.22] holds. 

6. Write a computer program to simulate the motion of a top. Then, supply the 
program with the initial conditions derived in Section 10.5 and verify the results 



in Section 10.5. When dealing with the sleeping top, the initial condition of 6 
should be taken as a very small number. 

7. Use the modified Euler's equations and derive the relationship for 0 3  for steady 
precession. 

8. Given a top with the following properties m = 250 g, ~1 = 4 cm, ~3 = 2 Cm 
(both about center of mass), L = 6 cm, select the initial precession, nutation, 
and spin rates such that the top will have the following initial conditions: 
a. Unidirectional precession (ul = 0.6, u2 = 0.8, uo = 0.9). 
b. Looping precession (ul = 0.6, u2 = 0.8, uo = 0.75). 
c. Cuspidal motion (ul = 0.6, u2 = 0.8, uo = 0.8). 

9. Consider a spinning symmetric top. The apex of the top is on a rough surface, 
with coefficient of friction p. Assuming that the normal force and friction forces 
are the only source for the reaction forces, derive a relationship for the minimum 
value of p necessary to prevent the apex from slipping. Consider cuspidal mo- 
tion. 

10. Consider a disk of weight 0.5 lb and radius R = 4 in. The disk is released with 
an initial speed of its center of 2 ftlsec, a zero nutation rate, and a finite nutation 
angle. Obtain the coefficient of friction required to prevent the disk from slipping 
as a function of the nutation angle. 

11. Consider the rolling disk, rolling without slipping with a constant nutation angle 
of 75". An impulsive force is applied to the disk in the f3 direction at point 
A. Calculate the maximum value of the impulsive force, as a function of the 
precession and spin rates, as well as the coefficient of friction that will prevent 
the disk from slipping. 

12. Consider a free gyroscope and that a servomotor is used to keep the spin rate $ = 
0 = constant. Derive the equations of motion, and identify the integrals of the 
motion. Then, given that the initial conditions are specified as steady precession, 
linearize the equation for 6 for small disturbances, and comment on whether 
instability can result. 

13. Consider the free gyroscope in Fig. 10.18. Now, consider that the mass moments 
of inertia of the gimbals are not negligible. The mass moments of inertia of the 
inner gimbal about the F frame are J1, J2, and J3 ,  and the mass moment of inertia 
of the outer gimbal about the inertial as axis is J. Derive the Lagrangian, and 
the integrals of the motion. Use the motion integrals to obtain a single equation 
for 6. 

14. Consider the gyrocompass in Fig. 10.19 and derive the equations of motion in the 
T 

presence of gimbal inertia. Then, linearize the resulting equations about 0 = - 
2 

and show that Eq. [lO.'i'. 171 holds. 



15. Consider the single-axis gyroscope in Fig. 10.20 and derive the equations con- 
sidering the gimbal inertia. Discuss the effects of the gimbal inertia on the mea- 
surement of the angular velocity. 

16. Consider the single-axis gyroscope in Fig. 10.20 and that a servomotor is used to 
keep the spin rate (lr = LR = constant. Derive the equation of motion, linearize 
it, and discuss the performance of the resulting angular velocity measurement 
system. 

17. Consider the gyropendulum in Example 8.5 and find the condition for steady 
precession. The angular velocity of the shaft is 4. Evaluate the stability of steady 
precession. 





c h a p t e r  

Considering a body as rigid is an approximation whose validity needs to be checked 
at all times. Under many circumstances elastic effects have to be included in the 
mathematical model. Dynamical systems consisting of both rigid and elastic com- 
ponents have widespread applications. Examples include rotating shafts, spacecraft 
with flexible solar panels and antennae, and robots with both rigid and elastic links. 
Interactions and energy transfer between the rigid and elastic motions of a system 
is of utmost importance. We saw a significant example of this in 1958 in the field 
of spacecraft dynamics, when the Explorer satellite was launched. The vibration of 
the antennae resulted in energy transfer between the rigid and elastic motions of the 
satellite and led to nutational instabilities. 

In this chapter we analyze dynarnical systems that undergo large-angle rigid 
body motion as well as a small amount of elastic motion. The subject of motion of 
deformable bodies is commonly treated in depth in vibration books and there are 
several excellent texts available. We do not go into such an analysis in detail here 
and assume that the reader is familiar with the introductory theory of vibration of 
continuous systems. We use near linear elasticity theory and assume that the elastic 
deformation is small compared to the overall dimensions of the body. When the rigid 
body component of the motion is small, one can use linear theory and the principle of 
superposition for the entire motion. Small rigid body rotations generally correspond 
to 20 degrees or less. For larger-angle motions, linear superposition of the rigid and 
elastic motions loses its accuracy and interaction effects between the rigid and elastic 
motions become significant. 

There are a number of ways to derive the equations of motion of a deformable 
body. One approach is Newtonian, and it is based on force and moment balances. It 
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uses the geometry of the problem and stresses as a starting point. Another approach 
is analytical, and it is based on strain energy. Yet another analytical approach is the 
integral formulation. We use the strain energy approach in this chapter, because it 
is a natural extension of the analytical approaches we developed earlier. We will 
see a very elegant application of the extended Hamilton's principle, where both the 
equations of motion and the boundary conditions are derived simultaneously. 

We first consider the case where the rigid body motion is small, so that it is possible 
to linearly superpose the rigid and elastic motions. The equations of motion can be 
derived the same way as when the motion is due to the elastic effects only. We first 
study the kinematics of the structure, and then develop expressions for the kinetic 
and potential energies. 

Consider an axially long structure, such as a straight beam of length L. We use an 
inertial x y z  coordinate system, where the x axis is along the axis of the beam, going 
through the centroid of the cross section, as shown in Fig. 11.1. This axis is referred 
to as the beam aris. As a result of deformation, the beam axis moves and point A on 
the beam axis moves to point A*, as shown in Fig. 11.2. The position of A* can be 
expressed as 

where the u(x,  t ) ,  v (x ,  t ) ,  and w(x ,  t )  denote the components of the deformation in 
the x, y, and z directions, respectively. The distance along the beam axis to point A* 
is denoted by s, similar to the definition in Chapter 1 of the distance traversed along 
a curve. 

x (beam axis) 

Figurn 1 1.2 Deformation of beam 
axis 
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Figure 1 1.3 Figure 1 1.4 

In addition to the deformation of the beam axis, the plane shown in Fig. 11.1 ro- 
* * *  tates, and a differential element around the beam axis assumes an orientation x y z , 

shown in Fig. 11.3.' We will quantify this rotation by the angles 6 , (x ,  t), 6, (x ,  t ) ,  
and 6, (x ,  t ) .  

We hence have six variables at each point x to describe the deformation of the 
beam, the three displacements and the three rotations. Fig. 11.3 shows the free-body 
diagram of the cross section, where there are three internal forces and three internal 

* * *  moments, shown along their components in the x y z  coordinate system. These are 
referred to as 

P,* : Axial force Py*,  P,* : Shear forces 
My*, Mz* : Bending moments M I * :  Twisting moment 

We now introduce additional assumptions that simplify the problem: All defor- 
mations u, u, and w are small compared to the length of the beam, all angles O x ,  
6 , ,  and 6 ,  are small, and all shear deformation effects can be ignored. The first two 
assumptions are justified by limiting the analysis to beams that deform very little. 
The assumption of no shear deformation effects is justified analytically by taking 
a full-blown model of a beam and analyzing the effects of shear deformation. For 
slender beams, it can be shown that the shear deformation effects become negligible 
compared to the bending and torsion. 

To examine the effects of these assumptions, consider an infinitesimal element 
of the beam that has an undeformed length of d x ,  whose deformed length becomes 
d s  (Fig. 11.4). The coordinate axes x* y*z* and x** y**z** at the two ends of the differ- 
ential element are obtained by the rotations d o , ,  d 6 ,  and do , .  Because these angles 
are very small, the rotation sequence to go from the x*y*z* to the x**y**z** coor- 
dinates is immaterial. Consider now the projections of the differential element onto 
the x* y* and x*z* planes, shown in Figs. 11.5 and 11.6. One can relate the rotation 
angles d o ,  and d o y  to d s  by py and p,, the radii of curvature of the projections of 
the curve on the x y  and xz  planes, by 

'We are using starred coordinates x'y'z '  to denote the coordinates associated with the rotated plane, as we use 
primes in this chapter to denote spatial derivatives. 
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Figure 1 1.5 Figure 1 1.6 

From Chapter 1 the radii of curvature along the x y  and x z  planes are given by 

in which the prime denotes partial differentiation with respect to the spatial variable 
x,  that is, u l ( x ,  t )  = d v ( x ,  t ) l d x .  Because of the small angles and deflections, we 
approximate the expressions U p y  and U p z  in the above equation by v" and w", 
respectively, and we approximate differentiation with respect to s with differentiation 
with respect to x  in Eq. [11.2.2]. Equating the different expressions for the radii of 
curvature and integrating both sides over x,  we obtain 

Hence, the six variables used for the description of the deformation are reduced 
to four: u, u, w, and 8,. The relations from the force and moment balances corre- 
sponding to Eqs. [11.2.4] indicate that shear force is the derivative of the bending 
moment. We next assume that the torsional motion of the beam can be separated from 
the axial and bending motions. Axial and bending motions are coupled to torsional 
motions only through higher-order terms. 

Having separated torsion from the rest of the motion, we now consider the axial 
stretch and bending in they and z  directions. Thus, the only component of the stress 
and strain that we consider are a,, and E,,. Effects that will be included in the 
formulation are the shortening of the projection of the deformed member. which 
results from the curvature of the beam, and rotatory inertia, which contributes to 
the kinetic energy as a result of rotational motion of the cross-section due to the 
curvature. A beam modeled this way is referred to as a Rayleigh beam. Table 11.1 
summarizes the commonly used beam models and the assumptions they make. 

The validity of the assumptions we use depends not only on the physical di- 
mensions of the cross section of the beam, but also on the boundary conditions 
and the loading. The significance of the shortening of the projection actually de- 
pends not so much on the amplitude of the elastic motion, but on the presence of 
large axial loads or rapid rigid body motions. Rotational motion can be viewed as 
generating a centrifugal force, which can be treated as an axial load. The rotatory 



1 1.2 KINETIC AND POTENTIAL ENERGY: SMALL OR NO RIGID BODY MOTION 

Table 1 1.1 Comparison of beam models 

Effects Included 

Shortening of 
Model Rotatory Inertia Bending Strain Shear Strain Projection 

Euler-Bernoulli No Yes No Yes or no 

Rayleigh Yes Yes No Yes or no 

Timoshenko Yes Yes Yes No 

Shear No No Yes No 

inertia is usually significant when there is rapid rotation about the x axis. We also 
ignore temperature effects. 

To illustrate the shortening of the projection, consider a deformed beam. Fig. 
11.7 shows the projection of the deformation of the beam axis on the x y  plane. The 
slope of the deformation along the x y  and x z  planes is given by Eq. [11.2.4]. It 
follows that the slope of the beam axis at any point x  is 

d ( x ,  t )  = Jur2(x ,  t )  + w r 2 ( x ,  t )  [ I  1.2.51 

Because shear effects are ignored we neglect any other rotational deformation of the 
beam. We denote by 

s ( x ,  t )  = x  + e ( x ,  t )  = Distance traversed along the beam axis from 
x = 0 to the deformed position A* 

e ( x ,  t )  = How much the beam axis has stretched 
[ ( x ,  t )  = x  + u ( x ,  t )  = Projection of the beam axis position onto the x  

axis 

Consider now a differential element of the beam, whose undeformed length is d x  
and whose deformed length is ds. Fig. 11.8 shows the projection of this differential 
element on the x y  plane. The projection of d s  onto the x  axis is # and it can be 
expressed as 

d[  = dscos 0 = dscos \iiq + 

Beam 
axis 

Figure 1 1 .I Figure 1 1.8 



The difference between d( and dx,  d( - dx = du, is referred as the shortening 
of the projection. The nomenclature can be explained by noting that if there is no 
stretch, du will be a negative quantity. Because the deformations are small, we ap- 
proximate cos 0 in the above equation by a Taylor series expansion, so that 

Integrating Eq. [ l  1.2.71, we obtain 

We introduce the definitions of s and 6 into this equation. Also, because the stretch 
e(x, t )  is small we replace the upper limit in the integral, s = x + e, by x. Hence, 
we have an expression relating the deformation in the x direction to the stretch and 
the curvature in the y and z directions as 

This relation can also be obtained by considering the nonlinear strain displace- 
ment relationships. The first and second-order terms in the expression for the strain 
in the x direction are 

Assuming that the axial deformation is much smaller than the transverse deforma- 

tions, we ignore the 2 as well as any cubic or higher-order terms. Integration of i P 
the remaining terms in Eq. [ l  1.2.101 over x leads to Eq. [11.2.9]. We also observe 
from Eqs. [11.2.8]-[11.2.10] that 

indicating the well-known relation between the axial strain along the beam axis and 
the stretch. 

To find the components of the strain at any point along the beam, consider 
Fig. 11.9, drawn for the case of deformation in the y direction only. We now invoke 
the assumption that plane sections remain plane after deformation. This permits one 
to express the deformation of a point on the beam in terms of the distance of that point 
from the beam axis. One can show that the beam axis coincides with the neutral axis. 
The neutral axis is defined as the axis at which there is no stretch or contraction when 
the beam is subjected to a pure bending load. Be aware that for a curved beam, the 
neutral axis and the centroidal axis do not coincide. For straight beams, the stretch 
of a point away from the beam axis is given by 



Neutral axis 

s ( x )  

Figure 1 1.9 

It follows that for the general case where there is transverse deformation in both the 
y and z directions, the expression for strain becomes 

E,,(x, y ,  Z, t )  = e l ( x ,  t )  + z w U ( x ,  t )  - y v t l ( x ,  t )  [I 1.2.131 

The stress is obtained by Hooke's law as 

v x x  = E ~ x x  [1 1.2.141 

with all of the remaining components of the stress being zero. E is the modulus of 
elasticity, a material property. 

We next calculate the kinetic and potential energies for a beam. Differentiating Eq. 
[I 1.2.11, the velocity of a point on the beam axis becomes 

To find the angular velocity of a differential element, consider Figs. 11.5 and 
11.6. We saw earlier that, as a result of the elastic deformation, the cross section 
rotates. The angular velocity of the cross section is due to this rotation. The rotation 
angles are 8, = u l ( x ,  t )  about the z axis and 8, = - w l ( x ,  t )  about they axis. Because 
we assume the rotation angles to be small, the order of the rotation is not significant. 
We then approximate the angular velocity of the differential element as 

We also ignore the effects of the angular velocity of the differential element on the 
velocity of a certain point on the differential element. Hence, the translational ve- 
locity of every point on the cross section is approximated as being the same. Defin- 
ing the mass per unit length at x as p(x), we can write the translational kinetic 
energy as 



To find the rotational kinetic energy we note that the angular velocity has com- 
ponents along the y  and z directions only and consider the mass moments of inertia of 
the differential elements as d lxx  = gXx(x )  d x ,  dl,, . = S,,(x) d x ,  dl,, = gZZ(x)  d x ,  
d lyz  = gYz(x)  d x ,  denoting mass moments of inertia per unit length. The rotational 
kinetic energy has the form 

In general, the contribution of the rotatory inertia to the kinetic energy is very 
small and is ignored. The potential energy is due to the elastic deformation. Noting 
that, for a beam where the shear deformation is ignored and the beam is not subjected 
to any torsional loading, all of the stress components except ax, vanish, the potential 
energy can be shown to be 

We can write the differential volume element as d(Vo1) = d A  d x ,  where d A  = 

d y  dz is a differential area element of the cross section. Because the beam axis is 
also the neutral axis, the following area integrals hold 

IA z2 d A  = I y (x )  IA yzdA = l y z ( x )  [I 1.2.20, 

where A(x)  is the cross-sectional area of the beam at point x, I,(x) and I z (x)  are the 
area moments of inertia about the y and z axes, respectively, and Iyz (x)  is the area 
product of inertia. If they and z axes are selected such that they are principal axes,2 
the product of inertia vanishes, I,, = 0. The reader should not confuse area product 
of inertia and mass product of inertias. 

Expansion of Eq. [ l  1.2.191 and use of Eqs. [11.2.20] yields the following terms 
for the potential energy: 

The term EA(x)  is known as the axial stifiess, and the El,(x), Elyz(x) ,  and EZ,(x) 
terms denote the bending stifiess. When the y and z axes are selected as principal 
axes, lyz = 0 and one can show through a stress analysis that the internal bending 
moments and the internal axial forces are related to the deformations by 

My(x,  t )  = El, (x )wH(x ,  t )  M,(x, t )  = El,(x)v"(x, t )  

P(x, t )  = EA(x)el(x)  [ 1 1.2.221 

I =See Chapter 6 for cases on how I,,= vanishes due to symmetry. 



The virtual work is due to the external forces and moments acting on the beam. 
One can write the virtual work as 

SW = loL JPX(x, t)Su + pJx, t)6u + p,(x, t)6w + m,(x, t)6u1 - m,(x, t)6w1 d x  1 
[ I  1.2.231 

in which p,, p,, and p, denote the distributed external forcing (forcellength) in the 
x, y, and z directions, respectively, and m, and m, denote the distributed moments 
(momentnength) about the y and z axes. 

1 1.2.3 KINETIC AND POTENTIAL ENERGY FOR TORSION 

Next, we consider torsion. In linear elasticity theory, the axial and transverse mo- 
tions are not coupled to torsion. Hence, we analyze torsional deformation by itself. 
Fig. 11.10 shows a slender bar subjected to a distributed torsional load m,(x, t). As 
a result, the cross section at a distance x from a fixed end twists by an angle 8,(x, t )  
about the neutral axis. The internal moment at point x is denoted by M,(x). Using the 
semi-inverse method of St. Venant, we assume that the only stress and strain com- 
ponents are u,,, uxz,  E,,, and E,,. The components of the stress can conveniently 
be studied using the stress function formulation. We will not pursue this analysis 
here, but concentrate on expressions for the strain. Neglecting nonlinear terms, the 
components of strain have the form 

- and the stress and strain components are related by Hooke's law, u,, = G E , ~ ,  uxz - 
GE,~,  in which G is the shear modulus, related to the modulus of elasticity E via the 
Poisson's ratio v by 

A major difference between torsion and bending is that in torsion, the shape 
of the cross section affects the nature of the deformation. If the cross section is not 
circular, warping occurs, where plane sections no longer remain plane but warp out 
of their original planes. As hypothesized by St. Venant, for small deformations the 
projection of the warped cross section onto the yz plane coincides with the original 
shape of the cross section. Fig. 11.11 shows an arbitrary point B, at a distance r 
from the neutral axis and at an angle P from the y axis that deforms to point B'. 
The distance between B' and the neutral axis is still r. Approximating the arclength 
between B and B' as a straight line we have 

u = -re, sin p = -8, w = re, cos p = ye, [ l  1.2.261 

We further assume that the deformation in the x direction is proportional to the 
rate of change of O,(x, t) with respect to x. Introducing the angle of twist per unit 
length $(x, t )  = dO,(x, t)ldx, we write 

U(X, t )  = *(x, t)f (Y, z) [ 1 1.2.271 



Figure 11.10 Figure 11.1 1 

in which f ( y ,  z )  is the warpingfunction at point x .  The warping function is a property 
of the cross section. One can show that the warping function satisfies the relation 
v2 f = 0, in which V 2  is the two-dimensional Laplace operator. Calculation of the 
warping function is, in general, a complicated task, and beyond the scope of this text. 
Introducing Eqs. [11.2.26] and [11.2.27] to Eqs. [11.2.24], we obtain for the strain 

We can then write the potential energy as 

We define the torsion constant J ( x )  as 

and can write the potential energy as 

The term G J ( x )  is also called the torsional stiffness. It can be shown through a 
stress analysis that the torsion constant is related to the internal twisting moment 
Mx by 

For a circular cross section there is no warping, so that f ( y ,  z )  vanishes, and 
considering Eqs. [11.2.30], the expression for J ( x )  becomes 

J ( x )  = ( y 2  + z2)  d y  d z  = l y ( x )  + I z ( x )  I* [11.2.33] 

and J ( x )  is recognized as the polar area moment of inertia. 
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To calculate the kinetic energy we consider Fig. 1 1.1 1 and the velocity of point 
B, which we can write as 

The differential mass element can be expressed as d m  = pdy d z d x ,  in which p is 
the density, that is, mass per unit volume. The kinetic energy can then be written as 

T = -  vg dm = - ~ r ~ b z ( x ,  t ) d y  d z d x  = - p(y2 + z2)bz(x, t ) d y  d z d x  
2 ' I  2 ' I  

[11.2.31] 

We defined earlier by 9,,(x) the mass moment of inertia per unit length about the x 
axis. The explicit expression for 9,, has the form 

so that for circular rods with constant density 9,,(x) = pJ(x).  We can now write 
the kinetic energy expression as 

The virtual work is 

To analyze the general case of coupled axial, transverse, and torsional motion 
one needs to consider higher-order terms in the bending and shear stresses. The in- 
terested reader is referred to the text by Rivello. 

The kinetic energy and quadratic parts of the potential energy can conveniently be 
expressed in operator notation. To this end, we introduce the displacement vector 
{Q(9) ) ,  in which 9 is the spatial domain. For the beam considered above, {Q) = 

[u v w BIT and 9 = x.  Recall that the rotational deformation of the beam about 
the y and z  axes was expressed by the slopes wl(x,  t )  and vl(x ,  t ) .  Hence, we have 
four degrees of freedom. Note that what we refer to as a degree of freedom here is 
different from a degree of freedom for a rigid body. Here, the degree of freedom is 
for each point on the body, perhaps more properly described by the term continuous 
degrees of freedom. 

The derivatives of {Q) with respect to the spatial variables have the form 



Here, we introduce the inner product notation between two vectors {X(91)) and 
{Y( 'w l  as 

[I 1.2.401 

and we can express the kmetic energy as 

in which the matrices [MI and [ M I ]  have the form 

The [ M I ]  matrix contains the rotational inertia terms. To describe the potential 
energy, we note from Eq. [11.2.19] that the potential energy is more conveniently 
expressed in terms of the stretch e, as Eq. [ l  1.2.191 is in quadratic form. We introduce 
the vector {W(x)} = [e  u w elT and the matrices [So], [ S 1 ] ,  and [S2]. We can 
then write the quadratic part of the potential energy as 

1 1 1 v = , < {W}, [S0]{W} > +, < {W'}, [Sl]{Wf} > +, < {W"}, [S2]{W1') > 

For the beam considered, 

The matrix [So] has nonzero entries in the presence of springs attached to the 
body. Also, in the presence of axial forces that can be expressed as part of the poten- 
tial energy, [S1]  has additional terms. Often, the notation for potential energy in Eq. 
[I  1.2.431 is shortened to the energy inner product 

The energy inner product is a quadratic term. Gravitational potential energy is 
not a quadratic function, thus it is not included in the energy inner product, but as an 
additional term. 

Example I Write the kinetic and potential energies and the virtual work for the beam shown in Fig. 11.12, 
11.1 which is of uniform density and is allowed to deflect in the z direction only. Ignore rotatory 

inertia. 
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Solution 

The positive z direction for the deflection of w ( x ,  t )  is taken as upward. From Eq. [ l  1.2.171 
the kinetic energy has the form 

; 10L 1 
T ( t )  = - p, (x)w2(x ,  t ) d x  + - ~ w ' ( h ,  t )  

2 [a1 

The potential energy is due to the elasticity, the concentrated springs, and the gravita- 
tional force. It has the form 

in which g is the gravitational constant. To calculate the mass density and area moments of 
inertia, we recall that the mass density is the mass per unit length. The expressions for p ( x )  
and I , (x)  for a circular cross-secton are 

where r  is the radius and p is the density. The radius is given by r ( x )  = R(l - x / 2 L ) ,  so that 

[dl 

The virtual work is due to the external force F and torque T .  We can write it as 

6 W = - F S w ( a )  + r 6 w 1 ( d )  [el 

This expression is obtained by substituting into Eq. [11.2.23] the expressions for the dis- 
tributed force and moment 

p l ( x ,  t )  = -F&(x - a )  m,(x ,  t )  = d ( x  - d )  - - If1 
in which denotes the Dirac delta function. 

- 



In this section, we use the expressions for the kinetic and potential energy developed 
in the previous section and invoke the extended Hamilton's principle. The process 
yields the equations of motion, as well as the boundary condititons. 

Consider the axial and transverse deformations only and select the y and z axes as 
principal axes. Here we have two choices of variables to use: u, v ,  and w ,  or e, u, and 
w .  Let us use u, v, and w .  From Chapter 4,  the extended Hamilton's principle states 

where tl and t2 are any two time instances. The expressions for the kinetic and po- 
tential energies are given in Eqs. [ l  l .2.17] and [11.2.21]. We ignore the contribution 
of the rotatory inertia. Taking the variation, we obtain 

de' It: loL [ p ( X ) ( l S i l  + OS6 + GSG) - EA(x)el 
dw' 

py6v + pz6w + mZSv1 - mySwl d x d t  = 0 I [I  1  A.21 

To write the extended Hamilton's principle in terms of Su, Sv, and Sw only, 
we eliminate the variations of the derivatives of u, v, and w by integration by parts. 
Recall that the order of differentiation and variation can be exchanged when the 
differentiation is with respect to an independent variable, in this case the time t  and 
the spatial variable x. The procedure yields integrals as well as integrated terms. We 
observe that three types of terms result. Examples of each type are 

d 
p ( x ) i  Sirdt = It: p(x) irg(Su)dt  



The integrated term in Eq. [11.3.3] vanishes because mZ(x)  is a moment per 
unit length. The integrated term in Eq. [11.3.4] vanishes due to the definition of the 
variation. Recall that the varied paths for u, v, and w are selected such that they vanish 
at times tl and t ~ .  By contrast, there are two integrations by parts in Eq. [11.3.5], 
both involving spatial differentiation, and none of the integrated terms disappear 
automatically. Performing all the integrations and rearranging yields 

in which we have used the notation 

Note that P(x, t )  denotes the internal force in the x direction. By virtue of the ar- 
bitrariness of the variations of u, v and w, in order for the integrals to be equal to zero, 
the integrands and integrated terms must vanish, and they must vanish individually. 
The three integrands in [11.3.6] lead to the equations of motion, and the integrated 
terms lead to the boundary expressions. We have, for the axial deformation 



For the transverse deformation in the y direction 

d 
p ( ~ ) i i  + - Elz(x)- - - P(x, t)- = p, - -m, 

2 I ]  I:] dx 

For the transverse deformation in the z direction 

In a similar fashion, we obtain the equation of motion and boundary expressions 
for the torsional vibration. The results can be shown to be 

The boundary conditions are ascertained from the boundary expressions by examin- 
ing the geometry at the boundaries. Fig. 11.13 shows commonly encountered bound- 
ary conditions. In each boundary expression there are two terms. One term is a 
variation of a deformation (or variation of a slope), and the other term is an inter- 
nal force (or moment). By examining the geometry, one determines which one of the 
terms is zero, and identifies the boundary condition. This procedure is basically an 
application of a fundamental principle from structural mechanics: 

Al ony point on As body, if the dispkxmwnt (skpe) is known, thsn Jn internal form (mcm@ is h known 
ot hat point; and if As loading force (momcMt) is known, hen he di-t (slope] is  not h ot 
that point, until he problem is &ad. 

This principle is applicable at the boundaries as well as in the interior. Confining the 
analysis to the boundaries, if the beam is restrained to move in a certain direction at 

' a boundary, then the associated boundary condition is geometric, as it is determined 
from the geometry of the deformation. For example, if the beam is fixed at x = 0, 



Fixed end Pinned end 

Figure 1 1.1 3a Figure 1 1.13b 

Figure 1 1.1 3 c  Figure 1 1.1 3d 

Springs at 
boundary 

Figure 1 1.1 3e 

the boundary conditions become 

Such boundary conditions are known as essential, or geometric, or Dirichlet type 
boundary conditions, or boundary conditions of the Jirst kind. When the boundary 
conditions are essential, it follows that the force and moment balance terms, which 
are the coefficients of Su, Sv, Sw, Sv', Sw', and S O , ,  are unknown. Furthermore, 
the magnitudes of these internal forces and moments do not vanish; if a point is 
restrained to move in a certain direction, there must be a force or moment at that 
point preventing the structure from moving. 

The magnitudes of the internal forces and moments can only be determined 
after the system differential equations are solved, as stated in the fundamental prin- 
ciple above. We will refer to these internal reactions (the coefficients of Su, Sv, Sw, 
Sv', Sw', and S O , )  as complementary boundary conditions (CBC). The reason for 
defining these terms is that, when constructing approximate solutions by series ex- 
pansions, trial functions can be selected that violate the force and moment balances 
at the boundaries. Unless the CBC are considered, the approximate solution may in- 
correctly set the internal forces and moments to zero at boundaries and interfaces. 
The net effect is use of an incomplete set of trial functions and slow or lack of con- 
vergence. Table 11.2 gives the geometric boundary conditions and associated CBCs. 

When the boundaries are unrestrained, the variations of the deformations and 
their slopes do not vanish. It follows that the coefficients of the variations must be 
zero. For example, if the beam is free to move in the y direction at x = L ,  the 
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Table 1 1.2 Essential boundary conditions and complementary boundary conditions 

Geometric Boundary CBC Geometric Boundary 
Qpe of Boundary Condition (Known) (Unknown Quantity) Condition CBC 

Transverse deformation (v) 

Fixed end 

Pinned end 

Guided end u' = 0 EIz d2u 
- .. 

Axial deformation (u) 

Fixed end 

Torsional deformation (8,) 

Fixed end 8, = 0 G J(X) $$ 

associated boundary conditions become 

These boundary conditions are known as dynamic or natural. Equation [ l  I .3.13a] 
shows a type also called the Neumann type, or a boundary condition of the second 
kind. Equation [ l  1.3.13bl is also known as a boundary condition of the third kind, 
as it involves not only the shear force but also the transverse force due to the axial 
motion. Such boundary conditions are also encountered in the presence of springs at 
the boundaries. 

Natural boundary conditions indicate that the force and moment balances are 
zero at the boundaries. This is intuitively expected, because, if the structure is free 
to translate (rotate) at a boundary, there should be no force (moment) at that point to 
restrain it from moving. 

Equations [l  1.3.81-[11.3.10] can be simplified in many cases by ignoring the defor- 
mation in the axial direction, setting the axial stretch e(x, t) and all its derivatives to 
zero. The simplification is valid when the axial internal force P(x, t) is not large or 
not a function of time (or it is a slowly varying function of time). Qpical examples 
include the helicopter blade problem and the buckling of columns. Note that once 
the axial deformation is ignored, u(x, t) is no longer an independent variable. From 



Eq. [11.2.9], setting e(x, r )  = 0 we obtain 

The time derivative of u(x, t) is also usually ignored. The force P(x) now be- 
comes the internal axial force that balances the external axial force p,(x). A simple 
force balance in the axial direction (or a reexamination of Eq. [11.3.8]) indicates 
that 

which basically states that the external force (per unit length) is balanced by the 
derivative of the internal force. The equations of motion for the transverse deflection 
become 

When one ignores the deformations due to axial elasticity from the beginning, 
the equations of motion can be derived more simply. One can treat the effect of 
the internal axial force P(x) in two ways: as part of the virtual work or as added 
potential energy. Consider the virtual work expression due to the external axial load 
px(x) as 

Introduce Eq. [ l  1.3.151 to this equation and integrate by parts to obtain 

The integrated term disappears because at a fixed end u vanishes, and at a free end 
the internal force P is zero. Differentiating Eq. [11.3.14], we get the expression for 

so the virtual work expression becomes 



The effect of an axial force can also be expressed as a potential energy con- 
tribution due to the internal axial force P ( x )  acting through the shortening of the 
projection. Recall that P ( x )  is taken as positive along the x  direction and the short- 
ening of the projection d x  - d,f = -du  is positive along the negative x  direction. 
We hence write the additional potential energy as 

Introducing the expression for d u  from Eq.[11.3.19] into the above equation yields 

Introduction of Eq. [11.3.22] or Eq. [11.3.20] into the extended Hamilton's prin- 
ciple yields Eqs. [I 1.3.161. When the axial loading is not large or is not present, the 
P ( x )  term is eliminated and one arrives at the well-known Euler-Bernoulli equa- 
tions. 

If P ( x )  is tensile, then according to Eq. [ l  1.3.221 the additional potential energy 
is a positive quantity. Considering that the potential energy is strain energy, repre- 
senting the stiffness or resistance to deformation, a tensile force can be considered 
as one that adds to the stiffness. This increase in stiffness has a stabilizing effect, a 
phenomenon readily observable, such as in the helicopter blade. By contrast, a com- 
pressive axial force reduces the potential energy, thereby making the component less 
stiff. A classic example of this is the buckling of columns. Columns become unstable 
and collapse when the applied compressive load becomes too high. 

The above derivations are in terms of an internal axial force along the .r axis. 
Sometimes it is more convenient to describe the internal axial force along the beam 
axis (x* direction). Consider an external force which generates an internal force F ( x )  
along the beam axis, as depicted in Fig. 11.14 for a two-dimensional system. We 
resolve the internal force into its components along the x  and y axes as 

F ( x )  = F ( x )  cos 8,i + F ( x )  sin 8  j = F(x) i  + F(x)vr (x ,  t) j  [I  1.3.231 

The contribution of the component in the x  direction is the same as in Eq. [11.3.16], 
with F  replacing P. The contribution of the component in the y direction can be 
obtained by noting from Eq. [11.3.15] that F ( x )  is related to the distributed external 
load by p,(x)  = - F r ( x ) .  Hence, the component in they direction can be expressed 

Figure 11.14 



as an additional distributed external force as 

py(x) = -F'(x)u'(x) [ 1 1 3.241 

From Eq. [ l  1.3.16a1, the total contribution of F(x) becomes 

In a similar fashion, we obtain the contribution of F(x) in the z direction. Conse- 
quently, the equations of motion, Eqs. [11.3.16], have the form 

It is convenient to express the equations of motion of a flexible body in terms of mass 
and stiffness operators, especially when the equations are linearized. Let us consider 
an elastic foundation under the beam, modeled as a distributed spring k,(x). The 
added potential energy due to the spring is 

L 

VSpnng = lo ~ J X ) U ~ ( X ,  t) kt [ 1 1.3.271 

and the effect on the equation of motion in they direction is an additional ak,(x)u(x, t )  
term on the left side of Eq. [11.3.16a]. 

Recall the displacement vector {%(9)) in which 9 is the spatial domain. For 
the simplified beam model considered above {Q} = [v wIT and 9 = x. Equations 
[11.3.16] (with the added term due to the elastic foundation) can then be expressed 
in operator form as 

2{%(9)} + A{%(%)} = {F} [11.3.28] 

in which 2 is the matrix stiffness operator and A is the matrix mass operator in the 
form 



and {F) is the forcing vector in the form {F) = [py - &m, pz  + &my]'. The 
operators are diagonal because the y and z axes are selected as principal axes. The 
equations of motion in the z and y directions are uncoupled, unless P(x) is a function 
of both v and w. 

We observe from the above equation that the mass operator is nothing but the 
mass matrix in Eq. [11.2.42], and the stiffness operator can be expressed in terms of 
the [Si] (i = 0, 1,2) matrices as 

This expression can be derived from the kinetic and potential energies. And the 
boundary conditions can also be expressed in terms of the matrices [Si] (i = 0, 1,2). 
For conservative systems, the operators 2 and M have the property of being self- 
adjoint, which is defined as follows. Consider two functions {@(9)) and {T(9)), that 
satisfy all boundary conditions and are as many times differentiable as the highest- 
order derivative in the stiffness operator. Such functions are called comparisonfunc- 
tions. The operators 2 and M are called self-adjoint if the following relationships 
hold: 

Also, for two comparison functions the following relationship holds: 

Another important group of functions is admissiblefunctions. These satisfy only 
the geometric boundary conditions and are half as many times differentiable as the 
highest-order derivative in the stiffness operator. The relationship [l  1.3.3 11 cannot 
be written for admissible functions. However, Eq. [11.3.32] holds. Also, one can 
write the energy inner product for two admissible functions 

Example I Consider the beam in Example 11.1 ; derive the equation of motion and identify the boundary 
11.2 conditions. 

Solution 

We will take the kinetic and potential energies from Example 11.1, as well as the virtual 
work, obtain their variations, and perform the necessary integrations by parts. We can write 
the kinetic energy as 

in which the mass operator Al has the form 

A = p(x) + M ~ ( x  - - h) Cbl 



The stiffness terms can also be expressed as 

S2 = E[, (X)  Sl  = kTL3(x - C )  So = k1&(x - - b)  + k2&(x - - L)  [el 

Note that the contribution due to the weight of the beam is not in quadratic form. It is more 
convenient to treat the weight as part of the external forces, in the virtual work. The potential 
energy is 

+ kT&x - - c)wI2(x, t )  + k2&(x - - L ) w ~ ( x ,  t ) )dx  [dl 

We can express the virtual work as 

The variation of the kinetic energy is straightforward, as all integrated terms drop out 
due to the definition of the variation. In the virtual work expression, the only term we must 
integrate by parts is due to the torque. Integrating by parts gives 

Taking the variation of the potential energy and performing the necessary integrations by 
parts, the individual terms become 

Note that we treated the spring at the end differently than the springs in the middle. This 
is because the variation of the displacement at the end x = L enters the boundary terms. 
Performing an integration by parts on the virtual work in Eq. [el, we obtain 

pg Gwdx I 
We next invoke the extended Hamilton's principle. For the equation of motion, which is 

the sum of all the integrands, we obtain 



and the boundary terms become 

At the end x  = 0, the beam is fixed, so that the boundary conditions are geometric and 
they are 

At the end x  = L, the displacement and slope are not fixed, hence their variations are 
not zero. The coefficients of Sw and Sw' must vanish. The boundary conditions are recog- 
nized as 

These are natural boundary conditions, with Eq. [m] being a boundary condition of the third 
kind. This boundary condition represents the force balance at x  = L, where the spring force 
counteracts the shear force. 

Example I Given the uniform rotating blade in Fig. 11.15 spinning with the constant angular velocity 
11.3 a,  find the equations of motion. 

Solution 
There are several ways of solving this problem. One way is to consider that the rotation of 
the blade causes a centrifugal force. Another is to consider a relative frame to which the 
base of the blade is attached. Using the first way, the external forces acting on a differential 
element are shown in Fig. 11.16. Note that the x  axis is the original undeformed axis, and the 
x* axis is along the elastic curve. The external forces acting on the differential elenlent are 
the force of gravity p, d x  = - p g  d x  and the centrifugal force p, d x  = p a 2 x  d x .  The total 
centrifugal force acting at any point x can be obtained by integrating the centrifugal force on 

Figure 11.15 Figure 11.16 



the differential element (from the free end to point x)  

Cal 

Introducing Eq. [a] and the force of gravity into Eq. [I 1.3.16a1, we obtain the equation of 
motion 

We next derive the equation of motion for the rotating blade using a rotating reference 
frame approach. We attach a reference frame to the undeformed position of the beam, with 
the z-axis along the vertical. The position of a point can be expressed as 

The x y z  frame is rotating with constant angular velocity R j ,  so that the velocity of a 
point can be expressed as 

i ( x ,  t )  = U ( X ,  t)i + v ( x ,  t ) j  + R j  x r ( x ,  t )  = u(x,  t) i  + v ( x ,  t ) j  - Q [ x  + U ( X ,  t ) l k  [dl 

leading to the kinetic energy expression 

Because the angular velocity of the blade is large, the term u2(x ,  t )  is much smaller than 
any term containing R2, and we ignore it. The term R Z u 2 ( x ,  t )  is quadratic in u  and can 
be ignored as it is much smaller than the 2f12xu(x ,  t )  term. Ignoring the axial elasticity, we 
write u(x,  t )  as 

It follows that the kinetic energy has one added term, 2Q2xu(x,  t ) ,  which, in light of the above 
equation, has the form 

Note that the f12x2 term in Eq. [el does not affect the equations of motion, as its deriva- 
tives with respect to the variables u  and v are zero. By applying some integration trickery, 
Eq. [g] can be expressed as 

Chl 



The potential energy is 

Integrating by parts gives the variation of the additional kinetic energy the form 

The boundary terms drop out because at x  = 0 ,  v(0, t )  = 0, and at x  = L,  the coefficient 
L2 - x2 vanishes. Invoking the definition of P ( x )  from Eq. [a] we can express Eq. Ij] as 

Yet another way of obtaining the equations of motion is to use Eq. [11.3.22] and treat the 
axial force P ( x )  in conjunction with the shortening of the projection. In this case, we have 
the additional term in the potential energy, 

Tadditiond in Eq. [h] is the negative of Vadditiona in Eq. [l], which is to be expected. 

In this section, we summarize the solution of the eigenvalue problem associated with 
linear, self-adjoint continuous systems and obtain a general form for the response by 
modal analysis. Consider the simply supported beam in Fig. 11.17 and assume that 
the axial deformation and transverse deformation in the z direction are negligible, 
and that the axial force P ( x )  is zero. The equation of motion becomes 

The boundary conditions are due to the deflection and moment balance being equal 

Figure 11-17 



to zero at both ends, thus 

a t x  = O , x  = L 

We will seek a solution by modal analysis. The procedure that we will use is very 
similar to the eigensolution of a multidegree of freedom vibrating system in Sec- 
tion 5.5. The reader is urged to compare every step here with the procedure in Sec- 
tion 5.5. 

We first consider the homogeneous problem (no external excitation and no ex- 
plicitly time-dependent boundary conditions) and use separation of variables to ex- 
press the deformation v(x, t) as 

where +(x) is the amplitude function and e" denotes the time dependence. Intro- 
ducing Eq. [I  1.4.31 into Eq. [ l  1.4. I] and setting py = 0, m, = 0, we obtain 

Introducing Eq. [11.4.3] to the boundary expressions in Eq. [11.4.2], we obtain 
the boundary conditions that +(x) has to satisfy as 

In order for Eq. [I  1.4.41 to have a nontrivial solution, we must have 

which is a variable coefficient, ordinary differential equation of order four. Equation 
[ 11.4.61, subject to the boundary conditions [ l  1.4.51, constitutes the boundary value 
problem, where one needs to find the values of A  that lead to nontrivial solutions 
+(x) of Eq. [I 1.4.61. The solutions A  are called eigenvalues, and the corresponding 
functions +(x) are called the eigenfinctions. 

To demonstrate the solution procedure, we further simplify the problem by as- 
suming that the beam has a uniform cross-section, setting p ( ~ )  = p = constant, 
El,(x) = E l  = constant. Expecting A to be pure imaginary, we write Eq. [I 1.4.61 
as 

where P4 = - A ~ ~ I E I .  The general solution of Eq. [11.4.7] is 

+ ( x ) =  ~ ~ s i n ~ x + c ~ c o s ~ x + ~ ~ ~ i n h ~ x + ~ ~ ~ ~ ~ h ~ ~  [11.4.8] 

where the coefficients ci(i = 1,2,3,4) are found by substituting in the boundary 
conditions. Note that because the right side of Eq. [11.4.7] is zero, +(x) can only be 
determined to within a multiplicative constant. 
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First, take +(x )  and evaluate at x = 0. This gives cz + c4 = 0. Then, take +"(x) 
and evaluate it at x = 0. This gives -c2 + c4 = 0, from which we conclude that 
c2 = c4 = 0. We repeat the same procedure for the boundary x = L. Doing this, 
we end up with c3 = 0, and the relation that remains is 

cl sinpL = 0 [ 1 1.4.91 

For Eq. [ l  1.4.91 to have a nontrivial solution we must have 

which is known as the characteristic equation. The characteristic equation has an in- 
finite number of solutions. For the problem at hand, the solutions are P,L = r r ( r  = 

1,2, . . .). Considering the definition of P ,  all the eigenvalues A, are pure imaginary. 
From Eq. [11.4.3] we conclude that the motion is oscillatory. Defining the ilatural 
frequency w ,  = -iAr(i2 = - l), we can write 

Since c2 = c3 = c4 = 0, the eigenfunction corresponding to each eigenvalue 
(or natural frequency) is +,(x),  and 

r r x  
+ r ( ~ )  = A, sin prx = A, sin - 

L [11.4.12] 

where A, is an arbitrary constant. The solution to the eigenvalue problem yields 
the shape of the eigenfunctions uniquely, but not their amplitudes. It is convenient 
to normalize the eigenfunctions. A commonly used normalization scheme is with 
respect to the mass distribution, thus 

Using Eq. [11.4.13], one can show that for the pinned-pinned uniform beam, 
A, = m. The first three eigenfunctions are plotted in Fig. 11.18. We note 

Figurn 1 1.1 8 First three eigenfunctions of a 
simply-supported uniform beam 



that except for the first, the eigenfunctions cross the x axis and the number of zero 
crossings increases with the mode number. The points of zero crossing are called 
nodes. It can be shown that the rth mode has r - 1 nodes. 

Another very interesting and useful property of the eigenfunctions is that they 
are orthogonal to each other. The orthogonality results from the self-adjointness of 
the mass and stiffness operators. For the beam problem at hand, the orthogonality 
relations can be expressed as 

loL p ( x ) Q r ( x ) + J x ) d x  = 0 when r Z s, r, s = 1.2.. . . 

Considering the normalization scheme in Eq. [11.4.13], one can combine Eqs. 
[ 1 1.4.131 and [ l  1.4.141 to obtain the orthonormality relations 

where 6_,, was defined earlier as the Kronecker delta. 
The eigenfunctions +,(x)  constitute a complete set. That is, any comparison 

function Y ( x )  can be expanded as a uniformly convergent series of the eigenfunc- 
tions as 

The coefficients a, can be found by multiplying Y ( x )  by p ( x ) 4 , ( x ) ,  integrating 
along the domain and invoking the orthogonality relation [11.4.15a]. We then have 

so that we can write 

Equations [11.4.16] and [11.4.18] describe the expansion theorem. Note the sim- 
ilarity of the expansion theorem to Fourier series expansions or other orthogonal 
series expansions. One very important application of the expansion theorem is in 
derivation of the modal equations of motion. Here, the function to be expanded is 



the displacement profile v(x, t )  

The coefficients of the eigenfunctions, qr( t ) ,  are time-dependent terms. We re- 
fer to v r ( t )  as the modal coordinates. Introducing this expansion into the equation 
of motion, Eq. [I 1.4.11, multiplying with 4, (x) ,  integrating along the domain, and 
invoking the orthogonality conditions, we obtain 

Where 

is called the modal force. Hence, we obtain the modal equations of motion as 

The initial conditions associated with each mode can be found by applying the 
expansion theorem to the initial conditions v(x, 0) as 

Multiplying the above equations by p(x)$,(x),  integrating along the domain, 
and invoking the orthogonality conditions, one obtains the modal initial conditions 

Once the modal equations [I 1.4.221 are solved, the response can be obtained by 
substitution of the modal responses into Eq. [11.4.19]. In a real situation, one can 
integrate and sum only a finite number of modal equations. This raises issues about 
the number of modal equations of motion to retain in a specific problem and the 
participation of each mode to the motion. We begin analyzing this issue qualitatively, 
by making use of the asymptotic behavior of the eigensolution. 



An extension of a theorem from Courant and Hilbert states that as the index 
r + w, the asymptotic behavior of the natural frequencies w, and eigenfunctions 
+,(x) are governed by 

w, - CrP 4,(x) - f(Drx) r = 1 2 . .  [11.4.251 

in which 2 p  is the highest-order spatial derivative associated with the elastic motion. 
The constants C and D depend on the mass and stiffness properties. When p = 1 ,  
such as in axial or torsional deformation, the natural frequencies increase with arith- 
metic progression, and f (Drx) = A, sin(Drx) + B, cos(Drx). When p = 2, such as 
in the beam equation, the natural frequencies increase in geometric progression, and 
f (Drx) = A, sin(Drx) + B, cos(Drx) +A: sinh(Drx) + Bi cosh(Drx). In the simply 
supported (pinned-pinned) beam we discussed, p = 2 and w, = ( r , ~ r ) ~ J m ;  
all of the natural frequencies increase with geometric progression. 

When studying beam vibrations, retaining the first four or five modes is usually 
sufficient for an accurate mathematical model, except for cases when the initial con- 
ditions on certain modes are large and the external forces and moments excite higher 
modes more than the others. 

By contrast, when studying axial and torsional vibrations, because the asymp- 
totic behavior of the rth mode is governed by r, the amplitude of each mode falls off 
much slower. Hence, one must retain a larger number of modes for an accurate rep- 
resentation of the motion. A similar statement can be made about plates and shells, 
where the modes are much more closely spaced than in beams. 

The solution of Eq. [11.4.22] subject to the initial conditions [11.4.24] can be 
accomplished in many ways, as discussed in Section 5.7. Equation [5.7.7] gives the 
general form of the response. 

The preceding developments can be generalized by making use of the operator 
notation. Using the equations of motion in the form of Eq. [11.3.28], we assume a 
solution in the form of 

{ ~ ( 9 , t ) I  = {@(WIeAt [I 1.4.261 

where {@(9)) is the amplitude vector and e" denotes the time dependency. Intro- 
ducing this into the homogeneous part of Eq. [ l  1.3.281 and using the same argument 
as before, we obtain the eigenvalue problem 

z{@) + h2d{@} = (0) [ 1 1.4.271 

The solution yields an infinite number of eigenvalues h,(r = 1,2,  . . .) and corre- 
sponding vector eigenfunctions {@,(%)). When the mass and stiffness operators are 
self-adjoint, the eigenfunctions can be normalized as 

The inner product notation between two vectors was defined in Eq. [11.2.40]. 
One can then invoke the expansion theorem and expand any comparison func- 

tion (II(9)) as 
m 

IW9))  = a,{@,@)} [ 1 1.4.291 
r =  1 
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and the coefficients a, can be shown to be 

a, = < {n(g)}, War(%))  > 
To find the response, we expand the deformation {%(9, t ) }  as 

m 

{%(9, t)} = ~r(t){Q>r@)} [11 .4 .31 ]  
r = l  

Introducing this expression into the equations of motion, left-multiplying with 
and integrating over the domain yields the modal equations [11.4.22], 

with the modal excitation &(t) and initial conditions qs(0) and $(0) being 

Example I Find the eigensolution of the uniform pinned-free beam shown in Fig. 11.19. 
11.4 Solution 

We consider Eq. [11.4.1] as the equation of motion. The boundary conditions are that the 
displacement and moment vanish at the pinned end, and that the moment and shear vanish at 
the free end; thus 

Introducing Eq. [ l  1.4.31 to Eq. [ I  1.4.11, we obtain the differential eigenvalue problem 

d 4 4  A2&(x) + EI- = 0 
dx4  Cbl 

and associated boundary conditions 

440) = 0 4"(0) = 0 4 " ( ~ )  = 0 +"'(L) = 0 [@I 

Using the variable P4 = -AZpIEI, we write Eq. [b] as 
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which has the general solution 

+(x) = C, s inpx + c2cospx + c3sinhpx + c4coshpx [el 
To find the constants ci (i = 1,2,3,4) we invoke the boundary conditions. At x = 0,+(0) = 

0 yields 

+(O) = C2 + c', = 0 [f I 
Differentiating Eq. [el twice gives 

+"(x) = p2(-CI sinpx - czcospx + cssinhpx + c4coshpx) IS] 
At x = 0 we have 

A comparison of Eqs. [f] and [h] indicates that c2 = c4 = 0. The boundary conditions 
at x = L yield 

+"(L) = p2(-c1 sin PL  + cs sinh p L) = 0 [I] 

From Eq. [i] we obtain cl = c3 sinh P LI sin /3 L, which, when introduced into Eq. u] 
yields the characteristic equation 

Unlike the pinned-pinned uniform beam, solution of the characteristic equation here 
cannot be obtained in closed form, and one has to resort to numerical techniques to solve 
Eq. [k]. The first five roots of the characteristic equation can be found to be 

The first root is zero, which implies that the first natural frequency of the pinned-free 
beam is zero. This mode is known as the rigid body mode. To find the corresponding eigen- 
function, we take Eq. [dl and set P = 0, leading to the equation +;"'(x) = 0, which has the 
solution 

+l(x) = A. + Alx + A ~ X ?  + [I] 

Introducing the boundary conditions, we obtain 

+(0) = 0 + A0 = 0 #"'0) = 0 + AZ = 0 +"'(L) = 0 + A3 = 0 [m] 
The only term that survives is A,. We conclude that the rigid body mode has the form 

where Al is the amplitude. Using the normalization procedure in Eq. [I 1.4.131, one obtains 
Al = Jw. We observe that, because the mass moment of inertia of a rigid uniform beam 
about the pinned end is I. = mL2/3 = pL3/3, the orthogonality constant can be expres- 
sed as3 

I 3Equation [o] is valid for pinned-free beams with nonuniform cross sections as well. To verify, introduce Eq. [n] into 
Eq. [ l  1.4.1 31 and invoke the definition of the mass moment of inertia, b = j j ~ ( x ) x ~  dx. 
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Let us investigate the rigid body eigenfunction in more detail. With the rigid body mode, 
the beam does not deform elastically, but moves at an angle with respect to the original unde- 
formed axis. That is, the first mode represents the motion of the beam as if it had no elasticity. 
Because in the rigid body mode there usually is no elasticity, there is no elastic restoring 
force.4 Hence, one can physically explain that there is no natural frequency associated with 
this mode, or that the natural frequency is zero. 

The remaining modes describe the elastic deformation of the beam. From Eqs. [el, [i], 
and Ij], we can show that the eigenfunctions associated with the elastic motion have the form 

$ 4 ~ )  = A,(sinh PrL sin p,x + sin PrL sinh P r x )  r = 2,3, . . . [PI 
where the amplitudes A, can be found by introducing Eq. [p] into Eq. [11.4.13]. The total 
motion of the pinned-free beam is a linear superposition of the rigid and elastic motions. The 
expansion of the motion can be written as 

m m 

V ( X ,  f )  = 2 d ' r ( x ) ' I r ( t )  = ~rigici(x, t )  + velastic(x9 t )  = d ' l ( x ) V ~ ( f )  + 2 d'r(x)'Ir(r)  [qI 
r= l r=2 

Note that in the same way the rigid body mode contains no contributions from the elastic 
motion, the elastic motion has no contributions from the rigid motion. We can show this by 
invoking the orthogonality properties of the modes. Multiplying the rigid and elastic motions 
and integrating over the domain, we obtain 

The first three eigenfunctions are plotted in Fig. 11.20. In order for the linear superpo- 
sition of the rigid and elastic motions to be possible, the rigid body motion must be small. In 
general, rigid body angles less than 20 degrees can be analyzed using this approach. 

Figure 1 1.20 First three eigenfunc- 
tions of a pinned free 
beam 

I 41t is possible to find cases where a rigid body mode will have a nonzero natural frequency. 
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Consider the pinned-free uniform link in Example 11.4 and obtain themodal e ~ o n s ~ x & n p k  
motion considering that a moment ~ ( t )  is applied at the pinned end, as shown in Fig. 11.19. 1 1 -5 
Then, analyze the contribution of each mode to the response. 

Solution 

The external excitation can be expressed as 

P J X ,  t )  = 0 mAx, t )  = ~ ( t ) & )  

Substituting Eqs. [a] into Eq. [I 1.4.211 and using integration by parts yields 

Cal 

For the first mode, the rigid body mode, the excitation can be written as 
7 

which, when substituted into the modal equations of motion, gives the equation of motion for 
the first mode as 

The rigid body modal coordinate, q l ( t ) ,  can be related to the rigid body angle as follows. 
From Eq. [q] in Example 11.4 we have 

urigid(x~ t )  = + l ( x ) q l ( t )  I d  

Since we consider the angle 0 to be small, we can write for any point x  

Substituting this into Eq. [dl, and noting that the mass moment of inertia about the pin joint 
is given by I0 = pL3/3, we obtain for the rigid body mode 

which is recognized as the rotational equation of motion of a uniform rigid pinned-free link 
of length L. 

From Eq. [11.4.22], the modal equations associated with the elastic coordinates have the 
form 

Let us next investigate the mode participation. Consider zero initial conditions. If we 
introduce the excitation from Eq. [h] into the response equation [5.7.7] we obtain 
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From Eqs. [11.4.25] we estimate the orders of magnitudes of the terms in this equation as 

and the order of the integral depending on the nature of ~ ( t ) .  Let us denote the order of the 
integral in Eq. [i] by O(I) .  It follows that the modal coordinates have orders of magnitude of 

For the case when T = 1, the integral has the form 

so that the response is of order 

As the mode number increases, the amplitudes of the individual modes become smaller 
by the cube of the mode number. The second mode has an amplitude of about 118 the first 
mode, the third mode 1/27, and the fourth mode, 1/64. Hence, the participation of the higher 
modes rapidly falls, which is typical for beams. 

The pinned-pinned uniform beam considered in Section 11.4 and the pinned-free 
beam in Example 11.4 lend themselves to closed-form solutions for the eigenfunc- 
tions. These two examples are more of an exception than the general case. In most 
cases, and even for simple geometries, it is not possible to find a closed-form solution 
to the eigenvalue problem. Members with nonuniform cross sections, interconnected 
bodies, and almost any structure with a complex geometry fall in this category. When 
a closed-form solution cannot be found, one resorts to approximate techniques to 
solve for the eigenvalues. 

All approximations to continuous systems are in essence discretization proce- 
dures. The eigenvalue problem associated with Eq. [I 1.4.61 is in differential form, 
which implies that the solution is of infinite order. By discretizing the eigenvalue 
problem, one converts the differential eigenvalue problem into an algebraic one that 
is of finite order. Algebraic eigenvalue problems are generally easier to solve than 
differential eigenvalue problems, as they permit the use of matrix algebra. 

Approximation techniques can be classified into two broad categories: lumping and 
series expansions. When using the lumping approach, one lumps parts of the system 
into discrete elements. The stiffness parameters become the connections between the 



lumped masses, and they are modeled as springs. This approach is not analytical. It 
is crude but easy to use and leads to discretized models of relatively low order. The 
approach was more popular before the advent of fast digital computers that made it 
possible to formulate and solve discretized problems of very large order. 

When using series expansions, one expands the deformation in a finite series of 
known functions, multiplied by undetermined coefficients such as 

where $,(x)(r = 1,2, . . . , n) are the known trial functions, qr(t) are their ampli- 
tudes, and n is the order of the expansion. The coefficients qr(t) are in essence a 
set of generalized coordinates. The trial functions must be from a complete set and 
must satisfy certain conditions, depending on the discretization method. In general, 
the trial functions can be classified into two groups: 

1. Comparison functions. As discussed earlier, these functions satisfy all the 
boundary conditions and are as many times differentiable as the highest-order spa- 
tial derivative in the equations of motion. In order to be consistent with the force and 
moment balances, the comparison functions should not violate the complementary 
boundary conditions. 

2. Admissiblefunctions. These functions satisfy only the geometric boundary con- 
ditions and are half as many times differentiable as the highest-order spatial deriva- 
tive in the equations of motion. In order to be a consistent set, they should not violate 
the complementary boundary conditions, and they should not prevent the natural 
boundary conditions from being satisfied. 

We introduce two new categories of trial functions: consistent admissiblefunc- 
tions and consistent comparison functions. The properties of these and traditional 
admissible and comparison functions are summarized in Table 11.3. As before, the 
highest-order spatial derivative is denoted by 2p. 

Table 1 1.3 Classification of trial functions 

Complete Boundary Conditions Complementary 
Trial Function Set Differentiability to Be Satisfied Boundary Conditions 

Admissible functions Yes p times All geometric boundary No requirement 
conditions 

Comparison functions Yes 2p times All boundary conditions No requirement 

Consistent admissible Yes p times All geometric boundary Do not violate 
functions conditions do not pre- 

vent dynamic bound- 
ary conditions from 
being satisfied 

Consistent comparison Yes 2p times All boundary conditions Do not violate 
functions 
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The added requirements regarding consistent trial functions are for physical 
completeness. Trial functions that violate the CBC and do not make it possible to 
satisfy the natural boundary conditions lead to slow convergence. 

It is usually more desirable to deal with admissible functions than comparison 
functions, as it is easier to generate a set of admissible functions. Whether one can 
use admissible functions depends on the discretization method. Methods that permit 
use of admissible functions are more widely used. 

Having selected a set of trial functions, one performs an operation to the series 
expansion in Eq. [11.5.1], which leads to an algebraic eigenvalue problem. The na- 
ture of the eigenvalue problem depends on the type of expansion and discretization. 
Commonly used discretization procedures are 

a. Those based on variational principles, such as the Rayleigh-Ritz, assumed 
modes, and finite-element methods. 

b. Those based on weighted residuals, such as the Galerkin and colocation 
methods. 

When the discretization method is based on variational principles, the series 
expansion is plugged into the variational principle. Stationary values of the vari- 
ational principle lead to an eigenvalue problem. For example, with the Rayleigh- 
Ritz method, one seeks stationary values of the Rayleigh quotient. For the method 
of assumed modes, the variational principle used is the extended Hamilton's prin- 
ciple. 

When using a weighted residual approach, one seeks minimization of the dif- 
ference between the actual solution and the series expansion in Eq. [11.5.1]. The 
difference, referred to as the residual, is minimized by the use of weighting func- 
tions. 

Another consideration when selecting the trial functions is the domain of the 
trial functions. We distinguish between global trial functions, defined over the en- 
tire body, and local trial functions, defined over a portion of the domain. The finite 
element method basically makes use of local trial functions, a very suitable approach 
for problems with complex geometry. In this chapter, we consider global trial func- 
tions. 

We outline the assumed modes method, as it is convenient to use and is applicable 
to nonlinear systems, as will be the case when we consider combined large-angle 
rigid and elastic motion. The trial functions +,(x) can be admissible functions. We 
first take the expansion in Eq. [11.5.1] and substitute it into the expressions for the 
kinetic and potential energies. The method requires use of the energy inner product 
expression for the potential energy. Otherwise, one cannot use admissible functions 
as the expansion functions. 

We demonstrate the method with an illustration. For a beam that deforms only 
in they direction and is subjected to an internal axial load P ( x )  and where the axial 



elasticity is ignored, the kinetic and potential energies can be written as 

Substituting the expansion [l  1.5.11 into these equations yields 

Introducing the notation 

where m, are the mass coeficients and krs are the stifiess coefficients, we express 
the kinetic and potential energies as 

or, in matrix form 

in which {q(t)} is a column vector containing the coordinates qr(t) ( r  = 1,2, . . . n) 
in the form {q(t)) = [ql(t) q2(t) . . . q,(t)lT, and [MI and [K] are the mass and 
stiffness matrices. The mass matrix is always symmetric and positive definite. 
For the system described by Eq. [11.5.2], the stiffness matrix is symmetric. The 
sign-definiteness of [K] depends on the internal axial force P(x) as well as on the 



boundary conditions. For example, for a beam admitting rigid body motions, [ K ]  
is positive semidefinite. If P ( x )  is tensile, as in a helicopter blade, [ K ]  is positive 
definite. When P ( x )  is compressive, as in columns, the sign of [ K ]  depends on the 
value of P(x) .  

In the presence of an external force py(x ,  t ) ,  the virtual work can be expressed 
in terms of the expansion [11.5.1] as 

Introducing the notation 

and substituting it into [ I 1  S.81, we can express the virtual work as 

where {Q( t ) }  = [Ql  ( t )  Q2( t )  . . . e , ( t ) l T .  We recognize Qr(t )  to be the generalized 
force associated with the generalized coordinate qr( t ) .  

We have now expressed the kinetic and potential energies in terms of n coor- 
dinates, thus approximating the system as an n-dimensional discrete one. We then 
use these discretized forms of the kinetic and potential energies together with the 
extended Hamilton's principle. Because the problem is now in terms of a finite set 
of generalized coordinates, one can obtain the equations of motion directly by using 
Lagrange's equations. 

Next, let us discuss the solution when the mass and stiffness coefficients are 
independent of time, which is the case for the linear problem considered here. From 
Section 5.3,  we can directly write the equations of motion of the approximate sys- 
tem as 

[Ml{4( t ) )  + [KI{q(t) l  = tQ(t)> [ll.S.ll] 

To find the response of Eq. [11.5.11], we use the same approach as in Sections 5.5- 
5.7.  We first solve the eigenvalue problem. Introducing 

where { a )  is a time-invariant amplitude vector, and e" denotes the time dependency, 
into Eq. [11.5.11] yields 

( A 2 [ ~ ]  + [ ~ ] ) { a } e "  = {0 }  [11.1.151 

which leads to the characteristic equation 

d e t ( A 2 [ ~ ]  + [ K ] )  = 0 [l l.S.141 



The roots of the characteristic equation are the eigenvalues of the discretized 
system. As discussed in Chapter 5, when the stiffness matrix is positive definite, all 
the eigenvalues A, ( r  = 1,2, . . . , n) are pure imaginary. We introduce the notation 
A, = -i&,, where &, are the natural frequencies of the approximate system. 

Associated with each eigenvalue A,, there is a corresponding eigenvector {a,) 
such that 

The eigenvalues are approximations to the first n eigenvalues of the actual sys- 
tem. The eigenvectors can be used to approximate the first n eigenfunctions by 

where &(x) are the approximate eigenfunctions and {+ (x ) )  is a column vector con- 
taining the trial functions in the form {+ (x ) )  = [ I , ~ ~ ( X ) + ~ ( X ) .  . . +,(x)IT. 

The eigenvectors {a,) can be shown to be orthogonal with respect to the mass 
and stiffness matrices. They can be normalized to yield 

The approximate eigenfunctions are orthogonal with respect to the original mass 
distribution and stiffness, expressed in terms of the energy inner product as 

To prove this, we introduce Eq. [ l  1.5.161 into Eqs. [11.5.18], which yields 

A closer examination of the term inside the square brackets indicates that 

Thus, Eqs. [ l  1.5.191-[l l .5.20] become identical to Eq. [ l  1.5.171. Note that the or- 
thogonality with respect to stiffness is demonstrated using the energy inner product 



only. To have orthogonality with respect to the stiffness operator, one must use com- 
parison functions as trial functions. 

It can be shown that the approximate eigenvalues are higher in magnitude than the 
actual eigenvalues. This is because using a finite series of trial functions is mathe- 
matically equivalent to placing constraints on a system. An exact representation of a 
flexible system requires expansion by an infinite series. Constraints make a system 
stiffer and raise its natural frequencies. This property is common to all discretization 
procedures that are based on series expansions and variational principles. Increasing 
the order of approximation in essence relaxes some of the constraints. Hence, the 
eigenvalues become lower in value. As the model order is increased, the eigenval- 
ues approach their actual values from above. By contrast, when the discretization is 
in the form of lumping, the approximate eigenvalues usually approach their actual 
values from below. 

The property that the approximate eigenvalues approach the actual eigenvalues 
from above can be demonstrated by the inclusion principle, which can be stated as 
follows: Let &, ( r  = 1,2, . . . ,n) denote the natural frequencies associated with an 
nth-order approximation. Now, consider an approximation of order n + 1, where the 
first n trial functions are the same as before, and the next term in the set of admissible 
functions is the (n + 1)th trial function. 

Denoting the eigenvalues of the order n + 1 system by fir (r  = 1,2, . . . ,n + I), 
the inclusion principle states that 

Proof of the inclusion principle is based on the minimax theorem; it can be found in 
advanced vibration texts. 

We next consider the issue of convergence. Convergence of the approximate so- 
lution to the actual solution depends on the type and number of trial functions used, as 
well as on the mass and stiffness properties and the loading. For example, if the sys- 
tem has discrete (also called concentrated, to distinguish from continuous) springs 
acting on it, these concentrated springs cause a discontinuity in the shear profile. 
This discontinuity becomes hard to approximate by continuous trial functions. Also, 
if the trial functions are selected such that the complementary boundary conditions 
are violated or it is not possible to satisfy the natural boundary conditions, conver- 
gence becomes slower. The sensitivity of the trial functions to various parameters 
in them are also important. For example, dealing with hyperbolic sines and cosines 
often presents problems, as these functions are very sensitive to their arguments. 

In general, if one uses an nth order model, one can assume the first nI2 eigen- 
values to be accurate. The exception is when simple polynomials are used as trial 
functions, where usually fewer than nI2 eigenvalues are estimated accurately. Also, 
if the trial functions are selected as functions resembling the eigenfunctions, conver- 
gence is much faster. For example, to find the eigensolution of a beam with a nonuni- 
form cross section, a good choice of admissible functions is the eigenfunctions of a 



uniform beam with the same boundary conditions. Convergence issues associated 
with trial function expansions of solutions constitute a very broad subject, one that 
is beyond the scope of this text. 

The assumed modes method can be described in terms of the general operator 
notation. We expand the elastic deformation as 

in which {+,(%)) (r = 1,2, . . . ,n)  are a set of admissible functions. The entries of 
the mass and stiffness matrices and the generalized forces become 

in which {F) is the external excitation vector. One then invokes Lagrange's equations 
and obtains the equations of motion, which have the form of Eq. [ l  1.5.111 when [MI 
and [K] are constant coefficient matrices. 

Consider the rotating blade problem in Example 11.3, which is modeled as a uniform fixed- 1 Example 
free beam of length L, rotating with angular velocity fl. Compare the natural frequencies 1 1.6 
of the beam for the rotation speeds R " ( E I I ~ L ~ )  = 0.0.1, 1, and 10, and verify that the 
asymptotic behavior of the eigenvalues is governed by Eq. [11.4.25]. 

Solution 

We use the method of assumed modes. The trial functions must satisfy the geometric boundary 
conditions of 

The trial functions must also not violate the CBC, such that at least one of the trial functions 
+,(x) must have a nonvanishing second derivative at x = 0 and one must have a nonvanish- 
ing third derivative at x = 0. Also, the trial functions should not prevent the natural boundary 
conditions to be satisfied at the free end. 

A suitable set of consistent admissible functions is the eigensolution of a uniform, fixed- 
free, nonrotating beam. Another choice is polynomials in the form 

We saw in Example 11.3 that the effects of the rotation can be modeled in a number of 
ways. Here, let us consider it as an added potential energy. From Eq. [a] of Example 11.3, the 
internal axial force has the form 
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Table 1 1.4 Natural frequencies of helicopter blade as a function of 
the rotor speed 

Ratio of 
&JQ 

Mode no. 0 0.1 1 10 & = o  

1 3.516 3.533 3.681 4.918 1.399 

2 22.03 22.05 22.18 23.46 1.065 

3 61.72 61.73 61.86 63.15 1.024 

4 128.4 128.4 128.5 129.7 1.010 

The entries of the mass and stiffness matrices are found using Eqs. [ l l  S.41 and [ l  1 S.51, 
to have the form 

Let us divide both the mass and stiffness coefficients by FL and introduce the ratio 
R = R 2 p ~ 4 / E I .  AS R is increased, the blade rotates faster. We can then write the mass and 
stiffness coefficients as 

Letting EZlpL4 = 1, we solve the eigenvalue problem for various values of R. We use a 
discretized model of order n = 6. The first four eigenvalues are given in Table 11.4, together 
with the ratio of the eigenvalues for R = 10 and R = 0. 

We observe that as R increases and the rotation speed gets bigger, all of the eigenvalues 
become larger. As expected from the asymptotic analysis, the increase in the natural frequen- 
cies is more pronounced in the lower modes. 

Example I As an illustration of the importance of satisfying the complementary boundary conditions and 
11.7 associated convergence issues, we consider a uniform bar of length L in axial vibration, fixed 

at one end (x = O), and attached to a spring of constant k at the other end (x = L), as shown 
in Fig. 11.2 1. The kinetic and potential energies have the form 



Figure 1 1.2 1 

For simplicity we select unit length and unit mass and stiffness distributions, L = 1, 
p = 1, E A  = 1. The boundary conditions can be shown to be 

The boundary condition at x = 0 is geometric, and the associated complementary 
boundary condition is that EAul(O, t )  is unspecified. At x = L, we have a boundary condi- 
tion of the third kind. To find the eigensolution we consider three sets of admissible functions 
G l r ( x ) ,  Gzr (x ) ,  $Q,(x),  each from a complete set: 

Set I :  G l r ( x )  = x' 
( 2 r  - 1 ) ~ x  

Set 2:  G z r ( x )  = sin 
2 L 

Set 3: h ( x )  = (sin P,L - sin h P,L)(sin p ,x  - sin h P , x )  + (cos P r L  

[cl 

[dl 

[el 

The mass and stiffness matrices have the entries 

The first set is simple polynomials, which do not violate the CBC or prevent the natural 
boundary condition from being satisfied. Hence, they qualify as a set of consistent admissible 
functions. The second set is the eigenfunctions of a fixed-free bar in axial motion. This set is 
the exact eigensolution when there is no spring, i.e., k = 0. In the presence of a spring, this 
set of functions cannot satisfy the natural boundary condition at x = L, as all trial functions 
have vanishing first derivatives at x = L .  The third set, Eq. [el, is the eigenfunctions of 
a fixed-free beam in bending, where P,L are the solutions of the associated characteristic 
equation. For this set, both the displacement and slope are zero at x = 0 ,  thus violating the 
complementary boundary condition at x = 0. Hence, the second and third sets do not qualify 
as consistent admissible functions. 

We compare the accuracy of the solution obtained by using all three sets for varying 
orders of approximation and for different values of the spring constant k. Table 11.5 com- 
pares the first three eigenvalues for the different sets of admissible functions, and for varying 
values of the spring constant, using approximation orders of five and seven. Even though 
simple polynomials constitute a relatively poor choice of admissible functions, the difference 
in accuracy and rates of convergence between simple polynomials and the other two sets is 
obvious. 

Analyzing the eigenvalues we make the following observations: 

1. As expected, in all cases the eigenvalues become smaller as the order of approximation 
increases and the inclusion principle holds. 
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Table 1 1 .S Comparison of eigenvalues 

n = 5  n = 7  n = 5  n = 7  n = 5  n = 7  

Set 1: Polynomials as consistent admissible functions 

Set 2: Eigenfunctions of fixed-free uniform bar as trial functions 

wl  1.5708 1.5708 3.2417 3.2027 3.2717 3.2348 

02  4.7124 4.7124 6.4938 6.4091 6.5515 6.4726 

03 7.8540 7.8540 9.7727 9.6239 9.8524 9.7157 

Set 3: Eieenfunctions of fixed-free uniform beam as trial functions 

2. When k = 0, which implies a free end at x = L, the eigenfunctions of the fixed-free 
bar give the exact natural frequencies. This is because the eigenfunctions of the fixed-free 
bar become the closed-form eigensolution for this case. Comparing polynomials and set 3, 
for n = 7, polynomials exactly match the first two natural frequencies, with the third being 
off by about 0.01 percent. However, using the eigenfunctions of the fixed-free beam gives 
errors in all eigenvalues, with the error in the first natural frequency being about 2.5 percent. 
Interestingly, the error in the third natural frequency is also about 2.5 percent off the actual 
natural frequency. This is an indication of problems encountered when the CBC are violated, 
because one expects the lower natural frequencies to be more accurate than the higher ones. 

3. For nonzero values of k, polynomials again give the best results, except for w3 for n = 5. 
This is expected, because the polynomials are a set of consistent admissible functions and 
the other two sets are not. The natural frequencies again have an error of 2.5 to 3.0 percent 
for sets 2 and 3. The lower frequencies are not estimated more accurately than the higher 
frequencies, clear indications of the problems encountered when the CBC are violated and 
the natural boundary condition cannot be satisfied. 

4. For nonzero values of k, while the accuracy obtained from sets 2 and 3 is comparable for 
w l ,  eigenfunctions of the fixed-free beam give better results for w3. For w2, set 2 generally 
gives more accurate results. 

5. Also, for nonzero values of k, the eigenvalues obtained from sets 2 and 3 never get very 
close to the actual values. For example, for k = 100, the solution for w l  does not improve at 
all for set 1 as we go from n = 5 to n = 7. This is because the solution has almost converged. 
However, for set 2 there is quite a change as the order of the approximation is increased. For 
set 3, there seems to be convergence, but not to the correct natural frequencies. 

6. When polynomials are used as trial functions, one obtains very accurate results for the 
lower modes but the higher modes are inaccurate. Usually, for an approximation of order n, 
fewer than nl2 modes give accurate results. This can be observed by looking at w3 for n = 5. 
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7. Finally, one can observe the asymptotic behavior of the eigenvalues by looking at the 
results for different values of k. Consider the results for polynomials and n = 7, so that we 
can treat the first three natural frequencies as exact. For k = 100 and k = 1000, the first 
natural frequency is almost doubled than w 1 for k = 0, while wz increases by 33 percent and 
w3 increases by about 20 percent. As in Example 11.6, addition of an extra source of stiffness 
affects the lower modes much more than the higher modes. 

1 1.6 KINEMATICS OF COMBINED ELASTIC AND LARGE 
ANGLE RIGID BODY MOTION 

An important case in vibrations is the combined elastic and large-angle rigid motion 
of a body. Consider, for example, the beam in Fig. 11.22. Analyzing the position 
of a point compared with an initial, undeformed position, the rigid body and elastic 
motions can no longer be linearly superposed, as the large-angle motion changes the 
projection of the beam axis onto the undeformed axis substantially. 

When the elasticity of the body is small, it is convenient to view the elastic mo- 
tion from a set of reference axes, selected such that the motion observed from these 
axes is small and linear vibration theory can be applied. When the elastic deforma- 
tion becomes large compared with the dimensions of the body, one needs to consider 
theories other than those presented in this chapter. 

Consider Figs. 1 1.22-1 1.24, describing beams undergoing both elastic and 
large-angle rigid body motion. The two ends of the beam are denoted by c and 
d .  These beams represent commonly encountered situations when dealing with 
the combined elastic and large-angle rigid body motion. Figure 11.22, depicting 
a pinned-free beam, is representative of a robotic arm; Figure 11.23 describes a 
free-free beam, as in a satellite with antennae; and Fig. 11.24 is representative of an 
intermediate link of a mechanical system. 

We will observe the motion of these beams from a relative frame such as the one 
shown in Fig. 11.25. The frame has an origin 0 and a certain orientation, and is called 
the shadow frame or the tracking frame. We will refer to the motion of this frame 
as the primary motion, and the motion observed from the frame as the secondary 
motion. The reason for describing the motion in two parts is to select origin and 

1 Original Jd 
Figurn 1 1.22 Deformed pinned-free beam Figure 1 1.23 Deformed free 

free beam 



Figure 1 1.24 Deformed intermediate link 

Inertial frame 

Figure 1 1.25 

orientation of the tracking frame such that one can treat the secondary motion using 
the near linear theory discussed earlier in this chapter. With this in mind, we write 
the displacement of a point on the beam as 

r(x, t )  = ro + (x  + u(x, t))i + v(x, t)j + w(x, t)k [11.6.1] 

in which ro  + xi denotes the primary motion and u(x, t)i + v(x, t)j + w(x, t )k denotes 
the secondary motion. 

We note that u(x, t ) ,  v(x, t ) ,  and w(x, t )  are not necessarily the same as their 
counterparts in the previous sections of this chapter and that the primary and sec- 
ondary motions do not necessarily correspond to the rigid and elastic motions. The 
values u(x, t ) ,  v(x, t ) ,  or w(x, t )  depend on the choice of the tracking reference frame 
and they may contain components from the rigid body motion. 

The angular velocity of the reference frame is written in terms of its components 
along the reference frame as 

The velocity of point x becomes 

r(x, t )  = ro + ui + vj + wk + o X [ ( x  + u)i + vj + wk] 
= ro + (u - w,v + wyw)i + ( v  + wzx + wzu - wxw)j 

+ (w + wxv - w y x  - wyu)k [ I  1.6.31 

We will discuss the following issues associated with the modeling of lightly 
flexible bodies undergoing combined rigid and elastic motions: 

1. Selection of the origin and orientation of the tracking reference frame. 

2. The type of trial functions to use to expand the secondary motion. 

3. Analysis of the equations of motion. 
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One can expect the nature of the reference frame to dictate the nature of the 
equations of motion. The primary criterion is to enable one to use the near linear 
theory and to describe the secondary motion in a series expansion. As we will see in 
the next section, in many cases it is necessary to keep the u(x, t )  in the formulation, 
because for fast rigid body motions the centrifugal force is quite large. 

The expansions for v(x,  t ) ,  w(x,  t ) ,  and e(x, t )  have the form 

in which I+!J,(x), y r ( x ) ,  and Pr(x)  are sets of suitable admissible functions and qr( t )  
are generalized coordinates, with n, n*, and m denoting the order of the expansion. 
It follows from Eq. [11.2.6] that u(x, t )  can be expressed in terms of the generalized 
coordinates as 

There are two primary choices for the selection of the relative frame: 

a. To select the relative frame such that its motion is known a priori. This choice 
is relevant when one has a good idea as to what the rigid component of the motion 
is going to look like. An example is the maneuver of robots or spacecraft with little 
flexibility. A set of inputs is applied to move the body along a desired trajectory. For 
a variety of reasons, the actual trajectory of the arm will differ from the desired one. 
The secondary motion makes up for this difference. With this model, the motion is 
measured from a tracking frame whose motion is known. 

Note that in this case both ro and 8 are treated as known quantities, so that when 
deriving the equations of motion their variation is zero. Hence, in this formulation the 
primary motion is independent of the secondary motion. The boundary conditions on 
the secondary motion remain the same as in the initial description of the beam. 

b. To select the relative frame such that its location and motion depend on the 
orientation of the structure. In this formulation one takes into consideration the cur- 
rent position and orientation of the body. Hence, the primary motion is not selected 
independently and it is related to the secondary motion. The quantities describing 
the primary motion are variables, because their values depend on the location of 
the body. This implies that we may be adding redundant degrees of freedom. Such 
redundancy necessitates imposition of constraints on the secondary motion. The im- 
position of constraints can change the boundary conditions of the secondary motion. 



One can view the geometric boundary conditions of a body as configuration 
constraints imposed on an otherwise free-free member. From this perspective, one 
can view the constraints imposed on the secondary motion as changing the bound- 
ary conditions. However, one should keep in mind that the imposition of constraints 
on the secondary motion is at a mathematical level, so that the existing internal 
forces and moments at the boundaries, hence the CBC, do not change. One must 
be cautious in describing the secondary motion such that the newly generated ge- 
ometric boundary conditions are satisfied and the already existing CBC are not 
violated. 

As a consequence of using constrained coordinates, the resulting equations of 
motion will be in the form of constrained equations. One way to circumvent deal- 
ing with a constrained set of equations is to select the generalized coordinates that 
describe the secondary motion in a way such that the imposed constraints are au- 
tomatically satisfied. We will adopt this approach. In essence, by selecting the trial 
functions as consistent admissible functions for the secondary motion one can satisfy 
the constraints automatically. 

There are several ways of defining the primary motion. Selection of the relative 
frame is, in general, complicated for the case of general three-dimensional motion. 
Furthermore, for three-dimensional problems, physical representation of the choice 
of the relative frame becomes difficult, as well as any attempt to analyze the nature of 
the resulting equations of motion. On the other hand, when the angular velocity has 
certain properties, some interesting descriptions of the motion result. Here, we will 
analyze cases where the angular velocity of the reference frame is in one direction 
only, and the secondary motion is on a plane. We consider the undeformed beam axis 
to be the x direction, one of w(x, t) or v(x, t) to be zero, and the angular velocity to 
be along one of the x, y, or z directions. It turns out that there are three distinct types 
of motion possible depending on the directions of the secondary motion and angular 
velocity. 

Example 11.3 showed the rotating blade problem, where the angular velocity 
was in the y direction and the secondary motion was on the xy plane, with w(x, t) = 

0. When the angular velocity is in the z direction and v(x, t) is set to zero we get the 
same type of behavior. We refer to such problems as Case 1. In this type of problem, 
there are no constraints imposed on the secondary motion. The angular velocity of 
the reference frame is along the plane of the secondary motion; thus the additional 
rotational variable due to the rotation of the tracking frame is an added degree of 
freedom and not a redundant one. For Case 1 problems, the angular velocity of the 
tracking frame has a stiffening effect on the secondary motion, as we saw in Example 
11.3. This case is the most straightforward of the three types of motion. 

When the angular velocity is in the x direction only, the motion is similar to 
that of a rotating shaft. We will analyze this case, referred to as Case 3, in Section 
11.9, together with the effects of the rotation on the secondary motion. As in Case 1, 
selection of the tracking frame does not impose a constraint on the secondary motion, 
for the same reasons. 

By far the most interesting case is Case 2, when the secondary motion is in the 
xy plane and the angular velocity is in the z direction (or secondary motion in the xz 
plane and angular velocity in the y direction). The angular velocity is perpendicular 
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Table 1 1.6 Types of largwngle rigid motion 

Plane of Secondary Angular Velocity 
Type of Motion Motion Direction 

Case 1 (rotating blade, stiffening effect) X Y Y 

Case 2 (robotic arm, spacecraft) 

Case 3 (rotating shaft, whirling) 

to the plane of the secondary motion. Hence, selection of the reference frame imposes 
a constraint on the secondary motion. Table 11.6 outlines the three cases. 

For the case of angular velocity in all three directions, general conclusions can- 
not be drawn, because of the mixed terms that enter the formulation. The exception 
is when the angular velocities are small; then, one can rely on the results from this 
chapter to describe the stiffening and softening effects. 

In the remainder of this section we consider Case 2 and outline three approaches 
to select the origin and orientation of the reference frame, together with the con- 
straints they impose on the secondary motion. Without loss of generality, in all de- 
scriptions we consider the secondary motion to be in the x y plane and the angular 
velocity in the z direction. 

The Rigid Body Conshulint In this approach, one selects the moving coor- 
dinate frame such that there is no rigid body component in the secondary motion. 
That is, all of the rigid component of the motion is described by the angle 13 and 
by ro. Figures 11.26 to 11.28 show this constraint for the three beam configurations 
considered earlier. 

Let us consider the selection of the origin of the reference frame. For the pinned- 
free beam, the origin 0 is selected as the pin joint. For the free-free and intercon- 
nected beams the origin is selected as the center of mass, so that 

where d m  = p(x) dx. This leads to the constraint for the center of mass 

Note the component of this equation in the y direction indicates orthogonality 
with the translational rigid body mode. The component in the x direction is basically 
the lateral motion. This motion is usually very small, as it is the integral of u(x, t) 
over the beam. For the intermediate link in Fig. 11.28, one can select the origin at 
one of the joints, but this complicates the physical interpretation of the motion. 
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Figure 1 1.26 Figure 1 1.27 

Intermediate link 

Figure 1 1.28 Rigid body constraint 

To determine the orientation of the tracking frame, a number of approaches can 
be followed. One choice is to have the components of the motions in the x and y 
directions be orthogonal to each other. This leads to the principal axes constraint 

Another choice is to select the orientation such that v(x, t )  contains no rigid body 
components. That is, v(x, t) is orthogonal to the rotational rigid body mode. For both 
a pinned-free and a free-free beam, the rotational rigid body eigenfunction is (note 
that x is measured from point 0) 

For the interconnected beam in Fig. 11.28 it is much harder to distinguish be- 
tween the rigid and elastic motions, as both ends of the beam are not free, but one 
can use the above equation as the constraint. 



Another choice for the orientation constraint is known as the modiJied 7'isserand 
constraint, and it has the form 

For the types of motion of interest here, the deformation u(x, t )  is usually small, 
so that any product of u(x,  t )  and v (x ,  t )  and their derivatives can be ignored. Using 
this assumption, both the constraints [ l  1.6.81 and [ l  1.6.111 become equivalent to Eq. 
[ l  1.6.101. We will use Eq. [11.6.10] as the rigid body constraint from now on. 

Let us next investigate the boundary conditions on the secondary motion. For 
the pinned-free and free-free beams the boundary conditions do not change after 
the primary frame is introduced. Hence, to expand u(x, t )  and v(x,  t ) ,  one can use 
any set of trial functions used in the analysis of pinned-free or free-free beams. For 
the pinned-free and free-free beams, use of the rigid body mode constraint has the 
appearance of being a natural choice for the shadow frame. 

For the intermediate link, the situation is different. Introduction of the reference 
frame changes the boundary conditions of the secondary motion at c and d to basi- 
cally free ends. The internal force at a free end is zero. However, for the actual beam, 
at that point there is an internal force due to the joint. So one ends up with a situation 
where the displacement and slope are unspecified at the boundary, while the internal 
forces and moments are not zero. 

A variant of the rigid body mode constraint is to not use the mass density term 
in the constraint equations. Rather, one has 

This constraint makes it easier to generate a set of trial functions. 
The rigid body constraint has the advantage that it provides a physical explana- 

tion for the selection of the reference frame. Also, for the pinned-free and free-free 
beams, it separates the rigid and elastic components of the overall motion into the 
primary and secondary motions. On the other hand, in an actual measurement or con- 
trol application, where one needs to have measurements of the origin and orientation 
of the reference frame, it is difficult to deal with this constraint. Because the refer- 
ence axes are not attached to the body, the location and orientation of the reference 
frame cannot be measured directly and they must be calculated from other measure- 
ments. 

The Zero Slope Constraint The origin of the reference frame is attached to a 
point on the body, and the orientation of the reference frame is selected such that the 
secondary motion has zero slope at the origin, as shown in Figs. 11.29 to 11.3 1. In 
general, if there is a hub on the body the hub location is selected as the origin, as it 
is easier to attach a sensor or actuator there for measurement, navigation, or control 
purposes. For the interconnected beam, the reference frame is usually placed at one 
of the joints. The constraint on the secondary motion is expressed as 
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Y 

Intermediate link 

Figurn 1 1 -3 1 Zero slope constraint 

The resulting geometric boundary conditions on the secondary motion at the 
origin become 

u(0, t) = 0 ~ ' ( 0 ,  t )  = 0 [ I  1.6.141 

in essence giving the secondary motion fixed-free end conditions. This choice of 
the reference frame changes the boundary conditions on the secondary motion of all 
three types of beams considered in this section. For the beams in Figs. 11.30 and 
11.3 1, if the origin 0 is placed on a point in the interior of the beam, one can view 
the beam as consisting of two beams, one from 0 to one end c, and the other from 0 
to the other end d. 

As in the rigid body mode constraint, the fixed-free end conditions specify that 
the internal force is zero at end d. For the interconnected beam, there is the problem 
of having the boundary conditions of a free end and the CBC of a pinned end when 
modeling the secondary motion. 

The Zero Tip Deformation Constraint The orientation of the reference 
frame is obtained by drawing a straight line between the two ends of the beam, as 
shown in Figs. 11.32 to 11.34. The origin is taken as one of the ends. As a result, the 
constraints on the secondary motion become 

where L is the original length of the beam. These constraint equations are the 
geometric boundary conditions associated with the secondary motion, those of a 
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/PJ Intermediate link 

Figure 1 1.34 Zero tip deformation constraint 

pinned-pinned beam. Note that the distance between the two ends is not necessarily 
equal to L, due to the shortening of the projection. Intuitively, this choice of the 
reference frame seems suitable for the intermediate link, Fig. 11.34. 

With this choice of the tracking reference frame, the boundary conditions as well 
as complementary boundary conditions at ends c and d are changed for the pinned- 
free and free-free beams. At the free end, the internal force and internal moment are 
zero. Once the constraint is imposed, the free end becomes a pinned end. However, 
because the internal force and moment are zero, there is no restriction on the types 
of functions one can use to expand the secondary motion other than the geometric 
boundary conditions. Hence, the imposition of the zero tip deformation constraint 
does not represent an inconsistency from a physical standpoint. 

1 1 7 DYNAMICS OF COMBINED ELASTIC AND LARGE 
ANGLE RIGID BODY MOTION 

We will consider elastic deformation along the beam axis and along the y direction 
and use an analytical approach to derive the equations of motion. We will write the 
kinetic and potential energies, as well as the virtual work, and then invoke the ex- 
tended Hamilton's principle. We first introduce the displacements u(x ,  t )  and v ( x ,  t )  
in their general form to the kinetic and potential energies. As a result, the equations 
of motion will have the form of partial differential equations for u(x ,  t )  and v ( x ,  t ) ,  
and ordinary differential equations for ro( t )  and B(t). Then, we discretize the dis- 
placement, u(x ,  t )  and v ( x ,  t )  and derive the equations of motion in discretized form. 

Consider a differential element of the beam, and Case 2 discussed in the pre- 
vious section. The angular velocity of the differential element can be expressed as 



o = [ ~ ( t )  + ul (x ,  t ) ] k .  Hence, the kinetic and potential energies are 

T = Ttran + Trot 

where we have included in the potential energy an axial force in the x  direction. The 
virtual work has the form 

in which f(x,  t )  = p,(x, t)i + p y ( x ,  t)j  denotes the distributed external force. The 
distributed moment acts through the total rotation of point x, which is O(t) + v r ( x ,  t ) .  
Note that when the reference frame is selected a priori, O(t) becomes a known quan- 
tity, instead of a variable. 

Derivation of the equations of motion in the form of partial differential equations is 
quite cumbersome, even for the case considered here. For this task, we simplify 
the model further by ignoring the stretch associated with the axial deformation, 
e(x,  t )  = 0. Further, we consider a pinned-free beam, so that ro = 0. We also ig- 
nore the rotational kinetic energy Trot, which is due to the rotatory inertia. As an 
external input, we consider a concentrated moment at the pin joint of magnitude T. 
The kinetic energy then has the form 

We simplify the expression further by noting that u(x, t )  is much smaller than u(x,  t ) .  
Any term quadratic in u  or involving u, as well as terms involving products of u  and 
v, are ignored. We are then left with 
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When the mass density is constant the last term in the kinetic energy can be written 
in terms of v, using Eq. [h] in Example 11.3, as 

The potential energy has the same form as in Eq. [ l  1.7.1 b]. The virtual work is 

Because one variable-the body angle 0-is added to the system description, 
one corresponding constraint equation needs to be specified. For the time being, de- 
scribe the constraint in the general form 

where c(x) is the constraint operator. We continue with the case of constant mass 
density. We add Eq. [11.7.7] to the Lagrangian by using the Lagrange multiplier A, 
which yields L = T - V + AC, and we invoke the extended Hamilton's principle. 
Taking the variation of the Lagrangian with respect to the two variables O(t) and 
u(x, t )  and their derivatives, we write 

dL . dL dL dL dL 
6L = -60 + -6v + 7 6 G  + 7 6 ~ t  + -6v" 

d0 dv dv dv dv" 

The applied load can be expressed as mz(x) = r&(x), - and the virtual work can 
be expressed as 

Performing the integrations by parts in the variation of the Lagrangian and col- 
lecting coefficients of 60 and 6v, we obtain two equations of motion. For the primary 
motion we have 



and for the secondary motion 

When the mass density is not constant, the above equations have a more com- 
plicated form. A few observations about these equations of motion are in order. The 
equation for the primary motion can be expressed as 

d [  

1 .  
p- x20 + xi, + u20 + - o ( L ~  - x2)ut2 
dt 2 I 

To understand this equation better, it is useful to look at the expressions for the linear 
and angular momentum. The linear momentum is expressed as 

The angular momentum about 0 is 

x [ ( i  - 0v) i  + (i, + i)x + &)j] dx 

in which we ignored terms quadratic in u, u and products of u and v. Comparing Eqs. 
[11.7.12] and [11.7.14], we observe that Eq. [11.7.12] represents the rate of change 
of angular momentum per unit length about 0. This is expected, because we were 
considering a pinned-free beam whose equation of motion for the primary motion 
is a moment balance. One can show that for the free-free beam, the translational 
equations of motion represent force balances. 

When we use the approach of selecting 6 and its derivatives a priori, then 0 
and its derivatives become known quantities and they have no variations. Equation 
[11.7.11] remains the sole equation of motion, as there is no longer an equation of 
motion for the primary motion. 



The equations of motion derived above are in the form of hybrid equations, a combi- 
nation of ordinary and partial differential equations. One way of dealing with these 
equations is to discretize Eqs. [11.7.10] and [11.7.11]. To this end, one can make 
use of several discretization methods. An alternative is to begin with a discretized 
description of the secondary motion and introduce this description to the extended 
Hamilton's principle. We illustrate this approach next and make an assumed modes 
expansion of the secondary motion of order n as 

where $,(x) are admissible functions and qr(t) are generalized coordinates. 
For the pinned-free beam under consideration, introducing Eq. [ l  1.7.151 to the 

kmetic energy and potential energy in Eqs. [ l  1.7.41 and [ l  1.7.1 b], we obtain 

in which mrs and k,, are defined in Eqs. [ l  1 S.41 and [ l  1 S.51, and 

When the mass density is constant Eq. [11.7.17b] becomes 

From Eqs. [11.7.6] and [ l  1.7.91, the virtual work is expressed as 
n 

S W = r[S0 + 6u1(0)] = T 60 + 1 T$~(o) Sqr [11.7.19] 
r =  1 



and the variation of the constraint becomes 

From now on, we consider that the admissible functions have been selected such 
that cr = 0 ( r  = 1,2, . . . ,n). Next, we invoke Lagrange's equations. For the coordi- 
nate 0, the integral of the p ( ~ ) ~ 2 b 2  term in the kinetic energy gives lob2. Carrying 
out the algebra, we obtain the equation of motion for the primary motion as 

or in column vector form as 

This equation can also be written as 

and the term in the big brackets is recognized as the spatially discretized form of the 
angular momentum about point 0. 

For the secondary motion, we follow a similar procedure and obtain the equa- 
tions of motion as 

or, in column vector format as 

{ a } ~  + [M]{q} + ( ([h]  - [M])b2 + [K]){q) = i{~,b'(O)} [1 1.7.211 

Both the primary and secondary motion equations are nonlinear. The nonlin- 
earity and a source of coupling between the two motions is through the [MI - [h] 
term and i2. Had we not included the shortening of the projection to the forrnula- 
tion, the [h] matrix would be absent from the equations of motion and the coupling 
would be influenced only by [MI. For Case 2 problems, it turns out that [h], [MI, and 
[h] - [MI are all positive definite (see article by Smith and Baruh), so that neglect- 
ing the shortening of the projection changes the sign of the coupling and leads to an 
erroneous mathematical model. The contribution of [h]b2 in Eq. [11.7.25] is known 
as the centrifugal stlfSening and the contribution of [ M ] o ~  is known as the centr@- 
gal softening. For Case 2 problems, the centrifugal stiffening is always larger than 
the centrifugal softening. When the primary motion has three rotational components, 
centrifugal stiffening does not always dominate the centrifugal softening. 
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When the angular velocity of the tracking frame is slow, one can ignore the term 
( [ h ]  - [ M ] ) o ~  from the secondary motion and { q ) T ( [ ~ ]  - [h]){q}l)  from the primary 
motion. As a result, one obtains a set of linearized equations that describe the overall 
motion in the form 

These two equations can be combined into a single matrix equation of order n + 1 

where {q*}  = [8 ql 92 . . . qnlT, { F * )  = ~ [ l  + ; ( 0 )  +;(O)  . . . +;(0) lT,  and the 
matrices [m*]  and [k*]  are of order n + 1 and have the form 

with m ,  and krs (r,s = 1,2, . . . ,n)  denoting the entries of [MI and [ K ] .  
It should also be noted from Eq. [l 1.7.251 that the location of the external mo- 

ment affects the equations of motion for the secondary motion, but not that of the 
primary motion, corroborating the statements in Chapter 8 that the location of a con- 
centrated moment does not affect the rigid body motion but that it affects the elastic 
motion. 

In this section we examine the nature of the equations of motion, the individual terms 
in the equations of motion for the various constraints discussed in Section 11.6, and 
suitable trial functions to be used as admissible functions. We primarily consider the 
pinned-free beam from the previous section, so that ro = 0. We also discuss issues 
associated with the free-free and interconnected beams. 

[m*]  = 

The Rigid Body Constraint In this approach one selects the body axes such 
that there is no rigid body component in v ( x ,  t ) .  All of the rigid component of the 
motion is described by the body angle 13. The constraint equation is given by Eq. 
[11.6.10], from which the constraint function c(x) is recognized as 

[ I  1.7.281 

[k* ]  = 

lo a1 a2 . . .  an 
a1 ~ I I  m12 . . . mln 
a2 m2, m22 . . . 
. . . . . . . . . . . . . . . 

-an mnl mn2 . . . mnn - 

We now investigate trial functions +,(x) (r = 1,2, . . . ,n )  to use when expand- 
ing the secondary motion. We are looking for trial functions that automatically sat- 
isfy this constraint. One suitable set consists of the eigenfunctions of a pinned-free 
beam with the same mass and stiffness characteristics except for the rigid body 

0 0 0 . . .  0 
0 ~ I I  k12 . . . k ~ n  
0 k21 k22 . . . k2,, 
. . . . . . . . . . . . . . . 

- 0  knl kn2 . . .  knn- 



eigenfunction. We then have 

which, of course, satisfies the relationship 

by virtue of the orthogonality of the eigenfunctions to the rigid body mode ~ $ 1  ( x )  = 

x. Another suitable set of trial functions is polynomials orthogonalized using a Gram- 
Schmidt process. Such polynomials can be normalized to satisfy Eq. [11.8.3]. 

When using the eigenfunctions of the pinned-free beam as trial functions, we 
obtain the following values for the coefficients discussed in the previous section 

where w ,  are the natural frequencies associated with the elastic motion of a pinned- 
free beam. When orthogonalized polynomials are used, the entries of krs are no 
longer natural frequencies of the corresponding beam. Also, [K] is fully populated, 
as opposed to being diagonal. 

When the eigenfunctions of the pinned-free beam are used as admissible func- 
tions the equation of motion for the primary motion becomes 

As discussed earlier, this equation can be expressed as an angular momentum 
balance 

where the terms inside the square brackets 

I 0  + { d T ( [ ~ 1  - thl){q} 

are recognized as the mass moment of inertia of the deformed beam about the z axis. 
To see this, we consider the definition of the mass moment of inertia about the z axis, 

Ignoring the u2 term, introducing the discretization [11.7.15] and the definition of 
u, gives Eq. [11.8.7]. In essence, the elastic deformation changes the magnitude of 
the mass moment of inertia. This change is dependent on the sign of &, - h,. As 
discussed earlier, [h] - [MI is positive definite for the type of motion considered here, 
so that while these terms increase the stiffness in the secondary motion equations, 
they reduce the mass moment of inertia. When {q}T([M] - [h]){q} becomes very 



1 1.8 ANALYSIS OF THE ~?QUATIONS OF MOTION 653 

large, one may reach a very small or even negative value for the inertia term in Eq. 
[11.8.7], which is not possible physically. This, of course, takes place when either 
one or both of 8 and the secondary motion amplitudes are high. These parameters 
basically define the accuracy range for the assumption used in viewing the motion 
as a primary plus a secondary motion. 

For the secondary motion we obtain 

An interesting property when using the rigid body constraint is that the equation 
of motion for the primary motion contains no acceleration terms from the secondary 
motion, and vice versa. The inertia matrix for the combined system is diagonal, thus 

This feature makes it easier to integrate or manipulate the equations of motion nu- 
merically. In addition, the rigid body constraint gives one a better physical interpre- 
tation of the terms involved. While these features are very desirable for analysis and 
simulation of the system behavior, the rigid body constraint loses its appeal when 
one needs to take measurements or conduct experiments. This is because of the ad- 
ditional effort needed in locating the relative frame from actual measurements. 

For the free-free beam, one can select as trial functions the eigenfunctions of that 
beam, or orthogonalized polynomials, as in the pinned-free case. For the intercon- 
nected beam, the situation is again different. Here, if one selects the eigenfunctions 
of a free-free beam as the admissible functions, the CBC at the ends will be violated, 
because these trial functions describe a system with zero shear force, and there are 
nonzero shear forces at the ends of interconnected links. Hence, pinned-free or free- 
free eigenfunctions do not constitute a set of consistent admissible functions for the 
interconnected beam. Orthogonalized polynomials do not have this problem. How- 
ever, the problem they do have is regarding convergence and numerical accuracy of 
the solution. Polynomials of order higher than seven or eight often lead to singular- 
ity. Also, as discussed in Section 11.5, a larger number of terms are required from 
polynomials than from other types of trial functions, for the same desired accuracy 
levels. 

The Zero Slope Constraint This constraint selects the rigid body angle 6 such 
that the slope of the secondary motion is zero at the pinned end, or 

The constraint function c(x) is expressed as 

Substituting the constraint in Eq. [11.8.1 I] into Eq. [ I  1.7.201 we obtain 
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The trial functions $ , (x )  that are used in the expansion of the secondary motion 
are selected such that they have zero slopes at x = 0. It follows that the essential 
boundary conditions these trial functions should satisfy are 

There are several choices when selecting the trial functions. One reason why 
there are more choices here than for the rigid body mode constraint is that the trial 
functions need not satisfy any orthogonality relations. Two functions that irnrnedi- 
ately come to mind are the eigenfunctions of a fixed-free beam and simple poly- 
nomials, where $,.(x) = xr+' . Using the trial functions that satisfy Eqs. [I  1.8.141 
together with the assumed modes method, we obtain the equation of motion for the 
primary motion of the pinned-free beam as 

and for the secondary motion as 

If the trial functions &(x)  are selected as the eigenfunctions of a fixed-free 
beam with the same cross section and stiffness properties as the beam at hand, then 
mrs = 8, and krs = 46, (r,s = 1,2, . . . ,n). However, the a, terms, which lead to 
a nondiagonal inertia matrix, do not vanish, regardless of the choice of trial func- 
tions. The discussion in the preceding subsection with regards to the dominance of 
the centrifugal stiffening over the softening terms is valid when the zero slope con- 
straint is used. However, one can show that the magnitudes of the hrs - m,, terms 
are much larger when the zero slope constraint is used, as compared with the rigid 
body constraint. This leads to a less accurate mathematical model, whose range of 
applicability for 0 is much smaller than the model obtained using the rigid body 
con~traint.~ 

For a free-free beam, the formulation and the types of trial functions one can use 
are the same as for the pinned-free beam. The origin can be selected as a point in the 
interior of the beam, or as one of the ends. When the interior is selected one needs 
to use two sets of functions, from 0 to the ends. 

For an interconnected beam, one can select the origin as any point on the beam, 
including the end points. However, the eigenfunctions of the fixed-free beam do not 
constitute a set of consistent trial functions, as they violate the CBC at the inter- 
connected ends. The same situation is encountered when using eigenfunctions of a 
pinned-free beam with the rigid body constraint. 

The primary advantage of this constraint is that it makes it very easy to measure 
the location and orientation of the reference frame. 

I 'See 1. Yu, master's thesis, Rutgers University, 1995. 
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The Zero Tip Deformation Constraint This constraint leads to the following 
geometric boundary conditions for the admissible functions: 

where L is the undeformed length of the beam. The equations of motion for the pri- 
mary and secondary motions have the same form as Eqs. [11.8.15] and [ l  1.8.161. 
Again, if the eigenfunctions of a pinned-pinned beam with the same measurements 
and mass and stiffness properties of the beam considered are used as trial functions, 
then m, = &,, and k ,  = 0$,, ( r , ~  = 1,2, . . . ,n). Also, a, Z 0, regardless of the 
choice of trial functions. Another set of suitable trial functions are simple sinusoidals, 
which become the actual eigenfunctions if the beam is uniform. Sinusoidals are eas- 
ier to deal with than hyperbolic sines and cosines or polynomials. Further, they have 
better convergence characteristics and very few singularity problems. 

Another advantage of the zero tip deformation constraint is that the trial func- 
tions do not violate internal force and moment balances for all of the pinned-free, 
free-free, and interconnected beams. This is especially important for the intercon- 
nected beam, as in the other two constraints we discussed, the only set of trial 
functions that did not violate force and moment balances at the boundaries were 
polynomials. Also, from an implementation perspective, the location and orientation 
of the tracking reference frame can be measured directly by taking measurements 
at the joints. 

Comparison of the Constraints and Convergence Issues When model- 
ing Case 2 problems, the type of constraint to select and the types of trial functions 
to use depend on a variety of factors. The rigid body constraint appears more logical, 
especially for pinned-free and free-free beams, as it permits use of the exact eigen- 
solution of the beam as trial functions. The boundary conditions of the secondary 
motion are the same as the original beam. The discretized equations of motion are 
likely to have fewer terms, making it easier to numerically integrate these equations. 
Plus a, = 0 (r = 1, 2, . . ., n), another desirable feature for numerical integration. 
On the other hand, the choice of trial functions is limited. And, there is the problem 
of locating the origin and measuring the orientation angle 0 when seeking measure- 
ments. 

With the zero slope constraint, the discretized equations are more complicated, 
but there are more and easier choices for selecting the trial functions. The trial func- 
tions do not need to satisfy any orthogonality conditions. A disadvantage is that the 
assumption of viewing the motion as a superposition of rigid and elastic motions 
loses its accuracy much faster than the rigid body mode constraint. In addition, poly- 
nomials have much slower convergence properties than sines or hyperbolic sines. 
On the other hand, the origin and orientation of the reference frame can be easily 
measured. 

The zero tip deformation constraint emerges as an alternative somewhere in the 
middle. For pinned-free and free-free beams it does not have the nice properties 
of the rigid body mode constraint, but it does not have the convergence problems 
associated with the zero slope constraint. For the interconnected beam, it definitely 



is the better alternative, as a set of consistent admissible functions is very easy to 
find. 

Table 11.7 summarizes the different types of trial functions discussed in this 
section and whether they qualify as consistent admissible functions or not. When 
we refer to eigenfunctions of pinned-free, fixed-free, or free-free beams, we mean 
eigenfunctions of a beam with the same dimensions, material properties; and cross- 
section as the beam being considered. 

The accuracy of the eigenfrequencies of the linearized problem is one indicator 
of the accuracy to be expected of the overall motion, but it is not the only indicator. 
Another indicator of accuracy is the numerical complexities associated with the ma- 
nipulation of trial functions. Especially when one deals with hyperbolic sines and 
cosines, as well as with polynomials, the trial functions are difficult to handle nu- 
merically. Hyperbolic sines and cosines are extremely sensitive to the coefficients 
involved. For instance, if the model parameters are not known accurately, the trial 
functions constructed using these erroneous values will not be a complete set and, 
hence, they will give incorrect results. The function ePL('+") = ePLePL", and even 
if E is small, PLE may not be small, especially for the higher modes. This can re- 
duce the accuracy of the mathematical model substantially. With polynomials, one 
should not use too many trial functions, as this leads to singularity problems. Also 

-bh 1 1 .I Comparison of certain trial functions 

Type of Beam 

Consistent Consistent Consistent 
Admissible Admissible Admissible mrs, krs 

of Constraint Function Function Function Diagonal a, = 0 

Rigid body 
Eigenfunctions of 

pinned-free beam Yes Yes No Yes Yes 

Eigenfunctions of 
free-free beam Yes Yes No Yes Yes 

Orthogonalized 
polynomials Yes No Yes No No 

Zero slope 
Eigenfunctions of 

fixed-free beam Yes Yes No Yes No 

Eigenfunctions of 
fixed-free uniform beam Yes Yes No No No 

Simple polynomials Yes No Yes No No 

Zero tip deformation 

Simple sinusoids Yes Yes Yes No No 

Eigenfunctions of 
pinned-pinned beam Yes No Yes Yes No 
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with polynomials, only very few of the approximate eigenvalues are close to their 
actual values. 

Another interesting comparison of the different models involves a comparison of 
the strain. While the magnitude of the secondary motion is different for the different 
constraints used, the strains are comparable, as they are derivatives of the secondary 
motion. 

We summarize the issues to be considered when selecting the model to describe 
the secondary motion and the trial functions: 

1. The objective in the mathematical modeling. Is it analysis, measurement, or 
navigation and control? 

2. Are the trial functions a set of consistent admissible functions? 

3. Are the coefficient matrices diagonal and are a, = O? 

4. How sensitive are the trial functions to numerical as well as other types of errors? 

5. What are the convergence characteristics of the trial functions and how many 
trial functions are needed to have a certain number of accurate modes? 

A pinned-free uniform link is made of steel and has the following dimensions properties: cross I Example 
section 318 x 6 in, length = 12 ft, E = 27.5(10)6 psi, unit weight = 0.28 lb/in3. Find the 1 1.8 
eigensolution of the beam for small motions, and calculate the h,  terms and compare them 
with the natural frequencies using the rigid body mode constraint. 

Solution 

The normalized eigenfunctions of a pinned-free beam are used as trial functions. These func- 
tions were calculated in Example 11.4. For the linear elastic model, m,  = &,, and k, = 

w;Srs, where w ,  are the natural frequencies, by virtue of orthonormality of the trial functions. 
These diagonal elements, along with the centrifugal stiffening coefficients h, calculated us- 
ing Eq. [11.7.18], are given in Table 11.8. 

As one can see, the h,, terms are much larger than the mrr terms. Further, comparing the 
elements krr we find them to be substantially larger than the h, - m, terms, so that these 
terms have an effect on the secondary motion only when the primary motion is quite rapid. 
However, their effect on the primary motion is more important (see article by Baruh and 
Tadikonda). 

Table 1 1.8 Comparison of coefficients in equations of motion 
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Example I Consider the pinned-free beam in the previous example and compare the eigenvalues using 
11.9 the three approaches. 

Solution 

The linearized equations are given by Eq. [11.7.27]. Expressing the configuration vector as 
{q*(t))  = {z)eA', the associated eigenvalue problem has the form 

We use the following trial functions in each problem: 

Rigid body constraint: (a) Eigenfunctions of a pinned-free uniform beam with 
the same dimensions as the beam in the previous example. (b)  Orthogonalized 
polynomials. 

Zero slope constraint: (a) Eigenfunctions of a fixed-free uniform beam of the same 
geometry as in the previous example. (b)  Simple polynomials, x r  ( r  = 1 ,  2, . . .). 

Zero tip deformation constraint: Simple sinusoids, sin r.rrxlL, where L = 12 ft, the 
beam length. 

All the trial functions qualify as consistent admissible functions. The polynomial trial 
functions give the same results for both constraints they are used with, even though the [m*] 
and [I?] matrices will be different for the different constraints used. The nonzero natural 
frequencies are given in Table 11.9. 

As expected, the pinned-free eigenfunctions give the best results, because they are the 
exact solution for the linearized problem. The results obtained using the fixed-free eigenfunc- 
tions are very close to the actual values, except for the last natural frequency. The frequencies 
obtained using simple sinusoids are slightly less accurate than the fixed-free eigenfunction 
results, except for the last frequency, when they are much better than the fixed-free results. 
Polynomials give relatively good results only for the first four frequencies, after which their 
accuracy diminishes substantially. 

Note that this problem can also be viewed as an example for Section 11.5, where the 
accuracy of different trial functions is compared for the linear vibration of a uniform pinned- 
free beam. The rigid body mode constraint results are basically the exact solution. 

Tabla 1 1.9 Comparison of nonzero natural frequencies for pinned-free beam 

Mode Rigid Body Zero Slope Zero Tip Deformation Polynomials (for 
No. Constraint Constraint Constraint Both Constraints) 

2 15.827 15.827 15.827 15.827 

3 5 1.288 51.289 5 1.293 5 1 .292 

4 107.01 107.02 107.05 107.15 

5 182.99 183.07 183.21 194.72 

6 279.24 279.72 280.08 325.45 

7 395.74 398.32 398.82 1030.6 

8 532.51 895.21 549.96 1943.4 



When the angular velocity of the reference frame is along the x axis, the motion 
is similar to that of a rotating shaft. Because in such problems the cross section is 
circular, we will consider both v(x, t )  and w(x, t )  in the formulation. 

Consider a rotating shaft, shown in Fig. 11.35. The reference frame is attached 
to one end of the shaft and the x axis is along the neutral axis. The velocity of a point 
on the center line of the shaft can be obtained by setting ro, w,, and w ,  to zero in 
Eq. [11.6.3] and using the notation w ,  = 8, which yields 

+(x, t )  = ui + vj + wk + w,i X [(x + u)i + vj + wk] 

Assuming that u is negligible compared to the other terms, the velocity expres- 
sion further reduces to 

The expression for velocity gives the indication that we are dealing with a gyroscopic 
system. The kinetic energy associated with the translational motion of the shaft then 
becomes 

To find the rotational kinetic energy, we need to calculate the angular velocity 
of a differential element on the shaft. Consider the formulation in Section 11.2. The 
difference here is that the xyz frame is rotating with 8 while in Section 11.2 the 

L 

Figure 1 1.35 A rotating flexible shah 



xyz frame was fixed. Here, the rotations are by vl(x, t) about the z axis and then by 
-wl(x, t) about the rotated y axis (or first by - w' and then by v'). This is basically a 
1-3-2 (or 1-2-3) Euler angle transformation. Making a small-angles assumption and 
recalling from Fig. 11.3 that x*yaz* is the rotated frame, that of the beam axis, we 
approximate the angular velocity of the differential element as 

o = Oi + v'k - wlj* = O(cvfcw'i* - sv'j* - cv'sw'k*) + vl(sw'i* + cw'k*) - w'j* 

In view of the fact that 8, is often much larger than the secondary motion, the 
angular velocity can be simplified to 

The differential element has mass moments of inertia of dl,,  = S, , (x )dx ,  
d lyy  = . 9 y y ( ~ ) d ~ ,  dlzz = .Jjza,,(x)dx. Assuming that the xyz axes are selected as 
principal axes, so are x*y*z*, and the rotational kinetic energy can be approxi- 
mated as 

Often, Trot is small enough to be ignored, or, as in Eq. [11.9.6], only very few 
terms are retained in its description. Tmt usually becomes significant in the presence 
of disks attached to the shaft, and it is calculated only for the disks. The potential 
energy has the form 

Invoking the extended Hamilton's principle, we obtain the equations of motion. 
Note that when evaluating the variation of a term like wl ,  one uses two integrations 
by parts, one with respect to time and the other with respect to the spatial variable. 
Omitting the details of the integration by parts, the equations of motion can be shown 
to have the form 

p(x)i)' - ~ ( X ) O W  - B2p(x)ow - p(x)O2v + e 2 [ 9 y y ( ~ ) ~ 1 ] 1  + ( E I ~ ( X ) V I ~ ) ~ ~  = o 
0 5 x S L  

p(x)w + +(x)& + 2p(x)bv - p(x)8,'w + 8,2[9zz(x)w']' + (EIY(x)wl')'I = 0 
0 5 x S L  [I 1.9.81 

The equations of motion associated with the secondary motion contain Coriolis 
as well as centrifugal terms. The centrifugal terms arise from the rotatory inertia and 
from the centripetal acceleration. They have a softening effect, while the Coriolis 
terms contribute to added stiffness. 



Obviously, the equations of motion are quite complicated, so that one usu- 
ally seeks an approximate solution. We demonstrate the use of the assumed modes 
method in Example 11.10. 

Consider the uniform circular shaft of length L in Fig. 11.36. On the shaft there is a rigid disk I Example 
of mass M and moments of inertia I and J, with I being about the shaft axis, located at a 1 1.10 
distance a from end 0. Derive the equations of motion using the assumed modes method, by 
assuming that the shaft speed is kept constant by a servomotor at 1) = R and by ignoring the 
kinetic energy of the shaft. 

Solution 
The secondary motion has the same boundary conditions as that of a pinned-pinned beam in 
both transverse directions. We will use a one term expansion for both v(x, t )  and w(x, t )  in 
the form 

in which + ( x )  = sin r x l L  is the first eigenfunction of a pinned-pinned uniform beam. There 
is no problem with using the same trial function for both v(x, t )  and w(x, t ) .  The justification 
for ignoring the kinetic energy of the shaft is based on the fact that the mass moment of inertia 
of the disk is usually much larger than that of the shaft. The rotational kinetic energy has the 
form 

From Eq. [ l  1.9.31 the translational kinetic energy has the form 

1 
T,. = -M ("'(a, t )  + ~ ~ ( a ,  t )  + R 2 [ d ( a ,  t )  + w2(a, t ) ]  + 2il[u(a, t)HI(a, t )  - ~ ( a ,  t)$a, t ) ] )  

2 
[el 

with the potential energy defined by Eq. [I 1.9.71. 
We next introduce the assumed modes expansion of v(x, t )  and w(x, t )  into Eqs. [b], [c] 

and [ l  1.9.71, with the results 

[dl 



in which Y = $(a) ,  Z = $'(a) ,  w is the first natural frequency of a pinned-pinned bar with 
the same geometry and material properties, and [g] is a skew-symmetric matrix in the form 

The constant B relates the first normalized eigen funtions + ( x )  to $ ( x )  by $ ( x )  = 
BC#I~ ( x ) ,  for a uniform beam B = pL12. The terms in Eqs. [dl can be combined as 

in which 

1 0  1 0  
(/ .Z2 + M Y 2 )  [o [K] = B2w2 [o 

Because all coefficient matrices are time invariant, we make use of the developments in 
Section 5.3 and directly write the equations of motion as 

Both the terms that have f 1 2  in them (JZ2  and M Y 2 )  contribute to the softening effect. 
The centrifugal component M Y2 is from T,,, and it can be visualized easily. The contribution 
due to the rotatory inertia, J Z 2 ,  may seem puzzling at first, but can be explained by consid- 
ering that rotatory inertia adds to the kinetic energy that has to be balanced by the potential 
energy. The kinetic energy becomes higher when one includes the rotatory inertia term, so 
that in essence this corresponds to a lower relative stiffness. Be aware that Eq. [h] represents 
a gyroscopic system so that the reduction in stiffness due to increasing f l  does not describe 
the entire dynamics. 

When a = Ll2, that is, when the disk is in the middle of the shaft, the rotatory inertia 
terms have no contribution for the order of expansion considered, because (lrf(L/2) = 0. In 
this case, to capture the rotatory inertia contribution and to have a more accurate model one 
should use more than one trial function in the expansion of v(x,  t )  and w(x,  t ) .  

Let us next introduce the inertia of the shaft to the problem. In this case, we can safely 
assume that the contribution of the shaft to T,, will be negligible and the contribution to T,, 
is given by Eq. [11.9.3]. Introducing the assumed mode expansion in Eqs. [a] to Eq. [11.9.3], 
we obtain 

in which 

This expression is then added to the total energy. It follows that the equation of motion 
retains the same form as Eq. [h]. The elements of the coefficient matrices change as we replace 
MY2 with MY2 + M* in [ M 2 ] ,  [GI and [Mo] .  As before, when seeking a two or higher-order 
term expansion of the secondary motion, the additional T,,, will be more complicated. 

A very important phenomenon in the motion of shafts is that of whirling. At certain 
rotational speeds the shaft undergoes large amplitude vibrations. Such vibrations are often 



detrimental to the structural integrity of shafts. An eigenvalue analysis of the equations of 
motion, Eq. [h], is a useful tool to calculate shaft speeds under which whirling occurs. 

In previous sections we saw derivation of the equations of motion and analysis of 
these equations for continuous beams. The angular velocity was always in one di- 
rection. More complex models of flexible systems undergoing rigid body motion 
include angular velocities in more than one direction and bodies comprised of rigid 
as well as elastic components. In such a system the kinetic energy will have contri- 
butions from both the rigid and elastic parts. However, the potential energy will be 
due to the elastic part alone. This makes it difficult for a single continuous function 
to approximate the entire body. 

Consider, as an example, the model of a satellite with a hub of radius R and 
two antennae, as shown in Fig. 11.37. A suitable placement for the tracking refer- 
ence frame is to attach its origin to the center of the hub and to align it along the 
undeformed position of the antennae. The position of a point on the antenna can be 
written as 

Antenna 1: r l ( x l ,  t )  = [R  + xl + u l ( x l ,  t ) ] i  + u l ( x l ,  t ) j  + w l ( x l ,  t ) k  

Antenna 2: r2(x2,  t )  = [R  + x2 + u2(x2, t ) ] i  + v2(x2, t) j  + w2(x2,  t )k  [ 1 1.10.1 I 

with xl and x2 denoting the spatial variables. The secondary motion of the antennas 
are then obtained using separate expansions for each antenna. One can expand vi 
and wi (i = 1 , 2 )  using the zero slope constraint and use fixed-free eigenfunctions or 
simple polynomials as trial functions. One can also invoke the other constraints we 
have discussed, but these constraints do not have as good a physical interpretation as 
the zero slope constraint for this problem. For example, if the zero tip deformation 
constraint is used one draws a line from one end of the antenna to the other end. 

If one wishes to use a single set of admissible functions to describe the motion 
(from the tip of rl to the tip of r2),  the functions used should be able to model the 
zero elastic deformation in the hub. This may be a viable approach if the hub is small 
compared to the rest of the structure, but not so if the hub dimensions are anywhere 
close to the size of the antennae. 

For interconnected bodies, such as the one shown in Fig. 11.38, the zero tip 
deformation constraint appears more suitable than the other two, because of the at- 
tractiveness of using simple sinusoids as consistent admissible functions. The defor- 
mations on the individual links can be expressed as 

Link 1: r l ( x l ,  t )  = [ X I  + u l ( x l ,  t ) ] i l  + u l ( x l ,  t ) j l  + w l ( x l ,  t ) k l  

Link 2: r2(x2,  t )  = rl ( L  1 ,  t )  + [x2  + u2(x2, t)li2 + v2(x2, t) j2 + w2(x2,  t)k2 
[ll.l0.21 

where xl and x2 are the spatial variables and L1 is the length of the first link. Note 
that there is a separate set of unit vectors and orientation angles ( 8 1  and 82) for each 
link. 
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1 .  Write the kinetic and potential energies, as well as the virtual work, for the beam 
shown in Fig. 11.39. The cross section varies as follows: b is constant, while 
h(x)  = ho(l - x12L). 

2. Find 9,,, .9&,,, 9zz for the beam in Example 11.1. 
3 .  Find the kinetic and potential energies for the bar undergoing torsion in Fig. 

11.40. 
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Figure 1 1.40 

Find the equation of motion and boundary conditions of the tapered bar in axial 
vibration shown in Fig. 11.41. The cross section varies as follows: b is constant, 
while h(x) = ho(l - xI2L). 
Find the equation of motion and boundary conditions of the beam shown in 
Fig. 11.39. 

Find the equation of motion and boundary conditions of the bar undergoing tor- 
sion in Fig. 11.40. 

Find the eigensolution and first five eigenvalues of a free-free uniform beam of 
length L, stiffness E l ,  and mass density p. 

Figure 1 1.4 1 



8. Find the eigensolution for the free-free uniform beam resting on an elastic foun- 
dation, shown in Fig. 11.42. The elastic foundation is modeled as a continuous 
spring of constant k y ( x )  = 0 . 4 ~ 1 1 ~ ~ .  Comment on the rigid body mode. 

9 .  Derive an expression for the response of a pinned-pinned uniform beam to an 
impulsive force py(x ,  t )  = p&(t)&(x - - - a ) ,  in which a  denotes the point of ap- 
plication of the force. Analyze the mode participation, and draw conclusions for 
arbitrary values of a. Then, let a  = L12 and reevaluate your results. 

10. Using the assumed modes method, find the approximate eigensolution of the 
tapered fixed-free beam shown in Fig. 11.39. Ignore the dashpot, let py = 0 ,  
a = L12, k  = ~ E I I L ~ .  Use approximation orders of 3 , 5 ,  and 7, and use as trial 
functions the eigenfunctions of a fixed free beam. Verify numerically that the 
approximate eigenfunctions obtained from the discretization are indeed orthog- 
onal with respect to the mass distribution. 

1 1 .  For a pinned-pinned uniform steel beam of length L = 2 m and circular cross 
section with radius R = LAO, analyze the contribution of the rotatory inertia. 
Consider deformation in both the y and z directions, and obtain the eigensolu- 
tion with and without the rotatory inertia terms. Then compare the two sets of 
eigenvalues. Use as trial functions the eigenfunctions of a pinned-pinned beam 
and three terms in the expansion. 

12. Given a uniform column subjected to an axial load P as shown in Fig. 11.43, find 
the load P that makes the first eigenvalue zero using the assumed modes method 
and three trial functions. Then, compare this value for P with the critical load 
required for buckling, PC, = ~ T ~ ~ E I I L ~ .  Plot the first natural frequency versus 
P. Note: Finding P requires some trial and error calculations. 

Figure 1 1.43 
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13. Using the assumed modes method, find the eigensolution of the beam shown 
in Fig. 11.44. Use simple polynomials as trial functions and an approximation 
order of 5. Compare the results for the following values of k: 0.1 E I IL~ ,  0.5 
E1lL3, 3 E I IL~ .  

14. Consider the shaft undergoing torsion in Fig. 11.45. The shaft manufactured 
of steel (G = 79 GPa, p = 7860 kg/m3) by connecting two shafts of different 
diameter. Calculate the eigensolution of the shaft and list the first three frequen- 
cies. Use as trial functions the eigensolution of a uniform fixed-free shaft. 

15. Consider Example 11.8 and calculate the values of h,, when the zero slope con- 
straint is used and as trial functions simple polynomials (x2, x3, . . .) are used. 
Normalize the trial functions by setting mii = 1 (i = 1,2,  . . ., 4), and compare 
hi with the results in Example 11 3 .  

16. Write a computer program to model the beam in Example 11 3 .  Use the rigid 
body constraint and the trial functions in Example 11.8. Simulate the response 
for a period of 15 seconds for an external moment of M(t) = 1.2 sin 20t N-m at 
the pin joint. Do the simulation for n = 1, n = 2, and n = 3. Plot the values 
for 8(t) and q,(t) for each case. Compare the results as the number of terms that 
describe the secondary motion are varied. 

17. Derive the equations of motion of the rotating shaft considered in Example 
11.10. This time use two trial functions each to expand v(x, t) and w(x, t). Cal- 
culate the elements of the coefficient matrices. Include gravitational potential 
energy in your formulation. 

18. Consider the previous problem and a shaft made of steel of length L = 2 m 
and radius 3 cm. The rigid disk is of mass 20 kg and radius 10 cm. Conduct a 
parametric study and plot the first two eigenvalues of the approximate model as 
a function of the driving frequency R, in the range of 0 5 R 5 2000 rpm. 



19. Write the kinetic and potential energies for the double-link robot arm shown in 
Fig. 11.38. Consider that both links are flexible only in the plane of motion (XY). 

20. Find the equations of motion for the robot arm shown in Fig. 11.38. Ass-ume 
that link 1 is rigid and link 2 is flexible. Use one trial function to describe the 
secondary motion of link 2. Justify your choice for the reference frame. 

2 1. Figure 11.46 describes a uniform robotic arm of length L attached to a pin joint. 
The beam has elasticity in both transverse directions. Find the equation of mo- 
tion of the beam, using the assumed modes method. Discuss your choice of trial 
functions for each transverse direction. Neglect axial stretch. 

22. Find the equations of motion for the robot arm in Problem 20 by considering 
that both aims are flexible. Use one trial function for each arm and justify the 
motion constraints that you are using for each arm. 

23. Consider the model of a satellite in Fig. 11.37. The satellite consists of a hub of 
mass M, radius R, and mass moment of inertia J. To the hub are attached two 
antennae, each of length L = 3R, mass density p = M/5L,  and stiffness EI. 
In the undeformed position the two antennae are along the same line. Write the 
kinetic and potential energies of the hub. 

24. Using the assumed modes method, derive the equations of motion for the hub 
in the previous problem. Which constraint should you use? Note: Each antenna 
needs to be described as a separate body. 

25. Consider the equations of motion of the satellite in Problem 23. Linearize these 
equations and solve the resulting eigenvalue problem. Let I = 0 . 3 ~ ~ ~ .  Use 
two trial functions for each antenna. Plot the eigenfunctions. 

26. Consider the satellite model in Fig. 11.47. The satellite has the same dimensions 
as the satellite considered in Problem 23, but now there are four identical an- 
tennae, whose undeformed positions are perpendicular to each other. Obtain the 
equations of motion using the assumed mode, method, and one trial function per 
antenna. 

27. Derive the linearized equations of motion for the satellite in the previous prob- 
lem and solve for the eigensolution. Use one trial function per antenna. 



A P P E N D I X  

A BRIEF HISTORY OF DYNAMICS 

This appendix presents a historical overview of the field of analytical mechanics, with em- 
phasis on the history of rigid body dynamics. We also discuss the lives and achievements of 
the people who made key contributions. We present the accomplishments of each individual, 
and explore the interactions that took place among these brilliant minds. 

One of the greatest challenges when writing a historical document is that of perspective. 
Many of the scientists who contributed to this field also made significant contributions in 
other fields. For example, when studying the life of Isaac Newton, dynamicists tend to think 
of Newton's laws of motion as his greatest contribution, while mathematicians view Newton's 
greatest contribution as his development of the calculus. There are several publications about 
the history of mechanics, each one emphasizing different accomplishments. Even two major 
books on the subject (Truesdell and Dugas) at times disagree on the level of contribution. 

Although a well-balanced history of dynamics may be hard to attain, the process is ex- 
tremely fascinating and rewarding. In this author's view, we get a much deeper understanding 
of mechanics when we know the historical background. It is my recommendation to every 
student of mechanics (or any other branch of science, mathematics, or engineering) to learn 
its history and benefit from it. The interested reader should consult not only this appendix and 
the references cited, but also other texts on the history of science and engineering. 

The sections that follow give a historical survey of the evolution of dynamics and the life 
stories of key contributors. The technical community is much indebted to these people. We 
should also acknowledge those who thought to study the history of science and technology. 
In mechanics, Pierre Duhem (1861-1916) deserves the most credit; he is regarded by many 
as the founder of the field of history of science. Another individual who contributed to this 
subject significantly is Ernst Mach (1838-1916). 

That the motion of moving bodies has intrigued people throughout history should not come 
as a surprise. People have always been interested not only in moving things from one place 
to another, but also in the motions of animals, clouds, and celestial bodies such as the earth, 
moon, sun, and stars. For moving and lifting objects, we have used two mechanisms since 
earliest times: levers and pulleys. Expectedly, some of the first significant contributions to 
mechanics were for levers and pulleys, as well as for weaponry. And the ancient study of 
celestial mechanics was carried out for scientific as well as religious purposes. 

The seminal contribution to mechanics is attributed to the Greek scientist Aristotle (384- 
322 B.c.E.). He is credited with the first written work, Problems of Mechanics. Aristotle derived 
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the law of equilibrium for a lever. He stated that when a lever rotates, the velocities of the 
weights at the ends of the lever will be proportional to the lengths of the arms of the lever. 
Interesting to note is that his starting point was power; as Aristotle stated the principle that 
"forces balance each other if they are inversely proportional to the velocities." 

Because the principle Aristotle stated involves velocities, and balance of a lever involves 
equilibrium and small deviations from equilibrium, Aristotle is also credited as having intro- 
duced the concept of a virtual displacement. Aristotle's other research, which includes general 
motion analysis, celestial mechanics, and the shape of the earth, is not as well posed as his 
results on levers. Aristotle believed that wherever there is a motion, there must be a force 
causing it, and he tried to relate velocity to force. His work on celestial mechanics was pri- 
marily intuitive and based on his observations. He thought that the only natural motion was 
circular and that the sun and planets moved around the earth in circular paths. Ar~stotle's 
theory on celestial mechanics was refined slightly by Ptolemy, but it was not challenged for 
over 1500 years, until the time of Copernicus and Galileo. Similarly, his work on levers went 
unrefined for a very long period of time. 

The next significant contribution to mechanics is attributed to Archimedes (287-212 
B.c.E.), another Greek scientist. Archimedes built on Aristotle's work, refined Aristotle's equi- 
librium laws, and proposed some of his own. These laws were published in his treatise, On 
the Equilibrium of Planes or on the Centers of Gravity of Planes. Unlike Aristotle, who at- 
tempted to solve a wide variety of static and dynamic problems, Archimedes concentrated 
primarily on bodies at rest. The fame of Archimedes is primarily due to his contributions for 
static fluid mechanics and floating bodies (Archimedes' principle). He also made contribu- 
tions to geometry and the measurement of circles and of the number T. 

Although the famous Egyptian mathematician Euclid (365--300 B.c.E.) is not usually 
credited with a major contribution to mechanics, many Arab authors refer to him in their 
writings as having had some contribution, particularly with regards to the equilibrium of 
levers. However, there seems to be no historical evidence that Euclid's work on mechanics 
was known to Aristotle or Archimedes. We should note that Euclidean geometry is ideally 
suited for the study of Newtonian mechanics; thus, Euclid's contributions to mathematics 
paved the way for the advances in Newtonian mechanics. 

In Egypt, other mathematicians, Hero of Alexandria (second century c.E.) and Pappus 
(fourth century c.E.), made contributions to mechanics. Hero did work on pulleys and levers 
and considered levers of nonuniform cross sections and density. He knew about Aristotle's 
results and introduced the concept of a moment, albeit implicitly. Pappus is more known for 
his contributions to mathematics but he explored equilibrium problems on inclined planes, as 
well as the center of gravity. 

Between the time of Aristotle and Galileo there were minor contributions to mechanics, 
which we briefly discuss here. In the first millennium of the common era, primary contri- 
butions came from Alexandria and the Arab Peninsula. As mentioned, Hero of Alexandria 
contributed through his discussions of machines, like levers, pulleys, and screws. Thabit ibn 
Kurrah (836-901), also of Alexandria, did work on geometry and on levers. There is uncer- 
tainty whether the book Liber Charistonis is the Latin translation of his book or was written 
by the second-century mathematician Charistion. 

In the 13th century, the equilibrium of levers and of bodies on inclined surfaces was the 
focus of attention. The German scientist Jordanus (1225-1260) developed a theory where 
bodies would be heavier and lighter depending on the type of motion they were undergoing. 
Hence, he realized the concept of inertia, but without considering accelerations. One of the 
reasons mechanics did not evolve as fast as many other subjects (mathematics, for example) 
is that the study focused primarily on position and velocity. This is understandable, as it is 
much easier to visualize displacement and velocity than to visualize accelerations. 



The 14th and 15th centuries were the precursors to the scientific revolution. During this 
period, three major concepts were analyzed more extensively, and certain Aristotelian con- 
cepts began to be challenged: 

1. The shape and motion of the earth. Even though the correct shape of the earth was known 
to many Greek and Egyptian astronomers and physicists, the flat or cylindrical shape the- 
ory persisted for centuries, perhaps because of the influence of the church and the widely 
accepted Ptolemaic theory, which placed the earth at the center of the universe. Albert of 
Saxony (13 16-1 390) theorized that the earth was round in the north-south direction. 

2. The concept of impetus. This related the tendency of a body to continue moving. Im- 
petus was a concept close to linear momentum, but it was not defined as such. Impetus was 
a combination of momentum and a bit of energy, and it made way for the development of 
momentum and energy as concepts that indicate why motion continues. Impetus contradicts 
the Aristotelian theory. The person credited with first discussing impetus is Buridan (- 1 3 0 C  
- 1357) of France. Albert of Saxony and his French contemporary Oresme (1323-1 387) are 
also credited with development of impetus as a property of motion. 

3. The use of acceleration as a variable to describe motion. Albert of Saxony and Oresme 
are credited also with contributions in this area. Truesdell indicates that scholars at Merton 
College in Oxford, England, between the years 1328-1350 considered accelerations to de- 
scribe motion. However, it was only in the 15th and 16th centuries that acceleration began to 
be applied more widely. 

The Italian scientists Parma, Nicolas of Cues, Leonardo Da Vinci (1452-15 19), and Do- 
minic De Soto (1494-1560) are credited with blending these concepts and furthering new 
thoughts in mechanics. Da Vinci is the most famous, though primarily for his paintings and 
contributions to geometry. Leonardo did work on inclined planes, resolution of forces (his re- 
sults were incorrect), free-falling objects (again, with incorrect results, even though he con- 
sidered accelerations), shape of the earth, energy and momentum, and weaponry. De Soto 
is credited for work on the effects of gravity. The discussions initiated by the Italian school 
continued in other European institutions, especially Italian and French universities. 

At this point, let us consider a brief history of the evolution of orbital theory, as this 
evolution was instrumental in bringing about the scientific revolution and the developments 
in dynamics. 

Copernicus was the first to propose a heliocentric system for the motion of planets. He 
theorized a system where the planets and the earth were in circular orbit around the sun. 
(One should not be overly critical of his error in theorizing that the orbits were circular. The 
orbits of the earth and Mars around the sun have very small eccentricities, of 0.0167 and 
0.093, respectively.) His theory, refined during the years 1513-1543, was widely spumed, 
as it went against the teachings of the church that the earth was the center of the universe. 
However, scientists began to notice, among them Galileo, Tycho Brahe of Denmark and later 
on Prague, and Kepler. Astronomical observations soon began to show that the Copernican 
theory was on the right track but not very accurate. 

In 1600, Kepler (1571-1630) became assistant to Tycho Brahe (1546-1601), who was 
making accurate observations of the planets. But Tycho Brahe's thinking was deeply influ- 
enced by his religious beliefs and he did not accept the Copernican theory. 

After Brahe died in 1601, Kepler continued his work. The level of accuracy of Tycho 
Brahe's and Kepler's observations is very impressive, especially Kepler's in his resolve to 
explain the smallest discrepancies in the motion of planets. Kepler showed that a planet moves 
around the sun in an elliptical orbit that has the sun in one of its two foci. He also showed that a 
line joining the planet to the sun sweeps out equal areas in equal times as the planet describes 
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its orbit. Both these laws were first formulated for the motion of Mars around the sun, and 
published in 1609. Kepler's third law appeared in 1619. It is ironic that while Kepler's third 
law was widely accepted from the beginning, his first two laws were not warmly received 
for over 75 years. It was the work of Newton, as well as of Hooke and Halley, that finally 
confirmed Kepler's laws. Newton and Hooke both take credit for the inverse square law that 
describes gravitational attraction. As a result of discussions and exchange of information 
between Halley, Hooke, Wren, and Newton, both Hooke and Newton showed that the inverse 
square law of gravitational attraction leads to elliptic orbits. These developments led to the 
publication of the Principia in 1687. 

Returning to the history of dynamics, one 16th-century scientist to make an important 
contribution was Stevin (1548-1620), who lived in Belgium and Holland. Stevin refined the 
theory of statics and considered equilibrium of masses on inclined planes, and of pulleys. 
He used concepts of energy and, informally, the principle of virtual work. His work was fol- 
lowed by the contributions of Galileo, who confirmed Stevin's results and showed equilibrium 
directly from virtual work. Galileo (1564-1642) recognized that, contrary to Aristotelian the- 
ory, an applied force is not necessary to maintain motion with no change in velocity. This 
observation is Galileo's law of inertia, and it lays the foundation of what constitutes an iner- 
tial reference frame. Galileo also deduced from his measurements of pendulums that inertial 
mass and gravitational mass are identical. 

Galileo worked on the projectile problem and obtained accurate results, primarily be- 
cause he used acceleration in analyzing motion. Interestingly, Galileo's correct results on the 
projectile problem came without knowledge of Newton's second law. Galileo is one of the 
first to discuss that in the free-fall problem, displacement is proportional to the square of 
time. Toricelli (1608-1647), who was a student-more a disciple-f Galileo, put Galileo's 
work on projectile motion into a systematic form. Of course, Toricelli is most famous for his 
work on pressure and the barometer. Galileo is also credited with an accurate analysis of tides, 
which included the effects of both the sun and the moon. 

The more rapid dissemination of information and theories from one institution of learning 
to the next had begun. Works of scientists and astronomers were being translated, and the 
influence of the church was beginning to decline. These occurrences were important catalysts 
in the rapid developments in dynamics that began with the second half of the 17th century. 

One scientist who made no significant contributions himself, but who was responsible 
for initiating discussion and correspondence and spreading information, is Father Marinne 
Mersenne (1588-1648). Mersenne lived most of his life in Paris. He was in continuous com- 
munication with his French colleagues Descartes (1596-1650), Pascal (1623-1662), and 
Roberval (1602-1675), as well as with Galileo in Italy and Huygens (1629-1695) in Hol- 
land. Mersenne defended Descartes' and Galileo's work to others. 

Contributions around the middle of the 17th-century also came from Roberval, who is 
credited with the parallelogram law of forces; Huygens, who invented the pendulum clock 
and made it possible to measure time more accurately; and Descartes, whose contributions 
in algebra and geometry are far more significant. Huygens also worked on the geometry of 
curves, oscillations, and centers of oscillations. Huygens is credited with the first published 
treatise of relative motion. Descartes contributed the concepts of work and linear momentum; 
however, his free-fall theory was incorrect, as he (like many before him) assumed that velocity 
was proportional to distance traversed. 

Another major development in the middle of the 17th century was the increased interest 
in impact of bodies. The problem attracted the interest of the Royal Society in London, which 
promoted research on the subject. The fact that bodies with different levels of elasticity behave 
differently in a collision was known quite early, and a distinction was made between soft 
impact and hard impact, precursors to the coefficient of restitution. It is interesting to note 



that the initiative of the Royal Society is concurrent with Newton's discoveries-but before 
Newton published his discoveries. Actually, Huygens in 1700 used Newton's first law as 
one of his hypotheses to describe the equations governing impact. Other contributors to the 
developments in impact include the British scientists Wallis (1616-1703) and Wren (1632- 
1723), and Mariotte (1620-1684) of France. 

We next come to Isaac Newton. Newton (1642-1727) began his contributions by laying 
the foundation for differential and integral calculus, several years before its independent dis- 
covery by Leibniz (1646-1716) of Germany. Newton considered differentiation as the basic 
operation of calculus and thus was able to develop solution methods that unified many sep- 
arate techniques such as finding areas, tangents, the lengths of curves, and the maxima and 
minima of functions. 

Newton's laws of motion are dated to 1666, at which time he had already formulated their 
early versions. Newton made use of the concepts of momentum and force as the fundamental 
quantities. He defined quantities as mass, impressed force (vis irnpressa), and inertia force 
(vis vista, or innate force of matter). He showed that the period of a pendulum is independent 
of its mass. 

Newton also made significant contributions to celestial mechanics. The Copernican the- 
ory and Kepler's laws had been proposed for the motion of planets. Newton proposed that the 
motion of the moon around the earth was governed by the same laws that described the mo- 
tion of planets. Newton's laws of motion and the universal gravitational law were refined in 
part due to his communication (often unpleasant-see Newton's biography at the end of this 
appendix) with his fellow British scientists Hooke (1635-1702) and Halley (1656-1742). 

Newton published the Philosophiae naturalis principia mathernatica, or Principia, in 
1687, which included his laws of motion and his contributions to celestial mechanics. Newton 
also discovered the law giving the centrifugal force on a body moving uniformly in a circular 
path. However, he did not have a correct understanding of the mechanics of circular motion. 
In addition, Newton studied the precession of the vernal equinox and the shape of the earth. 

Newton's laws provide a firm basis for describing the motion of particles, and his law of 
universal gravitation unifies the works of Copernicus, Kepler, and Galileo. It should be noted 
that Newton stated his laws of motion for rigid bodies but did not consider rotational motion. 
This may be attributed to his incomplete understanding of circular motion. 

What we know as Newtonian analysis, which is based on force and moment balances, 
continued with Euler. Euler (1707-1783) built on Newton's work, and he developed descrip- 
tive equations for systems of particles in 1740. He then proposed the rigid body rotational 
equations of motion in 1750, while he was working on the motion of ships. In that same pa- 
per, Euler restated Newton's second law as a fundamental law of motion applicable to all 
bodies. 

In dynamics, Euler is remembered primarily for his contributions to the calculus of vari- 
ations and rigid body dynamics, as well as for his book Theoria motus corporurn solidorurn 
seu rigidorurn (Theory of the Motions of Rigid Bodies), published in 1765. He is considered 
to be the first to use the components of the angular velocity as kinematic variables. Euler's 
equations use a set of body-fixed coordinates, a novel concept for its time. They also involve 
mass moments of inertia and principal axes, all of which were developed by Euler. 

Euler is also credited with considering angular momentum as a fundamental quan- 
tity. By the early 1730s Euler, Daniel Bernoulli, and Johann Bernoulli had recognized that 
Newton's laws of motion could not explain rigid body motion, and they began to look for 
other quantities to describe rigid body rotations. Huygens had already developed the cor- 
rect equations for a pendulum by this time. Euler and Daniel Bernoulli began to look into 
rigid body motion and Euler continued the work after Daniel Bernoulli gave up on this sub- 
ject. While developing the rigid body equations of motion, Euler began to consider angular 
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momentum as a fundamental quantity. His results were also influenced by his work on de- 
formable bodies, where the angular momentum leads to the symmetry of the stress tensor. 
Finally, in 1775, Euler formally stated F = p and M = H to be the two fundamental laws 
of mechanics. These two equations are known as Eulerk laws of mechanics, and they have 
given rise to the term Newton-Euler formulation. 

The work of Newton and Euler completes the analysis of rigid bodies and particles by 
force and moment balances. At the same time as the Newtonian mechanics (or Newton-Euler 
formulation) was being refined, the analytical approach to mechanics was being developed. 
Actually, both Newton and Euler contributed to analytical mechanics, Newton for the devel- 
opment of calculus, and Euler for the calculus of variations and the principle of least action. 

Leibniz (1646-1716) took a different approach to describe motion; in contrast to New- 
ton's approach of using change in linear momentum, Leibniz used energy (he defined a quan- 
tity called vis viva, which is equal to twice the kinetic energy). He stated that motion could 
be described by equating the change in kinetic energy to the work done by the acting forces, 
hence the work-energy theorem. Leibniz is also credited for inventing calculus independently 
of Newton's findings, as well as for his work on impact of bodies. 

The next major development in analytical mechanics came from Johann Bernoulli 
(1667-1748) and D' Alembert (17 17-1783). Making use of Newton's and Leibniz's contribu- 
tions to calculus and variational calculus, in 1717, ~ohann Bernoulli formally stated the prin- 
ciple of virtual work as a general principle, from which all problems of statics could be solved. 
Many consider him to be the most important contributor to this subject. D'Alembert added 
to this by considering moving bodies and the inertia force. He viewed the inertia force as a 
force that produces equilibrium. By including the inertia force in the formulation, D' Alembert 
showed that the principle of virtual work can be used to analyze systems that are in motion. 
This statement is dated to 1743. Actually, there is debate on the scope of what D'Alembert 
actually stated. In mechanics, two equations are referred to as D'Alembert's principle, as dis- 
cussed in Chapter 4. D' Alembert also worked on impact problems, as well as the living force 
concept and the center of oscillation. 

The concept of a differential equation of motion was put forward by D'Alembert and 
Euler in 1743, in two separate articles that each published that year. 

Variational calculus and the principle of virtual work continued to attract interest. Johann 
I1 and Daniel Bernoulli made contributions to the subject, and Euler worked maximum and 
minimum problems. These developments eventually led to the formulation of the principle of 
least action. Lagrange is usually credited with formally stating this principle, but the principle 
was initially conceived by Fermat (1601-1665) of France, who is credited with stating the 
first minimum principle that is not trivial, and Mauperitus (1698-1759), who lived in France 
and Switzerland. Mauperitus theorized that there is a fundamental quantity called action, and 
that its minimization described motion. However, he was not able to establish exactly what 
action was. As a result, his contributions were not appreciated by many. 

The next major contribution came from Lagrange (1736-1813). In addition to his con- 
tributions to celestial mechanics and mathematics, Lagrange is credited for formulating the 
principle of least action and for taking advantage of generalized coordinates. This made it 
possible to extend the treatment of dynamical systems by different coordinate systems and 
different variables, and gave one the power to select the set of variables best suited to solve 
a problem. Lagrange's equations were introduced in the Mkchanique Analitique in 1788. In 
the introduction, Lagrange states that one needs only kinetic and potential energy and a set 
of generalized coordinates to solve for the equations of motion. In their original derivation, 
these equations were written for conservative systems only. Lagrange is also credited with 
formally stating the generalized principle of D'Alembert in the form that we study it today. 
Lagrange was influenced by both Euler's and D'Alembert's work. What we call Lagrange's 
equations are also referred to as the Euler-Lagrange equations (see Appendix B). 



Another of Lagrange's contributions to mechanics was in the treatment of systems sub- 
jected to constraints. He introduced the Lagrange multipliers, which we use to formulate and 
solve constrained systems. He also considered equilibrium problems, developing the theory 
of small motions around equilibrium, and stability theorems based on potential energy. 

The contributions of Lagrange put the field of analytical mechanics into a structured 
form. The next significant contributions to the field came from Hamilton (1 805-1 865), along 
with his developments in relativistic mechanics. In between the two, a number of notables 
made minor contributions to mechanics-minor in the sense that, although significant, they 
were not nearly as significant as Lagrange's or Hamilton's contributions. All these scientists 
made more significant contributions to other branches of science. We discuss their contribu- 
tions to mechanics next. 

Coulomb (1736-1 806) developed the model of dry friction in 178 1, as the winning essay 
of a competition sponsored by the French Academy of Sciences. Coulomb's primary contri- 
butions to science were on electricity and magnetism. Carnot (1753-1823) developed the 
impulse-momentum theorem. He also worked on impacts. His work was similar to that of 
Lagrange. Carnot was certainly familiar with D'Alembert's work. How much he was aware 
of Lagrange's work when he published his essays in 1783 and 1803 is not accurately known. 

Laplace (1749-1827), who was a contemporary of Lagrange, contributed to celestial 
mechanics and the analysis of the solar system. He discovered the invariability of planetary 
mean motions. These results appear in his Trait6 du Mtkanique Ce'leste published in five vol- 
umes over 26 years (1799-1825). Laplace also introduced the potential function and Laplace 
coefficients. Fourier (1768-1830) worked with Lagrange and Laplace on mathematics, with 
emphasis on analysis. He succeeded Lagrange in his position at the ~ c o l e  Polytechnique. His 
contributions to mechanics include work on virtual displacements and constrained motion. 

Gauss (1777-1855) developed the principle of least constraint in 1829, which is a pre- 
cursor to the Gibbs-Appell equations. He regarded Lagrange's work as brilliant, but did not 
consider the principle of virtual work as very intuitive and thus worked on developing a more 
intuitive principle. Gauss's principle does not involve time integration and gives the true min- 
imum rather than a stationary value. However, the principle makes use of accelerations, which 
are harder to deal with than velocities. Poisson (1781-1840), who was a student of Lagrange 
and Laplace, considered generalized momentum (without giving it that name) and gener- 
ated the Poisson brackets. His work was included in the second edition of the Me'chanique 
Analitique, which was published in 18 11. Poisson also contributed to the theory of impact, by 
developing the Poisson's hypothesis, and to the theory of elasticity, by developing the Poisson 
ratio. 

In the 18th and 19th centuries, while the advances were being made in dynamics, a num- 
ber of scientists (primarily French scientists at the ~ c o l e  Polythechnique) refined the concepts 
in kinematics, rotations and relative motion: Clairaut (1 7 13-1765) obtained a more accurate 
but still incorrect form for relative acceleration. He also worked on celestial mechanics prob- 
lems, such as analyzing the motions of the moon and of Halley's comet. He studied the shape 
of the earth and verified Newton's result that the earth is an oblate spheroid. Coriolis (1792- 
1843) analyzed the dynamics of motion viewed from a moving reference frame and developed 
the concept of Coriolis force. It is interesting to note that while his is regarded as a contribution 
to kinematics, Coriolis always considered the dynamics of relative motion, hence the name 
Coriolis force. Foucault (1 8 19-1868) conducted experiments on the effects of the rotation of 
the earth on bodies. He was inspired by Reich's experimental work on free-fall in mine shafts 
(1 833). One of his earlier experiments was with a sphere of 5 kg suspended from a steel wire 
of length 2 m. He later used a gyroscope attached to the pendulum and demonstrated that 
the symmetry axis of the gyroscope did not change orientation as the pendulum moved. He 
related the rotation of the swing plane of the pendulum to the latitude of the location of the 



experiment. Chasles (1793-1880), whose primary work was in geometry and conic sections, 
is known for Chasles' theorem, an extension of Euler's theorem. 

The next most important contributions to mechanics came from Hamilton and the Ger- 
man scientist Jacobi (1804-1851). Hamilton is credited with unifying the field of analytical 
mechanics. He developed the most general form of the principle of least action (called in this 
text the extended Hamilton's principle). He showed that the fundamental principles of me- 
chanics and optics are very similar. Hamilton also succeeded in developing the Hamiltonian, 
from which the equations of motion can be written as first-order differential equations that 
are in state form. Jacobi called these equations Hamilton S canonical equations. Jacobi devel- 
oped the transformation theory of canonical equations and showed that these equations have 
applications in many other fields. He gave a new formulation to the principle of least action, 
eliminating the time integral. He is also credited for the Jacobean, which becomes the most 
general form of the energy integral. Hamilton's other significant contribution to mechanics 
includes quaternions. 

Hamilton's contributions consist of the fundamental principles that govern the motion of 
bodies. The contributions that came after Hamilton deal with the analysis of Lagrange's and 
Hamilton's equations, as well as certain special cases. We outline these developments next. 
By the time of Hamilton, communication among scientists had become more frequent and 
information was being disseminated more rapidly. This led to substantial collaboration. This, 
in many cases, makes it hard to credit a certain development to a particular individual. 

One of the offshoots of the Lagrangian and Hamiltonian methods was the examination 
of the types of variables that we can use as generalized coordinates. Advances in this sub- 
ject came mostly in the second half of the 19th century and the first few years of the 20th 
century. The terminology generalized coordinates was introduced by Thomson (1824-1907) 
and Tait (1831-1901) of Scotland, in their 1867 text Treatise on Natural Philosophy. Routh 
(183 1-1907), Helmholtz (1 821-1 894) of Germany, and Thomson recognized the importance 
of cyclic variables, i.e., ignorable coordinates, and the way they could be eliminated from the 
formulation. Such variables are mostly encountered in rotating systems. Kelvin, Thomson, 
and Tait are also credited with work on gyroscopic systems. Helmholtz analyzed energy con- 
servation. Hertz (1857-1894) looked at how mechanics can be described as a whole using 
the four concepts of space, mass, force, and motion. Lord Rayleigh (1842-1919) introduced 
the Rayleigh's quotient, a way of treating dissipative effects in Lagrangian mechanics. 

Nonholonomic systems began to attract more interest toward the end of the 19th century. 
The German mechanician Heun (1859-1929) and his student Hamel (1877-1954) are rec- 
ognized as the initial contributors. AppeIl(1855-1930) considered nonholonomic constraints 
and the types of approaches one can use when dealing with them. He used quasi-velocities 
with nonholonomic systems. He laid the foundations for the Gibbs-Appell equations, called 
by many the Appell equations. 

Jourdain (1879-1921) developed Jourdain's variational principle, which closes the gap 
between D'Alembert's principle and Gauss's principle of least constraint, 80 years after 
Gauss's principle was stated. Gauss's principle was extended for inequality constraints in 
1879 by Gibbs. An interpretation of the various theories was written by Duhem in 1903, in 
his book ~volution de la Mkanique. Klein (1849-1925) and Cayley (1821-1895) did work 
on description of rotations, Cayley's work based on Hamilton's research on quaternions. More 
recent contributors to mechanics, such as Lanczos (1893-1974) and Pars (1896-1985), did 
work on both classical mechanics as well as relativistic mechanics. 

Another extension of the Lagrangian and Hamiltonian methods has been the qualita- 
tive analysis of dynamics problems, especially regarding stability theory. Lie (1842-1899) 
introduced the group theory to canonical transformations. He also considered infinitesimal 
transformations. 



Significant contributions to the analysis of motion and stability theory came from 
Poincark (1854-1912), who looked into stability issues, integral invariants, perturbation the- 
ory, differential geometry, and topology. The index of Poincark and analysis of the three-body 
problem by perturbation techniques are some of his contributions to mechanics. 

Table A. 1 gives the dates of major contributions to the field of analytical mechanics. Be 
aware that many of the dates are approximate, and there are differences of opinion regarding 
the contributor and levels of contribution. The dates used here are mostly the ones given by 
Papastavridis and Dugas. Also, we list contributions up to 1910, as after that date there was 
substantially more cooperation among dynamicists. 

Table A. 1 Key dates in the history of dynamics 

Year Contributor(s) Contribution 

Copernicus 

Kepler 

Galileo 

Newton 

Johann Bernoulli 

Euler 

D' Alembert 

Euler 

Lagrange 

Euler 

Euler 

Lagrange 

Lagrange 

Lagrange 

Gauss 

Hamilton 

Jacobi 

Kelvin, 
Thornson, Tait 

Routh, 
Helmholtz 

Gibbs 

Heun, Hamel, 
Appell 
Jourdain 

Copernican theory introduced 

First two of Kepler's laws 

Particle motion in one dimension, projectile motion 

Principia published, laws of motion and law of 
gravitational attraction 

Principle of virtual work 

Systems of particles 

Inertia force, principle of D' Alembert 

Rigid body rotational equations 

Principle of least action 
Theory of the motions of rigid bodies published 

Declares force and moment balances as the two 
fundamental equations of mechanics 

Lagrange's equations 

Michanique Analitique published 

Lagrangian derivation of rigid body Euler's equations, 
2nd edition of Mkchanique Analitique 

Principle of least constraint 

Canonical equations of motion, Hamilton's principle 

Transformation theory 

Gyroscopic systems 

Cyclic (ignorable) coordinates, stability 

Gauss's principle for inequality constraints 

Nonholonomic systems, quasi-coordinates, velocity 
constraints, Gibbs-Appell equations 

Jourdain's variational principle 
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This section presents brief life histories of key contributors to mechanics. 
Albert of Saxony (1 3 16-1390). Few details are known about the life of Albert of Sax- 

ony, except that he studied in the Sorbonne and was rector of the University of Paris. He 
became rector of the University of Vienna in 1365 and Bishop of Halberstadt from 1366 until 
his death. 

Albert did work on the concept of impetus, and began to use acceleration as a kinematic 
quantity to describe motion. He is credited with work on locating the center of gravity. He also 
did work on projectile motion, with incorrect results. Albert is credited more for dissemination 
of scientific information than for developing new theories himself. 

Appell, Paul Emile (1855-1930). Appell was born in Strasbourg, France. In 1885 he 
was appointed to the Chair of Mechanics at the Sorbonne. He served as rector of the University 
of Paris from 1920 to 1925. 

Appell's first paper (1876) was based on projective geometry, continuing the work of 
Chasles. He then continued research on algebraic functions, differential equations, and com- 
plex analysis. He was a good friend of Poincark. His paper "Notice sur lea travaux scien- 
tifique," Acta Mathernatica 45 (1925), lists his 140 works in analysis, 30 works in geometry, 
87 works in mechanics, and many textbooks, addresses, and lectures on the history of math- 
ematics and on mathematical education. His primary contributions in mechanics were the 
treatment of nonholonomic systems and the development of the Appell equations. 

Appell took high government positions in addition to scientific posts, which exposed 
him to war, espionage, and political controversy. He was involved with the Dreyfus affair, 
and served on the commission that exonerated Dreyfus. During World War I, Appell founded 
the Secours National, a semi-official organization, which gave help to civilian victims of the 
war. After the war, he served as secretary-general for the French Association to the League 
of Nations. 

Despite his many contributions to science, politics, and government, Appell is not nearly 
as well known as his peers. This is mostly because he was a problem solver, not a developer of 
general theories. It may be a fitting conclusion to his life story that the importance of Appell's 
contributions began to be appreciated 50 years after his death. 

Aristotle (384-322 B c.E.). Born in northern Greece, Aristotle made contributions to a 
broad range of fields, including mechanics, logic, anatomy, and nature. In 367 B.c.E., Aristotle 
came as a student to Plato's academy in Athens, where he soon became a teacher. In 335 B.c.E., 

he formed his own school, the Lyceum in Athens. 
In 343 B.c.E., he became tutor to Alexander the Great. He died a year after Alexander the 

Great died. One of the most remarkable of Aristotle's attributes was his tremendous capacity 
to observe phenomena and then deduce laws that describe those phenomena. His contributions 
to mechanics primarily are intuitive deductions from his observation of motion. 

Archimedes (287-21 2 B.c.E.). Archimedes lived almost his entire life in Syracuse. Sicily, 
with a short stay in Egypt. His primary contributions were in the areas of geometry, statics, and 
floating bodies. His contributions to geometry are viewed as a precursor to integral calculus. 
He did calculations on the area of a circle and the volume of a sphere. He narrowed down the 
value of rr to between 3% and 3; (3.1408 and 3.1429). In mechanics, Archimedes worked 
on the laws of equilibrium for levers and centers of gravity. He used his results in centers of 
gravity to study buoyancy and developed the famous Archimedes' principle. While he was 
in Egypt, he developed a machine called Archimedes' screw, which is used as a pump even 
to this day. 

Bernoulli family. This was a large Swiss family who for three generations dom- 
inated the field of mathematics. Several members of the family occupied the chair in 



mathematics in the University of Basel. The first major contributors, Johann-also known 
as Jean-(1667-1748) and Jacob-also known as Jacques-41654-1705) were the children 
of Nicolaus (1 623-1 708). Their other brother Nicolaus (1662-1 7 16) was not as prominent, 
but his son Nicolaus I (1687-1759) was. Jacob Bernoulli studied the center of oscillation 
problem, which became a precursor to D' Alembert's principle. 

Johann took his brother Jacob's chair at Base1 after Jacob died in 1705. Based on New- 
ton's and Leibniz's work, he formulated the principle of virtual work and put the field of 
calculus of variations on a solid foundation. He was the first to recognize that the princi- 
ple of virtual work was a general principle from which static equilibrium problems could be 
solved. 

Johann Bernoulli had three sons who become prominent mathematicians: Johann I1 
(171&1790), Daniel (170&1782), who worked closely with his brother Johann 11, and Nico- 
laus I1 (1695-1726), whose contributions appear to be mainly in mathematics and who died 
very young. Johann I1 took his father's chair when his father died in 1748. He was 38 years 
old at the time. 

Johann I1 and Daniel did a lot of collaboration, with Johann's work primarily concentrat- 
ing on heat and light, and Daniel's on hydrodynamics. Johann I1 initially studied law, and he 
pursued mathematics independently of his father. He won the Prize of the Paris Academy four 
times by himself. Johann I1 is credited for extending the works of Newton and Leibniz into a 
broader spectrum of problems. Johann Bernoulli I1 introduced the brachistochrone problem. 

Daniel is credited with Bernoulli's principle. In 1725, Daniel and his brother Nicolaus 
were invited to work at the St. Petersburg Academy of Sciences. There he collaborated with 
Euler (who came in as his student). One of the areas of collaboration was ship dynamics, 
based on which Euler developed the rigid body equations of motion. Daniel also had a wider 
range of interests, such as anatomy, statistics, life insurance, and kinetic theory of gases. 

Johann I1 had three sons, Johann 111 (1744-1807), Daniel I1 (1751-1834), and Jacob 
I1 (1759-1789). Of these three children, only Johann 111 became prominent in mathematics 
(probability theory, decimals, and theory of equations). 

Copernicus, Nicolaus (1473-1543). Copernicus was born and died in Poland. He stud- 
ied in Krakow (then the capital of Poland) and also in Bologna, Padua, and Ferrara, Italy, and 
he graduated in 1503 with a degree in canon law. Shortly after, he returned to Poland and 
settled in Frauenberg (Frombok). In addition to his religious duties, he practiced medicine 
and wrote articles on monetary reform. While doing all that, he began to work on the motion 
of the earth and planets. He was the first to challenge the views of Aristotle and Ptolemy and 
to formally state that the sun is the center of the solar system. In his theory, the earth and 
the other planets revolve around the sun in circular orbits. He further theorized that the earth 
rotates about its own axis. 

Copernicus first wrote his theory, called Commentoriolus, and known to this date as 
the Copernican theory, in 1513. His theory was widely rebuffed, as it went against what 
was accepted as fact for well over 1000 years. He was spumed by many as a result of his 
writings. For 30 years he worked on refining his theory and his book On the Revolutions of 
the Heavenly Spheres (in Latin) was published in 1543, a few days before he died. A couple of 
generations after his death, Kepler and Galileo came to his defense (Galileo was under house 
arrest for eight years for doing this) and their use of the Copernican theory was the basis 
for the development of the laws of planetary motion. Many historians regard the Copernican 
theory as the beginning of the scientific revolution. 

Coriolis, Gustave Gaspard de (1792-1843). Coriolis was born and died in Paris, and 
lived there for most of his life. He studied mechanics and engineering mathematics at the 
~ c o l e  Polytechnique, Paris, then taught mathematics there. He also worked as a military en- 
gineer. His major contribution is what is known as the Coriolis force and the laws of motion 



in a rotating reference frame. He showed that to write the equations of motion in a rotating 
frame of reference, the Coriolis force has to be included. ~oriolis  also did work on solid 
mechanics and on collisions, the latter based on collisions of billiards. In 1835 he published 
his Thkorie Mathkmatique des Eflets du Jeu de Billiard. 

Coulomb, Charles Augustin de (1736-1806). While this French physicist and engineer 
is primarily known for his contributions to static electricity and magnetism (a Coulomb is a 
unit of electrical charge), Coulomb also contributed to mechanics. Guided by the interest of 
the French Academy of Sciences in friction and ropes, as well as their military applications, 
Coulomb began experimental work on friction, extending the results of Amontons. His award- 
winning essay "Theory of Simple Machines" discusses the relation between forces (pressure) 
exerted by contacting bodies and friction, and develops Coulomb's law (of proportionality) 
to describe friction. To this day, dry friction is referred to as Coulomb friction. Coulomb also 
worked on torsional vibrations and inclined surfaces. 

D'Alembert, Jean Le Rond (1717-1783). D'Alembert lived all his life in Paris. He 
turned down many lucrative offers, such as an offer from Frederick I1 to go to Prussia as 
president of the Berlin Academy, and an invitation from Catherine I1 of Russia to tutor 
her son. 

In 1741 at the age of 24, D'Alembert was admitted to the Paris Academy of Science, 
where he worked for the rest of his life. He was a contemporary and friend of Voltaire. His 
primary work was the study of differential equations and their applications, as well as theory 
of functions, derivatives, and limits. In mechanics, he is best known for the D'Alembert's 
principle, which appeared in his Traitk de Dynamique (1742). He is credited with developing 
the concept of an inertia force (-ma) which makes it possible to apply the principle of virtual 
work to systems in motion. A year later he applied his results to the equilibrium and motion 
of fluids. 

D'Alembert's other major work is on the concept of equations of motion as differential 
equations. He first published an article on this in 1743. His more famous article, entitled 
Diflkrentiel, was published in 1754. 

Euler, Leonhard (1707-1783). Born in Basel, Euler joined the University of Base1 as a 
theology student, following in the footsteps of his father. There, he began to like mathematics 
and, at the insistence of Johann Bernoulli 11, he became Bernoulli's student. After graduating, 
Euler went to St. Petersburg Academy of Sciences in 1727. He began working with and living 
in the home of Daniel Bernoulli. In 1741, Euler joined the Berlin Academy of Science at the 
invitation of Frederick the Great. He stayed there for 25 years, returning to St. Petersburg in 
1766. Euler lost his vision in one eye at age 3 1 and became blind in 1765, but he nevertheless 
continued his research for many years. 

Euler's book Theory of the Motions of Rigid Bodies was published in 1765. His contri- 
butions also include logarithms, the Euler number, function theory, and the function notation. 
He is credited, too, with contributions to the solutions. of differential equations, geometry, 
and topology. In addition, Euler worked on the mathematical theory of music, as well as on 
deformable bodies. 

Euler is regarded by many as the most prolific writer of mathematics of all time. Some 
view him as the great architect of mechanics, at a level higher than Newton and Lagrange, 
who traditionally receive more credit for their contributions than Euler did for his. Euler's 
complete works include over 800 books and papers, which continued to be published by the 
St. Petersburg Academy for 50 years after his death. 

Despite his tremendous achievements, Euler remained a very modest person, always 
praising other people's work and refraining from criticism. In an incident involving himself, 
Lagrange, and Mauperitus (1698-1759), Euler went to great lengths and fought hard to defend 
Mauperitus from charges of plagiarism and to get Mauperitus the credit due for his work on 
the principle of least action. His conduct should serve as a guide and example to all. 



Galilei, Galileo (1564-1642). Galileo was born and lived in Italy. His father was a pro- 
fessional musician. Galileo was a professor of mathematics in Pisa and Padua, where he 
also taught astronomy. In addition to his contributions in astronomy and natural philosophy, 
Galileo contributed to the analysis of free-falling objects and also to the theory of vibrations 
through his research on the simple pendulum strings. He is known as the father of the experi- 
mental method. He is credited with developments in hydrostatics. While teaching astronomy 
at Padua, Galileo began to develop an interest in the Copernican theory and Kepler's observa- 
tions. In 1609, after seeing a new spyglass in Venice, Galileo made his own telescope, which 
was the most powerful of its time. He is reported to have seen mountains on the moon, and the 
satellites of Jupiter, and to have discerned the nature of the Milky Way. He received an open 
letter from Kepler in 1610, praising him for his measurements and endorsing his discoveries. 

In 1613, while he was Mathematician and Philosopher to the Grand Duke of Tuscany, 
Galileo in his observations discovered that Venus orbits the Sun. His rejection of the theory 
that the earth was the center of the universe and adoption of the Copernican theory earned 
him many enemies. In 1616 he was warned by the Italian government not to defend the 
Copernican theory. He did not heed and his Dialogue Concerning the Two Greatest World 
Systems was published in Florence in 1632. Galileo was summoned to Rome, found to be 
suspected of heresy, and condemned to house arrest, for life, at his villa. Under house arrest, 
he continued working with his followers and wrote a book on the strength of materials, which 
was smuggled out of Italy and published in the Netherlands in 1638. He died under house 
arrest. 

Gauss, Carl Friedrich (1777-1855). Born in the Duchy of Brunswick, Gauss showed 
himself to be a genius at a very early age. Gauss entered the academy Brunswick Collegium 
Carolinum in 1792; he left, returned, and obtained his degree in 1799. He received financial 
support from the Duke of Brunswick. He published the book Disquisitiones Arithmeticae in 
1801. His second book, Theoria motus corporum coelestium in sectionibus conicis Solem 
ambientium, was published in 1809, a major two-volume treatise on the motion of celestial 
bodies. In 1822, he won the Copenhagen University Prize. Gauss worked in a wide variety 
of fields in both mathematics and physics, including number theory, analysis, differential 
geometry, geodesy, magnetism, astronomy, and optics. His primary contribution to mechanics 
is the principle of least constraint. Some of Gauss's principal contributions include Bode's 
law, the binomial theorem, the arithmetic-geometric mean, prime numbers, construction of the 
17-gon by ruler and compass, least squares approximation, orbital measurements, Gaussian 
curvature, and potential theory. 

Gauss's life was full of personal tragedies. Soon after his first marriage, the Duke of 
Brunswick died, leaving him without financial support. He was forced to move to Gottingen. 
A year later his wife died after childbirth, soon to be followed by the death of the baby. He 
remarried and then his second wife died a few years later. 

Gibbs, Josiah Willard (1839-1903). Gibbs was born, raised, worked, and died in Con- 
necticut. He was the son of a professor of literature at Yale. He received his doctorate in 
engineering from Yale in 1863, the first engineering doctorate given in the United States. He 
studied until 1869 in Paris, Berlin, and Heidelberg, and became professor of mathematical 
physics at Yale in 187 1. 

Gibbs's major publications began in 1873, on thermodynamics and equilibrium. His sub- 
sequent work included electromagnetic theory of light, statistical mechanics, astrodynamics, 
and vector analysis. In mechanics he is recognized for his work on inequality constraints and 
contributions toward the Gibbs-Appell equations. His contributions were appreciated more 
in Europe than they were in the United States. Gibbs was known as a true gentleman, kind 
and unassuming in his manners. He lived a quiet and dignified life. 

Hamilton, Sir William Rowan (1 805-1865). Born in Dublin, Ireland, Hamilton gave 
evidence of genius as a young child. By age five he knew four languages. He was very 
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interested in mathematics and, by the time he was 15, was studying the works of Newton and 
Laplace. At age 17, Hamilton found an error in Laplace's M6chanique cdeste. 

Hamilton entered Trinity College in Dublin at the age of 18. In 1827, at age 22, even 
though he was an undergraduate, he was appointed astronomer royal at Dunsink Observatory 
and professor of astronomy at Trinity College. He had not applied for the post, for which there 
were applicants, but rather, was invited to accept it. 

In 1833, Hamilton published a study of vectors as ordered pairs, as well his first work 
on dynamics, The Problem of Three Bodies by my Characteristic Function. He used algebra 
in treating dynamics in On a General Method in Dynamics in 1834. This work, in essence, 
describes his most important contribution to mechanics. In 1843, he began to formulate the 
theory of quaternions (Euler parameters). He devoted the rest of his life to quaternions, and 
wrote two books on the subject, but neither book was well received. The second book was 
published posthumously, with the final chapter incomplete. 

Hamilton was the first foreign member elected to the U.S. National Academy of Sci- 
ences. The latter years of his life were unhappy ones, and he suffered from alcoholism. 

Jourdain, Philip Edward Bertrand (1879-1921). This British scientist lived a short 
life that was full of medical problems. He was already severely handicapped when he began 
his studies at Cambridge in 1898. His undergraduate years were very difficult. He did poorly 
in his degree. However, he was awarded the Allen studentship for research in 1904. 

In mechanics, Jourdain is credited with Jourdain's variational principle (1909). which 
closes the gap between D' Alembert's principle and Gauss's principle. His most famous paper 
on this subject is On some Points in the Foundation of Mathematical Physics (1908). 

Jourdain also worked in mathematical logic and set theory. He wrote a number of articles 
on this subject between 1906 and 1913 under the title Development of the Theory oj'Trans- 
finite Numbers. In 1913 he proposed the card paradox. This was a card which on one side 
said: "The sentence on the other side of this card is TRUE." On the other side of the card the 
sentence read: "The sentence on the other side of this card is FALSE." 

Kepler, Johannes (1571-1630). Kepler, born in Germany, is known primarily for for- 
mulating the three mathematical laws of planetary motion. He is also credited for work on 
mathematics, primarily on logarithms, as well as optics. 

Kepler attended the University of Tiibingen and took a teaching position in mathematics 
at Graz. At Tiibingen he was exposed to both the Ptolemaic and Copernican theories, and 
he came to accept the Copernican theory. In 1596, Kepler published his Mysterium Cosmo- 
graphicum, which argues for the truth of the Copernican theory. 

In 1600, Kepler went to Prague, as assistant to Tycho Brahe. Brahe died in 1601, but 
Kepler went on to use his observations to calculate planetary orbits. The level of accuracy 
of his measurements is astounding. His first two laws were published in Astronomia Nova in 
1609. His third law appeared in Harmonice mundi in 1619. Kepler's other books are Epitome 
Astronomiae Copemicanae (1 6 18 to 162 I), and Rudolphine Tables (1627), based on Tycho 
Brahe's observations and Kepler's laws. 

Lagrange, Joseph Louis (1736-1813). Born in Turin, Italy, Lagrange's interest in math- 
ematics began at a very early age when he read a book by Halley. 

Lagrange sewed as professor of geometry at the Royal Artillery School in Turin from 
1755 to 1766 and helped to found the Royal Academy of Science there in 1757. In 1764 he 
was awarded his first prize of many, when the Paris Academy awarded a prize for his essay on 
the libation of the moon. When Euler left the Berlin Academy of Science, at his request, La- 
grange succeeded him as director of mathematics (1766). Development of what we know 
as Lagrange's equations was accomplished during this period. These developments were 
made possible by the advances that Lagrange introduced to the calculus of variations. He 
also contributed to hydrodynamics. 



In 1787 Lagrange left Berlin to become a member of the Paris Academy of Science, 
where he remained for the rest of his career. He published his Me'chanique Analitique in 1788, 
which includes Lagrange's equations. This work summarized all the work done in the field 
of mechanics since the time of Newton; it is notable for its use of the theory of differential 
equations. In it, Lagrange transformed mechanics into a branch of mathematical analysis. 
He survived the French revolution. During the 1790s he worked on the metric system and 
advocated a decimal base. He also taught at the ~ c o l e  Polytechnique, which he helped to 
found. In 1797 he published the first theory of functions of a real variable. Napoleon named 
him to the Legion of Honor and Count of the Empire in 1808. In 18 11 he published the second 
edition of Mkhanique Analitique. Lagrange also excelled in all fields of analysis and number 
theory, as well as in celestial mechanics. 

Hamilton referred to Lagrange as the "Shakespeare of mathematics," in appreciation of 
the mathematical depth and elegance of Lagrange's contributions. Lagrange also worked on 
the history of science. 

Newton, Sir Isaac (1642-1727). Regarded by many as the most important contributor 
to the field of dynamics, Isaac Newton was born in Lincolnshire to a family of farmers. In 
his teenage years his academic performance was very weak. His mother removed him from 
grammar school, and at the urging of an uncle, in 1661 Newton entered Trinity College, 
Cambridge, to study law. 

At Cambridge, Newton was attracted to philosophy, but also to algebra and analytical 
geometry. He was very impressed with the Copernican theory. The plague in 1665-which 
closed Cambridge University for two years-gave him the opportunity to go home to Lin- 
colnshire and work on his own. He made several significant contributions in mathematics, 
optics, physics, and astronomy during that time. His first contribution was in calculus and 
unification of the previously scattered developments in this subject. His De Methodis Se- 
rierum et Fluxionurn was written in 167 1 (he failed to get it published and it did not appear 
until 1736). After returning to Cambridge in 1669, he was appointed to the Lucasian chair. 
He was 27 years old at the time, and his genius was well known. Newton held this chair until 
1687. Newton was elected a fellow of the Royal Society in 1672. Also in 1672 he published 
his first scientific paper on light and color in the Philosophical Transactions of the Royal 
Society. While well received in general, his paper was objected to by Hooke and Huygens. 
This objection resulted in further strained relations among them.' He published his Opticks 
in 1704, a year after the death of Hooke. 

Newton's laws of mechanics were published after debates with Hooke and Halley. In 
1684, Halley asked Newton what orbit a body would follow under an inverse square force, 
and Newton replied that it would be an ellipse and that he had solved this problem five years 
earlier. Halley, being very impressed with this answer, urged Newton to publish his law of 
planetary motion, which he did in 1687 in the third part of his Principia. 

Newton suffered a nervous breakdown in 1693, after which he lost interest in science. He 
retired from research to take up a government position in the Royal Mint in London. In 1703 
he was elected president of the Royal Society and was re-elected each year until his death. 
He was knighted in 1708. The falling apple episode seems to be a myth, as it is reported that 
this incident occurred in 1666, whereas by 1666 Newton had already formulated his laws of 
motion. 

'Like many before and after him, Newton did not take kindly to scientific criticism. In 1679, Hooke wrote to 
Newton proposing a central force that governs the motion of planets. Newton's response to Hooke discussed an 
inverse square law, but it also had an error, which Newton had to admit grudgingly. As a result, both Hooke and 
Newton worked independently on the law of planetary motion, and both claimed credit for the inverse square law. 
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Poincar6, Jules Henri (1 854-1 9 12). Poincark was an applied mathematician who is 
credited with several advances in algebraic topology, stability theory, and the theory of ana- 
lytic functions. Poincarr5 studied in the Ecole Polytechnique and at the Ecole des Mines. In 
188 1 he was appointed to a chair of mathematical physics at the Sorbonne. He studied optics, 
electricity, telegraphy, elasticity, thermodynamics, potential theory, quantum theory, theory 
of relativity, and cosmology. He also studied the three-body problem, and theories of light and 
electromagnetic waves. He is acknowledged as a codiscoverer, with Einstein and Lorentz, of 
the special theory of relativity. 

His major works include Analysis situs (1895), an early systematic treatment of topol- 
ogy, Les Me'thods nouvelle de la m&hanique celeste (1892-1899), and Le~ons  de mecanique 
celeste (1905). He also wrote many popular scientific articles. In addition to his work on 
manifolds and what is known in dvnamics as the index o f  Poincard, Poincar6 was the first to 
consider the possibility of chaos in a deterministic system. Little interest was shown in this 
work until the modern study of chaotic dynamics began in 1963. 

Poincar6 was critical of the way mechanics was taught by the British. He thought the 
British treated mechanics as an experimental science, whereas in continental Europe mechan- 
ics was taught as a deductive science. 

Poisson, Simhon Denis (1781-1840). Originally forced to study medicine, Poisson be- 
gan to study mathematics in 1798 at the E C O ~  Polytechnique. His teachers were Laplace and 
Lagrange. He also made contact with Legendre, as a result of a memoir on finite differences, 
written when he was 18 years old. Poisson taught at &ole Polytechnique from 1802 until 
1808 when he became an astronomer at Bureau des Longitudes. In 1809 he was appointed to 
the chair of pure mathematics in the Facult6 des Sciences. Poisson's most important works 
were in mathematics, mechanics, astronomy, electricity, and magnetism. In mathematics, he 
advanced the theory of definite integrals and Fourier series, as well as Poisson's integral, Pois- 
son's equation and Poisson's brackets. His contribution to probability theory is best remem- 
bered by the Poisson distribution. The Poisson distribution is widely used to model several 
phenomena (such as the famous gas station attendant problem: arrival of cars is modeled by 
the Poisson distribution while service time is modeled using the exponential distribution). In 
electricity, he is known for the Poisson's constant. 

Poisson was a prolific author; he wrote over 300 articles. His Traite' de me'canique, pub- 
lished in 1811 and again in 1833, was considered the standard text on mechanics for many 
years. 

Ptolemy, Claudius (85-165 c.E.). Ptolemy was born in Egypt and lived most of his life in 
Alexandria, where he died. He developed the geocentric theory, with the motion of the plan- 
ets and the sun as epicycles (combination of circles). His astronomical observations and his 
theory on the motion and location of the planets were considered valid for over a millennium, 
until they were disputed by Copernicus. 

Routh, Edward John (1831-1907). Born in Canada, Routh went to England in 1842. 
He entered Peterhouse College at the same time as Maxwell, but Maxwell transferred to 
Trinity College. Much of his life was spent in competition with Maxwell. In 1854, the Smith 
Prize was divided between Routh and Maxwell (the first time the prize had been awarded 
jointly). 

Routh published famous advanced treatises which became standard applied mathematics 
texts, such as A Treatise on Dynamics ofRigid Bodies (1860), A Treatise on Analytic Statistics 
(189l), and A Treatise on Dynamics of a Particle (1898). 

Routh was elected to the Royal Society in 1872. His contributions to mechanics include 
advances to stability theory, gyroscopic systems, cyclic coordinates, and Routh's method for 
ignorable coordinates. In 1877, Routh was awarded the Adams Prize for work on dynamic 
stability. He was revered as an outstanding teacher and coach. He died in Cambridge. 
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A P P E N D I X  

CONCEPTS FROM THE CALCULUS 
OF VARIATIONS 

In dynamics one frequently uses concepts from the calculus of variations. Variational princi- 
ples such as D' Alembert's principle and Hamilton's principle are considered as foundations 
of analytical mechanics. 

One of the earliest problems in the calculus was the determination of the minimum and 
maximum values of a function. The first major developments in this subject came in the sec- 
ond half of the 17th century. Newton, in 1671, and Leibnitz, in 1684, made the first original 
contributions, by noting that the rate of change of a continuous function must be zero for 
a minimum or maximum. Newton also looked into the problem of minimization of a func- 
tional. Johann Bernoulli and his son Daniel extended the works of Newton and Leibnitz into 
a broader spectrum of problems. Johann Bernoulli introduced the brachistochrone problem. 
Finally, Euler, who was a student of Johann's sons Johann I1 and Daniel Bernoulli, built on 
the Bernoulli family's work and developed the calculus of variations to its current form. To- 
day the calculus of variations is used not only in analytical mechanics but also in several 
other problems from mathematics, physics, and engineering, such as Sturm-Liouville prob- 
lems and optimal control theory, as well as in generating methods-such as the Rayleigh-Ritz 
and finite element methods-for finding approximate solutions to boundary value problems. 

An introduction to the variation of a function is also given in Chapter 4, which develops 
variational principles used in dynamics. One can follow the developments of the text by just 
reading Chapter 4, without consulting this appendix. Here, the reader will find a source of 
additional details and more in-depth developments. 

Consider a function of a single variable f ( x )  over an interval 9, where x  is the variable and 
9 = (a ,  b )  is the interval. The function f ( x )  has an extremum, a local minimum or max- 
imum, in the interior of this interval if there exists a point x* such that f ( x )  r f  ( x * )  or 
f  ( x )  5 f ( x * )  for all values of x. For f ( x )  to have an extremum in the interior of the inter- 
val, f  ' ( x )  = d f  ( x ) l d x  has to vanish at x  = x*, or it has to not exist. Otherwise, the minimum 
and maximum values of f ( x )  will be at the boundaries, at f ( a )  or at f ( b ) .  

One determines whether the extremum point x = x* represents a local minimum or 
maximum by examining the second derivative of f  ( x ) .  If f  " ( x * )  > 0, x* represents a 
local minimum; if f " ( x * )  < 0, x* represents a local maximum. When f "(x*)  = 0, no 
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conclusion can be drawn. A simple example of this is to compare the functions f ( x )  = x3 
and f(x) = x4. 

The first derivative of a function determines the slope, and it is a necessary condition 
for the existence of a minimum or maximum. The second derivative describes the shape of 
the function, and it constitutes a suficient condition for the extremum to be a local maximum 
or minimum. When its second derivative is positive, f (x) is convex upwards, as in a bowl. 
When the second derivative is negative, the curve is convex downwards (also called concave), 
as in an inverted bowl. A point where the shape of the curve changes from convex to concave 
or vice versa is called an injection point. At an inflection point, f "(x) = 0. 

Next, consider a function of n independent variables, f (xl, xz, . . . , x,), in which 
xl, x2,. . . , x, are the variables. We denote by X(xl, x2, . . . , x,) a point in the interval 3 
(ak xk -( bk, k = 1,2, . . . , n). Let f (X) be continuously differentiable in all its vari- 
ables. The necessary condition for f (X) to have a local minimum or a maximum in the 
interior of 3 is for all of its first derivatives with respect to xl, x2, . . . , x, to vanish. That is, 
the point X' = (xi, x;, . . . , xi) is a local minimum or maximum if 

The point X*, where all the first derivatives off with respect to xk vanish, is referred to as 
a stationary value of the function f (X). One amves at Eq. [B.l] also by considering the 
differential o f f  (xl, XZ, . . . , x,), which has the form 

Because the variables xk (k = 1,2, . . . , n) are independent, their differentials dxk (k = 
1.2, . . . , n) are also independent. The differential off vanishes at a stationary point, df = 0. 
For df to vanish, all of the coefficients of dxk (k = 1,2, . . . , n) must vanish independently, 
and hence the result in Eq. [B. 11. 

To determine whether the stationary value X* represents a minimum or maximum, one 
needs to investigate the second derivatives of f (X). Define the Hessian matrix [HI by 

whose entries are Hi, = d2f/dxidxj(i, j = 1'2, . . . , n) evaluated at X = X'. Note that [HI 
is square and symmetric. A theorem from the calculus of variations states that if the Hessian 
matrix is positive (negative) definite at the stationary point X*, then the stationary point X' is 
a local minimum (maximum). For a symmetric matrix to be positive definite, it must satisfy 
Sylvester's criterion, which states that the following must hold:' 

'For o s mmetr~c matrix to be negative definite, all the diagonal elements must be negative, and the sign of  ha I pinciprminor ;*rmimnts must alternate. 



1. All diagonal elements must be greater than 0, and 

2. All principal minor determinants must be greater than 0. 

If the determinant of [HI = 0, no conclusion can be drawn. If the determinant of [HI is not 
zero and [HI is indefinite, the stationary point is neither a maximum nor a minimum and is 
referred to as a saddle point. The Hessian matrix is also denoted by [HI = V2 f .  

Consider now the case when the variables xl, XZ, . . . , x, are not independent and are 
related to each other by the equality constraints 

where rn is the number of constraints. To find the stationary values off (XI, x2, . . . , x,) subject 
to the constraints ci(xl, ~2,. . . , x,) a number of approaches can be adopted. One approach 
is based on rewriting the constraint equations such that rn of the variables are expressed in 
terms of the remaining n - m variables. Theoretically, at least, it is possible to do so. Then the 
function is described by n - m independent variables and the above developments apply. For 
instance, say xi is the variable we wish to eliminate from the formulation. We seek to express 
xi in terms of the other n - 1 variables as 

and to substitute Eq. [BS] into f (X). If this can be done for all the constraint relations, one 
can effectively express f (X) in terms of n - rn independent variables and use the procedure 
outlined earlier to find the stationary values. 

Many times, it is difficult to find a relation of the form [BS] for all the constraint relations. 
Even if such relations are found, they may complicate the expression for f (X) immensely. 
Also, certain constraints are described in the differential form 

and it is not possible to integrate Eq. [B.6] to the form of Eq. [B.4]. For these cases, there is an- 
other procedure for finding the stationary values off (X). This method makes use of Lagrange 
multipliers. We construct an augmented function, denoted by +(X) = 4(xl, x2, . . . , x,) and 
referred to as the Lagrangian, which has the same value as f (X), but has the form 

rn 

4(xll ~29 . . . , xn) = f (XI, XL . . . , ~ n )  + ): Ajcj(xl, ~ 2 ,  . . ., x,) IB.71 
j= 1 

where A, ( j  = 1,2, . . . , rn) are called the Lagrange multipliers. Consider the differential 
of the augmented function 4. To this end, we first take the differentials of the constraint rela- 
tions 

Multiplying each one of Eqs. [B.8] by the Lagrange multipliers A,, and adding these 
equations to Eqs. [B.2], one obtains d4, the differential of the augmented function, as 
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df acl ac2 + - + -Al + -A2 + ..* + --A, dx, = 0 
[dxn dx, dxn ax, I 

When the constraint is in the form of Eq. [B.6], we multiply each constraint equation 
by A j  and add it to df to obtain d4.  In essence, we replace dcj/dxk by ajk in Eq. [B.9]. To 
solve Eq. lB.91 one selects the Lagrange multipliers A j  ( j  = 1,2,. . . , m) such that each of 
the expressions in the square brackets, that is, the coefficients of dxk (k = 1,2, . . . , n), vanish 
individually. This leads to a total of n equations in Eq. [B.9] and m equations in Eq. [B.4] or 
Eq. [B.6], which can be solved for the n + m unknowns xl, x2, . . . , x,, Al, Az, . . . , Am. 

The determination of whether the stationary values of constrained systems constitute 
minima or maxima is a more complicated subject. This determination requires use of de- 
velopments from nonlinear optimization theory and Kuhn-Tucker conditions. We will not go 
into this subject in detail, but briefly mention the theorem from Avriel (see the text by Pike), 
which establishes a set of sufficient conditions to establish minima or maxima. 

After finding the stationary values of a constrained function using the approach outlined 
above, one constructs the matrices [H,] (p  = m + 1, m + 2, . . . , n), such that 

[B. 1 01 

The matrices [H*] and [c'] are defined as 

where all the derivatives are evaluated at the stationary points. Avriel's theorem states that 

If (- l), det[Hp] > 0 for all p = m + 1, m + 2, . . . , n, the stationary point is a local 
minimum. 

If (- 1)P det[Hp] > 0 for all p = m + 1, m + 2, . . . , n, the stationary point is a local 
maximum. 

If neither one of the above conditions holds, no conclusions can be drawn. The interested 
reader is referred to texts on optimization theory for further details on equality constraints, as 
well as for inequality constraints. 

-- 

Example I Find the stationary values of the function f (x, y) = y2/2 + x3/24 + xy + x + 1 in the interval 
B. 1 - 4 ~ x  5 8 , - 8  5 y 5 4 .  

solrrtion 
The stationary value off is given by df = 0. Taking the differential off we obtain 



Jf Jf which holds only if both - = 0 and - = 0. Setting these first derivatives equal to zero 
we obtain dx dy 

Substituting the second of the above equations into the first we obtain 

Cbl 

the solution of which yields two stationary values: x; = 4 + 2 b  and x; = 4 - 2,h. Both 
stationary values are inside the interval given above. It follows from the second of Eqs. [b] 
that y; = -x; = -4 - 2,h and y; = -x; = -4 + 2,h. 

To check whether the stationary points are local minima, maxima, or neither, we analyze 
the Hessian. The second derivatives off have the form 

so that the Hessian becomes 

for X; = (xi, y;) = (4 + 2 h ,  -4 - 2 h )  [HI = v2f = [l + 

I] 1 

For the stationary point (x;, y;) the Hessian is positive definite. Hence, the stationary 
point (x;, y;) is a local minimum. The Hessian for the stationary point (x; ,  y;) is neither 
positive nor negative definite. It is indefinite. It follows that this second stationary point is 
neither a minimum nor a maximum, but a saddle point. To check if Xi constitutes a global 
minimum in the interval, one must evaluate the values off at the boundaries of the interval 
as well. 

Find the stationary values of the function f (x, y, z) = x3 + y2 + z2 subject to the constraint I ~ C . . I C ~  

c(x, y, z) = y - x2 = 0. 8.2 

Solution 

We can solve this problem either by introducing the constraint into f (x, y, z) and express- 
ing f in terms of two variables, or by using the Lagrange multipliers. For illustrative pur- 
poses, we select the latter approach. We form the augmented function 4(x, y, z) = f (x, y, z) + 
Ac(x, y, z) and take partial derivatives of 4, which yields 

Selecting A such that all of the first derivatives of 4 with respect to x, y, and z vanish, 
and considering the constraint equation, we obtain the four equations 

to be solved for the unknowns x, y, z, and the Lagrange multiplier A. The third equation yields 
z = 0. From the last equation, y = x2, and from the second equation, A = - 2 y .  Combining 



these equations we obtain A = -2x2, which, when substituted into the first equation gives 

Equation [c] can be factored to yield 3x2(1 + i x )  = 0. This equation has three solutions, 
a double root at x = 0 and x = -314. Combining with Eqs. [b], we identify the stationary 
points Xi and X; to be 

To calculate whether the stationary points constitute local minima or maxima, we gener- 
ate the [H,] matrices. For this problem we have n = 3, m = 1, and two values forp, / I  = 2,3. 
There are two [H,] matrices to check. The [H*] matrix is diagonal with the entries 

All other entries of [H*] are zero. Substituting the value of the Lagrange multiplier into H;,, 
we obtain 

For the first stationary point x; = 0, so that H;, = 0. For the second stationary point 
x: = -0.75 and H;, = -2.25. Consider the first stationary point. For the case when p = 2 

This results in the [HZ] matrix 

whose determinant is zero. The first stationary point is neither a minimum nor a maximum, 
but a saddle point. We dispense with the calculation of [H3] for this stationary point and 
consider the next stationary point. For x; the [Hz] matrix has the form 

and (- 1)" det[Hz] = 2.25. 
To determine [H3], we form the [H*] and [c'] matrices as 

-2.25 0 0 
[H*] = [ : ] [d l  = ['dl 

resulting in 



It can be shown that (- 1)"' det[H3] = 4.50. As both quantities are larger than zero, the 
second equilibrium position constitutes a local minimum. 

A large number of problems in mechanics and in mathematics can be posed as the determi- 
nation of the stationary values of a definite integral. A simple definition of the problem is 
as follows: Find the function y ( x )  which is continuously differentiable in the interval (a ,  b )  
which yields the stationary values of the integral 

[B. 1 21 

In this equation, I is referred to as the functional and y (x )  satisfies certain boundary 
conditions. For y ( x )  to be the solution, any function other than y ( x )  should not lead to a 
stationary value. We introduce a continuous function ~ ( x ) ,  which is arbitrary, together with 
the constant E ,  and we construct the varied function y (x )  + e g ( x ) ,  as shown in Fig. B. 1. When 
dealing with constrained systems q ( x )  must be consistent with the constraints. The values of 
~ ( x )  at the boundaries depend on the boundary conditions of y (x ) .  Consider initially the 
case where y(a) and y(b)  are specified. Such boundary conditions are known as geometric 
boundary conditions or boundary conditions of the j r s t  kind. In this case, the varied function 
vanishes at the boundaries, g ( a )  = ~ ( b )  = 0. If y ( x )  has fixed values at certain points then 
the varied function cannot be arbitrary at those points. Introducing the varied function y (x )  + 
q ( x )  into the integral whose stationary values are sought, we obtain 

b 

I (&) = la F(x .  y + &I). y1 + q l ) d x  [B. 1 31 

with primes denoting differentiation with respect to x .  For the integral I to have a stationary 
value, it must satisfy 

d l  
- = 0 when E = 0 
d e  

Differentiating Eq. [B.13] using the chain rule and evaluating at e = 0 we obtain 

[B. 1 41 
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We integrate the second term on the right hand side of the above equation by parts to obtain2 

[B. 1 61 

The objective of this integration by parts is to have q ( x )  as a coefficient of all the terms 
in the integrand. Introducing Eq. [B.16] into Eq. [B.15] we obtain 

[B. 1 71 

The integral and boundary terms in this equation vanish individually. Because q ( x )  is ar- 
bitrary in the interval (a, b), in order for the integral to be equal to zero the integrand must 
vanish at every point in the interval, so that 

[B. 1 81 

Equation [B. 181 is known as Euler k equation or the Euler-Lagrange equation. In addi- 
tion, each boundary term in Eq. [B.17] is zero by itself, leading to 

[B. 1 9a,b] 

Equation [B.18] and the end conditions constitute the necessary condition for the estab- 
lishment of the stationary value of the definite integral. Previously we considered geometric 
boundary conditions, so that q vanishes at x = a and x = b. As a result, Eqs. [B. 19a] and 
[B. 19b] are automatically satisfied. 

Consider now the case when y(x) is not specified at one or both of x = a and x = b. 
Hence q ( x )  does not vanish at those boundaries and has arbitrary values, in addition to the 
interior. To drive the boundary terms in Eqs. [B.l9a] and [B.l9b] to zero, the coefficient of 
q ( x )  must vanish, or 

d F 
If y(a) is not specified, then - = 0 at x = a 

JY' 
dF 

If y(b) is not specified, then - = 0 at x = b 
JY' 

The conditions above are the boundary conditions. Note that these boundary conditions 
are related to the function. They are called natural boundary conditions, or boundary condi- 
tions of the second kind. In mechanics they are also referred to as dynamic boundary condi- 
tions. Sometimes, the boundary conditions have the form g(y(a), yt(a)) = 0, h(y(b), yl(b))  = 
0. Such boundary conditions are known as boundary conditions of the third kind. 

An interesting special case is encountered when the function F is not an explicit function 
of x, that is, F = F(y, y') only. We can take the derivative of F with respect to x and obtain 

I 2Note that we are assuming that F is twice differentiable with respect to x, y, and y'. See text by Hildebrand for 
cases when the second derivatives of F have discontinuities. 



From Eq. [B.18] we have 

d y  d x  dy '  

Introducing Eq. [B.21] into Eq. [B.20] we obtain 

leading to the result 

F - y' - = constant (:; ) 
so that when F is not an explicit function of x, then the expression F - y ' (dFldyl )  represents 
a j r s t  integral. The subject of first integrals for dynamical systems is discussed in Section 
1.12. 

The above relations describe a very useful property which lets one recognize the exis- 
tence of first integrals. In Chapters 4 and 5 we make use of the above properties and observe 
the relation between the function F and the Lagrangian. 

For the functional F ( x ,  y, y l )  given by F = yr2 - 4 y 2  - 6y4 ,  find Euler's equation and the I Exampk 
associated first integral. 

Solution 

Taking the partial derivatives of F ,  we obtain 

which, when introduced into Euler's equation, gives 

To find the first integral we note that x  is absent from F.  From Eq. [a] we write 

so that the first integral becomes 

which can be rewritten as 

Y'2 + 4 y 2  + 6 y 4  = constant 

We can draw an analogy between this example and the stiffening spring considered in 
Chapter 1. Indeed, if we think of x  as time, y as the spring deflection, then F represents the 
difference between twice the kinetic and potential energies, and d F l d y  represents the spring 
force. The integral of the motion is, of course, the total energy. 
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The variational notation streamlines the formulation of variational mechanics problems, and 
it demonstrates the difference between differential calculus and variational calculus more 
clearly. Consider the function F ( x ,  y, y ' )  and stationary values of its integral. In the previous 
section, we defined the varied function as y ( x )  + E ~ ( x ) .  Let E be a small quantity and define 
the variation of y ( x )  as the change E ~ ( x ) ,  and denote it by 6 y ,  so that 

The change in F due to the variation in y ,  for a fixed value of x,  can be expressed as 

which can be expanded in a Taylor series 

d F  d F  
A F  = - ~ q  + - ~ q '  + (higher-order terms in E )  [B.26] 

d y  dy' 

The variation of F ,  denoted by 6 F ,  is defined as the terms in the above equation linear 
in E ,  SO that 

where 6  y' denotes the variation of y ' ,  6  y' = ~ q ' ( x ) .  6 F  is also referred to as thefirst variation 
of F .  

The above relationship is similar to the exact differential of F ,  but it is different. The 
exact differential of F has the form 

and it has one extra term due to the derivative of F with respect to x. The difference between 
the exact differential and variation of F arises from the way the variation operation treats the 
variables x  and y. For the function F ,  x  is the independent variable and y ( x )  is the dependent 
variable, dependent in the sense that it is a function of x,  and that it is not constrained in 
any form. When we obtain the variation of F ,  we hold the independent variable fixed and 
vary the dependent variable y ( x )  and its derivative y f ( x )  to get y ( x )  + E ~ ( x )  and y l ( x )  + 
E ~ ' ( x ) .  The variation is from one curve (or path) to another while x  is held fixed, so that 
there is no variation in x. Hence, 6 x  = 0. By contrast, the differential of a function describes 
the change in that function along a particular curve (or path), and the independent variable 
x  varies along that path as well. This point highlights the difference between differential 
calculus and variational calculus: The variation of a function includes changes of only the 
dependent variables, whereas the differential of a function considers changes of both the 
dependent and independent variables. 

The rules associated with mathematical operations on variation are the same as the rules 
of differentiation. The variation operation and the differentiation operation commute when 
the differentiation is with respect to an independent variable. We have, for example 



The variation operation is applicable to scalar functions as well as to vectors. Also, 
when we refer to the variation of a function f ( x l ,  x2, . . . , x,),  where all the variables xk 
(k = 1,2, . . . , n) are independent of each other, the variation is exactly analogous to differ- 
entiation and has the form 

One should compare Eq. [B.30] with Eq. [B.2]. 
We next derive the Euler-Lagrange equation by using the variation of the integral in Eq. 

[B. 121. Taking its variation, we obtain 

Integration of the second term in the integrand by parts yields 

d dF dF b  
d x  = lab{$  - (-)I d x  dy' S y d x +  - 6 y l  dy' a = 0 IB.321 

Noting that the integral and the boundary expressions vanish individually, we obtain 

By virtue of the arbitrariness of 6 y ,  Eq. [B.33a] leads to the Euler equation in Eq. [B. 181. 
Equation [B.33b] leads to the boundary conditions. 

The variational formulation can also be used to find the stationary values of an integral 
subject to constraints. The general formulation of the constrained problem will not be derived 
here. We consider this problem in the study of analytical mechanics in Chapter 4, within the 
context of applications. 

A very important application of variational calculus is the Sturm-Liouville problem, which I Examnplr 
can be derived by seeking the values for y (x )  which render stationary values of the ratio of B.4 
two integrals II  and Iz,  defined as 

where y is the ratio of the integrals, p(x) ,  q (x ) ,  and r ( x )  are known functions of x, and a and 
b are the boundaries. Moreover, p ( x )  and r ( x )  are positive. Note that x is the independent 
variable. Invoking the product rule, we obtain for the variation of y 

Iz 611 - II 612 
6 y  = = 0 

1; 
[bl 

Because I2 # 0, we can multiply the above equation with it, which yields 

The variations of the individual integrals are 
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We integrate the first of Eq. [dl by parts and obtain 

Introduction of the second of Eqs. [dl and [el into Eq. [c] and division by 2 yields 

The integral in Eq. [f] is evaluated over the interval (a, b)  and the integrated term is 
evaluated at the boundaries. By definition of the variation of y, the two expressions are in- 
dependent of each other and, for Eq. [f] to hold, they must both vanish individually. For the 
integral to vanish for all possible values of 6 y ,  the integrand must be zero, leading to the 
Euler-Lagrange equation 

The second term in Eq. [f] contains the boundary expressions, from which the boundary 
conditions are ascertained. Consider the boundary x  = a. If y (x )  is specified at x  = a, say 
y(a) = y,, then the variation of y at that point is zero. This type of boundary condition is 
an essential boundary condition, or a boundary condition of thejrst kind. If, on the other 
hand, y (x )  is not specified at x  = a, its variation 6 y  does not vanish at that point. It fol- 
lows that, to render the boundary term zero, the coefficient of 6 y ,  p (x )y l ,  must vanish. The 
relation 

becomes the boundary condition. This type of boundary condition is referred to as a natu- 
ral boundary condition, or a boundary condition of the second kind. The Euler-Lagrange 
equation and the boundary conditions constitute the so-called boundary value problem. 

Examples of Sturm-Liouville problems from mechanics include the transverse vibra- 
tion of strings, axial vibration of bars, and torsional vibration of rods. Table B.l gives the 
corresponding quantities for y(x) ,  p(x) ,  q (x ) ,  and r ( x )  for these problems. 

Table B. 1 Sturm-Liouville Problems 

Qpe of Problem 

String vibrations 

Axial vibration of bars 

Torsional vibration of 
rods 

Transverse deformation Tension - T ( x )  
Y ( X )  

Axial deformation u(x)  Stiffness -EA(x)  

Torsional deformation Torsional stiffness 
e ( x )  - G J ( x )  

Masdunit length p ( x )  

Masslunit length p ( x )  

per unit length 9 ( x )  

In all three cases the expression for p ( x )  is a negative quantity. Derivation of the equa- 
tions of motion of deformable bodies is considered in Chapter l l. Note that even though the 
form of the equations looks similar, the transverse vibration of beams is not a Sturm-Liouville 
problem. The highest order spatial derivative is four, as opposed to two in Sturm-Liouville 
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problems. However, the way the equations of motion are derived is the same. For the sim- 
ple cases of vibration considered here, q ( x )  = 0. This expression becomes nonzero in more 
complex vibration problems. 

The variational notation is ideally suited for dynamics problems because it makes the formu- 
lation concise and it has a meaningful physical interpretation. 

Consider, for example, the motion of a particle. When the motion is described in terms 
of Cartesian coordinates, we use the variables x, y, and z to describe position and the variable 
t to describe the time dependence. The vector r(x(t) ,  y(t), z(t), t )  describes the position. It 
follows that x, y, and z are the dependent variables and t is the independent variable. There 
is no variation of the position vector with respect to time, and 

The variations of the spatial coordinates are known as virtual displacements. Because 
there is no variation in time, the virtual displacements can be considered as occurring in- 
stantaneously. This leads to a very interesting physical interpretation. A virtual displacement 
can be thought of as imagining the dynamical system in a different position while holding 
time fixed. The arbitrary position is consistent with the system constraints and it is within 
the admissible paths the particle can follow. This concept is illustrated in Fig. B.2 for the x 
coordinate. 

The variation of the position vector is intimately related to the velocity. Indeed, the ve- 
locity of the particle considered above can be written as 

d r  dr dr . d r .  dr 
v ( x , y , z , t ) =  - = - - x i - - y + - z + -  

dt  ax ay  d~ at 

This brings about the possibility of calculating a virtual displacement from the expres- 
sion for velocity, instead of taking derivatives of the position vector. We demonstrate this in 
Chapter 4. 
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1. Find the points on the curve x y  = 1 that are the closest to the origin. 

2. Find the points on the ellipsoid 4x2  - x y  + 4y2 - yz + 3z2 = 1 that are the closest to 
the origin. Note: This problem can be posed as an eigenvalue problem. 

3 .  Find the stationary values of the function f ( x )  = 3x: + xg + 2x1xz + 6x1 + 2x2 subject 
to the constraint 2x1 - x2 = 4 .  Check for minima and maxima. 

SECTIONS B.3 AND B.4 
4. Given two points on the x y  plane ( x l ,  y l )  and (x2, yz), make use of Eq. [1.3.33] to show 

that one must minimize the integral 

I = IX: J G d x  with y ( x , )  = y l .  y(x2) = y2 

in order to find the arc of minimum length that passes through two given end points. 
Show that, given no restrictions on the path from ( x l ,  y l )  to (x2,  y2). the solution is a 
straight line. 

5 .  Obtain the Euler-Lagrange equation associated with the functional F(x ,  y, y') = x y R  - 
YY' + Y.  

6.  In a similar way to Problem 4 ,  show that the minimal surface of revolution about the x 
axis passing through the two points ( x l ,  y l )  and (x2, yZ)  can be found by minimizing the 
integral 

I = iX2 y ~ l + y . 2 d x  with y ( x I )  = y l .  y(x2)  = y2 

Then, find the resulting Euler's equation, and the solution. 

7. Find the first integral associated with the function F(x,  y, y') = y'2 + 5y3 - 2y4.  

8. Consider the problem of axial deformation of a circular rod of length L and uniform 
density p, fixed at x = 0 and free at x = L, as shown in Fig. B.3. The radius of the 
cross section of the rod R(x)  varies with the relation R(x)  = Ro(l - x13L). Find Euler's 
equation and boundary conditions. 



A P P E N D I X  

COMMON INERTIA PROPERTIES 

Note: x y z  always denote centroidal coordinates. 

Circular Cylinder 

& - X 

z 
Area A x' 

Volume = T R ~ L  
1 

I,, = -mR2 
2 

1 1 
I x x  = lyy = -mR2 + -mL2 

4 12 
1 1 

I X f X t  = I,,,, = -mR2 + -mL2 
4 3 

Volume = T R ~ L  
1 

I,, = - mR2 
2 

1 
I,, = I,, = -mR2 

4 

Volume = AL 

Izz = 0 
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Semicylinder 
Y 

Rectangular Prism 

Y 

Thin Plate (One of a, b, or c 
small. Say c)  

Y 

1 
Volume = -aR2L 

2 
9 a 2  - 64 1 

I x ~  = mR2 + -mL2 36r2  12 
1 1 

I,, = -mR2 + -mL2 
4 12 
9 a 2  - 32 

Izz = mR2 1 8 ~ 2  
1 1 

I,,,, = -mR2 + -mL2 
4 12 

I,,,, = ?mR2 
2 

Volume = abc 
1 

Zxx = -m(b2 + c2)  
12 
1 

IyY = -m(a2 + c2) 
12 
1 

I,, = - m(a2 + b2) 
12 

1 
I,,,, = -m(b2 + 4c2) 

12 
1 

I,,,, = -m(a2 + 4c2) 
12 

Volume = abc 
1 

I,, = -mb2 
12 

1 
I,, = -m(a2 + b2) 

12 

Sphere 
Y 

4 
Volume = -aR3 

3 
2 I,, = I,, = I,, = -mR2 
5 



Hemisphere 

Right Circular Cone 

Half Cone I 

Ellipsoid 

Y 
I 

L 
Volume = - 7rR3 

3 
83 

I,, = I,, = -mR2 
320 

1 
Volume = - TR'L 

3 
3 3 

I,, = I,, = -mR2 + -mL2 
20 80 

3 
I,, = -mR2 

10 
3 3 

I,,,, = I,,,, = -mR2 + -mL2 
20 5 

1 
Volume = - T R ~ L  

6 

3 3 
I,, = -mR2 + -mL2 

20 80 

1 Iyz = ----mRL I,, = I,, = 0 
20T 

3 1 
I,,,, = Zy,y, = -mR2 + -mL2 

20 10 
3 

I,,,, = -mR2 
10 

4 
Volume = - ~ a b c  

3 
1 

I,, = -m(b2 + c 2 )  
5 
1 

I,, = -m(a2 + c 2 )  
5 
1 

I,, = - m(a2 + b2) 
5 

xz Y 2  z2 
Surface defined by - + - + - = 1 a2 b2 c2 



Right Triangular Prism 
V 

Triangular Plate (c << a, c << b) 

Rectangular Tetrahedron 

1 
Volume = -abc 

2 
1 1 

I,, = -mb2 + -mc2 
18 12 
1 1 

I,, = -ma2 + -mc2 
18 12 
1 

I,, = -m(a2 + b2) 
18 

1 
I,, = --mab 

36 
I,, = zyz = 0 

I 
Volume = -abc 

2 
1 

I,, = -mb2 
18 

I = -  
YY 118 ma' 

1 
I,, = -m(a2 + b2) 

18 

Volume = l abc  
6 

1 
I,,,, = -m(b2 + c2) 

10 
1 

I,,,, = -m(a2 + c2) 
10 
1 

I,,,, = -m(a2 + bZ)  
10 

Note: Centroidal coordinates xyz not shown. 

Coordinates of G: 

3 I,, = -m(bz + c2)  
80 

3 
I,, = -m(a2 + b2) 

80 



Half Torus 

x' 

Half Circular Rod - small G 1 

Cross 

z' 

Conical Shell 

Y"  

Volume = r r a 2 ~  

I,,,, = 
1 5 

I,,,, = -mR2 + -ma2 
2 8 

3 
I,,,, = mR2 + -ma2 

4 

Volume = V R A  

I,, = m 1 - - R2 ( 9 
I,,,, = mR2 

1 1 
I,, = I,, = -mR2 + -mL2 

4 18 
1 

I,, = -mR2 
2 

1 1 
I,,,, = I,,,, = -mR2 + -mL2 

4 6 
1 1 

I,,,,,, = I,,,,,, = -mR2 + -mL2 
4 2 

Circular Cylindrical Shell 

Y 

I,, = mR2 
1 1 

I,, = I,, = -mR2 + - m ~ '  
2 12 

1 1 
I,,,, = I,,,, = -mR2 + -mL2 

2 3 



Half Cylindrical Shell 

Spherical Shell 

Y 

Hemispherical Shell 

Z 

2 
I,, = -mR2 

3 

I,.,. = I , , .  = ;mR2 







Acceleration 
centripetal, 11,19, 125 
Coriolis, 19,23, 125 
normal, 11 
plane motion, 125 
relative, 124 
tangential, 11 

Action integral, 25 1 
Albert of Saxony, 671,678 
Angle 

attitude, 374 
azimuthal, 21 
bank, 374 
heading, 374 
phase, 65 
polar, 2 1 

Angle of twist, 599 
Angular acceleration, 117 

apparent, 158 
axisymmetric bodies, 372 
conservation, 40,449 
in terms of Euler angles, 371 

Angular momentun 
particles, 39, 158 
rigid bodies, 96,423,652 
transformation properties, 425 

Angular velocity 
critical, 570 
definition of, 109, 11 1, 389 
of differential element, 597 
matrix, 110,365 
mean, 188 
partial, 379, 507 
as quasi-velocity, 378 
simple, 11 1,357 
in terms of Euler angles, 369 
in terms of Euler parameters, 385 
vector, 109,389 

Anomaly 
eccentric, 187 
mean, 189 
true, 187 

Apex, 563 

Apocenter, 179 
Apogee, 180 
Appell, P.E., 517,676,678 
Appell equations, 5 18 
Archimedes, 670,678 
Areal rate, 181 
Argument of pericenter, 189 
Aristotle, 669, 678 
Assumed modes method, 628,649 
Asymptotic behavior, 62 1 
Axial force, 593 
Axis of rotation, 359,360 
Axis of symmetry, 328,372,565 
Axisymmetric body, 341,372, 

499,548 

Baruh, H., 650 
Beam 

axis, 592 
Rayleigh, 594 
theory, 592 

Beat phenomenon, 143 
Bending moment, 593 
Bending stiffness, 598 
Bernoulli, D., 679, 687 
Bernoulli, Johann, 242,674,679 
Bernoulli, Johann, 11,679,687 
Body-fixed 

axes, 356,370 
coordinates, 37 1,435 
rotation, 100, 105 

Boltzmann-Hamel equations, 499 
Boundary condition 

complementary, 607 
dynamic, 608 
essential, 607 
of the first kind, 607,693 
geometric, 607,693 
natural, 608,694 
of the second kind, 608,694 
of the third kind, 608,694 

Boundary value problem, 617 



Bounding circles, 567 
Brahe, T., 671 

Center of curvature, 9 
Center of mass, 154,324 

composite bodies, 325 
Centrifugal softening, 650 
Centrifugal stiffening, 650 
Characteristic equation, 56, 59, 289, 

343,618,630 
Characteristic value, 290 
Chasles's theorem, 363 
Coefficient of restitution, 166, 193, 

478 
Complete set, 619 
Compression period, 165,478 
Cone 

body, 359,550 
space, 359,550 

Configuration space, 2 17 
Conic section, 179 
Constraint, 217 

configuration, 2 19 
equation, 219 
force, 2 19 
holonomic, 220,404 
modified Tisserand, 643 
nonholonornic, 220,405 
number of, 35 
in Pfaffian form, 220 
rigid body, 641,651 
velocity, 220 
workless, 223 
zero slope, 643,653 
zero tip deformation, 643,655 

Constraint relaxation method, 262, 
464 

Convolution integral, 69 
Coordinates, body-fixed, 356 
Coordinates, Cartesian, 5 

constrained, 21 8 
curvilinear, 8 
cyclic, 300 

cylindrical, 17 
extrinsic, 5 
generalized, 2 16 
ignorable, 300,303 
independent, 2 1 8 
intrinsic, 8 
normal-tangential, 6 
number of, 35 
polar, 18 
rectilinear, 5 
right-handed system, 4 
spherical, 2 1 

Copernicus, N., 67 1,679 
Coriolis, G. G., 675, 679 
Coriolis acceleration, 19,23, 

125 
Coriolis force, 136 
Coulomb, C. A,, 675,680 
Coulomb friction, 29 
Courant, R., 621 
Critical angular velocity, 570 
Curvilinear coordinates, 8 
Cuspidal motion, 568 
Cycloid, 402 
Cylindrical pair, 396 

D'Alembert, J. L. R., 680 
D' Alembert's principle, 246 

direct application of, 247,3 1 1 
Lagrange's form, 254 
rigid bodies, 247,474,526 

Da Vinci, L., 671 
Damped linearized systems, 

287 
Damped natural frequency, 6 1 
Damping 

coefficient, 59 
factor, 59 
matrix, 287 
proportional, 297 

Datum, 46,47 
Degree of freedom, 34,2 18,601 
Dependent variable, 23 1 



Derivative 
in different reference frame, 121 
global, 88 
local, 88, 117 

Differential-algebraic equations, 261, 
313 

Dirac delta function, 37 
Direction 

azimuthal, 21 
binormal, 11 
normal, 9 
polar, 21 
radial, 18,21 
tangential, 9 
transverse, 18 

Direction angle, 98 
Direction cosine, 98, 343 

in terms of Euler parameters, 386 
Dissipation function, 286 
Distance traversed, 8,595 
Dry friction, 29 
Dual spin satellite, 494 
Dugas, A., 669 
Duhem, P., 669 
Dynamic balancing, 444 
Dynamic potential, 276 

Earth 
mass of, 176 
as a moving reference frame, 133, 

582 
Eccentricity, 179 
Eigenfunction, 6 17 
Eigenvalue, 290,343,361,617,63 1 

repeated, 344 
Eigenvector, 290, 343,361,631 
Ellipse 

apsis, 199 
semimajor axis, 179 
semiminor axis, 179 

Energy 
principle of conservation of, 49 
total, 49,453 

Energy inner product, 602 
Energy of acceleration, 5 17 
Equation of motion, 3 1 

damped systems, 255 
differential-algebraic, 261 
Euler's, 437 
Gibbs-Appell, 5 18 
Kane's, 525 
Lagrange's, 255 
linearized, 55,282,287 
in matrix form, 287 
rigid body, 43 1 
in state form, 76,312,447 

Equilibrium 
critically stable, 55 
dynamic, 245 
nonnatural systems, 276 
small motions about, 279 
stable, 54 
static, 54, 241 
unstable, 55 

Escape velocity, 26, 183 
Euclid, 670 
Euler, L., 26,360,673,680,687 
Euler angles 

for aircraft problems, 373,4 19 
angular acceleration, 37 1 
angular velocity, 369 
properties of, 419 
sequence of, 368,460 

Euler parameters, 38 1,463 
in terms of direction cosines, 

3 87 
Euler's equations, 435,437 

modified, 436,490 
Euler-Bernoulli equation, 610 
Euler-Lagrange equation, 255 
Expansion, 138,441,575,581 
Expansion theorem, 293,6 19 
Extremum, 687 

F frame, 372 
First integral, 72,301,695 



First variation, 696 
Flat body, 554 
Flight path angle, 180 
Force 

central, 41,175 
centrifugal, 136 
circulatory, 287 
conservative, 44 
constraint, 136, 155 
Coriolis, 136 
definition of, 29 
effective, 135 
external, 155 
friction, 30 
generalized, 239,508 
impulsive, 37, 164,305 
inertia, 245,43 1 
internal, 155 
nonconservative, 49 
normal, 30 

Foucault, 675 
Foucault's pendulum, 141,283 
Free body diagram, 3 1,255 
Frenet's formulas, 13 
Frequency 

average, 143 
beat, 143 
natural, 59,290 
response, 63 

Friction 
coefficient of, 29 
Coulomb, 29 
dry, 29 
treatment in analytical mechanics, 

260,444 
Function 

admissible, 612,627 
comparison, 612,619,627 
consistent admissible, 627 
consistent comparison, 627 

Functional, 693 
Fundamental equations, 527 

Gibbs-Appell form, 527 
Kane's form, 527 

Fundamental function, 5 18 

Galileo, G., 672,681 
Gauss, C.F., 675,681 
Gauss's variational principle, 3 15 
Generalized coordinate, 2 16 

constrained, 21 8,261 
ignorable, 300 
independent, 2 1 8 

Generalized force, 239,457 
in assumed modes method, 630 
inertia, 525 
for partial velocity, 507,5 13 

Generalized impulse 
for generalized coordinates, 305 
for generalized speeds, 539 

Generalized inertia force, 525 
Generalized momentum, 300,459 
Generalized speed, 378,504 

constrained, 504 
independent, 504,5 13 
surplus, 504,513 

Generalized velocity, 232 
Generatrix, 359 
Geosynchronous orbit, 182 
Gibbs, J.W., 517,681 
Gibbs function, 5 17 
Gibbs-Appell equations, 5 18 
Gibbs-Appell function, 5 17 

for a rigid body, 520 
Gimbal lock, 394 
Ginsberg, J.H., 24 
Gradient operation, 92 
Gravitational constant, 3,28 

universal, 28,173 
Guide bars, 397 
Gyrocompass, 582 
Gyropendulum, 377,438 
Gyroscope 

balanced, 581 
free, 581 
integrating, 586 
single-axis, 585 

Gyroscopic effect, 358 
Gyroscopic matrix, 283 



Gyroscopic moment, 434 
Gyroscopic motion, 547 
Gyroscopic system, 142 
Gyroscopic vector, 275 
Gyrostat, 494 

Hamilton, W.R., 249,68 1 
Hamilton's equations, 25 1 
Hamilton's principle 

for continuous systems, 604 
extended, 25 1 
of varying action, 250 

Hamiltonian, 308 
Herpolhode, 559 
Hessian matrix, 688 
Hilbert, D., 621 
Hohmann transfer, 185 
Holonomic 

constraint, 220,405 
system, 220,226 

Hooke's law, 48,597,599 
Hybrid systems, 663 
Hyperbolic excess speed, 184 

Ignorable coordinates, 300 
Impact 

elastic, 167 
line of, 164,477 
particle, 164 
plastic, 167 
rigid body, 477 

Impetus, 67 1 
Impulse, 36 
Impulse response, 69 
Impulse-momentum theorem 

angular, 40, 159,204,449 
linear, 36, 157, 204,449 

Impulsive force, 37 
Inclusion principle, 632 

Inertia ellipsoid, 347,558 
normal to, 559 

Inertia matrix, 275,328 
Inertia properties 

axisymmetric bodies, 344 
parallel axis theorem, 336 
rotation of coordinates, 337 
translation of coordinates, 335 

Inertia torque, 525 
Inertial symmetry, 372, 548 
Inflection point, 688 
Inner product, 602 
Instantaneous center zero velocity, 

200 
Integral of the motion, 72, 301,695 
Internal properties, 329 
International Gravity Formula, 29 
Invariable plane, 559 

Jacobi integral, 301, 309 
Joint 

ball and socket, 392 
Cardan, 393 
constant velocity, 394 
prismatic, 130, 395 
revolute, 130,391 
universal, 393 

Jordanus, 670 
Jourdain, P.E.B., 678,682 
Jourdain's variational principle, 3 14 
Junkins, J.L., 37 1 

Kane's equations, 525 
Kepler, J., 18 1,671,682 
Kepler's laws of planetary motion, 

181 
Kepler's equation, 189 
Kinematic differential equations, 370, 

446,505 



Kinematics 
infinitesimal rotation, 107 
joints, 391 
plane motion rotation, 195 
rigid body, 355 
rolling, 200,400 

Kinetic energy 
beams, 597 
linearized form, 28 1 
particles, 43, 162 
rigid bodies, 203,45 1 
rotational, 162,452 
torsion, 599 
translational, 162,453,597 
two body problem, 175 

Kronecker delta, 293 

Lagrange, J. L., 255,674,683 
Lagrange multipliers, 260,464,689 
Lagrange's equations, 255 

for constrained systems, 260,464 
for quasi-coordinates, 534 
for rigid bodies, 456 
in terms of Euler angles, 462 
in terms of Euler parameters, 

463 
Lagrangian, 25 1,303 
Line of impact, 164,477 
Line of nodes, 190,369,577 
Linear momentum 

conservation of, 37 
particles, 26, 155 
rigid bodies, 422 

Linear range, 47 
Linearization 

damped systems, 287 
about equilibrium, 283 
of free gyroscope, 58 1 
nonnatural systems, 283 
of rolling motion, 576 
Taylor series expansion, 55,278 

Longitude of ascending node, 191 
Longitude of descending node, 191 

Mach, E., 669 
Magnification factor, 64 
Mass, 2 
Mass flow rate, 172 
Matrix 

circulatory, 287 
identity, 99 
inertia, 275,328 
mass, 275 
orthogonal, 343 
positive-definite, 280,290, 328, 

688 
rotation, 101 
stiffness, 280 
symmetric, 280,328,688 
unitary, 99 

Meirovitch, L., 108,298 
Mixed descriptions, 24 
Modal analysis, 296,617 
Modal coordinates, 296 
Modal equations, 296 
Modal force, 296,620 
Modal vector, 291 
Modified Euler equations, 436,490 
Modulus of elasticity, 48,597 
Moment equations 

arbitrary bodies, 434 
about an arbitrary point, 498 
axisyrnmetric bodies, 436,490 
classification, 503 

Moment of inertia 
area, 330 
area polar, 330 
mass, 195,327,423,598,652 
principal, 329,343 

Momentum 
angular, 39,196,423 
generalized, 300,459 
linear, 26,36, 196,422 

Momentum wheel, 1 12 
Motion 

primary, 637 
relative to earth, 134 
secondary, 637 



Natural frequency, 59,290 
Natural mode, 291 
Newton, I., 26, 166,478,673, 

683 
law of gravitation of, 28 
laws of, 27,434 
Newton-Euler formulation, 

432 
Node, 619 
Nonholonomic, 109 

angular velocity as, 109 
constraint, 220 
system, 223 

North polar axis, 189 
Nutation, 369 

Orbit 
circular, 179 
elliptic, 179 
hyperbolic, 183 
parabolic, 183 

Orbital inclination, 190 
Orbital parameters, 187 
Orthogonality, 293,63 1 
Orthonormality, 293 
Osculating plane, 11 

Parallel axis theorem, 197,336 
Partial velocity, 506 

matrix, 506 
Particle, definition of, 26 
Particle assumption, 26 
Passarello-Huston equations, 

533 
Path variables, 8 
Pericenter, 179 
Perigee, 180 
Perturbation, 138,441,575 

Pfaffian form, 220 
Phase portrait, 72 
Pitch rate, 375 
Plane motion, 193 
Plane of contact, 400 
Plane of symmetry, 328 
Poincari, J.H., 677,684 
Poinsot's construction, 557 
Poisson, S.D., 165,478,675, 

684 
Poisson's hypothesis, 165,478 
Poisson's ratio, 599 
Polhode, 559 
Position vector 

cylindrical coordinates, 18 
rectilinear coordinates, 5 
spherical coordinates, 2 1 

Potential energy, 44,239 
beams, 598 
elastic, 48,598,600 
gravitational, 44, 163 
modified, 276 
springs, 46 
theorem, 56,281 
torsion, 600 

Power, 50,454 
Precession, 369 

direct, 553 
looping, 567 
retrograde, 554 
steady, 569, 574 
unidirectional, 567 

Principal axes, 343,348 
axisymmetric bodies, 343, 

348 
Principal coordinates, 296 
Principal line, 360 
Principal plane, 345 
Principia, 26 
Principle of least action, 25 1 
Principle of virtual work, 243 
Product of inertia 

area, 598 
mass, 327 

Ptolemy, C., 684 
Pure rotation, 356 



Quasi-coordinate, 505 
variation of, 508 

Quasi-velocity, 378,505 
constrained, 378,505 

Radian, 1 
Radius of curvature, 9,400,593 
Radius of gyration, 197,332 
Rayleigh's dissipation function, 

286 
Reference frame 

for axisyrnrnetric bodies, 372 
body-fixed, 356 
fixed, 88 
fixed to earth, 133 
inertial, 26 
moving, 88 
relative, 133,630 

Relative acceleration, 125 
Relative velocity, 124 
Resonance, 64 
Response 

damped systems, 61,298 
free, 58,298 
general, 68 
to harmonic excitation, 65 
in phase, 65 
out of phase, 65 

Restitution period, 166,478 
Resultant, 196,429 
Rigid body 

assumption, 323,591 
equations of motion, 43 1 
kinematics, 355 

Rigid body mode, 29 1,624 
Rivello, R.M., 601 
Rodriques parameters, 4 15 
Roll rate, 375 
Rolling 

of inertia ellipsoid, 559 
kinematics, 400 

with slip, 200,401 
without slip, 201,401,573 

Rotating shaft, 659 
Rotation, 102 

of earth, 133 
finite, 103 
about a fixed axis, 356,443 
about a fixed point, 358,563 
infinitesimal, 107 
about principal line, 360 

Rotation sequence, 107 
Routh, E.J., 684 
Routhian, 303 

Saddle point, 689 
Sampling period, 75 
Semilatus rectum, 179 
Semimajor axis, 179 
Semiminor axis, 179 
Separatrix, 72,561 
Servomotor, 440 
Shadow frame, 637 
Shear force, 593 
Shear modulus, 599 
Shortening of projection, 595 
Sleeping top, 571 
Slender body, 553 
Slider, 395 
Sliding in rolling, 577 
Smith, C., 650 
Space-fixed rotation, 100 
Spherical pair, 392 
Spherical pendulum, 23 
Spin, 369 
Spin slip in rolling, 577 
Spring 

axial, 46 
linear range, 47 
softening, 47 
stiffening, 47 
torsional, 47 

Spring constant, 46 
St. Venant's hypothesis, 599 



Stability 
asymptotic, 55 
critical, 55 
free motion, 44 1,562 
neutral, 55 
theorem, 56,28 1 

State form, 76,308,312 
Stationary value 

of constrained systems, 690 
of a definite integral, 693 
of a function, 688 

Steady motion, 574 
Steady precession, 574,582, 

584 
Stiffness 

axial, 598 
bending, 598 
torsional, 600 

Stiffness coefficients, 280 
Strain 

axial, 48 
shear, 599 

Stress 
axial, 48 
shear, 599 

Sturm-Liouville problem, 697 
Sylvester's criterion, 328,688 
Synchronous motion, 289 
System 

conservative, 56 
holonomic, 220,226 
natural, 275 
nonnatural, 275 
rheonomic, 220 
scleronomic, 220 
undamped, 59 
underdamped, 61 

Tadikonda, S.S.K., 654 
Taylor series expansion, 55, 

279 
Time of pericenter passage, 189 
Torque-free motion, 548,556 

Torsion of curve, 12 
Torsional stiffness, 600 
Tracking frame, 637 
Transfer orbit, 185 
Transmissibility, 67 
Transport theorem, 1 17, 12 1 
Trial function, 628 
Truesdell, C.T., 432,669 
Turner, J., 371 
Twisting moment, 593 
Two body problem, 173 

Unit step function, 69 
Unit vector, 4 

cylindrical coordinates, 18 
rectilinear coordinates, 4 

Units 
SI, 2 
U.S. Customary, 2 

Variable mass, 170 
Variation of latitude, 552 
Variation of quasi-coordinates, 

508 
Variational notation, 230, 

696 
Vector 

algebraic, 91 
column, 9 1 
geometric, 91 
gyroscopic, 275 
spatial, 9 1 

Vehicle dynamics, 224 
Velocity 

base, 124 
partial, 379,459,506 
relative, 124 
transport, 125 

Vernal equinox, 189 
Vertex, 563 
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Virtual displacements, 230,699
analytical approach, 232
kinematical approach, 232

Virtual work, 233
constraint force, 233
independent quasi-velocities, 512

Work .
done by a conservative force, 48
done by a constraint force, 223
done by a nonconservative force, 49
incremental, 43
virtual, 230,233,457

Work-energy theorem, 43, 163,455

W
Y

Warping function, 598
Weighted residual, 628
Whirling, 662
Wobbling motion, 552

Yaw rate, 375
Yu, L., 654




