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Preface

Computation is an integral part of modern science and the
ability to exploit effectively the power offered by computers is
therefore essential to a working physicist. The proper application
of a computer to modeling physical systems is far more than blind
"number crunching”, and the successful computational physicist
draws on a balanced mix of analytically soluble examples, physical
intuition, and numerical work to solve problems which are other-
wise intractable.

Unfortunately, the ability "to compute” is seldom cultivated by
the standard university-level physics curriculum, as it requires an
integration of three disciplines (physics, numerical analysis, and
computer programming) covered in disjoint courses. Few physics
students finish their undergraduate education knowing how to
compute; those that do usually learn a limited set of techniques in
the course of independent work, such as a research project or a
senior thesis.

The material in this book is aimed at refining computational
skills in advanced undergraduate or beginning graduate students
by providing direct experience in using a computer to model phy-
sical systemns. Its scope includes the minimum set of numerical
techniques needed to '"do physics'' on a computer. Each of these is
developed in the text, often heuristically, and is then applied to
solve non-trivial problems in classical, quantum, and statistical
physics. These latter have been chosen to enrich or extend the
standard undergraduate physics curriculum, and so have consid-
erable intrinsic interest, quite independent of the computational
principles they illustrate.

This book should not be thought of as setting out a rigid or
definitive curriculum. I have restricted its scope to calculations
which satisfy simultaneously the criteria of illustrating a widely
applicable numerical technique, of being tractable on a microcom-
puter, and of having some particular physics interest. Several
important numerical techniques have therefore been omitted,
spline interpolation and the Fast Fourier Transform among them.
Computational Physics is perhaps best thought of as establishing
an environment offering opportunities for further exploration.
There are many possible extensions and embellishments of the
material presented; using one’s imagination along these lines is
one of the more rewarding parts of working through the book.

Computational Physics is primarily a physics text. For max-
imum benefit, the student should have taken, or be taking,
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undergraduate courses in classical mechanics, quantum mechan-
ics, statistical mechanics, and advanced calculus or the
mathematical methods of physics. This is not a text on numerical
analysis, as there has been no attempt at rigor or completeness in
any of the expositions of numerical techniques. However, a prior
course in that subject is probably not essential; the discussions of
numerical techniques should be accessible to a student with the
physics background outlined above, perhaps with some reference
to any one of the excellent texts on numerical analysis {for exam-
ple, [Ac70], [BuB1], or [Sh84]). This is also not a text on computer
programming. Although 1 have tried to follow the principles of
good programming throughout (see Appendix B), there has been
no attempt to teach programming per se. Indeed, techniques for
organizing and writing code are somewhat peripheral to the main
goals of the book. Some familiarity with programming, at least to
the extent of a one-semester introductory course in any of the
standard high-level languages (BASIC, FORTRAN, PASCAL, C), is
therefore essential.

The choice of language invariably invokes strong feelings
among scientists who use computers. Any language is, after all,
only a means of expressing the concepts underlying a program.
The contents of this book are therefore relevant no matter what
language one works in. However, some language had to be chosen
to implement the programs, and I have selected the Microsoft
dialect of BASIC standard on the IBM PC/XT/AT computers for this
purpose. The BASIC language has many well-known deficiencies,
foremost among them being a lack of local subroutine variables
and an awkwardness in expressing structured code. Nevertheless,
I believe that these are more than balanced by the simplicity of
the language and the widespread fluency in it, BASIC's almost
universal availability on the microcomputers most likely to be
used with this book, the existence of both BASIC interpreters con-
venient for writing and debugging programs and of compilers for
producing rapidly executing finished programs, and the powerful
graphics and I/0 statements in this language. [ expect that
readers familiar with some other high-level language can learn
enough BASIC "on the fly"” to be able to use this book. A synopsis
of the language is contained in Appendix A to help in this regard,
and further information can be found in readily available manuals.
The reader may, of course, elect to write the programs suggested
in the text in any convenient language.

This book arose out of the Advanced Computational Physics
Laboratory taught to third- and fourth-year undergraduate Phy-
sics majors at Caltech during the Winter and Spring of 1984. The
content and presentation have benefitted greatly from the many
inspired suggestions of M.-C. Chu, V. Ponisch, R. Williams, and D.
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Meredith. Mrs. Meredith was also of great assistance in producing
the final form of the manuscript and programs. I also wish to
thank my wife, Laurie, for her extraordinary patience, understand-
ing, and support during my two-year involvement in this project.

Steven £. Koonin
Pasadena
May, 1985

Vit



mi

©
[\Y)
,.\\\\mom

R\ o



How to use this book

This book is organized into chapters, each containing a text
section, an example, and a project. Each text section is a brief
discussion of one or several related numerical techniques, often
illustrated with simple mathematical examples. Throughout the
text are a number of exercises, in which the student’s understand-
ing of the material is solidified or extended by an analytical
derivation or through the writing and running of a simple program.
These exercises are indicated by the symbol BB O in the outer
margin.

The example and project in each chapter are applications of
the numerical techniques to particular physical problems. Each
includes a brief exposition of the physics, followed by a discussion
of how the numerical techniques are to be applied. The examples
and projects differ only in that the student is expected to use (and
perhaps modify) the program which is given for the former in
Appendix B, while the book provides guidance in writing programs
to treat the latter through a series of steps, also indicated by the
symbol BB O in the outer margin. However, programs for the
projects have also been included in Appendix C; these can serve as
models for the student’s own program or as a means of investigat-
ing the physics without having to write a major program "from
scratch’. A number of suggested studies accompany each exam-
ple and project; these guide the student in exploiting the pro-
grams and understanding the physical principles and numerical
techniques involved.

The diskeitte included with this book (360 kB, double-sided,
double-density format) also contains the BASIC source codes for
the examples and projects; it is suitable for use on any microcom-
puter system operating under MS-DOS Version 2.0 or higher.
Further information about these programs can be found at the
beginning of Appendix B and in the file README on the diskette,
which can be read by inserting the diskette into the default disk
drive and entering the DOS command "TYPE README'". Note that
it is wise to back up this write-protected diskette before beginning
to use the programs.

An attempt has been made to use only the most primitive
BASIC statements, so that the codes for the projects and examples
should be appropriate for most BASIC dialects. All of the programs
will run under a BASIC interpreter, but most require enough com-
putation to make execution speed an important consideration. For
serious study, it is therefore recommended that the codes be
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compiled through the IBM or Microsoft BASIC compiler, after which
they will run between five and ten times faster. The programs have
also been written in such as way as to make relatively straightfor-
ward their transcription into another high-level language, such as
FORTRAN.

A "laboratory’' format has proved to be one effective mode of
presenting this material in a university setting. Students are quite
able to work through the text on their own, with the instructor
being available for consultation and to monitor progress through
brief personal interviews on each chapter. Three chapters in ten
weeks (60 hours) of instruction has proved to be a reasonable
pace, with students typically writing two of the projects during
this time, and using the "canned’ codes to work through the phy-
sics of the remaining project and the examples. The eight
chapters in this book should therefore be more than sufficient for
a one-semester course. Alternatively, this book can be used to pro-
vide supplementary material for the usual courses in classical,
quantum, and statistical mechanics. Many of the examples and
projects are vivid illustrations of basic concepts in these subjects
and are therefore suitable for classroom demonstrations or
independent study.

This book should not be thought of as setting out a rigid or
definitive curriculum. I have restricted its scope to calculations
which satisfy simultaneously the criteria of illustrating a widely
applicable numerical technique, of being tractable on a microcom-
puter, and of having some particular physics interest. Several
important numerical techniques have therefore been omitted,
spline interpolation and the Fast Fourier Transform among them.
Computational Physics is perhaps best thought of as establishing
an environment offering opportunities for further exploration.
There are many possible extensions and embellishments of the
material presented; using one’s imagination along these lines is
one of the more rewarding parts of working through the book.
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Chapler 1

Basic
Mathematical
Operations

Three numerical operations - differentiation, quadrature, and
the finding of roots - are central to most computer modeling of
physical systems. Suppose that we have the ability to calculate
the value of a function, f (z), at any value of the independent vari-
able z. In differentiation, we seek one of the derivatives of f at a
given value of x. Quadrature, roughly the inverse of
differentiation, requires us to calculate the definite integral of f
between two specified limits (we reserve the term "integration’ for
the process of solving ordinary differential equations, as discussed
in Chapter 2), while in root finding we seek the values of z (there
may be several) at which f vanishes.

If f is known analytically, it is almost always possible, with
enough fortitude, to derive explicit formulas for the derivatives of
f, and it is often possible to do so for its definite integral as well.
However, it is often the case that an analytical method cannot be
used, even though we can evaluate f(z) itself. This might be
either because some very complicated numerical procedure is
required to evaluate f and we have no suitable analytical formula
upon which to apply the rules of differentiation and quadrature,
or, even worse, because the way we can generate f provides us
with its values at only a set of discrete abscissae. In these situa-
tions, we must employ approximate formulas expressing the
derivatives and integral in terms of the values of f we can com-
pute. Moreover, the roots of all but the simplest functions cannot
be found analytically, and numerical methods are therefore essen-
tial.

This chapter deals with the computer realization of these
three basic operations. The central technique is to approximate f
by a simple function (such as first- or second-degree polynomial)
upon which these operations can be performed easily. We will
derive only the simplest and most commonly used formulas; fuller
treatments can be found in many textbooks on numerical analysis.



1. Basic Mathematical Operations
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Figure 1.1 Values of f on an equally-spaced lattice.
Dashed lines show the linear interpolation.

1.1 Numerical differentiation

Let us suppose that we are interested in the derivative at =0,
f'(0). (The formulas we will derive can be generalized simply to
arbitrary z by translation.) Let us also suppose that we know f on
an equally-spaced lattice of z values,

In=f(xp); zp=nh (n.=0,£1,%2, ---),
and that our goal is to compute an approximate value of f'(0) in
terms of the f,, (see Figure 1.1).

We begin by using a Taylor series to expand f in the neighbor-
hood of z=0:

3
f(@)=forar e Top e g (1.1)

where all derivatives are evaluated at z=0. It is then simple to
verify that

[l @=sh)=f s + B it f“'+0(h4). (1.2a)

fio=f(x=+2h)=fyt2hf’ +2h.2f”:|: f'“+0(h4) (1.2b)

where O(h%) means terms of order h* or hlgher. To estimate the
size of such terms, we can assume that f and its derivatives are
all of the same order of magnitude, as is the case for many func-
tions of physical relevance.

Upon subtracting f _; from f, as given by (1.2a), we find, after
a slight rearrangement,

f _fl_’{ mt ’:: 4+ 0(h4). (1.3a)




1.1 Numerical differentiation

n

The term involving f'' vanishes as A becomes small and is the
dominant error associated with the finite difference approximation
that retains only the first term:

J1—F -1
FR =

This "3-point” formula would be exact if f were a second-degree
polynomial in the 3-point interval [—h, +h ], because the third- and
all higher-order derivatives would then vanish. Hence, the essence
of Eq. (1.3b) is the assumption that a quadratic polynomial inter-
polation of f through the three points z=+h, 0 is valid.

Equation (1.3b) is a very natural result, reminiscent of the for-
mulas used to define the derivative in elementary calculus. The
error term (of order hA?) can, in principle, be made as small as is
desired by using smaller and smaller values of h. Note also that
the symmetric difference about =0 is used, as it is more accu-
rate (by one order in h) than the forward or backward difference
formulas:

(1.3b)

f mfl_f" +0(h); (1.4a)

£ mf"_f L +0(h). (1.4b)

These "2-point” formulas are based on the assumption that f is
well approximated by a linear function over the intervals between
=0 and x=th.

As a concrete example, consider evaluating f'(zx=1) when
f (z)=sinz. The exact answer is, of course, cos 1=0.540302. The
following BASIC program evaluates Eq. (1.3b) in this case for the
value of A input:

10 X=1: EXACT=COS(X)

20 INPUT "enter value of h (<=0 to stop)”;H

30 IF H<=0 THEN STOP

40 FPRIME = (SIN(X+H)-SIN(X-H))/(2*H)

50 DIFF=EXACT-FPRIME

60 PRINT USING "h=#. ######, ERROR=+#. f######" H, DIFF
70 GOTO 20

(If you are a beginner in BASIC, note the way the value of H is
requested from the keyboard, the fact that the code will stop if a
non-positive value of H is entered, the natural way in which vari-
able names are chosen and the mathematical formula (1.3b) is
transcribed using the SIN function in line 40, the way in which the
number of significant digits is specified when the result is to be
output to the screen in line 60, and the jump in program control in

3
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1. Basic Mathematical Operations

Table 1.1 Error in evaluating dsinz/ dz |, -,=0.540302

Symmetric  Forward Backward Symmetric

3-point 2-point 2-point 5-point

h Eq. (1.3b) Eqg. (1.4a) Eqg. (1.4b) Eq. (1.9)
0.50000 0.022233 0.228254 -0.183789 0.001092
0.20000 0.003595 0.087461 -0.080272 0.000028
0.10000 0.000899 0.042938 -0.041139 0.000001
0.05000 0.000225 0.021258 -0.020808 0.000000
0.02000 0.000037 0.008453 -0.008380 0.000001
0.01000 0.000010 0.004224 -0.004204 0.000002
0.00500 0.000010 0.002108 -0.002088 0.000006
0.00200  -0.000014 0.000820 -0.000848  -0.000017
0.00100  -0.000014 0.000403 -0.000431  -0.000019
0.00050 0.000105 0.000403 -0.000193 0.000115
0.00020 -0.000163 -0.000014 -0.000312 -0.000188
0.00010  -0.000312 -0.000312 -0.000312 -0.000411
0.00005 0.000284 0.001476 -0.000908 0.000681
0.00002 0.000880 0.000880  0.000880 0.000873
0.00001 0.000880 0.003860 -0.002100 0.000880

line 70.)

Results generated with this program, as well as with similar
ones evaluating the forward and backward difference formulas
Egs. (1.4a,b), are shown in Table 1.1. Note that the result improves
as we decrease h, but only up to a point, after which it becomes
worse. This is because arithmetic in the computer is performed
with only a limited precision {5-6 decimal digits for a single preci-
sion BASIC variable), so that when the difference in the numerator
of the approximations is formed, it is subject to large "round-off"
errors if h is small and f, and f _, differ very little. For example,
if h=107%, then

f 1=sin(1.000001)=0.841472; f _,=sin(0.999999)=0.841470,

so that f,;—f _;=0.000002 to six significant digits. When substi-
tuted into (1.3b) we find f'~1.000000, a very poor result. However,
if we do the arithmetic with 10 significant digits, then

JF1=0.8414715251; f_,=0.8414704445,

which gives a respectable f’'~0.540300 in Eq. (1.3b). In this sense,
numerical differentiation is an intrinsically unstable process (no
well-defined limit as h-»0), and so must be carried out with cau-

tion.



1.2 Numerical quadrature

It is possible to improve on the 3-point formula (1.3b) by relat-
ing f' to lattice points further removed from z=0. For example,
using Egs. (1.2), it is easy to show that the ""5-point’' formula

f N 2m8F 1 +8f 1= 21+ 0 (R (1.5)
cancels all derivatives in the Taylor series through fourth order.
Computing the derivative in this way assumes that f is well-
approximated by a fourth-degree polynomial over the 5-point
interval [—2h, 2h]. Although requiring more computation, this
approximation is considerably more accurate, as can be seen from
Table 1.1. In fact, an accuracy comparable to Eq: (1.3b) is obtained
with a step some 10 times larger. This can be an important con-
sideration when many values of f must be stored in the computer,
as the greater accuracy allows a sparser tabulation and so saves
storage space. However, because (1.5) requires more mathemati-
cal operations than does (1.3b) and there is considerable cancella-
tion among the various terms (they have both positive and nega-
tive coefficients), precision problems show up at a larger value of
h.

Formulas for higher derivatives can be constructed by taking
appropriate combinations of Egs. (1.2). For example, it is easy to
see that

F1—Rf o+ f_1=h2f"+0(h%), (1.8)

so that an approximation to the second derivative accurate to
order h?is

F1—Rf otf .

- (1.7)

f HN

Difference formulas for the various derivatives of f that are
accurate to a higher order in A can be derived straightforwardly.
Table 1.2 is a summary of the 4- and 5-point expressions.

Exercise 1.1 Using any function for which you can evaluate the
derivatives analytically, investigate the accuracy of the formulas
in Table 1.2 for various values of A.

1.2 Numerical quadrature

In quadrature, we are interested in calculating the definite
integral of f between two limits, a<b. We can easily arrange for
these values to be points of the lattice separated by an even
number of lattice spacings; i.e.,

Nzﬁb__.g'_)_
h

o



1. Basic Mathematical Operations

Table 1.2 4- and 5-point difference formulas for derivatives

4-point o-point
hi'  £3(-Rf 51-3f o+6f s1—f +2) #(f 2—8f 1+Bf 1—f2)
hEf" f-1-RfotS1 L(—f 2+16f _,—30f o+ 16f,—f2)
h3f (= 1+3f ¢3S 11+ [ 1) LS 2+Rf 1 Rf 1+ 2)
hAf @) f-2=4f 1+8f o=4f 1+ 2

is an even integer. It is then sufficient for us to derive a formula
for the integral from —h to +h, since this formula can be com-
posed many times:

a+2h a+4h
ff(x)dx ff(x)dx+ !;hf(x)dx+ C+ __fzhf(x)dx (1.8)

The basic idea behind all of the quadrature formulas we will
discuss (technically of the closed Newton-Cotes type) is to approxi-
mate f between —h and +h by a function that can be integrated
exactly. For example, the simplest approximation can be had by
considering the intervals [—h,0] and [0,h] separately, and assum-
ing that f is linear in each of these intervals (see Flgure 1.1). The
error made by this 1nterpolat10n is of order h2f", so that the
approximate integral is

h
_fhf (x)dng—(f_1+2fo+f1)+0(h3), (1.9)

which is the well-known trapezoidal rule.

A better approximation can be had by realizing that the Taylor
series (1.1) can provide an improved interpolation of f. Using the
difference formulas (1.3b) and (1.7) for f' and f", respectively, for
|z | <h we can put

_ Nt A F1—=Rfotf -1
f(x)—f0+ oh, z+ 2h2

which can be integrated readily to give

z2+ 0(x3), (1.10)

h
[r (2)dz=2(f 1+4f o+ 1)+ O(h%). (1.11)



1.2 Numemrical quadrature

This is Simpson’s rule, which can be seen to be accurate to two
orders higher than the trapezoidal rule (1.9). Note that the error
is actually better than would be expected naively from (1.10) since
the =3 term gives no contribution to the integral. Composing this
formula according to Eq. (1.8) gives

ff f(@)+4f (a+h)+2f (a +2h)+4f (a+3h)+

: +4f((b —h)+f(b)]. (1.12)

As an example, the following BASIC program calculates
1
Se*dr=e—-1=1.718282
0

using Simpson’s rule for the value of N=1/h input. (Source code
for programs like this that are embedded in the text are not con-
tained on the Computational Physics diskette, but can be easily
entered into the reader’s computer from the keyboard.)

5 DEF FNF(X)=EXP(X) 'function to integrate
10 EXACT=EXP(1)-1

15 INPUT "enter N (even,>=2)",N%

20 IF N7<2 THEN STOP

25

30 H=1/N%

35 SUM=FNF(0) ‘contribution fram X=0

40 FAC=2 "factor for Simpson’s rule
45 '

50 FOR I7%=1 TO Nz-1 "loop over lattice points
55 [F FAC=2 THEN FAC=4 ELSE FAC=2 'factors alternate

60 X=1%*H "X at this point

65 SUM=SUM+FNF (X) *FAC "contribution to integral
70 NEXT [7%

75

80 SUM=SUMHFNF( 1) 'contribution from X=1

85 INTERGAL=H*SUM/3

9C DIFF=EXACT-INTEGRAL

95 PRINT USING "N=#### ERROR=#.######" ;N% ,DIFF

100 GOTO 16 'get another value of NZ%

Results are shown in Table 1.3 for various values of N, together
with the values obtained using the trapezoidal rule. The improve-
ment from the higher-order formula is evident. Note that the
results are stable in the sense that a well-defined limit is obtained
as N becomes very large and the mesh spacing A becomes small;
round-off errors are unimportant because all values of f enter
into the quadrature formula with the same sign, in contrast to
what happens in numerical differentiation.

7



8

1. Basic Mathematical Operations

1
Table 1.3 Errors in evaluating f e®dx=1.718282
0

Trapezoidal Simpson's Bode’'s
N h Eq. (1.9) Eq. (1.12) Eq. (1.13Db)
4 0,2500000 -0.008940 -0.000037  -0.000001
8 0.1250000 -0.002237 0.000002 0.000000
16 0.0625000  -0.000559 0.000000 0.000000
32 0.0312500  -0.000140 0.000000 0.000000
64 0.0156250 -0.000035 0.000000 0.000000
128 0.0078125 -0.000008 0.000000 0.000000

An important issue in quadrature is how small an A is neces-
sary to compute the integral to a given accuracy. Although it is
possible to derive rigorous error bounds for the formulas we have
discussed, the simplest thing to do in practice is to run the com-
putation again with a smaller h and observe the changes in the
results.

Higher-order quadrature formulas can be derived by retaining
more terms in the Taylor expansion (1.10) used to interpolate f
between the mesh points and, of course, using commensurately
better finite-difference approximations for the derivatives. The
generalizations of Simpson’s rule using cubic and quartic polyno-

mials to interpolate (Simpson’s 2 and Bode's rule, respectively)

8
are:

[ 1 (@)do=S1 g+37 1+3f 241 5]+ O(R7); (1.132)

ff(x)dx:%[7f0+32f1+12f2+32f3+’7f4]+0(h7). (1.13b)

The results of applying Bode's rule are also given in Table 1.3,
where the improvement is evident, although at the expense of a
more involved computation. (Note that for this method to be
applicable, N must be a multiple of 4.) Although one might think
that formulas based on interpolation using polynomials of a very
high degree would be even more suitable, this is not the case; such
polynomials tend to oscillate violently and lead to an inaccurate
interpolation. Moreover, the coeflicients of the values of f at the
various lattice points can have both positive and negative signs in
higher-order formulas, making round-off error a potential prob-
lem. It is therefore usually safer to improve accuracy by using a
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low-order method and making A smaller rather than by resorting
to a higher-order formula. Quadrature formulas accurate to a very
high order can be derived if we give up the requirement of
equally-spaced abscissae; these are discussed in Chapter 4.

Exercise 1.2 Using any function whose definite integral you can
compute analytically, investigate the accuracy of the various qua-
drature methods discussed above for different values of h.

Some care and common sense must be exercised in the
application of the numerical quadrature formulas discussed
above. For example, an integral in which the upper limit is very
large is best handled by a change in variable. Thus, the Simpson’s
rule evaluation of

b
fdx x 2 g(x)
1

with g (z) constant at large z, would result in a (finite) sum con-
verging very slowly as b becomes large for fixed A (and taking a
very long time to compute!). However, changing variables to
t=x"1 gives

}g(t‘l) dt,
b1

which can then be evaluated by any of the formulas we have dis-
cussed.

Integrable singularities, which cause the naive formulas to
give nonsense, can also be handled in a simple way. For example,

}dx(l—xz)"’ég(x)
0

has an integrable singularity at z=1 (if g is regular there) and is
a finite number. However, since f (x=1)=c, the quadrature formu-
las discussed above give an infinite result. An accurate result can
be obtained by changing variables to £ =(1—:z:)}é to obtain

Zjl'dt (2—tR) % g(1—t?),
)

which is then approximated with no trouble.

Integrable singularities can also be handled by deriving qua-
drature formulas especially adapted to them. Suppose we are
interested in

1

h 1
{f(x)dx=jo'f(x)dx +{f(x)dx,

g
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where f(z) behaves as Cx~% near z=0, with C a constant. The
integral from h to 1 is regular and can be handled easily, while the
integral from O to h can be approximated as 2Ch#%=2hf (h).

coo Exercise 1.3 Write a program to calculate
1
St7*/3(1—t)"V/3dt=2n/ 3%
0
using one of the quadrature formulas discussed above and investi-
gate its accuracy for various values of h. (Hint: Split the range of
integration into two parts and make a different change of variable
in each integral to handle the singularities.)
1.3 Finding roots
The final elementary operation that is commonly required is to
find a root of a function f (z) that we can compute for arbitrary z.
One surefire method, when the approximate location of a root
(say at z=z) is known, is to guess a trial value of z guaranteed
to be less than the root, and then to increase this trial value by
small positive steps, backing up and halving the step size every
time f changes sign. The values of x generated by this pro-
cedure evidently converge to zg, so that the search can be ter-
minated whenever the step size falls below the required tolerance.
Thus, the following BASIC program finds the positive root of the
function f (z)=z%-5, z,=5%=2.236068, to a tolerance of 107
using z=1 as an initial guess and an initial step size of 0.5:
5 DEF FNF(X)=X*X-5 'function whose root is sought
10 TOLX=1.E-06 "tolerance for the search
15 X=1: FOLD=FNF(X): DX=.5 "initial guess, function, and step
20 ITERZ=0 "initialize iteration count
25
30 WHILE ABS(DX)>TOLX
35 [ TERZ=ITERZ+1 "increment iteration count
40 X=X+DX 'step X
45 PRINT ITER%,X,SQR(5)-X 'output current values
50 [F FOLD*FNF(X)>0 THEN GOTO 60 'if no sign change, take another step
55 X=X-DX: DX=DX/2 "back up and halve the step
60 WEND
65
70 STOP

Results for the sequence of z values are shown in Table 1.4, evi-
dently converging to the correct answer, although only after some
33 iterations. One must be careful when using this method, since
if the initial step size is too large, it is possible to step over the
root desired when f has several roots.
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Table 1.4 Error in finding the positive root of f (z)=z?-5

Search Newton Secant

Iteration Eq. (1.14) Egq. (1.15)
0 1.236076 1.236076 1.236076

1 0.736068 -0.763932 -1.430599

2 0.236068 -0.097265 0.378925

3 -0.263932 -0.002027 0.098137

4 -0.013932 -0.000001 -0.009308

5 0.111068 0.000000 0.000008

6 -0.013932 0.000000 0.000000

33 0.000001 0.000000 0.000000

Exercise 1.4 Run the code above for various tolerances, initial
guesses, and initial step sizes. Note that sometimes you might
find convergence to the negative root. What happens if you start
with an initial guess of -3 with a step size of 6?

A more efficient algorithm, Newton-Raphson, is available if we
can evaluate the derivative of f for arbitrary . This method gen-
erates a sequence of values, 2%, converging to z, under the
assumption that f is locally linear near z4 (see Figure 1.2). That
is,

x"'”:x""—ﬂx—z.L.

J'(z*)
The application of this method to finding 5% is also shown in Table
1.4, where the rapid convergence (5 iterations) is evident. This is
the algorithm usually used in the computer evaluation of square
roots; a linearization of (1.14) about zy shows that the number of

significant digits doubles with each iteration, as is evident in Table
1.4.

The secant method provides a happy compromise between
the efficiency of Newton-Raphson and the bother of having to
evaluate the derivative. If the derivative in Eq. (1.14) is approxi-
mated by the difference formula related to (1.4b),

fv(xi)zf(xi)_f (xi_l) .

(1.14)

we obtain the following 3-term recursion formula giving z**! in
terms of z2* and z*~! (see Figure 1.2):

11



12

1. Basic Mathematical Operations
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Figure 1.2 Geometrical bases of the Newton-Raphson
(left) and secant (right) methods

(x‘i- _xi—l)
f(z*)=f(z*71)
Any two approximate values of zy can be used for z° and z! to
start the algorithm, which is terminated when the change in z
from one iteration to the next is less than the required toler-
ance. The results of the secant method for our model problem,
starting with values 29=0.5 and z!=1.0, are also shown in Table 1.4.
Provided that the initial guesses are close to the true root,
convergence to the exact answer is almost as rapid as that of
the Newton-Raphson algorithm.

xi+1:xi_f (x'i.)

(1.15)

Exercise 1.5 Write programs to solve for the positive root of z2—5
using the Newton-Raphson and secant methods. Investigate the
behavior of the latter with changes in the initial guesses for the
root.

When the function is badly behaved near its root (e.g., there is
an inflection point near zy) or when there are several roots, the
"automatic' Newton-Raphson and secant methods can fail to con-
verge at all or converge to the wrong answer if the initial guess for
the root is poor. Hence, a safe and conservative procedure is to
use the search algorithm to locate ry approximately and then to
use one of the automatic methods.

Exercise 1.6 The function f (z)=tanhz has a root at z=0. Write a
program to show that the Newton-Raphson method does not con-
verge for an initial guess of £ 31. Can you understand what’'s going
wrong by considering a graph of tanhz? From the explicit form of
(1.14) for this problem, derive the critical value of the initial guess
above which convergence will not occur. Try to solve the problem
using the secant method. What happens for various initial guesses
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if you try to find the x =0 root of tanx using either method?

1.4 Semiclassical quantization of molecular vibrations

As an example combining several basic mathematical opera-
tions, we consider the problem of describing a diatomic molecule
such as O, which consists of two nuclei bound together by the
electrons that orbit about them. Since the nuclei are much
heavier than the electrons we can assume that the latter move
fast enough to readjust instantaneously to the changing position of
the nuclei (Born-Oppenheimer approximation). The problem is
therefore reduced to one in which the motion of the two nuclei is
governed by a potential, V, depending only upon 7, the distance
between them. The physical principles responsible for generating
V will be discussed in detail in Project VIII, but on general grounds
one can say that the potential is attractive at large distances (van
der Waals interaction) and repulsive at short distances (Coulomb
interaction of the nuclei and Pauli repulsion of the electrons). A
commonly used form for V embodying these features is the
Lennard-Jones or 6-12 potential,

[( y12 8
V(r)=4VOI [%] —[2—] ] , (1.16)

which has the shape shown in the upper portion of Figure 1.3, the
minimum occurring at 7,,,=2Y% with a depth V, We will
assume this form in most of the discussion below. A thorough
treatment of the physics of diatomic molecules can be found in
%He50% while the Born-Oppenheimer approximation is discussed in
Me68].

The great mass of the nuclei allows the problem to be
simplified even further by decoupling the slow rotation of the
nuclei from the more rapid changes in their separation. The
former is well described by the quantum mechanical rotation of a
rigid dumbbell, while the vibrational states of relative motion, with
energies F,, are described by the bound state solutions, ¥, (r), of
a one-dimensional Schroedinger equation,

[ n2 a

Here, m is the reduced mass of the two nuclei.

Our goal in this example is to find the energies £,,, given a par-
ticular potential. This can be done exactly by solving the
differential eigenvalue equation (1.17); numerical methods for
doing so will be discussed in Chapter 3. However, the great mass
of the nuclei implies that their motion is nearly classical, so that

13
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Figure 1.3 (Upper portion) The Lennard-Jones poten-
tial and the inner and outer turning points at a nega-
tive energy. The dashed line shows the parabolic ap-
proximation to the potential. (Lower portion) The
corresponding trajectory in phase space.

approximate values of the vibrational energies £, can be obtained
by considering the classical motion of the nuclei in ¥V and then
applying ''quantization rules” to determine the energies. These
quantization rules, originally postulated by N. Bohr and Sommer-
feld and Wilson, were the basis of the "old" quantum theory from
which the modern formulation of quantum mechanics arose. How-
ever, they can also.be obtained by considering the WKB approxi-
mation to the wave equation (1.17). (See [Me68] for details.)

Confined classical motion of the internuclear separation in the
potential V(r) can occur for energies —V3<£E<0. The distance
between the nuclei oscillates periodically (but not necessarily har-
monically) between inner and outer turning points, 7;, and 7., as
shown in Figure 1.3. During these oscillations, energy is
exchanged between the kinetic energy of relative motion and the
potential energy such that the total energy,

E=2L;+V(r), (1.18)

is a constant (p is the relative momentum of the nuclei). We can
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therefore think of the oscillations at any given energy as defining a
closed trajectory in phase space (coordinates r and p) along
which Eq. (1.18) is satisfied, as shown in the lower portion of Figure
1.3. An explicit equation for this trajectory can be obtained by
solving (1.18) for p:

p(r)=x[Rm(E-V(r))]~ (1.19)

The classical motion described above occurs at any energy
between —V; and 0. To quantize the motion, and hence obtain
approximations to the eigenvalues F,, appearing in (1.17), we con-
sider the dimensionless action at a given energy,

S(E)=Pk (r)dr, (1.20)

where k(r)=h~1p(r) is the local de Broglie wave number and the
integral is over one complete cycle of oscillation. This action is
just the area (in units of %) enclosed by the phase space trajec-
tory. The quantization rules state that, at the allowed energies
E,,, the action is a half-integral multiple of 2m. Thus, upon using
(1.19) and recalling that the oscillation passes through each value
of r twice (once with positive p and once with negative p ), we have

% Tous
S(En)zzl%] [E,—v(r)Jkdr =(n+¥%)2m, (1.21)

where n is a nonnegative integer. At the limits of this integral, the
turning points 7, and 7,,;, the integrand vanishes.

To specialize the quantization condition to the Lennard-Jones
potential (1.16), we define the dimensionless quantities

&= Vo ’ - a ] 7'— hz ’
so that (1.21) becomes

Zout

s(en)=$S (en Vo)=7 [ [en—v(z)dz=(n+}¥)m,  (1.22)
Zin

where

is the scaled potential.

The quantity ¥ is a dimensionless measure of the quantum
nature of the problem. In the classical limit (% small or m large), ¥
becomes large. By knowing the moment of inertia of the molecule

15
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(from the energies of its rotational motion) and the dissociation
energy (energy required to separate the molecule into its two con-
stituent atoms), it is possible to determine from observation the
parameters @ and V; and hence the quantity . For the H,
molecule, ¥=21.7, while for the HD molecule, ¥=24.8 (only m, but
not V, changes when one of the protons is replaced by a deu-
teron), and for the much heavier O, molecule made of two 160
nuclei, ¥ = 150. These rather large values indicate that a semiclas-
sical approximation is a valid description of the vibrational
motion.

The BASIC program for Example 1, whose source code is con-
tained in Appendix B and in the file EXAM1.BAS on the Computa-
tional Physics diskette, finds, for the value of ¥ input, the values
of the ¢, for which Eq. (1.22) is satisfied. After all of the energies
have been found, the corresponding phase space trajectories are
drawn. (Before attempting to run this code on your computer sys-
tem, you should review the material on the programs in "How to
use this book’ and at the beginning of Appendix B.)

The following exercises are aimed at increasing your under-
standing of the physical principles and numerical methods demon-
strated in this example.

Exercise 1.7 One of the most important aspects of using a com-
puter as a tool to do physics is knowing when to have confidence
that the program is giving the correct answers. In this regard, an
essential test is the detailed quantitative comparison of results
with what is known in analytically soluble situations. Modify the
code to use a parabolic potential (line 160, taking care to heed the
warning on lines 170-180), for which the Bohr-Sommerfeld quanti-
zation gives the exact eigenvalues of the Schroedinger equation: a
series of equally-spaced energies, with the lowest being one-half of
the level spacing above the minimum of the potential. For several
values of ¥, compare the numerical results for this case with what
you obtain by solving Eq. (1.22) analytically. Are the phase space
trajectories what you expect?

Exercise 1.8 Another important test of a working code is to com-
pare its results with what is expected on the basis of physical
intuition. Restore the code to use the Lennard-Jones potential and
run it for y=50. Note that, as in the case of the purely parabolic
potential discussed in the previous exercise, the first excited state
is roughly three times as high above the bottom of the well as is
the ground state and that the spacings between the few Jowest
states are roughly constant. This is because the Lennard-Jones
potential is roughly parabolic about its minimum (see Figure 1.3).
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By calculating the second derivative of V at the minimum, find
the ''spring constant” and show that the frequency of small-
amplitude motion is expected to be

ho _ 6x2%6 10.691
o Y 7

Verify that this is consistent with the numerical results and
explore this agreement for different values of y. Can you under-
stand why the higher energies are more densely spaced than the
lower ones by comparing the Lennard-Jones potential with its par-
abolic approximation?

(1.23)

Exercise 1.9 Invariance of results under changes in the numerical
algorithms or their parameters can give additional confidence in a
calculation. Change the tolerances for the turning point and
energy searches (line 120) or the number of Simpson’s rule points
(line 130) and observe the effects on the results. Note that
because of the way in which the expected number of bound states
is calculated (lines 1190-1200), this quantity can change if the
energy tolerance is varied.

Exercise 1.10 Replace the searches for the inner and outer turning
points by the Newton-Raphson method or the secant method.
(When N%#0, the turning points for N%-1 are excellent starting
values.) Replace the Simpson’s rule quadrature for s by a higher-
order formula (Eqs. (1.13a) or (1.13b)) and observe the improve-
ment.

Exercise 1.11 Plot the ¢, of the Lennard-Jones potential as func-
tions of ¥ for ¥ running from 20 to 200 and interpret the results.
(As with many other short calculations, you may find it more
efficient simply to run the code and plot the results by hand as
you go along, rather than trying to automate the plotting opera-
tion.)

Exercise 1.12 For the H, molecule, observations show that the
depth of the potential is V;=4.747 eV and the location of the
potential minimum iS 7y, =0.74166A. These two quantities,
together with Eq. (1.23), imply a vibrational frequency of

hw=0.492V,=2.339 eV,

more than four times larger than the experimentally observed
energy difference between the ground and first vibrational state,
0.5615 eV. The Lennard-Jones shape is therefore not a very good
description of the potential of the Hy, molecule. Another defect is

17
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Table 1.5 Experimental vibrational energies of the
Hs molecule

n En, n Ey,
(eV) (eV)

-4.477 8 -1.151
-3.962 9 -0.867
-3.475 | 10 -0.615
-3.017 | 11 -0.400
-2.587 | 12 -0.225
-2.185 | 13 -0.094
-1.811 | 14 -0.017
-1.466

OO WO

that it predicts 6 bound states, while 15 are known to exist. (See
Table 1.5, whose entries are derived from the data quoted in
[WaB7].) A better analytic form of the potential, with more param-
eters, is required to reproduce simultaneously the depth and loca-
tion of the minimum, the frequency of small amplitude vibrations
about it, and the total number of bound states. One such form is
the Morse potential,

V(r)=Vo[(1—e Fr—mmn))2_1], (1.24)

which also can be solved analytically. The Morse potential has a
minimum at the expected location and the parameter § can be
adjusted to fit the curvature of the minimum to the observed exci-
tation energy of the first vibrational state. Find the value of 8
appropriate for the Hy molecule, modify the program above to use
the Morse potential, and calculate the spectrum of vibrational
states. Show that a much more reasonable number of levels is now
obtained. Compare the energies with experiment and with those of
the Lennard-Jones potential and interpret the latter differences.

Project I: Scattering by a central potential

In this project, we will investigate the classical scattering of a
particle of mass m by a central potential, in particular the
Lennard-Jones potential considered in Section 1.4 above. In a
scattering event, the particle, with initial kinetic energy £ and
impact parameter b, approaches the potential from a large dis-
tance. It is deflected during its passage near the force center and
eventually emerges with the same energy, but moving at an angle
® with respect to its original direction. Since the potential
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Figure 1.1 Quantities involved in the scattering of a
particle by a central potential

depends upon only the distance of the particle from the force
center, the angular momentum is conserved and the trajectory
lies in a plane. The polar coordinates of the particle, (r,8), are a
convenient way to describe its motion, as shown in Figure 1.1. (For
details, see any textbook on classical mechanics, such as [Go80].)

Of basic interest is the deflection function, @(b), giving the
final scattering angle, ®, as a function of the impact parameter;
this function also depends upon the incident energy. The
differential cross section for scattering at an angle @, do/ d{}, is
an experimental observable that is related to the deflection func-
tion by

do _ b |db
dQ)  sin® |d® | (L1)

Thus, if d®/db=(db/d®)~! can be computed, then the cross sec-
tion is known.

Expressions for the deflection function can be found analyti-
cally for only a very few potentials, so that numerical methods
usually must be employed. One way to solve the problem would be
to integrate the equations of motion in time (i.e., Newton's law
relating the acceleration to the force) to find the trajectories
corresponding to various impact parameters and then to tabulate
the final directions of the motion (scattering angles). This would
involve integrating four coupled first-order differential equations
for two coordinates and their velocities in the scattering plane, as
discussed in Section 2.5 below. However, since angular momerntum
is conserved, the evolution of @ is related directly to the radial
motion, and the problem can be reduced to a one-dimensional one,
which can be solved by quadrature. This latter approach, which is
simpler and more accurate, is the one we will pursue here.

To derive an appropriate expression for @, we begin with the
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conservation of angular momentum, which implies that

2d 8
L=mvb=mr et (1.2)
is a constant of the motion. Here, d 8/dt is the angular velocity
and v is the asymptotlc velocity, related to the bombarding
energy by E=¥mv? The radial motion occurs in an effective
potential that is the sum of V and the centrifugal potential, so
that energy conservation implies

2
%ml‘g} S +V=E. (1.3)

If we use r as the independent variable in (I.2), rather than the
time, we can write

d6 _de [ar|" _ b [ar |” (L4)
dr dt |di ,,.2 dt ' '
and solving (1.3) for dr/ dt then yields
dg _ b b V|
o —:trz 1 2 E] : (1.5)

Recalling that =7 when r=e on the incoming branch of the tra-
jectory and that 8 is always decreasing, this equation can be
integrated immediately to give the scattering angle,

@:7‘1’—2} bdzr {l— ——] (1.8)

Tmin r

where 7,,;, is the distance of closest approach (the turning point,
determined by the outermost zero of the argument of the square
root) and the factor of 2 in front of the integral accounts for the
incoming and outgoing branches of the trajectory, which give
equal contributions to the scattering angle.

One final transformation is useful before beginning a numeri-
cal calculation. Suppose that there exists a distance 7,,,, beyond
which we can safely neglect V. In this case, the 1ntegrand in (1.6)
vanishes as 72 for large 7, so that numerical quadrature could be
very inefficient. In fact, since the potential has no effect for
T >Tmaz, We would just be "wasting time"” describing straight-line
motion. To handle this situation efficiently, note that since =0
when V=0, Eq. (1.6) implies that

bdr
b 7'2

%
=2 1— 2] , (1.7)

which, when substituted into (1.6), results in




1. Scaliering by a ceniral polential

[

Tm

fd'r

The integrals here extend only to 7,,,, since the integrands
become equal when 7>7,,,, .

Our goal will be to study scattering by the Lennard-Jones
potential (1.16), which we can safely set to zero beyond 7,4, =3a if
we are not interested in energies smaller than about

V(r=3a)~5x1073V,.

2 1% 2
®=2b -5 f dr 1—9———] (1.8)

r?

Tmin.

The study is best done in the following sequence of steps:

Step 1 Before beginning any numerical computation, it is impor-
tant to have some idea of what the results should look like.
Sketch what you think the deflection function is at relatively low
energies, £'gV,, where the peripheral collisions at large b<r,,,,
will take place in a predominantly attractive potential and the
more central collisions will "bounce’ against the repulsive core.
What happens at much higher energies, £>V,, where the attrac-
tive pocket in V can be neglected? Note that for values of b where
the deflection function has a maximum or a minimum, Eq. (I1.1)
shows that the cross section will be infinite, as occurs in the rain-
bow formed when light scatters from water drops.

Step 2 To have analytically soluble cases against which to test your
program, calculate the deflection function for a square potential,
where V(r)=U, for r <74, and vanishes for r>7,,,,. What happens
when Uj is negative? What happens when Uy is positive and F<Ugy?
when £> Uor)

Step 3 Write a program that calculates, for a specified energy F,
the deflection function by a numerical quadrature to evaluate both
integrals in Eq. (1.8) at a number of equally spaced b values
between 0 and 7,,,,. (Note that the singularities in the integrands
require some special treatment.) Check that the program is work-
ing properly and is accurate by calculating deflection functions for
the square-well potential discussed in Step 2. Compare the accu-
racy with that of an alternative procedure in which the first
integral in (1.8) is evaluated analytically, rather than numerically.

Step 4 Use your program to calculate the deflection function for
scattering from the Lennard-Jones potential at selected values of
E ranging from 0.1V, to 100V, Reconcile your answers in Step 1
with the results you obtain. Calculate the differential cross
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section as a function of ® at these energies.

Step 5 If your program is working correctly, you should observe,
for energies EF'§Vy, a singularity in the deflection function where ©
appears to approach —« at some critical value of b, b, that
depends on £. This singularity, which disappears when £ becomes
larger than about Vj,, is characteristic of "orbiting”. In this
phenomenon, the integrand in Eq. (I1.6) has a linear, rather than a
square root, singularity at the turning point, so that the scattering
angle becomes logarithmically infinite. That is, the effective

potential,
2
b
r b}

has a parabolic maximum and, when b =b,.;, the peak of this para-
bola is equal to the incident energy. The trajectory thus spends a
very long time at the radius where this parabola peaks and the
particle spirals many times around the force center. By tracing
b.rqt @s a function of energy and by plotting a few of the effective
potentials involved, convince yourself that this is indeed what's
happening. Determine the maximum energy for which the
Lennard-Jones potential exhibits orbiting, either by a solution of
an appropriate set of equations involving V and its derivatives or
by a systematic numerical investigation of the deflection function.
If you pursue the latter approach, you might have to reconsider
the treatment of the singularities in the numerical quadratures.

V+E




Chapter 2

Ordinary
Differential
Fquations

Many of the laws of physics are most conveniently formulated
in terms of differential equations. It is therefore not surprising
that the numerical solution of differential equations is one of the
most common tasks in modeling physical systems. The most gen-
eral form of an ordinary differential equation is a set of M coupled
first-order equations

&Y —t(z y), (2.1)

where z is the independent variable and y is a set of M dependent
variables (f is thus an M-component vector). Differential equa-
tions of higher order can be written in this first-order form by
introducing auxiliary functions. For example, the one-dimensional
motion of a particle of mass m under a force field F(z) is
described by the second-order equation

dRz

m =F(z) . 2.2
PYe (2) (2.2)
If we define the momentum
dz
t)=m —
p(£) dt ’

then (2.2) becomes the two coupled first-order (Hamilton's) equa-
tions

dz _p . dp

dt m ' dt
which are in the form of (2.1). It is therefore sufficient to consider
in detail only methods for first-order equations. Since the matrix
structure of coupled differential equations is of the most natural
form, our discussion of the case where there is only one indepen-
dent variable can be generalized readily. Thus, we need be con-
cerned only with solving

=F(z), (2.3)

B =f(zy) (2.4)
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for a single dependent variable y{(z).

In this chapter, we will discuss several methods for solving
ordinary differential equations, with emphasis on the initial value
problem. That is, find y(z) given the value of ¥ at some initial
point, say y(z=0)=y,. This kind of problem occurs, for example,
when we are given the initial position and momentum of a particle
and we wish to find its subsequent motion using Egs. (2.3). In
Chapter 3, we will discuss the equally important boundary value
and eigenvalue problems.

2.1 Simple methods

To repeat the basic problem, we are interested in the solution
of the differential equation (2.4) with the initial condition
y(z=0)=y, More specifically, we are usually interested in the
value of ¥y at a particular value of z, say z=1. The general stra-
tegy is to divide the interval [0,1] into a large number, N, of
equally spaced subintervals of length h=1/ N and then to develop
a recursion formula relating y, to {yn_1, Yn—2 - -}, where y, is
our approximation to y(z,=nh). Such a recursion relation will
then allow a step-by-step integration of the differential equation
fromz=0toz=1.

One of the simplest algorithms is Euler’s method, in which we
consider Eq. (2.4) at the point z,, and replace the derivative on the
left-hand side by its forward difference approximation (1.4a).
Thus,

Yn+17"Yn

L%+ 0(h)=f (2n.Yn). (25)
so that the recursion relation expressing v, +; in terms of y,, is
yn+1=yn+hf (xn’yn)"'o(hz) : (2-6)

This formula has a local error (that made in taking the single step
from ¥, to ¥n4+;) that is O(h?) since the error in (1.4a) is O(h).
The "global" error made in finding ¥ (1) by taking N such steps in
integrating from z=0 to to z=1 is then NO(h?)~O0(h). This error
decreases only linearly with decreasing step size so that hall as
large an h (and thus twice as many steps) is required to halve the
inaccuracy in the final answer. The numerical work for each of
these steps is essentially a single evaluation of f .

As an example, consider the differential equation and boun-
dary condition

%}xy ; y(0)=t1, (2.7)
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Table 2.1 Error in integrating dy / dz=—2zy with y(0)=1

Euler’'s method Taylor series Implicit method
Eq. (2.8) Eq. (2.10) Eq. (2.18)
h y(1) y(3) y(1) y(3) y(1) y(3)

0.500 -.143469 .011109 .032312 -.008660 -.015691 .001785
0.200 -.046330 .008519 .005126 -.000712 -.002525 .000R55
0.100 -.021625 .003318 .001273 -.000149 -.0006831 .000063
0.050 -.010453 .001665 .000317 -.000034 -.000157 .000016
0.020 -.004098 .000666 .000051 -.000005 -000025 .000003
0.010 -002035 .000333 .000013 -.000001 -.000006 .000001
0.005 -001014 .000167 .000003 .000000 -.000001 .000000O
0.002 -.000405 .000087 .000001  .00000O0 .000000  .00OOOCO
0.001 -000203 .000033 .000000 .0OOCOC  .000000  .00O0C0QO

whose solution is
z/:ug—%ﬁf

The following BASIC program integrates forward from z=0 to z=3
using Eq. (2.6) with the step size input, printing the result and its
error as it goes along.

o

10 DEF FNF(X,Y)=-X*Y 'function giving dy/dx
20 INPUT "enter h (<=0 to stop)";H
30 IF H<=0 THEN STOP

40 N7Z=3/H ‘nurber of steps to reach X=3
50 Y=1 "initial value of Y

60 FOR [7=0 TO Nz%-1 "loop over steps

70 X=1%*H X we step fram

80 Y=Y+H*FNF(X,Y) step Y by Eq. (2.6)

90 DIFF=EXP(-0.5*(X+H)~2)-Y ‘canpare with exact at new X
100 PRINT 1%.X,Y,DIFF 'output the current values
110 NEXT I%

120 GOTO 20 'get new value of H

Errors in the results obtained for
y(1)=e%=0.606531, y(3)=e~92=0.011109

with various step sizes are shown in the first two columns of Table
2.1. As expected from (2.8), the errors decrease linearly with
smaller h. However, the fractional error (error divided by y)
increases with z as more steps are taken in the integration and y
becomes smaller.
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Exercise 2.1 A simple and often stringent test of an accurate
numerical integration is to use the final value of ¥y obtained as the
initial condition to integrate backward from the final value of z to
the starting point. The extent to which the resulting value of y
differs from the original initial condition is then a measure of the
inaccuracy. Apply this test to the example above.

Although Euler’s method seems to work quite well, it is gen-
erally unsatisfactory because of its low-order accuracy. This
prevents us from reducing the numerical work by using a larger
value of h and so taking a smaller number of steps. This deficiency
becomes apparent in the example above as we attempt to
integrate to larger values of x, where some thought shows that we
obtain the absurd result that ¥ =0 (exactly) for z>h~1. One simple
solution is to change the step size as we go along, making h
smaller as z becomes larger, but this soon becomes quite
inefficient.

Integration methods with a higher-order accuracy are usually
preferable to Euler's method. They offer a much more rapid
increase of accuracy with decreasing step size and hence greater
accuracy for a fixed amount of numerical effort. One class of sim-
ple higher order methods can be derived from a Taylor series
expansion for y, ., about y,:

Yn +1=Y (Tn +h)=yp +hyy, +%h 2y, " +0(R). (2.8)

From (2.4), we have

Yn'=f (Tn Yn), (R.9a)
and
n_af _Oof  8f dy _of . of
Yn'= (@ yn)=5 oy dz oz ' oy f. (2.9b)

which, when substituted into (2.8), results in

i
Ynr=yn +hs 4407\ L vr L Lo, (2.10)

where f and its derivatives are to be evaluated at (z,,y,). This
recursion relation has a local error 0(h3) and hence a global error
0(h?), one order more accurate than Euler's method (2.6). 1t is
most useful when f is known analytically and is simple enough to
differentiate. If we apply Eq. (2.10) to the example (2.7), we obtain
the results shown in the middle two columns of Table 2.1; the
improvement over Euler’'s method is clear. Algorithms with an
even greater accuracy can be obtained by retaining more terms in
the Taylor expansion (2.8), but the algebra soon becomes
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prohibitive in all but the simplest cases.

2.2 Multistep and implicit methods

Another way of achieving higher accuracy is to use recursion
relations that relate y, ,; not just to y,, but also to points further
"in the past”, say ¥,_1, Yn—2 - . To derive such formulas, we
can integrate one step of the differential equation (2.4) exactly to
obtain

- Zn+1
Yn+1=Unt [ f(zy)dz. (2.11)
Zn

The problem, of course, is that we don't know f over the interval
of integration. However, we can use the values of ¥ at z,, and z,,_;
to provide a linear extrapolation of f over the required interval:

(x —xn—l) (x _xn)
~ -
where f,=f(z;,¥;). Inserting this into (2.11) and doing the =z
integral then results in the Adams-Bashforth two-step method,

Yn+1=Yn th(3Fn =5 n-1)+0(R7). (2.13)

Related higher-order methods can be derived by extrapolating
with higher-degree polynomials. For example, if f is extrapolated
by a cubic polynomial fitted to f,, fn-1. fn-2 and f,_s, the
Adams-Bashforth four-step method results:

h
Yn+1=Ynt "2_2}—(55.”11. _59fn—1+37fn—2_9fn—3)+0(h4)- (2- 14)

Note that because the recursion relations (2.13) and (2.14) involve
several previous steps, the value of ¥4 alone is not sufficient infor-
mation to get them started, and so the values of ¥ at the first few
lattice points must be obtained from some other procedure, such
as the Taylor series (2.8) or the Runge-Kutta methods discussed
below.

fn_1+0(R?), (2.12)

Exercise 2.2 Apply the Adams-Bashforth two- and four-step algo-
rithms to the example defined by Eq. (2.7) using Euler’'s method
(2.6) to generate the values of ¥ needed to start the recursion
relation. Investigate the accuracy of y(x) for various values of h
by comparing with the analytical results and by applying the
reversibility test described in Exercise 2.1.

The methods we have discussed so far are all "explicit” in that
the y,+1 is given directly in terms of the already known value of
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Y, . '"'Implicit” methods, in which an equation must be solved to
determine ¥, +,, offer yet another means of achieving higher accu-
racy. Suppose we consider Eq. (2.4) at a point z, ,y=(n+¥%)h mid-
way between two lattice points:

%‘ . =f (Tn 41 Yn+y) - (R.15)
+

If we then use the symmetric difference approximation for the
derivative (the analog of (1.3b) with A -¥h) and replace f, .,y by
the average of its values at the two adjacent lattice points (the
error in this replacement is 0(h?)), we can write

—yn+ilz.—yn +O0(hB) =W fn+Sn 1]+ O(RP), (2.16)

which corresponds to the recursion relation

Yn+1=Yn + %h' [f (xn ryn)+f (x'n. +1ryn+1)]+ O(ha)- (2 17)

This is all well and good, but the appearance of ¥,,,; on both sides
of this equation (an implicit equation) means that, in general, we
must solve a non-trivial equation (for example, by the Newton-
Raphson method discussed in Section 1.3) at each integration
step; this can be very time consuming. A particular simplification
occurs if f is linear in y, say f(z,y)=g(z)y, in which case (2.17)
can be solved to give

1+ %g(z,)n
I T Yy (2 )h
When applied to the problem (2.7), where g (z)=—=z, this method

gives gives the results shown in the last two columns of Table 2.1;
the quadratic behavior of the error with A is clear.

Yn- (2.18)

Exercise 2.3 Apply the Taylor series method (2.10) and the implicit
method (2.18) to the example of Eq. (2.7) and obtain the results
shown in Table 2.1. Investigate the accuracy of integration to
larger values of z.

The Adams-Moulton methods are both multistep and implicit.
For example, the Adams-Moulton two-step method can be derived
from Eq. (2.11) by using a quadratic polynomial passing through
Frn-1 fn,and fp4q,

(x_xn)(x—xn— ) (x_xn+ )(x_xn— )
I~ B2 1 fn+1_ lhz 1 f'n.
+ (x_xn+1)(x _xn) fn—1+0(h'3) ’

h2



2.3 Runge—Kulta methods

to interpolate f over the region from =z, to z,,;. The implicit
recursion relation that results is

yn+1=yn+{£2—(5fn+l+8fn_fn—1)+0(h4)- (2-19)

The corresponding three-step formula, obtained with a cubic poly-
nomial interpolation, is

h
yn+1:yn+§(9fn+1+19fn_5fn—1+fn—2)+0(’7:5) . (2-20)

Implicit methods are rarely used by solving the implicit equa-
tion to take a step. Rather, they serve as bases for "predictor-
corrector’’ algorithms, in which a "prediction” for ¥,,+; based only
on an explicit method is then "corrected’ to give a better value by
using this prediction in an implicit method. Such algorithms have
the advantage of allowing a continuous monitoring of the accuracy
of the integration, for example by making sure that the correction
is small. A commonly used predictor-corrector algorithm with
local error O(h®) is obtained by using the explicit Adams-
Bashforth four-step method (2.14) to make the prediction, and
then calculating the correction with the Adams-Moulton three-step
method (2.20), using the predicted value of ¥, ., to evaluate f, 4+
on the right-hand side.

2.3 Runge-Kutta methods

As you might gather from the preceding section, there is quite
a bit of freedom in writing down algorithms for integrating
differential equations and, in fact, a large number of them exist,
each having it own peculiarities and advantages. One very con-
venient and widely used class of methods are the Runge-Kutta
algorithms, which come in varying orders of accuracy. We derive
here a second-order version to give the spirit of the approach and
then simply state the equations for the third- and commonly used
fourth-order methods.

To derive a second-order Runge-Kutta algorithm (there are
actually a whole family of them characterized by a continuous
parameter), we approximate f in the integral of (2.11) by its Tay-
lor series expansion about the mid-point of the integration inter-
val. Thus,

Yn+1=Yn thf (xn+}é:yn+}é)+0(h3)- (2'21)

where the error arises from the quadratic term in the Taylor
series, as the linear term integrates to zero. Although it seems as
if we need to know the value of y,,y appearing in f in the right-
hand side of this equation for it to be of any use, this is not quite
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true. Since the error term is already 0(h3), an approximation to
Yn+1 Whose error is O(h?) is good enough. This is just what is pro-
vided by the simple Euler’'s method, Eq. (2.8). Thus, if we define k
to be an intermediate approximation to twice the difference
between Yy, .y and y,, the following two-step procedure gives yp, 41
in terms of Yy, :

k=hf (z,,Y,); (2.22a)
Yn+1=Yn thf (zp +ioh y, +1ok) +0(h'3)- (2.22Db)

This is a second-order Runge-Kutta algorithm. It embodies the
general idea of substituting approximations for the values of v
into the right-hand side of implicit expressions involving f. It is as
accurate as the Taylor series or implicit methods (2.10) or (2.17),
respectively, but places no special constraints on f, such as easy
differentiability or linearity in y. It also uses the value of y at
only one previous point, in contrast to the multipoint methods dis-
cussed above. However, (2.22) does require the evaluation of f
twice for each step along the lattice.

Runge-Kutta schemes of higher-order can be derived in a rela-
tively straightforward way. Any of the quadrature formulas dis-
cussed in Chapter 1 can be used to approximate the integral (2.11)
by a finite sum of f values. For example, Simpson’s rule yields

yn+1=yn+g_[f (Zn Yn)+4S (xn+}§’yn+}é)+f (Tn+1.Yn+1)]
+0(h9). (2.23)

Schemes for generating successive approximations to the ¥’s
appearing in the right-hand side of a commensurate accuracy
then complete the algorithms. A third-order algorithm with a local
error O(h%) is

ki=hf (Z,.Yn);

’C2=hf (xn +%hryn+%k 1);

ka=hf (z, th Yy, —k +2ks);
It is based on (2.23) and requires three evaluations of f per step.
A fourth-order algorithm, which requires f to be evaluated four
times for each integration step and has a local accuracy of 0(h®%),
has been found by experience to give the best balance between

accuracy and computational effort. It can be written as follows,
with the k; as intermediate variables:
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k 1=h'f Tn, ’yn);
n

(
ka=hf (z,+%h y,+¥k,);
ks=hf (z,+%h y, +¥ks);
ky=hf (zp,+h,y,+k3);

1
yn_,_1=yn+6—(k1+2k2+2k3+k4)+0(h,5). (2.25)

Exercise 2.4 Try out the second-, third-, and fourth-order Runge-
Kutta methods discussed above on the problem defined by Eg.
(2.7). Compare the computational effort for a given accuracy with
that of other methods.

Exercise 2.5 The two coupled first-order equations

%tlzp : %%=—4ﬂ2y (2.26)
define simple harmonic motion with period 1. By generalizing one
of the single-variable formulas given above to this two-variable
case, integrate these equations with any particular initial condi-
tions you choose and investigate the accuracy with which the sys-
tem returns to its initial state at integral values of ¢.

2.4 Stability

A major consideration in integrating differential equations is
the numerical stability of the algorithm used; i.e., the extent to
which round-off or other errors in the numerical computation can
be amplified, in many cases enough for this 'noise’"” to dominate
the results. To illustrate the problem, let us attempt to improve
the accuracy of Euler’'s method and approximate the derivative in
(2.4) directly by the symmetric difference approximation (1.3b).
We thereby obtain the three-term recursion relation

Yn +1=Yn 1120 (Zn ,Yyn )+ O(h3), (2.27)

which superficially looks about as useful as either of the third-
order formulas (2.10) or (2.18). However, consider what happens
when this method is applied to the problem

%:—y; y(x:O):]_, (228)

whose solution is y =e ™®. To start the recursion relation (2.27), we
need the value of ¥y, as well as yo=1. This can be obtained by
using (2.10) to get
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Table 2.2 Integration of dy/dx=—y with y(0)=1 using
Eq. (2.27)

z Exact Error z Exact Error z Exact Error

0.2 .818731 -000269 | 3.3 .036883 -.000369 | 6.5 .004087 -.001533
0.3 .740818 -.000382 | 3.4 .033373 -.000005 | 5.6 .003698 .001618
0.4 .670320 -.000440 | 3.5 .030197 -.000380 | 6.7 .003346 -.001858
0.5 .6065631 -.000517 | 3.6 .027324 .000061 | 5.8 .003028 .001989
0.6 .548812 -000538 | 3.7 .024724 -.000400 | 5.9 .002739 -.002257
3.8 .022371 .000133 | 6.0 .002479 .002439

Y 1=1—h +%h2+0(h5).

(This is just the Taylor series for e™®.) The following BASIC pro-
gram then uses the method (2.27) to find y for values of z up to 6
using the value of A input:

10 INPUT "enter value of h (<=0 to stop)”";H

20 YM=1: YZ=1-H+0.5*H~2 'starting values for y(0) and y(h)
30 FOR J%=2 TO 6/H *loop over steps

35 X=H+*J7% "X at this step

40 YP=YM-2*H*YZ "step Y by Eq. (2.15)

45 YM=YZ: YZ=YP 'roll the Y values being saved

47 EXACT=EXP( -X) 'analytic value at this point

50 PRINT X,EXACT,EXACT-YZ "output analytic value and error
60 NEXT J%

70 GOTO 10 'get another H

Note how the three-term recursion is implemented by keeping
track of only three local variables, YP(lus), YZ(ero), and YM(inus).

A portion of the output of this code run for ~A=0.1 is shown in
Table 2.2. For small values of z, the numerical solution is only
slightly larger than the exact value, the error being consistent
with the O(h3) estimate. Then, near 2=3.5, an oscillation begins to
develop in the numerical solution, which becomes alternately
higher and lower than the exact values lattice point by lattice
point. This oscillation grows larger as the equation is integrated
further (see values near z=86), eventually overwhelming the
exponentially decreasing behavior expected.

The phenomenon observed above is a symptom of an instabil-
ity in the algorithm (2.27). It can be understood as follows. For
the problem (2.28), the recursion relation (2.27) reads

Yn+1=Yn—1"RRY, . (2.29)
We can solve this equation by assuming an exponential solution of
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the form y,, =4r™ where A and r are constants. Substituting into
(2.29) then results in an equation for 7,

rR+2hr —1=0,

the constant A being unimportant since the recursion relation is
linear. The solutions of this equation are

r,.=(1+h®¥%—h ~1—h ; r_=—(1+h?)¥%—h ~—(1+h),

where we have indicated approximations valid for h <<1. The posi-
tive root is slightly less than one and corresponds to the exponen-
tially decreasing solution we are after. However, the negative root
is slightly less than -1, and so corresponds to a spurious solution

y‘nN(—)n (1+h‘ )n!

whose magnitude increases with n and which oscillates from lat-
tice point to lattice point.

The general solution to the linear difference equation (2.27) is
a linear combination of these two exponential solutions. Even
though we might carefully arrange the initial values ¥4 and ¥y, so
that only the decreasing solution is present for small z, numerical
round-off during the recursion relation (Eq. (2.29) shows that two
positive quantities are subtracted to obtain a smaller one) will
introduce a small admixture of the ""bad” solution that will eventu-
ally grow to dominate the results. This instability is clearly associ-
ated with the three-term nature of the recursion relation (2.29). A
good rule of thumb is that instabilities and round-off problems
should be watched for whenever integrating a solution that
decreases strongly as the iteration proceeds; such a situation
should therefore be avoided, if possible. We will see the same sort
of instability phenomenon again in our discussion of second-order
differential equations in Chapter 3.

kxercise 2.6 Investigate the stability of several other integration
methods discussed in this chapter by applying them to the prob-
lem (2.28). Can you give analytical arguments to explain the
results you obtain?

2.5 Order and chaos in two-dimensional motion

A fundamental advantage of using computers in physics is the
ability to treat systems that cannot be solved analytically. In the
usual situation, the numerical results generated agree qualita-
tively with the intuition we have developed by studying soluble
models and it is the quantitative values that are of real interest.
However, in a few cases computer results defy our intuition (and
thereby reshape it) and numerical work is then essential for a
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proper understanding. Surprisingly, such cases include the
dynamics of simple classical systems, where the generic behavior
differs qualifatively from that of the models covered in a tradi-
tional Mechanics course. In this example, we will study some of
this surprising behavior by integrating numerically the trajec-
tories of a particle moving in two dimensions. General discussions
of these systems can be found in [He80], [Ri80], and [Ab78].

We consider a particle of unit mass moving in a potential, V, in
two dimensions and assume that V is such that the particle
remains confined for all times if its energy is low enough. If the
momenta conjugate to the two coordinates (z,y) are (p,, py),
then the Hamiltonian takes the form

H=¥pl+p2)+V(z y). (2.30)

Given any particular initial values of the coordinates and
momenta, the particle's trajectory is specified by their time evolu-
tion, which is governed by four coupled first-order differential
equations (Hamilton’'s equations):

dr _ 0H _ dy _ 0H _

dt op, T= dt - dp, Py
@py __9H __ 3V 4Py __ 8H __3V
dt ox 0z ' dt oy oy
For any V, these equations conserve the energy, £, so that the
constraint

(2.31)

H(z,y,p;.py)=E

restricts the trajectory to lie in a three-dimensional manifold
embedded in the four-dimensional phase space. Apart from this,
there are very few other general statements that can be made
about the evolution of the system.

One important class of two-dimensional Hamiltonians for which
additional statements about the trajectories can be made are
those that are integrable. For these potentials, there is a second
function of the coordinates and momenta, apart from the energy,
that is a constant of the motion; the trajectory is thus constrained
to a two-dimensional manifold of the phase space. Two familiar
kinds of integrable systems are separable and central potentials.
In the separable case,

Viz,y)=Vy(z)+V,(y), (2.32)

where the V, , are two independent functions, so that the Hamil-
tonian separates into two parts, each involving only one coordinate
and its conjugate momentum,



2.5 Order and chaos in two—dimensional motion

H=Hy+H,: H, o =Yp2,+V, -

The motions in  and ¥ therefore decouple from each other and
each of the Hamiltonians H, , is separately a constant of the
motion (Equivalently, H,—H, is the second quantity conserved in
addition to £'=H,+H, .) In the case of a central potential,

V(z,y)=V(r); r=(z+y?)*, (2.33)

so that the angular momentum, p g=2py,—Yp,, is the second con-
stant of the motion and the Hamiltonian can be written as

p 3

H=%p2+V(r)+ =2,

2r?
where p, is the momentum conjugate to r. The additional con-
straint on the trajectory present in integrable systems allows the
equations of motion to be "'solved" by reducing the problem to one
of evaluating certain integrals, much as we did for one-
dimensional motion in Chapter 1. All of the familiar analytically
soluble problems of classical mechanics are those that are integr-
able.

Although the dynamics of integrable systems are simple, it is
often not at all easy to make this simplicity apparent. There is no
general analytical method for deciding if there is a second con-
stant of the motion in an arbitrary potential or for finding it if
there is one. Numerical calculations are not obviously any better,
as these supply only the trajectory for given initial conditions and
this trajectory can be quite complicated in even familiar cases, as
can be seen by recalling the Lissajous patterns of the (z,y) trajec-
tories that arise when the motion in both coordinates is harmonic,

Ve=hwiz?, V,=holy?. (2.34)

An analysis in phase space suggests one way to detect integra-
bility from the trajectory alone. Consider, for example, the case of
a separable potential. Because the motions of each of the two
coordinates are independent, plots of a trajectory in the (z,p,)
and (y,py) planes might look as shown in Figure 2.1. Here, we
have assumed that each potential V, , has a single minimum value
of 0 at particular values of z and y, respectively. The particle
moves on a closed contour in each of these two-dimensional pro-
jections of the four-dimensional phase space, each contour looking
like that for ordinary one-dimensional motion shown in Figure 1.3.
The areas of these contours depend upon how much energy is
associated with each coordinate (i.e., £; and E,) and, as we con-
sider trajectories with the same energy but with different initial
conditions, the area of one contour will shrink as the other grows.
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Px Py

B/a

Figure 2.1 Trajectories of a particle in a two-
dimensional separable potential as they appear in the
(z.p;) and (y.p,) planes. Several trajectories
corresponding to the same energy but different initial
conditions are shown. Trajectories A and E are the lim-
iting ones having vanishing £, and £, , respectively.

In each plane there is a limiting contour that is approached when
all of the energy is in that particular coordinate. These contours
are the intersections of the two-dimensional phase-space mani-
folds containing each of the trajectories and the (y,p,) or (z,p,)
plot is therefore termed a "surface of section”. The existence of
these closed contours signals the integrability of the system.

Although we are able to construct Figure 2.1 only because we
understand the integrable motion involved, a similar plot can be
obtained from the trajectory alone. Suppose that every time we
observe one of the coordinates, say z, to pass through zero, we
plot the location of the particle on the (y,py) plane. In other
words, crossing through z=0 triggers a "stroboscope’ with which
we observe the (y,p,) variables. If the periods of the z and y
motions are incommensurate (i.e., their ratio is an irrational
number), then, as the trajectory proceeds, these observations will
gradually trace out the full (y,p, ) contour; if the periods are com-
mensurate (i.e., a rational ratiolj, then a series of discrete points
around the contour will result. In this way, we can study the topol-
ogy of the phase space associated with any given Hamiltonian just
from the trajectories alone.

The general topology of the phase space for an integrable
Hamiltonian can be illustrated by considering motion in a central
potential. For fixed values of the energy and angular momentumn,
the radial motion is bounded between two turning points, 7, and
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Figure 2.2 (Left) Toroidal manifold containing the tra-
jectory of a particle in a central potential. (Right) Sur-
face of section through this manifold at z=0.

Tout» Which are the solutions of the equation

2
Peo

E-V(r)———=0.
(r) on?

These two radii define an annulus in the (z,y) plane to which the
trajectory is confined, as shown in the left-hand side of Figure 2.2.
Furthermore, for a fixed value of 7, energy conservation permits
the radial momentum to take on only one of two values,

%

RE—2V(r)———
T

Pr=t

These momenta define the two-dimensional manifold in the
(z,y,p,) space that contains the trajectory; it clearly has the
topology of a torus, as shown in the left-hand side of Figure 2.2. If
we were to construct a (y,p,) surface of section by considering
the =0 plane, we would obtain two closed contours, as shown in
the right-hand side of Figure 2.2. (Note that y=r when z=0.) If
the energy is fixed but the angular momentum is changed by vary-
ing the initial conditions, the dimensions of this torus change, as
does the area of the contour in the surface of section.

The toroidal topology of the phase space of a central potential
can be shown to be common to all integrable systems. The mani-
fold on which the trajectory lies for given values of the constants
of the motion is called an "invariant torus', and there are many of
them for a given energy. The general surface of section of such
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Figure 2.3 Possible features of the surface of section of
a general integrable system. E and H label elliptic and
hyperbolic fixed points, respectively, while the curve
labeled S is a separatrix.

tori looks like that shown in Figure 2.3. There are certain fixed
points associated with trajectories that repeat themselves exactly
after some period. The elliptic fixed points correspond to trajec-
tories that are stable under small perturbations. Around each of
them is a family of tori, bounded by a separatrix. The hyperbolic
fixed points occur at the intersections of separatrices and are
stable under perturbations along one of the axes of the hyperbola,
but unstable along the other.

An interesting question is ''What happens to the tori of an
integrable system under a perturbation that destroys the integra-
bility of the Hamitonian?''. For small perturbations, "most" of the
tori about an elliptic fixed point become slightly distorted but
retain their topology (the KAM theorem due to Kolmogorov,
Arnold, and Moser, [Ar68]). However, adjacent regions of phase
space become ''chaotic’, giving surfaces of section that are a
seemingly random splatter of points. Within these chaotic regions
are nested yet other elliptic fixed points and other chaotic regions
in a fantastic heirarchy. (See Figure 2.4.)

Large deviations from integrability must be investigated
numerically. One convenient case for doing so is the potential
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Figure 2.4 Nested tori for a slightly perturbed integr-
able system. Note the heirarchy of elliptic orbits inter-
spersed with chaotic regions. A magnification of this
heirarchy would show the same pattern repeated on a

smaller scale and so on, ad infinitum. (Reproduced
from [Ab78].)

V(z y)=K(z*+y?)+z?y —y°, (2.35)

which was originally introduced by Hénon and Heiles in the study
of stellar orbits through a galaxy [He64]. This potential can be
thought of as a perturbed harmonic oscillator potential (a small
constant multiplying the cubic terms can be absorbed through a
rescaling of the coordinates and energy, so that the magnitude of
the energy becomes a measure of the deviation from integrability)
and has the three-fold symmetry shown in Figure 2.5. The poten-
tial is zero at the origin and becomes unbounded for large values
of the coordinates. However, for energies less than 1/6, the trajec-
tories remain confined within the equilateral triangle shown.

The BASIC program for Example 2, whose source code is con-
tained in Appendix B and in the file EXAMZ2.BAS on the Computa-
tional Physics diskette, constructs surfaces of section for the
Hénon-Heiles potential. The method used is to integrate the equa-
tions of motion (2.31) using the fourth-order Runge-Kutta algo-
rithm (2.25). Initial conditions are specified by putting =0 and
by giving the energy, ¥, and py; p, is then fixed by energy conser-
vation. The input of ¥ and py is either analog using the cursor (if
graphics is available) or digital from the keyboard. As the integra-
tion proceeds, the (z,y) trajectory and the (y,p,) surface of sec-
tion are displayed. Points on the latter are calculated by watching
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J

I

Figure 2.5 Equipotential contours of the Hénon -Heiles
potential, Eq. (2.35).

Valley

for a time step during which z changes sign. When this happens,
the precise location of the point on the surface of section plot is
determined by switching to z as the independent variable, so that
the equations of motion (2.31) become

dp, __ 1 8V 9Py __ 1 8V
dr  py 8z ' dzr  p, dy’

and then integrating one step backward in z from its value after
the time step to 0 [He82]. If the value of the energy is not changed
when new initial conditions are specified, all previous surface of
section points can be plotted, so that plots like those in Figures
2.3 and 2.4 can be built up after some time.

The following exercises are aimed at improving your under-
standing of the physical principles and numerical methods
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demonstrated in this example.

Exercise 2.7 One necessary (but not sufficient) check of the accu-
racy of the integration in Hamiltonian systems is the conservation
of energy. Change the time step used (line 70) and observe how
this affects the accuracy. Replace the integration method by one
of the other algorithms discussed in this chapter and observe the
change in accuracy and efficiency. Note that we require an algo-
rithm that is both accurate and efficient because of the very long
integration times that must be considered.

Exercise 2.8 Change the potential to a central one (lines 230-250)
and observe the character of the (z,y) trajectories and surfaces of
section for various initial conditions. Compare the results with
Figure 2.2. and verify that the qualitative features don’t change if
you use a different central potential. Note that you will have to
adjust the energy and scale of the potential so that the (z,y) tra-
jectory does not go beyond the equilateral triangle of the Hénon
-Heiles potential (Figure 2.5) or else the graphics subroutine will
fail.

Exercise 2.9 If the sign of the y3 term in the Hénon-Heiles poten-
tial (2.35) is reversed, the Hamiltonian becomes integrable. Verify
analytically that this is so by making a canonical transformation
to the variables z+y and showing that the potential is separable in
these variables. Make the corresponding change in sign in the
code and observe the character of the surfaces of section that
result for various initial conditions at a given energy. (You should
keep the energy below 1/12 to avoid having the trajectory become
unbounded.) Verify that there are no qualitative differences if you
Else 85 different separable potential, say the harmonic one of Eq.
2.34).

Exercise 2.10 Use the code to construct surfaces of section for the
Hénon-Heiles potential (2.35) at energies ranging from 0.025 to
0.15 in steps of 0.025. For each energy, consider various initial
conditions and integrate each trajectory long enough in time
(some will require going to t®1000) to map out the surface-of-
section adequately. For each energy, see if you can find the elliptic
fixed points, the tori (and tori of tori) around them, and the
chaotic regions of phase space and observe how the relative pro-
portions of each change with increasing energy. With some pati-
ence and practice, you should be able to generate a plot that
resembles the schematic representation of Iigure 2.4 around each
elliptic trajectory.
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Project II: The structure of white dwarf stars

White dwarf stars are cold objects composed largely of heavy
nuclei and their associated electrons. These stars are one possible
end result of the conventional nuclear processes that build the
elements by binding nucleons into nuclei. They are often com-
posed of the most stable nucleus, 5Fe, with 26 protons and 30
neutrons, but, if the nucleosynthesis terminates prematurely, 12¢
nuclei might predominate. The structure of a white dwarf star is
determined by the interplay between gravity, which acts to
compress the star, and the degeneracy pressure of the electrons,
which tends to resist compression. In this project, we will investi-
gate the structure of a white dwarf by integrating the equations
defining this equilibrium. We will determine, among other things,
the relation between the star’'s mass and its radius, quantities that
can be determined from observation. Discussions of the physics of
white dwarfs can be found in [Ch57], [Ch84], and [Sh83].

II.1 The equations of equilibrium

We assume that the star is spherically symmetric (i.e., the
state of matter at any given point in the star depends only upon
the distance of that point from the star’'s center), that it is not
rotating, and that the effects of magnetic fields are not important.
If the star is in mechanical (hydrostatic) equilibrium, the gravita-
tional force on each bit of matter is balanced by the force due to
spatial variation of the pressure, P. The gravitational force acting
on a unit volume of matter at a radius 7 is

Fg,.m,=—i'm—2p, (IL.1)
where G is the gravitational constant, p(r) is the mass density,
and m(r) is the mass of the star interior to the radius 7:

m(7’)=47T_£p(7")7"2d7". (I1.2)

The force per unit volume of matter due to the changing pressure
is —dP/ dr. When the star is in equilibrium, the net force (gravita-
tional plus pressure) on each bit of matter vanishes, so that, using
(II.1), we have
dP __ Gm(r)
dr - 7_2 p(r)’
A differential relation between the mass and the density can be
obtained by differentiating (II.2):
am _
dr

(11.3)

Anrep(r). (IL.4)
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The description is completed by specifying the "equation of state”,
an intrinsic property of the matter giving the pressure, P(p),
required to maintain it at a given density. Upon using the identity

aP _[dp | [aP
dr dr | |dp |’
Eq. (II.3) can be written as
-1
do __[aP]™! om
dr - dpJ 2 L (I15)

Equations (I1.4) and (I1.5) are two coupled first-order
differential equations that determine the structure of the star for
a given equation of state. The values of the dependent variables at
r=0 are p=p,, the central density, and m =0. Integration outward
in 7 then gives the density profile, the radius of the star, X, being
determined by the point at which p vanishes. (On very general
grounds, we expect the density to decrease with increasing dis-
tance from the center.) The total mass of the star is then
M=m(R). Since both R and M depend upon p,, variation of this
parameter allows stars of different mass to be studied.

I1.2 The equation of state

We must now determine the equation of state appropriate for a
white dwarf. As mentioned above, we will assume that the matter
consists of large nuclei and their electrons. The nuclei, being
heavy, contribute nearly all of the mass but make almost no con-
tribution to the pressure, since they hardly move about at all. The
electrons, however, contribute virtually all of the pressure but
essentially none of the mass. We will be interested in densities far
greater than that of ordinary matter, where the electrons are no
longer bound to individual nuclei, but rather move freely through
the material. A good model is then a free Fermi gas of electrons at
zero temperature, treated with relativistic kinematics.

For matter at a given mass density, the number density of
electrons is

=y L _ I
n=Y, T (11.8)
where M, is the proton mass (we neglect the small difference

between the neutron and proton masses) and Y, is the number of
electrons per nucleon. If the nuclei are all %6Fe, then

_26 _
o= o~ =0.464,

while Y, =% if the nuclei are !2C; electrical neutrality of the matter
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requires one electron for every proton.

The free Fermi gas is studied by considering a large volume V
containing N electrons that occupy the lowest energy plane-wave
states with momentum p<p,. Remembering the two-fold spin
degeneracy of each plane wave, we have

N=2V 1.7
f (27T) (IL7)

which leads to
py=(3n°n)13, (11.8)

where n=N/V. (We put A=c =1 unless indicated explicitly.) The
total energy density of these electrons is

f (2ﬂ) - (p2+m@)¥, (11.9)
which can be integrated to give
—17—=nomex3s(x); (I1.10a)
e(z)= 8—23— {x(1+2x2)(1+x2)%—1og[x +(1+x2)%]] (I1.10b)
where
xE%‘e__ 7’:1_0]1/3 ng= ;’:Z (I1.10c)

The variable z characterizes the electron density in terms of
n=5.89x10%% cm~3,

the density at which the Fermi momentum is equal to the electron

mass, M.

In the usual thermodynamic manner, the pressure is related
to how the energy changes with volume at fixed N:

oF OF oz

P v = 8z av (IL.11)
Using (II.10¢) to find
9 __z
av 3V
and differentiating (II.10a,b) results in
P=ingm,z’, (II. 12)

where ¢'=d ¢/ dx.
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It is now straightforward to calculate dP/dp. Since P is most
naturally expressed in terms of z, we must relate  to p. This is
most easily done using (I1.10c¢) and (I1.6):

n 1/3 1/3
r=|2| =[£| (11.13a)
g Po
M,n
0= 1;, 9 = 979x1057,! gmcm3. (I1.13b)
e

Thus, pg is the mass density of matter in which the electron den-
sity is mg. Differentiating the pressure and using (II.12, I1.13a)
then yields, after some algebra,
dp dz dp M, V7
d

7(3:): gi—z— E(:ﬁ‘la’) = g(T::_sz' . (H 14)

I1.3 Scaling the equations

It is often useful to reduce equations describing a physical sys-
tem to dimensionless form, both for physical insight and for
numerical convenience (i.e., to avoid dealing with very large or
very small numbers in the computer). To do this for the equations
of white dwarf structure, we introduce dimensionless radius, den-
sity, and mass variables:

7'=R07, pzpof_), szom , (1115)

with the radius and mass scales, Ky and Mg, to be determined for
convenience. Substituting into Egs. (II.4, I1.5) and using (II.14)
yields, after some rearrangement,

dit _|4TREpo | o
= : 16
o 7, 7°0; (II.16a)
dp GM AP
=— i 1I.16b
dF [RoYe(me/Mp) 7 ( )

If we now choose My and Ky so that the coefficients in
parentheses in these two equations are unity, we find

[Y,(m,/ M) ]%
_ p) " _ 8
Ry l TG, j 7.72x10°Y, cm, (II.17a)

My=4nR8po = 5.67x10%3 Y2 gm, (I1.17b)

and the dimensionless differential equations are
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dp
=— ; 11.18
dr 77_'2 ( a)
dm _ 2=
—d'F T°p. (H. 18b)

These equations are completed by recalling that ¥ is given by Eq.
(I1.14) with z=5"3.

The scaling quantities (I1.13b) and (II.17) tell us how to relate
the structures of stars with different Y, and hence reduce the
numerical work to be done. Specifically, if we have the solution for
Y, =1 at some value of p,=p./ pg, then the solution at any other ¥,
is obtained by scaling the density as Y, !, the radius as Y,, and the
mass as YZ.

To give some feeling for the scales (I1.17), recall that the solar
radius and mass are

Ko = 6.95x10¥0em ; My = 1.98x1033gm,

while the density at the center of the sun is 150 gm cm™3. We
therefore expect white dwarf stars to have masses comparable to
a solar mass, but their radii will be considerably smaller and their
densities will be much higher.

11.4 Solving the equations

We are now in a position to solve the equations and determine
the properties of a white dwarf. This can be done in the following
sequence of steps.

Step 1 Verify the steps in the derivations given above. Determine
the leading behavior of ¢ and ¥ in the extreme non-relativistic
(x <1) and relativistic (>>1) limits and verify that these are what
you expect from simple arguments. Analyze Egs. (II.18a,b) when
m and 7 are finite and p is small to show that p vanishes at a finite
radius; the star therefore has a well-defined surface. Determine
the functional form with which g vanishes near the surface.

Step 2 Write a program to integrate Eqgs. (I1.18) outward from 7=0
for Y,=1. Calculate the density profiles, total masses, and radii of
stars with selected values of the dimensionless central density p,
ranging from 107! to 108 By changing the radial step and the
integration algorithm, verify that your solutions are accurate.
Show that the total kinetic and rest energy of the electrons in the

star is
R
U=f E]L}ﬂrzdr,
ol V
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where E/ V is the energy density given by (I1.10) and that the total
gravitational energy of the star can be written as

K
W=—f—0—n-1-gzl—p(r)4m‘2dr )
O 7.

Use the scaling discussed above to cast these integrals in dimen-
sionless form and calculate these energies for the solutions you've
generated. Try to understand all of the trends you observe
through simple physical reasoning.

Step 3 A commonly used description of stellar structure involves a
polytropic equation of state,

r
P=P .
1)

where P, po, and [' are constants, the latter being the adiabatic
index. By suitably scaling Egs. (II.4,5), show that a star with a
polytropic equation of state obeys Eqgs. (I1.18) with

7=5F—1 — xBF—S .

The degenerate electron gas therefore corresponds to ['=4/3 in
the extreme relativistic (high-density) limit and ['=5/3 in the
extreme non-relativistic (low-density) limit.

Polytropic equations of state provide a simple way to study the
effects of varying the equation of state (by changing I') and also
give, for two special values of I, analytical solutions against which
numerical solutions can be checked. For this latter purpose, it is
most convenient to recast Egs. (II.18) as a single second-order
differential equation for p by solving (I1.18a) for #m and then
differentiating with respect to ¥ and using (II.18b). Show that the
differential equation that results (the Lane-Emden equation,
[Ch57]) is

1 if-zﬁr-z ap |_

7 dF ar |-
and that for ['=2 the solution is
- — Ssin7T
=f, S,
7

while for '=6/ 5 the solution is

_o -5/ 2

P=Pe |1+ o= ] ;a=6k 50
a

Use these analytical solutions to check the code you wrote in Step
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2. Then study the structure of stars with different adiabatic
indexes [' and interpret the results.

Step 4 If things are working correctly, you should find that, as the
central density of a white dwarf increases, its mass approaches a
limiting value, (the Chandrasekhar mass, Mg,) and the star
becomes very small. To understand this and to get an estimate of
My, we can follow the steps in an argument originally given by
Landau in 1932. The total energy of the star is composed of the
gravitational energy (W<0) and the internal energy of the matter
(U>0). Assume that a star of a given total mass has a constant
density profile. (This is not a very good assumption for quantitative
purposes, but it is valid enough to be useful in understanding the
situation.) The radius is therefore related simply to the total mass
and the constant density. Calculate U and W for this density
profile, assuming that the density is high enough so that the elec-
trons can be treated in the relativistic limit. Show that both ener-
gies scale as 1/ R and that W dominates U when the total mass
exceeds a certain critical value. It then becomes energetically
favorable for the star to collapse (shrink its radius to zero). Esti-
mate the Chandrasekhar mass in this way and compare it to the
result of your numerical calculation. Also verify the correctness of
this argument by showing that U and W for your solutions found in
Step 2 become equal and opposite as the star approaches the lim-
iting mass.

Step 5 Scale the mass-radius relation you found in Step 1 to the
cases corresponding to %Fe and !2C nuclei. Three white dwarf
stars, Sirius B, 40 Eri B, and Stein 2051, have masses and radii (in
units of the solar values) determined from observation to be
(1.053+0.028, 0.0074+0.0006), (0.48+0.02, 0.0124+0.0005), and
(0.50+0.05 or 0.72+0.08, 0.0115+0.0012), respectively [Sh83]. Ver-
ify that these values are consistent with the model we have
developed. What can you say about the compositions of these
stars?



Chapter 3

Boundary Value
and
Figenvalue Problems

Many of the important differential equations of physics can be
cast in the form of a linear, second-order equation:

%%+k2(x)y=3(x), (3.1)

where S is an inhomogeneous (''driving’) term and k? is a real
function. When k? is positive, the solutions of the homogeneous
equation (i.e., S=0) are oscillatory with local wavenumber k, while
when k2 is negative, the solutions grow or decay exponentially at a
local rate (—k?)% For example, consider trying to find the elec-
trostatic potential, ¢, generated by a localized charge distribution,
p(r). Poisson’s equation is

V2d=—4mp, (3.2)
which, for a spherically symmetric p and ®, simplifies to
1 d|,.2d®|_
T dr o= 4710 (3.3)

The standard substitution
o(r)=r~lo(r)
then results in
2
MZ—‘IW'I‘ID, (3.4)
dr?

which is of the form (3.1) with £?=0 and S=—4mrp. In a similar
manner, the quantum mechanical wavefunction for a particle of
mass m and energy F moving in a central potential V(r) can be
written as

Y(r)=r 1R (r) Y, u(¥)

where Y;y is a spherical harmonic and the radial wavefunction /&
satisfies

2 [ 2
R k2(rVR=0; k3(r)=2|p-LUAUR” _ yoyl o (3s)
dr? he 2mr?
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This is also of the form (3.1), with 5=0.

The equations discussed above appear unremarkable and
readily treated by the methods discussed in Chapter 2, except for
two points. First, the boundary conditions imposed by the physics
often appear as constraints on the dependent variable at two
separate points of the independent variable, so that solution as an
initial value problem is not obviously possible. Moreover, the
Schroedinger equation (3.5) is an eigenvalue equation in which we
must find the energies that lead to physically acceptable solutions
satisfying the appropriate boundary conditions. This chapter is
concerned with methods for treating such problems. We begin by
deriving an integration algorithm particularly well suited to equa-
tions of the form (3.1), and then discuss boundary value and eigen-
value problems in turn.

3.1 The Numerov algorithm

There is a particularly simple and efficient method for
integrating second-order differential equations having the form of
(3.1). To derive this method, commonly called the Numerov or
Cowling's method, we begin by approximating the second deriva-
tive in (3.1) by the three-point difference formula (1.7),

yn+1—2yn+yn—1 _ " h2 1 4
he =Yn +'17yn +0(h' )- (3-6)

where we have written out explicitly the O(h?) "error" term, which
is derived easily from the Taylor expansion (1.1, 1.2a). From the
differential equation itself, we have

e d2 2
yn :dxz (_k y+S)|x=zn

B (’czy)n+1_2(k2y)n+(k2y)n—l

+0(h?). (3.7)

When this is substituted into (3.8), we can write, after some rear-
rangement,

(1+ T'z_k1?+1 )yn+1_2(1__12—krf)yn +(1+ 12 kr?—l )yn—lz
h?
15 (Sne1+10S, 4S5, 1)+ 0 (). (3.8)

Solving this linear equation for either ¥y, +,; or ¥, —; then provides a
recursion relation for integrating either forward or backward in z,
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with a local error 0(h8). Note that this is one order more accu-
rate than the fourth-order Runge-Kutta method (2.25), which
might be used to integrate the problem as two coupled first-order
equations. The Numerov scheme is also more efficient, as each
step requires the computation of k% and S at only the lattice
points.

Exercise 3.1 Apply the Numerov algorithm to the problem

2
$Y ——ary; y(0)=1, y'(0)=0.
Integrate from =0 to z=1 with various step sizes and compare
the efficiency and accuracy with some of the methods discussed in
Chapter 2. Note that you will have to use some special procedure
(e.g., a Taylor series) to generate the value of y,=y(h) needed to
start the three-term recursion relation.

3.2 Direct integration of boundary value problems

As a concrete illustration of boundary value problems, con-
sider trying to solve Poisson's equation (3.4) when the charge dis-
tribution is

p(r)=—-—e™, (3.9)

which has a total charge

Q= fp(r)d3r= { o(r)anridr =1 .

The exact solution to this problem is
p(r)=1-Y(r+2)e™", (3.10)

from which ®=7r"l¢ follows immediately. This solution has the
expected behavior at large r, ¢—>1, which corresponds to ¢-r~1,
the Coulomb potential from a unit charge.

Suppose that we try to solve this example as an ordinary initial
value problem. Since p has no singular behavior at the origin (e.g.,
there is no point charge), ¢ is regular there, which implies that
¢=7® vanishes at r=0; this is indeed the case for the explicit solu-
tion (3.10). We could then integrate (3.4) outward from the origin
using the appropriate rearrangement of (3.8) (recall k=0 here):

hz
Pr+1=R¢Pp —Pp 1+ Té_(sn+1+1osn+sn—1)- (3.11)

with
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S=—4nrp=—Yre ™" .

However, to do so we must know the value of ¢, (or, equivalently,
de/dr=% at r=0) in addition to ¢y=0. This is not a very happy
situation, since ¢, is part of the very function we're trying to find,
and so is not known a priori. We will discuss below what to do in
the general case, but in the present example, since we have an
analytical solution, we can find ¢,=¢(r=h) from (3.10). The follow-
ing BASIC program does the outward integration to =20, storing
the solution in an array and printing the exact result and error as
it goes along.

DIM PHI (200) 'array for the solution
DEF FNS(R)=-.5*R*EXP(-R) "function for S
H=.1 'radial step size
N7Z=20/H 'number of points to r=20
CON=H~2/12 ‘constant in Numerov method
SM=0: SZ=FNS(H) 'S at first two points
PHI (0)=0 'boundary condition at r=0
PHI(1)=1-.5*(H+2) *EXP( -H) 'exact value at 1’'st point
FOR J7%=1 TO Nx-1 "loop for outward integration
R=(J%+1)*H: SP=FNS(R) 'radius and S at next point
’ "Numerov formula,Eq.(3.11)
PHI (J%+1)=2*PHI (J%) -PHI (J%- 1)+CON* (SP+10*SZ+SM)
SM=SZ: SZ=SP 'roll the values of S
EXACT=1-.5*(R+2) *EXP( -R) 'analytical value, Eq. (3.10)
DIFF=EXACT-PHI (J%+1) 'error at this point
PRINT R,EXACT,DIFF 'output current values
NEXT J%

Note how computation is minimized by keeping track of the values
of S at the current and adjacent lattice points (SZ, SM, and SP)
and by computing the constant h?/ 12 appearing in the Numerov
formula (3.11) outside of the integration loop.

Results generated by this program are given in the first three
columns of Table 3.1, which show that the numerical solution is
rather accurate for small . All is not well, however. The error per
step gets larger at large r (the error after the 20 steps from =0
to r=2 is 3x1078, while during the 20 steps from =18 to =20, it
grows by 1.2x107°, 4 times as much), and the solution will become
quite inaccurate if continued to even larger radii. This behavior is
quite surprising because the-errors in the Numerov integration
should be getting smaller at large r as ¢ becomes a constant.

Further symptoms of a problem can be found by considering a
more general case. We then have no analytical formula to give us
¢ near the origin, which we need to get the three-term recursion
relation started. One way to proceed is find ®(0) by direct numeri-
cal quadrature of the Coulomb potential,
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Table 3.1 Errors in solving the Poisson problem defined
by Egs. (3.4,3.9)

Exact Analytical 5% Error Linear
r o(r) e(h) in ¢(h)  correction
2 0.729330 | -0.000003 0.049919 -0.000016
4 0.945053 | -0.000006 0.099838 -0.000011
6 0.990085 | -0.000005 0.149762 -0.000007
8 0.998323 | 0.000001 0.199690  -0.000003
10 0.999728 | 0.000010 0.249622  -0.000001
12 0.999957 | 0.000022 0.299556 0.000002
14 0.999993 | 0.000036 0.349493 0.000003
16 0.999999 | 0.000052 0.399431 0.000000
18 1.000000 | 0.000065 0.449366 0.000000
20 1.000000 | 0.000077 0.499301 0.000000

<I>(O)=fﬂ:—)—d3r=4ﬂ_{rpdr,

perhaps using Simpson’s rule. There will, however, always be some
error associated with the value obtained. We can simulate such an
error in the code above (suppose it is 5%) by inserting the line

43 PHI(1)=0.95*PHI(1) .

The code then gives the errors listed in the fourth column of Table
3.1. Evidently disaster has struck, for a 5% change in the initial
conditions has induced a 50% error in the solution at large r.

It is simple to understand what has happened. Solutions to the
homogeneous version of (3.4),
d_zﬁzo,
dr?
can be added to any particular solution of (3.4) to give yet another

solution. There are two linearly independent homogeneous solu-
tions,

p~r; P~constant,
and
g~constant; $~r~1

The general solution to (3.4) in the asymptotic region (where p
vanishes and the equation is homogeneous) can be written as a
linear combination of these two functions, but the latter, sub-
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dominant solution is the physical one, since we know the potential
at large = is given by $-»1/7. Imprecision in the specification of ¢
at the origin or any numerical round-off error in the integration
process can introduce a small admixture of the ¢~r solution,
which eventually dominates at large r.

The cure for this difficulty is straightforward: subtract a multi-
ple of the ""bad”, unphysical solution to the homogeneous equation
from the numerical result to guarantee the physical behavior in
the asymptotic region. It is easy to see that the "bad’ results
shown in the fourth column of Table 3.1 vary linearly with » for
large r. The following lines of code then fit the last 10 points of
the numerical solution to the form

p=mr+b

and subtract mr from the numerical results to guarantee the
appropriate large-r behavior.

95 M=(PHI (N%) -PHI (N%-10) ) 7( 10*H)
100 B=PHI (N%) -M*N%*H
105 FOR I%=1 TO N%

110
115

R=J%*H
PHI (J%)=PHI (J%) -M*R

120 NEXT J%

The errors in ¢ so obtained are shown in the final column of Table
3.1; the solution is even more accurate at large r than the
uncorrected one found when the exact value of PHI(1) is used to
start the integration.

In this simple example, the instabilities are not too severe;
satisfactory results for moderate values of r are obtained with
outward integration when the exact (or reasonably accurate
approximate) value of PHI(1) is used. Alternatively, it is also feasi-
ble to integrate inward, starting at large » with ¢=@, independent
of r. This results in a solution that often satisfies accurately the
boundary condition at =0 and avoids having to perform a quadra-
ture to determine the (approximate) starting value of PHI(1).

Exercise 3.2 Solve the problem defined by Egs. (3.4, 3.9) by
Numerov integration inward from large 7 using the known asymp-
totic behavior of ¢ for the starting values. How well does your
solution satisfy the boundary condition ¢(r=0)=0?

3.3 Green’'s function solution of boundary value problems

When the two solutions to the homogeneous equation have very
different behaviors, some extra precautions must be taken. For
example, in describing the potential from a charge distribution of
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a multipole order [ >0, the monopole equation (3.4) is modified to
[dz  10+1)
dr? r?2

which has the two homogeneous solutions
L+1

p=—4nrp, (3.12)

o~ ; ga~'r‘l .

For large r, the first of these solutions is much larger than the
second, so that ensuring the correct asymptotic behavior by sub-
tracting a multiple of this dominant homogeneous solution from a
particular solution we have found by outward integration is subject
to large round-off errors. Inward integration is also unsatisfac-
tory, in that the unphysical »~* solution is likely to dominate at
small 7.

One possible way to generate an accurate solution is by com-
bining the two methods. Inward integration can be used to obtain
the potential for » greater than some intermediate radius, r,,, and
outward integration can be used for the potential when r<r,,. As
long as 7, is chosen so that neither homogeneous solution is dom-
inant, the outer and inner potentials obtained respectively from
these two integrations will match at r, and, together, describe
the entire solution. Of course, if the inner and outer potentials
don’t quite match, a multiple of the homogeneous solution can be
added to the former to correct for any deficiencies in our
knowledge of ¢'(r=0).

Sometimes the two homogeneous solutions have such different
behaviors that it is impossible to find a value of r,, that permits
satisfactory integration of the inner and outer potentials. Such
cases can be solved by the Green’'s function of the homogeneous
equation. To illustrate, let us consider Eqg. (3.1) with the boundary
condition ¢(x=0)=¢(x=)=0. Since the problem is linear, we can
write the solution as

o(z)=[G(z.z")S(z")dz’, (3.13)
0
where G is a Green’s function satisfying
[ d?
1—2—+k2(x) G(z,z')=6(xz—x"). (3.14)
dx

It is clear that G satisfies the homogeneous equation for z#z'.
However, the derivative of & is discontinuous at z=z’', as can be
seen by integrating (3.14) from z=z'—¢ to z=z'+¢, where ¢ is an
infinitesimal:

1)

T =1. (3.15)

z=x'+&
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The problem, of course, is to find . This can be done by con-
sidering two solutions to the homogeneous problem, ¢, and ¢,
satisfying the boundary conditions at =0 and x =«, respectively,
and normalized so that their Wronskian,

de, — degg

dzx P< dr P>
is unity. (It is easy to use the homogeneous equation to show that
W is independent of ). Then the Green’s function is given by

G(z, 2" )=z Jos(x5), (3.17)

where . and x, are the smaller and larger of z and z’', respec-
tively. It is evident that this expression for G satisfies the homo-
geneous equation and the discontinuity condition (3.15). From
(3.15), we then have the explicit solution

W= (3.16)

¢(x)=¢>(x){¢<(x’)5(x’)dx’+¢<(x)f%(x’)S(x’)dx'- (3.18)

This expression can be evaluated by a numerical quadrature and is
not subject to any of the stability problems we have seen associ-
ated with a direct integration of the inhomogeneous equation.

In the case of arbitrary k? the homogeneous solutions ¢ and
¢s can be found numerically by outward and inward integrations,
respectively, of initial value problems and then normalized to
satisfy (3.16). However, for simple forms of k%(z), they are known
analytically. For example, for the problem defined by Eq. (3.12), it
is easy to show that

1
p(r)=rtth gy (r)== g™

are one possible set of homogeneous solutions satisfying the
appropriate boundary conditions and Eq. (3.16).

Exercise 3.3 Solve the problem defined by Egs. (3.9, 3.12) for 1 =0
using the Green’'s function method. Compare your results with
those obtained by direct integration and with the analytical solu-
tion.

Exercise 3.4 Spherically symmetric solutions to the equation
(VR—a?)d=—4mp

lead to the ordinary differential equation

d?

2
—a
dr?

p=—4nrp
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with the boundary conditions ¢(7=0)=¢(r»~)=0. Here, a is a con-
stant. Write a program to solve this problem using the Green’s
function when p is given by Eq. (3.9). Compare your numerical
results for various values of a with the analytical solution,

o= Z[e ~ar _~r[1+}(1-a?)r])

1—a?

What happens if you try to solve this problem by integrating only
inward or only outward? What happens if you try a solution by
integrating inward and outward to an intermediate matching
radius? How do your results change when you vary the matching
radius? '

3.4 Eigenvalues of the wave equation

Figenvalue problems involving differential equations often
arise in finding the normal-mode solutions of wave equations. As a
simple example with which to illustrate a method of solution, we
consider the normal modes of a stretched string of uniform mass
density. After a suitable scaling of the physical quantities, the
equation and boundary conditions defining these modes can be
written as

d 2y

dz?
Here, 0<z<1 is the scaled coordinate along the string, ¢ is the
transverse displacement of the string, and k is the constant
wavenumber, linearly related to the frequency of vibration. This
equation is an eigenvalue equation in the sense that solutions
satisfying the boundary conditions exist only for particular values
of k, {k,}, which we must find. Furthermore, it is linear and
homogeneous, so that the normalization of the eigenfunction
corresponding to any of the k,,, ¢,,, is not fixed, but can be chosen
for convenience.

The (un-normalized) eigenfunctions and eigenvalues of this
problem are well-known analytically:

=—k2p; @(z=0)=¢(z=1)=0. (3.19)

k,=nm;, ¢,~sinnnz, (3.20)

where n is a positive integer. These provide a useful check of the
numerical methods for solving this problem.

One suitable general strategy for numerical solution of an
eigenvalue problem is an iterative one. We guess a trial eigen-
value and generate a solution by integrating the differential equa-
tion as a initial value problem. If the resulting solution does not
satisfy the boundary conditions, we change the trial eigenvalue
and integrate again, repeating the process until a trial eigenvalue
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is found for which the boundary conditions are satisfied to within a
predetermined tolerance.

For the problem at hand, this strategy (known picturesquely
as the "shooting” method) can be implemented as follows. For
each trial value of k, we integrate forward from =0 with the ini-
tial conditions

p(x=0)=0, ¢'(z=0)=4.

The number ¢ is arbitrary and can be chosen for convenience,
since the problem we are solving is a homogeneous one and the
normalization of the solutions is not specified. Upon integrating to
=1, we will find, in general, a non-vanishing value of ¢, since the
trial eigenvalue will not be one of the true eigenvalues. We must
then readjust £ and integrate again, repeating the process until
we find ¢(z=1)=0 to within a specified tolerance; we will have then
found an eigenvalue and the corresponding eigenfunction.

The problem of finding a value of k for which ¢(1) vanishes is a
root-finding problem of the type discussed in Chapter 1. Note that
the Newton-Raphson method is inappropriate since we cannot
differentiate explicitly the numerically determined value of ¢(1)
with respect to k£ and the secant method could be dangerous, as
there are many eigenvalues and it might be difficult to control the
one to which the iterations will ultimately converge. Therefore, it
is safest to use a simple search to locate an approximate eigen-
value and then, if desired, switch to the more efficient secant
method.

The following BASIC program finds the lowest eigenvalue of
stretched string problem (3.19) by the shooting method described
above, printing the trial eigenvalue as it goes along. The search
(lines 140-190) is terminated when the eigenvalue is determined
within a precision of 1072 The initial trial eigenvalue and the
search step size are set in line 120.

N7%=100: H=1/N7%
TOLK=9 .999999E- 06
K=1: DK=1
GOSUB 1000: PHIOLD=PHIP
WHILE ABS(DK)>TOLK
K=K+DK
GOSUB 1000
[F PHIP*PHIOLD>0 GOTO 190
K=K-DK: DK=DK/2
WEND
PRINT USING "eigenvalue=###. #####" ;K
END

"define lattice parameters
"tolerance for K

"initial values to start search
"find PHIP at first guess for K
"simple search to zero PHIP

"take a step in K

'calculate PHIP at new value of K
*if PHIP changes sign,

' back-up and halve step

"print the eigenvalue found

1000 ’'subroutine to calculate phi(x=1)=PHIP for the value of k input
1010 PRINT K

'print current trial eigenvalue
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1020 PHIM=0: PHIZ=.01 initial conditions
1030 CON=(K*H)~2/12 "constant in the Numerov method
1040 FOR I7%=1 TO N%-1 'forward integration to x=1

1050 PHIP=2+*(1-5*CON) *PHIZ- (1+CON) *PHIM 'Numerov formula, Eq. (3.8)
1060  PHIP=PHIP/( 1+-CON)

1070 PHIM=PHIZ: PHIZ=PHIP 'roll the values of phi
1080 NEXT 1%

1090 RETURN

1100 °

When run, this program generates results that converge to a value
close to the exact answer, A, the error being caused by the finite
integration step and the value of TOLK.

Exercise 3.5 Use the program above to find some of the higher
eigenvalues. Note that the numerical inaccuracies become
greater as the eigenvalue increases and the integration of the
more rapidly oscillating eigenfunction becomes inaccurate.
Change the search algorithm to the more efficient secant method.
How close does your initial guess have to be in order to converge
to a given eigenvalue? Change the code to correspond to the

boundary conditions
¢'(x=0)=0, ¢(x=1)=0,

and verify that the numerical eigenvalues agree with the analytical
values expected.

Exercise 3.6 The wave equation in cylindrical geometry often leads

to the eigenvalue problem

d® 1 d
+ —

dr? 7 dr

d(r)=—k2d; d(r=0)=1, &(r=1)=0.

The analytical eigenfunctions are the regular cylindrical Bessel
function of order zero, the eigenvalues being the zeros of this

function:
k ,=2.404826, k»,=5.520078, k3=8.653728, k£ ,=11.7915634, - - -

Show that the substitution ®=rY%¢ changes this equation into one
for which the Numerov algorithm is suitable and modify the code
above to solve this problem. Compare the numerical eigenvalues
with the exact values.
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3.5 Stationary solutions of the one-dimensional Schroedinger
equation

A rich example of the shooting method for eigenvalue prob-
lemns is the task of finding the stationary quantum states of a par-
ticle of mass m moving in a one-dimensional potential V{(z). We'll
assume that V(z) has roughly the form shown in Figure 3.1: the
potential becomes infinite at z=z,,;, and z=z,,,, (i.e., there are
"walls'' at these positions) and has a well somewhere in between.

+ The time-independent Schroedinger equation and boundary condi-

tions defining the stationary states are [Me68]
dzjg
dz? +k2(x)¢(x)=03 Y(Zmin ) =Y (Tmaz ) =0, (3.21)

which is of the form (3.1) with
2
kz(x)=h%[E—V(x)].

We must find the energies £ (eigenvalues) for which there is a
non-zero solution to this problem. At one of these eigenvalues, we
expect the eigenfunction to oscillate in the classically allowed
regions where E>V(z) and to behave exponentially in the classi-
cally forbidden regions where E<V(z). Thus, there will be "bound”
solutions with £<0, which are localized within the well and decay
exponentially toward the walls and ""continuum' solutions with
E>0, which have roughly constant magnitude throughout the
entire region between the walls.

The eigenvalue problem defined by Eq. (3.21) can be solved by
the shooting method. Suppose that we are seeking a bound state
and so take a negative trial eigenvalue. Upon integrating toward
larger * from =z,,,, we can generate a solution, ¥., which
increases exponentially through the classically forbidden region
and then oscillates beyond the left turning point in the classically
allowed region (see the lower portion of Figure 3.1). If we were to
continue integrating past the right turning point, the integration
would become numerically unstable since, even at an exact eigen-
value where Y (Zy,q.)=0, there can be an admixture of the
undesirable exponentially growing solution. As a general rule,
integration info a classically forbidden region is likely to be inac-
curate. Therefore, at each energy it is wiser to generate a second
solution, ¥5, by integrating from z,,,, toward smaller z. To deter-
mine whether the energy is an eigenvalue, ¥, and ¥, can be com-
pared at a matching point, z,,, chosen so that neither integration
will be inaccurate. (A convenient choice for z,, is the left turning
point.) Since both ¥, and ¥, satisfy a homogeneous equation,
their normalizations can always be chosen so that the two
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Figure 3.1 (Upper) Schematic potential used in the dis-
cussion of the one-dimensional Schroedinger equation.
(Lower) Solutions ¥, and ¥, of the Schroedinger equa-
tion at an arbitrary energy £<0. The left turning point
is used as the matching point. When £ is an eigen-

value, the derivative is continuous at the matching
point.

functions are equal at z,,. An eigenvalue is then signaled by equal-
ity of the derivatives at z,,; i.e., the solutions match smoothly, as
is invoked in analytical solutions of such problems. Thus,

dye | dys
dz |», dz

If we approximate the derivatives by their simplest finite
difference approximations (1.14) using the points z,, and z,,—h,
an equivalent condition is

= ;—waxm ~h) Y (2 —h)] =0, (3.23)

since the normalizations have been chosen to guarantee
V(X )=¥s(2,,). The quantity ¥ in Eq. (3.23) is a convenient scale
for the difference, which can be chosen to make f typically of
order unity. It might be the value of ¥, at z,, or the maximum
value of Y. or ¥5. Note that if there are no turning points (e.g., if
E>0 for a potential like that shown in Figure 3.1), then z,, can be
chosen anywhere, while if there are more than two turning points,
three or more homogeneous solutions, each accurate in different
regions, must be patched together.

The program for Example 3, whose BASIC source code is given
in Appendix B and in the file EXAM3.BAS on the Computational
Physics diskette, solves for the stationary states of a one-

=0, (3.22)

Iy
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dimensional potential by the algorithm described above on a 160
point lattice. The potential is assumed to be of the form
V(z)=Vgu(z), where the dimensionless function v{(z) has a
minimum value of -1 and a maximum value of +1. (This can always
be guaranteed by a suitable linear scaling of the energies.) If the
coordinate is scaled by a physical length a, the Schroedinger
equation (3.21) can be written as

1 d® L (x)— ]10(2:)=0,
,72 dx2
where
_|2ma?V, ]}é
7R

is a dimensionless measure of the classical nature of the system
and ¢=£/ V, is the dimensionless energy. All eigenvalues there-
fore satisfy £>—1. The functional form of the potential defined by
the program can be any one of three analytical types (square well,
parabolic well, and Lennard-Jones potential); any of these can also
be modified in an analog manner using a cursor controlled from
the keyboard. For the value of ¥ input, a number of states are
sought using an initial trial energy and energy increment. For
each state, a simple search on the energy is made to try to zero
the function f defined by (3.23) and, when an approximate eigen-
value is located, the secant method is employed until |f |
becomes less than 5X107°. For each trial eigenvalue, the Schroed-
inger equation is integrated forward and backward, and the two
solutions are matched at the left-most turning point where the
behavior of the wavefunction changes from oscillatory to exponen-
tial (near z,,,, if there is no such turning point). As the search
proceeds, each trial wavefunction is displayed (graphics only), as
is the trial eigenvalue, the current step in the energy, the current
value of f, and the number of nodes in the trial wavefunction.
When an eigenvalue is found, it is indicated on a graph of the
potential by a line at the appropriate level between the left-most
and right-most turning points. As the solution is likely to be inac-
curate where there are three or more turning points, a warning is
printed in these cases.

The following exercises can help to improve your understand-
ing of the physical principles and numerical methods illustrated in
this example.

Exercise 3.7 Verify that the code gives the expected answers for
the eigenvalues of the square-well and parabolic-well potentials
(=50 might be a convenient value to use). Observe how the
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discontinuity in the derivative at the matching point is smoothed
out as the energy converges to each eigenvalue. Also note the
increase in the number of nodes with increasing eigenvalue and,
for the parabolic well, the behavior of the solution near the turn-
ing points. For states with large quantum numbers, the amplitude
of the oscillations becomes larger near the turning points, con-
sistent with the behavior of the WKB wavefunction, which is pro-
portional to the inverse square-root of the classical velocity,
(F—V)~% Find some solutions in these potentials also for values
of ¥ that are small (say 10)-and large (say 200), corresponding to
the extreme quantum and classical limits, respectively.

Exercise 3.8 For the analytically soluble square and parabolic
wells, investigate the effects of changing the integration method
from the Numerov algorithm to the 'naive” one obtained by
approximating the second derivative by just the three-point for-
mula (1.7); that is, neglecting the O(h?) term in (3.6).

Exercise 3.9 Change the program so that the eigenvalues are
found by integrating only forward and demanding that the
wavefunction vanish at z,,,,. Observe the problems that arise in
trying to integrate an exponentially dying solution into a classi-
cally forbidden region. (It is wise to keep 7 relatively small here so
that the instabilities don’t become too large.)

Exercise 3.10 When the potential is reflection symmetric about
z =0, the eigenfunctions will have a definite parity (symmetric or
anti-symmetric about z=0) and that parity will alternate as the
quantum number (energy) increases. Verify that this is the case
for the numerical solutions generated by the code. Can you think
of a way in which the parity can be exploited to halve the numeri-
cal effort involved in finding the eigenvalues of a syrnmetric poten-
tial? If so, modify the code to try it out.

Exercise 3.11 If we consider a situation where v (z)=0 for z<z,,;,
and Z>Zp,,, (i.e., we remove the walls), then the zero boundary
conditions at the ends of the lattice are inappropriate for weakly
bound states (¢g0) since the wavefunction decays very slowly as
|z | becomes large. More appropriate boundary conditions at Z,,;,
and z,,,, are therefore

1ay _ )%

. +y(—e)%.
Change the code to implement these boundary conditions and
observe the effect on the wavefunctions and energies of the states
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near zero energy. Note that if we were to normalize the wavefunc-
tion in the conventional way, the contributions from these
exponential tails would have to be included. Can you derive, in the
style of the Numerov algorithm, a numerical realization of these
boundary conditions accurate to a high order in DX?

Exercise 3.12 Check numerically that, for a given potential, two
eigenfunctions, ¥z and ¥z', corresponding to different eigenvalues
F and E', are orthogonal,

Svp(@)¥g'(z)dz =0,

as is required by the general principles of quantum mechanics.

Exercise 3.13 For small, intermediate, and large values of ¥, com-
pare the exact eigenvalues of the Lennard-Jones potential with the
semiclassical energies generated by the code in for Example 1.

Exercise 3.14 Investigate the eigenfunctions and eigenvalues for
potentials you might have encountered in learning elementary
quantum mechanics: the d —function potential, a finite square-well,
double-well potentials, periodic potentials, etc. Interpret the
wavefunctions and eigenvalues you find. With a little imagination,
the analog input of the potential can be used to generate a variety
of interesting situations. (Note that the code will sometimes have
trouble finding two eigenvalues that are nearly degenerate.)

Project III: Atomic structure in the Hartree-Fock approximation

The self-consistent field approximation (Hartree-Fock) is
known to be an accurate description of many of the properties of
multi-electron atoms and ions. In this approximation, each elec-
tron is described by a separate single-particle wavefunction (as
distinct from the many-electron wavefunction) that solves a
Schroedinger-like equation. The potential appearing in this equa-
tion is that generated by the average motion of all of the other
electrons, and so depends on their single-particle wavefunctions.
The result is a set of non-linear eigenvalue equations, which can be
solved by the methods introduced in this chapter. In this project,
we will solve the self-consistent field equations to determine the
ground-state structure of small atomic systems (e.g., the atoms
and ions of the elements in the periodic table from Hydrogen
through Neon). The total energies calculated can be compared
directly with experimental values. The brief derivation we give

here can be supplemented with the material found in [Be68],
[Me68], and [WeB0].
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II1.1 Basis of the Hartree-Fock approximation

The Hamiltonian for N electrons moving about a heavy nucleus
of charge Z located at the origin can be written as

N p2 N 7,2 N 2
H=$120 s Ze” 4y et (IL.1)
i=1 i=1 Ti izj=1T1

7
=1 2m

Here, the {r;} are the locations of the electrons, m and —e are the
electron mass and charge, and ry;=r;—r; is the separation
between electrons i and j.-The three sums in (III.1) embody the
electron kinetic energy, the electron-nucleus attraction, and the
inter-electron repulsion. As is appropriate to the level of accuracy
of the self-consistent field approximation, we have neglected much
smaller terms, such as those associated with the spin-orbit
interaction, hyperfine interactions, recoil motion of the nucleus,
and relativity.

A proper quantum mechanical description requires that we
specify the spin state of each electron, in addition to its location.
This can be done by giving its spin projection on some fixed quanti-
zation axis, o;=1J). For convenience, we will use the notation
z; =(r;,0;) to denote all of the coordinates (space and spin) of elec-
tron 1.

The self-consistent field methods are based on the Rayleigh-
Ritz variational principle, which states that the ground state

eigenfunction of the Hamiltonian, ¥(z,,z,, - - ,zy), is that
wavefunction that minimizes the expectation value of H,
E=<¥|H|¥>, (II1.2)

subject to the constraints that ¥ obey the Pauli principle (i.e., it
be anti-symmetric under the interchange of any two of the z's)
and that it be normalized to unity:

[1¥|2dNz=1. (111.3)

(The notation d¥z means integration over all of the spatial coordi-
nates and summation over all of the spin coordinates of the N
electrons.) Furthermore, this minimum value of £ is the ground
state energy. A calculation of (III.2) for any normalized and anti-
symmetric trial function ¥ therefore furnishes an upper bound to
the ground state energy.

The Hartree-Fock approximation is based on restricting the
trial wavefunction to be a Slater determinant.:

Y(z1,2o - 2y)=(N) % det Yu(z;). (I11.4)

Here, the ¥y,(x) are a set of N orthonormal single-particle
wavefunctions; they are functions of the coordinates of only a
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single electron. The determinant is that of the NXN matrix
formed as a and z; each take on their N possible values, while the
factor (N!)~*% ensures that ¥ is normalized according to (I11.3). The
physical interpretation of this wavefunction is that each of the
electrons moves independently in an orbital ¥, under the average
influence of all the other electrons. This turns out to be a good
approximation to the true wavefunction of an atom because the
smooth Coulomb interaction between the electrons averages out
many of the details of their motion.

Using the properties of determinants, it is easy to see that ¥
has the required anti-symmetry under interchange of any two
electrons (a determinant changes sign whenever any two of its
columns are interchanged) and that ¥ is properly normalized
according to Eq. (III.3) if the single-particle wavefunctions are
orthonormal:

SVa(@ )Y (2)dz =04 (II1.5)

Since the Hamiltonian (III.1) does not involve the electron spin
variables, the spins decouple from the space degrees of freedom,
so that it is useful to write each single-particle wavefunction as a
product of space and spin functions:

YalZ)=Xa(T) |00, (111.8)

where o,=1Y% is the spin projection of the orbital «. The orthonor-
mality constraint (II1.5) then takes the form

8 ge0e Xa@Xa(T)B3r =0 4, (I1L.7)

so that orbitals can be orthogonal by either their spin or space
dependence.

The computation of the energy (IIL.2) using the wavefunction
defined by (II1.4-8) is straightforward but tedious. After some alge-
bra, we have

E= 3 Cal B jo> + f [——Zi+%¢<r)]p<r)d3r
a=1

(111.8)

_% Z 60“0,,

o,a'=1

In this expression, the one-body matrix elements of the kinetic
energy are

2 1% .
{a| %n— | == [xa(r) Pxa(r)d?r, (111.9)
the electron density is the sum of the single-particle densities,

N
o= 3. Ixa(r)2 (1. 10)
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the electrostatic potential generated by the electrons is
—p2 1 3y
<I’(r)—e fl_r:r’—l_p(r')d T, (IHlla)

so that
VRd=—4me?o(r), (II1.11Db)

and the exchange matrix elements of the inter-electron repulsion
are

e?

{ao'| | oo
Tij

=e2 [ XAO)XG ) T Xar(E)Xa(r) dPra e (IIL12)

The interpretation of the various terms in (I11.8) is straightfor-
ward. The kinetic energy is the sum of the kinetic energies of the
single particle orbitals, while the electron-nucleus attraction and
direct inter-electron repulsion are just what would be expected
from a total charge of —Ne distributed in space with density p(r).
The final term in (II1.8) is the exchange energy, which arises from
the anti-symmetry of the trial wavefunction (III.4). It is a sum over
all pairs of orbitals with the same spin projection; pairs of orbitals
with different spin projections are "'distinguishable’ and therefore
do not contribute to this term.

The strategy of the self-consistent field approach should now
be clear. The variational wavefunction (II[.4) depends on a set of
"parameters': the values of the single-particle wavefunctions at
each point in space. Variation of these parameters so as to
minimize the energy (II1.8) while respecting the constraints (II1.7)
results in a set of Fuler-Lagrange equations (the Hartree-Fock
equations) that define the "best” determinental wavefunction and
give an optimal bound on the total energy. Because these equa-
tions are somewhat complicated in detail, we consider first the
two-electron problem, and then turn to situations with three or
more electrons.

II1.2 The two-electron problem

For two electrons that don't interact with each other, the
ground state of their motion around a nucleus is the 1s?
configuration; i.e., both electrons are in the same real, spherically
symmetric spatial state, but have opposite spin projections. It is
therefore natural to take a trial wave function for the interacting
systemm that realizes this same configuration; the corresponding
two single-particle wavefunctions are
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_ 1
Y(z)= ) R(r)| k. (I11.13)

so that the many-body wavefunction (III.4) is

V= g BRI 19191 49]. (IL14)

This trial wavefunction is anti-symmetric under the interchange of
the electron spins but is symmetric under the interchange of their
space coordinates. It respects the Pauli principle, since it is
antisymmetric under the interchange of all variables describing
the two electrons. The normalization condition (III.5) becomes

[R3(r)dr =1, (111.15)
0
while the energy (II1.8) becomes
oy PP dR Ze® 1
E=Rx 5~ {[dr d’r+{[ + %)

r
with (III.10) reducing to

p(r)4mredr, (111.186)

oo

p(r)=2x——R2(r); [o(r)anridr=2, (I1L.17)
Amr 0
and (III.11b) becoming
1 d | d®|_ 2
2 dr Iy |~ 4mep (I11.18)

Note that the exchange energy is attractive and has a magnitude
of one-half of that of the direct inter-electron repulsion (resulting
in a net factor of 1/4 in the final term of (III.16)) and that various
factors of two have entered from the sum over the two spin projec-
tions.

A common variational treatment of the two-electron system
("poor man’s Hartree-Fock'') takes R to be a hydrogenic 1s orbital
parametrized by an effective charge, Z":

a

R VR
R(r)=2[Z ] 27T -Z'r/a, (I11.19)

where a is the Bohr radius. The energy (III.16) is then minimized
as a function of Z° to find an approximation to the wavefunction
and energy. This procedure, which is detailed in many textbooks
(see, for example, [Me68]), results in

o2 |

O . o 2_90 5, <O
7227~ E==|73- 27+ 2. (I11.20)
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In carrying out this minimization, it is amusing to note that the
kinetic energy scales as Z %, while all of the potential energies
scale as Z°, so that, at the optimal Z*, the kinetic energy is — of
the potential. This is a specific case of a more general virial
theorem pertaining to the Hartree-Fock approximation (see Step 1
below).

The full Hartree-Fock approximation for the two-electron
problem is very much in this same variational spirit, but the most
general class of normalized single-particle wavefunctions is con-
sidered. That is, we consider-£ in Eq. (III.18) to be a functional of
R and require that it be stationary with respect to all possible
norm-conserving variations of the single-particle wavefunction. If
the normalization constraint (III.15) is enforced by the method of
Lagrange multipliers, for an arbitrary variation of 6R(r) we
require

& (E—2¢ [ R?dr)=0, (111.21)
0
where ¢ is a Lagrange multiplier to be determined after variation

so that the solution is properly normalized. The standard tech-
niques of variational calculus then lead to

> I 7?,2 d2 VA 2
{5}?(?)[—4 — -4 f_ +2<’P(7’)—48]R(7')d7'=0, (I11.22)

which is satisfied if R solves the Schroedinger-like equation

[ 22 42 ze2
— — e —
—— = +%d(r)—¢

R (r)=0. (I11.23)

Choosing ¢ (the "'single-particle energy’) to be an eigenvalue of the
single-particle hamiltonian appearing in (III1.23) ensures that R is
normalizable. Equations (III.18,23) are the two coupled non-linear
differential equations in one dimension that form the Hartree-Fock
approximation to the original six-dimensional Schroedinger equa-
tion. Note that only one-half of ¢ appears in (II1.23) since each
electron interacts only with the other and not "with itself”; inclu-
sion of the exchange term in the energy (II.16) is necessary to get
this book-keeping right.

II1.3 Many-electron systems

The assumption of spherical symmetry is an enormous
simplification in the two-electron problem, as it allowed us to
reduce the eigenvalue problem for the single-particle wavefunc-
tion and the Poisson equation for the potential from three-
dimensional partial differential equations to ordinary differential
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equations. For the two-electron problem, it is plausible (and true)
that a spherically symmetric solution has the lowest energy. How-
ever, for most many-electron systems, spherical symmetry of the
density and potential are by no means guaranteed. In principle,
non-spherical solutions should be considered, and such
"deformed'™ wavefunctions are in fact the optimal ones for describ-
ing the structure of certain nuclei.

To understand what the problem is, let us assume that the
potential ¢ is spherically symmetric. The solutions to the single-
particle Schroedinger equation in such a potential are organized
into "shells'’, each characterized by an orbital angular momentum,
l, and a radial quantum number, n. Within each shell, all 2(2L +1)
orbitals associated with the various values of 0, and the projection
of the orbital angular momentum, m, are degenerate. The orbi-
tals have the form

Xol(1)= i—Rm () Y (8); '(/)" RE(r)dr=1. (I1.24)

However, we must decide which of these orbitals to use in con-
structing the Hartree-Fock determinant. Unless the number of
electrons is such that all of the 2(2l +1) substates of a given shell
are filled, the density as given by (III.10) will not be spherically
symmetric. This, in turn, leads to a non-symmetric potential and
a much more difficult single-particle eigenvalue equation; the gen-
eral problem is therefore intrinsically three-dimensional.

A slight modification of the rigorous Hartree-Fock method (the
filling or central-field approximation) is useful in generating a
spherically symmetric approximation to such 'open-shell” sys-
tems. The basic idea is to spread the valence electrons uniformly
over the last occupied shell. For example, in discussing the neu-
tral Carbon atom, there would be 2 electrons in the 1s shell, 2
electrons in the 2s shell, and 2 electrons spread out over the 6
orbitals of the 2p shell. (Note that we don’t put 4 electrons in the
2p shell and none in the 2s shell since the single-particle energy
of the latter is expected to be more negative.) Thus, we introduce
the number of electrons in each shell, N,;, which can take on
integer values between 0 and 2(2l+1), and, using the wavefunc-
tions (II1.24), write the density (II1.10) as

L S\Ny RE(r); [p(r)anridr=Y Ny=N. (II.25)
47r* 0 nl

In writing this expression, we have used the identity

L 2L +1
~ 2=
3 1 tn@ =2

p(r)=
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In the same spirit, the energy functional (II1.8) can be general-
ized to open-shell situations as

Aoy | L(L+1)
Ez.zvmsz[ 2]’y 100 gy

(r)anridr +E,,, (II1.26a)

+{I— Zj +3%6(r) |o

with the exchange energy being

L+l’ ADY 2 N
E'ez=—— E Npy Npp IZ I[O 0 0] L - (I11.26Db)
n'tl’ A=|L-1
In this expression, 7 is the integral
A

A ' < ,
Iy ny =e fdrfdr i (7)) By (1) e ——— R,y 7)) By ('), (111.27)

where 7. and 7, are the smaller and larger of » and r’ and the 3—j
symbol vanishes when I +L'+A is odd and otherwise has the value

L1 >\2 (=L +L 42 (L =L +A) (L +1'=A)!

00 (L+L'+A+1)!
[ | 2

X P
(o=~ |

where p=¥%(l+1'+\). In deriving these expressions, we have used
the multipole decomposition of the Coulomb interaction and the
standard techniques of angular momentum algebra [Br68].

The Hartree-Fock equations defining the optimal radial
wavefunctions now follow from the calculus of variations, as in the
two-electron case. Lagrange multipliers &, are introduced to
keep each of the radial wavefunction normalized and, after some
algebra, we have

[ m2 42  j+1)m Ze?
— + —
_dm dr? 2mr? T

+®(r)—ey By (r)=—F,; (r), (I11.28a)

2 +l l 2
Fnl ('r)=— —ez—-ZNn'l'R'n'l'( ) [0 ] in\l,n’l' , (11128b)
n't’ A= ]l—l |
Tk mr = ;}H {Rn't'(r')ﬁm (”")"")‘d”'""”'Af M'(:,‘,)\im ) dr'. (I11.28¢)

The eigenvalue equation (III.28a) can be seen to be analogous to
(I1.23) for the two-electron problem, except that the exchange
energy has introduced a non-locality (Fock potential) embodied in
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F' and has coupled together the eigenvalue equations for each of
the radial wavefunctions; it is easy to show that these two equa-
tions are equivalent when there is a single orbital with 1=0. It is
useful to note that (II1.26b, 28b) imply that the exchange energy
can be also be written as

Eor =¥ Ny }Rnt (r)Fpy(r)dr, (I11.29)
nd 0

and that, by multiplying (II1.28a) by K,; and integrating, we can
express the single particle eigenvalue as

2
ARy ] L(l+1) 2

_ R
SM—Zm{

dr

+? _ Ze? +<I>(r)]R,§l(r)dr+j-Rm(r)Fm (r)dr . (II1.30)
0 0

| T

II1.4 Solving the equations

For the numerical solution of the Hartree-Fock equations, we
must first adopt a system of units. For comparison with experi-
mental values, it is convenient to measure all lengths in Angstroms
and all energies in electron volts. If we use the constants

2
%=7.6359 eV—AR2; e2=14.409 eV-A, (111.31)
then the Bohr radius and Rydberg have their correct values,
A2 e? _
a= =0.5299 A; Ry==—=13.595¢V. (111.32)
me? ca

For a large atom with many electrons, the accurate solution of
the Hartree-Fock equations is a considerable task. However, if we
consider the ground states of systems with at most 10 electrons
(requiring three shells: 1s, 2s, and 2p), then the numerical work
can be managed on a microcomputer. A lattice of several hundred
points with a radial step size of £0.01 A extending out to ~3 A4
should be sufficient for most cases.

The best approach to developing a program to solve the
Hartree-Fock equations is to consider the two-electron problem
first, for which there is only a single radial wavefunction solving a
local eigenvalue equation, and then to consider the more complex
case of several orbitals. The attack can be made through the fol-
lowing sequence of steps.
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Step 1 Verify the algebra leading to the final equations presented
above for the two-electron system (Egs. (I11.16,18,23)) and for the
multi-electron system (Eqgs. (II1.18,26,28)) and make sure that you
understand the physical principles behind the derivations. Prove
the virial theorem that the kinetic energy is —% of the potential
energy. This can be done by imagining that the single-particle
wavefunctions of a solution to the Hartree-Fock equations are sub-
ject to a norm-preserving scaling transformation,

Xa(r)>7% 2x(7T),

where 7 is a dimensionless scaling parameter. Show that the total
kinetic energy in (I11.8) scales as 7%, while all of the potential ener-
gies scale as 7. Since the energy at the Hartree-Fock solution is
stationary with respect to any variation of the wavefunctions, use

oF

oT =0

T=1

to prove the theorem.

Step 2 Write a program to calculate the energy from (I11.18) if R is
known at all of the lattice points. This will require writing a sub-
routine that calculates ¢ by solving (II1.18) (you might modify the
one given earlier in this chapter) and then evaluating suitable qua-
dratures for the various terms in (III.16). Verify that your pro-
gram is working by calculating the energies associated with the
hydrogenic orbital (III1.19) and comparing it with the analytical
results (remember to normalize the wavefunction by the appropri-
ate discretization of (III.15)).

Step 3 Write a subroutine that uses the shooting method to solve
the radial equation (III.23) for the lowest eigenvalue & and
corresponding normalized wavefunction /£ if the potential ¢ is
given at the lattice points. The zero boundary condition at the ori-
gin is easily implemented, but the boundary condition at large dis-
tances can be taken as £ (r=L)=0, where L is the outer end of the
lattice. (Greater accuracy, particularly for weakly bound states,
can be had by imposing instead an exponential boundary condition
at the outer radius.) Note that the radial scale (i.e., # and the
radial step size) should change with the strength of the central
charge. Verify that your subroutine works by setting ¢ to 0 and
comparing, for Z=2 and Z=4, the calculated wavefunction, eigen-
value, and energy of the 1s orbital with the analytical hydrogenic
values.
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Step 4 Combine the subroutines developed in Steps 2 and 3 into a
code that, given a value of 7, solves the two-electron Hartree-Fock
equations by iteration. An iteration scheme is as follows, the
organization into subroutines being obvious:

1) "Guess” an initial wavefunction, say the hydrogenic one
(II1.19) with the appropriate value of Z".

i1) Solve (II1.18) for the potential generated by the initial
wavefunction and calculate the total energy of the system
from Eq. (I11.16).

111) Find a new wavefunction and its eigenvalue by solving
(II1.23) and normalizing according to (III.15).

iv) Calculate the new potential and new total energy. Then go
back to i) and repeat %ii) and iv) until the total energy
has converged to within the required tolerance.

At each iteration, you should print out the eigenvalue, the total
energy, and the three separate contributions to the energy
appearing in (III.16); a plot of the wavefunction is also useful for
monitoring the calculation. Note that the total energy should
decrease as the iterations proceed and will converge relatively
quickly to a minimum. The individual contributions to the energy
will take longer to settle down, consistent with the fact that it is
only the total energy that is stationary at the variational
minimum, not the individual components; at convergence, the
virial theorem discussed in Step 1 should be satisfied. Try begin-
ning the iteration procedure with different single-particle
wavefunctions and note that the converged solution is still the
same. Vary the values of the lattice spacing and the boundary
radius, L, and prove that your results are stable under these
changes.

Step 5 Use your program to solve the Hartree-Fock equations for
central charges Z=1-9. Compare the total energies obtained with
the experimental values given in N=2 column of Table III.1. (These
binding energies, which are the negative of the total energies, are
obtained from the measured ionization potentials of atoms and
ions given in [We71].) Compare your results also with the
wavefunctions and associated variational energies given by Egs.
(II1.19,20). Note that both approximations should give upper
bounds to the exact energy. Give a physical explanation for the
qualitative behavior of the discrepancies as a function of Z. Can
you use second-order perturbation theory to show that the
discrepancy between the Hartree-Fock and exact energies should
become a constant for large Z? Show that for Z=1, the Hartree-
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Table II1.1: Binding energies (in €V) of small atomic systems

Number of electrons, N
yA 2 3 4 5 8 7 B
1 14.34
2 78.88
3 198.04 203.43
4 371.51 389.71 399.03
5 599.43 837.35 662.49 670.79
6 881.83 946.30 994,17 1018.55 1029.81
7 | 1218.76 1316.62 1394.07 1441.19 1471.09 1485.62
B | 1610.23 1743.31 1B86R2.19 1939.58 1994.47 2029.58 2043.19
9 | 2054.80 R2239.93 2397.056 R2511.27 2598.41 2661.06 R696.03

Fock approximation predicts that the H™ ion is unbound in that its
energy is greater than that of the H atom and so it is energetically
favorable to shed the extra electron. As can be seen from Table
III.1, this is not the case in the real world. In finding the Z=1 solu-
tion, you might discover that convergence is quite a delicate busi-
ness; it is very easy for the density to change so much from itera-
tion to iteration that the lowest eigenvalue of the single-particle
Hamiltonian becomes positive. One way to alleviate this problem
is to prevent the density from changing too much from one itera-
tion to the next, for example by averaging the new density and the
old following step %ii) above.

Step 6 Modify your two-electron program to treat systems in which ooao
several orbitals are involved. It is easiest to first modify the calcu-
lation of the total energy for a given set of radial wavefunctions to
include £,,. This is most conveniently done by calculating and
storing the F; of Eq. (II1.28b) and using Eq. (II1.29). Because of
the Fock term, the eigenvalue equations (IIl.28a) cannot be
treated by the shooting method we have discussed. However, one
scheme is to treat the F,; calculated from the previous set of
wavefunctions as an inhomogeneous terms in solving for the new
set of wavefunctions. For trial values of the ¢,; calculated from
(II1.30) using the previous set of wavefunctions, (III.28a) can be
solved as uncoupled inhomogeneous boundary value problems
using the Green's function method of Eq. (3.18); after normaliza-
tion according to (II[.24), the solutions serve as a new set of
wavefunctions. The two-electron systems can be used to check the
accuracy of your modifications; for these systems you should find
that the exchange energy is —% of the direct inter-electron
interaction energy and that the solutions converge to the same
results as those generated by the code in Step 4. Use this
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Hartree-Fock code to calculate the wavefunctions and energies for
some of the other systems listed in Table Ill.1 and compare your
results with the experimental values; interpret what you find. A
convenient set of initial wavefunctions are the hydrogenic orbitals,
given by (I1I.19) for the 1s state and
* ‘}é ( * *
_olZ _ZTr|ZT 7/
Fas (r)_B[Za ‘ .1 2a ] o%a © '
1%' 2
_[2Z° |"|Z°r | -zr/2a
RZ”(T)_[ 3a ) | Re ¢ !
for the 2s and 2p states, respectively. The optimal common value
of Z* in these expression should be determined for any system by
minimizing the total energy.
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Special "'unctions
and
(Gaussian Quadrature

In this chapter, we discuss two loosely related topics: algo-
rithms for computing the special functions of mathematical phy-
sics (Bessel functions, orthogonal polynomials, etc.) and efficient
methods of quadrature based on orthogonal functions. In most
scientific computing, large libraries supply almost all of the sub-
routines relevant to these tasks and so relieve the individual from
the tedium of writing his own code. In fact, there is usually little
need to know very much about how these subroutines work in
detail. However, a rough idea of the methods used is useful; this is
what we hope to impart in this chapter.

4.1 Special functions

The special functions of mathematical physics were largely
developed long before large-scale numerical computation became
feasible, when analytical methods were the rule. Nevertheless,
they are still relevant today, for two reasons. One is the insight
analytical solutions offer; they guide our intuition and provide a
framework for the qualitative interpretation of more complicated
problems. However, of particular importance to numerical work is
the fact that special functions often allow part of a problem to be
solved analytically and so dramatically reduce the amount of com-
putation required for a full solution.

As an illustration, consider a one-dimensional harmonic oscil-
lator moving under an external perturbation: its frequency, w, is
being changed with time. Suppose that the frequency has its
unperturbed value, wg, for times before =0 and for times after
t>T, and that we are interested in the motion for times long after
the perturbation ceases. Given the oscillator’s initial coordinate
and velocity, one straightforward method of solution is to
integrate the equations of motion,

dx

—=u(t); §—¥=—w2(t)x(t)-

as an initial-value problem using one of the methods discussed in
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Chapter 2. However, this would be inefficient, as the motion after
the perturbation stops (¢>7) is well-understood and is readily
expressed in terms of the '"special’ sine and cosine functions
involved,

z(t>T)=z(T)coswo(t—T) +wg ! v(T) sinwy(t —T).

Since there are very efficient methods for computing the tri-
gonometric functions, it is wiser to integrate numerically only the
non-trivial part of the motion (0<f <7T) and then to use the velocity
and coordinate at t =T to compute directly the sinusoidal function
given above. Although this example might seem trivial, the con-
cept of using special functions to ""do part of the work" is a general
one.

A useful resource in dealing with special functions is the Hand-
book of Mathematical Functions [Ab84]. This book contains the
definitions and properties of most of the functions one often
needs. Methods for computing them are also given, as well as
tables of their values for selected arguments. These last are par-
ticularly useful for checking the accuracy of the subroutines you
are using.

Recursion is a particularly simple way of computing some spe-
cial functions. Many functions are labeled by an order or index
and satisfy recursion relations with respect to this label. If the
function can be computed explicitly for the few lowest orders,
then the higher orders can be found from these formulas. As an
example, consider the computation of the Legendre polynomials,
Py(z), for |z|<l and 1=0,1,2, - . These are important in the
solution of wave equations in situations with a spherical symmetry.
The recursion relation with respect to degree is

(L+1)Pq(z)+lP_(z)—(RL+1)zF (z)=0. (4.1)

Using the explicit values Py(z)=1 and P(z)=z, forward recursion
in I yields P, for any higher value of | required. The following
BASIC program accomplishes this for any value for z and [ input.

10 INPUT "ENTER x,1";X,L%

20 IF L%=0 THEN PL=1: GOTO 120 'explicit forrmla for 1=0
30 IF Lz=1 THEN PL=X: GOTO 120 "explicit forrmla for I1=1
40

50 PM=1: PZ=X values to start recursion
60 FOR LLZ%=1 TO LZ%-1 "loop for forward recursion
70 PP=( (2*LL%+1) *X*PZ-LL%*PM) /(LL%+1) 'Eq. (4.1)

80 PM=PZ: PZ=PP 'roll the current values

90 NEXT LLZ

100 PL=PZ

110 °

120 PRINT X,L%,PL "output the results

130 GOTO 10 'get the next values of x and 1
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This code wrks with no problems, and the results agree with the
values giver in the tables to the arithmetic precision of the com-
puter. We can also compute the derivatives of the Legendre poly-
nomials witl this algorithm using the relation

(1—z?)P',=—lzP,+lP,_,. (4.2)

Other sets of orthogonal polynomials, such as Hermite and
Laguerre, cin be treated similarly.

As a seond example, consider the cylindrical Bessel func-
tions, J,(z} and Y,(z), which arise as the regular and irregular
solutions towave equations in cylindrical geometries. These func-
tions satisfythe recursion relation

cn_

Cam1(&)+ Graa(2)= 226, (2), (4.3)

where C, iseither J,, or Y,,. To use these recursion relations in the
forward direction, we need the values of Cy and C;. These are
most easilyobtained from the polynomial approximations given in
[AbB4], fornulas 9.4.1-3. For |z |<3, we have

Jo(z)= —2.2499997 y*+1.2656208 y*
—0.3163866y%+0.0444479y8—0.039444 y 10
+0.0002100y %+¢; |e|<5%x1078, (4.4a)

where y=z)3 and

Yo(x)z;zr—log(}éx)Jo(x)+O.36'746691+O.605593666 y?
~0.74350384y*+0.2530011745-0.04261214 y 8

+0.004R7916 y19—0.00024846 y *+¢; |e]|<1.4x1078; (4.4b)

while for x >3,
Jo(x)=z2f 5 cos@ Yo(z)=x7%f( sind (4.4c)
where
f 0=0.8788456—0.00000077y ~1-0.00552740y ~2
—000009512y ~3+0.00137237y ~*—0.00072805y ~°
+000014476y ~8+¢; |e|<1.6x1078, (4.44d)
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Table 4.1 Forward recursion for the irregular Bessel
function Y, (2)

3

Yn(R)

+0.51037
-0.10703
-0.61741
-1.1278
-2.7659
-9.9360

-46.914
-271.55
-1853.9
-14560.

OO W —O

and
6=z —0.78539816—0.04166397y ~1—0.00003954 y ~>
+0.00262573y ~3-0.00054125y ~*—0.00029333 y ~°
+0.00013558y 8+¢; |e|<7x1078 (4.4¢)

Similar expressions for J; and Y; are given in Sections 9.4.5-8 of
[AbB4]. Note that these formulas are not Taylor series, but rather
polynomials whose coefficients have been adjusted to best
represent the Bessel functions over the intervals given.

Let us now attempt to calculate the Y, by forward recursion
using (4.3) together with the polynomial approximations for the
values of Yy and Y,. Doing so leads to results that reproduce the
values given in the tables of Chapter 9 of [Ab84] to within the
arithmetic precision of the computer. For example, we find the
results listed Table 4.1 for x=2.

It is natural to try to compute the regular solutions, J,,, with
the same forward recursion procedure. Using Eq. (4.4a) and its
analog for J,, we find the errors listed in the third column of Table
4.2, the exact values are given in the second column. As can be
seen, forward recursion gives good results for n<5, but there are
gross errors for the higher values of n.

It is relatively easy to understand what is going wrong. We can
think about the recursion relation (4.3) for the Bessel functions as
the finite difference analog of a second-order differential equation
in n. In fact, if we subtract 2C, from both sides of (4.3), we obtain

C,. (4.5)

cn+1—2cn+cn_1=2[:——1
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Table 4.2 Computation of the regular Bessel function J, (2)

Exact Error in Un-normalized Error in normalized
n value forward recursion backward recursion backward recursion
0 0.223891E+00 0.000000E+00 0.150602E-10 0.000000E+00
1 0.576725E+00 0.000000E+00 0.387940E-10 0.000000E+00
2 0.352834E+00 0.000000E+00 0.237337E-10 0.000000E+00
3 0.128943E+00 0.000000E+00 0.867350E-11 0.000000E+00
4 0.339957E-01 -0.000002E-01 0.228676E-11 0.000000E-01
5 0.703963E-02 -0.000075E-02 0.473528E-12 0.000000E-02
6 0.120243E-02 -0.000355E-02 0.808826E-13 0.000000E-02
7 0.174944E-03 -0.020559E-03 0.117678E-13 0.000000E-03
8 0.221795E-04 -0.140363E-03 0.149193E-14 0.000000E-04
9  0.249234E-05 -0.110234E-02 0.167650E-15 0.000000E-05
10 0.251539E-06 -0.978959E-02 0.169200E-16 0.000000E-06
11 0.230428E-07 0.155000E-17 0.000000E-07
12 0.193270E-08 0.130000E-18 0.000007E-08
13  0.149494E-09 0.100000E-19 0.000830E-09
14 0.107295E-10 0.000000E-19 0.107295E-10

which, in the limit of continuous n, we can approximate by
d?C
dn?

In deriving this equation, we have used the three-point finite
difference formula (1.7) for the second derivative with A=1 and
have identified the local wavenumber, k%(n). Equation (4.6) will
have two linearly independent solutions, either both oscillatory in
character (when k? is positive, or when n<z) or one exponentially
growing and the other exponentially decreasing (when k? is nega-
tive, or n>z). As is clear from Table 4.1, ¥, is the solution that
grows exponentially with increasing n, so that no loss of precision
occurs in forward recursion. However, Table 4.2 shows that the
exact values of J,, decrease rapidly with increasing n, and so pre-
cision is lost rapidly as forward recursion proceeds beyond n=z.
This disease is the same as that encountered in Chapter 3 in
integrating exponentially dying solutions of second-order
differential equations; it's cure is also the same: avoid using the
recursion relation in the direction of decreasing values of the
function.

=—k?(n)C; Icz(n)=2[l—%- . (4.6)
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Exercise 4.1 Use Eq. (4.1) to show that recursion of the Legendre
polynomials is stable in either direction.

To compute the regular cylindrical Bessel functions accu-
rately, we can exploit the linearity of the recursion relation and
use Eq. (4.3) in the direction of decreasing m. Suppose we are
interested in J,(2) for m=10. Then, choosing J;,=0 and
J13=1X10720, an arbitrarily small number, we can recur backwards
to n=0. The resulting sequence of numbers will then reproduce
the J,,, to within an arbitrary normalization, since, as long as we
have chosen the initial value of n high enough, the required solu-
tion of the difference equation (4.3), which grows exponentially
with decreasing n, will dominate for small n. The sequence can
then be normalized through the identity

JO(x)+2J2(x)+2J4(x)+ - =1 (47)

The following BASIC code evaluates the regular cylindrical
Bessel functions using backward recursion.

5 DIM J(50)
10 INPUT "Enter maximum value of n (<=50)";NMAX%

15 INPUT "Enter value of x";X

20 "backward recursion

25 J(NMAX%)=0: J(NMAXZ%-1)=1E-20 'initial conditions

30 FOR NZ=NMAX%-1 TO 1 STEP -1

35 J(N%-1)=(2*N%/X) *J (N%) -J (N7%+1) "Eq. (4.3)

40 NEXT J%

45 "calculate sun in Eq. (4.7)

50 SUM=J(0)

55 FOR N%=1 TO NMAX%

60 SUM=SURH2 *J (N%)

65 NEXT N7z

70 FOR N7%=0 TO NMAX% 'normmmalize and output

75 T (N%)=J (N%) /SUM

80  PRINT N%,J(N%)

85 NEXT N%

90 GOTO 10
When run for NMAX%=14 and X=2, it gives the unnormalized values
(i.e., after line 40) shown in the fourth column of Table 4.2 and the
errors in the final values shown in the fifth column of that table.
The results are surprisingly accurate, even for values of n close to
14. An alternative way of obtaining the constant with which to nor-
malize the whole series is to calculate the value of Jy(R) from the
polynomial approximation (4.4a).

onoo Exercise 4.2 Run the code above for various values of NMAX” at

fixed X. By comparing with tabulated values, verify that the
results are accurate as long as NMAX% is large enough (somewhat
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greater than the larger of X and the maximum order desired).
Change the normalization algorithm to use the approximations
(4.4a,c) for Jy.

Exercise 4.3 The regular and irregular spherical Bessel functions, ood
71 and ny, satisfy the recursion relation

2l+1

Sp+1+1S 1= St

where s; is either j; or n;. The explicit formulas for the few lowest
orders are

i _sinz - _Ssinx cosz o= 3 _llne— 3 coST
0 T v J1 xz T ' J2 xs z xz '
and
cosSZx coszx sinzx 3 3 .
Ng=— s N =— - ; Na= —————+—1— cosx ———sinz .
x xR x z3 =z z?

At £=0.5, the exact values of the functions of order 2 are
n5=—25.059923; j,=1.6371107X107%,

Show that n, can be calculated either by explicit evaluation or by
forward recursion and convince yourself that the latter method
will work for all I and z. Investigate the calculation of j3(0.5) by
forward recursion, explicit evaluation, and by backward recursion
and show that the first two methods can be quite inaccurate. Can
you see why? Thus, even if explicit expressions for a function are
available, the stability of backward recursion can make it the
method of choice.

Qur discussion has illustrated some pitfalls in computing the
some commonly used special functions. Specific methods useful
for other functions can be found in the appropriate chapters of
[AbB4].

4.2 Gaussian quadrature

In Chapter 1, we discussed several methods for computing
definite integrals that were most convenient when the integrand
was known at a series of equally spaced lattice points. While such
methods enjoy widespread use, especially when the integrand
involves a numerically-generated solution to a differential equa-
tion, more efficient quadrature schemes exist if we can evaluate
the integrand for arbitrary abscissae. One of the most useful of
these is Gaussian quadrature.
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Consider the problem of evaluating

1
I=[f (z)dz.
-1
The formulas discussed in Chapter 1 were of the form
I~ ﬁlw‘lﬁf (xn)- (48)
n=

where

—4ofn=1)
Z,=—1+42 (N=1)

are the equally spaced lattice points. Here, we are referring to
the "elementary' quadrature formulas (such as (1.9), (1.11), or
(1.13a,b)), and not to compound formulas such as (1.12). For
example, for Simpson's rule (1.11), N=3 and

z,1=—1, 25=0, z3=1, w1='w3=1—, w2=g—.

From the derivation of Simpson’s rule, it is clear that the formula
is exact when f a polynomial of degree 3 or less, which is com-
mensurate with the error estimate given in Eq. (1.11). More gen-
erally, if a quadrature formula based on a Taylor series uses N
points, it will integrate exactly a polynomial of degree N-—1
(degree N if N is even). That is, the N weights w, can be chosen
to satisfy the N linear equations

1 N
fxpdx= w2k p=0,1, - - ,N-1. (4.9)

-1 n=1
(When N is odd, the quadrature formula is also exact for the odd
monomial zV))

A greater precision for a given amount of numerical work can
be achieved if we are willing to give up the requirement of equally-
spaced quadrature points. That is, we will choose the z,, in some
optimal sense, subject only to the constraint that they lie within
the interval [-1,1]. We then have 2N parameters at our disposal in
constructing the quadrature formula (the N z,’s and the N w,'s),
and so we should be able to choose them so that Eq. (4.9) is
satisfied for p ranging from O to 2N—1. That is, the quadrature
formula using only N carefully chosen points can be made exact
for polynomials of degree 2ZN—1 or less. This is clearly more
efficient than using equally-spaced abscissae.

To see how to best choose the z;, we consider the Legendre
polynomials, which are orthogonal on the interval [-1,1]:

2

1
_f;Pi(x)Pj (z)dz =504 (4.10)
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It is easily shown that F; is a polynomial of degree 7 with 7 roots in
the interval [-1,1]. Any polynomial of degree 2N —1 or less then can
be written in the form

f (z)=Q(z)Py(z)+E(z),

where ¢ and E are polynomials of degree N—1 or less. The exact
value of the required integral (4.8) is then

1
I=}(Qpn+R)dx=fRdx, (4.11)
-1 - -1

where the second step follows from the orthogonality of Py to all
polynomials of degree N—1 or less. If we now take the z; to be the
N zeros of Py, then application of (4.8) gives (exactly)

f:néwn[Q(xn)pN(xn)m(xn)]: S w, B(z,).  (412)

n=1

It remains to choose the w, so that K (a polynomial of degree
N-—1 or less) is integrated exactly. That is, the w, satisfy the set
of linear equations (4.9) when the z,, are the zeros of Py. It can be
shown that w,, is related to the derivative of Py at the correspond-
ing zero. Specifically,

_ 2
T D) P )P

This completes the specification of what is known as the Gauss-
Legendre quadrature formula. Note that it can be applied to any
definite integral between finite limits by a simple linear change of
variable. That is, for an integral between limits z=a and z=b, a

change of variable to
¢ :_1+2£3ﬂ)_
(b-a)

reduces the integral to the form required. Other, non-linear,
changes of variable that make the integrand as smooth as possible
will also improve the accuracy.

Other types of orthogonal polynomials provide useful Gaussian
quadrature formulas when the integrand has a particular form.
For example, the Laguerre polynomials, Z;, which are orthogonal
on the interval [0,] with the weight function e %, lead to the
Gauss-Laguerre quadrature formula

[e=1 @)dzw 3% wn f (z), (4.19)
0 n=1

where the z,, are the roots of Ly and the w, are related to the
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values of Ly, at these points. Similarly, the Hermite polynomials
provide Gauss-Hermite quadrature formulas for integrals of the
form

}e ~2°f (z)dz.

These Gaussian quadrature formulas, and many others, are given
in Section 25.4 of [Ab64], which also contains tables of the abscis-
sae and weights.

In the practical application of Gaussian quadrature formulas,
one does not need to write programs to calculate the abscissae
and weights. Rather, there are usually library subroutines that can
be used to establish arrays containing these numbers. For exam-
ple, the subroutine beginning at line 12000 in Example 4 (see
Appendix B) establishes the Gauss-Legendre abscissae and weights
for many different values of V.

As a general rule, Gaussian quadrature in the method of choice
when the integrand is smooth, or can be made smooth by extract-
ing from it a function that is the weight for a standard set of
orthogonal polynomials. We must, of course, also have the ability
to evaluate the integrand at the required abscissae. If the
integrand varies rapidly, we can compound the basic Gaussian
quadrature formula by applying it over several sub-intervals of the
range of integration. Of course, when the integrand can be
evaluated only at equally-spaced abscissae (such as when it is gen-
erated by integrating a differential equation), then formulas of the
type discussed in Chapter 1 must be used.

As an illustration of Gaussian quadrature, consider using a 3-
point Gauss-Legendre quadrature to evaluate the integral

3
I=[(1+t)*#dt =4.66667 . (4.14)
0
Making the change of variable to
——1+4+ 2
r=—1+ 3 t
results in
q !
. I=5- f (2 + -—)%dx (4.15)

-1
For N=3, the Gauss-Legendre abscissae and weights are
T,=—x3=0.774597, z2=0; w,;=w3=0.5565656566, w,=0.888889.

Straightforward evaluation of the quadrature formula (4.8) then
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results in /=4.66683, while a Simpson’s rule evaluation of (4.14)
with h=1.5 gives 4.66228. Gaussian quadrature is therefore more
accurate than Simpson’s rule by about a factor of 27, yet requires
the same number of evaluations of the integrand (three).

Exercise 4.4 Consider the integral

1
[(1—z2ydz =T
21 2
Evaluate this integral using some of the quadrature formulas dis-
cussed in Chapter 1 and using Gauss-Legendre quadrature. Note
that the behavior of the integrand near z=#+1 is cause for some
caution. Compare the accuracy and efficiency of these various
methods for different numbers of abscissae. Note that this
integral can be evaluated exactly with a "one-point” Gauss-
Chebyshev quadrature formula of the form

1
S (=22 (2)de= 3w f (),

with

n . = T .2 n
N+l Wn N+1 N+1
(See Section 25.4.40 of [Ab64].)

Z, =CoSs

4.3 Born and eikonal approximations to quantum scattering

In this example, we will investigate the Born and eikonal
approximations suitable for describing quantum-mechanical
scattering at high energies, and in particular calculate the
scattering of fast electrons (energies greater than several 10's of
eV) from neutral atoms. The following project deals with the exact
partial-wave solution of this problem.

Extensive discussions of the quantum theory of scattering are
given in many texts (see, for example, [Me68], [Ne68], or [Wub2]);
we will only review the essentials here. For particles of mass m
and energy

2
E=2_k250,
2m
scattering from a central potential V(r) is described by a
wavefunction ¥(r) that satisfies the Schroedinger equation,
he

_ N o2 _
VAUV = EY, (4.16)

with the boundary condition at large distances
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ikr
¥ e%zyr(9)E—. (4.17)
[ ) e

Here, the beam is incident along the 2z direction and € is the
scattering angle (angle between r and Z). The complex scattering
amplitude f embodies the observable scattering properties and is
the basic function we seek to determine. The differential cross
section is given by

2211 @12 (4.18)

and the total cross section is
K19
a:fdo-%-zznfdesmeu(e)w. (4.19)
0

In general, f is a function of both £ and 6.

At this point, many elementary treatments of scattering intro-
duce a partial-wave decomposition of ¥, express f in terms of the
phase shifts, and then proceed to discuss the radial Schroedinger
equation in each partial wave, from which the phase shift and
hence the exact cross section, can be calculated. We will use this
method, which is most appropriate when the energies are low and
only a few partial waves are important, in Project IV below. How-
ever, in this example, we will consider two approximation schemes,
the Born and eikonal, which are appropriate to high-energy situa-
tions when many partial waves contribute.

Both the Born and eikonal approximations are based on an
exact integral expression for the scattering amplitude derived in
many advanced treatments:

— m — ks -r 3
6)=— e "HV(r)¥(r)dor. 4.20
f () —y S (r)¥(r) (4.20)
Here, the wavenumber of the scattered particle is kf, so that
|k, |=k and k;-Z=cos@. It is also convenient to introduce the
wavenumber of the incident particle, k; =k Z.

The Born approximation (more precisely, the first Born
approximation) consists of assuming that the scattering is weak,
so that the full scattering wavefunction ¥ differs very little from
the incident plane wave, exp(ik;-r). Making this replacement in
(4.20) results in the Born scattering amplitude,

m ; me X
9)=— e ATV (r)d3r=— singr V(r) rdr. (4.21
£ 5(0)= ST eV ()% == 2 [singr Vir) rar. (421

Here, we have introduced the momentum transfer, q=kf —k;, so
that
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¥ ~eikz ¥ ~ eilkz+2x(b))
> P TN >

NP

- —
z<0 z>0

Figure 4.1 Geometry of the eikonal approximation

q=|k;—k;| = Rksink8 .
and have used the identity

Se ‘”‘q'rd’f:4ﬂjo(qr)=4ﬂ§1—;lfi. (4.22)
Note that the Born approximation to the scattering amplitude
depends only upon ¢ and not separately upon £ and 6.

Better approximations to ¥ in Eq. (4.20) result in correspond-
ingly better approximations to f. One possible improvement is
the eikonal approximation, valid at high energies and small
scattering angles. (See [Wa73] or [Ne66].) This approximation is
semiclassical in nature; its essence is that each ray of the incident
plane wave suffers a phase shift as it passes through the potential
on a straight-line trajectory (see Figure 4.1). Since this phase
shift depends upon the impact parameter of the ray, the wave-
fronts of the wavefunction are distorted after passing through the
potential; it is this distortion that carries the scattering informa-
tion.

To derive the eikonal approximation, we will put, without loss
of generality,

Y(r)=e*™®Ty(p), (4.23)

where 9 is a slowly-varying function describing the distortion of
the incident wave. Upon inserting this into the original Schroed-
inger equation (4.16), we obtain an equation for ¥:

- 27‘% (Rik; -V+V3)y+Vy=0. (4.24)
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If we now assume that v varies slowly enough so that the V3 term
can be ignored (i.e., k is very large), we have

2
ik R 8y(b,2)
m 0z

=V(b,2)y(b,2z). (4.25)

Here, we have introduced the coordinate b in the plane transverse
to the incident beam, so that

V{b,2)=V(r); r=(b2+2”)%

From symmetry considerations, we expect that ¥ will be azimu-
thally symmetric and so independent of b. Equation (4.25) can be
integrated immediately and, using the boundary condition that
¥-1 as 2z »— since there is no distortion of the wave before the
particle reaches the potential, we have

Y(b,z)=e?x(0.2); y(b z)=

(4.26)

Having obtained the eikonal approximation to the scattering
wavefunction, we can now obtain the eikonal scattering amplitude,
f.. Inserting Eq. (4.23) into (4.20), we have

fdzbfdze""‘er(b 2)Y(b,2). (4.27)

Je=— o h2

Using (4.25), we can relate Vy directly to 0¥/ 82z. Furthermore, if
we restrict our consideration to relatively small scattering angles,
so that ¢,®0, then the z integral in (4.27) can be done immedi-

ately and, using (4.26) for ¥, we obtain

fe:—%fdgbe‘iq‘b(e 2ix(b)—1), (4.28)

with the ""profile function”
b)=x(b,z =) V(b,z) 4.29
X(6)=x - (4.29)

Since x is azimuthally symmetric, we can perform the azimuthal
integration in (4.28) and obtain our final expression for the eikonal
scattering amplitude,
fe=—ik [bdbJo(gb)(e®X®)-1). (4.30)
0

In deriving this expression, we have used the identity (compare
with Eq. (4.22))

1 2m '
Jolgb)= 5 [e e=ssag,



4.3 Born and eikonal approxrimalions to quantum scatlering

Note that in contrast to fz, f., depends upon both £ (through k)
and q.

An important property of the exact scattering amplitude is the
optical theorem, which relates the total cross section to imaginary
part of the forward scattering amplitude. After a bit of algebra,
one can show that f, satisfies this relation in the limit that the
incident momentum becomes large compared to the length scale
over which the potential varies:

o=4;cilmf (g=0)=8n [bdb sin?y(b). (4.31)

0 .
The Born approximation cannot lead to a scattering amplitude
that respects this relation, as Eq. (4.21) shows that fz is purely
real. It is also easy to show that, in the extreme high-energy limit,
where k >« and x becomes small, the Born and eikonal amplitudes
become equal (see Exercise 4.5). The eikonal formula (4.30) also
can be related to the usual partial wave expression for f (see
Exercise 4.8).

One practical application of the approximations discussed
above is in the calculation of the scattering of high-energy elec-
trons from neutral atoms. In general, this is complicated multi-
channel scattering problem since there can be reactions leading
to final states in which the atom is excited. However. as the reac-
tion probabilities are small in comparison to elastic scattering, for
many purposes the problem can be modeled by the scattering of
an electron from a central potential. This potential represents the
combined influence of the attraction of the central nuclear charge
(Z) and the screening of this attraction by the Z atomic electrons.
For a neutral target atom, the potential vanishes at large dis-
tances faster than r~!. A very accurate approximation to this
potential can be had by solving for the self-consistent Hartree-
Fock potential of the neutral atom, as was done in Project IIIL
However, a much simpler estimate can be obtained using an
approximation to the Thomas-Fermi model of the atom given by
Lenz and Jensen [ Go49]:

_Ze?
o

V= e Z(1+x +box2+bsx3+b 2%); (4.32a)
with
e?=14.409; b,=0.3344; b3=0.0485; b,=2.647x1073; (4.32b)
and
r=4539721/6p1/2 (4.32¢)

Here, the potential is measured in €V and the radius is measured
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in A. Note that there is a possible problem with this potential,
since it is singular as »~! at the origin, and so leads to a divergent
expression for y at b=0. However, if the potential is regularized
by taking it to be a constant within some small radius 7,,,, (say
the radius of the atoms 1s shell), then the calculated cross section
will be unaffected except at momentum transfers large enough so
that g7, >>1.

Our goal is to compute the Born and eikonal approximations
to the differential and total cross sections for a given central
potential at a specified incident energy, and in particular for the
potential (4.32). To do this, we must compute the integrals (4.21),
(4.29), and (4.30) defining the scattering amplitudes, as well as the
integral (4.19) for the total cross section. The BASIC program for
Example 4, whose source code is given in Appendix B, as well as in
the file EXAM4.BAS on the Computational FPhysics diskette, does
these calculations and graphs the results on a semi-log plot; the
total cross section given by the optical theorem, Eq. (4.31), is also
calculated.

The incident particle is assumed to have the mass of the elec-
tron, and, as is appropriate for atomic systems, all lengths are
measured in A and all energies in eV. The potential can be chosen
to be a square well of radius 2R, a gaussian well of the form

V(r)=—Vge 2",

or the Lenz-Jensen potential (4.32). All potentials are assumed to
vanish beyond 2 A. Furthermore, the »~! singularity in the Lenz-
Jensen potential is cutoff inside the radius of the 1s shell of the
target atom.

Because the differential cross sections become very peaked in
the forward direction at the high energies where the Born and
eikonal approximations are valid, the integration over cos @ in Eq.
(4.19) is divided into two regions for a more accurate integration
of the forward peak. One of these extends from 8=0 to 8=8,,;,
where

Yot Flout =RMT=k Ry SINY0 ooyt

and Ry is 1 A for the Lenz-Jensen potential and 2 X for either the
square- or gaussian-well potentials, and the other extends from
Oyt to m. All integrals are done by Gauss-Legendre quadrature
using the same number of points, and the Bessel function of order
?ero) required by Eq. (4.30) is evaluated using the approximations
4.4).

The following exercises are aimed at improving your under-
standing of this program and the physics it describes.
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Exercise 4.5 Verify the algebra in the derivations above. Show that
in the limit of very high energies, where x is small, so that siny”,
the Born and eikonal results are identical. Also prove that the
eikonal amplitude satisfies the optical theorem (4.31) in the limit
where the incident momentum becomes large in comparison with
the length scale of the potential.

Exercise 4.6 Show that if the conventional expression for f in
terms of a sum over partial waves (Eq. (IV.4) below) is approxi-
mated by an integral over L (or, equivalently, over b=1l/k) and the
small-8 / large-l approximation :

PL(COS Q)NJO(l 9)

is used, Eq. (4.30) results, with the identification x(b)=0;. Investi-
gate, either numerically or analytically, the validity of this relation
between the Bessel function of order 0 and the Legendre polynomi-
als.

Exercise 4.7 Test the Born approximation cross sections generated
by the code by comparing the numerical values with the analytical
Born results for a square or gaussian well of depth 20 eV and for
varying incident energies from 1 eV to 10 keV. Verify for these
cases that y(b) as computed by the code has the expected values.
Investigate the variation of the numerical results with changes in
the number of quadrature points. (Note that only particular values
of N are allowed by the subroutine generating the Gauss-Legendre
abscissae and weights.)

Exercise 4.8 Fix the depth of a square well at 20 eV and calculate
for various incident energies to get a feeling for how the
differential and total cross sections vary. Compare the square well
cross sections with those of a gaussian well of comparable depth
and explain the differences. Show that the Born and eikonal
results approach each other at high energies for either potential
and that the optical relation for the eikonal amplitude becomes
better satisfied at higher energies.

Exercise 4.9 Using the Lenz-Jensen potential and a fixed charge
and incident energy, say Z=50 and E=1000 eV, investigate the
sensitivity of the calculation to the number of quadrature points
used and to the small-r regularization of the potential. Calculate
the cross sections for various Z ranging from 20 to 100 and for £
ranging from 10 eV to 10 keV; interpret the trends you observe.
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Exercise 4.10 Use the program constructed in Project I to calcu-
late the classical differential cross section for electrons scattering
from the Lenz-Jensen potential for various Z and incident ener-
gies. Compare the results with the Born and eikonal cross sec-
tions. Can you establish an analytical connection between the clas-
sical description and the quantum approximations? (See [Ne66]
for a detailed discussion.)

Project IV: Partial wave solution of quantum scattering

In this project, we will use the method of partial waves to solve
the quantum scattering problem for a particle incident on a cen-
tral potential, and in particular consider the low-energy scattering
of electrons from neutral atoms. The strategy of the method is to
employ a partial wave expansion of the scattering wavefunction to
decompose the three-dimensional Schroedinger equation (4.18)
into a set of uncoupled one-dimensional ordinary differential equa-
tions for the radial wavefunctions; each of these is then solved as a
boundary-value problem to determine the phase shift, and hence
the scattering amplitude.

IV.1 Partial wave decomposition of the wavefunction

The standard partial wave decomposition of the scattering
wavefunction ¥ is
By (r)

()= (2L+1)ite s

Z e ————P;(cos@), (IV.1)

When this expansion is substituted into the Schroedinger equation
(4.18), the radial wavefunctions /; are found to satisfy the radial
differential equations

[ 52 g2 2
4y + Y g (r)=0. (IV.2)
_m dy? 2mr?

Although this is the same equation as that satisfied by a bound
state wavefunction, the boundary conditions are different. In par-
ticular, K vanishes at the origin, but it has the large-r asymptotic
behavior

R, -»kr[cosb,;j;, (kr)—sind;n,; (kr)] , (Iv.3)

where j; and m; are the regular and irregular spherical Bessel
functions of order L. (See Exercise 4.3.)

The scattering amplitude J isrelated to the phase shifts §; by
Z (2L +1)e*%siné, P, (cos®), (IV.4)
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and the total cross section is easily found from Eq. (4.19) and the
orthogonality of the Legendre polynomials, (4.10):
o=2T_ 3 (21 +1)sin25,. (IV.5)
k? =0

Although the sums in (IV.4,5) extend over all L, they are in
practice limited to only a finite number of partial waves. This is
because, for large I, the repulsive centrifugal potential in (IV.2) is
eflective in keeping the particle outside the range of the potential
and so the phase shift is very small. If the potential is negligible
beyond a radius 7,,, an estimate of the highest partial wave that
is important, l,,,,, can be had by setting the turning point at this
radius. Thus,

2mr2,. -

which leads to l,4,~kTpme.- This estimate is usually slightly low,
since penetration of the centrifugal barrier leads to non-vanishing
phase shifts in partial waves somewhat higher than this.

IV.2 Finding the phase shifts

To find the phase shift in a given partial wave, we must solve
the radial equation (IV.2), using, for example, the Numerov method
discussed in Chapter 3. Although the boundary conditions
specified by (IV.3) and the vanishing of R at the origin are non-
local, we can still integrate the equation as an initial value prob-
lemm. This is because the equation is linear, so that the boundary
condition at large r can be satisfied simply by appropriately nor-
malizing the solution.

If we put E;(r=0)=0 and take the value at the next lattice
point, K;(r=h), to be any convenient small number (® will gen-
erally rise rapidly through the centrifugal barrier and so we must
avoid overflows), we can integrate outward in = to a radius
r(l)>7'm. (See Figure IV.1.) Here, V vanishes and F must be a
linear combination of the free solutions, krj;(kr) and krn; (kr):

RW=4krD[cos 6, j; (kr(D)—sind; n, (kr{)]. (Iv.8)

Although the constant A depends upon the value chosen for
R(r=h), it is largely irrelevant for our purposes; however, it must
be kept small enough so that overflows are avoided.

Knowing only R D does not allow us to solve for the two unk-
nowns, A and 6;. However, if we continue integrating to a larger
radius »®>r() then we also have
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Figure IV.1 (Upper) Schematic centrifugal potential
(dashed line) and effective total potential (solid line) in
a partial wave 1>0. The incident energy is also shown
(horizontal line), as are the range of the potential
(7 ) and the two matching radii, 7(1) and »®. (Lower)
Schematic scattering wavefunction, R; (solid line), and
free wavefunction, krj; (dashed line), for the same si-

tuation.
R ®=Akr®)cos 8, j; (kr®)—sins; n, (kr(?)]. (IV.7)
Equations (IV.8,7) can then be solved for §;. After a bit of algebra,
we have

Gj V-5, r(Dp,(2)
oD@ T @RM

tanél = (IV8)
where j(D=j,(kr(1), etc. Note that this equation determines §,
only within a multiple of m, although this does not affect the physi-
cal observables (see Egs. (IV.4,5)). The correct number of 7's at a
given energy can be determined by comparing the number of
nodes in K and in the free solution, krj;, which occur for r<7r,,,, .
With the conventional definitions we have used, the phase shift in
each partial wave vanishes at high energies and approaches N;m at
zero energy, where N, is the number of bound states in the poten-
tial in the L’th partial wave.
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IV.3 Solving the equations

Our goal in a numerical treatment of this problem is to investi-
gate the scattering of electrons with energies from 0.5 eV to 10
keV from the potential (4.32); a radius 7,,.,=2 A is reasonable.
For the charge Z and energy FE specified, the program should cal-
culate the phase shift and plot the radial wavefunction for each
important partial wave, and then sum the contributions from each
l to find the total cross section and the differential cross section
as a function of & from 0° to 180°, say in 5° steps. This program
can be constructed and exploited in the following sequence of
steps.

Step 1 Write a subroutine that computes the values of the Legen-
dre polynomials for the degrees and angles required and stores
them in an array. (See Eq. (4.1).) Also write a subroutine that com-
putes j; and m; for a given value of z. (See Exercise 4.3). Check
that these routines are working correctly by comparing their
results with tabulated values.

Step 2 Write a subroutine that calculates the phase shift in a
specified partial wave. Use the Numerov method to integrate to
1) and then to 7® and then determine the phase shift from Eq.
(IV.8). Note that if 73 is too close to (1), problems with numeri-
cal precision may arise (both the numerator and denominator of
(IV.8) vanish), while if there is too great a distance between the
matching radii leads to wasted computation. Check that your sub-
routine is working properly by verifying that the calculated phase
shift vanishes when V(r) is set to 0 and that it is independent of
the choice of the matching radii, as long as they are greater than
Tmaz - Also check that the phase shifts you find for a square-well
potential agree with those that you can calculate analytically. Note
that since quite a bit of numerical work is involved in the calcula-
tion of the Lenz-Jensen potential (4.32), it is most efficient if the
values of V at the lattice points are stored in an array to be used
in the integration of all important partial waves.

Step 3 Write a main program that, for a given charge and energy,
calls the subroutines you have constructed in performing the sum
over partial waves to calculate the total and differential cross sec-
tions. Note that since BASIC does not support complex arithmetic,
you must compute the real and imaginary values of the scattering
amplitude separately. Verify that your estimate of ,,,, is reason-
able in that all non-vanishing phase shifts are computed but that
no computational effort is wasted on partial waves for which the
phase shift is negligible.
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Figure IV.2 Weakly-bound levels of the Lenz-Jensen po-

tential. Levels with a negative parity (p and f) are
shown by dashed curves.

Step 4 Study the cross section as a function of energy for a several
Z, say 20, 50, and 100. Show that, at low energies, resonances
occurring in particular partial waves make the angular distribu-
tions quite complex and the total cross sections very energy-
dependent, but that all quantities become smooth and monotonic
at high energies. Tabulations of experimental data with which to
compare your results are given in [Ki71]. Also compare your high
energy results with the Born and eikonal approximations gen-
erated by the program in Example 4.

Step 5 To understand the low-energy resonances, consider Figure
IV.2, which gives the energies of weakly bound levels in the Lenz-
Jensen potential as a function of Z. By studying the cross section
at a fixed energy of 5 eV as a function of Z, show that the regions
near /=46 and Z=59 reflect the extensions of the 2p and 1d
bound states into the continuum. By examining the Z=589 cross
section, angular distribution, phase shifts, and radial wavefunc-
tions as functions of energy near £=5 eV, show that the resonance
is indeed in the [ =2 partial wave. Note that since the Lenz-Jensen
potential is based on the Thomas-Fermi approximation, it is not
expected to be accurate in the outer region of the atom. The reso-
nance energies and widths you find therefore differ quantitatively
from those that are found in experiment.

Step 6 Use the Hartree-Fock code from Project III to generate the
direct potential, ¢, for the neutral Ne atom and modify your
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program to calculate the scattering of electrons from this poten-
tial. Note that when the energy of the incident electron is large, it
is easily "'distinguishable” from the electrons in the atom, and so
any effects of the Fock (exchange) potential will be small. Com-
pare your results with those produced with the Lenz-Jensen poten-
tial. A further discussion of the electron-atom scattering problem
can be found in [Bo74].






Chapter 5

Matrix
Operations

Linearization is a common assumption or approximation in
describing physical processes and so linear systems of equations
are ubiquitous in computational physics. Indeed, the matrix mani-
pulations associated with finding eigenvalues or with solving simul-
taneous linear equations are often the bulk of the work involved in
solving many physical problems. In this chapter, we will discuss
briefly two of the more non-trivial matrix operations: inversion and
diagonalization. QOur treatment here will be confined largely to
"direct’” methods appropriate for ""dense” matrices (where most of
the elements are non-zero) of dimension less than several hun-
dred; iterative methods for treating the very large sparse
matrices that arise in the discretization of ordinary and partial
differential equations will be discussed in the following two
chapters. As is the case with the special functions of the previous
chapter, a variety of library subroutines employing several
different methods for solving matrix problems are usually avail-
able on any large computer. Our discussions here are therefore
limited to selected basic methods, to give a flavor of what has to
be done. More detailed treatments can be found in many texts, for
example [Ac70] and [Bu81].

5.1 Matrix inversion

Let us consider the problem of inverting a square (NXN)
matrix A. This might arise, for example, in solving the linear sys-
tem

Ax=b, (5.1)

for the unknown vector x, where b is a known vector. The most
natural way of doing this is to follow our training in elementary
algebra and use Cramer’s rule; i.e., to evaluate A~! is being pro-
portional to the transpose of the matrix of cofactors of A. To do
this, we would have to calculate N? determinants of matrices of
dimension (N—1)X(N—1). If these were done in the most naive way,
in which we would evaluate

detA=)(-)"A1p14zps - - - Anpw. (5.2)
P
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for the determinant of the NXN matrix A, where P is one of the N!
permutations of the N columns, Pi is the 1'th element of P, and
(—) is the signature of P, then the numerical work would be
horrendous. For example, of order N! multiplications are required
to evaluate (5.2). For N=20, this is some 2x10!® multiplications.
On the fastest computer currently available, 108 multiplications
per second might be possible, so that some 103 years are required
just to invert this one 20x20 matrix! Clearly, this is not the way to
evaluate determinants {(or to invert matrices, as it turns out).

One of the simplest practical methods for evaluating A~! is the
Gauss-Jordan method. Here, the idea is to consider a class of ele-
mentary row operations on the matrix A. These involve multiply-
ing a particular row of A by a constant, interchanging two rows, or
adding a multiple of one row to another. Each of these three
operations can be represented by left-multiplying A by a simple
matrix, T. For example, when N=3, the matrices

100 lb1o [1 00
o010, 1oo], and |0 10 (5.3)
o002 lbo1 % 0 1

will multiply the third row by 2, interchange the first and second
rows, and subtract one-half of the first row from the third row,
respectively. The Gauss-Jordan strategy is to find a sequence of
such operations,

T= - - T3TT,
which, when applied to A, reduces it to the unit matrix. That is,
TA:( e T3T2T1)A:I, (54)

so that T=A"! is the required inverse. Equivalently, the same
sequence of operations applied to the unit matrix yields the
inverse of A

How to actually find the appropriate sequence of row opera-
tions is best illustrated by example. Consider the 3Xx3 matrix A
and the unit matrix:

[t 21 [t oo
A=4 2 2|; I=]0 1 0Of. (5.5a)
2 4 1 001

We first apply transformations to zero all but the first element in
the first column of A. Subtracting 4 times the first row from the
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second yields

h 2 1 [1 00
TA=|0 -6 —2|: TI=|-4 1 0|, (5.5b)
2 4 1 0 01

and then subtracting twice the first row from the third yields

1 21 [1 00
TA=|0 —6 —2[; TI=|—4 1 0]. (5.5¢)
0 0 -1 —2 1

We now go to work on the second column, where, by adding :15— of

the second row to the first, we can zero all but the second ele-
ment:

1 0 13 [-1/3 1/3 0
TA=|0 -6 —-2|; TI=| —4 1 0}, (5.5d)
0 0 -1 —2 0 1

and, multiplying the second row by ——é— yields

1 0 1/3 [L1/3 1/3 0
TA=|0 1 1/3|; TI=|2/3 -1/6 0O|. (5.5€)
00 -1 -2 0 1

Finally, we can reduce the third column of TA to the required form

by adding é— of the third row to the first and second rows, and

then multiplying the third row by -1:

[t oo [-1 1/3 1/3
TA=|0 1 Of; TI=|0 -1/6 1/3|. (5.5f)
001 2 0 -1

This finds the required inverse.

A moment’s thought shows how this algorithm can be general-
ized to an NxXN matrix and that, when this is done, it requires, for
large N, of order N3 multiplications and additions. Thus, it is
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computationally tractable, as long as N is not too large.

In practice, several subtleties are important. For example, it
might happen that, at some point in the procedure, the diagonal
element of TA vanishes in the column we are working on. In this
case, an interchange of two rows will bring a non-vanishing value to
this "pivot’ element (if no such row interchange can do this, then
the matrix A is singular). In fact, numerical accuracy requires that
rows be interchanged to bring into the pivot position that element
in the column being worked on which has the largest absolute
value Problems associated with numerical round-off can also arise
during the inversion if elements of the matrix differ greatly in
magnitude. For this reason, it is often useful to scale the rows or
columns so that all entries have roughly the same magnitude
("equilibration’”). Various special cases (such as when A is sym-
metric or when we are only interested in solving (5.1) for b and not
for A~1 itself) can result in reductions of the numerical work. For
example, in the latter case, we can apply T only to the vector b,
rather than to the whole unit matrix. Finally, if we are interested
in computing only the determinant of A, successive row transfor-
mations, which have a simple and easily calculable effect on the
determinant, can be used to bring TA to lower or upper diagonal
form (all elements vanishing above or below the diagonal, respec-
tively), and then the determinant can be evaluated simply as the
product of the diagonal elements.

Exercise 5.1 Use Eq. (56.2) to show that interchanging the rows of a
matrix changes the sign of its determinant, that adding a multiple
of one row to another leaves its determinant unchanged, and that
multiplying one row by a constant multiplies the determinant by
that same constant.

Exercise 5.2 Write (or just flowchart) a subroutine that will use the
Gauss-Jordan method to find the inverse of a given matrix. Incor-
porate pivoting as described above to improve the numerical accu-
racy.

5.2 Eigenvalues of a tri-diagonal matrix

We turn now to the problem of finding the eigenvalues and
eigenvectors of an NXN matrix A; that is, the task of finding the N
scalars A, and their associated N-component vectors ¢, which
satisfy

App =N, @n - (5.8)

Equivalently, the eigenvalues are zeros of the N'th degree charac-
teristic polynomial of A:
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P, (\)=det(A—AT)= f:ll(;\n ). (5.7)

For simplicity, we will restrict our discussion to matrices A which
are real and symmetric, so that the eigenvalues are always real
and the eigenvectors can be chosen to be orthonormal; this is the
most common type of matrix arising in modeling physical systems.
We will also consider only cases where all or many of the eigen-
values are required, and possibly their associated eigenvectors. If
only a few of the largest or smallest eigenvalues of a large matrix
are needed, then the iterative methods described in Section 7.4,
which involve successive applications of A or its inverse, can be
more efficient.

The general strategy for diagonalizing A is to reduce the task
to the tractable one of finding the eigenvalues and eigenvectors of
a symmetric tri-diagonal matrix; that is, one in which all elements
are zero except those on or neighboring the diagonal. This can
always be accomplished by applying a suitable sequence of orthog-
onal transformations to the original matrix, as described in the
next section. For now, we assume that A has been brought to a
tri-diagonal form and discuss a strategy for finding its eigenvalues.

To find the eigenvalues of a symmetric tri-diagonal matrix, we
must find the roots of the characteristic polynomial, (5.7). This
polynomial is given in terms of the elements of A by the deter-
minant

Ay—A Agg
Agy  Age—A  Ags
Azp  Azz—A
Py(N)= Agg ., (56.8)

Ay_yn—1—A Ayx_n
Ayn—1  Ayn—A

where all elements not shown explicitly are zero and where the
symmetry of A implies that 4,,, =An,. To find the zeros of P,, any
of the root finding strategies discussed in Section 1.3 can be
employed, providing that we can find the numerical value of P, for
a given value of A. This latter can be done conveniently in a recur-
sive manner. Let P,(A) be the value of the nxn sub-determinant
of (5.8) formed from the first n rows and columns. Clearly, P, is a
polynomial of degree n, Py=P, (the polynomial we are after), and

Pi(N=4,—N Pz(x):(Azz_?\)Pl()\)’Alzz- (5.9)
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Moreover, by expanding the determinant for £, in terms of the
minors of the n'th column, it is easy to derive the recursion rela-
tion

Pn ()\)‘_'(Ann —7\)]3.,,__1(7\) _A'rgn—lpn—z()\)- (5- 10)

This, together with the starting values (5.9), allows an efficient
evaluation of P,.

Exercise 5.3 Prove Eq. (5.10) above.

Several features of the problem above help considerably in
finding the roots of P,. If an algorithm like Newton's method is
used, it is quite easy to differentiate (5.10) once or twice with
respect to A and so derive recursion relations allowing the simple
evaluation of the first or second derivatives of P,(\). More impor-
tantly, it is possible to show that the number of times the sign
changes in the sequence

L, Py(A), Pa(A), -~ -, Py(A)

is equal to the number of eigenvalues less than A. This fact is use-
ful in several ways: it is a means of making sure that no roots are
skipped in the search for eigenvalues, it provides a simple way of
localizing a root initially, and it can be used with the simple search
procedure to locate the root accurately, although perhaps not in
the most efficient way possible.

To make a systematic search for all of the eigenvalues (roots
of P,), it is essential to know where to begin looking. If we are
working through finding the entire sequence of eigenvalues, a
natural guess for the next-highest one is some distance above that
eigenvalue just found. Some guidance in how far above and in how
to estimate the lowest eigenvalue can be found in Gerschgorin’s
bounds on the eigenvalues. It is quite simple to show that

Aw=min {Au—g_ |4y 1}. (5.11a)
F#i
and that
An<max {Am > 14y I] (5.11b)
T J#i

for all n. For the tri-diagonal forms under consideration here, the
sums over J in these expressions involve only two terms. The
lower bound, Eq. (5.11a), is a convenient place to begin a search
for the lowest eigenvalue, and the difference between the upper
and lower bounds gives some measure of the average spacing
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between eigenvalues.

Exercise 5.4 Write a subroutine that finds all of the eigenvalues of
a tri-diagonal matrix using the procedure described above,
together with any root-finding algorithm you find convenient. Test
your subroutine on an NXN tri-diagonal matrix of the form

Apn =R App_17An_1n=+1,

whose eigenvalues are known analytically to be

nm

=— in® |———"___
A PTo ey

9.3 Reduction to tri-diagonal form

To apply the method for finding eigenvalues discussed in the
previous section, we must reduce a general real symmetric matrix
A to tri-diagonal form. That is, we must find an orthogonal NxN
matrix, 0, satisfying

0t0=00t=1, (5.12)

where O! is the transpose of O, such that 0O'AQ is tri-diagonal. Ele-
mentary considerations of linear algebra imply that the eigen-
values of the transformed matrix are identical to those of the ori-
ginal matrix. The problem, of course, is to find the precise form of
O for any particular matrix A. We discuss in this section two
methods for effecting such a transformation.

The Householder method is a common and convenient strategy
for reducing a matrix to tri-diagonal form. It takes the matrix O
to be the product of N—2 orthogonal matrices,

0=0,0; - - - Oy_s. (5.13)

each of which successively transforms one row and column of A
into the required form. (Only N—2 transformations are required as
the last two rows and columns are already in tri-diagonal form.) A
simple method can be applied to find each of the O,.

To be more explicit about how the Householder algorithm
works, let us consider finding the first orthogonal transformation,
0,, which we will choose to annihilate most of the first row and
column of A; that is,

Ay, kM o0 -0
() AR AR - ALY
O!A0,=[ 0 A A - A . (5.14)

6 ,4,@ A,@ A;W
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Here, k(1 is a possibly non-vanishing element and the matrix A(®
is the result of applying the transformation 0; to the last N—1
rows and columns of the original matrix A. Once 0, is found and
applied (by methods discussed below), we can choose 05 so that it
effects the same kind of transformation on the matrix A%z); that is,
it annihilates most of the first row and column of that matrix and
transforms its last N—2 rows and columns:

A k® o ... 0
kO 4D 4D - AR

0iA®0,=| 0 AfP AfP --- Aff]. (5.15)

.

0 A AR - AW

Continued orthogonal transformations of decreasing dimension
defined in this way will transform the original matrix into a tri-
diagonal one after a total of N—2 transformations, the diagonal
elements of the transformed matrix being

Ay, AR, AR, - AR, ARV,
and the off-diagonal elements being
]c(l)' k(2), ce k(N-1)

It remains, of course, to find the precise form of each of the
0,,. We illustrate the procedure with 0,, which we take to be of the

form
1 ot
0= , (5.18)
0 P
where 0 is an N—1-dimensional column vector of zeros, 0! is a

similar row vector, and P is an (N—1)x(N—1) symmetric matrix
satisfying

Pe=] (5.17)

if O is to be orthogonal. (In these expressions and the following, for
simplicity we have dropped all superscripts and subscripts which
indicate that it is the first orthogonal transformation of the
sequence (5.13) which is being discussed.) A choice for P that
satisfies (5.17) is

P=I-2uut. (5.18)
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In this expression, I is the N—1-dimensional unit matrix, u is an
N —1-dimensional unit vector satisfying

utu=1, (5.19)

and the last term involves the outer product of u with itself. Each
element of (5.18) therefore reads

Prm =0pm —RUyp Uy,

where n and m range from 1 to N—1. (It should cause no confu-
sion that the indices on P and u range from 1 to N—1, while those
on the full matrices O and A range from 1 to N.)

Under a transformation of the form (5.16), A becomes

[
1 (Pa)t
OtAO= : (5.20)
Pa A®
where we have defined an N—1-dimensional vector a as all ele-
ments but the first in the first column of A; that is, a;=4;4;, for 1
ranging from 1 to N—1. Upon comparing (5.20) with the desired
form (5.14), it is apparent that the action of P on this vector must
yield
Pa=a—2u(uta)=k, ' (5.21)
where k is the vector
k=[k,0,0, - - - ,0]t.

Equation (5.21) is what we must solve to determine u, and
hence the required transformation, P. To do so, we must first find
the scalar k, which is easily done by taking the scalar product of
(5.21) with its transpose and using the idempotence of P:

N
k'k=k?=(Pa) (Pa)=ata=0oP= )} 43, (5.22)
i=2
so that k=+«a. Having found k (we will discuss the choice of the
sign in a moment), we can then rearrange (5.21) as

a—k=2u{u'a). (5.23)

Upon taking the scalar product of this equation with itself, using
a‘k=+A,,a, and recalling (5.22), we have

2(uta)?=(0F 45,a), (5.24)
so that we can then solve (5.21) for u:
_ a—k
u= .
2(uta)

(5.25)
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This completes the steps necessary to find P. To recapitulate,
we first solve (5.22) for k, then calculate the square of the scalar
product (5.24), form the vector u according to (5.25), and then
finally P according to (5.18). In evaluating (5.24), considerations of
numerical stability recommend taking that sign which makes the
right-hand side largest. Note that we need evaluate only the
square of the scalar product as the vector u enters P bilinearly.
Note also that a full matrix product need not be performed in
evaluating A®. Indeed, from (5.18,20) we have

AR =(1—2uut)A(1—-2uut)
=A—2u(Au)'—2(Au)ut+4uut(utiu), (5.26)

where the symbol A in this expression stands for the square sym-
metric matrix formed from the last N—1 rows and columns of the
original matrix. Thus, to evaluate A(z), once we have the vector u
we need only calculate the vector Au and the scalar utAu. Finally,
we note that numerical stability during the successive transforma-
tions is improved if the diagonal element having largest absolute
magnitude is in the upper left-hand corner of the sub-matrix being
transformed. This can always be arranged by a suitable inter-
change of rows and columns (which leaves the eigenvalues invari-
ant) after each of the orthogonal transformations is applied.

Exercise 5.5 By writing either a detailed flowchart or an actual
subroutine, convince yourself that you understand the House-
holder algorithm described above.

With an algorithm for transforming A to tri-diagonal form, we
have specified completely how to find the eigenvalues of a real
symmetric matrix. Once these are in hand, the eigenvectors are a
relatively simple matter. The method of choice, inverse vector
iteration, works as follows. Let go,(,l) be any guess for the eigenvec-
tor associated with A,,. This guess can be refined by evaluating

@ 2=[A—(\, +&)I] 1. (5.27)

Here, ¢ is a small, non-zero scalar that allows the matrix to be
inverted. It is easy to see that this operation enhances that com-
ponent of @£l along the true eigenvector at the expense of the
spurious components. Normalization of gp,(zz), followed by repeated
refinements according to (5.27) converges quickly to the required
eigenvector, often in only two iterations.

An alternative to the Householder method is the Lanczos algo-
rithm [Wh77], which is most suitable when we are interested in
many of the lowest eigenvalues of very large matrices. The stra-
tegy here is to construct iteratively a set of orthonormal basis
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vectors, {¥,}, in which A is explicitly tri-diagonal. To begin the
construction, we choose an arbitrary first vector in the basis, ¥4,
normalized so that ¢iy,=1. We then form the second vector in the
basis as

VYo=Ca(AY,—411¥1), (5.28)

where A;;=¥{Ay¥, (it is not the element of A in the first row and
column), and Cy is a normalization chosen to ensure that Yiy,=1:

C’2=[(A'§(’1)t(A'il’1)_(1411)2]_}é (5.29)

It is easy to show that ¥iy¥,=0. Subsequent vectors in the basis
are then constructed recursively as

VYn+1=Cn+1(AVp —App Y — A — 1V —1), (5.30)
with
Cor1 = (AW ) (AP ) —(Ann )R (Apn—1)?] %, (5.31)

Thus, each successive 9, ,, is that unit vector which is coupled to
¥n by A and which is orthogonal to both ¢,, and ¥,,_;. The matrix A
is explicitly tri-diagonal in this basis since Eq. (5.30) shows that
when A acts on ¥, it yields only terms proportional to ¥,,, ¥,
and Y, +1. Continuing the recursion (5.30) until ¥, is generated
completes the basis and the representation of Ain it.

The Lanczos method is well-suited to large matrices, as only
the ability to apply A to a vector is required, and only the vectors
Yn, Yn-1, and A¥, need be stored at any given time. We must, of
course, also be careful to choose 9, so that it is not an eigenvector
of A. However, the Lanczos method is not appropriate for finding
all of the eigenvalues of a large matrix, as round-off errors in the
orthogonalizations of (5.30) will accumulate as the recursive gen-
eration of the basis proceeds; i.e., the scalar products of basis vec-
tors with large n with those having small n will not vanish identi-
cally.

The real utility of the Lanczos algorithm is in cases where
many, but not all, of the eigenvalues are required. Suppose, for
example, that we are interested in the 10 lowest eigenvalues of a
matrix of dimension 1000. What is done is to generate recursively
some number of states in the basis greater than the number of
eigenvalues being sought (say 25), and then to find the 10 lowest
eigenvalues and eigenvectors of that limited sub-matrix. If an arbi-
trary linear combination (say the sum) of these eigenvectors is
then used as the initial vector in constructing a new basis of
dimension 29, it can be shown that iterations of this process (gen-
erating a limited basis, diagonalizing the corresponding tri-
diagonal matrix, and using the normalized sum of lowest
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eigenvectors found as the first vector in the next basis) will con-
verge to the required eigenvalues and eigenvectors.

Exercise 5.6 Write a subroutine that uses the Lanczos method to
generate a complete basis in which a symmetric input matrix A is
tri-diagonal. The program should output the diagonal and off-
diagonal elements of A in this basis, as well as the basis vectors
themselves. Show by explicit example that if the dimension of the
matrix is too large, round-off errors cause the basis generated to
be inaccurate. Try curing this problem by doing the computation
in double-precision arithmetic and observe the results.

Exercise 5.7 A simple limit of the Lanczos procedure for generat-
ing and truncating the basis is when we are interested in only the
lowest eigenvalue and retain only ¥; and 95 to form a 2x2 matrix
to be diagonalized. Show that the lower eigenvalue of this matrix
is always less than or equal to A,;, so that iterations of the pro-
cedure lead to a monotonically decreasing estimate for the lowest
eigenvalue of A. This procedure is closely related to the time-
evolution algorithm discussed in Section 7.4.

5.4 Determining nuclear charge densities

The distribution of electrical charge within the atomic nucleus
is one of the most basic aspects of nuclear structure. The interac-
tions of electrons and muons with the nucleus can be used to
determine this distribution with great precision, as these particles
interact almost exclusively through the well-understood elec-
tromagnetic interaction (for a general discussion, see [Fo66]). In
this example, we will explore how the experimentally determined
cross sections for the elastic scattering of high-energy (several
100 MeV) electrons from nuclei can be analyzed to determine the
nuclear charge distribution; the method relies on the solution of a
set of linear equations by matrix inversion.

To illustrate the basic idea, we begin by considering the
scattering of non-relativistic electrons of momentum % and cnergy
F from a localized charge distribution, p(r), which contains Z pro-
tons, so that

fdrp(r):Z, (5.32)

and which is fixed in space. The electrons interact with this
charge distribution through the Coulomb potential it generates,
V(r), which satisfies Poisson's equation,

VRV=4muap, (5.33)

where a=1/137.036 is the fine structure constant. (We henceforth
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work in units where Ai=c =1, unless explicitly indicated, and note
that Ac =197.329 MeV—fm.)

The Born approximation to quantum scattering discussed in
the previous chapter illustrates how electron scattering cross sec-
tions carry information about the charge distribution, although
precision work requires a better approximation to the scattering,
as discussed below. Equations (4.18, 4.21) show that the Born cross
section for scattering through an angle 6 is proportional to the
square of the Fourier transform of the potential at the momentum
transfer q, where ¢=2ksin¥%@. The Fourier transform of (5.33)
results in

v<q)=—4;;‘ p(a), (5.34)
where

p(@)=fdre*a%(r) (5.35)

is the Fourier transform of the charge density. Thus, the
differential cross section can be written as (we use ¢ as a short-
hand notation for do/ dQQ):

0=0pytn | F (@) |2 (5.36)
Here, the Rutherford cross section for scattering from a point
charge of strength 7 is

422 2m2
ommz_.%__, (5.37)

m is the electron mass, and the nuclear 'form factor' is
F(qQ=Z"'p(q). For the spin-0 nuclei we will be considering, the
charge density is spherically symmetric, so that p(r)=p(r), and

_ _4m y .
F(q)—F(q)——Z?{drr singr p(r). (5.38)

Equation (5.38) illustrates how electron scattering is used to
study nuclear structure. Deviations of the measured cross section
from the Rutherford value are a direct measure of the Fourier
transform of the nuclear charge density. It also shows that
scatterings at high momentum transfers are needed to probe the
nucleus on a fine spatial scale. As nuclear sizes are typically
several fermis (10713 cm), a spatial resolution better than 1 fm is
desirable, implying momentum transfers of several fm~! and so
beam energies of several hundred MeV. (Recall that 2k is the max-
imum momentum transfer which can be achieved with a beam of
momenium k .)
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At energies of several hundred MeV, the electron is highly rela-
tivistic (the electron mass is only 0.511 MeV) and so the discussion
above must be redone beginning with the Dirac equation rather
than the Schroedinger equation. One trivial change in the final
expressions that result is that ultra-relativistic kinematics are
used for the electron (i.e., its momentum is proportional to its
energy), so that the momentum transfer can be written as

q =2E'sink0. (5.39)
The only other modification to Eq. (5.368) is that the Rutherford
cross section is replaced by the Mott cross section,

4720RERcos? 46
=it |F(0) % = 20

where the additional factor of cos %6 in the scattering amplitude
arises from the spin-% nature of the electron.

Let us now consider how measured cross sections are to be
analyzed to determine the charge density. Suppose that we have a
set of I experimental values of the cross section for elastic
scattering of electrons from a particular nucleus at a variety of
momentum transfers (e.g., angular distributions at one or several
beam energies). Let these values be of and their statistical uncer-
tainties by A;. Suppose also that we parametrize the nuclear
charge density by a set of N parameters, (,, so that
p(r)=p(r;{C,}). Of course, the C's must be chosen so that the nor-
malization constraint (5.32) is satisfied. That is,

, (5.40)

z<zcn;)z4n,z r2o(ri{Ca))=7 . (5.41)

A specific choice for this parametrization will be discussed shortly.

The usual methods of data analysis [BeB69] state that the
"best’” values of the parameters (,, implied by the data are those
that minimize

; (5.42)

subject to the normalization constraint (5.41) above. Here, of is

the "theoretical” cross section calculated from the appropriate
Mott cross section and nuclear form factor; it depends parametri-
cally upon the C’s. This minimum value of ¥* measures the quality
of the fit, a satisfactory value being about the number of degrees
of freedom (the number of data points less the number of parame-
ters).
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There are several computational strategies for finding the
parameters which minimize ¥? or, equivalently, which satisfy the N
non-linear equations

gﬁ:
T 0. (5.43)

This is a specific example of the commonly encountered problem
of minimizing a non-linear function of several parameters; it is
often fraught with difficulties [Ac70], not the least of which is
finding a local minimum, rather than the global one usually
sought. Most strategies are based on an iterative refinement of a
"guess' for the optimal C,, and, if this guess is close to the
required solution, there is usually no problem. One commonly used
approach is to compute the direction of the N-dimensional gra-
dient (left-hand side of (5.43)) either analytically or numerically at
the current guess and then to generate the next guess by stepping
some distance in C-space directly away from this direction. Alter-
natively, a multi-dimensional generalization of the Newton-Rafson
method, Eq. (1.14), can be used. The simple approach we will adopt
here is based on a local linearization of y* about the current guess,
CY. For small variations of the C’s about this point,

C,=Co+6C,,
the theoretical cross sections can be expanded as
e

N
0‘.{:0',,9%' E Wmd(} ; WmEEF—,
n

n=1

so that x? is given by
{ N
=) (0f—0f= Y Win6Cy)?/ AR, (5.44)
1=1 n=1

where of is the theoretical cross section corresponding to the
current guess, C° The charge normalization constraint (5.41) can
be linearized similarly as

Z2(C =2+ 3" aag 5C, (5.45)

where we have assumed that the current guess is normalized prop-
erly, so that Z({C2)=2.

Equations for the 6C’s which make ¥ stationary can be had by
requiring
)
080G,

Here, we have used introduced a liagrange multiplier, 2A, to

(x*—2\Z)=0. (5.46)
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ensure the proper charge normalization. Some simple algebra
using Eqgs. (5.44,45) then results in the linear equations

N VA
Y} Um0 G =0, (5.47a)
mat oG,
N a7
O0Cpm, (5.47b)
Rrroee
with
L Wi Wi I (0':_019) Win
T = 2 P bp=)) (5.48)
™S AP " A7

For a given guess for the C's, Egs. (5.47) can be solved to
determine what change in the C’s will reduce x?, subject to the
validity of the linearization. The new improved values can then be
used as the next guess, the process being continued until x* con-
verges to a minimum. To solve Eqgs. (5.47), it is convenient to
define the (N+1)x(N+1) matrix

Apmn = Amn =Unm: Ap N+15 AN+ 1= a@g Ay +1,8+1=0, (5.4%)

and the N+1-component vector

(The indices m and m in these expressions range from 1 to N.)
Equations (5.47) can therefore be written as

N+1
E Apm 6 Cn =By, (5-50)
m=1
which is simply solved by inversion of the symmetric matrix A:

N+1 -1 N 1
=), AmBm= Y A bm- (5.51)
m=1 m=1

After the process described above converges to the optimal
values to the C’s, we can then enquire into the precision with
which the parameters are determined. This can be related to the
matrix A defined above as follows. Let us consider an ensemble of
data sets in which each experimental cross section fluctuates
independently about its mean value. That is,

<bofbo>= Afé (5.52)

where < - - - > denotes ensemble average, and dof is the deviation
of of from its mean value. Such fluctuations lead to fluctuations of
the C's about their optimal value. Since the b, are linearly
related to the experimental cross sections by (5.48), these
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fluctuations are given by (5.51) as
N N I SofW,
6Cn= E An_nidbm: 2 Annlzz '—‘b——gﬂ
m=1 m=1 1=1 A@
Upon using this equation twice (for 6C, and 6C,,) and taking the
ensemble average, we have, after some algebra,

<6C,06C,>=Apmt. (5.54)

The uncertainties in the density parameters can be translated into
a more physical statement about the correlated uncertainties in
the density itself by expanding the parametrized density about
the optimal parameters. In particular, the correlated uncertain-
ties in the densities at radii » and r' can be written as

N N !
<p(r)dp(r)>=3 3 ag’é,"”) "’gé,"') <6C,6C,>.  (5.55)
n=lm=1 n m

Thus, <8p(r)8p(r)>% can be taken as a measure of the precision
with which p(7) is determined, although it should be remembered
that the uncertainties in the density determined at different spa-
tial points are correlated through (5.55).

We now turn to the parametrization of p(r). On general
grounds (for example, the validity of treating the nucleus as a
sharp-surface, incompressible liquid drop), we expect the charge
density to be fairly uniform within the nuclear interior and to fall
to zero within a relatively thin surface region. This picture was
largely confirmed by early electron scattering experiments
[Ho57], although the measured cross sections extended only to
momentum transfers less than about 1.5 fm~1, which is barely
enough resolution to see the nuclear surface. Such data could
therefore yield only limited information, and a suitable form for
the density with only three parameters was found to be of the
form of a Fermi function:

(5.53)

Po

plr)= 4ot =R/t

as illustrated in Figure 5.1. Since it turns out that 4.4Ry/t>>1,
the parameter pgy is essentially the central density (i.e., p(r=0))
the parameter K, is the radius where the charge density drops to
one-half of its central value, and f, the surface thickness, is a
measure of the distance over which this drop occurs. These three
parameters are, of course, not all independent, as pg can be
rclated to g and t by the normalization constraint (5.31). Sys-
tematic studies of electron scattering from a number of nuclei
showed that, for a nucleus with A nucleons, suitable values were
t=2.4fm and By=1.074Y3 fm.

(5.586)
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[}
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Figure 5.1 The Fermi function parametrization of the
nuclear charge density. The density falls to one-half of
its central value at the radius F,; the distance over
which the density drops from 90% to 10% of its central
value is t. (After [Ho57].)

More modern studies of electron scattering use higher energy
beams, and so cover momentum transfers to approximately 4
fm~!. A typical example of the range and quality of the data is
shown in Figure 5.2. Such data have led to a number of "model-
independent” analyses [Fr75], in which a very flexible parametri-
zation of the charge is used. One of these [Si74] takes the charge
density to be the sum of many (of order 10) Gaussian '"lumps’, and
adjusts the location of each lump and the amount of charge it car-
ries to best fit the data. An alternative [Fr73], which we pursue
here, assumes that the density vanishes outside a radius /X, con-
siderably beyond the nuclear surface, and expands the density as
a finite Fourier series of N terms. That is, for r</, we take

ro(r)= % Cnsin[n}gr ], (5.57)
n=1

and for r>R, we take p(r)=0. Equations (5.32) and (5.38), together
with some straightforward algebra, show that

Z(1C,})=4R? ﬁlﬁi}:iicn , (5.58)

and that
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Figure 5.2 Experimental cross sections for the elastic

scattering of electrons from 98Ni at an energy of 449.8
MeV. (From [Ca80].)
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=

4mR? ni sing R
F{q)= G, (—)" ] 5.9
(q) Z nz=:1 n( ) (qR)z_nzﬂ_z qR ( )

These expressions, together with Eqgs. (5.38,40), can be used to
derive explicit forms for W,,, and hence for the x* minimization
procedure described above. It is useful to note that the n’th term
in the Fourier expansion of the density gives a contribution to the
form factor which is peaked near q,=n7n/ K. Hence, truncation of
the series at N implies little control over Fourier components with
q larger than gqy=Nn/ K. This maximum wavenumber contained
in the parametrization must be commensurate with the maximum
momentum transfer covered by the experimental data, @« If
an <9 max then data at larger momentum transfers will not be well
described, while if qy>q max, then the C,’s with n>q /7 will
not be well-determined by the fit.

We now return to the adequacy of the Born approximation for
describing the experimental data. For charge distributions of the
shape expected (roughly like those in Figure 5.1), the relatively
sharp nuclear surface induces zeros in F(gq). That is, there are
particular momentum transfers (or equivalently, scattering
angles) where the Born scattering amplitude vanishes. At these
values of q, corrections associated with the distortion of the plane
wave of the incident electron by the nuclear Coulomb potential
become relatively more important, so that the experimental data
has these zeros largely filled in, often to the extent that they
become merely shoulders in a rapidly falling cross section (see
Figure 5.2). A precision determination of the nuclear charge den-
sity from the measured cross sections therefore requires a more
sophisticated description of the scattering of the electrons from
the Coulomb potential.

The rigorous solution to this problem involves solving the Dirac
equation for the electron in the Coulomb potential generated by
the assumed charge distribution [Ye54, Fr73]. This results in a cal-
culation very similar to that done in Project IV: a partial wave
decomposition, solution of the radial equation in each partial wave
to determine the phase-shift, and then summation over partial
waves to determine the scattering amplitude at each scattering
angle. While such a calculation is certainly possible, it is too large
for a small computer. However, the eikonal approximation to
Dirac scattering can be sufficiently accurate and results in a rea-
sonable amount of numerical work.

The eikonal approximation for ultra-relativistic electrons
scattering from a charge distribution results in final expressions
very similar to those derived in Section 4.3 [Ba64]. The cross sec-
tion is related to a complex scattering amplitude, f, by
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g=cos?%6 | f |3, (5.60)

and the scattering amplitude is given by the Fourier-Bessel
transform (compare Eq. (4.30))

i :—ik?JO(qb)[eZiX(b)—l]bdb, (5.61)
0

where the profile function is the integral of the potential along the
straight-line trajectory at impact parameter b:

Xz;}é_f V(r)dz.

For the particular parametrization (5.57), p vanishes beyond Z,
and V(r) is simply —Za/7 in this region. It is therefore con-
venient to split the impact parameter integral (5.61) into regions
b<R and b>FR, so that the latter integral can be done analytically.
This results in

R
I =1 outer + finner =f outer —tk [ Jo(qd)[eFX®)—1]bdb , (5.62)
0

where

lké_{_z'i"‘ZXJO(X)XZ"'O‘Z~'5'—2~cou"f,—1(X) (5.63)
q

foute'r
+XJ1(X)X2{O‘ZS1—2iaz,o(X)_XJ1(X)], (5.63)

with X=qR. In this expression, S,, is a Lommel function (essen-
tially the incomplete integral of the product of a Bessel function
and a power), which has the useful asymptotic expansion for large

[ —1)2—
S X )~XB~1 . ;(): a

—_1Y2__;,2 —_\2_,,R
I L T T s WO ] (5.64)
X4
Note that since we will typically have £ 28 fm and ¢ 31 fm™!, X will

be 8 or more, and so the number of terms shown should be quite
sufficient.

The interior contribution to the scattering amplitude, finer»
involves the potential for </ and so depends upon the detailed
form of the nuclear charge density. Given the simple relation
between the potential and density through Poisson's equation
(5.33), it should not be too surprising that it is possible to express
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x(b<R) directly in terms of the density:

R
X(b):—Zodogl%]—41T0({'r2p('r)go(b/'r)d'r, (5.85)

where

¢(y)=log

1+(1y—'£/2)}é ]—(1—y2)%.

The parametrization (5.57) then allows the profile function to be
written in the form

N
x(b)==Zalog| 2|+ 3* Coxn (B); (5.66a)
kK n=1
1
Xn(b)=—47ra}?2fzdzsin(nnz)q;(b/z}?), (5.66b)
b7 R

with the change of integration variable z=7r/ K.

Equations (5.61-64,66) complete the specification of the
eikonal cross section in terms of the nuclear charge density. It is
also easy to show that the quantities W, are given by

Wip =2cos? %6, Re[{ a? (5.67a)
af; E .

=2k [ Jo(gsb)e?x®)y, (b)bdb . (5.67b)
ac, A

Several fine points remain to be discussed before turning to
the program. One is that the nucleus is not infinitely heavy, and
so recoils when struck by the electron. To correct for this, the
cross sections calculated above, which have all been for an elec-
tron impinging on a static charge distribution, must be divided by
the factor

F
n=1+2 17 sin?%6,
where M is the target mass (roughly Ax940 MeV). Note that this
correction vanishes as M becomes large compared to £. Second,
because of the Coulomb attraction, electrons at the nucleus have
a slightly higher momentum than the beam value. In the eikonal
treatment, this can be approximately corrected for by replacing g
in all of the formulas by

|4
Qeff=Q(1—f)- (5.68)

and by multiplying the eikonal scattering amplitude by (gers/ q)?.
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Here, V is a suitable average of the Coulomb potential over the
nuclear volume, conveniently given by

= 4 Zo
===
3 Ry’

where Ry is the nuclear radius. Similarly, in the Born approxima-
tion (5.40), the nuclear form factor is to be evaluated at g.rp, but
the Mott cross section is still to be evaluated at gq.

The BASIC program for Example 5, whose listing can be found
in Appendix B and in the file EXAM5.BAS on the Computational
Physics diskette, uses the method described above to analyze
electron scattering cross sections for the nuclei 4°Ca (Z=20), °®Ni
(Z=28), and 2%8Pbh (Z=82) to determine their charge densities.
Many different data sets for each target, taken at a variety of
beam energies and angles (see, for example, [Fr77]), have been
converted for equivalent cross sections at one beam energy
[CaB0]. The integrals (5.62,66b,67b) are evaluated by 20-point
Gauss-Legendre quadrature and the matrix inversion required by
(5.51) is performed by an efficient implementation of Gauss-Jordan
elimination [Ru63].

After requesting the target nucleus, the boundary radius £,
and the number of sine functions N, the program iterates the pro-
cedure described above, displaying at each iteration plots of the
fit, fractional error in the fit, and the charge density of the
nucleus, together with the values of the C's and the density. The
program also allows for initial iterations with fewer sines than are
ultimately required, the number then being increased every few
iterations. This technique improves the convergence of the more
rapidly oscillating components of the density as it reduces the
effective dimension of the x2 search by first converging the
smoother density components. Note that, at each iteration, only
points at an effective momentum transfer smaller than that
described accurately by the current number of sines are used in
calculating x?.

The following exercises will be useful in understanding the phy-
sical and numerical principles important in this calculation.

Exercise 5.8 To check that the program is working properly, use
the eikonal formulas and Fermi-function charge density described
above to generate a set of ''pseudo-data’” cross sections ranging
from q between 0.5 and 4 fm~!. Make sure that these cross sec-
tions are given at intervals typical of the experimental data and
also assign errors to them typical of the data. Then verify the
extent to which the correct (i.e., Fermi-function) charge distribu-

tion results when these pseudo-data are used as input to the
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program. One potential source of error you should investigate is
the ""completeness error’’. That is, the ability of a finite Fourier
series to reproduce densities of the form expected. This can be
studied by changing the number of terms used in the fit.

Exercise 5.9 Run the code with the actual experimental data to
determine the charge densities for the three nuclei treated.
Study the quality of the fit and the errors in the density extracted
as functions of the number of expansion terms used. Also verify
that the fitting procedure converges to the same final solution if
the initial guess for the density is varied within reasonable limits.
Note that the converged solutions do not have a uniform interior
density, but rather show ""wiggles" due to the specific shell-model
structure of each nucleus.

Exercise 5.10 Extend the program to calculate the moments of the
density,
[ 1/k

M= f“—ZE-{TE*"‘p(r)dr ,

and their uncertainties for integer k ranging from 2 to 5. This can
be done conveniently by using Eq. (5.57) to express these
moments directly in terms of the (,. Verify that the size of these
moments is consistent with an A1/ 3 scaling of the nuclear radius.

Exercise 5.11 A simple model for the doubly-magic nucleus 4®Ca is
a Slater determinant constructed by putting four nucleons (neu-
tron and proton, spin up and down) in the 10 lowest orbitals of a
spherically-symmetric harmonic oscillator potential. Show that
the charge density predicted by this model is

41

©, 26
9
where r,=(h/mw)%, m being the nucleon mass and w being the
harmonic oscillator frequency. Determine the value of 7y (and
hence w) required to reproduce the experimental value of the
root-mean-square radius (M,), and then compare the detailed
form of p predicted by this model with that obtained from the
data.

T
To

T
To

o1 ~Grre]s 10
p(r) 7T3/2rg e > 3 |

Exercise 5.12 Modify the program so that it calculates the Born,
rather than eikonal, cross section and show that the former is
grossly inadequate to describe the data by comparing the Born
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cross sections for a Fermi distribution with the experimental data.

Exercise 5.13 Modify the program to calculate the "off-diagonal”
uncertainties in the density determined using Eq. (5.55) and show
that the correlation in the uncertainties largely decreases as the
separation of the points increases.

Project V: A schematic shell model

The assumption of particles moving independently in a poten-
tial is a common approximation in treating the quantum mechan-
ics of many-particle systems. For example, this picture underlies
the Hartree-Fock method for treating the many electrons in an
atom (see Project III), the shell model for treating the many
nucleons in a nucleus, and many models for treating the quarks in
a hadron. However, it is only a rough approximation in many cases
and a detailed description of the exact quantum eigenstates often
requires consideration of the 'residual” interactions between the
particles making up the system. In atoms and hadrons, the resi-
dual interactions are not strong enough to induce qualitative
changes in the spectrum expected from simply placing the parti-
cles in different orbitals. In nuclei, however, the coherence and
strength of the residual interactions can lead to a ''collective”
behavior in which many nucleons participate in the excitations
and the character of the eigenstates is quite different from that
expected naively.

Realistic calculations of the effects of residual interactions are
quite complex and involve the diagonalization of large matrices
expressing the way in which the interaction moves particles
among the orbitals [Mc80]. However, the phenomenon of collec-
tivity can be illustrated by a schematic shell model introduced by
by Lipkin et al. [Li65], which we consider in this project. The
model is non-trivial, yet simple enough to be soluble with only a
modest numerical diagonalization. It has therefore served as a
testing ground for approximations to be used in treating many-
body systems and is also the prototype for more sophisticated
group-theoretic models of nuclear spectra [Ar81].

V.1 Definition of the model

The schematic model consists of N distinguishable particles
labeled by n=1,2,, -, N. Each of these can occupy one of two
orbitals, a lower and an upper, having energies +% and —¥% and dis-
tinguished by s=—1 and s=+1, respectively (see Figure V.1).
There are then 2V states in the model, each defined by which par-
ticles are '"up” and which are '"down'', and each having an
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Figure V.1 Illustration of the orbitals in the schematic
shell model
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Figure V.2 [llustration of the residual interaction in the
schematic model

unperturbed energy (in the absence of the residual interaction)
equal to one-half of the difference between the number up and the
number down.

The residual interaction in the schematic model is one that
changes simultaneously the states of any pair of particles; it
therefore couples states of the unperturbed system. In particular,
it is convenient to take a residual interaction of strength —V that
promotes any two particles that are "down'" to "up’ or that drops
any two that are '"up" to ""down', as illustrated in Figure V.2. An
interaction that simultaneously raises one particle and lowers
another can also be included, but introduces no qualitatively new
features.

To define the model precisely, it is easiest to use the language
of second quantization and introduce the operators a,); and their
adjoints, a,¢, which respectively create and annihilate a particle in
the orbital ns. As the model is constructed so that no more than
one particle can occupy each orbital, it is convenient to endow
these operators with the usual fermion anti-commutation
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relations,
{as. a5} =0, (V.1a)
{Ons On1s1=0, (V.1b)
{5 Qns ) =0pn Oss: - (V.1c)

The operator a,;a,; then counts the number of particles in the
orbital ns (i.e., it has eigenvalues 0 and 1), while the operators
al,a,_; and a,_,a,, respectively raise or lower the n’th particle.
In terms of these operators, the Hamiltonian for the model can he
written as

N
H=Y% El(aﬁrl% 170 18y 1)
n=

SRR t t t
—%VY X (@li1an 1000yt el 10,,0] 1a,), (V.2)
n=1n'=1
where we need not worry about the unphysical n’'=n term in the
residual interaction since an attempt to raise or lower the same
particle twice yields a vanishing state.

V.2 The exact eigenstates

The Hamiltonian described above can be represented as a
matrix coupling the 2¥ states among themselves. Apart from
symmetry and a vanishing of many of its elements, this matrix is
not obviously special, so that its numerical diagonalization to find
the exact eigenstates and eigenvalues is a substantial problem for
all but the smallest values of N. Fortunately, the relatively simple
structure of the problem allows it to be expressed in the familiar
language of the group SU(2) (the quantum angular momentum
operators), a transformation that carries us a good deal of the way
to an exact diagonalization and also affords some insight into the
problem.

Let us define the operators

N
Jo=% Y, (] 1an1—al _1an_y), (V.3a)
n=1

N N

Jo= Y a0y, J_=(J )= af 10, . (V.3b)
n=1 n=1

Thus, J, measures (one-half of) the difference between the

number of "up” particles and the number of "down' particles,

while J, and J_ coherently raise or lower all of the particles.

Using these operators, the Hamiltonian (V.2) can be written as

H=J,-%V(J2+J2)=J,-V(JE-J2). (V.4)
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where we have introduced the operators
Jp=Y(J +J ), Jyz_}%(‘]+_‘[—)- (v.5)

Using the fundamental anti-commutation rules (V.1), it is easy
to show that the three operators J,, J, satisfy the commutation
rules of a quantum angular momentum:

[Jp.d )=t 4, [J4.d_]1=RJ,. (v.6)

Thus, although these ''quasi-spin’’ operators have nothing to do
with a physical angular momentum, all of the techniques and
experience in dealing with quantum spin operators can be applied
immediately to this problem.

We can begin by realizing that since the total quasi-spin opera-
tor

JE=JR+JE+Jf (V.7)

commutes with J, v,z it commutes with the Hamiltonian and thus
each eigenstate of H can be labeled by its total quasi-spin, 7,
where j(j+1) is the eigenvalue of J2. The eigenstates therefore
can be classified into non-degenerate multiplets of 2j+1 states
each, all states in a multiplet having the same j; the Hamiltonian
has a non-vanishing matrix element between two states only if
they belong to the same multiplet. However, since H does not
commute with J,, its eigenstates will not be simultaneously eigen-
states of this latter operator.

To see what values of j are allowed, we can classify the 2V
states of the model (not the eigenstates of H) according to their
eigenvalues of J,. The one state with the largest eigenvalue of J,
has all particles up, corresponding to an eigenvalue m=¥N. We
therefore expect one multiplet of 2-¥N+1=N+1 states
corresponding to j =%N. Turning next to states with m=¥N—-1, we
see that there are N states, corresponding to one of the N parti-
cles down and all -of the rest up. One linear combination of these N
states (the totally symmetric one) belongs to the j=%N multiplet,
implying that there are N—1 multiplets with j=%N—1. Continuing
in a similar way, there are ¥YN(N—1) states with m=¥N-2 (two
particles down, the rest up), of which one linear combination
belongs to the j=WN multiplet and N—1 linear combinations
belong to the j=¥N—1 multiplets. There are thus ¥N (N —3) multi-
plets with j=¥N—-2. By continuing in this way, we can classify the
2N states of the model into multiplets with j running from %N
down to 0 er ¥, if N is even or odd, respectively.

Because H involves only the quasi-spin operators, its action
within a multiplet depends only upon the value of j involved. For a
given N, the spectrum of one multiplet therefore serves for all
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with the same 7 and, in fact, also serves for multiplets with this j
in systems of larger N. We can therefore restrict our attention to
the multiplet with the largest value of j, ¥N.

By these considerations, we have reduced the problem of
diagonalizing the full Hamiltonian to one of diagonalizing (V.4) in
the N+1 eigenstates of J, belonging to the multiplet with j=¥N.
We can label these states as |m>, where m runs from —j to j in
integer steps. Using the usual formulas for the action of the angu-
lar momentum raising and lowering operators,

Jmd>=Ct|m+1); Ci=[j(+1)-m(m+1)}% (V.8)
we can write the elements of H in this basis as
<m'|H|m>=m6m’m

_%V[Cm+ Cn:+1 5m'm+2+cnzcn;—15m’m—2] . (V.Q)

Thus, H is tri-diagonal in this basis and in fact separates into two
uncoupled problems involving the states m=—j, —j+2, - - -, +J
and m=—j+1, —j+3, - -+, +j—1 when N is even (j is integral) and
the states m=—j, —j+2, ---, +7—1 and m=—j5+1, —j+3, - - -, +J
when N is odd (j is half-integral). For small values of j, the result-
ing matrices can be diagonalized analytically, while for larger sys-
tems, the numerical methods discussed in this chapter can be
employed to find the eigenvalues and eigenvectors.

The quasi-spin method allows us to make one other statement
about the exact solution of the model. Lel

R=gim(Ja+dy)/ 2¥

be the unitary operator effecting a rotation in quasi-spin space by
an angle of m about the axis (£+7)/ 2% It is easy to see that this
rotation transforms the quasi-spin operators as

RI,RY=J,; RJ,Ri=J,; RI,R'=—J,, (V.10)
so that the Hamiltonian (V.4) transforms as
RHR'=—H. (V.11)

Hence, if ¥ is an eigenstate of H with energy £, then Ky is an
eigenstate of /A with energy —£. Thus, the eigenvalues of A come
in pairs of equal magnitude and opposite sign (or are 0). This also
allows us to see that if N is even, at least one of the eigenvalues
will be zero.

V.3 Approximate eigenstates

We turn now to approximate methods for solving the
schematic model and consider first ordinary Rayleigh-
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Schroedinger perturbation theory. If we treat the J, term in (V.4)
as the unperturbed Hamiltonian and the J2—J;Z term as the per-
turbation, then the unperturbed eigenstates are |m) with unper-
turbed energies E’,,(,P)=m and the perturbation series is an expan-
sion in powers of V. Since {m |J2|m)>»=0, the energies are unper-
turbed in first order and are perturbed in second order as

(m+2|¥VJIE |m)? . (m—2|%VJ2 |m)?
EQ-EQ, ED-EL),

Using Eq. (V.9) for the matrix elements involved, explicit expres-
sions for the second-order energies can be derived; the fourth-
order terms can also be done with a bit of patient algebra.

While the weak-coupling (small-¥) limit can be treated by
straightforward perturbation theory, an approximation for the
strong-coupling (large-V) situation is not so obvious. One appeal-
ing approach is the semiclassical method, valid in the limit of
large N [Ka79, Sh80]. The discussion begins by considering the
equations of motion for the time-dependence of the expectation
values of the quasi-spin operators:

12 (Iy=C I HD, (V.13)

where J; is any one of the three components of the quasi-spin.
Using the Hamiltonian (V.4) and the commutation rules (V.8), it is
easy to write out Eq. (V.13) for each of the three components:

d

at—<Jx>:—<Jy>+V(Jsz+Jsz>, (V.14a)
%(Jy>:<‘]x>+v<‘]z‘]x+‘fx‘]z>' (V'l4b)
L (1y==2V Ty Tu+ T Ty, (V.14c)

Unfortunately, these equations do not form a closed set, as the
time derivatives of expectation values of single quasi-spin opera-
tors depend upon expectation values of bi-linear products of these
operators. However, if we ignore the fact that the J's are opera-
tors, and put, for example,

(I Iy 2= <y,

then a closed set of equations results:

L (T d==C I +RVCIICT,), (V.15a)

%(Jy>=(Jx>+2V<Jz><Jx>, (V.15b)
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gt—(.]z>=—4V<Jy)(Jz>. (V.15¢)

It is easy to show that Egs. (V.15) conserve
LRIARIPIRT ALY

so that a convenient parametrization is in terms of the usual polar
angles,

{Ip>=Jcos8, {Jy>=Jsinbcosp, {Jy)=Jsinbsing, (V.186)
where
J=[j(G+1)]% ~%hN .
If we further define the variables
p=}Ncos8, g=p+ i—ﬂ. (V.17)

so that |p|<¥N and 0O=g=<2m, then, upon introducing the con-
venient coupling constant

x=NV~2JV,
Egs. (V.15) can be written as

gﬂ_: .L .‘Zﬁ_ 2 :—aE ’
37 2N( T P Jcos2q —Maq , (V.18a)
T 1+2N P sin2q op . (V.18b)
Here, F is the expectation value of the Hamiltonian
E(p.,q)=CH>=(J 2=V ({Ig>2— Iy )?) (V.19a)
o X (N? o
PN ( 7 P )sin 2q. (V.19b)

By these manipulations, we have transformed the quasi-spin
problem into one of a time-dependent classical system with
"momentum’ p and "coordinate’ g satisfying equations of motion
(V.18). As these equations are of the canonical form, p and g are
canonically conjugate and (V.19b) can be identified as the Hamil-
tonian for this classical system.

We can now infer properties of the quantum eigenstates by
analyzing this classical system. Using Eq. (V.19b), we can calcu-
late the trajectories in phase-space; i.e., the value of p for a given
q and E={H). Equivalently, we can consider contour lines of £ in
the (p,q) plane. In an analysis of these contours, it is useful to
distinguish between weak (x<1) and strong (x>1) coupling cases.

Figure V.3 shows a typical weak-coupling case, N=8 and
x=0.25. The trajectory with the lowest allowed energy, which we
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Figure V.3 Contours of the Hamiltonian (V.19b) for the
weak coupling case N=8 and x=0.25. The contour pass-
ing through (p=0, ¢=0) has zero energy. The upper
and lower boundary lines p =+%N are contours at ener-
gy +%N, respectively. Sucessive contours shown differ
in energy by 1. (From [Ka79].)

can identify with the ground state of the quantum system, has
p=—¥N, E=-%N, and q satisfying the differential equation
(V.18b). Note that this trajectory ranges over all values of gq.

In the strong coupling case, x>1, the trajectories look as
shown in Figure V.4, which corresponds to N=8 and x=2.5. There
are now minima in the energy surface at p=—-%¥N/x, q=n/4, 57/ 4,
which, using the equations of motion (V.18), can be seen to
correspond to stationary points (i.e., time-independent solutions
of the equations of motion). The energy at these minima is
E=—N(x+x~1)/ 4, which we can identify as an estimate of the
ground state energy. There is therefore a "phase transition” at
x=1 where the ground state changes from one where p=—¥N to
one where p >—¥%N, the energy being continuous across this transi-
tion. This qualitative change in the nature of the ground state is a
direct consequence of the coherence and strength of the
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%
O /2 T 3m/2 2

Figure V.4 Similar to Figure V.3 for the strong coupling
case N=8, x=2.5. The points A, ,, B, ; are minima and
maxima, respectively, and C,_,, D_4 are saddle points.
Contours through the saddle points, which have energy
+%N, are drawn as dashed lines; these separate trajec-
tories that are localized and extended in q. Successive
contours differ in energy by 1. (From [Ka79].)

interactions among the particles. It should also be noted that, in
direct analogy with the usual quantum double-well problem, the
presence of two degenerate minima in Figure V.4 suggests that the
ground and first-excited states will be nearly degenerate, the split-
ting between them caused only by "tunneling” between the wells.

The semiclassical analysis can be extended to predict the
energies of excited states as well, essentially by applying the ana-
log of the Bohr-Sommerfeld quantization rule given in Egs.
(1.20,21) [Sh80]. One finds that N controls the quantum nature of
the problem, with the system becoming more ‘'classical’’ as the
number of particles increases. In the weak coupling case, all tra-
jectories extend over the full range of ¢. However, for strong cou-
pling, there are two types of trajectories: those that vibrate
around the energy minima or maxima (and are hence confined to
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limited regions of g ) and those that extend throughout all g. It is
easy so show from (V.19b) that the transitions between these two
behaviors occur at | £ |=J (e.g., the dashed lines in Figure V.4). In
analogy with the usual quantum double-well, we expect states
associated with the confined trajectories to occur in nearly deger-
nate pairs, the degeneracy being broken more strongly as the
energy increases above the minima or decreases below the max-
ima.

V.4 Solving the model

The simple semiclassical picture we have discussed above can
be tested by an analysis of the exact eigenstates of the model. This
can be carried out through the following sequence of steps.

Step 1 Verify the algebra in the discussion above. In particular,
show that Eq. (V.4) is a valid representation of the Hamiltonian.
Also evaluate the second-order perturbation to the energies, Eq.
(V.12).

Step 2 Verify the correctness of Egs. (V.14,18,19) and the discus-
sion of the energy contours in the strong and weak coupling cases.
In the strong coupling case, linearize the equations of motion
about the minima or maxima and show that the frequency of har-
monic motion about these points is [2(x*—1)]% This is the spacing
expected between the pairs of nearly degenerate states in the
exact spectrum.

Step 3 Write a program that finds the eigenvalues of the tri-
diagonal Hamiltonian matrix (V.9), perhaps by modifying that writ-
ten for Exercise 5.4. Note that the numerical work can be reduced
by treating basis states with even and odd m separately and by
using the symmetry of the spectrum about £=0.

Step 4 Use the program written in Step 3 to calculate the spec-
trum of the model for selected values of N between 8 and 40 and
for values of y between 0.1 and 5. At weak coupling, compare your
results with the perturbation estimates (V.12). For strong cou-
plings, compare your ground state energyv with the semiclassical
estimate and verify the expected pairwise degeneracy of the low-
lying states. Also compare the excitation energies of these states
with your estimate in Step 2. How does the accuracy of the semi-
classical estimate change with V?
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Step 5 Write a program that takes the eigenvalues found in Step 2 onoo
and solves for the eigenvectors by inverse vector iteration (Eq.

(5.27)). For selected values of N and x, compute the expectation

value of J, for each eigenvector. In a semiclassical interpretation,

this expectation value can be identified with the time-average of p

over the associated trajectory in phase space. Verify that {J,»
changes through the spectrum in accord with what you expect

from Figures V.3, V.4.






Chapter 6

Elliptic
Partial Differential
Equations

Partial differential equations are involved in the description of
virtually every physical situation where quantities vary in space or
in space and time. These include phenomena as diverse as
diffusion, electromagnetic waves, hydrodynamics, and quantum
mechanics (Schroedinger waves). In all but the simplest cases,
these equations cannot be solved analytically and so numerical
methods must be employed for quantitative results. In a typical
numerical treatment, the dependent variables (such as tempera-
ture or electrical potential) are described by their values at
discrete points (a lattice) of the independent variables (e.g., space
and time) and, by appropriate discretization, the partial
differential equation is reduced to a large set of difference equa-
tions. Although these difference equations then can be solved, in
principle, by the direct matrix methods discussed in Chapter 5,
the large size of the matrices involved (dimension comparable to
the number of lattice points, often more than several thousand)
makes such an approach impractical. Fortunately, the locality of
the original equations (i.e., they involve only low-order derivatives
of the dependent variables) makes the resulting difference equa-
tions "sparse” in the sense that most of the elements of the
matrices involved vanish. For such matrices, iterative methods of
inversion and diagonalization can be very efficient. These methods
are the subject of this and the following chapter.

Most of the physically important partial differential equations
are of second order and can be classified into three types: para-
bolic, elliptic, or hyperbolic. Roughly speaking, parabolic equa-
tions involve only a first-order derivative in one variable, but have
second order derivatives in the remaining variables. Examples are
the diffusion equation and the time-dependent Schroedinger equa-
tion, which are first order in time, but second order in space.
Elliptic equations involve second order derivatives in each of the
independent variables, each derivative having the same sign when
all terms in the equation are grouped on one side. This class
includes Poisson’s equation for the electrostatic potential and the
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time-independent Schroedinger equation, both in two or more spa-
tial variables. Finally, there are hyperbolic equations, which
involve second derivatives of opposite sign, such as the wave equa-
tion describing the vibrations of a stretched string. In this
chapter, we will discuss some numerical methods appropriate for
elliptic equations, reserving the discussion of parabolic equations
for Chapter 7. Hyperbolic equations often can be treated by
methods similar to those we discuss, although unique difficulties
do arise [Ri87].

For concreteness in our discussion, we will consider particular
forms of elliptic boundary value and eigenvalue problems for a
field ¢ in two spatial dimensions (z,y). The boundary value prob-
lem involves the equation

e=S(z,y). (6.1)

0x?  oy?

Although this is not the most general elliptic form, it nevertheless
covers a wide variety of situations. For example, in an electrostat-
ics problem, ¢ is the potential and S is related to the charge den-
sity (compare Eq. (3.2)), while in a steady-state heat diffusion
problem, ¢ is the temperature, and S is the local rate of heat gen-
eration or loss. Our discussion can be generalized straightfor-
wardly to other elliptic cases, such as those involving three spatial
dimensions or a spatially varying diffusion or dielectric constant.

Of course, Eq. (6.1) by itself is an ill-posed problem, as some
sort of boundary conditions are required. These we will take to be
of the Dirichlet type; that is, ¢ is specified on some large closed
curve in the (z,y) plane (conveniently, the unit square) and
perhaps on some additional curves within it (see Figure 6.1). The
boundary value problem is then to use (6.1) to find ¢ everywhere
within the unit square. Other classes of boundary value problems,
such as Neumann (where the normal derivative of ¢ is specified on
the surfaces) and mixed (where a linear combination of ¢ and its
normal derivative is specified), can be handled by very similar
methods. )

The eigenvalue problems we will be interested in might involve
an equation of the form

_[ 62 R 62

ax? 9y~

together with a set of Dirichlet boundary conditions. This might
arise, for example, as the time-independent Schroedinger equa-
tion, where ¢ is the wavefunction, V proportional to the potential,

and ¢ is related to the eigenvalue. Such an equation might also be
used to describe the fields in an acoustic or electromagnetic

et V(z,y)p=cop, (6.2)
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y=0 ' T
x=0 X =|

Figure 6.1 (Left) A two-dimensional boundary value
problem with Dirichlet boundary conditions. Values of ¢
are specified on the edges of the unit square and on the
surfaces within. (Right) Discretization of the problem
on a uniform cartesian lattice.

waveguide, where ¢ is then related to the square of the cut-off fre-
quency. The eigenvalue problem then consists of finding the values
& and the associated eigenfunctions ¢, for which Eqg. (6.2) and the
boundary conditions are satisfied. As methods for solving such
problems are closely related to those for solving a related para-
bolic equation, we will defer their discussion to Chapter 7.

6.1 Discretization and the variational principle

Our first step is to cast Eq. (6.1) in a form suitable for numeri-
cal treatment. To do so, we define a lattice of points covering the
region of interest in the (z,y) plane. For convenience, we take
the lattice spacing, h, to be uniform and equal in both directions,
so that the unit square in covered by (N+1)xX{N+1) lattice points
(see Figure 6.1). These points can be labeled by indices (2,5 ), each
of which runs from 0 to N, so that the coordinates of the point
(i,j) are (z;=th,y;=jh). If we then define ¢;;=¢(z;,y;), and simi-
larly for S;;, it is then straightforward to apply the three-point
difference approximation (1.7) for the second derivative in each
direction and so approximate (6.1) as

_[ Pi+1tPi—15 "RV . Pij+1TPi—1—RPsy
h? ' h?
or, in a more convenient notation,

—{(5599%;' +(5f¢)ij]:h25fvf : (6.3b)

=S‘ij , (63&)
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Here, 6,;2 is the second-difference operator in the 1 index,

(620)i; =i 415 +Pi—1;—RPij
and 6% is defined similarly.

Although Eq. (6.3) is the equation we will be solving, it is useful
to derive it in a different way, based on a variational principle.
Such an approach is handy in cases where the coordinates are not
cartesian, as discussed in Section 6.3 below, or when more accu-
rate difference formulas are required. It also is guaranteed to
lead to symmetric (or hermitian) difference equations, an often
useful property. The variational method also affords some insight
into how the solution algorithm works. A good review of this
approach can be found in [Ad84].

Consider the quantity £, defined to be a functional of the field
¢ of the form

1 1
£=[az[ ay(v)P-S¢). (6.4)

In some situations, £ has a physical interpretation. For example,
in electrostatics, —Vg is the electric field and .5 is the charge den-
sity, so that £ is indeed the total energy of the system. However,
in other situations, such as the steady-state diffusion equation, ¥
should be viewed simply as a useful quantity.

It is easy to show that, at a solution to (6.1), £ is stationary
under all variations d¢ that respect the Dirichlet boundary condi-
tions imposed. Indeed, the variation is

1 1
SE= [dx [ dy{Vgo-V(Sfp—Séga], (8.5)
0 0

which, upon integrating the second derivative term by parts,
becomes
11

SE= [dl ¢ n'Ve+ [dx [dy 5[ —VRp—S], (6.6)
C 0 0

where the line integral is over the boundary of the region of
interest (C) and n is the unit vector normal to the boundary.
Since we consider only variations that respect the boundary condi-
tions, 6¢ vanishes on C, so that the line integral does as well.
Demanding that 0F be zero for all such variations then implies
that ¢ satisfies (6.1). This then furnishes a variational principle for
our boundary value problem.

To derive a discrete approximation to the partial differential
equation based on this variational principle, we first approximate
F in terms of the values of the field at the lattice points and then
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vary with respect to them. The simplest approximation to £ is to
employ the two-point difference formula to approximate each first
derivative in (V¢)? at the points halfway between the lattice points
and to use the trapezoidal rule for the integrals This leads to

t=1j5= 1 =1 j5=1

Putting
oF
o
for all 4j then leads to the difference equation derived previously,
(6.3). Of course, a more accurate discretization can be obtained by
using better approximations for the first derivatives and for the
integrals, taking care that the accuracies of both are commen-

surate. It is also easy to show from (6.7) that not only is £ station-
ary at the solution, but that it is a minimum as well.

=0

Exercise 6.1 Show that the vanishing of the derivatives of Eq. (8.7)
with respect to the values of ¢ at the lattice points lead to the
difference Eq. (6.3). Prove, or argue heuristically, that £ is a
minimum when ¢ is the correct solution.

Exercise 6.2 Use the differentiation formulas given in Table 1.2 to
derive discretizations that are more accurate than (6.3). Can you
see how the boundary conditions are to be incorporated in these
higher-order formulas? What are the corresponding discretizations
of £ analogous to (6.7)? (These are not trivial; see [F178].)

We must now discuss where the boundary conditions enter the
set of linear equations (6.3). Unless the coordinate system is well
adapted to the geometry of the surfaces on which the boundary
conditions are imposed (e.g., the surfaces are straight lines in
cartesian coordinates or arcs in cylindrical or spherical coordi-
nates), the lattice points will only roughly describe the geometry
(see Fig. 6.1 b)). One can always improve the accuracy by using a
non-uniform lattice spacing and placing more points in the regions
near the surfaces or by transforming to a coordinate system in
which the boundary conditions are expressed more naturally. In
any event, the boundary conditions will then provide the values of
the ¢;; at some subset of lattice points. At a point far away from
one of the boundaries, the boundary conditions do not enter (6.3)
directly. However, consider (6.3) at a poinl just next to a boun-
dary, say (i, N—1). Since ¢,y is specified as part of the boundary
conditions (as it is on the whole border of the unit square), we can
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rewrite (6.3b) as

4QiN—1—Pit1N-1—Pi—IN-1—PiN—-2=PESiN_1F o ; (6.8a)

that is, g;y enters not as an unknown, but rather as an inhomo-
geneous, known term. Similarly, if a Neumann boundary condition
were imposed at a surface, say d¢/dy=g(z) at y=1 or,
equivalently, 7=N, then this could be approximated by the
discrete boundary condition

Pin —¢in-1=hg;,
which means that at j=N-—1, Eq. (6.3) would become
BQiN-1—Pis1N-1—Pi—1N-1—Pin—2=hSiy_1thg; . (6.8b)

These considerations, and a bit more thought, show that the
discrete approximation to the differential equation (6.1) is
equivalent to a system of linear equations for the unknown values
of ¢ at the interior points. In a matrix notation, this can be writ-
ten as

My=s, (6.9)

where M is the matrix appearing in the linear system (6.3) and the
inhomogeneous term s is proportional to .S at the interior points
and is linearly related to the specified values of ¢ or its derivatives
on the boundaries. In any sort of practical situation there are a
very large number of these equations (some 2500 if N=50, say), so
that solution by direct inversion of M is impractical. Fortunately,
since the discrete approximation to the Laplacian involves only
neighboring points, most of the elements of M vanish (it is sparse)
and there are then efficient iterative techniques for solving (8.9).
We begin their discussion by considering an analogous, but
simpler, one-dimensional boundary value problem, and then
return to the two-dimensional case.

6.2 An iterative method for boundary value problems

The one-dimensional boundary value problem analogous to the
two-dimensional problem we have been discussing can be written
as

_d% _ o
“L-=5(), (6.10)

with ¢(0) and ¢(1) specified. The related variational principle
involves

1 2
Ez{dxl%[%z_] -S|, (6.11)
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which can be discretized on a uniform lattice of spacing h=1/N as

1 X 9 N-1
b= g Lipimei1)* —h X Sips (6.12)
t=

1=1
When varied with respect to ¢;, this yields the difference equation
Rps —¢ir1—ps—1=h2S;, (6.13)
which is, of course, just the naive discretization of Eq. (6.10).

Methods of solving the boundary value problem by integrating
forward and backward in x were discussed in Chapter 3, but we
can also consider (8.13), together with the known values of ¢4 and
¢y, as a set of linear equations. For a modest number of points
(say N<100), the linear system above can be solved by the direct
methods discussed in Chapter 5 and, in fact, a very efficient spe-
cial direct method exists for such ''tri-diagonal’ systems, as dis-
cussed in Chapter 7. However, to illustrate the iterative methods
appropriate for the large sparse matrices of elliptic partial
differential equations in two or more dimensions, we begin by
rewriting (6.13) in a "'solved” form for ¢;:

vi=¥lpiv1te; 1 +hES; ] (6.14)

Although this equation is not manifestly useful, since we don't
know the ¢’s on the right-hand side, it can be interpreted as giving
us an "improved" value for ¢; based on the values of ¢ at the
neighboring points. Hence the strategy (Gauss-Seidel iteration) is
to guess some initial solution and then to sweep systematically
through the lattice (say from left to right), successively replacing
¢ at each point by an improved value. Note that the most
"current” values of the ¢;,; are to be used in the right-hand side
of Eq. (6.14). By repeating this sweep many times, an initial guess
for ¢ can be '"relaxed’” to the correct solution.

To investigate the convergence of this procedure, we general-
ize Eq. (6.14) so that at each step of the relaxation ¢; is replaced
by a linear mixture of its old value and the "improved" one given
by (6.14):

0i2¢ s =(1-w) gtk i1 te; 1 +hES; ] (6.15)

Here, w is a parameter that can be adjusted to control the rate of
relaxation: "over-relaxation” corresponds to w>1, while "under-
relaxation’” means w<1. The optimal value of w that maximizes the
rate of relaxation will be discussed below. To see that (6.15)
results in an "improvement' in the solution, we calculate the
change in the energy functional (6.12), remembering that all ¢'s
except ¢; are to be held fixed. After some algebra, one finds

' R—
E —E'=—ﬂ%—wl[%(%u"‘%—ﬁhzsi)—%]z =0, (6.16)
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so that, as long as 0<w<2, the energy never increases, and should
thus converge to the required minimum value as the sweeps
proceed. (The existence of other, spurious minima of the energy
would imply that the linear system (6.13) is not well posed.)
ooo  Exercise 6.3 Use Egs. (6.12) and (6.15) to prove Eq. (6.16).
As an example of this relaxation method, let us consider the
one-dimensional boundary-value problem of the form (6.10) with
S(z)=12z% ¢(0)=¢(1)=0.
The exact solution is
— 3
p(z)=z(1-2z7)
and the energy is
9
F=——=—=-0.64286.
" 64286
The following BASIC code implements the relaxation algorithm and
prints out the energy after each sweep of the 21-point lattice. An
initial guess of ¢;=0 is used, which is clearly quite far from the
truth.
10 N7z=20. H=1/N7% "lattice size and spacing
15 OMEGA=1 'relaxation parameter
20 DIM PHI(N%) "function to be relaxed
25 DIM S(Nz) "array for h~2*source
30
35 FOR 1%=0 TO Nz initialization
40 X=1%*H
45 S(I%)=H*H*12*X*X ’establish source array
50 PHI (1%)=0 "initial guess is phi=0
55 NEXT I%
60
65 FOR ITZ=1 TO 500 "iteration loop
70 FOR I7%=1 TO N7%-1 "sweep through the lattice
75 PHIP=(PHI (1%-1)+PHI (I%+1)+S(I%)) /2
80 PHI(1%)=(1-OMEGA) *PHI (1%)+OMEGA*PHIP ’'relaxation
85 NEXT 1% -
90 IF (IT%-1) MOD 10 <> 0 THEN GOTO 130 "saret imes calculate the energy
95 PRINT USING "iteration=### ";IT%
100 E=0:
105 FOR 17%=1 TO NZ%: "loop over the lattice
110 E=E+( (PHI (1%) -PHI (1%-1)) /H)~2/2 "add gradient term to the energy
115 E=E-S(1%) /H/H*PHI (1%) 'add source term to the energy
120 NEXT 1%
125 PRINT USING "energy=+##. ####~~~~";E*H
130 NEXT IT%

Results for the energy as a function of iteration number are shown
in Table 6.1 for three different values of w. Despite the rather poor
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Table 6.1 Convergence of the energy functional during

relaxation of a 1-D boundary value problem

Iteration w=0.5 w=1.0 w=1.5

1 -0.01943 -0.04959 -0.09459
21 -0.24267 -0.44024 -0.60688
41 -0.36297 -0.56343 -0.63700
61 -0.44207 -0.610368 -0.863831
81 -0.49732 -0.62795 -0.63836
101 -0.53678 -0.63450 -0.63837
121 -0.56517 -0.63693 -0.63837
141 -0.58563 -0.83783 -0.63837
161 -0.60037 -0.63817 -0.63837
181 -0.61100 -0.63829 -0.63837
201 -0.61866 -0.63834 -0.63837
221 -0.62418 -0.63836 -0.63837
241 -0.62815 -0.63836 -0.63837
381 -0.63734 -0.63837 -0.83837
401 -0.63763 -0.63837 -0.83837

initial guess for ¢, the iterations converge and the converged
energy is independent of the relaxation parameter, but differs
somewhat from the exact answer due to discretization errors (i.e.,
h not vanishingly small); the discrepancy can be reduced, of
course, by increasing N. A detailed examination of the solution
indicates good agreement with the analytical result. Note that
the rate of convergence clearly depends upon w. A general
analysis [Wa66] shows that the best choice for the relaxation
parameter depends upon the lattice size and on the geometry of
the problem; it is usually greater than 1. The optimal value can be
determined empirically by examining the convergence of the solu-
tion for only a few iterations before choosing a value to be used for
many iterations.

Exercise 6.4 Use the code above to verify that the energy
approaches the analytical value as the lattice is made finer. Inves-
tigate the accuracy of the solution at each of the lattice points
and note that the energy can be considerably more accurate than
the solution itself; this is a natural consequence of the minimiza-
tion of £ at the correct solution. Use one of the higher-order
discretizations you derived in Exercise 6.2 to solve the problem.
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The application of the relaxation scheme described above to
two- (or even three-) dimensional problems is now straightforward.
Upon solving (6.3a) for ¢;;, we can generate the analogue of (6.15):

. W
pij 2@ =(1—w)pi; + _4—[‘P1'.+1j +¢5 15t @i 41t @i _1HhESy ] (6.17)

If this algorithm is applied successively to each point in the lat-
tice, say sweeping the rows in order from top to bottom and each
row from left to right, one can show that the energy functional
(6.7) always decreases (if w is within the proper range) and that
there will be convergence to the required solution.

Several considerations can serve to enhance this convergence
in practice. First, starting from a good guess at the solution
(perhaps one with similar, but simpler, boundary conditions) will
reduce the number of iterations required. Second, an optimal
value of the relaxation parameter should be wused, either
estimated analytically or determined empirically, as described
above. Third, it may sometimes be more efficient to concentrate
the relaxation process, for several iterations, in some sub-area of
the lattice where the trial solution is known to be particularly
poor, thus not wasting effort on already-relaxed parts of the solu-
tion. Finally, one can always do a calculation on a relatively
coarse lattice that relaxes with a small amount of numerical work,
and then interpolate the solution found onto a finer lattice to be
used as the starting guess for further iterations.

6.3 More on discretization

It is often the case that the energy functional defining a physi-
cal problem has a form more complicated than the simple
"integral of the square of the derivative'” that we have been consid-
ering so far. For example, in an electrostatics problem with
spatially-varying dielectric properties or in a diffusion problem
with a spatially-varying diffusion coefficient, the boundary-value
problem (6.1) is modified to

—V-DVp=S(z.y), (6.18)

where D(z,y) is the dielectric constant or diffusion coefficient,
and the corresponding energy functional is (compare Eq. (6.4))

1 1
E= { dz { dy{}éD(Vgo)z—Sgo . (6.19)

Although it is possible to discretize Eq. (6.18) directly, it should be
evident from the previous discussion that a far better procedure is
to discretize (6.19) first and then to differentiate with respect to
the field variables to obtain the difference equations to be solved.



6.3 More on discretization

To see how this works out in detail, consider the analog of the
one-dimensional problem defined by (6.11),

1 2
= do | _
E {dxl%_l)(x)[dx ] Sel, (6.20)
The discretization analogous to (6.12) is
1 XM 2 N-=1
E'-'zT 2 Dyl —pi1)* —h )] S;ey, (6.21)
i=1 i=1

where D;_y is the diffusion constant at the half-lattice points. This
might be known directly if we have an explicit formula for D(z), or
it might be approximated with appropriate accuracy by
W(D;+D;_,). Note that, in either case, we have taken care to
center the differencing properly. Variation of this equation then
leads directly to the corresponding difference equations (compare
Eq. (6.13)),

(Dsry5+D; 1) 0 =D sypi 41— Dy yp;_1=hFS;. (6.22)

These can then be solved straightforwardly by the relaxation tech-
nique described above.

A problem treated in cylindrical or spherical coordinates
presents very much the same kind of situation. For example,
when the diffusion or dielectric properties are independent of
space, the energy functional in cylindrical coordinates will involve

_Tar 22 |
E—{d’rrl}é —| —S¢

where r is the cylindrical radius. (We suppress here the integra-
tions over the other coordinates.) This is of the form (6.20), with
D(r)=r and an additional factor of r appearing in the source
integral. Discretization on a lattice r;=hi in analogy to (6.21) then
leads to the analog of (6.22),

RTy0i— T syPir1—TiyPi—1=hPry S, (6.24)

, (6.23)

At 2=0, this equation just tells us that ¢;=¢_,, or equivalently, that
dp/ 0r=0 at r=0. This is to be expected, as, in the electrostatics
language, Gauss’ law allows no radial electric field at »=0. At 1=1,
Eq. (6.24) gives an equation involving three unknowns, ¢g, ¢;, and
¢s, but putting ¢g=¢; as a rough approximation to the zero-
derivative boundary condition gives an equation involving only two
unknowns, which is what we expect at a boundary on the basis of
our experience with the cartesian problems discussed above.

A more elegant discritization of problems with cylindrical sym-
metry naturally incorporates the zero-derivative boundary
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condition at »=0 by working on a lattice defined by r;=(i=%¥)h. In
this case, Eq. (6.24) is still valid, but for 2=1 the coeflicient of the
term involving ¢; _; vanishes, giving directly an equation with only
two unknowns, ¢, and g..

Exercise 6.5 Verify that variation of Eq. (6.21) leads to Eq. (8.22).
Write down explicitly the discretizations of Eq. (6.23) on the r;=ih
and r;=(1—¥%)h lattices and verify their variation leads to (6.24) in
either case. Why can the contribution to the energy functional
from the region between r=0 and r=¥h be safely neglected on the
r;=(1—Y%) lattice to the same order as the accuracy of approxima-
tion used for the derivative?

6.4 Elliptic equations in two dimensions

The application of relaxation methods to elliptic boundary
value problems is illustrated by the program for Example 6, which
solves Laplace’s equation, V2p=0, on a uniform rectangular lattice
of unit spacing with Dirichlet boundary conditions specified on the
lattice borders and on selected points within the lattice. This
situation might describe the steady-state temperature distribu-
tion within a plate whose edges and certain interior regions are
held at specified temperatures, or it might describe an electros-
tatics problem specified by a number of equipotential surfaces.
During the iterations, the potential is displayed, as is the energy
functional (6.7) to monitor convergence. The code’s source listing
can be found in Appendix B and in the file EXAM6.BAS on the Com-
putational Physics diskette.

The following exercises, phrased in the language of electrostat-
ics, might help you to understand better the physical and numeri-
cal principles illustrated by this example.

Exercise 6.6 Verify that the solutions corresponding to particular
boundary conditions in the interior of the lattice agree with your
intuition. You might try fixing a single interior point to a potentiai
different from that of the boundary, fixing two symmetrically
located points to different potentials, or fixing a whole line to a
given potential. Other possibilities include constructing a "Faraday
cage" (a closed region bounded by a surface at fixed potential),
studying a quadrupole pattern of boundary conditions, or calculat-
ing the capacitance of various configurations of conductors. Study
of what happens when you increase or decrease the size of the lat-
tice is also interesting.
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Exercise 6.7 For a given set of boundary conditions, investigate
the effects of under-relaxation and over-relaxation on the conver-
gence of the relaxation process. Change the discretization of the
Laplacian to a higher-order formula as per Exercise 6.2 and
observe any the changes in the solution or the efficiency with
which it is approached.

Exercise 6.8 Modify the code to solve Poisson’s equation; i.e., allow
for a charge density to be specified throughout the lattice. Use
this to study the solutions for certain simple charge distributions.
For example, you might try computing the potential between two
(line) charges as a function of their separation and comparing it
with your analytical expectations.

Exercise 6.9 Modify the code to use Neumann boundary conditions
on selected borders and interior regions of the lattice. Study the
solution for simple geometries and compare it with what you
expect.

Exercise 6.10 Modify the code to allow for a spatially-varying
dielectric constant. (Note that you must change both the relaxa-
tion formula and the energy functional.) Study the solutions for
selected simple geometries of the dielectric constant (e.g., a half-
space filled with dielectric) and simple boundary conditions.

Exercise 6.11 An alternative to the Dirichlet boundary conditions
are periodic boundary conditions, in which the potentials on the
left and right and top and bottom borders of the rectangle are
constrained to be equal, but otherwise arbitrary. That is,

Pi1=¥iN: P15 =FNj
for all © and 7. This might correspond to the situation in a crystal,
where the charge density is periodic in space. Modify the code to
incorporate these boundary conditions into Poisson’s equation and

verify that the solutions look as expected for simple charge distri-
butions.

Exercise 6.12 Change the relaxation formula and energy functional
to treat situations with an azimuthal symmetry by re-interpreting
one of the coordinates as the cylindrical radius while retaining the
other as a cartesian coordinate. Use the resulting program to
model a capacitor made of two circular disks, and in particular
calculate the capacitance and potential field for varying separa-
tions between the disks. Compare your results with your expecta-
tions for very large or very small separations.
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Project VI: Steady-state hydrodynamics in two dimensions

The description of the flow of fluids is one of the richest and
most challenging problems that can be treated on a computer.
The non-linearity of the equations and the complexity of
phenomena they describe (e.g., turbulence) sometimes make com-
putational fluid dynamics more of an art than a science, and
several book-length treatments are required to cover the field
adequately (see, for example, [Ro76]). In this project, we will con-
sider one relatively simple situation that can be treated by the
relaxation methods for elliptic equations described in this chapter
and that will serve to give some idea of the problems involved.
This situation is the time-independent flow of a viscous,
incompressible fluid past an object. For simplicity, we will take
the object to be translationally invariant in one direction
transverse to the flow, so that the fluid has a non-trivial motion
only in two-coordinates, (z,y); this might describe a rod or beam
placed in a steady flow of water with incident speed V,. We will also
consider only the case where the cross-section of this rod is a rec-
tangle with dimensions 2W transverse to the flow and 7T along the
flow (see Figure VI.1). This will greatly simplify the coding needed
to treat the boundary conditions, while still allowing the physics to
be apparent. We begin with an exposition of the basic equations
and their discretization, follow with a brief discussion of the boun-
dary conditions, and then give some guidance in writing the pro-
gram and in extracting some understanding from it.

V1.1 The equations and their discretization

In describing the flow of a fluid through space, at least two
fields are important: p, the mass density, and V, the velocity, of
the fluid element at each point in space. These are related
through two fundamental equations of hydrodynamics [La59]:

%%+V-pV=O; (VI.1a)
%‘{—:—(V-V)V— ;—%Pwvzv. (VI 1b)

The first of these (the continuity equation) expresses the conser-
vation of mass, and states that the density can change at a point
in space only due to a net in- or out-flow of matter. The second
equation (Navier-Stokes) expresses the conservation of momen-
tum, and states that the velocity changes in response to convec-
tion, (V-V)V, spatial variations in the pressure, VP, and viscous
forces vV<V, where v is the kinematic viscosity, assumed constant
in our discussion. In general, the pressure is given in terms of the
density and temperature through an "equation of state”, and when
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Figure VI.1 Geometry of the two-dimensional flow past
a plate to be treated in this project.

the temperature varies as well, an additional equation embodying
the conservation of energy is also required. We will assume that
the temperature is constant throughout the fluid.

We will be interested in studying time-independent flows, so
that all time derivatives can be set to zero in these equations.
Furthermore, we will assume that the fluid is incompressible, so
that the density is constant (this is a good approximation for
water under many conditions). Equations (VI.1) then become

V-V=0; (V1.2a)
(V-v)v-:—;—vavzv. (V1.2b)

For two-dimensional flow, these equations can be written explicitly
in terms of the z and y components of the velocity field, denoted
by w and v, respectively:

Qu 9 : (VI.3a)

w8 =L 08y, (V1.3b)
x p Oz
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AR ) Y VN (V1.3¢)

ox oy p 0y
Here, as usual,
2 2
ye=2"_ 4 O
ax?  ay®
Equations (VI.3) are three scalar equations for the fields u, v,
and P. While these equations could be solved directly, it is more
convenient for two-dimensional problems to replace the velocity
fields by two equivalent scalar fields: the stream function, ¥{z,y),
and the vorticity, &(z,y). The first of these is introduced as a con-
venient way of satisfying the continuity equation (VI.3a). The
stream function is defined so that

uzglg—; v=—%;L. (V1.4)

It is easily verified that this definition satisfies the continuity equa-
tions (V1.3a) for any function 9% and that such a ¥ exists for all
flows that satisfy the continuity condition (VI.2a). Furthermore,
one can see that (V-V)¥=0, so that V is tangent to contour lines of
constant ¢, the ""stream lines".

The vorticity is defined as

_o0u v
which is seen to be (the negative of) the curl of the velocity field.
From the definitions (V1.4), it follows that ¢ is related to the

stream function ¥ by
VRy=¢ . (VL.8)

An equation for ¢ can be derived by differentiating (VI.3b) with
respect to ¥ and (VI.3c) with respect to . Upon subtracting one
from the other and invoking the continuity equation (VI.3a) and
the definitions (VI.4), one finds, after some algebra,

I' .
2,_10% 8L _ 8y 08¢
V= dy 8x Oz dy

. (VL7)

Finally, an equation for the pressure can be derived by
differentiating (VI.3b) with respect to z and adding it to the
derivative of (VI.3c) with respect to y. Upon expressing all velo-
city fields in terms of the stream function, one finds, after a bit of
re-arranging,

Py

2
o 0%y || (VL.8)

0z 0y

[
a2y

VRP=2
P dx?
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Figure VI.2 The lattice to be used in calculating the
fluid flow past the plate illustrated in Figure VI.1.

Equations (VI.8-8) are a set of non-linear elliptic equations
equivalent to the original hydrodynamic equations (V1.3). They are
particularly convenient in that if it is just the velocity field we
want, only the two equations (VI.6,7) need be solved simultane-
ously, since neither involves the pressure. If we do happen to want
the pressure, it can be obtained by solving (VI.8) for P after we
have found ¥ and ¢.

To solve Egs. (VI.6,7) numerically, we introduce a two-
dimensional lattice of uniform spacing h having N, and N, points
in the 2 and y directions, respectively, and use the indices % and j
to measure these coordinates. (See Figure VI.2.) Note that since
the centerline of the rectangle is a line of symmetry, we need only
treat the upper half-plane, y>0. Moreover, it is convenient to
place the lattice so that the edges of the plate are on lattice
points. The location of the plate relative to the up- and down-
stream edges of the lattice is arbitrary, although it is wise to place
the plate far enough forward to allow the "wake' to develop behind
it, yet not too close to the upstream edge, whose boundary condi-
tions can influence the flow pattern spuriously. It is also con-
venient to scale the equations by measuring all lengths in units of
h and all velocities in units of the incident fluid velocity, V,. The
stream function is then measured in units of Vgh, while the
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vorticity is in units of Vy/h, and the pressure is conveniently
scaled by p Voz. Upon differencing (V1.8) in the usual way, we have

(629)i; +(8579)i =84 (VL.9)

where 6% is the symmetric second-difference, as in Eq. (8.3b).
Similarly, (VI.7) can be differenced as

(68)s; +(678)i5= %‘[(53'10)1;3' (6:8)i; —(8:9)45(6;&)51,  (VI10)

where the symmetric first-difference operator is

(05945 =Viw1;—Vi—1j

and similarly for 6j. The lattice Reynolds number, F=Vsh /v, is a
dimensionless measure of the strength of the viscous forces or,
equivalently, of the speed of the incident stream. It is related to
the physical Reynolds number Fe by replacing the mesh spacing
by the width of the rectangle: Ke=2WV,/ v. Finally, the pressure
equation (VI.8) can be differenced as

[(62P)y;+(83P )y 1=2L(0 )4 (079)ij — - (8:8,9)3].  (VL11)

V1.2 Boundary conditions

In order for the elliptic problems (VI.6-8) to be well posed, we
must specify either the values or the normal derivatives of the
stream function, the vorticity, and the pressure at all boundaries
of the lattice shown in Figure VI.2. These boundaries can be
classified into three groups, in the notation of Figure V1.3:

1) the centerline boundaries (A and E);

i) the boundaries contiguous with the rest of the fluid (F, G,
and H);

#i1) the boundaries of the plate itself (B, C, and D).

We treat ¥ and ¢ on each of these in turn, followed by the pressure
boundary conditions. Throughout this discussion, we use unscaled
(i.e., physical) quantities. It also helps to recall that in the freely
flowing fluid (i.e., no obstruction), the solution is w=V, v=0, so
that ¥=Vyy and ¢=0.

The boundary conditions on the centerline surfaces A and E
are determined by symmetry. The ¥ component of the velocity, v,
must vanish here, so that the x derivative of ¥ vanishes. It follows
that A and E are each stream lines. Moreover, since the normal
velocity (and hence the tangential derivative of 9¥) also vanishes on
B, C, and D, the entire surface ABCDE is a single stream line, and
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Figure VI.3 Boundary conditions to be imposed on the
stream function and vorticity

we may arbitrarily put ¥=0 on it. Note that the velocities depend
only upon the derivatives of ¥, so that the physical description is
invariant to adding a spatially independent constant to the stream
function; the choice of ¥ on this streamline fixes the constant.
From symmetry, we can also conclude that the vorticity vanishes
on A and E.

The boundary conditions on the upstream surface F are also
fairly straightforward. This surface is contiguous with the
smoothly flowing incident fluid, so that specifying

:—%: * =
v B 0; <=0 onF,

as is the case far upstream, seems reasonable. Similarly, if the
lattice is large enough, we may expect the upper boundary G to be
in free flow, so that fixing

o
u=51yL=VO; ¢=0 ongG,

is one appropriate choice. The downstream boundary H is much
more ambiguous and, as long as it is sufficiently far from the
plate, there should be many plausible choices. However, the boun-
dary conditions on a boundary that approaches the plate can
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influence the shape of the solution found. One convenient choice
is to say that nothing changes beyond the lattice boundary, so
that

% _% _o onh
dz ox

At the walls of the plate, (B, C, and D) one of the correct boun-
dary conditions is that the normal velocity of the fluid is zero.
This we have used already by requiring that this surface be a
stream line. However, the other boundary condition appropriate
for viscous flow is that the tangential velocity be zero. Implement-
ing this by setting the normal derivative of 9 to zero would be an
overspecification of the elliptic problem for 9. Instead, the "no-
slip” boundary condition is imposed on the vorticity. Consider a
point ij on the upper surface of the plate, C. We can write the
stream function at the point on lattice spacing above this one,
1j +1, as a Taylor series in y:

oy| . n2 o7y
1=V th + +oe VI.12
11b1,,7+1 W’Ly ay Iij 2 ay2 Iij ( )
Since, at the wall,

oy _.. _

By =u =0
and

oy? oy
because 8v/ 8z =0, (V1. 12) can be reduced to
gj=2?‘—b%¢-""— onC, (V1.13a)

which provides a Dirichlet boundary condition for ¢. (This is the
general form of the boundary condition; recall that we had previ-
ously specified ¥;;=0 on the plate boundaries.) The same kind of
arguments can be applied to the surfaces B and D to yield

=5 Viel 7 —'wij

Cij h2 on B ; (VI]_Sb)
szzﬂ__l;i_z—ﬂ?_ onD. (VIlSC)

Note that there is an ambiguity at the 'corners'’, where sur-
faces B and C and D and C intersect, as here the vorticity can be
computed in two ways (horizontal or vertical difference of ¥). In
practice, there are several ways of resolving this: use one form
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and verify that the other gives similar values (a check on the accu-
racy of the calculation), use the average of the two methods, or
use the horizontal value when relaxing the point just to the right
or left of the corner and the vertical value when relaxing the point
just above the corner.

The boundary conditions for the pressure on all surfaces are of
the Neumann type, and follow from Egs. (VI.3). We leave their
explicit finite-difference form in terms of ¥ and ¢ as an exercise.
Note that from symmetry, 0/ 8y =0 on the centerlines A and E.

V1.3 Solving the equations

Our general strategy will be to solve the coupled non-linear
elliptic equations (VI.9,10) for the stream function and vorticity
using the relaxation methods discussed in this chapter. One possi-
ble iteration scheme goes as follows. We begin by choosing trial
values corresponding to the free-flowing solution: Y=y and ¢=0. We
then perform one relaxation sweep of (VI.9) to get an improved
value of 9. The Dirichlet boundary conditions for ¢ on the walls of
the plate are then computed from (VI.13) and then one relaxation
sweep of (VI.10) is performed. With the new value of ¢ so obtained,
we go back to a sweep of (V1.9) and repeat the cycle many times
until convergence. If required, we can then solve the pressure
equation (VI.11) with Neumann boundary conditions determined
from (V1.3). This iteration scheme can be implemented in the fol-
lowing sequence of steps:

Step 1 Write a section of code to execute one relaxation sweep of
(VI.9) for ¥ given ¢ and subject to the boundary conditions dis-
cussed above. Be sure to allow for an arbitrary relaxation parame-
ter. This code can be adapted from that for Example 6; in particu-
lar, the technique of using letters on the screen as a crude con-
tour plot can be useful in displaying .

Step 2 Write a section of code that calculates the boundary condi-
tions for ¢ on the plate walls if 9 is known.

Step 3 Write a section of code that does one relaxation sweep of
(VI.10) for ¢ if ¢ is given. Build in the boundary conditions dis-
cussed above and be sure to allow for an arbitrary relaxation
parameter. If your computer has two displays, it is useful to
display ¥ on one screen and ¢ on the other.

Step 4 Combine the sections of code you wrote in the previous
three steps into a program that executes a number of iterations of
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the coupled ¥-¢ problem. Test the convergence of this scheme on
several coarse lattices for several different Reynolds numbers and
choices of relaxation parameters.

Step 5 Calculate the flow past several plates by running your pro-
gram to convergence on some large lattices (say 24x70) for
several increasing values of the lattice Reynolds number. A typi-
cal size of the plate might be W=8h and 7'=8h, while lattice Rey-
nolds numbers might run from 0.1 to 8. For the larger Reynolds
numbers, you might find instabilities in the relaxation procedure
due to the nonlinearity of the equations. These can be suppressed
by using relaxation parameters as small as 0.1 and by using as
trial solutions the flow patterns obtained at smaller Reynolds
numbers. Verify that the flow around the plate is smooth at small
Reynolds numbers but that at larger velocities the flow separates
from the back edge of the plate and a small vortex (eddy) develops
behind it. Check also that your solutions are accurate by running
two cases with different lattice Reynolds numbers but the same
physical Reynolds number.

Step 6 Two physically interesting quantities that can be computed
from the flow pattern are the net pressure and viscous forces per
unit area of the plate, Fp and F;,. By symmetry, these act in the z
direction and are measured conveniently in terms of the flow of
momentum incident on the face of the plate per unit area, RWpV§.
The pressure force is given by:

Fp= [ Pdy — [ Pdy, (V1.14)
D B

where the integrals are over the entire front and back surfaces of
the plate. This shows clearly that it is only the relative values of
the pressure over the plate surfaces that matter. These can be
obtained from the flow solution using Egs. (VI.3b,c). Consider, for
example, the front face of the plate. Using (VI.3c), together with
(VI.4,8) and the fact that the velocities vanish at the plate surface,
we can write the derivative of the pressure along the front face as:

P _ 8¢

2y VP S (VI.15)
Hence, ¢ from the flow solution can be integrated to find the (rela-
tive) pressure along the front face. Similar expressions can be
derived for the top and back faces, so that the pressure (apart
from an irrelevant additive con~tant) can be computed on all faces
by integrating up the front face, across the top, and down the
back face. The net viscous force per unit area of the plate is due
only to the flow past the top (and bottom) surfaces and is given by
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F,=2pv [ %"—dx. (V1.162)
c oY

However, since the boundary conditions on the top surface of the
plate require dv / 8z =0, this can be written as

F,=2pv [¢dz, (V1.16b)
C

which is conveniently evaluated from the flow solution. Investigate
the variation of the viscous and pressure forces with Reynolds
number and compare your results with what you expect.

Step 7 Three other geometries can be investigated with only minor
modifications of the code you've constructed. One of these is a
"jump”, in which the thickness of the plate is increased until its
downstream edge meets the downstream border of the lattice (H).
Another is a pair of rectangular plates placed symmetrically about
a centerline, so that the fluid can flow between them, as well
around them (a crude nozzle). Finally, two plates, one behind the
other, can also be calculated. Modify your code to treat each of
these cases and explore the flow patterns at various Reynolds
numbers.
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Chapter 7

Parabolic
Partial Differenti al
Fquations

Typical parabolic partial differential equations one encounters
in physical situations are the diffusion equation

%%:v-(pvgms, (7.1)
where D is the (possibly space dependent) diffusion constant and
S is a source function, and the time-dependent Schroedinger
equation

2

ih gf - 2hm Vot Vo, (7.2)
where V is the potential. In contrast to the boundary value prob-
lems encountered in the previous chapter, these problems are
generally of the initial value type. That is, we are given the field ¢
at an initial time and seek to find it at a later time, the evolution
being subject to certain spatial boundary conditions (e.g., the
Schroedinger wavefunction vanishes at very large distances or the
temperature or heat flux is specified on some surfaces). The
methods by which such problems are solved on the computer are
basically straightforward, although a few subtleties are involved.
We will also see that they provide a natural way of solving elliptic
eigenvalue problems, particularly if it is only the few lowest or
highest eigenvalues that are required.

7.1 Naive discretization and instabilities

We begin our discussion by treating diffusion in one dimension
with a uniform diffusion constant. We take x to vary between 0 and
1 and assume Dirichlet boundary conditions that specify the value
of the field at the end points of this interval. After appropriate
scaling, the analogue of (7.1) is

3¢ _ 0%
=g +S(@.t). (7.3)

As usual, we approximate the spatial derivatives by finite
differences on a uniform lattice of N+1 points having spacing
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h=1/ N, while the time derivative is approximated by the simplest
first-order difference formula assuming a time step Af. Using the
superscript n to label the time step (that is, p"=¢(t,), t,=nAt),
we can approximate (7.3) as

efti—el 1
L= (6% +ST (7.4)
At 1=1 and 1=N-—1, this equation involves the Dirichlet boundary
conditions specifying ¢g and ¢y .

Equation (7.4) is an explicit differencing scheme since, given ¢
at one time, it is straightforward to solve for ¢ at the next time.
Indeed, in an obvious matrix notation, we have:

et ti=(1-HAt)p™ +S™AL, (7.5)
where the action of the operator A is defined by

(Ho)==~5(8%);.

As an example of how this explicit scheme might be applied,
consider the case where S=0 with the boundary conditions
¢(0)=¢(1)=0. Suppose that we are given the initial condition of a
gaussian centered about z =¥,

-20(z-L)® -20(z-2)2 -20(z+1)?

o(z t=0)=e 20(= 2)_9 (-3 o (z+3)

where the latter two "image' gaussians approximately ensure the

boundary conditions at x=1 and =0, respectively, and we seek to

find ¢ at later times. The following BASIC code applies (7.5) to do
this on a lattice with N=25.

5 N7%=25: H=1/N% "lattice parameters

10 DT=.001: DTH=DT/H~2 "time step, useful cnst
15 DIM PHI(N%) 'array for the solution
20 DEF FNEXACT(X)=FNGAUSS(X) - FNGAUSS(X-1) -FNGAUSS(X+1) 'functions for the

25 DEF FNGAUSS(X)=EXP(-20*(X-.5)~2/(1+80*T))/SQR(1+80*T)’ analytical solution
30 ° -

35 T=0 ‘define initial conds.
40 PHI(0)=0: PHI(N%)=0

45 FOR 1[7%=1 TO Nz-1

50 PHI (1%)=FNEXACT( [%*H)

55 NEXT I7%

60

65 FOR ITZ=1 TO 50 "loop over time steps
70 PT=0 "old PHI at last point
75 FOR I7%=1 TO N%-1 "loop over the lattice
80 PS=PHI (1%)+DTH* (PT+PHI (1%+1) -2*PHI (1%)) 'new PHI at this point
85 PT=PHI (1%) "old PHI for next point
90 PHI ([%)=PS "store new PHI

95 NEXT 1%
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105 IF IT% MOD 5<>0 THEN GOTO 140 "output every 5 steps
110 T=IT%*DT

115 PRINT USING "time=#.######" ;T

120 FOR I%=1 TO NZ%-1

125 EXACT=FNEXACT(1%*H)

130 PRINT USING "phi (##)=+#. ###~~~~ exact=+#.###~~~";1%,PHI(1%) ,EXACT
135 NEXT 1%

140 NEXT IT%

Typical results from this code are shown in Figure 7.1. Things
seem to be working fine for a time step of 0.00075 and the results
agree reasonably well with the analytical solution of a spreading
gaussian,

- -1y - —3ye - 132
¢(x,t)=—r—%{e W=/ 7_ a7 e/l oo
This time step is, however, quite small compared to the natural
time scale of the solution, £~0.01, so that many steps are required
before anything interesting happens. If we try to increase the time
step, even to only 0.001, things go very wrong: an unphysical insta-
bility develops in the numerical solution, which quickly acquires
violent oscillations from one lattice point to another soon after
t=0.02.

It is easy to understand what is happening here. Let the set of
states 9, be the eigenfunctions of the discrete operator H with
eigenvalues ¢,. Since H is an hermitian operator, the eigenvalues
are real and the eigenvectors can be chosen to be orthonormal. We
can expand the solution at any time in this basis as

" =2 0T
A

The exact time evolution is given by
n—p—nHAt ,0

¥
so that each component of the solution should evolve as
gf=e T .

This corresponds to the correct behavior of the diffusion equation,
where short-wavelength components (with larger eigenvalues)
disappear more rapidly as the solution "smooths out”. However,
(7.5) shows that the explicit scheme will evolve the expansion
coefficients as

PR=(1—5)Af )" . (7.6)

As long as At is chosen to be small enough, the factor in (7.8)
approximates e ™ and the short-wavelength components damp
with time. However, if the time step is too large, one or more of
the quantities 1—¢,Af has an absolute value larger than unity. The
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Figure 7.1 Results for the one-dimensional diffusion of
a gaussian; a fixed lattice spacing h=0.04 is used in all
calculations. a) and b) result from the explicit algo-
rithm (7.5) while ¢) is the implicit algorithm (7.8).



7.2 Implicil schemes and the inversion of tri—diagonal matrices

corresponding components of the initial solution, even if present
only due to very small numerical round-off errors, are then
amplified with each time step, and soon grow to dominate.

To quantify this limit on Af, we have some guidance in that the
eigenvalues of H are known analytically in this simple model
problem. It is easily verified that the functions

. Am
(%)FSIH—N—

are (un-normalized) eigenfunctions of H with the correct boun-
dary conditions on a lattice of N+1 points for A=1,2, - - - ,N—1 and
that the associated eigenvalues are '

Ex= 4 sin® AT
AT 2 2N -

The largest eigenvalue of H is £y_;~4h~?, which corresponds to an
eigenvector that alternates in sign from one lattice point to the
next. Requiring |1—&y_;Af |<1 then restricts At to be less than
¥%h?, which is 0.0008 in the example we are considering.

The question of stability is quite distinct from that of accu-
racy, as the limit imposed on the time step is set by the spatial
step used and not by the characteristic time scale of the solution,
which is much larger. The explicit scheme we have discussed is
unsatisfactory, as the instability forces us to use a much smaller
time step than is required to describe the evolution adequately.
Indeed, the situation gets even worse if we try to use a finer spatial
lattice to obtain a more accurate solution. Although the restric-
tion on At that we have derived is rigorous only for the simple case
we have considered, it does provide a useful guide for more com-
plicated situations, as the eigenvector of // with the largest eigen-
value will always oscillate from one lattice point to the next; its
eigenvalue is therefore quite insensitive to the global features of
the problem.

Exercise 7.1 Use the code above to verify that the instability sets
in for smaller time steps if the spatial lattice is made finer and
that the largest possible stable time step is roughly ¥h? Show
that the instability is present for other initial conditions, and that
round-off causes even the exact lowest eigenfunction of H# to be
unstable under numerical time evolution.

7.2 Implicit schemes and the inversion of tri-diagonal matrices

One way around the instability of the explicit algorithm
described above is to retain the general form of (7.4), but to
replace the second space derivative by that of the solution at the
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new time. That is, (7.4) is modified to
n+l

22 1

At h?

This is an implicit scheme, since the unknown, ¢"*!, appears on
both side of the equation. We can, of course, solve for ¢™** as

n+l_ 1 () n
@ T [e™+STAL]. (7.8)
This scheme is equivalent to (7.5) to lowest order in At. However,
it is much better in that larger time steps can be used, as the
operator (1+HAt)~! has eigenvalues (1+&)At)~!, all of whose
moduli are less than 1 for any Af. All components of the solution
therefore decrease with each time step, as they should. Although
this decrease is inaccurate (i.e., not exponential) for the most
rapidly oscillating components, such components should not be
large in the initial conditions if the spatial discretization is accu-
rate. In any event, there is no amplification, which implies stabil-
ity. For the slowly varying components of the solution correspond-
ing to small eigenvalues, the evolution closely approximates the
exponential at each time step.

Note that if we had tried to be more accurate than (7.7) and
had used the average of the second space derivatives at the two
time steps involved,

o tl-plr

(8%p™+1); +ST (7.7)

= (e g )+ ST (7.9)
so that the time evolution is effected by
(pn+1=m[(l—%HAt)¢n+SnAt], (7.10)

this would have been almost as good as the implicit scheme,
because the components of the solution are diminished by factors
whose absolute values are less than one.

A potential drawback of the implicit scheme (7.8) is that it
requires the solution of a set of linear equations (albeit tri-
diagonal) at each time step to find ¢™*1; this is equivalent to the
application of the inverse of the matrix 1+HAf to the vector
appearing in brackets. Since the inverse itself is time-
independent, it might be found only once at the beginning of the
calculation and then used for all times, but application still
requires of order N? operations if done directly. Fortunately, the
following algorithm (Gaussian elimination and back-substitution,
[Va62]) provides a very efficient solution (of order N operations) of
a tri-diagonal system of equations such as that posed by Eq. (7.8).
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Let us consider trying to solve the tri-diagonal linear system of
equations Ag=Db for the unknowns ¢;:

AP+ A 0+ AT 91 =b; (7.11)
Here, the A4 are the only non-vanishing elements of A and the b;
are known quantities. This is the form of the problem posed by the
evaluation of (7.8) for ¢™*!, where ¢, and ¢, are given by the Diri-
chlet boundary conditions. In particular,

2At At

b, =pl+SPAt, AP= 1+ , AF=—

To solve this system of equations, we assume that the solution
satisfies a one-term forward recursion relation of the form

Pir1= 005 +B5, (7.12)

where the «a; and B; are coefficients to be determined. Substitut-
ing this into (7.11), we have

AT i1+ A 0+ A (0 03 +8:)=by, (7.13)
which can solved for ¢; to yield
0 =7 AT i1y (4B —by), (7.14)
with
1
B E— 7.15
71, A,':O+Ai+(xi ( )

Upon comparing Eq. (7.14) with (7.12), we can identify the follow-
ing backward recursion relations for the a's and §’s:

X1 =Y A (7.16a)
Bi—1=7: (A B;—b;) . (7.16b)

The strategy to solve the system should now be clear. We will
use the recursion relations (7.15,16) in a backwards sweep of the
lattice to determine the a; and §; for 7 running from N—2 down to
0. The starting values to be used are

ay_1=0, By_1=¢nN .

which will guarantee the correct value of ¢ at the last lattice
point. Having determined these coefficients, we can then use the
recursion relation (7.12) in a forward sweep from i=0 to N—1 to
determine the solution, with the starting value ¢y known from the
boundary conditions. We have then determined the solution in
only two sweeps of the lattice, involving of order N arithmetic
operations.
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The following code implements the algorithm (7.8) for the
model diffusion problem we have been considering. Results are
shown in Figure 7.1 ¢), where it is clear that accurate solutions
can be obtained with a much larger time step than can be used
with the explicit scheme; the increase in numerical effort per time
step is only about a factor of two. Note that the a; and y; are
independent of b, so that, as the inversion must be done at every
time step, it is more efficient to compute these coefficients only
once and store them at the beginning of the calculation (lines 70-
95); only the B; then need be computed for each inversion (lines
115-130).

5 NZ=25. H=1/N7% "lattice parameters
10 DT=.005: DTH=DT/H~2 "time step, useful cnst
15 DIM PHI(N%) 'array for the solution
20 DIM ALPHA(N%) ,BETA(N%) , GAMMA (N%) ‘coefficient arrays

25 DEF FNEXACT(X)=FNGAUSS(X) -FNGAUSS(X-1) -FNGAUSS(X+1) ’'functions for the

35

30 DEF FNGAUSS(X)=EXP(-20*(X-.5)~2/(14+80*T))/SQR(1+80*T)’ analytical solution

40 T=0 'define initial conds.
45 PHI(0)=0: PHI(N%)=0
50 FOR I7Z=1 TO N%-1

55 PHI ( [%)=FNEXACT ( I[7%*H)

60 NEXT 1%

65 'find ALPHA and GAMMA
70 AP=-DTH: AZ=1+2*DTH "A coefficients

75 ALPHA(N%-1)=0: GAMMA(NZ%-1)=-1/AZ 'starting values

80 FOR I%=N%-1 TO 1 STEP -1 "backward sweep

85  ALPHA(I1%-1)=GAMMA(1%) *AP

90 GAMMA(I%-1)=-1/(AZ+AP*ALPHA(1%-1))

95 NEXT I%

100

105 FOR IT%=1 TO 50 "loop over time steps
110 'find BETA

115 BETA(N%-1)=0 "starting value

120 FOR 17=N%-1 TO 1 STEP -1 "backward sweep

125 BETA(1%-1)=GAMMA( [%) * (AP*BETA( %) -PHI(1%))

130 NEXT 1%

135 'find new PHI

140 PHI(0)=0 ' "starting value

145 FOR 17%=0 TO NZ%-1 "forward sweep

150 PHI (1%+1)=ALPHA(1%) *PHI (1%)+BETA(1%)

155 NEXT 1%

160

165 T=1T7%*DT "output every time step
170 PRINT USING 't ime=#. ######" . T

175 FOR 17Z=1 TO NZ%-1

180 EXACT=FNEXACT( [%*H)

185 PRINT USING "phi (##)=+#.### -~~~ exact=+§.###~~~~",1%,PHI(1%) ,EXACT
190 NEXT 1%

195 NEXT IT%
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Exercise 7.2 Use the code above to investigate the accuracy and
stability of the implicit algorithm for various values of At and for
various lattice spacings. Study the evolution of various initial con-
ditions and verify that they correspond to your intuition. Incor-
porate sources or sinks along the lattice and study the solutions
that arise when ¢ vanishes everywhere at £ =0.

Exercise 7.3 Modify the code above to apply the algorithm (7.10)
and study its stability properties. Explore the effects of taking
different linear combinations of ¢™ and ¢"*! on the right-hand

side of Eq. (7.9) (e.g., g—¢"+i—¢n"’1).

Exercise 7.4 A simple way to impose the Neumann boundary condi-
tion

9
ox

is to require that ¢;=¢gthg. Show that this implies that the for-
ward recursion of (7.12) is to be started with

hg —Bo
(XO_]. )

=g

=0

Yo=

What is the analogous expression implied by the more accurate
constraint ¢;=¢_;+2hg? What are the initial conditions for the
backward recursion of the a and g coefficients if Neumann boun-
dary conditions are imposed at the right-hand edge of the lattice?
Modify the code above to incorporate the boundary condition that
¢ have vanishing derivative at z=0 (as is appropriate if an insula-
tor is present in a heat conduction problem) and observe its effect
on the solutions. Show that the inversion scheme for tri-diagonal
matrices discussed above cannot be applied if periodic boundary
conditions are required (i.e., ¢ y=¢g)-

Exercise 7.5 Solve the boundary value problem posed in Exercise
3.4 by discretization and inversion of the resulting tri-diagonal
matrix. Compare your solution with those obtained by the Green'’s
function method and with the analytical result.

7.3 Diffusion and boundary value problems in two dimensions

The discussion above shows that diffusion in one dimension is
best handled by an implicit method and that the required inver-
sion of a tri-diagonal matrix is a relatively simple task. It is there-
fore natural to attempt to extend this approach to two or more
spatial dimensions. For the two-dimensional diffusion equation,
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3¢ _u2
at v ¢
the discretization is straightforward and, following our develop-

ment for the one-dimensional problem, the time evolution should
be effected by

1
A Ty-7vads (7.17)
where
(H99)ij'E—h2 [(63‘P) +(5J ‘P)tj]

Unfortunately, while H is very sparse, it is not tri-diagonal, so that
the algorithm that worked so well in one dimension does not apply;
some thought shows that A cannot be put into a tri-diagonal form
by any permutation of its rows or columns. However, the fact that
H can be written as a sum of operators that separately involve
differences only in the 7= or j indices:

1
H=H,+H; ; H.,;,j=—h—25§,j, (7.18)

means that an expression equivalent to (7.17) through order At is

1 1
n+l_— n 7.19

4 1+H;At 1+H;At ¢ ( )
This can now be evaluated exactly, as each of the required inver-
sions involves a tri- d1aﬁonal matrix. In particular, if we define the
auxilliary function ¢™*%2 we can write

n+l_ 1_ n+}ﬁ'

n.
1+H;at © 0 ¥ T 1vHA ¢

Thus, (1+H;At)™! is applied by forward and backward sweeps of
the lattice in the j dlrectlon independently for each value of 7.
The application of (1+H;At)™! is then carried out by forward and
backward sweeps in the 7 direction, independently for each value
of j. This "alternating-direction’ scheme is easily seen to be stable
for all values of the time step and is generalized straightforwardly
to three dimensions.

The ability to invert a tri-diagonal matrix exactly and the idea
of treating separately each of the second derivatives of the Lapla-
cian also provides a class of iterative alternating-direction
methods [WaB6] for solving the elliptic boundary value problems
discussed in Chapter 6. The matrix involved is written as the sum
of several parts, each containing second differences in only one of
the lattice indices. In two dimensions, for example, we seek to
solve (see Eq. (6.3b))

n+kh—

¥
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(Hi+Hj)p=s. (7.20)

If we add a term wg to both sides of this equation, where w is a
constant discussed below, the resulting expression can be solved
for ¢ in two different ways:

1

R G (7.212)
o= g[S~ (Himo)e) (7:21b)

This pair of equations forms the basis for an iterative method
of solution: they are solved in turn, ¢ on the right-hand sides being
taken as the previous iterate; the solution involves only the inver-
sion of tri-diagonal matrices. The optimal choice of the ""accelera-
tion parameter”, w, depends on the matrices involved and can
even be taken to vary from one iteration to the next to improve
convergence. A rather complicated analysis is required to find the
optimal values [WaB6]. However, a good rule of thumb is to take

w=(apB)¥, (7.22)

where o and B are, respectively, lower and upper bounds to the
eigenvalues of H; and Hj. In general, these alternating direction
methods are much more efficient than the simple relaxation
scheme discussed in Chapter 6, although they are slightly more
complicated to program. Note that there is a slight complication
when boundary conditions are also specified in the interior of the
lattice.

7.4 Iterative methods for eigenvalue problems

Our analysis of the diffusion equation (7.1) shows that the net
result of time evolution is to enhance those components of the
solution with smaller eigenvalues of H relative to those with larger
eigenvalues. Indeed, for very long times it is only that component
with the lowest eigenvalue that is significant, although it has very
small amplitude. This situation suggests a scheme for finding the
lowest eigenvalue of an elliptic operator, as defined by (6.2): guess
a trial eigenvector and subject it to a fictitious time evolution that
will "filter” it to the eigenvector having lowest eigenvalue. Since we
are dealing with a linear problem, the relentlessly decreasing or
increasing magnitude of the solution can be avoided by renormal-
izing continuously as time proceeds.

To make the discussion concrete, consider the time-
independent Schroedinger equation in one dimension with
h=2m=1. The eigenvalue problem is

2
——d—?+ V(x)

=g, 7.23
I p=cp (7.23)
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with the normalization condition

fdx p2=1
(¢ can always be chosen to be real if V is). The corresponding

energy functional is
[ (d0 )P )
E=fdxl% 7] TV (@)e()

On general grounds, we know that £ is stationary at an eigenfunc-
tion with respect to variations of ¢ that respect the normalization
condition and that the value of £ at this eigenfunction is the asso-
ciated eigenvalue.

To derive a discrete approximation to this problem, we discre-
tize £ as

: (7.24)

[ (9, —;
Pi—Pi—1)
E=Yhll-— hz" L+ V02|, (7.25)
?
and the normalization constraint takes the form
Lhef=1. (7.26)
i

Variation with respect to ¢; gives the eigenvalue problem
1
(H‘P)iE_F‘(‘sZ‘P)i"' Vioi=cpy, (7.27)

with ¢ entering as a Lagrange multiplier ensuring the normaliza-
tion. (Compare with the derivation of the Hartree-Fock equations
given in Project II1.)

We can interpret (7.27) as defining the problem of finding the
real eigenvalues and eigenvectors of a (large) symmetric tri-
diagonal matrix representing the operator H. Although direct
methods for solving this problem were discussed in Chapter 5,
they cannot be applied to the very large banded matrices that
arise in two- and three-dimensional problems. However, in such
cases, one is usually interested in the few highest or lowest eigen-
values of the problem, and for these the diffusion analogy is
appropriate. Thus, we consider the problem

¢ __

ot He.

where 7 is a ""fake' time. For convenience, we suppose that things
have been arranged so that the lowest eigenvalue of H is positive
definite. (This can be guaranteed by shifting H by a spatially-
independent constant chosen so that the resultant V; is positive
for all i.)
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To solve this "fake’ diffusion problem, any of the algorithms
discussed above can be employed. The simplest is the explicit
scheme analogous to (7.5):

et ln(1—-HAT)p™, (7.28)

where AT is a small, positive parameter. Here, the symbol ~ is
used to indicate that ¢™*! is to be normalized to unity according
to (7.26). For an initial guess, we can choose ¢° to be anything not
orthogonal to the exact eigenfunction, although guessing some-
thing close to the solution will speed the convergence. At each
step in this refining process, computation of the energy from

(7.25) furnishes an estimate of the true eigenvalue.
As an example, consider the problem where

V=0, ¢(0)=¢(1)=0;

this corresponds to a free particle in hard-walled box of unit
length. The analytical solutions for the normalized eigenfunctions
are

10;;255 sinArz,
and the associated eigenvalues are
8;\=>\27T2.
Here, A is a non-zero integer. The following BASIC program imple-
ments the scheme (7.28) on a lattice of 21 points and calculates
the energy (7.25) at each iteration. The initial trial function

¢~z (1—x) is used, which roughly approximates the shape of the
exact ground state.
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5 N7%=20: H=1/N7% "deflne lattice parameters
10 DT=.0005: DTH=DT/H~2 "time step, useful cnst.
15 DIM PHI(N%) 'array for the solution
20

25 FOR [7%=0 TO N7 “initial guess for PHI
30 X=1%*H: PHI(I%)=X*(1-X)

35 NEXT 1%

40 GOSUB 1000 'normalize guess for PHI
45 "’

50 FOR ITz=1 TO 60 "iteration loop

55 PT=0 "apply (1-H*DT)

60 FOR I7=1 TO N7%-1

65 PS=PHI (1%)+DTH* (PT+PHI (1%+1) -2*PHI (1%) )

70 PT=PHI(1%): PHI([%)=PS

75 NEXT 1%

80 GOSUB 1000 'normalize PHI

85

90 E=0 "calculate the energy

95  FOR I%=1 TO N%
100 E=E+(PHI (1%) -PHI (1%-1))~2
105 NEXT I%
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'output
PRINT USING "iteration=## energy=+##.### ~~~";1T%,E/(2*H)

120 NEXT ITZ%
125 END

R 2 R E S R R R R R R 2 R R 2 R A R 2 R 2 A A A A R R R R R A R A R R R R R R 2 R R R RS R A R AR R R R R R 2 R

1005 ’'subroutine to normalize phi to unity

I R IR EE R R R R R R E R R AR R R R R R R R R R R R R R R R R R R R R R R R R R RS R R R R R R R R R R R R R
NORM=0
FOR I%=1 TO N%
NORM=NORM+PHI ( 1%)~2
NEXT 1%
NORM=1 /SQR (H*NORM)
FOR I%=1 TO N%
PHI ( 1%)=PHI ( 1%) *NORM
NEXT 1%
RETURN

The results generated by the code above for several different
values of AT are shown in Table 7.1. Note that for values of AT
smaller than the stability limit, %h?~0.00125, the energy con-
verges to the expected answer and does so more rapidly for larger
AT. However, if AT becomes too large, the large-eigenvalue com-
ponents of trial eigenfunction are amplified rather than dimin-
ished, and the energy obtained finally corresponds to the largest
eigenvalue of H, the exact finite difference value of which is (see
the discussion following Eq. (7.8))

197

1800 sin? =1590.15.

This phenomenon then suggests how to find the eigenvalue of an
operator with the largest absolute value: simply apply H to a trial
function many times.

Although the procedure outlined above works, it is unsatisfac-
tory in that the limitation on the size of AT caused by the lattice
spacing often results in having to iterate many times to refine a
poor trial function. This can be alleviated to some extent by
choosing a good trial function. Even better is to use an implicit
scheme (such as (7.8)) that does not amplify the large-eigenvalue
components for any value of Ar. Another possibility is to use
exp(—HAT) to refine the trial function. While exact calculation of
this matrix can be difficult if large dimensions are involved, it can
be well-represented by its series expansion through a finite
number of terms. This series is easy to evaluate since it involves
only applying # many times to a trial state and generally a larger
AT can be used than if only the first order approximation to the
exponential, (7.28), is employed.

We have shown so far how the method we have discussed can
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Table 7.1 Convergence of the lowest eigenvalue of the
square-well problem. The analytic result is 9.86960; the
exact finite-difference value is 9.84933.

Iteration AT=.0005 A7=.0010 AT=.0015
4 9.93254 9.90648 9.88909
8 9.90772 90.87841 9.86569

12 9.89109 9.86441 9.87311
16 9.87946 9.85719 10.05357
20 9.87116 9.85342 12.34984
24 9.86519 0.85146 42.96950
28 9.86086 9.85044 379.69290
32 9.85773 9.84991 1301.501
36 9.85544 9.84963 1565.746
40 9.85378 9.84949 1587.891
44 9.85257 9.84941 1589.690
48 9.85169 9.84937 1589.966
52 9.85105 9.84935 1590.061

be used to find the lowest or highest eigenvalue of an operator or
matrix. To see how to find other eigenvalues and their associated
eigenfunctions, consider the problem of finding the second-lowest
eigenvalue. We first find the lowest eigenvalue and eigenfunction
by the method described above. A trial function for the second
eigenfunction is then guessed and refined in the same way, taking
care, however, that at each stage of the refinement the solution
remain orthogonal to the lowest eigenfunction already found. This
can be done by continuously projecting out that component of the
solution not orthogonal to the lowest eigenfunction. (This projec-
tion is not required when there is some symmetry, such as
reflection symmetry, that distinguishes the two lowest solutions
and that is preserved by the refinement algorithm.) Having found,
in this way, the second-lowest eigenfunction, the third lowest can
be found similarly, taking care that during ifs refinement, it
remains orthogonal to both of the eigenfunctions with lower eigen-
values. This process cannot be applied to find more than the few
lowest (or highest) eigenvectors, however, as numerical round-off
errors in the orthogonalizations to the many previously-found
eigenvectors soon grow to dominate.

Although the methods described above have been illustrated
by a one-dimensional example, but it should be clear that they can
be applied directly to find the eigenvalues and eigenfunctions of
elliptic operators in two or more dimensions, for example via Eq.
(7.19).
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Exercise 7.6 Extend the code given above to find the eigenfunc-
tions and eigenvalues of the first two excited states of each parity
in the one-dimensional square-well. Compare your results with the
exact solutions and with the analytical finite-difference values.

Exercise 7.7 Write a program (or modify that given above) to find
the few lowest and few highest eigenvalues and eigenfunctions of
the Laplacian operator in a two-dimensional region consisting of a
square with a square hole cut out of its center. Investigate how
your results vary as functions of the size of the hole.

7.5 The time-dependent Schroedinger equation

The numerical treatment of the time-dependent Schroedinger
equation for a particle moving in one dimension provides a good
illustration of the power of the techniques discussed above and
some striking examples of the operation of quantum mechanics
[Go67]. We consider the problem of finding the evolution of the
(complex) wavefunction ¢ under Eq. (7.2), given its value at some
initial time. After spatial discretization in the usual way, we have
the parabolic problem

Op;
ot

where H is the operator defined in (7.27) and we have put a=1. To
discretize the time evolution, we have the possibility of employing
the analogue of any of the three methods discussed above for the
diffusion equation. The explicit method related to (7.5), in which
the evolution is effected by (1—iHAt), is unstable for any value of
At because the eigenvalues of this operator,

(l—iSAAt),

=—i(Hgp);, (7.29)

have moduli
(1+e£AE2)%

greater than unity. The implicit scheme analogous to (7.8), in con-
trast, is stable for all Af, as the moduli of the eigenvalues of the
evolution operator,

(1+e£AE2) %,

are always less than one. This is still unsatisfactory, though, as
the numerical evolution then does not have the important unitar-
ity property of the exact evolution; the norm of the wavefunction
continually decreases with time. Fortunately, the analogue of
(7.10) turns out to be very suitable. It is

1—i¥HAL | ,
1+i Y% H At |

n+l_—

(7.30)
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This evolution operator is manifestly unitary (recall that H is her-
mitian) with eigenvalues of unit modulus, so that the norm of ¢
computed according to (7.28) is the same from one time to the
next. (Of course, the square of the real wavefunction in (7.26) is to
be replaced by the modulus squared of the complex wavefunction.)
The algorithm (7.30) also has the desirable feature that it approxi-
mates the exact exponential evolution operator, exp(—iHAt),
through second order in Af, which is one more power than would
have been supposed naively.

For actual numerical computation, it is efficient to rewrite
(7.30) as

2

n+1— — N —yv— N
¢ 1+iBHAL 1]9” =X (7.31)

This form eliminates the sweep of the lattice required to apply the
numerator of (7.30). To find, at each time step, the intermediate
function x defined by

(1+i%HAL)x=2¢",

we write this equation explicitly as

1AL 1A | 1AL 1AL _
Top Xt o Vj] J'—ij—l—g%“. (7.32)
which, upon dividing by —2 At/ 2h? becomes
Rih 2 4ih®
Xj+1+|—R+ A ~h2Y; xj+xj_1=—AT<p}‘. (7.33)

This has the form of (7.11), and can therefore be solved by the
two-sweep method discussed in connection with that equation.

The BASIC program for Example 7, whose source code is con-
tained in Appendix B and in the file EXAM7.BAS on the Computa-
tional Physics diskette, uses the method described above to solve
the time-dependent Schroedinger equation. Several analytical
forms of the potential (square well or barrier, gaussian well or bar-
rier, potential step, or parabolic well) can be defined on a 160-
point lattice and then altered pointwise using the cursor keys on
the keyboard. An initial Gaussian or Lorentzian wavepacket of
specified average position and momentum and spatial width can
then be set up on the lattice and evolved under the boundary con-
dition that ¢ vanish at the lattice boundaries. The probability den-
sity, |¢|% and potential are displayed at each time step, together
with the total probabilities and average positions of those portions
of the wavepacket to the left and right of a specified point. When
the time-evolution is terminated by pressing e , the wavepacket
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or potential can be altered to study another situation. Since BASIC
does not support complex arithmetic, the real and imaginary
parts of all expressions have been coded separately.

The following exercises will be useful in improving your under-
standing of this example. A convenient base-line situation is to use
a square-well potential of height or depth 0.1 and half-width 20, an
initial wavepacket with average momentum =~0.4 and width ~15,
and a time-step of 1 or 2.

Exercise 7.8 Test the accuracy of the integration by integrating
forward for some time interval, changing the sign of the time step,
and then continuing the integration for an equal time interval to
see if you return to the initial wavepacket. Write a subroutine that
calculates the average energy the wavepacket at each time step
and verify that this energy is conserved exactly, independent of
the time-step.

Exercise 7.9 Verify that wavepackets in the absence of any poten-
tial and wavepackets in a parabolic potential well behave as you
expect them to.

Exercise 7.10 Send wavepackets of varying widths and incident
energies at barriers and wells of various sizes and shapes. Inter-
pret all features that you observe during the time evolution. For
square-well and step potentials, compare the fractions of the ini-
tial probability transmitted and reflected with the analytical
values of the usual transmission and reflection coefficients. Set up
a resonance situation by considering scattering from potentials
with a "'pocket” in them and observe the separation of the initial
wavepacket into prompt and delayed components. Set up a
"double-well”" tunneling situation and observe the evolution.

kExercise 7.11 Réplace the evolution algorithm (7.30) by the
unstable explicit method or the non-unitary implicit method and
observe the effects.

Exercise 7.12 Replace the vanishing Dirichlet boundary condition
at one lattice end by a zero-derivative Neumann boundary condi-
tion and observe what happens when a wavepacket approaches.

Exercise 7.13 In two- and three-dimensional calculations, the large
number of lattice points forces the use of as large a lattice spacing
as is possible, so that higher-order approximations to the spatial
derivative become necessary [F178]. Replace the "three-point”
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formula for the spatial second derivative by the more accurate
"five-point”’ one listed in Table 1.2. Develop an algorithm to invert
the penta-diagonal matrix involved in the time evolution. Imple-
ment this in the code and observe any changes in the results or
the computational efficiency.

Project VII: Self-organization in chemical reactions

Recent work in several branches of physics has shown that the
solutions of non-linear equations can display a rich variety of
phenomena. Among these is ""pattern selection’, in which stable,
non-trivial patterns in space and/or time emerge spontaneously
from structureless initial conditions. In this project, we will inves-
tigate analytically and numerically a model of chemical reactions,
the '"Brusselator”, whose solutions exhibit behavior that is very
similar to the striking phenomena observed in actual chemical
systems [Wi74]. Our discussion follows that of [Ni77] and [Bo78].

VII.1 Description of the model

We consider a network of chemical reactions in which reagent
species A and B are converted into product species D and £
through intermediates X and Y:

A-X; (VII.1a)
B+X-Y+D; (VIL.1b)
2X+Y-»3X; (VIl.1c)
X-E. (VIL 1d)

We assume that the concentrations of A and B are fixed and are
spatially uniform and that the species D and £ are ''dead’ in the
sense of being chemically inert or being removed from the reac-
tion volume. We also assume that the processes (VIl.1a-d) are
sufficiently exoergic to make the reverse reactions negligible.
Under these conditions, we can write the following equations for
the evolution of the concentrations of X and Y:

0X

S ~KaA—ky BX+k X2Y—kgX+DyV3X; (VIL.2a)
aa_tY =k, BX—k, X2Y+ Dy V2Y. (VIL2b)

Here, k,_q are the rate constants for the reactions (VIL.la-d),
respectively, and Dy y are the diffusion constants of the species
X)Y.
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It is convenient to scale the non-linear diffusion equations
(VIL.2) to a dimensionless form. If we measure time in units of kg !,
space in units of I, a characterlstlc size of the reaction volume, X
and Y in units of (ch/lc )%, A in units of (k$/ kZk,)*, B in units of
kg/ ky, and Dy y in units of k4L, then Eqgs. (VIL 2) become

g—‘;{=A —~(B+1)X+X2Y + Dy VX (VIL3a)
‘Zz’ = BX—X2Y+DyV2Y. (VIL3b)

From this scaling, it is clear that the constants A and B can be of
order unity, although Dy y might be considerably smaller, depend-
ing upon the value of L.

One trivial solution to these equations can be found by assum-
ing that X and Y are independent of space and time. Setting all
derivatives to zero yields a set of algebraic equations that can be
solved for the equilibrium point. After a bit of algebra, we find that
equilibrium is at

X=X,=4, Y=Yo=2 .
A

To completely specify the model, we must give the spatial
boundary conditions. Of the various possible choices, two are of
particular physical interest. These are the ''no-flux" boundary
conditions, in which the normal derivatives of X and Y are
required to vanish on the surface of the reaction volume (as might
the case if the chemistry takes place in a closed vessel) and the
"fixed" boundary conditions, where X and Y are required to have
their equilibrium values on the surface of the reaction volume.

VII.2 Linear stability analysis

To get some insight into the behavior of this system before
beginning to compute, it is useful to analyze the behavior of small
perturbations about the equilibrium state. To do so, we put

X=Xog+6X(r.t); (VIL4a)
Y=Y +6Y(r, 1), (VIL4b)

where r represents the spatial variables and 6X, 6Y are small
quantities dependent upon space and time. Inserting this into
(VI1.3) and linearizing in the small quantities, we have

ath =(2XoYg—B—1+DyV2)3X+X25Y: (VIL5a)
WY _(B—-2X,Y)6X+(DyV2—X8)oY. (VIL5b)

ot
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We now specialize to the no-flux boundary condition in one
dimension. We can then expand 6X as

5X(r.t)= Y 6X,e“"cosmnr, (VIL.6)
m=0

and similarly for §Y. Here, O<r=<1 is the spatial coordinate and
the w,, indicate the stability of each normal mode. In particular,
Rew,, <0 indicates a stable mode that damps in time, while
Re w,, >0 indicates an unstable perturbation that grows; a complex
w,, indicates a mode that also oscillates as it grows or damps. For
the fixed boundary conditions, the expansion analogous to (VII.6)
involves sinm mr rather than cosmnr.

Upon introducing the Fourier expansion into the linearized
equations (VI1.5a,b) and equating the coefficients of each spatial
mode, we obtain the following homogeneous eigenvalue equations:

Wm0 X, =(RXoYo—B —1—Dym?n?)6X,, +X§6Y,,;
Wy 8 Yo =(B—2X Y 0)8X,, —(X§ + Dym?2n?)5 Y,,. (VIL7)
It is easy to see that these hold for both types of boundary condi-
tions and that the eigenvalues then satisfy the characteristic
equation
w02, 4 (B =% ) +AZB =y B =0, (VIL.8)
with
A =B —1-m2n2Dy; B, =A%+m2n2Dy. (VIL.9)

(We have here written Xy and Y, explicitly in terms of A and B).
The roots of this equation are

W =8, — By £[ (O +Bm )2—24A2B 4. (VIL.10)

A detailed analysis of Egs. (VI1.9,10) reveals several interesting
aspects about the stability of the uniform equilibrium state. It is
easy to see that if m becomes large for fixed values of 4, B, and
Dxy, then the w,; become very negative; modes with large
wavenumbers are therefore stable. Let us now imagine that 4 and
Dy y are fixed and B is allowed to vary. Then, since there are
complex roots only if the discriminant in (VII.10) is negative, we
can conclude that there will be oscillating modes only if

(A—AE)2<B<(A+AL)?, (VIL11)
where
Am = 1+m27T2(DX—Dy).

Since we must have A, >0, this implies that there are oscillations
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m

Unstable !

: ]
B =t
Bo | | : |
| | Stable | |

| [ | [
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| | ] |

@) | 2 3 4 m

Figure VII.1 Stability of the uniform equilibrium state
with respect to oscillatory behavior. The m =0 mode is
absent for fixed boundary conditions. (From [Ni77].)

only when

1

DY_DX< 2 2 .

Furthermore, if there is a complex eigenvalue, its real part will be
positive (an unstable mode) only if

B>B, =1+ A2+m2n2(Dy+Dy).
The situation is summarized in Figure VII. 1.

Modes with real, positive frequencies are present only if
Ay B —AZB >0, which implies that

2 [ Dy 1
B>B =1+4
DY DYmE 2

If we imagine m to be a continuous variable, then it is easy to see
that B,, has a minimum value of

[ (D

X
=1+4|=—
BMI1ADY

+DXm27T2. (VII 12)

%12

at
4 J*
ﬂz(DXDY)%] -

Of course, since the physical values of m are restricted to
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Figure VII.2 Stability of the uniform equilibrium state
with respect of exponentially growing perturbations
(From [Ni77].)

integers, as B is increased from 0, the non-oscillatory mode m,
that first becomes unstable at F=5, is that which is closest to the
minimum, as shown in Figure VII.2.

To summarize this discussion, the uniform equilibrium state is
unstable with respect to perturbations that oscillate in time when
B>By or By for no-flux and fixed boundary conditions, respec-
tively. Similarly, it is unstable with respect to perturbations that
grow exponentially in time when B>B,.

VII.3 Numerical solution of the model

Although the stability analysis presented above gives some
hint at the behavior of the system for various ranges of the param-
eters, the full richness of the model in the non-linear regime can
be revealed only by numerical experiments. These can be carried
out through the following steps.

Step 1 Verify the algebra in the stability analysis discussed above. ooo
Assume a fixed value of A=2 in a one-dimensional situation and
calculate the B, and B, for a set of values of the diffusion con-
stants of order 1073, How do your results change if the reaction
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takes place in the unit square in two space dimensions?

Step 2 Write a program that solves the non-linear diffusion equa-
tions (VII.3a,b) in one dimension on the interval [0,1] for the case
of no-flux boundary conditions; a reasonable number of spatial
points might be between 25 and 100. The diffusion terms should be
treated implicitly to prevent unphysical numerical instabilities,
while the reaction terms can be treated explicitly. Have your pro-
gram plot out X and Y at each time step.

Step 3 Use your one-dimensional program to investigate the
behavior of the solutions for different values of 5, Dy y. A reason-
able place to start might be DX=1X10‘3, Dy=4x107°; the linear
stability analysis should then give some guidance as to what vales
of B are interesting. Investigate initial conditions corresponding
to smooth sinusoidal and point-wise random perturbations of the
uniform equilibrium configuration (the latter can be generated
with the help of BASIC’s RND function). Verify that you can find
cases in which the system relaxes back to the uniform state, in
which it asymptotically approaches a time-independent solution
with a non-trivial spatial variation (dissipative structure), and in
which it approaches a space- and time-dependent oscillating solu-
tion. Throughout, make sure that your time step is small enough
to allow an accurate integration of the equations.

Step 4 Extend your one-dimensional code to solve the Brusselator
with no-flux boundary conditions in two space dimensions using,
for example, an alternating-direction algorithm like Eq. (7.19).
Plot your results for X at each time. {The technique of displaying
an array of characters, as in Example 8, can be useful.) Investigate
parameter ranges and initial conditions as in Step 3.



Chapter 8

Monte Carlo

Methods

Systems with a large number of degrees of freedom are often
of interest in physics. Among these are the many atoms in a chunk
of condensed matter, the many electrons in an atom, or the
infinitely many values of a quantum field at all points in a region of
space-time. The description of such systems often involves (or can
be reduced to) the evaluation of integrals of very high dimension.
For example, the classical partition function for a gas of N atoms
at a temperature 1/ 8 interacting through a pair-wise potential v
is proportional to the 3N¥-dimensional integral

—82v(ry)
Z=[d3%, - d3ye & . (8.1)
The straightforward evaluation of an integral like this by one of the
quadrature formulas discussed in Chapters 1 or 4 is completely
out of the question except for the very smallest values of N. To
see why, suppose that the quadrature allows each coordinate to
take on 10 different values (not a very fine discretization), so that
the integrand must be evaluated at 103" points. For a modest
value of N=20 and a very fast computer capable of some 107
evaluations per second, this would take some 10° seconds, more
than 10%* times the age of the universe! Of course, tricks like
exploiting the permutation symmetry of the integrand can reduce
this estimate considerably, but it still should be clear that direct
quadrature is hopeless.

The Monte Carlo methods discussed in this chapter are ways of
efficiently evaluating integrals of high dimension. The name
"Monte Carlo” arises from the random or ''chance' character of
the method and the famous casino in Monaco. The essential idea is
not to evaluate the integrand at every one of a large number of
quadrature points, but rather at only a representative random
sampling of abscissae. This is analogous to predicting the results
of an election on the basis of a poll of a small number of voters.
Although it is by no means obvious that anything sensible can
come out of random nunibers in a computer, the Monte Carlo stra-
tegy turns out to be very appropriate for a broad class of prob-
lems in statistical and quantum mechanics. More detailed presen-
tations of the method than that given here can be found in [Ha64]
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and [Ka85].

8.1 The basic Monte Carlo strategy

Even though the real power of Monte Carlo methods is in
evaluating multi-dimensional integrals, it is easiest to illustrate
the basic ideas in a one-dimensional situation. Suppose that we
have to evaluate the integral

1
I={f(x)dx

for some particular function f. Chapters 1 and 4 discussed
several different quadrature formulas that employed values of f
at very particular values of z (e.g., equally spaced). However, an
alternative way of evaluating / is to think about it as the average
of f over the interval [0,1]. In this light, a plausible quadrature
formula is

m}v—g:lf (,). (8.2)

Here, the average of f is evaluated by considering its values at N
abscissae, {z;], chosen at random with equal probability anywhere
within the interval [0,1]. We discuss below methods for generating
such 'random’' numbers, but for now it is sufficient to suppose
that there is a computer function (e.g., RND in BASIC) that pro-
vides as many of them as are required, one after the other.

To estimate the uncertainty associated with this quadrature
formula, we can consider f;=f(z;) as a random variable and
invoke the central limit theorem for large N. From the usual laws
of statistics, we have

Izmﬁaf—l_ _;i]_g: [_Efz] ] (8.3)

where ¢% is the variance in f; i.e., a measure of the extent to
which f deviates from its average value over the region of integra-
tion.

Equation (8.3) reveals two very important aspects of Monte
Carlo quadrature. First, the uncertainty in the estimate of the
integral, o;, decreases as N™% Hence, if more points are used, we
will get a more accurate answer, although the error decreases
very slowly with the number of points (a factor of four more
numerical work is required to halve the uncertainty in the
answer). This is to be contrasted with a method like the tra-
pezmdal rule, where Egs. (1.8,1.9) show that the error scales like
N2, which affords a much greater accuracy for a given amount of
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numerical work. (This advantage vanishes in multi-dimensional
cases, as we discuss below.) The second important point to realize
from (8.3) is that the precision is greater if o, is smaller; that is, if
J is as smooth as possible. One limit of this is when f is a con-
stant, in which case we need its value at only one point to define
its average. To see the other limit, consider a situation in which f
is zero except for a very narrow peak about some value of z. If the
z; have an equal probability to lie anywhere between 0 and 1, it is
probable that all but a few of them will lie outside the peak of f,

and that only these few of the f; will be non-zero; this will lead to
a poorly defined estimate of I.

As an example of a Monte Carlo evaluation of an integral, con-
sider

1

S/ 1?’2 =Z—=0.78540. (8.4)
0 x

The following BASIC program calculates this integral for the value
of N input, together with an estimate of the precision of the qua-
drature.

10 DEF FNF(X)=1/(1+X~2) 'function to integrate

20 INPUT "enter value of N";N%

30 SUMF=0: SUMF2=0 'zero sumns

40 FOR 17=1 TO N7Z "loop over samples

50 X=RND: FX=FNF(X)

60 SUMF=SUMF+FX: SUMF2=SUMF2+FX~2 "add contributions to sumns
70 NEXT 1%

80 FAVG=SUMF /N7 'final results

90 SIGMA=SQR( (SUMF2/N%- FAVG~2) /N%)
100 PRINT USING "integral=#.##### +- #.###4#4" ; FAVG, SIGHA

Results of running this program for various values of N are given
in the first three columns of Table 8.1. The calculated result is
equal to the exact value within a few (usually less than one) stan-
dard deviations and the quadrature becomes more precise as N
increases.

Since Eq. (8.3) shows that the uncertainty in a Monte Carlo
quadrature is proportional to the variance of the integrand, it is
easy to devise a general scheme for reducing the variance and
improving the efficiency of the method. Let us imagine multiply-
ing and dividing the integrand by a positive weight function w(z),
normalized so that

}'dxw(x)=1.
0

The integral can then be written as
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Table 8.1 Monte Carlo evaluation of the integral (8.4)
using two different weight functions, w(z). The exact
value is 0.78540.

w(z)=1 w(x)=;—(4—2x)
N I or I oy
10 0.81491 0.04638 0.79982 0.00418
20 0.73635 0.03392 0.79071 0.00392
50 0.79606 0.02259 0.78472 0.00258
100 0.79513 0.01632 0.78838 0.00194
200 0.78677 0.01108 0.78529 0.00140
500 0.78242 0.00719 0.78428 0.00091
1000 0.78809 0.00508 0.78524 0.00064
2000 0.78790 0.00363 0.78648 0.00045
6000 0.78063 0.00227 0.78630 0.00028
I= fdxw(x)ﬂ—L (8.5)
If we now make a change of variable from z to
z
x)=fdx"w(x (8.6)
0
so that
B —w(z); y(2=0)=0; y(z=1)=1,
then the integral becomes
I= f yﬂ_ﬁLJ_L (8.7)

(z(y))

The Monte Carlo evaluation of this integral proceeds as above,
namely averaging the values of f/w at a random sampling of
points uniformly distributed in y over the interval [0,1]:

18 fEw)
PN L wGw)

The potential benefit of the change of variable should now be clear.
If we choose a w that behaves approximately as f does (i.e., it is
large where f is large and small where f is small), then the
integrand in (8.7), f /w, can be made very smooth, with a conse-
quent reduction in the variance of the Monte Carlo estimate (8.8).
This benefit is, of course, contingent upon being able to find an

(8.8)
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appropriate w and upon being able to invert the relation (8.6) to
obtain z (y).

A more general way of understanding why a change of variable
is potentially useful is to realize that the uniform distribution of
points in y implies that the distribution of points in z is
dy/dz=w(z). This means that points are concentrated about the
most "important’’ values of z where w (and hopefully f) is large,
and that little computing power is spent on calculating the
integrand for '"'unimportant' values of  where w and f are small.

As an example of how a 'change of variable can improve the
efficiency of Monte Carlo quadrature, we consider again the
integral (8.4). A good choice for a weight function is

w(x)=é—(4—2x),
which is positive definite, decreases monotonically over the range
of integration (as does f ), and is normalized correctly. Moreover,

since f/w=3/4 at both =0 and z=1, w well approximates the
behavior of f. According to (8.8), the new integration variable is

= :13—::: (4—zx),
which can be inverted to give
r=2—(4—3y )%
The following BASIC code then evaluates / according to (8.8).

10 DEF FNF(X)=1/(1+X~2): FNW(X)=1.333333*(1-X/2) "define functions

15 DEF FNX(Y)=2-SQR(4-3*Y)
20 INPUT "enter value of N";NZ
30 SUMFW=0: SUMFW2=0 'Zero sums

40 FOR I7%=1 TO N7 "loop over samples

50  Y=RND: X=FNY(X)
55  FOVERW=FNF(X) /FNW(X)

60 SUMFW=SUMFW+FOVERW: SUMFW2=SUMFW2+FOVERW~2 'add terms to sums
70 NEXT IZ%
80 FWAVG=SUMFW/N% "final results

90 SIGMA=SQR( ( SUMFW2/N%- FWAVG~2) /N%)
100 PRINT USING "integral=#.##### +- #. 4#4#44" ;FAVG, SIGMA

Results of running this code for various values of N are shown in
the last two columns of Table 8.1, where the improvement over the
w=1 case treated previously is evident.

The one-dimensional discussion above can be readily general-
ized to d-dimensional integrals of the form /= f d%z f(x). The
analog of (8.2) is

~1 &
I NV«Elf (x;), (8.9)
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with the several components of the random points x; to be chosen
independently. Thus, the following BASIC program calculates
1 1
n=4 [dz, [dz,0(1-zF—z3);
0 0

that is, it compares the area of a quadrant of the unit circle to
that of the unit square (8 is the unit step function):

10 N7z=5000: COUNTZ=0
20 FOR I7%=1 TO N7

30 X=RND: Y=RND:
40 IF X~2+Y~2<1 THEN COUNTZ%=COUNTZ+1
50 NEXT I%

60 PI4=COUNT%/N%: SIGMA=SQR(PI4*(1-PI4)/N%)
70 PRINT USING "PI=#.4#f# +- #. #4#4";4*PI4, 4*SIGMA

When run, this program generated the satisfactory result of
3.1424+0.0232.

Exercise 8.1 Verify that the error estimate used in line 60 of this
program is that given by Eq. (8.3).

The change of variable discussed above can also be generalized
to many dimensions. For a weight function w(x) normalized so
that its integral over the region of integration is unity, the
appropriate new variable of integration is y, where the Jacobian is
|ay/ 8x|=w(x). It is generally very difficult (if not impossible) to
construct x(y) explicitly, so that it is more convenient to think
about the change of variable in the multi-dimensional case in the
sense discussed above; i.e., it distributes the points x; (y;) with dis-
tribution w. Various practical methods for doing this for arbitrary
w will be discussed below.

Although the results were satisfactory in the examples given
above, Monte Carlo quadrature does not appear to be particularly
efficient. Even with the "good” choice of w, the results in Table
8.1 show a precision of only about 10™* for N=5000, whereas the
conventional trapezoidal formula with 5000 points is accurate to
better than 1079 However, consider evaluating a multi-
dimensional integral such as (8.1). Suppose that we are willing to
invest a given amount of numerical work (say to evaluate the
integrand N times), and wish to compare the efficiencies of con-
ventional and Monte Carlo quadratures. In a conventional quadra-
ture, say a multi-dimensional analog of the trapezoidal rule, if
there are a total of N points, then each dimension of a d-
dimensional integral is broken up into ~N1/¢ intervals of spacing
h~N~1¢ The analog of (1.9) shows that the error in the integral
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over each cell of volume hA? in the integration region is 0(h%*?), so
that the total error in the conventional quadrature is

NO(hd+2)=0(N‘2/d);

for large d, this decreases very slowly with increasing N. On the
other hand, Eq. (8.3) above shows that the uncertainty of a Monte
Carlo quadrature decreases as N ‘%, independent of d. Assuming
that the prefactors in these estimates are all of order unity, we
see that Monte Carlo quadrature is more efiicient when d 4. Of
course, this estimate depends in detail upon the conventional qua-
drature scheme we use or how good a weight function is used in
the Monte Carlo scheme, but the basic point is the very different
way in which the two errors scale with increasing N for large d.

8.2 Generating random variables with a specified distribution

The discussion above shows that Monte Carlo quadrature
involves two basic operations: generating abscissae randomly dis-
tributed over the integration volume with a specified distribution
w(x) (which may perhaps be unity) and then evaluating the func-
tion f /w at these abscissae. The second operation is straightfor-
ward, but it is not obvious how to generate "'random’' numbers on a
deterministic computer. In this section, we will cover a few of the
standard methods used.

The generation of uniformly distributed random numbers is
the computer operation that underlies any treatment of a more
complicated distribution. There are numerous methods for per-
forming this basic task and for checking that the results do indeed
correspond to the uniform random numbers required. One of the
most common algorithms, and in fact that used in the BASIC RND
function, is a "linear congruential’’ method, which "grows’ a whole
sequence of random numbers from a ''seed” number. The current
member of the sequence is multiplied by a first "magic’ number,
incremented by a second magic number, and then the sum is
taken modulo a third magic number. Thus,

z; .1=(az; +c)mod m, (8.10)

where 1 is the sequence label and a, ¢, and m are the magic
numbers. The latter are often very large, with their precise values
depending upon the word length of the computer being used. Note
that the z; cannot be truly "'random' as they arise from the seed
in a well-defined, deterministic algorithm; indeed, two sequences
grown from the the same seed are identical. For this reason, they
are often termed "pseudo-random’’. Nevertheless, for many practi-
cal purposes pseudo-random numbers generated in this way can
be used as if they were truly random. A good discussion of uniform
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random number generators and of the tests that can be applied to
determine if they are working properly can be found in [Kn69].

We have already seen how to choose one-dimensional random
variables distributed as a specified weight function w(z). Accord-
ing to the discussion in the previous section, the procedure is to
choose vy, the incomplete integral of w, uniformly, and then to
find z by inverting Eq. (8.6). Thus, if we are faced with evaluating
the integral

]=}dx e %g(z),
0

with g a relatively smooth function, it is sensible to generate z
between 0 and « with distribution e™®, and then to average g over
these values. According to (8.5), we have

y=1—-e™%, z=—log(1—y).

The following line of BASIC code is therefore a subroutine that gen-
erates values of X with the required distribution.

110 X=-LOG (1-RND): RETURN

ooao

Exercise 8.2 Verify that the code above generates X with the
required distribution, for example by generating and histogram-
ming a large number of values of X. Use these values to evaluate /
and its uncertainty for g(z)=z, z2 and z3 and compare your
results with the analytical values. Can you understand the trend
in the uncertainties calculated?

While the method of generating the incomplete integral is
infallible, it requires that we be able to find z(y), which can be
done analytically only for a relatively small class of functions. For
example, if we had wanted to used

w(z)=E (1-4=?)

in our efforts to evaluate Eq. (8.4), we would have been faced with
solving a cubic equation to find y (). While this is certainly possi-
ble, choices of w that might follow more closely the behavior of f
generally will lead to more complicated integrals that cannot be
inverted analytically. However, it is possible to do the integral and
inversion numerically. Let us imagine tabulating the values z)
for which the incomplete integral of w takes on a series of uni-
formly spaced values y¥)=j/ M, §=0,1,..., M that span the inter-
val [0,1]. Thus,
0

y(j)z-ﬁl%:fdx'w(x')_ ) (811)
0
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A +

W'(x)

/
il

X—»

Figure 8.1 Illustration of the von Neumann rejection
method for generating random numbers distributed
according to a given distribution w(z).

Values of zU) with J an integer chosen from the set 0,1,,... ,M with
equal probability will then approximate the required distribution.
(Some special treatment is required to handle the end-points j =0
and j=M properly.) To generate the z7, is, of course, the problem.
This can be done by integrating the differential equation
dy / dx=w(z) through the simple discretization

(G+1) o, () .
Y- Y (zY)
LG W (EY).
Since y(j”)—y (U)=1/ M, we have the convenient recursion relation
LAV () I S— (8.12)
Mw (x(]))

which can be used with the starting value z(9=0.

Another convenient method for generating one- (or multi-)
dimensional random variables is von Neumann rejection, whose
geometrical basis is illustrated in Figure 8.1. Suppose we are
interested in generating z between 0 and 1 with distribution w(z)
and let w'(z) be a positive function such that w'(z)>w(x) over the
region of integration. Note that this means that the definite
integral of w' is greater than 1. A convenient, but not always
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useful, choice for w' is any constant greater than the maximum
value of w in the region of integration. If we generate points in two
dimensions that uniformly fill the area under the curve w'(z) and
then "accept’’ for use only those points that are under w(z), then
the accepted points will be distributed according to w. Practi-
cally, what is done is to choose two random variables, x; and 7, the
former distributed according to w' and the latter distributed uni-
formly between 0 and 1. The value z; is then accepted if 7 is less
than the ratio w(z;)/ w'(z;); if a point is rejected, we simply go on
and generate another pair of z; and 7. This technique is clearly
efficient only if w' is close to w throughout the entire range of
integration; otherwise, much time is wasted rejecting useless
points.

Exercise 8.3 Use von Neumann rejection to sample points in the
interval [0,1] distributed as w(x):g—(l—}éxz) and evaluate the

integral (8.4) and its uncertainty with these points. Compare the
efficiency of your calculation for various choices of w’,

The Gaussian (or normal) distribution with zero mean and unit
variance,

w(z)=(2n) % e’

plays a central role in probability theory and so is often needed in
Monte Carlo calculations. It is possible, but not too efficient, to
generate this distribution by inverting its incomplete integral
using polynomial approximations to the error function. A more
"clever"' method is based on the central limit theorem, which
states that the sum of a large number of uniformly distributed
random numbers will approach a Gaussian distribution. Since the
mean and variance of the uniform distribution on the interval [0,1]
are 1/2 and 1/12, respectively, the sum of 12 uniformly distri-
buted numbers will have a mean value of 6 and a variance of 1 and
will very closely approximate a Gaussian distribution. Hence, the
following BASIC subroutine returns a Gaussian random variable,
GAUSS, with zero mean and unit variance:

100 ’'subroutine to generate the normally distributed number GAUSS
110 GAUSS=0
120 FOR I7%=1 TO 12

130

GAUSS=GAUSS+RND

140 NEXT I%
150 GAUSS=GAUSS-6
160 RETURN
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Exercise 8.4 By histogramming a large number of the values of
GAUSS produced by the subroutine above, convince yourself that
their distribution is very close to normal. Can you derive a quanti-
tative estimate of the extent to which this distribution deviates
from a Gaussian? Compare with the results of summing 6 or 24
uniformly distributed random numbers. (Note that these latter
sums have means of 3 and 12 and variances of ¥ and 2, respec-
tively.)

Another efficient method for generating normally distributed
variables is to consider a Gaussian distribution in two dimensions
(x4, z3), for which the number of points in a differential area is
proportional to

e -}é(a:fﬂ:%)dx 1dx2.

In terms of the usual polar coordinates

r=(z2+z5)% O=tan! Z—T,
the distribution is
e ¥ rdrd e,
or, if w=¥r?2 the distribution is
e “dud@é.

Hence, if we generate u between 0 and o« with an exponential dis-
tribution and 6 uniformly between 0 and 27, then the correspond-
ing values of

z,=(2u) cos 8, z,=(2u)%sin6
will be distributed normally. Thus, the following BASIC subroutine

returns two normally distributed random variables, GAUSS1 and
GAUSS2:

100 ’'subroutine to return 2 normally distributed numbers, GAUSS1 and GAUSS2

110 TWOU=-2*LOG( 1-RND)

120 RADIUS=SQR(TWOU)

130 THETA=2*3.14159 *RND

140 GAUSS1=RADIUS*COS(THETA)
150 GAUSS2=RADIUS*SIN(THETA)
160 RETURN

To generate a gaussian distribution with mean ¥ and variance o,
w(z)=(2m0) % e Kz —2)/ 0°,

we need only take the values generated by this subroutine, multi-
ply them by o, and then increment them by Z.
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8.3 The algorithm of Metropolis ef al.

Although the methods we have discussed above for generating
random numbers according to a specified distribution can be very
efficient, it is difficult or impossible to generalize them to sample
a complicated weight function in many dimensions, and so an
alternative approach is required. One very general way to produce
random variables with a given probability distribution of arbitrary
form is known as the Metropolis, Rosenbluth, Rosenbluth, Teller,
and Teller algorithm [Me53]. As it requires only the ability to cal-
culate the weight function for a given value of the integration vari-
ables, the algorithm has been applied widely in statistical mechan-
ics problems, where the weight function of the canonical ensemble
can be a very complicated function of the coordinates of the sys-
tem (see Eq. (8.1)) and so cannot be sampled conveniently by
other methods. However, it is not without its drawbacks.

Although the algorithm of Metropolis ef al. can be imple-
mented in a variety of ways, we begin by describing one simple
realization. Suppose that we want to generate a set of points in a
(possibly multi-dimensional) space of variables X distributed with
probability density w(X). The Metropolis algorithm generates a
sequence of points, Xj, X;, - - -, as those visited successively by a
random walker moving through X space; as the walk becomes
longer and longer, the points it connects approximate more
closely the desired distribution.

The rules by which the random walk proceeds through
configuration space are as follows. Suppose that the walker is at a
point X,, in the sequence. To generate X, ., it makes a trial step
to a new point X;. This new point can be chosen in any convenient
manner, for example uniformly at random within a multi-
dimensional cube of small side § about X,,. This trial step is then
"accepted'' or '"rejected’” according to the ratio

W)
w(K,) "

If r is larger than one, then the step is accepted (i.e., we put
X, +1=X;), while if r is less than one, the step is accepted with pro-
bability . This latter is conveniently accomplished by comparing
r with a random number 7 uniformly distributed in the interval
[0,1] and accepting the step if n<r. If the trial step is not
accepted, then it is rejected, and we put X, ,,=X,,. This generates
X, +1, and we may then proceed to generate X, ;» by the same pro-
cess, making a trial step from X, ,;. Any arbitrary point, X; can
be used as the starting point for the random walk.

The following subroutine illustrates the application of the
Metropolis algorithm to sample a two-dimensional distribution in
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the variables X1 and X2. Each call to the subroutine executes
another step of the random walk and returns the next values of X1

and X2; the main program must initialize these variables, as well
as set the value of DELTA and define the distribution FNW(X1,X2).

1000 ’'subroutine to take a step in the Metropolis algorithm

1010 X1T=X1+DELTA*(2*RND-1) "take a trial step in square about (X1,X2)
1020 X2T=X2+DELTA*(2*RND-1)

1030 R=FNW(X1T,X2T) /FNW(X1,X2) *campute the ratio

1040 IF RND>R THEN GOTO 1060 'step rejected

1050 X1=X1T: X2=X2T ’step accepted

1060 RETURN i

This code could be made more efficient by saving the weight func-
tion at the current point of the random walk, so that it need not
be computed again when deciding whether or not to accept the
trial step; the evaluation of w is often the most time-consuming
part of a Monte Carlo calculation using the Metropolis algorithm.

To prove that the algorithm described above does indeed gen-
erate a sequence of points distributed according to w, let us con-
sider a large number of walkers starting from different initial
points and moving independently through X space. If N, (X) is the
density of these walkers at X after n steps, then the net number of
walkers moving from point X to point Y in the next step is

AN (X) =Ny, (X) P(X>Y)— Ny, (Y) P(Y-X)

[N, (X)  pY-X)
N (Y)  P(X>Y) |
Here, P(X-Y) is the probability that a walker will make a transi-

tion to Y if it is at X. This equation shows that there is equilibrium
(no net change in population) when

No(X) _ Ne(X) _ P(Y-X)
Np(Y)  Ne(Y) P(X-Y) '’

and that changes in N(X) when the system is not in equilibrium
tend to drive it toward equilibrium (i.e., AN(X) is positive if there
are "too many'' walkers at X, or if N, (X)/ N,(Y) is greater than its
equilibrium value). Hence it is plausible (and can be proved) that,
after a large number of steps, the population of the walkers will
settle down to its equilibrium distribution, N, .

It remains to show that the the transition probabilities of the
Metropolis algorithm lead to an equilibrium distribution of walkers
N, (X)~w (X). The probability of making a step from Xto Y is

P(X-Y)=T(X>Y)4A(X->Y),
where T is the probability of making a trial step from Xto Y and A

=N, (Y)P(X>Y) (8.13)

(8.14)



198

8. Monte Carlo Methods

is the probability of accepting that step. If Y can be reached from
X in a single step (i.e., if it is within a cube of side § centered
about X), then

T(X->Y)=T(Y-X),

so that the equilibrium distribution of the Metropolis random walk-
ers satisfies

N, (X) _A{(Y=X)
N (Y)  ARX-Y)

If wX)>w(Y), then A(Y-X)=1 and
- :—mw
A(X>Y) w(X)

(8.15)

while if w(X)<w(Y) then

A(Y> =ﬂ29_

(Y-X) w(Y)

and A(X-Y)=1. Hence, in either case, the equilibrium population
of Metropolis walkers satisfies

Ne(X) _ w(X)

Ne(Y)  w(Y) '’
so that the walkers are indeed distributed with the correct distri-
bution.

Note that although we made the discussion concrete by choos-
ing X; in the neighborhood of X,,, we can use any transition and
acceptance rules that satisfy

w(X) _ T(Y-X)A(Y-X) (8.16)

w(Y) T(X-Y)A(Y-X)
Indeed, one limiting choice is T(X->Y)=w(Y), independent of X, and
A=1. This is the most efficient choice, as no trial steps are
"wasted'" through rejection. However, this choice is somewhat
impractical, because if we knew how to sample w to take the trial
step, we wouldn’t need to use the algorithm to begin with.

An obvious question is "If trial steps are to be taken within a
neighborhood of X,, how do we choose the step size, 6?". To
answer this, suppose that X,, is at a maximum of w, the most
likely place for it to be. If § is large, then w(X;) will likely be very
much smaller than w(X,) and most trial steps will be rejected,
leading to an inefficient sampling of w. If § is very small, most
trial steps will be accepted, but the random walker will never
move very far, and so also lead to a poor sampling of the distribu-
tion. A good rule of thumb is that the size of the trial step should
be chosen so that about half of the trial steps are accepted.
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One bane of applying the Metropolis algorithm to sample a dis-
tribution is that the points that make up the random walk,
Xo X;, - - -, are not independent of one another, simply from the
way in which they were generated; that is, X, is likely to be in
the neighborhood of X,,. Thus, while the points might be distri-
buted properly as the walk becomes very long, they are not sta-
tistically independent of one another, and some care must be
taken in using them to calculate integrals. For example, if we cal-
culate

I= JaXwX)r (X
SdXw(X)

by averaging the values of f over the points of the random walk,
the usual estimate of the variance, Eq. (8.3), is invalid because the
f (X;) are not statistically independent. This can be quantified by
calculating the auto-correlation function

<fifive>—<[fi>?
<fE>—<f;>?
Here, <...> indicates average over the random walk; e.g.,

1 N—k
<f1‘,f1'.+k>=N_k Z:lf(xt)f (X +1)-

Of course, C(0)=1, but the non-vanishing of C for k& #0 means that
the f’'s are not independent. What can be done in practice is to
compute the integral and its variance using points along the ran-
dom walk separated by a fixed interval, the interval being chosen
so that there is effectively no correlation between the points used.
An appropriate sampling interval can be estimated from the value
of k for which C becomes small (say 0.1).

Another issue in applying the Metropolis algorithm is where to
start the random walk; i.e., what to take for X;. In principle, any
location is suitable and the results will be independent of this
choice, as the walker will "thermalize'' after some number of
steps. In practice, an appropriate starting point is a probable one,
where w is large. Some number of thermalization steps then can
be taken before actual sampling begins to remove any dependence
on the starting point.

C(k)=

(8.17)

Exercise 8.5 Use the algorithm of Metropolis ef al. to sample the
normal distribution in one dimension. For various trial step sizes,
study the acceptance ratio (fraction of trial steps accepted), the
correlation function (and hence the appropriate sampling fre-
quency), and the overall computational efficiency. Use the random
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variables you generate to calculate
[ dx zRe K="

and estimate the uncertainty in your answer. Study how your
results depend upon where the random walker is started and on
how many thermalization steps you take before beginning the
sampling. Compare the efficiency of the Metropolis algorithm with
that of a calculation that uses one the methods discussed in Sec-
tion 8.2 to generate the normal distribution directly.

8.4 The Ising model in two dimensions

Models in which the degrees of freedom reside on a lattice and
interact locally arise in several areas of condensed matter physics
and field theory. The simplest of these is the Ising model [Hu83],
which can be taken as a crude description of a magnetic material
or a binary alloy. In this example, we will use Monte Carlo methods
to calculate the thermodynamic properties of this model.

If we speak in the magnetic language, the Ising model consists
of a set of spin degrees of freedom interacting with each other and
with an external magnetic field. These might represent the mag-
netic moments of the atoms in a solid. We will consider in particu-
lar a model in two spatial dimensions, where the spin variables are
located on the sites of an N,XN, square lattice. The spins can
therefore be labeled as S5, where 7, j are the indices for the two
spatial directions, or as .S,, where « is a generic site label. Each of
these spin variables can be either "up” (S,=+1) or 'down"
(S,=—1). This mimics the spin-¥ situation, although note that we
take the spins to be classical degrees of freedom and do not
impose the angular momentum commutation rules characteristic
of a quantum description. (Doing so would correspond to the
Heisenberg model.)

The Hamiltonian for the system is conventionally written as

H=-J )} S,55—B}.S,. (8.18)
<af> a

Here, the notation <af> means that the sum is over nearest-
neighbor pairs of spins; these interact with a strength J (see Fig-
ure 8.2). Thus, the spin at site j interacts with the spins at 1+1j
and ij £1. (We assume periodic boundary conditions on the lattice,
so that, for example, the lower neighbors of the spins with 1=N,
are those with =1 and the left-hand neighbors of those with j=1
are those with j=N,,; the lattice therefore has the topology of a
torus.) When J is positive, the energy is lower if a spin is in the
same direction as its neighbors (ferromagnetism), while when J is
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Figure 8.2 Schematic illustration of the two-
dimensional Ising model

negative, a spin will tend to be anti-aligned with its neighbors
(anti-ferromagnetism). The term involving B represents the
interaction of the spins with an external magnetic field, which
tends to align all spins in the same direction.

We will be interested in the thermodynamics of this system. In
this case, it is convenient to measure the coupling energies J and
B in units of the temperature, so that heating the system
corresponds to decreasing these couplings. Configurations of the
system are specified by giving the values of all NyXN, =N spin
variables and the weighting of any one of the 2NVs spin
configurations, S, in the canonical ensemble is

e —H(S)

w(S)= A (8.19)
where the partition function is
Z(J,B)=YeH(®) (8.20)
S

The thermodynamic quantities we will be interested are the mag-
netization

M=?1—ggi=§w<sxzsa>. (8.212)
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the susceptibility

x= 2L =S (S)(£5 %M, (8.21b)
a8 5 p
the energy
E=Yw(S)H(S), (8.21c)
S

and the specific heat at constant field,
Cg=>w (S)H?(S)—E=. (8.214d)
S

In the limit of an infinitely large lattice (/N ,, —e0), it is possible
to solve the Ising model exactly; discussions of the solution, origi-
nally due to Onsager, can be found in [Hu63] and [Mc73]. The

expressions are simplest at #=0. In this limit, the energy is given
by

[
E=—NgJ(coth2J) Il+ 12T—/C'K1(ic)], (8.22a)

and the specific heat is

Cg=N; 727—(JcochJ)2 [ZKI(K)—ZEI(IC) —( 1—!6')ig—+IC'K1(IC)

], (8.22b)

while the magnetization is given by
2)1/4(1—6z2424)1/8

1+2
M=+N, ( 8.22¢
for J>J, and vanishes for J<J,. In these expressions,
o= SRS g o oyanher -1,

cosh?2J

the complete elliptic integrals of the first and second kinds are
/2 do n/2 y
Ki(k)= . E(x)= [ de(1—«2sinp)”?
)=/ (e Pk S dol ¢)

z=e?/ and J,=0.4406868 is the critical value of.J for which k=1,
where K; has a logarithmic singularity. Thus, all thermodynamic
functions are singular at this coupling, strongly suggesting a phase
transition. This is confirmed by the behavior of the magnetization,
which vanishes below the critical coupling (or above the critical
temperature), and can take on one of two equal and opposite
values above this coupling.

A numerical solution of the Ising model is useful both as an
illustration of the techniques we have been discussing and because
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it can be generalized readily to more complicated Hamiltonians
[Fo83]. Because of the large number of terms involved, a direct
evaluation of the sums in Egs. (8.21) is out of the question. (For
even a modest 16x16 lattice, there are 2%0%=x1077 different
configurations.) Hence, it is most efficient to generate spin
configurations S with probability w(S) using the Metropolis algo-
rithm and then to average the required observables over these
configurations. To implement the Metropolis algorithm, we could
make our trial step from S to S; by changing all of the spins ran-
domly. This would, however, bring us to a configuration very
different from S, and so there would be a high probability of rejec-
tion. It is therefore better to take smaller steps, and so we con-
sider trial configurations that differ from the previous one only by
the flipping of one spin. This is done by sweeping systematically
through the lattice and considering whether or not to flip each
spin, one at a time. Hence, we consider two configurations, S and
S;, differing only by the flipping of one spin, 5,=5;;. Acceptance of
this trial step depends upon the ratio of the weight functions,

_w(S) — o—H(S)+H(S)
w(S) '

Specifically, if »>1 or if r<1 but larger than a uniformly distri-
buted random number between 0 and 1, then the spin S, is
flipped; otherwise, it is not. From (8.18), it is clear that only terms
involving S;; will contribute to 7, so that after some algebra, we
have

__—2S(Jf+B). ¢ _
r=g 2SI +B). LSS RTR JORIRPE JORE SO

Here, f is the sum of the four spins neighboring the one being
flipped. Because f can take on only 5 different values, 0, £2, +4,
only 10 different values of r can ever arise (there are two possible
values of S,); these can be conveniently calculated and stored in a
table before the calculation begins so that exponentials need not
be calculated repeatedly. Note that if we had used trial
configurations that involved flipping several spins, the calculation
of » would have been much more complicated.

The program for Example 8, whose source listing is given in
Appendix B and in the file EXAM8.BAS on the Computational Phy-
sics diskette, performs a Monte Carlo simulation of the Ising model
using the algorithm just described. An initially random
configuration of spins is used to start the Metropolis random walk
and the lattice is shown after each successive sweep. Thermaliza-
tion sweeps (no calculation of the observables) are allowed for;
these permit the random walk to ""settle down' before observables
are accumulated. Values of the energy, magnetization, susceptibil-
ity, and specific heat per spin are displayed as the calculation
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proceeds, as is the fraction of the trial steps accepted.

One feature of this program requires further explanation. This
is a simple technique used to monitor the sweep-to-sweep correla-
tions in the observables inherent in the Metropolis algorithm. The
basic observables (energy and magnetization) are computed every
FREQ?% sweeps. These values are then binned into "groups” with
SIZE% members. For each group, the means and standard devia-
tions of the energy and magnetization are calculated. As more
groups are generated, their means are combined into a grand
average. One way to compute the uncertainty in this grand aver-
age is to treat the group means as independent measurements
and to use Eq. (8.3). Alternatively, the uncertainty can be obtained
by averaging the standard deviations of the groups in quadrature.
If the sampling frequency is sufficiently large, these two estimates
will agree. However, if the sampling frequency is too small and
there are significant correlations in the successive measurements,
the values within each group will be too narrowly distributed, and
the second estimate of the uncertainty will be considerably
smaller than the first. These two estimates of the uncertainty for
the grand average of the energy and magnetization per spin are
therefore displayed. Note that this technique is not so easily
implemented for the the specific heat and susceptibility, as they
are themselves fluctuations in the energy and magnetization (Egs.
(8.21b,d)), and so only the uncertainties in their grand averages
computed by the first method are displayed.

The following exercises will be useful in better understanding
this example:

Exercise 8.6 When J=0, the Hamiltonian (8.18) reduces to that for
independent spins in an external magnetic field, a problem soluble
by elementary means. For this case, obtain analytical expressions
for the thermodynamic observables and verify that these are
reproduced by the program.

Exercise 8.7 Use Egs. (8.22) to calculate and graph the exact
energy, specific heat, and magnetization per spin for an infinite
lattice at =0 and for J running from 0 to 0.8.

Exercise 88 Modify the code to compute the sweep-to-sweep
correlation functions for the energy and the magnetization using
(8.17). Using runs for a 16x16 lattice for B=0 and for several
values of J between 0.1 and 0.6, estimate the proper sampling fre-
quency at each coupling strength. Show that the two estimates of
the uncertainties in the energy and magnetization agree when a
proper sampling frequency is used and that they disagree when
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the samples are taken too often (a reasonable group size is 10).
Also show that the sweep-to-sweep correlations become stronger
when the system is close to the phase transition (critical slowing
down).

Exercise 8.9 Run the code to obtain results for 8x8, 16x16, and coao
32x32 lattices at B=0 for a sequence of ferromagnetic couplings

from 0.1 to 0.6; pay particular attention to the region near the
expected phase transition. Compare your results with the exact
behavior of the infinite lattice and show that the finite size
smooths out the singularities in the thermodynamic observables.

Notice that the size of the magnetic domains becomes very large

near the critical coupling.

Exercise 8.10 Use the code to explore the thermodynamics of the cono
model for finite B and for anti-ferromagnetic couplings (J<0). Also
consider simulations of a model in which a given spin 53 interacts

with its neighbors ferromagnetically and with its diagonal neigh-

bors S;_15-1, Si+15-1, Di—1j +1, Oi+15+1 anti-ferromagnetically.

Exercise 8.11 The "heat bath" algorithm is an alternative to the coano
Metropolis algorithm for sampling the canonical ensemble. In this
method, the particular spin being considered is set to +1 with pro-

bability 1/(1+g) and to -1 with probability g/ (1+g), where
g=exp[2(Jf +B)]. This can be interpreted as placing the spin in
equilibrium with a heat bath at the specified temperature. Verify

that this algorithm corresponds to putting A=1 and taking

N = w(S)
1(8>8) = Zew(E)
in Eq. (8.16) and so leads to a correct sampling of spin
configurations. Modify the code to use the heat-bath algorithm
and compare its efficiency with that of the conventional Metropolis
algorithm.

Project VIII: Quantum Monte Carlo for the H; molecule

In this project, we will consider Monte Carlo methods that can
be used to calculate the exact properties of the ground states of
quantum many-body systems. These methods are based on the for-
mal similarity between the Schroedinger equation in imaginary
time and a multi-dimensional diffusion equaticn (recall Section
7.4). Since the latter can be handled by Monte Carlo methods
(ordinary diffusion arises as the result of many random micros-
copic collisions of the diffusing particles), these same techniques
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can also be applied to the Schroedinger equation. However, the
Monte Carlo method is no panacea: it can make exact statements
about only the ground state energy, it requires an already well-
chosen variational wavefunction for the ground state, and it is gen-
erally intractable for fermion systems. However, there have been
successful applications of these techniques to liquid “He [Ka81],
the electron gas [Ce80], small molecules [Re82], and lattice gauge
theories [Ch84]. More detailed discussions can be found in these
references, as well as in [Ce79], which contains a good general
overview.

VIII.1 Statement of the problem

The specific problem we will treat is the structure of the Hj
molecule: two protons bound by two electrons. This will be done
within the context of the accurate Born-Oppenheimer approxima-
tion, which is based on the notion that the heavy protons move
slowly compared to the much lighter electrons. The potential
governing the protons’ motion at a separation S, U(S), is then the
sum of the inter-proton electrostatic repulsion and the eigenvalue,
Ey(S), of the two-electron Schroedinger equation:

U(S):%+EO(S). (VIIL.1)

The electronic eigenvalue is determined by the Schroedinger equa-
tion

H(S)\Po(rl,rz;S)E[K‘l' V(S)]\I’O:Eo(S)\Po(rl,rz;S). (VIHZ)

Here, the electronic wavefunction, ¥, is a function of the space
coordinates of the two electrons, r; ; and depends parametrically
upon the inter-proton separation. If we are interested in the elec-
tronic ground state of the molecule and are willing to neglect
small interactions involving the electrons’ spin, then we can
assume that the electrons are in an antisymmetric spin-singlet
state; the Pauli principle then requires that ¥, be symmetric
under the interchange of r; and r,. Thus, even though the elec-
trons are two fermions, the spatial equation satisfied by their
wavefunction is analogous to that for two bosons; the ground state
wavefunction ¥, will therefore have no nodes, and can be chosen to
be positive everywhere.

The electron kinetic energy appearing in (VIII.2) is

hZ
K:—%(vfwg), (VIT1.3a)
where m is the electron mass, while the potential V involves the

attraction of the electrons by each nucleus and the inter-electron
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Figure VIII.1 Coordinates used in describing the H; molecule

repulsion:

[ 2
y=—e?| L ¢ L 4 1 4 1 e (VIIL 3b)

1. T2 Tir T2R 712

If we place the protons at locations +%S on the z-axis, then the
distance between electron 1 and the left or right proton is

'rlL.Rzlrli%S’Z\lr

and the distances between electron 2 and the protons, 73, p are
given similarly. The interelectron distance is r3=|r;—rz|. (See
Figure VIII.1.)

Our goal in this project is therefore to solve the six-
dimensional partial differential eigenvalue equation (VIII.2) for the
lowest eigenvalue Fjy at each S, and so trace out the potential
U(S) via Eq. (VIIL.1). This potential should look much like the 6-12
or Morse potentials studied in Chapter 1; the depth and location of
the minimum and the curvature of U about this minimum are
related to observable properties of the H; spectrum. We will also
be able to calculate the exact ground state energies of two-
electron atoms, £y(S=0). (These same systems were treated in
the Hartree-Fock approximation in Project III.)

VIII.2 Variational Monte Carlo and the trial wavefunction

We begin by discussing a variational Monte Carlo solution to
the eigenvalue problem. If ®(r) is any trial wavefunction (which we
can choose to be real) not orthogonal to the exact ground state ¥y,
then an upper bound to the electronic eigenvalue is the variational
energy
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<b|H|P>

E=5Tss (V11 4a)
Sdrd¥(r) é—H@(r)
R PR , (VIIL4b)

where we have used r as a short-hand notation for the six coordi-
nates of the problem, r; 5, and have written (VII1.4b) in a somewhat
unconventional way. Note that this last equation can be inter-
preted as giving the variational energy as the average of a "local
energy’,

e(r)=0"1Ho(r)=90"1Kd(r)+V(r)

__h 2

=" o ¢ i:%gV,@ +V(r), (VIIL.5)
over all of the six-dimensional r—space with weighting w(r)~®3(r).
Hence, to evaluate the variational energy by a Monte Carlo quadra-
ture, all we need do is generate configurations (values of r; 5) dis-
tributed according to ®* (by the Metropolis algorithm, for exam-
ple), and then average ¢ over these configurations. It should be
clear that this method can be generalized readily to systems
involving a larger number of coordinates.

The choice of ¢ is constrained by the requirements that it be
simple enough to allow a convenient evaluation of 2 and &, yet
also be a good approximation to the true ground state, ¥,. Indeed,
if we are fortunate enough to choose a ¢ that is the exact solution,
then ¢ is independent of r, so that the Monte Carlo quadrature
gives the exact energy with zero variance. Thus, not only will the
variational bound become better as ¢ better approximates ¥, but
the variance in the Monte Carlo quadrature will become smaller.
The trial wavefunction should also be symmetric under the inter-
change of the two electrons’ spatial coordinates, but it need not

be normalized properly, as the nor‘mahzatlon cancels in evaluating
(VIIL.4).

One plausible choice for the trial wavefunction is a correlated
prcduct of molecular orbitals:

®(ry,ra)=¢(r)e(ra) f (712). (VIIL.6a)

Here, the first two factors are an independent-particle wavefunc-
tion placing each electron in a molecular orbital in which it is
shared equally between the two protons. A simple choice for the
molecular orbital is the symmetric linear combination of atomic
orbitals centered about each proton,
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p(r;)=e T/ G e TR/ (VIIL6b)

with the variational parameter a to be determined below. The final
factor in the trial wavefunction, f, expresses the correlation
between the two electrons due to their Coulomb repulsion. That
is, we expect f to be small when 75 is small and to approach a
large constant value as the electrons become well separated. A
convenient and reasonable choice is

. (VIII.6¢)

r)
f (r)=exp I 1+ﬁr
where a and 8 are additional positive variational parameters. Note
that B controls the distance over which the trial wavefunction
"heals" to its uncorrelated value as the two electrons separate.

The singularity of the Coulomb potential at short distances
places additional constraints on the trial wavefunction. If one of
the electrons (say 1) approaches one of the nuclei (say the left
one) while the other electron remains fixed, then the potential
term in £ becomes large and negative, since r;; becomes small.
This must be cancelled by a corresponding positive divergence in
the kinetic energy term if we are to keep ¢ smooth and have a
small variance in the Monte Carlo quadrature. Thus, the trial
wavefunction should have a "cusp' at r;; =0, which means that the
molecular orbital should satisfy

[ 52 2
. 1 e
lim |- Vip(r,;) —
ryu0| 2m ‘P(rlL) 1(P( 1) 1L

= finite terms. (VIIL.7)

Similar conditions must also be satisfied whenever any one of the
distances 7.z, Tag , Or Tz vanishes. Using (VIII.6) and a bit of
algebra, it is easy to see that these constraints imply that a
satisfies the transcendental equation

2o (VIIL.8)

a= :
(1+e —S/a)

and that a=2a,, where a,=h?/me? is the Bohr radius. Thus, B is
the only variational parameter at our disposal. Note that these
Coulomb cusp conditions would not have been as important if we
were to use some other quadrature method to evaluate the varia-
tional energy, as then each of the divergences in ¢ would cancelled
by a geometrical 7% weighting in the associated distance.

With the trial wavefunction specified by Egs. (VIIL.6), explicit
expressions can be worked cut for £(r) in terms of the values and
derivatives of ¢ and f. Note that this form of the trial function is
not appropriaie for very large proton separations, as it contains a
finite amplitude to find the two electrons close to the same proton.
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VIII.3 Monte Carlo evaluation of the exact energy

We now turn to a Monte Carlo method for evaluating the exact
electronic eigenvalue, £, It is based upon evolution of the
imaginary-time Schroedinger equation to refine the trial wave
function to the exact ground state. In particular, the latter can be
obtained by applying the operator exp(—Ht /h) to the trial state ®
and considering the long-time limit £ »e. (See the discussion con-
cerning eigenvalues of elliptic operators given in Section 7.4 for
further details.) Thus, we define

[
¥(r,t) = exp fE'n(t')dt’/h e Ht/R(r) (VIIL.9)
0

where E,(t') is an as-yet-undetermined c-number function. Note
that as long as <¥4|®> # 0, ¥(¢) will approach the (un-normalized)
exact ground state ¥; as ¢ becomes large. Our method (Path
Integral Monte Carlo) is equivalent to evaluating the path integral
representation of (VIIL.9) numerically. An alternative method
(Green's Function Monte Carlo, [Ce79]) would be to filter with the
inverse of the shifted Hamiltonian, instead of the exponential in
(VII.9).

To compute the exact ground state energy F£;, we consider a
slight generalization of the variational energy (VII.4) using the
hermiticity of H:

<®|H[¥(t)> _ Jardn¥rt)e(r)
<®|¥(t)> [drd(r¥(rt)

It should be clear that £(t=0)=F,, the variational energy associ-
ated with ®, that £ (f »«) = E;, and that £(t) is independent of the
function £, (t').

Equation (VIII.10) expresses the exact energy in a form suit-
able for Monte Carlo evaluation. To see this, we define
G(r,t) = &(r)¥(r,t), so that (VIIL. 10) becomes

E(t) = JarGrt)elr) (VIIL.11)

[drG(r,t)

The exact energy FE(t) is thus the average of the local energy ¢
over the distribution G(r,t). (Note that for the problem we are
considering, G is positive definite since neither ¢ nor ¥ has any
nodes.) A Monte Carlo evaluation of £ therefore requires an

E(t) = (VIIL 10)

"ensemble’ of N configurations {ry, ---,ry} distributed according
to G(r,t), through which E(t) can be estimated by
N
E@t)~ L S e, (VIIL12)

N

1=1
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with an expression for the variance in analogy with (8.3). Note that
if ®(r) is in fact the exact ground state ¥, then &(r) = E,,
independent of r, and so £(t) = Fy with zero variance.

Of course, the expressions above are of no practical use
without a way to generate the ensemble of configurations. At
t=0, G(r,t) = |®(r)|? so that a method like that of Metropolis
et al. can be used to generate the initial ensemble, typically hav-
ing N ~® 30 members. To evolve the ensemble in time, note that
since

oy _ ..
h 3r = (B, — H)Y,
G satisfies the evolution equation
G _;1 _ 1
5t 7| En(t) — ®(nH 00 G(r.t) (VIII.13a)
2
— h a G(I‘,t) _ d [D(I‘)G(I‘,t)]

2m are ar
a1 [e(r)—E,(t)]G(rt) . (VII.13b)

We have used here an obvious notation for the spatial derivatives.

Equation (VIII.13b) can be interpreted as a diffusion equation
for G, with a drift function

_h 1 8d(r) _ h dlogd
D(r)_m &r) or ~m Oor

It shows that the kinetic energy acts to diffuse G, that D tends to
keep G confined to regions where ¢ is large, and that the "source”
increases G where ¢(r) is smallest.

The evolution of G over a short time from £t to ¢t + At can be
represented through order At by the integral kernel

G(rt + At) = [dr P(r,r;At) G(r',t) , (VIIL15)

where

(VIIL 14)

P(r,r;At) = exp {—[a(r) - E’n(t)]At/h]x

3ex l—[r — ¢ — D(r)At 2

AT 1 ] . (VIIL18)

m
2mhit

This kernel (which is positive definite) can be interpreted as the
conditional probability for a configuration to evolve from r’ at time
t tor at time t+At. This probability contains a factor associated
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with the kinetic energy, which acts to diffuse the system about r
through a normalized Gaussian probability distribution with vari-
ance hAt/m and mean DAf. The other factor in P is associated
with the local energy, which acts to keep the system in regions of
space where ¢ is most negative by enhancing the probability for
jumps to occur to such locations. The quantum mechanical struc-
ture of the exact ground state is thus determined by the balance
between these two competing tendencies.

The algorithm for evolving the ensemble should now be evi-
dent. A configuration at time ¢ at the point r generates a contri-
bution to G(r,t +At) equal to P(r,r’; At). This is realized by placing
in the new ensemble a configuration r chosen according to the dis-
tribution

2hAL /M

and then weighting the importance of this configuration by

exp{—[a(r) — E,(t)]At/ h] .

exp {—[r — ¢ — D(r)At]? ] |

One way of effecting this weighting in practice is to replicate or
delete the configuration in the new ensemble with probabilities
given by this latter function. In this case, N fluctuates from time
step to time step but can be held roughly constant by continuous
adjustment of £, . Indeed, to keep fer(r,t) (and hence N) con-
stant, £, (t) should be equal to £(t), so that E, also furnishes an
estimate of £(f). An alternative way of effecting the weighting is
to assign an "importance” (i.e., a weight W;) to each configuration
in the ensemble when averaging ¢ to compute the energy. That is,
the summand in (VIII.12) is modified to W;e(r;). At each time step,
W; for each configuration is multiplied by the first factor in
(VIIL.18), with FE, readjusted to keep average weight of each
configuration in' the ensemble equal to 1. This latter method
requires less bookkeeping than does that of replicating and delet-
ing, but can be inefficient, as a configuration that happens to
acquire a very small weight is still followed during the evolution.

In summary, the method is as follows. The system is described
by an ensemble of configurations, each having a relative weight in
describing the properties of the system and initially distributed in
r according to the trial function |®(r)|? . The overall efficiency of
the method is closely related to the accuracy of this trial function.
To evolve the ensemble in time, each member is moved in r with a
shifted gaussian probability function [the second factor in Eq.
(VIII.16)] and its weight is multiplied by the first factor in Eq.
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(VII1.18). The quantity £, (t), which is adjusted after each time
step to keep the average weight of the ensemble equal to 1, pro-
vides an estimate of the energy, as does the weighted average of
¢(r) over the ensemble at any time. Furthermore, once the total
evolution time is sufficiently large to filter the trial wavefunction,
continued evolution generates independent ensembles distributed
according to the exact ground state wavefunction, which allows
the statistics to be improved to any required accuracy.

Note that since the ensemble moves through configuration
space at a rate determined by At, which must be sufficiently small
so that Egs. (VIII.15,16) are accurate, the estimates of the energy
at successive time steps will not be statistically independent.
Therefore, in forming averages and computing variances, care
must be taken to use ensembles only at intervals of ¢ sufficiently
large that the values are uncorrelated. Such intervals are con-
veniently determined by examining the autocorrelation functions
of the estimate. Alternatively, one can use the method of binning
the values into groups, as discussed in connection with the Ising
calculation in Section 8.4. It should also be noted that the finite
time step requires that calculations be done for several different
values of Af and the results extrapolated to the At=0 limit. A use-
ful way to set a scale for At is to note that the average step size
for the Gaussian distribution in (VIII.16) is roughly (hAt/m)%; this
must be small compared to the length scales in the wavefunction.

Expectation values of observables other than the energy in the
exact ground state are not simply given by this method. To see
this, consider the ground state expectation value of some observ-
able A that does not commute with the Hamiltonian. Then

<V(1)|A|¥(t)>
<¥(t)|¥(t)>

_ fdr\Pz(r,t)\P_lA\I/(r,t)
- fdr\Pz(r,t)

Evaluation of this integral requires an ensemble of configurations
distributed as |¥|? However, the diffusion process described
above generates an ensemble distributed as G=9%V¥, which is not
what is required. Although this ensemble can be used, through a
rather complicated algorithm, to calculate exact ground state
expectation values, a good estimate can be had by using it directly
to calculate the first term in

<‘I’0 IA l ‘I/0>E%im

(VIIL.17)

<PlA|F(E)> <Pb|4|P>
<P |¥(t)> <d|d>

the second term being evaluated easily with an ensemble distri-

buted according to ®<. Thus, this expression provides a way of

<¥y]4 |\I/0>%£im 2 (VIIL.18)
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perturbatively correcting the expectation value in the trial state;
some algebra shows that it is accurate to second order in the
error in the trial function, ¥,—9.

VII1.4 Solving the problem

The Monte Carlo methods described above can be applied to
solve for the properties of the Hy, molecule through the following
sequence of steps.

Step 1 Verify that Eq. (VIII.8) and the choice a=2a, imply that the
wavefunction (VIII.6) satisfies the Coulomb cusp condition. Derive
explicit analytical expressions for £(r) (Eq. (VIIL.5)) and D(r) (Eq.
(VIII.14)) for the wavefunction (VIIL8).

Step 2 Write a code that uses Monte Carlo quadrature to calculate
the variational energy estimate associated with the trial wavefunc-
tion (VIILB). You will need subroutines to evaluate ®® and ¢ for a
given configuration. Sample $? using the Metropolis algorithm.
Study the auto-correlation function of & to determine the
minimum acceptable sampling frequency along the random walk.

Step 3 For various inter-proton separations, .S, find the parameter
B that minimizes the electron eigenvalue and so determine the
variational potential for the H; molecule. Verify that the uncer-
tainties in your results behave with 8 as expected. Your value at
S'=0 can be compared with the variational results obtained in Pro-
ject III using scaled hydrogenic and full Hartree-Fock wavefunc-
tions.

Step 4 Verify the validity of Egs. (VIII.15,18) by making a Taylor
expansion of G(r',t) about r and then doing the resulting Gaussian

r integrals. (You will also have to make the approximation
D(r')~D(r), which is accurate to O(At).)

Step 5 Test the Path Integral Monte Carlo scheme for finding the
exact ground state energy of a Hamiltonian on the simple situation
of a particle in a one-dimensional harmonic-oscillator potential.
Write a program that assumes a gaussian trial function with an
incorrect width and verify that the time evolution refines the
energy in the expected way. An ensemble of 20-30 members
should be sufficient. Investigate how the quality of your results
varies with the error in the trial wavefunction and with the time
step you use.
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Step 6 Combine the programs you wrote in Steps 2 and 5 into one
that determines the exact eigenvalue of the ground state of the
two-electron problem and so determine the exact H, molecular
potential at various separations. In particular, determine the
location of the minimum in the potential and compare with the
empirical values given in Section 1.4. Use the trial functions deter-
mined in Step 2 and verify that your exact energies are always
lower than the variational values. Also verify that your exact
results are independent of the precise choice of § and that they
extrapolate smoothly as a function of Af{. Determine the binding
energy of the He atom by considering S=0 and compare with the
exact value given in the discussion of Project III.
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Appendix A

Synopsis of the
BASIC Language

This appendix contains a brief description of the language (IBM
or Microsoft GW BASIC) used to write the programs in this book. It
is by no means complete, giving neither all of the statements in
the language nor all of the details of each statement. Rather, it is
meant to provide the reader familiar with some other high-level
language (e.g., FORTRAN, PASCAL, C) with enough background to
read the codes. It is not meant for the programming novice, who
should consult a text in computer programming for proper
instruction. Further information about the BASIC language can be
found in any of the user’s manuals accompanying microcomputer
systems or in the numerous texts available.

In the following, the BASIC statements are in uppercase, the
variables to be supplied are in italic, and optional parameters are
enclosed in brackets.

Line format

All lines of BASIC code begin with a sequential line number
ranging from O to 65529. Several statements, separated by colons
(1), can occupy the same line. Blank spaces are generally ignored,
as are any characters following an apostrophe (') in a line.

Variables

A variable name can be any length, but only the first 40 char-
acters are significant. The first character must be a letter (only
uppercase is permitted). Such letters, numbers, and the decimal
point are the only allowed characters, apart from the final charac-
ter specifying the variable type. The four allowed variable types
and their associated final characters are:

% integer variable (2 bytes, ranging from -32768 to
+32767)

! single precision floating-point variable (4 bytes, 7-
digit precision)
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# double precision floating-point variable (8 bytes, 17-
digit precision)
$ string variable

Thus, var!, var%, var#, and var$ are all distinct variables. The
default specification (no special final character) is single precision
floating-point.

Arrays
The statement

DIM variable (subscripts) [,variable (subscripts)]...

declares that variable is an array with dimensions specified by the
subscripts. The maximum number of dimensions is 255, and the
maximum size of each dimension is 32767; the subscript for each
dimension begins from 0. Execution of a DIM statement also zeros
each element of the array.

Arithmetic statements

The elementary arithmetic operations are, in order of increas-
ing precedence,

z+y the sum of z and ¥

x -y the difference of z and ¥y
z/Y the quotient of z and y
z~Y the y’'th power of x

z MODy modulo arithmetic

Here, z and y are any two arithmetic statements or variables. In
addition, BASIC also provides a number of built-in arithmetic func-
tions: ‘

ABS(z) returns the absolute value of z

ASC(z %) returns the ASCII code for the first character
inz%

ATN(z) returns the arctangent of z

CINT(z) converts z to an integer by rounding

COS(z) returns the cosine of z

CSNG(x%) converts z% to single precision



EXP(z)

FIX(z)
LEN(z8)
LOG(z)

A. Synopsis of the BASIC Language

returns the value of e(=2.71828...) raised to
the z power

converts z to an integer by truncation
returns the number of characters in 28
returns the natural logarithm (base e) of

RANDOMIZE seeds the random number generator

RND

SGN(z)
SIN(z)
SQR(z)
VAL(z$)

accessed by RND by requesting a seed from
the keyboard

returns a random floating-point variable dis-
tributed uniformly between 0 and 1

returns the sign (+1 or -1) of z

returns the sine of z

returns the square root of z

returns the numerical value of the string z§

Logical statements and comparisons

A variable or expression is logically "true" if it is non-zero and
is "false’ if it is zero. However, -1 has been used exclusively for
"true" in this book since NOT z is "false"” only when z is -1. BASIC
supports the following logical expressions:

NOT z
z AND y

z ORy

false if x is true and true if z is false

true only if both  and y are true; false other-
wise

true if either z or y is true; false otherwise

Here, z and y are any two arithmetic statements or expressions.
In addition, the following statements allow a comparison between
variables or expressions:

=y
r<>Y

x>y
<y
z>=Y

<=y

true if z is equal to y; false otherwise

true if x and y are unequal; false otherwise.
Also can be written as z><y.

true if z is greater than y; false otherwise
true if z is less than y; false otherwise

true if z is greater than or equal to y; false oth-
erwise

true if z is less than or equal to y; false other-
wise.
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Note that two strings can also be compared; they are equal if all of
their characters are identical and unequal otherwise.

String functions
The following are BASIC functions that return string variables:

CHR$(n) returns the character whose ASCII code is
n

INKEY$® returns the next character in the key-
board buffer

LEFT$(z$#,n) returns the leftmost n characters of z$
RIGHTS$(z#,n) returns the rightmost n characters of 28
SPACES$(n) returns a string of n spaces

STRINGS$(n,m ) returns a string of n characters whose
ASCII code ism

TIMES returns an 8-character string of the form
hh:mm:ss containing the current reading
of the clock in hours (hh, from 00 to 23),
minutes (mm, from 00 to 59), and seconds
(ss, from 00 to 59)

Here, z# is any string variable and m and n are integers.

User-defined functions
BASIC allows for user-defined functions through the statement

DEF FNname[(arg [,arg]...)]=expression.

This defines a function of the specified arguments whose name is
FNname; the value returned when FNname is used in a program
statement is given by exzpression using the current values of the
arguments and any other variables appearing in expression. The
args used in a DEF FN statement are dummy arguments and do
not affect program variables.
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Control statements

The following statements control the flow of program execu-
tion:

STOP or END
Terminates program execution.

GOTO linenumber
Transfers control to the specified line.

IF expression THEN statement

If expression is logically TRUE, then statement is executed, as
are any statements following on the same line. Otherwise con-
trol transfers to the next line. If statement is GOTO
linenumber, then either the verb GOTO or the word THEN can
be omitted, but not both.

IF expression THEN statement 1 ELSE statement 2

If expression is logically TRUE then statementl is executed
and control transfers to the next line; if expression is logically
FALSE, then statement2 is executed, as are any statements
following on the same line.

FORi=m TOn [STEP p ]
statements
NEXT 2

This is the basic loop structure. The statements after FOR are
executed until NEXT is reached, whereupon the value of % is
incremented by p. Control is then transferred back to FOR
where the value of z is checked before execution of the state-
ments again. The lines between the FOR and NEXT statements
are executed as long as i<n (if p is positive) or i=n (if p is
negative). The default value of p is 1. FOR-NEXT loops can be
nested.
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WHILE expression
statements
WEND

If expression is logically TRUE, the statemenis are executed
and control is transferred back to the WHILE statement upon
encountering WEND. If expression is logically FALSE, then con-
trol transfers to the line after WEND. WHILE-WEND loops can be
nested.

GOSUB linenumber

This is the form of a subroutine call. GOSUB transfers control
to the subroutine beginning at linenumber. Execution then
continues, with control being transferred back to the state-
ment immediately following the GOSUB statement upon
encountering a RETURN statement.

RETURN [linenumber ]

Resolves a subroutine call by transferring control to the line
linenumber. If linenumber is omitted, control is transferred
to the statement immediately following the calling GOSUB
statement.

Input and output statements

The BASIC text display has 25 rows and 80 columns. The pro-
grams in this book use the graphics display only in the high-
resolution mode (640 pixels horizontally x 200 pixels vertically).
The following statements affect how information is presented on
these displays, how data is transferred between the program and
memory or disk files, and how data is input from the keyboard.

SCREEN mode

Specifies the attributes of the screen. mode is either 0 (for
text, 25 rows by 80 columns), 1 (for medium resolution graph-
ics, 320x200 pixels, which is not used in this book) or 2 (for
high resolution graphics, 640x200 pixels). Only mode =0 is per-
mitted on a monochrome display.

KEY OFF

Turns off the default display of BASIC function keys on the
25'th row.
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CLS
Clears the screen.

COLOR [m] [,n]
The color of the characters and background are specified by
m and n. For the monochrome display, 0 is black, 2-7 is green,
and 10-15 is high intensity green; on the graphics display in
text mode, m and n specify 16 different colors, as described
in the BASIC manual.

LOCATE [row] [,col] [,cursor ]
Places the cursor at row,col on the text screen. The allowed
ranges are 1=<row=25 and 1=col<80. If cursor=1 the cursor is
visible, if cursor=0 it is not. If row is omitted, then the
current row location of the cursor is assumed.

PRINT expression 1 [, expression2,...] [;]

Displays the expressions on the screen. These can include
string or numerical variables or mathematical expressions
(e.g. X*5+2). The final semi-colon suppresses the carriage
return after printing.

PRINT USING '"'string ";expression 1 [, expression2,...] [;]
Prints expressions in a format specified in string:
# represents each digit for a numerical variable;
the decimal point must be indicated explicitly
+ in front of the first digit (#) specifies that the
sign (+ or -) will be printed
~~~~ specifies exponential notation
string can also include text to be displayed with the variables.

PSET (z,y)

Displays the pixel at location (z,y) on the graphics screen. In
high resolution graphics, 0=r<639 and 0=y =<199.

LINE [(z1,y1)](z2,y2) [.,[color] [,B[,F]]]
Draws a line from the points (z1,y1) to the point (z2,¥2) in
the graphics mode. Including 'B’ will draw a box for which the
specified line is a diagonal, while including 'B,F’ will fill the box
with color. If (z1,y1) is omitted, it takes the default value of
the last point referenced.
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CIRCLE (z,y),r
Draws a circle of radius  with center (z,y) in graphics mode.

BEEP
Sounds a tone on the speaker for about 0.25 second.

INPUT[;] ["prompt";] variable 1 [,variable2, ...]

Requests the variables specified by displaying prompt and '?’
on the screen and then waiting for a carriage return. If the
number and types of variables input from the keyboard
(separated by commas) do not match the number and types
specified, a 'Redo from start’ message appears and the system
will wait again for a carriage return. The ’;’ immediately follow-
ing INPUT suppresses a carriage return to the display after the
variables have been entered.

OPEN filename FOR mode AS #filenumber

Opens the file specified by filename for the action specified
by mode. This latter can be either INPUT or OUTPUT. The
integer filenumber is 1, 2, or 3 and specifies the file in subse-
quent INPUT #, WRITE #, or CLOSE # statements.

INPUT #filenumber, variable 1 [,variable2,...]

Reads the variables specified from the file specified by
filenumber.

WRITE #filenumber, expression1 [,expression2, ...]

Writes the list of expressions specified on the file labeled by
Jilenumber.

CLOSE # f'ilenumbe'r
Concludes input or output to the file specified by filenumber.

READ variable 1 [,variable2, ...]
Assigns the variables specified to the values contained in the
next DATA statement. READs access DATA statements in the

order they appear, beginning with the DATA statement
specified by the RESTORE command.
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DATA constant 1 [,constant2, ...]

Specifies constants to be assigned to variables through a READ
statement.

RESTORE linenumber

Specifies that READ statements are to begin accessing the
DATA statements at the line labeled by linenumber.

PEEK (m) .

Returns the byte (0-255) read from memory location m (0-
65535) offest from the address specified by the last DEF SEG
statement executed.

POKE m ,n

Deposits the byte n (0-255) at the memory location m (0-
85535) offset from the address specified by the last DEF SEG
statement executed.

DEF SEG [=address |

Specifies the memory location from which POKE statements
are offset.
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Appendix B

Programs for
the bxamples

This appendix contains the source code listings for the pro-
grams described in each of the examples in the text. These are
written in the BASIC language (Microsoft GW BASIC) standard on
the IBM PC/XT/AT series of computers. The programs will run on
these computers, as well as on other hardware compatible with
these machines under the MS-DOS operating system.

In writing the codes, an attempt has been made to conform to
general '"good' programming practices, such as those discussed in
[Ke78]. '"Elegance” or machine efficiency has often been sacrificed
in favor of intelligibility. However, to keep the codes of reasonable
length, the "defensive’" programming has not been airtight and it
i1s possible to "crash” many of the programs by entering inap-
propriate parameters. Sample input parameters are given before
each of the programs in this and the following appendix and, in
any event, an examination of the source listing can quickly show
what's gone wrong.

The programs are organized into subroutines, each performing
limited and well-defined tasks. All subroutines begin at line
numbers which are multiples of 1000. A header describes the pur-
pose of the subroutine and the variables it uses. These are of four
types: INPUT and OUTPUT variables (taken from other parts of the
program or produced by the subroutine), GLOBAL variables (used
elsewhere as well, similar to those contained in a FORTRAN COM-
MON block), and LOCAL variables (defined and used only within the
subroutine). The distinction between the latter two types is useful
since, although all BASIC variables are actually global, it is often
convenient to use the same variable name in different subroutines,
for example as loop indices.

The code for each program has been formatted to make it
easier to read. To the extent possible, variable names have been
chosen mnemonically and loops have been indented, as have sec-
tions of code controlled by IF statements. Running comments on
the right-hand side of many statement lines indicate what compu-
tation is being done, and major sections are set off by blank com-
ment lines. As much of the code tends to be input, output, and
mundane "'book keeping”, the listings of the important sections
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are printed here in boldface.

The graphic display of results greatly enhances many of these
programs. Although all of the programs will produce results on a
system with only a text display (e.g., driven by an IBM mono-
chrome display adapter), many are more effective when run on a
system with a graphics capability and some are even best when
separate graphics and text displays are available. All, however, use
the graphics display in either high-resolution (200x840) graphics
or text mode; color is used only in the latter. Each program begins
with a title screen and enquires about the display configuration of
the system; results will then be displayed in the most effective way
possible for the responses given. If you are unsure about what
display configuration your system has, it is best to answer NO in
response to the prompt '"Does your computer have a graphics
capability?’ the first time you run a program.

The switching of the default display in some of the programs is
accomplished by two standard subroutines (e.g., beginning at lines
7000 and 8000 in the program for Example 1). These are appropri-
ate for the IBM PC/XT/AT hardware, but can be modified simply to
accomodate other machines. Another hardware dependence
involves the display buffers in memory. Some programs use the
technique of POKEing characters directly into these buffers to
save time relative to BASIC's PRINT statement. When used, this
technique is announced at the beginning of execution and the
option of using the slower PRINT method is offered. If you are
using a graphics display or BASIC dialect incompatible with the
IBM standard, it is wisest to accept this choice, at least the first
time you run a program.
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B.1 Example 1

This program finds the semiclassical approximations to the
bound state energies of the Lennard-Jones potential for the value
of y=(2ma?Vy/ n2% input. The basic problem is to find, for each
integer n, the value of ¢,, for which Eq. (1.22) is satisfied. After the
number of bound levels is estimated, (lines 1190-1200), the energy
for each level is found (loop 230-300) using a secant search (loop
2070-2140) to locate the zero of f=s—(n+¥%)m. Subroutine 3000
calculates the action, s, for a given energy by using simple
searches to locate the inner (loop 3070-3120) and outer (loop
(3140-3190) turning points and then using Simpson's rule to calcu-
late the integral, with a special treatment for the square-root
behavior near the turning points. After all ot the energies have
been found, the phase-space trajectories, k(z), are graphed for
each level by subroutine 5000.

An input value of
Gamma=50

will result in a representative output from this program.
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20 'Example 1: Bohr-Samerfeld quantization for bound states of
30 the Lennard-Jones potential

31 COMPUTATIONAL PHYSICS by Steven E. Koonin

32 'Copyright 1985, Benjamin/Cumings Publishing Coampany

40 AR AR R A ARl A A A A AR AR A A A A R A A AR A AR R AR AR R R R R AR Al R AR A AR Al R R

50 GOSUB 8000 "display header screen

60
70 PI=3.14159 "define constants, functions
80 MAXZ%=100 ‘'max nunber of bound states

90 DIM E(100) 'array
100 DIM XIN(100) ,X0OUT(100) ‘arrays for turning points

110 'redimension E, XIN, and XOUT in you change MAX%

120 TOLX=.0005: TOLE=.0005 "space and energy tolerances
130 NPTS%=40 ‘nunber of integration points
140 NGRAPH7Z=100 "'nunber of points for graphing
150 XMIN=2~(1/86) 'equilibriun position for 6-12
180 DEF FNV(X)=4*(X~(-12) -X~(-6)) "the Lennard-Jones potential

170 "If you change the potential, norrmalize to a minimm of -1

180 'and change XMIN to the new equilibriun value.

190

200 GOSUB 1000 "input GAMMA, calculate NMAX%
210

220 E1=-1: F1=0-PI/2 'guesses for lowest state

230 FOR N7z=0 TO NMAXZ% "find the NMAX% bound states
240 IF INKEY3="e" THEN GOTO 200 "typing e will end the program
250 E2=E1+ABS(E1) /4 ‘convenient values to get

280 DE=2*TOLE ' secant search started

270 GOSUB 2000 "search for bound state energy

280 E1=E2

for bound state energies

290
300

F1=F2-PI:
NEXT Nz

“initial guesses for next level
" extra Pl fram incrementing NZ
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320 IF GRAPHICS% THEN GOSUB 5000 'graph the levels

330 GOTO 200 "get new GAMMA and begin again

340

1000 222X RS E RS R RS R SRR R R R R R R RS R R AR AR AR AR AR R A R XA R R AR RS R R E R
1010 'subroutine to input GAMMA and calculate NMAX%

1020 'input variables: none

1030 'output variables: GAMMA,NLEVZ, NMAXZ%

1040 'global variables: GRAPHICS%,MONO%,MAX%,PI,TOLE

1050 ’'local variables: E

1060 R 222X R R R R R AR AR R R AR R AR R R AR A AR AR A AR AR Rl R AR 2R R R R R R AR ] R
1070 LOCATE 23,20,1: BEEP

1080 PRINT "Enter Gemma=sqr(2ma"+CHR$(253)+"V/hbar"+CHR$(253)+") or 0 to end";
1090 INPUT GAMMA

1100 IF GAMMA=>0 GOTO 1150

1110 LOCATE 24,24: BEEP

1120 PRINT "Gamma must be greater than zero”;

1130 LOCATE 23,20: PRINT SPACES$(59);

1140  GOTO 1070 ‘pramnpt for GAMMA again

1150 IF GAMMA=0 THEN END

1160 IF GRAPHICS% AND MONO% THEN GOSUB 8000 "switch to mono

1170 LOCATE ,,0

1180 °

1190 E=-TOLE: GOSUB 3000 "find S for a very srall E

1200 NMAXZ%=S/PI-.5: NLEVZ=NMAX7%+1 " to get number of bound states
1210 IF NLEVZ<=MAX% GOTO 1280 'check if arrays large enough
1220 LOCATE 23,16,1: BEEP

1230 PRINT USING "The number of bound levels must be less than ###" ;MAXZ
1240 LOCATE 24,25

1250 PRINT "Try a smaller value for gamma.”

1260 LOCATE 23,10: PRINT SPACE$(69)

1270 GOTO 1070

1280 CLS: LOCATE 2,21,0

1290 PRINT USING "Germoa=#### . ## Number of levels=###"; GAMMA, K NLEVZ

1300 PRINT ""

1310 RETURN

1320 °

2000 R X X R RSS2SR R R AR R AR R AR R R R AR R R R AR R R AR Rl l Rl Rl ] ]
2010 ’'subroutine to search for the bound state energies

2020 ’input variables: DE, E1, E2, F1, N%, S, XIN, XOUT

2030 ’output variables: E, E2, E(I%), F2, XIN(I%), XOUT(I%)

2040 'global variables: TOLE

2050 'local variables: none

2060 T I i s sy I I I I I T I I I I TR TR T N T
2070 WHILE ABS(DE)>=TOLE 'secant search for energy

2080 E=E2: GOSUB 3000 ‘calculate S at new energy

2090 F2=S- (N%+.5) *PI ‘calculate F at new energy

2100 IF F2=F1 THEN GOTO 2160 ‘exit if F doesn’t change

2110 DE=-F2+(E2-E1)/(F2-F1) change in the energy

2120 E1=E2: F1=F2: E2=E1+DE ‘update energy and F

2130 IF E2>0 THEN E2=-TOLE 'keep energy negative

2140 WEND

2150

2160 IF ((N%+1) MOD 18)=0 THEN GOSUB 4000 'clear screen if full

2170 PRINT USING "  N=## Energy=+#. ######" N%,E;

2180 PRINT USING " Xin=##. ###### Xout=##. ######" ; XIN, XOUT

2190 °

2200 E(N%)=E: XIN(N%)=XIN: XOUT(N%)=XOUT 'save values for graphing
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2210 °

2220 RETURN

2230

3000 TEEEER R R R R EX R R R R R R R R R RN PR E R R R R R R R E R R R e
3010 ’'subroutine to calculate S (the action) in units of 2*hbar

3020 'input variables: E

3030 'output variables: S,XIN,XOUT (the turning points)

3040 'global variables: FNV(X),GAMMA,NPTS%, TOLX,XMIN

3050 'local variables: DX,FAC,H,SUM

3060 A A AR R R R AR R AR A A R R R R A AR AR R R AR R R ARl R AR R R ARl Rl Rl R
3070 XIN=XMIN: DX=.1 find inner t.p. by inward search
3080 WHILE DX>TOLX

3090 XIN=XIN-DX

3100 IF FNV(XIN)<E THEN GOTO 3120

3110 XIN=XINHDX: DX=DX/2

3120 WEND

3130 -

3140 XOUT=XMIN: DX=.1 "find outer t.p. by outward search
3150 WHILE DX>TOLX

3160 XOUT=XOUT+HDX

3170 IF FNV(XOUT)<E THEN GOTO 3190

3180 XOUT=XOUT-DX: DX=DX/2

3190 WEND

3200 -

3210 H=(XOUT-XIN) /NPTS%Z: SUM=0 *Simpson’s rule fram XIN-H to XIN+H
3220 SUM=SUMH-SQR(E-FNV(XIN+H))

3230 FAC=2

3240 FOR IZ=2 TO NPTS%-2

3250 X=XIN+IZ*H

3260 IF FAC=2 THEN FAC=4 ELSE FAC=2

3270 SUM=SUMHFAC*SQR(E-FNV(X) )

3280 NEXT IZ%Z

3290 SUM=SUMH+SQR(E-FNV(XOUT-H))

3300 SUM=SUM*H/3

3310 -

3320 SUM=SUMH+(SQR(E-FNV(XIN +H)))*2*H/3 ’special treatment for sqrt behavior
3330 SUM=SUMH(SQR(E-FNV(XOUT-H) ))*2*H/3 ' in first and last intervals

3340 -

3350 S=GAMMA*SUM

3380 RETURN

3370

4000 AR A A A AR A AR R A A 22 R R R R 2R A2 R AR A AR R AR R R AR R R A R A AR R Rl R AR 2 ARl A R A R E R R 2D
4010 ’'subroutine to clear the screen when full of output

4020 ’'input variables: none

4030 ’'output variables: none

4040 ’'global variables: GAMMA,NLEVZ

4050 'local variables: none

4060 TESREEEE R R R RN R R R R E R R R R R R RN E R R R R R R R R R R R R R P R R R E R R R R E R EEEE®
4070 LOCATE 24,31,1: BEEP

4080 PRINT "Type ¢ to continue';

4090 IF INKEY$§<>"c" THEN GOTO 4090

4100 CLS: LOCATE 2,21,0

4110 PRINT USING "Gorme=#### . ## Number of levels=###";GAMMA,NLEVZ

4120 PRINT ""

4130 RETURN

4140

5000 TEEEREE R R R R R R R R R R R R R R R R R R R R R R R R RN E R R R R R R E RN R RS e
5010 'subroutine to graph phase-space trajectories (wave number K vs. X)
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B. Programs for the Examples

"input variables: E,XIN,XOUT
"output variables: none

'global variables: GAMMA,MONOZ%, NGRAPHY , NMAX%
"local variables: H,I%,K, KMIN%,KSCALE,K1%,K10LD%,K2%, K2OLD% ,MARKZ , X, X7,

! XMINZ%, XOLDZ%, XSCALE , Y7

IR AL A A AR E R R R 2 R R AR R R AR R R R R AR R AR E R AR R R R R R A A A R AR R ARl AR Rl R

LOCATE 24,28,1: BEEP

PRINT "Type g to begin graphing.';
IF INKEY8<>"g" GOTO 5100

LOCATE ,,0

IF MONO% THEN GOSUB 7000
SCREEN 2,0,0,0
CLS: KEY OFF

LINE (80,180)-(640,180)
LINE (60,1)-(60,180)

FOR MARK%Z=1 TO 5
X7=70+MARKZ%*568 /5
LINE (X%,178)- (X%, 182)

NEXT MARKY%

LINE (70,178)-(70,182)

FOR [%2=0 TO 5

"prampt and wait for cammand

'switch to graphics screen
'switch to hi res graphics

'X axis
'K axis

'X ticks

"tick for XIN(NMAXZ%)
'X labels

IF I1%<>5 THEN LOCATE 24,(9+I%*14) ELSE LOCATE 24, (6+1%*14)
PRINT USING "#.##" ; XIN(NMAX%)+(XOUT (NMAX%) - XIN(NMAX%) ) *1%/5 ;

NEXT I%
LOCATE 22,78: PRINT "X";

FOR MARK%=0 TO 4
Y%=MARK%*180 /4
LINE (58,Y%)-(62,Y%)

NEXT MARK%

FOR I%=2 TO -2 STEP -1
LOCATE (12-5.5%1%),2

PRINT USING "###.##" ;| %*GAMMA/2;
NEXT I%
LOCATE 4,3: PRINT "K";
LOCATE 1,55
PRINT "Phase space trajectories"

LOCATE 2,61
PRINT USING "Garma=###.##" ; GAVMA ;

XSCALE=569 / (XOUT (NMAX%) - XIN( NMAX%) )
KSCALE=180 /(2 *GAMMA)

XMINZ=70-+( XMIN-XIN(NMAX%) ) *XSCALE
KMIN%=180 - GAMMA *KSCALE

LINE (XMIN%+2,KMIN%) - (XMIN%- 2, KMIN%)
LINE (XMIN%,KMINZ+2) - (XMIN%, KMIN%-2)

FOR N%=0 10 NMAX%
H=(XOUT (N%) -XIN(N%) ) /NGRAPH%
FOR [%=C TO NGRAPH%
X=XIN(N%)+H*1%
X%=70+(X-XIN(NMAX%) ) *XSCALE
K=GAMMA *SQR(E(N%) - FNV(X))

'X legend

'K ticks

'K labels

'K legend

"print plot title

'scales for the axes

'put a + at (XMIN,K=0)

'graph for each bound state

'X step for graphing the state
'graph all points

'X value of this point

'wavenunber at this point
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K17%=180- (K+GAMMA) *KSCALE
KR7%=180+(K- GAMMA) *KSCALE 'K can be positive or negative
IF [7=0 GOTO 5650 "connect to previous point
LINE (XOLD%,K10LD%) - (X%,K1%)
LINE (XOLD%,K20LD%) - (X%,K2%)
IF I%=0 OR I%=NGRAPH% THEN LINE (X%,Ki%)-(X%,K2%)' close contour
K10LD%=K1%: K20LD%=K2% 'update previous values
XOLD7%=X7%
NEXT 1%
NEXT N%
LOCATE 19,61: BEEP . 'pranpt and wait for cammand
PRINT "Type ¢ to continue”;

IF INKEY$<>"c" THEN GOTO 5730 ,

IF MONO% THEN GOSUB 8000 *switch back to mono screen
SCREEN 0: WIDTH 80: LOCATE ,,1,12,13 'switch back to text mode
RETURN

A A A A A AR A A A A A A A A A A A A A A A A R A A2 A A R A2 AR A A A A R AR Al 2 A Al A ARl Al

"subroutine to display the header screen
"input variables: none

'output variables: GRAPHICS%,MONOZ%
'global variables: none

local variables: G8,M$,ROWZ

A AR Al AR A A A A A A A A A A 2 2 R R 2 A 2 R A A R A A R A A A R R RS2 A A A A A AR A A R AR A A A Al

SCREEN 0: CLS: KEY OFF "program begins in text mode

LOCATE 1,30: COLOR 15 'display book title
PRINT "COMPUTATIONAL PHYSICS";

LOCATE 2,40: COLOR 7

PRINT "by";

LOCATE 3,33: PRINT "Steven E. Koonin";

LOCATE 4,14

PRINT "Copyright 1985, Benjamin/Cummings Publishing Coampany";

LOCATE 5,10 'draw the box
PRINT CHR$(201)+STRING$(59,205)+CHR$(187) ;
FOR ROWZ=6 TO 19
LOCATE ROWZ%,10: PRINT CHR$(186);
LOCATE ROW%,70: PRINT CHR$(186);
NEXT ROW%
LOCATE 20, 10
PRINT CHR$(200)+STRING$(59,205)+CHR$(188) ;

COLOR 15 'print title, etc.
LOCATE 7,36: PRINT "EXAMPLE 1";

COLOR 7

LOCATE 9,19: PRINT "Bohr-Samerfeld quantization for bound state”

LOCATE 10,26: PRINT "energies of the 6-12 potential”
LOCATE 13,36: PRINT "¢¢*¢ssseser

LOCATE 15,26: PRINT "Type 'e’ to end while running.”
LOCATE 16,23: PRINT "Type ctrl-break to stop at a pranpt.”

LOCATE 19,16: BEEP 'get screen configuration
INPUT "Does your canputer have graphics capability (y/n)";G8$
IF LEFT$(G$,1)="y" OR LEFT$(GS$,1)="n" GOTO 6400

LOCATE 19,12: PRINT SPACE$(58): BEEP

LOCATE 18,35: PRINT "Try again,”: GOTO 6350
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IF LEFT$(GS$,1)="y" GOTO 6430
GRAPHICS?%=0: MONO%=-1
RETURN
GRAPHICSZ=-1
LOCATE 18,15: PRINT SPACE$(55)
LOCATE 19,15: PRINT SPACE$(55)
LOCATE 19,15: BEEP
INPUT "Do you also have a separate screen for text (y/m)”";M$
IF LEFT$(M$,1)="y" OR LEFT$(M$,1)="n" GOTO 6500 ’'error trapping

LOCATE 18,35: PRINT "Try again,”: GOTO 6450
IF LEFT$(M$,1)="y" THEN MONO%=-1 ELSE MONO%=0
RETURN
IR X I R R RN R A R R R R R A A A R R A R R A A A A R R A A A A R R A A R R N A A A A R R R R R AR AR A2 A Rl
'subroutine to switch franmono to graphics screen
"input variables: none
’output variables: none
"global variables: none
'local variables: none
I A R TR R R X R R A A AR R A A A R R A A AR AR A AR AR AR RN A 2 ARl R Rl
DEF SEG=0

POKE &H410, (PEEK(&H410) AND &HCF) OR &H10
SCREEN 0: WIDTH 40: LOCATE ,,1,6,7

RETURN

TEEEERE R E PR RN E PP R EE R C R EE R C PR E PR R EET PR e bttt EEEEee
"subroutine to switch from graphics to mono screen

"input variables: none

‘output variables: none

'global variables: none

'local variables: none

PHEEEEE R R R EE R EERER R PR E P ECEC PR R PP EECEEP PR PP EC R E e T
DEF SEG=0

POKE &H410, (PEEK(&H410) OR &H30)
SCREEN 0: WIDTH 80: LOCATE ,,1,12,13
RETURN

]
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B.2 Example 2

This program integrates trajectories in the Hénon-Heiles
potential (2.35) and finds the corresponding surfaces of section.
For the energy input (lines 1080-1190), the borders of the (y,p,)
surface of section are found (subroutine 2000) and initial condi-
tions for a trajectory are then accepted within this border (sub-
routine 3000 or 5000; note that both z and p, are initially 0). The
time integration then proceeds (loop 330-520), with the 4’th-order
Runge-Kutta step taken by subroutine 11000; derivatives of the
coordinates and momenta are calculated by subroutine 12000.
The (z,y) trajectory is displayed at each time step (subroutine
13000 or 14000) and whenever the trajectory crosses the y-axis
(i.e., whenever £=0), a point on the surface of section is located
and plotted (subroutine 15000) by temporarily switching to z as
the independent variable, as described in the text. Integration
continues until a command is received from the keyboard (pro-
cessed by subroutine 9000). Note that a maximum of 2000 surface
of section points can be accumulated.

Entering an energy of
E=0.1
and initial conditions of
Y=0.095, Py=0.096

will result in a representative calculation.
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10 AL A A A R S A A R A A A 2 A A A A A A R A A Rl S A A R ARl A A AR R R AR AR RN R R AR RN R R ]

20 ’Example 2: Trajectories in the Henon-Heiles potential
21 'COMPUTATIONAL PHYSICS by Steven E. Koonin
22 'Copyright 1985, Benjamin/Cummings Publishing Campany

30 XA A A 22 2 R A A A A AR A S A A 2 A A2 A A A A A A R A A A A A R A A A A R A R A R R A A R R A X R R R 2 X

40 GOSUB 16000 'display header screen

50

60 FIRST%=-1 ‘define constants, functions

70 TSTEP=.12 "time step

80 EINIT=0 'first initial energy

90 TOLY=.0005 "tolerance for Ymin, Ymax searches
100 ~ constants for graphics

110 XSCALE=319/SQR(3) 'scales for X-Y trajectory

120 YSCALE=130/(3/2)

130 NPTS%=50: DIM YBORD%(50) "number and arrays of points to graph
140 DIM PYBORD%(50) , PYNEGBORD%(50)  limit of the surface of section plot
150 DIM SSY%{(2000),SSPY%(2000) 'arrays for surface of section points
160 REPLOTZ%=0 "flag to replot surfaces of section
170 NCROSS%=0 ‘count of surface of section points
180 CROSS7%=0 "flag to plot surface of section point
190 constants for Runge-Kutta integration

200 DIM Ki(4) ,K2(4),K3(4) ,Ka(4) ’arrays used in the R-K method

210 DIM VAR(4), OLDVAR(4) ,VARINIT(4) ' the 4 variables are labeled

220 DIM F(4) 1) X; 2) Y; 3) Px; 4) Py

230 DEF FNV(X,Y)=(X*X+Y*Y)/2+X*X*Y-Y~3/3 'Henon-Heiles potential
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240 DEF FNXDERIV(X,Y)=-(X+2*X*Y) 'X derivative of Henon-Heiles
250 DEF FNYDERIV(X,Y)=-(Y+X*X-Y*Y) 'Y derivative of Henon-Heiles
260 °

270 GOSUB 1000 input initial conditions

280 IF FIRST% THEN GOSUB 7000 'display camands on first time only
290 GOSUB 8000 'prepare for output

300

310 N=0: H=TSTEP start at time t=0

320 ° "beginning of integration loop
330 K$=INKEY$ ‘main loop

340 IF K§<>"" THEN GOSUB 9000 'check for coammand

350 NZ=N7Z+1 increment time-step counter

360 GOSUB 11000 "take a Runge-Kutta step

370 °

380 T=N%*TSTEP ‘ ‘current time

390 EPOT=FNV(VAR(1) ,VAR(2)) "current energies

400 EKIN=.5*(VAR(3)~2+VAR(4)~2)

410 E=EKIN+EPOT

420 IF GRAPHICS% THEN GOSUB 13000 ELSE GOSUB 14000 "output

430 .

440 CHECK=VAR(1) *OLDVAR( 1) 'quantity to signal X crossing O
450

460 FOR J7%=1 TO 4 ‘replace old variables by current
470 OLDVAR(J%)=VAR(J%)

480 NEXT J%

490

500 IF CHECK<=0 THEN GOSUB 15000 ‘find ss point if X crossed O

510 °

520 GOTO 330 "begin next integralion step

530

1000 AL A E AR R R A A A I A ARl R A ARl N 2 AR A A A A A A A A A A A R A AR A A A ARl RS R R 2NN

1010 ’subroutine to input energy, and initial conditions

1020 'input variables: PY%, VAR(I%), Y%

1030 ’output variables: E, EINIT, OLDVAR(I%), PYINIT%, VAR(I%), VARINIT(I%),
1040 ° YINITZ

1050 ’global variables: GRAPHICS%

1060 'local variables: 1I%

1070 I I E A X A SR X R R R R A 2 A R R A R A AR R A R A R R A A R AR R A A A R A A R A A A A AR AR AR R AR R R D X
1080 CLS

1090 LOCATE 3,23: PRINT "For a bound trajectory 0 < E <= 1/6";

1100 IF FIRSTZ GOTO 1120

1110 LOCATE 4,26: PRINT USING "Your last Energy was #.####" ;EINIT;

1120 LOCATE 5,36: BEEP: INPUT; "E=";E

1130 IF E>0 AND E<=(1/6) GOTO 1210 "error trapping for E value
1140  BEEP -

1150 LOCATE 3,20: PRINT SPACE$(40);

1160 LOCATE 4,20: PRINT SPACE$(40);

1170 LOCATE 5,30: PRINT SPACE$(20);

1180 LOCATE 2,35: PRINT "Try again."”;

1190 GOTO 1090

1200 °

1210 IF E<>EINIT THEN GOSUB 2000 'find E-dependent quantities
1220

1230 IF GRAPHICS% THEN GOSUB 3000 ELSE GOSUB 5000 'input Y and Py

1240 °

1250 YINITZ=Y%: PYINITZ=PY%: EINIT=E "save initial values

1260 FOR 17%=1 TO 4

1270 VARINIT(I%)=VAR(1%)
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OLDVAR( 1%)=VAR(1%)
NEXT 1%

)
A A I A R R A R A R R A A A R R A A R R R R A R R A R R A A A A AR R S R A A A R R AR R A2 R R 22 2

"subroutine to find energy dependent quantities

"input variables: E

'output variables: DELTAY, PYBORD%(1%), PYNEGBORD%(1%), PYZEROZ%

’ SSPYSCALE, SSYSCALE, YBORD%(I1%), YMAX, YMIN, YZERO%

'global variables: FNV(X,Y), GRAPHICS%, NPTS%, TOLY

"local variables: DY, I%, PY, Y

TECREEC R R E R E PR R R R E RPN P EE PR E PR E P PP E R PR E Rttt
=0: Dy=.1 "search outward fram 0 to find ymax

WHILE DY>TOLY

2140

2150
2160
2170
2180
2190
2200

YMAX=YMAX+DY
IF FNV(0,YMAX)<E THEN GOTO 2130
YMAX=YMAX-DY: DY=DY/2
WEND
YMIN=0: DY=.1 *search inward fram 0 to find ymin
WHILE DY>TOLY
YMIN=YMIN-DY
IF FNV(0,YMIN)<E THEN GOTO 2200
YMIN=YMIN+DY: DY=DY/2
WEND

2210 °

2220
2230
2240
2250
2260
2270
2280
2290
2300
2310
2320
2330
2340
2350
2360
2370
2380
2390
2400
2410
2420
2430
2440
2450
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3010
3020

3030

3040

3050

IF NOT GRAPHICS% THEN RETURN

DELTAY=YMAX-YMIN
SSYSCALE=280/DELTAY "scales for surface of section plots
SSPYSCALE=130/SQR(8*E)

YZEROZ%=35-YMIN*SSYSCALE "scale (Y=0,Py=0) for plotting

PYZERO0%=150- SQR(2*E) *SSPYSCALE

FOR 17%=0 TO NCROSS% 'zero surface of section arrays
SSY?%(1%)=0 ' since the energy has changed
SSPYZ(1%)=0

NEXT 1%

NCROSS%=0 'zero the crossing counter

FOR 17%=0 TO NPTS% 'find the border on the ss plot where
Y=YMIN+DELTAY *1%/NPTS% ’ Px=0 fran energy conservation
PY=SQR(2*(E-FNV(0,Y)))
YBORDZ( [%)=35+(DELTAY *1%/NPTS%) *SSYSCALE
PYBORD%( [%)=150- (PY+SQR(2*E) ) *SSPYSCALE
PYNEGBORD%( 1%)=150- ( -PY+SQR(2*E) ) *SSPYSCALE

NEXT 1%

RETURN

A A A R A R R R A Y R A R E N R R RN N A A AR AR A AR AR AR R A AR R AR R RN ]

"subroutine to input initial Y and Py (graphics only)

"input variables: E, EINIT, PYBORD%(1%), PYINIT%, PYNEGBORDZ%(I1%),

VARINIT(1%), YBORD%(I%), YINIT%
‘output variables: OFFSET%, PICOFFSET%, PY%, REPLOT%, VAR(I%), XOLD%, Y%

YOLD%
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'global variables: FNV(X,Y), NCROSS%, PYZERO%, SSPYSCALE, SSPY%(I1%),
' SSYSCALE, SSY%(I1%), YMIN, YZERO%
"local variables: CURSOR$, EPOT, I%, K$§, OLDPYBORD%, OLDPYNEGZ,

OLDYBORD%, REPLY$
R A AR A A A A A A R R A A A A A A A A Al A A A A A R A A A A R A A A R R A R R R R A A R A R A R R R SR R X
CLS: SCREEN 2,0,0,0
LOCATE 1,16: PRINT USING "E=#.###" :E
OFFSET%=0: PICOFFSET%=0 'draw axes for left-hand plot
GOSUB 6000
OLDYBORD%=YBORDZ%{ 0 ) 'draw surface of sect border
OLDPYBORDZ=PYBORD%(0) : OLDPYNEGZ%=PYNEGBORD?(0)

FOR 1%=1 TO NPTS%
LINE (OLDYBORD%,OLDPYBORD%) - (YBORD%(1%) ,PYBORD%(1%) )
LINE (OLDYBORD%,OLDPYNEGZ%) - (YBORD%( 1%) , PYNEGBORDZ%(1%) )
OLDYBORDZ=YBORD%( [ %)
OLDPYBORDZ%=PYBORD%(1%) : OLDPYNEGZ%=PYNEGBORD%( [%)
NEXT 1% 'close the border
LINE (OLDYBORD%, OLDPYBORD%) - (OLDYBORD%, OLDPYNEG%)

3340 °
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LINE (YBORDZ%(0),PYBORD%(0)) - (YBORDZ%(0) ,PYNEGBORDZ%(0) )

IF E<SEINIT GOTO 3350 'draw axes for right-hand plot
OFFSETZ%=40: PICOFFSETZ%=320
GOSUB 6000
FOR 17%=0 TO NCROSSZ% "plot previous ss points

PSET (SSY%(1%),SSPYZ%(1%))
NEXT 1%

IF E=EINIT GOTO 3430 "when the energy changes
VARINIT(1)=0 * zero all trajectory variables
VARINIT(2)=0 '’ except Px
VARINIT(3)=SQR(2*E)

VARINIT(4)=0
YINIT%Z=YZERO%
PYINITZ%=PYZERO%
FOR I%=1 TO 4 'variables are assigned their
VAR( I%)=VARINIT(1%) "initial values before the
NEXT 1% ‘cursor begins to move

YZ=YINIT%: PYZ=PYINIT%

LOCATE 22,4: PRINT USING "X=#.###" ;VARINIT(1);
LOCATE 22,19: PRINT USING "Y=#.###"; VARINIT(2);
LOCATE 22,33: PRINT USING "Px=#.##4" ; VARINIT(3);
LOCATE 22,49: PRINT USING "Py=#.###";VARINIT(4);
LOCATE 22,64: PRINT USING "Pot E=#.###" ;FNV(0,VARINIT(2));
IF E<EINIT GOTO 3550
LOCATE 23,17: PRINT"The cursor begins at your last initial position.”;
LOCATE 24,2: BEEP
PRINT CHR$(24)+CHR$(25)+CHR$(26)+CHR8(27)+" keys move the ";

PRINT "cursor to the starting position. Type return when finished."”;

PSET (Y%, PY%)

K$=INKEY$ "loop to move around Y-Py plot
IF K$=CHR$(13) GOTO 3910 "typing return exits fram loop
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IF LEN(K$)<2 GOTO 3620 ‘cursors are special two
CURSOR$=RIGHTS$(K$, 1) * character ASCII codes
PYOLD7=PY%: YOLD7=Y%
IF CURSOR$=CHR$(77) THEN YZ%=YZ%+2 ‘cursor right
IF CURSOR$=CHR$(75) THEN YZ%=Y%-2 "cursor left
IF CURSOR$=CHR$(72) THEN PY%=PY%-2 ‘cursor up
IF CURSOR$=CHR$(80) THEN PY%=PY%+2 "cursor down
VAR(2)=YMIN+(Y%-35) /SSYSCALE 'Y position
VAR(4)=-SQR(2*E) - (PY%- 150) /SSPYSCALE 'Py position
EPOT=FNV(0,VAR(2)) 'potential energy
IF EPOT+VAR(4) *VAR(4) /2<=E GOTO 3820 'keep cursor inside border
Y7Z=YOLD%: PY7Z%=PYOLD% 'reverse step
VAR(2)=YMIN+(Y%- 35) /SSYSCALE '
VAR(4)=-SQR(2*E) - (PY%- 150) /SSPYSCALE
GOTO 3620
PSET (YOLD%,PYOLD%),0: PSET(Y%,PY%) 'erase old cursor and plot new
VAR(3)=3SQR(2*(E-EPOT) -VAR(4) *VAR(4)) 'value of Px fram the energy
LOCATE 22,19: PRINT USING "Y=§.###" ;VAR(2);
LOCATE 22,33: PRINT USING "Px=#.###" : VAR(3) :
LOCATE 22,49: PRINT USING "Py=#.###" :VAR(4) ;
LOCATE 22,64: PRINT USING "Pot E=#.###";EPOT;
GOTO 3620 'get next command
SSY%(0)=355+(VAR(2) -YMIN) *SSYSCALE 'initial position is on
SSPYZ%(0)=150- (VAR(4)+SQR(2*E) ) *SSPYSCALE ' the surface of section
LINE (Y%+2,PY%) - (Y%-2,PY%) 'mark initial position
LINE (Y%,PY%+2) - (Y%, PY%-2)
XOLDZ=1+{SQR(3) /2) *XSCALE 'scale first point for
YOLDZ=150- (VAR(2)+.5) *YSCALE ' for the X-Y trajectory
REPLOTZ=0 'reset REPLOTZ% flag
IF E<>EINIT THEN GOTO 4090 'ask if ss is to be plotted
LOCATE 23,1: PRINT SPACE$(79);
LOCATE 24,1: PRINT SPACE$(79);
LOCATE 24,1
PRINT "Would you like to plot all the surfaces of section for this";
INPUT; " energy(y/n)";REPLY$
IF REPLY3="y" THEN REPLOT%=-1 ELSE REPLOTZ%=0
RETURN
LA Z A A A R R S S A A R A A A A A A R 2 A R A R R A R R R AR R AR AR R R Rl
"subroutine to input initial conditions (mono only)
"input variables: E, VARINIT(IZ%)

‘output variables: VAR(I%)

'global variables: FIRST%, FNV(X,Y), YMAX, YMIN

"local variables: EPOT, PX, PY, PYMAX, Y

TEECCEE LR R CEE R EEE R R T EC RO EERC R ECE PP EEE R ERECCEECOREEECEEEE RS
LOCATE 7,37: PRINT "X=0.00";

LOCATE 8,12

PRINT "(Since all paths cross the Y-axis, this is not a restriction.)";
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LOCATE 11,30: PRINT USING "#.#### <= Y <= #.4#4#4" ;YMIN, K YMAX;
IF FIRST% GOTO 5140

LOCATE 12,29: PRINT USING "Your last Y was #.####";VARINIT(2);

LOCATE 13,36: [INPUT; "Y=",Y
IF Y>YMIN AND Y<YMAX GOTO 5230 "error trapping for Y value
BEEP

LOCATE 11,25: PRINT SPACE$(30);
LOCATE 12,25: PRINT SPACE$(40);
LOCATE 13,30: PRINT SPACE$(30);
LOCATE 10,35: PRINT "Try again,";
GOTO 5110

EPOT=FNV(0,Y)

PYMAX=SQR(2*(E-EPOT))

LOCATE 16,30: PRINT USING "0.00 <= Py <= #.####" ;PYMAX;
IF FIRST% GOTO 5280

LOCATE 17,28: PRINT USING "Your last Py was #.####" ., VARINIT(4);

LOCATE 18,36: [INPUT; "Py=";PY

IF PY>=0 AND PY<=PYMAX GOTO 5370

'error trapping for Py value
BEEP

LOCATE 16,25: PRINT SPACE$(30);

LOCATE 17,25: PRINT SPACE$(30);

LOCATE 18,35: PRINT SPACE$(20);

LOCATE 15,35: PRINT "Try again,"”;

GOTO 5250

PX=SQR(2*(E-EPOT) -PY*PY) "value of Px fram the energy
LOCATE 20,36: PRINT USING "Px=#.###" ;PX;

5390
LOCATE 24,31: PRINT "Type ¢ to continue.";
IF INKEY$<>"c" GOTO 5410

VAR(1)=0: VAR(2)=Y: VAR(3)=PX: VAR(4)=PY ’initial conditions
5440
CLS
5460
RETURN
5480

XA A A AT R S AT AR AR A AR AR AR R AR AR R R R A A A AR R Al A2 A2 AR AR R R Rl ARl R 2]

subroutlne to draw and label axes for surface of section plot; horizontal
location determined by OFFSET% and PICOFFSETZ%

“input variables: E, OFFSET%, PICOFFSET%

‘output variables: none

'global variables: DELTAY, PYZERO%, YMIN, YZERO%

"local variables: [%, MARK%, PY%, Y% .

TR R R E R RN R R R R R R E R R RN R R R R R R A KR E RN R R R R E R &

IF OFFSET%#<>40 GOTO 6110 "title on right side only
LOCATE 1,51: PRINT "Surface of Section”

LINE (PICOFFSET%+35,20) - (PICOFFSET%+35, 150) Py axis
LINE (PICOFFSET%+35,150) - (PICOFFSET%+315, 150) 'Y axis
6130 °
FOR MARKZ=0 TO 3 'Y ticks

Y%=P1 COFFSET%+35+MARK%*280 /3
LINE (Y%, 148)-(Y%,152)

NEXT MARKZ%
FOR 1%=-1 TO 2 'Y label

LOCATE 20, (OFFSET%+15+11*1%)
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PRINT USING "#.##"; (YMIN+DELTAY*(I1%+1) /3) ;
NEXT 1%
LOCATE 20, (OFFSET%+33): PRINT "Y"; 'Y legend
FOR MARKZ=0 TO 4 'Py ticks
PYZ=20+MARK%*130/4
LINE (PICOFFSET%+33,PY%) - (PICOFFSET%+37,PY%)
NEXT MARKZ%
FOR 17%=2 TO -2 STEP -1 "Py labels
LOCATE (11-1%*4), (OFFSET%+1)
PRINT USING "#.##";1%*SQR(E/2)
NEXT 1%
LOCATE 5, (OFFSET%+1): PRINT "Py"; 'Py legend
' 'mark center
LINE (YZEROZ%+2+PICOFFSET%,PYZERO%) - (YZERO%- 2+PICOFFSET%, PYZERO%)

LINE (YZEROZ%+PICOFFSET%, PYZERO%+2) - (YZERO%+PICOFFSET%, PYZERO%-2)

RETURN

TEECER R TSR EE P EEE R C S E R E PSP E R E PR R RPN R PR E TR E R EEEERECEEEETSE
"subroutine to display description of camands

"input variables: none

'output variables: none

'global variables: FIRST%

"local variables: none

A A2 R A A AR A 2 R A 2 A A 2 A2 A R R A A 2R Rl A A R AR R A A A A A R R A A AR A AR R AR R R R RS R R R R 2]
FIRSTZ%=0 ’this information is only printed once
CLS

LOCATE 2,23

PRINT "Press p to pause during the integration;”;

LOCATE 3,20

PRINT "pressing any key will then resume the program”;

LOCATE 7,18

PRINT "Press i to begin again with new initial conditions”;

LOCATE 11,17

PRINT "Press c to clear the X-Y trajectory (graphics only)";
LOCATE 15,29

PRINT "Press e to end the program';

LOCATE 24,32: BEEP: PRINT "Press c¢ to continue”;

IF INKEY$<>"c" THEN GOTO 7200

CLS

RETURN

TEEEE R EC PR E R EF RN R R EE PP CE RN EE R EEEE R E R R EC N EE OO E P TR EEE O
"subroutine to prepare screens for output

"input variables: REPLOT%, SSPY(I%), SSY(I%)

'output variables: OFFSET%, PICOFFSET%

'global variables: GRAPHICS%

"local variables: none

LR A R A2 A X R A2 R A A R R XX R 2 2 R 2 A R R A A R R A A R A A A A E A R A AR R R A AR R RN R AR NN XN
IF GRAPHICS% GOTO 8120

8110

8120

LOCATE 23,25 "heading for text only output
PRINT "Surface of Section Coordinates”
RETURN
IF REPLOT% GOTO 8200 'save the surface of section if it's
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CLS ' being replotted, else start fresh
GOSUB 10000 'clear X-Y trajectory plot
OFFSET%=40: PICOFFSET%=320 'redraw surface of section axes
GOSUB 6000
PSET(SSY%(0) ,SSPY%(0)) "1’st point is on surface of section
RETURN

LOCATE 1,1: PRINT SPACE$(39); 'clear top line of the screen

GOSUB 10000 'clear X-Y trajectory plot

LINE (0,163)-(640,199),0,BF 'clear lower lines of screen

PSET(SSY%(0) , SSPY%(0)) "1'st point is on surface of sect

RETURN

A AR A A R A R R A A A A A A R A R A A A A A R R A A A A A A A A R R A A A AR AR AR R 222 AR AR Y]

"subroutine to check for cammand input

"input variables: K$

"output variables: none

"global variables: GRAPHICS%

"local variables: ANSWERS

AL E R A A A R R A R R R A A R A R R A R R A R R R R A R R R A R A A R A A A R R A R R A A R R R A A N A X RN XX ]

IF K§<>"e" GOTO 9140 "typing e will end the program

IF GRAPHICS% THEN LOCATE 22,24 ELSE LOCATE 24,24

BEEP: INPUT; "Do you really want to end (y/n)"; ANSWERS$
IF ANSWERS$="y" THEN END

IF GRAPHICS% THEN LOCATE 22,24 ELSE LOCATE 24,24
PRINT SPACE$(35);

IF K$="i" THEN RETURN 270 'begin again with new init. cond.
IF K§="c¢" THEN GOSUB 10000 'clear trajectory

IF K§<>"p" THEN RETURN "pause during integration
IF GRAPHICS% THEN LOCATE 22,27 ELSE LOCATE 24,27
BEEP: PRINT "Press any key to continue”;
IF INKEY$="" GOTO 9210 'wait for camand
IF GRAPHICS% THEN LOCATE 22,20 ELSE LOCATE 24,20
PRINT SPACE$(40); "clear prompt
RETURN

’
TEEEEEEE R R R R R R R R E R R R SRR R R E R E R E PR ERE R R R R TR EREECE TR

'subroutine to clear the X-Y trajectory plot
"input variables: none
"output variables: none
"global variables: none

"local variables: none -
AR AR R A E R Z R A A R R A A R A N R N R A A R R R N R RS R R AR R RN AR EE N EE Y X J

LINE (0,0)-(315,160),0,BF "clear left side of screen
LINE (310,120)-(320,170),0,BF

LOCATE 1,14: PRINT "X-Y Trajectory”; 'draw and label triangle
LINE (160,20)-(1,150): LINE (1,150)-(320,150)
LINE (320,150)-(160,20)

LOCATE 2,3: PRINT "COMMANDS" "display cammands in a box
LOCATE 3,2: PRINT "p-pause”;

LOCATE 4,2: PRINT "i-initial”;

LOCATE 5,4: PRINT "cond.”

LOCATE 6,2: PRINT "c-clear X-Y";
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10190 LOCATE 7,2: PRINT "e-end”;

10200 LINE (1,6)-(99,56),1,B

10210

10220 RETURN

10230 °

11000 R A A A A A 2 R A A A R R R A R R R R A A R R A A R X RS RS2 RS A2AR22AA2 Rl l )
11010 ’'subroutine to perform the 4th order Runge Kutta integration
11020 ’input variables: F(J%), H, OLDVAR(J%), VAR(J%)

11030 ’output variables: VAR(J%)

11040 ’'global variables: none

11050 ’local variables: J%, Ki1(J%), K2(J%), K3(I%), Ka(J%)

11060 A A A A A A A A A A A A A R A A A A A A R A A A A A A A R A A R A A A A A A2 A2 222 2 A A A Al AR At 2]

11070 GOSUB 12000 "calculate K1
11080 FOR JZX=1 TO 4 "loop over 4 variables
11090 K1(Jz)=H*F(I%) * 1) X; 2)Y; 3) Px; 4)Py

11100 VAR(JZ)=OLDVAR(J%)+K1(J%) /2

11110 NEXT J%

11120 ~

11130 GOSUB 12000 "calculate K2

11140 FOR JZ=1 TO 4

11150 K2(J%)=H*F(J%)

11160 VAR(JZ)=OLDVAR(J%)+K2(J%) /2

11170 NEXT J%

11180 -

11190 GOSUB 12000 *calculate K3

11200 FOR JZ=1 TO 4

11210 K3{(JZ)=H*F(JIx)

11220 VAR(J%)=OLDVAR(J%)+K3(J%)

11230 NEXT JZ%

11240 *

11250 GOSUB 12000 "calculate K4

11260 FOR JZ=1 TO 4

11270 K4(IZ)=H*F(JI%)

11280 VAR(J%)=OLDVAR(J%)+(K1(J%)+2*K2(J%)+2*K3(JI%)+K4(J%)) /6 ’new values
11290 NEXT J%

11300 RETURN

11310 °

12000 A A A A A A R A R A A R R R R R R X R R R R R R R A R R R S R R R R R A AR R R R AR A AR R AR Rt ] )
12010 ’'subroutine to calculate the derivatives of x,y,px,py

12020 'input variables: CROSS%, FNXDERIV(X,Y), FNYDERIV(X,Y), VAR(I%)
12030 ’'output variables: F(I%)

12040 ’'global variables: none

12050 'local variables: none
12060 A AL R S R R R R A A R R R R R R R R R R R R R R R R RS R R RS SRR AR AR R R A R AR A XX

12070 IF CROSS% THEN GOTO 12150 "find surface of section
12080 -

12090 F(1)=VAR(3) * dX/dt=Px

12100 F(2)=VAR(4) *dY/dt=Py

12110 F(3)=FNXDERIV(VAR(1) ,VAR(2)) *dPx/dt=-dV/dx

12120 F(4)=FNYDERIV(VAR(1) ,VAR(2)) *dPy/dt=-dV/dy

12130 RETURN

12140 -

12150 F(1)=1 'for surface of section all
12160 F(2)=VAR(4)/VAR(3) * derivatives are divided by
12170 F(3)=FNXDERIV(VAR(1),VAR(2))/VAR(3) * Px

12180 F(4)=FNYDERIV(VAR(1),VAR(2))/VAR(3)

12190 RETURN
12200
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IR X R R R R R R R A R R R A A A R X A A Y A R R A A A R R R A A R AR R R R A2 AR AR R AR A 2]
’subroutine to plot the X-Y trajectory (graphics only)

"input variables: E, EINIT, EKIN, EPOT, T, VAR(I%)

‘output variables: none

'global variables: XSCALE, YSCALE

'local variables: X%, XOLD%, Y%, YOLD%

N I A R N X R R R R R R R R R R A A A A AR R R AR AR AR R AR A2 S22l ARl
X7%=1+(VAR(1)+SQR(3) /2) *XSCALE "extend the X-Y trajectory
Y%=150-(VAR(2)+.5) *YSCALE " to current point

LINE (X%,Y7%) - (XOLD%,YOLD%)

XOLDZ%=X%: YOLD7Z%=Y% "this point is now old one
LOCATE 23,3: PRINT USING "time=####. ##":;T; ’'display current values

LOCATE 23,23: PRINT USING "X=#.###":VAR(1);

LOCATE 23,38: PRINT USING "Y=#.###" ; VAR(2) ;

LOCATE 23,54: PRINT USING "Px=#.###" . VAR(3);

LOCATE 23,70: PRINT USING "Py=#.###" . VAR(4);

LOCATE 24,2: PRINT USING "Energy=#. #####";E;

LOCATE 24,19: PRINT USING "Initial Energy=#.####" ;EINIT;
LOCATE 24,43: PRINT USING "Kinetic=#. #####" ;EKIN;

LOCATE 24,61: PRINT USING "Potential=#. #####" ;EPOT;

RETURN

X R R R A RS S R A A R A R A R R R A R R A A R R R A AR A AR R R R A2 222 A2 Rl Rl
"subroutine to output parameters to a monochrame screen

"input variables: E, EINIT, EKIN, EPOT, T

'output variables: none

"global variables: none

"local variables: none

TP E T EE PR R R E PR R R R R EE PR R CE P EE R R EC PR E R E P E Rttt
LOCATE 25,4,0: PRINT USING "Time=####.##".7T;

LOCATE 25,20: PRINT USING "Energy=#.#####" ;E;
LOCATE 25,38: PRINT USING "Initial=#.####" ;EINIT;
LOCATE 25,55: PRINT USING "Kin=#.###" ;EKIN;
LOCATE 25,68: PRINT USING "Pot=#.###" ;EPOT;

’
XX X2 2 A R R 2 2 R X R R A A A A R A A A R A R A A A R A A A A A R A A A S 2 AR R R A A A Al 2

'subroutine to find the point on the surface of section

'input variables: OLDVAR(I%), VAR(I%)

‘output variables: CROSS%, H, NCROSS%, SSY(I%), SSPY(I%) VAR(I%)
'global variables: E, GRAPHICS%, SSPYSCALE, SSYSCALE, YMIN

"local variables: I%

IR E A X E A A R R X R A A A2 AR A2 A R R A ARl R A AR AR ARl 2Rl Rl
H=-VAR(1) 'distance in X to integrate
NCROSS%=NCROSS%+1: CROSS7=-1 "increment counter and set flag
IF NCROSS%<>1950 GOTO 15160 'warn if array is getting full

LOCATE 22,1: BEEP

PRINT USING "At time t=####.4##, you have";T;
PRINT " 1950 out of 2000 possible surface of";
PRINT " section points.”;

GOSUB 11000 "take the Runge-Kutta step in X

15170

15180

IF GRAPHICS% GOTO 15250 "output ss point if mono only
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15220
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LOCATE 24,30

PRINT USING "Y=#. ### Py=#. ###" ;. VAR(2) , VAR(4)

LOCATE 1,1: PRINT "COMMANDS p:pause”;

PRINT " i:change initial conditions e:end";
GOTO 15290

15240 -

15250
15260
18270

SSYZ%(NCROSS%)=355+(VAR(2) -YMIN) *SSYSCALE ' location of this ss point
SSPYZ%(NCROSS%)=150- (VAR(4)+SQR(2*E) ) *SSPYSCALE

15280

15290
15300
15310
15320

15330

15340

PSET (SSY%(NCROSS%) , SSPY%(NCROSS%) ) 'plot point on graphics
=TSTEP: CROSS7%=0 'restore step and reset flag
FOR [7%=1 TO 4 ) 'restore trajectory variables

VAR( 1%)=0LDVAR( %)
NEXT 1%
RETURN

15350

16000
16010
16020
16030
16040
16050
16060
16070
16080

PEFEFEEREF R E R F RS E R RN RE R SRR E R EE R R R E PR ERE TR EE R EEEEE e

'subroutine to display header screen

"input variables: none

"output variables: GRAPHICS%, MONO%

'global variables: none

'local variables: G§, M§, ROW%

THEERRE R CR RN ER R PR R R E R E R R E PN EE R E PR CE R AR R CC PR E R E R EE R
SCREEN 0 'program begins in text mode
CLS: KEY OFF

16090

16100
16110
16120
16130
16140
16150
16160

LOCATE 1,30: COLOR 15 'display book title
PRINT "COMPUTATIONAL PHYSICS";

LOCATE 2,40: COLOR 7

PRINT "by";

LOCATE 3,33: PRINT "Steven E. Koonin";

LOCATE 4,14

PRINT "Copyright 1985, Benjamin/Cummings Publishing Coampany”;

16170 °

16180
16190
16200
16210
16220
16230
16240

LOCATE 5,10 'draw box
PRINT CHR$(201)+STRINGS(59,205)+CHRS(187);
FOR ROWZ%Z=6 TO 19
LOCATE ROW%,10: PRINT CHRS$(186);
LOCATE ROW%,70: PRINT CHR$(186);
NEXT ROW%
LOCATE 20,10: PRINT CHRS(200)+STRINGS(59,205)+CHRS(188);

16250 °

16260
16270
16280
16290
16300
16310
16320

COLOR 15 'print title, etc
LOCATE 7,36: PRINT "EXAMPLE 2";

COLOR 7

LOCATE 10,21: PRINT "Trajectories in the Henon-Heiles potential”
LOCATE 13,36: PRINT "*¢vssctssen

LOCATE 15,25: PRINT "Type 'e’ to end while running."”

LOCATE 16,22: PRINT "Type ctrl-break to stop at a prampt.”

16330

16340
16350
16360
16370
16380
16390
16400

LOCATE 19,16: BEEP 'get screen configuration
INPUT "Does your camputer have graphics capability {(y/n)";G$
IF LEFT$(G8$,1)="y" OR LEFT$(GS$,1)="n" GOTO 16390
LOCATE 19,12: PRINT SPACE$(58): BEEP
LOCATE 18,35: PRINT "Try again,”: GOTO 16340
IF LEFT$(G$,1)="y" GOTO 16420
GRAPHICS”%=0: MONO%=-1
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GOTO 16520
GRAPHICSZ%=-1
LOCATE 18,15: PRINT SPACE$(55)
LOCATE 19,15: PRINT SPACES$(55)
LOCATE 19,15: BEEP
INPUT "Do you also have a separate screen for text (y/n)";M$
IF LEFT$(MS$,1)="y" OR LEFT$(M$,1)="n" GOTO 16500
LOCATE 19,12: PRINT SPACE$(58): BEEP
LOCATE 18,35: PRINT "Try again,”: GOTO 16450
IF LEFT$(M$,1)="y" THEN MONO%=-1 ELSE MONOZ%=0

LOCATE 21,9 'preface to the code
PRINT "A bound trajectory in the Henon-Heiles potential occurs if the”
LOCATE 22,11

PRINT "energy<1/6 and the initial position is inside the triangle”
LOCATE 23,10

PRINT "whose vertices are (1,0), (+sqr(3)/2,.5), and (-sqr(3)/2,.5)."
LOCATE 24,31: BEEP: PRINT "Press c¢ to continue”;

IF INKEY$<>"c¢" THEN GOTO 16590

IF GRAPHICS% AND MONO% THEN GOSUB 17000 "switch to graphics screen
RETURN

1

TSR E PR RS R E SRR F R R E PR E T C R CCC S E R CC RN CE T E R EEEREREEEET S
'subroutine to switch fran monochrame to graphics screen

"input variables: none

‘output variables: none

'global variables: none

"local variables: none

TS EETRE RS E R EE R F R EE PR RE R R E R R C R TR R R ET R EREERE T PR ECESSECEEsEEee
DEF SEG=0

POKE &H410, (PEEK(&H410) AND &HCF) OR &H10
SCREEN 2,0,0,0: KEY OFF: CLS
RETURN

AR E R A A AR A A AR R A A A AR A AR A AR AR AR RN

'subroutine to switch fram graphics toc monochrame screen
"input variables: none
'output variables: none
'global variables: none

'local variables: none
'"QO"’Q.."Q’0""”0“.'“0."t#.0#0‘#0..‘0.""Q"..Q"..Q“.”".Q"

DEF SEG=0
POKE &H410, (PEEK(&H410) OR &H30) -
SCREEN 0: WIDTH 80: LOCATE ,,1,12,13
RETURN
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B.3 Example 3

This program finds the of stationary states of the one-
dimensional Schroedinger equation for a particle in a potential
normalized so that its maximum and minimum values are +1 and
-1, respectively. The mass of the particle is specified by the
parameter 7, as discussed in the text. Three analytical forms of
the potential are available (lines 80-160); the potential also can be
altered pointwise using the cursor (subroutine 3000). For each
level of the 50 levels sought above the starting energy (loop 280-
560), a search is made to find the energy for which Eq. (3.23) is
satisfied. A simple search is used until f changes sign, whereupon
the secant method is employed (lines 390-440). To find f for a
given energy, the Schroedinger equation is integrated leftward and
rightward (subroutine 9000) using the Numerov algorithm and the
solutions are matched at the leftmost turning point (line 9200). As
the search proceeds, the wavefunction is displayed (subroutine
11000) and the number of nodes is counted. When the eigenenergy
is found, the level is displayed on a plot of the potential (subrou-
tine 13000).

Using the analytical form of a parabolic well with =30, an ini-
tial energy of -0.99, and an energy increment of DE=0.02 results in
a typical calculation.
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10 IR A S A 2 A R R R 2 R A A A R A R R A A A AR A R A A A A2 A Al AR A AR AR AR ARl

20 'Example 3: Bound states in a one-dimensional potential
21 'COMPUTATIONAL PHYSICS by Steven E. Koomnin
22 'Copyright 1985, Benjamin/Cummings Publishing Campany

30 TS EEE R PR EE PR R E R FEEE O F PR E PP PR R R E SR E P E R R C PR C Rt e e e EEEEEEEE

40 GOSUB 15000 "display header screen
50

60 FIRST%=-1: VSAVE%=0: ENDINGZ=0 "set flags,constants, functions
70 NPTS%=160 'nunber of lattice points
80 ’'square-well potential

90 DEF FNV1(X)=-1

100 XMIN1=-2: XMAX1=2: DX1=(XMAX1 -XHINI)/NPTS&

110 ’parabolic-well potential

120 DEF FNV2(X)=-(1-.5*X*X)

130 XMIN2=-2: XMAX2=2: DX2=(XMAX2 XHINZ)/NPT&

140 'Lennard-Jones potential

150 DEF FNV3(X)=4*(X~(-12)-X~(-6))

160 XMIN3=.9: XMAX3=1.9: DX3=(XMAX3-XMIN3)/NPTSZ%Z

170

180 DIM V(160): DIM V%(160) "If you change NPTS%,

190 DIM PSI(160): DIM PSI%(160) ' redimension these arrays
200 TOLF=.00005 ‘'matching tolerance

210

220 GOSUB 1000 “input potential

230 IF FIRST% THEN GOSUB 5000 "display cammands

240 IF GRAPHICS% THEN GOSUB 6000 'graph potential

250 GOSUB 7000 "input GAMMA, E, DE

260

270 EIGENE=-1 ‘'minimum value for E
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280 FOR N%=1 TO 50

"loop over many levels

290 SECANTZ%=0: START%=-1: F=TOLF "set values to begin E search
300 WHILE ABS(F)=>TOLF

310 K$=INKEY$ "check for camand input
320 IF K§<>"" THEN GOSUB 8000

330 [F ENDING% GOTO 580 "stop iterations

340 GOSUB 9000 "integrate Schrodinger eq.
350

360 IF GRAPHICS% THEN GOSUB 11000 ELSE GOSUB 12000 ‘output

370

380 IF START% THEN FSTART=F 'Save first F value

390 I[F F*FSTART<0 THEN SECANT%=-1 "then when F switches sign
400 IF F=FOLD GOTO 430 ' use the secant search
410 IF SECANT%Z THEN DE=-F*(E-EOLD)/(F-FOLD)

420 °

430 EOLD=E: FOLD=F 'save old values

440 E=FADE "incrament Energy

450 STARTZ=0 'no longer first time

460 IF E<-1 THEN GOSUB 10000 "keep E>-1

470 WEND

480 '

490 GOSUB 13000 ‘output

500

510 DE=ABS( (EOLD-EIGENE) /3) 'guess for next DE, but use
520 IF ABS{DESAVE)<DE THEN DE=ABS(DESAVE) " input DE if it is smaller
530

540 EIGENE=EOLD
550 E=EOLD+DE

"save eigenvalue
"increment E to begin

560 NEXT N7~ " next search
570 '
580 ENDINGZ=0: GOSUB 14000 'options for continuing

590

1000 IR A A AR AR A R A AR R AR R RS R RS R AR R AR R R R R AR R R R AR R R R 2Rl R R AR R R R R ]

1010 ’'subroutine to input the 1-dimensional potential

1020 ’'input variables: DX1, DX2, DX3, FNV1, FNVZ2, FNV3, OPT$, SAVE%, XMIN1,
1030 ° XMINZ2, XMIN3

1040 'output variables: COLUMNZ%, DX, POT$, V(I%), V%(I%), VSCALE, XMIN

1050 'global variables: GRAPHICS%, NPTS%

1060 'local wvariables: D8, E$, F8$, I%

1070 AL A AR AR 2R A AR 2R AR A R AR AR AR AR AR A AR AR AR AR AR AR AR AR AR R R R R R R R 2] ]

1080 IF VSAVEZ THEN GOTO 1730 "if VSAVEZ%, then begin

1090 'with current V(x)
1100 GOSUB 2000 "input analytic form
1110 °

1120 IF OPT$<>"1" THEN GOTO 1200 .
1130  XMIN=XMIN1: DX=DX1

1140 FOR I%=0 TO NPTS%

1150 V( 1%)=FNV1 (XMIN+DX* %)

1160 IF V(I%)>1 THEN V(I%)=1

1170  NEXT 1%

1180 COLUMN%=35: POT$="Square Well"”
1190 °

1200 IF OPT$<>"2" THEN GOTO 1280

1210  XMIN=XMINZ2: DX=DX2

1220 FOR I%=0 TO NPTS%

1230 V( 1%)=FNV2 (XMIN+DX* %)

1240 IF V(I%)>1 THEN V(I%)=1

1250  NEXT I%

'define DE, XMIN, V(I%)
"depending on choice
'of analytic potential
"keep -1<=V<=1

"text output variables

'Parabolic Well
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1260 COLUMN”%=33: POT$="Parabolic Well”

1270 °

1280 IF OPT$<>"3" THEN GOTO 1360 'Lennard Jones Potl.
1200  XMIN=XMIN3: DX=DX3

1300 FOR I%=0 TO NPTS%

1310 V{I[%)=FNV3{XMIN+DX*1%)

1320 IF V(1%)>1 THEN V(I%)=1

1330 NEXT 1%

1340 COLUMN?%=29: POT$="Lennard-Jones Potential”

1350

1360 IF NOT GRAPHICS% THEN RETURN

1370

1380 VSCALE=170/2 ) 'rescale V for graphing
1390 FOR 1%=0 TO NPTS%

1400 VZ{(1%)=170-(V(I%)+1) *VSCALE

1410 NEXT 1%

1420 °

1430 CLS "directions for altering V
1440 LOCATE 2,2,0

1450 PRINT "You may now use the keyboard to alter V(x) at any of the 160";
1460 LOCATE 2,62

1470 PRINT " lattice points:";

1480 LOCATE 6,17

1490 PRINT CHR$({24)+CHR$(25)+" keys increase and decrease V(x) at fixed x.";
1500 LOCATE 9,7

1510 PRINT "PgUp and Hame keys increase and decrease x without altering V(x).";
1520 LOCATE 12,12

15630 PRINT CHR$(26)+CHR8$(27)+" keys increase and decrease x and change";
1540 LOCATE 12,54

1850 PRINT " V(x+dx) to V(x).";

1560 LOCATE 16,17

15870 PRINT "When you are finished, the code will normalize ";

1580 LOCATE 17,24

1590 PRINT "the new potential so that Vmin=-1";

1600 LOCATE 19,13

1610 PRINT "You will then be able to alter the potential again, so";

1620 LOCATE 20,25

1630 PRINT " don't be afraid to experiment.";

1640

1650 LOCATE 24,8: BEEP

1660 INPUT;"Do you wish to 1)alter the potential or 2)use the analytic form";D$
1670 IF D$="2" THEN RETURN

1680 IF D$="1" THEN GOTO 1730

1690  LOCATE 24,1: PRINT SPACE$(79);: BEEP

1700 LOCATE 23,35: PRINT "Try again";

1710  GOTO 1650

1720 °

1730 GOSUB 3000 'alter V fram keyboard
1740 VSAVEZ=0 ‘'reset flag

1750

1760 LOCATE 24,4: BEEP

1770 PRINT "Are you 1)happy with the potential or 2)do you wish to alter";
1780 LOCATE 24,64

1790 INPUT; " it further";E$

1800 IF E$="1" THEN RETURN

1810 IF E$="2" GOTO 1850

1820 LOCATE 23,35: PRINT "Try again,";

1830 GOTO 1760
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1840

1850 LOCATE 23,1: PRINT SPACE$(79);: LOCATE 24,1: PRINT SPACE$(79);
1860 LOCATE 24,13: BEEP

1870 PRINT "Would you like to 1)begin again with the analytic form";

1880 LOCATE 25,18

1890 INPUT; "or 2)alter the potential now on the screen";F$

1900 IF F§="1" THEN GOTO 1100

1910 IF F$="2" THEN GOTO 1950

1920 LOCATE 23,25 'error trapping
1930 PRINT "Try again,";

1940  GOTO 1860

1950 LOCATE 23,1: PRINT SPACE$(79);

1960 LOCATE 24,1: PRINT SPACE$(79);

1970 LOCATE 25,1: PRINT SPACE$(79);

1980 GOTO 1730

1990 °

2000 PTEEREEEE R R R R R R R R R R R R R R R R R R R R R R R R R R RN R R R R R R Rk Rk ek ke *
2010 ’'subroutine to choose the analytic form of the potential

2020 'input variables: none

2030 ’'output variables: OPT$

2040 'global variables: none

2050 'local wvariables: none

2060 A AR AR AR R A R AR 2 A A AR R A R A A R A R A R A AR AR AR AR AR AR AR AR AR AR AR AR R ARl
2070 CLS

2080 LOCATE 1,8,0 'display options for V{x)
2090 PRINT "In this program you have a choice of one-dimensional potentials:";
2100 LOCATE 5,20

2110 PRINT "1)Square well: V(x)=-1 (-2 <= x <= 2)";

2120 LOCATE 8,15

2130 PRINT "2)Parabolic well: V(x)=-(1-.5%*x*x) (-2 <= x <= 2)";

2140 LOCATE 11,5

2150 PRINT "3)Lennard Jones Potential: V(x)=4*(x~(-12)-x~(-6))";

2160 LOCATE 11,56

2170 PRINT " (.9 <= x <= 1.9)";

2180 LOCATE 15,6

2190 PRINT "All of these potentials have walls (V(x)=infinity";

2200 LOCATE 15,55

2210 PRINT ") at xmax and xmin,";

2220 LOCATE 18,6

2230 PRINT "giving the boundary conditions that the wave ";

2240 LOCATE 16,51

2250 PRINT "function is zero there.";

2260 LOCATE 17,10 :

2270 PRINT "We also impose the condition that -1 <= V(x) <= 1 for all x.";
2280 LOCATE 20,3 -

2290 PRINT "You mmy also exit the <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>