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Preface

Information for readers

What is this book about and who is it for?

This is a book on classical mechanics for university undergraduates. It aims to cover
all the material normally taught in classical mechanics courses from Newton’s laws to
Hamilton’s equations. If you are attending such a course, you will be unlucky not to
find the course material in this book.

What prerequisites are needed to read this book?

It is expected that the reader will have attended an elementary calculus course and an
elementary course on differential equations (ODEs). A previous course in mechanics
is helpful but not essential. This book is self-contained in the sense that it starts from
the beginning and assumes no prior knowledge of mechanics. However, in a general
text such as this, the early material is presented at a brisker pace than in books that are
specifically aimed at the beginner.

What is the style of the book?

The book is written in a crisp, no nonsense style; in short, there is no waffle! The object
is to get the reader to the important points as quickly and easily as possible, consistent
with good understanding.

Are there plenty of examples with full solutions?

Yes there are. Every new concept and technique is reinforced by fully worked exam-
ples. The author’s advice is that the reader should think how he or she would do each
worked example before reading the solution; much more will be learned this way!

Are there plenty of problems with answers?

Yes there are. At the end of each chapter there is a large collection of problems. For
convenience, these are arranged by topic and trickier problems are marked with a star.
Answers are provided to all of the problems. A feature of the book is the inclusion
of computer assisted problems. These are interesting physical problems that cannot be
solved analytically, but can be solved easily with computer assistance.

Where can | find more information?

More information about this book can be found on the book’s homepage
http://www.cambridge.org/Gregory

All feedback from readers is welcomed. Please e-mail your comments, corrections and
good ideas by clicking on the comments button on the book’s homepage.



Xii Preface

Information for lecturers

Scope of the book and prerequisites

This book aims to cover all the material normally taught in undergraduate mechanics
courses from Newton’s laws to Hamilton’s equations. It assumes that the students have
attended an elementary calculus course and an elementary course on ODEs, but no more.
The book is self contained and, in principle, it is not essential that the students should
have studied mechanics before. However, their lives will be made easier if they have!

Inspection copy and Solutions Manual

Any lecturer who is giving an undergraduate course on classical mechanics can request
an inspection copy of this book. Simply go to the book’s homepage

http://www.cambridge.org/Gregory

and follow the links.

Lecturers who adopt this book for their course may receive the Solutions Manual.
This has a complete set of detailed solutions to the problems at the end of the chapters.
To obtain the Solutions Manual, just send an e-mail giving your name, affiliation, and
details of the course to solutions@cambridge.org

Feedback

All feedback from instructors and lecturers is welcomed. Please e-mail your comments
via the link on the book’s homepage

Acknowledgements

I am very grateful to many friends and colleagues for their helpful comments and sug-
gestions while this book was in preparation. But most of all I thank my wife Win for
her unstinting support and encouragement, without which the book could not have been
written at all.
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Chapter One
. _________________________________________________________________________________________|

The algebra and calculus
of vectors

KEY FEATURES
The key features of this chapter are the rules of vector algebra and differentiation of vector
functions of a scalar variable.

This chapter begins with a review of the rules and applications of vector algebra.
Almost every student taking a mechanics course will already have attended a course on
vector algebra, and so, instead of covering the subject in full detail, we present, for easy
reference, a summary of vector operations and their important properties, together with a
selection of worked examples.

The chapter closes with an account of the differentiation of vector functions of a
scalar variable. Unlike the vector algebra sections, this is treated in full detail. Applica-
tions include the tangent vector and normal vector to a curve. These will be needed in
the next chapter in order to interpret the velocity and acceleration vectors.

1.1 VECTORS AND VECTOR QUANTITIES

Most physical quantities can be classified as being scalar quantities or vector
quantities. The temperature in a room is an example of a scalar quantity. It is so called
because its value is a scalar, which, in the present context, means a real number. Other
examples of scalar quantities are the volume of a can, the density of iron, and the pressure
of air in a tyre. Vector quantities are defined as follows:

Definition 1.1 Vector quantity If a quantity Q has a magnitude and a direction asso-
ciated with it, then Q is said to be a vector quantity. [Here, magnitude means a positive
real number and direction is specified relative to some underlying reference frame* that
we regard as fixed.]

The displacement of a particle’ is an example of a vector quantity. Suppose the
particle starts from the point A and, after moving in a general manner, ends up at the

* See section 2.2 for an explanation of the term ‘reference frame’.
A particle is an idealised body that occupies only a single point of space.
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FIGURE 1.1 Four different representations of each of the
vectors a, b ¢ form the twelve edges of the parallelopiped
box.

point B. The magnitude of the displacement is the distance AB and the direction of the
displacement is the direction of the straight line joining A to B (in that order). Another
example is the force applied to a body by a rope. In this case, the magnitude is the strength
of the force (a real positive quantity) and the direction is the direction of the rope (away
from the body). Other examples of vector quantities are the velocity of a body and the
value of the electric (or magnetic) field. In order to manipulate all such quantities without
regard to their physical origin, we introduce the concept of a vector as an abstract quantity.

Definition 1.2 Vector A vector is an abstract quantity characterised by the two proper-
ties magnitude and direction. Thus two vectors are equal if they have the same magnitude
and the same direction.”

Notation. Vectors are written in bold type, for example a, b, r or F. The magnitude of
the vector a, which is a real positive number, is written | a |, or sometimes’ simply a.

It is convenient to define operations involving abstract vectors by reference to some
simple, easily visualised vector quantity. The standard choice is the set of directed line
segments. Each straight line joining two points (P and Q say, in that order) is a vector

quantity, where the magnitude is the distance P Q and the direction is the direction of
—

Q relative to P. We call this the line segment PQ and we say that it represents some
abstract vector a.* Note that each vector a is represented by infinitely many different line
segments, as indicated in Figure 1.1.

* In order that our set of vectors should have a standard algebra, we also include a special vector whose
magnitude is zero and whose direction is not defined. This is called the zero vector and written 0. The
zero vector is not the same thing as the number zero!

1t is often useful to denote the magnitudes of the vectors a, b, ¢, ...by a, b, c, ..., but this does risk
confusion. Take care!

* The zero vector is represented by line segments whose end point and starting point are coincident.
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FIGURE 1.2 Addition, subtraction and scalar multiplication of vectors.
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1.2 LINEAR OPERATIONS: a + b AND \La

Since vectors are abstract quantities, we can define sums and products of vectors
in any way we like. However, in order to be of any use, the definitions must create some
coherent algebra and represent something of interest when applied to a range of vector
quantities. Also, our definitions must be independent of the particular representations
used to construct them. The definitions that follow satisfy all these requirements.

The vector sum a + b

Definition 1.3 Sum of vectors Let a and b be any two vectors. Take any representa-
—

—
tion PQ of a and suppose the line segment QR represents b. Then the sum a + b of a

—

and b is the vector represented by the line segment PR, as shown in Figure 1.2 (left).

Laws of algebra for the vector sum

i b+a=a+b (commutative law)

(i) a+(b+c)=(@+b)+c (associative law)

Definition 1.4 Negative of a vector Let b be any vector. Then the vector with the same
magnitude as b and the opposite direction is called the negative of b and is written —b.
Subtraction by b is then defined by

a—b=a+ (—b).

[That is, to subtract b just add —b, as shown in Figure 1.2 (centre).]

The scalar multiple Aa

Definition 1.5 Scalar multiple Let a be a vector and A be a scalar (a real number).
Then the scalar multiple Aa is the vector whose magnitude is |\ || a| and whose direction
is
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(1) the same as a if A is positive,
(i) undefined if A is zero (the answer is the zero vector),
(iii) the same as —a if A is negative.

It follows that —(Aa) = (—\)a.

Laws of algebra for the scalar multiple

1) AMua) = (An)a (associative law)
@) AM(a+b)=ra+Ab and A+ pw)a=Xra-+ ua (distributive laws)

The effect of the above laws is that linear combinations of vectors can be manipu-
lated just as if the vectors were symbols representing real or complex numbers.

Example 1.1 Laws for vector sum and scalar multiple

Simplify the expression 3(2a — 4b) —2(2a — b).

Solution
On this one occasion we will do the simplification by strict application of the laws. It

is instructive to decide which laws are being used at each step!
32a—4b) —2Q2a—b) = 3(2a n (—4)b) n (—2)(2a n (—1)b)
= (6a+(—12)b) + ((~4)a +2b)

_ (6a n (_4)a) n ((—12)b n 2b)
—2a+ (~10)b=2a—10b.m

Unit vectors

A vector of unit magnitude is called a unit vector. If any vector a is divided by its own
magnitude, the result is a unit vector having the same direction as a. This new vector is
denoted by @ so that

a=allal.

Basis sets

Suppose a and b are two non-zero vectors, with the direction of b neither the same nor
—_— —>

opposite to that of a. Let OA, OB be representations of a, b and let P be the plane
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A -

0) a A )\'a

FIGURE 1.3 The set {a, b} is a basis for all vectors lying in the plane O AB.

containing the triangle O AB. Then (see Figure 1.3) any vector v whose representation

—_—
OV lies in the plane P can be written in the form
v =Xia+ ub, (1.1)

where the coefficients A, wu are unique. Vectors that have their directions parallel to the
same plane are said to be coplanar. Thus we have shown that any vector coplanar with a
and b can be expanded uniquely in the form (1.1). It is also apparent that this expansion
set cannot be reduced in number (in this case to a single vector). For these reasons the pair
of vectors {a, b} is said to be a basis set for vectors lying* in the plane P.

Suppose now that {a, b, c} is a set of three non-coplanar vectors. Then any vector v,
without restriction, can be written in the form

v=Aia+ ub+vc, (1.2)

where the coefficients A, u, v are unique. In this case we say that the set {a, b, c} is a basis
set for all three-dimensional vectors. Although any set of three non-coplanar vectors forms
a basis, it is most convenient to take the basis vectors to be orthogonal unit vectors. In this
case the basis set' is usually denoted by {i, j, k} and is said to be an orthonormal basis.
The representation of a general vector v in the form

v=Al+pnj+vk

is common in problem solving.

In applications involving the cross product of vectors, the distinction between right-
and left-handed basis sets actually matters. There is no experiment in classical mechanics
or eletromagnetism that can distinguish between right- and left-handed sets. The differ-
ence can only be exhibited by a model or some familiar object that exhibits ‘handedness’,
such as a corkscrew.” Figure 1.4 shows a right-handed orthonormal basis set attached
to a well known object.

* Strictly speaking vectors are abstract quantities that do not /ie anywhere. This phrase should be taken to
mean ‘vectors whose directions are parallel to the plane P°.

T It should be remembered that there are infinitely many basis sets made up of orthogonal unit vectors.
_— > —>

* Suppose that the non-coplanar vectors {a, b, ¢} have representations O A, OB, OC respectively. Place
an ordinary corkscrew with the screw lying along the line through O perpendicular to the plane O AB,
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Ak L
FIGURE 1.4 A standard basis set {i, j, k} is . >
both orthonormal and right-handed. J
A
C a
C
FIGURE 1.5 The points A, B, C have position O
vectors a, b, ¢ relative to the origin O. b B

Definition 1.6 Standard basis set If an orthonormal basis {i, j, k} is also right-
handed (as shown in Figure 1.4), we will call it a standard basis.

Position vectors and vector geometry

Suppose that O is a fixed point of space. Then relative to the origin O (and relative to the

underlying reference frame), any point of space, such as A, has an associated line segment,
—

O A, which represents some vector a. Conversely, the vector a is sufficient to specify the
position of the point A.

Definition 1.7 Position vector The vector a is called the position vector of the point
A relative to the origin O, [It is standard practice, and very convenient, to denote the
position vectors of the points A, B, C, ...by a, b, ¢, and so on, as shown in Figure 1.5.]

Since vectors can be used to specify the positions of points in space, we can now use
the laws of vector algebra to prove™ results in Euclidean geometry. This is not just an aca-
demic exercise. Familiarity with geometrical concepts is an important part of mechanics.
We begin with the following useful result:

and the handle parallel to O A. Now turn the corkscrew until the handle is parallel to O B and note the
direction in which the corkscrew would move if it were ‘in action’. ( The direction of the turn must be
such that the angle turned through is at most 180°.) If OC makes an acute angle with this direction, the
set {a, b, c} (in that order) is right-handed; it OC makes an obtuse angle with this direction then the set
is left-handed.

* Some properties of Euclidean geometry have been used to prove the laws of vector algebra. However,
this does not prevent us from giving valid proofs of other results.
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FIGURE 1.6 The point X divides the line AB
in the ratio A : . @)

Example 1.2 Point dividing a line in a given ratio

The points A and B have position vectors a and b relative to an origin O. Find the
position vector x of the point X that divides the line AB in the ratio A : u (that is
AX/XB = \/p).

Solution
It follows from Figure 1.6 that x is given by*

RN )\' —_
x=a+AX=a+(—> AB
At

A Ab
a+<—>(b—a) _ hatrd
P P

In particular, the mid-point of the line AB has position vector %(a +b).m

Example 1.3 Centroid of a triangle

Show that the three medians of any triangle meet in a point (the centroid) which
divides each of them in the ratio 2:1.

Solution

Let the triangle be ABC where the points A, B, C have position vectors a, b, ¢
relative to some origin O. Then the mid-point P of the side BC has position vector
p= %(b + ¢). The point X that divides the median AP in the ratio 2:1 therefore has
position vector

a+2p a+b+c
241 3

The position vectors of the corresponding points on the other two medians can be
found by cyclic permutation of the vectors a, b, ¢ and clearly give the same value.
Hence all three points are coincident and so the three medians meet there. B

—>
* Strictly speaking we should not write expressions like a+ AX since the sum we defined was the sum
of two vectors, not a vector and a line segment. What we really mean is ‘the sum of a and the vector

—
represented by the line segment AX’. Pure mathematicians would not approve but this notation is so
convenient we will use it anyway. It’s all part of living dangerously!
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FIGURE 1.7 The bisector theorem:

Chapter 1 The algebra and calculus of vectors

a

aO
/\6
b

AP/PB =0A/OB. A P B

1.3

Example 1.4 The bisector theorem

In a triangle O AB, the bisector of the angle AO B meets the line AB at the point P.
Show that AP/PB = OA/OB.

Solution

Let the vertex O be the origin of vectors™ and let the position vectors of the vertices
A, B relative to O be a, b as shown in Figure 1.7. The point with position vector
a + b does not lie the bisector O P in general since the vectors a and b have different
magnitudes @ and b. However, by symmetry, the point with position vector @+ b does
lie on the bisector and a general point X on the bisector has a position vector x of the
form

o a b ba+ab ba+ab
—a@+p)=Ar(2+2 )= (2247) = (2297
x=1(@+9) <a+b> ( ab ) ( K )

where K = ab/A is a new constant. Now X will lie on the line AB if its position
vector has the form (ua + Ab)/(A + w), thatis, if K = a + b. Hence the position
vector p of P is

_ba+ab

P a+b

Moreover we see that P divides that line AB in the ratio a : b, thatis, AP/PB =
O A/OB as required. &

THE SCALAR PRODUCT a - b

—

Definition 1.8 Scalar product Suppose the vectors a and b have representations O A
—
and O B. Then the scalar product a - b of a and b is defined by

a-b=|al|b|cosH, (1.3)

where 6 is the angle between O A and O B. [Note that a - b is a scalar quantity.]

* One can always take a special point of the figure as origin. The penalty is that the symmetry of the
labelling is lost.
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Laws of algebra for the scalar product

i b-a=a-b (commutative law)
@) a-(b+c)=a-b+a-c (distributive law)
(i) (Aa) - b= A(a - b) (associative with scalar multiplication)

Properties of the scalar product
() a-a=|al?
(i1) The scalar product a - b = 0 if (and only if) a and b are perpendicular (or one of
them is zero).
(iii) If {7, j, k} is an orthonormal basis then
i-i=j-j=k-k=1, i-j=j-k=k-i=0.
(v) Ifay = Mi + pn1j +vikand ay = i + uoj + vok then

ap-ay =iy + (pu2 + vivo.

Example 1.5 Numerical example on the scalar product

Ifa=2i— j+2kand b =4i — 3k, find the magnitudes of @ and b and the angle
between them.

Solution

lal>=a-a= 2i—j+2k)-Qi—j+2k) =22+ (—1)>+2% = 9. Hence |a| = 3.

Similarly | b|? = 424-0%+(—3)? = 25so that |b| = 5. Also a-b = 84+0+(—6) = 2.

Since a - b = |a||b|cos0, it follows that 2 = 3 x 5 x cos 8 so that cos§ = 2/15.
Hence the magnitudes of @ and b are 3 and 5, and the angle between them is

cos™1(2/15). m

Example 1.6 Apollonius’s theorem

In the triangle O AB, M is the mid-point of AB. Show that (0 A)> + (OB)?> =
2(0M)? +2(AM)>.

Solution

Let the vertex O be the origin of vectors and let the position vectors of A and B be a
and b. Then the position vector of M is %(a + b). Then

4O0M?* =la+b>=(a+b)-(a+b)
—a-a+b-b+2a-b=|al*>+|b*+2a-b
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FIGURE 1.8 The component of v in the
direction of the unit vector n is equal to OV’
the projection of OV onto the line through
O parallel to n.

and

4(AM)> = (AB)> =|a—b>=(a—b)-(a—b)
—a-a+b-b—2a-b=|al*+|b|* —2a-b.

Hence
200M)* +2(AM)?* = |a|* + |b|> = (0A)* + (OB)?

as required. W

Components of a vector

Definition 1.9 Components of a vector Let n be a unit vector. Then the component
of the vector v in the direction of n is defined to be v - n. The component of v in the
direction of a general vector a is therefore v - @.

Properties of components

_
(i) The component v - n has a simple geometrical significance. Let OV be a represen-
tation of v as shown in Figure 1.8. Then

ven=|v||n|cosd =0Vcosd =0V,

where OV’ is the projection of OV onto the line through O parallel to n.
(i) Suppose that v is a sum of vectors, v = v| + v + v3 say. Then the component of
v in the direction of n is

ven=wW +vp+v3)-n=(;-n)+ (v2+n)+ (v3-n),

by the distributive law for the scalar product. Thus, the component of the sum of a
number of vectors in a given direction is equal to the sum of the components of the
individual vectors in that direction.

(iii) If a vector v is expanded in terms of a general basis set {a, b, ¢} in the form v =
ra+ ub+vc, the coefficients A, u, v are not the components of the vector v in the
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|
| + n
axb} B
ﬁ/if/
|
(&4

FIGURE 1.9 The vector product : > A
axb=(|a||b|sind)n. O | a

directions of a, b, c. However if v is expanded in terms of an orthonormal basis set
{i, j, k} in the form v = Li 4 u j + v k, then the component of v in the i-direction
is

Vei=(hi+tpjrvk)ei=aG i)+ pu(j-i)+vlk-i)
— 2 +0+0=1.

Similarly @ and v are the components of v in the j- and k-directions. Hence when
a vector v is expanded in terms of an orthonormal basis set {i, j, k} in the form
v = Al 4+ puj+ vk, the coefficients A, ju, v are the components of v in the i- j-
and k-directions.

Example 1.7 Numerical example on components

Ifv=6i—-3j+15kand a = 2i — j — 2k, find the component of v in the direction
of a.

Solution
|a|2 =a-a=22+(—1)2+(—2)2 = 9. Hence |a| = 3 and

a  2i-j-2k

="

|a| 3

The required component of v is therefore

~ , . 2i —j—2k 12+3—-30
v-a:(6t—3]+15k)-< ): =-5.n
3 3
1.4 THE VECTOR PRODUCT axb
—_
Definition 1.10 Vector product Suppose the vectors a and b have representations O A

—

and OB and let n be the unit vector perpendicular to the plane O AB and such that
{a, b, n} is a right-handed set. Then the vector product a x b of a and b is defined by

axb=(la||b|sinb)n, (1.4)
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where 0 (0 < 6 < 180°) is the angle between O A and O B. [Note that a x b is a vector
quantity.]

Laws of algebra for the vector product

(1) bxa=—axb (anti-commutative law)
(i) ax(b+c)=axb+axc (distributive law)
(i11) (Aa)xb = A(axb) (associative with scalar multiplication)

Since the vector product is anti-commutative, the order of the terms in vector prod-
ucts must be preserved. The vector product is not associative.

Properties of the vector product

(1) axa=0.
(i) The vector product ax b = 0 if (and only if) a and b are parallel (or one of them is
Zero).
(iii) If {i, j, k} is a standard basis then

ixj=k, kxi=j, jxk=Ii, iXi=jxj=kxk=0.
(v) Ifay = Ai + p1j +vikand ay = i + woj + vok then
i jk
ayxay =iy iy vy
A2 2 V2

where the determinant is to be evaluated by the first row.

Example 1.8 Numerical example on vector product

Ifa=2i— j+2kand b= —i — 3k, find a unit vector perpendicular to both @ and
b.

Solution
The vector a x b is perpendicular to both @ and b. Now
i j k
axb=| 2-1 2
-1 0-3
=3-0i—-((-0)—(-2)j+O0—-Dk
=3i+4j—k

The magnitude of this vector is (3% 4 4% + (—1)?) 12 _ (26)!/2. Hence the required
unit vector can be either of + (3i +4j — k) /(26)!/>. m
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1.5 TRIPLE PRODUCTS

Triple products are not new operations but are simply one product followed by
another. There are two kinds of triple product whose values are scalar and vector respec-
tively.

Triple scalar product

An expression of the form a - (bx c) is called a triple scalar product; its value is a scalar.

Properties of the triple scalar product
@)
a-(bxc)=c-(axb)=>b-(cxa), (1.5)

that is, cyclic permutation of the vectors a, b, c in a triple scalar product leaves its
value unchanged. [Interchanging two vectors reverses the sign.]
This formula can alternatively be written

a-(bxc)=(axb)-c, (1.6)

that is, interchanging the positions of the ‘dot’ and the ‘cross’ in a triple scalar
product leaves its value unchanged.
Because of this symmetry, the triple scalar product can be denoted unambiguously
by [a, b, c].

(i) The triple scalar product [a, b, ¢] = O if (and only if) a, b, ¢ are coplanar (or one

of them is zero). In particular a triple scalar product is zero if two of its vectors are
the same.

(iii) If [a, b, c] > O then the set {a, b, ¢} is right-handed. 1f [ a, b, c] < 0O then the set
{a, b, ¢} is left-handed.

(iv) If ay = Ai + 1 j + vik, ap = i + uaj + vak, a3 = Asi + 3 j + vk, where

{i, j, k} is a standard basis, then

Al p1 v
a1, a2, a3] = | Ay o v2|. (1.7)
A3 U3 V3

Triple vector product

An expression of the form ax(bxc) is called a triple vector product; its value is a vector.

Property of the triple vector product
Since b x ¢ is perpendicular to both b and ¢, it follows that a x (b x ¢) must lie in the
same plane as b and c¢. It can therefore be expanded in the form Aa + wb. The actual
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formula is
ax(bxc)=(a-c)b— (a-b)c. (1.8)

Since the vector product is anti-commutative and non-associative, it is wise to use this
formula exactly as it stands.

Example 1.9 Using triple products

Expand the expression (a x b) - (¢ x d) in terms of scalar products.

Solution

Use the triple scalar product formula (1.6) to interchange the first ‘dot’ and ‘cross’,
and then expand the resulting triple vector product by the formula (1.8), as follows:

(axb)-(cxd)=a-[bx(cxd)]=a-[(b-d)c— (b-c)d]
=(@-c)b-d)—(a-d)(b-c)m

1.6 VECTOR FUNCTIONS OF A SCALAR VARIABLE

In practice, the value of a vector quantity often depends on a scalar variable such
as the time 7. For example, if A is the label of a particle moving through space, then its
position vector a (relative to a fixed origin O) will vary with time, that is, @ = a(t). The
vector a is therefore a function of the scalar variable 7.

The time dependence of a vector need not involve motion. The value of the electric
or magnetic field at a fixed point* of space will generally vary with time so that E = E(¢)
and B = B(t). More generally, the scalar variable need not be the time. Consider the
space curve C shown in Figure 1.10, whose points are parametrised by the parameter c.
Each point of the curve has a unique tangent line whose direction can be characterised by
the unit vector ¢. This is called the unit tangent vector to C and it depends on «, that is,
t = t(«). In this case the independent variable is the scalar « and (just to confuse matters)
the dependent variable is the vector ¢.

Differentiation

The most important operation that can be carried out on a vector function of a scalar
variable is differentiation.

Definition 1.11 Differentiation of vectors Suppose that the vector v is a function of
the scalar variable «, that is, v = v(«). Then the derivative of the function v(«) with
respect to o is defined by the limit'

dv ) (v(a+Aa)—v(a) )
lim .

da  Aa—0 Ao

(1.9)

* We will not be concerned here with vector functions of position. These are called vector fields.
T Mathematical note: The statement u(«) — U as « — A means that |u(e) — U | — Oas o — A.
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This looks identical to the definition of the derivative of an ordinary real function, but there
is adifference. When o changes to o+ Ac, the function v changes from v(«) to v(a+Aw),
a difference of v(e¢+ Aa) —v(«). However, this ‘difference’ now means vector subtraction

and its value is a vector; it remains a vector after dividing by the scalar increment Ac.
Hence dv/dw, the limit of this quotient as Ao — 0, is a vector. Furthermore, since
dv/da depends on «, it is itself a vector function of the scalar variable «. The rules for
differentiating combinations of vector functions are similar to those for ordinary scalar
functions.

Differentiation rules for vector functions

Let u(a) and v(«) be vector functions of the scalar variable «, and let A(«) be a
scalar function. Then:

) i(u+v)=a+i; (i) i(m) =iu+ru
da da

d d
(i) —(w-v) =u-v+u-v (GAv) — (uxXv) =uxv+uxv
da da

where # means du/da and so on. Note that the order of the terms in the vector
product formula must be preserved.

Example 1.10 Differentiating vector functions

(1) The position vector of a particle P at time ¢ is given by
r=Q02=50)i+ @t +2)j+1k,

where {i, j, k} is a constant basis set. Find dr/dt and d*r/dt*. (These are the
velocity and acceleration vectors of P at time ¢.)

(ii1) If @ = a(r) and b is a constant vector, show that
d [a-(axb)] (axb)
—[a- (ax =a-(axb).
dt

Solution
(i) Since i, j, k are constant vectors, it follows from the differentiation rules that
dr dr

(4t —5)i+4j+32%k, — =4i+6¢tk.
o ( Yi+4j+ ) i+
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~ chord joining A and A

tangent line at A

FIGURE 1.10 The unit tangent vector #(«) at a typical point A on the curve C,
defined parametrically by r = r(«).

(ii)

%[a-(dxb)] =d-(dxb)+a-<%(dxb)> =0+a- (axb+ax1})
=a-(axb+ax0)=a-(axb),

as required. W

1.7 TANGENT AND NORMAL VECTORS TO A CURVE

In the next chapter we will define the velocity and acceleration of a particle mov-
ing in a space of three dimensions. In order to be able to interpret these definitions, we
need to know a little about the differential geometry of curves. In particular, it is useful to
know what the unit tangent and unit normal vectors of a curve are.

Unit tangent vector

Consider the curve C shown in Figure 1.10 which is defined by the parametric equation

r = r(a). In general this can be a curve in three-dimensional space. Let A be a typical

point of C corresponding to the parameter « and A’ a nearby point corresponding to the
—

parameter @ + Aa. The chord A A’ represents the vector

Ar =r(a+ Aa) — r(a)

—

and so Ar/| Ar| is a unit vector parallel to the chord AA’. The unit tangent vector #(«)
at the point A is defined to be the /iixit of this expression as A" — A, that is

. Ar
t() = lim .
Aa—0 | Ar|
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2a

am 2aT

FIGURE 1.11 The cycloid x = a(6 — sinf), y = a(1 — cos9),
z=0,where 0 < 0 < 2m.

The tangent vector ¢ is related to the derivative dr/da since

dr . Ar , Ar . |Ar]

— = lim — = lim x lim

da Aa—0 A« Aa—0 | Ar| Aa—0 A«

. dr
=ta) x| lim —|=t(@) x |—/|,
Aa—0 do
that is,

dr dr £) (1.10)
_——= | — o). .
d do

Example 1.11 Finding the unit tangent vector

Figure 1.11 shows the cycloid x = a(f — sinf), y = a(l — cosf), z = 0, where
0 < 6 < 2m. Find the unit tangent vector to the cycloid at the point with parameter
0.

Solution

Let i, j be unit vectors in the directions Ox, Oy respectively. Then the vector form
of the equation for the cycloid is

r=a(@ —sinf)i +a(l —cosh)j.

Then
I 41 = cos0)i + (asind) j
d@ =da COS 1 a Sin _]
and

d
‘r = a(2—2cos)"/? = 2asin 16.

6
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Hence the unit tangent vector to the cycloid is
dr dr N Los s
) = 0 al= (sin 50)i + (cos 50) j,

after simplification. H

The formula (1.10) takes its simplest form when the parameter « is taken to be s, the
distance along the curve measured from some fixed point. In this case,

dr

|Ar|
—| = lim =
ds

= 1
As—0 As

so that ¢ (pointing in the direction of increasing s) is given by the simple formula

dr
t=—. 1.11
Is (L.11)

This is the most convenient formula for theoretical purposes.

Unit normal vector

Let ¢(s) be the unit tangent vector to the curve C, where the parameter s represents distance
along the curve. Then, since ¢ is a vector function of the scalar variable s, it has a derivative
dt/ds which is another vector function of s.

Since ¢ is a unit vector it follows that £(s) - £(s) = 1 and if we differentiate this identity
with respect to s, we obtain

O—d(t t)—dt t+t dt
T ds " ds ds

=z(ﬂ.t).
ds

It follows that d¢/ds is always perpendicular to ¢. It is usual to write d¢/ds in the form

— =Kn (1.12)

where k = |dt/ds|, a positive scalar called the curvature, and n is a unit vector called
the (principal) unit normal vector. At each point of the curve, the unit vectors #(s) and
n(s) are mutually perpendicular.

The quantities 7 and x have a nice geometrical interpretation. Let A be any point on
the curve and suppose that the distance parameter s is measured from A. Then, by Taylor’s
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theorem, the form of the curve C near A is given approximately by

dr 1 2 d’r 3
r(S)=r(0)+S|:$:|S:0+§S |:m:| O+O(S>,
§=

that is,
r(s) :a—i—st-i-(%Ksz)n-l-O <S3>, (1.13)

where a is the position vector of the point A, and ¢, « and n are evaluated at the point A.
Thus, near A, the curve C lies*™ in the plane through A parallel to the vectors t and n. We
can also see from equation (1.13) that, near A, the curve C is approximately a parabola.
To the same order of approximation, it is equally true that, near A, the curve C is given by

r(s) =a+ ! (sinks) t + ! (1 —cosks)n+ O <s3> . (1.14)

Thus, near A, the curve C is approximately a circle of radius « ~!; the vector ¢ is tangential
to this circle and the vector n points towards its centre. The radius « ~! is called the radius

of curvature of C at the point A.

Example 1.12 Finding the unit normal vector and curvature

Find the unit normal vector and curvature of the cycloid x = a(@ — sinf), y =
a(l —cosh),z=0,where 0 <0 < 2m.

Solution
The tangent vector to the cycloid has already been found to be
dr dr .1 . 1 .
t(@) = @/ ‘E = (Sln 29)1 + (cos 29)']
Hence, by the chain rule,

dt _dt/d9  dt/do  %(cos30)i— 5(sin30)j

ds — ds/d6 ~ |dr/d6] — 2a'sin 16

= (4a sin %9)_1 ((cos 19yi — (sin 16) j) .

Hence the unit normal vector and curvature of the cycloid are given by
-1
n(®) = (cos %Q)i — (sin %Q)j, k() = <4a sin %9) .

The radius of curvature of the cycloid is therefore 4a sin %9. [ |

* More precisely, this plane makes three point contact with the curve C at the point A.
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Problems on Chapter 1

Answers and comments are at the end of the book.

Harder problems carry a star ().

1.1 In terms of the standard basis set {i, j, k}, a = 2i — j — 2k, b = 3i — 4k and ¢ =
i—5j+3k.

(i) Find3a +2b—4cand |a — b|>.
(i1) Find |a|, |b]| and a - b. Deduce the angle between a and b.
(iii) Find the component of c¢ in the direction of a and in the direction of b.
(iv) Find ax b, bx c and (ax b) x (bx c).
(v) Find a - (bxc) and (ax b) - ¢ and verify that they are equal. Is the set {a, b, c} right-
or left-handed?
(vi) By evaluating each side, verify the identity ax (bxc) = (a-¢c)b — (a - b)c.

Vector geometry

1.2 Find the angle between any two diagonals of a cube.

1.3 ABCDEF isaregular hexagon with centre O which is also the origin of position vectors.
Find the position vectors of the vertices C, D, E, F in terms of the position vectors a, b of A
and B.

1.4 Let ABCD be a general (skew) quadrilateral and let P, O, R, S be the mid-points of the
sides AB, BC, CD, D A respectively. Show that P QRS is a parallelogram.

1.5 In a general tetrahedron, lines are drawn connecting the mid-point of each side with the
mid-point of the side opposite. Show that these three lines meet in a point that bisects each of
them.

1.6 Let ABC D be a general tetrahedron and let P, O, R, S be the median centres of the faces
opposite to the vertices A, B, C, D respectively. Show that the lines AP, BQ, CR, DS all
meet in a point (called the centroid of the tetrahedron), which divides each line in the ratio 3:1.

1.7 A number of particles with masses m 1, mz, ms, . .. are situated at the points with position
vectors ry, 12, r3, . .. relative to an origin O. The centre of mass G of the particles is defined
to be the point of space with position vector

miry +mory +m3r3 +---
mi+my+m3—+---

R =

Show that if a different origin O’ were used, this definition would still place G at the same
point of space.

1.8 Prove that the three perpendiculars of a triangle are concurrent.
[Construct the two perpendiculars from A and B and take their intersection point as O, the origin of position

vectors. Then prove that O C must be perpendicular to AB.]
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Vector algebra

1.9 Ifa) = i+ p1j+vik, ax = i+ prj+vak, az = A3i + n3 j + vk, where {i, j, k}
is a standard basis, show that

Al M1 V1
a)-(ayxaz) = A pa va |.
A3 U3 V3

Deduce that cyclic rotation of the vectors in a triple scalar product leaves the value of the
product unchanged.

1.10 By expressing the vectors a, b, ¢ in terms of a suitable standard basis, prove the identity
ax(bxc)=(a-c)b—(a-b)c.

1.11 Prove the identities

(1) (axb)-(cxd)=(a-c)(b-d)— (a-d)(b-c)
(i1) (axb)x(cxd)=[a,b,d]c—[a,b,cld
(i) ax(bxc)+cx(axb)+bx(cxa) =0 (Jacobi’s identity)

1.12 Reciprocal basis Let {a, b, ¢} be any basis set. Then the corresponding reciprocal
basis {a*, b*, ¢*} is defined by

«_ bxc « _ €Xa «_ axb
“ " la, b, c]’ " la, b, c]l’ ¢ " la, b, c]
(i) If {i, j, k} is a standard basis, show that {i*, j*, k*} = {i, j, k}.
(ii) Show that [a*, b*, ¢*] = 1/[a, b, c]. Deduce that if { a, b, ¢} is a right handed set then
sois {a*, b*, c*}.
(iii) Show that { (a*)*, (b™)*, (¢*)*]1 = {a, b, c}.
(iv) If a vector v is expanded in terms of the basis set { a, b, ¢} in the form

v=Aa+ub+ve,
show that the coefficients A, w, v are givenby A =v-a*, u =v - b*, v =v - ¢*.

1.13 Lamé’s equations The directions in which X-rays are strongly scattered by a crystal are
determined from the solutions x of Lamé’s equations, namely

x-a=1L, x-b=M, x.-c=N,

where {a, b, c} are the basis vectors of the crystal lattice, and L, M, N are any integers. Show
that the solutions of Lamé’s equations are

x=La*"+Mb*+ N c*,

where {a*, b*, ¢*} is the reciprocal basis to {a, b, c}.
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Differentiation of vectors
1.14 If r(t) = 3t> —4)i + 3 j + (t + 3) k, where {i, j, k} is a constant standard basis, find

7 and 7. Deduce the time derivative of r x r.

1.15 The vector v is a function of the time ¢ and k is a constant vector. Find the time deriva-
tives of (i) |v |2, (ii) (v + k) v, (iii) [ v, v, k].

1.16 Find the unit tangent vector, the unit normal vector and the curvature of the circle x =
acosf,y = asinf, z = 0 at the point with parameter 6.

1.17 Find the unit tangent vector, the unit normal vector and the curvature of the helix x =
acosf,y = asinf, z = b0 at the point with parameter 6.

1.18 Find the unit tangent vector, the unit normal vector and the curvature of the parabola
x =ap?, y = 2ap, z = 0 at the point with parameter p.



Chapter Two

Velocity, acceleration
and scalar angular velocity

KEY FEATURES
The key concepts in this chapter are the velocity and acceleration of a particle and the angular
velocity of a rigid body in planar motion.

Kinematics is the study of the motion of material bodies without regard to the forces
that cause their motion. The subject does not seek to answer the question of why bod-
ies move as they do; that is the province of dynamics. It merely provides a geometrical
description of the possible motions. The basic building block for bodies in mechanics is
the particle, an idealised body that occupies only a single point of space. The impor-
tant kinematical quantities in the motion of a particle are its velocity and acceleration.
We begin with the simple case of straight line particle motion, where velocity and accel-
eration are scalars, and then progress to three-dimensional motion, where velocity and
acceleration are vectors.

The other important idealisation that we consider is the rigid body, which we regard
as a collection of particles linked by a light rigid framework. The important kinematical
quantity in the motion of a rigid body is its angular velocity. In this chapter, we con-
sider only those rigid body motions that are essentially two-dimensional, so that angular
velocity is a scalar quantity. The general three-dimensional case is treated in Chapter 16.

2.1 STRAIGHT LINE MOTION OF A PARTICLE

Consider a particle P moving along the x-axis so that its displacement x from the
origin O is a known function of the time ¢. Then the mean velocity of P over the time

0 P

i

* @ > T
— v

FIGURE 2.1 The particle P moves in a straight line and
has displacement x and velocity v at time 7.
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interval 11 < t < 1; is defined to be the increase in the displacement of P divided by the
time taken, that is,

x(f2) — x(t1)

2.1
P— (2.1

Example 2.1 Mean velocity

Suppose the displacement of P from O at time ¢ is given by x = t> — 61, where x
is measured in metres and ¢ in seconds. Find the mean velocity of P over the time
interval 1 <t < 3.

Solution

In this case, x(1) = —5 and x(3) = —9 so that the mean velocity of P is ((—9) —

(-5)/3—-1H=-2ms'.m

The mean velocity of a particle is less important to us than its instantaneous velocity,

that is, its velocity at a given instant in time. We cannot find the instantaneous velocity of
P at time t; merely by letting o, = ¢ in the formula (2.1), since the quotient would then
be undefined. However, we can define the instantaneous velocity as the /imit of the mean
velocity as the time interval zends to zero, that is, as t, — 1. Thus v(¢1), the instantaneous
velocity of P at time 7| can be defined by

v(7) = lim <M)

hh—1 h—n

But this is precisely the definition of dx /dt, the derivative of x with respect to ¢, evaluated
at t = 1. This leads us to the official definition:

Definition 2.1 1-D velocity The (instantaneous) velocity v of P, in the positive x-
direction, is defined by

dx

= (2.2)

v

The speed of P is defined to be the rate of increase of the total distance travelled and is
therefore equal to | v |.

Similarly, the acceleration of P, the rate of increase of v, is defined as follows:
Definition 2.2 1-D acceleration The (instantaneous) acceleration a of P, in the posi-

tive x-direction, is defined by

dv  d*x

Example 2.2 Finding rectilinear velocity and acceleration

Suppose the displacement of P from O at time ¢ is given by x = > — 61> + 4, where
x is measured in metres and ¢ in seconds. Find the velocity and acceleration of P at
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time 7. Deduce that P comes to rest twice and find the position and acceleration of P

at the later of these two times.

Solution
Since v = dx/dt and a = dv/dt, we obtain

v =13t — 12t and a=06t—12

as the velocity and acceleration of P at time ¢.
P comes to rest when its velocity v is zero, that is, when

3t2 — 12t = 0.

This is a quadratic equation for # having the solutions = 0, 4. Thus P is at rest when
t=0sandt =4s.

Whent = 4s,x = —28 m and @ = 12 ms~2. Note that merely because v = 0
at some instant it does not follow that a = 0 also. B

Example 2.3 Reversing the process

A particle P moves along the x-axis with its acceleration ¢ at time ¢ given by
a =12t —6t + 6ms 2.

Initially P is at the point x = 4 m and is moving with speed 8 ms~! in the negative
x-direction. Find the velocity and displacement of P at time ¢.

Solution

Since a = dv/dt we have

d
0 122 6 46,
dr

and integrating with respect to ¢ gives
v=4r -3 461+ C,

where C is a constant of integration. This constant can be determined by using the
given initial condition on v, namely, v = —8 when ¢ = 0. This gives C = —8 so that
the velocity of P at time ¢ is

v=4r>—31> 461 —8ms~ !
By writing v = dx/dt and integrating again, we obtain
x=t*—13 43> -8+ D,

where D is a second constant of integration. D can now be determined by using the
given initial condition on x, namely, x = 4 when ¢t = 0. This gives D = 4 so that the
displacement of P at time ¢ is

x=t" - +3> -8 +4m.m
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v

N

FIGURE 2.2 The particle P moves in three-dimensional
space and, relative to the reference frame F and origin O,
has position vector r at time ¢.

2.2

GENERAL MOTION OF A PARTICLE

When a particle P moves in two or three-dimensional space, its position can be

described by its vector displacement r from an origin O that is fixed in a rigid reference
frame F. Whether F is moving or not is irrelevant here; the position vector r is simply
measured relative to F. Figure 2.2 shows a particle P moving in three-dimensional space

with position vector r (relative to the reference frame J) at time ¢.

Question Reference frames

What is a reference frame and why do we need one?

Answer

A rigid reference frame F is essentially a rigid body whose particles can be labelled
to create reference points. The most familiar such body is the Earth. Relative to
a single particle, the only thing that can be specified is distance from that particle.
However, relative to a rigid body, one can specify both distance and direction. Thus
the value of any vector quantity can be specified relative to F. In particular, if we
label some particle O of the body as origin, we can specify the position of any point
of space by its position vector relative to the frame F and the origin O.

The specification of vectors relative to a reference frame is much simplified if we
introduce a Cartesian coordinate system. This can be done in infinitely many different
ways. Imagine that F is extended by a set of three mutually orthogonal planes that are
rigidly embedded in it. The coordinates x, y, z of a point P are then the distances of P
from these three planes. Let O be the origin of this coordinate system, and {i, j, k}
its unit vectors. We can then conveniently refer to the frame F, together with the
embedded coordinate system O xyz, by the notation 7 {O ; i, j, k}. B

In general motion, the velocity and acceleration of a particle are vector quantities and

are defined by:
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Definition 2.3 3-D velocity and acceleration The velocity v and acceleration a of P
are defined by

v=— and a= —. (2.4)

Connection with the rectilinear case

The scalar velocity and acceleration defined in section 2.1 for the case of straight line motion are simply
related to the corresponding vector quantities defined above. It would be possible to use the vector for-
malism in all cases but, for the case of straight line motion along the x-axis, r, v, and @ would have the
form

where v = dx/dt and a = dv/dt. It is therefore sufficient to work with the scalar quantities x, v and a;

use of the vector formalism would be clumsy and unnecessary.

Example 2.4 Finding 3- D velocity and acceleration

Relative to the reference frame F{O ; i, j, k}, the position vector of a particle P at
time ¢ is given by

r=Q02=3)i+ @ +4)j+ @ +205k

Find (i) the distance O P when t = 0, (ii) the velocity of P when ¢t = 1, (iii) the
acceleration of P when t = 2.

Solution

In this solution we will make use of the rules for differentiation of sums and products
involving vector functions of the time. These rules are listed in section 1.6.

(i) Whent =0,r = —-3i+4jsothat OP = |r| =5.

(i1) Relative to the reference frame F, the unit vectors {i, j, k} are constant and so
their time derivatives are zero. The velocity v of P is therefore

v=dr/dt =4ti+4j+ B> +40)k.
Whent =1, v=4i+4j+7k.
(ii1) Relative to the reference frame F, the acceleration a of P is
a=dv/dt =4i+ (6t +4)k.
Whent =2,a=4i+ 16k. R

Interpretation of the vectors v and «

The velocity vector v has a simple interpretation. Suppose that s is the arc-length travelled
by P, measured from some fixed point of its path, and that s is increasing with time.*

* The arguments that follow assume a familiarity with the unit tangent and normal vectors to a general
curve, as described in section 1.7
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Then, by the chain rule,

dr dr ds
V= — = — X —

dt ds dt
=t

where ¢ is the unit tangent vector to the path and v (= ds/dt) is the speed™ of P. Thus,
at each instant, the direction of the velocity vector v is along the tangent to its path, and
|v| is the speed of P.

The acceleration vector a is harder to picture. This is partly because we are too accus-
tomed to the special case of straight line motion. However, in general,

dv d(@t) dvt+ dt dv ‘ + dt ds
= — = = — — = _— — X —
T ar T a T e T & U\as * ar

dv ‘ 2 2.5)
=|— — | n, .
dt P

where n is the unit normal vector to the path of P and p (= «~1) is its radius of curvature.

Hence, the acceleration vector a has a component dv/dt tangential to the path and a
component v?/ p normal to the path.

This formula is surprising. Since each small segment of the path is ‘approximately
straight” one might be tempted to conclude that only the first term (dv/dt)t should be
present. However, what we have shown is that the acceleration vector of P does not gen-
erally point along the path but has a component perpendicular to the local path direction.
The full meaning of formula (2.5) will become clear when we have treated particle motion
in polar coordinates.

Uniform circlular motion

The simplest example of non-rectilinear motion is motion in a circle. Circular motion
is important in practical applications such as rotating machinery. Here we consider the
special case of uniform circular motion, that is, circular motion with constant speed.

Consider a particle P moving with constant speed u in the anti-clockwise direction
around a circle centre O and radius b, as shown in Figure 2.3. At time ¢t = 0, P is at the
point B(b, 0). What are its velocity and acceleration vectors at time ¢?

The first step is to find the position vector of P at time ¢. Since P moves with constant
speed u, the arc length B P travelled in time  must be u¢. It follows that the angle 6 shown
in Figure 2.3 is given by 6 = ut/b. The position vector of P at time ¢ is therefore

r=>bcosfi+ bsind j,
= bcos(ut/b)i + bsin(ut/b) j.

* As in the rectilinear case, speed means the rate of increase of the total distance travelled, which, in the
present context, is ds/dt, the rate of increase of arc length along the path of P.
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FIGURE 2.3 Particle P moves with constant speed u
around a circle of radius b.

It follows that the velocity and acceleration of P at time ¢ are given by

d
- d—; — —usin(ut/b)i + ucos(ut /b) j,
D ot byi — " sinut /b j
= — = —— COS — — SIn .
a T p u i 5 in(u J

We note that the speed of P, calculated from v, is
2.2 2.2 172
[v| = (u cos“(ut/b) + u” sin (ut/b)) =u,

which is what it was specified to be.
The magnitude of the acceleration a is given by

1/2

22\ , 2\ , 2
la| = (?) cos“(ut/b) + <?> sin”(ut /b) >

and, since @ = —(u?/b>)r, the direction of a is opposite to that of r. This proves the

following important result:

Uniform circular motion
When a particle P moves with constant speed u around a fixed circle with centre

—
O and radius b, its acceleration vector is in the direction PO and has constant
magnitude u?/b.

This result is consistent with the general formula (2.5). In this special case, we have
v =uand p = b so that dv/dt = 0 and a = (u?/b)n.
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6

3)

J

y . P
FIGURE 2.4 The plane polar co-ordinates r, 0 1 0

of the point P and the polar unit vectors 7 - 0=0
and @ at P. O

Example 2.5 Uniform circular motion

A body is being whirled round at 10 ms~! on the end of a rope. If the body moves
on a circular path of 2 m radius, find the magnitude and direction of its acceleration.

Solution

The acceleration is directed towards the centre of the circle and its magnitude is
102/2 = 50 ms~!, five times the acceleration due to Earth’s gravity! W

2.3 PARTICLE MOTION IN POLAR CO-ORDINATES

When a particle is moving in a plane, it is sometimes very convenient to use polar
co-ordinates 7, 6 in the analysis of its motion; the case of circular motion is an obvious
example. Less obviously, polar co-ordinates are used in the analysis of the orbits of the
planets. This famous problem stimulated Newton to devise his laws of mechanics.

Figure 2.4 shows the polar co-ordinates r, 6 of a point P and the polar unit vectors
T, 9 at P. The directions of the vectors 7 and @ are called the radial and transverse
directions respectively at the point P. As P moves around, the polar unit vectors do not
remain constant. They have constant magnitude (unity) but their directions depend on the
0 co-ordinate of P; they are however independent of the r co-ordinate.* In other words,
7, 9 are vector functions of the scalar variable 6.

We will now evaluate the two derivatives d7/d0, da/ d6. These will be needed when
we derive the formulae for the velocity and acceleration of P in polar co-ordinates. First
we expandT T, 9 in terms of the Cartesian basis vectors {i, j}. This gives

T =cosOi+sind j, (2.6)
0 = —sinfi+cos j. 2.7)

Since 7, @ are now expressed in terms of the constant vectors i, j, the differentiations
with respect to 6 are simple and give

* If this is not clear, sketch the directions of the polar unit vectors for P in a few different positions.
T Recall that any vector V lying in the plane of i, j can be expanded in the form V = & i + f8 j, where the
coefficients o, 8 are the components of V in the i- and j-directions respectively.



2.3 Particle motion in polar co-ordinates 33

do
ao

I
)
|

7 (2.8)

S

Suppose now that P is a moving particle with polar co-ordinates r, 0 that are functions
of the time ¢. The position vector of P relative to O has magnitude O P = r and direction
7 and can therefore be written

r=rr. (2.9)

In what follows, one must distinguish carefully between the position vector r, which is
—

the vector O P, the co-ordinate r, which is the distance O P, and the polar unit vector 7.
To obtain the polar formula for the velocity of P, we differentiate formula (2.9) with
respect to ¢. This gives

podr_ 4 (r'\) (dr> T (f) (2.10)
dr dr
—iF+r (@) @.11)
d

We will use the dot notation for time derivatives throughout this section; 7 means dr/dt,
6 means d6 /dt, i means d*r/dt* and 6 means d?0/dt>.

Now 7 is a function of @ which is, in its turn, a function of . Hence, by the chain rule
and formula (2.8),

ar d" do
dar de " dr

If we now substitute this formula into equation (2.11) we obtain

.~

=0 x60=00.

v=77+(rd)9, (2.12)

which is the polar formula for the velocity of P.
To obtain the polar formula for acceleration, we differentiate the velocity formula

(2.12) with respect to ¢. This gives™
dv
a=E=—(rA)+— ((r6)8)

o~

R :dA iy o~ .. do
=Fr+7 E+(19+r9)0+(r9)5

=iT+7 (d—Axﬁ>+(9+ 6)0 + (r6) da a0
=T ae ) TV "\ao < ar
=i+ (70) 8 + (70 +r6) 8 — (-0°)7

= (F — 1’9'2)?4— (19 + 21‘9) 5,

* Be a hero. Obtain this formula yourself without looking at the text.
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which is the polar formula for the acceleration of P. These results are summarised
below:

Polar formulae for velocity and acceleration

If a particle is moving in a plane and has polar coordinates r, 6 at time ¢, then its
velocity and acceleration vectors are given by

v =T+ (r0), (2.13)
a=(¥—r6®)7+ (6 +270)8. (2.14)

The formula (2.13) shows that the velocity of P is the vector sum of an outward radial
velocity 7 and a transverse velocity r; in other words v is just the sum of the velocities
that P would have if r and 6 varied separately. This is nof true for the acceleration as it will
be observed that adding together the separate accelerations would not yield the term 2709.
This ‘Coriolis term’ is certainly present however, but is difficult to interpret intuitively.

Example 2.6 Velocity and acceleration in polar coordinates

A particle sliding along a radial groove in a rotating turntable has polar coordinates at
time ¢ given by

r=ct 0 = Qt,

where ¢ and Q are positive constants. Find the velocity and acceleration vectors of
the particle at time ¢ and find the speed of the particle at time ¢.

Deduce that, for r > 0, the angle between the velocity and acceleration vectors is
always acute.

Solution

From the polar formulae (2.13), (2.14) for velocity and acceleration, we obtain
V=CT+()Q0 = ¢ (’F—}— Qtﬁ)
and
a=(0-(@Q)T+©0+22)0 = cQ (-7 +20).

The speed of the particle at time ¢ is thus given by |v]| = ¢ (1 + taz)l/z .
To find the angle between v and a, consider
vea=c?Q(—Qr +2Q1) = Q%
>0

for t > 0. Hence, for ¢ > 0, the angle between v and a is acute. B
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General circular motion

An important application of polar coordinates is to circular motion. We have already
considered the special case of uniform circular motion, but now we suppose that P moves
in any manner (not necessarily with constant speed) around a circle with centre O and
radius b. If we take O to be the origin of polar coordinates, the condition » = b implies
that 7 = i = 0 and the formula (2.13) for the velocity of P reduces to

v=(p0)9. (2.15)

This result is depicted in Figure 2.5. The transverse velocity component b6 (which is not
necessarily the speed of P since § may be negative) is called the circumferential velocity
of P. Circumferential velocity will be important when we study the motion of a rigid
body rotating about a fixed axis; in this case, each particle of the rigid body moves on a
circular path.

The corresponding formula for the acceleration of P is

a=(0-b07)F++ (0 +0)8

=~ (06%) 7+ + (06) 8

2
— (%)?-ﬁ- +00

where v is the circumferential velocity b6. These results are summarised below:

General circular motion

Suppose a particle P moves in any manner around the circle r = b, where r, 6 are
plane polar coordinates. Then the velocity and acceleration vectors of P are given
by

v =0, (2.16)

v? ~
a=— > T+ 00, 2.17)

where v (= b6) is the circumferential velocity of P.

The formula (2.17) shows that, in general circular motion, the acceleration of P is the
(vector) sum of an inward radial acceleration v2 /b and a transverse acceleration v. This
is consistent with the general formula (2.5). Indeed, what the formula (2.5) says is that,
when P moves along a completely general path, its acceleration vector is the same as if it
were moving on the circle of curvature at each point of its path.
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FIGURE 2.5 The particle P moves on the circle with centre O
and radius b. At time ¢ its angular displacement is 6 and its
circumferential velocity is b6.

Example 2.7 Pendulum motion

The bob of a certain pendulum moves on a vertical circle of radius b and, when the
string makes an angle 6 with the downward vertical, the circumferential velocity v of
the bob is given by

v? = 2gbcosH,

where g is a positive constant. Find the acceleration of the bob when the string makes
angle 6 with the downward vertical.

Solution
From the acceleration formula (2.17), we have
v? ~ ~

a=— <—)?+ V0 = — (2gcosO) T+ v6.
It remains to express v in terms of 6. On differentiating the formula v> = 2gb cos 0
with respect to ¢, we obtain

200 = — (2gbsin0) 6,
and, since b = v, we find that
V= —gsin6.

Hence the acceleration of the bob when the string makes angle & with the downward
vertical is

a=—(2gcosh)T — (gsinb) o.m

2.4 RIGID BODY ROTATING ABOUT A FIXED AXIS

Some objects that we find in everyday life, such as a brick or a thick steel rod,
are so difficult to deform that their shape is virtually unchangeable. We model such an
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FIGURE 2.6 The rigid body B rotates about the fixed axis Oz and has angular
displacement 6 at time ¢. Each particle P of S moves on a circular path; the point
Py is the reference position of P.

object by a rigid body, a collection of particles forming a perfectly rigid framework. Any
motion of the rigid body must maintain this framework.

An important type of rigid body motion is rotation about a fixed axis; a spinning fan,
a door opening on its hinges and a playground roundabout are among the many examples
of this type of motion. Suppose B is a rigid body which is constrained to rotate about
the fixed axis Oz as shown in Figure 2.6. (This means that the particles of 5 that lie on
Oz are held fixed. Rotation about Oz is then the only motion of B consistent with rigid-
ity.) At time ¢, B has angular displacement 6 measured from some reference position.
The angular displacement 6 is the rotational counterpart of the Cartesian displacement x
of a particle in straight line motion. By analogy with the rectilinear case, we make the
following definitions:

Definition 2.4 Angular velocity The angular velocity o of B is defined to be v =
d6/dt and the absolute value of w is called the angular speed of B.

Units. Angular velocity (and angular speed) are measured in radians per second (rad s~ ).

Example 2.8 Spinning crankshaft 1

The crankshaft of a motorcycle engine is spinning at 6000 revolutions per minute.
What is its angular speed in S.I. units?

Solution

6000 revolutions per minute is 100 revolutions per second which is 2007 radians per
second. This is the angular speed in S.I. units. B

Particle velocities in a rotating rigid body

In rotational motion about a fixed axis, each particle P of 5 moves on a circle of some
radius p, where p is the (fixed) perpendicular distance of P from the rotation axis. It then
follows from (2.16) that the circumferential velocity v of P is given by p@, that is

vV=wp (2.18)
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Example 2.9 Spinning crankshaft 2

In the crankshaft example above, find the speed of a particle of the crankshaft that
has perpendicular distance 5 cm from the rotation axis. Find also the magnitude of its
acceleration.

Solution

In this case, |w| = 200 and p = 1/20 so that the particle speed (the magnitude of

the circumferential velocity v) is 107 ~ 31.4 ms~!.

Since the circumferential velocity is constant, |a| = v2/p = (1071)2/0.05 ~
2000 m s_z, which is two hundred times the value of the Earth’s gravitational accel-
eration! W

2.5 RIGID BODY IN PLANAR MOTION

We now consider a more general form of rigid body motion called planar motion.

Definition 2.5 Planar motion A rigid body B is said to be in planar motion if each
particle of B moves in a fixed plane and all these planes are parallel to each other.

Planar motion is quite common. For instance, any flat-bottomed rigid body sliding on a
flat table is in planar motion. Another example is a circular cylinder rolling on a rough flat
table.

The particle velocities in planar motion can be calculated by the following method;
the proof is given in Chapter 16. First select some particle C of the body as the reference
particle. The velocity of a general particle P of the body is then the vector sum of

(i) a translational contribution equal to the velocity of C (as if the body did not
rotate) and

(i1) a rotational contribution (as if C were fixed and the body were rotating with
angular velocity w about a fixed axis through C).

This result is illustrated in Figure 2.7, where the body is a rectangular plate and the refer-
ence particle C is at a corner of the plate. The velocity v of P is given by v = v¢ + vF,
where the translational contribution v€ is the velocity of C and the rotational contribution
vR is caused by the angular velocity w about C. Although the reference particle can be
any particle of the body, it is usually taken to be the centre of mass or centre of symmetry

of the body.

Example 2.10 The rolling wheel

A circular wheel of radius b rolls in a straight line with speed u on a fixed horizontal
table. Find the velocities of its particles.

Solution

This is an instance of planar motion and so the particle velocities can be found by
the method above. Let the position of the wheel at some instant be that shown in
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FIGURE 2.7 The velocity of the particle P belonging to
the rigid body B is the sum of the translational
contribution v¢ and the rotational contribution v®. The
reference particle C can be any particle of the body.

FIGURE 2.8 The circular wheel rolls from left to right on a fixed horizontal
table. The reference particle C is taken to be the centre of the wheel and
the velocity of a typical particle P is the sum of the two velocities shown.

Figure 2.8. The reference particle C is taken to be the centre of the wheel, and the
wheel is supposed to have some angular velocity w about C. The velocity v¥ of a
typical particle P is then the sum of the two velocities shown. In terms of the vectors

{i, j}
vl =ui + wp (cosBi — sinb j)
=W+ wpcosh)i — (wpsinb) j. (2.19)

In particular, on taking p = b and # = 7, the velocity v< of the contact particle Q is
given by

v9 = (u — wb)i. (2.20)
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If the wheel is allowed to slip as it moves across the table, there is no restriction on
v? so that u and w are unrelated. But rolling, by definition, requires that

v? = 0. (2.21)

On applying this rolling condition to our formula (2.20) for v€, we find that  must
be related to u by

(2.22)

and on using this value of w in (2.19) we find that the velocity of the typical particle
P is given by

o —u (1 +%cos@> i—u (gsin9> j. (2.23)
When P lies on the circumference of the wheel, this formula simplifies to
vP = u (1 +cos) i —usinb j, (2.24)
in which case the speed of P is given by
[vf | = 2u cos(6/2), (—7 <0 < 7).

Thus the highest particle of the wheel has the largest speed, 2u, while the contact
particle has speed zero, as we already know. B

2.6 REFERENCE FRAMES IN RELATIVE MOTION

A reference frame is simply a rigid coordinate system that can be used to specify
the positions of points in space. In practice it is convenient to regard a reference frame
as being embedded in, or attached to, some rigid body. The most familiar case is that in
which the rigid body is the Earth but it could instead be a moving car, or an orbiting space
station. In principle, any event, the motion of an aircraft for example, can be observed
from any of these reference frames and the motion will appear different to each observer.
It is this difference that we now investigate.

Let the motion of a particle P be observed from the reference frames F {0 i, j, k}
and F' {0’ i, j, k} as shown in Figure 2.9. Here we are supposing that the frame F’
does not rotate relative to F. This is why, without losing generality, we can suppose that
F and F’ have the same set of unit vectors {i, j, k}. For example, P could be an aircraft,
F could be attached to the Earth, and F’ could be attached to a car driving along a straight
road.

Then, r, ¥/, the position vectors of P relative to F, F’ are connected by

r=r'+D, (2.25)

where D is the position vector of O’ relative to F.
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FIGURE 2.9 The particle P is observed from the two reference frames F and F”'.

We now differentiate this equation with respect to ¢, a step that requires some care.
Let us consider the rates of change of the vectors in equation (2.25), as observed from the
frame F. Then

dr’
v=|(—] +V, (2.26)
dt )

where v is the velocity of P observed in F and V is the velocity of F’ relative to F.
Now when two different reference frames are used to observe the same vector, the
observed rates of change of that vector will generally be different. In particular, it is not

<d r ) (a’r/ )

dt ) r dt ) r

However, as we will show in Chapter 17, these two rates of change are equal if the frame
F does not rotate relative to F. Hence, in our case, we do have

(a’ r’ ) (d r’ ) ,
_— = —_— =17,
dr )~ \ar ) .
where v’ is the velocity of P observed in F'.

Equation (2.26) can then be written

generally true that

V=0 +V 2.27)

Thus the velocity of P observed in F is the sum of the velocity of P observed in F' and
the velocity of the frame F' relative to F. This result applies only when F’ does not
rotate relative to F.
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This is the well known rule for handling ‘relative velocities’. In the aircraft example,
it means that the true velocity of the aircraft (relative to the ground) is the vector sum of
(1) the velocity of the aircraft relative to the car, and (ii) the velocity of the car relative to
the road.

Example 2.11 Relative velocity

The Mississippi river is a mile wide and has a uniform flow. A steamboat sailing at
full speed takes 12 minutes to cover a mile when sailing upstream, but only 3 minutes
when sailing downstream. What is the shortest time in which the steamboat can cross
the Mississippi to the nearest point on the opposite bank?

Solution

The way to handle this problem is to view the motion of the boat from a reference
frame F’ moving with the river. In this reference frame the water is at rest and the
boat sails with the same speed in all directions. The relative velocity formula (2.27)
then gives us the true picture of the motion of the boat relative to the river bank, which
is the reference frame F.

Let u® be the speed of the boat in still water and u” be the speed of the river, both
measured in miles per hour. The upstream and downstream times are just a sneaky
way of telling us the values of #? and u®. When the boat sails downstream, (2.27)
implies that its speed relative to the bank is u® 4 u®. But this speed is stated to be
1/3 mile per minute (or 20 miles per hour). Hence

ub +uR =20.

B

Similarly the upstream speed is u? — u® and is stated to be 1/12 mile per minute (or

5 miles per hour). Hence
ub —uf =5,
Solving these equations yields
ul =125 mph, uk =175 mph.

Now the boat must cross the river. In order to cross by a straight line path to the
nearest point on the opposite bank, the boat’s velocity (relative to the water) must be
directed at some angle « to the required path (as shown in Figure 2.10) so that its
resultant velocity is perpendicular to the stream. For this to be true, & must satisty

uB sina = uR,
which gives sina = 3/5. The resultant speed of the boat when crossing the river is
therefore u® cosa = 12.5 x (4/5) = 10 mph. Since the river is one mile wide, the
time taken for the crossing is 1/10 hour = 6 minutes. B
The relative velocity formula (2.27) can be differentiated again with repect to ¢ to give
a similar connection between accelerations. The result is that

a=a + A, (2.28)
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—>uR — U

> — uf uf — < B—»uR

R o

Downstream Upstream Across

FIGURE 2.10 The river flows from left to right with speed u® and the boat sails with speed
u® relative to the river. In each case the velocity of the boat relative to the bank is the
vector sum of the two velocities shown.

where a and @’ are the accelerations of P relative to the frames F and F’ respectively,
and A is the acceleration of the frame F ' relative to the frame . Once again, this result
applies only when F’ does not rotate relative to F.

Mutually unaccelerated frames

An important special case of equation (2.28) occurs when the frame F' is moving with
constant velocity (and no rotation) relative to 7. We will then say that F and F' are
mutually unaccelerated frames. In this case A = 0 and (2.28) becomes

a=ad. (2.29)

This means that when mutually unaccelerated frames are used to observe the motion of a
particle P, the observed acceleration of P is the same in each frame.
This result will be vital in our discussion of inertial frames in Chapter 3.

Problems on Chapter 2

Answers and comments are at the end of the book.

Harder problems carry a star ().

Rectilinear particle motion

2.1 A particle P moves along the x-axis with its displacement at time ¢ given by x = 612 —
13 + 1, where x is measured in metres and 7 in seconds. Find the velocity and acceleration of
P at time 7. Find the times at which P is at rest and find its position at these times.

2.2 A particle P moves along the x-axis with its acceleration a at time ¢ given by

a=6f—4ms 2.
Initially P is at the point x = 20 m and is moving with speed 15 ms™! in the negative x-
direction. Find the velocity and displacement of P at time ¢. Find when P comes to rest and
its displacement at this time.
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2.3 Constant acceleration formulae A particle P moves along the x-axis with constant
acceleration « in the positive x-direction. Initially P is at the origin and is moving with velocity
u in the positive x-direction. Show that the velocity v and displacement x of P at time ¢ are
given by*

v =u+ at, x=ut+%a12,
and deduce that

v? = u® + 2ax.

In a standing quarter mile test, the Suzuki Bandit 1200 motorcycle covered the quarter
mile (from rest) in 11.4 seconds and crossed the finish line doing 116 miles per hour. Are
these figures consistent with the assumption of constant acceleration?

General particle motion

2.4 The trajectory of a charged particle moving in a magnetic field is given by
r=>bcosQti+bsinQ2t j+ ctk,

where b, Q2 and ¢ are positive constants. Show that the particle moves with constant speed and
find the magnitude of its acceleration.

2.5 Acceleration due to rotation and orbit of the Earth A body is at rest at a location on the
Earth’s equator. Find its acceleration due to the Earth’s rotation. [Take the Earth’s radius at
the equator to be 6400 km.]

Find also the acceleration of the Earth in its orbit around the Sun. [Take the Sun to be
fixed and regard the Earth as a particle following a circular path with centre the Sun and radius
15 x 1010 m.

2.6 Aninsect flies on a spiral trajectory such that its polar coordinates at time ¢ are given by
r=be, 0=,

where b and 2 are positive constants. Find the velocity and acceleration vectors of the insect
at time 7, and show that the angle between these vectors is always /4.

2.7 A racing car moves on a circular track of radius b. The car starts from rest and its speed
increases at a constant rate «. Find the angle between its velocity and acceleration vectors at
time 7.

* These are the famous constant acceleration formulae. Although they are a mainstay of school mechan-
ics, we will make little use of them since, in most of the problems that we treat, the acceleration is not
constant. It is a serious offence to use these formulae in non-constant acceleration problems.
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2.8 A particle P moves on a circle with centre O and radius b. At a certain instant the speed
of P is v and its acceleration vector makes an angle « with P O. Find the magnitude of the
acceleration vector at this instant.

2.9% A bee flies on a trajectory such that its polar coordinates at time ¢ are given by

bt t
r=—Qt—1 0=— (0 <t <21),
T T
where b and 7 are positive constants. Find the velocity vector of the bee at time 7.
Show that the least speed achieved by the bee is »/7t. Find the acceleration of the bee at
this instant.

2.10% A pursuit problem: Daniel and the Lion The luckless Daniel (D) is thrown into a
circular arena of radius @ containing a lion (L). Initially the lion is at the centre O of the
arena while Daniel is at the perimeter. Daniel’s strategy is to run with his maximum speed u
around the perimeter. The lion responds by running at its maximum speed U in such a way
that it remains on the (moving) radius O D. Show that r, the distance of L from O, satisfies

the differential equation
o ur (U2,
’ - a_2 I/l_2 _’ ’

Find r as a function of ¢. If U > u, show that Daniel will be caught, and find how long this
will take.

Show that the path taken by the lion is an arc of a circle. For the special case in which
U = u, sketch the path taken by the lion and find the point of capture.

2.11 General motion with constant speed A particle moves along any path in three-
dimensional space with constant speed. Show that its velocity and acceleration vectors must
always be perpendicular to each other. [Hint. Differentiate the formula v - v = v? with respect
tot.]

2.12 A particle P moves so that its position vector r satisfies the differential equation
F=cxr,

where c is a constant vector. Show that P moves with constant speed on a circular path. [Hint.
Take the dot product of the equation first with ¢ and then with r.]

Angular velocity

2.13 A large truck with double rear wheels has a brick jammed between two of its tyres which
are 4 ft in diameter. If the truck is travelling at 60 mph, find the maximum speed of the brick
and the magnitude of its acceleration. [Express the acceleration as a multiple of g = 32 ft s72]

2.14 A particle is sliding along a smooth radial grove in a circular turntable which is rotating
with constant angular speed 2. The distance of the particle from the rotation axis at time ¢ is
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FIGURE 2.11 Cam and valve mechanism

FIGURE 2.12 Crank and piston mechanism

observed to be
r = bcosh Q¢

for t > 0, where b is a positive constant. Find the speed of the particle (relative to a fixed
reference frame) at time ¢, and find the magnitude and direction of the acceleration.

2.15 Figure 2.11 shows an eccentric circular cam of radius b rotating with constant angular
velocity w about a fixed pivot O which is a distance e from the centre C. The cam drives a
valve which slides in a straight guide. Find the maximum speed and maximum acceleration of
the valve.

2.16 Figure 2.12 shows a piston driving a crank O P pivoted at the end O. The piston slides
in a straight cylinder and the crank is made to rotate with constant angular velocity w. Find the
distance O Q in terms of the lengths b, ¢ and the angle 6. Show that, when b/c is small, O Q
is given approximately by

b2
0OQ =c+bcosO — 2—csin29,

on neglecting (b/c)* and higher powers. Using this approximation, find the maximum accel-
eration of the piston.

2.17 Figure 2.13 shows an epicyclic gear arrangement in which the ‘sun’ gear G; of radius
b1 and the ‘ring’ gear G, of inner radius b, rotate with angular velocities w1, w» respectively
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FIGURE 2.13 Epicyclic gear mechanism

O

L C
FIGURE 2.14 The pins P and Q at the ends w P
of a rigid link move along the axes O X, OY - X
respectively. O z >

about their fixed common centre O. Between them they grip the ‘planet’ gear G, whose centre
C moves on a circle centre O. Find the circumferential velocity of C and the angular velocity
of the planet gear G. If O and C were connected by an arm pivoted at O, what would be the
angular velocity of the arm?

2.18 Figure 2.14 shows a straight rigid link of length ¢ whose ends contain pins P, Q that
are constrained to move along the axes O X, OY. The displacement x of the pin P at time ¢
is prescribed to be x = b sin Q¢, where b and 2 are positive constants with » < a. Find the
angular velocity w and the speed of the centre C of the link at time ¢.

Relative velocity

2.19 An aircraft is to fly from a point A to an airfield B 600 km due north of A. If a steady
wind of 90 km/h is blowing from the north-west, find the direction the plane should be pointing
and the time taken to reach B if the cruising speed of the aircraft in still air is 200 km/h.

2.20 An aircraft takes off from a horizontal runway with constant speed U, climbing at a
constant angle « to the horizontal. A car is moving on the runway with constant speed u
directly towards the front of the aircraft. The car is distance a from the aircraft at the instant
of take-off. Find the distance of closest approach of the car and aircraft. [Don’t try this one at
home.]

2.21% An aircraft has cruising speed v and a flying range (out and back) of Ry in still air.
Show that, in a north wind of speed u (¢ < v) its range in a direction whose true bearing from
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FIGURE 2.15 The dog D chases the hare H
by running directly towards the hare’s current
position.

north is 6 is given by

Ro(v? — u?)
v(v? — u?sin?9)1/2°

What is the maximum value of this range and in what directions is it attained?

Computer assisted problems

2.22 Dog chasing a hare; another pursuit problem. Figure 2.15 shows a dog with position
vector P and velocity v” chasing a hare with position vector 7/ and velocity v. The dog’s
strategy is to run directly towards the current position of the hare. Given the motion of the hare
and the speed of the dog, what path does the dog follow?
Since the dog runs directly towards the hare, its velocity vD must satisfy
DD _ r H _ r D
2 | rH — rDI :

In terms of the position vector of the dog relative to the hare, given by R = rD —rH this equation becomes
. R
R=——vP —f
R

Given the velocity v of the hare and the speed vP of the dog as functions of time, this differential equation
determines the trajectory of the dog relative to the hare; capture occurs when R = 0. The actual trajectory
of the dog is given by r? = R + r!.

If the motion takes place in a plane with R = Xi + Y j then X and Y satisty the coupled differential
equations

UDX H 5 UDY _ UH
’ - (X2 +Y2)1/2 y

T2z

)

together with initial conditions of the form X (0) = xp and Y (0) = yp. Such equations cannot usually
be solved analytically but are extremely easy to solve with computer assistance. Two interesting cases to
consider are as follows. In each case the speeds of the dog and the hare are constants.

(1) Initially the hare is at the origin with the dog at some point (xg, yg). The hare then runs along the
positive x-axis and is chased by the dog. Show that the hare gets caught if vP > vH  but when vP = v
the dog always misses (unless he starts directly in the path of the hare). This remarkable result can be

proved analytically.
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(ii) The hare runs in a circle (like the lion problem). In this case, with vl = vl | the dog seems to
miss no matter where he starts.

Try some examples of your own and see if you can find interesting paths taken by the dog.

2.23 Consider further the piston problem described in Problem 2.16. Use computer assistance
to calculate the exact and approximate accelerations of the piston as functions of 8. Compare
the exact and approximate formulae (non-dimensionalised by w?b) by plotting both on the
same graph against 8. Show that, when b/c < 0.5, the two graphs are close, but when b/c
gets close to unity, large errors occur.



Chapter Three

Newton’s laws of motion
and the law of gravitation

KEY FEATURES
The key features of this chapter are Newton’s laws of motion, the definitions of mass and
force, the law of gravitation, the principle of equivalence, and gravitation by spheres.

This chapter is concerned with the foundations of dynamics and gravitation. Kine-
matics is concerned purely with geometry of motion, but dynamics seeks to answer the
question as to what motion will actually occur when specified forces act on a body. The
rules that allow one to make this connection are Newton’s laws of motion. These are
laws of physics that are founded upon experimental evidence and stand or fall accord-
ing to the accuracy of their predictions. In fact, Newton’s formulation of mechanics has
been astonishingly successful in its accuracy and breadth of application, and has survived,
essentially intact, for more than three centuries. The same is true for Newton’s universal
law of gravitation which specifies the forces that all masses exert upon each other.

Taken together, these laws represent virtually the entire foundation of classical
mechanics and provide an accurate explanation for a vast range of motions from large
molecules to entire galaxies.

3.1 NEWTON’S LAWS OF MOTION

Isaac Newton’s* three famous laws of motion were laid down in Principia, written
in Latin and published in 1687. These laws set out the founding principles of mechanics
and have survived, essentially unchanged, to the present day. Even when translated into
English, Newton’s original words are hard to understand, mainly because the terminology

* Sir Isaac Newton (1643—-1727) is arguably the greatest scientific genius of all time. His father was com-
pletely uneducated and Isaac himself had no contact with advanced mathematics before the age of twenty.
However, by the age of twenty seven, he had been appointed to the Lucasian chair at Cambridge and was
one of the foremost scientists in Europe. His greatest achievements were his discovery of the calculus, his
laws of motion, and his theory of universal gravitation. On the urging of Halley (the Astronomer Royal),
Newton wrote up an account of his new physics and its application to astronomy. Philosophiae Naturalis
Principia Mathematica was published in 1687 and is generally recognised as the greatest scientific book
ever written.
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of the seventeenth century is now archaic. Also, the laws are now formulated as applying
to particles, a concept never used by Newton. A particle is an idealised body that occupies
only a single point of space and has no internal structure. True particles do not exist’ in
nature, but it is convenient to regard realistic bodies as being made up of particles. Using
modern terminology, Newton’s laws may be stated as follows:

Newton’s laws of motion

First Law When all external influences on a particle are removed, the particle
moves with constant velocity. [This velocity may be zero in which case the particle
remains at rest. |

Second Law When a force F acts on a particle of mass m, the particle moves with
instantaneous acceleration a given by the formula

F = ma,

where the unit of force is implied by the units of mass and acceleration.

Third Law When two particles exert forces upon each other, these forces are (i)
equal in magnitude, (ii) opposite in direction, and (iii) parallel to the straight line
joining the two particles.

Units

Any consistent system of units can be used. The standard scientific units are SI units in
which the unit of mass is the kilogram, the unit of length is the metre, and the unit of
time is the second. The unit of force implied by the Second Law is called the newton,
and written N. An excellent description of the SI system of units can be found on

http://www.physics.nist.gov/PhysRefData

the website of the US National Institute of Standards & Technology.

In the Imperial system of units, the unit of mass is the pound, the unit of length is the
foot, and the unit of time is the second. The unit of force implied by the Second Law is
called the poundal. These units are still used in some industries in the US, a fact which
causes frequent confusion.

Interpreting Newton’s laws

Newton’s laws are clear enough in themselves but they leave some important questions
unanswered, namely:

(1) In what frame of reference are the laws true?

T The nearest thing to a particle is the electron, which, unlike other elementary particles, does seem to be a
point mass. The electron does however have an internal structure, having spin and angular momentum.
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(ii) What are the definitions of mass and force?

These questions are answered in the sections that follow. What we do is to set aside
Newton’s laws for the time being and go back to simple experiments with particles. These
are ‘thought experiments’ in the sense that, although they are perfectly meaningful, they
are unlikely to be performed in practice. The supposed ‘results’ of these experiments are
taken to be the primitive governing laws of mechanics on which we base our definitions of
mass and force. Finally, these laws and definitions are shown to be equivalent to Newton’s
laws as stated above. This process could be said to provide an interpretation of Newton’s
laws. The interpretation below is quite sophisticated and is probably only suitable for
those who have already seen a simpler account, such as that given by French [3].

3.2 INERTIAL FRAMES AND THE LAW OF INERTIA

The first law states that, when a particle is unaffected by external influences, it
moves with constant velocity, that is, it moves in a straight line with constant speed.
Thus, contrary to Aristotle’s view, the particle needs no agency of any kind to maintain
its motion.* Since the influence of the Earth’s gravity rules out any verification of the
First Law by an experiment conducted on Earth, Newton showed remarkable insight in
proposing a law he could not possibly verify. In order to verify the First Law, all external
influences must be removed, which means that we must carry out our thought experiment
in a place as remote as possible from any material bodies, such as the almost empty space
between the galaxies. In our minds then we go to such a place armed with a selection of
test particles” which we release in various ways and observe their motion. According to
the First Law, each of these particles should move with constant velocity.

Inertial reference frames

So far we have ignored the awkward question as to what reference frame we should use to
observe the motion of our test particles. When confronted with this question for the first
time, one’s probable response is that the reference frame should be ‘fixed’. But fixed to
what? The Earth rotates and is in orbital motion around the Sun. Our entire solar system
is part of a galaxy that rotates about its centre. The galaxies themselves move relative
to each other. The fact is that everything in the universe is moving relative to everything
else and nothing can properly be described as fixed. From this it might be concluded that
any reference frame is as good as any other, but this is not so, for, if the First Law is
true at all, it can only be true in certain special reference frames. Suppose for instance
that the First Law has been found to be true in the reference frame JF. Then it is also
true in any other frame F’ that is mutually unaccelerated relative to F (see section 2.6).
This follows because, if the test particles have constant velocities in JF, then they have

* Such a law was proposed prior to Newton by Galileo but, curiously, Galileo did not accept the conse-
quences of his own statement.
T Since true particles do not exist, we will have to make do with uniform rigid spheres of various kinds.



3.2 Inertial frames and the law of inertia 53

zero accelerations in F. But, since F and F’ are mutually unaccelerated frames, the
test particles must have zero accelerations in F” and thus have constant velocities in F”.
Moreover, the First Law does not hold in any other reference frame.

Definition 3.1 Inertial frame A reference frame in which the First Law is true is said
to be an inertial frame.

It follows that, if there exists one inertial frame, then there exist infinitely many, with
each frame moving with constant velocity (and no rotation) relative to any other.

It may appear that the First Law is without physical content since we are saying that
it is true in those reference frames in which it is true. However, this is not so since inertial
frames need not have existed at all, and the fact that they do is the real physical content of
the First Law. Why there should exist this special class of reference frames in which the
laws of physics take simple forms is a very deep and interesting question that we do not
have to answer here!

Our discussion is summarised by the following statement which we take to be a law
of physics:

The law of inertia There exists in nature a unique class of mutually unaccelerated refer-
ence frames (the inertial frames) in which the First Law is true.

Practical inertial frames

The preceding discussion gives no clue as to how to set up an inertial reference frame and,
in practice, exact inertial frames are not available. Practical reference frames have to be tied
to real objects that are actually available. The most common practical reference frame is the
Earth. Such a frame is sufficiently close to being inertial for the purpose of observing most
Earth-bound phenomena. The orbital acceleration of the Earth is insignificant and the effect of
the Earth’s rotation is normally a small correction. For example, when considering the motion
of a football, a pendulum or a spinning top, the Earth may be assumed to be an inertial frame.
However, the Earth is not a suitable reference frame from which to observe the motion of
an orbiting satellite. In this case, the geocentric frame (which has its origin at the centre of
mass of the Earth and has no rotation relative to distant stars) would be appropriate. Similarly,
the heliocentric frame (which has its origin at the centre of mass of the solar system and has
no rotation relative to distant stars) is appropriate when observing the motion of the planets.

Example 3.1 Inertial frames

Suppose that a reference frame fixed to the Earth is exactly inertial. Which of the
following are then inertial frames?

A frame fixed to a motor car which is

(i) moving with constant speed around a flat race track,

(i1) moving with constant speed along a straight undulating road,
(iii) moving with constant speed up a constant gradient,

(iv) freewheeling down a hill.



54 Chapter 3 Newton’s laws of motion and the law of gravitation

FIGURE 3.1 The particles P} and P> move under their
mutual interaction and, relative to an inertial reference
frame F, have accelerations a> and aj| repectively.
These accelerations are found to satisfy the law of mutual
interaction.

Solution

Only (iii) is inertial. In the other cases, the frame is accelerating or rotating relative
to the Earth.

3.3 THE LAW OF MUTUAL INTERACTION; MASS AND
FORCE

We first dispose of the question of what frame of reference should be used to
observe the particle motions mentioned in the Second Law. The answer is that any inertial
reference frame can be used and we will always assume this to be so, unless stated
otherwise. As stated earlier, the problem in understanding the Second and Third Laws is
that the concepts of mass and force are not defined, which is obviously unsatisfactory.

Our second thought experiment is concerned with the motion of a pair of mutually
interacting particles. The nature of their mutual interaction can be of any kind* and all
other influences are removed. Since each particle is influenced by the other, the First Law
does not apply. The particles will, in general, have accelerations, these being independent
of the inertial frame in which they are measured. Our second law of physics is concerned
with the ‘observed’ values of these mutually induced accelerations.

The law of mutual interaction Suppose that two particles Py and Pj interact with each
other and that P, induces an instantaneous acceleration aiy in Py, while Py induces an
instantaneous acceleration a>y in Py. Then

(1) these accelerations are opposite in direction and parallel to the straight line joining
P and P;,

* The mutual interaction might be, for example, (i) mutual gravitation, (ii) electrostatic interaction, caused
by the particles being electrically charged, or (iii) the particles being connected by a fine elastic cord.
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(i1) the ratio of the magnitudes of these accelerations, |ayi|/|a12| is a constant inde-
pendent of the nature of the mutual interaction between Py and P>, and indepen-
dent of the positions and velocities™ of Py and P».

Moreover, suppose that when Py interacts with a third particle P3 the induced accelera-
tions are ap3 and