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xi

This book is the fifth edition of the Theory of Vibration with Applications. For a classi­
cal subject like Vibration, an explanation for another revision is in order.

Although the subject of Vibration does not greatly change, the development of
new and sophisticated digital techniques keep advancing and increasing the' wide vari­
ety of problems to be solved and discussed in class.

MATLAB®is a versatile computer software programthat is commercially avail­
able and adopted by many engineering schools. It is compatible with the previous com­
putational methods of the 4th edition and we have decided to augment and broaden'
the computer capabilities of the 4th edition with its use in the 5th edition. To undertake
this revision, our editor and I have engaged a competent co-author. Dr. Marie D.
Dahleh, of our Engineering Department, to work with me on this task.

The authors recognize that problem solving is a vital part of the learning process,
and the use of a versatile new computer technique will enhance the student's capabili­
ties not only in the field of Vibration, but to other fields as well. To use MATLAB,or any
other new computer method, it is not necessary to completely understand the detailed
mathematics on which the software program is based. On this point, I am reminded of
a timely quotation by Oliver Heavyside, a famous British mathematician and engineer
of the early 20th century, who was being criticized for his innovative mathematics. His
response to them was; "Should I refuse my dinner because I do not understand the
process of my digestion?"

As in earlier editions, the first four chapters, which deal with single-degree-of­
freedom systems, need very few changes. However, wherever appropriate, MATLAB
has been introduced to familiarize the reader with the MATLABcommands that will be
necessary to make use of this facility. At the end of Chapter 4, where, the first extensive
calculations with finite difference and Runge-Kutta were made, the MATLABmethod
is demonstrated with parallel computations for comparison.

Systems with two or more degrees of freedom, introduced in Chapter 5, offers a
logical opportunity to present the matrix notation. The Mass and the Stiffness Matrices
are defined here and the digital computation in Fortran has been completely replaced
.by MATLAB.lQe importance of normal mode vi~ration is emphasized in this chapter
and free vibrations are demonstrated to be composed of normal modes with specified
initial conditions. Forced vibrations are again presented in terms of frequency ratio of
forced to normal modes, and the important application of vibration absorbers and
dampers is retained unchanged.

Chapter 6, "Properties of Vibrating Systems," remains essentially unchanged.
Stiffness of framed structures is again presented to bring out the introductory basics of
the finite element method presented later in Chapter 10. Orthogonality of eigenvec­
tors, the modal matrix and its orthonormal form enable concise presentation of basic

PREFACE
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equations for the diagonal eigenvalue matrix that forms the basis for the computation
of the eigenvalue-eigenvector problem. They also provide a background for the no£-.
mal mode summation method. The chapter concludes with the modal damping and
examples of equal roots and degenerate systems.

Chapter 7 presents the classic method of Lagrange, which is associated with vir­
tual work and generalized coordinates. Included in this chapter is the method of
assumed modes, which enables the determination of eigenvalues and eigenvectors of
continuous systems in terms of smaller equations of discrete system equations. The
Lagrangian method offers an all-encompassing view of the entire field of dynamics, a
knowledge of which should be acquired by all readers interested in a serious study of
dynamics.

Chapter 8, "Computational Methods," examines the basic methods of computa­
tion that are utilized by the digital computer. Most engineering and science students
today acquire knowledge of computers and programming in their freshman year and,
given the basic background for vibration calculation, they can generally follow com­
puter programs for eigenvalues and eigenvectors. Covered in this chapter are the fol­
lowing subjects; Polynomial method, Gauss elimination, Matrix iteration, the Dynamic
matrix, Standard computer form, Cholesky Decomposition, Jacobi Diogonalization,
and the QR Decomposition. As stated earlier, for those who feel intimidated by the
somewhat difficult mathematics may ignore these sections or even skip the entire
Chapter 8 and still acquire the skills of using these newer computer programs. The for­
mer computations made by Fortran are now replaced and plotted by MATLAB.

Chapter 9, "Vibration of Continuous Systems," Rods and beams of uniformly dis­
tributed mass and stiffness represent continuous systems of infinite degrees of free­
dom. To analyse the vibration of such system requires the use of partial differential
equation, presented in the first part of this chapter. As example of how these solutions
can be adopted to more complex structures, an example of the vibration of the Tacoma
Narrows suspension bridge is presented. When the continuous structure is discretized
into repeated identical sections, simple analytic expressions are available for the nat­
ural frequencies and mode shapes by the use of difference equations: Here the method
demonstrates the technique of matching boundary conditions.

Chapter 10, "Introduction to the Finite Element Method," remains unchanged
except that the computing is done entirely by MAILAB.A few helpful hints have been
injected in some places, and the section on generalized force proportional to displace­
ment has been substantially expanded by detailed computation of rotating helicopter
blades. Brought out by this example is the advantage of forming equal element sec­
tions of length I == 1 (alll's can be arbitrarily equated to unity inside of the mass and
stiffness matrices when the elements are of equal lengths) for the compiling of the
mass and stiffness matrices and converting the final results to those of the original sys­
tem only after the computation is completed.

Chapters 11 and 12: These two chapters, "Mode Summation Procedures for
Continuous Systems," and "Classical Methods" have been retained as in the previous
edition. Being essentially computing methods, MATLABhas been advantageously used.
Holzer and Myklestad methods have been placed into MATLABfiles for available use.

Chapter 13. "Random Vibrations": Random vibration became of interest to the
engineer with the development of jet engines for airplanes. It is a nondeterministic

xii Preface
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Note: To find the M files referenced in the text Jog on to the
Prentice Hall's World Wide Web site at: http://www.prenhall.com
and access the ftp files either via the down load libraries on the
authors' catalog page or under the Help topic' or directly at
FrP:/ /ftp.prenhall.com.

William T. Thomson
Marie Dillon Dahleh

phenomena which require a probabilistic solution. The presentation of the subject here
is mainly from the mathematical treatment to familiarize the students with the new
terminology. Progress in this field is largely through instruments developed to make
measurements useful to engineering design.

Chapter 14,"Nonlinear Vibrations", can be described as a behavior which cannot
be solved mathematically by superposition. The understanding of its behavior is best
studied by means of the phase-plane. Presented in this chapter are some terminology
for nonlinear systems, its stability and limit cycle and the computer programs of
Runge-Kutta used for its digital solution. A number of problems suitable for the com­
puter are listed in the problem section and marked with a capital M.

Finally I wish to acknowledge my appreciation to my coauthor and to Dr. Igor
Mezic of our Mechanical Engineering Department, who corrected and assembled the
Solutions Manual for the fifth edition and added several new problems throughout the
text.

Preface xiii
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1

Because the meter is a large unit of length, it will be more convenient to express
it as the number of millimeters multiplied by 10-3• Vibration instruments, such as
accelerometers, are in general calibrated in terms of g = 9.81 mls2, and hence
expressed in nondimensional units. It is advisable to use nondimensional representa­
tion whenever possible.

N (= kg· ml S2)
Pa (= N/m2)

J(= N·m)
W (= J/s)
Hz (= lIs)

Nom (= kg· m2/ S2)

m/s2
mls
lIs
m" (mrrr' X 10-12)
. kg-rn? (kg-ern- X 10-4) .

Moment of a force
Acceleration
Velocity
Angular velocity
Moment of inertia (area)
Moment of inertia (mass)

Newton
Pascal'
Joule
Watt
Hertz

Force
Stress
Work
Power
Frequency

The following quantities pertinent to the vibration field are derived from these basic
units:

m
kg
s

Meter
Kilogram
Second

Length
Mass
Time

Name SymbolUnits

The English system of units that has dominated the United States from historical times
is now being replaced by the SI system of units. Major industries throughout the
United States either have already made, or are in the process of making, the transition,
and engineering students and teachers must deal with the new SI units as well as the.
present English system. We present here a short discussion of the SI units as they apply
to the vibration field and outline a simple procedure to convert from one set of units to
the other.

The basic units of the SI system are

THE SI SYSTEM OF UNITS

THE SI SYSTEM OF UNITS
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•

[Moment of inertia SI] = [Moment of inertia English] X [multiplying factors]

[kg-nr' = u-rn-s'] = [JtS.jrl .: S2](~. ~.)

= [lb· in. ·s2](4.448 X 0.0254)

= [lb· in.· s2](0.1129)

EXAMPLE 2

•

[N·m] = [JtS. jrl.] (~) (;.)

= [lb· in.](4.448)(O.0254)

= [lb·in.](0.1129)

[Torque SI] = [Torque English] x [multiplying factors]

EXAMPLE 1

Sf conversion. A simple procedure to convert from one set of units to another
follows: Write the desired SI units equal to the English units, and put in canceling unit
factors. For example, if we wish to convert torque in English units into SI units, we pro­
ceed as follows:

lib - 4.5 N
Acceleration of gravity g - 10m/s?
Mass of 1 slug - 15 k1 g
1ft - 3m

Table of Approximate Equivalents

In the English system, the weight of an object is generally specified. In the SI sys­
tem, it is more common to specify the. mass, a quantity of matter. that remains
unchanged with location.

In working with the SI system, it is advisable to think directly in SI units. This will
require some time, but the following rounded numbers will help to develop a feeling of
confidence in the use of SI units.

The newton is a smaller unit of force than the pound. One pound of force is equal
to 4.4482 newtons, or approximately four and a half times the value for the pound. (An
apple weighs approximately ~ lb, or approximately 1 newton.)

One inch is 2.54 em, or 0.0254 meter. Thus, the acceleration of gravity, which is
,386 in./s2 in the English system, becomes 386 X 0.0254 = 9.81 m/s", or approximately
10m/s".

2 The 51Systemof Units
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Conversion Factors* U.S.-British Units to SI Units

To Convert From To Multiply By

Acceleration:
foot/second- (ft/s'') meter / second- (m/ S2) 3.048 X 10-1*
inch/second? (in./s2) meter/second- (m/s-) 2.54 x 10-2*

Area:
foot? (ft2) meter? (m-) 9.2903 x 10-2
inch- (in.2) meter? (m-) 6.4516 X 10-4*
yard- (yd-) meter- (m-) 8.3613 X 10-1

Density:
pound mass/inch' (Ibm/in.') kilogram/meter- (kg/ m'') 2.7680 x 104
pound mass/foot- (Ibm/It") kilogram/meter' (kg/m') 1.6018 X 10

Energy, Work:
.British thermal unit (Btu) joule (J) 1.0551 X 1()3
foot-pound force (ft ·lbf) joule (J) 1.3558
kilowatt-hour (kw . h) joule (J) 3.60 X 106*

Force:
kip (1000 lbf) newton (N) 4.4482 X 103
pound force (lbf) newton (N) 4.4482
ounce force . newton (N) 2.7801 X 10-1

Length:
foot (ft) .meter (m) 3.048 X 10-1*
inch (in.) meter(m) 2.54 X 10-2*
mile (mi) (UiS, statute) meter (m) 1.6093 x 103

•
[kg] = [lb·s2/iri.] x (175.13)

Mass.M:

[N/m] == [lb/in.] x (175.13)

Spring Stiffness, K:

EXAMPLE 4

E of steel N/m2 = (29 X 1Q6Ib/in.2) (6894.7) = 200 X 10"9N/m2
•

[N/m2] = [~'](~)(:r
= [i~2 ](4.448)( 0.0~54Y
= [ .lb2 ](6,894.7)

lD.

Modulus of Elasticity: E:

EXAMPLE 3

The SI System of Units 3
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*Exact value.
Source: 1.L.Meriam, Dynamics, 2nd Ed. (SI Version) (New York: John Wiley, 1975). The International System of Units (SI),
July 1974, National Bureau of Standards, Special Publication 330.

To Convert From To Multiply By

mile (mi) (international nautical) meter (m) 1.852 x 103"
yard (yd) meter (m) 9.144 X 10-1"

Mass:
pound· mass (Ibm) kilogram (kg) 4.5359 x 10-1
slug (lbf . s2/ft) kilogram (kg) 1.4594 x 10
ton (2000 Ibm) kilogram (kg) 9.0718 x 102

Power:
foot-pound/minute (ft ·.Ibf/min) watt (W) 2.2597 x 10-2
horsepower (550 ft . Is) watt (W) 7.4570 x 102

Pressure, stress:
atmosphere (std) (14.7Ibf/in.2) newton/meter- (N/m2 or Pa) 1.0133 x UP
pound/foot? (lbf/ft2) newton/meter- (N/m2 or Pa) . 4.7880 X 10
pound/inch- (lbt/in.', or psi) newton/meter? (N/m2 or Pa) 6.8948 X 103

Velocity:
foot/minute (It/min) meter/second (m/s) 5.08 X 10-3~
foot/second (ft/s) meter/second (m/s) 3.048 x 10-1*
knot (nautical mi/h) meter/second (m/s) 5.1444 x 10-1
mile/hour (mi/h) meter/second (m/s) 4.4704 x 10-1*
mile/hourtrni/h) kilometer /hour(km/h) 1.6093
mile/second(mils) kilometer / second(km/s) 1.6093

Volume:
foot! (ft3) meter" (m") 2.8317 X 10-2
inch" (in.') meter' (m'') 1.6387 X 10-5

Conversion Factors* U.S.-British Units to SI Units (continued)

4 The SISystemof Units
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5

The study.of vibration is concerned with the oscillatory motions of bodies and the
forces associated with them. All bodies possessing mass and elasticity are capable of
vibration. Thus, most engineering machines and structures experience vibration to some
degree, and their design generally requires consideration of their oscillatory behavior.

Oscillatory systems can be broadly characterized as linear or nonlinear. For linear
systems, the j?rinciEle of superpositiQ.n holds, and the mathematical techniques avail­
able for their treatment are well developed. In contrast, techniques for the analysis of
nonlinear systems are less well known, and difficult to apply. However, some knowl­
edge of nonlinear systems is desirable, because all systems tend to become nonlinear
with increasing amplitude of oscillati!m. .

1,bere are two general classes of vibr~-'-free and forced. Free vibration takes
place when a system oscillates under the action of forces inherent III the system itself,
and when external im_pressedforces are absent. The system under free vibration will
vibrate at one or more of its natural frequencies, which are properties of the dynamical
system established by its mass and stiffness distribution.

Vibration that takes place under the excitation of ~ternal forces is called ~
vibration. When the excitation is oscillatory, the system is forced to vibrate at the exci­
tation frequency. If the frequency of excitation coincides with one of the natural fre­
quencies of the system, a condition of resonance is encountered, and dangerously large
oscillations may result. The failure of major structures such as bridges, buildings, or air­
plane wings is an awesome possibility under resonance. Thus, the calculation of the
natural frequencies is of major importance in the study of vibrations. '

Vibrating systems a~e all ~bject to da"1Ping to some degree because energy is
dissipated by friction and other resistances. If the damping is small, it has very little
influence on the natural frequencies of the system, and hence the calculations for the
natural frequencies are generally made on the basis of no damping. On the other hand,
damping is of great importance in limiting the amplitude of oscillation at resonance .

. 1he number of independent coordinates required to describe the motion of a sys­
tem is called degrees of freedom of the system. Thus, a free particle undergoing general
motion in space will have three degrees of freedom, and a rigid body will have six

Oscillatory Motion

CHAPTER 1
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FIGURE 1.1.2. Harmonic motion as a projection of a point moving on a circle.

wt

(1.1.1)
. t

x = A sin27T­
T

1.1 HARMONIC MOTION

Oscillatory motion 'may repeat itself regularly, as in the balance wheel of a watch, or
display considerable irregularity, as in earthquakes. When the motion is repeated in
equal intervals of time T, it is called periodic motion. The repetition time T is called the
period of the oscillation, and its reciprocal, f = 1/ T, is called the frequency. If the
motion is designated by the time function x(t), then any periodic motion must satisfy
the relationship x(t) = x(t + T).

The simplest form of periodic motion is harmonic motion. It can be demon­
strated by a mass suspended from a light spring, as shown in Fig. 1.1.1. If the mass is
displaced from its rest position and released, it will oscillate up and down, By placing a
light source on the oscillating mass, its motion can be recorded on a light-sensitive film-
.strip, which is made to move past it at a constant speed.

The motion recorded on the filmstrip can be expressed by the equation

degrees of freedom, i.e., three components of position and three angles defining its ori­
entation. Furthermore, a continuous elastic body will require an infinite number of
coordinates (three for each point on the body) to describe its motion; hence, its
degrees of freedom must be infinite. However, in many cases, parts of such bodies may
be assumed to be rigid, and the system may be considered to be dynamically equiva­
lent to one having finite degrees of freedom. In fact, a surprisingly large number of
vibration problems can be treated with sufficient accuracy by reducing the system to
one having a few degrees of freedom.

FIGURE 1.1.1. Recording harmonic motion.

Oscillatory Motion6 Chapter 1
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"The word circular is generally deleted, and wand f are used without distinction for frequency.

FIGURE 1.1.3. In harmonic motion, the velocity and acceleration lead the displacement by
7T/2 and 7T.

(b)

(1.1.6)

(0)

Thus, the velocity and acceleration are also harmonic with the same frequency of oscil­
lation, but lead the displacement by 1T/2 and 1Tradians, respectively. Figure 1.1.3 shows
both time variation and the vector phase relationship between the displacement, veloc­
ity, and acceleration in harmonic motion.

Examination of Eqs. (1.1.2) and (1.1.5) reveals that

(1.1.5)x = - w2A sin wt = w2A sin (wt + 1T)

where 'T and f are the period and frequency of the harmonic motion, usually measured
in seconds and cycles per second, respectively.

The velocity and acceleration of harmonic motion can be simply determined by
differentiation of Eq. (1.1.2). Using the dot notation for the derivative, we obtain

x = wA cos wt = wA sin (wt + 1T/2) (1.1.4)

(1.1.3)
21T

W = - = 21Tf
'T

The quantity w is generally measured in radians per second, and is referred to as
the circular frequency. 1 Because the motion repeats itself in 21T radians, we have the
relationship

(1.1,2)x = A sin wt

where A is the amplitude of oscillation, measured from the equilibrium position of the
mass, and 'T is the period. The motion is repeated when t = 'T.

Harmonic motion is often represented as the projection on a straight line of a
point that is moving on a circle at constant speed, as shown in Fig. 1.1.2.With the angu­
lar speed of the lineO-p designated by w, the displacement x can be written as

Harmonic Motion 7.Section 1.1

www.semeng.ir

http://www.semeng.ir


FIGURE1.1.5. Vector z and its conjugate z*.FIGURE1.1.4. Harmonic motion
represented by a rotating vector.

x

yy

Multiplication

(1.1.10)Division

= x + iy

The quantity z is referred to as the complex sinusoid, with x and y as the real and imag­
inary components, respectively. The quantity z = Aeiwt also satisfies the differential
equation (1.1.6) for harmonic motion.

Figure 1.1.5 shows z and its conjugate z* = Ae-iwt, which is rotating in the nega­
tive direction with angular speed .. w. It is evident from this diagram that the real com­
ponent x is expressible in terms of z and z* by the equation

x = Hz + z*) = A cos wt = Re Aeiwt (1.1.9)

where Re stands for the real part of the quantity z. We will find that the exponential
form of the harmonic motion often offers mathematical advantages over the trigono­
metric form.

Some of the rules of exponential operations between Zt = At ei61 and Z2 == A2ei82
are as follows:

(1.1.8)= A cos wt + iA sin wt

z = Aeiwt

A vector of amplitude A rotating at constant angular speed w can be represented as a
complex quantity z in the Argand diagram, as shown in Fig. 1.1.4.

(1.1.7)ei 6 = cos (}+ i sin (}

~nential f~=_ The"tr"igopo~etriE_~uncti9.usof sine and cosine are related to
the exponeIifla11UiiCtionby Euler's equation

so that in harmonic motion, the acceleration is proportional to the displacement and is
directed toward the origin. Because Newton's second law of motion states that the
acceleration is proportional to the force, harmonic motion can be expected for systems
with linear springs with force varying as kx.

Oscillatory Motion8 Chapter 1
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FIGURE1.2.1. Periodic motion of period T.

I__.;'-----~ T---- ..1

x(/)

(1.2.2)
.J T/2 . {O ifm =1= n

sin wnt sin wmt dt = /
-T/2 . . 'T 2 ifm = n

ifm =1= n

To determine the coefficients an and bn, wemultiply both sides of Eq. (1.2.1) by cos wi or
sin wi and integrate each term over the eriod 'T. By recognizing the following relations,

J
T/2 . {O

cos wnt cos wmt dt = /
-T/2 'T 2 ifm = n

'T

271'
where

(1.2.1)
x{t} = ao + a cos w t + a cos to-: + .,.2 1 1 2 WL.

+ b, sin wlt + b2 sin w2t + ...

It is quite common for vibrations of several different frequencies to exist simultane­
ously. For example, the vibration of ~ violin string ~~-~_.2f the fundamentillre­
quency f and all its ~ and so forth. Another example is the free
Vi6faf1onof a multidegree-of-freedom system, to which the vibrations at each natural
frequency contribute. Such vibrations result in a complex waveform, which is repeated
periodically as shown in Fig. 1.2.1.

The French mathematician 1. Fourier (1768-1830) showed that any periodic
motion can be represented by a series of sines and cosines that are harmonically related.
Ifx(t) is a periodic function of the period 'T, it is represented by the Fourier series

1.2 PERIODIC MOTION

Powers

Periodic Motion 9Section 1.2
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An even function E(t) is symmetric about the origin, so that E(t) = E( -t), i.e.,
cosor = cos (-wt). An odd function satisfies the relationship O(t) = -o( -t), i.e.,
sin wt = -sin( -wt). The following integrals are then helpful:-.

(1.2.7)x(t) = E(t) + O(t)

(1.2.6)

1 fT/2
cn = - x(t)(cos wnt - i sin wnt) dt

T -T/2

1 f T/2 . .= _. . x(t)e-rw•t dt
T -T/2 .

Some computational effort can be minimized when the function x(t) is recogniz­
able in terms ofthe even and odd functions:

Substituting for an and bn from Eq. (1.23), we find cn to be

(1.2.5)
1

Co = 2aO

cn = Han - ibJ

where

(1.2.4)

in Eq. (1.2.1), we obtain

cos wnt = ~(eiwnt + e - iWnt)

sin wnt = -~i(eiwi - e-iwi)

The Fourier series can also be represented in terms of the exponential function.
Substituting

(1.2.3)

all terms except one on the right side of the equation will be zero, and we obtain the
result

ifm *" n
ifm = n

Oscillatory Motion10 Chapter 1
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2See1.S.Bendat and A. G.Piersol, Random Data (New York: John Wiley, 1971),pp. 305-306.

,
Certain terminologies used in vibration analysis need to be represented here. The sim­
plest of these are the peak value and the average value.

The peak value generatlyindicates the maximum stress that the vibrating partis
undergoing. Italso places a limitation on the "rattle space" requirement.

The average value indicates a~ or static value, somewhat like the de level of
an electrical current. It can be found by t~e time integral .

T

X = lim -Tll x(t) dt (1.3.1)
T~a:J O.

1.3 VIBRATIONTERMINOLOGY 7¥.'t-

(1.2.8)J T/2 E{t) sin wnt dt = 0
-T/2

J T/2 Q{t) cos wi dt = 0
-T/2

When the coefficients of the Fourier series are plotted against frequency wJI' the
result isa series of discrete lines called the Fourier spectrum. Generally plotted are the
absolute values 12cnl = Va~ + b~ and the phase cf>n= tan-1(bn/an), an example of
which is shown in Fig. 1.2.2. Fourier analysis including the Fourier transform are dis­
cussed in more detail in Chapter 13.

With the aid of the digital computer, harmonic analysis today is efficiently car­
ried out. A computer algorithm known as the fast Fourier transform' (FFT) is com­
monly used to minimize the computation time.

FIGURE 1.2.2. Fourier spectrum for pulses shown in Prob. 1.16,k = ~.
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FIGURE1.3.1. Average
value of a rectified sine wave.~

(1.3.4)dB = 20 IOglO( :: )

Thus an amplifier with a voltage gain of 5 has a decibel gain of

20Iog10(5) = +14

(1.3.3)

= 10 IOglO( :: )'

The second equation results from the fact tha~ is proportional to the square of
the amplitude or voltage. The decibel is often expressed in terms of the first power of
amplitude or voltage as

The root mean sq_uare(rms) value is the ..s9.uare _root of the mean square value.
From the previous example, the rms of the sine wave of amplitude A is
A/V2 = 0.707A.Vibrations are commonly measured by rms meters.

The deci",l is a unit of measurement that is frequently used in vibration mea­
surements. It is defined in terms of a power ratio.

dB = 10 IOglO( ~: )

(1.3.2)- 1 ITx2 = lim - . x2(t} dt
T,oo T 0

For example, if x(t} = A sin wt, its mean square value is.. . ::::

- A2JT1 1x2 = lim -T - (1 - cos 2wt) dt = - A2
T,'X 0 2 2

For example, the average- value for a com lete c' de of a' sine wave, A sin t, is zero;
whereas its average value for a ha_!!:9r~-

x = A f 7T sin t dt = 2A = 0.637A
TTJo TT.

It is evident that this is also the average value of the ~sine wave shown in Fig. 1.3.1.
The square of the displacement generally is associated with the energy of the

vibration for which the mean square value is a measure. The QJ&9!!: square yalue of a
time function xCt) is found from the average of the squared values, integrated oversome
time interval T:

Oscillatory Motion12 Chapter 1
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FIGUREP1.11.

W1t

1.10. If the origin of the square wave of Prob. 1.9 is shifted to the right by 7T/2,determine the
Fourier series.

1.11. Determine the Fourier series for the triangular wave shown in Fig. Pl.ll.

FIGURE P1.9.

1.1. A harmonic motion has an amplitude of 0.20 em and a period of 0.15 s. Determine the
maximum velocity and acceleration.

1.2. An accelerometer indicates that a structure is vibrating harmonically at 82 cps with a
maximum acceleration of 50 g. Determine the amplitude of vibration.

1.3. A harmonic motion has a frequency of 10 cps and its maximum velocity is 4.57 m/s.
Determine its amplitude, its period, and its maximum acceleration.

1.4. Find the sum of two harmonic motions of equal amplitude but of slightly different fre-
quencies. Discuss the beating phenomena that result from this sum.

1.5. Express the complex vector 4 + 3i in the exponential form Aeill•
1.6. Add two complex vectors (2 + 3i) and (4 - i), expressing the result as A L0.
1.7. Show that the multiplication of a vector z = Aeiwl by i rotates it by 90°.
1.8. Determine the sum of two vectors 5ei'11/6 and 4ei'11/3 and find the angle between the resul­

tant and the first vector.
1.9. Determine the Fourier series for the rectangular wave shown in Fig. Pl.9.

PROBLEMS

Band Frequency Range (Hz) Frequency Bandwidth

10--20 10
2 20-40 20
3 40-80 40
4 200-400 200

Because the decibel is a logarithmic unit, it compresses or expands the scale.
When the ~ limit of a frequency range is twice its lower limit, the frequency

se_n is said_to be an oc.t.ave. For example, each of the frequency bands in the following
table represents an octave band.

Problems 13
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1.19. Determine the mean square value of the triangular wave of Fig. Pl.U.
1.20. An rms voltmeter specifies an accuracy of ±0.5 dB. If a vibration of 2.5 mm rms is mea­

sured, determine the millimeter accuracy as read by the voltmeter.

FIGUREP1.18.

ImAm.. m'
I. 1.1 !

1.18. Determine the mean square of the rectangular pulse shown in Fig. Pl.18 for k = 0.10. If
the amplitude isA,what would an rms voltmeter read?

FIGUREPl.17.·

1.17. Write the equation for the displacement-s of the piston in the crank-piston mechanism
shown in Fig. Pl.17, and determine the harmonic components and their relative magni­
tudes. If r]! = Lwhat is the ratio of the second harmonic compared to the first?

r-- 1.0- - r-- -

r-27T-j --lk7T~ WI

FIGUREP1.16.

1.13. Determine the rms value of a wave consisting of the positive portions of a sine wave.
1.14. Determine the mean square value of the sawtooth wave of Prob. 1.12.Do this two ways,

from the squared curve and from the Fourier series.
1.15. Plot the frequency spectrum for the triangular wave of Prob. 1.11.
1.16. Determine the Fourier series of a series of rectangular pulses shown in Fig. Pl.16. Plot en

and cf>n versus n when k = ~.

FIGUREP1.l2.

1.12. Determine the Fourier series for the sawtooth curve shown in Fig. Pl.12. Express the
result of Prob.1.12 in the exponential form of Eq. (1.2.4).

Oscillatory Motion14 Chapter 1
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1.23. Using coordinate paper similar to that of Appendix A, outline the bounds for the follow­
, ,ing vibration specifications. Max. acceleration = 2 g, max. displacement = 0.08 in., min.
and max. frequencies: 1 Hz and 200 Hz.

1.24. Assume a pulse occurs at integer times and lasts for 1 second. It has a random amplitude
with the probability of having the amplitude equal 1 or -1 being p(l) = p( -1) = 1/2.
What is the mean value and the mean square value of the amplitude?

1.25. Show that every functionf{t) can be represented as a sum of an odd function O(t) and an
even function E(l).

FIGURE P1.22.f~
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1.21. Amplification factors on a voltmeter used to measure the vibration output from an
accelerometer are given as 10,50, and 100.What are the decibel steps?

1.22. The calibration curve of a piezoelectric accelerometer is shown in Fig. P1.22 where the
ordinate is in decibels. If the peak is 32 dB, what is the ratio of the resonance response to
that at some low frequency, say, 1000cps?

Problems 15
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Figure 2.2.1 shows a simple undamped spring-mass system, which is assumed to move
only along the vertical direction. It has 1 degree of freedom (DOF), because its motion
is described by a single coordinate x.

2.2 EQUATIONS OF MOTION: NATURAL FREQUENCY

The basic vibration model of a simple oscillatory system consists of a~ a massless
spring, and a damper. The mass is considered to be lumped and measured in the SI sys­
tem as kilograms. In the English system, the mass ism = w/ g lb . s2/in.

The spring supporting the mass is assumed to be of negligible mass. Its force­
deflection relationship is considered to be linear, following Hooke's law,F = lex,where
the stiffness k is measured in newtons/meter or pounds/inch. .

The viscous damping, generally represented by a dashpot, is described by a
force proportional to the velocity, or f = ex. The damping coefficient e is measured in
newtons/ meter / second or pounds/inch/second.

2.1 VIBRATION MODEL

All systems possessing mass and elasticity are capable of free vibration, or vibration
that takes place in the absence of external excitation. Of primary interest for such a
system is its natural frequency of vibration. Our objectives here are to learn to write its
equation of motion and evaluate its natural frequency, which is mainly a function of
the mass and stiffness of the system.

Damping in moderate amounts has little influence on the natural frequency and
may be neglected in its calculation. The system can then be considered to be conserva­
tive, and the~inciple of conservation of energy offers another approach to the calcula­
tion of the natural frequency. The effect of damping is mainly ~~. in the diminishing
of the vibration amplitude with time. Although there are many models of damping, only
those that lead to simple analytic procedures are considered in this chapter.

Free Vibration

CHAPTER 2
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and we conclude by comparison with Eq. (1.1.6) that the motion is harmonic. Equa­
!ion (2.2.4), a ho~ogeneo\!.~ se~der linear differential equation, has the follow­

"mg general solution: ~\- ,,'~ll\.
" ~.')- x = A sin wnt +" B cos wi (2.2.5)

where A and B are the two necessal]: constants. These constants are evaluated from
initial conditions x(O) and ;(0), and Eq. (2.2.5) can be shown to reduce to

(2.2.4)X+W2x=0n

"Eq. (2.2.2) can be written as

It is evident that the choice of the static equilibrium position as reference for x has elimi­
nated W, the force due to gravity, and the static spring force k~ from the equation of
motion, and the resultant force on m is simply the spring force due to the displacement x.

By defining the circular frequency wnby the equation

k
w~ = m (2.2.3)

(2.2.2)mi' = -kx

By measuring the displacement x from the static equilibrium position, the forces act­
ing on m are k(~ + x) and w.With x chosen to be positive in the downward direction,
all quantities-force, velocity, and acceleration-are also positive in the downward
direction.

We now apply Newton's second law of motion to the mass m:

mX = 2.F = w - k(~ + x)
and because kS = w, we obtain

(2.2.1)kA = w = mg

When placed into motion, oscillation will take place at the natural frequency t;
which is a property of the system. We now examine some of the basic concepts associ­
ated with the free vibration of systems with 1 degree of freedom.

Newton's second law is the first basis for examining the motion of the system. As
shown in Fig. 2.2.1 the deformation of the spring in the static equilibrium position is ~,
and the spring force kA is equal to the gravitational force w acting on mass m:

FIGURE2.2.1. Spring-mass system and free-body diagram.

Equations of Motion: Natural F"requency 17Section 2.2
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Determine the natural frequency of the mass M on the end of a cantilever beam of negligible
mass shown in 'Fig. 2.2.2.

EXAM PLE2.2.2

•
0.25 X 9.81 = 16.0 mm
, 0.1533

k = 153.3 N/m

By substituting into Eq. (2.2.8), the natural frequency is

f = _!_ fI= _!__ ~ 153.3 = 3.941 Hz
271'-v ;;; 271' 0.25

The statical deflection ~f the spring suspending the ~-kg mass is obtained from the relationship
mg==kb:

Solution The stiffness is

A ~-kg mass is suspended by a spring having a stiffness of 0.1533 N/mm. Determine its natural
frequency in cycles per second. Determine its statical deflection.

EXAMPLE 2.2."

(2.2.9)
1/g

/'1 = 271''J 6.
Note that T,t: and wI! depend only on the mass and stiffness of the system, which are
properties of the system.

Although our discussion was in terms of the spring-mass ~stem of Fig. 2.2.1, the
results are applicable to all single-DOF systems, in~luding rotation. The spring can be a
beam or torsional member and the mass can be replaced by a mass moment of inertia.------.--A table of values for the stiffness k for various types of springs is presented at the end
of the chapter.

(2.2.8)t. =! 1 tt.
n T = 271''J -;;;

These quantities can be expressed in terms of the statical deflection Il. by observing
Eq. (2.2.1), kll. = mg.Thus, Eq. (2.2.8) can be expressed in terms of the statical deflec­
tion !l. as

and the natural freq uency is

(2.2.7)

The natural period of the oscillation is established from WnT = 271', or

r= 27rft
(2.2.6)

;(0) .
x = -- Sill uV + x(O) cos wnt

Wn

Free Vibration18 Chapter 2
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t,= 3~ (0.5 X 10-2)4 = 0.006136 X 1O-8m4

80 X 109 X '0.006136 X 10-8
K = 2 = 2.455N ·m/rad

Solution The rotational equation of motion corresponding to Newton's equation is

J(J = - K(J

where J is the rotational mass moment of inertia, K is the rotational stiffness, and (Jis the angle
of rotation in radians, Thus, the natural frequency of oscillation is equal to

. . 10
Wn = 27T30.2 = 2.081 rad/s

The torsional stiffness of the rod is given by the equation K = Glp/l, where Ip = 'TTd4/32 =
polar moment of inertia of the circular cross-sectional area of the rod, l = length, and
G = 80 X 109N/m2 = shear modulus of steel.

FIGURE 2.2.3.

J

An automobile wheel and tire are suspended by a steel rod 0.50 em in diameter and 2 m long, as
shown in Fig. 2.2.3.When the wheel is given an angular displacement and released, it makes 10
oscillations in 30.2 s.Determine the polar moment of inertia of the wheel and tire.

EXAMPLE 2.2.3

Solution The deflection of the cantilever beam under a concentrated end force Pis

PL3 P
X = 3EI = k

where EI is the flexural rigidity.Thus; the stiffness of the beam is k = 3£1/[3, and the natural fre­
quency of the system becomes

1 M
~'_I-==:::::;::;;;:;:;=====-D...J- __

I
/) - X
I: - .............._LFIGURE 2.2.2.

Equations of Motion: Natural Frequency' 19Section 2.2
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In a conservative system, the total energy is constant, and the differential equation of
motion can also be established by the principle of conservation of energy. For the free
vibration of an undamped system, the energy is partly kinetic and partly potential. The
kinetic energy T is stored in the mass by virtue of its velocity, whereas the potential

. 2.3 ENERGY METHOD

•

2:Mo = (-ka2 - kb2)8 = 108

Thus, the equation of motion can be written as

.. k(a2 + b2)
8+ . 8=0

10
and, by inspection, the natural frequency of oscillation is '

"', = ~ k(tl-J: b')

PIa + mgc - P2b = 0

in the equilibrium position, and hence we need to consider only the moment of the forces due to
displacement 8,which is

However,

Solution Under rotation 8, the spring force on the left is decreased and that on the right is
increased. With 10 as the moment of inertia of the bar about 0,the moment equation about 0 is

2: Mo = (PI - ka8)a + mgc - (p2 + kb8)b = 108

FIGURE 2.2.4.

Figure 2.2.4 .shows a uniform bar pivoted about point 0with springs of equal stiffness k at each
end. The bar is horizontal in the equilibrium position with spring forces Pi and P2• Determine the
equation of motion and its natural frequency.

•EXAMPLE 2.2.4

2.455
(2.081)2 = 0.567kg· rrr'

By substituting into the natural frequency equation, the polar moment of inertia of the wheel
and tire is
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Solution Assume that the system is vibrating harmonically with amplitude (J from its static
equilibrium position. The maximum kinetic energy is

Tmax·= UJ02 + im(rt8)2]max

Figure 2.3.1.

/

Determine the natural frequency ofthe system shown in Fig. 2.3.1.

EXAMPLE 2.3.1

The preceding equation leads directly to the natural frequency.

(2.3.5)Tmax = U~ax

However, if the system is undergoing harmonic motion, then T; and U2 are maximum
values, and hence

(2.3.4)

where 1 and 2 represent two instances of time. Let 1be the time when the mass is pass­
ing through its static equilibrium position and choose U1 = 0 as reference for the
potential energy. Let 2 be the time corresponding to the maximum displacement of the
mass. At this position, the velocity of the mass is zero, and hence T2 = O.We then have

(2.3.3)

I

If our interest is only in the natural frequency of the system, it can be determined
by the following considerations. From the principle of conservation of energy, we can
write

(2.3.2)
d
dt (T + U) = 0

(2.3.1)T + U = constant

energy U is stored in the form of strain energy in elastic deformation or by a spring or
work done in a force field such as gravity. The total energy being constant, its rate of
change is zero, as illustrated by the following equations:

Energy Method 21·Section 2.3
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Solution In determining the kinetic energy of the cylinder, it must be noted that both transla­
tion and rotation take place.The translational velocity of the centerof the cylinder is (R - r)O,
whereas the rotational velocity is (cf> - 0) = (R/r - 1)0,because cf> = (R/r)O for no slipping.
The kinetic energy can now be written as I

1W [ .]2 1W r2 r ( R ) . J2T=--(R-t)O +--- --10
2g 2g2L r·
3w .= -- (R - r)202
4g

where (w/g)(r2/2) is the moment of inertia of the cylinder about its mass center.
The potential energy referred to its lowest position is

U = w(R. - r)(1 - coss)

which is equal to the negative of the work done by the gravity force in lifting the cylinder
through the vertical height (R - r)(1 - coss). .

Substituting into Eq. (2~3.2)

[
3w·· ]. .2g (R - r)20 + w(R - r)sinO 0 = 0

Figure 2.3.2.

A cylinder of weight wand radius r rolls without slipping on a cylindrical surface of radius R, as
shown in Fig. 2.3.2. Determine its differential equation of motion for small oscillations about the
lowest point. For no slipping, we have ref>= Rv.

EXAMPLE 2.3.2

•
The student should verify that the loss of potential energy of m due to position riO is can­

celed by the work done by the equilibrium force of the spring in the position 0 = o.

Equating the two, the natural frequency is

The maximum potential energy is the energy stored in the spring, which is

Umax = ~k(r20)~ax
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'John W. Strutt, Lord Rayleigh, The Theoryof Sound, Vol. 1, 2nd rev. ed. (New York: Dover, 1937),
pp. 109-110.

Solution With x equal to the velocity of the lumped mass m,we will assume the velocity of a
spring element located a distance y from the fixed end to vary linearly with y as follows:

.y
xl

. Determine the effect of the mass of the spring on the natural frequency of the system shown in
Fig. 2.4.1.

EXAMPUE 2.4.1

In distributed mass systems such as springs and beams, a knowledge of the distri­
bution of the vibration amplitude becomes necessary before the kinetic energy can be
calculated. Rayleigh 1 showed that with a reasonable assumption for the shape of the
vibration amplitude, it is possible to take into account previously ignored masses and
arrive at a better estimate for the fundamental frequency. The following examples
illustrate the use of both of these methods.

(2.4.2)[fw =n .=,«

where meff is the effective mass or an equivalent lumped mass at the specified point. If
the stiffness at that point is also known, the natural frequency can be calculated from
the simple equation

(2.4.1)

The energy method can be used for multimass systems or for distributed mass systems,
provided the motion of every point in the system is known. In systems in which masses
are joined by rigid links, levers, or gears, the motion of the various masses can be
.expressed in terms of the motion x of some specific point and the system is simply one
of a single DOF, because only one coordinate is necessary. The kinetic energy can then
be written as

2.4 RAYLEIGH METHOD: EFFECTIVEMASS

•
. ~ 2g

"', = 3(R - r)

By inspection, the circular frequency of oscillation is

.. 2g
o + 3(R _ r) 0 = 0

and letting sin 0 = 0 for small angles, we obtain the familiar equation for harmonic motion

Rayleigh Method: Effective Mass 23Section 2.4
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The effective mass at midspan is then equal to

meff= M + 0.4857mb

f
l12 3 }21 2mb• 3x x 1 ·2r.: = 2 0 -1- {Ymax[T - 4(I )] dx = 2 (0.4857mb)Ymax

Y = Ymax[ 3; - 4( 7r]
The maximum kinetic energy of the beam itself is then

,
Solution We will assume the deflection of the beam to be that due to a concentrated load at
midspan or

I-x--
1----£FIGURE 2.4.2.

Effective mass of beam.

~112--l

A simply supported beam of total, mass mb has a concentrated mass M at midspan. Determine
the effective mass of the system at midspan and find its fundamental frequency. The deflection
under the load due to a concentrated force P applied at midspan is PP/48EI. (See Fig. 2.4.2 and
table of stiffness at the end of the chapter.)

EXAMPLE 2.4.2

•

The kinetic energy of the spring can then be integrated to....... ,

_ 1 f.'(.y)2ms _ 1=, ·2
Tadd - 2 0 Xl T dy - 23 x

and the effective mass is found to be one-third the mass of the spring. Adding this to the lumped
mass, the revised natural frequency is

FIGURE2.4.1.
Effective mass of spring.
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2Johann 1.Bernoulli (1667-1748), Basel, Switzerland.
3D'Alembert, Traitede dynamique, 1743.

~pring_force 8W = - (k ~ ()) ~ 8(J

£amper force 8W = - (cl8)/8()

Solution Draw the beam in the displaced position ()and place the forces acting on it, includ-·
-ing the inertia and damping forces. Give the beam a virtual displacement S8 and determine the
work done by each force. '

(
MI2 ••)

~ertia force 8W = - 3 ()8(J

Using the virtual work method, determine the equation of motion for the rigid beam of mass M
loaded as shown in Fig. 2.5.1.

EXAMPLE2.5.1

We now complement the energy method by another scalar method based on the prin­
ciple of virtual work. The principle of virtual work was first formulated by Johann 1.
Bernoulli.' It is especially important for systems of interconnected bodies of higher
DOF, but its brief introduction here will familiarize the reader with its underlying con­
cepts. Further discussion of the principle is given in later chapters.

The principle of virtual work is associated with the equilibrium of bodies, and
may be stated as follows: If a system in equilibrium under the action of a set of forces is
given a virtual displacement, the virtual work done by the forces will be zero.

The terms used in this statement are defined as follows: (1) A virtual displace­
ment Br is an imaginary infinitesimal variation of the coordinate given instantaneously.
The virtual displacement must be compatible with the constraints of the system.
(2) Virtual work BW is the work done by all the active forces in a virtual displacement.
Because there is no significant change of geometry associated with the virtual displace­
ment, the forces acting on the system are assumed to remain unchanged for the calcu­
lation of BW.

The principle of virtual work as formulated by Bernoulli is a static procedure. Its
·extension to dynamics was made possible by D'Alemberf (1718-1783), who intro­
duced the concept of the inertia force. Thus, inertia forces are included as active forces
when dynamic problems are considered.

2.5 PRINCIPLEOFVIRTUALWORK

•
~ 48EI

"'. ~ '/3(M + O.4857mbl

and its natural frequency becomes

Principle of Virtual Work 25Section 2.5
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Figure 2.5.2. Virtual work of double pendulum with motion of m2 restricted along vertical line.

~188sin8

\'88

Two simple pendulums are connected together with the bottom mass restricted to vertical
motion in a frictionless guide, as shown in Fig.2.5.2. Because only one coordinate (]is necessary,
it represents an interconnected single-DOF system. Using the virtual work method, determine
the equation of motion and its natural frequency.

EXAMPLE 2.5.2

•
(
MI2).. • 12 123 (]+ (cf)(] + k4" (]= POl t(t)

Uniform load 8W = ((Pot(t) dx)x 8f) = Pot(t)!:_ 8f)
Jo 2

Summing the virtual work and equating to zero gives the differential equation of motion:

FIGURE2.5.1.

I
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c
t::. kt::. •

----1',1- ~ kx ex----------Lf-------~-¥-
. F( t) FIGURE2.6.1.

The solution of this equation has two parts. If F(t) = 0, we have the homogeneous dif­
ferential equation whose solution corresponds physically to that of free-damped vibra­
tion. With F(t).::f= 0, we obtain the particular solution that is due to the excitation
irrespective of the homogeneous solution. Wf; will first examine the homogeneous
equation that will give us some understanding of the role of damping.

(2.6.2)mX + ex + kx = F(t}

where e is a constant of proportionality. Symbolically, it is designated by a dashpot, as
shown in Fig. 2.6.1.From the free-body diagram, the equation of motion is seen to be

(2.6.1)

Viscous damping force is expressed by the equation

Fd = ex

2.6 VISCOUSLY DAMPED FREEVIBRATION •

8 + (1 + 2m2) ~ e = 0
mj I

where sin e == e has been substituted. The natural frequency from the preceding equation is

Solution Sketch the system displaced by a small angle e and place on it all forces, including
inertia forces. Next give the coordinate e a virtual displacement 80. Due to this displacement, ml

and m2 will undergo vertical displacements of I 80 sin e and 2180 sin e, respectively. (The acceler­
ation ofm2 can easily be shown to be 2I(e sin e + e2cos e), and its virtual work will be an order
of infinitesimal, smaller than that for the gravity force and can be neglected.) Equating the vir­
tual work to zero, we have

oW = -(m/O)/8O - (mlg)I8O sin e - (m2g)2I8O sin e = 0

= -[mil e + (ml + 2m2)g sin e]/8O = 0

Because 80 is arbitrary, the quantity within the brackets must be zero. Thus, the equation of
motion becomes .
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Any damping can then be expressed in terms of the critical damping by a nondimen­
sional number (, called the damping ratio:

(2.6.9)c = 2m /k = 2mw = 2Wmc 'J;;; n .

the terms of Eq. (2.6.8) within the parentheses are oscillatory. We refer to this case as
underdamped.

In the limiting case between the oscillatory and nonoscillatory motion,
(cl2mf = kim, and the radical is zero. The damping corresponding to this case is called
critical damping, cc.

where A and B are constants to be evaluated from the initial conditions x(O) and x{O).
Equation (2.6.6) substituted into (2.6.7) gives

x = e-(c/2m)t(AlJ(C/2m)2_k/m)t + Be-(V(c/2m)2_k/m)t) , (2.6.8)

The first term, e.-(c/2m)t, is simply an exponentially decaying function of time. The
behavior of the terms in the parentheses, however, depends on whether the numerical
value within the radical is positive, zero, or negative.

When the damping term (c/2m)2 is larger than kim, the exponents in the previ­
ous equation are real numbers and no oscillations are possible. We refer to this case as
overdamped.

When the damping term (c/2m)2 is less than kim, the exponent becomes an imag­
inarynumber, ±tVk/m - {c/2m}2t. Because

(2.6.7)

(2.6.6)SI,2 = - ~ j: ~C:r.-~
Hence, the general solution is given by the equation

Equation (2.6.5), which is known as the characteristic equation, has two roots:

(2.6.5)

where s is a constant. Upon substitution into the differential equation, we obtain

(ms2 + cs + k)est = 0

which is satisfied for all values of t when

S2+ ~s+ ~ =0
m m

(2.6.4)x = est

(2,6.3)

With the homogeneous equation

mi'+cx+kx=O
the traditional approach is to assume a solution of the form
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-1.0
t=O

FIGU~E2.6.2.

Real
axis

t =0 Imaginary axis

1.0

t=1.0

The roots Sl and S2 are then conjugate complex points on a circular arc converging at
the point Sl./wn = -1.0. As ~ increases beyond unity, the roots separate along the

. (2.6.13)

This form of the equation for single-DOf systems will be found to be helpful in identi­
fying the natural frequency and the damping of the system. We will frequently
encounter this equation in the modal summation for multi-DOF systems.

Figure 2.6.2 shows Eq. (2.6.11) plotted in a complex plane with ~ along the hori- .
zontal axis. If ~= 0, Eq. (2.6.11) reduces to Sl./ wn = ±i so that the roots on the imagi­
nary axis correspond to the undamped case. For 0::5 ~::51, Eq. (2.6.11) can be
rewritten as

(2.6.12)
1x + 2~wnx + w~x = - F(t)
m

The three cases of damping discussed here now depend on whether ~ is greater
than, less than, or equal to unity. Furthermore, the differential equation of motion can
now be expressed in terms of ~and wn as

(2.6.11)

Equation (2.6.6) then becomes

Sl 2 = (-~ ± ~)wn

and we can also express Sl,2 in terms of ~as f~llows:

~ = ~(~) = ~w2m. 2m n

(2.6.10)
c~=
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FIGURE2.6.3. Damped oscillation, < 1.0.

;'
;'

;'

/

_ wnt

(2.6.20)

where

(2.6.19)

NonoscUJatory motion. [( > 1.0 (Overdamped Case).] As (exceeds l1:~i~)',the
.two roots remain on the real axis of Fig. 2.6.2 and separate, l5"n~n.creasing~·d the
other decreasing. The general solution then becomes ----.". o· -" , •. ,-' ,-,--

Figure 2.6.3 shows the general nature of the oscillatory motion.

(2.6.18)27r .. ~
W = - = w vI - [2d n!:>

Td

x = e-?W"t(X(O) ~O) sin ~ w,t+ x(O) cos V1=fw,t) (2.6.17)
Wn 1 - C .

The equation indicates that the frequency of damped oscillation is equal to

where the arbitrary constants X, </J, or Cl'C2 are determined from initial conditions.
With initial conditions x(O) and.i (0),Eq. (2.6.16) can be shown to reduce to

(2.6.15)

(2.6.16)

This equation can also be written in either of the following two forms:

x = Xe-?Wntsin(~ wnt + </J)

= e-?Wnt(Cl sin ~ wnt + C2cos ~ wnt)

(2.6.14)

Oscillatory motion. [C< 1.0 (Underdamped Case).] By substituting Eq. (2.6.11)
into (2.6.7), the general solution becomes

horizontal axis and remain real numbers. With this diagram in mind, we are now
ready to examine the solution given by Eq. (2.6.8).
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2.7 l:_OGARITHMICDECREMENT

A convenient way to determine ~ amount of damping present in a system is to mea­
sure the rate of decay of free oscillations. The larger the damping, the greater will be
the rate of decay.

Consider a damped vibration expressed by the genera) equation (2.6.15)
x = Xe-&wnt sin (V1"=7wnt + cp)

which is shown graphically in Fig. 2.7.1.We introduce here a term called the logarith­
mic decrement, which is defined as the natural logarithm of the ratio of any two succes­
sive amplitudes. The expression for the logarithmic decrement then becomes

x e-&w,,tl sin (V1"=7w t + cp)
13 = In _j_ = In \.IT=l2 n 1 - (2.7.1)

x2 e-&wn(tl +7) sin[ 1 - ,2Wn(t1 + Td) + cp]

This can also be found from Eq. (2.6.17) by letting ~~ 1.Figure 2.6.5 shows three types
of response with initial displacement x(O). .

(2.6.23)

Critically damped motion. [~= 1.0.] For ~= 1, we obtain a double root,
Sl = S2 = -wn' and the two terms of Eq. (2.6.7) combine to form a single term, which is
lacking in the number of constants required to satisfy the two initial conditions.

The correct general solution is

x = (A + Bt)e-w"t (2.6.22)

which for the initial conditions x(O) and x( 0) becomes

x = {x(O) + [i(O) + wnx(O)]t}e-Wnl

The motion is an exponentially decreasing function of time, as shown in Fig. 2.6.4, and
is referred to as aperiod.!.s,

(2.6.21)B = -.r(0) - (~- ~)wnx(O)
2wn~ .

and

FIGURE2.6.5. Critically damped motion { = 1.0.FIGURE2.6.4. Aperiodic motion { > 1.0.

Wn'O~----~~--~~~~I
/'8e(- ~-= ~ )Wn f
I
I
I
I
I

8

xU)

x

A
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0.12 = 0.0681
~.76

Solution The undamped natural frequency of the system in radians per second is

w. = if = ~ 30 ~o386 = 34.0 rad/s

The critical damping coefficient cc and damping factor l are

Cc = 2mwn = 2 x ;~6 x 34.0 = 1.76Ib/in./s

The following data are given for a vibrating system with viscous damping: w = 10 lb, k = 30
lb/in., and c = 0.12 lb/in./s. Determine the logarithmic decrement and the ratio of any two suc-
cessive amplitudes. .

EXAMPLE 2.7.1

is obtained. Figure 2.7.2 shows a plot of the exact and approximate values of 0 as a
function of (.

(2.7.4)

which is an exact equation.
When (is small,V1=7 == 1, and an approximate equation

0== 27T(

(2.7.3)

By substituting for the damped period, 'Td = 27T/WnY1=""?, the expression for the log­
arithmic decrement becomes

(2.7.2)

and because the values of the sines are equal when the time is increased by the
damped period 'Td, the preceding relation reduces to

FIGURE2.7.1. Rate of decay of
oscillation measured by the logarithmic

x
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The ratio xO/xn can be written as

Xo = (XO)(XI )(~) ... (Xn-l) = (eS)n = ens
Xn Xl X2 X3 x,

from which the required equation is obtained as

8= .!.InXo
n Xn

~ = ... = xn-1 ell
X3 x,

Solution The amplitude ratio for any two consecutive amplitudes is

where xn represents the amplitude after n cycles have elapsed. Plot a curve giving the number of
cycles elapsed against (for the amplitude to diminish by 50 percent.

Show that the logarithmic decrement is also given by the equation

1 Xo8= -In-
n xn

EXAMPLE 2.7.2

•

The amplitude ratio for any two consecutive cycles is
~ = ell = eO.429= 1.54
X2

The logarithmic decrement, from Eq. (2.7.3), is

27T x 0.0681 = 0.429
V1 - (0.0681)2

FIGURE2.7.2. Logarithmic
decrement as function of ,.

0.2 0.4 0.6 0.8 1.0
, = fc = Damping factor
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~k(Xl - X-1) = Fd
where X_I is the amplitude after the half-cycle, as shown in Fig. 2.8.1.

or

Coulomb damping results from the sliding of two dry surfaces. The damping force is
equal to the product of the normal force and the coefficient of friction IL and is
assumed to be independent of the velocity, once the motion is initiated. Because the
sign of the damping force is always opposite to that of the velocity, the differential
equation of motion for each sign is valid only for half-cycle intervals.

To determine the decay of amplitude, we resort to the work-energy principle of
equating the work done to the change in kinetic energy. By choosing a half-cycle start­
ing at the extreme position with velocity equal to zero and the amplitude equal to Xl'
the change in the kinetic energy is zero and the work done on m is also zero.

tk(Xi - X~I) - Fix1 + X-I) = 0

2.8 COULOMBDAMPING
•

The last equation is that of a rectangular hyperbola and is plotted in Fig. 2.7.3.

0.693
n{= h =0.110

To determine the number of cycles elapsed for a 50-percent reduction in amplitude, we
obtain the following relation from the preceding equation:

1 0.693o == 21T{ = -In 2 = --n n

FIGURE 2.7.3.
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2.1. A 0.453-kg mass attached to a light spring elongates it 7.87mm. Determine the natural
frequency of the system.

2.2. A spring-mass system, k, and m, has a natural frequency of fl' If a second spring kz is
added in series with the first spring, the natural frequency is lowered to ~f). Determine kz
in terms of k).

PROBLEMS

Numerical methods. Throughout the course of this book numerical techniques
are introduced when appropriate. The finite difference method is discussed in Sees, 4.7
and 5.5.The Runge-Kutta method appears in Sees,4.8 and 14.R Chapter 8 is devoted to
computational methods. It includes techniques for finding the roots ofa polynomial,
Sec. 8.1; eigenvalues and eigenvectors, Sees 8.2, 8.3, 8.9, and 8.10; and the Cholesky
decomposition, Sec. 8.8. The finite element method is the subject of Chapter 10.The
equations for a bar are contained in Sec. 10.1 and those for a beam are in 10.5. The
Holzer method is found in Sees, 12.4 and 12.5. Sec. 12.6 is devoted to the Myklestad's
method. A brief discussion of these programs is found in Appendix F. All of these pro-
. grams are written in MATLAB®.An introduction to MATLAB®is provided in Appendix
E.

The motion will cease, however, when the amplitude becomes less than Ll, at
which position the spring force is insufficient to overcome the static friction force, which
is generally greater than the k~c friction force. It can also be shown that the fre­
quency of oscillation is w/L = Vk/ m, which is the same as that of the undamped system.

Figure 2.8.1 shows the free vibration of a system with Coulomb damping. It
should be noted that the amplitudes decay linearly with time.

(2.8.1)

By repeating this procedure for the next half-cycle, a further decrease in ampli­
tude of 2Fd/k will be found, so that the decay in amplitude per cycle is a constant and
equal to

FIGURE2.S.1. Free vibration .
with Coulomb damping.

x
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Pbx (/2 _ 2 _ b2)
Yx = 6EIl x

k at position of load

n == number of turns

J == torsion constant of cross section

A == cross-sectional area

1 == moment of inertia of cross-sectional area
1 == total length

k = 24EI
a2(31+ 8a)

k = ___}_E_
(I + a)a2

k == EI
1
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k == -1-

k == GJ
1

~
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Table of Spring Stiffness
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FIGURE P2.S.
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2.6. The ratio kim of a spring-mass system is given as 4.0. If the mass is deflected 2 cm down,
measured from its equilibrium position, and given an upward velocity of 8 cm/s, deter­
mine its amplitude and maximum acceleration.

2.7. A flywheel weighing 70 lb was allowed to swing as a pendulum about a knife-edge at the
inner side of the rim, as shown in Fig. P2.7. If the measured period of oscillation was
1.22 S, determine the moment of inertia of the flywheel about its geometric axis.

2.S. A connecting rod weighing 21.35 N oscillates 53 times in 1min when suspended as shown
in Fig. P2.8. Determine its moment of inertia about its center of gravity, which is located
0.254 m from the point of support.

70lb

FIGURE P2.7.

1
\
16"

I
!

1
FIGURE P2.S.

2.3. A 4.53-kg mass attached to the lower end of a spring whose upper end is fixed vibrates
with a natural period of 0.45 s. Determine the natural period when a 2.26-kg mass is
attached to the midpoint of the same spring with the upper and lower ends fixed.

2.4. An unknown mass of m kg attached to the end of an unknown spring k has a natural fre­
quency of 94 cpm. When a 0.453-kg mass is added to m, the' natural frequency is lowered
to 76.7 cpm. Determine the unknown mass m and the spring constant k N/m.

2.5. A mass m1 hangs from a spring k 'N/m and is in static equilibrium. A second mass m2

drops through a height h and sticks to m1 without rebound, as shown in Fig. P2.5.
Determine the subsequent motion.
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FIGURE P2.12.

2.11. A cylinder of mass m and mass moment of inertia 10 is free to roll without slipping, but is
restrained by the spring k, as shown in Fig. P2.11. Determine the natural frequency of
oscillation.

2.12. A chronograph is to be operated by a 2-s pendulum of length L shown in Fig. P2.12. A
platinum wire attached to the bob completes the electric timing circuit through a drop of
mercury as it swings through the lowest point. (a) What should be the length L of the
pendulum? (b) If the platinum wire is in contact with the mercury for 0.3175 em of the
swing, what must be the amplitude (]to limit the duration of contact 0.01 s? (Assume that
the velocity during contact is constant and that the amplitude of oscillation is small.)

FIGURE P2.11.fiGURE P2.10.

2.9. A flywheel of mass M is suspended in the horizontal plane by three wires of 1.829-m
length equally spaced around a circle of O.254-mradius. If the period of oscillation about
a vertical axis through the center of the wheel is 2.17 s,determine its radius of gyration.

2.10. A wheel and axle assembly of moment of inertia 1 is inclined from the vertical by an
angle a, as shown in Fig. P2.10. Determine the frequency of oscillation due to a small
unbalance weight w lb at a distance a in. from the axle.
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where J is the mass moment of inertia of the ship about its roll axis, and W is the weight
of the ship. In general, the position of the roll axis is unknown and J is obtained from the
period of oscillation determined from a model test.

'T=27T~

2.15. The oscillatory characteristics of ships in rolling motion depend on the position of the
metacenter M with respect to the center of gravity G. The metacenter M represents the
point ofintersection of the line of action of the buoyant force and the center line of
the ship, and its distance h measured from G is the metacentric height, as shown in Fig.
P2.1S. The position of M depends on the shape of the hull and is independent of the
angular inclination (J of the ship for small values of 6.Show that the period of the rolling
motion is given by

FIGURE P2.1S.FIGURE P2.14.

2.14. A spherical buoy 3 ft in diameter is weighted to float half out of water, as shown in
Fig. P2.14. The center of gravity of the buoy is 8 in. below its geometric center, and the
period of oscillation in rolling motion is 1.3 s. Determine the moment of inertia of the .
buoy about its rotational axis.

FIGURE P2.B.

2.13. A hydrometer float, shown in Fig. P2.13, is used to measure the specific gravity of liquids.
The mass of the float is 0.0372 kg, and the diameter of the cylindrical section protruding
above the surface is 0.0064 m. Determine the period of vibration when the float is
allowed to bob up and down in a fluid of specific gravity 1.20.
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FIGURE P2.20.

k=(!1)!::.
11 2

2.19. A uniform bar of radius of gyration k about its center of gravity is suspended horizon­
tally by two vertical strings of length h, at distances a and b from the mass center. Prove
that the bar will oscillate about the vertical line through the mass center, and determine
the frequency of oscillation.

2.20. A steel shaft 50 in. long and Ii in. in diameter is used as a torsion spring for the wheels of
a light automobile, as shown in Fig. P2.20. Determine the natural frequency of the system
if the weight of the wheel and tire assembly is 38 lb and its radius of gyration about its
axle is 9.0 in. Discuss the difference in the natural frequency with the wheel locked and
unlocked to the arm.

2.17. A uniform bar of length L and weight W is suspended symmetrically by two strings, as
shown in Fig. P2.17. Set up the differential equation of motion for small angular oscilla­
tions of the bar about the vertical axis 0-0, and determine its period.

2.18. A uniform bar of length L is suspended in the horizontal position by two vertical strings of
equal length attached to the ends. If the period of oscillation in the plane of the bar and
strings is t1 and the period of oscillation about a vertical line through the center of gravity
of the bar is t2, show that the radius of gyration of the bar about the center of gravity is
given by the expression

FIGURE P2.17.FIGURE P2.16.

2.16. A thin rectangular plate is bent into a semicircular cylinder, as shown in Fig. P2.I6.
Determine its period of oscillation if it is allowed to rock on a horizontal surface.
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FIGUREP2.24.

2.24. Determine the effective mass at point n and its natural frequency for the system shown in
Fig.P2.24.

2.23. Determine the effective mass of the columns of Prob. 2.22 assuming the deflection to be

y = ~ Ymax(l - cos ~x)

FIGUREP2.22.

2.22. Figure P2.22 shows a simplified model of a single-story building. The columns are
assumed to be rigidly embedded at the ends. Determine its natural period T. Refer to the
table of stiffness at the end of the chapter.

FIGUREP2.21.

where I is the length of the fluid column.

2.21., Using the energy method, show that the natural period of oscillation of the fluid in a U­
tube manometer shown in Fig. P2.21 is

T= 2?r /l
'J2"g
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2.27. A uniform cantilever beam of total mass ml has a concentrated mass M at its free end.
Determine the effective mass of the beam to be added to M assuming the deflection to
be that of a massless beam with a concentrated force at the end, and write the equation
for its fundamental frequency.

FIGURE P2.26. Enginevalvesystem.

m·r

1

2.26. The engine-valve system of Fig. P2.26 consists of a rocker arm of moment of inertia J, a
valve of mass mv' and a spring spring of mass ms' Determine its effective mass at A.

FIGURE P2.2S.

2.25. Determine the effective mass of the rocket engine shown in Fig. P2.25 to be added to the
actuator mass mI'
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FIGURE P2.32.

2.32. Determine the kinetic energy of the system shown inFlg, P2.32 in terms of x. Determine
the stiffness at mo' and write the expression for the natural frequency.

FIGURE P2.31.

2.30. For purposes of analysis, it is desired to reduce the system of Fig. P2.30 to a simple linear
spring-mass system of effective mass meff and effective stiffness keff• Determine meff and
keff in terms of the given quantities.

2.31. Determine the effective mass moment of inertia for shaft 1 in the 'system shown in
Fig. P2.31.

FIGURE P2.30.

J

~

K1 K2 iK2

~

FIGURE P2.29.

for the uniformly loaded beam, and compare with previous result.
2.29. Determine the effective rotational stiffness of the shaft in Fig. P2.29 and calculate its nat­

ural period.

wI 13 [( X ,)4 ( X ) ]y(x) = 24 El I - 4 I + 3

2.28. Repeat Prob. 2.27 using the static deflection
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2.42. Write the differential equation of motion for the system shown in Fig. P2.42 and deter­
mine the natural frequency of damped oscillation and the critical damping coefficient.

2.43. A spring-mass system with viscous damping is displaced from the equilibrium position
and released. If the amplitude diminished by 5% each cycle, what fraction of the critical
damping does the system have?

FIGURE P2.42.FIGURE P2.41.

2.33. Tachometers are a reed-type" frequency-measuring instrument consisting of small can­
tilever beams with weights attached "atthe ends. When the frequency of vibration corre­
sponds to the natural frequency of one of the reeds, it will vibrate, thereby indicating the
frequency. How large a weight must be placed on the end of a reed made of spring steel
0.1016 em thick, 0.635 em wide, and 8.890 em long for a natural frequency of 20 cps?

2.34. A mass of 0.907 kg is attached to the end of a spring with a stiffness of 7.0 N/cm.
Determine the critical damping coefficient.

2.35. To calibrate a dashpot, the velocity of the plunger was measured when a given force was
applied to it. If a ~-lb weight produced a constant velocity of 1.20 in./s, determine the
damping factor ~when used with the system of Prob. 2.34. . "

1M] 2.36. A vibrating system is started under the following initial conditions: x = 0 and x = vo'
Determine the equation of motion when (a) ~ = 2.0, (b) ~ = 0.50, and (c) ~ = 1.0. Plot
nondimensional curves for the three cases with w t as abscissa and xw / Vo as ordinate.n n

1M] 2.37. In Prob. 2.36, compare the peak values for the three dampings specified. (See Appendix E
for information about MATLAB® and Appendix F for information about the programs.)

2.38. A vibrating system consisting of a mass of 2.267 kg and a spring of stiffness 17.5 Nzcm is
viscously damped such that the ratio of any two consecutive amplitudes is 1.00 and 0.98.
Determine (a) the natural frequency of the damped system, (b) the logarithmic decre­
ment, (c) the damping factor, and (d) the damping coefficient.

2.39. A vibrating system consists of a mass of 4.534 kg, a spring of stiffness 35.0 N/cm, and a
dashpot with a damping coefficient of 0.1243 Nzcrn/s, Find (a) the damping factor, (b) the
logarithmic decrement, and (c) the ratio of any two consecutive amplitudes.

2.40. A vibrating system has the following constants: m = 17.5 kg, k = 70.0 N/cm, and c = 0.70
Nzcm/s, Determine (a) the damping factor, (b) the natural frequency of damped oscilla­
tion, (c) the logarithmic decrement, and (d) the ratio of any two consecutive amplitudes.

2.41. Set up the differential equation of motion for the system shown in Fig. P2.41. Determine
the expression for (a) the critical damping coefficient, and (b) the natural frequency of
damped oscillation.
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2.48. A shock absorber is to be designed so that its overshoot is 10% of the initial displace­
ment when released. Determine {I' If {is made equal to i{l' what will be the overshoot?

2.49. Determine the equation of motion for Probs. 2.41 and 2.42 using virtual work.

v=~4 m/s c= 1.75 Ns/cm

~ B ~
m=4.53kg k=350N/cm

FIGURE P2.47.

2.45. A thin plate of area A and weight W is attached to the end of a spring and is allowed to
oscillate in a viscous fluid, as shown in Fig. P2.45. If Tl is the natural period of undamped
oscillation (i.e., with the system oscillating in air) and T2 the damped period with the plate
immersed in the fluid, show that

J.t= 27rW ~
gATIT2 2 1

where the damping force on the plate is Fd = J.t2AV,2A is the total surface area of the
plate, and v is its velocity.

2.46. A gun barrel weighing 1200 lb has a recoil spring of stiffness 20,000 lb/ft. If the barrel
recoils 4 ft on firing, determine (a) the initial recoil velocity of the barrel, (b) the criti­
cal damping coefficient of a dashpot that is engaged at the end of the recoil stroke, and
(c) the time required for the barrel to return to a position 2 in. from its initial position.

2.47. A piston of mass 4.53 kg is traveling in a tube with a velocity of 15.24mls and engages a
spring and damper, as shown in Fig. P2.47. Determine the maximum displacement of the
piston after engaging the spring-damper. How many seconds does it take?

FIGURE P2.45.FIGUREP2.44.

t 1 ~
111----. _[ Lo~

2.44. A rigid uniform bar of mass m and length L is pinned at 0 and supported by a spring and
, viscous damper, as shown in Fig. P2.44.Measuring (J from the static eq.uilibrium position,
determine (a) the equation for small (J (the moment of inertia of the bar about 0 is
mP/3), (b) the equation for the undamped natural frequency, and (c) the expression for
critical damping. Use virtual work.
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FIGURE P2.SS.

IHl 2.54. A spring-mass system, m and k, is started with an initial displacement of unity and an ini­
tial velocity of zero. Plot In X versus n,where X is the amplitude at cycle n for (a) viscous
damping with b = 0.05, and (b) Coulomb damping with damping force Fd = 0.05k. When
will the two amplitudes be equal?

2.55. Determine the differential equation of motion and establish the critical damping for the
system shown in Fig. P2.55. '

FIGURE P2.S3.

2.51. Determine the flexibility of a simply supported uniform beam of length L at a point j L
from the end.

2.52. Determine the effective stiffness of the system shown in Fig. P2.52, in terms of the dis­
placement x.

2.53. Determine the effective stiffness of the torsional system shown in Fig. P2.53. The two
shafts in series have torsional stiffnesses of k, and k.:

FIGUREP2.S2.FIGUREP2.S0.

2.50. Determine the effective stiffness of the springs shown in Fig. P2.50.
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2.58. Tho uniform stiff bars are hinged at the middle and constrained by a spring, as shown in
Fig. P2.S8.Using virtual work, set up the equation of motion for its free vibration.

FIGURE P2.SS.FIGURE P2.S7.

2.57. The system shown in Fig. P2.S7 has two rigid uniform beams of length I and mass per unit
length m, hinged at the middle and resting on rollers at the test stand. The hinge is
restrained from rotation by. a torsional spring K and supports a mass M held up by
another spring k to a position where the bars are horizontal. Determine the equation of
motion using virtual work.

FIGURE P2.S6.

2.56. Determine the differential equation of motion for free vibration of the system shown in
Fig. P2.56, using virtual work.
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FIGURE P2.62.

c

2.60. If two springs are connected in series, as shown in the first figure in the table of spring
stiffness, derive the resulting spring stiffness andthe natural frequency of the motion.

2.61. If two springs are connected in parallel, as shown in the second figure in the table of
spring stiffness, derive the resulting spring stiffness and the natural frequency of the
motion.

2.62. Write down the equations of motion and find the effective spring constant for the system
shown in Fig. P2.62.

Evaluate the constants A and B if the motion is started with the initial conditions
x(O) = Xo and x(O) = O.

rnx + kx = ILFsgn{x)
where sgn (x) = ± 1 (i.e., sgn (x) = +1 when x is positive and -1when x is negative).
The general solution to this equation is

x{t) = A sin wmt + B cos wmt

+ IL: sgn (x)

2.59. The equation of motion for the system of Fig. P2.S9 with Coulomb damping can be writ­
ten as
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where X is the amplitude of oscillation and ¢ is the phase of the displacement wJ!h
respect to the exciting force.
- 1lleamplitude and phase in the previous equation are found by substituting Eq.
(3.1.2) into the differential equation (3.1.1). Remembering that in harmonic motion
the phases of the velocity and acceleration are ahead of the displacement by 90° and

(3.1.2)x = Xsin{wt - ¢)

The solution to this equation consists of two parts, the £!!..111Plementaryfunction
which is the solution of the homogeneous equation, and the eticular integral. The
complementary function, in this case, is a damped free vibration that was discussed in
Chapter 2.

The .@.ticular solution to the preceding equation is a steady-state oscillation of
the same frequency w as that of the excitation. We can assume the partiCUlar solution
to be of the form

(3.1.1)mX + cx + kx = Fo sin wt

Harmonic excitation is often encountered in engineering systems. It is commonly pro­
duced by the unbalance in rotation machinery. Although pure harmonic excitation is
less likely to occur than periodic or other types of excitation, understanding the behav­
ior of a system undergoing harmonic excitation is essential in order to comprehend
how the system will respond to more general types of excitation. Harmonic excitation
may be in the form of a force or displacement of some point in the system.

We will first consider a single-DOF system with viscous damping, excited by a
harmonic force Fo sin wt, as shown in Fig. 3.1.1. Its differential equation of motion is
found from the ~ee~body diagram to be

3.1 FORCED HARMONIC VIBRATION

Harmonically Excited Vibration
. rt~~'

When a system is subjected to harmonic excitation, it is forced to vibrate at the same
frequency as that of the excitation. Common sources of harmonic excitation are unbal­
ance in rotating machines, forces produced by recjQrocatj!w machines, and the motion
of the machine itself.These excitations may be undesirable for equipment whose oper­
ation may be disturbed or for the safety of the structure if large vibration amplitudes
f!.eve19~ Resonance is to be avoided in most cases, and to prevent large amplitudes
from developing, dampers and absorbers are often used. Discussion of their behavior
is of importance for their intelligent use. Finally, the theory of vibration-measuriQg
instruments is presented as a tool for vibration analysis.
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'~(Jl'X cwX
Fo
f wt X kX .

Reference
FIGURE3.1.2. Vector relationship for
forced vibration with damping. .

k
1-

(3.1.6)
k

tan 1> =

cw

and

(3.1.5)

We now express Eqs. (3.1.3) and (3.1.4) in upndimensional form that enables a
concise graphical presentation of these results. Dividing the numerator and denomina-
~Eqs. (3.1.3) and (3.1.4) by k,we obtain ~ ~

Fo
k

X = ----;============~(1- m;T + (C;r

(3.1.4)
cw1> = tan -1 _

k - mw2

and

(3.1.3)

1800, respectively, the terms of the differential equation can also be displayed graphi­
cally, as in Fig. 3.1.2.lt is easily seen from this diagram that

X= Fo
V(k - mw2)2 + (cw)2

FIGURE3.1.1. Viscously
damped system with harmonic
excitation.
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(3.1.10)

These equations indicate that the nondimensional am litude xkl Fo and the phase 4>
are functions only of the frequency ratio W w" and the damping factor, and can be
PTotted as shown in Fig. 3.1.3.These curves show that the damping has a large influence
on the amplitude and phase angle in the frequency regIOn near resonance. Further
understanding of the behavior of the system can be obtained by studying the force dia­
gram corresponding to Fig. 3.1.2 in the regions os] wn small, os] wn= 1,and os] wn large.

For small values of wlwn ~ 1, both the inertia and damping forces are small,
which results in a small phase angle 4>. The magnitude of the impressed force is then
nearly equal to the spring force, as shown in Fig. 3.1.4(a).

For to] wn = 1.0, the phase angle is 90° and the force diagram appears as in
Fig. 3.1.4(b). The inertia force, which is now larger, is balanced by the spring force,
whereas the impressed force overcomes the damping force. The amplitude at reso­
nance can be found, either from Eqs. (3.1.5) or (3.1.7) or from Fig:3.1.4(b), to be

Fo FoX = - = - (3.1.9)
cto; 2,k

At large values of io] wn ~ 1, 4> approaches 180°, and the impressed force is
expended almost entirely in overcoming the large inertia force as shown in Fig. 3.1.4(c).

In summary, we can write the' differential equation and its complete solution,
including the transient term as~

(3.1.8)tan cJ> =

and

(3.1.7)
1Xk

r;

CW = ~ ccw = 2'~
k Cc k Wn

The nondimensional expressions for the amplitude and phase then become

, = ~ = damping factor
Cc ~

Cc = 2mwn = critical damping

These equations can be further expressed in terms of the following quantities:

w. ;. ~ = natural frequency of undamped oscillation
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(3.1.12)Fo(cos wt + i sin wt) = Foeiwt

Complex frequency response. From the vector force polygon of Fig. 3.1.2, it is
easily seen that the terms of Eq. (3.1.l) are projections' of the vectors on the vertical
axis. If the force had been Fo cos wt instead of Fo sin wt, the vector force polygon would'
be unchanged and the terms of the equation then would have been the projections of
the vectors on the horizontal axis.Taking note of this, we could let the harmonic force
be represented by

(3.1.11)

x{t) = Fo sin (wt - cf»

k ~[ 1- (:JT + [2':'],

FIGURE3.1.4. Vector relationship in forced vibration.

(c) w/wn»l(b) w/wn = 1(0) w/wn« 1

FIGURE3.1.3. Plot of Eqs. (3.1.7) and·(3.1.8).

Frequency rotio ~n

5.(4.03.02.01.0o

Frequency rot io ~n
.liCJo)( la..
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Unbalance in rotating machines is a common source of vibration excitation. We con­
sider here a spring-mass system constrained to move in the vertical direction and
excited by a rotating machine that is unbalanced, as shown in Fig. 3.2.1.The unbalance
is represented by an eccentric mass m with eccentricitye that is rotating with angular
velocity w. By letting x be the displacement of the nonrotating mass (M - m) from the
static equilibrium position, the displacement of m is

x + e sin wt

3.2 ROTATING UNBALANCE

It is easily seen that the phase angle is

(3.1.18)H(w) = -i l.
2(

It is now convenient to introduce the complex frequency response H(w) defined
as the output divided by the input:

X l/k
H(w) = Fo= 1 _:(wi wn)2 + i2(wl Wn (3.1.16)

(Often the factor l/k is considered together with the force, leaving the frequency
response a nondimensional quantity.) Thus, H(w) depends only on the frequency ratio
and the damping factor.

The real and imaginary parts of H(w) can be identified by multiplying and divid­
ing Eq. (3.1.16) by the complex conjugate of the denominator. The result is

H{w} = [ {1 -)~~/Wnr / f - i[ (. 2f,j/"'n [ / Y . (3.1.17). 1 - w/wn + 2(w Wn 1 - w/wn + 2(w Wn

.This equation shows that at resonance, the real part is zero and the response is given by
the imaginary part, which is

(3.1.15)

and

Substituting into the differential equation and canceling from each side of the equa­
tion give the results

(3.1.14)

(3.1.13)x = Xei(wt-lfJ) = (Xe-ilfJ)eiwt = Xeiwt

where X is a complex displacement vector:
X ~ Xe-ilfJ

This would be equivalent to multiplying the quantities along the vertical axis by
i = v-=-i and using complex vectors. The displacement can then be written as
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(3.2.5)tan 4>

and

(3.2.4)
m e
MX (:.)'
- - = --;::=====::0====:;-

~[ 1 - (:.rT + [ 2( :. r
These can be further reduced to non dimensional form:

(3.2.3)
ew

tan 4> = k _ Mw2

and

(3.2.2)

It is evident, then, that this equation is identical to Eq. (3.1.1) where Po is replaced by
meor, and hence the steady-state solution of the previous section can be replaced by

meor
X=

V(k - Mw2)2 + (ew)2

(3.2.1)Mx + ex + kx = (mew2) .sin wt

which can be rearranged to

The equation of motion is then

.. ' d2
(M - m)x + m dt2 (x + e sin wt) = - kx - ex

FIGURE3.2.1. Harmonic disturbing
force resulting from rotating unbalance ..
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FIGURE3.2.3.

M

A counterrotating eccentricweightexciter is used to produce the forcedoscillationof a spring­
supported mass,as shown in Fig.3.2.3.By varying the speed of rotation, a resonant amplitude
of 0.60 cm was recorded.When the speed of rotation was increased considerablybeyond the

EXAMPLE 3.2.1

(3.2.6)

and presented graphically as in Fig. 3.2.2.The complete solution is given by

x(t} = Xte-lwntsin(Yl='f wnt + CPJ

FIGURE3.2.2. Plot of Eqs. (3.2.4) and (3.2.5) for forced vibration with rotating unbalance.

Frequency ratio ~n

5.04.03.02.01.0o

'$.

3.0t----+--H~~--+---I Q)c;.a 90°-- ----
(I)

r---+-~+-~~~-~~
s:o,

1.0 2.0 3.0 4.0 5.0
Frequency ratio !!!wn

o
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FIGURE3.3.1. System with
static unbalance.

Dynamic unbalance. When the unbalance appears in more than one plane, the
resultant is a force and a rocking moment, which is referred to as dynamic unbalance.
As previously described, a static test may detect the resultant force, but the rocking
moment cannot be detected without spinning the rotor. For example, consider a shaft

Static unbalance. When the unbalanced masses all lie in a single plane, as in the
case of a thin rotor disk, the resultant unbalance is a single radial force. As shown in
Fig. 3.3.1, such unbalance can be detected by a static test in which the wheel-axle
assembly is placed on a pair of horizontal rails. The wheel will roll to a position where
the heavy point is directly below the axle. Because such unbalance can be detected
without spinning the wheel, it is called static unbalance.

In Sec. 3.2 the system was idealized to a spring-mass-damper unit with a rotating
unbalance acting in a single plane. It is more likely that the unbalance in a rotating
wheel or rotor is distributed in several planes. We wish now to distinguish between two
types of rotating unbalance.

3.3 ROTORUNBALANCE

•

By solving the two equations simultaneously, the damping factor of the system is

0.08
t= 2 X 0.60 = 0.0666

me
X = M = 0.08 em

M
X = 2{ = 0.60 em

When w is very much greater than wn' the same equation becomes

me
Solution From Eq. (3.2.4), the resonant amplitude is

resonant frequency, the amplitude appeared to approach a fixed value of 0.08 em, Determine
the damping factor of the system.
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FIGURE3.3.4. Experimental balartcing of a thin disk.

Although a thin disk can be balanced statically, it can also be balanced dynamically. We describe
one such test that can be simply performed.

The disk is supported on spring-restrained bearings that can move horizontally, as shown in
Fig. 3.3.4. With the disk running at any predetermined speed, the amplitude Xo and the wheel
position a at maximum excursion are noted. An accelerometer on the bearing and a stroboscope
can be used for this observation. The amplitude Xo' due to the original unbalance mo' is drawn to
scale on the wheel in the direction from 0 to a.

EXAMPLE 3.3.1

with two disks, as shown in Fig. 3.3.2. If the two unbalanced masses are equal and 1800
apart, the rotor will be statically balanced about the axis of the shaft. However, when
the rotor is spinning, each unbalanced disk would set up a rotating centrifugal force,
tending to rock the shaft on its bearings.

In general, a long rotor, such as a motor armature or an automobile engine
crankshaft, can be considered to be a series of thin disks, each with some unbalance.
Such rotors must be spun in order to detect the unbalance. Machines to detect and cor­
rect the rotor unbalance are called 'balancing machines. Essentially, the balancing
machine consists of supporting bearings that are spring-mounted so as to detect the
unbalanced forces by their motion, as shown in Fig. 3.3.3.By knowing the amplitude of
each bearing and their relative phase, it is possible to determine the unbalance of the
rotor and correct for them. The problem is that of 2 DOF, because both translation and
angular motion of the shaft take place simultaneously.

FIGURE3.3.3. A rotor
balancing machine.

FIGURE3.3.2. System
with dynamic unbalance.
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FIGURE 3.3.5.

Solution The diagrams of Fig. 3.3.5 display the solution graphically. The vectors measured by
the instrument and the position of the trial weight are shown in Fig. 3.3.5(b). Vector ab in Fig.
3.3.5(c) is found graphically to be equal to 5.4 mm, and the angle cP is measured to be 107°. If

A thin disk is supported on spring-mounted bearings, as shown in Fig:3.3.5.When run at 300 rpm
counterclockwise (ccw), the original disk indicates a maximum amplitude of 3.2 mm at 30° ccw
from a reference mark on the disk. Next, a trial weight of 2.5 oz is added to the rim at 143° ccw
from the reference mark, and the wheel is again run at 300 rpm ccw.The new amplitude of 7 mm
is then found at 77° ccw from the reference mark. Determine the correction weight to be placed
on the rim to balance the original disk.

EXAMPLE 3.3.2

•

Next, a trial mass ml is added at any point on the wheel and the procedure is repeated at the
same speed. The new amplitude Xl and wheel position b,which are due to the original unbalance
mo and the trial mass ml' are represented by the vector ob. The difference vector ab is then the
effect of the trial mass ml alone. If the position of ml is now advanced by the angle cP shown in
the vector diagram, and the magnitude of ml is increased to m1 (oa/ ab), the vector ab will
become equal and opposite to the vector oa. The wheel is now balanced because Xl is zero .
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(3.4.1) .

Rotating shafts tend to bow out at certain speeds and whirl in a complicated manner.
Whirling is defined as the rotation of the plane made by the bent shaft and the line of
centers of the bearings. The phenomenon results from such various causes as mass
unbalance, hysteresis damping in the shaft, gyroscopic forces, fluid friction in bearings,
and so on. The whirling of the shaft can take place in the same or opposite direction as
that of the rotation of the shaft and the whirling speed mayor may not be equal to the
rotation speed.

We will consider. here a single disk of massm symmetrically located on a shaft sup­
ported by two bearings, as shown in Fig. 3.4.1.The center of mass G of the disk is at a dis­
tance e (eccentricity) from' the geometric center S of the disk. The center line of the
bearings intersects the plane of the disk at 0, and the shaft center is deflected by r = OS.

We will always assume the shaft (i.e., the line e = SG) to be rotating at a constant
speed w, and in the general case, the line r = OS to be whirling at speed iJ that is not
equal to (I). For the equation of motion, we can develop the acceleration of the mass
center as follows: .

3.4 WHIRLING OF ROTATING SHAFTS

•
FIGURE3.3.6. The plane-balancing experiment. (Courtesy of UCSB Mechanical
Engineering Undergraduate Laboratory.)

vector ab is rotated 1070 ccw,it will be opposite the vector oa. To cancel oa it must be shortened
by oalab = 3.2/5.4 = 0.593. Thus, the trial weight WI = 2.5 oz must be rotated 1070 ccw and
reduced in size to 2.5 x 0.593 = 1.48 oz. Of course, the graphical solution for ab and cP can be
found mathematically by the law of cosines.

Figure 3.3.6 shows a model simulating a long rotor with sensors at the two bearings. The two
end disks may be initially unbalanced by adding weights at any location. By adding a trial weight
at one of the disks and recording the amplitude and phase and then removing the first trial
weight and placing a second trial weight to the other disk and making similar measurements, the
initial unbalance of the simulated rotor can be determined.
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Syncbronous whirl. For the synchronous whirl, the 'whirling speed 8 is equal to
the rotation speed w,which we have assumed to be constant. Thus,we have

The general case of whirl as described by tpe foregoing equations comes under
the classification of self-excited motion, where the exciting forces inducing the motion
are controlled by the motion itself. Because the variables in these equations are rand
~,the problem is that of 2 DOF. However, in the steady-state synchronous whirl, where
()= wand 8 = r = ; = 0, the problem reduces to that of 1 DOF.

(3.4.4).. (e ).r8 + m r + 2; 8 = ew2 sin (wt - 8)

(3.4.3)

- kr - c; = m[r - r82 - ew2cos (wt :_ 8)]
- er8 = mlr8 + 2;8 - ew2 sin (wt - 8)]

which can be rearranged to

r + .:_; + (~ - 82)r = ew2 cos (wt - 8)
m m

where a s is the acceleration of Sand acis is the acceleration of G with respect to S. The
latter term is directed from G to S, because w is constant. Resolving ac in the radial
and tangential directions, we have

ac = [(r -, r82) - ew2cos (wt - 8)]i + [(r8 + 2;8) - ew2sin (wt - 8)]j (3.4.2)

Aside from the restoring force of the shaft, we will assume a viscous damping force to
be acting at S. The equations of motion resolved in the radial and tangential directions .
then become

FIGURE 3.4.1. Whirling of shaft.

j
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These equations indicate that the eccentricity line e = SG leads the displace­
ment line r = OS by the phase angle 4>, which depends on the amount of damping and

(3.4.7)
e(:nY

--r:===:::::;;::==:::; = ---;:====~~===:::::::
V(k - moo2)2 + (cooi ~[ 1- (~rr+[2l(~) rr=

k 2--w
m

cos 4> = ---;:===~===:::::;-
~(~ - 002)' + (:00)'

and substituting into the first of Eq. (3.4.5) gives the amplitude equation

where Wn = Vkj;;, is the critical speed, and, = c/c • Noting from the vector triangle of
Fig. 3.4.2 that

(3.4.6)l-(:J
c
-w
m

tan 4> =
k 2- -w
m

Dividing, we obtain the following equation for the phase angle:

(3.4.5)C 2 •-wr = ew SID 4>
m

()= wt - 4>
where 4> is the phase angle between e and r,which is now a constant, as shown in Fig. 3.4.1.
With 8 = ;:= ; = 0, Eqs. (3.4.3) and (3.4.4) reduce to

(~ - oo2)r = eoo2eDS </>

and on integrating we obtain

(J = W

FIGURE3.4.2.

km- w2
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(c)(;; - (2) ( e; t sin cf>+ ro) = ew2c~s cf>

Differentiating this equation twice, we find that i'= 0; so the first equation with the above solu­
tion for r becomes

(b)

(a)2rw = ew2 sin cf>

The solution of the second equation with initial deflection equal to '0 is

ew . ,I,.
r = ""2 t SIn w + r0

Thrbines operating above the critical speed must run through dangerous speed at resonance
each time they are started or stopped. Assuming the critical speed wn to be reached with ampli­
tude '0' determine the equation for the amplitude buildup with time. Assume zero damping.

Solution We will assume synchronous whirl as before, which makes iJ = W = constant and 6
= O.However, rand; terms must be retained unless shown to be zero. With c = 0 for the
undamped case, the general equations of motion reduce to

;:+(~ -(2)r=ew2coscf>

EXAMPLE 3.4.1

the rotation sReed ratio to]wn' When the rotation speed coincides with the critical
speed Wn = ~,or the natural frequency of the shaft in lateral vibration, a condi­
tion of resonance is encountered in which the amplitude is restrained only by the
damping. Figure 3.4.3 shows the disk-shaft system under three different speed condi­
tions. At very high speeds, W ~ wn' the center of mass G tends to approach the fixed
point 0, and the shaft center S rotates about it in a circle of radius e.

It should be noted that the equations for synchronous whirl appear to be the
same as those of Sec. 3.2.This is not surprising, because in both cases the exciting force
is rotating and equal to meor, However, in Sec. 3.2 the unbalance Wasin terms of the
small unbalanced mass m, whereas in this section, the unbalance is defined in terms of
the total mass m with eccentricity e.Thus, Fig. 3.2.2 is applicable to this problem with
the ordinate equal to rie instead of MXlme. "

FIGURE3.4.3. Phase of different rotation speeds.

W»WnW = WnW«Wn
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FIGURE3.5.1. System excited
by motion of support point.

k
'2

k
"2

C(X-~X-y)
m

(3.5.2)z=x.,-y
By making the substitution

(3.5.1)mx = - k(x - y) - c(i - y)

In many cases, the dynamical system is excited by the motion of the support point, as
shown in Fig. 3.5.1.We let y be the harmonic displacement of the support point and
measure the displacement x of the mass m from an inertial reference.

In the displaced position, the unbalanced forces are due to the damper ami the
springs, and the differential equation of motion becomes

3.5 SUPPORT MOTION

•

(;; - (2) '0 = ew2cos <p. (e)

With w = Vkj;;z, the first equation is satisfied, but the second equation is satisfied only if
cos cP = 0 or <p = 7T/2. Thus, we have shown that at w = Vkj;;z,or at resonance, the phase angle
is 7T/2 as before for the damped case, and the amplitude builds up linearly according to the equa­
tion shown in Fig. 3.4.4,

which leaves the remaining terms:

Because the right side of this equation is constant, it is satisfied only if the coefficient of t is zero:

(; - «l) sin <p = 0 (d)

FIGURE3.4.4. Amplitude and
phase relationship of synchronous
whirl with viscous damping;

r r = e2wt + '0
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which are plotted in Fig. 3.5.2. It should be observed that the amplitude curves' for
different damping all have the same value of IxiYl = 1.0 at the frequency
w/wn = V2. .. .

(3.5.9)tan", = k(k - mw2) + (wcF

and

(3.5.8)IX I ~ k2 + (CdC) 2
Y = (k ~ mw2)2 + (cw)2

The steady-state amplitude and phase from this equation are

(3.5.7)(
k + iwc ) .= Ye,wt

k - mw2 + iox

x = (Ze-icf> + Y)eiwt

and

(3.5.6)

y == Yeiwt
z = Zei(wt-cf» = (Ze-tcf»eiwt

x = Xei(wt-I/I)=(Xe-"/!)eiwt

Substituting into Eq. (3.5.3), we obtain

and the curves of Fig. 3.2.2 are applicable with the appropriate change in the ordinate.
If the absolute motion x of the mass is desired, we can solve for x = z + y. Using

the exponential form of harmonic motion gives

(3.5.5)
cw

tan cP = k _ moi'

(3.5.4)

where y = Y sin wt has been assumed for the motion of the base. The form of this equa­
tion is identical to that of Eq. (3.2.1), where z replaces x and mcifY replaces meor.
Thus, the solution can be immediately written as

z = Z sin (wt - cP)

(3.5.3)

m Z + cz + kz = - my

= mw2 Ysin wt

Eq. (3.5.1) becomes
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(3.6.1a) .

With the disturbing force equal to Fosin wt, the value of X in the preceding equation is

X = Folk
V[1 - '(wi wn)2] 2 + [2,wi wnF

(3.6.1)

Vibratory forces generated by machines and other causes are often unavoidable; how­
ever, their effects on a dynamical system can be minimized by proper isolator design.
An isolation system attempts either to protect a delicate object from excessive vibra­
tion transmitted to it from its supporting structure or to prevent vibratory forces gen­
erated by machines from being transmitted to its surroundings. The basic problem is
the same for these two objectives, that of reducing the transmitted force.

Figure 3.5.2 for IXlyl shows that the motion transmitted from the supporting
structure to the mass m is less than 1when the ratio wi =; is greater than V2.This indi­
cates that the natural frequency wnof the supported system must be small compared to .
that of the disturbing frequency w.This requirement can be met by using a soft spring.

The other problem of reducing the force transmitted by the machine to the sup­
. porting structure has the same requirement. The force to be isolated is transmitted
through the spring and damper, as shown in Fig. 3.6.1. Its equation is

FT = V(kX)2 + (cwX)2 = kX~l + (2~~)'

3.6 VIBRATION ISOLATION

FIGURE3.5.2. Plot of E'l.s. (3.5.8) and (3.5.9).

5.04.03.02.01.0 ./2o

2.0
4.0 5.0

)(1)- W
Wn

1.0
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where it is understood that the value of to] wn to be used 'is always greater than V2.On
further replacing wn by AIg, where g is the acceleration of gravity and A is the statical
deflection, Eq. (3.6.3) can be expressed as

TR = 1
(21Tf) 2 AI g - 1

To reduce the amplitude X of the isolated mass m without changing TR, m is
often mounted on a large mass M, as shown in Fig. 3.6.2.The stiffness k must then be
increased to keep the ratio k I (m + M) constant. The amplitude X is,however, reduced
because k appears in the denominator of Eq. (3.6.1a).

Because in the general problem the mass to be isolated may have 6 DOF (three
translation and three rotation), the designer of the isolation 'system must use his or her
intuition and ingenuity. The results of the single-DOF analysis should, however, serve

(3.6.3)

When the damping is negligible, the transmissibility equation reduces to
. 1

TR = I~:I= I~I
(3.6.2)TR -I FT 1- I 1+ (2(wlwn)2

- Fo - -v [1 - {wlwn)2f + [2(w/wn]2
Comparison of the preceding equation with Eq. (3.5.8) shows that

The transmissibility TR, defined as the ratio of the transmitted force to that of the dis­
turbing force, is then

L.;.;;.;.::.~:-:.;.:.:.;.;.JJ>
FIGURE3.6.2.

FIGURE3.6.1. Disturbing force transmitted through springs and
damper.

•
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Damping is present in all oscillatory systems. Its effect is to remove energy from the
system. Energy in a vibrating system is either dissipated into heat or radiated away.
Dissipation of energy into heat can be experienced simply by.bending a piece of metal
back and forth 'a number of times. We are all aware of the sound that is radiated from
an object given a sharp blow.When a buoy is made to bob up and down in the water,
waves radiate out and away from it, thereby resulting in its loss of energy.

In vibration analysis, we are generally concerned with damping in terms of sys­
tem response. The loss of energy from the oscillatory system results in the decay -of

3.7 ENERGY DISSIPATED BY DAMPING

•

x = 700 X 103

~[ 1- (1~~Sr + [2 X 0.20X 1~.~2r
= 3.79 X 1O-5m

= 0.0379mm

(b) The transmissibility from Eq. (3.6.2) is

~r-1-+-(2-X-0-.2-0-X-1-:-~-2""""r

TR = . = 0.137

~[ 1- L~~2rr + (2 X 0.20X 1~~2)'
(c) The transmitted force is the disturbing force multiplied by the transmissibility.

FTR = 350 X 0.137 = 47.89 N

1 J 9.81in = 21T "V 1.401 X 10-3 = 13.32 Hz

(a) By substituting into Eq. (3.1.5), the amplitude of vibration is

350

and its natural frequency is

Solution The statical deflection of the system is

100 x 9.81 _ . -3_
700 x io' - 1.401 x 10 m - 1.401 mm

A machine of 100kg mass is supported on springs of total stiffness 700 kN/m and has an unbal­
anced rotating element, which results in a disturbing force of 350 N at a speed of 3000 rpm.
Assuming a damping factor of ,= 0.20, determine (a) its amplitude of motion due to the unbal­
ance, (b) the transmissibility, and (c) the transmitted force.

EXAMPLE 3.6.1

as a useful guide. Shock isolation for pulse excitation is discussed in Secs.4.5 and 4.6 in
Chapter 4.
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(3.7.4)

the damping for~e becomes

The energy dissipated per cycle by the damping force can be represented graphically
as follows.Writing the velocity in the form

x = wX cos (wt - 4» == ± wX\!t - sin2(wt - 4»

= ±wYX2 - x2

(3.7.3)

Of particular interest is the energy dissipated in forced vibration at resonance. By sub­
stituting Wn = Vkj;, and e = 2{YKm, the preceding equation at resonance becomes

(3.7.2)

x = X sin (wt - 4»

x = wX cos (wt - 4»

the energy dissipated per cycle, from Eq. (3.7.1), becomes

. Wd = f ci dx = f ci' dt
f.

2-rr/w

= ew2X2 cos? (wt - 4» dt = 7TCWX2
o .

(3.7.1)Wd = fFddx

In general, Wd depends on many factors, such as temperature, frequency, or amplitude.
We consider in this section the simplest case of energy dissipation, that of a

spring-mass system with viscous damping. The damping force in this case is Fd = ex.
With the steady-state displacement and velocity

amplitude of free vibration. In steady-state forced vibration, the loss of energy is bal­
anced by the energy that is supplied by the excitation.

A vibrating system can encounter many different types of damping forces, from
internal molecular friction to sliding friction and fluid resistance. Generally, their
mathematical description is quite complicated and not suitable for vibration analysis.
Thus, simplified damping models have been developed that in many cases are found to
be adequate in evaluating the system response. For example, we have already used the
viscous damping model, designated by the dashpot, which leads to manageable mathe­
matical solutions.

Energy dissipation is usually determined under conditions of cyclic oscillations.
Depending on the type of damping present, the force-displacement relationship when
plotted can differ greatly. In all cases, however, the force-displacement curve will
enclose an area, referred to as the hysteresis loop, that is proportional to the energy
lost per cycle.The energy lost per cycle due to a damping force Fd is computed from the
general equation
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For the case of linear damping, where the energy loss is proportional to the
square of the strain or amplitude, the hysteresis curve is an ellipse. When the damping
loss is not a quadratic function of the strain or amplitude, the hysteresis curve is no
longer an ellipse. ..

(3.7.7)

The second quantity is the loss coefficient, defined as the ratio of damping energy
loss per radian Wi2'1T'divided by the peak potential or strain energy U:

w,
TJ= --2'1T'U

,(3.7.6)

we recognize it as that of an ellipse with Fd and x plotted along the vertical and hori­
zontal axes, respectively, as shown in Fig. 3.7.1(a). The energy dissipated per cycle is
then given by the area enclosed by the ellipse. Ifwe add to Fd the force kx of the loss­
less spring, the hysteresis loop is rotated as shown in Fig. 3.7.1(b). This representation
then conforms. to the Voigt model, which consists of a dashpot in parallel with a
spring.

Damping properties of materials are listed in many different ways, depending on
the technical areas to which they are applied. Of these, we list two relative energy units
that have wide usage. First of these is specific damping capacity, defined as the energy
loss per cycle Wd divided by the peak potential energy U:

Wd
U

(3.7.5)( __fA_ \2,+ (~)2 = 1
cwX) X

By rearranging the foregoing equation to

FIGURE 3.7.1. 'Energy dissipated by viscous damping.

(b)(0)

xx
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The primary influence of damping on oscillatory systems is that of limiting the ampli­
tude of response at resonance. As seen from the response curves of Fig. 3.1.3, damping
has little influence on the response in the frequency regions away from resonance.

3.8 EQUIVALENT VISCOUS DAMPING

•

f.
V2 f.V2

W = WFoXo[ cos 30° 0 sin 'TTtcos 'TTtdt + sin 30° 0 sin2'TTtdt]

[
0.866 (t _ ,sin2'11't) ]1/2= 'TTX 10 X 2 - 4-n- cos 2'TTt+ 0.50 2 4'TT 0

= 16.51 Nr m

W = 3('11'FoXsin 4» = 3'11'X 10 X 2 X sin 30° = 94.2 N· m
The work done in part (b) is determined by integrating the expression for work between thelim­
its 0 and ~ s.

Solution Rewriting Eq. (3.7.1) as W = fFidt and substituting F = Fo sinwt and
x = X sin (wt - 4»gives the work done per cycle of

W = 1rFoX sin 4>

For the force and displacement given in this problem, Fo = 10 N, X = 2 m, 4> = '11'/6,and the
period 'T = 2 s. Thus, in the 6 s specified in (a), three complete cycles take place, and the work
done is .

A force F = 10 sin ttt N acts on a displacement of x = 2 sin( 7Tt - 1r/6) m. Determine (a) the
work done during the first 6 s; (b) the work done during the first is.

EXAMPLE 3.7.2

•

The first term is a constant, representing the steady flow of work per unit time. The second
term is a sine wave of twice the frequency, which represents the fluctuating component of power,
the average value of which is zero over any interval of time that is a multiple of the period.

Solution Power is the rate of doing work, which is the product of the force and velocity.

p = F~~ = (wXoFo) sin (wt + 4» cos wt

= (wXo Fo) [cos 4>' sin wt cos wt + sin 4>' cos? wt]

= iwXoFo [sin 4> + sin (2wt + 4»]

Determine the expression for the power developed by a force F = Fo sin(wt + 4» acting on a
displacement x = Xo sin wt.

EXAMPLE 3.7.1
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Find the equivalent viscous damping for Coulomb damping.

EXAMPLE 3.8.2

•

The equivalent viscous damping from Eq. (3.8.2) is then

8
C = ---.,.-awX
ell 317'

The amplitude at resonance is found by substituting C = Ceq in Eq. (3.8.1) wit~ w = wn:

X= ~31TFo
8aw~

the energy dissipated per cycle is

w, = 2fx ai2 dx = 2aw2X3f.1Tsin3wtd(wt)
-x 0

Solution Let the damping force be expressed by the equation

Fd = ± ax2
where the negative sign must be used when x is positive, and vice versa. Assuming harmonic
motion with the time measured from the position of extreme negative displacement,

x = -Xcoswt

Bodies moving with moderate speed (3 to 20 m/s) in fluids such as water or air are resisted by a
damping force that is proportional to the square of the speed. Determine the equivalent damp­
ing for such forces acting on.an oscillatory system, and find its resonant amplitude.

EXAMPLE 3.8.1

(3.8.2)7TCeqWX2 = Wd

where Wdmust be evaluated from the particular type of damping force.

For other types of damping, no such simple expression exists. It is possible, however, to
approximate the resonant amplitude by substituting an equivalent damping Ceq in the
foregoing equation.

The equivalent damping Ceq is found by equating the energy dissipated by the vis­
cous damping to that of the nonviscous damping force with assumed harmonic motion.
From Eq. (3.7.2),

(3.8.1)

In the case of viscous damping, the amplitude at resonance, Eq. (3.1.9), was found
to be
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lA. L. Kimball, "Vibration Damping, Including the Case of Solid Damping," Trans.ASME, APM 51-52
(1929). Also B. J. Lazan, Damping of Materialsand Members in StructuralMechanics (Elmsford, NY:
Pergamon Press, 1968).

(3.9.2)
ex

or

When materials are cyclically stressed, energy is dissipated internally within the mater­
ial itself. Experiments by several investigators! indicate that for most structural metals,
such as steel or aluminum, the energy dissipated per cycle is independent of the fre­
quency over a wide frequency range and proportional to the square of the amplitude
of vibration. Internal damping fitting this classification is called solid damping or struc­
tural damping. With the energy dissipation per cycle proportional to the square of the
vibration amplitude, the loss coefficient is a constant and the shape of the hysteresis
curve remains unchanged with amplitude and independent of the strain rate.

Energy dissipated by structural damping can be written as

Wd = aX2 (3.9.1)

where exis a constant with units of force/displacement. By using the concept of equiva­
lent viscous damping, Eq. (3.8.2) gives

7TC wX2 = cxX2eq

3.9 STRUCTURAL DAMPING
•

~ (
'4F )2 ~ (4F )2F2__ d I--d

IXi = 0 7T = Fo 7TFo
k - mw2 k 1 _ (~)'

. We note here that unlike the system with viscous damping, X/8st goes to 00 when W = wn•

For the numerator to remain real, the term 4Fd/7!Fo must be less than 1.0.

Solving for X, we obtain

The amplitude of forced vibration can be found by substituting Ceq into Eq. (3.1.3):

v_ Fo

~ - ~(k - m .,')' + (!:::;)'

Solution We assume that under forced sinusoidal excitation, the displacement of the system
with Coulomb damping is sinusoidal and equal to x = X sin wt.The equivalent viscous damping
can then be found from Eq. (3.8.2) by noting that the work done per cycle by the Coulomb force
Fd is equal to Wd = r, X 4X. Its substitution into Eq. (3.8.2) gives

7TCeqWX2 = 4F~

4Fd
Ceq = 7TWX
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and

where

1
H(r) = (1 2) .- r + ly

,
Frequency response with structural damping. By starting with Eq. (3.9.5), the

. complex frequency response for structural damping' can be shown to be a circle.
Letting w/ wn = r and multiplying and dividing by its complex' conjugate give a com­
plex frequency response of

(3.9.6)IXl = Fo f

yk
Comparing this with the resonant response of system with viscous damping

. F
IXl = 2'~

we conclude that with equal amplitudes at resonance, the structural damping factor is
equal to twice the viscous damping factor.

The amplitude at resonance is then

(3.9.5)

By factoring out the stiffness k and letting y = at-tt k, the preceding equation becomes

mx + k(l + iy) x = Foeiwt (3.9.4)

The quantity k(l + iy) is called the complexstiffness and y is the structural damping
factor.

Using the concept of complex stiffness for problems in structural vibrations is
advantageous in that one needs only to multiply the stiffness terms in the system by
(1 + iy). The method is justified, however, only for harmonic oscillations. With the
solution x == X e'", the steady-state amplitude from Eq. (3.9.4) becomes

X = Fo
(k - m(2) + ivk

...( a) ..mx + k + i;. x = Foe'wt

Complex stiffness. In the calculation of the flutter speeds of airplane wings and
tail surfaces, the concept of complex stiffness is used. It is arrived at by assuming the
oscillations to be harmonic, which enables Eq. (3.9.3) to be written as

(3.9.3).. (a).mx + 7TW· X + kx = Fo sin wt

By substituting Ceq for c, the differential equation of motion, for a system with structural
damping can be written as
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(3.10.1)

or

3.10 SHARPNESSOR RESONANCE

In forced vibration, there is a quantity Q related to damping that is a measure of the
sharpness of resonance. To determine this quantity, we assume viscous damping and
start with Eq. (3:1.7).

When W / wn = 1, the resonant amplitude is xres = (Folk)/2l. We now seek the
two frequencies on either side of resonance (often referred to as sidebands), where X I

is O.707Xres'These points are also referred to as the half-power points and are shown in
Fig. 3.10.1. .

Letting X = O.707Xresand squaring Eq. (3.1.7), we obtain

1 ( 1 )2 1

2 2( = [1 ., (:.rr + [2( (:.) r

=UJ
x' + (Y + ;J = (;J

This is a circle of radius 1/2y with center -1/2y, as shown in Fig. 3.9.1.
Every point on the circle represents a different frequency ratio r. At resonance,

r = 1,x = O,y = -l/y,and H(r) = -ily.

The following algebra leads to
1 (1- r2)2 - y2

Y + 2y = 2y[(1 - r2)2 + y2]

(
1 )2 _ 4y2(1 -~ r2? + (1 - r2)4 - 2y2(1 - r2? + y4

x2 + y + 2y - 4Y[(1 _ r2)2 + yp

-y

FIGURE 3.9.1. Frequency
response with structural

damping.
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The basic element of many vibration-measuring instruments is the seismic unit of
Fig. 3.11.1. Depending on the frequency range utilized, displacement, velocity, or
. acceleration is indicated by the relative motion of the suspended mass with respect
to the case.

To determine the behavior of such instruments, we consider the equation of
motion of m,which is

3.11 VIBRATION-MEASURING INSTRUMENTS

'Y
(3.10.5)1

Q=

(3.10.4)Q= Wn = .L:= _!_
W2 - wI 12 - 11 2,

Here, again, equivalent damping can be used to define Q for systems with other forms
of damping. Thus, for structural damping, Q is equal to

The quantity Q is then defined as

(3.10.3)

(3.10.2)(:.r =(1-2C2)±2C~

Assuming , ~ 1 and neglecting higher-order terms of " we arrive at the result(:.r = 1± 2C

Letting the two frequencies corresponding to the roots of Eq. (3.10.3) be wI and (u2, we
obtain

Solving for (w / wn)2, we have

FIGURE3.10.1.

x
Xo
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Seismometer: instrument with low natural frequency. When the natural fre­
quency wn of the instrument is low in comparison to the vibration frequency w to be
measured, the ratio wiwn approaches a large number, and the relative displacement Z
approaches Y regardlessof the value of the damping l,as Indicated in Fig.3.11.2.The
mass m then remains stationary while the supporting case moves with the vibrating
body.Suchinstrumentsare called seismometers.

It is evident then that the parameters involved are the frequency ratio to] wn and the
damping factor l. Figure 3.11.2shows a plot of these equations and is identical to
Fig.3.3.2except that ZIY replaces MXlme. The type of instrument is determined by
the useful range of frequencies with respect to the natural frequency wn of the instru­
ment.

(3.11.5)l-(:J
we

tan cp = k - mw2

and

,(3.11.4)mw2y
Z = V 2 2(k - mw2) + (CW)

This equation is identical in form to Eq. (3.2.1)with z and mw2Y replacing x and mew,
respectively.The steady-statesolution z = Z sin (wt - cp) is then available from inspec­
tion to be

(3.11.3)mz: + cz + kz = mw2y sin wt

and assuming sinusoidal motion y = Y sin wt of the vibrating body, we obtain the
equation

(3.11.2)z=x-y

where x andyare the displacementof the seismicmass and the vibrating body,respec­
tively,both measured with respect to an inertial reference. Letting the relative dis­
placement of the massm,and the case attached to the vibrating body be

(3.11.1)m X = - c (i - y) - k(x - y)

FIGURE 3.11.1.
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One of the disadvantages of the seismometer is its large size. Because Z = Y, the.
relative motion of the seismic mass must be of the same order of magnitude as that of
the vibration to be measured. .

The relative motion z is usually converted to an electric voltage by making the
seismic massa magnet moving relative to coils fixed in the case, as shown in Fig. 3.11.3.
Because the voltage generated is proportional to the rate of cutting of the magnetic
field, the output of the instrument will be proportional to the velocity of the vibrating
.body. Such instruments are called velometers. A typical instrument of this kind can
have a natural frequency from 1 to 5 Hz and a useful frequency range of 10 to 2000 Hz.

FIGURE 3.11.3.

Frequency ratio ~n

FIGURE 3.11.2. Response of a vibration-measuring instrument.
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FIGURE 3.11.4. Ranger seismometer. (Courtesy of Kinemetrics, Inc., Pasadena, California.)

Accelerometer: instrument with high natural frequency. When the natural
frequency of the instrument is high compared to that of the vibration to be mea-

The sensitivity of such instruments can be in the range of 20 to 350 mV/cm/s, with the
maximum displacement limited to about 0.5 em peak to peak.

Both the displacement and acceleration are available from the velocity-type
transducer by means of the integrator or the differentiator provided in most signal
conditioner units.

Figure 3.11.4 shows the Ranger seismometer, which because of its high sensitivity
was used in the U.S. lunar space program. The Ranger seismometer incorporates a
velocity-type transducer with the permanent magnet as the seismic mass. Its natural
frequency is nominally 1 Hz with a mass travel of ± 1 mm. Its size is 15 em in diameter
and it weighs 11 lb. '
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FIGURE3.11.5. Acceleration error vs.frequency with, as a parameter.
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for various values of damping {.The diagram shows that the useful frequency-range of
the undamped accelerometer is somewhat limited. However, with {= 0.7, the useful
frequency range is 0 ::; w/ W ::; 0.20 with a maximum error less than 0.01 percent. Thus,. n
an instrument with a natural frequency of 100 Hz has a useful frequency range from 0
to 20 Hz with negligible error. Electromagnetic-type accelerometers generally utilize
damping around { = 0.7, which not only extends the useful frequency range, but also
prevents phase distortion for complex waves, as will be shown later. On the other hand,
very high natural-frequency instruments, such as the piezoelectric crystal accelerome­
ters, have almost zero damping and operate without distortion up to frequencies of
0.06fn•

Several different accelerometers are in use today. The seismic mass accelerome­
ter is often used for low-frequency vibration, and the supporting springs may be four

1

Thus, Z becomes proportional to the acceleration of the motion to be measured with a
factor 1/ w~.The useful range of the accelerometer can be seen from Fig. 3.11.5,which
is a magnified plot of

(3.11.6)
acceleration

2
Wn

approaches unity for w/wn ~ 0, so that

w2y
Z=­

w2n

sured, the instrument indicates acceleration. Examination of Eq. (3.11.4) shows that
the factor
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FIGURE 3.11.7.FIGURE 3.11.6.

Phase distortion. To reproduce a complex wave such as the one shown in
Fig. 3.11.7 without changing its shape, the phase of all harmonic components must
remain unchanged with respect to the fundamental. This requires that the phase angle
be zero or that all the harmonic components must be shifted equally. The first case of
zero phase shift corresponds to , = 0 for {LII {LIn < 1.The second case of an equal time-

This severe loss of signal can be avoided by using a charge amplifier, in which case, the
capacitance of the cable has no effect. .

50 X 500 = 31.3 mVI
500 + 300 g

electric strain gage wires connected in a bridge circuit. A more accurate variation of
this accelerometer is one in which the seismic mass is servo-controlled to have zero rel­
ative displacement; the force necessary to accomplish this becomes a measure of the
acceleration. Both of these instruments require an external source of electric power.

The piezoelectric properties of crystals like quartz or barium titanate are utilized
in accelerometers for higher-frequency measurements. The crystals are mounted so
that under acceleration, they are either compressed or bent to generate an electric
charge. Figure 3.11.6 shows one such arrangement. The natural frequency of such
accelerometers can be made very high, in the 50,000-Hz range, which enables accelera­
tion measurements to be made up to 3000 Hz. The size of the crystal accelerometer is
very small, approximately 1 ern in diameter and height, and it is remarkably rugged
and can stand shocks as high as 10,000 g's. .

The sensitivity of the crystal accelerometer is given either in terms of charge (pi­
cocoulombs = pC = 10-12 Coulombs) per g, or in terms of voltage (millivolts =
mV = 10-3 V) per g. Because the voltage is related to the charge by the equation
E = QI C, the capacitance of the crystal, including the shunt capacitance of the connecting
cable, must be specified. Typical sensitivity for a crystal accelerometer is 25 pCI g with
crystal capacitance of 500 pF (picofarads). The equation E = QIC then gives
25 I500 = 0.050mVI g = 50mVIg for the sensitivity in terms of voltage. If the accelerom­
eter is connected to a vacuum-tube voltmeter through a 3-m length of cable of capaci­
tance 300pF, the open-circuit output voltage of the accelerometer will be reduced to

,._(
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(~r= V1- 212
p

3.5. A spring-mass is excited by a force Fosinwt. At resonance, the amplitude is measured to
be 0.58 em. At 0.80 resonant frequency, the amplitude is measured to be 0.46 em.
Determine the damping factor l of the system.

3.1. A machine part of mass 1.95 kg vibrates in a viscous medium. Determine the damping
coefficient when a harmonic exciting force of 24.46 N results in a resonant amplitude of
1.27 em with a period of 0.20 s.

3.2. If the system of Prob. 3.1 is excited by a harmonic force of frequency 4 cps, what will be
the percentage increase in the amplitude of forced vibration when the dashpot is
removed?

.3.3. A weight attached to a spring of stiffness 525 N/ m has a viscous damping device. When
the weight is displaced and released, the period of vibration is 1.80 s, and the ratio of
consecutive amplitudes is 4.2 to 1.0. Determine the amplitude and phase when a force
F = 2 cos 31acts on the system.

3.4. Show that for the dampled spring-mass system, the peak amplitude occurs at a frequency
ratio given by the expression

•

Solution For (= 0.70, <P == Tr/2 X w/ wn' so that <PI = Tr/2 X wJ wn and <P2 = Tr/2 X w2/ wn'
The output of the accelerometer is then

z = ZI sin (WIt - <PI) + Z2sin (w2t - <P2)

By substituting for ZI and Z2 from Eq. (3.12.6), the output of the instrument is

z = ~~ [ wi Y1sin WI (1 - 2:J + w~ Y2 sin ~ (t - 2:J]

Because the time functions in both terms are equal (1 ~ Tr/2wn), the shift of both components
along the time axis is equal. Thus, the instrument faithfully reproduces the acceleration y without
distortion. It is obvious that if <PI and <P2 are both zero, we again obtain zero phase distortion .

Investigate the output of an accelerometer with damping (= 0.70 when used to measure a peri­
odic motion with the displacement given by the equation

EXAMPLE 3.11

7T W
cf> == - -2 «;

Thus, for, = 0, or 0.70, the phase distortion is practically eliminated.

wise shift of all harmonics is nearly satisfied for' = 0.70 for w1wn < 1. As shown in
Fig. 3.11.2,when, = 0.70, the phase for w1wn < 1 can be expressed by the equation
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3.10. If for the same disk of Prob. 3.9, the trial weight of 2 oz is placed at 1350 cw from the ref­
erence mark, the new unbalance is found to be 4.3 mm at 1110 cs: Show that the correct
balance weight is unchanged.

FIGURE P3.9.

3.9. A thin disk is supported on spring-mounted bearings with vibration pickup and strobo­
tac, as shown in Fig. P3.9. Running at 600 rpm ccw,the original disk indicates a maximum
amplitude of 2.BO mm at 450 cw from a reference mark on the disk. Next a trial weight of
2.0 oz is added at the rim in a position 91S cw from the reference mark and run at the
same speed. If now the new unbalance is 6.0 mm at BO° cw from the reference mark,
determine the position and weight necessary to balance the original disk.

-y
FIGURE P3.8.

3.8. Shown in Fig. P.3.B is a cylinder of mass m connected to a spring of stiffness k excited
through viscous friction c to a piston with motion y = A sinwt. Determine the amplitude
of the cylinder motion and its phase with respect to the piston.

FIGURE P3.7.

l:ir k ~X2sinwt

~m

1M] 3.6. Plot the real and imaginary parts of Eq. (3.1.17) for' = o.oi and 0.Q2.(See Appendix E
for information about Matlab®.)

3.7. For the system shown in Fig. P3.7, set up the equation of motion and solve for the steady­
state amplitude and phase angle by using complex algebra.
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FIGURE P3.1S.

3.14. Solve Eq. (3.2.1) for the complex amplitude.. i.e., let (mec.i) sin wI = Feiw1 and
. x = Xei(Wl-"') = (Xe-i"')eiWl = XeiWl. .

3.15. A balanced wheel supported on springs, as shown in Fig. P3.15, is rotating at 1200 rpm. If
a bolt weighing 15 g and located 5 em from center suddenly comes loose and flies off,
determine the buildup of vibration if the natural frequency of the system is 18 cps with
damping of , = 0.10.

FIGURE P3.13.

M

3.11. If the wheel of Prob. 3.9 shows resonance at 900 rpm with damping of ~::::0.10, deter­
mine the phase lag of the original unbalance and check the vector diagrams of Probs. 3.9
and 3.10.

3.U. Prove that a long rotor can be balanced by adding or removing weights in any two paral­
lel planes, and modify the single disk method to balance the long rotor.

3.13. A counterrotating eccentric mass exciter shown in Fig. P3.13 is used to determine the
vibrational characteristics of a structure of mass 181.4 kg. At a speed of 900 rpm, a stro­
boscope shows the eccentric masses to be at the top at the instant the structure is moving
upward through its static equilibrium position, and the corresponding amplitude is 21.6
mm. If the unbalance of each wheel of the exciter is 0.0921 kg . m, determine (a) the nat­
ural frequency of the structure, (b) the damping factor of the structure, (c) the amplitude
at 1200 rpm, and (d) the angular position of the eccentrics at the instant the structure is
moving upward through its equilibrium position.
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3.21. The springs of an automobile trailer are compressed 10.16 cm under its weight. Find the
critical speed when the trailer is traveling over a road with a profile approximated by a
sine wave of amplitude 7.62 em and wavelength of 14;63m.What will be the amplitude of
vibration at 64.4 km/h? (Neglect d~mping.)

3.22. The point of suspension of a simple pendulum is given by a harmonic motion
Xo = Xo sin cut along a horizontal line, as shown in Fig. P3.22.Write the differential equa­
tion of motion for a small amplitude of oscillation using, the coordinates shown.
Determine the solution for x/xo' and show that when w = V2wn , the node is found at
the midpoint of I. Show that in general the distance h froin the mass to the node is given
by the relation h = I(wnl w)2,where wn = vgji. , .

FIGURE P3.20.

3.19. For turbines operating above the critical speed, stops are provided to limit the amplitude
as they run through the critical speed. In the turbine of Prob. 3.18, if the clearance
between the 2.54-cm shaft and the stops is 0.0508 cm, and if the eccentricity is 0.0212 em,
determine the time required for the shaft to hit the stops. Assume that the critical speed
is reached with zero amplitude.

3.20. Figure P3.20 represents a simplified diagram ofa spring-supported vehicle traveling over
a rough road. Determine the equation for the amplitude of Was a function of the speed,
and determine the most unfavorable speed.

FIGURE P3.18.

3.16. A solid disk weighing 10 lb is keyed to the center of a Hn. steel shaft 2 ft between bear­
ings. Determine the lowest critical speed. (Assume the shaft to be simply supported at
the bearings.)

3.17. Convert all units in Prob. 3.16 to the SI system and recalculate the lowest critical speed.
3.1S. The rotor of a turbine 13.6 kg in mass is supported at the midspan of a shaft with bearings

0.4064 m apart, as shown in Fig. P3.18.The rotor is known to have an unbalance of 0.2879
kg . em. Determine the forces exerted on the bearings at a speed of 6000,rpm if the diam­
eter of the steel shaft is2.54 em. Compare this result with that of the same rotor mounted
on a steel shaft of diameter 1.905 cm. (Assume the shaft to be simply supported at the
bearings.)
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3.29. A sensitive instrument with mass 113kg is to be installed at a location where the acceler­
ation is 15.24 cm/s2 at a frequency of 20 Hz. It is proposed to mount the instrument on a
rubber pad with the following properties: k = 2802 N/em and, = 0.10. What accelera­
tion is transmitted to the instrument?

FIGURE P3.2S.

3.23. Derive Eqs. (3.5.8) and (3.5:9) for the amplitude and phase by letting y = Y sin wt and
x = X sin(wt - <1» in the differential equation (3.5.1).

3.24. An aircraft radio weighing 106.75 N is to be isolated from engine vibrations ranging in
frequencies from 1600 to 2200 cpm. What statical deflection must the isolators have for
85% isolation?

3.25. A refrigerator unit weighing 65 lb is to be supported by three springs of stiffness k lb/ in.
each. If the unit operates at 580 rpm, what should be the value of the spring constant k if
only 10% of the shaking force of the unit is to be transmitted to the supporting structure?

3.26. An industrial machine of mass 453.4 kg is supported on springs with a static deflection of
0.508 ern. If the machine has a rotating unbalance of 0.2303 kg· m, determine (a) the
force transmitted to the floor at 1200 rpm and (b) the dynamic amplitude at this speed.
(Assume damping to be negligible.)

3.27. If the machine of Prob. 3.26 is mounted on a large concrete block of mass 1136 kg and the
stiffness of the springs or pads under the block is increased so that the statical deflection
is still 0.508 cm, what will be the dynamic amplitude?

3.28. An electric motor of mass 68 kg is mounted on an isolator block of mass 1200 kg and the
natural frequency of the total assembly is 160 cpm with a damping factor of, = 0.10 (see
Fig. P3.28). If there is an unbalance in the motor that results in a harmonic force of
F = 100 sin 31.4t, determine the amplitude of vibration of the block and the force trans­
mitted to the floor.

FIGURE P3.22.

1·
I
I
I
~x~
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FIGURE P3.41.

3.32. Show that the energy dissipated per cycle for viscous friction can be expressed by

W = 7TF~ 2~(wI wn)

d . k [1 - (wi wYl 2 + [2~(wlWnW
3.33. Show that for viscous damping, the loss factor 'Y1 is independent of the amplitude and pro­

portional to the frequency.
3.34. Express the equation for the free vibration of a single-DOF system in terms of the loss

factor 'Y1 at resonance.
3.35. Show that 'Tnl'Td plotted against ~ is a quarter circle where 'Td is the damped natural

period, and 'Tn is the undamped natural period.
3.36. For small damping, the energy dissipated per cycle divided by the peak potential energy

is equal to 28 and also to IIQ. [See Eq. (3.7.6).] For viscous damping, show that

8 = 7TCWn

k

3.37. In general, the energy loss per cycle is a function of both amplitude and frequency. State
under what condition the logarithmic decrement 8 is independent of the amplitude.

3.38. Coulomb damping between dry surfaces is a constant D always opposed to the motion.
Determine the equivalent viscous damping.

3.39. Using the result of Prob. 3.38, determine the amplitude of motion of a spring-mass system
with Coulomb damping when excited by a harmonic force Fosin wt. Under what condition
can this motion be maintained?

3.40. Plot the results of Prob. 3.39 in the permissible range.
3.4.L The shaft of a torsiograph, shown in Fig. P3.41, undergoes harmonic torsional oscillation

80 sin wt. Determine the expression for the relative amplitude of the outer wheel with
respect to (a) the shaft and (b) a fixed reference.

FIGURE P3.31.

3.30. If the instrument of Prob. 3.29 can tolerate an acceleration of only 2.03 cmls2, suggest a
solution assuming that the same rubber pad is the only isolator available. Give numerical
values to substantiate your solution.

IHI 3.31. For the system shown in Fig. P3.31, verify that the transmissibility TR = Ixlyl is the same
as that for force. Plot the transmissibility in decibels, 20 log ITRI versus wI wn between
wlwn = 1.50 to 10with ~ = 0.02,0.04, ... ,0.10.
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where £ = c/ ccr'
3.50. Logarithmic decrement 5 for small damping is equal to 5 == 21T(.Show that 5 is related to

the specific damping capacity by the equation

Wd = 25(~)
U wn

3.51. For a system with hysteresis damping, show that the structural damping factor ')' is equal
to the loss factor at resonance.

3.52. For viscous damping, the complex frequency response can be written as
1

H(r) == (1 - r2) + i(2(r)

where r = W/ (Un' and ( = c / Ccr' Show that the plot of H = x + iy leads to the

x2 + (y + _!_)2 = (~)2
4(r 4(r

which cannot be a circle because the center and the radius depend on the frequency ratio.
lMl 3.53. The following problem uses the programs runga.m and r.m where r.m contains the forcing

function, [force] = sin(t). You should use the following parameters for all ofthe problem:

3.42. A commercial-type vibration pickup has a natural frequency of 4.75 cps and a damping
factor (= 0.65.What is the lowest frequency that can be measured with (a) 1% error and
(b) 2% error?

3.43. An undamped vibration pickup having a natural frequency of 1 cps is used to measure a
harmonic vibration of 4 cps. If the amplitude indicated by the pickup (relative amplitude
between pickup mass and frame) is 0.052 em, what is the correct amplitude?

3.44. A manufacturer of vibration-measuring instruments gives the following specifications
for one of its vibration pickups:

Frequency range: Velocity response flat from 10 to 1000 cps.
Sensitivity: 0.096V/ cm/ s, both volts and velocity in rms values.
Amplitude range: Almost no lower limit to maximum stroke between stops of 0.60 in.

(a) This instrument was used to measure the vibration of a machine with a known fre­
quency of 30 cps. Ifa reading of 0.024V is indicated, determine the rms amplitude.

(b) Could this instrument be used to measure the vibration of a machine with known
frequency of 12 cps and double amplitude of 0.80 em? Give reasons.

3.45. A vibration pickup has a sensitivity of 40 mV/cm/s fromf= 10 to 2000 Hz. If 1 g accel­
eration is maintained over this frequency range, what will be the output voltage at (a) 10
Hz and (b) 2000 Hz?

3.46. Using the equations of harmonic motion, obtain the relationship for the velocity versus
frequency applicable to the velocity pickup.

3.47. A vibration pickup has a sensitivity of 20 mV Icrn/s. Assuming that 3 mV (rrns) is the
accuracy limit of the instrument, determine the upper frequency limit of the instrument
for 1 g excitation. What voltage would be generated at 200 Hz?

3.48. The sensitivity of a certain crystal accelerometer is given as 18 pC/ g,with its capacitance
equal to 450 pF. It is used with a vacuum-tube voltmeter with connecting cable 5 m long
with a capacitance of 50 pF / m. Determine its voltage output per g.

3.49. Specific damping capacity Wd / U is defined as the energy loss per cycle Wd divided by the
peak potential energy U = !kX2• Show that this quantity is equal to

Wd = 41Ti !!!._)
U !.\ Wn
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1M] 3.56. Consider the problem of Example 3.8.1.Solve the equations of motion numerically in
Matlab® and plot the average amplitude of oscillation versus the frequency ratio.
Compare with the result obtained in Example 3.8.1where the equivalent viscousdamp­
ing approach is used.

1M] 3.57. A table-tennis ball is jumping on the table that is oscillatingperiodically in time. The
position of the table is givenbyyet) = A sinewt). It isassumedthat the coefficientof resti­
tution is 1,so when the ball leavesthe table it does sowith the velocityV givenuy

V = 2W- U
where W is the velocity of the table at that moment in time and U is the velocityof the
ball at the impact. Simulate the motion inMATLAB®and plot the results in the following
form:Record the velocity of the ball v. and time t.at every impactwith the table. Do this
for different initial conditions and for aifferent forcingfrequenciesw. Plot the averageof
the amplitude of the ball over time versusthe forcingfrequency.

FIGURE P3.SS. TF = Fo sin(wt)
m

springconstant,k = 1;initial positionx(O) = 0; time step, at = 0.2;and initial time, to = O.
Produce a plot for each of the casesconsidered.
(a) For the next two casesm = 1,C = 1,and tfinal = 20.

i. initial velocityx'(O) = 1
ii. initial velocityx'(O) = 10
iii. Howdoes the initial velocityaffect the responseof the system?

(b) For the next three cases,the initialvelocityis fixedx'(O)= 10.
l, c == 10,m = 1,and tfinal = 40.
ii. c = 1,m = 10,and tfinal= 40.
iii. c = 1,m = 10,andtfinal = 100.
iv. Discuss why it takes the two systemsdifferent amounts of time to reach the

steady state solution.
!Hl 3.54. Consider the systemforced with twofrequenciesgivenby

mx + c.t + kx = Pi sin (Wit) + f2 sin (W2t).
Solve the equations of motion. Find the relationship between the amplitudes of the
motion and the ratios of frequencieswl/ W, w2/ w. Plot the results in Matlab®.

!Hl 3.55. Consider the system shown in Fig.P3.55,with the viscousdamping coefficient c and
spring stiffness k. Derive the equation of motion when the system is forced by a sinu­
soidal force Fosin(wt). What is the effectivedampingfor this system?What is the energy
dissipated over one cycle?Compare this systemwith the systemin which the spring and
the damper are connected in parallel.
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FIGURE 4.1.1.

I
F
E

We frequently encounter a force of very large magnitude that acts for a very short time
but with a time integral that is finite. Such forces are called impulsive. .

Figure 4.1.1 shows an impulsive force of magnitude PiE with a time duration of E.

As E approaches zero, such forces tend to become infinite; however, the impulse

(4.1.1)

Impulse is the time integral of the force, and we designate it by the notation F:

F = f F(t) dt
4.1 IMPULSE EXCITATION

When a dynamical system is excited by a suddenly applied nonperiodic excitation F(t),
the response to such excitation is called transient response, since steady-state oscilla­
tions are generally not produced. Such oscillations take place at the natural frequen­
cies of the system with the amplitude varying in a manner dependent on the type of
excitation.

We first study the response of a spring-mass system to an impulse excitation
because this case is important in the understanding of the more general problem of
transients.

Transient Vibration
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(4.1.5)

(4.1.4)

FIGURE 4.1.2.

F

is the response to a unit impulse.

h(t) =

where

F A

X = -sinwi = Fh(t)
mWn

Hence, the response of a spring-mass system initially at rest and excited by an impulse
F is

Because F dt = mdv, the impulse F acting on the mass will result in a sudden
change in its velocity equal to F/m without an appreciable change in its displacement.
Under free vibration, we found that the undamped spring-mass system with initial con­
ditions x( 0) and x( 0) behaved according to the equation

x(O) .
x = -- SIll wnt + x(O)cos wnt

Wn

(4.1.3)

If 8(t - g) is multiplied by any time function t(t), as shown in Fig. 4.1.2, the product
will be zero everywhere except at t = g, and its time integral will be

ft(l) 8(1- (;)dt = tW

(4.1.2)1.0r8(1 - (;)dl

= greater than any assumed value for t = g
for all t * g8(t - g) = 0

defined by its time integral is F, which is considered to be finite. When F is equal to
unity, such a force in the limiting case E ~ 0 is called the unit impulse, or the delta func­
tion. A delta function at t = g is identified by the symbol 5(t - g) and has the following
properties:
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FIGURE 4.2.1.

f({)A(

I
(=t

f(g) Agh(t - g)

and its contribution to the response at time t is dependent upon the elapsed time
(t - g),or

By having the response h(t) to a unit impulse excitation, it is possible to establish the
equation for the response of the system excited by an arbitrary force f(t) . For this
development, we consider the arbitrary force to be a series of impulses, as shown in
Fig. 4.2.1. If we examine one of the impulses (shown crosshatched) at time t = ~,its
strength is

4.2 ARBITRARY EXCITATION

(4.1.7)x = Fh(t)

where the right side of the equation is given by either Eq. (4.1.4) or (4.1.6).

The response to the unit impulse is of importance to the problems of transients
and is identified by the special designation h(t). 1hus, in either the damped or
undamped case, the equation for the impulsive response can be expressed in the form

(4.1.6)

x= X~Sin~W.1
Wn 1- (2

Substituting for the initial condition i(o) = F;m, we arrive at the equation

x = F e-{wntsin~w t
mWn~ n

When damping is present, we can start with the free-vibration equation, Eq. (2.6.17),
with x(O) = 0:
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e - 'Wn' .. r::--::
h(t) = v'"1={2 sin v 1 - '2 wnt

mto; 1 - ,2
or, alternatively, we can simply consider the differential equation

.. • 2 F
x + 2,wnx + WnX = -m

whose solution is the sum of the solutions to the homogeneous equation and that of the particu­
lar solution, which for this case is Fo/mw~. Thus, the equation

(4.2.2)
F.= kO (1 - cos wA

This result indicates that the peak response to the step excitation of magnitude Fo is .equal to
twice the statical deflection.

For a damped system, the procedure can be repeated with

By substituting into Eq. ,(4.2.1),the response of the undamped system is

F. . f'x(t) = _0 sin wn(t - ~) d~
nuo; 0

Solution Considering the undamped system, we have

h(t) = -1-sin wnt
mio;

FIGURE4.2.2. Step function excitation.

f(f}

Fai
OL----------------------

Determine the response of a single-DOF system to the step excitation shown in Fig. 4.2.2.

EXAMPLE 4.2.1

This integral is called the convolution integral and is sometimes referred to as the
superposition integral.

(4.2.1)x{t) = f t{t)h{t - t) dt

where h(t - €) is the response to a unit impulse started at t = €.Because the system we
are considering is linear, the principle of superposition holds. Thus, by combining all
such contributions, the response to the arbitrary excitation J(t) is represented by the
integral

Transient Vibration92 Chapter 4

www.semeng.ir

http://www.semeng.ir


;(t) = voe-t/tou(t}

where u(t) is a unit step function. The velocity together with its time rate of change is shown in
Fig. 4.2.4.

Consider an undamped spring-mass system where the motion of the base is specified by a veloc­
ity pulse of the form

EXAMPLE 4.2.2

(4.2.5)

and, hence, all of the results for the force-excited system apply to the base-excited sys­
tem for z when the term F/m is replaced by ~ji or the negative ofthe base acceleration.

For an undamped system initially at rest, the solution for the relative displace-
ment becomes '

(4.2.4)

Base excitation. Often, the support of the dynamical system is subjected to a
sudden movement specified by its displacement, velocity, or acceleration. The equation
of motion can then be expressed in' terms of the relative displacement z = x - y as
follows:

•

tan'" = ,
v'l='"?

Figure 4.2.3 shows a plot of xk/ Foversus wnt with, as a parameter, and it is evident that the
peak response is less than 2Fo/ k when damping is present.

(4.2.3)

where

fitted to the initial condition of x{O) = x(O) = 0 will result in the solution, which is given as

F. [ e -"Wn' ]X = __Q 1 - cos (v'l='"? w t - "')k ~ n

x{t) = Xe-,wn'sin (~ w t - cf» + Fo
n mw~

FIGURE 4.2.3. Response to a unit step function.

kx
Fo
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EXAMPLE 4.3.1

Formulate the Laplace transform solution of a viscously damped 'spring-mass system with initial·'
conditions x(O) and i(o).

The Laplace transform method of solving the differential equation provides a com­
plete solution, yielding both transient and forced vibrations. For those unfamiliar with
this method, a brief presentation of the Laplace transform theory is given in Appendix
B. In this section, we.illustrate its use by some simple examples.

4.3 LAPLACETRANSFORMFORMULATION

•
(4.2.6)

By substituting y" into Eq. (4.2.5), the result is

z(t) = - V.o JI [e-Uloa(~) - _!_e-~/louWJ sin wn(t ~ ~) d~
Wn 0 to

Solution The velocity pulse at t = 0 has a sudden jump from zero to vo, and its rate of change
(or acceleration) is infinite. Differentiating y(t) and recognizing that (d/dt)u(t) = aCt), a delta
function at the origin, we obtain

FIGURE 4.2.4.
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The question of how far a body can be dropped without incurring damage is of frequent interest.
Such considerations are of paramount importance in the landing of airplanes or the cushioning
of packaged articles. In this example, we discuss some of the elementary aspects of this problem
by idealizing the mechanical system in terms of linear spring-mass components.

Consider the spring-mass system of Fig. 4.3.2 dropped through a height h. If x is measured
from the position of m at the 'instant t = 0 when the spring first contacts the floor, the differential
equation of motion for m applicable as long as the spring remains in contact with the floor is

mi' + kx = mg (4.3.2a)

Taking the Laplace transform of this equation with the initial conditions x(O) = 0 and
i( 0) =.Yzii" we can write the subsidiary equation as

(Drop Test)EXAMPLE 4.3.2
•

zero.

(4.3.1d)
1

R(s) = z(s)

Frequently, a block diagram is used to denote input and output, as shown in Fig; 4.3.1. The
admittance transform H(s) then can also be considered as the system transfer function, defined as
the ratio in the subsidiary plane of the output over the input with aU initial conditions equal to

Its reciprocal is the admittance transform

(4.3.1c)

(4.3.1b)_( ) A(s)
x s = R(s)

where A(s) and B(s) are polynomials and B(s), in general, is of higher order than A(s).
Ifonly the forced solution is considered, we can define the impedance transform as

F(s)
xes) = z(s) = ms2 + cs + k

The response x(t) is found from the inverse of Eq. (4.3.1); the first term represents the forced
vibration and the second term represents the transient solution due to the initial conditions.

For the more general case, the subsidiary equation can be written in the form

(4.3.1a)

Taking its Laplace transform, we find

m[s2x(s) - x(O)s - i(o)] + c[sx(s) - x(O)] + kx(s) = F(s)

Solving for x(s), we obtain the subsidiary equation:

_( ) F(s) (ms + c)x(O) + mi(O)
x s = +

ms' + cs + k ms' + cs + k

Solution The equation of motion of the system excited by an arbitrary force F(t) is

mi' + ex + kx = F(t)

FIGURE4.3.1. Block diagram.

Input I=(s) .....G1J .....Output x(s)
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•
FIGURE ·4.3.4.

1410 12864
~ __~ __~ __~ __~ __~ __~ __~ 2h

8S1o 2

4

We recognize here that g Iw2 = ~st and that the maximum displacement and acceleration occur at
sin (wi - <p) = 1.0.Thus, the maximum acceleration in terms of gravity is found to depend only
on the ratio of the distance dropped to the statical deflection as given by the equation

x = _~2h + 1 (4.3.2d)
g s;

A plot of this equation is shown in Fig. 4.3.4.

2gh (g\2- + -I cos(wnt - <p)
w~ w~!

where the relationship is shown in Fig. 4.3.3.By differentiation, the velocity and acceleration are

x(t) > 0
(4.3.2c)

~2gh (g)2. g= - + - SIll (wnt - <p) + -
W~ w~ w~

where wn = VkTiii is the natural frequency of the system. From the inverse transformation of
i(s), the displacement equation becomes .

V2ih . gx(t) = -- SIll wi + "'2 (1 - cos wnt)
Wn Wn

(4.3.2b)

FIGURE 4.3.3.

t 8!x=J29h
x ~k

'l///7///)//7///7////
FIGURE 4.3.2.
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'See Ref. [5].

'1
(b) Rectangular pulse

FIGURE 4.4.1.

'1
(0) Constant with rise time

Fol---....

"-- _ _.L f

'1
(c) Half-sine pulse

(4.4.1)

Rise time. The input can be considered to be the sum of two ramp functions, as
shown in Fig. 4.4.2.For the first ramp function, the terms of the convolution integral are

t(t) = Fo( t)

In this section, we consider the time response of the undamped spring-mass system to
three different excitations shown in Fig. 4.4.1. For each of these force excitations, the
time response must be considered in two parts, t < tl and t > t1.

4.4 PULSEEXCITATION AND RISETIME

•

Solution The result for this problem is simply obtained from Eq.( 4.3.2) as

x' = _ ~ 2h .+ 1 = _ /2 x 3 + 1 = __4.26
g 8sr . -v 0.35

FIGURE 4.3.5.

For a man in a seated position, as when driving an automobile, the single-DOF model of Fig.4.3.5
is often assumed for forensic studies. From extensive biomechanical tests, the spinal stiffness of
81,000N/m = 458Ib/in.1 is assumed for the spring k supporting the body mass Wig.By assuming
mg = 160 lb, this results in a static deflection of 8st = 160/458 = 0.35 in. Let us assume that in hit­
ting an obstacle, the driver not restrained by a seat belt is thrown upward and drops 3.0 in. in free
fall onto an unpadded stationary seat. Determine the g acceleration transmitted by his spinal cord.

EXAMPLE 4.3.3
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FIGURE4.4.3.

-FOr---~-------------------

~~--~-----------------1
1
I
1

Or---rl---------------------
'1

(4.4.5)

Rectangular pulse. The input pulse here can be considered as the. sum of two
step functions, as shown in Fig. 4.4.3.

We already have the response to the step funct~on as

kxF. = [1 - cos wnt] t < tl (4.4.4)
o

The peak response here is obviously equal to 2.0 at t = ~'T.
The response to the second step function started at t = tl is

(4.4.3)

By superimposin~ these two equations, the response for t > t} becomes

Po [ sin W t 1. . ]x(t) = -k 1- __ a; + -sm wn(t - t}) t> t}
wntl wntl

(4.4.2)

and the response becomes

x(t) = WknIt Po f, sin wn(t - g)dg
o tl

Po ( t sin Wn t )k ~ - ---;;;::t; t < t}

For the second ramp function starting at t1, the solution can be written by inspec­
tion of the foregoing equation as

x(t) = _ Po [ t - t} _ sin wn(t - t1)]
k t} wntl

FIGURE4.4.2.

IF 11'o~l~\ F,~~ _

\
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The initial values x(t1) and x(t1) can be obtained from Eq. (4.4.10), noting that
pt, = tt,

(4.4.11)

1 [. 2m ( 2tl) . m]= SIn - _ - SIn - t < tl
_!_ _ 2tl 'T' 'T tl
2tl 'T

To determine the solution for t > t1, we use Eq. (4.4.10) but with t replaced by
(t _ t1). However, we choose a different procedure, noting that for t > t1, the excitation
force is zero and we can obtain the solution as a free vibration [see Eq. 2.6.17] with
t' = (t _ t1). .

and the previous solution reduces to

_.f!_

(Xk) Wn. 1.
Fo = 1_ (~n)' sm wnt + 1_ (~n)' smpt

(4.4.10)

andB=O

where p = Tr/t1"To satisfy the initial conditions x(O) = x(O) = 0, we find

e

(4.4.9)

The general solution is the sum of the free vibration and the particular solution

. F. sinpt
x(t) = A SIn wnt + B cos wnt + _Q 2 2

m Wn - P

(4.4.8)

(4.4.7)

Half-sine pulse. For a pulse of time duration t1, the excitation is .

p(t) = Po sin Trt for t < t1
tl

= 0 for t > t1

and the differential equation of motion is

•• 2 Pox + wnx = -sin Trt/t1 t < tl
m

(4.4.6)

and by adding, the response in the second interval t > t1 becomes

kx = {[I _ cos wni] - [1 _ cos wn(t _ t1)]}
Po
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h(t) =

In the previous section, we solved for the time response of an undamped spring-mass
system to pulse excitation of time duration t1• When the time duration tl is small com­
pared to the natural period T of the spring-mass oscillator, the excitation is called a
shock. Such excitation is often encountered by engineering equipment that must
undergo shock-vibration tests for certification of satisfactory design. Of particular
interest is the maximum peak response, which is a measure of the severity of the shock.
In order to categorize all types of shock excitation, the single-DOF undamped oscilla­
tor (spring-mass system) is chosen as a standard.

Engineers have found the concept of the shock response spectrum to be useful in
design. The shock response spectrum (SRS) is a plot of the maximum peak response of
the single-DOF oscillator as a function of the natural period of the oscillator. The max­
imum of the peaks, often labeled maximax, represents only a single point on the time
response curve. It does not uniquely define the shock input because it is possible for
two different shock pulses to have the same maximum peak response. In spite of this
limitation, the SRS is a useful concept that is extensively used, especially for prelimi-'
nary design. .

In Eq. (4.2.1), the response of a system to arbitrary excitationf(t) was expressed in
terms of the impulse response h(t). For the undamped single-DOF oscillator, we have

4.5 SHOCK RESPONSESPECTRUM

1 [sin 27Tt + sin 27T( -Tt - !_T1 ) ]
_::__ 2tl 'T

2tl T

(4.4.12)

1 _ (?J2[(1 + cos Wnll) sin wnl' + sin wnll cos ei.r']

_.f!_

(
Wn)2[Sin wnt' + sin wn(t' + t1)]

1- .f!_ .
Wn

xk
Fo

kxi:l) = 1_ (~r[sinPII - (~Jsin £OnII] = 1_ (~r[-~n sin £OnII]

kx(t1) 1. -p
-----p;- - 1 _ (~nr [p cos pll - P cos wnlll 1 _ (~n)' [1+ cos wnlll

Substituting these results intoEq. (4.4.11), we obtain

_1!_
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FIGURE4.5.1. Response for tilT = liS, which gives (xkIFo}max == O.SOat tm == 0.32T.

With T as the natural period of the, oscillator, the maximum value of x(t) or z(t) is plot­
ted as a function of ttl T,where T is the natural period of the oscillator and tl is the pulse
duration time.

To graphically describe the concept of the SRS, we choose the time response to
the rectangular pulse previously given in Sec. 4.4. For t > t1, the response is given by
Eq. 4.4.6, which clearly represents two step functions started at times t = 0 and t = t1.
These are plotted in Fig. 4.5.1 for ttlT = ~.Their difference, which is the response of
the oscillator for t >t1, ·is shown by the dark line and the peak response is
(xk/ FO)max = 0.80 at time tm = 0.32T.Thus, we have one point, 0.80, on the SRS plot of
Ixk/ Fo Imax vs. ttl T. .

Ifwe change the pulse duration time to ttiT = 0.40, a similar plot shown in Fig. 4.5.2
indicates that the peak response is now equal to Ixk/ Fo Imax = 1.82 at time tm = 0.45T..
This then gives us a second point on the SRS plot, etc. .

To avoid the laborious procedure described previously, we can start with Eq. (4.4.6)
and differentiate with respect to time to obtain the peak response as follows:

(;.) = ([1 - cos wi 1 - [1 - cos w.(1 .; 11)])

In the case where the shock is due to the sudden motion of the support point, f(t) is
replaced by - yet), the acceleration of the support point, as in Eq. (4.2.5).

z(t)max = I-=-! Ity(g) sin wn(t - g) dgl (4.5.2)
Wn 0 max

(4.5.1)x(t)max = 1_1_ It f(g) sin wn(t - g) dgl
mto; 0 max

so that the peak response to be used in the response spectrum plot is given by the
equation
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(4.5.3).

The SRS·for the rectangular pulse given by this equation can now be displayed by the
plot of Fig. 4.5.4. Note the two points x found from the time response plots. The
dashed-line curves are called the residual spectrum, and the upper curve, which is equal
to 2.0 for ul«> 0.50, represents-the envelope of all peaks, including the peaks of the
time response curve for t < tt, which is easily seen from Eq. (4.2.2).

. sin wntl
Sill wntp = " I

y 2(1 - cos wnt1)

-(1 - cos wnt1) 1 " I( )
cos wn tp = " I = ~1'i2 Y 1 - cos Wntt

y 2(1 - cos wnt1) V ~

By substituting these results into the equation for ixk] Fo), the equation for the peak
response becomes

:1 ( ~ ) = wn[sin wnlp - sin Wn(lp - I,)] = 0

where tp is the time corresponding to the peak response. It follows then that

sin wntltan W t = ~......,...-----!!...~----,-
n p - (1 - cos wnt1)

which is shown in Fig. 4.5.3. From this figure, two other relations are found:

FIGURE4.5.2. Response for t.l r = 0.40,which gives (xkIFo)max == 1.82 at tm == 0.45r.
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(4.5.4)'(Xk) = '_1_ sin 27Tn(2:J
Po max 1 _,..!.. 1 + .i.

2tl 2tl

Figures 4.5.5 and 4.5.6 show the SRS for the half-sine pulse and the triangular
pulse, which are often good approximations to the actual pulse shapes.

For the half-since pulse, the equation for the primary shock spectrum (t < t1) is
obtained from themaximum of Eq. (4.4.6):

1.0 2.0 3.0 4.0 f,IT

FIGURE4.5.5. Shock response spectrum for half-sine wave.

t1fT

FIGURE4.5.4. Shock response spectrum for a rectangular pulse.

/
\ I
\ Eq.(4.5-3)
\" Residua! SRS
\ I
\ I
\ /
\ I
\I

FIGURE4.5.3.
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7T
£Un < 311

and the natural period of the isolated system must be greater than six times the pulse time.
Next, consider· a more general pulse bounded by a rectangular pulse, such as

those shown in Fig. 4.6.1. The impulse of these force pulses is clearly less than that of
the rectangular pulse. By remembering that the impulse is equal to the change in

!.l < 1
T 6

Vibration isolation is then possible for

7Ttl < 300 = 7T
T 6 '

For shock isolation, the maximum peak response or the transmissibility must be less
than unity. Thus, for the rectangular pulse, this requires [see Eq. (4.5.3)]

2 sin 7Tt1 < 1.0
T

4.6 SHOCKISOLATION

(4.5.5)( xk ) ( 2 ) 7ft1- = cos-
Po max _!_ _ 2t1 T

2t1 T

whereas for the residual shock spectrum (t > t1), the maximum values of Eq. (4.4.6) are

3
t1/T

FIGURE4.5.6. Shock response spectrum for triangular pulse.

62o

F00L_.-, .
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(4.7.2)
x=y
y=t(x,y,t)

(4.7.1)Xl = x(O)
Xl = x(O)

where the initial conditions Xl and ·xl are presumed to be known. (The subscript 1 is cho­
sen to correspond to t = 0 because most computer languages do not allow subzero.)
. In the first method, the second-order equation is integrated without change in

form; in the second method, the second-order equation is reduced to two first-order
equations before integration.The equation then takes the ~orm

When the differential equation cannot be integrated in closed form, numerical meth­
ods must be employed. This may well be the case when the system is nonlinear or if the
system is excited by a force that cannot be expressed by simple analytic functions.

In the finite difference method, the continuous variable t is replaced by the dis­
crete variable tj and the differential equation is solved progressively in time increments
h = Ilt starting from known initial conditions. The solution is approximate, but with a
sufficiently small time increment, a solution of acceptable accuracy is obtainable.

Although there are a number of different finite difference procedures available, in
this chapter, we consider only two methods chosen for their simplicity.Merits of the vari­
ous methods are associated with the accuracy, stability, and length of computation, which
are discussed in a number of texts on numerical analysis listed at the end of the chapter.

The differential equation of motion for a dynamical system, which may be linear
or nonlinear, can be expressed in the following general form:

x = t(x,x, t)

4.7 FINITE DIFFERENCENUMERICAL COMPUTATION

momentum, it is reasonable to assume that the maximum peak response of the rectan­
gular pulse must be the upper bound to that of the enclosed pulse of general shape. We
also find that for small ttl T, the peak response occurs in the region t > t1•For small val­
ues of t1/ T, the response approaches that of a system excited by an impulse and the
shape of the pulse becomes less important other than to determine the magnitude of
the impulse. Such information is, of course, of considerable value to the designer in
avoiding some difficult mathematical calculations.

FIGURE4.6.1. Shock pulses bounded by a rectangular pulse.

t,
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Thus, Eq. (4~7.8)enables one to find x2 in terms of the initial conditions, after which X3'

x4, ••• are available from Eq. (4.7.7).
In this development we have ignored higher-order terms that introduce what is

known as truncation errors. Other errors, such as round-off errors, are introduced due
to loss of significant figures. These are all related to the time increment h == At in a
rather complicated way,which is beyond the scope of this text. In general, better accu­
racy is obtained by choosing a smaller At, but the number of computations will then
increase together with errors generated in the computation. A safe rule to use with this
method is to choose h ~ 7/10,where T is the natural period of the system.

A flow diagram for the digital calculation is shown in·Fig. 4.7.1. From the given
data in block@, we proceed to block @,which is the differential equation. Going to

(4.7.8)

which is known as the recurrence formula.
(Starting the computation.) If we let i = 2 in the recurrent equation, we note

that it is not self-starting, i.e., Xl is known, but we need x2 to find x3• Thus, to start the
computation, we need another equation for x2• This is supplied by the first of Taylor's
.series, Eq. (4.7.4), ignoring higher-order terms, which gives

(4.7.7)

In both Eqs. (4.7.5) and (4.7.6), the ignored terms are of order h2• By substituting from
. the differential equation, Eq. (4.7.3), Eq. (4.7.6) can be rearranged to

(4.7.6).. 1 ( )x· = -2 x· . - 2x. + x'+l1 h 1-1 .1 1

Adding, we find

(4.7.5)

where the time interval is h = Ilt. Subtracting and ignoring higher-order terms, we
obtain

(4.7.4)

The following procedure is known as,the central difference method, the basis of which
can be developed from the Taylor expansion of Xi+l and Xi-1 about the pivotal point i.

. h2•• h3 •••
xl'+I=x.+hx +-x·+-x·+ ...2 I 6' 1

(4.7.3)Xl = x(o)
Xl = i(o)

We first discuss the method of solving the second-order equation directly. We also
limit, at first, the discussion to the undamped system, whose equations are

x· = f(x,t)
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Xl = Xl = 0

and the forcing function shown in Fig. 4.7.2.

Solution The natural period of the system is first found as

21T ~2000w = -;- = -4- = 22.36 rad/s

21T .
T = 22.36 = 0.281 s

. with initial conditions

Solve numerically the differential equation

4x + 2000x = F(t)

EXAMPLE 4.7.1

©for the first time, I is not greater than 1,and.hence w~roceed to the left, where x2 is
calculated. Increasing Iby 1,we complete the left loop®and ©, where I is now equal
to 2, so we proceed to the right to calculate x3•Assuming N intervals, of tu,the path is to
the No direction and the right loop is repeated N times until I = N + 1, at which time
the results are printed out.

FIGURE4.7.1. Flow diagram (undamped system).

X(I + 1)::2X(I)-X(I -1) + h2 X(I)

Eq.(4.7-7)
X(2) = X(1) +hX(1) + !h2X(1)

Eq.(4.7-8)

@

----------~~~

X1 =X(l)
x1 = X(1)
tsr=t:
1=1

Initial Values
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According to the rule h es 7/10and for convenience for representingF(t),wechooseh == 0.020s..
From the differential equation, we have

. X· = f(x, t) = ~F(t) - 500x
Equation (4.7.8) givesx2 = ~(25)(0.02)2= 0:005. X3 is then found fromEq. (4.7.7).

X3 = 0.005 - 0 + (0.02)2(25- 500 x 0.005)= 0.0190
The followingvalues of x4,XS, etc. are now available fromEq. (4.7.7).

The exactsolution was obtained by the superposition of the solutions for the step function
and the ra~p function in the followingmanner. Figure 4.7.3 showsthe superpositionof force~
The equations to be superimposed for the exact solution are

FIGURE 4.7.4.

-0.10

o
0.5

xF

. FIGURE 4.7.3.

-100

F(f)
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100

0.20
O~ ~~ ~~ __
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FIGURE 4.7.2.
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The time increment is chosen as h = 0.05, and the differential equation is reorganized as

Solution The natural period of the system is

T = 2: = !:= 0.50

Use the digital computer to solve the problem of a spring-mass system excited by a triangular
. pulse. The differential equation of motion and the initial conditions are given as .

0.5x + 81T2X = F(t)
Xl = Xi = 0

The triangular force is.defined in Fig. 4.7.5.

EXAMPLE 4.7.2

Substituting these equations into the differential equation at time t2 = h enables one to
solve for x2 and X2' Example 4.7.2 illustrates the situation encountered here.

h .•
(4.7.12)x2 = '2X2

h2 ••
(4.7.13)X2 = 6"X2

x = ~t3. 6

Because from the first equation, x2 = ah, where h = Ilt, the second and third equations
become

a 2
X = -t

2

Integrating, we obtain

•
Initial acceleration and initial conditions zero. If the applied force is zero at t =

o and the initial conditions are zero, Xl will also be zero and the computation cannot be
started because Eq. (4.7.8) gives x2 = O.This condition can be rectified by developing
new starting equations based on the assumption that during the first-time interval the
acceleration varies linearly from Xl = 0 to x2 as follows:

.r = 0 + at

Both computations were carried out with MATLAB® and Figure 4.7.4 shows the computed
values compared with the exact solution.

(4.7.9)

. (4.7.10)

(4.7.11)

Xl = 0.05(1 - cos 22.36t) 0 -s t s 0.1

x2 = -[Ht - 0.1) - 0.02236 sin 22.36(t - 0.10)] add at t = 0.1

X3 = + [Ht - 0.2) - 0.02236 sin 22.36(t - 0.2)] add at t = 0.2
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We now need to calculate the velocity at each step as well as the displacement.
Considering again the first three terms of the Taylor series, Eq. (4.7.4), we see

that x2 is available from the expansion of Xi + Iwith i = 1:
. h2

x2 = Xl + Xl h + 2[(Xl' Xl,tl)

<The quantity x2 is found from the second equation for Xi-l with i = 2:

h2 •
Xl = x2 - X2h + 2[(Xl' X2' t2)

i~2

Damped system. When damping is present, the differential equation contains
an additional term Xi and Eq. (4.7;7) is replaced by

•

x~= 46.91
The flow diagram for the computation is shown in Fig. 4.7.6.With h = 0.05, the time dura­

tion for the force must be divided into regions 1 = 1 to 5,1 = 6 to 9, and I> 9.The index I con­
trols the computation path on the diagram.

Shown in Fig. 4.7.7 is a plot of the results. A smaller ~t would have resulted in a smoother
plot.

(0.05)2~(0.05) = 0.0195
3 + 81Tt( 0.05)2x2 =

x = f(x, t) = 2F(t) - 167T2x

This equation is to be solved together with the recurrence equation, Eq. (4.7.7),

Xi+1 = ·2xi - Xi-1 + h2f(x, t)
Because the force and the acceleration are zero at t = 0, it is necessary to start the computa­

tional process with Eqs. (4.7.12) and (4.7.13) and the differential equation:

x2 = ~x'2 (0.05)2 = 0.000417x'2
x'2 = 2F(0.05) - 167T2x2 = 50 - 158x2

Their simultaneous solution leads to

FIGURE4.7.5.

50 --

F(t)'
100 ----.-~
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(4.8.3)

(4.8.2)
x=y

y = F(x,y, t)
Both X and y in the neighborhood of Xi and Yi can be expressed in terms of the

Taylor series. Letting the time increment be h = at,we have

(4.8.1)x = _!_ [t(t) - kx - ex] = F(x, x, t)m
By letting x = y, this equation is reduced to the following two first-order equations:

The Runge-Kutta computation procedure is popular because it is self-starting and
results in good accuracy. A brief discussion of its basis is presented here.

In the Runge-Kutta method, the second-order differential equation is first
reduced to two first-order equations. As an example, consider the differential equation
for the single-DOF system, which can be written as

4.8 RUNGE-KUTTAMETHOD

With these results, X3 can be calculated from Eq. (4.7.7'). The procedure is thus
repeated for other values of Xi and Xi using the Taylor series.

112 Chapter 4 Transient Vibration

J TIME OISPL ACCLRTN FORCE
1 0.0 0.0 0.0 0.0
2 0.0500 0.020 46.91 25.00
3 0.1000 0.156 75.31 50.00
4 0.1500 0.481 73.97 75.00
5 0.2000 0.992 43.44 100.00
6 0.2500 1.610 -104.25 75.00
7 0.3000 1.968 -210.78 50.00
8 0.3500 1.799 -234.10 25.00
9 0.4000 1.045 -165.01 0.00
10 0.4500 ~0.122 19.22 0.0
11 0.5000 -1.240 195.86 0.0
12 0.5500 -1.869 295.19 0.0
13 0.6000 -1. 760 277 .98 0.0
14 0.6500 -0.957 151.04 0.0
15 0.7000 0.225 -35.52 0.0
16 0.7500 1.318 -208.06 0.0
17 0.8000 1.890 -298.47 0.0
18 0.8500 1.717 -271.05 0.0
19 0.9000 0.865 -136.64 0.0
20 0.9500 -0.328 51.72 0.0
21 1.0000 -1.391 219.66 0.0
22 1;0500 -1.906 300.89 0.0
23 1.1000 -1.668 263.33 0.0
24 1.1500 -0.772 121.83 0.0
25 1.2000 0.429 -67.77 0.0

FIGURE4.7.7.
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y = F(x, t).= ~I(t) - 500x

Let y = x; then

Solution The differeritial equation of motion is .
•• 1 ()x = .;J t - 500x

Solve Example 4.7.1 by the Runge-Kutta method,

EXAMPLE 4.8.1

(4.8.6)
h

Yi+1 = Yi + '6 (F1 + 2F2 + 2F3 + F4)

where it is recognized that the four values of Y divided by 6 represent an average slope
dxidt and the four values of F divided by 6 result in an average of dyidt as defined by
Eqs. (4.8.4).

(4.8.5)

These quantities are then used in the following recurrence formula:

x y=x f= y = X

TI = 'i Xl =Xj YI = Yi Fl = f(TI, Xl YI)
h h h

F2 = f(T2, X2' Y2)T2 = ti + - X2 = Xi + Y1z Y2 = Yi + FIZ2
h h h

F3 = f(T3, x3, Y3)T3 = ti + Z X3 = Xi +Y22 Y3 = Yi + F22

T4 = Ii + h X4 = Xi + Y3h Y4 = Yi + F3h F4 = f(T4,X4'Y4)

( dY) -![(dY) + 4( dy ) + (dY) 'J
,dt iav 6 dt t, dt tj+h/2· dt t j+h

The 4th-order Runge-Kutta method is very similar to the preceding computa­
tions, except that the center term of the given equation is split into two terms and four
values of t.x,y, and j'are computed for each point i as follows:

Ifwe used Simpson's rule, the average slope in the.interval h becomes

(4.8.4)
.. (dY)

Y = Yi + dt . h
IQV

Instead of using these expressions, it is possible to replace the first derivative by
an average slope and ignore higher-order derivatives:

x = Xi + (dX) h
. dt iav
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o
0.00492
0.01869
0.03862
0.06076
0.08083
0.09447

o
0.00500
0:01900
0.03920
0.06159
0.08167
0.09541

o
0.00492
0.01870
0.03864
0.06082
0.08086
0.09451

o
0.02
0.04
0.06
0.08
0.10
0.12

Runge-KuttaCentral DifferenceExact SolutionTimet

TABLE 4.8.1 .Comparison of Methods. for Example 4.8.1

We then calculate X3 and Y3:

X3 = 0.00491667

+ 0.~2 (0.483333 + 1.4174999 + 1.3691666 + 0.8632913)

= 0.00491667 + 0.01377764 = 0.01869431

Y3 = 0.483333 + 0.38827775 = 0.87161075

To complete the calculation,. the example was performed in MATLAB® and the results
showed excellent accuracy. Table 4.8.1 gives the numerical values for the central difference
method, which is discussed in Example 4.7.1, and the Runge-Kutta method compared with the
analytical solution (see Eqs. 4.7.9-4.7.11).

22.541665
20.12500
18.997915
15.695830

0.4833333
0.70874997
0.6845833
0.8632913

0.00491667
0.0097500
0.01200417
0.01860834

0.02
0.03
0.03
0.04

fy=xx

To continue to point 3, we repeat the foregoing table:

0.02 ( )
Y2 = 0 + 6 25 + 50 + 47.50 + 22.50 = 0.4833333

0.02 ( )x2 = 0 + 6 0 + 0.50 + 0.50 + 0.475 = 0.00491667

The calculation for x2 and Y2 follows:

x y=x f
tl = 0 0 0 25

0.01 0 0,25 25
0.01 . 0.0025 0.25 23.75

t2 = 0.02 0.0050 0.475 22.50

With h = 0.02, the following table is calculated:
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Solution The computer program RUNGA is essentially the same as the one presented in Sec.
4.8. It includes damping.

The use of the program RUNGA is illustrated here for Example 4.8.2.The program solves
the differential equation

EXAMPLE 4.8.2

Solve the equation 2X + 8X + lOOx = f(t) using RUNGA, withf(t} vs t, as shown in Fig. 4.8.1.

Thus, the vector equation is identical in form to the equation in one variable and can
be treated in the same manner.

i = F(x,y, r)

or

. z = m = {[(/y, t)} = F(x,y, t)

Although the Runge-Kutta method does not require the evaluation of derivatives
beyond the first, its higher accuracy is achieved by four evaluations of the first deriva­
tives to obtain agreement with the Taylor series solution through terms of order h/'.

Moreover, the versatility of the Runge-Kutta method is evident in that it can be
used for a single variable or several variables.

For two variables,x and y, as in this example, we can let z == {~} and write the two
first-order equations as

Section 4.8 Runge-Kutta Method 115

0.14 0.09743 0.09807 0.09741
0.16 0.08710 0.08712 0.08709
0.18 0.06356 0.06274 0.06359
0.20 0.02949 0.02782 0.02956
0.22· -0.01005 -0.01267 -0.OQ955
0.24 -0.04761 -0.05063 -0.04750
0.26 -0.07581 -0.07846 -0.07571
0.28 -0.08910 -0.09059 -0.08903
0.30 -0.08486 -0.08461 -0.08485
0.32 -0.06393 -0.06171 -0.06400
0.34 -0.03043 -0.02646 -0.03056
0.36 0.00906 0.01407 0.00887
0.38 0.04677 0.05180 0.04656
0.40 0.07528 0.07916 0.07509
0.42 0.08898 0.09069 0.08886
0.44 0.08518 0.08409 0.08516
0.46 0.06436 0.06066 0.06473
0.48 0.03136 0.02511 0.03157

•
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Time Displ. Vel.

0 0 0
0.0700 0.0001 0.0044
0.1400 0.0008 0.0151
0.2100 0.0023 0.0285
0.2800 0.0047 0.0399
0.3500 0.0075 0.0377
0.4200 0.0097 0.0239
0.4900 0.0107 0.0043
0.5600 0.0104 -0.0147
0.6300 0.0088 -0;Q282
0.7000 0.0066 -0.0346
0.7700 0.0041 -0.0343
0.8400 0.0001 -0.0289
0.9100 0.0001 -0.0210
0.9800 -0.0010 -0.0126
1.0500 -0.0017 -0.0052
1.1200 -0.0018 0.0014
1.1900 -0.0015 0.0061
1.2600 -0.0010 . 0.0084

The program RUNGA requires a function file called f.m which contains the expression for
the forcing function. The following is a listing for the function in Fig. 4.8.1.

function [force] = f(t)
if t < 0.25
force = 4 * t;
elseif t < 0.5
force = -2 * (t - 0.25) + 1.0;
elseif t < 1
force = -1 * (t - 0.5) + 0.5;
else
force = 0;
end

The computer program asks for the numerical values of m, c, and k and the initial position and
velocity which for this problem are m = 2, c = 8, k = 100, and x(O) = x(O) = O.With this input
the program calculates the natural period, 7 = 27T~. It .then asks the user to input the time
interval h.The method: generally performs well for a time interval 7/10. The program then pro­
ceeds with the computation of the solution. The results presented are the displacement x(t) and
the velocity x(t)and a plot for the displacement.

FIGURE 4.8.1.

f(t)

0.5
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·0.0084
0.0066
0.0039
0.0010

-0.0014
-0.0029
-0.0034
-0.0031
-0.0022
-0.0011
-0.0000
0.0008
0.0013
0.0013
0.0011
0.0007
0.0003

-0.0001
-0.0004
-0.0005
-0.0005
-0.0004
-0.0002
-0.0000
0.0001

Section4.8 Runge-KuttaMethod 117

-0.0004
0.0002
0.0005
0.0007
0.0007
0.0005
0.0003
. 0.0001
-0.0001
-0.0002
-0.0003
-0.0003
-0.0002
-0.0001
0.0000
0.0001
0.0001
0.0001
0.0001
0.0001
0.0000

-0.0000
-0.0000
-0.0000
-0.0000
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1.5400
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1.6800
1.7500
1.8200
1.8900
1.9600
2.0300
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2.1700
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2.3100
2.3800
2.4500
2.5200
2.5900
2.6600
2.7300
2.8000
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3.0100
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where g(t) is the response to a unit step function.
4.9. In Sec. 4.3, the subsidiary equation "for the viscously damped spring-mass system was

given by Eq. (4.3.1a). Evaluate the second term due to initial conditions by the inverse
transforms.

4.10. An undamped spring-mass system is given a base excitation of y{t} = 20{1 - 5t}. If the
natural frequency for the system is Cr)n = 10 S-I, determine the maximum relative dis­
placement.

4.7. Show that the response to a unit step function, designated by g(t), is related to the impul-
sive response h(t) by the equation h{t) = g{t}. .

4.8. Show that the convolution integral can also be written in terms of g(t) as

. x{t) = t(O)g(t) + f.' !(E)g(t - E) dE

4.5. For the rectangular pulse of time duration tl .derive the response equation for t > tl using
the free-vibration equation with initial conditions x(t1) and ;(tI). Compare with Eq. 4.4.6).

4.6. If an arbitrary force f(t) is applied to an undamped oscillator that has initial conditions
other than zero, show that the solution must be of the form

x(t} = xocos wnt + Vo sin wnt + _1_ f' f(~} sin wn(t - ~} d~
Wn mos; 0

4.1. Show that the time tp corresponding to the peak response for the impulsively excited
spring-mass system is given by the equation

tan~wntp = ~/(
4.2. Determine the peak displacement for the impulsively excited spring-mass system, and

show that it can be expressed in the form

xpeak \,I'k;,. ( C - 1 \IT-=-?),... = exp - .. / 2 tan r
F v1-C b

Plot this result as a function of C. .
4.3. Show that the time tp corresponding to the p-eak response of the damped spring-mass sys­

tern excited by a step force Fo is wntp = 7T/~
4.4. For the system of Prob. 4.3, show that the peak response is equal to

( ~ )mu = 1+ exp ( - ~ )

PROBLEMS

[3] JACOBSEN,L.S.ANDAYRE,R.S. Engineering Vibrations. New York: McGraw-Hill, 1958.
[4] NELSON,F. c. Shock & Vibration Isolation: Breaking the Academic Paradigm,

Proceedings of the 61st Shock & Vibration Symposium, Vol. 1, October 1990.
[5] SACZALSKI,K. 1. Vibration Analysis Methods Applied to Forensic Engineering Problems,

ASME Conference Proceedings on Structural Vibrations and Acoustics, Design
Engineering Division, Vol. 34, pp. 197-206.
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4.13. A spring-mass system slides down a smooth 30° inclined plane, as shown in Fig. P4.13.
pet ermine the time elapsed from first contact of the spring until it breaks contact again.

4.14. A 38.6-lb weight is supported on several springs whose combined stiffness is 6.40 lb/in, If
the system is lifted so that the bottoms of the springs are just free and released, deter­
mine the maximum displacement ofm, and the time for maximum compression.

FIGURE P4.13.FIGURE P4.12.

/, I

~7,"':,
F

4.U. For the triangular pulse shown in Fig. P4.12, show that the response is

x = 2:0 (t - 2:t1 sin 21T;), 0 < t < ~tl

x= 2FO{I_ ~ + _T_[2sin21T(t_ !t)-sin21T!']}' ~tl<t<tlk tl 21Ttl . T 2 1 . T

2Fo{ T [2 . 271"( 1) . 21T( ) . t ]}x = - -.- sm - t - - t - sm - t - t - sm 271"- , t > tlk 21Ttl T 2 1 TIT

FIGURE P4.11.

r--1,·-1\ / \ /
\ I \ I
\ I \ I'-'" ...._,

,-,
I ,
I \
I ,
I

F

4.11. A half-sine pulse is the result of two sine waves shown in Fig. P4.ll. Derive Eq. (4.4.12)
for t > tl from Eq. (4.4.10) and its shifted equation.
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which is plotted as Fig. P4.18.

~1+ Lu~tl(1- :~Jr
By dividing by wntl' the quantity Zmax/votl can be plotted as a function of wntl' with
ftdmvo as a parameter.

4.17 In Prob. 4.16, the maximum force transmitted to m is

Fmax = f + Ikzmaxl
To plot this quantity in nondimensional form, multiply by tl/mvO to obtain

Fmaxtl =.f!J_ + (wntl)2 (Zmax)
mvo mvo votl

Which again can be plotted as a function of wtl with parameter ft.lmVo. Plot Iwnzmaxivol
and Izmax / volil as a function of wntl for fttl mvo equal to 0,0.20, and 1.0.

4.18. For t > tl, show that the maximum response of the ramp function of Fig. 4.4.2 is equal·
to

1

4.16. Show that the peak response for Prob. 4.15 is

FIGURE P4.1 S.

k f

m

where the base velocity shown is assumed.

4.15. A spring-mass system of Fig. P4.1S has a Coulomb damper, which exerts a constant fric­
tion force f.For a base excitation, show that the solution is
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4.22. If the natural period T of the oscillator is large compared to that of pulse duration t1, the
maximum peak response will occur in the region t > t1•For the undamped oscillator, the'
integrals written as

x = ~ [ Sin...,.{ f(€) cos ....€d€ ~ cos "'A{ f(f) sin "'A€d€ ]

:3
t1/T

FIGUREP4.21.

62o

2.0~----~----~------~-----,------~-----'

4.19. Shown in Fig. P4.5.5 is the response spectrum for the sine pulse. Show that for small val­
ues of ttlT, the peak response occurs.in the region t > t1.Determine tplt1 when ttiT =~.

4.20. An undamped spring-mass system with w = 16.1lb has a natural period of 0.5 s. It is sub­
jected to an impulse of 2.0 lb . s,which has a triangular shape with time duration of 0.40 s.
Determine the maximum displacement of the mass.

4.21. For a triangular pulse of duration t1, show that when til T = ~,the peak response occurs at
t = t1, which can be established from the equation

27Tt1 ( tp) t1 ( tp ) 27Tt1 tp2cos-- - - 0.5 - cos 271"- - - 1 - cos-- - = 0
T t1 T tt T t1

found by differentiating the equation for the displacement for t > t1, The response spec­
trum for the triangular pulse is shown in Fig, P4.21.

FIGUREP4.18.

2.0 . 11Fotz,~'
~I--

1.0 '
o 1 2 3 4

f / Wn'11T=21T'
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IMI 4.26. Determine the time response for Prob. 4.10 using numerical integration.
IMI 4.27. Determine the time response for Prob. 4.20 using numerical integration.

4.28. Figure P4.28 shows the response spectra for the undamped spring-mass syst~m under
two different base-velocity excitations. Solve the problem for the base-velocity excitation
of y{t) = 6Oe-O•10/, and verify a few of the points on the spectra.

4.29. If the driver of Example 4.3.3 is sitting on a cushion of stiffness k = 51Ib/in., what accel­
eration would be experienced assuming the same drop distance?

4.30. During ejection from a military airplane, the pilot's acceleration must not exceed 16 g if
injury is to be avoided (see Ref. [5]).Assuming the ejection pulse to be triangular, what is
the maximum peak acceleration of the ejection pulse applied to the pilot? Assume as in
Example 4.3.3 that the seated pilot of 160 lb can be modeled with a spinal spring stiffness
of k = 450 lblin.

4.25. In Prob. 4,24, if t > tl, show that the solution is

wnz = _ sin wnt + _1_ [cos wn(t - t1) - cos wnt]
Vo wntl

FIGUREP4.24.

Wnzmax = _1_ _ 1 wnt1
Vo wnt1 Wil\h + (wnt})2 VI + (wntl)2

Plot this result.

A sin '" ~ OJ.r f(~) sin OJ.~d~

the response for t > t1 is a simple harmonic motion with amplitude A. Discuss the nature
of the response spectrum for this case.

4~23. Derive Eqs. (4.5.4) and (4.5.5) for the half-sine pulse, and verify the primary and the resid­
ual SRS curves of Fig. 4.5.5. (Note that n = 2 for td'T > 1.5 in the primary SRS equation.)

4.24. The base of an undamped spring-mass system, m and k, is given a velocity pulse, as shown
in Fig. P4.24. Show that if the peak occurs at t < t1, the response spectrum is given by the
equation

do not change for t >- t1, because in this regionf(t) = O.Thus, by making the substitution

f 'l
A cos l/> = Wn 0 feg) cos wngdg
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FIGURE P4.36.

4.31. A spring-mass system with viscous damping is initiaily at rest with zero displacement. If
the system is activated by a harmonic force of frequency W = wn = "\/klm, determine the
equation for its motion.

4.32. In' Prob. 4.31, show that with small damping, the amplitude will build up to a value
(1 - e-l) times the steady~state value in time t = 11f18(8 = logarithmic decrement).

4.33. Assume that a lightly damped system is driven by a force Fosin wnt, where Wn is the nat­
ural frequency of the system. Determine the equation if the force is suddenly removed.
Show that the amplitude decays to a value e-l times the initial value in the time t = 1Ifn 8.

1M] 4.34. Set up a computer program for Example 4.7.1.
1M] 4.35. Write a MATLAB® program for the damped system excited by base motion y(t) with ini­

tial conditions x(O) = Xl and i(o) = VI' The base motion is a half-sine wave.
4.36. Determine the response of an undamped spring-mass system to the alternating square

wave of force shown in Fig. P4.36 by superimposing the solution to the step function and
matching the displacement and velocity at each transition time. Plot the result and show
that the peaks of the response will increase as straight lines from the origin.

FIGURE P4.28.

1.0 2 4 6 10 20 4060 1000.1 0.2 0.4

x

I I I I I I

Velocity excitation
x j = 60e -0.101

~)( .- --- 0 y- 60(1-5t)- - --- :-::::3111 rx~ -_.-- . -- ..--. ~ ..._ _ .'. _. -
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FIGURE P4.43 •

4.43. A large box of weight W resting on a barge is to be hoisted by a crane, as shown in Fig. P4.43.
Assuming the stiffness of the crane boom to be k.; determine the equation of motion if the
extended point if the boom is given a displacement X = Vt. Use the method of Laplace
transformation. .

FIGURE P4.42.

(b)

0.4 0.6
(0)

f{t)

4.37. For the central difference method, supply the first higher-order term left out in the reCUT­
renee formula for Xi' and verify that its error is 0(h2).

4.38. Consider a curve of x = t3 and determine Xi· at t = 0.8,0.9, 1.0, 1.1, and 1.2. Calculate X1.O
by using Xi = 2~ (Xi+1 - Xi-I)' with h = 0.20 and h = 0.10, and show that the error is

approximately O(h2).

4.39. Repeat Prob.4.38 with Xi = 1jh(xj - Xi-I) and show that the error is approximately O(h).
4.40. Verify the correctness of the superimposed exact solution in Example 4.7.1, Figure 4.7.4.

[MJ 4.41. Calculate the problem in Example 4.7.2 by using the Runge-Kutta computer program
RUNGA (see Appendix F).

[B] 4.42. Using RUNGA, solve the equation

X + 1.26x + 9.87x = t(t)
for the force pulses shown in Fig. P4.42.
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mx' + ex + kx + f.LX3 = F{t)

(cf. Problem 14.27). Solve this equation numerically in MATLAB® with F(t) given by the
step function excitation and ramp excitation, m = 1, c = 0.5, k = 1, and J.L = 0.01,0.1, 1.
Compare with the results obtained when J.L = O.

1M] 4.48. The forced Van der Pol oscillator is described by the following equation: .

x - pi(l - x2) + X = F{t)

(cf. Example 14.4;2).Determine the equivalent damping. Solve this equation numerically
in MATLAB® with F{t) given by the step function excitation and ramp excitation, for
J.L = 0.01:0.1,1.

1M] 4.44. In Example 4.8.1 add damping of c = 0.2cc and solve using computer program RUNGA.
Compare response with Example 4.8.1.

[M] 4.45. This problem Usesthe program runga.m to solve the equation given in Example 4.7.1 the
text with three different forcing functions. These forcing functions can be found with the
programs. To see how these forcing functions differ from the example, plot each one of
them. Produce a plot of the response and discuss how the response differs as the forcing
function is changed.
(a) The MATLAB® code is forcel.m.
(b) The MATLAB® code is force2.m.
(c) The MATLAB® code is force3.m.

[M] 4.46. Consider the problem of Example 3.8.1. Solve numerically for the transient response of
the system under impulse excitation and ramp excitation (see Figure 4.4.4). Determine
numerically the response spectra.

[MI 4.47. Consider the equation for the forced oscillation of a damped system wit.h hardening
spring given by
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126

When a system requires more than one coordinate to describe its motion, it is called a
multi-DOf system, or an N-DOF system, where N is the number of coordinates
required. Thus, a 2-DOF system requires two independent coordinates to describe its
motion, and it is the simplest of the N-DOF systems.

The N-DOF system differs from that of the single-DOF system in that it has N
natural frequencies, and for each of the natural frequencies, there corresponds a nat­
ural state of vibration with a displacement configuration known as the normal mode.
Mathematical terms related to these quantities are known as eigenvalues and eigenvec­
tors. They are established from the N simultaneous equations of motion of the system
and possess certain dynamic properties associated with the system.

Normal mode vibrations are free undamped vibrations that depend only on the
mass and stiffness of the system and how they are distributed. When vibrating at one of
these normal modes, all points in the system undergo simple harmonic motion that
passes through their equilibrium positions simultaneously. To initiate a normal mode
vibration, the system must be given specific initial conditions corresponding to its nor­
mal mode. For the more general initial conditions, such as an impulsive blow, the
resulting free vibration may contain all the normal modes simultaneously.

As in the single-DOF system, forced harmonic vibration of the N-DOF·system
takes place at the frequency of the excitation. When the excitation frequency coincides
with oneof the natural frequencies of the system, a condition of resonance is encoun­
tered, with large amplitudes limited only by the damping. Again, damping is generally
omitted except when its concern is of importance in limiting the amplitude of vibration
or in examining the rate of decay of the free oscillation.

In this chapter, we begin with the determination of the natural frequencies and
normal modes of the 2-DOF system. All of the fundamental. concepts of the multi-DOF
system can be described in terms of the 2-DOF system without becoming burdened
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(5.1.3)

(5.1.2)
Xl = Al sin wt or A1eiWl

X2 = A2 sin wt or A2eiwt

Substituting these into the differential equations,we have

(2k - w2m)At - kA2 = 0

- kAt + (2k :- 2w2m)A2 = 0

(5.1.1)
mXI = -kxI + k(x2 - Xl)

2mX2 = -k(X2 - Xl) - kx2

For the normal mode of oscillation, each mass undergoes harmonic motion of the same fre­
quency, passing through the equilibrium position simultaneously. For such motion, we can let

kX~(X1-X~2

FIGURE 5.1.1.

Figure 5.1.1 shows an undamped 2-DOF system with specific parameters. With coordinates Xl
and x2 measured from the initial reference, the free-body diagrams of the two masses lead to the
differential equations of motion where all forces to the right are considered positive:

Translational SystemEXAMPLE 5.1.1

5.1 THE NORMAL MODE ANALYSIS

We now describe the basic method of determining the normal modes of vibration for
any system by means of specific examples.lhe method is applicable to all multi-DOF
systems, although for systems of higher DOF, there are more efficient methods, which
we will describe in later chapters.

with the algebraic difficulties of the multi-DOF system. Numerical results are easily
obtained for the 2-DOF system and they provide a simple introduction to the behavior
of systems of higher DOE

For systems of higher DOF, matrix methods are essential, and although they are
not necessary for the 2-DOF system, we introduce them here as a preliminary to the
material in the chapters to follow.They.provide a compact notation and an organized
procedure for their analysis and solution. For systems of DOF higher than 2, comput­
ers are necessary. A few examples of systems of higher DOF are introduced near the
end of the chapter to illustrate some of the computational difficulties.
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Substitution of the natural frequencies in either of these equations leads to the ratio of the
amplitudes. For w~ = 0.634k/m,we obtain

(
A1 )(1) = k = 1 = 0.731

I A2 2k - w~m 2 - 0.634 .

which is the amplitude ratio corresponding to the first natural frequency.
Similarly, using w~ = 2.366 kIm,we obtain

. (A1 )(2) k 1A2 = 2k - wim = 2 - 2.366 = -2.73

for the amplitude ratio corresponding to the second natural frequency. Equation (5.1.8) enables
us to find only the ratio ofthe amplitudes and not their absolute values, which are arbitrary.
If one of the amplitudes is chosen equal to 1 or any other number. we say that the amplitude

ratio is normalized to that number. The normalized amplitude ratio is then called the normal
mode and is designated by cfJ;(x).

The two normal modes of this example, which we can now call eigenvectors, are

. ~(x) = e2~} ""(x) = {~~~3}
Each normal mode oscillation can then be written as

(5.1.8)

(5.1.7)
A = (~ + !\1'3)!:._ = 2.366 ~
2 22m m

and the natural frequencies of the system are

WI = A~/2= ~O.634';

~ = A~/2 = ~2.366';

From Eq. (5.1.3), two expressions for the ratio of the amplitudes are found:

Letting cd- = Aand multiplying out, the foregoing determinant results in a second-degree algebraic
equation that is called the characteristicequation.

A2 - (3;)A + H;f = ° (5.1.6)

The two roots Ai and A2 of this equation are the eigenvalues of the system:

A = (~ - !\1'3)!:._ = 0.634!:._
122 m m

(5.1.5)

(5.1.4)

This equation is satisfied for any Ai and A2 if the determinant of the above equations is zero.

I
(2k - w2m) -k I

-k . (2k - 2w2m) = °

[ (2k -~.r: -k ][A] [0]
(2k - 2w~m) A: = 0
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It should be noted that Eqs. (5.1.9) are similar in form to those of Eqs. (5.1.1) and only the sym­
bols are different. The rotational moment of inertia J now replaces the mass m, and instead of
the translational stiffness k,we have the rotational stiffness K.

At this point, we introduce the matrix notation, writing Eqs. (5.1.9) in the concise form:

[~ 1J{~}+ [(K'_:~2) (K2-:~3)J{::}=m (5.1.10)

By following the rules for matrix operations in Appendix C, the equivalence of the two equa­
tions can be easily shown.

K'9~t92-~;2

J, J2

FIGURE 5.1.3.

(5.1.9)

We now describe the rotational system shown in Fig. 5.1.3 with coordinates °1 and 82 measured
from the inertial reference. From the free-body diagram of two disks, the torque equations are

1101 = -K101 + K2(02 - (1)

Rotational SystemEXAM PLE5.1.2

•

{:J(2) = A2{ ~~~3} sin (W2t + ~2)

These normal modes are displayed graphically in Fig. 5.1.2. In the first normal mode, the two
masses move in phase; in the second mode, the two masses move in opposition, or out of phase
with each other.

FIGURE 5.1.2. Normal modes of the system shown in Figure 5.1.1.

. w~= 2.366r'fi

~

w~ =O.634~
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or

or

Assuming the normal mode solutions as

01'= Al cos wt

0z = Az cos wt

(5.1.10)-kaz J{O}' '{O}
(ka + mgl) 0: = °0J{~I}+ [(kaZ -+ mg/)

1 °2 -kaZ

/2[1m 0

mlZOI = -mg181 - kaZ(OI - °z)

mlzOz = -mg102 + kaZ(OI - 8z)

which in matrix notation becomes

Solution Assuming the counterclockwise angular displacements to be positive and taking
moments about the points of suspension, we obtain the following equations of motion for small
oscillations '

FIGURE5.1.4. Coupled pendulum.

In Fig. 5.1.4 the two pendulums are coupled by means of a weak spring k, which is unstrained
when the two pendulum rods are in the vertical position. Determine the normal mode vibrations.

Coupled PendulumEXAMPLE 5.1.3

•

is known as the stiffness matrix. Both of these matrices will be discussed in detail in Chapter 6.
A few points of interest should be noted. The stiffness matrix is symmetric about the diago­

nal and the mass matrix is diagonal. Thus, the square matrices are equal to their transpose, i.e.,
[k)T = [k], and [m)T = [m]. In additional, for the discrete mass system with coordinates chosen at
each mass, the mass matrix is diagonal and its inverse is simply the inverse of each diagonal ele­
ment, i.e., [m]-1 = [11m].

is known as the mass matrix and the matrix

The matrix
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(5.2.3){ Xl} {0.732} ( ) {-2.732} ( )x2 = w1C1 1.000 cos wIt + 1/11 +Wzc2 1.000 cos Wzt + ~

By letting t = 0 and specifying the initial conditions, the four constants can be found.

(5.2·7){ Xl} {0.732}. ( ) {-2.732}. ( )x2 = ci 1.000 SID wIt + 1/11 + c2 1.000 SID w2t + "'2

.where cl' c2' I/Il;and "'2 are the four necessary constants for the two differential equa­
tions of second order. Constants c1 and c2 establish the amount of each mode, and
phases "'1 and "'2 allow the freedom of time origin for each mode. To solve for the four
arbitrary constants, we need two more equations, which are available by differentiating
Eq. (5.2.2)for the velocity:

The constants ci and "'i are necessary to satisfy the initial conditions, and </Jiensures that
the amplitude ratio for the free vibration is proportional to that of mode i.

For initial conditions in general, the free vibration contains both modes simulta­
neously and the equations of motion are of the form

(5.2.1)

For free vibration to take place in one of the normal modes for any initial conditions,
the equation of motion for mode i must be ofthe form

{ }

(i) -

:: = Ci</Ji sin (W;l + "';) i = 1,2

W, ~ v'O.654k/m <P, = {~:~~}

w, = v'2.366k/m q" = {~~~2}

5.2 INITIAL CONDITIONS

When the normal mode frequencies and mode shapes are known, it is possible to
determine the free vibration of the system for any initial conditions by the proper sum­
mation of the normal modes. For example, we have found the normal modes of the sys­
tem of Fig. (5.1.1)to be

•

the natural frequencies and mode shapes are

WI = {f W2 = ~ ~ + 2;; ~:
(~:t~1.0 (~: t~-1.0

Thus, in the first mode, the two pendulums move in phase and the spring remains unstretched. In
the second mode, the two pendulums move in opposition and the coupling spring is actively
involved with a node at its midpoint. Consequently, the natural frequency is higher.
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is somewhat close to that of the first normal mode and quite different from that of the second
normal mode.

{~} = {O.SO}
4 1.00

which clearly shows that the free vibration under the initial condition is the sum of the normal
modes of the system.

These equations show that for the given initial conditions, most of the response is due to the
first mode 4>}. This is to be expected because the ratio of the initial displacements

{
2.732} {-0.732}

= 3.732 cos wIt + 0.268 cos w2t

{ XI} {0.732} {-2.732} .
x2 = 3.732 1.000 cos Wit + 0.268 1.000 . cos w.zt

To determine c1 sin 1/11' we can multiply the second equation of Eq. (S.2.2a) by 2.732 and add
the results to the first equation. To determine c2 sin 1/12multiply the second equation of Eq. (S.2.2a)
by -0.732 and add the results to the first equation. In similar manner we can solve for wICI cos 1/11
and W2C2 cos 1/12 to arrive at the following four results:

12.928 = 3.464cI sin 1/11

-0.928 = -3.464c2 sin 1/12

° = 3.464wlcl cos 1/11

° = - 3 .464~c2 cos 1/12

From the last two of the foregoing equations, it is seen that cos 1/11 = cos 1/12 = 0, or' 1/11 = 1/12 = 90°.
Constants ci and c2 are then found from the first two of the foregoing equations:

ci = 3.732

c2 = 0.268

and the equations for the free vibration of the system for the initial conditions stated for the
example become .

(S.2.3a)

(S.2.2a){
2.0} {0.732}.· {-2.732} .
4.0 = CI 1.000 SIn 1/11 + c2 1.000. Sill 1/12

Substituting these initial conditions into Eqs. (S.2.2) and (S.2.3), we have

{ X1(0)} = {2.0} and {~I(O)}= {O}
40) 4.0 40) °

Determine the free vibration for the system of Fig: S.1.1 for the initial conditions

EXAMPLE 5.2.1
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A simple demonstration model is shown in Fig. 5.2.2.

The beat frequency is then given by the equation

27T
wb=-=wl-~

'Tb

The beating sound, which is often audible, is that of the peak amplitudes, which repeat in 7T

radians. Thus, .

FIGURE 5.2.1. Exchange of energy between pendulums.

Because (WI .; w2) is very small, 0I(t) and 02(t) will behave like COS(WI + w2)t/2 and
sineWI + w2)t/2 with slowly varying amplitudes, as shown in Fig. 5.2.1. Since the system is conser­
vative, energy is transferred from one pendulum to the other.

Solution The preceding equations can be rewritten as follows:

°1(t) = A cos ( WI ; ~ ) t cos ( WI ; W2 ) t

oit) = -A sin( WI ; ~ )t,sin ( WI ~ W2 )t

If the coupled pendulum of Example 5.1.3 is set into motion with.initial conditions differing
from those of the normal modes, the oscillations will contain both normal modes simultaneously.
For example, if the initial conditions are °1(0)= A, .°2(0) = 0, and 01 (0) = 0i 0) = 0, the equa-
tions of motion will be .

0I(t) = ~A cos WIt + ~Acos w2t

oit) = ~A cos Wit - ~A cos w2t

Consider the case in which the coupling spring is very weak, and show that a beating phenome­
non takes place between the two pendulums.

BeatingEXAMPLE 5.2.2
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(5.3.2)

(5.3.1)
m2lx'l + m2:zX;-+ k2lX1 + k22X2 = °

These equations can be expressed in matrix form (seeAppendix C) as

[ mil mI2]{~:llJ~+ [kll k12]{XI} = {OJ
m21 m22 X2 k21 k22 X2 °

which immediately reveals the type of coupling present. Mass or dynamical coupling (
exists if themass matrix is nondiagonal,whereas stiffnessor static coupling exists if the
stiffnessmatrix is nondiagonal. -.

It is also possible to establish the type of coupling from the expressions for the
kinetic and potential energies. Cross products of coordinates in either expression
denote coupling, dynamic or static, depending on whether they are found in T or U.
The choiceof coordinates establishes the type of coupling,and both dynamicand static
couplingmay be present.

The differential equations of motion for the 2-DOF systemare in general coupled, in
that both coordinates appear in each equation. In the most general case,the two equa­
tions for the undamped systemhave the form

mllx'l + ml:zX'2 + kllx1 + k12x2 = °

5.3 COORDINATE COUPLING

•

FIGURE5.2.2 Demonstration model
for exchange of energy by beating.

(Courtesy of UCSB Mechanical Engi­
neering Undergraduate Laboratory.)
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[;e ~:]{~}+ [(k, ; k,) (k,ll +0kiD W;}=m
which shows that the coordinates chosen eliminated the static coupling and introduced
dynamic coupling;'

.Dynamic coupling. There' is some point C along the bar where a force applied
normal to the bar produces pure translation; i.e., k)13 = k214• (See Fig. 5.3.3.) The
equations of motion in terms of Xc and 8 can be shown to be

. If kIll ~ ki2' the coupling disappears, and we obtain uncoupled x and 8vibrations .

Static coupling. Choosing coordinates x and 8, shown in Fig. 5.3.2, where x is the
linear displacement of the center of mass, the system will have static coupling, as shown
by the matrix equation

Figure 5.3.1 shows a rigid bar with its center of mass not coicinding with its geometric center, i.e.,
II '* 12, and supported by two springs, kl and k2• It represents a 2-DOF system, because two coor­
dinates are necessary to describe its motion. The choice of the coordinates will define the type of
coupling that can be immediately determined from the mass and stiffness matrices. Mass or
dynamical coupling exists if the mass matrix is nondiagonal, whereas stiffness or static coupling
exists if the stiffness matrix is nondiagonal. It is also possible to have both forms of coupling.

EXAMPLE 5.3.1

If in the foregoing equation, Cl2 = C21 = 0, then the damping is said to be proportional
(to the stiffness or mass matrix), and the system equations become uncoupled.

It is possible to find a coordinate system that has neither form of coupling.The two
equations, are then decoupled and each equation can be solved independently of the
other. Such coordinates are called principal coordinates (also called normal coordinates).

Although it is always possible to decouple the equations of motion for the
undamped system, this is not always the case for a damped system. The following
matrix equations show a system that has zero dynamic and static coupling, but the
coordinates are coupled by the dampi~g matrix.

[md' ~J{~:}+ [::: ::Jt:} + [k~, ~2t:}= {~} (5.3.3)
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W = 3220lb 11 = 4.5 ft k, = 2400 lb/ft

W
12 ;". 5.5 ft k2 = 26001b/ftJ = _,2

C g

r = 4ft 1= 10 ft

EXAMPLE 5.3.2

Determine the normal modes of vibration of an automobile simulated by the simplified 2-DOF
system with the following numerical values (see Fig. 5.3.5):

•
and both static and dynamic coupling are now present.

Static and dynamic coupling. If we choose x = Xl at the end of the bar, as shown in
Fig. 5.3.4, the equations of motion become

FIGURE5.3.4. Coordinates leading to static and dynamic coupling.

FIGURE5.3.2. Coordinates leading
to static coupli~g.
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FIGURE5.3.6. Normal modes of
the system shown in Fig. 5.3.5. -

The mode shapes are illustrated by the diagrams of Fig. 5.3.6.
In interpreting these results, the first mode, wI = 6.9 rad/s is largely vertical translation with

very small rotation, whereas the second mode, w2 = 9.06 rad/s is mostly rotation. This suggests
that we could have made a rough approximation for these modes as two l-DOF systems.

(~) = 1.09 ft/rad = 0.288 in./deg •
(112

From the determinant of the matrix equation, the two natural frequencies are

WI = 6.90 rad/s = 1.10 cps

W2 = 9.06 rad/s = 1.44 cps

The amplitude ratios for the two frequencies are

( ~) == -14.6 ft/rad = -3.06 in./deg
(III .

The equations of motion indicate static coupling.

mx + ki(x - 110) + k2(x + 120) = 0

leO - k1(x - 110)11+ klx + 120)/2 = 0

Assuming harmonic motion, we have

[
(k1 + k2 - w2m)

. -(kIll - k2/2)
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•

Note that these uncoupled values are inside of the coupled natural frequencies by small
amounts, as shown in Fig. 5.3.7. .

One other observation is worth mentioning. For the simplified model used, the wheels and
tires had been omitted. This justification is assigned in Prob. 5.27 with data as to weights of
wheels and stiffness of tires.

Figure 5.3.8 shows an inverted laboratory model of the automobile.

I rotational stiffness ~ 12176'00250= 8.92 rad/s
Wz == "V rotational moment of inertia =

15000-v 100, = 7.07 rad/s
total vertical stiffness
translational mass

FIGURE 5.3.S. Two-DOF model of an automobile. The auto body is represented
by the meter stick with adjustable weights. The model is inverted with the springs
and ground above the body. Shakers can be excited individually to simulate the
ground. (Courte~y of UCSB Mechanical Engineering Undergraduate Laboratory.)

FIGURE 5.3.7. Uncoupled frequencies relative to coupled frequencies.

f1098765432

6.90 9.06

7.07 8.92I ,
, I
I I
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[m O]{X't} [2k -k]{Xi} = {Ft} .o m x~ + - k 2k x2 0 Sill tot

Solution . The equation of motion for the system is

Apply Eqs. (5.4.6) to the system shown in Fig. 5.4.1 when m1 is excited by the force F; sin (1)(. Plot
its frequency response curve, .

EXAMPLE 5.4.1

(5.4.6)

{
XI} _ _I{FI} _ adj [Z(w)l{~I}
X2 - [Z(w)] 0 - Iz(w)1 (5.4.3)

By referring to Eq. (5.4.2), the determinant IZ(w) I can be expressed as

Iz(w)1 = mlmiwi - w2)(~ - w2) (5.4.4)

where WI and w2 are the normal mode frequencies. Thus, Eq. (5.4.3) becomes

{ Xl} 1 [(k22 - m2w2) -k12 ]{FI}
X2 = IZ(w)1 -k21 (kll - mlw2) 0 (5.4.5)

and the amplitudes of the force vibration are '

(k22 - m2w2)FI

Premultiplying by [Z(w)]-t. we obtain (see Appendix C)

[Z(w)l{~J = {~1}
or, in simpler notation,

(5.4.2)

Substituting this into the differential equation, we obtain

[ (kll -. mlw2) k12 ]{XI} {FI}
k21 (k22 - m2w2) X2 = 0

tJ = {~Jsin wi

Because the system is undamped, the solution can be assumed as

(5.4.1)[~1
Consider here a system excited by a harmonic force FI sin wt expressed by the matrix
equation

5.4 FORCEDHARMONICVIBRATION
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j

Solution Consider Xl and expand the equation in terms of partial fractions.

(2k - m~,i)F CI C2
~~_---:,!,"~ __ l~~ _ + --:-.....:,._~
m2(wi ..;..(2)(~ - (1)2) - wi - w2 ~ - w2

Express the equations for Xl and X2 in Example 5.4.1 as the sum of the normal modes.

Forced Vibration in Termsof Normal Mode SummationEXAMPLE 5.4.2

•

x = (2k - JnCJi)FI
I· m2(wi - (2)(~ - (2)

X - kFI
2- m1(wi - (2)(~ - (2)

where wi = kim and w~ = 3klm are obtained from the determinant of th~ matrix equation.
When plotted, these results appear as in Fig. 5.4.2.

Thus, we have kll = k22= 2k and kl2 = k21= -k. Equation (5.4.6) then become

FIGURE 5.4.2. Forced response of a 2-DOF system.

x,1c
-7,

X21c--- F1

4.0

FIGURE 5.4.1. Forced vibration of a 2-DOF
system.
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FIGURE 5.5.1.
r

5.5 FINITE DIFFERENCEMETHOD FOR SYSTEMS OF EQUATIONS

The finite difference method of Sec. 4.7 can easily be extended to the solution of sys­
tems with two DOE The procedure is illustrated by the following problem, which is
programmed and solved by the digital computer.

The system to be solved is shown in Fig. 5.5.1.To avoid confusion with subscripts,
we let the displacements be x and y.

•

Amplitudes Xl and X2 are now expressed as the sum of normal modes, their time solution being

Xl = XI sin wI

x2 = X2 sin wt

Treating X2 in the same manner, its equation is

An alternative form of Xl is then

To solve for Cl' multiply by (wi - w2) and let w = wI:

C = (2k - mwi)FI = !j_
I m2(w~ - wi) 2m

Similarly, C2 is evaluated by multiplying by (w~ - w2) and letting w = w2:

(2k - mwDFI !j_
C2 =

m2(wi - wD 2m
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The flow diagram for the computation is shown.in Fig. 5.5.2.A plot of the com­
puted result is presented in Fig. 5.5.3.

1 •• 2
Y2 = "2Ytdt

For the calculation of x2, the special starting equation (Eq. 4.7.13), must be used
together with the differential equations

1" 2x2 = 6x2dt

X2 = -720X2 +360Y2

Eliminating ;2 gives the following equation for x2:

60Y2dt2x =
2 1+ 1206.t2

These equations are to be solved together with the recurrence equations of Sec. 4.7.
•• . 2

xi+l =:; xidt + 2xi - Xi-1
_.. 2

Yi+l - Yidt + 2Yi - Yi-t

Calculations for the natural periods of the system reveal that they do not differ sub­
stantially. They are 71= 0.3803 and 72= 0.1462 s. We therefore arbitrarily choose a
value of dt = 0.01 s which is smaller than 7i10. .

To start the computation, note that the initial accelerations are Xl = 0 and
Yt = 160, so that the starting equation, Eq. (4.7.8), can be used only for y.

x' = -720x + 360y

Y = 1440(x - y) + 160

x=x=y=y=O
The equations of motions are

100x = -36,OOOx + 36,000(y - x)

25y = .-36,OOO(y - x) + F

which can be rearranged to

Initial conditions:

t> 0
t < 0

kl = 36 kN/m

k2 = 36 kN/m

mt = 100 kg

m2 = 25 kg

F = {4000N,
0,
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FIGURE 5.5.3.

Time t seconds

50r------+------,_------~----_,------_+_

FIGURE 5.5.2. Flow diagram for computation.

xU) =720x(/) + 360y(J)x(/)= -720 )((1) +360 y(!)

yU)= 1440[x(!)-y(n] +160 y(J) = 1440[x(J) - y(/)] +160

x(J) = x(l-1)M2 +2x(/-1) - xU - 2)x(l) = 60y(l)M2
1+1206f2

y(/) :::y(l-1)~t2 + 2y(l-1) - y(! -2)y(J)=~Y(J-l)M2

NO

lit = 0.01
y(l)=x(1)=x(1)=O

y(1)=160
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FIGURE 5.6.2. Response vs. frequency.
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FIGURE 5.6.1.
Vibration
absorber.
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Because the force acting on m2 is

k2X2 = w2m2X2 = - Fo

(5.6.1)

[ 1+ k2 _ (~)2J[1 - (~)2J _ k2
k., WlI W22 k,

Figure 5.6.2 shows a plot of this equation with J.1- == m2/m] as a parameter. Note that k/
kl = J.1-(w22/wll)2. Because the system is one of 2 DOF, two natural frequencies exist.
These are shown against J.1- in Fig. 5.6.3.

So far nothing has been said about the size of the absorber mass. At w = w22'

amplitude Xl = 0, but the absorber mass has an amplitude equal to

X2 = - Fo (5.6.2)
k2

As a practical application of the 2-DOF system, we can consider here the spring-mass
system of Fig. 5.6.1. By tuning the system to the frequency of the exciting force such
that w2 = k/m2, the system acts as a vibration absorber and reduces the motion of the
main mass m1 to zero. Making the substitution

2 _ k; 2 !5.1..
WI1 - ~ W22

m1 m2

and assuming the motion to be harmonic, the equation for the amplitude Xl' can be
shown to be equal to

5.6 VIBRATIONABSORBER
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(5.7.1)
am = [ Rii sin q, - RiP cos q, - r(iJ + ';')' }

+ [ Rii cos q, + RiP sin q, + r(ii + ,;,)]j

The vibration absorber of Sec. 5.6 is only effective at one frequency, co = W22•Also, with
resonant frequencies on each side of w22' the usefulness of the spring-mass absorber is
limited to a narrow frequency range.

For a rotating system such as an automobile engine, the exciting torques are pro­
portional to the rotational speed n, which can vary over a wide range. Thus, for the
absorber to be effective, its natural frequency must also be proportional to the speed.
The characteristics of the centrifugal pendulum are ideally suited for this purpose.

Figure 5.7.1 shows the essentials of the centrifugal pendulum. It is a 2-DOF non­
linear. system; however, we limit the oscillations to small angles, thereby reducing its
complexity. .

By placing the coordinates through point 0' parallel and normal to r, line r
rotates with angular velocity (lJ + </J). The acceleration of m is equal to the vector sum
of the acceleration of O'and the acceleration of m relative to 0'.

5.7 CENTRIFUGAL PENDULUM VIBRATION ABSORBER

the absorber system k2' m2 exerts a force equal and opposite to the disturbing force.
Thus, the size of k2 and m2 depends on the allowable value of J!2'

0.6o 0.1 0.2 0.3 0.4 0.5 0.6 0.7.0.8
Mass ratio J.1

FIGURE 5.6.3 Natural frequencies vs./-Lvs.m.lm.,
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The same pendulum in a gravity field would have a natural frequency of vg;;., so it
can be concluded that for the centrifugalpendulum, the gravity field is replaced by the
centrifugal fieldRn2•

(5.7.6) .(R + r)/r 2 •
cJ> = 2 2/ w 60SIn wt-w + Rn r

and its steady-state solution to be

(5.7.5) .

(5.7.3')4> + ( !!n')<I> = ( R ; r)w'OoSin wi

and we recognize the natural frequencyof the pendulum to be

w =n ~
n '/-;

Then Eq. (5.7.3)becomes

(5.7.4){J = n + w()ocos wt == n

(j = -w2()0 sin wt

Ifwe assume the motion of the wheel to be a steady rotation n plus a small sinu­
soidal oscillationof frequencyw,wecan write

()= nt + ()o sin wt

(5.7.3).. (R. 2) (R + ,) ..cJ>+ -() cJ>= - -- ()
r r

Assuming cJ> to be small,we let cos cJ> = 1 and sincJ>= cJ> in Eq. (5.7.2)and arrive at the
differential equation for the pendulum:

(5.7.2)Mo' = m[RO cos ¢+ RiP sin cJ> + ,(0 + 4»], = 0

Because for the pendulum the moment about 0' is zero, we have, from the j-compo­
nent of am'

FIGURE5.7.1. Centrifugal pendulum.

J

Systemswith Two or More Degrees of Freedom146 Chapter 5

www.semeng.ir

http://www.semeng.ir


FIGURE5.8.1. Torsional vibration damper,

In contrast to the vibration absorber, where the exciting force is opposed by the
absorber, energy is dissipated by the vibration damper. Figure 5.8.1 represents a fric­
tion-type vibration damper, commonly known as the Lanchester damper, which has
found practical use in torsional systems such as gas and diesel engines in limiting the

5.8 VIBRATION DAMPER

(5.7.8)
m(R + r)2

Jeff = - 1- rw2 / Rn 2

which can become infinite at its natural frequency.
This poses some difficulties in the design of the pendulum. For example, to sup­

press a disturbing torque of frequency equal to four times the rotational speed n, the
. 1pendulum must meet the requirement w2 = (4n)2 = n2R/r, or rl R = 16' Such a short

effective pendulum has been made possible by the Chilton bifilar design (see Probe 5.43).

We next consider the torque exerted by the pendulum on the wheel. With the j­
component of am equal to zero, the pendulum force is a tension along r, given by m
times the i-component of am' By recognizing that the major term of mam is -(R + r)n2,
the torque exerted by the pendulum on the wheel is

T = -m(R + r)n2R4> (5.7.7)

Substituting for 4> from Eq. (5.7.6) intothe last equation, we obtain

T = _ m(R + r)2Rn2/r 2 .. __ [ m(R + r)2 Joo
R 2/ 2 w 80SIll wt - 2/ 2 8n r - w 1- rw Rn

Because we can write the torque equation as T = JeffO, the pendulum behaves like a
wheel of rotational intertia:
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FIGURE 5.8.2.
Untuned viscous

damper.

Untuned viscous vibration damper. In this section, we discuss another interesting
application of a vibration damper, which has found practical use in suppressing the
torsional vibrations of automobile engines. In a rotating system such as an automobile
engine, the disturbing frequencies for torsional oscillations are proportional to the
rotational speed. However, there is generally more than one such frequency, and the
centrifugal pendulum has the disadvantage that several pendulums tuned to the order
number of the disturbance must be used. In contrast to the centrifugal pendulum, the
untuned viscous torsional damper is effective over a wide operating range. It consists
of a free rotational mass within a cylindrical cavity filled with viscous fluid, as shown in
Fig. 5.8.2. Such a system is generally incorporated into the end pulley of a crankshaft
that drives the fan belt, and is often referred to as the Houdaille damper.

We can examine the untuned viscous damper as a 2-DOF system by considering.
the crankshaft, to which it is attached, as being fixed at one end with the damper at the
other end. With the torsional stiffness of the shaft equal to Kin. -Ib/rad, the damper
can be considered to be excited by a harmonic torque Moeiwt• The damper torque
results from the viscosity of the fluid within the pulley cavity, and we will assume it to

amplitudes of vibration at critical speeds. The damper consists of two flywheels a free
to rotate on the shaft and driven only by means of the friction rings b when the normal
pressure is maintained by the spring-loaded bolts c.

. When properly adjusted, the flywheels rotate with the shaft for small oscillations.
However, when the torsional oscillations of the shaft tend to become large, the fly­
wheels do not follow the shaft because of their large inertia, and energy is dissipated by
friction due to the relative motion. The dissipation of energy thus limits the amplitude
of oscillation, thereby preventing high torsional stresses in the shaft.

In spite of the simplicity of the torsional damper, the mathematical analysis for
its behavior is rather complicated. For instance, the flywheels can slip continuously, for
part of the cycle, or not at all, depending on the pressure exerted by the spring bolts. If
the pressure on the friction ring is either too great for slipping or zero, no energy is dis­
sipated, and the damper becomes ineffective. Maximum energy dissipation takes place
at some intermediate pressure, resulting in optimum damper effectiveness.

Obviously, the damper should be placed in a position where the amplitude of
oscillation is the greatest. This position generally is found on the side of the shaft away
from the main flywheel, because the node is usually near the largest mass.
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(5.8.6)(0 = Y2(1 + 1.L)(2 + I.L)

The amplitude equation then becomes

1
K (Jo 1_ I p,2( wi wn)2 + 4(2
Mo - \jp,2( co]wn)2(1 - w2I f?~Y+ 4(2[p,( to]wn)2 - (1 - w2I w~)]2

which indicates that] K(Jo/ Mol is a function of three parameters, (, p" and (w/ w ).
This rather complicated equation lends itself to the following simple int~rpreta_

tion. If ( = 0 (zero damping), we have an undamped single-DOF system with resonant
frequency of WI = YKji.A plot of IK(Jo/Mol vs. the frequency ratio will approach oo
at this frequency. If (= 00, the damper mass and the wheel will move together as a sin-

. gle mass, and again we have an undamped single-DOF system, but with a lower nat­
ural frequency of YKI(J + Jd).

Thus, like the Lanchester damper of the previous section, there is an optimulll
damping (0 for which the peak amplitude is a minimum, as shown in Fig. 5.8.3. The
result can be presented as a plot of the peak values as a function of (for any given I.L as
shown in Fig. 5.8.4. '

I.L

e .
e = -2Jw = 2(Jwec n n

(-w' + i~:)q,o= i~:Oo (5.8.3)

By eliminating cPo between the two equations, the expression for the amplitude (Jo of
the pulley becomes .

~ = w2Jd - iew
Mo [w2JiK - Jw2)] + iew[w~Jd - (K - Jw2)] (5.8.4)

Letting w~ = KIJ and p, = JiJ, the critical damping is'

and'

[ (
K 2) . ew ] iew MoJ - w + l J (Jo - J cPo= T

where (Jo and cPo are complex amplitudes, their substitution into the differential equa-
tions results in . .

(5.8.2)

By assuming the solution to be in the form

.(J = (Joeiwt

cP = cPoeiwt

(5.8.1)
J{j + K(J + e(O - c/» = Moeiwt

Jde/> - e( 0 - c/» = 0
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FIGURE5.8.5. Untuned
viscous damper.

~
FIGURE5.8.4.

2.0L_ L_ ~~--~

0.02 0.10 1.0

30.0~--------------,-----------~---------.------,

FIGURE 5.8.3. Response of an untuned viscous damper (all CUrvespass through P).

2.01.0o

01 0~ ~
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5.1. Write the equations of motion for the system shown in Fig. P5.1, and determine its nat­
ural frequencies and mode shapes.

PROBLEMS

These conclusions can be arrived at by observing that the curves of Fig. 5.8.3 all
pass through a common point P, regardless of the numerical values of ,. Thus, by
equating the equation for IK(VMI for' = 0 and, = 00, Eq. (5.8.7) is found. The curve
for optimum damping then must pass through P with a zero slope, so that if we substi­
tute (w/wnf = 2/(2 + J.L) into a derivative of Eq. (5.8.5) equated to zero, the expression

. for '0 is found ..It is evident that these conclusions apply also to the linear spring-mass
system of Fig. 5.8.5, which is a special case of the damped vibration absorber with the
damper spring equal to zero.

Fig. 5.8.6 shows a laboratory model of a 2-:-DOFbuilding excited by the ground
motion.

(5.8.7)

and that the peak amplitude for optimum damping is found at a frequency equal to

FIGURE 5.8.6 Two-DOF building
model on a shaking table. (Courtesy
of UCSB Mechanical Engineering
Undergraduate Laboratory.)
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5.S. An electric train made up of two cars, each weighing SO,OOOlb, is connected by couplings
of stiffness equal to 16,000 lb/in., as shown in Fig. PS.8. Determine the natural frequency
of the system.

FIGURE PS.7.

1"
3Ib-in:-s2~" ,;:;. .

4

5Ib-in.-s2
r--

5.5. Determine the normal modes of the torsional system shown in Fig. PS.S for K, = K2 and
J1 = 212,

5.6. If K, = 0 in the torsional system of Prob S.5, the system becomes a degenerate 2-DOF
system with only one natural frequency. Discuss the normal modes of this system as well
as a linear spring-mass system equivalent to it. Show that the system can be treated as
one of a single DOF by using the coordinate cf> = (81 -. (2),

5.7. Determine the natural frequency of the torsional system shown in Fig. PS.7, and draw the
normal mode curve. G = l1.S X 106 psi.

FIGURE PS.5.FIGURE PS.4.

5.2. Determine the normal modes and frequencies of the system shown in Fig. PS.2 when
n = 1. .

5.3. For the system of Prob. S.2,determine the natural frequencies as a function of n.
5.4. Determine the natural frequencies and mode shapes of the system shown in Fig. PS.4.

FIGURE PS.2.FIGURE PS.1.
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S.U. In Prob. 5.11, if the two masses are made equal, show that normal mode frequencies are
W = v'Tj;;;i and W2 = V3T/ml. Establish the configuration for these normal modes.

5.13. In Prob. 5.11, if m1 = 2m and m2 = m, determine the normal mode frequencies and mode
shapes.

5.14. A torsional system shown in Fig.~5.14 is composed of a shaft of stiffness Kl' a hub of radius
r and moment of inertia II' four leaf springs of stiffness k2, and an outer wheel or radius R
and moment of inertia 12,Set up the differential equations for torsional, oscillation, assum­
ing one end of the shaft to be fixed. Show that the frequency equation reduces to

4 (2 + 2 +' 12 2) 2 + 2 2 - 0W - Wll W22 1;W22 W Wll W22 -

where wll and W22 are uncoupled frequencies given by the expressions

2 Kl 2 4k2R2
Wll = and £022 =

II 12

FIGURE PS.11.

Determine the ratio of amplitudes xf x; and locate the nodes for the two modes of
vibration.

5.10. Set up the equations of motion of the double pendulum in terms of angles 81 and 82mea­
sured from the vertical.

5.11. Two masses, m1 and m2, are attached to a light string with tension T,as shown in Fig. P5.11.
Assuming that T remains unchanged when the masses are displaced normal to the string,
write the equations of motion expressed in matrix form.

5.9. Assuming small amplitudes, set up the differential equations of motion for the double
pendulum using the coordinates shown in Fig. P5.9. Show that the natural frequencies of
the system are given by the equation

W = ~~(2 ± V2)

FIGURE PS.9.FIGURE PS.8.

aJ!H~
o 00
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5.21. Set up the matrix equation of motion for the system shown in Fig. P5.21 using coordi­
nates Xl and x2 and m and 2m.Determine the equation for the normal mode frequencies
and describe the mode shapes.

I lim L
~~-!--~-!-~-J 12

FIGURE PS.20.

5.20. Choose coordinates x for the displacement of c and (J clockwise for the rotation of the
uniform bar' shown in Fig. P5.20, and determine the natural frequencies and mode shapes.

5.15. Two equal pendulums free to rotate about the x- x axis are coupled together by a rubber
hose of torsional stiffness k lb . in/rad, as shown in Fig. PS.1S. Determine the natural
frequencies for the normal modes of vibration, and dsecribe how these motions may be
started.

If I = 19.3 in., mg = 3.86 lb, and k = 20 lb . in/rad, determine the beat period for a
motion started with 61 = 0 and 82 = 80, Examine carefully the phase of the motion as the
amplitude approaches zero.

5.16. Determine the equations of motion for the system of Prob. S.4 when the initial condi­
tions are 40) = A, x1(0) = 40) = O.

5.17. The double pendulum of Prob. S.9 is started with the following initial conditions:
xl(O) = xio) = X,x1(0) = xio) = O. Determine the equations of motion. '

5.18. The lower mass of Prob. S.l is given a sharp blow, imparting to it an initial velocity
xio) = V.Determine the equation of motion.

5.19. If the system of Prob. 5.1 is started with initial conditions xl(O) = 0, xlO) = 1.0, and
Xl (0) = xi 0) = 0, show that the equations of motion are .

xl(t) = 0.447 cos WIt - 0.447 cos w2t

xit) = 0.722 cos WIt + 0.278 cos w2t

WI = Y0.382k/m W2 = Y2.618k/m

FIGURE PS.14. FIGURE PS.1S.

m m

'1
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~

(kl+ k2) (kzl2 - kIll) 1 -kl -k2 (X ) (0)
+ (~l~2_~_~1~Lj~!Ij_~_~~lj1~ ~~L -=~lL_ (J = 0

-kl kill: (ko + kl) 0 Xl 0
-k2 :-k212 1 0 (ko + k2) X2 O.

5.27. To justify the 2-DOF simplified model of the automobile in Example 5.3.2, assume the
weight of each wheel, hub, and tire to be approximately 80 lb, and the tire stiffness per

5.25. Referring to Prob. 5.24 prove in general that the uncoupled natural frequencies are
always between the coupled natural frequencies.

5.26. For Prob. 5.24, if we include the mass of the wheels and the stiffness of the tires, the prob­
'lem becomes that of 4 DOE Draw the spring-mass model and show that its equation of
motion is

FIGURE PS.24.

Determine the normal modes of vibration and locate the node for each mode.

k; = 20001b/ft

k2 = 24001b/ft

W= 3500lb

II = 4.4 ft

12 = 5.6 ft

r = 4 ft = radius of gyration about c.g.

5.22. In Prob. 5.21, if the coordinates x at m and ()are used, what form of coupling will result?
5.23. Compare Probs. 5.9 and 5.10 in matrix form and indicate the type of coupling present in

each coordinate system.
5.24. The following information is given for the automobile shown in Fig. P5.24.

FIGURE PS.21.

rl -I ~ l-f-l-l

i/.%T;~!/??71,
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(::t) = 2

(~t) =-1

5.31. A two-story building is represented in Fig. PS.31 by a lumped mass system in which
m, = ~m2 and ». = ~k2'Show that its normal modes are

I
f

f 1**1 tr J.0

*1
M

1*FIGURE PS.30.

When forced by PI = Fo sin wt, determine the equations for the amplitudes and plot
them against wiwH•

5.30. A rotor ismounted in bearings that are free to move in a single plane, as shown in Fig. PS.30.
The rotor is symmetrical about 0 with total mass M and moment of intertia J0 about an axis
perpendicular to the shaft. If a small unbalance mr acts at an axial distance b from its center
0, determine the equations of motion for a rotational speed w.

k, = 20Ib/in.

k2 = 10Ib/in.

gmt = 3.861b

gm2 = 1.93lb

5.29. Determine the natural frequencies and normal modes of the system shown in Fig. PS.29
when

FIGURE PS.29.FIGURE PS.28.

wheel to be 22,000 lb/ft. Determine the natural frequency of its wheel-tire system, and
explain why the simplified model is adequate.

5.28. An airfoil section to be tested in a wind tunnel is supported by a linear spring k and ator­
sional spring K, as shown in Fig.PS.28.If the center of gravity of the section is a distance e
ahead of the point of support, determine the differential equations of motion of the system.
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FIGURE PS.36.

5.32. In Prob. 5.31, if a force is applied to m1 to deflect it by unity and the system is released
from this position, determine the equation of motion of each mass by the normal mode
summation method.

5.33. In Prob. 5.32, determine the ratio of the maximum shear in the first and second stories.
5.34. Repeat Prob. 5.32 if the load is applied to m2, displacing it by unity.
5.35. Assume in Prob. 5.31 that an earthquake causes the ground to oscillate in the horizontal

direction according to the equation Xg = Xg sin wt.Determine the response of the build-
ing and plot it against co]wI' .

5.36. To simulate the effect of an earthquake on a rigid building, the base is assumed to be <;::on­
nected to the ground through two springs: Kh for the translational stiffness, and K r for the
rotational stiffness. If the ground is now given a harmonic motion, Yg = Y; sin ox, set up
the equations of motion in terms of the coordinates shown in Fig. P5.36.

5.37. Solve the equations of Prob. 5.36 by letting

FIGURE P5.31.
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FIGURE PS.40.

5.39. The expansion joints of a concrete highway are 45 ft apart. These joints cause a series of
impulses at equal intervals to affect cars traveling at a constant speed. Determine the
speeds at which pitching motion and up-and-down motion are most apt to arise for the
automobile of Prob. 5.24.

5.40. For the system shown in Fig, P5.40, WI = 200 lb and the absorber weight W2 = 50 lb. If
Wi is excited by a 2 lb-in, unbalance rotating at 1800 rpm, determine the proper value of
the absorber spring k2•What will be the amplitude of W2?

5 II
4 'I ( :;~ )2 = 4
:3

Yo J I loB
YG /, YG ( Pc )2.:)___ ",,,/ I to 3

I'
(AJ

/1.0 Wh
.734/ 2.73

I I III i(I' v X,I:
H ~I A

FIGURE PS.38.

which indicate a motion that is predominantly translational. Establish the second natural
frequency and its mode (Y1 = Yo - 210f)0 = displacement of top).

5.38. The response and mode configuration for Probs. 5.36 and 5.37 are shown in Fig. P5.38.
Verify the mode shapes for several values of the frequency ratio.

Yo = -1.14
lof) ,

WI = 0.734 and
Wh

The first natural frequency and mode shape are
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5.43. The bifilar-type pendulum shown in Fig. P5.43 is used as a centrifugal pendulum to elimi­
nate torsional oscillations. The U-shaped weight fits loosely and rolls on two pins of
diameter d2 within two larger holes of equal diameters d..With respect to the crank, the
counterweight has a motion of curvilinear translation with each point moving in a circu­
lar path or radius r = d1 - d2• Prove that the U-shaped weight does indeed move in a cir-
cular path of r = d1 - d2: .

5.44. A bifilar-type centrifugal pendulum is proposed to eliminate a torsional disturbance of fre­
quency .equal to four times the rotational speed. If the distance R to the center of gravity of
the pendulum mass is 4.0 in. and d, = ~ in., what must be the diameter d2 of the pins?

5.45. A jig used to size coal contains a screen that reciprocates with a frequency of 600 cpm.
The jig weighs 500 lb and has a fundamental frequency of 400 cpm. If an absorber
weighing 125 lb is to be installed to eliminate the vibration of the jig frame, determine
the absorber spring stiffness. What will be the resulting two natural frequencies of the
system? .

5.46. In a certain refrigeration plant, a section of pipe carrying the refrigerant vibrated vio­
lently at a compressor speed of 232 rpm. To eliminate this difficulty, it was proposed to
clamp a spring-mass system to the pipe to act as an absorber. For a trial test, a 2.0-lb.
absorber tuned to 232 cpm resulted in two natural frequencies of 198 and 272 cpm. If the
absorber system is to be designed so that the natural frequencies lie outside the region
160 to 320 cpm, what must be the weight and spring stiffness?

5.47. A type of damper frequently used on automobile crankshafts is shown in Fig. P5.47. J
repr.esents a solid disk free to spin on the shaft, and the space between the disk and case
isfilled with a silicone oil of coefficient of viscosity u,The damping action results from

FIGURE PS.43.FIGURE PS.42.

5.41. IIi Prob. 5.40, if a dashpot c is introduced between WI and W2, determine the amplitude
equations by the complex algebra method.

5.42. A flywheel with moment of inertia I has a torsional absorber with moment of inertia Id
free to rotate on the shaft and connected to the flywheel by four springs of stiffness k lb/in.,
as shown in Fig. P5.42. Setup the differential equations of motion for the system, and dis­
cuss the response of the system to an oscillatory torque.
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FIGURE PS.S4.

5.48. For the Houdaille viscous damper with mass ratio J..t = 0.25, determine the optimum
damping '0 and the frequency at which the damper is most effective. '

5.49. If the damping for the viscous damper of Prob. 5.48 is equal to , = 0.10, determine the
peak amplitude as compared to the optimum. '

5.50. Establish the relationships given by Eqs. (5~8.7) and (5.8.6).
5.51. Derive the equations of motion for the two masses in Fig. 5.8.5 and follow the parallel

development of the untuned torsional vibration-damper problem.
~] 5.52. Develop the MATLAB® program for the computation of the response of the system

shown in Prob. 5.4 when the mass 3m is excited by a rectangular pulse of magnitude 100
lb and duration 67Tv;;;jk s. "

1M] 5.53. In Prob. 5.31 assume the-following data: kl = 4 X 103 lb/in., k2 = 6 X 103 lb/in., and ',
m1 = m2 = 100. Develop the MATLAB® program for the case in which the ground is
given a displacement y = 10" sin TTt for 4 s. -

5•.';4. Figure P5.54 shows a degenerate 3 DOE Its characteristic equation yields one zero root
and. two elastic vibration frequencies. Discuss the physieal significance that three coordi­
nates are required but only two natural frequencies are obtained.

FIGURE PS.47.

any relative motion between the two. Derive an equation for the damping torque exerted
by the disk on the case due to a relative velocity of w. '
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5.61. Determine the matrix equation of motion for the system shown in Fig. P5.61.

~
FIGURE PS.61.

Fsinwf

}-X, h2 .
FIGURE PS.60.

5.59. Consider the free vibration of any two degrees-of-freedom system with arbitrary initial
conditions, and show by examination of the subsidiary equations of Laplace transforms
that the solution is the sum of normal modes.

5.60. Determine by the method of Laplace transformation the solution to the forced-vibration
problem shown in Fig. P5.60. Initial conditions are xl(O), x1(0), xio), and xio).

5.58. Using the method of Laplace transforms, solve analytically the problem solved by the
digital computer in Sec. 5.5 and show that the solution is

xcm = 13.01(1 - cos CUlt) - 1.90(1 - cos cu2t)

Ycm = 16.08(1 -'" cos CUlt) + 6.14(1 - cos cu2t)

FIGURE PS.S7.

5.56. Show that the normal modes of the system of Prob. 5.54 are orthogonal.
5.57. For the system shown in Fig. P5.57 choose coordinates Xl and x2 at the ends of the bar and

determine the type of coupling this introduces.

FIGURE PS.SS.

5.55. The two uniform rigid bars shown in Fig. P5.55 are of equal length but of different
masses. Determine the equations of motion and the natural frequencies and mode shapes
using matrix methods.
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FIGURE PS.6S.
m

This is an example of using symmetries to reduce the dimensionality of the system. In this
case, we have reduced the number of degrees of freedom by 1.

5.65. Consider the system shown in Figure 5.65 that models the motion of seats of a ski-lift.
Determine the equations of motion. Determine the natural frequencies. Should the stiff­
ness of the spring (which models the cable on which the seats are mounted) be high or
low in order for the skiers not to experience very fast oscillations of the seat? I

~ 5.63. Consider the system with two coupled pendula of Example 5.1.3, and do not assume
small displacement from the vertical position. It is assumed that the pendula are cou­
pled via a force varying linearly with the difference in angles of the pendula F = - ka sin
«(}l - (}2) being the force on pendulum 1. Derive the equations of motion. Simulate the
system in MATLAB® with different initial conditions. Plot the angles (}l and ()2 versus
time. What can you conclude about the exchange of energy between the pendula (cf.
Example 5.2.2)?

5.64. Consider the following coupled system for the rectilinear motion of two particles:

Xl = fl{XI, x2}

x2 = fixl, x2}

Show that if the form of the equations stays the same when Xl + C, x2 + C is inserted
instead of xl' x2 (i.e., the system is invariant with respect to translations), then the system
reduces to one equation for the variable y = x2 - Xl'

y" = f{y}·

FIGURE PS.62.

5.62. Determine the matrix equation of motion for the system shown in Fig. P5.62.
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where K-1K = I = unit matrix.
The choice as to which approach to adopt depends on the problem. Some prob­

lems are more easily pursued on the basis of stiffness, and for others, the flexibility
approach is desirable. The inverse property of one or the other is an important concept
that is used throughout the theory of vibration.

The orthogonal property of normal modes is one of the most important concepts
in vibration analysis. The orthogonality of normal modes forms the basis of many of
the more efficient methods for the calculation of the natural frequencies and mode
shapes. Associated with these methods is the concept of the modal matrix, which is
essential in the matrix development of equations.

(d)(-w2[a][M] + J){X} = to}

The equation of motion in terms of the flexibility is easily determined by premultiply­
ing Eq. (a) by [Kr1 = [a]:

(c)

{X} = [K] -l{F}

= [a]{F}

The flexibility is the inverse of the stiffness. The displacement is here written in
terms of the force:

(b){F} = [K]{X}

In the stiffness formulation, the force is expressed in terms of the displacement:

(a)(-w2[M] + [K]) {X} = to}

The elastic behavior of a system can be expressed either in terms of the stiffness or the
flexibility. So far, we have written the equations of motion for the normal mode vibra­
tion in terms of the stiffness K:
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bX2

Figure 6.1.1.

In this case, the unit force is transmitted through k, and k2, and k3 is unstretched,
In a similar manner, for 11 = 0'/2 = 0,and 13 = 1,we have

Here springs k2 and k3 are unstretched and are displaced equally with station (1).
Next, apply forces 11 = 0'/2 = 1,and 13 = 0, to obtain

Solution By applying a unit force 11 = 1 at (1) with 12 = 13 = 0, the displacements, Xl' x2, and
X3' are found for the first column of the flexibility matrix

Example 6.1.1
Determine the flexibility matrix for the three-spring system of Fig. 6.1.1.

The flexibility influence coefficient a;jis defined as the displacement at i due to a
unit force applied at j with all other forces equal to zero. Thus, the first column of the
foregoing matrix represents the displacements corresponding to 11 = 1 and 12"= /3 = O.
The second column is equal to the displacements for 12 = 1 and 11 =13 =0, and so on.

(6.1.1)

The flexibility matrix written in terms of its coefficients a;jis

6.1 FLEXIBILITY INFLUENCE COEFFICIENTS
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IE. P. Popov, Introduction to Mechanics of Solids (Englewood Cliffs,NJ: Prentice-Hall, 1968), p. 411.

14 13
=--

3 EI

Solution The influence coefficients can be determined by placing unit loads at (1), (2), and (3) .
as shown, and calculating the deflections at these points. By using the area moment method,' the
deflection at the various stations is equal to the moment of the M/ EI area about the position in
question. For example, the value of a21 = a12 is found from Fig. 6.1.3 as follows:

1 [1. 2 7] 14 f3. a12:;::: EI 2 (21) X "3 I ="3 EI

The other values (determined as before) are

27 13
au = 3 EI

Example 6.1.3
Determine the flexibility influence coefficients for stations (1), (2), and (3) of the uniform can­
tilever beam shown in Fig. 6.1.3.

•
'[a] = i [~:~~:~~:~]

0.5 1.5 2.5

Solution We have here k, = 2k, k2 = k, and k3 = k, and the flexibility matrix from Example
6.1.1becomes

FIGURE6.1.2.

Example 6.1.2
Determine-the flexibility matrix for the system shown in Fig. 6.1.2.

•

The complete flexibility matrix is now the sum of the three prior matrices:

{ Xl} [~~ ~ 1{tl}
X2 = ~ ~ + k ~ + k t2

X _!_ _!_ + _!_ _!_ + _!_ + _!_ f
3 kJ kJ k2 k} k2 k3 3

Note the symmetry of the matrix about the diagonal.
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FIGURE 6.1.4.

-)~

(6.1.1)y = allP + a12M
6 = a21P + a22M

Example 6.1 .4

The flexibility influence coefficients can be used to set up the equations of a flexible shaft sup­
ported by a rigid bearing at one end with a force P and a moment M at the other end, as shown
in Fig. 6.1.4.

The deflection and slope at the free end is

•
and the symmetry about the diagonal should be noted.

14
8
2.5

The flexibility matrix can now be written as

4 /3
3 EI

1 /3
3 EI

2.5 /3
3 EI

8 /3
3 EI

FIGURE 6.1.3.
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The reciprocity theorem states that in a linear system, aij = ajj• For the proof of this
theorem, we consider the work done by forces t.and~, where the order of loading is t fol­
lowed by j and then by its reverse. Reciprocity results when we recognize that the work
done is independent of the order of loading.

6.2 RECIPROCITYTHEOREM

The equation presented here could offer a basis for solving the problem of the
gyroscopic whirl of a spinning wheel fixed to the end of an overhanging shaft. P and M
in this case would be replaced by the inertia force and the gyroscopic moment of the
spinning wheel. By including the flexibility of the supporting bearing, a still more gen­
eral problem can be examined (see Prob. 6.41).

Figure ·6.1.5shows a demonstration gyroscope in gimbals. The mass distribution
of the wheel is adjustable to obtain general moment of inertia configuration other than

. that of the symmetric wheel resulting in the simple inertia force P and the gyroscopic
moment M shown in Fig. 6.1.4..

•
(6.1.3)

(6.1.2){Y} = [all a12]{ P}o a21 a22 M
.The influence coefficients in this equation are

[3
all = 3EI' al2 = a21 =

which can be expressed by the matrix equation

FIGURE6.1.5. Demonstration
-gyroscope. (Courtesy of UCSB
Mechanical Engineering
Undergraduate Laborato ry.)

Reciprocity Theorem 167Section 6.2

www.semeng.ir

http://www.semeng.ir


The elements of the stiffness matrix have the following interpretation. IfXl = 1.0 !
and x, _= X3 = 0, the forces at 1,2,.and 3 that are required to maintain this displacement J

*

(6.3.1) "

The stiffness matrix written in terms ~f the influence coefficients kij is

k12
k22

k32

6.3 STIFFNESS INFLUENCE COEFFICIENTS
•

L tP ~I-YI- (b)

~-~. CD
®FIGURE 6.2.1.

(a)

Yl = al2P

Because al2 = aZI'YI will equal Yz, i.e., for a linear system, the deflection at 2,due to a load at 1, is
equal to the deflection at 1 when the same load is applied at 2. .

In Fig. 6.2.1(b), the deflection at 1 is

Example 6.2.1
Figure 6.2.1 shows an overhanging beam with P first applied at 1 and then at 2. In Fig. 6.2.1(a),
the deflection at 2 is

By applying h, the work done is ~naii·By applying fj, the work done by fj is ~Ii ail
However, i undergoes further displacement, aijij, and the additional work done by /;
becomes aijfjh.Th.us, the total work done is

W = ~ITaii + ~ITajj + aijfjh
We now reverse the order of loading, in which case the total work done is

W = ~tJajj + ~ITaii + ajJifj
Because the work done in the two cases must be equal, we find that
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•

o

and its equation of motion becomes

11 = k, + k2 = kll

12 = -k2 = k21

13 = 0 = k31

Repeat with X2 = 1, and Xl = X3 = O.The forces are now

11 = -k2 = k12

12 = k2 + k3 = k22

f3 = -k3 = k32

For the last column of k's, let X3 = 1 and Xl = X2 = O.The forces are

f1 = 0 = k13

f2 = -k3 = k23

f3 = k3 + k4 = k33

The stiffness matrix-can now be written as

Solution Let Xl = 1.0 and x2 = X3 = O. The forces required at 1,2, and 3, considering forces to
the right as positive, are

FIGURE 6.3.1.

Example 6.3.1
Figure 6.3.1 shows a 3-DOF system. Determine the stiffness matrix and write its equation of
motion.

according to Eq. (6.3.1) are ««. k21' and k31 in the first column. Similarly, the forces /1'/2'
and /3 required to maintain the displacement configuration Xl = 0, x2 = 1.0, and X3 = 0
are k12' k22' and k32 in the second column. Thus, the general rule for establishing the
stiffness elements of any column is to set the displacement corresponding to that col­
umn to unity with all other displacements equal to zero and measure the forces
required at each station.
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Solution Although the stiffness matrix of this system is easily found by summing forces on
each mass in Fig. 6.1.2, we demonstrate the use of the mathematical equation

[a] -1 = I!I adj [a]

Example 6.3.3

Determine the stiffness matrix for Example 6.1.2 by inverting the flexibility matrix:

[

0.5 0.5 0.5]
[a] = ~ 0.5 1.5 1.5

0.5 1.5 2.5

•

The stiffness matrix is then easily found as

[ 24
-12 ° -l~l[k] ~ ~: -1~
24 -12

-12 24

° -12 12

Solution The stiffness matrix for the problem is a 4 x 4 matrix. The elements of the first col­
umn are obtained by giving station 1 a unit displacement with the displacement of all other sta­
tions equal to zero, as shown in Fig. 6.3.2(b). The forces required for this configuration are the
elements of the first column. Similarly, the elements of the second column are the forces neces­
sary to maintain the configuration shown in Fig. 6.3.2(c).

It is evident from these diagrams that «« = k22 = k33 and that they can be determined from
the deflection of a fixed-fixed beam of length 2/, which is .

192£1 El
ku = k22 = k33 = (2/P = 24r

(e)(d)(e)

FIGURE 6.3.2.

(b)(a)

~
3

~
2

(2

1

e
~v/////// %

4

Example 6.3.2

Consider the four-story building with rigid floors shown in Fig. 6.3.2. Show diagramatically the
significance of the terms of the stiffness matrix.
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Alternatively, one can compute these numbers by computing the eigenvalues of the
dynamic matrix A =M-1 * K. Once the matrices M and K have been input into MATLAB®, the
dynamic matrix is computed by using the following command:

A = inv(M)*K

The roots of this equation can be found in MATLAB® by typing the command roots(c)
where c is the vector containing the coefficients of the polynomial in descending order. For this
example c = [1, -4.5,5, -1].The roots are given by

2.8892, 1.3554, 0.2554

The characteristic equation from this determinant is

A3 - 4.5A2 + 5A - 1 = 0

°-1 = °
(1 - A)

-1
(2 - A)
-1

(3 - 2A)
-1

°

from which the characteristic determinant with A = w2m/k becomes

Solution The equation of motion for the normal modes is

Example 6.3.4
By using the stiffness matrix developed in Example 6.3.3, determine the equation of motion, its
characteristic determinant, and the characteristic equation.

•
which is the stiffness matrix.

-~.5J= k [-~ -~ -~J
05 0 -1 1

-0.5
1.0

-0.5[

1.5
[a] -1 = [k] = 2k -~.5

Thus, the inverse of [a] is

-~.5J
0.5

-0.5
1.0

-0.5[

1.5
adj [a] = -~.5

For the adjoint matrix, we have (see Appendix C)

of Appendix C.The determinant of [a] is found from the minors using the first column.

lal = !{0.511.5 1.51_ 0.510.5 0.51 + 0.510.5 0.51}
k 1.5 2.5 1.5 2.5 1.5 1.5

0.5 { } 1
= k 1.5 - 0.5 + ° = 2k
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FIGURE6.4.1. Beam with arbitrary end displacements.

{
FI} [kIt k12 k13 kI4] {U1}
M 1 = k21 k22 k23 k24 81
F2 . - k31 k32 k33 k34 . u2
M2 k41 k42 k43 k44 82

where each column represents the force and moment required for each of the displace­
ments taken separately. The positive sense of these coordinates is arbitrary; however,

Engineering structures are generally composed of beam elements. If the ends of the
elements are rigidly connected to the adjoining structure instead of being pinned,
the element will act like a beam with moments and lateral forces acting at the ends.
For the most part, the relative axial displacements will be small compared to the lat­
eral displacements of the beam and we will assume them to be zero for now.

Figure 6.4.1 shows a uniform beam with arbitrary end displacements, VI' 81and v2,
82, taken in the positive sense. These displacements can be considered in terms of the
superposition of four displacements taken separately, as shown in Fig. 6.4.2. Shown
also are the end forces and moments required to maintain the equilibrium of the sepa­
rate displacements, which can be simply determined by the area-moment method.
They relate to the following stiffness matrix:

6.4 STIFFNESSMATRIX OF BEAM ELEMENTS

•
Both of these approaches give the same values for the eigenvalues for the normal modes.

1.3554
2.8892
0.2554

D=

The result is

The eigenvalues can now be computed using

D = eig(A).

1.5000 -0.5000 a
-1.000 2.000 -1.0000

a -1.0000 1.0000

A=

The result is
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Example 6.4.1
Determine the stiffness matrix for the square frame of Fig. 6.4.3. Assume the corners to remain
at 900•

FIGURE6.4.2(a).

the configuration shown in Fig. 6.4.1 conforms to that generally used in the finite ele­
ment method.

Also presented here are force and moment relationships for a pinned beam.
Although the pinned beam does not conform to the usual definition of beam stiffness,
its force and moment relationships are often convenient, and are presented here in
Figure 6.4.2(a}.

FIGURE 6.4_2. Stiffness of beam element.

F=6EI e M=4E1e
[2 2 i 2

M= 2tEI8/-h ~82~~~~--------~=----------------~--~I~I8
[2 2
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FIGURE 6.4.5.

For the determination of the elements of this matrix, the frame is shown with each displacement .
applied separately in Fig. 6.4.4.The first column of the stiffness matrix is found by letting VI = 1
and 81 = 82 = 0, as shown in Fig. 6.4.4(a). By cutting out the corners and imposing the condition
of equilibrium for the free-body diagram, the results are (see Fig. 6.4.5)

(c)(b)

FIGURE 6.4.4.

(0)

Solution The method to be illustrated here provides an introduction to the finite element
method, which is discussed later. Briefly, the displacements at the joints (corners joining the
three beam elements) must be compatible. Ensuring equilibrium of forces at the corners from
the free-body diagrams, the elements of the stiffness matrix are found.

With the applied forces equal to FI, MI, and M2, the displacement of the corners are VI' 01'
and 82, and the stiffness matrix relating the force to the displacement is

FIGURE 6.4.3.

a, f
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•

FIGURE 6.4.7.

By superpositioning the preceding three configurations, the stiffness matrix for the square frame
with fixed legs is

{ ~,} = ~ ~ ~ {~}
Mz 0 0 8¥ 1

In like manner, the third column of the stiffness matrix is found from the configuration of
Fig. 6.4.4(c) (see Fig. 6.4.7).

FIGURE 6.4.6.

{~,}=[~: ~l{~}
Mz 0 2¥ OJ 0

The second column of the stiffness matrix is found from the configuration of Fig. 6.4.4(b).
Summing forces and moments at the comers we have (see Fig. 6.4.6)
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2L. Meirovitch, Computational Methods in Structural Dynamics (Rockville, MD: Sidthoff & l
Noordhoff, 1990),p. 369. ~

~i
,~

J

FIGURE6.5.2.

(6.5.1)'

which we partition by the dotted lines and relabel as

{-!-} = [~:~+~!~-]t~1

FIGURE6.5.1.

Solution Compared to the previous Example 6.4.1, we now have an additional coordinate °3,

which results in a 4 x 4 matrix. To the three configurations of the previous problem, we add the
fourth configuration, as shown in Fig. 6.5.2.The new 4 X 4 stiffness is easily determined and is
given as

(3)

(1) (2)

Example 6.5.1
Determine the stiffness matrix of the square frame shown in Fig. 6.5.1, where the lower right
support is pinned.

For pinned joints where the moment is zero, the size of the stiffness matrix can be
reduced by a procedure called static condensation." The procedure can also be used in
discrete mass systems where the mass moment of inertia is small enough to be ignored.
We here illustrate the procedure by applying it to previous Example 6.4.1 of the square
frame when the fixed support of the lower right leg is replaced by a pinned support.

6.5 STATIC CONDENSATION FOR PINNED JOINTS
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If next we start with the equation for the jth mode and premultiplying by cf>T,we
obtain a similar equation with i and j interchanged:

cf>TKcf>j = Aj cf>TMcf>j (6.6.3)

(6.6.2)

. (6.6.1)K cf>;= Ai M cf>;

Premultiplying the ith equation by the transpose cf>J, of mode j, we obtain

cf>JKcf>; = A; cf>JMcf>;

The normal modes, or the eigenvectors of the system, can be shown to be orthogonal
with respect to the mass and stiffness matrices. By using the notation cf>;for the ith
eigenvector, the 'normal mode equation for the ith mode is

6.6 ORTHOGONALITY OF EIGENVECTORS

•
Note that the middle column and row remain untouched.

8

2

6
7

Subtracting this from Kll, we obtain the reduced 3 X 3 stiffness matrix for the square frame with
.one pinned end.

K 12K221K21 = ~I[~}~][~ 0 2]

= !:[f}~ [' 0

.~lT'

0 z]= ~I~ 0

0

Because the first term of this equation is that of the <previous example, we need only to deter­
mine the second term, which is

(6.5.4)

(6.5.3)o = -K221K21V

Substituting this into the first equation, we have

?J = (KII - K12 K22'K21)V

(6.5.2)
?J = KllV + K120

.M. = K21V + K220

Because for the pinned end, the moment is zero, we let .M. = 0 and solve for 0 in terms of the
other coordinates, thus reducing the size ofthe 4 x 4 matrix to a 3 x 3 matrix.

Note here that Kll is the stiffness matrix of the previous problem. MUltiplying out the new
matrix, we obtain
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4>TMX(O)
c, = 4>TM4>i

. ,~
jj

~
,~
j

. Orthonormal modes. If each of the normal modes 4>i is divided 'by the square';,j
root of the generalized mass Mii, it is evident from the first equation of Eqs. (6.6.8) that J::
the right side of the foregoing equation wiH be unity. The new normal mode ~ the~ /
called the weighted normal mode or the orthonormal mode and designated as </>i' It IS I
also evident from Eq, (6.6.1) that the right side of the second equation of Eq. (6.6.8).::

The coefficient c, of any mode is then found as

Expansion Theorem. Consider the problem of initiating the free vibration of a
system with a specified arbitrary displacement. As previously stated, free vibrations are
the superposition of normal modes, which is referred to as the Expansion Theorem. We
now wish to determine how much of each mode will be present in the free vibration.

We will express first the arbitrary displacement at time zero by the equation:

X(O) = cl4>l + c24>2+ c34>3 + ... ci4>i+ ...
where </>iare the normal modes and ci are the coefficients indicating how much of each
mode is present. Premultiplying the above equation by 4>TM and taking note of the
orthogonal property of 4>i' we obtain

4>TMX(O) = 0 + 0 + 0 + ... ci4>TM</>i + 0 + ...

(6.6.8)
4>TK4>i = Kii

The quantities Mu and Ku are called the generalized mass and the generalized stiffness,
respectively. We will have many occasions to refer to the generalized mass and general­
ized stiffness later.

It is also evident from Eq. (6.6.2) or Eq. (6.6.3) that as a consequence of Eq. (6.6.6), .

4>TK4>j = 0 i =1= j (6.6.7)

Equations (6.6.6) and (6.6.7) define the orthogonal character of the normal modes.
Finally, if i = j, (Ai - Aj) = 0 and Eq. (6.6.5) is satisfied for any finite value of the

products given by Eq. (6.6.5) or (6.6.6).We therefore have

4>TM 4>i = u,

(6.6.6)

(6.6.5)

Thus, subtracting Eq. (6.6.3) from Eq. (6.6.2), we obtain

(Ai - Aj)4>TM4>j = 0

If A; =1= Aj the foregoing equation requires that

4>TM 4>j= 0 i =1= j

(6.6.4)

Because K and M are symmetric matrices, the following relationships hold.
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The diagonal terms here are the generalized stiffness Kjj•

WEen the normal modes cPi in the P IEatrix are replaced by the orthonormal
modes cJ>;, the modal matrix is designated as P. It is easily seen then that the orthogo­
nality relationships are

(6.7.4)

In this equation, the off-diagonal terms are zero because of orthogonality, and the
diagonal terms are the generalized mass Mu.

It is evident that a similar formation applies also to the stiffness matrix that
results in the following equation:

(6.7.3)jJ

with each new row corresponding to a mode. If we now form the product P'.M P or
pTKP, the result will be a diagonal matrix, because the off-diagonal terms simply
express the orthogonality relations, which are zero.

For example, consider a 3-DOF system. Performing the indicated operation with
the modal matrix, we have .

(6.7.2)

The modal matrix makes it possible to include all of the orthogonality relations of
Sec. 6.6 into one equation. For this operation, we need also the transpose of P,which is

[( X X X )(1)]1 2 3
pT = (X1X2X3)(2) = [cP1cP2 ¢3F

(X 1X2 x3) (3)

(6.7.1)[{
X }(l) {X }(2) {X }(3)]

p = :: :: :: = [~l M,l

6.7 MODAL MATRIX P

When the N normal modes (or eigenvectors) are assembled into a square matrix with
each normal mode represented by a column, we call it the modal matrix P. Thus, the
modal matrix for a 3-DOF system can appear as

(6.6.9)

becomes equal to the eigenvalue Ai' Thus, in place of Eqs. (6.6.8), the orthogonality in
terms of the orthonormal modes becomes

~rM~i = 1
:i..TK:i... = A·-n -n 1
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pT MP = [0.731 1.0] [1 0] [0.731 1-2.73]
-2.73 1.0 ° 2 1

= [2.53 ~] = [M 11 0]° 9.45 ° M22

Thus, the generalized mass are 2.53 and 9.45.
If instead of P we use the orthonormal modes, we obtain

p = [ ~{O~~~}ks{~~~3}]= [~::~: .~.~~::]

-2.73]
1.00

P = .[0.73.1
1.00

Solution The mass and stiffness matrices are

M=m[~ ~] K=k[~1 ~1]
The eigenvalues and eigenvectors for Example 5.1.1 are

(Jim "'I = ·{01·.700031}Al = T = 0.634 'I"

~m "',2 = {-12.00·73}A2 = k = 2.366 'I"

Forming the modal matrix P,we have

FIGURE 6.7.1.

Example 6.7.1
Verify the results of the system considered in Example 5.1.1 (see Fig. 6.7.1) by substituting them
into the equations of Sec. 6.7.

Eq. (6.7.5) and (6.7.6) show that if the eigenvectors are known then one can eas­
ily caiculate the eigenvalues. These relationships will be used in the discussion of
numerical methods for eigenvalues and eigenvectors (see Sec. 8.9).

(6.7.7)
[

AI
A = 0

. 0

where A is the diagonal matrix of the eigenvalues.

(6.7.5)

(6.7.6)

pTMP = I
pTKP = A
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m _x2

k

2m _xl

2k

:'i:

FIGURE 6.S.1.

The normal modes of the homogeneous equation are

Example 6.8.1

Consider the two-story building of Fig. 6.8.1excited by a force F(t) at the top. Its equation of
motion is

(6.8.3)X=PY

Because the products pTMP and pTKP are diagonal matrices due to orthogonality, the
new equations in terms of Yare uncoupled and can be solved as a system of 1 DOF.
The original coordinates X can then be found from the transformation equation

(6.8.2)

By making the coordinate transformation X = PY, the foregoing equation becomes

MPY+KPY=P

Next, premultiply by the transpose P! to obtain
(pTMP)Y + (pTKP)Y = pTp

(6.8.1)MX+ KX= P

When the normal modes of the system are known, the modal matrix P or P can be
used to decouple the equations of motion. Consider the following general equation of
the forced undamped system:

6.8 DECOUPLING FORCED VIBRATION EQUATIONS

•
Thus, the diagonal terms agree with the eigenvalues of Example 5.1.1.

-1 ] [0.459 -0.888]
2 0.628. 0.325

~J
pTKP = [0.459 0.628][ 2

-0.888 0.325 -1

= [0.635 ° ] = [AI° 2.365··,()

-0.888] = [1.00 ° ]
0.325 ° 1.00

pTMP = [ 0.45.9 0.628][1 0][0.459
-0.888 0.325 ° 2 0.628

Decoupling Forced Vibration Equations ·181Section 6.8

www.semeng.ir

http://www.semeng.ir


.. .
MX+ CX+ KX= F

The equation of motion of an N-DOF system with viscous damping and arbitrary exci­
tation F(t) can be presented in matrix form:

6.9 MODAL DAMPING IN FORCEDVIBRATION

•Equations (6.7.5) and (6.7.6) are simply verified by substitution.

-0.5773]
0.5773

p = [0.4083
0.8165

(·0 )[2 °t· ]{0.51} = 1.5Ml = .5 1 0

[ 2 0]{:""1}M2 = (-1 1) ° 1 1 = 3.0

By dividing the first column of P by ~ and the second column by ~, the P matrix
becomes .

Solution The calculations for the generalized mass are

Example 6.8.2·
For Example 6.8.1, determine the generalized mass and the P matrix. Numerically, verify
Eqs. (6.7.5) and (6.7.6).

•

which can be expressed in terms of the original coordinates by the P matrix as

F2 sin wt
ki 1 - (w/wY

which are uncoupled.
The solutions for Yl and Y2 are in the form

;.(0) .
Yi = ylo) cos wit + -'- SIn w/ +=.

m[1.5 O]{~~l} + k[0.75 O]{Yl} = {F2}° 3 Y2 0 6 Y2 F2

or

from which the P matrix is assembled as

P = [o.~ -~]
Writing out the terms of Eq. (6.8.2), we have

m[ _~.5 ~][~ ~][~.5 -~]{td
+ k[ _~.5 ~][ _~ -m~·5 -~]{~:H_~.5 ~]{;J
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3It can be shown that C = cxMn + I3Kn can also be diagonalized (see Probs. 6.29 and 6.30).

(6.10.1)
.. .

MX+ CX+ KX= F

The forced vibration equation for the N-DOF system

6.10 NORMAL MODE SUMMATION

(6.9.9)

(6.9.8)

Thus, instead of Eq. (6.9.4), we obtain for the ith equation

Y"i + (a + (3wDYi + 'WTYi == fi(t)
.and the modal damping can be defined by the equation

2Y.w. = a + {3w~!:II I I

(6.9.6)3
pTcp = apTMP + (3pTKP

= al + f3A

where I is a unit matrix, and A is a diagonal matrix of the eigenvalues [see Eq. 6.7.6)].

A ~ [W; w; J (6.9.7)

Rayleigh damping. Rayleigh introduced proportional damping in the form

C = aM + {3K (6.9.5)

where a and {3 are constants. The application of the weighted modal matrix P here
results in

Thus, instead of N coupled equations, we would have N uncoupled equations similar to
that of a single-DOF system.

(6.9.4)

We have already shown that P TMP and P TKP are diagonal matrices. In general, P Tcp
is not diagonal and the preceding equation is coupled by the damping matrix.

If C is proportional to M or K, it is evident that P TCP becomes diagonal, in which
case we can say that the system has proportional damping. Equation (6.9.3) is then
completely uncoupled and its ith equation will have the form

(6.9.3)

leads to eigenvalues an'! eigenvectors that describe the normal modes of the system and
the modal matrix P or P. Ifwe let X = PY and premultiply Eq. (6.9.1) by pT as inSec,
6.8, we obtain

(6.9.2)MX+\KX= 0

It is generally a set of N coupled equations.
We have found that the solution of the homogeneous undamped equation
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pTKP = (3 X 50)(50 X 50)(50 X 3) = (3 X 3) matrix

The use of the limited modal matrix then reduces the system to that equal to the num- ,
ber of modes used. For example, for the 50-story building, each of the matrices such as ,
K is a 50 X 50 matrix; using three normal modes, P is a 50 x 3 matrix and the product
pTKP becomes

(6.10.3)

or in matrix notation the position of all n floors can be expressed in terms of the modal
matrix P composed of only the three modes. (See Fig. 6.10.1.)

cPix1)

(6.10.2)

can be routinely solved by the digital computer. However, for systems of large num­
bers of degrees of freedom, the computation can be costly. It is possible, however, to
cut down the size of the computation (or reduce the degrees of freedom of the system)
by a procedure known as the mode summation method. Essentially, the displacement
of the structure under forced excitation is approximated by the sum of a limited num­
ber of normal modes of the system multiplied by generalized coordinates,

For example, consider a 50-story building with 50 DOE The solution of its
undamped homogeneous equation will lead to 50 eigenvalues and 50 eigenvectors that
describe the normal modes of the structure. Ifwe know that the excitation of the build­
ing centers around the lower frequencies, the higher modes will not be excited and we
would be justified in assuming the forced response to be the superposition of only a
few of the lower-frequency 'modes; perhaps cPl(X), cP2(X), and cP3(X) may be sufficient.
Then the deflection under forced excitation can be written as

FIGURE6.10.1. Building displacement represented by normal modes.

~,(Xl

~

rX,

t
X2

~, (xl= xi'

Xn
1

F
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41be method is used by the shock and vibration groups in various industries and the military.

Floor COl =0.l495~ CO2 = 0.4451~ co3= 0.7307~ .

(/Jt(x) (Mx) CP3(X)

10 1.0000 1.0000 1.0000
9 0.9777 0.8019 0.4662
8 0.9336 0.4451 -0.3165

Solution We assume the normal modes of the building to be known. Given are the first three
normal modes, which have been computed from the undamped homogeneous equation and are
as follows:

Example 6.10.1
Consider the lO-story building of equal rigid floors and equal interstory stiffness. If the foundation
of the building undergoes horizontal translation uo(t) , determine the response of the building.

Thus, the first mode response is supplemented by the square root of the sum of the
squares of the peaks for the higher modes. For the previous computations, a shock
spectrum for the particular excitation can be used to determine qi,max' If the predomi­
nant excitation is about a higher frequency, the normal modes centering about that fre­
quency can be used.

(6.10.7)4

is called the mode participation factor.
In many cases, we are interested only in the maximum peak value of Xi' in which

case, the following procedure has been found to give acceptable results. We first find
the maximum value of each q/t) and combine them in the form

(6.10.6)
2:<t>lx)p(x)
j

where the term

(6.10.5)

lllU~,instead of solving the 50 coupled equations represented by Eq. (6.10.1), we need
only solve the three by three equations represented by

pTMKP;j + pTCPq + pTKPq = pTF (6.10.4)

If the damping matrix is assumed to be proportional, the preceding equations become
uncoupled, and if the force F(x, t) is separable to (P(x)f(t), the three equations take the
form
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Thus, the time solution for any floor is composed of the normal modes used.
From the numerical information supplied on the normal modes, we now determine the

numerical values for the. first equation, which can be rewritten as

where m;;, cjj, and kjj are generalized mass, generalized damping, and generalized stiffness. The
qj(t) are then independently solved from each.of the foregoing equations. The displacement x; of
any floor must be found from the equation X = Pq to be

Xi = <Pl(x;}til(t) + ~(x;)qit) + <P3(xJqit)

10

m33(j3 + C33Q3+ k33q3 = -U·oCt) ~ m;<pix;)
;=1

to
m22i:j2 + C22q2 + k22q2 = -u·o(t) ~ m;~(xj)

;=1

10

mlli:jl + Cllql + kl1ql = -u~(t) ~ mj<Pl(xj)
;=1

and by assuming C to be a proportional damping matrix, the foregoing equation results in three
uncoupled equations:

<P3(XI) 1
<P3(x2)

<P3(~IO)

I<PI (Xl)

P = l<PI ~X2)
<PI (xlO)

Premultiplying by pT, we obtain

pTMPi:j + pTCPq + pTKPq = -pTMluo(t)

where P is a 10 x 3 matrix and q is a 3 x 1 vector, i.e.,

X= Pq

where 1 is a unit vector and X is a 10 x 1 vector. Using the three given modes, we make the
transforma tion

The equation of motion of the building due to ground motion uo(t) is

MX + CX + KX = -MliioCt)
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Floor WI = 0.1495v'kj; W2 = 0.4451v'kj; W3 = 0.7307v'kj;

cMx) cMx) cMx)

7 0.8686 0.0000 -0.9303
6 0.7840 -0.4451 -1.0473
5 0.6822 -0.8019 -0.6052
4 0.5650 -1.0000 1.6010
3 0.4352 -1.0000 0.8398
2 0.2954 -0.8019 1.0711
1 0.1495 -0.4451 0.7307
0 0.0000 0.0000 0.0000
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A cfJ12 = AocfJ12

and hence no unique mode exists for Ao.
Any of the modes corresponding to Ao must be orthogonal to cfJ3 if it is to be a

normal mode. If all three modes are orthogonal, they are linearly independent and can
be combined to describe the free vibration resulting from any initial condition. . 4. '..

The eigenvectors associated with the equal eigenvalues are orthogonal to the 1
remaining eigenvectors, but they may not be orthogonal to each other ..

A(d>l + bcP2) = Ao(cPl + bcP2)
Thus, a new eigenvector cP12= (cPt + bcP2)' which is a linear combination of the first
two, also satisfies the basic equation:

AcfJl = AocP1

AcfJ2 = AocfJ2

AcfJ3 = A3cfJ3

By multiplying the second equation by a constant b and adding it to the first, we obtain
another equation:

When equal roots are found in the characteristic equation, the corresponding eigen­
vectors are not unique and a linear combination of such eigenvectors may also satisfy
the equation of motion. To illustrate this point, let cPt and cP2be eigenvectors belonging
to a common eigenvalue Ao, ande, be a third eigenvector belonging to A3 that is differ­
ent from Ao.We can then write

6.11 EQUAL ROOTS

•
Thus, given the values for k/m and {I' the above equation can be solved for any u·o{t).

.. ~k. k .. ()ql + 0.299 - {lql + 0.02235 - ql = -1.2672uo tm m

The equation for the first mode then becomes

2:mcp, = 6.6912m

ell ff-. = 2{1WI = 0.299 - {I
mIl m
kll k
- = wt = 0.02235 -
mll m

mIl = 2:mcPt = 5.2803m

We have, for the first mode,
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........•~tJ

•
ocf)IMCP12 = (-1

[ 1 0 0] {I - b}
1) 0 2 0 1. = 4 *.0

O' 0 1 1 + b

[1 0 0]{I - b}
1) 0 2 0 1 = 2b * 0
. 0 0 1 l+b .

1cpiM CP12 = (1

~I2 =~,+ b~ =m +bnl} =t!:}
It is seen that .4>12 is orthogonal to 4>3' i.e.,

4>jM4>12 = (-1 1 -1)[~~ ~]{1~~}=0
o 0 1 l+b .

Thus, the new eigenvector formed by a linear combination of CPl and CP2 is orthogonal to CP3'
However, we find that CPl and CP2 are not orthogonal to CP12' .

Next, multiply 4>2by a constant b and add it to 4>1 to form a new modal vector 4>12:

FIGURE 6.11.1.

~-------o--------~ >.,=0~,= { 1}------

m2mm
t

M == [~ ~ ~]
001

the modes are easily shown to be orthogonal to each other, i.e.,

4>iM4>2 = 4>iM4>3 = 4>IM4>3 = 0

Example 6.11.1
Consider the system of Fig. 6.11.1 of a flexible beam with three lumped masses. Of the three pos­
sible modes shown, the first two represent rigid body motion of translation and rotation corre­
sponding to zero frequency, and the third mode is that of symmetric vibration of the flexible
beam. With the mass matrix equal to
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Thus, the roots of the eigenvalues for the system are

AI =0

A2 = 1

A3 = 3

To identify the corresponding eigenvectors, each of the '\'s is substituted into the equation
of motion:

A(1 - X)(A - 3) = 0
which when multiplied out becomes

o
-1 = 0

(1 - A)

-1
(2 - A)
-1

The characteristic determinant for the system is

FIGURE6.12.1.

-1
2
-1

We will here assume that 11 = 12 = 1-:, = 1 and K) = K2 = K, and let A= w21/ K, in which case,
the preceding equation reduces to

o
12
ol~

Figure 6.12.1 shows a three-mass torsional system that is unrestrained to rotate freely in bear­
ings. Its equation of motion is

Example 6.12.1

A vibrational system that is unrestrained is free to move as a rigid body as well as
vibrate. An airplane in flight or a moving train is such an unrestrained system. The
equation of motion for such a system will generally include rigid-body modes as well as
vibrational modes, and its characteristic equation will contain zero frequencies corre­
sponding to the rigid-body modes.

12 UNRESTRAINED (DEGENERATE) SYSTEMS. .6.

Unrestrained (Degenerate)Systems 189Section6.12
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6.2. Three equal springs of stiffness k ·lb/in. are joined at one end, the other ends being ;
arranged symmetrically at 120° from each other, as shown in Fig. P6.2. Prove that the;;
influence coefficients of the junction in a direction making an angle (J with any spring is j
independent of (J and equal to 1/1.5k. !

6.3. A simply supported uniform beam of length I is loaded ~ith weights at positions 0.251J
and 0.61.Determine the flexibility influence coefficients for these positions. J

FIGURE P6.2.FIGURE P6.1.

6.1. Determine the flexibility matrix for the spring-mass system shown in Fig. P6-1.

PROBLEMS

•

which describes the rigid body motion [see Fig. 6.12.2(a)].
Similarly, the second and third modes [see Figs. 6.12.2(b) and 6.12.2(c), respectively] are

found and displayed as

When Al = 0 is substituted, the result is 81 = 82 = 83 and its normal mode, or eigenvector, is

-1
(2 - A)
-1

FIGURE6.12.2.

(b)

1>,=0} {---_---r---_~
. (o)

1>3=H}1~1
(c)
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FIGURE P6.9.

kn...~
1-xr

6.S. Determine the flexibility matrix for the four-story building of Fig. 6.3.2 and invert it to
arrive at the stiffness matrix given in the text. ,

6.9. Consider a system with n springs in series as presented in Fig. P6.9 and show that the
stiffness matrix is a band inatrix along the diagonal.

FIGURE P6.7.i (2)1= (1)

6.7. Determine the flexibility matrix for the uniform beam of Fig. P6.7 by using the area­
moment method.

FIGURE P6.6.

6.S. Determine the influence coefficients for the triple pendulum shown in Fig. P6.S.
6.6. Determine the stiffness matrix for the system shown in Fig. P6.6 and establish the flexibil­

ity matrix by its inverse.

FIGURE P6.S.FIGUREP6.4.

6.4. Determine the flexibility matrix for the cantilever beam shown in Fig. P6.4 and calculate
the stiffness matrix from its inverse.
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~

,-~, ( .... "M2

(1)) (2') ,
FIGURE P6.13.

6.13. Using the cantilever beam of Fig. P6.13, demonstrate that the reciprocity theorem holds
for moment loads as well as forces.

FIGURE P6.12.

6.12. Determine the stiffness against the force Ffor the frame of Fig. P6.12, which is pinned at
the top and bottom.

FIGURE P6.11.

6.11. The rectangular frame of Fig. P6.1l is fixed in the ground. Determine the stiffness matrix
for the force system shown.

FIGURE P6.1O.

(0)

FTI[----~:=~--~
, f

, .

6.10. Compare the stiffness of the framed building with rigid floor beams versus that with flex­
ible floor beams. Assume all lengths and Els to be equal. If the floor mass is pinned at the
corners as shown in Fig. P6-10(b), what is,the ratio of the two natural frequencies?
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- -6.20. Determine P for a double pendulum with coordinates 81 and 82, Show that P decouples
the equations of motion.

~
Tx1 h2
FIGUREP6.19.

6.18. Determine the flexibility matrix for the spring-mass system of three DOF shown in
Fig. P6.18 and write its equation of motion in matrix form.

6.19. Determine the modal matrix P and the weighted modal matrix P for the system shown in
Fig. P6.19'and diagorialize the stiffness matrix, thereby decoupling the equations.

FIGURE P6.18.

•m

FIGURE P6.17.

I

6.16. For the system shown in Fig. P6.16, write the equation of motion in matrix form and
determine the normal modes from the adjoint matrix.

6.17. Determine the modal matrix P and the weighted modal matrix P for the system shown in
Fig. P6.17. Show that P or P will diagonalize the stiffness matrix.

FIGURE P6.16.FIGURE P6.1S.

6.14. Verify each of the results given in Fig.6.4.2 by the area-moment method and superposition.
6.15. Using the adjoint matrix, determine the normal modes of the spring-mass system shown

in Fig. P6.15.
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k + (k. + k)( ~ r
1 + (~r

c

6.27. Show, by comparing the viscoelastic system of Fig. P6.26 to the viscously damped system,
that the equivalent viscous damping and equivalent stiffness are ;

~
;'~~

'~
!~

. ;~
:~
;~

.~

J

FIGURE P6.26.

mx' = -kx - cCx - Xl) + F

o = cCx - Xl) - klxl
Write the equation of motion in matrix form.

6.25. Using the modal matrix P, reduce the system of Prob. 6.24 to one that is coupled only by
damping and solve by the Laplace transform method.

6.26. Consider the viscoelastically damped system of Fig. P6.26. The system differs from the
viscously damped system by the addition of the spring kl, which introduces one more
coordinate, Xl' to the system. The equations of motion for the system in inertial coordi­
nates X and Xl are

h,
FIGURE P6.24.

. 6.21. If in Prob. 6.11 masses and mass moment of inertia, ml, 11and m2' 12, are attached to the
corners sothat they rotate as well as translate, determine the equations of motion and
find the natural frequencies and mode shapes.

6.22. Repeat Prob. 6.21 with the frame of Fig. P6.12.
6.23. If the lower end of the frame of Prob. 6.12 is rigidly fixed to the ground, the rotation of

the corners will differ. Determine its stiffness matrix and determine its matrix equation
of motion for milIi at the corners.

6.24. Determine the damping matrix for the system presented in Fig. P6.24 and show that it is
not proportional.
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{

0.328}
CPl = 0.591 ,

0.737

CPl = {Ol}. = {O.707},
O2 (1) 1.00

cf>z = {Ol}" = {-0.707}.
O2 (2) 1.00

If the lower mass is given an impulse FoS(t), determine the response in terms of the nor­
mal modes.

6.34. The normal modes of the three-mass torsional system of Fig. P6.6 are given for
11 = 12= 13and K1 = K2 = K3·

6.33. The normal modes of the double pendulum of Prob. 5.9 are given as

WI = O.764·if Wz = 1.850ff

o°b_'I=t'T1
\---'1 -I

FIGURE P6.32.

6.31. Evaluate the numerical coefficients for the equations of motion for the second and third
modes of Example 6.10.1.

6.32. If the acceleration u'(t) of the ground in Example 6.10.1 is a single sine pulse of amplitude
ao and duration tl, as shown in Fig. P6.32, determine the maximum q for each mode and
the value of xmax as given in Sec. 6.10.

cp;[KM-ltKcps;::;' 0

for h = 1,2, ... ,n,where n is the number of degrees of freedom of the system.
6.30. In a manner similar to Prob. 6.29, show that

cpJ[MK-lt Mcps = 0, h = 1,2, ...

Repeat to show that

Kcps = w;Mcps
pre multiply first by KM-l and, using the orthogonality relation cp;M CPs= 0, show that

cp;KM-lKcps = 0

by applying itto Prob. 6.16.
6.29. Starting with the matrix equation

6.28. Verify the relationship of Eq. (6.6.7)

cpTKcpj= 0 i =I:: j
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. ;~

6.37. Assume that a three-story buildingwith rigid floor girders has Rayleigh damping. If the
modal dampingsfor the firstand secondmodes are 0.05% and 0.13%, respectively,deter­
mine the modaldampingfor the third mode.

1"':"'-- L ·1
. FIGURE P6.36.

6.36. The lateral and torsional oscillationsof the system shown in Fig.P6.36 will have equal
natural frequencies for a specificvalue ofe /L. Determine this value, and assuming that
there is an eccentricitye ofmassequal tome, determine the equations ofmotion.

FIGURE P6.3S.

uK,

Determine the equations of motion if a torque M(t) is applied to the free end. If
M(t) = Mou(t), where u(t) is a unit step function, determine the time solution and the
maximumresponseof the end massfrom the shock spectrum.

6.35. Using two normal modes, set up the equations of motion for the five-story building
whose foundation stiffnessin translationand rotation is k, and K r = 00, respectively (see
Fig.P6.35).

A3 = 3.247

Az= 1.555,

. { 0.591 }
CP3 = -0.737,

0.328

{

0.737 }
CP2 = 0.328

-0.591
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6.42. Set up the matrix equation of motion for the 3-DOF system of Fig. 1>6.18in terms of stiff­
ness.Transform it to the standard eigen-problem form, where A is symmetric.

6.43. In Example 6.10.1 for the forced vibration of a 10-story building, the equation of motion
for the first mode was given as

.. .~. k .. ()ql + 0.299 -llql + 0.02235 - ql ::;::-1.2672uo tm m

FIGURE P6.41.

~ r
I

{ Y} = [~11 ~12]{P}
6 a21 a22 M

From the relationship between 11,{3,y, 8,and loads P and M, determine the new flexibility
equation

X(t) = L AjcP; sin w;t + L BjcP;cos Wjt
If the system is started from ~ero displacement; and an arbitrary distribution of velocity
X(O), determine the coefficients Aj and B;

6.41. Figure P6.41 shows a shaft supported by a bearing that has translational and rotational flex­
ibility. Show that the left side of the shaft flexibility Eq. (6~1.1)or (6.1.2) of Example 6.1.4
should now be replaced by

and released. Determine how much of each mode will be present in the free vibration.
6.40. In general, the free vibration of an undamped system can be represented by the modal

sum

{

0.520}
J( = -0.100

0.205

Verify the orthogonal properties of these modes.
6.39. The system of Prob. 6.38 is given an initial displacement of

{
0.328}

cP3::;:: -0.737
0.591{

-0.591}
~ = 0.328,

0.737

. {0.737}cPI =. 0.591 ,
0.328

6.38. The normal modes of a 3-DOF system with ml ~ m2 ::;::m3 and k, = k2 = k3 are given as
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FIGURE P6.45.

m

m

ck

ck

6.44. Determine the stiffness matrix for the system of two pendula coupled by a rubber hose in
Fig. PS.15. .

6.45. Consider the system given in Fig. P6.45, with the damping force proportional to the
square of the velocity. Is it possible to develop an equivalent damping approach for this'
problem (cf. Sec. 3.8)?

FIGURE P6.43.

-0.8L_--L_--~--~--~--~--~--~--~--~---
o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.8

0.6

0.4

0.2....
t;::'

0

~0.2

-0.4

Assume the values ~ = 3.0 and ~l = 0.10, and solve for the time response using
RUNGA when the ground acceleration is given by Fig. P6.43. You will have to write a
function file f.m that contains an expression for the function given in Fig. P6.43.
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199

FIGURE 7.1.1.

z

Constraints. Motions of bodies are not always free, and are often constrained
to move in a predetermined manner. As a simple example, the position of the spherical
pendulum of Fig. 7.L1 can be completely defined by the two independent coordinates

Generalized coordinates are any set of independent coordinates equal in number to the
degrees of freedom of the system. Thus, the equations of motion of the previous chap­
ter were formulated in terms of generalized coordinates.

In more complex systems, it is often convenient to describe the system in terms of
coordinates, some of which may not be independent. Such coordinates may be related
to each other by constraint equations.

7.1 GENERALIZEDCOORDINATES

Joseph L. C. Lagrange (1736-1813) developed a general treatment of dynamical sys­
tems formulated from the scalar quantities of kinetic energy T, potential energy U, and
work W Lagrange's equations are in terms of generalized coordinates, and preliminary
to discussing these equations, we must have clearly in mind the basic concepts of coor­
dinates and their classification.

Lagrange's Equation
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FIGURE 7.1.2.

y

One of the coordinates can be eliminated by the preceding equation, thereby reducing
the number of necessary coordinates to 2.

The excess coordinates exceeding the number of degrees of freedom of the sys­
tem are called superfluous coordinates, and constraint equations equal in number to
the superfluous coordinates are necessary for their elimination. Constraints are called
holonomic if the excess coordinates can be eliminated through equations of constraint.
We will deal only with holonomic systems in this text.

Examine now the problem of defining the position of the double pendulum of
Fig. 7.1.2. The double pendulum has only 2 OOF and the angles 81 and 82 completely
define the position of m1 and m2• Thus, 81 and 82 are generalized coordinates, i.e.,
81 = ql and 82 = Q2'

The position of m1 and m2 can also be expressed in rectangular coordinates x, y.
However, they are related by the constraint equations

If = xf + yi
I~ = (x2 - x1)2 + (Y2 - Y1)2

and hence are not independent. We can express the rectangular coordinates Xi' Yi in
terms of the generalized coordinates 81 and 82

Xl = 11 sin 81, x2 = 11sin 81 + 12 sin 82

Y1 = 11cos 81, Y2 = 11cos 61 + 12 cos 62

and these can also be considered as constraint equations.

(7.1.1)

'" and cf>. Hence, '" and cf> are generalized coordinates, and the spherical pendulum rep­
resents a system of two degrees of freedom.

The position of the spherical pendulum can also be described by the three rectan­
gular coordinates, x, y, z, which exceed the degrees of freedom of the system by 1.
Coordinates x, y, z are, however, not independent, because they are related by the con­
straint equation:
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Solution There are two translational modes, q} and q2' and each of the four corners can rotate
independently, making a total of six generalized coordinates, ql' Q2' ... , Q6.By allowing each of

Example 7.1.2
The plane frame shown in Fig. 7.1.4 has flexible members. Determine a set of generalized coordi­
. nates of the system. Assume that the corners remain at 90Q•

•

,
Solution As shown in Fig. 7.1.3, the displacements can be obtained by the superposition of
two displacements qI and q2' Because qI and q2 are independent, they are .generalized coordi­
nates, and the system has 2 DOE

FIGURE7.1.3.

+

Example 7.1.1
Consider the plane mechanism shown in Fig. 7.1.3, where the members are assumed to be rigid.
Describe all possible motions in terms of generalized coordinates.

(7.1.3)

U = - m1(ll cos 81) - m2(lj cos 81 + l2 cos 82)

The potential energy is then seen to be a function only of the generalized coordinates:

For the potential energy, the reference can be chosen at the level of the support
point:

(7.1.2)

T - 1 2 1 2- 2 m1 VI + 2 m2 V2

is then a function of both q = 8 and q = 6:
_ 'T'( .. \T - 1. ql' q2' ... , ql' Q2' ... J

To determine the kinetic energy, the squares of the velocity can be written in
terms of the generalized coordinates:

vi = xi + yi = (11 (1)2
v~ = x~ + y~ = [l161 + 1282 cos (82 - 81W + [l282 sin (82 - 81)F

The kinetic energy
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jj
111

FIGURE 7.1.5.

VI

u = Cq

The generalized coordinates q can be chosen arbitrarily from the coordinates u.
As an illustration of this equation, we consider the framed structure of Fig. 7.1.5 consisting

of four beam elements. We will be concerned only with the displacement of the joints and not the
stresses in the members, which would require an added consideration of the distribution of the
masses.

In defining the motion of a framed structure, the number of coordinates chosen often exceeds
the number of degrees of freedom of the system so that constraint equations are involved. It is
then desirable to express all of the coordinates u in terms of the fewer generalized coordinates q
by a matrix equation of the form

Example 7.1.3

•
these displacements to take place with all others equal to zero, the displacement of the frame
can be seen to be the superposition of the six generalized coordinates.

FIGURE 7.1.4.

fl
:B Do.. U6

B
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•
. In Eq, (e) or (f), matrixC is the constraint matrix relating u to q.

U1 0 1 0 0 0
u3 1 0 0 0 0 u3

u4 0 0.578 0 1 0 Us

Us 0 1 0 0 0 u6 (f)
u6 0 0 1 0 0 u7

u7 0 0 0 1 0 u9

u9 0 0 0 0 1

where the left side includes all the u's and-the right column contains only the generalized coordi­
nates. Thus, in our case, the seven u's expressed in terms of the-five q's become

(e){U} == [C]{q}
By supplying the remaining qi as identities, all the u's can be expressed in terms of the q's as

-~.866 ]{::} = {~}

~]{~}
[~ ~.866 ]{::} + [ =~.5

{::} = [~ otJ [~.5 ~.866]{::} = [~.578

(d){U} = - [a] -l[b]{q}
Applying the preceding procedure to Eq. (a), we have

(c)[a : b]{~} = [a]{u} + [b]{q} = 0

Thus, the superfluous coordinates U can be expressed in terms of q as

We actually have seven coordinates (Ul,U3,U4,US,l.l6,U7,U9)and two constraint equations. Thus, the
degrees of freedom of the system are 7 - 2 = 5, indicating that of the seven coordinates, five can
be chosen as generalized coordinates q.

Of the four coordinates in the constraint equation, we choose Us and u7 as two of the gener­
alized coordinates and partition Eq. (a) as

(b)[A]{u} = 0

Thus, the two constraint equations are in the form

(a)
-1
-0.500

o
0.866[~

In Fig. 7.1.5, we have four element members with three joints that can undergo displace­
ment. Two linear displacements and one rotation are possible for each joint. We can label them
U1 to U9• For compatibility of displacement, the following constraints are observed

U2 = Us = 0 (no axial extension)

u1 = Us (axial length remains unchanged)

(u4 cos 30° - Us cos 60°) - (u7 cos 30° - Us cos 60°) = 0

We now disregard u2 and us' which are zero, and rewrite the preceding equations in matrix form:
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where Fi are the applied forces excluding all constraint forces and internal forces of fric­
tionless joints and 8'i are the virtual displacements. By including 0' Alembert's inertia' .~
forces, =m, ri• the procedure is extended to dynamical problems by the equation ..1

'::,~~

J

(7.2.1)8W = .~ F.' 8,· = 0.£.J I I
i'

In Chapter 2, the method of virtual work was briefly introduced with examples for
single-OOF problems. The advantage of the virtual work method over the vector
method is considerably greater for multi-OOF systems. For interconnected bodies of
. many degrees of freedom, Newton's vector method is burdened with the necessity of .
accounting for all joint and constraint forces in the free-body diagrams, whereas these
forces are excluded in the virtual work method. .

In reviewing the method of virtual work, we suinmarize the virtual work equa­
tion as

7.2 VIRTUAL WORK

•

In many problems, only a finite number of normal modes are sufficient, and the series can be ter­
minated at n terms, thereby reducing the problem to that of a system of n DOE For.example, the
motion of a slender free-free beam struck by a force P at point (a) can be described in terms of
two rigid-body motions of translation and rotation plus its normal modes of elastic vibration, as
shown in Fig. 7.1.6.

'<. .c:=:----.
~ """ cJ2

FIGURE7.1.6. ~- '/>3

PI
I (a)

Example 7.1.4
In the-lumped-mass models we treated earlier, n coordinates were assigned to the nmasses of the
n-DOF system, and each coordinate was independent and qualified as a generalized coordinate.
For the flexible continuous body of infinite degrees of freedom, an infinite number of coordinates
is required. Such a body can be treated as a system of a finite number of degrees of freedom by
considering its deflection to be the sum of its normal modes multiplied by generalized coordinates:

y{x, t) = cf>/x)qt{t) + cf>/x)q/t) + cf>3{X)q/t) +
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•

With the system in its equilibrium position, give °2a virtual displacement M2 [Fig 7.2.1(a)]
and write the equation for the virtual work .i>W of all the applied forces:

8W = -(m2g sin (2)18°2 + (p cps (2)18°2 = 0

From the equilibrium position (with 8°2 = 0), give °1 a virtual displacement 881, as in
. Fig. 7.2.1(b), and write the equation for 8W:

8W = -(ml sin 0t)/801 - (m2g sin (1)18°1 + (p cos 81)18°1= 0

These equations lead to the two equilibrium angles, given as

P
tan °2 = -m2g

m29

FIGURE7.2.1.

Example 7.2.1
·Wefirst illustrate the virtual work method for a problem of static equilibrium. Figure 7.2.1 shows
a double pendulum with generalized coordinates 01 and °2,Determine its static equilibrium posi­
tion when a horizontal force P is applied to m2.

This later equation leads to Lagrange's equation when the displacement ri is expressed
in terms of generalized coordinates.

The virtual displacements orr in these equations are arbitrary variations of the
coordinates irrespective of time but compatible with the constraints of the system.
Being an infinitesimal quantity, ori obeys all the rules of differential calculus. The dif­
ference between ori and dr, is that dr, takes place in the time dt,whereas Ori is an arbi­
trary number that may be equal to dr, but is assigned instantaneously irrespective of
time. Although thevirtualdisplacement Dr is distinguished from dr, the latter is often
substituted for Dr to ensure compatibility of displacement.

(7.2.2)
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.'

from which we obtain

[2 .• I .. I ( )m238 + m22xcos 8 + m2g"2 sin 0 = F t Leos 8

These are nonlinear differential equations, which for small angles simplify to

( ) .. I .. ( )m1 + m2 x + m2'2 8 + kx = F t

12 •• I .. . I ( )
m2"3 8 + m2"2 x + m2g "2 8 = IF t

which can be expressed by the matrix equation

Solution The generalized coordinates for the problem are x and O. Sketch the system in the
displaced position with all the active forces and inertia forces. Giving x a virtual displacement ox,
the virtual work equation is

oW =' - [(m1 + mJx· + kx]ox - (m2 ~ 0 cos 0) ox
+ (m2 ~ 02 sin 0)ox + F(t)ox = 0

Because ox is arbitrary, the preceding equation leads to

(mi + m2)x· + m2 ~ (0 cos 0 - iJ2sin 8) + kx = F(t)

Next, allow a virtual displacement 88. 8W is then

(
I ..) [ ([2 ..) ( ) [8W = - m2"2 8 "2 00 - m2 12 8 88 - m2g sin 8 "2 88

- (m2x cos 8) ~ 08 -I; [F(t) cos 8][88 = 0

F(t)

k)(

FIGURE 7.2.2.

_)(

Example 7.2.2
Using the virtual work method, determine the equations of motion for the system shown in
Fig. 7.2.2.
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(7.3.4)dT = ~ iJT d ~ iJT d .~ - q.+ ~ . q;
;=1 iJq; I ;=1 iJq.

The differential of Tis

The kinetic energy Tis a function of the generalized coordinates q; and the gen­
eralized velocity q;,whereas the potential energy U is a function only of qj.

T = T(ql' q2' qn; ql' q2' ... qn)
U = U(ql' q2' qn) (7.3.3)

(7.3.2)

T + U == E = constant
The total differential of E must then be zero.

dE = d(T + U) = dT + dU = 0

Lagrange's Equations. Lagrange formulated a scalar procedure starting from
the scalar quantities of kinetic energy, potential energy, and work expressed in terms of
generalized coordinates. It is presented here as

!!_ (aT. ) _ aT + au = Q. (7.3~1)
dt aqi aqi aqi I

The left side of this equation, when summed for all qi' is a statement of the principle of
conservation of energy, and is equivalent to

d(T + U) = 0
The right side, Qi' is related to the work term done by the nonpotential forces, and will
be taken up later.

Lagrange's equations constitute one of the cornerstones of the imposing edifice
of analytical mechanics, which is dealt with at length in other volumes. Here our treat­
ment is brief, but it is sufficient to introduce the fundamental merits of Lagrange's
method to those who wish to appreciate its use.

Beginning with the case of a conservative system, where all external forces and
all internal forces have a potential, the sum of the system's kinetic and potential ener­
gies is a constant.

7.3 LAGRANGE'S EQUATION

In our previous discussions, we were able to formulate the equations of motion by
three different methods. Newton's vector method offered a simple approach for sys­
tems of a few degrees of freedom. The necessity for the consideration of forces of con­
straints and free-body diagrams in this method led to algebraic difficulties for systems
of higher degrees of freedom.

The energy method overcame the difficulties of the vector method. However, the
energy principle in terms of physical coordinates provided only one equation, which
limited its use to single-DOF systems.

, The virtual work method overcame the limitations of both earlier methods and
proved to be a powerful tool for the systems of higher DOF. However, it is not entirely
a scalar procedure in that vector considerations of forces are necessary in determining
the virtual work.
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, :.i~
$.
!.I

. . .:.,
':...;.;J.~

j

(7.3.11) J
~\:

d (aL) aL ' '- -. -,- =0 i=1,2,···N
- dt aqj aqi ,

This is Lagrange's equation for the case in which all the forces have a potential U.
They can be somewhat modified by introducing the Lagrangian L = (T - U). Because .
~~;= 0, Eq. (7.3.10) can be written in terms of Las :

(7.3.10)

(7.3.9)

N au
dU= L -dqj

i=1 aqi
Thus Eq. (7.3.3) for the invariance of the total energy becomes

N [ d (aT) st au ]d(T + u) = L - -. -'- + - dq, = 0
i=1 dt aqi aqi aqi

Because the N generalized coordinates are independent of one another, the dq, can
assume arbitrary values. Therefore the previous equation is satisfied only if

We now consider the term dU in Lagrange's equation. From Eq. (7.3.3), the dif­
ferential of U is

(7.3.8)N [ d ( aT) «t ]dT = L - -. - - dq,
i= 1 dt aqi aqi

By subtracting Eq. (3.7.4) from this equation, the second term with dq, is eliminated,
. . . ( aT) . d .( aT) d hBy shifting the scalar quantity dt, the term d _. dq, becomes -d . -. dq.; an t e,aqj t \ aqj

result is

(7.3.7). ~ (aT). aT.2T="",-,d -. qj+ -. dq,
i=1 aqi aqi

We now form the differential of2 T from the preceding equation by using the product
rule from calculus

(7.3.6)
N aT .

2 T= L-.qj
j=1 aqj

or

To eliminate the second term with dqi' we start with the equation for kinetic energy
1 N N ••

T = 2 ~ ~ mijqjqj (7.3.5)

Differentiating this equation with respect to qi' multiplying by qi and summing over i
from 1 to N,we obtain the result equal to

N aT . N n ••L -. qj = LLmijqiqj = 2 T
i=1 aqj i=1 j=1
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and the first equation is

Solution The kinetic energy here.is not a function of qi so that the term aT/aqi is zero. We
have the following for the kinetic and potential energies:

T = im1(ji +. im2q~ + ~m3q~
u.= ~klqi + ~kz(q2 - qlF + ~kiq3 - q2F

and Tfor this problem is a function of only ql and not of qi'
By substituting into Lagrange's equation for i = 1,

er . d ( aT) ..
aql = m1ql' dt aql = m1ql

au- = k1ql - kiq2 - ql)
aql

FIGURE7.3.1.

Using Lagrange's method, determine the equation of motion for the 3-DOF system shown in
Fig. 7.3.1.

Example 7.3.1

The quantity Qi is called the generalized force. In spite of its name Qi can have units
other than that of force; i.e., if bq, is an angle, Qi has the units of moment. The only
requirement is that the product Qi8qi be in the units of work. We now demonstrate the
use of Lagrange's equation as applied to some simple examples.

(7.3.14)

(7.3.13)d(T + U) = 8Wmp

We can write the right side of this equation as
N

8W = L Qi8qi = Qt8qi + Q282 +
i=1

The work of the potential forces was shown earlier to be equal to dWp = - dU, which
is included in the left side of Lagrange's equation. The nonpotential work is equal to
the work done by the nonpotential forces in a virtual displacement expressed in terms
of the generalized coordinates. Thus, Lagrange's equation, Eq. (7.3.1) is the qi compo­
nent of the energy equation

(7.3.12)

Nonconservative systems. The right side of Lagrange's equation (7.3.1) results
from dividing the work term in the dynamical relationship dT = dW into the work
done by the potential and non potential forces as follows.
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Solution The kinetic and potential energies are

T = ~mqi + ~Jq~
U = ~kqi + ~K(rq2 - ql)2

and fromthe work done by the external moment, the generalized force is

~W = M(t)&h :. Q2 = .M,(t)

FIGURE 7.3.2. "

)M(/)

Example 7.3.2
Using Lagrange's method, set up the equations of motion for the system shown in Fig. 7.3.2.

•

~2 ~ ] {t~}+ [(kl_+k2k2) (k2-:2k3)
o m3 {j3 0 -k3

We note from this example that the mass matrix results from the terms (d / dt)( aT/ aqJ
- iJT/iJqj and the stiffness matrix is obtained fromiJU/iJqj'

m3{j3 - k3q2 + k3q3 = 0

These three equations can now be assembled into matrix form:

with the third equation

Similarly for i = 3,

and the second equation becomes

m2{j2 - k2ql + (k2 + k3)q2 - k3q3 = 0

For i = 2, we have
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Solution We choose II and 8 for the translation and rotation of the foundation and y for the
elastic displacement of the floors. The equations for T and U become

T - 1 ·2 IJ· 2 1 ( • • • )2 1 • 2
- 2mOu + 2 08 + 2ml u + h8 + Yl + ¥18

• 2 •
1.(· .) 12+ 2m2 u + 2M + Y2 + 2J28

U = ~kOU2 + ~K082 + ~klYi + !kz{Y2 - YIP

where u, 8,Yl' and Y2 are the generalized coordinates. Substituting into Lagrange's equation, we
obtain, for example,

FIGURE 7.3.3.

Example 7.3.3
Figure 7.3.3 shows a simplified model of a two-story building whose foundation is subject to
translation and rotation. Determine T and U and the equations of motion.

•
[ m O]{;jl} [2k -kr]{ql} {O}o J ;j2 + -kr kr2 q2 = M(t)

which can be rewritten as

Substituting into Lagrange's equation, the equations of motion are

m;jl + Lkq, - krq2 = 0

Ji:j2- krq; + kr2q2 = M(t)
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The elements of each column of this matrix are the forces and moments required when the
correspondingcoordinate is given a valuewith all other coordinates equal to zero.The configu-;:~
rations for this determination are shown in Fig.7.3.4(c),and the forces and moments necessary J
to maintain these deflectionsare obtained from the free-body diagrams of Fig.7.3.4(d)with the '.~
aid of the equations shownin Fig.6.4.2.. :jj

l

J
f

..

Solution Figure 7.3.4(b) shows three generalized coordinates for which the stiffness matrix'
can be written as .

FIGURE7.3.4. (a) and (b).

"Ell
(0)

Determine the generalized coordinates for the systemshown in Fig.7.3.4(a) and evaluate the
stiffnessand the massmatrices for the equations of motion.

Example 7.3.4

•

+[i--1o_i-(k~-~-k2)---~~k21!JI= to}
o 0: - k2' k2 Y2 .

It should be noted that the equation represented by the upper left corner of the matrices is that
of rigid-bodytranslation and rotation.

The four equations in matrix form become
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For ql' we have

Fl
12Ell 0

:JE}
T
-6El1

0lr
M2 0 0

Forq2'

-:
-6Ell

0

E}
I~

(-4El1 + -4El2) 0
11 12

M2 lo 2EI2
0[z

FIGURE 7.3.4. (d) Forces necessary to maintain equilibrium.

4El2
-f-q2 r>;

2 M2t

. ~ (~)2El2
GEl, -r; -1- q2
-2 q2_C 4EJ 2
i, 1 q, ()4EI.
8 -,-2 2El2 ~ __ 2 q

, --q I l I 3
I 4 :3 I 2,

I
I
I
I
I
I
I

wJ777h

FIGURE 7.3.4. (c) Generalized coordinates q" q2' and q3 imposed separately.

~dq3
I
I
I
I
I
I
I
I
I
I

~
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7.4 KINETIC ENERGY, POTENTIAL ENERGY, AND GENERALIZED FORCE
IN TERMS OF GENERALIZED COORDINATE q

In the previous section, the use of Lagrange's equation was demonstrated for sim­
pIe problems.We now discuss the quantities T, U, and Q from amore general point
~v~~ .

•
o

6El1-It
(
4El1 + 4E12)

It 12
_2E12

l:

1

12El1
Ii
6El1+ ---
Ii

d «r
· = (m, + m2);il

dt aQ,

d «t
· = 1,{j2

dt aq2

d aT
· = 12q"3

dt aQ3

The equations of motion for the frame can then be written as

The mass matrix is found from the kinetic energy:
_ '( )'2 1 '2 1 '2T-2 =. +m2ql +5.Jtq2 + 212q3

o

6El,-Ii
(
4EI, + 4E12)
I, 12
_ 2EI2

l:

12El,
~
6El,-It

The stiffness matrix for the system is the superposition of these three results:

214 Chapter 7 Lagrange's Equation
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F} 0 0 0

{:}0 0
-2E/2

12

0 0
4E/2

M2 12 q3
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(7.4.2)

U = u; + ± (~U) qj + !± ± ( a2U ) %q 1+ ...
j=1 aqj 0 2 j=1 1=1 aqjaql 0

In this expression, Uo is an arbitrary constant that we can set equal to zero. The
derivatives of U are evaluated at the equilibrium position 0 and are constants when the
q/s are small quantities equal to zero at the equilibrium position. Because U is a mini­
mum in the equilibrium position, the first derivative (a U/ aq)o .is zero, which leaves
only (a 2U/ a%aq 1)0and higher-order terms.

In the theory of small oscillations about the equilibrium position, terms beyond
the second order are ignored and the equation for the potential energy reduces to

( a2u·)
kjl = aqj aql 0

and the potential energy iswritten in terms of the generalized stiffness kjl as
1 n n

U = 2 ~ ~ kjl qj q 1

1= 2 {q} T[k]{q}

Potential energy. In a conservative system, the forces can be derived from the
potential energy U,which is a function of the generalized coordinates qj" Expanding U
in a Taylor series about the equilibrium position, we have for a system of n degrees of
freedom

(7.4.1)

the kinetic energy can be written as

. _ ~ arj •
Vj - £.J qi

i=1 aqi
and the kinetic energy of the system becomes '

T = -21 f mjv( Vj = !f f (f mi ari • ari )q/lj
j=1 . 2 i=1 j=1 i=1 aqj sq,

By defining the generalized mass as

The velocity of the jth particle is

Kinetic energy. By representing the system by N particles, the instantaneous
position of each particle can be expressed in terms of the N generalized coordinates

~ = ~(ql,q2'· .. ,qN)
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where q i is the generalized coordinate, and c/>i(X)is the assumed mode function. There
are very few restrictions on these shape functions, which need only satisfy the geomet- :
ric boundary conditions. 'j

..~

j

u(x, t) = L c/>,(X)qi(t)
i

u(x, t)·= c/>(x)q.(t)
where q.(t) is the single coordinate of the l-DOF system.

For the multi-DOF system, this procedure can be expanded to

7.5 ASSUMEDMODESUMMATION

When the displacement is expressed as the sum of shape functions c/>i(X)multiplied by
the generalized coordinates qi(t), the kinetic energy, the potential energy, and the work,
equation lead to convenient expressions for the generalized mass, the generalized stiff­
ness, and the generalized force.

In Chapter 2, a few distributed elastic systems were solved for the fundamental
frequency using an assumed deflection shape and the energy method. For example, the
deflection of a helical spring fixed at one end was assumed to be (y/I)x~ and for the
simply supported beam, the deflection curve Y = Ymax [3(x/l) - 4(x/IP], (x/I) ::; ~, was
chosen. These assumptions when solved for the kinetic energy led to the effective mass
and the natural frequency of a l-DOF system. These assumed deflections can be
expressed by the equation

(7.4.3)

be defined as the generalized force, the virtual work for the system, expressed in terms
of the generalized coordinates, becomes

By interchanging the order of summation and letting

8r·
Qi = ~ F( ~~.

, V1.f.1

8r·
8W= "F.·8r. = " "F.' _, 8q.~, , L.J ~ , »-n. I

, ,I Vl.J.1

and the time t is not involved.
When the system is in equilibrium, the virtual work can now be expressed in

terms of the generalized coordinates qi:

Generalized force. For the development of the generalized force, we start from
the virtual displacement of the coordinate rj:
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(7.5.6)1J (du)2U = 2 AE dx dx

dU= !pdu dx = !EA(du)2 dx
2 dx 2 dx

and the work done, which is,

p = Edu
A dx

The' potential energy of the rod under axial stress is found from Hooke's law:
i=l

n
u(x, t) = L cplx)qlt)

Generalized Stiffness (Axial Vibration)
We again represent the displacement of the rod in terms of the assumed modes and the
generalized coordinates:

(7.5.5)
N

mij = LmpcfJlxp)cfJ/xp)
p=l

where the integration is carried out over the entire system. In case the system consists
of discrete masses, mij becom_es

(7.5.4)

(7.5.3)

(7.5.2)

(7.5.1)

Thus, the generalized mass is

T = ~ ~ ~ q,qj J <I>,(X)<I>/x) dm

1 N N ••

2 ~ ~ mijqiqj

and the kinetic energy becomes
i=l

N

v(x) = L cfJlx)qlt)

where cfJlx) are shape functions of only x.
The velocity is

i= 1

N

=. L cfJlxk(t)

Generalized Mass -
We assume the displacement at position x to be represented by the equation

r(x, t) = (f>t(X)ql(t) + ~(X)q2(t) + ... + cfJN(X)qN(t)
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j
.J

f 14X2. 4EA
k22 = EA [4dx = 3z

o .

k = EA (!.!dx = EA
11 Jo I I

I

mij = f fP;(x)fPj(x)m dx, Jo

Note that the assumed modes chosen satisfy the only geometric boundary condition of the prob­
lem, which is u(O,t) = O.Thus, the generalized mass and the generalized stiffness are evaluated
from

The equation for the displacement of the rod is

u(x, t) = 'Pl(X)ql(t) + 'Pix)qit)

FIGURE7.5.1.

Determine the equation of motion and the natural frequencies and normal modes of a fixed-free
uniform rod of Fig.7.5.1using assumed modes 'Pl(X) = x]l and 'Pix) = (x/I)2.

Example 7.5.1

(7.5.8)kij = rAE cP; cpi dx
J

.where the generalized stiffness is

(7.5.7)
u = ~ ~ ~qiqjfAECP;CPj dx

I J.

1
= '2 ~ ~ kijqiqj

I J

Substituting for u(x, t) gives
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- 1.0
l.38

-7.05
9.73

For the second mode, we substitute A2 = 32.18 and obtain

- 1.0
0.453

- 0.378
0.171

which indicates good agreement for the first mode. The second mode frequency is 20.4 percent
high, which is to be expected with only two modes.

From the first equation, the ratio of the amplitudes is

q' - (1 - !A)
_! = 14
q2 1 - 3A

By substituting A1= 2.486, the first mode ratio is

The exact values for this problem are

1T[EA [EA
WI = "2 V;;r = 1.5708V;;r

31T '[EA [EA
(02 = 2 V;;r = 4.7124V ;;r

[EA
WI = 1.577'.J ;;r

and the natural frequencies are

r 2.486
A= 17.333 :± 14.847 = 13 80

l 2.1

Solving for A,we have

reduces to the following polynomial equation for the eigenvalues:

A2
- 34.666A+ 79.999 = 0

(1 - ~A)I_
(4 1) - 0
"3 - sA1

(1 - ~A)
(1 - ~A)

By letting A = w2ml2 / El, the characteristic determinant

[
- 2 I [~- ~J. EA [1wm ! ! + I 1

4 5

The equation of motion for the normal mode vibration then becomes

K= E: [~ n[ 1 --!~JM = ml ~

which can be assembled into the following matrices:
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Solution We let &/1 be the virtual displacement of the upper left corner and &/2 be the trans­
lation of the right support hinge. Due to &/1' the virtual work done is

a 1
Q1&/1 = Fl&/1 - F21 &/1 + (MI - M2)1 &/1

:. QI = FI - 7 F2 + ~ (M1 - M2)

Example 7.5.2 GENERALIZED FORCE

The frame of Fig. 7.1.3 with rigid members is acted upon by the forces and moments shown in
Fig. 7.5.2. Determine the generalized forces.

(7.5.12)k; = f EI{('j'~{('j'! dxIJ 'T" 1 'T" J

and the generalized stiffness is

(7.5.11)
u = ~ ~ ~ q;qjfE1(/)';(/)'j dx

1 J

12: ~ ~ kijqiqj
1 J

we obtain

nL (/)';(x) qj(t)
;=1

Substituting for

(7.5.10)

The potential energy of a beam in bending is

1 f (d2y)2U = 2: ~ EI d/ dx

(7.5.9)
n

y(x, t) = L 'Pj(x)qj(t)
j= 1

GeneralizedStiffness (Beams)
Determine the generalized stiffness for a beam of cross-sectional property EI when
the displacement y(x, t) is represented by the sum

•

u1(x) = - ( 7) + O.453( 7r
u/x) = ~ (7) + l.38( ~r

The displacement equation for each mode can now be written as
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and the virtual work due to this displacement is

BW : #,F( (~ lp'(xj) 8q}
n' (3 ) n

= ~8qi ~Fjcp;(x) = ~Qi8qi

i=1

n

By = L cpj(x)&Jj

Solution The virtual displacement is

F11 t2 r3
1Ji A

FIGURE 7.5.3.

Determine the generalized force Qj.
j=1

y(X, t) = ± CP;(X)qi(t)

In Fig. 7.5.3, three forces, FI, F2, and F3, act at discrete points, '~1' x2, and x3, of a structure whose
displacement is expressed by the equation

Example 7.5.3

•
It should be noted that the dimension of QI and 0'2 is that of a force.

The virtual work done due to l)q2 is

,Q2l)q2 = -Fz(l- a) ;2 + M2 l)~2

1
:. Q2 = [- F/l - a) + M2] I

FIGURE7.5.2.

T~
r

l T'-+
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7.4. Determine the equilibrium position of the two uniform b~rs shown in Fig. P7.4 when a
force P is applied as shown. All surfaces are friction-free.

FIGURE P7.4.FIGURE P7.3.

7.2. Choose the generalized coordinates qj for the previous problem and express the Ui coor­
dinates in terms of qi'

7.3. Using the method of virtual work, determine the equilibrium position of a carpenter's
square hooked over a peg, as shown in Fig. P7.3.

FIGUREP7.1.

I

21

2l-

7.1. List the displacement coordinates uj for the plane frame of Fig. P7.1 and write the geo­
metric constraint equations. State the number of degrees of freedom for the system.

PROBLEMS

[1] RAYLEIGH, J.W.S.Theory of Sound, Dover Publications, 1946.
[2] GOLDSTEIN, Classical Mechanics, Reading, Mass: Addison-Wesley, 1951.
[3] LANCZOS, C. The Variational Principles of Mechanics, Toronto, Canada: The Univ. of Toronto

Press, 1949.
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•

3

Q; = L Fj({J;(xj)
j=l

= F1({J;(x/) + Fz<pj (Xz) + F3<Pj (x3)

The generalized force is then equal to 5W/8qi' or
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7.10. Determine the equation of motion for small oscillation about the equilibrium position in
Prob.7.9. '.

FIGURE P7.9.

7.8. Determine the equilibrium position of ml and m2 attached to strings of equal length, as
shown in Fig. P7.8.

7.9. A rigid uniform rod of length I is supported by a spring and a smooth floor, as shown in
Fig. P7.9. Determine its equilibrium position by virtual work. The unstretched length of
the spring is h/4.

FIGURE P7.S.FIGURE P7.7.

7.6. The four masses on the string in Fig. P7.6 are displaced by a horizontal force F.
Determine its equilibrium position by using virtual work.

7.7. A mass m is supported by two springs of unstretched length '0 attached to a pin and
slider, as shown in Fig. P7.7. There is coulomb friction with, coefficient IL between the
massless slider and the rod. Determine its equilibrium position by virtual work.

FIGURE P7.6.FIGURE P7.S.

7.5. Determine the equilibrium position of two point masses m1 and m2 connected by a mass­
less rod and placed in a smooth hemispherical bowl of radius R, as shown in Fig. P7.S.
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"7.17. Using Lagrange's method, determine the equations for the small oscillation of the bars ,
shown in Fig. P7.17.

7.18. The rigid bar linkages of Example 7.1.1 are loaded by springs and masses, as shown in
Fig. P7.18.Write Lagrange's equations of motion.

FIGURE P7.17.
~ X~

FIGUREP7.16.

Using the modes <PI = xl! and <P2 = sin(1TX/I),determine the equation of motion by
Lagrange's method, and determine the first two natural frequencies and mode shapes.

K
ml3 = 5NK= 5E1I '

7.15. Write Lagrange's equations of motion for the system shown in Fig. P7.15.
7.16. The following constants are given for the beam of Fig. P7.16:

El El k
k = J3' ml4 = N, ml = N_

FIGURE P7.1S.FIGUREP7.14.

7.11. The carpenter's square of Prob. 7.3 is displaced slightly from its equilibrium position and
released. Determine its equation of oscillation.

7.U. Determine the equation of motion and the natural frequency of oscillation about its
equilibrium position for the system in Prob. 7.5.

7.13. In Prob. 7.8, m1 is given a small displacement and released. Determine the. equation of
oscillation for the system.

7.14. For the system of Fig.P7.14, determine the equilibrium position and its equation of vibra­
tion about it. Spring force = 0 when (J =O.
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7.23. With loads m and J placed as shown in Fig. P7.23, set up the equations of motion.
7.24. For the extension of the double penduluin to the dynamic problem, the actual algebra can

become long and tedious. Instead, draw the components of - r as 'shown.By taking each

M
~ l, f) 12 11 m,J, l2 m2J2M1(

~ ~ 0
~

;tR1 E1, lp .E12 E12
Rz Eli

FIGURE P7.22. FIGURE P7.23.

7.21. 'The frame of Prob. 7.20 is loaded by springs and masses, as shown in Fig. P7.21.
Determine the equations of motion and the normal modes of the system.

7.22. Using area moment and superposition, determine Ml and R2 for the beam shown in
Fig. P7.22. Let Ell = 2E12•

FIGURE P7.2l.FIGURE P7.20.

7.19. Equal masses are placed at the corners of the frame of Example 7.1.2,as shown in Fig. P7.19.
Determine the stiffness matrix and the matrix equation of motion. (Let [2 = [\.)

7.20. Determine the stiffness matrix for the frame shown in Fig. P7.20.

FIGURE P7.l9.FiGURE P7.la.

K
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1M! 7.27. Determine the equations of motion for the system shown in Fig. P7.27. Solve the equa-,
tions numerically in MATLAB® for different initial conditions. (Assume mo has no mass
and it does not rotate.)

FIGURE P7.27.FIGURE P7.26.
m m

k

7.25. Write the Lagrangian for the system shown in Fig.P7.2S.
IB1 7.26. Determine the equations of motion for the system shown in Fig. P7.26. Solve the equa­

tions numerically in MATLAB® for different initial conditions. (Assume the table does
not rotate.)

FIGURE P7.2S.

.>:
-fjj
FIGURE P7.24.

~8 separately, the virtual work equation can be easily determined-visually. Complete the
equations of motion for the system in Fig. P7.24. Compare with Lagrange's derivation.
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8.1 noor SOLVING

Figure 8.1.1 shows a 3-DOF system for which the normal modes and natural frequen­
cies are desired. The equation of motion for this system is

,...
where A is a square symmetric matrix; and Y is a new displacement vector trans-
formed from X. Because these methods all involve the iteration procedure, we precede
the transformation method with the computer application to the basic method and the
method of matrix iteration. '

(b)[A - Al]Y = 0

.must be converted to the standard eigenvalue form utilized in most of the computer
programs. This standard form is

(a)[-AM + K]X ~ 0

In the previous chapters, we have discussed the basic procedure for finding the eigen­
values and eigenvectors of a system. In this basic method, the eigenvalues of the sys­
tem are found from the roots of the polynomial equation obtained from the
characteristic determinant. Each of the roots (or eigenvalues) was then substituted,
one at a time, into the equations of motion to determine the mode shape (or eigenvec­
tors) of the system.

Although this method is applicable to any N-OOF system, for systems with OOF
greater than 2, the characteristic equation results in an algebraic equation of degree 3
or higher and the digital computer is essential for the numerical work.

As an alternative to this procedure, there is an implicit method of transformation
of coordinates coupled with an iteration procedure that results in all the eigenvalues
and eigenvectors simultaneously. In this method, the equation of motion

Computational Methods
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.
t(A) = A3 - (AI + A2 + A3)A2 + (AtA2 +AIA3 + A2A3)A - AtA2A3 = 0

Multiplying out the factored form the above equation becomes

and plot it as a function of A to finds its zero crossings. This is done in Fig. 8.1.2 and one
can see that one root is between [0,.5]; another between [1,1.5]; and a third root
between [2.5,3]. By using straight lilies between these points or Newton interpolation,
the roots are found easily. Because the computer can carry out thousands of calcula­
tions in a few seconds, L\A can be chosen very small, in which case, the interpolation can
be minimized or even eliminated for the accuracy required.

As a further insight to the root location, we can assume the roots to be known "as
AI' A2, A3, and rewrite the polynomial in the factored form

t(A) = (A - A1)(A - A2)(A - A3) = 0

However, it is a simple matter to rewrite the above equation as

t(A) = A3 - 4.S0A2 + SA - 1= 0

and the characteristic equation becomes

A3 ;_ 4.50A 2 + SA - 1= 0

o 1- 0(1 - A) --1 I 1-1(1 - A) ~ 1 -1
(3 - 2A)I(2 - A)

-1

This determinant reduces to a third-degree algebraic equation. Using the method of
minors (see Appendix C) and choosing the elements of the first column as pivots, we
have

o
-1 = 0

(1 - A)

-1
(2 - A)
-1

(3 - 2A)
-1
o

where A = w2m/ k.
The eigenvalues of the system are found from the characteristic determinant

equated to zero:

'8" L)\.. .1.1

-1
2
-1(-f 1 } [-~

or

Figure 8.1.1.

-X3-X2-x,

Computational Methods228 Chapter 8

www.semeng.ir

http://www.semeng.ir


{

O.22536}...\= (1)2 m = 1.3554
k 2.8892

The eigenvalues solved for the problem were

. 0 ] {X }(i) {O}1

-1 x2 = °
(1 - A;) X3 °

-1
(2 - ..\;)
-1[

(3 - 2,,\;)
-1

°

8.2 EIGENVECTORS BY GAUSS ELIMINATION

In solving for the mode shapes, the eigenvalues are substituted, one at a time, into the.
equation of motion. The Gauss method offers one way in which to solve for the ratio of
amplitudes. Essentially, the Gauss procedure reduces the matrix equation to an upper
triangular form that can be solved for the amplitudes starting from the bottom of the
matrix equation.

Applying the Gauss method to the previous problem, we start with the equation
of motion written in terms of A:

and one finds that the coefficient of the next to the highest power of A is always the
sum of the roots regardless of the degrees of freedom of the system. This additional
information can be useful as a check on the roots found.

One can calculate the roots in MATLAB® using the command roots(c) where c is
a vector that contains the coefficients of the polynomial in descending order. For our
example, c = [1, -4.5,5, -1]. The roots of this equation are given by roots
(c) = 2.8892, 1.3554, .2554.The location of these roots agrees with the plot.

Figure 8.1.2.
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(8.3.1)AX=AX

With knowledge of orthogonality and the expansion theorem, we are in a position to
discuss the somewhat different approach for finding the eigenvalues and eigenvectors
of a multi-DOF system by the matrix iteration procedure. Although the method is
applicable to the equations of motion formulated by either the flexibility or the stiff-
ness matrices, we use the flexibility matrix for demonstration. - .

In terms of the flexibility matrix [a] = K-:1, the equation for the normal mode
vibration is

8.3 MATRIX ITERATION

By repeating the procedure with ~ and A3, the eigenvectors for the second and third
modes can be found.

Eigenvectors can also be found by the method in Appendix C or by using the
MATLAB® command eig, which will be discussed later in this chapter.

{

Xl }<I) {0.2992}
cf>1 = x2 = 0.7446

1 1.(H)0

In either this equation or the previous one, the amplitude X3 is assigned the value 1,
which results in the first eigenvector or mode:

~m::r=m-1
1.343
o

Although it is not necessary to go further in this case, the procedure can be
repeated to eliminate the -1 term of the third row by dividing the second row by 1.343
and adding it to.the third row, which results in

° ]{XI}(I) {a}
~ ~.7446 :: ~ ~

-1
1.343
-1

In the Gauss method, the first step is to eliminate the terms of the first column in
the second and third rows. Because the first column of the third row is already equal to
zero, we need only to zero the first term of the second row.This is done by dividing the
first row by 2.489 and adding it to the second row, which gives

o ' ]{XI}<I) {a}
-1 x2 = °
0.7446 X3 °[

2.489 -1
-1 1.745
o -1

Substituting Al = 0.25536 into the preceding equation, we have
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or

and substituting into Eq. (8.3.1), we have

1 [1[a] = - 1
. 3k 1

Solution The mass and the flexibility matrices for the system are

FIGURE8.3.1.

-Xl

-XL

-X3m

k

2m

k

4m

3k

"

For the system shown in Fig. 8.3.1, write the matrix equation based on the flexibility and deter­
mine the lowest natural frequency by iteration.

Example 8.3.1

:Ii = [a][m] = K-1M

A = 1/w2

The iteration is started by assuming a set of amplitudes for the left column of
Eq. (8.3.1) and performing the indicated operation, which results in a column of num­
bers. This is then normalized by making one of the amplitudes equal to unity and
dividing each term of the column by the particular amplitude that was normalized.
The procedure is then repeated with the normalized column until the amplitudes sta­
bilize to a definite pattern. When the normalized column no longer differs from that
of the previous iteration, it has converged to the eigenvector corresponding to the
largest eigenvalue, which in this case is that of the smallest natural frequency wl'

where

Matrix Iteration 231Section 8.3
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•

Because the iteration procedure always converges to the largest eigenvalue, the stiffness equa­
tion would converge to the highest mode. In vibration analysis, the lower modes are generally of
greater interest than the higher modes, so that the matrix iteration procedure will find its use
mainly for equations formulated in terms of flexibility where the eigenvalues are proportional to
the reciprocal of cd-.

AX=AX

[M-lK]X = w2X

It should be mentioned here that if the equation of motion was formulated in terms of the
stiffness matrix, the iteration equation would be'

{
0.250}

4>1 = 0.790
1.000

with the mode shape

/3k {k
WI = '.J 14.32m. = 0.457'.J ;;

Thus, the frequency of the lowest mode is

{
0.250} {Xl} (3k {0.250}

14.324 0.790 = A X2 = w2m) 0.790
1.000 X3 1.000

By repeating this procedure a few more times, the iteration procedure converges to

[
4 2 1] {O.247}. { 3.560 } {0.249}

AX3 = 4 8.4 0.786 = 11.276 = 14.276 0.790
4 8 7 1.000 14.276 1.000

In a similar manner, the third iteration gives

1] {0.238} { 3.476 } {0.247}4 0.762 = 11.048 = 14.048 0.786
7 1.000 14.048 1.000

AX, = [~ :

By using the new normalized column for X2, the second iteration yields

1] {0.2} { 3.0 } {0.238}4 0.6 = 9.6 = 12.6 0.762
7 1.0 12.6 1.000

2
8
8

To start the iteration, we arbitrarily assume
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where A = M -1K and is called the dynamic matrix. In general M:' K is not symmetric.
Ifnext we premultiply Eq. (8.5.1) byK-l, we obtain

[A - AI]X = 0 (8.5.3)

(8.5.2)[- AI + A]X = 0

where M and K are both square symmetric matrices, and A is the eigenvalue related to
the natural frequency by A = w2• Premultiplying the preceding equation by M:', we
have another form of the equation:

(8.5.1)

The matrix equation for the normal mode vibration is generally written as

. [ - AM + K]X = 0'

8.5 THE DYNAMIC MATRIX

(8.4.4)
111 .

AXn-1 = X; = ci ~ 4>1 + C2 ~ 4>2 + C3 ~ 4>3 + ... +
WI WZ W3

Because w~> W~-1 > ...> ~ > wi, the convergence is to the fundamental mode. For
convergence to higher modes see Appendix G. .

Thus, after several repetitions of the procedure, we obtain

which is the new displacement vector X2• Again, pre multiplying X2 by the. dynamic
matrix and using Eq. (8.4.3), the result is

the right side of Eq. (8.4.2) becomes

1 1 1
X2 = ci 2: 4>1 + c22: 4>2 + c32: 4>3 + ... +

WI W2 W3

(8.4.3)

(8.4.2)AXI = X2 = c1A4>1 + c2A4>2 + c3A 4>3 + ... +

Because each normal mode satisfies the following equation
1

A4>i = Ai4>i = 2: 4>i
Wi

where ci are constants. Multiplying this equation by the dynamic matrix A, we have

(8.4.1)

$.4 CONVERGENCE OF THE ITERATION PROCEDURE

To show that the iteration procedure converges to the largest eigenvalue, which for the
equation formulated in terms of flexibility is the lowest fundamental mode, the
assumed trial vector Xl is expressed in terms of the normal modes 4>i by the expansion
theorem:
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Both equations are in the standard form

[-Al+A]Y=O
where the dynamic matrix A is symmetric.

To illustrate the use of the dynamic matrix and the standard computer form, we
can use Matlab® to calculate the eigenvalues and eigenvectors for the 3-DOF system
shown in Figure 8.1.1. First, we need to convert this problem to the standard eigen­
value problem by multiplying Eq. 8.1.1 by the inverse ofthe mass matrix. For this
example, the dynamic matrix is given by

(8.6.4)

It is evident here that if we decompose either M or K into UTU in the preceding equa­
tion, we would obtain the standard form of the equation of motion.

With M = UTU, Eq. (8.6.2) becomes

[-AI + U-TKU-1]y = 0 A = w2 (8.63)

whereas ifK = UTU, the equation is

[U-TMU-1 - AI]Y = 0 A = 1/w2

(8.6.2)

we obtain the equation

which results in the transformed equation

[-AMU-1 + KU-1] Y = a
Premultiplying this equation by the transpose U-1, which is designated as

[U-1r = U-T

[-AM + K]X = a
is introduced into the equation

(K6.1)x = U-1y

8.6 TRANSFORMATION OF COORDINATES (STANDARD
COMPUTER FORM)

In Eqs. (8.5.2) or (8.5.3), dynamic matrices A and A are usually unsymmetric. To obtain
the standard form of the equation of motion for the computer, the following transfor­
mation of coordinates

where if = K-1 M is the dynamic matrix, and A = 1/ w2 = 1/ A is the eigenvalue for the
equation.

Although A and if are different, they are both called the dynamic matrix because
the dynamic properties of the system are defined by A or A. Again, matrix if is gener­
ally not symmetric.

If a given system is solved by either Eq. (8.5.2) or (8.5.3), the eigenvalues will be
reciprocally related, but will result in the same natural frequencies. The eigenvectors
for the two equations will also be identical.
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Example 8.7.1
Consider the system of Example 6.8.1, which is shown again in Fig. 8.7.1. The mass and stiffness
matrices for the problem are

M =m[~ ~J K = {-~ -~J
We first decompose the mass matrix to M = UTU = Ml/2Ml/2. Because M is diagonal, the

matrix U is simply found from the square root of the diagonal terms. Its inverse is also found
from the inverse of the diagonal terms, and its transpose is identical to the matrix itself.

Thus, the dynamic matrix A = U-TKU-1 of Eq. (8.6.3) is simply determined.

, '[1/~
U-1 = U-T =

vrn;;][~'U = Ml/2 =

1jvrrt;_ ]
1jvrn;;

For the lumped-mass system in which the coordinates are chosen at each' of the
masses, the mass matrix is diagonal and U is simply equal to the square root of each '
diagonal term. The inverse of U is then equal to the reciprocal of each term in U,SO
that we have

8.7 SYSTEMS WITH DISCRETEMASS MATRIX

I0.7569 0.3031 0.2333]
U = l0.2189 -0.8422 0.5808

-0.6158 0.4458 0.7799

and

[ 1.3554 0

0.2~J
D = 0 2.8892

0 0

We can compute both the eigenvalues and eigenvectors 'in MATLAB®by typing the
command [U,D] = eig(A). The result of this command is two matrices, U and D.
Matrix U contains the eigenvectors as column vectors and D is a diagonal matrix,
which has the eigenvalues on the diagonal. Continuing with our example; we get the
following two matrices

-1.~000]
1.0000[

1.5000 -0.5000
A = -1.0000 2.0000

o -1.0000
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These results are in agreement with those found in Example 6.8.2.

-1.00] ,
1.00

-1.414] = [0.50
1.00 1.00

° ][0.707
1.0 1.00

x = U-1y = [0.~07

Y = [0.707 -1.414]
1.000 1.000

These are the modes in the Y coordinates, and to obtain the normal nodes in the original x coor-,
dinates, we first assemble the previous modes into a modal matrix Y from which the modal
matrix in the x coordinates is found.

_ {Yl}(2) _ {-i.414}
A2 - 2.00 Yz - 1.000

{
' Y }(1) {0.7.07}Al = 0.50 1 =Y2 1.000

The eigenvalues and eigenvectors solved from these equations are

-0.7071(1 _ A) = °and A2 - 2.50A + 1 = °
1

(1.50) - A)
-0.707

and its characteristic equation becomes

By letting A= ul-m/k, the equation of motion is then reduced to

-0.707J
1.0

0lJ = k [ 1.50
m -0.707

-lJ[0.707
,1 °

Thus, the terms of the standard equation become

U-™U-1 = U-TUTUU-1 = I

~Ju:' = U-T = _1_ [ltJ2 OJ = _l-l' 0.7071
Vm ° 1 Vm °~J[

V2u = M1/2 = Vm °

FIGURE8.7.1.

2k

k

Computational Methods236 Chapter 8

www.semeng.ir

http://www.semeng.ir


1
U24 = - (k24 - U12U14)

U22

Similarly, the third and fourth rows yield

U~3 = k33 - Ui3 - ub
U34 = _l_ (k34 - U13UI4 - U~3U24)

U33 .

2-k 2 2 2U44 - 44 - U14 - U24 - U34

From the second row, we have

Equating term for term in the two matrices, we obtain from the first row

UiI = kll

u12 = k12/Ull

u13 = k13/ull
UI4 = k14/ lll1

Because the product matrix is also symmetric, only the upper triangular section is
needed to evaluate U.

oo
o

When matrix M or K is full, matrices U and U-I can be found from the Cholesky
decomposition. In this evaluation, we simply write the equation K = UTU (or
M = UTU) in terms of the upper triangular matrix for U and its transpose.

An example of a 4 X 4 stiffness matrix K is as follows:

u12 u13 U14] [kI i k12 k 13
u22 u23 U24 = k2I k22 k23

o u33 U34 k3I k32 k33

o 0 u44 k4I k42 k43

8.8 CHOLESKY DECOMPOSITION
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U u:' = I
(known) (unknown inverse) (uriit matrix)

[1
U12 U13

U14]
l~~~2 ~3 ~4]

[!

0 0

lJ
U22 U23 U24 U21',,~2 U23 U24 1 0
0 U33 U34 ~1 ~2',,~3 ~ 0 1
0 0 u44 V41 v42 V43", V44 0 0

;j

The inverse of the triangular matrix Ucan be found from the equation:

A = [~1-1 ~1]2
-1

The Cholesky factorization is given by

U = chol(A)

[ 1.4142 -.7071
o ]= 0 1.2247 -.8165

0 0 1.1547

Inverse of U

In Matlab®, we can get the Cholesky factorization of a matrix, A,with the com­
mand U = chol(A). The matrix U is an upper triangular matrix such that U'*U =A.As
an example consider the matrix

1 ( ;-1 )uij = - kij - LUti u1j i = 2,3,4, ... .n; j = i + 1, i + 2, ... , n
Ui; 1=1

Uii = (kii - ~ u~)1/2 i = 2, 3, 4, ... , n
1=1

1
U23 = - (k23 - U12U13)

u22

We can now group these equations as follows from which we can write general
expressions for an n X nmatrix:

U2 - k u2.. 22 - 22 - 12

U2 - k 2 233 - 33 - U13 - U23

2-k 2 2 2U44 - 44 - U14 - U24 - U34
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Example 8.8.1
Solve Example 8.7.1 by decomposing the stiffness matrix. The two matrices for the problem are

M=m[~. ~] K=k[_~ -~]

VII =
ull

-1
V12 = - (UI2l-'22)

Ull

-1
vl3 = - (UI21-23 + U13L]3)

un
-1

V14 = - (U121-24 + U13V:34 + UI4V44)
un

These results are then summarized by the following general equations:

vij=O i>j
1

Row 1 X columns 1,2,3, and 4:
1

1
Row 2 X columns 1,2,3, and 4:

1
Row 3 X columns, 1,2,3, and 4:

1

Starting the multiplication of the two matrices on the left from the bottom row of U
with the columns of vij and equating each term to the unit matrix, it will be found that
Vij = 0 for i > j, so that the inverse matrix U::' is also an upper triangular matrix. The
following sequence of multiplication will then yield the following results.

Row 4 X columns 1,2,3, and 4:
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A:2 - 2.50X + 1.0 = °

0.4715 1_ °
(1.8338 - A:) - .1

(0.6668 - X)
0.4715

Step 5: For this simple problem, the eigenvalues and eigenvectors in Y coordinates are found
from the usual procedure:

[ [ 0.6668 0.4715] _ X[1 0J ]{Yl} = {O}
0.4715 1.8338 ° 1 Y2 °

Note that A is symmetric.
Step 4:The equation of motion is now in standard form, but in Y coordinates:

0.4083 ]
1.2249

° ][2 01][°.50774
1.2249 °

0.4715]
1.8338

A = u-TMU-I = [0.5774
0.4083

[
0.6668

, = 0.4715

Check by substituting back into UU - 1 = I,
Step 3:

1
b12 = -1 - (0.5774 x 1.2249) = 0.4083

.732 .

U-1 = [°.50774 0.4083]
1.2249

1
b'2 = --. = 1.2249~ 0.8164 .bll = 1.~32 = 0.5774

(1.732b12 - 0.5774b22)] = [1 01]
0.8164b22 0

-0.57741 [bll
0.8162 J °

check by substituting back into UTU = K.
Step 2: Find the inverse of U from UU - I = [.

-0.5774 ]
0.8162I

f 1.732
U=

°

UII = V3 = 1.732

UIIUl2 = -1 :. Ul2 = -1/1.732 = -0.5'774

Ui2 = 1 - UT2 :. U22 = VI - (-0.5774)2 = 0.8164

Solution For the 2 x 2 matrix, the algebraic work for the decomposition is small and we carry
out all the steps.

Step 1:
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FIGURE 8.8.1.

m

·k

2m

Ie
4m

3k

"

Ull U12

(U~l + U~2)
(u12u13 + U23U22)

Ul3] [4 -1 0]
un = -1 2-1
U33 ° -1 1

~~-!l
° ][Ull° °
U33 °

°

Solution The transformation matrix is found from

Reduce the equation to the standard form by decomposing the stiffness matrix.

Example 8.8.2
Figure 8.8.1 shows a 3-DOF model of a building for which the equation of motion is

[_(w:m)[~ ~ ~]+~~~-mm = m
•

-1.00]
1.00

= [0.6125 -1.2238] == [0.50
1.2249 1.2249 1.00

{
X }(l) {0.50}

.'. cPl(X) = x:· = l.00

cPlx) = {Xl}(2) = {-l.00}
x2 1.00

Step 6: Eigenvalues are not changed by the transformation of coordinates. The eigenvectors
in the original x coordinates are found from the transformation equation.

cP(x) = U-1y

cP(x) = [°0.5774 0.4083 ][0.3537 -2.8267]
1.2249 1.000 1.000

A2 = 0.50

{
Yl}(l) = {0.3537}
Y2 1.000

{
Yl}(2) = {-2.8267}
Y2 1.000
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pTKP = A
where I is a unit matrix, and A is a diagonal matrix of the eigenvalues. These relation­
ships indicate that if the eigenvectors of the system are known, the eigenvalue problem
is solved. _

The Jacobi method is based on the principle that any real symmetric matrix A has
only real eigenvalues and can be diagonalized into the eigenvalue matrix A = ,[Ai] by an
iteration method. In the Jacobi method, this is accomplished by several rotation matrices

In the section on orthogonality, Sec. 6.7 in rhapter 6,the assembling of the orthonor- .
mal eigenvectors cf> into the modal matrix P enabled the mass and the stiffness matri- .
ces to be expressed in the basic relationships:

piMP = I

8.9 JACOBIDIAGONALIZATION

•

0.1889 0.2182]
0.7559 0.8726
o 1.5275

[050 0 LJ[~0 m~·50= 0.1889 0.7559 2
1.2182 0.8726 0

[ 1.00 0.3779 0.4364]
= 0.3779 1.2857 1.4846

0.4363 1.4846 4.0476

The standard form is now

[-AI + A]Y = 0

where A = k/(J/m andX = U-1y' '

The dynamic matrix A using the decomposed stiffness matrix is

A = U-TMU-1

0.2182]
0.8726
1.5275

Again, equating the terms of the two sides, we obtain

[

0.50 0.1889
U-1 = [bij] = O· 0.7559

o 0

o. 0]1 d 0
o 1

o J [bll-0.7559· 0
0.6547 0

-0.50
1.3228
o[~

For the inverse of U, we let U:' = [bjj] and solve the equation

UU-1 = I

-~.7559]
0.6547

[

2 -0.50
U = 0 1.3228

o 0

By equating the corresponding terms on each side, U is found:
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FIGURE8.9.1.

.Y

A~]+sin e] = [AI
cos e 0

sin e] [all
cos e al2

In this case, there is only one off-diagonal element, a12, and the eigenproblem is solved
in a single step. We have .

used in the transformation of coordinates to rotate the axes through an angle e, as
illustrated in Fig. 8.9.1.

Matrix R is orthonormal because it satisfies the relationship

RTR = RRT = I

(8.9.4)- Sine]
cose

R = [ cose
sine

The rotation matrix for this case is simply the orthogonal matrix

(8.9.3)
R[+IAk+IRk+1 = Ak+2,etc.

where Rk is the rotation matrix. ~
Before discussing the general problem of diagonalizing the dynamic matri x A of

nth order, it will be helpful to demonstrate the Jacobi procedure with an elementary
problem of a second-order matrix:

and the major advantage of the procedure is that all of the eigenvalues and eigenvec­
tors are found simultaneously.

In the standard eigenproblem, the M and~K matrices have already been trans­
posed into a single symmetric dynamic matrix A, which is more economical for itera­
tion than two matrices. The kth iteration step is defined by the equations

R[AkRk = Ak+I

(8.9.2)(if - A/)Y = 0

R by which the off-diagonal elements of A are zeroed by repeated iterations until martix
if is diagonalized. The method is developed for the standard eigenproblem equation:
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limRR···R=PI~oo 1 2 I

(8.9.9)

If aii = ajj, 20 = ±90° and 0 = ±45°. Although 20 can also be taken in the left half
space, there is no loss of generality in restricting 0 to the range ±45°. Due to the sym­
metry of matrix A, this step reduces one pair of the off-diagonal terms to zero, and
must be repeated for every pair of the off-diagonal terms of matrix A. However, in
.reducing the next pair to zero, it introduces a small nonzero term to the previously
zeroed element. So having zeroed all the off-diagonal elements, another sweep of the
process must be made until the size of all the off-diagonal terms is reduced to the
threshold of the specified value. Having reached this level of accuracy, the resulting
diagonal matrix becomes equal to the eigenvalue matrix A, and the eigenvectors are
given by the columns of the products of the rotation matrices. In summary, letting sub-.
script I stand for the last iteration,

A = RT .. 'RTRT .. 'RTRT[A]R R ···R R··· R = AI I k k-l 2 1 1 1 2 k-l k 1

(8.9.8)

(8.9.7)

1 0 0 0 0 0
0 1 0 0 0 0
0 0 cos 0 0 -sin 0 0

R=
0 0 0 1 0 0
0 0 sin 0 0 cos 0 0
0 0 0 0 0 1

and 0 is determined from the same equation as before.

tan 20 = . 2a35 = 2aij
a33 - aS5 aii - ajj

The two eigenvalues are then obtained from the two remaining equations or directly
from the diagonalized matrix. The eigenvectors corresponding to the two eigenvalues
are represented by the two columns of the rotation matrix Rl, which in this case is
equal to P.

For the previous problem there was only one diagonal term aj. and no iteration
was necessary. For the more general case of the nth-order matrix, therotation matrix is
a unit matrix with the rotation matrix superimposed to align with the (i,j) off-diagonal
element to be zeroed. For example, to eliminate the element a3. 5 in a 6 X 6 matrix, the
rotation matrix is

(8.9.6)tan 20 =
From the last of Eqs (8.9.5), angle 0must satisfy the relation

2a12

(8.9.5)

Equating the two sides of this equation, we obtain

Al = all cos20 + 2a12 sinOcosO + a22sin20

A2 = all sin20 - 2a12 sins cosO + a22 cos20

o = -(all - a22) sinOcosO + a12(cos20 - sin20)
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=G
0 o ] [ 1.0

-0.3536
-~.7071] [~

0
-~.7071]0.7071 0.7071 -0.3536 1.0 0.7071

-0.707i 0.7071 0 -0.7071 1.0 0 0.7071 0.7071

l1.0 -0.250: 0.250]I= -0.250 0.2929 I
~.7071

______________ J

0.250 ,0

~.7071 ~.7071]
-0.7071 0.7071

Ri= [~

2( -0.7071)
1 - 1

s, = [~ ~.7071 -~.7071]
. 0 0.7071' 0.7071

At = R[ARt

sin 45° = cos 45° = 0.7071

:.28 = 90°

8 = 45°

tan 20 =

[

1 0
RJ = 0 coss

o sinf

Solution We first zero the largest off-diagonal term, which is a23 = - 0.7071.

A = [-~:~536:--=i~~~~--::_~~7071J
o : -0.7071 1.0

where A= ul-m/ k. By using the Jacobi method, diagonalize the dynamic matrix, and determine
the eigenvalues and the eigenvectors for the system.

-0.3536
1.0

-0.7071[ [

1.0
-AI + -~.3536

When the mass matrix is decomposed in Fig. 8.8.1, the standard form of the equation of motion
becomes

Example 8.9.1

Although the proof of convergence of the Jacobi iteration is beyond the scope of
this text, experience has shown that rapid convergence is generally found, and usually
acceptable results 'are obtained in less than five sweeps, and often in one or two sweeps
when the off-diagonal elements in the original matrix are small in' comparison to the
diagonal elements. The number of calculations is also quite limited in that in spite of
the size of the matrix, only two rows and two columns are involved for each iteration.

Jacobi Diagonalization 245Section 8.9

www.semeng.ir

http://www.semeng.ir


COMPUTER VALUES

A2 = 0.2094

A2 = 1.000

A3 = 1.7905

AFROMA3

AI = 0.213

A2 = 1.014

A3 = 1.817

To further reduce the size of the off-diagonal terms, the procedure should be repeated; how­
ever, we stop here and outline the procedure for determining the eigenvalues and eigenvectors ,
01 the problem. The eigenvalues are given by the diagonal elements of A and the eigenvectors of
A are calculated from the products of the rotation matrices R, as given by Eq. (8.9.9). These
eigenvectors are of the transformed equation in the y coordinates and must be converted to.the
eigenvectors of the original equation in ther coordinate by Eq. (8.6.1). It should also be noted
that the eigenvalues are not always in the increasing order from 1 to n. In ..43, At = wim/ k is
.found in the middle of the diagonal.

0.2134
0.0710

-0.000 l
0.0717 = A3
1.817

~ ~.3255l

o 0.9455·

-0.0246

[

1.0147
RI A2R3 = -0.0246

0.000

To complete the first sweep of all the off-diagonal terms, we next zero the term au'

tans = 2al3 2(0.2383) = -0.7812
all - a33 1.097 - 1.7071

2e = 37.996°

e = -18.998°

sin e = -0.3255

cos e = 0.9455

[

0.9455
R3 = 0

-0.3255

0.2383l0.0_757 = A2
1.7071

o
0.2'134
0.0757

0.9530
o

.3029
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We thus find that in zeroing the term a23 = a32, we have introduced a new nonzero term
a13 = a31 = 0.250. Next zero the term al2 = -0.250.

tan 2e = 2a12 2(-0.250) = -07071
all - a22 1 - 0.2929 .

2e = -35.26°

e = -17.63°

sin e = -0.3029°

cos e = 0.9530

[

0.9530
R2 = -~.3029
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•
W3 = ~1.7905!5_ = 1.3381 II. m V;

w. = ~A.!5_
I . 'm

With the eigenvalues equal to ..\= w2m/ k, the three natural frequencies are found from

[ 04~ 0.1515 0.1551 ]
= 0.0195 0.4765 -0.5221

-0.4327 0.6739 0.5988

When normalized to 1.0,

[ -0.940 0.225 0.259J
X = -0~045 0.707 -0.872 from A3

1.00 1.00 1.00

mode 2 mode 1 mode 3

[-1.0
0.25 O.~]

X= 0 0.79 -0.79 from the computer
1.00 1.00 1.00

0.3102]
-0.7383
0.5988

0.3102]
-0.7383
0.5988

o 0 l[0.9011 0.3029
0.7071 0 0.0276 0.6739
o 1.00J -0.4327 0.6739

[

0.50
X = U-1y = ~

[

0.9011 0.3029
= 0.0276 0.6739

- 0.4327 0.6739

o ] [ 0.9530 0.3029 00][°0.9455 0 00.3255]
-0.7071 ~0.3029 0.9530 . 1
0.7071 0 0 1 -0.3255 0 0.9455[

1 0
= 0 0.7071

o 0.7071

It is seen here that even with one sweep of the off-diagonal terms, the results are in fair agreement.
For the eigenvectors, we have
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A2 = Rl*QI
-1= Q1 *A1 *Ql
-1 -1

=7 Ql *Q *A*Q*Ql
= (Q*Ql)-I*A*(Q*Ql)

= (Q*Ql)*A*(Q*Ql)

As before, A2 has the same eigenvalues as A. If i is an eigenvector of A2 (i.e.,
A2x = Ax, then Q * Q IX is an eigenvector for A).This process can be continued to pro­
duce a series of similar matrices A3, A4, and so on. It can be shown that eventually this
process will produce an upper triangular matrix which is similar to the original matrix
(Le.,An = (Q * Q1 *Q2 * ... * Qn _ 1)-1 AQ * Q1 * Q2 * ... * Qn _ 1)' and An is upper tri­
angular.

In order to speed up the convergence of the above iteration, it is customary to
first convert the matrix A to a matrix which has zeros below the subdiagonal. This type

Al = R*Q
= Q-I*A*Q
= Q*A*Q

since R = Q-IA and Q-l = Q. 'The new matrix Al is similar to A and hence it has the
same eigenvalues as A but the eigenvectors have been changed by Q.The eigenvectors
of Al satisfy the equation A1x = Ax, which means that the eigenvectors of A can be
obtained by multiplying the eigenvectors of AI' by Q. This can be seen from the follow­
ing equation AQx = AQx. The process is then repeated by decomposing Al into an
orthogonal matrix Q1 and an upper triangular matrix R; (i.e., Al = Q1 * R1)· Again QI

and R; can be used to produce a matrix A2 which is similar to Al (and consequently
similar to A), by

. The Matlab® command eig(A) computes the eigenvalues and eigenvectors of a matrix
A using an iterative method based on decomposing the matrix A into an orthogonal
matrix Q and an upper triangular matrix R. The basic idea behind this algorithm is to
produce an upper triangular matrix which is similar to the original matrix A. Since sim­
ilarity transformations preserve the eigenvalues of the original matrix, the eigenvalues
can be read off the diagonal of the final matrix. The eigenvalues of the original matrix,
the eigenvalues can be read off from the eigenvectors for the transformed matrix by
multiplying these eigenvectors with the same matrices which were used to make A
upper triangular.

The QR decomposition can be accomplished by the Householder transformation
which will be discussed in detail. Once we know how to decompose a matrix into Q
and R, we use an iteration procedure to produce an upper triangular matrix, which is
similar to the original matrix. The QR decomposition allows one to write the matrix A
as the product of two matrices (i.e., A = Q * R, where Q is orthogonal and R is upper

. triangular). These two matrices can be used to produce another matrix, AI' which is
similar to A and given by

8.10 QR METHOD FOREIGENVALUEAND EIGENVECTORCALCULATION
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since u'u = 1.This shows that H is symmetric and orthogonal; that is,H = H' = H-I.
Given a matrix A, in order to construct H so that H-IAH produces a Hessenberg
matrix, an iteration procedure can be used where each step zeros out the elements
below the subdiagonal for one column. The procedure begins with the left-hand col­
umn. For example, if the first column is given by the vector -;;= (aI' a2, a3' ... ,an)t
~hen the Householder matrix H applied to a should produce the vector
r = (aI' a, 0, 0, ... .or, In order for H to remain orthogonal, a is determined by the
fact that lIall = 1Ir11·The unit vector, u in the Householder transformation is given by
u = 11:11 where v = a - r.The remaining columns of the matrix can be handled in the
same manner and the Householder matrix which takes the original matrix into
Hessenburg form is given by the product of each-intermediate matrix. The following
example illustrates this procedure.

=1

= 1- 2uu' - Zuu' + Auu'uu'
= 1- 4uu t + 4uu t

and

=H

HI = (I - 2uill)1
= 1- Zu'u

for some unit vector u.Note that

As we will show next, the Householder transformation will produce a Hessenberg
matrix which is similar to the original matrix.

A Householder matrix is given by

H = 1- Zuu'

all al2 a13 a'n

a21 a22 a23 a2n

H= ° a32 a33 a3n

° 0 ann-1 ann

The general n X n Hessenberg matrix has the following general form

11
2
6
6
2

3
3
4
o

H=[~

of matrix is called a Hessenberg matrix. The following is an example of a 4 X 4
Hessenberg matrix:
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When the matrix HAH is premultiplied by the matrix Qll' we get

[

-6.9282 -12.2474 -2.4495]
Q11 * HAH = 0 . 6.0623 - .8660·

o 1.5000 -1.5000

Because the matrix A is a 3 X 3, it only takes one iteration to convert it to Hessenberg
form. For larger matrices this procedure would have to be repeated to clear the
remaining columns.

At this point we want to describe the QR decomposition. Suppose we are given a
matrix A, which we want to decompose into an orthogonal matrix, Q, and an upper tri­
angular matrix, R.The orthogonal matrix is given by the Householder matrix which is
designed so that when it is applied to the matrix A, the result is an upper triangular
matrix (i.e., H * A = R). Since H is orthogonal and symmetric, H * A = R implies
A = H * Rwhich in turn implies that A = Q * Rwhere Q = H.

We will illustrate this procedure by continuing our example. We want to decom­
pose the matrix in Eq. (8.10.1)into an orthogonal matrix and an upper triangular matrix.
We do this first by constructing an orthogonal matrix which zeros out the elements
below the diagonal in the first column. The matrix which we need should take the vector
1= (4,5.6560,0)1 to the vectorr: = (-6.9282,0, oy The vector r.is determined by the
condition a'a = r'r.One is free to choose the sign of r.This can be achieved by construct­
ing the Hou~eholder matrix Ql1 = I - 2~:~~,where ~ = ~ - r: = (2.9282, -5.6569,0).
For the matnx HAH we get

[

-.5773 -.8165

Ql1 =. - .8~~5 .57;4

(8.10.1).7071l2.500
1.500

2.1213
13.500
-1.500

When this matrix is used to produce a matrix which is similar to A one gets the
Hessenberg matrix

We want to convert the following matrix

A=[; : ~l
into upper Hessenberg form. This means that we want the Householder matrix to take
the vector ~ = (4,4,4)1 into the vectorr: = (4, a, O}', We need ala = r'r for the result­
ing matrix to be orthogonal. This determines a which for our example is such that
a = V32. The vector v = a - r is given by -; = (0, -1.6569,4). The length of the vec­
tor squared is 18.7452.This vector produces the Householder matrix

H = [~ .7~71 .7~71l
o .7071 -.7071
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Again one uses the QR decomposition onA;we write A2 = Q2 * R2 and set A3 = R2 * Q2'
"We QR decompose A3 and so on. Continuing this iteration 15times results in Ql' Q2""
Q 15 and produces the following upper triangular matrix

[

14.3246 -5.0645 '1.7655]
U = 0 3.000 .4837

o 0 1.6754

where U = (Ql * Q2 * ... * Q15) * (HAH) * (Ql * Q2'" * Q15)' The eigenvalues for this
matrix are the elements along the diagonal. These numbers agree with the eigenvalues
which one gets' by using the Matlab® command eig(A).

The algorithm which finds the eigenvectors of the original matrix starts by find­
ing the eigenvectors of the upper triangular matrix and transforms them to the eigen­
vectors for HAH by multiplying them by the matrix Q1 * Q2 * ... * Q15 as described
previously. The eigenvectors for the upper triangular matrix can be found easily by
backsubstitution. Backsubstitution works by computing the values of the vector from
the bottom up. Consider the computation for the first eigenvector:

[
14.~246 -:.~~~5 ~:::~][:::] = 14.3246* [:::]

o 0 1.6745 X13 X13

-2.7174J
-1.3323
1.6154

We should point out at this point that the Matlab® command [Q, R = qr(A) produces
the matrices Q and R for a matrix A.

Now that we know how to perform a QR decomposition, we would like to use the
iteration procedure discussed at the beginning of this section to produce an upper tri­
angular matrix. Continuing with our example, the first iteration produces a matrix, A2
which is similar to HAH and it is given by

[

14.0000 .7844
A2 = u, * Q1 = 5.00990 3.3846

.3997

-2.44495J
-.4804 .
1.6641

-12.2475
-6.2450

o

and

In order to complete the decomposition, we have to use the same procedure to
clear the element below the diagonal in the second column of the matrix. The process
results in a matrix Q12 which takes 12 = (-12.2474,6.0623, 1.5000) to the vector
12 = (-12.2475, -6.245,0). Again this comes from the condition a'a = r'r. The
orthogonal matrix Q1 which when applied to the matrix HAH produces an upper tri­
angular matrix is given by the product of Q11and Q12' namely Q1 = Q12 * Q11' For our
example, the QR decomposition is such that HAH = Q 1 * R, where

[

- .5773 .7936 - .1961J
QJ = -.8165 -.5604 .1387

o .2402 .9707
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Summary of the Algorithm. Given a matrix A, the following algorithm can be
used to compute the eigenvalues and eigenvectors:

1. Convert the matrix A into Hessenberg form by the Householder matrix H (Le.,
compute AI = HAH, where Al is a Hessenberg matrix).

2. QRdecompose A} (i.e.,AI = Q} '"RI).

3. Construct another matrix A2which is similar to A},A2 = R, * Ql'
4. Repeat steps 2 and 3 until An is an upper triangular matrix.
5. The eigenvalues for A are located on the diagonal of An'
6. Compute the eigenvectors for An using backsubstitution.
7. Multiply these vectors by the matrix H * Q 1 * Q2 * ... * Qn to get the eigenvectors

ofA.

In Matlab®, one can compute the eigenvalues and eigenvectors by using the command
[U, D] = eig(A). The matrix U contains the eigenvectors as column vectors and the
matrix D is a diagonal matrix which has the eigenvalues on the diagonal. The column
vectors in Eq. (8.10.2) agree with the eigenvectors that one gets from Matlab®.

(8.10.2).1925l-.6086
.7698[

- .1925 --.0701
E = - .6086 0.0000

- .7698 0.7071

Using backsubstitution, one solves this system of equations for X13 first. The last equa­
tion implies that X13 = O.Then one solves the second equation for xl2 to find that Xu = O.
Finally, the first equation is solved for xu' This givesXu = 1.The eigenvector associated
with the eigenvalue 14.3246is (1,0,0). The other two eigenvectors can be found in the
same way.The eigenvector associated with the eigenvalue 3 is (- .4082, - .9129,0) and
the eigenvector associated with the eigenvalue 1.6754 is (- .2593, - .3313, .9072).These
eigenvectors can be converted into the ones for HAH by multiplying them by the
matrix Q which is given by Q = Q} * Q2 * ... * Q15' These vectors can be converted into
the one for the original matrix A by multiplying them by the matrix H. This process
gives the eigenvectors for the matrix A as the column vectors of the following matrix:
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by dividing the first equation by 2. (See App. CA.) Note that the new determinant is now
not symmetric and that the sum of the diagonal, or trace, is 4.5, which is the sum of the
eigenvalues. Determine the eigenvectors from the cofactors as in App. CA.

8.5. In the method of cofactors, App. C.4, the cofactors of the horizontal row, and not of the
column, must be used. Explain why. .

[H1 8.6. Write the equations of motion for the 3-DOF system shown in Fig. P8.6, in terms of the
stiffness matrix. By letting m1 = m2 = m and kJ = k2 = k3 = k, the roots of the character­
istic equation are A] = 0.198, A2 = 1.555, and A3 = 3.247. Using these results, calculate
the eigenvectors by the method of Gauss elimination and check them against the eigen­
vectors obtained by the computer.

-!] = 0

-0.5
2
-1[

1 ] [1.5
-A • 1 1 + -.~

Show agreement with the characteristic equation in Sec. 8.1 by substituting A = 1/ A in
the foregoing equation.

[H1 8.2. Use Matlab® to solve for Ai and <Pi' and verify the Wi and <Pi given in Sec. 8.1.
8.3. For the system in Sec. 8.1, the eigenvector for the first mode was determined by the Gauss

elimination method. Complete the problem of finding the second and third eigenvectors.
8.4. For Prob. 8.1, rewrite the characteristic determinant as

Write the equation of motion in terms of the flexibility and derive the characteristic
equation

[a] = i [~:~~:~~:~]
0.5 1.5 2.5

FIGURE PS.1.

-X3--X2-x,

8.1. For the system shown in Fig. P8.1, the flexibility matrix is

PROBLEMS

[6] MARTIN,R., and WILKINSON,1."Similarity Reduction of a General Matrix to Hessenberg
Form." In Handbook for Automatic Computation, edited by BAUER,E, et al. Berlin:
Springer-Verlag, 1971.

[7] MARTIN,R., PETERS,G., and WILKINSON,1. "The QR algorithm for Real Hessenberg
Matrice." In Handbook for Automatic Computation, edited by BAUER,E, et al. Berlin:
Springer-Verlag, 1971.
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Draw the spring-mass diagram for the configuration and derive the foregoing equation.
1M] 8.12. Additional data for Prob. 8.11 are Wo = mog = 160 lb and ko = 38,400 lb/ft. Using a com­

puter, determine the four natural frequencies and mode shapes, compare with the results
of Example 5.3.2, and comment on the two.

1M] 8.13. The uniform beam of Fig. P8.13 is free to vibrate in the plane shown and has two concen­

trated masses, m, = WI = 500 kg and m2 = w2 = 100 kg. Determine the two natural fre-g g..
quencies and mode shapes. The flexibility influence coefficients for the problem are

8.10. Using the eigenvalues of Prob. 8.9, demonstrate the Gauss elimination method.
8.11. In Example 5.3.2, if the automobile wheel mass (mo for the two front wheels and the

same for the two rear wheels) and tire stiffness (ko for the two front tires and the same
for the two rear tires) are included, the 4-DOF equation of motion in matrix form
becomes

-X4 FIGURE PS.9.-x,

Solve for the eigenvalues and eigenvectors.

[H] 8.7. Repeat Prob. 8.6 starting with the flexibility equation.
IMI 8.8. Draw a few other diagrams of systems equivalent to Fig. P8.6, and determine the eigen-

values and eigenvectors for k, and m; assigned by your instructor.
IMI 8.9. Determine the equation of motion for the system shown in Fig. P8.9 and show that its

characteristic equation is (for equal ks and m)
,\ 4 - 9'\ 3 + 25A2 - 21A + 3 = 0

-X3 FIGURE PS.6.-x,
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FIGURE PS.16.

JJJ

~ 8.15. Determine the three natural frequencies and modes for the cantilever beam of Fig. PB.15.
Note: The flexibility matrix in Example 6.1.3 is for coordinates given in reverse order to
above problem. .

1M] 8.16. Determine the natural frequencies and mode shapes of the torsional system of Fig. PB.16.

FIGURE PS.1S.

~~ ¥ ';;;- ~~3

FIGURE PS.14.

[HJ 8.14. Determine the influence coefficients for the three-mass system of Fig. P8.l4 and calcu­
late the principal modes.

FIGURE PS.13.

t

rjk /

f3
48 EI

given as
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FIGURE PS.21.

8.20. For the system shown in Fig. PB.20,write the equation of motion and convert to the stan­
dard form.

[0 8.21. The stiffness matrix for the system shown in Fig. P8.21 is given as

K = k[-~ -~ =~]
-1 -1 2

Determine the Choleski decomposition U and U-1.

FiGURE PS.20.FIGURE PS.19.

m .A 11.11. A "vvvv

If

m X;
4k

"

3

[0 8.19. Repeat Prob. B.18 for the system shown in Fig. PB.19.

FIGURE PS.1S.

---X2-Xl

!H] 8.18. Decompose the stiffness matrix K = UTU for Fig. P8.lB.

K= [_~ -!]

FIGURE PS.17.

•
!H] 8.17. In Fig. PB.17 four masses are strung along strings of equal lengths. Assuming the tension

to be constant, determine the natural frequencies and mode shapes.
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Determine its eigenvalues and eigenvectors when mj = m and k, = k. Plot the mode
shapes and discuss the action of springs ks and k6.

-ks
o

(k3 + k4 + ks)
-k4

m, J{~l
1MI 8.27. The equation of motion for the system shown in Fig. P8.27 is given as

FIGUREPB.27.

,A " ..vv v

1<2 1<4
m1 k m3 x

--"Atll.
vvvv

k1 1<3

~
FIGUREPB.26.

_fl.""" ::-:
2 vvvv

1<2
1<"2

..AI\KAm1 vvvv

k1

~

Determine the eigenvalues and eigenvectors.

~ 8.25. Repeat Prob. 8.24 by decomposing the stiffness matrix.
~ 8.26. Verify the equation of motion for the system of Fig. P8.26:

-1
2
-1

determine the natural frequencies and mode shapes using the standard form.
[M] 8.23. Repeat Example 8.9.1 by decomposing the stiffness matrix and compare the results with

those given in the example.
~] 8.24. Express the following equation in standard form using Choleski decomposition of the

mass matrix.

0] K=k[ 3
2 ' -1

Problems 257

lMl 8.22. Given the mass and stiffness matrices
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9.1 VIBRATING STRING

A flexible string of mass p per unit length is stretched under tension T.By assuming
the lateral deflection y of the string to be small, the change in tension with deflection is
negligible and can be ignored.

The systems to be studied in this chapter have continuously distributed mass and elas­
ticity. These bodies are assumed to be homogeneous and isotropic, obeying Hooke's
law within the elastic limit. To specify the position of every point in the elastic body, an
infinite number of coordinates is necessary, and such bodies, therefore, possess an infi­
nite number of degrees of freedom.

In general, the free vibration of these bodies is the sum of the principal or normal
modes, as previously stated. For the normal mode vibration, every particle of the body
performs simple harmonic motion at the frequency corresponding to the particular root
of the frequency equation, each particle passing simultaneously through its respective
equilibrium position. If the elastic curve of the body under which the motion is started
coincides exactly with one of the normal modes, only that normal mode will be pro­
duced. However, the elastic curve resulting from a blow or a sudden removal of forces
seldom corresponds to that of a normal mode, and thus all modes are excited. In many
cases, however, a particular normal mode can be excited by proper initial conditions.

For the forced vibration of the continuously distributed system, the mode sum­
mation method, previously touched upon in Chapter 6, makes possible its analysis as a
system with a finite number of degrees 'of freedom. Constraints are often treated as
additional supports of the structure, and they alter the normal modes of the system.
The modes used in representing the deflection of the. system need not always be .
orthogonal, and a synthesis of the system using nonorthogonal functions is possible.

Vibration of Continuous
Systems

CHAPTER 9
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(9.1.5)y(x, t) = Y(x)G(t)

and hence the differential equation is satisfied.
Considering the component y = FI(ct - x), its value is determined by the argu-

. ment (ct - x) and hence by a range of values of t and x. For example, if c = 10, the
equation for y = FI(l00) is satisfied by t = 0, x = -100; t = 1, x = -90; t= 2,
x = -80; and so forth. Therefore, the wave profile moves in the positive x-direction
with speed c. In a similar manner, we can show that FzCct + x) represents a wave mov­
ing toward the negative x-direction with speed c.We therefore refer to c as the veloc­
ity of wave propagation.

One method of solving partial differential equations is that of separation of vari­
ables. In this method, the solution is assumed in the form

(9.1.4)

where FI and F2 are arbitrary functions. Regardless of the type of function F, the argu­
ment (ct ± x) upon differentiation leads to the equation

a2F 1 a2F

Because the slope of the string is 0 = ay Iax, the preceding equation reduces to

a2y 1 a2y
ax2 = c2 at2 (9.1.2)

where c = VTiP can be shown to be the velocity of wavepropagation along the string.
The general solution of Eq. (9.1.2) can be expressed in the form

y = FI(ct - x) + F/ct + x) (9.1.3)

(9.1.1)
ao
ax

or

( ao ) d 2 YT 0 + - dx - TO = p dx -ax at2

In Fig. 9.1.1, a free-body diagram of an elementary length dx of the string is
shown. By assuming small deflections and slopes, the equation of motion in the y­
direction is

L- ---L.. x vibration.
T element in lateral

FIGURE9.1.1. String

T

y
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In the more general case of free vibration initiated in any manner, the solution
will contain many of the normal modes and the equation for the.displacement can be
written as

(9.1.13)Y . x= sin WIT [

and A = clf is the wavelength and fis the frequency of oscillation. Each n representsa
normal mode vibration with natural frequency determined from the equation

In = ;/c = ;~, n = 1,2,3,... (9.1.12)

The mode shape is sinusoidal with the distribution

wnl 211'1_"- = - = n1T, n = 1,2, 3, ...
c A

or

The condition y(l, t) = 0 then leads to the equation

. wI 0sm- ==
c

(9.1.11)y = (C sin wt + D cos wt) sin ~ x
c

The arbitrary constants, A, B, C, and D depend on the boundary conditions and
the initial conditions. For example, if the string is stretched between two fixed points
with distance I between them, the boundary conditions are y(O, t) = y(l, t) = O. The
condition that y( 0, t) = 0 will require that B = 0, so the solution will appear as

(9.1.10)G = C sin wi + D cos wt

(9.1.9)Y . w co= A SIO _ X + B cos - x
c c

with the general solutions

(9.1.8)

(9.1.7)

Because the left side of this equation is independent of t,whereas the right side is inde­
pendent of x, it follows that each side must be a constant. Letting this constant be
-(wlcF, we obtain two ordinary differential equations:

(9.1.6)

By substitution into Eq. (9.1.2), we obtain

1 d2 Y 1 1 d2G
Y dx2 c2 G dt2
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dx+ ~ dx

FIGURE9.2.1. Displacementof rod element.

I ~

TIle rod considered in this section is assumed to be thin and uniform along its length.
Due to axial forces, there will be displacements u along the rod that will be a function
of both position x and time t.Because the rod has an infinite number of natural modes
of vibration, the distribution of the displacements will differ with each mode.

Let us consider an element of this rod of length dx (Fig. 9.2.1). If u is the displace­
, ment at x, the displacement at x + dx will be u + (au/ ax)dx. It is evident then that the

element dx in the new position has changed in length by an amount (au/ax)dx, and

9.2 LONGITUDINALVIBRATIONOFRODS

•

Ifwe multiply each equation by sin k ttxf l and integrate from x = 0 to x = 1,all the terms on the
right side will be zero, except the term n = k.Thus.we arrive at the result

2ft. . k ttxo, = l 0 y(x,O)sm-l-dx

Ck = 0, k = 1, 2, 3, ...

00 n7rX
y(X, 0) = L. wnCIl sin -,- = 0

11=1 -

Solution At t = 0, the displacement and velocity are

( ) ~ . n ttxy x,O = LJ o, sm -1-
n~1

A uniform string of length l is fixed at the ends and stretched under tension T. If the string is dis­
placed into an arbitrary shape y(x,O) and released, determine Cn and Dn of Eq. (9.1.14).

Example 9.1.1

By fitting this equation to the initial conditions of y(x,Ofand y(x, 0), the Cn and D n can
be evaluated.

W =n

(9.1.14)
n trc

( ) ~ (C . ) . n7TXy x, t = ~. n Sill wnt + Dn cos wnt Sill -1-
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ax

Solution For such a bar, the stress at the ends mustbe zero. Because the stress is given by the
equation Eou] ax, the unit strain at the endsmust alsobe zero; that is,

au = 0 at x = 0 and x = l

Example 9.2.1

Determinethe natural frequenciesandmode shapesof a free-freerod (a rod with both ends free).

(9.2.8)

(9.2.9)

. w w
U(x) = A sin - x + B cos - x

c c

G(t) = Csin wt + D cos wt

will result in two ordinary differential equations similar to Eqs. (9.1.7) and (9.1.8), with

(9.2.7)u(x, t) = U(x)G(t)
and a solution of the form

which is similar to that of Eq. (9.1.2) for the string. The velocity of propagation of the
displacement or stress wave in the rod is then equal to

c = {! (9.2.6)

(9.2.5)

(9.2.4)a2u = u=yuat2 p ax2

or

a2u 1 a2u
ax2 c2 at2

We now apply Newton's law of motion for the element and equate the unbal­
anced force to the product of the mass and acceleration of the element:

ap a2u
ax dx = pAdx ~ (9.2.3)

where p is the density of the rod, mass per unit volume. Eliminating ap / ax between
Eqs. (9.2.2) and (9.2.3), we obtain the partial differential equation

(9.2.2)
ax

where A is the cross-sectional area of the rod. By differentiating with respect to x,

a2u aP
AE-2

ax

(9.2.1)
P
AE

au
ax

thus the unit strain is au/ax. Because, from Hooke's law, the ratio of unit stress to unit
strain is equal to the modulus of elasticity E,we can write
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By equating this torque to the product of the mass moment of inertia pIp dx of the ele­
ment and the angular acceleration a20/ at2, where p is the density of the rod in mass per
unit volume, the differential equation of motion becomes

where IpG is the torsional stiffness given by the product of the polar moment of iner­
tial Ip of the cross-sectional area and the shear modulus of elasticity G. The torque on
the two faces of the element being Tand T + (aTjax)dx, as shown in Fig. 9.3.1, the net
torque from Eq. (9.3.1) becomes

aTdx = I G a20 dx ( )ax p ax2 9.3.2

(9.3.1)

The equation of motion of a rod in torsional vibration is similar to that of longitudinal
vibration of rods discussed in the preceding section.

By letting x be measured along the length of the rod, the angle of twist in any
length dx of the rod due to torque Tis

d
Tdx

()= IpG

9.3 TORSIONALVIBRATIONOF RODS

•

where n represents the order of the mode. The solution of the free-free rod with zero initial dis­
placement can then be written as

, n7T . n7T IE
u = Uo cos T x S10 T 'J -;; t

The amplitude of the longitudinal vibration along the rod is, therefore, a cosine wave having n
node~ ,

The frequency of vibration is thus given by

wni r;;
c = wJ\j£ = 7T, 27T, 37T, .... n7T

or

Because these equations must be true for 'any time t,A must be equal to zero from the first equa­
tion. Because B must be finite in order to have vibration, the second equation is satisfied when

. wi 0
S10 - =

c

( au) t» ( wi,. wi ) .- = - A cos - - B S10 - (c S10 wt + D cos wt) = 0ax x=/ ccc

( au) W- = A......: (C sin wt + D cos wt) = 0ax x=o c

The two equations corresponding to these boundary conditions are, therefore,
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Boundary. condition (1) results in B = O.
Boundary condition (2) results in the equation

cos wvpjGI = 0

which is satisfied by the following angles

w,{-i; I = I. 32" • 52" •..•• (n +

iJO
- =0
iJx

Solution Starting with equation

(}= (A sin wvpjGx + B cos (J)vpjGx) sin wt

apply the boundary conditions, which are
(1) when x = O,v= 0,
(2) when x = I, torque = 0, or

FIGURE9.3.2.

"tx

Determine the equation for the natural frequencies of a uniform rod in torsional oscillation with
one end fixed and the other end free, as in Fig.,9.3.2.

Example 9.3.1

This equation is of the same form as that of longitudinal vibration of rods, where (J and
G/p replace u and E/p, respectively. The general solution hence can be written immedi­
ately by comparison as

(J = (A sin w{~x + B cos w~x )(C sin wt + D cos wt) (9.3.4)

(9.3.3)

FIGURE9.3.1. Torque
acting on an element dx.

T[)lT+*Idx
~dX~

Q) 0)
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'See Jahnke and Emde, Tablesof Functions,4th Ed. (NewYork:Dover Publications,1945),TableV,p. 32.

•

fl tan fl = Ii; fl = wl~

which can be solved graphically or ftom tables.'

( dfJ) 2ot, -d = loW e.;
X x={

By substituting from Eq. (9.3.4) with B = 0,

GIPW~ cos w~ I = Jow2 sin w~ I

tan WIH = ~~o YaP = ~~ ~ = ;07:1 ~
This equation is of the form

Solution The boundary condition at the upper end is x = 0, fJ = 0, which requires B to be zero
in Eq. (9.3.4).

For the lower end, the torque on the shaft is due to the inertia torque of the end disk, as shown
by the free-body diagram of Fig.9.3.3.The inertia torque of the disk is -10(a2fJ/a2tt=1 = low2(fJ)x={,
whereas the shaft torque from Eq. (9.3.1) is T{ = Glp(dfJ/dxt={. Equating the two, we have

FIGURE9.3.3.

--------Inertia torque _Jo(o2~)
af 1( = t

Example 9.3.2
The drill pipe of an oil well terminates at the lower end in a rod containing a cutting bit. Derive
the expression for the natural frequencies, assuming the drill pipe to be uniform and fixed at the
upper end of the rod and cutter to be represented by an end mass of moment of inertia la, as
shown in Fig. 9.3.3~

•
where n = 0,1,2,3, ....

The natural frequencies of the bar hence are determined by the equation
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2F. B. Farquharson, Aerodynamic Stability of Suspension Bridges, University of Washington
Engineering Experiment Station Bulletin, No.116,Part 1.(1950).

9.4 SUSPENSION BRIDGE AS CONTINUOUS SYSTEM

Due to its great flexibility, the Tacoma Narrows Bridge offers a unique example to
demonstrate the applicability of the vibration theory of this section. Figure 9.4.1 shows
the violent torsional oscillation of the Tacoma Narrows Bridge just prior to its collapse
on November 7, 1940.The bridge had been plagued by a number of different modes of
vibration under high winds since it was opened on July 1,1940. During its short life of
only four months, its unusual behavior had been observed and recorded by Professor
F.B.Farquharson of the University ofWashington.2

•
£02=

1.135
0.470 = 2.41 rad/s = 0.384 cps

3.722
0.470 = 7.93 rad/s = 1.26 cps

By solving for £0,the first two natural frequencies are

Solution The equation to be solved is

f3 tan f3 = lrod = 2.44
10

From Table Y,p.32, of Jahnke and Emde, f3 = 1.135,3.722, ....

f3 = £OI~ = 5000£O~:::::O:;:-:: = 0.470£0

10 = 0.244 x 120 ft = 29.3 lb· ft· S2

Drill collar: outside diameter = 7~ in.

inside diameter = 2.0 in.

Ip = 0.00094 ft4, I = 5000 ft

lrod = IppL = 0.00094 X 490 x 5000 = 71.4lb·ft·s2
32.2

Using the frequency equation developed in the previous example, determine the first two natural
frequencies of an oil-well drill pipe 500 ft long, fixed at the upper end and terminating at the lower
end to a drill collar 120 ft long.The average values for the drill pipe and drill collar are given as

Drill pipe: outside diameter = 4~ in.

inside diameter = 3.83 in.

Example 9.3.3
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3K. Y. Billah, and R. H. Scanlan, "Resonance, Tacoma Narrows Bridge Failure. and Undergraduate
Physics Textbooks," Amer. 1. Physics, Vol. 59.No.2, pp.118-124 (Feb. 1991).

4W. T.Thomson, "Vibration Periods at Tacoma Narrows," Engineering News Record,Vol.P477,pp. 61-62
(March 27, 1941). .

The catastrophic failure of the Tacoma Narrows Bridge has created consider­
able controversy and interest among engineers.' As in the flutter failure of aero­
plane wings, flexible structures subjected to high aerodynamic excitation often
develop self-excited oscillations with negative damping which lead to structural
destruction.

Although simple resonance theory, itself, is insufficient to describe the failure of
the Tacoma Narrows Bridge, the importance of creating simple vibrational models for
its analysis must be recognized. The suspension bridge is a very flexible structure with
distributed mass and stiffness. Although the floor of the bridge is generally uniform
along its length, the supporting cables, which provide most of the stiffness, vary in slope
and tension between the towers. The following data for the Tacoma Narrows Bridge
were obtained from various sources,"

FIGURE 9.4.1. Tacoma Narrows Bridge: Torsional oscillation. (Courtesy Special
Collections Division, University of Washington Libraries. Photo by F. B.
Farquharson [Negative No. 4j.).

Suspension Bridge as Continuous System 267Section 9.4

www.semeng.ir

http://www.semeng.ir


FIGURE 9.4.2.

co0. .
II)
'C
'E

Wr x 1400

~Mo = 232T - 3105 X 1400 X 700 = 0

:. T = 13.1 X 106lb

The vertical component of the cable tension at the tower is equal to the total downward
force of 3105 X 1400 = 4.347 X 1061bs.Thus, the total cable tension at the tower is

To = 106y13.112 + 4.352 = 13.82 X 106IbS.

Assumptions and Calculated Quantities

Cable Tension. Figure 9.4.2 shows a free-body diagram of the cable between
the tower and midspan. The cable at midspan is horizontal, which is also the horizontal
component of the cable tension at the tower. Equating the moment at the tower to
zero.we have

Weights.

wf = 43001b/ft = floor weight/ft along the bridge

Wg = 323 lb/ft = girder weight/cable/ft.

w, = ~ X C~r X 0,082 X 490 = 6321bjft of cable

We = H4300) + 320 + 632 = 31051b/ft = total weight carried per cable

p = w/g = 3105/32.2 = 96.4lboft2·s2 = total mass/It/cable

h/ I = 0.0829 = 1/12 = sag-to-span ratio

bfl = 0.0139 = 1/72 = width-to-span ratio

d = 17 in. = diameter of cables

I = 2800 ft = span between towers

h = 232 ft = maximum sag of cables

b = 39 ft = width between cables

Data for the TacomaNarrows Bridge

Geometric.
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F
FIGURE9.4.4.

F

b Tbe
F = 2TcI>= 2T- e = -_-

2x x

Torsional stitTness. For the Tacoma Narrows Bridge, the girders and the floor
are both open sections, and the torsional stiffness provided by them is small in com­
parison to the torsional stiffness provided by the cables. Consider a pair of cables
spaced b ft apart and under tension T.Let three consecutive stations, i - 1, i, i + 1, be
equally spaced along the cable as shown in Fig. 9.4.4. Recalling the definition for the
elements of the stiffness matrix in Sec. 6.3, Eq. (6.3.1), the stiffness at station i is equal
to the lateral force F when displacement Yj = 1.0 with all other displacements, includ-
ing Yi-I'Yi+l"'" equal zero. _ _

Giving the cross section at i a small rotation, e, we have Yi = xci> = (bI2)e, and
the vertical component of tension Tis

. 955 (39 )2- J for the girders plus cables = 2 X .-3- X - = 22,400
2.2 2

Total J = 39,400 lb· S2

Torsional mass moment of inertia. Figure 9.4.3 shows the assumed equivalent
cross section of the bridge for the polar mass moment of inertia calculation.

4320 (39)2
J for the floor = mb2/12 = -,,- X -- = 17,000_ 3~.2 12

We, therefore, can neglect the small variation of the cable tension along the span. Also,
the small flexural stiffness of the floor in bending was considered negligible for this
suspension bridge. _

FIGURE9.4.3.

632~_ . 4300 -=_~~ Cable
323 _------_______........____;;_~--==;;.--_ Girder

e -:::::=== Floor

~-------------b--------------~
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j
~

•
F. B. Farquharson reported that several different modes had been observed, some of which can
be identified with the computed results here.

FIGURE 9.4.5.
~.~ 16cpmn=4

n=3
,--- .......,

", . "-
t,-......-_-_---,.-;I'__,..~-+--~--'-.....-....-_-_-,.-;I'-rMode 3

n=2 f2~8cpm
__-- ........

~-----------~~--------.~MOde2
........................... _--'"

f, ~4cpm
_------- ---- -_

-F-------+------_.:::::-'+ Fundamental n=1

(T . I'
C = \j p = wave propagation ve ocity

When n = 1,we have the fundamental mode; when n = 2, we have the second mode with a node
at the center; etc., as shown in Fig. 9.4.5. Substituting numbers from the data, we have

n {13.1 6 .
in = 2 X 2800 V %.4 X 10 = 0.0658n cps

= 3.95n cpm == 4n cpm

n(mode number) = 1,2,3, ...

or

c

as shown in Sec. 9.1. This equation is satisfied by

wI
= 7T, 2r., 37T, ... , n7T

. wi °SIn - =
c

With T and p constant, we can analyze the vertical vibration of the bridge as a flexible string of
mass p per unit length stretched under tension T between two rigid towers that are I ft apart.
With the boundary conditions y(O, t) = y(l, t) = 0, the general solution must satisfy the fre­
quencyequation

VERTICAL VIBRATIONExample 9.4.1

The torque of the cables is then Fb = Tb28/x and the torsional stiffness of the cables,
defined as the torque per unit length of the cables, is Tb2 lb . ft/rad/ft.

Tb2 = 13.11 X 106 X 392 .; 19,900 X 1061b' ft2
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(9.5.1)dV - p{x}dx = 0

To determine the differential equation for the lateral vibration of beams, consider the
forces and moments acting on an element of the beam shown in Fig. 9.5.1.

Vand M are shear and bending moments, respectively, and p(x) represents the
loading per unit length of the beam.

By summing forces in the y-direction,

9.5 EULER EQUATION FOR BEAMS

•
which agrees closely with the observed period of 4 s.Thus, with reasonable development of a
simplified model, reliable calculations can be-obtained,

For a node at midspan, n = 2:

2'IT/2 -Jf I = 2'IT

1/K
12= ['Vi

'T = I II = 2800~ 39,400 X 10-3
2 'J K 19,900

= 3.94 s

. {J
SIn wYKI = 0

W{-[;l = 'IT,27T, ... , ntr

(9.4.2)

The solution is given by

6{x,t) = (A sin w{-[;x + B cos W{-[;X)<C sin wt + D cos wt)

where the term (PJpdx) = J is identified as the polar mass moment of inertia, and the term
(JpG dx) = K is the torsional stiffness of length dx.

With the boundary conditions, 0(0, t) = 0(/, t) = 0, the natural frequencies are found from

(9.4.1)

On the day of the Tacoma Narrows Bridge collapse, it was reported that high winds of 42 mph
had excited several modes of vibration. The dominant mode was moving vertically with anode
at midspan, which was calculated in the last section. This motion suddenly changed to torsional
motion with a node at midspan and a period of 4 s,which built up to large amplitudes of nearly
45° before collapse.

Considering the bridge as an equivalent uniform rod, the torsional equation of motion can
be rewritten as:

TORSIONAL VIBRATIONExample 9.4.2
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(9.5.9)

In the special case where the flexural rigidity EI is a constant, the preceding equation
can be written as

(9.5.8)

where p is the mass per unit length of the beam. By using this relation, the equation for
the lateral vibration of the beam reduces to

d2 ( d2y) 2_dx2 EI dx2 - pw Y - 0

For a beam vibrating about its static equilibrium position under its own weight,
the load per unit length is equal to the inertia. load due to its mass and acceleration.
Because the inertia force is in the same direction as p(x), as shown in Fig. 9.5.1, we
have, by assuming harmonic motion,

p(x} = pCJiy (9.5.7)

(9.5.6)

By summing moments about any point on the right face of the element,

dM - Vdx - ~p(x)(dx)2 = 0 (9.5.2)

In the limiting process, these equations result in the foll?wing important relationships:

~~ = p(x) ~~ = V (9.5.3)

The first part of Eq. (9.5.3) states that the rate of change of shear along the length
of the beam is equal to the loading per unit length, and the second states that the rate
of change of the moment along the beam is equal to the shear.

From Eq. (9.5.3), we obtain the following:
d2M dV
dx2 = dx = p(x) (9.5.4)

The bending moment is related to the curvature by the flexure equation, which, for the
coordinates indicated in Fig. 9.5.1, is

M = EI d2 Y2 (9.5.5)
dx

Substituting this relation into Eq. (9.5.4), we obtain

d2 ( d2y)dx2 E1dx2 = p(x)

I------------x FIGURE9.5.1.

y
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/

Example 9.5.1
Determine the natural frequencies of vibration of a uniform beam clamped at one end and free
at the other.

TABLE 9.5.1

(f311}2 (f3zl) 2 (f3J/)2
Beam Configuration Fundamental Second Mode Third Mode

Simply supported ·9.87 39.5 88.9
Cantilever 3.52 22.0 61.7
Free-free 22.4 61.7 121.0
Clamped-clamped 22.4 61.7 121.0
Clamped-hinged 15.4 50.0 104.0
Hinged-free 0 15.4 50.0

(9.5.13)

e :i;{3x = cosh {3x ± sinh {3x

e ±{3x = cos {3x ± i sin {3x

the solution in the form of Eq. (9.5.12) is readily established.
The natural frequencies of vibration are found from Eq. (9.5.10) to be

_ 2 {Ei _ ( )2 /EI=; - {3n'J p - {3nl 'J Pz4
where the number f3n depends on the boundary conditions of the problem. Table 9.5.1
lists numerical values of ({3/)2 for typical end conditions.

Because

which will satisfy the differential equation when

a = ± {3, and a = ± i{3

. (9.5.12)

(9.5.11)

we obtain the fourth-order differential equation

d4y- - {34y = 0
dx"

for the vibration of a uniform beam.
The general solution of Eq. (9.5.11) can be shown to be

y = A cosh {3x + B sinh {3x + C cos {3x + D sin {3x

To arrive at this result, we assume a solution of the form

(9.5.10)

On substituting
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Example 9.5.2
. Figure 9.5.2 shows a satellite boom in the process of deployment. The coiled portion, which is"
stored, is rotated and deployed out through straight guides to extend 100 ft or more.

This particular boom has the following properties: .

Deployed diameter = 12.50 in.

Bay length = 7.277 in.

Boom weight = 0.0274Ib/in. of length

•

cosh PI cos f31 + 1 = 0

This last equation is satisfied by a number of values of PI,corresponding to each normal mode of
oscillation, which for the first and second modes are 1.875 and 4.695, respectively. The natural
frequency for the first mode is hence given by

w = (1.875)2 = . {Ei = 3.515 {Ei
1 12 ~ P 12 ~ P

which reduces to

sinh 131 + sin 131
cosh PI + cos 131

cosh 131 + cos PI
sinh 131 - sin PI

( d3y)-d 3 = 133 [A sinh PI + 13 cosh PI + C sin PI - D cos pI] = 0
x x=/

A(sinh PI - sin (3/) + B(cosh PI + cos pI) = 0

From the last two equations, we obtain

( d2y)dx2 x=/= p3[A cosh 131 + B sinh 131 - C cos PI - D sin pI] = 0

A (cosh PI + cos pI) + B{sinh PI + sin 131) = 0

Substituting these boundary conditions in the general solution, \ye obtain

(yt=o=A+C=O, .'.A=-C

(~~ )\=0 = p[A sinh px + B cosh px - C sin px + D cos pxt=o = 0

p[B + D] = 0, .'.B = -D

d2y
-2 =0
dx
d3y
-3 =0
dx

[

y = 0

Atx = 0 dy = 0
dx

At x = I[M = 0 or

V = 0 or

Solution The boundary conditions are
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FIGURE 9.s.i. Satellite boom. (Courtesy of Able
Engineering, Santa Barbara, CAY
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FIGURE9.6.1. Repeated
structure for difference
equation analysis.

(9.6.1)

Repeated identical sections are often encountered in engineering structures. They rep­
resent a lumped-mass approximation to the continous structure, such as, the N-story
high-rise building is often built with identical floors of mass m and lateral shear stiff­
ness of k lb/in., as modeled in Fig. 9.6.1. By applying the method of difference equa­
tions to such structures, simple analytical equations for the natural frequencies and
mode shapes can be found.

By referring to Fig. 9.6.1, the equation of moti~n for the nth mass is

9.6 SYSTEM WITH REPEATEDIDENTICAL SECTIONS

•
= 4.48 c.p.s.

15.03 X 106
0.0274 = 28.12 rad/s
--(20 x 12)4
386

WI = 3.52

Solution The natural fr~quencies in bending can be found from the equation

_ (" )2 rEI
Wn - f3n1 V pj4

From Table 9.5.1, the first natural frequency becomes

Bending stiffness, EI = 15.03 X 106 lb· in. 2 about the neutral axis

Torsional stiffness, GA = 5.50 x 105 lb· in. 2

Determine the natural frequencies in bending and in its free unloaded state if its length is 20 ft.
The boom can be represented as a uniform beam.
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(9.6.7)

and the general solution for the amplitude reduces to

Xn = B sin f3n
At the top, the boundary equation is

m,}iN = -k(xN - XN-1)

Because the sections at the two boundaries of the system are outside the domain of the
difference equation, the choice for the value of mN is arbitrary. However, we will soon
see that the choice mN = m/2 simplifies the boundary equation at the top. In terms of
the amplitudes, the previous equation becomes

(9.6.6)X2 - 2(1 - n;:}, = 0
Substituting Eq. (9.6.4) and Eq. (9.6.5) into the previous equation, we obtain

(A cos 2f3 + B sin 2(3) - 2 cos f3(A cos f3 + B sin (3) = 0

A(cos 2f3 - 2 cos2(3) + B(sin 2f3 - 2 sin f3 cos (3) = 0

. Because cos 2f3 - 2 cos2f3 = 1 and sin 2f3 - 2 sin f3 cos f3 = 0, we have

A(l) + R(O) = 0

:.A = 0

Boundary conditions. The difference equation (9.6.2) is restricted to 1 :<:: n :<::
(N - 1) and must be extended to n = 0 and n = N by the boundary conditions.

At the ground, the amplitude of motion is zero, Xo = O.Equation (9.6.2) for mass
m1 then becomes

(9.6.5)

(9.6.4)

(9.6.3)

(9.6.2)

The general solution for Xn is

Xn = A cos f3n + B sin Bn
where A and B are evaluated from the boundary conditions.

= 2(1 - cos (3) = 4 sin 2
~

k

22k
1 -

eif3 + e-i/3
= cos f3

which leads to the relationship

w2m

which for harmonic motion can be represented in terms of the amplitudes as

Xn+l - 2(1 - W;; )Xn + Xn-1 = 0
The solution to this equation is found by substituting

X; = eif3n
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FIGURE 9.6.2. Natural frequenciesof a
repeated structurewithN = 4.

For m =~mi4 2

[k. (2i - 1)1T
Wi = 2~;; SIn 2(2N + 1)

Figure 9.6.2 shows a graphical representation of these natural frequencies when N = 4.

and

~ (2 - 1)1T
2 2(2N + 1)

If the top mass ism instead of ~m, the boundary equation results in a slightly dif­
ferent equation

(9.6.9)

The natural frequencies are then available from Eq. (9.6.4) as

2 [k . f3i
Wi = ~;;; sm2

= 2 {k sin (2i - 1)1T
~; 4N

cos f3N = 0

1T 31T 51T (2i - 1)1T---
4N '4N '4N"'" 4N

f3
2

which is satisfied by

sin f3cos f3N = 0

sin f3(N - 1) + cos f3 sin f3N

This equation then reduces to

(9.6.8)XN_1 = (1 - W;; )XN

Substituting from Eqs. (9.6.4) and (9.6.7), we obtain the following equation for evaluat­
ing the quantity f3:
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9.1. Find the wave velocity along a rope whose mass is 0.372 kg/m when stretched to a teO'
sion of 444 N.

9.2. Derive the equation for the natural frequencies of a uniform cord of length I fixed at the
two ends.The cord is stretched to a tension T and its mass per unit length is p.

9.3. A cord of length I and mass per unit length p is under tension Twith the left end fixed
and the right end attached to a spring-mass system, as shown in Fig.P9.3.Determine the
equation for the natural frequencies. .

PROBLEMS
•

which is the exact equation for the longitudinal vibration of the uniform rod. For higher frequen~
cies, the assumption sin (J = (J will not be valid (see Fig. 9.6.2), and Eq. (a) for the discrete mass
system must be used.

(b)

for the lower frequencies. The previous equation can then be approximated by

Wi == (2i - 1)i~~~, i «N

If N is very large, the angle 7T/4N is small and

. (2i - 1)7T (2i - 1)7T
SIn 4N == 4N

(a)

Solution By letting l = L/ N for the repeating section, the spring stiffness for the section is
k = AE/l and the mass is m = M/N. Substituting into Eq. (9.6.9), we obtain

_ _I AEN2 . (2i - 1)7T
Wi - 2 \j M L SIn 4N

FIGURE9.6.3. Difference equation applied to a longitudinal system.

k...~
m m=-W

~~ A_,_M_'_L _JJ

Example 9.6.1
Figure 9.6.3 shows a fixed-free rod modeled byN repeated spring-mass sections. Because the dif~
ference equation solution of the N-story building is applicable here, express the natural fre~
quency equation in terms of the parameters of the rod for longitudinal vibration.

The method of difference equation presented here is applicable to many other
dynamical systems where repeating sections are present. The natural frequencies are
always given by Eq. (9.6.9); however, the quantity f3 must be established for each prob~
lem from its boundary conditions.
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by a change in variable Z2 = 4w2x/g.
9.S. A particular satellite consists of two equal masses of m each, connected by a cable of

-length 21 and mass density p, as shown in Fig. P9.8. The assembly rotates in space with.

Y(z) = Jo(z) or

Y(x) ~ Jo(2W~)

with solution

9.7. In Prob. 9.6, assume a solution of the form y = Y(x) cos w± and show that Y(x) can be
reduced to a Bessel's diff~rential equation

d2Y(i) + !dY(x) + Y(z) = 0
---;[T z dz .

FIGURE P9.6.

T
1

y = a cos kx .sin wt

Show that if another harmonic vibration of same frequency and equal amplitude dis­
placed in space phase and time phase by a quarter wavelength is added to the first vibra­
tion, the resultant vibration will represent a traveling wave with a propagation velocity
equal to c = w/k.

9.5. Find the velocity of longitudinal waves along a thin steel bar. The modulus of elasticity
and mass per unit volume of steel are 200 x 109N/m2 and 7810 kg/m", respectively.

9.6. Shown in Fig. P9.6 is a flexible cable supported at the upper end and free to oscillate
under the influence of gravity. Show that the equation of lateral motion is

a 2Y = g (x a 2Y + ay)
---;;ti ax 2 ax

9.4. A harmonic vibration has an amplitude that varies as a cosine function along the x-direc­
tion such that

FIGURE P9.3.
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FIGURE P9.12.

9.12. The frequency of magnetostriction oscillators is determined by the length of the nickel
alloy rod, which generates an alternating voltage in the surrounding coils equal to the fre­
quency of longitudinal vibration of the rod, as shown in Fig. P9.12. Determine the proper
length of the rod clamped at the middle for a frequency of 20 kcps if the modulus of elas­
ticity and density are given as E = 30 X 106Ib/in.2 and p = 0.31Ib/in.3, respectively.

Reducing this system to a spring k and an end mass equal to M + ~Mrod' determine an
appropriate equation for the fundamental frequency. Show that the ratio of the approxi­
mate frequency to the exact frequency found is

(1/{3I)V3r/(3 + r)

M = end mass

Mrodr= --
M

n.l = {31,

k = AE
I '

where

9.11. Show that the fundamental frequency for the system of Prob. 9.10 can be expressed in the
form

wi {E_ tan wi {E_ = Aplg~E ~E w

9.9. A uniform bar of length I is fixed at one end and free at the other end. Show that the fre­
quencies of normal longitudinal vibrat.ions arc f = (n' + ~)c/2/, where c = VETP is the
velocity of longitudinal waves in the bar,and n = 0,1,2, ....

9.10. A uniform rod of length I and cross-sectional area A is fixed at the upper end and is
loaded with a weight W on the other end. Show that the natural frequencies are deter­
mined from the equation

FIGURE P9.S.

m

angular speed WOo Show that if the variation in the cable tension is neglected, the differen­
tial equation of lateral motion of the cable is

a2y p (iJ2y 2)ax 2 = mw~1 atr - w(i.Y

and that its fundamental frequency of oscillation is
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10 = WI p2 (rotational mass moment of inertia)
g

Calculate the new cable tension, the cable torsional stiffness, the new vertical and tor­
sional vibration frequencies, and compare with previous values. (Assume a reasonable
value for the radius of gyration p in determining the torsional mass moment of inertia.)

9.18. Name some of the factors not accounted for in the method presented in Sec. 9.4 for the
calculation of the natural frequencies of suspension bridges.

9.19. The new Tacoma Narrows Bridge, reopened on October 14,1950, has the following data;

l = 2800 ft (between towers)

b = 60 ft (width between cables)

k = 280 ft (maximum sag of cables)

WI = 8570 lb/lineal ft

FIGURE P9.17.

~'--) -----~
~H 1~.1

9.13. The equation for the longitudinal oscillations of a slender rod with viscous damping is

a 2u a 2u all p)
m af2 = AE ax2 - exat + -t p{x)/{t)

where the loading per unit length is assumed to be separable. Letting u = 2.;<p;(x)q;(t)
and p{x) = L;bi<p;(x) show that

u = Po L~ (/{t - T)e-~wkTsin Wj~ TdT
ml~ Wj Jo

hj = 7 J,'p(x)4>ix) dx

Derive the equation for the stress at any point x.
9.14. Show that c = V G/ p is the velocity of propagation of torsional strain along the rod.

What is the numerical value of c for steel?
9.15. Determine the expression for the natural frequencies of torsional oscillations of a uni­

form rod of length I clamped at the middle and free at the two ends.
9.16. Determine the natural frequencies of a torsional system consisting of a uniform shaft of

mass moment inertia Is with a disk of inertia 10 attached to each end. Check the funda­
mental frequency by reducing the uniform shaft to a torsional spring with end masses.

9.17. A uniform. bar has these specifications: length I,mass density per unit volume p, and tor­
sional stiffness I pG, where I p is the polar moment of inertia of the cross section and G the
shear modulus. The end x = 0 is fastened to a torsional spring of stiffness K lb . in./rad,
and the end I is fixed, as shown in Fig. P9.17. Determine the transcendental equation
from which natural frequencies can be established. Verify the correctness of this equation
by considering special cases for K = 0 and K = 00
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tanh f3l = tan f3l

9.30. The pinned end of a pinned-free beam is given a harmonic motion of amplitude Yo per­
pendicular to the beam. Show that the boundary conditions result in the equation

~ = sinh f3l cos f3l - cosh f3l sin f3l
Yr sinh f3l - sin f3l

which, for Yo~ 0, reduces to

where

1 = 4200 ft

h = 470 ft

b = 90 ft

WI = 28,720 lb/ft (total weight per lineal foot, including cables)

Determine the cable stiffness Tb2 in torsion and compare with the old and new cable
stiffnesses of the Tacoma Narrows Bridge found in Prob. 9.19.

9.21. For a 1-DOF model of an airplane wing, assume an equation of the form

10 e + cO + kO = fl(v, 0) + f2(V, 0)
where 0 is the angle of attack and v is the wind velocity. Discuss the possibility of nega­
tive damping and the importance of the aerodynamic characteristics of the floor and
stiffness girders for suspension bridges.

9.22. Determine the expression for the natural frequencies of a free-free bar in lateral vibration.
9.23. Determine the node position for the fundamental mode of the free-free beam by

Rayleigh's method, assuming the curve to be Y = sin(7Tx/l) - b. By equating the
momentum to zero, determine b. Substitute this value of b to find Wj'

9.24. A concrete test beam 2 x 2 x 12 in., supported at two points 0.2241 from the ends, was
found to resonate at 1690cps. If the density of concrete is 153 lb/ft ', determine the mod u­
Ius of elasticity, assuming the beam to be slender.

9.25. Determine the natural frequencies of a uniform beam of length 1clamped at both ends.
9.26. Determine the natural frequencies of a uniform beam of length I, clamped at one end

and pinned at the other end.
9.27. A uniform beam of length 1 and weight Wb is clamped at one end and carries a concen­

trated weight Wo at the other end. State the boundary conditions and determine the fre­
quency equation.

9.28. Solve Prob. 9.27 for the fundamental frequency by the method of equivalent mass placed
at the free end.

9.29. If a satellite boom of uniform weight Wb is loaded with concentrated load WI at x = Xl and
an end load Wo' show that its fundamental frequency can be obtained from the equation

WI = ~~7{t

9.20. The following data on the Golden Gate Bridge was obtained from reports provided by
the district engineer for the bridge:
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FIGURE P9.3S.

9.35. An N-mass pendulum is shown in Fig. P9.35. Determine the difference equations, bound­
ary conditions, a~d the natural frequencies.

FIGURE P9.34.

9.34. Write the difference equations for the spring-mass system shown in Fig. P9.34 and find
the natural frequencies of the system.

FIGUREP9.33.

9.32. Set up the difference equations for the torsional system shown in Fig. P9.32. Determine
the boundary equations and solve for the natural frequencies.

9.33. Set up the difference equations for N equal masses on a string with tension T,as shown in
Fig. P9.33. Determine the boundary equations and the natural frequencies.

FIGUREP9.31.

N2

FIGURE P9.32.
o

¢2 = A [COS f3x + cosh f3x - (C~S f3l2 + c~sh f3l2 ) (sin f3x + sinh f3x) ]
sin f3/2 + smh f3l2

where x is measured from the left and right ends.

(
. sin f3l. )¢I = C sin f3x - -:--h II sinh f3x'; sin f3 I

9.31. A simply supported beam has an overhang of length 12, as shown in Fig. P9.31. If the end
of the overhang is free, show that boundary conditions require the deflection equation
for each span to be .
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9.39. If the base of an N-storY.building is allowed to rotate against a resisting spring K8, as
shown in Fig. P9.39,determine the boundary equations and the natural frequencies.

,9.40. The natural frequencies and normal modes presented for the lO-DOF system of
Example 6.10.1 were obtained from the eigenvalue-eigenvector computer program.
Verify these numbers by the use of Eq. 9.6.9 for wn and X; =-B sin {3n for the amplitude.

K(I

FIGURE P9.39.

O-rl""~r­
FIGUREP9.38.

N

9.38. A ladder-type structure is fixed at both ends, as shown in Fig. P9.38. Determine the nat-
ural frequencies. .

FIGURE P937.

9.37. If the top story of a building is restrained by a spring or stiffness KN, as shown in Fig. P9.37,
determine the natural frequencies of the N-story building.

FIGURE P9.36.

9.36. If the left end of the system of Prob. 9.35 is connected to a heavy flywheel, as shown in
Fig. P9.36, show that the boundary conditions lead to the equation

(-sin N{3 cos f3 + sin N(3)( 1 + 4 :a~ sirr' ~) = -2 ~ sin? ~ sin f3 cos Nf3
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9.42. A ball hits the baseball bat at its end at time t = 0 with the speed of v rn/s. The speed of
the bat at that moment is v m/s in the direction opposite to that of the ball. Assuming
that the player is holding the bat tightly at one end which is not moving, determine the
natural frequency of the first mode.

FIGUREP9.41.

9.41. Two beams of the same flexural rigidity E1 are connected by a spring of stiffness k as
shown in the Fig. P9.41. Determine the equations of motion. Determine the fundamental
frequency of the antisymmetric mode (i.e., where Yl = -Yz).
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287

Axial element. An element with pinned ends can support only axial forces and
hence will act like a spring. Figure 10.1.1 shows a spring and a uniform rod pinned to a

10.1 ELEMENT STIFFNESSAND MASS

In Chapter 6, we were able to determine the stiffness matrix of simple frame structures
by considering the structure as an assemblage of structural elements. With the forces
and moments at the ends of the elements known from structural theory, the joints
between the elements were matched for compatibility of displacements and the forces
and moments at the joints were established by imposing the condition of equilibrium.

In the finite element method, the same procedure is followed, but in a more sys­
tematic way for computer calculation. Although structures with few elements can be
analyzed simply by the method outlined in Chapter 6, the "bookkeeping" for a large
structure of many elements would soon overcome the patience of the analyst. In the
finite element method, element coordinates and forces are transformed into global
coordinates and the stiffness matrix of the entire structure is presented in a global sys­
tem of common orientation.

The accuracy obtainable from the finite element method depends on being able
to duplicate the vibration mode shapes. Using only one finite element between struc­
tural joints or corners gives good results for the first lowest mode because the static
deflection curve is a good approximation to the lowest dynamic mode shape. For
higher modes, several elements are necessary between structural joints. This leads to
large matrices for which a computer is essential in solving for the eigenvalues and
eigenvectors of the system.

This chapter introduces the reader to the basic ideas of the finite element method
and also includes the development of the corresponding mass matrix to complete the
equations of motion for the dynamic problem. Only structural elements for the axial
and beam elements are discussed here. For the treatment of plates and shells, the
reader is referred to other texts.

Introduction to the Finite
Element Method
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FIGURE 10.1.4.

!1_~_ 2.

u2.=1

kk

~ 'iF, !

u1=1 u2.=O

FIGURE 10.1.3.

FIGURE 10.1.2.FIGURE 10.1.1.

1 k 2
F, ----:_c::::==============_::o-~

V, u2.

u
~ EA/I H~ ....___ F={EA/l}u

\--1--1

, k n
F=ku

~ .

Mode shape and mass matrix for axial element. With the two ends of the axial
member displaced by u1 and u2, the displacement at any point t = xll is assumed to be a

These equations thus define the stiffness matrix for axial elements in terms of axial
coordinates uj and axial forces Fj, regardless of the orientation of the axial member.

(10.1.3)

(10.1.2'){ FI} = kl 1 -1 ]{ul}
F2 L -1 1 u2

If the spring is replaced by a uniform rod, k = AE/l and the equation becomes

(10.1.2){ Fl} = [kll k12]{U1}

F2 k21 k22 u2
The elements of the first column of the stiffness matrix represent the forces at the two
ends when u1 = 1 and u2 = 0, as shown in Fig. 10.1.3.Thus, FI = kUI and F2 = -kul·

Similarly, by letting u2 = 1 and u1 = 0, we obtain, as in Fig. 10.1.4,F, = -ku2 and
F2 = ku.; Thus, Eq. (10.1.2) becomes

(10.1.1)
Uniform rod F= (E: ),;

In general, these axial elements can be a part of a pin-connected structure that
."allows displacement of both ends. In the finite element method, the displacement and
force at each end of the element must be accounted for with proper sign. Figure 10.1.2
shows an axial eiement labeled with displacements u1; U2, and forces F], F2, ali in the
positive sense. Ifwe write the force-displacement relationship in terms of the stiffness
matrix, the equation is

f= kuSpring

stationary wall and subjected to a force F.The force-displacement relationships for the
two cases are simply
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.(10.1.7)~l [~ ~]

The terms of the mass matrix are also available from

m'j =. f 'P,'Pjdm

which establishes the mass matrix for the axial element as

(
1 .. J. •• )= mi. -u + -u3 I 6 2

(
1.. 1.. )= ml -u + -u6 I 3 2

d aT
dt aUl
d aT
dt aU2

we find

(10.1.6)
_ 1 (1. 2 1.. 1 . 2)- "2 ml "3 ul + "3 U1U2 + "3 u2

Because the generalized mass from Lagrange's equation is

d aT
dt au;

and writing the equation for the kinetic energy. We here assume uniform mass distribu­
tion m per unit length.

I 1

T = i fo u'm fix = im f. [(1 - ~)U1 + ~u,l'ld~

The mass matrix is found by expressing u as the sum of the two mode shapes:

u = (1 - ~)Ul + ~U2 (10.1.5)

(10.1.4)(/)1 = (1 -~) and qJ2 = ~

straight line, as shown in Fig. 1O.1.5(a).The displacement is,therefore, the superposition
of the two mode shapes shown in Fig. 10.1.5(b). The normalized mode shapes are then

FIGURE 10.1.5.

(b)

d dt
dt dU.

I

(0)
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Special case. If Aa = Ab = A, l~ = lb = ~L, and Ma = Mb = fM, the previous
problem becomes that of a uniform bar of total length L and total mass M, solved as a
2-DOF system with coordinates at the midpoint and the free end. The equation of the
previous problem then becomes

We note here that the stiffness matrix is singular and does not have an inverse. This is to be
expected because no limitations have been placed on the displacements. The first and third rows of
the stiffness matrix, as it stands, result in kaCu1 - u2) = kb(U2 - u3) = 0, which indicates that no rel­
ative motion between coordinates takes place, a situation corresponding to rigid-body translation.

Ifwe fix point 1so that u1 = 0, then the first column of the matrices can be deleted. The sec­
ond and third rows then result in the following equation for the longitudinal vibration 'of the
two-section bar:

(10.1.9)

(10.1.8)

where ka = EAjla' kb = EAbllb, M; = mala' and Mb = mhl".
The element matrices have a common coordinate Li2, and by superimposing them, they can

be assembled into a 3 x 3 matrix as follows:

Solution Numbering the joints as 1,2, and 3, we have two axial elements, 1-2, and 2-3, ~ith
displacements U1, u2, and u3. Although U1 is zero, we at first allow it to be unrestrained and later
impose its zero value.

The element mass and stiffness terms from Eqs. (10.1.7) and (10.1.3) are as follows:

Element a: ~"G ~J k,,[ -: -:]

Element b: ~b[~ ~] kb[ .: -~]

32FIGURE 10.1.6.

ba

Determine the equation of motion for the longitudinal vibration of the two-section bar shown in
Fig. 10.1.6.

Example 10.1.1
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Computer program. The program bar.m is a MATLAB® script file which com­
putes the natural frequencies as determined by a finite element method for a can­
tilever bar. Since it allows the elements to have different properties, this program can
be used to model bars that have variable properties. This program proinpts the user to
input the length of the bar; the number of elements desired; the mass of each element;
the elastic modulus of each element; and the cross-sectional area of each element. It

Variable properties. One simple approach to problems of variable properties is
to use many elements of short length. The variation of mass or stiffness over each ele­
ment is then small and can be neglected. The problem then becomes one of constant
mass and stiffness for each element that simplifies the problem considerably because
these terms can be placed outside of the integrals. Of course, the larger numbers of ele­
ments will lead to equations of larger DOE

•

Comparison between the two indicates that the agreement between the results of the
2-DOF finite element model and that of the continuous model is 2.6 percent high for
the first mode and 19.5 percent high for the second mode. A three-element model will
of course be expected to give closer agreement.

{

rEA
w = 1.5708 ~ ~L

'EA
4.7124 ~ML

The natural frequencies of the uniform bar in longitudinal vibration are known
and are given by the equation Wi = (2n + 1)(7T/2)VEA/ ML. Results computed from
this equation for the first two modes are

{

1.6115 rEA
w= '{iii

lEA
5.6293 ~ ML

A = {0.1082
1.3204

Its solution results in

or

~(1 + A)I = 0
(1 - 2A)1

(2 - 4A)
-(1 + A)

If we let A = w2ML/24EA, the characteristic equation for the natural frequen­
cies becomes
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FIGURE 10.2.2.

v,=11L_____-------- ~~

~/V, ~/~

M,. et(1t::1=========£;=========12bM2• e2
FIGURE 10.2.1.
Positive sense of beam
displacement and forces.

Beam stiffness. If the ends of the element are rigidly connected to the adjoining
structure instead of being pinned, the element will act like a beam with moments and
lateral forces acting at the joints. In general, the relative axial displacement U2 - Ul will
be small compared to the lateral displacement v of the beam and can be assumed to be
zero. When axial forces as well as beam forces and moments must be considered, it is a
simple matter to make additions to the beam stiffness matrix, as we show later.

The local coordinates for the beam element are the lateral displacements and
rotations at the two ends. We consider only the planar structure in this discussion, so
that each joint will have a lateral displacement v and a rotation e, resulting in four
coordinates, Vl' el and v2, e2.The positive sense of these coordinates is arbitrary, but for
computer bookkeeping purposes, the diagram of Fig. 10.2.1 is the one accepted by
most structural engineers. Positive senses of the forces and moments also follow. the
same diagram,

The preceding displacements can be considered to be the superposition of the
four shapes, labeled GOl(X), G02{X), G03{X), and GOix), shown in Fig. 10.2.2.The forces and
moments required at the two ends were found in Chapter 6 and are shown in Fig. 10.2.3
with the factor £1/13 omitted. The diagram immediately leads to the force-stiffness
equation:

10.2 STIFFNESSAND MASS FOR THE BEAM ELEMENT

then constructs the mass matrix and the stiffness matrix for the model. For the 3 x 3
cases these matrices are given in Eqs. 10.1.8 and 10.1.9. From these it constructs the :
dynamic matrix. The natural frequencies are determined from the eigenvalues of the
dynamic matrix. See Appendix F for more information about this program.
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6tv1(l_,_2V._, _

-------

(10.2.4)!~l-l= t~--a~--~-]!~~lV2 1 1: 1 1 P3
182 0 1: 2 3 P4

Ifwe apply the boundary conditions ~= 0 and ~ = 1, the boundary equations can
be expressed by the following matrix equation:

(10.2.3)

Differentiating yields the slope equation

LO(x) = P2 + 2P3~ + 3p4e

and Pi = constants
x

~= -
I

where

(10.2.1){~1}= E:t_~__--~~-~~~---?~~-~{~:}F2 I -12 -61 I 12 -61 v2
M2 61 212: -61 412 (}2

Equation (10.2.1) for the stiffness was obtained from the given forces and
moments shown in Fig. 10.2.3. The stiffness matrix as well as the mass matrix can also
. be determined from the potential and kinetic energy, provided the shape functions
'PJx) of the beam are known.

For the development of the general equation of the beam, which is a cubic poly­
nomial, the deflection is expressed in the form

vex) = Pl + P2~ + P3e + P4e (10.2.2)
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.J,""

; (10.2.8)

where qj has been substituted for the end displacements.
To determine the generalized mass, the preceding equation is substituted into the

equation for the kinetic energy.

T = ~ J y2m dx = ~ ~ ~ qiqj J "';'Pjm dx

(10.2.7)
y(X) = c,oIVI + c,oA + c,03V2 + c,04(J2

= (/>lql + (/>2q2 + (/>3q3·+ (/>4q4

Generalized mass and generalized stiffness. By considering the displacement in
general to be the superposition of the four shape functions shown in Fig. (10.2.2), we
have

(10.2.6)

The other two 'Pj(x) are obtained in a similar manner. In summary, we have the follow­
ing for the four beam shape functions:

.'PI(X) = 1- 3e + 2e
'P2(X) = II;- 2/e + Ie
'P3(X) = 3e - 2~3

'P/x) = -Ie + Ie

and

'PI(X) = 1- 3e + 2e
Similarly, the second column corresponding to (JI = 1 gives

PI=O, P2=1, P3=-21, andp4=1

PI=l, ·P2=0, P3=-3, and P4=2

Substituting these into Eq. (10.2.2) gives the shape function for the first configuration
of Fig. 10.2.2 of

(10.2.5)1;~1= t-~-----~--)----~1[-1;11P3 - 3 - 2 I 3 -1 V2
I

P4 2 1: - 2 1 I (J2
This equation enables the determination of the P, for each of the displacements

equated to unity with all the others equal to zero. That is, for vt(x) = 1 with all other
displacements equal to zero, the first column of Eq. (10.2.5) gives

With the matrix partitioned as shown, it is evident that PI and P2 are related to VI and
WI by a unit matrix. After substituting PI = VI and P2 = I(JI' we can easily solve the last
two rows of the matrix for P3 and P 4' The desired inverse of Eq. (10.2.4) then becomes
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IJ. S. Archer, "Consistent Mass Matrix for Distributed Mass Systems," J. Struct. Div. ASCE, Vol. 89,
. No. STA4 (August 1963), pp.161-178.

FIGURE 10.3.1.

(b)(0)

-i

v

In determining the stiffness matrix of the entire structure in terms of local elements, it
is necessary first to match the displacements of the adjacent elements to ensure com­
patibility. In Chapter 6, this was done by examination of each joint, taking account of
the orientations of the adjoining members at each joint.

In the finite element method, this requirement for displacement compatibility is
simplified by resolving the element displacements and forces into a common coordi­
nate system known as global coordinates.

Consider again a planar structure and examine a local element <D,® at an angle
a with the global coordinates Ii,V,which will be assumed in the horizontal and vertical
directions, as shown in Fig. 10.3.1(a).

The displacement r1 of joint <Dto <D'must be the same in both the local and
global coordinates. This requirement can be expressed by the equation

r1 = u1i + vd = u1i + tid

10.3 TRANSFORMATION OF COORDINATES (GLOBAL COORDINATES)

The matrix is called consistent mass, because it is based on the same beam functions
used for the stiffness matrix. 1

Thus, the generalized mass mij, which forms the elements of the mass matrix, is equal to
I

mij = f 'Pi'Pjm dx (10.2.9)
. 0

Substituting the four beam functions into Eq. (10.2.9), the mass matrix for the
uniform beam element is expressed in terms of the end displacements:

ml [-~~~-- __!~~_l__:;__--~~~~] (10210)
420 54 131: 156 - 221 . .

-131 -312: -221 412I
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(10.3.5)F= kr

where T is the transformation matrix, and r,F and r, F are the displacement and force
in the local and global coordinates, respectively. We add to this the relationships
between rand F, which is the stiffness matrix:

(10.3.4)F= TF
r = T'i

where c = cos a and s = sin ll'. It is easily seen that the transformation matrix devel­
oped for displacements also applies for the force vector.

In shorter notation, we can rewrite the transformation equations from local to
global coordinates as

UI C 0 • ulS •
•

VI -s C 0 • 0 ViI

1 •
_~L 0 0 • _~L• (10.3.3)- - -- - --- - - - -.- - - - - - -- - - -
U2 • C S 0 U2

•
V2 0 I -s C 0 V2I

82 0 0 1 (J2

Thus, the transformation matrix for any element making an angle ll'measured counter­
clockwise from the horizontal is

o
(10.3.2)i = 1,2

sin a
cos a

The preceding equation expresses the local coordinates u1, VI in terms of the global
coordinates 111' VI. "Theseresults are readily confirmed geometrically from Fig. 10.3.1(b).

Similarly, the displacement at joint @ in local coordinates can be expressed in
terms of the global coordinates by the same transformation equation. The rotation
angle for the two coordinate systems must be, of course, the same, so that (J= 0.We
can then include 8 in the transformation matrix as

(10.3.1)

UI + 0 = ul cos a + VI sinc

. Next taking the dot product with j, we obtain

o + VI = -"ill sin a +VI COS a

Thus, we can express these results by the matrix equation

or

where i, j and i, J are unit vectors for the two coordinate systems. Forming the dot
product for the preceding equation with i, we obtain

ul(i·i) + vI(j·i) = ul(i·i) + vIO·i)

Introduction to the Finite Element Method296 Chapter 10
..

www.semeng.ir

http://www.semeng.ir


2SeeAppendix C.

(10.4.2)
t

·1 0: -1 Ol{Ul}
.-~J{~:}= E: -~~---6-H--%j::

o 0: 0 0 v2

~J{t} = ~J1-·Hi---i]{~}
[0 ·0: 0 0 v2

These 4 X 4 matrices can then be substituted into Eq. (10.3.8) in order to convert them
to the global coordinates:

We note here that the stiffness and mass matrices for the axial element are of order
2 X 2 and, therefore, must be rewritten as a 4 x 4 matrix as follows:

(10.4.1 )T = [~i--;t---~--~]
[ : = s c

Axial elements. For axial elements, the end moments are zero and the end
forces and displacements ·are collinear with the element length. Thus, for systems
involving only axial elements, the 6 X 6 transformation matrix reduces to the following
4 x 4 matrix:

10.4 ELEMENT STIFFNESSAND ELEMENT MASS IN GLOBAL
COORDINATES

( 10.3.7)
F = tt».
= TTkTi = ki

Thus, k for local coordinates is transformed to k for global coordinates by the equation

k = TTkT (10.3.8)

Here we have taken note that transformation matrices are orthogonal matrices and
T-1 = TT.2Substituting for F from the stiffness equation and replacing r in terms of r,
we obtain

and which we wish to write in the global system as F = kr. From Eq. (10.3.4), we have

F = T-1p = TTp (10.3.6)
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FIx uj

~IY. Vj

F2x = [K] u2

~2Y v2
F3x u3,
F3y 1)3

The global stiffness of each element is determined from Eq. (10.4.3) by substituting sin a
and cos a for the particular member.

Element a (1 to 2):

4 3c='5,s='5

k(Ja = 215 (E:)[-:~i--~:{--i-~1~--~;~]{~:}
-12 - 9: 12 9 1)2

Solution The structure is composed of three pinned members a, b, c with joints 1,2,3. Each
joint has 2 DOF in the global system, and the six forces and displacements are related by the fol­
lowing equation:

FIGURE 10.4.1.

(0)

~

p
il~ 5 ~2
(b)

Determine the stiffness matrix for the 3,4,5 oriented pinned truss of Fig. 10.4.1.

Example 10.4.1
•

(10.4.4)

(10.4.3)
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0 0 1 :0 0 ut1
125 , I _125

0 , :0 _1)_3 I 3-------~------r-------
(~~) 1 11 11 11 1

I 1~o---0- -:-- - - - -:"(f - - -0--
U3

I I

0 1251 :0 125
V3-3: I 3

In order to find the proper location for kc' it can be separated into four 2 X 2
matrices, which can be arranged as

12 -16 1 -12 u111
12 9 -12 1 -9 VI1

(~~) -16 -12 :-16+ 1~5 : 12 125 0-:1 1 -4 1 U2

-9 12 1 9 0 0: v21125 125 1
-4 0 4 0: U31

L 0 0 0 01 V3_I

These must now be assembled for the 6 X 6 stiffness equation. The matrices for a
and b have a common displacement {~:},and it is easily seen that they fit together 'with
an overlap of the section associated with the common displacement:

[
0 0: 0 0] f u3 }~ ;5 (E:) 6---!-H--~~~-t
o -~ 1 0 125 -

3, 1 3 VI

Element c (3 to 1):
c = 0,s = -1

[

125 0: _125 O]fU}
= _l (EA) __~ Qj_~~ q_ _v_:_

25 \ I _1~5 0: 1~5 0, u3

o 0: 0 0 1)3

[

1 0: -1 0]fU2}k r = (5EA) __Q__ Q_~ __ q_ __ q_ _~2_
b b 4l - 1 0 1 1 0 u3

1

. 0 0: 0 0 V3

Element b (2 to 3):

c=-1,s=0
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•

- (EA)[ PI PI ]Fix = 251 -16 X 1.066EA + 12 x 4.200EA = 1.333P

Fly = 1.000P
F3x = -1.333P

F3y = 0
Of course, these reactions are easily found by taking moments about the fixed pins;
however, this example illustrates. the general procedure to be followed for a more com­
plex structure.

With these values,.the reaction forces at pins 1 and 3 are

_ ( 251 ) PI
u2 = 281.25EA (12P) = 1.066EA

_ ( 251 ) PI
V2 = 281.25EA (-47.25P) = -4.200 EA

Thus, the horizontal and vertical deflections of joint 2 are

{ li2} (25/) 1 [ 9v2 = EA 281.25 -12

which can be inverted to

{~p} = (~~) [47.~~ l~J{~~}
The middle two rows are

Fix -16 -12

_F_11_ -12 -9-----------------

{~~}0
= (~~)

16 + 31.25 12
-P 12 9-----------------
F3x -31.25 0
F3y 0 0

We now impose the condition of zero displacement for joints 1 and 3, which
wipes out columns 1,2,5, and 6, leaving the equation

Fix

f_l_y_
F2x

_~~_
F3x

F3y

Superimposing these three matrices, we see that the stiffness matrix for the truss is
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where N = (~l~~)= 140

These 6 X 6 element matrices are transformed to global coordinates (with bars
over the letters) by the equations k = TTkT and m = TTmT:

(10.4.6)

N 0 0: IN 0 0
I 2

o 156 221: 0 54 -131
I

o 221 4/2: 0 131 -3/2 .----------------+-----------------tN 0 0:. N 0 0
Io 54 131: 0 156 -221
Io -131 -312: 0 -221 4/2

ml
m=

420

where R = ( E: ) ( :1) = A;'

(10.4.5)

ROO : -R 0 0
. Io 12 61: 0 -12 61

EI O. 61 4/2: 0 -61 212
k = r -=--R----O-----O--:--R"----o-----O--

I

o -12 - 61: 0 12 - 61
Io 61 2/2: 0 - 61 4/2

The element matrices to be used in the transformation then become

200:100
I

000:000
I

ml _q __ 9__.9_LQ__9 0_
6100:200

. I

o 00: 0 0 0
I

o 00: 0 0 0

1 0 0 :-1 0 0 u1
I

o 0 0: 0 0 0 v\
I

EA 0 0 0: 0 0 0 (Jt
-1- --= i---6---0-:-- i"-6---6

I U2

o 0 0: 0 0 0 V2

L 0 0 0: 0 0 0 (J2

Beam element. The stiffness and mass matrices for the beam element are of
order 4 X 4, whereas the transformation matrix is 6 X 6. Thus, to transform these
matrices for the global coordinates, we need to modify them by adding the axial com­
ponents rearranged as follows:
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~
(a) (b)

I
~112 t/: --1

(1 t)
(1) (2)

.ct t)
(2) (3)

FIGURE 10.5.1. Uniform cantilever beam.

{

V11

Displacement vector ~: J
[

12 31: -12 3/]
Stiffness (8~I) _}! ~2__ -1-~ }{. __ QJ!~

I -12 -31 I 12 -31
I

3/· 0.5[2 : -31 P

Example 10.5.1
The beam in Fig. 10.5.1 is considered as two equal elements of length 1/2, whose stiffness and
mass matrices are given by Eqs. (10.2.1) and (10.2.10). With 1/2 substituted for I, the element
matrices are as follows:

Element a:

To illustrate the finite element method for beams, we consider some problems solved
in Chapters 6 and 7.The object here is, first, to show how to assemble the system equa­
tion using two elements and, second, to reduce the degrees of freedom of the equation
by elimination of rotational coordinates.

10.5 VIBRATIONS INVOLVING BEAM ElEMENTS

(1004.8)

(Nc2 + 156s2) (N - 156)cs -22/s: ONc2 + 54s2) ON - 54)cs 13Is
(N - 156)cs (Ns2 + 156c2) 22/c: ON ~ 54)cs ONs2 + 54c2) -13/c

- 22/s 22/c 4/2: -13/s 13/c - 3/2
(IN~i ~-5-4~if - -(f;;=--54)~S-- - =- i3/~T (N~2-~ -1-56.~2)- - -(N: -156)c~- - - 22/~-
ON - 54)cs nNs2 + 54c2) 13/c: (N - 156)cs (Ns2 + 156c2) -22/c

l3ls -13/c -3/2: 221s -22/c 4/2

ml
m=-

420

(Rc2 + 12s2) (R - 12)cs -6/s : (- Rc2 - 12s2) (-R + 12)cs -'-6/s Ii
(R - 12)cs (RS2 + 12c2) 6/c I (-R + 12)cs ( - RS2 - 12c2) 6/c VI

- EI -6/s 412 I 2/26/c I 6/s -6/c e (1004.7)k = f3 -----------------------------~----------------------------
(-Rc2 - 12s2) (-R + 12)cs 6/s: (Rc2 + 12s2) (R - 12)cs 6/s
(-R + 12)cs (_RS2 - 12d -6/c : (R - 12)cs (Rs2 + 12c2) -6/c

-6/s 6/c 2/2 I 6/s -6/c 412I
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Computer program. The program beam.m is a MATLAB® script file which com­
putes the natural frequencies as determined by a finite element model for the can­
tilever beam. After prompting the user to input the length of the beam; the number of
elements desired; the mass of the beam; the elastic modulus of the beam; and the
moment of inertia of the beam, the program constructs the mass and stiffness matrices
for the model. For a beam composed of two equal elements, these matrices can be
found in Eq. (10.5.1).The dynamic matrix is then constructed from these two matrices.

•

+ (8 El) ·t~;----;~-L;~~--Q~!~]f~~l= {~2}
[3 -12 -3/: 12 -3/ V3 F3

3/ 0.5/2: - 3/ /2 (}3 M3

To solve for the free vibration of the beam, the force vector is made equal to zero and the
.acceleration vector is replaced by _(1)2 times the displacement.

(10.5.1)

Because VI = (}I = 0 due·to the constraint of the wall, the first two columns can be ignored. Also,
we are not concerned with the force and moment, FI and MI,respectively, in the vibration prob­
lem. We can, therefore, strike out the first two rows as well as the first two columns, leaving the
equation

:-Element a -: VI
I I

(}II I
I

1- :I -I
v2I I I I

I I I I

I I I
I (}2I

I- I _I I
I I V3I I

:_Element b_: (}3

With the global coordinates coinciding with the beam axis, the assembly of the system
matrix is simply that of superimposing the preceding matrices for elements a and b into a 6 x 6
matrix. That is, for the stiffness matrix, we have

Element b: Element b is the same as element a except for the displacement vector, which is
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(10.5.4)

(10.5.3)

(10.5.2)

The term

which in terms of th[::ginOal]q{u;n}ti:es(:~:o)m[[es_24 -12J .

o m-; V3 I . 12 12 .

[ 0 3(][ 2f 0.5/2J-l[ 0 -3/J]{V2} {OJ
- -31 -31 0.5[2 f 31 -31 .V3 = 0

MIlV + KlIV + KI20 = 0

K2IV + K220·= 0

From the second equation, 0 can be expressed in terms of V:

0= -K:;}K2IV

Substituting into the first equation, we have

Mll ii + (Kll - K12K:;}K21)V = °

which can be written as

rm2 0: 0lIV2} r 24 -12: 0 31 -'j(V2} (0')_9--0~]h--~- + (Srl --:?~--~~l-t-~j,~--o~~fi-~:- ~ -~-
L I 03 L.JI - 31 I 0.51 I 03 0

. The equation is now in the form

This is simply accomplished by interchanging columns 2 and 3 and rows 2 and 3, resulting in the
following equation:

The solution of the preceding equation requires an eigenvalue-eigenvector computer program.
However, we consider a simpler problem of replacing the uniformly distributed mass by lumped
masses at joints 2 and 3.The mass matrix is then a series of Osexcept for elements m22 and m33.

This suggests rearranging the preceding equation so that the displacement vector is in the
rearranged order

Example 10.5.2

Coordinate reduction

The eigenvalues of the dynamic matrix are computed and are used to determine the
natural frequencies of the model. For more information about the program, see
Appendix F.
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o
FIGURE 10.5.3.

3

ii

r------------,2r

Solution By labeling the joints as shown in Fig. 10.5.3, the stiffness and mass for each element
are available from Eqs. (10.4.7) and (10.4.8). Because joints 0 and 3 have zero displacements, we
. write only the terms corresponding to joints 1 and 2.

Example 10.5.3
Determine the equation of free vibration of the portal frame with identical elements.

•

w2ml 7/3 7 (mr \
A= -4 - . 48EI = w2 192 EI)

Al = 0.3632 WI = 3.516 exact value = 3.516

A2 = 9.637 ~ = 22.033 exact value = 22.034

4>1 = {~:~~~} ~2 = { -~:~~~}

where

[ -A[20 0] r 16
1 + l-5

The equation of motion and solution then becomes

FIGURE 10.5.2. Two-element discrete mass model of a
uniform cantilever beam.

~ f/2 1/2
~rJ=============~CC~'--------------Dmf mt mlm1=4 m2=-2- m3=-4-

An acceptable discrete mass distribution is one in which the mass of each element is divided
into half at each end of the element. Thus, if the total mass of the uniform beam of length I is ml,
the mass of each element isml/2 and m2 = 2(mI14) = ml12 and m3 = mL/4,as shown in Fig. 10.5.2.

Thus, the original 4 X 4 equation has been reduced to a 2 x 2 equation, the final form being

-301 = 48EI116
12 7/3-5

8EII 96
7/3 -30

is the reduced stiffness, and its value when multiplied out is
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15.6 0 221 :
o NO:

I

221 0 412 :
--- ---0--- --- -:-----,

I
I
I,

ml
420

12 0 61: U2
I

ORO: v2
- EI 6/. 0 4/2:. 02
k2-3 = r--:.lY---o--:_-6"z:---- U3

o -R 0: V3

61 0 2/2: 03

Element 2-3, a == 270°,c == O,s = -1:

N 0 0: ~N 0 0,
o 156 221: 0 54 -131

ml 0 221 4/2: 0 131 -3/2
ml-2 = 420 -rN-----o-----6-~-N-----O-----O-

2 ,

o 54 131: 0 156 -221
o -131 -3/2: 0 -221 4/2

. I

ooR o :-R

221 o

: 54 0 131
I

: 0 ~N 0
ml : -131 0 - 312
420 - - - - - - - - ~- -156-- - -0-- - -ii(

I

: 0 0 0

: -12 0 -61
I

: 0 - R 0
: 61 0 2P

---------~---------------
I 12 0 61 U1

.0 R 0 VI

61 0 4P 01

Element 1-2, a == 0°, c = 1,5 = 0:

mU-1 ==

- EI
kO-1 == P

0 12 61 0 -12 61
- EI 0 61 4/2 I 0 -61 212
kl-2 = f3 ---------------+---------------R 0 0 I R 0 0I

0 -12 -61 I 0 12 -61
0 61 212 0 -61 412

Introduction to the Finite ElementMethod
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FIGUR.E 10.5.4.

(b)( 0)

Example 10.5.4
Figure 10.5.4 shows the lowest antisymmetric and the lowest symmetric modes of free vibration
for the portal frame. Determine the natural frequencies for the given modes.

•

(c)

We next note that VI = v2 = 0, which eliminates columns 2 and 5 as well as rows 2 and 5. The
equation for free vibration with N = 140 substituted then becomes

_ w2ml t2;:L ~~~_L _7~c__-)~ {~~ }
420 70 0 : 296 221 u2

I _

o -3/2: 221 812 82

(b)

(156 + N) 0 22l ~N 0 0
o 156 22l I 0 54 -13l

ml 221 221 8/2: 0 131 - 3/2
420 ---TN - - - - - - 0---- -0- -1 -(156 -+-N) - --- - -0-- -----22[-

o 54 131: 0 (156 + N) -221
Io -131 -3/2: 221 -221 8t2

(12 + R) 0 6l : -R 0 0 ul

(12 + R)
I

0 6l : 0 -12 6l VI

EI 6l 6l 8[2 : 0 -6l 2[2 81 (a)f3 -----------------------~-----------------------
-R 0 o : (12 + R) 0 6l u2
0 -12 . -6l : 0 (12 + R) -6l v2

I

0 6l 212 : 6l -6l 812 82

Assembling these matrices, we have
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3When the determinant is multiplied out, [2 becomes a factor that cancels out. Thus, we can let [ ::: 1.0
in the matrices of the frequency equation without altering the values of A1 and A2•

Solution The condition of no extension of members ul = u2 is satisfied by adding column 3 to
column 1 in Eq. (c), Example 10.5.3.This eliminates the extension term R.We can also add row 3
to row 1 and rewrite the stiffness matrix as a 3 x 3 matrix:

Example 10.5.5
Figure 10.5.5 shows external loads acting on the portal frame. Examine the boundary condition
and determine the stiffness matrix in terms of the coordinates given.

•
{El

(d = 15.14'J -;;;[46A= -
11

Aand ca are then

[
_ w2ml (1 12) + EI (612) ] 8 = 0

420 1 13 1

The lowest natural frequency corresponds to the simple shape displayed in Fig. 105.4(a) and is of
acceptable accuracy. However, the second antisyrnmetric mode would be of more complex shape
and W2 computed with the few stations used in this example would not be accurate. Several more
stations would be necessary to adequately represent the higher modes.

Symmetric Mode: For the symmetric mode, we have u1 = u2 = 0 and 82 = - 81, Deleting
columns 1 and 3 and subtracting column 4 from column 2, we obtain just one equation for 81:

tt:
w2 = 32.68'J -;;;[4A2= 2.543

WI = 3.21 rEI~'J ~IAl = 0.0245

results in two roots:

(6 - 22A)11_:_
(10 - 5AW - 0

1

(12 - 366A)
(6 - 22A)1

By letting A= w2 mI4/420EI, the determinant' of this equation

221] + EI [12
512 13 61

Solution Antisymmetric Mode. The deflection and slope of stations 1 and 2 are identical, i.e.,
u1 = u2 and 81 = 82,These conditions are imposed on the preceding equation by adding column

3 to column 1 and column 4 to column 2.This results in identical equations for {~~} and {~~}:
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Solution We first establish the stiffnessmatrix of the beam without the springs [Fig.10.6.1(b)],but
with loads P and M acting at station 2.The stiffness matrix for each section 1-2 and 2-3 can be
assembled from the beam element matrix, Eq. (10.2.1). Noting that VI = 01 = V3 = 03 = 0, we
need only evaluate the portion of the matrix associated with the coordinates v2 and 02' which
becomes

Determine the stiffness matrix for the uniform beam with a linear and rotational spring, as
shown in Fig.10.6.1(a).

Example 10.6.1

In Chapter 9, spring constraints were treated by virtual work as generalized forces. The
same concept applies in the finite element approach. The point of application of the
spring must be chosen here as a joint station. Thus, the'load on the original structure in
global coordinates is supplemented by the spring force.

Because the spring force is always opposite to the displacement, the force or
moment at the joint is decreased by = kv, or - KOj• Thus, the terms, when shifted to the
other side of the equation, become additions to the corresponding stiffness term.

10.6 SPRING CONSTRAINTS ON STRUCTURE

•

With F2x = 0 and Fix = ?f, the stiffness matrix in terms of the given coordinates and given loads is

Comparing the external loads of Fig. 10.5.5with those of the global system, we have

FIGURE 10.5.5.

8,

~m,
.cJ.- ++u
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•
_ -(PI3IEI)v - -__;____;,_~-
2 - 192 + k[3jEI

{ -P} = ~: (192 + ~;) {V2}
M . (161' + ~;) 8,

The deflection at the center is then

which defines the stiffness matrix for the beam with the spring constraints .
. The equation indicates that the system is decoupled for II = 12= 112, in which case the equa­

tion reduces to

Because the force F2 in the global system is positive in the upward direction, and M2 is positive
counterclockwise, the previous equation can be rearranged to

[
( 1 1) k- 12 - +- +-

{~ } = EI Ii 1 I~ 1 EI
2 -6Ci - I~ )

With the springs acting at station 2, the force vector is replaced by

P;2 k~~}
I..M2 K02

Shifting the spring forces to the right side of the equation, we obtain

[

(
1 1 )- - 12 3" +""3

{ F2 } = EI II .12
M2 -6(_!_ _ _l)Ii I~

(b)

FIGURE10.6.1.

t__J
2

(0)

CD ® ®
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(10.7.1)

As discussed in Chapter 7, the generalized force is found from the virtual work of the
applied forces. With the displacement expressed as

10.7 GENERALIZED FORCEFOR DISTRIBUTED LOAD

•
. so that the error in the finite element approach is 1.61 percent for the first mode and 33.9 percent.
for the second mode. Dividing the beam into shorter elements reduces these errors.

lEI
£t'2 = 6,1.67~ ml4~

-

EI
Wl = 22.37 ml4

Thus, both natural frequencies are increased by the constraining springs. If k = K = 0, the
exact natural frequencies for the beam with fixed ends are

W, = 81.98 ~ ~1 + 0.0625 (~~)

and

KI
A = 16 + -

EI

Similarly, the equation for ()2 results in

and the natural frequency for this mode is

Wj = 22.73{g ~1 + 0.00521( ~; 1

1 ( k13) kl3A = 156 192 + EI = 1.231 + 0.00641 EI

Again, coordinates 1)2 and 7J2 are decoupled. By letting A = wZm[4;420EI, the equation for 1)zgives

[
_ w'mll156 °l + E:[(192 + ~;) 0] ll{~z}= {oJ.
420 L 0 I' J 1 0 (16/' + ~I ) 0, 0

The equation of motion then becomes

-22(/i - mJ = ( ml )[ 156 OJ
4(/~ + m 420 ° IZ( !!2__)[ 156(11+ Iz)

420 -22(1~ - I~)

Solution For this determination, we need the mass matrix, which can be assembled from Eq.
(10.2.10) as

Example 10.6.2
Determine the natural frequencies of the constrained beam of Example 10.6.1when II = 12= 1/2.
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FIGURE 10.7.1.

I
p

lllllll~

Solution We use a single element <D - ® and first determine the inverse of the stiffness matrix.
Because VI = 81 = 0, the stiffness equation from Eq. (10.2.1) is

{ F2 } EI [12 -6~1J{V2}.
M2 = If -6/1 411 82

Example 10.7.1
Figure 10.7.1 shows a cantilever beam of length /1 with a uniform load p(x) = p lb/in. over the
outer half of the beam. Determine the deflection and slope at the free end using the method of
this section.

Thus, for the distributed load, the equivalent finite element loads are the generalized
forces just given.

(10.7.4 )

Equating the virtual work in the previous two cases,we obtain the following relationships:

FI = fp(x)cpI(X) dx F, = fp(X)CP3(X) dx

MI = fp(x)c/>,(X) dx M, = fp(x)cp.<x) dx

(10.7.3)

(10.7.2)

the virtual work of the applied distributed force p(x) is

8W = fp(x) 8y(x) dx

= 8", fp(x),Pt(x) dx + 861fp(x)cp,(x) dx

I I

+ IW,I/(x )cf>,(x)dx + 86, I/(x )cp,(x) dx

The integrals in Eq. (10.7.2) are the generalized forces.
If the same procedure is applied to the end forces, Fl, M}, F2, and M2, the virtual

work is
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which is proportional to the displacement.

(10.8.3) .

When the generalized force is proportional to the displacement, it can be transferred
to the left side of the equation of motion to combine with the stiffness matrix for the
free vibration. Presented in this section are two cases: (1) for distributed forces normal
to the beam, and (2) for distributed forces parallel to the beam. .

Case (1): The term p(x) in the virtual work equation (10.7.2) is replaced by
[(x)y(x), which results in the equation

I>W = ff(X)Y(X) I>y(x) dx (10.8.1)

With y(x) = '~>p;q; ,where 4>; are the beam functions, and qj are the
element end deflections as in Eq. (10.7.1), the virtual work is

I>W = ~ "fqj/)qi ff(X) <!>i<!>jdx (10.8.2) .

and the generalized force becomes

sw r1a, = &Ji = t% J/(X)4>i4>j dx

10.8 GENERALIZED FORCE PROPORTIONAL TO DISPLACEMENT

•
These results agree with those calculated from the area-moment method.

4 ( - 52 + ~ } 4 (5.125}pil 32 1536 -p/l .
= 12EI _]i_ + 1056 = 48EI 7.000

32/1 1536/1 II

M, = L - pq,.(§)/,d§= -p/;L(-§' + §3)d§= 1~~6P/:

Substituting these values into the inverted equation, we have

Its inverse, using the adjoint method, is

{ V2} = fl__1 [4/i 6/1J{ F2}
()2 EI12/i 6/1 12 M2

The equivalent finite element forces, from Eq. (10.7.4), are

F2 = JII - p<P3(x)dx = -pJ'"
1
¢ig)/ldg= -PIII1 (3l- 2l)dg= _132P/1

12 1/2 1/2 3
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where r is a dummy variable for x, and y' = dy/dr. The virtual displacement of x is then
equal to .

8u(x) = JX~8y'2dr
. 0

where the integrand is interpreted as follows:

. ~8i2 = H (y' + 8y')2 - y,2] = y' 8y'

u(x) = r(ds - dx)= r[dx~l + (:r - dx] = rh'2dr
•

Case 2: A distributed force p(x) dx parallel to the beam will do virtual work
p(x) dx . Buix}, where u(x) is the horizontal displacement due to deflection y(x).
Displacement u(x) is equal to the difference between the horizontal projection of the
deflected beam and x:

When applied to this problem with I = 1/2 and transferred to the left side of the equation, the
stiffness of the beam is increased.

-0.030951 ](V2]-0.007143/2 62
-0.052381 V3

0.009524[2 63
[

0.3714 0.5241 0.1286
{Q} = -kl 0.0095~4/2 0.039051

[ 0.3714

Evaluating the integral in Eq. (10.8.3) for an element of length l, we have

FIGURE 10.8.1.

> ~ ~ c ~~> :;>. : ~ : ~

/

"I--- fl2 112

Example 10.8.1
Figure 10.8.1 shows a cantilever beam with elastic foundation under the outer half of the beam.
The stiffness of the foundation is -ky lbs/in., so that f(x) = -k, a constant. The equation of
motion then takes the form
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[

156 221: 54 --131] {iiI}
ml __ ~~~ ~I:_L__1_3!___=}I~ 81 = ml MV
420 54 131: 156 - -221 ii2 420

I

-131 -31: -221 412 82

Solution -The mass and stiffness terms for the single element of length 1 are

Example 10.8.3
Using one element, determine the equation of motion of the helicopter blade length 1 rotating at
speed n.Assume the blade to be rigidly fixed to the rotor shaft.

•
, FIGURE 10.8.2.

k-- I;

I

K

0.064291 l{VJ}
-0.009524/2J OJ
-0.064291 v2
0.02381/2 °2

Rotational element. An example of interest here is the helicopter blade whirling with
angular speed n,as shown in Fig. 10.8.2. For the first beam element, the loading is n2xm dx and
Eq. (10.8.6) applies without change. For subsequent elements, coordinate x must be measured
from the beginning of the new element to conform to that of the beam functions.The load for the
element is simply n2(( + x)m dx, where l, is the distance from the rotation axis to' the beginning of
the new element. Presented here is the generalized force associated with the load n2xm dx, which
is applicable to the first element.

[

04286 0.014291 -0.4286
. 0.05714/2 --0.014291

{QJ = -mD21 0.4286

Example 10.8.2

(10.8.6)

(10.8.5)

(10.8.4)

Thus, the virtual work for the distributed force becomes

sw = - fp(x) JXy' By' drdx
_ 0 0

Substituting for y' in terms of the beam functions, we have

BW = - L 22QjBQiJ1p(X)Jx</>:</>;drdx
i j 0 0

sw JI JXQi = s;- = - 2:Qj p(x) 4>;4>; drdx
oq, j 0 0
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420El
A::::; w2ml4

With the boundary conditions VI = 01 = 0, we need only to maintain the lower right quad­
rant of the matrices. Also by remembering that the Is inside the matrices all cancel in the solution
for the eigenvalues and eigenvectors, we can let 1 = 1.0.The final equation of motion is then

where

or

[ _ w2mlM + ElKJV = -mn21HV
420 13

By multiplying and dividing the right hand term by Ell13 and transferring it to the left side, we
obtain

The equation of motion can now be written as

lp~ = (- 6g + 6e) 7
q>; = 1 - 4~+ 3e

. 1
q>; = (6g - 6e)i

lp~ = -2g + 3e

Substituting these into the previous integral, we obtain the result

[

0.4286 0.014291: -0.4286 0.64291 ]{Vl}
Q = -mn21 __ Q:.0_1_:l~L .9:.Q.5_7_1_:l£~_i_-=Q:.0_1j~2~__ -=.9:.0_0J.?~~~2_ 01

-0.4286 -0.014291 :. 0.4286 -0.064291 v2
. 0.064291 -0.009524/2: -0.064291 0.02381/2 02

= -mn21HV

where

El[ __1_~! ~~~t~L_~~2i{~:}= El KV
13 -12 -61 : 12 -61 v2 13

I

61 2/2: -61 412 O2

The term due to rotation is found from the generalized force Q given in Eq. (10.8.6). For its eval­
uation, the integral involved is

mn2{x f'P;'P; dr·dx = mn2{~[f'P;'P;Id~ }dt
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If we divide the beam into two equal sections, then L is replaced by 1/2, and the rotational force
over the second element must be changed to

pix) = (~+x)m!F dx

TWO-ELEMENT BEAMExample 10.8.4

•

. which indicates that the single-element analysis results in unacceptable accuracy for the second
mode. The eigenvectors for the single-element analysis, which are deflection and slope at the free
end, cannot be compared to the more conventional eigenvectors-that display deflection along
the beam.

/EI
Wj = 22.032V ;;;[4

For comparison, the exact values for fl = ° are
/EI

WI = 3.515V ;;;p.

For fl = 0, the natural frequencies for the single element analysis are

lET
WI = 3.53V ;;[4

/EI
W2 = 34.81-v ;;p.

4>2= {V2}(2) = {O.0807}
82 0.615

and the associated eigenvectors and modes are

= {1,'2}(1)= {0.545}
4>1 82 0.749

A2= 0.345

Al = 30.65

The eigenvalues and natural frequencies from the determinant are

[Ei
WI = 3.70-v ;;/4-4

-(22 - 6.0MA)I_
(4 - 4.024A) - 01

(156 - 12.43~
-(22 - 6.064A)

-6.064J){V2} = {OJ
4.024 82 °-22J - A[' 12.43

4 -6.064([
156
-22

[[
156 -22J -:-A ([ 12 -6J + (fl2mI4)[ 0.4286 -0.06429J~]{V2} ,= {OO}
-22 4 -6 4 E1 -0.06429 -0.02381 I) 82

This equation can be solved for the eigenvalues A by assuming a number for the rotation para­
meter. If we choose fl2mZ4/ EI = 1.0, we obtain
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...~

Vt = 0
()t = 0
v2
()2

V3

()3

156 22 54-13:
22 4 13 -3 :

1- - - - - - - - - - - "I - - - - - - - - - -

ml 54 13: 156-22 : 54 -13
1 156 22 :

420 -13 -3: -22 4 : 13 -3__________ ~----------J
: 54 13 156 -22
1

: -13 -3 -22 4

Mass

Assembling Matrices for Two-Element Beam

For the two-element beam, the assembled matrices are 6 X 6. However, because
VI = 81= 0, the first two columns and rows are eliminated and we obtain a 4 X 4 matrix.

•
0.600

-0.600o
0.1001 1-0.0166/2

-0.1001 '
0.03331

o

mU'1flf'l';'I'jdrdx
which has been carried out and is equal to

II ~ mu'f600

The new integral to be evaluated is

(3)

~---- 2f ----..II,
(2)(1)

FIGURE 10.8.3.

The generalized force is now
('/2 I r

Q = m021 Jo (2 + x) Jo <P;cP; drdx
(/2 I (X (/2 (X

=m02/{Jo 2JOcp;<p;drdx+ Jo XJocp;cp;drqx}
The last integral in this expression is the same as that for the one-element beam, except for I
replaced by 1/2.The first integral now needs evaluating. In formulating the equation of motion,
this now requires changing alll's in the matrices to 1/2.

We now suggest a different approach of leaving the length of each element equal to I, so
that the total length of the beam is 2/. This results in great savings in computation because the
matrices for each element will remain the same as that for the one-element beam and all the l's
inside the matrices can remain as I, which can be assigned as unity for the eigenvalue computa­
tion as before; i.e., we now solve the problem shown in Fig. 10.8.3. After the eigenvalues are

determined, wf?-let I in the expression for the eigenvalues be replaced by ~.
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.= ~ .420El = 4~420AiEl
W, A1m{lf2)4' ml"

.It is now necessary to choose a numerical value for the rotation parameter {l2mf /El
and combine the previous equation with the stiffness matrix. This was done for rota­
tion parameters 0, 1,2, and 4 to obtain the computer results for the eigenvalues and
eigenvectors. Because the previous matrices fed into the computer are those for the
two-element beam with each element of length 1,the eigenvalues are those for a beam
of length 2/ ..

Examination of the eigenvalue expression indicates that for a beam of length I
with each element of length 1/2, the length I must be replaced by 1/2 in the equation
for CUi'

2.057 -0.150 -1.029 0.10643 g}_ EI (.{l2mI4) -0.150 0.2143 -0.01429 -0.0262
I EI -1.029 -0.01429 1.0286 -0.1643

0.1064 -0.02612 -0.1643 0.0571

= _ EI ( .{l2mI4)HV
,/3 EI

By adding the two matrices,the generalized force becomes

[ 0.8572
-0.0500 -0.4286 0.06429 ]

_fl2 I -0.0500 0.0810 -0.01429 -0.009524
m -0.4286 -0.01429 0.4286 -0.06429

0.06429 -0.009524 -0.06429 0.02391

From the second integral for Q,

[ 1.200
-0.100 -0.600 0.100 ]

-n- I -0.100 0.133 0 -0.0166
m -0.600 0 0.600 -0.100

0.100 -0.0166 -0.100 0.0333
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[ 312
0 54 -~~]{~:}ml 0 8 13

= 420 54 13 156 -22 . V3

-13 -3 -22 4 83

Stiffness

[ 24
0 -12

-m~~}El 0 8 -6

f3 -1~ -6 12
2 -6

Generalized force. From the first integral for Q, we have
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FIGURE 10.8.4. Robinson Helicopter Model R22: Blades 7.2 in. wide and 151 in. long; cantilever peri-od of
approximately 1 s; gross weight of 1370 lb loaded; tip speed of blades 599 ft/s.

With this change, the computer results for Ai and the natural frequencies of a two­
element beam of length I are shown in Table 10.8.1.The case for n= 0 is compared to
exact values, which shows that the results are quite good for the first two modes.

Shown in Figs. 18.8.4 and 10.8.5 are two helicopters of different size. The
Robinson Helicopter, Model R22, shown in' Fig. 10.8.4 is a small two-seater vehicle
used mainly for pleasure flying.The descriptive data accompanying the photo indicates
some of its specifications and size.

In contrast, the Commercial helicopter, shown in Fig. 10.8.5, used for hauling
material and workers between shore and oil platforms is a large vehicle capable of

320 Chapter 10 Introduction to the Finite ElementMethod

Table 10.8.1 Computer Results For Two-Element Rotating Beam of Length 1

{12m14
Ai for Beam of Length 21 I ) 420EIAi

EI Wi 4 ml' Exact

1 0.001841 3.51 3.515
0 2 0.07348 22.22 22.034

3 0.84056 75.15 61.697
4 7.08106 218.1 120.9

1 0.0035169 4.861
2 0.08445 23.82
3 0.86754 76.35
4 7.13759 219.0

0.0049532 5.77
2 2 0.095627 25.35

3 0.8947349 77.54
4 7.19323 219.8

0.0103809 8.35
4 2 0.158008 32.58

3 1.04317 83.72
4 7.83817 229.5
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10~1.Determine the two natural frequencies in axial vibration for the uniform rod, fixed at one
end and free at the other end; using two elements with the intermediate station at 1/3
from the fixed end. Compare results with those when the station is chosen at midlength.
What conclusions do you come to regarding choice of station location?

PROBLEMS

[1] COOK,R. D. Concepts andApplications of finite Element Analysis. New York: John
Wiley & Sops, 1974.

[2] GALLAGHER,R. H. Finite Element Analysis Fundamentals. Englewood Cliffs, NJ:
Prentice-Hall,1975.

[3] ROCKEY,K.c.EVANS,H. R., GRIFFITH,D.w., ANDNETHEROOT,D.A. The Finite Element
Method. New York: Halsted Press Book, John Wiley & Sons, 1975.

[4] YANG,T.Y., Finite Element Structural Analysis. Englewood Cliffs,NJ: Prentice-Hall, 1986.
[5] WEAVER;W., ANDJOHNSTON,P. R. Structural Dynamics by Finite Elements. Englewood

Cliffs, NJ: Prentice-Hall, 1987.
[6] CLOUGH,R.W. ANDPENZIEN,1.Dynamics of Structures. New York: McGraw-Hill, 1975.
[7] CRAIG,R.R. JR. Structural Dynamics. John Wiley & Sons, 1981.

REFERENCES

transporting a maximum .load of 6000 lbs. As in all helicopters, the rotor blades are
very flexible. Their rotational speed is governed by the requirement of keeping the tip
speed below the speed of sound.

FIGURE10.8.5. Commercial helicopter for oil platform service: Blades 24 in. wide and 24 ft long, 200 lb
each; cantilever stiffness is 6 ft/IOOIb load at the tip; total weight of the helicopter is 7000 lb empty and
13,000 lb loaded.
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10.11. In the pinned truss shown in Fig.PtO.l1, pin 3 is fixed.The pin at l is free to move in a
vertical guide,and the pin at 2 can onlymove along the horizontal guide. If a force P is
applied at pin 2 as shown,determine U2 and VI in terms of P.Calculate all reaction forces

FIGUREPl0.11.FIGURE Pl0.l0.

2

10.S. Treat the tube of Fig.PlO.7 as a two-element problem of equal length in longitudinal
vibration. '

10.9. Determine the equation for the tube of Fig.PtO.7in torsionalvibration using(a) two ele­
ments and (b) N-stepped uniformelements.

10.10. The simple frame of Fig.PtO.lOhas pinned joints.Determine its stiffnessmatrix.

FIGURE Pl0.7.

10.3. Set up the equation for the free-free vibration of a uniformrod of length I,using three
axialelements of length 1/3 each.

10.4. Assumingiinear variation for the twist of a uniform shaft,determine the finite element
stiffnessand massmatrices for the torsional problem.The problem is identical to that of
the axialvibration.

10.5. Using two equal elements, determine the first two natural frequencies of a fixed-free
shaft in torsional oscillation.

10.6. Using two uniform sections in torsional vibration, describe the finite element relation­
ship to the 2-DOF lumped-masstorsional system.

10.7. FigurePtO.7showsa conicaltube of constant thicknessfixedat the large end and free at
the other end.Using one element,determine the equation for its longitudinalvibration.

(12 ---t-- 112 _j
EA11 m,

FIGURE"Pl0.2.

10.2. A tapered rod is modeled as two uniform sections, as shown in Fig. PtO.2, where
EAt = 2EA2 and ml = 2m2, Determine the two natural frequencies of longitudinal
vibration.
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1 El,. m, E12•m2I
I-- " '2----I

FIGURE P10.16.

10.14l Using two elements, determine the deflection and slope at midspan of a uniform beam,
fixed at both ends, when loaded as shown in Fig. Pl0.14.

10.15. Determine the consistent mass for the beam of Problem 10.14 and calculate its natural
frequencies.

10.16. Determine the free-vibration equation for the beam of Fig. P10.16.

FIGURE P10.14.

~
FIGUREP10.13.

Construct the dynamic matrix. Use this to complete the frequencies of the free vibrations
for this structure.

10.13. For the pinned truss of Fig. PlO.13, there are just three orientations of the elements.
Determine the stiffness matrix for each orientation and indicate how each element
matrix is assembled in the global system.

FIGURE P10.12.

3P 4

at pins 1,2, and 3, and check to see whether equilibrium is satisfied. Formulate the stiff­
ness matrix with factor EA/ l by the finite element method.

10.12. For the pinned square truss of Fig. P10.12, determine the element stiffness and mass matri­
ces in global coordinates and indicate how they are assembled for the entire structure.
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(c)

(e)

FIGUREP10.22.

(d)

{a

( ba

(b)(0)

10.21. The frame of Fig. P 10.21 is free to rotate and translate at the upper right end. Determine
its stiffness matrix.

10.22. Determine the deflection and slope at the load for the frames of Fig. PI0.22. Consider the
corners to be rigid.

FIGUREP10.21.FIGUREP10.20.

21

M'~t ! '\ L
r------__==;

[!ill 10.18. Repeat Prob. 10.17 using two elements.
[!ill 10.19. Repeat Prob. 10.17using six elements. Does the agreement with the exact values improve

with a larger number of elements?
10.20. Determine the stiffness matrix for the frame of Fig. PIO.20. The upper right end IS

restricted from rotating but is free to slide in and out.

FIGUREP10.17.

~--~---~ ei.t

[!ill 10.17. Using one element, determine the equation of motion, the natural frequencies, and the
mode shapes of a pinned-free beam of Fig. PI0.17. Compare with the exact values.
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1'/2

f 1/2=};
I

~

z
(a) (b)

FIGURE P10.27.

10.27. Determine the free vibration equation for the frames of Fig. P10.27.

FIGURE P10.26.

~

-.,._--- 0.61~

Check the solution of Prob. 10.24 by letting k = K = O.The eigenvalues should agree
with those of a pinned-pinned beam.

[HI 10.26. For the beam of Fig. P10.26, determine the finite element equation of motion. Determine
the eigenvalues and eigenvectors of the beam when k[3/8EI = 1.0 and K13/ EI = 2/2.

[HI 10.25. Determine the mass matrix for the beam of Prob. 10.24 and find all its natural frequen­
cies and mode shapes when

kl3 KI3 1and - = _/2
EI 2 EI 4

FIGURE P10.24.

~----~f-/2----~---f-/2----K~1
10.24. Figure PlO.24 shows a pin-ended beam with a linear spring k at midspan and a torsional

spring K at the right end. Determine the stiffness matrix for a two-element analysis.

FIGURE P10.23.

~~K_.-----E-:--------

[MJ 10.23. The pinned-free beam of Prob. 10.,17 is restrained by a spring of torsional stiffness K
lb· in.Zrad at the pin, as shown in Fig.P10.23. Choose the numerical value of K so that under
its static weight, the beam rotates 1/10 rad, and make the calculations as in Prob.10.18. (Use
one and two elements and let 5mg[3/ EI = 1.0.) .
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1M! 10.33. Repeat Prob. 10.32 assuming the left end is pinned instead of fixed.

FIGUREP10.32.,

~] 10.30. For the system of Fig. PlO.29, show that the symmetric mode for free vibration reduces to
a 3 X 3 equation. Determine the mass and stiffness matrices for this problem and calcu­
late the natural frequencies and mode shapes.

[MJ 10.31. Solve for the eigenvalues and eigenvectors fOTthe 4 X 4 beam in Example 10.5.l.
Ig) 10.32. The uniform beam of Fig. PIO.32 is supported on an elastic foundation that exerts a

restraining force per unit length of -ky(x) over the right half of the beam. Using two ele­
ments, develop the equations of motion. With k13/8El = 10, determine the natural fre­
quencies and compare with those without the elastic foundation. Plot the mode shapes
for the first two modes.

FIGUREP10.29.

k

[HJ 10029. Set up the two-element equations for the system of Fig. PlO.29 in terms of the six coordi­
nates shown and solve the eigenvalues and eigenvectors.

FIGUREP10.28.

(b)(0)

10.2S. Using two elements, determine the equivalent junction loads for the distributed forces
for the span in Fig. P10.28(a). For the span of Fig. P10.28(b), determine the deflection and
slope at midspan.
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1M! 10.39. Repeat Prob. 10.38 with reduced stiffness and corresponding reduced mass. Compare

with assumed 3 X 3 mass matrix of M = ml [~ ~ ~].
o 0 .5

32

FIGURE P10.38.

10.36. For the helicopter blade of Fig. PIO.35,determine the stiffness equation for the outer half
of the blade.

1M] 10.37. Write the complete equation for the two-element blade of Fig. PI0.35 and solve for the
natural frequencies and mode shapes.

[H] 10.38. For the uniform cantilever beam modeled by three elements shown in Fig. PIO.38 the
stiffness matrix is of order 6 X 6. Rearrange the stiffness matrix, determine the 3 X 3
reduced stiffness matrix K* and compute the eigenvalues and eigenvectors. Compare the
results with those of Prob. 8.15.

FIGURE P10.35.

10.35. If the pinned-free beam with a torsional spring is rotated about the vertical axis, as shown
in Fig. PIO.35,determine the new stiffness matrix for the first element of length 1/2.

FIGURE P10.34.
o

®
I

Mass/unit length=m
I mn2.t"3

~=1.0

®

!HI 10.34. Figure PI0.34 shows one of the "ell" beams of a centrifuge that whirls around the vertical
axis 0-0 with angular speed nrad/s. Using the stations indicated, determine the equa­
tion of motion and its natural frequencies. Compare with the case n = o.
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FIGUREP10.43.

10.43. Determine the equations of motion for the system shown in Fig. P10.43. The flexural
rigidity of the beam in the center is different from that of the other two beams. Is the
solution y, = Y2 = Y3 possible? What are the conditions for its existence?

FIGUREP10.42.

[g] 10.40. Repeat Prob. 10.2 with the following values: A2· = 1, E = 1, I = 1, and m2 = 1. Consider
each of the two elements as a uniform bar. Model each of these with four elements.
Compute the natural frequencies in the longitudinal vibration.

lHl 10.41. Compute the free vibrations for the beam in Example 10.5.1 with the following values:
l = 12,m = 1,E = 1,and I = 1.Repeat this calculation using six uniformly spaced elements.

10.42. Consider a 2-section bar with a mass at its end and a spring-damper system attached to the
mass as in Fig.PlO.42.Determine the equations of motion for the longitudinal vibration.
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329

'The Olympus Satellite, shown in Figure 11.1.1, is one of several configurations proposed for deploy­
ment in space. The large panels of solar cells are deployed by lightweight booms of glass fiber, ingeniously
designed to extend the panels for hundreds of feet.

(11.1.1)[Ely"(x, t)]" + m(x)y(x, t) = p(x, t)

In Sec. 6.8, the equations of motion were decoupled by the modal matrix to obtain the
solution of forced vibration in terms of the normal coordinates of the system. In this
section, we apply a similar technique to continuous systems by expanding the deflec­
tion in terms of the normal modes of the. system.

Consider, for example, the general motion of a beam loaded by a distributed
force p(x, t),whose equation of motion is

11.1 MODE-SUMMATION METHOD

Structures made up of beams are common in engineering. 1 They constitute systems of
an infinite number of degrees of freedom, and the mode-summation methods make
possible their analysis as systems of a finite number of degrees of freedom. Constraints
are often found as additional supports of the structure, and they alter the normal
modes of the system. In the use of the mode-summation method, convergence of the
series is of importance, and the mode-acceleration method offers a varied approach.
The modes used in representing the deflection of a system need not always be orthogo­
nal. The synthesis of a system using nonorthogonal functions is illustrated.

Large structures such as space stations are generally composed of continuous sec­
tions which can be analyzed by the mode participation methods. Shown in Fig. 11.1.1 is
one such design, parts of which offer opportunities for challenging analysis.
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.J

(11.1.3)for j =1= i
for j = i

and its boundary conditions. The normal modes c/>;(x) are also orthogonal functions sat­
isfying the relation

(11.1.2)

The normal modes c/>;(x) of such a beam must satisfy the equation

(Elc/>;')" ~ wfm(x)c/>; = 0

FIGURE11.1.1. Olympus satellite and deployment boom. (Courtesy· of Astro
Aerospace, Carpinteria, California.)
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(11.1.12)

(11.1.11)

(11.1.10)Q,= fp(x,t)<p,(x) dx

Substituting into Lagrange's equation,

!!_ ( a~) _ aT + au = Q.
dt aqj oq, aqj I

we find the differential equation fo~q/t) to be

. q, + w;q, = ~, !:p(x,t)<p,(x) dx

where the generalized force is

In addition to T and U,we need the generalized force Qi' which is determined
from the work done by the applied force p(x, t)dx in the virtual displacement bq;

SW = fp(x, t)( ~ <p,Ilq,) dx
= ~ bq, fp(x,t) <p/x) dx . (11.1.9)

(11.1.8)

where the generalized stiffness is

K, = fE1[<P;'(x)]' dx

(11.1.7)

(11.1.6)

where the generalized mass M, is defined as

M, = f <p;(x)m(x) dx

Similarly, the potential energy is

U = !f.iElylf2(X,t) dx = -21 2: 2:qiqjf.iEI4>:'4>JIf dx
2 0 i j 0

I", 2_ I", 2 22 .L;Kjqi - -"2 .L;wiMiqi
I

(11.1.5)

the generalized coordinate qJt) can be determined from Lagrange's equation by first
establishing the kinetic and potential energies,

Recognizing the orthogonality relation, Eq. (11.1.3), the kinetic energy is
I i

T = i {y'(x, t)m(x) dx = i ~ ~q,qJo <p,<pjm(x)dx

1 2: '2= - Miq;2. I I
I

(11.1.4)y(x, t) = 2: 4>i(xk(t)
i

By representing the solution to the general problem in terms of 4>/x)
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(b)(a)FIGURE 11.1.2.

~ r::: n7TXcPn(x) = V L sin -1-

Wn = (n7T)2YEI/Mol3

Solution The. normal modes of the beam are

Example 11.1
A simply supported uniform beam of mass Mo is suddenly loaded by the force shown in Fig. 11.1.2.
Determine the equation of motion.

(11.1.17)D,(t) = ;",LfWsinwi(t- g) dg

can be called the dynamic load factor for the ith mode.

(11.1.16)

(
P [.) ir .+ ~ Wi f(g) sinwi(t - g) dg

. Miwi 0

Because the ith mode statical deflection [with q/t) = 0] expanded in terms of cp/x) is
Po[;! MiW7, the quantity

is defined as the mode participation factor for mode r.'Ihe solution of Eq. (11.1.14) is then

q/t) = q;(O) cosw;l + l_ q/O) sinw;l
Wi

(11.1.15)

where

(11.1.14)

(11.1.13)
p

p(x,t) = --t- p(x)f(t)
Equation (11.1.12) then reduces to

;ji + w7Qi = ~. [J(t)
I

It is convenient at this point to consider the case when the loading per unit length
p(x, t) is separable in the form
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where cp;(x) are normal modes of the missile in longitudinal oscillation. The generalized coordi-
nate qj satisfies the differential equation .

Solution We assume the solution for the displacement to be

u(x,t) = ~ qj(t)cp;(x) .

Example 11.1.2
A missile in flight is excited longitudinally by the thrust F(t) of its rocket engine at the end x = o.
Determine the equation for the displacement u(x, t) and the acceleration ii(x,t).

•

Thus, the deflection of the beam is expressed by the summation

y(x,t) = ± qn(t)Y2 sin 1Tnx
n=l I

which has the solution

where get) is the time history of the load. The equation for q" is then

••. 2 _ -Y2IWO( )n ()
q n + Wn q 11 - M -1 g tn1T 0

= _ Y2lwo g(t)( -1)11
n1T

The generalized force is

(p(x,t)(Mx) dx ~ g(t) J: w;x V2 sin n~x dx

= ()wo\I2[Sin(n1Tx/l) _ xcos(n1Tx/I)][
g t . I (n7T/I)2 n7T/1 0

woY21
= -g(t) -- cos n7T

n1T

I
M f . 2 n7TXM = _0 2sm - dx = M

n I 0 I 0

and the generalized mass is
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FIGURE 11.1.3.

y(x,t) = :L qj(t)CPj(x)
j

[Ely"(x,t)]" + m(x)Y·(x,t) = -m(x).Y~(t)
Thus, instead of the force per unit length Fix, t) we have the inertial force per unit length
-m(x)Yb(t). By assuming the solution in the form

which can be rearranged to

Solution The differential equation for the beam with base motion is

[Ely"(x, t)]" + m(x)[Y"b(t) + y"(x, t)] = 0

Example 11.1.3
Determine the response of a cantilever beam when its base is given a motion yo(t) normal to the
beam axis, as shown in Fig. 11.1.3.

•

ii(x,t) = ~qi(t)CPi(X)
j

Thus, the equation for the acceleration of any point x is found as

The acceleration ;jj(t) of mode i can be determined by rewriting the differential equation
and substituting the former solution for qJt):

··C) - F(t)cpj(O) 2 ()qi t - M. - Wiq i t
I

q,(t) ~ ~;~ J:F(g) sin w,{t - g) dg

and the displacement at any point x is

u(x, t) = ~ CPi~:(O) f.oIF(~) sin Wj(t - ~) d~
I I I

If, instead of F(t), a unit impulse acted at x = 0, the preceding equation would have the solu­
tion [cp,(0)/ Mjwi] sin w;t for initial conditions qj = q(O) = O.Thus, the response to the arbitrary
force F(t) is
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These equations form the starting point for the analysis of constrained structures, pro­
vided the constraints are expressible as external loads on the structure.

(11.2.4)

8W
Qi =. &ji = F(a, t)'Pj(a) + M(a, t)'P;(a)

Then, instead of Eq. (11.1.14), we obtain the equation

;ii(t) + W;qi(t) = ~. [F(a, t)'P;(a) + M(a, t)'P:(a)]
. I

(11.2.3)

The right side of this equation is 1/M, times the generalized force Qj' which can be
determined from the virtual work of the applied loads as Qi = 8W/ &jj.

If,instead of distributed loads, we have a concentrated force F(a, t) and a concen­
trated moment M (a, t) at some point x = a, the generalized force for such loads is from

8W = F(a, t)8y(a, t) + M(a, t)8y'(a, t)

= F(a,t) L 'Pj(a)8qj + M(a,t) L 'P:(a)8qi
i i

(11.2.2)

(11.2.1)y(x,t) = Lqj(t)'Pj(x)
j

where the generalized coordinate qj must satisfy the equation

liM + W;qi(t) ~ ~, [f f(x,t)'I',(x) dx + f M(x,t)'I':(x) dx ]

..
When a structure is altered by the addition of a mass or a spring, we refer to it as a con-
strained structure. For example, a spring tends to act as a constraint on the motion of
the structure at the point of its application, and possibly increases the natural frequen­
cies of the system. An added mass, on the other hand, can decrease the natural fre­
quencies of the system. Such problems can be formulated in terms of generalized
coordinates and the mode-summation technique.

Consider the forced vibration of anyone-dimensional structure (i.e., the points
on the structure defined by one coordinate x) excited by a force per unit length f(x, t)
and moment per unit length M(x, t). If we know the normal modes of the structure, Wj

and q>;(x), its deflection at any point x can be represented by

11.2 NORMAL MODES OF CONSTRAINED STRUCTURES

•

The solution for qj then differs from that of a simple oscillator only by the factor -1/ M, J~ (/)j(x) dx
so that for the initial conditions y( 0) = y( 0) = 0:

q,(t) ~ [ - !,!:'P'(X) dx ] ~, LYbW sinw,(t - t) d~

the equation for the generalized coordinate qj becomes

I
I. .

•• 2 _ .•• 1
qj + (J)jqj - -Yb(t) M. (/)j(x) dx

I 0 .
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FIGURE 11.2.2.

An
f--x-

(11.2.10)

.(11.2.9)F(a,t) = -mo.Y'(a,t) = -rno"'2: q~ep/a)
j

Thus, in place of Eq. (11.2.8), we obtain the equation

q; = M,( ,,/ - w2) [ w'mo'P,(a) :tq/p/ a) ]

If we use n modes, there will be n values of qj and n equations such as the preceding
one. The determinant formed by the coefficients of the qj will then lead to the natural
frequencies of the constrained modes, and the mode shapes of the constrained struc­
ture are found by substituting the qj into Eq. (11.2.1).

If, instead of springs, a mass rno is placed at a point x = a, as shown in Fig. 11.2.2, .
the force exerted by rno on the beam is

(11.2.8)

The solution to the ith equation is then

q; = Me ,1_ 2) [-k4a)"2;Jijepj(a) - Kep:(a) "'2:qjep;(a)1
I WI W J J

The normal modes of the constrained modes are also harmonic and so we can write

(11.2.7)

(11.2.6)M(a, t) = -Ky'(a, t) = -K22q/t)ep;(a)
j

Substituting these equations into Eq. (11.2.4), we obtain

;ji + (Viqi = ~. [-krP'(a) 'i,qj'P;(a) - K'P;(a) 'i,qj'P;(a) 1
I J J

whereas the torsional spring exerts a moment

(11.2.5)F(a, t) = -ky(a, t) = +kLq/t) (p/a)

As an example, let us consider attaching a linear and torsional spring to the sim­
ply supported beam of Fig. 11.2.1.The linear spring exerts a force on the beam equal to

FIGURE 11.2.1.
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\
FIGURE 11.2.3.

Example 11.2.2
A missile is constrained in a test stand by linear and torsional springs, as shown in Fig. 11.2.3.
Formulate the inverse problem of determining its free-free modes from the normal modes of the
constrained missile, which are designated as <l>j and OJ'

•
1 + 1.5 ';;

1

<PI ( ~) = V2 sin ~ = V2 X 0.866

M, = M = mass of the beam

Thus, its substitution into the preceding equation gives the value for the one-mode approxima­
tion for the constrained beam of

For the first mode of the unconstrained beam, we have

1(; r =
I 1 + mo 2()M <PIa

1

Solving for w2, we obtain

Solution When only a single mode is used, Eq. (11.2.10) reduces to

Ml(wi ., w2) = w2mo<pi(a)

Example 11~2.1
Give a single-mode approximation for the natural frequency of a simply supported beam when a
mass mo is attached to it at x = 1/3. ,
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Solution The generalized mass for each of the three modes is

Example 11.2.3
Determine the constrained modes of the missile of Fig. 11.2.3, using only the first free-free mode .
cPt (x), WI' together with translation cPT·= 1, 0T = a and rotation 'PR = x,OR= O,·wherex is mea­
sured positively toward the tail of the missile.

•

The free-free mode shape is then given by

y'(c)
yea)

The slope-to-deflection ratio at x = a is

[1- kL eIl;(a) ] [1 - KL eIl;2(a) ] - kK[ L eIl;(a)eIl;(a) ]2 = a
; D;(w) ; Dj(w) ; Di(W)

The frequency equation then becomes

y(a)[ 1- k L eIlT(a) ] = Y'(a)KL ell; (a)eIl;(a)
; D;(w) ; D;(w)

y(a)k L ~;(a)eIlla) = y'(a)11 - KL eIl;Z(a) J
; D;(w) l ; D;(w)

These equations can now be rearranged as

We now replace -F(a) and -M(a) with ky(a) and Ky'(a) and write

yea) = L ky(a)eIlT(a) + Ky'(a)<I>;(a)eIli(a)
; D;(w)

Y'(a) = L ky(a)<t-;(a)eIli(a) + KY'(a)eIl;2(a)
; D;(w)

_ - F(a)eIli(a) - M(a)eIl;(a)
q; = M;Of[l - (O/OiP]

which replaces Eq. (11.2.8). Letting D;(w) = M;nH1 - (w/nY], the displacement atx = a is

( ) = ~ eIl'( )- = ~ -F(a)eIl;(a) - M(a)eIl;(a)eIli(a)
y a ~ 1 a q; ~ D .(w)

I I I

Solution The problem is approached in a manner similar to that of the direct problem in
which, in place of 'Piand Wi'we use <1>; and ni.We now relieve the constraints at the supports by
introducing opposing forces - F(a) and - M(a) equal to ky(a) and Ky'(a).

To carry out this problem in greater detail, we start with the equation
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One of the difficulties encountered in any mode-summation method has to do with
the convergence of the procedure. If this convergence is poor, a large number of
modes must be used, thereby increasingthe order of the frequency determinant. The

11.3 MODE-ACCELERATIONMETHOD
•

_ (___!!_)(1 + a2 + ~)A(l _ A) + (.~)2 ~(1 - A)
Mwi p2 kp2 Mwi kp2

- (:wi r~A{<pIHa) + ;2 [<pl(a) - a<Pl(a)P} = 0

A number of special cases of the preceding equation are of interest, and we mention one of
these. If K = 0, the frequency equation simplifies to

,\' '- {l + (:wi)[ 1+:: + q>j(a)]}A+ (:wi )(1+ ::) = 0
Here x = a might be taken negatively so that the missile is hanging by a spring.

which can be simplified to

The frequency equation for this problem is the same as that of Example 11.2.2, except that the
minus k's are replaced by positive k's and <p(x) and w replace ~(x) and fi. Substituting the previ­
ous quantities into the frequency equation, we have

MT = f dm = M

MR = f X2 dm = 1= Mp2

M, = J,<pi(x) dm = M

where the Pl(X) mode was normalized such that M, = M = actual mass.
The frequency dependent factors D; are

DT = -MTw2 = -Mw2 = -MwiA
DR = _Mp2w2 = -Mp2wiA

DI ~Mwi[1 ~ (~ n ~Mwi(l -:- ,\)
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Solution By assuming harmonic oscillations,

Example 11.3.1
Using the mode-acceleration method, solve the problem of Fig. 11.2.2 of a concentrated mass rno
attached to the structure.

Because of (JJT in the denominator of the terms summed, the convergence is improved
over the mode-summation method.

In the forced-vibration problem in which F(a, t) and M(a, t) are excitations,
Eq. (11.2.4) is first solved for q;(t) in the conventional manner, and then substituted
into Eq. (11.3.4) for the deflection. For the normal modes of constrained structures,
F(a, t) and M(a, t) are again the forces and moments exerted by the constraints, and
the problem is treated in a manner similar to those of Sec. 11.2.However, because of
the improved convergence, fewer number of modes willbe found to be necessary.

(11.3.4)

must represent influence functions,where a(a, x) and /3(a, x) are the deflections at x
due to a unit load and unit moment at a, respectively. We can, therefore, rewrite
Eq. (11.3.2) as

. '" ;j(t)cpj(x)y(x, t) = F(a, t)a(a, x) + M(a, t)/3(a, x) - £.J 2
(JJ.. I

(11.3.3)

We note here that if F(a, t) and M(a, t) were static loads,the last term containing
the acceleration would be zero.Thus,the terms

(11.3.2)

Substituting this into Eq. (11.2.1),weobtain

y(x, t) = 2, qj(t)qij(x)
j

(11.3.1);i(t)
- (JJ~

I

mode-acceleration method tends to overcomethis difficultyby improving the conver­
gence so that a fewer number of normalmodes is needed.

The mode-acceleration method starts with the same differential equation for
the generalized coordinate qj but rearranged in order. For example,we can start with
Eq. (11.2.4)and write it in the order
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We discuss here another mode-summation procedure, in which the deflection of each
.structural subcomponent is represented by the sum of the polynomials instead of nor­
mal modes. These mode functions themselves need not be orthogonal or satisfy the
junction conditions of displacement and force as long as their combined sum allows
these conditions to be satisfied. Lagrange's equation, and in particular the method of
superfluous coordinates, forms the basis for the synthesis process.

11.4 COMPONENT-MODESYNTHESIS

•

Rearranging,wehave

[1 - mow2o:(a, a)](w; - (2)qj = w4moq;j(a) 2: qjcpia)
Mj j wJ

which represents a set of linear equations in qk. The series represented by the summation will,
however, converge rapidly because of (Ji in the denominator. Offsetting this advantage of
smallernumbermodesis the disadvantage'thatthese equations are now quartic rather than qua­
dratic in to.

Mj[~ - a(a,a)]
mow

(W~ - 2)-. = F(a)cpj(a)
, w q, M.,

Ifwe nowsubstitute this equation into Eq. (11.2.4)and assumeharmonic motion,we obtain the
equation

2~ qjcp/a)
W£.J 2j Wj

F(a) =

or

Because the forceexerted by mo on the structure is

P(a) = mow2y(a)
.we can eliminatey(a) between the previous twoequations,obtaining

F(a) _ p-( ) ( ) 2'" qjcp/a)
2 - a x a, a + W £.J --2-

mow j Wj

F(a, t) = F(a)ejwt

qj(t) = q,.eiwt
y(X, t) = y(X )eiwt

Bysubstitutingthese equations into Eq. (11.3.4)and lettingx = a,

() - q.cp.(a)y a = P(a)a(a, a) + w22: -'-'-2-
j 'Wj
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2Walter C. Hurty, "Vibrations. of Structural Systems by Component Synthesis," 1 Eng. Mech. Div:
Proc. ASCE (August 1960) pp. 51-69.

(11.4.4)

(11.4.3)= lP3 + (7 )P4 + (7 )'Ps
uz{x, t) = ¢iX)P6(t) + ...

= 1P6

Next consider part (2) with the origin of the coordinates w2, x at the free end. The
following functions satisfy the boundary conditions of beam section ®:

wz{x, t) = ¢3(X)P3(t) + ¢ix)pit) + ¢s(x)Ps(t) + ...

"'(1) = V(l) = ~
WI EI 13P2

"'(0) V(O) _ 6
WI = EI - rP2

W"(o) = M(O) 2
1 EI = (iPI (11.4.2)

wl(l) = PI + P2
, 2 3

wl(l) = l v, + l P3

"(1) = M(I) 2 6
wl EI = (iP! + (iP2

WI(O) = 0

w~(O) = 0

Note that the two mode functions satisfy the geometric and force conditions at the
boundaries of section CD as follows:

(11.4.1)

To present the basic ideas of the method of modal synthesis, we consider a sim­
ple beam with a 900 bend, an example that was used by W.Hurty? The beam, shown in
Fig. 11.4.1, is considered to vibrate only in the plane of the paper.

We separate the beam into two sections, CD and (2), whose coordinates are shown
as WI' x; w2, x; and u2, x. For part CD, we assume the deflection to be

w1(x, t) = cPI(X)PI(t) + ¢z{x)pz{t) + ...

FIGURE11.4.1. Beam sections 1 and 2 with their coordinates.

x-
<D L

o "lW2
X

~
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EI
kss = 28.87

All other kij are zero.

I I II( 2 )2 EI
kn = EI 0 4>'{4>~ dx = EI 0 (i dx = 4[3

k12 = k21 = El f(~)(~)dx = 6 ~:

EI
k22 = 12[3

Thus,

For subsection CD, we have

rl II ( )4·
mll = Jo m4>l4>ldx = 0 m =1- dx = O.20ml

m12 = J:mM,dx = J.'m( Hdx = O.l66ml = m21

m22 = I'm"'2"'2 dx = I'm( 7r dx = O.1428m1

The generalized mass for subsection @ is computed in a similar manner using 1>3 to 4>6:
m33 = 1.0ml

m34 = 0.50ml = m43

m3S = O.20ml = mS3

m44 = 0.333ml

m4s = O.166ml = mS4

mss = O.,111ml

m66 = 1.0ml

Because there is no coupling between the longitudinal displacement U2 and the lateral
displacement w2, m63 = m64 = m6s = O.

The generalized stiffness is found from the equation

k .. = II EI'#"'~'#"'~dx
I) 'YI'YJ

o

where u2(x, t) is the displacement in the x-direction.
The next step is to calculate the generalized mass from the equation .

m'j = f m{x ),/>;(x)"',{x) dx
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Because the total number of coordinates used is 6 and there are four constraint
equations, the number of generalized coordinates for the system is 2 (i.e., there are four
superfluous coordinates correspondingto the four constraint equations; see Sec. 7.1).
We can thus choose any two of the coordinates to be the generalized coordinates q.Let
PI = qi and P6 = q6 be the generalized coordinates and express PI" .. ,P6 in terms of ql
and q6'This is accomplished in the following steps.

Rearrange Eq. (11.4.7)by shifting columns 1and 6 to the right side:

wt(l) + u2(l) = 0 or Pt + P2 + P6 = 0

wz{l) = 0 P3 + P4 + Ps == 0

w;(l) - w~(l) = 0 2pt + 3P2 - P4 - 4ps = 0

EI[w';(l) + w~(l)] = 0 2pt + 6P2 + 12ps = 0

Arranged in matrix form, these are

PI

[!

1 0 0 0

!l P2
0 1 1 1 P3 =0 (11.4.7)
3 0 -1 -4 P4
6 0 0 12 Ps

P6

where the upper left matrix refers to section CD and the remainder to section ~.
At the junction between sections CD and @, we have the following constraint

equations:

(11.4.6)

46:0000
I

6 12: 0 0 0 0-------.------------
[k] = EI 0 0: 0 0 0: 0

700:000:0
I I

o 0: 0 0 28.8: 0------------~---
0000 0:0

(11.4.5)

0.2000 0.1666: 0 0 0 0,
, I

0.1666 0.1428: 0 0 0 0---------------4------------~- _o 0: 1.0000 0.5000 0.2000: 0
I I

o 0: 0.5000 0.3333 0.1666: 0
I Io 0: 0.2000 0.1666 0.1111: 0------------~----------~-------o 0 0 0 0: 1.0000

[m] = ml

The results computed for mij and kij can now be arranged in the mass and stiff­
ness matrices partitioned as follows:
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(11.4.12)

Comparing Eqs, (11.4.10) and (11.4.11), we note that in Eq. (11.4.10), the mass
and stiffness matrices are 6 X 6 [see Eqs. (11.4.5) and (11.4.6)], whereas the matrices
[C]'[m][C] and [C]'[k][C] in Eq. (11.4.11) are 2 X 2. Thus, we have reduced the size of
the system from a 6 X 6 to a 2 X 2 problem.

By letting {ei} = -w2{q}, Eq. (11.4.11) is in the form

(11.4.11)ml[C]'[mUC]{lj} + ~; [C]'[k][C]{q} = 0

Premultiply by the transpose [C]':

substitute for {P} in terms of {q} from the constraint equation (11.4.9)

ml[m][C]{lj} + ~; [k][C]{q} = 0

(11.4.10)ml[m]{p} + ~; [k]{p} = 0

Returning to the Lagrange equation for the system, which is

PI 1 0
P2 -1 -1
P3 2 4.50

{::} = [Cl{::} (11.4.9)
P4 -2.333 ..-5.0

Ps 0.333 0.50
P6 0 1

{P2-S} = [s] -1[Q]{q1.6}
Supply the identity of PI = ql and P6 = q6 as follows:

{Pl-6} = [c1{q l,6}
This constraint equation is now in terms of the generalized coordinates ql and q6 as
follows:

Premultiply by [s] -1 to obtain

(11.4.8)
[
~ ~ ~ ~]{~:} = [- ~ - ~]{ql}
3 0 -1 -4 P4 -2 0 q6
6 0 0 12 Ps -2 0

In abbreviated notations, the preceding equation is

[S]{P2-S} = [Q]{ql,6}
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ILl Determine the mode participationfactor for a uniformlydistributed force.
11.4 If a-concentratedforce acts at x = a,the loadingper unit length corresponding to it can

be represented by a delta function lS(x - a). Show that the mode-participation factor
then becomesK, = cp;(a) and the deflectionis expressibleas

11.1 Show that the dynamic load factor for a suddenly applied force reaches a maximum
valueof 2.0. -

IL2 If a suddenly applied constant force is applied to a systemfor which the damping factor
of the ithmode is , = clccr' showthat the dynamicload factor is givenapproximately by
the equation

PROBLEMS

- /El
Wt = 1.172\j ;;;p

",:>=3.198~
Figure 11.4.2 shows the mode shapes corresponding to these frequencies. Since

Eq. (11.4.-12)enables the solution of the eigenvectors only in terms of an arbitrary refer­
ence.q, can be solved with q) = 1.0.The coordinates p are then found from Eq. (11.4.9),
and the mode shapes are obtained from Eqs. (11.4.1), (11.4.3), and (11.4.4).

By using MATLAB@, we find the two natural frequencies of the system from
Eq. (11.4.12). This is done by first computing the dynamic matrix, which is given by
D = A -1*B.Then the square root of the eigenvalues of D are computed which results
in the following

2.6614]
7.3206

10.800]
19.200

A = [aii] = [C]'[m][C] = [~:~~~

B = [bii] = [c]'[kllc] = [1~:~:

The numerical values of the matrix [aij] and (bij] from Eqs. (11.4.5), (11.4.6), and
(11.4.9) are

FIGURE 11.4.2. First and second mode shapes.
Second modeFirst mode
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11.8 A simply supported uniform beam has suddenly applied to it the load distribution shown
in Fig. PH.8, where the time variation is a step function. Determine the response y(x, t) in
terms of the normal modes of the beam. Indicate what modes are absent and write down
the first two existing modes.

11.9 A slender rod of length I, free at x = 0 and fixed at ~ = I, is struck longitudinally by a
time-varying force concentrated .at the end x = O. Show that ati modes are equally

FIGURE P11.7.

If HJrr
- t t \CEtf-i ~1·

FIGURE P11.S.

~f(l)

11.7 A couple of moment Mo is applied at the center of the beam of Prob. 11.6, as shown in
Fig. PH.7. Show that the deflection at any point is given by the equation

( t) = Mol2 ~ q.>~(a)q.>i(x)D.(t)
y x, El ~ ({3;l) 3 I

2MJ2 [-Sin (21r7) .. sin( 41T7) sin (61T7 ) ]
EI (21r)3 D2(t) + (41T)3 Dit) - (61T)3 D6(t) + ..

11.6 A concentrated force Pol(t) is applied to the center of a simply supported uniform beam,
as shown in Fig. PH.6. Show that the deflection is given by

( ) Pol3 ~ Kjq.>j(x)
Y x, t = El -f (f3;1)4 o,

...lL :A.
\14--4--l----+l~1

FIGURE P11.6.FIGURE P11.S.

2 2~6(X - o) ft6(X - 0 - .J
-x=o===! <
1

dq.>j(x) I () , ( )K, = l-d- = 13;1 q.>j x x=a
X x=a

(" ) = Po/3 "" q.>;(a)q.>j(x) D ( )
y x, t El ~ (13;1)4 j t

where wf = (13;/)4(EI/ M13) and (13jl) is the eigenvalue of the normal mode equation.
11.5 For a couple of moment Mo acting at x = a, show that the loading p(x) is the limiting case

of two delta functions shown in Fig. P11.S as e 4 O.Show also that the mode-participa­
tion factor for this case is
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,',:!

j

(b)
FIGURE P11.12.
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wil = 1T4(EI/ Ml3)
= natural frequency of beam on rigid supports

where

2F. l [ cos ( ~ 7 ) . cos (T 7 ) 1
u(x, t) ~ A~ (~r D,(t) + e;' r D,(t) + ...

11.10 If the force of Prob. 11.9 is concentrated at x = 113, determine which modes will be
absent in the solution.

11.11 In Prob. 11.10,determine the participation factor of the modes present and obtain a com­
plete solution for an arbitrary time variation of the applied force.

11.ll Consider a uniform beam of mass M and length I supported on equal springs of total
stiffness k, as shown in Fig. P11.12a. Assume the deflection to be

y{x, t) = 'PI{X)ql(t) + 'P2{X)q/t)
and choose 'PI = sin( 1Txll) and 'P2= 1.0.Using Lagrange's equation, show that

4 .. 2 _
til + - q2 + wllql - 01T

excited (i.e., that the mode-participation factor is independent of the mode number),the
complete solution being
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011.15 Write the equations for the two-mode approximation of Prob.11.l4.
11.16 Repeat Prob. 11.15 using the mode-acceleration method. .
11.17 Show that for the problem of a spring attached to any point x = a of a beam, both the

constrained-mode and the mode-acceleration methods result in the same equation when
only one mode is used, this equation being 0

(~)' = 1 + M~'Pi(a)

ILlS The beam shown in Fig. P1U8 has a spring of rotational stiffness K lb in./rad at the left
end. Using two modes in Eq. (11.2.8), determine the fundamental frequency of the system

where

( ~)2 = 1+ 1.5(~)(~ )
WI M Tr4EI/

11.14 A spririg of stiffness k is attached to a uniform beam, as shown in Fig. P11.14. Show that
the one-mode approximation results in the frequency equation

~ -rAL~l.1: ,J
3 3

FIGURE P11.14.

~.~~

FIGURE P11.13.

A plot of the natural frequencies of the system is shown in Fig. P11.12b.
11.13 A uniform beam, clamped at both ends, is excited by a concentrated force Pof(t) at

midspan,as shown in Fig. Pll.13. Determine the deflection under the load and the result­
ing bending moment at the clamped ends.

R = (wn)2
W22

Let y(x, t) = [b + sinTr(xll)]q"and use Rayleigh's method to obtain

q2 = b = !!.f(R - 1) += ~(R - 1)2 + 3~R]
ql 8 L tt

~2 = kiM
= natural frequency of rigid beam on springs

Solve these equations and show that

w2 = w2 Tr2 [(R + 1)± ~(R - I)' + ~ R]
222 Tr2-8
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FIGURE PlUS.FIGURE P1l.24.

and the generalized mass and damping to

M~ = MI[ 1 + ml~~Xl) + ~1 <p~2(X)]

'1~ = ~==================
m J

1 + Ml <pi(x1) + ~ <pi2(X1)
1 1

where a one-mode approximation is used for the inertia forces.
11.24 Formulate the vibration problem of the frame shown in Fig. P11.24 by the component­

mode synthesis. Assume the corners to remain at 90°.
11.25 A rod of circular section isbent at right angels in a horizontal plane as shown in Fig. P11.2S.

Using a component-mode synthesis, set up the equations for the vibration perpendicular to
the plane of the rod. Note that member 1 is in flexure and torsion. Assume that it is bending
only in the vertical plane.

as a function of K/ Mwi, where wI is the fundamental frequency of the simply supported
beam.

11.19 If both ends of the beam of Fig. P1Ll8 are restrained by springs of stiffness K, determine
the fundamental frequency. As K approaches infinity, the result should approach that of
the clamped ended beam.

11.20 An airplane is idealized to a simplified model of a uniform beam of length l and mass per
unit length m with a lumped mass at Mo at its center, as shown in Fig. P1l.20. Using the
translation of Mo as one of the generalized coordinates, write the equations of motion
and establish the natural frequency of the symmetric mode. Use the first cantilever mode
for the wing.

11.21 For the system of Prob. 11.20,determine the antisymmetric mode by using the rotation of
the fuselage as one of the generalized coordinates.

11.22 If wing tip tanks of mass MI are added to the system of Prob. 11.20, determine the ne~
frequency.

11.23 Using the method of constrained modes, show that the effect of adding a mass ml with
moment of inertia JI to a point XI on the structure changes the first natural frequency WI to

FIGURE P11.20.FIGURE P11.18.
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351

(12.1.1)

The fundamental frequency of multi-DOF systems is often of greater interest than its
higher natural frequencies because its forced response in many cases is the largest. In
Chapter 2, under the energy method, Rayleigh's method was introduced to obtain a
better estimate of the fundamental frequency of systems that contained flexible ele­
ments such as springs and beams. In this section, we examine the Rayleigh method in
'light of the matrix techniques presented in previous chapters and show that the
Rayleigh frequency approaches the fundamental frequency from the high side.

Let M and K be the mass and stiffness matrices, respectively, and X the assumed
displacement vector for the amplitude of vibration. Then for harmonic motion, the
maximum kinetic and potential energies can be written as

12.1 RAYLEIGHMETHOD

The exact analysis for the vibration of systems of many degrees of freedom is generally
difficult and its associated calculations are laborious. Even with high-speed digital
computers that can solve equations of many DOF, the results beyond the first few nor­
mal modes are often unreliable and meaningless. In many cases, all the normal modes
of the system are not required, and an estimate of the fundamental and a few of the
lower modes is sufficient. For this purpose, Rayleigh's method and Dunkerley's equa­
tion are of great value and importance.

In many vibrational systems, we can consider the mass to be lumped. A shaft
transmitting torque for several pulleys along its length is ari example. Holzer devised a
simple procedure for the calculation of the natural frequencies of such a system.
Holzer's method was extended to beam vibration by Myklestad and both methods
have been matricized into a transfer matrix procedure by Pestel. Many of these proce­
dures were developed in the early years and be considered as classical methods. They
are now routinely processed by digital computer; however, a basic understanding of
each these methods is essential.

Classical' -Methods
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(12.1.7)

(12.1.6)

the Rayleigh quotient becomes

w2 = w2[1 + C2( w~ _ 1) XIMX2 + ... J
1 2 wi XiMX1

If X;MXi is normalized to the same number, this equation reduces to

.,' = wi[ 1 + C~(:~ - 1) + ...]

Itis evident, then, that w2 is greater than wi because W!;_j wi > 1. Because C2 represents
the deviation of the assumed amplitudes from the exact amplitudes Xl' the error in the.
computed frequency is only proportional to the square of the deviation of the assumed
amplitudes from their exact values.

This analysis shows that if the exact fundamental deflection (or mode) Xl is
assumed, the fundamental frequency found by this method will be the correct fre­
quency, because C2, C3, and so on, will then be zero. For any other curve, the frequency
determined will be higher than the fundamental. This fact can be explained on the
basis that any deviation from the natural curve requires additional constraints, a condi­
tion that implies greater stiffness and higher frequency. In general, the use of the static .
deflection curve of the elastic body results in a fairly accurate value of the fundamental
frequency. If greater accuracy is desired, the approximate curve can be repeatedly
improved.

(12.1.5)

XTMX = XiMX1 + qXIMX2 + C~XIMX3 + ...
where cross terms of the form XTKXj and XTMXj have been eliminated by the orthog­
onality conditions.

Noting that

and

Then

(12.1.4)

This quotient approaches the lowest natural frequency (or fundamental fre­
quency) from the high side, and its value is somewhat insensitive to the choice of the
assumed amplitudes. To show these qualities, we express the assumed displacement
curve in terms of the normal modes Xi as follows

(12.1.3)

(12.1.2)Umax = ~XTKX

Equating the two and solving for w2, we obtain the Rayleigh quotient:

XTKX
w2= ---

XTMX

and
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FIGURE 12.1.1.

where y is the assumed deflection curve. Thus, by equating the kinetic and potential
energies, an alternative equation for the fundamental frequency of the beam is

(
d2y )2

fEI dx2 dx
w2 = fy2dm (12.12)

(12.1.11)

where the integration is carried out over the entire beam.
The kinetic energy is simply

T =! IY'2dm = .!w2Iy2dm
max 2 2

(12.1.10)

where R is the radius of curvature. By substituting for de and l/R, U can be written as

1 I M2 1 r ( d2y ) 2
Umax ="2 EI dx = "2 J EI dx2 dx

(12.1.9)

In addition, we have, from the theory of beams, the flexure equation:

1 M
R EI

In our previous discussion of the Rayleigh method, the potential energy was
determined by the work done by the static weights in the assumed deformation. This
work is, of course, stored in the flexible manner as strain energy. For beams, the elastic
strain energy can be calculated in terms of its flexural rigidity EI.

By letting M be the bending moment and e the slope of the elastic curve, the
strain energy stored in an infinitesimal beam element is

dU = ~M'de (12.1.8)

Because the deflection in beams is generally small, the following geometric relations
are assumed to hold (see Fig. 12.1.1):

dy 1 de d2y
e = dx R dx dx2
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.J

The additional strain energy in element dx is

dU = !uA~dx = ~EAE2dx

where A is the cross-sectional area, a is the stress due to tension, and 8 = !(dy / dx)2 is the unit
strain.

1 (d )2[VI + (dy/dx)_2 -l]dx = 2 d~ dx

Solution Due to the lateral deflection, the length dx of the beam is increased by an amount

If the distance between the ends of the beam of Fig. 12.1.2 is rigidly fixed, a tensile stress owill
be developed by the lateral deflection. Account for this additional strain energy in the frequency
equation.

EXAMPLE 12.1.2

•

In this case, the assumed curve happened to be the natural vibration curve, and the exact
frequency is obtained by Rayleigh's method. Any other curve assumed for the case can be con­
sidered to be the result of additional constraints, or stiffness, which result in a constant greater
than 7T2 in the frequency equation.

FIGURE 12.1.2.

Substituting into Eq. (12.1.12), we obtain

EI(7r~ 4E1
w2 = = 1T -

~ ml"
m~

The fundamental frequency, therefore, is

where Yo is the maximum deflection at midspan. The second derivative then becomes

d2y ( 1T)2 . 1TX.
dX2 = - I Yo SID ism wt

( . 1T'X) .Y = Yo SID T SID wt

In applying this procedure to a simply supported beam of uniform cross section, shown in Fig.
12.1.2,we assume the deflection to be represented by a sine wave as follows:

EXAMPLE 12.1.1
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< til >+dM
V V+dV

Figure 12.1.4. Free-body
diagram of the beam element.FIGURE12.1.3.

w2 m(x) y(X)dx

(12.1.15)

the moment at x is found from the integral

M(x) = fV({;)d{;

(12.1.14)

Because bending moment is related to the shear by the equation

dM = V
dx

•
Accuracy of the integral method over differentiation. In using Rayleigh's

method of determining the fundamental frequency, we must choose an assumed curve.
Although the deviation of this assumed deflection curve compared to the exact curve
may be slight, its derivative could be in error by a large amount and hence the strain
energy computed from the equation

1I /d2y)2
U = 2: EI~ dx2 dx

may in inaccurate. To avoid this difficulty, the following integral method for evaluating
U is recommended for some beam problems.

We first recognize that the shear V is the integral of the inertia loading mw2y
from the free end of the beam, as indicated by both Figs. 12.1.3 and 12.,1.4. .

·t

vW = w2 Ii m({;)y({;)d{; (12.1.13)

which contains an additional term due to tension.

f ( d 2y ) 2 f EA (d ) 4EI -;Ri. dx + 4 i dx

f y2dm

The preceding equation then leads to the frequency equation:

Equating the kinetic energy to the total strain of bending and tension, we obtain

f If (d2y)2 IfEA(d)41(02 y2dm = - EI - dx + - - _I dx
2 2 dx2 2 4 dx
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The maximum strain energy is found by substituting M(x) and Umax:

1 (w2mc)2 J./{ 4 3 4)2Umax = 2 El 12 0 31 - 41 X + X dx

w4 m2c2 312
2 El 144 135/9

and the bending moment becomes

I I 2 II
M{x) = x V{g)dgW ~c x (13 - e)d~

Acceptable results using the given curve can be found by the procedure outlined in the pre­
vious section.

whereas the exact value is

{EI
W = 4.47 '/;;[4-[-

Solution If we use Eq. (12.1.12), we find the result to be very much in error because the previ­
ous curve does not satisfy the boundary conditions at the free end. By using Eq. (12.1.12), we
obtain

FIGURE 12.1.5.

Determine the fundamental frequency of the uniform cantilever beam shown in Fig. 12.1.5 using
the simple curve y = ex',

EXAMPLE 12.1.3

(12.1.16)

The strain energy of the beam is then found from

U = !J I M(x)2 dx
2 0 EI

which avoids any differentiation of the assumed deflection curve.
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The deflections at the loads can be obtained from the superposition of the deflections due to
each load acting separately.

Solution Referring to the table at the end of Chapter 2, we see that the deflection of the beam
at any point x (see Fig. 12.1.7) from the left end due to a single load Wat a distance b from the
right end is

t=-l f-bt
FIGURE 12.1.7.

225 kg 135kg,

k 2.5m ~ 15m ~ 15m&
\+,-- 5.5m .1

FIGURE 12.1.6.

Calculate the first approximation to the fundamental frequency of lateral vibration for the sys- ,
tern shown in Fig. 12.1.6.

EXAMPLE12.1.14

(12.1.19)

By equating the two, the frequency equation is established as

2 g~.M.y-WI = /, / /
~iMiYT

(12.1.18)T -! 2(M 2 M 2 M 2 ... )max - 2W IYl + 2Yz + 1 3Y3 +

Lumped masses. The Rayleigh method can be used to determine the funda­
mental frequency of a beam or shaft represented by a series of lumped masses. At a
first approximation, we assume a static deflection curve due to loads MIg, M2g, M3g,
and so on, with corresponding deflections YI' Y2' Y3' .... The strain energy stored in the
beam is determined from the work done by these loads, and the maximum potential
and kinetic energies become

Umax = ~g(MIYI + M2Y2 + M3Y3 + ...) (12.1.17)

•
which is very close to the exact result.

The maximum kinetic energy is

Tmax = if>'m dx = ~c'w'mLX4 dx = ~c'w'm~
By equating these results, we obtain

_ ~ 12.47EI - {Ei
WI - -----;;;[4 = 3 .53 ~ ;;[4
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IS. Dunkerley, "On the Whirling and Vibration of Shafts," Phil. Trans. Roy. Soc., Vol. 185 (1895),
pp. 269-360.

Expanding this determinant, we obtain the third-degree equation in 1/ (J}.

(a11m! - ~2) a 12m2 a13n13

a2lml (anm2 - ~2) a23m3 =0

a31m1 a32m2 (a33m3 - ~2)

12.2 DUNKERLEY'S EQUATION

The Rayleigh method, which gives the upper bound to the fundamental frequency, can
now be complemented by Dunkerley's' equation, which results in a lower bound to the
fundamental frequency. For the basis of the Dunkerley equation, we examine the char­
acteristic equation formulated from the flexibility coefficients, which is

•

By substituting into Eq. (12.1.19), the first approximation to the fundamental frequency is

I 9.81(225 x 10.797 + 135 x 8.344)EI
WI = \j [225 x (10.797)2 + 135 x (8.344)2]103

= 0.03129VEI rad/s

If further accuracy is desired, a better approximation to the dynamic curve can be made by
using the dynamic loads mw2y. Because the dynamic loads are proportional to the deflection y,
we can recalculate the deflection with the modified loads gml and gmiY2/Yl)'

103
Yz = 8.344 x EI m

By adding y' and y", the deflections at 1 and 2 become

y~ = (9.81 x 62~~.~~/ x 3.0 [(5.5)2 _ (3.0)2 _ (2.5)2] = 7.524 x 1~; m .

y; = (9.81 x 62~~.~~/ x 1.5 [(5.5)2 _ (1.5)2 _ (2.5)2] = 5.455 x ~; m

Due to the 225-kg mass, the deflection at the corresponding points are

Due to the 135-kg mass, we have

y~ = (9.81 x 61~~.~~/ x 2.5 [(5.5)2 _ (2.5)2 - (1.5)2] = 3.273 x ~; m

y~ = (9.81 x 135) x 1.5 x 4 [(5.5)2 _ (4.0)2 _ (1.5)2] = 2.889 x 103 m
6 x 5.5EI EI
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Dunkerley's equation is useful for estimatingthe fundamentalfrequencyof a structure undergo­
ing vibration testing. Natural frequencies of structures are often determined by attaching an
eccentricmassexciter to the structure andnotingthe frequenciescorrespondingto the maximum

EXAMPLE 12.2.1

Thus, the right side becomes the sum of the effect of each mass acting in the absence of
all other masses.

(12.2.5)

Because the left side of the equation has the dimension of the reciprocal of the fre­
quency squared, each term on the right side must also be of the same dimension. Each
term on the right side must then be considered to be the contribution to 1/ wi in the
absence of all other masses, and, for convenience, we let ajjmj = Ilw~, or

(12.2.4)

The estimate to the fundamental frequency is made by recognizing that wz, w3, •.•

. are natural frequencies of higher modes and hence 1/ w~, 1/w~, ... can be neglected in
the left side of Eq. (12.2.3). The term 1/wi is consequently larger than the true value,
and therefore wI is smaller than the exact value of the fundamental frequency.
Dunkerly's estimate of the fundamental frequency is then made from the equation

1
2 < (aUml + a22m2 + ... + annmn)
wI

(12.2.3)

As is well known in algebra, the coefficient of the second highest power is equal to the
sum of the roots of the characteristic equation. It is also equal to the sum of the diago­
nal terms of matrix A -1, which is called the trace of the matrix (see Appendix C):

trace A -I = #,C;)
These relationships are true for n greater than 3, and we can write for an n-DOF

system the following equation:

(~2 - ~i)( ~2 ~~)(~2 - ~i) = 0

or

(~2 r (~ + 1 + .!_ )( .!_ r + ... = 0
w2 w2 w~ w2

(12.2.2)
1 2

(~2r - (allml + a,_,m2 + a33m3l( ~2r + ... = 0 (12.2.1)
(",

If the roots of this equation are 1/ wi, 1/ w~,and 1/ w~, the previous equation can be fac­
tored into the following form:
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Determine the fundamental frequency of a uniformly loaded cantilever beam with a concen­
trated mass M at the end, equal to the mass of the uniform beam (see Fig. 12.2.1).

EXAMPLE 12.2.3

By eliminating all' the true natural frequency is

III = 45.3 cps

The rigidity of stiffness of the tab at the point of attachment of the shaker can be determined
from 1ja22, which from the same equations is found to be

k2 = a~2 = O.~7 = 246Ib/in.

1 1 1.5
(21T X 30)2 (21T/ll)2 + 386 a22

1 1 3.0
(21T X 24)2 (21T/llF + 386 a22

Solution The measured resonant frequencies are those due to the total mass of the tab and
shaker. Letting III be the true natural frequency of the tab and substituting into Eq. (b) of
Example 12.2.1,we obtain

An airplane rudder tab showed a resonant frequency of 30 cps when vibrated by an eccentric
mass shaker weighing 1.5 lb. By attaching an additional weight of 1.5 lb to the shaker, the reso­
nant frequency was lowered to 24 cps. Determine the true natural frequency of the tab.

EXAMPLE 12.2.2

•
where m2 is the mass of the concentrated weight or exciter, and a22 the influence coefficient of
the structure at the point. of attachment of the exciter.

(b)

It is sometimes convenient to express the equation in another form, for instance,

1 1
2 = -2 + a22m2
WI Wll

where WI = fundamental frequency of structure plus exciter
Wll = fundamental frequency of the structure by itself
W22 = natural frequency of exciter mounted on the structure in the absence of other

masses

(a)

amplitude. The frequencies so measured represent those of the structure plus exciter and can
deviate considerably from the natural frequencies of the structure itself when the mass of the
exciter is a substantial percentage of the total mass. In such cases, the fundamental frequency of
the structure by itself can be determined by the following equation:

1 1 1
2=-2 +-2
WI Wll W22
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The fundamental freguency of a uniform beam of mass M, simply supported as in Fig. 12.2.2, is
equal to 1T2yEll M13. If a lumped mass mo is attached to the beam at x =1/3,determine the new
fundamental frequency.

EXAMPLE 12.2.5

•

Solution The frequency of the tank attached to the weightless wing is

1 ~ 60 X 106
122 = 21T 1800 = 29.1 cps = 1745 cpm

Thenew torsional frequency with the tank, from Eq. (a) of Example 12.2.1, then becomes

1111~= (1600)2 + (1745)2 11 = 1180 cpm

The natural frequency of a given airplane wing in torsion is 1600 cpm. What will be the new tor­
sional frequency if a 1000-lb fuel tank is hung at a position one-sixth of the semispan from the
center line of the airplane such that its moment of inertia about the torsional axis is 1800
lb . in . ;.?The torsional stiffness of the wing at this point is 60.X 106lb . in.lrad.

EXAMPLE 12.2.4

•

? 3EI ( EI )
(Ui= ( 33 ) = 2.43 Ml3

1 + 140 Ml3

2 _ ( EI )(Un - 3.00 Ml3

By substituting into Dunkerley's formula rearranged in the following form, the natural fre­
quency of the system is determined as

2 = (Uil(U~2 = (3.515)2 X 3.0 (.!!_) = 2 41( _5!_)
Wl 2 2 ()2 3' 3(Ull+ (Un 3.515 + 3.0 Ml Ml

This result can be compared to the frequency equation obtained by Rayleigh's method, which is

2 2( EI )(Ull= 3.515 Ml3

For the concentrated mass by itself attached to a weightless cantilever beam, we have

Solution The frequency equation for the uniformly loaded beam by itself is

FIGURE 12.2.1.
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FIGURE 12.2.3.

EXAMPLE12.2.6
Determine the fundamental frequency of the three-story building shown in Fig. 12.2.3, where the
foundation is capable of translation.

•
1 + 1.6 ';;

1
(

W )2 1
WIll == 1+ ~mo

6 x 81 M

The quantity a22 is the influence coefficient at x = 1/3 due to a unit load applied at the same
point. It can be found from the beam formula in Example 12.1.4 to be

8 13

a22 = 6 x 81 EI

Substituting wil = 1T.4EI/M/3 together with a22, we obtain the convenient equation

or

Solution Starting with Eq. (b) of Example 12.2.1,we let Wll be the fundamental frequency of
the uniform beam and WI the new fundamental frequency with mo attached to the beam.
Multiplying through Eq. (b) by wi,we have

l~j
FIGURE 12.2.2.
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where the kinetic energy is expressed as (J)2T:'ax. In the Rayleigh method, a single func­
tion is chosen for the deflection; Ritz, however, assumed the deflection to be a sum of
several functions multiplied by constants, as follows:

(12.3.1)

W.Ritz developed a method that is an extension of Rayleigh's method. It not only pro­
vides a means of obtaining a more accurate value for the fundamental frequency, but it
also gives approximations to the higher frequencies and mode shapes.

The Ritz method is essentially the Rayleigh method in which the single shape
function is replaced by a series of shape functions multiplied by constant coefficients.
The coefficients are adjusted by minimizing the frequency with respect to each of the
coefficients, which results in n algebraic equations in (J)2.The solution of these equa­
tions then gives the natural frequencies and mode shapes of the system. As in
Rayleigh's method, the success of the method depends on the choice of the shape func­
tions that should satisfy the geometric boundary conditions of the problem. The
method should also be differentiable, at least to the order of the derivatives appearing
.in the energy equations. The functions, however, can disregard discontinuities such as
those of shear due to concentrated masses that involve third derivatives in beams.

We now outline in a general manner the procedure of the Rayleigh-Ritz method,
starting with Rayleigh's equation:

12.3 RAYLEIGH-RITZ METHOD

•

1 h3 h3

a22 = ko + 24EIl + 24EI2

1 h3 h3 h3
a --+--+--+-.-
33 - ko 24EI1 24EI2 24EI3

The Dunkerley equation then becomes

_!_ - mo +(l:_ + _£_)m = (l:_ +~ +.E:1m
w~ - ko ko 24£11 1 ko 24EI} 24E12/ 2

(
1 h3 h3+ -+--+--
ko 24E11 24E12

If the columns are of equal stiffness, the preceding equation reduces to

1 1 h3 2h3 3h3
w2 = k (mo +m} +m2 +m3) +m1 24 E1 + m1 24 E1 +m3 24 E1

I 0

Solution If a unit force is placed at each floor, the influence coefficients are
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(12.3.7)

With i varying from 1 to n, there will be n such equations, which can be arranged in
matrix form as .

[

(kll - w2m11) (k12 - w2m12)
(k21 - w2m21)

(kn1 - w2mn1)

'and
aumax--=sc,

and so Eq. (12.3.5) becomes

C1(kil - w2mil) + Ciki2 - w2mi2) + ~.. + Cn(k;n - lllmin) = 0 (12.3.6),

(12.3.5)aumax _ (Ji aT~ax = 0
aic; sc,

The two terms in this equation are then

(12.3.4)aw2

sc,
which is satisfied by

. where kij and mij depend on the type of problem. For example, for the beam, we have

k'j = f Elq>:' <Pi' dx and mij = f m<p,<pjdx

whereas for the longitudinal oscillation of slender rods,

k'j = f EA<p; <Pi dx and m'j = f m<p,<pjdx

We now minimize ui by differentiating it with respect to each of the constants.
For example, the derivative of ui with respect to C; is

* aumax U aT!ax
a (Umax) T max ac; - max ec,

- =0
aCi T!ax - T~;x

(12.3.3)

where cP;(x) are any admissible functions satisfying the boundary conditions. Umax and
Tmaxare expressible in the form of Eqs. (7.4.1) and (7.4.2):

1
U = 2 ~ ~k;jC;Cj

I J

(12.3.2)

Classical Methods364 Chapter 12

www.semeng.ir

http://www.semeng.ir


(b)

The kij and the mij for the longitudinal modes are calculated from the equations
I

kij ~ fo EA(x)4>,4>; dx
I

mij = 10m(x) <l>A)j dx

_ 11'2 f.1( . x) 2 11'X _ EAu (11'2 + ~)
kll - 412EAo 0 1 - 7 cos 2i dx - 21 8 2 ..

= 0.86685.E1°
311'2 f.1 ( x) 11'X 311'x 0.750 EAI0k12 = 4fEAo 0 1 - 7 cos2icos TLdx =

911'2 f.1( ~ ) cos? 311'xdx = EAo (911'2 + ~)
k22 = 412 EAo 0 1 - 1 21 21 8 2

= 5.80165 E1°

m(x) = mo_(1 -]) and EA(x) = EAo( 1 -7)
The mass per unit length and the stiffness at x are

(a)

( )
• TTX C. 37TX

U X = C) SIn 2i + 2 SIn U

Solution For the displacement function, we choose the first two longitudinal modes of a uni­
form rod clamped at one end.

FIGURE 12.3.1.

Figure 12.3.1 shows a wedge-shaped plate of constant thickness fixed into a rigid wall.
Determine the first two natural frequencies and mode shapes in longitudinal oscillation by using
the Rayleigh-Ritz method.,

EXAMPLE12.3.1

The determinant of this equation is an n-degree algebraic equation in w2, and its solu­
tion results in the n natural frequencies. The mode shape is also obtained by solving for
the C's for each natural frequency and substituting into Eq. (12.3.2) for the deflection.

Rayleigh-Ritz Method 365Section 12.3

www.semeng.ir

http://www.semeng.ir


2H.Holzer, Die Berechnung der Drehschwingungen (Berlin: Springer-Verlag, 1921).

When an undamped systemis vibratingfreely at anyone of its natural frequencies, no
external force, torque, or moment is necessary to inaintain the vibration. Also, the
amplitude of the mode shape is immaterial to the vibration. Recognizing these factS,
Holzer' proposed amethod of calc~lationfor the natural frequencies and mode shapes .

12.4 HOLZERMETHOD

•
(

, • TTX • 37TX
u2 x) = -0.63819 SID 2i + 1.0 SID 2trEA::

WI = 5.5297'J -;;;j2

7TX 37TX
uI(x) = 1.0 sin 2L + 0.03689 sin 2t

The two natural frequencies and mode shapes are then

rEA::
WI = 2.4062'J -;;;j2

for mode 1

for mode 2

C2 = 0.03689CI

CI = -0.63819C2

The two roots of this equation are

wi = 5.7898a and ~ = 30.5778a

. Using these results in Eq. (c), we obtain

(e)

where

Setting the determinant of the preceding equation to zero, we obtain the frequency equation

(.t)4 - 36.3676aw2 + 177.0377a2 = 0 (d)

(c)
. (EA . \ 10.750-° - O.10132mol(2)I {C,} = a
(5.80165E10 - O.23874molw') C,

ml1 = mOfJ-7) sin' ~; dx = mol( ~ - ~) = 0.148679m.,t

m12 = moI:(1 - 7) sin ~; sin 3~X dx = m.,t( ~2 ) = O.101321m.,t

"'n = mof} - 7) sin' 3~X dx = "'ol( ~ - 9~') = O.238742mol

Substituting into Eq. (12.3.7), we obtain

[

f EAo 0 .:1868 2\\ 0.86685-1- - .1. molw J

(0.750E1° - 0.10132molw2)
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can then be plotted for the chosen to.By repeating the calculation with other values of
to, the natural frequencies are foun.d when Text =O.The angular displacements 0; corre-
sponding to the natural frequencies are the mode shapes. .

4

Text = 'L, l;w20;
;=1

. I w282= 1 - _1_
Kl

With O2known, the inertia torque of the second disk is calculated as 12w202. The sum of
the first two intertia torques acts through the shaft K 2' causing it to twist by

11w2 + 12w202
K2 = O2 - 03

In this manner, the amplitude and torque at every disk can be calculated. The resulting
torque at the far end,

or

Holzer's procedure for torsional systems. Figure 12.4.1 shows a torsional sys­
tem represented by a series of disks connected by shafts. By assuming a frequency w
and amplitude 81 = 1, the inertia torque of the first disk is

•• _ 2 _ 2-1181 - l1w 81 - l1w 1

where harmonic motion is implied. This torque acts through shaft 1and twists it by

J 2 .
. 1(1)-- = 81 - 82 = 1 - 82
Kl

of torsional systems by assuming a frequency and starting with a unit amplitude at one
end of the system and progressively calculating the torque and angular displacement
to the other end. The frequencies that result in zero external torque or compatible
boundary conditions at the other end are the natural frequencies of the system. The
method can be applied to any lumped-mass system, linear spring-mass systems, beams
modeled by discrete masses and beam springs, and so on.

(h
FIGURE 12.4.1
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0.920
24.19 X 103

40 1.0
1600 8.0 X 103

.9484
14.66 X 103

0.980
6.312 X 103

20 1.0
. 400 2.0 X 103

63= 62-T2/k2
T3 = T2 + (1)26313

62 = i-r.n;
T2 = t,+ (1)26212

(I) 61= 1.0
cJ -Tl = (1)26111

Calculation Program

12= 11
K2 = 0.20 X 106

11= 5
tc, = 0.10 X 106

Station 3Station 2I Station 1

Parameters of the System

Table 12.4.1

lit mode WI = 123.666

FIGURE 12.4.3. ~mode W2 =202 .658

100

If')

I 0Q
)(

~

-100

FIGURE 12.4.2.

Kz= 0.20)(106 Nm/rodK,= 0.1011106

Determine the natural frequencies and mode shapes of the system shown in Fig. 12.4.2.

EXAMPLE 12.4.1
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FIGURE 12.5.1.

(12.5.1)

(12.5.2)

(J(I,N + 1.) = 8(1,N) - T(I, N)/K(N)
T(I, N + 1.) = T(I, N) + A(/) *J(N +' 1.) * 8(/, N + 1.)

where A= w2, (J(l,1.) = 1., T(I, 1.) = A(I) *J(1).

12.5 DIGITAL COMPUTER PROGRAM FORTHE TORSIONAL SYSTEM

The calculations for the Holzer problem can be greatly speeded up by using a high-speed
digital computer. The problem treated is the general torsional system of Fig. 12.5.1.The
program is written in such a manner that by changing the data, it is applicable to any
other torsional system.

The quantities of concern here are the torsional displacement 8 of each disk and
the torque T carried by each shaft. We adopt two indexes: N to define the position
along the structure and 1for the frequency used.

The equations relating the displacement and torque at the Nth and (N + 1)st sta­
tions are

•

Solution Table 12.4.1 defines the parameters of the system and the sequence of calculations,
which can be easily carried out. Presented are calculations for w = 20 and 40.The quantity T3 is
the torque to the right of disk 3, which must be zero at the natural frequencies. Figure 12.4.3
shows a plot of T3 versus w.Several frequencies in the vicinity of T3 = 0 were inputted to obtain
accurate values of the first and second shapes displayed in Fig. 12.4.4.

-1.0
FIGURE 12.4.4.

\
\ .
\
\

O~--~\~--~~~~~---­
\
\
\
\ I /
\1/
W -1.0535

-0.3449

I
I
I
I

W,= 123.666
:.~ I
I 1
I 0.2353 I~ 0, 2995
I / I .,A---tc.J2 = 202.658

1.0
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FIGURE 12.5.3

-2.0

-1.0

2.0

The computation is started with the boundary conditions N = 1:

6(/,1) = 1

T(/, 1) = A(/)*J(l)

A(I) '= w(I)2
The corresponding A(I) is computed as

1= 1to 30

which can be programmed as

w(/) = 40 + (I - 1)*20

Solution The frequency range can be scanned by choosing an initial wand an increment ~w.
We choose for this problem the frequencies

w = 40,60,80, ... ,620

J3=40

K,=2xl0£ Kz=2x106 K3=3xl06

FIGURE 12.5.2.

9,

Determine the natural frequencies ana mode shapes for the torsional system of Fig. 12.5.2.

EXAMPLE 12.5.1

By starting at N = 1, these two equations are to be solved for (}and T at each
point N of the structure for various values of A. At the natural frequencies, (}must be
zero at the fixed end or T must be zero at the free end.
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3N.O. Myklestad, "A New Method of Calculating Natural Modes of Uncoupled Bending Vibration of
Airplane Wings and Other Types of Beams,"1Aero. Sci. (April 1944), pp.153-162.

N.o. Myklestad, "Vibration Analysis" (New York: McGraw-Hill, 1944).

FIGURE 12.6.1.

.f',

I I

-0
I m,

i.i
Imi+ 1

10 10
·1

i +':'I

Uncoupled ftexural vibration. Figure 12.6.1 shows a typical section of an ideal­
ized beam with lumped masses. By taking the free-body section in the manner indi­
cated, it will be possible to write equations for the shear and moment at i + 1 entirely
in terms of quantities at i.These can then be substituted into the geometric equations
for Bandy.

When a beam is replaced by lumped masses connected by massless beam sections, a
method developed by N. 0. Myklestad" can be used to progressively compute the
deflection, slope, moment, and shear from one section to the next, in a manner similar
to the Holzer method.

12.6 MYKLESTAD'SMETHOD FOR BEAMS

•

'WI = 160

W2 = 356

W3 = 552

The mode shapes can be found by printing ON for each of the preceding frequencies.

Equations (12.5.1) and (12.5.2) then give the values of °and T at the next station M = N + 1 = 2.
This loop is repeated until M = 4, at which time I is advanced an integer to the next frequency.
The process is then repeated.

Figure 12.5.3 shows the results of the computer study in which 04 is plotted against (1). The
natural frequencies of the system correspond to frequencies for which 04 becomes zero, which
are approximately
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I '1- = 5 X 10-6-
El Nmm1 = 100 kg

To illustrate the 'computational procedure, we determine the frequencies of the cantilever beam
shown in Fig. 12.6.2.The massless beam sections are assumed to be identical so that the influence
coefficients for each section are equal. The numerical constants for the problem are given as

EXAMPLE 12.6.1

Boundary conditions. Of the four boundary conditions at each end, two are
generally known. For example, a cantilever beam with i = 1 at the free end would have
VI = Ml = O. Because the amplitude is arbitrary, we can choose Yl = 1.0. Having done
so, the slope 61 is fixed to a value that is yet to be determined. Because of the linear
character of the problem, the four quantities at the far end will be in the form

Vn = a1 + b161

M; = a2 + b261

6n = a3 + b361

Yn '= a4 + b461

where aj., b, are constants and 61 is unknown. Thus, the frequencies that satisfy the
boundary condition 6n = Yn = 0 for the cantilever beam will establish 61.and the nat­
ural frequencies of the beam, i.e., 61= -a3/b3 and Yn = a4-(a3/b3)b4 = O. Hence, by
plotting Yn versus to, the natural frequencies of the beam can be found.

Thus, Eqs. (12.6.1) through (12.6.4) in the sequence given enable the calculations to
proceed from i to i + 1.

(12.6.4)

(12.6.3)0Hl = 0i + Mi+l(~I)i + Vi+l(2~I)i
. , 2 3

Yi+l = Yi + 0Ji + Mi+l(2~I)i + Vi+l(3~I)i

where (1/E1)i = slope at i + 1 measured from a tangent at i due to a unit moment at
i + 1;

«(2/2 EI); = slope at i + 1 measured from a tangent at i due to a unit shear at
i + 1 = deflection at i + 1 measured from a tangent at i due to a unit
moment at i + 1;

(P /3E1)j = deflection at i + 1measured from a tangent at i due to a unit shear at
i + 1.

From geometric considerations, using influence coefficients of uniform beam sections,
we have

(12.6.1)
(12.6.2)

From equilibrium considerations, we have

Vj+1 = Vj - mjCliYj
Mj+1 = M, - Vi+111
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84 = 0.21315 + 1.06258 = 0 81 = -0.2006117
Y4 = 1.08555 + 1.5167( -0.2006117) = 0.78128 plot vs.w = 10

Table 12.6.1

n = 10. 02= 100.

V (newtons) M(newton . meters) 6 (Radians) y (meters)

1 0 0 0 0 0 6 1.0 0
2 -10,000. 0 5000. 0 0.0125 '1.06 1.002084 0.56
3 -25031. -75006 17515. 37509 0.06879 1.009379 1.0198 1.0015636
4 -45427. -275326 40228. 175166 0.21315 1.06256 1.08555 1.51676

FIGURE12.6.2.

The computation is started at 1. Because each of the quantities V, M, e, and Y will be in the
form a + b, they are arranged into two columns, each of which can be computed separately. The
calculation for the left column is started with VI = 0, M; = 0, e1 = 0, and Yl = 1.0. The right
columns, which are proportional to e, are started with the initial values of VI = 0, M1= 0,
e1 = Ie, and Yl = 0.

Table 12.6.1 shows how the computation for Eqs. (12.6.1) through (12.6.4) can be carried
out with any programmable calculator. The frequency chosen for this table is w = 10.

To start the computation, we note that the moment and shear at station 1 are zero. We can
choose the deflection at station 1 to be 1.0, in which case the slope at this point becomes an
unknown 8.We, therefore, carry out two columns of calculations for each quantity, starting with
Yl = 1.0, e1 = 0, and Yl = 0,81 = e.The unknown slope el·= e is found by forcing e4, at the fixed
end to be zero, after which the deflection Y4 can be calculated and plotted against w.The natural
frequencies of the system are those for which Y4 = O.

To search the natural frequencies, computer calculations were made between w = 10 to
w = 400 at frequency steps of 10 rad/s. Tabulation of Y4 versus w indicates natural frequencies in
the frequency regions 20 :s;.WI :s; 30, 130 ::; w2 ::; 140, and 340 :s; wj :s; 350. Further calculations
were carried out in each of these regions with a much smaller frequency step. Because the
lumped-mass model of only three masses could hardly give reliable results for the third mode,
only the first two modes were recomputed; these were found to be WI = 25.03 and ~ = 138.98.
The mode shape at l.t'2 is plotted in Fig. 12.6.3.

13 m
3EI = 0.41666 x 10-6 N

1 = 0.5 m
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Table 12.6.2

W Y4 W Y4

10 0.7813 210 1.6170
20 0.2659 220 1.7619
30 -0.2922 +-Wt 230 1.8749
40 -0.7372 240 1.9531
50 -1.0285. 250 1.9936
60 -1.1800 260 1.9941
70 -1.1292 270 1.9522
80 -1.1719 280 1.8661
90 -1.0589 290 1.7340
100 -0.8%4 300 1.5544
110 -0.6972 310 1.3258
120 -0.4714 320 1.0472
130 -0.2278 330 0.7177
140 0.0264+-Wz 340 0.3363
150 0.2844 350 -0.0975+-~
160 0.5405 360 -0.5844
170 0.7892 370 -1.1247
180 1.0256 380 -1.7187
190 1.2451 390 -2.3666
200 1.4436 400 -3.0685

Mode shape at
FIGURE 12.6.3. ""2 = 138.98
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FIGURE 12.7.2.

_-----
YI+1

FIGURE 12.7.1.

rn, Ji about e.g. G

~ :
Yi cross section

,//)77$//7/717 at 5to. i

Elastic axis

Ji,m,

(12.7.1)

(12.7.2)

Vi+1 = Vi - miw2(Yi + ci'P)

Mi+1 = M; - Vi+1l;

Natural modes of vibration of airplane wings and other beam structures are often
coupled flexure-torsion vibration, which for higher modes differs considerably from
those of uncoupled modes. To treat such problems, we must model the beam as shown
in Fig. 12.7.1. The elastic axis of the beam about which the torsional rotation takes
place is assumed to be initially straight. It is able to twist, but its bending displacement
is restricted to the vertical plane. The principal axes of bending for all cross sections
are parallel in the undeformed state. Masses are lumped at each station with its center
of gravity at distance Ci from the elastic axis and I, is the mass moment of intertia of
the section about the elastic axis, i.e., I,= leg + mic7.

Figure 12.7.2 shows the ith section, from which the following equations can be
written:

12.7 COUPLED F·LEXURE-TORSION VIBRATION
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4E. C. Peste I and F.A. Leckie, "Matrix Methods in Elastomechanics" (New York: McGraw-Hill, 1963).

Torsional system. Signs are often a source of confusion in rotating systems, and
it is necessary to clearly define the sense of positive quantities. The coordinate along
the rotational axis is considered positive toward the right. If a cut is made along the
shaft, the face with the outward normal toward the positive coordinate direction is
called the positive face. Positive torques and positive angular displacements are indi­
cated on the positive face by arrows pointing positively according to the right-hand
screw rule, as shown in Fig. 12.8.1.

With the stations numbered from left to right, the nth element is represented by
the massless shaft of torsional stiffness K; and the mass of polar moment of inertia In'
as shown in Fig. 12.8.2.

12.8 TRANSFER MATRICES

The Holzer and Myklestad methods can be recast in terms of transfer matrices," The
transfer matrix defines the geometric and dynamic relationships of the element
between the two stations and allows the state vector for the force and displacement to
be transferred from one station to the next station.

Natural frequencies are established by the satisfaction of the boundary conditions at
the other end. Often, for symmetric beams such as the airplane wing, only one-half the
beam need be considered. The satisfaction of the boundary conditions for the symmet­
ric and antisymmetric modes enables sufficient equations for the solution.

(12.7.7)

VI = M, = T1 = 0

81 = 8 Yl = 1.0 'PI = 'P

Here again, the quantities of interest at any station are linearly related to 81 and
'PI and can be expressed in the form ~

where T = the torque
h = the torsional influence coefficient = lfGl ;
'P = the torsional rotation of elastic axis

For free-ended beams, we have the following boundary conditions to start the
computation:

(12.7.6)

(12.7.5)

(12.7.4)

(12.7.3)Tj+ I = T,+ JjW2'Pj + mjcjw2Yj

81+1 = 8; + V1+1( 21~1); + M;+I( ~l)i

Yi+1 = Y; + 8;1; + V;+I( 3~1 ); + M;+I( 21~1);
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In the development so far, the stations were numbered in increasing order from
·left to right with the transfer matrix also progressing to the right. The arrow under the

(12.8.3)

(12.8.2)

For the shaft:

Kn(9~- 9~-;i:~t}m:= [: ~]J~t
The matrix pertaining to the mass is called the point matrix and the matrix associ­

. ated with the shaft, the field matrix. The two can be combined to establish the transfer
matrix for the nth element, which is

(12.8.1)

Separating the shaft from the rotating mass, we can write the following equations
and express them in matrix form. Superscripts Land R represent the left and right
sides of the members.

For the mass:

~_~:~W2Jn9J {~}:=[_:2J a{~}:

FIGURE 12.8.2.

r"R_, T"L----~------~----eR -enL
n-1

FIGURE 12.8.1.
e
·T
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FIGURE12.9.1. Torsional system with damping.

n

T"L ~ rR....,.___ -"
- - 2. c 8 J"w 8"

IW " "

g"

TII'!_, r::J TL....__ -It

~ -~-, • ,
Kit

J"J,,_, g"

(12.9.2)

(12.9.1)(iwcn - w2 In)8n = T~ - T~
The elastic equation for the nth shaft is

T; = K/8n - 8n-l) + iwgn(8n - 8n-l)

= (Kn + iwgn) ( 8n - 8n-l)

or

When damping is included, the form of the transfer matrix is not altered, but the mass
and stiffness elements become complex quantities. This can be easily shown by writing
the equations for the nth subsystem shown in Fig. 12.9.1.The torque equation for disk
n is

12.9 SYSTEMSWITH DAMPING

(12.8.4){8}R ~ [( 1 - w:) -~] {8.}R
T n-I 2 T n

t» J 1
The arrow now indicates that the transfer matrix progresses from right to left with the
order of the station numbering unchanged. The reader should verify this equation,
starting with the free-body development.

equal sign indicates this direction of progression. In some problems, it is convenient to
proceed with the transfer matrix in the opposite direction, in which case we need only
to invert Eq. (12.8.3).We then obtain the relationship
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1.0+ 0.0;
1.0 + 0.0;
1.0 + 0.635;

1 0.50 + 0.0;
2 0.50 - 0.316;
3 1.0 - 0.0;
4 1.0 + 0.0;

Table 12.9.1

Solution The numerical computations for (J)2 = 1000 are shown in Table 12.9.1.The complex
mass and stiffness terms are first tabulated for each station n.By substituting into the point and
, field matrices, i.e., Eqs. (12.9.3) and, (12.9.4), the complex amplitude and torque for each station
are found, as Table 12.9.2.

FIGURE 12.9.2.

The torsional system of Fig. 12.9.2 is excited by a harmonic torque at a point to the right of disk
4. Determine the torque-frequency curve and establish the first natural frequency of the system.

II = 12= 500·lb·in.·s2

13 = 14 = lOOO·lb·in.·s2

K2 = K3 = K4 = 1061b' in./rad

c2 = 1041b' in.. s/rad

B« = 2 X J041b' in.' s/rad

EXAMPLE 12.9.1

•
which are identical to the undamped case except for the mass and stiffness elements;
these elements are now complex.

(12.9.4)

(12.9.3)

Thus, the point matrix and the field matrix for the damped system become

Systemswith Damping 379Section 12.9
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Consider the geared torsional system of Fig. 12.10.1, where the speed ratio of shaft 2
to shaft 1 is n.The system can be reduced to an equivalent single shaft system as fol-
lows. .

12.10 GEARED SYSTEM

EXAMPLE 12.9.2

In Fig. 12.9.2, if T = 2000 in.. lb. and w = 31.6 rad/s, determine the amplitude of the second disk.

Solution Table 12.9.2 indicates that a torque of 394,000 in.. lb produces an amplitude of
82 = 0.50 rad. Because amplitude is proportional to torque, the amplitude of the second disk for
the specified torque is 0.50 x 2/394 = 0.00254 rad.

•

These computations are repeated for a sufficient number of frequencies to plot the
torque-frequency curve of Fig. 12.9.3.The plot shows the real and imaginary parts of T: as well
as their resultant, which in this problem is the exciting torque. For example, the resultant torque
at w2 = 1000 is 106Y(0.107)2 + (0.3874)2 ='0.394 x 106 in.: lb. The first natural frequency of
the system from this diagram is found to be approximately w = V930 = 30.5 rad/s, where the
natural frequency is defined as that frequency of the undamped system that requires no torque
to sustain the motion.

(-0.50 -+- O.Oi) x 106
(-0.750 + O.l58i) x 106
(-0.50 + O.Oi) x 106
(0.107 - 0.384i) x 104

1.0 + O.Oi
0.50 + O.Oi

-0.250 + 0.158i
-0.607 + 0.384i

2
3
4

T~ (for (J} = 1000)n

Table 12.9.2

0.4 0.6 0.8

w2 x 10-3

FIGURE12.9.3. Torsion-frequency curve for the damped
torsional system of figure of Fig. 12.9.2

1.41.21.0

0.8

II> 0.6I
Q
)(

'1-~ 0.4

1.0 r--.-----,--,------r--,---"""'T""----.
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FIGURE 12.11.1. Examplesof branched torsional systems.

Branched systems are frequently encountered; some common examples are the dual
propeller system of a marine installation and the drive shaft and differential of an
automobile, which are shown in Fig. 12.11.1.

12.11 BRANCHED SYSTEMS

With the speed ofshaft 2 equal to O2 = nO" the kinetic energy of the system is
_ I '2 1 2 2'2T - 7.1j () j + 7.12n n () j (12.10.1 )

Thus, the equivalent intertia of disk 2 referred to shaft 1 is n212•

To determine the equivalent stiffness of shaft 2 referred to shaft 1, clamp disks 1
and 2 and apply a torque to gear 1, rotating it through an angle. ()j. Gear 2 will then
rotate through the angle ()2 = n()j, which will also be the twist in shaft 2. The potential
energy of the system is then

U = ~Kl ()~+ 1K2()~ (12.10.2)
and the equivalent stiffness of shaft 2 referred to shaft 1 is n2K2•

The rule for geared systems is thus quite simple: Multiply all stiffness and inertias
of the geared shaft by n2, where n is the speed ratio of the geared shaft to the reference
shaft.

FIGURE 12.10.1. Geared system and its
equivalent single-shaft system.

< ,.,
r--J.

2,~ K2
n

L-

..Ie--
1
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(b)

FIGURE12.11.3. Branched system and reduced
system.

1 1 -I
1 n2K4 I1 1 :8 I_I I r-- :4 I"'"1 1 I :R1 Kt 1 K2 1 K3I I 1 -I

I
1 IA II1 I I 00:-:... 1 I 1 ":-

R

Solution We first convert to a system having 1-to-1 gears by multiplying the stiffness and
intertia of branch B by n2, as shown in Fig. 12.11.3(b). We can then proceed from station 0
through to station 3, taking note that gear B introduces a torque ~1 on gear A.

Outline the matrix procedure for solving the torsional branched system of Fig. 12.11.3.

EXAMPLE 12.11.1

•
Such systems can be reduced to the form with 1-to-1 gears shown in Fig. 12.11.2

by multiplying all the inertias and stiffnesses of the branches by the square of their
speed ratios.

-

FIGURE12.11.2. Branched system reduced to
common speeds by l-to-I gears.

......

._

-

-
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'Ibe' algebraic equation of Sec. 12.6 can be rearranged so that the four quantities at sta­
tion i + 1 are expressed in terms of the same four quantities at station i.When such
equations are presented in matrix form, they are known as transfer matrices. In this
section, we present a procedure for the formulation and assembly of the matrix equa­
tion in terms of its boundary conditions.

12.12 TRANSFER MATRICES FOR BEAMS

•

-w2n2J4 LTR = 6 (e)
BI 1- W2J4/ K4 Al

By substituting Eq. (e) into Eq. (a), the transfer function of shaft A across the gears becomes

{::1:~ [ -.,'J,/(1 ~ w'J,/K,) ~Jg:}: (I)

It is now possible to proceed along shaft A from lR to 3R in the usual manner.

By eliminating 6~4'

(d)

(c)

Because O~l = - O~l = - O~l' we obtain

ORB!= (1 - w2J4 )OR - OLK4 B4 - - Al

i;='w2n2J40:4

(b)

(a)T~I = T~I + T~I
and we need now to express T~I in terms of the angular displacement 01 of shaft A.

Using Eq. (12.8.4) and noting that T~4 = 0, we have for shaft B

Figure 12.11.4 shows the free-body diagram of the two gears. With T~l shown as positive
torque, the torque exerted on gear A by gear B is negative as shown. The torque balance on gear
A is then

FIGURE 12.11.4.
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In this equation, a minus sign has been inserted for V in order to make the elements of
the field matrix all positive.

Next, consider the point mass for which the following equations can be written:

V~ = V~ - m.w2y.
I I I I

-V L 1 0 0 0 -V R

M 1 0 0 M
= P (12.12.2)

e -- I 0 °2EI EI
13 P

1Y - -- YHI 6EI 2EI

L R R L ( 12) L ( 13 )Yi+l = Yj + OJl, + Mi+1 2EI i + Vi+l 3EI i

Substituting for Vr+I and Mr+l from the first two equations into the last two and
arranging the results in matrix form, we obtain what is referred to as the field matrix:

(12.12.1)L _ R L ( I ) L ( 12 )
°i+l - OJ + Mj+1 EI i + Vj+1 2EI i

Vr+i = vf
Mr+l = Mf - vf/i

Figure 12.12.1 shows the same ith section of the beam of Fig. 12.6.1 broken down
further into a point mass and a massless beam by cutting the beam just right of the
mass. We designate the quantities to the left and right of the mass by superscripts L
and R, respectively.

Considering, first, the massless beam section, the following equations can be
written:

FIGURE12.12.1. Beam sections for transfer matrices.
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(12.12.7){ -v}. [-
~ .• = ..

where matrix [u] is the product of all the transfer matrices of the structure.
The advantage of the transfer matrix lies in the fact that the unknown quantity at

1, i.e., 01, for the cantilever beam, need not be carried through each station as in the
algebraic set of equations. The multiplication of the 4 X 4 matrices by the digital com­
puter is a routine problem. Also, the boundary equations are clearly evident in the
matrix equation. For example, the assembled equation for the cantilever beam is

(12.12.6){Y} = [Ull
Y n U41

The square matrix in this equation is called the transfer matrix, because the state
vector at i is transferred to the state vector at i + 1 through this matrix. It is evident
then that it is possible to progress through the structure so that the state vector at the
far end is related to the state vector at the starting end by an equation of the form

which is known as the point matrix.
Substituting Eq. (12.12.4) into Eq. (12.12.2) and multiplying, we obtain the

assembled equation for the ith section:

R I rruo'
L-v 1 0 0 -v

M 1 0 mio'! M
[2 [ [2 (12.12.5)

0
_

- 1 mw2_ 02EI EI 2EI
[3 [2

( mW2/3)y L 6El
_ 1+-- y

i+1 ·2El 6El

(12.12.4)

In matrix form, these equations become

(12.12.3)

Mf = Mf
of = of
yf = yf
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12.4 Verify the results of Example 12.1.4 by using Eq. (12.1.3).

1.5M1 M1 kg

~ •• jEI= constant
~1 .1«

4 2
2 ~.

FIGURE P12.3.

U.3 Estimate the fundamental frequency of the lumped-mass cantilever beam shown in
Fig. P12.3. .

FIGURE P12.2.

U.2 Using Rayleigh's method, estimate the fundamental frequency of the lumped-mass sys­
tem shown in Fig.·P12.2.

FIGURE P12.1.
x1- x2-

U.1 Write the kinetic and potential energy expressions for the system of Fig. P12.1 and deter­
mine the equation for w2 by equating the two energies. Letting X2/Xl = n, plot w2 versus
n. Pick the maximum and minimum values of w2 and the corresponding values of n, and
show that they represent the two natural modes of the system.

PROBLEMS

In a plot of Yn VS. W, the natural frequencies correspond to the zeros of the curve.

(12.12.8)

or

and the natural frequencies must satisfy the equations

o = U33() + U34

o = U43() + U44
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m.1

FIGURE P12.9.

El

12.9 A uniform cantilever beam of mass m per unit length has its free end pinned to two
springs of stiffness k and mass rno each, as shown in Fig. P12.9. Using Rayleigh's method,
find its natural frequency wI'

12.8 Repeat Prob. 12.7,but use the curve

y(x) = Ymax4;( 1 -7)

FIGURE P12.7.

y(x) = Ymax sin (7Tx/I),
determine the fundamental frequency of the beam shown in Fig. P12.7 (a) if EI2 = Ell
and (b) if E12= 4El1.

solve Prob. 12.3 by using the method of integration. Hint: Draw shear and moment dia­
grams based on intertia loads.

12.7 Using the deflection

[3 (x) 2
y(x) = 3EI I

2 _ XTMX
W - XTMaMX

Solve for WI in Example 12.1.4 by using the foregoing equation and compare the results
with those of Prob. 12.4.

12.6 Using the curve

Premultiplying by XTM, we obtain
XTMX = w2XTMaMX

and the Rayleigh quotient becomes

12.5 Another form of Rayleigh's quotient for the fundamental frequency can be obtained by
starting from the equation of motion based on the flexibility influence coefficient

X=aMX
= lliaMX .
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12.14 A load of 100 lb at the wing tip of a fighter plane produced a corresponding deflection of
0.78 in. If the fundamental bending frequency of the same wing is 622 cpm, approximate

12.13 Using Dunkerley's equation, determine the fundamental frequency of the beam shown
in Fig. P12.13.

FIGURE P12.13.FIGURE P12.12.

~~~L~O~_L~O~~L-O
~ m m m

by the Rayleigh method.
12.12 Using Dunkerley's equation, determine the fundamental frequency of the three-mass

cantilever beam shown in Fig. P12.12.

determine the lowest natural frequency of a simply supported beam of constant EI and a
mass distribution of .

1O~x:s;-
2y(x) = Ymax [3(7) - 4(7)3],

12.11 Assuming a static deflection curve

~JJ;~ff&M',w'l:~
FIGURE P12.10.

L,M

12.10 A uniform beam of mass M and stiffness K = EI/e, shown in Fig. P12.1O,is supported on
equal springs with total vertical stiffness of k lb/in. Using Rayleigh's method with the·
deflection Ymax = sin ('IT xll) + b, show that the frequency equation becomes

w2 = 2k [ ~ :4 + ~ 1
M ~ + ~ + b?

By aw2/ab = 0, show that the lowest frequency results when

b ~ -I (~-~:4):t ~[~G- ~:4)T+ ~~
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FIGURE P12.22.

12.19 Repeat Prob. 12.18, but this time, the spring is replaced by a mass mo, as shown in Fig.
P12.19.

12.20 For the simply supported variable mass beam of Prob. 12.11, assume the deflection to be
made up of the first two modes of the uniform beam and solve for the two natural fre­
quencies and mode shapes by the Rayleigh-Ritz method.

12.21 A uniform rod hangs freely from a hinge at the top. Using the three modes cf>l = x/I,
cP2 = sin( 'iTX/I), and cP3 = sin(27TX/I),determine the characteristic equation by using the
Rayleigh-Ritz method.

IHl 12.22 Using Holzer's method, determine the natural frequencies and mode shapes of the tor­
sional system of Fig. P12.22 when J = 1.0 kg . m 2 and K = 0.20 X 106 Nm/rad.

FIGURE P12.19.

~F==£='=A=E==D mO~:~A~
~ yyyy f:%

FIGUREP12.18.

12.17 For the wedge-shaped plate of Example 12.3.1, determine the first two natural frequen­
cies and mode shapes for bending vibration by using the Ritz deflection function
y = ClX2 + C2X3•

12.18 Using the Rayleigh-Ritz method, determine the first two natural frequencies and mode
shapes for the longitudinal vibration of a uniform rod with a spring of' stiffness ko
attached to the free end, as shown in Fig. P12.18. Use the first two normal modes of the
fixed-free rod in longitudinal motion.

l,EI,m
-j

~l
FIGURE P12.16.

the new bending frequency when a 320-ib fuel tank (including fuel) is attached to the
wing tip.

12.15 A given beam was vibrated by an eccentric mass shaker of mass 5.44 kg at the midspan,
and resonance was found at 435 cps.With an additional mass of 4.52 kg, the resonant fre­
quency was lowered to 398 cps.Determine the natural frequency of the beam.

12.16 Using the Rayleigh-Ritz method and assuming modes xll and sin( 1Tx/l) , determine the
two natural frequencies and modes of a uniform beam pinned at the right end and
attached to a spring of stiffness k at the left end (Fig. P12.16).
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n JIb in.. S2 K lb . in.lrad

1 50 15 X 106
2 138 30
3 145 22
4 181 36
5 260 120
6 ~ X 140,000

IHl 12.28 A fighter-plane wing is reduced to a series of disks and shafts for Holzer's analysis, as
shown in Fig. P12.28. Determine the first two natural frequencies for symmetric and anti­
symmetric torsional oscillations of the wings, and plot the torsional mode corresponding
to each.

FIGUR'EP12.27.

IHl 12.24 Determine the natural frequencies and mode shapes of the three-story building of
Fig. P12.24 by using Holzer's method for all ms = m and all k, = k.

IHl 12.25 Repeat Prob. 12.24when m1 = m, m2 = 2m, m3 = 3m, k1 = k, k2 = k, and k3 = 2k.
12.26 Compare the equations of motion for the linear spring-mass system versus the torsional

system with the same mass and stiffness distribution. Show that they are similar.
IHl 12.27 Determine the natural frequencies and mode shapes of the spring-mass system of

Fig. P12.27 by the Holzer method when all masses are equal and stiffnesses are equal.

FIGURE P12.24.FIGUREP12.23.

IHl 12.23 Using Holzer's method, determine the first two natural frequencies and mode shapes of
the torsional system shown in Fig. P12~23with the following values of I and K:

11 = 12 = 13 = 1.13 kg .m2

14 = 2.26 kg -rn?

K1 = K2 = 0.169 Nm/rad x 106

K3 = 0.226 Nm/rad x 106
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FIGUREP12.33.

500 kg 100kg

~--:~O)-----.~....-/-0
~i--l--~-+l·I-.-!-1

12.32 Using Myklestad's method, determine the boundary equations for the simply supported
beam of Fig. P12.32. I •

12.33 For the beam of Fig. P12.33, check that the boundary condition of zero deflection at the
left end is.satisfied for these natural frequencies when Myklestad's method is used. That
is, check the deflection for change in sign when frequencies above and below the natural
frequency are used. '

FIGURE P12.32.

, 2 3

~
~
~

FIGUREP12.31.

U.30 Using Myklestad's method, determine the natural frequencies and mode shapes of the
two-lumped-mass cantilever beam of Fig. P12.30. Compare with previous results by using
influence coefficients.

[HJ U.31 Determine the first two natural frequencies and mode shapes of the three-mass can­
tilever of Fig. P12.31.

~=r: £~
FIGUREP12.30.FIGURE P12.29.

12.29 Determine the natural modes of the simplified model of an airplane shown in Fig. P12.29
where M/m = n and the beam length l is uniform.

FIGUREP12.28.

o 40" 70" 105"145"200"

CD I I I I I
I : I I I-=========::::j _._t::tl~. ::::J1F==11=f1::=t
I I I
5 3 1
I J I
I I I
I I I

I
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dl=l~' 1.,=40"

FIGURE P12.37.

12.37 Determine the equivalent torsional system for the geared system shown in Fig. P12.37
and find its natural frequency.

FIGURE P12.36.

'-',
T,,,

J.,-to

[HJ 12.35 Shown in Fig. P12.35 is a linear system with damping between masses 1 and 2. Carry out a
computer analysis for numerical values assigned by the instructor, and determine the
amplitude and phase of each mass at a specified frequency.

1M! U.36 A torsional system with a torsional damper is shown in Fig. P12.36. Determine the
torque-frequency curve for the system. .

FIGURE P12.35.FIGURE P12.34.

m

U.34 Determine the flexure-torsion vibration for the system shown in Fig. P12.34.
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FIGUREP12.40.

(b)(0)

U.40 Reduce the torsional-system of the automobile shown in Fig. P12.40(a) to the equivalent
torsional system shown in Fig. P12.40(b). The necessary information is as follows:
I of each rear wheel = 9.21b . in.. S2

I of flywheel = 12.3 lb . in .. S2 .

Transmission of speed ratio (drive shaft of engine speed) = 1.0 to 3.0
Differential speed ratio (axle to drive shaft) = 1.0 to 3.5
Axle dimensions = 1~ in. diameter,25 in. long (each)
Drive shaft dimensions = 1~in. diameter, 74 in. long
Stiffness of crankshaft between cylinders, measured experimentally = 6.1 X 106
lb· in.rrad
Stiffness of crankshaft between cylinder 4 and flywheel = 4.5 X 106lb . in.lrad

FIGUREP12.39.

U.38 If the small and large gears of Prob. 12.37 have the inertias J' = 2 and J" = 6, determine
the equivalent single shaft system and establish the natural frequencies.

U.39 Determine the lowest natural frequencies of the torsional system shown in Fig. P12.39 for
the following values of I, K, and n:

II = 15lb . in. 'S2

KJ = 2·X 10° lb . in./rad

12 = 10 lb·in.· S2

K2 = 1.6 X 106 lb· in./rad

13 = 18 lb· in.. S2

K3 = 1 X 106 lb· in./rad
14 = 61b· in. 'S2

K4 = 4 X 106 lb· in./rad

Speed ratio of the drive shaft to axle = 4 to 1

What are the amplitude ratios of 12 to i1 at the natural frequencies?
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FIGURE P12.48.FIGURE P12.47.

12.43 Apply the matrix method to a cantilever beam of length I and mass m at the end, and
show that the natural frequency equation is directly obtained.

U.44 Apply the matrix method to a cantilever beam with two equal masses spaced equally a dis­
tance I. Show that the boundary conditions of zero slope and deflection lead to the equation

~mw21K(5 + ~mw212K)() =
1 1 + ~12Kmw2

1 + ~mw212K + (~mw212K)2
21 + ~mw2l3K

where K = IIEI. Obtain the frequency equation from the foregoing relationship and
determine the two natural frequencies.

U.45 Using the matrix formulation, establish the boundary conditions for the symmetric and
antisymmetric bending modes for the system shown in Fig. P12.45. Plot the boundary
determinant against the frequency w to establish the natural frequencies, and draw the
first two mode shapes.

U~46 Do the same analysis as in Problem 12.30with two jet engines of the plane placed various
distances from the body. How do the results depend on I, the distance?

U.47 Do the same analysis as in Problem 12.30with four jet engines of the plane placed symmet­
rically about the body.The first pair is placed an arbitrary distance 11 from the body and the
second pair is placed at the distance 12 from the first. How do the results depend on 11' 12?

U.48 Determine the fundamental frequency for the problem shown in Fig. P12.48 using the
Rayleigh method. Plot the dependency of the frequency on I.

U.49 Determine the fundamental frequency for the problem shown in Fig. P12.49 using
Dunkerley's equation. Plot the dependency of the frequency on 11 and 12,

U.SO Estimate the fundamental frequency for the two previous problems using the Rayleigh­
Ritz method.

!1'1
1. 'Z..{'1'\ \.1-

~----';;;;';;"";;~~2~£l

---~--"~-----0.-4-" . b
FIGURE P12.45.

1M] U.41 Assume that the J of each cylinder of Prob. 12.40 = 0.20 lb . in.. S2 and determine the
natural frequencies of the system.

12.42 Determine the equations for the torsional system shown in Fig. P12.42. Solve for the
principal modes of oscillation.
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395 .

~ sample of a typical random time function is shown in Fig. 13.1.1.In spite of the irreg­
ular character of the function.many random phenomena exhibit some degree of statis­
tical regularity, and certain averaging procedures can be applied to establish gross
characteristics useful in engineering design.

In any statistical method, a large amount of data is necessary to establish reliabil­
ity. For example, to establish the statistics of the pressure fluctuation due to air turbu­
lence over a certain air route, an airplane may collect hundreds of records of the type
shown in Fig. 13.1.2. '

Each record is called a sample; and the total collection of samples is called the
ensemble. We can compute the ensemble average of the instantaneous pressures in
each sample at time t1, We can also multiply the instantaneous pressures in each sam­
ple at times tl and tl + 'T,and average these results for the ensemble, If such averages
do not differ as we choose different values of t1, then the random process described by
this ensemble is said to be stationary.

If the ensemble averages are replaced next by time averages, and if the results
computed from each sample are the same as those of any other sample and equal to
the ensemble average, then the random process is said to be ergodic.

3.1 RANDOMPHENOMENA

The types of functions we have considered up to now can be classified as deterministic,
i.e., mathematical expressions can be written that will determine their instantaneous
values at any time t.There are, however, a number of physical phenomena that result in
nondeterministic data for which future instantaneous values cannot be predicted in a
deterministic sense. As examples, we can mention the noise of a jet engine, the heights
of waves in a choppy sea, ground motion during an earthquake, and pressure gusts
encountered by an airplane in flight. These phenomena all have one thing in common:
the unpredictability of their instantaneous value at any future time. Nondeterministic
data of this type are referred to as random time functions.
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(13.2.2)

This number is also equal to the expected value of x(t), which is written as

1 JTE[x{t)] = lim -T x{t) dt
T~oo 0

13.2 TIME AVERAGING AND EXPECTEDVALUE

Expected value. In random vibrations, we repeatedly encounter the concept of
time averaging over a long period of time. The most common notation for this opera­
tion is defined by the following equation in which x(t) is the variable .

. x{t) = (x{t)) .; lim -T1J Tx{t) dt (13.2.1)
T~oo 0

Thus, for a stationary ergodic random phenomenon, its statistical properties are
available from a single time function of a sufficiently long time period. Although such
random phenomena may exist only theoretically, its assumption greatly simplifies the
task of dealing with random variables. This chapter treats only this class of stationary
ergodic random functions.

pC') IM'~1f ~.4'~ .~ A'«J• it 'It' ,..... -vw'\JIV
I '

P(ll\~~~~

. I
pe t) AW ,IAl. ~ .• AA ~ ~ WIIv",.pf·\~P \fivVVv~, 'I

I .
. ~T .

'1
FIGURE13.1.2. An ensemble of random time functions.

FIGURE13.1.1. A record of random time functions.
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The one-sided summation in the previous equation is complex and, hence, the
real part of the series must be stipulated for x(t) real. Because the real part of a vector
is one-half the sum of the vector and its conjugate [see Eq. (1.1.9)],

(13.2.8)
00

x{t) = Re LCneinwjl
n=l

This series, which is a real function, involves a summation over negative and positive
frequencies, and it also contains a constant term co' The constant term Cois the average
value of x(t) and because it can be dealt with separately, we exclude it in future consid­
erations. Moreover, actual measurements are made in terms of positive frequencies,
and it would be more desirable to work with the equation

(13.2.7)
00 00

x{t) = LCneinw,l = Co + L{cneinW,l + c%e-inWll)
n=l

Fourier series. .Generally, random time functions contain oscillations of many
frequencies, which approach a continuous spectrum. Although random time functions
are generally not periodic, their representations by Fourier series, in which the periods
are extended to a large value approaching infinity, offers a logical approach.

In Chapter 1, the exponential form of the Fourier series was shown to be

so that the variance is equal to the mean square value minus the square of the mean.
The positive square root of the variance is the standard deviation, cr.

(13.2.6)

By expanding the above equation, it is easily seen that

0-2 = x2 - (-xF

Variance and standard deviation. It is often desirable to consider the time
series in terms of the mean and its fluctuation from the mean. A property of impor­
tance describing the fluctuation is the variance (T2,which is the mean square value
about the mean, given by the equation

T

0-2 = lim l_ J (x - -x) 2 dt (13.2.5)
r-s« T 0

(13.2.4)

Mean square value. These average operations can be applied to any variable
such as X2(t) or x(t) . y(t). The mean square value, designated by the notation x2 or
E[x2(t)], is found by integrating x2(t) over a time interval T and taking its average value
according to the equation

It is the average or mean value of a quantity sampled over a long time. In the case of
discrete variables Xi' the expected value is given by the equation

1 n
E[x] = lim - 2: Xi (13.2.3)

n~oo n i=1
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In any linear system, there is a direct linear relationship between the inpqJ:and the out­
put. This relationship, which also holds for random functions, is represented by the
block diagram of Fig. 13.3.1. '

In the time domain, the system behavior can be determined in terms of the sys­
tem impulse response h(t) used in the convolution integralof Eq. (4.2.1).

y(t) = J: x(~)h(t - ~) d~ . (13.3.1)

13.3 FREQUENCY RESPONSEFUNCnON

•

= i !CnC~ = i !lcnl2= f C~
n=1 2 n=12 n=1

In this equation, e:!:i2nwol, for any t, is bounded between ::t1, and due to T ~ 00 in the denomina­
tor, the first and last terms become zero. The middle term, however, is independent of T.Thus,
the mean square value of the periodic function is simply the sum of the mean square value of ,
each harmonic component present.

where Cn is a complex number, and C: is its complex conjugate. [See Eq. (13.2.9).] Its mean
square value is

co

x{t) = Re L CneinwQl
n=1

Solution Because the record is periodic, we can represent it by the real part of the Fourier
series:

Determine the mean square value of a record of random vibration x(t) containing many discrete
frequencies.

EXAMPLE 13.2.1

(l3.2.9)

By comparison with Eq. (1.2.6), we find

2 J T/2 ,
C = 2c = - x(t)e -mw1t dtn nT' '

-T/2
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F,2 -
= ; H(w)H*(~) = FJIH(wW

(13.3.6)

y = ~Fo(He;wt + H*e-iwt) (13.3.5)

Thus, by squaring and substituting into Eq. (13.2.4),we find the mean square value of y is

- F? 1 JTy 2 = _Q_ lim. - (H2ei2wt + 2H H* + H*e -i2wt) dt
4 T~oo T 0

where Foeiwt is a harmonic function.

For the mean square response, we follow the procedure of Example 13.2.1and
write

(13.3.4)

(13.3.3)

1
H( w) = k _ mw2 + icw

1 1
k 1- (wi wn)2 + i2{(wl wn)

As mentioned in Chapter 3,we will absorb the factor 11k in with the force. H{w) is then
a nondimensional function of wi wn and the damping factor (.

The input-output relationship in terms of the frequency-response function can
be written as

A much simpler relationship is available for the frequency domain in terms of the fre­
quency response function H(w), which we can define as the ratio of the output to the
input under steady-state conditions, with the input equal to a harmonic time function
of unit amplitude. The transient solution is thus excluded in this consideration. In ran­
dom vibrations, the initial conditions and the phase have little meaning and are there­
fore ignored. We are mainly concerned with the average energy, which we can
associate with the mean square value.

Applying this definition to a single-DOF system,

mY' + cy + ky = x(t) (13.3.2)

let the input be x(t) = e='. The steady-state output will then be y = H(w)eiwt, where
H(w) is a complex function. Substituting these into the differential equation and can­
celing e':" from each side, we obtain

(-mw2 + icw + k)H(w) = 1

TIle frequency response function is then

FIGURE 13.3.1. Input-output relationship
of a linear system.

Outputy(t)System
h(t)

Input F(t)

Frequency Response Function 399Section 13.3

www.semeng.ir

http://www.semeng.ir


The mean square response is'then

x2 = ~22 [(1.29)2 + (2.50); + (0.72)2]

4>1= tan -100 = 0.507T

-12{
4>3/2= tan -1-5- = -0.1427T

Substituting these values into x(t), we obtain the equation

F
x(t) = k [1.29 cos (0.5w~t - 0.08317')

+ 2.50 cos (wnt ~ 0.507T)]

+ 0.72 cos (1.5wnt + 0.14217')]

0.72
k

2.50

IH{!w )1 - 1/ k _, 1.29
2 n - Y9/16 + (0.20)2 k

IH(w )1 = l/k
n Y 4(0.20)2 k

IH(~w )' = 1/k
2 n I Y25/16 + 9(0.20)2

_14{
4>1/2= tan "3 = 0.0837T

where

x(t) = L IH(mw)IF cos (mwnt - cf>m)
m =1/2,1.3/2

Solution The response of the system is simply the sum of the response of the single-DOF sys­
tem to each of the harmonic components of the exciting force.

L Fcosmwnl
m=I/2,1.3/2

Determine the mean square response and compare the output spectrum with that of the
input.

EXAMPLE 13.3.1

A single-DOF system with natural frequency W~ = ~ and damping (= 0.20 is excited by
the force

In the preceding equation, the first and last terms become zero because of T -? 00

in the denominator, whereas the middle term is independent of T.Equation (13.3.6)
indicates thatthe mean square value of the response is equal to the mean square exci­
tation multiplied by the square of the absolute values of the frequency response func­
tion. For excitations expressed in terms of Fourier series with many frequencies, the
response is the sum of terms similar to Eq. (13.3.6).
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FIGURE 13.4.1. Calculation of cumulative probability.

t

P(x)

If a large negative number is chosen for XI' none of the curve will extend negatively
beyond Xl' and, hence, p(xI ~ -(0) = O.As the horizontal line corresponding to XI is
moved up, more of xCt) will extend negatively beyond xI' and the fraction of the total

(13.4.1)
= lim! ~ ~t·

( ... 00 t I

13.4 PROBABILITYDISTRIBUTION

By referring to the random time function of Fig. 13A.l, What is the probability of its
instantaneous value being less than (more negative than) some specified value Xl? To
answer this question, we draw a horizontal line. at the specified value XI and sum the
time intervalsar, during which x(t) is less than XI' This sum divided by the total time
then represents the fraction of the total time that x(t) is less than xI' which is the prob­
ability that x(t) will be found less than XI'

p(xl) = Prob [x(t) < XI]

•

Figure 13.3.2 shows the input and output spectra for the problem. The components of the
mean square input are the same for each frequency and equal to P2/2. The output spectrum is "­
modified by the system frequency-response function.

FIGURE 13.3.2. Input and output
spectra with discrete frequencies.

hi I I I
~ 0 0.5 1.0 1.5

w/w"
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;,~

and the total area under the p(x) curve must be unity. Figure 13.4.3 again illustrates the
probability density p(x), which is the fraction of the time occupied by x(t) in the inter­
val X to X + dx.

The mean and the mean square value, previously defined in terms of the time
average, are related to the probability density function in the following manner. The

(13.4.4)

The area under the probability density curve of Fig. 13.4.2(b) between two values
of x represents the probability of the variable being in this interval. Because the proba­
bility of x(t) being between X = ±oo is certain,

f
+00

p(oo) = -00 p(x) dx = 1.0

and it is evident from Fig. 13.4.2(b) that p(x) is the slope of the cumulative probability
distribution P(x). From the preceding equation, we can also write

p(xt) = [p(X) dx (13.4.3)

(13.4.2)p(x) = lim p(x + Ax) - p(x) = dP(x)
.1x ....O Ax dx

time in which x(t) extends below Xl must increase, as shown in Fig. 13.4.2(a). As X ~ 00,

all x(t) wili lie in the region less than X = 00, and, hence, the probability of x(t) being less
than x = 00 is certain, or P(x = 00 ) = 1.0. Thus, the curve of Fig. 13.4.2(a), which is
cumulative toward positive x, must increase monotonically from 0 at x = - 00 to 1.0 at
x = + 00.The curve is called the cumulative probability distribution function P(x).

If next we wish to determine the probability of x(t) lying between the values Xl
and Xl + Ax, all we need to do is subtract P(xl) from P(XI + Ax), which is also propor­
tional to the time occupied by x(t) in the zone Xl to Xl + Ax.

We now define the probability density function p(x) as

FIGURE13.4.2. (a) Cumulative
probability, (b) Probability density.

x

(b)

(0)

xx-" f--llx
II
i I
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- (i)2= x2

(13.4.7)

u2 = [(x - xFp(x) dx

= [x 2p(x}dx - 2X [xp(x} dx + (x)2[p(x) dx

= x2 - 2(i)2 + (i)2

(13.4.6)

Likewise, the mean square value is determined from the second moment

x2 = [x2p(x} dx

which is analogous to the moment of,inertia of the area under the probability density
curve about x =.O.

The variance (J'2, previously defined as the mean square value about the mean, is

mean value i coincides with the centroid of the area under the probability density
curve p(x), as shown in Fig.13.4.4.Therefore, it can be determined by the first moment:

x = [xp(x} dx (13.4.5)

FIGURE 13.4.4. First and second
moments of p{x),

x

p(x)

F!GURE13.4.3.
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(13.4.9)

p(x)

(a)

FIGURE13.4.5. Normal distribution.

31.7%
4.6%
0.3%

68.3%
95.4%
99.7%

1
2
3

Prob[lxl > AU]Prob [- Xa :5; x(t) :5; Aa]

Tne following table presents numerical values associated with A= 1,2, and 3.

The standard deviation a is a measure of the spread about the mean value; the smaller
the value of a, the narrower the p(x) curve (remember that the total area = 1.0), as
shown in Fig. 13.4.5(a).

In Fig, 13.4.5(b), the Gaussian distribution is plotted nondimensionally in terms
of xl a. The probability of x(t) being between ::tAO', where A is any positive number, is
found from the equation

1 f A(JProb [- ACT :S x(t) :S Au] = -- e-xl/2(J2 dx
u~.-Aa

(13.4.8)

Gaussian and Rayleigh distributions. Certain distributions that occur fre­
quently in nature are the Gaussian (or normal) distribution and the Rayleigh distribu­
tion, both of which can be expressed mathematically. The Gaussian distribution is a
bell-shaped curve, symmetric about the mean value (which will be assumed to be zero)
with the following equation:

The standard deviation a is the positive square root of the variance. When the mean
value is zero, a =W, and the standard deviation is equal to the root-mean-square
(rms) value. .
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FIGURE 13.4.6. Rayleigh distribution.

p(A)

O.6,1---~~-___l------l.----1

(13.4.14)

Also, the probability of A exceeding a specified value AO'is

Prob [A > AU]= foo A2e-A2/2u2 dA
Au 0'

(13.4.13)
d'~ = A 2 _ (A)2 = ( 4 ; 7T) 0'2

2
;"O'A == '3 a

The variance associated with the Rayleigh distribution is

(13.4.12)

The probability density p(A) is zero here for A < 0 and has the shape shown in Fig. 13.4.6.
The mean and mean square values for the Rayleigh distribution can be found

from the first and second moments to be

A = Joo Ap(A) dA = _Joo A~ e-A2/2u2 dA = ~ 0'
o 0 0' ~2

(13.4.11)

Random variables restricted to positive values, such as the absolute value A of
the amplitude, often tend to follow the Rayleigh distribution, which is defined by the
equation

The probability of x(t) lying outside ::tAu is the probability of Ixl exceeding Au,which is
1.0 minus the preceding values, or the equation

Prob [lxl > AU]= ..~ foo e-x2/2u2 dx = ertc( ..~) (13.4.10)
UV27T Au v2
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FIGURE13.4.7. Probability functions for three types of records.

.r..o

P(x) 1.0

Narrow-bond record

~x o

P(x) 0
I.--------- --------

Wide-band record

mx
-A 0 A

llix
-A 0 A

1\ f\ f\ mA
v-V\}

Sine wove

1
p(x) = V 2 2 Ixl < A

7T A - x

= 0 Ixl > A

For the wide-band record, the amplitude, phase, and frequency all vary randomly
and an analytical expression is not possible for its instantaneous value. Such functions
are encountered in radio noise, jet engine pressure fluctuation, atmospheric turbu­
lence, and so on, and a most likely probability distribution for such records is the
Gaussian distribution.

When a wide-band record is put through a narrow-band filter, or a resonance sys­
tem in which the filter bandwidth is small compared to its central frequency fo' we
obtain the third type of wave, which is essentially a constant-frequency oscillation with

() 1 1. --1 XP X = - + -sm -
2 7T A

and its probability density, by differentiation, is

Three important examples of time records frequently encountered in practice
are shown in Fig. 13.4.7, where the mean value is arbitrarily chosen to be zero. Tne
cumulative probability distribution for the sine wave is easily shown to be

A P[A > Au]

o ) 100%
1 60.7%
·2 ·13.5%
3 1.2%

which has the following numerical values:
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'See Ref. [8].

FIGURE13.5.1. Correlation between XI (t) and xit).

Correlation is a measure of the similarity between two quantities. As it applies to
vibration waveforms, correlation is a time-domain analysis useful for detecting hidden
periodic signals buried in measurement noise, propagation time through the structure,
and for determining other information related to the structure's spectral characteris­
tics, which are better discussed under Fourier transforms.

Suppose we have two records, Xj(t) and x/t), as shown in Fig. 13.5.1.The correla­
tion between them is computed by multiplying the ordinates of the two records at each
time t and determining the average value ((X1(t)X2(t)) by dividing the sum of the prod­
ucts by the number of products. It is evident that the correlation so found will be
largest when the two records are similar or identical. For dissimilar records, some of
the products will be positive and others will be negative, so their sum will be smaller.

Next, consider the case in which x/t) is identical to x1(t) but shifted to the left by
a time T, as shown in Fig. 13.5.2. Then, at time (t), when Xl is x(t), the value of x2. is
x(t + .T), and the correlation is given by (x(t )x(t + T)). Here, if T = 0, we have complete
correlation. As T increases, the correlation decreases.

13.5 CORRELATION

slowly varying amplitude and phase. The probability distribution for its instantaneous
values is the same as that for the wide-band random function. However, the absolute
values of its peaks, corresponding to the envelope, will have a Rayleigh distribution.

Another quantity of great interest is the distribution of the peak values. Rice!
shows that the distribution of the peak values depends on a quantity No/2M, where No
is the number of zero crossings, and 2M is the number of positive and negative peaks.
For a sine wave or a narrow band, No is equal to 2M, so that the ratio No/2M = 1. For a
wide-band random record, the number of peaks will greatly exceed the number of zero
crossings, so that No/2M tends to approach zero. When No/2M = 0, the probability
density distribution of peak values turns out to be Gaussian, whereas when
No /2M = 1,as in the narrow-band case, the probability density distribution of the peak
values tends to a Rayleigh distribution.
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Because the second record of Fig. 13.5.2can be considered to be delayed with respect to
the first record, or the first record advanced with respect to the second record, it is evi­
dent that R( 7) = R( -T) is symmetric about the origin T = 0 and isalways less than R(O).

Highly random functions, such as the wide-band noise shown in Fig. 13.5.3, soon
lose their similarity within a short time shift. Its autocorrelation, therefore is a sharp
spike at T = 0 that drops off rapidly with ±T as shown. It implies that wide-band ran­
dom records have little or no correlation except near T = O.

For the special case of a periodic wave, the autocorrelation must be periodic of
the same period, because shifting the wave one period brings the wave into coinci-
dence again. Figure 13.5.4 shows a sine wave and its autocorrelation. .

For the narrow-band record shown in Fig. 13.5.5, the autocorrelation has some of
the characteristics found for the sine wave in that it is again an even function with a
maximum at T = 0 and frequency Wo corresponding to the dominant or central fre­
quency. The difference appears in the fact that R(T) approaches zero for large r for the
narrow-band record. It is evident from this discussion that hidden periodicities in a
noisy random record can be detected by correlating the record with a sinusoid. There
will be almost no correlation between the sinusoid and the noise that will be sup;.
pressed. By exploring with sinusoids of differing frequencies, the hidden periodic sig­
nal can be detected. Figure 13.5.6 shows a block diagram for the determination of the
autocorrelation. The signal x(t) is delayed by T and multiplied, after which it is inte­
grated and averaged. The delay time T is fixed during each run and is changed in stepS
or is continuously changed by a slow sweeping technique, If the record is on magnetiC
tape, the time delay T can be accomplished by passing the tape between two identical
pickup units, as shown in Fig. 13.5.7.

(13.5.2)

When T = 0, this definition reduces to the mean square value:

R(O) = x2 = 0-2

(13.5.1 )
R( T) = E[x(t)x(t + T)] = (x(t)x(t + T))

1 J TI2
= lim -T x(t)x(t + T) dt

T-w. -T12

It is evident that this result can be computed from a single record by multiplying
the ordinates at time t and t + T and determining the average. We then call this result
the autocorrelation and designate it by R( T). It is also the expected value of the product
x(t )x(t + T), or

FIGURE 13.5.2. Function x(t) shifted by T.
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FIGURE13.5.7. Time delay for
autocorrelation.

FIGURE13.5.6. Block diagram of the autocorrelation analyzer.

T)x(f)
xU) x( f + T) Integrator

~Multiplier and
r+ overoqer

L+
Time delay xU + T)

T

.

FIGURE13.5.5. Autocorrelation forthe narrow-band record.

Narrow-band response

Sine wave and its autocorrelation.FIGURE13.5.4.

, V \Tv
Sine wove x(f) = A sin (wo f + (J)

[\ [\ (\

Autocorrelation
A2 .

R(T) = TCOS WOT

Type of record

FIGURE13.5.3. Highly random function and its autocorrelation.

Wide-bond noise x(f)
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FIGURE13.5.9. Autocorrelation of a rectangle is a triangle.

Show that the autocorrelation of the rectangular gating function shown in Fig. 13.5.9 is a triangle.

EXAMPLE 13.5.1

= Rx(T) + Rx/T) + Ry/T) + Ry(T)
Thus, the autocorrelation of a def1ection at a given point due to separate loads FI(t)
and F2(t) cannot be determined simply by adding the autocorrelations RX<T) and RyC r)
resulting from each load acting separately. Rx/ T) and Ryx(T) are here referred to as
cross correlation, and, in general, they are not equal.

(13.5.4)

which can also be called the cross correlation between the quantities x and y.
Such quantities often arise in dynamical problems. For example, let x(t) be the

deflection at the end of a beam due to a load FI(t) at some specified point. yet) is the
deflection at the same point, due to a second load F2(t) at a different point than the first,
as illustrated in Fig. 13.5.8.The deflection due to both loads is then z(t) = x(t) + yet),
and the autocorrelation of z(t) as a result of the two loads is

Rz< T) = (z(t)z(t + T))
= ([x(t) + y(t)][x(t + T) + y(t + T)])
= (x(t)x(t + T)) + (x(t)y(t + T))
+ (y(t)x(t + T)) + (y(t)y(t + T))

(13.5.3)
Rx/ T) = E[x(t)y(t + T)] = (x(t)y(t + T))

1 T/2

= lim -T f x(t)y(t + T) dt
T--p:; -T/2

Cross correlation. Consider two random quantities x(t) and yet). The correla­
tion between these two quantities is defined by the equation

410 Chapter 13 Random Vibrations
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FIGURE13.6.1. Discrete spectrum.

S(fn)

The power spectrum and the power spectral density will hereafter be abbreviated as
PS and PSD, respectively.

An example of discrete PSD is shown in Fig. 13.6.1.When x(t) contains a very large
number of frequency components, the lines of the discrete spectrum become closer

n=l
(13.6.4)

The mean square value can then be written as

We now define the discrete power spectral density SUn) as ,the power spectrum
divided by the frequency interval D.f

Se En) = G~J:fn)= CnC: (1363)
Jj ~ 2M ..

n=l
(13.6.2)

The mean square value is then

(13.6.1)

co

x2 = "'" lC C*£..;2 n n
n=l

Thus x2 is made up of discrete contributions in each frequency interval D.f.
We first define the contribution to the mean square in the frequency interval D.f

as the power spectrum GUn):

The frequency composition of a random function can be described in terms of the
spectral density of the mean square value. We found in Example 13.2.1 that the mean
square value of a periodic time function is the sum of the mean square value of the
individual harmonic component present.

3.6 POWER SPECTRUM AND POWER SPECTRALDENSITY

•

Solution If the rectangular pulse is shifted in either direction by T, its product with the origi­
nal pulse isA2(T - T). It is easily seen then that starting with T = 0, the autocorrelation curve is a
straight line that forms a triangle with height A2 and base equal to 2T.
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FIGURE 13.6.3. Measurementof randomdata.

f.~, ,

Continuousspectrum.

-1ldi
FIGURE 13.6.2.

S(f)

(13.6.6)x' = r S(t)dj

To illustrate the meaning of PS and PSD, the following experiment is described.
A Xtal accelerometer is attached to a shaker, and its output is amplified, filtered, and
read by a rms voltmeter, as shown by the block diagram of Fig. 13.6.3. The rms volt­
meter should have a long time constant, which corresponds to a long averaging time.

We excite the shaker by a wide-band random input that is constant over the fre­
quency range 0 to 2000 Hz. If the filter is bypassed, the rms voltmeter will read the rms
vibration in the entire frequency spectrum. By assuming an ideal filter that will pass
all vibrations of frequencies within the passband, the output of the filter represents a
narrow-band vibration.

We consider a central frequency of 500 Hz and first set the upper and lower cut­
off frequencies at 580 and 420 Hz, respectively. The rms meter will now read only the
vibration within this 160-Hz band. Let us say that the reading is 8g. The mean square
value is then GUn) = 64g2, and its spectral density is SUn) = 64g2/160 = OAOg2/Hz.

We next reduce the passband to 40 Hz by setting the upper and lower filter fre­
quencies to 520 and 480 Hz, respectively. The mean square value passed by the filter is
now one-quarter of the previous value, or 16~2,and the rms meter reads 4g.

The mean square value is then

(13.6.5)

together and they more nearly resemble a continuous spectrum, as shown in Fig. 13.6.2.
We now define the PSD, SU), for a continuous spectrum as the limiting case of SUn) as
Af~O.
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S(f)~

" f
FIGURE 13.6.5. Wide-band record and its
spectral density.

FIGURE 13.6.4. Limll[--->o ~f = 5(/ - ftl)'

6f
-=----1 f--

"T 1 imAf __ O oU -fn)1
I1f
+ f f

0 t, 0 fn

Typical spectral density functions for two common types of random records are
shown in Figs, 13.6.5 and 13.6:6.The first is a wide-band noise-type of record that has a

Note that as the bandwidth is reduced, the mean square value passed by the filter, or
GUn)' is reduced proportionally. However, by dividing by the bandwidth, the density
of the mean square value, SUn)' remains constant. The example clearly points out the
advantage of plotting SUn) instead of GUn)'

The PSD can also be expressed in terms of the delta function. As seen from
Fig. 13.6.4, the area of a rectangular pulse of height 1/ D..f and width 6.f is always unity,
and in the limiting case, when J1f ~ 0, it becomes a delta function. Thus, SU) becomes

S(!) = lim S(!n) = lim G~if,J= G(!) 8(! - fn)
A.f~O A.f--?O.Ll

Frequencies Band- RMS Meter Filtered Spectral
width Reading Mean Square Density

f 6..f V5(~) G(fll) =~) S(fll) = !l~;)
580-420 160 8g 64g2 0.40g2/Hz
520-480 40 4g 16g2 OAOg2/Hz
505-495 10 2g 4g2 OAOg2/Hz

By reducing the passband further to 10 Hz, between 505 Hz and 495 Hz, the rms
meter reading becomes 2g, as shown in the following tabulation:
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2See J. S.Bendat, and A.G. Piersol, Random Data (New York: John Wiley & Sons, 1971), p. 96.

The band-pass filter of passband B = af passes x(t) in the frequency interval f to
/ + A/, and the output is squared, averaged, and divided by A/.

For high resolution, af should be made as narrow as possible; however, the pass­
band of the filter cannot be reduced indefinitely without losing the reliability of the
measurement. Also, a long record is required for the true estimate of the mean square
value, but actual records are always of finite length. It is evident now that a parameter
of importance is the product of the record length and the bandwidth, 2 BT,which must
sufficiently large.?

(13.6.7)

broad spectral density function. The second is a narrow-band random record that is
typical of a response of a sharply resonant system to a wide-band input. Its spectral
density function is concentrated around the frequency of the instantaneous variation
within the envelope ..

The spectral density of a given record can be measured electronically by the cir­
cuit of Fig. 13.6.7. Here the spectral density is noted as the contribution of the mean
square value in the frequency interval afwhich is divided by at.

s( ~)= lim. a(i2)
! tlf-+O af

f

FIGURE13.6.7. Power spectral density analyzer.

S(f)----~

- ] f + Af
x2

r-_T"f_+S( f )Llf
x(t)

FIGURE13.6.6. Narrow-band record and its spectral
density.

F(/I

S{f)l· A
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'FIGURE13.6.9.

o
t----2T---

I I
1'(11

EXAMPLE 13.6.2
, Determine the Fourier coefficients en and the power, spectral density of the periodic function
shown in Fig. 13.6.9.

•
FIGURE13.6.8.

The problem is graphically displayed by Fig. 13.6.8,which shows the time variation of the signal
and its probability distribution.

(J" = vo:n = 0.85 ern

and the standard deviation becomes

rms = W = V4.72 = 2.17 ern

The variance (J"2 is defined by Eq. (13.2.6):

(J"2 = x2 - (iF

= 4.72 - 22 = 0.72

and the rms value is

Solution The mean square value is found from

x2 = rocs(f) df = f 1200 0.004 df = 4.72
Jo 20

A random signal has a spectral density that is a constant

s(f) = 0.004 ern2/ cps

between 20 and 1200 cps and that is zero outside this frequency range. Its mean value is 2.0 ern.
Determine its rms value and its standard deviation.

EXAMPLE 13.6.1
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•
00 CC*

Sf(w} = ~ n2 n S(w - nwo)

= ± CnC!
n=1 2

and because x' = f Si",) dt» 'the spectral density function can be represented by a series of

delta functions:

The mean square value is determined from the equation

FIGURE13.6.10. Fourier coefficients versus n.

n." • n."
~Cnn T smT

0 0 0 r, = 1.0~'2

1 n 1 (~)¥ = 0.636 ¥"2

2 11" 0 0

3 3." -1 (-~ )~ = 0.212 ~"2 311 2
4 211" 0
0

5 5." 1 (~) ~ = 0.127 ~T 5." 2

en
Fo

Solution The period is 2Tand Cn are

2 JT/2CO = -T Fod~ = Fo
2 -T/2

J
T/2 (

C = _3_ F. e -inwo~ d~ = F. [ sin n7T/2) ]
n 2T 0 0 n11"/2-T/2

Numerical values of Cn are computed as in the following table and plotted in Fig. 13.6.10.
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Substituting into Eq. (13.7.2), we obtain

s(1 - In) = f:-a.(f-f)' dt
;

(b)

Recognizing the properties of a delta function, this equation is satisfied if

. From Eq. (13.7.1), we have

(a)x(t) = Aei21Tfnl ,

EXAMPLE 13.7.1

Fourier transform (FT) of basic functions. To demonstrate the spectral charac­
ter of the FT, we consider the FT of some basic functions.

Like the Fourier coefficient en' X(!) is a complex quantity which is a continuous func­
tion of f from -00 to +00. Equation (13.7.2) resolves the function x(t) into harmonic
components Xcn whereas Eq. (13.7.1) synthesizes these harmonic components to the
'original time function x(t). The two previous equations above are referred to as the
Fourier transform pair.

(13.7.2)

In contrast to the summation of the discrete spectrum of sinusoids in the Fourier series,
the Fourier integral can be regarded as a summation of the continuous spectrum of
sinusoids. The quantity X(f) in the previous equation is called the Fourier transform of
x(t), which can be evaluated from the equation

x(f) = f.x(t)e-ihf' dt

(13.7.1)x(t) = [x(f)enwf' df

The discrete frequency spectrum of periodic functions becomes a continuous one
when the period T is extended to infinity. Random vibrations are generally not peri­
odic and the determination of its continuous frequency spectrum requires the use of
the Fourier integral, which can be regarded as a limiting case of the Fourier series as
the period approaches infinity.

The Fourier transform has become the underlying operation for the modern time
series analysis. In many. of the modern instruments for spectral analysis, the calculation
performed is that of determining the amplitude and phase of a given record.

The Fourier integral is defined by the equation

3.7 FOURIER TRANSFORMS
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FIGURE 13.7.3. Ft of bn sin 27Tj/

fo

X(f) i-axis

which is shown on the imaginary plane of Fig. 13.7.3.

In a similar manner, the FT of bn sin 2Trli is

FIGURE 13.7.2. Ff of an cos 2'TTI/

fo-f

X(f) real axis

~ {)(f- f,,)

Figure 13.7.2 shows that XU) is a two-sided function of f

(b)xU) = ~ [8(J - IJ + 8(J + In)]

the result of Example 13.7.1 immediately gives

Because

(a)

EXAMPLE 13.7.2

The Ff of x(t) is displayed in Fig. 13.7.1,which demonstrates its spectral character.

_f---------'I........----I........---- fo fn

FIGURE 13.7.1. rr of Aei2nfnl.

X(f)
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•

Note that the FT is now a continuous function instead of a discontinuous function. The product
XX*, which is a real number, is also plotted here. Later it will be shown to be equal to the spec-
tral density function. .

FIGURE13.7.5. Rectangular pulse and its spectra.

X(I)I

i1A
T 0 T-'2- '2

We next determine the FT of a rectangular pulse, which is an example of an aperiodic function.
(See Fig. 13.7.5.) Its FT is

xU) = Jco x(t)e-i21T!tdt= JTI2 Ae-i21T!tdt=AT(Sin7TfT)
-ex> -T/2 7TfT

EXAMPLE 13.7.3

•
is the square of the magnitude of the Fourier series, which is generally plotted at ::!: f

C C* 1
__!!____!!_ = - (a2 + b2) = C c*4 4 r. n nn

If we put the two FTs together in perpendicular planes, as shown in Fig. 13.7.4, we obtain
the complex conjugate coefficients C; = an - ibn and C: = an + ibn' Thus, the product

f

FIGURE13.7.4 IT of an cos 2'TTfi + bn sin 2'TTfi.
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This relationship may be proved using the Fourier transform as follows:

4t)x,(t) ':' x,(t) f~Xt<!)ei2wr, df
[4t)x,(t) dt = [x/t) rXt<!)e"Wr,df dt

(13.7.7)

Parseval's theorem. Parseval's theorem is a useful tool for converting time inte­
gration into frequency integration. IfXl(!) and Xi!) are Fourier transforms of real
time functions xl(t) and x2(t), respectively, Parseval's theorem states that

[ xt(t)x,(t) dt = [XM)Xi'U) df

=rX;(t)X,(t) df

(-mw2 + iwc + k)Y(w) = X(w)
where X( w) and Y(w) are the FT of x( t) and Y(t), respectively.

we obtain

These equations enable one to conveniently take the FT of differential equations. For
example, if we take the FT of the differential equation

my + cy + ky == x(t)

(13.7.6)

Differentiating again, we obtain

PT[i'(t)] = -w2PT[x(t)]

(13.7.5)

Ffs of derivatives. When the Fl' is expressed in terms of w instead of t.a factor'
1/27T is introduced in the equation for xCt):

x(t) = .l_ J'" X(w)eiwt dw (13.7.3)
27T -e cc

X(w) = [x(t)e-;W' dt (13.7.4)

This form is sometimes preferred in developing mathematical relationships. For exam­
ple, if we differentiate Eq. (13.7.3) with respect to t,we obtain the FT pair:

rOO

x(t) = 217TJ _",[iwX(w)]eiwt dw

iwX(w) = f.x(t)e-i;'" dt

Thus, the FT of a derivative is simply the FT of the function multiplied by iw:
PT[x(t)] = iwFT[x(t)]
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(13.7.9)

By substituting from Eq. (13.7.8) the preceding equation becomes

R( T) = fooS(f)e""<df

= }~ _!_flX) x{t) fIX) X{f)ei21rf'ei21rfT dfdt
T _IX) _IX)

= [H[x(,)e"'" dt]x(f)et2.'<df

= fIX) [ lim .!.X*{f)x{f) ]ei21rfTdf
_IX) T-+IX) T

Substituting this into the expression for the autocorrelation, we obtain

R( T) = lim _!_ foo x(t)x(t+ T) dt
T--,;oo T -00

Express the autocorrelation in terms of the Fourier transform. We begin with the Fourier trans­
form of x(t + T):

EXAMPLE 13.7.5

•
where S(J-=.) is the spectral density function over positive and negative frequencies.

(13.7.8)

Comparing this with Eq. (13.6.6), we obtain the relationship .
1 <

s(fJ = lim - X(t)X*(t)
- T--,;cc T

Express the mean square value in terms of the Fourier transform. Letting x1(t) = xit) = x(t),
and averaging over T,which is allowed to go to 00,we obtain

f
TI2 foo

x2 = lim -T1 x2(t) dt = lim _!_ X(t)X*(t)-df
T~a:; -T12 -r cc T--,;oo T

EXAMPLE 13.7.4

All the previous formulas for the mean square value, autocorrelation, and cross corre­
lation can now be expressed in terms of the Fourier transform by Parseval's theorem.

[ XM{ [ x,(t)ei2~" dtJ df

= [XM)Xi(t) df
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~
.

.
.,

find S(I) for the rectangular pulse.

s(f) = 2r R(T) cos 21rfTdT

and the results of Example 13.5.1,

Using the relationship

EXAMPLE 13.7.6

•

(13.7.14)Sxy(f) = f_R.,( r)e -12.[,dr

which is parallel to Eq. (13.7.10). Unlike the autocorrelation, the cross-correlation and the cross­
spectral density functions are, in general, not even functions; hence, the limits - 00 to + 00 are .
retained.

Its inverse from the Fourier transform is

= lim .!_ X(J)Y*(t) (13.7.13)
T.......eo T

Sx/f) = lim -T1X*(t)Y(t) -00 ~f~ 00 :
T-!oo

where the cross-spectral density is defined as

(13.7.11)

Because R( 'T) is symmetric about 'T = Othe last equation can also be written as

S(f)= 2r R(r) cos Zttfr dr

These are the Wiener-Khintchine equations, and they state that the spectral density function is
the FT of the autocorrelation function.

As a parallel to the Wiener-Khintchine equations, we can define the cross correlation
between two quantities x(t) and yet) as

J
TI2

R,j'T) = (x{t)y{t + 'T)) = lim -T1 x{t)y{t + 'T) dt
T-HO -T12

= Joo lim .!_ X*(t)Y(t)ei21TfT df (13.7.12)
_00 T.......ec T

R.,(r) = f.s.,(fk'·[' df

(13.7.10)

The inverse of the preceding equation is also available from the Fourier transform:

S(t) = f_ooooR( 'T)e -i21TfT dr
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•
which is the Ff of the impulse response function h(t). The lower limit in the preceding integral
has been changed from 0 to - 00 because h(t) = 0 for negativer,

H(w) = f.oo h(T)e-iW'T dr = f"" h(T)e-iW'T dr
o -00

where the lower limit has been extended to - DC to account for all past excitations. By letting
T = (t - g), the last integral becomes

x{t) = r fit - T)h{T) dr

For a harmonic excitation f(t) = e'?", the preceding equation becomes

x{t) = r e'·('~')h{T) dr

= e'.'J:h{T)e~'·' dr

Because the steady-state output for the input yet) = eiw1 is x = H( w)eiw1, the frequency-response
function is

x{t) = Lf{~)h{t - ~) d~

Solution From the convolution integral, Eq. (4.2.1), the response equation in terms of the
impulse response function is

Show that the frequency response function H(w) is the Fourier transform of the impulse
response function h(t).

EXAMPLE 13.7.7

•

Solution Because R( T) = 0 for T outside :::tT,we have
T

S(t) = 2IA2(T - T)cos27TfTdT

= 2A'T IT cos2trfTdT- 2A' J,T TCOS2trfTdt

2 sin 27TfT IT 2A2[ cos 27TfT T. f ]IT= 2A T 27Tf 0 - (27TfF + 27T/m 27T T_ 0

= 2A 2 (1 _ 2 iT) = A 2T2( sin 7TfT)2
(2Trf'F cos 7T 7TfT

Thus, the power spectral density of a rectangular pulse using Eq. (13.7.11) is

S(t) = A 2T 2( sin 7TfT )2
7TfT

Note from Example 13.7.3 that this is also equal to X(f)X*(f) = jX(f)i2.
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3Strictly speaking, the transfer function is the ratio of the Laplace. transform of the output to the
Laplace transform of the input. In the frequency domain, however, the real part of s = a + .iw is zero, and the
LT becomes the FT.

Thus, the output power spectrum is equal to the square of the system transfer function
multiplied by the input power spectrum. Obviously, each side of the previous equation
is real and the phase does not enter in. .

We wish now to examine the mean square value of the response. From Eq. (13.7.8),
the mean square value of the input x(t) is

x' = r sx(f±) dj= r)i~iX(f)X*(f) df

(13.8.4)Y(w)Y*(w) = IH(u))j2X(w)X*(w)

or

Y(w)Y*(w)
H(w)H*(w):;: X(w)X*(w)

IY(w)I~'IX*«(())11J2 = IY(w)x*(w)I~~

Another useful relationship can be found by multiplying H( w) by its conjugate
H*(w). The result is

(13.8.2), Y(w)X*(w)
H(w) = X(w)X*(w)

The denominator X(w)X*(w) is now a real quantity. The numerator is the cross spec­
trum Y(w)X*(w) between the input and the output and is a complex quantity. The
phase of H( w) is then found from the real and imaginary parts of the cross spectrum,
which is simply

In engineering design, we often need to know the relationship between different points
in the system. For example, how much of the roughness of a typical road is transmitted
through the suspension system tothe body of an automobile? (Here the term transfer
function? is often used for the frequency-response function.) Furthermore, it is often
not possible to introduce a harmonic excitation to theinput point of the system. Itmay
be necessary to accept measurements x(t) and yet) at two different points in the system
for which the frequency response function is desired. The frequency response function
for these points can be obtained by taking the FT of the input and output. The quantity
H( w) is then available from .

H(w) = yew) = FTof output
( )

(13.8.1)
X t» FT of input

where X( w) and Y( w) are the FT of x(t) and yet).

If we multiply and divide this equation by the complex conjugate X*( w), the
result is '

13.8 FTS AND RESPONSE
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7T _ f.00 d(/Ifn)
4{ - . 0 [1 - (/lfn)2]2 + [2~"(flfn)2]

and SxUn) is the spectral density of the excitation at frequency t;

where

(13.8.11)

If the system is lightly damped, the response function HU) is peaked steeply at reso­
nance, and the system acts like a narrow-band filter. If the spectral density of excitation
.is broad, as in Fig. 13.8.1, the mean square response for the single-DOF system can be
approximated by the equation .

(13.8.10)

(13.8.9) .

(13.8.8)

Some authors also use the expression

y2 = rIH(w)12Sx(w) dw

Again, the equations must result in the same mean square value so that

27TS(W) = s(f)
For a single-DOF system, we have

H(f) -. Ilk
- . [1 - (flfn)2] + i[2{(flfn)]

(13.8.7)S(f+) = s(f) = 2S(f;t)

and because the two expressions must result in the same value for the mean square
.value, the relationship between the two must be

which is the mean square value of the response in terms of the system response func-
tion and the spectral density of the input. .

In these expressions, S(f±) are the two-sided spectral density functions over both
the positive and negative frequencies. Also, SUJ are even functions. In actual practice,
it is desirable to work with spectral densities over only the positive frequencies.
Equation (13.8.5) can then be written as

y2 = r IH(f)I 2S,(fJ df (13.8.6)

(13.8.5)

The mean square value of the output yet) is

. y2 = [Sy(f:':) df = [P!!!,} Y(f)Y*(f) df

Substituting yy* = IH(f)12 XX*, we obtain

y2 = JC;> IH(f)12[ lim _!_ X(f)X*(f)] df
-00 T~oo T

= [IH(f)12Sifo) df
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FIGURE 13.8.2.

(0)

(c)H(f)

fr [hiS (f) . (b.)

~ S(f;)
c::JI

~------~~~---fo :f;
I
I

Table 13.8.1 illustrates the computational procedure.
The probability of exceeding specified accelerations are

p[ial > 26.6g] = 31.7%

p[apeak > 26.6g] = 60.7%

a; = L S(!;)IH(f;)12 b.h
j

The response of any structure to a single-point random excitation can be computed by a simple
numerical procedure, provided the spectral density of the excitation and the frequency response
curve of the structure are known. For example, consider the structure of Fig. 13.8.2(a), whose
base is subjected to a random acceleration input with the power spectral density function shown
in Fig. 13.8.2(b). It is desired to compute the response of the point p and establish the probability
of exceeding any specified acceleration.

The frequency response function H(f) for the point p can by obtained experimentally by
applying to the base a variable frequency sinusoidal shaker with a constant acceleration input aQ,

and measuring the acceleration response at p. Dividing the measured acceleration by ao' H(f)
may appear as in Fig. 13.8.2(c). _

The mean square response a; at p is calculated numerically from the equation

EXAMPLE 13.8.1

FIGURE 13_JU. S(f) and H(f)
leading to l of Equation 13.7.9.

~----------~---------fI"
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Table 13.8.1 NUMERICAL EXAMPLE

f ilf S([;) IH(F) I IH([;)j2ilf S([;) IH([;}I2ilf
(cps) (cps) (g2/CpS) (Nondimensional) (cps) (g2 units)

0 10 0 1.0 10. 0
10 10 0 1.0 10. 0
20 10 0.2 1.1 12.1 2.4
30 10 0.6 1.4 19.6 11.8
40 10 1.2 2.0 40. 4S.0
50 10 1.S 1.3 16.9 30.5
60 10 1.S 1.3 16.9 30.5
70 10 1.1 2.0 40. 44.0
SO 10 0.9 3.7 137. 123.
90 10 1.1 5.4 291. 320.
100 10 1.2 2.2 48.4 57.7
110 10 1.1 1.3 16.9 18.6
120 10 O.S 0.8 6.4 5.1
130 10 0.6 0.6 3.6 2.2
140 10 0.3 0.5 2.5 O.S
150 10 0.2 0.6 3.6 0.7
160 10 0.2 0.7 4.9 0.1
170 10 0.1 1.3 16.9 1.7
ISO 10 0.1 1.1 12.1 1.2
190 10 0.5 0.7 4.9 2.3
200 10 0 0.5 2.5 0
210 10 0 0.4 1.6 0

a2 = 700.6g2
(T = \hoo.6g2 = 26.6g

p[ial > 79.8g] = 0.3%

p[apeak > 79.8g = 1.2%

•
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FIGUREP13.11.

13.10 Derive the equations for the cumulative probability and the probability density functions
of the sine wave. Plot these results.

13.11 What would the cumulative probability and the probability density curves look like for
the rectangular wave shown in Fig. P13.1l?

for n odd
for n even= {~.3.5 ... (n -1)o-n

13.6 A sine wave with a steady component has the equation

x = Ao + Al sin wt

Determine the expected values E(x) and E(x2).

13.7 Determine the mean and mean square values for the rectified sine wave.
13.8 Discuss why the probability distribution of the peak values of a random function should

follow the Rayleigh distribution or one similar in shape to it.
13.9 Show that for the Gaussian probability distribution p(x), the central moments are given by

E(x") = r.x"p(x) dx

FIGUREP13.5.

13.1 Give examples of random data and indicate classifications for each example.
13.2 Discuss the differences between nonstationary, stationary, and ergodic data.
13.3 Discuss what we mean by the expected value. What is the expected number of heads

when eight coins are thrown 100 times; 1000 times? What is the probability for tails?
13.4 Throw a coin 50 times, recording 1 for head and 0 for tail. Determine the probability of

obtaining heads by dividing the cumulative heads by the number of throws and plot this
number as a function of the number of throws. The curve should approach 0.5.

13.5 For the series of triangular waves shown in Fig. P13.5, determine the mean and the mean
square values.

PROBLEMS

[8] RICE,S.0.Mathematical Analysis of Random Noise. New York: Dover Publications, 1954.
[9] ROBSON,1.D.Random Vibration. Edinburgh: Edinburgh University Press, 1964.
[10] THOMSON,W.·T.,and BARTON,M. V. "The Response of Mechanical Systems to Random

Excitation," 1Appl. Mech., June 1957,pp. 248-251.
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FIGURE PB.18.

I
I
I
Io I

10~0~-----10~0-0-.~---20~0-0----

g2/Hz

2r--------r-----

13.18 Determine the rmsvalue of the spectral density plot shown in Fig. P13.18.

o Hz FIGURE P13.17.

0.20

13.17 Figure P13.l7 shows the acceleration spectral density plot of a random vibration.
Approximate the area by a rectangle and determine the rms value in m/s2.

FIGURE P13.16.

13.16 Determine the autocorrelation of the triangular wave shown in Fig. P13.16.

FIGURE P13.1 5.5 6 7 8 9 10 II 12

13.14 Determine the autocorrelation of the rectangular pulse and plot it against T.

13.15 Determine the autocorrelation of the binary sequence shown in Fig. P13.15. Suggestion:
Trace the wave on transparent graph paper and shift it through T.

FIGURE P13.13.

13.12 Determine the autocorrelation of a cosine wave x(t) = A cost, and plot it against T.

13.13 Determine the autocorrelation of the rectangular wave shown in Fig. P13.13.
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.~

n=-oo

00

t(t) = L Cneinwol

13.23 Show that for Prob.13.22, Ci; = C:, and that jir) can be written as

n=O

00

t(t) = Re L Cnej~wol .

13.21 A random signal is found to have a constant spectral density of S(f) = 0.002 in.2/cps
between 20 and 2000 cps. Outside this range, the spectral density is zero. Determine the
standard deviation and the rms value if the mean value is 1.732 in: Plot this result.

13.22 Derive the equation for the coefficients en of the periodic function

FIGURE P13.20.

(d)(c)

13.20 Determine the spectral density function for the waves in Fig. P13.20.

FIGUREP13.19.

13.19 The power spectral density plot of a random vibration is shown in Fig. P13.19.The slopes
represent a 6-dB/octave. Replot the result on a linear scale and estimate the rms value.
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13.31 In Example 13.7.3,what is the probability of the instantaneous acceleration exceeding a
value 53.2g? Of the peak value exceeding this value?

13.32 A large hydraulic press stamping out metal parts is operating under a series of forces
approximated by Fig. P13.32. The mass of the press on its foundation is 40 kg and its

13.29 The differential equation of a system with structural damping is given as

mx + k(l + iy)x = F(t)
Determine the frequency-response function.

13.30 A single-DOF system with natural frequency wn and damping factor ~ = 0.10 is excited
by the force

F{t) = F cos (0.5wnt - (1) + F cos (wnt - 02) + F cos (2wnt - 03)

Show that the mean square response is

y2 = (1.74 + 25.0 + 0.110) ~ ( f r
= 13.43( fr

4(
for t= 1

7T

13.25 Determine the complex form of the Fourier series for the wave shown in Fig. P13.25 and
plot its spectral density.

13.26 Determine the complex form of the Fourier series for the rectangular wave shown in
Fig. P13.l3 and plot its spectral density.

13.27 The sharpness of the frequency-response curve near resonance is often expressed in
terms of Q = &~.Points on either side of resonance where the response falls to a value
1/\12 are called half-power points. Determine the respective frequencies of the half­
power points in terms of wn and Q. .

13.28 Show that

13.24 Determine the Fourier series for the sawtooth wave shown in FIg. P13.24 and plot its
spectral density.

FIGURE P13.24.
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Hz25o
FIGURE P13.35.

100 X 103._ __

sew) = N2
Hz

k + iwc ..
x = k - m(li + iosc . Y

Determine the equation for the mean square acceleration x·2• Establish a numerical inte­
gration technique for the computer evaluation of x·2•

13.35 A radar dish with a mass of 60 kg is subject to wind loads with the spectral density shown
in Fig. P13.35. The dish-support system has a natural frequency of 4 ~z. Determine the

natural frequency is 2.20 Hz. Determine the Fourier spectrum of the excitation and the
mean square value of the response.

13.33 For a single-DOF system, the substitution of Eq. (13.8.10) into Eq. (13.8.6) results in

2 _ foo S ( ) 1 df
y - 0 x [; k2 [1 - (t/fn)2]2 + [2((t/fn)]2

where S/fJ is the spectral density of the excitation force. When the damping (is small
and the variation of S/fJ is gradual, the last equation becomes

2 = S (t, /n foo d(t/fn)
y - x n e 0 [1 - (t/fy]2 + [2((t/fJP

= Sx(tn) {n2 ~

which is Eq. (13.8.11). Derive a similar equation for the mean square value of the relative
motion z of a single-DOF system excited by the base motion, in terms of the spectral den­
sity S/fJ of the base acceleration. (See Sec. 3.5.) If the spectral density of the base accel­
eration is constant over a given frequency range, what must be the expression for Z2?

lHl 13.34 Referring to Sec. 3.5, we can write the equation for the absolute acceleration of the mass
undergoing base excitation as

I-T--I= 4 sFIGURE P13.32.
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H(iw) = ei24J(w)
H*(iw)

show that

H(iw) = IH(iw)leiq,(w)

13.39 Starting with the relationship

SF(W) = lim 21TF(iw)F*(iw)
T-+00 'TT"

where

and

and using the FT technique, show that

X(iw) = F(iw)H(iw)

x(t) ~ r t(t - ~)h(~) d~

13.37 An SDF system with viscous damping' = 0.03 is excited by white-noise excitation F(t)
having a constant power spectral density of 5 x 106 N2/Hz. The system has a natural fre­
quericy of wn = 30 rad/s and a mass of 1500 kg. Determine 0". Assuming Rayleigh distri­
bution for peaks, determine the probability that the maximum peak response will
exceed 0.037 m.

13.38 Starting with the relationship

100 Hz10 15
o~ __~ __~ ~~ _,

FIGURE P13.36.

mean square response and the probability of the dish exceeding a vibration amplitude of
0.132 m. Assume ( = 0.05.

13.36 A jet engine with a mass of 272 kg is tested on a stand, which results in a natural fre­
quency of 26 Hz. The spectral density of the jet force under test is shown in Fig. P13.36.
Determine the probability of the vibration amplitude in the axial direction of the jet
thrust exceeding 0.012 m. Assume ~ = 0.10.
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siw) = SFX(W) = H(iw)
SXF(W) sAw)

13.43 The differential equation for the longitudinal motion of a uniform slender rod is

a2u a2u
=c2-iJi2 ax2

Show that for an arbitrary axial force at the end x = 0, with the other end x = 1 free, the .
Laplace transform of the response is

and

show that

= lim _1_ (F*H*)F = SFH*
T~oo 21TT

SxAw) = lim 21TX*FT~(X) 1T

and

= lim __!_TF(FH) = SFH
T~oo 21T

SFX(W) = lim 21T F*(i~)X(iw)
T~oo 1T

13.42 Starting with the equations

[If(t)ldt

13.41 Show that the unit step function has no Fourier transform. Hint: Examine

-~ 0 t
FIGURE P13.40.

1
L

f (t)

13.40 Find the frequency spectrum ofthe rectangular pulse shown in Fig. P13.40.
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For which values of a and b is this a probability density function? The resulting probabil-
. ity distribution is called the Cauchy distribution. Does it have finite variance?
13.50 The exponential distribution is given by P(x) = 1 - exp(-Ax).Derive its probability

density function, mean and the variance. This distribution often occurs in practice as a
description of the time elapsing between unpredictable events.

13.51 The ski-lift system of Problem 5.65 is forced by wind on the mass. The force has white­
noise characteristics, and a = 0.5. Determine the probability that the maximum peak
response will exceed 10°.

a
p(x) = b + x2

13.48 Using the derivative theorem, show that the FT of the derivative of a rectangular pulse is
a sine wave.

13.49 For some random variables the integral in Eq. (13.4.4) does not converge. Consider a
function given by

13.46 Determine the FT of x(t - to) and show that it is equal to e-i21rflOX(f), where
XU) = FT[x(t)].

13.47 Prove that the FT of a convolution is the product of the separate FT.

FT[x(t)*y(t)] = X(t)y(t)

'Pn(x) = V2cosn7T( 7 - 1),
W, = nst ( 7). c = ~ A':

where structural damping is assumed. The normal modes of the problem are

where a is the stress.
13.45 With S(w) as the spectral density of the excitation stress at x = 0, show that the mean

square stress in Prob. 13.43 is

a(x,t) = -sin [(wl/c)(x/I - 1)] Fo e':"
sin (wi/c) A

and

13.44 If the force in Prob. 13.43 is harmonic and equal to F(t) = Foeiw1, show that

( ) _ cFoeiw1 cos [(wl/c)(x/I - I)]
u x,t - . ( /). wAEsm wi c

F( ) -s(l/c)
u(x,s) = -c s e [e(s/c)(x-/) + e-(s/c)(s-/)]

sAE(l - e -2s(l/c») .

Problems 435

www.semeng.ir

http://www.semeng.ir


436

In an autonomous system, time t does not appear explicitly in the differential equation
of motion. Thus, only the differential of time, dt, appears in such an equation.

14.1 PHASE PLANE

Such equations are distinguished from linear equations in that the principle of super­
position does not hold for their solution.

Analytical procedures for the treatment of nonlinear differential. equations are
difficult and require extensive mathematical study. Exact solutions that are known are
relatively few, and a large part of the progress in the knowledge of nonlinear systems
comes from approximate and graphical solutioris and from studies made on computing
machines. Much can be learned about a nonlinear system, however, by using the state
space approach and studying the motion presented in the phase plane.

Linear system analysis serves to explain much of the behavior of oscillatory systems.
However, there are a number of oscillatory phenomena that cannot be predicted or
explained by the linear theory.

In the linear systems that we have studied, cause and effect are related linearly;
i.e., if we double the load, the response is doubled. In a nonlinear system, this rela­
tionship between cause and effect is no longer proportional. For example, the center
of an oil can may move proportionally to the force for small loads, but at a certain
critical load, it will snap over to a large displacement. The same phenomenon is also
encountered in the buckling of columns, electrical oscillations of circuits containing
inductance with an iron core, and vibration of mechanical systems with nonlinear
restoring forces.

The differential equation describing a nonlinear oscillatory system can have the
general form .

x' + t(i,x, t) = 0

Nonlinear Vibrations
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dy = _ (A/x
dx y

Dividing, we obtain

X=y

Solution With y = X, this equation is written in terms of two first-order equations:

y = -Cl/X

Determine the phase plane of a single-DOF oscillator:

x + (A/x = 0

EXAMPLE 14.1.1

Thus, for every point x, y in the phase plane for which cp(x, y) is not indeterminate,
there is a unique slope of the trajectory.

If y = 0 (i.e., points along the x-axis) and f(x, y) =1= 0, the slope of the trajectory
is infinite. Thus, all trajectories corresponding to such points must cross the x-axis at
right angles.

If y = 0 and f(x, y) = 0, the slope is indeterminate. We define such points as sin­
gular points. Singular points correspond to a state of equilibrium in that both the
velocity y = x and the force x' = ; = -f(x, y)are zero. Further discussion is required
to establish whether the equilibrium represented by the singular point is stable or
unstable.

(14.1.4)

Ifx and yare Cartesian coordinates, the xy-plane is called the phase plane. The state of
the system is defined by the coordinate x and y = X, which represents a point on the
phase plane. As the state of the system changes, the point on the phase plane moves,
thereby generating a curve that is called the trajectory. .

Another useful concept is the state speed V defined by the equation

V = Vi2 + ;2 (14.1.3)

When the state speed is zero, an equilibrium state is reached in that both the velocity of
i and the acceleration; = x' are zero.

Dividing the second of Eq. (14.1.2) by the first, we obtain the relation

dy = -f(x,y) =cf>(x,y)
dx y

(14.1.2)
x=y

; = -f(x, y)

where f(x, i) can be a nonlinear function of x and X. In the method of state space, we
express the last equation in terms of two first-order equations as follows:

(14.1.1)

We first study an autonomous system with the differential equation

x' + f(x,i)" = °
Phase Plane 437Section 14.1
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(14.2.4)

(14.2.3)x· = f(x)

Because x = x(dx/dx), the last equation can be written as

x dx - f(x) dx = 0

It is evident from this equation that the trajectories of a conservative system must be .
symmetric about the x-axis.

The differential equation of motion for a conservative system can be shown to
have the form

(14.2.2)y = x = ::tV2[E - U(x)]

In a conservative system the total energy remains constant. Summing the kinetic and
potential energies per unit mass, we have

~X2+ U(x) = E = constant (14.2.1)

Solving for y = X, the ordinate of the phase plane is given by the equation"

14.2 CONSERVATIVE SYSTEMS

•

~mx2 + ~kx2 = C'

Because the singular point is at x = y = 0, the phase plane plot appears as in Fig. 14.1.1. If y / w is
plotted in place of y, the ellipses of Fig. 14.1.1 reduce to circles.

y2 + (t/X2 = C

which is a series of ellipses, the size of which is determined by C.The preceding equation is also
that of conservation of energy:

Separating variables and integrating

FIGURE 14.1.1.

x

y =x
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Stability of equilibrium. By examining Eq. (14.2.2), the value of E is deter­
mined by the initial conditions of x(O) and yeO) = x(o). If the initial conditions are
large, E will also be large. For every position x.there is a potential U(x); for motion to
take place, E must be greater than V(x). Otherwise, Eq. (14.2.2) shows that the velocity
y = x is imaginary.

Figure 14.2.1 shows a general plot of U(x) and the trajectory y vs. x for various
values of E computed in Table 14.2.1 from Eq. (14.2.2).

For E = 7, Vex) lies below E = 7 only between x = 0 to 1.2, x = 3.8 to 5.9, and
x = 7 to 8.7. The trajectories corresponding to E = 7 are closed curves and the period
associated with them can be found from Eq. (14.2.2) by integration:

T = 2Jx2 . dx
Xl V2[E ~ ·U(x)]

where Xl and x2 are extreme points of the trajectory on the x-axis.
For smaller initial conditions, these closed trajectories become smaller. For E = 6,

the trajectory about the equilibrium points x = 7.5 contracts to a point, whereas the tra­
jectory about the equilibrium point x = 5 is a closed curve between x = 4.2 to 5.7.

For E = 8 one of the maxima V(x) at x. = 6.5 is tangent to E = 8 and the trajec­
tory at this point has four branches. The point x = 6.5 is a saddle point for E = 8 and
the motion is unstable. The saddle point trajectories are called separatrices.

For E > 8, the trajectories mayor may not be Closed.E = 9 shows a closed tra­
jectory between x = 3.3 to 10.2. Note that at x = 6.5, dU/dx = -f(x) = 0 and
y = x =1= 0 for E = 9, and hence equilibrium does not exist.

We note from this equation that singular points correspond to f(x) = 0 and y = x = 0,
and hence are equilibrium points. Equation (14.2.6) then indicates that at the equilib­
rium points, the slope of the potential energy curve U(x) must be zero. It can be shown
that the minima of U(x) are stable equilibrium positions, whereas the saddle points
corresponding to the maxima of U(x) are positions of unstable equilibrium.

(14.2.7)
dy f(x)
dx y

Thus, for a conservative system, the force is equal to the negative gradient of the
potenti£tl energy.

With y = X, Eq. (14.2.4) in the state space becomes

(14.2.6)

(14.2.5)
'2 JX

X2 - /(x) dx = E

and by comparison with Eq. (14.2.1) we find

U(x) = - ff(X) dx

f(x) = _ dU
dx

Integrating, we have
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Table 14.2.1 Computation of Phase Plane for U(x) Given in,
Fig. 14.2.1

y = :t \12[£ - U(x)]

z y at :!::yat z y at z y at
x U(x) £=7 £=8 £=9 £=11

0 5.0 2.0 2.45 2.83 3.46
1.0 6.3 1.18 1.84 2.32
1.5 8.0 imag 0 1.41 2.45
2.0 9.6 imag imag imag
, 3.0 10.0 imag imag imag 1.41
3.5 8.0 imag 0 1.41 2.45
4.0 6.5 1.0 1.73 2.24
5.0 5.0 2.0 2.45 2.83 3.46
5.5 5.7 1.61 2.24 2.57
6.0 7.2 imag 1.26 1.90
'6.5 8.0 imag 0 1.41 2.45
7.0 7.0 0 1.41 2.0
7.5 6.0 1.41 2.0 2.45 3.16
8.0 6.3 1.18 1.84 2.32
9.0 7.4 imag 1.09 1.79
9.5 8.0 imag 0 1.41
10.0 8.8 imag imag 0.63
11.5 0

FIGURE 14.2.1.

O'_-+H---4r~~~~++--4-4-+--+-----x

-1

x234 5 6 7 8 9 ~

12
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(14.3.6)

FIGURE 14.3.1.

xo
(Xs.Ys)

y

u

v

and a similar equation for p(x, y). Because Q(xs, Ys) is zero and (iJQ/iJu)s and (aQ/av)s
are constants, Eq. (14.3.1) in the region of the singularity becomes

dv cu + ev
du au + bv

(14.3.5)

If P(x, y) and Q(x, y) are now expanded in terms of the Taylor series about the singular
point (xs, Ys),we obtain for Q(x, y)

( iJQ) (iJQ) (iJ2Q)Q(x,y)=Q(x,y)+ _" u+ - v+ -.u2+ ...s s au s iJv s iJu2 s

(14.3.4)y = Yx + v
dy dv- =--
dx du

from which the time dt has been eliminated. A study of these equations in the neighbor­
hood of the singular point provides us with answers as to the stability of equilibrium.

Recognizing that the slope dy / dx of the trajectories does not vary with transla­
tion of the coordinate axes, we translate the u, v axis to one of the singular points to be
studied, as shown in Fig. 14.3.1.We then have

(14.3.3)

(14.3.2)

(14.3.1)

dy
dt = Pi», y)

the singular points (xs, Ys) of the equation are identified by

p(xs, Ys) = Q(xs, yJ = 0

Equation (14.3.1), of course, is equivalent to the two equations
dx .
- = Q(x y)dt \ w,

p(x,y)
Q(x, y)

dy
dx

Expressed in the general form

14.3 STABILITY OF EQUILIBRIUM
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if (ae - be) > .(a ; er the motion is oscillatory;

Thus

(14.3.13)(
a + e ) . ~( a + e ) 2AI,2= -2-:±: -2- - (ae - be)

or

b 1_ 0
(e - A) -

His evident, then, that the stability of the singular point depends on the eigenvalues Al
and Az determined from the characteristic equation -

(14.3.12)
U = uIeA,t + uzeAzt

v = v1eA(t + v2eAzt

the solution for u and v are

(14.3.11)

Because Eq. (14.3.10) has the solution

(14.3.10){~} = [A1{ ~} = [~I~J{~}
.where [P] is a modal matrix of the eigenvector columns, will decouple the equation to
the form

(14.3.9)

Itwas shown in Sec. 6.7 that if the eigenvalues and eigenvectors of a matrix equa­
tion such as Eq. (14.3.8) are known, a transformation

(14.3.8)

which can be·rewritten in matrix form:

dv
= eu + ev

dt

(14.3.7)

du
= au + bv

dt

where the higher-order derivatives of P and Q have been omitted. Thus, a study of the
singularity at (xs' yJ is possible by studying Eq. (14.3.6) for small u and v.

Returning to Eq. (14.3.3) and taking note of Eqs. (14.3.4) and (14.3.5), Eq. (14.3.6)
is seen to be equivalent to
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Determine the isoclines for the simple pendulum.

EXAM PLE 14.4.1

FIGURE 14.4.1.

y=)(

With a family of such curves drawn, it is possible to sketch in a trajectory starting at
any point x, y as shown in Fig. 14.4.1.

(14.4.2)c/>(x,y) = a

that was discussed in Sec. 14.1,Eq. (14.1.4). In the method of isoclines, we fix the slope
dy/ dx by giving it a definite number a, a~d solve for the curve

(14.4.1)

Consider the autonomous system with the equation

ddxY = _f(x,y) = </>(x,y)
y

14.4 METHOD OF ISOCLINES

g = (1J)A1/A2

we use the transformation of Eq. (14.3.9) to plot v vs.u.

which has the solution

(14.3.14)

if (ae - be) < ( a : e) 2, the motion is aperiodic;

if (a + e) > 0, the system is unstable;

if (a + e) < 0, the system is stable.

The type of trajectories in the neighborhood of the singular point can be deter­
mined by first examining Eq. (14.3.10) in the form
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One of the interesting nonlinear equations that has been studied extensively is the van der Pol
equation:

EXAMPLE 14.4.2

•

where E is a constant of integration corresponding to the total energy [see Eq. (14.2.1)]. We also
have U(x) = -(gIl) cos x and the discussions of Sec. 14.2 apply. For the motion to exist, E must
be greater than -sn. E = st!corresponds to the separatrix, and for E > gIl, the trajectory does
not close. This means that the initial conditions are large enough to cause the pendulum to con­
tinue past (J = 2'7T.

In this case the integral of Eq. (a) is readily available as

y2 g
- - -cosx = E
2 I

FIGURE 14.4.2. Isocline
curves for the simple

pendulum.

u{x)

(c)

(b)dy _ ~sinx
dx I y

Thus, for dyf dx = a, a constant, the equation for the isocline, Eq. (14.4.2), becomes

y = -C:) sin x

It is evident from Eq. (b) that the singular points lie along the x-axis at x = 0, ± 7T, ±27T, and
so on. Figure 14.4.2 shows isoclines in the first quadrant that correspond to negative values of a.
By starting at an arbitrary point x(O),y(O), the trajectory can be sketched by proceeding tangen­
tially to the slope segments.

Letting x = (J and y = e = X, we obtain

(a)(j + ~sin (J '= 0
I

Solution: The equation for the simple pendulum is
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(14.5.2)

with initial conditions x(O) = A and ;(0) = O.When J.L = 0, the frequency of oscilla
tion is that of the linear system, Wn = ~. .

We seek a solution in the form of an infinite series of the perturbation parameter
J.L as follows:

(14.5.1)

The perturbation method is applicable to problems in which a small parameter J.L is
associated with the nonlinear term of the differential equation. The solution is formed
in terms of a series of the perturbation parameter J.L, the result being a development in
the neighborhood of the solution of the linearized problem. If the solution of the lin­
earized problem is periodic, and if J.L is small, we can expect the perturbed solution to
be periodic also. We can reason from the phase plane that the periodic solution must
represent a closed trajectory. The period, which depends on the initial conditions, is
.then a function of the amplitude of vibration.

Consider the free oscillation of amass on a nonlinear spring, which is defined by
the equation

•
14.5 PERTURBATIONMETHOD

The equation somewhat resembles that of free vibration of a spring-mass system with viscous
damping; however, the damping term of this equation is nonlinear in that it depends on both the
velocity and the displacement. For small oscillations (x < 1), the damping is negative, and the
amplitude increases with time. For x > 1, the damping is positive, and the amplitude diminishes
with time. If the system is initiated with x(O) and ;(0), the amplitude will increase or decrease,
depending on whether x is small or large, and it will finally reach a stable state known as the' limit
cycle, graphically displayed by the phase plane plot of Fig. 14A.3.

FIGURE 14.4.3. Isocline
curves for van der Pol's

2 3 equation with J.L = 1.0.-3 -2 -1 0

x
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(14.5.9)
A3

Xl = CI sin tot + C2 cos wt + -2 2 cos 3wt
3 w

(14.5.8)ex = ~A21 4

With the forcing terrri cos tot eliminated from the right side of the equation, the
general solution for Xl is

3 3 1 •where cos tot = 4 coswt + 4 cos 3wt has been used. We note here that the forcing term
cos wt would lead to a secular term t cos wI in the solution for xl (i.e., we have a condi­
tion of resonance). Such terms violate the initial stipulation that the motion is to be
periodic; hence, we impose the condition

al - ~A2 = 0

Thus, aI' which we stated earlier to be some function of the amplitude A, is evaluated
to be

(14.5.7)
= (,,' ~ ~A2)A cos wt ~ ~3 cos 3wt

Xo = A cos wt (14.5.6)

which is called the generating solution. Substituting this into the right side of the sec­
ond equation in Eq. (14.5.5), we obtain

xl + w2Xl = alA cos (I)t - A 3 cos3wt

(14.5.5)
x'1 + w2Xl = (XIXO - x6

The solution to the first equation, subject to the initial conditions x(O) = A, and
x(O) = 0 is

where the (Xi are as yet undefined functions of the amplitude, and w is the frequency of
the nonlinear oscillations.

We consider only the first two terms of Eqs. (14.5.2) and (14.5.3), which will ade­
quately illustrate the procedure. Substituting these into Eq. (14.5.1), we obtain

x'o + ILX'l + (w2 - IL(Xl)(XO + ILXl) + IL(x6 + 3ILX6Xl + ... ) =·0 (14.5.4)

Because the perturbation parameter IL could have been chosen arbitrarily, the coeffi­
cients of the various powers of IL must be equated to zero. This leads to a system of
equations that can be solved successively:

x'o + w2xo = 0

(14.5.3)

Furthermore, we know that the frequency of the nonlinear oscillation will depend on
the amplitude of oscillation as well as on IL. We express this fact also in terms of a
series in IL:
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'See Ref. [4],pp. 259-273.

(14.5.18)
d2y
dz 2 + (a - 2b cos 2z)y = 0

which is known as the Mathieu equation. The stable and unstable regions of the
Mathieu equation depend on the parameters a and b,and are shown in Fig. 14.5.1.

(14.5.17)

(14.5.16)

(14.5.14)

(14.5.15)

Xl + W~XI + fJ-xi = F cos wt

g + (w~ + fJ-3xt)g = 0

If fJ- is assumed to be small, we can let

XI == A sin wt

and substitute it into Eq. (14.5.15),which becomes

g + [(w; + 3; A2) _ 3; A2COS2wt)~= 0
This equation is of the form

Substituting Eq. (14.5.13) into (14.5.12), we obtain the following two equations:

(14.5.13)1

(14.5.12)

Mathieu equation. Consider the nonlinear equation

x + w~x + fJ-X3 = Fcos wt

and assume a perturbation solution

X = xl(t) + g(t)

The solution is thus found to be periodic, and the fundamental frequency w is found to
increase with the amplitude, as expected for a hardening spring.

w=w 11+~p.,A2n-y ,4 w6
(14.5.11 )

(14.5.10)
A3

Xl = 32w2 (cos 3wt - cos wt)

and t~e solution at this point from Eq. (14.5.2) becomes

43
X = A cos wt + p., ~2 2 (cos 3wt - cos wt)

3 w

Thus,

By imposing the initial conditions x/O) = xl(O) = 0, constants CI and C2 are

A3
Cl = 0 C2 = - 32.w2
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2See Ref. [6].

where the higher harmonic term is ignored.

(14.6.3)1 ( 3.)x = - w2A + -!-LA 3 - F cos wt + ....
1 .w2 n - 4

(14.6.2)Xo = A cos wt

and substitute into the differential equation
•• 2 3(3 1 ).x = -wnA cos wt +!-LA 4 cos w,t + 4 cos 3wt + F cos wt

= (-w~A + ~/-LA3 + F) cos tot + ~/-LA3 cos 3wt

In integrating this equation, it is necessary to set the constants of integration to zero if
the solution is to be harmonic with period 'T = 27T/W. Thus, we obtain for the improved
solution

We seek only the steady-state harmonic solution by the method of iteration, which is
essentially a process of successive approximation. An assumed solution is substituted
into the differential equation, which is integrated to obtain a solution of improved
accuracy. The procedure can be repeated any number of times to achieve the desired
accuracy.

For the first assumed solution, let

(14.6.1)x' + w~x ::!::. /-LX3= F cos wt

14.6 METHOD OF ITERATION

Duffing/ made an exhaustive study of the equation

mx' + ex + kx ::!::. /LX3 = Fcos wt

which represents a mass on a cubic spring, excited harmonically. The ::!::. sign signifies a
hardening or softening spring. The equation is nonautonomous in that the time t
appears explicitly in the forcing term.

In this section, we wish to examine a simpler equation where damping is zero,
written in the form

FIGURE 14.5.1. Stable region of
Mathieu equation indicated by the

shaded area, which is symmetric
about the horizontal axis.

b
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The jump phenomenon. In problems of this type, it is found that amplitude A
undergoes a sudden discontinuous jump near resonance. The jump phenomenon can
be described as follows. For the softening spring, with increasing frequency of excita­
tion, the amplitude gradually increases until point a in Fig. 14.6.2 is reached. It then
suddenly jumps to a larger value indicated by point b, and diminishes along the curve
to its right. In decreasing the frequency from some point c, the amplitude continues to
increase beyond b to point d, and suddenly drops to a smaller value at e.The shaded
region in the amplitude-frequency plot is unstable; the extent of unstableness depends
on a number of factors such as the amount of damping present and the rate of change

each side of which can be plotted against A, as shown in Fig. 14.6.1.The left side of this
equation is a cubic, whereas the right side is a straight line of slope (1 - w2 /w~) and
intercept - FIw~. For os] wn < 1, the two curves intersect at three points, 1, 2, and 3,
which are also shown in the amplitude-frequency plot. As wi Wn increases toward unity,
points 2 and 3 approach each other, after which only one value of the amplitude satis­
fies Eq. (14~6.6).When wi Wn = 1, or when wi Wn > 1, these points are 4 or 5.

(14.6.6)

discussed in the previous section. Here we see that the frequency increases with ampli­
tude for the hardening spring (+) and decreases for the softening spring ( - ).

For J.L =I=-° and F=I=- 0, it is convenient to hold both J.L and F constant and plot IAI
against wi wn. In the construction of these curves, it is helpful to rearrange Eq. (14.6.5) to

~ JL A 3 = (1 _ w2)A _ f_
4 w2 w2 w2n n n

For J.L =I=-0, the frequency w is a function of J.L, F, and A. It is evident that when
F = 0, we obtain the frequency equation for free vibration

w2 3 A2
=1::!:-4J.L-2

w~ Wn

F
A=

It is evident from this equation that if the nonlinear parameter is zero, we obtain the
exact result for the linear system

(14.6.5)

which can be solved for w2:

(14.6.4)

The procedure can be repeated, but we will not go any further. Duffing reasoned
at this point that if the first and second approximations are reasonable solutions to the
problem, then the coefficients of cos wt in Eqs. (14.6.2) and (14.6.3) must not differ
greatly. Thus, by equating these coefficients, we obtain
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Effect of damping. In the undamped case, the amplitude-frequency curves
approach the backbone curve (shown dashed) asymptotically. This is also the case for
the linear system, where the backbone curve is the vertical line at wiWn = 1.0.

With a small amount of damping present, the behavior of the system cannot dif­
fer appreciably from' that of the undamped system. The upper end of the curve, instead
of approaching the backbone curve asymptotically, crosses in a continuous curve, as
shown in Fig. 14.6.4.The jump phenomenon is also present here, but damping gener­
ally tends to reduce the size of the unstable region.

The method of successive approximation is also applicable to the damped vibra­
tion case. The major difference in its treatment lies in the phase angle between the
force and the displacement, which is no longer 00 or 1800 as in the 'undamped problem.

of the exciting frequency. If a hardening spring had been chosen instead of a softening
spring, the same type of analysis would be applicable and the result would be a curve
of the type shown in Fig. 14.6.3.

FIGURE14.6.3. The jump phenomenon for the
hardening spring.

o

IAI

FIGURE14.6.2. The jump phenomenon
for the softening spring.

W
Wn

o

IAI

FIGURE14.6.1. Solution of Eq. (14.6.6).

o
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Oscillations that depend on the motion itself are called self-excited. The shimmy of
automobile wheels, the flutter of airplane wings, and the oscillations of the van der Pol
equation are some examples.

14.7 SELF-EXCITED OSCILLATIONS

By fixing J,L,c, and F, the frequency ratio wiWn can be computed for assigned values ofA.

(14.6.10)

We again ignore the cos 3wt term and equate coefficients of cos wt and sin wt to obtain

(w~ - w2)A + ~,uA3 = Ao

(14.6.9)

(14.6.3)

(14.6.7)

Botan 1> =
Ao

By assuming the first approximation to be

Xo = A cos wt

its substitution into the differential equation results in

[(w~ - w2)A + %11A 3] cos wt - ewA sin wt + ~J-tA3 cos 3wt

= Ao cos wt .,- Bo sin wt

and the phase can be determined from

where the magnitude of the force is

F = vAf + B2o 0

x· + ex + w~x + J-tx3 == Fcos (wt + 1»
= AD cos tot - Bo sin tot

It is found that by introducing the phase in the force term rather than the displace­
ment, the algebraic work is somewhat simplified. The differential equation can then be
written as

o

""

FIGURE 14.6.4.

IAI
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FIGURE 14.7.2. Coulomb friction between belt and mass.

force

The coefficient of kinetic friction I-Lk is generally less than the coefficient of static friction I-Ls' this
difference increasing somewhat with the velocity. Thus, if the belt of Fig. 14.7.2 is started, the
mass will move with the belt until the spring force is balanced by the static friction.

EXAMPLE 14.7.1

we can recognize the possibility of negative damping if F(x) becomes greater than ex.
Suppose that 4>(x) = ex - F(x) in the preceding equations varies as in Fig. 14.7.1.

For small velocities, the apparent damping c/>(x) is negative, and the amplitude of oscilla­
tion increases. For large velocities, the opposite is true, and hence the oscillations tend to
a limit cycle. .

(14.7.2)mx' + [ex - F(x)] + kx = 0

Self-excited oscillations may occur in a linear or a nonlinear system. The motion
is induced by an excitation that is some function of the velocity or of the velocity and
the displacement. If the motion of the system tends to increase the energy of the sys­
tem, the amplitude will increase, and the system may become unstable.

As an example, consider a viscously damped single-DOF linear system excited by
a force that is some function of the velocity. Its equation of motion is

mx' + ex + kx = F(x) (14.7.1)

Rearranging the equation to the form

FIGURE 14.7.1. System
with apparent damping

cf>(x) = c(x) - F(x).
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The computational equations to be used are programmed for the digital computer in
the following order: "

(14.8.3)dy _ 3 _ ( )d7 - 0.5 cos 0.57 - X - 0.5x - O.4y - F 7,x, Y

as follows:

(14.8.2)

and rewrite "itin first-order form by letting

y = dxf d-r

(14.8.1)

The Runge-Kutta method discussed in Chapter 4 can be used to solve nonlinear differ­
ential equations. We consider the nonlinear equation

d2x dx " ~
d72 + 0.4 d7 + x + 0.5x-' = 0.5 cos 0.57

14.8 RUNGE-KUTTAMETHOD

•
(d)

J.Lkrmg(2x + Ax)

Equating the net work done between 2 and 3 to the change in kinetic energy, which is zero,

-~k(2xo ~ 2x"+ Ax) + J.Lkrmg = 0 (c)

By substituting (a) and (b) into (c), the increase in amplitude per cycle of oscillation is

Ax = 2g(J.Lkr - J.Lkl)
w~ .

While the mass is moving to the left, the relative velocity between it and the belt is greater
than when it is moving to the right; thus, J.Lklis less than J.Lkr'where subscripts I and r refer to left
and right, respectively. It is evident then that the work done by the friction force while moving to
the right is greater than that while moving to the left; so more energy is put into the spring-mass
system than taken out. This then represents one type of self-excited oscillation and the ampli­
tude continues to increase.

The work done by the spring from 2 to 3 is

-~k[(xo + Ax) + (xo - 2x)](2x + Ax)

The work done by friction from 2 to 3 is

(b)

k(xo - x) = J.Lklmg

From these two equations, the amplitude of oscillation is

mg (J.Ls - J.Lk)g
x = Xo - J.Lkl-k = 2

Wn

At this point, the mass starts to move back to the left, and the forces are again balanced on the
basis of kinetic friction when

(a)
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It is evident that the limit cycle was reached in less than two cycles.

to = 0;
tf = 40;

xO = [0,0.05]';
[t, x] = ode45('nonlin', to, tf, xo)

xl = xC:, 1);
x2 = x(:, 2);

plot (x2, xl)

The function ode45 also needs to be given an initial time to,a final time tt, and a column
vector of initial conditions Xo' Figure 14.8.1 is the result of the following commands in
MATLAB®:

function xdot = nonlin(t, x)
xdot = [0.5*cos(0.5.*t) - x(2) - 0.5 *x(2) A3 - O.4*x(l);x(l)];

Thus, with i = 1, x2 and Y2are found, and with T2 = T1 + D..T, the previous table of t, k, g ;
and tis computed and again substituted into the recurrence equations to find X3 and Y3'

The error in the fourth-order Runge-Kutta method is of order hS = (D..T) 5. Also,
the method avoids the necessity of calculating derivatives and hence excellent accu­
racy is obtained.

Equation (14.8.1) was solved in MATLAB® using the built in function ode45. This
function consists of an automatic step-size Runge-Kutta-Fchlberg integration method
which is a combination of a fourth- and fifth-order method. In order to use this func­
tion to solve a differential equation, the equation must first be written as a system of
first order equations. Equations (14.8.2) and (14.8.3) are the system of equations which
comes from Eq. (14.8.1). These equations need to be put in a function file, which ode45
can access. For this example, the function file is called nonlin.m and it contains the fol­
lowing commands:

(14.8.5)

(14.8.4)

From these results, the values of x and yare determined from the following recurrence
equations, where h = Sr.

T X Y F

II = 71 kl = XI g. = y. I, = F(ll' k, gl)
l2 = 7, + h/2 k2 = X, + glh/2 g2 == YI + flh/2 f2 = F(l2' k2, g2)
t} = 71 + h/2 k3 = Xl + g2h/2 g3 = y, + f2h/2 f, = F(lJ' k3, gJ)
l4 = 7 + h k, = XI + g3h g4 = Yl + f,h i« = F(t4' k4, g4)
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X2 = Xl

Figure 14.8.2 is the result of using ode45 with IL = 1.5 and the initial conditions Xl = 0
and x2 = 0.05. The effect of the nonlinearity is quite evident in this figure.

Figure 14.8.2 is obtained from the van der Pol equation:

x· - ,.u(1 - X2) + X = 0

This equation can be rewritten as the following system of first-order equations:
. _ ( 2)Xl - J1XJ 1- x2 - X2

FIGURE14.8.2.x
1.5 2 2.5

_4L_--L---L-__~~L-~ __ ~ __ ~ __ ~ __ -L __~
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FIGURE14.8.1.x
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FIGURE P14.2.

m

x' + x3 = 0

show that if Xl and x2 are solutions satisfying the differential equation, their superposi­
tion (XI + x2) is not a solution.

14.2 A mass is attached to the midpoint of a string of length 2l, as shown in Fig. PI4.2.
Determine the differential equation of motion for large deflection. Assume string tension
to be T.

14.1 Using the nonlinear equation
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FIGURE P14.S.

14.5 The cord of a simple pendulum is wrapped around a fixed cylinder of radius R such that
its length is Iwhen in the vertical position, as shown in Fig. P14.5. Determine the differen­
tial equation of motion.

FIGURE P14.4.

14.4 Determine the differential equation of motion for the spring-mass system with the dis­
continuous stiffness resulting from the free gaps of Fig. P14.4.

FIGURE P14.3.

h
~

~-

h

+--

14.3 A buoy is composed of two cones of diameter 2r and height h, as shown in Fig. P14.3. A
weight attached to the bottom allows it to float in the equilibrium position xo' Establish
the differential equation of motion for vertical oscillation.
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dv f3u + av
du au - f3v

14.18 Using the transformation u = p cos 8 and v = p sin 8,·show that the phase plane equa­
tion for Prob. 14.17becomes

~.= A1g

~ = A211

[M] 14.15 Plot the g, 11phase plane trajectories of Prob.14.14 for All A2 = 0.5 and 2.0.
!HI 14.16 For Ad A2 = 2.0 in Prob. 14.15, plot the trajectory y vs.x.

14.17 IfAl and A2 ofProb.14.14 are complex conjugates +a ± i{3, show that the equation in the
u,v plane becomes

V( (1) = + ~ cos (1

determine which of the singular points are stable or unstable and explain their physical
implications. Compare the phase plane with Fig. 14.4.2.

[HI 14.12 Given the potential V(x) = 8 - 2 cos 7Tx/4, plot the phase plane trajectories for E = 6,
7, 8, 10, and 12, and discuss the curves.

14.13 Determine the eigenvalues and eigenvectors of the equations

x = 5x - y

y = 2x + 2y

14.14 Determine the modal transformation of the equations of Prob.14.13, which will decouple
them to the form

14.6 Plot the phase plane trajectory for the undamped spring-mass system, including the
potential energy curve Vex). Discuss the initial conditions associated with the plot.

14.7 From the plot of Vex) vs.x of Prob. 14.6,determine the period from the equation

T ~ 4r"Y2[E ~ U(x)]

(Remember that E in the text was for a unit mass.)
14.8 For the undamped spring-mass system with initial conditions x(O) = A and x(O) = 0,

determine the equation for the state speed V and state under what condition the system
is in equilibrium.

[HI 14.9 The solution to a certain linear differential equation is given as

x = cos 7T't + sin 27T't

Determine y = x and plot a phase plane diagram.
IBl 14.10 Determine the phase plane equation for the damped spring-mass system

x' + 2(wnx + w~x = 0

and plot one of the trajectories with v = y / w" and x as coordinates.
14.11 If the potential energy of a simple pendulum is given with the positive sign

Nonlinear Vibrations458 Chapter 14
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14.21 Show that the solution of the equation

dy -x - y
dx x + 3y

is x2 + 2xy + 3y2 = C, which is a family of ellipses with axes rotated from the x, y coor­
dinates. Determine the rotation of the semimajor axis and plot one of the ellipses.

14.22 Show that the isoclines of the linear differential equation of second order are straight
lines.

IMI 14.23 Draw the isoclines for the equation

dy = xy(y - 2)
dx

FIGURE P14.20.

x

y

14.20 The phase plane trajectories in the vicinity of a singularity of an overdamped system
({ > 1) are shown in Fig. P14.20. Identify the phase plane equation and plot the corre­
sponding trajectories in the g7]-plane.

FIGURE P14.19.

x

y

14.19 Near a singular point in the xy-plane, the trajectories appear as shown in Fig. P14.19.
Determine the form of the phase plane equation and the corresponding trajectories in
the fry-plane.

with the trajectories identified as logarithmic spirals
p = e(ct//3)o
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x' + w~x + C sgn (x) = 0

where sgn (i) signifies either a positive or negative sign equal to that ·of the sign of x.
Express this equation in a form suitable for the phase plane.

~ 14.32 A system with Coulomb damping has the following numerical values: k = 3.60Ib/in.,
m = 0.10 lb 'S2 in. -1, and IL = 0.20. Using the phase plane, plot the trajectory for
x(O) = 20 in., x(O) = O.

14.33 Consider the motion of the simple pendulum with viscous damping and determine the
singular points. With the aid of Fig. 14.4.2, and the knowledge that the trajectories must
spiral into the origin, draw some approximate trajectories.

14.34 Apply the perturbation method to the simple pendulum with sin (]replaced by (] - ~(]3.
Use only the first two terms of the series for x and t». .

14.35 From the perturbation method, what is the equation for the period of the simple pendu­
lum as a function of amplitude?

1M] 14.36 For a given system, the numerical values of Eq. (14.7.7) are

x + 0.15i + lOx + x3 = 5 cos (wt + c/»

Plot A vs. to from Eq. (14.7.11) by first assuming a value of A and solving for w2•

Plot the phase trajectory for the initial conditions x(O) = 4.0, x(O) = o.
[MJ 14.29 Plot the phase 'plane trajectory for the simple pendulum with the initial conditions

0(0) = 60° and 0(0) = O.
14.30 Determine the period of the pendulum of Prob.14.29 and compare with that of the linear

system.
14.31 The equation of motion for a spring-mass system with constant Coulomb damping can be

written as

1!:.. = 5
m

e- = 2{wn = 2.0m
k

w2 = - = 25
n m

!Hl 14.25 What do the isoclines of Prob. 14.24 look like?
!Hl 14.26 Plot the isoclines of the van der Pol's equation

x' - p,x(l ~ x2) + X = 0

for p, = 2.0 and dyjdx = 0, -1 and + 1.
14.27 The equation for the free oscillation of a damped system with a hardening spring is

mx' + ex + kx + p,x3 = 0

Express this equation in the phase plane form.
!Hl 14.28 The.following numerical valuesare given for the equation in Prob.14.27:

14.24 Consider the nonlinear equation

x + w~x + ILX3 = 0

Replacing x by y(dyjdx), where y = X, gives the integral

y2 + w~X2+ ~ILX4 = 2£

With y = 0 when x = A, show that the period is available from

rA dx
T = 4 Jo Y2[£ - U(x)]
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IMJ 14.41 Using the Runge-Kutta routine and gil = 1.0, calculate the angle·e for the simple pen­
dulum of Prob.14.29.

rMJ 14.42 With damping added to prbb.14.41, the equation of motion is

8 + 0.308 + sin (J = 0

Using the Runge-Kutta method, solve for the initial conditions e(o) = 60°,0(0) = o.
!HI 14.43 Obtain a numerical solution for the system of Prob. 14.40 by using (a) the central differ­

ence method and (b) the Runge-Kutta method.
!HI 14.44 Consider the large-amplitude motion of the pendulum of mass m and length I, forced by

sinusoidal forcing of frequency nand amplitude Fo.The Poincare plot of the motion is
obtained by plotting the initial position and velocity and then plotting the position and
velocity of the pendulum after time T, 2T, 3T, ... has elapsed. The angle (J must be pre­
sented on the fundamental interval [0,217]'Simulate the motion for various initial condi­
tions in MATLAB®,for the amplitude of perturbation ranging from very small to 1 and
for different frequencies of forcing. If the amplitude of the perturbation is non-zero, is
the transition from the oscillatory to rotational motion possible?

IMI 14.45 Consider the forced and damped Duffing oscillator described in Sec. 14.6. Simulate the
equation of motion in MATLAB®for c = 0.2,F = 03, k = 1, J1. = 1, and w = 1. Make
the Poincare plot. What do you observe?

FIGUREP14.40.

m

~

14.39 For a given value of gil, determine the frequencies of the excitation for which the simple
pendulum of Prob. 14.38with a stiff arm I will be stable in the inverted position.

14.40 Determine the perturbation solution for the system shown in Fig. P14.40 leading to a
Mathieu equation. Use initial conditions x(O) = 0, x(O) = A.

Yo cos 2wt
I 4JV-T
~

L
,8
I
I

FIGUREP14.38.

.. (g w2y )e + - __ ._o cos 2wt sin e = 0
. l l

14.37 Determine the phase angle ¢vs.w for Prob.14.36.
14.38 The supporting end of a simple pendulum is given a motion, as shown in Fig. P14.38.

Show that the equation of motion is
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462

Specifications for vibrations are often based on harmonic motion.

x = Xo sinwt

The velocity and acceleration are then available from differentiation and the following
relationships for the peak values can be written.

x == 27T fxo

Xo = -47T2 FXo = -27T fxo

These equations can be represented on log-log paper by rewriting them in the form

InXo = lnxo + In 27Tf

lnxo = -lnx~ -"ln27Tf

By letting Xo = constant, the plot of In Xo against In 27Tf is a straight line slope equal to
+1. By letting i~= constant, the plot ofxo vs.ln 27Tfis again a straight line of slope
-1. These lines are shown graphically in Fig. A.l. The graph is often used to specify
bounds for the vibration. Shown in heavy lines are bounds for a maximum acceleration
of 109,minimum and maximum frequencies of 5 and 500 cps, and an upper limit for the
displacement of 0.30 in.

Specifications of Vibration
Bounds

APPENDIX A
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e-st
v=-­

s
dv = e-st dt

du = dtu = t

EXAMPLE B.2

Let f(t) = t. Its LT is found by integration by parts, letting

•
which exists for R(s) > O.

EXAMPLE B.1
Let t(t) be a constant c for t > O.Its LT is

f.oc _ ces-SI 1000-- _cs:£c = 0 ce-st dt =

where s is a complex variable. The integral exists for the real part of s > 0 provided t(t)
is an absolutely integrable function of t in the time interval 0 to 00.

(B.1)l(s) = r e -"[(I) dt = 9'.[(1)

Definition

If t(t) is a known function of t for values of t > 0, its Laplace transform (LT), l(s), is
defined by the equation

Introduction to Laplace
Transformation

APPENDIX 8
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The last equation is called the subsidiary equation of the differential equation. The
response x(t) is found from the inverse transformation, the first term representing the
forced response and the second term the response due to the initial conditions.

(B.6)

which can be rearranged to

_( ) F(s) , (ms + e)x(O) + mi(O)
x s = +ms2 + es + k ms2 + es + k

m[s2:X(s) - sx(O) - x(O)] + e[si(s) - x(O)] + kX(s) = F(s)

Its LT is

(B.S)

Transformation of Ordinary Differential Equations

Consider the differential equation

. mX + ex + kx = F(t)

where 5fx(t) = i(s) Thus, the multiplication of x(t) by eat shifts the transform by a,
where a can be any number, real or complex.

(BA)

Shifting Theorem·

Consider the LT of the function eat x(t).

::fe"'x(t) ~ re -"[e"'x(t)] dt ~ re-&-a), x(t) dt

We conclude from this expression that

.. 5featx(t) = i(s - a)

(B.3)

This relation is found by integration by partsr e -" r (t) dt ~ e -"f(t) I: + sr e = st f(t) dt

Similarly, the LT of the second derivative can be shown to be

5£!"(t) = s21(s) - s[(o) - 1'(0)

(B.2)5£r(t) = sl(s) - [(0)

LT of derivatives. If 5£[(t) = l(s) exists, where [(t) is continuous, then [(t) tends
to [(0) as t ~ 0 and the LT of its derivative f'(t) = d[(t)/dt is equal to

•
R(s) > 0te - sr 100 1J00 1:£t = - - + - e +st dt = 2

s 0 s 0 s

The result is
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i(s) = A(s)
B(s)

(B.11)

Because (s - ak)A(s)/B(s) = A(s)j Bt(s),it is evident that

x(t) = ± A(ak) eakl
k= t B'(ak)

Transforms Having Poles of Higher Order

If in the subsidary equation

Another expression for the last equation becomes apparent by noting that

B(s) = (s - ak)B1(s)

B'(s) = (s - ak)B~(s) + B1(s)

liniB'(s) = B1(ak)
s~ak

(B.lO)

(B.9)

To determine the constants Ci, we multiply both sides of the preceding equation
by (s - ak) and let s = ai. Every term on the right will then be zero except Ck and we
arrive at the result

(B.8)

B(s) = (s - a1)(s - a2) .. , (s - an)
The subsidiary equation can then be expanded in the following partial fractions:

x(s) = A(s) = __S_ + __S_ + ... + ___s_
B(s) s - a, s - a2 s - an

x(s) = A(s)
B(s)

we examine the case where B(s) is factorable in terms of n roots ak>which are distinct
(simple poles).

Transforms Having Simple Poles

Considering the subsidiary equation

where A(s) and B(s) are polynomials. B(s) is in general of higher order than A(s).

(B.7)x(s) = A(s)
B(s)

For the more general case, the subsidiary equation can be written in the form
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f(t) = :£-11 (s)
then

+ C2ea21 + C3eQ3t + ...
Most ordinary differential equations can be solved by the elementary theory of

LT.Table B.I gives the LT of simple functions. The table is also used to establish the
inverse LT,because if '

:£f(t) = l(s)

(B.16)

the inverse transform of x(s) becomes

[

tm-l tm-2 1
x(t) = Cll (m _ I)! + el2 (m _ 2)! + ... Jeall

The remaining coefficients C2'C3' •.• , are evaluated as in the previous section for sim­
ple poles.

Because by the shifting theorem,

:£-1 1
(s - al)n

(B.IS)

, It is evident then that

.'. Cll = [(s - al)m x(s)L=a,
The coefficient C12 is determined by differentiating the equation for (s - al ynx(s)

with respect to s and then letting s = ab

Cj = [ :s (s - aj)m i(s)L" (B.14)

(B.13)( )
1 (s - al) m C + ...+ s - al m- Clm + 2

S - a2

The coefficient Cll is determined by multiplying both sides of the equation by (s - al)m
and letting s = ah

(s - al)m x(s) = Cll + (s - al)C12 + .. ,

(B.12)

a factor in B(s) is repeated m times, we say that x(s) has an mth-order pole. Assuming
that there isan m-th order pole at al>B(s) will have the form

, '

B(s) = (s - al)m(s - a2)(s - a3)'"
The partial fraction expansion of x(s) then becomes

_( ) Cll ' Cl2
X S = + + ...(s - al)m (s - al)m-l

c., C2 C3+ + + + ...
(s - al) (S - a2) (S - a3)
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[1] THOMSON, W. T. Laplace Transformation, 2nd Ed. Englewood Cliffs, NJ: Prentice-Hall,
1960.

REFERENCE

(1) 8(t) = unit impulse at t = 0

(2)
1

OU(t)= unit step function at t = 0-
5

1 t" -1
(3) - (n = 1 2 ... )

(n - 1)!s" ' ,

(4) e-at
s + a

(5) 1
{5 + a)2

te-at

1 __1_tn-Ie-ar(6) {5 + a)n (n = 1,2, ... ) (n - 1)!

(7)
5(5 + a)

!(1 - e-at)
a

1 1(8)
S2(5 + a)

_(e-at + at - 1)
a2

(9)
5

52 + a2 cos at

(10)
s

cosh at
52 - a2

(11) 1 .
S2 + a2

+sm cr
a

(12) 1 . h
S2 - a2 -S1O at

a
1

(13)
S(S2 + a2)

"""2 (1 - cos at)
a

(14)
1

-\ (at - sin at)
s2(s2 + a2) a

(15) 1
~3 (sin at - at cos at)

(S2 + a2)2
s t

(16)
S2 + a2)2 2a sin at

(17)
S2 - a2

(S2 + a2)2 t cos at

(18) 1 1 e-lWoTsin<doYl="? t
S2 + 2(wos + ~ <doY1 - (2

[(t)[(s)

Table B.l Short Table of Laplace Transforms
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469

215
421
203

Given the third-order determinant

EXAMPLE C.1.1

Cofactor

The cofactor C1;" of the element aij is defined by the equation

Cij = (-l)i+j Mij

Minors

A minor Mij of the element aij is a determinant formed by deleting the ith row and
the jth column from the original determinant.

all a12 a13 a1n
a21 a22 a23 a2n

D = I: ~I= ad - be

An nth-order determinant has n rows and n columns, and in order to identify the
position of its elements, the following notatiori is adopted:

A determinant of the second order and its numerical evaluation are defined by the fol­
lowing notation and operation

(,1 DETERMINANT

Determinants and Matrices

APPENDIX C
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[all a12 a13
a14]A =. a21 a22 a23 a24

a31 a32 a33 a34
is a 3 X 4 matrix.

Matrix. A rectangular array of terms arranged in m rows and n columns is
called a matrix. For example,

C.2 MATRICES

Properties of Determinants

The following properties of determinants are stated without proof:

1. Interchange of any two columns or rows changes the sign of the determinant.
2. If two rows or two columns are identical, the determinant is zero.
3. Any row or column may be multiplied by a constant and added to another row or

column without changing the value of the determinant.

•

2 5
= 1(-1)1+2!~

~!
D= 4 2 1 I! + 2( -1)2+2!2

2 0 3
3 2

12
~!

+ o( -1)3-'-214

= -10 - 8 = -18

The determinant of the previous example is expanded in terms of the second column as

EXAMPLE(,1.2

Expansion of a Determinant

The order of a determinant can be reduced by 1 by expanding any row or column in
terms of its cofactors.

•
and its cofactor is

2 1 5

M21 of 4 2 1 =!~ ~!== 3
203

The minor of the term a21 = 4 is
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o

Diagonal matrix. A square matrix having elements au along the diagonal with
all other elements equal to zero is a diagonal matrix.

is a square matrix in which the diagonal elements from the top left to the bottom right
are unity with all other elements equal to zero. .

o = [~
0 ~J0

Unit matrix. The unit matrix
r1 0 ~]1= l~1

0

Zero matrix. The zero matrix is defined as one in which all-elements are zero.

Column matrix. A column matrix has n = 1.

Row matrix. A row matrix has m = 1.

Singular matrix. If the determinant of a matrix is zero, the matrix is said to be
singular,

Trace A = 2 + 5 + 1 = 8

Trace. The sum of the diagonal elements of a square matrix is called the trace.
For the previous matrix,

Symmetric matrix. A square matrix is said to be symmetric if the elements on
the upper right half can be obtained by flipping the matrix about the diagonal.

A = Gin = symmetric matrix

Square matrix. A square matrix is one in which the number of rows is equal to.
the number of columns. It is referred to as an n X n matrix or a matrix of order n.
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Orthogonal matrix. An orthogonal matrix A satisfies the relationship

ATA = AAT = I

From the definition of an inverse matrix, it is evident that for an orthogonal matrix
AT = A-1.

Inverse matrix. The inverse A -1 of a matrix A satisfies the relationship

A -lA = AA -1 = I

Adjoint matrix. An adjoint matrix of a square matrix A is a transpose of the
matrix of cofactors of A. -

Let cofactor matrix of A be

Cofactor. The cofactor Cij is equal to the signed minor (-l)i+jMij. From the pre­
vious example,

[ali al2
a13lLetA = a21 a22 a23

a31 _a32 a33

all al2 a13

= la21 a231M12 a21 a22 a23

a31 a32 a33
a31 a33

Minor. A minor Mij of a-matrix A is formed by deleting the ith row and the jth
column from the determinant of the original matrix.

The transpose of a column matrix is a row matrix.

Transpose. The transpose A T of a matrix A is one in which the rows and
columns are interchanged. For example,
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•
Premultiplication of a matrix by a row matrix (or transpose of a column matrix) results in a row
matrix.

EXAMPLE(,3.3

•

It is evident that the number of columns in A must equal the number of rows in B, or that the
matrices must be conformable. We also note that AB =1= BA.

The postmuItiplication of a matrix by a column matrix results in a column matrix.

Cij = s-»:
k

EXAMPLE(,3.2

LetA ~ [~

1 n B~G _!J2
2

AB ~ [~
1 m OJ [5 ~J~c2 1 - 8
2 -1 11 -1

i.e.,

C21 = 1 X 2 + 2 X 0 + 2 X 3 = 8

The element Cij of C is determined by multiplying the elements ofthe ith row in A by the
elements of the jth column in B according to the rule

Multiplication. The product of two matrices A and B is another matrix C.

AB = C

•
3
-1

o
-2

EXAMPLE(,3.1-

Addition. Two matrices having the same number of rows and columns can be
added by summing the corresponding elements.

(,3 RULESOFMATRIXOPERATIONS
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1 { la22 a231_ Y21a12= IAI Yl a32 a33 a32

1
= IAI {YICll + Y2C21+ Y3C31}

where A is the determinant of the coefficient matrix A, and Cn, C21, and C31 are the
cofactors of A corresponding to elements 11, 21, and 31. We can also write similar
expressions for x2 and X3 by replacing the second and third 'columns by the Y column,

. respectively. Thus, the complete solution can be written in matrix form as

We can identify the term A -1 by the Cramer's rule as follows.The solution for Xl is

(C.3.3)
Premultiplying by the inverse A -1,we obtain the solution

X = A -ly

(C.3.2)AX= Y

(C.3.1)

allx1 + a12x2 + a13x3 = Yl

a21x1 + a22x2 + a23x3 = Y2

a31x1 + a32x2 + a3sX3 = Y3

which can be expressed in the matrix form

Inversion of a matrix. Consider a set of equations

•

EXAMPLE(,3.5

•
The transpose of a product AB = C is CT = BTAT.

[1 3 { ~ l [8 18 13]

EXAMPLE(,3.4.

Determinants and Matrices474 Appendix C

www.semeng.ir

http://www.semeng.ir


It should be noted that for art inverse to exist, the determinant IA I must not be zero.

1
-!]-3

2A -I = I~Iadj A = ~ [ =!
(e) The result can be checked as follows:

A-1A = ~[=! -~ -!I~~n
= ~[~ ~ n= [~ ! n

(d) The adjoint matrix is the transpose of the cofactor matrix, or [Cij] T = [Cji]; Thus, the inverse
A-l is

(c) Supply the signs (-1)i+j to the minors to form the cofactors

6 -1 -2
[Cij] = -3 2

o -1 1

1
1 21 .M12 = 1 3 = 1,···Mil = I ~ ~ I = 6,

(a) The determinant of A is IA I = 3.
(b) The minors of A are

Find the inverse of the matrix

EXAMPLE(,3.6

(C.3.5)

Thus, by comparison with Eq. (C.3.3), we arrive at the result

A -1 1 d.A
= IAI a j •

1· 1
{x} = IAI [Cji]{Y} = IA I [adj A ]{y}

or

(C.3.4)
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A = [~ -n B= rn
C=[3 -1] D=[-5]

Partitioned matrices obey the normal rules of matrix algebra and can be added, sub­
tracted, and multiplied as though the submatrices were ordinary matrix elements. Thus,

where the submatrices are

[
1]2 4 1 -1

o -3 1 4 = [l1LU~JJ
1 2: 2 IlC] : [D] J---------4-----3 -1:-5

Partitioned Matrices

A matrix can be partitioned into submatrices by horizontal and vertical lines, as shown
by the following example:

(C.3.9)
pTA = AP

{xlTA = A{x}

(C.3.8)P-1AP = D = pTAP a diagonal matrix

IfA is a symmetric matrix, then

Orthogonal transformation. A matrix P is orthogonal if

r' = pT

The determinant of an orthogonal matrix is equal to ±1. IfA = symmetric matrix, then

(C.3.7)

Transpose of a Product

The following operations are given without proof:

(AB)T=BTAT

(A + B) T = A T + B T

•
(C.3.6)IAII = A adj A

Thus, we obtain the expression

AA -} = I~Iadj A = I

Equation (C.3.5) for the inverse offers another means of evaluating a determinant.
Premultiply Eq. (C.3.5) by A:
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(CA.6)=0
a31 a32

a31Cll + a32C12 + (a33 - Ai)C13 = 0 (C.4.7)

Equations (C.4.3), (C.4.S), and (CA7) can now be assembled ina single matrix equation:

Again expand in terms of the cofactors of the first row, which are identical to the cofac­
tors of the previous determinant:

a21CU + (a22 - Ai)C12 + a23C13 = 0 (C.4.5)

Finally, replace the first row by the third row and expand in terms of the first ~ow
of the new determinant.

rows:

a21 (a22 - \) a23
a21 (a22 - Ai) a23 =0 (C.4.4)
a31 a32 (a33 - A)

Next replace the first row of the determinant by the second row, leaving the other
two rows unchanged. The value of the determinant is still zero because of two identical

(C.4.3)

The determinant expanded in terms of the cofactors of the first row is

(an - A1)Cll + a12C12, + a13C13 = 0

(C.4.2)
a13
a23 = 0

(a33 - A)

Its characteristic equation IA - A/I = 0 written out in determinant form is

(C.4.1)

The eigenvector Xi corresponding to the eigenvalue Ai can be found from the cofac­
tors of any row of the characteristic equation.

Let [A - AJ]Xi = 0 be written out for a third-order system as

(,4 DETERMINATIONOF EIGENVECTORS

L:t_L~JL~l = [A{X} + B{Y}]
[C: DJ1YJ C{x}+D{y}

t~-1-bl~-Hj=W-H~+~~-HZj
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Instead of the first row, any other row may have been used for the determination of the
cofactors.

Comparison of Eqs. (C.4.1) and (C.4.8) indicates that the eigenvector Xi can be deter­
mined from the cofactors of the characteristic equation with A = Ai' Because the eigen­
vectors are relative to a normalized coordinate, the column of cofactors can differ by a
multiplying factor.

(C.4.8)
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1 D. Young, and R. P. Felgar, Jr., Tables of Characteristic Functions Representing 'Normal Modes of
Vibration of a Uniform Beam. The University of Texas Publication No. 4913, July 1,1949.

cPn(x) = characteristic function describing the deflection of the nth mode

m = mass density per unit length

{3~ = m w~/EI
Wn = ({3n I) 2 VEl /ml" = natural frequency of the nth mode

The characteristic functions cPn(x) and the normal mode frequencies Wn depend
on the boundary conditions and have been tabulated by Young and Felgar. An abbre­
viated summary taken from this work' is presented here.

where

(D.3)

(D.2)

(D.1)EI a4y + m a2y = 0
ax4 at2

To determine the normal modes of vibration, the solution in the form

y(x, t) = cPn(x)eiwnt
is substituted into Eq. (0.1) to obtain the equation

d4cPn{x) _ f34..+,. ( ) = 0
dx" n'Pn X

We assume the free vibrations of a uniform beam to be governed by Euler's differen­
tial equation.
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The natural frequencies of the free-pinned beam are equal to those of the clamped­
pinned beam. The characteristic functions of the free-pinned beam are related to those
of the clamped-pinned beam as follows:

0.4 CLAMPED-PINNED BEAM
iI

n {jn1 . ({jn1)2 wn/W]- --- 3.9266 15.4182 1.0000- 2 7.0686 49.9645 3.2406

_.........",
3 10.2101 104.2477 6.7613

- -
0.5 FREE-PINNED BEAM

1.8751
4.6941
7.8548

1.0000
6.2669
17.5475

3.5160
22.0345
.61.6972

1
2
3

Wn/W)n

D.3 CLAM PED-FREE BEAM

..........._ / free-free clamped-clamped

~ <Pn l/J~,.............. ,,/ 4>~ dJ'"
7' ~ , n

cp~ CPn
7~ ~ ~ , cp~' cP~

The natural frequencies of the free-free beam are equal to those of the clamped­
clamped beam. The characteristic functions of the free-free beam are related to those
of the clamped-clamped beam as follows:

22.3733
61.6728
120.9034

1.0000
2.7565
5.4039

4.7300
7.8532
10.9956

2
3

n

D.2 FREE-FREE BEAM
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TABLE D.1 Characteristic Functions and Derivatives
Clamped-Clampe~ Beam
First Mode

x _.!_ d<p,. _ 1 d2<pI 1 d'<p- ¢I <p; <p'~ - f3~ dx2
<p'" = ___ 1

I f31 dx I f3~ dx '

0.00 0.00000 0.00000 2.00000 -1.96500
0.G4 0.03358 0.34324 1.62832 -1.96285
0.08 0.12545 0.61624 1.25802 -1.94862

0.12 0.26237 0.81956 0.89234 -1.91254
0.16 0.43126 0.95451 0.53615 -1.84732

0.20 0.61939 1.02342 0.19545 -1.74814
0.24 0.81459 1.02986 -0.12305 -1.61250
0.28 1.00546 0.97870 -0.41240 -1.44017

0.32 1.18168 0.87608 -0.66581 -1.23296
0.36 1.33419 0.72992 -0.87699 -0.99452

0.40 1.45545 0.54723 -1.04050 -0.73007
0.44 1.53962 0.33897 -1.15202 -0.44611
0.48 1.58271 0.11478 -1.20854 -0.15007

0.52 1.58271 -0.11478 -1.20854 0.15007
0.56 1.53962 -0.33897 -1.15202 0.44611

0.60 1.45545 -0.54723 -1.04050 0.73007
0.64 1.33419 -0.72992 -0.87699 0.99452
0.68 1.18168 -0.87608 "-0.66581 1.23296

0.72 1.00546 -0.97870 -0.41240 1.44017
0.76 0.81459 -1.02986 -0.12305 1.61250·

0.80 0.61939 -1.02342 0.19545 1.74814
0.84 0.43126 -0.95451 0.53615 1.84732
0.88 0.26237 -0.81956 0.89234 1.91254

0.92 0.12545 -0.61624 1.25802 1.94862
0.96 0.03358 .-0.34324 1.62832 1.96285

1.00 0.00000 0.00000 2.00000 1.96500
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TABLE 0.2 Characteristic Functions and Derivatives
Clamped-Clamped Beam
Second Mode

x 4>' = _!_ d4>2 4>" = ..!_ d2 4>2 4>111 = _!_ d3 4>2- 4>z 2 f32 dx 2 f3~ dx2 2 f3~ dx?

0.00 0.00000 0.00000 2.00000 -2.00155
0.04 0.08834 0.52955 1.37202 -1.99205
0.08 0.31214 0.86296 0.75386 -1.93186

0.12 0.61058 1.00644 0.16713 -1.78813
0.16 0.92602 0.97427 -0.35923 -1.54652

0.20 1.20674 0.79030 -0.79450 -1.21002
0.24 1.41005 0.48755 -1.11133 -0.79651
0.28 1.50485 0.10660 -1.28991 -0.33555

0.32 1.47357 -0.30736 -1.32106 0.13566
0.36 1.31314 -0.70819 -1.20786 0.57665

0.40 1.03457 -1.05271 -0.96605 0.94823
0.44 0.66150 -1.30448 -0.62296 1.21670
0.48 0.22751 -1.43728 -0.21508 1.35744

0.52 -0.22751 -1.43728 0.21508 1.35744
0.56 . -0.66150 -1.30448 0.62296 1.21670

0.60 -1.03457 -1.05271 0.96605 0.94823
0.64 -1.31314 -0.70819 1.20786 0.57665
0.68 -1.47357 -0.30736 1.32106 0.13566

0.72 -1.50485 0.10660 1.28991 -0.33555
0.76 -1.41005 0.48755 1.11133 -0.79651

0.80 -1.20674 0.70930 0.79450 -1.21002
0.84 -0.92602 0.97427 0.35923 -1.54652
0.88 -0.61058 1.00644 -0.16713 -1.78813

0.92 -0.31214 0.86296 -0.75386 -1.93186
0.96 -0.08834 0.52955 -1.37202 -1.99205

1.00 0.00000 0.00000 -2.00000 -2.00155
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TABLE D.3 Characteristic Functions and Derivatives
Clamped-Clamped Beam
First Mode

x
<PI

I 1 d<PI <P'; = .!.d2 <PI <p'li;' .!.d3 <PI- <PI = 13:d; f3~ dx2 I f3i dx '

0.00 0.00000 0.00000 2.00000 -1.45819
0.04 0.00552 0.14588 1.88988 -1.46805
0.08 0.02168 0.28350 1.77980 -1.46710

0.12 0.04784 0.41286 1.66985 -1.46455
0.16 0.08340 0.53400 1.56016 -1.45968

0.20 0.12774 0.64692 1.45096 -1.45182
0.24 0.18024 0.75167 1.34247 -1.44032
0.28 0.24030 0.84832 1.23500 -1.42459

0.32 0.30730 0.93696 1.23889 -1.40410
0.36 0.38065 1.01771 1.02451 -1.37834

0.40 0.45977 1.09070 0.92227 -1.34685
0.44 0.54408 1.15612 0.82262 -1.30924
0.48 0.63301 1.21418 0.72603 -1.26512

0.52 0.72603 1.26512 0.63301 -1.21418
0.56 0.82262 1.30924 0.54408 -1.15612

0.60 0.92227 1.34685 0.45977 -1.09070
0.64 1.02451 1.37834 0.38065 -1.01771
0.68 1.12889 1.40410 0.30730 -0.93696

0.72 1.23500 1.42459 0.24030 -0.84832
0.76 1.34247 lA4032 0.18024 -0.75167

0.80 1.45096 1.45182 0.12774 -0.64692
0.84 1.56016 1.45968 0.08340 -0.53400
0.88 1.66985 1.46455 0.04784 -0.41286

0.92 1.77980 1.46710 0.02168 -0.28350
0.96 1.88988 1.46805 0.00552 -0.14588

1.00 2.00000 1.46819 0.00000 0.00000
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TABLE D.4 Characteristic Functions and Derivatives
Clamped-Clamped Beam
Second Mode

x I 1 d4J2 = _!_ d2 4J2 1 d34J
4J2 4J2 = ~dx 4J~ </J'" - ___ 2

L J3~ dx2 2 - J3~ dx3

0.00 0.00000 0.00000 2.00000 -2.03693
0.04 0.03301 0.33962 1.61764 -2.03483
0.08 0.12305 0.60754 1.23660 -2.02097

0.12 0.25670 0.80728 0.86004 -1.98590
0.16 0.42070 0.93108 0.49261 -1.92267

0.20 0.60211 0.99020 0.14007 -1.82682
0.24 0.78852 0.98502 -0.19123 -1.69625
0.28 0.96827 0.92013 -0.49475 -1.53113

0.32 1.13068 0.80136 -0.76419 -1.33373
0.36 1.26626 0.63565 -0.99384 -1.10821

0.40 1.36694 0.43094 -1.17895 -0.86040
0.44 1.42619 0.19593 -1.31600 -0.59748
0.48 1.43920 -0.06012 -1.40289 -0.32772

0.52 1.40289 -0.32772 -1.43920 -0.06012
0.56 1.31600 -0.59748 -1.42619 0:19593

0.60 1.17895 -0.86040 -1.36693 0.43094
0.64 0.99384 -1.10821 -1:26626 0.63565
0.68 0.76419 -1.33373 -1.13068 0.80136

0.72 0.49475 -1.53113 -0.96827 0.92013
0.76 0.19123 -1.69625 -0.78852 0.98502

0.80 -0.14007 -1.82682 -0.60211 0:99020
0.84 -0.49261 -1.92267 -0.42070 0.93108
0.88 -0.86004 -1.98590 -0.25670 0.80428

0.92 -1.23660 -2.02097 -0.12305 0.60754
0.96 -1.61764 -2.03483 -0.03301 0.33962

1.00 -2.00000 -2.03693 0.00000 0.00000
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TABLE 0.5 Characteristic Functions and Derivatives
Clamped-Clamped Beam
First Mode

x
c/>1 c/>i

= ~ dept c/>'; = ~d2c/>t C/>", = ~d3c/>t-
f3t dx f3t dx2 1 f3f dx?

0.00 0.00000 0.00000 2.00000 -2.00155
0.04 0.02338 0.29844 1.68568 -2.00031
0.08 0.08834 0.52955 1.37202 -1.99203

0.12 0.18715 0.72055 1.06060 -1.97079
0.16 0.31214 0.86296 0.75386 -1.93187

0.20 0.45574 0.95776 0.45486 -1.87177
0.24 0.61058 1.00643 0.16712 -1.78812
0.28 0~76958 1.01105 -0.10554 -1.67975

0.32 0.92601 0.97427 -0.35923 -1.54652
0.36 1.07363 0.89940 -0.59009 -1.38932

0.40 1.20675 0.7.9029 -0.79450 -1.21002
0.44 1.32032 0.65138 -0.96918 -1.01128
0.48 1.41006 0.48755 . -1.11133 -0.79652

0.52 1.47245 0.30410 -1.21875 -0.56977
0.56 1.50485 0.10661 -1.28992 -0.33555

0.60 1.50550 -0.09916 -1.32402 -0.09872
0.64 1.47357 -0.30736 -1.32106 0.13566
0.68 1.40913 -0.51224 -1.28180 0.36247

0.72 1.31313 -0.70820 -1.20786 0.57666
0.76 1.18741 -0.88996 -1.10157 0.77340

0.80 1.03457 -1.05270 -0.96606 0.94823
0.84 0.85795 -1.19210 -0.80507 1.09714
0.88 0.66151 -1.30448 -0.62295 1.21670

0.92 0.44974 -1.38692 -0.42455 1.30414
'0.96 0.22752 -0.22752 -0.21507 1.35743

1.00 0.00000 -1.45420 0.00000 1.37533
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TABLE D.6 Characteristic Functions and Derivatives
Clamped-Clamped Beam
Second Mode

x cf>' -..!._ dcf>2 cf>" = _!_ d2cf>2 "'_ 1 d3cf>2- cf>2 <P2 - f3i dx32 - /32 dx 2 f3~ dx2

0.00 0.00000 0.00000 2.00000 -2.00000
0.04 0.07241 0.48557 1.43502 -1.99300
0.08 0.25958 0.81207 0.87658 -1.94824

0.12 0.51697 0.98325 0.33937 -1.83960
0.16 0.80176 1.00789 -0.15633 -1.65333

0.20 1.07449 0.90888 -0.58802 -1.38736
0.24 1.30078 0.68345 -0.93412 -1.05012
0.28 1.45308 0.38242 --1.17673 -0.65879

0.32 1.51208 0.02894 -1.30380 -0.23724
0.36 1.46765 -0.34350 -1.31068 0.18649

0.40 1.31923 -0.70122 -1.20092 0.58286
0.44 1.07550 -1.01270 -0.98634 0.92349
0.48 0.75348 -1.25090 -0.68631 1.18364

0.52 0.37700 -1.39515 -0.32640 1.34442
0.56 -0.02536 -1.43265 0.06348 1.39438

0.60 -0.42268 -1.35944 0.45136 1.33056
0.64 -0.78413 -1.18058 0.80569 1.15876
0.68 -1.08158 -0·90972 1.09776 0.89319

0.72 -1.29186 -0.56793 1.30395 0.55537
0.76 -1.39848 -0.18205 1.40755 0.17245

0.80 -1.39351 0.21752 1.40010 -0.22494
0.84 -1.27727 0.59923 1.28198 -0.60506
0.88 -1.05919 0.93288 1.06244 -0.93759

0.92 -0.75676 1.19208 0.75879 -1.19604
0.96 -0.39406 1.35629 0.39504 . -1.35983

1.00 0.00000 1.41251 0.00000 -1.41592
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o -.1 -.2 -.3 -.4 -.S -.6 -.7 -.8 -.9 -I.

generates the array

0:- .1:-1

and the command

0123

generates the array

that gives an array of numbers starting at x and incremented by y until z or the closest
number that is less than or equal to z.For example, the command

0:1 :3

x: y: z

MATLAB® is a commercially available interactive software package that can be used
along with the programs included with this text to solve many problems in vibrations.
The programs for this text work with The Student Edition of MATLAB®. The individual
programs will be discussed as they are needed. The following can be considered as a
general introduction to MATLAB®. For the purposes of this introduction we will con­
centrate on the commands that one will need throughout the rest of the book. For a
complete description of MATLAB®, the reader should consult The Student Edition of
MATLAB®.

Upon entering MATLAB®, one should see the prompt ». This prompt distin­
guishes a MATLAB® command line. Inside MATLAB®, one can get information about a
command by typing "help" followed by the command name. It is important to note
that MATLAB® is case sensitive, so all commands and variables need to be in the appro­
pria te case.

MATLAB® works with either arrays of numbers or matrices. In order to create an
array of numbers you can use the command

Introduction to MATLAB®
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A = [0.5 0.5 0.5; 0.5 1.5 1.5; 0.5 1.5 2.5]

where there is a space between each element and a semi-colon at the end of each row.
Alternatively, you can separate matrix elements by commas instead of spaces and you

This matrix can be input into MATLAB® by typing the following on a MATLAB® com­
mand line:

A matrix can be input easily into MATLAB®. For example, consider the matrix

[

0.5 0.5 0.5]
A = 0.5 1.5 1.5

0.5 1.5 2.5

Gives the sine of each element in an array or matrix.
Gives the cosine of each element in an array or matrix.
Gives the exponential function of each element in an array or matrix.

sin I)
cos I)
exp I)

EffectFunction

y = 1.0000 0.8n6 0.5403 0.0707 -0.4161 -0.8011 -0.9900.

One can plot these two arrays in MATLAB® by using the command plot (x,y). The
result of this command is shown in Figure E.1. '

A few of the functions which are available inMATLAB® are given in the following
table. MATLAB® assumes that the argument of a trigonometric function is in radians.

and

x = 0.0000 0.5000 1.000 1.500 2.000 2.5000 3.0000

generate the arrays

y = cos(x)

Functions can be applied to an entire array, for example, the following two commands

x = 0:.5: 7T

Hqure E.1. Plot of cos(x).

Introduction to MATLAB®488 Appendix E

www.semeng.ir

http://www.semeng.ir


-0.5907]
-0.8069

'u = [-0.9392
0.3437

This command produces two matrices. D is a diagonal matrix with the eigenvalues
along the diagonal and U contains the corresponding eigenvectors as column vectors.
For the above matrix we get

In order to compute both the eigenvalues and eigenvectors we use the command

[U, D] = eig(A)

= [-2.3660J
y -0.6340

which produces

y = eig(A)

You can compute the eigenvalues in MATLAB®, directly from the matrix A using the
command

= (-2.3660]
A -0.6340

and the command A = roots(c) results in the following:

c = [1, 3, 1.5]

In MATLAB®, the roots of this equation can be computed by typing the command
roots(c) where c is the vector containing the coefficients of the polynomial in descend­
ing order. For this example,

Ibis calculation results in the following characteristic polynomial:

A2 + 3A + 1.5 = 0

1 I -0(-I-A) -I
( -2-A)

.5

The eigenvalues are the values of A which satisfy

For example, consider the computation of the eigenvalues for the following matrix

A = 'L-2 1 J.5 -1

Gives the eigenvalues and eigenvectors of a matrix.
Gives the inverse of a matrix.
Gives the determinant of a matrix.

eig t)
inv 0
det 0

EffectFunction

can indicate the end of each row by a carriage return. MATLAB® can efficiently imple­
ment many functions of matrices. A few functions are:
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Contrast this with the matrix operation that is obtained from the vector opera­
tion by deleting the period. The matrix command is B = A "2 and it will generate a
matrix that is the matrix product of A times A.1t is given by:

1
9
9

A2 = [~

produces the matrix

If this operation is used with a matrix instead of a vector, the result is each element of
the matrix is squared. For the matrix A above, the following command

A2 = Aol\2

y = x·1\2

For the above example, this command produces

y = [1, 1, 4, 16]

Consider the arrays x = [1,1,2,4]and the matrix

A=G ~ n
The command that generates an array y whose components are the squares of

the components of x is

+ addition
- subtraction
.* multiplication
./ division
," power
.' conjugate transpose

+ addition
- subtraction
* multiplication
/ division
1', power
, conjugate transpose

Array OperationsMatrix Operations

It is possible to have operations on pairs of matrices or arrays. Array operations
act componentwise. The following table illustrates such operations:

-.66671
-1.3333 J

The result for the example matrix is

1= [-0.6667
-0.3333

D = [-2'03660 0]
-0.6340

The inverse of this matrix can be computed using the command

I = inv(A)

and
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produce the matrix C =A + B.What are the eigenvalues of C?
E.4. Construct the characteristic polynomial for the matrix C and .cornpute the roots of this

polynomial.

E.2. Produce a plot for the sin function.
E.3. Given the matrices

A ~ [~

2

~J4
3

B~G 1 n3
0

E.1. Generate an array containing 10 elements between (J and 7T. Generate a second array
that contains the cosine of these elements.

PROBLEMS

These basic commands along with the programs provided will allow you to solve
many vibrations problems. As you become more familiar with MATLAB®, its versatility
and power will become evident.

7
19
25

B = [i
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This function file must be named f.m. There are several function files available. Since
the program RUNGA.m requires the function file to be named f.m, the user must copy
whichever function file he wants to use to a file named f.m. Any function files

function [force]= f(t)
force=slnlt]
end

Program RUNGA solves the differential equation

mx + ex + kx = f(t)

using the fourth-order Runge-Kutta method. Which is described in detail in Sec. 4.8 of
Chapter 4. For a complete discussion of this method, see this section of the main text.

The program RUNGA.m is a MATLAB® script file. Script files are the MATLAB®
equivalent of a main program. This program can be run from the command window by
typing RUNGA at the prompt. The program will ask the user to input the values of m,
e, and k, h, the timestep and the initial values x(O) and x(O). See Fig. F.l for the flow
chart for this program. It requires a function file that contains the function f(t). For
example, if we want to solve the equation

mx· + ex '+ kx = sinlr),

we would need to create a function file containing the following commands

RUNGA

This appendix describes how to run the programs which accompany this text. A brief
discussion about the program can be found at the beginning of each program.

Computer Programs
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The three options available for the program POLY are shown by the block labeled choice.
See Fig. E2. In option CD,massM and stiffness K are inputted, and the characteristic deter­
minant 1M- AKI = 0 is reduced to the polynomialform clAn + c2An-1 + ... + en = 0 in
the block Polcof. The coefficients c,of the polynomial are then outputted.

Ifno further information is sought, option <D is now complete. If,however, the roots
of the polynomial equation are desired, the decision block sends the coefficients to
option ®, where the search for the roots is carried out in the block Polroot and outputted
as the eigenvalues A.

If the eigenvectors are also desired, the eigenvalues are sent to option ®, where
the eigenvectors q, are found.

When the coefficients c, are initially available, option @ can be used directly for
the eigenvalues A.

When M, K, and A are initially available.option ® can be used directly to deter­
. mine the eigenvectors q,.

that the user creates to use with RUNGA.m must also be named f.m, The program
RUNGA.m outputs both numerical data and a plot.

FIGURE F.l.

t=t+h
x=x+ (h/61[Y(1) + 2Y(2) + 2Y(3)+Y(4)]
x = x + (h/6}[F(1) + 2F(2) + 2F(3) +F(4»)

T(4)=t+h
X(4) =x+h Y(3)
Y(4)=x+hF(3)
F(4) = If[T(4)] - cY(4) - kX(4)} 1m

T(j)=f+h/2
X(j) = x+ hl2 • Y(j -1)
Y (j) = x + hl2 • F(j -1)
F(j)= (f[TU)]-cY(j)-kX(})}/m

Computer Programs 493Appendix F

T(1)= t
X(l)=x
Y(l)=x
F(I) = If[T(1)] -cY(l)- kX(1)) 1m
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Iteration

In the flow diagram for the iteration method (see Fig.F.3), the method input block
showsmatrix order N,massmatrix M, and stiffnessmatrix K.The equation of motion.
is expressed in the form K-1MX = Ax, and the stiffness matrix K = QTQ is first
decomposed by the Cholesky method for the determination of Q, Q-l, and Q-T and
the dynamic matrix A = K-IM = Q-IQ-TM, which in this caseis generally unsym­
metric.The sweepingmatrix S is introduced as aunit matrix I for the first mode.

YES

FIGURE F.2.

• Only if continuing
from step 1.

NO

NO POLROOT OF
C(N}/+C(N-1)>..n-l+ •••
... +C(1)>..+ C(O} = 0

YES

INPUT
COEFFICIENTS

C
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X;=c#>
A;=A;+l

Computer Programs 495

FIGURE F.3.

CHOLESKY
DECOMPOSION

K=QTQ

Appendix F
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JACOBI
IAGONALlZAnON

OF A

CHOLESKY
DECOMPOSITION

K=QTQ

FIGURE F.4.

JACOBI
DIAGONALIZATION

OF A
MATRIX
PRODUCT
M.K

The program CHOLJAC offers three options. See Fig F.4. Option CDdetermines the
product M * K of any two square matrices M and K. The user inputs the N X N rnatri-
ces M and K. ~

Option @ determines the eigenvalues and eigenvectors of A - AI, where A is
the symmetric dynamic matrix. The user inputs the matrix A and Jacobi iteration is
applied to diagonalize the matrix A. The eigenvalues A and the eigenvectors </> are
outputted.

CHOLJAC.

The iteration procedure follows in the block ASXi+1 = AiXi, which is normal­
ized in the next block and tested for convergence in the decision block and looped
back for further iteration. When the difference IAi+l - AA reaches a value smaller
than the tolerance, the first mode Aj and its eigenvector </> is complete, and the calcula­
tion is sent back to the left loop for the determination of the sweeping matrix and iter­
ation for the second mode, etc.
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FIGURE F.S.

~
BAR / i= 2 :n
~ ~

;. INPUT .; kkU, i-I) = - k (i - 1)tf, n, mass, kk(i, i) = kt! - 1) + k(i)E, a kk(i, i+ 1) ~-k(i)
~ ¢r, 1\1= :n
t

f(i) = re/n kk(n + 1, n) = -k(n)
m(i) = mass(i) x f(i) kk(n + 1, n + 1) = k(n)
k(i) = E(i)a(i)/f(i) mr = mm(2:n + 1, 2:n + 1)

¢ kr= kk(2:n + 1, 2:n + 1)
aa = ;nv(mr) x kr
lambda = eig(aa)

mm = zeros(n + 1) omega = sqrttlarnbda)

kk = zeros(n + 1) ~
mm(l, 1)= 2m(t) L OUTPUTj
m(l, 2) = m(f) Omega

l 1
\i = 2 :n END

• ,
mm(i, i-I) = m(i-l)
mm(i, i) = 2m(i - 1)+ 2m(i)
mmii, i+ 1)= m(i)

¢
mm(n + 1, n) = m(n)
mm(n + 1, n + 1)= 2m(n)
mm = (l/6)mm
kk(l, 1)= k(l)
kk(l, 2)= -k(l).,

These two programs use the finite element approach presented in Chapter 10 to pro­
duce the natural frequencies for the cantilever bar and the uniform beam. See Sec.10.l
for a complete discussion of the finite element method for the BAR and Section 10.5 for
a discussion of this method for the BEAM. For the flow charts for these two programs
see Figs. F.5 and F.6, respectively. Both programs construct the mass and the stiffness

BAR AND BEAM

Option @ starts with the input of the mass and stiffness matrices M and K. By
using Cholesky decomposition and Jacobi diagonalization, the eigenvalues and ,eigen­
vectors of (M - AK)cP are determined. The program decomposes the first matrix
inputted, which for the flow diagram shown is the stiffness matrix. The eigenvalues are
then proportional to the reciprocal of the natural frequencies w2•
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matrix for the finite element configuration. From this the dynamic matrix, which is
given by the inverse of the mass matrix times the stiffness matrix, is computed. Finally,
the eigenvalues of the dynamic matrix are computed. The natural frequencies of the
model are given by the square root of the eigenvalues of the dynamic matrix.

In order to run the program BAR, the user types BAR at the MATLAB® com­
mand line. The program will prompt the user to input the length of the bar; the number
of elements desired; the mass of each element; the elastic modulus of each element;
and the cross-sectional area of each dement. The program outputs the natural fre­
quencies of the finite element model.

The program beam runs very similarly to the program bar. It prompts the user to
input the length of the beam; the number of elements desired; the mass of the beam;
the elastic modulus of the beam; and the moment of inertia of the beam. The program
outputs the natural frequency of the finite element model.

I OUTPUT I
Omega

®

m(2n + 1:2n + 2, 2n - 1:2n) =m,
m(2n + 1:2n +.2, 2n + l:2n + 2) = m4
mr = meof* m(2:2(n + 1), 2:2(n + 1))
kr = keof* k(2:2(n + 1), 2:2(n + 1))
aa = ;nv(mr) x kr
lambda = eig(aa)
omega = sqrt(lambda)

m(2;+ 1:2;+ 2,2;-1:2;) = m3
m(2; + 1:2; +2, 2; + 1:2; + 2) = m1 + m4
m(2; + 1:2; + 2, 2; + 3:2; + 4) = m2

i , 1· 1~----+{\ 1= . In-

~

fiGURE F.G.

k(2n + 1:2n + 2, 2n - l:2n) = k3
k(2n + 1:2n + 2, 2n + 1:2n + 2):: k4
ml = [156, 2Ut; 2Ut, 4et2]
m2 = [54, -rs«: Bet, -3tt2]
m3 = [54, 13et; -13te, -3tt2]
m4 = [156, -rz ee, -2Ut, 4fe2]
m(l :2,1 :2) =ml
m(l :2, 3:4) = m2

k(2;+ 1:21+ 2, 2;-1:2i) = k3
k(2i + 1:2; + 2, 2; + 1:2; + 2) = k, + k4
k(2; + 1:2; + 2, 2; + 3:2; + 4) = k2

.-- -----<1 ; = 1:n - 1

~

tt= t en/ n
meof = mass"ttI420
keof = Ell tt3
m = zeros(2 x (n + 1))
k = zeros(2 x (n + 1))
kl = [12, 6te; 6te, 4et2)
k2 = [-12, 6ff; -6tt, Uf2]
k3 = [-12, -6ff; ee« Uf2]
k4 = [12, -6fe; -6tt, 4ee2]
k(l :2, 1:2) = kl
k(l :2, 3:4) = k2

I INPUT Ilen, n, mass,
E, [

( BEAM
r
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This program uses the lumped mass approach to determine the natural frequencies of
the cantilever beam. This method is known as Myklestad's method and it is discussed
in detail in Sec. 12.6. Figure F.8 gives the flow chart for the program. The natural fre­
quencies for this system are given by the values of omega for which the deflection Y4 is

This program uses Holzer's method to compute the natural frequencies of a torsional
system (see Fig. F.7). This method is discussed in Secs.12.4 and 12.5.This program com­
putes the torsional displacement of each disk, a, and the torque carried by each shaft,
T,for a range of frequencies. The quantities are determined by the equations

a(I, N + 1) = ot), N) - T(I, N)/K(N)
T.(I, N + 1) = T(I, N) + A(I)* J(N + 1) * oi), N + 1)

The natural frequency has been found if 8 = 0 at the fixed end or T = 0 at the free end.

Yes

FIGURE F.7.

No

T(I, M) = TU, N) + AU) x }(M) x e(/, M)

e(/, M) = e(J, N) - T(J, N)/ K(N)

Computer Programs 499

w(1) = 40
A(l) = 1600

e(/, 1) = 1
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zero. The method proceeds by systematically calculating the values of Y4 for a series of
values of omega.

This program prompts the user to input the number of masses; the value of each
mass; the spacing between the masses; the initial value of omega; the final value of
omega; and the spacing of the omegas. The program outputs a table of omega versus Y4
and a plot. .

FIGURE f.B.

MYKL)
J

I INPUT In, mass, t ~
I

J \ ; = l:n

e;=0.le6 ,
coef = tie; vbU + 1) = vb(i) - mass(i) ornegatj)? Yb(i)
coef2 = (2/2 ei mbU + 1) = mbU) - vbU + 1) x (
coef3 = (3/3 ei thetab(i+ 1) = thetagu) + mb(i+ l)coef+

j Yb(i + 1)coef2
/ j = 1:40 Yb(i + i) = Yb(i) + (thetabU) +

mb(i + l)coef2 + VbU + l)coef3~
I omega(j) = j ¢~

va(l) = 0 I theta, ~ - theta,(4)/theta.(4) Ima(l)=O Y4(j) = Ya(4) + Yb(4) theta jthetajt l ) = 0
ya(l) = 1

~
( ; = l:n

~.

vaU + 1) = va(i) - mass(i)*omega(j)2Ya(i)
ma(i + 1) = ma(i) - va(i + 1)(
theta jr + 1) = thetaju) + maU + 1)coef + vaU + 1)coef2
Ya(i + 1) = Ya(i) + e « thetaa(i) + maU + 1)coef2 + vaU + 1)coef3

<P ~I OU~:UT Ivb(l) = 0
mb(l)=O

thetab( 1) = 1 @Yb(l) = 0,
(~
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501

¢[MX = (xll)X~I)X~lfl m2 J{~:}
~ m1x\l)x1 + m2x~l)x2 + m3x~1)x3 = 0

which is the constraint equation.
Writing out this equation for a 3 X 3 problem, we have

We note from Eq. (G.1) that if Cl = 0, we have a displacement free from CPl. Also
because cpfMCPl cannot be zero, with Cl = 0, Eq. (G.3) iiireduced to

cp[MX = 0 (G.4)

(G.3)

.Due to orthogonality, all the terms on the right side of this equation except the first are
zero and we have

(G.2)

In Sec. 8.4, we have shown that when the equation of motion is formulated in terms of
flexibility, the iteration procedure converges to the lowest mode. It is evident that if the
lowest mode is absent in the assumed deflection, the iteration will converge to the next
lowest, or the second, mode. However, because round-off errors will always reintro­
duce a small component of CPtduring each iteration, it will be necessary to remove this
component from each iterated vector in order for the iteration to converge to ¢2.

To accomplish this removal procedure, we again start with the expansion theorem:

X = ctCPl + C2CP2 + C3CP3 + ... + (G.1)

Next, premultiply this equation by cpfM, where CPt is the first normal mode, which was
already found:

Convergence to Higher
Modes
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'Wilson E. Klus-Jurgen Bathe, Numerical Methods in Finite Element Analysis (Englewood Cliffs, NJ:
Prentice-Hall, 1976), p. 440.

(G.7)

To program the iteration procedure for the digital computer, it is convenient to
develop another form of the sweeping matrix S based on the Gram-Schmidt orthogo­
nalization.' Rewriting Eq. (8.4.2) as

COMPUTER NOTES

Iteration of this equation now sweeps out the undesired 4>1 component in each itera­
tion step and converges to the second mode 4>2.

For the third and higher modes, the sweeping procedure is repeated with the nor­
mal modes already found. This reduces the order of the matrix equation by 1 each
time. Thus, the matrix [11sl is referred to as the deflated matrix.

It is well to mention that the convergence for higher modes becomes more criti­
cal if impurities are introduced through the sweeping matrix, i.e., the lower modes used
for the sweeping matrix must be accurately found. The highest mode can be checked
by the inversion of the original equation, which is the equation formulated in terms of
the stiffness matrix.

(G.6)ASX= Ax

This is the constraint equation for removing the first mode, and [S] is the sweeping
matrix. By replacing X on the left side of Eq. (8.3.1) by this constraint equation, it
becomes

= [S]{X}

1oo
(G.S)o1o

X3 = X3

where the last two equations have been introduced as identities. Expressed in matrix
form, this equation is

x2 = x2

where xiI), X~I), and X~I) are known, and the Xi without the superscript belong to
the ith iterated vector X. From the preceding equation, we obtain '

XI = - ( :~ ) ( :~rx, - ( :: ) ( ::rX3
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The new equation for the second mode iteration is found from Eq. (G.6):

[:AS]X = Xx[: : m -~.58 -m~}x{~:}

-1.58

1

°

_!(0.79)2 0.25
1

°

Xl = 14.32 {
Xl}(]) {0.250}

<PI = x2. = 0.790
X3 1.000

To determine the second mode, we form the sweeping matrix given by Eq. (G.3):

Consider the same system of Example 8.3.1, in which the eigenvalue and eigenvector for the first
mode were found as

EXAMPLE G.1

is another expression for the sweeping matrix, which can be more easily programmed.

Thus,

which substituted into Eq. (G.7) gives

X2 = Xl - al/JI = Xl - l/Jla

(G.8)

The constant al then becomes

where al <PI is the unwanted l/Jl component, we again premultiply this equation by <pfM
to obtain
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3
C2 = L m;(xi)(2)Xi = 4( -1.0)X1 + 2(0)X2 + 1(1.0)x3 = 0

i=1

3

C1 = L mi(x;)(l\ = 4(O.25)x1 + 2(0.79)Xi + 1(1.0)x3 = 0
i=1

For the determination of the third mode, we impose the condition Cl = c2 = 0 from the
orthogonality equation:

Thus, the eigenvalue and eigenvector for the second mode are

..\2 = 32k = 3.0 W2 = \~
wm ~ m

~ = {_~.0}(2)
1.0

{
-10}

3.0 O.
1.0

After a few more iterations, the convergence is to

'-3.0'J{-O.881} {-2.68} {-0.933}'o -0.075 = -0.125 = 2.87 -0.044
3.0 1.00 2.87 1.00

-3.01{-0.801} {-2.46} {-0.881}o -0.125 = -0.21 = 2.79 -0.075
3.0J 1.00 2.79 1.00

-4.32
1.67
1.67[~

The third iteration gives

-4.32
1.67
1.67[~

With this normalized column, the second iteration becomes

-3.0l {0.5} {-2.136} { -0.801}o -0.2 = -0.334 = 2.666 - 0.125
3.0 1.0 2.666 1.00

-4.32
1.67
1.~[~

The first iteration then becomes

{
0.5}

X = -0.2
'- 1.0

Knowing that the second mode would have a node, we might start the iteration with an arbitrary
test column:

-4.32
1.67
1.67[~

Convergence to Higher Modes
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•
'.JIW3 = 1.3381 _.. mA3 = 1.7906

Wz = 1.0000.JIA2 = 1.0000

{

0.250}
cPt = 0.791

1.000
WI= 0.4576~AI = 0.2094

Its solutions are

8(1 - A)3 - 5(1 - A) ~ (1 - A{ 8(1 - A)2 - 5] ~ 0

With A = mw2jk, the determinant ofthis equation set equal to zero gives

These natural frequencies were checked by solving the stiffness equation, which is

1.68{-~:~!}= ( :2:){:~}
1.00 X3

The natural frequency of the third mode is then found to be

W = ~ 3k = 1.34 II
3 1.68m \j ;;

[: ~~][~~ -~:~!]{::1~C2~){::1
4 8 7 0 0 1.00 X3 J X3 J

ntis equation results immediately in the third mode, which is

{
XI} [0 0 0.25]{Xt}x2 = 0 0 -0.79 Xz
X3 0 0 . 1.00 X3

This matrix is devoid of the first two modes and can be used as a sweeping matrix for the third
mode. Applying this to the original equation, we obtain

. From these two equations, we obtain
XI= 0.25x3

which can be expressed by the matrix equation
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2.7 10 = 9.30 lb· in' S2

2.9 K = 0.4507 m

2.11 ., = I . k / 2\J m + 10 r
2.13 T = 1.97 s

Chapter 2

2.1 5.62 Hz
2.3 0.159 s

2.S x(t) = m~g (1 - cos wt) + m2V2ih sin wt
Vk(m1 + m2)

1 . 27Tna - -Sln-
n n1T 31.16 ao = 1/3, .b = _!_ (1 - cos 27m ),

n n7T . 3
1.18 rms = 0.3162A
1.20 Error = ±0.148 mm
1.22 xpeak/XlOOO = 39.8

1.9 x(t) = .; (sin WIt"+ ~sin 3w1t + ~sin 5w1t + ...)

1 4 ( 1 1 )1.11 x(t) = - + 2 sin wIt + "2cos 3w1t + "2 cos 5w1t + ...
2 1T 3 5

1.13 W = A/2·
1.14 x2 = 1/3

Xmax = 350.9 cm/s?
T = 0.10 s, Xmax = 278.1 m/s?

1.1 xmax = 8.38 cm/s;
1.3 Xmax = 7.27 cm,
1.5 z = 5eO.643Si

1.8 R = 8.697, ()= 13.29°

Chapter 1

Answers to Selected
Problems
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Chapter 3

3.1 e = 61.3 Ns/rn
3.3 X = 0.797 em, <p = 51.43°
3.5 I: = 0.1847
3.9 Add 1.38 oz at 121.6° clockwise from trial weight position
3.13 1m = 15 Hz, I: = 0.023505, X = 0.231 em <p = 175.4°
3.16 I = 1028 rpm
3.18 F = 1273 N, F = 241.1 N for d :::;;1905 em

3.20 V = I: fI
27T~ ;;;

3
2.23 meff = 8ml for each column, ml = mass of column

227 ~ml• meff = 140

K}K2
2.29 Keff = + K2K, + K2

. ('1)22.31 Jeff = J1 -t- 12 ;;

2.33 M = 0.0289 kg
2.35 ,= 1.45
2.38 w« = 27.78, 8 = 0.0202, , = 0.003215, e = 0.405

2.42 (Ud = ' I ~ (~)2 _ (~Y, e = 2b ~\j m ,a 2m,' C a

2.44 Wd = 7fI~1 - 4~m (~)2, c, = '~ 7V3k,;;
2.46 xmax = 92.66 It/s, t = 0.214 s
2.48 1:1 = 0.59, xovershoot = 0.379

. 4 13
2.51 Flexibility = 243 EI

2.56 (0.854'!11 + 0.5625M)x· + 0.5625kx + ~ex = 0

2.57 (MI2+ ~mI2)O+(kI2+2K)(J=0

2.15 T = 27T {J~Wh
2.17 T = 27T~ /ha~3g
2.19 f = _!_ rg;;b

27T~ h;i
2.21 T = 27T /L~2g
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5.8 Wn = 15.72 rad/s

S.10 81 + 2g/1fJI - g/lfJ2 = 0

81 + 82 + g/lfJ2 = 0

S.13 WI = O.796VTj;;;i, (YI/Y2)1 = 1.365

~ = 1.538VTj;;;i, (YI/Y2)2 = ~0.366

S.15 W = ~~ + ~2 (1 ± 1), beat period = 53.02 s

(XI/ X2)1 = 3.43

(Xt! X2)2 = -0.096

5.4 wi = 0.570k/m,

~ = 4.096k/m,

5.2 wi = kim, (XI/ X2)l = 1

~ = 3k/m, (XI/X2)2 = -1

Chapter 5

..
4.29 :: = 1.65

g
4.30 Y"max = 10.7g

F. { e - 'Wn( ) }4.31 x(t) = _0 Y1="l2 sin (~ wnt + sin -I ~ - cos wnt
cWn 1- ~2 .

4.45 y(t) = y(O) cos wt + y(O) sin wt + ~ (wt - sin wt) - g2 (1 - cos wt)
w w w

4.5 x = :0 [cos wn(t - to) - cos wnt] t > to

100 20 .
4.10 z = -2 (1 - cos wnt) - - sin w,/

Wn WII

100 r 5] 20 Wn

Zmax = w~ II - V25 + w~ - Wn V25 + w~

v;;;g;jk
4.13 tan wnt = /s - mg 4k.
4.14 xmax = 12.08 in., t = 0.392 s
4.20 xmax = 2.34 in .

Chapter 4

3.25 k = 18.8 lb/in. each spring
3.28 X = 0.01105 em, FT = 42.0 N
3.29 w2X = 3.166 cm/s2
3.38 Ceq = 4D(rrwx
3.42 (a) 15.9 cps, (b) 7.45 cps
3.45 (a) 624.5 m.v., (b) 3.123 m.v.
3.48 E = 25.7 m.v./g
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rKI + K,) -K2 -~,].6.6 [K] = -K2 (K2 + K3)
0 -K3 K3

[lIKI u«, I/KI ]
[a] = 11KI (11K1 + 1/K2) , (llKi + 11K2)

u«, (IIKI + 1/K2) (lIKI + 11K2 + 11K3)

6.7 /' [7/96 1/8J[a] = EI, 1/8 5/6

[ 1
1 ~l/3 1 2 2

6.8 [a] = 12EI 1 2 3
1 2 3

Chapter 6

-k2

(k2 + k3 + k4)
-k3

5.62 [ml m,

5.33 shear ratio 1sl/2 nd story = 2.0
5.37 (w/ Wh)2 = 2.73, (Yl/YO)2 = -0.74
5.39 VI = 43.3 ft/s, V2 = 60.3 ft/s
5.44 d2 = 1/2 in.
5.46 w = 11.4Ib, k = 17.9Ib/in. '
5.48 (0 = 0.105, w/ Wn = 0.943

5.55 [11 0 J {~l} + /2[ :6 k,
o 12 82 _J_ k

16 1

x down
8 clockwise5.20 [~ ~Jm+ [k~4 5~;/~6W}~ {oj

5.22 Both static and dynamic coupling present.
5.24 II = 0.963 Hz, node 10.9 ft forward of cg

12 = 1.33 Hz, node 1.48 ft aft of cg
5.29 WI = 31.6 rad/s, (XI/ X2)1 = 0.50

W2 = 63.4 rad/s, (Xl/ X2)2 = -1.00
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7.1 Constraints U2 = Us = 0
u1 = U3

u4 = u6
Systemhas 2DOE

Chapter 7

{-= a + {3wT {3= 0.1867
I 2w;'

6.39 C1 = 0.8985, C2 = -0.1477, C3 = 0.3886
_ 13 1 12

6.41 an = 3EI + k + K
_ _ 12 1
a12 = a21 = 2EI + K
_ I 1
a22 = EI + K

.. If. k .. ()q3 + 1.4614{3 - q3 + 0.5339 - q3 = -0.3268uo tm m

6.32 I kx(10) I = 1.90 + V(0.61O)2 + (0.3692) = 2.61
mao

.. ~'k. k .. ()6.31 qi + 0.8902{2 - q2 + 0.1981- q2 = OA068uo tm m

F-7 Mjn M2"

6.24 [K] = k[ _~ -~]. [c] = {_~ -:]. .. not proportional

k + (k + k1{¥f (- we )
6.27 F = (we 2 1 1 + i (we)2 x = k*(l + i-y)x

1+ -) k + (k + kj) -k1 kj

3/1 -3/1] r X}
7 2 ~ - °1 = {ol
2 7 l O2

-1.208l
1.707 J
o O]{~} FT[6/12J1 0 -~j + ~~ 3/1
o J2 O2 -3/1

20 P = [0.207
6. 0.293
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-ks
-k3

(k3 + k4 + ks)
-k4

8.2 Al = 3.916 A2 = 0.7378 A3 = 0.3461

WI = 0.5053~ W2 = 1.1642~ W3 = 1.6998~

8.6 WI = 0.445~ ~ = 1.247~ W3 = 1.802~

&9 -f m, m, J

k
mw2

A=0.5 0.5J[2 J1.5 1.5 1 - AI = 0,
1.5 2.5 1

Chapter 8

10.5
8.1 10.5

LO.5

7.12

7.11 .. ~ (/~ cos 00 + I.isin (0) - 0o~ + g 3 3 o~ - where tan 00 = (ld12)2
2 \ II + 12

(ml + m2)R2 (L

+ g[ (m1 + m2)YR2 + (1/2)2 cos 00 + (m2 - ml) ~ sin 00]o~ = 0

mo(r - r(2) + k(r - '0) = mag cos 0

( .. . .) 12 .. () I
mo' ,0 + 2,0 + mrod"3 0 + mog r -'0 sin 0 + mrodg 2, sin 0 = 0

7.18 [11 + (ml + m2)4/2]Q'1 + [K + 12(kl + 4k2)]ql + 4/2k2q2 = 0
J2Cj2 + 4/2k2(ql + q2) = 0

720 [k] = E1 [ 2.0.4.3 -S.25l]
• [3 - 5.251 7.0/2

7 22 R = P(li/3 + Ii 12/2) + M(/il2 + 1112) ()
• ( 3 3 2 2) M = R II + 12 = Pl1 - M11/3 + 212/3 + 1.1/2 + /112

7.15

7.2Let~:: ::{::} = [~ ~J{::}
7:3 tan 0 = (~)'

7.5 tan 0 = (m2 - ml) I
ml + m2 Y(2R)2 + 12
17.7 tan 0 = -
IL

7.9 sin 0 = ~ ~ _ mg
4 1 2kl
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(

0.6015)
-0.3717

cf>4 = -0.6015
0.3717

8.12 -A[~~--!;@-l--------~--l
I 4.969 0
I

o : 0 4.969

[

5000 3500 : - 2400 - 2600 1
+ _~~q_0 !~~.'~~~_;_}~!.8.99__=-}~~.99_ == 0

- 2400 10,800: 40,800 0
-2600 14,300: 0 41,000

Solution by CHOUAC with A = w2

Al = 50.37 A2 = 78.77 A3 = 8208 A4 = 8256
WI = 7.097 W2 = 8.87 W3 = 90.59 W4 = 90.86
t, = 1.130 cps 12 = 1.413 13 = 14.43 14 = 14.47

/El {-1.00 } rEI { 1.00}
8.13 WI = 0.223V f' cf>1 = 2.588' W2 = 0.4774~ f3' cf>2 = + 1.932

8.14 WI = 0.584~, W2 = 1.200~-, W3 = 1.642~

8.15 WI = 0.2925[.g, W2 = 1.916~ ::." W3 = 5.146{g

1>1 = (~:~~~~), cf>2 = (_~'.~~~O),cf>3 = (-~~~~~~)
0.1565 -1.2687 4.6471

8.18 uru = K, U = [1.414 -0.707J
o 1.875

8.20 I[ 1.667 ~0.5774J - II = 0 A = mw2
-0.5774 2.0 A, k

8.22 A = =. WI = 0.769.[.f , W2 = 1.187~

.I. = JO.816} = {-0.816}
0/1 L 1.00 ' cf>2 1.00

[[
0.50 -0.3873 0.1519J J {XI} {OJ mw2

8.24 -0.3873 0.7000 -0.6667 - AI x2 = 0 , A = k
0.1519 -0.6667 0.9923 X3 0

8.27 WI = 0.613~, ~ = 1.543.[.f, ~ = 1.618.[.f, W4 = 2.149~

cf>I = (~::~~~) cf>2 = (=~::~~~)cf>3 = (~~:!m)
0.6015 0.6015 . 0.3717
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10.5 WI = 1.611

10.3 M[~ !
18 ° 1

lUI} = {0.577}
U2 I 1.000

l Ull = {-0.526}
U2 2 1.000

0] iiI) 3EA [2 -1 O]IUI) 1°)1 ~2 + -1- -:-1 _ 2 -1, U2 = °.
2 U3 , ° 1 1 _ U3 °
GA ~GA
MI' Cl'2 = 5.629 -MI

[EA;
WI = 1.403\jM:t

2

rEA:
Cl'2 = 3.648'J Ji:i

2

10.2

Chapter 10

: '( 1). {3 KN N9.38 - 2 cos {3 N + "2 . Sill "2 = T sin {3 ,

11 = 3.59 cpm, T2 = 3.06 sec
9.20 Tb2 = 1091.4 x 1061b' ft2/rad == 10 times that of new Tacoma Bridge
9.24 E = 3.48 x 1061b/in.2

9.27 W = {32VEij"p, where {3 is determined from

(1 + cosh (31' cos ,(31) = {31Wo (sinh {31' cos {31 - cosh (31' sin (31)
Wb

~
3Elq

9.28 WI =
Wo + 0.237Wb

/K. (2k - 1)7T
9.33 Wk = 2\j J SID 2(2N + 1)

9 ' 2 fk. n7T
.35 «; = \j;;; SID 2(N + 1)

n = 1,2,3, ...

W = {[
n \j;

wi

9.3 tan ~ = -(ft) 1 - (~r
9.5 4.792 X 103 m/s

9 15 - I rv: 1) 7T /G
• Wn - ~2n - I \j p'

2(!!1 (ul)
wi Is C

9.16 tan --;;= (!!1WI)2 _ 1
Is C

9.19 T = 29.99 x 1061b,

n = 1,2,3, ...
nIT'

9.2 I = 2i 'fi '

Chapter 9
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W3 = 71.8{g

{
F2} {0'2875}10.27 () Jl.!.2 = _ I -0.22711

a F3 Po 0.0375
M3· 0.01461

10.27 (b) V = _ 0.2031pI4
2 192 EI

0.0286 pl3
82 = -]:6 EI

o

/EI
w2 = 19.02~ ;;;[4'KI3 = 1.0[2

EI '
10.22 k = 5mg12,

exact values WI = 0, W2 = 15.4 ~,

10.20 (- ~) = ~~ [~.~'t:: 16;) ~~~~~: ~~~
M 8 8.4841 15.521

R = (4~/2)

1021 ( ) (-~ ) = EI [-~~ -::2
. e 0 13 0 61

o 0 U2

W2 = 17.54 ~,10.17

( 0.5) 0.5
01+- v'2 -1v'2r~01 0.5 ( 0.5) r1F3y = 0 = EA v2 1+- 0 0 ~:.10.12 v'2

F4x = P I
0 0F4y = 0) -1 v4)

0 0 0 1

_ PI3 MI10.14 'V = --- O2 = - 16E12 192EI'

~- {gEI
10.15 WI = 22.74 -4'

ml W2 = 81.67 ml

p = mass densityW, ~ 8.664~,

PI
U2 = 0.563 AE

10.8 WI ~ 2.368~,

PI
10.11 VI = 0.1333 AE'
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Chapter 12

U.2 WI = 4.63ffi
12.3 WI = 1.62ffi

3EI/13 + 2kU.9 w~ = -___;_-~-
33 2
140ml + 3mo

r--: 1TX 7T ~ r:::. 7TX
CPI= V 2 sin T' CPI= I V 2 cos T' etc.
One-mode approximation gives

(~)2 = 1 + l:_K (!!.)2 w = 1T2 /Ei
WI Mw~ I' I YAir

11.20 One-mode approximation

(!:!_)2 _ 1+ ~ (!!.)2
WI - Mw~ 1

11.21 Using one-free mode and translation mode of Mo

(
w)2 MI
WI = MI + Mocp~(O) - [M~cpi(o)/(Mo + 2ml)]

where M, ~ f ",l(x)mdx ~ 2m/, WI ~ 22.4~

Chapter 11

11.3 r, = Po «Mx) dx
1 Jo

4p 1 . 2x1T
11.8 y(x, t) = _0_2 sm -1- (1 - cos w2t)

1TMw2 .
11.10 Modes absent are 2nd, 5th, 8th, etc.
11.11 f = V2 cos (2n - 1)1T/6, D'; = (1 - cos wnt)

_ 2Fol { cos (1T/6) cos (1T/2) (x/l) cos (51T/6) cos (51T/2)(x/ I) ... ]
u - AE (1T/2)2 DI + (51T/2)2. D2 +

11.14 r, ~ -7 I:cf>,(x)dx ~ 0.784
I

f2 = 7 r </>/x)dx = 0.434Jo
I

r, = !(</>/x)dx = 0.254. do
11.19 {1 + Kcp;2(0) } {1 + Kcp;2(0) ')}

Mwi[1 - (w/wYl MwHl - (w/w2H

{
KCPi(O)cp;(O)}{ KCPi(O)cp;(O)}

= Mwf[1 - (w/wYl 1 + Mwi[1 - (w/w2)2]
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Chapter 13

13.5 x = 0.50, x 2 = 0.333
13 6 - A x2 - A2 + !A2• X = 0' - 0 2 I

U.ll WI ~ 9.96~ (0.21:;"'.1)/3' where 0.2188mo/ ~ total mass

2 _ (3EI) 112.12 WI - -3 -----
1 iu«; + 8m2 + m3

12.15 III = 495.2 cps

1216 (! - _l) {mlw2)2 _ (71"4 EI + ~) (mlw2) + 71"4 E1 k = 0
• 6, 7T2 6 13 2 2 13

12.18 (~I W2f - [5IEA (~f+ 2ko] (~I w2) + [/~A (~r+ koJ

[ IE: (~;r+ ko J - k6 = 0

12.23 WI = 0.629~, {::} = {~:~~~}
03 1 0.287

12.25 WI = 0.445-If, {::} = {~:~~~}
X3 I 0.445

W2 = 1.247[f, {::} = {-~:~~~},
X3 2 1.247

w3 = 1.802~-' {::} = {-~:~~~}
X3 3 1.802

12.30 WI = ~-(1-+-~-)'yl/Y2 = -n12

/EI {YI} {0.320}12.31 WI = 1.651V ;;;i3' . Y2 I = 1.000

12.33 U43 - U4lU23 = 0
U21

12.38 (I) = 22.7
12.39 WI = 22.5, W2 = 52.3
12.42 WI = 101.2, W2 = 1836

12.43 WI = 0.5375~, w3 = 1.805~

{ OI} {1.000} {OI} {1.000}O2 _ 0.714 °2 _ -2.270
03 ,- 0.239 °3. - 1.870°4 I -0.326 04 3 -0.141
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{x} {0.s0}
y 1 = 1.00 .'

~J{~} .
14.13 A1,2 = 3,4,

14.14 {~} ; [~,5

.. 2To [ 1(EA ) (X)2]14.2 mx + Tox 1 + 2 To - 1 I = 0

•• 7T'~P 3 314.3 mx + 3(h _ xo)2 [(h - x) - (h - xo) ]

'0 = radius of circle at water line
p = wt/vol of water

14.8 V = v'y2 + w~X2, X = Y = 0 for equilibrium
14.11 Shift origin of phase to 7T in Fig. 14.4.2

Chapter 14

F(t) = 106(! + ± 2 sin ~. cos ~ 27T t)
4 /1=1 n7T 4 T

1 [( 1) 00 ( 2 )2. n7T ]SF(Wn) = - X 1012 - + 2: _ SIn2_·
2 16 n=O n=1 n 7T 4

y'; L :' [1~S(~)Trr k; (2;)' m
13 35 y2 = u2 = So fn7T = 000438 o = 0.0662m. - e 4{ . ,

p[lyl > 0.132] = Zo = 4.6 percent
13.36 o = 0.0039m, p[lyl > 0.012] = 0.3 percent

13.32

2A 00 1 .
13.26 x(t) = _ L -:-einwll n = odd

7T n=_ooln

4A (. . 1 . 3 1. )= _ SIn wit + - S.In wit + - SIn 5w t + .. ,
7T 3 5 1

( )
_ CnC~ _ 4A2

S Wn - 2 - n27T2

13.27 f1,2 = t; (1 + 2~)
13.31 53.2g = 2u, p[x > 20-] = 4.6 percent

P[X> 2u] = 13.5percent

1 . )- SIn 3w t - .,.3 I

13.14 A triangle of twice the base, symmetric about t = O.
13.15· R( T) = 5 at T = 0 and linearly decrease to R(l) = 1.
13.18 rms = 53.8Sg = 528.3 m/s2
13.21 rms = 1.99 in., U = 0.9798

13.24 f(t) = ~ (Sin wIt - ! sin 2wlt +
7T 2

S(w) = L!C2 = ~ L _I_
n 2 n 7T2 n n 2
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inx2 + (22)X2 + 3axix2 = 0, a = 2lf
mX2 + [ CI:o + ~aA2) + ~aA2 cos 2cunt ]X2 = 0

Second approximation

.. (2To) (2K) 3 x214.40 =. + L; Xl + If Xi = 0, T = To + K L;;

14.34

dx
T = wnt, y = dr

T = 4 ~ J600 dO = 4 ~ f 7T/2 --:-;::.==d=:=O=::==
,g 0 V2(cos ° - cos (0) ,g J 0 V1 - k 2 sin 2 <p

. 00 . ° k·where k = SIn - , sm - = SIn <p
22·

rK( 1 2')
W ~ V I 1 + 16 00.

14.30

w~ = kim

8 = (-mCy + .s: x3)
w~m

where
-(x + 8)

y
14.27 dy

dx

dx
dy = c( 2 + 2)

14.25 y = -x wn JJ-X ,
C

518 Answers to Selected Problems

www.semeng.ir

http://www.semeng.ir


519

Dunkerley's equation,
358-63

geared system, 380-81
Holzer method, 366---(j9
Myklestad's method for

beams, 371-74
Rayleigh method, 351-58
Rayleigh-Ritz method,
363-66

systems with damping, 378-80
transfer matrices, 376-78

for beams, 383-86
Cofactor, 472
Column matrix, 471
Complementary function, 50
Complex sinusoid, 8
Complex stiffness, 73
Component-mode synthesis,

341-46
Computation methods, 227-57
Cholesky decomposition,
237-42

convergence of the iteration
procedure, 233

discrete mass matrix, systems
with,235-36

dynamic matrix, 233-34
eigenvectors by Gauss elimi­
nation, 229-30

Jacobi diagonalization,
242-47

matrix iteration, 230-32
QR method for
eigenvalue/eigenvector
calculation, 247-52

Central difference method, 106
Centrifugal pendulum vibration

absorber,145-47
Characteristic equation, 28,

128
Chilton bifilar design, 147
Cholesky decomposition,

237-42
inverse of U,238-39

CHOLJAC, 496-97
Circular frequency, 7
Clamped-clamped beam, 480
characteristic functions and

derivatives:
first mode, 481, 483, 485
second mode, 482, 484, 486

Clamped-free beam, 480
Clamped-pinned beam, 480
Classical methods, 351-94
branched systems, 381-83
coupled flexure-torsion
vibration, 375-76

digital computer program for
torsional system, 369-71

c

Beams:
with arbitrary end displace­
ments, 172-73

Euler equation for, 271-76
transfer matrices for, 383-86

Beam stiffness, 292-94
Bernoulli, Johann 1.,25
Branched systems, 381-83

Balancing machines, 57
BAR and BEAM, 497-98
Bar.m computer program,

291-92
Base excitation, 93
Beam elements:
stiffness/mass in, 292-95,

301-2
stiffness matrix of, 172-75
vibrations involving, 302-9
beam.m computer program,

303-4
beam.m computer program,

303-4

B

Acceleration, 1
Accelerometer, 78-80
crystal,80
seismic mass, 79-80

Adjoint matrix, 472
Angular velocity, 1
Answers to selected problems,

506-18
Aperiodic motion, 31
Arbitrary excitation, 91-94
Autocorrelation, 408

time delay for, 409
Average value, 11-12
Axial element, 287":"88

mode shape and mass matrix
for, 288-91

A
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Field matrix, 377
Finite difference numerical

computation, 105-12
damped system, 110-12
initial acceleration/initial
conditions zero, 109-10

Finite element method, 287-328
coordinate reduction, 304-5
element stiffness/mass.
287-92
axial element, 287-88
bar.m computer program,
291-92

mode shape and mass
matrix for axial element,
288-90

. special case, 290-91
variable properties, 291

generalized force:
for distributed load,
311-13

proportional to displace­
ment,313-21

global coordinates, 295-97
element stiffness/mass in,
297-302

spring constraints on struc­
ture, 309-11

stiffness/mass for beam ele­
ment:
beam stiffness, 292-94
generalized mass/general-
ized stiffness, 294-95

transformation of coordi­
nates, 295-97

vibrations involving beam
elements, 302-9
beam.m computer pro­
gram, 303-4

Flexibility influence coeffi­
cients, 164-67

F

arbitrary, 91-94
base, 93
impulse, 89-91
pulse, and rise time, 97-100

Expansion Theorem, 178
Expected value, 396-97

Effective mass, 23-25
Eigenvalues, 126, 128
QR method for calculating,
247-52

Eigenvectors, 126, 128
by Gauss elimination, 229-30
determination of, 477-78
orthogonality of, 177-79
expansion theorem, 178
orthonormal modes,
178-79

QR method for calculating,
247-52

Element stiffness/mass, 287-92
axial element, 287-88
mode shape and mass
matrix for, 288-90

bar.m computer program,
291-92

variable properties, 291
Energy method, 20-23
Ensemble, 395
Equal roots, 187-88
Equivalent lumped mass, 23-25
Equivalent viscous damping,

70-72
Ergodic process, 395
Excitation:

E

Damping ratio, 28-29
Decibel, 12
Decoupling forced vibration

equations, 181-82
Degrees of freedom,5-6
Delta function, 90
Determinants, 469-70
Diagonal matrix, 471
Digital computer program, for

torsional system, 369-71
Discrete mass matrix, systems

with, 235-36
Drop test, 95-96
Dunkerley's equation, 358-63
Dynamical coupling, 134,

135-38
Dynamic matrix, 233-34
Dynamic unbalance, rotors,

56-57

Damping,5
Coulomb,34-35
energy dissipated by, 67-70
equivalent viscous, 70-72
and method of iteration;
450-51

modal, in forced vibration,
182-83

proportional, 135, 183
ratio, 28-29
Rayleigh, 183
solid,72-74
specific damping capacity, 69
structural, 72-74
systems with, 378-80

o

root solving, 227-29
transformation of coordi­
nates, 234-35

Computer programs, 492-500
BAR and BEAM, 497-98
CHOLJAC,496-97
MYKL,499-500
POLY, 493-96
RUNGA,492-93
TOR, 499

Constrained structures, normal
modes of, 335-39

Constraint equations, 199-204,
501

Continuous systems, vibration
of, 258-86

Convergence to higher modes,
501-5

Convolution integral, 92
Coordinate reduction, 304-5
Correlation, 407-11
autocorrelation, 408
time delay for, 409

cross, 410-11
Coulomb damping, 34-35
Coupled flexure-torsion vibra­

tion, 375-76
Critically damped motion, vis­

cously damped
free vibration, 31

Cross correlation, 410-11
Crystal accelerometer, 80
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Lagrange's equation, 199-226
assumed mode summation

216-22 '
generalized force, 220-22
generalized mass, 217
generalized stiffness (axial
vibration),217-20

generalized stiffness
(beams), 220

generalized coordinates
199~204 '
constraint equations,
199-204

generalized force, 216
kinetic energy, 215
nonconservative systems,
209-14

potential energy, 215
virtual work, 204--6

LaPlace transformation, 464--68
definition; 464--65
shifting theorem, 465
short table of Laplace trans­

forms,468
transformation of ordinary
differential equations,
465--66

transforms having poles of
higher order, 466--67

transforms having simple
poles,466

Laplace transform formulation
94-97 '

Length,l
Linear oscillatory systems, 5
Logarithmic decrement, 31-34
Longitudinal vibration of rods

261-63 '

L

Kinetic energy, 215

K

Jacobi diagonalization, 242-47
Joule, 1
Jump phenomenon, 449-50

Index 521

Impedance transform, 95
Impulse excitation, 89-91
Impulsive forces, 89
Inverse matrix, 472
Isoclines, method of, 443-45

Half-power points, 74
Half-sine pulse, 99-100
Harmonically excited vibration

49-88 '
damping:
energy dissipated by,67-70
structural,72-74

equivalent viscous damping,
70-72

forced harmonic vibration
49-53 '

rotating shafts, whirling of,
59--63

rotating unbalance, 53-56
rotor unbalance, 56--59
sharpness/resonance, 74-75
support motion, 63-64
vibration isolation, 65-67
vibration-measuring instru-

ments,75-81
Harmonic motion, 6-8
Hertz,l
Holonomic constraints, 200
Holzer method, 366--69
procedure for torsional sys­

tems, 367-69
Houdaille damper, 148
Hysteresis loop, 68

H

Generalized mass, 178, 215, 217,
294-95

Generalized stiffness, 178,215,
217-20,294-95

Generating solution, 46
Global coordinates, 295-97
element stiffness/mass in,

297-302
axial elements, 297-300
beam element, 301-2

Gaussian distribution, 404-7
Geared system, 380-81
Generalized coordinates

199-204 '
constraint equations, 199-204

Generalized force, 216, 220-22
for distributed load, 311-13
proportional to displace­

ment, 313-21
two-element beam, 317-21

G

Force, 1
Forced harmonic vibration

49~53,139-41 '
complex frequency response,
52-53

and normal mode summa­
tion,140-41

Forced vibration, 5
modal damping in, 182-83

Fourier series, 397-98
Fourier transforms, 417-23

of basic functions, 417-19
of derivatives, 420
Fourier integral, 417
Fourier transform pair, 417
Parseval's theorem, 420-21
and response, 424-27

Free-damped vibration, 27
Free-free beam, 480
Free-pinned beam, 480-81
Free vibration, 5, 16-48

Coulomb damping, 34--35
energy method, 20-23
equations of motion, 16-20
logarithmic decrement, 31-34
Rayleigh method, 23-25
vibration model, 16
virtual work, principle of,
25-27
viscously damped free
vibration, 27-31

Frequency, 1,6 .
circular, 7

Frequency of damped oscilla­
tion,30

Frequency response function,
398-401
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Random time functions, 395
Random vibrations, 395-435
correlation, 407-11

cross, 410-11
expected value, 396-97
Fourier transforms, 417-23

and response, 424-27
frequency response function,
398-401

Gaussian distribution, 404-7
power spectral density, 411-16
power spectrum, 411-16
probability distribution,
401-7

Rayleigh distribution, 404-7
standard deviation, 397,404
time averaging, 396-98
variance, 403

Ranger seismometer, 78
Rayleigh damping, 183
Rayleigh distribution. 404-7
Rayleigh method, 23-25, 351-58
accuracy of, compared to dif­

ferentiation, 355-57
lumped masses, 357-58

Rayleigh-Ritz method, 363-66
Reciprocity theorem, 167-68
Rectangular pulse; 98-99
Recurrence formula, 106
Repeated identical sections,

276-79
Residual shock spectrum, 102,

104
Resonance, 74-75
Rise time, 97-98
and pulse excitation, 97-:-100

R

QR method for
eigenvalue/eigenvector
calculation, 247...:.52

Q

Probability distribution, 401-7
Proportional damping, 135, 183
Pulse excitation, and rise time,

97-100

Parseval's theorem, 420-21
Particular integral,50
Partitioned matrices, 476-77
Pascal, 1
Peak value, 11
Periodic motion, 6, 9-11
Perturbation method, 445-48
Mathieu equation, 447-48

Phase distortion, 80-81
Phase plane, 436-38
Pinned joints, static condensa-

tion for, 176-77
Point matrix, 377
POLY, 493-96
.Potential energy, 215
Power, 1
Power spectral density, 411-16
Power spectrum,411-16
Probability density function,

402

p

Octave, 13
Ode45 function, 454
Olympus Satellite, 329fn
Orthogonality of eigenvectors,

177-79
Expansion Theorem, 178
orthonormal modes, 178-79

Orthogonal matrix, 472
Orthogonal property of normal

modes, 163
Orthogonal transformations, 476
Orthonormal modes, 178-79
Oscillatory motion, 5-15
harmonic motion, 6-8
periodic motion, 9-11
vibration terminology, 11-13
viscously damped free vibra-
tion,30

o

Normal mode summation,
183-87

Normal modes of uniform
beams, 479-86

Normal mode vibrations, 126

Mass, 1
Mathieu equation, 447-48
MATLAB,487-91
Matrices, 470-77

adjoint matrix, 472
cofactor, 472
column matrix, 471
definition of, 470
diagonal matrix, 471
inverse matrix, 472
inversion of, 474-76
minor of, 472
operations, 473-77

addition, 473
multiplication, 473-74

orthogonal matrix, 472
orthogonal transformations,

476
partitioned, 476-77
row matrix, 471
singular matrix, 471
square matrix, 471
symmetric matrix, 471
trace, 471
transpose, 472, 476
types of, 471-72
unit matrix, 471
zero matrix, 471

Matrix iteration, 230-32
Maximax, 100
Mean square value, 12. 397
Method of isoclines, 443-45
Method of iteration, 448-51
effect of damping, 450-51
jump phenomenon, 449-50
successive approximation, 448

Minor, of a matrix, 472
Modal damping, in forced

vibration, 182-83
Modal matrix P, 179-81

free vibration, 30-31
Normal mode, 126, 128
Normal modes of constrained

structures, 335-39

M

Lumped masses, 357-58
equivalent, 23-25

522 Index
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Variance, 297
Velocity, 1
Velometers, 77--78
Vibrating system properties,

163-98
decoupling forced vibration
equations, 181-82

equal roots, 187-88
flexibility influence coeffi­
cients, 164-67

modal damping in forced
vibration, 182-83

modal matrix P, 179-81
normal mode summation,
183-87

orthogonality of eigenvec­
tors, 177-79

reciprocity theorem, 167-68
static condensation for
pinned joints, 176-77

stiffness influence coeffi­
cients, 168-72

v

Uniform beams, normal modes
of,479-86

Unit impulse, 90
Unit matrix, 471
Unrestrained (degenerate) sys­

terns, 189-90
Untuned viscous vibration

damper, 148-51

u

finite difference numerical
computation, 105-12

impulse excitation, 89-91
Laplace transform formula­
tion, 94-97

pulse excitation and rise
time, 97-100

Runge-Kutta method, 112-17
shock isolation, 104-5
shock response spectrum

(SRS),100-104
Transpose, 472
Truncation errors, 106

Index 523

Tacoma Narrows Bridge:
assumptions/calculated quan-

tities, 268-70
catastrophic failure of, 267
data for, 268
torsional mass moment of

inertia, 269
torsional stiffness, 269-70
torsional vibration, 271
vertical vibration, 270

Time, 1
Time averaging, 396-98
TOR, 499
Torsional vibration of rods,

263-66
Trace,471
Transfer matrices, 376-78

for beams, 383-86
Transformation of coordinates,

295-97
Transient response, 89
Transient vibration, 89-125

arbitrary excitation, 91-94

T

Stiffness matrix of beam ele­
ments, 172-75

Stress, 1
Structural damping, 72-74
complex stiffness, 73
frequency response with,
73-74

Structural damping factor, 73
Subsidiary equation, 95
Successive approximation,

448
Superfluous coordinates, 200
Superposition integral, 92
Support motion, 63-64
Suspension bridge as continu-

ous system, 266-71
See also Tacoma Narrows

Bridge
Symmetric matrix, 471
Systems with multiple degrees

of freedom, See
Multi-DOF systems

System transfer function, 95

Samples, 395
Seismic mass accelerometer,

79-80
Seismometer, 76-78
Self-excited oscillations, 451-53
Sharpness, 74-75
Shock,100
Shock isolation, 104-5
Shock response spectrum

(SRS),100-104
SI conversion, 2-4
Sidebands, 74
Singular matrix, 471
SI system of units, 1-4
Solid damping, See Structural

damping
Specification of vibration

bounds, 462-63
Specific damping capacity, 69
Square matrix, 471
Stability of equilibrium, 439,

441-43
Standard deviation, 397,404
Static condensation for pinned

joints, 176-77
Static coupling, 134,135-38
Static unbalance, rotors, 56
Stationary ensemble, 395
Statis coupling, 134, 135-38
Stiffness influence coefficients,

168-72

5

Rods:
longitudinal vibration of, .
261-63

torsional vibration of, 263-66
Root mean square (rms), 12
Rotating shafts, whirling of,

59-63
Rotating unbalance, 53-56
Rotor unbalance, 56-59
dynamic unbalance, 56-57
static unbalance, 56

Row matrix, 471
RUNGA, 492-93
Runge-Kutta method, 112-17,

453-55
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Zero matrix, 471

z

Watt, 1
Weighted normal mode, 178-79
Whirling of rotating shafts,

59-63
synchronous whirl, 60-63

Wiener-Khintchine equations,
422

Work, 1

w

critically damped motion, 31
nonoscillatory motion, 30-31
oscillatory motion, 30

Voigt model, 69

Vibration damper, 147~51
untuned viscous, 148-51

Vibration isolation, 65-(j7
Vibration-measuring instru-

ments, 75-81
accelerometer, 78-80
phase distortion, 80-81
seismometer, 76-78

Vibration model, 16
Vibrations:

classes of, 5
free, 16-48
harmonically excited, 49-88
nonlinear, 436-61
random, 395-435
terminology, 11-13
transient, 89-125

Virtual work, 204-6
principle of, 25-27

Viscously damped free vibra­
tion, 27-31

stiffness matrix of beam ele­
ments, 172-75

unrestrained (degenerate)
systems, 189-90

Vibration absorber, 144-45
centrifugal pendulum, 145-47

Vibration bounds, specification
of,462-63

Vibration of continuous sys­
tems, 258-86

Euler equation for beams,
271-76

repeated identical sections,
system with, 276-79

rods:
longitudinal vibration of,
261-63

torsional vibration of,
263-66

suspension bridge, 266-71
vibrating string, 258-61
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~
. Beam It k 3EI I . fl. m = mass/length= -3 b/m. WI = 3.52 4--T---......-...,. I

~
Beam U 4EI . d fl.-_ -~ K= -1- lb· in.j/ra WI = 15.42i-- :-;: I

~ ~ fl.WI = 22.37
-...._---,.,., I

2

1 9./2 k = 48~1 lbyin. 2{!;WI = 1T' ml4
~---f"--~~ I

n = 1,2,3 ...

p = mass density
n=1,2,3 ...

7T/*W =(2n -1)- -
n . 21 p

IpG
K == -1- lb-in.yradTorSion ~1=====R=O~d=:::::::;:34J1

k = AlE lb Zin, 7T{fW =(2n-1)- -
n 21 pLongitudinal ~1=====Rod~===:::J1

springs in parallel

springs of series

STIFFNESS AND FUNDAMENTAL VIBRATION FREQUENCY
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QUANTIlY ENGLISH SYSTEM S.I. SYSTEM

force lIb 4.448 Newtons (N)

mass lib· sec2/ft (slug) 14.59 kg (kilogram)

length 1ft 0.3048 meters (m)

mass density lIb /ft3 16.02kg/m3

torque or moment lIb· in. 0.113 N· m

acceleration 1 ft/sec2 0.3048 m/s2

aceel. of gravity 32.2 ft/s2 = 386 in.zsec 2 9.81 m/s2

spring constant k lib/in. 175.1Nyrn
spring constant K lib· in.yrad 0.113 N . myrad

damping constant c l Ib : sec/in. 175.1 N . s/m

mass moment of inertia 1 lb. in. sec 2 0.1129 kg m2

. modulus of elasticity 106 Ib/in.2 6.895 X 109 N /m2

modulus of elasticity of steel 29 X 106 Ib/in.2 200 X 109 N/m2

angle 1 degree 1/57.3 radian
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