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General Coupling Matrix Synthesis Methods
for Chebyshev Filtering Functions

Richard J. CameronSenior Member, IEEE

Abstract—Methods are presented for the generation of the
transfer polynomials, and then the direct synthesis of the cor-
responding canonical network coupling matrices for Chebyshev
(i.e., prescribed-equiripple) filtering functions of the most general
kind. A simple recursion technique is described for the generation
of the polynomials for even- or odd-degree Chebyshev filter-
ing functions with symmetrically or asymmetrically prescribed
transmission zeros and/or group delay equalization zero pairs.
The method for the synthesis of the coupling matrix for the cor-
responding single- or double-terminated network is then given.
Finally, a novel direct technique, not involving optimization, for
reconfiguring the matrix into a practical form suitable for real-
ization with microwave resonator technology is introduced. These
universal methods will be useful for the design of efficient high-
performance microwave filters in a wide variety of technologies
for application in space and terrestrial communication systems.

Index Terms— Chebyshev characteristics, circuit synthesis
methods, coupling matrix, microwave filters.

I. INTRODUCTION
ICROWAVE filters incorporating the Chebyshev clas

of filtering function have, for many years, found
frequent application within microwave space and terrestrial

communication systems. The generic features of equiripp

amplitude in-band characteristics, together with the shalg

cutoffs at the edge of the passband and high selectivity, g

and highest noise/interference rejection. The ability to build

If/ﬁ);?lows:

an acceptable compromise between lowest signal degrada

In order to cope with the increasing demand for capacity
in restricted spectral bandwidths, specifications for channel
filter rejections have tended to become asymmetric. This is
particularly true for the front-end transmit/receive (Tx/RXx)
diplexers in the base stations of mobile communications sys-
tems, where very high rejection levels (sometimes as high
as 120 dB) are needed from the Rx filter over the closely
neighboring Tx channel's usable bandwidth and vice versa
to prevent Tx-to-Rx interference. On the outer sides of the
Tx and Rx channels, rejection requirements tend to be less
severe. Such asymmetric rejection specifications are best met
with asymmetric filtering characteristics, reducing filter degree
to a minimum and, therefore, minimizing insertion loss, in-
band distortions, and mass as compared with the symmetric
equivalent achieving the same critical rejection levels.

In addition to the asymmetric feature, there is often a need
for singly terminated designs. The singly terminated network
has some special electrical properties which are useful for the
glesign of manifold-coupled or star-coupled contiguous channel
multiplexers and diplexers.

The methods to be presented in this paper are completely
eneral for the design of the transfer functions and the syn-
esis of the prototype filter networks with characteristics
l()elonging to the Chebyshev class of filtering function as

n

in 1) even or odd degree;

prescribed transmission zeros for improving the close-to-banc?) Prescribed transmission and/or group-delay equalization

rejection slopes and/or linearizing the in-band group delay

have enhanced its usefulness.

Zeros;
3) asymmetric or symmetric characteristics;

As the frequency spectrum becomes more crowded, spec?) Singly or doubly terminated networks.

ifications for channel filters have tended to become very The first part of this paper describes an efficient recursive
much more severe. Very high close-to-band rejections dfehnique for generating the Chebyshev transfer and reflection
required to prevent interference to or from closely neighboririgplynomials, given the numbers and positions of the trans-
channels; at the same time, the incompatible requirementsnggsion zeros it is required to realize. This is followed by a
in-band group-delay and amplitude flatness and symmetry g#nmary of the method used to generate the corresponding
demanded to minimize signal degradation. All this is to beoupling matrix. Having been well covered in previous papers
achieved with lowest insertion loss; on the high-power side [&]-[4], only the techniques used to deal with asymmetric char-
minimize the size, mass, and prime power consumption of R¥teristics will be detailed. Finally, a novel nonoptimization
power generation equipment and ease thermal managentgfthod is presented for directly reducing the coupling matrix
problems, and on the low-power (receive) side to redugesultant from the synthesis procedure, which, in general, will
system noise figure if the filter is before or among the firftave all nonzero elements, to the more practical canonical
amplification stages of the system. folded network form. An example of usage is included.
A microwave filter may be realized directly from the folded
coupling matrix, topology, and strengths of its inter-resonator
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couplings directly corresponding to the nonzero elements of
the matrix. Recently, this has proven very useful for the
design of dielectric resonator channel demultiplexer filters,
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but more often, the folded network is used as the startitigat the numerator and denominator polynomialsCof(w)
point for a further series of similarity transformations tdave purely real coefficients. Also, for the polynomial synthe-
convert the matrix into forms suitable for realizations in othesis method about to be described, the number of transmission

technologies, e.g., [9] or [10]. zeros with finite positions in the-planen ;. must be<N. If
ns. < N, those zeros without finite positions must be placed at
Il. POLYNOMIAL SYNTHESIS infinity. However, the two-port canonical networks to be used

For anv two-port lossless filter network composed of later to embody the transfer function will realize a maximum of
Y P P N2 finite-position zeros. When synthesizing the polynomials

series oflV intercoupled resonators, the transfer and reflecti%1r these networks, at least two of the transmission zeros must
functions may be expressed as a ratio of twaoh degree be placed at infini,ty

polynomials The aim now is to find the coefficients of thiéth degree

_ In(w) _ Py(w) polynomials in the variables corresponding to the right-hand
T En(w) n(w) = eEn(w) D Side (RHS) of (3). With these polynomials, it is then possible
to proceed to prototype network synthesis, from which a real

where w is the real frequency variable related to the more . 4 :
familiar complex frequency variable by s = jw. For a electrical network with the transfer characterisfig; (w) of

Chebyshev filtering functiorg is a constant normalizings; (1)Tr1a)fl'rgtesctjeem{ﬁdt-he olvnomial svnthesis procedure is to
to the equiripple level abv = +1 as follows: ' P! poly al sy ISP ure |

replace thecosh™ term in (3) with its identity

Sll(w)

S S 1)
VI0RL/I0 — 1 Fy(w) |, Cn(w) = cosh lz In(a, + by) (4)
where RL is the prescribed return loss level in decibels and n=1

it is assumed that all the polynomials have been normaliz%erean =z, andb, = («2 — 1)/2 Then,
such that their highest degree coefficients are urfity(w) "
and 5,1 (w) share a common denominatdy (w), and the Cn(w)
: } ; . o 1
Eg:)c/)r;f)mlalPA (w) contains the transfer function transmission _ > [exp (Z In(ay, + bn)) +exp (_ Z In(an + bn))}
Using the conservation of energy formula for a lossless

network S$?, + S2, = 1 and (1) 1| X 1
o ) . I (RS E——— ©)
2(9) = T3 207wy ~ T+ jeOn @) — jeOn (@) i T1 (an+ )
@ =i

Multiplying the second term in (5)(top and bottom) by

where Hf::l (a, — by,) yields
. FN(w)
Oy(w) = Pr(@)’ 1 N
N On(w) =5 I (an+b0) + I (an — bn) (6)
Cn(w) is known as the filtering function of degre€ and n=1 n=1

has a form for the general Chebyshev characteristic [5] becausq_[N (an+D )HN (an —bn) = HN (a2 —02)in
n=1 n n n=1\""n n;, — n=1\"n n

N . the bottom line of the second term will always be unity. This
Cn(w) = cosh Z cosh™ (z) 3 s easily verified by substituting for,, andb,, using (4).
n=1 Equation (6) may now be written in its final form by
where substituting fora,,, b,,, andz,, using (3) and (4) as follows:
o YT 1/wy, N N
n_l—w/wn H(Cn+dn)+H(cn_dn)
and jw, = s, is the position of thenth transmission zero On(w) = 3 n=t ~ n=t (7)
in the complexs-plane. It may be easily verified that when <1 _ i)
lw| = 1,Cy = 1, when [w| < 1,Cy < 1, and when oyl wn
|w| > 1, Cx > 1, all of which are necessary conditions h
for a Chebyshev response. Also, as &ll of the prescribed where
transmission zeros approach infinit§/;y degenerates to the e, =w— 1
familiar pure Chebyshev function Wp,
1/2
CN (W) —oo = cosh[N cosh™ (w)]. d, =u' <1 - %)
wn
The rules to be observed when prescribing the positions of W =(w? - 1)1/2

the transmission zeros are that symmetry must be preserved
about the imaginaryjw) axis of the complex-plane to ensure a transformed frequency variable.
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By comparison with (2), it may be seen that the denominatahere
of Cy(w) is Py(w), the numerator polynomial 0f (w)
generated from the prescribed transmission zerps Also Un(w) =up + uw +usw? + - +uyw?
from (2), the numerator of ' (w) is the numerato?’y (w) of and
S11(w), and appears at first to be a mixture of two finite-degree
polynomials, one in the variable purely, while the other has

each coefficient multiplied by the transformed variable The recursion cycle is initiated with the terms corresponding
However, the coefficients multiplied ky’ will cancel with 0 he first prescribed transmission zevg, i.e., by putting
each other when (7) is multiplied out. This is probably best _ { ;, (9) and (11) as follows:

proven by demonstration, by multiplying out the left-hand side

Vn(w) =o' (UO Wt vew e+ UNwN). (11)

(LHS) and RHS product terms in the numerator(g§ in (7) Gi(w) =lc1 + di]

for a few low values ofn. In each case, it will be seen that 12

the expansions will result in a sum of factors, each factor - <w _ i) +w/<1 _ %)

composed of multiples of, andd,, elements. Because of the w1 wi

positive sign in the LHS product term in (7), thg, d,, factors =Ui(w) + Vi(w). (12)

resultant from multiplying out the LHS term will always be

positive in sign. Multiplying out the RHS product term in (7) For the first cycle of the process; (w) has to be multiplied
will produce the same,,, d,, factors; however, the negativeby the terms corresponding to the second prescribed @gro
sign will mean that those factors containing an odd number isee (9)] as follows:

d,, elements will be negative in sign and will cancel with the

corresponding factors from the LHS product term. Gr(w) =G (w) - [c2 + do]
The remaining factors will now contain only even numbers 1 1\
ich | =[U1(w) + Vi(w)] — "1-=
of d,, elements, and, therefore!(=(w? — 1)'/2), which is a =)+ iw)f || w = s To{l= w2

common multiplier for all thed,, elements [see (7)], will be
raised by even powers only, thus producing subpolynomials

in the variablew only. Thus, the numerator &'y will be a Multiolvi t and in allocating t v int
polynomial in the variables purely ultiplying out and again allocating terms purely in to

These effects were used to develop a simple algorithm [t@(w)’ terms multiplied by’ 10 V2(w), and recognizing that

i i 2— . 2 P n
determine the coefficients of the numerator polynomial ég ‘%l(wrzov:rzlilarlesﬂlrtelln (ﬁ] ;21 d(vfht;}é;;rewi) Jl;e aJlrlgg:te)d o
COn(w), =Fx(w) the numerator ofs;; . Poly purely inw - and, ’

U, (w) as follows:

=[Uz(w) + Va(w)]. (13)

A. Recursive Technique Uy (w) 1\ /2 )
The numerator of (7) may be rewritten as Uz(w) =wlh(w) - wo + <1 - w_§> w Viw)
Vi(w 1\?
Num[Cy (w)] = Fy(w) = %[GN(w) + & ,(w)] @ Vaolw)=wVi(w)- %) + <1 - J;) W' Ui(w). (14)
where Having obtained these new polynomidfs(w) and Va2 (w),

N NoT 12 the cycle may be repeated with the third prescribed zero, and
_ _ 1 i, 1 so on until allV of the prescribed zeros (including those at
G lw) = H [entdn] = H <w )er <1 ) w, = oc) are used, i.e.(N — 1) cycles.
('9) If the same process is repeated 6, (w) [=Uj(w) +
N N 1/2] Vi (w) as in (11)], then it will be found that’y (w) = Un(w)
(W) = H [en—dy] = H <w_i>_w/<1_i> o and Vi (w) = —Vn(w), and thus fr_om (8) and (11) it may
be seen that the numerator Bf; (w) is equal tol/y(w) after
(1b) (VN — 1) cycles of this recursion method. Now the reflection
zeros may be found by rooting'x (w) and the denominator

The method for computing the coefficients &ty (w) is POlynomial Ex(w) found from (2) using, for example, the
basically a recursive technique where the solution for/ttre alternating singularity principle as described in [7].
degree is built up using the results of the — 1)th degree.  To illustrate the procedure, the recursions will be applied to
Considering first the polynomialiy(w) (9), this may be @ fourth-degree example with an equiripple return-loss level
rearranged into two polynomial&y(w) and Vy(w), where Of 22 dB and prescribed zeros atj1.3217 and +;1.8082,
the Uy (w) polynomial contains the coefficients of the term&§hosen to give two attenuation lobe levels of 30 dB each on
in the variablew only, while each coefficient of the auxiliary the upper side of the passband.
polynomial Vi (w) is multiplied by the transformed variable Initializing, using (12) withw; = 1.3217
v’ as follows:

n=1 n=1L

n=1 n=1 L

Ui(w) = —0.7566 + w
Gn(w) =Un(w) + Vr(w) Vi(w) =u'(0.6539).
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TABLE | asymmetric characteristics are used, as well as symmetric.
SINGULARITIES OF FOURTH-DEGREE ASYMMETRIC CHEBYSHEV A topical examp|e of such an application is in the Tx/Rx
FILTER WITH TwO PRESCRIBED TRANSMISSION ZEROS . . . . .
diplexers of cellular communications base stations, to obtain

hi:“:gm o | Tmission | Tansmissiow | In-Band keflection——very high rejection levels over the contiguous Rx or Tx usable
U,(s) (=F,(s)) | (Prescribed) | (Rootsof E,(s)) | (Rootsof V,(s)) bands.
1 ~0.8393 +13217 -0.7437 - j1.A178 04936 The starting point for the synthesis of the coupling matrix
2 00365 +1.8082 ~1.1031 +0.1267 +0.3796 for both the single- and double-terminated cases are the
3 06845 e 04571 +/0.9526 +O8732 transfer and reflection polynomials(s), F'(s), andP(s)(s =
¢ HO-9705 Je 00977 +1.0976 - Jjw), determined in the previous section as
F(s) P(s)
g w00 511(8) = E(S) and 521(8) = EE(S) . (15)
% I\ / }\ \ In the general case, the coefficientskifs) will be complex
5 0o U UV and those off'(s) and P(s) will alternate between purely
2 200 2248 Sa real and purely imaginary as the power ofincreases. The
) s degree ofE(s) and F'(s) will be N, and the degree aP(s)
S 100 \ ) M anpegre corresponds to the number of noninfinite zeros that were
§ >< | - Asymmetric Filter | originally prescribed. As mentioned before, the successful
5 00 Lot | : i synthesis of the two-port networks to be considered here
30 20 18 00 1.0 20 30 40 depends on at least two of the transmission zeros being at
LOWPASS PROTOTYPE FREQUENCY (rad/sec) infinity, therefore, the degree df(s) must not exceedv — 2.

In this section, the synthesis of the rational polynomials

Fig. 1. Low-pass prototype transfer and reflection characteristics pf . . :
9 wpass proove ! o the short-circuit admittance parametess(=y2) andys2

fourth-degree asymmetric Chebyshev filter, with two prescribed transmissi

zeros at+;1.3217 and +51.8082. from the transfer/reflection polynomials(s), F'(s), and P(s)
will be described. The procedure differs slightly for the single-
After the first cycle, withwy — 1.8082 and double-terminated cases and will be treated separately. The
method used to synthesize the coupling matrix for the network
Us(w) = — 0.1264 — 1.3096w + 1.5448w° from y,; andy., will then be outlined.

Va(w) =w'(—0.9920 + 1.4871w).
A. Double-Terminated Case

After the second cycle, withvg = . _ .
4 3= Fig. 2(a) shows a two-port lossless filter network with a

Us(w) =0.9920 — 1.6134w — 2.3016w” + 3.0319w° voltage source of internal impedangg on the LHS and load
Va(w) =w'(—0.1264 — 2.3016w + 3.0319w7). impedanceli to the RHS. The driving point impedance of
) ) this network in terms of its short- and open-circuit parameters
After the third cycle, withw, = ~ is [11]

—0. , — 4771702 2111 Ry] _ 2ull 1
Us(w) = 0.1264 + 3.2936w — 4.7717w Zua(s) = al/v T BN] _ aull/yn £11 - q

— 4.6032w% + 6.06370* 292 + Ry 290 + 1

Vi(w) =w'(0.9920 — 1.7398w — 4.6032w? + 6.0637w?). if Ry is normalized tol © [Fig 2(b)].

) ] ] Also, if Ry =1 €, the driving point impedance
At this stage, the polynomial/s(w) is the numerator of
_1-Su(s)  E(s):£F(s) mi+n

the reflection functionSy;(F4(w)), and rooting it will yield Zyi(s) = - - (17)
the IV in-band reflection zeros. Rootirlg,(w) will yield the 1+51(s)  E(s)FF(s) m2+n2
N — 1 in-band reflection maxima. The-plane coordinates wherem,, m,, n;, andn, are complex-even and complex-

of these zeros, together with the corresponding transmissisild polynomials, respectively, in the variableconstructed
poles, are given in Table I, and plots of the transfer arfgbm E(s) and F(s).

reflection characteristics are given in Fig 1. For the even-ordered case, bringing outside the brackets
of the numerator of (17) yields

_ 711[7711/711 + 1]

mo + N2 '

Ill. SYNTHESIS OF THESINGLE- AND DOUBLE-TERMINATED

COUPLING MATRIX Z11(s) (18)

The procedure for synthesizing the coupling matrix from
the transfer and reflection polynomials follows similar lines to
those established in seminal papers by Atial.in the 1970's Yoz = n1/my (29)
[1]-[4]. The methods are well-covered in these papers and

will only be outlined below and in the Appendix, expandin%é: since the denominator gi, is the same as that g,

By comparing (18) and (16), it may be seen that

. . . d the numerator of>; has the same transmission zeros as
where necessary to include the asymmetric case. The sin —(S) ©

terminated case is included because of its usefulness for
design of contiguous-channel multiplexers where sometimes yon = P(s)/ems. (20)
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R, =1Q l:n,
Ry o i o
Yu Yz Yu Yy
Yo Va2 Ry B Yu ¥n

y Yol "12}"11 mny'
Yo Va2 mny'y "ZZJ/'zz

@) (b)

LI

\///— —w\ \ |

M2 -1

M2.n

s \\\\ . /\ ~ / o

©

Fig. 2. General two-port cross-coupled network. (a) General two—port lossless network operating between source and load ifipedaddes . (b)
Network with transformers to give unity terminating impedances. (c) “Inner” cross-coupled network.

Similarly, From (15)
Y22 = ml/nl and o1 = P(S)/E?’Ll, for N odd. Sor(s) = P(s)/e
E
The complex-even and complex-odd polynomials and P((;)) /e
n1 may be easily constructed frofi(s) and F'(s) by making = 2"
use of (17) as follows: 7;1 !
_ _ = M, for NV even
my + n1 = numerator of Z11(s) = E(s) + F(s). 1+ n1/my
Then, _ Pl)/em . for N odd
1+ ml/nl

my =Rele, + fo) + Im(e; + f1)s + Re(ez + f2)32 +
and where m; and n; are the complex-even and complex-odd
) polynomials constitutingF/(s). For a single-terminated net-
ny =Im(e, + f,) + Re(er + f1)s + Im(ea + fo)s™ + - -+ work with Ry = 1, the transfer functiorSs;(s) equals the
wheree; and f;,i = 0,1, 2,3 --- N are the complex coef- transfer admittanc#>; (s) [11] and by comparing with (21) it
ficients of E(s) and F(s). The above procedure ensures thdhay be seen that, faN even,
both m, z_ir_ld ny will havg purely real coefficje.nts, and since yo1 = P(s)/emy
the coefficients of the highest degree tersdS in E(s) and
F(s) are both purely real, and the degreeRffs) is </, that Yz =n1/m
the common denominator @k, andy.; is of degreeN and and for N odd
the degree of each of their numerators<igv.
yo1 = P(s)/enq
B. Single-Terminated Case Y22 =my/ny (22)

The construction of the polynomials:; and n; for the where
single-terminated case follows similar lines to the double- 9
terminated procedure. For the single-terminated case, the my =Re(co) +Im(er)s + Re(ea)s™ + -
source impedanc&; = 0 and its transfer admittance (s) ny =Im(eg) + Re(er)s + Im(ez)s” + - --

may be expressed in terms of its short-circuit admlttam‘a(:ﬁdCO e1, ¢, -+, €fc., are the complex coefficients B s)
parameters [3], [11] as before. Note that for the single-terminated case, it is only
You(s) = — 22 Ry = 1. (21) nNecessary to knowe, P(s) and E(s), the numerator and

14+ y22 denominator ofSs; (s ) to determinem; andn;.
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1 2 3 4 1 2 3 4 5 6 7
RN PEN RN 11
R [ i
& \\L N
* g 3 -
7 6 5 il e
—— - main line couplings ® - resonances 4 1
---- - cross couplings s s ¢
6 1
1.2 3 45 6 7 7 1
1{s|{m Xa Possible non-zero couplings:
2 s |m xa|xs ¢, = cosd,, s, = sind,
3 s Imlxalxs s - self coupling
4 sTm m - main line coupling Fig. 4. Example of seventh-degree rotation maRix-pivot [3, 5], angled;-.
5 xa - asymmetric cross-coupling
sm XS - symmetric cross-coupling . . . .
6 s |m . _ couplings are symmetric which the filter will eventually be realized, e.g., [9], [10]. The
7 s about the principal diagonal  method for reduction of the coupling matrix to the folded form

will ri here. The RCJ form m riv in
Fig. 3. Folded canonical network coupling matrix form—seventh-degree be described here e RCJ fo ay be derived us 9

example. 5" and “ra” couplings are zero for symmetric characteristics. @ very similar method.

A. Similarity Transformation and Annihilation
of Matrix Elements

Having determined the numerator and denominator polyno-A similarity transform on anV x N coupling matrixM,

mials of y2; and y29, it is now possible to proceed to theis carried out by pre- and post-multiplyirgl, by an N x N
synthesis of the coupling matrix of the electrical new"orl?otation matrixR and its transpos&’ as follows:

Under electrical analysis, this prototype network will precisely \
yield the same transfer and reflection characteristics as those M; =R;-Mp-R;

embodied within the purely polynomial representations Qfere v, is the original matrix,M; is the matrix after the

S11(s) and 5z (s). . . . transform operation, and the rotation matdk is defined
The procedure for synthesizing the coupling matrix is almoi

C. Synthesis of the Coupling Matrix

5 in Fig. 4. The pivotfi, 5](¢ # j) of R, that
unchanged from that originally established in [1], [2], and [4 n g e pivotli, jl(i 7 j) of R, means tha

i ’ . K i IementSR” = Rjj = cos 6,, RJZ = —Rij = sin 6,,
for symmetric networks, and is outlined in the Appendix. (i, j # 1 or N), and#, is the angle of the rotation. All other

entries apart from the principal diagonal are zero.
The eigenvalues of the matridd; after the transform
The elements of the coupling matri that emerges from are exactly the same as those of the original maiviy,
the synthesis procedure described in Section Il will, in gemvhich means that an arbitrarily long series of transforms with
eral, all have nonzero values. The nonzero values that walibitrarily defined pivots and angles may be applied, starting
occur in the diagonal elements of the coupling matrices fafith My. Each transform in the series takes the form
electrically asymmetric networks represent the offsets from M, = R,-M,_; -RL, r=1,2.3 - R 23)
center frequency of each resonance (asynchronously tuned).
Nonzero entries everywhere else means that in the netwarkd under analysis the matridr resultant at the end of the
that M represents, couplings exist between every resonagaries of transforms will yield exactly the same performance
node and every other resonator node. As this is cleadg the original matrixvi.
impractical, it is usual to annihilate couplings with a sequence When a similarity transform of pivdt, j] and anglé,.(£0)
of similarity transforms (sometimes called rotations) until & applied to a coupling matrid1,._,, the elements in rows
more convenient form with a minimal number of couplingandj and columng andj of the resultant matriV,. change
is obtained. The use of similarity transforms ensures that thievalue from the corresponding element value®in_,. For
eigenvalues and eigenvectors of the malvixare preserved, the kth element in the row or colum#for j of M,., and not
such that under analysis, the transformed matrix will yieldn the cross points of the pivot (i.&:,# ¢, j), the value will
exactly the same transfer and reflection characteristics as ¢henge according to the following formula:
original matrix.

IV. COUPLING-MATRIX REDUCTION

/ . .
There are several more practical canonical forms for ther’“ = My = 3, My, foran element " rowb
transformed coupling matribM. Two of the better-known Mjx = sr Mix +-cr Mja, for an element in rowj
forms are the “right-column justified” (RCJ) form [8] and the M;,; =c, My — s, My, for an element in columna
more generally useful “folded” form [6] (Fig. 3). Either of My, = s, My; + ¢, My, for an element in colump

these canonical forms may be used directly if it is convenient (24)
to realize the couplings or be used as a starting point for

the application of further transforms to create an alternativeherek(#¢, j) = 1,2, 3, ---, N, ¢ = cos ,., s,, = sin 6,,
resonator intercoupling topology, optimally adapted for thand the undashed matrix elements belong to the mdrix
physical and electrical constraints of the technology withnd the dashed tdf1,.
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1 2 3 4 5 6 17 TABLE 1
s |m[@ @ @O]xa SEVENTH-DEGREE EXAMPLE: SIMILARITY TRANSFORM SEQUENCE FOR
2 s fm| @ xalxs @etc — coupling annihilated as a result of 3 REDUCTION TO THE FOLDJEVD EORM. ToTAL NUMBER OF
3 S imixalxs|® etc transform in the sequence TRANSFORMS . — Z n = 10 [scE (23]
4 s Im|®® n—1
5 - pes e | Transform Element ijvf)t 0, = tan" (c M/ M)
LD Number to be {6, 7}
6f-4- s - S m r Annihilated k ! m n c
7 s 1 My, in 1* row [5, 6] 176115 ]-1
2 M . [4,5] 15| 1| 4~
Fig. 5. Seventh-degree coupling matrix: reduction sequence for folded 3 M, [3,4] 1413 -1
canonical form. The shaded elements are those that may be affected by a 4 M, - [2,3] 1312 |-
similarity transform at pivot [3, 5], anglé,.. All others will be affected. 5 M;, in 7" column | [3,4] 307 |47+
6 M, . [4,5] 4 | 7|57+
7 M, . [5, 6] s 7161 7|+t
8 Mo in 2" row [4,5] 21512 4 ]-1
. L . . 9 M. . 4 20412 ]3|
Two properties of a similarity transform which will be 0 M: i1 & column {325} T 16 [ 5 6 1=

exploited for the matrix reduction process to be described
below are noted here: 19nly those elements in the rows
and columns: and j of the pivot [, j] of a transform remains at zero. Now, third and fourth transforms at pivots
may possibly be affected by the transform. All others will3; 4] and [2, 3] and angle§; = —tan™' (Mi4/M;3) and
remain at their previous values and 2) if two elements fas = —tan™"' (My3/M12) will annihilate My, and M3, re-

ing each other across the rows and columns of the piv@Rectively, again without disturbing the previously annihilated
of a transform are both zero before the application of tHdements.

transform, they will still be zero after the transform. For After these four transforms, the elements in the first row
example, if the elements/,; and M in Fig. 5 happen to Of the matrix between the main line coupling., and the

be both zero before the transform with pivot [3, 5], they wilelement in the final column will be zero. Due to the symmetry
still be zero after the transform, regardless of the transforgpout the principal diagonal, the elements betwéén and
angled,.. M1 in the first column will also be zero.

The equations in (24) may be used to annihilate (zero)Next, the three elements in column ™7, My7, and M5z,
specific elements in the coupling matrix. For example, @€ annihilated with transforms at pivots [3, 4], [4, 5], and
annihilate a nonzero elemedf;; (and simultaneousi;) [5, 6] and anglesan™! (Ma;/M,7), tan™* (My7/Mj7), and
in the coupling matrix of Fig. 5, a transform of pivot [3, 5]tan~" (Ms7/Ms:), respectively, [see first formula in (24)]. As
and anglef; = —tan!(Mi5/M;3) may be applied to the With the rows, the columns are cleared down to the first main-
coupling matrix [see the last formula in (24) with= 1, : = line coupling encountered in that column. The couplings;,

3, 7 = 5]. In the transformed matrix)/!, and M., will be Mis, My5, andM;e annihilated in the first sweep will remain
zero and all values in rows and columns 3 and 5 (shadeddhzero because they face each other across the pivot columns
Fig. 5) may have changed. of the transforms of the second sweep and will, therefore, be

The method for reducing the full coupling matrixi, unaffected.
resultant from the synthesis procedure of Section Ill to the Continuing on, a third sweep along row 2 annihilaféfs;
folded form of Fig. 3 involves applying a series of similarity@nd M24 in that order, and the final sweep annihilafess in
transforms toM, that annihilate unrealizable elements ongolumn 6. At this point, it may be seen that the form of the
by one. The transforms are applied in a certain order afflded canonical coupling matrix has been achieved (Fig. 5),
pattern that makes use of the two effects mentioned abowéth its two cross diagonals containing the symmetric and
ensuring that once annihilated, an element is not regenera@mmetric cross couplings. Table Il summarizes the entire

by a subsequent transform in the sequence. annihilation procedure.
The final values and positions of the elements in the cross

diagonals are automatically determined—no specific action
to annihilate couplings within them needs to be taken. As
the number of finite-position prescribed transmission zeros
There are a number of transform sequences that will redubat the transfer function is realizing grows from one to the
the full coupling matrix to the folded form. The sequencenaximum permitted ¥ — 2), then the entries in the cross
used here involves alternately annihilating elements right ¢ttagonals will progressively become nonzero starting with the
left along rows and top to bottom down columns as shown asymmetric entry nearest to the principal diagondlg in
the seventh-degree example in Fig. 5, starting with the elemém¢ seventh-degree example). If the original filtering function
in the first row and the §;y — 1)th column (). that the matrix is realizing is symmetric, then the asymmetric
M6 may be annihilated with a transform of pivot [5, 6] anctross couplingsis;, Mag, and M7 will automatically be
angled; = —tan—! (Mys/M13). This is followed by a second zero (as will the self couplings in the principal diagonal
transform, pivot [4, 5], angled, = —tan™! (My5/Myy), M to M77).
which will annihilate elemend/;5. The previously annihilated The regular pattern and order of the annihilation procedure
element M is unaffected by this transform because it isnakes it very amenable to computer programming for any
lying outside the rows and columns of the latest pivot ardegree of coupling matrix.

B. Reduction Procedure—Full Coupling Matrix
to Folded Canonical Form
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TABLE I TABLE V
SEVENTH-DEGREE ASYMMETRIC FILTER: COEFFICIENTS OF TRANSFER CouPLING MATRIX AFTER REDUCTION TO FOLDED FORM (M {¢)
AND REFLECTION POLYNOMIALS. ¢ = 6.0251 1 2 3 4 5 6 7
- - — 10058 06621 0O 0 0 0 0
s Polynomial Cocfficients 2 | 06221 00750 05977 0 0 01382 0
n= Py (s) Fy(s) Ey(s) 3 0 05977 00900 04890 02420 00866 0
0 71.0987 —j0.0081 0.1378 - j0.1197 4 0 0 04890 -0.6120 05038 0 0
1 —0.4847 0.0793 0.8102 —j0.5922 5 0 0 02420 0.5038 -0.0518 07793 0
2 -j0.9483 —j0.1861 22507 - j1.3346 6 0 0.1382 00866 0O 07793 00229 14278
3 10 0.7435 3.9742-1.7853 7 0 0 0 0 0 14278 00211
4 —j0.5566 46752 -j1.6517
5 1.6401 41387 — j0.9326
6 —j0.3961 22354 — j0.3961 50 $ ‘
7 1.0 10 g |
% 40 E— ‘
[=]
- /
TABLE IV é
COUPLING MATRIX BEFORE APPLICATION OF REDUCTION PROCESS E _ k/, ,\j _ u U A
ELEMENT VALUES ARE SYMMETRIC ABOUT THE PRINCIPAL 5 -
DIAGONAL. R| = 0.7220, Ry = 2.2354 g Si
1 2 3 4 5 6 7 I :
1 [ 00586 -0.0147 -02374 -0.0578 04314 -04385 0 5 i
2 |-00147 -0.0810 04825 03890 0.6585 0.0952 -1.3957
3 [-02374 04825 02431 -0.0022 03243 -02075 0.1484 -°5mQ ? 05 1 L5 2
. (rad/sec)
4 [-00578 03890 -0.0022 -0.0584 -03047 04034 -0.0953
5 | 04314 06585 03243 -0.3047 0.0053 -0.5498 -0.1628 (@)
6 |-04385 00952 -02075 04034 -0.5498 -0.5848 -0.1813
7 0 -1.3957 0.1484 -0.0953 -01628 -0.1813 00211 20 T
g 15 ’/\
V. EXAMPLE OF USAGE g
. . . E 104 -
To illustrate the reduction procedure, an example is taken £
. . =
of a seventh-degree 23-dB return-loss single-terminated asym- ¢ /\¥
metric filter, where a complex pair of transmission zeros at ° // ! ‘ \
40.9218—750.1546 in the s-plane are positioned to give group- 0 | ——
delay equalization over about 60% of the bandwidth, and a o o
Q. (rad/sec)

single zero is placed atj1.2576 on the imaginary axis to b)
give a rejection lobe level of 30 dB on the upper side of the

assband Fig. 6. Seventh-degree synthesis example: analysis of folded coupling ma-
P . ) . trix. (&) Rejection and return loss. (b) Group delay.

With knowledge of the positions of the three Tx zeros, the
numerator polynomiaFy of Si;; may be constructed by the i ) ) i )
recursive technique of Section 11, and then by using the givé“r?t needed to realize this particular transfer function, will
return loss and the constantthe denominator polynomial x automatically be zero. No specific action to annihilate them

common toS;; and Sy; determined. The-plane coefficients needs to be taken. . . . . . .
of these polynomials are given in Table IIl. The results of analyzing this coupling matrix are given in

From these coefficients the numerators and denominat§/g- 6(@) (réjection/return loss) and Fig. 6(b) (group delay).

: : : : It may be seen that the 30-dB lobe level and equalized in-

of y21 and y;; may be built up using (22). Being a single- )
terminated design, the coefficients of the polynondial are band group delay have not been affected by the transformation

not needed. Now, the residues resultant from the partiar_oc_:ess.
fraction expansions of.; andy; will give the first and last Fig. 7(a) shows the topology of the folded network cor-

rows of the orthogonal matris' (A7). The remaining rows of '€SPonding to the coupling matrix of Table V, and Fig. 7(b)
T are found using an orthonormalization process and, final ows a possible realization for the filter in coupled coaxial-
sonator cavities. In this particular case, all the cross cou-

the coupling matrixM formed using (A4). The element value e X L X
of M are given in Table IV. pllngs happen to be th_e same sign as '_[he main-line couplings,
To reduce this full coupling matrix to the folded form, abUt in general, they will be mixed in sign.

series of ten similarity transforms may now be appliedvio
according to Table Il and (23). Each transform is applied to
the coupling matrix resultant from the previous transform, General methods have been presented for the generation
starting with M [= Mg in (23)]. After the last of the of the transfer and reflection polynomials for the equiripple
transforms in the series, the nonzero couplings in the mat{@hebyshev) class of a filtering function with prescribed
M, will topologically correspond with couplings betweertransmission zeros and then the efficient direct synthesis
filter resonators arranged in a folded pattern, ready for diremftt the coupling matrix for the folded form of canonical
realization in a suitable technology (Table V). Note that theetwork. If practical, microwave bandpass filters in a variety of
couplingsM;; and My in the cross diagonals, which aretechnologies may be realized directly from the folded-network

VI. CONCLUSION
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1 2 3 4 transformers to represent the “inner” network in Fig. 2(c)
N T~ giving
NEEN [il } [ nfyly nmzyﬂ [61 } A1)
- N -l = .
7 6 5 ‘N ninaYh M3y eN
@ where the dashed parameters relate to the inner network.
Referring now to the networks of Fig. 2(b) and (c), the loop
) equations may be represented in matrix form [4]
M, 3 My,
-~ @ @M @ Ol e in] :
M [7M+SI+R] ) [Zlv 12, 13, ~° -, ILJ\T] :61[1, 07 07 T 0]
35 < (AZ)
SE SE whereR is an V x N matrix with all entries zero, except

<—| M"’ Mss @ Ri1 = R, and Ryn = Ry, M is the N x N reciprocal

coupling matrix (i.e.M; ; = M;;) andI is the identity matrix.

The short-circuit transfer admittangg; (s) of the overall

network may be now determined by putting= jw, R;, and

Fig. 7. Realization in folded conflguratlon. (a) Folded network couplingRN =0 (i.e., R = 0), and solving (A2) fori as follows:

and routing schematic. (b) Corresponding realization in coaxial-resonator
technology.

'l:]\f
Cc1

. -1
=j[-M—-wI];
Ri, Ry=0

yo1(s) =

coupling matrix or a further series of similarity transforms ma - .

be applied to reconfigure the coupling matrix to other mo d similarly (by putting the voltage source at the other end

convenient forms. The methods are applicable for symmet% the network)

or asymmetric even- or odd-degree transfer characteristics;

also for single- or double-terminated realizations. ya2(s) =
No restrictions apply to the prescription of the finite-position

transmission zeros to be built into the characteristics, excep

that the pattern of their positions must be symmetric about the

imaginary axis of the complexplane, and their total numbers®

must not exceedV — 2; N being the degree of the transfer

N = j[-M - wIA- (A3)

Ry, Rn=0

CN

tI’hls is the essential step in the network synthesis pro-
Cedure that relates the transfer function expressed in purely
mathematical terms (i.eS11, y21, etc., expressed as rational
polynomlals) to the real world of the coupling matrix, each

characteristic.
element of which corresponds uniquely to a physical coupling
element in the realized filter.

APPENDIX SinceM is real and symmetric about its principal diagonal,

all of its eigenvalues are real. Thus, @ x N matrix T

A. Synthesis of the Coupling Matrix with rows of orthogonal unit vectors exists, which satisfies the

The source and load impedandés and  of the general equation

two-port network of Fig. 2(a) may be normalized to unity by M=T.-A.Tt (A4)

the inclusion of transformers at the input and output of the net-

work of turns ratiol : n; andns : 1, respectively [Fig. 2(b)]. whereA = diag[A1, Az, As, -+, An], A; are the eigenvalues

The “inner” general cross-coupled prototype bandpass netwatk—M and T! is the transpose oI’ such thatT - T = L

is shown in Fig. 2(c). Substituting (A4) into (A3) yields

Since the prototype coupling coefficients and the network . .
terminating impedances are assumed to be frequency invariant, yn(s) =j[T - A - T -]
the synthesis of the coupling matrix for this network may t

. ) =j|IT-A- T —-wl
by done as a low-pass prototype after mapping with the y22(s) = [ v ]
formulas = jlw, — 1/wy], wherew, is the prototype bandpass The general solution for an element ; of an inverse
frequency variable. For the prototype bandpass network, #igenmatrix problem such as the RHS side of (A5) is
center frequency and bandwidth are both 1 rad/s.

The two-port short-circuit admittance parameters relating r[cr CALT wI] 2—1 _ Z Tin T

-1
N1

e (9

Fig. 2(b) are o e
[il}:[ml 2112:|'|:@1:| t,j=1,2,3,---, N.
N Y21 Y22 EN Therefore, from (A5),
of which 21 (=y12) and y.» have both been determined N oo
. . . . . NkL1E
already from the transfer/reflection functions as outlined in Y21(8) = Z —

Section lll. These parameters may be scaled through the k=1
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and

!
TNk = TNk/TLQ.

With the first and last rows ofIY now determined, the |
remaining orthogonal rows may be constructed with th
Gram-Schmidt orthonormalization process or equivalent ar, *
finally, the coupling matriXxM synthesized using (A4). :




