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PREFACE

This book is the fifth edition of the Theory of Vibration with Applications. For a classi-
cal subject like Vibration, an explanation for another revision is in order.

Although the subject of Vibration does not greatly change, the development of
new and sophisticated digital techniques keep advancing and increasing the wide vari-
ety of problems to be solved and discussed in class.

MATLAB® is a versatile computer software program-that is commercially avail-
able and adopted by many engineering schools. It is compatible with the previous com-
putational methods of the 4th edition and we have decided to augment and broaden’
the computer capabilities of the 4th edition with its use in the Sth edition. To undertake
this revision, our editor and I have engaged a competent co-author. Dr. Marie D.
Dahleh, of our Engineering Department, to work with me on this task.

The authors recognize that problem solving is a vital part of the learning process,
and the use of a versatile new computer technique will enhance the student’s capabili-
ties not only in the field of Vibration, but to other fields as well. To use MATLAB, or any
other new computer method, it is not necessary to completely understand the detailed
mathematics on which the software program is based. On this point, I am reminded of
a timely quotation by Oliver Heavyside, a famous British mathematician and engineer
of the early 20th century, who was being criticized for his innovative mathematics. His
response to them was; “Should I refuse my dinner because I do not understand the
process of my digestion?”

As in earlier editions, the first four chapters, which deal w1th single-degree-of-
freedom systems, need very few changes. However, wherever appropriate, MATLAB
has been introduced to familiarize the reader with the MATLAB commands that will be
necessary to make use of this facility. At the end of Chapter 4, where the first extensive
calculations with finite difference and Runge-Kutta were made, the MATLAB method
is demonstrated with parallel computations for comparison.

Systems with two or more degrees of freedom, introduced in Chapter 5, offers a
logical opportunity to present the matrix notation. The Mass and the Stiffness Matrices
are defined here and the digital computation in Fortran has been completely replaced

by MATLAB. The importance of normal mode vibration is emphasized in this chapter

and free vibrations are demonstrated to be composed of normal modes with specified
initial conditions. Forced vibrations are again presented in terms of frequency ratio of
forced to normal modes, and the important application of vibration absorbers and
dampers is retained unchanged.

Chapter 6, “Properties of Vibrating Systems,” remains essentially unchanged.
Stiffness of framed structures is again presented to bring out the introductory basics of
the finite element method presented later in Chapter 10. Orthogonality of eigenvec-
tors, the modal matrix and its orthonormal form enable concise presentation of basic

Xi
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equations for the diagonal eigenvalue matrix that forms the basis for the computation
of the eigenvalue-eigenvector problem. They also provide a background for the nor-
mal mode summation method. The chapter concludes with the modal damping and
examples of equal roots and degenerate systems.

Chapter 7 presents the classic method of Lagrange, which is associated with vir-
tual work and generalized coordinates. Included in this chapter is the method of
assumed modes, which enables the determination of eigenvalues and eigenvectors of
continuous systems in terms of smaller equations of discrete system equations. The
Lagrangian method offers an all-encompassing view of the entire field of dynamics, a
knowledge of which should be acquired by all readers interested in a serious study of
dynamics. . o

Chapter 8, “Computational Methods,” examines the basic methods of computa-
tion that are utilized by the digital computer. Most engineering and science students
today acquire knowledge of computers and programming in their freshman year and,
given the basic background for vibration calculation, they can generally follow com-
puter programs for eigenvalues and eigenvectors. Covered in this chapter are the fol-
lowing subjects; Polynomial method, Gauss elimination, Matrix iteration, the Dynamic
matrix, Standard computer form, Cholesky Decomposition, Jacobi Diogonalization,
and the QR Decomposition. As stated earlier, for those who feel intimidated by the
somewhat difficult mathematics may ignore these sections or even skip the entire
Chapter 8 and still acquire the skills of using these newer computer programs. The for-
mer computations made by Fortran are now replaced and plotted by MATLAB. .

Chapter 9, “Vibration of Continuous Systems,” Rods and beams of uniformly dis-
tributed mass and stiffness represent continuous systems of infinite degrees of free-
dom. To analyse the vibration of such system requires the use of partial differential
equation, presented in the first part of this chapter. As example of how these solutions
can be adopted to more complex structures, an example of the vibration of the Tacoma
Narrows suspension bridge is presented. When the continuous structure is discretized
into repeated identical sections, simple analytic expressions are available for the nat-
ural frequencies and mode shapes by the use of difference equations. Here the method
demonstrates the technique of matching boundary conditions.

* Chapter 10, “Introduction to the Finite Element Method,” remains unchanged
except that the computing is done entirely by MATLAB. A few helpful hints have been
injected in some places, and the section on generalized force proportional to displace-
ment has been substantially expanded by detailed computation of rotating helicopter
blades. Brought out by this example is the advantage of forming equal element sec-
tions of length 1 = 1 (all I's can be arbitrarily equated to unity inside of the mass and
stiffness matrices when the elements are of equal lengths) for the compiling of the
mass and stiffness matrices and converting the final results to those of the original sys-
tem only after the computation is completed.

Chapters 11 and 12: These two chapters, “Mode Summation Procedures for
Continuous Systems,” and “Classical Methods” have been retained as in the previous
edition. Being essentially computing methods, MATLAB has been advantageously used.
Holzer and Myklestad methods have been placed into MATLAB files for available use.

Chapter 13. “Random Vibrations”: Random vibration became of interest to the
engineer with the development of jet engines for airplanes. It is a nondeterministic
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phenomena which require a probabilistic solution. The presentation of the subject here
is mainly from the mathematical treatment to familiarize the students with the new
terminology. Progress in this field is largely through instruments developed to make
measurements useful to engineering design.

Chapter 14, “Nonlinear Vibrations”, can be described as a behavior which cannot
be solved mathematically by superposition. The understanding of its behavior is best
studied by means of the phase-plane. Presented in this chapter are some terminology
for nonlinear systems, its stability and limit cycle and the computer programs of
Runge-Kutta used for its digital solution. A number of problems suitable for the com-
puter are listed in the problem section and marked with a capital M.

Finally I wish to acknowledge my appreciation to my coauthor and to Dr Igor

Mezic of our Mechanical Engineering Department, who corrected and assembled the

Solutions Manual for the fifth edition and added several new problems throughout the
text.

William T. Thomson
Marie Dillon Dahleh

Note: To find the M files referenced in the text log on to the
Prentice Hall’s World Wide Web site at: http://www.prenhall.com
and access the ftp files either via the down load libraries on the

1 authors’ catalog page or under the Help topic or directly at
FTP://ftp.prenhall.com.
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THE SI SYSTEM OF UNITS

THE SI SYSTEM OF UNITS

The English system of units that has dominated the United States from historical times
is now being replaced by the SI system of units. Major industries throughout the
United States either have already made, or are in the process of making, the transition,
and engineering students and teachers must deal with the new SI units as well as the
present English system. We present here a short discussion of the SI units as they apply

to the vibration field and outline a simple procedure to convert from one set of units to
the other.

The basic units of the SI system are

Units Name Symbol
Length Meter m
Mass Kilogram kg

Time Second S

The following quantities pertinent to the vibration field are derived from these basic

units:
Force Newton N (= kg -m/s?)
Stress ' Pascal - Pa (= N/m?)
Work Joule J(=N-'m)
Power Watt - W(=1]/s)
Frequency Hertz Hz (= 1/s)
Moment of a force N-m (= kg-m?/s?)
Acceleration _ m/s? :
Velocity m/s
Angular velocity 1/s
Moment of inertia (area) m? (mm* X 10~12)
Moment of inertia (mass) “kg-m? (kg-cm? X 107%) -

Because the meter is a large unit of length, it will be more convenient to express
it as the number of millimeters multiplied by 1073. Vibration instruments, such as
accelerometers, are in general calibrated in terms of g=9.81 m/s?, and hence

expressed in nondimensional units. It is advisable to use nondimensional representa-
tion whenever possible. '
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2 The Sl System of Units

In the English system, the weight of an object is generally specified. In the SI sys-
tem, it is more common to specify the mass, a quantity of matter that remains
unchanged with location.

In working with the SI system, it is advisable to think directly in SI units. This w1ll
require some time, but the following rounded numbers will help to develop a feeling of
confidence in the use of ST units.

The newton is a smaller unit of force than the pound. One pound of force is equal
to 4.4482 newtons, or approximately four and a half times the value for the pound. (An
apple weighs approximately ; Ib, or approximately 1 newton.)

One inch is 2.54 cm, or 0.0254 meter. Thus, the acceleration of gravity, which is
386 in./s? in the English system, becomes 386 X 0.0254 = 9.81 m/s?, or approximately

10 m/s.

Table of Approximate Equivalents

11b = 45N
Acceleration of gravity g = 10 m/s?
Mass of 1 slug = 15 kg
11t = , m

SI conversion. A simple procedure to convert from one set of units to another
follows: Write the desired SI units equal to the English units, and put in canceling unit
factors. For example, if we wish to convert torque in English units into SI units, we pro-
ceed as follows:

EXAMPLE 1
[Torque SI] = [Torque English] X [multiplying factors]
.1(NY/m
= D) ) )
= [Ib-in.](4.448)(0.0254)
= [Ib-in.](0.1129)
, | |

EXAMPLE 2 _

[Moment of inertia SI]| = [Moment of inertia English] X [multiplying factors]

g = e+ = 541 )

= [Ib-in.-s?](4.448 X 0.0254)
= [Ib-in.-s?](0.1129)
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The Sl System of Units 3

EXAMPLE 3
Modulus of Elasticity, E:

I

(N/m?

e )

N L n? ](4448)(001254 )2

i ](6 894.7)
|
E of steel N/m? = (29 X 10°1b/in.?) (6894.7) = 200 X 10° N/m?
EXAMPLE 4
Spring Stiffness, K:
[N/m] = [Ib/in.] X (175.13)
Mass, M:
[kg] = [Ib-s?/in.] X (175.13) _
|
Conversion Factors* U.S.—British Units to SI Units
To Convert From To Multiply By
Acceleration:
foot/second? (ft/s?) meter/second? (m/s?) 3.048 x 107
inch/second? (in./s?) meter/second? (m/s?) 2.54 X 1072
Area:
foot? (ft?) meter? (m?) 9.2903 x 1072
inch? (in.2) , meter? (m?) 6.4516 X 10~*
yard? (yd?) : meter? (m?) 8.3613 x 10!
Density:
pound mass/inch?® (Ibm/in.3) kilogram/meter® (kg/ m3) © 2.7680 x 10*
pound mass/foct? (Ibm/ft) kilogram/meter? (kg/m?) 1.6018 X 10
Energy, Work:

" 'British thermal unit (Btu) joule (J) 1.0551 x 10?
foot-pound force (ft - 1bf) joule (J) 1.3558
kilowatt-hour (kw - h) joule (J) 3.60 X 105"

Force:
kip (1000 Ibf) newton (N) , 4.4482 X 103
pound force (Ibf) newton (N) 4.4482
ounce force . newton (N) © 27801 x 10!
Length: )
foot (ft) ‘meter (m) 3.048 x 1071
inch (in.) meter (m) 2.54 X 107

mile (mi) (U.S. statute) meter (m) 1.6093 x 10°
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4  The SI System of Units

Conversion Factors* U.S~British Units to SI Units (continued)

To Convert From

To Multiply By
mile (mi) (international nautical) - meter (m) 1.852 X 10**
yard (yd) meter (m) 9.144 x 107 1*
Mass:
pound - mass (Ibm) kilogram (kg) 4.5359 x 107!
slug (1bf - s2/ft) kilogram (kg) 1.4594 x 10
ton (2000 Ibm) kilogram (kg) 9.0718 X 10?
Power: ' _
foot-pound/minute (ft - 1bf/min) watt (W) 22597 x 10~?
horsepower (550 ft - /s) watt (W) 7.4570 X 102
Pressure, stress: '
atmosphere (std) (14.7 1bf/in.2) newton/meter? (N/m? or Pa) 1.0133 X 10°
pound/foot? (Ibf/ft?) newton/meter? (N/m? or Pa) - 4.7880 X 10
pound/inch? (Ibf/in 2, or psi) newton/meter? (N/m? or Pa) 6.8948 % 10°
Velocity: :
foot/minute (ft/min) meter/second (m/s) 5.08 x 1073*
foot/second (ft/s) meter/second (m/s) 3.048 X 1071
knot (nautical mi/h) meter/second (m/s) 5.1444 x 10!
mile/hour (mi/h) meter/second (m/s) 4.4704 X 10~
mile /hour(mi/h) kilometer/hour(km/h) 1.6093
mile/second(mi/s) kilometer/second(km/s) 1.6093
Volume:
_foot? (ft3) meter> (m?) 2.8317 X 1072
inch3 (in.%) meter® (m3) 1.6387 X 1073

*Exact value.

Source: J. L. Meriam, Dynamics, 2nd Ed. (SI Version) (New York: John Wiley, 1975). The International System of Units (SI),
July 1974, National Bureau of Standards, Special Publication 330.
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CHAPTER 1

Oscillatory Motion

The study .of vibration is concerned with the oscillatory motions of bodies and the
forces associated with them. All bodies possessing mass and elasticity are capable of
vibration. Thus, most engineering machines and structures experience vibration to some
degree, and their design generally requires consideration of their oscillatory behavior.

Oscillatory systems can be broadly characterized as linear or nonlinear. For linear
systems, the principle of superposition holds, and the mathematical techniques avail-
able for their treatment are well developed. In contrast, techniques for the analysis of
nonlinear systems are less well known, and difficult to apply. However, some knowl-
edge of nonlinear systems is desirable, because all systems tend to become nonlinear
with increasing amphtude of oscillation.

There are two general classes of vibrations—free and forced. Free vibration takes
place when a system oscillates under the action of forces inherent in the system itself,
and when external impressed forces are absent. The system under free vibration will
vibrate at one or more of its natural frequencies, which are properties of the dynamical
system established by its mass and stiffness distribution.

Vibration that takes place under the excitation of ¢xternal forces is called forced
vibration. When the excitation is oscillatory, the system is forced to vibrate at the exci-
tation freguengy If the frequency of excitation coincides with one of the natural fre-
quencies of the system, a condition of resonance is encountered, and dangerously large
oscillations may result. The failure of major structures such as bridges, buildings, or air-
plane wings is an awesome possibility under resonance. Thus, the calculation of the

- natural frequencies is of major importance in the study of vibrations. -

Vibrating systems are all subject to damping to some degree because energy is
g_1§§lpated by friction and other resistances. If the damping is small, it has very little
influence on the natural frequencies of the system, and hence the calculations for the
natural frequencies are generally made on the basis of no damping. On the other hand,
damping is of great importance in limiting the amplitude of oscillation at resonance.

The number of independent coordinates required to describe the motion of a sys-
tem is called degrees of freedom of the system. Thus, a free particle undergoing general
motion in space will have three degrees of freedom, and a rigid body will have six

5
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T

FIGURE 1.1.1. Recording harmonic motion.

degrees of freedom, i.e., three components of position and three angles defining its ori-
entation. Furthermore, a continuous elastic body will require an infinite number of
coordinates (three for each point on the body) to describe its motion; hence, its
degrees of freedom must be infinite. However, in many cases, parts of such bodies may
be assumed to be rigid, and the system may be considered to be dynamically equiva-
lent to one having finite degrees of freedom. In fact, a surprisingly large number of
vibration problems can be treated with sufficient accuracy by reducing the system to
one having a few degrees of freedom.

1.1  HARMONIC MOTION

—-"M‘
Oscillatory motion ‘may repeat itself regularly, as in the balance wheel of a watch, or
display considerable irregularity, as in earthquakes. When the motion is repeated in
equal intervals of time T, it is called periodic motion. The repetition time 7is called the
period of the oscillation, and its reciprocal, f = 1/7, is called the frequency. If the
motion is designated by the time function x(¢), then any periodic motion must satisfy
the relationship x(¢) = x(t + 7).

The simplest form of periodic motion is harmonic motion. It can be demon-
strated by a mass suspended from a light spring, as shown in Fig. 1.1.1. If the mass is
displaced from its rest position and released, it will oscillate up and down. By placing a
light source on the oscillating mass, its motion can be recorded on a 11ght-sens1t1ve film-

_strip, which is made to move past it at a constant speed.
The motion recorded on the filmstrip can be expressed by the equation

' t
x=Asin2w- (1.1.1)

A sin w!

A

FIGURE 1.1.2. Harmonic motion as a projection of a point moving on a circle.
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Section 1.1 Harmonic Motion 7

where A is the amplitude of oscillation, measured from the equilibrium posmon of the
mass, and Tis the period. The motion is repeated when t = 7.
Harmonic motion is often represented as the projection on a straight line of a

point that is moving on a circle at constant speed, as shown in Fig. 1.1.2. With the angu-

lar speed of the line 0—p designated by w, the displacement x can be written as
x = Asin wt (1.1.2)

The quantity w is generally measured in radians per second, and is referred to as

the circular frequency.! Because the motion repeats itself in 27 radians, we have the
relationship

w= 2—: = 2nf (1.13)

where 7and f are the period and frequency of the harmonic motion, usually meaSured
in seconds and cycles per second, respectively.

The velocity and acceleration of harmonic motion can be simply determined by
differentiation of Eq. (1.1.2). Using the dot notation for the derivative, we obtain

X = wA cos wt = wA sin (ot + 7/2) (1.1.4)
X = —w’Asin ot = *Asin (wt + ) (1.1.5)

Thus, the velocity and acceleration are also harmonic with the same frequency of oscil-
lation, but lead the displacement by 7/2 and = radians, respectively. Figure 1.1.3 shows

both time variation and the vector phase relationship between the displacement, veloc-
ity, and acceleration in harmonic motion.

Examination of Eqgs. (1.1.2) and (1.1.5) reveals that

X =—o’ (1.1.6)

N\

™ N

N\

&
J>

9 -
|.80° " o w!

e
AR

(a) . (b)

—

K
D
<.

X

FIGURE 1.1.3. In harmonic motion, the velocity and acceleration lead the displacement by
7/2 and . '

The word circular is generally deleted, and w and f are used without distinction for frequency.
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so that in harmonic motion, the acceleration is proportional to the displacement and is
directed toward the origin. Because Newton’s second law of motion states that the
acceleration is proportional to the force, harmonic motion can be expected for systems

with linear springs with force varying as kx.

Exponential form. The trigonomg;;;g ﬁgnctlons of sine and cosine are related to

the exponential function by EuTer s equation

e'® = cos @+ isin @ ‘ (1.1.7)

A vector of amplitude A rotating at constant angular speed w can be represented as a
complex quantity z in the Argand diagram, as shown in Fig. 1.1.4.

z = Aeiml .
= A cos wt + iA sin ot (1.1.8)
=x+iy

The quantity z is referred to as the complex sinusoid, with x and y as the real and imag-
inary components, respectively. The quantity z = Ae"‘"‘ also satisfies the differential
equation (1.1.6) for harmonic motion.

Figure 1.1.5 shows z and its conjugate z* = Ae™*', which is rotating in the nega-
tive direction with angular speed — . It is evident from this diagram that the real com-
ponent x is expressible in terms of z and z* by the equation

=1(z + z*) = A cos wt = Re Ae™ (1.1.9)

where Re stands for the real part of the quantity z. We will find that the exponential
form of the harmonic motion often offers mathematical advantages over the trigono-
metric form.

Some of the rules of exponential operatlons between z; = A, e’ and Z, = A,e
are as follows:

Multiplication 2,2, = A A, e@r )
- Z A o
Division A= (—l) PLURLY (1.1.10)
: 2, A,
y y
Z=npe™
)
~Aw!
X X
FIGURE 1.1.4. Harmonic motion FIGURE 1.1.5. Vector z and its eonjugate z*.

represented by a rotating vector.
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Powers " = A"

Zl/n = Al/neio/n

1.2 PERIODIC MOTION

It is quite common for vibrations of several different frequencies to exist simultane-
ously. For example, the vibration of a violin string is composed of the fundamentgl_fg_—
quency f and all its harmonics, 2[ 3f, and so forth. Another example is the free
vibration of a multidegree-of-freedom system, to which the vibrations at each natural
frequency contribute. Such vibrations result in a complex waveform, which is repeated
periodically as shown in Fig. 1.2.1.

' The French mathematician J. Fourier (1768-1830) showed that any periodic
motion can be represented by a series of sines and cosines that are harmonically related.
If x(¢) is a periodic function of the period 7, it is represented by the Fourier series

4
x(f) = 5 tacosof + aycos o +

(1.2.1)
+ b, sin w,t + b, sin w,t + -
where
2
(01 = —
T
®, = nw,

To determine the coefficients a, and b, we multiply both sides of Eq. (1.2.1) by cos w,t or
sin o ¢ and th By recognizing the following relations,

2 .
7 0 ifm#n
COS w,f cOS w,fdt =

-2 7/2 ifm=n
/2 . .
: 0 ifm#*n
i tsi tdt = 22
J'_T/Zsm w,t Sin w,, {7/2 dm=n (1.2.2)

x(n|

T

FIGURE 1.2.1. Periodic motion of period 7.
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2 .
K . 0 ifm+#n
€OS w,t Sin w,t dt = e
—p 0 ifm=n

all terms except one on the right side of the equation will be zero, and we obtain the

result
2 (7
a,= = x(t) cos w,t dt
T ~1/2
) 7/2 : o
b,= = J x(t) sin w,t dt 1.23)
T —1/2

The Fourier series can also be represented in terms of the exponential function.
Substituting

COs w, I = %(ei“’n’ + e—iw,,t)
sin w,t = —3i(e’ — o)

in Eq. (1.2.1), we obtain

il

) = 2+ B3, — ib)e +3a, + ib,)e ]
n=1

= 92—0 + O e + creion] ‘ 1.2.4)
n=1 .
— 2 c,,e“""’
where
1
¢y = 34
ooy (125)
¢y = 3(a, - ib,)
Substituting for a, and b, from Eq. (1.2.3), we find ¢, to be
' 1 7/2
€, = = J x(¢)(cos w,t — isin w,t) dt
TJ-m2
1 7/2
== J "~ x(t)e i dt (12.6)
T -7/2 )

Some computational effort can-be minimized when the function x(¢) is recogniz-
able in terms of the even and odd functions:

() = E@) + o) 127

An even function E(t) is symmetric about the origin, so that E(t) = E(-1), ie.,
cos wt = cos (—wr). An odd function satisfies the relationship O(f) = —O(~1), i.e.,
sin wt = —sin(—wt). The follgwing integrals are then helpful:
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0.4[

03F T~
Jagd+b2 o2} i

AN
01} ~ -
~N — -~
0 r J ’T T T\r -
0O1 2 3 4 5 6 7 8 9 10 Il 12 n

O P [ R
4, /T/[ /’f/ /[

—~90° }» _______ L./ ____________

FIGURE 1.2.2. Fourier spectrum for pulses shown in Prob. 1.16,k = §.

/2 .
J E(f)sinw,tdt =0 (12.8)

—-7/2

7/2
J' O(t) cos wt dt = 0
—7/2

When the coefficients of the Fourier series are plotted against frequency w , the
result is a series of discrete lines called the Fourier spectrum. Generally plotted are the
absolute values |2c,| = Va2 + b? and the phase ¢, = tan"'(b,/a,), an example of
which is shown in Fig. 1.2.2. Fourier analysis including the Fourier transform are dis-
cussed in more detail in Chapter 13.

With the aid of the digital computer, harmonic analysis today is efficiently car-
ried out. A computer algorithm known as the fast Fourier transform? (FFT) is com-
monly used to minimize the computation time.

<7
1.3 VIBRATION TERMINOLOGY 7“'\@

Certain terminologies used in vibration analysis need to be represented here. The sim-
plest of these are the peak value and the average value. ,

The peak value generally indicates the maximum stress that the vibrating part is
undergoing. It also places a limitation on the “rattle space” requirement.

The average value indicates agg;g_cly or static value, somewhat like the dc level of
an electrical current. It can be found by the time integral

1 (7
%= lim = J x(0) dt (13.1)
T 0

See J. S. Bendat and A. G. Piersol, Random Data (New York: John Wiley, 1971), pp. 305-306.
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For example, the average value for a complete cycle of a'sine wave, A sin ¢, is zero;
whereas its average value for aﬁgﬁ:ygle/n_s,

_ AT
x= — J sintdt = 24 _ 0.637A4
Itis evident that this is also the average value of the rectified sine wave shown in Fig. 1.3.1.

The square of the displacement generally is associated with the energy of the
vibration for which the mean square value is a measure. The square value of a

time function x(¢) is found from the average of the squared values, integrated over some
time interval T: :

T
— 1
2 - — 2
x* = lim ijx (¢) dt (13.2)
For example, if x(r) = A sin wt, its mean square value is
T

— A? 1 1
x* = }'ﬂ? L E(l - COSZwt)dt = EAZ

The root mean square (rms) value is the square root of the mean square value.
From_the previous example, the rms of the sine wave of amplitude A is
A/ V2 = 0.707A. Vibrations are commonly measured by rms meters. v

The decibelis a unit of measurement that is frequently used in vibration mea-
surements. It is defined in terms of a power ratio.

P
dB = 1010 (-—)
) 210 P

2
=10 logm( }—;1 )
2

The second equation results from the fact that power is proportional to the square of

the amplitude or voltage. The decibel is often expressed in terms of the first power of
amplitude or voltage as

(1.33)

dB =20 1ogm(3‘—‘) (13.4)
‘ X2
Thus an amplifier with a voltage gain of 5 has a decibel gain of

20 log,,(5) = +14

x(1)

FIGURE 1.3.1. Average ' f
value of a rectified sine wave.
—
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Because the decibel is a logarithmic unit, it compresses or expands the scale.
When the upper limit of a frequency range is twice its lower limit, the frequency

span is said to be an octave. For example, each of the frequency bands in the following
table represents an octave band.

IBand Frequency Range (Hz) Frequency Bandwidth
1 10-20 10
2 2040 . 20
3 40-80 40
4 200400 200

PROBLEMS

1.1. A harmonic motion has an amplitude of 0.20 cm and a period of 0.15 s. Determine the
maximum velocity and acceleration.

1.2. An accelerometer indicates that a structure is vibrating harmonically at 82 cps with a
maximum acceleration of 50 g. Determine the amplitude of vibration.

13. A harmonic motion has a frequency of 10 cps and its maximum velocity is 4.57 m/s.
Determine its amplitude, its period, and its maximum acceleration.

1.4. Find the sum of two harmonic motions of equal amplitude but of slightly different fre-
quencies. Discuss the beating phenomena that result from this sum.

1.5. Express the complex vector 4 + 3i in the exponential form Ae.
1.6. Add two complex vectors (2 + 3i) and (4 — i), expressing the result as A2 6.
1.7. Show that the multiplication of a vector z = Ae' by i rotates it by 90°.

1.8. Determine the sum of two vectors 5¢™° and 4¢™* and find the angle between the resul-
tant and the first vector.

1.9. Determine the Fourier series for the rectangular wave shown in Fig. P1.9.

FIGURE P1.9.

1.10. If the origin of the square wave of Prob. 1.9 is shifted to the right by /2, determine the
Fourier series.
1.11. Determine the Fourier series for the triangular wave shown in Fig. P1.11.
x(t)
1.0

- O mw 2m 3w wyt

FIGURE P1.11.
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1.12. Determine the Fourier series for the sawtooth curve shown in Fig. P1.12. Express the
result of Prob. 1.12 in the exponential form of Eq. (1.2.4).

x(t)
1.0

-2 . |0 2 ar 6 w, t
FIGURE P1.12.

1.13. Determine the rms value of a wave consisting of the positive portions of a sine wave.

1.14. Determine the mean square value of the sawtooth wave of Prob. 1.12. Do this two ways,
from the squared curve and from the Fourier series.

1.15. Plot the frequency spectrum for the triangular wave of Prob. 1.11.
1.16. Determine the Fourier serles of a series of rectangular pulses shown in Fig. P1.16. Plot c,

and ¢, versusn when k = 3

21r->{ —>|ka wy t

FIGURE P1.16.

1.17. Write the equation for the displacement-s of the piston in the crank-piston mechanism
shown in Fig. P1.17, and determine the harmonic components and their relative magni-
tudes. If r/l = 1, what is the ratio of the second harmonic compared to the first?

FIGURE P1.17. . s~

1.18. Determine the mean square of the rectangular puise shown in Fig. P1.18 for k = 0.10. If
the amplitude is A, what would an rms voltmeter read?

FIGURE P1.18. b—r— ekr
1.19. Determine the mean square value of the triangular wave of Fig. P1.11.-

1.20. An rms voltmeter specifies an accuracy of 0.5 dB. If a vibration of 2.5 mm rms is mea-
sured, determine the millimeter accuracy as read by the voltmeter.
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1.21.

1.22.

1.23.

1.24.

1.25.

Problems 15

Amplification factors on a voltmeter used to measure the vibration output from an
accelerometc;r are given as 10, 50, and 100. What are the decibel steps?

The calibration curve of a piezoelectric accelerometer is shown in Fig. P1.22 where the

ordinate is in decibels. If the peak is 32 dB, what is the ratio of the resonance response to
that at some low frequency, say, 1000 cps?

30 [\L

20 LL%
: e 7
g 0 "] (
: \

\

-20 q T] A\

100 1000 10000 100000
fu FIGURE P1.22.

Using coordinate paper similar to that of Appendix A, outline the bounds for the follow-

. ing vibration specifications. Max. acceleration = 2 g, max. displacement = 0.08 in., min.

and max. frequencies: 1 Hz and 200 Hz.

Assume a pulse occurs at integer times and lasts for 1 second. It has a random amplitude
with the probability of having the amplitude equal 1 or —1 being p(1) = p(-1) = 1/2.
What is the mean value and the mean square value of the amplitude?

Show that every function f{f) can be represented as a sum of an odd function O(¢) and an
even function E(f).
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CHAPTER 2

Free Vibration

All systems possessing mass and elasticity are capable of free vibration, or vibration
that takes place in the absence of external excitation. Of primary interest for such a
system is its natural frequency of vibration. Qur objectives here are to learn to write its
equation of motion and evaluate its natural frequency, which is mainly a function of
the mass and stiffness of the system.

Damping in moderate amounts has little influence on the natural frequency and
may be neglected in its calculation. The system can then be considered to be conserva-
tive, and the principle of conservation of energy offers another approach to the calcula-
tion of the natural frequency. The effect of damping is mainly evident in the diminishing
of the vibration amplitude with time. Although there are many models of damping, only
those that lead to simple analytic procedures are considered in this chapter.

2.1 VIBRATION MODEL

The basic vibration model of a simple oscillatory system consists of a mass, a massless
spring, and a damper. The mass is considered to be lumped and measured in the SI sys-
tem as kilograms. In the English system, the mass is m = w/g Ib - s?/in.

The spring supporting the mass is assumed to be of negligible mass. Its force-
deflection relationship is considered to be linear, following Hooke’s law, F = kx, where
the stiffness k is measured in newtons/meter or pounds/inch. |

The viscous damping, generally represented by a dashpot, is described by a
force proportional to the velocity, or f = c¢x.The damping coefficient c is measured in
newtons/meter/second or pounds/inch/second.

2.2 EQUATIONS OF MOTION: NATURAL FREQUENCY

Figure 2.2.1 shows a simple undamped spring-mass system, which is assumed to move
only along the vertical direction. It has 1 degree of freedom (DOF), because its motion
is described by a single coordinate x.

16
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Unstretched

+x)
position Static equilibrium

position
li 1x

FIGURE 2.2.1. Spring-mass system and free-body diagram.

When placed into motion, oscillation will take place at the natural frequency f,,
which is a property of the system. We now examine some of the basic concepts associ-
ated with the free vibration of systems with 1 degree of freedom.

Newton’s second law is the first basis for examining the motion of the system. As
shown in Fig. 2.2.1 the deformation of the spring in the static equilibrium position is A,
and the spring force kA is equal to the gravitational force w acting on mass rm:

kA =w = mg 2.2.1)

By measuring the displacement x from the static equilibrium position, the forces act-
ing on m are k(A + x) and w. With x chosen to be positive in the downward direction,

all quantities—force, velocity, and acceleration—are also positive in the downward
direction.

We now apply Newton’s second law of motion to the mass m:
mx =23F=w — k(A + x)

and because kA = w, we obtain

mx = —kx (22.2)

It is evident that the choice of the static equilibrium position as reference for x has elimi-

nated w, the force due to gravity, and the static spring force kA from the equation of

motion, and the resultant force on m is simply the spring force due to the dlsplacement x.
By defining the circular frequency w, by the equation

W= = | @23

" Eq. (2.2.2) can be written as

X+ awx=0 (22.4)

and we conclude by cbmparison with Eq. (1.1.6) that the motion is harmonic. Equa-
tion (2.2.4),a homogeneo%‘\ew linear differential equation, has the follow-

W x = Asin w,t + B cos w,t 2.2.5)

where A and B are the two necessary constants, These constants are evaluated from
initial conditions x(0) and x(0), and Eq. (2.2.5) can be shown to reduce to
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x(0)

sin w,t + x(0) cos w,t » (2.2.6)

n

The natural period of the oscillation is established from w,r = 2, or

T= 277\/% ' (22.7)
1 1 k '

These quantities can be expressed in terms of the statical deflection A by observing
Eq. (2.2.1), kA = mg. Thus, Eq. (2.2.8) can be expressed in terms of the statical deflec-

tion A as A
1 /g
= 229

Note that 7, f ,and », depend only on the mass and stiffness of the system, which are
properties of the system.

Although our discussion was in terms of the spring-mass system of Fig. 2.2.1, the
results are applicable to all single-DOF systems, including rotation. The spring can be a
beam or torsional member and the mass can be replaced by a mass moment of inertia.

A table of values for the stiffness k for various types of springs is presented at the end”
of the chapter.

and the natural frequency is

EXAMPLE 2.2.1

A 1-kg mass is suspended by a spring having a stiffness of 0.1533 N/mm. Determine its natural
frequency in cycles per second. Determine its statical deflection.

Solution The stiffness is

k = 1533 N/m
By substituting into Eq. (2.2.8), the natural frequency is

1 [k 1 [1333
1= 2oVNm = 22\ 0 =304 Hz

‘The statical deflection of the spring suspending the }-kg mass is obtained from the relationship
mg =kA

A= M8 _ 025 X 9.81
" Knjpm - 0.1533

= 16.0 mm

EXAMPLE 2.2.2

Determine the natural frequency of the mass M on the end of a cantilever beam of negligible
mass shown in Fig. 2.2.2. '
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2 O

FIGURE 2.2.2. Z

Solution The deflection of the cantilever beam under a concentrated end force P is

Y i
*T3E Tk

where EI is the flexural rigidity. Thus, the stiffness of the beam is k = 3EI//3, and the natural fre-

quency of the system becomes
1 |[3EI
RENE]
29 ¥ Ml

EXAMPLE 2.2.3 ) -

An automobile wheel and tire are suspended by a steel rod 0.50 cm in diameter and 2 m long, as
shown in Fig. 2.2.3. When the wheel is given an angular displacement and released, it makes 10
oscillations in 30.2 s. Determine the polar moment of inertia of the wheel and tire.

FIGURE 2.2.3.

Solution The rotational equation of motion corresponding to Newton’s equation is
Jo= —K#@

where J is the rotational mass moment of inertia, K is the rotational stiffness, and 6 is the angle
of rotation in radians. Thus, the natural frequency of oscillation is equal to

w, = 2#% = 2.081 rad/s
The torsional stiffness of the rod is given by the equation K = GI,/I, where I, = wd*/32 =
polar moment of inertia of the circular cross-sectional area of the rod, /= length, and
G = 80 X 10° N/m? = shear modulus of steel.

I

I, %(0.5 x 107%)* = 0.006136 X 10~ m*

80 % 10° X 0.006136 X 10~®
K= 2

= 2.455 N-m/rad


http://www.semeng.ir

WWW. senmeng. i r

20 Chapter2 Free Vibration

By substituting into the natural frequency equation, the polar moment of inertia of the wheel
and tire is

K 45
j- K _ 2455

P = W = 0.567kg-m2

EXAMPLE 2.2.4 u

Figure 2.2.4 shows a uniform bar pivoted about point O with springs of equal stiffness k at each
end.The bar is horizontal in the equilibrium position with spring forces P, and P,. Determine the
equation of motion and its natural frequency.

8
k 4 k
c
‘ 5
FIGURE 2.2.4. 7 7

Solution Under rotation 6, the spring force on the left is decreased and that on the right is
increased. With J o as the moment of inertia of the bar about O, the moment equation about O is

S M, = (P, — ka6)a + mgc — (P, + kb6)b = J,0
However, '
Pa + mgc— Pb=0

in the equilibrium position, and hence we need to consider only the moment of the forces due to
displacement 6, which is '

S M, = (—ka® — kb2 = J,0
Thus, the equation of motion can be written as
e 2 2
0+ M 0=
Jo

and, by inspection, the natural frequency of oscillation is

0

2.3 ENERGY METHOD

In a conservative system, the total energy is constant, and the differential equation of
motion can also be established by the principle of conservation of energy. For the free
vibration of an undamped system, the energy is partly kinetic and partly potential. The
kinetic energy T is stored in the mass by virtue of its velocity, whereas the potential
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energy U is stored in the form of strain energy in elastic deformation or by a spring or
work done in a force field such as gravity. The total energy being constant, its rate of
change is zero, as illustrated by the following equations:

T + U = constant (23.1)
d
y (T+U)=0 (232)

If our interest is only in the natural frequency of the system, it can be determined
by the following considerations. From the principle of conservation of energy, we can

write
n+Uu=T,+U, (2.3.3)

where | and , represent two instances of time. Let | be the time when the mass is pass-
ing through its static equilibrium position and choose U, = 0 as reference for the
potential energy. Let , be the time corresponding to the maximum displacement of the
mass. At this position, the velocity of the mass is zero, and hence T, = 0. We then have

T, +0=0+U, (2.3.4)

However, if the system is undergoing harmonic motion, then T, and U, are maximum
values, and hence

Thax = Unax (23.5)
The preceding equation leads directly to the natural frequency.

EXAMPLE 2.3.1

Determine the natural frequency of the system shown in Fig. 2.3.1.

Figure 2.3.1.

Solution Assume that the system is vibrating harmonically with amplitude 6 from its static
equilibrium position. The maximum kinetic energy is

Tmax _~= [%182 + %m(rle)z]max
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The maximum potential energy is the energy stored in the spring, which is
Upax = —k(r2 6)?

Equéting the two, the natural frequency is

| kr3
w =
" J + mr?

The student should verify that the loss of potential energy of m due to position r, 8 is can-
celed by the work done by the equilibrium force of the spring in the position 6 = 0.

max

EXAMPLE 2.3.2

A cylinder of weight w and radius r rolls without slipping on a cylindrical surface of radius R, as
shown in Fig. 2.3.2. Determine its differential equation of motion for small oscillations about the
lowest point. For no slipping, we have r¢ = Ru.

Figure 2.3.2. /%j

Solution In determining the kinetic energy of the cylinder, it must be noted that both transla-
tion and rotation take place. The translational velocity of the center of the cylinder is (R - r)G

whereas the rotational velocity is (¢ — 0) = (R/r — 1)6, because ¢ = (R/r)8 for no slipping.
The kinetic energy can now be written as *

r= 22(r- il + J25[ (2 -1)i]

S0 g
where (w/g)(r?/2) is the moment of inertia of the cylinder about its mass center.
The potential energy referred to its lowest position is
' U= w(R - r)(1 - cosd)

which is equal to the negative of the work done by the gravnty force in lifting the cylmder
through the vertical height (R — r)(1 — cos#).
Substituting into Eq. (2.3.2)

[ %15- (R - 120 + w(R - r)sino]é =0
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. and letting sin 6 = 6 for small angles, we obtain the familiar equation for harmonic motion

.. zg
+ 9=
0 3(R-7) 0

By inspection, the circular frequency of oscillation is

2.4 RAYLEIGH METHOD: EFFECTIVE MASS

The energy method can be used for multimass systems or for distributed mass systems,
provided the motion of every point in the system is known. In systems in which masses
are joined by rigid links, levers, or gears, the motion of the various masses can be

-expressed in terms of the motion x of some specific point and the system is simply one

of a single DOF, because only one coordinate is necessary. The kinetic energy can then
be written as

T=1im x> (2.4.1)

where m g is the effective mass or an equivalent lumped mass at the specified point. If
the stiffness at that point is also known, the natural frequency can be calculated from
the simple equation

w = 242

! Megs” ( )

In distributed mass systems such as springs and beams, a knowledge of the distri-

bution of the vibration amplitude becomes necessary before the kinetic energy can be

calculated. Rayleigh! showed that with a reasonable assumption for the shape of the

vibration amplitude, it is possible to take into account previously ignored masses and

arrive at a better estimate for the fundamental frequency. The following examples
illustrate the use of both of these methods. '

EXAMPLE 2.4.1

_ Determine the effect of the mass of the spring on the natural frequency of the system shown in

Fig.2.4.1.

Solution With xequal to the velocity of the lumped mass m, we will assume the velocity of a
spring element located a distance y from the fixed end to vary linearly with y as follows:
.y
iz

l

John W. Strutt, Lord Rayleigh, The Theory of Sound, Vol. 1, 2nd rev. ed. (New York: Dover, 1937),
pp-109-110.
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FIGURE 2.4.1.
Effective mass of spring.

The kinetic energy of the spring can then be integrated to
1 .
1 -y\’m im,.
T = = Z) S dy==-—% 2
ad 2,[)(xl)l Y=33"

and the effective mass is found to be one-third the mass of the spring. Adding this to the lumped
mass, the revised natural frequency is

EXAMPLE 2.4.2

A simply supported beam of total mass s, has a concentrated mass M at midspan. Determine
the effective mass of the system at midspan and find its fundamental frequency. The deflection
under the load due to a concentrated force P applied at midspan is PI°/48EI. (See Fig. 2.4.2 and
table of stiffness at the end of the chapter.)

fe—2/2—
' D— 7
 FIGURE242. X~ .
Effective mass of beam. | 4 _ ' ~|

Solution We will assume the deflection of the beam to be that due to a concentrated load at

midspan or
7] (=3)
= — — — - -
Y= ma T T 172
The maximum kinetic energy of the beam itself is then

2 3732
Tmax - 2 J-O 1 {.Ymax[ ] 4 ] dx

The effective mass at midspan is then equal to

My = M + 0.4857m,

I}

2 (04857m)%n
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and its natural frequency becomes

_ 48EI
“n P(M + 0.4857m,)

2.5 PRINCIPLE OF VIRTUAL WORK

We now complement the energy method by another scalar method based on the prin-
ciple of virtual work. The principle of virtual work was first formulated by Johann J.
Bernoulli.? It is especially important for systems of interconnected bodies of higher
DOF, but its brief introduction here will familiarize the reader with its underlying con-
cepts. Further discussion of the principle is given in later chapters.

The principle of virtual work is associated with the equilibrium of bodies, and
may be stated as follows: If a system in equilibrium under the action of a set of forces is
given a virtual displacement, the virtual work done by the forces will be zero.

The terms used in this statement are defined as follows: (1) A virtual displace-
ment &r is an imaginary infinitesimal variation of the coordinate given instantaneously.
The virtual displacement must be compatible with the constraints of the system.
(2) Virtual work 8W is the work done by all the active forces in a virtual displacement.
Because there is no significant change of geometry associated with the virtual displace-
ment, the forces acting on the system are assumed to remain unchanged for the calcu-
lation of éW.

The principle of virtual work as formulated by Bernoulli is a static procedure. Its

‘extension to dynamics was made possible by D’Alembert® (1718-1783), who intro-

duced the concept of the inertia force. Thus, inertia forces are included as active forces
when dynamic problems are considered.

EXAMPLE 2.5.1

Using the virtual work method, determine the equation of motion for the rigid beam of mass M
loaded as shown in Fig.2.5.1. _ :

Solution Draw the beam in the displaced position 6 and place the forces acting on it, includ--

'ing the inertia and damping forces. Give the beam a virtual displacement 86 and determine the

work done by each force. '

Mi? ..
Inertia force W = —( 3 6) 80

. I \1
‘ Spring force W = (k 2 0) 2 86
Damper force 8W = — (cl§)! 56

2Johann J. Bernoulli (1667-1748), Basel, Switzerland.
3D’ Alembert, Traite de dynamique, 1743,
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§:leuf°mw
\L £/2 | £/2

FIGURE 2.5.1.

1

2
Uniform load §W = J. (pof(t) dx)x 80 = p,f(2) IE 89

0
Summing the virtual work and equating to zero gives the differential equation of motion:

M2\ o2
(%5 )i+ @i+ kG 0= 550

EXAMPLE 2.5.2

Two simple pendulums are connected together with the bottom mass restricted to vertical
motion in a frictionless guide, as shown in Fig. 2.5.2. Because only one coordinate 6 is necessary,
it represents an interconnected single-DOF system. Using the virtual work method, determine
the equation of motion and its natural frequency.

Z
T\88
—A186sin
W\
156
_fors6sing

Figure 2.5.2. Virtual work of double pendulum with motion of m, restricted along vertical line.
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Solution Sketch the system displaced by a small angle 6 and place on it all forces, including
inertia forces. Next give the coordinate 6 a virtual displacement 6. Due to this displacement, m,
and m, will undergo vertical displacements of / 80 sin 6 and 2/ 8 sin 6, respectively. (The acceler-
ation of m, can easily be shown to be 2/(fsin 6 + 6%cos 6), and its virtual work will be an order

of mfmltemmaI smaller than that for the gravnty force and can be neglected.) Equating the vir-
tual work to zero, we have

SW = —(m,16)186 — (m,g)l 56 sin 6 — (m,g)2180sin 6 = 0
= —[m10 + (m, + 2m,)g sin 6}186 = 0

Because 86 is arbitrary, the quantity within the brackets must be zero. Thus, the equation of
motion becomes

6+ (1 2 ) Eg=0
my /1
where sin 6 = @ has been substituted. The natural frequency from the preceding equation is

w, = (1 + 2m2)g
' my 1

2.6 VISCOUSLY DAMPED FREE VIBRATION "

Viscous damping force is expressed by the equation

F,=cx (2.6.1)
where c is a constant of proportionality. Symbolically, it is designated by a dashpot, as
shown in Fig. 2.6.1. From the free-body diagram, the equation of motion is seen to be

mx + cx + kx = F(f) : (2.6.2)

The solution of this equation has two parts. If F(f) = 0, we have the homogeneous dif-
ferential equation whose solution corresponds physically to that of free-damped vibra-
tion. With F(f) # 0, we obtain the particular solution that is due to the excitation

- irrespective of the homogeneous solution. We will first examine the homogeneous

equation that will give us some understanding of the role of damping.

kfé c ’
) o A_ kTA kx cx
2N R
1' m
w

. Fn FIGURE 2.6.1.
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With the homogeneous equation _
mi + ot + kx = 0 | (263)
the traditional approach is to assume a solution of the form
x=ce" (2.64)
where s is a constant. Upon substitution into the differential equation, we obtain
(ms®> + cs + k)e" =0
which is satisfied for all values of t when
2+ Sse Xy (26.5)
m m

Equation (2.6.5), which is known as the characteristic equation, has two roots:

c c \? k
= - — + —_ [ 2:6.6
512 2m ( 2m ) ..m ( )
Hence, the general solution is given by the equation
x = Ae” + Be™ (2.6.7)

where A and B are constants to be evaluated from the initial condltlons x(0) and x(0).
Equation (2.6.6) substituted into (2.6.7) gives

x = e-(e/?m)z(Ae Vie/2mP ~kjm)e 4 Be‘(V(c/Z’”)z’k/m )') (2.6.8)

The first term, e /> is simply an exponentially decaying function of time. The
behavior of the terms in the parentheses, however, depends on whether the numerical
value within the radical is positive, zero, or negative.

When the damping term (c/2m)? is larger than k/m, the exponents in the previ-

ous equation are real numbers and no oscillations are pOSSlble We refer to this case as
overdamped.

When the damping term (c/2m)? is less than k/m, the exponent becomes an imag-

inary number, +i{V k/ m — (c/2m)*t. Because

. N2 2
= Viim=G/amT ) — o —k——(—c—)tiisin i(-—(,\—c—)t
m 2m m 2m
the terms of Eq. (2.6.8) within the parentheses are oscillatory. We refer to this case as
underdamped.

In the limiting case between the oscillatory and nonoscﬂlatory motion,

(c/2m)? = k/m, and the radical is zero. The damping corresponding to this case is called
critical damping, c,

c, = 2m\/-'k; = 2mw, = 2Vkm (2.6.9)

Any damping can then be expressed in terms of the crlllcal dampmg by a nondimen-
sional number ¢, called the damping ratio:
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K3}

{= (2.6.10)

()

c

and we can also express s, , in terms of { as follows:

c c,
2m {( 2m

)- e
Equation (2.6.6) then becomes ,
s12=(=¢ 2V - o, ' (26.11)

The three cases of damping discussed here now depend on whether { is greater
than, less than, or equal to unity. Furthermore, the differential equation of motion can
now be expressed in terms of { and w, as

. : 1 ‘
X+ 2wx + @lx = ;F(t) (26.12)

This form of the equation for single-DOF systems will be found to be helpful in identi-
fying the natural frequency and the damping of the system. We will frequently
encounter this equation in the modal summation for multi-DOF systems.

Figure 2.6.2 shows Eq. (2.6.11) plotted in a complex plane with { along the hori-
zontal axis. If £ = 0, Eq. (2.6.11) reduces to s, ,/w, = =i so that the roots on the imagi-

nary axis correspond to the undamped case. For 0 < ¢ =1, Eq. (2.6.11) can be
rewritten as

%Z =—¢+iV1-{¢ for{<l1 -(2.6.13)

The roots s, and s, are then conjugate complex points on a circular arc converging at
the point s1,2/ o, = —1.0. As { increases beyond unity, the roots separate along the

Imaginary axis

t=0
1.0
i
&
| Wp
h-g2
A Real
L & axis
£=1.0 |I [o)
|
/5
l @n
i
|
-10
t=0

FIGURE 2.6.2.
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horizontal axis and remain real numbers. With this diagram in mind, we are now
ready to examine the solution given by Eq. (2.6.8).

Oscillatory motion. [¢ < 1.0 (Underdamped Case).] By substituting Eq. (2.6.11)

into (2.6.7), the general solution becomes
x = e ti(AVI- 0t 4 BemiVI-lay) (2.6.14)
This equation can also be written in either of the following two forms:
x = Xe sin(V1 — 2 w,t + ¢) | (2.6.15)
= e~ (C,sin V1 = {2 w,t + Cycos V1 — {2 wyt) (2.6.16)

‘where the arbitrary constants X, ¢, or C,,C, are determined from initial conditions.
With initial conditions x(0) and £ (0), Eq. (2 6. 16) can be shown to reduce to

x = e_{“’"’(w sin V1 —~ 2 w,t + x(0) cos V1 — §2w,,t> (2.6.17)

0, V1 - I
The equation indicates that the frequency of damped oscillation is equal to
w; = 2m _ w V1 - (2.6.18)
T4 -

Figure 2.6.3 shows the general nature of the oscillatory motion.

Nonoscillatory motion. [{> 1.0 (Overdamped Case).] As { exceeds unity, the
.two roots remain on the real axis of Fig. 2.6.2 and separate, On ?"mc‘ rea”“ng d the
other decreasing. The general solution then becomes T H

x = A VDo 4 go(-t-Vii-T)u (2.6.19)

where

#0) + (¢ + V&= 1)w,x(0)

A= 2.6.20
20,V -1 ( )

Xsing

|
i

FIGURE 2.6.3. Damped oscillation { < 1.0.
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\ x(1)

\

N
G x(0)

of————=
/ Be( - V )w,,
// 0 ;
/
/
8f
FIGURE 2.6.4. Aperiodic motion { > 1.0. FIGURE 2.6.5. Critically damped motion { = 1.0.
and

—i(0) — (£ = V2 — 1)w,x(0)
20,V -

The motion is an exponentially decreasing function of time, as shown in Fig. 2.6.4, and
is referred to as aperiodic.
aperioaic.

B:

(2.6.21)

—

Critically damped motion. [{=1.0.] For (=1, we obtain a double root,
s, = s, = ~w , and the two terms of Eq. (2.6.7) combine to form a single term, which is
lacking in the number of constants required to satisfy the two initial conditions.

The correct general solution is

x = (A + Bt)e ! : (2.6.22)
which for the initial conditions x(0) and x(0) becomes
x = {x(0) + [x(0) + w,x(0)]t}e~ - (2.6.23)

This can also be found from Eq. (2.6.17) by letting { — 1. Figure 2.6.5 shows three types
of response with initial displacement x(0).

2.7 LOGARITHMIC DECREMENT

A convenient way to determine the amount of damping present in a system is to mea-

~ sure the rate of decay of free oscillations. The larger the damping, the greater will be

the rate of decay.
Consider a damped vibration expressed by the general equation (2.6.15)

x = Xe %sin(V1 — Zo,t + ¢)

which is shown graphically in Fig. 2.7.1. We introduce here a term called the logarith-
mic decrement, which is defined as the natural logarithm of the ratio of any two succes-
sive amplitudes. The expression for the logarithmic decrement then becomes
X, e f“'"sm(\ll—gzwtl+¢)
6=In— =In
X2 e+ ) sin[V1 — 2w,(t + ) + ¢]

(2.7.1)
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FIGURE 2.7.1. Rate of decay of
oscillation measured by the logarithmic

and because the values of the sines are equal when the time is increased by the
damped period 7,, the preceding relation reduces to
—————————
' — Lwyty
e

&= lnm = |n ef™ = {w,7, (2.7.2)

By substituting for the damped period, 7, = 27/, V1 — {2, the expression for the log-
arithmic decrement becomes

§= —=2— 273
V1-¢22 : _ )
which is an exact equation.
When ¢is small, V1 — ¢? = 1, and an approximate equation
S=2m¢ 2.7.4)

is obtamed Figure 2.7.2 shows a plot of the exact and approximate values of & as a
functlon’of L

EXAMPLE 2.7.1 _ .
The following data are given for a vibrating system with viscous damping: w =10 Ib, k = 30

Ib/in., and ¢ = 0.12 Ib/in./s. Determine the logarithmic decrement and the ratio of any two suc-
cessive amplitudes.

Solution The undamped natural frequency of the system in radians per second is

_ [k [30x386
w, = m—‘——m‘ = 34.0rad/s

The critical damping coefficient c, and damping factor { are

10
_ = - /
¢, =2me, =2 X 336 X 340 = 1761b/m,s
L= ¢ _012 = 0.0681
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2} f
10
E
Q
é 8 /
L%]
€
£ 6 L, ‘,7‘
= 2
5 e/ 622
g AV
| 4 b g 2
" oot
< ’d
.2 //

0 02 04 06 08 10 FIGURE2.7.2. Logarithmic

¢= 'g;- Damping factor decrement as function of {.

The logarithmic decrement, from Eq. (2.7.3),1s
_ _2m{ _ _2mX0.0681
Vi-¢2  V1-(0.0681)

The amplitude ratio for any two consecutive cycles is

é = 0.429

== 0 = 154
X2
|
EXAMPLE 2.7.2
Show that the logarithmic decrement is also given by the equation
d= H in X
n o x

n

where x, represents the amplitude after n cycles have elapsed. Plot a curve giving the number of
cycles elapsed against { for the amplitude to diminish by 50 percent.

Solution The amplitude ratio for any two consecutive amplitudes is

The ratio x,/x, can be written as

o _ (ﬁ)(ﬁ)(ﬁ)("__l) (= o
Xn Xy /\ X2 /\ X3 Xy
from which the required equation is obtained as

5= Lk

n
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w
L——""]

\.\

Number of cycles for 50% reduction in amplitude

<o 005 010 015 020
FIGURE 2.7.3. (= g; Domping factor

To determine the number of cycles elapsed for a 50-percent reduction in amplitude, we
obtain the following relation from the preceding equation:

1 0.69
8=2m{=-In2= 0.693

ni = 0.693 =(.110
27

L4
The last equation is that of a rectangular hyperbola and is plotted in Fig. 2.7.3.

2.8 COULOMB DAMPING

Coulomb damping results from the sliding of two dry surfaces. The damping force is
equal to the product of the normal force and the coefficient of friction w and is
assumed to be independent of the velocity, once the motion is initiated. Because the
sign of the damping force is always opposite to that of the velocity, the differential
equation of motion for each sign is valid only for half-cycle intervals.

To determine the decay of amplitude, we resort to the work-energy principle of
equating the work done to the change in kinetic energy. By choosing a half-cycle start-
ing at the extreme position with velocity equal to zero and the amplitude equal to X,
the change in the kinetic energy is zero and the work done on m is also zero.

sh(X?— X2) - F{X,+X_))=0
or
%k(xl - X—1) =F,
where X _, is the amplitude after the half-cycle, as shown in Fig. 2.8.1.
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FIGURE 2.8.1. Free vibration |
with Coulomb damping.

By repeatihg this procedure for the next half-cycle, a further decrease in ampli-
tude of 2F,/k will be found, so that the decay in amplitude per cycle is a constant and
equal to

(2.8.1)

The motion will cease, however, when the amplitude becomes less than A, at
which position the spring force is insufficient to overcome the static friction force, which
is generally greater than the kinetic friction force. It can also be shown that the fre-
quency of oscillation is @, = V'k/m, which is the same as that of the undamped system.

Figure 2.8.1 shows the free vibration of a system with Coulomb damping. It
should be noted that the amplitudes decay linearly with time.

Numerical metheds. Throughout the course of this book numerical techniques
are introduced when appropriate. The finite difference method is discussed in Secs. 4.7
and 5.5. The Runge-Kutta method appears in Secs. 4.8 and 14.8. Chapter 8 is devoted to
computational methods. It includes techniques for finding the roots of a polynomial,
Sec. 8.1; eigenvalues and eigenvectors, Secs 8.2, 8.3, 8.9, and 8.10; and the Cholesky
decomposition, Sec. 8.8. The finite element method is the subject of Chapter 10. The
equations for a bar are contained in Sec. 10.1 and those for a beam are in 10.5. The
Holzer method is found in Secs. 12.4 and 12.5. Sec. 12.6 is devoted to the Myklestad’s
method. A brief discussion of these programs is found in Appendix E. All of these pro-

_grams are written in MATLAB®. An introduction to MATLAB® is provided in Appendix

E.

PROBLEMS

2.1. A 0.453-kg mass attached to a light spring elongates it 7.87 mm. Determine the natural
frequency of the system.

2.2. A spring-mass system, k, and m, has a natural frequency of f,. If a second spring &, is

added in series with the first spring, the natural frequency is lowered to ;f,. Determine k,
in terms of k.
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Table of Spring Stiffness

k1 kZ 1
o— MW——MW—0 - =
k= kT 1k
Ky
k2

' EI — o
k= T I = moment of inertia of cross-sectional area

| = total length

-— C? — k = ETA A = cross-sectional area
GJ . .
%—T—Sp k= N J = torsion constant of cross section
I Gd* -
-— — 2R = =
M k AR n = number of turns
g
2 : 3EI ..
ﬁ:ﬁ k= - k at position of load
E
k= 483 1
% ; g I
S e
«%ﬂ 4 _192E1
g ?
Y o g _ T68EI
n —”3
=2 b |- 3El Pbx
k = = 2 2 b2
A ﬁ 2, b v~ egn ¥~ )
bx+ .
' b 12E1
—_ k= IE
|
er ft
3EI
k=——
’ . (I + a)a®
te—— p—>=t-a>|
.2
4— k= 2EL_
ol a*(3l + 8a)
He——b—>l+a-]



http://www.semeng.ir

WWV. SENEN

g.ir

Problems 37

2.3. A 4.53-kg mass atfached to the lower end of a spring whose upper end is fixed vibrates

24.

2.5.

2.6.

2.7.

with a natural period of 0.45 s. Determine the natural period when a 2.26-kg mass is
attached to the midpoint of the same spring with the upper and lower ends fixed.

An unknown mass of m kg attached to the end of an unknown spring k has a natural fre-
quency of 94 cpm. When a 0.453-kg mass is added to m, the natural frequency is lowered
to 76.7 cpm. Determine the unknown mass m and the spring constant k£ N/m.

A mass m, hangs from a spring k¥ N/m and is in static equilibrium. A second mass m,

drops through a height / and sticks to m, without rebound, as shown in Fig. P2.5.
Determine the subsequent motion.

FIGURE P2.5. FIGURE P2.7.

The ratio k/m of a spring-mass system is given as 4.0. If the mass is deflected 2 cm down,
measured from its equilibrium position, and given an upward velocity of 8 cm/s, deter-
mine its amplitude and maximum acceleration.

A flywheel weighing 70 Ib was allowed to swing as a pendulum about a knife-edge at the
inner side of the rim, as shown in Fig. P2.7. If the measured period of oscillation was
1.22 5, determine the moment of inertia of the flywheel about its geometric axis.

. A connecting rod weighing 21.35 N oscillates 53 times in 1 min when suspended as shown

in Fig. P2.8. Determine its moment of inertia about its center of gravity, which is located
0.254 m from the point of support.

FIGURE P2.8.
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2.9.

2.10.

2.11.

2.12.

Free Vibration

A flywheel of mass M is suspended in the horizontal plane by three wires of 1.829-m
length equally spaced around a circle of 0.254-m radius. If the period of oscillation about
a vertical axis through the center of the wheel is 2.17 s, determine its radius of gyration.

A wheel and axle assembly of moment of inertia J is inclined from the vertical by an

angle «, as shown in Fig. P2.10. Determine the frequency of oscillation due to a small
unbalance weight w b at a distance a in. from the axle.

FIGURE P2.10. FIGURE P2.11.

A cylinder of mass m and mass moment of inertia J, is free to roll without slipping, but is

restrained by the spring k, as shown in Fig. P2.11. Determine the natural frequency of
oscillation.

A chronograph is to be operated by a 2-s pendulum of length L shown in Fig. P2.12. A
platinum wire attached to the bob completes the electric timing circuit through a drop of
mercury as it swings through the lowest point. (a) What should be the length L of the
pendulum? (b) If the platinum wire is in contact with the mercury for 0.3175 cm of the
swing, what must be the amplitude 6 to limit the duration of contact 0.01 s? (Assume that
the velocity during contact is constant and that the amplitude of oscillation is small.)

FIGURE P2.12.
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2.14.

2.15.

Problems 39

A hydrometer float, shown in Fig. P2.13,is used to measure the specific gravity of liquids.
The mass of the floatis 0.0372 kg, and the diameter of the cylindrical section protruding
above the surface is 0.0064 m. Determine the period of vibration when the float is
allowed to bob up and down in a fluid of specific gravity 1.20.

FIGURE P2.13.

A spherical buoy 3 ft in diameter is weighted to float half out of water, as shown in
Fig. P2.14. The center of gravity of the buoy is 8 in. below its geometric center, and the
period of oscillation in rolling motion is 1.3 s. Determine the moment of inertia of the
buoy about its rotational axis.

FIGURE P2.14. FIGURE P2.15.

The oscillatory characteristics of ships in rolling motion depend on the position of the
metacenter M with respect to the center of gravity G. The metacenter M represents the
point of .intersection of the line of action of the buoyant force and the center line of
the ship, and its distance & measured from G is the metacentric height, as shown in Fig.
P2.15. The position of M depends on the shape of the hull and is independent of the
angular inclination 6 of the ship for small values of 6. Show that the period of the rolling

motion is given by
[ J
= 2 —
=2\ Yy

where J is the mass moment of inertia of the ship about its roll axis, and W is the weight
of the ship. In general, the position of the roll axis is unknown and J is obtained from the
period of oscillation determined from a model test.
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2.16.

2.17.

2.18.

2.19.

2.20.

A thin rectangular plate is bent into a semicircular cylinder, as shown in Fig. P2.16.
Determine its period of oscillation if it is allowed to rock on a horizontal surface.

[FRXVISTIINVRINIRINNG

le— 0 —>

0 h
R/ '
e —]
L
0.
FIGURE P2.16. * FIGURE P2.17.

A uniform bar of length L and weight. W is suspended symmetrically by two strings, as
shown in Fig. P2.17. Set up the differential equation of motion for small angular oscilla-
tions of the bar about the vertical axis O— O, and determine its period.

A uniform bar of length L is suspended in the horizontal position by two vertical strings of
equal length attached to the ends. If the period of oscillation in the plane of the bar and
strings is ¢, and the period of oscillation about a vertical line through the center of gravity
of the bar is t,, show that the radius of gyration of the bar about the center of gravity is
given by the expression
L\ L
k_(q)Z

A uniform bar of radius of gyration k about its center of gravity is suspended horizon-
tally by two vertical strings of length A, at distances a and b from the mass center. Prove
that the bar will oscillate about the vertical line through the mass center, and determine
the frequency of oscillation.

A steel shaft 50 in. long and 1; in. in diameter is used as a torsion spring for the wheels of
a light automobile, as shown in Fig. P2.20. Determine the natural frequency of the system
if the weight of the wheel and tire assembly is 38 Ib and its radius of gyration about its

axle is 9.0 in. Discuss the difference in the natural frequency with the wheel locked and
unlocked to the arm.

/4~—2¢

FIGURE P2.20.


http://www.semeng.ir

WWW. senmeng. i r

)
Problems 41

2.21. Using the energy method, show that the natural period of oscillation of the fluid in a U-
tube manometer shown in Fig. P2.21 is

Il
T=27 '22

where [ is the length of the fluid column.

FIGURE P2.21.

2.22. Figure P2.22 shows a simplified model of a single-story building. The columns are
assumed to be rigidly embedded at the ends. Determine its natural period 7. Refer to the
table of stiffness at the end of the chapter.

m
ko ko
I 7 L YL

FIGURE P2.22.

2.23. Determine the effective mass of the columﬂs of Prob. 2.22 assuming the deflection to be
-1 (1 - cos = >
y 2 Ymax I

2.24. Determine the effective mass at point # and its natural frequency for the system shown in
Fig. P2.24. . :

f
_ ‘b
ky .i‘
s I
n

FIGURE P2.24.
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2.25. Determine the effective mass of the rocket engine shown in Fig. P2.25 to be added to the
actuator mass m,.

Sy,
ol®)-

0——‘

m
WA !

FIGURE P2.25.

2.26. The engine-valve system of Fig. P2.26 consists of a rocker arm of moment of inertia J, a
valve of mass m , and a spring spring of mass m_. Determine its effective mass at A.

ms

FIGURE P2.26. [Engine valve system.

2.27. A uniform cantilever beam of total mass ml has a concentrated mass M at its free end.
Determine the effective mass of the beam to be added to M assuming the deflection to

be that of a massless beam with a concentrated force at the end, and write the equation
for its fundamental frequency. :
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2.28. Repeat Prob. 2.27 using the static deflection

0= S (1) - 43) 2]

for the uniformly loaded beam, and compare with previous result.

2.29. Determine the effective rotational stiffness of the shaft in Fig. P2.29 and calculate its nat-
ural period. )

i m, k1

Ve N\
!/Rz \\\l
J ’ .
/
\\</J2 U= R1
/ K ~S——1 )
é 1 Kz Kg K \_4
é 3
/ g
é—- \~ Clamped
FIGURE P2.29. ) FIGURE P2.30.

2.30. For purposes of analysis, it is desired to reduce the system of Fig. P2.30 to a simple linear
spring-mass system of effective mass m g and effective stiffness k. Determine m,, and
ki in terms of the given quantities.

2.31. Determine the effective mass moment of inertia for shaft 1 in the system shown in
Fig. P2.31.

eff

k FIGURE P2.31.

2.32. Determine thé kinetic energy of the system shown in Fig. P2.32 in terms of x. Determine
the stiffness at m,, and write the expression for the natural frequency.

ANN

FIGURE P2.32.
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]

2.33.

2.34.

2.35.

2.36.

2.37.

2.38.

2.39.

2.40.

241.

242,

2.43.

Tachometers are a reed-type frequency-measuring instrument consisting of small can-
tilever beams with weights attached at the ends. When the frequency of vibration corre-
sponds to the natural frequency of one of the reeds, it will vibrate, thereby indicating the
frequency. How large a weight must be placed on the end of a reed made of spring steel
0.1016 cm thick, 0.635 cm wide, and 8.890 cm long for a natural frequency of 20 cps?

A mass of 0.907 kg is attached to the end of a spring with a stiffness of 7.0 N/cm.
Determine the critical damping coefficient.

To calibrate a dashpot, the velocity of the plunger was measured when a given force was
applied to it. If a 3-Ib weight produced a constant velocity of 1.20 in./s, determine the
damping factor { when used with the system of Prob. 2.34.

A vibrating system is started under the following initial conditions: x = 0 and x = v,
Determine the equation of motion when (a) { = 2.0, (b) { = 0.50, and (c) { = 1.0. Plot
nondimensional curves for the three cases with w ¢ as abscissa and xw, /2, as ordinate.

In Prob. 2.36, compare the peak values for the three dampings specified. (See Appendix E
for information about MATLAB® and Appendix F for information about the programs.)
A vibrating system consisting of a mass of 2.267 kg and a spring of stiffness 17.5 N/cm is
viscously damped such that the ratio of any two consecutive amplitudes is 1.00 and 0.98.
Determine (a) the natural frequency of the damped system, (b) the logarithmic decre-
ment, (c¢) the damping factor, and (d) the damping coefficient.

A vibrating system consists of a mass of 4.534 kg, a spring of stiffness 35.0 N/cm, and a
dashpot with a damping coefficient of 0.1243 N/cm/s. Find (a) the damping factor, (b) the
logarithmic decrement, and (c) the ratio of any two consecutive amplitudes.

A vibrating system has the following constants: m = 17.5 kg, k = 70.0 N/cm, and ¢ = 0.70
N/cm/s. Determine (a) the damping factor, (b) the natural frequency of damped oscilla-
tion, (c) the logarithmic decrement, and (d) the ratio of any two consecutive amplitudes.
Set up the differential equation of motion for the system shown in Fig. P2.41. Determine

the expression for (a) the critical damping coefficient, and (b) the natural frequency of
damped oscillation.

k

—t 0
F

FIGURE P2.41. FIGURE P2.42.

Write the differential equation of motion for the system shown in Fig. P2.42 and deter-
mine the natural frequency of damped oscillation and the critical damping coefficient.

A spring-mass system with viscous damping is displaced from the equilibrium position
and released. If the amplitude diminished by 5% each cycle, what fraction of the critical -
damping does the system have?
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2.'44.. A rigid uniform bar of mass m and length / is pinned at O and supported by a spring and

viscous damper, as shown in Fig. P2.44. Measuring 6 from the static equilibrium position,
determine (a) the equation for small 6 (the moment of inertia of the bar about O is

mi?/3), (b) the equation for the undamped natural frequency, and (c) the expression for
critical damping. Use virtual work.

FIGURE P2.44. FIGURE P2.45.

2.45. A thin plate of area A and weight W is attached to the end of a spring and is allowed to

oscillate in a viscous fluid, as shown in Fig. P2.45. If 7, is the natural period of undamped
oscillation (i.e., with the system oscillating in air) and 7, the damped period with the plate
immersed in-the fluid, show that

where the damping force on the plate is F, = u2Av, 2A is the total surface area of the
plate, and vis its velocity.

2.46. A gun barrel weighing 1200 Ib has a recoil spring of stiffness 20,000 Ib/ft. If the barrel

recoils 4 ft on firing, determine (a) the initial recoil velocity of the barrel, (b) the criti-
cal damping coefficient of a dashpot that is engaged at the end of the recoil stroke, and
(c) the time required for the barrel to return to a position 2 in. from its initial position.

2.47. A piston of mass 4.53 kg is traveling in a tube with a velocity of 15.24 m/s and engages a

spring and damper, as shown in Fig. P2.47. Determine the maximum displacement of the
piston after engaging the spring-damper. How many seconds does it take?

v=I524m/s - 75Ns/cm

8 [ B
m=453kg  k=350N/m
FIGURE P2.47.

2.48. A shock absorber is to be designed so that its overshoot is 10% of the initial displace-

ment when released. Determine {;. If { is made equal to %{1, what will be the overshoot?

2.49. Determine the equation of motion for Probs. 2.41 and 2.42 using virtual work.
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2.50.

2.51.
2.52.

2.53.

2.54,

2.55.

Free Vibration

Determine the effective stiffness of the springs shown in Flg P2.50.

m

FIGURE P2.50. FIGURE P2.52.

Determine the flexibility of a simply supported uniform beam of length L at a point § L
from the end.

Determine the effective stiffness of the system shown in Fig. P2.52, in terms of the dis-
placement x.

Determine the effective stiffness of the torsional system shown in Fig. P2.53. The two
shafts in series have torsional stiffnesses of k, and k,.

FIGURE P2.53.

A spring-mass system, m and k, is started with an initial displacement of unity and an ini-
tial velocity of zero. Plot In X versus n, where X is the amplitude at cycle n for (a) viscous
damping with £ = 0.05, and (b) Coulomb damping with damping force F, = 0.05k. When
will the two amplitudes be equal?

Determine the differential equation of motion and establish the critical damping for the

'

system shown in Fig. P2.55.

NN

m,

DN

FIGURE P2.55.
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2.56. Determine the differential equation of motion for free vibration of the system shown in
Fig. P2.56, using virtual work.

s
\F=R% N
FIGURE P2.56.

2.57. The system shown in Fig. P2.57 has two rigid uniform beams of length / and mass per unit
length m, hinged at the middle and resting on rollers at the test stand. The hinge is
restrained from rotation by.a torsional spring K and supports a mass M held up by

another spring k to a position where the bars are horizontal. Determine the equation of
motion using virtual work.

FIGURE P2.57. FIGURE P2.58.

2.58. Two uniform stiff bars are hinged at the middle and constrained by a spring, as shown in
Fig. P2.58. Using virtual work, set up the equation of motion for its free vibration.
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2.59.

2.60.

2.61.

2.62.

Free Vibration

The equation of motion for the system of Fig. P2.59 with Coulomb damping can be writ-
ten as

mx + kx = u Fsgn(x)

where sgn (x) = =1 (i, sgn (x) = +1 when x is positive and —1 when x is negative).
The general solution to this equation is

x(£) = Asin w,t + B cos w,!
F .
+ pd? sgn (x)

Evaluate the constants A and B if the motion is started with the initial conditions
x(0) = x,and x(0) = 0.

FIGURE P2.59.

If two springs are connected in series, as shown in the first figure in the table of spring
stiffness, derive the resulting spring stiffness and the natural frequency of the motion.

If two springs are connected in parallel, as shown in the second figure in the table of
spring stiffness, derive the resulting spring stiffness and the natural frequency of the
motion.

Write down the equations of motion and find the effective spring constant for the system
shown in Fig. P2.62.

FIGURE P2.62.
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Harmonically Excited Vjbration
ﬁ\&f”@w

When a system is subjected to harmonic excitation, it is forced to vibrate at the same
frequency as that of the excitation. Common sources of harmonic excitation are unbal-
ance in rotating machines, forces produced by reciprocating machines, and the motion
of the machine itself. These excitations may be undesirable for equipment whose oper-
ation may be disturbed or for the safety of the structure if large vibration amplitudes
develop. Resonance is to be avoided in most cases, and to prevent large amplitudes
from developing, dampers and absorbers are often used. Discussion of their behavior
is of importance for their intelligent use. Finally, the theory of vibration-measuring
instruments is presented as a tool for vibration analysis.

FORCED HARMONIC VIBRATION

Harmonic excitation is often encountered in engineering systems. It is commonly pro-
duced by the unbalance in rotation machinery. Although pure harmonic excitation is
less likely to occur than periodic or other types of excitation, understanding the behav-
ior of a system undergoing harmonic excitation is essential in order to comprehend
how the system will respond to more general types of excitation. Harmonic excitation
may be in the form of a force or displacement of some point in the system.

We will first consider a single-DOF system with viscous damping, excited by a
harmonic force Fj sin wt, as shown in Fig. 3.1.1. Its dlfferentlal equatlon of motion is
found from the W to be

mx + cx + kx = Fysin ot (3.1.1)

The solution to this equation consists of two parts, the complementary function,
which is the solution of the homogeneous equation, and the particular integral. The
complementary function, in this case, is a damped free vibration that was discussed in
Chapter 2.

The particular solution to the preceding equation is a steady-state oscillation of

Y
. the same frequency w as that of the excitation. We can assume the particular solution

to be of the form _
x = Xsin(wt — ¢) (3.12)
where X is the amplitude of oscillation and ¢ is the phase of the displacement with

respect to the exciting force

e amplitude and phase in the previous equation are found by substituting Eq.
(3.12) into the differential equation (3.1.1). Remembering that in harmonic motion
the phases of the velocity and acceleration are ahead of the displacement by 90° and

49
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Ly

’ﬁft

m< 3

FIGURE 3.1.1. Viscously
damped system with harmomc
Fosinw?t  excitation.

180°, respectively, the terms of the differential equation can also be displayed graphi-
cally, as in Fig. 3.1.2. It is easily seen from this diagram that

Fo

= 313
V(k — mw?)? + (cw)? ( )

and
¢ =tan~ "y (3.1.4)

We now express Egs. (3.1.3) and (3.1.4) in ILondimensiohal form that enables a
concise graphical presentation of these results. D1v1d1ng the numerator and dﬂg_n_llrlg;_

tor of Egs. (3.1.3) and (3.1.4) by k, we obtain
| . Ay WY
. _ F
X= k (3.1.5)
2\2 2
\/(1 __mw) N (ca))
k k
and
cw
k
tan ¢ = ——2 (3.1.6)
Lo met
k
2
mw X wa
Fo
Reference

FIGURE 3.1.2. Vector relationship for
forced vibration with damping.
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These equations can be further expressed in terms of the following quantities:

. k '
w, = \/ — = natural frequency of undamped oscillation
m
¢, = 2mw, = critical damping
c . :
{= P damping factor
c —_— N,
Cw ¢ Ccw

C C, _ 2
* ok D%,

n
The nondimensional expressions for the amplitude and phase then become

Xk _ 1

SR ECIREE

%)
O
o)

w’l
These equations indicate that the nondimensional amplitude Xk/F, and the phase ¢
are functions only of the frequencv ratio w/w_ and the damping factor and can be
piotted as shown in Fig. 3.1.3. These curves show that the dampmg has a large influence
on the amplitude and phase angle in the frequency region near resonance. Further
“understanding of the behavior of the system can be obtained by studying the force dia-
gram corresponding to Fig. 3.1.2 in the regions w/ w,small, o/ w,=1,and 0/ o, large.

For small values of w/w, <1, both the mertla and dampmg forces are small,
which results in a small phase angle ¢. The magnitude of the impressed force is then
nearly equal to the spring force, as shown in Fig. 3.1.4(a).

For w/w, = 1.0, the phase angle is 90° and the force diagram appears as in

Fig. 3.1.4(b). The inertia force, which is now larger, is balanced by the spring force,
whereas the impressed force overcomes the damping force. The amplitude at reso-

(3.1.7)

and

tan ¢ = (3.1.8)

nance can be found, either from Eqs. (3.1.5) or (3.1.7) or from Fig.3.1.4(b), to be

_fh_ kR .
X = T 3.1.9)
At large values of w/w,> 1, ¢ approaches 180°, and the impressed force is
expended almost entirely in overcoming the large inertia force as shown in Fig. 3.1.4(c).

In summary, we can write the ‘differential equation and its complete solution,
including the transient term as
e e

. . F,
X+ 2w, x + Wlx = Z" sin ot (3.1.10)
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: 180°
ﬂr ol - 0.05
— 0.15
h-N
. |-0.375 >
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0.10 § 90 -——
Y]
0.15 8
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0.25
20 ‘ o] 1 2 ¢ 5
< I o 0.375 Frquency ratio &
> |w (
0.50
1.0 \
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o 1.0 20 30 40 5.C

Frequency ratio g}n

FIGURE 3.1.3. Plot of Egs. (3.1.7) and~(3.1.8).

(0) ww,<<1 (b) w/wy, =1

(€) w/wy>>1

FIGURE 3.1.4. Vector relationship in forced vibration. '

() = 1_;9 sin (wt2— $) :
=T+ [=2]

+ X,e~%sin(V1 = Lot + )

Complex frequency response. From the vector force polygon of Fig. 3.1.2, it is
easily seen that the terms of Eq. (3.1.1) are projections of the vectors on the vettical
axis. If the force had been F; cos wt instead of F sin wt, the vector force polygon would
be unchanged and the terms of the equation then would have been the projections of’
the vectors on the horizontal axis. Taking note of this, we could let the harmonic force

be represented by

Fy(cos wt + isin wf) = Fye'*

(3.1.11)

(3.1.12)
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This would be equivalent to multiplying the quantities along the vertical axis by
i =V — 1 and using complex vectors. The displacement can then be written as

x = Xelw=9 = (Xe #)e™ = Xeit (3.1.13)
where X is a complex displacement vector:
‘ X = Xe™i¢ (3.1.14)

Substituting into the differential equation and canceling from each side of the equa-
tion give the results '

(—e’m + ico + k)X = F,.
and

7 - F, U Egk
T (k- o*m) +ilcw) 1 - (0/w,)+ i(2le/w,)

It is now convenient to introduce the complex frequency response H(w) defined
as the output divided by the input:

. X 1/k
Hlw) F 1-(0/w)?+i2{w/e,
(Often the factor 1/k is considered together with the force, leaving the frequency
response a nondimensional quantity.) Thus, H(w) depends only on the frequency ratio
and the damping factor.

The real and imaginary parts of H(w) can be identified by multiplying and divid-
ing Eq. (3.1.16) by the complex conjugate of the denominator. The result is

= 1 - (w/w,) . 2w/ o,
W) = T (o/a T + Biolal = @la)T + Blatal O

(3.1.15)

(3.1.16)

"This equation shows that at resonance, the real part is zero and the response is given by

the imaginary part, which is

_ .
H(w) = —i % (3.1.18)
It is easily seen that the phase angle is
_ o/,
e T (e,

3.2 ROTATING UNBALANCE

Unbalance in rotating machines is a common source of vibration excitation. We con-
sider here a spring-mass system constrained to move in the vertical direction and
excited by a rotating machine that is unbalanced, as shown in Fig. 3.2.1. The unbalance
is represented by an eccentric mass m with eccentricity e that is rotating with angular
velocity . By letting x be the displacement of the nonrotating mass (M — m) from the
static equilibrium position, the displacement of m is

x + esin wt
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Q
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77

TTLTL T IT T 777,

FIGURE 3.2.1. Harmonic disturbing
force resulting from rotating unbalance.

The equation of motion is then
d? .
(M—m)x+m2172 (x+esinwt) = — kx — cx

which can be rearranged to
MX + cx + kx = (mew?) sin ot (3.2.1)

Itis evident, then, that this equation is identical to Eq. (3.1.1) where F, is replaced by
mea?, and hence the steady-state solution of the previous section can be replaced by

mew?

X= (3.2.2
V(k — Mo?)? + (co)? )
and '
cw
tan ¢ = m (3.2.3)
These can be further reduced to nondimensional form:
| (2]
MX_ n (32.4)
m e

and
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FIGURE 3.2.2. Plot of Egs. (3.2.4) and (3.2.5) for forced vibration with rotating unbalance.

and presented graphically as in Fig. 3.2.2. The complete solution is given by

x(1) = X,e ' sin(V1 — st + &)

mew?

T k= M)+ o)’

sn(wi—¢) = (326)

EXAMPLE 3.2.1

A counterrotating eccentric weight exciter is used to produce the forced oscillation of a spring-
supported mass, as shown in Fig. 3.2.3. By varying the speed of rotation, a resonant amplitude
of 0.60 cm was recorded. When the speed of rotation was increased considerably beyond the

M

<
L.

3=
)
3>

>
>

7/, FIGURE 3.2.3.
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resonant frequéency, the amplitude appeared to approach a fixed value of 0.08 cm. Determine
the damping factor of the system.

Solution From Eq. (3.2.4), the resonant amplitude is

me

M
X= —éz- = (.60 cm

When w is very much greater than w,, the same equation becomes

x="%<008cm

M
By solving the two equations simultaneously, the damping factor of the system is
0.08
£= 700 0666

3.3 ROTOR UNBALANCE

In Sec. 3.2 the system was idealized to a spring-mass-damper unit with a rotating
unbalance acting in a single plane. It is more likely that the unbalance in a rotating
wheel or rotor is distributed in several planes. We wish now to distinguish between two
types of rotating unbalance.

Static unbalance. When the unbalanced masses all lie in a single plane, as in the
case of a thin rotor disk, the resultant unbalance is a single radial force. As shown in
Fig. 3.3.1, such unbalance can be detected by a static test in which the wheel-axle
assembly is placed on a pair of horizontal rails. The wheel will roll to a position where
the heavy point is directly below the axle. Because such unbalance can be detected
without spinning the wheel, it is called static unbalance.

Dynamic unbalance. When the unbalance appears in more than one plane, the
resultant is a force and a rocking moment, which is referred to as dynamic unbalance.
As previously described, a static test may detect the resultant force, but the rocking
moment cannot be detected without spinning the rotor. For example, consider a shaft

FIGURE 3.3.1. System with
static unbalance.
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[t

é:- Rotor =§
FIGURE 3.3.2. System FIGURE 3.3.3. A rotor
with dynamic unbalance. balancing machine.

with two disks, as shown in Fig. 3.3.2. If the two unbalanced masses are equal and 180°
apart, the rotor will be statically balanced about the axis of the shaft. However, when
the rotor is spinning, each unbalanced disk would set up a rotating centrifugal force,
tending to rock the shaft on its bearings.

In general, a long rotor, such as a motor armature or an automobile engine
crankshaft, can be considered to be a series of thin disks, each with some unbalance.
Such rotors must be spun in order to detect the unbalance. Machines to detect and cor-
rect the rotor unbalance are called '‘balancing machines. Essentially, the balancing
machine consists of supporting bearings that are spring-mounted so as to detect the
unbalanced forces by their motion, as shown in Fig. 3.3.3. By knowing the amplitude of
each bearing and their relative phase, it is possible to determine the unbalance of the
rotor and correct for them. The problem is that of 2 DOEF because both translation and
angular motion of the shaft take place simultaneously. '

EXAMPLE 3.3.1

Although a thin disk can be balanced statically, it can also be balanced dynamically. We describe
one such test that can be simply performed.

The disk is supported on spring-restrained bearings that can move horlzontally, as shown in
Fig. 3.3.4. With the disk running at any predetermined speed, the amplitude X, and the wheel
position a at maximum excursion are noted. An accelerometer on the bearing and a stroboscope
can be used for this observation. The amplitude X;, due to the original unbalance m, is drawn to
scale on the wheel in the direction from o to a.

-

FIGURE 3.3.4. Experimental balaricing of a thin disk.
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Next, a trial mass m, is added at any point on the wheel and the procedure is repeated at the
same speed. The new amplitude X, and wheel position b, which are due to the original unbalance
m, and the trial mass m,, are represented by the vector ob. The difference vector ab is then the
effect of the trial mass m, alone. If the position of m, is now advanced by the angle ¢ shown in
the vector diagram, and the magnitude of m, is increased to m, (oa/ab), the vector ab will
become equal and opposite to the vector oa. The wheel is now balanced because X, is zero.

EXAMPLE 3.3.2

A thin disk is supported on spring-mounted bearings, as shown in Fig. 3.3.5. When run at 300 rpm
counterclockwise (ccw), the original disk indicates a maximum amplitude of 3.2 mm at 30° cew
from a reference mark on the disk. Next, a trial weight of 2.5 oz is added to the rim at 143° ccw
from the reference mark, and the wheel is again run at 300 rpm ccw. The new amplitude of 7 mm

is then found at 77° ccw from the reference mark. Determine the correction weight to be placed
on the rim to balance the original disk.

Solution The diagrams of Fig. 3.3.5 display the solution graphically. The vectors measured by
the instrument and the position of the trial weight are shown in Fig. 3.3.5(b). Vector ab in Fig.
3.3.5(c) is found graphically to be equal to 5.4 mm, and the angle ¢ is measured to be 107°. If

FIGURE 3.3.5.
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vector ab is rotated 107° ccw, it will be opposite the vector oa. To cancel oa it must be shortened
by oa/ab = 3.2/5.4 = 0.593. Thus, the trial weight W, = 2.5 oz must be rotated 107° ccw and
reduced in size to 2.5 X 0.593 = 1.48 oz. Of course, the graphical solution for ab and ¢ can be
found mathematically by the law of cosines.

Figure 3.3.6 shows a model simulating a long rotor with sensors at the two bearings. The two
end disks may be initially unbalanced by adding weights at any location. By adding a trial weight
at one of the disks and recording the amplitude and phase and then removing the first trial
weight and placing a second trial weight to the other disk and making similar measurements, the
initial unbalance of the simulated rotor can be determined.

FIGURE 3.3.6. The plane-balancing experiment. (Courtesy of UCSB Mechanical
Engineering Undergraduate Laboratory.)

3.4 WHIRLING OF ROTATING SHAFTS

Rotating shafts tend to bow out at certain speeds and whirl in a complicated manner.
Whirling is defined as the rotation of the plane made by the bent shaft and the line of
centers of the bearings. The phenomenon results from such various causes as mass
unbalance, hysteresis damping in the shaft, gyroscopic forces, fluid friction in bearings,
and so on. The whirling of the shaft can take place in the same or opposite direction as
that of the rotation of the shaft and the whirling speed may or may not be equal to the

. rotation speed. : ‘

We will consider here a single disk of mass m symmetrically located on a shaft sup-
ported by two bearings, as shown in Fig. 3.4.1. The center of mass G of the disk is at a dis-
tance e (eccentricity) from the geometric center S of the disk. The center line of the
bearings intersects the plane of the disk at O, and the shaft center is deflected by r = OS.

We will always assume the shaft (i.e., the line e = SG) to be rotating at a constant
speed o, and in the general case, the line » = OS to be whirling at speed 6 that is not

equal to . For the equation of motion, we can develop the acceleration of the mass
center as follows: -

a; = ag + ags (341)
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FIGURE 3.4.1. Whirling of shaft.

where a g is the acceleration of S and a ¢ is the acceleration of G with respect to S. The
latter term is directed from G to §, because w is constant. Resolving a in the radial
and tangential directions, we have

a; =[(r - r6?) — ew?cos (wt — 0)]i + [(r8 + 276) - e_eu2 sin(wt — 0)]j (34.2)

Aside from the restoring force of the shaft, we will assume a viscous damping force ta

be acting at S. The equations of motion resolved in the radial and tangential directions '
then become

— kr — ¢ = m[r — r8* — ew?cos (wt — 6)]
— ¢cr6 = m[r8 + 2/ — ew?sin (wt — 6)]

which can be rearranged to

r+ _C_". + (k. - '02)’. = ew? oS (wt - 0) (3.4.3)
" m m ,
o + (;;—r 4 2i)é = ew?sin (wt ~ 6) (3.4.4)

The general case of whirl as described by the foregoing equations comes under
the classification of self-excited motion, where the exciting forces inducing the motion
are controlled by the motion itself. Because the variables in these equations are r and
0, the problem is that of 2 DOF. However, in the steady-state synchronous whirl, where
6= wand 8 = r = r = 0, the problem reduces to that of 1 DOF.

Synchronous whirl. For the synchronous whirl, the whirling speed 9 is equal to
the rotation speed w, which we have assumed to be constant. Thus, we have


http://www.semeng.ir

WWW. senmeng. i r

Section 3.4

Whirling of Rotating Shafts 61

and on integrating we obtain
0=wt— ¢

where ¢ is the phase angle between e and r, which is now a constant, as shown in Fig.3.4.1.
With § =¥ = r = 0, Egs. (3.4.3) and (3.4.4) reduce to

(-If- - wz)r = ew?cos ¢
m

/

2-
— wr = ew”sin ¢
m

(34.5)
Dividing, we obtain the following equation for the phase angle:
% ) 2¢ 2
tan ¢ = = O - , (3.4.6)
(5
— - w 1-1—
m w,
where w, = Vk/m is the critical speed, and { = ¢/c. Noting from the vector triangle of
Fig. 3.4.2 that
.
0s ¢ = '
CEE
m m

and substituting into the first of Eq. (3.4.5) gives the amplitude equation

_ mew? B | e( wﬂn )2 '
T V= mad) + ap \/[1 } (f),;)z]zv+ [2{ (wﬂ) ]2- (34.7)

These equations indicate that the eccentricity line e = SG leads the displace-
ment line r = OS by the phase angle ¢, which depends on the amount of damping and
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w << Wy ' W = Wy w>> Wy

FIGURE 3.4.3. Phase of different rotation speeds.

the rotation speed ratio w/w,. When the rotation speed coincides with the critical
speed w, = Vk/m, or the natural frequency of the shaft in lateral vibration, a condi-
tion of resonance is encountered in which the amplitude is restrained only by the
damping. Figure 3.4.3 shows the disk-shaft system under three different speed condi-
tions. At very high speeds, w > w,, the center of mass G tends to approach the fixed
point O, and the shaft center S rotates about it in a circle of radius e.

It should be noted that the equations for synchronous whirl appear to be the
same as those of Sec. 3.2. This is not surprising, because in both cases the exciting force
is rotating and equal to mew?. However, in Sec. 3.2 the unbalance was in terms of the
small unbalanced mass m, whereas in this section, the unbalance is defined in terms of
the total mass m with eccentricity e. Thus, Fig. 3.2.2 is applicable to this problem with
the ordinate equal to r/e instead of MX/me. -

EXAMPLE 3.4.1

Turbines operating above the critical speed must run through dangerous speed at resonance
each time they are started or stopped. Assuming the critical speed w, to be reached with ampli-
tude r,, determine the equation for the amplitude buildup with time. Assume zero damping.

Solution We will assume synchronous whirl as before, which makes 9 = w = constant and &
= 0. However, 7 and r terms must be retained unless shown to be zero. With ¢ = 0 for the
undamped case, the general equations of motion reduce to

. k N,
r+(m w)r—ew.cos¢ .
2rw = ew?sin ¢ (a)

The solution of the second equation with initial deflection equal to r, is

ew
2

Differentiating this equation twice, we find that r = 0; so the first equation with the above solu-
tion for r becomes

r="-

tsin¢g +ry )

m

T T
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r r= eTw t+p
fok~ ,n /\ ,
!
L\ V v
. ‘ FIGURE 3.4.4. Amplitude and
S~ phase relationship of synchronous

whirl with viscous damping.

Because the right side of this equation is constant, it is satisfied only if the coefficient of ¢ is zero:

k 2) .
AR = d
(m o’|sin ¢ v (d)
which leaves the remaining terms:
(E - wz) ro = ew’cos ¢ (e)
m

With @ = Vk/m, the first equation is satisfied, but the second equation is satisfied only if

cosp=0o0r¢= /2. Thus, we have shown that at w = V k/m, or at resonance, the phase angle

is 7/2 as before for the damped case, and the amplitude builds up linearly according to the equa-
tion shown in Fig. 3.4.4.

3.5 SUPPORT MOTION

In many cases, the dynamical system is excited by the motion of the support point, as
shown in Fig. 3.5.1. We let y be the harmonic displacement of the support point and
measure the displacement x of the mass m from an inertial reference.

In the displaced position, the unbalanced forces are due to the damper and the
springs, and the differential equation of motion becomes

mi= —k(x—y)—c(x-y) 3.5.1)
By making the substitution £ ‘
‘ 2=x-y (352)
m
X
m
7 cu—y)l l k(x-y)
C
k k
2 2 y

. FIGURE 3.5.1. System excited
7’%/ by motion of support point.
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Eq. (3.5.1) becomes
mz+cz+kz= —my
= mw? Ysin wt (3.5.3)

where y = Y'sin wt has been assumed for the motion of the base. The form of this equa-
tion is identical to that of Eq. (3.2.1), where z replaces x and m?Y replaces meco?.
Thus, the solution can be immediately written as

z = Zsin (ot — ¢)

man?Y
= 354
z \/(k - mcuz)2 + (ca))2 ( )
tan ¢ = ﬁ (3.5.5)

and the curves of Fig.3.2.2 are applicable with the appropriate change in the ordinate.
If the absolute motion x of the mass is desired, we can solve forx = z + y. Using
the exponential form of harmonic motion gives

y —= Yeiwt
7= Zei(ml*qﬁ) — (Zef'ut)eimr
x = Xel“@~¥=(Xe™ el . A (3.56)

Substituting into Eq. (3.5.3), we obtain

. mw*Y
Z e =
¢ k — mo?+iwc

and

x =(Ze *+ Y)e™

k + iwc )
=|—— |Ye 3.57
(k—mw2+iwc) ¢ ( )

The steady-state amplitude and phase from this equation are

x| _ k? + (wc)?
‘ . ‘?l - \/(k - mwz)2 + (cw)? (358)
and '
o
tan ¢ = *(k = ::2) T @R (3.59)

which are plotted in Fig. 3.5.2. It should be observed that the amplitude curves for

different damping all have the same value of |X/Y| =10 at the frequency
o/, = V2. ' ‘
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FIGURE 3.5.2. Plot of Eqgs. (3.5.8) and (3.5.9).

3.6 VIBRATION ISOLATION

Vibratory forces generated by machines and other causes are often unavoidable; how-

ever, their effects on a dynamical system can be minimized by proper isolator design.

An isolation system attempts either to protect a delicate object from excessive vibra-
tion transmitted to it from its supporting structure or to prevent vibratory forces gen-
erated by machines from being transmitted to its surroundings. The basic problem is
the same for these two objectives, that of reducing the transmitted force.

Figure 3.5.2 for | X/Y| shows that the motion transmitted from the supporting
structure to the mass m is less than 1 when the ratio w/w, is greater than /2. This indi-
cates that the natural frequency w, of the supported system must be small compared to -
that of the disturbing frequency w. This requirement can be met by using a soft spring.

The other problem of reducing the force transmitted by the machine to the sup-

~ porting structure has the same requirement. The force to be isolated is transmltted

through the spring and damper, as shown in Fig. 3.6.1. Its equation is

Fr=V(kX)? + (cwX)? = kX\(l + (2{0)) (3.6.1)
wn
With the disturbing force equal to F, sin wt, the value of X in the preceding equation is
. Fo/k

" VL= (/e + Era/af (36.1)
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g

Nfx
o
N>

.

'FIGURE 3.6.1. Disturbing force transmitted through springs and
damper.

g
b
=

FIGURE 3.6.2.

The transmissibility 7R, defined as the ratio of the transmitted force to that of the dis-
turbing force, is then '

F 1+ (2w/w,)?
TR=|-TI|= \f 2 362
Fo| ™ V= (/)T + 2a/0,T (362
Comparison of the preceding equation with Eq.(3.5.8) shows that
F X
TR = || = |=
x=|7|- 7]
- When the damping is negligible, the transmissibility equation reduces to
TR = ——5—— 3.63
(@/wny — 1 (363)

where it is understood that the value of w/w, to be used is always greater than V2.0n

further replacing w, by A/g, where g is the acceleration of gravity and A is the statical
deflection, Eq. (3.6.3) can be expressed as

1
T @apia/g -1

To reduce the amplitude X of the isolated mass m without changing TR, m is
often mounted on a large mass M, as shown in Fig. 3.6.2. The stiffness k¥ must then be
increased to keep the ratio k /(m + M) constant. The amplitude X is, however, reduced
because k appears in the denominator of Eq. (3.6.1a).

Because in the general problem the mass to be isolated may have 6 DOF (three
translation and three rotation), the designer of the isolation system must use his or her
intuition and ingenuity. The results of the single-DOF analysis should, however, serve

TR
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as a useful guide. Shock isolation for pulse excitation is discussed in Secs. 4.5 and 4.6 in
Chapter 4. ‘

EXAMPLE 3.6.1

A machine of 100 kg mass is supported on springs of total stiffness 700 kN/m and has an unbal-
anced rotating element, which results in a disturbing force of 350 N at a speed of 3000 rpm.
Assuming a damping factor of { = 0.20, determine (a) its amplitude of motion due to the unbal-
ance, (b) the transmissibility, and (c) the transmitted force.
Solution The statical deflection of the system is

100 X 9.81
700 X 10°

and its natural frequency is

1 [ sl ~
fo= 32\ Taol x 103~ 1332 Hz

(a) By substituting into Eq. (3.1.5), the amplitude of vibration is

350
_ 700 X 10°

- 50 \2 T . 50
\/[1 - (13.32) ] + [2 % 0.20 x 13.32]
=379 X 10"°m

= 0.0379 mm
(b) The transmissibility from Eq. (3.6.2) is

50 \?
\j1+(2X020X ﬁ)

B 50 VT 50\
—_ — . X —
\/[ ! ( 13.32 ) ] " (2 X020 X 133 )
(c) The transmitted force is the disturbing force multiplied by the transmissibility.

Fpp = 350 X 0137 = 47.89 N

= 1.401 X 107*m = 1.401 mm

3.7 ENERGY DISSIPATED BY DAMPING

Damping is present in all oscillatory systems. Its effect is to remove energy from the
system. Energy in a vibrating system is either dissipated into heat or radiated away.
Dissipation of energy into heat can be experienced simply by bending a piece of metal
back and forth a number of times. We are all aware of the sound that is radiated from
an object given a sharp blow. When a buoy is made to bob up and down in the water,
waves radiate out and away from it, thereby resulting in its-loss of energy.

In vibration analysis, we are generally concerned with damping in terms of sys-
tem response. The loss of energy from the oscillatory system results in the decay -of
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amplitude of free vibration. In steady-state forced vibration, the loss of energy is bal-
anced by the energy that is supplied by the excitation.

A vibrating system can encounter many different types of damping forces, from
internal molecular friction to sliding friction and fluid resistance. Generally, their
mathematical description is quite complicated and not suitable for vibration analysis.
Thus, simplified damping models have been developed that in many cases are found to
be adequate in evaluating the system response. For example, we have already used the
viscous damping model, designated by the dashpot, which leads to manageable mathe-
matical solutions.

Energy dissipation is usually determined under conditions of cyclic oscillations.
Depending on the type of damping present, the force-displacement relationship when
plotted can differ greatly. In all cases, however, the force-displacement curve will
enclose an area, referred to as the hysteresis loop, that is proportional to the energy

lost per cycle. The energy lost per cycle due to a damping force F, is computed from the
general equation

W, = 95Fddx (3.7.1)

In general, W, depends on many factors, such as temperature, frequency, or amplitude.

We consider in this section the simplest case of energy dissipation, that of a
spring-mass system with viscous damping. The damping force in this case is F, = cx.
With the steady-state displacement and velocity

x = Xsin (wt — ¢)
x = wX cos (ot — ¢)
the energy dissipated per cycle, from Eq. (3.7.1), becomes

W= et = et

2m/w '
= cw XZJ cos?(wt — ¢) dt = mcwX? 372)
0 - :

Of particular interest is the energy dissipated in forced vibration at resonance. By sub-
stituting w, = Vk/m and ¢ = Z{Vkm, the preceding equation at resonance becomes

W, = 2{mkX? ' (31.3)

The energy dissipated per cycle by the damping force can be represented graphically
as follows. ertmg the velocity in the form

= wXcos(wt ~ ¢) = * wX V1 - sin?(wf — ¢)
= +oVX? - x?
the damping force becomes

Fj=ci= % coVX? - £ - (37.4)


http://www.semeng.ir

WWW. senmeng. i r

Section 3.7 Energy Dissipated by Damping 69
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(a) . (b)
FIGURE 3.7.1. ‘Energy dissipated by viscous damping,.

By rearranging the foregoing equation to

Fy )2 ' (1 )2 -
(cwX, + x) = 1 (3.7.5)
we recognize it as that of an ellipse with F, and x plotted along the vertical and hori-
zontal axes, respectively, as shown in Fig. 3.7.1(a). The energy dissipated per cycle is
then given by the area enclosed by the ellipse. If we add to F, the force kx of the loss-
less spring, the hysteresis loop is rotated as shown in Fig. 3.7.1(b). This representation
then conforms.to the Voigt model, which consists of a dashpot in parallel with a
spring. '
Damping properties of materials are listed in many different ways, depending on
the technical areas to which they are applied. Of these, we list two relative energy units

that have wide usage. First of these is specific damping capacity, defined as the energy
loss per cycle W, divided by the peak potential energy U:

W, . ‘
T ~ (3.16)

The second quantity is the loss coefficient, defined as the ratio of damping enefgy
loss per radian W /24 divided by the peak potential or strain energy U:

W,
= 377
Ll , ( _)

For the case of linear damping, where the energy loss is proportional to the
square of the strain or amplitude, the hysteresis curve is an ellipse. When the damping

loss is not a quadratic function of the strain or amplitude, the hysteresis curve is no
longer an ellipse. '
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EXAMPLE 3.7.1

Determine the expression for the power developed by a force F = F;sin(wt + ¢) acting.on a
displacement x = X, sin wt.
Solution Power is the rate of doing work, which is the product of the force and velocity.

d.
P= FZ’;‘ = (wX,F,)sin (wt + ) cos ot

= (wX, F,) [cos ¢ - sin wt cos wt + sin ¢ - cos? wt]
= 10X, F,[sin ¢ + sin Qut + )]

The first term is a constant, representing the steady flow of work per unit time. The second
term is a sine wave of twice the frequency, which represents the fluctuating component of power,
the average value of which is zero over any interval of time that is a multiple of the period.

EXAMPLE 3.7.2

A force F = 10sin ot N acts on a displacement of x = 2 sin(#t — #/6) m. Determine (a) the
work done during the first 6 s; (b) the work done during the first ; s.

Solution Rewriting Eq. (3.7.1) as W= [Fxdt and substituting F = Fysinet and
x = X sin(wt — ¢)gives the work done per cycle of

W = nF,Xsin ¢

For the force and displacement given in this problem, F, = 10 N.X=2m,¢= ‘n-/6; and the

period 7= 2 5. Thus, in the 6 s specified in (a), three complete cycles take place, and the work
done is .

W = 3(wF,Xsin ¢) = 37 X 10 X 2 X sin30° = 942N -m
The work done in part (b) is determined by integrating the expression for work between the lim-
itsOand}; s.
12 1/2
W= wFOX(,[ cos 30°J

sin 7t cos rt dt + sin 30°j
0

sin’wrt dt]
0

. 1/2
= 7% 10 X 2[—0f66cos2m + 0.50(-'- _ s 2’”)]
m

2 4m o

=1651N'm

3.8 EQUIVALENT VISCOUS DAMPING

The primary influence of damping on oscillatory systems is that of limiting the ampli-
tude of response at resonance. As seen from the response curves of Fig. 3.1.3, damping
has little influence on the response in the frequency regions away from resonance.
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In the case of viscous damping, the amplitude at resonance, Eq. (3.1.9), was found
to be
Fy

cw,

X = (3.8.1)
For other types of damping, no such simple expression exists. It is possible, however, to
approximate the resonant amplitude by substituting an equivalent damping c,_ in the
foregoing equation.

The equivalent damping c,, is found by equating the energy dissipated by the vis-

cous damping to that of the nonviscous damping force with assumed harmonic motion.
From Eq. (3.7.2),

TCqwX® =W, (3.8.2)
where W, must be evaluated from the particular type of damping force.

EXAMPLE 3.8.1

Bodies moving with moderate speed (3 to 20 m/s) in fluids such as water or air are resisted by a
damping force that is proportional to the square of the speed. Determine the equivalent damp-
ing for such forces acting on.an oscillatory system, and find its resonant amplitude.
Solution Let the damping force be expressed by the equation ‘

V Fd = =* a)éz

where the negative sign must be used when x is positive, and vice versa. Assuming harmonic
motion with the time measured from the position of extreme negative displacement,

x = —Xcoswt

the energy dissipated per cycie is

W, = 2J axldx = 2aw2x3f sin® wt d{ wt)
-x 0
= g a?X?
The equivalent viscous damping from Eq. (3.8.2) is then -
Coy = 3%7 awX

The amplitude at resonance is found by substituting ¢ = ¢, in Eq.(3.8.1) with 0 = o,

_ ' 3nF,
X= 8aw?

EXAMPLE 3.8.2

Find the equivalent viscous damping for Coulomb damping.
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Solution We assume that under forced sinusoidal excitation, the displacement of the system
with Coulomb damping is sinusoidal and equal to x = X sin wt. The equivalent viscous damping
can then be found from Eq. (3.8.2) by noting that the work done per cycle by the Coulomb force
F,is equal to W, = F, X 4X. Its substitution into Eq. (3.8.2) gives

e, 0X I=4F.X

4F,
‘" roX
The amplitude of forced vibration can be found by substituting c,_ into Eq. (3.1.3):

Fy
4F, w\?
2 d
\/(k mw) + (‘n'mX)

Xl \/F‘%_ (i%)z RV (:;0)

k- mw k 1_(£>2
w'l

We note here that unlike the system with viscous damping, X/§,, goes to © when & = w,,.
For the numerator to remain real, the term 4F,/ wF, must be less than 1.0.

Solving for X, we obtain

3.9 STRUCTURAL DAMPING '

‘When materials are cyclically stressed, energy is dissipated internally within the mater-

ial itself. Experiments by several investigators! indicate that for most structural metals,
such as steel or aluminum, the energy dissipated per cycle is independent of the fre-
quency over a wide frequency range and proportional to the square of the amplitude
of vibration. Internal damping fitting this classification is called solid damping or struc-
tural damping. With the energy dissipation per cycle proportional to the square of the
vibration amplitude, the loss coefficient is a constant and the shape of the hysteresis
curve remains unchanged with amplitude and independent of the strain rate.
Energy dissipated by structural damping can be written as

W, = aX? : (3.9.1)

where a is a constant with units of force/displacement. By using the concept of equiva-
lent viscous damping, Eq. (3.8.2) gives

mequz = aX?
or

Cpg= — ' (3.9.2)

!A. L. Kimball, “Vibration Damping, Including the Case of Solid Damping,” Trans. ASME, APM 51-52-

(1929). Also B. J. Lazan, Damping of Materials and Members in Structural Mechanics (Elmsford NY:
Pergamon Press, 1968).
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By substituting c,, for ¢, the differential equation of motion for a system with structural
damping can be wrltten as

mx + (i ) x + kx = Fysin ot (3.9.3)
mTw

Complex stiffness. In the calculation of the flutter speeds of airplane wings and

tail surfaces, the concept of complex stiffness is used. It is arrived at by assummg the
oscillations to be harmonic, which enables Eq. (3.9.3) to be written as

. .a S
mx + (k+t—)x= Fype'
T

By factoring out the stiffness k and letting y = a/wk, the preceding equation becomes
mx + k(1 + iy) x = Fe™ ' (3.94)

The quantity k(1 + iv) is called the complex stiffness and v is the structural damping
factor.

Using the concept of complex stiffness for problems in structural vibrations is
advantageous in that one needs only to multiply the stiffness terms in the system by
(1 + iy). The method is justified, however, only for harmonic oscillations. With the
solution x = Xe'“, the steady-state amplitude from Eq. (3.9.4) becomes

X= = ng) + ivk (39:3)
The amplitude at resonance is then
F,
|x| = y—z (3.9.6)
Comparing this with the resonant response of system with viscous damping
xl= 52
20k

we conclude that with equal amplitudes at resonance, the structural damping factor is '
equal to twice the viscous damping factor.

Frequency response with structural damping. By startiﬁg with Eq. (3.9.5), the

. complex frequency response for structural damping can be shown to be a circle.

Letting w/w, = r and multiplying and d1v1d1ng by its complex conjugate give a com-
plex frequency response of

1 1-r? , -

y .
B e A (s e (e
where
_ 1-r2 d _ - -
N I L e N (R k2
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9 x
f
172y
H(r)
FIGURE 3.9.1. Frequency
response with structural
damping. 4

The following algebra leads to
L1 a-rp-y
YTy T [0+ 4
X 1\ 4y -+ (1 =) =290 - ) +
oo 4]

[0 -r) + T
()

e 3T-()
) Ty
This is a circle of radius 1/2y with center —1/27, as shown in Fig. 3.9.1.

Every point on the circle represents a different frequency ratio » At resonance,
r=1x=0,y=~1/y,and H(r) = —i/¥y.

3.10 SHARPNESS OR RESONANCE

In forced vibration, there is a quantity Q related to damping that is a measure of the

sharpness of resonance. To determine this quantity, we assume viscous damping and
start with Eq. (3.1.7).

When w/w, = 1, the resonant amplitude is x = (F,/k)/2{. We now seek the
two frequencies on either side of resonance (often referred to as sidebands), where X

is 0.707X . These points are also referred to as the half-power points and are shown in
Fig. 3.10.1.

Letting X = 0.707X , and squaring Eq. (3.1.7), we obtain
-1( 1 )2 _ 1
Alar ] T ] 292 2
N T )
wﬂ w’l

(03)4 -2(1 - 2{2)((03’1)2 +(1-89=0 (3.10.1)

or
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|
(L]
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1 |
| 1
1 1

(l)|' w3
FIGURE 3.10.1.
Solving for (w /w,)* we have
2
(wﬂ) =1 -2)+xuVi-¢ (3.102)

Assuming { <1 and neglecting higher-order terms of ¢, we arrive at the result

(3)2 =1+2 (3.10.3)

n

Letting the two frequencies corresponding to the roots of Eq. (3.10.3) be w, and w,, we
obtain

2 2
_ W9 Wy, (@2 W
L
n

n

The quantity Q is then defined as

w,

A = fy =—1— (3.104)
wm—w fHL-fi 2

Here, again, equivalent damping can be used to define Q for systems with other forms
of damping. Thus, for structural damping, Q is equal to

.

| Q= (3.10.5)

1
Y

3.11  VIBRATION-MEASURING INSTRUMENTS

The basic element of many vibration-measuring instruments is the seismic unit of
Fig. 3.11.1. Depending on the frequency range utilized, displacement, velocity, or

- acceleration is indicated by the relative motion of the suspended mass with respect

to the case.
To determine the behavior of such instruments, we consider the equation of

. motion of m, which is
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T AL
FIGURE 3.11.1.

mi= —c(x—y)—k(x-y) (3.11.1)

where x and y are the displacement of the seismic mass and the vibrating body, respec-
tively, both measured with respect to an inertial reference. Letting the relative dis-
placement of the mass m and the case attached to the vibrating body be

z=x-y - (3.11.2)

and assuming sinusoidal motion y = Y sin wt of the vibrating body, we obtain the
equation

mz + cz + kz = mw®Y sin wt (3.11.3)

This equation is identical in form to Eq. (3.2.1) with z and m«?Y replacing x and mea?,
respectively. The steady-state solution z = Z'sin (wf — ¢) is then available from inspec-

tion to be
z= 3 ”’"’:’2’ = o = (31149)
T
. wn wn
and .
w %
o = n 3.11.5
tan ¢ p— 1_(9_)2 (3.11.5)
\w,

lIt is evident then that the parameters invclved are the frequency ratio w/w, and the
damping factor {. Figure 3.11.2 shows a plot of these equations and is identical to
Fig. 3.3.2 except that Z/Y replaces MX/me. The type of instrument is determined by

the useful range of frequencies with respect to the natural frequency o, of the instru-
ment. ‘ ' '

Seismometer: instrument with low natural frequency. When the natural fre-
quency w, of the instrument is low in comparison to the vibration frequency w to be
measured, the ratio w/w, approaches a large number, and the relative displacement Z
approaches Y regardless of the value of the damping ¢, as indicated in Fig. 3.11.2. The

mass m then remains stationary while the supporting case moves with the vibrating
body. Such instruments are called seismometers.
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FIGURE 3.11.2. Response of a vibration-measuring instrument.
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FIGURE 3.11.3. '
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1

One of the disadvantages of the seismometer is its large size. Because Z = Y, the
relative motion of the seismic mass must be of the same order of magnitude as that of

‘the vibration to be measured.

The relative motion z is usually converted to an electric voltage by making the
seismic mass-a magnet moving relative to coils fixed in the case, as shown in Fig. 3.11.3.
Because the voltage generated is proportional to the rate of cutting of the magnetic
field, the output of the instrument will be proportional to the velocity of the vibrating

‘body. Such instruments are called velometers. A typical instrument of this kind can

have a natural frequency from 1 to 5 Hz and a useful frequency range of 10 to 2000 Hz.
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The sensitivity of such instruments can be in the range of 20 to 350 mV/cm/s, with the
maximum displacement limited to about 0.5 cm peak to peak.

Both the displacement and acceleration are available from the velocity-type
transducer by means of the integrator or the differentiator provided in most signal
conditioner units.

Figure 3.11.4 shows the Ranger seismometer, which because of its high sensitivity
was used in the U.S. lunar space program. The Ranger seismometer incorporates a
velocity-type transducer with the permanent magnet as the seismic mass. Its natural

frequency is nominally 1 Hz with a mass travel of = 1 mm. Its size is 15 cm in diameter
and it weighs 11 Ib. "

Accelerometer: instrument with high natural frequency. When the natural
frequency of the instrument is high compared to that of the vibration to be mea-

FIGURE 3.11.4. Ranger seismometer. (Courtesy of Kinemetrics, Inc., Pasadena, California.)
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sured, the instrument indicates acceleration. Examination of Eq. (3.11.4) shows that

the factor v
272 2
- (2] T+ (e2)

w’l wn

approaches unity for w/w, — 0,so that.

- w?{ _ accelerzation (3.11.6)

w Wy,

Thus, Z becomes proportional to the acceleration of the motion to be measured with a

factor 1/ wf,. The useful range of the accelerometer can be seen from Fig. 3.11.5, which
is a magnified plot of

1

- ()T e

for various values of damping {. The diagram shows that the useful frequency range of
the undamped accelerometer is somewhat limited. However, with { = 0.7, the useful
frequency range is 0 < w/w, < 0.20 with a maximum error less than 0.01 percent. Thus,
an instrument with a natural frequency of 100 Hz has a useful frequency range from 0
to 20 Hz with negligible error. Electromagnetic-type accelerometers generally utilize
damping around { = 0.7, which not only extends the useful frequency range, but also
prevents phase distortion for complex waves, as will be shown later. On the other hand,
very high natural-frequency instruments, such as the piezoelectric crystal accelerome-
ters, have almost zero damping and operate without distortion up to frequencies of
0.06f .

"Several different accelerometers are in use today. The seismic mass accelerome-
ter is often used for low-frequency vibration, and the supporting springs may be four

1.05

1.04 / -
1.03 L £=0.6
fs=0 ‘
lr\l__ |02 7‘
ECT | =
S | oo A= N
o' . e~ " N
55 0.99 . -
3:3 098 N \so.?o \
< 0.97) \\ N N\
- NG=0.75 \
- \J \
0.95 \l | : \
0 o.d 0.2 03 04 05 06 07 08 09
@
wp

FIGURE 3.11.5.  Acceleration error vs. frequency with { as a parameter.
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electric strain gage wires connected in a bridge circuit. A more accurate variation of
this accelerometer is one in which the seismic mass is servo-controlled to have zero rel-
ative displacement; the force necessary to accomplish this becomes a measure of the
acceleration. Both of these instruments require an external source of electric power.

The piezoelectric properties of crystals like quartz or barium titanate are utilized
in accelerometers for higher-frequency measurements. The crystals are mounted so
that under acceleration, they are either compressed or bent to generate an electric
charge. Figure 3.11.6 shows one such arrangement. The natural frequency of such
accelerometers can be made very high, in the 50,000-Hz range, which enables accelera-
tion measurements to be made up to 3000 Hz. The size of the crystal accelerometer is
very small, approximately 1 cm in diameter and height, and it is remarkably rugged
and can stand shocks as high as 10,000 g’s. _

The sensitivity of the crystal accelerometer is given either in terms of charge (pi-
cocoulombs = pC = 102 Coulombs) per g, or in terms of voltage (millivolts =
mV = 1073 V) per g. Because the voltage is related to the charge by the equation
E = Q/C,the capacitance of the crystal, including the shunt capacitance of the connecting
cable, must be specified. Typical sensitivity for a crystal accelerometer is 25 pC/g with
crystal capacitance of 500 pF (picofarads). The equation E = Q/C then gives
25/500 = 0.050 mV/g = 50 mV /g for the sensitivity in terms of voltage. If the accelerom-
eter is connected to a vacuum-tube voltmeter through a 3-m length of cable of capaci-
tance 300 pF, the open-circuit output voltage of the accelerometer will be redli‘ged to

. 500 '
500 + 300

This severe loss of signal can be avoided by using a charge émplifier, in which'casé, the
capacitance of the cable has no effect.

50 =313 mV/g

Phase distortion. To reproduce a complex wave such as the one shown in
Fig. 3.11.7 without changing its shape, the phase of all harmonic components must
remain unchanged with respect to the fundamental. This requires that the phase angle
be zero or that all the harmonic components must be shifted equally. The first case of
zero phase shift corresponds to { = 0 for w/w, < 1. The second case of an equal time-

Mass Piezoelectric
crystal

|

FIGURE 3.11.6. _ FIGURE 3.11.7.

ail

T W22l |4
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wise shift of all harmonics is nearly satisfied for { = 0.70 for w/w, < 1. As shown in
Fig.3.11.2, when £ = 0.70, the phase for «/w, <1 can be expressed by the equation

T W

2 w,
Thus, for £ = 0, or 0.70, the phase distortion is practically eliminated.

EXAMPLE 3.11

Investigate the output of an accelerometer with damping ¢ = 0.70 when used to measure a peri-
odic motion with the displacement given by the equation

y =Y, sin wt + Y,sin w,t

Solution For {=070,¢=7n/2 X w/w,s0that ¢, = 7/2 X w,/w, and ¢, = 7/2 X w,/w,
The output of the accelerometer is then

z = Z;sin (ot — ¢,) + Z,sin (w2 — ¢,)
By substituting for Z, and Z, from Eq. (3.12.6), the output of the instrument is

1 . T . T
z= ;i[w%Ylsmwl(t— 2—0),,) + w%Y2smw2(t— an)]

Because the time functions in both terms are equal (1 — 7/2w,), the shift of both components
along the time axis is equal. Thus, the instrument faithfully reproduces the acceleration y without
distortion. It is obvious that if ¢, and ¢, are both zero, we again obtain zero phase distortion.

- PROBLEMS
s 3.1. A machine part of mass 1.95 kg vibrates in a viscous medium. Determine the damping

coefficient when a harmonic exciting force of 24.46 N results in a resonant amplitude of
1.27 cm with a period of 0.20 s.

If the system of Prob. 3.1 is excited by a harmonic force of frequency 4 cps, what will be

the percentage increase in the amplitude of forced vibration when the dashpot is
removed?

-3.3. A weight attached to a spring of stiffness 525 N/m has a viscous damping device. When

the weight is displaced and released, the period of vibration is 1.80 s, and the ratio of

consecutive amplitudes is 4.2 to 1.0. Determine the amplitude and phase when a force
F = 2 cos 3t acts on the system.

3.2,

3.4. Show that for the dampled spring-mass system, the peak amplitude occurs at a frequency
ratio given by the expression
(2] v
© _
"’p

3.5. A spring-mass is.excited by a force F,sin wt. At resonance, the amplitude is measured to

be 0.58 cm. At 0.80 resonant frequency, the amplitude is measured to be 0.46 cm.
Determine the damping factor { of the system.
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M 3.6. Plot the real and imaginary parts of Eq. (3.1.17) for { = 0.01 and 0.02. (See Appendix E
for information about Matlab®.)

3.7. For the system shown in Fig. P3.7, set up the equation of motion and solve for the steady-
state amplitude and phase angle by using complex algebra.

2 p* I-E:XZ sin wt

(4 k
7 m —WW——e

FIGURE P3.7.

3.8. Shown in Fig. P3.8 is a cylinder of mass m connected to a spring of stiffness k excited
through viscous friction c to a piston with motion y = A sin «t. Determine the amplitude
of the cylinder motion and its phase with respect to the piston.

Q_ﬁ
K g’”, c “pgs
Vccia y

FIGURE P3.8.

3.9. A thin disk is supported on spring-mounted bearings with vibration pickup and strobo-
tac, as shown in Fig. P3.9. Running at 600 rpm ccw, the original disk indicates a maximum
amplitude of 2.80 mm at 45° cw from a reference mark on the disk. Next a trial weight of
2.0 oz is added at the rim in a position 91.5° cw from the reference mark and run at the
same speed. If now the new unbalance is 6.0 mm at 80° cw from the reference mark,
determine the position and weight necessary to balance the original disk.

Vib. pickup

FIGURE P3.9.

3.10. If for the same disk of Prob. 3.9, the trial weight of 2 oz is placed at 135° cw from the ref-
erence mark, the new unbalance is found to be 4.3 mm at 111° cw. Show that the correct
balance weight is unchanged.
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If the wheel of Prob. 3.9 shows resonance at 900 rpm with damping of { = 0.10, deter-

mine the phase lag of the original unbalance and check the vector diagrams of Probs. 3.9
and 3.10.

Prove that a long rotor can be balanced by adding or removing weights in any two paral-
lel planes, and modify the single disk method to balance the long rotor.

A counterrotating eccentric mass exciter shown in Fig. P3.13 is used to determine the
vibrational characteristics of a structure of mass 181.4 kg. At a speed of 900 rpm, a stro-
boscope shows the eccentric masses to be at the top at the instant the structure is moving
upward through its static equilibrium position, and the corresponding amplitude is 21.6
mm. If the unbalance of each wheel of the exciter is 0.0921 kg - m, determine (a) the nat-
ural frequency of the structure, (b) the damping factor of the structure, (c) the amplitude
at 1200 rpm, and (d) the angular position of the eccentrics at the instant the structure is
moving upward through its equilibrium position.

©@

M
k k
2 ¢ 2
77, 7777, 7777777 v
FIGURE P3.13.

Solve Eq. (3.2.1) for the complex amplitude,. ie., let (mew?) sin ot = Fe™ and
“x = Xellot=¢) = (Xe~%)ei = Xei. .
A balanced wheel supported on springs, as shown in Fig. P3.15, is rotating at 1200 rpm. If
a bolt weighing 15 g and located 5 cm from center suddenly comes loose and flies off,

determine the buildup of vibration if the natural frequency of the system is 18 cps with
damping of { = 0.10.

FIGURE P3.15.
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3.16. A solid disk weighing 10 Ib is keyed to the center of a 3-in. steel shaft 2 ft between bear-

3.17.
3.18.

3.19.

3.20.

3.21.

3.22.

ings. Determine the lowest critical speed. (Assume the shaft to be simply supported at
the bearings.)

Convert all units in Prob. 3.16 to the SI system and recalculate the lowest critical speed.

The rotor of a turbine 13.6 kg in mass is supported at the midspan of a shaft with bearings
0.4064 m apart, as shown in Fig. P3.18.The rotor is known to have an unbalance of 0.2879
kg - cm. Determine the forces exerted on the bearings at a speed of 6000,rpm if the diam-
eter of the steel shaft is 2.54 cm. Compare this result with that of the same rotor mounted

on a steel shaft of diameter 1.905 cm. (Assume the shaft to be simply supported at the
bearings.)

!
a
A
, g

; 77

7 / 7
z
z

FIGURE P3.18.

For turbines operating above the critical speed, stops are provided to limit the amplitude
as they run through the critical speed. In the turbine of Prob. 3.18, if the clearance
between the 2.54-cm shaft and the stops is 0.0508 cm, and if the eccentricity is 0.0212 cm,

determine the time required for the shaft to hit the stops. Assume that the critical speed
is reached with zero amplitude.

Figure P3.20 represents a simplified diagram of a spring-supported vehicle traveling over
a rough road. Determine the equation for the amplitude of W as a function of the speed,
and determine the most unfavorable speed.

FIGURE P3.20.

The springs of an automobile trailer are compressed 10.16 cm under its weight. Find the
critical speed when the trailer is traveling over a road with a profile approximated by a
sine wave of amplitude 7.62 cm and wavelength of 14:63 m. What will be the amplitude of
vibration at 64.4 km/h? (Neglect damping.)

The point of suspension of a simple pendulum is given by a harmonic motion
X = X, sin wt along a horizontal line, as shown in Fig, P3.22. Write the differential equa-
tion of motion for a small amplitude of oscillation using the coordinates shown.
Determine the solution for x/x,, and show that when @ = V2w, , the node is found at
the midpoint of /. Show that in general the distance & from the mass to the node is glven
by the relation & = w,/w)?, where w, = Vg/l.
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F“ "“" FIGURE P3.22.

3.23. Derive Egs. (3.5.8) and (3.5.9) for the amplitude and phase by letting y = Y sin wt and
x = X sin(wt — ¢) in the differential equation (3.5.1).

3.24. An aircraft radio weighing 106.75 N is to be isolated from engine vibrations ranging in
frequencies from 1600 to 2200 cpm. What statical deflection must the isolators have for
85% isolation? : '

3.25. A refrigerator unit weighing 65 b is to be supported by three springs of stiffness k Ib/in.
each. If the unit operates at 580 rpm, what should be the value of the spring constant k if
only 10% of the shaking force of the unit is to be transmitted to the supporting structure?

3.26. Anindustrial machine of mass 453.4 kg is supported on springs with a static deflection of
0.508 cm. If the machine has a rotating unbalance. of 0.2303 kg - m, determine (a) the
force transmitted to the floor at 1200 rpm and (b) the dynamic amplitude at this speed.
(Assume damping to be negligible.) '

3.27. If the machine of Prob. 3.26 is mounted on a large concrete block of mass 1136 kg and the
stiffness of the springs or pads under the block is increased so that the statical deflection
is still 0.508 cm, what will be the dynamic amplitude? -

3.28. An electric motor of mass 68 kg is mounted on an isolator block of mass 1200 kg and the
natural frequency of the total assembly is 160 cpm with a damping factor of { = 0.10 (see
Fig. P3.28). If there is an unbalance in the motor that results in a harmonic force of

F = 100 sin 31.4¢, determine the amplitude of vibration of the block and the force trans-
mitted to the floor.

FIGURE P3.28.

3.29. A sensitive instrument with mass 113 kg is to be installed at a location where the acceler-
ation is 15.24 cm/s? at a frequency of 20 Hz. It is proposed to mount the instrument on a
rubber pad with the following properties: k = 2802 N/cm and { = 0.10. What accelera-
tion is transmitted to the instrument?
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3.30.

M 3.31.

3.32.

3.33.
3.34.
3.35.

3.36.

3.37.
3.38.

3.39.

3.40.
341

If the instrument of Prob. 3.29 can tolerate an acceleration of only 2.03 cm/s?, suggest a

solution assuming that the same rubber pad is the only isolator available. Give numerical
values to substantiate your solution.

For the system shown in Fig. P3.31, verify that the transmissibility TR = |x/ y| is the same

as that for force. Plot the transmissibility in decibels, 20 log | TR| versus w/w, between
wlw, =1.50 to 10 with { = 0.02,0.04, ...,0.10.

1

m
lk__i_i:: ’
y
FIGURE P3.31. L

Show that the energy dissipated per cycle for viscous friction can be expressed by

nFj 2{(w/w,)

k1 - (0/w) ] + R2¢w/w,)]?

Show that for viscous damping, the loss factor 7 is independent of the amplitude and pro-
portional to the frequency.

Express the equation for the free vibration of a single-DOF system in terms of the loss
factor 7 at resonance.

Show that 7,/7, plotted against { is a quarter circle where 7, is the damped natural
period, and 7, is the undamped natural period.
For small damping, the energy dissipated per cycle divided by the peak potential energy
is equal to 28 and also to 1/Q. [See Eq. (3.7.6).] For viscous damping, show that
TCw,

k
In general, the energy loss per cyéle is a function of both amplitude and frequency. State
under what condition the logarithmic decrement & is independent of the amplitude.

Coulomb damping between dry surfaces is a constant D always opposed to the motion.
Determine the equivalent viscous damping.

W, =

8:

Using the result of Prob. 3.38, determine the amplitude of motion of a spring-mass system
with Coulomb damping when excited by a harmonic force £ sin wt. Under what condition
can this motion be maintained? '

Plot the results of Prob. 3.39 in the permjssible range.

The shaft of a torsiograph, shown in Fig. P3.41, undergoes harmonic torsional oscillation

6, sin ot. Determine the expression for the relative amplitude of the outer wheel with
respect to (a) the shaft and (b) a fixed reference.

FIGURE P3.41.
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3.48.

3.49.
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3.52.
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Problems 87

A commercial- -type vibration pickup has a natural frequency of 4.75 cps and a damping
factor { = 0.65. What is the lowest frequency that can be measured with (a) 1% error and
(b) 2% error?
An undamped vibration pickup having a natural frequency of 1 cps is used to measure a
harmonic vibration of 4 cps. If the amplitude indicated by the pickup (relative amplitude
between pickup mass and frame) i_s 0.052 cm, what is the correct amplitude?
A manufacturer of vibration-measuring instruments gives the following specifications
for one of its vibration pickups:
Frequency range: Velocity response flat from 10 to 1000 cps.
Sensitivity: 0.096 V/cm/s, both volts and velocity in rms values,
Amplitude range: Almost no lower limit to maximum stroke between stops of 0.60in.
(a) This instrument was used tc measure the vibration of a machine with a known fre-
quency of 30 cps. If a reading of 0.024 V is indicated, determine the rms amplitude.
(b) Could this instrument be used to measure the vibration of a machine with known
frequency of 12 cps and double amplitude of 0.80 cm? Give reasons.

A vibration pickup has a sensitivity of 40 mV/cm/s from f = 10 to 2000 Hz. If 1 g accel-
eration is maintained over this frequency range, what will be the output voltage at (a) 10
Hz and (b) 2000 Hz?

Using the equations of harmonic motion, obtain the relationship for the velocity versus
frequency applicable to the velocity pickup.

A vibration pickup has a sensitivity of 20 mV /cm/s. Assuming that 3 mV (rms) is the
accuracy limit of the instrument, determine the upper frequency limit of the instrument
for 1 g excitation. What voltage would be generated at 200 Hz?

The sensitivity of a certain crystal accelerometer is given as 18 pC/g, with its capacitance
equal to 450 pF. It is used with a vacuum-tube voltmeter with connecting cable 5 m long
with a capacitance of 50 pF/m. Determine its voltage output per g.

Specific damping capacity W, /U is defined as the energy loss per cycle W, divided by the
peak potential energy U = —kX 2. Show that this quantity is equal to

w, - ®
U - 411'{( o, )
where { = ¢/c,,.

Logarithmic decrement & for small damping is equal to § = 2#{. Show that & is related to
the specific damping capacity by the equation

For a system with hysteresis damping, show that the structural damping factor v is equal
to the loss factor at resonance.

For viscous damping, the complex frequency response can be written as
1

1 -7+ i)

where r = w/w,,and { = ¢/c,. Show that the plot of H = x + iy leads to the equatiol

e -(o]
VT ) T\

which cannot be a circle because the center and the radius depend on the frequency ratio.

The following problem uses the programs runga.m and f.m where f.m contains the forcing
function, [force] = sin(z). You should use the following parameters for all of the problem:

H(r) =
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3.54.

Harmonically Excited Vibration

spring constant, k = 1; initial position x(0) = 0; time step, 8t = 0.2; and initial time, ¢, = 0.
Produce a plot for each of the cases considered.
(a) For the next fwo casesm = 1,c¢ = 1, and tfinal = 20.
i. initial velocity x'(0) = 1
ii. initial velocity x'(0) = 10
iii. How does the initial velocity affect the response of the system?
(b) For the next three cases, the initial velocity is fixed x'(0) = 10.
i. ¢=10,m =1, and tfinal = 40.
ii. ¢=1,m=10,and tfinal =
iii. ¢ = 1,m = 10, and tfinal = 100.

iv. Discuss why it takes the two systems different amounts of time to reach the
steady state solution.

Consider the system forced with two frequencies given by

mx + cx + kx = F,sin(wt) + F, sin (o,1).

‘Solve the equations of motion. Find the relationship between the amplitudes of the

3.55.

M 3.56.

™M 357

motion and the ratios of frequencies w, /w, w,/ . Plot the results in Matlab®.

Consider the system shown in Fig. P3.55, with the viscous damping coefficient ¢ and
spring stiffness k. Derive the equation of motion when the system is forced by a sinu-
soidal force Fsin(wt). What is the effective damping for this system? What is the energy
dissipated over one cycle? Comparé this system with the system in which the spring and
the damper are connected in parallel.

FIGURE P3.55. IF: Fq sin{wt)

Consider the problem of Example 3.8.1. Solve the equations of motion numerically in
Matlab® and plot the average amplitude of oscillation versus the frequency ratio.
Compare with the result obtained in Example 3.8.1 where the equivalent viscous damp-
ing approach is used.

A table-tennis ball is jumping on the table that is oscillating periodically in time. The

position of the table is given by y(t) = Asin(t). It is assumed that the coefficient of resti-
tution is 1, so when the ball leaves the table it does so with the velocity V given vy

V=2Ww-U
where W is the velocity of the table at that moment in time and U is the velocity of the
ball at the impact. Simulate the motion in MATLAB® and plot the results in the following
form: Record the velocity of the ball v, and time t; at every impact with the table. Do this

for different initial conditions and for different forcmg frequencies w. Plot the average of
the amplitude of the ball over time versus the forcing frequency.


http://www.semeng.ir

WWW. senmeng. i r

CHAPTER 4

Transient Vibration

When a dynamical system is excited by a suddenly applied nonperiodic excitation F(r),
the response to such excitation is called transient response, since steady-state oscilla-
tions are generally not produced. Such oscillations take place at the natural frequen-
cies of the system with the amplitude varying in a manner dependent on the type of
excitation.

We first study the response of a spring-mass system to an impulse excitation
because this case is 1mportant in the understanding of the more general problem of
transients.

4.1 IMPULSE EXCITATION

Impulse is the time integral of the force, and we designate it by the notation F

= JF(t) dt 4.1.1)

We frequently encounter a force of very large magnitude that acts for a very short time

but with a time integral that is finite. Such forces are called impulsive. "
Figure 4.1.1 shows an impulsive force of magnitude F, / e with a time duration of .

As € approaches zero, such forces tend to become infinite; however, the impulse

— ], 1Y '_’I

L—e——”« ' FIGURE 4.1.1. '

89
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defined by its time integral is F, which is considered to be finite. When F is equal to
unity, such a force in the limiting case € — 0 is called the unit impulse, or the delta func-

tion. A delta function at ¢ = £is identified by the symbol 8(t — £) and has the following
properties:

it—¢=0 forallt # £

It

greater than any assumed value for ¢ = ¢

f:&(t — Odt

If 8(t — ¢) is multiplied by any time function f(¢), as shown in Fig. 4.1.2, the producf
will be zero everywhere except at ¢ = £ and its time integral will be

10 0<¢<ow | (4.1.2)

j FO8-Odi=fH 0 <i<o (413)

Because Fdt = m dv, the impulse F acting on the mass will result in a sudden
change in its velocity equal to F/m without an appreciable change in its displacement.
Under free vibration, we found that the undamped spring-mass system with initial con-
ditions x(0) and x(0) behaved according to the equation

x= *0) sin w,t + x(0)cos w,t
w’l
Hence, the response of a spring-mass system initially at rest and excited by an impulse
Fis '
F -
x = —sinw,t = Fh(t) (4.1.9)
mw,
where
h(r) = 1 sinw,t ' (4.1.5)
mw, "

is the response to a unit impulse.

’

FIGURE 4.1.2.
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When damping is present, we can start with the free-vibration equation, Eq. (2.6.17),
with x(0) = 0:

x = j(g}ﬁ sinV'1 = ot

n

Substituting for the initial condition x(0) = F /m, we arrive at the equation

F
mw,V1 — ¢
The response to the unit impulse is of importance to the problems of transients
and is identified by the special designation A(¢). Thus, in either the damped or
undamped case, the equation for the impulsive response can be expressed in the form
x = Fh(r) (4.1.7)
where the right side of the equation is given by either Eq. (4.1.4) or (4.1.6).

e 'sinV1 — Pyt (4.1.6)

4.2 ARBITRARY EXCITATION

By having the response A(f) to a unit impulse excitation, it is possible to establish the
equation for the response of the system excited by an arbitrary force f(f) . For this
development, we consider the arbitrary force to be a series of impulses, as shown in

Fig. 4.2.1. If we examine one of the impulses (shown crosshatched) at time ¢ = ¢, its
strength is

F = f(¢) A¢

and its contribution to the response at time ¢ is dependent upon the elapsed time

(t - &,or
f(&) AER (e - §)

. F(g)
i T !
. ~£-’ <-A€ 'P £=f €
flEIAE
f(E)AE h(t-
£
‘—6 %‘ (t-¢ —!

FIGURE 4.2.1.


http://www.semeng.ir

WWW. senmeng. i r

92 Chapter4  Transient Vibration

where h(t — §) is the response to a unit impulse started at ¢ = £ Because the system we
are considering is linear, the principle of superposition holds. Thus, by combining all

such contributions, the response to the arbitrary excitation f(r) is represented by the
integral

() = j F(Oh(c - &) de (421)

This integral is called the convolution integral and is sometimes referred to as the
superposition integral.

EXAMPLE 4.2.1

Determine the response of a single-DOF system to the step excitation shown in Fig. 4.2.2.

£(r)

Fo

FIGURE 4.2.2. Step function excitation.

Solution Considering the undamped system, we have
1
h(t) =
mo,
By substituting into Eq.(4.2.1), the response of the undamped system is

x(t) = r:;(:: J sin w,(t — &) d¢

n J0

sin w,!

422)
F,
=3 (1 — cos w,f)

This result indicates that the peak response to the step excitation of magnitude F, is equal to
twice the statical deflection.
For a damped systein, the procedure can be repeated with
——————sin
ma,V1 — ¢

- {w,t
V1~ § ot

or, alternatively, we can simply consider the differential equation

h(t) = ¢

' F
. . .
X+ 2w, x + wyx = -

whose solution is the sum of the solutions to the homogeneous equation and that of the particu-
lar solution, which for this case is Fo/mw;‘:. Thus, the equation
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2 T
L - £=005 A ‘ ‘1
Fo V N\ ¢=020
) /// N
"C=0’50\. | \/ N
\a
|
0 2 4 6 8 10 2 14 16 18 20
wpt

FIGURE 4.2.3. Response to a unit step function.

x(2) = Xe%'sin (V1 - 2 ot — ¢) + Fy

2
n

fitted to the initial condition of x(0) = x(0) = 0 will result in the solution, which is given as

—{aw,t
x= %[1 — ﬁcos (V1= Zot- ¢)] (423)
where
tan ¢ = ——{
Vi-¢2

Figure 4.2.3 shows a plot of xk/F, versus w,t with { as a parameter, and it is evident that the
peak response is less than 2F,/k when damping is present.

Base excitation. Often, the support of the dynamical system is subjected to a
sudden movement specified by its displacement, velocity, or acceleration. The equation

of motion can then be expressed in terms of the relative displacement z = x — y as
follows:

7+ 2wz + olz= -y 4.2.4)

and, hence, all of the results for the force-excited system apply to the base-excited sys-
tem for z when the term F/m is replaced by —~y or the negative of the base acceleration.

For an undamped system initially at rest, the solution for the relative displace-
ment becomes

2= - 2 @smal-oas w29

n J0

EXAMPLE 4.2.2

Consider an undamped spring-mass system where the motion of the base is specified by a veloc-
ity pulse of the form

¥(®) = voe™"ou(r)

where u(?) is a unit step function. The velocity together with its time rate of change is shown in
Fig.4.24.
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Yo

FIGURE 4.2.4.

Solution The velocity pulse at ¢ = 0 has a sudden jump from zero to vy, and its rate of change

(or acceleration) is infinite. Differentiating y(f) and recognizing that (d/dt)u(f) = 8(f), a delta
function at the origin, we obtain

¥ = e 08(0) ~ “Leu(y)
0

By substituting y into Eq. (4.2.5), the result is

Y%

- [ [emsta(@ - Le-viu@ [sino, -~ 0 at
@, Jo )

n

z(p)

_%f 8(&e ¥osinw, (t — &) de + ”0[ J e ¥osin w,(r — ¢§) d§
0

n J0 W, by
Voly i )
= ——F—=(e ™" — w,t,sin w,t — cOs Wl 4.2.6)
1+(w,,t0)2( n*0 n n) (

4.3 LAPLACE TRANSFORM FORMULATION

The Laplace transform method of solving the differential equation provides a com-
plete solution, yielding both transient and forced vibrations. For those unfamiliar with
this method, a brief presentation of the Laplace transform theory is given in Appendix
B. In this section, we illustrate its use by some simple examples.

EXAMPLE 4.3.1

Formulate the Laplace transform solution of a viscously damped Spring—mass system with initial
conditions x(0) and x(0).
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Input F(s) — | H(s) | - Output X(s)

FIGURE 43.1. Block diagram.

- Solution The equation of motion of the system excited by an arbitrary force F(¢) is
mx + cx + kx = F(t)
Taking its Laplace transform, we find
m[s?x(s) — x(0)s — x(0)] + c[sx(s) - x(0)] + kx(s) = F(s)

Solving for x(s), we obtain the subsidiary equation:

%(s) = Hs) N (ms + ¢)x(0) + mx(0)
ms* + cs + k ms?+cs+ k

(43.1a)

The response x(¢) is found from the inverse of Eq. (4.3.1); the first term represents the forced
vibration and the second term represents the transient solution due to the initial conditions.
For the more general case, the subsidiary equation can be written in the form

Als)

x(s) = 30) | (43.1b)

where A(s) and B(s) are polynomials and B(s), in general, is of higher order than A(s).
If only the forced solution is considered, we can define the impedance transform as

Fs)

6 =z(s) = ms*+cs+ k : (4.3.1¢)

Its reciprocal is the admittance transform

H(s) = z—(ls—) . (4.3.1d)

Frequently, a block diagram is used to denote input and output, as shown in Fig: 431.The
admittance transform H(s) then can also be considered as the system transfer function,defined as

the ratio in the subsidiary plane of the output over the input with all initial conditions equal to
zero.

EXAMPLE 4.3.2 (Drop Test) ' ‘

. The question of how far a body can be dropped without incurring damage is of frequent interest.
Such considerations are of paramount importance in the landing of airplanes or the cushioning
of packaged articles. In this example, we discuss some of the elementary aspects of this problem
by idealizing the mechanical system in terms of linear spring-mass components.

Consider the spring-mass system of Fig. 4.3.2 dropped thiough a height k. If x is measured
from the position of m at the instant t = 0 when the spring first contacts the floor, the differential
equation of motion for m applicable as long as the spring remains in contact with the floor is

mx + kx = mg (4.3.2a)

Taking the Laplace transform of this equation with the initial conditions x(0) =0 and
x(0) = V2gh, we can write the subsidiary equation as
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7
9
Pl
jh m x=2gh % g
9,
l % ¢ @
X k 2gh
T w?
FIGURE 4.3.2. FIGURE 4.3.3.

V2gh g

+
st + mﬁ~ s(s? + wﬁ)

X(s) =

| (4.32b)

where w, = Vk/m is the natural frequency of the system. From the inverse transformation of
x(s), the displacement equation becomes

x(t) = 2ghsmmt+ —2(1 - coswt\
W,

(4.3.2¢)
\/ sm(wt—d))+; x(1) >0

n

where the relationship is shown in Flg. 4.3.3. By differentiation, the velocity and acceleration are

i) = o, \/Mcos(a}nt ~ @)
() =~k \/—sm (ont = 4)

We recognize here that g/w’ = §, and that the maximum displacement and acceleration occur at
sin (w,t — ¢) = 1.0. Thus, the maximum acceleration in terms of gravity is found to depend only
on the ratio of the distance dropped to the statical deflection as given by the equation

2 3t | (432d)

on ¥

A plot of this equation is shown in Fig. 4.3.4.

o 2 4 6 8 10 12 14 -

FIGURE 4.3.4.
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EXAMPLE 4.3.3

For a man in a seated position, as when driving an automobile, the single-DOF model of Fig. 435
is often assumed for forensic studies. From extensive biomechanical tests, the spinal stiffness of
81,000 N/m = 458 Ib/in.! is assumed for the spring k supporting the body mass W/g. By assumir.lg
mg = 160 Ib, this results in a static deflection of §, = 160/458 = 0.35 in. Let us assume that in hit-
ting an obstacle, the driver not restrained by a seat belt is thrown upward and drops 3.0 in. in free
fall onto an unpadded stationary seat. Determine the g acceleration transmitted by his spinal cord.

| 1o

FIGURE 4.3.5.

Solution The result for this problem is simply obtained from Eq.(4.3.2) as

——\/%}5 +1= — \fw +1= -—426
8, 0.35

4 4 PULSE EXCITATION AND RISE TIME

In this section, we consider the time response of the undamped sprlng mass system to
three different excitations shown in Fig. 4.4.1. For each of these force excitations, the
time response must be considered in two parts, t < ¢, and t > t,.

Rise time. The input can be considered to be the sum of two ramp functions, as
shown in Fig. 4.4.2. For the first ramp function, the terms of the convolution integral are

o=+l

‘ (44.1)
B h(t) = sin ot = —sin w,t
mao, " k "
Fo - A Fo N FO
i
!
i
2 ! 1 f f —!
(a) Constant with rise time (b) Rectangular pulse (c) Half-sine pulse
FIGURE 4.4.1.

1See Ref. [5].
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F
| ?
| o
| ¥
AN _ '
FIGURE 4.4.2.
and the response becomes
t
x(t) = = j Fofsin (i - &)de
kJo "4

(44.2)

F,(t sin w, ¢
=L - - 1<t
k\y w, b

For the second ramp function starting at ¢,, the solution can be written by inspec-
tion of the foregoing equation as

() = — _F_O[ -4 sine,(r— ‘1)]
k L w, b

By superimposing these two equations, the response for ¢ > 1, becomes

x(t)=%[l—w+ 1 sinwn(t—tl)] t>1 (4.4.3)

w, tl w, tl

Rectangular pulse. The input pulse here can be considered as the sum of two
step functions, as shown in Fig. 4.4.3.
We already have the response to the step function as

% =[1-coswpt] t<t (44.4)
0 : .

The peak response here is obviously equal to 2.0 at ¢ = 3 7.
The response to the second step function started at ¢ = ¢, is

L —[1 = cos w,(t — ;)] (4.4.5)
FO
Fo i |
|
|
I
o} t
'1
‘FOF_—

FIGURE 4.4.3.
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and by adding, the response in the second interval ¢ > ¢, becomes

kx

Fy

{[1 = cos wt] — [1 = cos w,(t — ¢,)]}
(4.4.6)

—cos w,t + cosw,(t — 1) >4
Half-sine pulse. For a pulse of time duration ¢,, the excitation is .
. .t ’
F(r) = FosmT fort <t

1

44.7)
=0 fort >t

and the differential equation of motion is

. Fy . '
X+ wix= -};Osm wt/t, 1< (4.4.8)

. The general solution is the sum of the free vibration and the particular solution

. F, sinpt
)=A t+ B t+ 2= 4.
x() sin w, cos @yt + — pr— (4.4.9)
where p = r/t,. To satisfy the initial conditions x(0) = x(0) = 0, we find
P
F,
B=0 and A=--°—Y% _ >
1 —_ | 2=
\w
and the previous solution reduces to

p

(xk) On sin w,t + 1 sin pt
MV % Ghett ———
R ey 1_(3)2 7
w, , (4.4.10)

2 T

i
XY
ok
N
L~
—
4
=
3|
s
N
NS
N——
<3
=
= |
| IS
LN
A
R

To determine the solution for ¢ > t,, we use Eq. (4.4.10) but with ¢ replaced by
(t — t,). However, we choose a different procedure, noting that for ¢ > ¢,, the excitation
force is zero and we can obtain the solution as a free vibration [see Eq. 2.6.17] with
U =(—-1t).

x(t) = x(e )sm w,t + x(tl) Ccos w, t (4.4.11)

n

The initial values x(¢;) and x(tl) can be obtained from Eq. (4.4.10), notmg that
pt, = m.
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kx(t
x(t) = 2[sinpt1 - (ﬂ) sinwntl] =—1——2[—£-sinwnt1]
g,
w, @,
kx(t) _ 1 4

F, L (L)z [p cos pt; = pcos w,t,] =
wn

Substituting these results into Eq. (4.4.11), we obtain

P
k .
J—;— = a;;’ 5 [(1 + cos w,t,)sin w,t' + sin w,t, cos w,!']
* (3
wn
_pr
= —% [sin w,?’ + sin w,(t' + )] (4.4.12)
1 —_— A
(&)

1 . 2wt . ton\]
= ——— |sin— +sin2nw| - — = t>1
T 4 T
2t T

4.5 SHOCK RESPONSE SPECTRUM

In the previous section, we solved for the time response of an undamped spring-mass
system to pulse excitation of time duration ¢;. When the time duration ¢, is small com-
pared to the natural period 7 of the spring-mass oscillator, the excitation is called a
shock. Such excitation is often encountered by engjneering equipment that must
undergo shock-vibration tests for certification of satisfactory design. Of particular
interest is the maximum peak response, which is a measure of the severity of the shock.
In order to categorize all types of shock excitation, the single-DOF undamped oscilla-
tor (spring-mass system) is chosen as a standard.

- Engineers have found the concept of the shock response spectrum to be useful in
design. The shock response spectrum (SRS) is a plot of the maximum peak response of
the single-DOF oscillator as a function of the natural period of the oscillator. The max-
imum of the peaks, often labeled maximax, represents only a single point on the time
response curve. It does not uniquely define the shock input because it is possible for
two different shock pulses to have the same maximum peak response. In spite of this

“limitation, the SRS is a useful concept that is extensively used, especially for prelimi-
nary design. ' '
In Eq. (4.2.1), the response of a system to arbitrary excitation f(f) was expressed in
terms of the impulse response 4(?). For the undamped single-DOF oscillator, we have

1

mao,

h(r) =

Sin )¢
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so that the peak fesponse to be used in the response spectrum plot is given by the
equation

L[ o sina e - 9ae
0

n

X0y =

(4.5.1)

max

In the case where the shock is due to the sudden motion of the support point, f(t) is
replaced by — y(¢), the acceleration of the support point, as in Eq. (4.2.5).

(e = | = j 50 sin w,(t - ) dt (452)

n max

With 7 as the natural period of the oscillator, the maximum value of x(¢) or z(¢) is plot-
ted as a function of ¢,/7, where 7is the natural period of the oscillator and ¢, is the pulse
duration time.

To graphically describe the concept of the SRS, we choose the time response to
the rectangular pulse previously given in Sec. 4.4. For ¢ > ¢,, the response is given by
Eq. 4.4.6, which clearly represents two step functions started at times ¢t = 0 and ¢ = ¢,.
These are plotted in Fig. 4.5.1 for t,/7 = ;. Their difference, which is the response of
the oscillator for ¢>¢;, is shown by the dark line and the peak response is
(xk/Fy)max = 0.80 at time ¢,, = 0.327. Thus, we have one point, 0.80, on the SRS plot of
| xk/Fy| max VS- t1/7. _ '

If we change the pulse duration time to #,/7 = 0.40, a similar plot shown in Fig. 4.5.2
indicates that the peak response is now equal to |xk/F;| ., = 1.82 at time ¢,, = 0.457..
This then gives us a second point on the SRS plot, etc.

To avoid the laborious procedure described previously, we can start with Eq. (4.4.6)
and differentiate with respect to time to obtain the peak response as follows:

|=
@|—

1

%

N\

/ -
7/

Al
[[]

N}
(3]

o
Dl
o=
-

QD

|-

A
N\

NN
" \\// \\

FIGURE 4.5.1. Response for #,/7 = 1/8, which gives (xk/Fy) . = 0.80 at 1,, = 0.327.
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FIGURE 4.5.2. Response for t,/7 = 0.40, which gives (xk/FO)mx = 1.82att, = 0457

d(xk

= _F_'o) = w,[sin w,t, = sin w,,(tp -] =0

dt
where 1, is the time corresponding to the peak response. It follows then that

_ sinw,l
— (1 = cos w,t,) :

tan w,f, =-

which is shown in Fig. 4.5.3. From this figure, two other relations are found:

sinw,t; 3
V2(1 — cos w,t,)
—(1 - cos w,t,) 1
cos w, t, = =—=V(1 - cos w,1,)

"P V2(1 - cos w,t) V2 ( '

By substituting these results into the equation for (xk/F), the equation for the peak
response becomes

sin w,t, =

(%‘-) =V2(1 — cos w,t;)
0 7 max (4.5.3)

: .t
=2sinjw,t; =2sin— >
_ T

The SRS for the rectangular pulse given by this equation can now be displayed by the
plot of Fig. 4.5.4. Note the two points x found from the time response plots. The
dashed-line curves are called the residual spectrum, and the upper curve, which is equal
to 2.0 for /7 > 0.50, represents the envelope of all peaks, including the peaks of the
time response curve for ¢ < r,, which is easily seen from Eq. (4.2.2).
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FIGURE 4.5.4. Shock response spectrum for a rectangular pulse.
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FIGURE 4.5.5. Shock response spectrum for half-sine wave.

Figures 4.5.5 and 4.5.6 show the SRS for the half-sine pulse and the triangular
pulse, which are often good approximations to the actual pulse shapes. :

For the half-since pulse, the equation for the primary shock spectrum (¢ <¢,) is
obtained from the maximum of Eq. (4.4.6):

' ' 2 >n( T)
. ' TR\ —
. (&) - L o —24 (454)
FO max 1— T 1+ T :
24 24
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FIGURE 4.5.6. Shock response spectrum for triangular pulse.

whereas for the residual shock spectrum (¢ > ), the maximum values of Eq. (4.4.6) are

(&) S <:os7r—z1 {45.5)
F max - .

4.6 SHOCK ISOLATION

For shock isolation, the maximum peak response or the transmissibility must be less
than unity. Thus, for the rectangular pulse, this requires [see Eq. (4.5.3)]

4
2sin—1 < 1.0

T
s o T
— <30°= —
T 6
Vibration isolation is then possible for
— < -
T 6
' 0, < —
. " 3y

and the natural period of the isolated system must be greater than six times the pulse time.

Next, consider-a more general pulse bounded by a rectangular pulse, such as
those shown in Fig. 4.6.1. The impulse of these force pulses is clearly less than that of
the rectangular pulse. By remembering that the impulse is equal to the change in
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FIGURE 4.6.1.  Shock pulses bounded by a rectangular pulse.

momentum, it is reasonable to assume that the maximum peak response of the rectan-
gular pulse must be the upper bound to that of the enclosed pulse of general shape. We
also find that for small ¢,/7, the peak response occurs in the region ¢ > ¢,. For small val-
ues of t,/7, the response approaches that of a system excited by an impulse and the
shape of the pulse becomes less important other than to determine the magnitude of
the impulse. Such information is, of course, of considerable value to the designer in
avoiding some difficult mathematical calculations.

4.7 FINITE DIFFERENCE NUMERICAL COMPUTATION

When the differential equation cannot be integrated in closed form, numerical meth-
ods must be employed. This may well be the case when the system is nonlinear or if the
system is excited by a force that cannot be expressed by simple analytic functions.

In the finite difference method, the continuous variable ¢ is replaced by the dis-
crete variable ¢; and the differential equation is solved progressively in time increments
h = At starting from known initial conditions. The solution is approximate, but with a
sufficiently small time increment, a solution of acceptable accuracy is obtainable.

Although there are a number of different finite difference procedures available, in
this chapter, we consider only two methods chosen for their simplicity. Merits of the vari-
ous methods are associated with the accuracy, stability, and length of computation, which
are discussed in a number of texts on numerical analysis listed at the end of the chapter.

The differential equation of motion for a dynamical system, which may be linear
or nonlinear, can be expressed in the following general form:

x = f(x,x,1)
x, = x(0) ‘ ‘ (4.7.1)
x, = x(0)
where the initial conditions x, and x, are presumed to be known. (The subscript 1 is cho-
sen to correspond to ¢ = 0 because most computer languages do not allow subzero.)

In the first method, the second-order equation is integrated without change in .
form; in the second method, the second-order equation is reduced to two first-order
equations before integration. The equation then takes the form

. iy

. 472
5 = F3,1) “72
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We first discuss the method of solving the second-order equation directly. We also
limit, at first, the discussion to the undamped system, whose equations are

x = f(x,1) -
x; = x(0) 4.7.3)
x.l = x(0)

The following procedure is known as the central difference method, the basis of which
can be developed from the Taylor expansion of x;,, and x,_, about the pivotal point i.

2 3 ‘
xi+1=xi+hxi+—i—xi+—6fxi+... .
' 5 3 4.74)
X1 =xi—hx'i+75c'[—~6—};+...
where the time interval is A = At. Subtracting and ignoring higher-order terms, we
obtain
. 1 :
X = h (41 = X;21) (4.75)
Adding, we find
‘ . 1
%= 33 (i — 26 + x4) v 4.7.6)

In both Egs. (4.7.5) and (4.7.6), the ignored terms are of order K%, By substituting from
_the differential equation, Eq. (4.7.3), Eq. (4.7.6) can be rearranged to

Xy =2, = X+ hAflx, ) iz2 4.7.7)
which is known as the recurrence formula.

(Starting the computation.) If we let i = 2 in the recurrent equation, we note
that it is not self-starting, i.e., x,; is known, but we need x, to find x,. Thus, to start the
computation, we need another equation for x,. This is supplied by the first of Taylor’s

series, Eq. (4.7.4), ignoring higher-order terms, which gives
; h? .. . h?
X =x thi+ X = x o+t —i-f(xl, £ (4.7.8)

Thus, Eq. (4.7.8) enables one to find x, in terms of the initial conditions, after which x,
X4, ... are available from Eq. (4.7.7).

In this development we have ignored higher-order terms that introduce what is
known as truncation errors. Other errors, such as round-off errors, are introduced due
to loss of significant figures. These are all related to the time increment = At in a
rather complicated way, which is beyond the scope of this text. In general, better accu-
racy is obtained by choosing a smaller At, but the number of computations will then
increase together with errors generated in the computation. A safe rule to use with this

" method is to choose & < 7/10, where 7 is the natural period of the system.

A flow diagram for the digital calculation is shown in Fig. 4.7.1. From the given

data in block @, we proceed to block , which is the differential equation. Going to
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Initial Values

X = X() :
X = X)) L Print
At=h Results
I =1

@

N

p S
[= 141 |- e

T : 1

I=I+1 1
Fn

1®
X(I)
from Diff Eq.

j Eq.(47-3)

Ye oo
X(2) = X(0) +hX(1) + $h2% (1 [+ s XTI +1)= 2X(D)- XU -1 + M2 R(D)

Eq. (47-8) © ‘ Eq.(47-7)

FIGURE 4.7.1. Flow diagram (undamped system).

©for the first time, I is not greater than 1, and hence we proceed to the left, where x, is

calculated. Increasing I by 1, we complete the left loop(B)and @, where I is now equal
to 2, so we proceed to the right to calculate x,. Assuming N intervals of At, the path is to
the No direction and the right loop is repeated N times until / = N + 1, at which time
the results are printed out.

EXAMPLE 4.7.1
Solve numerically the differential equation
: 4x + 2000x = F(t)
_ with initial conditions ‘
A X, =%=0
and the forcing function shown in Fig. 4.7.2.

Solution The natural period of the system is first found as

©= 2 _ \fM= 22.36rad/s
T 4

27 '
T= ﬁ =0.281s
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FIG'JRE 4.7.4.

According to the rule & < 7/10 and for convenience for representing F(z), we choose h = 0.020 ¢,
From the differential equation, we have

= flx,1) = LF() - 500x
Equation (4.7.8) gives x, = }(25)(0.02)? = 0:005. x, is then found from Eq. (4.7.7).
x; = 0.005 — 0 + (0.02)%(25 — 500 x 0.005) = 0.0190

The following values of X4, X5, €tc. are now available from Eq. (4.7.7).

The exact solution was obtained by the superposition of the solutions for the step function

and the ramp function in the following manner. Figure 4.7.3 shows the superposition of forceg,
The equations to be superimposed for the exact solution are -
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x, = 0.05(1 — cos22.361) 0=<r=01 (4.7.9)
x, = — [3(¢ - 0.1) — 002236 5in 22.36(r — 0.10)] addat¢ = 0.1 - (4.7.10)
x,= + [3(¢ - 02) - 0.022365in22.36(t — 0.2)] addat:= 02 (4.7.11)

Both computations were carried out with MATLAB® and Figure 4.7.4 shows the computed
values compared with the exact solution.

. u
Initial acceleration and initial conditions zero.

0 and the initial conditions are zero, x, will also be zero and the computation cannot be
started because Eq. (4.7.8) gives x, = 0. This condition can be rectified by developing
new starting equations based on the assumption that during the first-time interval the
acceleration varies linearly from x; = 0 to X, as follows:

x=0+at
Integrating, we obtain

. [44

x= =t
2
o

x=—-¢
6

Because from the first équation, ft'z = ah, where h = At, the second and third equations
become

X, = gfz (4.7.12)
K ..
X=X (47.13)

Substituting these equations into the differential equation at time ¢, = h enables one to
solve for x, and x,. Example 4.7.2 illustrates the situation encountered here.

EXAMPLE 4.7.2

Use the digital computer to solve the problem of a spring-mass system excited by a triangular

pulse. The differential equation of motion and the initial conditions are given as

055 + 8% = F(t)

The triangular force is.defined in Fig.4.7.5.

Solution The natural period of the system is

= 2—‘”= 2m = 0.50
® 47

The time increment is chosen as & = 0.05, and the differential equation is reorganized as

If the applied force is zero at ¢t = °

‘'
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F(f)
10O} ------
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|
0 0.20 040 t
FIGURE 4.7.5.

x = f(x,ty = 2F(t) — 16 wx
This equation is to be solved together with the recurrence equation, Eq. (4.7.7),
Xioy =20 = x_y + hf(x, 1)

Because the force and the acceleration dre zero at ¢ = 0, it is necessary to start the computa-
tional process with Eqs. (4.7.12) and (4.7.13) and the differential equation:

X, = 1%, (0.05) = 0.000417 %,
X, = 2F(0.05) — 167, = 50 — 158x,

Their simultaneous solution leads to

(0.05)2F(0.05)
= —————= = 0.0195
27 341 84%0.05)?2
X, = 4691 :
The flow diagram for the computation is shown in Fig. 4.7.6. With & = 0.05, the time dura-
tion for the force must be divided into regions I = 1to 5, = 6 to 9, and I > 9. The index I con-
trols the computation path on the diagram.

Shown in Fig. 4.7.7 is a plot of the results. A smaller A¢ would have resulted in a smoother
plot.

Damped system. When damping is present, the differential equation contains
an additional term x; and Eq. (4.7.7) is replaced by

Xipg = 2x — X + Rf(x, x,t) =2 (47.7')
We now need to calculate the velocity at each step as well as the displacement.

Considering again the first three terms of the Taylor series, Eq. (4.7.4), we see
that x, is available from the expansion of x; , , with i = 1:

N h? .
X =x txh+ —Z—f(xl,xl, t,)

~The quantity x, is found from the second equation for x;_; with i = 2:

. h? .
X=X~ th + ?f(xls X3, tz)
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J TIME DISPL ACCLRTN FORCE

1 0.0 0.0 0.0 0.0
2 0.0500 0.020 . 46.91 25.00
3 0.1000 0.156 75.31 50.00
4 0150  0.48 73.97 75.00
5 0.2000 0.992 43,44 100.00
6  0.2500 1.610 -104.25 75.00
7 0.3000 1.968 -210.78 50.00
8  0.3500 1.799 -234.10 25.00
9 0.4000 1.045 -165.01 0.00
10 0.4500 20.122 19.22 0.0
N 0.5000 -1.240 195.86 0.0
12 0.5500 -1.869 295.19 0.0
13 0.6000 -1.760 277.98 0.0
4 0.6500 -0.957 151.04 0.0
15 0.7000 0.225 -35.52 0.0
16 0.7500 1.318 -208.06 0.0
17 0.8000 1.890 -298.47 0.0
18 0.8500 1.717 -271.05 0.0
19 0.9000 0.865 -136.64 0.0
20 0.9500 -0.328 51.72 0.0
21 1.0000 -1.391 219.66 0.0
22 1.0500 -1.906 300.89 0.0
23 1.1000 -1.668 263.33 0.0
24 . 1.1500 -0.772 121.83 0.0
25 1.2000 0.429 -67.77 0.0

FIGURE 4.7.7.

With these results, x; can be calculated from Eq. (4.7.7). The procedure is thus
repeated for other values of x; and x; using the Taylor series.

. 4.8 RUNGE-KUTTA METHOD

The Runge-Kutta computation procedure is popular because it is self-starting and
results in good accuracy. A brief discussion of its basis is presented here.
In the Runge-Kutta method, the second-order differential equation is first

reduced to two first-order equations. As an example, consider the differential equation
for the single-DOF system, which can be written as

£ = [0 — ko = il = Flx, 5, (48.1)
By letting x = ¥ this equation is reduced to the following two first-order equations:
XxX=y
y = Fx,y,1)

Both x and y in the neigﬁborhood of x; and y, can be expressed in terms of the
Taylor series. Letting the time increment be & = At, we have

+(9)h+(f’-2£)”—2+
T\ )" T\ )2

d dy\n =~
Y+ (—%)}w (d_t}z,)-—Z— +... (4.8.3)

(4.8.2)

X

<
]
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Instead of using these expressions, it is possible to replace the first derivative by
an average slope and ignore higher-order derivatives:

dx
b x,. ( an )mh

Y=Y ( r )mh

If we used Simpson’s rule, the average slope in the.interval & becomes

a).msll@) (@), (5) ]
Z| =|[Z) +4 = Al
(\ dt /., 6L\dt], 4 at /sy - \ 4t J

t+h

(4.84)

The 4th-order Runge-Kutta method is very similar to the preceding computa-
tions, except that the center term of the given equation is split into two terms and four
values of ¢, x, y, and f are computed for each point i as follows:

t x y=x f=y=%
T, =1 X, =x, Y, =y, F = (T, X, Yy
T2=ti+g X2=Xi+ylg“ Yz":}’i+1"-1’}21 F=f(T,X,Y,)
T3=t,:+l'—2' X3=x,.+ng Y3=y,.+Fzg Fy = f(T3, X5, Y3)
To=t+h  Xy=x,+Ysh ~ Y=y, 4+ Fh  F,=f(T, X, Yy

These quantities are then used in the following recurrence formula:

h
Xipq =X + E(Y‘ +2Y,+2Y;+ Y,) (4.8.5)

Yini =¥t %(Fl +2F, + 2F; + F,) (4.8.6)

where it is recognized that the four values of Y divided by 6 represent an average slope

dx/dt and the four values of F divided by 6 result in an average of dy/dt as defined by
Egs. (4.8.4). '

EXAMPLE 4.8.1 ‘
Solve Example 4.7.1 by the Runge-Kutta method.

Solution The differential equation of motion is

X = 1f(s) — 500x
Let y = x;then

¥ = Fx,1) = 1(0) - 500x
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With 2 = 0.02, the following table is calculated:

t x y=x f
= 0 0 0 25
0.01 0 0.25 25
0.01 - 0.0025 0.25 23.75

= 0.02 0.0050 0.475 22.50

The calculation for x,and y, follows:

.02
X, =0+ OTO (0 + 0.50 + 0.50 + 0.475) = 0.00491667

y, =0+ % (25 + 50 + 47.50 + 22.50) = 0.4833333

To continue to point 3, we repeat the foregoing table:

t x y=x f
= 0.02 0.00491667  0.4833333 22.541665
0.03 0.0097500 0.70874997 20.12500
0.03 0.01200417  0.6845833 18.997915
= 0.04 0.01860834  0.8632913 15.695830

We then calculate x, and y,:
X, = 0.00491667

+ 9&’: (0483333 + 1.4174999 + 13691666 + 0.8632913)

= 0.00491667 + 0.01377764 = 0.01869431
y; = 0.483333 + 0.38827775 = 0.87161075

To complete the calculation, the example was performed in MATLAB® and the results
showed excellent accuracy. Table 4.8.1 gives the numerical values for the central difference
method, which is discussed in Example 4.7.1, and the Runge-Kutta method compared with the
analytical solution (see Egs. 4.7.9-4.7.11).

TABLE 4.8.1 .Comparison of Methods for Example 4.8.1

Time ¢ Exact Solution Central Difference Runge-Kutta
0 0 ) 0 0
0.02 0.00492 ' 0.00500 0.00492
0.04 0.01870 0.01900 ’ 0.01869
0.06 0.03864 0.03920 0.03862
0.08 0.06082 : 0.06159 0.06076
0.10 - 0.08086 0.08167 . 0.08083

0.12 0.09451 0.09541 0.09447

[
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0.14 0.09743 0.09807 0.09741
0.16 0.08710 0.08712 0.08709
0.18 . 0.06356 0.06274 0.06359
0.20 0.02949 0.02782 0.02956
022 —0.01005 -0.01267 ~0.00955
0.24 -0.04761 —-0.05063 —0.04750
0.26 -0.07581 ~0.07846 -0.0757T1
0.28 -0.08910 —0.09059 -0.08903
0.30 —0.08486 -0.08461 —0.08485
0.32 —0.06393 -0.06171 —0.06400
0.34 - —0.03043 —0.02646 -0.03056
0.36 0.00906 0.01407 0.00887
0.38 0.04677 0.05180 0.04656
0.40 0.07528 0.07916 0.07509
0.42 0.08898 0.09069 0.08886
0.44 0.08518 0.08409 0.08516
0.46 0.06436 0.06066 0.06473
0.48 0.03136 0.02511 0.03157
]

Although the Runge-Kutta method does not require the evaluation of derivatives
beyond the first, its higher accuracy is achieved by four evaluations of the first deriva-

tives to obtain agreement with the Taylor series solution through terms of order A*.

Moreover, the versatility of the Runge-Kutta method is evident in that it can be
used for a single variable or several variables.

For two variables, x and y, as in this example, we can let z = l } and write the two

=l

first-order equations as

or

z=Fx,y,1)

Thus, the vector equation is identical in form to the equatlon in one variable and can
be treated in the same manner.

EXAMPLE 4.8.2
Solve the equation 2x + 8x + 100x

= f(t) using RUNGA, with f(¢) vs t, as shown in Fig. 4.8.1.

Solution The computer program RUNGA is essentially the same as the one presented in Sec.

4.8.1t includes damping.

The use of the program RUNGA is illustrated here for Example 4.8.2. The program solves

the differential equation
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FIGURE 4.8.1. 0O 025 050 075 . 10 t

The program RUNGA requires a function file called f.m which contains the expression for
the forcing function. The following is a listing for the function in Fig. 4.8.1.

function [force] = f(r)
ifr<0.25

force = 4 x ¢;

elseif r < 0.5

force = —2 % (t — 0.25) + 1.0;
elseif r <1

force = =1 % (¢ — 0.5) + 0.5;
else

force = 0;

end

The computer program asks for the numerical values of m, ¢, and k and the initial position and
velocity which for this problem are-m = 2, ¢ = 8, k = 100, and x(0) = x(0) = 0. With this input
the program calculates the natural period, 7 = 27r\/%—. It then asks the user to input the time
interval 4. The method: generally performs well for a time interval 7/10. The program then pro-
ceeds with the computation of the solution. The results presented are the displacement x(t) and
the velocity x(f)and a plot for the displacement.

Time Displ. -Vel.
0 0 0
0.0700 0.0001 0.0044
0.1400 0.0008 0.0151
02100 .- 0.0023 0.0285
0.2800 0.0047 0.0399
0.3500 0.0075 - 0.0377
0.4200 0.0097 0.0239
0.4900 0.0107 0.0043
0.5600 0.0104 -0.0147
0.6300 0.0088 —0.0282
0.7000 0.0066 —0.0346
0.7700 0.0041 -0.0343
0.8400 0.0001 —0.0289
0.9100 0.0001 -0.0210
09800  —0.0010 —0.0126
1.0500 —0.0017 —0.0052
1.1200 —0.0018 0.0014
1.1900 -0.0015 0.0061

12600  —0.0010 © 0.0084
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1.3300 —0.0004 0.0084

1.4000 0.0002 0.0066
1.4700 0.0005 0.0039
1.5400 0.0007 0.0010
1.6100 0.0007 —0.0014
1.6800 0.0005 —0.0029
1.7500 0.0003 —0.0034
1.8200 ©0.0001 ~ —0.0031
1.8900 —0.0001 —0.0022
1.9600 —0.0002 —-0.0011
2.0300 —0.0003 - —0.0000
2.1000 —0.0003 0.0008
2.1700 —0.0002 0.0013
2.2400 —0.0001 0.0013
2.3100 0.0000 0.0011
2.3800 0.0001 0.0007
2.4500 0.0001 0.0003
2.5200 0.0001 —0.0001
2.5900 0.0001 —0.0004
2.6600 0.0001 -0.0005
2.7300 0.0000 —0.0005
2.8000 —0.0000 —~0.0004
2.8700 —0.0000 —0.0002
2.9400 —0.0000 -0.0000
3.0100 —0.0000 0.0001

Displacement

FIGURE 4.8.2.
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Show that the time ¢, corresponding to the peak response for the impulsively excited
spring-mass system is given by the equation

tanV1 — Pot, = V1 - #/{

Determine the peak displacement for the impulsively excited spring-mass system, and
show that it can be expressed in the form

xeak"km = ex _ 4 tan ~1 "1—;2
F Pl " Vi-¢ {

Plot this result as a function of £.

Show that the time ¢, corresponding to the peak response of the damped spring-mass sys-
tem excited by a step force Fyis w,t, = m/V1 — %

For the system of Prob. 4.3, show that the peak response is equal to

(E) =1+exp( - _{—17)

Fy Vi-g

For the rectangular pulse of time duration ¢, , derive the response equation for ¢ > ¢, using
the free-vibration equation with initial conditions x(t,) and x(¢,). Compare with Eq. 4.4.6).
If an arbitrary force f(r) is applied to an undamped oscillator that has initial conditions
other than zero, show that the solution must be of the form :

L £0) sin w(t — &) de

Uy .
x(f) = xycos wt + —2sin w,t +

n n
Show that the response to a unit step function, designated by g(¢), is related to the impul-
sive response h(t) by the equation h(f) = g(). ‘
Show that the convolution integral can also be written in terms of g(z) as

X(0) = FO)(0) + j FOslt - 8 de

‘where g(#) is the response to a unit step function.

In Sec. 4.3, the subsidiary equation for the viscously damped spring-mass system was

given by Eq. (4.3.1a). Evaluate the second term due to initial conditions by the inverse
transforms.

An undamped spring-mass system is given a base excitation of y(f) = 20(1 — 5¢). If the

natural frequency for the system is w, = 10 s™', determinie the maximum relative dis-
placement. -
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4.11. A half-sine pulse is the result of two sine waves shown in Fig. P4.11. Derive Eq. (4.4.12)
for ¢ > t, from Eq. (4.4.10) and its shifted equation.

N’ <.’

FIGURE P4.11.

4.12. For the triangular pulse shown in Fig. P4.12, show that the response is
(1

X

-

. t
sm27r—>, 0<t<it
t, 2my T ‘ ‘

2F, t T . 2w 1 . t
x = T“{l - Z + thl[ZsmT(t~ Etl)_——smbr;]}, in<t<y

F / /
| / y
& /
/N I/
P N
) & /
N\ A/
i /
AV
l'—‘ '|.\ _‘{ =_I
\4F,
\;_'?' ("' *'.‘
FIGURE P4.12.

FIGURE P4.13.

4.13. A spring-mass system slides down a smooth 30° inclined plane, as shown in Fig. P4.13.
Determine the time elapsed from first contact of the spring until it breaks contact again.

4.14. A 38.6-1b weight is supported on several springs whose combined stiffness is 6.40 Ib/in. If
the system is lifted so that the bottoms of the springs are just free and released, deter-
mine the maximum displacement of m, and the time for maximum compression.
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4.15. A spring-mass system of Fig. P4.15 has a Coulomb damper, which exerts a constant fric-
tion force f. For a base excitation, show that the solution is '

Gnz 1(1__ﬁ_1

Vg w,h muv,

)(1 — €os w,t) — sin w,¢

where the base velocity shown is assumed.

m %
>
k3 ‘
3 lf o ;
FIGURE P4.15.

4.16. Show that the peak response for Prob. 4.15 is

=
Wy, Zinax — __17(1 _ ﬁ_) i- W, [y muv,
1

Yo . W, muv,

B 2
Ve[
wntl muy, Lo
By dividing by w,t,, the quantity z, /vy, can be plotted as a function of w,t,, with

ft,/mv, as a parameter.
4.17 In Prob. 4.16, the maximum force transmitted to m is

Fmax = f + |kzmax|
To plot this quantity in nondimensional form, multiply by t,/mv, to obtain

Fmaxtl_ ﬁl +( t)z(zmax)
- .l
muy, mu, votl

which again can be plotted as a function of wt, with parameter ft,/mu,. Plot | @, Zyax/Vgl

and |z, /vy, | as a function of w,t, for ft,/mv, equal to 0,0.20, and 1.0.

4.18. For t > t,, show that the maximum response of the ramp function of Fig. 4.4.2 is equal -
to v

xk) 1 -
= =1+ V2(1 - cos w,t,)
( FO max a’ntl !

which is plotted as Fig. P4.18.
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wnly

h/t = o7

FIGURE P4.18.

4.19. Shown in Fig. P4.5.5 is the response spectrum for the sine pulse. Show that for small val-
ues of t,/, the peak response occurs.in the region ¢ > ;. Determine t,/t; when t,/7 =3

4.20. An undamped spring-mass system with w = 16.1 Ib has a natural period of 0.5 s. It is sub-
jected to an impulse of 2.01b - s, which has a triangular shape with time duration of 0.40 s.
Determine the maximum displacement of the mass.

4.21. For a triangular pulse of duration ¢,, show that when t,/ = 1, the peak response occurs at
t = t;, which can be established from the equation

2t 2t
2 cos "1( 05)—c052ﬂ' ( —1)—csL"’ =
T 5 T\ T 4

found by differentiating the equation for the displacement for ¢ > t,. The response spec-
trum for the triangular pulse is shown in Fig. P4.21.

2.0

(% )mox

10 / -

) /T
FIGURE P4.21.

4.22. 1f the natural period 7 of the oscillator is large compared to that of pulse duration ¢, the

maximum peak response will occur in the region ¢ > ¢,. For the undamped oscillator, the’
integrals written as

x= % [sinw,,tJ‘ F(£) cos w,£dE — cos w,t j f() sin £ d¢ ]
0 ’ 0
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HIES

4.23,

. 4.24,

4.25.

426,

4.27.
4.28.

4.29.

4.30.

do not change for ¢ > ¢, because in this region f(f) = 0. Thus, by making the substitution

Acos ¢ = w, J F(&) cos w,£dE
0

Asin ¢ = m"J If(f) sin w,£d¢

0

the response for ¢ > ¢, isa simple harmonic motion with amplitude A. Discuss the nature
of the response spectrum for this case.

Derive Eqs. (4.5.4) and (4.5.5) for the half-sine pulse, and verify the primary and the resid-
ual SRS curves of Fig. 4.5.5. (Note that n = 2 for ¢,/7 > 1.5 in the primary SRS equation.)
The base of an undamped spring-mass system, m and k, is given a velocity pulse, as shown

in Fig. P4.24. Show that if the peak occurs at ¢t < ¢,, the response spectrum is given by the
equation

Onma _ 1 1 ol
Vo ot 04V1+ (w,h) V1 + (w,1)?
Plot this result.
)
0 /I
FIGURE P4.24.

In Prob. 4.24,if ¢ > ¢,, show that the solution is

o,z . 1
—= = —sinw,t+
Yo

[cos w,(t — t;) — cos w,t]

n*1

Determine the time response for Prob. 4.10 using numerical integration.

Determine the time response for Prob. 4.20 using numerical integration.

Figure P4.28 shows the response spectra for the undamped spring-mass system under
two different base-velocity excitations. Solve the problem for the base-velocity excitation
of y(#) = 60e %1% and verify a few of the points on the spectra.

If the driver of Example 4.3.3 is sitting on a cushion of stiffness k = 51 1b/in., what accel-
eration would be experienced assuming the same drop distance?

During ejection from a military airplane, the pilot’s acceleration must not exceed 16 g if ‘
injury is to be avoided (see Ref. [5]). Assuming the ejection pulse to be triangular, what is
the maximum peak acceleration of the ejection pulse applied to the pilot? Assume as in

Example 4.3.3 that the seated pilot of 160 Ib can be modeled with a spinal spring stiffness
of k = 450 Ib/in. '
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4.33.

4.34.

4.35.

4.36.
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Velocity excitation
X‘ y' = 60e ~0.107

o y=6001-5¢)
06 Bk .

gl ' [
NES AN

7y

]

X

Ot 0204 10 2 46 10 20 4060 100

w,,f 1

FIGURE P4.28.

A spring-mass system with viscous damping is initiaily at rest with zero displacement. If
the system is activated by a harmonic force of frequency w = o, = Vk/m, determine the
equation for its motion. ' .

In Prob. 4.31, show that with small damping, the amplitude will build up to a value
(1 — e™') times the steady-state value in time ¢ = 1/f,8(8 = logarithmic decrement).
Assume that a lightly damped system is driven by a force F;sin w,t, where w, is the nat-
ural frequency of the system. Determine the equation if the force is suddenly removed.
Show that the amplitude decays to a value e™! times the initial value in the time ¢ = 1/f,8.
Set up a computer program for Exampie 4.7.1.

Write a MATLAB® program for the damped system excited by base motion y() with ini-
tial conditions x(0) = X, and x(0) = V,. The base motion is a half-sine wave.

Determine the response of an undamped spring-mass system to the alternating square
wave of force shown in Fig. P4.36 by superimposing the solution to the step function and
matching the displacement and velocity at each transition time. Plot the result and show
that the peaks of the response will increase as straight lines from the origin.

A
o) t
kg a ™
o |2 3@
._,.o' -

FIGURE P4.36.
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4.37. For the central difference method, supply the first higher-order term left out in the recur-
rence formula for X, and verify that its error is 0(h2).

4.38. Consider a curve of x = £* and determine x,.‘ att = 0.8,0.9,1.0,1.1, and 1.2. Calculate JEm
by using x; = 51}—’ (%11 = x;_,), with k= 020 and k = 0.10, and show that the error is
approximately 0(h?).

4.39. Repeat Prob.4.38 with x; = 1/h(x; — x;_,) and show that the error is approximately 0(k).

4.40. Verify the correctness of the superimposed exact solution in Example 4.7.1, Figure 4.7.4,

4.41. Calculate the problem in Example 4.7.2 by using the Runge-Kutta computer program
RUNGA (see Appendix F).

M 4.42. Using RUNGA, solve the equation
X + 1.26x + 9.87x = f(1)
for the force pulses shown in Fig. P4.42.

Sine curve
(1) (1)

G52 04 08 08 7 ' 10 ¢

(a) ' (b)
' FIGURE P4.42.

4.43. A large box of weight W resting on a barge is to be hoisted by a crane, as shown in Fig. P4.43.
Assuming the stiffness of the crane boom to be k,, determine the equation of motion if the
extended point if the boom is given a displacement x = Vt. Use the method of Laplace -
transformation. : ‘ ’

FIGURE P4.43.
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In Example 4.8.1 add damping of ¢ = 0.2c_ and solve using computer program RUNGA.
Compare response with Example 4.8.1.
This problem uses the program runga.m to solve the equation given in Example 4.7.1 the
text with three different forcing functions. These forcing functions can be found with the
programs. To see how these forcing functions differ from the example, plot each one of
them. Produce a plot of the response and discuss how the response differs as the forcing
function is changed. :

(a) The MATLAB® code is forcel.m.

(b) The MATLAB® code is force2.m.

(¢) The MATLAB® code is force3.m. _
Consider the problem of Example 3.8.1. Solve numerically for the transient response of

the system under impulse excitation and ramp excitation (see Figure 4.4.4). Determine
numerically the response spectra.

Consider the equation for the forced oscillation of a damped system with hardening
spring given by
mx + cx + kx + px® = F(1)

(cf. Problem 14.27). Solve this equation numerically in MATLAB® with F(¢) given by the
step function excitation and ramp excitation, m = 1,¢ =05,k = 1, and x = 0.01, 0.1, 1.
Compare with the results obtained when u = 0.

The forced Van der Pol oscillator is described by the following equation: .
¥ — pwx(1 —x%) + x = F(r)

(cf. Example 14.4.2). Determine the equivalent damping. Solve this equation numerically

in MATLAB® with F() g1ven by the step function excitation and ramp excitation, for
u=0.01,0.1,1.
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CHAPTER 5

Systems with Two or More
Degrees of Freedom

When a system requires more than one coordinate to describe its motion, it is called a
multi-DOF system, or an N-DOF system, where N is the number of coordinates
required. Thus, a 2-DOF system requires two independent coordinates to describe its
motion, and it is the simplest of the N-DOF systems.

The N-DOF system differs from that of the single-DOF system in that it has N
natural frequencies, and for each of the natural frequencies, there corresponds a nat-
ural state of vibration with a displacement configuration known as the normal mode.
Mathematical terms related to these quantities are known as eigenvalues and eigenvec-
tors. They are established from the N simultaneous equations of motion of the system
and possess certain dynamic properties associated with the system.

' Normal mode vibrations are free undamped vibrations that depend only on the
mass and stiffness of the system and how they are distributed. When vibrating at one of
these normal modes, all points in the system undergo simple harmonic motion that
passes through their equilibrium positions simultaneously. To initiate a normal mode
vibration, the system must be given specific initial conditions corresponding to its nor-:
m'al mode. For the more general initial conditions, such as an impulsive blow, the
resulting free vibration may contain all the normal modes simultaneously.

As in the single-DOF system, forced harmonic vibration of the N-DOF system
takes place at the frequency of the excitation. When the excitation frequency coincides
with one of the natural frequencies of the system, a condition of resonance is encoun-
tered, with large amplitudes limited only by the damping. Again, damping is generally
omitted except when its concern is of importance in limiting the amplitude of vibration
or in examining the rate of decay of the free oscillation. -

In this chapter, we begin with the determination of the natural frequencies and
normal modes of the 2-DOF system. All of the fundamental concepts of the multi-DOF
system can be described in terms of the 2-DOF system without becoming burdened
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with the algebraic difficulties of the multi-DOF system. Numerical results are easily -
obtained for the 2-DOF system and they provide a simple introduction to the behavior
of systems of higher DOE.

For systems of higher DOF, matrix methods are essential, and although they are
not necessary for the 2-DOF system, we introduce them here as a preliminary to the
material in the chapters to follow. They provide a. compact notation and an organized
procedure for their analysis and solution. For systems of DOF higher than 2, comput-
ers are necessary. A few examples of systems of higher DOF are introduced near the
end of the chapter to iliustrate some of the computational difficulties.

THE NORMAL MODE ANALYSIS

We now describe the basic method of determining the normal modes of vibration for
any system by means of specific examples. The method is applicable to all multi-DOF
systems, although for systems of higher DOF, there are more efficient methods, which
we will describe in later chapters.

EXAMPLE 5.1.1 Translational System

Figure 5.1.1 shows an undamped 2-DOF system with specific parameters. With coordinates x,
and x, measured from the initial reference, the free-body diagrams of the two masses lead to the
differential equations of motion where all forces to the right are considered positive:

kxy k(xy—x2)
]

m k)!z

FIGURE 5.1.1.

mi; = —kx; + klx, — x;)
2mx, = —k(x, — x,) — kx,

For the normal mode of oscillation, each mass undergoes harmonic motion of the same fre-
quency, passing through the equilibrium position simultaneously. For such motion, we can let

(5.1.1)

x;=A;sinwt or Al

. . (5.12)
x, = A;sinwt or A,e’
Substituting these into the differential equations, we have
2k — w®’m)A, — kA, =0
(5.1.3)

—kA, + (2k — 20'm)A, = 0
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(2k — o'm) - —k ][A,] [0]
= 514
™ 2k - 20%m) || 4,] = L0 G149
This equation is satisfied for any A, and A, if the determinant of the above equations is zero.
(2k — w*m) ~k . -
= 5.1
ko k- 2am)| " O | ©-1.3)

Letting «? = A and multiplying out, the foregoing determinant results in a second -degree algebraic
equation that is called the characteristic equation.

o= () -

The two roots A, and A, of this equation are the eigenvalues of the system:

A= (3 - 1\/5)—:; =0.634£

i i k k (517
=2+ =V3 ) = =2366—
A, (2 + 3 3 o 2366m
and the natural frequencies of the system are
k
W = A2 = 1/0.634 —
m
| k
w, = A2 = 2.366;
From Eq. (5.1.3), two expressions for the ratio of the amplitudes are found:
_ 7
A _ k - 2k — 20’m (5.1.8)
A, 2k-— om k

Substitution of the natural frequencies in either of these equations leads to the ratio of the
amplitudes. For w? = 0.634k/m, we obtain

(¢
(Al ) k 1 =0.731
A, 2k — wim T 2= 0.634 .
which is the amplitude ratio corresponding to the first natural frequency.
Similarly, using w2 = 2.366 k/m, we obtain
@) )
( A4, ) k 1 273
A, 2k — wim T 2-2366 , ‘
for the amplitude ratio corresponding to the second natural frequency. Equation (5.1.8) enables
us to ﬁnd only the ratio of the amplitudes and not their absolute values, which are arbitrary.

If one of the amplitudes is chosen equal to 1 or any other number, we say that the amplitude
ratio is normalized to that number. The normalized amplitude ratio is then called the normal

‘mode and is designated by ¢ (x).

The two normal modes of this example, which we can now call eigenvectors, are

- (121} - [27]

Each normal mode oscillation can then be written as

ALY 0.731] .
{x:} = Al{ 100 ] sin (ot + ¢)
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o073t 1o m
w2

- k
=0634 % —2.73

wh=2366%

FIGURE 5.1.2. Normal modes of the system shown in Figure 5.1.1.

x|®@ —-2.73) .
{x;} = Az{ 100 }sm (wpt + )

These normal modes are displayed graphically in Fig. 5.1.2. In the first normal mode, the two

masses move in phase; in the second mode, the two masses move in opposition, or out of phase
with each other. :

EXAMPLE 5.1.2 Rotational System

We now describe the rotational system shown in Fig. 5.1.3 with coordinates 6, and 6, measured
from the inertial reference. From the free-body diagram of two disks, the torque equations are

Jib, = -K,6, + K,(6, — 6

i (5.1.9)
Jo.6, = —K2(92 - 91) - K;6,

FIGURE 5.1.3.

It should be noted that Eqs. (5.1.9) are similar in form to those of Egs. (5.1.1) and only the sym-
bols are different. The rotational moment of inertia J now replaces the mass m, and mstead of
the translational stiffness k, we have the rotational stiffness K.

At this point, we introduce the matrix notation, writing Eqs. (5.1.9) in the concise form:

(5 Sl o

By following the rules for matrix operations in Appendlx C, the equivalence of the two equa-
tions can be easily shown. '
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J, 0,
0o J
is known as the mass matrix and the matrix

|:(K1+KZ) —Kz]

_Kz (Kz + Ks)

The matrix

is known as the stiffness matrix. Both of these matrices will be discussed in detail in Chapter 6.

A few points of interest should be noted. The stiffness matrix is symmetric about the diago-
nal and the mass matrix is diagonal. Thus, the square matrices are equal to their transpose, i.e.,
[£]7 = [k],and [m]” = [m]. In additional, for the discrete mass system with coordinates chosen at
each mass, the mass matrix is diagonal and its inverse is simply the inverse of each diagonal ele-
ment, i.e., [m]™' = [1/m].

EXAMPLE 5.1.3 Coupled Pendulum

In Fig. 5.1.4 the two pendulums are coupled by means of a weak spring k, which is unstrained
when the two pendulum rods are in the vertical position. Determine the normal mode vibrations.

my£6,

' FIGURE5.1.4. Coupled pendulum.

Solution Assuming the counterclockwise angular displacements to be positive and taking

moments about the points of suspension, we obtain the following equations of motion for small
oscillations o

mi*g,

—mgl, — ka*(6, — 6,)
—-mgl6, + ka*(6, — 6,)

mi*g,

which in matrix notation becomes

G B iR e ivest WIS

Assuming the normal mode solutions as
6, =Acoswt or A

6, = A,coswt or A
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the natural frequencies and mode shapes are

w =\ w, =

l

(é—l)(l)—lo (ﬁ)(z)_
A, ’ A,
Thus, in the first mode, the two pendulums move in phase and the spring remains unstretched. In

the second mode, the two. pendulums move in opposition and the coupling spring is actively
involved with a node at its midpoint. Consequently, the natural frequency is higher.

oQ
|
—
= ~ |0
+
N
3=
NIQ
~ [ )

52 INITIAL CONDITIONS

When the normal mode frequencies and mode shapes are known, it is possible to
determine the free vibration of the system for any initial conditions by the proper sum-
mation of the normal modes. For example, we have found the normal modes of the sys-
tem of Fig. (5.1.1) to be

w, = V0.654k/m ¢, = {?‘Z}f}é}

w, = V2366k/m &, = {'12(';) 32}

For free vibration to take place in one of the normal modes for any initial conditions,
the equation of motion for mode i must be of the form

(O
x . .
{x‘} =cpsin(wf+ ) i=1,2 (5.2.1)
2

The constants c; and , are necessary to satisfy the initial conditions, and ¢, ensures that
the amplitude ratio for the free vibration is proportional to that of mode i.

For initial conditions in general, the free vibration contains both modes simulta-
neously and the equations of motion are of the form

x 0.732] . -2.732) .
{xl} = c‘{l.OOO} sin (w;f + ;) + cz{ 1.000 }sm (w2_t +)  (522)

‘where c,, c,, §,, and ¢, are the four necessary constants for the two differential equa-

tions of second order. Constants ¢, and c, establish the amount of each mode, and
phases y, and ¢, allow the freedom of time origin for each mode. To solve for the four

arbitrary constants, we need two more equations, which are available by differentiating
Eq. (5.2.2) for the velocity:

0.732 2.732
{2} = wlcl{l.OOO} cos (wyf + ¢) +,w2c2{ 1000 }cos (of + ) (5.2.3)

By letting ¢ = 0 and specifying the initial conditions, the four constants can be found.
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EXAMPLE 5.2.1

Determine the free vibration for the system of Fig. 5.1.1 for the initial conditions

-] = 01

Substituting these initial conditions into Egs. (5.2.2) and (5.2.3), we have

2.0 0732 . | -2.732] . ‘
= + oL
{4.0} C‘{Looo} sin ¢y 02{ 1.000 } sin ¢, - G2
0 0.732 -2.732 ‘ o
{O} = wlc‘{l.OOO} cos ¢, + wzcz{ 1,000 ] cos ¥, (5.2.3a)

To determine ¢, sin ¢, we can multiply the second equation of Eq. (5.2.2a) by 2.732 and add
the results to the first equation. To determine ¢, sin ¢, multiply the second equation of Eq. (5.2.2a)
by —0.732 and add the results to the first equation. In similar manner we can solve for o, 1€y COS ¢y
and wyc, cos ¢, to arrive at the following four results:

12.928 = 3.464c, sin ¢
—0.928 = —3.464c, sin ¢,
0 = 3.464wc, cos
0 = —3.464w,c, cos

From the last two of the foregoing equations, it is seen that cos Y =cos i, = O,0or¢y =y, =
Constants ¢, and c, are then found from the first two of the foregoing equations:

¢, =3.732
¢, = 0.268

and the equations for the free vibration of the system for the initial conditions stated for the
example become

X, 0.73 } { -2 732} '
{Xz} 3 732{1.000 cos w ¢ + 0.268 1.000 [ ©°8 wyt
_ {2.732} co§ -, {-0.732} cos ant
3732 0.268 @2

which clearly shows that the free vibration under the initial condition is the sum of the normal
modes of the system.

These equations show that for the given initial conditions, most of the response is due to the :
first mode ¢,. This is to be expected because the ratio of the initial displacements

{2 _ {0.50}

4 1.00

is somewhat close to that of the first normal mode and quite dlfferent from that of the second
normal mode.
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EXAMPLE52.2  Beating

If the coupled pendulum of Example 5.1.3 is set into motion with initial conditions differing
from those of the normal modes, the oscillations w1ll contain both normal modes simultaneously.

~ For example, if the initial conditions are 6,(0) = A, 6,(0) = 0,and 61(0) = 6,(0) = 0, the equa-

tions of motion will be
8,(r) = 3A cos wt + }A cos w,t
6,(t) = 3A cos w,t — 1A cos w,t

Consider the case in which the coupling spring is very weak, and show that a beating phenome-
non takes place between the two pendulums.

Solution The preceding equations can be rewritten as follows:
- +
6,(t) = A cos ( % 5 % )tcos(wl—zw—z)t

- +
0,(t) = —A sin( 0-'1—2‘02_ )t sin ( wl—zwg )t

Because (w, — w,) is very small, 6,(tf) and 8,(r) will behave like cos(w, + w,)t/2 and
sin(w, + w,)t/2 with slowly varying amplitudes, as shown in Fig. 5.2.1. Since the system is conser-
vative, energy is transferred from one pendulum to the other.

NN AT DS
™ \ng_]\uf

‘ / -

-

FIGURE 5.2.1. Exchange‘of energy between pendulums.

The beating sound, which is often audxble, is that of the peak amplitudes, which repeat in 7

. radians. Thus,

27
Wy — W

(%—%
2

)7,,=1r or T, =

The beat frequency is then given by the equation

27

Wy = — = W —
b 7 1 T Wy

A simple demoristration model is shown in Fig. 5.2.2.
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53

FIGURE 5.2.2 Demonstration model
for exchange of energy by beating.
(Courtesy of UCSB Mechanical Engi-
neering Undergraduate Laboratory.)

COORDINATE COUPLING

The differential equations of motion for the 2-DOF system are in general coupled, in

that both coordinates appear in each equation. In the most general case, the two equa-
tions for the undamped system have the form

myx; + mpX, + kyxy + kipx, =0 (53.1)
Mgy + My, + kyxy + kX, =0

These equations can bz expressed in matrix form (see Appendix C) as

[mu mlz]{’:{l}_l_[ku kll]{xl}={0} (5.32)
My My iy Ky kg lxy 0

which immediately reveals the type of coupling present. Mass or dynamical coupling -

exists if the mass matrix is nondiagonal, whereas stiffness or static coupling exists if the
stiffness matrix is nondiagonal.

’ It is also possible to establish the type of coupling from the expressions for Fhe
kinetic and potential energies. Cross products of coordinates in either expression
denote coupling, dynamic or static, depending on whether they are found in T or U.

The choice of coordinates establishes the type of coupling, and both dynamic and st_atic |

coupling may be present.
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It is possible to find a coordinate system that has neither form of coupling. The two
equations are then decoupled and each equation can be solved independently of the
other. Such coordinates are called principal coordinates (also called normal coordinates).

Although it is always possible to decouple the equations of motion for the
undamped system, this is not always the case for a damped system. The following
matrix equations show a system that has zero dynamic and static coupling, but the
coordinates are coupled by the dampmg matrix.

o ST By ey s
0 my|lx, t61 Cn X 0 ky|lx, 0

If in the foregoing equation, c,, = ¢,, = 0, then the damping is said to be proportional
(to the stiffness or mass matrix), and the system equations become uncoupled.

EXAMPLE 5.3.1

Figure 5.3.1 shows a rigid bar with its center of mass not coicinding with its geometric center, i.e.,
I, # 1, and supported by two springs, k, and k,. It represents a 2-DOF system, because two coor-
dmates are necessary to describe its motlon The choice of the coordinates will define the type of
coupling that can be immediately determined from the mass and stiffness matrices. Mass or
dynamical coupling exists if the mass matrix is nondiagonal, whereas stiffness or static coupling
exists if the stiffness matrix is nondiagonal. It is also possible to have both forms of coupling.

"

r <
S
FIGURE 5.3.1.

Static coupling. Choosing coordinates x and 6, shown in Fig. 5.3.2, where x is the
linear displacement of the center of mass, the system will have static coupling, as shown
by the matrix equation

[ S5+ [ i ek e - o)

If ki, = k,l,, the coupling disappears, and we obtain uncoupled x and 6 vibrations.

‘Dynamic coupling. There'is some point C along the bar where a force applied

normal to the bar produces pure translation; i.e., k,l; = k,/,. (See Fig. 5.3.3.) The
equations of motion in terms of x_and 6 can be shown to be

[r':é I ]{%}_+[(k1;k2) (k? +0k12) ]{x} ={g}

which shows that the coordinates chosen eliminated the static coupling and mtroduced
dynamic coupling:


http://www.semeng.ir

WWW. senmeng. i r

136 Chapter 5  Systems with Two or More Degrees of Freedom

Ref.

ki(x~1,6) '

kz(X + 126)
FIGURE 5.3.2. Coordinates leading
to static coupling.

e——1 3—+—;[ ‘—v- _ z

Ky :E CF—G—Pl G p ka I = G ]
mm ky(x.~ 130)

e ™3 kz(xc + 140)
FIGURE 5.3.3. Coordinates leading to dynamic coupling.

I-__l—. / o
k1§ kz

FIGURE 5.3.4. Coordinates leading to static and dynamic coupling.

kz(Xf" 10)

Static and dynamic coupling. If we choose x = x, at the end of the bar, as shown in
Fig. 5.3.4, the equations of motion become

5 5 -1

and both static and dynamic coupling are now present.

EXAMPLE 5.3.2

Detcrmir}e the normal modes of vibration of an automobile simulated .by the simplified 2-DOF
system with the fpllowing numerical values (see Fig. 5.3.5):

W=3201b [ =45ft k =2400Ib/ft
W : -
J = " r* L,=55ft k,=2600Ilb/ft

r=4aft =101t
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/'/. L ) L T———
P — S
— I 8
g =
P35 _

FIGURE 5.3.5.

The equations of motion indicate static coupling.
mx + ki(x — 1,0) + k,(x + L,6) =0

J b — k(x— 1L0), + ky(x + L,o)l, =0
Assuming harmonic motion, we have '

[(kl + ky — w’m) =(kyl, = kyl,) ]{x} _ {0

. (ki — koky) (kB + kL~ o) 6 0

From the determinant of the matrix equation, the two natural frequencies are
w, = 6.90rad/s = 1.10 cps

w, = 9.06 rad/s = 1.44 cps

The amplitude ratios for the two frequencies are

(5.
(5.

The mode shapes are illustrated by the diagrams of Fig. 5.3.6.
In interpreting these results, the first mode, w

—14.6 ft/rad = —3.06 in./deg

1.09 ft/rad = 0.288 in./deg

137

, = 6.9 rad/s is largely vertical translation with

very small rotation, whereas the second mode, @, = 9,06 rad/s is mostly rotation. This suggests

that we could have made a rough approximation for these modes as two 1-DOF systems.

FIGURE 5.3.6. Normal modes of
the system shown in Fig. 5.3.5.

TITTTTTTT7777777777777777
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FIGURE 5.3.7. Uncoupled frequencies relative to coupled frequencies.

FIGURE 5.3.8. Two-DOF model of an automobile. The auto body is represented
by the meter stick with adjustable weights. The model is inverted with the springs
and ground above the body. Shakers can be excited individually to simulate the
ground. (Courtesy of UCSB Mechanical Engineering Undergraduate Laboratory.)

‘ __ | total vertical stiffness _ \/5000 _
“= \/ translational mass Y 100. 7.07 rad/s
rotational stiffness \/ 127,250
= - -3 d
@ \/rotational moment of inertia 1600 892ra _ /s

Note that these uncoupled values are inside of the coupled natural frequenc:1es by small
amounts, as shown in Fig. 5.3.7.
One other observation is worth mentioning. For the simplified model used, the wheels and

tires had been omitted. This justification is assigned in Prob. 5.27 with data as to weights of
wheels and stiffness of tires.

Figure 5.3.8 shows an inverted laboratory model of the automobile.
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' 5.4 FORCED HARMONIC VIBRATION

Consider here a system excited by a harmonic force F, sin wt expressed by the matrix

equation
L R
0 my]lx, Ky Ky Ilx 0 N

Because the system is undamped, the solution can be assumed as

)= 5]
Xy X,

Substituting this into the differential equation, we obtain

RN

or, in simpler notation,
X _ Fl}
2} - {5

Premultiplying by [ Z(w)] !, we obtain (see Appendix C)

) {5 e

5.4.3)
X, lZ(W)‘ (
By referring to Eq. (5.4.2), the determinant | Z(w)| can be expressed as

12()] = mmy(} ~ o?)(a ~ w?) (5.44)

where w, and w, are the normal mode frequencies. Thus, Eq. (5.4.3) becomes

Gl mal 0 o menlls) oo

and the amplitudes of the force vibration are .
(ky, — mpw?)F, ]
mymy(; — 0*)(@} — @)
‘ —knFy
mymy(} — w*)(@h — @)

(5.4.6)
X, =

EXAMPLE 5.4.1

Apply Egs. (5.4.6) to the system shown in Fig. 5.4. 1 when m, is excited by the force F sin wt. Plot
its frequency response curve.

Solution The equation of motion for the system is

m 0.{§1}+ 2k -k {xi}={Fl}sin .
0 m|l5) |-k 2 ]lx)  lof"®
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F=x Z>x2 ‘
% k @ k E k E
Fysin wt

FIGURE 5.4.1. Forced vibration of a 2-DOF
system. -

FIGURE 5.4.2. Forced response of a 2-DOF system.

Thus, we have k,; = k,, = 2k and k,, = k,, = —k.Equation (5.4.6) then become

¥ = k= m)F,
PomNef - 0w} — @)
X, = kF,

= e = ) ,

where w? = k/m and w} = 3k/m are obtained from the determinant of the matrix equation.
When plotted, these results appear as in Fig. 5.4.2.

EXAMPLE 5.4.2 Forced Vibration in Terms of Normal Mode Summation

Express the equations for X, and X, in Example 5.4.1 as the sum of the normal modes.

Solution Consider X, and expand the equation in terms of partial fractions.

@k-mdF, ¢ ., G
m2(w% - wZ)(a% - w2) w% - 0)2 0)% — wZ
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To solve for C,, multiply by (w} ~ w?) andlet w = w:

c, = (2k — me})F,  F

mY (w3 — wl) 2m

Similarly, C, is evaluated by multiplying by (&3 — w?) and letting & = w,:
C - (2k = mw))F, _ F,
2 m¥ el - wd) 2m

An alternative form of X is then
F, 1 1
= +
X m[wf—wz w%—wz]

BT T
T2k 1 - (w/w,)? 3 - (w/w)?

Treating X, in the same manner, its equation is

¥ = F [ 1 _ 1 ]
2 2k[1- (w/w))? 3~ (w/w)?
Amplitudes X, and X, are now expressed as the sum of normal modes, their time solution being
X, = X, sin wt

x, = X, sin wt

5.5 FINITE DIFFERENCE METHOD FOR SYSTEMS OF EQUATIONS

The finite difference method of Sec. 4.7 can easily be extended to the solution of sys-
tems with two DOF. The procedure is illustrated by the following problem, Wthh is
programmed and solved by the digital computer.

The system to be solved is shown in Fig. 5.5.1. To avoid confusion w1th subscrlpts
we let the displacements be x and y.

ky
4 Lo
X

k2
4 [
y

F FIGURE 5.5.1.
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k, = 36 kN/m

k, = 36 kN/m

m, = 100 kg

m, = 25kg

F={4OOON, t>0
0, t<0

Initial conditions:
x=x=y=y=0
The equations of motions are
100% = —36,000x + 36,000(y — x)
25y = —36,000(y ~ x) + F
which can be rearranged to
X = —720x + 360y
y = 1440(x — y) + 160
These equations are to be solved together with thé recurrence equations of Sec. 47.
Xio1 = XA 4+ 2%, — x;_,
Yier = VAP + 2y, -y,

Calculations for the natural periods of the system reveal that they do not differ sub-
stantially. They are 7, = 0.3803 and 7, = 0.1462 s. We therefore arbitrarily choose a
value of At = 0.01 s which is smaller than 7,/10.

To start the computation, note that the initial accelerations are x; = 0 and
y; = 160, so that the starting equation, Eq. (4.7.8), can be used only fory.

= AP

For the calculation of x,, the spemal starting equatlon (Eq. 4.7.13), must be used
together with the differential equations

x2 = Exz At 2
xtz = _720x2 + 360y2
Eliminating X, gives the following equation for X,

60y, AP

27 T4 12087

The flow dlagram for the computation is shown in Flg 5.5.2. A plot of the com-
puted result is presented in Fig. 5.5.3.
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A1=001
yD=x)=%(1)=0
7(1)=160
~ DO /2,40 |+ WRITE |
N D YES
. A
yn=tyu-nare | [ 0 =pu-nart+eyz-n-yi-2))
x(7)=Sonnare [x(1) = 7= 087 +2xz-0-x7~2)]
1+120A#°
j/'(!)=1440[x(1)-y(1)]+160 | 1 }"(l)=1440[X(1)-y(1)]+160 i
#(1)=-T20 x(1)+360 y(I) | X(7) =720 x(7)+ 360y(1) |

FIGURE 5.5.2. Flow diagram for computation.

50

ol
o
[ —

Displacement, cm
N
(e}

NN
0 ol 0.2 03 \/0.4 05

Time, seconds
FIGURE 5.5.3.
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5.6 VIBRATION ABSORBER

As a practical application of the 2—DOF‘system, we can consider here the spring-mass
system of Fig. 5.6.1. By tuning the system to the frequency of the exciting force such

that w? = k,/m,, the system acts as a vibration absorber and reduces the motion of the
main mass m, to zero. Making the substitution

k k
LT\ ) %
wn T oo wp T
y m,
and assuming the motion to be harmonic, the equation for the amplitude X, can be
shown to be equal to

) 2
Xlgkl _ k [j}ﬂ(@) ] o (5.6.1)
LRS- o N Fe

Figure 5.6.2 shows a plot of this equation with u = m,/m, as a parameter. Note that k,/
k, = ,u(wzz/ w”)z. Because the system is one of 2 DOF, two natural frequencies exist.
These are shown against p in Fig. 5.6.3. ,

So far nothing has been said about the size of the absorber mass. At w = w,,,
amplitude X, = 0, but the absorber mass has an amplitude equal to

X, = - i—: i (5.6.2)

Because the force acting on m, is-

kX, = w'm,X, = —F,

[0 ]

b
i W
! I
L)
i
6 1] il
I' i
- 1‘ I
s } |
x|~ il |‘
‘ {\' I\ |w=020
I I\ | @22 _
1 2 " + ‘ T—
. . / ; \\ T\ 11
. Y
o—"] 08 \|/ 125 N
| | b L —
0] 05 1.0 1.5 2.0 25
FIGURE 5.6.1. - @
Vibration w22
absorber.

FIGURE 5.6.2. Response vs. frequency.

i
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16 T

15
|4 /j
1.3 -
/
1.2 yd
: 4 I

o~ w22 _
1§, / @y 10

[
O‘.9 \

N
0.8
'\
0.7
06
O Ol 02 03 04 05 06 0.7 08
Mass ratio p

FIGURE 5.6.3 Natural frequencies vs. i vs. m,/m,.

the absorber system k,, m, exerts a force equal and opposite to the disturbing force.
Thus, the size of k, and m, depends on the allowable value of X,.

5.7 CENTRIFUGAL PENDULUM VIBRATION ABSORBER

The vibration absorber of Sec. 5.6 is only effective at one frequency, @ = w,,. Also, with
resonant frequencies on each side of w,,, the usefulness of the spring-mass absorber is
limited to a narrow frequency range.

For a rotating system such as an automobile enginé, the excmng torques are pro-
portional to the rotational speed n, which can vary over a wide range. Thus, for the
absorber to be effective, its natural frequency must also be proportional to the speed.
The characteristics of the centrifugal pendulum are ideally suited for this purpose.

. - Figure 5.7.1 shows the essentials of the centrifugal pendulum. It is a 2-DOF non-
linear system; however, we limit the oscillations to small angles, thereby reducing its
complexity.

By placing the coordmates through point O’ parallel and normal to r, line r
rotates with angular velocity (§ + ). The acceleration of m is equal to the vector sum
of the acceleration of O'and the acceleration of m relative to O'.

= [Rb’sin-q& — R¢cos ¢ — r(6 + é)z]i
(5.7.1)
+ [R?)'cos ¢+ RPsing + r(6+ ¢)]]
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FIGURE 5.7.1. Centrifugal pendulum.

Because for the pendulum the moment about O' is zero, we have, from the j-compo-
nentofa,,

M, = m[Récos ¢ + R¢?sin ¢ + r( + ¢)}r =0 (5.7.2)

Assuming ¢ to be small, we let cos ¢ = 1 and sing = ¢ in Eq. (5.7.2) and arrive at the
differential equation for the pendulum:

é+ (§62)¢ - —(R * ’)29' | (5.7.3)

r

If we assume the motion of the wheel to be a steady rotation n plus a small sinu-
soidal oscillation of frequency w, we can write

6 = nt + 6, sin wt

0=n+ wbycoswt =n (5.7.4)
Then Eq. (5.7.3) becomes
¢+ (5n2)¢ = (R tr )w200 sin wt (5.7.3")
r r

and we recognize the natural frequency of the pendulum to be
w, = n\/-li (5.7.5) :
r .

AR+ 1r_
-’ + Rn?/r
The same pendulum in a gravity field would have a natural frequency of Vg/r, so it

can be concluded that for the centrifugal pendulum, the gravity field is replaced by the
centrifugal field Rn?.

and its steady-state solution to be

¢ = w6, sin ot (5.7.6) .
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We next consider the torque exerted by the pendulum on the wheel. With the j-
component of a, equal to zero, the pendulum force is a tension along r, given by m
times the i-component of a, . By recognizing that the major term of ma,_ is —(R + r)n?,
the torque exerted by the pendulum on the wheel is

T=-m(R + rn’R¢ (577
Substituting for ¢ from Eq. (5.7.6) into the last equation, we obtain
m(R + r)anz‘/r m(R + r)? 5
Rn?/r — ? 1 — rw?/Rn?

Because we can write the torque equation as 7 = Jeﬁb', the pendulum behaves like a
wheel of rotational intertia: :

T= - w6 sin wt = —[

_m(R +r)?

Jg= -
et 1 — rw?/Rn?

(5.7.8)
which can become infinite at its natural frequency.

This poses some difficulties in the design of the pendulum. For example, to sup-
press a disturbing torque of frequency equal to four times the rotational speed n, the
pendulum must meet the requirement w? = (4n)2 = n?R/r, or r/R = 1. Such a short
effective pendulum has been made possible by the Chilton bifilar design (see Prob. 5.43).

- 5.8 VIBRATION DAMPER

In contrast to the vibration absorber, where the exciting force is opposed by the
absorber, energy is dissipated by the vibration damper. Figure 5.8.1 represents a fric-
tion-type vibration damper, commonly known as the Lanchester damper, which has
found practical use in torsional systems such as gas and diesel engines in limiting the

FIGURE 5.8.1. Torsional vibration damper.
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amplitudes of vibration at critical speeds. The damper consists of two flywheels a free
to rotate on the shaft and driven only by means of the friction rings ¥ when the normal
pressure is maintained by the spring-loaded bolts c. »

" When properly adjusted, the flywheels rotate with the shaft for small oscillations.
However, when the torsional oscillations of the shaft tend to become lafge, the fly-
wheels do not follow the shaft because of their large inertia, and energy is dissipated by
friction due to the relative motion. The dissipation of energy thus limits the amplitude
of oscillation, thereby preventing high torsional stresses in the shaft.

In spite of the simplicity of the torsional damper, the mathematical analysis for
its behavior is rather complicated. For instance, the flywheels can slip continuously, for
part of the cycle, or not at all, depending on the pressure exerted by the spring bolts. If

~ the pressure on the friction ring is either too great for slipping or zero, no energy is dis-

sipated, and the damper becomes ineffective. Maximum energy dissipation takes place
at some intermediate pressure, resulting in optimum damper effectiveness.

Obviously, the damper should be placed in a position where the amplitude of
oscillation is the greatest. This position generally is found on the side of the shaft away
from the main flywheel, because the node is usually near the largest mass.

Untuned viscous vibration damper. In this section, we discuss another interesting
application of a vibration damper, which has found practical use in suppressing the
torsional vibrations of automobile engines. In a rotating system such as an automobile
engine, the disturbing frequencies for torsional oscillations are proportional to the
rotational speed. However, there is generally more than one such frequency, and the
centrifugal pendulum has the disadvantage that several pendulums tuned to the order
number of the disturbance must be used. In contrast to the centrifugal pendulum, the
untuned viscous torsional damper is effective over a wide operating range. It consists:
of a free rotational mass within a cylindrical cavity filled with viscous fluid, as shown in
Fig. 5.8.2. Such a system is generally incorporated into the end pulley of a crankshaft
that drives the fan belt, and is often referred to as the Houdaille damper.

We can examine the untuned viscous damper as a 2-DOF system by considering
the crankshaft, to which it is attached, as being fixed at one end with the damper at the
other end. With the torsional stiffness of the shaft equal to K in.-Ib/rad, the damper
can be considered to be excited by a harmonic torque MOe"“”. The damper torque
results from the viscosity of the fluid within the pulley cavity, and we will assume it to

‘

FIGURE 5.8.2.
Untuned viscous
damper.
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be proportional to the relative rotational speed between the pulley and the free
Thus, the two equations of motion for the pulley and the free mass are

JO+ K6+ c(6— &) = Mg
Jb~c(6—¢)=0 - (580

By assuming the solution to be in the form

mass,

9 = e’

¢ —_ d)oeiwl ‘ (582)

where 6, and ¢, are complex amplitudes, their substitution into the differential e.

tions results in , 3
K .Cw icw M
[(7 “"2)“7]"0” Th=T

5, .CO _lcw
—w® + zJ—d ¢ = J—dOo (5.8.3)

By eliminating ¢, between the two equations, the expression for the amplitude ¢ of
the pulley becomes 0

qua-

and’

: L
0 wlJ,; — icw

M, ~ [ (K - JoD)] + icolw, — (K — JoD)] (5.8.4)
Letting «? = K/J and u = J,/J, the critical damping is

¢, =2w, c= Cﬁsz,, = 2w,

c

The amplitude equation then becomes

ke _ | wo/w) + 42
M0 B ;Lz(a)/w,,)z(l - wz/_wﬁ)z + 4§2[P~(w/wn)2 - (1 - ‘1’2/00%)]2
which indicates that |K 00/M0| is a function of three parameters, ¢, u, and (w/ w,).

- This rather complicated equation lends itself to the following simple interpreta.
tion.If =0 (zero damping), we have an undamped single-DOF system with resonant
frequency of w;, = \/K_/J A plot of |K 60/M0| vs. the frequency ratio will approach «
at this frequency. If { = «, the damper mass and the wheel will move together as a sjy,.

. gle mass, and again we have an undamped single-DOF system, but with a lower nat.

ural frequency of VK/(J + J,).
Thus, like the Lanchester damper of the previous section, there is an optimum
damping ¢, for which the peak amplitude is a minimum, as shown in Fig. 5.8.3. Ty,

result can be presented as a plot of the peak values as a function of { for any given 4 as

shown in Fig. 5.8.4.

[w n
2TV + w2+ (5:8.6)
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6.0 .
| $=10
5.0 =10 . :
# - ] \ / =0l
40 \
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FIGURE 5.8.3. Response of an untuned viscous damper (all curves pass through P).
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FIGURE 5.8.6 Two-DOF building
model on a shaking table. (Courtesy
of UCSB Mechanical Engineering
Undergraduate Laboratory.)

and that the peak amplitude for optimum damping is found at a frequency equal to

wﬂ =V2/2 + ) ' (5.8.7)

These conclusions can be arrived at by observing that the curves of Fig. 5.8.3 all

pass through a common point P, regardless of the numerical values of {. Thus, by
equating the equation for|K6,/M |for { = 0 and { = =, Eq. (5.8.7) is found. The curve
for optimum damping then must pass through P with a zero slope, so that if we substi-
tute (o/w,)* = 2/(2 + ) into a derivative of Eq. (5.8.5) equated to zero, the expression

_for ¢, is found. It is evident that these conclusions apply also to the linear spring-mass

system of Fig. 5.8.5, which is a special case of the damped vibration absorber with the
damper spring equal to zero. '

Fig. 5.8.6 shows a laboratory model of a 2-DOF building excited by the ground
motion. ‘

PROBLEMS

5.1. Write the equations of motion for the system shown in Fig. P5.1, and determine its nat-
ural frequencies and mode shapes.
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X2

’4—‘ : .
k nk k
12
z o WK ¢ g g -

FIGURE P5.1. " FIGURE P5.2.

5.2. Determine the normal modes and frequencies of the system shown in Fig. P5.2 when
n=1.

5.3. For the system of Prob. 5.2, determine the natural frequencies as a function of n.

5.4. Determine the natural frequencies and mode shapes of the system shown in Fig. P5.4.

Xy X2
= ‘e A K Ka >
k k 3k 3 : 9, 2
m
{ FIGURE P5.4. ' FIGURE P5.5.

5.5. Determine the normal modes of the torsional system shown in Fig. P5.5 for K, = K, and
J =2/, '
5.6. If K, = 0 in the torsional system of Prob 5.5, the system becomes a degenerate 2-DOF
system with only one natural frequency. Discuss the normal modes of this system as well
as a linear spring-mass system equivalent to it. Show that the system can be treated as

one of a single DOF by using the coordinate ¢ = (6, —6,).

5.7. Determine the natural frequency of the torsional system shown in Fig. P5.7, and draw the
normal mode curve. G = 11.5 X 10 psi.

5 b-in-s2
N 3|bfiﬂ.-52
" 3

1 4
e

e l2"—~—l‘6“-l

FIGURE P5.7.

5.8. An electric train made up of two cars,. each weighing 50,000 Ib, is connected by couplings
of stiffneéss equal to 16,000 lb/in., as shown in Fig. P5.8. Determine the natural frequency
of the system.

E&m&e‘«,‘x.‘h}-wﬁ i
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5.12.

5.13.

5.14.
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FIGURE P5.8. FIGURE P5.9.

Assuming small amplitudes, set up the differential equations of motion for the double

pendulum using the coordinates shown in Fig. P5.9. Show that the natural frequencies of
the system are given by the equation

w=\[%(21\/—£)

Determine the ratio of amplitudes x,/x, and locate the nodes for the two modes of
vibration.

Set up the equations of motion of the double pendulum in terms of angles 6, and 6, mea-
sured from the vertical. . '

Two masses, m, and m,, are attached to a light string with tension 7, as shown in Fig. P5.11.
Assuming that 7 remains unchanged when the masses are displaced normal to the string,
write the equations of motion expressed in matrix form.

FIGURE P5.11.

In Prob. 5.11, if the two masses are made equal, show that normal mode frequencies are
o = VT/mland w, = V3T/ml. Establish the configuration for these normal modes.

In Prob.5.11,if m; = 2m and m, = m, determine the normal mode frequencies and mode
shapes.

A torsional system shown in Fig. P5.14 is composed of a shaft of stiffness K, a hub of radius
r and moment of inertia J, four leaf springs of stiffness k,, and an outer wheel or radius R
and moment of inertia J,. Set up the differential equations for torsional oscillation, assum-
ing one end of the shaft to be fixed. Show that the frequency equation reduces to

.

4_ [ 2 2 J2 21 2 2 2 _

1) (wn+w22+1w22w + w3 =0
1

where w,; and w,, are uncpupled frequencies given by the expressions

2
2 = K, _ 4R

—1 d 2
A A
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5.15

5.16

5.17.
5.18.

5.19.

'5.20.

5.21.

FIGURE P5.14. FIGURE PS5.15.

Two equal pendulums free to rotate about the x—x axis are coupled together by a rubber
hose of torsional stiffness k b - in/rad, as shown in Fig. P5.15. Determine the natural

frequencies for the normal modes of vibration, and dsecribe how these motions may be
started.

If I =193 in, mg = 3.86 Ib, and k = 20 Ib_ - in/rad, determine the beat period for a
motion started with 6, = 0 and 6, = 6. Examine carefully the phase of the motion as the
amplitude approaches zero.

Determine the equations of motion for the system of Prob. 5.4 when the initial condi-
tions are x,(0) = 4, x,(0) = x,(0) = 0. '

The double pendulum of Prob. 5.9 is started with the following initial conditions:
x,(0) = x,(0) = X, x,(0) = x,(0) = 0. Determine the equations of motion. -

The lower mass of Prob. 5.1 is given a sharp blow, imparting to it an initial velocity
x,(0) = V. Determine the equation of motion.

If the system of Prob. 5.1 is started with initial conditions x,(0) = 0, x,(0) = 1.0, and
x,(0) = x,(0) = 0, show that the equations of motion are

x,(f) = 0.447 cos w,t — 0.447 cos w,t
x,() = 0.722 cos w,t + 0.278 cos w,t

w, = V0382%/m w, = \V2.618k/m

Choose coordinates x for the displacement of ¢ and 6 clockwise for the rotation of the
uniform barshown in Fig. P5.20, and determine the natural frequencies and mode shapes.

k Ek

4 m LZ
N 2 Jc=mﬁ )
S DU DU

FIGURE P5.20.

i

D~
Nfe=

Set up the matrix equation of motion for the system shown in Fig. P5.21 using coordi-
nates x, and x, and m and 2m. Determine the equation for the normal mode frequencies
and describe the mode shapes. '
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N
N\
m 2m

i
i 3

Iz
FIGURE P5.21.

5.22. In Prob. 5.21, if the coordinates x at 7 and 6 are used, what form of coupling will result?

5.23. Compare Probs. 5.9 and 5.10 in matrix form and indicate the type of coupling present in
each coordinate system.

5.24. The following information is given for the automobile shown in Fig. P5.24.
W = 3500 Ib k, = 2000 Ib/ft v
[, =441t k, = 2400 1b/ft
L=56ft
r = 4 ft = radius of gyration about c.g.

Determine the normal modes of vibration and locate the node for each mode.

/'/ .
{ L‘l v' L2 _‘—&—.J\ \
py— —— W1 S
FIGURE P5.24.

5.25. Referring to Prob. 5.24 prove in general that the uncoupled natural frequencies are
always between the coupled natural frequencies.

5.26. For Prob. 5.24,if we include the mass of the wheels and the stiffness of the tires, the prob-
‘lem becomes that of 4 DOF. Draw the spring-mass model and show that its equation of

motion is
mo
A o
Emo X
' my |\ X,
ky + k) (koly — kll)' —k, —k, |(=x 0
o |Vab — k) (Rl - dl)t kil kb JJ 0L _]0
—k, kil Y (ko + ky) 0 X, 0
—k, —kl, 1 0 (ko + k)| \x, 0

5.27. To justify the 2-DOF simplified model of the automobile in Example 5.3.2, assume the
weight of each wheel, hub, and tire to be approximately 80 Ib, and the tire stiffness per
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wheel to be 22,000 1b/ft. Determine the natural frequency of its wheel-tire system, and
explain why the simplified model is adequate. ‘

5.28." An airfoil section to be tested in a wind tunnel is supported by a linear spring k and a tor-
sional spring K, as shown in Fig. P5.28. If the center of gravity of the section is a distance e
ahead of the point of support, determine the differential equations of motion of the system.

ky
L Fi=F sinw

FIGURE P5.28. . FIGURE P5.29.

5.29. Determine the natural frequencies and normal modes of the system shown in Fig. P5.29
when

gm, =3861b k, =201b/in.
gm,=1931b , =10 Ib/in.
When forced by F, = F| sin wt, determine the equations for the amplitudes and plot

them against ww,,.

5.30. A rotor is mounted in bearings that are free to move in a single plane, as shown in Fig. P5.30.
The rotor is symmetrical about 0 with total mass M and moment of intertia J, about an axis
perpendicular to the shaft. If a small unbalance mr acts at an axial distance b from its center
0, determine the equations of motion for a rotational speed w.

‘ ;

5.31. A two-story building is represented in Fig. P5.31 by a lumped mass system in which.
my = %mz and k; = %kz. Show that its normal modes are

(ﬁ)(l) —> W = 1k
X, 2m,

B)=-1 g=2
X2 m,

Dl

Dl

ENES
v

FIGURE P5.30.
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5.36.
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T

k‘l
m2
— x,
k2
/7777, 77X
FIGURE P5.31.

In Prob. 5.31, if a force is applied to m, to deflect it by unity and the system is released
from this position, determine the equation of motion of each mass by the normal mode
summation method.

In Prob. 5.32, determine the ratio of the maximum shear in the first and second stories.
Repeat Prob. 5.32 if the load is applied to m,, displacing it by unity.

Assume in Prob. 5.31 that an earthquake causes the ground to oscillate in the horizontal
direction according to the equation x, = X, sin ot. Determine the response of the build-
ing and plot it against w/w,. o

To simulate the effect of an earthquake on a rigid building, the base is assumed to be con-
nected to the ground through two springs: K, for the translational stiffness, and K| for the
rotational stiffness. If the ground is now given a harmonic motion, Y, = Y sin «t, set up
the equations of motion in terms of the coordinates shown in Fig. P5.36.

Solve the equations of Prob. 5.36 by letting

MWW
Yo 6

DITTTITI7777777777,

FIGURE P5.36.
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The first natural frequency and mode shape are

“_ 0734 and D

= -1.14
Wy, 109 ;

which indicate a motion that is predominantly translational. Establish the second natural
frequency and its mode (Y, = Y, — 2,6, = displacement of top).

5.38. The response and mode configuration for Probs. 5.36 and 5.37 are shown in Fig. P5.38.
Verify the mode shapes for several values of the frequency ratio.

FIGURE P5.38.

5.39. The expansion joints of a concrete highway are 45 ft apart. These joints cause a series of
impulses at equal intervals to affect cars traveling at a constant speed. Determine the
speeds at which pitching motion and up-and-down motion are most apt to arise for the
automobile of Prob. 5.24. ‘

5.40. For the system shown in Fig. P5.40, W, = 200 Ib and the absorber weight W, = 50 Ib. If
W, is excited by a 2 Ib-in. unbalance rotating at 1800 rpm, determine the proper value of
the absorber spring k,. What will be the amplitude of W,? :

= B

W
1 Sk 1
_é- k‘l I Wz | ) E k1

FIGURE P5.40.
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5.42.

5.43.

5.44

5.45.

5.46.
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In Prob. 5.40, if a dashpot c is introduced between W, and W,, determine the amplitude
equations by the complex algebra method.

A flywheel with moment of inertia / has a torsional absorber with moment of inertia /
free to rotate on the shaft and connected to the flywheel by four springs of stiffness k 1b/in.,

as shown in Fig. P5.42. Set up the differential equations of motion for the system, and dis-
cuss the response of the system to an oscillatory torque.

FIGURE P5.42. FIGURE P5.43.

The bifilar-type pendulum shown in Fig. P5.43 is used as a centrifugal pendulum to elimi-
nate torsional oscillations. The U-shaped weight fits loosely and rolls on two pins of
diameter d, within two larger holes of equal diameters d,. With respect to the crank, the
counterweight has a motion of curvilinear translation with each point moving in a circu-

lar path or radius r = d, — d,. Prove that the U-shaped weight does indeed move in a cir-

cular pathof r = d, — d,.

A bifilar-type centrifugal pendulum is proposed to eliminate a torsional disturbance of fre-
quency.equal to four times the rotat10na1 speed. If the distance R to the center of gravity of
the pendulum mass is 4.0 in. and d, = 3 3 in., what must be the diameter d, of the pins?

A jig used to size coal contains a screen that recnprocates with a frequency of 600 cpm.
The jig weighs 500 1b and has a fundamental frequency of 400 cpm. If an absorber
weighing 125 1b is to be installed to eliminate the vibration of the jig frame, determine
the absorber spring stiffness. What will be the resulting two natural frequencies of the
system?

In a certain refrigeration plant, a section of pipe carrying the refrigerant vibrated vio-
lently at a compressor speed of 232 rpm. To eliminate this difficulty, it was proposed to
clamp a spring-mass system to the pipe to act as an absorber. For a trial test, a 2.0-lb.
absorber tuned to 232 cpm resulted in two natural frequencies of 198 and 272 cpm. If the
absorber system is to be designed so that the natural frequencies lie outside the region
160 to 320 cpm, what must be the weight and spring stiffness?

A type of damper frequently used on automobile crankshafts is shown in Fig. Pi 47.7
represents a solid disk free to spin on the shaft, and the space between the disk and case
is filled with a silicone oil of coefficient of viscosity u. The damping action results from
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m

5.48.
5.49.

5.50.
551,

5.52.

5.53.

any relative motion between the two. Derive an equation for the damping torque exerted
by the disk on the case due to a relative velocity of . ’

.

4

-+

FIGURE P5.47.

For the Houdaille viscous damper with mass ratio u = 0.25, determine the optimum

~damping {, and the frequency at which the damper is most effective. -

If the damping for the viscous damper of Prob. 5.48 is equal to { = 0.10, determine the
peak amplitude as compared to the optimum.

Establish the relationships given by Egs. (5.8.7) and (5.8.6).

Derive the equations of motion for the two masses in Fig. 5.8.5 and follow the parallel
development of the untuned torsional vibration-damper problem.

Develop the MATLAB® program for the computation of the response of the system
shown in Prob. 5.4 when the mass 3m is excited by a rectangular pulse of magnitude 100
1b and duration 67Vm/ks. » '

In Prob. 5.31 assume the-following data: k, = 4 X 10° Ib/in., k, = 6 X 10° Ib/in., and -
m, = m, = 100. Develop the MATLAB® program for the case in which the ground is
given a displacement y = 10" sin 7t for 4 s.

Figure P5.54 shows a degenerate 3 DOF. Its characteristic equation yields one zero root
and two elastic vibration frequencies. Discuss the physical significance that three coordi-
nates are required but only two natural frequencies are obtained.

FIGURE P5.54.
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'5.55. The two uniform rigid bars shown in Fig. P5.55 are of equal length but of different

masses. Determine the equations of motion and the natural frequencies and mode shapes
using matrix methods.

| [
\ %L '| .4 !
2}) .
m §k1 mp
. [ A1
Ekz
77
2 4 FIGURE P5.55.

5.56. Show that the normal modes of the system of Prob. 5.54 are orthogonal.

'5.57. For the system shown in Fig. P5.57 choose coordinates x, and x, at the ends of the bar and
determine the type of coupling this introduces.

— ® ]
L1—~{«L2
Ky ko
7. 7. 77

5.58. Using the method of Laplace transforms, solve analytically the problem solved by the
digital computer in Sec. 5.5 and show that the solution is

Xem = 13.01(1 — cos wyf) — 1.90(1 — cos w,t)
Yem = 16.08(1 = cos @,f) + 6.14(1 — cos wyt)

7 FIGURE P5.57.

5.59. Consider the free vibration of any two degrees-of-freedom system with arbitrary initial
conditions, and show by examination of the subsidiary equations of Laplace transforms
that the solution is the sum of normal modes. ’

5.60. Determine by the method of Laplace transformation the solution to the forced-vibration
problem shown in Fig. P5.60. Initial conditions are x,(0), x,(0), x,(0), and x,(0).

F sinwt

} k k [

b

FIGURE P5.60. . FIGURE P5.61.

5.61. Determine the matrix equation of motion for the system shown in Fig. P5.61.
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5.62.

5.63.

5.64.

5.65.

Determine the matrix equation of motion for the system shown in Fig. P5.62.

7 k4
WW
ky ko k3
ks
AARA
b—-x b, Fx
FIGURE P5.62. »

Consider the system with two coupled pendula of Example 5.1.3, and do not assume
small displacement from the vertical position. It is assumed that the pendula are cou-
pled via a force varying linearly with the difference in angles of the pendula F = —ka sin
(6, — 6,) being the force on pendulum 1. Derive the equations of motion. Simulate the
system in MATLAB® with different initial conditions. Plot the angles 6, and 6, versus
time. What can you conclude about the exchange of energy between the pendula (cf.
Example 5.2.2)?

Consider the following coupled system for the rectilinear motion of two particles:
X, = filx, %)

fz = fz(xh xz)

Show that if the form of the equations stays the same when x, + ¢, x, + c is inserted

‘instead of x,, x, (i.e., the system is invariant with respect to translations), then the system

reduces to one equation for the variable y = x, — x

y = f(y).

This is an example of using symmetries to reduce the dimensionality of the system. In this
case, we have reduced the number of degrees of freedom by 1.

Consider the system shown in Figure 5.65 that models the motion of seats of a ski-lift.
Determine the equations of motion. Determine the natural frequencies. Should the stiff-
ness of the spring (which models the cable on which the seats are mounted) be high or
low in order for the skiers not to experience very fast oscillations of the seat?

1

FIGURE P5.65.

m;,:;mmv EE .
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CHAPTER 6

Properties of Vibrating Systems

The elastic behavior of a system can be expressed either in terms of the stiffness or the

flexibility. So far, we have written the equations of motion for the normal mode vibra-
tion in terms of the stiffness K:

(—wM] + [K]) X} = (0] ()

In the stiffness formulation, the force is expressed in terms of the displacement:
{F} = [K](x} (b

The flexibility is the inverse of the stiffness. The displacement is here written in
terms of the force:

{x} = [K]74F)
= [al{F} | (c)

The equation of motion in terms of the flexibility is easily determined by premultiply-
ing Eq. (a) by [K] ! = [a]:

(—w*a]lM] + Dix} = {0} (d).
where K™K = I = unit matrix.
The choice as to which approach to adopt depends on the problem. Some prob-

“lems are more easily pursued on the basis of stiffness, and for others, the flexibility

approach is desirable. The inverse property of one or the other is an important concept
that is used throughout the theory of vibration.

The orthogonal property of normal modes is one of the most important concepts
in vibration analysis. The orthogonality of normal modes forms the basis of many of
the more efficient methods for the calculation of the natural frequencies and mode
shapes. Associated with these methods is the concept of the modal matrix, whlch is
essentlal in the matrix development of equations.

163
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6.1 FLEXIBILITY INFLUENCE COEFFICIENTS

The flexibility matrix written in terms of its coefficients a;; is

X1 ay ap ay || f
ne=lay ap ani|if (6.1.1) .
X3 4y ap dyn f

The flexibility influence coefficient a is defined as the displacement at i due to a
unit force applied at j with all other forces equal to zero. Thus, the first column of the
foregoing matrix represents the displacements corresponding to f; = land f, = f; = 0.
The second column is equal to the displacements for f, =1 and f, = f; =0, and so on.

Example 6.1.1

Determine the ﬂexibil‘ity matrix for the three-spring system of Fig. 6.1.1.

Solution By applying a unit force f, = 1 at (1) with f, = f, = 0, the displacements, x,, x,, and
x5, are found fqr the first column of the flexibility matrix

X alk, 0 0|(fi=1
Ly=|1k 0 04 0
n) Lk o ofl o

Here springs k, and k; are unstretched and are displaced equally with station (1).
Next, apply forces f; = 0,f, = 1,and f; = 0, to obtain

x 0 ki, 0[]0
X0 =0 (,%l + ,%2) 0
n) [0 &+g) OULO

In this case, the unit force is transmitted through k, and k,, and k; is unstretched.
~ Inasimilar manner, for f; = 0,f, = 0,and f, = 1, we have

x 0 0 & 0
1 1
Xy =10 0 k—l k_2 0
1 1 1
X3 0 0 k_1+k_1+k—3 1
ky k2 k3

)] (2) (3

= Y—x ' §‘“’_‘s

Figure 6.1.1.
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The complete flexibility matrix is now the sum of the three prior matrices:

1 1 1
X E & % h
I T T
N Sl R T S £
1 1 1 1 1 1
X3 E mtn ptntenllh

Note the symmetry of the matrix about the diagonal.

Example 6.1.2

Determine the flexibility matrix for the system shown in Fig. 6.1.2.

2k k k
2m m —WW— m
. x'l — xz —>x3
FIGURE 6.1.2.

Solution We have here k, = 2k, k, = k, and k, = k, and the flexibility matrix from Example
6.1.1 becomes

[05 05 05
[a] = £l 05 15 15
05 15 25

Example 6.1.3

Determine the flexibility influence coefficients for stations (1), (2), and (3) of the uniform can-
tilever beam shown in Fig. 6.1.3.

Solution The influence coefficients can be determined by placing unit loads at (1), (2),and (3) .
as shown, and calculating the deflections at these points. By using the area moment method,' the
deflection at the various stations is equal to the moment of the M/EI area about the position in
question. For example, the value of a,, = a,, is found from Fig. 6.1.3 as follows:
' ‘ 171,.,, 7] 140D
= —| = X -l|l==—=
2T [ R @ x 3 ] 3 El
The other values (determined as before) are

27 P 14 P

a 3 EI ay =ap < .3_ El

'E. P. Popov, Introduction to Mechanics of Solids (Englewood Cliffs, NJ: Prentice-Hall, 1968), p 411.
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my my
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FIGURE 6.1.3.
8 I 25 PP
T 3F T4 T 3 g
18 4 P
wI3E wTWT5E
The flexibility matrix can now be written as
P 27 14 4
a=—|14 8 25
3EI 4 25 1

and the symmetry about the diagonal should be noted.

" Example 6.1.4

The flexibility influence coefficients can be used to set up the equations of a flexible shaft sup-
ported by a rigid bearing at one end with a force P and a moment M at the other end, as shown
in Fig. 6.1.4.

The deflection and slope at the free end is
y=a,P+a,M

(6.1.1)
0=ayuP + apM

FIGURE 6.1.4.
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FIGURE 6.1.5. Demonstration
“gyroscope. (Courtesy of UCSB
Mechanical Engineering
Undergraduate Laboratory.)

which can be expressed by the matrix equation

AR o1

-The influence coefficients in this equation are

P - | l
T3 T T 5pp 2T gy (6.1.3)

The equation presented here could offer a basis for solving the problem of the
gyroscopic whirl of a spinning wheel fixed to the end of an overhanging shaft. P and M
in this case would be replaced by the inertia force and the gyroscopic moment of the
spinning wheel. By including the flexibility of the supporting bearing, a still more gen-
eral problem can be examined (see Prob. 6.41).

Figure 6.1.5 shows a demonstration gyroscope in gimbals. The mass distribution
of the wheel is adjustable to obtain general moment of inertia configuration other than

~ that of the symmetric wheel resulting in the simple inertia force P and the gyroscopic

moment M shown in Fig.6.1.4.

6.2 RECIPROCITY THEOREM

The reciprocity theorem states that in a linear system, a; = a;. For the proof of this
theorem, we consider the work done by forces f; and f,, where the order of loading is i fol-

lowed by j and then by its reverse. Reciprocity results when we recognize that the work

done is independent of the order of loading.
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By applying f, the work done is 5 f2a;. By applying f»the work done by f;is 3 f T
However, i undergoes further displacement, a;f, and the additional work done by f;
becomes a;;f;f;. Thus, the total work done is '

— 2
—iflau+2fl ])+ al]-f]ﬁ

We now reverse the order of loading, in which case the total work done is

—1z2
- Ef}a]] + Zfl. i + a]l-flf]
Because the work done in the two cases must be equal, we find that

a; = q;

Example 6.2.1

Figure 6.2.1 shows an overhanging beam wnth P first applied at 1 and then at 2. In Fig. 6.2.1(a),
the deflection at 2 is

_ Y2 = anP
In Fig. 6.2.1(b), the deflection at 1 is
Y1 = app

Because a,, = a,,, y, will equal y,, i.e., for a linear system, the deflection at 2,due to a load at 1, is
equal to the deflection at 1 when the same load is applied at 2.

FIGURE 6.2.1. @

u
6.3 STIFFNESS INFLUENCE COEFFICIENTS
The stiffness matrix written in terms of the influence coefficients k;; is
fi) ki kp k| [x .
Lt =|kn kn kyl|9x (6'3'1)7,
5 ky kyp kil \x '

The elements of the stiffness matrix have the following interpretation. If x, = 1. 0
and x, = x; = 0, the forces at 1,2, and 3 that are required to maintain this dlsplacemeﬂt 4

3

?
_31
k1

&
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according to Eq. (6.3.1) are k;;, k,;, and k; in the first column. Similarly, the forces f,, f,,
and f; required to maintain the displacement configuration x; = 0,x, = 1.0,and x, = 0
are ky,, ky, and k;, in the second column. Thus, the general rule for establishing the
stiffness elements of any column is to set the displacement corresponding to that col-

umn to unity with all other displacements equal -to zero and measure the forces
required at each station.

Example 6.3.1

Figure 6.3.1 shows a 3-DOF system. Determine t

he stiffness matrix and write its equation of
motion. :

k k k
9r—’x, 3—72 ' 3’_’:{3 FIGURE 6.3.1.

Solution Letx,=10andx, = x5 = 0. The forces required at 1,2, and 3, considering forces to
the right as positive, are

h=k +k=ky

fi= k= ky
fi=0=ky
Repeatk with x, = 1,and x; = x; = 0. The forces are now
fi =k =ky
=k, + k; =k,
- 3= ks =ky
For the last column of &’s,let x; = 1 and x; = x, = 0.The forces are
fi=0=ky
f= ks = ky

fi=ky+ kg =ky
The stiffness matrix.can now be written as

(ky + i)~y 0
K=|-k (y+ k) —k,
0 ~k, (k; + k)

and its equation of motion becomes

m 0 0](x (k+ k) —k 0 x| A
0 my 0 |{%¢+| -k (ky + ;) —ky ne=1r
0 0 mlx 0 —k; (ks + kg) | Lxs 5
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Example 6.3.2

Consider the four-story building with rigid floors shown in Fig. 6.3.2. Show diagramatically the .
significance of the terms of the stiffness matrix.

ka3 kaq
4q kai ka2
: /s
3 ks, k3o k3 (k34
: \
> kar k22| \ | ka3 kaq
; \
1 ku k|2 k|3 k|.4
) ~/
270 4 % # Z TN, 2.7
(a) (b) ) {d) (e)
FIGURE 6.3.2.

Solution The stiffness matrix for the problem is a 4 X 4 matrix. The elements of the first col-
umn are obtained by giving station 1 a unit displacement with the displacement of all other sta-
tions equal to zero, as shown in Fig. 6.3.2(b). The forces required for this configuration are the
elements of the first column. Similarly, the elements of the second column are the forces neces-
sary to maintain the configuration shown in Fig, 6.3.2(c).

It is evident from these diagrams that k, = k;, = k33 and that they can be determined from
the deflection of a fixed-fixed beam of length 2/, which is

ky = ky=ky= %I)Ef = 24%[
The stiffness matrix is then easily found as
24 -12 0 0
K] = EI| -12 24 -12 0
0 -12 24 -12
0 0 -12 12

. ] ]
Example 6.3.3 ,
Determine the stiffness matrix for Example 6.1.2 by inverting the flexibility matrix:
1 0 5 05 0.5
[a] = E 15 15
' 0.5 1.5 25

Solution Although the stiffness matrix of this system is easily found by summing forces on
each mass in Fig. 6.1.2, we demonstrate the use of the mathematical equation

o] = |},—|adj [a]
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of Appendix C.The determinant of [a] is found from the minors using the first column.

1 1.5 15 05 05 05 05
ol = k{o's 1.5 2.5‘ 1 2.5\ TO03ys 1.5]
0.5 1 .
= —{15-05+0j=—
A 1.5 — 05 + 0} %
For the adjoint matrix, we have (see Appendix C)
1.5 -05 0
adjla] =] -05 1.0 -05
0 -05 05
Thus, the inverse of [a] is
1.5 -05 0 3 -1 0
[a] '=[k] =2kl 05 10 -05|=k|[-1 2 -1
0 -05 05 0 -1 1

which is the stiffness matrix.

Example 6.3.4

By using the stiffness matrix developed in Example 6.3.3, determine the equation of motion, its
characteristic determinant, and the characteristic equation.

Solution The equation of motion for the normal modes is

2 0 0ffx 3 -1 0 [x 0
—w'm{0 1 0|{x¢ +k|-1 2 ~1|9x =40
0 0 1 lx 0 -1 1] L, 0
from which the characteristic determinant with A = w?m/k becomes
3-20) -1 0
-1 2-2 -1 (=0
0 -1 1-2)

The characteristic equation from this determinant is
A —450 2 +50~-1=0

The roots of this.equation can be found in MATLAB® by typing the command roots(c)
where c is the vector containing the coefficients of the polynomial in descending order. For this
example ¢ = [1, —4.5,5, —1]. The roots are given by

2.8892, 1.3554, 0.2554

Alternatively, one can compute these numbers by computing the eigenvalues of the
dynamic matrix A = M1 * K. Once the matrices M and K have been input into MATLAB®, the
dynamic matrix is computed by using the following command:

A = inv(M)*K
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The result is

1.5000 —0.5000 0
—1.000  2.000 —1.0000

0 —1.0000  1.0000
The eigenvalues can now be computed using
D = eig(A).
The result is
D=
1.3554
2.8892
0.2554

Both of these approaches give the same values for the eigenvalues for the normal modes.

6.4 STIFFNESS MATRIX OF BEAM ELEMENTS

Engineering structures are generally composed of beam elements. If the ends of the
elements are rigidly connected to the adjoining structure instead of being pinned,
the element will act like a beam with moments and lateral forces acting at the ends.
For the most part, the relative axial displacements will be small compared to the lat-
eral displacements of the beam and we will assume them to be zero for now.

Figure 6.4.1 shows a uniform beam with arbitrary end displacements, v, 6; and v,,
6,, taken in the positive sense. These displacements can be considered in terms of the
superposition of four displacements taken separately, as shown in Fig. 6.4.2. Shown
also are the end forces and moments required to maintain the equilibrium of the sepa-

rate displacements, which can be simply determined by the area-moment method.
They relate to the following stiffness matrix:

F ki koo ki ki Uy
M, - ky ky ky o ky 6,
K, ks kp ka ks U
M, ki ki ki ku 6,

where each column represents the force and moment required for each of the displace-
ments taken separately. The positive sense of these coordinates is arbitrary; however,

F.

fon

FIGURE 6.4.1. Beam with arbitrary end displacements.
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4'_= FEI
M= 651 v,( - . -
! % M= P
Y126l
6EI e
F=—291
. 9. - ‘ _2E&I
=4—zEIB]< /Yr—\ )M——l_01
% _6El
F="p &
6EI
_12EI w=SEL
T / 2"
_BEI 2 1261
M 22 VZCAQ - F= l3 v,
6EI 4ET

FIGURE 6.4.2. Stiffness of beam element.

the configuration shown in Fig. 6.4.1 conforms to that generally used in the finite ele-
ment method. ' :

Also presented here are force and moment relationships for a pinned beam.

~ Although the pinned beam does not conform to the usual definition of beam stiffness,

its force and moment relationships are often convenient, and are presented here in

Figure 6.4.2(a).
M= %01 A M=0
351( hw 6,=%6,
F= '!791 =3_Eé1_91
—3EI
M= ?"’1(?
m =24
F “§!E?Iu‘ ¢w92 271
: - JEI
F= iR
FIGURE 6.4.2(a).
Example 6.4.1

Determine the stiffness matrix for the square frame of Fig. 6.4.3. Assume the corners to remain
at 90°.
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v
@ @ 1H 91_(_2|) ~ 592

FIGURE 6.4.3.

Solution The method to be illustrated here provides an introduction to the finite element
method, which is discussed later. Briefly, the displacements at the joints (corners joining the
three beam elements) must be compatible. Ensuring equilibrium of forces at the corners from
the free-body diagrams, the elements of the stiffness matrix are found.

With the applied forces equal to F,, M,, and M,, the displacement of the corners are v,, 8,,
and 6,,and the stiffness matrix relating the force to the displacement is

F ki koo kg Y
My =|ky kyp k23J 6
M, ky ks ks 6,

)

(@) b ) (c)
FIGURE 6.4.4.

For the determination of the elements of this matrix, the frame is shown with each displacement -
applied separately in Fig. 6.4.4. The first column of the stiffness matrix is found by letting v, = 1
and 6, = 6, = 0, as shown in Fig. 6.4.4(a). By cutting out the corners and imposing the condition.
of equilibrium for the free-body diagram, the results are (see Fig. 6.4.5)

i 12% 12’5;—‘; e
F,— > >
16%K.r;‘—_12% 6%\]_/4—12%
F 242 o0 of(1) lr\—"z% ‘(\_.12%
Mp=|62 0 0l{o '
M, 6 0 oflo

FIGURE 6.4.5.
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The second column of the stiffness matrix is found from the configuration of Fig. 6.4.4(b).
Summing forces and moments at the corners we have (see Fig. 6.4.6)

£
o af )
— \
: (\*. Q 4
T el oEl Y
. ? 1
F, 0 65 o|]o0 ‘
| ; W
M p=|0 8 0|41
M, ) 0 25 0]|o ' 1
N N
FIGURE 6.4.6.

In like manner, the third column of the stiffness matrix is found from the configuration of
Fig. 6.4.4(c) (see Fig. 6.4.7).

F, 0 0 640
M =10 0 2|<0
M, 0 o 8|1

M E1 M
(‘\ 1 T F q 2
— 0 (——) (-
WK 2% }:'I 47'/\—’6%
el i T
FIGURE 6.4.7.

By superpositioning the preceding three configurations, the stiffness matrix for the square frame
with fixed legs is _ : :

F, EIZI_? % % !
M =T ? 8 2|48
M, $ 2 8]||e
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6.5 STATIC CONDENSATION FOR PINNED JOINTS

For pinned joints where the moment is zero, the size of the stiffness matrix can be
reduced by a procedure called static condensation.* The procedure can also be used in
discrete mass systems where the mass moment of inertia is small enough to be ignored.
We here illustrate the procedure by applying it to previous Example 6.4.1 of the square
frame when the fixed support of the lower right leg is replaced by a pinned support.

Example 6.5.1

Determine the stiffness matrix of the square frame shown in Fig. 6.5.1, where the lower right
support is pinned.

W M,
el
(1) (2)
(3)
N N

FIGURE 6.5.1.

Solution Compared to the previous Example 6.4.1, we now have an additional coordinate 6;,
-which results in a 4 X 4 matrix. To the three configurations of the previous problem, we add the
fourth configuration, as shown in Fig. 6.5.2. The new 4 X 4 stiffness is easily determined and is

given as
F % $ 1 E% o
M| Er|t 8 2:0()6
Mo )s 2 i)
M, ¢ 0 214] 6
which we partition by the dotted lines and relabel as
[
{_:"’_} - [_’9_1 _E_{fzz_]{.‘_’_} (65.1)
M Ky + K5 110
NN
FIGURE 6.5.2.

2] Meirovitch, Computational Methods in Structural Dynamics (Rockville, MD: Sidthoff & }
Noordhoff, 1990), p. 369.

=
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Note here that K, is the stiffness matrix of the previous problem. Multiplying out the new
matrix, we obtain

=K,V +K,;®
M=K,V +K,0O

Because for the pinned end, the moment is zero, we let M = 0 and solve for O in terms of the
other coordinates, thus reducing the size of the 4 X 4 matrix to a 3 X 3 matrix.

(6.5.2)

0 = —K5K,V ' (6.5.3)
Substituting this into the first equation, we have
F = (K, - Kp KZK,)V (6.5.4)

Because the first term of this equation is that of the previous example, we need only to deter-
mine the second term, which is

e
7
KK5 Ky = EIZ 0 [ﬂ[? 0 2]
2]
EI_%— 6 EI% 0 ;
=Z 0 [7 0 2]=—1— 0-0 O
| 2] 20 .1

Subtracting this from K,,, we obtain the reduced 3 X 3 stxffness matrix for the square frame with
-one pinned end. .

F B ¢ 3

1 I { i Y
EI

M=~ ¢ 8 2096

M, L3 2 7]\%

Note that the middle column and row remain untouched.

ORTHOGONALITY OF EIGENVECTORS

The normal modes, or the eigenvectors of the system, can be shown to be orthogonal
with respect to the mass and stiffness matrices. By using the notation ¢, for the ith
eigenvector, the normal mode equation for the ith mode is

K¢, = M, (6.6.1)
Premultiplying the ith equation by the transpose d)f, of mode j, we obtain
&K, = ), ¢TM¢, (6.6.2)

If next we start with the equation for the jth mode and premultlplymg by @7, we
obtain a similar equation with i and j interchanged:

oK, = A 6T Md, (6.6.3)
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Because K and M are symmetric matrices, the following relationships hold.

K Tk -
& | or | = @] | or | (6.6.4)
M M
Thus, subtracting Eq. (6.6.3) from Eq. (6.6.2), we obtain
(A = A/ Mg, =0 (6.6.5)
If A; # A, the foregoing equation requires that
dIMPp =0 i#j ' " (6.6.6)
Itis also evident from Eq. (6.6.2) or Eq. (6.6.3) that as a consequence of Eq. (6.6.6),
SKp =0 i#]j : (6.6.7)

Equations (6.6.6) and (6.6.7) define the orthogonal character of the normal modes.

Finally,if i = j, (A, — A;)) = 0 and Eq. (6.6.5) is satisfied for any finite value of the
products given by Eq. (6.6. 5) or (6.6.6). We therefore have

¢,'TM¢,' =M,
¢iTK¢i = K;

The quantities M;; and K, are called the generalized mass and the generalized stiffness,

respectively. We will have many occasnons to refer to the generalized mass and general-
ized stiffness later.

(6.6.8)

Expansion Theorem. Consider the problem of initiating the free vibration of a
system with a specified arbitrary displacement. As previously stated, free vibrations are
“the superposition of normal modes, which is referred to as the Expansion Theorem. We
now wish to determine how much of each mode will be present in the free vibration.
We will express first the arbitrary displacement at time zero by the equation:

X(O) = + i, + 3y + i+

where ¢, are the normal modes and c; are the coefficients indicating how much of each
mode is present. Premultiplying the above equation by ¢ M and taking note of the
orthogonal property of ¢,, we obtain

SIMX(0)=0+0+0+ - c;dpTM, + 0 + -+
The coefficient ; of any mode is then found as
. - $MxX ()
T oMo, |
Orthonormal modes. If each of the normal modes ¢, is divided by the square'é
root of the generalized mass M, it is evident from the first equation of Egs. (6.6.8) that
the right side of the foregoing equation will be unity. The new normal mode is then 3

called the weighted normal mode or the orthonormal mode and designated as ¢ Itis ¢
also evident from Eq. (6.6.1) that the right side of the second equation of Eq. (6.6- 8)
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becomes equal to the eigenvalue A;. Thus, in place of Egs. (6.6.8), the orthogonality in
terms of the orthonormal modes becomes

g’iTMg’i =1

K - 2 (6.6.9)

6.7 MODAL MATRIX P

When the N normal modes (or eigenvectors) are assembled into a square matrix with
each normal mode represented by a column, we call it the modal matrix P. Thus, the
modal matrix for a 3-DOF system can appear as

X, (1) (2) (3)

X1 X1
P= X2 X, X = [4’1 ¢2¢’3] - (67.1)
X3 X3 X3 '

The modal matrix makes it possible to include all of the orthogonality relations of
Sec. 6.6 into one equation. For this operation, we need also the transpose of P, which is

(x1x2x3)(1)

PT=| (%)% | = [, 517 (6.7.2)

(x,x2x3)(3)

with each new row corresponding to a mode. If we now form the product P"MP or
PTKP, the result will be a diagonal matrix, because the off-diagonal terms simply
express the orthogonality relations, which are zero.

For example, consider a 3-DOF system. Performing the indicated operation with
the modal matrix, we have

PTMP = (¢, ¢, 0,1 T [M][ ¢, &, ¢5]

DM oM, Moy [My 00
= ¢%M & d’%M é, ¢%~M é =] 0 M O (6.7.3)
&M, b3 Mo,  d3 M, 0 0 My
In this equation, the off-diagonal terms are zero because of orthogonality, and the
diagonal terms are the generalized mass M,,. '

It is evident that a similar formation applies also to the stiffness matrix that
results in the following equation: '

Kn O 0 )
PIKP=| 0 K, 0 (6.7.4)
0 0 K

The diagonal terms here are the generalized stiffness K;.

When the normal modes ¢, in the P matrix are replaced by the orthonormal
modes ¢, the modal matrix is designated as P. It is easily seen then that the orthogo-
nality relationships are
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P™™P =1 (6.75)
PTKP = A (6.7.6)
where A is the diagonal matrix of the eigenvalues.
A 00
A=10 A, O ' (6.7.7)
0 0 A

Eq. (6.7.5) and (6.7.6) show that if the eigenvectors are known then one can eas-
ily caiculate the eigenvalues. These relationships will be used in the discussion of
numerical methods for eigenvalues and eigenvectors (see Sec. 8.9).

Example 6.7.1

Verify the results of the system considered in Example 5.1.1 (see Fig. 6.7.1) by substituting them
into the equations of Sec. 6.7.

———XZ

m FVWW— 2m

K

N
x
x

FIGURE 6.7.1.

Solution The mass and stiffness matrices are
1 0 2 -1
L ST

The eigenvalues and eigenvectors for Example 5.1.1 are

2
_ wm _ 0.731}
A k 0.634 ¢, {1.000_
2
_ om _ _ —2.73}
Ay = = =236 4, {1.00
F_orming the modal matrix P, we have
P_4'0.73_l —2.73]
‘ | 1.00 1.00
0731 107[1- 07[0.731 ~-2.73
T =
P MP L-—2.73> 1.0][0 2][1 1 ]
_[253 o0 ]'_ [M" 0 ]
L 0 945

0 My
Thus, the generalized mass are 2.53 and 9.45. ’
If instead of P we use the orthonormal modes, we obtain

13=[ 1 {0.731} 1 {—2.73H=[0.459 —0.888]
V253 | 1.00 ] /945 | 1.00 0628 0.3252
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PTMP = [ 0459 0.628](1 0][0459 —0888] _[1.00 0 ]
- L0888 0325]|0 2][0.628 0.325 0 1.00
PTKP = [ 0.459 0.628][ 2 -1][0459 ~0.888
—-0888 0325f( -1 2 }[0.628 0.325
_ [0.635 0 ] _ [)\, O]
0 2365] L0 A
Thus, the diagonal terms agree with the eigenvalues of Example 5.1.1.°
]

6.8 DECOUPLING FORCED VIBRATION EQUATIONS

When the normal modes of the system are known, the modal matrix P or P can be

used to decouple the equations of motion. Consider the following general equation of
the forced undamped system:

MX +KX=F (68.1)
By making the coordinate transformation X = PY, the foregoing equation becomes
MPY + KPY = F
Next, premultiply by the transpose P’ to obtain
(PTMP)Y + (PTKP)Y = PTF (6.82)

Because the products P’MP and P'KP are diagonal matrices due to orthogonality, the
new equations in terms of Y are uncoupled and can be solved as a system of 1 DOF.
The original coordinates X can then be found from the transformation equation

X = PY (6.8.3)

Example 6.8.1

Consider the two-story building of Fig. 6.8.1 excited by a force F(t) at the top. Its equation of

motion is
2 07(% 3 —1](x, {ﬂ
o+ =
mb JLJ %—1 th F

The normal modes of the homogeneous equation are

ol o-f)

P

FIGURE 6.8.1.
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from which the P matrix is assembled as

05. -1
P‘[l '1]

Writing out the terms of Eq. (6.8.2), we have
[ 0.5 1][2 0][0‘5 —1]{&',}
m .
-1 1]L0 1]i1 1]y,
+k[ 0.5 1][ 3 ~1][0.5 —1]{y1}=[ 05 1]{0}
-1 1]{-1 1]l 1]y, -1 1]lF

15 0 yl} [0.75 O'J{yl} {FZ}
ot =
m[O 3]{}’2 g 0 6lly F,
which are uncoupled.

The solutions for y, and y, are in the form

or

y( ) PZ sin wt
=y 4+ = + - —
Yi y,(O) COS w;t sin w;t 1 ( / )2

which can be expressed in terms of the 0r1g1na1 coordinates by the P matrix as

M

Example 6.8.2

For Example 6.8.1, determine the generalized mass and the P matrix. Numerically, verify
Eqgs. (6.7.5) and (6.7.6).

Solution The calculations for the generalized mass are

M, = (05 1)[3 (1)]{0?} =15

w-confy 0o

By .dividing the first column of P by VM, and the second column by VM,, the P matrix
becomes

P 0.4083 —0.5773]
~ o865 05773
Equations (6.7.5) and (6.7.6) are simply verified by substitution.

6.9 MODAL DAMPING IN FORCED VIBRATION

The equation of motion of an N-DOF system with viscous dampmg and arbitrary exci-
tation F(z) can be presented in matrix form:

MX+CX+KX=F (69.1)
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It is generally a set of N coupled equations.
‘We have found that the solution of the homogeneous undamped equation
MX + KX =0 (6.9.2)

leads to eigenvalues and eigenvectors that describe the normal modes of the system and
the modal matrix P or P. If we let X = PY and premultiply Eq. (6.9.1) by PT as in Sec.
6.8, we obtain '

PTMPY + PTCPY + PTKPY = PTF (6.9.3)

We have already shown that PTMP and PTKP are diagonal matrices. In general, PTCP
is not diagonal and the preceding equation is coupled by the damping matrix.

If C is proportional to M or K, it is evident that PTCP becomes diagonal, in which-

case we can say that the system has proportional damping. Equation (6.9.3) is then
completely uncoupled and its ith equation will have the form

j;i + 25,'(0();[ + oty z}i(t) (6.9.4)

Thus, instead of N coupled equations, we would have N uncoupled equations similar to
that of a single-DOF system. :

Rayleigh damping. Rayleigh introduced proportional damping in the form

C=aM+ BK (6.9.5)

where « and B are constants. The application of the weighted modal matrix P here
results in

PTCP = oP™MP + BPTKP
(6.9.6)°
=al + BA

where Iis a unit matrix, and A is a diagonal matrix of the eigenvalues [see Eq. 6.7.6)].
2

w0,
A= “2 (6.9.7)
o,
Thus, instead of Eq. (6.9.4), we obtain for the ith equation
¥+ (a+ By, + oy, = F) (6.98)
.and the modal démping can be defined by the equation
2w, = a + Bow? (6.9.9)

NORMAL MODE SUMMATION
The forced vibration equation for the N-DOF system
MX+CX+KX=F (6.10.1)

31t can be shown that C = aM" + BK" can also be diagonalized (see Probs. 6.29 and 6.30).
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Foo— X = - 400~ = =LA -~ -~ —{- 48,00

—] i [x 1 ‘
-~ X2 :
-— B (0=4x3 ¢,00) /1}3()()

X,

!

1

n
1

7200007 7, 0007 77,

FIGURE 6.10.1. Building displacement represented by normal modes.

can be routinely solved by the digital computer. However, for systems of large num-
bers of degrees of freedom, the computation can be costly. It is possible, however, to
cut down the size of the computation (or reduce the degrees of freedom of the system)
by a procedure known as the mode summation method. Essentially, the displacement
of the structure under forced excitation is approximated by the sum of a limited num-
ber of normal modes of the system multiplied by generalized coordinates.

For example, consider a 50-story building with 50 DOF. The solution of its
undamped homogeneous equation will lead to 50 eigenvalues and 50 eigenvectors that
describe the normal modes of the structure. If we know that the excitation of the build-
ing centers around the lower frequencies, the higher modes will not be excited and we
would be justified in assuming the forced response to be the superposition of only a
few of the lower-frequency modes; perhaps ¢,(x), ¢,(x), and ¢,(x) may be sufficient.
Then the deflection under forced excitation can be written as

5= S0 + 6s()a0) + due)as()  (6102)

or in matrix notation the position of all z floors can be expressed in terms of the modal
matrix P composed of only the three modes. (See Fig. 6.10.1.)

X1 é,(xy) é,(x,) éi(x) (@

i : I ~ (6103)
Xn d’l(xn)_ ¢2(xn) ¢3(xn) 9,

The use of the limited modal matrix then reduces the system to that equal to the num- .

ber of modes used. For example, for the 50-story building, each of the matrices such as.

K is a 50 X 50 matrix; using three normal modes, P is a 50 X 3 matrix and the product -
PTKP becomes :

PTKP = (3 x 50)(50 X 50)(50 X 3) = (3 X 3) matrix
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Thué, instead of solving the 50 coupled equations represented by Eq. (6.10.1), we need
only solve the three by three equations represented by
PT™MKPq + PTCPq + PTKPq = P'F (6.10.4)

If the damping matrix is assumed to be proportional, the preceding equations become

uncoupled, and if the force F(x, f) is separable to (p(x)f(t), the three equations take the
form

q; + 2Gwg; + wiq, = T;f(1) (6.10.5)
where the term
E ¢i(xj) P(xj) )
Ij= "—— (6.10.6)
. 2 mjd)zz(xj)
j .

is called the mode participation factor.

In many cases, we are interested only in the maximum peak value of x;, in which
case, the following procedure has been found to give acceptable results. We first find
the maximum value of each g;(¢) and combine them in the form

Ixiimax = |¢1(xi)ql,max| + \/id’z(xi)‘h, max‘z + id)_%(xi)q?s, maxl2 (6107)4

Thus, the first mode response is supplemented by the square root of the sum of the
squares of the peaks for the higher modes. For the previous computations, a shock
spectrum for the particular excitation can be used to determine g; . If the predomi-

nant excitation is about a higher frequency, the normal modes centering about that fre-
quency can be used.

Example 6.10.1

Consider the 10-story building of equal rigid floors and equal interstory stiffness. If the foundation
of the building undergoes horizontal translation u,(t), determine the response of the building.

Solution We assume the normal modes of the building to be known. Given are the first three

normal modes, which have been computed from the undamped homogeneous equation and are
as follows:

Floor @, = 0.1495Vk/m w, = 0.4451Vk/m wy = 0.7307Vk/m
&y(x) ) dy(x) (%)
10 1.0000 1.0000 1.0000
9 0.9777 0.8019 0.4662
8 0.9336 0.4451 —0.3165

4The method is used by the shock and vibration groups in various industries and the military.
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Floor o, =01495Vk/m  w,=04451Vk/m o, = 0.7307Vk/m

&(x) &,(x) &s(x)
7 0.8686 ’ 0.0000 -0.9303
6 0.7840 —0.4451 —1.0473
5 0.6822 -0.8019 -0.6052
4 0.5650 —1.0000 1.6010
3 0.4352 —1.0000 0.8398
2 0.2954 -0.8019 1.0711
1 0.1495 —-0.4451 ) 0.7307
0 0.0000 0.0000 0.0000

The equation of motion of the building due to ground motion u(¢) is
MX + CX + KX = —M1ii(?)

where 1 is a unit vector and X is a 10 X 1 vector. Using the three given modes, we make the
transformation

X =Pq
where Pis a 10 X 3 matrix and g is a 3 X 1 vector, i.e.,

|_¢1 (11) ‘bz(xl) ¢3(x1)

9
P= 2 (EXZ) d’z(xz) &5 (Exz) a=1a
& (x0)  br(x0)  b3(xy0) o

Premultiplying by P7, we obtain
PTMPg + PTCPq + PTKPq = —PTM1u(t)

and by assuming C to be a proportional damping matrix, the foregoing equation results in three
uncoupled equations:

: 10
my g, + cyqy + kygy = —ik2) 2_:1 my (x;)

i) 2 i)

Mgy + gy + kpg,

10
My + Cads + ks = () D, ms(x)
: iz

where m;;, c;, and k; are generalized mass, generalized damping, and generalized stiffness. The
q ,-(t) are then independently solved from each of the foregoing equations. The displacement x; of
any floor must be found from the equation X = Pq to be

X = ¢1(xi)‘il(t) + ¢y(x)q,(1) + ¢4(x))gs5(9)

Thus, the time solution for any floor is composed of the normal modes used.
From the numerical information supplied on the normal modes, we now determine the ;
numerical values for the first equation, which can be rewritten as
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"1.1 + 2§1wlq1 = — %Z(i; u(t)
1

We have, for the first mode,

= zmqﬁ = 5.2803m
— =2 = ,/
m, S = 0.299 fl
kyy
— = 002235—
mn

> me, = 6.6912m

The equation for the first mode then becomes

. k. k .
g+ 0.299\/ — 4Gy + 002235~ g, = —1.2672ii,(t)

Thus, given the values for k/m and {,, the above equation can be solved for any #¢).

EQUAL ROOTS

When equal roots are found in the characteristic equation,'the corresponding eigen-
vectors are not unique and a linear combination of such eigenvectors may also satisfy
the equation of motion. To illustrate this point, let ¢, and ¢, be eigenvectors belonging

to a common eigenvalue Ay, and ¢, be a third eigenvector belonging to A4 that is differ-
ent from A,. We can then write

Ady = Ay
Ady, = Ao,
Ady = Ay,

By multiplying the second equation by a constant b and addmg it to the first, we obtain
another equation:

Ay + bey) = Aoy + beby)

_ Thus, a new eigenvector ¢, = (¢, + b¢,), which is a linear combination of the first
two, also satisfies the basic equation:

A ¢12 A'0(1)12

and hence no unique mode exists for A,.

Any of the modes corresponding to A, must be orthogonal to ¢, if it is to be a
normal mode. If all three modes are orthogonal, they are linearly independent and can
be combined to describe the free vibration resulting from any initial condition.

The eigenvectors associated with the equal eigenvalues are orthogonal to the
remaining eigenvectors, but they may not be orthogonal to each other.

{
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Example 6.11.1

Consider the system of Fig. 6.11.1 of a flexible beam with three lumped masses. Of the three pos-
sible modes shown, the first two represent rigid body motion of translation and rotation corre-

sponding to zero frequency, and the third mode is that of symmetric v1brat10n of the flexible
beam. With the mass matrix equal to

1.0 0
M=|0 2 0
0 0 1

the modes are easily shown to be orthogonal to each other, i.e.,

Mo, = ¢TMpy = $IMs =0

O — ~0

m 2m m

[ O~ —0 |
(]} o

O —————— O——————— -0 1

\

FIGURE 6.11.1.

- 3El
= > ¢3=[ 1] A= —=
- 3 3

Next, multiply ¢, by a constant b and add it to ¢, to form a new modal vector ¢,,:

1y [(-1) ([(1-»
bp=¢ +b={1t+bq 0 =74 1
1 1 1+b

Itis seen that ¢, is orthogonal to ¢, i.e.,

1 0 0]f{1-8) "
¢ Mp,=(-1 1 -1)J0 2 0 1, ¢p=0
' 0 0 1fl1+»p

Thus, the new eigenvector formed by a linear combination of ¢, and ¢, is orthogonal to ¢s.
However, we find that ¢, and ¢, are not orthogonal to ¢,,. -

1 0 Ooff1-0» ,
¢Mp,=(1 1 1)l0 2 0 1 =4#0
000 1 Jl1+» '
1 0 0|(1-b
dMp,=(-1 0 1)[0 2 0 1 =2b#0
o o 1]l1+b
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'612 UNRESTRAINED (DEGENERATE) SYSTEMS

A vibrational system that is unrestrained is free to move as a rigid body as well as
vibrate. An airplane in flight or a moving train is such an unrestrained system. The
equation of motion for such a system will generally include rigid-body modes as well as
vibrational modes, and its characteristic equation will contain zero frequencies corre-
sponding to the rigid-body modes. '

Example 6.12.1

Figure 6.12.1 shows a three-mass torsional system that is unrestrained to rotate freely in bear-
ings. Its equation of motion is

J, 0 0](8 K, -K, 0 0, 0
0 J, 036 +|-K (K+K,) -K|{6;=10
0 0 J|lég 0 -K, K, 116 0

We will here assume thatJ, = J,=J;, =Jand K, = K; = K, and let A = w?I/K, in which case,
the preceding equation reduces to

1 0 0 1 -1 0o]7|e 0
-Alo 1 o|+]|- 2 1|6 b={0
0 0 1 -1 1] ]}e 0
J,
J J2 ’
Y K Ka N
" ) [ ) [ 3 r ]
. s
. 6, 6, s
FIGURE 6.12.1.

The characteristic determinant for the system is
(1 - A) -1 0
~1 2-2) -1 |=0
‘ 0 -1 a-x
which when multiplied out becomes
AM1=-AM(r-3)=0
Thus, the roots of the eigenvalues for the system are

X =0
=1
Ay =3

To identify the corresponding eigenvectors, each of the A’s is substituted into the equation
of motion: .
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(b)

FIGURE 6.12.2.

(1-2 -1 0 6, 0
0 2-x) -1 6,p =10
0 -1 0-10]1ls 0

When A, = 0 is substituted, the result is §, = 6, = 6; and its normal mode, or eigenvector, is
1
¢ =191
1

which describes the rigid body motion [see Fig. 6.12.2(a)].
Similarly, the second and third modes [see Figs. 6.12. 2(b) and 6.12. 2(c) respectively] are

found and displayed as
-1 1
b, = 0 ) ¢y =42 |
1 1
-3
" PROBLEMS

6.1. Determine the flexibility matrix for the spring-mass system shown in Fig. P6-1.

= a——bxz K

ky ka k3 : k
—WWW— m, my >

N

SN

FIGURE P6.1. FIGURE P6.2.

6.2. Three equal springs of stiffness k 1b/in. are joined at one end, the other ends being . &
arranged symmetrically at 120° from each other, as shown in Fig. P6.2. Prove that the
influence coefficients of the junction in a direction making an angle 8 with any spring is i
independent of @ and equal to 1/1.5%. ;

6.3. A simply supported uniform beam of length / is loaded with weights at positions O. 251 3
and 0.6/. Determine the flexibility influence coefficients for these positions. %
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6.4. Determine the flexibility matrix for the cantilever beam shown in Fig. P6.4 and calculate

the stiffness matrix from its inverse.

NN

Z

FIGURE P6.4.

FIGURE P6.5.

6.5. Determine the influence coefficients for the triple pendulum shown in Fig. P6.5.
6.6. Determine the stiffness matrix for the system shown in Fig. P6.6 and establish the flexibil-

ity matrix by its inverse.

Ji

J2

J3

FIGURE P6.6.

6.7. Determine the flexibility matrix for the uniform beam of Fig. P6.7 by using the area- '

moment method.

7

FIGURE P6.7.

6.8. Determine the flexibility matrix for the four-story building of Fig. 6.3.2 and invert it to
arrive at the stiffness matrix given in the text.

6.9. Consider a system with # springs in series as presented in Fig. P6. 9 and show that the
stiffness matrix is a band matrix along the diagonal.

ky k2

™|
a—’x 1

k3

iz
5,

ka kn

e

ma
P,

FIGURE P6.9.
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6.10. Compare the stiffness of the framed building with rigid floor beams versus that with flex-
ible floor beams. Assume all lengths and ElIs to be equal. If the floor mass is pinned at the
corners as shown in Fig. P6-10(b), what is the ratio of the two natural frequencies?

S il iy

@ (b)
FIGURE P6.10.

6:11. The rectangular frame of Fig. P6.11 is fixed in the ground. Determine the stiffness matrix
for the force system shown.

FIGURE P6.11.

6.12, Determine the stiffness against the force F for the frame of Fig. P6.12, which is pinned at
the top and bottom.

FIGURE P6 12.

6.13. Using the cantilever beam of Fig. P6.13, demonstrate that the remprocny theorem holdS
for moment loads as well as forces. :

4 o @ -

FIGURE P6.13.
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6.14. Verify each of ihe results given in Fig. 6.4.2 by the area-moment method and superposition.

6.15. Using the adjoint matrix, determine the normal modes of the spring-mass system shown
in Fig. P6.15."

Z

FIGURE P6.15. : FIGURE P6.16.

6.16. For the system shown in Fig. P6.16, write the equation of motion in matrix form and
determine the normal modes from the adjoint matrix.

6.17. Determine the modal matrix P and the weighted modal matrix P for the system shown in
Fig. P6.17. Show that P or P will diagonalize the stiffness matrix. '

s

K K :;f"
m
) O £ 3 1
S N -
FIGURE P6.17. FIGURE P6.18.

6.18. Determine the flexibility matrix for the spring-mass system 6f three DOF shown in
Fig. P6.18 and write its equation of motion in matrix form.

6.19. Determine the modal matrix P and the weighted modal matrix P for the system shown in
Fig, P6.19 and diagonalize the stiffness matrix, thereby decoupling the equations.

k k k
=

FIGURE P6.19.

6.20. Determine P for a double pendulum with coordinates 6, and 6,. Show that P decouples
the equations of motion.
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-6.21. If in Prob. 6.11 masses and mass moment of inertia, m,,J, and m,, J,, are attached to the
corners so that they rotate as well as translate, determine the equations of motion and
find the natural frequencies and mode shapes.

6.22. Repeat Prob. 6.21 with the frame of Fig. P6.12.

6.23. If the lower end of the frame of Prob. 6.12 is rigidly fixed to the ground, the rotation. of
the corners will differ. Determine its stiffness matrix and determine its matrix equation
of motion for m;, J; at the corners.

6.24. Determine the damping matrix for the system presented in Fig. P6.24 and show that it is
not proportional. :

FIGURE P6.24.

6.25. Using the modal matrix 13, reduce the system of Prob. 6.24 to one that is coupled only by
damping and solve by the Laplace transform method.

6.26. Consider the viscoelastically damped system of Fig. P6.26. The system differs from the
viscously damped system by the addition of the spring k,, which introduces one more

coordinate, x;, to the system. The equations of motion for the system in inertial coordi-
nates x and x, are

mx = —kx —c(x — x;) + F
0=clx —x;) — kx,

Write the equation of motion in matrix form.

1 [
A

Ky

F

77

FIGURE P6.26.

6.27. Show, by comparing the viscoelastic system of Fig. P6.26 to the viscously damped system,
that the equivalent viscous damping and equivalent stiffness are :

c
Ceq= 2
wcC
1+ (2)
kl

k+(k,+k)(’%)2

eq wCZ
+ .
! (kl)
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6.28. Verify the relationship of Eq. (6.6.7)
K =0 i#j
by applying it to Prob. 6.16.
6.29. Starting with the matrix equation
: Ko, = wiM,
premultiply first by KM ! and, using the orthogonality relation ¢’ Mo, = 0, show that
HKM'K$, = 0 o
Repeat to show that
| ¢/ [KM7]'K, = 0

for h =1,2,...,n,where n is the number of degrees of freedom of the system.
6.30. In a manner similar to Prob. 6.29, show that

¢TIMK"M$, =0, h=12,...
6.31. Evaluate the numerical coefficients for the equations of motion for the second and third
modes of Example 6.10.1.

6.32. If the acceleration i(z) of the ground in Example 6.10.1 is a single sine pulse of amplitude
a, and duration ¢, as shown in Fig. P6.32, determine the maximum g for each mode and
the value of x_,, as given in Sec. 6.10.

et —
FIGURE P6.32.

6.33. The normal modes of the double pendulum of Prob. 5.9 are given as

w = 0.764\@, w, = 1.850\@'

¢ = {e,} _ {0.707}
' Yole)y oo I

0, -0.707
o-ft)- ()
6,) ) 1.00 _
If the lower mass is given an impulse Fy5(t), determine the response in terms of the nor-
mal modes.

6.34. The normal modes of the three-mass torsional system of Fig. P6.6 are given for
Ji=l,=J,andK, =K,=K;.
0.328 ,
"¢y = 4059 ¢, M=
0.737
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0.737
é, =1 0328 A, = 1.555,
~0.591

0.591
b= —0.737}, A, = 3247
0328

Determine the equations of motion if a torque M(t) is applied to the free end. If
M(t) = Mgu(t), where u(t) is a unit step function, determine the time solution and the
maximum response of the end mass from the shock spectrum.

6.35. Using two normal modes, set up the equations of motion for the five-story building

whose foundation stiffness in translation and rotation is k, and K, = o, respectively (see
Fig. P6.35).

P
m
¢
7 k'
/Z W77 7 %
K, u
FIGURE P6.35.

6.36. The lateral and torsional oscillations of the system shown in Fig. P6.36 will have equal
natural frequencies for a specific value of a /L. Determine this value, and assuming that
there is an eccentricity e of mass equal to me, determine the equations of motion.

= Uiz

a

— L ——
.- FIGURE P6.36.

6.37. Assume that a three-story building with rigid floor girders has Raylengh damping. If the
modal dampings for the first and second modes are 0.05% and 0.13%, respectively, deter- :’
mine the modal damping for the third mode. . i
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6.43.
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The normal modes of a 3-DOF system with m; = m, = m, and k, = k, = k; are given as

0.737 -0.591 0.328
$,=40591}, =1 0328}, ¢, =1-0737
0.328 0.737 0.591

Verify the orthogonal properties of these modes.
The system of Prob. 6.38 is given an initial displacement of

0.520
X =4 -0.100
0.205
and released. Determine how much of each mode will be present in the free vibration.

In general, the free vibration of an undamped system can be represented by the modal
sum

| X(@0) = 2A¢smwt+ EBq’) cos w;t

If the system is started from zero dlsplacement and an arbitrary distribution of velocity
X(0), determine the coefficients A, and B,.

Figure P6.41 shows a shaft supported by a bearing that has translational and rotational flex-

ibility. Show that the left side of the shaft flexibility Eq. (6.1.1) or (6.1.2) of Example 614
should now be replaced by
o2l
6-8

From the relationship between 7, B8, y, 6, and loads P and M, determine the new flexibility

equation
{ } _— l all ) ‘112 l{l ]
9 an a22 fu

FIGURE P6.41.

Set up the matrix equation of motion for the 3-DOF system of Fig. P6.18 in terms of stiff-
ness. Transform it to the standard eigen-problem form, where A is symmetric.

In Example 6.10.1 for the forced vibration of a 10—story building, the equation of motion
for the first mode was given as

q, + 0.299’\/% 4,4, + 0.02235 &ql = —1.26724(7)
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Assume the values Vk/m = 3.0 and ¢, = 0.10, and solve for the time response using
RUNGA when the ground acceleration is given by Fig. P6.43. You will have to write a
function file f.m that contains an expression for the function given in Fig. P6.43.

1 I E— T T a T T T

08 .
0.6 - 0.5 7]
0.4

oat!

0

f(t)

-0.2

T

-0.4

-0.6 B
-0.7
~08 i ] ! [ l ! !

I

0 01 02 03 04 05 06 07 08 09 1
t

FIGURE P6.43.

6.44. Determine the stiffness matrix for the system of two pendula coupled by a rubber hose in
Fig. P5.15.
6.45. Consider the system given in Fig. P6.45, with the damping force proportional to the

square of the velocity. Is it possible to develop an equivalent damping approach for this-
problem (cf. Sec.3.8)?

FIGURE P6.45.
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Lagrange’s Equation

Joseph L. C. Lagrange (1736-1813) developed a general treatment of dynamical sys-
tems formulated from the scalar quantities of kinetic energy 7, potential energy U, and
work W. Lagrange’s equations are in terms of generalized coordinates, and preliminary

to discussing these equations, we must have clearly in mind the basic concepts of coor-
dinates and their classification.

7.1 GENERALIZED COORDINATES

Generalized coordinates are any set of independent coordinates equal in number to the
degrees of freedom of the system. Thus, the equations of motion of the previous chap-
ter were formulated in terms of generalized coordinates.

In more complex systems, it is often convenient to describe the system in terms of
coordinates, some of which may not be independent. Such coordinates may be related
to each other by constraint equations.

Constraints. Motions of bodies are not always free, and are often constrained
to move in a predetermined manner. As a simple example, the position of the spherical
pendulum of Fig. 7.1.1 can be completely defined by the two independent coordinates

FIGURE 7.1.1.

199
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Y and ¢. Hence, ¢ and ¢ are generalized coordinates, and the spherical pendulum rep-
resents a system of two degrees of freedom.

The position of the spherical pendulum can also be described by the three rectan-
gular coordinates, x, y, z, which exceed the degrees of freedom of the system by 1.

Coordinates x, y, z are, however, not independent, because they are related by the con-
straint equation: :

x2+y?+22-12=0 (7.1.1)
One of the coordinates can be eliminated by the preceding equatlon thereby reducmg

the number of necessary coordinates to 2.

The excess coordinates exceeding the number of degrees of freedom of the sys-
tem are called superfluous coordinates, and constraint equations equal in number to
the superfluous coordinates are necessary for their elimination. Constraints are called
holonomic if the excess coordinates can be eliminated through equations of constraint.
We will deal only with holonomic systems in this text.

Examine now the problem of defining the position of the double pendulum of
Fig. 7.1.2. The double pendulum has only 2 DOF and the angles 6, and 6, completely
define the position of m, and m,. Thus, 6, and 6, are generalized coordinates, i.e.,
6, =g,and 6, = g,

The position of m, and m, can also be expressed in rectangular coordinates x, y.
However, they are related by the constraint equations

B+
=(x, - x1)2 +(y, = y)?

and hence are not mdependent We can express the rectangular coordmates Xx;, y; in
terms of the generalized coordinates 6, and 6,

x;, =1l sin6, x,=1sin6 + l,sin6,
y1=1lcos 8, y,=1cos 6 +1,cos 6,

and these can also be considered as constraint equations.

X2 )2

FIGURE 7.1.2.
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To determine the kinetic energy, the squares of the velocity can be written in
terms of the generalized coordinates:

vi=i +yi=(161)° |
v=x2+yi=[6,+1 02 cos (6, — 6] + [L,6, sin (6, — 6))]?
The kinetic energy
T=3 s+ 3 m2 V3
is then a function of both ¢ = ¢and q=6:
T=T(GGq0 9190 ---) (7.12)

" For the potential energy, the reference can be chosen at the level of the support
point:

U= — m(l cos 8,) — m,(l, cos 8, + I, cos 6,)
The potential energy is then seen to be a function only of the generalized coordinates:

U=U(g,4,---) (7.1.3)

.Example 7.1.1

Consider the plane mechanism shown in Fig. 7.1.3, where the members are assumed to be rigid.
Describe all possible motions in terms of generalized coordinates.

A2 %A / 7 7o
FIGURE 7.1.3.

Solution As shown in Fig. 7.1.3, the displacements can be obtained by the superposition of

- two displacements g, and g,. Because g, and g, are mdependent they are generalized coordi-

nates, and the system has 2 DOF.

Example 7.1.2

The plane frame shown in Flg 7.1.4 has flexible members. Determine a set of generahzed coordi-

" nates of the system. Assume that the corners remain at 90°.

Solution There are two translational modes, g, and g,, and each of the four corners can rotate
independently, making a total of six generalized coordinates, g;, g5, . . . , gs- By allowing each of
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] /
92
7 7, 7 7 7/ 7
q3m 94
9s G
G 7 ” 7. G 7 S \ ”
FIGURE 7.1.4.

these displacements to take place with all others equal to zero, the displacement of the frame
can be seen to be the superposition of the six generalized coordinates.

Example 7.1.3

In defining the motion of a framed structure, the number of coordinates chosen often exceeds
the number of degrees of freedom of the system so that constraint equations are involved. It is

. then desirable to express all of the coordinates u in terms of the fewer generalized coordinates ¢

by a matrix equation of the form
u=Cq

The generalized coordmates g can be chosen arbitrarily from the coordinates u.
As an illustration of this equation, we consider the framed structure of Fig. 7.1.5 con31stmg
of four beam elements. We will be concerned only with the displacement of the joints and not the

stresses in the members, which would require an added consideration of the distribution of the
masses.

FIGURE 7.1.5.
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In Eq. (e) or (f), matrix C is the constraint matrix relating u to g.
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In Fig. 7.1.5, we have four element members with three joints that can undergo displace-
ment. Two linear displacements and one rotation are possible for each joint. We can label them
u, to u,. For compatibility of displacement, the following constraints are observed

u, = ug = 0 (no axial extension)
U = U (axial length remains unchanged)
(1, cos 30° — ugcos 60°) — (u,cos 30° — ugcos 60°) = 0
We now disregard u, and ug, which are zero, and rewrite the preceding equations in matrix form:

U

1 0 -1 0 U,

=0

[0 0.866 —0.500 —0.866] s @
. “7J

Thus, the two constraint equations are in the form

[Allu} = 0 (b)
We actually have seven coordinates (ul,u3,u4,u5,u6,u7,u9) and two constraint equations. Thus, the

degrees of freedom of the system are 7 — 2 = 5, indicating that of the seven coordinates, five can
be chosen as generalized coordinates q.

Of the four coordinates in the constraint equation, we choose us and u; as two of the gener-
alized coordinates and partition Eq. (a) as

u
lat 8%} = lalll + [ella) = 0 ©
Thus, the superfiuous coordinates u can be expressed in terms of g as

{u} = — [a] "'[]lq} | (d)
Applying the preceding procedure to Eq. (a), we have ’

o aaaellde (s o} -}
(=15 2100 sl loss U]

By supplying the remaining g, as identities, all the u’s can be expressed in terms of the g’s as
| {ul = [cl{g) @)

where the left side includes all the u’s and the right column contains only the generalized coordi-
nates. Thus, in our case, the seven u’s expressed in terms of the five ¢’s become

(v, [0 1 0 0 0]

U 10 0.0 0(u

” 0 058 0 1 0| u

ﬂu5‘=01 0 0 0% u )
ug 00 1 0 0[]y

u, 00 0 1 0] u

) oo o0 0 1]
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Example 7.1.4

In the lumped-mass models we treated earlier, n coordinates were assigned to the n masses of the
n-DOF system, and each coordinate was independent and qualified as a generalized coordinate.
For the flexible continuous body of infinite degrees of freedom, an infinite number of coordinates
is required. Such a body can be treated as a system of a finite number of degrees of freedom by
considering its deflection to be the sum of its normal modes multiplied by generalized coordinates:

yx, 1) = ¢,(x)q,(1) + $,(x)q,(1) + Py(x)gqs(e) + - -

Py
@(a)

ér

\
e ¢R
@,
-~ ¢2
FIGURE 7.1.6. [}

In many problems, only a finite number of normal modes are sufficient, and the series can be ter-
minated at n terms, thereby reducing the problem to that of a system of n DOF. For example, the
motion of a slender free-free beam struck by a force P at point (a) can be described in terms of

two rigid-body motions of translation and rotation plus its normal modes of elastic vibration, as
shown in Fig.7.1.6.

y(x, t)>= érqr + drqr + (x)q, + dy(x)q, +

7.2 VIRTUAL WORK

In Chapter 2, the method of virtual work was briefly introduced with examples for
single-DOF problems. The advantage of the virtual work method over the vector
method is considerably greater for multi-DOF systems. For interconnected bodies of

. many degrees of freedom, Newton’s vector method is burdened with the necessity of -

accounting for all joint and constraint forces in the free-body diagrams, whereas these
forces are excluded in the virtual work method.

In reviewing the method of virtual work, we summarize the virtual work equa-
tion as

W= S F-8, =0 (721

where F; are the applied forces excluding all constraint forces and internal forces of frift- »‘1
tionless joints and dr; are the virtual displacements. By including D’Alembert’s inertia
forces, —m;r;, the procedure is extended to dynamical problems by the equation
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W = z(f-m?)-a;=o | - (122)

This later equatlon leads to Lagrange s equation when the displacement r; is expressed
in terms of generalized coordinates.

The virtual displacements &r; in these equations are arbitrary variations of the
coordinates irrespective of time but compatible with the constraints of the system.
Being an infinitesimal quantity, 87; obeys all the rules of differential calculus. The dif-
ference between 6r; and d7, is that dr, takes place in the time dt, whereas dr; is an arbi-
trary number that may be equal to dr, but is assigned instantaneously irrespective of
time. Although the virtual displacement & is distinguished from dr, the latter is often
substituted for 67 to ensure compatibility of displacement.

Example 7.2.1

‘We first illustrate the virtual work method for a problem of static equilibrium. Figure 7.2.1 shows

a double pendulum with generalized coordinates 6, and 6,. Determine its static equilibrium posi-
tion when a horizontal force P is applied to m,.

FIGURE 7.2.1.

With the system in its equilibrium position, give 8, a virtual displacement 86, [Fig 7.2.1(a)]
and write the equation for the virtual work W of all the applied forces:

8W = —(m,gsin 6,)I 80, + (P cos 6,) 56, = 0

From the equilibrium position (with 86, = 0), give 8, a virtual displacement 86,, as in

" Fig. 7.2.1(b), and write the equation for 6W:

8W = —(m,sin 6))l 86, — (m,g sin 6,)! 86, + (P cos 6,)! 86, = 0
These equations lead to the two equilibrium angles, given as

P
tan 6, = —
mg
tan 6, = S -
' b (my +myg
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Example 7.2.2
Using the virtual work method, determine the equations of motion for the system shown in
Fig.7.2.2. '
. (
7 k
m
A\l
8
FIGURE 7.2.2. F(1)

Solution The generalized coordinates for the problem are x and 6. Sketch the system in the

displaced position with all the active forces and inertia forces. Giving x a virtual displacement &x,
the virtual work equation is '

. Lo
SW =" — [(m; + m)X + kx]ox — (m2§ 9 cos 9)5)‘

lo-
+ (mzzf)‘ sin 6)6x + F(t)éx = 0
Because dx is arbitrary, the preceding equation leads to
.- { .. .
(my + myx + mzi(ﬂcos 6 — 6°sin 6) + kx = F(r)

Next, allow a virtual displacement 86. W is then

.

2
W= — (mzé b’)%aa - (mzi—z b’)so — (m,g sin o)%ae

. [
— (m, X cos 6) 2 86 + [F(¢) cos 0]1868 = 0
from which we obtain
.. l.. [ .
my 38+ myzxcos 6+ mygo sin 6= F(f)lcos 6

These are nonlinear differential equations, which for small angles simplify to

. l..
(m; + m)x + my> 6+ kx = F(r)

P, . 1 .
ng 6+ m2—2-x + ngi 0 =1IF(t)
which can be expressed by the matrix equation
1
(my + m,) mys || % k 0 x F(r)
I el ™ el ™ re
mzi ng 0 m8; :

ul
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7 3 LAGRANGE’S EQUATION

In our prevnous discussions, we were able to formulate the equations of motion by

~ three different methods. Newton’s vector method offered a simple approach for sys-
tems of a few degrees of freedom. The necessity for the consideration of forces of con-
straints and free-body diagrams in this method led to algebraic difficulties for systems
of higher degrees of freedom. '

The energy method overcame the difficulties of the vector method. However, the
energy principle in terms of physical coordinates provided only one equation, which
limited its use to single-DOF systems.

» The virtual work method overcame the limitations of both earlier methods and
proved to be a powerful tool for the systems of higher DOF. However, it is not entirely

a scalar procedure in that vector considerations of forces are necessary in determining
the virtual work.

Lagrange’s Equations. Lagrange formulated a scalar procedure starting from

the scalar quantities of kinetic energy, potential energy, and work expressed in terms of
generalized coordinates. It is presented here as

4(3IT)_ o, W
dt\oq,) dq; g
The left side of this equation, when summed for all g, is a statement of the principle of
conservation of energy, and is equivalent to

d(T + U) =
The right side, Q,, is related to the work term done by the nonpotentlal forces, and will
be taken up later.

Lagrange’s equations constitute one of the cornerstones of the imposing edifice
of analytical mechanics, which is dealt with at length in other volumes. Here our treat-
ment is brief, but it is sufficient to introduce the fundamental merits of Lagrange’s
method to those who wish to appreciate its use.

Beginning with the case of a conservative system, where all external forces and

all internal forces have a potential, the sum of the system’s kinetic and potential ener-
gies is a constant.

=0 (7.3.1)

T + U = E = constant
The total differential of E must then be zero.
dE=d(T+ U)=dT +dU =0 _ (73.2)

The kinetic energy T is a function of the generalized coordinates ¢; and the gen-
eralized velocity g;, whereas the potential energy U is a function only of g;.

T=T(q1 9 9192 - - 4n)

U=U4y 99, (133)
The differential of T'is
NooT NoaT .
dT = —dgq; + —dg; (7.3.4)
, E 9q; 1 g{ aq 1
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T d (T
By shifting the scalar quantity dt, the term d( Py )dq, becomes — (

To eliminate the second term with d(ji, we start with the equation for kinetic energy

2 2 m;q.q; (7.3.5)

11/—

Differentiating this equation with respect to g,, multiplying by g, and summing over i
from 1 to IV, we obtain the result equal to

N
= E Em, 4:d; =
1211 aqz i=1j= ! !
or
N oT . ‘
2T = —q; (7.3.6)
i=1 99;

We now form the differential of 2 T from the preceding equation by using the product
rule from calculus

N (oT\. oT .
2T = d( — ) g, + —dg, (7.3.7)
g 9q; 9g;

By subtracting Eq. (3.7.4) from this equatidn the second term with dg;, is eliminated.

)dq‘, and the
i d \ aq

result is

dT = 2[ (aql)—ﬂ]dq’,. (7.3.8)

aq;

We now consider the term dU in Lagrange’s equation. From Eq. (7.3.3), the dif-
ferential of U is

NooU
dUu = — dg;
z 9q; _
Thus Eq. (7.3.3) for the invariance of the total energy becomes
S dyf aT) oT 98U ]
d(T+U)= - = dg,=0 (7.3.9)
(T+0)= 2 [ ai\og,) ~ aq, " aq, )"

Because the N generalized coordinates are independent of one another, the dg; can -
assume arbitrary values. Therefore the previous equation is satisfied only if
d(aT)_£+ W _oi=12-N (7.3.10)
dt \ dq;

aq; ~ 9q
This is Lagrange’s equation for the case in which all the forces have a potential U. -
They can be somewhat modified by introducing the Lagrangian L = (T — U). Because .
& =0, Eq.(7.3.10) can be written in terms of L as
d (aL) L
dt\aq,) " g,

i

=0 i= 1,2,---N (7.3.11)
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Nonconservative systems. The right side of Lagrange’s equation (7.3.1) results

from dividing the work term in the dynamical relationship dT = dW into the work
done by the potential and nonpotential forces as follows.

dT = dW, + dW,,, (7.3.12)

The work of the potential forces was shown earlier to be equal to dW, = — dU, which
is included in the left side of Lagrange’s equation. The nonpotential work is equal to
the work done by the nonpotential forces in a virtual displacement expressed in terms

of the generalized coordinates. Thus, Lagrange’s equation, Eq. (7.3.1) is the g, compo-
nent of the energy equation

d(T + U) = 8W,,, (7.3.13)

We can write the right side of this equation as

N
oW = 2 Q8q; = Q:8q; + 0,8, + (7.3.14)
i=1

The quantity Q; is called the generalized force. In spite of its name Q; can have units
other than that of force; i.e., if 8g; is an angle, O, has the units of moment. The only
requirement is that the product Q,8¢; be in the units of work. We now demonstrate the
use of Lagrange’s equation as applied to some simple examples.

Example 7.3.1

Using Lagrange’s method, determine the equation of motion for the 3-DOF system shown in
Fig.7.3.1.

q1—> qz/——“ q3—>
a4 K k Ky
m1 m2 my
FIGURE 7.3.1.

Solution The kinetic energy here is not a function of g; so that the term 97/dq; is zero. We
have the following for the kinetic and potential energies:

T= iml‘h +, Emz‘h + Ems‘h

U =3kg: +3kig, — ¢,)* + ski(as — g)?

and T for this problem is a function of only ¢, and not of g;. .

By substituting into Lagrange’s equation fori = 1,
£—m' d(aT)_m..
a4, 191 dr \ aq, 19
oU
— = kg, — kg, — q))
3q1 141 2\12 1
and the first equation is

myq, + (k, + kg, — kyg, =0
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Fori = 2, we have

iy (2] <
aéz 29> dr a‘iz 292
aU

— =k - -k -
34, 2(‘12 ‘h) 3(‘13 42)

and the second equation becomes
myq, = kyq, + (ky + k3)g, — kyq; =0

Similarly fori = 3,

Ty ()
34, 393 dr 343 393
U

&k _

aq3_ 3(‘13 ‘12)

with the third equation
mygy = kigy + kyq; = 0

" These three equations can now be assembled into matrix form:

m 0 0 ‘.1’1 (kx + kz) —k, 0 91 0
0 m, 0 |$qg,¢+ —k, ky+ k3) —ky|3g,70 =140
0 0 my|lg; 0 —k; ky q; 0

We note from this example that the mass matrix results from the terms (d/dr)(3T/q,)
— 38T /dq; and the stiffness matrix is obtained fromaU/aq,.

. n

Example 7.3.2

Using Lagrange’s method, set up the equations of motion for the system shown in Fig. 7.3.2.

q,
) — 2
& -k
m
r .
> y )M(n
FIGURE 7.3.2. -

-

Solution The kinetic and potential energies are
T = dmg? + 44}
U= %kqf + %K("h - q)°
and from the work done by the external moment, the generalized force is
| W = Mg, - O, = M()
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Substituting into Lagrange’s equation, the equations of motion are
mq, + 2kq, — krg, =0
Ig, — krq, + kriq, = M(2)

which can be rewritten as

i [ R et A P

Example 7.3.3

Figure 7.3.3 shows a simplified model of a two-story building whose foundation is subject to
translation and rotation. Determine T and U and the equations of motion.

FIGURE 7.3.3.

Solution We choose 1 and 6 for the translation and rotation of the foundation and y for the
elastic displacement of the floors. The equations for T and U become

T = mgi® + 30,6% + im (i + ko + y,)* + 11,6
) 2 ;
+ iy + 2h0 + y,) + 31,67
U = jkgu? + 3Ko6% + 1kyy? + 2ho(y, — y,)?

where u, 6, y,, and y, are the generalized coordinates. Substituting into Lagrange’s equation, we
obtain, for example, :

aT . . . P
i o+ 7, + 1,00 + mh(u + h8 + y,) + m2h(u + 2h6 + y,)
v . _ .

%=Ko.
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The four equations in matrix form become

(my + m, + my,) (m, + 2my)h 5 m,  m, u
myk2m)h (3T A myh? Amph?) L mh 2ok | ] 6
m, mh % m, 0 Y1
m, 2m, Y m, Y2
ke 0 . 0 0 u
t
0 K, 0 0 6
+4 |------t S SR —-- =10
0 01}(k1+k2) —ky 1 o
0 0 -k Kk Y2

It should be noted that the equation represented by the upper left corner of the matrices is that
of rigid-body translation and rotation.

Example 7.3.4

Determine the generalized coordinates for the system shown in Fig. 7.3.4(a) and evaluate the
stiffness and the mass matrices for the equations of motion.

g
m, "Q "I

U1
q.

Z% (a) B (b)

FIGURE 7.3.4. (a)and (b).

Solution Figure 7.3.4(b) shows three generalized coordinates for which the stlffness matrix -
can be written as

F 1 kv ky k13‘| 9,
My =\ky ky ky 92
M, ky  kyp k33_| 93

The elements of each column of this matrix are the forces and moments required when the -
corresponding coordinate is given a value with all other coordinates equal to zero. The configy-
rations for this determination are shown in Fig. 7.3.4(c), and the forces and moments necessary
to maintain these deflections are obtained from the free-body diagrams of Fig. 7.3.4(d) with the ¢
aid of the equations shown in Fig. 6.4.2. .

]
4
B
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a, *6;=0 q,%q,=0 q,24,=0

FIGURE 7.3.4. (c) Generalized coordinates q,, g,, and g, imposed separately.

- €
LA )M, g, 2 @
o 261,
1251, L ety 651, C , (u
—z % 4511 ‘
e 1 /') A 2&1, ((_W)IM‘IZ a,
! ! L BN i £,
1 I
1 | |
| i |
| 1 |
1 | |
| |
i
]
Z : Z T

FIGURE 7.3.4. (d) Forces necessary to maintain equilibrium.

For q,, we have

12EI
Fy li’l 0 0f(a
—6EI
, M} = ?%1 0 0[¢0
M, 0o o0 oJ\o
For 45,
F, 0 '61%“1 00
M =0 (ﬂ,rﬂ) 0[{q,
I I,

M, 0 2EL 11512 ol‘\o
: 2
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For gs,
F, 0 0 .0 0
M =10 0 %ﬁ 0
M, 00 A% q3

The stiffness matrix for the system is the superposition of these three results:

12EI 6EI
F, o - 0 9,
ll ll
6EI 4EI, A4EI 2EL
M — |- 1 1 + 2) _ 2
N T ( Lo L L%
2EI 4EL
M, 0 - 2 2 93
b I,

The mass matrix is found from the kinetic energy:

T= %(ml + mz)‘]% + %114% + %qu'g

d 0T .
— £ = (m, + m,)q,
dt 4q,
d oT .
=== =]
dt 34, 142
d oT . P
—_— — =]
dt 3q, 293

The equations of motion for the frame can then be written as

(m1 +m2) 0 0 6‘1‘1

0 Ji 0 ‘.I.z
0 0 J ('1'3
12EI 6EI
31 - 2l 0 US F,
ll 11
| 6EI 4EI, 4EIL 2EL
+ = ( bt 2) =g =1 M
l] 11 12 ' 12
1 4FL
0 _%E_z_ —= q; M,
173 L

7.4 KINETIC ENERGY, POTENTIAL ENERGY, AND GENERALIZED FORCE
IN TERMS OF GENERALIZED COORDINATE q

In the previous section, the use of Lagrange’s equation was demonstrated for sim-
ple problems. We now discuss the quantities T, U, and Q from a more general point
of view. : E
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Kinetic energy. By représenting the system by N particles, the instantaneous
position of each particle can be expressed in terms of the N generalized coordinates

K= »rj(ql, Gr -2 qN)
The velocity of the jth particle is

ANG) &
J
v, = —q,
h z q;
and the kinetic energy of the system becomes
1 Y 1Y & ( N or; ar>
T= - mMv. v. = — m,__’. 'q“
221 e 221,:2. gl aq; 9q;)""

N

N
E Emijéiéj

i=1j=

[} [m]iq)

(7.4.1)

= N

Potential energy. In a conservative system, the forces can be derived from the
potential energy U, which is a function of the generalized coordinates g;. Expanding U

in a Taylor series about the equilibrium position, we have for a system of n degrees of
freedom

5[ aU 1 & & 9U
u="U0,+ — g+ = — | qq + -
’ ;=21 (aqi )oq’ 2 Z‘l I=EI (3‘1/341)0%%

In this expression, U, is an arbitrary constant that we can set equal to zero. The
derivatives of U are evaluated at the equilibrium position 0 and are constants when the
g;’s are small quantities equal to zero at the equilibrium position. Because U is a mini-
mum in the equilibrium position, the first derivative (9U/ aq,.)o is zero, which leaves
only (68°U/3q;9q,), and higher-order terms.

In the theory of small oscillations about the equilibrium position, terms beyond

. the second order are ignored and the equation for the potential energy reduces to

*U
0 (s
9q;9q, /
and the potential energy is written in terms of the generalized stiffness k; as
1 n

2 1_21 k,'/‘],-‘h

j=1

lq]"[kl{q)

U=

2 (742
] 42)
2
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Generalized force. For the development of the generalized force, we start from
the virtual displacement of the coordinate r;:
or,
or, = —L &g,
! 21 8q; 9
and the time ¢ is not involved.

When the system is in equilibrium, the virtual work can now be expressed in
terms of the generalized coordinates g;:

W= > F, o= E EF g’
j

By interchanging the order of summation and letting
Q= E ¥
J

be defined as the generalized force, the virtual work for the system, expressed in terms
of the generalized coordinates, becomes

W= 3 Q8 (7.4.3)

7.5 ASSUMED MODE SUMMATION

When the displacement is expressed as the sum of shape functions ¢,(x) multiplied by
the generalized coordinates g,(¢), the kinetic energy, the potential energy, and the work
equation lead to convenient expressions for the generalized mass, the generalized stiff-
ness, and the generalized force.

In Chapter 2, a few distributed elastic systems were solved for the fundamental
frequency using an assumed deflection shape and the energy method. For example, the
deflection of a helical spring fixed at one end was assumed to be (y//)x, and for the
simply supported beam, the deflection curve y = y__ [3(x/l) — 4(x/1)?], (x/I) < 3, was
chosen. These assumptions when solved for the kinetic energy led to the effective mass

and the natural frequency of a 1-DOF system. These assumed deﬂectlons can be
expressed by the equation

u(x, 1)-= ¢(x)q,(t)

where g,(?) is the single coordinate of the 1-DOF system.
For the multi-DOF system, this procedure can be expanded to

ue) = 3 6 al0)

where g; is the generalized coordinate, and ¢(x) is the assumed mode function. There

are very few restrictions on these shape functions, which need only satisfy the geomet-.

ric boundary conditions.
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Generalized Mass -
We assume the displacement at position x to be represented by the equation

H(x, 1) = $(09,(0) + $D)g(0) + - - + Gy(X)gnld)

N
= 2 ¢{x)afo) (75.1)
i=1 ,
where ¢,(x) are shape functions of only x.
The velocity is
N
Cv() = 3 d(x0)q ) (752)
: i=1
and the kinetic energy becomes
1 N N
r=135 Sid [ 600 an
i=1 j=1
13X .
== Emijqiqj (7.5.3)
253
Thus, the generalized mass is
= j qﬁi(x)d)j(x)dm _ (71.54)

where the integration is carried out over the entire system. In case the system consists
of discrete masses, m;; becomes .

N
my; = §=‘,1m,,¢,-(x,,)¢,~(x,,) (15.5)

Generalized Stiffness (Axial Vibration)

We again represent the displacement of the rod in terms of the assumed modes and the
generalized coordinates:

ulx,)) = 2 ¢(x)qr)
i=1
The potential energy of the rod under axial stress is found from Hooke’s law:

P du
™
and the work done, which is,

2
dU = lPd“dx lEA(d—") dx
2 dx

.u=% JAE(%)dx o (75.6)


http://www.semeng.ir

WWW. senmeng. i r

218 Chapter?7 Lagrange's Equation

Substituting for u(x, ) gives

1
U=3 > Eq.q,jAEw, dx

f (7.5.7)

1

= z - 2}: if qlq]
-where the generalized stiffness is
k; = [ AE ¢} ¢} dx ' (7.5.8)
J

Example 7.5.1

Determine the equation of motion and the natural frequencies and normal modes of a fixed—free
uniform rod of Fig. 7.5.1 using assumed modes ,(x) = x/land o,(x) = (x/1)%

o '|

t {

FIGURE 7.5.1.

The equation for the displacement of the rod is

ulx, 1) = ‘Pl(x)‘h(t) + ¢,(x)gy(1)

“ (o (3) o

Note that the assumed modes chosen satisfy the only geometric boundary condition of the prob-

lem, which is (0,r) = 0. Thus, the generalized mass and the generalized stiffness are evaluated
from

my; = J olsv,-(X)qv,-(x)m dx

k; = JEA @} (x) @} (x)dx

21 Ill 1 EA
my=m||=|dc= =ml k,=EA| = -=dx= —
" fo(’) 3 n ol 1 )
] 3 I
X 1 1 2x EA
my, = my mJ(—I') dx-‘zml kn_kz’——EAJOY-FdX:—l_
f 4 )
1 4 4EA
m22~mf(§)dx=§ml k2z—EAj li4dx=—-l—
0 0
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which can be assembled into the following matrices:

\ )
M:,n,[; ] x=FA[1 1
; 1l

The equation of motion for the normal mode vibration then becomes

R HHEE S HHI R

By letting A = w*ml?/EI, the characteristic determinant
=0

b Bl

wis

1-5) 1-i)
(1-30) G-3A)

reduces to the following polynomial equation for the eigenvalues:

AZ — 34.666A + 79.999 = 0

Solving for A, we have

2.486

= =+ =
A =17.333 = 14.847 {32.180

and the natural frequencies are

EA
= 1577\ —;
@, mi?
EA
= 5.672y —
@ mil?
The exact values for this prdblem are
7 |EA EA
T g\ T TN
EA EA
w, = 3m — = 471244 —

which indicates good agreement for the first mode. The second mode frequency is 20.4 percent
high, which is to be expected with only two modes.

From the first equation, the ratio of the amplitudes is

a _ (-
9, 1 "%’\

By substituting A; = 2.486, the first mode ratio is

q _ —0378 _ -10
0.453

q, 0171
For the second mode, we substitute A, = 32.18 and obtain
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The displacement equation for each mode can now be written as

wx) = - (’—;) + 0,453_(’—;)2
u(x) = — (f‘l—) + 1.38(’7‘)2

Generalized Stiffness (Beams)

Determine the generalized stiffness for a beam of cross- sectional property EI when
the displacement y(x, t) is represented by the sum

y(x, 1) = D olx)qr) (7.5.9)
i=1
The potential energy of a beam in bending is
2y
U= E {El(d ) dx (7.5.10)
2 / dx
Substituting for
2 x) q{(t)
we obtain

1
= 52 qu]JEIqo" “dx
= 5 2 zkijQiqj
i

(7.5.11)

and the generalized stiffness is

k; J.Elqo" ! dx (7.5.12)

Example 7.5.2 GENERALIZED FORCE

The frame of Fig. 7.1.3 with rigid members is acted upon by the forces and moments shown in
Fig.7.5.2. Determine the generalized forces.

Solution We let 8q, be the virtual displacement of the upper left corner and 8¢, be the trans-
lation of the right support hinge. Due to 8q,, the virtual work done is

1
0,59, = Fida, ~ Fy7 8q, + (M, — M) 89,

a _ 1
Q1 =F1 - 7F2+ 7(M1 - Mz)’
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[—»! bq,

1
1
'

FIGURE 7.5.2.

4_45———>’

g2

The virtual work done due to 8q, is
dq
0,8q, = —F(l - 0)% + MzTZ
1
l
It should be noted that the dimension of Q, and Q, is that of a force.

Q= [_Fz(l —a) + Mz]

Example 7.5.3

In Fig. 7.5.3, three forces, Fy, F,, and F;, act at discrete points, x;, x,, and x,, of a structure whose
displacement is expressed by the equation

mﬁ=gdmm

Determine the generalized force Q,.

P r

[ 3

Vi <

FIGURE 7.5.3.

Solution The virtual displacement is

®=g%®%

and the virtual work due to this displacement is
3 n .
W = EF,-(E qo.-(x;)Sq,-)
=1 i=1 :

- s

3
i=1 j

2117j¢i(xj)) - S0,

j=
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The generalized force is then equal to §W/8q,, or
3
Q= 2 F}-(p‘-(x,-)
j=1

= Folx) + Fe,(x,) + Fyo,(x3)
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PROBLEMS

7.1. List the displacement coordinates u; for the plane frame of Fig. P7.1 and write the geo-
metric constraint equations. State the number of degrees of freedom for the system.

21

2t

§.L¢

FIGURE P7.1.

7.2. Choose the generalized coordinates g; for the previous problem and express the u; coor-
dinates in terms of g;.

7.3. Using the method of virtual work, determine the equilibrium position of a carpenter’s
square hooked over a peg, as shown in Fig. P7.3.

'

0

FIGURE P7.3. ' FIGURE P7 4.

74. Determine the equilibrium position of the two uniform bars shown in Fig. P7.4 when a
force P is applied as shown. All surfaces are friction-free.
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7.5. Determine the equilibrium position of two point masses rﬁl and'm2 connected by a mass-
less rod and placed in a smooth hemispherical bowl of radius R, as shown in Fig. P7.5.

FIGURE P7.5. FIGURE P7.6.

7.6. The four masses on the string in Fig. P7.6 are displaced by a horizontal force F.
Determine its equilibrium position by using virtual work.

7.7. A mass m is supported by two springs of unstretched length r, attached to a pin and
slider, as shown in Fig. P7.7. There is coulomb friction with coefficient u between the
massless slider and the rod. Determine its equilibrium position by virtual work.

FIGURE P7.7. : FIGURE P7.8.

7.8. Determine the equilibrium position of m,; and m, attached to strings of equal length, as
shown in Fig. P7.8.

7.9. A rigid uniform rod of length [ is supported by a spring and a smooth floor, as shown in

Fig. P7.9. Determine its equilibrium position by virtual work. The unstretched length of
the spring is k/4.

¢

FIGURE P7.9.

7.10. Determine the equation of motion for small oscillation about the equilibrium position in
Prob. 7.9. '
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7.11. The carpenter’s square of Prob. 7.3 is displaced slightly from its equilibrium position and
released. Determine its equation of oscillation.

7.12. Determine the equation of motion and the natural frequency of oscillation about its
equilibrium position for the system in Prob.7.5.

7.13. In Prob. 7.8, m, is given a small displacement and released. Determine the equation of
oscillation for the system.

7.14. For the system of Fig. P7.14, determine the equilibrium position and its equation of vibra-
tion about it. Spring force = 0 when 6 = 0.

FIGURE P7.14. FIGURE P7.15.

7.15. Write Lagrange’s equations of motion for the system shown in Fig. P7.15.
7.16. The following constants are given for the beam of Fig. P7.16:

EI El k

k=T mi=N a TN
EI K

=5§= — =5N

K=5=, -—5=5

Using the modes ¢, = x/! and ¢, = sin(wx/I), determine the equation of motion by
Lagrange’s method, and determine the first two natural frequencies and mode shapes.

L, EI,m

Sk
T s
FIGURE P7.16. FIGURE P7.17.

"7.17. Using Lagrange’s method, determine the equations for the small oscillation of the bars '
shown in Fig. P7.17.

7.18. The rigid bar linkages of Example 7.1.1 -are loaded by sbrings and masses, as shown in}
Fig. P7.18. Write Lagrange’s equations of motion.
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22 m,J
H1
L,
(H— g1
£
. 2 7.
FIGURE P7.18. FIGURE P7.19.

7.19. Equal masses are placed at the corners of the frame of Example 7.1.2, as shown in Fig. P7.19.
Determine the stiffness matrix and the matrix equation of motion. (Let I, = I,.)

7.20. Determine the stiffness matrix for the frame shown in Fig. P7.20.

maJe
m1}/4 Ko
Ao Y
n AAAA
/ 7,

FIGURE P7.20. FIGURE P7.21.

7.21. The frame of Prob. 7.20 is loaded by springs and masses, as shown in Fig. P7.21.
Determine the equations of motion and the normal modes of the system.

7.22. Using area moment and superposition, determine M, and R, for the beam shown in
Fig. P7.22. Let EI, = 2EI,

A mydy maJz
M — R 7 £ A .
N 1 R, EI P El, Z LJ
4 S41 1 Rz// €I, - EIp %
FIGURE P7.22. FIGURE P7.23.

7.23. With loads m and J placed as shown in Fig. P7.23, set up the equations of motion.

7.24. For the extension of the double pendulum to the dynamic problem, the actual algebra can
become long and tedious. Instead, draw the components of — r as shown. By taking each
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50 separately, the virtual work equation can be easily determined-visually. Complete the
equations of motion for the system in Fig. P7.24. Compare with Lagrange’s derivation.

iz
0,

- 281

P

K k k
3m m 7
/ ’
15 }—> q, |_. a,
FIGURE P7.24. FIGURE P7.25.

7.25. Write the Lagrangian for the system shown in Fig. P7.25.

7.26. Determine the equations of motion for the system shown in Fig. P7.26. Solve the equa-

tions numerically in MATLAB® for different initial conditions. (Assume the table does
not rotate.) :

FIGURE P7.26. FIGURE P7.27.

o)

7.27. Determine the equations of motion for the system shown in Fig. P7.27. Solve the equa-,

tions numerically in MATLAB® for different initial conditions. (Assume m, has no mass
and it does not rotate.)
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Computational Methods

In the previous chapters, we have discussed the basic procedure for finding the eigen-
values and eigenvectors of a system. In this basic method, the eigenvalues of the sys-
tem are found from the roots of the polynomial equation obtained from the
characteristic determinant. Each of the roots (or eigenvalues) was then substituted,
one at a time, into the equations of motion to determine the mode shape (or eigenvec-
tors) of the system.

Although this method is applicable to any N-DOF system, for systems with DOF
greater than 2, the characteristic equation results in an algebraic equation of degree 3
or higher and the digital computer is essential for the numerical work. :

As an alternative to this procedure, there is an implicit method of transformation
of coordinates coupled with an iteration procedure that results in all the eigenvalues
and eigenvectors simultaneously. In this method, the equation of motion

[-xM + K]xX =0 (a)

‘must be converted to the standard eigenvalue form utilized in most of the computer

programs. This standard form is
[A-My=0 (b)

where A is a square symmetric matrix, and Y is a new displacement vector trans-
formed from X. Because these methods all involve the iteration procedure, we precede

the transformation method with the computer application to the basic method and the
method of matrix iteration. -

8.1 ROOT SOLVING

Figure 8.1.1 shows a 3-DOF system for which the normal modes and natural frequen-
cies are desired. The equation of motion for this system is

2 X, 3 -1 0f([x 0
m 1 t+kl-1 2 —1{{xp =40
1] lx 0 -1 1]lx 0

227
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4 2k k K
2—’\/\/\/\/—2m E—fv\/\/\,—m

—X —X

1 2 3
Figure 8.1.1.
or
{ 2 3 -1 0]\ (x 0
Al 1 +i-1 2 -1||[{xnt =10 (8.1.1)
\ 1 0 -1 1]/ lx 0

where A = w’m/k.

The eigenvalues of the system are found from the characteristic determinant
equated to zero:

B-20) -1 0
-1 2= -1 | =0
0 -1 1-2
This determinant reduces to a third-degree algebraic equation. Using the method of

minors (see Appendix C) and choosing the elements of the first column as pivots, we
have

-1

2-» 0 |_
G-200"_ . (1_”'_0 .

1 (1=

and the characteristic equation becomes

+1

A =450\ +5A-1=0
However, it is a simple matter to rewrite the above equation as
fA) = A3 —450A2+50—-1=0

and plot it as a function of A to finds its zero crossings. This is done in Fig. 8.1.2 and on¢
can see that one root is between [0,.5]; another between [1,1.5]}; and a third root
between [2.5,3]. By using straight linies between these points or Newton intérpolation,
the roots are found easily. Because the computer can carry out thousands of calcula-
tions in a few seconds, AA can be chosen very small, in which case, the interpolation can

. be minimized or even eliminated for the accuracy required.
As a further insight to the root location, we can assume the roots to be known as

Aps Ay, Az, and rewrite the polynomial in the factored form

FA)=A=2)A-2)A-1)=0
Multiplying out the factored form the above equation becomes

F) =2 = (0 + 4+ A2+ (A4, + LA + LA — A0 =0

%@.@«:mrﬁ oL
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12 = T T

10

0 0.5 1 15 2 25 3 35 4
Figure 8.1.2.

and one finds that the coefficient of the next to the highest power of A is always the
sum of the roots regardless of the degrees of freedom of the system. This additional
information can be useful as a check on the roots found.

One can calculate the roots in MATLAB® using the command roots(c) where c is
a vector that contains the coefficients of the polynomial in descending order. For our
example, ¢ = [1,—4.5,5, —1]. The roots of this equation are given by roots
(c) = 2.8892,1.3554, .2554. The location of these roots agrees with the plot.

8.2 EIGENVECTORS BY GAUSS ELIMINATION

In solving for the mode shapes, the eigenvalues are substituted, one at a time, into the.
equation of motion. The Gauss method offers one way in which to solve for the ratio of
amplitudes. Essentially, the Gauss procedure reduces the matrix equation to an upper
triangular form that can be solved for the amplitudes starting from the bottom of the
matrix equation.

Applying the Gauss method to the previous problem, we start with the equation
of motion written in terms of A:

B-22) -1 0 PR

The e;igenvalues solved for the problem were

| . [0225%6
A=w'o = 13554
2.8892
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Substituting A, = 0.25536 into the preceding equation, we have

2489 -1 0 . x|
-1 1745 -1 X,p =
0 -1 0.7446 | | x,

o oo

In the Gauss method, the first step is to eliminate the terms of the first column in
the second and third rows. Because the first column of the third row is already equal to
zero, we need only to zero the first term of the second row. This is done by dividing the
first row by 2.489 and adding it tc the second row, which gives

2489 ~1 0 x, )
0 1343 -1 X, ¢ =
0 -1 0.7446 | | x, )

[N an B ]

Although it is not necessary to go further in this case, the procedure can be
repeated to eliminate the —1 term of the third row by dividing the second row by 1.343
and adding it to.the third row, which results in

2489 -1 0] (x W
0 1343 —13x, ¢ =
0 0 0] Lx,

oS O O

In either this equation or the previous one, the amplltude X, is a551gned the value 1,
which results in the first eigenvector or mode:

)Y (02992
b =13x( =107446
1 1.000

By repeating the procedure with A, and A;, the eigenvectors for the second and third
modes can be found.

Eigenvectors can also be found by the method in Appendix C or by using the
MATLAB® command eig, which will be discussed later in this chapter.

MATRIX ITERATION

With knowledge of orthogonality and the expansion theorem, we are in a position to
discuss the somewhat different approach for finding the eigenvalues and eigenvectors
of a multi-DOF system by the matrix iteration procedure. Although the method is
applicable to the equations of motion formulated by either the ﬂexxblllty or the stiff-
ness matrices, we use the flexibility matrix for demonstratlon :

In terms of the flexibility matrix [a] = K~!, the equation for the normal mode:
vibration is :

AX =X \ | 83.0)
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where

A =la]lm] = KM
A =1/’

The iteration is started by assuming a set of amplitudes for the left column of
Eq. (8.3.1) and performing the indicated operation, which results in a column of num-
bers. This is then normalized by making one of the amplitudes equal to unity and
dividing each term of the column by the particular amplitude that was normalized.
The procedure is then repeated with the normalized column until the amplitudes sta-
bilize to a definite pattern. When the normalized column no longer differs from that
of the previous iteration, it has converged to the eigenvector corresponding to the
largest eigenvalue, which in this case is that of the smallest natural frequency w,.

Example 8.3.1

For the system shown in Fig. 8.3.1, write the matrix equation based on the flexibility and deter-
mine the lowest natural frequency by iteration.

2m —X,

am —X.

3k

FIGURE 8.3.1.

Solution The mass and the flexibility matrices for the system are

4 0 O 1 1 1 1
[m]=ml0 2 0 [a]=§§ 1 4 4
0 0 1 1 4 7
* and substituting into Eq. (8.3.1), we have
1 17174 0 0] (x NIE
1 4 4110 2 0|Sxp=|—7"]3x
1 4 7]lo 0o 1]ls) ™ s
or

14 2 1([x X,

4 8 4f3xp=2{x

4 8 7]lx X3
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To start the iteration, we arbitrarily assume

X, (0.2

Xi=4x,¢p =406

X5 1.0
4 2 1]f02 3.0 0.238
AX, =14 8 4|06 =14 96 p=12.640762
4 8 71110 12.6 1.000

By using the new normalized column for X, the second iteration yields

[4 2 17 (0238 3.476 0.247
AX,=|4 8 440762} = {11.048 » = 14.0484 0.786
14 8 7]1.000 14.048 1.000

In a similar manner, the third iteration gives

(4 2 1](0247 3.560 0.249
AX,=|4 8 430786 p =1{11276 } = 14.2761 0.790
|4 8 71000 14276 1.000

By repeating this procedure a few more times, the iteration procedure converges to

0.250 x s\ [0250
14.32450.790 ¢ = A$ x, =( ) 0.790

2
1.000 X @M 1.000

=

Thus, the frequency of the lowest mode is

3%k k
- = 04574 =
“1 asm - P o,

0.250
¢, = 1 0.790
1.000

with the mode shape

It should be mentioned here that if the equation of motion was formulated in terms of the
stiffness matrix, the iteration equation would be’

AX = AX
[MTK]X = w?X

Because the iteration procedure always converges to the largest eigenvalue, the stiffness equa-
tion would converge to the highest mode. In vibration analysis, the lower modes are generally of
greater interest than the higher modes, so that the matrix iteration procedure will find its use

mainly for equations formulated in terms of flexibility where the eigenvalues are proportional to
the reciprocal of «*. '
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8.4 CONVERGENCE OF THE ITERATION PROCEDURE

To show that the iteration procedure converges to the largest eigenvalue, which for the
equation formulated in terms of flexibility is the lowest fundamental mode, the

assumed trial vector X is expressed in terms of the normal modes ¢, by the expansion
theorem:

X, = ¢y + Cpy + 3y + 000 + _ T (84.0)
where c; are constants. Multiplying this equation by the dynamic matrix A, we have
AX, =X, = c;Ad + A, + Ay + - + (8.4.2)
Because each normal mode satisfies the following equation ’

o 1
A, = M, = = 03 (8.4.3)
the right side of Eq. (8.4.2) becomes '

1 1
X2=cl—w—%¢l+czg¢2-_!-c3g¢3+“'+

which is the new displacement vector X,. Again, premultiplying X, by the dynamic
matrix and using Eq. (8.4.3), the result is

1 1 1
AXz=X3:0134’17L‘32734’2'*'03;,3(1(’3+"'\+
1

Thus, after several repetitions of the procedure, we obtain
AX, —X—ci¢+ci¢+ci¢+-~-+ (8.4.4)
n—1 n lw%n 1 2(1)%" 2 3(1%" 3 M

Because w? > w’_; > '+ > @? > «?, the convergence is to the fundamental mode. For
convergence to higher modes see Appendix G. ' '

8.5 THE DYNAMIC MATRIX

The matrix equation for the normal mode vibration is generally written as
C[-AaM+ Klx =0 ' (85.1)

where M and K are both square symmetric matrices, and A is the eigenvalue related to

the natural frequency by A = w® Premultiplying the preceding equation by M~!, we
have another form of the equation:

[-AI+ AlX =0 (8.5.2)

where A = M 'K and is called the dynamic matrix. In general M~'K is not symmetric.
If next we premultiply Eq. (8.5.1) by K~!, we obtain

[A-AflxX=0 (8.5.3)
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where A = K~'M is the dynamic matrix, and A = 1/w? = 1/A is the eigenvalue for the
equation.

Although A and A are different, they are both called the dynamic matrix because

the dynamic properties of the system are defined by A or A. Again, matrix A is gener-
ally not symmetric.

If a given system is solved by either Eq. (8.5.2) or (8.5.3), the eigenvalues will be
reciprocally related, but will result in the same natural frequencies. The eigenvectors
for the two equations will also be identical.

8.6 TRANSFORMATION OF COORDINATES (STANDARD
COMPUTER FORM)

In Egs. (8.5.2) or (8.5.3), dynamic matfices A and A are usually unsymmetric. To obtain

the standard form of the equation of motion for the computer, the following transfor-
mation of coordinates

X=U'Y (8.6.1)
is introduced into the equation '
[-AM + K]X =0

which results in the transformed equation
[-AMU'+ KU 'lY =0
Premultiplying this equation by the transpose U~!, which is designated as
) =vt
we obtain the equation
[-AU™MU' + UTTKU Y =0 - (86.2)

It is evident here that if we decompose either M or K into UU in the preceding equa-
tion, we would obtain the standard form of the equation of motion.
With M = UTU, Eq. (8.6.2) becomes

=M+ UTTKU'lY =0 A= o? (8.6.3)
whereas if K = UTU, the equation is
[UT™MUTT =AY =0 A=1/e? (8.64)

Both equations are in the standard form
[-A+ AlYy =0
where the dynamic matrix Ais symmetric.
To illustrate the use of the dynamic matrix and the standard computer form, we
can use Matlab® to calculate the eigenvalues and eigenvectors for the 3-DOF system

shown in Figure 8.1.1. First, we need to convert this problem to the standard eigen- g

value problem by multiplying Eq. 8.1.1 by the inverse of the mass matrix. For this
example, the dynamic matrix is given by
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1.5000  —0.5000 0
A =| —1.0000 2.0000 —1.0000
0 —-1.0000  1.0000
We can compute both the eigenvalues and eigenvectors in MATLAB® by typing the
command [U,D] = eig(A). The result of this command is two matrices, U and D.

Matrix U contains the eigenvectors as column vectors and D is a diagonal matrix,
which has the eigenvalues on the diagonal. Continuing with our example, we get the

following two matrices
[ 0.7569 03031 0.2333
U=] 02189 -0.8422 0.5808
—-0.6158 0.4458 0.7799

and
1.3554 0 0
D = 0 2.8892 0
0 0 0.2554

8.7 SYSTEMS WITH DISCRETE MASS MATRIX

For the lumped-mass system in which the coordinates are chosen at each-of the
masses, the mass matrix is diagonal and U is simply equal to the square root of each

diagonal term. The inverse of U is then equal to the reciprocal of each term in U, so
that we have

my Vmy,
M= my, U= M7= Vimy,
Mgy A Vimy,
[1/~Vmy,
Ul=uUT= 1/Vmy,
1/Vimy,

Thus, the dynamic matrix A = U TKU ' of Eq. (8.6.3) is simply determined.

Example 8.7.1

Consider the system of Example 6.8.1, which is shown again in Fig. 8.7.1. The mass and stiffness
matrices for the problem are

20 3 -1
M-m[0 1:| K——k[—~1 1:|

We first decompose the mass matrix to M = UTU = M'/2M'/2, Because M is diagonal, the
matrix U is simply found from the square root of the diagonal terms. Its inverse is also found
from the inverse of the diagonal terms, and its transpose is identical to the matrix itself.
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2k

FIGURE 8.7.1.

V2 o 1 [1/v2 o] 1 07071 0
— a2 — ) -1 T o _*_ - :
v=aen = VP oo GV 0 0T

Thus, the terms of the standard equation become
U T™™MU ' = U TUTUU = |

~ k{0707 0 3 ~11/0707 0O k 1.50 -0.707
A= ~T -1 = -
AR P P A R e

By letting A = w’m/k, the equation of motion is then reduced to
H 1.50 ~0.707] _ )‘[1 OH{yl _ {O}
-0.707 1 0 1]]ly, 0
" and its characteristic equation becomes

(1.50) — A)  —0.707 L
=0and A2 —250A +1=0
—0707 (1 -~

The eigenvalues and eigenvectors solved from these equations are

(1)
N 0.707}
A, =050 =
! {)’2} {1-000

@ —1
_ Y1 _ 1.414 }
A, =200 { yz} { 1.000
These are the modes in the y coordinates, and to ¢btain the normal nodes in the original x coor-.

dinates, we first assemble the previous modes into a modal matrix Y from which the modal
matrix in the x coordinates is found.

y = [0707 '—1.414]
L1000  1.000

0707 0 ][0.707 -1.414 050 -1.00
= -1 = =
X=U"y [ 0 1.0][1.00 1.00] [1.00 1.00]

These results are in agreement with those found in Example 6.8.2.

A
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8.8 CHOLESKY DECOMPOSITION

When matrix M or K is full, matrices U and U™ can be found from the Cholesky
decomposition. In this evaluation, we simply write the equation K = U'U (or
M = U"U)'in terms of the upper triangular matrix for U and its transpose.

An example of a 4 X 4 stiffness matrix K is as follows:

0

Up

Un 0 0 || uy Uiz Uy ki ky ki ok
up Uy 00 0 up uy Uy | _|kn kn ki ks
U Uy um 0 0 0 uy uy ks ky ki ks
Uy Uy Uz U ][0 0 0 uy kay ke ki ky

Because the product matrix is also symmetric, only the upper triangular section is
needed to evaluate U.

2 -
uy, Uy Uy LK U Uyy
2 2
(&, +u3)  (ujpupy + upuy) (upyttyy + tpyty,)
2 2 2
(uhy + uhy + 13)  (ugsttgy + Ugsttgy + Usylis,)

L (s + 10, + 165, + 1)

kll k12 k13 k14

- ky Ky Ky
ks ks
Kk

Equating term for term in the two matrices, we obtain from the first row
: 2 _

uy = ky

up = kpp/uy

Uy = kya/uy,

Uy = kig/uyy

From the second row, we have '

2 _ 2
Uy = ky — ujp
1

22

(kza - u12u13)

1
“‘24 = E (k24 - “12“14)

Similarly, the third and fourth rows yield

2 _ _ 2 _ 2
Uz = kyy — ujy — uy

1

Uy =
34
u33

(k34 = Ul — “53“24)

2 _ 2 2 .2
Uy = kyy — uyy — uyy — u3,


http://www.semeng.ir

WWW. senmeng. i r

238 Chapter8  Computational Methods
We can now group these equations as follows from which we can write general
expressions for an n X n matrix:
2 1 2 .
up = ky — up
2 2 2
usy = kg — uj; — upy

2 _ 2 2 2
Ugy = Kyq — Uy — Uy — Uy,

i 1/2
uii=(kii—12u12i) i=23,4,...,n
-1

1
Uy = E (kzs - ”12‘413)

: 1
Uy = — (k24 - u12u14)
2
1
Uy = — (k34 T Uy T “23“24)
Uiy
1 i—1
u; = u—( i~ Eu,iu,j)z=2,‘3,4,...,n; j=i+1,i+2,...,n
i =1 )

In Matlab®, we can get the Cholesky factorization of a matrix, A, with the com-

mand U = chol(A).The matrix U is an upper triangular matrix such that U’xU = A. As
an example consider the matrix :

2 -1 0
A=1-1 2 -1
0o -1 2

The Cholesky factorization is given by
U = chol(A)
1.4142 -.7071 0

0 12247 —.8165
0 0 1.1547

Inverse of U

The inverse of the triangular matrix U can be found from the equation:

U - Ul = I
(known) (unknown inverse) (unit matrix)
Uy Uy Wy Uy i Y U3 Uy 1 000
0 uy uy uy 132\1‘\1\’12 vy vl _ |01 00
0 0 uy uy vy R Uy Uy 0010
0 0 0 |, Uy U U U 0 0 01
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Starting the multiplication of the two matrices on the left from the bottom row of U
with the columns of v; and equating each term to the unit matrix, it will be found that
y; = 0 for i > j, so that the inverse matrix U™ is also an upper triangular matrix. The
following sequence of multiplication will then yield the following results.

Row 4 X columns 1,2, 3, and 4:

Row 3 X columns, 1,2,3, and 4:

Uy = =

-1
Uy : u_ (u34v44)

Row 2 X columns 1, 2,3, and 4:

1.
Up = —
? Uy
-1

Uy = ——(u23u33)
Uy

-1
Uy = — (uzzv.u + u24v44)
Upn

Row 1 X columns 1,2, 3, and 4:

1

v, = —

11

Uy
-1

Uy = _(”12”22)
Uy
-1

Yz = — (u12v23 + “13“33)
Un
-1

Uy = u_'(uu"u + Uy + u14v44)
1

These results are then summarized by the following general equations:

v, = i>j

Example 8.8.1

Solve Example 8.7.1 by decomposing the stiffness matrix. The two matrices for the problem are

2 0 3 -1
M—m[OA 1] K—k[_1 1]
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Solutlon For the 2 X 2 matrix, the algebraic work for the decomposition is small and we carry

out all the steps.
Step 1: _
' UTU = K
[“n 0 ]l:“n ‘412] _ [ uj, Uyl ] _ [ 3 —1]
up upll 0 uy upy (i, + ) -1 1
uy = V3 =173
uu, = -1 oowy, = —1/1732 = —0.5774

uh=1-u} - upy=V1-(-05774)2 = 08164

1132 —0.5774}
- [0 0.8162

check by substituting back into UTU = K.
Step 2: Find the inverse of U from UU ~ ! =

[1.732 —0.5774][1;1, blz] B [1.7321>11 (1.732b,, - 0.5774b22)] _ [1 0]
0 0.8162 |

b,, 0 0.8164b,, 0 1
b= —— — 05774 b, = —— = 12249
Ty 2708164

b, = —— (0.5774 X 1.2249) = 0.4083

2= 7 732(05 1. 9) 0.

gt [ 05774 0.4083]
1o 1.2249

Check by substituting back into UU ~ ! = .
Step 3:

~ 0.5774 0 2 0][05774 0.4083 ]
= U-TMU-! = )
A= U"MU [0.4083 1.2249][ 0 1][ 0 1.2249

) _ [0.6668 0.4715]
. 04715 18338

Note that A is symmetric.
Step 4: The equation of motion is now in standard form, but in y coordinates:

[[0.6668 0.4715] _ X[1 0] ]{yl} _ {0} 3= k
0.4715 1.8338 01 Ya 0 w’m

Step 5: For this simple problem, the eigenvalues and eigenvectors in y coordinates are found
from the usual procedure:

(0.6668 — A) 04715 | _
0.4715 (1.8338 — )|

- 2500 +10=0
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7 (1)

A =20 {y ‘} = {0'3537}
Y2 1.000

_ @ _

X, = 0.50 {y1} _ { 2.8267}
¥2 1.000

Step 6: Eigenvalues are not changed by the transformation of coordinates. The eigenvectors
in the original x coordinates are found from the transformation equation.

¢lx) = UTY
ox) = [0.5774 0.4083][0.3537 —2.8267
0 1224911 1.000  1.000

0.6125 -12238] _[0.50 —1.00
1.2249 12249 | | 1.00 1.00

[
o= {2 (03]
-

1

i

Example 8.8.2

Figure 8.8.1 shows a 3-DOF model of a building for which the equation of motion is
4 0 0 4 -1 0

2 X 0
—("’k) 02 ol+]-1 2 -1||{xt={0
0 0 1 0 -1 1]]lxn 0

Reduce the equation to the standard form by decomposing the stiffness matrix.

Solution The transformation matrix is found from
U'u=K
u; 0 0 Uy Up U 4 -1
Up Uy 0 0 uy uy|=|-1 2 -
Uiy Uy Ui L0 0 uy 0 -1
2
U ;‘uuuz Uy Uy 4 -1 0
Uy Uy, (uyy + uy) (wjuy3 + uzz“zza) =l-1 2 -1
Uy U3 (uppths + upsy) (w3 + upy + ugy) 0 -1 1
m Xy
k
2m —X5
k
4m —=X
3k

3 FIGURE 8.8.1.
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By equating the corresponding terms on each side, U is found:

2 -050 0
U=|0 13228 -0.7559
0 0 0.6547
For the inverse of U, we let U™! = [b,] and solve the equation
vut=1

2 -050 0 by by, by 1 00
0 1.3228 —0.7559 || 0 by by 0.1,0
0 0 06547 0 0 by, 0 0 1

Again, equating the terms of the two sides, we obtain

0.50 0.1889 0.2182
U'l=[p]=]0" 0759 08726

0 0 1.5275
The dynamic matrix A using the decomposed stiffness matrix is
A=UTMU™
[0.50 0 0 1[4 o o][o50 01889 02182
=|0.1889 0.7559 0 0 2 0]0 0.7559 0.8726
1.2182 0.8726 1.5275{{0 0 24|10 0 1.5275

[1.00 03779 04364 ]
=103779 12857 1.4846
L0.4363 1.4846  4.0476 |

The standard form is now

- [-AI+ AlYy =0
where A = k/w’m and X = U~'Y. .

8.9 JACOBI DIAGONALIZATION

In the section on orthogonality, Sec. 6.7 in Chapter 6, the assembling of the orthonor-

mal eigenvectors ¢ into the modal matrix P enabled the mass and the stiffness matri- )
ces to be expressed in the basic relationships:

P™P =1

P'KP = A

where I is a unit matrix, and A is a diagonal matrix of the eigenvalues. These relation-

ships indicate that if the eigenvectors of the system are known, the eigenvalue problem
is solved. _ -

The Jacobi method is based on the principle that any real symmetric matrix A has

only real eigenvalues and can be diagonalized into the eigenvalue matrix A = [A;] by an

iteration method. In the Jacobi method, this is accomplished by several rotation matrices .

(8.9.1)
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R by which the off-diagonal elements of A are zeroed by repeated iterations until martix
A is diagonalized. The method is developed for the standard eigenproblem equation:

(A-y=0 (89.2)
and the major advantage of the procedure is that all of the eigenvalues and eigenvec-
tors are found simultaneously.

In the standard eigenproblem, the M and K matrices have already been trans-
posed into a single symmetric dynamic matrix A which is more economical for itera-
tion than two matrices. The kth iteration step is defined by the equations

RZA R, = Ak+1

(8.9.3)
RZ+1Ak+1Rk+1 = Ak+2» ete.

where R, is the rotation matrix.

Before discussing the general problem of diagonalizing the dynamic matrix A of

nth order, it will be helpful to demonstrate the Jacobi procedure with an elementary
problem of a second-order matrix:

fan ap }

la,, ay

2.

AVZ

The rotation matrix for this case is simply the orthogonal matrix
R = [ cosh = Sine] (89.4)
sinf cosf

used in the transformation of coordinates to rotate the axes through an angle 6, as
illustrated in Fig. 8.9.1.

Matrix R is orthonormal because it satisfies the relationship
RTR=RR" =1

In this case, there is only one off-diagonal element, a,,, and the eigenproblem is solved
in a single step. We have

RTKR=[ cos 6 sin()][a11 alz][cosa —sino]z[)tl 0}
PP | —sin® cos@]la, apllsing cosd 0 A

FIGURE 8.9.1.
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Equating the two sides-of this equation, we obtain

A, = aj, cos*@ + 2a,, sinf cosd + a,, sin’6
A, = ay; sin6 — 2ay, sinf cosf + a,, cos*d (8.9.5)
0 = —(a,, — ay,)sinfcosh + a,,(cos’d — sin26)
From the last of Egs (8.9.5), angle 6 must satisfy the relation
tan 20 = 2
a T ay _ (8'9‘6_)

The two eigenvalues are then obtained from the two remaining equations or directly
from the diagonalized matrix. The eigenvectors corresponding to the two eigenvalues
are represented by the two columns of the rotation matrix R1, which in this case is
equal to P.

For the previous problem there was only one diagonal term g, and no iteration
was necessary. For the more general case of the nth-order matrix, the rotation matrix is
a unit matrix with the rotation matrix superimposed to align with the (i, j) off-diagonal

element to be zeroed. For example, to eliminate the element a, s in a 6 X 6 matrix, the
rotation matrix is

10 0 0 0 O]
0 1 0 0 0 0
0 0 cosf 0. —sinf O
= ' 8.9.7
R 0 0 0 1 0 0 ( )
0 0 sinf 0 cosd O
L0 0 0 0 0 1]
and fis determined from the same equation as before.
tan26 = 2855 = 24 (8.9.8)
ay; — ass a; — a;-

If a; = a;, 26 = £90° and 6 = *45°. Althbugh 26 can also be taken in the left half
space, there is no loss of generality in restricting 6 to the range +45°. Due to the sym-
metry of matrix A, this step reduces one pair of the off-diagonal terms to zero, and
must be repeated for every pair of the off-diagonal terms of matrix A. However, in
-reducing the next pair to zero, it introduces a small nonzero term to the previously
zeroed element. So having zeroed all the off-diagonal elements, another sweep of the
process must be made until the size of all the off-diagonal terms is reduced to the
threshold of the specified value. Having reached this level of accuracy, the resulting
diagonal matrix becomes equal to the eigenvalue matrix A, and the eigenvectors aré
given by the columns of the products of the rotation matrices. In summary, letting sub-'
script [ stand for the last iteration,

A =R -RIR[_, - -RIR[[AJR R, - Ry 1Ry~ Ry = A

(8.9.9)
lli_ﬁanRz"'Rl=P '
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Although the proof of convergence of the Jacobi iteration is beyond the scope of
this text, experience has shown that rapid convergence is generally found, and usually
acceptable results are obtained in less than five sweeps, and often in one or two sweeps
when the off-diagonal elements in the original matrix are small in comparison to the
diagonal elements. The number of calculations is also quite limited in that in spite of
the size of thg matrix, only two rows and two columns are involved for each iteration.

Example 8.9.1

When the mass matrix is decomposed in Fig. 8.8.1, the standard form of the equation of motion
becomes :

1.0 —0.3536 0 1 0
—Al + —0.3536 1.0 —0.7071 yor =40
0 —0.7071 1.0 Y3 0

where A = «?m/k. By using the Jacobi method, diagonalize the dynamic matrix, and determine
the eigenvalues and the eigenvectors for the system.

Solution We first zero the largest off-diagonal term, which is a,, = — 0.7071.
Lo 70336 0 ___|
A=[-035361 10  —07071
L 0 1 -07071 1.0
10 0
‘R, =10 cosf  —sinf
L0 sinf cos6

an 20 = 285 _ 2(-07071) _ -
apn ~ a4y 1-1
.28 = 90°
9 = 45°
sin 45° = cos 45° = (0.7071
10 0 10, 0
R,=|0 07071 -0.7071 RT=10 07071 07071
0 07071 07071 0 -0.7071 0.7071
A, = RTAR, )
T 0 0 1.0 -03536 O 10 0
=10 07071 07071 || -03536 1.0 -07071 || 0 07071 -0.7071
0 -07071 07071 0 -0.7071 1.0 0 07071  0.7071
1.0  —0250 E 0.250
=170250 __02929] 0
0250 . 0 1.7071
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We thus find that in zeroing the term a,, = a

' Computational Methods

5» We have introduced a new nonzero term

a,; = ay, = 0.250. Next zero the term a,= —0.250.
2a 2(—0.250)
tan 26 = 2_ - = —0.707
an 26 = T 1 o029 07
26 = —35.26°
6=—-1763°
sin 6 = —0.3029°
cos 6 = 0.9530
[ 09530 3029 0
R, =| —03029 0.9530 0
L0 0 1
(1097 0 0.2383
RIAR, =0 02134 0.0757 | = 4,
| 02383 0.0757 1.7071

To complete the first sweep of all the off-diagonal terms, we next zero the term a

2a,; 2(0.2383)
tanf = = = 07812
= T 1097 — 17071
26 = 37.996°
6 = —18.998°
sin 6 = —0.3255
cos 6 = 0.9455
[ 09455 0 03255
Ry=| 0 10
| —03255 0 09455
[ 1.0147 —0.0246 —0.000
RTA,R, = | —0.0246 02134 00717 | = 4,
| 0000 00710 1.817

To further reduce the size of the off-diagonal terms, the procedure should be repeated; how-
ever, we stop here and outline the procedure for determining the eigenvalues and eigenvectors ,
of the problem. The eigenvalues are given by the diagonal elements of A and the eigenvectors of
A are calculated from the products of the rotation matrices R, as given by Eq. (8.9.9). These
eigenvectors are of the transformed equation in the y coordinates and must be converted to.the
eigenvectors of the original equation in the x coordinate by Eq. (8.6.1). It should also be noted

that the eigenvalues are not always in the increasing order from 1 to n. In A3, A= w'mfk i
found in the middle of the diagonal.

' AFROMA, COMPUTER VALUES
A =0213 A, =02094

A =1014 A= 1000

Ay =1817 Ay = 17905
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It is seen here that even with one sweep of the off-diagonal terms, the results are in fair agreement.

For the eigenvectors, we have

Y = R\R;R,

1 0 0 09530 03029 O|[ 09455 0 03255
=10 07071 -0.7071 || -03029 09530 0| © 10
0 07071  0.7071 0 0 1| —03255 0 0.9455
[ 09011 03029 03102
=| 00276 06739 -0.7383
| 04327 06739  0.5988
050 0 0 0.9011 03029 03102
X=U'Y=|0 07071 0 0.0276 06739 —0.7383
Lo 0 1.00 || —0.4327 06739  0.5988
[ 0.4006 0.1515  0.1551
=| 0.0195 04765 —0.5221
| —0.4327 0.6739  0.5988
‘When normalized to 1.0,
-0.940 0225 0259 _
X=|-0045 0707 —-0872| fromA,

1

mode2 model mode3

-1
X = 0
1

With the eigenvalues equal to A =

w; =

00  1.00 1.00

0 0.25 0.25

079 -0.79 from the computer

.00 1.00 1.00

w’m/k, the three natural frequencies are found from

J Ll
‘m
\f02094— = 0.4576
,{ £=10 E
m m
\}1 7905 — —13381

3=

3=
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8.10 QR METHOD FOR EIGENVALUE AND EIGENVECTOR CALCULATION

. The Matlab® command eig(A) computes the eigenvalues and eigenvectors of a matrix
A using an iterative method based on decomposing the matrix A into an orthogonal
matrix O and an upper triangular matrix R. The basic idea behind this algorithm is to
produce an upper triangular matrix which is similar to the original matrix A. Since sim-
ilarity transformations preserve the eigenvalues of the original matrix, the eigenvalues
can be read off the diagonal of the final matrix. The eigenvalues of the original matrix,
the eigenvalues can be read off from the eigenvectors for the transformed matrix by
multiplying these eigenvectors with the same matrices which were used to make A
upper triangular. ' '

The QR decomposition can be accomplished by the Householder transformation
which will be discussed in detail. Once we know how to decompose a matrix into Q
and R, we use an iteration procedure to produce an upper triangular matrix, which is
similar to the original matrix. The QR decomposition allows one to write the matrix A
as the product of two matrices (i.e., A = Q * R, where Q is orthogonal and R is upper

- triangular). These two matrices can be used to produce another matrix, A, which is
similar to A and given by

sinceR=Q0'Aand Q7! = Q.The new matrix A, is similar to A and hence it has the
same eigenvalues as A but the eigenvectors have been changed by Q. The eigenvectors
of A, satisfy the equation A,x = Ax, which means that the eigenvectors of A can be
obtained by multiplying the eigenvectors of A,, by Q. This can be seen from the follow-
ing equation AQx = AQx. The process is then repeated by decomposing A, into an
orthogonal matrix O, and an upper triangular matrix R, (ie., A, = Q, * R)). Again O,
and R, can be used to produce a matrix A, which is similar to A, (and consequently
similar to A), by

Ay = Ri*Q,

= Q;l * A L * Ql

= Q;I*Q_I*A*Q*Ql

= (Q*Ql)_l*A*(Q*Q1)

= (Q*Q])*A*(Q*Q1)
As before, A, has the same eigenvalues as A. If x is an eigenvector of ’AZ (e
A,x = Ax, then Q * Q x is an eigenvector for A). This process can be continued to pro-
duce a series of similar matrices A, A,,and so on. It can be shown that eventually this

process will produce an upper triangular matrix which is similar to the original matrix
(ie,A,=(Q*Q,*Q,*...xQ _ ) 'AQ*Q,*Q,*...xQ, _,),and A, is upper tri- -
angular.

In order to speed up the convergence of the above iteration, it is customary to
first convert the matrix A to a matrix which has zeros below the subdiagonal. This type
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of matrix is called a Hessenberg matrix. The following is an example of a 4 X 4
Hessenberg matrix:

S O N
O AW W
CTNe N~ NI )
W N o A

The general n X n Hessenberg matrix has the following general form

a; Gy agy Ay,

ay Gp 4n Ay,
H=10 a; a; a3y
0 O ann—l ann

As we will show next, the Householder transformation will produce a Hessenberg
matrix which is similar to the original matrix.
A Householder matrix is given by

H=1-2uu’
for some unit vector u. Note that
H' = (I - 2uu’)’
=1-2u'u
=H

and
HH = (I — 2uu")(I - 2uu’)
=TI - 2uu' — 2uu' +‘ 4uv'uu’
=1 - 4uu' + duu’
=1

since u'u = 1. This shows that H is symmetric and orthogonal; that is, H = H' = H™ L.
Given a matrix A, in order to construct H so that H"!AH produces a Hessenberg

. matrix, an iteration procedure can be used where each step zeros out the elements

below the subdiagonal for one column. The procedure begins _v)vith the left-hand col-
umn. For example, if the first column is given by the vector a = (al, a,, as, ,a )'
then the Householder matrix H applied to a should produce the vector
T= (a, @,0,0,...,0)" In order for H to remain orthogonal, « is determined by the
fact that l|a|| = ||rH The unit vector, u in the Householder transformation is given by
u = [, Where v=a — r.The remaining columns of the matrix can be handled in the
same manner and the Householder matrix which takes the original matrix into

Hessenburg form is given by the produét of each-intermediate matrix. The following
example illustrates this procedure.
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We want to convert the following matrix

4 2 1
A=|4 8 4
4 8 7

into upper Hessenberg form. This means that we want the Householder matrix to take
the vector a = (4,4,4)" into the vector ¥ = (4, &, 0)". We need a'a = r'r for the result-
1ng matrix to be orthogonal. This determmes a which for our example is such that

= V/32. The vector v=a — ris given by v = (0, —1.6569, 4). The length of the vec-
tor squared is 18.7452. This vector produces the Householder matrix

1 0 0
H=|0 7071 7071
0 70711 =707

When this matrix is used to produce a matrix which is similar to A one gets the
Hessenberg matrix

4 21213 0T
HAH = | 56569 13500 2.500 (8.10.1)
0  —1500 1500

Because the matrix A is a 3 X 3, it only takes one iteration to convert it to Hessenberg
form. For larger matrices th1s procedure would have to be repeated to clear the
remaining columns.

At this point we want to describe the QR decomposition. Suppose we are given a
matrix A, which we want to decompose into an orthogonal matrix, Q, and an upper tri-
angular matrix, R. The orthogonal matrix is given by the Householder matrix which is
designed so that when it is applied to the matrix A, the result is an upper triangular
matrix (i.e., H * A = R). Since H is orthogonal and symmetric, H * A = R implies
A = H * R which in turn implies that A = Q * R where Q = H. -

We will illustrate this procedure by continuing our example. We want to decom-
pose the matrix in Eq. (8.10.1) into an orthogonal matrix and an upper triangular matrix.
We do this first by constructing an orthogonal matrix which zeros out the elements
below the diagonal in the first column.The matrix which we need should take the vector
3 = (4,5.6560,0)" to the vector r = (—6.9282, 0, 0)". The vector r,is determined by the
condition a’a = r'r. One is free to choose the sign of 7. This can be achieved by construct-

ing the Householder matrix Q,, = 2|'|"’|'|’z, wherev=a—-r1= (2.9282, —5.6569, 0).
For the matrix HAH we get
-.5773 —.8165 0
0, =| —.8165 5774 0
0 0 -1

When the matrix HAH is premultiplied by the matrix Q,,, we get
| —-6.9282 —12.2474 —2.4495
Q,,* HAH = 0 - 60623 —.8660
0 1.5000  —1.5000
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In order to complete the decomposition, we have to use the same procedure to
clear the element below the diagonal i in the second column of the matrix. The process
Tesults in a matrix Q;, which takes a2 = (—12.2474, 6.0623,1.5000) to the vector
T, = (—12.2475, —6. 245 O) Again this comes from the condition a‘a = rr. The
orthogonal matrix O, which when applied to the matrix HAH produces an upper tri-
angular matrix is given by the product of Q,, and Q,,, namely Q, = Q,, * Q,,. For our

example, the QR decomposition is such that HAH = Q, * R, where
=.57713 7936 —.1961 |
0, =] —.8165 -—.5604 .1387
0 2402 9707
and

—-6.9282 —122475 —2.44495
R, = 0 —6.2450 —.4804
0 0 1.6641
We should point out at this point that the Matlab® command [Q, R = qr(A) produces
the matrices Q and R for a matrix A.

Now that we know how to perform a QR decomposition, we would like to use the
iteration procedure discussed at the beginning of this section to produce an upper tri-

angular matrix. Continuing with our example, the first iteration produces a matrix, A
which is similar to HAH and it is given by

140000 7844 —2.7174
A,=R,* 0, =] 50990 33846 —13323
0 3997 1.6154

Again one uses the QR decomposition on A, we write A, = Q, * R,andset A, = R, * Q..

. We QR decompose A, and so on. Continuing this iteration 15 times results in Q,, Q,,

Q,s and produces the following upper triangular matrix

14.3246 —5.0645 1.7655
U= 0 3.000 4837
0 0 1.6754

where U= (Q,* Q,*...* Q) * (HAH)*(Q,* Q,...* le).The eigenvalues for this
matrix are the elements along the diagonal. These numbers agree with the eigenvalues

" which one gets by using the Matlab® command eig(A).

The algorithm which finds the eigenvectors of the original matrix starts by find-
ing the eigenvectors of the upper triangular matrix and transforms them to the eigen-
vectors for HAH by multiplying them by the matrix Q, * Q, * ... * O, as described
previously. The eigenvectors for the upper triangular matrix can be found easily by
backsubstitution. Backsubstitution works by computing the values of the vector from
the bottom up. Consider the computation for the first eigenvector: '

143246  —5.0645 1.7655 |[ xy, Xy
0 3.000 4837 || x,, | = 143246 % | x,,
0 0 1.6745 || x5 X3
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Using backsubstitution, one solves this system of equations for x,, first. The last equa-
tion implies that x,, = 0. Then one solves the second equation for x,, to find that x,, = 0.
Finally, the first equation is solved for x ,. This gives x,, = 1. The eigenvector associated
with the eigenvalue 14.3246 is (1, 0, 0). The other two eigenvectors can be found in the
same way. The eigenvector associated with the eigenvalue 3 is (—.4082, —.9129, 0) and
the eigenvector associated with the eigenvalue 1.6754 is (—.2593, —.3313, .9072). These
eigenvectors can be converted into the ones for HAH by multiplying them by the
matrix Q which is given by O = Q, * Q, * ... * Q,. These vectors can be converted into
the one for the original matrix A by multiplying them by the matrix H. This process
gives the eigenvectors for the matrix A as the column vectors of the following matrix:

-.1925 -.0701 .1925
E =} -.6086 0.0000 —.6086 (8.10.2)
—.7698  0.7G71 7698

In Matlab®, one can compute the eigenvalues and eigenvectors by using the command
[U, D] = eig(A). The matrix U contains the eigenvectors as column vectors and the
matrix D is a diagonal matrix which has the eigenvalues on the diagonal. The column
vectors in Eq. (8.10.2) agree with the eigenvectors that one gets from Matlab®.

Summary of the Algorithm. Given a matrix A, the following algorithm can be
used to compute the eigenvalues and eigenvectors:

1. Convert the matrix A into Hessenberg form by the Householder matrix H (i.e.,
compute A, = HAH, where A, is a Hessenberg matrix).

OR decompose A4, (i.e, A, = O, *R)).

Construct another matrix A, which is similar to A, A, = R * 0,
Repeat steps 2 and 3 until A, is an upper triangular matrix.

The eigenvalues for A are located on the diagonal of A, .
Compute the eigenvectors for A, using backsubstitution.

. Multiply these vectors by the matrix H* Q, * Q,* ... * O to get the eigenvectors
of A.

g
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For the system shown in Fig. P8.1, the flexibility matrix is
Z 2k k k
2m =W~ m m
—X % X
FIGURE P8.1.

05 05 05

[a] = =[05 15 15
05 15 25

Write the equation of motion in terms of the flexibility and derive the characteristic
equation

M52 +450—-1=0

Show agreement with the characteristic equation in Sec. 8.1 by substituting A = 1/Ain
the foregoing equation.

.2. Use Matlab® to solve for A; and ¢, and verify the o, and ¢, given in Sec. 8.1.
8.3.

For the system in Sec. 8.1, the eigenvector for the first mode was determined by the Gauss
elimination method. Complete the problem of finding the second and third eigenvectors

For Prob. 8.1, rewrite the characteristic determinant as
{1 1.5 -05 0
=i, 1 +1 -1 2 -1]|=0
1 0 -1 1

by dividihg the first equation by 2. (See App. C.4.) Note that the new determinant is now
not symmetric and that the sum of the diagonal, or trace, is 4.5, which is the sum of the
eigenvalues:. Determine the eigenvectors from the cofactors as in App. C.4.

In the method of cofactors, App. C.4, the cofactors of the horizontal row, and not of the
column, must be used. Explain why. ’

Write the equations of motion for the 3-DOF system shown in Fig. P8.6, in terms of the
stiffness matrix. By lettingm, = m, = mand k, = k, = k, = k, the roots of the character-
istic equation are A, = 0.198, A, = 1555, and A, = 3.247. Using these results, calculate

the eigenvectors by the method of Gauss elimination and check them against the eigen-
vectors obtained by the computer.
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Y/
ky ka k3
2—1\/\/\&7 m, A my WA my

—x C—, —=x;  FIGURE P8.6.

8.7. Repeat Prob. 8.6 starting with the flexibility equation.

8.8. Draw a few other diagrams of systems equivalent to Fig. P8.6, and determine the eigen-
values and eigenvectors for k; and m, assigned by your instructor.

8.9. Determine the equation of motion for the system shown in Fig. P8.9 and show that its
characteristic equation is (for equal k_and m )

A=A+ 2542210 +3=0

Solve for the eigenvalues and eigenvectors.

FIGURE P8.9.

8.10. Using the eigenvalues of Prob. 8.9, demonstrate the Gauss elimination method.

8.11. In Example 53.2, if the automobile wheel mass (m, for the two front wheels and the
same for the two rear wheels) and tire stiffness (k, for the two front tires and the same
for the two rear tires) are included, the 4-DOF equation of motion in matrix form

becomes
1 .o

m i po

A ) A O

0 1M %

: my, fz
(ky +ky)  (kyly— k1) '~k ~k,
(oly — kL) (BB +kB3) 0 kil —ksh, |] 6

i
________________________ fmmmmmmmmm el ] = {0}
—k, k.l ko + kg 0 Xy
b0 kgt ky |\
Draw the spring-mass diagram for the configuration and derive the foregoing equation.
[M] 8.12. Additional data for Prob. 8.1 are w, = m,g = 160 Ib and k, = 38,400 Ib/ft. Using a com-

puter, determine the four natural frequencnes and mode shapes, compare with the results
of Example 5.3.2, and comment on the two.

M] 8.13. The uniform beam of Fig. P8.13 is free to vibrate in the plane shown and has two concen-
trated masses, m, = %1~ 500 kg and m, = w? = 100 kg. Determine the two natural fre-
8

quencies and mode shapes. The flexibility influence coefficients for the problem are
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given as
. _ 13 _1 3 13
T A8 El 6™ ‘2T gEp
pmay = L1
12 2T pEr T 3%
W,
/ﬁ‘ 7,
> W,
1 1
i
FIGURE P8.13.

8.14. Determine the influence coefficients for the three-mass system of Fig. P8.14 and calcu-
late the principal modes.

R
4k
3m s
T,
2k
2m X
T,
k
"y Lot etd
) m m m
FIGURE P8.14. FIGURE P8.15.

8.15. Determine the three natural frequencies and modes for the cantilever beam of Fig. P8.15.

Note: The flexibility matrix in Example 6.1.3 is for coordinates given in reverse order to
above problem. . : ' :

[M] 8.16. Determine the natural frequencies and mode shapes of the torsional system of Fig. P8.16.

FIGURE P8.16.
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8.17. In Fig. P8.17 four masses are strung along strings of equal lengths. Assuming the tension
to be constant, determine the natural frequencies and mode shapes.

m m m
oD o o v
A A A A2

FIGURE P8.17.

®s

8.18. Decompose the stiffness matrix K = U'U for Fig. P8.18.

<[5 7]

4 & k 3k
N— My m,

—-—-»)(1 —>X2

FIGURE P8.18.

8.19. Repeat Prob. 8.18 for the system shown in Fig, P8.19.

|5

4 2k K 3m
m, my
— X1 —_— XZ
FIGURE P8.19. FIGURE P8.20.

8.20. For the system shown in Fig. P8.20, write the equation of motion and convert to the stan-

dard form. »
8.21. The stiffness matrix for the system shown in Fig. P8.21 is given as
3 -1 -1
K=kl -1 2 -1
-1 -1 2

Determine the Choleski decomposition U and U~'.

k
ANWY
2 « K k
m —\W\WA\— m m
R —>x1 ———xz —----xzs

FIGURE P8.21.
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8.22. Given the mass and stiffness matrices .
3 0 3 -1
M= , K=
’"[ 0 2] {3 2]
determine the natural frequencies and mode shapes using the standard form.

8.23. Repeat Example 8.9.1 by decomposing the stiffness matrix and compare the results with
those given in the example.

B E

8.24. Express the following equation in standard form using Choleski decomposition of the.
mass matrix.

4 1 0 2 -1 0]~ (o
M1 4 1]+ -1 2 -1 X1 =40
0 1 2 0 -1 1 X5 lO
8.25. Repeat Prob. 8.24 by decomposing the stiffness matrix.
8.26. Verify the equation of motion for the system of Fig. P8.26:

m, 0 ](x (k, + ky + k3) ~k, HXI} {0}
A = =k =
[ 0 mszz} [ —k, (ky + k,) X, 0 i i =m and k

Determine the eigenvalues and eigenvectors.

& [E

X5 My ke Mg X4
— ] —
ky ke
X, my k5 my 'X3
ks k3

FIGURE P8.26. FIGURE P8.27.

8.27. The equation of motion for the system shown in Fig. P8.27 is given as

m, X,
2 x2 +
ms X3
m, ""4
(k1 + ky + ks) -k, —ks 0o - X 0
kL (gt k) 0 —kg 5\ _J0
~ks 0 (ky + kg + k) -k, x| o
0 —kg -k, (ky + ko) | Uxs ) 0

Determine its eigenvalues and eigenvectors when m, = m and k, = k. Plot the mode
shapes and discuss the action of springs k; and k.
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CHAPTER 9

Vibration of Continuous
Systems

The systems to be studied in this chapter have continuously distributed mass and elas-
ticity. These bodies are assumed to be homogeneous and isotropic, obeying Hooke’s
law within the elastic limit. To specify the position of every point in the elastic body, an
infinite number of coordinates is necessary, and such bodies, therefore, possess an infi-
nite number of degrees of freedom.

In general, the free vibration of these bodies is the sum of the principal or normal
modes, as previously stated. For the normal mode vibration, every particle of the body
performs simple harmonic motion at the frequency corresponding 