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Preface

During my experience of teaching aircraft structures I have felt the need for a textbook
written specifically for students of aeronautical engineering. Although there have been
a number of excellent books written on the subject they are now either out of date or
too specialist in content to fulfil the requirements of an undergraduate textbook. My
aim, therefore, has been to fill this gap and provide a completely self-contained course
in aircraft structures which contains not only the fundamentals of elasticity and aircraft
structural analysis but also the associated topics of airworthiness and aeroelasticity.

The book in intended for students studying for degrees, Higher National Diplomas
and Higher National Certificates in aeronautical engineering and will be found of value
to those students in related courses who specialize in structures. The subject matter
has been chosen to provide the student with a textbook which will take him from the
beginning of the second year of his course, when specialization usually begins, up to and
including his final examination. I have arranged the topics so that they may be studied
to an appropriate level in, say, the second year and then resumed at a more advanced
stage in the final year; for example, the instability of columns and beams may be studied
as examples of structural instability at second year level while the instability of plates
and stiffened panels could be studied in the final year. In addition, I have grouped some
subjects under unifying headings to emphasize their interrelationship; thus, bending,
shear and torsion of open and closed tubes are treated in a single chapter to underline the
fact that they are just different loading cases of basic structural components rather than
isolated topics. I realize however that the modern trend is to present methods of analysis
in general terms and then consider specific applications. Nevertheless, I feel that in
cases such as those described above it is beneficial for the student’s understanding of
the subject to see the close relationships and similarities amongst the different portions
of theory.

Part I of the book, ‘Fundamentals of Elasticity’, Chapters 1–6, includes sufficient
elasticity theory to provide the student with the basic tools of structural analysis. The
work is standard but the presentation in some instances is original. In Chapter 4 I have
endeavoured to clarify the use of energy methods of analysis and present a consistent,
but general, approach to the various types of structural problem for which energy
methods are employed. Thus, although a variety of methods are discussed, emphasis is
placed on the methods of complementary and potential energy. Overall, my intention
has been to given some indication of the role and limitations of each method of analysis.
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xiv Preface

Part II, ‘Analysis of Aircraft Structures’, Chapters 7–11, contains the analysis of the
thin-walled, cellular type of structure peculiar to aircraft. In addition, Chapter 7 includes
a discussion of structural materials, the fabrication and function of structural compo-
nents and an introduction to structural idealization. Chapter 10 discusses the limitations
of the theory presented in Chapters 8 and 9 and investigates modifications necessary
to account for axial constraint effects. An introduction to computational methods of
structural analysis is presented in Chapter 11 which also includes some elementary
work on the relatively modern finite element method for continuum structures.

Finally, Part III, ‘Airworthiness and Aeroelasticity’, Chapters 12 and 13, are self
explanatory.

Worked examples are used extensively in the text to illustrate the theory while numer-
ous unworked problems with answers are listed at the end of each chapter; S.I. units
are used throughout.

I am indebted to the Universities of London (L.U.) and Leeds for permission to
include examples from their degree papers and also the Civil Engineering Department
of the University of Leeds for allowing me any facilities I required during the preparation
of the manuscript. I am also extremely indebted to my wife, Margaret, who willingly
undertook the onerous task of typing the manuscript in addition to attending to the
demands of a home and our three sons, Andrew, Richard and Antony.

T.H.G. Megson
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Preface to Second Edition

The publication of a second edition has given me the opportunity to examine the contents
of the book in detail and determine which parts required alteration and modernization.
Aircraft structures, particularly in the field of materials, is a rapidly changing subject
and, while the fundamentals of analysis remain essentially the same, clearly an attempt
must be made to keep abreast of modern developments. At the same time I have exam-
ined the presentation making changes where I felt it necessary and including additional
material which I believe will be useful for students of the subject.

The first five chapters remain essentially the same as in the first edition except for
some minor changes in presentation.

In Chapter 6, Section 6.12 has been rewritten and extended to include flexural–
torsional buckling of thin-walled columns; Section 6.13 has also been rewritten to
present the theory of tension field beams in a more logical form.

The discussion of composite materials in Chapter 7 has been extended in the light of
modern developments and the sections concerned with the function and fabrication of
structural components now include illustrations of actual aircraft structures of different
types. The topic of structural idealization has been removed to Chapter 8.

Chapter 8 has been retitled and the theory presented in a different manner. Matrix
notation is used in the derivation of the expression for direct stress due to unsymmetrical
bending and the ‘bar’ notation discarded. The theory of the torsion of closed sections
has been extended to include a discussion of the mechanics of warping, and the theory
for the secondary warping of open sections amended. Also included is the analysis
of combined open and closed sections. Structural idealization has been removed from
Chapter 7 and is introduced here so that the effects of structural idealization on the
analysis follow on logically. An alternative method for the calculation of shear flow
distributions is presented.

Chapter 9 has been retitled and extended to the analysis of actual structural com-
ponents such as tapered spars and beams, fuselages and multicell wing sections. The
method of successive approximations is included for the analysis of many celled wings
and the effects of cut-outs in wings and fuselages are considered. In addition the cal-
culation of loads on and the analysis of fuselage frames and wing ribs is presented. In
addition to the analysis of structural components composite materials are considered
with the determination of the elastic constants for a composite together with their use
in the fabrication of plates.
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xvi Preface to Second Edition

Chapter 10 remains an investigation into structural constraint, although the presen-
tation has been changed particularly in the case of the study of shear lag. The theory for
the restrained warping of open section beams now includes general systems of loading
and introduces the concept of a moment couple or bimoment.

Only minor changes have been made to Chapter 11 while Chapter 12 now includes a
detailed study of fatigue, the fatigue strength of components, the prediction of fatigue
life and crack propagation. Finally, Chapter 13 now includes a much more detailed
investigation of flutter and the determination of critical flutter speed.

I am indebted to Professor D. J. Mead of the University of Southampton for many
useful comments and suggestions. I am also grateful to Mr K. Broddle of British
Aerospace for supplying photographs and drawings of aircraft structures.

T.H.G. Megson
1989
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Preface to Third Edition

The publication of a third edition and its accompanying solutions manual has allowed
me to take a close look at the contents of the book and also to test the accuracy of the
answers to the examples in the text and the problems set at the end of each chapter.

I have reorganised the book into two parts as opposed, previously, to three. Part I,
Elasticity, contains, as before, the first six chapters which are essentially the same
except for the addition of two illustrative examples in Chapter 1 and one in Chapter 4.

Part II, Chapters 7 to 13, is retitled Aircraft structures, with Chapter 12, Airworthi-
ness, now becoming Chapter 8, Airworthiness and airframe loads, since it is logical
that loads on aircraft produced by different types of manoeuvre are considered before
the stress distributions and displacements caused by these loads are calculated.

Chapter 7 has been updated to include a discussion of the latest materials used in
aircraft construction with an emphasis on the different requirements of civil and military
aircraft.

Chapter 8, as described above, now contains the calculation of airframe loads pro-
duced by different types of manoeuvre and has been extended to consider the inertia
loads caused, for example, by ground manoeuvres such as landing.

Chapter 9 (previously Chapter 8) remains unchanged apart from minor corrections
while Chapter 10 (9) is unchanged except for the inclusion of an example on the
calculation of stresses and displacements in a laminated bar; an extra problem has been
included at the end of the chapter.

Chapter 11 (10), Structural constraint, is unchanged while in Chapter 12 (11) the
discussion of the finite element method has been extended to include the four node
quadrilateral element together with illustrative examples on the calculation of element
stiffnesses; a further problem has been added at the end of the chapter.

Chapter 13, Aeroelasticity, has not been changed from Chapter 13 in the second
edition apart from minor corrections.

I am indebted to, formerly, David Ross and, latterly, Matthew Flynn of Arnold for
their encouragement and support during this project.

T.H.G. Megson
1999
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Preface to Fourth Edition

I have reviewed the three previous editions of the book and decided that a major overhaul
would be beneficial, particularly in the light of developments in the aircraft industry and
in the teaching of the subject. Present-day students prefer numerous worked examples
and problems to solve so that I have included more worked examples in the text and
more problems at the end of each chapter. I also felt that some of the chapters were
too long. I have therefore broken down some of the longer chapters into shorter, more
‘digestible’ ones. For example, the previous Chapter 9 which covered bending, shear
and torsion of open and closed section thin-walled beams plus the analysis of combined
open and closed section beams, structural idealization and deflections now forms the
contents of Chapters 16–20. Similarly, the Third Edition Chapter 10 ‘Stress Analysis of
Aircraft Components’is now contained in Chapters 21–25 while ‘Structural Instability’,
Chapter 6 in the Third Edition, is now covered by Chapters 8 and 9.

In addition to breaking down the longer chapters I have rearranged the material
to emphasize the application of the fundamentals of structural analysis, contained in
Part A, to the analysis of aircraft structures which forms Part B. For example, Matrix
Methods, which were included in ‘Part II, Aircraft Structures’ in the Third Edition are
now included in Part A since they are basic to general structural analysis; similarly for
structural vibration.

Parts of the theory have been expanded. In Part A, virtual work now merits a chapter
(Chapter 4) to itself since I believe this powerful and important method is worth an in-
depth study. The work on tension field beams (Chapter 9) has become part of the chapter
on thin plates and has been extended to include post-buckling behaviour. Materials, in
Part B, now contains a section on material properties while, in response to readers’
comments, the historical review has been discarded. The design of rivetted connections
has been added to the consideration of structural components of aircraft in Chapter 12
while the work on crack propagation has been extended in Chapter 15. The method of
successive approximations for multi-cellular wings has been dropped since, in these
computer-driven times, it is of limited use and does not advance an understanding of
the behaviour of structures. On the other hand the study of composite structures has
been expanded as these form an increasing part of a modern aircraft’s structure.

Finally, a Case Study, the design of part of the rear fuselage of a mythical trainer/semi-
aerobatic aeroplane is presented in the Appendix to illustrate the application of some
of the theory contained in this book.
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xx Preface to Fourth Edition

I would like to thank Jonathan Simpson of Elsevier who initiated the project and who
collated the very helpful readers’ comments, Margaret, my wife, for suffering the long
hours I sat at my word processor, and Jasmine, Lily, Tom and Bryony who are always
an inspiration.

T.H.G. Megson

Supporting material accompanying this book

A full set of worked solutions for this book are available for teaching purposes.

Please visit http://www.textbooks.elsevier.com and follow the registration
instructions to access this material, which is intended for use by lecturers
and tutors.
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1

Basic elasticity

We shall consider, in this chapter, the basic ideas and relationships of the theory of elas-
ticity. The treatment is divided into three broad sections: stress, strain and stress–strain
relationships. The third section is deferred until the end of the chapter to emphasize
the fact that the analysis of stress and strain, for example the equations of equilibrium
and compatibility, does not assume a particular stress–strain law. In other words, the
relationships derived in Sections 1.1–1.14 inclusive are applicable to non-linear as well
as linearly elastic bodies.

1.1 Stress

Consider the arbitrarily shaped, three-dimensional body shown in Fig. 1.1. The body is
in equilibrium under the action of externally applied forces P1, P2, . . . and is assumed
to comprise a continuous and deformable material so that the forces are transmitted
throughout its volume. It follows that at any internal point O there is a resultant force

Fig. 1.1 Internal force at a point in an arbitrarily shaped body.
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Fig. 1.2 Internal force components at the point O.

δP. The particle of material at O subjected to the force δP is in equilibrium so that there
must be an equal but opposite force δP (shown dotted in Fig. 1.1) acting on the particle
at the same time. If we now divide the body by any plane nn containing O then these
two forces δP may be considered as being uniformly distributed over a small area δA
of each face of the plane at the corresponding point O as in Fig. 1.2. The stress at O is
then defined by the equation

Stress = lim
δA→0

δP

δA
(1.1)

The directions of the forces δP in Fig. 1.2 are such as to produce tensile stresses
on the faces of the plane nn. It must be realized here that while the direction of δP is
absolute the choice of plane is arbitrary, so that although the direction of the stress at
O will always be in the direction of δP its magnitude depends upon the actual plane
chosen since a different plane will have a different inclination and therefore a different
value for the area δA. This may be more easily understood by reference to the bar in
simple tension in Fig. 1.3. On the cross-sectional plane mm the uniform stress is given
by P/A, while on the inclined plane m′m′ the stress is of magnitude P/A′. In both cases
the stresses are parallel to the direction of P.

Generally, the direction of δP is not normal to the area δA, in which case it is usual
to resolve δP into two components: one, δPn, normal to the plane and the other, δPs,
acting in the plane itself (see Fig. 1.2). Note that in Fig. 1.2 the plane containing δP
is perpendicular to δA. The stresses associated with these components are a normal or
direct stress defined as

σ = lim
δA→0

δPn

δA
(1.2)

and a shear stress defined as

τ = lim
δA→0

δPs

δA
(1.3)
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Fig. 1.3 Values of stress on different planes in a uniform bar.

The resultant stress is computed from its components by the normal rules of vector
addition, namely

Resultant stress =
√

σ2 + τ2

Generally, however, as indicated above, we are interested in the separate effects of σ

and τ.
However, to be strictly accurate, stress is not a vector quantity for, in addition to

magnitude and direction, we must specify the plane on which the stress acts. Stress is
therefore a tensor, its complete description depending on the two vectors of force and
surface of action.

1.2 Notation for forces and stresses

It is usually convenient to refer the state of stress at a point in a body to an orthogonal
set of axes Oxyz. In this case we cut the body by planes parallel to the direction of the
axes. The resultant force δP acting at the point O on one of these planes may then be
resolved into a normal component and two in-plane components as shown in Fig. 1.4,
thereby producing one component of direct stress and two components of shear stress.

The direct stress component is specified by reference to the plane on which it acts but
the stress components require a specification of direction in addition to the plane. We
therefore allocate a single subscript to direct stress to denote the plane on which it acts
and two subscripts to shear stress, the first specifying the plane, the second direction.
Therefore in Fig. 1.4, the shear stress components are τzx and τzy acting on the z plane
and in the x and y directions, respectively, while the direct stress component is σz.
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We may now completely describe the state of stress at a point O in a body by
specifying components of shear and direct stress on the faces of an element of side δx,
δy, δz, formed at O by the cutting planes as indicated in Fig. 1.5.

The sides of the element are infinitesimally small so that the stresses may be assumed
to be uniformly distributed over the surface of each face. On each of the opposite faces
there will be, to a first simplification, equal but opposite stresses.

Fig. 1.4 Components of stress at a point in a body.

Fig. 1.5 Sign conventions and notation for stresses at a point in a body.
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We shall now define the directions of the stresses in Fig. 1.5 as positive so that normal
stresses directed away from their related surfaces are tensile and positive, opposite
compressive stresses are negative. Shear stresses are positive when they act in the
positive direction of the relevant axis in a plane on which the direct tensile stress is in the
positive direction of the axis. If the tensile stress is in the opposite direction then positive
shear stresses are in directions opposite to the positive directions of the appropriate axes.

Two types of external force may act on a body to produce the internal stress system
we have already discussed. Of these, surface forces such as P1, P2, . . . , or hydrostatic
pressure, are distributed over the surface area of the body. The surface force per unit
area may be resolved into components parallel to our orthogonal system of axes and
these are generally given the symbols X , Y and Z . The second force system derives
from gravitational and inertia effects and the forces are known as body forces. These
are distributed over the volume of the body and the components of body force per unit
volume are designated X, Y and Z .

1.3 Equations of equilibrium

Generally, except in cases of uniform stress, the direct and shear stresses on opposite
faces of an element are not equal as indicated in Fig. 1.5 but differ by small amounts.
Therefore if, say, the direct stress acting on the z plane is σz then the direct stress
acting on the z + δz plane is, from the first two terms of a Taylor’s series expansion,
σz + (∂σz/∂z)δz.

We now investigate the equilibrium of an element at some internal point in an elastic
body where the stress system is obtained by the method just described.

In Fig. 1.6 the element is in equilibrium under forces corresponding to the stresses
shown and the components of body forces (not shown). Surface forces acting on the

Fig. 1.6 Stresses on the faces of an element at a point in an elastic body.
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boundary of the body, although contributing to the production of the internal stress
system, do not directly feature in the equilibrium equations.

Taking moments about an axis through the centre of the element parallel to the z axis

τxyδyδz
δx

2
+

(
τxy + ∂τxy

∂x
δx

)
δyδz

δx

2
− τyxδxδz

δy

2

−
(

τyx + ∂τyx

∂y
δy

)
δxδz

δy

2
= 0

which simplifies to

τxyδyδzδx + ∂τxy

∂x
δyδz

(δx)2

2
− τyxδxδzδy − ∂τyx

∂y
δx δz

(δy)2

2
= 0

Dividing through by δxδyδz and taking the limit as δx and δy approach zero

Similarly
τxy = τyx
τxz = τzx
τyz = τzy

⎫
⎬

⎭
(1.4)

We see, therefore, that a shear stress acting on a given plane (τxy, τxz, τyz) is always
accompanied by an equal complementary shear stress (τyx, τzx, τzy) acting on a plane
perpendicular to the given plane and in the opposite sense.

Now considering the equilibrium of the element in the x direction

(
σx + ∂σx

∂x
δx

)
δy δz − σxδyδz +

(
τyx + ∂τyx

∂y
δy

)
δxδz

− τyxδxδz +
(

τzx + ∂τzx

∂z
δz

)
δxδy

− τzxδxδy + Xδxδyδz = 0

which gives

∂σx

∂x
+ ∂τyx

∂y
+ ∂τzx

∂z
+ X = 0

Or, writing τxy = τyx and τxz = τzx from Eq. (1.4)

Similarly

∂σx

∂x
+ ∂τxy

∂y
+ ∂τxz

∂z
+ X = 0

∂σy

∂y
+ ∂τyx

∂x
+ ∂τyz

∂z
+ Y = 0

∂σz

∂z
+ ∂τzx

∂x
+ ∂τzy

∂y
+ Z = 0

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(1.5)

The equations of equilibrium must be satisfied at all interior points in a deformable
body under a three-dimensional force system.
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1.4 Plane stress

Most aircraft structural components are fabricated from thin metal sheet so that stresses
across the thickness of the sheet are usually negligible. Assuming, say, that the z axis is
in the direction of the thickness then the three-dimensional case of Section 1.3 reduces
to a two-dimensional case in which σz, τxz and τyz are all zero. This condition is known
as plane stress; the equilibrium equations then simplify to

∂σx

∂x
+ ∂τxy

∂y
+ X = 0

∂σy

∂y
+ ∂τyx

∂x
+ Y = 0

⎫
⎪⎪⎬

⎪⎪⎭
(1.6)

1.5 Boundary conditions

The equations of equilibrium (1.5) (and also (1.6) for a two-dimensional system) satisfy
the requirements of equilibrium at all internal points of the body. Equilibrium must
also be satisfied at all positions on the boundary of the body where the components of
the surface force per unit area are X , Y and Z . The triangular element of Fig. 1.7 at the
boundary of a two-dimensional body of unit thickness is then in equilibrium under the
action of surface forces on the elemental length AB of the boundary and internal forces
on internal faces AC and CB.

Summation of forces in the x direction gives

Xδs − σxδy − τyxδx + X
1

2
δxδy = 0

which, by taking the limit as δx approaches zero, becomes

X = σx
dy

ds
+ τyx

dx

ds

Fig. 1.7 Stresses on the faces of an element at the boundary of a two-dimensional body.
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The derivatives dy/ds and dx/ds are the direction cosines l and m of the angles that a
normal to AB makes with the x and y axes, respectively. It follows that

X̄ = σxl + τyxm

and in a similar manner

Ȳ = σym + τxyl

A relatively simple extension of this analysis produces the boundary conditions for
a three-dimensional body, namely

X̄ = σxl + τyxm + τzxn

Ȳ = σym + τxyl + τzyn

Z̄ = σzn + τyzm + τxzl

⎫
⎪⎬

⎪⎭
(1.7)

where l, m and n become the direction cosines of the angles that a normal to the surface
of the body makes with the x, y and z axes, respectively.

1.6 Determination of stresses on inclined planes

The complex stress system of Fig. 1.6 is derived from a consideration of the actual
loads applied to a body and is referred to a predetermined, though arbitrary, system of
axes. The values of these stresses may not give a true picture of the severity of stress
at that point so that it is necessary to investigate the state of stress on other planes on
which the direct and shear stresses may be greater.

We shall restrict the analysis to the two-dimensional system of plane stress defined
in Section 1.4.

Figure 1.8(a) shows a complex stress system at a point in a body referred to axes
Ox, Oy. All stresses are positive as defined in Section 1.2. The shear stresses τxy and
τyx were shown to be equal in Section 1.3. We now, therefore, designate them both τxy.

Fig. 1.8 (a) Stresses on a two-dimensional element; (b) stresses on an inclined plane at the point.
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The element of side δx, δy and of unit thickness is small so that stress distributions over
the sides of the element may be assumed to be uniform. Body forces are ignored since
their contribution is a second-order term.

Suppose that we require to find the state of stress on a plane AB inclined at an angle θ

to the vertical. The triangular element EDC formed by the plane and the vertical through
E is in equilibrium under the action of the forces corresponding to the stresses shown in
Fig. 1.8(b), where σn and τ are the direct and shear components of the resultant stress
on AB. Then resolving forces in a direction perpendicular to ED we have

σnED = σxEC cos θ + σyCD sin θ + τxyEC sin θ + τxyCD cos θ

Dividing through by ED and simplifying

σn = σx cos2 θ + σy sin2 θ + τxy sin 2θ (1.8)

Now resolving forces parallel to ED

τED = σxEC sin θ − σyCD cos θ − τxyEC cos θ + τxyCD sin θ

Again dividing through by ED and simplifying

τ = (σx − σy)

2
sin 2θ − τxy cos 2θ (1.9)

Example 1.1
A cylindrical pressure vessel has an internal diameter of 2 m and is fabricated from
plates 20 mm thick. If the pressure inside the vessel is 1.5 N/mm2 and, in addition, the
vessel is subjected to an axial tensile load of 2500 kN, calculate the direct and shear
stresses on a plane inclined at an angle of 60◦ to the axis of the vessel. Calculate also
the maximum shear stress.

The expressions for the longitudinal and circumferential stresses produced by the
internal pressure may be found in any text on stress analysis3 and are

Longitudinal stress (σx) = pd

4t
= 1.5 × 2 × 103/4 × 20 = 37.5 N/mm2

Circumferential stress (σy) = pd

2t
= 1.5 × 2 × 103/2 × 20 = 75 N/mm2

The direct stress due to the axial load will contribute to σx and is given by

σx (axial load) = 2500 × 103/π × 2 × 103 × 20 = 19.9 N/mm2

A rectangular element in the wall of the pressure vessel is then subjected to the stress
system shown in Fig. 1.9. Note that there are no shear stresses acting on the x and y
planes; in this case, σx and σy then form a biaxial stress system.

The direct stress, σn, and shear stress, τ, on the plane AB which makes an angle of
60◦ with the axis of the vessel may be found from first principles by considering the
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C

A

B

75 N/mm2

57.4 N/mm2

57.4 N/mm2

60°

σx � 37.5�19.9 � 57.4 N/mm2

σy � 75 N/mm2

σn

τ

Fig. 1.9 Element of Example 1.1.

equilibrium of the triangular element ABC or by direct substitution in Eqs (1.8) and
(1.9). Note that in the latter case θ = 30◦ and τxy = 0. Then

σn = 57.4 cos2 30◦ + 75 sin2 30◦ = 61.8 N/mm2

τ = (57.4 − 75)(sin (2 × 30◦))/2 = −7.6 N/mm2

The negative sign for τ indicates that the shear stress is in the direction BA and not AB.
From Eq. (1.9) when τxy = 0

τ = (σx − σy)(sin 2θ)/2 (i)

The maximum value of τ will therefore occur when sin 2θ is a maximum, i.e. when
sin 2θ = 1 and θ = 45◦. Then, substituting the values of σx and σy in Eq. (i)

τmax = (57.4 − 75)/2 = −8.8 N/mm2

Example 1.2
A cantilever beam of solid, circular cross-section supports a compressive load of 50 kN
applied to its free end at a point 1.5 mm below a horizontal diameter in the vertical
plane of symmetry together with a torque of 1200 Nm (Fig. 1.10). Calculate the direct
and shear stresses on a plane inclined at 60◦ to the axis of the cantilever at a point on
the lower edge of the vertical plane of symmetry.

The direct loading system is equivalent to an axial load of 50 kN together with a
bending moment of 50 × 103 × 1.5 = 75 000 Nmm in a vertical plane. Therefore, at
any point on the lower edge of the vertical plane of symmetry there are compressive
stresses due to the axial load and bending moment which act on planes perpendicular
to the axis of the beam and are given, respectively, by Eqs (1.2) and (16.9), i.e.

σx (axial load) = 50 × 103/π × (602/4) = 17.7 N/mm2

σx (bending moment) = 75 000 × 30/π × (604/64) = 3.5 N/mm2
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60 mm diameter

1.5 mm

1200 Nm

50 kN

Fig. 1.10 Cantilever beam of Example 1.2.

C

A

B

28.3 N/mm2

21.2 N/mm2
21.2 N/mm2

28.3 N/mm2

28.3 N/mm2

60°

sx � 17.7 � 3.5 � 21.2 N/mm2
σn 

τxy � 28.3 N/mm2
τ

Fig. 1.11 Stress system on two-dimensional element of the beam of Example 1.2.

The shear stress, τxy, at the same point due to the torque is obtained from Eq. (iv) in
Example 3.1, i.e.

τxy = 1200 × 103 × 30/π × (604/32) = 28.3 N/mm2

The stress system acting on a two-dimensional rectangular element at the point is
shown in Fig. 1.11. Note that since the element is positioned at the bottom of the
beam the shear stress due to the torque is in the direction shown and is negative (see
Fig. 1.8).

Again σn and τ may be found from first principles or by direct substitution in
Eqs (1.8) and (1.9). Note that θ = 30◦, σy = 0 and τxy = −28.3 N/mm2 the negative
sign arising from the fact that it is in the opposite direction to τxy in Fig. 1.8.

Then

σn = −21.2 cos2 30◦ − 28.3 sin 60◦ = −40.4 N/mm2 (compression)

τ = (−21.2/2) sin 60◦ + 28.3 cos 60◦ = 5.0 N/mm2 (acting in the direction AB)

Different answers would have been obtained if the plane AB had been chosen on the
opposite side of AC.
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1.7 Principal stresses

For given values of σx, σy and τxy, in other words given loading conditions, σn varies
with the angle θ and will attain a maximum or minimum value when dσn/dθ = 0. From
Eq. (1.8)

dσn

dθ
= −2σx cos θ sin θ + 2σy sin θ cos θ + 2τxy cos 2θ = 0

Hence

−(σx − σy) sin 2θ + 2τxy cos 2θ = 0

or

tan 2θ = 2τxy

σx − σy
(1.10)

Two solutions, θ and θ + π/2, are obtained from Eq. (1.10) so that there are two
mutually perpendicular planes on which the direct stress is either a maximum or a
minimum. Further, by comparison of Eqs (1.9) and (1.10) it will be observed that these
planes correspond to those on which there is no shear stress. The direct stresses on
these planes are called principal stresses and the planes themselves, principal planes.

From Eq. (1.10)

sin 2θ = 2τxy√
(σx − σy)2 + 4τ2

xy

cos 2θ = σx − σy√
(σx − σy)2 + 4τ2

xy

and

sin 2(θ + π/2) = −2τxy√
(σx − σy)2 + 4τ2

xy

cos 2(θ + π/2) = −(σx − σy)
√

(σx − σy)2 + 4τ2
xy

Rewriting Eq. (1.8) as

σn = σx

2
(1 + cos 2θ) + σy

2
(1 − cos 2θ) + τxy sin 2θ

and substituting for {sin 2θ, cos 2θ} and {sin 2(θ + π/2), cos 2(θ + π/2)} in turn gives

σI = σx + σy

2
+ 1

2

√
(σx − σy)2 + 4τ2

xy (1.11)

and

σII = σx + σy

2
− 1

2

√
(σx − σy)2 + 4τ2

xy (1.12)

where σI is the maximum or major principal stress and σII is the minimum or minor
principal stress. Note that σI is algebraically the greatest direct stress at the point while
σII is algebraically the least. Therefore, when σII is negative, i.e. compressive, it is
possible for σII to be numerically greater than σI.
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The maximum shear stress at this point in the body may be determined in an identical
manner. From Eq. (1.9)

dτ

dθ
= (σx − σy) cos 2θ + 2τxy sin 2θ = 0

giving

tan 2θ = − (σx − σy)

2τxy
(1.13)

It follows that

sin 2θ = −(σx − σy)
√

(σx − σy)2 + 4τ2
xy

cos 2θ = 2τxy√
(σx − σy)2 + 4τ2

xy

sin 2(θ + π/2) = (σx − σy)
√

(σx − σy)2 + 4τ2
xy

cos 2(θ + π/2) = −2τxy√
(σx − σy)2 + 4τ2

xy

Substituting these values in Eq. (1.9) gives

τmax,min = ±1

2

√
(σx − σy)2 + 4τ2

xy (1.14)

Here, as in the case of principal stresses, we take the maximum value as being the
greater algebraic value.

Comparing Eq. (1.14) with Eqs (1.11) and (1.12) we see that

τmax = σI − σII

2
(1.15)

Equations (1.14) and (1.15) give the maximum shear stress at the point in the body
in the plane of the given stresses. For a three-dimensional body supporting a two-
dimensional stress system this is not necessarily the maximum shear stress at the point.

Since Eq. (1.13) is the negative reciprocal of Eq. (1.10) then the angles 2θ given by
these two equations differ by 90◦ or, alternatively, the planes of maximum shear stress
are inclined at 45◦ to the principal planes.

1.8 Mohr’s circle of stress

The state of stress at a point in a deformable body may be determined graphically by
Mohr’s circle of stress.

In Section 1.6 the direct and shear stresses on an inclined plane were shown to be
given by

σn = σx cos2 θ + σy sin2 θ + τxy sin 2θ (Eq. (1.8))
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Fig. 1.12 (a) Stresses on a triangular element; (b) Mohr’s circle of stress for stress system shown in (a).

and

τ = (σx − σy)

2
sin 2θ − τxy cos 2θ (Eq. (1.9))

respectively. The positive directions of these stresses and the angle θ are defined in
Fig. 1.12(a). Equation (1.8) may be rewritten in the form

σn = σx

2
(1 + cos 2θ) + σy

2
(1 − cos 2θ) + τxy sin 2θ

or

σn − 1

2
(σx + σy) = 1

2
(σx − σy) cos 2θ + τxy sin 2θ

Squaring and adding this equation to Eq. (1.9) we obtain

[
σn − 1

2
(σx + σy)

]2

+ τ2 =
[

1

2
(σx − σy)

]2

+ τ2
xy

which represents the equation of a circle of radius 1
2

√
(σx − σy)2 + 4τ2

xy and having its

centre at the point ((σx − σy)/2, 0).
The circle is constructed by locating the points Q1(σx, τxy) and Q2(σy, −τxy) referred

to axes Oστ as shown in Fig. 1.12(b). The centre of the circle then lies at C the inter-
section of Q1Q2 and the Oσ axis; clearly C is the point ((σx − σy)/2, 0) and the radius

of the circle is 1
2

√
(σx − σy)2 + 4τ2

xy as required. CQ′ is now set off at an angle 2θ

(positive clockwise) to CQ1, Q′ is then the point (σn, −τ) as demonstrated below. From
Fig. 1.12(b) we see that

ON = OC + CN
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or, since OC = (σx + σy)/2, CN = CQ′ cos(β − 2θ) and CQ′ = CQ1 we have

σn = σx + σy

2
+ CQ1(cos β cos 2θ + sin β sin 2θ)

But

CQ1 = CP1

cos β
and CP1 = (σx − σy)

2

Hence

σn = σx + σy

2
+

(
σx − σy

2

)
cos 2θ + CP1 tan β sin 2θ

which, on rearranging, becomes

σn = σx cos2 θ + σy sin2 θ + τxy sin 2θ

as in Eq. (1.8). Similarly it may be shown that

Q′N = τxy cos 2θ −
(

σx − σy

2

)
sin 2θ = −τ

as in Eq. (1.9). Note that the construction of Fig. 1.12(b) corresponds to the stress
system of Fig. 1.12(a) so that any sign reversal must be allowed for. Also, the Oσ

and Oτ axes must be constructed to the same scale or the equation of the circle is not
represented.

The maximum and minimum values of the direct stress, viz. the major and minor
principal stresses σI and σII, occur when N (and Q′) coincide with B andA, respectively.
Thus

σ1 = OC + radius of circle

= (σx + σy)

2
+

√
CP2

1 + P1Q2
1

or

σI = (σx + σy)

2
+ 1

2

√
(σx − σy)2 + 4τ2

xy

and in the same fashion

σII = (σx + σy)

2
− 1

2

√
(σx − σy)2 + 4τ2

xy

The principal planes are then given by 2θ = β(σI) and 2θ = β + π(σII).
Also the maximum and minimum values of shear stress occur when Q′ coincides

with D and E at the upper and lower extremities of the circle.
At these points Q′N is equal to the radius of the circle which is given by

CQ1 =
√

(σx − σy)2

4
+ τ2

xy
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Hence τmax,min = ± 1
2

√
(σx − σy)2 + 4τ2

xy as before. The planes of maximum and min-

imum shear stress are given by 2θ = β + π/2 and 2θ = β + 3π/2, these being inclined
at 45◦ to the principal planes.

Example 1.3
Direct stresses of 160 N/mm2 (tension) and 120 N/mm2 (compression) are applied at a
particular point in an elastic material on two mutually perpendicular planes. The prin-
cipal stress in the material is limited to 200 N/mm2 (tension). Calculate the allowable
value of shear stress at the point on the given planes. Determine also the value of the
other principal stress and the maximum value of shear stress at the point. Verify your
answer using Mohr’s circle.

The stress system at the point in the material may be represented as shown in Fig. 1.13
by considering the stresses to act uniformly over the sides of a triangular element ABC
of unit thickness. Suppose that the direct stress on the principal plane AB is σ. For
horizontal equilibrium of the element

σAB cos θ = σxBC + τxyAC

which simplifies to

τxy tan θ = σ − σx (i)

Considering vertical equilibrium gives

σAB sin θ = σyAC + τxyBC

or

τxy cot θ = σ − σy (ii)

Hence from the product of Eqs (i) and (ii)

τ2
xy = (σ − σx)(σ − σy)

Fig. 1.13 Stress system for Example 1.3.



Ch01-H6739.tex 23/1/2007 12: 6 Page 21

1.8 Mohr’s circle of stress 21

Now substituting the values σx = 160 N/mm2, σy = −120 N/mm2 and σ = σ1 =
200 N/mm2 we have

τxy = ±113 N/mm2

Replacing cot θ in Eq. (ii) by 1/tan θ from Eq. (i) yields a quadratic equation in σ

σ2 − σ(σx − σy) + σxσy − τ2
xy = 0 (iii)

The numerical solutions of Eq. (iii) corresponding to the given values of σx, σy and τxy
are the principal stresses at the point, namely

σ1 = 200 N/mm2 (given) σII = −160 N/mm2

Having obtained the principal stresses we now use Eq. (1.15) to find the maximum
shear stress, thus

τmax = 200 + 160

2
= 180 N/mm2

The solution is rapidly verified from Mohr’s circle of stress (Fig. 1.14). From
the arbitrary origin O, OP1 and OP2 are drawn to represent σx = 160 N/mm2 and
σy = −120 N/mm2. The mid-point C of P1P2 is then located. OB = σ1 = 200 N/mm2 is
marked out and the radius of the circle is then CB. OA is the required principal stress.
Perpendiculars P1Q1 and P2Q2 to the circumference of the circle are equal to ±τxy
(to scale) and the radius of the circle is the maximum shear stress.

Fig. 1.14 Solution of Example 1.3 using Mohr’s circle of stress.
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1.9 Strain

The external and internal forces described in the previous sections cause linear and
angular displacements in a deformable body. These displacements are generally defined
in terms of strain. Longitudinal or direct strains are associated with direct stresses σ

and relate to changes in length while shear strains define changes in angle produced by
shear stresses. These strains are designated, with appropriate suffixes, by the symbols
ε and γ , respectively, and have the same sign as the associated stresses.

Consider three mutually perpendicular line elements OA, OB and OC at a point O in
a deformable body. Their original or unstrained lengths are δx, δy and δz, respectively.
If, now, the body is subjected to forces which produce a complex system of direct and
shear stresses at O, such as that in Fig. 1.6, then the line elements will deform to the
positions O′A′, O′B′ and O′C′ shown in Fig. 1.15.

The coordinates of O in the unstrained body are (x, y, z) so that those of A, B and
C are (x + δx, y, z), (x, y + δy, z) and (x, y, z + δz). The components of the displace-
ment of O to O′ parallel to the x, y and z axes are u, v and w. These symbols are used
to designate these displacements throughout the book and are defined as positive in
the positive directions of the axes. We again employ the first two terms of a Taylor’s
series expansion to determine the components of the displacements of A, B and C.
Thus, the displacement of A in a direction parallel to the x axis is u + (∂u/∂x)δx.
The remaining components are found in an identical manner and are shown
in Fig. 1.15.

We now define direct strain in more quantitative terms. If a line element of length L
at a point in a body suffers a change in length 
L then the longitudinal strain at that

Fig. 1.15 Displacement of line elements OA, OB and OC.
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point in the body in the direction of the line element is

ε = lim
L→0


L

L

The change in length of the element OA is (O′A′ − OA) so that the direct strain at O
in the x direction is obtained from the equation

εx = O′A′ − OA

OA
= O′A′ − δx

δx
(1.16)

Now

(O′A′)2 =
(

δx + u + ∂u

∂x
δx − u

)2

+
(

v + ∂v

∂x
δx − v

)2

+
(

w + ∂w

∂x
δx − w

)2

or

O′A′ = δx

√(
1 + ∂u

∂x

)2

+
(

∂v

∂x

)2

+
(

∂w

∂x

)2

which may be written when second-order terms are neglected

O′A′ = δx

(
1 + 2

∂u

∂x

) 1
2

Applying the binomial expansion to this expression we have

O′A′ = δx

(
1 + ∂u

∂x

)
(1.17)

in which squares and higher powers of ∂u/∂x are ignored. Substituting for O′A′ in
Eq. (1.16) we have

It follows that

εx = ∂u

∂x

εy = ∂v

∂y

εz = ∂w

∂z

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(1.18)

The shear strain at a point in a body is defined as the change in the angle between two
mutually perpendicular lines at the point. Therefore, if the shear strain in the xz plane
is γxz then the angle between the displaced line elements O′A′ and O′C′ in Fig. 1.15 is
π/2 − γxz radians.

Now cosA′O′C′ = cos(π/2 − γxz) = sin γxz and as γxz is small then cos A′O′C′ = γxz.
From the trigonometrical relationships for a triangle

cos A′O′C′ = (O′A′)2 + (O′C′)2 − (A′C′)
2(O′A′)(O′C′)

2

(1.19)
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We have previously shown, in Eq. (1.17), that

O′A′ = δx

(
1 + ∂u

∂x

)

Similarly

O′C′ = δz

(
1 + ∂w

∂z

)

But for small displacements the derivatives of u, v and w are small compared with l, so
that, as we are concerned here with actual length rather than change in length, we may
use the approximations

O′A′ ≈ δx O′C′ ≈ δz

Again to a first approximation

(A′C′)2 =
(

δz − ∂w

∂x
δx

)2

+
(

δx − ∂u

∂z
δz

)2

Substituting for O′A′, O′C′ and A′C′ in Eq. (1.19) we have

cos A′O′C′ = (δx2) + (δz)2 − [δz − (∂w/∂x)δx]2 − [δx − (∂u/∂z)δz]2

2δxδz

Expanding and neglecting fourth-order powers gives

cos A′O′C′ = 2(∂w/∂x)δxδz + 2(∂u/∂z)δxδz

2δxδz

or

Similarly

γxz = ∂w

∂x
+ ∂u

∂z

γxy = ∂v

∂x
+ ∂u

∂y

γyz = ∂w

∂y
+ ∂v

∂z

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(1.20)

It must be emphasized that Eqs (1.18) and (1.20) are derived on the assumption that
the displacements involved are small. Normally these linearized equations are adequate
for most types of structural problem but in cases where deflections are large, for example
types of suspension cable, etc., the full, non-linear, large deflection equations, given in
many books on elasticity, must be employed.

1.10 Compatibility equations

In Section 1.9 we expressed the six components of strain at a point in a deformable body
in terms of the three components of displacement at that point, u, v and w. We have
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supposed that the body remains continuous during the deformation so that no voids are
formed. It follows that each component, u, v and w, must be a continuous, single-valued
function or, in quantitative terms

u = f1(x, y, z) v = f2(x, y, z) w = f3(x, y, z)

If voids were formed then displacements in regions of the body separated by the
voids would be expressed as different functions of x, y and z. The existence, therefore,
of just three single-valued functions for displacement is an expression of the continuity
or compatibility of displacement which we have presupposed.

Since the six strains are defined in terms of three displacement functions then they
must bear some relationship to each other and cannot have arbitrary values. These
relationships are found as follows. Differentiating γxy from Eq. (1.20) with respect to
x and y gives

∂2γxy

∂x ∂y
= ∂2

∂x ∂y

∂v

∂x
+ ∂2

∂x ∂y

∂u

∂y

or, since the functions of u and v are continuous

∂2γxy

∂x ∂y
= ∂2

∂x2

∂v

∂y
+ ∂2

∂y2

∂u

∂x

which may be written, using Eq. (1.18)

∂2γxy

∂x ∂y
= ∂2εy

∂x2 + ∂2εx

∂y2 (1.21)

In a similar manner

∂2γyz

∂y ∂z
= ∂2εy

∂z2 + ∂2εz

∂y2 (1.22)

∂2γxz

∂x ∂z
= ∂2εz

∂x2 + ∂2εx

∂z2 (1.23)

If we now differentiate γxy with respect to x and z and add the result to γzx,
differentiated with respect to y and x, we obtain

∂2γxy

∂x ∂z
+ ∂2γxz

∂y ∂x
= ∂2

∂x ∂z

(
∂u

∂y
+ ∂v

∂x

)
+ ∂2

∂y ∂x

(
∂w

∂x
+ ∂u

∂z

)

or

∂

∂x

(
∂γxy

∂z
+ ∂γxz

∂y

)
= ∂2

∂z ∂y

∂u

∂x
+ ∂2

∂x2

(
∂v

∂z
+ ∂w

∂y

)
+ ∂2

∂y ∂z

∂u

∂x

Substituting from Eqs (1.18) and (1.21) and rearranging

2
∂2εx

∂y ∂z
= ∂

∂x

(
−∂γyz

∂x
+ ∂γxz

∂y
+ ∂γxy

∂z

)
(1.24)



Ch01-H6739.tex 23/1/2007 12: 6 Page 26

26 Basic elasticity

Similarly

2
∂2εy

∂x ∂z
= ∂

∂y

(
∂γyz

∂x
− ∂γxz

∂y
+ ∂γxy

∂z

)
(1.25)

and

2
∂2εz

∂x ∂y
= ∂

∂z

(
∂γyz

∂x
+ ∂γxz

∂y
− ∂γxy

∂z

)
(1.26)

Equations (1.21)–(1.26) are the six equations of strain compatibility which must be
satisfied in the solution of three-dimensional problems in elasticity.

1.11 Plane strain

Although we have derived the compatibility equations and the expressions for strain
for the general three-dimensional state of strain we shall be mainly concerned with the
two-dimensional case described in Section 1.4. The corresponding state of strain, in
which it is assumed that particles of the body suffer displacements in one plane only,
is known as plane strain. We shall suppose that this plane is, as for plane stress, the xy
plane. Then εz, γxz and γyz become zero and Eqs (1.18) and (1.20) reduce to

εx = ∂u

∂x
εy = ∂v

∂y
(1.27)

and

γxy = ∂v

∂x
+ ∂u

∂y
(1.28)

Further, by substituting εz = γxz = γyz = 0 in the six equations of compatibility and
noting that εx, εy and γxy are now purely functions of x and y, we are left with Eq. (1.21),
namely

∂2γxy

∂x ∂y
= ∂2εy

∂x2 + ∂2εx

∂y2

as the only equation of compatibility in the two-dimensional or plane strain case.

1.12 Determination of strains on inclined planes

Having defined the strain at a point in a deformable body with reference to an arbitrary
system of coordinate axes we may calculate direct strains in any given direction and the
change in the angle (shear strain) between any two originally perpendicular directions
at that point. We shall consider the two-dimensional case of plane strain described in
Section 1.11.

An element in a two-dimensional body subjected to the complex stress system of
Fig. 1.16(a) will distort into the shape shown in Fig. 1.16(b). In particular, the triangular
element ECD will suffer distortion to the shape E′C′D′ with corresponding changes
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Fig. 1.16 (a) Stress system on rectangular element; (b) distorted shape of element due to stress system in (a).

in the length FC and angle EFC. Suppose that the known direct and shear strains
associated with the given stress system are εx, εy and γxy (the actual relationships will
be investigated later) and that we require to find the direct strain εn in a direction
normal to the plane ED and the shear strain γ produced by the shear stress acting on
the plane ED.

To a first order of approximation

C′D′ = CD(1 + εx)
C′E′ = CE(1 + εy)
E′D′ = ED(1 + εn+π/2)

⎫
⎬

⎭
(1.29)

where εn+π/2 is the direct strain in the direction ED. From the geometry of the triangle
E′C′D′ in which angle E′C′D′ = π/2 − γxy

(E′D′)2 = (C′D′)2 + (C′E′)2 − 2(C′D′)(C′E′) cos(π/2 − γxy)

or, substituting from Eqs (1.29)

(ED)2(1 + εn+π/2)2 = (CD)2(1 + εx)2 + (CE)2(1 + εy)2

− 2(CD)(CE)(1 + εx)(1 + εy)sin γxy

Noting that (ED)2 = (CD)2 + (CE)2 and neglecting squares and higher powers of small
quantities this equation may be rewritten

2(ED)2εn+π/2 = 2(CD)2εx + 2(CE)2εy − 2(CE)(CD)γxy

Dividing through by 2(ED)2 gives

εn+π/2 = εx sin2 θ + εy cos2 θ − cos θ sin θγxy (1.30)

The strain εn in the direction normal to the plane ED is found by replacing the angle θ

in Eq. (1.30) by θ − π/2. Hence

εn = εx cos2 θ + εy sin2 θ + γxy

2
sin 2θ (1.31)
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Turning our attention now to the triangle C′F′E′ we have

(C′E′)2 = (C′F′)2 + (F′E′)2 − 2(C′F′)(F′E′) cos(π/2 − γ) (1.32)

in which

C′E′ = CE(1 + εy)

C′F′ = CF(1 + εn)

F′E′ = FE(1 + εn+π/2)

Substituting for C′E′, C′F′ and F′E′ in Eq. (1.32) and writing cos(π/2 − γ) = sin γ

we find

(CE)2(1 + εy)2 = (CF)2(1 + εn)2 + (FE)2(1 + εn+π/2)2

− 2(CF)(FE)(1 + εn)(1 + εn+π/2) sin γ (1.33)

All the strains are assumed to be small so that their squares and higher powers may be
ignored. Further, sin γ ≈ γ and Eq. (1.33) becomes

(CE)2(1 + 2εy) = (CF)2(1 + 2εn) + (FE)2(1 + 2εn+π/2) − 2(CF)(FE)γ

From Fig. 1.16(a), (CE)2 = (CF)2 + (FE)2 and the above equation simplifies to

2(CE)2εy = 2(CF)2εn + 2(FE)2εn+π/2 − 2(CF)(FE)γ

Dividing through by 2(CE)2 and transposing

γ = εn sin2 θ + εn+π/2 cos2 θ − εy

sin θ cos θ

Substitution of εn and εn+π/2 from Eqs (1.31) and (1.30) yields

γ

2
= (εx − εy)

2
sin 2θ − γxy

2
cos 2θ (1.34)

1.13 Principal strains

If we compare Eqs (1.31) and (1.34) with Eqs (1.8) and (1.9) we observe that they
may be obtained from Eqs (1.8) and (1.9) by replacing σn by εn, σx by εx, σy by εy, τxy
by γxy/2 and τ by γ/2. Therefore, for each deduction made from Eqs (1.8) and (1.9)
concerning σn and τ there is a corresponding deduction from Eqs (1.31) and (1.34)
regarding εn and γ/2.

Therefore at a point in a deformable body, there are two mutually perpendicular
planes on which the shear strain γ is zero and normal to which the direct strain is a
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maximum or minimum. These strains are the principal strains at that point and are
given (from comparison with Eqs (1.11) and (1.12)) by

εI = εx + εy

2
+ 1

2

√
(εx − εy)2 + γ2

xy (1.35)

and

εII = εx + εy

2
− 1

2

√
(εx − εy)2 + γ2

xy (1.36)

If the shear strain is zero on these planes it follows that the shear stress must also be
zero and we deduce, from Section 1.7, that the directions of the principal strains and
principal stresses coincide. The related planes are then determined from Eq. (1.10) or
from

tan 2θ = γxy

εx − εy
(1.37)

In addition the maximum shear strain at the point is

(γ

2

)

max
= 1

2

√
(εx − εy)2 + γ2

xy (1.38)

or
(γ

2

)

max
= εI − εII

2
(1.39)

(cf. Eqs (1.14) and (1.15)).

1.14 Mohr’s circle of strain

We now apply the arguments of Section 1.13 to the Mohr’s circle of stress described in
Section 1.8. A circle of strain, analogous to that shown in Fig. 1.12(b), may be drawn
when σx, σy, etc. are replaced by εx, εy, etc. as specified in Section 1.13. The horizontal
extremities of the circle represent the principal strains, the radius of the circle, half the
maximum shear strain and so on.

1.15 Stress–strain relationships

In the preceding sections we have developed, for a three-dimensional deformable body,
three equations of equilibrium (Eqs (1.5)) and six strain–displacement relationships
(Eqs (1.18) and (1.20)). From the latter we eliminated displacements thereby deriving
six auxiliary equations relating strains. These compatibility equations are an expression
of the continuity of displacement which we have assumed as a prerequisite of the
analysis. At this stage, therefore, we have obtained nine independent equations towards
the solution of the three-dimensional stress problem. However, the number of unknowns
totals 15, comprising six stresses, six strains and three displacements. An additional
six equations are therefore necessary to obtain a solution.
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So far we have made no assumptions regarding the force–displacement or stress–
strain relationship in the body. This will, in fact, provide us with the required six
equations but before these are derived it is worthwhile considering some general aspects
of the analysis.

The derivation of the equilibrium, strain–displacement and compatibility equations
does not involve any assumption as to the stress–strain behaviour of the material of the
body. It follows that these basic equations are applicable to any type of continuous,
deformable body no matter how complex its behaviour under stress. In fact we shall
consider only the simple case of linearly elastic isotropic materials for which stress is
directly proportional to strain and whose elastic properties are the same in all directions.
A material possessing the same properties at all points is said to be homogeneous.

Particular cases arise where some of the stress components are known to be zero and
the number of unknowns may then be no greater than the remaining equilibrium equa-
tions which have not identically vanished. The unknown stresses are then found from
the conditions of equilibrium alone and the problem is said to be statically determinate.
For example, the uniform stress in the member supporting a tensile load P in Fig. 1.3 is
found by applying one equation of equilibrium and a boundary condition. This system
is therefore statically determinate.

Statically indeterminate systems require the use of some, if not all, of the other equa-
tions involving strain–displacement and stress–strain relationships. However, whether
the system be statically determinate or not, stress–strain relationships are necessary
to determine deflections. The role of the six auxiliary compatibility equations will be
discussed when actual elasticity problems are formulated in Chapter 2.

We now proceed to investigate the relationship of stress and strain in a three–
dimensional, linearly elastic, isotropic body.

Experiments show that the application of a uniform direct stress, say σx, does not
produce any shear distortion of the material and that the direct strain εx is given by the
equation

εx = σx

E
(1.40)

where E is a constant known as the modulus of elasticity or Young’s modulus.
Equation (1.40) is an expression of Hooke’s law. Further, εx is accompanied by lateral
strains

εy = −ν
σx

E
εz = −ν

σx

E
(1.41)

in which ν is a constant termed Poisson’s ratio.
For a body subjected to direct stresses σx, σy and σz the direct strains are, from

Eqs (1.40) and (1.41) and the principle of superposition (see Chapter 5, Section 5.9)

εx = 1

E
[σx − ν(σy + σz)]

εy = 1

E
[σy − ν(σx + σz)]

εz = 1

E
[σz − ν(σx + σy)]

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(1.42)
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Equations (1.42) may be transposed to obtain expressions for each stress in terms of
the strains. The procedure adopted may be any of the standard mathematical approaches
and gives

σx = νE

(1 + ν)(1 − 2ν)
e + E

(1 + ν)
εx (1.43)

σy = νE

(1 + ν)(1 − 2ν)
e + E

(1 + ν)
εy (1.44)

σz = νE

(1 + ν)(1 − 2ν)
e + E

(1 + ν)
εz (1.45)

in which

e = εx + εy + εz (see Eq. (1.53))

For the case of plane stress in which σz = 0, Eqs (1.43) and (1.44) reduce to

σx = E

1 − ν2 (εx + νεy) (1.46)

σy = E

1 − ν2 (εy + νεx) (1.47)

Suppose now that, at some arbitrary point in a material, there are principal strains
εI and εII corresponding to principal stresses σI and σII. If these stresses (and strains)
are in the direction of the coordinate axes x and y, respectively, then τxy = γxy = 0 and
from Eq. (1.34) the shear strain on an arbitrary plane at the point inclined at an angle
θ to the principal planes is

γ = (εI − εII) sin 2θ (1.48)

Using the relationships of Eqs (1.42) and substituting in Eq. (1.48) we have

γ = 1

E
[(σI − νσII) − (σII − νσI)] sin 2θ

or

γ = (1 + ν)

E
(σI − σII) sin 2θ (1.49)

Using Eq. (1.9) and noting that for this particular case τxy = 0, σx = σI and σy = σII

2τ = (σI − σII) sin 2θ

from which we may rewrite Eq. (1.49) in terms of τ as

γ = 2(1 + ν)

E
τ (1.50)

The term E/2(1 + ν) is a constant known as the modulus of rigidity G. Hence

γ = τ/G
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and the shear strains γxy, γxz and γyz are expressed in terms of their associated shear
stresses as follows

γxy = τxy

G
γxz = τxz

G
γyz = τyz

G
(1.51)

Equations (1.51), together with Eqs (1.42), provide the additional six equations
required to determine the 15 unknowns in a general three-dimensional problem in
elasticity. They are, however, limited in use to a linearly elastic isotropic body.

For the case of plane stress they simplify to

εx = 1

E
(σx − νσy)

εy = 1

E
(σy − νσx)

εz = −ν

E
(σx − σy)

γxy = τxy

G

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(1.52)

It may be seen from the third of Eqs (1.52) that the conditions of plane stress and
plane strain do not necessarily describe identical situations.

Changes in the linear dimensions of a strained body may lead to a change in volume.
Suppose that a small element of a body has dimensions δx, δy and δz. When subjected to
a three-dimensional stress system the element will sustain a volumetric strain e (change
in volume/unit volume) equal to

e = (1 + εx)δx(1 + εy)δy(1 + εz)δz − δxδyδz

δxδyδz

Neglecting products of small quantities in the expansion of the right-hand side of the
above equation yields

e = εx + εy + εz (1.53)

Substituting for εx, εy and εz from Eqs (1.42) we find, for a linearly elastic, isotropic
body

e = 1

E
[σx + σy + σz − 2ν(σx + σy + σz)]

or

e = (1 − 2ν)

E
(σx + σy + σz)

In the case of a uniform hydrostatic pressure, σx = σy = σz = −p and

e = −3(1 − 2ν)

E
p (1.54)

The constant E/3(1 − 2ν) is known as the bulk modulus or modulus of volume
expansion and is often given the symbol K .
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An examination of Eq. (1.54) shows that ν ≤ 0.5 since a body cannot increase in
volume under pressure. Also the lateral dimensions of a body subjected to uniaxial
tension cannot increase so that ν > 0. Therefore, for an isotropic material 0 ≤ ν ≤ 0.5
and for most isotropic materials ν is in the range 0.25–0.33 below the elastic limit.
Above the limit of proportionality ν increases and approaches 0.5.

Example 1.4
A rectangular element in a linearly elastic isotropic material is subjected to tensile
stresses of 83 and 65 N/mm2 on mutually perpendicular planes. Determine the strain
in the direction of each stress and in the direction perpendicular to both stresses. Find
also the principal strains, the maximum shear stress, the maximum shear strain and
their directions at the point. Take E = 200 000 N/mm2 and v = 0.3.

If we assume that σx = 83 N/mm2 and σy = 65 N/mm2 then from Eqs (1.52)

εx = 1

200 000
(83 − 0.3 × 65) = 3.175 × 10−4

εy = 1

200 000
(65 − 0.3 × 83) = 2.005 × 10−4

εz = −0.3

200 000
(83 + 65) = −2.220 × 10−4

In this case, since there are no shear stresses on the given planes, σx and σy are
principal stresses so that εx and εy are the principal strains and are in the directions of
σx and σy. It follows from Eq. (1.15) that the maximum shear stress (in the plane of the
stresses) is

τmax = 83 − 65

2
= 9 N/mm2

acting on planes at 45◦ to the principal planes.
Further, using Eq. (1.50), the maximum shear strain is

γmax = 2 × (1 + 0.3) × 9

200 000

so that γmax = 1.17 × 10−4 on the planes of maximum shear stress.

Example 1.5
At a particular point in a structural member a two-dimensional stress system exists
where σx = 60 N/mm2, σy = −40 N/mm2 and τxy = 50 N/mm2. If Young’s modulus
E = 200 000 N/mm2 and Poisson’s ratio ν = 0.3 calculate the direct strain in the x and
y directions and the shear strain at the point. Also calculate the principal strains at the
point and their inclination to the plane on which σx acts; verify these answers using a
graphical method.
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From Eqs (1.52)

εx = 1

200 000
(60 + 0.3 × 40) = 360 × 10−6

εy = 1

200 000
(−40 − 0.3 × 60) = −290 × 10−6

From Eq. (1.50) the shear modulus, G, is given by

G = E

2(1 + ν)
= 200 000

2(1 + 0.3)
= 76 923 N/mm2

Hence, from Eqs (1.52)

γxy = τxy

G
= 50

76 923
= 650 × 10−6

Now substituting in Eq. (1.35) for εx, εy and γxy

εI = 10−6
[

360 − 290

2
+ 1

2

√
(360 + 290)2 + 6502

]

which gives

εI = 495 × 10−6

Similarly, from Eq. (1.36)

εII = −425 × 10−6

From Eq. (1.37)

tan 2θ = 650 × 10−6

360 × 10−6 + 290 × 10−6 = 1

Therefore

2θ = 45◦ or 225◦

so that

θ = 22.5◦ or 112.5◦

The values of εI, εII and θ are verified using Mohr’s circle of strain (Fig. 1.17).
Axes Oε and Oγ are set up and the points Q1 (360 × 10−6, 1

2 × 650 × 10−6) and
Q2 (−290 × 10−6, − 1

2 × 650 × 10−6) located. The centre C of the circle is the inter-
section of Q1Q2 and the Oε axis. The circle is then drawn with radius CQ1 and the
points B(εI) and A(εII) located. Finally angle Q1CB = 2θ and angle Q1CA = 2θ + π.
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Fig. 1.17 Mohr’s circle of strain for Example 1.5.

1.15.1 Temperature effects

The stress–strain relationships of Eqs (1.43)–(1.47) apply to a body or structural member
at a constant uniform temperature. A temperature rise (or fall) generally results in an
expansion (or contraction) of the body or structural member so that there is a change
in size, i.e. a strain.

Consider a bar of uniform section, of original length Lo, and suppose that it is
subjected to a temperature change 
T along its length; 
T can be a rise (+ve) or fall
(−ve). If the coefficient of linear expansion of the material of the bar is α the final
length of the bar is, from elementary physics

L = Lo(1 + α
T )

so that the strain, ε, is given by

ε = L − Lo

Lo
= α
T (1.55)

Suppose now that a compressive axial force is applied to each end of the bar such
that the bar returns to its original length. The mechanical strain produced by the axial
force is therefore just large enough to offset the thermal strain due to the temperature
change making the total strain zero. In general terms the total strain, ε, is the sum of
the mechanical and thermal strains. Therefore, from Eqs (1.40) and (1.55)

ε = σ

E
+ α
T (1.56)

In the case where the bar is returned to its original length or if the bar had not been
allowed to expand at all the total strain is zero and from Eq. (1.56)

σ = −Eα
T (1.57)
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Equations (1.42) may now be modified to include the contribution of thermal strain.
Therefore, by comparison with Eq. (1.56)

εx = 1

E
[σx − ν(σy + σz)] + α
T

εy = 1

E
[σy − ν(σx + σz)] + α
T

εz = 1

E
[σz − ν(σx + σy)] + α
T

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(1.58)

Equations (1.58) may be transposed in the same way as Eqs (1.42) to give stress–strain
relationships rather than strain–stress relationships, i.e.

σx = νE

(1 + ν)(1 − 2ν)
e + E

(1 + ν)
εx − E

(1 − 2ν)
α
T

σy = νE

(1 + ν)(1 − 2ν)
e + E

(1 + ν)
εy − E

(1 − 2ν)
α
T

σz = νE

(1 + ν)(1 − 2ν)
e + E

(1 + ν)
εz − E

(1 − 2ν)
α
T

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(1.59)

For the case of plane stress in which σz = 0 these equations reduce to

σx = E

(1 − ν2)
(εx + νεy) − E

(1 − ν)
α
T

σy = E

(1 − ν2)
(εy + νεx) − E

(1 − ν)
α
T

⎫
⎪⎪⎬

⎪⎪⎭
(1.60)

Example 1.6
A composite bar of length L has a central core of copper loosely inserted in a sleeve of
steel; the ends of the steel and copper are attached to each other by rigid plates. If the
bar is subjected to a temperature rise 
T determine the stress in the steel and in the
copper and the extension of the composite bar. The copper core has a Young’s modulus
Ec, a cross-sectional area Ac and a coefficient of linear expansion αc; the corresponding
values for the steel are Es, As and αs.

Assume that αc > αs.
If the copper core and steel sleeve were allowed to expand freely their final lengths

would be different since they have different values of the coefficient of linear expansion.
However, since they are rigidly attached at their ends one restrains the other and an
axial stress is induced in each. Suppose that this stress is σx. Then in Eqs (1.58) σx = σc
or σs and σy = σz = 0; the total strain in the copper and steel is then, respectively

εc = σc

Ec
+ αc
T (i)

εs = σs

Es
+ αs
T (ii)
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The total strain in the copper and steel is the same since their ends are rigidly attached
to each other. Therefore, from compatibility of displacement

σc

Ec
+ αc
T = σs

Es
+ αs
T (iii)

There is no external axial load applied to the bar so that

σcAc + σs As = 0

i.e. σs = −Ac

As
σc (iv)

Substituting for σs in Eq. (iii) gives

σc

(
1

Ec
+ Ac

AsEs

)
= 
T (αs − αc)

from which σc = 
T (αs − αc)AsEsEc

AsEs + AcEc
(v)

Also αc > σs so that σc is negative and therefore compressive. Now substituting for σc
in Eq. (iv)

σs = −
T (αs − αc)AcEsEc

AsEs + AcEc
(vi)

which is positive and therefore tensile as would be expected by a physical appreciation
of the situation.

Finally the extension of the compound bar, δ, is found by substituting for σc in Eq. (i)
or for σs in Eq. (ii). Then

δ = 
TL

(
αcAcEc + αsAsEs

AsEs + AcEc

)
(vii)

1.16 Experimental measurement of surface strains

Stresses at a point on the surface of a piece of material may be determined by measuring
the strains at the point, usually by electrical resistance strain gauges arranged in the
form of a rosette, as shown in Fig. 1.18. Suppose that εI and εII are the principal strains
at the point, then if εa, εb and εc are the measured strains in the directions θ, (θ + α),
(θ + α + β) to εI we have, from the general direct strain relationship of Eq. (1.31)

εa = εI cos2 θ + εII sin2 θ (1.61)
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Fig. 1.18 Strain gauge rosette.

since εx becomes εI, εy becomes εII and γxy is zero since the x and y directions have
become principal directions. Rewriting Eq. (1.61) we have

εa = εI

(
1 + cos 2θ

2

)
+ εII

(
1 − cos 2θ

2

)

or

εa = 1
2 (εI + εII) + 1

2 (εI − εII) cos 2θ (1.62)

Similarly

εb = 1
2 (εI + εII) + 1

2 (εI − εII) cos 2(θ + α) (1.63)

and

εc = 1
2 (εI + εII) + 1

2 (εI − εII) cos 2(θ + α + β) (1.64)

Therefore if εa, εb and εc are measured in given directions, i.e. given angles α and β,
then εI, εII and θ are the only unknowns in Eqs (1.62)–(1.64).

The principal stresses are now obtained by substitution of εI and εII in Eqs (1.52).
Thus

εI = 1

E
(σI − νσII) (1.65)

and

εII = 1

E
(σII − νσI) (1.66)

Solving Eqs (1.65) and (1.66) gives

σI = E

1 − ν2 (εI + νεII) (1.67)
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Fig. 1.19 Experimental values of principal strain using Mohr’s circle.

and

σII = E

1 − ν2 (εII + νεI) (1.68)

A typical rosette would have α = β = 45◦ in which case the principal strains are most
conveniently found using the geometry of Mohr’s circle of strain. Suppose that the arm
a of the rosette is inclined at some unknown angle θ to the maximum principal strain
as in Fig. 1.18. Then Mohr’s circle of strain is as shown in Fig. 1.19; the shear strains
γa, γb and γc do not feature in the analysis and are therefore ignored. From Fig. 1.19

OC = 1
2 (εa + εc)

CN = εa − OC = 1
2 (εa − εc)

QN = CM = εb − OC = εb − 1
2 (εa + εc)

The radius of the circle is CQ and

CQ =
√

CN2 + QN2

Hence

CQ =
√[ 1

2 (εa − εc)
]2 + [

εb − 1
2 (εa + εc)

]2

which simplifies to

CQ = 1√
2

√
(εa − εb)2 + (εc − εb)2
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Therefore εI, which is given by

εI = OC + radius of circle

is

εI = 1
2 (εa + εc) + 1√

2

√
(εa − εb)2 + (εc − εb)2 (1.69)

Also

εII = OC − radius of circle

i.e.

εII = 1
2 (εa + εc) − 1√

2

√
(εa − εb)2 + (εc − εb)2 (1.70)

Finally the angle θ is given by

tan 2θ = QN

CN
= εb − 1

2 (εa + εc)
1
2 (εa − εc)

i.e.

tan 2θ = 2εb − εa − εc

εa − εc
(1.71)

A similar approach may be adopted for a 60◦ rosette.

Example 1.7
A bar of solid circular cross-section has a diameter of 50 mm and carries a torque,
T , together with an axial tensile load, P. A rectangular strain gauge rosette attached
to the surface of the bar gave the following strain readings: εa = 1000 × 10−6,
εb = −200 × 10−6 and εc = −300 × 10−6 where the gauges ‘a’ and ‘c’ are in line with,
and perpendicular to, the axis of the bar, respectively. If Young’s modulus, E, for the
bar is 70 000 N/mm2 and Poisson’s ratio, ν, is 0.3, calculate the values of T and P.

Substituting the values of εa, εb and εc in Eq. (1.69)

εI = 10−6

2
(1000 − 300) + 10−6

√
2

√
(1000 + 200)2 + (−200 + 300)2

which gives

εI = 1202 × 10−6

Similarly, from Eq. (1.70)

εII = −502 × 10−6
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Now substituting for εI and εII in Eq. (1.67)

σI = 70 000 × 10−6

1 − (0.3)2 (−502 + 0.3 × 1202) = −80.9 N/mm2

Similarly, from Eq. (1.68)

σII = −10.9 N/mm2

Since σy = 0, Eqs (1.11) and (1.12) reduce to

σI = σx

2
+ 1

2

√
σ2

x + 4τ2
xy (i)

and

σII = σx

2
− 1

2

√
σ2

x + 4τ2
xy (ii)

respectively. Adding Eqs (i) and (ii) we obtain

σI + σII = σx

Thus

σx = 80.9 − 10.9 = 70 N/mm2

For an axial load P

σx = 70 N/mm2 = P

A
= P

π × 502/4

whence

P = 137.4 kN

Substituting for σx in either of Eq. (i) or (ii) gives

τxy = 29.7 N/mm2

From the theory of the torsion of circular section bars (see Eq. (iv) in Example 3.1)

τxy = 29.7 N/mm2 = Tr

J
= T × 25

π × 504/32

from which

T = 0.7 kN m
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Note that P could have been found directly in this particular case from the axial
strain. Thus, from the first of Eqs (1.52)

σx = Eεa = 70 000 × 1000 × 10−6 = 70 N/mm2

as before.
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Problems

P.1.1 A structural member supports loads which produce, at a particular point, a
direct tensile stress of 80 N/mm2 and a shear stress of 45 N/mm2 on the same plane.
Calculate the values and directions of the principal stresses at the point and also the
maximum shear stress, stating on which planes this will act.

Ans. σI = 100.2 N/mm2 θ = 24◦11′
σII = −20.2 N/mm2 θ = 114◦11′

τmax = 60.2 N/mm2 at 45◦ to principal planes.

P.1.2 At a point in an elastic material there are two mutually perpendicular planes,
one of which carries a direct tensile stress at 50 N/mm2 and a shear stress of 40 N/mm2,
while the other plane is subjected to a direct compressive stress of 35 N/mm2 and a
complementary shear stress of 40 N/mm2. Determine the principal stresses at the point,
the position of the planes on which they act and the position of the planes on which
there is no normal stress.

Ans. σI = 65.9 N/mm2 θ = 21◦38′
σII = −50.9 N/mm2 θ = 111◦38′

No normal stress on planes at 70◦21′ and −27◦5′ to vertical.

P.1.3 Listed below are varying combinations of stresses acting at a point and
referred to axes x and y in an elastic material. Using Mohr’s circle of stress determine
the principal stresses at the point and their directions for each combination.

σx (N/mm2) σy (N/mm2) τxy (N/mm2)
(i) +54 +30 +5

(ii) +30 +54 −5
(iii) −60 −36 +5
(iv) +30 −50 +30
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Ans. (i) σI = +55 N/mm2 σII = +29 N/mm2 σI at 11.5◦ to x axis.
(ii) σI = +55 N/mm2 σII = +29 N/mm2 σII at 11.5◦ to x axis.

(iii) σI = −34.5 N/mm2 σII = −61 N/mm2 σI at 79.5◦ to x axis.
(iv) σI = +40 N/mm2 σII = −60 N/mm2 σI at 18.5◦ to x axis.

Fig. P.1.4

P.1.4 The state of stress at a point is caused by three separate actions, each of
which produces a pure, unidirectional tension of 10 N/mm2 individually but in three
different directions as shown in Fig. P.1.4. By transforming the individual stresses
to a common set of axes (x, y) determine the principal stresses at the point and their
directions.

Ans. σI = σII = 15 N/mm2. All directions are principal directions.

P.1.5 A shear stress τxy acts in a two-dimensional field in which the maximum
allowable shear stress is denoted by τmax and the major principal stress by σI.

Derive, using the geometry of Mohr’s circle of stress, expressions for the maximum
values of direct stress which may be applied to the x and y planes in terms of the three
parameters given above.

Ans. σx = σI − τmax +
√

τ2
max − τ2

xy

σy = σI − τmax −
√

τ2
max − τ2

xy.

P.1.6 A solid shaft of circular cross-section supports a torque of 50 kNm and a
bending moment of 25 kNm. If the diameter of the shaft is 150 mm calculate the values
of the principal stresses and their directions at a point on the surface of the shaft.

Ans. σI = 121.4 N/mm2 θ = 31◦43′
σII = −46.4 N/mm2 θ = 121◦43′.

P.1.7 An element of an elastic body is subjected to a three-dimensional stress system
σx, σy and σz. Show that if the direct strains in the directions x, y and z are εx, εy and
εz then
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σx = λe + 2Gεx σy = λe + 2Gεy σz = λe + 2Gεz

where

λ = νE

(1 + ν)(1 − 2ν)
and e = εx + εy + εz

the volumetric strain.

P.1.8 Show that the compatibility equation for the case of plane strain, viz.

∂2γxy

∂x ∂y
= ∂2εy

∂x2 + ∂2εx

∂y2

may be expressed in terms of direct stresses σx and σy in the form

(
∂2

∂x2 + ∂2

∂y2

)
(σx + σy) = 0

P.1.9 A bar of mild steel has a diameter of 75 mm and is placed inside a hollow
aluminium cylinder of internal diameter 75 mm and external diameter 100 mm; both
bar and cylinder are the same length. The resulting composite bar is subjected to an
axial compressive load of 1000 kN. If the bar and cylinder contract by the same amount
calculate the stress in each.

The temperature of the compressed composite bar is then reduced by 150◦C but no
change in length is permitted. Calculate the final stress in the bar and in the cylinder if
E (steel) = 200 000 N/mm2, E (aluminium) = 80 000 N/mm2, α (steel) = 0.000012/◦C
and α (aluminium) = 0.000005/◦C.

Ans. Due to load: σ (steel) = 172.6 N/mm2 (compression)
σ (aluminium) = 69.1 N/mm2 (compression).

Final stress: σ (steel) = 187.4 N/mm2 (tension)
σ (aluminium) = 9.1 N/mm2 (compression).

P.1.10 In Fig. P.1.10 the direct strains in the directions a, b, c are −0.002, −0.002
and +0.002, respectively. If I and II denote principal directions find εI, εII and θ.

Ans. εI = +0.00283 εII = −0.00283 θ = −22.5◦ or +67.5◦.

Fig. P.1.10
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P.1.11 The simply supported rectangular beam shown in Fig. P.1.11 is subjected
to two symmetrically placed transverse loads each of magnitude Q. A rectangular
strain gauge rosette located at a point P on the centroidal axis on one vertical face
of the beam gave strain readings as follows: εa = −222 × 10−6, εb = −213 × 10−6

and εc = +45 × 10−6. The longitudinal stress σx at the point P due to an external
compressive force is 7 N/mm2. Calculate the shear stress τ at the point P in the vertical
plane and hence the transverse load Q:

(Q = 2bdτ/3 where b = breadth, d = depth of beam)

E = 31 000 N/mm2 ν = 0.2

Ans. τ = 3.17 N/mm2 Q = 95.1 kN.

Fig. P.1.11



Ch02-H6739.tex 23/1/2007 12: 7 Page 46

2

Two-dimensional problems
in elasticity

Theoretically we are now in a position to solve any three-dimensional problem in elas-
ticity having derived three equilibrium conditions, Eqs (1.5), six strain–displacement
equations, Eqs (1.18) and (1.20), and six stress–strain relationships, Eqs (1.42) and
(1.46). These equations are sufficient, when supplemented by appropriate boundary
conditions, to obtain unique solutions for the six stress, six strain and three displace-
ment functions. It is found, however, that exact solutions are obtainable only for some
simple problems. For bodies of arbitrary shape and loading, approximate solutions may
be found by numerical methods (e.g. finite differences) or by the Rayleigh–Ritz method
based on energy principles (Chapter 7).

Two approaches are possible in the solution of elasticity problems. We may solve
initially either for the three unknown displacements or for the six unknown stresses. In
the former method the equilibrium equations are written in terms of strain by express-
ing the six stresses as functions of strain (see Problem P.1.7). The strain–displacement
relationships are then used to form three equations involving the three displacements
u, v and w. The boundary conditions for this method of solution must be specified
as displacements. Determination of u, v and w enables the six strains to be com-
puted from Eqs (1.18) and (1.20); the six unknown stresses follow from the equations
expressing stress as functions of strain. It should be noted here that no use has been
made of the compatibility equations. The fact that u, v and w are determined directly
ensures that they are single-valued functions, thereby satisfying the requirement of
compatibility.

In most structural problems the object is usually to find the distribution of stress in
an elastic body produced by an external loading system. It is therefore more convenient
in this case to determine the six stresses before calculating any required strains or
displacements. This is accomplished by using Eqs (1.42) and (1.46) to rewrite the
six equations of compatibility in terms of stress. The resulting equations, in turn, are
simplified by making use of the stress relationships developed in the equations of
equilibrium. The solution of these equations automatically satisfies the conditions of
compatibility and equilibrium throughout the body.
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2.1 Two-dimensional problems

For the reasons discussed in Chapter 1 we shall confine our actual analysis to the
two-dimensional cases of plane stress and plane strain. The appropriate equilibrium
conditions for plane stress are given by Eqs (1.6), viz.

∂σx

∂x
+ ∂τxy

∂y
+ X = 0

∂σy

∂y
+ ∂τyx

∂y
+ Y = 0

and the required stress–strain relationships obtained from Eqs (1.47), namely

εx = 1

E
(σx − νσy)

εy = 1

E
(σy − νσx)

γxy = 2(1 + ν)

E
τxy

We find that although εz exists, Eqs (1.22)–(1.26) are identically satisfied leaving Eq.
(1.21) as the required compatibility condition. Substitution in Eq. (1.21) of the above
strains gives

2(1 + ν)
∂2τxy

∂x ∂y
= ∂2

∂x2 (σy − νσx) + ∂2

∂y2 (σx − νσy) (2.1)

From Eqs (1.6)

∂2τxy

∂y ∂x
= −∂2σx

∂x2 −∂X

∂x
(2.2)

and

∂2τxy

∂x ∂y
= −∂2σy

∂y2 −∂Y

∂y
(τyx = τxy) (2.3)

Adding Eqs (2.2) and (2.3), then substituting in Eq. (2.1) for 2∂2τxy/∂x∂y, we have

−(1 + ν)

(
∂X

∂x
+ ∂Y

∂y

)
= ∂2σx

∂x2 + ∂2σy

∂y2 + ∂2σy

∂x2 + ∂2σx

∂y2

or
(

∂2

∂x2 + ∂2

∂y2

)
(σx + σy) = −(1 + ν)

(
∂X

∂x
+ ∂Y

∂y

)
(2.4)

The alternative two-dimensional problem of plane strain may also be formulated in
the same manner. We have seen in Section 1.11 that the six equations of compatibility
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reduce to the single equation (1.21) for the plane strain condition. Further, from the
third of Eqs (1.42)

σz = ν(σx + σy) (since εz = 0 for plane strain)

so that

εx = 1

E
[(1 − ν2)σx − ν(1 + ν)σy]

and

εy = 1

E
[(1 − ν2)σy − ν(1 + ν)σx]

Also

γxy = 2(1 + ν)

E
τxy

Substituting as before in Eq. (1.21) and simplifying by use of the equations of
equilibrium we have the compatibility equation for plane strain

(
∂2

∂x2 + ∂2

∂y2

)
(σx + σy) = − 1

1 − ν

(
∂X

∂x
+ ∂Y

∂y

)
(2.5)

The two equations of equilibrium together with the boundary conditions, from Eqs
(1.7), and one of the compatibility equations (2.4) or (2.5) are generally sufficient for
the determination of the stress distribution in a two-dimensional problem.

2.2 Stress functions

The solution of problems in elasticity presents difficulties but the procedure may be
simplified by the introduction of a stress function. For a particular two-dimensional
case the stresses are related to a single function of x and y such that substitution for the
stresses in terms of this function automatically satisfies the equations of equilibrium
no matter what form the function may take. However, a large proportion of the infinite
number of functions which fulfil this condition are eliminated by the requirement that
the form of the stress function must also satisfy the two-dimensional equations of
compatibility, (2.4) and (2.5), plus the appropriate boundary conditions.

For simplicity let us consider the two-dimensional case for which the body forces
are zero. The problem is now to determine a stress–stress function relationship which
satisfies the equilibrium conditions of

∂σx

∂x
+ ∂τxy

∂y
= 0

∂σy

∂y
+ ∂τyx

∂x
= 0

⎫
⎪⎪⎬

⎪⎪⎭
(2.6)

and a form for the stress function giving stresses which satisfy the compatibility equation
(

∂2

∂x2 + ∂2

∂y2

)
(σx + σy) = 0 (2.7)



Ch02-H6739.tex 23/1/2007 12: 7 Page 49

2.3 Inverse and semi-inverse methods 49

The English mathematicianAiry proposed a stress function φ defined by the equations

σx = ∂2φ

∂y2 σy = ∂2φ

∂x2 τxy = − ∂2φ

∂x ∂y
(2.8)

Clearly, substitution of Eqs (2.8) into Eqs (2.6) verifies that the equations of equilibrium
are satisfied by this particular stress–stress function relationship. Further substitution
into Eq. (2.7) restricts the possible forms of the stress function to those satisfying the
biharmonic equation

∂4φ

∂x4 + 2
∂4φ

∂x2∂y2 + ∂4φ

∂y4 = 0 (2.9)

The final form of the stress function is then determined by the boundary conditions
relating to the actual problem. Therefore, a two-dimensional problem in elasticity with
zero body forces reduces to the determination of a function φ of x and y, which satisfies
Eq. (2.9) at all points in the body and Eqs (1.7) reduced to two dimensions at all points
on the boundary of the body.

2.3 Inverse and semi-inverse methods

The task of finding a stress function satisfying the above conditions is extremely difficult
in the majority of elasticity problems although some important classical solutions have
been obtained in this way. An alternative approach, known as the inverse method, is
to specify a form of the function φ satisfying Eq. (2.9), assume an arbitrary boundary
and then determine the loading conditions which fit the assumed stress function and
chosen boundary. Obvious solutions arise in which φ is expressed as a polynomial.
Timoshenko and Goodier1 consider a variety of polynomials for φ and determine the
associated loading conditions for a variety of rectangular sheets. Some of these cases
are quoted here.

Example 2.1
Consider the stress function

φ = Ax2 + Bxy + Cy2

where A, B and C are constants. Equation (2.9) is identically satisfied since each term
becomes zero on substituting for φ. The stresses follow from

σx = ∂2φ

∂y2 = 2C

σy = ∂2φ

∂x2 = 2A

τxy = − ∂2φ

∂x ∂y
= −B
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Fig. 2.1 Required loading conditions on rectangular sheet in Example 2.1.

To produce these stresses at any point in a rectangular sheet we require loading
conditions providing the boundary stresses shown in Fig. 2.1.

Example 2.2
A more complex polynomial for the stress function is

φ = Ax3

6
+ Bx2y

2
+ Cxy2

2
+ Dy3

6

As before

∂4φ

∂x4 = ∂4φ

∂x2∂y2 = ∂4φ

∂y4 = 0

so that the compatibility equation (2.9) is identically satisfied. The stresses are given by

σx = ∂2φ

∂y2 = Cx + Dy

σy = ∂2φ

∂x2 = Ax + By

τxy = − ∂2φ

∂x ∂y
= −Bx − Cy

We may choose any number of values of the coefficients A, B, C and D to produce
a variety of loading conditions on a rectangular plate. For example, if we assume
A = B = C = 0 then σx = Dy, σy = 0 and τxy = 0, so that for axes referred to an origin at
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Fig. 2.2 (a) Required loading conditions on rectangular sheet in Example 2.2 for A = B = C = 0; (b) as in (a) but
A = C = D = 0.

the mid-point of a vertical side of the plate we obtain the state of pure bending shown
in Fig. 2.2(a). Alternatively, Fig. 2.2(b) shows the loading conditions corresponding to
A = C = D = 0 in which σx = 0, σy = By and τxy = −Bx.

By assuming polynomials of the second or third degree for the stress function we
ensure that the compatibility equation is identically satisfied whatever the values of the
coefficients. For polynomials of higher degrees, compatibility is satisfied only if the
coefficients are related in a certain way. For example, for a stress function in the form
of a polynomial of the fourth degree

φ = Ax4

12
+ Bx3y

6
+ Cx2y2

2
+ Dxy3

6
+ Ey4

12

and

∂4φ

∂x4 = 2A 2
∂4φ

∂x2∂y2 = 4C
∂4φ

∂y4 = 2E

Substituting these values in Eq. (2.9) we have

E = −(2C + A)

The stress components are then

σx = ∂2φ

∂y2 = Cx2 + Dxy − (2C + A)y2

σy = ∂2φ

∂x2 = Ax2 + Bxy + Cy2

τxy = − ∂2φ

∂x ∂y
= −Bx2

2
− 2Cxy − Dy2

2
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The coefficients A, B, C and D are arbitrary and may be chosen to produce various
loading conditions as in the previous examples.

Example 2.3
A cantilever of length L and depth 2h is in a state of plane stress. The cantilever is of
unit thickness, is rigidly supported at the end x = L and is loaded as shown in Fig. 2.3.
Show that the stress function

φ = Ax2 + Bx2y + Cy3 + D(5x2y3 − y5)

is valid for the beam and evaluate the constants A, B, C and D.

The stress function must satisfy Eq. (2.9). From the expression for φ

∂φ

∂x
= 2Ax + 2Bxy + 10Dxy3

∂2φ

∂x2 = 2A + 2By + 10Dy3 = σy (i)

Also

∂φ

∂y
= Bx2 + 3Cy2 + 15Dx2y2 − 5Dy4

∂2φ

∂y2 = 6Cy + 30Dx2y − 20Dy3 = σx (ii)

and

∂2φ

∂x ∂y
= 2Bx + 30Dxy2 = −τxy (iii)

Further

∂4φ

∂x4 = 0
∂4φ

∂y4 = −120Dy
∂4φ

∂x2 ∂y2 = 60 Dy

h

q/unit area

h

L

y

x

Fig. 2.3 Beam of Example 2.3.
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Substituting in Eq. (2.9) gives

∂4φ

∂x4 + 2
∂4φ

∂x2∂y2 + ∂4φ

∂y4 = 2 × 60Dy − 120Dy = 0

The biharmonic equation is therefore satisfied and the stress function is valid.
From Fig. 2.3, σy = 0 at y = h so that, from Eq. (i)

2A + 2BH + 10Dh3 = 0 (iv)

Also from Fig. 2.3, σy = −q at y = −h so that, from Eq. (i)

2A − 2BH − 10Dh3 = −q (v)

Again from Fig. 2.3, τxy = 0 at y = ±h giving, from Eq. (iii)

2Bx + 30Dxh2 = 0

so that

2B + 30Dh2 = 0 (vi)

At x = 0 there is no resultant moment applied to the beam, i.e.

Mx=0 =
∫ h

−h
σxy dy =

∫ h

−h
(6Cy2 − 20Dy4) dy = 0

i.e.

Mx=0 = [2Cy3 − 4Dy5]h−h = 0

or

C − 2Dh2 = 0 (vii)

Subtracting Eq. (v) from (iv)

4Bh + 20Dh3 = q

or

B + 5Dh2 = q

4h
(viii)

From Eq. (vi)

B + 15Dh2 = 0 (ix)

so that, subtracting Eq. (viii) from Eq. (ix)

D = − q

40h3
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Then

B = 3q

8h
A = −q

4
C = − q

20h
and

φ = q

40h3 [ − 10h3x2 + 15h2x2y − 2h2y3 − (5x2y3 − y5)]

The obvious disadvantage of the inverse method is that we are determining prob-
lems to fit assumed solutions, whereas in structural analysis the reverse is the case.
However, in some problems the shape of the body and the applied loading allow sim-
plifying assumptions to be made, thereby enabling a solution to be obtained. St. Venant
suggested a semi-inverse method for the solution of this type of problem in which
assumptions are made as to stress or displacement components. These assumptions
may be based on experimental evidence or intuition. St. Venant first applied the method
to the torsion of solid sections (Chapter 3) and to the problem of a beam supporting
shear loads (Section 2.6).

2.4 St. Venant’s principle

In the examples of Section 2.3 we have seen that a particular stress function form may be
applicable to a variety of problems. Different problems are deduced from a given stress
function by specifying, in the first instance, the shape of the body and then assigning a
variety of values to the coefficients. The resulting stress functions give stresses which
satisfy the equations of equilibrium and compatibility at all points within and on the
boundary of the body. It follows that the applied loads must be distributed around the
boundary of the body in the same manner as the internal stresses at the boundary. In
the case of pure bending for example (Fig. 2.2(a)), the applied bending moment must be
produced by tensile and compressive forces on the ends of the plate, their magnitudes
being dependent on their distance from the neutral axis. If this condition is invalidated
by the application of loads in an arbitrary fashion or by preventing the free distortion of
any section of the body then the solution of the problem is no longer exact. As this is the

Fig. 2.4 Stress distributions illustrating St. Venant’s principle.
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case in practically every structural problem it would appear that the usefulness of the
theory is strictly limited. To surmount this obstacle we turn to the important principle
of St. Venant which may be summarized as stating:

that while statically equivalent systems of forces acting on a body produce substan-
tially different local effects the stresses at sections distant from the surface of loading
are essentially the same.

Therefore at a section AA close to the end of a beam supporting two point loads P
the stress distribution varies as shown in Fig. 2.4, whilst at the section BB, a distance
usually taken to be greater than the dimension of the surface to which the load is applied,
the stress distribution is uniform.

We may therefore apply the theory to sections of bodies away from points of applied
loading or constraint. The determination of stresses in these regions requires, for some
problems, separate calculation (see Chapters 26 and 27).

2.5 Displacements

Having found the components of stress, Eqs (1.47) (for the case of plane stress) are
used to determine the components of strain. The displacements follow from Eqs (1.27)
and (1.28). The integration of Eqs (1.27) yields solutions of the form

u = εxx + a − by (2.10)

v = εyy + c + bx (2.11)

in which a, b and c are constants representing movement of the body as a whole or
rigid body displacements. Of these a and c represent pure translatory motions of the
body while b is a small angular rotation of the body in the xy plane. If we assume that
b is positive in an anticlockwise sense then in Fig. 2.5 the displacement v′ due to the
rotation is given by

v′ = P′Q′ − PQ

= OP sin(θ + b) − OP sin θ

Fig. 2.5 Displacements produced by rigid body rotation.
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which, since b is a small angle, reduces to

v′ = bx

Similarly

u′ = −by as stated

2.6 Bending of an end-loaded cantilever

In his semi-inverse solution of this problem St. Venant based his choice of stress function
on the reasonable assumptions that the direct stress is directly proportional to bending
moment (and therefore distance from the free end) and height above the neutral axis.
The portion of the stress function giving shear stress follows from the equilibrium
condition relating σx and τxy. The appropriate stress function for the cantilever beam
shown in Fig. 2.6 is then

φ = Axy + Bxy3

6
(i)

where A and B are unknown constants. Hence

σx = ∂2φ

∂y2 = Bxy

σy = ∂2φ

∂x2 = 0

τxy = − ∂2φ

∂x ∂y
= −A − By2

2

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

(ii)

Substitution for φ in the biharmonic equation shows that the form of the stress function
satisfies compatibility for all values of the constants A and B. The actual values of A
and B are chosen to satisfy the boundary condition, viz. τxy = 0 along the upper and
lower edges of the beam, and the resultant shear load over the free end is equal to P.

Fig. 2.6 Bending of an end-loaded cantilever.
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From the first of these

τxy = −A − By2

2
= 0 at y = ±b

2

giving

A = −Bb2

8

From the second

−
∫ b/2

−b/2
τxy dy = P (see sign convention for τxy)

or

−
∫ b/2

−b/2

(
Bb2

8
− By2

2

)
dy = P

from which

B = −12P

b3

The stresses follow from Eqs (ii)

σx = −12Pxy

b3 = −Px

I
y

σy = 0

τxy = −12P

8b3 (b2 − 4y2) = − P

8I
(b2 − 4y2)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(iii)

where I = b3/12 the second moment of area of the beam cross-section.
We note from the discussion of Section 2.4 that Eq. (iii) represent an exact solution

subject to the following conditions that:

(1) the shear force P is distributed over the free end in the same manner as the shear
stress τxy given by Eqs (iii);

(2) the distribution of shear and direct stresses at the built-in end is the same as those
given by Eqs (iii);

(3) all sections of the beam, including the built-in end, are free to distort.

In practical cases none of these conditions is satisfied, but by virtue of St. Venant’s
principle we may assume that the solution is exact for regions of the beam away from
the built-in end and the applied load. For many solid sections the inaccuracies in these
regions are small. However, for thin-walled structures, with which we are primarily
concerned, significant changes occur and we shall consider the effects of structural and
loading discontinuities on this type of structure in Chapters 26 and 27.

We now proceed to determine the displacements corresponding to the stress system of
Eqs (iii). Applying the strain–displacement and stress–strain relationships, Eqs (1.27),



Ch02-H6739.tex 23/1/2007 12: 7 Page 58

58 Two-dimensional problems in elasticity

(1.28) and (1.47), we have

εx = ∂u

∂x
= σx

E
= −Pxy

EI
(iv)

εy = ∂v

∂y
= −νσx

E
= νPxy

EI
(v)

γxy = ∂u

∂y
+ ∂v

∂x
= τxy

G
= − P

8IG
(b2 − 4y2) (vi)

Integrating Eqs (iv) and (v) and noting that εx and εy are partial derivatives of the
displacements, we find

u = −Px2y

2EI
+ f1( y) v = νPxy2

2EI
+ f2x (vii)

where f1(y) and f2(x) are unknown functions of x and y. Substituting these values of u
and v in Eq. (vi)

−Px2

2EI
+ ∂f1(y)

∂y
+ νPy2

2EI
+ ∂f2(x)

∂x
= − P

8IG
(b2 − 4y2)

Separating the terms containing x and y in this equation and writing

F1(x) = −Px2

2EI
+ ∂f2(x)

∂x
F2(y) = νPy2

2EI
− Py2

2IG
+ ∂f1(y)

∂y

we have

F1(x) + F2( y) = −Pb2

8IG
The term on the right-hand side of this equation is a constant which means that F1(x)
and F2(y) must be constants, otherwise a variation of either x or y would destroy the
equality. Denoting F1(x) by C and F2(y) by D gives

C + D = −Pb2

8IG
(viii)

and

∂f2(x)

∂x
= Px2

2EI
+ C

∂f1(y)

∂y
= Py2

2IG
− νPy2

2EI
+ D

so that

f2(x) = Px3

6EI
+ Cx + F

and

f1(y) = Py3

6IG
− νPy3

6EI
+ Dy + H
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Therefore from Eqs (vii)

u = −Px2y

2EI
− νPy3

6EI
+ Py3

6IG
+ Dy + H (ix)

v = νPxy2

2EI
+ Px3

6EI
+ Cx + F (x)

The constants C, D, F and H are now determined from Eq. (viii) and the displacement
boundary conditions imposed by the support system.Assuming that the support prevents
movement of the point K in the beam cross-section at the built-in end then u = v = 0 at
x = l, y = 0 and from Eqs (ix) and (x)

H = 0 F = − Pl3

6EI
− Cl

If we now assume that the slope of the neutral plane is zero at the built-in end then
∂v/∂x = 0 at x = l, y = 0 and from Eq. (x)

C = − Pl2

2EI

It follows immediately that

F = Pl3

2EI

and, from Eq. (viii)

D = Pl2

2EI
− Pb2

8IG

Substitution for the constants C, D, F and H in Eqs (ix) and (x) now produces the
equations for the components of displacement at any point in the beam. Thus

u = −Px2y

2EI
− νPy3

6EI
+ Py3

6IG
+

(
Pl2

2EI
− Pb2

8IG

)

y (xi)

v = νPxy2

2EI
+ Px3

6EI
− Pl2x

2EI
+ Pl3

3EI
(xii)

The deflection curve for the neutral plane is

(v)y=0 = Px3

6EI
− Pl2x

2EI
+ Pl3

3EI
(xiii)

from which the tip deflection (x = 0) is Pl3/3EI. This value is that predicted by simple
beam theory (Chapter 16) and does not include the contribution to deflection of the
shear strain. This was eliminated when we assumed that the slope of the neutral plane
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Fig. 2.7 Rotation of neutral plane due to shear in end-loaded cantilever.

at the built-in end was zero. A more detailed examination of this effect is instructive.
The shear strain at any point in the beam is given by Eq. (vi)

γxy = − P

8IG
(b2 − 4y2)

and is obviously independent of x. Therefore at all points on the neutral plane the shear
strain is constant and equal to

γxy = −Pb2

8IG
which amounts to a rotation of the neutral plane as shown in Fig. 2.7. The deflection of
the neutral plane due to this shear strain at any section of the beam is therefore equal to

Pb2

8IG
(l − x)

and Eq. (xiii) may be rewritten to include the effect of shear as

(v)y=0 = Px3

6EI
− Pl2x

2EI
+ Pl3

3EI
+ Pb2

8IG
(l − x) (xiv)

Let us now examine the distorted shape of the beam section which the analysis
assumes is free to take place. At the built-in end when x = l the displacement of any
point is, from Eq. (xi)

u = νPy3

6EI
+ Py3

6IG
− Pb2y

8IG
(xv)

The cross-section would therefore, if allowed, take the shape of the shallow reversed S
shown in Fig. 2.8(a). We have not included in Eq. (xv) the previously discussed effect
of rotation of the neutral plane caused by shear. However, this merely rotates the beam
section as indicated in Fig. 2.8(b).

The distortion of the cross-section is produced by the variation of shear stress over
the depth of the beam. Thus the basic assumption of simple beam theory that plane
sections remain plane is not valid when shear loads are present, although for long,
slender beams bending stresses are much greater than shear stresses and the effect may
be ignored.
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Fig. 2.8 (a) Distortion of cross-section due to shear; (b) effect on distortion of rotation due to shear.

It will be observed from Fig. 2.8 that an additional direct stress system will be
imposed on the beam at the support where the section is constrained to remain plane.
For most engineering structures this effect is small but, as mentioned previously, may
be significant in thin-walled sections.

Reference

1 Timoshenko, S. and Goodier, J. N., Theory of Elasticity, 2nd edition, McGraw-Hill Book
Company, New York, 1951.

Problems

P.2.1 A metal plate has rectangular axes Ox, Oy marked on its surface. The point O
and the direction of Ox are fixed in space and the plate is subjected to the following
uniform stresses:

compressive, 3p, parallel to Ox,
tensile, 2p, parallel to Oy,
shearing, 4p, in planes parallel to Ox and Oy
in a sense tending to decrease the angle xOy.

Determine the direction in which a certain point on the plate will be displaced; the
coordinates of the point are (2, 3) before straining. Poisson’s ratio is 0.25.

Ans. 19.73◦ to Ox.

P.2.2 What do you understand by an Airy stress function in two dimensions? A
beam of length l, with a thin rectangular cross-section, is built-in at the end x = 0 and
loaded at the tip by a vertical force P (Fig. P.2.2). Show that the stress distribution, as
calculated by simple beam theory, can be represented by the expression

φ = Ay3 + By3x + Cyx

as an Airy stress function and determine the coefficients A, B and C.

Ans. A = 2Pl/td3, B = −2P/td3, C = 3P/2td.
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Fig. P.2.2

P.2.3 The cantilever beam shown in Fig. P.2.3 is in a state of plane strain and is
rigidly supported at x = L. Examine the following stress function in relation to this
problem:

φ = w

20h3 (15h2x2y − 5x2y3 − 2h2y3 + y5)

Show that the stresses acting on the boundaries satisfy the conditions except for a
distributed direct stress at the free end of the beam which exerts no resultant force or
bending moment.

h

y

w/unit area

w/unit area

L

h

x

Fig. P.2.3

Ans. The stress function satisfies the biharmonic equation:

• At y = h, σy = w and τxy = 0, boundary conditions satisfied.
• At y = −h, σy = −w and τxy = 0, boundary conditions satisfied.

Direct stress at free end of beam is not zero, there is no resultant force or bending
moment at the free end.
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P.2.4 A thin rectangular plate of unit thickness (Fig. P.2.4) is loaded along the edge
y = +d by a linearly varying distributed load of intensity w = px with corresponding
equilibrating shears along the vertical edges at x = 0 and l. As a solution to the stress
analysis problem an Airy stress function φ is proposed, where

φ = p

120d3 [5(x3 − l2x)(y + d)2(y − 2d) − 3yx(y2 − d2)2]

Fig. P.2.4

Show that φ satisfies the internal compatibility conditions and obtain the distribution
of stresses within the plate. Determine also the extent to which the static boundary
conditions are satisfied.

Ans. σx = px

20d3 [5y(x2 − l2) − 10y3 + 6d2y]

σy = px

4d3 ( y3 − 3yd2 − 2d3)

τxy = −p

40d3 [5(3x2 − l2)( y2 − d2) − 5y4 + 6y2d2 − d4].

The boundary stress function values of τxy do not agree with the assumed constant
equilibrating shears at x = 0 and l.

P.2.5 The cantilever beam shown in Fig. P.2.5 is rigidly fixed at x = L and carries
loading such that the Airy stress function relating to the problem is

φ = w

40bc3 (−10c3x2 − 15c2x2y + 2c2y3 + 5x2y3 − y5)

Find the loading pattern corresponding to the function and check its validity with respect
to the boundary conditions.

Ans. The stress function satisfies the biharmonic equation. The beam is a cantilever
under a uniformly distributed load of intensity w/unit area with a self-equilibrating stress
application given by σx = w(12c3y − 20y3)/40bc3 at x = 0. There is zero shear stress at
y = ±c and x = 0. At y = +c, σy = −w/b and at y = −c, σy = 0.
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c

c

b
y

L

x

Fig. P.2.5

P.2.6 A two-dimensional isotropic sheet, having a Young’s modulus E and linear
coefficient of expansion α, is heated non-uniformly, the temperature being T (x, y).
Show that the Airy stress function φ satisfies the differential equation

∇2(∇2φ + EαT ) = 0

where

∇2 = ∂2

∂x2 + ∂2

∂y2

is the Laplace operator.

P.2.7 Investigate the state of plane stress described by the following Airy stress
function

φ = 3Qxy

4a
− Qxy3

4a3

over the square region x = −a to x = +a, y = −a to y = +a. Calculate the stress
resultants per unit thickness over each boundary of the region.

Ans. The stress function satisfies the biharmonic equation. Also,

when x = a,

σx = −3Qy

2a2

when x = −a,

σx = 3Qy

2a2

and

τxy = −3Q

4a

(
1 − y2

a2

)
.
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Torsion of solid sections

The elasticity solution of the torsion problem for bars of arbitrary but uniform cross-
section is accomplished by the semi-inverse method (Section 2.3) in which assumptions
are made regarding either stress or displacement components. The former method owes
its derivation to Prandtl, the latter to St. Venant. Both methods are presented in this
chapter, together with the useful membrane analogy introduced by Prandtl.

3.1 Prandtl stress function solution

Consider the straight bar of uniform cross-section shown in Fig. 3.1. It is subjected
to equal but opposite torques T at each end, both of which are assumed to be free
from restraint so that warping displacements w, that is displacements of cross-sections
normal to and out of their original planes, are unrestrained. Further, we make the
reasonable assumptions that since no direct loads are applied to the bar

σx = σy = σz = 0

Fig. 3.1 Torsion of a bar of uniform, arbitrary cross-section.
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and that the torque is resisted solely by shear stresses in the plane of the cross-section
giving

τxy = 0

To verify these assumptions we must show that the remaining stresses satisfy the condi-
tions of equilibrium and compatibility at all points throughout the bar and, in addition,
fulfil the equilibrium boundary conditions at all points on the surface of the bar.

If we ignore body forces the equations of equilibrium, (1.5), reduce, as a result of
our assumptions, to

∂τxz

∂z
= 0

∂τyz

∂z
= 0

∂τzx

∂x
+ ∂τyz

∂y
= 0 (3.1)

The first two equations of Eqs (3.1) show that the shear stresses τxz and τyz are func-
tions of x and y only. They are therefore constant at all points along the length of
the bar which have the same x and y coordinates. At this stage we turn to the stress
function to simplify the process of solution. Prandtl introduced a stress function φ

defined by

∂φ

∂x
= −τzy

∂φ

∂y
= τzx (3.2)

which identically satisfies the third of the equilibrium equations (3.1) whatever form φ

may take. We therefore have to find the possible forms of φ which satisfy the compati-
bility equations and the boundary conditions, the latter being, in fact, the requirement
that distinguishes one torsion problem from another.

From the assumed state of stress in the bar we deduce that

εx = εy = εz = γxy = 0 (see Eqs (1.42) and (1.46))

Further, since τxz and τyz and hence γxz and γyz are functions of x and y only then
the compatibility equations (1.21)–(1.23) are identically satisfied as is Eq. (1.26). The
remaining compatibility equations, (1.24) and (1.25), are then reduced to

∂

∂x

(
−∂γyz

∂x
+ ∂γxz

∂y

)
= 0

∂

∂y

(
∂γyz

∂x
− ∂γxz

∂y

)
= 0

Substituting initially for γyz and γxz from Eqs (1.46) and then for τzy(= τyz)
and τzx(= τxz) from Eqs (3.2) gives

∂

∂x

(
∂2φ

∂x2 + ∂2φ

∂y2

)
= 0

− ∂

∂y

(
∂2φ

∂x2 + ∂2φ

∂y2

)
= 0
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or
∂

∂x
∇2φ = 0 − ∂

∂y
∇2φ = 0 (3.3)

where ∇2 is the two-dimensional Laplacian operator

(
∂2

∂x2 + ∂2

∂y2

)

The parameter ∇2φ is therefore constant at any section of the bar so that the function
φ must satisfy the equation

∂2φ

∂x2 + ∂2φ

∂y2 = constant = F (say) (3.4)

at all points within the bar.
Finally we must ensure that φ fulfils the boundary conditions specified by Eqs (1.7).

On the cylindrical surface of the bar there are no externally applied forces so that
X̄ = Ȳ = Z̄ = 0. The direction cosine n is also zero and therefore the first two equa-
tions of Eqs (1.7) are identically satisfied, leaving the third equation as the boundary
condition, i.e.

τyzm + τxzl = 0 (3.5)

The direction cosines l and m of the normal N to any point on the surface of the bar
are, by reference to Fig. 3.2

l = dy

ds
m = −dx

ds
(3.6)

Substituting Eqs (3.2) and (3.6) into (3.5) we have

∂φ

∂x

dx

ds
+ ∂φ

∂y

dy

ds
= 0

Fig. 3.2 Formation of the direction cosines l and m of the normal to the surface of the bar.



Ch03-H6739.tex 23/1/2007 12: 8 Page 68

68 Torsion of solid sections

or
∂φ

ds
= 0

Thus φ is constant on the surface of the bar and since the actual value of this constant
does not affect the stresses of Eq. (3.2) we may conveniently take the constant to be
zero. Hence on the cylindrical surface of the bar we have the boundary condition

φ = 0 (3.7)

On the ends of the bar the direction cosines of the normal to the surface have the
values l = 0, m = 0 and n = 1. The related boundary conditions, from Eqs (1.7), are then

X̄ = τzx

Ȳ = τzy

Z̄ = 0

We now observe that the forces on each end of the bar are shear forces which are dis-
tributed over the ends of the bar in the same manner as the shear stresses are distributed
over the cross-section. The resultant shear force in the positive direction of the x axis,
which we shall call Sx, is then

Sx =
∫∫

X̄ dx dy =
∫∫

τzx dx dy

or, using the relationship of Eqs (3.2)

Sx =
∫∫

∂φ

∂y
dx dy =

∫
dx

∫
∂φ

∂y
dy = 0

as φ = 0 at the boundary. In a similar manner, Sy, the resultant shear force in the y
direction, is

Sy = −
∫

dy
∫

∂φ

∂x
dx = 0

It follows that there is no resultant shear force on the ends of the bar and the forces
represent a torque of magnitude, referring to Fig. 3.3

T =
∫∫

(τzyx − τzxy) dx dy

in which we take the sign of T as being positive in the anticlockwise sense.
Rewriting this equation in terms of the stress function φ

T = −
∫∫

∂φ

∂x
x dx dy −

∫∫
∂φ

∂y
y dx dy

Integrating each term on the right-hand side of this equation by parts, and noting again
that φ = 0 at all points on the boundary, we have

T = 2
∫∫

φ dx dy (3.8)



Ch03-H6739.tex 23/1/2007 12: 8 Page 69

3.1 Prandtl stress function solution 69

Fig. 3.3 Derivation of torque on cross-section of bar.

We are therefore in a position to obtain an exact solution to a torsion problem if a stress
function φ(x, y) can be found which satisfies Eq. (3.4) at all points within the bar and
vanishes on the surface of the bar, and providing that the external torques are distributed
over the ends of the bar in an identical manner to the distribution of internal stress over
the cross-section. Although the last proviso is generally impracticable we know from
St. Venant’s principle that only stresses in the end regions are affected; therefore, the
solution is applicable to sections at distances from the ends usually taken to be greater
than the largest cross-sectional dimension. We have now satisfied all the conditions of
the problem without the use of stresses other than τzy and τzx, demonstrating that our
original assumptions were justified.

Usually, in addition to the stress distribution in the bar, we require to know the angle
of twist and the warping displacement of the cross-section. First, however, we shall
investigate the mode of displacement of the cross-section. We have seen that as a result
of our assumed values of stress

εx = εy = εz = γxy = 0

It follows, from Eqs (1.18) and the second of Eqs (1.20), that

∂u

∂x
= ∂v

∂y
= ∂w

∂z
= ∂v

∂x
+ ∂u

∂y
= 0

which result leads to the conclusions that each cross-section rotates as a rigid body in
its own plane about a centre of rotation or twist, and that although cross-sections suffer
warping displacements normal to their planes the values of this displacement at points
having the same coordinates along the length of the bar are equal. Each longitudinal
fibre of the bar therefore remains unstrained, as we have in fact assumed.

Let us suppose that a cross-section of the bar rotates through a small angle θ about
its centre of twist assumed coincident with the origin of the axes Oxy (see Fig. 3.4).
Some point P(r, α) will be displaced to P′(r, α + θ), the components of its displacement
being

u = −rθ sin α v = rθ cos α
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Fig. 3.4 Rigid body displacement in the cross-section of the bar.

or

u = −θy v = θx (3.9)

Referring to Eqs (1.20) and (1.46)

γzx = ∂u

∂z
+ ∂w

∂x
= τzx

G
γzy = ∂w

∂y
+ ∂v

∂z
= τzy

G

Rearranging and substituting for u and v from Eqs (3.9)

∂w

∂x
= τzx

G
+ dθ

dz
y

∂w

∂y
= τzy

G
− dθ

dz
x (3.10)

For a particular torsion problem Eqs (3.10) enable the warping displacement w of
the originally plane cross-section to be determined. Note that since each cross-section
rotates as a rigid body θ is a function of z only.

Differentiating the first of Eqs (3.10) with respect to y, the second with respect to x
and subtracting we have

0 = 1

G

(
∂τzx

∂y
− ∂τzy

∂x

)
+ 2

dθ

dz

Expressing τzx and τzy in terms of φ gives

∂2φ

∂x2 + ∂2φ

∂y2 = −2G
dθ

dz

or, from Eq. (3.4)

−2G
dθ

dz
= ∇2φ = F (constant) (3.11)

It is convenient to introduce a torsion constant J defined by the general torsion equation

T = GJ
dθ

dz
(3.12)
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Fig. 3.5 Lines of shear stress.

The product GJ is known as the torsional rigidity of the bar and may be written, from
Eqs (3.8) and (3.11)

GJ = − 4G

∇2φ

∫∫
φ dx dy (3.13)

Consider now the line of constant φ in Fig. 3.5. If s is the distance measured along
this line from some arbitrary point then

∂φ

∂s
= 0 = ∂φ

∂y

dy

ds
+ ∂φ

∂x

dx

ds

Using Eqs (3.2) and (3.6) we may rewrite this equation as

∂φ

∂s
= τzxl + τzym = 0 (3.14)

From Fig. 3.5 the normal and tangential components of shear stress are

τzn = τzxl + τzym τzs = τzyl − τzxm (3.15)

Comparing the first of Eqs (3.15) with Eq. (3.14) we see that the normal shear stress is
zero so that the resultant shear stress at any point is tangential to a line of constant φ.
These are known as lines of shear stress or shear lines.

Substituting φ in the second of Eqs (3.15) we have

τzs = −∂φ

∂x
l − ∂φ

∂y
m

which may be written, from Fig. 3.5, as

τzx = −∂φ

∂x

dx

dn
− ∂φ

∂y

dy

dn
= −∂φ

∂n
(3.16)

where, in this case, the direction cosines l and m are defined in terms of an elemental
normal of length δn.
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We have therefore shown that the resultant shear stress at any point is tangential to
the line of shear stress through the point and has a value equal to minus the derivative
of φ in a direction normal to the line.

Example 3.1
Determine the rate of twist and the stress distribution in a circular section bar of radius
R which is subjected to equal and opposite torques T at each of its free ends.

If we assume an origin of axes at the centre of the bar the equation of its surface is
given by

x2 + y2 = R2

If we now choose a stress function of the form

φ = C(x2 + y2 − R2) (i)

the boundary condition φ = 0 is satisfied at every point on the boundary of the bar
and the constant C may be chosen to fulfil the remaining requirement of compatibility.
Therefore from Eqs (3.11) and (i)

4C = −2G
dθ

dz

so that

C = −G

2

dθ

dz

and

φ = −G
dθ

dz
(x2 + y2 − R2)|2 (ii)

Substituting for φ in Eq. (3.8)

T = −G
dθ

dz

(∫∫
x2 dx dy +

∫∫
y2 dx dy − R2

∫∫
dx dy

)

The first and second integrals in this equation both have the value πR4/4 while the third
integral is equal to πR2, the area of cross-section of the bar. Then

T = −G
dθ

dz

(
πR4

4
+ πR4

4
− πR4

)

which gives

T = πR4

2
G

dθ

dz

i.e.

T = GJ
dθ

dz
(iii)
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in which J = πR4/2 = πD4/32 (D is the diameter), the polar second moment of area of
the bar’s cross-section.

Substituting for G(dθ/dz) in Eq. (ii) from (iii)

φ = − T

2J
(x2 + y2 − R2)

and from Eqs (3.2)

τzy = −∂φ

∂x
= Tx

J
τzx = ∂φ

∂y
= −T

J
y

The resultant shear stress at any point on the surface of the bar is then given by

τ =
√

τ2
zy + τ2

zx

i.e.

τ = T

J

√
x2 + y2

i.e.

τ = TR

J
(iv)

The above argument may be applied to any annulus of radius r within the cross-section
of the bar so that the stress distribution is given by

τ = Tr

J

and therefore increases linearly from zero at the centre of the bar to a maximum TR/J
at the surface.

Example 3.2
A uniform bar has the elliptical cross-section shown in Fig. 3.6 and is subjected to equal
and opposite torques T at each of its free ends. Derive expressions for the rate of twist in
the bar, the shear stress distribution and the warping displacement of its cross-section.

The semi-major and semi-minor axes are a and b, respectively, so that the equation
of its boundary is

x2

a2 + y2

b2 = 1

If we choose a stress function of the form

φ = C

(
x2

a2 + y2

b2 − 1

)
(i)
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Fig. 3.6 Torsion of a bar of elliptical cross-section.

then the boundary condition φ = 0 is satisfied at every point on the boundary and the
constant C may be chosen to fulfil the remaining requirement of compatibility. Thus,
from Eqs (3.11) and (i)

2C

(
1

a2 + 1

b2

)
= −2G

dθ

dz

or

C = −G
dθ

dz

a2b2

(a2 + b2)
(ii)

giving

φ = −G
dθ

dz

a2b2

(a2 + b2)

(
x2

a2 + y2

b2 − 1

)
(iii)

Substituting this expression for φ in Eq. (3.8) establishes the relationship between the
torque T and the rate of twist

T = −2G
dθ

dz

a2b2

(a2 + b2)

(
1

a2

∫∫
x2 dx dy + 1

b2

∫∫
y2 dx dy −

∫∫
dx dy

)

The first and second integrals in this equation are the second moments of area
Iyy = πa3b/4 and Ixx = πab3/4, while the third integral is the area of the cross-section
A = πab. Replacing the integrals by these values gives

T = G
dθ

dz

πa3b3

(a2 + b2)
(iv)

from which (see Eq. (3.12))

J = πa3b3

(a2 + b2)
(v)

The shear stress distribution is obtained in terms of the torque by substituting for
the product G (dθ/dz) in Eq. (iii) from (iv) and then differentiating as indicated by the
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relationships of Eqs (3.2). Thus

τzx = − 2Ty

πab3 τzy = 2Tx

πa3b
(vi)

So far we have solved for the stress distribution, Eqs (vi), and the rate of twist, Eq.
(iv). It remains to determine the warping distribution w over the cross-section. For this
we return to Eqs (3.10) which become, on substituting from the above for τzx, τzy and
dθ/dz

∂w

∂x
= − 2Ty

πab3G
+ T

G

(a2 + b2)

πa3b3 y
∂w

∂y
= 2Tx

πa3bG
− T

G

(a2 + b2)

πa3b3 x

or

∂w

∂x
= T

πa3b3G
(b2 − a2)y

∂w

∂y
= T

πa3b3G
(b2 − a2)x (vii)

Integrating both of Eqs (vii)

w = T (b2 − a2)

πa3b3G
yx + f1(y) w = T (b2 − a2)

πa3b3G
xy + f2(x)

The warping displacement given by each of these equations must have the same value
at identical points (x, y). It follows that f1(y) = f2(x) = 0. Hence

w = T (b2 − a2)

πa3b3G
xy (viii)

Lines of constant w therefore describe hyperbolas with the major and minor axes of the
elliptical cross-section as asymptotes. Further, for a positive (anticlockwise) torque the
warping is negative in the first and third quadrants (a > b) and positive in the second
and fourth.

3.2 St. Venant warping function solution

In formulating his stress function solution Prandtl made assumptions concerned with the
stress distribution in the bar. The alternative approach presented by St. Venant involves
assumptions as to the mode of displacement of the bar; namely, that cross-sections of
a bar subjected to torsion maintain their original unloaded shape although they may
suffer warping displacements normal to their plane. The first of these assumptions leads
to the conclusion that cross-sections rotate as rigid bodies about a centre of rotation or
twist. This fact was also found to derive from the stress function approach of Section
3.1 so that, referring to Fig. 3.4 and Eq. (3.9), the components of displacement in the
x and y directions of a point P in the cross-section are

u = −θy v = θx
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It is also reasonable to assume that the warping displacement w is proportional to the
rate of twist and is therefore constant along the length of the bar. Hence we may define
w by the equation

w = dθ

dz
ψ(x, y) (3.17)

where ψ(x, y) is the warping function.
The assumed form of the displacements u, v and w must satisfy the equilibrium and

force boundary conditions of the bar. We note here that it is unnecessary to investigate
compatibility as we are concerned with displacement forms which are single-valued
functions and therefore automatically satisfy the compatibility requirement.

The components of strain corresponding to the assumed displacements are obtained
from Eqs (1.18) and (1.20) and are

εx = εy = εz = γxy = 0

γzx = ∂w

∂x
+ ∂u

∂z
= dθ

dz

(
∂ψ

∂x
− y

)

γzy = ∂w

∂y
+ ∂ν

∂z
= dθ

dz

(
∂ψ

∂y
+ x

)

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(3.18)

The corresponding components of stress are, from Eqs (1.42) and (1.46)

σx = σy = σz = τxy = 0

τzx = G
dθ

dz

(
∂ψ

∂x
− y

)

τzy = G
dθ

dz

(
∂ψ

∂y
+ x

)

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(3.19)

Ignoring body forces we see that these equations identically satisfy the first two of the
equilibrium equations (1.5) and also that the third is fulfilled if the warping function
satisfies the equation

∂2ψ

∂x2 + ∂2ψ

∂y2 = ∇2ψ = 0 (3.20)

The direction cosine n is zero on the cylindrical surface of the bar and so the first
two of the boundary conditions (Eqs (1.7)) are identically satisfied by the stresses of
Eqs (3.19). The third equation simplifies to

(
∂ψ

∂y
+ x

)
m +

(
∂ψ

∂x
− y

)
l = 0 (3.21)

It may be shown, but not as easily as in the stress function solution, that the shear
stresses defined in terms of the warping function in Eqs (3.19) produce zero resultant
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shear force over each end of the bar.1 The torque is found in a similar manner to that
in Section 3.1 where, by reference to Fig. 3.3, we have

T =
∫∫

(τzyx − τzxy)dx dy

or

T = G
dθ

dz

∫∫ [(
∂ψ

∂y
+ x

)
x −

(
∂ψ

∂x
− y

)
y

]
dx dy (3.22)

By comparison with Eq. (3.12) the torsion constant J is now, in terms of ψ

J =
∫∫ [(

∂ψ

∂y
+ x

)
x −

(
∂ψ

∂x
− y

)
y

]
dx dy (3.23)

The warping function solution to the torsion problem reduces to the determination
of the warping function ψ which satisfies Eqs (3.20) and (3.21). The torsion constant
and the rate of twist follow from Eqs (3.23) and (3.22); the stresses and strains from
Eqs (3.19) and (3.18) and, finally, the warping distribution from Eq. (3.17).

3.3 The membrane analogy

Prandtl suggested an extremely useful analogy relating the torsion of an arbitrarily
shaped bar to the deflected shape of a membrane. The latter is a thin sheet of material
which relies for its resistance to transverse loads on internal in-plane or membrane
forces.

Suppose that a membrane has the same external shape as the cross-section of a torsion
bar (Fig. 3.7(a)). It supports a transverse uniform pressure q and is restrained along its
edges by a uniform tensile force N /unit length as shown in Fig. 3.7(a) and (b). It is
assumed that the transverse displacements of the membrane are small so that N remains

Fig. 3.7 Membrane analogy: in-plane and transverse loading.
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unchanged as the membrane deflects. Consider the equilibrium of an element δxδy of
the membrane. Referring to Fig. 3.8 and summing forces in the z direction we have

−Nδy
∂w

∂x
− Nδy

(
−∂w

∂x
− ∂2w

∂x2 δx

)
− Nδx

∂w

∂y
− Nδx

(
−∂w

∂y
− ∂2w

∂y2 δx

)
+ qδxδy = 0

or

∂2w

∂x2 + ∂2w

∂y2 = ∇2w = − q

N
(3.24)

Equation (3.24) must be satisfied at all points within the boundary of the membrane.
Furthermore, at all points on the boundary

w = 0 (3.25)

and we see that by comparing Eqs (3.24) and (3.25) with Eqs (3.11) and (3.7) w is
analogous to φ when q is constant. Thus if the membrane has the same external shape
as the cross-section of the bar then

w(x, y) = φ(x, y)

and
q

N
= −F = 2G

dθ

dz

The analogy now being established, we may make several useful deductions relating
the deflected form of the membrane to the state of stress in the bar.

Contour lines or lines of constant w correspond to lines of constant φ or lines of shear
stress in the bar. The resultant shear stress at any point is tangential to the membrane
contour line and equal in value to the negative of the membrane slope, ∂w/∂n, at that

Fig. 3.8 Equilibrium of element of membrane.
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point, the direction n being normal to the contour line (see Eq. (3.16)). The volume
between the membrane and the xy plane is

Vol =
∫∫

w dx dy

and we see that by comparison with Eq. (3.8)

T = 2 Vol

The analogy therefore provides an extremely useful method of analysing torsion
bars possessing irregular cross-sections for which stress function forms are not known.
Hetényi2 describes experimental techniques for this approach. In addition to the strictly
experimental use of the analogy it is also helpful in the visual appreciation of a particular
torsion problem. The contour lines often indicate a form for the stress function, enabling
a solution to be obtained by the method of Section 3.1. Stress concentrations are made
apparent by the closeness of contour lines where the slope of the membrane is large.
These are in evidence at sharp internal corners, cut-outs, discontinuities, etc.

3.4 Torsion of a narrow rectangular strip

In Chapter 18 we shall investigate the torsion of thin-walled open section beams; the
development of the theory being based on the analysis of a narrow rectangular strip
subjected to torque. We now conveniently apply the membrane analogy to the torsion
of such a strip shown in Fig. 3.9. The corresponding membrane surface has the same
cross-sectional shape at all points along its length except for small regions near its
ends where it flattens out. If we ignore these regions and assume that the shape of the

Fig. 3.9 Torsion of a narrow rectangular strip.
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membrane is independent of y then Eq. (3.11) simplifies to

d2φ

dx2 = −2G
dθ

dz

Integrating twice

φ = −G
dθ

dz
x2 + Bx + C

Substituting the boundary conditions φ = 0 at x = ± t/2 we have

φ = −G
dθ

dz

[

x2 −
(

t

2

)2
]

(3.26)

Although φ does not disappear along the short edges of the strip and therefore does not
give an exact solution, the actual volume of the membrane differs only slightly from
the assumed volume so that the corresponding torque and shear stresses are reasonably
accurate. Also, the maximum shear stress occurs along the long sides of the strip where
the contours are closely spaced, indicating, in any case, that conditions in the end region
of the strip are relatively unimportant.

The stress distribution is obtained by substituting Eq. (3.26) in Eqs (3.2), then

τzy = 2Gx
dθ

dz
τzx = 0 (3.27)

the shear stress varying linearly across the thickness and attaining a maximum

τzy,max = ±Gt
dθ

dz
(3.28)

at the outside of the long edges as predicted. The torsion constant J follows from the
substitution of Eq. (3.26) into (3.13), giving

J = st3

3
(3.29)

and

τzy,max = 3T

st3

These equations represent exact solutions when the assumed shape of the deflected
membrane is the actual shape. This condition arises only when the ratio s/t approaches
infinity; however, for ratios in excess of 10 the error is of the order of only 6 per cent.
Obviously the approximate nature of the solution increases as s/t decreases. Therefore,
in order to retain the usefulness of the analysis, a factor µ is included in the torsion
constant, i.e.

J = µst3

3
Values of µ for different types of section are found experimentally and quoted in various
references.3,4 We observe that as s/t approaches infinity µ approaches unity.
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Fig. 3.10 Warping of a thin rectangular strip.

The cross-section of the narrow rectangular strip of Fig. 3.9 does not remain plane
after loading but suffers warping displacements normal to its plane; this warping may
be determined using either of Eqs (3.10). From the first of these equations

∂w

∂x
= y

dθ

dz
(3.30)

since τzx = 0 (see Eqs (3.27)). Integrating Eq. (3.30) we obtain

w = xy
dθ

dz
+ constant (3.31)

Since the cross-section is doubly symmetrical w = 0 at x = y = 0 so that the constant in
Eq. (3.31) is zero. Therefore

w = xy
dθ

dz
(3.32)

and the warping distribution at any cross-section is as shown in Fig. 3.10.
We should not close this chapter without mentioning alternative methods of solution

of the torsion problem. These in fact provide approximate solutions for the wide range
of problems for which exact solutions are not known. Examples of this approach are
the numerical finite difference method and the Rayleigh–Ritz method based on energy
principles.5
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Problems

P.3.1 Show that the stress function φ = k(r2 − a2) is applicable to the solution of
a solid circular section bar of radius a. Determine the stress distribution in the bar in
terms of the applied torque, the rate of twist and the warping of the cross-section.

Is it possible to use this stress function in the solution for a circular bar of hollow
section?

Ans. τ = Tr/Ip where Ip = πa4/2,

dθ/dz = 2T/Gπa4, w = 0 everywhere.

P.3.2 Deduce a suitable warping function for the circular section bar of P.3.1 and
hence derive the expressions for stress distribution and rate of twist.

Ans. ψ = 0, τzx = − Ty

Ip
, τzy = Tx

Ip
, τzs = Tr

Ip
,

dθ

dz
= T

GIP

P.3.3 Show that the warping function ψ = kxy, in which k is an unknown constant,
may be used to solve the torsion problem for the elliptical section of Example 3.2.

P.3.4 Show that the stress function

φ = −G
dθ

dz

[
1

2
(x2 + y2) − 1

2a
(x3 − 3xy2) − 2

27
a2

]

is the correct solution for a bar having a cross-section in the form of the equilateral
triangle shown in Fig. P.3.4. Determine the shear stress distribution, the rate of twist
and the warping of the cross-section. Find the position and magnitude of the maximum
shear stress.

Fig. P.3.4
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Ans.
τzy = G

dθ

dz

(
x − 3x2

2a
+ 3y2

2a

)

τzx = −G
dθ

dz

(
y + 3xy

a

)

τmax (at centre of each side) = −a

2
G

dθ

dz

dθ

dz
= 15

√
3T

Ga4

w = 1

2a

dθ

dz
(y3 − 3x2y).

P.3.5 Determine the maximum shear stress and the rate of twist in terms of the
applied torque T for the section comprising narrow rectangular strips shown in Fig.
P.3.5.

Fig. P.3.5

Ans. τmax = 3T/(2a + b)t2, dθ/dz = 3T/G(2a + b)t3.
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4

Virtual work and energy
methods

Many structural problems are statically determinate, i.e., the support reactions and
internal force systems may be found using simple statics where the number of unknowns
is equal to the number of equations of equilibrium available. In cases where the number
of unknowns exceeds the possible number of equations of equilibrium, for example, a
propped cantilever beam, other methods of analysis are required.

The methods fall into two categories and are based on two important concepts; the
first, which is presented in this chapter, is the principle of virtual work. This is the most
fundamental and powerful tool available for the analysis of statically indeterminate
structures and has the advantage of being able to deal with conditions other than those
in the elastic range. The second, based on strain energy, can provide approximate
solutions of complex problems for which exact solutions do not exist and is discussed in
Chapter 5. In some cases the two methods are equivalent since, although the governing
equations differ, the equations themselves are identical.

In modern structural analysis, computer-based techniques are widely used; these
include the flexibility and stiffness methods (see Chapter 6). However, the formulation
of, say, stiffness matrices for the elements of a complex structure is based on one of
the above approaches so that a knowledge and understanding of their application is
advantageous.

4.1 Work

Before we consider the principle of virtual work in detail, it is important to clarify
exactly what is meant by work. The basic definition of work in elementary mechanics
is that ‘work is done when a force moves its point of application’. However, we shall
require a more exact definition since we shall be concerned with work done by both
forces and moments and with the work done by a force when the body on which it acts
is given a displacement which is not coincident with the line of action of the force.

Consider the force, F, acting on a particle, A, in Fig. 4.1(a). If the particle is given
a displacement, �, by some external agency so that it moves to A′ in a direction at an
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angle α to the line of action of F, the work, WF , done by Fis given by

WF = F(� cos α) (4.1)

or

WF = (F cos α)� (4.2)

We see therefore that the work done by the force, F, as the particle moves from A to
A′ may be regarded as either the product of F and the component of � in the direction
of F (Eq. (4.1)) or as the product of the component of F in the direction of � and �

(Eq. (4.2)).
Now consider the couple (pure moment) in Fig. 4.1(b) and suppose that the couple

is given a small rotation of θ radians. The work done by each force F is then F(a/2)θ
so that the total work done, WC, by the couple is

WC = F
a

2
θ + F

a

2
θ = Faθ

It follows that the work done, WM , by the pure moment, M, acting on the bar AB in
Fig. 4.1(c) as it is given a small rotation, θ, is

WM = Mθ (4.3)

Note that in the above the force, F, and moment, M, are in position before the displace-
ments take place and are not the cause of them. Also, in Fig. 4.1(a), the component of �

parallel to the direction of F is in the same direction as F; if it had been in the opposite
direction the work done would have been negative. The same argument applies to the
work done by the moment, M, where we see in Fig. 4.1(c) that the rotation, θ, is in
the same sense as M. Note also that if the displacement, �, had been perpendicular to
the force, F, no work would have been done by F.

Finally it should be remembered that work is a scalar quantity since it is not associated
with direction (in Fig. 4.1(a) the force F does work if the particle is moved in any
direction). Thus the work done by a series of forces is the algebraic sum of the work
done by each force.

A

A

B

(a) (b) (c)

A�

F

M

F

F

�

a

u

u

u

a
2
u

a
2

a
2

a
2

Fig. 4.1 Work done by a force and a moment.
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4.2 Principle of virtual work

The establishment of the principle will be carried out in stages. First we shall consider
a particle, then a rigid body and finally a deformable body, which is the practical
application we require when analysing structures.

4.2.1 Principle of virtual work for a particle

In Fig. 4.2 a particle, A, is acted upon by a number of concurrent forces, F1, F2, . . . ,
Fk , . . . , Fr ; the resultant of these forces is R. Suppose that the particle is given a small
arbitrary displacement, �v, to A′ in some specified direction; �v is an imaginary or
virtual displacement and is sufficiently small so that the directions of F1, F2, etc., are
unchanged. Let θR be the angle that the resultant, R, of the forces makes with the
direction of �v and θ1, θ2, . . . , θk , . . . , θr the angles that F1, F2, . . . , Fk , . . . , Fr make
with the direction of �v, respectively. Then, from either of Eqs (4.1) or (4.2) the
total virtual work, WF , done by the forces Fas the particle moves through the virtual
displacement, �v, is given by

WF = F1�v cos θ1 + F2�v cos θ2 + · · · + Fk�v cos θk + · · · + Fr�v cos θr

Thus

WF =
r∑

k=1

Fk�v cos θk

or, since �v is a fixed, although imaginary displacement

WF = �v

r∑

k=1

Fk cos θk (4.4)

In Eq. (4.4)
∑r

k=1 Fk cos θk is the sum of all the components of the forces, F, in the
direction of �v and therefore must be equal to the component of the resultant, R, of the

F2

Fk

Fr

F1

A

R

A�

u1

uR

�v

Fig. 4.2 Virtual work for a system of forces acting on a particle.
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forces, F, in the direction of �v, i.e.

WF = �v

r∑

k=1

Fk cos θk = �vR cos θR (4.5)

If the particle, A, is in equilibrium under the action of the forces, F1, F2, . . . , Fk , . . . , Fr,
the resultant, R, of the forces is zero. It follows from Eq. (4.5) that the virtual work
done by the forces, F, during the virtual displacement, �v, is zero.

We can therefore state the principle of virtual work for a particle as follows:

If a particle is in equilibrium under the action of a number of forces the total work
done by the forces for a small arbitrary displacement of the particle is zero.

It is possible for the total work done by the forces to be zero even though the particle is
not in equilibrium if the virtual displacement is taken to be in a direction perpendicular to
their resultant, R. We cannot, therefore, state the converse of the above principle unless
we specify that the total work done must be zero for any arbitrary displacement. Thus:

A particle is in equilibrium under the action of a system of forces if the total work
done by the forces is zero for any virtual displacement of the particle.

Note that in the above, �v is a purely imaginary displacement and is not related in any
way to the possible displacement of the particle under the action of the forces, F. �v has
been introduced purely as a device for setting up the work–equilibrium relationship of
Eq. (4.5). The forces, F, therefore remain unchanged in magnitude and direction during
this imaginary displacement; this would not be the case if the displacement were real.

4.2.2 Principle of virtual work for a rigid body

Consider the rigid body shown in Fig. 4.3, which is acted upon by a system of external
forces, F1, F2, . . . , Fk , . . . , Fr . These external forces will induce internal forces in the
body, which may be regarded as comprising an infinite number of particles; on adjacent
particles, such as A1 and A2, these internal forces will be equal and opposite, in other
words self-equilibrating. Suppose now that the rigid body is given a small, imaginary,
that is virtual, displacement, �v (or a rotation or a combination of both), in some
specified direction. The external and internal forces then do virtual work and the total
virtual work done, Wt , is the sum of the virtual work, We, done by the external forces
and the virtual work, Wi, done by the internal forces. Thus

Wt = We + Wi (4.6)

Since the body is rigid, all the particles in the body move through the same displacement,
�v, so that the virtual work done on all the particles is numerically the same. However,
for a pair of adjacent particles, such as A1 and A2 in Fig. 4.3, the self-equilibrating
forces are in opposite directions, which means that the work done on A1 is opposite in
sign to the work done on A2. Therefore the sum of the virtual work done on A1 and
A2 is zero. The argument can be extended to the infinite number of pairs of particles in
the body from which we conclude that the internal virtual work produced by a virtual
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Self-equilibrating internal forces

F1

Fr Fk

F2

A1 A2

Fig. 4.3 Virtual work for a rigid body.

displacement in a rigid body is zero. Equation (4.6) then reduces to

Wt = We (4.7)

Since the body is rigid and the internal virtual work is therefore zero, we may regard
the body as a large particle. It follows that if the body is in equilibrium under the action
of a set of forces, F1, F2, . . . , Fk , . . . , Fr , the total virtual work done by the external
forces during an arbitrary virtual displacement of the body is zero.

Example 4.1
Calculate the support reactions in the simply supported beam shown in Fig. 4.4.

Only a vertical load is applied to the beam so that only vertical reactions, RA and
RC, are produced.

Suppose that the beam at C is given a small imaginary, that is a virtual, displacement,
�v,c, in the direction of RC as shown in Fig. 4.4(b). Since we are concerned here solely
with the external forces acting on the beam we may regard the beam as a rigid body.
The beam therefore rotates about A so that C moves to C′ and B moves to B′. From
similar triangles we see that

�v,B = a

a + b
�v,C = a

L
�v,C (i)

The total virtual work, Wt , done by all the forces acting on the beam is then given by

Wt = RC�v,C − W�v,B (ii)

Note that the work done by the load, W , is negative since �v,B is in the opposite
direction to its line of action. Note also that the support reaction, RA, does no work
since the beam only rotates about A. Now substituting for �v,B in Eq. (ii) from Eq. (i)
we have

Wt = RC�v,C − W
a

L
�v,C (iii)
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Fig. 4.4 Use of the principle of virtual work to calculate support reactions.

Since the beam is in equilibrium, Wt is zero from the principal of virtual work. Hence,
from Eq. (iii)

RC�v,C − W
a

L
�v,C = 0

which gives

RC = W
a

L
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which is the result that would have been obtained from a consideration of the moment
equilibrium of the beam about A. RA follows in a similar manner. Suppose now that
instead of the single displacement �v,C the complete beam is given a vertical virtual
displacement, �v, together with a virtual rotation, θv, about A as shown in Fig. 4.4(c).
The total virtual work, Wt , done by the forces acting on the beam is now given by

Wt = RA�v − W (�v + aθv) + RC(�v + Lθv) = 0 (iv)

since the beam is in equilibrium. Rearranging Eq. (iv)

(RA + RC − W )�v + (RCL − Wa)θv = 0 (v)

Equation (v) is valid for all values of �v and θv so that

RA + RC − W = 0 RCL − Wa = 0

which are the equations of equilibrium we would have obtained by resolving forces
vertically and taking moments about A.

It is not being suggested here that the application of the principles of statics should
be abandoned in favour of the principle of virtual work. The purpose of Example 4.1
is to illustrate the application of a virtual displacement and the manner in which the
principle is used.

4.2.3 Virtual work in a deformable body

In structural analysis we are not generally concerned with forces acting on a rigid body.
Structures and structural members deform under load, which means that if we assign
a virtual displacement to a particular point in a structure, not all points in the structure
will suffer the same virtual displacement as would be the case if the structure were rigid.
This means that the virtual work produced by the internal forces is not zero as it is in
the rigid body case, since the virtual work produced by the self-equilibrating forces on
adjacent particles does not cancel out. The total virtual work produced by applying a
virtual displacement to a deformable body acted upon by a system of external forces is
therefore given by Eq. (4.6).

If the body is in equilibrium under the action of the external force system then every
particle in the body is also in equilibrium. Therefore, from the principle of virtual work,
the virtual work done by the forces acting on the particle is zero irrespective of whether
the forces are external or internal. It follows that, since the virtual work is zero for all
particles in the body, it is zero for the complete body and Eq. (4.6) becomes

We + Wi = 0 (4.8)

Note that in the above argument only the conditions of equilibrium and the concept of
work are employed. Equation (4.8) therefore does not require the deformable body to
be linearly elastic (i.e. it need not obey Hooke’s law) so that the principle of virtual work
may be applied to any body or structure that is rigid, elastic or plastic. The principle
does require that displacements, whether real or imaginary, must be small, so that we
may assume that external and internal forces are unchanged in magnitude and direction
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during the displacements. In addition the virtual displacements must be compatible
with the geometry of the structure and the constraints that are applied, such as those
at a support. The exception is the situation we have in Example 4.1 where we apply
a virtual displacement at a support. This approach is valid since we include the work
done by the support reactions in the total virtual work equation.

4.2.4 Work done by internal force systems

The calculation of the work done by an external force is straightforward in that it is the
product of the force and the displacement of its point of application in its own line of
action (Eqs (4.1), (4.2) or (4.3)) whereas the calculation of the work done by an internal
force system during a displacement is much more complicated. Generally no matter
how complex a loading system is, it may be simplified to a combination of up to four
load types: axial load, shear force, bending moment and torsion; these in turn produce
corresponding internal force systems. We shall now consider the work done by these
internal force systems during arbitrary virtual displacements.

Axial force
Consider the elemental length, δx, of a structural member as shown in Fig. 4.5 and
suppose that it is subjected to a positive internal force system comprising a normal force
(i.e. axial force), N , a shear force, S, a bending moment, M and a torque, T , produced
by some external loading system acting on the structure of which the member is part.
The stress distributions corresponding to these internal forces are related to an axis

Cross-sectional
area, A

T

y

S

N

G
M

z

x

�x

�A

Fig. 4.5 Virtual work due to internal force system.
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system whose origin coincides with the centroid of area of the cross-section. We shall,
in fact, be using these stress distributions in the derivation of expressions for internal
virtual work in linearly elastic structures so that it is logical to assume the same origin
of axes here; we shall also assume that the y axis is an axis of symmetry. Initially we
shall consider the normal force, N .

The direct stress, σ, at any point in the cross-section of the member is given by
σ = N /A. Therefore the normal force on the element δA at the point (z, y) is

δN = σδA = N

A
δA

Suppose now that the structure is given an arbitrary virtual displacement which produces
a virtual axial strain, εv, in the element. The internal virtual work, δwi,N , done by the
axial force on the elemental length of the member is given by

δwi,N =
∫

A

N

A
dAεv δx

which, since
∫

AdA = A, reduces to

δwi,N = Nεv δx (4.9)

In other words, the virtual work done by N is the product of N and the virtual axial
displacement of the element of the member. For a member of length L, the virtual work,
wi,N , done during the arbitrary virtual strain is then

wi,N =
∫

L
Nεv dx (4.10)

For a structure comprising a number of members, the total internal virtual work, Wi,N ,
done by axial force is the sum of the virtual work of each of the members. Therefore

wi,N =
∑ ∫

L
Nεv dx (4.11)

Note that in the derivation of Eq. (4.11) we have made no assumption regarding the
material properties of the structure so that the relationship holds for non-elastic as well
as elastic materials. However, for a linearly elastic material, i.e. one that obeys Hooke’s
law, we can express the virtual strain in terms of an equivalent virtual normal force, i.e.

εv = σv

E
= Nv

EA

Therefore, if we designate the actual normal force in a member by NA, Eq. (4.11) may
be expressed in the form

wi,N =
∑ ∫

L

NANv

EA
dx (4.12)
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Shear force
The shear force, S, acting on the member section in Fig. 4.5 produces a distribution of
vertical shear stress which depends upon the geometry of the cross-section. However,
since the element, δA, is infinitesimally small, we may regard the shear stress, τ, as
constant over the element. The shear force, δS, on the element is then

δS = τ δA (4.13)

Suppose that the structure is given an arbitrary virtual displacement which produces a
virtual shear strain, γv, at the element. This shear strain represents the angular rotation
in a vertical plane of the element δA × δx relative to the longitudinal centroidal axis
of the member. The vertical displacement at the section being considered is therefore
γv δx. The internal virtual work, δwi,S , done by the shear force, S, on the elemental
length of the member is given by

δwi,S =
∫

A
τ dAγv δx

A uniform shear stress through the cross section of a beam may be assumed if we allow
for the actual variation by including a form factor, β.1 The expression for the internal
virtual work in the member may then be written

δwi,S =
∫

A
β

(
S

A

)
dAγv δx

or

δwi,S = βSγv δx (4.14)

Hence the virtual work done by the shear force during the arbitrary virtual strain in a
member of length L is

wi,S = β

∫

L
Sγv dx (4.15)

For a linearly elastic member, as in the case of axial force, we may express the virtual
shear strain, γv, in terms of an equivalent virtual shear force, Sv, i.e.

γv = τv

G
= Sv

GA

so that from Eq. (4.15)

wi,S = β

∫

L

SASv

GA
dx (4.16)

For a structure comprising a number of linearly elastic members the total internal work,
Wi,S , done by the shear forces is

Wi,S =
∑

β

∫

L

SASv

GA
dx (4.17)
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Bending moment
The bending moment, M, acting on the member section in Fig. 4.5 produces a distri-
bution of direct stress, σ, through the depth of the member cross-section. The normal
force on the element, δA, corresponding to this stress is therefore σ δA. Again we shall
suppose that the structure is given a small arbitrary virtual displacement which pro-
duces a virtual direct strain, εv, in the element δA × δx. Thus the virtual work done by
the normal force acting on the element δA is σ δA εv δx. Hence, integrating over the
complete cross-section of the member we obtain the internal virtual work, δwi,M , done
by the bending moment, M, on the elemental length of member, i.e.

δwi,M =
∫

A
σ dAεv δx (4.18)

The virtual strain, εv, in the element δA × δx is, from Eq. (16.2), given by

εv = y

Rv

where Rv is the radius of curvature of the member produced by the virtual displacement.
Thus, substituting for εv in Eq. (4.18), we obtain

δwi,M =
∫

A
σ

y

Rv
dA δx

or, since σy δA is the moment of the normal force on the element, δA, about the z axis

δwi,M = M

Rv
δx

Therefore, for a member of length L, the internal virtual work done by an actual bending
moment, MA, is given by

wi,M =
∫

L

MA

Rv
dx (4.19)

In the derivation of Eq. (4.19) no specific stress–strain relationship has been assumed,
so that it is applicable to a non-linear system. For the particular case of a linearly elastic
system, the virtual curvature 1/Rv may be expressed in terms of an equivalent virtual
bending moment, Mv, using the relationship of Eq. (16.20), i.e.

1

Rv
= Mv

EI

Substituting for 1/Rv in Eq. (4.19) we have

wi,M =
∫

L

MAMv

EI
dx (4.20)

so that for a structure comprising a number of members the total internal virtual work,
Wi,M , produced by bending is

Wi,M =
∑ ∫

L

MAMv

EI
dx (4.21)
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Torsion
The internal virtual work, wi,T , due to torsion in the particular case of a linearly elastic
circular section bar may be found in a similar manner and is given by

wi,T =
∫

L

TATv

GIo
dx (4.22)

in which Io is the polar second moment of area of the cross-section of the bar (see
Example 3.1). For beams of non-circular cross-section, Io is replaced by a torsion
constant, J , which, for many practical beam sections is determined empirically.

Hinges
In some cases it is convenient to impose a virtual rotation, θv, at some point in a
structural member where, say, the actual bending moment is MA. The internal virtual
work done by MA is then MAθv (see Eq. (4.3)); physically this situation is equivalent
to inserting a hinge at the point.

Sign of internal virtual work
So far we have derived expressions for internal work without considering whether it is
positive or negative in relation to external virtual work.

Suppose that the structural member, AB, in Fig. 4.6(a) is, say, a member of a truss and
that it is in equilibrium under the action of two externally applied axial tensile loads,
P; clearly the internal axial, that is normal, force at any section of the member is P.
Suppose now that the member is given a virtual extension, δv, such that B moves to B′.
Then the virtual work done by the applied load, P, is positive since the displacement,
δv, is in the same direction as its line of action. However, the virtual work done by
the internal force, N (=P), is negative since the displacement of B is in the opposite
direction to its line of action; in other words work is done on the member. Thus, from
Eq. (4.8), we see that in this case

We = Wi (4.23)

A

A

P

P

N � P

N � P

P

P

(a)

(b)

B

B B�

dv

Fig. 4.6 Sign of the internal virtual work in an axially loaded member.
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Equation (4.23) would apply if the virtual displacement had been a contraction and not
an extension, in which case the signs of the external and internal virtual work in Eq.
(4.8) would have been reversed. Clearly the above applies equally if P is a compressive
load. The above arguments may be extended to structural members subjected to shear,
bending and torsional loads, so that Eq. (4.23) is generally applicable.

4.2.5 Virtual work due to external force systems

So far in our discussion we have only considered the virtual work produced by externally
applied concentrated loads. For completeness we must also consider the virtual work
produced by moments, torques and distributed loads.

In Fig. 4.7 a structural member carries a distributed load, w(x), and at a particular
point a concentrated load, W , a moment, M and a torque, T . Suppose that at the point
a virtual displacement is imposed that has translational components, �v,y and �v,x,
parallel to the y and x axes, respectively, and rotational components, θv and φv, in the
yx and zy planes, respectively.

If we consider a small element, δx, of the member at the point, the distributed load
may be regarded as constant over the length δx and acting, in effect, as a concentrated
load w(x)δx. The virtual work, we, done by the complete external force system is
therefore given by

we = W�v,y + P�v,x + Mθv + Tφv +
∫

L
w(x)�v,y dx

For a structure comprising a number of load positions, the total external virtual work
done is then

We =
∑ [

W�v,y + P�v,x + Mθv + Tφv +
∫

L
w(x)�v,y dx

]
(4.24)

In Eq. (4.24) there need not be a complete set of external loads applied at every loading
point so, in fact, the summation is for the appropriate number of loads. Further, the
virtual displacements in the above are related to forces and moments applied in a vertical
plane. We could, of course, have forces and moments and components of the virtual

W

M

T

P

x

w(x )

z

y

Fig. 4.7 Virtual work due to externally applied loads.
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displacement in a horizontal plane, in which case Eq. (4.24) would be extended to
include their contribution.

The internal virtual work equivalent of Eq. (4.24) for a linear system is, from Eqs
(4.12), (4.17), (4.21) and (4.22)

Wi =
∑ [∫

L

NANv

EA
dx + β

∫

L

SASv

GA
dx +

∫

L

MAMv

EI
dx +

∫

L

TATv

GJ
dx + MAθv

]

(4.25)

in which the last term on the right-hand side is the virtual work produced by an actual
internal moment at a hinge (see above). Note that the summation in Eq. (4.25) is taken
over all the members of the structure.

4.2.6 Use of virtual force systems

So far, in all the structural systems we have considered, virtual work has been produced
by actual forces moving through imposed virtual displacements. However, the actual
forces are not related to the virtual displacements in any way since, as we have seen, the
magnitudes and directions of the actual forces are unchanged by the virtual displace-
ments so long as the displacements are small. Thus the principle of virtual work applies
for any set of forces in equilibrium and any set of displacements. Equally, therefore,
we could specify that the forces are a set of virtual forces in equilibrium and that the
displacements are actual displacements. Therefore, instead of relating actual external
and internal force systems through virtual displacements, we can relate actual external
and internal displacements through virtual forces.

If we apply a virtual force system to a deformable body it will induce an internal
virtual force system which will move through the actual displacements; internal virtual
work will therefore be produced. In this case, for example, Eq. (4.10) becomes

wi,N =
∫

L
NvεA dx

in which Nv is the internal virtual normal force and εA is the actual strain. Then, for
a linear system, in which the actual internal normal force is NA, εA = NA/EA, so that
for a structure comprising a number of members the total internal virtual work due to
a virtual normal force is

Wi,N =
∑ ∫

L

NvNA

EA
dx

which is identical to Eq. (4.12). Equations (4.17), (4.21) and (4.22) may be shown to
apply to virtual force systems in a similar manner.

4.3 Applications of the principle of virtual work

We have now seen that the principle of virtual work may be used either in the form
of imposed virtual displacements or in the form of imposed virtual forces. Generally
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the former approach, as we saw in Example 4.1, is used to determine forces, while the
latter is used to obtain displacements.

For statically determinate structures the use of virtual displacements to determine
force systems is a relatively trivial use of the principle although problems of this type
provide a useful illustration of the method. The real power of this approach lies in its
application to the solution of statically indeterminate structures. However, the use of
virtual forces is particularly useful in determining actual displacements of structures.
We shall illustrate both approaches by examples.

Example 4.2
Determine the bending moment at the point B in the simply supported beamABC shown
in Fig. 4.8(a).

We determined the support reactions for this particular beam in Example 4.1. In this
example, however, we are interested in the actual internal moment, MB, at the point of
application of the load. We must therefore impose a virtual displacement which will
relate the internal moment at B to the applied load and which will exclude other unknown
external forces such as the support reactions, and unknown internal force systems such
as the bending moment distribution along the length of the beam. Therefore, if we
imagine that the beam is hinged at B and that the lengths AB and BC are rigid, a virtual
displacement, �v,B, at B will result in the displaced shape shown in Fig. 4.8(b).

Note that the support reactions at A and C do no work and that the internal moments
in AB and BC do no work because AB and BC are rigid links. From Fig. 4.8(b)

�v,B = aβ = bα (i)

Hence

α = a

b
β

W

B CA

(a)

a b

L

W

B�

CA

(b)

b

b

a

a�v,B

Fig. 4.8 Determination of bending moment at a point in the beam of Example 4.2 using virtual work.
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and the angle of rotation of BC relative to AB is then

θB = β + α = β
(

1 + a

b

)
= L

b
β (ii)

Now equating the external virtual work done by W to the internal virtual work done by
MB (see Eq. (4.23)) we have

W�v,B = MBθB (iii)

Substituting in Eq. (iii) for �v,B from Eq. (i) and for θB from Eq. (ii) we have

Waβ = MB
L

b
β

which gives

MB = Wab

L
which is the result we would have obtained by calculating the moment of RC (=Wa/L
from Example 4.1) about B.

Example 4.3
Determine the force in the member AB in the truss shown in Fig. 4.9(a).

C

D
B

A E

3 m

4 m

C

B

A E

(b)(a)

B�

C�

D

4 m

30 kN

10 kN

�C

�v,B
a

a

Fig. 4.9 Determination of the internal force in a member of a truss using virtual work.
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We are required to calculate the force in the member AB, so that again we need to
relate this internal force to the externally applied loads without involving the internal
forces in the remaining members of the truss. We therefore impose a virtual extension,
�v,B, at B in the member AB, such that B moves to B′. If we assume that the remaining
members are rigid, the forces in them will do no work. Further, the triangle BCD
will rotate as a rigid body about D to B′C′D as shown in Fig. 4.9(b). The horizontal
displacement of C, �C, is then given by

�C = 4α

while

�v,B = 3α

Hence

�C = 4�v,B

3
(i)

Equating the external virtual work done by the 30 kN load to the internal virtual work
done by the force, FBA, in the member, AB, we have (see Eq. (4.23) and Fig. 4.6)

30�C = FBA�v,B (ii)

Substituting for �C from Eq. (i) in Eq. (ii),

30 × 4

3
�v,B = FBA�v,B

Whence

FBA = +40 kN (i.e. FBA is tensile)

In the above we are, in effect, assigning a positive (i.e. tensile) sign to FBA by imposing
a virtual extension on the member AB.

The actual sign of FBA is then governed by the sign of the external virtual work.
Thus, if the 30 kN load had been in the opposite direction to �C the external work done
would have been negative, so that FBA would be negative and therefore compressive.
This situation can be verified by inspection. Alternatively, for the loading as shown
in Fig. 4.9(a), a contraction in AB would have implied that FBA was compressive. In
this case DC would have rotated in an anticlockwise sense, �C would have been in
the opposite direction to the 30 kN load so that the external virtual work done would
be negative, resulting in a negative value for the compressive force FBA; FBA would
therefore be tensile as before. Note also that the 10 kN load at D does no work since D
remains undisplaced.

We shall now consider problems involving the use of virtual forces. Generally we
shall require the displacement of a particular point in a structure, so that if we apply a
virtual force to the structure at the point and in the direction of the required displacement
the external virtual work done will be the product of the virtual force and the actual
displacement, which may then be equated to the internal virtual work produced by the
internal virtual force system moving through actual displacements. Since the choice of
the virtual force is arbitrary, we may give it any convenient value; the simplest type of
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virtual force is therefore a unit load and the method then becomes the unit load method
(see also Section 5.5).

Example 4.4
Determine the vertical deflection of the free end of the cantilever beam shown in
Fig. 4.10(a).

Let us suppose that the actual deflection of the cantilever at B produced by the
uniformly distributed load is υB and that a vertically downward virtual unit load was
applied at B before the actual deflection took place. The external virtual work done by
the unit load is, from Fig. 4.10(b), 1υB. The deflection, υB, is assumed to be caused
by bending only, i.e. we are ignoring any deflections due to shear. The internal virtual
work is given by Eq. (4.21) which, since only one member is involved, becomes

Wi,M =
∫ L

0

MAMv

EI
dx (i)

The virtual moments, Mv, are produced by a unit load so that we shall replace Mv by
M1. Then

Wi,M =
∫ L

0

MAM1

EI
dx (ii)

At any section of the beam a distance x from the built-in end

MA = −w

2
(L − x)2 M1 = −1(L − x)

w

A BEI

L

x

(a)

A

B

1 (Unit load)

(b)

yB

Fig. 4.10 Deflection of the free end of a cantilever beam using the unit load method.
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Substituting for MA and M1 in Eq. (ii) and equating the external virtual work done by
the unit load to the internal virtual work we have

1υB =
∫ L

0

w

2EI
(L − x)3 dx

which gives

υB = − w

2EI

[
1

4
(L − x)4

]L

0

so that

υB = wL4

8EI

Note that υB is in fact negative but the positive sign here indicates that it is in the same
direction as the unit load.

Example 4.5
Determine the rotation, i.e. the slope, of the beam ABC shown in Fig. 4.11(a) at A.

2
W

2
W

EI

W

x L/2 L/2

A

(a)

B C

L

A

(b)

C

Unit moment

L
1

Rv,C �
L
1

Rv,A �

uA

Fig. 4.11 Determination of the rotation of a simply supported beam at a support using the unit load method.
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The actual rotation of the beam at A produced by the actual concentrated load, W , is
θA. Let us suppose that a virtual unit moment is applied at A before the actual rotation
takes place, as shown in Fig. 4.11(b). The virtual unit moment induces virtual support
reactions of Rv,A (=1/L) acting downwards and Rv,C (=1/L) acting upwards. The actual
internal bending moments are

MA = +W

2
x 0 ≤ x ≤ L/2

MA = +W

2
(L − x) L/2 ≤ x ≤ L

The internal virtual bending moment is

Mv = 1 − 1

L
x 0 ≤ x ≤ L

The external virtual work done is 1θA (the virtual support reactions do no work as there
is no vertical displacement of the beam at the supports) and the internal virtual work
done is given by Eq. (4.21). Hence

1θA = 1

EI

[∫ L/2

0

W

2
x
(

1 − x

L

)
dx +

∫ L

L/2

W

2
(L − x)

(
1 − x

L

)
dx

]
(i)

Simplifying Eq. (i) we have

θA = W

2EIL

[∫ L/2

0
(Lx − x2)dx +

∫ L

L/2
(L − x)2dx

]
(ii)

Hence

θA = W

2EIL

{[
L

x2

2
− x3

3

]L/2

0
− 1

3

[
(L − x)3]L

L/2

}

from which

θA = WL2

16EI

Example 4.6
Calculate the vertical deflection of the joint B and the horizontal movement of the
support D in the truss shown in Fig. 4.12(a). The cross-sectional area of each member is
1800 mm2 andYoung’s modulus, E, for the material of the members is 200 000 N/mm2.

The virtual force systems, i.e. unit loads, required to determine the vertical deflection
of B and the horizontal deflection of D are shown in Fig. 4.12(b) and (c), respectively.
Therefore, if the actual vertical deflection at B is δB,v and the horizontal deflection at D
is δD,h the external virtual work done by the unit loads is 1δB,v and 1δD,h, respectively.
The internal actual and virtual force systems comprise axial forces in all the members.
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(b)

(a)

4 m

4 m

4 m 4 m
100 kN

40 kN

(c)

D
CB

E F

E F

E F

A

D
CB

A

D
1

CB
A

1

Fig. 4.12 Deflection of a truss using the unit load method.

These axial forces are constant along the length of each member so that for a truss
comprising n members, Eq. (4.12) reduces to

Wi,N =
n∑

j=1

FA,jFv,jLj

EjAj
(i)

in which FA, j and Fv, j are the actual and virtual forces in the jth member which has a
length Lj, an area of cross-section Aj and a Young’s modulus Ej.

Since the forces Fv, j are due to a unit load, we shall write Eq. (i) in the form

Wi,N =
n∑

j=1

FA, jF1, jLj

EjAj
(ii)

Also, in this particular example, the area of cross-section, A, and Young’s modulus, E,
are the same for all members so that it is sufficient to calculate

∑n
j=1 FA, jF1, jLj and

then divide by EA to obtain Wi,N .
The forces in the members, whether actual or virtual, may be calculated by the

method of joints.3 Note that the support reactions corresponding to the three sets of
applied loads (one actual and two virtual) must be calculated before the internal force
systems can be determined. However, in Fig. 4.12(c), it is clear from inspection that
F1,AB = F1,BC = F1,CD = +1 while the forces in all other members are zero. The calcu-
lations are presented in Table 4.1; note that positive signs indicate tension and negative
signs compression.
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Table 4.1

Member L (m) FA (kN) F1,B F1,D FAF1,BL (kN m) FAF1,DL (kN m)

AE 5.7 −84.9 −0.94 0 +451.4 0
AB 4.0 +60.0 +0.67 +1.0 +160.8 +240.0
EF 4.0 −60.0 −0.67 0 +160.8 0
EB 4.0 +20.0 +0.67 0 +53.6 0
BF 5.7 −28.3 +0.47 0 −75.2 0
BC 4.0 +80.0 +0.33 +1.0 +105.6 +320.0
CD 4.0 +80.0 +0.33 +1.0 +105.6 +320.0
CF 4.0 +100.0 0 0 0 0
DF 5.7 −113.1 −0.47 0 +301.0 0

∑ = +1263.6
∑ = +880.0

Thus equating internal and external virtual work done (Eq. (4.23)) we have

1δB,v = 1263.6 × 106

200 000 × 1800

whence

δB,v = 3.51 mm

and

1δD,h = 880 × 106

200 000 × 1800

which gives

δD,h = 2.44 mm

Both deflections are positive which indicates that the deflections are in the directions
of the applied unit loads. Note that in the above it is unnecessary to specify units for
the unit load since the unit load appears, in effect, on both sides of the virtual work
equation (the internal F1 forces are directly proportional to the unit load).

References

1 Megson, T. H. G., Structural and Stress Analysis, 2nd edition, Elsevier, Oxford, 2005.

Problems

P.4.1 Use the principle of virtual work to determine the support reactions in the
beam ABCD shown in Fig. P.4.1.

Ans. RA = 1.25W RD = 1.75W .
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A B C D

W2W

L/4 L/4L/2

Fig. P.4.1

P.4.2 Find the support reactions in the beam ABC shown in Fig. P.4.2 using the
principle of virtual work.

Ans. RA = (W + 2wL)/4 Rc = (3w + 2wL)/4.

A

B

C

W

w

L/43L/4

Fig. P.4.2

P.4.3 Determine the reactions at the built-in end of the cantilever beam ABC shown
in Fig. P.4.3 using the principle of virtual work.

Ans. RA = 3W MA = 2.5WL.

A B
C

W 2W

L/2L/2

Fig. P.4.3

P.4.4 Find the bending moment at the three-quarter-span point in the beam shown
in Fig. P.4.4. Use the principle of virtual work.
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Ans. 3wL2/32.

A B

w

L

Fig. P.4.4

P.4.5 Calculate the forces in the members FG, GD and CD of the truss shown in
Fig. P.4.5 using the principle of virtual work. All horizontal and vertical members are
1 m long.

Ans. FG = +20 kN GD = +28.3 kN CD = −20 kN.

A

E F G

D
C

20 kN

10 kN

B

Fig. P.4.5

P.4.6 Use the principle of virtual work to calculate the vertical displacements at
the quarter- and mid-span points in the beam shown in Fig. P.4.6.

Ans. 57wL4/6144EI 5wL4/384EI (both downwards).

A B

w

EI

L

Fig. P.4.6
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Energy methods

In Chapter 2 we have seen that the elasticity method of structural analysis embodies the
determination of stresses and/or displacements by employing equations of equilibrium
and compatibility in conjunction with the relevant force–displacement or stress–strain
relationships. In addition, in Chapter 4, we investigated the use of virtual work in calcu-
lating forces, reactions and displacements in structural systems. A powerful alternative
but equally fundamental approach is the use of energy methods. These, while providing
exact solutions for many structural problems, find their greatest use in the rapid approx-
imate solution of problems for which exact solutions do not exist. Also, many structures
which are statically indeterminate, i.e. they cannot be analysed by the application of
the equations of statical equilibrium alone, may be conveniently analysed using an
energy approach. Further, energy methods provide comparatively simple solutions for
deflection problems which are not readily solved by more elementary means.

Generally, as we shall see, modern analysis1 uses the methods of total complemen-
tary energy and total potential energy. Either method may be employed to solve a
particular problem, although as a general rule deflections are more easily found using
complementary energy, and forces by potential energy.

Although energy methods are applicable to a wide range of structural problems
and may even be used as indirect methods of forming equations of equilibrium or
compatibility,1,2 we shall be concerned in this chapter with the solution of deflection
problems and the analysis of statically indeterminate structures. We shall also include
some methods restricted to the solution of linear systems, i.e. the unit load method, the
principle of superposition and the reciprocal theorem.

5.1 Strain energy and complementary energy

Figure 5.1(a) shows a structural member subjected to a steadily increasing load P. As
the member extends, the load P does work and from the law of conservation of energy
this work is stored in the member as strain energy. A typical load–deflection curve for a
member possessing non-linear elastic characteristics is shown in Fig. 5.1(b). The strain
energy U produced by a load P and corresponding extension y is then

U =
∫ y

0
P dy (5.1)
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Fig. 5.1 (a) Strain energy of a member subjected to simple tension; (b) load–deflection curve for a nonlinearly elastic
member.

and is clearly represented by the area OBD under the load–deflection curve. Engesser
(1889) called the area OBA above the curve the complementary energy C, and from
Fig. 5.1(b)

C =
∫ P

0
y dP (5.2)

Complementary energy, as opposed to strain energy, has no physical meaning, being
purely a convenient mathematical quantity. However, it is possible to show that com-
plementary energy obeys the law of conservation of energy in the type of situation
usually arising in engineering structures, so that its use as an energy method is valid.

Differentiation of Eqs (5.1) and (5.2) with respect to y and P, respectively gives

dU

dy
= P

dC

dP
= y

Bearing these relationships in mind we can now consider the interchangeability of strain
and complementary energy. Suppose that the curve of Fig. 5.1(b) is represented by the
function

P = byn

where the coefficient b and exponent n are constants. Then

U =
∫ y

0
P dy = 1

n

∫ P

0

(
P

b

)1/n

dP

C =
∫ P

0
y dP = n

∫ y

0
byn dy

Hence

dU

dy
= P

dU

dP
= 1

n

(
P

b

)1/n

= 1

n
y (5.3)
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Fig. 5.2 Load–deflection curve for a linearly elastic member.

dC

dP
= y

dC

dy
= bnyn = nP (5.4)

When n = 1

dU

dy
= dC

dy
= P

dU

dP
= dC

dP
= y

⎫
⎪⎪⎬

⎪⎪⎭
(5.5)

and the strain and complementary energies are completely interchangeable. Such a
condition is found in a linearly elastic member; its related load–deflection curve being
that shown in Fig. 5.2. Clearly, area OBD(U) is equal to area OBA(C).

It will be observed that the latter of Eqs (5.5) is in the form of what is commonly
known as Castigliano’s first theorem, in which the differential of the strain energy U
of a structure with respect to a load is equated to the deflection of the load. To be
mathematically correct, however, it is the differential of the complementary energy C
which should be equated to deflection (compare Eqs (5.3) and (5.4)).

5.2 The principle of the stationary value of the
total complementary energy

Consider an elastic system in equilibrium supporting forces P1, P2, . . . , Pn which pro-
duce real corresponding displacements �1, �2, . . . , �n. If we impose virtual forces
δP1, δP2, . . . , δPn on the system acting through the real displacements then the total
virtual work done by the system is (see Chapter 4)

−
∫

vol
y dP +

n∑

r=1

�rδPr

The first term in the above expression is the negative virtual work done by the particles
in the elastic body, while the second term represents the virtual work of the externally
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applied virtual forces. From the principle of virtual work

−
∫

vol
y dP +

n∑

r=1

�rδPr = 0 (5.6)

Comparing Eq. (5.6) with Eq. (5.2) we see that each term represents an increment in
complementary energy; the first, of the internal forces, the second, of the external loads.
Equation (5.6) may therefore be rewritten

δ(Ci + Ce) = 0 (5.7)

where

Ci =
∫

vol

∫ P

0
y dP and Ce = −

n∑

r=1

�rPr (5.8)

We shall now call the quantity (Ci + Ce) the total complementary energy C of the
system.

The displacements specified in Eq. (5.6) are real displacements of a continuous
elastic body; they therefore obey the condition of compatibility of displacement so that
Eqs (5.6) and (5.7) are equations of geometrical compatibility. The principle of the
stationary value of the total complementary energy may then be stated as:

For an elastic body in equilibrium under the action of applied forces the true internal
forces (or stresses) and reactions are those for which the total complementary energy
has a stationary value.

In other words the true internal forces (or stresses) and reactions are those which
satisfy the condition of compatibility of displacement. This property of the total com-
plementary energy of an elastic system is particularly useful in the solution of statically
indeterminate structures, in which an infinite number of stress distributions and reactive
forces may be found to satisfy the requirements of equilibrium.

5.3 Application to deflection problems

Generally, deflection problems are most readily solved by the complementary energy
approach, although for linearly elastic systems there is no difference between the
methods of complementary and potential energy since, as we have seen, complemen-
tary and strain energy then become completely interchangeable. We shall illustrate the
method by reference to the deflections of frames and beams which may or may not
possess linear elasticity.

Let us suppose that we require to find the deflection �2 of the load P2 in the sim-
ple pin-jointed framework consisting, say, of k members and supporting loads P1,
P2, . . . , Pn, as shown in Fig. 5.3. From Eqs (5.8) the total complementary energy of the
framework is given by

C =
k∑

i=1

∫ Fi

0
λi dFi −

n∑

r=1

�rPr (5.9)
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Fig. 5.3 Determination of the deflection of a point on a framework by the method of complementary energy.

where λi is the extension of the ith member, Fi the force in the ith member and �r
the corresponding displacement of the rth load Pr . From the principle of the stationary
value of the total complementary energy

∂C

∂P2
=

k∑

i=1

λi
∂Fi

∂P2
− �2 = 0 (5.10)

from which

�2 =
k∑

i=1

λi
∂Fi

∂P2
(5.11)

Equation (5.10) is seen to be identical to the principle of virtual forces in which virtual
forces δF and δP act through real displacements λ and �. Clearly the partial derivatives
with respect to P2 of the constant loads P1, P2, . . . , Pn vanish, leaving the required
deflection �2 as the unknown. At this stage, before �2 can be evaluated, the load–
displacement characteristics of the members must be known. For linear elasticity

λi = FiLi

AiEi

where Li, Ai and Ei are the length, cross-sectional area and modulus of elasticity of the
ith member. On the other hand, if the load–displacement relationship is of a non-linear
form, say

Fi = b(λi)
c

in which b and c are known, then Eq. (5.11) becomes

�2 =
k∑

i=1

(
Fi

b

)1/c
∂Fi

∂P2

The computation of �2 is best accomplished in tabular form, but before the procedure
is illustrated by an example some aspects of the solution merit discussion.

We note that the support reactions do not appear in Eq. (5.9). This convenient absence
derives from the fact that the displacements �1, �2, . . . , �n are the real displace-
ments of the frame and fulfil the conditions of geometrical compatibility and boundary
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restraint. The complementary energy of the reaction at A and the vertical reaction at
B is therefore zero, since both of their corresponding displacements are zero. If we
examine Eq. (5.11) we note that λi is the extension of the ith member of the framework
due to the applied loads P1, P2, . . . , Pn. Therefore, the loads Fi in the substitution for
λi in Eq. (5.11) are those corresponding to the loads P1, P2, . . . , Pn. The term ∂Fi/∂P2
in Eq. (5.11) represents the rate of change of Fi with P2 and is calculated by applying
the load P2 to the unloaded frame and determining the corresponding member loads in
terms of P2. This procedure indicates a method for obtaining the displacement of either
a point on the frame in a direction not coincident with the line of action of a load or,
in fact, a point such as C which carries no load at all. We place at the point and in the
required direction a fictitious or dummy load, say Pf , the original loads being removed.
The loads in the members due to Pf are then calculated and ∂F/∂Pf obtained for each
member. Substitution in Eq. (5.11) produces the required deflection.

It must be pointed out that it is not absolutely necessary to remove the actual loads
during the application of Pf . The force in each member would then be calculated in
terms of the actual loading and Pf . Fi follows by substituting Pf = 0 and ∂Fi/∂Pf is
found by differentiation with respect to Pf . Obviously the two approaches yield the
same expressions for Fi and ∂Fi/∂Pf , although the latter is arithmetically clumsier.

Example 5.1
Calculate the vertical deflection of the point B and the horizontal movement of D in the
pin-jointed framework shown in Fig. 5.4(a). All members of the framework are linearly

Fig. 5.4 (a) Actual loading of framework; (b) determination of vertical deflection of B; (c) determination of horizontal
deflection of D.
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elastic and have cross-sectional areas of 1800 mm2. E for the material of the members
is 200 000 N/mm2.

The members of the framework are linearly elastic so that Eq. (5.11) may be written

� =
k∑

i=1

FiLi

AiEi

∂Fi

∂P
(i)

or, since each member has the same cross-sectional area and modulus of elasticity

� = 1

AE

k∑

i=1

FiLi
∂Fi

∂P
(ii)

The solution is completed in Table 5.1, in which F are the member forces due to the
actual loading of Fig. 5.4(a), FB,f are the member forces due to the fictitious load PB,f
in Fig. 5.4(b) and FD,f are the forces in the members produced by the fictitious load PD,f
in Fig. 5.4(c). We take tensile forces as positive and compressive forces as negative.

The vertical deflection of B is

�B,v = 1268 × 106

1800 × 200 000
= 3.52 mm

and the horizontal movement of D is

�D,h = 880 × 106

1800 × 200 000
= 2.44 mm

which agree with the virtual work solution (Example 4.6).
The positive values of �B,v and �D,h indicate that the deflections are in the directions

of PB,f and PD,f .
The analysis of beam deflection problems by complementary energy is similar to

that of pin-jointed frameworks, except that we assume initially that displacements are
caused primarily by bending action. Shear force effects are discussed later in the chapter.
Figure 5.5 shows a tip loaded cantilever of uniform cross-section and length L. The tip
load P produces a vertical deflection �v which we require to find.

Table 5.1

① ② ③ ④ ⑤ ⑥ ⑦ ⑧ × 106 ⑨ × 106

Member L (mm) F(N) FB,f (N) ∂FB,f /∂PB,f FD,f (N) ∂FD,f /∂PD,f FL∂FB,f /∂PB,f FL∂FD,f /∂PD,f

AE 4000
√

2 −60 000
√

2 −2
√

2PB,f/3 −2
√

2/3 0 0 320
√

2 0
EF 4000 −60 000 −2PB,f/3 −2/3 0 0 160 0
FD 4000

√
2 −80 000

√
2 −√

2PB,f/3 −√
2/3 0 0 640

√
2/3 0

DC 4000 80 000 PB,f /3 1/3 PD,f 1 320/3 320
CB 4000 80 000 PB,f /3 1/3 PD,f 1 320/3 320
BA 4000 60 000 2PB,f /3 2/3 PD,f 1 480/3 240
EB 4000 20 000 2PB,f /3 2/3 0 0 160/3 0
FB 4000

√
2 −20 000

√
2

√
2PB,f /3

√
2/3 0 0 −160

√
2/3 0

FC 4000 100 000 0 0 0 0 0 0
∑ = 1268

∑ = 880
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Fig. 5.5 Beam deflection by the method of complementary energy.

The total complementary energy C of the system is given by

C =
∫

L

∫ M

0
dθ dM − P�v (5.12)

in which
∫ M

0 dθ dM is the complementary energy of an element δz of the beam. This
element subtends an angle δθ at its centre of curvature due to the application of the bend-
ing moment M. From the principle of the stationary value of the total complementary
energy

∂C

∂P
=
∫

L
dθ

dM

dP
− �v = 0

or

�v =
∫

L
dθ

dM

dP
(5.13)

Equation (5.13) is applicable to either a non-linear or linearly elastic beam. To proceed
further, therefore, we require the load–displacement (M–θ) and bending moment–
load (M–P) relationships. It is immaterial for the purposes of this illustrative problem
whether the system is linear or non-linear, since the mechanics of the solution are the
same in either case. We choose therefore a linear M–θ relationship as this is the case
in the majority of the problems we consider. Hence from Fig. 5.5

δθ = Kδz

or

dθ = M

EI
dz

(
1

K
= EI

M
from simple beam theory

)

where the product modulus of elasticity × second moment of area of the beam cross
section is known as the bending or flexural rigidity of the beam. Also

M = Pz

so that
dM

dP
= z
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Fig. 5.6 Deflection of a uniformly loaded cantilever by the method of complementary energy.

Substitution for dθ, M and dM/dP in Eq. (5.13) gives

�v =
∫ L

0

Pz2

EI
dz

or

�v = PL3

3EI

The fictitious load method of the framework example may be employed in the solution
of beam deflection problems where we require deflections at positions on the beam other
than concentrated load points. Suppose that we are to find the tip deflection �T of the
cantilever of the previous example in which the concentrated load has been replaced by
a uniformly distributed load of intensity w per unit length (see Fig. 5.6). First we apply a
fictitious load Pf at the point where the deflection is required. The total complementary
energy of the system is

C =
∫

L

∫ M

0
dθ dM − �T Pf −

∫ L

0
�w dz

where the symbols take their previous meanings and � is the vertical deflection of any
point on the beam. Then

∂C

∂Pf
=
∫ L

0
dθ

∂M

∂Pf
− �T = 0 (5.14)

As before

dθ = M

EI
dz

but

M = Pfz + wz2

2
(Pf = 0)

Hence

∂M

∂Pf
= z
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Substituting in Eq. (5.14) for dθ, M and ∂M/∂Pf , and remembering that Pf = 0, we
have

�T =
∫ L

0

wz3

2EI
dz

giving

�T = wL4

8EI
It will be noted that here, unlike the method for the solution of the pin-jointed

framework, the fictitious load is applied to the loaded beam. There is, however, no
arithmetical advantage to be gained by the former approach although the result would
obviously be the same since M would equal wz2/2 and ∂M/∂Pf would have the value z.

Example 5.2
Calculate the vertical displacements of the quarter and mid-span points B and C of the
simply supported beam of length L and flexural rigidity EI loaded, as shown in Fig. 5.7.

The total complementary energy C of the system including the fictitious loads PB,f
and PC,f is

C =
∫

L

∫ M

0
dθ dM − PB,f�B − PC,f�C −

∫ L

0
�w dz (i)

Hence
∂C

∂PB,f
=
∫

L
dθ

∂M

∂PB,f
− �B = 0 (ii)

and
∂C

∂PC,f
=
∫

L
dθ

∂M

∂PC,f
− �C = 0 (iii)

Assuming a linearly elastic beam, Eqs (ii) and (iii) become

�B = 1

EI

∫ L

0
M

∂M

∂PB,f
dz (iv)

Fig. 5.7 Deflection of a simply supported beam by the method of complementary energy.
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�C = 1

EI

∫ L

0
M

∂M

∂PC,f
dz (v)

From A to B

M =
(

3
4 PB,f + 1

2 PC,f + wL

2

)
z − wz2

2

so that
∂M

∂PB,f
= 3

4 z,
∂M

∂PC,f
= 1

2 z

From B to C

M =
(

3
4 PB,f + 1

2 PC,f + wL

2

)
z − wz2

2
− PB,f

(
z − L

4

)

giving

∂M

∂PB,f
= 1

4
(L − z),

∂M

∂PC,f
= 1

2
z

From C to D

M =
(

1

4
PB,f + 1

2
PC,f + wL

2

)
(L − z) − w

2
(L − z)2

so that
∂M

∂PB,f
= 1

4
(L − z)

∂M

∂PC,f
= 1

2
(L − z)

Substituting these values in Eqs (iv) and (v) and remembering that PB,f = PC,f = 0 we
have, from Eq. (iv)

�B = 1

EI

{∫ L/4

0

(
wLz

2
− wz2

2

)
3
4 z dz +

∫ L/2

L/4

(
wLz

2
− wz2

2

)
1
4 (L − z)dz

+
∫ L

L/2

(
wLz

2
− wz2

2

)
1
4 (L − z)dz

}

from which

�B = 119wL4

24 576EI
Similarly

�C = 5wL4

384EI
The fictitious load method of determining deflections may be streamlined for linearly

elastic systems and is then termed the unit load method; this we shall discuss later in
the chapter.
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5.4 Application to the solution of statically indeterminate
systems

In a statically determinate structure the internal forces are determined uniquely by
simple statical equilibrium considerations. This is not the case for a statically indeter-
minate system in which, as we have already noted, an infinite number of internal force
or stress distributions may be found to satisfy the conditions of equilibrium. The true
force system is, as we demonstrated in Section 5.2, the one satisfying the conditions
of compatibility of displacement of the elastic structure or, alternatively, that for which
the total complementary energy has a stationary value. We shall apply the principle
to a variety of statically indeterminate structures, beginning with the relatively simple
singly redundant pin-jointed frame shown in Fig. 5.8 in which each member has the
same value of the product AE.

The first step is to choose the redundant member. In this example no advantage is
gained by the choice of any particular member, although in some cases careful selection
can result in a decrease in the amount of arithmetical labour. Taking BD as the redundant
member we assume that it sustains a tensile force R due to the external loading. The
total complementary energy of the framework is, with the notation of Eq. (5.9)

C =
k∑

i=1

∫ Fi

0
λi dFi − P�

Hence

∂C

∂R
=

k∑

i=1

λi
∂Fi

∂R
= 0 (5.15)

or, assuming linear elasticity

1

AE

k∑

i=1

FiLi
∂Fi

∂R
= 0 (5.16)

Fig. 5.8 Analysis of a statically indeterminate framework by the method of complementary energy.
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The solution is now completed in Table 5.2 where, as in Table 5.1, positive signs indicate
tension.

Hence from Eq. (5.16)

4.83RL + 2.707PL = 0

or

R = −0.56P

Substitution for R in column ③ of Table 5.2 gives the force in each member. Having
determined the forces in the members then the deflection of any point on the framework
may be found by the method described in Section 5.3.

Unlike the statically determinate type, statically indeterminate frameworks may be
subjected to self-straining. Thus, internal forces are present before external loads are
applied. Such a situation may be caused by a local temperature change or by an initial
lack of fit of a member. Suppose that the member BD of the framework of Fig. 5.8 is
short by a known amount �R when the framework is assembled but is forced to fit. The
load R in BD will then have suffered a displacement �R in addition to that caused by
the change in length of BD produced by the load P. The total complementary energy
is then

C =
k∑

i=1

∫ Fi

0
λi dFi − P� − R�R

and

∂C

∂R
=

k∑

i=1

λi
∂Fi

∂R
− �R = 0

or

�R = 1

AE

k∑

i=1

FiLi
∂Fi

∂R
(5.17)

Table 5.2

① ② ③ ④ ⑤
Member Length F ∂F/∂R FL∂F/∂R

AB L −R/
√

2 −1/
√

2 RL/2
BC L −R/

√
2 −1/

√
2 RL/2

CD L −(P + R/
√

2) −1/
√

2 L(P + R/
√

2)/
√

2
DA L −R/

√
2 −1/

√
2 RL/2

AC
√

2L
√

2P + R 1 L(2P + √
2R)

BD
√

2L R 1
√

2RL

� = 4.83RL + 2.707PL
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Obviously the summation term in Eq. (5.17) has the same value as in the previous case
so that

R = −0.56P + AE

4.83L
�R

Hence the forces in the members are due to both applied loads and an initial lack of fit.
Some care should be given to the sign of the lack of fit �R. We note here that the

member BD is short by an amount �R so that the assumption of a positive sign for
�R is compatible with the tensile force R. If BD were initially too long then the total
complementary energy of the system would be written

C =
k∑

i=1

∫ Fi

0
λi dFi − P� − R(−�R)

giving

−�R = 1

AE

k∑

i=1

FiLi
∂Fi

∂R

Example 5.3
Calculate the loads in the members of the singly redundant pin-jointed framework
shown in Fig. 5.9. The members AC and BD are 30 mm2 in cross-section, and all other
members are 20 mm2 in cross-section. The members AD, BC and DC are each 800 mm
long. E = 200 000 N/mm2.

From the geometry of the framework ̂ABD = ̂CBD = 30◦; therefore BD =AC =
800

√
3 mm. Choosing CD as the redundant member and proceeding from Eq. (5.16)

we have

1

E

k∑

i=1

FiLi

Ai

∂Fi

∂R
= 0 (i)

From Table 5.3 we have

k∑

i=1

FiLi

Ai

∂Fi

∂R
= −268 + 129.2R = 0

Fig. 5.9 Framework of Example 5.3.
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Table 5.3 (Tension positive)

① ② ③ ④ ⑤ ⑥ ⑦
Member L (mm) A (mm2) F(N) ∂F/∂R (FL/A)∂F/∂R Force (N)

AC 800
√

3 30 50 − √
3R/2 −√

3/2 −2000 + 20
√

3R 48.2
CB 800 20 86.6 + R/2 1/2 1732 + 10R 87.6
BD 800

√
3 30 −√

3R/2 −√
3/2 20

√
3R −1.8

CD 800 20 R 1 40 R 2.1
AD 800 20 R/2 1/2 10 R 1.0

� = −268 + 129.2R

Hence R = 2.1 N and the forces in the members are tabulated in column ⑦ of Table 5.3.

Example 5.4
A plane, pin-jointed framework consists of six bars forming a rectangleABCD 4000 mm
by 3000 mm with two diagonals, as shown in Fig. 5.10. The cross-sectional area of each
bar is 200 mm2 and the frame is unstressed when the temperature of each member is
the same. Due to local conditions the temperature of one of the 3000 mm members is
raised by 30◦C. Calculate the resulting forces in all the members if the coefficient of
linear expansion α of the bars is 7 × 10−6/◦C. E = 200 000 N/mm2.

Suppose that BC is the heated member, then the increase in length of BC =
3000 × 30 × 7 × 10−6 = 0.63 mm. Therefore, from Eq. (5.17)

−0.63 = 1

200 × 200 000

k∑

i=1

FiLi
∂Fi

∂R
(i)

Substitution from the summation of column ⑤ in Table 5.4 into Eq. (i) gives

R = −0.63 × 200 × 200 000

48 000
= −525 N

Column ⑥ of Table 5.4 is now completed for the force in each member.
So far, our analysis has been limited to singly redundant frameworks, although the

same procedure may be adopted to solve a multi-redundant framework of, say, m
redundancies. Therefore, instead of a single equation of the type (5.15) we would have

Fig. 5.10 Framework of Example 5.4.
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Table 5.4 (Tension positive)

① ② ③ ④ ⑤ ⑥
Member L (mm) F(N) ∂F/∂R FL∂F/∂R Force (N)

AB 4000 4R/3 4/3 64 000R/9 −700
BC 3000 R 1 3 000R −525
CD 4000 4R/3 4/3 64 000R/9 −700
DA 3000 R 1 3 000R −525
AC 5000 −5R/3 −5/3 125 000R/9 875
DB 5000 −5R/3 −5/3 125 000R/9 875

� = 48 000R

Fig. 5.11 Analysis of a propped cantilever by the method of complementary energy.

m simultaneous equations

∂C

∂Rj
=

k∑

i=1

λi
∂Fi

∂Rj
= 0 ( j = 1, 2, . . . , m)

from which the m unknowns R1, R2, …, Rm would be obtained. The forces F in the mem-
bers follow, being expressed initially in terms of the applied loads and R1, R2, …, Rm.

Other types of statically indeterminate structure are solved by the application of total
complementary energy with equal facility. The propped cantilever of Fig. 5.11 is an
example of a singly redundant beam structure for which total complementary energy
readily yields a solution.

The total complementary energy of the system is, with the notation of Eq. (5.12)

C =
∫

L

∫ M

0
dθ dM − P�C − RB�B

where �C and �B are the deflections at C and B, respectively. Usually, in problems of
this type, �B is either zero for a rigid support, or a known amount (sometimes in terms
of RB) for a sinking support. Hence, for a stationary value of C

∂C

∂RB
=
∫

L
dθ

∂M

∂RB
− �B = 0

from which equation RB may be found; RB being contained in the expression for the
bending moment M.

Obviously the same procedure is applicable to a beam having a multiredundant
support system, e.g. a continuous beam supporting a series of loads P1, P2, . . . , Pn.
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The total complementary energy of such a beam would be given by

C =
∫

L

∫ M

0
dθ dM −

m∑

j=1

Rj�j −
n∑

r=1

Pr�r

where Rj and �j are the reaction and known deflection (at least in terms of Rj) of the
jth support point in a total of m supports. The stationary value of C gives

∂C

∂Rj
=
∫

L
dθ

∂M

∂Rj
− �j = 0 ( j = 1, 2, . . . , m)

producing m simultaneous equations for the m unknown reactions.
The intention here is not to suggest that continuous beams are best or most readily

solved by the energy method; the moment distribution method produces a more rapid
solution, especially for beams in which the degree of redundancy is large. Instead
the purpose is to demonstrate the versatility and power of energy methods in their
ready solution of a wide range of structural problems. A complete investigation of this
versatility is impossible here due to restriction of space; in fact, whole books have been
devoted to this topic. We therefore limit our analysis to problems peculiar to the field
of aircraft structures with which we are primarily concerned. The remaining portion
of this section is therefore concerned with the solution of frames and rings possessing
varying degrees of redundancy.

The frameworks we considered in the earlier part of this section and in Section
5.3 comprised members capable of resisting direct forces only. Of a more general
type are composite frameworks in which some or all of the members resist bending
and shear loads in addition to direct loads. It is usual, however, except for the thin-
walled structures in Part B of this book, to ignore deflections produced by shear forces.
We only consider, therefore, bending and direct force contributions to the internal
complementary energy of such structures. The method of analysis is illustrated in the
following example.

Example 5.5
The simply supported beam ABC shown in Fig. 5.12 is stiffened by an arrangement of
pin-jointed bars capable of sustaining axial loads only. If the cross-sectional area of the
beam is AB and that of the bars is A, calculate the forces in the members of the framework
assuming that displacements are caused by bending and direct force action only.

We observe that if the beam were only capable of supporting direct loads then the
structure would be a relatively simple statically determinate pin-jointed framework.
Since the beam resists bending moments (we are ignoring shear effects) the system is
statically indeterminate with a single redundancy, the bending moment at any section of
the beam. The total complementary energy of the framework is given, with the notation
previously developed, by

C =
∫

ABC

∫ M

0
dθ dM +

k∑

i=1

∫ Fi

0
λj dFi − P� (i)
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Fig. 5.12 Analysis of a trussed beam by the method of complementary energy.

Table 5.5 (Tension positive)

① ② ③ ④ ⑤ ⑥
Member Length Area F ∂F/∂R (F/A)∂F/∂R

AB L/2 AB −R/2 −1/2 R/4AB
BC L/2 AB −R/2 −1/2 R/4AB
CD L/2 A R 1 R/A
DE L/2 A R 1 R/A
BD L/2 A −R −1 R/A
EB L/2 A −R −1 R/A
AE L/2 A R 1 R/A

If we suppose that the tensile load in the member ED is R then, for C to have a stationary
value

∂C

∂R
=
∫

ABC
dθ

∂M

∂R
+

k∑

i=1

λi
∂Fi

∂R
= 0 (ii)

At this point we assume the appropriate load–displacement relationships; again we
shall take the system to be linear so that Eq. (ii) becomes

∫ L

0

M

EI

∂M

∂R
dz +

k∑

i=1

FiLi

AiE

∂Fi

∂R
= 0 (iii)

The two terms in Eq. (iii) may be evaluated separately, bearing in mind that only the
beam ABC contributes to the first term while the complete structure contributes to the
second. Evaluating the summation term by a tabular process we have Table 5.5.

Summation of column ⑥ in Table 5.5 gives

k∑

i=1

FiLi

AiE

∂Fi

∂R
= RL

4E

(
1

AB
+ 10

A

)
(iv)
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The bending moment at any section of the beam between A and F is

M = 3

4
Pz −

√
3

2
Rz hence

∂M

∂R
= −

√
3

2
z

between F and B

M = P

4
(L − z) −

√
3

2
Rz hence

∂M

∂R
= −

√
3

2
z

and between B and C

M = P

4
(L − z) −

√
3

2
R(L − z) hence

∂M

∂R
= −

√
3

2
(L − z)

Thus

∫ L

0

M

EI

∂M

∂R
dz = 1

EI

{∫ L/4

0
−
(

3

4
Pz −

√
3

2
Rz

) √
3

2
z dz

+
∫ L/2

L/4

[
P

4
(L − z) −

√
3

2
Rz

](

−
√

3

2
z

)

dz

+
∫ L

L/2
−
[

P

4
(L − z) −

√
3

2
R(L − z)

] √
3

2
(L − z)dz

}

giving
∫ L

0

M

EI

∂M

∂R
dz = −11

√
3PL3

768EI
+ RL3

16EI
(v)

Substituting from Eqs (iv) and (v) into Eq. (iii)

−11
√

3PL3

768EI
+ RL3

16EI
+ RL

4E

(
A + 10AB

ABA

)
= 0

from which

R = 11
√

3PL2ABA

48[L2ABA + 4I(A + 10AB)]

Hence the forces in each member of the framework. The deflection � of the load P
or any point on the framework may be obtained by the method of Section 5.3. For
example, the stationary value of the total complementary energy of Eq. (i) gives �, i.e.

∂C

∂P
=
∫

ABC
dθ

∂M

∂R
+

k∑

i=1

λi
∂Fi

∂P
− � = 0

Although braced beams are still found in modern light aircraft in the form of braced
wing structures a much more common structural component is the ring frame. The role
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Fig. 5.13 Internal force system in a two-dimensional ring.

of this particular component is discussed in detail in Chapter 14; it is therefore suffi-
cient for the moment to say that ring frames form the basic shape of semi-monocoque
fuselages reacting shear loads from the fuselage skins, point loads from wing spar
attachments and distributed loads from floor beams. Usually a ring is two-dimensional
supporting loads applied in its own plane. Our analysis is limited to the two-dimensional
case.

A two-dimensional ring has redundancies of direct load, bending moment and shear
at any section, as shown in Fig. 5.13. However, in some special cases of loading the
number of redundancies may be reduced. For example, on a plane of symmetry the
shear loads and sometimes the normal or direct loads are zero, while on a plane of
antisymmetry the direct loads and bending moments are zero. Let us consider the
simple case of a doubly symmetrical ring shown in Fig. 5.14(a). At a section in the
vertical plane of symmetry the internal shear and direct loads vanish, leaving one
redundancy, the bending moment MA (Fig. 5.14(b)). Note that in the horizontal plane
of symmetry the internal shears are zero but the direct loads have a value P/2. The total
complementary energy of the system is (again ignoring shear strains)

C =
∫

ring

∫ M

0
dθ dM − 2

(
P

2
�

)

taking the bending moment as positive when it increases the curvature of the ring. In
the above expression for C, � is the displacement of the top, A, of the ring relative to
the bottom, B. Assigning a stationary value to C we have

∂C

∂MA
=
∫

ring
dθ

∂M

∂MA
= 0
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Fig. 5.14 Doubly symmetric ring.

or assuming linear elasticity and considering, from symmetry, half the ring

∫ πR

0

M

EI

∂M

∂MA
ds = 0

Thus since

M = MA − P

2
R sin θ

∂M

∂MA
= 1

and we have
∫ π

0

(
MA − P

2
R sin θ

)
R dθ = 0

or
[

MAθ + P

2
R cos θ

]π

0
= 0

from which

MA = PR

π

The bending moment distribution is then

M = PR

(
1

π
− sin θ

2

)

and is shown diagrammatically in Fig. 5.15.
Let us now consider a more representative aircraft structural problem. The circular

fuselage frame of Fig. 5.16(a) supports a load P which is reacted by a shear flow q (i.e. a
shear force per unit length: see Chapter 17), distributed around the circumference of the
frame from the fuselage skin. The value and direction of this shear flow are quoted here
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Fig. 5.15 Distribution of bending moment in a doubly symmetric ring.

Fig. 5.16 Determination of bending moment distribution in a shear and direct loaded ring.
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but are derived from theory established in Section 17.3. From our previous remarks on
the effect of symmetry we observe that there is no shear force at the section A on the
vertical plane of symmetry. The unknowns are therefore the bending moment MA and
normal force NA. We proceed, as in the previous example, by writing down the total
complementary energy C of the system. Then, neglecting shear strains

C =
∫

ring

∫ M

0
dθ dM − P� (i)

in which � is the deflection of the point of application of P relative to the top of the
frame. Note that MA and NA do not contribute to the complement of the potential energy
of the system since, by symmetry, the rotation and horizontal displacements at A are
zero. From the principle of the stationary value of the total complementary energy

∂C

∂MA
=
∫

ring
dθ

∂M

∂MA
= 0 (ii)

and

∂C

∂NA
=
∫

ring
dθ

∂M

∂NA
= 0 (iii)

The bending moment at a radial section inclined at an angle θ to the vertical diameter
is, from Fig. 5.16(c)

M = MA + NAR(1 − cos θ) +
∫ θ

0
qBDR dα

or

M = MA + NAR(1 − cos θ) +
∫ θ

0

P

πR
sin α[R − R cos (θ − α)]R dα

which gives

M = MA + NAR(1 − cos θ) + PR

π
(1 − cos θ − 1

2
θ sin θ) (iv)

Hence
∂M

∂MA
= 1

∂M

∂NA
= R(1 − cos θ) (v)

Assuming that the fuselage frame is linearly elastic we have, from Eqs (ii) and (iii)

2
∫ π

0

M

EI

∂M

∂MA
R dθ = 2

∫ π

0

M

EI

∂M

∂NA
R dθ = 0 (vi)

Substituting from Eqs (iv) and (v) into Eq. (vi) gives two simultaneous equations

−PR

2π
= MA + NAR (vii)
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−7PR

8π
= MA + 3

2
NAR (viii)

These equations may be written in matrix form as follows

PR

π

{−1/2
−7/8

}
=
[

1 R
1 3R/2

]{
MA
NA

}
(ix)

so that
{

MA
NA

}
= PR

π

[
1 R
1 3R/2

]−1 {−1/2
−7/8

}

or
{

MA
NA

}
= PR

π

[
3 −2

−2/R 2/R

]{−1/2
−7/8

}

which gives

MA = PR

4π
NA = −3P

4π

The bending moment distribution follows from Eq. (iv) and is

M = PR

2π
(1 − 1

2
cos θ − θ sin θ) (x)

The solution of Eq. (ix) involves the inversion of the matrix

[
1 R
1 3R/2

]

which may be carried out using any of the standard methods detailed in texts on matrix
analysis. In this example Eqs (vii) and (viii) are clearly most easily solved directly; how-
ever, the matrix approach illustrates the technique and serves as a useful introduction
to the more detailed discussion in Chapter 6.

Example 5.6
A two-cell fuselage has circular frames with a rigidly attached straight member across
the middle. The bending stiffness of the lower half of the frame is 2EI, whilst that of
the upper half and also the straight member is EI.

Calculate the distribution of the bending moment in each part of the frame for the
loading system shown in Fig. 5.17(a). Illustrate your answer by means of a sketch and
show clearly the bending moment carried by each part of the frame at the junction
with the straight member. Deformations due only to bending strains need be taken into
account.

The loading is antisymmetrical so that there are no bending moments or normal
forces on the plane of antisymmetry; there remain three shear loads SA, SD and SC,
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Fig. 5.17 Determination of bending moment distribution in an antisymmetrical fuselage frame.

as shown in Fig. 5.17(b). The total complementary energy of the half-frame is then
(neglecting shear strains)

C =
∫

half-frame

∫ M

0
dθ dM − M0αB − M0

r
�B (i)

where αB and �B are the rotation and deflection of the frame at B caused by the
applied moment M0 and concentrated load M0/r, respectively. From antisymmetry
there is no deflection at A, D or C so that SA, SD and SC make no contribution to the
total complementary energy. In addition, overall equilibrium of the half-frame gives

SA + SD + SC = M0

r
(ii)

Assigning stationary values to the total complementary energy and considering the
half-frame only, we have

∂C

∂SA
=
∫

half-frame
dθ

∂M

∂SA
= 0

and
∂C

∂SD
=
∫

half-frame
dθ

∂M

∂SD
= 0

or assuming linear elasticity
∫

half-frame

M

EI

∂M

∂SA
ds =

∫

half-frame

M

EI

∂M

∂SD
ds = 0 (iii)

In AB

M = −SAr sin θ and
∂M

∂SA
= −r sin θ,

∂M

∂SD
= 0



Ch05-H6739.tex 23/1/2007 12: 10 Page 136

136 Energy methods

In DB

M = SDx and
∂M

∂SA
= 0,

∂M

∂SD
= x

In CB

M = SCr sin φ =
(

M0

r
− SA − SD

)
r sin φ

Thus

∂M

∂SA
= −r sin φ and

∂M

∂SD
= −r sin φ

Substituting these expressions in Eq. (iii) and integrating we have

3.365SA + SC = M0/r (iv)

SA + 2.178SC = M0/r (v)

which, with Eq. (ii), enable SA, SD and SC to be found. In matrix form these equations
are written

⎧
⎨

⎩

M0/r
M0/r
M0/r

⎫
⎬

⎭
=
⎡

⎣
1 1 1
3.356 0 1
1 0 2.178

⎤

⎦

⎧
⎨

⎩

SA
SD
SC

⎫
⎬

⎭
(vi)

from which we obtain

⎧
⎨

⎩

SA
SD
SC

⎫
⎬

⎭
=
⎡

⎣
0 0.345 −0.159
1 −0.187 −0.373
0 −0.159 0.532

⎤

⎦

⎧
⎨

⎩

M0/r
M0/r
M0/r

⎫
⎬

⎭
(vii)

which give

SA = 0.187M0/r SD = 0.44 M0/r SC = 0.373M0/r

Again the square matrix of Eq. (vi) has been inverted to produce Eq. (vii).
The bending moment distribution with directions of bending moment is shown in

Fig. 5.18.
So far in this chapter we have considered the application of the principle of the

stationary value of the total complementary energy of elastic systems in the analysis
of various types of structure. Although the majority of the examples used to illustrate
the method are of linearly elastic systems it was pointed out that generally they may be
used with equal facility for the solution of non-linear systems.

In fact, the question of whether a structure possesses linear or non-linear character-
istics arises only after the initial step of writing down expressions for the total potential
or complementary energies. However, a great number of structures are linearly elastic
and possess unique properties which enable solutions, in some cases, to be more easily
obtained. The remainder of this chapter is devoted to these methods.
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Fig. 5.18 Distribution of bending moment in frame of Example 5.6.

5.5 Unit load method

In Section 5.3 we discussed the dummy or fictitious load method of obtaining deflections
of structures. For a linearly elastic structure the method may be stream-lined as follows.

Consider the framework of Fig. 5.3 in which we require, say, to find the vertical
deflection of the point C. Following the procedure of Section 5.3 we would place a
vertical dummy load Pf at C and write down the total complementary energy of the
framework, i.e.

C =
k∑

i=1

∫ Fi

0
λi dFi −

n∑

r=1

�rPr (see Eq. (5.9))

For a stationary value of C

∂C

∂Pf
=

k∑

i=1

λi
∂Fi

∂Pf
− �C = 0 (5.18)

from which

�C =
k∑

i=1

λi
∂Fi

∂Pf
as before (5.19)

If instead of the arbitrary dummy load Pf we had placed a unit load at C, then the load
in the ith linearly elastic member would be

Fi = ∂Fi

∂Pf
1
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Therefore, the term ∂Fi/∂Pf in Eq. (5.19) is equal to the load in the ith member due to
a unit load at C, and Eq. (5.19) may be written

�C =
k∑

i=1

Fi,0Fi,1Li

AiEi
(5.20)

where Fi,0 is the force in the ith member due to the actual loading and Fi,1 is the force
in the ith member due to a unit load placed at the position and in the direction of the
required deflection. Thus, in Example 5.1 columns ④ and ⑥ in Table 5.1 would be
eliminated, leaving column ⑤ as FB,1 and column ⑦ as FD,1. Obviously column ③ is F0.

Similar expressions for deflection due to bending and torsion of linear structures
follow from the well-known relationships between bending and rotation and torsion
and rotation. Hence, for a member of length L and flexural and torsional rigidities EI
and GJ, respectively

�B.M =
∫

L

M0M1

EI
dz �T =

∫

L

T0T1

GJ
dz (5.21)

where M0 is the bending moment at any section produced by the actual loading and M1
is the bending moment at any section due to a unit load applied at the position and in
the direction of the required deflection. Similarly for torsion.

Generally, shear deflections of slender beams are ignored but may be calculated when
required for particular cases. Of greater interest in aircraft structures is the calculation of
the deflections produced by the large shear stresses experienced by thin-walled sections.
This problem is discussed in Chapter 17.

Example 5.7
A steel rod of uniform circular cross-section is bent as shown in Fig. 5.19, AB and BC
being horizontal and CD vertical. The arms AB, BC and CD are of equal length. The
rod is encastré at A and the other end D is free. A uniformly distributed load covers the
length BC. Find the components of the displacement of the free end D in terms of EI
and GJ.

Since the cross-sectional area A and modulus of elasticity E are not given we shall
assume that displacements due to axial distortion are to be ignored. We place, in turn,
unit loads in the assumed positive directions of the axes xyz.

First, consider the displacement in the direction parallel to the x axis. From Eqs (5.21)

�x =
∫

L

M0M1

EI
ds +

∫

L

T0T1

GJ
ds

Employing a tabular procedure

M0 M1 T0 T1
︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷

Plane xy xz yz xy xz yz xy xz yz xy xz yz

CD 0 0 0 y 0 0 0 0 0 0 0 0

CB 0 0 −wz2/2 0 z 0 0 0 0 l 0 0

BA −wlx 0 0 l l 0 0 0 wl2/2 0 0 0
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Fig. 5.19 Deflection of a bent rod.

Hence

�x =
∫ l

0
−wl2x

EI
dx

or

�x = − wl4

2EI

Similarly

�y = wl4
(

11

24EI
+ 1

2GJ

)

�z = wl4
(

1

6EI
+ 1

2GJ

)

5.6 Flexibility method

An alternative approach to the solution of statically indeterminate beams and frames
is to release the structure, i.e. remove redundant members or supports, until the
structure becomes statically determinate. The displacement of some point in the
released structure is then determined by, say, the unit load method. The actual loads on
the structure are removed and unknown forces applied to the points where the structure
has been released; the displacement at the point produced by these unknown forces
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must, from compatibility, be the same as that in the released structure. The unknown
forces are then obtained; this approach is known as the flexibility method.

Example 5.8
Determine the forces in the members of the truss shown in Fig. 5.20(a); the cross-
sectional area A, and Young’s modulus E, are the same for all members.

The truss in Fig. 5.20(a) is clearly externally statically determinate but has a degree
of internal statical indeterminacy equal to 1. We therefore release the truss so that it
becomes statically determinate by ‘cutting’ one of the members, say BD, as shown in
Fig. 5.20(b). Due to the actual loads (P in this case) the cut ends of the member BD
will separate or come together, depending on whether the force in the member (before
it was cut) was tensile or compressive; we shall assume that it was tensile.

We are assuming that the truss is linearly elastic so that the relative displacement
of the cut ends of the member BD (in effect the movement of B and D away from
or towards each other along the diagonal BD) may be found using, say, the unit load
method. Thus we determine the forces Fa, j, in the members produced by the actual
loads. We then apply equal and opposite unit loads to the cut ends of the member BD as
shown in Fig 5.20(c) and calculate the forces, F1, j in the members. The displacement
of B relative to D, �BD, is then given by

�BD =
n∑

j=1

Fa,jF1,jLj

AE
(see Eq. (ii) in Example 4.6)

The forces, Fa ,j, are the forces in the members of the released truss due to the actual
loads and are not, therefore, the actual forces in the members of the complete truss. We
shall therefore redesignate the forces in the members of the released truss as F0, j. The
expression for �BD then becomes

�BD =
n∑

j=1

F0,jF1,jLj

AE
(i)

A A A

Cut

B B BC C C

1

1

P

XBD

XBD

P

L

D D D

(a) (b) (c)

45°

Fig. 5.20 Analysis of a statically indeterminate truss.



Ch05-H6739.tex 23/1/2007 12: 10 Page 141

5.6 Flexibility method 141

In the actual structure this displacement is prevented by the force, XBD, in the redundant
member BD. If, therefore, we calculate the displacement, aBD, in the direction of BD
produced by a unit value of XBD, the displacement due to XBD will be XBDaBD. Clearly,
from compatibility

�BD + XBDaBD = 0 (ii)

from which XBD is found, aBD is a flexibility coefficient. Having determined XBD, the
actual forces in the members of the complete truss may be calculated by, say, the method
of joints or the method of sections.

In Eq. (ii), aBD is the displacement of the released truss in the direction of BD pro-
duced by a unit load. Thus, in using the unit load method to calculate this displacement,
the actual member forces (F1, j) and the member forces produced by the unit load (Fl, j)
are the same. Therefore, from Eq. (i)

aBD =
n∑

j=1

F2
1,jLj

AE
(iii)

The solution is completed in Table 5.6.
From Table 5.6

�BD = 2.71PL

AE
aBD = 4.82L

AE

Substituting these values in Eq. (i) we have

2.71PL

AE
+ XBD

4.82L

AE
= 0

from which

XBD = −0.56P (i.e. compression)

The actual forces, Fa, j, in the members of the complete truss of Fig. 5.20(a) are now
calculated using the method of joints and are listed in the final column of Table 5.6.

We note in the above that �BD is positive, which means that �BD is in the direction
of the unit loads, i.e. B approaches D and the diagonal BD in the released structure
decreases in length. Therefore in the complete structure the member BD, which prevents
this shortening, must be in compression as shown; also aBD will always be positive since

Table 5.6

Member Lj (m) F0, j F1, j F0, jF1, jLj F2
1, jLj Fa, j

AB L 0 −0.71 0 0.5L +0.40P
BC L 0 −0.71 0 0.5L +0.40P
CD L −P −0.71 0.71PL 0.5L −0.60P
BD 1.41L − 1.0 − 1.41L −0.56P
AC 1.41L 1.41P 1.0 2.0PL 1.41L +0.85P
AD L 0 −0.71 0 0.5L +0.40P

� = 2.71 PL � = 4.82L
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it contains the term F2
1, j. Finally, we note that the cut member BD is included in the

calculation of the displacements in the released structure since its deformation, under
a unit load, contributes to aBD.

Example 5.9
Calculate the forces in the members of the truss shown in Fig. 5.21(a). All members
have the same cross-sectional area A, and Young’s modulus E.

By inspection we see that the truss is both internally and externally statically inde-
terminate since it would remain stable and in equilibrium if one of the diagonals, AD
or BD, and the support at C were removed; the degree of indeterminacy is therefore 2.
Unlike the truss in Example 5.8, we could not remove any member since, if BC or CD
were removed, the outer half of the truss would become a mechanism while the portion
ABDE would remain statically indeterminate. Therefore we select AD and the support
at C as the releases, giving the statically determinate truss shown in Fig. 5.21(b); we
shall designate the force in the member AD as X1 and the vertical reaction at C as R2.

A

A A

A

E

E E

ED

D D

D

(a)

(c) (d)

(b)

C

C
C

C

B

B B

B

1 m

10 kN 10 kN

1 m

1
1

1

1 m

X1

R2

Fig. 5.21 Statically indeterminate truss of Example 5.9.
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In this case we shall have two compatibility conditions, one for the diagonal AD
and one for the support at C. We therefore need to investigate three loading cases:
one in which the actual loads are applied to the released statically determinate truss
in Fig. 5.21(b), a second in which unit loads are applied to the cut member AD
(Fig. 5.21(c)) and a third in which a unit load is applied at C in the direction of R2
(Fig. 5.21(d)). By comparison with the previous example, the compatibility conditions
are

�AD + a11X1 + a12R2 = 0 (i)

vC + a21X1 + a22R2 = 0 (ii)

in which �AD and vC are, respectively, the change in length of the diagonal AD and
the vertical displacement of C due to the actual loads acting on the released truss,
while a11, a12, etc., are flexibility coefficients, which we have previously defined. The
calculations are similar to those carried out in Example 5.8 and are shown in Table 5.7.

From Table 5.7

�AD =
n∑

j=1

F0, jF1, j(X1)Lj

AE
= −27.1

AE
(i.e. AD increases in length)

vC =
n∑

j=1

F0,jF1, j(R2)Lj

AE
= −48.11

AE
(i.e. C displaced downwards)

a11 =
n∑

j=1

F2
1, j(X1)Lj

AE
= 4.32

AE

a22 =
n∑

j=1

F2
1, j(R2)Lj

AE
= 11.62

AE

a12 = a21

n∑

j=1

F1, j(X1)F1, j(R2)Lj

AE
= 2.7

AE

Table 5.7

F0, jF1, j F0,jF1, j F1, j (X1)
Member Lj F0,j F1,j (X1) F1,j (R2) (X1)Lj (R2)Lj F2

1,j (X1)Lj F2
1,j (R2)Lj F1,j(R2) Lj Fa,j

AB 1 10.0 −0.71 −2.0 −7.1 −20.0 0.5 4.0 1.41 0.67
BC 1.41 0 0 −1.41 0 0 0 2.81 0 −4.45
CD 1 0 0 1.0 0 0 0 1.0 0 3.15
DE 1 0 −0.71 1.0 0 0 0.5 1.0 −0.71 0.12
AD 1.41 0 1.0 0 0 0 1.41 0 0 4.28
BE 1.41 −14.14 1.0 1.41 −20.0 −28.11 1.41 2.81 2.0 −5.4
BD 1 0 −0.71 0 0 0 0.5 0 0 −3.03

� = −27.1 � = −48.11 � = 4.32 � = 11.62 � = 2.7
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A A A

D D DC C C

1

1

X1

X1

(a) (b) (c)

B B B

3 m

4 m

Fig. 5.22 Self-straining due to a temperature change.

Substituting in Eqs (i) and (ii) and multiplying through by AE we have

−27.1 + 4.32X1 + 2.7R2 = 0 (iii)

−48.11 + 2.7X1 + 11.62R2 = 0 (iv)

Solving Eqs (iii) and (iv) we obtain

X1 = 4.28 kN R2 = 3.15 kN

The actual forces, Fa, j, in the members of the complete truss are now calculated by the
method of joints and are listed in the final column of Table 5.7.

5.6.1 Self-straining trusses

Statically indeterminate trusses, unlike the statically determinate type, may be subjected
to self-straining in which internal forces are present before external loads are applied.
Such a situation may be caused by a local temperature change or by an initial lack of fit
of a member. In cases such as these, the term on the right-hand side of the compatibility
equations, Eq. (ii) in Example 5.8 and Eqs (i) and (ii) in Example 5.9, would not
be zero.

Example 5.10
The truss shown in Fig. 5.22(a) is unstressed when the temperature of each member is
the same, but due to local conditions the temperature in the member BC is increased
by 30◦C. If the cross-sectional area of each member is 200 mm2 and the coefficient of
linear expansion of the members is 7 × 10−6/◦C, calculate the resulting forces in the
members; Young’s modulus E = 200 000 N/mm2.

Due to the temperature rise, the increase in length of the member BC is 3 × 103 ×
30 × 7 × 10−6 = 0.63 mm. The truss has a degree of internal statical indeterminacy
equal to 1 (by inspection). We therefore release the truss by cutting the member BC,
which has experienced the temperature rise, as shown in Fig. 5.22(b); we shall suppose
that the force in BC is X1. Since there are no external loads on the truss, �BC is zero



Ch05-H6739.tex 23/1/2007 12: 10 Page 145

5.7 Total potential energy 145

Table 5.8

Member Lj (mm) F1, j F2
1, jLj Fa, j (N)

AB 4000 1.33 7111.1 −700
BC 3000 1.0 3000.0 −525
CD 4000 1.33 7111.1 −700
DA 3000 1.0 3000.0 −525
AC 5000 −1.67 13 888.9 875
DB 5000 −1.67 13 888.9 875

� = 48 000.0

and the compatibility condition becomes

a11X1 = −0.63 mm (i)

in which, as before

a11 =
n∑

j=1

F2
1,jLj

AE

Note that the extension of BC is negative since it is opposite in direction to X1. The
solution is now completed in Table 5.8. Hence

a11 = 48 000

200 × 200 000
= 1.2 × 10−3

Then, from Eq. (i)

X1 = −525 N

The forces, Fa, j, in the members of the complete truss are given in the final column of
Table 5.8. Compare the above with the solution of Ex. 5.4.

5.7 Total potential energy

In the spring–mass system shown in its unstrained position in Fig. 5.23(a) we normally
define the potential energy of the mass as the product of its weight, Mg, and its height, h,
above some arbitrarily fixed datum. In other words it possesses energy by virtue of its
position. After deflection to an equilibrium state (Fig. 5.23(b)), the mass has lost an
amount of potential energy equal to Mgy. Thus we may associate deflection with a loss
of potential energy. Alternatively, we may argue that the gravitational force acting on
the mass does work during its displacement, resulting in a loss of energy. Applying this
reasoning to the elastic system of Fig. 5.1(a) and assuming that the potential energy of
the system is zero in the unloaded state, then the loss of potential energy of the load P
as it produces a deflection y is Py. Thus, the potential energy V of P in the deflected
equilibrium state is given by

V = −Py
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Fig. 5.23 (a) Potential energy of a spring–mass system; (b) loss in potential energy due to change in position.

We now define the total potential energy (TPE) of a system in its deflected equilibrium
state as the sum of its internal or strain energy and the potential energy of the applied
external forces. Hence, for the single member–force configuration of Fig. 5.1(a)

TPE = U + V =
∫ y

0
P dy − Py

For a general system consisting of loads P1, P2, …, Pn producing corresponding
displacements (i.e. displacements in the directions of the loads: see Section 5.10)
�1, �2, …, �n the potential energy of all the loads is

V =
n∑

r=1

Vr =
n∑

r=1

(−Pr�r)

and the total potential energy of the system is given by

TPE = U + V = U +
n∑

r=1

(−Pr�r) (5.22)

5.8 The principle of the stationary value of the total
potential energy

Let us now consider an elastic body in equilibrium under a series of external loads,
P1, P2, …, Pn, and suppose that we impose small virtual displacements δ�1, δ�2, …,
δ�n in the directions of the loads. The virtual work done by the loads is then

n∑

r=1

Prδ�r

This work will be accompanied by an increment of strain energy δU in the elastic
body since by specifying virtual displacements of the loads we automatically impose
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virtual displacements on the particles of the body itself, as the body is continuous
and is assumed to remain so. This increment in strain energy may be regarded as
negative virtual work done by the particles so that the total work done during the virtual
displacement is

−δU +
n∑

r=1

Prδ�r

The body is in equilibrium under the applied loads so that by the principle of virtual
work the above expression must be equal to zero. Hence

δU −
n∑

r=1

Prδ�r = 0 (5.23)

The loads Pr remain constant during the virtual displacement; therefore, Eq. (5.23)
may be written

δU − δ

n∑

r=1

Pr�r = 0

or, from Eq. (5.22)

δ(U + V ) = 0 (5.24)

Thus, the total potential energy of an elastic system has a stationary value for all
small displacements if the system is in equilibrium. It may also be shown that if the
stationary value is a minimum the equilibrium is stable. A qualitative demonstration of
this fact is sufficient for our purposes, although mathematical proofs exist.1 In Fig. 5.24
the positions A, B and C of a particle correspond to different equilibrium states. The
total potential energy of the particle in each of its three positions is proportional to
its height h above some arbitrary datum, since we are considering a single particle
for which the strain energy is zero. Clearly at each position the first order variation,
∂(U + V )/∂u, is zero (indicating equilibrium), but only at B where the total potential
energy is a minimum is the equilibrium stable. At A and C we have unstable and
neutral equilibrium, respectively.

Fig. 5.24 States of equilibrium of a particle.
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To summarize, the principle of the stationary value of the total potential energy may
be stated as:

The total potential energy of an elastic system has a stationary value for all small
displacements when the system is in equilibrium; further, the equilibrium is stable if
the stationary value is a minimum.

This principle may often be used in the approximate analysis of structures where
an exact analysis does not exist. We shall illustrate the application of the principle in
Example 5.11 below, where we shall suppose that the displaced form of the beam is
unknown and must be assumed; this approach is called the Rayleigh–Ritz method.

Example 5.11
Determine the deflection of the mid-span point of the linearly elastic, simply supported
beam shown in Fig. 5.25; the flexural rigidity of the beam is EI.

The assumed displaced shape of the beam must satisfy the boundary conditions for
the beam. Generally, trigonometric or polynomial functions have been found to be the
most convenient where, however, the simpler the function the less accurate the solution.
Let us suppose that the displaced shape of the beam is given by

v = vB sin
πz

L
(i)

in which vB is the displacement at the mid-span point. From Eq. (i) we see that v = 0
when z = 0 and z = L and that v = vB when z = L/2. Also dv/dz = 0 when z = L/2 so
that the displacement function satisfies the boundary conditions of the beam.

The strain energy, U, due to bending of the beam, is given by (see Ref. [3])

U =
∫

L

M2

2EI
dz (ii)

Also

M = −EI
d2v

dz2 (see Chapter 16) (iii)

Fig. 5.25 Approximate determination of beam deflection using total potential energy.
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Substituting in Eq. (iii) for v from Eq. (i) and for M in Eq. (ii) from (iii)

U = EI

2

∫ L

0

v2
Bπ4

L4 sin2 πz

L
dz

which gives

U = π4EIv2
B

4L3

The total potential energy of the beam is then given by

TPE = U + V = π4EIv2
B

4L3 − WvB

Then, from the principle of the stationary value of the total potential energy

∂(U + V )

∂vB
= π4EIvB

2L3 − W = 0

whence

vB = 2WL3

π4EI
= 0.02053

WL3

EI
(iv)

The exact expression for the mid-span displacement is (Ref. [3])

vB = WL3

48EI
= 0.02083

WL3

EI
(v)

Comparing the exact (Eq. (v)) and approximate results (Eq. (iv)) we see that the dif-
ference is less than 2 per cent. Further, the approximate displacement is less than the
exact displacement since, by assuming a displaced shape, we have, in effect, forced the
beam into taking that shape by imposing restraint; the beam is therefore stiffer.

5.9 Principle of superposition

An extremely useful principle employed in the analysis of linearly elastic structures
is that of superposition. The principle states that if the displacements at all points in
an elastic body are proportional to the forces producing them, i.e. the body is linearly
elastic, the effect on such a body of a number of forces is the sum of the effects of the
forces applied separately. We shall make immediate use of the principle in the derivation
of the reciprocal theorem in the following section.

5.10 The reciprocal theorem

The reciprocal theorem is an exceptionally powerful method of analysis of linearly
elastic structures and is accredited in turn to Maxwell, Betti and Rayleigh. However,
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Fig. 5.26 Linearly elastic body subjected to loads P1, P2, P3, …, Pn.

before we establish the theorem we first consider a useful property of linearly elas-
tic systems resulting from the principle of superposition. The principle enables us to
express the deflection of any point in a structure in terms of a constant coefficient and
the applied loads. For example, a load P1 applied at a point 1 in a linearly elastic body
will produce a deflection �1 at the point given by

�1 = a11P1

in which the influence or flexibility coeffcient a11 is defined as the deflection at the point
1 in the direction of P1, produced by a unit load at the point 1 applied in the direction
of P1. Clearly, if the body supports a system of loads such as those shown in Fig. 5.26,
each of the loads P1, P2, …, Pn will contribute to the deflection at the point 1. Thus,
the corresponding deflection �1 at the point 1 (i.e. the total deflection in the direction
of P1 produced by all the loads) is then

�1 = a11P1 + a12P2 + · · · + a1nPn

where a12 is the deflection at the point 1 in the direction of P1, produced by a unit load
at the point 2 in the direction of the load P2 and so on. The corresponding deflections
at the points of application of the complete system of loads are then

�1 = a11P1 + a12P2 + a13P3 + · · · + a1nPn

�2 = a21P1 + a22P2 + a23P3 + · · · + a2nPn

�3 = a31P1 + a32P2 + a33P3 + · · · + a3nPn
...

�n = an1P1 + an2P2 + an3P3 + · · · + annPn

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(5.25)

or, in matrix form

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

�1
�2
�3
...

�n

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

=

⎡

⎢⎢⎢⎢⎢
⎣

a11 a12 a13 … a1n

a21 a22 a23 … a2n

a31 a32 a33 … a3n
...

...
...

...

an1 an2 an3 … ann

⎤

⎥⎥⎥⎥⎥
⎦

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

P1
P2
P3
...

Pn

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭
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which may be written in shorthand matrix notation as

{�} = [A]{P}
Suppose now that an elastic body is subjected to a gradually applied force P1 at a

point 1 and then, while P1 remains in position, a force P2 is gradually applied at another
point 2. The total strain energy U of the body is given by

U1 = P1

2
(a11P1) + P2

2
(a22P2) + P1(a12P2) (5.26)

The third term on the right-hand side of Eq. (5.26) results from the additional work
done by P1 as it is displaced through a further distance a12P2 by the action of P2. If we
now remove the loads and apply P2 followed by P1 we have

U2 = P2

2
(a22P2) + P1

2
(a11P1) + P2(a21P1) (5.27)

By the principle of superposition the strain energy stored is independent of the order
in which the loads are applied. Hence

U1 = U2

and it follows that

a12 = a21 (5.28)

Thus in its simplest form the reciprocal theorem states that:

The deflection at a point 1 in a given direction due to a unit load at a point 2 in a
second direction is equal to the deflection at the point 2 in the second direction due
to a unit load at the point 1 in the first direction.

In a similar manner, we derive the relationship between moments and rotations, thus:

The rotation at a point 1 due to a unit moment at a point 2 is equal to the rotation at
the point 2 produced by a unit moment at the point 1.

Finally, we have:

The rotation at a point 1 due to a unit load at a point 2 is numerically equal to the
deflection at the point 2 in the direction of the unit load due to a unit moment at the
point 1.

Example 5.12
A cantilever 800 mm long with a prop 500 mm from the wall deflects in accordance
with the following observations when a point load of 40 N is applied to its end.

Distance (mm) 0 100 200 300 400 500 600 700 800
Deflection (mm) 0 −0.3 −1.4 −2.5 −1.9 0 2.3 4.8 10.6

What will be the angular rotation of the beam at the prop due to a 30 N load applied
200 mm from the wall, together with a 10 N load applied 350 mm from the wall?
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Fig. 5.27 (a) Given deflected shape of propped cantilever; (b) determination of the deflection of C.

The initial deflected shape of the cantilever is plotted as shown in Fig. 5.27(a) and
the deflections at D and E produced by the 40 N load determined. The solution then
proceeds as follows.

Deflection at D due to 40 N load at C = −1.4 mm.
Hence from the reciprocal theorem the deflection at C due to a 40 N load at

D = −1.4 mm.
It follows that the deflection at C due to a 30 N load at D = − 3

4 × 1.4 = −1.05 mm.
Similarly the deflection at C due to a 10 N load at E = − 1

4 × 2.4 = −0.6 mm.
Therefore, the total deflection at C, produced by the 30 and 10 N loads acting simul-

taneously (Fig. 5.27(b)), is −1.05 − 0.6 = −1.65 mm from which the angular rotation
of the beam at B, θB, is given by

θB = tan−1 1.65

300
= tan−1 0.0055

or

θB = 0◦19′

Example 5.13
An elastic member is pinned to a drawing board at its ends A and B. When a moment M
is applied atA,A rotates θA, B rotates θB and the centre deflects δ1. The same moment M
applied to B rotates B, θC and deflects the centre through δ2. Find the moment induced
at A when a load W is applied to the centre in the direction of the measured deflections,
both A and B being restrained against rotation.

The three load conditions and the relevant displacements are shown in Fig. 5.28.
Thus from Fig. 5.28(a) and (b) the rotation at A due to M at B is, from the reciprocal
theorem, equal to the rotation at B due to M at A. Hence

θA(b) = θB

It follows that the rotation at A due to MB at B is

θA(c),1 = MB

M
θB (i)
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Fig. 5.28 Model analysis of a fixed beam.

Also the rotation at A due to unit load at C is equal to the deflection at C due to unit
moment at A. Therefore

θA(c),2

W
= δ1

M
or

θA(c),2 = W

M
δ1 (ii)

where θA(c),2 is the rotation at A due to W at C. Finally, the rotation at A due to MA at
A is, from Fig. 5.28(a) and (c)

θA(c),3 = MA

M
θA (iii)

The total rotation at A produced by MA at A, W at C and MB at B is, from Eqs (i), (ii)
and (iii)

θA(c),1 + θA(c),2 + θA(c),3 = MB

M
θB + W

M
δ1 + MA

M
θA = 0 (iv)

since the end A is restrained from rotation. Similarly the rotation at B is given by

MB

M
θC + W

M
δ2 + MA

M
θB = 0 (v)

Solving Eqs (iv) and (v) for MA gives

MA = W

(
δ2θB − δ1θC

θAθC − θ2
B

)

The fact that the arbitrary moment M does not appear in the expression for the
restraining moment at A (similarly it does not appear in MB), produced by the load
W , indicates an extremely useful application of the reciprocal theorem, namely the
model analysis of statically indeterminate structures. For example, the fixed beam of
Fig. 5.28(c) could possibly be a full-scale bridge girder. It is then only necessary to
construct a model, say of Perspex, having the same flexural rigidity EI as the full-scale
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beam and measure rotations and displacements produced by an arbitrary moment M to
obtain fixing moments in the full-scale beam supporting a full-scale load.

5.11 Temperature effects

A uniform temperature applied across a beam section produces an expansion of the
beam, as shown in Fig. 5.29, provided there are no constraints. However, a linear
temperature gradient across the beam section causes the upper fibres of the beam to
expand more than the lower ones, producing a bending strain as shown in Fig. 5.30
without the associated bending stresses, again provided no constraints are present.

Consider an element of the beam of depth h and length δz subjected to a linear
temperature gradient over its depth, as shown in Fig. 5.31(a). The upper surface

Fig. 5.29 Expansion of beam due to uniform temperature.

Fig. 5.30 Bending of beam due to linear temperature gradient.

Fig. 5.31 (a) Linear temperature gradient applied to beam element; (b) bending of beam element due to temperature
gradient.
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of the element will increase in length to δz(1 + αt) (see Section 1.15.1) where
α is the coefficient of linear expansion of the material of the beam. Thus from
Fig. 5.31(b)

R

δz
= R + h

δz(1 + αt)

giving

R = h/αt (5.29)

Also

δθ = δz/R

so that, from Eq. (5.29)

δθ = δzαt

h
(5.30)

We may now apply the principle of the stationary value of the total complementary
energy in conjunction with the unit load method to determine the deflection �Te, due
to the temperature of any point of the beam shown in Fig. 5.30. We have seen that
the above principle is equivalent to the application of the principle of virtual work
where virtual forces act through real displacements. Therefore, we may specify that the
displacements are those produced by the temperature gradient while the virtual force
system is the unit load. Thus, the deflection �Te,B of the tip of the beam is found by
writing down the increment in total complementary energy caused by the application
of a virtual unit load at B and equating the resulting expression to zero (see Eqs (5.7)
and (5.12)). Thus

δC =
∫

L
M1dθ − 1�Te,B = 0

or

�Te,B =
∫

L
M1 dθ (5.31)

where M1 is the bending moment at any section due to the unit load. Substituting for
dθ from Eq. (5.30) we have

�Te,B =
∫

L
M1

αt

h
dz (5.32)

where t can vary arbitrarily along the span of the beam, but only linearly with depth.
For a beam supporting some form of external loading the total deflection is given by the
superposition of the temperature deflection from Eq. (5.32) and the bending deflection
from Eq. (5.21); thus

� =
∫

L
M1

(
M0

EI
+ αt

h

)
dz (5.33)



Ch05-H6739.tex 23/1/2007 12: 10 Page 156

156 Energy methods

Example 5.14
Determine the deflection of the tip of the cantilever in Fig. 5.32 with the temperature
gradient shown.

Applying a unit load vertically downwards at B, M1 = 1 × z. Also the temperature t
at a section z is t0(l − z)/l. Substituting in Eq. (5.32) gives

�Te,B =
∫ l

0
z
α

h

t0
l

(l − z)dz (i)

Integrating Eq. (i) gives

�Te,B = αt0l2

6h
(i.e. downwards)

Fig. 5.32 Beam of Example 5.14.
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Problems

P.5.1 Find the magnitude and the direction of the movement of the joint C of the
plane pin-jointed frame loaded as shown in Fig. P.5.1. The value of L/AE for each
member is 1/20 mm/N.

Ans. 5.24 mm at 14.7◦ to left of vertical.
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Fig. P.5.1

P.5.2 A rigid triangular plate is suspended from a horizontal plane by three vertical
wires attached to its corners. The wires are each 1 mm diameter, 1440 mm long, with
a modulus of elasticity of 196 000 N/mm2. The ratio of the lengths of the sides of the
plate is 3:4:5. Calculate the deflection at the point of application due to a 100 N load
placed at a point equidistant from the three sides of the plate.

Ans. 0.33 mm.

P.5.3 The pin-jointed space frame shown in Fig. P.5.3 is attached to rigid supports
at points 0, 4, 5 and 9, and is loaded by a force P in the x direction and a force 3P in the
negative y direction at the point 7. Find the rotation of member 27 about the z axis due
to this loading. Note that the plane frames 01234 and 56789 are identical. All members
have the same cross-sectional area A and Young’s modulus E.

Ans. 382P/9 AE.

Fig. P.5.3
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P.5.4 A horizontal beam is of uniform material throughout, but has a second
moment of area of I for the central half of the span L and I/2 for each section in
both outer quarters of the span. The beam carries a single central concentrated load P.

(a) Derive a formula for the central deflection of the beam, due to P, when simply
supported at each end of the span.

(b) If both ends of the span are encastré determine the magnitude of the fixed end
moments.

Ans. 3PL3/128EI, 5PL/48 (hogging).

P.5.5 The tubular steel post shown in Fig. P.5.5 supports a load of 250 N at the free
end C. The outside diameter of the tube is 100 mm and the wall thickness is 3 mm.
Neglecting the weight of the tube find the horizontal deflection at C. The modulus of
elasticity is 206 000 N/mm2.

Ans. 53.3 mm.

Fig. P.5.5

P.5.6 A simply supported beam AB of span L and uniform section carries a dis-
tributed load of intensity varying from zero at A to w0/unit length at B according to the
law

w = 2w0z

L

(
1 − z

2L

)

per unit length. If the deflected shape of the beam is given approximately by the
expression

v = a1 sin
πz

L
+ a2 sin

2πz

L
evaluate the coefficients a1 and a2 and find the deflection of the beam at mid-span.

Ans. a1 = 2w0L4(π2 + 4)/EIπ7, a2 = −w0L4/16EIπ5, 0.00918 w0L4/EI .

P.5.7 A uniform simply supported beam, span L, carries a distributed loading which
varies according to a parabolic law across the span. The load intensity is zero at both
ends of the beam and w0 at its mid-point. The loading is normal to a principal axis of the
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beam cross-section and the relevant flexural rigidity is EI. Assuming that the deflected
shape of the beam can be represented by the series

v =
∞∑

i=1

ai sin
iπz

L

find the coefficients ai and the deflection at the mid-span of the beam using the first
term only in the above series.

Ans. ai = 32w0L4/EIπ7i7 (i odd), w0L4/94.4EI .

P.5.8 Figure P.5.8 shows a plane pin-jointed framework pinned to a rigid founda-
tion. All its members are made of the same material and have equal cross-sectional area
A, except member 12 which has area A

√
2.

Fig. P.5.8

Under some system of loading, member 14 carries a tensile stress of 0.7 N/mm2.
Calculate the change in temperature which, if applied to member 14 only, would
reduce the stress in that member to zero. Take the coefficient of linear expansion as
α = 24 × 10−6/◦C and Young’s modulus E = 70 000 N/mm2.

Ans. 5.6◦C.

P.5.9 The plane, pin-jointed rectangular framework shown in Fig. P.5.9(a) has one
member (24) which is loosely attached at joint 2, so that relative movement between
the end of the member and the joint may occur when the framework is loaded. This
movement is a maximum of 0.25 mm and takes place only in the direction 24. Fig-
ure P.5.9(b) shows joint 2 in detail when the framework is unloaded. Find the value
of the load P at which member 24 just becomes an effective part of the structure and
also the loads in all the members when P is 10 000 N. All bars are of the same material
(E = 70 000 N/mm2) and have a cross-sectional area of 300 mm2.
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Ans. P = 294 N, F12 = 2481.6 N(T ), F23 = 1861.2 N(T ), F34 = 2481.6 N(T ),
F41 = 5638.9 N(C), F13 = 9398.1 N(T ), F24 = 3102.0 N(C).

Fig. P.5.9

P.5.10 The plane frame ABCD of Fig. P.5.10 consists of three straight members
with rigid joints at B and C, freely hinged to rigid supports at A and D. The flexural
rigidity of AB and CD is twice that of BC. A distributed load is applied to AB, varying
linearly in intensity from zero at A to w per unit length at B.

Determine the distribution of bending moment in the frame, illustrating your results
with a sketch showing the principal values.

Ans. MB = 7 wl2/45, MC = 8 wl2/45, Cubic distribution on AB, linear on BC
and CD.

Fig. P.5.10
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P.5.11 A bracket BAC is composed of a circular tube AB, whose second moment
of area is 1.5I , and a beam AC, whose second moment of area is I and which has
negligible resistance to torsion. The two members are rigidly connected together at A
and built into a rigid abutment at B and C as shown in Fig. P.5.11. A load P is applied
at A in a direction normal to the plane of the figure.

Determine the fraction of the load which is supported at C. Both members are of the
same material for which G = 0.38E.

Ans. 0.72P.

Fig. P.5.11

P.5.12 In the plane pin-jointed framework shown in Fig. P.5.12, bars 25, 35, 15
and 45 are linearly elastic with modulus of elasticity E. The remaining three bars obey
a non-linear elastic stress–strain law given by

ε = τ

E

[
1 +

(
τ

τ0

)n]

where τ is the stress corresponding to strain ε. Bars 15, 45 and 23 each have a cross-
sectional area A, and each of the remainder has an area of A/

√
3. The length of member

12 is equal to the length of member 34 = 2L.
If a vertical load P0 is applied at joint 5 as shown, show that the force in the member

23, i.e. F23, is given by the equation

αnxn+1 + 3.5x + 0.8 = 0

Fig. P.5.12
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where

x = F23/P0 and α = P0/Aτ0

P.5.13 Figure P.5.13 shows a plan view of two beams, AB 9150 mm long and
DE 6100 mm long. The simply supported beam AB carries a vertical load of 100 000 N
applied at F, a distance one-third of the span from B. This beam is supported at C on the
encastré beam DE. The beams are of uniform cross-section and have the same second
moment of area 83.5 × 106 mm4. E = 200 000 N/mm2. Calculate the deflection of C.

Ans. 5.6 mm

Fig. P.5.13

P.5.14 The plane structure shown in Fig. P.5.14 consists of a uniform continuous
beam ABC pinned to a fixture at A and supported by a framework of pin-jointed mem-
bers. All members other than ABC have the same cross-sectional area A. For ABC,
the area is 4A and the second moment of area for bending is Aa2/16. The material is
the same throughout. Find (in terms of w, A, a and Young’s modulus E) the vertical
displacement of point D under the vertical loading shown. Ignore shearing strains in
the beam ABC.

Ans. 30 232 wa2/3AE.

Fig. P.5.14
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P.5.15 The fuselage frame shown in Fig. P.5.15 consists of two parts, ACB and
ADB, with frictionless pin joints at A and B. The bending stiffness is constant in each
part, with value EI for ACB and xEI for ADB. Find x so that the maximum bending
moment in ADB will be one half of that in ACB. Assume that the deflections are due
to bending strains only.

Ans. 0.092.

Fig. P.5.15

P.5.16 A transverse frame in a circular section fuel tank is of radius r and constant
bending stiffness EI. The loading on the frame consists of the hydrostatic pressure due
to the fuel and the vertical support reaction P, which is equal to the weight of fuel
carried by the frame, shown in Fig. P.5.16.

Fig. P.5.16

Taking into account only strains due to bending, calculate the distribution of bending
moment around the frame in terms of the force P, the frame radius r and the angle θ.

Ans. M = Pr(0.160 − 0.080 cos θ − 0.159θ sin θ)

P.5.17 The frame shown in Fig. P.5.17 consists of a semi-circular arc, centre B,
radius a, of constant flexural rigidity EI jointed rigidly to a beam of constant flexural
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rigidity 2EI. The frame is subjected to an outward loading as shown arising from an
internal pressure p0.

Find the bending moment at points A, B and C and locate any points of contraflexure.
A is the mid point of the arc. Neglect deformations of the frame due to shear and

normal forces.

Ans. MA = −0.057p0a2, MB = −0.292p0a2, MC = 0.208p0a2.

Points of contraflexure: in AC, at 51.7◦ from horizontal; in BC, 0.764a from B.

Fig. P.5.17

P.5.18 The rectangular frame shown in Fig. P.5.18 consists of two horizontal mem-
bers 123 and 456 rigidly joined to three vertical members 16, 25 and 34. All five
members have the same bending stiffness EI.

Fig. P.5.18

The frame is loaded in its own plane by a system of point loads P which are balanced
by a constant shear flow q around the outside. Determine the distribution of the bending
moment in the frame and sketch the bending moment diagram. In the analysis take
bending deformations only into account.

Ans. Shears only at mid-points of vertical members. On the lower half of the frame
S43 = 0.27P to right, S52 = 0.69P to left, S61 = 1.08P to left; the bending moment
diagram follows.

P.5.19 A circular fuselage frame shown in Fig. P.5.19, of radius r and constant
bending stiffness EI, has a straight floor beam of length r

√
2, bending stiffness EI,
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Fig. P.5.19

rigidly fixed to the frame at either end. The frame is loaded by a couple T applied at its
lowest point and a constant equilibrating shear flow q around its periphery. Determine
the distribution of the bending moment in the frame, illustrating your answer by means
of a sketch.

In the analysis, deformations due to shear and end load may be considered negligible.
The depth of the frame cross-section in comparison with the radius r may also be
neglected.

Ans. M14 = T (0.29 sin θ − 0.16θ), M24 = 0.30Tx/r, M43 = T (0.59 sin θ − 0.16θ).

P.5.20 A thin-walled member BCD is rigidly built-in at D and simply supported at
the same level at C, as shown in Fig. P.5.20.

Fig. P.5.20

Find the horizontal deflection at B due to the horizontal force F. Full account must
be taken of deformations due to shear and direct strains, as well as to bending.

The member is of uniform cross-section, of area A, relevant second moment of area
in bending I = Ar2/400 and ‘reduced’ effective area in shearing A′ = A/4. Poisson’s
ratio for the material is ν = 1/3.

Give the answer in terms of F, r, A and Young’s modulus E.

Ans. 448 Fr/EA.

P.5.21 Figure P.5.21 shows two cantilevers, the end of one being vertically above
the other and connected to it by a spring AB. Initially the system is unstrained. A weight
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W placed at A causes a vertical deflection at A of δ1 and a vertical deflection at B of δ2.
When the spring is removed the weight W at A causes a deflection at A of δ3. Find the
extension of the spring when it is replaced and the weight W is transferred to B.

Ans. δ2(δ1 − δ2)/(δ3 − δ1).

Fig. P.5.21

P.5.22 A beam 2400 mm long is supported at two pointsA and B which are 1440 mm
apart; point A is 360 mm from the left-hand end of the beam and point B is 600 mm
from the right-hand end; the value of EI for the beam is 240 × 108 N mm2. Find the
slope at the supports due to a load of 2000 N applied at the mid-point of AB.

Use the reciprocal theorem in conjunction with the above result, to find the deflection
at the mid-point of AB due to loads of 3000 N applied at each of the extreme ends of
the beam.

Ans. 0.011, 15.8 mm.

P.5.23 Figure P.5.23 shows a frame pinned to its support at A and B. The frame
centre-line is a circular arc and the section is uniform, of bending stiffness EI and depth
d. Find an expression for the maximum stress produced by a uniform temperature
gradient through the depth, the temperatures on the outer and inner surfaces being
respectively raised and lowered by amount T . The points A and B are unaltered in
position.

Ans. 1.30ETα.

Fig. P.5.23

P.5.24 A uniform, semi-circular fuselage frame is pin-jointed to a rigid portion of
the structure and is subjected to a given temperature distribution on the inside as shown
in Fig. P.5.24. The temperature falls linearly across the section of the frame to zero on
the outer surface. Find the values of the reactions at the pin-joints and show that the
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distribution of the bending moment in the frame is

M = 0.59 EIαθ0 cos ψ

h

given that:
(a) the temperature distribution is

θ = θ0 cos 2ψ for −π/4 < ψ < π/4

θ = 0 for −π/4 > ψ > π/4

Fig. P.5.24

(b) bending deformations only are to be taken into account:

α = coefficient of linear expansion of frame material
EI = bending rigidity of frame
h = depth of cross-section
r = mean radius of frame.
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Matrix methods

Actual aircraft structures consist of numerous components generally arranged in an
irregular manner. These components are usually continuous and therefore, theoret-
ically, possess an infinite number of degrees of freedom and redundancies. Analysis
is then only possible if the actual structure is replaced by an idealized approximation
or model. This procedure is discussed to some extent in Chapter 20 where we note
that the greater the simplification introduced by the idealization the less complex but
more inaccurate becomes the analysis. In aircraft design, where structural weight is
of paramount importance, an accurate knowledge of component loads and stresses is
essential so that at some stage in the design these must be calculated as accurately as
possible. This accuracy may only be achieved by considering an idealized structure
which closely represents the actual structure. Standard methods of structural analysis
are inadequate for coping with the necessary degree of complexity in such idealized
structures. It was this situation which led, in the late 1940s and early 1950s, to the
development of matrix methods of analysis and at the same time to the emergence of
high-speed, electronic, digital computers. Conveniently, matrix methods are ideally
suited for expressing structural theory and for expressing the theory in a form suitable
for numerical solution by computer.

A structural problem may be formulated in either of two different ways. One approach
proceeds with the displacements of the structure as the unknowns, the internal forces
then follow from the determination of these displacements, while in the alternative
approach forces are treated as being initially unknown. In the language of matrix
methods these two approaches are known as the stiffness (or displacement) method
and the flexibility (or force) method, respectively. The most widely used of these two
methods is the stiffness method and for this reason, we shall concentrate on this par-
ticular approach. Argyris and Kelsey,1 however, showed that complete duality exists
between the two methods in that the form of the governing equations is the same whether
they are expressed in terms of displacements or forces.

Generally, actual structures must be idealized to some extent before they become
amenable to analysis. Examples of some simple idealizations and their effect on struc-
tural analysis are presented in Chapter 20 for aircraft structures. Outside the realms of
aeronautical engineering the representation of a truss girder by a pin-jointed framework
is a well-known example of the idealization of what are known as ‘skeletal’ structures.
Such structures are assumed to consist of a number of elements joined at points called
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nodes. The behaviour of each element may be determined by basic methods of structural
analysis and hence the behaviour of the complete structure is obtained by superposition.
Operations such as this are easily carried out by matrix methods as we shall see later
in this chapter.

A more difficult type of structure to idealize is the continuum structure; in this
category are dams, plates, shells and, obviously, aircraft fuselage and wing skins. A
method, extending the matrix technique for skeletal structures, of representing continua
by any desired number of elements connected at their nodes was developed by Clough
et al.2 at the BoeingAircraft Company and the University of Berkeley in California. The
elements may be of any desired shape but the simplest, used in plane stress problems,
are the triangular and quadrilateral elements. We shall discuss the finite element method,
as it is known, in greater detail later.

Initially, we shall develop the matrix stiffness method of solution for simple skeletal
and beam structures. The fundamentals of matrix algebra are assumed.

6.1 Notation

Generally we shall consider structures subjected to forces, Fx,1, Fy,1, Fz,1, Fx,2, Fy,2,
Fz,2, . . . , Fx,n, Fy,n, Fz,n, at nodes 1, 2, . . . , n at which the displacements are u1, v1, w1,
u2, v2, w2, . . . , un, vn, wn. The numerical suffixes specify nodes while the algebraic
suffixes relate the direction of the forces to an arbitrary set of axes, x, y, z. Nodal
displacements u, v, w represent displacements in the positive directions of the x, y and z
axes, respectively. The forces and nodal displacements are written as column matrices
(alternatively known as column vectors)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Fx,1

Fy,1

Fz,1

Fx,2

Fy,2

Fz,2

...

Fx,n

Fy,n

Fz,n

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1

v1

w1

u2

v2

w2

...

un

vn

wn

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

which, when once established for a particular problem, may be abbreviated to

{F} {δ}
The generalized force system {F} can contain moments M and torques T in addition

to direct forces in which case {δ} will include rotations θ. Therefore, in referring simply
to a nodal force system, we imply the possible presence of direct forces, moments and
torques, while the corresponding nodal displacements can be translations and rotations.
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For a complete structure the nodal forces and nodal displacements are related through
a stiffness matrix [K]. We shall see that, in general

{F} = [K]{δ} (6.1)

where [K] is a symmetric matrix of the form

[K] =
⎡

⎢
⎣

k11 k12 · · · k1n
k21 k22 · · · k2n
· · · · · · · · · · · ·
kn1 kn2 · · · knn

⎤

⎥
⎦ (6.2)

The element kij (that is the element located on row i and in column j) is known as the
stiffness influence coefficient (note kij = kji). Once the stiffness matrix [K] has been
formed the complete solution to a problem follows from routine numerical calculations
that are carried out, in most practical cases, by computer.

6.2 Stiffness matrix for an elastic spring

The formation of the stiffness matrix [K] is the most crucial step in the matrix solution
of any structural problem. We shall show in the subsequent work how the stiffness
matrix for a complete structure may be built up from a consideration of the stiffness of
its individual elements. First, however, we shall investigate the formation of [K] for a
simple spring element which exhibits many of the characteristics of an actual structural
member.

The spring of stiffness k shown in Fig. 6.1 is aligned with the x axis and supports
forces Fx,1 and Fx,2 at its nodes 1 and 2 where the displacements are u1 and u2. We
build up the stiffness matrix for this simple case by examining different states of nodal
displacement. First we assume that node 2 is prevented from moving such that u1 = u1
and u2 = 0. Hence

Fx,1 = ku1

and from equilibrium we see that

Fx,2 = −Fx,1 = −ku1 (6.3)

which indicates that Fx,2 has become a reactive force in the opposite direction to Fx,1.
Secondly, we take the reverse case where u1 = 0 and u2 = u2 and obtain

Fx,2 = ku2 = −Fx,1 (6.4)

Fig. 6.1 Determination of stiffness matrix for a single spring.
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By superposition of these two conditions we obtain relationships between the applied
forces and the nodal displacements for the state when u1 = u1 and u2 = u2. Thus

Fx,1 = ku1 − ku2
Fx,2 = −ku1 + ku2

}
(6.5)

Writing Eq. (6.5) in matrix form we have
{

Fx,1
Fx,2

}
=

[
k −k

−k k

] {
u1
u2

}
(6.6)

and by comparison with Eq. (6.1) we see that the stiffness matrix for this spring
element is

[K] =
[

k −k
−k k

]
(6.7)

which is a symmetric matrix of order 2 × 2.

6.3 Stiffness matrix for two elastic springs in line

Bearing in mind the results of the previous section we shall now proceed, initially by a
similar process, to obtain the stiffness matrix of the composite two-spring system shown
in Fig. 6.2. The notation and sign convention for the forces and nodal displacements
are identical to those specified in Section 6.1.

First let us suppose that u1 = u1 and u2 = u3 = 0. By comparison with the single
spring case we have

Fx,1 = kau1 = −Fx,2 (6.8)

but, in addition, Fx,3 = 0 since u2 = u3 = 0.
Secondly, we put u1 = u3 = 0 and u2 = u2. Clearly, in this case, the movement of

node 2 takes place against the combined spring stiffnesses ka and kb. Hence

Fx,2 = (ka + kb)u2
Fx,1 = −kau2, Fx,3 = −kbu2

}
(6.9)

Hence the reactive force Fx,1(=−kau2) is not directly affected by the fact that node 2
is connected to node 3, but is determined solely by the displacement of node 2. Similar
conclusions are drawn for the reactive force Fx,3.

Finally, we set u1 = u2 = 0, u3 = u3 and obtain

Fx,3 = kbu3 = −Fx,2
Fx,1 = 0

}
(6.10)

Fig. 6.2 Stiffness matrix for a two-spring system.
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Superimposing these three displacement states we have, for the condition u1 = u1,
u2 = u2, u3 = u3

Fx,1 = kau1 − kau2
Fx,2 = −kau1 + (ka + kb)u2 − kbu3
Fx,3 = −kbu2 + kbu3

⎫
⎬

⎭
(6.11)

Writing Eqs (6.11) in matrix form gives
⎧
⎨

⎩

Fx,1
Fx,2
Fx,3

⎫
⎬

⎭
=

⎡

⎣
ka −ka 0

−ka ka + kb −kb
0 −kb kb

⎤

⎦

⎧
⎨

⎩

u1
u2
u3

⎫
⎬

⎭
(6.12)

Comparison of Eqs (6.12) with Eq. (6.1) shows that the stiffness matrix [K] of this
two-spring system is

[K] =
⎡

⎣
ka −ka 0

−ka ka + kb −kb
0 −kb kb

⎤

⎦ (6.13)

Equation (6.13) is a symmetric matrix of order 3 × 3.
It is important to note that the order of a stiffness matrix may be predicted from a

knowledge of the number of nodal forces and displacements. For example, Eq. (6.7) is a
2 × 2 matrix connecting two nodal forces with two nodal displacements; Eq. (6.13) is
a 3 × 3 matrix relating three nodal forces to three nodal displacements. We deduce that
a stiffness matrix for a structure in which n nodal forces relate to n nodal displacements
will be of order n × n. The order of the stiffness matrix does not, however, bear a direct
relation to the number of nodes in a structure since it is possible for more than one force
to be acting at any one node.

So far we have built up the stiffness matrices for the single- and two-spring assemblies
by considering various states of displacement in each case. Such a process would clearly
become tedious for more complex assemblies involving a large number of springs so
that a shorter, alternative, procedure is desirable. From our remarks in the preceding
paragraph and by reference to Eq. (6.2) we could have deduced at the outset of the
analysis that the stiffness matrix for the two-spring assembly would be of the form

[K] =
⎡

⎣
k11 k12 k13
k21 k22 k23
k31 k32 k33

⎤

⎦ (6.14)

The element k11 of this matrix relates the force at node 1 to the displacement at node
1 and so on. Hence, remembering the stiffness matrix for the single spring (Eq. (6.7))
we may write down the stiffness matrix for an elastic element connecting nodes 1 and
2 in a structure as

[K12] =
[

k11 k12
k21 k22

]
(6.15)

and for the element connecting nodes 2 and 3 as

[K23] =
[

k22 k23
k32 k33

]
(6.16)



Ch06-H6739.tex 23/1/2007 12: 13 Page 173

6.3 Stiffness matrix for two elastic springs in line 173

In our two-spring system the stiffness of the spring joining nodes 1 and 2 is ka and that
of the spring joining nodes 2 and 3 is kb. Therefore, by comparison with Eq. (6.7), we
may rewrite Eqs (6.15) and (6.16) as

[K12] =
[

ka −ka
−ka ka

]
[K23] =

[
kb −kb

−kb kb

]
(6.17)

Substituting in Eq. (6.14) gives

[K] =
⎡

⎣
ka −ka 0

−ka ka + kb −kb
0 −kb kb

⎤

⎦

which is identical to Eq. (6.13). We see that only the k22 term (linking the force at node
2 to the displacement at node 2) receives contributions from both springs. This results
from the fact that node 2 is directly connected to both nodes 1 and 3 while nodes 1 and
3 are each joined directly only to node 2. Also, the elements k13 and k31 of [K] are zero
since nodes 1 and 3 are not directly connected and are therefore not affected by each
other’s displacement.

The formation of a stiffness matrix for a complete structure thus becomes a relatively
simple matter of the superposition of individual or element stiffness matrices. The
procedure may be summarized as follows: terms of the form kii on the main diagonal
consist of the sum of the stiffnesses of all the structural elements meeting at node i
while off-diagonal terms of the form kij consist of the sum of the stiffnesses of all the
elements connecting node i to node j.

An examination of the stiffness matrix reveals that it possesses certain properties. For
example, the sum of the elements in any column is zero, indicating that the conditions
of equilibrium are satisfied. Also, the non-zero terms are concentrated near the leading
diagonal while all the terms in the leading diagonal are positive; the latter property
derives from the physical behaviour of any actual structure in which positive nodal
forces produce positive nodal displacements.

Further inspection of Eq. (6.13) shows that its determinant vanishes. As a result the
stiffness matrix [K] is singular and its inverse does not exist. We shall see that this means
that the associated set of simultaneous equations for the unknown nodal displacements
cannot be solved for the simple reason that we have placed no limitation on any of the
displacements u1, u2 or u3. Thus the application of external loads results in the system
moving as a rigid body. Sufficient boundary conditions must therefore be specified
to enable the system to remain stable under load. In this particular problem we shall
demonstrate the solution procedure by assuming that node 1 is fixed, i.e. u1 = 0.

The first step is to rewrite Eq. (6.13) in partitioned form as

⎧
⎨

⎩

Fx,1
Fx,2
Fx,3

⎫
⎬

⎭
=

⎡

⎢⎢⎢⎢
⎣

ka
... −ka 0

· · · · · · · · · · · · · · · · · · · · · · · ·
−ka

... ka + kb −kb

0
... −kb kb

⎤

⎥⎥⎥⎥
⎦

⎧
⎨

⎩

u1 = 0
u2
u3

⎫
⎬

⎭
(6.18)

In Eq. (6.18) Fx,1 is the unknown reaction at node 1, u1 and u2 are unknown nodal
displacements, while Fx,2 and Fx,3 are known applied loads. Expanding Eq. (6.18) by
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matrix multiplication we obtain

{Fx,1} = [−ka 0]

{
u2
u3

} {
Fx,2
Fx,3

}
=

[
ka + kb −kb
−kb kb

] {
u2
u3

}
(6.19)

Inversion of the second of Eqs (6.19) gives u2 and u3 in terms of Fx,2 and Fx,3.
Substitution of these values in the first equation then yields Fx,1.

Thus
{

u2
u3

}
=

[
ka + kb −kb
−kb kb

]−1 {
Fx,2
Fx,3

}

or
{

u2
u3

}
=

[
1/ka 1/ka
1/ka 1/kb + 1/ka

] {
Fx,2
Fx,3

}

Hence

{Fx,1} = [−ka 0]

[
1/ka 1/ka
1/ka 1/kb + 1/ka

] {
Fx,2
Fx,3

}

which gives

Fx,1 = −Fx,2 − Fx,3

as would be expected from equilibrium considerations. In problems where reactions are
not required, equations relating known applied forces to unknown nodal displacements
may be obtained by deleting the rows and columns of [K] corresponding to zero dis-
placements. This procedure eliminates the necessity of rearranging rows and columns
in the original stiffness matrix when the fixed nodes are not conveniently grouped
together.

Finally, the internal forces in the springs may be determined from the force–
displacement relationship of each spring. Thus, if Sa is the force in the spring joining
nodes 1 and 2 then

Sa = ka(u2 − u1)

Similarly for the spring between nodes 2 and 3

Sb = kb(u3 − u2)

6.4 Matrix analysis of pin-jointed frameworks

The formation of stiffness matrices for pin-jointed frameworks and the subsequent
determination of nodal displacements follow a similar pattern to that described for a
spring assembly. A member in such a framework is assumed to be capable of carrying
axial forces only and obeys a unique force–deformation relationship given by

F = AE

L
δ
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Fig. 6.3 Local and global coordinate systems for a member of a plane pin-jointed framework.

where F is the force in the member, δ its change in length, A its cross-sectional area,
L its unstrained length and E its modulus of elasticity. This expression is seen to be
equivalent to the spring–displacement relationships of Eqs (6.3) and (6.4) so that we
may immediately write down the stiffness matrix for a member by replacing k by AE/L
in Eq. (6.7). Thus

[K] =
[

AE/L −AE/L
−AE/L AE/L

]

or

[K] = AE

L

[
1 −1

−1 1

]
(6.20)

so that for a member aligned with the x axis, joining nodes i and j subjected to nodal
forces Fx,i and Fx, j, we have

{
Fx,i
Fx, j

}
= AE

L

[
1 −1

−1 1

] {
ui
uj

}
(6.21)

The solution proceeds in a similar manner to that given in the previous section for a
spring or spring assembly. However, some modification is necessary since frameworks
consist of members set at various angles to one another. Figure 6.3 shows a member
of a framework inclined at an angle θ to a set of arbitrary reference axes x, y. We
shall refer every member of the framework to this global coordinate system, as it is
known, when we are considering the complete structure but we shall use a member or
local coordinate system x̄, ȳ when considering individual members. Nodal forces and
displacements referred to local coordinates are written as F̄, ū etc. so that Eq. (6.21)
becomes, in terms of local coordinates

{
Fx,i

Fx, j

}

= AE

L

[
1 −1

−1 1

] {
ui

uj

}

(6.22)

where the element stiffness matrix is written [Kij].
In Fig. 6.3 external forces Fx,i and Fx, j are applied to nodes i and j. It should

be noted that Fy,i, and Fy, j, do not exist since the member can only support axial
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forces. However, Fx,i and Fx, j have components Fx,i, Fy,i and Fx,j, Fy,j respectively,
so that, whereas only two force components appear for the member in terms of local
coordinates, four components are present when global coordinates are used. Therefore,
if we are to transfer from local to global coordinates, Eq. (6.22) must be expanded to
an order consistent with the use of global coordinates, i.e.

⎧
⎪⎪⎨

⎪⎪⎩

Fx,i

Fy,i

Fx, j

Fy, j

⎫
⎪⎪⎬

⎪⎪⎭
= AE

L

⎡

⎢
⎣

1 0 −1 0
0 0 0 0

−1 0 1 0
0 0 0 0

⎤

⎥
⎦

⎧
⎪⎨

⎪⎩

ui
vi
uj
vj

⎫
⎪⎬

⎪⎭
(6.23)

Equation (6.23) does not change the basic relationship between Fx,i, Fx, j and ui, uj as
defined in Eq. (6.22).

From Fig. 6.3 we see that

Fx,i = Fx,i cos θ + Fy,i sin θ

Fy,i = −Fx,i sin θ + Fy,i cos θ

and

Fx, j = Fx, j cos θ + Fy, j sin θ

Fy, j = −Fx, j sin θ + Fy, j cos θ

Writing λ for cos θ and µ for sin θ we express the above equations in matrix form as
⎧
⎪⎪⎨

⎪⎪⎩

Fx,i

Fy,i

Fx, j

Fy, j

⎫
⎪⎪⎬

⎪⎪⎭
=

⎡

⎢
⎣

λ µ 0 0
−µ λ 0 0

0 0 λ µ

0 0 −µ λ

⎤

⎥
⎦

⎧
⎪⎨

⎪⎩

Fx,i
Fy,i
Fx, j
Fy, j

⎫
⎪⎬

⎪⎭
(6.24)

or, in abbreviated form

{F} = [T ]{F} (6.25)

where [T ] is known as the transformation matrix. A similar relationship exists between
the sets of nodal displacements. Thus, again using our shorthand notation

{δ̄} = [T ]{δ} (6.26)

Substituting now for {F̄} and {δ̄} in Eq. (6.23) from Eqs (6.25) and (6.26), we have

[T ]{F} = [Kij][T ]{δ}
Hence

{F} = [T−1][Kij][T ]{δ} (6.27)

It may be shown that the inverse of the transformation matrix is its transpose, i.e.

[T−1] = [T ]T

Thus we rewrite Eq. (6.27) as

{F} = [T ]T[Kij][T ]{δ} (6.28)
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The nodal force system referred to global coordinates, {F} is related to the correspond-
ing nodal displacements by

{F} = [Kij]{δ} (6.29)

where [Kij] is the member stiffness matrix referred to global coordinates. Comparison
of Eqs (6.28) and (6.29) shows that

[Kij] = [T ]T[Kij][T ]

Substituting for [T ] from Eq. (6.24) and [Kij] from Eq. (6.23), we obtain

[Kij] = AE

L

⎡

⎢⎢
⎣

λ2 λµ −λ2 −λµ

λµ µ2 −λµ −µ2

−λ2 −λµ λ2 λµ

−λµ −µ2 λµ µ2

⎤

⎥⎥
⎦ (6.30)

By evaluating λ(= cos θ) and µ(= sin θ) for each member and substituting in Eq. (6.30)
we obtain the stiffness matrix, referred to global coordinates, for each member of the
framework.

In Section 6.3 we determined the internal force in a spring from the nodal displace-
ments. Applying similar reasoning to the framework member we may write down an
expression for the internal force Sij in terms of the local coordinates. Thus

Sij = AE

L
(uj − ui) (6.31)

Now

uj = λuj + µvj

ui = λui + µvi

Hence

uj − ui = λ(uj − ui) + µ(vj − vi)

Substituting in Eq. (6.31) and rewriting in matrix form, we have

Sij = AE

L

[
λ µ

ij

] {
uj − ui
vj − vi

}
(6.32)

Example 6.1
Determine the horizontal and vertical components of the deflection of node 2 and the
forces in the members of the pin-jointed framework shown in Fig. 6.4. The product AE
is constant for all members.

We see in this problem that nodes 1 and 3 are pinned to a fixed foundation and are
therefore not displaced. Hence, with the global coordinate system shown

u1 = v1 = u3 = v3 = 0

The external forces are applied at node 2 such that Fx,2 = 0, Fy,2 = −W ; the nodal forces
at 1 and 3 are then unknown reactions.
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Fig. 6.4 Pin-jointed framework of Example 6.1.

The first step in the solution is to assemble the stiffness matrix for the complete
framework by writing down the member stiffness matrices referred to the global coord-
inate system using Eq. (6.30). The direction cosines λ and µ take different values
for each of the three members, therefore remembering that the angle θ is measured
anticlockwise from the positive direction of the x axis we have the following:

Member θ λ µ

1–2 0 1 0
1–3 90 0 1
2–3 135 −1/

√
2 1/

√
2

The member stiffness matrices are therefore

[K12] = AE

L

⎡

⎢
⎣

1 0 −1 0
0 0 0 0

−1 0 1 0
0 0 0 0

⎤

⎥
⎦ [K13] = AE

L

⎡

⎢
⎣

0 0 0 0
0 1 0 −1
0 0 0 0
0 −1 0 1

⎤

⎥
⎦

[K23] = AE√
2L

⎡

⎢⎢⎢⎢⎢⎢
⎣

1
2 − 1

2 − 1
2

1
2

− 1
2

1
2

1
2 − 1

2

− 1
2

1
2

1
2 − 1

2

1
2 − 1

2 − 1
2

1
2

⎤

⎥⎥⎥⎥⎥⎥
⎦

(i)

The next stage is to add the member stiffness matrices to obtain the stiffness matrix for
the complete framework. Since there are six possible nodal forces producing six possible
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nodal displacements the complete stiffness matrix is of the order 6 × 6. Although the
addition is not difficult in this simple problem care must be taken, when solving more
complex structures, to ensure that the matrix elements are placed in the correct position
in the complete stiffness matrix. This may be achieved by expanding each member
stiffness matrix to the order of the complete stiffness matrix by inserting appropriate
rows and columns of zeros. Such a method is, however, time and space consuming. An
alternative procedure is suggested here. The complete stiffness matrix is of the form
shown in Eq. (ii)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Fx,1

Fy,1

Fx,2

Fy,2

Fx,3

Fy,3

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

=
⎡

⎢
⎣

k11 k12 k13

k21 k22 k23

k31 k32 k33

⎤

⎥
⎦

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1

v1

u2

v2

u3

v3

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

(ii)

The complete stiffness matrix has been divided into a number of submatrices in which
[k11] is a 2 × 2 matrix relating the nodal forces Fx,1, Fy,1 to the nodal displacements
u1, v1 and so on. It is a simple matter to divide each member stiffness matrix into
submatrices of the form [k11], as shown in Eqs (iii). All that remains is to insert each
submatrix into its correct position in Eq. (ii), adding the matrix elements where they
overlap; for example, the [k11] submatrix in Eq. (ii) receives contributions from [K12]
and [K13]. The complete stiffness matrix is then of the form shown in Eq. (iv). It
is sometimes helpful, when considering the stiffness matrix separately, to write the
nodal displacement above the appropriate column (see Eq. (iv)). We note that [K] is
symmetrical, that all the diagonal terms are positive and that the sum of each row and
column is zero

[K12] = AE

L

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

1 0
k11

0 0

−1 0
k12

0 0

−1 0
k21

0 0

1 0
k22

0 0

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

[K13] = AE

L

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

0 0
k11

0 1

0 0
k13

0 −1

0 0
k31

0 −1

0 0
k33

0 1

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

(iii)
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[K23] = AE√
2L

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

1

2
−1

2
k22

−1

2

1

2

−1

2

1

2
k23

1

2
−1

2

−1

2

1

2
k32

1

2
−1

2

1

2
−1

2
k33

−1

2

1

2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

(iii)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Fx,1
Fy,1
Fx,2
Fy,2
Fx,3
Fy,3

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

= AE

L

u1 v1 u2 v2 u3 v3⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

1 0 −1 0 0 0
0 1 0 0 0 −1

−1 0 1 + 1

2
√

2
− 1

2
√

2
− 1

2
√

2

1

2
√

2

0 0 − 1

2
√

2

1

2
√

2

1

2
√

2
− 1

2
√

2

0 0 − 1

2
√

2

1

2
√

2

1

2
√

2
− 1

2
√

2

0 −1
1

2
√

2
− 1

2
√

2
− 1

2
√

2
1 + 1

2
√

2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u1 = 0
v1 = 0

u2
v2

u3 = 0
v3 = 0

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(iv)

If we now delete rows and columns in the stiffness matrix corresponding to zero
displacements, we obtain the unknown nodal displacements u2 and v2 in terms of the
applied loads Fx,2 (= 0) and Fy,2 (= −W ). Thus

{
Fx,2
Fy,2

}
= AE

L

⎡

⎢⎢
⎣

1 + 1

2
√

2
− 1

2
√

2

− 1

2
√

2

1

2
√

2

⎤

⎥⎥
⎦

{
u2
v2

}
(v)

Inverting Eq. (v) gives
{

u2
v2

}
= L

AE

[
1 1
1 1 + 2

√
2

] {
Fx,2
Fy,2

}
(vi)

from which

u2 = L

AE
(Fx,2 + Fy,2) = −WL

AE
(vii)

v2 = L

AE
[Fx,2 + (1 + 2

√
2)Fy,2] = −WL

AE
(1 + 2

√
2) (viii)
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The reactions at nodes 1 and 3 are now obtained by substituting for u2 and v2 from
Eq. (vi) into Eq. (iv). Thus

⎧
⎪⎨

⎪⎩

Fx,1
Fy,1
Fx,3
Fy,3

⎫
⎪⎬

⎪⎭
=

⎡

⎢⎢⎢⎢⎢⎢
⎣

−1 0
0 0

− 1

2
√

2

1

2
√

2
1

2
√

2
− 1

2
√

2

⎤

⎥⎥⎥⎥⎥⎥
⎦

[
1 1
1 1 + 2

√
2

] {
Fx,2
Fy,2

}

=
⎡

⎢
⎣

−1 −1
0 0
0 1
0 −1

⎤

⎥
⎦

{
Fx,2
Fy,2

}

giving

Fx,1 = −Fx,2 − Fy,2 = W

Fy,1 = 0

Fx,3 = Fy,2 = −W

Fy,3 = W

Finally, the forces in the members are found from Eqs (6.32), (vii) and (viii)

S12 = AE

L
[1 0]

{
u2 − u1
v2 − v1

}
= −W (compression)

S13 = AE

L
[0 1]

{
u3 − u1
v3 − v1

}
= 0 (as expected)

S23 = AE√
2L

[
− 1√

2

1√
2

] {
u3 − u2
v3 − v2

}
= √

2W (tension)

6.5 Application to statically indeterminate frameworks

The matrix method of solution described in the previous sections for spring and pin-
jointed framework assemblies is completely general and is therefore applicable to any
structural problem. We observe that at no stage in Example 6.1 did the question of the
degree of indeterminacy of the framework arise. It follows that problems involving stat-
ically indeterminate frameworks (and other structures) are solved in an identical manner
to that presented in Example 6.1, the stiffness matrices for the redundant members being
included in the complete stiffness matrix as before.
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6.6 Matrix analysis of space frames

The procedure for the matrix analysis of space frames is similar to that for plane pin-
jointed frameworks. The main difference lies in the transformation of the member
stiffness matrices from local to global coordinates since, as we see from Fig. 6.5, axial
nodal forces Fx,i and Fx, j have each now three global components Fx,i, Fy,i, Fz,i and
Fx, j, Fy, j, Fz, j, respectively. The member stiffness matrix referred to global coordinates
is therefore of the order 6 × 6 so that [Kij] of Eq. (6.22) must be expanded to the same
order to allow for this. Hence

[Kij] = AE

L

ūi v̄i w̄i ūj v̄j w̄j⎡

⎢⎢⎢⎢⎢
⎣

1 0 0 −1 0 0
0 0 0 0 0 0
0 0 0 0 0 0

−1 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥
⎦

(6.33)

In Fig. 6.5 the member ij is of length L, cross-sectional area A and modulus of elas-
ticity E. Global and local coordinate systems are designated as for the two-dimensional
case. Further, we suppose that

θxx̄ = angle between x and x̄

θxȳ = angle between x and ȳ

...

θzȳ = angle between z and ȳ

...

Fig. 6.5 Local and global coordinate systems for a member in a pin-jointed space frame.
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Therefore, nodal forces referred to the two systems of axes are related as follows

Fx = Fx cos θxx̄ + Fy cos θxȳ + Fz cos θxz̄

Fy = Fx cos θyx̄ + Fy cos θyȳ + Fz cos θyz̄

Fz = Fx cos θzx̄ + Fy cos θzȳ + Fz cos θzz̄

⎫
⎪⎬

⎪⎭
(6.34)

Writing

λx̄ = cos θxx̄, λȳ = cos θxȳ, λz̄ = cos θxz̄

µx̄ = cos θyx̄, µȳ = cos θyȳ, µz̄ = cos θyz̄

νx̄ = cos θzx̄, νȳ = cos θzȳ, νz̄ = cos θzz̄

⎫
⎬

⎭
(6.35)

we may express Eq. (6.34) for nodes i and j in matrix form as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Fx,i

Fy,i

Fz,i

Fx, j

Fy, j

Fz, j

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

λx̄ µx̄ νx̄ 0 0 0
λȳ µȳ νȳ 0 0 0
λz̄ µz̄ νz̄ 0 0 0
0 0 0 λx̄ µx̄ νx̄

0 0 0 λȳ µȳ νȳ

0 0 0 λz̄ µz̄ νz̄

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Fx,i

Fy,i

Fz,i

Fx, j

Fy, j

Fz, j

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

(6.36)

or in abbreviated form

{F} = [T ]{F}

The derivation of [Kij] for a member of a space frame proceeds on identical lines to
that for the plane frame member. Thus, as before

[Kij] = [T ]T[Kij][T ]

Substituting for [T ] and [Kij] from Eqs (6.36) and (6.33) gives

[Kij] = AE

L

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

λ2
x̄ λx̄µx̄ λx̄νx̄ −λ2

x̄ −λx̄µx̄ −λx̄νx̄

λx̄µx̄ µ2
x̄ µx̄νx̄ −λx̄µx̄ −µ2

x̄ −µx̄νx̄

λx̄νx̄ µx̄νx̄ ν2
x̄ −λx̄νx̄ −µx̄νx̄ −ν2

x̄

−λ2
x̄ −λx̄µx̄ −λx̄νx̄ λ2

x̄ λx̄µx̄ λx̄νx̄

−λx̄µx̄ −µ2
x̄ −µx̄νx̄ λx̄µx̄ µ2

x̄ µx̄νx̄

−λx̄νx̄ −µx̄νx̄ −ν2
x̄ λx̄νx̄ µx̄νx̄ ν2

x̄

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

(6.37)
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All the suffixes in Eq. (6.37) are x̄ so that we may rewrite the equation in simpler form,
namely

[Kij] = AE

L

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

λ2 ... SYM

λµ µ2 ...

λν µν ν2 ...

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
−λ2 −λµ −λν

... λ2

−λµ −µ2 −µν
... λµ µ2

−λν −µν −ν2 ... λν µν ν2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

(6.38)

where λ, µ and ν are the direction cosines between the x, y, z and x̄ axes, respectively.
The complete stiffness matrix for a space frame is assembled from the member

stiffness matrices in a similar manner to that for the plane frame and the solution
completed as before.

6.7 Stiffness matrix for a uniform beam

Our discussion so far has been restricted to structures comprising members capable
of resisting axial loads only. Many structures, however, consist of beam assemblies in
which the individual members resist shear and bending forces, in addition to axial loads.
We shall now derive the stiffness matrix for a uniform beam and consider the solution
of rigid jointed frameworks formed by an assembly of beams, or beam elements as they
are sometimes called.

Figure 6.6 shows a uniform beam ij of flexural rigidity EI and length L subjected
to nodal forces Fy,i, Fy, j and nodal moments Mi, Mj in the xy plane. The beam suffers
nodal displacements and rotations vi, vj and θi, θj. We do not include axial forces here
since their effects have already been determined in our investigation of pin-jointed
frameworks.

The stiffness matrix [Kij] may be built up by considering various deflected states for
the beam and superimposing the results, as we did initially for the spring assemblies

Fig. 6.6 Forces and moments on a beam element.
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of Figs 6.1 and 6.2 or, alternatively, it may be written down directly from the well-
known beam slope–deflection equations.3 We shall adopt the latter procedure. From
slope–deflection theory we have

Mi = −6EI

L2 vi + 4EI

L
θi + 6EI

L2 vj + 2EI

L
θj (6.39)

and

Mj = −6EI

L2 vi + 2EI

L
θi + 6EI

L2 vj + 4EI

L
θj (6.40)

Also, considering vertical equilibrium we obtain

Fy, i + Fy, j = 0 (6.41)

and from moment equilibrium about node j we have

Fy, iL + Mi + Mj = 0 (6.42)

Hence the solution of Eqs (6.39)–(6.42) gives

−Fy, i = Fy, j = −12EI

L3 vi + 6EI

L2 θi + 12EI

L3 vj + 6EI

L2 θj (6.43)

Expressing Eqs (6.39), (6.40) and (6.43) in matrix form yields

⎧
⎪⎨

⎪⎩

Fy, i
Mi
Fy, j
Mj

⎫
⎪⎬

⎪⎭
= EI

⎡

⎢⎢
⎣

12/L3 −6/L2 −12/L3 −6/L2

−6/L2 4/L 6/L2 2/L
−12/L3 6/L2 12/L3 6/L2

−6/L2 2/L 6/L2 4/L

⎤

⎥⎥
⎦

⎧
⎪⎨

⎪⎩

vi
θi
vj
θj

⎫
⎪⎬

⎪⎭
(6.44)

which is of the form

{F} = [Kij]{δ}
where [Kij] is the stiffness matrix for the beam.

It is possible to write Eq. (6.44) in an alternative form such that the elements of [Kij]
are pure numbers. Thus

⎧
⎪⎨

⎪⎩

Fy,i
Mi/L
Fy, j
Mj/L

⎫
⎪⎬

⎪⎭
= EI

L3

⎡

⎢
⎣

12 −6 −12 −6
−6 4 6 2

−12 6 12 6
−6 2 6 4

⎤

⎥
⎦

⎧
⎪⎨

⎪⎩

vi
θiL
vj
θjL

⎫
⎪⎬

⎪⎭

This form of Eq. (6.44) is particularly useful in numerical calculations for an assemblage
of beams in which EI/L3 is constant.

Equation (6.44) is derived for a beam whose axis is aligned with the x axis so that
the stiffness matrix defined by Eq. (6.44) is actually [Kij] the stiffness matrix referred
to a local coordinate system. If the beam is positioned in the xy plane with its axis
arbitrarily inclined to the x axis then the x and y axes form a global coordinate system
and it becomes necessary to transform Eq. (6.44) to allow for this. The procedure
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is similar to that for the pin-jointed framework member of Section 6.4 in that [Kij]
must be expanded to allow for the fact that nodal displacements ūi and ūj, which are
irrelevant for the beam in local coordinates, have components ui, vi and uj, vj in global
coordinates. Thus

[Kij] = EI

ui vi θi uj vj θj⎡

⎢⎢⎢⎢⎢⎢
⎣

0 0 0 0 0 0
0 12/L3 −6/L2 0 −12/L3 −6/L2

0 −6/L2 4/L 0 6/L2 2/L
0 0 0 0 0 0
0 −12/L3 6/L2 0 12/L3 6/L2

0 −6/L2 2/L 0 6/L2 4/L

⎤

⎥⎥⎥⎥⎥⎥
⎦

(6.45)

We may deduce the transformation matrix [T ] from Eq. (6.24) if we remember that
although u and v transform in exactly the same way as in the case of a pin-jointed
member the rotations θ remain the same in either local or global coordinates.

Hence

[T ] =

⎡

⎢⎢⎢⎢⎢
⎣

λ µ 0 0 0 0
−µ λ 0 0 0 0
0 0 1 0 0 0
0 0 0 λ µ 0
0 0 0 −µ λ 0
0 0 0 0 0 1

⎤

⎥⎥⎥⎥⎥
⎦

(6.46)

where λ and µ have previously been defined. Thus since

[Kij] = [T ]T[Kij][T ] (see Section 6.4)

we have, from Eqs (6.45) and (6.46)

[Kij] = EI

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

12µ2/L3 SYM

−12λµ/L3 12λ2/L3

6µ/L2 −6λ/L2 4/L

−12µ2/L3 12λµ/L3 −6µ/L2 12µ2/L3

12λµ/L3 −12λ2/L3 6λ/L2 −12λµ/L3 12λ2/L3

6µ/L2 −6λ/L2 2/L 6µ/L2 6λ/L2 4λ/L

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

(6.47)

Again the stiffness matrix for the complete structure is assembled from the member
stiffness matrices, the boundary conditions are applied and the resulting set of equations
solved for the unknown nodal displacements and forces.

The internal shear forces and bending moments in a beam may be obtained in terms
of the calculated nodal displacements. Thus, for a beam joining nodes i and j we shall
have obtained the unknown values of vi, θi and vj, θj. The nodal forces Fy,i and Mi are
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Fig. 6.7 Idealization of a beam into beam–elements.

then obtained from Eq. (6.44) if the beam is aligned with the x axis. Hence

Fy,i = EI

(
12

L3 vi − 6

L2 θi − 12

L3 vj − 6

L2 θj

)

Mi = EI

(
− 6

L2 vi + 4

L
θi + 6

L2 vj + 2

L
θj

)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(6.48)

Similar expressions are obtained for the forces at node j. From Fig. 6.6 we see that the
shear force Sy and bending moment M in the beam are given by

Sy = Fy,i

M = Fy,ix + Mi

}

(6.49)

Substituting Eq. (6.48) into Eq. (6.49) and expressing in matrix form yields

{
Sy
M

}
= EI

⎡

⎢
⎣

12

L3 − 6

L2 −12

L3 − 6

L2
12

L3 x − 6

L2 − 6

L2 x + 4

L
−12

L3 x + 6

L2 − 6

L2 x + 2

L

⎤

⎥
⎦

⎧
⎪⎨

⎪⎩

vi
θi
vj
θj

⎫
⎪⎬

⎪⎭
(6.50)

The matrix analysis of the beam in Fig. 6.6 is based on the condition that no external
forces are applied between the nodes. Obviously in a practical case a beam supports
a variety of loads along its length and therefore such beams must be idealized into
a number of beam–elements for which the above condition holds. The idealization
is accomplished by merely specifying nodes at points along the beam such that any
element lying between adjacent nodes carries, at the most, a uniform shear and a linearly
varying bending moment. For example, the beam of Fig. 6.7 would be idealized into
beam–elements 1–2, 2–3 and 3–4 for which the unknown nodal displacements are
v2, θ2, θ3, v4 and θ4 (v1 = θ1 = v3 = 0).

Beams supporting distributed loads require special treatment in that the distributed
load is replaced by a series of statically equivalent point loads at a selected number of
nodes. Clearly the greater the number of nodes chosen, the more accurate but more
complicated and therefore time consuming will be the analysis. Figure 6.8 shows a
typical idealization of a beam supporting a uniformly distributed load. Details of the
analysis of such beams may be found in Martin.4

Many simple beam problems may be idealized into a combination of two beam–
elements and three nodes. A few examples of such beams are shown in Fig. 6.9. If
we therefore assemble a stiffness matrix for the general case of a two beam–element
system we may use it to solve a variety of problems simply by inserting the appropriate
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Fig. 6.8 Idealization of a beam supporting a uniformly distributed load.

Fig. 6.9 Idealization of beams into beam–elements.

Fig. 6.10 Assemblage of two beam–elements.

loading and support conditions. Consider the assemblage of two beam–elements shown
in Fig. 6.10. The stiffness matrices for the beam–elements 1–2 and 2–3 are obtained
from Eq. (6.44); thus

[K12] = EIa

v1 θ1 v2 θ2⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

12/L3
a −6/L2

a
k11

−6/L2
a 4/La

−12/L3
a −6/L2

a
k12

6/L2
a 2/La

−12/L3
a 6/L2

a
k21

−6/L2
a 2/La

12/L3
a 6/L2

a
k22

6/L2
a 4/La

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

(6.51)

[K23] = EIb

v2 θ2 v3 θ3⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

12/L3
b −6/L2

b
k22

−6/L2
b 4/Lb

−12/L3
b −6/L2

b
k23

6/L2
b 2/Lb

−12/L3
b 6/L2

b
k32

−6/L2
b 2/Lb

12/L3
b 6/L2

b
k33

6/L2
b 4/Lb

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

(6.52)
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The complete stiffness matrix is formed by superimposing [K12] and [K23] as described
in Example 6.1. Hence

[K] = E

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

12Ia

L3
a

−6Ia

L2
a

−12Ia

L3
a

−6Ia

L2
a

0 0

−6Ia

L2
a

4Ia

La

6Ia

L2
a

2Ia

La
0 0

−12Ia

L3
a

6Ia

L2
a

12

(
Ia

L3
a

+ Ib

L3
b

)

6

(
Ia

L2
a

− Ib

L2
b

)

−12Ib

L3
b

−6Ib

L2
b

−6Ia

L2
a

2Ia

La
6

(
Ia

L2
a

− Ib

L2
b

)

4

(
Ia

La
+ Ib

Lb

)
6Ib

L2
b

2Ib

Lb

0 0 −12Ib

L3
b

6Ib

L2
b

12Ib

L3
b

6Ib

L2
b

0 0 −6Ib

L2
b

2Ib

Lb

6Ib

L2
b

4Ib

Lb

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

(6.53)

Example 6.2
Determine the unknown nodal displacements and forces in the beam shown in Fig. 6.11.
The beam is of uniform section throughout.

The beam may be idealized into two beam–elements, 1–2 and 2–3. From Fig. 6.11 we
see that v1 = v3 = 0, Fy,2 = −W , M2 = +M. Therefore, eliminating rows and columns
corresponding to zero displacements from Eq. (6.53), we obtain

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Fy,2 = −W
M2 = M
M1 = 0
M3 = 0

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

= EI

⎡

⎢⎢⎢
⎣

27/2L3 9/2L2 6/L2 −3/2L2

9/2L2 6/L 2/L 1/L

6/L2 2/L 4/L 0

−3/2L2 1/L 0 2/L

⎤

⎥⎥⎥
⎦

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

v2

θ2

θ1

θ3

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(i)

Fig. 6.11 Beam of Example 6.2.
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Equation (i) may be written such that the elements of [K] are pure numbers

⎧
⎪⎨

⎪⎩

Fy,2 = −W
M2/L = M/L

M1/L = 0
M3/L = 0

⎫
⎪⎬

⎪⎭
= EI

2L3

⎡

⎢
⎣

27 9 12 −3
9 12 4 2

12 4 8 0
−3 2 0 4

⎤

⎥
⎦

⎧
⎪⎨

⎪⎩

v2
θ2L
θ1L
θ3L

⎫
⎪⎬

⎪⎭
(ii)

Expanding Eq. (ii) by matrix multiplication we have
{−W

M/L

}
= EI

2L3

([
27 9

9 12

] {
v2
θ2L

}
+

[
12 −3

4 2

] {
θ1L
θ3L

})
(iii)

and
{

0
0

}
= EI

2L3

([
12 4
−3 2

] {
v2
θ2L

}
+

[
8 0
0 4

] {
θ1L
θ3L

})
(iv)

Equation (iv) gives
{
θ1L
θ3L

}
=

[− 3
2 − 1

2

− 3
4 − 1

2

] {
v2
θ2L

}
(v)

Substituting Eq. (v) in Eq. (iii) we obtain

{
v2
θ2L

}
= L3

9EI

[−4 −2
−2 3

] {−W
M/L

}
(vi)

from which the unknown displacements at node 2 are

v2 = −4

9

WL3

EI
− 2

9

ML2

EI

θ2 = 2

9

WL2

EI
+ 1

3

ML

EI

In addition, from Eq. (v) we find that

θ1 = 5

9

WL2

EI
+ 1

6

ML

EI

θ3 = −4

9

WL2

EI
− 1

3

ML

EI

It should be noted that the solution has been obtained by inverting two 2 × 2 matrices
rather than the 4 × 4 matrix of Eq. (ii). This simplification has been brought about by
the fact that M1 = M3 = 0.

The internal shear forces and bending moments can now be found using Eq. (6.50).
For the beam–element 1–2 we have

Sy,12 = EI

(
12

L3 v1 − 6

L2 θ1 − 12

L3 v2 − 6

L2 θ2

)
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or

Sy,12 = 2

3
W − 1

3

M

L
and

M12 = EI

[(
12

L3 x − 6

L2

)
v1 +

(
− 6

L2 x + 4

L

)
θ1

+
(

−12

L3 x + 6

L2

)
v2 +

(
− 6

L2 x + 2

L

)
θ2

]

which reduces to

M12 =
(

2

3
W − 1

3

M

L

)
x

6.8 Finite element method for continuum structures

In the previous sections we have discussed the matrix method of solution of structures
composed of elements connected only at nodal points. For skeletal structures consisting
of arrangements of beams these nodal points fall naturally at joints and at positions of
concentrated loading. Continuum structures, such as flat plates, aircraft skins, shells
etc., do not possess such natural subdivisions and must therefore be artificially idealized
into a number of elements before matrix methods can be used. These finite elements,
as they are known, may be two- or three-dimensional but the most commonly used are
two-dimensional triangular and quadrilateral shaped elements. The idealization may
be carried out in any number of different ways depending on such factors as the type
of problem, the accuracy of the solution required and the time and money available.
For example, a coarse idealization involving a small number of large elements would
provide a comparatively rapid but very approximate solution while a fine idealization
of small elements would produce more accurate results but would take longer and
consequently cost more. Frequently, graded meshes are used in which small elements
are placed in regions where high stress concentrations are expected, for example around
cut-outs and loading points. The principle is illustrated in Fig. 6.12 where a graded
system of triangular elements is used to examine the stress concentration around a
circular hole in a flat plate.

Although the elements are connected at an infinite number of points around their
boundaries it is assumed that they are only interconnected at their corners or nodes.
Thus, compatibility of displacement is only ensured at the nodal points. However, in
the finite element method a displacement pattern is chosen for each element which may
satisfy some, if not all, of the compatibility requirements along the sides of adjacent
elements.

Since we are employing matrix methods of solution we are concerned initially with
the determination of nodal forces and displacements. Thus, the system of loads on
the structure must be replaced by an equivalent system of nodal forces. Where these
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Fig. 6.12 Finite element idealization of a flat plate with a central hole.

loads are concentrated the elements are chosen such that a node occurs at the point of
application of the load. In the case of distributed loads, equivalent nodal concentrated
loads must be calculated.4

The solution procedure is identical in outline to that described in the previous sec-
tions for skeletal structures; the differences lie in the idealization of the structure into
finite elements and the calculation of the stiffness matrix for each element. The latter
procedure, which in general terms is applicable to all finite elements, may be specified
in a number of distinct steps. We shall illustrate the method by establishing the stiffness
matrix for the simple one-dimensional beam–element of Fig. 6.6 for which we have
already derived the stiffness matrix using slope–deflection.

6.8.1 Stiffness matrix for a beam–element

The first step is to choose a suitable coordinate and node numbering system for the
element and define its nodal displacement vector {δe} and nodal load vector {Fe}. Use
is made here of the superscript e to denote element vectors since, in general, a finite
element possesses more than two nodes. Again we are not concerned with axial or shear
displacements so that for the beam–element of Fig. 6.6 we have

{δe} =

⎧
⎪⎨

⎪⎩

vi
θi
vj
θj

⎫
⎪⎬

⎪⎭
{Fe} =

⎧
⎪⎨

⎪⎩

Fy,i
Mi
Fy,j
Mj

⎫
⎪⎬

⎪⎭

Since each of these vectors contains four terms the element stiffness matrix [Ke] will
be of order 4 × 4.

In the second step we select a displacement function which uniquely defines the
displacement of all points in the beam–element in terms of the nodal displacements.
This displacement function may be taken as a polynomial which must include four
arbitrary constants corresponding to the four nodal degrees of freedom of the element.
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Thus

v(x) = α1 + α2x + α3x2 + α4x3 (6.54)

Equation (6.54) is of the same form as that derived from elementary bending theory
for a beam subjected to concentrated loads and moments and may be written in matrix
form as

{v(x)} = [1 x x2 x3]

⎧
⎪⎨

⎪⎩

α1
α2
α3
α4

⎫
⎪⎬

⎪⎭

or in abbreviated form as

{v(x)} = [ f (x)]{α} (6.55)

The rotation θ at any section of the beam–element is given by ∂v/∂x; therefore

θ = α2 + 2α3x + 3α4x2 (6.56)

From Eqs (6.54) and (6.56) we can write down expressions for the nodal displacements
vi, θi and vj, θj at x = 0 and x = L, respectively. Hence

vi = α1
θi = α2
vj = α1 + α2L + α3L2 + α4L3

θj = α2 + 2α3L + 3α4L2

⎫
⎪⎪⎬

⎪⎪⎭
(6.57)

Writing Eqs (6.57) in matrix form gives

⎧
⎪⎨

⎪⎩

vi
θi
vj
θj

⎫
⎪⎬

⎪⎭
=

⎡

⎢⎢
⎣

1 0 0 0
0 1 0 0
1 L L2 L3

0 1 2L 3L2

⎤

⎥⎥
⎦

⎧
⎪⎨

⎪⎩

α1
α2
α3
α4

⎫
⎪⎬

⎪⎭
(6.58)

or

{δe} = [A]{α} (6.59)

The third step follows directly from Eqs (6.58) and (6.55) in that we express the
displacement at any point in the beam–element in terms of the nodal displacements.
Using Eq. (6.59) we obtain

{α} = [A−1]{δe} (6.60)

Substituting in Eq. (6.55) gives

{v(x)} = [ f (x)][A−1]{δe} (6.61)
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where [A−1] is obtained by inverting [A] in Eq. (6.58) and may be shown to be
given by

[A−1] =

⎡

⎢⎢
⎣

1 0 0 0
0 1 0 0

−3/L2 −2/L 3/L2 −1/L
2/L3 1/L2 −2/L3 1/L2

⎤

⎥⎥
⎦ (6.62)

In step four we relate the strain {ε(x)} at any point x in the element to the displacement
{v(x)} and hence to the nodal displacements {δe}. Since we are concerned here with
bending deformations only we may represent the strain by the curvature ∂2v/∂x2. Hence
from Eq. (6.54)

∂2v

∂x2 = 2α3 + 6α4x (6.63)

or in matrix form

{ε} = [0 0 2 6x]

⎧
⎪⎨

⎪⎩

α1
α2
α3
α4

⎫
⎪⎬

⎪⎭
(6.64)

which we write as

{ε} = [C]{α} (6.65)

Substituting for {α} in Eq. (6.65) from Eq. (6.60) we have

{ε} = [C][A−1]{δe} (6.66)

Step five relates the internal stresses in the element to the strain {ε} and hence, using
Eq. (6.66), to the nodal displacements {δe}. In our beam–element the stress distribution
at any section depends entirely on the value of the bending moment M at that section.
Thus we may represent a ‘state of stress’ {σ} at any section by the bending moment M,
which, from simple beam theory, is given by

M = EI
∂2v

∂x2

or

{σ} = [EI]{ε} (6.67)

which we write as

{σ} = [D]{ε} (6.68)

The matrix [D] in Eq. (6.68) is the ‘elasticity’ matrix relating ‘stress’ and ‘strain’. In
this case [D] consists of a single term, the flexural rigidity EI of the beam. Generally,
however, [D] is of a higher order. If we now substitute for {ε} in Eq. (6.68) from Eq.
(6.66) we obtain the ‘stress’ in terms of the nodal displacements, i.e.

{σ} = [D][C][A−1]{δe} (6.69)



Ch06-H6739.tex 23/1/2007 12: 13 Page 195

6.8 Finite element method for continuum structures 195

The element stiffness matrix is finally obtained in step six in which we replace the
internal ‘stresses’{σ} by a statically equivalent nodal load system {Fe}, thereby relating
nodal loads to nodal displacements (from Eq. (6.69)) and defining the element stiffness
matrix [Ke]. This is achieved by employing the principle of the stationary value of the
total potential energy of the beam (see Section 5.8) which comprises the internal strain
energy U and the potential energy V of the nodal loads. Thus

U + V = 1

2

∫

vol
{ε}T{σ}d(vol) − {δe}T{Fe} (6.70)

Substituting in Eq. (6.70) for {ε} from Eq. (6.66) and {σ} from Eq. (6.69) we have

U + V = 1

2

∫

vol
{δe}T[A−1]T[C]T[D][C][A−1]{δe}d(vol) − {δe}T{Fe} (6.71)

The total potential energy of the beam has a stationary value with respect to the nodal
displacements {δe}T ; hence, from Eq. (6.71)

∂(U + V )

∂{δe}T =
∫

vol
[A−1]T[C]T[D][C][A−1]{δe}d(vol) − {Fe} = 0 (6.72)

whence

{Fe} =
[∫

vol
[C]T[A−1]T[D][C][A−1]d(vol)

]
{δe} (6.73)

or writing [C][A−1] as [B] we obtain

{Fe} =
[∫

vol
[B]T[D][B]d(vol)

]
{δe} (6.74)

from which the element stiffness matrix is clearly

[Ke] =
[∫

vol
[B]T[D][B]d(vol)

]
(6.75)

From Eqs (6.62) and (6.64) we have

[B] = [C][A−1] = [0 0 2 6x]

⎡

⎢⎢
⎣

1 0 0 0
0 1 0 0

−3/L2 −2/L 3/L2 −1/L
2/L3 1/L2 −2/L3 1/L2

⎤

⎥⎥
⎦

or

[B]T =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

− 6

L2 + 12x

L3

− 4

L
+ 6x

L2

6

L2 − 12x

L3

− 2

L
+ 6x

L2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

(6.76)
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Hence

[Ke] =
∫ L

0

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

− 6

L2 + 12x

L3

− 4

L
+ 6x

L2

6

L2 − 12x

L3

− 2

L
+ 6x

L2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

[EI]

[
− 6

L2 + 12x

L3 − 4

L
+ 6x

L2

6

L2 − 12x

L3 − 2

L
+ 6x

L2

]
dx

which gives

[Ke] = EI

L3

⎡

⎢⎢
⎣

12 −6L −12 −6L
−6L 4L2 6L 2L2

−12 6L 12 6L
−6L 2L2 6L 4L2

⎤

⎥⎥
⎦ (6.77)

Equation (6.77) is identical to the stiffness matrix (see Eq. (6.44)) for the uniform beam
of Fig. 6.6.

Finally, in step seven, we relate the internal ‘stresses’, {σ}, in the element to the
nodal displacements {δe}. This has in fact been achieved to some extent in Eq. (6.69),
namely

{σ} = [D][C][A−1]{δe}
or, from the above

{σ} = [D][B]{δe} (6.78)

Equation (6.78) is usually written

{σ} = [H]{δe} (6.79)

in which [H] = [D][B] is the stress–displacement matrix. For this particular beam–
element [D] = EI and [B] is defined in Eq. (6.76). Thus

[H] = EI

[
− 6

L2 + 12x

L3 − 4

L
+ 6x

L2

6

L2 − 12x

L3 − 2

L
+ 6x

L2

]
(6.80)

6.8.2 Stiffness matrix for a triangular finite element

Triangular finite elements are used in the solution of plane stress and plane strain
problems. Their advantage over other shaped elements lies in their ability to represent
irregular shapes and boundaries with relative simplicity.

In the derivation of the stiffness matrix we shall adopt the step by step procedure
of the previous example. Initially, therefore, we choose a suitable coordinate and node
numbering system for the element and define its nodal displacement and nodal force
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Fig. 6.13 Triangular element for plane elasticity problems.

vectors. Figure 6.13 shows a triangular element referred to axes Oxy and having nodes
i, j and k lettered anticlockwise. It may be shown that the inverse of the [A] matrix for
a triangular element contains terms giving the actual area of the element; this area is
positive if the above node lettering or numbering system is adopted. The element is
to be used for plane elasticity problems and has therefore two degrees of freedom per
node, giving a total of six degrees of freedom for the element, which will result in a
6 × 6 element stiffness matrix [Ke]. The nodal forces and displacements are shown and
the complete displacement and force vectors are

{δe} =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ui

vi

uj

vj

uk

vk

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

{Fe} =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Fx,i

Fy,i

Fx, j

Fy, j

Fx,k

Fy,k

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

(6.81)

We now select a displacement function which must satisfy the boundary conditions
of the element, i.e. the condition that each node possesses two degrees of freedom.
Generally, for computational purposes, a polynomial is preferable to, say, a trigono-
metric series since the terms in a polynomial can be calculated much more rapidly by
a digital computer. Furthermore, the total number of degrees of freedom is six, so that
only six coefficients in the polynomial can be obtained. Suppose that the displacement
function is

u(x, y) = α1 + α2x + α3y
v(x, y) = α4 + α5x + α6y

}
(6.82)

The constant terms, α1 and α4, are required to represent any in-plane rigid body motion,
i.e. motion without strain, while the linear terms enable states of constant strain to be
specified; Eqs (6.82) ensure compatibility of displacement along the edges of adjacent
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elements. Writing Eqs (6.82) in matrix form gives

{
u(x, y)
v(x, y)

}
=

[
1 x y 0 0 0
0 0 0 1 x y

]

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

α1
α2
α3
α4
α5
α6

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(6.83)

Comparing Eq. (6.83) with Eq. (6.55) we see that it is of the form
{

u(x, y)
v(x, y)

}
= [ f (x, y)]{α} (6.84)

Substituting values of displacement and coordinates at each node in Eq. (6.84) we have,
for node i

{
ui
vi

}
=

[
1 xi yi 0 0 0
0 0 0 1 xi yi

]
{α}

Similar expressions are obtained for nodes j and k so that for the complete element we
obtain

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ui
vi
uj
vj
uk
vk

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

=

⎡

⎢⎢⎢⎢⎢
⎣

1 xi yi 0 0 0
0 0 0 1 xi yi
1 xj yj 0 0 0
0 0 0 1 xj yj
1 xk yk 0 0 0
0 0 0 1 xk yk

⎤

⎥⎥⎥⎥⎥
⎦

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

α1
α2
α3
α4
α5
α6

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(6.85)

From Eq. (6.81) and by comparison with Eqs (6.58) and (6.59) we see that Eq. (6.85)
takes the form

{δe} = [A]{α}
Hence (step 3) we obtain

{α} = [A−1]{δe} (compare with Eq. (6.60))

The inversion of [A], defined in Eq. (6.85), may be achieved algebraically as illus-
trated in Example 6.3. Alternatively, the inversion may be carried out numerically for
a particular element by computer. Substituting for {α} from the above into Eq. (6.84)
gives

{
u(x, y)
v(x, y)

}
= [ f (x, y)][A−1]{δe} (6.86)

(compare with Eq. (6.61)).
The strains in the element are

{ε} =
⎧
⎨

⎩

εx
εy
γxy

⎫
⎬

⎭
(6.87)



Ch06-H6739.tex 23/1/2007 12: 13 Page 199

6.8 Finite element method for continuum structures 199

From Eqs (1.18) and (1.20) we see that

εx = ∂u

∂x
εy = ∂v

∂y
γxy = ∂u

∂y
+ ∂v

∂x
(6.88)

Substituting for u and v in Eqs (6.88) from Eqs (6.82) gives

εx = α2

εy = α6

γxy = α3 + α5

or in matrix form

{ε} =
⎡

⎣
0 1 0 0 0 0
0 0 0 0 0 1
0 0 1 0 1 0

⎤

⎦

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

α1
α2
α3
α4
α5
α6

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(6.89)

which is of the form

{ε} = [C]{α} (see Eqs (6.64) and (6.65))

Substituting for {α}(= [A−1]{δe}) we obtain

{ε} = [C][A−1]{δe} (compare with Eq. (6.66))

or

{ε} = [B]{δe} (see Eq. (6.76))

where [C] is defined in Eq. (6.89).
In step five we relate the internal stresses {σ} to the strain {ε} and hence, using step

four, to the nodal displacements {δe}. For plane stress problems

{σ} =
⎧
⎨

⎩

σx
σy
τxy

⎫
⎬

⎭
(6.90)

and

εx = σx

E
− νσy

E

εy = σy

E
− νσx

E

γxy = τxy

G
= 2(1 + ν)

E
τxy

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(see Chapter 1)
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Thus, in matrix form,

{ε} =
⎧
⎨

⎩

εx
εy
γxy

⎫
⎬

⎭
= 1

E

⎡

⎣
1 −ν 0

−ν 1 0
0 0 2(1 + ν)

⎤

⎦

⎧
⎨

⎩

σx
σy
τxy

⎫
⎬

⎭
(6.91)

It may be shown that (see Chapter 1)

{σ} =
⎧
⎨

⎩

σx
σy
τxy

⎫
⎬

⎭
= E

1 − ν2

⎡

⎣
1 ν 0
ν 1 0
0 0 1

2 (1 − ν)

⎤

⎦

⎧
⎨

⎩

εx
εy
γxy

⎫
⎬

⎭
(6.92)

which has the form of Eq. (6.68), i.e.

{σ} = [D]{ε}
Substituting for {ε} in terms of the nodal displacements {δe} we obtain

{σ} = [D][B]{δe} (see Eq. (6.69))

In the case of plane strain the elasticity matrix [D] takes a different form to that defined
in Eq. (6.92). For this type of problem

εx = σx

E
− νσy

E
− νσz

E

εy = σy

E
− νσx

E
− νσz

E

εz = σz

E
− νσx

E
− νσy

E
= 0

γxy = τxy

G
= 2(1 + ν)

E
τxy

Eliminating σz and solving for σx, σy and τxy gives

{σ} =
⎧
⎨

⎩

σx
σy
τxy

⎫
⎬

⎭
= E(1 − ν)

(1 + ν)(1 − 2ν)

⎡

⎢⎢⎢⎢⎢
⎣

1
ν

1 − ν
0

ν

1 − ν
1 0

0 0
(1 − 2ν)

2(1 − ν)

⎤

⎥⎥⎥⎥⎥
⎦

⎧
⎨

⎩

εx
εy
γxy

⎫
⎬

⎭
(6.93)

which again takes the form

{σ} = [D]{ε}
Step six, in which the internal stresses {σ} are replaced by the statically equivalent

nodal forces {Fe} proceeds, in an identical manner to that described for the beam–
element. Thus

{Fe} =
[∫

vol
[B]T[D][B]d(vol)

]
{δe}
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as in Eq. (6.74), whence

[Ke] =
[∫

vol
[B]T[D][B]d(vol)

]

In this expression [B] = [C][A−1] where [A] is defined in Eq. (6.85) and [C] in Eq.
(6.89). The elasticity matrix [D] is defined in Eq. (6.92) for plane stress problems
or in Eq. (6.93) for plane strain problems. We note that the [C], [A] (therefore [B])
and [D] matrices contain only constant terms and may therefore be taken outside the
integration in the expression for [Ke], leaving only

∫
d(vol) which is simply the area A,

of the triangle times its thickness t. Thus

[Ke] = [[B]T[D][B]At] (6.94)

Finally the element stresses follow from Eq. (6.79), i.e.

{σ} = [H]{δe}
where [H] = [D][B] and [D] and [B] have previously been defined. It is usually found
convenient to plot the stresses at the centroid of the element.

Of all the finite elements in use the triangular element is probably the most versatile.
It may be used to solve a variety of problems ranging from two-dimensional flat plate
structures to three-dimensional folded plates and shells. For three-dimensional appli-
cations the element stiffness matrix [Ke] is transformed from an in-plane xy coordinate
system to a three-dimensional system of global coordinates by the use of a transform-
ation matrix similar to those developed for the matrix analysis of skeletal structures.
In addition to the above, triangular elements may be adapted for use in plate flexure
problems and for the analysis of bodies of revolution.

Example 6.3
A constant strain triangular element has corners 1(0, 0), 2(4, 0) and 3(2, 2) referred to a
Cartesian Oxy axes system and is 1 unit thick. If the elasticity matrix [D] has elements
D11 = D22 = a, D12 = D21 = b, D13 = D23 = D31 = D32 = 0 and D33 = c, derive the
stiffness matrix for the element.

From Eq. (6.82)

u1 = α1 + α2(0) + α3(0)

i.e.

u1 = α1 (i)

u2 = α1 + α2(4) + α3(0)

i.e.

u2 = α1 + 4α2 (ii)

u3 = α1 + α2(2) + α3(2)

i.e.

u3 = α1 + 2α2 + 2α3 (iii)
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From Eq. (i)

α1 = u1 (iv)

and from Eqs (ii) and (iv)

α2 = u2 − u1

4
(v)

Then, from Eqs (iii) to (v)

α3 = 2u3 − u1 − u2

4
(vi)

Substituting for α1, α2 and α3 in the first of Eqs (6.82) gives

u = u1 +
(

u2 − u1

4

)
x +

(
2u3 − u1 − u2

4

)
y

or

u =
(

1 − x

4
− y

4

)
u1 +

(x

4
− y

4

)
u2 + y

2
u3 (vii)

Similarly

v =
(

1 − x

4
− y

4

)
v1 +

(x

4
− y

4

)
v2 + y

2
v3 (viii)

Now from Eq. (6.88)

εx = ∂u

∂x
= −u1

4
+ u2

4

εy = ∂v

∂y
= −v1

4
− v2

4
+ v3

2

and

γxy = ∂u

∂y
+ ∂v

∂x
= −u1

4
− u2

4
− v1

4
+ v2

4

Hence

[B]{δe} =

⎡

⎢⎢⎢⎢⎢⎢
⎣

∂u

∂x
∂v

∂y
∂u

∂y
+ ∂v

∂x

⎤

⎥⎥⎥⎥⎥⎥
⎦

= 1

4

⎡

⎣
−1 0 1 0 0 0

0 −1 0 −1 0 2
−1 −1 −1 1 2 0

⎤

⎦

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u1
v1
u2
v2
u3
v3

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(ix)

Also

[D] =
⎡

⎣
a b 0
b a 0
0 0 c

⎤

⎦
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Hence

[D][B] = 1

4

⎡

⎣
−a −b a −b 0 2b
−b −a b −a 0 2a
−c −c −c c 2c 0

⎤

⎦

and

[B]T[D][B] = 1

16

⎡

⎢⎢⎢⎢⎢
⎣

a + c b + c −a + c b − c −2c −2b
b + c a + c −b + c a − c −2c −2a

−a + c −b + c a + c −b − c −2c 2b
b − c a − c −b − c a + c 2c −2a
−2c −2c −2c 2c 4c 0
−2b −2a 2b −2a 0 4a

⎤

⎥⎥⎥⎥⎥
⎦

Then, from Eq. (6.94)

[Ke] = 1

4

⎡

⎢⎢⎢⎢⎢
⎣

a + c b + c −a + c b − c −2c −2b
b + c a + c −b + c a − c −2c −2a

−a + c −b + c a + c −b − c −2c 2b
b − c a − c −b − c a + c 2c −2a
−2c −2c −2c 2c 4c 0
−2b −2a 2b −2a 0 4a

⎤

⎥⎥⎥⎥⎥
⎦

6.8.3 Stiffness matrix for a quadrilateral element

Quadrilateral elements are frequently used in combination with triangular elements to
build up particular geometrical shapes.

Figure 6.14 shows a quadrilateral element referred to axes Oxy and having cor-
ner nodes, i, j, k and l; the nodal forces and displacements are also shown and the
displacement and force vectors are

{δe} =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ui
vi
uj
vj
uk
vk
ul
vl

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

{Fe} =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Fx,i
Fy,i
Fx, j
Fy, j
Fx,k
Fy,k
Fx,l
Fy,l

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.95)

As in the case of the triangular element we select a displacement function which satisfies
the total of eight degrees of freedom of the nodes of the element; again this displacement
function will be in the form of a polynomial with a maximum of eight coefficients. Thus

u(x, y) = α1 + α2x + α3y + α4xy
v(x, y) = α5 + α6x + α7y + α8xy

}
(6.96)
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Fig. 6.14 Quadrilateral element subjected to nodal in-plane forces and displacements.

The constant terms, α1 and α5, are required, as before, to represent the in-plane rigid
body motion of the element while the two pairs of linear terms enable states of constant
strain to be represented throughout the element. Further, the inclusion of the xy terms
results in both the u(x, y) and v(x, y) displacements having the same algebraic form so
that the element behaves in exactly the same way in the x direction as it does in the y
direction.

Writing Eqs (6.96) in matrix form gives

{
u(x, y)
v(x, y)

}
=

[
1 x y xy 0 0 0 0
0 0 0 0 1 x y xy

]

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α1
α2
α3
α4
α5
α6
α7
α8

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.97)

or
{

u(x, y)
v(x, y)

}
= [ f (x, y)]{α} (6.98)

Now substituting the coordinates and values of displacement at each node we obtain
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ui
vi
uj
vj
uk
vk
ul
vl

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

1 xi yi xiyi 0 0 0 0
0 0 0 0 1 xi yi xiyi
1 xj yj xjyj 0 0 0 0
0 0 0 0 1 xj yj xjyj
1 xk yk xkyk 0 0 0 0
0 0 0 0 1 xk yk xkyk
1 xl yl xlyl 0 0 0 0
0 0 0 0 1 xl yl xlyl

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α1
α2
α3
α4
α5
α6
α7
α8

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.99)
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which is of the form

{δe} = [A]{α}
Then

{α} = [A−1]{δe} (6.100)

The inversion of [A] is illustrated in Example 6.4 but, as in the case of the triangular
element, is most easily carried out by means of a computer. The remaining analysis is
identical to that for the triangular element except that the {ε}–{α} relationship (see Eq.
(6.89)) becomes

{ε} =
⎡

⎣
0 1 0 y 0 0 0 0
0 0 0 0 0 0 1 x
0 0 1 x 0 1 0 y

⎤

⎦

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α1
α2
α3
α4
α5
α6
α7
α8

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.101)

Example 6.4
A rectangular element used in a plane stress analysis has corners whose coordinates (in
metres), referred to an Oxy axes system, are 1(−2, −1), 2(2, −1), 3(2, 1) and 4(−2,
1); the displacements (also in metres) of the corners were

u1 = 0.001, u2 = 0.003, u3 = −0.003, u4 = 0

v1 = −0.004, v2 = −0.002, v3 = 0.001, v4 = 0.001

If Young’s modulus E = 200 000 N/mm2 and Poisson’s ratio ν = 0.3; calculate the
stresses at the centre of the element.

From the first of Eqs (6.96)

u1 = α1 − 2α2 − α3 + 2α4 = 0.001 (i)

u2 = α1 + 2α2 − α3 − 2α4 = 0.003 (ii)

u3 = α1 + 2α2 + α3 + 2α4 = −0.003 (iii)

u4 = α1 − 2α2 + α3 − 2α4 = 0 (iv)

Subtracting Eq. (ii) from Eq. (i)

α2 − α4 = 0.0005 (v)

Now subtracting Eq. (iv) from Eq. (iii)

α2 + α4 = −0.00075 (vi)
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Then subtracting Eq. (vi) from Eq. (v)

α4 = −0.000625 (vii)

whence, from either of Eqs (v) or (vi)

α2 = −0.000125 (viii)

Adding Eqs (i) and (ii)

α1 − α3 = 0.002 (ix)

Adding Eqs (iii) and (iv)

α1 + α3 = −0.0015 (x)

Then adding Eqs (ix) and (x)

α1 = 0.00025 (xi)

and, from either of Eqs (ix) or (x)

α3 = −0.00175 (xii)

The second of Eqs (6.96) is used to determine α5, α6, α7, α8 in an identical manner to
the above. Thus

α5 = −0.001

α6 = 0.00025

α7 = 0.002

α8 = −0.00025

Now substituting for α1, α2, . . . , α8 in Eqs (6.96)

ui = 0.00025 − 0.000125x − 0.00175y − 0.000625xy

and

vi = −0.001 + 0.00025x + 0.002y − 0.00025xy
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Then, from Eqs (6.88)

εx = ∂u

∂x
= −0.000125 − 0.000625y

εy = ∂v

∂y
= 0.002 − 0.00025x

γxy = ∂u

∂y
+ ∂v

∂x
= −0.0015 − 0.000625x − 0.00025y

Therefore, at the centre of the element (x = 0, y = 0)

εx = −0.000125

εy = 0.002

γxy = −0.0015

so that, from Eqs (6.92)

σx = E

1 − ν2 (εx + νεy) = 200 000

1 − 0.32 (−0.000125 + (0.3 × 0.002))

i.e.

σx = 104.4 N/mm2

σy = E

1 − ν2 (εy + νεx) = 200 000

1 − 0.32 (0.002 + (0.3 × 0.000125))

i.e.

σy = 431.3 N/mm2

and

τxy = E

1 − ν2 × 1

2
(1 − ν)γxy = E

2(1 + ν)
γxy

Thus

τxy = 200 000

2(1 + 0.3)
× (−0.0015)

i.e.

τxy = −115.4 N/mm2

The application of the finite element method to three-dimensional solid bodies is
a straightforward extension of the analysis of two-dimensional structures. The basic
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Fig. 6.15 Tetrahedron and rectangular prism finite elements for three-dimensional problems.

three-dimensional elements are the tetrahedron and the rectangular prism, both shown
in Fig. 6.15. The tetrahedron has four nodes each possessing three degrees of freedom, a
total of 12 for the element, while the prism has 8 nodes and therefore a total of 24 degrees
of freedom. Displacement functions for each element require polynomials in x, y and
z; for the tetrahedron the displacement function is of the first degree with 12 constant
coefficients, while that for the prism may be of a higher order to accommodate the 24
degrees of freedom. A development in the solution of three-dimensional problems has
been the introduction of curvilinear coordinates. This enables the tetrahedron and prism
to be distorted into arbitrary shapes that are better suited for fitting actual boundaries.
For more detailed discussions of the finite element method reference should be made
to the work of Jenkins,5 Zienkiewicz6 and to the many research papers published on
the method.

New elements and new applications of the finite element method are still being
developed, some of which lie outside the field of structural analysis. These fields include
soil mechanics, heat transfer, fluid and seepage flow, magnetism and electricity.
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Problems

P.6.1 Figure P.6.1 shows a square symmetrical pin-jointed truss 1234, pinned to
rigid supports at 2 and 4 and loaded with a vertical load at 1. The axial rigidity EA is
the same for all members.

Use the stiffness method to find the displacements at nodes 1 and 3 and hence solve
for all the internal member forces and support reactions.

Ans. v1 = −PL/
√

2AE, v3 = −0.293PL/AE, S12 = P/2 = S14,

S23 = −0.207P = S43, S13 = 0.293P

Fx,2 = −Fx,4 = 0.207P, Fy,2 = Fy,4 = P/2.

Fig. P.6.1

P.6.2 Use the stiffness method to find the ratio H/P for which the displacement of
node 4 of the plane pin-jointed frame shown loaded in Fig. P.6.2 is zero, and for that
case give the displacements of nodes 2 and 3.

All members have equal axial rigidity EA.

Ans. H/P = 0.449, v2 = −4Pl/(9 + 2
√

3)AE,

v3 = −6PL/(9 + 2
√

3)AE.
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Fig. P.6.2

P.6.3 Form the matrices required to solve completely the plane truss shown in Fig.
P.6.3 and determine the force in member 24. All members have equal axial rigidity.

Ans. S24 = 0.

Fig. P.6.3

P.6.4 The symmetrical plane rigid jointed frame 1234567, shown in Fig. P.6.4,
is fixed to rigid supports at 1 and 5 and supported by rollers inclined at 45◦ to the
horizontal at nodes 3 and 7. It carries a vertical point load P at node 4 and a uniformly
distributed load w per unit length on the span 26. Assuming the same flexural rigidity
EI for all members, set up the stiffness equations which, when solved, give the nodal
displacements of the frame.

Explain how the member forces can be obtained.
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Fig. P.6.4

P.6.5 The frame shown in Fig. P.6.5 has the planes xz and yz as planes of symmetry.
The nodal coordinates of one quarter of the frame are given in Table P.6.5(i).

In this structure the deformation of each member is due to a single effect, this being
axial, bending or torsional. The mode of deformation of each member is given in Table
P.6.5(ii), together with the relevant rigidity.

Fig. P.6.5

Table P.6.5(i)

Node x y z

2 0 0 0
3 L 0 0
7 L 0.8 L 0
9 L 0 L
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Table P.6.5(ii)

Effect

Member Axial Bending Torsional

23 – EI –
37 – – GJ = 0.8 EI
29 EA = 6

√
2 EI

L2 – –

Use the direct stiffness method to find all the displacements and hence calculate the
forces in all the members. For member 123 plot the shear force and bending moment
diagrams.

Briefly outline the sequence of operations in a typical computer program suitable for
linear frame analysis.

Ans. S29 = S28 = √
2P/6 (tension)

M3 = −M1 = PL/9 (hogging), M2 = 2PL/9(sagging)

SF12 = −SF23 = P/3

Twisting moment in 37, PL/ 18 (anticlockwise).

P.6.6 Given that the force–displacement (stiffness) relationship for the beam
element shown in Fig. P.6.6(a) may be expressed in the following form:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Fy,1

M1/L

Fy,2

M2/L

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

= EI

L3

⎡

⎢⎢⎢⎢
⎣

12 −6 −12 −6

−6 4 6 2

−12 6 12 6

−6 2 6 4

⎤

⎥⎥⎥⎥
⎦

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

v1

θ1L

v2

θ2L

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

Obtain the force–displacement (stiffness) relationship for the variable section beam
(Fig. P.6.6(b)), composed of elements 12, 23 and 34.

Such a beam is loaded and supported symmetrically as shown in Fig. P.6.6(c). Both
ends are rigidly fixed and the ties FB, CH have a cross-section area a1 and the ties EB,
CG a cross-section area a2. Calculate the deflections under the loads, the forces in the
ties and all other information necessary for sketching the bending moment and shear
force diagrams for the beam.

Neglect axial effects in the beam. The ties are made from the same material as the
beam.

Ans. vB = vC = −5PL3/144EI , θB = −θC = PL2/24EI ,

S1 = 2P/3, S2 = √
2P/3,

Fy,A = P/3, MA = −PL/4.
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Fig. P.6.6

P.6.7 The symmetrical rigid jointed grillage shown in Fig. P.6.7 is encastré at 6, 7,
8 and 9 and rests on simple supports at 1, 2, 4 and 5. It is loaded with a vertical point
load P at 3.

Use the stiffness method to find the displacements of the structure and hence calculate
the support reactions and the forces in all the members. Plot the bending moment
diagram for 123. All members have the same section properties and GJ = 0.8EI.

Ans. Fy,1 = Fy,5 = −P/16

Fy,2 = Fy,4 = 9P/16

M21 = M45 = −Pl/16 (hogging)
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M23 = M43 = −Pl/12 (hogging)

Twisting moment in 62, 82, 74 and 94 is Pl/96.

Fig. P.6.7

P.6.8 It is required to formulate the stiffness of a triangular element 123 with
coordinates (0, 0), (a, 0), and (0, a), respectively, to be used for ‘plane stress’problems.
(a) Form the [B] matrix.
(b) Obtain the stiffness matrix [Ke].

Why, in general, is a finite element solution not an exact solution?

P.6.9 It is required to form the stiffness matrix of a triangular element 123 for use
in stress analysis problems. The coordinates of the element are (1, 1), (2, 1), and (2, 2),
respectively.
(a) Assume a suitable displacement field explaining the reasons for your choice.
(b) Form the [B] matrix.
(c) Form the matrix which gives, when multiplied by the element nodal displacements,

the stresses in the element. Assume a general [D] matrix.

P.6.10 It is required to form the stiffness matrix for a rectangular element of side
2a × 2b and thickness t for use in ‘plane stress’ problems.
(a) Assume a suitable displacement field.
(b) Form the [C] matrix.
(c) Obtain

∫
vol[C]T[D][C] dV .

Note that the stiffness matrix may be expressed as

[Ke] = [A−1]T
[∫

vol
[C]T[D][C] dV

]
[A−1]
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P.6.11 A square element 1234, whose corners have coordinates x, y (in metres) of
(−1, −1), (1, −1), (1, 1), and (−1, 1), respectively, was used in a plane stress finite
element analysis. The following nodal displacements (mm) were obtained:

u1 = 0.1 u2 = 0.3 u3 = 0.6 u4 = 0.1
v1 = 0.1 v2 = 0.3 v3 = 0.7 v4 = 0.5

If Young’s modulus E = 200 000 N/mm2 and Poisson’s ratio ν = 0.3, calculate the
stresses at the centre of the element.

Ans. σx = 51.65 N/mm2, σy = 55.49 N/mm2, τxy = 13.46 N/mm2.

P.6.12 A rectangular element used in plane stress analysis has corners whose coord-
inates in metres referred to an Oxy axes system are 1(−2, −1), 2(2, −1), 3(2, 1),
4(−2, 1). The displacements of the corners (in metres) are

u1 = 0.001 u2 = 0.003 u3 = −0.003 u4 = 0

v1 = −0.004 v2 = −0.002 v3 = 0.001 v4 = 0.001

If Young’s modulus is 200 000 N/mm2 and Poisson’s ratio is 0.3 calculate the strains at
the centre of the element.

Ans. εx = −0.000125, εy = 0.002, γxy = −0.0015.

P.6.13 A constant strain triangular element has corners 1(0,0), 2(4,0) and 3(2,2) and
is 1 unit thick. If the elasticity matrix [D] has elements D11 = D22 = a, D12 = D1 = b,
D13 = D23 = D31 = D32 = 0 and D33 = c derive the stiffness matrix for the element.

Ans.

[Ke] = 1

4

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

a + c

b + c a + c

−a + c −b + c a + c

b − c a − c −b − c a + c

−2c −2c −2c 2c 4c

−2b −2a 2b −2a 0 4a

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

P.6.14 The following interpolation formula is suggested as a displacement function
for deriving the stiffness of a plane stress rectangular element of uniform thickness t
shown in Fig. P.6.14.

u = 1

4ab
[(a − x)(b − y)u1 + (a + x)(b − y)u2 + (a + x)(b + y)u3 + (a − x)(b + y)u1]

Form the strain matrix and obtain the stiffness coefficients K11 and K12 in terms of
the material constants c, d and e defined below.
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4

1 2

3

y

x

2a � 2

2b � 4

Fig. P.6.14

In the elasticity matrix [D]

D11 = D22 = c D12 = d D33 = e and D13 = D23 = 0

Ans. K11 = t(4c + e)/6, K12 = t(d + e)/4.
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7

Bending of thin plates

Generally, we define a thin plate as a sheet of material whose thickness is small com-
pared with its other dimensions but which is capable of resisting bending in addition
to membrane forces. Such a plate forms a basic part of an aircraft structure, being, for
example, the area of stressed skin bounded by adjacent stringers and ribs in a wing
structure or by adjacent stringers and frames in a fuselage.

In this chapter we shall investigate the effect of a variety of loading and support
conditions on the small deflection of rectangular plates. Two approaches are presented:
an ‘exact’ theory based on the solution of a differential equation and an energy method
relying on the principle of the stationary value of the total potential energy of the plate
and its applied loading. The latter theory will subsequently be used in Chapter 9 to
determine buckling loads for unstiffened and stiffened panels.

7.1 Pure bending of thin plates

The thin rectangular plate of Fig. 7.1 is subjected to pure bending moments of intensity
Mx and My per unit length uniformly distributed along its edges. The former bending
moment is applied along the edges parallel to the y axis, the latter along the edges

Fig. 7.1 Plate subjected to pure bending.
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parallel to the x axis. We shall assume that these bending moments are positive when
they produce compression at the upper surface of the plate and tension at the lower.

If we further assume that the displacement of the plate in a direction parallel to the
z axis is small compared with its thickness t and that sections which are plane before
bending remain plane after bending, then, as in the case of simple beam theory, the
middle plane of the plate does not deform during the bending and is therefore a neutral
plane. We take the neutral plane as the reference plane for our system of axes.

Let us consider an element of the plate of side δxδy and having a depth equal to the
thickness t of the plate as shown in Fig. 7.2(a). Suppose that the radii of curvature of the
neutral plane n are ρx and ρy in the xz and yz planes respectively (Fig. 7.2(b)). Positive
curvature of the plate corresponds to the positive bending moments which produce
displacements in the positive direction of the z or downward axis. Again, as in simple
beam theory, the direct strains εx and εy corresponding to direct stresses σx and σy of
an elemental lamina of thickness δz a distance z below the neutral plane are given by

εx = z

ρx
εy = z

ρy
(7.1)

Referring to Eqs (1.52) we have

εx = 1

E
(σx − νσy) εy = 1

E
(σy − νσx) (7.2)

Substituting for εx and εy from Eqs (7.1) into (7.2) and rearranging gives

σx = Ez

1 − ν2

(
1

ρx
+ ν

ρy

)

σy = Ez

1 − ν2

(
1

ρy
+ ν

ρx

)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(7.3)

Fig. 7.2 (a) Direct stress on lamina of plate element; (b) radii of curvature of neutral plane.
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As would be expected from our assumption of plane sections remaining plane the
direct stresses vary linearly across the thickness of the plate, their magnitudes depend-
ing on the curvatures (i.e. bending moments) of the plate. The internal direct stress
distribution on each vertical surface of the element must be in equilibrium with the
applied bending moments. Thus

Mxδy =
∫ t/2

−t/2
σxzδy dz

and

Myδx =
∫ t/2

−t/2
σyzδx dz

Substituting for σx and σy from Eqs (7.3) gives

Mx =
∫ t/2

−t/2

Ez2

1 − ν2

(
1

ρx
+ ν

ρy

)
dz

My =
∫ t/2

−t/2

Ez2

1 − ν2

(
1

ρy
+ ν

ρx

)
dz

Let

D =
∫ t/2

−t/2

Ez2

1 − ν2 dz = Et3

12(1 − ν2)
(7.4)

Then

Mx = D

(
1

ρx
+ ν

ρy

)
(7.5)

My = D

(
1

ρy
+ ν

ρx

)
(7.6)

in which D is known as the flexural rigidity of the plate.
If w is the deflection of any point on the plate in the z direction, then we may relate

w to the curvature of the plate in the same manner as the well-known expression for
beam curvature. Hence

1

ρx
= −∂2w

∂x2

1

ρy
= −∂2w

∂y2

the negative signs resulting from the fact that the centres of curvature occur above the
plate in which region z is negative. Equations (7.5) and (7.6) then become

Mx = −D

(
∂2w

∂x2 + ν
∂2w

∂y2

)
(7.7)

My = −D

(
∂2w

∂y2 + ν
∂2w

∂x2

)
(7.8)
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Fig. 7.3 Anticlastic bending.

Equations (7.7) and (7.8) define the deflected shape of the plate provided that Mx and
My are known. If either Mx or My is zero then

∂2w

∂x2 = −ν
∂2w

∂y2 or
∂2w

∂y2 = −ν
∂2w

∂x2

and the plate has curvatures of opposite signs. The case of My = 0 is illustrated in
Fig. 7.3. A surface possessing two curvatures of opposite sign is known as an anticlastic
surface, as opposed to a synclastic surface which has curvatures of the same sign.
Further, if Mx = My = M then from Eqs (7.5) and (7.6)

1

ρx
= 1

ρy
= 1

ρ

Therefore, the deformed shape of the plate is spherical and of curvature

1

ρ
= M

D(1 + ν)
(7.9)

7.2 Plates subjected to bending and twisting

In general, the bending moments applied to the plate will not be in planes perpendicular
to its edges. Such bending moments, however, may be resolved in the normal manner
into tangential and perpendicular components, as shown in Fig. 7.4. The perpendicular
components are seen to be Mx and My as before, while the tangential components Mxy
and Myx (again these are moments per unit length) produce twisting of the plate about
axes parallel to the x and y axes. The system of suffixes and the sign convention for
these twisting moments must be clearly understood to avoid confusion. Mxy is a twisting
moment intensity in a vertical x plane parallel to the y axis, while Myx is a twisting
moment intensity in a vertical y plane parallel to the x axis. Note that the first suffix
gives the direction of the axis of the twisting moment. We also define positive twisting
moments as being clockwise when viewed along their axes in directions parallel to the
positive directions of the corresponding x or y axis. In Fig. 7.4, therefore, all moment
intensities are positive.
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Fig. 7.4 Plate subjected to bending and twisting.

Fig. 7.5 (a) Plate subjected to bending and twisting; (b) tangential and normal moments on an arbitrary plane.

Since the twisting moments are tangential moments or torques they are resisted by
a system of horizontal shear stresses τxy, as shown in Fig. 7.6. From a consideration
of complementary shear stresses (see Fig. 7.6) Mxy = −Myx, so that we may represent
a general moment application to the plate in terms of Mx, My and Mxy as shown in
Fig. 7.5(a). These moments produce tangential and normal moments, Mt and Mn, on
an arbitrarily chosen diagonal plane FD. We may express these moment intensities (in
an analogous fashion to the complex stress systems of Section 1.6) in terms of Mx, My
and Mxy. Thus, for equilibrium of the triangular element ABC of Fig. 7.5(b) in a plane
perpendicular to AC

MnAC = MxAB cos α + MyBC sin α − MxyAB sin α − MxyBC cos α

giving

Mn = Mx cos2 α + My sin2 α − Mxy sin 2α (7.10)

Similarly for equilibrium in a plane parallel to CA

MtAC = MxAB sin α − MyBC cos α + MxyAB cos α − MxyBC sin α

or

Mt = (Mx − My)

2
sin 2α + Mxy cos 2α (7.11)
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(compare Eqs (7.10) and (7.11) with Eqs (1.8) and (1.9)). We observe from Eq. (7.11)
that there are two values of α, differing by 90◦ and given by

tan 2α = − 2Mxy

Mx − My

for which Mt = 0, leaving normal moments of intensity Mn on two mutually perpen-
dicular planes. These moments are termed principal moments and their corresponding
curvatures principal curvatures. For a plate subjected to pure bending and twisting in
which Mx, My and Mxy are invariable throughout the plate, the principal moments are
the algebraically greatest and least moments in the plate. It follows that there are no
shear stresses on these planes and that the corresponding direct stresses, for a given
value of z and moment intensity, are the algebraically greatest and least values of direct
stress in the plate.

Let us now return to the loaded plate of Fig. 7.5(a). We have established, in Eqs (7.7)
and (7.8), the relationships between the bending moment intensities Mx and My and
the deflection w of the plate. The next step is to relate the twisting moment Mxy to w.
From the principle of superposition we may consider Mxy acting separately from Mx
and My. As stated previously Mxy is resisted by a system of horizontal complementary
shear stresses on the vertical faces of sections taken throughout the thickness of the
plate parallel to the x and y axes. Consider an element of the plate formed by such
sections, as shown in Fig. 7.6. The complementary shear stresses on a lamina of the
element a distance z below the neutral plane are, in accordance with the sign convention
of Section 1.2, τxy. Therefore, on the face ABCD

Mxyδy = −
∫ t/2

−t/2
τxyδyz dz

Fig. 7.6 Complementary shear stresses due to twisting moments Mxy.
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and on the face ADFE

Mxyδx = −
∫ t/2

−t/2
τxyδxz dz

giving

Mxy = −
∫ t/2

−t/2
τxyz dz

or in terms of the shear strain γxy and modulus of rigidity G

Mxy = −G
∫ t/2

−t/2
γxyz dz (7.12)

Referring to Eqs (1.20), the shear strain γxy is given by

γxy = ∂v

∂x
+ ∂u

∂y

We require, of course, to express γxy in terms of the deflection w of the plate; this
may be accomplished as follows. An element taken through the thickness of the plate
will suffer rotations equal to ∂w/∂x and ∂w/∂y in the xz and yz planes respectively.
Considering the rotation of such an element in the xz plane, as shown in Fig. 7.7, we
see that the displacement u in the x direction of a point a distance z below the neutral
plane is

u = −∂w

∂x
z

Similarly, the displacement v in the y direction is

v = −∂w

∂y
z

Fig. 7.7 Determination of shear strain γxy.
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Hence, substituting for u and v in the expression for γxy we have

γxy = −2z
∂2w

∂x∂y
(7.13)

whence from Eq. (7.12)

Mxy = G
∫ t/2

−t/2
2z2 ∂2w

∂x∂y
dz

or

Mxy = Gt3

6

∂2w

∂x∂y

Replacing G by the expression E/2(1 + ν) established in Eq. (1.50) gives

Mxy = Et3

12(1 + ν)

∂2w

∂x∂y

Multiplying the numerator and denominator of this equation by the factor (1 − ν) yields

Mxy = D(1 − ν)
∂2w

∂x∂y
(7.14)

Equations (7.7), (7.8) and (7.14) relate the bending and twisting moments to the
plate deflection and are analogous to the bending moment-curvature relationship for a
simple beam.

7.3 Plates subjected to a distributed transverse load

The relationships between bending and twisting moments and plate deflection are now
employed in establishing the general differential equation for the solution of a thin
rectangular plate, supporting a distributed transverse load of intensity q per unit area
(see Fig. 7.8). The distributed load may, in general, vary over the surface of the plate
and is therefore a function of x and y. We assume, as in the preceding analysis, that the
middle plane of the plate is the neutral plane and that the plate deforms such that plane
sections remain plane after bending. This latter assumption introduces an apparent
inconsistency in the theory. For plane sections to remain plane the shear strains γxz and
γyz must be zero. However, the transverse load produces transverse shear forces (and
therefore stresses) as shown in Fig. 7.9. We therefore assume that although γxz = τxz/G
and γyz = τyz/G are negligible the corresponding shear forces are of the same order of
magnitude as the applied load q and the moments Mx, My and Mxy. This assumption is
analogous to that made in a slender beam theory in which shear strains are ignored.

The element of plate shown in Fig. 7.9 supports bending and twisting moments as
previously described and, in addition, vertical shear forces Qx and Qy per unit length
on faces perpendicular to the x and y axes, respectively. The variation of shear stresses
τxz and τyz along the small edges δx, δy of the element is neglected and the resultant
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Fig. 7.8 Plate supporting a distributed transverse load.

Fig. 7.9 Plate element subjected to bending, twisting and transverse loads.

shear forces Qxδy and Qyδx are assumed to act through the centroid of the faces of the
element. From the previous sections

Mx =
∫ t/2

−t/2
σxz dz My =

∫ t/2

−t/2
σyz dz Mxy = (−Myx) = −

∫ t/2

−t/2
τxyz dz

In a similar fashion

Qx =
∫ t/2

−t/2
τxz dz Qy =

∫ t/2

−t/2
τyz dz (7.15)

For equilibrium of the element parallel to Oz and assuming that the weight of the
plate is included in q

(
Qx + ∂Qx

∂x
δx

)
δy − Qxδy +

(
Qy + ∂Qy

∂y
δy

)
δx − Qyδx + qδxδy = 0
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or, after simplification

∂Qx

∂x
+ ∂Qy

∂y
+ q = 0 (7.16)

Taking moments about the x axis

Mxyδy −
(

Mxy + ∂Mxy

∂x
δx

)
δy − Myδx +

(
My + ∂My

∂y
δy

)
δx

−
(

Qy + ∂Qy

∂y
δy

)
δxδy + Qx

δy2

2
−

(
Qx + ∂Qx

∂x
δx

)
δy2

2
− qδx

δy2

2
= 0

Simplifying this equation and neglecting small quantities of a higher order than those
retained gives

∂Mxy

∂x
− ∂My

∂y
+ Qy = 0 (7.17)

Similarly taking moments about the y axis we have

∂Mxy

∂y
− ∂Mx

∂x
+ Qx = 0 (7.18)

Substituting in Eq. (7.16) for Qx and Qy from Eqs (7.18) and (7.17) we obtain

∂2Mx

∂x2 − ∂2Mxy

∂x∂y
+ ∂2My

∂y2 − ∂2Mxy

∂x∂y
= −q

or

∂2Mx

∂x2 − 2
∂2Mxy

∂x∂y
+ ∂2My

∂y2 = −q (7.19)

Replacing Mx, Mxy and My in Eq. (7.19) from Eqs (7.7), (7.14) and (7.8) gives

∂4w

∂x4 + 2
∂4w

∂x2∂y2 + ∂4w

∂y4 = q

D
(7.20)

This equation may also be written
(

∂2

∂x2 + ∂2

∂y2

) (
∂2w

∂x2 + ∂2w

∂y2

)
= q

D

or
(

∂2

∂x2 + ∂2

∂y2

)2

w = q

D

The operator (∂2/∂x2 + ∂2/∂y2) is the well-known Laplace operator in two dimensions
and is sometimes written as ∇2. Thus

(∇2)2w = q

D
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Generally, the transverse distributed load q is a function of x and y so that the
determination of the deflected form of the plate reduces to obtaining a solution of
Eq. (7.20), which satisfies the known boundary conditions of the problem. The bending
and twisting moments follow from Eqs (7.7), (7.8) and (7.14), and the shear forces per
unit length Qx and Qy are found from Eqs (7.17) and (7.18) by substitution for Mx, My
and Mxy in terms of the deflection w of the plate; thus

Qx = ∂Mx

∂x
− ∂Mxy

∂y
= −D

∂

∂x

(
∂2w

∂x2 + ∂2w

∂y2

)
(7.21)

Qy = ∂My

∂y
− ∂Mxy

∂x
= −D

∂

∂y

(
∂2w

∂x2 + ∂2w

∂y2

)
(7.22)

Direct and shear stresses are then calculated from the relevant expressions relating them
to Mx, My, Mxy, Qx and Qy.

Before discussing the solution of Eq. (7.20) for particular cases we shall establish
boundary conditions for various types of edge support.

7.3.1 The simply supported edge

Let us suppose that the edge x = 0 of the thin plate shown in Fig. 7.10 is free to rotate
but not to deflect. The edge is then said to be simply supported. The bending moment
along this edge must be zero and also the deflection w = 0. Thus

(w)x=0 = 0 and (Mx)x=0 = −D

(
∂2w

∂x2 + ν
∂2w

∂y2

)

x=0
= 0

The condition that w = 0 along the edge x = 0 also means that

∂w

∂y
= ∂2w

∂y2 = 0

Fig. 7.10 Plate of dimensions a × b.



Ch07-H6739.tex 23/1/2007 12: 15 Page 230

230 Bending of thin plates

along this edge. The above boundary conditions therefore reduce to

(w)x=0 = 0

(
∂2w

∂x2

)

x=0
= 0 (7.23)

7.3.2 The built-in edge

If the edge x = 0 is built-in or firmly clamped so that it can neither rotate nor deflect,
then, in addition to w, the slope of the middle plane of the plate normal to this edge
must be zero. That is

(w)x=0 = 0

(
∂w

∂x

)

x=0
= 0 (7.24)

7.3.3 The free edge

Along a free edge there are no bending moments, twisting moments or vertical shearing
forces, so that if x = 0 is the free edge then

(Mx)x=0 = 0 (Mxy)x=0 = 0 (Qx)x=0 = 0

giving, in this instance, three boundary conditions. However, Kirchhoff (1850) showed
that only two boundary conditions are necessary to obtain a solution of Eq. (7.20),
and that the reduction is obtained by replacing the two requirements of zero twisting
moment and zero shear force by a single equivalent condition. Thomson and Tait (1883)
gave a physical explanation of how this reduction may be effected. They pointed out
that the horizontal force system equilibrating the twisting moment Mxy may be replaced
along the edge of the plate by a vertical force system.

Consider two adjacent elements δy1 and δy2 along the edge of the thin plate of
Fig. 7.11. The twisting moment Mxyδy1 on the element δy1 may be replaced by forces
Mxy a distance δy1 apart. Note that Mxy, being a twisting moment per unit length,
has the dimensions of force. The twisting moment on the adjacent element δy2 is
[Mxy + (∂Mxy/∂y)δy]δy2. Again this may be replaced by forces Mxy + (∂Mxy/∂y)δy.
At the common surface of the two adjacent elements there is now a resultant force
(∂Mxy/∂y)δy or a vertical force per unit length of ∂Mxy/∂y. For the sign conven-
tion for Qx shown in Fig. 7.9 we have a statically equivalent vertical force per unit
length of (Qx − ∂Mxy/∂y). The separate conditions for a free edge of (Mxy)x=0 = 0 and
(Qx)x=0 = 0 are therefore replaced by the equivalent condition

(
Qx − ∂Mxy

∂y

)

x=0
= 0

or in terms of deflection
[
∂3w

∂x3 + (2 − ν)
∂3w

∂x∂y2

]

x=0
= 0 (7.25)
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Fig. 7.11 Equivalent vertical force system.

Also, for the bending moment along the free edge to be zero

(Mx)x=0 =
(

∂2w

∂x2 + ν
∂2w

∂y2

)

x=0
= 0 (7.26)

The replacement of the twisting moment Mxy along the edges x = 0 and x = a of a thin
plate by a vertical force distribution results in leftover concentrated forces at the corners
of Mxy as shown in Fig. 7.11. By the same argument there are concentrated forces Myx
produced by the replacement of the twisting moment Myx. Since Mxy = −Myx, then
resultant forces 2Mxy act at each corner as shown and must be provided by external
supports if the corners of the plate are not to move. The directions of these forces
are easily obtained if the deflected shape of the plate is known. For example, a thin
plate simply supported along all four edges and uniformly loaded has ∂w/∂x positive
and numerically increasing, with increasing y near the corner x = 0, y = 0. Hence
∂2w/∂x∂y is positive at this point and from Eq. (7.14) we see that Mxy is positive and
Myx negative; the resultant force 2Mxy is therefore downwards. From symmetry the
force at each remaining corner is also 2Mxy downwards so that the tendency is for the
corners of the plate to rise.

Having discussed various types of boundary conditions we shall proceed to obtain
the solution for the relatively simple case of a thin rectangular plate of dimensions
a × b, simply supported along each of its four edges and carrying a distributed load
q(x, y).We have shown that the deflected form of the plate must satisfy the differential
equation

∂4w

∂x4 + 2
∂4w

∂x2∂y2 + ∂4w

∂y4 = q(x, y)

D
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with the boundary conditions

(w)x=0,a = 0

(
∂2w

∂x2

)

x=0,a
= 0

(w)y=0,b = 0

(
∂2w

∂y2

)

x=0,b
= 0

Navier (1820) showed that these conditions are satisfied by representing the deflection
w as an infinite trigonometrical or Fourier series

w =
∞∑

m=1

∞∑

n=1

Amn sin
mπx

a
sin

nπy

b
(7.27)

in which m represents the number of half waves in the x direction and n the corres-
ponding number in the y direction. Further, Amn are unknown coefficients which must
satisfy the above differential equation and may be determined as follows.

We may also represent the load q(x, y) by a Fourier series, thus

q(x, y) =
∞∑

m=1

∞∑

n=1

amn sin
mπx

a
sin

nπy

b
(7.28)

A particular coefficient am′n′ is calculated by first multiplying both sides of Eq. (7.28)
by sin(m′πx/a) sin(n′πy/b) and integrating with respect to x from 0 to a and with respect
to y from 0 to b. Thus

∫ a

0

∫ b

0
q(x, y) sin

m′πx

a
sin

n′πy

b
dx dy

=
∞∑

m=1

∞∑

n=1

∫ a

0

∫ b

0
amn sin

mπx

a
sin

m′πx

a
sin

nπy

b
sin

n′πy

b
dx dy

= ab

4
am′n′

since
∫ a

0
sin

mπx

a
sin

m′πx

a
dx = 0 when m �= m′

= a

2
when m = m′

and
∫ b

0
sin

nπy

b
sin

n′πy

b
dy = 0 when n �= n′

= b

2
when n = n′
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It follows that

am′n′ = 4

ab

∫ a

0

∫ b

0
q(x, y) sin

m′πx

a
sin

n′πy

b
dx dy (7.29)

Substituting now for w and q(x, y) from Eqs (7.27) and (7.28) into the differential
equation for w we have

∞∑

m=1

∞∑

n=1

{
Amn

[(mπ

a

)4 + 2
(mπ

a

)2 (nπ

b

)2 +
(nπ

b

)4
]

− amn

D

}
sin

mπx

a
sin

nπy

b
= 0

This equation is valid for all values of x and y so that

Amn

[(mπ

a

)4 + 2
(mπ

a

)2 (nπ

b

)2 +
(nπ

b

)4
]

− amn

D
= 0

or in alternative form

Amnπ
4
(

m2

a2 + n2

b2

)2

− amn

D
= 0

giving

Amn = 1

π4D

amn

[(m2/a2) + (n2/b2)]2

Hence

w = 1

π4D

∞∑

m=1

∞∑

n=1

amn

[(m2/a2) + (n2/b2)]2 sin
mπx

a
sin

nπy

b
(7.30)

in which amn is obtained from Eq. (7.29). Equation (7.30) is the general solution for a
thin rectangular plate under a transverse load q(x, y).

Example 7.1
A thin rectangular plate a × b is simply supported along its edges and carries a uniformly
distributed load of intensity q0. Determine the deflected form of the plate and the
distribution of bending moment.

Since q(x, y) = q0 we find from Eq. (7.29) that

amn = 4q0

ab

∫ a

0

∫ b

0
sin

mπx

a
sin

nπy

b
dx dy = 16q0

π2mn

where m and n are odd integers. For m or n even, amn = 0. Hence from Eq. (7.30)

w = 16q0

π6D

∞∑

m=1,3,5

∞∑

n=1,3,5

sin (mπx/a) sin (nπy/b)

mn[(m2/a2) + (n2/b2)]2 (i)
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The maximum deflection occurs at the centre of the plate where x = a/2, y = b/2. Thus

wmax = 16q0

π6D

∞∑

m=1,3,5

∞∑

n=1,3,5

sin (mπ/2) sin (nπ/2)

mn[(m2/a2) + (n2/b2)]2 (ii)

This series is found to converge rapidly, the first few terms giving a satisfactory answer.
For a square plate, taking ν = 0.3, summation of the first four terms of the series
gives

wmax = 0.0443q0
a4

Et3

Substitution for w from Eq. (i) into the expressions for bending moment, Eqs (7.7) and
(7.8), yields

Mx = 16q0

π4

∞∑

m=1,3,5

∞∑

n=1,3,5

[(m2/a2) + ν(n2/b2)]

mn[(m2/a2) + (n2/b2)]2 sin
mπx

a
sin

nπy

b
(iii)

My = 16q0

π4

∞∑

m=1,3,5

∞∑

n=1,3,5

[ν(m2/a2) + (n2/b2)]

mn[(m2/a2) + (n2/b2)]2 sin
mπx

a
sin

nπy

b
(iv)

Maximum values occur at the centre of the plate. For a square plate a = b and the first
five terms give

Mx,max = My,max = 0.0479q0a2

Comparing Eqs (7.3) with Eqs (7.5) and (7.6) we observe that

σx = 12Mxz

t3 σy = 12Myz

t3

Again the maximum values of these stresses occur at the centre of the plate at z = ± t/2
so that

σx,max = 6Mx

t2 σy,max = 6My

t2

For the square plate

σx,max = σy,max = 0.287q0
a2

t2

The twisting moment and shear stress distributions follow in a similar manner.
The infinite series (Eq. (7.27)) assumed for the deflected shape of a plate gives an

exact solution for displacements and stresses. However, a more rapid, but approximate,
solution may be obtained by assuming a displacement function in the form of a polyno-
mial. The polynomial must, of course, satisfy the governing differential equation (Eq.
(7.20)) and the boundary conditions of the specific problem. The “guessed” form of
the deflected shape of a plate is the basis for the energy method of solution described
in Section 7.6.
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Example 7.2
Show that the deflection function

w = A(x2y2 − bx2y − axy2 + abxy)

is valid for a rectangular plate of sides a and b, built in on all four edges and subjected
to a uniformly distributed load of intensity q. If the material of the plate has a Young’s
modulus E and is of thickness t determine the distributions of bending moment along
the edges of the plate.

Differentiating the deflection function gives

∂4w

∂x4 = 0
∂4w

∂y4 = 0
∂4w

∂x2∂y2 = 4A

Substituting in Eq. (7.20) we have

0 + 2 × 4A + 0 = constant = q

D

The deflection function is therefore valid and

A = q

8D

The bending moment distributions are given by Eqs (7.7) and (7.8), i.e.

Mx = −q

4
[y2 − by + ν(x2 − ax)] (i)

My = −q

4
[x2 − ax + ν(y2 − by)] (ii)

For the edges x = 0 and x = a

Mx = −q

4
(y2 − by) My = −νq

4
(y2 − by)

For the edges y = 0 and y = b

Mx = −νq

4
(x2 − ax) My = −q

4
(x2 − ax)

7.4 Combined bending and in-plane loading of a thin
rectangular plate

So far our discussion has been limited to small deflections of thin plates produced
by different forms of transverse loading. In these cases we assumed that the middle or
neutral plane of the plate remained unstressed. Additional in-plane tensile, compressive
or shear loads will produce stresses in the middle plane, and these, if of sufficient
magnitude, will affect the bending of the plate. Where the in-plane stresses are small
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Fig. 7.12 In-plane forces on plate element.

compared with the critical buckling stresses it is sufficient to consider the two systems
separately; the total stresses are then obtained by superposition. On the other hand, if
the in-plane stresses are not small then their effect on the bending of the plate must be
considered.

The elevation and plan of a small element δxδy of the middle plane of a thin deflected
plate are shown in Fig. 7.12. Direct and shear forces per unit length produced by the
in-plane loads are given the notation Nx, Ny and Nxy and are assumed to be acting in
positive senses in the directions shown. Since there are no resultant forces in the x or
y directions from the transverse loads (see Fig. 7.9) we need only include the in-plane
loads shown in Fig. 7.12 when considering the equilibrium of the element in these
directions. For equilibrium parallel to Ox

(
Nx + ∂Nx

∂x
δx

)
δy cos

(
∂w

∂x
+ ∂2w

∂x2 δx

)
− Nxδy cos

∂w

∂x

+
(

Nyx + ∂Nyx

∂y
δy

)
δx − Nyxδx = 0

For small deflections ∂w/∂x and (∂w/∂x) + (∂2w/∂x2)δx are small and the cosines of
these angles are therefore approximately equal to one. The equilibrium equation thus
simplifies to

∂Nx

∂x
+ ∂Nyx

∂y
= 0 (7.31)
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Fig. 7.13 Component of shear loads in the z direction.

Similarly for equilibrium in the y direction we have

∂Ny

∂y
+ ∂Nxy

∂x
= 0 (7.32)

Note that the components of the in-plane shear loads per unit length are, to a first order
of approximation, the value of the shear load multiplied by the projection of the element
on the relevant axis.

The determination of the contribution of the shear loads to the equilibrium of the
element in the z direction is complicated by the fact that the element possesses curvature
in both xz and yz planes. Therefore, from Fig. 7.13 the component in the z direction
due to the Nxy shear loads only is

(
Nxy + ∂Nxy

∂x
δx

)
δy

(
∂w

∂y
+ ∂2w

∂x ∂y
δx

)
− Nxyδy

∂w

∂y

or

Nxy
∂2w

∂x ∂y
δx δy + ∂Nxy

∂x

∂w

∂y
δx δy

neglecting terms of a lower order. Similarly, the contribution of Nyx is

Nyx
∂2w

∂x ∂y
δx δy + ∂Nyx

∂y

∂w

∂x
δx δy

The components arising from the direct forces per unit length are readily obtained
from Fig. 7.12, namely

(
Nx + ∂Nx

∂x
δx

)
δy

(
∂w

∂x
+ ∂2w

∂x2 δx

)
− Nxδy

∂w

∂x

or

Nx
∂2w

∂x2 δx δy + ∂Nx

∂x

∂w

∂x
δx δy
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and similarly

Ny
∂2w

∂y2 δx δy + ∂Ny

∂y

∂w

∂y
δx δy

The total force in the z direction is found from the summation of these expressions
and is

Nx
∂2w

∂x2 δx δy + ∂Nx

∂x

∂w

∂x
δx δy + Ny

∂2w

∂y2 δx δy + ∂Ny

∂y

∂w

∂y
δx δy

+ ∂Nxy

∂x

∂w

∂y
δx δy + 2Nxy

∂2w

∂x ∂y
δx δy + ∂Nxy

∂y

∂w

∂x
δx δy

in which Nyx is equal to and is replaced by Nxy. Using Eqs (7.31) and (7.32) we reduce
this expression to

(
Nx

∂2w

∂x2 + Ny
∂2w

∂y2 + 2Nxy
∂2w

∂x ∂y

)
δx δy

Since the in-plane forces do not produce moments along the edges of the element
then Eqs (7.17) and (7.18) remain unaffected. Further, Eq. (7.16) may be modified
simply by the addition of the above vertical component of the in-plane loads to qδxδy.
Therefore, the governing differential equation for a thin plate supporting transverse and
in-plane loads is, from Eq. (7.20)

∂4w

∂x4 + 2
∂4w

∂x2 ∂y2 + ∂4w

∂y4 = 1

D

(
q + Nx

∂2w

∂x2 + Ny
∂2w

∂y2 + 2Nxy
∂2w

∂x ∂y

)
(7.33)

Example 7.3
Determine the deflected form of the thin rectangular plate of Example 7.1 if, in addition
to a uniformly distributed transverse load of intensity q0, it supports an in-plane tensile
force Nx per unit length.

The uniform transverse load may be expressed as a Fourier series (see Eq. (7.28) and
Example 7.1), i.e.

q = 16q0

π2

∞∑

m=1,3,5

∞∑

n=1,3,5

1

mn
sin

mπx

a
sin

nπy

b

Equation (7.33) then becomes, on substituting for q

∂4w

∂x4 + 2
∂4w

∂x2 ∂y2 + ∂4w

∂y4 − Nx

D

∂2w

∂x2 = 16q0

π2D

∞∑

m=1,3,5

∞∑

n=1,3,5

1

mn
sin

mπx

a
sin

nπy

b
(i)

The appropriate boundary conditions are

w = ∂2w

∂x2 = 0 at x = 0 and a

w = ∂2w

∂y2 = 0 at y = 0 and b
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These conditions may be satisfied by the assumption of a deflected form of the plate
given by

w =
∞∑

m=1

∞∑

n=1

Amn sin
mπx

a
sin

nπy

b

Substituting this expression into Eq. (i) gives

Amn = 16q0

π6Dmn

[(
m2

a2 + n2

b2

)2

+ Nxm2

π2Da2

] for odd m and n

Amn = 0 for even m and n

Therefore

w = 16q0

π6D

∞∑

m=1,3,5

∞∑

n=1,3,5

1

mn

[(
m2

a2 + n2

b2

)2

+ Nxm2

π2Da2

] sin
mπx

a
sin

nπy

b
(ii)

Comparing Eq. (ii) with Eq. (i) of Example 7.1 we see that, as a physical inspection
would indicate, the presence of a tensile in-plane force decreases deflection. Conversely
a compressive in-plane force would increase the deflection.

7.5 Bending of thin plates having a small initial curvature

Suppose that a thin plate has an initial curvature so that the deflection of any point in its
middle plane is w0. We assume that w0 is small compared with the thickness of the plate.
The application of transverse and in-plane loads will cause the plate to deflect a further
amount w1 so that the total deflection is then w = w0 + w1. However, in the derivation
of Eq. (7.33) we note that the left-hand side was obtained from expressions for bending
moments which themselves depend on the change of curvature. We therefore use the
deflection w1 on the left-hand side, not w. The effect on bending of the in-plane forces
depends on the total deflection w so that we write Eq. (7.33)

∂4w1

∂x4 + 2
∂4w1

∂x2∂y2 + ∂4w1

∂y4

= 1

D

[
q + Nx

∂2(w0 + w1)

∂x2 + Ny
∂2(w0 + w1)

∂y2 + 2Nxy
∂2(w0 + w1)

∂x ∂y

]
(7.34)

The effect of an initial curvature on deflection is therefore equivalent to the application
of a transverse load of intensity

Nx
∂2w0

∂x2 + Ny
∂2w0

∂y2 + 2Nxy
∂2w0

∂x ∂y
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Thus, in-plane loads alone produce bending provided there is an initial curvature.
Assuming that the initial form of the deflected plate is

w0 =
∞∑

m=1

∞∑

n=1

Amn sin
mπx

a
sin

nπy

b
(7.35)

then by substitution in Eq. (7.34) we find that if Nx is compressive and Ny = Nxy = 0

w1 =
∞∑

m=1

∞∑

n=1

Bmn sin
mπx

a
sin

nπy

b
(7.36)

where

Bmn = AmnNx

(π2D/a2)[m + (n2a2/mb2)]2 − Nx

We shall return to the consideration of initially curved plates in the discussion of the
experimental determination of buckling loads of flat plates in Chapter 9.

7.6 Energy method for the bending of thin plates

Two types of solution are obtainable for thin plate bending problems by the application
of the principle of the stationary value of the total potential energy of the plate and
its external loading. The first, in which the form of the deflected shape of the plate is
known, produces an exact solution; the second, the Rayleigh–Ritz method, assumes an
approximate deflected shape in the form of a series having a finite number of terms
chosen to satisfy the boundary conditions of the problem and also to give the kind of
deflection pattern expected.

In Chapter 5 we saw that the total potential energy of a structural system comprised
the internal or strain energy of the structural member, plus the potential energy of the
applied loading. We now proceed to derive expressions for these quantities for the
loading cases considered in the preceding sections.

7.6.1 Strain energy produced by bending and twisting

In thin plate analysis we are concerned with deflections normal to the loaded surface
of the plate. These, as in the case of slender beams, are assumed to be primarily due
to bending action so that the effects of shear strain and shortening or stretching of the
middle plane of the plate are ignored. Therefore, it is sufficient for us to calculate
the strain energy produced by bending and twisting only as this will be applicable, for
the reason of the above assumption, to all loading cases. It must be remembered that
we are only neglecting the contributions of shear and direct strains on the deflection of
the plate; the stresses producing them must not be ignored.

Consider the element δx × δy of a thin plate a × b shown in elevation in the xz plane
in Fig. 7.14(a). Bending moments Mx per unit length applied to its δy edge produce
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Fig. 7.14 (a) Strain energy of element due to bending; (b) strain energy due to twisting.

a change in slope between its ends equal to (∂2w/∂x2)δx. However, since we regard
the moments Mx as positive in the sense shown, then this change in slope, or relative
rotation, of the ends of the element is negative as the slope decreases with increasing
x. The bending strain energy due to Mx is then

1

2
Mxδy

(
−∂2w

∂x2 δx

)

Similarly, in the yz plane the contribution of My to the bending strain energy is

1

2
Myδx

(
−∂2w

∂y2 δy

)

The strain energy due to the twisting moment per unit length, Mxy, applied to the δy
edges of the element, is obtained from Fig. 7.14(b). The relative rotation of the δy edges
is (∂2w/∂x∂y)δx so that the corresponding strain energy is

1

2
Mxyδy

∂2w

∂x ∂y
δx

Finally, the contribution of the twisting moment Mxy on the δx edges is, in a similar
fashion

1

2
Mxyδx

∂2w

∂x ∂y
δy

The total strain energy of the element from bending and twisting is thus

1

2

(
−Mx

∂2w

∂x2 − My
∂2w

∂y2 + 2Mxy
∂2w

∂x ∂y

)
δxδy
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Substitution for Mx, My and Mxy from Eqs (7.7), (7.8) and (7.14) gives the total strain
energy of the element as

D

2

[(
∂2w

∂x2

)2

+
(

∂2w

∂y2

)2

+ 2ν
∂2w

∂x2

∂2w

∂y2 + 2(1 − ν)

(
∂2w

∂x ∂y

)2
]

δx δy

which on rearranging becomes

D

2

{(
∂2w

∂x2 + ∂2w

∂y2

)2

− 2(1 − ν)

[
∂2w

∂x2

∂2w

∂y2 −
(

∂2w

∂x ∂y

)2
]}

δx δy

Hence the total strain energy U of the rectangular plate a × b is

U = D

2

∫ a

0

∫ b

0

{(
∂2w

∂x2 + ∂2w

∂y2

)2

− 2(1 − ν)

[
∂2w

∂x2

∂2w

∂y2 −
(

∂2w

∂x ∂y

)2
]}

dx dy

(7.37)

Note that if the plate is subject to pure bending only, then Mxy = 0 and from Eq. (7.14)
∂2w/∂x∂y = 0, so that Eq. (7.37) simplifies to

U = D

2

∫ a

0

∫ b

0

[(
∂2w

∂x2

)2

+
(

∂2w

∂y2

)2

+ 2ν
∂2w

∂x2

∂2w

∂y2

]

dx dy (7.38)

7.6.2 Potential energy of a transverse load

An element δx × δy of the transversely loaded plate of Fig. 7.8 supports a load qδxδy.
If the displacement of the element normal to the plate is w then the potential energy δV
of the load on the element referred to the undeflected plate position is

δV = −wqδx δy (See Section 5.7)

Therefore, the potential energy V of the total load on the plate is given by

V = −
∫ a

0

∫ b

0
wq dx dy (7.39)

7.6.3 Potential energy of in-plane loads

We may consider each load Nx, Ny and Nxy in turn, then use the principle of super-
position to determine the potential energy of the loading system when they act
simultaneously. Consider an elemental strip of width δy along the length a of the
plate in Fig. 7.15(a). The compressive load on this strip is Nxδy and due to the bending
of the plate the horizontal length of the strip decreases by an amount λ, as shown in
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Fig. 7.15 (a) In-plane loads on plate; (b) shortening of element due to bending.

Fig. 7.15(b). The potential energy δVx of the load Nxδy, referred to the undeflected
position of the plate as the datum, is then

δVx = −Nxλδy (7.40)

From Fig. 7.15(b) the length of a small element δa of the strip is

δa = (δx2 + δw2)
1
2

and since ∂w/∂x is small then

δa ≈ δx

[

1 + 1

2

(
∂w

∂x

)2
]

Hence

a =
∫ a′

0

[

1 + 1

2

(
∂w

∂x

)2
]

dx
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giving

a = a′ +
∫ a′

0

1

2

(
∂w

∂x

)2

dx

and

λ = a − a′ =
∫ a′

0

1

2

(
∂w

∂x

)2

dx

Since
∫ a′

0

1

2

(
∂w

∂x

)2

dx only differs from
∫ a

0

1

2

(
∂w

∂x

)2

dx

by a term of negligible order we write

λ =
∫ a

0

1

2

(
∂w

∂x

)2

dx (7.41)

The potential energy Vx of the Nx loading follows from Eqs (7.40) and (7.41), thus

Vx = −1

2

∫ a

0

∫ b

0
Nx

(
∂w

∂x

)2

dx dy (7.42)

Similarly

Vy = −1

2

∫ a

0

∫ b

0
Ny

(
∂w

∂y

)2

dx dy (7.43)

The potential energy of the in-plane shear load Nxy may be found by considering the
work done by Nxy during the shear distortion corresponding to the deflection w of an
element. This shear strain is the reduction in the right angle C2AB1 to the angle C1AB1
of the element in Fig. 7.16 or, rotating C2A with respect to AB1 to AD in the plane
C1AB1, the angle DAC1. The displacement C2D is equal to (∂w/∂y)δy and the angle
DC2C1 is ∂w/∂x. Thus C1D is equal to

∂w

∂x

∂w

∂y
δy

and the angle DAC1 representing the shear strain corresponding to the bending
displacement w is

∂w

∂x

∂w

∂y

so that the work done on the element by the shear force Nxyδx is

1

2
Nxyδx

∂w

∂x

∂w

∂y
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Fig. 7.16 Calculation of shear strain corresponding to bending deflection.

Similarly, the work done by the shear force Nxyδy is

1

2
Nxyδy

∂w

∂x

∂w

∂y

and the total work done taken over the complete plate is

1

2

∫ a

0

∫ b

0
2Nxy

∂w

∂x

∂w

∂y
dx dy

It follows immediately that the potential energy of the Nxy loads is

Vxy = −1

2

∫ a

0

∫ b

0
2Nxy

∂w

∂x

∂w

∂y
dx dy (7.44)

and for the complete in-plane loading system we have, from Eqs (7.42), (7.43) and
(7.44), a potential energy of

V = −1

2

∫ a

0

∫ b

0

[

Nx

(
∂w

∂x

)2

+ Ny

(
∂w

∂y

)2

+ 2Nxy
∂w

∂x

∂w

∂y

]

dx dy (7.45)

We are now in a position to solve a wide range of thin plate problems provided that
the deflections are small, obtaining exact solutions if the deflected form is known or
approximate solutions if the deflected shape has to be ‘guessed’.

Considering the rectangular plate of Section 7.3, simply supported along all four
edges and subjected to a uniformly distributed transverse load of intensity q0, we know
that its deflected shape is given by Eq. (7.27), namely

w =
∞∑

m=1

∞∑

n=1

Amn sin
mπx

a
sin

nπy

b
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The total potential energy of the plate is, from Eqs (7.37) and (7.39)

U + V =
∫ a

0

∫ b

0

{
D

2

[(
∂2w

∂x2 + ∂2w

∂y2

)2

−2(1 − ν)

{
∂2w

∂x2

∂2w

∂y2 −
(

∂2w

∂x ∂y

)2
}]

− wq0

}

dx dy (7.46)

Substituting in Eq. (7.46) for w and realizing that ‘cross-product’ terms integrate to
zero, we have

U + V =
∫ a

0

∫ b

0

{
D

2

∞∑

m=1

∞∑

n=1

A2
mn

[

π4
(

m2

a2 + n2

b2

)2

sin2 mπx

a
sin2 nπy

b

− 2(1 − ν)
m2n2π4

a2b2

(
sin2 mπx

a
sin2 nπy

b
− cos2 mπx

a
cos2 nπy

b

)]

− q0

∞∑

m=1

∞∑

n=1

Amn sin
mπx

a
sin

nπy

b

}

dx dy

The term multiplied by 2(1 − ν) integrates to zero and the mean value of sin2 or cos2

over a complete number of half waves is 1
2 , thus integration of the above expression

yields

U + V = D

2

∞∑

m=1,3,5

∞∑

n=1,3,5

A2
mn

π4ab

4

(
m2

a2 + n2

b2

)2

− q0

∞∑

m=1,3,5

∞∑

n=1,3,5

Amn
4ab

π2mn

(7.47)
From the principle of the stationary value of the total potential energy we have

∂(U + V )

∂Amn
= D

2
2Amn

π4ab

4

(
m2

a2 + n2

b2

)2

− q0
4ab

π2mn
= 0

so that

Amn = 16q0

π6Dmn[(m2/a2) + (n2/b2)]2

giving a deflected form

w = 16q0

π6D

∞∑

m=1,3,5

∞∑

n=1,3,5

sin (mπx/a) sin (nπy/b)

mn[(m2/a2) + (n2/b2)]2

which is the result obtained in Eq. (i) of Example 7.1.
The above solution is exact since we know the true deflected shape of the plate in the

form of an infinite series for w. Frequently, the appropriate infinite series is not known
so that only an approximate solution may be obtained. The method of solution, known
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as the Rayleigh–Ritz method, involves the selection of a series for w containing a finite
number of functions of x and y. These functions are chosen to satisfy the boundary
conditions of the problem as far as possible and also to give the type of deflection
pattern expected. Naturally, the more representative the ‘guessed’ functions are the
more accurate the solution becomes.

Suppose that the ‘guessed’series for w in a particular problem contains three different
functions of x and y. Thus

w = A1f1(x, y) + A2 f2(x, y) + A3f3(x, y)

where A1, A2 and A3 are unknown coefficients. We now substitute for w in the appropri-
ate expression for the total potential energy of the system and assign stationary values
with respect to A1, A2 and A3 in turn. Thus

∂(U + V )

∂A1
= 0

∂(U + V )

∂A2
= 0

∂(U + V )

∂A3
= 0

giving three equations which are solved for A1, A2 and A3.

Example 7.4
A rectangular plate a × b, is simply supported along each edge and carries a uniformly
distributed load of intensity q0. Assuming a deflected shape given by

w = A11 sin
πx

a
sin

πy

b

determine the value of the coefficient A11 and hence find the maximum value of
deflection.

The expression satisfies the boundary conditions of zero deflection and zero curvature
(i.e. zero bending moment) along each edge of the plate. Substituting for w in Eq. (7.46)
we have

U + V =
∫ a

0

∫ b

0

[
DA2

11

2

{
π4

(a2b2)2 (a2 + b2)2 sin2 πx

a
sin2 πy

b
− 2(1 − ν)

×
[

π4

a2b2 sin2 πx

a
sin2 πy

b
− π4

a2b2 cos2 πx

a
cos2 πy

b

]}

− q0A11 sin
πx

a
sin

πy

b

]

dx dy

whence

U + V = DA2
11

2

π4

4a3b3 (a2 + b2)2 − q0A11
4ab

π2

so that

∂(U + V )

∂A11
= DA11π

4

4a3b3 (a2 + b2)2 − q0
4ab

π2 = 0
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and

A11 = 16q0a4b4

π6D(a2 + b2)2

giving

w = 16q0a4b4

π6D(a2 + b2)2 sin
πx

a
sin

πy

b

At the centre of the plate w is a maximum and

wmax = 16q0a4b4

π6D(a2 + b2)2

For a square plate and assuming ν = 0.3

wmax = 0.0455q0
a4

Et3

which compares favourably with the result of Example 7.1.
In this chapter we have dealt exclusively with small deflections of thin plates. For a

plate subjected to large deflections the middle plane will be stretched due to bending
so that Eq. (7.33) requires modification. The relevant theory is outside the scope of this
book but may be found in a variety of references.
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Problems

P.7.1 A plate 10 mm thick is subjected to bending moments Mx equal to 10 Nm/mm
and My equal to 5 Nm/mm. Calculate the maximum direct stresses in the plate.

Ans. σx,max = ± 600 N/mm2, σy,max = ± 300 N/mm2.

P.7.2 For the plate and loading of problem P.7.1 find the maximum twisting moment
per unit length in the plate and the direction of the planes on which this occurs.

Ans. 2.5 N m/mm at 45◦ to the x and y axes.

P.7.3 The plate of the previous two problems is subjected to a twisting moment of
5 Nm/mm along each edge, in addition to the bending moments of Mx = 10 N m/mm
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and My = 5 N m/mm. Determine the principal moments in the plate, the planes on which
they act and the corresponding principal stresses.

Ans. 13.1 N m/mm, 1.9 N m/mm, α = −31.7◦, α = +58.3◦, ±786 N/mm2,
±114 N/mm2.

P.7.4 A thin rectangular plate of length a and width 2a is simply supported along
the edges x = 0, x = a, y = −a and y = +a. The plate has a flexural rigidity D, a
Poisson’s ratio of 0.3 and carries a load distribution given by q(x, y) = q0 sin(πx/a). If
the deflection of the plate may be represented by the expression

w = qa4

Dπ4

(
1 + A cosh

πy

a
+ B

πy

a
sinh

πy

a

)
sin

πx

a

determine the values of the constants A and B.

Ans. A = −0.2213, B = 0.0431.

P.7.5 A thin, elastic square plate of side a is simply supported on all four sides and
supports a uniformly distributed load q. If the origin of axes coincides with the centre
of the plate show that the deflection of the plate can be represented by the expression

w = q

96(1 − ν)D
[2(x4 + y4) − 3a2(1 − ν)(x2 + y2) − 12νx2y2 + A]

where D is the flexural rigidity, ν is Poisson’s ratio and A is a constant. Calculate the
value of A and hence the central deflection of the plate.

Ans. A = a4(5 − 3ν)/4, Cen. def. = qa4(5 − 3ν)/384D(1 − ν)

P.7.6 The deflection of a square plate of side a which supports a lateral load
represented by the function q(x, y) is given by

w(x, y) = w0 cos
πx

a
cos

3πy

a

where x and y are referred to axes whose origin coincides with the centre of the plate
and w0 is the deflection at the centre.

If the flexural rigidity of the plate is D and Poisson’s ratio is ν determine the loading
function q, the support conditions of the plate, the reactions at the plate corners and the
bending moments at the centre of the plate.

Ans. q(x, y) = w0D100
π4

a4 cos
πx

a
cos

3πy

a
The plate is simply supported on all edges.

Reactions: −6w0D
(π

a

)2
(1 − ν)

Mx = w0D
(π

a

)2
(1 + 9ν), My = w0D

(π

a

)2
(9 + ν).

P.7.7 A simply supported square plate a × a carries a distributed load according to
the formula

q(x, y) = q0
x

a
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where q0 is its intensity at the edge x = a. Determine the deflected shape of the plate.

Ans. w = 8q0a4

π6D

∞∑

m=1,2,3

∞∑

n=1,3,5

(−1)m+1

mn(m2 + n2)2 sin
mπx

a
sin

nπy

a

P.7.8 An elliptic plate of major and minor axes 2a and 2b and of small thickness t is
clamped along its boundary and is subjected to a uniform pressure difference p between
the two faces. Show that the usual differential equation for normal displacements of a
thin flat plate subject to lateral loading is satisfied by the solution

w = w0

(
1 − x2

a2 − y2

b2

)2

where w0 is the deflection at the centre which is taken as the origin.
Determine w0 in terms of p and the relevant material properties of the plate and hence

expressions for the greatest stresses due to bending at the centre and at the ends of the
minor axis.

Ans. w0 = 3p(1 − ν2)

2Et3

(
3

a4 + 2

a2b2 + 3

b4

)

Centre, σx,max = ±3pa2b2(b2 + νa2)

t2(3b4 + 2a2b2 + 3a4)
, σy,max = ±3pa2b2(a2 + νb2)

t2(3b4 + 2a2b2 + 3a4)

Ends of minor axis

σx,max = ±6pa4b2

t2(3b4 + 2a2b2 + 3a4)
, σy,max = ±6pb4a2

t2(3b4 + 2a2b2 + 3a4)

P.7.9 Use the energy method to determine the deflected shape of a rectangular
plate a × b, simply supported along each edge and carrying a concentrated load W at
a position (ξ, η) referred to axes through a corner of the plate. The deflected shape of
the plate can be represented by the series

w =
∞∑

m=1

∞∑

n=1

Amn sin
mπx

a
sin

nπy

b

Ans. Amn =
4W sin

mπξ

a
sin

nπη

b
π4Dab[(m2/a2) + (n2/b2)]2
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P.7.10 If, in addition to the point load W , the plate of problem P.7.9 supports an
in-plane compressive load of Nx per unit length on the edges x = 0 and x = a, calculate
the resulting deflected shape.

Ans. Amn =
4W sin

mπξ

a
sin

nπη

b

abDπ4

[(
m2

a2 + n2

b2

)2

− m2Nx

π2a2D

]

P.7.11 A square plate of side a is simply supported along all four sides and is
subjected to a transverse uniformly distributed load of intensity q0. It is proposed to
determine the deflected shape of the plate by the Rayleigh–Ritz method employing a
‘guessed’ form for the deflection of

w = A11

(
1 − 4x2

a2

) (
1 − 4y2

a2

)

in which the origin is taken at the centre of the plate.
Comment on the degree to which the boundary conditions are satisfied and find the

central deflection assuming ν = 0.3.

Ans.
0.0389q0a4

Et3

P.7.12 A rectangular plate a × b, simply supported along each edge, possesses a
small initial curvature in its unloaded state given by

w0 = A11 sin
πx

a
sin

πy

b

Determine, using the energy method, its final deflected shape when it is subjected to a
compressive load Nx per unit length along the edges x = 0, x = a.

Ans. w = A11[

1 − Nxa2

π2D

/ (
1 + a2

b2

)2
] sin

πx

a
sin

πy

b
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8

Columns

A large proportion of an aircraft’s structure comprises thin webs stiffened by slender
longerons or stringers. Both are susceptible to failure by buckling at a buckling stress
or critical stress, which is frequently below the limit of proportionality and seldom
appreciably above the yield stress of the material. Clearly, for this type of structure,
buckling is the most critical mode of failure so that the prediction of buckling loads of
columns, thin plates and stiffened panels is extremely important in aircraft design. In
this chapter we consider the buckling failure of all these structural elements and also
the flexural–torsional failure of thin-walled open tubes of low torsional rigidity.

Two types of structural instability arise: primary and secondary. The former involves
the complete element, there being no change in cross-sectional area while the wave-
length of the buckle is of the same order as the length of the element. Generally, solid
and thick-walled columns experience this type of failure. In the latter mode, changes
in cross-sectional area occur and the wavelength of the buckle is of the order of the
cross-sectional dimensions of the element. Thin-walled columns and stiffened plates
may fail in this manner.

8.1 Euler buckling of columns

The first significant contribution to the theory of the buckling of columns was made as
early as 1744 by Euler. His classical approach is still valid, and likely to remain so, for
slender columns possessing a variety of end restraints. Our initial discussion is therefore
a presentation of the Euler theory for the small elastic deflection of perfect columns.
However, we investigate first the nature of buckling and the difference between theory
and practice.

It is common experience that if an increasing axial compressive load is applied to a
slender column there is a value of the load at which the column will suddenly bow or
buckle in some unpredetermined direction. This load is patently the buckling load of the
column or something very close to the buckling load. Clearly this displacement implies
a degree of asymmetry in the plane of the buckle caused by geometrical and/or material
imperfections of the column and its load. However, in our theoretical stipulation of
a perfect column in which the load is applied precisely along the perfectly straight
centroidal axis, there is perfect symmetry so that, theoretically, there can be no sudden
bowing or buckling. We therefore require a precise definition of buckling load which
may be used in our analysis of the perfect column.
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Fig. 8.1 Definition of buckling load for a perfect column.

Fig. 8.2 Determination of buckling load for a pin-ended column.

If the perfect column of Fig. 8.1 is subjected to a compressive load P, only shortening
of the column occurs no matter what the value of P. However, if the column is displaced
a small amount by a lateral load F then, at values of P below the critical or buckling
load, PCR, removal of F results in a return of the column to its undisturbed position,
indicating a state of stable equilibrium. At the critical load the displacement does not
disappear and, in fact, the column will remain in any displaced position as long as the
displacement is small. Thus, the buckling load PCR is associated with a state of neutral
equilibrium. For P > PCR enforced lateral displacements increase and the column is
unstable.

Consider the pin-ended column AB of Fig. 8.2. We assume that it is in the displaced
state of neutral equilibrium associated with buckling so that the compressive load P
has attained the critical value PCR. Simple bending theory (see Chapter 16) gives

EI
d2v

dz2 = −M

or

EI
d2v

dz2 = −PCRv (8.1)
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so that the differential equation of bending of the column is

d2v

dz2 + PCR

EI
v = 0 (8.2)

The well-known solution of Eq. (8.2) is

v = A cos µz + B sin µz (8.3)

where µ2 = PCR/EI and A and B are unknown constants. The boundary conditions for
this particular case are v = 0 at z = 0 and l. Thus A = 0 and

B sin µl = 0

For a non-trivial solution (i.e. v �= 0) then

sin µl = 0 or µl = nπ where n = 1, 2, 3, . . .

giving

PCRl2

EI
= n2π2

or

PCR = n2π2EI

l2 (8.4)

Note that Eq. (8.3) cannot be solved for v no matter how many of the available boundary
conditions are inserted. This is to be expected since the neutral state of equilibrium
means that v is indeterminate.

The smallest value of buckling load, in other words the smallest value of P which
can maintain the column in a neutral equilibrium state, is obtained by substituting n = 1
in Eq. (8.4). Hence

PCR = π2EI

l2 (8.5)

Other values of PCR corresponding to n = 2, 3, . . . , are

PCR = 4π2EI

l2 ,
9π2EI

l2 , . . .

These higher values of buckling load cause more complex modes of buckling such as
those shown in Fig. 8.3. The different shapes may be produced by applying external
restraints to a very slender column at the points of contraflexure to prevent lateral
movement. If no restraints are provided then these forms of buckling are unstable and
have little practical meaning.

The critical stress, σCR, corresponding to PCR, is, from Eq. (8.5)

σCR = π2E

(l/r)2 (8.6)



Ch08-H6739.tex 23/1/2007 15: 7 Page 258

258 Columns

Fig. 8.3 Buckling loads for different buckling modes of a pin-ended column.

Table 8.1

Ends le/l Boundary conditions

Both pinned 1.0 v = 0 at z = 0 and l
Both fixed 0.5 v = 0 at z = 0 and z = l, dv/dz = 0 at z = l
One fixed, the other free 2.0 v = 0 and dv/dz = 0 at z = 0
One fixed, the other pinned 0.6998 dv/dz = 0 at z = 0, v = 0 at z = l and z = 0

where r is the radius of gyration of the cross-sectional area of the column. The term
l/r is known as the slenderness ratio of the column. For a column that is not doubly
symmetrical, r is the least radius of gyration of the cross-section since the column will
bend about an axis about which the flexural rigidity EI is least. Alternatively, if buckling
is prevented in all but one plane then EI is the flexural rigidity in that plane.

Equations (8.5) and (8.6) may be written in the form

PCR = π2EI

l2
e

(8.7)

and

σCR = π2E

(le/r)2 (8.8)

where le is the effective length of the column. This is the length of a pin-ended column
that would have the same critical load as that of a column of length l, but with different
end conditions. The determination of critical load and stress is carried out in an identical
manner to that for the pin-ended column except that the boundary conditions are dif-
ferent in each case. Table 8.1 gives the solution in terms of effective length for columns
having a variety of end conditions. In addition, the boundary conditions referred to the
coordinate axes of Fig. 8.2 are quoted. The last case in Table 8.1 involves the solution
of a transcendental equation; this is most readily accomplished by a graphical method.

Let us now examine the buckling of the perfect pin-ended column of Fig. 8.2 in
greater detail. We have shown, in Eq. (8.4), that the column will buckle at discrete values
of axial load and that associated with each value of buckling load there is a particular
buckling mode (Fig. 8.3). These discrete values of buckling load are called eigenvalues,
their associated functions (in this case v = B sin nπz/l) are called eigenfunctions and
the problem itself is called an eigenvalue problem.

Further, suppose that the lateral load F in Fig. 8.1 is removed. Since the column
is perfectly straight, homogeneous and loaded exactly along its axis, it will suffer
only axial compression as P is increased. This situation, theoretically, would continue
until yielding of the material of the column occurred. However, as we have seen,
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Fig. 8.4 Behaviour of a perfect pin-ended column.

for values of P below PCR the column is in stable equilibrium whereas for P > PCR
the column is unstable. A plot of load against lateral deflection at mid-height would
therefore have the form shown in Fig. 8.4 where, at the point P = PCR, it is theoretically
possible for the column to take one of three deflection paths. Thus, if the column
remains undisturbed the deflection at mid-height would continue to be zero but unstable
(i.e. the trivial solution of Eq. (8.3), v = 0) or, if disturbed, the column would buckle
in either of two lateral directions; the point at which this possible branching occurs
is called a bifurcation point; further bifurcation points occur at the higher values of
PCR(4π2EI/l2, 9π2EI/l2, . . .).

Example 8.1
A uniform column of length L and flexural stiffness EI is simply supported at its ends
and has an additional elastic support at midspan. This support is such that if a lateral
displacement vc occurs at this point a restoring force kvc is generated at the point.
Derive an equation giving the buckling load of the column. If the buckling load is
4π2EI/L2 find the value of k. Also if the elastic support is infinitely stiff show that the
buckling load is given by the equation tan λL/2 = λL/2 where λ = √

P/EI .

The column is shown in its displaced position in Fig. 8.5.The bending moment at any
section of the column is given by

M = Pv − kvc

2
z

so that, by comparison with Eq. (8.1)

EI
d2v

dz2 = −Pv + kvc

2
z

giving

d2v

dz2 + λ2v = kvc

2EI
z (i)
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Fig. 8.5 Column of Example 8.1.

The solution of Eq. (i) is of standard form and is

v = A cos λz + B sin λz + kvc

2P
z

The constants A and B are found using the boundary conditions of the column which
are: v = 0 when z = 0, v = vc, when z = L/2 and (dv/dz) = 0 when z = L/2.

From the first of these, A = 0 while from the second

B = vc

sin (λL/2)

(
1 − kλ

4P

)

The third boundary condition gives, since vc �= 0, the required equation, i.e.

(
1 − kL

4P

)
cos

λL

2
+ k

2Pλ
sin

λL

2
= 0

Rearranging

P = kL

4

(
1 − tan (λL/2)

λL/2

)

If P (buckling load) = 4π2EI/L2 then λL/2 = π so that k = 4P/L.
Finally, if k → ∞

tan
λL

2
= λL

2
(ii)

Note that Eq. (ii) is the transcendental equation which would be derived when deter-
mining the buckling load of a column of length L/2, built in at one end and pinned at
the other.
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8.2 Inelastic buckling

We have shown that the critical stress, Eq. (8.8), depends only on the elastic modulus
of the material of the column and the slenderness ratio l/r. For a given material the
critical stress increases as the slenderness ratio decreases; i.e. as the column becomes
shorter and thicker. A point is then reached when the critical stress is greater than the
yield stress of the material so that Eq. (8.8) is no longer applicable. For mild steel this
point occurs at a slenderness ratio of approximately 100, as shown in Fig. 8.6. We
therefore require some alternative means of predicting column behaviour at low values
of slenderness ratio.

It was assumed in the derivation of Eq. (8.8) that the stresses in the column remained
within the elastic range of the material so that the modulus of elasticity E(= dσ/dε) was
constant. Above the elastic limit dσ/dε depends upon the value of stress and whether
the stress is increasing or decreasing. Thus, in Fig. 8.7 the elastic modulus at the point
A is the tangent modulus Et if the stress is increasing but E if the stress is decreasing.

Fig. 8.6 Critical stress–slenderness ratio for a column.

Fig. 8.7 Elastic moduli for a material stressed above the elastic limit.
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Fig. 8.8 Determination of reduced elastic modulus.

Consider a column having a plane of symmetry and subjected to a compressive load
P such that the direct stress in the column P/A is above the elastic limit. If the column
is given a small deflection, v, in its plane of symmetry, then the stress on the concave
side increases while the stress on the convex side decreases. Thus, in the cross-section
of the column shown in Fig. 8.8(a) the compressive stress decreases in the area A1
and increases in the area A2, while the stress on the line nn is unchanged. Since these
changes take place outside the elastic limit of the material, we see, from our remarks
in the previous paragraph, that the modulus of elasticity of the material in the area
A1 is E while that in A2 is Et . The homogeneous column now behaves as if it were
non-homogeneous, with the result that the stress distribution is changed to the form
shown in Fig. 8.8(b); the linearity of the distribution follows from an assumption that
plane sections remain plane.

As the axial load is unchanged by the disturbance

∫ d1

0
σx dA =

∫ d2

0
σv dA (8.9)

Also, P is applied through the centroid of each end section a distance e from nn so that

∫ d1

0
σx(y1 + e) dA +

∫ d2

0
σv(y2 − e) dA = −Pv (8.10)

From Fig. 8.8(b)

σx = σ1

d1
y1 σv = σ2

d2
y2 (8.11)

The angle between two close, initially parallel, sections of the column is equal to the
change in slope d2v/dz2 of the column between the two sections. This, in turn, must be
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equal to the angle δφ in the strain diagram of Fig. 8.8(c). Hence

d2v

dz2 = σ1

Ed1
= σ2

Etd2
(8.12)

and Eq. (8.9) becomes, from Eqs (8.11) and (8.12)

E
d2v

dz2

∫ d1

0
y1dA − Et

d2v

dz2

∫ d2

0
y2 dA = 0 (8.13)

Further, in a similar manner, from Eq. (8.10)

d2v

dz2

(

E
∫ d1

0
y2

1 dA + Et

∫ d2

0
y2

2 dA

)

+ e
d2v

dz2

(

E
∫ d1

0
y1 dA − Et

∫ d2

0
y2 dA

)

= −Pv

(8.14)
The second term on the left-hand side of Eq. (8.14) is zero from Eq. (8.13). Therefore
we have

d2v

dz2 (EI1 + EtI2) = −Pv (8.15)

in which

I1 =
∫ d1

0
y2

1 dA and I2 =
∫ d2

0
y2

2 dA

the second moments of area about nn of the convex and concave sides of the column
respectively. Putting

ErI = EI1 + EtI2

or

Er = E
I1

I
+ Et

I2

I
(8.16)

where Er is known as the reduced modulus, gives

ErI
d2v

dz2 + Pv = 0

Comparing this with Eq. (8.2) we see that if P is the critical load PCR then

PCR = π2ErI

l2
e

(8.17)

and

σCR = π2Er

(le/r)2 (8.18)
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The above method for predicting critical loads and stresses outside the elastic range is
known as the reduced modulus theory. From Eq. (8.13) we have

E
∫ d1

0
y1 dA − Et

∫ d2

0
y2 dA = 0 (8.19)

which, together with the relationship d = d1 + d2, enables the position of nn to be
found.

It is possible that the axial load P is increased at the time of the lateral disturbance
of the column such that there is no strain reversal on its convex side. The compressive
stress therefore increases over the complete section so that the tangent modulus applies
over the whole cross-section. The analysis is then the same as that for column buckling
within the elastic limit except that Et is substituted for E. Hence the tangent modulus
theory gives

PCR = π2EtI

l2
e

(8.20)

and

σCR = π2Et

(le/r2)
(8.21)

By a similar argument, a reduction in P could result in a decrease in stress over the
whole cross-section. The elastic modulus applies in this case and the critical load and
stress are given by the standard Euler theory; namely, Eqs (8.7) and (8.8).

In Eq. (8.16), I1 and I2 are together greater than I while E is greater than Et . It follows
that the reduced modulus Er is greater than the tangent modulus Et . Consequently,
buckling loads predicted by the reduced modulus theory are greater than buckling
loads derived from the tangent modulus theory, so that although we have specified
theoretical loading situations where the different theories would apply there still remains
the difficulty of deciding which should be used for design purposes.

Extensive experiments carried out on aluminium alloy columns by the aircraft indus-
try in the 1940s showed that the actual buckling load was approximately equal to the
tangent modulus load. Shanley (1947) explained that for columns with small imper-
fections, an increase of axial load and bending occur simultaneously. He then showed
analytically that after the tangent modulus load is reached, the strain on the concave
side of the column increases rapidly while that on the convex side decreases slowly. The
large deflection corresponding to the rapid strain increase on the concave side, which
occurs soon after the tangent modulus load is passed, means that it is only possible to
exceed the tangent modulus load by a small amount. It follows that the buckling load of
columns is given most accurately for practical purposes by the tangent modulus theory.

Empirical formulae have been used extensively to predict buckling loads, although
in view of the close agreement between experiment and the tangent modulus theory
they would appear unnecessary. Several formulae are in use; for example, the Rankine,
Straight-line and Johnson’s parabolic formulae are given in many books on elastic
stability.1
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8.3 Effect of initial imperfections

Obviously it is impossible in practice to obtain a perfectly straight homogeneous column
and to ensure that it is exactly axially loaded. An actual column may be bent with some
eccentricity of load. Such imperfections influence to a large degree the behaviour of the
column which, unlike the perfect column, begins to bend immediately the axial load is
applied.

Let us suppose that a column, initially bent, is subjected to an increasing axial load
P as shown in Fig. 8.9. In this case the bending moment at any point is proportional to
the change in curvature of the column from its initial bent position. Thus

EI
d2v

dz2 − EI
d2v0

dz2 − Pv (8.22)

which, on rearranging, becomes

d2v

dz2 + λ2v = d2v0

dz2 (8.23)

where λ2 = P/EI. The final deflected shape, v, of the column depends upon the form
of its unloaded shape, v0. Assuming that

v0 =
∞∑

n=1

An sin
nπz

l
(8.24)

and substituting in Eq. (8.23) we have

d2v

dz2 + λ2v = −π2

l2

∞∑

n=1

n2An sin
nπz

l

The general solution of this equation is

v = B cos λz + D sin λz +
∞∑

n=1

n2An

n2 − α
sin

nπz

l

Fig. 8.9 Initially bent column.
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where B and D are constants of integration and α = λ2l2/π2. The boundary conditions
are v = 0 at z = 0 and l, giving B = D = 0 whence

v =
∞∑

n=1

n2An

n2 − α
sin

nπz

l
(8.25)

Note that in contrast to the perfect column we are able to obtain a non-trivial solution
for deflection. This is to be expected since the column is in stable equilibrium in its
bent position at all values of P.

An alternative form for α is

α = Pl2

π2EI
= P

PCR
(see Eq. (8.5))

Thus α is always less than one and approaches unity when P approaches PCR so that the
first term in Eq. (8.25) usually dominates the series. A good approximation, therefore,
for deflection when the axial load is in the region of the critical load is

v = A1

1 − α
sin

πz

l
(8.26)

or at the centre of the column where z = l/2

v = A1

1 − P/PCR
(8.27)

in which A1 is seen to be the initial central deflection. If central deflections δ(= v − A1)
are measured from the initially bowed position of the column then from Eq. (8.27) we
obtain

A1

1 − P/PCR
− A1 = δ

which gives on rearranging

δ = PCR
δ

P
− A1 (8.28)

and we see that a graph of δ plotted against δ/P has a slope, in the region of the critical
load, equal to PCR and an intercept equal to the initial central deflection. This is the
well known Southwell plot for the experimental determination of the elastic buckling
load of an imperfect column.

Timoshenko1 also showed that Eq. (8.27) may be used for a perfectly straight column
with small eccentricities of column load.

Example 8.2
The pin-jointed column shown in Fig. 8.10 carries a compressive load P applied eccen-
trically at a distance e from the axis of the column. Determine the maximum bending
moment in the column.

The bending moment at any section of the column is given by

M = P(e + v)
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y

P e

ν
z

e P

L

Fig. 8.10 Eccentrically loaded column of Example 8.2

Then, by comparison with Eq. (8.1)

EI
d2v

dz2 = −P(e + v)

giving

d2v

dz2 + µ2v = −Pe

EI
(µ2 = P/EI) (i)

The solution of Eq. (i) is of standard form and is

v = A cos µz + B sin µz − e

The boundary conditions are: v = 0 when z = 0 and (dv/dz) = 0 when z = L/2.
From the first of these A = e while from the second

B = e tan
µL

2

The equation for the deflected shape of the column is then

v = e

[
cos µ(z − L/2)

cos µL/2
− 1

]

The maximum value of v occurs at midspan where z = L/2, i.e.

vmax = e

(
sec

µL

2
− 1

)

The maximum bending moment is given by

M(max) = Pe + Pvmax

so that

M(max) = Pe sec
µL

2
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8.4 Stability of beams under transverse and axial loads

Stresses and deflections in a linearly elastic beam subjected to transverse loads as
predicted by simple beam theory, are directly proportional to the applied loads. This
relationship is valid if the deflections are small such that the slight change in geom-
etry produced in the loaded beam has an insignificant effect on the loads themselves.
This situation changes drastically when axial loads act simultaneously with the trans-
verse loads. The internal moments, shear forces, stresses and deflections then become
dependent upon the magnitude of the deflections as well as the magnitude of the exter-
nal loads. They are also sensitive, as we observed in the previous section, to beam
imperfections such as initial curvature and eccentricity of axial load. Beams supporting
both axial and transverse loads are sometimes known as beam-columns or simply as
transversely loaded columns.

We consider first the case of a pin-ended beam carrying a uniformly distributed load
of intensity w per unit length and an axial load P as shown in Fig. 8.11. The bending
moment at any section of the beam is

M = Pv + wlz

2
− wz2

2
= −EI

d2v

dz2

giving

d2v

dz2 + P

EI
v = w

2EI
(z2 − lz) (8.29)

The standard solution of Eq. (8.29) is

v = A cos λz + B sin λz + w

2P

(
z2 − lz − 2

λ2

)

where A and B are unknown constants and λ2 = P/EI. Substituting the boundary
conditions v = 0 at z = 0 and l gives

A = w

λ2P
B = w

λ2P sin λl
(l − cos λl)

Fig. 8.11 Bending of a uniformly loaded beam-column.
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so that the deflection is determinate for any value of w and P and is given by

v = w

λ2P

[
cos λz +

(
1 − cos λl

sin λl

)
sin λz

]
+ w

2P

(
z2 − lz − 2

λ2

)
(8.30)

In beam-columns, as in beams, we are primarily interested in maximum values of
stress and deflection. For this particular case the maximum deflection occurs at the
centre of the beam and is, after some transformation of Eq. (8.30)

vmax = w

λ2P

(
sec

λl

2
− 1

)
− wl2

8P
(8.31)

The corresponding maximum bending moment is

Mmax = −Pvmax − wl2

8

or, from Eq. (8.31)

Mmax = w

λ2

(
1 − sec

λl

2

)
(8.32)

We may rewrite Eq. (8.32) in terms of the Euler buckling load PCR = π2EI/l2 for a
pin-ended column. Hence

Mmax = wl2

π2

PCR

P

(

1 − sec
π

2

√
P

PCR

)

(8.33)

As P approaches PCR the bending moment (and deflection) becomes infinite. However,
the above theory is based on the assumption of small deflections (otherwise d2v/dz2

would not be a close approximation for curvature) so that such a deduction is invalid.
The indication is, though, that large deflections will be produced by the presence of a
compressive axial load no matter how small the transverse load might be.

Let us consider now the beam-column of Fig. 8.12 with hinged ends carrying a
concentrated load W at a distance a from the right-hand support. For

z ≤ l − a EI
d2v

dz2 = −M = −Pv − Waz

l
(8.34)

and for

z ≥ l − a EI
d2v

dz2 = −M = −Pv − W

l
(l − a)(l − z) (8.35)

Writing

λ2 = P

EI
Eq. (8.34) becomes

d2v

dz2 + λ2v = −Wa

EIl
z
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Fig. 8.12 Beam-column supporting a point load.

the general solution of which is

v = A cos λz + B sin λz − Wa

Pl
z (8.36)

Similarly, the general solution of Eq. (8.35) is

v = C cos λz + D sin λz − W

Pl
(l − a)(l − z) (8.37)

where A, B, C and D are constants which are found from the boundary conditions as
follows.

When z = 0, v = 0, therefore from Eq. (8.36) A = 0. At z = l, v = 0 giving, from
Eq. (8.37), C = −D tan λl. At the point of application of the load the deflection and
slope of the beam given by Eqs (8.36) and (8.37) must be the same. Hence, equating
deflections

B sin λ(l − a) − Wa

Pl
(l − a) = D[ sin λ(l − a) − tan λl cos λ(l − a)] − Wa

Pl
(l − a)

and equating slopes

Bλ cos λ(l − a) − Wa

Pl
= Dλ[ cos λ(l − a) − tan λl sin λ(l − a)] + W

Pl
(l − a)

Solving the above equations for B and D and substituting for A, B, C and D in Eqs (8.36)
and (8.37) we have

v = W sin λa

Pλ sin λl
sin λz − Wa

Pl
z for z ≤ l − a (8.38)

v = W sin λ(l − a)

Pλ sin λl
sin λ(l − z) − W

Pl
(l − a)(l − z) for z ≥ l − a (8.39)

These equations for the beam-column deflection enable the bending moment and
resulting bending stresses to be found at all sections.

A particular case arises when the load is applied at the centre of the span. The
deflection curve is then symmetrical with a maximum deflection under the load of

vmax = W

2Pλ
tan

λl

2
− Wl

4p
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Fig. 8.13 Beam-column supporting end moments.

Finally, we consider a beam-column subjected to end moments MA and MB in addi-
tion to an axial load P (Fig. 8.13). The deflected form of the beam-column may be
found by using the principle of superposition and the results of the previous case. First,
we imagine that MB acts alone with the axial load P. If we assume that the point load W
moves towards B and simultaneously increases so that the product Wa = constant = MB
then, in the limit as a tends to zero, we have the moment MB applied at B. The deflection
curve is then obtained from Eq. (8.38) by substituting λa for sin λa (since λa is now
very small) and MB for Wa. Thus

v = MB

P

(
sin λz

sin λl
− z

l

)
(8.40)

In a similar way, we find the deflection curve corresponding to MA acting alone. Suppose
that W moves towardsA such that the product W (l−a) = constant = MA. Then as (l−a)
tends to zero we have sin λ(l − a) = λ(l − a) and Eq. (8.39) becomes

v = MA

P

[
sin λ(l − z)

sin λl
− (l − z)

l

]
(8.41)

The effect of the two moments acting simultaneously is obtained by superposition of
the results of Eqs (8.40) and (8.41). Hence for the beam-column of Fig. 8.13

v = MB

P

(
sin λz

sin λl
− z

l

)
+ MA

P

[
sin λ(l − z)

sin λl
− (l − z)

l

]
(8.42)

Equation (8.42) is also the deflected form of a beam-column supporting eccentrically
applied end loads at A and B. For example, if eA and eB are the eccentricities of P at
the ends A and B, respectively, then MA = PeA, MB = PeB, giving a deflected form of

v = eB

(
sin λz

sin λl
− z

l

)
+ eA

[
sin λ(l − z)

sin λl
− (l − z)

l

]
(8.43)

Other beam-column configurations featuring a variety of end conditions and loading
regimes may be analysed by a similar procedure.

8.5 Energy method for the calculation of buckling
loads in columns

The fact that the total potential energy of an elastic body possesses a stationary value
in an equilibrium state may be used to investigate the neutral equilibrium of a buckled
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Fig. 8.14 Shortening of a column due to buckling.

column. In particular, the energy method is extremely useful when the deflected form
of the buckled column is unknown and has to be ‘guessed’.

First, we shall consider the pin-ended column shown in its buckled position in
Fig. 8.14. The internal or strain energy U of the column is assumed to be produced by
bending action alone and is given by the well known expression

U =
∫ l

0

M2

2EI
dz (8.44)

or alternatively, since EI d2v/dz2 = −M

U = EI

2

∫ l

0

(
d2v

dz2

)2

dz (8.45)

The potential energy V of the buckling load PCR, referred to the straight position of the
column as the datum, is then

V = −PCRδ

where δ is the axial movement of PCR caused by the bending of the column from its
initially straight position. By reference to Fig. 7.15(b) and Eq. (7.41) we see that

δ = 1

2

∫ l

0

(
dv

dz

)2

dz

giving

V = −PCR

2

∫ l

0

(
dv

dz

)2

dz (8.46)

The total potential energy of the column in the neutral equilibrium of its buckled state
is therefore

U + V =
∫ l

0

M2

2EI
dz − PCR

2

∫ l

0

(
dv

dz

)2

dz (8.47)

or, using the alternative form of U from Eq. (8.45)

U + V = EI

2

∫ l

0

(
d2v

dz2

)2

dz − PCR

2

∫ l

0

(
dv

dz

)2

dz (8.48)
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We have seen in Chapter 7 that exact solutions of plate bending problems are obtain-
able by energy methods when the deflected shape of the plate is known. An identical
situation exists in the determination of critical loads for column and thin plate buckling
modes. For the pin-ended column under discussion a deflected form of

v =
∞∑

n=1

An sin
nπz

l
(8.49)

satisfies the boundary conditions of

(v)z=0 = (v)z=l = 0

(
d2v

dz2

)

z=0
=

(
d2v

dz2

)

z=l
= 0

and is capable, within the limits for which it is valid and if suitable values for the constant
coefficients An are chosen, of representing any continuous curve. We are therefore in a
position to find PCR exactly. Substituting Eq. (8.49) into Eq. (8.48) gives

U + V = EI

2

∫ l

0

(π

l

)4
( ∞∑

n=1

n2An sin
nπz

l

)2

dz

− PCR

2

∫ l

0

(π

l

)2
( ∞∑

n=1

nAn cos
nπz

l

)2

dz (8.50)

The product terms in both integrals of Eq. (8.50) disappear on integration, leaving only
integrated values of the squared terms. Thus

U + V = π4EI

4l3

∞∑

n=1

n4A2
n − π2PCR

4l

∞∑

n=1

n2A2
n (8.51)

Assigning a stationary value to the total potential energy of Eq. (8.51) with respect to
each coefficient An in turn, then taking An as being typical, we have

∂(U + V )

∂An
= π4EIn4An

2l3 − π2PCRn2An

2l
= 0

from which

PCR = π2EIn2

l2 as before.

We see that each term in Eq. (8.49) represents a particular deflected shape with a
corresponding critical load. Hence the first term represents the deflection of the column
shown in Fig. 8.14, with PCR = π2EI/l2. The second and third terms correspond to the
shapes shown in Fig. 8.3, having critical loads of 4π2EI/l2 and 9π2EI/l2 and so on.
Clearly the column must be constrained to buckle into these more complex forms. In
other words the column is being forced into an unnatural shape, is consequently stiffer
and offers greater resistance to buckling as we observe from the higher values of critical
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Fig. 8.15 Buckling load for a built-in column by the energy method.

load. Such buckling modes, as stated in Section 8.1, are unstable and are generally of
academic interest only.

If the deflected shape of the column is known it is immaterial which of Eqs (8.47)
or (8.48) is used for the total potential energy. However, when only an approximate
solution is possible Eq. (8.47) is preferable since the integral involving bending moment
depends upon the accuracy of the assumed form of v, whereas the corresponding term in
Eq. (8.48) depends upon the accuracy of d2v/dz2. Generally, for an assumed deflection
curve v is obtained much more accurately than d2v/dz2.

Suppose that the deflection curve of a particular column is unknown or extremely
complicated. We then assume a reasonable shape which satisfies, as far as possible,
the end conditions of the column and the pattern of the deflected shape (Rayleigh–Ritz
method). Generally, the assumed shape is in the form of a finite series involving a series
of unknown constants and assumed functions of z. Let us suppose that v is given by

v = A1 f1(z) + A2 f2(z) + A3 f3(z)

Substitution in Eq. (8.47) results in an expression for total potential energy in terms of
the critical load and the coefficients A1, A2 and A3 as the unknowns. Assigning stationary
values to the total potential energy with respect to A1, A2 and A3 in turn produces three
simultaneous equations from which the ratios A1/A2, A1/A3 and the critical load are
determined. Absolute values of the coefficients are unobtainable since the deflections
of the column in its buckled state of neutral equilibrium are indeterminate.

As a simple illustration consider the column shown in its buckled state in Fig. 8.15. An
approximate shape may be deduced from the deflected shape of a tip-loaded cantilever.
Thus

v = v0z2

2l3 (3l − z)

This expression satisfies the end-conditions of deflection, viz. v = 0 at z = 0 and v = v0
at z = l. In addition, it satisfies the conditions that the slope of the column is zero at
the built-in end and that the bending moment, i.e. d2v/dz2, is zero at the free end. The
bending moment at any section is M = PCR(v0 − v) so that substitution for M and v in
Eq. (8.47) gives

U + V = P2
CRv2

0

2EI

∫ l

0

(
1 − 3z2

2l2 + z3

2l3

)2

dz − PCR

2

∫ l

0

(
3v0

2l3

)3

z2(2l − z)2 dz
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Integrating and substituting the limits we have

U + V = 17

35

P2
CRv2

0l

2EI
− 3

5
PCR

v2
0

l

Hence

∂(U + V )

∂v0
= 17

35

P2
CRv0l

EI
− 6PCRv0

5l
= 0

from which

PCR = 42EI

17l2 = 2.471
EI

l2

This value of critical load compares with the exact value (see Table 8.1) of
π2EI/4l2 = 2.467EI/l2; the error, in this case, is seen to be extremely small. Approxi-
mate values of critical load obtained by the energy method are always greater than the
correct values. The explanation lies in the fact that an assumed deflected shape implies
the application of constraints in order to force the column to take up an artificial shape.
This, as we have seen, has the effect of stiffening the column with a consequent increase
in critical load.

It will be observed that the solution for the above example may be obtained by simply
equating the increase in internal energy (U) to the work done by the external critical
load (−V ). This is always the case when the assumed deflected shape contains a single
unknown coefficient, such as v0 in the above example.

8.6 Flexural–torsional buckling of thin-walled columns

It is recommended that the reading of this section be delayed until after Chapter 27 has
been studied.

In some instances thin-walled columns of open cross-section do not buckle in bending
as predicted by the Euler theory but twist without bending, or bend and twist simul-
taneously, producing flexural–torsional buckling. The solution of this type of problem
relies on the theory presented in Chapter 27 for the torsion of open section beams
subjected to warping (axial) restraint. Initially, however, we shall establish a useful
analogy between the bending of a beam and the behaviour of a pin-ended column.

The bending equation for a simply supported beam carrying a uniformly distributed
load of intensity wy and having Cx and Cy as principal centroidal axes is

EIxx
d4v

dz4 = wy (see Chapter 16) (8.52)

Also, the equation for the buckling of a pin-ended column about the Cx axis is (see
Eq. (8.1))

EIxx
d2v

dz2 = −PCRv (8.53)
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Fig. 8.16 Flexural–torsional buckling of a thin-walled column.

Differentiating Eq. (8.53) twice with respect to z gives

EIxx
d4v

dz4 = −PCR
d2v

dz2 (8.54)

Comparing Eqs (8.52) and (8.54) we see that the behaviour of the column may be
obtained by considering it as a simply supported beam carrying a uniformly distributed
load of intensity wy given by

wy = −PCR
d2v

dz2 (8.55)

Similarly, for buckling about the Cy axis

wx = −PCR
d2u

dz2 (8.56)

Consider now a thin-walled column having the cross-section shown in Fig. 8.16 and
suppose that the centroidal axes Cxy are principal axes (see Chapter 16); S(xS, yS) is
the shear centre of the column (see Chapter 17) and its cross-sectional area is A. Due
to the flexural–torsional buckling produced, say, by a compressive axial load P the
cross-section will suffer translations u and v parallel to Cx and Cy, respectively and a
rotation θ, positive anticlockwise, about the shear centre S. Thus, due to translation,
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C and S move to C′ and S′ and then, due to rotation about S′, C′ moves to C′′. The total
movement of C, uC, in the x direction is given by

uc = u + C′D = u + C′C′′ sin α (S′Ĉ′C′′ � 90◦)

But

C′C′′ = C′S′θ = CSθ

Hence

uC = u + θCS sin α = u + ySθ (8.57)

Also the total movement of C in the y direction is

vC = v − DC′′ = v − C′C′′ cos α = v − θCS cos α

so that

vC = v − xsθ (8.58)

Since at this particular cross-section of the column the centroidal axis has been dis-
placed, the axial load P produces bending moments about the displaced x and y axes
given, respectively, by

Mx = PvC = P(v − xSθ) (8.59)

and

My = PuC = P(u + ySθ) (8.60)

From simple beam theory (Chapter 16)

EIxx
d2v

dz2 = −Mx = −P(v − xSθ) (8.61)

and

EIyy
d2u

dz2 = −My = −P(u + ySθ) (8.62)

where Ixx and Iyy are the second moments of area of the cross-section of the column
about the principal centroidal axes, E isYoung’s modulus for the material of the column
and z is measured along the centroidal longitudinal axis.

The axial load P on the column will, at any cross-section, be distributed as a uniform
direct stress σ. Thus, the direct load on any element of length δs at a point B(xB, yB) is
σt ds acting in a direction parallel to the longitudinal axis of the column. In a similar
manner to the movement of C to C′′ the point B will be displaced to B′′. The horizontal
movement of B in the x direction is then

uB = u + B′F = u + B′B′′ cos β

But

B′B′′ = S′B′θ = SBθ
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Hence

uB = u + θSB cos β

or

uB = u + (yS − yB)θ (8.63)

Similarly the movement of B in the y direction is

vB = v − (xS − xB)θ (8.64)

Therefore, from Eqs (8.63) and (8.64) and referring to Eqs (8.55) and (8.56), we see
that the compressive load on the element δs at B, σtδs, is equivalent to lateral loads

−σtδs
d2

dz2 [u + (yS − yB)θ] in the x direction

and

−σtδs
d2

dz2 [v − (xS − xB)θ] in the y direction

The lines of action of these equivalent lateral loads do not pass through the displaced
position S′ of the shear centre and therefore produce a torque about S′ leading to the
rotation θ. Suppose that the element δs at B is of unit length in the longitudinal z
direction. The torque per unit length of the column δT (z) acting on the element at B is
then given by

δT (z) = −σtδs
d2

dz2 [u + (yS − yB)θ](yS − yB)

+ σtδs
d2

dz2 [v − (xS − xB)θ](xS − xB) (8.65)

Integrating Eq. (8.65) over the complete cross-section of the column gives the torque
per unit length acting on the column, i.e.

T (z) = −
∫

Sect
σt

d2u

dz2 ( yS − yB)ds −
∫

Sect
σt( yS − yB)2 d2θ

dz2 ds

+
∫

Sect
σt

d2v

dz2 (xS − xB)ds −
∫

Sect
σt(xS − xB)2 d2θ

dz2 ds (8.66)
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Expanding Eq. (8.66) and noting that σ is constant over the cross-section, we obtain

T (z) = −σ
d2u

dz2 yS

∫

Sect
t ds + σ

d2u

dz2

∫

Sect
tyB ds − σ

d2θ

dz2 y2
S

∫

Sect
t ds

+ σ
d2θ

dz2 2yS

∫

Sect
tyB ds − σ

d2θ

dz2

∫

Sect
ty2

B ds + σ
d2v

dz2 xS

∫

Sect
t ds

− σ
d2v

dz2

∫

Sect
txB ds − σ

d2θ

dz2 x2
S

∫

Sect
t ds + σ

d2θ

dz2 2xS

∫

Sect
txB ds

− σ
d2θ

dz2

∫

Sect
tx2

B ds (8.67)

Equation (8.67) may be rewritten

T (z) = P

(
xS

d2v

dz2 − yS
d2u

dz2

)
− P

A

d2θ

dz2 (Ay2
S + Ixx + Ax2

S + Iyy) (8.68)

In Eq. (8.68) the term Ixx + Iyy + A(x2
S + y2

S) is the polar second moment of area I0 of
the column about the shear centre S. Thus Eq. (8.68) becomes

T (z) = P

(
xS

d2v

dz2 − yS
d2u

dz2

)
− I0

P

A

d2θ

dz2 (8.69)

Substituting for T (z) from Eq. (8.69) in Eq. (27.11), the general equation for the torsion
of a thin-walled beam, we have

E�
d4θ

dz4 −
(

GJ − I0
P

A

)
d2θ

dz2 − PxS
d2v

dz2 + PyS
d2u

dz2 = 0 (8.70)

Equations (8.61), (8.62) and (8.70) form three simultaneous equations which may be
solved to determine the flexural–torsional buckling loads.

As an example, consider the case of a column of length L in which the ends are
restrained against rotation about the z axis and against deflection in the x and y directions;
the ends are also free to rotate about the x and y axes and are free to warp. Thus
u = v = θ = 0 at z = 0 and z = L. Also, since the column is free to rotate about the x and
y axes at its ends, Mx = My = 0 at z = 0 and z = L, and from Eqs (8.61) and (8.62)

d2v

dz2 = d2u

dz2 = 0 at z = 0 and z = L

Further, the ends of the column are free to warp so that

d2θ

dz2 = 0 at z = 0 and z = L (see Eq. (27.1))

An assumed buckled shape given by

u = A1 sin
πz

L
v = A2 sin

πz

L
θ = A3 sin

πz

L
(8.71)
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in which A1, A2 and A3 are unknown constants, satisfies the above boundary conditions.
Substituting for u, v and θ from Eqs (8.71) into Eqs (8.61), (8.62) and (8.70), we have

(
P − π2EIxx

L2

)
A2 − PxSA3 = 0

(

P − π2EIyy

L2

)

A1 + PySA3 = 0

PySA1 − PxSA2 −
(

π2E�

L2 + GJ − I0

A
P

)
A3 = 0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

(8.72)

For non-zero values of A1, A2 and A3 the determinant of Eqs (8.72) must equal zero, i.e.
∣∣∣∣∣∣

0 P − π2EIxx/L2 −PxS
P − π2EIyy/L2 0 PyS

PyS −PxS I0P/A − π2E�/L2 − GJ

∣∣∣∣∣∣
= 0 (8.73)

The roots of the cubic equation formed by the expansion of the determinant give the
critical loads for the flexural–torsional buckling of the column; clearly the lowest value
is significant.

In the case where the shear centre of the column and the centroid of area coincide,
i.e. the column has a doubly symmetrical cross-section, xS = yS = 0 and Eqs (8.61),
(8.62) and (8.70) reduce, respectively, to

EIxx
d2v

dz2 = −Pv (8.74)

EIyy
d2u

dz2 = −Pu (8.75)

E�
d4θ

dz4

(
GJ − I0

P

A

)
d2θ

dz2 = 0 (8.76)

Equations (8.74), (8.75) and (8.76), unlike Eqs (8.61), (8.62) and (8.70), are uncoupled
and provide three separate values of buckling load. Thus, Eqs (8.74) and (8.75) give
values for the Euler buckling loads about the x and y axes respectively, while Eq. (8.76)
gives the axial load which would produce pure torsional buckling; clearly the buckling
load of the column is the lowest of these values. For the column whose buckled shape
is defined by Eqs (8.71), substitution for v, u and θ in Eqs (8.74), (8.75) and (8.76),
respectively gives

PCR(xx) = π2EIxx

L2
PCR(yy) = π2EIyy

L2 PCR(θ) = A

I0

(
GJ + π2E�

L2

)
(8.77)

Example 8.3
A thin-walled pin-ended column is 2 m long and has the cross-section shown in
Fig. 8.17. If the ends of the column are free to warp determine the lowest value of axial
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Fig. 8.17 Column section of Example 8.3.

load which will cause buckling and specify the buckling mode. Take E = 75 000 N/mm2

and G = 21 000 N/mm2.

Since the cross-section of the column is doubly-symmetrical, the shear centre coin-
cides with the centroid of area and xS = yS = 0; Eq. (8.74), (8.75) and (8.76) therefore
apply. Further, the boundary conditions are those of the column whose buckled shape
is defined by Eqs (8.71) so that the buckling load of the column is the lowest of the
three values given by Eqs (8.77).

The cross-sectional area A of the column is

A = 2.5(2 × 37.5 + 75) = 375 mm2

The second moments of area of the cross-section about the centroidal axes Cxy are (see
Chapter 16), respectively

Ixx = 2 × 37.5 × 2.5 × 37.52 + 2.5 × 753/12 = 3.52 × 105 mm4

Iyy = 2 × 2.5 × 37.53/12 = 0.22 × 105 mm4

The polar second moment of area I0 is

I0 = Ixx + Iyy + A(x2
S + y2

S) (see derivation of Eq. (8.69))

i.e.

I0 = 3.52 × 105 + 0.22 × 105 = 3.74 × 105 mm4

The torsion constant J is obtained using Eq. (18.11) which gives

J = 2 × 37.5 × 2.53/3 + 75 × 2.53/3 = 781.3 mm4

Finally, � is found using the method of Section 27.2 and is

� = 2.5 × 37.53 × 752/24 = 30.9 × 106 mm6
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Substituting the above values in Eqs (8.77) we obtain

PCR(xx) = 6.5 × 104 N PCR(yy) = 0.41 × 104 N PCR(θ) = 2.22 × 104 N

The column will therefore buckle in bending about the Cy axis when subjected to an
axial load of 0.41 × 104 N.

Equation (8.73) for the column whose buckled shape is defined by Eqs (8.71) may
be rewritten in terms of the three separate buckling loads given by Eqs (8.77). Thus

∣∣∣∣∣∣

0 P − PCR(xx) −PxS
P − PCR(yy) 0 PyS

PyS −PxS I0(P − PCR(θ))/A

∣∣∣∣∣∣
= 0 (8.78)

If the column has, say, Cx as an axis of symmetry, then the shear centre lies on this axis
and yS = 0. Equation (8.78) thereby reduces to

∣∣∣∣
P − PCR(xx) −PxS

−PxS I0(P − PCR(θ))/A

∣∣∣∣ = 0 (8.79)

The roots of the quadratic equation formed by expanding Eq. (8.79) are the values of
axial load which will produce flexural–torsional buckling about the longitudinal and x
axes. If PCR( yy) is less than the smallest of these roots the column will buckle in pure
bending about the y axis.

Example 8.4
A column of length 1 m has the cross-section shown in Fig. 8.18. If the ends of the
column are pinned and free to warp, calculate its buckling load; E = 70 000 N/mm2,
G = 30 000 N/mm2.

In this case the shear centre S is positioned on the Cx axis so that yS = 0 and Eq. (8.79)
applies. The distance x̄ of the centroid of area C from the web of the section is found

Fig. 8.18 Column section of Example 8.4.
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by taking first moments of area about the web. Thus

2(100 + 100 + 100)x̄ = 2 × 2 × 100 × 50

which gives

x̄ = 33.3 mm

The position of the shear centre S is found using the method of Example 17.1; this gives
xS = −76.2 mm. The remaining section properties are found by the methods specified
in Example 8.3 and are listed below

A = 600 mm2 Ixx = 1.17 × 106 mm4 Iyy = 0.67 × 106 mm4

I0 = 5.32 × 106mm4 J = 800 mm4 � = 2488 × 106 mm6

From Eq. (8.77)

PCR(yy) = 4.63 × 105 N PCR(xx) = 8.08 × 105 N PCR(θ) = 1.97 × 105 N

Expanding Eq. (8.79)

(P − PCR(xx))(P − PCR(θ))I0/A − P2x2
S = 0 (i)

Rearranging Eq. (i)

P2(1 − Ax2
S/I0) − P(PCR(xx) + PCR(θ)) + PCR(xx)PCR(θ) = 0 (ii)

Substituting the values of the constant terms in Eq. (ii) we obtain

P2 − 29.13 × 105P + 46.14 × 1010 = 0 (iii)

The roots of Eq. (iii) give two values of critical load, the lowest of which is

P = 1.68 × 105 N

It can be seen that this value of flexural–torsional buckling load is lower than any of
the uncoupled buckling loads PCR(xx), PCR( yy) or PCR(θ); the reduction is due to the
interaction of the bending and torsional buckling modes.

Example 8.5
A thin walled column has the cross-section shown in Fig. 8.19, is of length L and is
subjected to an axial load through its shear centre S. If the ends of the column are
prevented from warping and twisting determine the value of direct stress when failure
occurs due to torsional buckling.

The torsion bending constant � is found using the method described in Section 27.2.
The position of the shear centre is given but is obvious by inspection. The swept area
2λAR,0 is determined as a function of s and its distribution is shown in Fig. 8.20. The
centre of gravity of the ‘wire’ is found by taking moments about the s axis.
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Fig. 8.19 Section of column of Example 8.5.
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Fig. 8.20 Determination of torsion bending constant for column section of Example 8.5.

Then

2A′
R5td = td

(
d2

2
+ 5d2

4
+ 3d2

2
+ 5d2

4
+ d2

2

)

which gives

2A′
R = d2

The torsion bending constant is then the ‘moment of inertia’ of the ‘wire’ and is

� = 2td
1

3
(d2)2 + td

3

(
d2

2

)2

× 2 + td

(
d2

2

)2
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from which

� = 13

12
td5

Also the torsion constant J is given by (see Section 3.4)

J =
∑ st3

3
= 5dt3

3

The shear centre of the section and the centroid of area coincide so that the torsional
buckling load is given by Eq. (8.76). Rewriting this equation

d4θ

dz4 + µ2 d2θ

dz2 = 0 (i)

where

µ2 = (σI0 − GJ)/E� (σ = P/A)

The solution of Eq. (i) is

θ = A cos µz + B sin µz + Cz + D (ii)

The boundary conditions are θ = 0 when z = 0 and z = L and since the warping is
suppressed at the ends of the beam

dθ

dz
= 0 when z = 0 and z = L (see Eq. (18.19))

Putting θ = 0 at z = 0 in Eq. (ii)

0 = A + D

or

A = −D

Also
dθ

dz
= −µA sin µz + µB cos µz + C

and since (dθ/dz) = 0 at z = 0

C = −µB

When z = L, θ = 0 so that, from Eq. (ii)

0 = A cos µL + B sin µL + CL + D

which may be rewritten

0 = B(sin µL − µL) + A( cos µL − 1) (iii)

Then for (dθ/dz) = 0 at z = L

0 = µB cos µL − µA sin µL − µB
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or

0 = B(cos µL − 1) − A sin µL (iv)

Eliminating A from Eqs (iii) and (iv)

0 = B[2(1 − cos µL) − µL sin µL] (v)

Similarly, in terms of the constant C

0 = −C[2(1 − cos µL) − µL sin µL] (vi)

or

B = −C

But B = −C/µ so that to satisfy both equations B = C = 0 and

θ = A cos µz − A = A( cos µz − 1) (vii)

Since θ = 0 at z = l

cos µL = 1

or

µL = 2nπ

Therefore

µ2L2 = 4n2π2

or
σI0 − GJ

E�
= 4n2π2

L2

The lowest value of torsional buckling load corresponds to n = 1 so that, rearranging
the above

σ = 1

I0

(
GJ + 4π2E�

L2

)
(viii)

The polar second moment of area I0 is given by

I0 = Ixx + Iyy (see Ref. 2)

ie

I0 = 2

(

td d2 + td

3

3
)

+ 3td3

12
+ 2td

d2

4

which gives

I0 = 4ltd3

12
Substituting for I0, J and � in Eq. (viii)

σ = 4

4ld3

(
sgt2 + 13π2Ed4

L2

)
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Problems

P.8.1 The system shown in Fig. P.8.1 consists of two bars AB and BC, each of
bending stiffness EI elastically hinged together at B by a spring of stiffness K (i.e.
bending moment applied by spring = K × change in slope across B).

Regarding A and C as simple pin-joints, obtain an equation for the first buckling load
of the system. What are the lowest buckling loads when (a) K → ∞, (b) EI → ∞. Note
that B is free to move vertically.

Ans. µK/tan µl.

Fig. P.8.1

P.8.2 A pin-ended column of length l and constant flexural stiffness EI is reinforced
to give a flexural stiffness 4EI over its central half (see Fig. P.8.2).

Fig. P.8.2

Considering symmetric modes of buckling only, obtain the equation whose roots
yield the flexural buckling loads and solve for the lowest buckling load.

Ans. tan µl/8 = 1/
√

2, P = 24.2EI/l2

P.8.3 A uniform column of length l and bending stiffness EI is built-in at one end
and free at the other and has been designed so that its lowest flexural buckling load is
P (see Fig. P.8.3).

Fig. P.8.3
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Subsequently it has to carry an increased load, and for this it is provided with a lateral
spring at the free end. Determine the necessary spring stiffness k so that the buckling
load becomes 4P.

Ans. k = 4Pµ/(µl − tan µl ).

P.8.4 A uniform, pin-ended column of length l and bending stiffness EI has an
initial curvature such that the lateral displacement at any point between the column and
the straight line joining its ends is given by

v0 = a
4z

l2 (l − z) (see Fig. P.8.4)

Show that the maximum bending moment due to a compressive end load P is given by

Mmax = − 8aP

(λl)2

(
sec

λl

2
− 1

)

where

λ2 = P/EI

Fig. P.8.4

P.8.5 The uniform pin-ended column shown in Fig. P.8.5 is bent at the centre so
that its eccentricity there is δ. If the two halves of the column are otherwise straight and
have a flexural stiffness EI, find the value of the maximum bending moment when the
column carries a compression load P.

Ans. −P
2δ

l

√
EI

P
tan

√
P

EI

l

2
.

Fig. P.8.5

P.8.6 A straight uniform column of length l and bending stiffness EI is subjected
to uniform lateral loading w/unit length. The end attachments do not restrict rotation
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of the column ends. The longitudinal compressive force P has eccentricity e from the
centroids of the end sections and is placed so as to oppose the bending effect of the
lateral loading, as shown in Fig. P.8.6. The eccentricity e can be varied and is to be
adjusted to the value which, for given values of P and w, will result in the least maximum
bending moment on the column. Show that

e = (w/Pµ2) tan2 µl/4

where

µ2 = P/EI

Deduce the end moment which will give the optimum condition when P tends to
zero.

Ans. wl2/16.

Fig. P.8.6

P.8.7 The relation between stress σ and strain ε in compression for a certain
material is

10.5 × 106ε = σ + 21 000
( σ

49 000

)16

Assuming the tangent modulus equation to be valid for a uniform strut of this material,
plot the graph of σb against l/r where σb is the flexural buckling stress, l the equivalent
pin-ended length and r the least radius of gyration of the cross-section.

Estimate the flexural buckling load for a tubular strut of this material, of 1.5 units
outside diameter and 0.08 units wall thickness with effective length 20 units.

Ans. 14 454 force units.

P.8.8 A rectangular portal frame ABCD is rigidly fixed to a foundation at A and D
and is subjected to a compression load P applied at each end of the horizontal member
BC (see Fig. P.8.8). If the members all have the same bending stiffness EI show that
the buckling loads for modes which are symmetrical about the vertical centre line are
given by the transcendental equation

λa

2
= −1

2

(a

b

)
tan

(
λa

2

)

where

λ2 = P/EI
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Fig. P.8.8

P.8.9 A compression member (Fig. P.8.9) is made of circular section tube, diameter
d, thickness t. The member is not perfectly straight when unloaded, having a slightly
bowed shape which may be represented by the expression

v = δ sin
(πz

l

)

Fig. P.8.9

Show that when the load P is applied, the maximum stress in the member can be
expressed as

σmax = P

πdt

[
1 + 1

1 − α

4δ

d

]

where

α = P/Pe, Pe = π2EI/l2

Assume t is small compared with d so that the following relationships are applicable:
Cross-sectional area of tube = πdt.
Second moment of area of tube = πd3t/8.

P.8.10 Figure P.8.10 illustrates an idealized representation of part of an aircraft
control circuit. A uniform, straight bar of length a and flexural stiffness EI is built-in
at the end A and hinged at B to a link BC, of length b, whose other end C is pinned so
that it is free to slide along the line ABC between smooth, rigid guides. A, B and C are
initially in a straight line and the system carries a compression force P, as shown.
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Fig. P.8.10

Assuming that the link BC has a sufficiently high flexural stiffness to prevent its
buckling as a pin-ended strut, show, by setting up and solving the differential equation
for flexure of AB, that buckling of the system, of the type illustrated in Fig. P.8.10,
occurs when P has such a value that

tan λa = λ(a + b)

where

λ2 = P/EI

P.8.11 A pin-ended column of length l has its central portion reinforced, the second
moment of its area being I2 while that of the end portions, each of length a, is I1.
Use the energy method to determine the critical load of the column, assuming that its
centre-line deflects into the parabola v = kz(l − z) and taking the more accurate of the
two expressions for the bending moment.

In the case where I2 = 1.6I1 and a = 0.2l find the percentage increase in strength
due to the reinforcement, and compare it with the percentage increase in weight on the
basis that the radius of gyration of the section is not altered.

Ans. PCR = 14.96EI1/l2, 52%, 36%.

P.8.12 A tubular column of length l is tapered in wall-thickness so that the area and
the second moment of area of its cross-section decrease uniformly from A1 and I1 at its
centre to 0.2A1 and 0.2I1 at its ends.

Assuming a deflected centre-line of parabolic form, and taking the more correct form
for the bending moment, use the energy method to estimate its critical load when tested
between pin-centres, in terms of the above data and Young’s modulus E. Hence show
that the saving in weight by using such a column instead of one having the same radius
of gyration and constant thickness is about 15%.

Ans. 7.01EI1/l2.

P.8.13 A uniform column (Fig. P.8.13), of length l and bending stiffness EI, is
rigidly built-in at the end z = 0 and simply supported at the end z = l. The column is
also attached to an elastic foundation of constant stiffness k/unit length.

Representing the deflected shape of the column by a polynomial

v =
p∑

n=0

anη
n, where η = z/l
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Fig. P.8.13

determine the form of this function by choosing a minimum number of terms p such
that all the kinematic (geometric) and static boundary conditions are satisfied, allowing
for one arbitrary constant only.

Using the result thus obtained, find an approximation to the lowest flexural buckling
load PCR by the Rayleigh–Ritz method.

Ans. PCR = 21.05EI/l2 + 0.09kl2.

P.8.14 Figure P.8.14 shows the doubly symmetrical cross-section of a thin-walled
column with rigidly fixed ends. Find an expression, in terms of the section dimensions
and Poisson’s ratio, for the column length for which the purely flexural and the purely
torsional modes of instability would occur at the same axial load.

In which mode would failure occur if the length were less than the value found? The
possibility of local instability is to be ignored.

Ans. l = (2πb2/t)
√

(1 + ν)/255. Torsion.

Fig. P.8.14

P.8.15 A column of length 2l with the doubly symmetric cross-section shown in
Fig. P.8.15 is compressed between the parallel platens of a testing machine which fully
prevents twisting and warping of the ends.

Using the data given below, determine the average compressive stress at which the
column first buckles in torsion

l = 500 mm, b = 25.0 mm, t = 2.5 mm, E = 70 000 N/mm2, E/G = 2.6

Ans. σCR = 282 N/mm2.
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Fig. P.8.15

P.8.16 A pin-ended column of length 1.0 m has the cross-section shown in
Fig. P.8.16. If the ends of the column are free to warp determine the lowest value
of axial load which will cause the column to buckle, and specify the mode. Take
E = 70 000 N/mm2 and G = 25 000 N/mm2.

Ans. 5527 N. Column buckles in bending about an axis in the plane of its web.

Fig. P.8.16

P.8.17 A pin-ended column of height 3.0 m has a circular cross-section of diameter
80 mm, wall thickness 2.0 mm and is converted to an open section by a narrow longi-
tudinal slit; the ends of the column are free to warp. Determine the values of axial load
which would cause the column to buckle in (a) pure bending and (b) pure torsion. Hence
determine the value of the flexural–torsional buckling load. Take E = 70 000 N/mm2

and G = 22 000 N/mm2.
Note: the position of the shear centre of the column section may be found using

the method described in Chapter 17.

Ans. (a) 3.09 × 104 N, (b) 1.78 × 104 N, 1.19 × 104 N.
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9

Thin plates

We shall see in Chapter 12 when we examine the structural components of aircraft
that they consist mainly of thin plates stiffened by arrangements of ribs and stringers.
Thin plates under relatively small compressive loads are prone to buckle and so must
be stiffened to prevent this. The determination of buckling loads for thin plates in
isolation is relatively straightforward but when stiffened by ribs and stringers, the
problem becomes complex and frequently relies on an empirical solution. In fact it
may be the stiffeners which buckle before the plate and these, depending on their
geometry, may buckle as a column or suffer local buckling of, say, a flange.

In this chapter we shall present the theory for the determination of buckling loads of
flat plates and then examine some of the different empirical approaches which various
researchers have suggested. In addition we shall investigate the particular case of flat
plates which, when reinforced by horizontal flanges and vertical stiffeners, form the
spars of aircraft wing structures; these are known as tension field beams.

9.1 Buckling of thin plates

A thin plate may buckle in a variety of modes depending upon its dimensions, the
loading and the method of support. Usually, however, buckling loads are much lower
than those likely to cause failure in the material of the plate. The simplest form of
buckling arises when compressive loads are applied to simply supported opposite edges
and the unloaded edges are free, as shown in Fig. 9.1. A thin plate in this configuration

Fig. 9.1 Buckling of a thin flat plate.
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behaves in exactly the same way as a pin-ended column so that the critical load is that
predicted by the Euler theory. Once this critical load is reached the plate is incapable
of supporting any further load. This is not the case, however, when the unloaded edges
are supported against displacement out of the xy plane. Buckling, for such plates, takes
the form of a bulging displacement of the central region of the plate while the parts
adjacent to the supported edges remain straight. These parts enable the plate to resist
higher loads; an important factor in aircraft design.

At this stage we are not concerned with this post-buckling behaviour, but rather with
the prediction of the critical load which causes the initial bulging of the central area of
the plate. For the analysis we may conveniently employ the method of total potential
energy since we have already, in Chapter 7, derived expressions for strain and potential
energy corresponding to various load and support configurations. In these expressions
we assumed that the displacement of the plate comprises bending deflections only and
that these are small in comparison with the thickness of the plate. These restrictions
therefore apply in the subsequent theory.

First we consider the relatively simple case of the thin plate of Fig. 9.1, loaded as
shown, but simply supported along all four edges. We have seen in Chapter 7 that its
true deflected shape may be represented by the infinite double trigonometrical series

w =
∞∑

m=1

∞∑

n=1

Amn sin
mπx

a
sin

nπy

b

Also, the total potential energy of the plate is, from Eqs (7.37) and (7.45)

U + V = 1

2

∫ a

0

∫ b

0

[

D

{(
∂2w

∂x2 + ∂2w

∂y2

)2

−2(1 − ν)

[
∂2w

∂x2

∂2w

∂y2 −
(

∂2w

∂x ∂y

)2
]}

− Nx

(
∂w

∂x

)2
]

dx dy (9.1)

The integration of Eq. (9.1) on substituting for w is similar to those integrations carried
out in Chapter 7. Thus, by comparison with Eq. (7.47)

U + V = π4abD

8

∞∑

m=1

∞∑

n=1

A2
mn

(
m2

a2 + n2

b2

)
− π2b

8a
Nx

∞∑

m=1

∞∑

n=1

m2A2
mn (9.2)

The total potential energy of the plate has a stationary value in the neutral equilibrium
of its buckled state (i.e. Nx = Nx,CR). Therefore, differentiating Eq. (9.2) with respect
to each unknown coefficient Amnwe have

∂(U + V )

∂Amn
= π4abD

4
Amn

(
m2

a2 + n2

b2

)2

− π2b

4a
Nx,CRm2Amn = 0

and for a non-trivial solution

Nx,CR = π2a2D
1

m2

(
m2

a2 + n2

b2

)2

(9.3)
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Exactly the same result may have been deduced from Eq. (ii) of Example 7.3, where
the displacement w would become infinite for a negative (compressive) value of Nx
equal to that of Eq. (9.3).

We observe from Eq. (9.3) that each term in the infinite series for displacement
corresponds, as in the case of a column, to a different value of critical load (note, the
problem is an eigenvalue problem). The lowest value of critical load evolves from some
critical combination of integers m and n, i.e. the number of half-waves in the x and y
directions, and the plate dimensions. Clearly n = 1 gives a minimum value so that no
matter what the values of m, a and b the plate buckles into a half sine wave in the y
direction. Thus we may write Eq. (9.3) as

Nx,CR = π2a2D
1

m2

(
m2

a2 + 1

b2

)2

or

Nx,CR = kπ2D

b2 (9.4)

where the plate buckling coefficient k is given by the minimum value of

k =
(

mb

a
+ a

mb

)2

(9.5)

for a given value of a/b. To determine the minimum value of k for a given value of a/b
we plot k as a function of a/b for different values of m as shown by the dotted curves
in Fig. 9.2. The minimum value of k is obtained from the lower envelope of the curves
shown solid in the figure.

Fig. 9.2 Buckling coefficient k for simply supported plates.
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It can be seen that m varies with the ratio a/b and that k and the buckling load are a
minimum when k = 4 at values of a/b = 1, 2, 3, . . . .As a/b becomes large k approaches
4 so that long narrow plates tend to buckle into a series of squares.

The transition from one buckling mode to the next may be found by equating values
of k for the m and m + 1 curves. Hence

mb

a
+ a

mb
= (m + 1)b

a
+ a

(m + 1)b

giving

a

b
= √

m(m + 1)

Substituting m = 1, we have a/b = √
2 = 1.414, and for m = 2, a/b = √

6 = 2.45 and
so on.

For a given value of a/b the critical stress, σCR = Nx,CR/t, is found from Eqs (9.4)
and (7.4), i.e.

σCR = kπ2E

12(1 − ν2)

(
t

b

)2

(9.6)

In general, the critical stress for a uniform rectangular plate, with various edge supports
and loaded by constant or linearly varying in-plane direct forces (Nx, Ny) or constant
shear forces (Nxy) along its edges, is given by Eq. (9.6). The value of k remains a
function of a/b but depends also upon the type of loading and edge support. Solutions
for such problems have been obtained by solving the appropriate differential equation
or by using the approximate (Rayleigh–Ritz) energy method. Values of k for a variety of
loading and support conditions are shown in Fig. 9.3. In Fig. 9.3(c), where k becomes
the shear buckling coefficient, b is always the smaller dimension of the plate.

We see from Fig. 9.3 that k is very nearly constant for a/b > 3. This fact is particularly
useful in aircraft structures where longitudinal stiffeners are used to divide the skin
into narrow panels (having small values of b), thereby increasing the buckling stress of
the skin.

9.2 Inelastic buckling of plates

For plates having small values of b/t the critical stress may exceed the elastic limit of
the material of the plate. In such a situation, Eq. (9.6) is no longer applicable since, as
we saw in the case of columns, E becomes dependent on stress as does Poisson’s ratio
ν. These effects are usually included in a plasticity correction factor η so that Eq. (9.6)
becomes

σCR = ηkπ2E

12(1 − ν2)

(
t

b

)2

(9.7)

where E and ν are elastic values ofYoung’s modulus and Poisson’s ratio. In the linearly
elastic region η = 1, which means that Eq. (9.7) may be applied at all stress levels. The
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Fig. 9.3 (a) Buckling coefficients for flat plates in compression; (b) buckling coefficients for flat plates in bending; (c)
shear buckling coefficients for flat plates.
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derivation of a general expression for η is outside the scope of this book but one1 giving
good agreement with experiment is

η = 1 − ν2
e

1 − ν2
p

Es

E

[
1

2
+ 1

2

(
1

4
+ 3

4

Et

Es

) 1
2
]

where Et and Es are the tangent modulus and secant modulus (stress/strain) of the plate
in the inelastic region and νe and νp are Poisson’s ratio in the elastic and inelastic ranges.

9.3 Experimental determination of critical load
for a flat plate

In Section 8.3 we saw that the critical load for a column may be determined experi-
mentally, without actually causing the column to buckle, by means of the Southwell
plot. The critical load for an actual, rectangular, thin plate is found in a similar manner.

The displacement of an initially curved plate from the zero load position was found
in Section 7.5, to be

w1 =
∞∑

m=1

∞∑

n=1

Bmn sin
mπx

a
sin

nπy

b

where

Bmn = AmnNx

π2D
a2

(
m + n2a2

mb2

)2 − Nx

We see that the coefficients Bmn increase with an increase of compressive load intensity
Nx. It follows that when Nx approaches the critical value, Nx,CR, the term in the series
corresponding to the buckled shape of the plate becomes the most significant. For a
square plate n = 1 and m = 1 give a minimum value of critical load so that at the centre
of the plate

w1 = A11Nx

Nx,CR − Nx

or, rearranging

w1 = Nx,CR
w1

Nx
− A11

Thus, a graph of w1 plotted against w1/Nx will have a slope, in the region of the critical
load, equal to Nx,CR.

9.4 Local instability

We distinguished in the introductory remarks to Chapter 8 between primary and sec-
ondary (or local) instability. The latter form of buckling usually occurs in the flanges
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and webs of thin-walled columns having an effective slenderness ratio, le/r < 20. For
le/r > 80 this type of column is susceptible to primary instability. In the intermediate
range of le/r between 20 and 80, buckling occurs by a combination of both primary and
secondary modes.

Thin-walled columns are encountered in aircraft structures in the shape of longitudin-
al stiffeners, which are normally fabricated by extrusion processes or by forming from a
flat sheet. A variety of cross-sections are employed although each is usually composed
of flat plate elements arranged to form angle, channel, Z- or ‘top hat’ sections, as shown
in Fig. 9.4. We see that the plate elements fall into two distinct categories: flanges which
have a free unloaded edge and webs which are supported by the adjacent plate elements
on both unloaded edges.

In local instability the flanges and webs buckle like plates with a resulting change
in the cross-section of the column. The wavelength of the buckle is of the order of the
widths of the plate elements and the corresponding critical stress is generally independ-
ent of the length of the column when the length is equal to or greater than three times
the width of the largest plate element in the column cross-section.

Buckling occurs when the weakest plate element, usually a flange, reaches its critical
stress, although in some cases all the elements reach their critical stresses simultane-
ously. When this occurs the rotational restraint provided by adjacent elements to each
other disappears and the elements behave as though they are simply supported along
their common edges. These cases are the simplest to analyse and are found where the
cross-section of the column is an equal-legged angle, T-, cruciform or a square tube of
constant thickness. Values of local critical stress for columns possessing these types of
section may be found using Eq. (9.7) and an appropriate value of k. For example, k
for a cruciform section column is obtained from Fig. 9.3(a) for a plate which is simply
supported on three sides with one edge free and has a/b > 3. Hence k = 0.43 and if the
section buckles elastically then η = 1 and

σCR = 0.388E

(
t

b

)2

(ν = 0.3)

It must be appreciated that the calculation of local buckling stresses is generally
complicated with no particular method gaining universal acceptance, much of the infor-
mation available being experimental. A detailed investigation of the topic is therefore
beyond the scope of this book. Further information may be obtained from all the
references listed at the end of this chapter.

Fig. 9.4 (a) Extruded angle; (b) formed channel; (c) extruded Z; (d) formed ‘top hat’.
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9.5 Instability of stiffened panels

It is clear from Eq. (9.7) that plates having large values of b/t buckle at low values of
critical stress. An effective method of reducing this parameter is to introduce stiffeners
along the length of the plate thereby dividing a wide sheet into a number of smaller
and more stable plates. Alternatively, the sheet may be divided into a series of wide
short columns by stiffeners attached across its width. In the former type of structure
the longitudinal stiffeners carry part of the compressive load, while in the latter all the
load is supported by the plate. Frequently, both methods of stiffening are combined to
form a grid-stiffened structure.

Stiffeners in earlier types of stiffened panel possessed a relatively high degree of
strength compared with the thin skin resulting in the skin buckling at a much lower
stress level than the stiffeners. Such panels may be analysed by assuming that the
stiffeners provide simply supported edge conditions to a series of flat plates.

A more efficient structure is obtained by adjusting the stiffener sections so that
buckling occurs in both stiffeners and skin at about the same stress. This is achieved by
a construction involving closely spaced stiffeners of comparable thickness to the skin.
Since their critical stresses are nearly the same there is an appreciable interaction at
buckling between skin and stiffeners so that the complete panel must be considered as
a unit. However, caution must be exercised since it is possible for the two simultaneous
critical loads to interact and reduce the actual critical load of the structure2 (see Example
8.4). Various modes of buckling are possible, including primary buckling where the
wavelength is of the order of the panel length and local buckling with wavelengths of
the order of the width of the plate elements of the skin or stiffeners. A discussion of the
various buckling modes of panels having Z-section stiffeners has been given by Argyris
and Dunne.3

The prediction of critical stresses for panels with a large number of longitudinal
stiffeners is difficult and relies heavily on approximate (energy) and semi-empirical
methods. Bleich4 and Timoshenko (see Ref. 1, Chapter 8) give energy solutions for
plates with one and two longitudinal stiffeners and also consider plates having a large
number of stiffeners. Gerard and Becker5 have summarized much of the work on
stiffened plates and a large amount of theoretical and empirical data is presented by
Argyris and Dunne in the Handbook of Aeronautics.3

For detailed work on stiffened panels, reference should be made to as much as
possible of the above work. The literature is, however, extensive so that here we present a
relatively simple approach suggested by Gerard1. Figure 9.5 represents a panel of width
w stiffened by longitudinal members which may be flats (as shown), Z-, I-, channel or

Fig. 9.5 Stiffened panel.
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‘top hat’ sections. It is possible for the panel to behave as an Euler column, its cross-
section being that shown in Fig. 9.5. If the equivalent length of the panel acting as a
column is le then the Euler critical stress is

σCR,E = π2E

(le/r)2

as in Eq. (8.8). In addition to the column buckling mode, individual plate elements
comprising the panel cross-section may buckle as long plates. The buckling stress is
then given by Eq. (9.7), i.e.

σCR = ηkπ2E

12(1 − ν2)

(
t

b

)2

where the values of k, t and b depend upon the particular portion of the panel being
investigated. For example, the portion of skin between stiffeners may buckle as a plate
simply supported on all four sides. Thus, for a/b > 3, k = 4 from Fig. 9.3(a) and,
assuming that buckling takes place in the elastic range

σCR = 4π2E

12(1 − ν2)

(
tsk

bsk

)2

A further possibility is that the stiffeners may buckle as long plates simply supported
on three sides with one edge free. Thus

σCR = 0.43π2E

12(1 − ν2)

(
tst

bst

)2

Clearly, the minimum value of the above critical stresses is the critical stress for the
panel taken as a whole.

The compressive load is applied to the panel over its complete cross-section. To relate
this load to an applied compressive stress σA acting on each element of the cross-section
we divide the load per unit width, say Nx, by an equivalent skin thickness t̄, hence

σA = Nx

t

where

t = Ast

bsk
+ tsk

and Ast is the stiffener area.
The above remarks are concerned with the primary instability of stiffened panels.

Values of local buckling stress have been determined by Boughan, Baab and Gallaher
for idealized web, Z- and T- stiffened panels. The results are reproduced in Rivello6

together with the assumed geometries.
Further types of instability found in stiffened panels occur where the stiffeners are

riveted or spot welded to the skin. Such structures may be susceptible to interrivet
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buckling in which the skin buckles between rivets with a wavelength equal to the rivet
pitch, or wrinkling where the stiffener forms an elastic line support for the skin. In the
latter mode the wavelength of the buckle is greater than the rivet pitch and separation of
skin and stiffener does not occur. Methods of estimating the appropriate critical stresses
are given in Rivello6 and the Handbook of Aeronautics.3

9.6 Failure stress in plates and stiffened panels

The previous discussion on plates and stiffened panels investigated the prediction of
buckling stresses. However, as we have seen, plates retain some of their capacity to
carry load even though a portion of the plate has buckled. In fact, the ultimate load is
not reached until the stress in the majority of the plate exceeds the elastic limit. The
theoretical calculation of the ultimate stress is difficult since non-linearity results from
both large deflections and the inelastic stress–strain relationship.

Gerard1 proposes a semi-empirical solution for flat plates supported on all four
edges. After elastic buckling occurs theory and experiment indicate that the average
compressive stress, σ̄a, in the plate and the unloaded edge stress, σe, are related by the
following expression

σ̄a

σCR
= α1

(
σe

σCR

)n

(9.8)

where

σCR = kπ2E

12(1 − ν2)

(
t

b

)2

and α1 is some unknown constant. Theoretical work by Stowell7 and Mayers and
Budiansky8 shows that failure occurs when the stress along the unloaded edge is
approximately equal to the compressive yield strength, σcy, of the material. Hence
substituting σcy for σe in Eq. (9.8) and rearranging gives

σ̄f

σcy
= α1

(
σCR

σcy

)1−n

(9.9)

where the average compressive stress in the plate has become the average stress at
failure σ̄f . Substituting for σCR in Eq. (9.9) and putting

α1π
2(1−n)

[12(1 − ν2)]1−n
= α

yields

σ̄f

σcy
= αk1−n

[
t

b

(
E

σcy

) 1
2
]2(1−n)

(9.10)
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or, in a simplified form

σ̄f

σcy
= β

[
t

b

(
E

σcy

) 1
2
]m

(9.11)

where β = αkm/2. The constants β and m are determined by the best fit of Eq. (9.11) to
test data.

Experiments on simply supported flat plates and square tubes of various aluminium
and magnesium alloys and steel show that β = 1.42 and m = 0.85 fit the results within
±10 per cent up to the yield strength. Corresponding values for long clamped flat plates
are β = 1.80, m = 0.85.

Gerard9–12 extended the above method to the prediction of local failure stresses for
the plate elements of thin-walled columns. Equation (9.11) becomes

σ̄f

σcy
= βg

[(
gt2

A

) (
E

σcy

) 1
2
]m

(9.12)

where A is the cross-sectional area of the column, βg and m are empirical constants
and g is the number of cuts required to reduce the cross-section to a series of flanged
sections plus the number of flanges that would exist after the cuts are made. Examples
of the determination of g are shown in Fig. 9.6.

The local failure stress in longitudinally stiffened panels was determined by
Gerard10,12 using a slightly modified form of Eqs (9.11) and (9.12). Thus, for a section
of the panel consisting of a stiffener and a width of skin equal to the stiffener spacing

σ̄f

σcy
= βg

[
gtsktst

A

(
E

σ̄cy

) 1
2
]m

(9.13)

Fig. 9.6 Determination of empirical constant g.
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where tsk and tst are the skin and stiffener thicknesses, respectively. A weighted yield
stress σ̄cy is used for a panel in which the material of the skin and stiffener have different
yield stresses, thus

σ̄cy = σcy + σcy,sk[(t/tst) − 1]

t/tst

where t̄ is the average or equivalent skin thickness previously defined. The parameter g
is obtained in a similar manner to that for a thin-walled column, except that the number
of cuts in the skin and the number of equivalent flanges of the skin are included. A cut
to the left of a stiffener is not counted since it is regarded as belonging to the stiffener
to the left of that cut. The calculation of g for two types of skin/stiffener combination
is illustrated in Fig. 9.7. Equation (9.13) is applicable to either monolithic or built up
panels when, in the latter case, interrivet buckling and wrinkling stresses are greater
than the local failure stress.

The values of failure stress given by Eqs (9.11), (9.12) and (9.13) are asso-
ciated with local or secondary instability modes. Consequently, they apply when
le/r ≤ 20. In the intermediate range between the local and primary modes, failure
occurs through a combination of both. At the moment there is no theory that predicts
satisfactorily failure in this range and we rely on test data and empirical methods.
The NACA (now NASA) have produced direct reading charts for the failure of ‘top
hat’, Z- and Y-section stiffened panels; a bibliography of the results is given by
Gerard.10

It must be remembered that research into methods of predicting the instabil-
ity and post-buckling strength of the thin-walled types of structure associated with
aircraft construction is a continuous process. Modern developments include the
use of the computer-based finite element technique (see Chapter 6) and the study
of the sensitivity of thin-walled structures to imperfections produced during fab-
rication; much useful information and an extensive bibliography is contained in
Murray.2

Fig. 9.7 Determination of g for two types of stiffener/skin combination.
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Fig. 9.8 Diagonal tension field beam.

9.7 Tension field beams

The spars of aircraft wings usually comprise an upper and a lower flange connected by
thin stiffened webs. These webs are often of such a thickness that they buckle under
shear stresses at a fraction of their ultimate load. The form of the buckle is shown in
Fig. 9.8(a), where the web of the beam buckles under the action of internal diagonal
compressive stresses produced by shear, leaving a wrinkled web capable of supporting
diagonal tension only in a direction perpendicular to that of the buckle; the beam is
then said to be a complete tension field beam.

9.7.1 Complete diagonal tension

The theory presented here is due to H. Wagner.13

The beam shown in Fig. 9.8(a) has concentrated flange areas having a depth d
between their centroids and vertical stiffeners which are spaced uniformly along the
length of the beam. It is assumed that the flanges resist the internal bending moment at
any section of the beam while the web, of thickness t, resists the vertical shear force.
The effect of this assumption is to produce a uniform shear stress distribution through
the depth of the web (see Section 20.3) at any section. Therefore, at a section of the
beam where the shear force is S, the shear stress τ is given by

τ = S

td
(9.14)

Consider now an element ABCD of the web in a panel of the beam, as shown in Fig.
9.8(a). The element is subjected to tensile stresses, σt , produced by the diagonal tension
on the planes AB and CD; the angle of the diagonal tension is α. On a vertical plane
FD in the element the shear stress is τ and the direct stress σz. Now considering the
equilibrium of the element FCD (Fig. 9.8(b)) and resolving forces vertically, we have
(see Section 1.6)

σtCDt sin α = τFDt
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Fig. 9.9 Determination of flange forces.

which gives

σt = τ

sin α cos α
= 2τ

sin 2α
(9.15)

or, substituting for τ from Eq. (9.14) and noting that in this case S = W at all sections
of the beam

σt = 2W

td sin 2α
(9.16)

Further, resolving forces horizontally for the element FCD

σzFDt = σtCDt cos α

which gives

σz = σt cos2 α

or, substituting for σt from Eq. (9.15)

σz = τ

tan α
(9.17)

or, for this particular beam, from Eq. (9.14)

σz = W

td tan α
(9.18)

Since τ and σt are constant through the depth of the beam it follows that σz is constant
through the depth of the beam.

The direct loads in the flanges are found by considering a length z of the beam as
shown in Fig. 9.9. On the plane mm there are direct and shear stresses σz and τ acting in
the web, together with direct loads FT and FB in the top and bottom flanges respectively.
FT and FB are produced by a combination of the bending moment Wz at the section
plus the compressive action (σz) of the diagonal tension. Taking moments about the
bottom flange

Wz = FTd − σztd2

2
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Hence, substituting for σz from Eq. (9.18) and rearranging

FT = Wz

d
+ W

2 tan α
(9.19)

Now resolving forces horizontally

FB − FT + σztd = 0

which gives, on substituting for σz and FT from Eqs (9.18) and (9.19)

FB = Wz

d
− W

2 tan α
(9.20)

The diagonal tension stress σt induces a direct stress σy on horizontal planes at any
point in the web. Then, on a horizontal plane HC in the element ABCD of Fig. 9.8 there
is a direct stress σy and a complementary shear stress τ, as shown in Fig. 9.10.

From a consideration of the vertical equilibrium of the element HDC we have

σyHCt = σtCDt sin α

which gives

σy = σt sin2 α

Substituting for σt from Eq. (9.15)

σy = τ tan α (9.21)

or, from Eq. (9.14) in which S = W

σy = W

td
tan α (9.22)

The tensile stresses σy on horizontal planes in the web of the beam cause compression
in the vertical stiffeners. Each stiffener may be assumed to support half of each adjacent
panel in the beam so that the compressive load P in a stiffener is given by

P = σytb

Fig. 9.10 Stress system on a horizontal plane in the beam web.
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which becomes, from Eq. (9.22)

P = Wb

d
tan α (9.23)

If the load P is sufficiently high the stiffeners will buckle. Tests indicate that they buckle
as columns of equivalent length

or
le = d/

√
4 − 2b/d for b < 1.5d

le = d for b > 1.5d

}
(9.24)

In addition to causing compression in the stiffeners the direct stress σy produces bending
of the beam flanges between the stiffeners as shown in Fig. 9.11. Each flange acts as a
continuous beam carrying a uniformly distributed load of intensity σyt. The maximum
bending moment in a continuous beam with ends fixed against rotation occurs at a
support and is wL2/12 in which w is the load intensity and L the beam span. In this
case, therefore, the maximum bending moment Mmax occurs at a stiffener and is given by

Mmax = σytb2

12

or, substituting for σy from Eq. (9.22)

Mmax = Wb2 tan α

12d
(9.25)

Midway between the stiffeners this bending moment reduces to Wb2 tan α/24d.
The angle α adjusts itself such that the total strain energy of the beam is a minimum.

If it is assumed that the flanges and stiffeners are rigid then the strain energy comprises
the shear strain energy of the web only and α = 45◦. In practice, both flanges and
stiffeners deform so that α is somewhat less than 45◦, usually of the order of 40◦ and, in
the type of beam common to aircraft structures, rarely below 38◦. For beams having all
components made of the same material the condition of minimum strain energy leads
to various equivalent expressions for α, one of which is

tan2 α = σt + σF

σt + σS
(9.26)

Fig. 9.11 Bending of flanges due to web stress.
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in which σF and σS are the uniform direct compressive stresses induced by the diagonal
tension in the flanges and stiffeners, respectively. Thus, from the second term on the
right-hand side of either of Eqs (9.19) or (9.20)

σF = W

2AF tan α
(9.27)

in which AF is the cross-sectional area of each flange. Also, from Eq. (9.23)

σS = Wb

ASd
tan α (9.28)

where AS is the cross-sectional area of a stiffener. Substitution of σt from Eq. (9.16) and
σF and σS from Eqs (9.27) and (9.28) into Eq. (9.26), produces an equation which may
be solved for α. An alternative expression for α, again derived from a consideration of
the total strain energy of the beam, is

tan4 α = 1 + td/2AF

1 + tb/AS
(9.29)

Example 9.1
The beam shown in Fig. 9.12 is assumed to have a complete tension field web. If
the cross-sectional areas of the flanges and stiffeners are, respectively, 350 mm2 and
300 mm2 and the elastic section modulus of each flange is 750 mm3, determine the
maximum stress in a flange and also whether or not the stiffeners will buckle. The
thickness of the web is 2 mm and the second moment of area of a stiffener about an
axis in the plane of the web is 2000 mm4; E = 70 000 N/mm2.

From Eq. (9.29)

tan4 α = 1 + 2 × 400/(2 × 350)

1 + 2 × 300/300
= 0.7143

Fig. 9.12 Beam of Example 9.1.
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so that

α = 42.6◦

The maximum flange stress will occur in the top flange at the built-in end where the
bending moment on the beam is greatest and the stresses due to bending and diagonal
tension are additive. Therefore, from Eq. (9.19)

FT = 5 × 1200

400
+ 5

2 tan 42.6◦

i.e.

FT = 17.7 kN

Hence the direct stress in the top flange produced by the externally applied bending
moment and the diagonal tension is 17.7 × 103/350 = 50.7 N/mm2. In addition to this
uniform compressive stress, local bending of the type shown in Fig. 9.11 occurs. The
local bending moment in the top flange at the built-in end is found using Eq. (9.25), i.e.

Mmax = 5 × 103 × 3002 tan 42.6◦

12 × 400
= 8.6 × 104 N mm

The maximum compressive stress corresponding to this bending moment occurs at the
lower extremity of the flange and is 8.6 × 104/750 = 114.9 N/mm2. Thus the maximum
stress in a flange occurs on the inside of the top flange at the built-in end of the beam,
is compressive and equal to 114.9 + 50.7 = 165.6 N/mm2.

The compressive load in a stiffener is obtained using Eq. (9.23), i.e.

P = 5 × 300 tan 42.6◦

400
= 3.4 kN

Since, in this case, b < 1.5d, the equivalent length of a stiffener as a column is given
by the first of Eqs (9.24), i.e.

le = 400/
√

4 − 2 × 300/400 = 253 mm

From Eq. (8.7) the buckling load of a stiffener is then

PCR = π2 × 70 000 × 2000

2532 = 22.0 kN

Clearly the stiffener will not buckle.
In Eqs (9.28) and (9.29) it is implicitly assumed that a stiffener is fully effective in

resisting axial load. This will be the case if the centroid of area of the stiffener lies in
the plane of the beam web. Such a situation arises when the stiffener consists of two
members symmetrically arranged on opposite sides of the web. In the case where the
web is stiffened by a single member attached to one side, the compressive load P is
offset from the stiffener axis thereby producing bending in addition to axial load. For
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a stiffener having its centroid a distance e from the centre of the web the combined
bending and axial compressive stress, σc, at a distance e from the stiffener centroid is

σc = P

AS
+ Pe2

ASr2

in which r is the radius of gyration of the stiffener cross-section about its neutral axis
(note: second moment of area I = Ar2). Then

σc = P

AS

[
1 +

(e

r

)2
]

or

σc = P

ASe

where

ASe = AS

1 + (e/r)2 (9.30)

and is termed the effective stiffener area.

9.7.2 Incomplete diagonal tension

In modern aircraft structures, beams having extremely thin webs are rare. They retain,
after buckling, some of their ability to support loads so that even near failure they are in
a state of stress somewhere between that of pure diagonal tension and the pre-buckling
stress. Such a beam is described as an incomplete diagonal tension field beam and may
be analysed by semi-empirical theory as follows.

It is assumed that the nominal web shear τ (=S/td) may be divided into a ‘true shear’
component τS and a diagonal tension component τDT by writing

τDT = kτ, τS = (1 − k)τ (9.31)

where k, the diagonal tension factor, is a measure of the degree to which the diagonal
tension is developed. A completely unbuckled web has k = 0 whereas k = 1 for a web
in complete diagonal tension. The value of k corresponding to a web having a critical
shear stress τCR is given by the empirical expression

k = tanh

(
0.5 log

τ

τCR

)
(9.32)

The ratio τ/τCR is known as the loading ratio or buckling stress ratio. The buckling
stress τCR may be calculated from the formula

τCR,elastic = kssE

(
t

b

)2
[

Rd + 1

2
(Rb − Rd)

(
b

d

)3
]

(9.33)
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where kss is the coefficient for a plate with simply supported edges and Rd and Rb are
empirical restraint coefficients for the vertical and horizontal edges of the web panel
respectively. Graphs giving kss, Rd and Rb are reproduced in Kuhn.13

The stress equations (9.27) and (9.28) are modified in the light of these assumptions
and may be rewritten in terms of the applied shear stress τ as

σF = kτ cot α

(2AF/td) + 0.5(1 − k)
(9.34)

σS = kτ tan α

(AS/tb) + 0.5(1 − k)
(9.35)

Further, the web stress σt given by Eq. (9.15) becomes two direct stresses: σ1 along the
direction of α given by

σ1 = 2kτ

sin 2α
+ τ(1 − k) sin 2α (9.36)

and σ2 perpendicular to this direction given by

σ2 = −τ(1 − k) sin 2α (9.37)

The secondary bending moment of Eq. (9.25) is multiplied by the factor k, while the
effective lengths for the calculation of stiffener buckling loads become (see Eqs (9.24))

or le = ds/
√

1 + k2(3 − 2b/ds) for b < 1.5d
le = ds for b > 1.5d

where ds is the actual stiffener depth, as opposed to the effective depth d of the web,
taken between the web/flange connections as shown in Fig. 9.13. We observe that Eqs
(9.34)–(9.37) are applicable to either incomplete or complete diagonal tension field
beams since, for the latter case, k = 1 giving the results of Eqs (9.27), (9.28) and (9.15).

In some cases beams taper along their lengths, in which case the flange loads are no
longer horizontal but have vertical components which reduce the shear load carried by
the web. Thus, in Fig. 9.14 where d is the depth of the beam at the section considered,
we have, resolving forces vertically

W − (FT + FB) sin β − σt(d cos α) sin α = 0 (9.38)

Fig. 9.13 Calculation of stiffener buckling load.
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Fig. 9.14 Effect of taper on diagonal tension field beam calculations.

For horizontal equilibrium

(FT − FB) cos β − σttd cos2 α = 0 (9.39)

Taking moments about B

Wz − FTd cos β + 1
2σttd

2 cos2 α = 0 (9.40)

Solving Eqs (9.38), (9.39) and (9.40) for σt , FT and FB

σt = 2W

td sin 2α

(
1 − 2z

d
tan β

)
(9.41)

FT = W

d cos β

[
z + d cot α

2

(
1 − 2z

d
tan β

)]
(9.42)

FB = W

d cos β

[
z − d cot α

2

(
1 − 2z

d
tan β

)]
(9.43)

Equation (9.23) becomes

P = Wb

d
tan α

(
1 − 2z

d
tan β

)
(9.44)

Also the shear force S at any section of the beam is, from Fig. 9.14

S = W − (FT + FB) sin β

or, substituting for FT and FB from Eqs (9.42) and (9.43)

S = W

(
1 − 2z

d
tan β

)
(9.45)



Ch09-H6739.tex 25/1/2007 13: 56 Page 315

9.7 Tension field beams 315

d

Z
Y

X
W

cc

A

Element

B

b

Web thickness tw c t

Direction
of buckle

θ

Fig. 9.15 Collapse mechanism of a panel of a tension field beam.

9.7.3 Post buckling behaviour

Sections 9.7.1 and 9.7.2 are concerned with beams in which the thin webs buckle to
form tension fields; the beam flanges are then regarded as being subjected to bending
action as in Fig. 9.11. It is possible, if the beam flanges are relatively light, for failure
due to yielding to occur in the beam flanges after the web has buckled so that plastic
hinges form and a failure mechanism of the type shown in Fig. 9.15 exists. This post
buckling behaviour was investigated by Evans, Porter and Rockey15 who developed a
design method for beams subjected to bending and shear. It is their method of analysis
which is presented here.

Suppose that the panel AXBZ in Fig. 9.15 has collapsed due to a shear load S and a
bending moment M; plastic hinges have formed at W, X, Y and Z. In the initial stages
of loading the web remains perfectly flat until it reaches its critical stresses i.e., τcr in
shear and σcrb in bending. The values of these stresses may be found approximately
from

(
σmb

σcrb

)2

+
(

τm

τcr

)2

= 1 (9.46)

where σcrb is the critical value of bending stress with S = 0, M �= 0 and τcr is the critical
value of shear stress when S �= 0 and M = 0. Once the critical stress is reached the
web starts to buckle and cannot carry any increase in compressive stress so that, as
we have seen in Section 9.7.1, any additional load is carried by tension field action.
It is assumed that the shear and bending stresses remain at their critical values τm
and σmb and that there are additional stresses σt which are inclined at an angle θ to
the horizontal and which carry any increases in the applied load. At collapse, i.e. at
ultimate load conditions, the additional stress σt reaches its maximum value σt(max) and
the panel is in the collapsed state shown in Fig. 9.15.
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Consider now the small rectangular element on the edge AW of the panel before
collapse. The stresses acting on the element are shown in Fig. 9.16(a). The stresses
on planes parallel to and perpendicular to the direction of the buckle may be found
by considering the equilibrium of triangular elements within this rectangular element.
Initially we shall consider the triangular element CDE which is subjected to the stress
system shown in Fig. 9.16(b) and is in equilibrium under the action of the forces
corresponding to these stresses. Note that the edge CE of the element is parallel to the
direction of the buckle in the web.

For equilibrium of the element in a direction perpendicular to CE (see Section 1.6)

σξCE + σmbED cos θ − τmED sin θ − τmDC cos θ = 0

Dividing through by CE and rearranging we have

σξ = −σmb cos2 θ + τm sin 2θ (9.47)

Similarly, by considering the equilibrium of the element in the direction EC we have

τηξ = −σmb

2
sin 2θ − τm cos 2θ (9.48)

Further the direct stress ση on the plane FD (Fig. 9.16(c)) which is perpendicular to the
plane of the buckle is found from the equilibrium of the element FED. Then,

σηFD + σmbED sin θ + τmEF sin θ + τmDE cos θ = 0

Dividing through by FD and rearranging gives

ση = −σmb sin2 θ − τm sin 2θ (9.49)

Note that the shear stress on this plane forms a complementary shear stress system
with τηξ.

The failure condition is reached by adding σt(max) to σξ and using the von Mises
theory of elastic failure (see Ref. [14]) i.e.

σ2
y = σ2

1 + σ2
2 − σ1σ2 + 3τ2 (9.50)

where σy is the yield stress of the material, σ1 and σ2 are the direct stresses acting on
two mutually perpendicular planes and τ is the shear stress acting on the same two
planes. Hence, when the yield stress in the web is σyw failure occurs when

σ2
yw = (σξ + σt(max))

2 + σ2
η − ση(σξ + σt(max)) + 3τ2

ηξ (9.51)

D

E
E

D D

E F

C

θ θ
θ

C

(a) (b) (c)

σmb σmb σmb
σmb

σξ

ση

τm
τm

τm

τm
τm

τm

τm

τm

τηξ

τηξ

Fig. 9.16 Determination of stresses on planes parallel and perpendicular to the plane of the buckle.
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Eqs (9.47), (9.48), (9.49) and (9.51) may be solved for σt(max) which is then given by

σt(max) = −1

2
A + 1

2
[A2 − 4(σ2

mb + 3τ2
m − σ2

yw)]
1
2 (9.52)

where

A = 3τm sin 2θ + σmb sin2 θ − 2σmb cos2 θ (9.53)

These equations have been derived for a point on the edge of the panel but are applicable
to any point within its boundary. Therefore the resultant force Fw corresponding to the
tension field in the web may be calculated and its line of action determined.

If the average stresses in the compression and tension flanges are σcf and σtf and the
yield stress of the flanges is σyf the reduced plastic moments in the flanges are (see
Ref. [14])

M ′
pc = Mpc

[

1 −
(

σcf

σyf

)2
]

(compression flange) (9.54)

M ′
pt = Mpt

[
1 −

(
σtf

σyf

)]
(tension flange) (9.55)

The position of each plastic hinge may be found by considering the equilibrium of a
length of flange and employing the principle of virtual work. In Fig. 9.17 the length
WX of the upper flange of the beam is given a virtual displacement φ. The work done
by the shear force at X is equal to the energy absorbed by the plastic hinges at X and W
and the work done against the tension field stress σt(max). Suppose the average value
of the tension field stress is σtc, i.e. the stress at the midpoint of WX.

Then

Sxccφ = 2M ′
pcφ + σtc tw sin2 θ

c2
c

2
φ

The minimum value of Sx is obtained by differentiating with respect to cc, i.e.

dSx

dcc
= −2

M ′
pc

c2
c

+ σtc tw
sin2 θ

2
= 0

Fc

cc

Fc

M �pc M�pc

Sx

W X

θ

φ

σtc

Fig. 9.17 Determination of plastic hinge position.
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cc/2

θ

τm

Fc

σtc

σcf

Fig. 9.18 Determination of flange stress.

which gives

c2
c = 4M ′

pc

σtc tw sin2 θ
(9.56)

Similarly in the tension flange

c2
t = 4M ′

pt

σtt tw sin2 θ
(9.57)

Clearly for the plastic hinges to occur within a flange both cc and ct must be less than
b. Therefore from Eq. (9.56)

M ′
pc <

twb2 sin2 θ

4
σtc (9.58)

where σtc is found from Eqs (9.52) and (9.53) at the midpoint of WX.
The average axial stress in the compression flange between W and X is obtained by

considering the equilibrium of half of the length of WX (Fig. 9.18).
Then

Fc = σcfAcf + σtctw
cc

2
sin θ cos θ + τmtw

cc

2
from which

σcf = Fc − 1
2 (σtc sin θ cos θ + τm)twcc

Acf
(9.59)

where Fc is the force in the compression flange at W and Acf is the cross-sectional area
of the compression flange.

Similarly for the tension flange

σtf = Ft + 1
2 (σtt sin θ cos θ + τm)twct

Atf
(9.60)

The forces Fc and Ft are found by considering the equilibrium of the beam to the right
of WY (Fig. 9.19). Then, resolving vertically and noting that Scr =τmtwd

Sult = Fw sin θ + τmtwd +
∑

Wn (9.61)

Resolving horizontally and noting that Hcr = τmtw (b − cc − ct)

Fc − Ft = Fw cos θ − τmtw(b − cc − ct) (9.62)
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Sult

θ

pt

pc

Fig. 9.19 Determination of flange forces.

Taking moments about O we have

Fc + Ft = 2

d

[

Sult

(
s + b + cc − ct

2

)
+ M ′

pt − M ′
pc + Fwq − Mw −

∑

n

Wnzn

]

(9.63)

where W1 to Wn are external loads applied to the beam to the right of WY and Mw is
the bending moment in the web when it has buckled and become a tension field, i.e.

Mw = σmbbd2

b

The flange forces are then

Fc = Sult

2d
(d cot θ + 2s + b + cc − ct) + 1

d

(

M ′
pt − M ′

pc + Fwq − Mw −
∑

n

Wnzn

)

− 1

2
τmtw(d cot θ + b − cc − ct) (9.64)

Ft = Sult

2d
(d cot θ + 2s + b + cc − ct) + 1

d

(

M ′
pt − M ′

pc − Fwq − Mw −
∑

n

Wnzn

)

+ 1

2
τmtw(d cot θ + b − cc − ct) (9.65)
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Evans, Porter and Rockey adopted an iterative procedure for solving Eqs (9.61)–(9.65)
in which an initial value of θ was assumed and σcf and σtf were taken to be zero. Then
cc and ct were calculated and approximate values of Fc and Ft found giving better
estimates for σcf and σtf . The procedure was then repeated until the required accuracy
was obtained.
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Problems

P.9.1 A thin square plate of side a and thickness t is simply supported along each
edge, and has a slight initial curvature giving an initial deflected shape.

w0 = δ sin
πx

a
sin

πy

a

If the plate is subjected to a uniform compressive stress σ in the x-direction (see
Fig. P.9.1), find an expression for the elastic deflection w normal to the plate. Show
also that the deflection at the mid-point of the plate can be presented in the form of a
Southwell plot and illustrate your answer with a suitable sketch.
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Ans. w = [σtδ/(4π2D/a2 − σt)] sin πx
a sin πy

a

Fig. P.9.1

P.9.2 A uniform flat plate of thickness t has a width b in the y direction and length l
in the x direction (see Fig. P.9.2). The edges parallel to the x axis are clamped and those
parallel to the y axis are simply supported. A uniform compressive stress σ is applied
in the x direction along the edges parallel to the y axis. Using an energy method, find
an approximate expression for the magnitude of the stress σ which causes the plate to
buckle, assuming that the deflected shape of the plate is given by

w = a11 sin
mπx

l
sin2 πy

b

For the particular case l = 2b, find the number of half waves m corresponding to the
lowest critical stress, expressing the result to the nearest integer. Determine also the
lowest critical stress.

Ans. m = 3, σCR = [6E/(1–v2)](t/b)2

Fig. P.9.2
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P.9.3 A panel, comprising flat sheet and uniformly spaced Z-section stringers, a part
of whose cross-section is shown in Fig. P.9.3, is to be investigated for strength under
uniform compressive loads in a structure in which it is to be stabilized by frames a
distance l apart, l being appreciably greater than the spacing b.

(a) State the modes of failure which you would consider and how you would
determine appropriate limiting stresses.

(b) Describe a suitable test to verify your calculations, giving particulars of the speci-
men, the manner of support and the measurements you would take. The latter should
enable you to verify the assumptions made, as well as to obtain the load supported.

Fig. P.9.3

P.9.4 Part of a compression panel of internal construction is shown in Fig. P.9.4.
The equivalent pin-centre length of the panel is 500 mm. The material has a Young’s
modulus of 70 000 N/mm2 and its elasticity may be taken as falling catastrophically
when a compressive stress of 300 N/mm2 is reached. Taking coefficients of 3.62 for
buckling of a plate with simply supported sides and of 0.385 with one side simply
supported and one free, determine (a) the load per mm width of panel when initial
buckling may be expected and (b) the load per mm for ultimate failure. Treat the
material as thin for calculating section constants and assume that after initial buckling
the stress in the plate increases parabolically from its critical value in the centre of
sections.

Ans. 613.8 N/mm, 844.7 N/mm.

Fig. P.9.4

P.9.5 A simply supported beam has a span of 2.4 m and carries a central con-
centrated load of 10 kN. The flanges of the beam each have a cross-sectional area of
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300 mm2 while that of the vertical web stiffeners is 280 mm2. If the depth of the
beam, measured between the centroids of area of the flanges, is 350 mm and the
stiffeners are symmetrically arranged about the web and spaced at 300 mm inter-
vals, determine the maximum axial load in a flange and the compressive load in a
stiffener.

It may be assumed that the beam web, of thickness 1.5 mm, is capable of resisting
diagonal tension only.

Ans. 19.9 kN, 3.9 kN.

P.9.6 The spar of an aircraft is to be designed as an incomplete diagonal tension
beam, the flanges being parallel. The stiffener spacing will be 250 mm, the effective
depth of web will be 750 mm, and the depth between web-to-flange attachments is
725 mm.

The spar is to carry an ultimate shear force of 100 000 N. The maximum permissible
shear stress is 165 N/mm2, but it is also required that the shear stress should not exceed
15 times the critical shear stress for the web panel.

Assuming α to be 40◦ and using the relationships below:

(i) Select the smallest suitable web thickness from the following range of standard
thicknesses. (Take Young’s Modulus E as 70 000 N/mm2.)

0.7 mm, 0.9 mm, 1.2 mm, 1.6 mm

(ii) Calculate the stiffener end load and the secondary bending moment in the flanges
(assume stiffeners to be symmetrical about the web).

The shear stress buckling coefficient for the web may be calculated from the
expression

K = 7.70[1 + 0.75(b/d)2]

b and d having their usual significance.
The relationship between the diagonal tension factor and buckling stress ratio is

τ/τCR 5 7 9 11 13 15
k 0.37 0.40 0.42 0.48 0.51 0.53

Note that α is the angle of diagonal tension measured from the spanwise axis of the
beam, as in the usual notation.

Ans. 1.2 mm, 130AS/(1 + 0.0113AS), 238 910 N mm.

P. 9.7 The main compressive wing structure of an aircraft consists of stringers,
having the section shown in Fig. P.9.7(b), bonded to a thin skin (Fig. P.9.7(a)). Find
suitable values for the stringer spacing b and rib spacing L if local instability, skin buck-
ling and panel strut instability all occur at the same stress. Note that in Fig. P.9.7(a) only
two of several stringers are shown for diagrammatic clarity. Also the thin skin should
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be treated as a flat plate since the curvature is small. For a flat plate simply supported
along two edges assume a buckling coefficient of 3.62. Take E = 69 000 N/mm2.

Ans. b = 56.5 mm, L = 700 mm.

9.5 mm

19.0 mm

0.9 mm

31.8 mm

1.6 mm

Wing r, b

L

9.5 mm

b

(a)

(b)

Fig. P.9.7
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10

Structural vibration

Structures which are subjected to dynamic loading, particularly aircraft, vibrate or
oscillate in a frequently complex manner. An aircraft, for example, possesses an infi-
nite number of natural or normal modes of vibration. Simplifying assumptions, such as
breaking down the structure into a number of concentrated masses connected by weight-
less beams (lumped mass concept), are made but whatever method is employed the natu-
ral modes and frequencies of vibration of a structure must be known before flutter speeds
and frequencies can be found. We shall discuss flutter and other dynamic aeroelastic
phenomena in Chapter 28 but for the moment we shall concentrate on the calculation of
the normal modes and frequencies of vibration of a variety of beam and mass systems.

10.1 Oscillation of mass/spring systems

Let us suppose that the simple mass/spring system shown in Fig. 10.1 is displaced by
a small amount x0 and suddenly released. The equation of the resulting motion in the
absence of damping forces is

mẍ + kx = 0 (10.1)

where k is the spring stiffness. We see from Eq. (10.1) that the mass, m, oscillates with
simple harmonic motion given by

x = x0 sin(ωt + ε) (10.2)

Fig. 10.1 Oscillation of a mass/spring system.
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Fig. 10.2 Oscillation of an n mass/spring system.

in which ω2 = k/m and ε is a phase angle. The frequency of the oscillation is ω/2π

cycles per second and its amplitude x0. Further, the periodic time of the motion, that is
the time taken by one complete oscillation, is 2π/ω. Both the frequency and periodic
time are seen to depend upon the basic physical characteristics of the system, namely
the spring stiffness and the magnitude of the mass. Therefore, although the amplitude
of the oscillation may be changed by altering the size of the initial disturbance, its
frequency is fixed. This frequency is the normal or natural frequency of the system and
the vertical simple harmonic motion of the mass is its normal mode of vibration.

Consider now the system of n masses connected by (n − 1) springs, as shown in
Fig. 10.2. If we specify that motion may only take place in the direction of the spring
axes then the system has n degrees of freedom. It is therefore possible to set the system
oscillating with simple harmonic motion in n different ways. In each of these n modes
of vibration the masses oscillate in phase so that they all attain maximum amplitude at
the same time and pass through their zero displacement positions at the same time. The
set of amplitudes and the corresponding frequency take up different values in each of
the n modes. Again these modes are termed normal or natural modes of vibration and
the corresponding frequencies are called normal or natural frequencies.

The determination of normal modes and frequencies for a general spring/mass sys-
tem involves the solution of a set of n simultaneous second-order differential equations
of a type similar to Eq. (10.1). Associated with each solution are two arbitrary con-
stants which determine the phase and amplitude of each mode of vibration. We can
therefore relate the vibration of a system to a given set of initial conditions by assigning
appropriate values to these constants.

A useful property of the normal modes of a system is their orthogonality, which is
demonstrated by the provable fact that the product of the inertia forces in one mode
and the displacements in another results in zero work done. In other words displace-
ments in one mode cannot be produced by inertia forces in another. It follows that the
normal modes are independent of one another so that the response of each mode to an
externally applied force may be found without reference to the other modes. Therefore
by considering the response of each mode in turn and adding the resulting motions we
can find the response of the complete system to the applied loading. Another useful
characteristic of normal modes is their ‘stationary property’. It can be shown that if
an elastic system is forced to vibrate in a mode that is slightly different from a true
normal mode the frequency is only very slightly different to the corresponding natural
frequency of the system. Reasonably accurate estimates of natural frequencies may
therefore be made from ‘guessed’ modes of displacement.

We shall proceed to illustrate the general method of solution by determining nor-
mal modes and frequencies of some simple beam/mass systems. Two approaches are
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possible: a stiffness or displacement method in which spring or elastic forces are
expressed in terms of stiffness parameters such as k in Eq. (10.1); and a flexibility
or force method in which elastic forces are expressed in terms of the flexibility δ of the
elastic system. In the latter approach δ is defined as the deflection due to unit force; the
equation of motion of the spring/mass system of Fig. 10.1 then becomes

mẍ + x

δ
= 0 (10.3)

Again the solution takes the form x = x0 sin(ωt + ε) but in this case ω2 = 1/mδ. Clearly
by our definitions of k and δ the product kδ = 1. In problems involving rotational oscil-
lations m becomes the moment of inertia of the mass and δ the rotation or displacement
produced by unit moment.

Let us consider a spring/mass system having a finite number, n, degrees of
freedom. The term spring is used here in a general sense in that the n masses
m1, m2, . . . , mi, . . . , mn may be connected by any form of elastic weightless member.
Thus, if mi is the mass at a point i where the displacement is xi and δij is the displacement
at the point i due to a unit load at a point j (note from the reciprocal theorem δij = δji),
the n equations of motion for the system are

m1ẍ1δ11 + m2ẍ2δ12 + · · · + miẍiδ1i + · · · + mnẍnδ1n + x1 = 0
m1ẍ1δ21 + m2ẍ2δ22 + · · · + miẍiδ2i + · · · + mnẍnδ2n + x2 = 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

m1ẍ1δi1 + m2ẍ2δi2 + · · · + miẍiδii + · · · + mnẍnδin + xi = 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

m1ẍ1δn1 + m2ẍ2δn2 + · · · + miẍiδni + · · · + mnẍnδnn + xn = 0

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(10.4)

or
n∑

j=1

mjẍjδij + xi = 0 (i = 1, 2, . . . , n) (10.5)

Since each normal mode of the system oscillates with simple harmonic motion,
then the solution for the ith mode takes the form x = x0

i sin(ωt + ε) so that
ẍi = −ω2x0

i sin(ωt + ε) = −ω2xi. Equation (10.5) may therefore be written as

−ω2
n∑

j=1

mjδijxj + xi = 0 (i = 1, 2, . . . , n) (10.6)

For a non-trivial solution, that is xi �= 0, the determinant of Eq. (10.6) must be zero.
Hence

∣∣∣∣∣∣∣∣∣∣∣∣

(ω2m1δ11 − 1) ω2m2δ12 . . . ω2miδ1i . . . ω2mnδ1n

ω2m1δ21 (ω2m2δ22 − 1) . . . ω2miδ2i . . . ω2mnδ2n
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ω2m1δi1 ω2m2δi2 . . . (ω2miδii − 1) . . . ω2mnδin
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ω2m1δn1 ω2m2δn2 . . . ω2miδni . . . (ω2mnδnn − 1)

∣∣∣∣∣∣∣∣∣∣∣∣

= 0

(10.7)
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The solution of Eq. (10.7) gives the normal frequencies of vibration of the system. The
corresponding modes may then be deduced as we shall see in the following examples.

Example 10.1
Determine the normal modes and frequencies of vibration of a weightless cantilever
supporting masses m/3 and m at points 1 and 2 as shown in Fig. 10.3. The flexural
rigidity of the cantilever is EI.

The equations of motion of the system are

(m/3)v̈1δ11 + mv̈2δ12 + v1 = 0 (ii)

(m/3)v̈1δ21 + mv̈2δ22 + v2 = 0 (iii)

where v1 and v2 are the vertical displacements of the masses at any instant of time.
In this example, displacements are assumed to be caused by bending strains only; the
flexibility coefficients δ11, δ22 and δ12(= δ21) may therefore be found by the unit load
method described in Section 5.8. Then

δij =
∫

L

MiMj

EI
dz (iii)

where Mi is the bending moment at any section z due to a unit load at the point i and Mj
is the bending moment at any section z produced by a unit load at the point j. Therefore,
from Fig. 10.3

M1 = 1(l − z) 0 ≤ z ≤ l
M2 = 1(l/2 − z) 0 ≤ z ≤ l/2
M2 = 0 l/2 ≤ z ≤ l

Hence

δ11 = 1

EI

∫ l

0
M2

1 dz = 1

EI

∫ l

0
(l − z)2 dz (iv)

δ22 = 1

EI

∫ l

0
M2

2 dz = 1

EI

∫ l/2

0

(
l

2
− z

)2

dz (v)

δ12 = δ21 = 1

EI

∫ l

0
M1M2 dz = 1

EI

∫ l/2

0
(l − z)

(
l

2
− z

)
dz (vi)

Fig. 10.3 Mass/beam system for Example 10.1.
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Integrating Eqs (iv), (v) and (vi) and substituting limits, we obtain

δ11 = l3

3EI
δ22 = l3

24EI
δ12 = δ21 = 5l3

48EI

Each mass describes simple harmonic motion in the normal modes of oscillation so
that v1 = v0

1 sin (ωt + ε) and v2 = v0
2 sin (ωt + ε). Hence v̈1 = −ω2v1 and v̈2 = −ω2v2.

Substituting for v̈1, v̈2, δ11, δ22 and δ12(= δ21) in Eqs (i) and (ii) and writing
λ = ml3/(3 × 48EI), we obtain

(1 − 16λω2)v1 − 15λω2v2 = 0 (vii)

5λω2v1 − (1 − 6λω2)v2 = 0 (viii)

For a non-trivial solution
∣∣∣∣
(1 − 16λω2) −15λω2

5λω2 −(1 − 6λω2)

∣∣∣∣ = 0

Expanding this determinant we have

−(1 − 16λω2)(1 − 6λω2) + 75(λω2)2 = 0

or

21(λω2)2 − 22λω2 + 1 = 0 (ix)

Inspection of Eq. (ix) shows that

λω2 = 1/21 or 1

Hence

ω2 = 3 × 48EI

21ml3 or
3 × 48EI

ml3

The normal or natural frequencies of vibration are therefore

f1 = ω1

2π
= 2

π

√
3EI

7 ml3

f2 = ω2

2π
= 6

π

√
EI

ml3

The system is therefore capable of vibrating at two distinct frequencies. To determine
the normal mode corresponding to each frequency we first take the lower frequency f1
and substitute it in either Eq. (vii) or Eq. (viii). From Eq. (vii)

v1

v2
= 15λω2

1 − 16λω2 = 15 × (1/21)

1 − 16 × (1/21)

which is a positive quantity. Therefore, at the lowest natural frequency the cantilever
oscillates in such a way that the displacement of both masses has the same sign at
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Fig. 10.4 The first natural mode of the mass/beam system of Fig. 10.3.

Fig. 10.5 The second natural mode of the mass/beam system of Fig. 10.3.

the same instant of time. Such an oscillation would take the form shown in Fig. 10.4.
Substituting the second natural frequency in Eq. (vii) we have

v1

v2
= 15λω2

1 − 16λω2 = 15

1 − 16

which is negative so that the masses have displacements of opposite sign at any instant
of time as shown in Fig. 10.5.

Example 10.2
Find the lowest natural frequency of the weightless beam/mass system shown in
Fig. 10.6. For the beam GJ = (2/3)EI .

The equations of motion are

mv̈1δ11 + 4mv̈2δ12 + v1 = 0 (i)

mv̈1δ21 + 4mv̈2δ22 + v2 = 0 (ii)

In this problem displacements are caused by bending and torsion so that

δij =
∫

L

MiMj

EI
ds +

∫

L

TiTj

GJ
ds (iii)
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Fig. 10.6 Mass/beam system for Example 10.2.

From Fig. 10.6 we see that

M1 = 1x 0 ≤ x ≤ l
M1 = 1(2l − z) 0 ≤ z ≤ 2l
M2 = 1(l − z) 0 ≤ z ≤ l
M2 = 0 l ≤ z ≤ 2l 0 ≤ x ≤ l
T1 = 1l 0 ≤ z ≤ 2l
T1 = 0 0 ≤ x ≤ l
T2 = 0 0 ≤ z ≤ 2l 0 ≤ x ≤ l

Hence

δ11 =
∫ l

0

x2

EI
dx +

∫ 2l

0

(2l − z)2

EI
dz +

∫ 2l

0

l2

GJ
dz (iv)

δ22 =
∫ l

0

(l − z)2

EI
dz (v)

δ12 = δ21 =
∫ l

0

(2l − z)(l − z)

EI
dz (vi)

from which we obtain

δ11 = 6l3

EI
δ22 = l3

3EI
δ12 = δ21 = 5l3

6EI

Writing λ = ml3/6EI and solving Eqs (i) and (ii) in an identical manner to the solution
of Eqs (i) and (ii) in Example 10.1 results in a quadratic in λω2, namely

188(λω2)2 − 44λω2 + 1 = 0 (vii)

Solving Eq. (vii) we obtain

λω2 = 44 ± √
442 − 4 × 188 × 1

376
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which gives

λω2 = 0.21 or 0.027

The lowest natural frequency therefore corresponds to λω2 = 0.027 and is

1

2π

√
0.162EI

ml3

Example 10.3
Determine the natural frequencies of the system shown in Fig. 10.7 and sketch the
normal modes. The flexural rigidity EI of the weightless beam is 1.44 × 106 N m2,
l = 0.76 m, the radius of gyration r of the mass m is 0.152 m and its weight is 1435 N.

In this problem the mass possesses an inertia about its own centre of gravity (its radius
of gyration is not zero) which means that in addition to translational displacements it
will experience rotation. The equations of motion are therefore

mv̈δ11 + mr2θ̈δ12 + v = 0 (i)

mv̈δ21 + mr2θ̈δ22 + θ = 0 (ii)

where v is the vertical displacement of the mass at any instant of time and θ is the
rotation of the mass from its stationary position. Although the beam supports just one
mass it is subjected to two moment systems; M1 at any section z due to the weight of the
mass and a constant moment M2 caused by the inertia couple of the mass as it rotates.
Then

M1 = 1z 0 ≤ z ≤ l
M1 = 1l 0 ≤ y ≤ l
M2 = 1 0 ≤ z ≤ l
M2 = 1 0 ≤ y ≤ l

Hence

δ11 =
∫ l

0

z2

EI
dz +

∫ l

0

l2

EI
dy (iii)

Fig. 10.7 Mass/beam system for Example 10.3.



Ch10-H6739.tex 23/1/2007 12: 20 Page 335

10.1 Oscillation of mass/spring systems 335

δ22 =
∫ l

0

dz

EI
+

∫ l

0

dy

EI
(iv)

δ12 = δ21 =
∫ l

0

z dz

EI
+

∫ l

0

l

EI
dy (v)

from which

δ11 = 4l3

3EI
δ22 = 2l

EI
δ12 = δ21 = 3l2

2EI
Each mode will oscillate with simple harmonic motion so that

v = v0 sin (ωt + ε) θ = θ0 sin (ωt + ε)

and

v̈ = −ω2v θ̈ = −ω2θ

Substituting in Eqs (i) and (ii) gives
(

1 − ω2m
4l3

3EI

)
v − ω2mr2 3l2

2EI
θ = 0 (vi)

−ω2m
3l2

2EI
v +

(
1 − ω2mr2 2l

EI

)
θ = 0 (vii)

Inserting the values of m, r, l and EI we have
(

1 − 1435 × 4 × 0.763

9.81 × 3 × 1.44 × 106 ω2
)

v − 1435 × 0.1522 × 3 × 0.762

9.81 × 2 × 1.44 × 106 ω2θ = 0 (viii)

− 1435 × 3 × 0.762

9.81 × 2 × 1.44 × 106 ω2v +
(

1 − 1435 × 0.1522 × 2 × 0.76

9.81 × 1.44 × 106 ω2
)

θ = 0 (ix)

or

(1 − 6 × 10−5ω2)v − 0.203 × 10−5ω2θ = 0 (x)

−8.8 × 10−5ω2v + (1 − 0.36 × 10−5ω2)θ = 0 (xi)

Solving Eqs (x) and (xi) as before gives

ω = 122 or 1300

from which the natural frequencies are

f1 = 61

π
f2 = 650

π

From Eq. (x)

v

θ
= 0.203 × 10−5ω2

1 − 6 × 10−5ω2
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Fig. 10.8 The first two natural modes of vibration of the beam/mass system of Fig. 10.7.

which is positive at the lowest natural frequency, corresponding toω = 122, and negative
for ω = 1300. The modes of vibration are therefore as shown in Fig. 10.8.

10.2 Oscillation of beams

So far we have restricted our discussion to weightless beams supporting concentrated,
or otherwise, masses. We shall now investigate methods of determining normal modes
and frequencies of vibration of beams possessing weight and therefore inertia. The
equations of motion of such beams are derived on the assumption that vibration occurs
in one of the principal planes of the beam and that the effects of rotary inertia and shear
displacements may be neglected.

Figure 10.9(a) shows a uniform beam of cross-sectional area A vibrating in a prin-
cipal plane about some axis Oz. The displacement of an element δz of the beam at any
instant of time t is v and the moments and forces acting on the element are shown in
Fig. 10.9(b). Taking moments about the vertical centre line of the element gives

Sy
δz

2
+ Mx +

(
Sy + ∂Sy

∂z
δz

)
δz

2
−

(
Mx + ∂Mx

∂z
δz

)
= 0

Fig. 10.9 Vibration of a beam possessing mass.
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from which, neglecting second-order terms, we obtain

Sy = ∂Mx

∂z
(10.8)

Considering the vertical equilibrium of the element
(

Sy + ∂Sy

∂z
δz

)
− Sy − ρAδz

∂2v

∂t2 = 0

so that

∂Sy

∂z
= ρA

∂2v

∂t2 (10.9)

From basic bending theory (Chapter 16)

Mx = −EI
∂2v

∂z2 (10.10)

It follows from Eqs (10.8), (10.9) and (10.10) that

∂2

∂z2

(
−EI

∂2v

∂z2

)
= ρA

∂2v

∂t2 (10.11)

Equation (10.11) is applicable to both uniform and non-uniform beams. In the latter
case the flexural rigidity, EI, and the mass per unit length, ρA, are functions of z. For a
beam of uniform section, Eq. (10.11) reduces to

EI
∂4v

∂z4 + ρA
∂2v

∂t2 = 0 (10.12)

In the normal modes of vibration each element of the beam describes simple harmonic
motion; thus

v(z, t) = V (z) sin (ωt + ε) (10.13)

where V (z) is the amplitude of the vibration at any section z. Substituting for v from
Eq. (10.13) in Eq. (10.12) yields

d4V

dz4 − ρAω2

EI
V = 0 (10.14)

Equation (10.14) is a fourth-order differential equation of standard form having the
general solution

V = B sin λz + C cos λz + D sinh λz + F cosh λz (10.15)

where

λ4 = ρAω2

EI
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and B, C, D and F are unknown constants which are determined from the boundary
conditions of the beam. The ends of the beam may be:

(1) simply supported or pinned, in which case the displacement and bending moment
are zero, and therefore in terms of the function V (z) we have V = 0 and d2V/dz2 = 0;

(2) fixed, giving zero displacement and slope, that is V = 0 and dV/dz = 0;
(3) free, for which the bending moment and shear force are zero, hence d2V/dz2 = 0

and, from Eq. (10.8), d3V/dz3 = 0.

Example 10.4
Determine the first three normal modes of vibration and the corresponding natural
frequencies of the uniform, simply supported beam shown in Fig. 10.10.

Since both ends of the beam are simply supported, V = 0 and d2V/dz2 = 0 at z = 0
and z = L. From the first of these conditions and Eq. (10.15) we have

0 = C + F (i)

and from the second

0 = −λ2C + λ2F (ii)

Hence C = F = 0. Applying the above boundary conditions at z = L gives

0 = B sin λL + D sinh λL (iii)

and

0 = −λ2B sin λL + λ2D sinh λL (iv)

The only non-trivial solution (λL �= 0) of Eqs (iii) and (iv) is D = 0 and sin λL = 0. It
follows that

λL = nπ n = 1, 2, 3, . . .

Therefore

ω2
n =

(nπ

L

)4 EI

ρA
n = 1, 2, 3, . . . (v)

and the normal modes of vibration are given by

v(z, t) = Bn sin
nπz

L
sin (ωnt + εn) (vi)

Fig. 10.10 Beam of Example 10.4.
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Fig. 10.11 First three normal modes of vibration of the beam of Example 10.4.

with natural frequencies

fn = ωn

2π
= 1

2π

(nπ

L

)2
√

EI

ρA
(vii)

The first three normal modes of vibration are shown in Fig. 10.11.

Example 10.5
Find the first three normal modes and corresponding natural frequencies of the uniform
cantilever beam shown in Fig. 10.12.

Fig. 10.12 Cantilever beam of Example 10.5.
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The boundary conditions in this problem are V = 0, dV/dz = 0 at z = 0 and
d2V/dz2 = 0, d3V/dz3 = 0 at z = L. Substituting these in turn in Eq. (10.15) we obtain

0 = C + F (i)

0 = λB + λD (ii)

0 = −λ2B sin λL − λ2C cos λL + λ2D sinh λL + λ2F cosh λL (iii)

0 = −λ3B cos λL + λ3C sin λL + λ3D cosh λL + λ3F sinh λL (iv)

From Eqs (i) and (ii), C = −F and B = −D. Thus, replacing F and D in Eqs (iii) and
(iv) we obtain

B(− sin λL − sinh λL) + C(−cosλL − cosh λL) = 0 (v)

and

B(−cosλL − cosh λL) + C(sin λL − sinh λL) = 0 (vi)

Eliminating B and C from Eqs (v) and (vi) gives

(−sinλL − sinh λL)(sinh λL − sin λL) + (cos λL − cosh λL)2 = 0

Expanding this equation, and noting that sin2 λL + cos2 λL = 1 and cosh2 λL −
sinh2 λL = 1, yields the frequency equation

cos λL cosh λL + 1 = 0 (vii)

Equation (vii) may be solved graphically or by Newton’s method. The first three roots
λ1, λ2 and λ3 are given by

λ1L = 1.875 λ2L = 4.694 λ3L = 7.855

from which are found the natural frequencies corresponding to the first three normal
modes of vibration. The natural frequency of the rth mode (r ≥ 4) is obtained from the
approximate relationship

λrL ≈ (r − 1
2 )π

and its shape in terms of a single arbitrary constant Kr is

Vr(z) = Kr[ cosh λrz − cos λrz − kr(sinh λrz − sin λrz)]

where

kr = cos λrL + cosh λrL

sin λrL + sinh λrL
r = 1, 2, 3, . . .

Figure 10.13 shows the first three normal mode shapes of the cantilever and their
associated natural frequencies.
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Fig. 10.13 The first three normal modes of vibration of the cantilever beam of Example 10.5.

10.3 Approximate methods for determining
natural frequencies

The determination of natural frequencies and normal mode shapes for beams of non-
uniform section involves the solution of Eq. (10.11) and fulfilment of the appropriate
boundary conditions. However, with the exception of a few special cases, such solutions
do not exist and the natural frequencies are obtained by approximate methods such as
the Rayleigh and Rayleigh–Ritz methods which are presented here. Rayleigh’s method
is discussed first.

A beam vibrating in a normal or combination of normal modes possesses kinetic
energy by virtue of its motion and strain energy as a result of its displacement from an
initial unstrained condition. From the principle of conservation of energy the sum of
the kinetic and strain energies is constant with time. In computing the strain energy U
of the beam we assume that displacements are due to bending strains only so that

U =
∫

L

M2

2EI
dz (see Chapter 5) (10.16)

where

M = −EI
∂2v

∂z2 (see Eq. (10.10))

Substituting for v from Eq. (10.13) gives

M = −EI
d2V

dz2 sin (ωt + ε)
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so that from Eq. (10.16)

U = 1

2
sin2 (ωt + ε)

∫

L
EI

(
d2V

dz2

)2

dz (10.17)

For a non-uniform beam, having a distributed mass ρA(z) per unit length and carrying
concentrated masses, m1, m2, m3, . . . , mn at distances z1, z2, z3, . . . , zn from the origin,
the kinetic energy KE may be written as

KE = 1

2

∫

L
ρA(z)

(
∂v

∂t

)2

dz + 1

2

n∑

r=1

mr

[(
∂v

∂t

)

z=zr

]2

Substituting for v(z) from Eq. (10.17) we have

KE = 1

2
ω2 cos2 (ωt + ε)

[∫

L
ρA(z)V2 dz +

n∑

r=1

mr{V (zr)}2

]

(10.18)

Since KE + U = constant, say C, then

1

2
sin2 (ωt + ε)

∫

L
EI

(
d2V

dz2

)2

dz + 1

2
ω2cos2(ωt + ε)

×
[∫

L
ρA(z)V2 dz +

n∑

r=1

mr{V (zr)}2

]

= C (10.19)

Inspection of Eq. (10.19) shows that when (ωt + ε) = 0, π, 2π, . . .

1

2
ω2

[∫

L
ρA(z)V2 dz +

n∑

r=1

mr{V (zr)}2

]

= C (10.20)

and when

(ωt + ε) = π/2, 3π/2, 5π/2, . . .

then

1

2

∫

L
EI

(
d2V

dz2

)2

dz = C (10.21)

In other words the kinetic energy in the mean position is equal to the strain energy in
the position of maximum displacement. From Eqs (10.20) and (10.21)

ω2 =
∫

L EI(d2V/dz2)2 dz
∫

L ρA(z)V2 dz + ∑n
r=1 mr{V (zr)}2

(10.22)

Equation (10.22) gives the exact value of natural frequency for a particular mode if V (z)
is known. In the situation where a mode has to be ‘guessed’, Rayleigh’s principle states
that if a mode is assumed which satisfies at least the slope and displacement conditions
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at the ends of the beam then a good approximation to the true natural frequency will
be obtained. We have noted previously that if the assumed normal mode differs only
slightly from the actual mode then the stationary property of the normal modes ensures
that the approximate natural frequency is only very slightly different to the true value.
Furthermore, the approximate frequency will be higher than the actual one since the
assumption of an approximate mode implies the presence of some constraints which
force the beam to vibrate in a particular fashion; this has the effect of increasing the
frequency.

The Rayleigh–Ritz method extends and improves the accuracy of the Rayleigh
method by assuming a finite series for V (z), namely

V (z) =
n∑

s=1

BsVs(z) (10.23)

where each assumed function Vs(z) satisfies the slope and displacement conditions
at the ends of the beam and the parameters Bs are arbitrary. Substitution of V (z) in
Eq. (10.22) then gives approximate values for the natural frequencies. The parameters
Bs are chosen to make these frequencies a minimum, thereby reducing the effects of the
implied constraints. Having chosen suitable series, the method of solution is to form a
set of equations

∂ω2

∂Bs
= 0, s = 1, 2, 3, . . . , n (10.24)

Eliminating the parameter Bs leads to an nth-order determinant in ω2 whose roots give
approximate values for the first n natural frequencies of the beam.

Example 10.6
Determine the first natural frequency of a cantilever beam of length, L, flexural rigidity
EI and constant mass per unit length ρA. The cantilever carries a mass 2m at the tip,
where m = ρAL.

An exact solution to this problem may be found by solving Eq. (10.14) with the
appropriate end conditions. Such a solution gives

ω1 = 1.1582

√
EI

mL3

and will serve as a comparison for our approximate answer. As an assumed mode shape
we shall take the static deflection curve for a cantilever supporting a tip load since, in
this particular problem, the tip load 2m is greater than the mass ρAL of the cantilever.
If the reverse were true we would assume the static deflection curve for a cantilever
carrying a uniformly distributed load. Thus

V (z) = a(3Lz2 − z3) (i)
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where the origin for z is taken at the built-in end and a is a constant term which includes
the tip load and the flexural rigidity of the beam. From Eq. (i)

V (L) = 2aL3 and
d2V

dz2 = 6a(L − z)

Substituting these values in Eq. (10.22) we obtain

ω2
1 = 36EIa2

∫ L
0 (L − z)2 dz

ρAa2
∫ L

0 (3L − z)2z4 dz + 2m(2aL3)2
(ii)

Evaluating Eq. (ii) and expressing ρA in terms of m we obtain

ω1 = 1.1584

√
EI

mL3 (iii)

which value is only 0.02 per cent higher than the true value given above. The estimation
of higher natural frequencies requires the assumption of further, more complex, shapes
for V (z).

It is clear from the previous elementary examples of normal mode and natural fre-
quency calculation that the estimation of such modes and frequencies for a complete
aircraft is a complex process. However, the aircraft designer is not restricted to calcu-
lation for the solution of such problems, although the advent of the digital computer
has widened the scope and accuracy of this approach. Other possible methods are to
obtain the natural frequencies and modes by direct measurement from the results of a
resonance test on the actual aircraft or to carry out a similar test on a simplified scale
model. Details of resonance tests are discussed in Section 28.4. Usually a resonance test
is impracticable since the designer requires the information before the aircraft is built,
although this type of test is carried out on the completed aircraft as a design check. The
alternative of building a scale model has found favour for many years. Such models are
usually designed to be as light as possible and to represent the stiffness characteristics
of the full-scale aircraft. The inertia properties are simulated by a suitable distribution
of added masses.

Problems
P.10.1 Figure P.10.1 shows a massless beam ABCD of length 3l and uniform bend-

ing stiffness EI which carries concentrated masses 2m and m at the points B and D,
respectively. The beam is built-in at end A and simply supported at C. In addition, there
is a hinge at B which allows only shear forces to be transmitted between sections AB
and BCD.

Calculate the natural frequencies of free, undamped oscillations of the system and
determine the corresponding modes of vibration, illustrating your results by suitably
dimensioned sketches.

Ans.
1

2π

√
3EI

4ml3

1

2π

√
3EI

ml3
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Fig. P.10.1

P.10.2 Three massless beams 12, 23 and 24 each of length l are rigidly joined
together in one plane at the point 2, 12 and 23 being in the same straight line with 24
at right angles to them (see Fig. P.10.2). The bending stiffness of 12 is 3EI while that
of 23 and 24 is EI. The beams carry masses m and 2m concentrated at the points 4
and 2, respectively. If the system is simply supported at 1 and 3 determine the natural
frequencies of vibration in the plane of the figure.

Ans.
1

2π

√
2.13EI

ml3

1

2π

√
5.08EI

ml3

Fig. P.10.2

P.10.3 Two uniform circular tubes AB and BC are rigidly jointed at right angles at
B and built-in at A (Fig. P.10.3). The tubes themselves are massless but carry a mass
of 20 kg at C which has a polar radius of gyration of 0.25a about an axis through its
own centre of gravity parallel to AB. Determine the natural frequencies and modes of
vibration for small oscillations normal to the plane containing AB and BC. The tube has
a mean diameter of 25 mm and wall thickness 1.25 mm. Assume that for the material
of the tube E = 70 000 N/mm2, G = 28 000 N/mm2 and a = 250 mm.

Ans. 0.09 Hz, 0.62 Hz.

P.10.4 A uniform thin-walled cantilever tube, length L, circular cross-section of
radius a and thickness t, carries at its tip two equal masses m. One mass is attached to
the tube axis while the other is mounted at the end of a light rigid bar at a distance of
2a from the axis (see Fig. P.10.4). Neglecting the mass of the tube and assuming the
stresses in the tube are given by basic bending theory and the Bredt–Batho theory of
torsion, show that the frequencies ω of the coupled torsion flexure oscillations which
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Fig. P.10.3

occur are given by

1

ω2 = mL3

3Eπa3t
[1 + 2λ ± (1 + 2λ + 2λ2)

1
2 ]

where

λ = 3E

G

a2

L2

Fig. P.10.4

P.10.5 Figure P.10.5 shows the idealized cross-section of a single cell tube with
axis of symmetry xx and length 1525 mm in which the direct stresses due to bending
are carried only in the four booms of the cross-section. The walls are assumed to carry
only shear stresses. The tube is built-in at the root and carries a weight of 4450 N at
its tip; the centre of gravity of the weight coincides with the shear centre of the tube
cross-section. Assuming that the direct and shear stresses in the tube are given by basic
bending theory, calculate the natural frequency of flexural vibrations of the weight in a
vertical direction. The effect of the weight of the tube is to be neglected and it should be
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noted that it is not necessary to know the position of the shear centre of the cross-section.
The effect on the deflections of the shear strains in the tube walls must be included.

E = 70 000 N/mm2 G = 26 500 N/mm2 boom areas 970 mm2

Ans. 12.1 Hz.

Fig. P.10.5

P.10.6 A straight beam of length l is rigidly built-in at its ends. For one quarter of
its length from each end the bending stiffness is 4EI and the mass/unit length is 2m:
for the central half the stiffness is EI and the mass m per unit length. In addition, the
beam carries three mass concentrations, 1

2 ml at 1
4 l from each end and 1

4 ml at the centre,
as shown in Fig. P.10.6.

Use an energy method or other approximation to estimate the lowest frequency of
natural flexural vibration. A first approximation solution will suffice if it is accompanied
by a brief explanation of a method of obtaining improved accuracy.

Fig. P.10.6

Ans. 3.7

√
EI

ml4
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11

Materials

With the present chapter we begin the purely aeronautical section of the book, where we
consider structures peculiar to the field of aeronautical engineering. These structures are
typified by arrangements of thin, load-bearing skins, frames and stiffeners, fabricated
from lightweight, high strength materials of which aluminium alloys are the most
widely used examples.

As a preliminary to the analysis of the basic aircraft structural forms presented in
subsequent chapters we shall discuss the materials used in aircraft construction.

Several factors influence the selection of the structural material for an aircraft,
but amongst these strength allied to lightness is probably the most important. Other
properties having varying, though sometimes critical significance are stiffness, tough-
ness, resistance to corrosion, fatigue and the effects of environmental heating, ease of
fabrication, availability and consistency of supply and, not least important, cost.

The main groups of materials used in aircraft construction have been wood, steel,
aluminium alloys with, more recently, titanium alloys, and fibre-reinforced composites.
In the field of engine design, titanium alloys are used in the early stages of a compres-
sor while nickel-based alloys or steels are used for the hotter later stages. As we are
concerned primarily with the materials involved in the construction of the airframe,
discussion of materials used in engine manufacture falls outside the scope of this book.

11.1 Aluminium alloys

Pure aluminium is a relatively low strength extremely flexible metal with virtually no
structural applications. However, when alloyed with other metals its properties are
improved significantly. Three groups of aluminium alloy have been used in the aircraft
industry for many years and still play a major role in aircraft construction. In the
first of these aluminium is alloyed with copper, magnesium, manganese, silicon and
iron, and has a typical composition of 4% copper, 0.5% magnesium, 0.5% manganese,
0.3% silicon and 0.2% iron with the remainder being aluminium. In the wrought, heat-
treated, naturally aged condition this alloy possesses a 0.1% proof stress not less than
230 N/mm2, a tensile strength not less than 390 N/mm2 and an elongation at fracture
of 15%. Artificial ageing at a raised temperature of, for example, 170◦C increases
the proof stress to not less than 370 N/mm2 and the tensile strength to not less than
460 N/mm2 with an elongation of 8%.
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The second group of alloys contain, in addition to the above, 1–2% of nickel, a higher
content of magnesium and possible variations in the amounts of copper, silicon and
iron. The most important property of these alloys is their retention of strength at high
temperatures which makes them particularly suitable for aero engine manufacture. A
development of these alloys by Rolls-Royce and High Duty Alloys Ltd replaced some
of the nickel by iron and reduced the copper content; these RR alloys, as they were
called, were used for forgings and extrusions in aero engines and airframes.

The third group of alloys depends upon the inclusion of zinc and magnesium for their
high strength and have a typical composition of 2.5% copper, 5% zinc, 3% magnesium
and up to 1% nickel with mechanical properties of 0.1% proof stress 510 N/mm2, tensile
strength 585 N/mm2 and an elongation of 8%. In a modern development of this alloy
nickel has been eliminated and provision made for the addition of chromium and further
amounts of manganese.

Alloys from each of the above groups have been used extensively for airframes,
skins and other stressed components, the choice of alloy being influenced by factors
such as strength (proof and ultimate stress), ductility, ease of manufacture (e.g. in
extrusion and forging), resistance to corrosion and amenability to protective treatment,
fatigue strength, freedom from liability to sudden cracking due to internal stresses
and resistance to fast crack propagation under load. Clearly, different types of aircraft
have differing requirements. A military aircraft, for instance, having a relatively short
life measured in hundreds of hours, does not call for the same degree of fatigue and
corrosion resistance as a civil aircraft with a required life of 30 000 hours or more.

Unfortunately, as one particular property of aluminium alloys is improved, other
desirable properties are sacrificed. For example, the extremely high static strength of
the aluminium–zinc–magnesium alloys was accompanied for many years by a sudden
liability to crack in an unloaded condition due to the retention of internal stresses
in bars, forgings and sheet after heat treatment. Although variations in composi-
tion have eliminated this problem to a considerable extent other deficiencies showed
themselves. Early post-war passenger aircraft experienced large numbers of stress-
corrosion failures of forgings and extrusions. The problem became so serious that in
1953 it was decided to replace as many aluminium–zinc–manganese components as
possible with the aluminium–4 per cent copper Alloy L65 and to prohibit the use of
forgings in zinc-bearing alloy in all future designs. However, improvements in the
stress-corrosion resistance of the aluminium–zinc–magnesium alloys have resulted in
recent years from British, American and German research. Both British and American
opinions agree on the benefits of including about 1 per cent copper but disagree on the
inclusion of chromium and manganese, while in Germany the addition of silver has
been found extremely beneficial. Improved control of casting techniques has brought
further improvements in resistance to stress corrosion. The development of aluminium–
zinc–magnesium–copper alloys has largely met the requirement for aluminium alloys
possessing high strength, good fatigue crack growth resistance and adequate toughness.
Further development will concentrate on the production of materials possessing higher
specific properties, bringing benefits in relation to weight saving rather than increasing
strength and stiffness.

The first group of alloys possess a lower static strength than the above zinc-bearing
alloys, but are preferred for portions of the structure where fatigue considerations are
of primary importance such as the undersurfaces of wings where tensile fatigue loads
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predominate. Experience has shown that the naturally aged version of these alloys
has important advantages over the fully heat-treated forms in fatigue endurance and
resistance to crack propagation. Furthermore, the inclusion of a higher percentage
of magnesium was found, in America, to produce, in the naturally aged condition,
mechanical properties between those of the normal naturally aged and artificially aged
alloy. This alloy, designated 2024 (aluminium–copper alloys form the 2000 series) has
the nominal composition: 4.5 per cent copper, 1.5 per cent magnesium, 0.6 per cent
manganese, with the remainder aluminium, and appears to be a satisfactory compromise
between the various important, but sometimes conflicting, mechanical properties.

Interest in aluminium–magnesium–silicon alloys has recently increased, although
they have been in general use in the aerospace industry for decades. The reasons for this
renewed interest are that they are potentially cheaper than aluminium–copper alloys and,
being weldable, are capable of reducing manufacturing costs. In addition, variants, such
as the ISO 6013 alloy, have improved property levels and, generally, possess a similar
high fracture toughness and resistance to crack propagation as the 2000 series alloys.

Frequently, a particular form of an alloy is developed for a particular aircraft. An
outstanding example of such a development is the use of Hiduminium RR58 as the basis
for the main structural material, designated CM001, for Concorde. Hiduminium RR58
is a complex aluminium–copper–magnesium–nickel–iron alloy developed during the
1939–1945 war specifically for the manufacture of forged components in gas turbine
aero engines. The chemical composition of the version used in Concorde was decided
on the basis of elevated temperature, creep, fatigue and tensile testing programmes and
has the detailed specification of:

%Cu %Mg %Si %Fe %Ni %Ti %Al

Minimum 2.25 1.35 0.18 0.90 1.0 – Remainder
Maximum 2.70 1.65 0.25 1.20 1.30 0.20

Generally, CM001 is found to possess better overall strength/fatigue characteristics
over a wide range of temperatures than any of the other possible aluminium alloys.

The latest aluminium alloys to find general use in the aerospace industry are the
aluminium–lithium alloys. Of these, the aluminium–lithium–copper–manganese alloy,
8090, developed in the UK, is extensively used in the main fuselage structure of GKN
Westland Helicopters’ design EH101; it has also been qualified for Eurofighter 2000
(now named the Typhoon) but has yet to be embodied. In the USA the aluminium–
lithium–copper alloy, 2095, has been used in the fuselage frames of the F16 as a
replacement for 2124, resulting in a fivefold increase in fatigue life and a reduction in
weight. Aluminium–lithium alloys can be successfully welded, possess a high fracture
toughness and exhibit a high resistance to crack propagation.

11.2 Steel

The use of steel for the manufacture of thin-walled, box-section spars in the 1930s
has been superseded by the aluminium alloys described in Section 11.1. Clearly, its
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high specific gravity prevents its widespread use in aircraft construction, but it has
retained some value as a material for castings for small components demanding high
tensile strengths, high stiffness and high resistance to wear. Such components include
undercarriage pivot brackets, wing-root attachments, fasteners and tracks.

Although the attainment of high and ultra-high tensile strengths presents no diffi-
culty with steel, it is found that other properties are sacrificed and that it is difficult to
manufacture into finished components. To overcome some of these difficulties types of
steel known as maraging steels were developed in 1961, from which carbon is either
eliminated entirely or present only in very small amounts. Carbon, while producing
the necessary hardening of conventional high tensile steels, causes brittleness and dis-
tortion; the latter is not easily rectifiable as machining is difficult and cold forming
impracticable. Welded fabrication is also almost impossible or very expensive. The
hardening of maraging steels is achieved by the addition of other elements such as
nickel, cobalt and molybdenum. A typical maraging steel would have these elements
present in the proportions: nickel 17–19 per cent, cobalt 8–9 per cent, molybdenum
3–3.5 per cent, with titanium 0.15–0.25 per cent. The carbon content would be a
maximum of 0.03 per cent, with traces of manganese, silicon, sulphur, phosphorus,
aluminium, boron, calcium and zirconium. Its 0.2 per cent proof stress would be
nominally 1400 N/mm2 and its modulus of elasticity 180 000 N/mm2.

The main advantages of maraging steels over conventional low alloy steels are: higher
fracture toughness and notched strength, simpler heat treatment, much lower volume
change and distortion during hardening, very much simpler to weld, easier to machine
and better resistance to stress corrosion/hydrogen embrittlement. On the other hand,
the material cost of maraging steels is three or more times greater than the cost of
conventional steels, although this may be more than offset by the increased cost of
fabricating a complex component from the latter steel.

Maraging steels have been used in: aircraft arrester hooks, rocket motor cases,
helicopter undercarriages, gears, ejector seats and various structural forgings.

In addition to the above, steel in its stainless form has found applications primar-
ily in the construction of super- and hypersonic experimental and research aircraft,
where temperature effects are considerable. Stainless steel formed the primary struc-
tural material in the Bristol 188, built to investigate kinetic heating effects, and also in
the American rocket aircraft, the X-15, capable of speeds of the order of Mach 5–6.

11.3 Titanium

The use of titanium alloys increased significantly in the 1980s, particularly in the
construction of combat aircraft as opposed to transport aircraft. This increase continued
in the 1990s to the stage where, for combat aircraft, the percentage of titanium alloy as
a fraction of structural weight is of the same order as that of aluminium alloy. Titanium
alloys possess high specific properties, have a good fatigue strength/tensile strength
ratio with a distinct fatigue limit, and some retain considerable strength at temperatures
up to 400–500◦C. Generally, there is also a good resistance to corrosion and corrosion
fatigue although properties are adversely affected by exposure to temperature and stress
in a salt environment. The latter poses particular problems in the engines of carrier-
operated aircraft. Further disadvantages are a relatively high density so that weight
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penalties are imposed if the alloy is extensively used, coupled with high primary and
high fabrication costs, approximately seven times those of aluminium and steel.

In spite of this, titanium alloys were used in the airframe and engines of Con-
corde, while the Tornado wing carry-through box is fabricated from a weldable medium
strength titanium alloy. Titanium alloys are also used extensively in the F15 and F22
American fighter aircraft and are incorporated in the tail assembly of the Boeing 777
civil airliner. Other uses include forged components such as flap and slat tracks and
undercarriage parts.

New fabrication processes (e.g. superplastic forming combined with diffusion bond-
ing) enable large and complex components to be produced, resulting in a reduction in
production man-hours and weight. Typical savings are 30 per cent in man-hours, 30
per cent in weight and 50 per cent in cost compared with conventional riveted titanium
structures. It is predicted that the number of titanium components fabricated in this way
for aircraft will increase significantly and include items such as access doors, sheet for
areas of hot gas impingement, etc.

11.4 Plastics

Plain plastic materials have specific gravities of approximately unity and are therefore
considerably heavier than wood although of comparable strength. On the other hand,
their specific gravities are less than half those of the aluminium alloys so that they find
uses as windows or lightly stressed parts whose dimensions are established by handling
requirements rather than strength. They are also particularly useful as electrical insu-
lators and as energy absorbing shields for delicate instrumentation and even structures
where severe vibration, such as in a rocket or space shuttle launch, occurs.

11.5 Glass

The majority of modern aircraft have cabins pressurized for flight at high altitudes.
Windscreens and windows are therefore subjected to loads normal to their midplanes.
Glass is frequently the material employed for this purpose in the form of plain or
laminated plate or heat-strengthened plate. The types of plate glass used in aircraft
have a modulus of elasticity between 70 000 and 75 000 N/mm2 with a modulus of
rupture in bending of 45 N/mm2. Heat-strengthened plate has a modulus of rupture of
about four and a half times this figure.

11.6 Composite materials

Composite materials consist of strong fibres such as glass or carbon set in a matrix
of plastic or epoxy resin, which is mechanically and chemically protective. The fibres
may be continuous or discontinuous but possess a strength very much greater than that
of the same bulk materials. For example, carbon fibres have a tensile strength of the
order of 2400 N/mm2 and a modulus of elasticity of 400 000 N/mm2.
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A sheet of fibre-reinforced material is anisotropic, i.e. its properties depend on the
direction of the fibres. Generally, therefore, in structural form two or more sheets are
sandwiched together to form a lay-up so that the fibre directions match those of the
major loads.

In the early stages of the development of composite materials glass fibres were used
in a matrix of epoxy resin. This glass-reinforced plastic (GRP) was used for radomes
and helicopter blades but found limited use in components of fixed wing aircraft due
to its low stiffness. In the 1960s, new fibrous reinforcements were introduced; Kevlar,
for example, is an aramid material with the same strength as glass but is stiffer. Kevlar
composites are tough but poor in compression and difficult to machine, so they were
used in secondary structures. Another composite, using boron fibre and developed in
the USA, was the first to possess sufficient strength and stiffness for primary structures.

These composites have now been replaced by carbon-fibre-reinforced plastics
(CFRP), which have similar properties to boron composites but are very much cheaper.
Typically, CFRP has a modulus of the order of three times that of GRP, one and a
half times that of a Kevlar composite and twice that of aluminium alloy. Its strength
is three times that of aluminium alloy, approximately the same as that of GRP, and
slightly less than that of Kevlar composites. CFRP does, however, suffer from some
disadvantages. It is a brittle material and therefore does not yield plastically in regions
of high stress concentration. Its strength is reduced by impact damage which may not
be visible and the epoxy resin matrices can absorb moisture over a long period which
reduces its matrix-dependent properties, such as its compressive strength; this effect
increases with increase of temperature. Further, the properties of CFRP are subject to
more random variation than those of metals. All these factors must be allowed for in
design. On the other hand, the stiffness of CFRP is much less affected than its strength
by the above and it is less prone to fatigue damage than metals. It is estimated that
replacing 40% of an aluminium alloy structure by CFRP would result in a 12% saving
in total structural weight.

CFRP is included in the wing, tailplane and forward fuselage of the latest Harrier
development, is used in the Tornado taileron and has been used to construct a complete
Jaguar wing and engine bay door for testing purposes. The use of CFRP in the fabri-
cation of helicopter blades has led to significant increases in their service life, where
fatigue resistance rather than stiffness is of primary importance. Figure 11.1 shows the
structural complexity of a Sea King helicopter rotor blade which incorporates CFRP,
GRP, stainless steel, a honeycomb core and foam filling. An additional advantage of the
use of composites for helicopter rotor blades is that the moulding techniques employed
allow variations of cross-section along the span, resulting in substantial aerodynamic
benefits. This approach is being employed in the fabrication of the main rotor blades
of the GKN Westland Helicopters EH101.

A composite (fibreglass and aluminium) is used in the tail assembly of the Boeing 777
while the leading edge of the Airbus A310–300/A320 fin assembly is of conventional
reinforced glass fibre construction, reinforced at the nose to withstand bird strikes.
A complete composite airframe was produced for the Beechcraft Starship turboprop
executive aircraft which, however, was not a commercial success due to its canard
configuration causing drag and weight penalties.

The development of composite materials is continuing with research into the removal
of strength-reducing flaws and local imperfections from carbon fibres. Other matrices
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Fig. 11.1 Sectional view of helicopter main rotor blade (courtesy Royal Aeronautical Society, Aerospace magazine).

such as polyetheretherketone, which absorbs much less moisture than epoxy resin, has
an indefinite shelf life and performs well under impact, are being developed; fabrica-
tion, however, requires much higher temperatures. Metal matrix composites such as
graphite–aluminium and boron–aluminium are lightweight and retain their strength at
higher temperatures than aluminium alloys, but are expensive to produce.

Generally, the use of composites in aircraft construction appears to have reached a
plateau, particularly in civil subsonic aircraft where the fraction of the structure com-
prising composites is approximately 15%. This is due largely to the greater cost of
manufacturing composites compared with aluminium alloy structures since compos-
ites require hand crafting of the materials and manual construction processes. These
increased costs are particularly important in civil aircraft construction and are becoming
increasingly important in military aircraft.

11.7 Properties of materials

In Sections 11.1–11.6 we discussed the various materials used in aircraft construction
and listed some of their properties. We shall now examine in more detail their behaviour
under load and also define different types of material.

Ductility
A material is said to be ductile if it is capable of withstanding large strains under load
before fracture occurs. These large strains are accompanied by a visible change in cross-
sectional dimensions and therefore give warning of impending failure. Materials in this
category include mild steel, aluminium and some of its alloys, copper and polymers.
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Brittleness
A brittle material exhibits little deformation before fracture, the strain normally being
below 5%. Brittle materials therefore may fail suddenly without visible warning.
Included in this group are concrete, cast iron, high strength steel, timber and ceramics.

Elastic materials
A material is said to be elastic if deformations disappear completely on removal of the
load. All known engineering materials are, in addition, linearly elastic within certain
limits of stress so that strain, within these limits, is directly proportional to stress.

Plasticity
A material is perfectly plastic if no strain disappears after the removal of load. Ductile
materials are elastoplastic and behave in an elastic manner until the elastic limit is
reached after which they behave plastically. When the stress is relieved the elastic
component of the strain is recovered but the plastic strain remains as a permanent set.

Isotropic materials
In many materials the elastic properties are the same in all directions at each point in
the material although they may vary from point to point, such a material is known as
isotropic. An isotropic material having the same properties at all points is known as
homogeneous (e.g. mild steel).

Anisotropic materials
Materials having varying elastic properties in different directions are known as
anisotropic.

Orthotropic materials
Although a structural material may possess different elastic properties in different direc-
tions, this variation may be limited, as in the case of timber which has just two values of
Young’s modulus, one in the direction of the grain and one perpendicular to the grain. A
material whose elastic properties are limited to three different values in three mutually
perpendicular directions is known as orthotropic.

11.7.1 Testing of engineering materials

The properties of engineering materials are determined mainly by the mechanical testing
of specimens machined to prescribed sizes and shapes. The testing may be static or
dynamic in nature depending on the particular property being investigated. Possibly
the most common mechanical static tests are tensile and compressive tests which are
carried out on a wide range of materials. Ferrous and non-ferrous metals are subjected
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Fig. 11.2 Standard cylindrical test piece.

to both forms of test, while compression tests are usually carried out on many non-
metallic materials. Other static tests include bending, shear and hardness tests, while
the toughness of a material, in other words its ability to withstand shock loads, is
determined by impact tests.

Tensile tests
Tensile tests are normally carried out on metallic materials and, in addition, timber.
Test pieces are machined from a batch of material, their dimensions being specified
by Codes of Practice. They are commonly circular in cross-section, although flat test
pieces having rectangular cross-sections are used when the batch of material is in the
form of a plate. A typical test piece would have the dimensions specified in Fig. 11.2.
Usually the diameter of a central portion of the test piece is fractionally less than that
of the remainder to ensure that the test piece fractures between the gauge points.

Before the test begins, the mean diameter of the test piece is obtained by taking
measurements at several sections using a micrometer screw gauge. Gauge points are
punched at the required gauge length, the test piece is placed in the testing machine
and a suitable strain measuring device, usually an extensometer, is attached to the
test piece at the gauge points so that the extension is measured over the given gauge
length. Increments of load are applied and the corresponding extensions recorded.
This procedure continues until yield occurs, when the extensometer is removed as
a precaution against the damage which would be caused if the test piece fractured
unexpectedly. Subsequent extensions are measured by dividers placed in the gauge
points until, ultimately, the test piece fractures. The final gauge length and the diameter
of the test piece in the region of the fracture are measured so that the percentage
elongation and percentage reduction in area may be calculated. These two parameters
give a measure of the ductility of the material.

A stress–strain curve is drawn (see Figs 11.9 and 11.13), the stress normally being
calculated on the basis of the original cross-sectional area of the test piece, i.e. a nominal
stress as opposed to an actual stress (which is based on the actual area of cross-section).

For ductile materials there is a marked difference in the latter stages of the test as a
considerable reduction in cross-sectional area occurs between yield and fracture. From
the stress–strain curve the ultimate stress, the yield stress and Young’s modulus, E, are
obtained.
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There are a number of variations on the basic tensile test described above. Some of
these depend upon the amount of additional information required and some upon the
choice of equipment. There is a wide range of strain measuring devices to choose from,
extending from different makes of mechanical extensometer, e.g. Huggenberger, Lind-
ley, Cambridge, to the electrical resistance strain gauge. The last would normally be
used on flat test pieces, one on each face to eliminate the effects of possible bending. At
the same time a strain gauge could be attached in a direction perpendicular to the direc-
tion of loading so that lateral strains are measured. The ratio lateral strain/longitudinal
strain is Poisson’s ratio, ν.

Testing machines are usually driven hydraulically. More sophisticated versions
employ load cells to record load and automatically plot load against extension or stress
against strain on a pen recorder as the test proceeds, an advantage when investigating
the distinctive behaviour of mild steel at yield.

Compression tests
A compression test is similar in operation to a tensile test, with the obvious differ-
ence that the load transmitted to the test piece is compressive rather than tensile. This
is achieved by placing the test piece between the platens of the testing machine and
reversing the direction of loading. Test pieces are normally cylindrical and are lim-
ited in length to eliminate the possibility of failure being caused by instability. Again
contractions are measured over a given gauge length by a suitable strain measuring
device.

Variations in test pieces occur when only the ultimate strength of the material in
compression is required. For this purpose concrete test pieces may take the form of
cubes having edges approximately 10 cm long, while mild steel test pieces are still
cylindrical in section but are of the order of 1 cm long.

Bending tests
Many structural members are subjected primarily to bending moments. Bending tests
are therefore carried out on simple beams constructed from the different materials to
determine their behaviour under this type of load.

Two forms of loading are employed the choice depending upon the type specified
in Codes of Practice for the particular material. In the first a simply supported beam is
subjected to a ‘two-point’ loading system as shown in Fig. 11.3(a). Two concentrated
loads are applied symmetrically to the beam, producing zero shear force and constant
bending moment in the central span of the beam (Fig. 11.3(b) and (c)). The condition
of pure bending is therefore achieved in the central span.

The second form of loading system consists of a single concentrated load at mid-span
(Fig. 11.4(a)) which produces the shear force and bending moment diagrams shown in
Fig. 11.4(b) and (c).

The loads may be applied manually by hanging weights on the beam or by a testing
machine. Deflections are measured by a dial gauge placed underneath the beam. From
the recorded results a load–deflection diagram is plotted.
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Fig. 11.3 Bending test on a beam, ‘two-point’ load.
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For most ductile materials the test beams continue to deform without failure and
fracture does not occur. Thus plastic properties, for example the ultimate strength in
bending, cannot be determined for such materials. In the case of brittle materials,
including cast iron, timber and various plastics, failure does occur, so that plastic
properties can be evaluated. For such materials the ultimate strength in bending is
defined by the modulus of rupture. This is taken to be the maximum direct stress in
bending, σx,u, corresponding to the ultimate moment Mu, and is assumed to be related
to Mu by the elastic relationship

σx,u = Mu

I
ymax

Other bending tests are designed to measure the ductility of a material and involve the
bending of a bar round a pin. The angle of bending at which the bar starts to crack is
then taken as an indication of its ductility.

Shear tests
Two main types of shear test are used to determine the shear properties of materials.
One type investigates the direct or transverse shear strength of a material and is used in
connection with the shear strength of bolts, rivets and beams. A typical arrangement is
shown diagrammatically in Fig. 11.5 where the test piece is clamped to a block and the
load is applied through the shear tool until failure occurs. In the arrangement shown the
test piece is subjected to double shear, whereas if it is extended only partially across
the gap in the block it would be subjected to single shear. In either case the average
shear strength is taken as the maximum load divided by the shear resisting area.

The other type of shear test is used to evaluate the basic shear properties of a mater-
ial, such as the shear modulus, G, the shear stress at yield and the ultimate shear
stress. In the usual form of test a solid circular-section test piece is placed in a torsion
machine and twisted by controlled increments of torque. The corresponding angles
of twist are recorded and torque–twist diagrams plotted from which the shear prop-
erties of the material are obtained. The method is similar to that used to determine
the tensile properties of a material from a tensile test and uses relationships derived in
Chapter 3.

Shear tool Load

Test piece

Block

Fig. 11.5 Shear test.
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Hardness tests
The machinability of a material and its resistance to scratching or penetration are deter-
mined by its ‘hardness’. There also appears to be a connection between the hardness
of some materials and their tensile strength so that hardness tests may be used to deter-
mine the properties of a finished structural member where tensile and other tests would
be impracticable. Hardness tests are also used to investigate the effects of heat treat-
ment, hardening and tempering and of cold forming. Two types of hardness test are in
common use: indentation tests and scratch and abrasion tests.

Indentation tests may be subdivided into two classes: static and dynamic. Of the
static tests the Brinell is the most common. In this a hardened steel ball is pressed into
the material under test by a static load acting for a fixed period of time. The load in kg
divided by the spherical area of the indentation in mm2 is called the Brinell hardness
number (BHN). In Fig. 11.6, if D is the diameter of the ball, F the load in kg, h the
depth of the indentation and d the diameter of the indentation, then

BHN = F

πDh
= 2F

πD[D − √
D2 − d2]

In practice, the hardness number of a given material is found to vary with F and D so
that for uniformity the test is standardized. For steel and hard materials F = 3000 kg
and D = 10 mm while for soft materials F = 500 kg and D = 10 mm; in addition the
load is usually applied for 15 s.

In the Brinell test the dimensions of the indentation are measured by means of a
microscope. To avoid this rather tedious procedure, direct reading machines have been
devised of which the Rockwell is typical. The indenting tool, again a hardened sphere,
is first applied under a definite light load. This indenting tool is then replaced by a
diamond cone with a rounded point which is then applied under a specified indentation
load. The difference between the depth of the indentation under the two loads is taken
as a measure of the hardness of the material and is read directly from the scale.

A typical dynamic hardness test is performed by the Shore Scleroscope which consists
of a small hammer approximately 20 mm long and 6 mm in diameter fitted with a blunt,
rounded, diamond point. The hammer is guided by a vertical glass tube and allowed to
fall freely from a height of 25 cm onto the specimen, which it indents before rebounding.
A certain proportion of the energy of the hammer is expended in forming the indentation
so that the height of the rebound, which depends upon the energy still possessed by the
hammer, is taken as a measure of the hardness of the material.

D

F (kg)

h

d

Fig. 11.6 Brinell hardness test.
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Fig. 11.7 Izod impact test.

A number of tests have been devised to measure the ‘scratch hardness’of materials. In
one test, the smallest load in grams which, when applied to a diamond point, produces a
scratch visible to the naked eye on a polished specimen of material is called its hardness
number. In other tests the magnitude of the load required to produce a definite width of
scratch is taken as the measure of hardness. Abrasion tests, involving the shaking over
a period of time of several specimens placed in a container, measure the resistance to
wear of some materials. In some cases, there appears to be a connection between wear
and hardness number although the results show no level of consistency.

Impact tests
It has been found that certain materials, particularly heat-treated steels, are susceptible
to failure under shock loading whereas an ordinary tensile test on the same material
would show no abnormality. Impact tests measure the ability of materials to withstand
shock loads and provide an indication of their toughness. Two main tests are in use, the
Izod and the Charpy.

Both tests rely on a striker or weight attached to a pendulum. The pendulum is
released from a fixed height, the weight strikes a notched test piece and the angle
through which the pendulum then swings is a measure of the toughness of the material.
The arrangement for the Izod test is shown diagrammatically in Fig. 11.7(a). The
specimen and the method of mounting are shown in detail in Fig. 11.7(b). The Charpy
test is similar in operation except that the test piece is supported in a different manner
as shown in the plan view in Fig. 11.8.

11.7.2 Stress–strain curves

We shall now examine in detail the properties of the different materials from the
viewpoint of the results obtained from tensile and compression tests.
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Fig. 11.8 Charpy impact test.
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Fig. 11.9 Stress–strain curve for mild steel.

Low carbon steel (mild steel)
A nominal stress–strain curve for mild steel, a ductile material, is shown in Fig. 11.9
From 0 to ‘a’ the stress–strain curve is linear, the material in this range obeying Hooke’s
law. Beyond ‘a’, the limit of proportionality, stress is no longer proportional to strain
and the stress–strain curve continues to ‘b’, the elastic limit, which is defined as the
maximum stress that can be applied to a material without producing a permanent plastic
deformation or permanent set when the load is removed. In other words, if the material
is stressed beyond ‘b’and the load then removed, a residual strain exists at zero load. For
many materials it is impossible to detect a difference between the limit of proportionality
and the elastic limit. From 0 to ‘b’ the material is said to be in the elastic range while
from ‘b’ to fracture the material is in the plastic range. The transition from the elastic
to the plastic range may be explained by considering the arrangement of crystals in the
material. As the load is applied, slipping occurs between the crystals which are aligned
most closely to the direction of load. As the load is increased, more and more crystals
slip with each equal load increment until appreciable strain increments are produced
and the plastic range is reached.

A further increase in stress from ‘b’ results in the mild steel reaching its upper
yield point at ‘c’ followed by a rapid fall in stress to its lower yield point at ‘d’. The
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Neck

Fig. 11.10 ‘Necking’ of a test piece in the plastic range.

Fig. 11.11 ‘Cup-and-cone’ failure of a mild steel test piece.

existence of a lower yield point for mild steel is a peculiarity of the tensile test wherein
the movement of the ends of the test piece produced by the testing machine does not
proceed as rapidly as its plastic deformation; the load therefore decreases, as does the
stress. From ‘d’ to ‘f’ the strain increases at a roughly constant value of stress until
strain hardening again causes an increase in stress. This increase in stress continues,
accompanied by a large increase in strain to ‘g’, the ultimate stress, σult, of the material.
At this point the test piece begins, visibly, to ‘neck’as shown in Fig. 11.10. The material
in the test piece in the region of the ‘neck’ is almost perfectly plastic at this stage and
from this point, onwards to fracture, there is a reduction in nominal stress.

For mild steel, yielding occurs at a stress of the order of 300 N/mm2. At fracture the
strain (i.e. the elongation) is of the order of 30%. The gradient of the linear portion of the
stress–strain curve gives a value for Young’s modulus in the region of 200 000 N/mm2.

The characteristics of the fracture are worthy of examination. In a cylindrical test
piece the two halves of the fractured test piece have ends which form a ‘cup and cone’
(Fig. 11.11). The actual failure planes in this case are inclined at approximately 45◦ to
the axis of loading and coincide with planes of maximum shear stress. Similarly, if a
flat tensile specimen of mild steel is polished and then stressed, a pattern of fine lines
appears on the polished surface at yield. These lines, which were first discovered by
Lüder in 1854, intersect approximately at right angles and are inclined at 45◦ to the axis
of the specimen, thereby coinciding with planes of maximum shear stress. These forms
of yielding and fracture suggest that the crystalline structure of the steel is relatively
weak in shear with yielding taking the form of the sliding of one crystal plane over
another rather than the tearing apart of two crystal planes.

The behaviour of mild steel in compression is very similar to its behaviour in tension,
particularly in the elastic range. In the plastic range it is not possible to obtain ultimate
and fracture loads since, due to compression, the area of cross-section increases as
the load increases producing a ‘barrelling’ effect as shown in Fig. 11.12. This increase
in cross-sectional area tends to decrease the true stress, thereby increasing the load
resistance. Ultimately a flat disc is produced. For design purposes the ultimate stresses
of mild steel in tension and compression are assumed to be the same.

Higher grades of steel have greater strengths than mild steel but are not as ductile.
They also possess the sameYoung’s modulus so that the higher stresses are accompanied
by higher strains.
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Deformed
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Fig. 11.12 ‘Barrelling’ of a mild steel test piece in compression.

Aluminium
Aluminium and some of its alloys are also ductile materials, although their stress–strain
curves do not have the distinct yield stress of mild steel. A typical stress–strain curve
is shown in Fig. 11.13. The points ‘a’ and ‘b’ again mark the limit of proportionality
and elastic limit, respectively, but are difficult to determine experimentally. Instead a
proof stress is defined which is the stress required to produce a given permanent strain
on removal of the load. In Fig. 11.13, a line drawn parallel to the linear portion of the
stress–strain curve from a strain of 0.001 (i.e. a strain of 0.1%) intersects the stress–
strain curve at the 0.1% proof stress. For elastic design this, or the 0.2% proof stress,
is taken as the working stress.

Beyond the limit of proportionality the material extends plastically, reaching its
ultimate stress, σult, at ‘d’before finally fracturing under a reduced nominal stress at ‘f’.

A feature of the fracture of aluminium alloy test pieces is the formation of a ‘double
cup’ as shown in Fig. 11.14, implying that failure was initiated in the central portion

0.0010 Strain, ε

Stress, s

sult

0.1% Proof
stress Fracture

a
b c

d
f

Fig. 11.13 Stress–strain curve for aluminium.

Fig. 11.14 ‘Double-cup’ failure of an aluminium alloy test piece.
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of the test piece while the outer surfaces remained intact. Again considerable ‘necking’
occurs.

In compression tests on aluminium and its ductile alloys similar difficulties are
encountered to those experienced with mild steel. The stress–strain curve is very
similar in the elastic range to that obtained in a tensile test but the ultimate strength in
compression cannot be determined; in design its value is assumed to coincide with that
in tension.

Aluminium and its alloys can suffer a form of corrosion particularly in the salt laden
atmosphere of coastal regions. The surface becomes pitted and covered by a white furry
deposit. This can be prevented by an electrolytic process called anodizing which covers
the surface with an inert coating. Aluminium alloys will also corrode if they are placed
in direct contact with other metals, such as steel. To prevent this, plastic is inserted
between the possible areas of contact.

Brittle materials
These include cast iron, high strength steel, concrete, timber, ceramics, glass, etc.
The plastic range for brittle materials extends to only small values of strain. A typical
stress–strain curve for a brittle material under tension is shown in Fig. 11.15. Little or
no yielding occurs and fracture takes place very shortly after the elastic limit is reached.

The fracture of a cylindrical test piece takes the form of a single failure plane
approximately perpendicular to the direction of loading with no visible ‘necking’ and
an elongation of the order of 2–3%.

In compression the stress–strain curve for a brittle material is very similar to that in
tension except that failure occurs at a much higher value of stress; for concrete the ratio
is of the order of 10 : 1. This is thought to be due to the presence of microscopic cracks
in the material, giving rise to high stress concentrations which are more likely to have
a greater effect in reducing tensile strength than compressive strength.

Composites
Fibre composites have stress–strain characteristics which indicate that they are brittle
materials (Fig. 11.16). There is little or no plasticity and the modulus of elasticity is less

Fracture

Strain, ε

Stress, s

Fig. 11.15 Stress–strain curve for a brittle material.
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Strain, ε
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Fig. 11.16 Stress–strain curve for a fibre composite.

than that of steel and aluminium alloy. However, the fibres themselves can have much
higher values of strength and modulus of elasticity than the composite. For example,
carbon fibres have a tensile strength of the order 2400 N/mm2 and a modulus of elasticity
of 400 000 N/mm2.

Fibre composites are highly durable, require no maintenance and can be used in
hostile chemical and atmospheric environments; vinyls and epoxy resins provide the
best resistance.

All the stress–strain curves described in the preceding discussion are those produced
in tensile or compression tests in which the strain is applied at a negligible rate. A rapid
strain application would result in significant changes in the apparent properties of the
materials giving possible variations in yield stress of up to 100%.

11.7.3 Strain hardening
The stress–strain curve for a material is influenced by the strain history, or the loading
and unloading of the material, within the plastic range. For example, in Fig. 11.17 a
test piece is initially stressed in tension beyond the yield stress at, ‘a’, to a value at ‘b’.
The material is then unloaded to ‘c’ and reloaded to ‘f’ producing an increase in yield
stress from the value at ‘a’ to the value at ‘d’. Subsequent unloading to ‘g’ and loading
to ‘j’ increases the yield stress still further to the value at ‘h’. This increase in strength
resulting from the loading and unloading is known as strain hardening. It can be seen
from Fig. 11.17 that the stress–strain curve during the unloading and loading cycles
form loops (the shaded areas in Fig. 11.17). These indicate that strain energy is lost
during the cycle, the energy being dissipated in the form of heat produced by internal
friction. This energy loss is known as mechanical hysteresis and the loops as hysteresis
loops. Although the ultimate stress is increased by strain hardening it is not influenced
to the same extent as yield stress. The increase in strength produced by strain hardening
is accompanied by decreases in toughness and ductility.
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Fig. 11.17 Strain hardening of a material.

11.7.4 Creep and relaxation

We have seen in Chapter 1 that a given load produces a calculable value of stress in a
structural member and hence a corresponding value of strain once the full value of the
load is transferred to the member. However, after this initial or ‘instantaneous’ stress
and its corresponding value of strain have been attained, a great number of structural
materials continue to deform slowly and progressively under load over a period of time.
This behaviour is known as creep. A typical creep curve is shown in Fig. 11.18.

Some materials, such as plastics and rubber, exhibit creep at room temperatures but
most structural materials require high temperatures or long-duration loading at moderate
temperatures. In some ‘soft’metals, such as zinc and lead, creep occurs over a relatively
short period of time, whereas materials such as concrete may be subject to creep over
a period of years. Creep occurs in steel to a slight extent at normal temperatures but
becomes very important at temperatures above 316◦C.
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creep rate
Secondary creep
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Fig. 11.18 Typical creep curve.
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Closely related to creep is relaxation. Whereas creep involves an increase in strain
under constant stress, relaxation is the decrease in stress experienced over a period of
time by a material subjected to a constant strain.

11.7.5 Fatigue

Structural members are frequently subjected to repetitive loading over a long period of
time. For example, the members of a bridge structure suffer variations in loading pos-
sibly thousands of times a day as traffic moves over the bridge. In these circumstances
a structural member may fracture at a level of stress substantially below the ultimate
stress for non-repetitive static loads; this phenomenon is known as fatigue.

Fatigue cracks are most frequently initiated at sections in a structural member where
changes in geometry, e.g. holes, notches or sudden changes in section, cause stress
concentrations. Designers seek to eliminate such areas by ensuring that rapid changes
in section are as smooth as possible. At re-entrant corners for example, fillets are
provided as shown in Fig. 11.19.

Other factors which affect the failure of a material under repetitive loading are the type
of loading (fatigue is primarily a problem with repeated tensile stresses due, probably, to
the fact that microscopic cracks can propagate more easily under tension), temperature,
the material, surface finish (machine marks are potential crack propagators), corrosion
and residual stresses produced by welding.

Frequently in structural members an alternating stress, σalt, is superimposed on a
static or mean stress, σmean, as illustrated in Fig. 11.20. The value of σalt is the most
important factor in determining the number of cycles of load that produce failure.
The stress σalt, that can be withstood for a specified number of cycles is called the
fatigue strength of the material. Some materials, such as mild steel, possess a stress
level that can be withstood for an indefinite number of cycles. This stress is known
as the endurance limit of the material; no such limit has been found for aluminium
and its alloys. Fatigue data are frequently presented in the form of an S–n curve or
stress–endurance curve as shown in Fig. 11.21.

In many practical situations the amplitude of the alternating stress varies and is
frequently random in nature. The S–n curve does not, therefore, apply directly and an
alternative means of predicting failure is required. Miner’s cumulative damage theory

Location of stress
concentration

Provision of fillet
minimizes stress
concentration

Fig. 11.19 Stress concentration location.
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Fig. 11.20 Alternating stress in fatigue loading.
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Fig. 11.21 Stress–endurance curves.

suggests that failure will occur when

n1

N1
+ n2

N2
+ · · · + nr

Nr
= 1 (11.1)

where n1, n2, . . . , nr are the number of applications of stresses σalt, σmean and N1,
N2, . . . , Nr are the number of cycles to failure of stresses σalt, σmean.

We shall examine fatigue and its effect on aircraft design in much greater detail in
Chapter 15.

Problems

P.11.1 Describe a simple tensile test and show, with the aid of sketches, how
measures of the ductility of the material of the specimen may be obtained. Sketch typical
stress–strain curves for mild steel and an aluminium alloy showing their important
features.

P.11.2 A bar of metal 25 mm in diameter is tested on a length of 250 mm. In tension
the following results were recorded (Table P.11.2(a)).
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Table P.11.2(a)

Load (kN) 10.4 31.2 52.0 72.8
Extension (mm) 0.036 0.089 0.140 0.191

A torsion test gave the following results (Table P.11.2(b)).

Table P.11.2(b)

Torque (kN m) 0.051 0.152 0.253 0.354
Angle of twist (degrees) 0.24 0.71 1.175 1.642

Represent these results in graphical form and hence determine Young’s modulus, E,
the modulus of rigidity, G, Poisson’s ratio, ν, and the bulk modulus, K , for the metal.

Ans. E � 205 000 N/mm2, G � 80 700 N/mm2, ν � 0.272, K � 148 500 N/mm2.

P.11.3 The actual stress–strain curve for a particular material is given by σ = Cεn

where C is a constant. Assuming that the material suffers no change in volume during
plastic deformation, derive an expression for the nominal stress–strain curve and show
that this has a maximum value when ε = n/(1 − n).

Ans. σnom = Cεn/(1 + ε).

P.11.4 A structural member is to be subjected to a series of cyclic loads which pro-
duce different levels of alternating stress as shown in Table P.11.4. Determine whether
or not a fatigue failure is probable.

Ans. Not probable (n1/N1 + n2/N2 + · · · = 0.39).

Table P.11.4

Loading Number of cycles Number of cycles to failure

1 104 5 × 104

2 105 106

3 106 24 × 107

4 107 12 × 107
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Structural components of
aircraft

Aircraft are generally built up from the basic components of wings, fuselages, tail units
and control surfaces. There are variations in particular aircraft, for example, a delta
wing aircraft would not necessarily possess a horizontal tail although this is present
in a canard configuration such as that of the Eurofighter (Typhoon). Each component
has one or more specific functions and must be designed to ensure that it can carry
out these functions safely. In this chapter we shall describe the various loads to which
aircraft components are subjected, their function and fabrication and also the design of
connections.

12.1 Loads on structural components

The structure of an aircraft is required to support two distinct classes of load: the first,
termed ground loads, includes all loads encountered by the aircraft during movement
or transportation on the ground such as taxiing and landing loads, towing and hoisting
loads; while the second, air loads, comprises lòads imposed on the structure during
flight by manoeuvres and gusts. In addition, aircraft designed for a particular role
encounter loads peculiar to their sphere of operation. Carrier born aircraft, for instance,
are subjected to catapult take-off and arrested landing loads: most large civil and prac-
tically all military aircraft have pressurized cabins for high altitude flying; amphibious
aircraft must be capable of landing on water and aircraft designed to fly at high speed at
low altitude, e.g. the Tornado, require a structure of above average strength to withstand
the effects of flight in extremely turbulent air.

The two classes of loads may be further divided into surface forces which act upon
the surface of the structure, e.g. aerodynamic and hydrostatic pressure, and body forces
which act over the volume of the structure and are produced by gravitational and inertial
effects. Calculation of the distribution of aerodynamic pressure over the various surfaces
of an aircraft’s structure is presented in numerous texts on aerodynamics and will
therefore not be attempted here. We shall, however, discuss the types of load induced
by these various effects and their action on the different structural components.



Ch12-H6739.tex 25/1/2007 14: 14 Page 377

12.1 Loads on structural components 377

Fig. 12.1 Principal aerodynamic forces on an aircraft during flight.

Fig. 12.2 (a) Pressure distribution around an aerofoil; (b) transference of lift and drag loads to the AC.

Basically, all air loads are the resultants of the pressure distribution over the surfaces
of the skin produced by steady flight, manoeuvre or gust conditions. Generally, these
resultants cause direct loads, bending, shear and torsion in all parts of the structure in
addition to local, normal pressure loads imposed on the skin.

Conventional aircraft usually consist of fuselage, wings and tailplane. The fuselage
contains crew and payload, the latter being passengers, cargo, weapons plus fuel,
depending on the type of aircraft and its function; the wings provide the lift and the
tailplane is the main contributor to directional control. In addition, ailerons, elevators
and the rudder enable the pilot to manoeuvre the aircraft and maintain its stability in
flight, while wing flaps provide the necessary increase of lift for take-off and landing.
Figure 12.1 shows typical aerodynamic force resultants experienced by an aircraft in
steady flight.

The force on an aerodynamic surface (wing, vertical or horizontal tail) results from a
differential pressure distribution caused by incidence, camber or a combination of both.
Such a pressure distribution, shown in Fig. 12.2(a), has vertical (lift) and horizontal
(drag) resultants acting at a centre of pressure (CP). (In practice, lift and drag are
measured perpendicular and parallel to the flight path, respectively.) Clearly the position
of the CP changes as the pressure distribution varies with speed or wing incidence.
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Fig. 12.3 Typical lift distribution for a wing/fuselage combination.

However, there is, conveniently, a point in the aerofoil section about which the moment
due to the lift and drag forces remains constant. We therefore replace the lift and drag
forces acting at the CP by lift and drag forces acting at the aerodynamic centre (AC)
plus a constant moment M0 as shown in Fig. 12.2(b). (Actually, at high Mach numbers
the position of the AC changes due to compressibility effects.)

While the chordwise pressure distribution fixes the position of the resultant aero-
dynamic load in the wing cross-section, the spanwise distribution locates its position
in relation, say, to the wing root. A typical distribution for a wing/fuselage combina-
tion is shown in Fig. 12.3. Similar distributions occur on horizontal and vertical tail
surfaces.

We see therefore that wings, tailplane and the fuselage are each subjected to direct,
bending, shear and torsional loads and must be designed to withstand critical combin-
ations of these. Note that manoeuvres and gusts do not introduce different loads but
result only in changes of magnitude and position of the type of existing loads shown in
Fig. 12.1. Over and above these basic in-flight loads, fuselages may be pressurized and
thereby support hoop stresses, wings may carry weapons and/or extra fuel tanks with
resulting additional aerodynamic and body forces contributing to the existing bending,
shear and torsion, while the thrust and weight of engines may affect either fuselage or
wings depending on their relative positions.

Ground loads encountered in landing and taxiing subject the aircraft to concentrated
shock loads through the undercarriage system. The majority of aircraft have their main
undercarriage located in the wings, with a nosewheel or tailwheel in the vertical plane
of symmetry. Clearly the position of the main undercarriage should be such as to
produce minimum loads on the wing structure compatible with the stability of the
aircraft during ground manoeuvres. This may be achieved by locating the undercarriage
just forward of the flexural axis of the wing and as close to the wing root as possible.
In this case the shock landing load produces a given shear, minimum bending plus
torsion, with the latter being reduced as far as practicable by offsetting the torque caused
by the vertical load in the undercarriage leg by a torque in an opposite sense due to
braking.

Other loads include engine thrust on the wings or fuselage which acts in the plane
of symmetry but may, in the case of engine failure, cause severe fuselage bending
moments, as shown in Fig. 12.4; concentrated shock loads during a catapult launch;
and hydrodynamic pressure on the fuselages or floats of seaplanes.
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Fig. 12.4 Fuselage and wing bending caused by an unsymmetrical engine load.

In Chapter 13 we shall examine in detail the calculation of ground and air loads for
a variety of cases.

12.2 Function of structural components

The basic functions of an aircraft’s structure are to transmit and resist the applied loads;
to provide an aerodynamic shape and to protect passengers, payload, systems, etc.
from the environmental conditions encountered in flight. These requirements, in most
aircraft, result in thin shell structures where the outer surface or skin of the shell is
usually supported by longitudinal stiffening members and transverse frames to enable
it to resist bending, compressive and torsional loads without buckling. Such structures
are known as semi-monocoque, while thin shells which rely entirely on their skins for
their capacity to resist loads are referred to as monocoque.

First, we shall consider wing sections which, while performing the same function,
can differ widely in their structural complexity, as can be seen by comparing Figs 12.5
and 12.6. In Fig. 12.5, the wing of the small, light passenger aircraft, the De Havil-
land Canada Twin Otter, comprises a relatively simple arrangement of two spars, ribs,
stringers and skin, while the wing of the Harrier in Fig. 12.6 consists of numerous spars,
ribs and skin. However, no matter how complex the internal structural arrangement the
different components perform the same kind of function. The shape of the cross-section
is governed by aerodynamic considerations and clearly must be maintained for all com-
binations of load; this is one of the functions of the ribs. They also act with the skin in
resisting the distributed aerodynamic pressure loads; they distribute concentrated loads
(e.g. undercarriage and additional wing store loads) into the structure and redistribute
stress around discontinuities, such as undercarriage wells, inspection panels and fuel
tanks, in the wing surface. Ribs increase the column buckling stress of the longitudinal
stiffeners by providing end restraint and establishing their column length; in a similar
manner they increase the plate buckling stress of the skin panels. The dimensions of ribs
are governed by their spanwise position in the wing and by the loads they are required
to support. In the outer portions of the wing, where the cross-section may be relatively
small if the wing is tapered and the loads are light, ribs act primarily as formers for the
aerofoil shape. A light structure is sufficient for this purpose whereas at sections closer
to the wing root, where the ribs are required to absorb and transmit large concentrated
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applied loads, such as those from the undercarriage, engine thrust and fuselage attach-
ment point reactions, a much more rugged construction is necessary. Between these
two extremes are ribs which support hinge reactions from ailerons, flaps and other
control surfaces, plus the many internal loads from fuel, armament and systems
installations.

The primary function of the wing skin is to form an impermeable surface for support-
ing the aerodynamic pressure distribution from which the lifting capability of the wing
is derived. These aerodynamic forces are transmitted in turn to the ribs and stringers by
the skin through plate and membrane action. Resistance to shear and torsional loads is
supplied by shear stresses developed in the skin and spar webs, while axial and bending
loads are reacted by the combined action of skin and stringers.

Although the thin skin is efficient for resisting shear and tensile loads, it buckles
under comparatively low compressive loads. Rather than increase the skin thickness
and suffer a consequent weight penalty, stringers are attached to the skin and ribs,
thereby dividing the skin into small panels and increasing the buckling and failing
stresses. This stabilizing action of the stringers on the skin is, in fact, reciprocated to
some extent although the effect normal to the surface of the skin is minimal. Stringers
rely chiefly on rib attachments for preventing column action in this direction. We have
noted in the previous paragraph the combined action of stringers and skin in resisting
axial and bending loads.

The role of spar webs in developing shear stresses to resist shear and torsional loads
has been mentioned previously; they perform a secondary but significant function in
stabilizing, with the skin, the spar flanges or caps which are therefore capable of
supporting large compressive loads from axial and bending effects. In turn, spar webs
exert a stabilizing influence on the skin in a similar manner to the stringers.

While the majority of the above remarks have been directed towards wing structures,
they apply, as can be seen by referring to Figs 12.5 and 12.6, to all the aerodynamic
surfaces, namely wings, horizontal and vertical tails, except in the obvious cases of
undercarriage loading, engine thrust, etc.

Fuselages, while of different shape to the aerodynamic surfaces, comprise members
which perform similar functions to their counterparts in the wings and tailplane. How-
ever, there are differences in the generation of the various types of load. Aerodynamic
forces on the fuselage skin are relatively low; on the other hand, the fuselage supports
large concentrated loads such as wing reactions, tailplane reactions, undercarriage reac-
tions and it carries payloads of varying size and weight, which may cause large inertia
forces. Furthermore, aircraft designed for high altitude flight must withstand internal
pressure. The shape of the fuselage cross-section is determined by operational require-
ments. For example, the most efficient sectional shape for a pressurized fuselage is
circular or a combination of circular elements. Irrespective of shape, the basic fuselage
structure is essentially a single cell thin-walled tube comprising skin, transverse frames
and stringers; transverse frames which extend completely across the fuselage are known
as bulkheads. Three different types of fuselage are shown in Figs 12.5–12.7. In Fig. 12.5
the fuselage is unpressurized so that, in the passenger-carrying area, a more rectangular
shape is employed to maximize space. The Harrier fuselage in Fig. 12.6 contains the
engine, fuel tanks, etc. so that its cross-sectional shape is, to some extent, predeter-
mined, while in Fig. 12.7 the passenger-carrying fuselage of the British Aerospace 146
is pressurized and therefore circular in cross-section.
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Fig. 12.5 De Havilland Canada Twin Otter (courtesy of De Havilland Aircraft of Canada Ltd.).
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Fig. 12.6 Harrier (courtesy of Pilot Press Ltd.).
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1 Starboard all-moving tailplane 56 Main undercarriage bay doors (closed after 110 Formation lighting panel 163 Cross-dam hydraulic jack
2 Tailplane composite construction cycling of mainwheels) 111 Port roll control air valve 164 Nosewheel
3 Tail radome 57 Flap vane composite construction 112 Port navigation light 165 Nosewheel forks
4 Military equipment 58 Flap composite construction 113 Radar warning aerial 166 Landing/taxiing lamp
5 Tail pitch control air valve 59 Starboard slotted flap, lowered 114 Port wing reaction control air duct 167 Retractable boarding step
6 Yaw control air valves 60 Outrigger wheel fairing 115 Fuel pumps 168 Nosewheel doors (closed after cycling of
7 Tail ‘bullet’ fairing 61 Outrigger leg doors 116 Fuel system piping undercarriage)
8 Reaction control system air ducting 62 Starboard aileron 117 Port wing leading-edge fence 169 Nosewheel door jack
9 Trim tab actuator 63 Aileron composite construction 118 Outboard pylon 170 Boundary layer bleed air duct

10 Rudder trim tab 64 Fuel jettison 119 BL755 cluster bombs (maximum load, seven) 171 Nose undercarriage wheel bay
11 Rudder composite construction 65 Formation lighting panel 120 lntermediate pylon 172 Kick-in boarding steps
12 Rudder 66 Roll control airvalve 121 Port outrigger pylon 173 Cockpit rear pressure bulkhead
13 Antenna 67 Wing tip fairing 122 Missile launch rail 174 Starboard side console panel
14 Fin tip aerial fairing 68 Starboard navigation light 123 AIM-9L Sidewinder air-to-air missile 175 Martin-Baker Type 12 ejection seat
15 Upper broad band communications antenna 69 Radar warning aerial 124 Port leading-edge root extension (LERX) 176 Safety harness
16 Port tailplane 70 Outboard pylon 125 lnboard pylon 177 Ejection seat headrest
17 Graphite epoxy tailplane skin 71 Pylon attachment joint 126 Hydraulic pumps 178 Port engine air intake
18 Port side temperature probe 72 Graphite epoxy composite wing construction 127 APU intake 179 Probe hydraulic jack
19 MAD compensator 73 Aileron hydraulic actuator 128 Gas turbine starter/auxiliary power unit 180 Retractable in-flight refuelling probe
20 Formation lighting strip 74 Starboard outrigger wheel (APU) (bolt-on pack)
21 Fin construction 75 BL755 600-lb (272-kg) cluster bomb (CBU) 129 Alternator cooling air exhaust 181 Cockpit canopy cover
22 Fin attachment joint 76 Intermediate pylon 130 APU exhaust 182 Miniature detonating cord (MDC) canopy
23 Tailplane pivot sealing plate 77 Reaction control air ducting 131 Engine fuel control unit breaker
24 Aerials 78 Aileron control rod 132 Engine bay venting ram air intake 183 Canopy frame
25 Ventral fin 79 Outrigger hydraulic retraction jack 133 Rotary nozzle bearing 184 Engine throttle and nozzle angle control
26 Tail bumper 80 Outrigger leg strut 134 Nozzle fairing construction levers
27 Lower broad band communications antenna 81 Leg pivot fixing 135 Ammunition tank, 100 rounds 185 Pilot’s head-up display
28 Tailplane hydraulic jack 82 Multi-spar wing construction 136 Cartridge case collector box 186 Instrument panel
29 Heat exchanger air exhaust 83 Leading-edge wing fence 137 Ammunition feed chute 187 Moving map display
30 Aft fuselage frames 84 Outrigger pylon 138 Fuel vent 188 Control column
31 Rudder hydraulic actuator 85 Missile launch rail 139 Gun pack strake 189 Central warning system panel
32 Avionics equipment air conditioning plant 86 AIM-9L Sidewinder air-to-air missile 140 Fuselage centreline pylon 190 Cockpit pressure floor
33 Avionics equipment racks 87 External fuel tank, 300 US gal (1 135 l) 141 Zero scarf forward (fan air) nozzle 191 Underfloor control runs
34 Heat exchanger ram air intake 88 lnboard pylon 142 Ventral gun pack (two) 192 Formation lighting strips
35 Electrical system circuit breaker panels, 89 Aft retracting twin mainwheels 143 Aden 25-mm cannon 193 Aileron trim actuator

port and starboard 90 lnboard pylon attachment joint 144 Engine drain mast 194 Rudder pedals
36 Avionic equipment 91 Rear (hot stream) swivelling exhaust nozzle 145 Hydraulic system ground connectors 195 Cockpit section composite construction
37 Chaff and flare dispensers 92 Position of pressure refuelling connection on 146 Forward fuselage flank fuel tank 196 Instrument panel shroud
38 Dispenser electronic control units port side 147 Engine electronic control units 197 One-piece wrap-around windscreen panel
39 Ventral airbrake 93 Rear nozzle bearing 148 Engine accessory equipment gearbox 198 Ram air intake (cockpit fresh air)
40 Airbrake hydraulic jack 94 Centre fuselage flank fuel tank 149 Gearbox driven alternator 199 Front pressure bulkhead
41 Formation lighting strip 95 Hydraulic reservoir 150 Rolls-Royce Pegasus 11 Mk 105 vectored 200 Incidence vane
42 Avionics bay access door, port and starboard 96 Nozzle bearing cooling air duct thrust turbofan 201 Air data computer
43 Avionics equipment racks 97 Engine exhaust divider duct 151 Formation lighting strips 202 Pitot tube
44 Fuselage frame and stringer construction 98 Wing panel centre rib 152 Engine oil tank 203 Lower IFF aerial
45 Rear fuselage fuel tank 99 Centre section integral fuel tank 153 Bleed air spill duct 204 Nose pitch control air valve
46 Main undercarriage wheel bay 100 Port wing integral fuel tank 154 Air conditioning intake scoops 205 Pitch trim control actuator
47 Wing root fillet 101 Flap vane 155 Cockpit air conditioning system heat 206 Electrical system equipment
48 Wing spar/fuselage attachment joint 102 Port slotted flap, lowered exchanger 207 Yaw vane
49 Water filler cap 103 Outrigger wheel fairing 156 Engine compressor/fan face 208 Upper IFF aerial
50 Engine fire extinguisher bottle 104 Port outrigger wheel 157 Heat exchanger discharge to intake duct 209 Avionic equipment
51 Anti-collision light 105 Torque scissor links 158 Nose undercarriage hydraulic retraction jack 210 ARBS heat exchanger
52 Water tank 106 Port aileron 159 Intake blow-in doors 211 MIRLS sensors
53 Flap hydraulic actuator 107 Aileron hydraulic actuator 160 Engine bay venting air scoop 212 Hughes Angle Rate Bombing System (ARBS)
54 Flap hinge fitting 108 Aileron/airvalve interconnection 161 Cannon muzzle fairing 213 Composite construction nose cone
55 Nimonic fuselage heat shield 109 Fuel jettison 162 Lift augmentation retractable cross-dam 214 ARBS glazed aperture
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Fig. 12.7 British Aerospace 146 (courtesy of British Aerospace).

12.3 Fabrication of structural components

The introduction of all-metal, stressed skin aircraft resulted in methods and types of
fabrication which remain in use to the present day. However, improvements in engine
performance and advances in aerodynamics have led to higher maximum lift, higher
speeds and therefore to higher wing loadings so that improved techniques of fabrication
are necessary, particularly in the construction of wings. The increase in wing loading
from about 350 N/m2 for 1917–1918 aircraft to around 4800 N/m2 for modern aircraft,
coupled with a drop in the structural percentage of the total weight from 30–40 to 22–25
per cent, gives some indication of the improvements in materials and structural design.

For purposes of construction, aircraft are divided into a number of sub-assemblies.
These are built in specially designed jigs, possibly in different parts of the factory or even
different factories, before being forwarded to the final assembly shop. A typical break-
down into sub-assemblies of a medium-sized civil aircraft is shown in Fig. 12.8. Each
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Fig. 12.8 Typical sub-assembly breakdown.

sub-assembly relies on numerous minor assemblies such as spar webs, ribs, frames,
and these, in turn, are supplied with individual components from the detail workshop.

Although the wings (and tailsurfaces) of fixed wing aircraft generally consist of spars,
ribs, skin and stringers, methods of fabrication and assembly differ. The wing of the
aircraft of Fig. 12.5 relies on fabrication techniques that have been employed for many
years. In this form of construction the spars comprise thin aluminium alloy webs and
flanges, the latter being extruded or machined and are bolted or riveted to the web. The
ribs are formed in three parts from sheet metal by large presses and rubber dies and
have flanges round their edges so that they can be riveted to the skin and spar webs;
cut-outs around their edges allow the passage of spanwise stringers. Holes are cut in
the ribs at positions of low stress for lightness and to accommodate control runs, fuel
and electrical systems.

Finally, the skin is riveted to the rib flanges and longitudinal stiffeners. Where the
curvature of the skin is large, for example at the leading edge, the aluminium alloy sheets
are passed through ‘rolls’ to pre-form them to the correct shape. A further, aerodynamic,
requirement is that forward chordwise sections of the wing should be as smooth as
possible to delay transition from laminar to turbulent flow. Thus, countersunk rivets are
used in these positions as opposed to dome-headed rivets nearer the trailing edge.

The wing is attached to the fuselage through reinforced fuselage frames, frequently
by bolts. In some aircraft the wing spars are continuous through the fuselage depending
on the demands of space. In a high wing aircraft (Fig. 12.5) deep spars passing through
the fuselage would cause obstruction problems. In this case a short third spar provides
an additional attachment point. The ideal arrangement is obviously where continuity
of the structure is maintained over the entire surface of the wing. In most practical
cases this is impossible since cut-outs in the wing surface are required for retracting
undercarriages, bomb and gun bays, inspection panels, etc. The last are usually located
on the undersurface of the wing and are fastened to stiffeners and rib flanges by screws,
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Fig. 12.9 Wing ribs for the European Airbus (courtesy of British Aerospace).

enabling them to resist direct and shear loads. Doors covering undercarriage wells and
weapon bays are incapable of resisting wing stresses so that provision must be made for
transferring the loads from skin, flanges and shear webs around the cut-out. This may
be achieved by inserting strong bulkheads or increasing the spar flange areas, although,
no matter the method employed, increased cost and weight result.

The different structural requirements of aircraft designed for differing operational
roles lead to a variety of wing constructions. For instance, high-speed aircraft require
relatively thin wing sections which support high wing loadings. To withstand the corre-
spondingly high surface pressures and to obtain sufficient strength, much thicker skins
are necessary. Wing panels are therefore frequently machined integrally with stringers
from solid slabs of material, as are the wing ribs. Figure 12.9 shows wing ribs for the
European Airbus in which web stiffeners, flanged lightness holes and skin attachment
lugs have been integrally machined from solid. This integral method of construction
involves no new design principles and has the advantages of combining a high grade
of surface finish, free from irregularities, with a more efficient use of material since
skin thicknesses are easily tapered to coincide with the spanwise decrease in bending
stresses.

An alternative form of construction is the sandwich panel, which comprises a light
honeycomb or corrugated metal core sandwiched between two outer skins of the stress-
bearing sheet (see Fig. 12.10). The primary function of the core is to stabilize the
outer skins, although it may be stress bearing as well. Sandwich panels are capable of
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Fig. 12.10 Sandwich panels (courtesy of Ciba-Geigy Plastics).
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developing high stresses, have smooth internal and external surfaces and require small
numbers of supporting rings or frames. They also possess a high resistance to fatigue
from jet efflux. The uses of this method of construction include lightweight ‘planks’ for
cabin furniture, monolithic fairing shells generally having plastic facing skins, and the
stiffening of flying control surfaces. Thus, for example, the ailerons and rudder of the
British Aerospace Jaguar are fabricated from aluminium honeycomb, while fibreglass
and aluminium faced honeycomb are used extensively in the wings and tail surfaces of
the Boeing 747. Some problems, mainly disbonding and internal corrosion, have been
encountered in service.

The general principles relating to wing construction are applicable to fuselages, with
the exception that integral construction is not used in fuselages for obvious reasons.
Figures 12.5, 12.6 and 12.7 show that the same basic method of construction is employed
in aircraft having widely differing roles. Generally, the fuselage frames that support
large concentrated floor loads or loads from wing or tailplane attachment points are
heavier than lightly loaded frames and require stiffening, with additional provision for
transmitting the concentrated load into the frame and hence the skin.

With the frames in position in the fuselage jig, stringers, passing through cut-outs, are
riveted to the frame flanges. Before the skin is riveted to the frames and stringers, other
subsidiary frames such as door and window frames are riveted or bolted in position.
The areas of the fuselage in the regions of these cut-outs are reinforced by additional
stringers, portions of frame and increased skin thickness, to react to the high shear
flows and direct stresses developed.

On completion, the various sub-assemblies are brought together for final assembly.
Fuselage sections are usually bolted together through flanges around their peripheries,
while wings and the tailplane are attached to pick-up points on the relevant fusel-
age frames. Wing spars on low wing civil aircraft usually pass completely through
the fuselage, simplifying wing design and the method of attachment. On smaller,
military aircraft, engine installations frequently prevent this so that wing spars are
attached directly to and terminate at the fuselage frame. Clearly, at these positions
frame/stringer/skin structures require reinforcement.

12.4 Connections

The fabrication of aircraft components generally involves the joining of one part of
the component to another. For example, fuselage skins are connected to stringers and
frames while wing skins are connected to stringers and wing ribs unless, as in some
military aircraft with high wing loadings, the stringers are machined integrally with
the wing skin (see Section 12.3). With the advent of all-metal, i.e. aluminium alloy
construction, riveted joints became the main form of connection with some welding
although aluminium alloys are difficult to weld, and, in the modern era, some glued
joints which use epoxy resin. In this section we shall concentrate on the still predominant
method of connection, riveting.

In general riveted joints are stressed in complex ways and an accurate analysis is very
often difficult to achieve because of the discontinuities in the region of the joint. Fairly
crude assumptions as to joint behaviour are made but, when combined with experience,
safe designs are produced.
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12.4.1 Simple lap joint

Figure 12.11 shows two plates of thickness t connected together by a single line of rivets;
this type of joint is termed a lap joint and is one of the simplest used in construction.

Suppose that the plates carry edge loads of P/unit width, that the rivets are of diameter
d and are spaced at a distance b apart, and that the distance from the line of rivets to
the edge of each plate is a. There are four possible modes of failure which must be
considered as follows:

Rivet shear
The rivets may fail by shear across their diameter at the interface of the plates. Then, if
the maximum shear stress the rivets will withstand is τ1 failure will occur when

Pb = τ1

(
πd2

4

)

which gives

P = πd2τ1

4b
(12.1)

Bearing pressure
Either the rivet or plate may fail due to bearing pressure. Suppose that pb is this pressure
then failure will occur when

Pb

td
= pb

a

t

P

P

b

b

c

cc

c

d

Diameter
P

P

a

Fig. 12.11 Simple riveted lap joint.



Ch12-H6739.tex 25/1/2007 14: 14 Page 390

390 Structural components of aircraft

so that

P = pbtd

b
(12.2)

Plate failure in tension
The area of plate in tension along the line of rivets is reduced due to the presence of
rivet holes. Therefore, if the ultimate tensile stress in the plate is σult failure will occur
when

Pb

t(b − d)
= σult

from which

P = σult t(b − d)

b
(12.3)

Shear failure in a plate
Shearing of the plates may occur on the planes cc resulting in the rivets being dragged
out of the plate. If the maximum shear stress at failure of the material of the plates is
τ2 then a failure of this type will occur when

Pb = 2at τ2

which gives

P = 2at τ2

b
(12.4)

Example 12.1
A joint in a fuselage skin is constructed by riveting the abutting skins between two straps
as shown in Fig. 12.12. The fuselage skins are 2.5 mm thick and the straps are each
1.2 mm thick; the rivets have a diameter of 4 mm. If the tensile stress in the fuselage skin
must not exceed 125 N/mm2 and the shear stress in the rivets is limited to 120 N/mm2

determine the maximum allowable rivet spacing such that the joint is equally strong in
shear and tension.

A tensile failure in the plate will occur on the reduced plate cross-section along the
rivet lines. This area is given by

Ap = (b − 4) × 2.5 mm2

The failure load/unit width Pf is then given by

Pfb = (b − 4) × 2.5 × 125 (i)

The area of cross-section of each rivet is

Ar = π × 42

4
= 12.6 mm2
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1.2 mm

2.5 mm

4 mm diameter 
rivets

strap

skin

Fig. 12.12 Joint of Example 12.1.

Since each rivet is in double shear (i.e. two failure shear planes) the area of cross-section
in shear is

2 × 12.6 = 25.2 mm2

Then the failure load/unit width in shear is given by

Pfb = 25.2 × 120 (ii)

For failure to occur simultaneously in shear and tension, i.e. equating Eqs (i) and (ii)

25.2 × 120 = (b − 4) × 2.5 × 12.5

from which

b = 13.7 mm

Say, a rivet spacing of 13 mm.

12.4.2 Joint efficiency

The efficiency of a joint or connection is measured by comparing the actual failure load
with that which would apply if there were no rivet holes in the plate. Then, for the joint
shown in Fig. 12.11 the joint efficiency η is given by

η = σult t(b − d)/b

σult t
= b − d

b
(12.5)

12.4.3 Group-riveted joints

Rivets may be grouped on each side of a joint such that the efficiency of the joint is
a maximum. Suppose that two plates are connected as shown in Fig. 12.13 and that
six rivets are required on each side. If it is assumed that each rivet is equally loaded
then the single rivet on the line aa will take one-sixth of the total load. The two rivets
on the line bb will then share two-sixths of the load while the three rivets on the line
cc will share three-sixths of the load. On the line bb the area of cross-section of the
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a

 a

b

b

c

 c

Fig. 12.13 A group-riveted joint.

plate is reduced by two rivet holes and that on the line cc by three rivet holes so that,
relatively, the joint is as strong at these sections as at aa. Therefore, a more efficient
joint is obtained than if the rivets were arranged in, say, two parallel rows of three.

12.4.4 Eccentrically loaded riveted joints

The bracketed connection shown in Fig. 12.14 carries a load P offset from the centroid
of the rivet group. The rivet group is then subjected to a shear load P through its centroid
and a moment or torque Pe about its centroid.

It is assumed that the shear load P is distributed equally amongst the rivets causing a
shear force in each rivet parallel to the line of action of P. The moment Pe is assumed
to produce a shear force S in each rivet where S acts in a direction perpendicular to the
line joining a particular rivet to the centroid of the rivet group. Furthermore, the value
of S is assumed to be proportional to the distance of the rivet from the centroid of the
rivet group. Then

Pe =
∑

Sr

If S = kr where k is a constant for all rivets then

Pe = k
∑

r2

from which k = Pe/
∑

r2

and

S = Pe
∑

r2 r (12.6)

The resultant force on a rivet is then the vector sum of the forces due to P and Pe.

Example 12.2
The bracket shown in Fig. 12.15 carries an offset load of 5 kN. Determine the resultant
shear forces in the rivets A and B.
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Fig. 12.14 Eccentrically loaded joint.
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25 mm

75 mm

5 kN

25 mm

20 mm 20 mm

Fig. 12.15 Joint of Example 12.2.
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The vertical shear force on each rivet is 5/6 = 0.83 kN. The moment (Pe) on the
rivet group is 5 × 75 = 375 kNmm. The distance of rivet A (and B, G and H) from the
centroid C of the rivet group is given by

r = (202 + 252)1/2 = (1025)1/2 = 32.02 mm

The distance of D (and F) from C is 20 mm. Therefore
∑

r2 = 2 × 400 + 4 × 1025 = 4900

From Eq. (12.6) the shear forces on rivets A and B due to the moment are

S = 375

4900
× 32.02 = 2.45 kN

On rivet A the force system due to P and Pe is that shown in Fig. 12.16(a) while that
on B is shown in Fig. 12.16(b).

2.45 kN

2.1 kN

0.
83

 k
N

Rivet A

(a)

0.83 kN

2.45 kN

3.1 kN

Rivet B

(b)

Fig. 12.16 Force diagrams for rivets of Example 12.2.

The resultant forces may then be calculated using the rules of vector addition or
determined graphically using the parallelogram of forces.1

The design of riveted connections is carried out in the actual design of the rear
fuselage of a single-engined trainer/semi-aerobatic aircraft in the Appendix.

12.4.5 Use of adhesives

In addition to riveted connections adhesives have and are being used in aircraft construc-
tion although, generally, they are employed in areas of low stress since their application
is still a matter of research. Of these adhesives epoxy resins are the most frequently
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used since they have the advantages over, say polyester resins, of good adhesive prop-
erties, low shrinkage during cure so that residual stresses are reduced, good mechanical
properties and thermal stability. The modulus and ultimate strength of epoxy resin are,
typically, 5000 and 100 N/mm2. Epoxy resins are now found extensively as the matrix
component in fibrous composites.

Reference

1 Megson, T. H. G., Structural and Stress Analysis, 2nd edition, Elsevier, Oxford, 2005.

Problems

P.12.1 Examine possible uses of new materials in future aircraft manufacture.

P.12.2 Describe the main features of a stressed skin structure. Discuss the structural
functions of the various components with particular reference either to the fuselage or
to the wing of a medium-sized transport aircraft.

P.12.3 The double riveted butt joint shown in Fig. P.12.3 connects two plates which
are each 2.5 mm thick, the rivets have a diameter of 3 mm. If the failure strength of the
rivets in shear is 370 N/mm2 and the ultimate tensile strength of the plate is 465 N/mm2

determine the necessary rivet pitch if the joint is to be designed so that failure due to
shear in the rivets and failure due to tension in the plate occur simultaneously. Calculate
also the joint efficiency.

b

3 mm diameter

2.5 mm

Fig. P.12.3

Ans. Rivet pitch is 12 mm, joint efficiency is 75 per cent.
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P.12.4 The rivet group shown in Fig. P.12.4 connects two narrow lengths of plate
one of which carries a 15 kN load positioned as shown. If the ultimate shear strength of
a rivet is 350 N/mm2 and its failure strength in compression is 600 N/mm2 determine
the minimum allowable values of rivet diameter and plate thickness.

50 mm

25 mm

25 mm

25 mm 25 mm

15kN

1 2 3

6 5 4

987

Fig. P.12.4

Ans. Rivet diameter is 4.0 mm, plate thickness is 1.83 mm.
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Airworthiness

The airworthiness of an aircraft is concerned with the standards of safety incorporated
in all aspects of its construction. These range from structural strength to the provision of
certain safeguards in the event of crash landings, and include design requirements relat-
ing to aerodynamics, performance and electrical and hydraulic systems. The selection
of minimum standards of safety is largely the concern of ‘national and international’
airworthiness authorities who prepare handbooks of official requirements. The hand-
books include operational requirements, minimum safety requirements, recommended
practices and design data, etc.

In this chapter we shall concentrate on the structural aspects of airworthiness which
depend chiefly on the strength and stiffness of the aircraft. Stiffness problems may be
conveniently grouped under the heading aeroelasticity and are discussed in Section B6.
Strength problems arise, as we have seen, from ground and air loads, and their mag-
nitudes depend on the selection of manoeuvring and other conditions applicable to the
operational requirements of a particular aircraft.

13.1 Factors of safety-flight envelope

The control of weight in aircraft design is of extreme importance. Increases in weight
require stronger structures to support them, which in turn lead to further increases
in weight and so on. Excesses of structural weight mean lesser amounts of payload,
thereby affecting the economic viability of the aircraft. The aircraft designer is therefore
constantly seeking to pare his aircraft’s weight to the minimum compatible with safety.
However, to ensure general minimum standards of strength and safety, airworthiness
regulations lay down several factors which the primary structure of the aircraft must
satisfy. These are the limit load, which is the maximum load that the aircraft is expected
to experience in normal operation, the proof load, which is the product of the limit load
and the proof factor (1.0–1.25), and the ultimate load, which is the product of the limit
load and the ultimate factor (usually 1.5). The aircraft’s structure must withstand the
proof load without detrimental distortion and should not fail until the ultimate load
has been achieved. The proof and ultimate factors may be regarded as factors of safety
and provide for various contingencies and uncertainties which are discussed in greater
detail in Section 13.2.
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Fig. 13.1 Flight envelope

Table 13.1

Category

Load factor n Normal Semi-aerobatic Aerobatic

n1 2.1 + 24 000/(W + 10 000) 4.5 6.0
n2 0.75n1 but n2 \< 2.0 3.1 4.5
n3 1.0 1.8 3.0

The basic strength and flight performance limits for a particular aircraft are selected
by the airworthiness authorities and are contained in the flight envelope or V−n diagram
shown in Fig. 13.1. The curves OA and OF correspond to the stalled condition of the
aircraft and are obtained from the well-known aerodynamic relationship

Lift = nW = 1
2ρV2SCL,max

Therefore, for speeds below VA (positive wing incidence) and VF (negative incidence)
the maximum loads which can be applied to the aircraft are governed by CL,max. As the
speed increases it is possible to apply the positive and negative limit loads, correspond-
ing to n1 and n3, without stalling the aircraft so that AC and FE represent maximum
operational load factors for the aircraft. Above the design cruising speed VC, the cut-off
lines CD1 and D2E relieve the design cases to be covered since it is not expected that
the limit loads will be applied at maximum speed. Values of n1, n2 and n3 are specified
by the airworthiness authorities for particular aircraft; typical load factors are shown
in Table 13.1.
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A particular flight envelope is applicable to one altitude only since CL,max is generally
reduced with an increase of altitude, and the speed of sound decreases with altitude
thereby reducing the critical Mach number and hence the design diving speed VD.
Flight envelopes are therefore drawn for a range of altitudes from sea level to the
operational ceiling of the aircraft.

13.2 Load factor determination

Several problems require solution before values for the various load factors in the flight
envelope can be determined. The limit load, for example, may be produced by a spec-
ified manoeuvre or by an encounter with a particularly severe gust (gust cases and the
associated gust envelope are discussed in Section 14.4). Clearly some knowledge of pos-
sible gust conditions is required to determine the limiting case. Furthermore, the fixing
of the proof and ultimate factors also depends upon the degree of uncertainty of design,
variations in structural strength, structural deterioration, etc. We shall now investigate
some of these problems to see their comparative influence on load factor values.

13.2.1 Limit load

An aircraft is subjected to a variety of loads during its operational life, the main classes of
which are: manoeuvre loads, gust loads, undercarriage loads, cabin pressure loads, buf-
feting and induced vibrations. Of these, manoeuvre, undercarriage and cabin pressure
loads are determined with reasonable simplicity since manoeuvre loads are controlled
design cases, undercarriages are designed for given maximum descent rates and cabin
pressures are specified. The remaining loads depend to a large extent on the atmo-
spheric conditions encountered during flight. Estimates of the magnitudes of such
loads are only possible therefore if in-flight data on these loads is available. It obvi-
ously requires a great number of hours of flying if the experimental data are to include
possible extremes of atmospheric conditions. In practice, the amount of data required
to establish the probable period of flight time before an aircraft encounters, say, a gust
load of a given severity, is a great deal more than that available. It therefore becomes
a problem in statistics to extrapolate the available data and calculate the probability
of an aircraft being subjected to its proof or ultimate load during its operational life.
The aim would be for a zero or negligible rate of occurrence of its ultimate load and
an extremely low rate of occurrence of its proof load. Having decided on an ultimate
load, then the limit load may be fixed as defined in Section 13.1 although the value of
the ultimate factor includes, as we have already noted, allowances for uncertainties in
design, variation in structural strength and structural deterioration.

13.2.2 Uncertainties in design and structural deterioration

Neither of these presents serious problems in modern aircraft construction and therefore
do not require large factors of safety to minimize their effects. Modern methods of
aircraft structural analysis are refined and, in any case, tests to determine actual failure
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loads are carried out on representative full scale components to verify design estimates.
The problem of structural deterioration due to corrosion and wear may be largely
eliminated by close inspection during service and the application of suitable protective
treatments.

13.2.3 Variation in structural strength

To minimize the effect of the variation in structural strength between two apparently
identical components, strict controls are employed in the manufacture of materials
and in the fabrication of the structure. Material control involves the observance of
strict limits in chemical composition and close supervision of manufacturing methods
such as machining, heat treatment, rolling, etc. In addition, the inspection of samples
by visual, radiographic and other means, and the carrying out of strength tests on
specimens, enable below limit batches to be isolated and rejected. Thus, if a sample of
a batch of material falls below a specified minimum strength then the batch is rejected.
This means of course that an actual structure always comprises materials with properties
equal to or better than those assumed for design purposes, an added but unallowed for
‘bonus’ in considering factors of safety.

Similar precautions are applied to assembled structures with regard to dimension tol-
erances, quality of assembly, welding, etc. Again, visual and other inspection methods
are employed and, in certain cases, strength tests are carried out on sample structures.

13.2.4 Fatigue

Although adequate precautions are taken to ensure that an aircraft’s structure possesses
sufficient strength to withstand the most severe expected gust or manoeuvre load, there
still remains the problem of fatigue. Practically all components of the aircraft’s structure
are subjected to fluctuating loads which occur a great many times during the life of the
aircraft. It has been known for many years that materials fail under fluctuating loads at
much lower values of stress than their normal static failure stress. A graph of failure
stress against number of repetitions of this stress has the typical form shown in Fig. 13.2.
For some materials, such as mild steel, the curve (usually known as an S–N curve or
diagram) is asymptotic to a certain minimum value, which means that the material has
an actual infinite-life stress. Curves for other materials, for example aluminium and its
alloys, do not always appear to have asymptotic values so that these materials may not
possess an infinite-life stress. We shall discuss the implications of this a little later.

Prior to the mid-1940s little attention had been paid to fatigue considerations in the
design of aircraft structures. It was felt that sufficient static strength would eliminate
the possibility of fatigue failure. However, evidence began to accumulate that several
aircraft crashes had been caused by fatigue failure. The seriousness of the situation was
highlighted in the early 1950s by catastrophic fatigue failures of two Comet airliners.
These were caused by the once-per-flight cabin pressurization cycle which produced
circumferential and longitudinal stresses in the fuselage skin. Although these stresses
were well below the allowable stresses for single cycle loading, stress concentrations
occurred at the corners of the windows and around rivets which raised local stresses
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Fig. 13.2 Typical form of S–N diagram.

considerably above the general stress level. Repeated cycles of pressurization produced
fatigue cracks which propagated disastrously, causing an explosion of the fuselage at
high altitude.

Several factors contributed to the emergence of fatigue as a major factor in design.
For example, aircraft speeds and sizes increased, calling for higher wing and other load-
ings. Consequently, the effect of turbulence was magnified and the magnitudes of the
fluctuating loads became larger. In civil aviation, airliners had a greater utilization and
a longer operational life. The new ‘zinc-rich’ alloys, used for their high static strength
properties, did not show a proportional improvement in fatigue strength, exhibited high
crack propagation rates and were extremely notch sensitive.

Despite the fact that the causes of fatigue were reasonably clear at that time its
elimination as a threat to aircraft safety was a different matter. The fatigue problem has
two major facets: the prediction of the fatigue strength of a structure and a knowledge of
the loads causing fatigue. Information was lacking on both counts. The Royal Aircraft
Establishment (RAE) and the aircraft industry therefore embarked on an extensive test
programme to determine the behaviour of complete components, joints and other detail
parts under fluctuating loads. These included fatigue testing by the RAE of some 50
Meteor 4 tailplanes at a range of temperatures, plus research, also by the RAE, into
the fatigue behaviour of joints and connections. Further work was undertaken by some
universities and by the industry itself into the effects of stress concentrations.

In conjunction with their fatigue strength testing, the RAE initiated research to
develop a suitable instrument for counting and recording gust loads over long periods
of time. Such an instrument was developed by J. Taylor in 1950 and was designed so
that the response fell off rapidly above 10 Hz. Crossings of g thresholds from 0.2 to
1.8 g at 0.1 g intervals were recorded (note that steady level flight is 1 g flight) during
experimental flying at the RAE on three different aircraft over 28 000 km, and the best
techniques for extracting information from the data established. Civil airlines cooper-
ated by carrying the instruments on their regular air services for a number of years. Eight
different types of aircraft were equipped so that by 1961 records had been obtained for
regions including Europe, the Atlantic, Africa, India and the Far East, representing
19 000 hours and 8 million km of flying.
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Atmospheric turbulence and the cabin pressurization cycle are only two of the many
fluctuating loads which cause fatigue damage in aircraft. On the ground the wing is
supported on the undercarriage and experiences tensile stresses in its upper surfaces and
compressive stresses in its lower surfaces. In flight these stresses are reversed as aero-
dynamic lift supports the wing. Also, the impact of landing and ground manoeuvring
on imperfect surfaces cause stress fluctuations while, during landing and take-off, flaps
are lowered and raised, producing additional load cycles in the flap support structure.
Engine pylons are subjected to fatigue loading from thrust variations in take-off and
landing and also to inertia loads produced by lateral gusts on the complete aircraft.

A more detailed investigation of fatigue and its associated problems is presented in
Chapter 15 whilst a fuller discussion of airworthiness as applied to civil jet aircraft is
presented in Ref. [1].

Reference

1 Jenkinson, L. R., Simpkin, P. and Rhodes, D., Civil Jet Aircraft Design, Arnold, London, 1999.
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Airframe loads

In Chapter 12, we discussed in general terms the types of load to which aircraft are
subjected during their operational life. We shall now examine in more detail the loads
which are produced by various manoeuvres and the manner in which they are calculated.

14.1 Aircraft inertia loads

The maximum loads on the components of an aircraft’s structure generally occur when
the aircraft is undergoing some form of acceleration or deceleration, such as in landings,
take-offs and manoeuvres within the flight and gust envelopes. Thus, before a structural
component can be designed, the inertia loads corresponding to these accelerations and
decelerations must be calculated. For these purposes we shall suppose that an aircraft
is a rigid body and represent it by a rigid mass, m, as shown in Fig. 14.1. We shall
also, at this stage, consider motion in the plane of the mass which would correspond
to pitching of the aircraft without roll or yaw. We shall also suppose that the centre
of gravity (CG) of the mass has coordinates x̄, ȳ referred to x and y axes having an
arbitrary origin O; the mass is rotating about an axis through O perpendicular to the xy
plane with a constant angular velocity ω.

Fig. 14.1 Inertia forces on a rigid mass having a constant angular velocity.
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The acceleration of any point, a distance r from O, is ω2r and is directed towards O.
Thus, the inertia force acting on the element, δm, is ω2rδm in a direction opposite to
the acceleration, as shown in Fig. 14.1. The components of this inertia force, parallel
to the x and y axes, are ω2rδm cos θ and ω2rδm sin θ, respectively, or, in terms of x and
y, ω2xδm and ω2yδm. The resultant inertia forces, Fx and Fy, are then given by

Fx =
∫

ω2x dm = ω2
∫

x dm

Fy =
∫

ω2y dm = ω2
∫

y dm

in which we note that the angular velocity ω is constant and may therefore be taken
outside the integral sign. In the above expressions

∫
x dm and

∫
y dm are the moments

of the mass, m, about the y and x axes, respectively, so that

Fx = ω2x̄m (14.1)

and

Fy = ω2ȳm (14.2)

If the CG lies on the x axis, ȳ = 0 and Fy = 0. Similarly, if the CG lies on the y axis,
Fx = 0. Clearly, if O coincides with the CG, x̄ = ȳ = 0 and Fx = Fy = 0.

Suppose now that the rigid body is subjected to an angular acceleration (or decel-
eration) α in addition to the constant angular velocity, ω, as shown in Fig. 14.2. An
additional inertia force, αrδm, acts on the element δm in a direction perpendicular to r
and in the opposite sense to the angular acceleration. This inertia force has components
αrδm cos θ and αrδm sin θ, i.e. αxδm and αyδm, in the y and x directions, respectively.
Thus, the resultant inertia forces, Fx and Fy, are given by

Fx =
∫

αy dm = α

∫
y dm

Fig. 14.2 Inertia forces on a rigid mass subjected to an angular acceleration.
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and

Fy = −
∫

αx dm = −α

∫
x dm

for α in the direction shown. Then, as before

Fx = αȳm (14.3)

and

Fy = αx̄m (14.4)

Also, if the CG lies on the x axis, ȳ = 0 and Fx = 0. Similarly, if the CG lies on the y
axis, x̄ = 0 and Fy = 0.

The torque about the axis of rotation produced by the inertia force corresponding to
the angular acceleration on the element δm is given by

δTO = αr2δm

Thus, for the complete mass

TO =
∫

αr2 dm = α

∫
r2 dm

The integral term in this expression is the moment of inertia, IO, of the mass about the
axis of rotation. Thus

TO = αIO (14.5)

Equation (14.5) may be rewritten in terms of ICG, the moment of inertia of the mass
about an axis perpendicular to the plane of the mass through the CG. Hence, using the
parallel axes theorem

IO = m(r̄)2 + ICG

where r̄ is the distance between O and the CG. Then

IO = m[(x̄)2 + (ȳ)2] + ICG

and

TO = m[(x̄)2 + (ȳ)2]α + ICGα (14.6)

Example 14.1
An aircraft having a total weight of 45 kN lands on the deck of an aircraft carrier and is
brought to rest by means of a cable engaged by an arrester hook, as shown in Fig. 14.3.
If the deceleration induced by the cable is 3 g determine the tension, T , in the cable, the
load on an undercarriage strut and the shear and axial loads in the fuselage at the section
AA; the weight of the aircraft aft of AA is 4.5 kN. Calculate also the length of deck
covered by the aircraft before it is brought to rest if the touch-down speed is 25 m/s.
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Fig. 14.3 Forces on the aircraft of Example 14.1.

The aircraft is subjected to a horizontal inertia force ma where m is the mass of the
aircraft and a its deceleration. Thus, resolving forces horizontally

T cos 10◦ − ma = 0

i.e.

T cos 10◦ − 45

g
3 g = 0

which gives

T = 137.1 kN

Now resolving forces vertically

R − W − T sin 10◦ = 0

i.e.

R = 45 + 131.1 sin 10◦ = 68.8 kN

Assuming two undercarriage struts, the load in each strut will be (R/2)/cos 20◦ = 36.6 kN.
Let N and S be the axial and shear loads at the section AA, as shown in Fig. 14.4.

The inertia load acting at the CG of the fuselage aft of AA is m1a, where m1 is the mass
of the fuselage aft of AA. Then

m1a = 4.5

g
3 g = 13.5 kN

Fig. 14.4 Shear and axial loads at the section AA of the aircraft of Example 14.1.
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Resolving forces parallel to the axis of the fuselage

N − T + m1a cos 10◦ − 4.5 sin 10◦ = 0

i.e.

N − 137.1 + 13.5 cos 10◦ − 4.5 sin 10◦ = 0

whence

N = 124.6 kN

Now resolving forces perpendicular to the axis of the fuselage

S − m1a sin 10◦ − 4.5 cos 10◦ = 0

i.e.

S − 13.5 sin 10◦ − 4.5 cos 10◦ = 0

so that

S = 6.8 kN

Note that, in addition to the axial load and shear load at the section AA, there will also
be a bending moment.

Finally, from elementary dynamics

v2 = v2
0 + 2as

where v0 is the touchdown speed, v the final speed (=0) and s the length of deck
covered. Then

v2
0 = −2as

i.e.

252 = −2(−3 × 9.81)s

which gives

s = 10.6 m

Example 14.2
An aircraft having a weight of 250 kN and a tricycle undercarriage lands at a vertical
velocity of 3.7 m/s, such that the vertical and horizontal reactions on the main wheels
are 1200 kN and 400 kN respectively; at this instant the nose wheel is 1.0 m from the
ground, as shown in Fig. 14.5. If the moment of inertia of the aircraft about its CG is
5.65 × 108 Ns2 mm determine the inertia forces on the aircraft, the time taken for its
vertical velocity to become zero and its angular velocity at this instant.
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Fig. 14.5 Geometry of the aircraft of Example 14.2.

The horizontal and vertical inertia forces max and may act at the CG, as shown in
Fig. 14.5, m is the mass of the aircraft and ax and ay its accelerations in the horizontal
and vertical directions, respectively. Then, resolving forces horizontally

max − 400 = 0

whence

max = 400 kN

Now resolving forces vertically

may + 250 − 1200 = 0

which gives

may = 950 kN

Then

ay = 950

m
= 950

250/g
= 3.8 g (i)

Now taking moments about the CG

ICGα − 1200 × 1.0 − 400 × 2.5 = 0 (ii)

from which

ICGα = 2200 m kN

Hence

α = ICGα

ICG
= 2200 × 106

5.65 × 108 = 3.9 rad/s2 (iii)

From Eq. (i), the aircraft has a vertical deceleration of 3.8 g from an initial vertical
velocity of 3.7 m/s. Therefore, from elementary dynamics, the time, t, taken for the
vertical velocity to become zero, is given by

v = v0 + ayt (iv)

in which v = 0 and v0 = 3.7 m/s. Hence

0 = 3.7 − 3.8 × 9.81t



Ch14-H6739.tex 25/1/2007 17: 1 Page 411

14.2 Symmetric manoeuvre loads 411

whence

t = 0.099 s

In a similar manner to Eq. (iv) the angular velocity of the aircraft after 0.099 s is
given by

ω = ω0 + αt

in which ω0 = 0 and α = 3.9 rad/s2. Hence

ω = 3.9 × 0.099

i.e.

ω = 0.39 rad/s

14.2 Symmetric manoeuvre loads

We shall now consider the calculation of aircraft loads corresponding to the flight
conditions specified by flight envelopes. There are, in fact, an infinite number of flight
conditions within the boundary of the flight envelope although, structurally, those
represented by the boundary are the most severe. Furthermore, it is usually found that
the corners A, C, D1, D2, E and F (see Fig. 13.1) are more critical than points on the
boundary between the corners so that, in practice, only the six conditions corresponding
to these corner points need be investigated for each flight envelope.

In symmetric manoeuvres we consider the motion of the aircraft initiated by move-
ment of the control surfaces in the plane of symmetry. Examples of such manoeuvres
are loops, straight pull-outs and bunts, and the calculations involve the determination
of lift, drag and tailplane loads at given flight speeds and altitudes. The effects of
atmospheric turbulence and gusts are discussed in Section 14.4.

14.2.1 Level flight

Although steady level flight is not a manoeuvre in the strict sense of the word, it
is a useful condition to investigate initially since it establishes points of load appli-
cation and gives some idea of the equilibrium of an aircraft in the longitudinal plane.
The loads acting on an aircraft in steady flight are shown in Fig. 14.6, with the following
notation:

L is the lift acting at the aerodynamic centre of the wing.
D is the aircraft drag.
M0 is the aerodynamic pitching moment of the aircraft less its horizontal tail.
P is the horizontal tail load acting at the aerodynamic centre of the tail, usually

taken to be at approximately one-third of the tailplane chord.
W is the aircraft weight acting at its CG.
T is the engine thrust, assumed here to act parallel to the direction of flight in order

to simplify calculation.
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Fig. 14.6 Aircraft loads in level flight.

The loads are in static equilibrium since the aircraft is in a steady, unaccelerated,
level flight condition. Thus for vertical equilibrium

L + P − W = 0 (14.7)

for horizontal equilibrium

T − D = 0 (14.8)

and taking moments about the aircraft’s CG in the plane of symmetry

La − Db − Tc − M0 − Pl = 0 (14.9)

For a given aircraft weight, speed and altitude, Eqs (14.7)–(14.9) may be solved for the
unknown lift, drag and tail loads. However, other parameters in these equations, such
as M0, depend upon the wing incidence α which in turn is a function of the required
wing lift so that, in practice, a method of successive approximation is found to be the
most convenient means of solution.

As a first approximation we assume that the tail load P is small compared with the
wing lift L so that, from Eq. (14.7), L ≈ W . From aerodynamic theory with the usual
notation

L = 1
2ρV2SCL

Hence

1
2ρV2SCL ≈ W (14.10)

Equation (14.10) gives the approximate lift coefficient CL and thus (from CL−α curves
established by wind tunnel tests) the wing incidence α. The drag load D follows (know-
ing V and α) and hence we obtain the required engine thrust T from Eq. (14.8). Also M0,
a, b, c and l may be calculated (again since V and α are known) and Eq. (14.9) solved
for P. As a second approximation this value of P is substituted in Eq. (14.7) to obtain a
more accurate value for L and the procedure is repeated. Usually three approximations
are sufficient to produce reasonably accurate values.
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Fig. 14.7 Aircraft loads in a pull-out from a dive.

In most cases P, D and T are small compared with the lift and aircraft weight.
Therefore, from Eq. (14.7) L ≈ W and substitution in Eq. (14.9) gives, neglecting
D and T

P ≈ W
a

l
− M0

l
(14.11)

We see from Eq. (14.11) that if a is large then P will most likely be positive. In other
words the tail load acts upwards when the CG of the aircraft is far aft. When a is small
or negative, i.e., a forward CG, then P will probably be negative and act downwards.

14.2.2 General case of a symmetric manoeuvre

In a rapid pull-out from a dive a downward load is applied to the tailplane, causing
the aircraft to pitch nose upwards. The downward load is achieved by a backward
movement of the control column, thereby applying negative incidence to the elevators,
or horizontal tail if the latter is all-moving. If the manoeuvre is carried out rapidly the
forward speed of the aircraft remains practically constant so that increases in lift and
drag result from the increase in wing incidence only. Since the lift is now greater than that
required to balance the aircraft weight the aircraft experiences an upward acceleration
normal to its flight path. This normal acceleration combined with the aircraft’s speed
in the dive results in the curved flight path shown in Fig. 14.7. As the drag load builds
up with an increase of incidence the forward speed of the aircraft falls since the thrust
is assumed to remain constant during the manoeuvre. It is usual, as we observed in the
discussion of the flight envelope, to describe the manoeuvres of an aircraft in terms of
a manoeuvring load factor n. For steady level flight n = 1, giving 1 g flight, although
in fact the acceleration is zero. What is implied in this method of description is that
the inertia force on the aircraft in the level flight condition is 1.0 times its weight. It
follows that the vertical inertia force on an aircraft carrying out an ng manoeuvre is
nW. We may therefore replace the dynamic conditions of the accelerated motion by an
equivalent set of static conditions in which the applied loads are in equilibrium with
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the inertia forces. Thus, in Fig. 14.7, n is the manoeuvre load factor while f is a similar
factor giving the horizontal inertia force. Note that the actual normal acceleration in
this particular case is (n − 1)g.

For vertical equilibrium of the aircraft, we have, referring to Fig. 14.7 where the
aircraft is shown at the lowest point of the pull-out

L + P + T sin γ − nW = 0 (14.12)

For horizontal equilibrium

T cos γ + fW − D = 0 (14.13)

and for pitching moment equilibrium about the aircraft’s CG

La − Db − Tc − M0 − Pl = 0 (14.14)

Equation (14.14) contains no terms representing the effect of pitching acceleration of
the aircraft; this is assumed to be negligible at this stage.

Again the method of successive approximation is found to be most convenient for
the solution of Eqs (14.12)–(14.14). There is, however, a difference to the procedure
described for the steady level flight case. The engine thrust T is no longer directly
related to the drag D as the latter changes during the manoeuvre. Generally, the thrust
is regarded as remaining constant and equal to the value appropriate to conditions before
the manoeuvre began.

Example 14.3
The curves CD, α and CM,CG for a light aircraft are shown in Fig. 14.8(a). The aircraft
weight is 8000 N, its wing area 14.5 m2 and its mean chord 1.35 m. Determine the lift,
drag, tail load and forward inertia force for a symmetric manoeuvre corresponding to
n = 4.5 and a speed of 60 m/s. Assume that engine-off conditions apply and that the air
density is 1.223 kg/m3. Figure 14.8(b) shows the relevant aircraft dimensions.

As a first approximation we neglect the tail load P. Therefore, from Eq. (14.12),
since T = 0, we have

L ≈ nW (i)

Hence

CL = L
1
2ρV2S

≈ 4.5 × 8000
1
2 × 1.223 × 602 × 14.5

= 1.113

From Fig. 14.8(a), α = 13.75◦ and CM,CG = 0.075. The tail arm l, from Fig. 14.8(b), is

l = 4.18 cos (α − 2) + 0.31 sin (α − 2) (ii)

Substituting the above value of α gives l = 4.123 m. In Eq. (14.14) the terms
La − Db − M0 are equivalent to the aircraft pitching moment MCG about its CG.
Eq. (14.14) may therefore be written

MCG − Pl = 0
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Fig. 14.8 (a) CD, α, CM,CG − CL curves for Example 14.3; (b) geometry of Example 14.3.

or

Pl = 1
2ρV2ScCM,CG (iii)

where c = wing mean chord. Substituting P from Eq. (iii) into Eq. (14.12) we have

L +
1
2ρV2ScCM,CG

l
= nW

or dividing through by 1
2ρV2S

CL + c

l
CM,CG = nW

1
2ρV2S

(iv)

We now obtain a more accurate value for CL from Eq. (iv)

CL = 1.113 − 1.35

4.123
× 0.075 = 1.088

giving α = 13.3◦ and CM,CG = 0.073.
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Substituting this value of α into Eq. (ii) gives a second approximation for l, namely
l = 4.161 m.

Equation (iv) now gives a third approximation for CL, i.e. CL = 1.099. Since the three
calculated values of CL are all extremely close further approximations will not give
values of CL very much different to those above. Therefore, we shall take CL = 1.099.
From Fig. 14.8(a) CD = 0.0875.

The values of lift, tail load, drag and forward inertia force then follow:

Lift L = 1
2ρV2SCL = 1

2 × 1.223 × 602 × 14.5 × 1.099 = 35 000 N

Tail load P = nW − L = 4.5 × 8000 − 35 000 = 1000 N

Drag D = 1
2ρV2SCD = 1

2 × 1.223 × 602 × 14.5 × 0.0875 = 2790 N

Forward inertia force fW = D (From Eq. (14.13)) = 2790 N

14.3 Normal accelerations associated with various types
of manoeuvre

In Section 14.2 we determined aircraft loads corresponding to a given manoeuvre load
factor n. Clearly it is necessary to relate this load factor to given types of manoeuvre.
Two cases arise: the first involving a steady pull-out from a dive and the second, a
correctly banked turn. Although the latter is not a symmetric manoeuvre in the strict
sense of the word, it gives rise to normal accelerations in the plane of symmetry and is
therefore included.

14.3.1 Steady pull-out

Let us suppose that the aircraft has just begun its pull-out from a dive so that it is
describing a curved flight path but is not yet at its lowest point. The loads acting on the
aircraft at this stage of the manoeuvre are shown in Fig. 14.9, where R is the radius of
curvature of the flight path. In this case the lift vector must equilibrate the normal (to
the flight path) component of the aircraft weight and provide the force producing the
centripetal acceleration V2/R of the aircraft towards the centre of curvature of the flight
path. Thus

L = WV2

gR
+ W cos θ

or, since L = nW (see Section 14.2)

n = V2

gR
+ cos θ (14.15)
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Fig. 14.9 Aircraft loads and acceleration during a steady pull-out.

At the lowest point of the pull-out, θ = 0, and

n = V2

gR
+ 1 (14.16)

We see from either Eq. (14.15) or Eq. (14.16) that the smaller the radius of the flight
path, that is the more severe the pull-out, the greater the value of n. It is quite possible
therefore for a severe pull-out to overstress the aircraft by subjecting it to loads which
lie outside the flight envelope and which may even exceed the proof or ultimate loads.
In practice, the control surface movement may be limited by stops incorporated in
the control circuit. These stops usually operate only above a certain speed giving the
aircraft adequate manoeuvrability at lower speeds. For hydraulically operated controls
‘artificial feel’ is built in to the system whereby the stick force increases progressively
as the speed increases; a necessary precaution in this type of system since the pilot is
merely opening and closing valves in the control circuit and therefore receives no direct
physical indication of control surface forces.

Alternatively, at low speeds, a severe pull-out or pull-up may stall the aircraft. Again
safety precautions are usually incorporated in the form of stall warning devices since,
for modern high speed aircraft, a stall can be disastrous, particularly at low altitude.

14.3.2 Correctly banked turn

In this manoeuvre the aircraft flies in a horizontal turn with no sideslip at constant
speed. If the radius of the turn is R and the angle of bank φ, then the forces acting on
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Fig. 14.10 Correctly banked turn.

the aircraft are those shown in Fig. 14.10. The horizontal component of the lift vector
in this case provides the force necessary to produce the centripetal acceleration of the
aircraft towards the centre of the turn. Then

L sin φ = WV2

gR
(14.17)

and for vertical equilibrium

L cos φ = W (14.18)

or

L = W sec φ (14.19)

From Eq. (14.19) we see that the load factor n in the turn is given by

n = sec φ (14.20)

Also, dividing Eq. (14.17) by Eq. (14.18)

tan φ = V2

gR
(14.21)

Examination of Eq. (14.21) reveals that the tighter the turn the greater the angle of bank
required to maintain horizontal flight. Furthermore, we see from Eq. (14.20) that an
increase in bank angle results in an increased load factor. Aerodynamic theory shows
that for a limiting value of n the minimum time taken to turn through a given angle at a
given value of engine thrust occurs when the lift coefficient CL is a maximum; that is,
with the aircraft on the point of stalling.

14.4 Gust loads

In Section 14.2 we considered aircraft loads resulting from prescribed manoeuvres
in the longitudinal plane of symmetry. Other types of in-flight load are caused by
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Fig. 14.11 (a) Sharp-edged gust; (b) graded gust; (c) 1 − cosine gust.

air turbulence. The movements of the air in turbulence are generally known as gusts
and produce changes in wing incidence, thereby subjecting the aircraft to sudden or
gradual increases or decreases in lift from which normal accelerations result. These
may be critical for large, high speed aircraft and may possibly cause higher loads than
control initiated manoeuvres.

At the present time two approaches are employed in gust analysis. One method, which
has been in use for a considerable number of years, determines the aircraft response
and loads due to a single or ‘discrete’ gust of a given profile. This profile is defined as a
distribution of vertical gust velocity over a given finite length or given period of time.
Examples of these profiles are shown in Fig. 14.11.

Early airworthiness requirements specified an instantaneous application of gust
velocity u, resulting in the ‘sharp-edged’ gust of Fig. 14.11(a). Calculations of nor-
mal acceleration and aircraft response were based on the assumptions that the aircraft’s
flight is undisturbed while the aircraft passes from still air into the moving air of the
gust and during the time taken for the gust loads to build up; that the aerodynamic
forces on the aircraft are determined by the instantaneous incidence of the particular
lifting surface and finally that the aircraft’s structure is rigid. The second assumption
here relating the aerodynamic force on a lifting surface to its instantaneous incidence
neglects the fact that in a disturbance such as a gust there is a gradual growth of circu-
lation and hence of lift to a steady state value (Wagner effect). This in general leads to
an overestimation of the upward acceleration of an aircraft and therefore of gust loads.

The ‘sharp-edged’ gust was replaced when it was realized that the gust velocity built
up to a maximum over a period of time. Airworthiness requirements were modified
on the assumption that the gust velocity increased linearly to a maximum value over a
specified gust gradient distance H. Hence the ‘graded’ gust of Fig. 14.11(b). In the UK,
H is taken as 30.5 m. Since, as far as the aircraft is concerned, the gust velocity builds
up to a maximum over a period of time it is no longer allowable to ignore the change of
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flight path as the aircraft enters the gust. By the time the gust has attained its maximum
value the aircraft has developed a vertical component of velocity and, in addition,
may be pitching depending on its longitudinal stability characteristics. The effect of
the former is to reduce the severity of the gust while the latter may either increase
or decrease the loads involved. To evaluate the corresponding gust loads the designer
may either calculate the complete motion of the aircraft during the disturbance and
hence obtain the gust loads, or replace the ‘graded’ gust by an equivalent ‘sharp-edged’
gust producing approximately the same effect. We shall discuss the latter procedure in
greater detail later.

The calculation of the complete response of the aircraft to a ‘graded’ gust may be
obtained from its response to a ‘sharp-edged’ or ‘step’ gust, by treating the former as
comprising a large number of small ‘steps’ and superimposing the responses to each of
these. Such a process is known as convolution or Duhamel integration. This treatment
is desirable for large or unorthodox aircraft where aeroelastic (structural flexibility)
effects on gust loads may be appreciable or unknown. In such cases the assumption of
a rigid aircraft may lead to an underestimation of gust loads. The equations of motion
are therefore modified to allow for aeroelastic in addition to aerodynamic effects. For
small and medium-sized aircraft having orthodox aerodynamic features the equivalent
‘sharp-edged’ gust procedure is satisfactory.

While the ‘graded’ or ‘ramp’ gust is used as a basis for gust load calculations, other
shapes of gust profile are in current use. Typical of these is the ‘l − cosine’ gust of
Fig. 14.11(c), where the gust velocity u is given by u(t) = (U/2)[l − cos (πt/T )]. Again
the aircraft response is determined by superimposing the responses to each of a large
number of small steps.

Although the ‘discrete’ gust approach still finds widespread use in the calculation
of gust loads, alternative methods based on power spectral analysis are being investi-
gated. The advantage of the power spectral technique lies in its freedom from arbitrary
assumptions of gust shapes and sizes. It is assumed that gust velocity is a random
variable which may be regarded for analysis as consisting of a large number of sinu-
soidal components whose amplitudes vary with frequency. The power spectrum of
such a function is then defined as the distribution of energy over the frequency range.
This may then be related to gust velocity. To establish appropriate amplitude and
frequency distributions for a particular random gust profile requires a large amount
of experimental data. The collection of such data has been previously referred to in
Section 13.2.

Calculations of the complete response of an aircraft and detailed assessments of
the ‘discrete’ gust and power spectral methods of analysis are outside the scope of
this book. More information may be found in Refs [1–4] at the end of the chapter.
Our present analysis is confined to the ‘discrete’ gust approach, in which we con-
sider the ‘sharp-edged’ gust and the equivalent ‘sharp-edged’ gust derived from the
‘graded’ gust.

14.4.1 ‘Sharp-edged’ gust

The simplifying assumptions introduced in the determination of gust loads resulting
from the ‘sharp-edged’ gust, have been discussed in the earlier part of this section.
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Fig. 14.12 Increase in wing incidence due to a sharp-edged gust.

In Fig. 14.12 the aircraft is flying at a speed V with wing incidence α0 in still air. After
entering the gust of upward velocity u, the incidence increases by an amount tan−1u/V ,
or since u is usually small compared with V , u/V . This is accompanied by an increase

in aircraft speed from V to (V2 + u2)
1
2 , but again this increase is neglected since u is

small. The increase in wing lift 	L is then given by

	L = 1
2ρV2S

∂CL

∂α

u

V
= 1

2
ρVS

∂CL

∂α
u (14.22)

where ∂CL/∂α is the wing lift–curve slope. Neglecting the change of lift on the tailplane
as a first approximation, the gust load factor 	n produced by this change of lift is

	n =
1
2ρVS(∂CL/∂α)u

W
(14.23)

where W is the aircraft weight. Expressing Eq. (14.23) in terms of the wing loading,
w = W /S, we have

	n =
1
2ρV (∂CL/∂α)u

w
(14.24)

This increment in gust load factor is additional to the steady level flight value n = 1.
Therefore, as a result of the gust, the total gust load factor is

n = 1 +
1
2ρV (∂CL/∂α)u

w
(14.25)

Similarly, for a downgust

n = 1 −
1
2ρV (∂CL/∂α)u

w
(14.26)
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If flight conditions are expressed in terms of equivalent sea-level conditions then V
becomes the equivalent airspeed (EAS), VE, u becomes uE and the air density ρ is
replaced by the sea-level value ρ0. Equations (14.25) and (14.26) are written

n = 1 +
1
2ρ0VE(∂CL/∂α)uE

w
(14.27)

and

n = 1 −
1
2ρ0VE(∂CL/∂α)uE

w
(14.28)

We observe from Eqs (14.25)–(14.28) that the gust load factor is directly proportional
to aircraft speed but inversely proportional to wing loading. It follows that high speed
aircraft with low or moderate wing loadings are most likely to be affected by gust loads.

The contribution to normal acceleration of the change in tail load produced by the
gust may be calculated using the same assumptions as before. However, the change
in tailplane incidence is not equal to the change in wing incidence due to downwash
effects at the tail. Thus if 	P is the increase (or decrease) in tailplane load, then

	P = 1
2ρ0V2

EST	CL,T (14.29)

where ST is the tailplane area and 	CL,T the increment of tailplane lift coefficient
given by

	CL,T = ∂CL,T

∂α

uE

VE
(14.30)

in which ∂CL,T/∂α is the rate of change of tailplane lift coefficient with wing incidence.
From aerodynamic theory

∂CL,T

∂α
= ∂CL,T

∂αT

(
1 − ∂ε

∂α

)

where ∂CL,T/∂αT is the rate of change of CL,T with tailplane incidence and ∂ε/∂α the
rate of change of downwash angle with wing incidence. Substituting for 	CL,T from
Eq. (14.30) into Eq. (14.29), we have

	P = 1
2ρ0VEST

∂CL,T

∂α
uE (14.31)

For positive increments of wing lift and tailplane load

	nW = 	L + 	P

or, from Eqs (14.27) and (14.31)

	n =
1
2ρ0VE(∂CL/∂α)uE

w

(
1 + ST

S

∂CL,T/∂α

∂CL/∂α

)
(14.32)
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14.4.2 The ‘graded’ gust

The ‘graded’ gust of Fig. 14.11(b) may be converted to an equivalent ‘sharp-edged’
gust by multiplying the maximum velocity in the gust by a gust alleviation factor, F.
Equation (14.27) then becomes

n = 1 +
1
2ρ0VE(∂CL/∂α)FuE

w
(14.33)

Similar modifications are carried out on Eqs (14.25), (14.26), (14.28) and (14.32).
The gust alleviation factor allows for some of the dynamic properties of the aircraft,
including unsteady lift, and has been calculated taking into account the heaving motion
(i.e. the up and down motion with zero rate of pitch) of the aircraft only.5

Horizontal gusts cause lateral loads on the vertical tail or fin. Their magnitudes may
be calculated in an identical manner to those above, except that areas and values of
lift curve slope are referred to the vertical tail. Also, the gust alleviation factor in the
‘graded’ gust case becomes F1 and includes allowances for the aerodynamic yawing
moment produced by the gust and the yawing inertia of the aircraft.

14.4.3 Gust envelope

Airworthiness requirements usually specify that gust loads shall be calculated at certain
combinations of gust and flight speed. The equations for gust load factor in the above
analysis show that n is proportional to aircraft speed for a given gust velocity. Therefore,
we may plot a gust envelope similar to the flight envelope of Fig. 13.1, as shown in
Fig. 14.13. The gust speeds ±U1, ±U2 and ±U3 are high, medium and low velocity
gusts, respectively. Cut-offs occur at points where the lines corresponding to each gust

Fig. 14.13 Typical gust envelope.
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velocity meet specific aircraft speeds. For example, A and F denote speeds at which a
gust of velocity ±U1 would stall the wing.

The lift coefficient–incidence curve is, as we noted in connection with the flight
envelope, affected by compressibility and therefore altitude so that a series of gust
envelopes should be drawn for different altitudes. An additional variable in the equations
for gust load factor is the wing loading w. Further gust envelopes should therefore be
drawn to represent different conditions of aircraft loading.

Typical values of U1, U2 and U3 are 20 m/s, 15.25 m/s and 7.5 m/s. It can be seen from
the gust envelope that the maximum gust load factor occurs at the cruising speed VC. If
this value of n exceeds that for the corresponding flight envelope case, that is n1, then
the gust case will be the most critical in the cruise. Let us consider a civil, non-aerobatic
aircraft for which n1 = 2.5, w = 2400 N/m2 and ∂CL/∂α = 5.0/rad. Taking F = 0.715
we have, from Eq. (14.33)

n = 1 +
1
2 × 1.223 VC × 5.0 × 0.715 × 15.25

2400

giving n = 1 + 0.0139VC, where the cruising speed VC is expressed as an EAS. For the
gust case to be critical

1 + 0.0139 VC > 2.5

or

VC > 108 m/s

Thus, for civil aircraft of this type having cruising speeds in excess of 108 m/s, the gust
case is the most critical. This would, in fact, apply to most modern civil airliners.

Although the same combination of V and n in the flight and gust envelopes will
produce the same total lift on an aircraft, the individual wing and tailplane loads will be
different, as shown previously (see the derivation of Eq. (14.33)). This situation can be
important for aircraft such as theAirbus, which has a large tailplane and a CG forward of
the aerodynamic centre. In the flight envelope case the tail load is downwards whereas
in the gust case it is upwards; clearly there will be a significant difference in wing load.

The transference of manoeuvre and gust loads into bending, shear and torsional loads
on wings, fuselage and tailplanes has been discussed in Section 12.1. Further loads arise
from aileron application, in undercarriages during landing, on engine mountings and
during crash landings. Analysis and discussion of these may be found in Ref. [6].
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Problems

P.14.1 The aircraft shown in Fig. P. 14.1(a) weighs 135 kN and has landed such
that at the instant of impact the ground reaction on each main undercarriage wheel is
200 kN and its vertical velocity is 3.5 m/s.

Fig. P.14.1

If each undercarriage wheel weighs 2.25 kN and is attached to an oleo strut, as shown
in Fig. P.8.1(b), calculate the axial load and bending moment in the strut; the strut may
be assumed to be vertical. Determine also the shortening of the strut when the vertical
velocity of the aircraft is zero.

Finally, calculate the shear force and bending moment in the wing at the section AA
if the wing, outboard of this section, weighs 6.6 kN and has its CG 3.05 m from AA.

Ans. 193.3 kN, 29.0 kN m (clockwise); 0.32 m; 19.5 kN, 59.6 kN m (anticlock-
wise).

P.14.2 Determine, for the aircraft of Example 14.2, the vertical velocity of the nose
wheel when it hits the ground.

Ans. 3.1 m/s.

P.14.3 Figure P.14.3 shows the flight envelope at sea-level for an aircraft of wing
span 27.5 m, average wing chord 3.05 m and total weight 196 000 N. The aerodynamic
centre is 0.915 m forward of the CG and the centre of lift for the tail unit is 16.7 m aft
of the CG. The pitching moment coefficient is

CM,0 = −0.0638 (nose-up positive)

both CM,0 and the position of the aerodynamic centre are specified for the complete
aircraft less tail unit.

For steady cruising flight at sea-level the fuselage bending moment at the CG is
600 000 Nm. Calculate the maximum value of this bending moment for the given flight
envelope. For this purpose it may be assumed that the aerodynamic loadings on the
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Fig. P.14.3

fuselage itself can be neglected, i.e. the only loads on the fuselage structure aft of the
CG are those due to the tail lift and the inertia of the fuselage.

Ans. 1 549 500 N m at n = 3.5, V = 152.5 m/s.

P.14.4 An aircraft weighing 238 000 N has wings 88.5 m2 in area for which
CD = 0.0075 + 0.045C2

L The extra-to-wing drag coefficient based on wing area is
0.0128 and the pitching moment coefficient for all parts excluding the tailplane about
an axis through the CG is given by CM · c = (0.427CL − 0.061)m. The radius from the
CG to the line of action of the tail lift may be taken as constant at 12.2 m. The moment
of inertia of the aircraft for pitching is 204 000 kg m2.

During a pull-out from a dive with zero thrust at 215 m/s EAS when the flight path
is at 40◦ to the horizontal with a radius of curvature of 1525 m, the angular velocity of
pitch is checked by applying a retardation of 0.25 rad/s2. Calculate the manoeuvre load
factor both at the CG and at the tailplane CP, the forward inertia coefficient and the tail
lift.

Ans. n = 3.78(CG), n = 5.19 at TP, f = −0.370, P = 18 925 N.

P.14.5 An aircraft flies at sea level in a correctly banked turn of radius 610 m at a
speed of 168 m/s. Figure P.14.5 shows the relative positions of the CG, aerodynamic
centre of the complete aircraft less tailplane and the tailplane centre of pressure for the
aircraft at zero lift incidence.

Calculate the tail load necessary for equilibrium in the turn. The necessary data are
given in the usual notation as follows:

Weight W = 133 500 N dCL/dα = 4.5/rad
Wing area S = 46.5 m2 CD = 0.01 + 0.05C2

L
Wing mean chord c̄ = 3.0 m CM,0 = −0.03

Ans. 73 160 N
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Fig. P.14.5

P.14.6 The aircraft for which the stalling speed Vs in level flight is 46.5 m/s has a
maximum allowable manoeuvre load factor n1 of 4.0. In assessing gyroscopic effects
on the engine mounting the following two cases are to be considered:

(a) Pull-out at maximum permissible rate from a dive in symmetric flight, the angle
of the flight path to the horizontal being limited to 60◦ for this aircraft.

(b) Steady, correctly banked turn at the maximum permissible rate in horizontal
flight.

Find the corresponding maximum angular velocities in yaw and pitch.

Ans. (a) Pitch, 0.37 rad/s, (b) Pitch, 0.41 rad/s, Yaw, 0.103 rad/s.

P.14.7 A tail-first supersonic airliner, whose essential geometry is shown in
Fig. P.14.7, flies at 610 m/s true airspeed at an altitude of 18 300 m. Assuming that
thrust and drag forces act in the same straight line, calculate the tail lift in steady
straight and level flight.

Fig. P.14.7

If, at the same altitude, the aircraft encounters a sharp-edged vertical up-gust of
18 m/s true airspeed, calculate the changes in the lift and tail load and also the resultant
load factor n.
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The relevant data in the usual notation are as follows:

Wing: S = 280 m2, ∂CL/∂α = 1.5
Tail: ST = 28 m2, ∂CL,T/∂α = 2.0

Weight W = 1 600 000 N
CM,0 = −0.01

Mean chord c̄ = 22.8 m

At 18 300 m

ρ = 0.116 kg/m3

Ans. P = 267 852 N, 	P = 36 257 N, 	L = 271 931 N, n = 1.19

P.14.8 An aircraft of all up weight 145 000 N has wings of area 50 m2 and mean
chord 2.5 m. For the whole aircraft CD = 0.021 + 0.041C2

L, for the wings dCL/dα = 4.8,
for the tailplane of area 9.0 m2, dCL,T/dα = 2.2 allowing for the effects of downwash,
and the pitching moment coefficient about the aerodynamic centre (of complete aircraft
less tailplane) based on wing area is CM,0 = −0.032. Geometric data are given in
Fig. P.14.8.

During a steady glide with zero thrust at 250 m/s EAS in which CL = 0.08, the aircraft
meets a downgust of equivalent ‘sharp-edged’ speed 6 m/s. Calculate the tail load, the
gust load factor and the forward inertia force, ρ0 = 1.223 kg/m3.

Ans. P = −28 902 N (down), n = −0.64, forward inertia force = 40 703 N.

Fig. P.14.8
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Fatigue

Fatigue has been discussed briefly in Section 11.7 when we examined the properties
of materials and also in Section 13.4 as part of the chapter on airworthiness. We shall
now look at fatigue in greater detail and consider factors affecting the life of an aircraft
including safe life and fail safe structures, designing against fatigue, the fatigue strength
of components, the prediction of aircraft fatigue life and crack propagation.

Fatigue is defined as the progressive deterioration of the strength of a material or
structural component during service such that failure can occur at much lower stress
levels than the ultimate stress level. As we have seen, fatigue is a dynamic phenomenon
which initiates small (micro) cracks in the material or component and causes them to
grow into large (macro) cracks; these, if not detected, can result in catastrophic failure.

Fatigue damage can be produced in a variety of ways. Cyclic fatigue is caused by
repeated fluctuating loads. Corrosion fatigue is fatigue accelerated by surface corrosion
of the material penetrating inwards so that the material strength deteriorates. Small-
scale rubbing movements and abrasion of adjacent parts cause fretting fatigue, while
thermal fatigue is produced by stress fluctuations induced by thermal expansions and
contractions; the latter does not include the effect on material strength of heat. Finally,
high frequency stress fluctuations, due to vibrations excited by jet or propeller noise,
cause sonic or acoustic fatigue.

Clearly an aircraft’s structure must be designed so that fatigue does not become
a problem. For aircraft in general, the requirements that the strength of an aircraft
throughout its operational life shall be such as to ensure that the possibility of a dis-
astrous fatigue failure shall be extremely remote (i.e. the probability of failure is less
than 10−7) under the action of the repeated loads of variable magnitude expected in
service. Also it is required that the principal parts of the primary structure of the aircraft
be subjected to a detailed analysis and to load tests which demonstrate a safe life, or
that the parts of the primary structure have fail-safe characteristics. These requirements
do not apply to light aircraft provided that zinc-rich aluminium alloys are not used in
their construction and that wing stress levels are kept low, i.e. provided that a 3.05 m/s
upgust causes no greater stress than 14 N/mm2.

15.1 Safe life and fail-safe structures

The danger of a catastrophic fatigue failure in the structure of an aircraft may be
eliminated completely or may become extremely remote if the structure is designed to
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have a safe life or to be fail-safe. In the former approach, the structure is designed to have
a minimum life during which it is known that no catastrophic damage will occur. At the
end of this life the structure must be replaced even though there may be no detectable
signs of fatigue. If a structural component is not economically replaceable when its
safe life has been reached the complete structure must be written off. Alternatively, it is
possible for easily replaceable components such as undercarriage legs and mechanisms
to have a safe life less than that of the complete aircraft since it would probably be
more economical to use, say, two lightweight undercarriage systems during the life of
the aircraft rather than carry a heavier undercarriage which has the same safe life as the
aircraft.

The fail-safe approach relies on the fact that the failure of a member in a redundant
structure does not necessarily lead to the collapse of the complete structure, provided
that the remaining members are able to carry the load shed by the failed member and can
withstand further repeated loads until the presence of the failed member is discovered.
Such a structure is called a fail-safe structure or a damage tolerant structure.

Generally, it is more economical to design some parts of the structure to be fail-
safe rather than to have a long safe life since such components can be lighter. When
failure is detected, either through a routine inspection or by some malfunction, such as
fuel leakage from a wing crack, the particular aircraft may be taken out of service and
repaired. However, the structure must be designed and the inspection intervals arranged
such that a failure, for example a crack, too small to be noticed at one inspection must not
increase to a catastrophic size before the next. The determination of crack propagation
rates is discussed later.

Some components must be designed to have a safe life; these include landing gear,
major wing joints, wing–fuselage joints and hinges on all-moving tailplanes or on
variable geometry wings. Components which may be designed to be fail-safe include
wing skins which are stiffened by stringers and fuselage skins which are stiffened by
frames and stringers; the stringers and frames prevent skin cracks spreading disastrously
for a sufficient period of time for them to be discovered at a routine inspection.

15.2 Designing against fatigue

Various precautions may be taken to ensure that an aircraft has an adequate fatigue
life. We have seen in Chapter 11 that the early aluminium–zinc alloys possessed high
ultimate and proof stresses but were susceptible to early failure under fatigue loading;
choice of materials is therefore important. The naturally aged aluminium–copper alloys
possess good fatigue resistance but with lower static strengths. Modern research is
concentrating on alloys which combine high strength with high fatigue resistance.

Attention to detail design is equally important. Stress concentrations can arise at
sharp corners and abrupt changes in section. Fillets should therefore be provided at
re-entrant corners, and cut-outs, such as windows and access panels, should be rein-
forced. In machined panels the material thickness should be increased around bolt
holes, while holes in primary bolted joints should be reamered to improve surface fin-
ish; surface scratches and machine marks are sources of fatigue crack initiation. Joggles
in highly stressed members should be avoided while asymmetry can cause additional
stresses due to bending.
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In addition to sound structural and detail design, an estimation of the number, fre-
quency and magnitude of the fluctuating loads an aircraft encounters is necessary. The
fatigue load spectrum begins when the aircraft taxis to its take-off position. During
taxiing the aircraft may be manoeuvring over uneven ground with a full payload so that
wing stresses, for example, are greater than in the static case. Also, during take-off and
climb and descent and landing the aircraft is subjected to the greatest load fluctuations.
The undercarriage is retracted and lowered; flaps are raised and lowered; there is the
impact on landing; the aircraft has to carry out manoeuvres; and, finally, the aircraft,
as we shall see, experiences a greater number of gusts than during the cruise.

The loads corresponding to these various phases must be calculated before the asso-
ciated stresses can be obtained. For example, during take-off, wing bending stresses
and shear stresses due to shear and torsion are based on the total weight of the aircraft
including full fuel tanks, and maximum payload all factored by 1.2 to allow for a bump
during each take-off on a hard runway or by 1.5 for a take-off from grass. The loads
produced during level flight and symmetric manoeuvres are calculated using the meth-
ods described in Section 14.2. From these values distributions of shear force, bending
moment and torque may be found in, say, the wing by integrating the lift distribution.
Loads due to gusts are calculated using the methods described in Section 14.4. Thus,
due to a single equivalent sharp-edged gust the load factor is given either by Eq (14.25)
or Eq (14.26).

Although it is a relatively simple matter to determine the number of load fluctuations
during a ground–air–ground cycle caused by standard operations such as raising and
lowering flaps, retracting and lowering the undercarriage, etc., it is more difficult to
estimate the number and magnitude of gusts an aircraft will encounter. For example,
there is a greater number of gusts at low altitude (during take-off, climb and descent)
than at high altitude (during cruise). Terrain (sea, flat land, mountains) also affects the
number and magnitude of gusts as does weather. The use of radar enables aircraft to
avoid cumulus where gusts are prevalent, but has little effect at low altitude in the climb
and descent where clouds cannot easily be avoided. The ESDU (Engineering Sciences
Data Unit) has produced gust data based on information collected by gust recorders
carried by aircraft. These show, in graphical form (l10 versus h curves, h is altitude),
the average distance flown at various altitudes for a gust having a velocity greater than
±3.05 m/s to be encountered. In addition, gust frequency curves give the number of
gusts of a given velocity per 1000 gusts of velocity 3.05 m/s. Combining both sets of
data enables the gust exceedance to be calculated, i.e. the number of gust cycles having
a velocity greater than or equal to a given velocity encountered per kilometre of flight.

Since an aircraft is subjected to the greatest number of load fluctuations during
taxi–take-off–climb and descent–standoff–landing while little damage is caused during
cruise, the fatigue life of an aircraft does not depend on the number of flying hours but
on the number of flights. However, the operational requirements of aircraft differ from
class to class. The Airbus is required to have a life free from fatigue cracks of 24 000
flights or 30 000 hours, while its economic repair life is 48 000 flights or 60 000 hours;
its landing gear, however, is designed for a safe life of 32 000 flights, after which it must
be replaced. On the other hand the BAe 146, with a greater number of shorter flights
per day than the Airbus, has a specified crack free life of 40 000 flights and an economic
repair life of 80 000 flights. Although the above figures are operational requirements,
the nature of fatigue is such that it is unlikely that all of a given type of aircraft will
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satisfy them. Of the total number of Airbus aircraft, at least 90% will achieve the above
values and 50% will be better; clearly, frequent inspections are necessary during an
aircraft’s life.

15.3 Fatigue strength of components

In Section 13.2.4 we discussed the effect of stress level on the number of cycles to
failure of a material such as mild steel. As the stress level is decreased the number of
cycles to failure increases, resulting in a fatigue endurance curve (the S–N curve) of
the type shown in Fig. 13.2. Such a curve corresponds to the average value of N at each
stress amplitude since there will be a wide range of values of N for the given stress;
even under carefully controlled conditions the ratio of maximum N to minimum N may
be as high as 10 : 1. Two other curves may therefore be drawn, as shown in Fig. 15.1,
enveloping all or nearly all the experimental results; these curves are known as the
confidence limits. If 99.9 per cent of all the results lie between the curves, i.e. only 1 in
1000 falls outside, they represent the 99.9 per cent confidence limits. If 99.99999 per
cent of results lie between the curves only 1 in 107 results will fall outside them and
they represent the 99.99999 per cent confidence limits.

The results from tests on a number of specimens may be represented as a histogram
in which the number of specimens failing within certain ranges R of N is plotted against
N . Then if Nav is the average value of N at a given stress amplitude the probability of
failure occurring at N cycles is given by

p(N) = 1

σ
√

2π
exp

[

−1

2

(
N − Nav

σ

)2
]

(15.1)

in which σ is the standard deviation of the whole population of N values. The derivation
of Eq. (15.1) depends on the histogram approaching the profile of a continuous function
close to the normal distribution, which it does as the interval Nav/R becomes smaller and
the number of tests increases. The cumulative probability, which gives the probability

( )

Fig. 15.1 S–N diagram.
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that a particular specimen will fail at or below N cycles, is defined as

P(N) =
∫ N

−∞
p(N) dN (15.2)

The probability that a specimen will endure more than N cycles is then 1 – P(N). The
normal distribution allows negative values of N , which is clearly impossible in a fatigue
testing situation. Other distributions, extreme value distributions, are more realistic and
allow the existence of minimum fatigue endurances and fatigue limits.

The damaging portion of a fluctuating load cycle occurs when the stress is tensile;
this causes cracks to open and grow. Therefore, if a steady tensile stress is superimposed
on a cyclic stress the maximum tensile stress during the cycle will be increased and the
number of cycles to failure will decrease. Conversely, if the steady stress is compressive
the maximum tensile stress will decrease and the number of cycles to failure will
increase. An approximate method of assessing the effect of a steady mean value of
stress is provided by a Goodman diagram, as shown in Fig. 15.2. This shows the cyclic
stress amplitudes which can be superimposed upon different mean stress levels to give
a constant fatigue life. In Fig. 15.2, Sa is the allowable stress amplitude, Sa,0 is the
stress amplitude required to produce fatigue failure at N cycles with zero mean stress,
Sm is the mean stress and Su the ultimate tensile stress. If Sm = Su any cyclic stress will
cause failure, while if Sm = 0 the allowable stress amplitude is Sa,0. The equation of
the straight line portion of the diagram is

Sa

Sa,0
=

(
1 − Sm

Su

)
(15.3)

Experimental evidence suggests a non-linear relationship for particular materials.
Equation (15.3) then becomes

Sa

Sa,0
=

[
1 −

(
Sm

Su

)m]
(15.4)

in which m lies between 0.6 and 2.

Fig. 15.2 Goodman diagram.
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In practical situations, fatigue is not caused by a large number of identical stress
cycles but by many different stress amplitude cycles. The prediction of the number
of cycles to failure therefore becomes complex. Miner and Palmgren have proposed
a linear cumulative damage law as follows. If N cycles of stress amplitude Sa cause
fatigue failure then 1 cycle produces 1/N of the total damage to cause failure. Therefore,
if r different cycles are applied in which a stress amplitude Sj ( j = 1, 2, . . . , r) would
cause failure in Nj cycles the number of cycles nj required to cause total fatigue failure
is given by

r∑

j=1

nj

Nj
= 1 (15.5)

Although S–N curves may be readily obtained for different materials by testing a large
number of small specimens (coupon tests), it is not practicable to adopt the same
approach for aircraft components since these are expensive to manufacture and the test
programme too expensive to run for long periods of time. However, such a programme
was initiated in the early 1950s to test the wings and tailplanes of Meteor and Mustang
fighters. These were subjected to constant amplitude loading until failure with different
specimens being tested at different load levels. Stresses were measured at points where
fatigue was expected (and actually occurred) and S–N curves plotted for the complete
structure. The curves had the usual appearance and at low stress levels had such large
endurances that fatigue did not occur; thus a fatigue limit existed. It was found that the
average S–N curve could be approximated to by the equation

Sa = 10.3(1 + 1000/
√

N) (15.6)

in which the mean stress was 90 N/mm2. In general terms, Eq. (15.6) may be
written as

Sa = S∞(1 + C/
√

N) (15.7)

in which S∞ is the fatigue limit and C is a constant. Thus Sa → S∞ as N → ∞.
Equation (15.7) may be rearranged to give the endurance directly, i.e.

N = C2
(

S∞
Sa − S∞

)2

(15.8)

which shows clearly that as Sa → S∞, N → ∞.
It has been found experimentally that N is inversely proportional to the mean stress as

the latter varies in the region of 90 N/mm2 while C is virtually constant. This suggests
a method of determining a ‘standard’ endurance curve (corresponding to a mean stress
level of 90 N/mm2) from tests carried out on a few specimens at other mean stress
levels. Suppose Sm is the mean stress level, not 90 N/mm2, in tests carried out on a few
specimens at an alternating stress level Sa,m where failure occurs at a mean number of
cycles Nm. Then assuming that the S–N curve has the same form as Eq. (15.7)

Sa,m = S∞,m(1 + C/
√

Nm) (15.9)
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in which C = 1000 and S∞,m is the fatigue limit stress corresponding to the mean stress
Sm. Rearranging Eq. (15.9) we have

S∞,m = Sa,m/(1 + C/
√

Nm) (15.10)

The number of cycles to failure at a mean stress of 90 N/mm2 would have been, from
the above

N ′ = Sm

90
Nm (15.11)

The corresponding fatigue limit stress would then have been, from a comparison with
Eq. (15.10)

S′∞,m = Sa,m/(1 + C/
√

N ′) (15.12)

The standard endurance curve for the component at a mean stress of 90 N/mm2 is from
Eq. (15.7)

Sa = S′∞,m/(1 + C/
√

N) (15.13)

Substituting in Eq. (15.13) for S′∞,m from Eq. (15.12) we have

Sa = Sa,m

(1 + C/
√

N ′)
(1 + C/

√
N) (15.14)

in which N ′ is given by Eq. (15.11).
Equation (15.14) will be based on a few test results so that a ‘safe’ fatigue strength

is usually taken to be three standard deviations below the mean fatigue strength. Hence
we introduce a scatter factor Kn (>1) to allow for this; Eq. (15.14) then becomes

Sa
Sa,m

Kn(1 + C/
√

N ′)
(1 + C/

√
N) (15.15)

Kn varies with the number of test results available and for a coefficient of variation
of 0.1, Kn = 1.45 for 6 specimens, Kn = 1.445 for 10 specimens, Kn = 1.44 for 20
specimens and for 100 specimens or more Kn = 1.43. For typical S–N curves a scatter
factor of 1.43 is equivalent to a life factor of 3 to 4.

15.4 Prediction of aircraft fatigue life

We have seen that an aircraft suffers fatigue damage during all phases of the ground–air–
ground cycle. The various contributions to this damage may be calculated separately
and hence the safe life of the aircraft in terms of the number of flights calculated.

In the ground–air–ground cycle the maximum vertical acceleration during take-off
is 1.2 g for a take-off from a runway or 1.5 g for a take-off from grass. It is assumed
that these accelerations occur at zero lift and therefore produce compressive (negative)
stresses, −STO, in critical components such as the undersurface of wings. The maximum
positive stress for the same component occurs in level flight (at 1 g) and is +S1g.
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The ground–air–ground cycle produces, on the undersurface of the wing, a fluctuating
stress SGAG = (S1g + STO)/2 about a mean stress SGAG(mean) = (S1g − STO)/2. Suppose
that tests show that for this stress cycle and mean stress, failure occurs after NG cycles.
For a life factor of 3 the safe life is NG/3 so that the damage done during one cycle is
3/NG. This damage is multiplied by a factor of 1.5 to allow for the variability of loading
between different aircraft of the same type so that the damage per flight DGAG from the
ground–air–ground cycle is given by

DGAG = 4.5/NG (15.16)

Fatigue damage is also caused by gusts encountered in flight, particularly during the
climb and descent. Suppose that a gust of velocity ue causes a stress Su about a mean
stress corresponding to level flight, and suppose also that the number of stress cycles
of this magnitude required to cause failure is N(Su); the damage caused by one cycle is
then 1/N(Su). Therefore from the Palmgren–Miner hypothesis, when sufficient gusts of
this and all other magnitudes together with the effects of all other load cycles produce a
cumulative damage of 1.0, fatigue failure will occur. It is therefore necessary to know
the number and magnitude of gusts likely to be encountered in flight.

Gust data have been accumulated over a number of years from accelerometer records
from aircraft flying over different routes and terrains, at different heights and at different
seasons. The ESDU data sheets1 present the data in two forms, as we have previously
noted. First, l10 against altitude curves show the distance which must be flown at a
given altitude in order that a gust (positive or negative) having a velocity ≥3.05 m/s be
encountered. It follows that 1/l10 is the number of gusts encountered in unit distance
(1 km) at a particular height. Secondly, gust frequency distribution curves, r(ue) against
ue, give the number of gusts of velocity ue for every 1000 gusts of velocity 3.05 m/s.

From these two curves the gust exceedance E(ue) is obtained; E(ue) is the number
of times a gust of a given magnitude (ue) will be equalled or exceeded in 1 km of flight.
Thus, from the above

number of gusts ≥ 3.05 m/s per km = 1/l10

number of gusts equal to ue per 1000 gusts equal to 3.05 m/s = r(ue)

Hence

number of gusts equal to ue per single gust equal to 3.05 m/s = r(ue)/1000

It follows that the gust exceedance E(ue) is given by

E(ue) = r(ue)

1000l10
(15.17)

in which l10 is dependent on height. A good approximation for the curve of r(ue) against
ue in the region ue = 3.05 m/s is

r(ue) = 3.23 × 105u−5.26
e (15.18)

Consider now the typical gust exceedance curve shown in Fig. 15.3. In 1 km of flight
there are likely to be E(ue) gusts exceeding ue m/s and E(ue) − δE(ue) gusts exceeding
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Fig. 15.3 Gust exceedance curve.

ue + δue m/s. Thus, there will be δE(ue) fewer gusts exceeding ue + δue m/s than ue m/s
and the increment in gust speed δue corresponds to a number −δE(ue) of gusts at a
gust speed close to ue. Half of these gusts will be positive (upgusts) and half negative
(downgusts) so that if it is assumed that each upgust is followed by a downgust of equal
magnitude the number of complete gust cycles will be −δE(ue)/2. Suppose that each
cycle produces a stress S(ue) and that the number of these cycles required to produce
failure is N(Su,e). The damage caused by one cycle is then 1/N(Su,e) and over the gust
velocity interval δue the total damage δD is given by

δD = − δE(ue)

2N(Su,e)
= −dE(ue)

due

δue

2N(Su,e)
(15.19)

Integrating Eq. (15.19) over the whole range of gusts likely to be encountered, we
obtain the total damage Dg per km of flight. Thus

Dg = −
∫ ∞

0

1

2N(Su,e)

dE(ue)

due
due (15.20)

Further, if the average block length journey of an aircraft is Rav, the average gust damage
per flight is DgRav. Also, some aircraft in a fleet will experience more gusts than others
since the distribution of gusts is random. Therefore if, for example, it is found that one
particular aircraft encounters 50 per cent more gusts than the average its gust fatigue
damage is 1.5 Dg/km.

The gust damage predicted by Eq. (15.20) is obtained by integrating over a complete
gust velocity range from zero to infinity. Clearly there will be a gust velocity below
which no fatigue damage will occur since the cyclic stress produced will be below the
fatigue limit stress of the particular component. Equation (15.20) is therefore rewritten

Dg = −
∫ ∞

uf

1

2N(Su,e)

dE(ue)

due
due (15.21)

in which uf is the gust velocity required to produce the fatigue limit stress.
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We have noted previously that more gusts are encountered during climb and descent
than during cruise. Altitude therefore affects the amount of fatigue damage caused by
gusts and its effects may be determined as follows. Substituting for the gust exceedance
E(ue) in Eq. (15.21) from Eq. (15.17) we obtain

Dg = − 1

1000l10

∫ ∞

uf

1

2N(Su,e)

dr(ue)

due
due

or

Dg = 1

l10
dg per km (15.22)

in which l10 is a function of height h and

dg = − 1

1000

∫ ∞

uf

1

2N(Su,e)

dr(ue)

due
due

Suppose that the aircraft is climbing at a speed V with a rate of climb (ROC). The
time taken for the aircraft to climb from a height h to a height h + δh is δh/ROC during
which time it travels a distance Vδh/ROC. Hence, from Eq. (15.22) the fatigue damage
experienced by the aircraft in climbing through a height δh is

1

l10
dg

V

ROC
δh

The total damage produced during a climb from sea level to an altitude H at a constant
speed V and ROC is

Dg,climb = dg
V

ROC

∫ H

0

dh

l10
(15.23)

Plotting 1/l10 against h from ESDU data sheets for aircraft having cloud warning radar
and integrating gives

∫ 3000

0

dh

l10
= 303

∫ 6000

3000

dh

l10
= 14

∫ 9000

6000

dh

l10
= 3.4

From the above
∫ 9000

0 dh/l10 = 320.4, from which it can be seen that approximately 95
per cent of the total damage in the climb occurs in the first 3000 m.

An additional factor influencing the amount of gust damage is forward speed. For
example, the change in wing stress produced by a gust may be represented by

Su,e = k1ueVe (see Eq. (14.24)) (15.24)

in which the forward speed of the aircraft is in equivalent airspeed (EAS). From Eq.
(15.24) we see that the gust velocity uf required to produce the fatigue limit stress S∞ is

uf = S∞/k1Ve (15.25)

The gust damage per km at different forward speeds Ve is then found using Eq. (15.21)
with the appropriate value of uf as the lower limit of integration. The integral may be
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evaluated by using the known approximate forms of N(Su,e) and E(ue) from Eqs (15.15)
and (15.17). From Eq. (15.15)

Sa = Su,e = S′∞,m

Kn
(1 + C/

√
N(Su,e))

from which

N(Su,e) =
(

C

Kn

)2
(

S′∞,m

Su,e − S′∞,m

)2

where Su,e = k1Veue and S′∞,m = k1Veuf . Also Eq. (15.17) is

E(ue) = r(ue)

1000l10

or, substituting for r(ue) from Eq. (15.18)

E(ue) = 3.23 × 105u−5.26
e

1000l10

Equation (15.21) then becomes

Dg = −
∫ ∞

uf

1

2

(
Kn

C

)2
(

Su,e − S′∞,m

S′∞,m

)2 (
−3.23 × 5.26 × 105u−5.26

e

1000l10

)

due

Substituting for Su,e and S′∞,m we have

Dg = 16.99 × 102

2l10

(
Kn

C

)2 ∫ ∞

uf

(
ue − uf

uf

)2

u−6.26
e due

or

Dg = 16.99 × 102

2l10

(
Kn

C

)2 ∫ ∞

uf

(
u−4.26

e

u2
f

− 2u−5.26
e

uf
+ u−6.26

e

)

due

from which

Dg = 46.55

2l10

(
Kn

C

)2

u−5.26
f

or, in terms of the aircraft speed Ve

Dg = 46.55

2l10

(
Kn

C

)2
(

k1Ve

S′∞,m

)5.26

per km (15.26)

It can be seen from Eq. (15.26) that gust damage increases in proportion to V5.26
e so

that increasing forward speed has a dramatic effect on gust damage.
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The total fatigue damage suffered by an aircraft per flight is the sum of the damage
caused by the ground–air–ground cycle, the damage produced by gusts and the damage
due to other causes such as pilot induced manoeuvres, ground turning and braking, and
landing and take-off load fluctuations. The damage produced by these other causes can
be determined from load exceedance data. Thus, if this extra damage per flight is Dextra
the total fractional fatigue damage per flight is

Dtotal = DGAG + DgRav + Dextra

or

Dtotal = 4.5/NG + DgRav + Dextra (15.27)

and the life of the aircraft in terms of flights is

Nflight = 1/Dtotal (15.28)

15.5 Crack propagation

We have seen that the concept of fail-safe structures in aircraft construction relies on a
damaged structure being able to retain sufficient of its load-carrying capacity to prevent
catastrophic failure, at least until the damage is detected. It is therefore essential that the
designer be able to predict how and at what rate a fatigue crack will grow. The ESDU
data sheets provide a useful introduction to the study of crack propagation; some of the
results are presented here.

The analysis of stresses close to a crack tip using elastic stress concentration factors
breaks down since the assumption that the crack tip radius approaches zero results in the
stress concentration factor tending to infinity. Instead, linear elastic fracture mechanics
analyses the stress field around the crack tip and identifies features of the field common
to all cracked elastic bodies.

15.5.1 Stress concentration factor

There are three basic modes of crack growth, as shown in Fig. 15.4. Generally, the stress
field in the region of the crack tip is described by a two-dimensional model which may
be used as an approximation for many practical three-dimensional loading cases. Thus,
the stress system at a distance r (r ≤ a) from the tip of a crack of length 2a, shown in
Fig. 15.5, can be expressed in the form

Sr , Sθ , Sr,θ = K

(2πr)
1
2

f (θ) (Ref. [2]) (15.29)

in which f (θ) is a different function for each of the three stresses and K is the stress
intensity factor; K is a function of the nature and magnitude of the applied stress

levels and also of the crack size. The terms (2πr)
1
2 and f (θ) map the stress field in the
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Fig. 15.4 Basic modes of crack growth.

Fig. 15.5 Stress field in the vicinity of a crack.

vicinity of the crack and are the same for all cracks under external loads that cause
crack openings of the same type.

Equation (15.29) applies to all modes of crack opening, with K having different
values depending on the geometry of the structure, the nature of the applied loads and
the type of crack.

Experimental data show that crack growth and residual strength data are better cor-
related using K than any other parameter. K may be expressed as a function of the
nominal applied stress S and the crack length in the form

K = S(πa)
1
2 α (15.30)

in which α is a non-dimensional coefficient usually expressed as the ratio of crack
length to any convenient local dimension in the plane of the component; for a crack in
an infinite plate under an applied uniform stress level S remote from the crack, α = 1.0.
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Alternatively, in cases where opposing loads P are applied at points close to the plane
of the crack

K = Pα

(πa)
1
2

(15.31)

in which P is the load/unit thickness. Equations (15.30) and (15.31) may be
rewritten as

K = K0α (15.32)

where K0 is a reference value of the stress intensity factor which depends upon the
loading. For the simple case of a remotely loaded plate in tension

K0 = S(πa)
1
2 (15.33)

and Eqs (15.32) and (15.30) are identical so that for a given ratio of crack length to
plate width α is the same in both formulations. In more complex cases, for example the
in-plane bending of a plate of width 2b and having a central crack of length 2a

K0 = 3Ma

4b3 (πa)
1
2 (15.34)

in which M is the bending moment per unit thickness. Comparing Eqs (15.34) and
(15.30), we see that S = 3Ma/4b3 which is the value of direct stress given by basic
bending theory at a point a distance ±a/2 from the central axis. However, if S was speci-
fied as the bending stress in the outer fibres of the plate, i.e. at ±b, then S = 3M/2b2;
clearly the different specifications of S require different values of α. On the other hand
the final value of K must be independent of the form of presentation used. Use of
Eqs (15.30)–(15.32) depends on the form of the solution for K0 and care must be taken
to ensure that the formula used and the way in which the nominal stress is defined are
compatible with those used in the derivation of α.

There are a number of methods available for determining the value of K and α. In
one method the solution for a component subjected to more than one type of loading
is obtained from available standard solutions using superposition or, if the geometry
is not covered, two or more standard solutions may be compounded.1 Alternatively, a
finite element analysis may be used.

The coefficient α in Eq. (15.30) has, as we have noted, different values depending
on the plate and crack geometries. Listed below are values of α for some of the more
common cases.

(i) A semi-infinite plate having an edge crack of length a; α = 1.12.
(ii) An infinite plate having an embedded circular crack or a semi-circular surface

crack, each of radius a, lying in a plane normal to the applied stress; α = 0.64.
(iii) An infinite plate having an embedded elliptical crack of axes 2a and 2b or a semi-

elliptical crack of width 2b in which the depth a is less than half the plate thickness
each lying in a plane normal to the applied stress; α = 1.12� in which � varies
with the ratio a/b as follows:

a/b 0 0.2 0.4 0.6 0.8
� 1.0 1.05 1.15 1.28 1.42

For a/b = 1 the situation is identical to case (ii).
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(iv) A plate of finite width w having a central crack of length 2a where a ≤ 0.3w;
α = [ sec (aπ/w)]1/2.

(v) For a plate of finite width w having two symmetrical edge cracks each of depth
2a, Eq. (15.30) becomes

K = S[w tan (πa/w) + (0.1w) sin (2πa/w)]1/2

From Eq. (15.29) it can be seen that the stress intensity at a point ahead of a crack
can be expressed in terms of the parameter K . Failure will then occur when K reaches a
critical value Kc. This is known as the fracture toughness of the material and has units
MN/m3/2 or N/mm3/2.

15.5.2 Crack tip plasticity

In certain circumstances it may be necessary to account for the effect of plastic flow
in the vicinity of the crack tip. This may be allowed for by estimating the size of the
plastic zone and adding this to the actual crack length to form an effective crack length
2a1. Thus, if rp is the radius of the plastic zone, a1 =a + rp and Eq. (15.30) becomes

Kp = S(πa1)
1
2 α1 (15.35)

in which Kp is the stress intensity factor corrected for plasticity and α1 corresponds to
a1. Thus for rp/t > 0.5, i.e. a condition of plane stress

rp = 1

2π

(
K

fy

)2

or rp = a

2

(
S

fy

)2

α2 (Ref. [3]) (15.36)

in which fy is the yield proof stress of the material. For rp/t < 0.02, a condition of plane
strain

rp = 1

6π

(
K

fy

)2

(15.37)

For intermediate conditions the correction should be such as to produce a conservative
solution.

Dugdale4 showed that the fracture toughness parameter Kc is highly dependent on
plate thickness. In general, since the toughness of a material decreases with decreasing
plasticity, it follows that the true fracture toughness is that corresponding to a plane
strain condition. This lower limiting value is particularly important to consider in high
strength alloys since these are prone to brittle failure. In addition, the assumption
that the plastic zone is circular is not representative in plane strain conditions. Rice
and Johnson5 showed that, for a small amount of plane strain yielding, the plastic zone
extends as two lobes (Fig. 15.6) each inclined at an angle θ to the axis of the crack where
θ = 70◦ and the greatest extent L and forward penetration (ry for θ = 0) of plasticity are
given by

L = 0.155 (K/fy)2

ry = 0.04 (K/fy)2
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Fig. 15.6 Plane strain plasticity.

15.5.3 Crack propagation rates

Having obtained values of the stress intensity factor and the coefficient α, fatigue crack
propagation rates may be estimated. From these, the life of a structure containing cracks
or crack-like defects may be determined; alternatively, the loading condition may be
modified or inspection periods arranged so that the crack will be detected before failure.

Under constant amplitude loading the rate of crack propagation may be represented
graphically by curves described in general terms by the law

da

dN
= f (R, �K) (Ref. [6]) (15.38)

in which �K is the stress intensity factor range and R = Smin/Smax. If Eq. (15.30) is
used

�K = (Smax − Smin)(πa)
1
2 α (15.39)

Equation (15.39) may be corrected for plasticity under cyclic loading and becomes

�Kp = (Smax − Smin)(πa1)
1
2 α1 (15.40)

in which a1 = a + rp, where, for plane stress

rp = 1

8π

(
�K

fy

)2

(Ref. [7])
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The curves represented by Eq. (15.38) may be divided into three regions. The first cor-
responds to a very slow crack growth rate (<10−8 m/cycle) where the curves approach
a threshold value of stress intensity factor �K th corresponding to 4 × 10−11 m/cycle,
i.e. no crack growth. In the second region (10−8–10−6 m/cycle) much of the crack life
takes place and, for small ranges of �K , Eq. (15.38) may be represented by

da

dN
= C(�K)n (Ref. [8]) (15.41)

in which C and n depend on the material properties; over small ranges of da/dN and
�K , C and n remain approximately constant. The third region corresponds to crack
growth rates >10−6 m/cycle, where instability and final failure occur.

An attempt has been made to describe the complete set of curves by the relationship

da

dN
= C(�K)n

(1 − R)Kc − �K
(Ref. [9]) (15.42)

in which Kc is the fracture toughness of the material obtained from toughness tests.
Integration of Eqs (15.41) or (15.42) analytically or graphically gives an estimate of
the crack growth life of the structure, i.e. the number of cycles required for a crack to
grow from an initial size to an unacceptable length, or the crack growth rate or failure,
whichever is the design criterion. Thus, for example, integration of Eq. (15.41) gives,
for an infinite width plate for which α = 1.0

[N]Nf
Ni

= 1

C[(Smax − Smin)π
1
2 ]n

[
a(1−n/2)

1 − n/2

]af

ai

(15.43)

for n > 2. An analytical integration may only be carried out if n is an integer and α

is in the form of a polynomial, otherwise graphical or numerical techniques must be
employed.

Substituting the limits in Eq. (15.43) and taking Ni = 0, the number of cycles to
failure is given by

Nf = 2

C(n − 2)[(Smax − Sm)π1/2]n

[
1

a(n−2)/2
i

− 1

a(n−2)/2
f

]

(15.44)

Example 15.1
An infinite plate contains a crack having an initial length of 0.2 mm and is subjected to
a cyclic repeated stress range of 175 N/mm2. If the fracture toughness of the plate is
1708 N/mm3/2 and the rate of crack growth is 40 × 10−15 (�K)4 mm/cycle determine
the number of cycles to failure.

The crack length at failure is given by Eq. (15.30) in which α = 1, K = 1708 N/mm3/2

and S = 175 N/mm2, i.e.

af = 17082

π × 1752 = 30.3 mm
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Also n = 4 so that substituting the relevant parameters in Eq. (15.44) gives

Nf = 1

40 × 10−15[175 × π1/2]4

(
1

0.1
− 1

30.3

)

from which

Nf = 26919 cycles
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Problems

P.15.1 A material has a fatigue limit of±230 N/mm2 and an ultimate tensile strength
of 870 N/mm2. If the safe range of stress is determined by the Goodman prediction
calculate its value.

Ans. 363 N/mm2.

P.15.2 A more accurate estimate for the safe range of stress for the material of
P.15.1 is given by the non-linear form of the Goodman prediction in which m = 2.
Calculate its value.

Ans. 432 N/mm2.
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P.15.3 A steel component is subjected to a reversed cyclic loading of 100 cycles/day
over a period of time in which ±160 N/mm2 is applied for 200 cycles, ±140 N/mm2

is applied for 200 cycles and ±100 N/mm2 is applied for 600 cycles. If the fatigue life
of the material at each of these stress levels is 104, 105 and 2 × 105 cycles, respectively
estimate the life of the component using Miner’s law.

Ans. 400 days.

P.15.4 An infinite steel plate has a fracture toughness of 3320 N/mm3/2 and contains
a 4 mm long crack. Calculate the maximum allowable design stress that could be applied
round the boundary of the plate.

Ans. 1324 N/mm2.

P.15.5 A semi-infinite plate has an edge crack of length 0.4 mm. If the plate is
subjected to a cyclic repeated stress loading of 180 N/mm2, its fracture toughness is
1800 N/mm3/2 and the rate of crack growth is 30 × 10−15(�K)4 mm/cycle determine
the crack length at failure and the number of cycles to failure.

Ans. 25.4 mm, 7916 cycles.

P.15.6 An aircraft’s cruise speed is increased from 200 m/s to 220 m/s. Determine
the percentage increase in gust damage this would cause.

Ans. 65%.

P.15.7 The average block length journey of an executive jet airliner is 1000 km
and its cruise speed is 240 m/s. If the damage during the ground–air–ground cycle
may be assumed to be 10% of the total damage during a complete flight determine
the percentage increase in the life of the aircraft when the cruising speed is reduced to
235 m/s.

Ans. 12%.
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16

Bending of open and closed,
thin-walled beams

In Chapter 12 we discussed the various types of structural component found in aircraft
construction and the various loads they support. We saw that an aircraft is basically an
assembly of stiffened shell structures ranging from the single cell closed section fuselage
to multicellular wings and tail surfaces each subjected to bending, shear, torsional and
axial loads. Other, smaller portions of the structure consist of thin-walled channel,
T-, Z-, ‘top-hat’-or I-sections, which are used to stiffen the thin skins of the cellular
components and provide support for internal loads from floors, engine mountings, etc.
Structural members such as these are known as open section beams, while the cellular
components are termed closed section beams; clearly, both types of beam are subjected
to axial, bending, shear and torsional loads.

In this chapter we shall investigate the stresses and displacements in thin-walled open
and single cell closed section beams produced by bending loads.

In Chapter 1 we saw that an axial load applied to a member produces a uniform
direct stress across the cross-section of the member. A different situation arises when the
applied loads cause a beam to bend which, if the loads are vertical, will take up a sagging
‘(�)’ or hogging shape ‘(�)’. This means that for loads which cause a beam to sag the
upper surface of the beam must be shorter than the lower surface as the upper surface
becomes concave and the lower one convex; the reverse is true for loads which cause
hogging. The strains in the upper regions of the beam will, therefore, be different to those
in the lower regions and since we have established that stress is directly proportional
to strain (Eq. (1.40)) it follows that the stress will vary through the depth of the beam.

The truth of this can be demonstrated by a simple experiment. Take a reasonably
long rectangular rubber eraser and draw three or four lines on its longer faces as shown
in Fig. 16.1(a); the reason for this will become clear a little later. Now hold the eraser
between the thumb and forefinger at each end and apply pressure as shown by the
direction of the arrows in Fig. 16.1(b). The eraser bends into the shape shown and the
lines on the side of the eraser remain straight but are now further apart at the top than
at the bottom.

Since, in Fig. 16.1(b), the upper fibres have been stretched and the lower fibres
compressed there will be fibres somewhere in between which are neither stretched nor
compressed; the plane containing these fibres is called the neutral plane.
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Convex

Concave

(a) (b)

Fig. 16.1 Bending of a rubber eraser.

Now rotate the eraser so that its shorter sides are vertical and apply the same pressure
with your fingers. The eraser again bends but now requires much less effort. It follows
that the geometry and orientation of a beam section must affect its bending stiffness. This
is more readily demonstrated with a plastic ruler. When flat it requires hardly any effort
to bend it but when held with its width vertical it becomes almost impossible to bend.

16.1 Symmetrical bending

Although symmetrical bending is a special case of the bending of beams of arbitrary
cross-section, we shall investigate the former first, so that the more complex general
case may be more easily understood.

Symmetrical bending arises in beams which have either singly or doubly symmetrical
cross-sections; examples of both types are shown in Fig. 16.2.

Suppose that a length of beam, of rectangular cross-section, say, is subjected to a
pure, sagging bending moment, M, applied in a vertical plane. We shall define this later
as a negative bending moment. The length of beam will bend into the shape shown in
Fig. 16.3(a) in which the upper surface is concave and the lower convex. It can be seen
that the upper longitudinal fibres of the beam are compressed while the lower fibres are
stretched. It follows that, as in the case of the eraser, between these two extremes there
are fibres that remain unchanged in length.

Axis of symmetry

Double
(rectangular)

Double
(I-section)

Single
(channel section)

Single
(T-section)

Fig. 16.2 Symmetrical section beams.
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M M

Neutral
axis

(a) (b)

Neutral plane

Fig. 16.3 Beam subjected to a pure sagging bending moment.

The direct stress therefore varies through the depth of the beam from compression in
the upper fibres to tension in the lower. Clearly the direct stress is zero for the fibres that
do not change in length; we have called the plane containing these fibres the neutral
plane. The line of intersection of the neutral plane and any cross-section of the beam
is termed the neutral axis (Fig. 16.3(b)).

The problem, therefore, is to determine the variation of direct stress through the
depth of the beam, the values of the stresses and subsequently to find the corresponding
beam deflection.

16.1.1 Assumptions

The primary assumption made in determining the direct stress distribution produced by
pure bending is that plane cross-sections of the beam remain plane and normal to the
longitudinal fibres of the beam after bending. Again, we saw this from the lines on the
side of the eraser. We shall also assume that the material of the beam is linearly elastic,
i.e. it obeys Hooke’s law, and that the material of the beam is homogeneous.

16.1.2 Direct stress distribution

Consider a length of beam (Fig. 16.4(a)) that is subjected to a pure, sagging bending
moment, M, applied in a vertical plane; the beam cross-section has a vertical axis of
symmetry as shown in Fig. 16.4(b). The bending moment will cause the length of beam

y

y1

y2

y
z O

�A

Neutral
axis

(b)

M M M

y

y

S

I

N

J

O

K

T

G

Q

�z

x

P

(a)

Fig. 16.4 Bending of a symmetrical section beam.
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Fig. 16.5 Length of beam subjected to a pure bending moment.

to bend in a similar manner to that shown in Fig. 16.3(a) so that a neutral plane will
exist which is, as yet, unknown distances y1 and y2 from the top and bottom of the
beam, respectively. Coordinates of all points in the beam are referred to axes Oxyz in
which the origin O lies in the neutral plane of the beam. We shall now investigate the
behaviour of an elemental length, δz, of the beam formed by parallel sections MIN and
PGQ (Fig. 16.4(a)) and also the fibre ST of cross-sectional area δA a distance y above
the neutral plane. Clearly, before bending takes place MP = IG = ST = NQ = δz.

The bending moment M causes the length of beam to bend about a centre of curvature
C as shown in Fig. 16.5(a). Since the element is small in length and a pure moment
is applied we can take the curved shape of the beam to be circular with a radius of
curvature R measured to the neutral plane. This is a useful reference point since, as we
have seen, strains and stresses are zero in the neutral plane.

The previously parallel plane sections MIN and PGQ remain plane as we have demon-
strated but are now inclined at an angle δθ to each other. The length MP is now shorter
than δz as is ST while NQ is longer; IG, being in the neutral plane, is still of length δz.
Since the fibre ST has changed in length it has suffered a strain εz which is given by

εz = change in length

original length

Then

εz = (R − y)δθ − δz

δz

i.e.

εz = (R − y)δθ − Rδθ

Rδθ

so that

εz = − y

R
(16.1)
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The negative sign in Eq. (16.1) indicates that fibres in the region where y is positive
will shorten when the bending moment is negative. Then, from Eq. (1.40), the direct
stress σz in the fibre ST is given by

σz = −E
y

R
(16.2)

The direct or normal force on the cross-section of the fibre ST is σzδA. However, since
the direct stress in the beam section is due to a pure bending moment, in other words
there is no axial load, the resultant normal force on the complete cross-section of the
beam must be zero. Then

∫

A
σz dA = 0 (16.3)

where A is the area of the beam cross-section.

Substituting for σz in Eq. (16.3) from (16.2) gives

−E

R

∫

A
y dA = 0 (16.4)

in which both E and R are constants for a beam of a given material subjected to a given
bending moment. Therefore

∫

A
y dA = 0 (16.5)

Equation (16.5) states that the first moment of the area of the cross-section of the beam
with respect to the neutral axis, i.e. the x axis, is equal to zero. Thus we see that the
neutral axis passes through the centroid of area of the cross-section. Since the y axis
in this case is also an axis of symmetry, it must also pass through the centroid of the
cross-section. Hence the origin, O, of the coordinate axes, coincides with the centroid
of area of the cross-section.

Equation (16.2) shows that for a sagging (i.e. negative) bending moment the direct
stress in the beam section is negative (i.e. compressive) when y is positive and positive
(i.e. tensile) when y is negative.

Consider now the elemental strip δA in Fig. 16.4(b); this is, in fact, the cross-section
of the fibre ST. The strip is above the neutral axis so that there will be a compressive
force acting on its cross-section of σzδA which is numerically equal to (Ey/R)δA from
Eq. (16.2). Note that this force will act at all sections along the length of ST. At S this
force will exert a clockwise moment (Ey/R)yδA about the neutral axis while at T the
force will exert an identical anticlockwise moment about the neutral axis. Considering
either end of ST we see that the moment resultant about the neutral axis of the stresses
on all such fibres must be equivalent to the applied negative moment M, i.e.

M = −
∫

A
E

y2

R
dA

or

M = −E

R

∫

A
y2dA (16.6)
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The term
∫

A y2 dA is known as the second moment of area of the cross-section of the
beam about the neutral axis and is given the symbol I . Rewriting Eq. (16.6) we have

M = −EI

R
(16.7)

or, combining this expression with Eq. (16.2)

M

I
= −E

R
= σz

y
(16.8)

From Eq. (16.8) we see that

σz = My

I
(16.9)

The direct stress, σz, at any point in the cross-section of a beam is therefore directly
proportional to the distance of the point from the neutral axis and so varies linearly
through the depth of the beam as shown, for the section JK, in Fig. 16.5(b). Clearly, for
a positive bending moment σz is positive, i.e. tensile, when y is positive and compressive
(i.e. negative) when y is negative. Thus in Fig. 16.5(b)

σz,1 = My1

I
(compression) σz,2 = My2

I
(tension) (16.10)

Furthermore, we see from Eq. (16.7) that the curvature, 1/R, of the beam is given by

1

R
= M

EI
(16.11)

and is therefore directly proportional to the applied bending moment and inversely
proportional to the product EI which is known as the flexural rigidity of the beam.

Example 16.1
The cross-section of a beam has the dimensions shown in Fig. 16.6(a). If the beam
is subjected to a negative bending moment of 100 kN m applied in a vertical plane,
determine the distribution of direct stress through the depth of the section.

The cross-section of the beam is doubly symmetrical so that the centroid, C, of the
section, and therefore the origin of axes, coincides with the mid-point of the web.
Furthermore, the bending moment is applied to the beam section in a vertical plane
so that the x axis becomes the neutral axis of the beam section; we therefore need to
calculate the second moment of area, Ixx, about this axis.

Ixx = 200 × 3003

12
− 175 × 2603

12
= 193.7 × 106 mm4 (see Section 16.4)

From Eq. (16.9) the distribution of direct stress, σz, is given by

σz = − 100 × 106

193.7 × 106 y = −0.52y (i)
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300 mm

200 mm
(a) (b)
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x

25 mm

20 mm

20 mm

78 N/mm2

78 N/mm2

Fig. 16.6 Direct stress distribution in beam of Example 16.1.

The direct stress, therefore, varies linearly through the depth of the section from a value

−0.52 × (+150) = −78 N/mm2 (compression)

at the top of the beam to

−0.52 × (−150) = +78 N/mm2 (tension)

at the bottom as shown in Fig. 16.6(b).

Example 16.2
Now determine the distribution of direct stress in the beam of Example 16.1 if the
bending moment is applied in a horizontal plane and in a clockwise sense about Cy
when viewed in the direction yC.

In this case the beam will bend about the vertical y axis which therefore becomes the
neutral axis of the section. Thus Eq. (16.9) becomes

σz = M

Iyy
x (i)

where Iyy is the second moment of area of the beam section about the y axis. Again
from Section 16.4

Iyy = 2 × 20 × 2003

12
+ 260 × 253

12
= 27.0 × 106 mm4

Hence, substituting for M and Iyy in Eq. (i)

σz = 100 × 106

27.0 × 106 x = 3.7x
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We have not specified a sign convention for bending moments applied in a horizontal
plane. However, a physical appreciation of the problem shows that the left-hand edges
of the beam are in compression while the right-hand edges are in tension. Again the
distribution is linear and varies from 3.7 × (−100) = −370 N/mm2 (compression) at
the left-hand edges of each flange to 3.7 × (+100) = +370 N/mm2 (tension) at the
right-hand edges.

We note that the maximum stresses in this example are very much greater than those
in Example 16.1. This is due to the fact that the bulk of the material in the beam section
is concentrated in the region of the neutral axis where the stresses are low. The use of
an I-section in this manner would therefore be structurally inefficient.

Example 16.3
The beam section of Example 16.1 is subjected to a bending moment of 100 kN m
applied in a plane parallel to the longitudinal axis of the beam but inclined at 30◦ to the
left of vertical. The sense of the bending moment is clockwise when viewed from the
left-hand edge of the beam section. Determine the distribution of direct stress.

The bending moment is first resolved into two components, Mx in a vertical plane
and My in a horizontal plane. Equation (16.9) may then be written in two forms

σz = Mx

Ixx
y σz = My

Iyy
x (i)

The separate distributions can then be determined and superimposed. A more direct
method is to combine the two equations (i) to give the total direct stress at any point
(x, y) in the section. Thus

σz = Mx

Ixx
y + My

Iyy
x (ii)

Now

Mx = 100 cos 30◦= 86.6 kN m
My = 100 sin 30◦ = 50.0 kN m

}
(iii)

Mx is, in this case, a positive bending moment producing tension in the upper half of
the beam where y is positive. Also My produces tension in the left-hand half of the beam
where x is negative; we shall therefore call My a negative bending moment. Substituting
the values of Mx and My from Eq. (iii) but with the appropriate sign in Eq. (ii) together
with the values of Ixx and Iyy from Examples 16.1 and 16.2 we obtain

σz = 86.6 × 106

193.7 × 106 y − 50.0 × 106

27.0 × 106 x (iv)

or

σz = 0.45y − 1.85x (v)

Equation (v) gives the value of direct stress at any point in the cross-section of the beam
and may also be used to determine the distribution over any desired portion. Thus on
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the upper edge of the top flange y = +150 mm, 100 mm ≥ x ≥ −100 mm, so that the
direct stress varies linearly with x. At the top left-hand corner of the top flange

σz = 0.45 × (+150) − 1.85 × (−100) = +252.5 N/mm2 (tension)

At the top right-hand corner

σz = 0.45 × (+150) − 1.85 × (+100) = −117.5 N/mm2 (compression)

The distributions of direct stress over the outer edge of each flange and along the vertical
axis of symmetry are shown in Fig. 16.7. Note that the neutral axis of the beam section
does not in this case coincide with either the x or y axis, although it still passes through
the centroid of the section. Its inclination, α, to the x axis, say, can be found by setting
σz = 0 in Eq. (v). Then

0 = 0.45y − 1.85x

or
y

x
= 1.85

0.45
= 4.11 = tan α

which gives

α = 76.3◦

Note that α may be found in general terms from Eq. (ii) by again setting σz = 0. Hence

y

x
= −MyIxx

MxIyy
= tan α (16.12)

67.5 N/mm2

67.5 N/mm2

67.5 N/mm2

67.5 N/mm2Neutral axis

252.5 N/mm2

252.5 N/mm2

117.5 N/mm2

117.5 N/mm2

a

Fig. 16.7 Direct stress distribution in beam of Example 16.3.
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(a) (b) (c)

Compression

Tension

Fig. 16.8 Anticlastic bending of a beam section.

or

tan α = MyIxx

MxIyy

since y is positive and x is positive for a positive value of α. We shall define in a slightly
different way in Section 16.2.4 for beams of unsymmetrical section.

16.1.3 Anticlastic bending

In the rectangular beam section shown in Fig. 16.8(a) the direct stress distribution due
to a negative bending moment applied in a vertical plane varies from compression in
the upper half of the beam to tension in the lower half (Fig. 16.8(b)). However, due
to the Poisson effect the compressive stress produces a lateral elongation of the upper
fibres of the beam section while the tensile stress produces a lateral contraction of the
lower. The section does not therefore remain rectangular but distorts as shown in Fig.
16.8(c); the effect is known as anticlastic bending.

Anticlastic bending is of interest in the analysis of thin-walled box beams in which the
cross-sections are maintained by stiffening ribs. The prevention of anticlastic distortion
induces local variations in stress distributions in the webs and covers of the box beam
and also in the stiffening ribs.

16.2 Unsymmetrical bending

We have shown that the value of direct stress at a point in the cross-section of a beam
subjected to bending depends on the position of the point, the applied loading and the
geometric properties of the cross-section. It follows that it is of no consequence whether
or not the cross-section is open or closed. We therefore derive the theory for a beam of
arbitrary cross-section and then discuss its application to thin-walled open and closed
section beams subjected to bending moments.

The assumptions are identical to those made for symmetrical bending and are listed in
Section 16.1.1. However, before we derive an expression for the direct stress distribution
in a beam subjected to bending we shall establish sign conventions for moments, forces
and displacements, investigate the effect of choice of section on the positive directions
of these parameters and discuss the determination of the components of a bending
moment applied in any longitudinal plane.
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16.2.1 Sign conventions and notation

Forces, moments and displacements are referred to an arbitrary system of axes Oxyz,
of which Oz is parallel to the longitudinal axis of the beam and Oxy are axes in the
plane of the cross-section. We assign the symbols M, S, P, T and w to bending moment,
shear force, axial or direct load, torque and distributed load intensity, respectively, with
suffixes where appropriate to indicate sense or direction. Thus, Mx is a bending moment
about the x axis, Sx is a shear force in the x direction and so on. Figure 16.9 shows
positive directions and senses for the above loads and moments applied externally to
a beam and also the positive directions of the components of displacement u, v and w
of any point in the beam cross-section parallel to the x, y and z axes, respectively. A
further condition defining the signs of the bending moments Mx and My is that they are
positive when they induce tension in the positive xy quadrant of the beam cross-section.

If we refer internal forces and moments to that face of a section which is seen when
viewed in the direction zO then, as shown in Fig. 16.10, positive internal forces and
moments are in the same direction and sense as the externally applied loads whereas
on the opposite face they form an opposing system. The former system, which we shall
use, has the advantage that direct and shear loads are always positive in the positive
directions of the appropriate axes whether they are internal loads or not. It must be
realized, though, that internal stress resultants then become equivalent to externally
applied forces and moments and are not in equilibrium with them.

16.2.2 Resolution of bending moments

A bending moment M applied in any longitudinal plane parallel to the z axis may be
resolved into components Mx and My by the normal rules of vectors. However, a visual
appreciation of the situation is often helpful. Referring to Fig. 16.11 we see that a
bending moment M in a plane at an angle θ to Ox may have components of differing

Fig. 16.9 Notation and sign convention for forces, moments and displacements.
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Fig. 16.10 Internal force system.

Fig. 16.11 Resolution of bending moments.

sign depending on the size of θ. In both cases, for the sense of M shown

Mx = M sin θ

My = M cos θ

which give, for θ < π/2, Mx and My positive (Fig. 16.11(a)) and for θ > π/2, Mx positive
and My negative (Fig. 16.11(b)).

16.2.3 Direct stress distribution due to bending

Consider a beam having the arbitrary cross-section shown in Fig. 16.12(a). The beam
supports bending moments Mx and My and bends about some axis in its cross-section
which is therefore an axis of zero stress or a neutral axis (NA). Let us suppose that the
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Fig. 16.12 Determination of neutral axis position and direct stress due to bending.

origin of axes coincides with the centroid C of the cross-section and that the neutral
axis is a distance p from C. The direct stress σz on an element of area δA at a point (x, y)
and a distance ξ from the neutral axis is, from the third of Eq. (1.42)

σz = Eεz (16.13)

If the beam is bent to a radius of curvature ρ about the neutral axis at this particular
section then, since plane sections are assumed to remain plane after bending, and by a
comparison with symmetrical bending theory

εz = ξ

ρ

Substituting for εz in Eq. (16.13) we have

σz = Eξ

ρ
(16.14)

The beam supports pure bending moments so that the resultant normal load on any
section must be zero. Hence

∫

A
σz dA = 0

Therefore, replacing σz in this equation from Eq. (16.14) and cancelling the constant
E/ρ gives

∫

A
ξ dA = 0

i.e. the first moment of area of the cross-section of the beam about the neutral axis is
zero. It follows that the neutral axis passes through the centroid of the cross-section
as shown in Fig. 16.12(b) which is the result we obtained for the case of symmetrical
bending.
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Suppose that the inclination of the neutral axis to Cx is α (measured clockwise from
Cx), then

ξ = x sin α + y cos α (16.15)

and from Eq. (16.14)

σz = E

ρ
(x sin α + y cos α) (16.16)

The moment resultants of the internal direct stress distribution have the same sense as
the applied moments Mx and My. Therefore

Mx =
∫

A
σzy dA, My =

∫

A
σzx dA (16.17)

Substituting for σz from Eq. (16.16) in (16.17) and defining the second moments of
area of the section about the axes Cx, Cy as

Ixx =
∫

A
y2 dA, Iyy =

∫

A
x2 dA, Ixy =

∫

A
xy dA

gives

Mx = E sin α

ρ
Ixy + E cos α

ρ
Ixx, My = E sin α

ρ
Iyy + E cos α

ρ
Ixy

or, in matrix form
{

Mx
My

}
= E

ρ

[
Ixy Ixx
Iyy Ixy

] {
sin α

cos α

}

from which

E

ρ

{
sin α

cos α

}
=

[
Ixy Ixx
Iyy Ixy

]−1 {
Mx
My

}

i.e.

E

ρ

{
sin α

cos α

}
= 1

IxxIyy − I2
xy

[−Ixy Ixx
Iyy −Ixy

] {
Mx
My

}

so that, from Eq. (16.16)

σz =
(

MyIxx − MxIxy

IxxIyy − I2
xy

)

x +
(

MxIyy − MyIxy

IxxIyy − I2
xy

)

y (16.18)

Alternatively, Eq. (16.18) may be rearranged in the form

σz = Mx(Iyyy − Ixyx)

IxxIyy − I2
xy

+ My(Ixxx − Ixyy)

IxxIyy − I2
xy

(16.19)

From Eq. (16.19) it can be seen that if, say, My = 0 the moment Mx produces a stress
which varies with both x and y; similarly for My if Mx = 0.
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In the case where the beam cross-section has either (or both) Cx or Cy as an axis of
symmetry the product second moment of area Ixy is zero and Cxy are principal axes.
Equation (16.19) then reduces to

σz = Mx

Ixx
y + My

Iyy
x (16.20)

Further, if either My or Mx is zero then

σz = Mx

Ixx
y or σz = My

Iyy
x (16.21)

Equations (16.20) and (16.21) are those derived for the bending of beams having at
least a singly symmetrical cross-section (see Section 16.1). It may also be noted that
in Eq. (16.21) σz = 0 when, for the first equation, y = 0 and for the second equation
when x = 0. Therefore, in symmetrical bending theory the x axis becomes the neutral
axis when My = 0 and the y axis becomes the neutral axis when Mx = 0. Thus we see
that the position of the neutral axis depends on the form of the applied loading as well
as the geometrical properties of the cross-section.

There exists, in any unsymmetrical cross-section, a centroidal set of axes for which
the product second moment of area is zero (see Ref. [1]). These axes are then principal
axes and the direct stress distribution referred to these axes takes the simplified form of
Eqs (16.20) or (16.21). It would therefore appear that the amount of computation can be
reduced if these axes are used. This is not the case, however, unless the principal axes
are obvious from inspection since the calculation of the position of the principal axes,
the principal sectional properties and the coordinates of points at which the stresses are
to be determined consumes a greater amount of time than direct use of Eqs (16.18) or
(16.19) for an arbitrary, but convenient set of centroidal axes.

16.2.4 Position of the neutral axis

The neutral axis always passes through the centroid of area of a beam’s cross-section
but its inclination α (see Fig. 16.12(b)) to the x axis depends on the form of the applied
loading and the geometrical properties of the beam’s cross-section.

At all points on the neutral axis the direct stress is zero. Therefore, from Eq. (16.18)

0 =
(

MyIxx − MxIxy

IxxIyy − I2
xy

)

xNA +
(

MxIyy − MyIxy

IxxIyy − I2
xy

)

yNA

where xNA and yNA are the coordinates of any point on the neutral axis. Hence

yNA

xNA
= −MyIxx − MxIxy

MxIyy − MyIxy

or, referring to Fig. 16.12(b) and noting that when α is positive xNA and yNA are of
opposite sign

tan α = MyIxx − MxIxy

MxIyy − MyIxy
(16.22)
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Example 16.4
A beam having the cross-section shown in Fig. 16.13 is subjected to a bending moment
of 1500 N m in a vertical plane. Calculate the maximum direct stress due to bending
stating the point at which it acts.

Fig. 16.13 Cross-section of beam in Example 16.4.

The position of the centroid of the section may be found by taking moments of areas
about some convenient point. Thus

(120 × 8 + 80 × 8)y = 120 × 8 × 4 + 80 × 8 × 48

giving

y = 21.6 mm

and

(120 × 8 + 80 × 8)x = 80 × 8 × 4 + 120 × 8 × 24

giving

x = 16 mm

The next step is to calculate the section properties referred to axes Cxy (see Section
16.4)

Ixx = 120 × (8)3

12
+ 120 × 8 × (17.6)2 + 8 × (80)3

12
+ 80 × 8 × (26.4)2

= 1.09 × 106 mm4

Iyy = 8 × (120)3

12
+ 120 × 8 × (8)2 + 80 × (8)3

12
+ 80 × 8 × (12)2

= 1.31 × 106 mm4

Ixy = 120 × 8 × 8 × 17.6 + 80 × 8 × (−12) × (−26.4)

= 0.34 × 106 mm4
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Since Mx = 1500 N m and My = 0 we have, from Eq. (16.19)

σz = 1.5y − 0.39x (i)

in which the units are N and mm.
By inspection of Eq. (i) we see that σx will be a maximum at F where x = −8 mm,

y = −66.4 mm. Thus

σz,max = −96 N/mm2 (compressive)

In some cases the maximum value cannot be obtained by inspection so that values of
σz at several points must be calculated.

16.2.5 Load intensity, shear force and bending moment
relationships, general case

Consider an element of length δz of a beam of unsymmetrical cross-section subjected
to shear forces, bending moments and a distributed load of varying intensity, all in the
yz plane as shown in Fig. 16.14. The forces and moments are positive in accordance
with the sign convention previously adopted. Over the length of the element we may
assume that the intensity of the distributed load is constant. Therefore, for equilibrium
of the element in the y direction

(
Sy + ∂Sy

∂z
δz

)
+ wyδz − Sy = 0

from which

wy = −∂Sy

∂z

Taking moments about A we have
(

Mx + ∂Mx

∂z
δz

)
−

(
Sy + ∂Sy

∂z
δz

)
δz − wy

(δz)2

2
− Mx = 0

Fig. 16.14 Equilibrium of beam element supporting a general force system in the yz plane.
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or, when second-order terms are neglected

Sy = ∂Mx

∂z

We may combine these results into a single expression

−wy = ∂Sy

∂z
= ∂2Mx

∂z2 (16.23)

Similarly for loads in the xz plane

−wx = ∂Sx

∂z
= ∂2My

∂z2 (16.24)

16.3 Deflections due to bending

We have noted that a beam bends about its neutral axis whose inclination relative to
arbitrary centroidal axes is determined from Eq. (16.22). Suppose that at some section
of an unsymmetrical beam the deflection normal to the neutral axis (and therefore
an absolute deflection) is ζ, as shown in Fig. 16.15. In other words the centroid C
is displaced from its initial position CI through an amount ζ to its final position CF.
Suppose also that the centre of curvature R of the beam at this particular section is on
the opposite side of the neutral axis to the direction of the displacement ζ and that the
radius of curvature is ρ. For this position of the centre of curvature and from the usual
approximate expression for curvature we have

1

ρ
= d2ζ

dz2 (16.25)

The components u and v of ζ are in the negative directions of the x and y axes,
respectively, so that

u = −ζ sin α v = −ζ cos α (16.26)

Fig. 16.15 Determination of beam deflection due to bending.
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Differentiating Eqs (16.26) twice with respect to z and then substituting for ζ from Eq.
(16.25) we obtain

sin α

ρ
= −d2u

dz2 ,
cos α

ρ
= −d2v

dz2 (16.27)

In the derivation of Eq. (16.18) we see that

1

ρ

{
sin α

cos α

}
= 1

E(IxxIyy − I2
xy)

[−Ixy Ixx
Iyy −Ixy

] {
Mx
My

}
(16.28)

Substituting in Eqs (16.28) for sin α/ρ and cos α/ρ from Eqs (16.27) and writing
u′′ = d2u/dz2, v′′ = d2v/dz2 we have

{
u′′
v′′

}
= −1

E(IxxIyy − I2
xy)

[−Ixy Ixx
Iyy −Ixy

] {
Mx
My

}
(16.29)

It is instructive to rearrange Eq. (16.29) as follows
{

Mx
My

}
= −E

[
Ixy Ixx
Iyy Ixy

] {
u′′
v′′

}
(see derivation of Eq. (16.18)) (16.30)

i.e.

Mx = −EIxyu′′ − EIxxv
′′

My = −EIyyu′′ − EIxyv
′′
}

(16.31)

The first of Eqs (16.31) shows that Mx produces curvatures, i.e. deflections, in both
the xz and yz planes even though My = 0; similarly for My when Mx = 0. Thus, for
example, an unsymmetrical beam will deflect both vertically and horizontally even
though the loading is entirely in a vertical plane. Similarly, vertical and horizontal
components of deflection in an unsymmetrical beam are produced by horizontal loads.

For a beam having either Cx or Cy (or both) as an axis of symmetry, Ixy = 0 and
Eqs (16.29) reduce to

u′′ = − My

EIyy
, v′′ = − Mx

EIxx
(16.32)

Example 16.5
Determine the deflection curve and the deflection of the free end of the cantilever shown
in Fig. 16.16(a); the flexural rigidity of the cantilever is EI and its section is doubly
symmetrical.

The load W causes the cantilever to deflect such that its neutral plane takes up the
curved shape shown Fig. 16.16(b); the deflection at any section Z is then v while that
at its free end is vtip. The axis system is chosen so that the origin coincides with the
built-in end where the deflection is clearly zero.

The bending moment, M, at the section Z is, from Fig. 16.16(a)

M = W (L − z) (i)
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EI

L

W
Z

(a)

(b)

y

C z
y ytip

Fig. 16.16 Deflection of a cantilever beam carrying a concentrated load at its free end (Example 16.5).

Substituting for M in the second of Eq. (16.32)

v′′ = − W

EI
(L − z)

or in more convenient form

EIv′′ = −W (L − z) (ii)

Integrating Eq. (ii) with respect to z gives

EIv′′ = −W

(
Lz − z2

2

)
+ C1

where C1 is a constant of integration which is obtained from the boundary condition
that v′ = 0 at the built-in end where z = 0. Hence C1 = 0 and

EIv′ = −W

(
Lz − z2

2

)
(iii)

Integrating Eq. (iii) we obtain

EIv = −W

(
Lz2

2
− z3

6

)
+ C2

in which C2 is again a constant of integration. At the built-in end v = 0 when z = 0 so
that C2 = 0. Hence the equation of the deflection curve of the cantilever is

v = − W

6EI
(3Lz2 − z3) (iv)

The deflection, vtip, at the free end is obtained by setting z = L in Eq. (iv). Then

vtip = −WL3

3EI
(v)

and is clearly negative and downwards.
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Example 16.6
Determine the deflection curve and the deflection of the free end of the cantilever shown
in Fig. 16.17(a). The cantilever has a doubly symmetrical cross-section.

EI

w
Z

(a) L

(b)

y

C z
y ytip

Fig. 16.17 Deflection of a cantilever beam carrying a uniformly distributed load.

The bending moment, M, at any section Z is given by

M = w

2
(L − z)2 (i)

Substituting for M in the second of Eq. (16.32) and rearranging we have

EIv′′ = −w

2
(L − z)2 = −w

2
(L2 − 2Lz + z2) (ii)

Integration of Eq. (ii) yields

EIv′ = −w

2

(
L2z − Lz2 + z3

3

)
+ C1

When z = 0 at the built-in end, v′ = 0 so that C1 = 0 and

EIv′ = −w

2

(
L2z − Lz2 + z3

3

)
(iii)

Integrating Eq. (iii) we have

EIv = −w

2

(
L2 z2

2
− Lz3

3
+ z4

12

)
+ C2

and since v = 0 when x = 0, C2 = 0. The deflection curve of the beam therefore has the
equation

v = − w

24EI
(6L2z2 − 4Lz3 + z4) (iv)
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and the deflection at the free end where x = L is

vtip = −wL4

8EI
(v)

which is again negative and downwards.

Example 16.7
Determine the deflection curve and the mid-span deflection of the simply supported
beam shown in Fig. 16.18(a); the beam has a doubly symmetrical cross-section.

(b)

C

Z

EI

z

y

L

w

(a)

2
wL

2
wL

y

Fig. 16.18 Deflection of a simply supported beam carrying a uniformly distributed load (Example 16.7).

The support reactions are each wL/2 and the bending moment, M, at any section Z,
a distance z from the left-hand support is

M = −wL

2
z + wz2

2
(i)

Substituting for M in the second of Eq. (16.32) we obtain

EIv′′ = w

2
(Lz − z2) (ii)

Integrating we have

EIv′ = w

2

(
Lz2

2
− z3

3

)
+ C1

From symmetry it is clear that at the mid-span section the gradient v′ = 0.
Hence

0 = w

2

(
L3

8
− L3

24

)
+ C1
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which gives

C1 = −wL3

24
Therefore

EIv′ = w

24
(6Lz2 − 4z3 − L3) (iii)

Integrating again gives

EIv = w

24
(2Lz3 − z4 − L3z) + C2

Since v = 0 when z = 0 (or since v = 0 when z = L) it follows that C2 = 0 and the
deflected shape of the beam has the equation

v = w

24EI
(2Lz3 − z4 − L3z) (iv)

The maximum deflection occurs at mid-span where z = L/2 and is

vmid-span = − 5wL4

384EI
(v)

So far the constants of integration were determined immediately they arose. However,
in some cases a relevant boundary condition, say a value of gradient, is not obtainable.
The method is then to carry the unknown constant through the succeeding integration
and use known values of deflection at two sections of the beam. Thus in the previous
example Eq. (ii) is integrated twice to obtain

EIv = w

2

(
Lz3

6
− z4

12

)
+ C1z + C2

The relevant boundary conditions are v = 0 at z = 0 and z = L. The first of these gives
C2 = 0 while from the second we have C1 = −wL3/24. Thus, the equation of the
deflected shape of the beam is

v = w

24EI
(2Lz3 − z4 − L3z)

as before.

Example 16.8
Figure 16.19(a) shows a simply supported beam carrying a concentrated load W at
mid-span. Determine the deflection curve of the beam and the maximum deflection if
the beam section is doubly symmetrical.

The support reactions are each W /2 and the bending moment M at a section Z a
distance z(≤L/2) from the left-hand support is

M = −W

2
z (i)
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y

(a)

Z

C

W

EI

L

z

y

(b)

2
W

2
W

Fig. 16.19 Deflection of a simply supported beam carrying a concentrated load at mid-span (Example 16.8).

From the second of Eq. (16.32) we have

EIv′′ = W

2
z (ii)

Integrating we obtain

EIv′ = W

2

z2

2
+ C1

From symmetry the slope of the beam is zero at mid-span where z = L/2. Thus
C1 = −WL2/16 and

EIv′ = W

16
(4z2 − L2) (iii)

Integrating Eq. (iii) we have

EIv = W

16

(
4z3

3
− L2z

)
+ C2

and when z = 0, v = 0 so that C2 = 0. The equation of the deflection curve is, therefore

v = W

48EI
(4z3 − 3L2z) (iv)

The maximum deflection occurs at mid-span and is

vmid-span = − WL3

48EI
(v)

Note that in this problem we could not use the boundary condition that v = 0 at z = L
to determine C2 since Eq. (i) applies only for 0 ≤ z ≤ L/2; it follows that Eqs (iii) and
(iv) for slope and deflection apply only for 0 ≤ z ≤ L/2 although the deflection curve is
clearly symmetrical about mid-span.

Examples 16.5–16.8 are frequently regarded as ‘standard’ cases of beam deflection.
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16.3.1 Singularity functions

The double integration method used in Examples 16.5–16.8 becomes extremely lengthy
when even relatively small complications such as the lack of symmetry due to an offset
load are introduced. For example, the addition of a second concentrated load on a
simply supported beam would result in a total of six equations for slope and deflection
producing six arbitrary constants. Clearly the computation involved in determining
these constants would be tedious, even though a simply supported beam carrying two
concentrated loads is a comparatively simple practical case. An alternative approach
is to introduce so-called singularity or half-range functions. Such functions were first
applied to beam deflection problems by Macauley in 1919 and hence the method is
frequently known as Macauley’s method.

We now introduce a quantity [z − a] and define it to be zero if (z − a) < 0, i.e. z < a,
and to be simply (z − a) if z > a. The quantity [z − a] is known as a singularity or
half-range function and is defined to have a value only when the argument is positive in
which case the square brackets behave in an identical manner to ordinary parentheses.

Example 16.9
Determine the position and magnitude of the maximum upward and downward
deflections of the beam shown in Fig. 16.20.

B

Z

F

2W

C DA

W

z
EI

W

RA RF

y

a a a a

Fig. 16.20 Macauley’s method for the deflection of a simply supported beam (Example 16.9).

A consideration of the overall equilibrium of the beam gives the support reactions;
thus

RA = 3

4
W (upward) RF = 3

4
W (downward)

Using the method of singularity functions and taking the origin of axes at the left-hand
support, we write down an expression for the bending moment, M, at any section Z
between D and F, the region of the beam furthest from the origin. Thus

M = −RAz + W [z − a] + W [z − 2a] − 2W [z − 3a] (i)

Substituting for M in the second of Eq. (16.32) we have

EIv′′ = 3

4
Wz − W [z − a] − W [z − 2a] + 2W [z − 3a] (ii)
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Integrating Eq. (ii) and retaining the square brackets we obtain

EIv′ = 3

8
Wz2 − W

2
[z − a]2 − W

2
[z − 2a]2 + W [z − 3a]2 + C1 (iii)

and

EIv = 1

8
Wz3 − W

6
[z − a]3 − W

6
[z − 2a]3 + W

3
[z − 3a]3 + C1z + C2 (iv)

in which C1 and C2 are arbitrary constants. When z = 0 (at A), v = 0 and hence C2 = 0.
Note that the second, third and fourth terms on the right-hand side of Eq. (iv) disappear
for z < a. Also v = 0 at z = 4a (F) so that, from Eq. (iv), we have

0 = W

8
64a3 − W

6
27a3 − W

6
8a3 + W

3
a3 + 4aC1

which gives

C1 = −5

8
Wa2

Equations (iii) and (iv) now become

EIv′ = 3

8
Wz2 − W

2
[z − a]2 − W

2
[z − 2a]2 + W [z − 3a]2 − 5

8
Wa2 (v)

and

EIv = 1

8
Wz3 − W

6
[z − a]3 − W

6
[z − 2a]3 + W

3
[z − 3a]3 − 5

8
Wa2z (vi)

respectively.
To determine the maximum upward and downward deflections we need to know in

which bays v′ = 0 and thereby which terms in Eq. (v) disappear when the exact positions
are being located. One method is to select a bay and determine the sign of the slope of
the beam at the extremities of the bay. A change of sign will indicate that the slope is
zero within the bay.

By inspection of Fig. 16.20 it seems likely that the maximum downward deflection
will occur in BC. At B, using Eq. (v)

EIv′ = 3

8
Wa2 − 5

8
Wa2

which is clearly negative. At C

EIv′ = 3

8
W4a2 − W

2
a2 − 5

8
Wa2

which is positive. Therefore, the maximum downward deflection does occur in BC and
its exact position is located by equating v′ to zero for any section in BC. Thus, from
Eq. (v)

0 = 3

8
Wz2 − W

2
[z − a]2 − 5

8
Wa2
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or, simplifying,

0 = z2 − 8az + 9a2 (vii)

Solution of Eq. (vii) gives

z = 1.35a

so that the maximum downward deflection is, from Eq. (vi)

EIv = 1

8
W (1.35a)3 − W

6
(0.35a)3 − 5

8
Wa2(1.35a)

i.e.

vmax(downward) = −0.54Wa3

EI

In a similar manner it can be shown that the maximum upward deflection lies between
D and F at z = 3.42a and that its magnitude is

vmax(upward) = 0.04Wa3

EI

An alternative method of determining the position of maximum deflection is to select a
possible bay, set v′ = 0 for that bay and solve the resulting equation in z. If the solution
gives a value of z that lies within the bay, then the selection is correct, otherwise the
procedure must be repeated for a second and possibly a third and a fourth bay. This
method is quicker than the former if the correct bay is selected initially; if not, the
equation corresponding to each selected bay must be completely solved, a procedure
clearly longer than determining the sign of the slope at the extremities of the bay.

Example 16.10
Determine the position and magnitude of the maximum deflection in the beam of
Fig. 16.21.

Following the method of Example 16.9 we determine the support reactions and find
the bending moment, M, at any section Z in the bay furthest from the origin of the axes.

A B C D

Z

L/2

EI

L/4 L/4

w
y

z

RD �
5wL
32RA �

3wL
32

Fig. 16.21 Deflection of a beam carrying a part span uniformly distributed load (Example 16.10).
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Then

M = −RAz + w
L

4

[
z − 5L

8

]
(i)

Examining Eq. (i) we see that the singularity function [z − 5L/8] does not become zero
until z ≤ 5L/8 although Eq. (i) is only valid for z ≥ 3L/4. To obviate this difficulty we
extend the distributed load to the support D while simultaneously restoring the status
quo by applying an upward distributed load of the same intensity and length as the
additional load (Fig. 16.22).

L/2

EI
RA

RD

L/4 L/4

A B
C

Z

D

w

z

y
w

Fig. 16.22 Method of solution for a part span uniformly distributed load.

At the section Z, a distance z from A, the bending moment is now given by

M = −RAz + w

2

[
z − L

2

]2

− w

2

[
z − 3L

4

]2

(ii)

Equation (ii) is now valid for all sections of the beam if the singularity functions are
discarded as they become zero. Substituting Eq. (ii) into the second of Eqs (16.32) we
obtain

EIv′′ = 3

32
wLz − w

2

[
z − L

2

]2

+ w

2

[
z − 3L

4

]2

(iii)

Integrating Eq. (iii) gives

EIv′ = 3

64
wLz2 − w

6

[
z − L

2

]3

+ w

6

[
z − 3L

4

]3

+ C1 (iv)

EIv = wLz3

64
− w

24

[
z − L

2

]4

+ w

24

[
z − 3L

4

]4

+ C1z + C2 (v)

where C1 and C2 are arbitrary constants. The required boundary conditions are v = 0
when z = 0 and z = L. From the first of these we obtain C2 = 0 while the second gives

0 = wL4

64
− w

24

(
L

2

)4

+ w

24

(
L

4

)4

+ C1L

from which

C1 = −27wL3

2048
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Equations (iv) and (v) then become

EIv′ = 3

64
wLz2 − w

6

[
z − L

2

]3

+ w

6

[
z − 3L

4

]3

− 27wL3

2048
(vi)

and

EIv = wLz3

64
− w

24

[
z − L

2

]4

+ w

24

[
z − 3L

4

]4

− 27wL3

2048
z (vii)

In this problem, the maximum deflection clearly occurs in the region BC of the beam.
Thus equating the slope to zero for BC we have

0 = 3

64
wLz2 − w

6

[
z − L

2

]3

− 27wL3

2048

which simplifies to

z3 − 1.78Lz2 + 0.75zL2 − 0.046L3 = 0 (viii)

Solving Eq. (viii) by trial and error, we see that the slope is zero at z � 0.6L. Hence
from Eq. (vii) the maximum deflection is

vmax = −4.53 × 10−3wL4

EI

Example 16.11
Determine the deflected shape of the beam shown in Fig. 16.23.

In this problem an external moment M0 is applied to the beam at B. The support
reactions are found in the normal way and are

RA = −M0

L
(downwards) RC = M0

L
(upwards)

A

B
C

Z

z

b

M0

L

EI

y

RA � �
M0

L
RC �

M0

L

Fig. 16.23 Deflection of a simply supported beam carrying a point moment (Example 16.11).



Ch16-H6739.tex 25/1/2007 14: 6 Page 480

480 Bending of open and closed, thin-walled beams

The bending moment at any section Z between B and C is then given by

M = −RAz − M0 (i)

Equation (i) is valid only for the region BC and clearly does not contain a singularity
function which would cause M0 to vanish for z ≤ b. We overcome this difficulty by
writing

M = −RAz − M0[z − b]0 (Note: [z − b]0 = 1) (ii)

Equation (ii) has the same value as Eq. (i) but is now applicable to all sections of the
beam since [z − b]0 disappears when z ≤ b. Substituting for M from Eq. (ii) in the
second of Eq. (16.32) we obtain

EIv′′ = RAz + M0[z − b]0 (iii)

Integration of Eq. (iii) yields

EIv′ = RA
z2

2
+ M0[z − b] + C1 (vi)

and

EIv = RA
z3

6
+ M0

2
[z − b]2 + C1z + C2 (v)

where C1 and C2 are arbitrary constants. The boundary conditions are v = 0 when z = 0
and z = L. From the first of these we have C2 = 0 while the second gives

0 = −M0

L

L3

6
+ M0

2
[L − b]2 + C1L

from which

C1 = −M0

6L
(2L2 − 6Lb + 3b2)

The equation of the deflection curve of the beam is then

v = M0

6EIL
{z3 + 3L[z − b]2 − (2L2 − 6Lb + 3b2)z} (vi)

Example 16.12
Determine the horizontal and vertical components of the tip deflection of the cantilever
shown in Fig. 16.24. The second moments of area of its unsymmetrical section are Ixx,
Iyy and Ixy.

From Eqs (16.29)

u′′ = MxIxy − MyIxx

E(IxxIyy − I2
xy)

(i)
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Fig. 16.24 Determination of the deflection of a cantilever.

In this case Mx = W (L − z), My = 0 so that Eq. (i) simplifies to

u′′ = WIxy

E(IxxIyy − I2
xy)

(L − z) (ii)

Integrating Eq. (ii) with respect to z

u′ = WIxy

E(IxxIyy − I2
xy)

(
Lz − z2

2
+ A

)
(iii)

and

u = WIxy

E(IxxIyy − I2
xy)

(
L

z2

2
− z3

6
+ Az + B

)
(iv)

in which u′ denotes du/dz and the constants of integration A and B are found from
the boundary conditions, viz. u′ = 0 and u = 0 when z = 0. From the first of these and
Eq. (iii), A = 0, while from the second and Eq. (iv), B = 0. Hence the deflected shape
of the beam in the xz plane is given by

u = WIxy

E(IxxIyy − I2
xy)

(
L

z2

2
− z3

6

)
(v)

At the free end of the cantilever (z = L) the horizontal component of deflection is

uf.e. = WIxyL3

3E(IxxIyy − I2
xy)

(vi)

Similarly, the vertical component of the deflection at the free end of the cantilever is

vf.e. = −WIyyL3

3E(IxxIyy − I2
xy)

(vii)

The actual deflection δf.e. at the free end is then given by

δf.e. = (u2
f.e. + v2

f.e.)
1
2

at an angle of tan−1 uf.e./vf.e. to the vertical.
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Note that if either Cx or Cy were an axis of symmetry, Ixy = 0 and Eqs (vi) and (vii)
reduce to

uf.e. = 0 vf.e. = −WL3

3EIxx

the well-known results for the bending of a cantilever having a symmetrical cross-
section and carrying a concentrated vertical load at its free end (see Example 16.5).

16.4 Calculation of section properties

It will be helpful at this stage to discuss the calculation of the various section properties
required in the analysis of beams subjected to bending. Initially, however, two useful
theorems are quoted.

16.4.1 Parallel axes theorem

Consider the beam section shown in Fig. 16.25 and suppose that the second moment of
area, IC, about an axis through its centroid C is known. The second moment of area, IN,
about a parallel axis, NN, a distance b from the centroidal axis is then given by

IN = IC + Ab2 (16.33)

C

N N

b

Cross-sectional area, A

Fig. 16.25 Parallel axes theorem.

16.4.2 Theorem of perpendicular axes

In Fig. 16.26 the second moments of area, Ixx and Iyy, of the section about Ox and Oy
are known. The second moment of area about an axis through O perpendicular to the

y

O
x

Fig. 16.26 Theorem of perpendicular axes.
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plane of the section (i.e. a polar second moment of area) is then

Io = Ixx + Iyy (16.34)

16.4.3 Second moments of area of standard sections

Many sections may be regarded as comprising a number of rectangular shapes. The
problem of determining the properties of such sections is simplified if the second
moments of area of the rectangular components are known and use is made of the
parallel axes theorem. Thus, for the rectangular section of Fig. 16.27.

Ixx =
∫

A
y2dA =

∫ d/2

−d/2
by2dy = b

[
y3

3

]d/2

−d/2

which gives

Ixx = bd3

12
(16.35)

d

N

C

N
b

y

x
y

�y

Fig. 16.27 Second moments of area of a rectangular section.

Similarly

Iyy = db3

12
(16.36)

Frequently it is useful to know the second moment of area of a rectangular section
about an axis which coincides with one of its edges. Thus in Fig. 16.27, and using the
parallel axes theorem

IN = bd3

12
+ bd

(
−d

2

)2

= bd3

3
(16.37)

Example 16.13
Determine the second moments of area Ixx and Iyy of the I-section shown in Fig. 16.28.

Using Eq. (16.35)

Ixx = bd3

12
− (b − tw)d3

w

12
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b
y

O
x

ddw

tf

tf

tw

Fig. 16.28 Second moments of area of an I-Section.

Alternatively, using the parallel axes theorem in conjunction with Eq. (16.35)

Ixx = 2

[
bt3

f

12
+ btf

(
dw+tf

2

)2
]

+ twd3
w

12

The equivalence of these two expressions for Ixx is most easily demonstrated by a
numerical example.

Also, from Eq. (16.36)

Iyy = 2
tfb3

12
+ dwt3

w

12
It is also useful to determine the second moment of area, about a diameter, of a circular
section. In Fig. 16.29 where the x and y axes pass through the centroid of the section

Ixx =
∫

A
y2dA =

∫ d/2

−d/2
2

(
d

2
cos θ

)
y2dy (16.38)

x

y

O

u
y

�y

d
2

Fig. 16.29 Second moments of area of a circular section.
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Integration of Eq. (16.38) is simplified if an angular variable, θ, is used. Thus

Ixx =
∫ π/2

−π/2
d cos θ

(
d

2
sin θ

)2 d

2
cos θ dθ

i.e.

Ixx = d4

8

∫ π/2

−π/2
cos2 θ sin2 θ dθ

which gives

Ixx = πd4

64
(16.39)

Clearly from symmetry

Iyy = πd4

64
(16.40)

Using the theorem of perpendicular axes, the polar second moment of area, Io, is given
by

Io = Ixx + Iyy = πd4

32
(16.41)

16.4.4 Product second moment of area

The product second moment of area, Ixy, of a beam section with respect to x and y axes
is defined by

Ixy =
∫

A
xy dA (16.42)

Thus each element of area in the cross-section is multiplied by the product of its coord-
inates and the integration is taken over the complete area. Although second moments
of area are always positive since elements of area are multiplied by the square of one of
their coordinates, it is possible for Ixy to be negative if the section lies predominantly
in the second and fourth quadrants of the axes system. Such a situation would arise in
the case of the Z-section of Fig. 16.30(a) where the product second moment of area of
each flange is clearly negative.

A special case arises when one (or both) of the coordinate axes is an axis of symmetry
so that for any element of area, δA, having the product of its coordinates positive, there
is an identical element for which the product of its coordinates is negative (Fig. 16.30
(b)). Summation (i.e. integration) over the entire section of the product second moment
of area of all such pairs of elements results in a zero value for Ixy.

We have shown previously that the parallel axes theorem may be used to calculate
second moments of area of beam sections comprising geometrically simple compon-
ents. The theorem can be extended to the calculation of product second moments of
area. Let us suppose that we wish to calculate the product second moment of area,
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(a)

Y

y

a

b

Cross-sectional
area, A

C

O

(c)

X

(b)

O

�A �A

y

x

x

O

y

x

Fig. 16.30 Product second moment of area.

Ixy, of the section shown in Fig. 16.30(c) about axes xy when IXY about its own, say
centroidal, axes system CXY is known. From Eq. (16.42)

Ixy =
∫

A
xy dA

or

Ixy =
∫

A
(X − a)(Y − b)dA

which, on expanding, gives

Ixy =
∫

A
XY dA − b

∫

A
XdA − a

∫

A
Y dA + ab

∫

A
dA

If X and Y are centroidal axes then
∫

A X dA = ∫
A Y dA = 0. Hence

Ixy = IXY + abA (16.43)

It can be seen from Eq. (16.43) that if either CX or CY is an axis of symmetry, i.e.
IXY = 0, then

Ixy = abA (16.44)

Therefore for a section component having an axis of symmetry that is parallel to
either of the section reference axes the product second moment of area is the product
of the coordinates of its centroid multiplied by its area.

16.4.5 Approximations for thin-walled sections

We may exploit the thin-walled nature of aircraft structures to make simplifying assump-
tions in the determination of stresses and deflections produced by bending. Thus, the
thickness t of thin-walled sections is assumed to be small compared with their cross-
sectional dimensions so that stresses may be regarded as being constant across the
thickness. Furthermore, we neglect squares and higher powers of t in the computation
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Fig. 16.31 (a) Actual thin-walled channel section; (b) approximate representation of section.

of sectional properties and take the section to be represented by the mid-line of its wall.
As an illustration of the procedure we shall consider the channel section of Fig. 16.31(a).
The section is singly symmetric about the x axis so that Ixy = 0. The second moment of
area Ixx is then given by

Ixx = 2

[
(b + t/2)t3

12
+

(
b + t

2

)
th2

]
+ t

[2(h − t/2)]3

12

Expanding the cubed term we have

Ixx = 2

[
(b + t/2)t3

12
+

(
b + t

2

)
th2

]
+ t

12

[
(2)3

(
h3 − 3h2 t

2
+ 3h

t2

4
− t3

8

)]

which reduces, after powers of t2 and upwards are ignored, to

Ixx = 2bth2 + t
(2h)3

12

The second moment of area of the section about Cy is obtained in a similar manner.
We see, therefore, that for the purpose of calculating section properties we may

regard the section as being represented by a single line, as shown in Fig. 16.31(b).
Thin-walled sections frequently have inclined or curved walls which complicate the

calculation of section properties. Consider the inclined thin section of Fig. 16.32. Its
second moment of area about a horizontal axis through its centroid is given by

Ixx = 2
∫ a/2

0
ty2 ds = 2

∫ a/2

0
t(s sin β)2 ds

from which

Ixx = a3t sin2 β

12
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Fig. 16.32 Second moments of area of an inclined thin section.

Similarly

Iyy = a3t cos2 β

12
The product second moment of area is

Ixy = 2
∫ a/2

0
txy ds

= 2
∫ a/2

0
t(s cos β)(s sin β) ds

which gives

Ixy = a3t sin 2β

24
We note here that these expressions are approximate in that their derivation neglects
powers of t2 and upwards by ignoring the second moments of area of the element δs
about axes through its own centroid.

Properties of thin-walled curved sections are found in a similar manner. Thus, Ixx for
the semicircular section of Fig. 16.33 is

Ixx =
∫ πr

0
ty2 ds

Fig. 16.33 Second moment of area of a semicircular section.
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Expressing y and s in terms of a single variable θ simplifies the integration, hence

Ixx =
∫ π

0
t(r cos θ)2r dθ

from which

Ixx = πr3t

2

Example 16.14
Determine the direct stress distribution in the thin-walled Z-section shown in Fig. 16.34,
produced by a positive bending moment Mx.

Fig. 16.34 Z-section beam of Example 16.14.

The section is antisymmetrical with its centroid at the mid-point of the vertical web.
Therefore, the direct stress distribution is given by either of Eq. (16.18) or (16.19) in
which My = 0. From Eq. (16.19)

σz = Mx(Iyyy − Ixyx)

IxxIyy − I2
xy

(i)

The section properties are calculated as follows

Ixx = 2
ht

2

(
h

2

)2

+ th3

12
= h3t

3

Iyy = 2
t

3

(
h

2

)3

= h3t

12

Ixy = ht

2

(
h

4

) (
h

2

)
+ ht

2

(
−h

4

) (
−h

2

)
= h3t

8
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Substituting these values in Eq. (i)

σz = Mx

h3t
(6.86y − 10.30x) (ii)

On the top flange y = h/2, 0 ≤ x ≤ h/2 and the distribution of direct stress is given by

σz = Mx

h3t
(3.43h − 10.30x)

which is linear. Hence

σz,1 = −1.72Mx

h3t
(compressive)

σz,2 = +3.43Mx

h3t
(tensile)

In the web h/2 ≤ y ≤ −h/2 and x = 0. Again the distribution is of linear form and is
given by the equation

σz = Mx

h3t
6.86y

whence

σz,2 = +3.43Mx

h3t
(tensile)

and

σz,3 = −3.43Mx

h3t
(compressive)

The distribution in the lower flange may be deduced from antisymmetry; the complete
distribution is then as shown in Fig. 16.35.

Fig. 16.35 Distribution of direct stress in Z-section beam of Example 16.14.
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16.5 Applicability of bending theory

The expressions for direct stress and displacement derived in the above theory are based
on the assumptions that the beam is of uniform, homogeneous cross-section and that
plane sections remain plane after bending. The latter assumption is strictly true only
if the bending moments Mx and My are constant along the beam. Variation of bending
moment implies the presence of shear loads and the effect of these is to deform the beam
section into a shallow, inverted ‘s’ (see Section 2.6). However, shear stresses in beams
whose cross-sectional dimensions are small in relation to their lengths are comparatively
low so that the basic theory of bending may be used with reasonable accuracy.

In thin-walled sections shear stresses produced by shear loads are not small and
must be calculated, although the direct stresses may still be obtained from the basic
theory of bending so long as axial constraint stresses are absent; this effect is discussed
in Chapters 26 and 27. Deflections in thin-walled structures are assumed to result
primarily from bending strains; the contribution of shear strains may be calculated
separately if required.

16.6 Temperature effects

In Section 1.15.1 we considered the effect of temperature change on stress–strain rela-
tionships while in Section 5.11 we examined the effect of a simple temperature gradient
on a cantilever beam of rectangular cross-section using an energy approach. However,
as we have seen, beam sections in aircraft structures are generally thin walled and do
not necessarily have axes of symmetry. We shall now investigate how the effects of
temperature on such sections may be determined.

We have seen that the strain produced by a temperature change �T is given by

ε = α �T (see Eq. (1.55))

It follows from Eq. (1.40) that the direct stress on an element of cross-sectional area
δA is

σ = Eα �T δA (16.45)

Consider now the beam section shown in Fig. 16.36 and suppose that a temperature
variation �T is applied to the complete cross-section, i.e. �T is a function of both x
and y.

The total normal force due to the temperature change on the beam cross-section is
then given by

NT =
∫ ∫

A
Eα �T dA (16.46)

Further, the moments about the x and y axes are

MxT =
∫ ∫

A
Eα �Ty dA (16.47)
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Area, A

NT

MyT

y

y
C

δA

x
MxT

x

Fig. 16.36 Beam section subjected to a temperature rise.

and

MyT =
∫ ∫

A
Eα �Tx dA (16.48)

respectively.
We have noted that beam sections in aircraft structures are generally thin walled so

that Eqs (16.46)–(16.48) may be more easily integrated for such sections by dividing
them into thin rectangular components as we did when calculating section properties.
We then use the Riemann integration technique in which we calculate the contribution
of each component to the normal force and moments and sum them to determine each
resultant. Equations (16.46)–(16.48) then become

NT = �Eα �T Ai (16.49)

MxT = �Eα �Tȳi Ai (16.50)

MyT = �Eα �Tx̄i Ai (16.51)

in which Ai is the cross-sectional area of a component and xi and yi are the coordinates
of its centroid.

Example 16.15
The beam section shown in Fig. 16.37 is subjected to a temperature rise of 2T0 in its
upper flange, a temperature rise of T0 in its web and zero temperature change in its lower
flange. Determine the normal force on the beam section and the moments about the
centroidal x and y axes. The beam section has a Young’s modulus E and the coefficient
of linear expansion of the material of the beam is α.

From Eq. (16.49)

NT = Eα(2T0 at + T0 2at) = 4Eα at T0
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C

t

y

x
2a

a

a

Fig. 16.37 Beam section of Example 16.15.

From Eq. (16.50)

MxT = Eα[2T0 at(a) + T0 2at(0)] = 2Eα a2t T0

and from Eq. (16.51)

MyT = Eα[2T0 at(−a/2) + T0 2at(0)] = −Eα a2t T0

Note that MyT is negative which means that the upper flange would tend to rotate
out of the paper about the web which agrees with a temperature rise for this part of the
section. The stresses corresponding to the above stress resultants are calculated in the
normal way and are added to those produced by any applied loads.

In some cases the temperature change is not conveniently constant in the components
of a beam section and must then be expressed as a function of x and y. Consider the
thin-walled beam section shown in Fig. 16.38 and suppose that a temperature change
�T (x, y) is applied.

The direct stress on an element δs in the wall of the section is then, from Eq. (16.45)

σ = Eα �T (x, y)t δs
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C

t

x

y

y

x

δs

Fig. 16.38 Thin-walled beam section subjected to a varying temperature change.

Equations (16.46)–(16.48) then become

NT =
∫

A
Eα �T (x, y)t ds (16.52)

MxT =
∫

A
Eα �T (x, y)ty ds (16.53)

MyT =
∫

A
Eα �T (x, y)tx ds (16.54)

Example 16.16
If, in the beam section of Example 16.15, the temperature change in the upper flange
is 2T0 but in the web varies linearly from 2T0 at its junction with the upper flange to
zero at its junction with the lower flange determine the values of the stress resultants;
the temperature change in the lower flange remains zero.

The temperature change at any point in the web is given by

Tw = 2T0(a + y)/2a = T0

a
(a + y)

Then, from Eqs (16.49) and (16.52)

NT = Eα 2T0 at +
∫ a

−a
Eα

T0

a
(a + y)t ds

i.e. NT = Eα T0

{

2at + 1

a

[
ay + y2

2

]a

−a

}
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which gives

NT = 4Eα T0 at

Note that, in this case, the answer is identical to that in Example 16.15 which is to be
expected since the average temperature change in the web is (2T0 + 0)/2 = T0 which
is equal to the constant temperature change in the web in Example 16.15.

From Eqs (16.50) and (16.53)

MxT = Eα 2T0at(a) +
∫ a

−a
Eα

T0

a
(a + y)yt ds

i.e.

MxT = Eα T0

{

2a2t + 1

a

[
ay2

2
+ y3

3

]a

−a

}

from which

MxT = 8Eαa2tT0

3
Alternatively, the average temperature change T0 in the web may be considered to act
at the centroid of the temperature change distribution. Then

MxT = Eα 2T0at(a) + EαT02at
(a

3

)

i.e.

MxT = 8Eαa2tT0

3
as before

The contribution of the temperature change in the web to MyT remains zero since
the section centroid is in the web; the value of MyT is therefore −Eαa2tT0 as in
Example 16.14.

References

1 Megson, T. H. G., Structures and Stress Analysis, 2nd edition, Elsevier, Oxford, 2005.

Problems

P.16.1 Figure P.16.1 shows the section of an angle purlin. A bending moment of
3000 N m is applied to the purlin in a plane at an angle of 30◦ to the vertical y axis. If
the sense of the bending moment is such that its components Mx and My both produce
tension in the positive xy quadrant, calculate the maximum direct stress in the purlin
stating clearly the point at which it acts.

Ans. σz,max = −63.3 N/mm2 at C.



Ch16-H6739.tex 25/1/2007 14: 6 Page 496

496 Bending of open and closed, thin-walled beams

Fig. P.16.1

P.16.2 A thin-walled, cantilever beam of unsymmetrical cross-section supports
shear loads at its free end as shown in Fig. P.16.2. Calculate the value of direct stress
at the extremity of the lower flange (point A) at a section half-way along the beam if
the position of the shear loads is such that no twisting of the beam occurs.

Ans. 194.7 N/mm2 (tension).

800 N

400 N

2000 mm

100 mm

80 mm

40 mm

2.0 mm

2.0 mm

1.0 mm
A

Fig. P.16.2

P.16.3 A beam, simply supported at each end, has a thin-walled cross-section
shown in Fig. P.16.3. If a uniformly distributed loading of intensity w/unit length acts
on the beam in the plane of the lower, horizontal flange, calculate the maximum direct
stress due to bending of the beam and show diagrammatically the distribution of the
stress at the section where the maximum occurs.

The thickness t is to be taken as small in comparison with the other cross-sectional
dimensions in calculating the section properties Ixx, Iyy and Ixy.

Ans. σz,max = σz,3 = 13wl2/384a2t, σz,1 = wl2/96a2t, σz,2 = −wl2/48a2t.
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Fig. P.16.3

P.16.4 A thin-walled cantilever with walls of constant thickness t has the cross-
section shown in Fig. P.16.4. It is loaded by a vertical force W at the tip and a horizontal
force 2W at the mid-section, both forces acting through the shear centre. Determine
and sketch the distribution of direct stress, according to the basic theory of bending,
along the length of the beam for the points 1 and 2 of the cross-section.

The wall thickness t can be taken as very small in comparison with d in calculating
the sectional properties Ixx, Ixy, etc.

Ans. σz,1 (mid-point) = −0.05 Wl/td2, σz,1 (built-in end) = −1.85 Wl/td2

σz,2 (mid-point) = −0.63 Wl/td2, σz,2 (built-in end) = 0.1 Wl/td2.

Fig. P.16.4

P. 16.5 A thin-walled beam has the cross-section shown in Fig. P.16.5. If the
beam is subjected to a bending moment Mx in the plane of the web 23 calculate and
sketch the distribution of direct stress in the beam cross-section.

Ans. At 1, 0.92Mx/th2; At 2, −0.65Mx/th2; At 3, 0.65Mx/th2;
At 4, −0.135Mx/th2
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h/2

4 3

2t

2t

2h

t

h

2 1

Fig. P.16.5

P.16.6 The thin-walled beam section shown in Fig. P.16.6 is subjected to a bend-
ing moment Mx applied in a negative sense. Find the position of the neutral axis and
the maximum direct stress in the section.

Ans. NA inclined at 40.9◦ to Cx. ±0.74 Mx/ta2 at 1 and 2, respectively.

a

a
C x

t

a

60°

1

2

Fig. P.16.6

P.16.7 A thin-walled cantilever has a constant cross-section of uniform thickness
with the dimensions shown in Fig. P.16.7. It is subjected to a system of point loads
acting in the planes of the walls of the section in the directions shown.
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Calculate the direct stresses according to the basic theory of bending at the points 1,
2 and 3 of the cross-section at the built-in end and half-way along the beam. Illustrate
your answer by means of a suitable sketch.

The thickness is to be taken as small in comparison with the other cross-sectional
dimensions in calculating the section properties Ixx, Ixy, etc.

Ans. At built-in end, σz,1=−11.4 N/mm2, σz,2=−18.9 N/mm2, σz,3=39.1 N/mm2

Half-way, σz,1 = −20.3 N/mm2, σz,2 = −1.1 N/mm2, σz,3 = 15.4 N/mm2.

Fig. P.16.7

P.16.8 A uniform thin-walled beam has the open cross-section shown in Fig.
P.16.8. The wall thickness t is constant. Calculate the position of the neutral axis
and the maximum direct stress for a bending moment Mx = 3.5 N m applied about the
horizontal axis Cx. Take r = 5 mm, t = 0.64 mm.

Ans. α = 51.9◦, σz,max = 101 N/mm2.

Fig. P.16.8

P.16.9 A uniform beam is simply supported over a span of 6 m. It carries a
trapezoidally distributed load with intensity varying from 30 kN/m at the left-hand
support to 90 kN/m at the right-hand support. Find the equation of the deflection curve
and hence the deflection at the mid-span point. The second moment of area of the
cross-section of the beam is 120 × 106 mm4 andYoung’s modulus E = 206 000 N/mm2.

Ans. 41 mm (downwards).
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P.16.10 A cantilever of length L and having a flexural rigidity EI carries a dis-
tributed load that varies in intensity from w/unit length at the built-in end to zero at the
free end. Find the deflection of the free end.

Ans. wL4/30EI (downwards).

P.16.11 Determine the position and magnitude of the maximum deflection of the
simply supported beam shown in Fig. P.16.11 in terms of its flexural rigidity EI.

Ans. 38.8/EI m downwards at 2.9 m from left-hand support.

6 kN 4 kN

1 kN/m

1 m 1 m2 m 2 m

Fig. P.16.11

P.16.12 Determine the equation of the deflection curve of the beam shown in
Fig. P.16.12. The flexural rigidity of the beam is EI.

Ans. v = − 1

EI

(
125

6
z3 − 50[z − 1]2 + 50

12
[z − 2]4 − 50

12
[z − 4]4 − 525

6
[z − 4]3

+ 237.5z

)

100 N m 100 N/m

A

B

C
D F

200 N

1 m 2 m 3 m1 m

Fig. P.16.12

P.16.13 A uniform thin-walled beamABD of open cross-section (Fig. P.16.13) is
simply supported at points B and D with its web vertical. It carries a downward vertical
force W at the end A in the plane of the web.

Derive expressions for the vertical and horizontal components of the deflection of
the beam midway between the supports B and D. The wall thickness t and Young’s
modulus E are constant throughout.

Ans. u = 0.186Wl3/Ea3t, v = 0.177Wl3/Ea3t.
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Fig. P.16.13

P.16.14 A uniform cantilever of arbitrary cross-section and length l has section
properties Ixx, Iyy and Ixy with respect to the centroidal axes shown in Fig. P.16.14. It
is loaded in the vertical (yz) plane with a uniformly distributed load of intensity w/unit
length. The tip of the beam is hinged to a horizontal link which constrains it to move
in the vertical direction only (provided that the actual deflections are small). Assuming
that the link is rigid, and that there are no twisting effects, calculate:

(a) the force in the link;
(b) the deflection of the tip of the beam.

Ans. (a) 3wlIxy/8Ixx; (b) wl4/8EIxx.

Fig. P.16.14

P.16.15 A uniform beam of arbitrary, unsymmetrical cross-section and length
2l is built-in at one end and simply supported in the vertical direction at a point
half-way along its length. This support, however, allows the beam to deflect freely
in the horizontal x direction (Fig. P.16.15).
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For a vertical load W applied at the free end of the beam, calculate and draw the
bending moment diagram, putting in the principal values.

Ans. MC = 0, MB =Wl, MA = −Wl/2. Linear distribution.

Fig. P.16.15

P.16.16 The beam section of P.16.4 is subjected to a temperature rise of 4T0 in
its upper flange 12, a temperature rise of 2T0 in both vertical webs and a temperature
rise of T0 in its lower flange 34. Determine the changes in axial force and in the bending
moments about the x and y axes. Young’s modulus for the material of the beam is E
and its coefficient of linear expansion is α.

Ans. NT = 9Eα dtT0, MxT = 3Eα d2t T0/2, MyT = 3Eα d2t T0/4.

P.16.17 The beam section shown in Fig. P.16.17 is subjected to a temperature
change which varies with y such that T = T0y/2a. Determine the corresponding changes
in the stress resultants. Young’s modulus for the material of the beam is E while its
coefficient of linear expansion is α.

Ans. NT = 0, MxT = 5Eα a2t T0/3, MyT = Eα a2t T0/6.

a

y

2a

t

C x

Fig. P.16.17
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Shear of beams

In Chapter 16 we developed the theory for the bending of beams by considering solid
or thick beam sections and then extended the theory to the thin-walled beam sections
typical of aircraft structural components. In fact it is only in the calculation of section
properties that thin-walled sections subjected to bending are distinguished from solid
and thick sections. However, for thin-walled beams subjected to shear, the theory
is based on assumptions applicable only to thin-walled sections so that we shall not
consider solid and thick sections; the relevant theory for such sections may be found in
any text on structural and stress analysis.1 The relationships between bending moments,
shear forces and load intensities derived in Section 16.2.5 still apply.

17.1 General stress, strain and displacement
relationships for open and single cell closed
section thin-walled beams

We shall establish in this section the equations of equilibrium and expressions for strain
which are necessary for the analysis of open section beams supporting shear loads and
closed section beams carrying shear and torsional loads. The analysis of open section
beams subjected to torsion requires a different approach and is discussed separately
in Chapter 18. The relationships are established from first principles for the particular
case of thin-walled sections in preference to the adaption of Eqs (1.6), (1.27) and (1.28)
which refer to different coordinate axes; the form, however, will be seen to be the same.
Generally, in the analysis we assume that axial constraint effects are negligible, that
the shear stresses normal to the beam surface may be neglected since they are zero at
each surface and the wall is thin, that direct and shear stresses on planes normal to the
beam surface are constant across the thickness, and finally that the beam is of uniform
section so that the thickness may vary with distance around each section but is constant
along the beam. In addition, we ignore squares and higher powers of the thickness t in
the calculation of section properties (see Section 16.4.5).

The parameter s in the analysis is distance measured around the cross-section from
some convenient origin.

An element δs × δz × t of the beam wall is maintained in equilibrium by a system of
direct and shear stresses as shown in Fig. 17.1(a). The direct stress σz is produced by
bending moments or by the bending action of shear loads while the shear stresses are due
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Fig. 17.1 (a) General stress system on element of a closed or open section beam; (b) direct stress and shear flow
system on the element.

to shear and/or torsion of a closed section beam or shear of an open section beam. The
hoop stress σs is usually zero but may be caused, in closed section beams, by internal
pressure. Although we have specified that t may vary with s, this variation is small for
most thin-walled structures so that we may reasonably make the approximation that t
is constant over the length δs. Also, from Eq. (1.4), we deduce that τzs = τsz = τ say.
However, we shall find it convenient to work in terms of shear flow q, i.e. shear force
per unit length rather than in terms of shear stress. Hence, in Fig. 17.1(b)

q = τt (17.1)

and is regarded as being positive in the direction of increasing s.
For equilibrium of the element in the z direction and neglecting body forces (see

Section 1.2)
(

σz + ∂σz

∂z
δz

)
tδs − σztδs +

(
q + ∂q

∂s
δs

)
δz − qδz = 0

which reduces to
∂q

∂s
+ t

∂σz

∂z
= 0 (17.2)

Similarly for equilibrium in the s direction

∂q

∂z
+ t

∂σs

∂s
= 0 (17.3)

The direct stresses σz and σs produce direct strains εz and εs, while the shear stress
τ induces a shear strain γ(=γzs = γsz). We shall now proceed to express these strains
in terms of the three components of the displacement of a point in the section wall (see
Fig. 17.2). Of these components vt is a tangential displacement in the xy plane and is
taken to be positive in the direction of increasing s; vn is a normal displacement in the xy
plane and is positive outwards; and w is an axial displacement which has been defined
previously in Section 16.2.1. Immediately, from the third of Eqs (1.18), we have

εz = ∂w

∂z
(17.4)
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Fig. 17.2 Axial, tangential and normal components of displacement of a point in the beam wall.

Fig. 17.3 Determination of shear strain γ in terms of tangential and axial components of displacement.

It is possible to derive a simple expression for the direct strain εs in terms of vt , vn, s
and the curvature 1/r in the xy plane of the beam wall. However, as we do not require
εs in the subsequent analysis we shall, for brevity, merely quote the expression

εs = ∂vt

∂s
+ vn

r
(17.5)

The shear strain γ is found in terms of the displacements w and vt by considering the
shear distortion of an element δs × δz of the beam wall. From Fig. 17.3 we see that the
shear strain is given by

γ = φ1 + φ2

or, in the limit as both δs and δz tend to zero

γ = ∂w

∂s
+ ∂vt

∂z
(17.6)

In addition to the assumptions specified in the earlier part of this section, we further
assume that during any displacement the shape of the beam cross-section is maintained
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by a system of closely spaced diaphragms which are rigid in their own plane but are
perfectly flexible normal to their own plane (CSRD assumption). There is, therefore,
no resistance to axial displacement w and the cross-section moves as a rigid body in its
own plane, the displacement of any point being completely specified by translations u
and v and a rotation θ (see Fig. 17.4).

At first sight this appears to be a rather sweeping assumption but, for aircraft structures
of the thin shell type described in Chapter 12 whose cross-sections are stiffened by
ribs or frames positioned at frequent intervals along their lengths, it is a reasonable
approximation for the actual behaviour of such sections. The tangential displacement
vt of any point N in the wall of either an open or closed section beam is seen from Fig.
17.4 to be

vt = pθ + u cos ψ + v sin ψ (17.7)

where clearly u, v and θ are functions of z only (w may be a function of z and s).
The origin O of the axes in Fig. 17.4 has been chosen arbitrarily and the axes suffer

displacements u, v and θ. These displacements, in a loading case such as pure torsion,
are equivalent to a pure rotation about some point R(xR,yR) in the cross-section where
R is the centre of twist. Therefore, in Fig. 17.4

vt = pRθ (17.8)

and

pR = p − xR sin ψ + yR cos ψ

which gives

vt = pθ − xRθ sin ψ + yRθ cos ψ

Fig. 17.4 Establishment of displacement relationships and position of centre of twist of beam (open or closed).
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and
∂vt

∂z
= p

dθ

dz
− xR sin ψ

dθ

dz
+ yR cos ψ

dθ

dz
(17.9)

Also from Eq. (17.7)

∂vt

∂z
= p

dθ

dz
+ du

dz
cos ψ + dv

dz
sin ψ (17.10)

Comparing the coefficients of Eqs (17.9) and (17.10) we see that

xR = −dv/dz

dθ/dz
yR = du/dz

dθ/dz
(17.11)

17.2 Shear of open section beams

The open section beam of arbitrary section shown in Fig. 17.5 supports shear loads Sx
and Sy such that there is no twisting of the beam cross-section. For this condition to
be valid the shear loads must both pass through a particular point in the cross-section
known as the shear centre.

Since there are no hoop stresses in the beam the shear flows and direct stresses acting
on an element of the beam wall are related by Eq. (17.2), i.e.

∂q

∂s
+ t

∂σz

∂z
= 0

We assume that the direct stresses are obtained with sufficient accuracy from basic
bending theory so that from Eq. (16.18)

∂σz

∂z
= [(∂My/∂z)Ixx − (∂Mx/∂z)Ixy]

IxxIyy − I2
xy

x + [(∂Mx/∂z)Iyy − (∂My/∂z)Ixy]

IxxIyy − I2
xy

y

Fig. 17.5 Shear loading of open section beam.
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Using the relationships of Eqs (16.23) and (16.24), i.e. ∂My/∂z = Sx, etc., this
expression becomes

∂σz

∂z
= (SxIxx − SyIxy)

IxxIyy − I2
xy

x + (SyIyy − SxIxy)

IxxIyy − I2
xy

y

Substituting for ∂σz/∂z in Eq. (17.2) gives

∂q

∂s
= − (SxIxx − SyIxy)

IxxIyy − I2
xy

tx − (SyIyy − SxIxy)

IxxIyy − I2
xy

ty (17.12)

Integrating Eq. (17.12) with respect to s from some origin for s to any point around the
cross-section, we obtain

∫ s

0

∂q

∂s
ds = −

(
SxIxx − SyIxy

IxxIyy − I2
xy

) ∫ s

0
tx ds −

(
SyIyy − SxIxy

IxxIyy − I2
xy

) ∫ s

0
ty ds (17.13)

If the origin for s is taken at the open edge of the cross-section, then q = 0 when s = 0
and Eq. (17.13) becomes

qs = −
(

SxIxx − SyIxy

IxxIyy − I2
xy

) ∫ s

0
tx ds −

(
SyIyy − SxIxy

IxxIyy − I2
xy

) ∫ s

0
ty ds (17.14)

For a section having either Cx or Cy as an axis of symmetry Ixy = 0 and Eq. (17.14)
reduces to

qs = − Sx

Iyy

∫ s

0
tx ds − Sy

Ixx

∫ s

0
ty ds

Example 17.1
Determine the shear flow distribution in the thin-walled Z-section shown in Fig. 17.6
due to a shear load Sy applied through the shear centre of the section.

The origin for our system of reference axes coincides with the centroid of the section
at the mid-point of the web. From antisymmetry we also deduce by inspection that the
shear centre occupies the same position. Since Sy is applied through the shear centre
then no torsion exists and the shear flow distribution is given by Eq. (17.14) in which
Sx = 0, i.e.

qs = SyIxy

IxxIyy − I2
xy

∫ s

0
tx ds − SyIyy

IxxIyy − I2
xy

∫ s

0
ty ds

or

qs = Sy

IxxIyy − I2
xy

(
Ixy

∫ s

0
tx ds − Iyy

∫ s

0
ty ds

)
(i)
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Fig. 17.6 Shear loaded Z-section of Example 17.1.

The second moments of area of the section have previously been determined in Example
16.14 and are

Ixx = h3t

3
, Iyy = h3t

12
, Ixy = h3t

8

Substituting these values in Eq. (i) we obtain

qs = Sy

h3

∫ s

0
(10.32x − 6.84y)ds (ii)

On the bottom flange 12, y = −h/2 and x = −h/2 + s1, where 0 ≤ s1 ≤ h/2. Therefore

q12 = Sy

h3

∫ s1

0
(10.32s1 − 1.74h)ds1

giving

q12 = Sy

h3 (5.16s2
1 − 1.74hs1) (iii)

Hence at 1 (s1 = 0), q1 = 0 and at 2 (s1 = h/2), q2 = 0.42Sy/h. Further examination of
Eq. (iii) shows that the shear flow distribution on the bottom flange is parabolic with a
change of sign (i.e. direction) at s1 = 0.336h. For values of s1 < 0.336h, q12 is negative
and therefore in the opposite direction to s1.

In the web 23, y = −h/2 + s2, where 0 ≤ s2 ≤ h and x = 0. Then

q23 = Sy

h3

∫ s2

0
(3.42h − 6.84s2)ds2 + q2 (iv)
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Fig. 17.7 Shear flow distribution in Z-section of Example 17.1.

We note in Eq. (iv) that the shear flow is not zero when s2 = 0 but equal to the value
obtained by inserting s1 = h/2 in Eq. (iii), i.e. q2 = 0.42Sy/h. Integration of Eq. (iv)
yields

q23 = Sy

h3 (0.42h2 + 3.42hs2 − 3.42s2
2) (v)

This distribution is symmetrical about Cx with a maximum value at s2 = h/2(y = 0)
and the shear flow is positive at all points in the web.

The shear flow distribution in the upper flange may be deduced from antisymmetry
so that the complete distribution is of the form shown in Fig. 17.7.

17.2.1 Shear centre

We have defined the position of the shear centre as that point in the cross-section through
which shear loads produce no twisting. It may be shown by use of the reciprocal theorem
that this point is also the centre of twist of sections subjected to torsion. There are,
however, some important exceptions to this general rule as we shall observe in Section
26.1. Clearly, in the majority of practical cases it is impossible to guarantee that a shear
load will act through the shear centre of a section. Equally apparent is the fact that any
shear load may be represented by the combination of the shear load applied through
the shear centre and a torque. The stresses produced by the separate actions of torsion
and shear may then be added by superposition. It is therefore necessary to know the
location of the shear centre in all types of section or to calculate its position. Where
a cross-section has an axis of symmetry the shear centre must, of course, lie on this
axis. For cruciform or angle sections of the type shown in Fig. 17.8 the shear centre is
located at the intersection of the sides since the resultant internal shear loads all pass
through these points.
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Fig. 17.8 Shear centre position for type of open section beam shown.

Example 17.2
Calculate the position of the shear centre of the thin-walled channel section shown in
Fig. 17.9. The thickness t of the walls is constant.

The shear centre S lies on the horizontal axis of symmetry at some distance ξS, say,
from the web. If we apply an arbitrary shear load Sy through the shear centre then the
shear flow distribution is given by Eq. (17.14) and the moment about any point in the
cross-section produced by these shear flows is equivalent to the moment of the applied
shear load. Sy appears on both sides of the resulting equation and may therefore be
eliminated to leave ξS.

For the channel section, Cx is an axis of symmetry so that Ixy = 0. Also Sx = 0 and
therefore Eq. (17.14) simplifies to

qs = − Sy

Ixx

∫ s

0
ty ds (i)

where

Ixx = 2bt

(
h

2

)2

+ th3

12
= h3t

12

(
1 + 6b

h

)

Fig. 17.9 Determination of shear centre position of channel section of Example 17.2.



Ch17-H6739.tex 25/1/2007 14: 7 Page 512

512 Shear of beams

Substituting for Ixx in Eq. (i) we have

qs = −12Sy

h3(1 + 6b/h)

∫ s

0
y ds (ii)

The amount of computation involved may be reduced by giving some thought to the
requirements of the problem. In this case we are asked to find the position of the shear
centre only, not a complete shear flow distribution. From symmetry it is clear that the
moments of the resultant shears on the top and bottom flanges about the mid-point
of the web are numerically equal and act in the same rotational sense. Furthermore,
the moment of the web shear about the same point is zero. We deduce that it is only
necessary to obtain the shear flow distribution on either the top or bottom flange for a
solution. Alternatively, choosing a web/flange junction as a moment centre leads to the
same conclusion.

On the bottom flange, y = −h/2 so that from Eq. (ii) we have

q12 = 6Sy

h2(1 + 6b/h)
s1 (iii)

Equating the clockwise moments of the internal shears about the mid-point of the web
to the clockwise moment of the applied shear load about the same point gives

Syξs = 2
∫ b

0
q12

h

2
ds1

or, by substitution from Eq. (iii)

Syξs = 2
∫ b

0

6Sy

h2(1 + 6b/h)

h

2
s1ds1

from which

ξs = 3b2

h(1 + 6b/h)
(iv)

In the case of an unsymmetrical section, the coordinates (ξS, ηS) of the shear centre
referred to some convenient point in the cross-section would be obtained by first deter-
mining ξS in a similar manner to that of Example 17.2 and then finding ηS by applying a
shear load Sx through the shear centre. In both cases the choice of a web/flange junction
as a moment centre reduces the amount of computation.

17.3 Shear of closed section beams

The solution for a shear loaded closed section beam follows a similar pattern to that
described in Section 17.2 for an open section beam but with two important differences.
First, the shear loads may be applied through points in the cross-section other than
the shear centre so that torsional as well as shear effects are included. This is possible
since, as we shall see, shear stresses produced by torsion in closed section beams have
exactly the same form as shear stresses produced by shear, unlike shear stresses due to
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Fig. 17.10 Shear of closed section beams.

shear and torsion in open section beams. Secondly, it is generally not possible to choose
an origin for s at which the value of shear flow is known. Consider the closed section
beam of arbitrary section shown in Fig. 17.10. The shear loads Sx and Sy are applied
through any point in the cross-section and, in general, cause direct bending stresses
and shear flows which are related by the equilibrium equation (17.2). We assume that
hoop stresses and body forces are absent. Therefore

∂q

∂s
+ t

∂σz

∂z
= 0

From this point the analysis is identical to that for a shear loaded open section beam
until we reach the stage of integrating Eq. (17.13), namely

∫ s

0

∂q

∂s
ds = −

(
SxIxx − SyIxy

IxxIyy − I2
xy

) ∫ s

0
tx ds −

(
SyIyy − SxIxy

IxxIyy − I2
xy

) ∫ s

0
ty ds

Let us suppose that we choose an origin for s where the shear flow has the unknown
value qs,0. Integration of Eq. (17.13) then gives

qs − qs,0 = −
(

SxIxx − SyIxy

IxxIyy − I2
xy

) ∫ s

0
tx ds −

(
SyIyy − SxIxy

IxxIyy − I2
xy

) ∫ s

0
ty ds

or

qs = −
(

SxIxx − SyIxy

IxxIyy − I2
xy

) ∫ s

0
tx ds −

(
SyIyy − SxIxy

IxxIyy − I2
xy

) ∫ s

0
ty ds + qs,0 (17.15)

We observe by comparison of Eqs (17.15) and (17.14) that the first two terms on the
right-hand side of Eq. (17.15) represent the shear flow distribution in an open section
beam loaded through its shear centre. This fact indicates a method of solution for a
shear loaded closed section beam. Representing this ‘open’ section or ‘basic’ shear
flow by qb, we may write Eq. (17.15) in the form

qs = qb + qs,0 (17.16)
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Fig. 17.11 (a) Determination of qs,0; (b) equivalent loading on ‘open’ section beam.

We obtain qb by supposing that the closed beam section is ‘cut’at some convenient point
thereby producing an ‘open’section (see Fig. 17.11(b)). The shear flow distribution (qb)
around this ‘open’ section is given by

qb = −
(

SxIxx − SyIxy

IxxIyy − I2
xy

) ∫ s

0
tx ds −

(
SyIyy − SxIxy

IxxIxy − I2
xy

) ∫ s

0
ty ds

as in Section 17.2. The value of shear flow at the cut (s = 0) is then found by equating
applied and internal moments taken about some convenient moment centre. Then, from
Fig. 17.11(a)

Sxη0 − Syξ0 =
∮

pq ds =
∮

pqb ds + qs,0

∮
p ds

where
∮

denotes integration completely around the cross-section. In Fig. 17.11 (a)

δA = 1

2
δsp

so that
∮

dA = 1

2

∮
p ds

Hence
∮

pds = 2A

where A is the area enclosed by the mid-line of the beam section wall. Hence

Sxη0 − Syξ0 =
∮

pqbds + 2Aqs,0 (17.17)
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If the moment centre is chosen to coincide with the lines of action of Sx and Sy then
Eq. (17.17) reduces to

0 =
∮

pqb ds + 2Aqs,0 (17.18)

The unknown shear flow qs,0 follows from either of Eqs (17.17) or (17.18).
It is worthwhile to consider some of the implications of the above process. Equation

(17.14) represents the shear flow distribution in an open section beam for the condition of
zero twist. Therefore, by ‘cutting’ the closed section beam of Fig. 17.11(a) to determine
qb, we are, in effect, replacing the shear loads of Fig. 17.11(a) by shear loads Sx and
Sy acting through the shear centre of the resulting ‘open’ section beam together with a
torque T as shown in Fig. 17.11(b). We shall show in Section 18.1 that the application
of a torque to a closed section beam results in a constant shear flow. In this case the
constant shear flow qs,0 corresponds to the torque but will have different values for
different positions of the ‘cut’ since the corresponding various ‘open’ section beams
will have different locations for their shear centres. An additional effect of ‘cutting’
the beam is to produce a statically determinate structure since the qb shear flows are
obtained from statical equilibrium considerations. It follows that a single cell closed
section beam supporting shear loads is singly redundant.

17.3.1 Twist and warping of shear loaded closed
section beams

Shear loads which are not applied through the shear centre of a closed section beam
cause cross-sections to twist and warp; i.e., in addition to rotation, they suffer out of
plane axial displacements. Expressions for these quantities may be derived in terms of
the shear flow distribution qs as follows. Since q = τt and τ = Gγ (see Chapter 1) then
we can express qs in terms of the warping and tangential displacements w and vt of a
point in the beam wall by using Eq. (17.6). Thus

qs = Gt

(
∂w

∂s
+ ∂vt

∂z

)
(17.19)

Substituting for ∂vt/∂z from Eq. (17.10) we have

qs

Gt
= ∂w

∂s
+ p

dθ

dz
+ du

dz
cos ψ + dv

dz
sin ψ (17.20)

Integrating Eq. (17.20) with respect to s from the chosen origin for s and noting that G
may also be a function of s, we obtain

∫ s

0

qs

Gt
ds =

∫ s

0

∂w

∂s
ds + dθ

dz

∫ s

0
p ds + du

dz

∫ s

0
cos ψ ds + dv

dz

∫ s

0
sin ψ ds

or
∫ s

0

qs

Gt
ds =

∫ s

0

∂w

∂s
ds + dθ

dz

∫ s

0
p ds + du

dz

∫ s

0
dx + dv

dz

∫ s

0
dy
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which gives
∫ s

0

qs

Gt
ds = (ws − w0) + 2AOs

dθ

dz
+ du

dz
(xs − x0) + dv

dz
(ys − y0) (17.21)

where AOs is the area swept out by a generator, centre at the origin of axes, O, from
the origin for s to any point s around the cross-section. Continuing the integration
completely around the cross-section yields, from Eq. (17.21)

∮
qs

Gt
ds = 2A

dθ

dz

from which
dθ

dz
= 1

2A

∮
qs

Gt
ds (17.22)

Substituting for the rate of twist in Eq. (17.21) from Eq. (17.22) and rearranging, we
obtain the warping distribution around the cross-section

ws − w0 =
∫ s

0

qs

Gt
ds − AOs

A

∮
qs

Gt
ds − du

dz
(xs − x0) − dv

dz
(ys − y0) (17.23)

Using Eqs (17.11) to replace du/dz and dv/dz in Eq. (17.23) we have

ws − w0 =
∫ s

0

qs

Gt
ds − AOs

A

∮
qs

Gt
ds − yR

dθ

dz
(xs − x0) + xR

dθ

dz
(ys − y0) (17.24)

The last two terms in Eq. (17.24) represent the effect of relating the warping displace-
ment to an arbitrary origin which itself suffers axial displacement due to warping. In the
case where the origin coincides with the centre of twist R of the section then Eq. (17.24)
simplifies to

ws − w0 =
∫ s

0

qs

Gt
ds − AOs

A

∮
qs

Gt
ds (17.25)

In problems involving singly or doubly symmetrical sections, the origin for s may
be taken to coincide with a point of zero warping which will occur where an axis of
symmetry and the wall of the section intersect. For unsymmetrical sections the origin
for s may be chosen arbitrarily. The resulting warping distribution will have exactly
the same form as the actual distribution but will be displaced axially by the unknown
warping displacement at the origin for s. This value may be found by referring to the
torsion of closed section beams subject to axial constraint (see Section 26.3). In the
analysis of such beams it is assumed that the direct stress distribution set up by
the constraint is directly proportional to the free warping of the section, i.e.

σ = constant × w

Also, since a pure torque is applied the resultant of any internal direct stress system
must be zero, in other words it is self-equilibrating. Thus

Resultant axial load =
∮

σt ds
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where σ is the direct stress at any point in the cross-section. Then, from the above
assumption

0 =
∮

wt ds

or

0 =
∮

(ws − w0)t ds

so that

w0 =
∮

wst ds
∮

t ds
(17.26)

17.3.2 Shear centre

The shear centre of a closed section beam is located in a similar manner to that described
in Section 17.2.1 for open section beams. Therefore, to determine the coordinate ξS
(referred to any convenient point in the cross-section) of the shear centre S of the
closed section beam shown in Fig. 17.12, we apply an arbitrary shear load Sy through
S, calculate the distribution of shear flow qs due to Sy and then equate internal and
external moments. However, a difficulty arises in obtaining qs,0 since, at this stage, it
is impossible to equate internal and external moments to produce an equation similar
to Eq. (17.17) as the position of Sy is unknown. We therefore use the condition that a
shear load acting through the shear centre of a section produces zero twist. It follows
that dθ/dz in Eq. (17.22) is zero so that

0 =
∮

qs

Gt
ds

or

0 =
∮

1

Gt
(qb + qs,0)ds

Fig. 17.12 Shear centre of a closed section beam.
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which gives

qs,0 = −
∮

(qb/Gt)ds
∮

ds/Gt
(17.27)

If Gt = constant then Eq. (17.27) simplifies to

qs,0 = −
∮

qb ds
∮

ds
(17.28)

The coordinate ηS is found in a similar manner by applying Sx through S.

Example 17.3
A thin-walled closed section beam has the singly symmetrical cross-section shown in
Fig. 17.13. Each wall of the section is flat and has the same thickness t and shear
modulus G. Calculate the distance of the shear centre from point 4.

The shear centre clearly lies on the horizontal axis of symmetry so that it is only
necessary to apply a shear load Sy through S and to determine ξS. If we take the x
reference axis to coincide with the axis of symmetry then Ixy = 0, and since Sx = 0
Eq. (17.15) simplifies to

qs = − Sy

Ixx

∫ s

0
ty ds + qs,0 (i)

in which

Ixx = 2

[∫ 10a

0
t

(
8

10
s1

)2

ds1 +
∫ 17a

0
t

(
8

17
s2

)2

ds2

]

Evaluating this expression gives Ixx = 1152a3t.

Fig. 17.13 Closed section beam of Example 17.3.
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The basic shear flow distribution qb is obtained from the first term in Eq. (i). Then,
for the wall 41

qb,41 = −Sy

1152a3t

∫ s1

0
t

(
8

10
s1

)
ds1 = −Sy

1152a3

(
2

5
s2

1

)
(ii)

In the wall 12

qb,12 = −Sy

1152a3

[∫ s2

0
(17a − s2)

8

17
ds2 + 40a2

]
(ii)

which gives

qb,12 = −Sy

1152a3

(
− 4

17
s2

2 + 8as2 + 40a2
)

(iii)

The qb distributions in the walls 23 and 34 follow from symmetry. Hence from
Eq. (17.28)

qs,0 = 2Sy

54a × 1152a3

[∫ 10a

0

2

5
s2

1 ds1 +
∫ 17a

0

(
− 4

17
s2

2 + 8as2 + 40a2
)

ds2

]

giving

qs,0 = Sy

1152a3 (58.7a2) (iv)

Taking moments about the point 2 we have

Sy(ξS + 9a) = 2
∫ 10a

0
q4117a sin θ ds1

or

Sy(ξS + 9a) = Sy34a sin θ

1152a3

∫ 10a

0

(
−2

5
s2

1 + 58.7a2
)

ds1 (v)

We may replace sin θ by sin(θ1 − θ2) = sin θ1 cos θ2 − cos θ1 sin θ2 where sin θ1 =,
15/17, cos θ2 = 8/10, cos θ1 = 8/17 and sin θ2 = 6/10. Substituting these values and
integrating Eq. (v) gives

ξS = −3.35a

which means that the shear centre is inside the beam section.

Reference

1 Megson, T. H. G., Structural and Stress Analysis, 2nd edition, Elsevier, Oxford, 2005.
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Problems

P.17.1 A beam has the singly symmetrical, thin-walled cross-section shown in
Fig. P.17.1. The thickness t of the walls is constant throughout. Show that the distance
of the shear centre from the web is given by

ξS = −d
ρ2 sin α cos α

1 + 6ρ + 2ρ3 sin2 α

where
ρ = d/h

Fig. P.17.1

P.17.2 A beam has the singly symmetrical, thin-walled cross-section shown in
Fig. P.17.2. Each wall of the section is flat and has the same length a and thickness t.
Calculate the distance of the shear centre from the point 3.

Ans. 5a cos α/8

Fig. P.17.2
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P.17.3 Determine the position of the shear centre S for the thin-walled, open cross-
section shown in Fig. P.17.3. The thickness t is constant.

Ans. πr/3

Fig. P.17.3

P.17.4 Figure P.17.4 shows the cross-section of a thin, singly symmetrical I-section.
Show that the distance ξS of the shear centre from the vertical web is given by

ξS

d
= 3ρ(1 − β)

(1 + 12ρ)

where ρ = d/h. The thickness t is taken to be negligibly small in comparison with the
other dimensions.

Fig. P.17.4

P.17.5 A thin-walled beam has the cross-section shown in Fig. P.17.5. The thickness
of each flange varies linearly from t1 at the tip to t2 at the junction with the web. The
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web itself has a constant thickness t3. Calculate the distance ξS from the web to the
shear centre S.

Ans. d2(2t1 + t2)/[3d(t1 + t2) + ht3].

Fig. P.17.5

P.17.6 Figure P.17.6 shows the singly symmetrical cross-section of a thin-walled
open section beam of constant wall thickness t, which has a narrow longitudinal slit at
the corner 15.

Calculate and sketch the distribution of shear flow due to a vertical shear force Sy
acting through the shear centre S and note the principal values. Show also that the
distance ξS of the shear centre from the nose of the section is ξS = l/2(1 + a/b).

Ans. q2 = q4 = 3bSy/2h(b + a), q3 = 3Sy/2h. Parabolic distributions.

Fig. P.17.6

P.17.7 Show that the position of the shear centre S with respect to the intersection
of the web and lower flange of the thin-walled section shown in Fig. P.17.7, is given by

ξS = −45a/97, ηS = 46a/97
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Fig. P.17.7

P.17.8 Define the term ‘shear centre’ of a thin-walled open section and determine
the position of the shear centre of the thin-walled open section shown in Fig. P.17.8.

Ans. 2.66r from centre of semicircular wall.

2r

t

r

2r

Narrow slit

Fig. P.17.8

P.17.9 Determine the position of the shear centre of the cold-formed, thin-walled
section shown in Fig. P.17.9. The thickness of the section is constant throughout.

Ans. 87.5 mm above centre of semicircular wall.

25 mm 25 mm

50 mm

100 mm

50
mm

Fig. P.17.9
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P.17.10 Find the position of the shear centre of the thin-walled beam section shown
in Fig. P.17.10.

Ans. 1.2r on axis of symmetry to the left of the section.

45o

r

t

r

45o

Fig. P.17.10

P.17.11 Calculate the position of the shear centre of the thin-walled section shown
in Fig. P.17.11.

Ans. 20.2 mm to the left of the vertical web on axis of symmetry.

1

2

3

4

5

6

2 mm

2 mm

2 mm 30 mm

15 mm

25 mm

60 mm

Fig. P.17.11
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P.17.12 A thin-walled closed section beam of constant wall thickness t has the
cross-section shown in Fig. P.17.12.

Assuming that the direct stresses are distributed according to the basic theory of
bending, calculate and sketch the shear flow distribution for a vertical shear force Sy
applied tangentially to the curved part of the beam.

Ans. qO1 = Sy(1.61 cos θ − 0.80)/r

q12 = Sy

r3 (0.57s2 − 1.14rs + 0.33r2).

Fig. P.17.12

P.17.13 A uniform thin-walled beam of constant wall thickness t has a cross-section
in the shape of an isosceles triangle and is loaded with a vertical shear force Sy applied
at the apex. Assuming that the distribution of shear stress is according to the basic
theory of bending, calculate the distribution of shear flow over the cross-section.

Illustrate your answer with a suitable sketch, marking in carefully with arrows the
direction of the shear flows and noting the principal values.

Ans. q12 = Sy(3s2
1/d − h − 3d)/h(h + 2d)

q23 = Sy(−6s2
2 + 6hs2 − h2)/h2(h + 2d)

Fig. P.17.13
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P.17.14 Figure P.17.14 shows the regular hexagonal cross-section of a thin-walled
beam of sides a and constant wall thickness t. The beam is subjected to a transverse
shear force S, its line of action being along a side of the hexagon, as shown.

Plot the shear flow distribution around the section, with values in terms of S and a.

Ans. q1 = −0.52S/a, q2 = q8 = −0.47S/a, q3 = q7 = −0.17S/a,
q4 = q6 = 0.13S/a, q5 = 0.18S/a

Parabolic distributions, q positive clockwise.

Fig. P.17.14

P.17.15 A box girder has the singly symmetrical trapezoidal cross-section shown
in Fig. P.17.15. It supports a vertical shear load of 500 kN applied through its shear
centre and in a direction perpendicular to its parallel sides. Calculate the shear flow
distribution and the maximum shear stress in the section.

Ans. qOA = 0.25sA

qAB = 0.21sB − 2.14 × 10−4s2
B + 250

qBC = −0.17sC + 246

τmax = 30.2 N/mm2

1 m

2 m

D B
C

E O sA

sC

sB

A

120°120°

10 mm
10 mm

500 kN

12 mm

8 mm

Fig. P.17.15
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Torsion of beams

In Chapter 3 we developed the theory for the torsion of solid sections using both the
Prandtl stress function approach and the St. Venant warping function solution. From
that point we looked, via the membrane analogy, at the torsion of a narrow rectangular
strip. We shall use the results of this analysis to investigate the torsion of thin-walled
open section beams but first we shall examine the torsion of thin-walled closed section
beams since the theory for this relies on the general stress, strain and displacement
relationships which we established in Chapter 17.

18.1 Torsion of closed section beams

A closed section beam subjected to a pure torque T as shown in Fig. 18.1 does not, in
the absence of an axial constraint, develop a direct stress system. It follows that the
equilibrium conditions of Eqs (17.2) and (17.3) reduce to ∂q/∂s = 0 and ∂q/∂z = 0,
respectively. These relationships may only be satisfied simultaneously by a constant
value of q. We deduce, therefore, that the application of a pure torque to a closed section
beam results in the development of a constant shear flow in the beam wall. However,
the shear stress τ may vary around the cross-section since we allow the wall thickness
t to be a function of s. The relationship between the applied torque and this constant
shear flow is simply derived by considering the torsional equilibrium of the section
shown in Fig. 18.2. The torque produced by the shear flow acting on an element δs of

Fig. 18.1 Torsion of a closed section beam.
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Fig. 18.2 Determination of the shear flow distribution in a closed section beam subjected to torsion.

the beam wall is pqδs. Hence

T =
∮

pq ds

or, since q is constant and
∮

p ds = 2A (see Section 17.3)

T = 2Aq (18.1)

Note that the origin O of the axes in Fig. 18.2 may be positioned in or outside the
cross-section of the beam since the moment of the internal shear flows (whose resultant
is a pure torque) is the same about any point in their plane. For an origin outside the
cross-section the term

∮
p ds will involve the summation of positive and negative areas.

The sign of an area is determined by the sign of p which itself is associated with the
sign convention for torque as follows. If the movement of the foot of p along the tangent
at any point in the positive direction of s leads to an anticlockwise rotation of p about
the origin of axes, p is positive. The positive direction of s is in the positive direction
of q which is anticlockwise (corresponding to a positive torque). Thus, in Fig. 18.3
a generator OA, rotating about O, will initially sweep out a negative area since pA is
negative. At B, however, pB is positive so that the area swept out by the generator has
changed sign (at the point where the tangent passes through O and p = 0). Positive and
negative areas cancel each other out as they overlap so that as the generator moves
completely around the section, starting and returning to A say, the resultant area is that
enclosed by the profile of the beam.

The theory of the torsion of closed section beams is known as the Bredt–Batho theory
and Eq. (18.1) is often referred to as the Bredt–Batho formula.

18.1.1 Displacements associated with the Bredt–Batho
shear flow

The relationship between q and shear strain γ established in Eq. (17.19), namely

q = Gt

(
∂w

∂s
+ ∂vt

∂z

)
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Fig. 18.3 Sign convention for swept areas.

is valid for the pure torsion case where q is constant. Differentiating this expression
with respect to z we have

∂q

∂z
= Gt

(
∂2w

∂z ∂s
+ ∂2vt

∂z2

)
= 0

or

∂

∂s

(
∂w

∂z

)
+ ∂2vt

∂z2 = 0 (18.2)

In the absence of direct stresses the longitudinal strain ∂w/∂z(= εz) is zero so that

∂2vt

∂z2 = 0

Hence from Eq. (17.7)

p
d2θ

dz2 + d2u

dz2 cos ψ + d2v

dz2 sin ψ = 0 (18.3)

For Eq. (18.3) to hold for all points around the section wall, in other words for all values
of ψ

d2θ

dz2 = 0,
d2u

dz2 = 0,
d2v

dz2 = 0

It follows that θ = Az + B, u = Cz + D, v = Ez + F, where A, B, C, D, E and F are
unknown constants. Thus θ, u and v are all linear functions of z.

Equation (17.22), relating the rate of twist to the variable shear flow qs developed in
a shear loaded closed section beam, is also valid for the case qs = q = constant. Hence

dθ

dz
= q

2A

∮
ds

Gt
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which becomes, on substituting for q from Eq. (18.1)

dθ

dz
= T

4A2

∮
ds

Gt
(18.4)

The warping distribution produced by a varying shear flow, as defined by Eq. (17.25)
for axes having their origin at the centre of twist, is also applicable to the case of a
constant shear flow. Thus

ws − w0 = q
∫ s

0

ds

Gt
− AOs

A
q

∮
ds

Gt

Replacing q from Eq. (18.1) we have

ws − w0 = Tδ

2A

(
δOs

δ
− AOs

A

)
(18.5)

where

δ =
∮

ds

Gt
and δOs =

∫ s

0

ds

Gt

The sign of the warping displacement in Eq. (18.5) is governed by the sign of the
applied torque T and the signs of the parameters δOs and AOs. Having specified initially
that a positive torque is anticlockwise, the signs of δOs and AOs are fixed in that δOs is
positive when s is positive, i.e. s is taken as positive in an anticlockwise sense, and AOs
is positive when, as before, p (see Fig. 18.3) is positive.

We have noted that the longitudinal strain εz is zero in a closed section beam subjected
to a pure torque. This means that all sections of the beam must possess identical warp-
ing distributions. In other words longitudinal generators of the beam surface remain
unchanged in length although subjected to axial displacement.

Example 18.1
A thin-walled circular section beam has a diameter of 200 mm and is 2 m long; it is
firmly restrained against rotation at each end. A concentrated torque of 30 kN m is
applied to the beam at its mid-span point. If the maximum shear stress in the beam is
limited to 200 N/mm2 and the maximum angle of twist to 2◦, calculate the minimum
thickness of the beam walls. Take G = 25 000 N/mm2.

The minimum thickness of the beam corresponding to the maximum allowable shear
stress of 200 N/mm2 is obtained directly using Eq. (18.1) in which Tmax = 15 kN m.

Then

tmin = 15 × 106 × 4

2 × π × 2002 × 200
= 1.2 mm

The rate of twist along the beam is given by Eq. (18.4) in which
∮

ds

t
= π × 200

tmin
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Hence
dθ

dz
= T

4A2G
× π × 200

tmin
(i)

Taking the origin for z at one of the fixed ends and integrating Eq. (i) for half the length
of the beam we obtain

θ = T

4A2G
× 200π

tmin
z + C1

where C1 is a constant of integration. At the fixed end where z = 0, θ = 0 so that C1 = 0.
Hence

θ = T

4A2G
× 200π

tmin
z

The maximum angle of twist occurs at the mid-span of the beam where z = 1 m. Hence

tmin = 15 × 106 × 200 × π × 1 × 103 × 180

4 × (π × 2002/4)2 × 25 000 × 2 × π
= 2.7 mm

The minimum allowable thickness that satisfies both conditions is therefore 2.7 mm.

Example 18.2
Determine the warping distribution in the doubly symmetrical rectangular, closed
section beam, shown in Fig. 18.4, when subjected to an anticlockwise torque T .

From symmetry the centre of twist R will coincide with the mid-point of the cross-
section and points of zero warping will lie on the axes of symmetry at the mid-points
of the sides. We shall therefore take the origin for s at the mid-point of side 14 and
measure s in the positive, anticlockwise, sense around the section. Assuming the shear
modulus G to be constant we rewrite Eq. (18.5) in the form

ws − w0 = Tδ

2AG

(
δOs

δ
− AOs

A

)
(i)

Fig. 18.4 Torsion of a rectangular section beam.
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where

δ =
∮

ds

t
and δOs =

∫ s

0

ds

t

In Eq. (i)

w0 = 0, δ = 2

(
b

tb
+ a

ta

)
and A = ab

From 0 to 1, 0 ≤ s1 ≤ b/2 and

δOs =
∫ s1

0

ds1

tb
= s1

tb
AOs = as1

4
(ii)

Note that δOs and AOs are both positive.
Substitution for δOs and AOs from Eq. (ii) in (i) shows that the warping distribution

in the wall 01, w01, is linear. Also

w1 = T

2abG
2

(
b

tb
+ a

ta

) [
b/2tb

2(b/tb + a/ta)
− ab/8

ab

]

which gives

w1 = T

8abG

(
b

tb
− a

ta

)
(iii)

The remainder of the warping distribution may be deduced from symmetry and the fact
that the warping must be zero at points where the axes of symmetry and the walls of
the cross-section intersect. It follows that

w2 = −w1 = −w3 = w4

giving the distribution shown in Fig. 18.5. Note that the warping distribution will take
the form shown in Fig. 18.5 as long as T is positive and b/tb > a/ta. If either of these
conditions is reversed w1 and w3 will become negative and w2 and w4 positive. In the
case when b/tb = a/ta the warping is zero at all points in the cross-section.

Fig. 18.5 Warping distribution in the rectangular section beam of Example 18.2.
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Fig. 18.6 Arbitrary origin for s.

Suppose now that the origin for s is chosen arbitrarily at, say, point 1. Then, from
Fig. 18.6, δOs in the wall 12 = s1/ta and AOs = 1

2 s1b/2 = s1b/4 and both are positive.
Substituting in Eq. (i) and setting w0 = 0

w′
12 = Tδ

2abG

(
s1

δta
− s1

4a

)
(iv)

so that w′
12 varies linearly from zero at 1 to

w′
2 = T

2abG
2

(
b

tb
+ a

ta

) [
a

2(b/tb + a/ta)ta
− 1

4

]

at 2. Thus

w′
2 = T

4abG

(
a

ta
− b

tb

)

or

w′
2 = − T

4abG

(
b

tb
− a

ta

)
(v)

Similarly

w′
23 = Tδ

2abG

[
1

δ

(
a

ta
+ s2

tb

)
− 1

4b
(b + s2)

]
(vi)

The warping distribution therefore varies linearly from a value−T (b/tb − a/ta)/4abG
at 2 to zero at 3. The remaining distribution follows from symmetry so that the complete
distribution takes the form shown in Fig. 18.7.

Comparing Figs 18.5 and 18.7 it can be seen that the form of the warping distribution
is the same but that in the latter case the complete distribution has been displaced axially.
The actual value of the warping at the origin for s is found using Eq. (17.26).
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Fig. 18.7 Warping distribution produced by selecting an arbitrary origin for s.

Thus

w0 = 2

2(ata + btb)

(∫ a

0
w′

12ta ds1 +
∫ b

0
w′

23tb ds2

)

(vii)

Substituting in Eq. (vii) for w′
12 and w′

23 from Eqs (iv) and (vi), respectively, and
evaluating gives

w0 = − T

8abG

(
b

tb
− a

ta

)
(viii)

Subtracting this value from the values of w′
1(= 0) and w′

2(= −T (b/tb − a/ta)/4abG)
we have

w1 = T

8abG

(
b

tb
− a

ta

)
, w2 = − T

8abG

(
b

tb
− a

ta

)

as before. Note that setting w0 = 0 in Eq. (i) implies that w0, the actual value of
warping at the origin for s, has been added to all warping displacements. This value
must therefore be subtracted from the calculated warping displacements (i.e. those
based on an arbitrary choice of origin) to obtain true values.

It is instructive at this stage to examine the mechanics of warping to see how it arises.
Suppose that each end of the rectangular section beam of Example 18.2 rotates through
opposite angles θ giving a total angle of twist 2θ along its length L. The corner 1 at
one end of the beam is displaced by amounts aθ/2 vertically and bθ/2 horizontally as
shown in Fig. 18.8. Consider now the displacements of the web and cover of the beam
due to rotation. From Figs 18.8 and 18.9 (a) and (b) it can be seen that the angles of
rotation of the web and the cover are, respectively

φb = (aθ/2)/(L/2) = aθ/L

and

φa = (bθ/2)/(L/2) = bθ/L



Ch18-H6739.tex 23/1/2007 12: 34 Page 535

18.1 Torsion of closed section beams 535

Fig. 18.8 Twisting of a rectangular section beam.

Fig. 18.9 Displacements due to twist and shear strain.

The axial displacements of the corner 1 in the web and cover are then

b

2

aθ

L
,

a

2

bθ

L

respectively, as shown in Fig. 18.9(a) and (b). In addition to displacements produced by
twisting, the webs and covers are subjected to shear strains γb and γa corresponding to
the shear stress system given by Eq. (18.1). Due to γb the axial displacement of corner 1
in the web is γbb/2 in the positive z direction while in the cover the displacement is
γaa/2 in the negative z direction. Note that the shear strains γb and γa correspond to
the shear stress system produced by a positive anticlockwise torque. Clearly, the total
axial displacement of the point 1 in the web and cover must be the same so that

−b

2

aθ

L
+ γb

b

2
= a

2

bθ

L
− γa

a

2

from which

θ = L

2ab
(γaa + γbb)
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The shear strains are obtained from Eq. (18.1) and are

γa = T

2abGta
, γb = T

2abGtb

whence

θ = TL

4a2b2G

(
a

ta
+ b

tb

)

The total angle of twist from end to end of the beam is 2θ, therefore

2θ

L
= TL

4a2b2G

(
2a

ta
+ 2b

tb

)

or

dθ

dz
= T

4A2G

∮
ds

t

as in Eq. (18.4).
Substituting for θ in either of the expressions for the axial displacement of the corner 1

gives the warping w1 at 1. Thus

w1 = a

2

b

L

TL

4a2b2G

(
a

ta
+ b

tb

)
− T

2abGta

a

2

i.e.

w1 = T

8abG

(
b

tb
− a

ta

)

as before. It can be seen that the warping of the cross-section is produced by a
combination of the displacements caused by twisting and the displacements due to
the shear strains; these shear strains correspond to the shear stresses whose values are
fixed by statics. The angle of twist must therefore be such as to ensure compatibility of
displacement between the webs and covers.

18.1.2 Condition for zero warping at a section

The geometry of the cross-section of a closed section beam subjected to torsion may
be such that no warping of the cross-section occurs. From Eq. (18.5) we see that this
condition arises when

δOs

δ
= AOs

A
or

1

δ

∫ s

0

ds

Gt
= 1

2A

∫ s

0
pR ds (18.6)
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Differentiating Eq. (18.6) with respect to s gives

1

δGt
= pR

2A

or

pRGt = 2A

δ
= constant (18.7)

A closed section beam for which pRGt = constant does not warp and is known as a
Neuber beam. For closed section beams having a constant shear modulus the condition
becomes

pRt = constant (18.8)

Examples of such beams are: a circular section beam of constant thickness; a rectangular
section beam for which atb = bta (see Example 18.2); and a triangular section beam of
constant thickness. In the last case the shear centre and hence the centre of twist may
be shown to coincide with the centre of the inscribed circle so that pR for each side is
the radius of the inscribed circle.

18.2 Torsion of open section beams

An approximate solution for the torsion of a thin-walled open section beam may be found
by applying the results obtained in Section 3.4 for the torsion of a thin rectangular strip.
If such a strip is bent to form an open section beam, as shown in Fig. 18.10(a), and if the
distance s measured around the cross-section is large compared with its thickness t then

Fig. 18.10 (a) Shear lines in a thin-walled open section beam subjected to torsion; (b) approximation of elemental
shear lines to those in a thin rectangular strip.
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the contours of the membrane, i.e. lines of shear stress, are still approximately parallel
to the inner and outer boundaries. It follows that the shear lines in an element δs of the
open section must be nearly the same as those in an element δy of a rectangular strip
as demonstrated in Fig. 18.10(b). Equations (3.27)–(3.29) may therefore be applied to
the open beam but with reduced accuracy. Referring to Fig. 18.10(b) we observe that
Eq. (3.27) becomes

τzs = 2Gn
dθ

dz
, τzn = 0 (18.9)

Equation (3.28) becomes

τzs,max = ±Gt
dθ

dz
(18.10)

and Eq. (3.29) is

J =
∑ st3

3
or J = 1

3

∫

sect
t3 ds (18.11)

In Eq. (18.11) the second expression for the torsion constant is used if the cross-section
has a variable wall thickness. Finally, the rate of twist is expressed in terms of the
applied torque by Eq. (3.12), viz.

T = GJ
dθ

dz
(18.12)

The shear stress distribution and the maximum shear stress are sometimes more
conveniently expressed in terms of the applied torque. Therefore, substituting for dθ/dz
in Eqs (18.9) and (18.10) gives

τzs = 2n

J
T , τzs,max = ± tT

J
(18.13)

We assume in open beam torsion analysis that the cross-section is maintained by the
system of closely spaced diaphragms described in Section 17.1 and that the beam is of
uniform section. Clearly, in this problem the shear stresses vary across the thickness of
the beam wall whereas other stresses such as axial constraint stresses which we shall
discuss in Chapter 27 are assumed constant across the thickness.

18.2.1 Warping of the cross-section

We saw in Section 3.4 that a thin rectangular strip suffers warping across its thickness
when subjected to torsion. In the same way a thin-walled open section beam will warp
across its thickness. This warping, wt , may be deduced by comparing Fig. 18.10(b)
with Fig. 3.10 and using Eq. (3.32), thus

wt = ns
dθ

dz
(18.14)
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In addition to warping across the thickness, the cross-section of the beam will warp in
a similar manner to that of a closed section beam. From Fig. 17.3

γzs = ∂w

∂s
+ ∂vt

∂z
(18.15)

Referring the tangential displacement vt to the centre of twist R of the cross-section we
have, from Eq. (17.8)

∂vt

∂z
= pR

dθ

dz
(18.16)

Substituting for ∂vt/∂z in Eq. (18.15) gives

γzs = ∂w

∂s
+ pR

dθ

dz

from which

τzs = G

(
∂w

∂s
+ pR

dθ

dz

)
(18.17)

On the mid-line of the section wall τzs = 0 (see Eq. (18.9)) so that, from Eq. (18.17)

∂w

∂s
= −pR

dθ

dz

Integrating this expression with respect to s and taking the lower limit of integration to
coincide with the point of zero warping, we obtain

ws = −dθ

dz

∫ s

0
pR ds (18.18)

From Eqs (18.14) and (18.18) it can be seen that two types of warping exist in an open
section beam. Equation (18.18) gives the warping of the mid-line of the beam; this is
known as primary warping and is assumed to be constant across the wall thickness.
Equation (18.14) gives the warping of the beam across its wall thickness. This is called
secondary warping, is very much less than primary warping and is usually ignored in
the thin-walled sections common to aircraft structures.

Equation (18.18) may be rewritten in the form

ws = −2AR
dθ

dz
(18.19)

or, in terms of the applied torque

ws = −2AR
T

GJ
(see Eq. (18.12)) (18.20)

in which AR = 1
2

∫ s
0 pR ds is the area swept out by a generator, rotating about the centre of

twist, from the point of zero warping, as shown in Fig. 18.11. The sign of ws, for a given
direction of torque, depends upon the sign of AR which in turn depends upon the sign of
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Fig. 18.11 Warping of an open section beam.

pR, the perpendicular distance from the centre of twist to the tangent at any point. Again,
as for closed section beams, the sign of pR depends upon the assumed direction of a
positive torque, in this case anticlockwise. Therefore, pR (and therefore AR) is positive
if movement of the foot of pR along the tangent in the assumed direction of s leads to
an anticlockwise rotation of pR about the centre of twist. Note that for open section
beams the positive direction of s may be chosen arbitrarily since, for a given torque,
the sign of the warping displacement depends only on the sign of the swept area AR.

Example 18.3
Determine the maximum shear stress and the warping distribution in the channel sec-
tion shown in Fig. 18.12 when it is subjected to an anticlockwise torque of 10 N m.
G = 25 000 N/mm2.

From the second of Eqs (18.13) it can be seen that the maximum shear stress occurs in
the web of the section where the thickness is greatest. Also, from the first of Eqs (18.11)

J = 1
3 (2 × 25 × 1.53 + 50 × 2.53) = 316.7 mm4

so that

τmax = ±2.5 × 10 × 103

316.7
= ±78.9 N/mm2

The warping distribution is obtained using Eq. (18.20) in which the origin for s (and
hence AR) is taken at the intersection of the web and the axis of symmetry where the
warping is zero. Further, the centre of twist R of the section coincides with its shear
centre S whose position is found using the method described in Section 17.2.1, this
gives ξS = 8.04 mm. In the wall O2

AR = 1
2 × 8.04s1 (pR is positive)

so that

wO2 = −2 × 1
2 × 8.04s1 × 10 × 103

25 000 × 316.7
= −0.01s1 (i)
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Fig. 18.12 Channel section of Example 18.3.

i.e. the warping distribution is linear in O2 and

w2 = −0.01 × 25 = −0.25 mm

In the wall 21

AR = 1
2 × 8.04 × 25 − 1

2 × 25s2

in which the area swept out by the generator in the wall 21 provides a negative
contribution to the total swept area AR. Thus

w21 = −25(8.04 − s2)
10 × 103

25 000 × 316.7

or

w21 = −0.03(8.04 − s2) (ii)

Again the warping distribution is linear and varies from −0.25 mm at 2 to +0.54 mm
at 1. Examination of Eq. (ii) shows that w21 changes sign at s2 = 8.04 mm. The remain-
ing warping distribution follows from symmetry and the complete distribution is shown
in Fig. 18.13. In unsymmetrical section beams the position of the point of zero warping
is not known but may be found using the method described in Section 27.2 for the
restrained warping of an open section beam. From the derivation of Eq. (27.3) we see
that

2A′
R =

∫
sect 2AR,Ot ds

∫
sect t ds

(18.21)

in which AR,O is the area swept out by a generator rotating about the centre of twist
from some convenient origin and A′

R is the value of AR,O at the point of zero warping.
As an illustration we shall apply the method to the beam section of Example 18.3.
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Fig. 18.13 Warping distribution in channel section of Example 18.3.

Suppose that the position of the centre of twist (i.e. the shear centre) has already
been calculated and suppose also that we choose the origin for s to be at the point 1.
Then, in Fig. 18.14

∫

sect
t ds = 2 × 1.5 × 25 + 2.5 × 50 = 200 mm2

In the wall 12

A12 = 1
2 × 25s1 (AR,O for the wall 12) (i)

from which

A2 = 1
2 × 25 × 25 = 312.5 mm2

Also

A23 = 312.5 − 1
2 × 8.04s2 (ii)

and

A3 = 312.5 − 1
2 × 8.04 × 50 = 111.5 mm2

Finally

A34 = 111.5 + 1
2 × 25s3 (iii)
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Fig. 18.14 Determination of points of zero warping.

Substituting for A12, A23 and A34 from Eqs (i)–(iii) in Eq. (18.21) we have

2A′
R = 1

200

[∫ 25

0
25 × 1.15s1 ds1 +

∫ 50

0
2(312.5 − 4.02s2)2.5 ds2

+
∫ 25

0
2(111.5 + 12.5s3)1.5 ds3

]

(iv)

Evaluation of Eq. (iv) gives

2A′
R = 424 mm2

We now examine each wall of the section in turn to determine points of zero warping.
Suppose that in the wall 12 a point of zero warping occurs at a value of s1 equal to s1,0.
Then

2 × 1
2 × 25s1,0 = 424

from which

s1,0 = 16.96 mm

so that a point of zero warping occurs in the wall 12 at a distance of 8.04 mm from the
point 2 as before. In the web 23 let the point of zero warping occur at s2 = s2,0. Then

2 × 1
2 × 25 × 25 − 2 × 1

2 × 8.04s2,0 = 424

which gives s2,0 = 25 mm (i.e. on the axis of symmetry). Clearly, from symmetry, a
further point of zero warping occurs in the flange 34 at a distance of 8.04 mm from the
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point 3. The warping distribution is then obtained directly using Eq. (18.20) in which

AR = AR,O − A′
R

Problems

P.18.1 A uniform, thin-walled, cantilever beam of closed rectangular cross-section
has the dimensions shown in Fig. P.18.1. The shear modulus G of the top and bottom
covers of the beam is 18 000 N/mm2 while that of the vertical webs is 26 000 N/mm2.

Fig. P.18.1

The beam is subjected to a uniformly distributed torque of 20 N m/mm along its
length. Calculate the maximum shear stress according to the Bred–Batho theory of
torsion. Calculate also, and sketch, the distribution of twist along the length of the
cantilever assuming that axial constraint effects are negligible.

Ans. τmax = 83.3 N/mm2, θ = 8.14 × 10−9
(

2500z − z2

2

)
rad.

P.18.2 A single cell, thin-walled beam with the double trapezoidal cross-section
shown in Fig. P.18.2, is subjected to a constant torque T = 90 500 N m and is constrained
to twist about an axis through the point R.Assuming that the shear stresses are distributed
according to the Bredt–Batho theory of torsion, calculate the distribution of warping
around the cross-section.



Ch18-H6739.tex 23/1/2007 12: 34 Page 545

Problems 545

Illustrate your answer clearly by means of a sketch and insert the principal values of
the warping displacements.

The shear modulus G = 27 500 N/mm2 and is constant throughout.

Ans. w1 = −w6 = −0.53 mm, w2 = −w5 = 0.05 mm, w3 = −w4 = 0.38 mm.

Linear distribution.

Fig. P.18.2

P.18.3 A uniform thin-walled beam is circular in cross-section and has a constant
thickness of 2.5 mm. The beam is 2000 mm long, carrying end torques of 450 N m and,
in the same sense, a distributed torque loading of 1.0 N m/mm. The loads are reacted
by equal couples R at sections 500 mm distant from each end (Fig. P.18.3).

Calculate the maximum shear stress in the beam and sketch the distribution of twist
along its length. Take G = 30 000 N/mm2 and neglect axial constraint effects.

Ans. τmax = 24.2 N/mm2, θ = −0.85 × 10−8z2 rad, 0 ≤ z ≤ 500 mm,
θ = 1.7 × 10−8(1450z − z2/2) − 12.33 × 10−3 rad, 500 ≤ z ≤ 1000 mm.

Fig. P.18.3

P.18.4 The thin-walled box section beam ABCD shown in Fig. P.18.4 is attached
at each end to supports which allow rotation of the ends of the beam in the longitudinal
vertical plane of symmetry but prevent rotation of the ends in vertical planes perpen-
dicular to the longitudinal axis of the beam. The beam is subjected to a uniform torque
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loading of 20 N m/mm over the portion BC of its span. Calculate the maximum shear
stress in the cross-section of the beam and the distribution of angle of twist along its
length, G = 70 000 N/mm2.

Ans. 71.4 N/mm2, θB = θC = 0.36◦, θ at mid-span = 0.72◦.

4 mm

4 mm

6 mm 6 mm

350 mm

200 mm

20 Nm/mm

4 m

1 m

1 m

A B

C
D

Fig. P.18.4

P.18.5 Figure P.18.5 shows a thin-walled cantilever box beam having a constant
width of 50 mm and a depth which decreases linearly from 200 mm at the built-in end
to 150 mm at the free end. If the beam is subjected to a torque of 1 kN m at its free end,
plot the angle of twist of the beam at 500 mm intervals along its length and determine
the maximum shear stress in the beam section. Take G = 25 000 N/mm2.

Ans. τmax = 33.3 N/mm2.

50 mm

200 mm

2.0 mm

2500 mm

150
mm1 kN m

Fig. P.18.5

P.18.6 A uniform closed section beam, of the thin-walled section shown in
Fig. P.18.6, is subjected to a twisting couple of 4500 N m. The beam is constrained
to twist about a longitudinal axis through the centre C of the semicircular arc 12. For
the curved wall 12 the thickness is 2 mm and the shear modulus is 22 000 N/mm2. For
the plane walls 23, 34 and 41, the corresponding figures are 1.6 mm and 27 500 N/mm2.
(Note: Gt = constant.)

Calculate the rate of twist in rad/mm. Give a sketch illustrating the distribution of
warping displacement in the cross-section and quote values at points 1 and 4.
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Ans. dθ/dz = 29.3 × 10−6 rad/mm, w3 = −w4 = −0.19 mm,
w2 = − w1 = − 0.056 mm.

Fig. P.18.6

P.18.7 A uniform beam with the doubly symmetrical cross-section shown in Fig.
P.18.7, has horizontal and vertical walls made of different materials which have shear
moduli Ga and Gb, respectively. If for any material the ratio mass density/shear modulus
is constant find the ratio of the wall thicknesses ta and tb, so that for a given torsional
stiffness and given dimensions a, b the beam has minimum weight per unit span. Assume
the Bredt–Batho theory of torsion is valid.

If this thickness requirement is satisfied find the a/b ratio (previously regarded as
fixed), which gives minimum weight for given torsional stiffness.

Ans. tb/ta = Ga/Gb, b/a = 1.

Fig. P.18.7

P.18.8 The cold-formed section shown in Fig. P.18.8 is subjected to a torque
of 50 N m. Calculate the maximum shear stress in the section and its rate of twist.
G = 25 000 N/mm2.

Ans. τmax = 220.6 N/mm2, dθ/dz = 0.0044 rad/mm.
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2 mm

20 mm25 mm

25 mm

25 mm

15 mm

15 mm

Fig. P.18.8

P.18.9 Determine the rate of twist per unit torque of the beam section shown in Fig.
P.17.11 if the shear modulus G is 25 000 N/mm2. (Note that the shear centre position
has been calculated in P.17.11.)

Ans. 6.42 × 10−8 rad/mm.

P.18.10 Figure P.18.10 shows the cross-section of a thin-walled beam in the form
of a channel with lipped flanges. The lips are of constant thickness 1.27 mm while
the flanges increase linearly in thickness from 1.27 mm where they meet the lips to

Fig. P.18.10
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2.54 mm at their junctions with the web. The web has a constant thickness of 2.54 mm.
The shear modulus G is 26 700 N/mm2 throughout.

The beam has an enforced axis of twist RR′ and is supported in such a way that
warping occurs freely but is zero at the mid-point of the web. If the beam carries a
torque of 100 N m, calculate the maximum shear stress according to the St. Venant
theory of torsion for thin-walled sections. Ignore any effects of stress concentration at
the corners. Find also the distribution of warping along the middle line of the section,
illustrating your results by means of a sketch.

Ans. τmax = ±297.4 N/mm2, w1 = −5.48 mm = −w6.
w2 = 5.48 mm = −w5, w3 = 17.98 mm = −w4.

P.18.11 The thin-walled section shown in Fig. P.18.11 is symmetrical about the x
axis. The thickness t0 of the centre web 34 is constant, while the thickness of the other
walls varies linearly from t0 at points 3 and 4 to zero at the open ends 1, 6, 7 and 8.

Determine the St. Venant torsion constant J for the section and also the maximum
value of the shear stress due to a torque T . If the section is constrained to twist about
an axis through the origin O, plot the relative warping displacements of the section per
unit rate of twist.

Ans. J = 4at3
0/3, τmax = ±3T/4at2

0 , w1 = +a2(1 + 2
√

2).
w2 = +√

2a2, w7 = −a2, w3 = 0.

Fig. P.18.11

P.18.12 The thin walled section shown in Fig. P.18.12 is constrained to twist about
an axis through R, the centre of the semicircular wall 34. Calculate the maximum shear
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stress in the section per unit torque and the warping distribution per unit rate of twist.
Also compare the value of warping displacement at the point 1 with that corresponding
to the section being constrained to twist about an axis through the point O and state
what effect this movement has on the maximum shear stress and the torsional stiffness
of the section.

Ans. Maximum shear stress is ±0.42/rt2 per unit torque.

w03 = +r2θ, w32 = + r

2
(πr + 2s1), w21 = − r

2
(2s2 − 5.142r).

With centre of twist at O1 w1 = −0.43r2. Maximum shear stress is unchanged, torsional
stiffness increased since warping reduced.

1

2

5

6

4

RO

3
r

r

r

r

r

t

r

Fig. P.18.12

P.18.13 Determine the maximum shear stress in the beam section shown in Fig.
P.18.13 stating clearly the point at which it occurs. Determine also the rate of twist of
the beam section if the shear modulus G is 25 000 N/mm2.

Ans. 70.2 N/mm2 on underside of 24 at 2 or on upper surface of 32 at 2.
9.0 × 10−4 rad/mm.

100 mm

3 mm

25 mm

423

1

80 mm

1 kN

2 mm

Fig. P.18.13
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19

Combined open and closed
section beams

So far, in Chapters 16–18, we have analysed thin-walled beams which consist of either
completely closed cross-sections or completely open cross-sections. Frequently aircraft
components comprise combinations of open and closed section beams. For example
the section of a wing in the region of an undercarriage bay could take the form shown in
Fig. 19.1. Clearly part of the section is an open channel section while the nose portion
is a single cell closed section. We shall now examine the methods of analysis of such
sections when subjected to bending, shear and torsional loads.

19.1 Bending

It is immaterial what form the cross-section of a beam takes; the direct stresses due to
bending are given by either of Eq. (16.18) or (16.19).

19.2 Shear

The methods described in Sections 17.2 and 17.3 are used to determine the shear stress
distribution although, unlike the completely closed section case, shear loads must be
applied through the shear centre of the combined section, otherwise shear stresses of
the type described in Section 18.2 due to torsion will arise. Where shear loads do not
act through the shear centre its position must be found and the loading system replaced

Fig. 19.1 Wing section comprising open and closed components.
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by shear loads acting through the shear centre together with a torque; the two loading
cases are then analysed separately. Again we assume that the cross-section of the beam
remains undistorted by the loading.

Example 19.1
Determine the shear flow distribution in the beam section shown in Fig. 19.2, when it
is subjected to a shear load in its vertical plane of symmetry. The thickness of the walls
of the section is 2 mm throughout.

The centroid of area C lies on the axis of symmetry at some distance ȳ from the upper
surface of the beam section. Taking moments of area about this upper surface

(4 × 100 × 2 + 4 × 200 × 2)ȳ = 2 × 100 × 2 × 50 + 2 × 200 × 2 × 100

+ 200 × 2 × 200

which gives ȳ = 75 mm.
The second moment of area of the section about Cx is given by

Ixx = 2

(
2 × 1003

12
+ 2 × 100 × 252

)
+ 400 × 2 × 752 + 200 × 2 × 1252

+ 2

(
2 × 2003

12
+ 2 × 200 × 252

)

i.e.

Ixx = 14.5 × 106 mm4

Fig. 19.2 Beam section of Example 19.1.
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The section is symmetrical about Cy so that Ixy = 0 and since Sx = 0 the shear flow
distribution in the closed section 3456 is, from Eq. (17.15)

qs = − Sy

Ixx

∫ s

0
ty ds + qs,0 (i)

Also the shear load is applied through the shear centre of the complete section, i.e.
along the axis of symmetry, so that in the open portions 123 and 678 the shear flow
distribution is, from Eq. (17.14)

qs = − Sy

Ixx

∫ s

0
ty ds (ii)

We note that the shear flow is zero at the points 1 and 8 and therefore the analysis may
conveniently, though not necessarily, begin at either of these points. Thus, referring to
Fig. 19.2

q12 = − 100 × 103

14.5 × 106

∫ s1

0
2(−25 + s1) ds1

i.e.

q12 = −69.0 × 10−4(−50s1 + s2
1) (iii)

whence q2 = − 34.5 N/mm.
Examination of Eq. (iii) shows that q12 is initially positive and changes sign when

s1 = 50 mm. Further, q12 has a turning value (dq12/ds1 = 0) at s1 = 25 mm of 4.3 N/mm.
In the wall 23

q23 = −69.0 × 10−4
∫ s2

0
2 × 75 ds2 − 34.5

i.e.

q23 = −1.04s2 − 34.5 (iv)

Hence q23 varies linearly from a value of −34.5 N/mm at 2 to −138.5 N/mm at 3 in the
wall 23.

The analysis of the open part of the beam section is now complete since the shear
flow distribution in the walls 67 and 78 follows from symmetry. To determine the shear
flow distribution in the closed part of the section we must use the method described
in Section 17.3 in which the line of action of the shear load is known. Thus we ‘cut’
the closed part of the section at some convenient point, obtain the qb or ‘open section’
shear flows for the complete section and then take moments as in Eqs (17.17) or (17.18).
However, in this case, we may use the symmetry of the section and loading to deduce
that the final value of shear flow must be zero at the mid-points of the walls 36 and 45,
i.e. qs = qs,0 = 0 at these points. Hence

q03 = −69.0 × 10−4
∫ s3

0
2 × 75 ds3

so that

q03 = −1.04s3 (v)
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Fig. 19.3 Shear flow distribution in beam of Example 19.1 (all shear flows in N/mm).

and q3 = −104 N/mm in the wall 03. It follows that for equilibrium of shear flows at 3,
q3, in the wall 34, must be equal to −138.5 −104 = −242.5 N/mm. Hence

q34 = −69.0 × 10−4
∫ s4

0
2(75 − s4) ds4 − 242.5

which gives

q34 = −1.04s4 + 69.0 × 10−4s2
4 − 242.5 (vi)

Examination of Eq. (vi) shows that q34 has a maximum value of −281.7 N/mm at
s4 = 75 mm; also q4 = −172.5 N/mm. Finally, the distribution of shear flow in the wall
94 is given by

q94 = −69.0 × 10−4
∫ s5

0
2(−125) ds5

i.e.

q94 = 1.73s5 (vii)

The complete distribution is shown in Fig. 19.3.

19.3 Torsion

Generally, in the torsion of composite sections, the closed portion is dominant since its
torsional stiffness is far greater than that of the attached open section portion which may
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Fig. 19.4 Wing section of Example 19.2.

therefore be frequently ignored in the calculation of torsional stiffness; shear stresses
should, however, be checked in this part of the section.

Example 19.2
Find the angle of twist per unit length in the wing whose cross-section is shown in
Fig. 19.4 when it is subjected to a torque of 10 kN m. Find also the maximum shear
stress in the section. G = 25 000 N/mm2.

Wall 12 (outer) = 900 mm. Nose cell area = 20 000 mm2.

It may be assumed, in a simplified approach, that the torsional rigidity GJ of the
complete section is the sum of the torsional rigidities of the open and closed portions.
For the closed portion the torsional rigidity is, from Eq. (18.4)

(GJ)cl = 4A2G
∮

ds/t
= 4 × 20 0002 × 25 000

(900 + 300)/1.5

which gives

(GJ)cl = 5000 × 107 N mm2

The torsional rigidity of the open portion is found using Eq. (18.11), thus

(GJ)op = G
∑ st3

3
= 25 000 × 900 × 23

3

i.e.

(GJ)op = 6 × 107 N mm2

The torsional rigidity of the complete section is then

GJ = 5000 × 107 + 6 × 107 = 5006 × 107 N mm2
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In all unrestrained torsion problems the torque is related to the rate of twist by the
expression

T = GJ
dθ

dz

The angle of twist per unit length is therefore given by

dθ

dz
= T

GJ
= 10 × 106

5006 × 107 = 0.0002 rad/mm

Substituting for T in Eq. (18.1) from Eq. (18.4), we obtain the shear flow in the closed
section. Thus

qcl = (GJ)cl

2A

dθ

dz
= 5000 × 107

2 × 20 000
× 0.0002

from which

qcl = 250 N/mm

The maximum shear stress in the closed section is then 250/1.5 = 166.7 N/mm2.
In the open portion of the section the maximum shear stress is obtained directly from

Eq. (18.10) and is

τmax,op = 25 000 × 2 × 0.0002 = 10 N/mm2

It can be seen from the above that in terms of strength and stiffness the closed portion
of the wing section dominates. This dominance may be used to determine the warping
distribution. Having first found the position of the centre of twist (the shear centre) the
warping of the closed portion is calculated using the method described in Section 18.1.
The warping in the walls 13 and 34 is then determined using Eq. (18.19), in which the
origin for the swept area AR is taken at the point 1 and the value of warping is that
previously calculated for the closed portion at 1.

Problems

P.19.1 The beam section of Example 19.1 (see Fig. 19.2) is subjected to a bending
moment in a vertical plane of 20 kN m. Calculate the maximum direct stress in the
cross-section of the beam.

Ans. 172.5 N/mm2.

P.19.2 A wing box has the cross-section shown diagrammatically in Fig. P.19.2
and supports a shear load of 100 kN in its vertical plane of symmetry. Calculate the
shear stress at the mid-point of the web 36 if the thickness of all walls is 2 mm.

Ans. 89.7 N/mm2.
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600 mm

100 kN

7

8

1

2 3

4

500 mm

5
6

200 mm
100 mm

100 mm
200 mm

Fig. P.19.2

P.19.3 If the wing box of P.19.2 is subjected to a torque of 100 kN m, calculate
the rate of twist of the section and the maximum shear stress. The shear modulus G is
25000 N/mm2.

Ans. 18.5 × 10−6 rad/mm, 170 N/mm2.
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Structural idealization

So far we have been concerned with relatively uncomplicated structural sections which
in practice would be formed from thin plate or by the extrusion process. While these
sections exist as structural members in their own right they are frequently used, as we
saw in Chapter 12, to stiffen more complex structural shapes such as fuselages, wings
and tail surfaces. Thus a two spar wing section could take the form shown in Fig. 20.1
in which Z-section stringers are used to stiffen the thin skin while angle sections form
the spar flanges. Clearly, the analysis of a section of this type would be complicated
and tedious unless some simplifying assumptions are made. Generally, the number
and nature of these simplifying assumptions determine the accuracy and the degree
of complexity of the analysis; the more complex the analysis the greater the accuracy
obtained. The degree of simplification introduced is governed by the particular situation
surrounding the problem. For a preliminary investigation, speed and simplicity are often
of greater importance than extreme accuracy; on the other hand a final solution must
be as exact as circumstances allow.

Complex structural sections may be idealized into simpler ‘mechanical model’ forms
which behave, under given loading conditions, in the same, or very nearly the same,
way as the actual structure. We shall see, however, that different models of the same
structure are required to simulate actual behaviour under different systems of loading.

20.1 Principle

In the wing section of Fig. 20.1 the stringers and spar flanges have small cross-sectional
dimensions compared with the complete section. Therefore, the variation in stress

Fig. 20.1 Typical wing section.
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Fig. 20.2 Idealization of a wing section.

over the cross-section of a stringer due to, say, bending of the wing would be small.
Furthermore, the difference between the distances of the stringer centroids and the
adjacent skin from the wing section axis is small. It would be reasonable to assume
therefore that the direct stress is constant over the stringer cross-sections. We could
therefore replace the stringers and spar flanges by concentrations of area, known as
booms, over which the direct stress is constant and which are located along the mid-
line of the skin, as shown in Fig. 20.2. In wing and fuselage sections of the type shown
in Fig. 20.1, the stringers and spar flanges carry most of the direct stresses while the skin
is mainly effective in resisting shear stresses although it also carries some of the direct
stresses. The idealization shown in Fig. 20.2 may therefore be taken a stage further by
assuming that all direct stresses are carried by the booms while the skin is effective
only in shear. The direct stress carrying capacity of the skin may be allowed for by
increasing each boom area by an area equivalent to the direct stress carrying capacity
of the adjacent skin panels. The calculation of these equivalent areas will generally
depend upon an initial assumption as to the form of the distribution of direct stress in
a boom/skin panel.

20.2 Idealization of a panel

Suppose that we wish to idealize the panel of Fig. 20.3(a) into a combination of direct
stress carrying booms and shear stress only carrying skin as shown in Fig. 20.3(b).
In Fig. 20.3(a) the direct stress carrying thickness tD of the skin is equal to its actual
thickness t while in Fig. 20.3(b) tD = 0. Suppose also that the direct stress distribution
in the actual panel varies linearly from an unknown value σ1 to an unknown value
σ2. Clearly the analysis should predict the extremes of stress σ1 and σ2 although the
distribution of direct stress is obviously lost. Since the loading producing the direct
stresses in the actual and idealized panels must be the same we can equate moments
to obtain expressions for the boom areas B1 and B2. Thus, taking moments about the
right-hand edge of each panel

σ2tD
b2

2
+ 1

2
(σ1 − σ2)tDb

2

3
b = σ1B1b

whence

B1 = tDb

6

(
2 + σ2

σ1

)
(20.1)
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Fig. 20.3 Idealization of a panel.

Similarly

B2 = tDb

6

(
2 + σ1

σ2

)
(20.2)

In Eqs (20.1) and (20.2) the ratio of σ1 to σ2, if not known, may frequently be assumed.
The direct stress distribution in Fig. 20.3(a) is caused by a combination of axial load

and bending moment. For axial load only σ1/σ2 = 1 and B1 = B2 = tDb/2; for a pure
bending moment σ1/σ2 = −1 and B1 = B2 = tDb/6. Thus, different idealizations of the
same structure are required for different loading conditions.

Example 20.1
Part of a wing section is in the form of the two-cell box shown in Fig. 20.4(a) in which the
vertical spars are connected to the wing skin through angle sections all having a cross-
sectional area of 300 mm2. Idealize the section into an arrangement of direct stress
carrying booms and shear stress only carrying panels suitable for resisting bending
moments in a vertical plane. Position the booms at the spar/skin junctions.

The idealized section is shown in Fig. 20.4(b) in which, from symmetry, B1 = B6,
B2 = B5, B3 = B4. Since the section is required to resist bending moments in a vertical
plane the direct stress at any point in the actual wing section is directly proportional
to its distance from the horizontal axis of symmetry. Further, the distribution of direct
stress in all the panels will be linear so that either of Eqs (20.1) or (20.2) may be used.
We note that, in addition to contributions from adjacent panels, the boom areas include

Fig. 20.4 Idealization of a wing section.
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the existing spar flanges. Hence

B1 = 300 + 3.0 × 400

6

(
2 + σ6

σ1

)
+ 2.0 × 600

6

(
2 + σ2

σ1

)

or

B1 = 300 + 3.0 × 400

6
(2 − 1) + 2.0 × 600

6

(
2 + 150

200

)

which gives

B1(=B6) = 1050 mm2

Also

B2 = 2×300+ 2.0 × 600

6

(
2 + σ1

σ2

)
+ 2.5 × 300

6

(
2 + σ5

σ2

)
+ 1.5 × 600

6

(
2 + σ3

σ2

)

i.e.

B2 = 2 × 300 + 2.0 × 600

6

(
2 + 200

150

)
+ 2.5 × 300

6
(2 − 1) + 1.5 × 600

6

(
2 + 100

150

)

from which

B2( = B5) = 1791.7 mm2

Finally

B3 = 300 + 1.5 × 600

6

(
2 + σ2

σ3

)
+ 2.0 × 200

6

(
2 + σ4

σ3

)

i.e.

B3 = 300 + 1.5 × 600

6

(
2 + 150

100

)
+ 2.0 × 200

6
(2 − 1)

so that

B3( = B4) = 891.7 mm2

20.3 Effect of idealization on the analysis of open
and closed section beams

The addition of direct stress carrying booms to open and closed section beams will
clearly modify the analyses presented in Chapters 16–18. Before considering individual
cases we shall discuss the implications of structural idealization. Generally, in any
idealization, different loading conditions require different idealizations of the same
structure. In Example 20.1, the loading is applied in a vertical plane. If, however,
the loading had been applied in a horizontal plane the assumed stress distribution in
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the panels of the section would have been different, resulting in different values of
boom area.

Suppose that an open or closed section beam is subjected to given bending or shear
loads and that the required idealization has been completed. The analysis of such sec-
tions usually involves the determination of the neutral axis position and the calculation
of sectional properties. The position of the neutral axis is derived from the condition
that the resultant load on the beam cross-section is zero, i.e.

∫

A
σz dA = 0 (see Eq. (16.3))

The area A in this expression is clearly the direct stress carrying area. It follows that
the centroid of the cross-section is the centroid of the direct stress carrying area of the
section, depending on the degree and method of idealization. The sectional properties,
Ixx, etc., must also refer to the direct stress carrying area.

20.3.1 Bending of open and closed section beams

The analysis presented in Sections 16.1 and 16.2 applies and the direct stress distribution
is given by any of Eqs (16.9), (16.18) or (16.19), depending on the beam section being
investigated. In these equations the coordinates (x, y) of points in the cross-section are
referred to axes having their origin at the centroid of the direct stress carrying area.
Furthermore, the section properties Ixx, Iyy and Ixy are calculated for the direct stress
carrying area only.

In the case where the beam cross-section has been completely idealized into direct
stress carrying booms and shear stress only carrying panels, the direct stress distribution
consists of a series of direct stresses concentrated at the centroids of the booms.

Example 20.2
The fuselage section shown in Fig. 20.5 is subjected to a bending moment of 100 kN m
applied in the vertical plane of symmetry. If the section has been completely idealized
into a combination of direct stress carrying booms and shear stress only carrying panels,
determine the direct stress in each boom.

The section has Cy as an axis of symmetry and resists a bending moment
Mx = 100 kN m. Equation (16.18) therefore reduces to

σz = Mx

Ixx
y (i)

The origin of axes Cxy coincides with the position of the centroid of the direct stress
carrying area which, in this case, is the centroid of the boom areas. Thus, taking
moments of area about boom 9

(6 × 640 + 6 × 600 + 2 × 620 + 2 × 850)y

= 640 × 1200 + 2 × 600 × 1140 + 2 × 600 × 960 + 2 × 600 × 768

+ 2 × 620 × 565 + 2 × 640 × 336 + 2 × 640 × 144 + 2 × 850 × 38
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Fig. 20.5 Idealized fuselage section of Example 20.2.

Table 20.1

➀ ➁ ➂ ➃ ➄
Boom y (mm) B (mm2) �Ixx = By2 (mm4) σz (N/mm2)

1 +660 640 278 × 106 35.6
2 +600 600 216 × 106 32.3
3 +420 600 106 × 106 22.6
4 +228 600 31 × 106 12.3
5 +25 620 0.4 × 106 1.3
6 −204 640 27 × 106 −11.0
7 −396 640 100 × 106 −21.4
8 −502 850 214 × 106 −27.0
9 −540 640 187 × 106 −29.0

which gives

y = 540 mm

The solution is now completed in Table 20.1
From column ➃

Ixx = 1854 × 106 mm4

and column ➄ is completed using Eq. (i).

20.3.2 Shear of open section beams

The derivation of Eq. (17.14) for the shear flow distribution in the cross-section of an
open section beam is based on the equilibrium equation (17.2). The thickness t in this
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C

Fig. 20.6 (a) Elemental length of shear loaded open section beam with booms; (b) equilibrium of boom element.

equation refers to the direct stress carrying thickness tD of the skin. Equation (17.14)
may therefore be rewritten

qs = −
(

SxIxx − SyIxy

IxxIyy − I2
xy

) ∫ s

0
tDx ds −

(
SyIyy − SxIxy

IxxIyy − I2
xy

) ∫ s

0
tDy ds (20.3)

in which tD = t if the skin is fully effective in carrying direct stress or tD = 0 if the skin
is assumed to carry only shear stresses. Again the section properties in Eq. (20.3) refer
to the direct stress carrying area of the section since they are those which feature in Eqs
(16.18) and (16.19).

Equation (20.3) makes no provision for the effects of booms which cause discon-
tinuities in the skin and therefore interrupt the shear flow. Consider the equilibrium
of the rth boom in the elemental length of beam shown in Fig. 20.6(a) which carries
shear loads Sx and Sy acting through its shear centre S. These shear loads produce direct
stresses due to bending in the booms and skin and shear stresses in the skin. Suppose
that the shear flows in the skin adjacent to the rth boom of cross-sectional area Br are
q1 and q2. Then, from Fig. 20.6(b)

(
σz + ∂σz

∂z
δz

)
Br − σzBr + q2δz − q1δz = 0

which simplifies to

q2 − q1 = −∂σz

∂z
Br (20.4)
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Substituting for σz in Eq. (20.4) from (16.18) we have

q2 − q1 = −
[

(∂My/∂z)Ixx − (∂Mx/∂z)Ixy

IxxIyy − I2
xy

]

Brxr

−
[

(∂Mx/∂z)Iyy − (∂My/∂z)Ixy

IxxIyy − I2
xy

]

Bryr

or, using the relationships of Eqs (16.23) and (16.24)

q2 − q1 = −
(

SxIxx − SyIxy

IxxIyy − I2
xy

)

Brxr −
(

SyIyy − SxIxy

IxxIyy − I2
xy

)

Bryr (20.5)

Equation (20.5) gives the change in shear flow induced by a boom which itself is
subjected to a direct load (σzBr). Each time a boom is encountered the shear flow is
incremented by this amount so that if, at any distance s around the profile of the section,
n booms have been passed, the shear flow at the point is given by

qs = −
(

SxIxx − SyIxy

IxxIyy − I2
xy

) (∫ s

0
tDx ds +

n∑

r=1

Brxr

)

−
(

SyIyy − SxIxy

IxxIyy − I2
xy

) (∫ s

0
tDy ds +

n∑

r=1

Bryr

)

(20.6)

Example 20.3
Calculate the shear flow distribution in the channel section shown in Fig. 20.7 produced
by a vertical shear load of 4.8 kN acting through its shear centre. Assume that the walls
of the section are only effective in resisting shear stresses while the booms, each of
area 300 mm2, carry all the direct stresses.

The effective direct stress carrying thickness tD of the walls of the section is zero so
that the centroid of area and the section properties refer to the boom areas only. Since
Cx (and Cy as far as the boom areas are concerned) is an axis of symmetry Ixy = 0; also
Sx = 0 and Eq. (20.6) thereby reduces to

qs = − Sy

Ixx

n∑

r=1

Bryr (i)

in which Ixx = 4 × 300 × 2002 = 48 × 106 mm4. Substituting the values of Sy and Ixx
in Eq. (i) gives

qs = −4.8 × 103

48 × 106

n∑

r=1

Bryr = −10−4
n∑

r=1

Bryr (ii)

At the outside of boom 1, qs = 0. As boom 1 is crossed the shear flow changes by an
amount given by

�q1 = −10−4 × 300 × 200 = −6 N/mm
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Fig. 20.7 Idealized channel section of Example 20.3.

Hence q12 = −6 N/mm since, from Eq. (i), it can be seen that no further changes in
shear flow occur until the next boom (2) is crossed. Hence

q23 = −6 − 10−4 × 300 × 200 = −12 N/mm

Similarly

q34 = −12 − 10−4 × 300 × (−200) = −6 N/mm

while, finally, at the outside of boom 4 the shear flow is

−6 − 10−4 × 300 × (−200) = 0

as expected. The complete shear flow distribution is shown in Fig. 20.8.
It can be seen from Eq. (i) in Example 20.3 that the analysis of a beam section

which has been idealized into a combination of direct stress carrying booms and shear

Fig. 20.8 Shear flow in channel section of Example 20.3.
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O

Fig. 20.9 Curved web with constant shear flow.

stress only carrying skin gives constant values of the shear flow in the skin between the
booms; the actual distribution of shear flows is therefore lost. What remains is in fact
the average of the shear flow, as can be seen by referring to Example 20.3. Analysis of
the unidealized channel section would result in a parabolic distribution of shear flow
in the web 23 whose resultant is statically equivalent to the externally applied shear
load of 4.8 kN. In Fig. 20.8 the resultant of the constant shear flow in the web 23 is
12 × 400 = 4800 N = 4.8 kN. It follows that this constant value of shear flow is the
average of the parabolically distributed shear flows in the unidealized section.

The result, from the idealization of a beam section, of a constant shear flow between
booms may be used to advantage in parts of the analysis. Suppose that the curved
web 12 in Fig. 20.9 has booms at its extremities and that the shear flow q12 in the web
is constant. The shear force on an element δs of the web is q12δs, whose components
horizontally and vertically are q12δs cos φ and q12δs sin φ. The resultant, parallel to the
x axis, Sx, of q12 is therefore given by

Sx =
∫ 2

1
q12 cos φ ds

or

Sx = q12

∫ 2

1
cos φ ds

which, from Fig. 20.9, may be written

Sx = q12

∫ 2

1
dx = q12(x2 − x1) (20.7)

Similarly the resultant of q12 parallel to the y axis is

Sy = q12(y2 − y1) (20.8)
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Thus the resultant, in a given direction, of a constant shear flow acting on a web is the
value of the shear flow multiplied by the projection on that direction of the web.

The resultant shear force S on the web of Fig. 20.9 is

S =
√

S2
x + S2

y = q12

√
(x2 − x1)2 + (y2 − y1)2

i.e.

S = q12L12 (20.9)

Therefore, the resultant shear force acting on the web is the product of the shear flow
and the length of the straight line joining the ends of the web; clearly the direction of
the resultant is parallel to this line.

The moment Mq produced by the shear flow q12 about any point O in the plane of
the web is, from Fig. 20.10

Mq =
∫ 2

1
q12p ds = q12

∫ 2

1
2 dA

or

Mq = 2Aq12 (20.10)

in which A is the area enclosed by the web and the lines joining the ends of the web to
the point O. This result may be used to determine the distance of the line of action of
the resultant shear force from any point. From Fig. 20.10

Se = 2Aq12

from which

e = 2A

S
q12

Fig. 20.10 Moment produced by a constant shear flow.
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Substituting for q12 from Eq. (20.9) gives

e = 2A

L12

20.3.3 Shear loading of closed section beams

Arguments identical to those in the shear of open section beams apply in this case.
Thus, the shear flow at any point around the cross-section of a closed section beam
comprising booms and skin of direct stress carrying thickness tD is, by a comparison
of Eqs (20.6) and (17.15)

qs = −
(

SxIxx − SyIxy

IxxIyy − I2
xy

) (∫ s

0
tDx ds +

n∑

r=1

Brxr

)

−
(

SyIyy − SxIxy

IxxIyy − I2
xy

) (∫ s

0
tDy ds +

n∑

r=1

Bryr

)

+ qs,0 (20.11)

Note that the zero value of the ‘basic’ or ‘open section’ shear flow at the ‘cut’ in a skin
for which tD = 0 extends from the ‘cut’ to the adjacent booms.

Example 20.4
The thin-walled single cell beam shown in Fig. 20.11 has been idealized into a com-
bination of direct stress carrying booms and shear stress only carrying walls. If the
section supports a vertical shear load of 10 kN acting in a vertical plane through booms
3 and 6, calculate the distribution of shear flow around the section.

Boom areas: B1 = B8 = 200 mm2, B2 = B7 = 250 mm2, B3 = B6 = 400 mm2, B4 =
B5 = 100 mm2.

The centroid of the direct stress carrying area lies on the horizontal axis of symmetry
so that Ixy = 0. Also, since tD = 0 and only a vertical shear load is applied,

Fig. 20.11 Closed section of beam of Example 20.4.
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Eq. (20.11) reduces to

qs = − Sy

Ixx

n∑

r=1

Bryr + qs,0 (i)

in which

Ixx = 2(200 × 302 + 250 × 1002 + 400 × 1002 + 100 × 502) = 13.86 × 106 mm4

Equation (i) then becomes

qs = − 10 × 103

13.86 × 106

n∑

r=1

Bryr + qs,0

i.e.

qs = −7.22 × 10−4
n∑

r=1

Bryr + qs,0 (ii)

‘Cutting’ the beam section in the wall 23 (any wall may be chosen) and calculating the
‘basic’ shear flow distribution qb from the first term on the right-hand side of Eq. (ii)
we have

qb,23 = 0

qb,34 = −7.22 × 10−4(400 × 100) = −28.9 N/mm

qb,45 = −28.9 − 7.22 × 10−4(100 × 50) = −32.5 N/mm

qb,56 = qb,34 = −28.9 N/mm (by symmetry)

qb,67 = qb,23 = 0 (by symmetry)

qb,21 = −7.22 × 10−4(250 × 100) = −18.1 N/mm

qb,18 = −18.1 − 7.22 × 10−4(200 × 30) = −22.4 N/mm

qb,87 = qb,21 = −18.1 N/mm (by symmetry)

Taking moments about the intersection of the line of action of the shear load and the
horizontal axis of symmetry and referring to the results of Eqs (20.7) and (20.8) we
have, from Eq. (17.18)

0 = [qb,81 × 60 × 480 + 2qb,12(240 × 100 + 70 × 240) + 2qb,23 × 240 × 100

− 2qb,43 × 120 × 100 − qb,54 × 100 × 120] + 2 × 97 200qs,0

Substituting the above values of qb in this equation gives

qs,0 = −5.4 N/mm

the negative sign indicating that qs,0 acts in a clockwise sense.
In any wall the final shear flow is given by qs = qb + qs,0 so that

q21 = −18.1 + 5.4 = −12.7 N/mm = q87

q23 = −5.4 N/mm = q67
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Fig. 20.12 Shear flow distribution N/mm in walls of the beam section of Example 20.4.

q34 = −34.3 N/mm = q56

q45 = −37.9 N/mm

and

q81 = 17.0 N/mm

giving the shear flow distribution shown in Fig. 20.12.

20.3.4 Alternative method for the calculation of shear flow
distribution

Equation (20.4) may be rewritten in the form

q2 − q1 = ∂Pr

∂z
(20.12)

in which Pr is the direct load in the rth boom. This form of the equation suggests an
alternative approach to the determination of the effect of booms on the calculation of
shear flow distributions in open and closed section beams.

Let us suppose that the boom load varies linearly with z. This will be the case for a
length of beam over which the shear force is constant. Equation (20.12) then becomes

q2 − q1 = −�Pr (20.13)

in which �Pr is the change in boom load over unit length of the rth boom. �Pr
may be calculated by first determining the change in bending moment between two
sections of a beam a unit distance apart and then calculating the corresponding change
in boom stress using either of Eq. (16.18) or (16.19); the change in boom load follows
by multiplying the change in boom stress by the boom area Br . Note that the section
properties contained in Eqs (16.18) and (16.19) refer to the direct stress carrying area
of the beam section. In cases where the shear force is not constant over the unit length
of beam the method is approximate.

We shall illustrate the method by applying it to Example 20.3. In Fig. 20.7 the shear
load of 4.8 kN is applied to the face of the section which is seen when a view is taken
along the z axis towards the origin. Thus, when considering unit length of the beam,
we must ensure that this situation is unchanged. Figure 20.13 shows a unit (1 mm say)
length of beam. The change in bending moment between the front and rear faces of the
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Fig. 20.13 Alternative solution to Example 20.3.

length of beam is 4.8 × 1 kN mm which produces a change in boom load given by (see
Eq. (16.18))

�Pr = 4.8 × 103 × 200

48 × 106 × 300 = 6 N

The change in boom load is compressive in booms 1 and 2 and tensile in booms 3 and 4.
Equation (20.12), and hence Eq. (20.13), is based on the tensile load in a boom

increasing with increasing z. If the tensile load had increased with decreasing z the
right-hand side of these equations would have been positive. It follows that in the case
where a compressive load increases with decreasing z, as for booms 1 and 2 in Fig.
20.13, the right-hand side is negative; similarly for booms 3 and 4 the right-hand side
is positive. Thus

q12 = −6 N/mm

q23 = −6 + q12 = −12 N/mm

and

q34 = +6 + q23 = −6 N/mm

giving the same solution as before. Note that if the unit length of beam had been
taken to be 1 m the solution would have been q12 = −6000 N/m, q23 = −12 000 N/m,
q34 = −6000 N/m.

20.3.5 Torsion of open and closed section beams

No direct stresses are developed in either open or closed section beams subjected to a
pure torque unless axial constraints are present. The shear stress distribution is therefore
unaffected by the presence of booms and the analyses presented in Chapter 18 apply.
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20.4 Deflection of open and closed section beams

Bending, shear and torsional deflections of thin-walled beams are readily obtained by
application of the unit load method described in Section 5.5.

The displacement in a given direction due to torsion is given directly by the last of
Eqs (5.21), thus

�T =
∫

L

T0T1

GJ
dz (20.14)

where J , the torsion constant, depends on the type of beam under consideration. For an
open section beam J is given by either of Eqs (18.11) whereas in the case of a closed
section beam J = 4A2/(

∮
ds/t) (Eq. (18.4)) for a constant shear modulus.

Expressions for the bending and shear displacements of unsymmetrical thin-walled
beams may also be determined by the unit load method. They are complex for the
general case and are most easily derived from first principles by considering the com-
plementary energy of the elastic body in terms of stresses and strains rather than loads
and displacements. In Chapter 5 we observed that the theorem of the principle of the
stationary value of the total complementary energy of an elastic system is equivalent
to the application of the principle of virtual work where virtual forces act through real
displacements.We may therefore specify that in our expression for total complementary
energy the displacements are the actual displacements produced by the applied loads
while the virtual force system is the unit load.

Considering deflections due to bending, we see, from Eq. (5.6), that the increment
in total complementary energy due to the application of a virtual unit load is

−
∫

L

(∫

A
σz,1εz,0 dA

)
dz + 1�M

where σz,1 is the direct bending stress at any point in the beam cross-section correspond-
ing to the unit load and εz,0 is the strain at the point produced by the actual loading
system. Further, �M is the actual displacement due to bending at the point of applica-
tion and in the direction of the unit load. Since the system is in equilibrium under the
action of the unit load the above expression must equal zero (see Eq. (5.6)). Hence

�M =
∫

L

(∫

A
σz,1εz,0 dA

)
dz (20.15)

From Eq. (16.18) and the third of Eqs (1.42)

σz,1 =
(

My,1Ixx − Mx,1Ixy

IxxIyy − I2
xy

)

x +
(

Mx,1Iyy − My,1Ixy

IxxIyy − I2
xy

)

y

εz,0 = 1

E

[(
My,0Ixx − Mx,0Ixy

IxxIyy − I2
xy

)

x +
(

Mx,0Iyy − My,0Ixy

IxxIyy − I2
xy

)

y

]

where the suffixes 1 and 0 refer to the unit and actual loading systems and x, y are
the coordinates of any point in the cross-section referred to a centroidal system of
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axes. Substituting for σz,1 and εz,0 in Eq. (20.15) and remembering that
∫

A x2 dA = Iyy,∫
A y2 dA = Ixx, and

∫
A xy dA = Ixy, we have

�M = 1

E(IxxIyy − I2
xy)2

∫

L
{(My,1Ixx − Mx,1Ixy)(My,0Ixx − Mx,0Ixy)Iyy

+ (Mx,1Iyy − My,1Ixy)(Mx,0Iyy − My,0Ixy)Ixx

+ [(My,1Ixx − Mx,1Ixy)(Mx,0Iyy − My,0Ixy)

+ (Mx,1Iyy − My,1Ixy)(My,0Ixx − Mx,0Ixy)]Ixy}dz (20.16)

For a section having either the x or y axis as an axis of symmetry, Ixy = 0 and Eq. (20.16)
reduces to

�M = 1

E

∫

L

(
My,1My,0

Iyy
+ Mx,1Mx,0

Ixx

)
dz (20.17)

The derivation of an expression for the shear deflection of thin-walled sections by the
unit load method is achieved in a similar manner. By comparison with Eq. (20.15) we
deduce that the deflection �S , due to shear of a thin-walled open or closed section beam
of thickness t, is given by

�S =
∫

L

(∫

sect
τ1γ0t ds

)
dz (20.18)

where τ1 is the shear stress at an arbitrary point s around the section produced by a
unit load applied at the point and in the direction �S , and γ0 is the shear strain at the
arbitrary point corresponding to the actual loading system. The integral in parentheses
is taken over all the walls of the beam. In fact, both the applied and unit shear loads
must act through the shear centre of the cross-section, otherwise additional torsional
displacements occur. Where shear loads act at other points these must be replaced by
shear loads at the shear centre plus a torque. The thickness t is the actual skin thickness
and may vary around the cross-section but is assumed to be constant along the length
of the beam. Rewriting Eq. (20.18) in terms of shear flows q1 and q0, we obtain

�S =
∫

L

(∫

sect

q0q1

Gt
ds

)
dz (20.19)

where again the suffixes refer to the actual and unit loading systems. In the cases of both
open and closed section beams the general expressions for shear flow are long and are
best evaluated before substituting in Eq. (20.19). For an open section beam comprising
booms and walls of direct stress carrying thickness tD we have, from Eq. (20.6)

q0 = −
(

Sx,0Ixx − Sy,0Ixy

IxxIyy − I2
xy

) (∫ s

0
tDx ds +

n∑

r=1

Brxr

)

−
(

Sy,0Iyy − Sx,0Ixy

IxxIyy − I2
xy

) (∫ s

0
tDy ds +

n∑

r=1

Bryr

)

(20.20)
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and

q1 = −
(

Sx,1Ixx − Sy,1Ixy

IxxIyy − I2
xy

) (∫ s

0
tDx ds +

n∑

r=1

Brxr

)

−
(

Sy,1Iyy − Sx,1Ixy

IxxIyy − I2
xy

) (∫ s

0
tDy ds +

n∑

r=1

Bryr

)

(20.21)

Similar expressions are obtained for a closed section beam from Eq. (20.11).

Example 20.5
Calculate the deflection of the free end of a cantilever 2000 mm long having a channel
section identical to that in Example 20.3 and supporting a vertical, upward load of
4.8 kN acting through the shear centre of the section. The effective direct stress carrying
thickness of the skin is zero while its actual thickness is 1 mm. Young’s modulus E and
the shear modulus G are 70 000 and 30 000 N/mm2, respectively.

The section is doubly symmetrical (i.e. the direct stress carrying area) and supports
a vertical load producing a vertical deflection. Thus we apply a unit load through the
shear centre of the section at the tip of the cantilever and in the same direction as the
applied load. Since the load is applied through the shear centre there is no twisting
of the section and the total deflection is given, from Eqs (20.17), (20.19), (20.20) and
(20.21), by

� =
∫ L

0

Mx,0Mx,1

EIxx
dz +

∫ L

0

(∫

sect

q0q1

Gt
ds

)
dz (i)

where Mx,0 = −4.8 × 103(2000 − z), Mx,1 = −1(2000 − z)

q0 = −4.8 × 103

Ixx

n∑

r=1

Bryr q1 = − 1

Ixx

n∑

r=1

Bryr

and z is measured from the built-in end of the cantilever. The actual shear flow dis-
tribution has been calculated in Example 20.3. In this case the q1 shear flows may be
deduced from the actual distribution shown in Fig. 20.8, i.e.

q1 = q0/4.8 × 103

Evaluating the bending deflection, we have

�M =
∫ 2000

0

4.8 × 103(2000 − z)2dz

70 000 × 48 × 106 = 3.81 mm

The shear deflection �S is given by

�S =
∫ 2000

0

1

30 000 × 1

[
1

4.8 × 103 (62 × 200 + 122 × 400 + 62 × 200)

]
dz

= 1.0 mm

The total deflection � is then �M + �S = 4.81 mm in a vertical upward direction.
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Problems

P.20.1 Idealize the box section shown in Fig. P.20.1 into an arrangement of direct
stress carrying booms positioned at the four corners and panels which are assumed to
carry only shear stresses. Hence determine the distance of the shear centre from the
left-hand web.

Ans. 225 mm.

10 mm

10 mm

Angles
 60 � 50 � 10mm

Angles
50 � 40 � 8 mm

10 mm

500 mm

8 mm

300 mm

Fig. P.20.1

P.20.2 The beam section shown in Fig. P.20.2 has been idealized into an arrange-
ment of direct stress carrying booms and shear stress only carrying panels. If the beam
section is subjected to a vertical shear load of 1495 N through its shear centre, booms
1, 4, 5 and 8 each have an area of 200 mm2 and booms 2, 3, 6 and 7 each have an area
of 250 mm2 determine the shear flow distribution and the position of the shear centre.

Ans. Wall 12, 1.86 N/mm; 43, 1.49 N/mm; 32, 5.21 N/mm; 27, 10.79 N/mm;
remaining distribution follows from symmetry. 122 mm to the left of the web 27.

50 mm

50 mm 40 mm
80 mm

80 mm
40 mm

150mm 150 mm200 mm

8

7 6

5

4

32

1

Fig. P.20.2
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P.20.3 Figure P.20.3 shows the cross-section of a single cell, thin-walled beam with
a horizontal axis of symmetry. The direct stresses are carried by the booms B1 to B4,
while the walls are effective only in carrying shear stresses. Assuming that the basic
theory of bending is applicable, calculate the position of the shear centre S. The shear
modulus G is the same for all walls.

Cell area = 135 000 mm2. Boom areas: B1 = B4 = 450 mm2, B2 = B3 = 550 mm2.

Ans. 197.2 mm from vertical through booms 2 and 3.

Fig. P.20.3

Wall Length (mm) Thickness (mm)

12, 34 500 0.8
23 580 1.0
41 200 1.2

P.20.4 Find the position of the shear centre of the rectangular four boom beam
section shown in Fig. P.20.4. The booms carry only direct stresses but the skin is
fully effective in carrying both shear and direct stress. The area of each boom is
100 mm2.

Ans. 142.5 mm from side 23.

Fig. P.20.4
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P.20.5 A uniform beam with the cross-section shown in Fig. P.20.5(a) is supported
and loaded as shown in Fig. P.20.5(b). If the direct and shear stresses are given by the
basic theory of bending, the direct stresses being carried by the booms and the shear
stresses by the walls, calculate the vertical deflection at the ends of the beam when the
loads act through the shear centres of the end cross-sections, allowing for the effect of
shear strains.

Take E = 69 000 N/mm2 and G = 26 700 N/mm2. Boom areas: 1, 3, 4, 6 = 650 mm2,
2, 5 = 1300 mm2.

Ans. 3.4 mm.

Fig. P.20.5

P.20.6 A cantilever, length L, has a hollow cross-section in the form of a
doubly symmetric wedge as shown in Fig. P.20.6. The chord line is of length c,
wedge thickness is t, the length of a sloping side is a/2 and the wall thickness is
constant and equal to t0. Uniform pressure distributions of magnitudes shown act on
the faces of the wedge. Find the vertical deflection of point A due to this given load-
ing. If G = 0.4E, t/c = 0.05 and L = 2c show that this deflection is approximately
5600p0c2/Et0.
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Fig. P.20.6

P.20.7 A rectangular section thin-walled beam of length L and breadth 3b, depth b
and wall thickness t is built in at one end (Fig. P.20.7). The upper surface of the beam
is subjected to a pressure which varies linearly across the breadth from a value p0 at
edge AB to zero at edge CD. Thus, at any given value of x the pressure is constant in
the z direction. Find the vertical deflection of point A.

Fig. P.20.7

Ans. p0L2(9L2/80Eb2 + 1609/2000G)/t.
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21

Wing spars and box beams

In Chapters 16–18 we established the basic theory for the analysis of open and closed
section thin-walled beams subjected to bending, shear and torsional loads. In addition,
in Chapter 20, we saw how complex stringer stiffened sections could be idealized
into sections more amenable to analysis. We shall now extend this analysis to actual
aircraft components including, in this chapter, wing spars and box beams. In subsequent
chapters we shall investigate the analysis of fuselages, wings, frames and ribs, and
consider the effects of cut-outs in wings and fuselages. Finally, in Chapter 25, an
introduction is given to the analysis of components fabricated from composite materials.

Aircraft structural components are, as we saw in Chapter 12, complex, consisting
usually of thin sheets of metal stiffened by arrangements of stringers. These struc-
tures are highly redundant and require some degree of simplification or idealization
before they can be analysed. The analysis presented here is therefore approximate and
the degree of accuracy obtained depends on the number of simplifying assumptions
made. A further complication arises in that factors such as warping restraint, struc-
tural and loading discontinuities and shear lag significantly affect the analysis; we shall
investigate these effects in some simple structural components in Chapters 26 and 27.
Generally, a high degree of accuracy can only be obtained by using computer-based
techniques such as the finite element method (see Chapter 6). However, the simpler,
quicker and cheaper approximate methods can be used to advantage in the preliminary
stages of design when several possible structural alternatives are being investigated; they
also provide an insight into the physical behaviour of structures which computer-based
techniques do not.

Major aircraft structural components such as wings and fuselages are usually tapered
along their lengths for greater structural efficiency. Thus, wing sections are reduced both
chordwise and in depth along the wing span towards the tip and fuselage sections aft of
the passenger cabin taper to provide a more efficient aerodynamic and structural shape.

The analysis of open and closed section beams presented in Chapters 16–18 assumes
that the beam sections are uniform. The effect of taper on the prediction of direct
stresses produced by bending is minimal if the taper is small and the section properties
are calculated at the particular section being considered; Eqs (16.18)–(16.22) may
therefore be used with reasonable accuracy. On the other hand, the calculation of shear
stresses in beam webs can be significantly affected by taper.
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21.1 Tapered wing spar

Consider first the simple case of a beam, for example a wing spar, positioned in the
yz plane and comprising two flanges and a web: an elemental length δz of the beam
is shown in Fig. 21.1. At the section z the beam is subjected to a positive bending
moment Mx and a positive shear force Sy. The bending moment resultants Pz,1 and Pz,2
are parallel to the z axis of the beam. For a beam in which the flanges are assumed to
resist all the direct stresses, Pz,1 = Mx/h and Pz,2 = −Mx/h. In the case where the web
is assumed to be fully effective in resisting direct stress, Pz,1 and Pz,2 are determined
by multiplying the direct stresses σz,1 and σz,2 found using Eq. (16.18) or (16.19) by
the flange areas B1 and B2. Pz,1 and Pz,2 are the components in the z direction of the
axial loads P1 and P2 in the flanges. These have components Py,1 and Py,2 parallel to
the y axis given by

Py,1 = Pz,1
δy1

δz
Py,2 = −Pz,2

δy2

δz
(21.1)

in which, for the direction of taper shown, δy2 is negative. The axial load in flange
� is given by

P1 = (P2
z,1 + P2

y,1)1/2

Substituting for Py,1 from Eq. (21.1) we have

P1 = Pz,1
(δz2 + δy2

1)1/2

δz
= Pz,1

cos α1
(21.2)

Similarly

P2 = Pz,2

cos α2
(21.3)

Fig. 21.1 Effect of taper on beam analysis.
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The internal shear force Sy comprises the resultant Sy,w of the web shear flows together
with the vertical components of P1 and P2. Thus

Sy = Sy,w + Py,1 − Py,2

or

Sy = Sy,w + Pz,1
δy1

δz
+ Pz,2

δy2

δz
(21.4)

so that

Sy,w = Sy − Pz,1
δy1

δz
− Pz,2

δy2

δz
(21.5)

Again we note that δy2 in Eqs (21.4) and (21.5) is negative. Equation (21.5) may be
used to determine the shear flow distribution in the web. For a completely idealized
beam the web shear flow is constant through the depth and is given by Sy,w/h. For a
beam in which the web is fully effective in resisting direct stresses the web shear flow
distribution is found using Eq. (20.6) in which Sy is replaced by Sy,w and which, for the
beam of Fig. 21.1, would simplify to

qs = −Sy,w

Ixx

(∫ s

0
tDy ds + B1y1

)
(21.6)

or

qs = −Sy,w

Ixx

(∫ s

0
tDy ds + B2y2

)
(21.7)

Example 21.1
Determine the shear flow distribution in the web of the tapered beam shown in Fig. 21.2,
at a section midway along its length. The web of the beam has a thickness of 2 mm

Fig. 21.2 Tapered beam of Example 21.1.
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and is fully effective in resisting direct stress. The beam tapers symmetrically about its
horizontal centroidal axis and the cross-sectional area of each flange is 400 mm2.

The internal bending moment and shear load at the section AA produced by the
externally applied load are, respectively

Mx = 20 × 1 = 20 kN m Sy = −20 kN

The direct stresses parallel to the z axis in the flanges at this section are obtained either
from Eqs (16.18) or (16.19) in which My = 0 and Ixy = 0. Thus, from Eq. (16.18)

σz = Mxy

Ixx
(i)

in which

Ixx = 2 × 400 × 1502 + 2 × 3003/12

i.e.

Ixx = 22.5 × 106 mm4

Hence

σz,1 = −σz,2 = 20 × 106 × 150

22.5 × 106 = 133.3 N/mm2

The components parallel to the z axis of the axial loads in the flanges are therefore

Pz,1 = −Pz,2 = 133.3 × 400 = 53 320 N

The shear load resisted by the beam web is then, from Eq. (21.5)

Sy,w = −20 × 103 − 53 320
δy1

δz
+ 53 320

δy2

δz

in which, from Figs 21.1 and 21.2, we see that

δy1

δz
= −100

2 × 103 = −0.05
δy2

δz
= 100

2 × 103 = 0.05

Hence

Sy,w = −20 × 103 + 53 320 × 0.05 + 53 320 × 0.05 = −14 668 N

The shear flow distribution in the web follows either from Eq. (21.6) or Eq. (21.7) and
is (see Fig. 21.2(b))

q12 = 14 668

22.5 × 106

(∫ s

0
2(150 − s) ds + 400 × 150

)

i.e.

q12 = 6.52 × 10−4(−s2 + 300s + 60 000) (ii)

The maximum value of q12 occurs when s = 150 mm and q12 (max) = 53.8 N/mm. The
values of shear flow at points 1 (s = 0) and 2 (s = 300 mm) are q1 = 39.1 N/mm and
q2 = 39.1 N/mm; the complete distribution is shown in Fig. 21.3.
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Fig. 21.3 Shear flow (N/mm) distribution at Section AA in Example 21.1.

21.2 Open and closed section beams

We shall now consider the more general case of a beam tapered in two directions along
its length and comprising an arrangement of booms and skin. Practical examples of
such a beam are complete wings and fuselages. The beam may be of open or closed
section; the effects of taper are determined in an identical manner in either case.

Figure 21.4(a) shows a short length δz of a beam carrying shear loads Sx and Sy at
the section z; Sx and Sy are positive when acting in the directions shown. Note that if
the beam were of open cross-section the shear loads would be applied through its shear
centre so that no twisting of the beam occurred. In addition to shear loads the beam
is subjected to bending moments Mx and My which produce direct stresses σz in the
booms and skin. Suppose that in the rth boom the direct stress in a direction parallel
to the z axis is σz,r , which may be found using either Eq. (16.18) or Eq. (16.19). The
component Pz,r of the axial load Pr in the rth boom is then given by

Pz,r = σz,rBr (21.8)

where Br is the cross-sectional area of the rth boom.
From Fig. 21.4(b)

Py,r = Pz,r
δyr

δz
(21.9)

Further, from Fig. 21.4(c)

Px,r = Py,r
δxr

δyr

or, substituting for Py,r from Eq. (21.9)

Px,r = Pz,r
δxr

δz
(21.10)

The axial load Pr is then given by

Pr = (P2
x,r + P2

y,r + P2
z,r)1/2 (21.11)
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Fig. 21.4 Effect of taper on the analysis of open and closed section beams.

or, alternatively

Pr = Pz,r
(δx2

r + δy2
r + δz2)1/2

δz
(21.12)

The applied shear loads Sx and Sy are reacted by the resultants of the shear flows in the
skin panels and webs, together with the components Px,r and Py,r of the axial loads in
the booms. Therefore, if Sx,w and Sy,w are the resultants of the skin and web shear flows
and there is a total of m booms in the section

Sx = Sx,w +
m∑

r=1

Px,r Sy = Sy,w +
m∑

r=1

Py,r (21.13)
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Fig. 21.5 Modification of moment equation in shear of closed section beams due to boom load.

Substituting in Eq. (21.13) for Px,r and Py,r from Eqs (21.10) and (21.9) we have

Sx = Sx,w +
m∑

r=1

Pz,r
δxr

δz
Sy = Sy,w +

m∑

r=1

Pz,r
δyr

δz
(21.14)

Hence

Sx,w = Sx −
m∑

r=1

Pz,r
δxr

δz
Sy,w = Sy −

m∑

r=1

Pz,r
δyr

δz
(21.15)

The shear flow distribution in an open section beam is now obtained using Eq. (20.6)
in which Sx is replaced by Sx,w and Sy by Sy,w from Eq. (21.15). Similarly for a closed
section beam, Sx and Sy in Eq. (20.11) are replaced by Sx,w and Sy,w. In the latter case the
moment equation (Eq. (17.17)) requires modification due to the presence of the boom
load components Px,r and Py,r . Thus from Fig. 21.5 we see that Eq. (17.17) becomes

Sxη0 − Syξ0 =
∮

qbp ds + 2Aqs,0 −
m∑

r=1

Px,rηr +
m∑

r=1

Py,rξr (21.16)

Equation (21.16) is directly applicable to a tapered beam subjected to forces positioned
in relation to the moment centre as shown. Care must be taken in a particular problem
to ensure that the moments of the forces are given the correct sign.

Example 21.2
The cantilever beam shown in Fig. 21.6 is uniformly tapered along its length in both
x and y directions and carries a load of 100 kN at its free end. Calculate the forces in
the booms and the shear flow distribution in the walls at a section 2 m from the built-in
end if the booms resist all the direct stresses while the walls are effective only in shear.
Each corner boom has a cross-sectional area of 900 mm2 while both central booms
have cross-sectional areas of 1200 mm2.

The internal force system at a section 2 m from the built-in end of the beam is

Sy = 100 kN Sx = 0 Mx = −100 × 2 = −200 kN m My = 0
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Fig. 21.6 (a) Beam of Example 21.2; (b) section 2 m from built-in end.

The beam has a doubly symmetrical cross-section so that Ixy = 0 and Eq. (16.18)
reduces to

σz = Mxy

Ixx
(i)

in which, for the beam section shown in Fig. 21.6(b)

Ixx = 4 × 900 × 3002 + 2 × 1200 × 3002 = 5.4 × 108 mm4

Then

σz,r = −200 × 106

5.4 × 108 yr

or

σz,r = −0.37yr (ii)

Hence

Pz,r = −0.37yrBr (iii)

The value of Pz,r is calculated from Eq. (iii) in column � in Table 21.1; Px,r and
Py,r follow from Eqs (21.10) and (21.9), respectively in columns � and �. The axial
load Pr , column �, is given by [�2 + �2 + �2]1/2 and has the same sign as Pz,r (see
Eq. (21.12)). The moments of Px,r and Py,r are calculated for a moment centre at the
centre of symmetry with anticlockwise moments taken as positive. Note that in Table
21.1, Px,r and Py,r are positive when they act in the positive directions of the section
x and y axes, respectively; the distances ηr and ξr of the lines of action of Px,r and
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Table 21.1

� � � � � � � � 	 

Pz,r δxr/δz δyr/δz Px,r Py,r Pr ξr ηr Px,rηr Py,rξr

Boom (kN) (kN) (kN) (kN) (m) (m) (kN m) (kN m)

1 −100 0.1 −0.05 −10 5 −101.3 0.6 0.3 3 −3
2 −133 0 −0.05 0 6.7 −177.3 0 0.3 0 0
3 −100 −0.1 −0.05 10 5 −101.3 0.6 0.3 −3 3
4 100 −0.1 0.05 −10 5 101.3 0.6 0.3 −3 3
5 133 0 0.05 0 6.7 177.3 0 0.3 0 0
6 100 0.1 0.05 10 5 101.3 0.6 0.3 3 −3

Py,r from the moment centre are not given signs since it is simpler to determine the
sign of each moment, Px,rηr and Py,rξr , by referring to the directions of Px,r and Py,r
individually.
From column �

6∑

r=1

Py,r = 33.4 kN

From column 


6∑

r=1

Px,rηr = 0

From column

6∑

r=1

Py,rξr = 0

From Eq. (21.15)

Sx,w = 0 Sy,w = 100 − 33.4 = 66.6 kN

The shear flow distribution in the walls of the beam is now found using the method
described in Section 20.3. Since, for this beam, Ixy = 0 and Sx = Sx,w = 0, Eq. (20.11)
reduces to

qs = −Sy,w

Ixx

n∑

r=1

Bryr + qs,0 (iv)

We now ‘cut’ one of the walls, say 16. The resulting ‘open section’ shear flow is
given by

qb = −66.6 × 103

5.4 × 108

n∑

r=1

Bryr
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or

qb = −1.23 × 10−4
n∑

r=1

Bryr (v)

Thus

qb,16 = 0

qb,12 = 0 − 1.23 × 10−4 × 900 × 300 = −33.2 N/mm

qb,23 = −33.2 − 1.23 × 10−4 × 1200 × 300 = −77.5 N/mm

qb,34 = −77.5 − 1.23 × 10−4 × 900 × 300 = −110.7 N/mm

qb,45 = −77.5 N/mm (from symmetry)

qb,56 = −33.2 N/mm (from symmetry)

giving the distribution shown in Fig. 21.7. Taking moments about the centre of
symmetry we have, from Eq. (21.16)

−100 × 103 × 600 = 2 × 33.2 × 600 × 300 + 2 × 77.5 × 600 × 300

+ 110.7 × 600 × 600 + 2 × 1200 × 600qs,0

from which qs,0 = −97.0 N/mm (i.e. clockwise). The complete shear flow distribution
is found by adding the value of qs,0 to the qb shear flow distribution of Fig. 21.7 and is
shown in Fig. 21.8.

Fig. 21.7 ‘Open section’ shear flow (N/mm) distribution in beam section of Example 21.2.

Fig. 21.8 Shear flow (N/mm) distribution in beam section of Example 21.2.
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21.3 Beams having variable stringer areas

In many aircraft, structural beams, such as wings, have stringers whose cross-sectional
areas vary in the spanwise direction. The effects of this variation on the determina-
tion of shear flow distribution cannot therefore be found by the methods described in
Section 20.3 which assume constant boom areas. In fact, as we noted in Section 20.3,
if the stringer stress is made constant by varying the area of cross-section there is no
change in shear flow as the stringer/boom is crossed.

The calculation of shear flow distributions in beams having variable stringer areas is
based on the alternative method for the calculation of shear flow distributions described
in Section 20.3 and illustrated in the alternative solution of Example 20.3. The stringer
loads Pz,1 and Pz,2 are calculated at two sections z1 and z2 of the beam a convenient
distance apart. We assume that the stringer load varies linearly along its length so that
the change in stringer load per unit length of beam is given by

�P = Pz,1 − Pz,2

z1 − z2

The shear flow distribution follows as previously described.

Example 21.3
Solve Example 21.2 by considering the differences in boom load at sections of the
beam either side of the specified section.

In this example the stringer areas do not vary along the length of the beam but the
method of solution is identical.

We are required to find the shear flow distribution at a section 2 m from the built-in
end of the beam. We therefore calculate the boom loads at sections, say 0.1 m either
side of this section. Thus, at a distance 2.1 m from the built-in end

Mx = −100 × 1.9 = −190 kN m

The dimensions of this section are easily found by proportion and are width = 1.18 m,
depth = 0.59 m. Thus the second moment of area is

Ixx = 4 × 900 × 2952 + 2 × 1200 × 2952 = 5.22 × 108 mm4

and

σz,r = −190 × 106

5.22 × 108 yr = −0.364yr

Hence

P1 = P3 = −P4 = −P6 = −0.364 × 295 × 900 = −96 642 N

and

P2 = −P5 = −0.364 × 295 × 1200 = −128 856 N
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At a section 1.9 m from the built-in end

Mx = −100 × 2.1 = −210 kN m

and the section dimensions are width = 1.22 m, depth = 0.61 m so that

Ixx = 4 × 900 × 3052 + 2 × 1200 × 3052 = 5.58 × 108 mm4

and

σz,r = −210 × 106

5.58 × 108 yr = −0.376yr

Hence

P1 = P3 = −P4 = −P6 = −0.376 × 305 × 900 = −103 212 N

and

P2 = −P5 = −0.376 × 305 × 1200 = −137 616 N

Thus, there is an increase in compressive load of 103 212 − 96 642 = 6570 N in booms
1 and 3 and an increase in tensile load of 6570 N in booms 4 and 6 between the two sec-
tions. Also, the compressive load in boom 2 increases by 137 616 − 128 856 = 8760 N
while the tensile load in boom 5 increases by 8760 N. Therefore, the change in boom
load per unit length is given by

�P1 = �P3 = −�P4 = −�P6 = 6570

200
= 32.85 N

and

�P2 = −�P5 = 8760

200
= 43.8 N

The situation is illustrated in Fig. 21.9. Suppose now that the shear flows in the panels
12, 23, 34, etc. are q12, q23, q34, etc. and consider the equilibrium of boom 2, as shown
in Fig. 21.10, with adjacent portions of the panels 12 and 23. Thus

q23 + 43.8 − q12 = 0

or

q23 = q12 − 43.8

Similarly

q34 = q23 − 32.85 = q12 − 76.65

q45 = q34 + 32.85 = q12 − 43.8

q56 = q45 + 43.8 = q12

q61 = q45 + 32.85 = q12 + 32.85
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Fig. 21.9 Change in boom loads/unit length of beam.

Fig. 21.10 Equilibrium of boom.

The moment resultant of the internal shear flows, together with the moments of the
components Py,r of the boom loads about any point in the cross-section, is equivalent
to the moment of the externally applied load about the same point. We note from
Example 21.2 that for moments about the centre of symmetry

6∑

r=1

Px,rηr = 0
6∑

r=1

Py,rξr = 0

Therefore, taking moments about the centre of symmetry

100 × 103 × 600 = 2q12 × 600 × 300 + 2(q12 − 43.8)600 × 300

+ (q12 − 76.65)600 × 600 + (q12 + 32.85)600 × 600

from which

q12 = 62.5 N/mm
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whence

q23 = 19.7 N/mm q34 = −13.2 N/mm q45 = 19.7 N/mm,

q56 = 63.5 N/mm q61 = 96.4 N/mm

so that the solution is almost identical to the longer exact solution of Example 21.2.
The shear flows q12, q23, etc. induce complementary shear flows q12, q23, etc. in

the panels in the longitudinal direction of the beam; these are, in fact, the average
shear flows between the two sections considered. For a complete beam analysis the
above procedure is applied to a series of sections along the span. The distance between
adjacent sections may be taken to be any convenient value; for actual wings distances
of the order of 350–700 mm are usually chosen. However, for very small values small
percentage errors in Pz,1 and Pz,2 result in large percentage errors in �P. On the other
hand, if the distance is too large the average shear flow between two adjacent sections
may not be quite equal to the shear flow midway between the sections.

Problems

P.21.1 A wing spar has the dimensions shown in Fig. P.21.1 and carries a uniformly
distributed load of 15 kN/m along its complete length. Each flange has a cross-sectional
area of 500 mm2 with the top flange being horizontal. If the flanges are assumed to resist
all direct loads while the spar web is effective only in shear, determine the flange loads
and the shear flows in the web at sections 1 and 2 m from the free end.

Ans. 1 m from free end: PU = 25 kN (tension), PL = 25.1 kN (compression),
q = 41.7 N/mm.

2 m from free end: PU = 75 kN (tension), PL = 75.4 kN (compression),
q = 56.3 N/mm.

Fig. P.21.1

P.21.2 If the web in the wing spar of P.21.1 has a thickness of 2 mm and is fully
effective in resisting direct stresses, calculate the maximum value of shear flow in the
web at a section 1 m from the free end of the beam.

Ans. 46.8 N/mm.
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P.21.3 Calculate the shear flow distribution and the stringer and flange loads in
the beam shown in Fig. P.21.3 at a section 1.5 m from the built-in end. Assume that
the skin and web panels are effective in resisting shear stress only; the beam tapers
symmetrically in a vertical direction about its longitudinal axis.

Ans. q13 = q42 = 36.9 N/mm, q35 = q64 = 7.3N/mm, q21 = 96.2 N/mm,
q65 = 22.3 N/mm.

P2 = −P1 = 133.3 kN, P4 = P6 = −P3 = −P5 = 66.7 kN.

Fig. P.21.3
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Fuselages

Aircraft fuselages consist, as we saw in Chapter 12, of thin sheets of material stiffened
by large numbers of longitudinal stringers together with transverse frames. Gener-
ally, they carry bending moments, shear forces and torsional loads which induce axial
stresses in the stringers and skin together with shear stresses in the skin; the resistance
of the stringers to shear forces is generally ignored. Also, the distance between adjacent
stringers is usually small so that the variation in shear flow in the connecting panel will
be small. It is therefore reasonable to assume that the shear flow is constant between
adjacent stringers so that the analysis simplifies to the analysis of an idealized section
in which the stringers/booms carry all the direct stresses while the skin is effective
only in shear. The direct stress carrying capacity of the skin may be allowed for by
increasing the stringer/boom areas as described in Section 20.3. The analysis of fuse-
lages therefore involves the calculation of direct stresses in the stringers and the shear
stress distributions in the skin; the latter are also required in the analysis of transverse
frames, as we shall see in Chapter 24.

22.1 Bending

The skin/stringer arrangement is idealized into one comprising booms and skin as
described in Section 20.3. The direct stress in each boom is then calculated using either
Eqs (16.18) or (16.19) in which the reference axes and the section properties refer to
the direct stress carrying areas of the cross-section.

Example 22.1
The fuselage of a light passenger carrying aircraft has the circular cross-section shown
in Fig. 22.1(a). The cross-sectional area of each stringer is 100 mm2 and the vertical
distances given in Fig. 22.1(a) are to the mid-line of the section wall at the corresponding
stringer position. If the fuselage is subjected to a bending moment of 200 kN m applied
in the vertical plane of symmetry, at this section, calculate the direct stress distribution.

The section is first idealized using the method described in Section 20.3. As an
approximation we shall assume that the skin between adjacent stringers is flat so that



Ch22-H6739.tex 25/1/2007 14: 8 Page 599

22.1 Bending 599

Fig. 22.1 (a) Actual fuselage section; (b) idealized fuselage section.

we may use either Eq. (20.1) or Eq. (20.2) to determine the boom areas. From sym-
metry B1 = B9, B2 = B8 = B10 = B16, B3 = B7 = B11 = B15, B4 = B6 = B12 = B14 and
B5 = B13. From Eq. (20.1)

B1 = 100 + 0.8 × 149.6

6

(
2 + σ2

σ1

)
+ 0.8 × 149.6

6

(
2 + σ16

σ1

)

i.e.

B1 = 100 + 0.8 × 149.6

6

(
2 + 352.0

381.0

)
× 2 = 216.6 mm2

Similarly B2 = 216.6 mm2, B3 = 216.6 mm2, B4 = 216.7 mm2. We note that stringers 5
and 13 lie on the neutral axis of the section and are therefore unstressed; the calculation
of boom areas B5 and B13 does not then arise. For this particular section Ixy = 0 since
Cx (and Cy) is an axis of symmetry. Further, My = 0 so that Eq. (16.18) reduces to

σz = Mxy

Ixx

in which

Ixx = 2 × 216.6 × 381.02 + 4 × 216.6 × 352.02 + 4 × 216.6 × 26952

+ 4 × 216.7 × 145.82 = 2.52 × 108 mm4

The solution is completed in Table 22.1.
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Table 22.1

Stringer/boom y (mm) σz (N/mm2)

1 381.0 302.4
2, 16 352.0 279.4
3, 15 269.5 213.9
4, 14 145.8 115.7
5, 13 0 0
6, 12 −145.8 −115.7
7, 11 −269.5 −213.9
8, 10 −352.0 −279.4
9 −381.0 −302.4

22.2 Shear

For a fuselage having a cross-section of the type shown in Fig. 22.1(a), the determination
of the shear flow distribution in the skin produced by shear is basically the analysis of
an idealized single cell closed section beam. The shear flow distribution is therefore
given by Eq. (20.11) in which the direct stress carrying capacity of the skin is assumed
to be zero, i.e. tD = 0, thus

qs = −
(

SxIxx − SyIxy

IxxIyy − I2
xy

)
n∑

r=1

Bryr −
(

SyIyy − SxIxy

IxxIyy − I2
xy

)
n∑

r=1

Brxr + qs,0 (22.1)

Equation (22.1) is applicable to loading cases in which the shear loads are not applied
through the section shear centre so that the effects of shear and torsion are included
simultaneously. Alternatively, if the position of the shear centre is known, the loading
system may be replaced by shear loads acting through the shear centre together with a
pure torque, and the corresponding shear flow distributions may be calculated separately
and then superimposed to obtain the final distribution.

Example 22.2
The fuselage of Example 22.1 is subjected to a vertical shear load of 100 kN applied
at a distance of 150 mm from the vertical axis of symmetry as shown, for the idealized
section, in Fig. 22.2. Calculate the distribution of shear flow in the section.

As in Example 22.1, Ixy = 0 and, since Sx = 0, Eq. (22.1) reduces to

qs = − Sy

Ixx

n∑

r=1

Bryr + qs,0 (i)

in which Ixx = 2.52 × 108 mm4 as before. Then

qs = −100 × 103

2.52 × 108

n∑

r=1

Bryr + qs,0

or

qs = −3.97 × 10−4
n∑

r=1

Bryr + qs,0 (ii)
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Fig. 22.2 Idealized fuselage section of Example 22.2.

Table 22.2

Skin panel Boom Br (mm2) yr (mm) qb (N/mm)

1 2 – – – 0
2 3 2 216.6 352.0 −30.3
3 4 3 216.6 269.5 −53.5
4 5 4 216.7 145.8 −66.0
5 6 5 – 0 −66.0
6 7 6 216.7 −145.8 −53.5
7 8 7 216.6 −269.5 −30.3
8 9 8 216.6 −352.0 0
1 16 1 216.6 381.0 −32.8

16 15 16 216.6 352.0 −63.1
15 14 15 216.6 269.5 −86.3
14 13 14 216.6 145.8 −98.8
13 12 13 – 0 −98.8
12 11 12 216.7 −145.8 −86.3
11 10 11 216.6 −269.5 −63.1
10 9 10 216.6 −352.0 −32.8

The first term on the right-hand side of Eq. (ii) is the ‘open section’ shear flow qb. We
therefore ‘cut’one of the skin panels, say 12, and calculate qb. The results are presented
in Table 22.2.

Note that in Table 22.2, the column headed Boom indicates the boom that is crossed
when the analysis moves from one panel to the next. Note also that, as would be
expected, the qb shear flow distribution is symmetrical about the Cx axis. The shear
flow qs,0 in the panel 12 is now found by taking moments about a convenient moment
centre, say C. Therefore from Eq. (17.17)

100 × 103 × 150 =
∮

qb pds + 2Aqs,0 (iii)
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in which A = π × 381.02 = 4.56 × 105 mm2. Since the qb shear flows are constant
between the booms, Eq. (iii) may be rewritten in the form (see Eq. (20.10))

100 × 103 × 150 = −2A12qb,12 − 2A23qb,23 − · · · − 2A161qb,16 l + 2Aqs,0 (iv)

in which A12, A23, . . . , A161 are the areas subtended by the skin panels 12, 23, … , 16 l
at the centre C of the circular cross-section and anticlockwise moments are taken
as positive. Clearly A12 = A23 = · · · = A16 l = 4.56 × 105/16 = 28 500 mm2. Equation
(iv) then becomes

100 × 103 × 150 = 2 × 28 500(−qb12 − qb23 − · · · − qb16 l ) + 2 × 4.56 × 105qs,0 (v)

Substituting the values of qb from Table 22.2 in Eq. (v), we obtain

100 × 103 × 150 = 2 × 28 500(−262.4) + 2 × 4.56 × 105qs,0

from which

qs,0 = 32.8 N/mm (acting in an anticlockwise sense)

The complete shear flow distribution follows by adding the value of qs,0 to the qb shear
flow distribution, giving the final distribution shown in Fig. 22.3. The solution may be
checked by calculating the resultant of the shear flow distribution parallel to the Cy
axis. Thus

2[(98.8 + 66.0)145.8 + (86.3 + 53.5)123.7 + (63.1 + 30.3)82.5

+ (32.8 − 0)29.0] × 10−3 = 99.96 kN

Fig. 22.3 Shear flow (N/mm) distribution in fuselage section of Example 22.2.



Ch22-H6739.tex 25/1/2007 14: 8 Page 603

22.3 Torsion 603

which agrees with the applied shear load of 100 kN. The analysis of a fuselage which
is tapered along its length is carried out using the method described in Section 21.2 and
illustrated in Example 21.2.

22.3 Torsion

A fuselage section is basically a single cell closed section beam. The shear flow
distribution produced by a pure torque is therefore given by Eq. (18.1) and is

q = T

2A
(22.2)

It is immaterial whether or not the section has been idealized since, in both cases, the
booms are assumed not to carry shear stresses.

Equation (22.2) provides an alternative approach to that illustrated in Example 22.2
for the solution of shear loaded sections in which the position of the shear centre is
known. In Fig. 22.1 the shear centre coincides with the centre of symmetry so that
the loading system may be replaced by the shear load of 100 kN acting through the
shear centre together with a pure torque equal to 100 × 103 × 150 = 15 × 106 N mm
as shown in Fig. 22.4. The shear flow distribution due to the shear load may be found
using the method of Example 22.2 but with the left-hand side of the moment equation
(iii) equal to zero for moments about the centre of symmetry. Alternatively, use may
be made of the symmetry of the section and the fact that the shear flow is constant
between adjacent booms. Suppose that the shear flow in the panel 21 is q2 1. Then from
symmetry and using the results of Table 22.2

q9 8 = q9 10 = q16 1 = q2 1

q3 2 = q8 7 = q10 11 = q15 16 = 30.3 + q2 1

Fig. 22.4 Alternative solution of Example 22.2.
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q4 3 = q7 6 = q11 12 = q14 15 = 53.5 + q2 1

q5 4 = q6 5 = q12 13 = q13 14 = 66.0 + q2 1

The resultant of these shear flows is statically equivalent to the applied shear load so that

4(29.0q2 1 + 82.5q3 2 + 123.7q4 3 + 145.8q5 4) = 100 × 103

Substituting for q3 2, q4 3 and q5 4 from the above we obtain

4(381q2 1 + 18 740.5) = 100 × 103

whence

q2 1 = 16.4 N/mm

and

q3 2 = 46.7 N/mm, q4 3 = 69.9 N/mm, q5 4 = 83.4 N/mm etc.

The shear flow distribution due to the applied torque is, from Eq. (22.2)

q = 15 × 106

2 × 4.56 × 105
= 16.4 N/mm

acting in an anticlockwise sense completely around the section. This value of shear
flow is now superimposed on the shear flows produced by the shear load; this gives the
solution shown in Fig. 22.3, i.e.

q2 1 = 16.4 + 16.4 = 32.8 N/mm

q16 1 = 16.4 − 16.4 = 0 etc.

22.4 Cut-outs in fuselages

So far we have considered fuselages to be closed sections stiffened by transverse frames
and longitudinal stringers. In practice it is necessary to provide openings in these closed
stiffened shells for, for example, doors, cockpits, bomb bays, windows in passenger
cabins, etc. These openings or ‘cut-outs’ produce discontinuities in the otherwise con-
tinuous shell structure so that loads are redistributed in the vicinity of the cut-out thereby
affecting loads in the skin, stringers and frames. Frequently these regions must be heav-
ily reinforced resulting in unavoidable weight increases. In some cases, for example
door openings in passenger aircraft, it is not possible to provide rigid fuselage frames
on each side of the opening because the cabin space must not be restricted. In such
situations a rigid frame is placed around the opening to resist shear loads and to transmit
loads from one side of the opening to the other.

The effects of smaller cut-outs, such as those required for rows of windows in pas-
senger aircraft, may be found approximately as follows. Figure 22.5 shows a fuselage
panel provided with cut-outs for windows which are spaced a distance l apart. The
panel is subjected to an average shear flow qav which would be the value of the shear
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Fig. 22.5 Fuselage panel with windows.

flow in the panel without cut-outs. Considering a horizontal length of the panel through
the cut-outs we see that

q1l1 = qavl

or

q1 = l

l1
qav (22.3)

Now considering a vertical length of the panel through the cut-outs

q2d1 = qavd

or

q2 = d

d1
qav (22.4)

The shear flows q3 may be obtained by considering either vertical or horizontal sections
not containing the cut-out. Thus

q3ll + q2lw = qavl
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Substituting for q2 from Eq. (22.3) and noting that l = l1 + lw and d = d1 + dw, we
obtain

q3 =
(

1 − dw

dl

lw
ll

)
qav (22.5)

Problems

P.22.1 The doubly symmetrical fuselage section shown in Fig. P.22.1 has been
idealized into an arrangement of direct stress carrying booms and shear stress carrying
skin panels; the boom areas are all 150 mm2. Calculate the direct stresses in the booms
and the shear flows in the panels when the section is subjected to a shear load of 50 kN
and a bending moment of 100 kN m.

Ans. σz,1 = −σz,6 = 180 N/mm2, σz,2 = σz,10 = −σz,5 = −σz,7 = 144.9 N/mm2,
σz,3 = σz,9 = −σz,4 = −σz,8 = 60 N/mm2.

q2 1 = q6 5 = 1.9 N/mm, q3 2 = q5 4 = 12.8 N/mm, q4 3 = 17.3 N/mm,
q6 7 = q10 1 = 11.6 N/mm, q7 8 = q9 10 = 22.5 N/mm, q8 9 = 27.0 N/mm.

Fig. P.22.1

P.22.2 Determine the shear flow distribution in the fuselage section of P.22.1 by
replacing the applied load by a shear load through the shear centre together with a pure
torque.



Ch23-H6739.tex 23/1/2007 12: 38 Page 607

23
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We have seen in Chapters 12 and 20 that wing sections consist of thin skins stiffened
by combinations of stringers, spar webs, and caps and ribs. The resulting structure
frequently comprises one, two or more cells, and is highly redundant. However, as in
the case of fuselage sections, the large number of closely spaced stringers allows the
assumption of a constant shear flow in the skin between adjacent stringers so that a
wing section may be analysed as though it were completely idealized as long as the
direct stress carrying capacity of the skin is allowed for by additions to the existing
stringer/boom areas. We shall investigate the analysis of multicellular wing sections
subjected to bending, torsional and shear loads, although, initially, it will be instructive
to examine the special case of an idealized three-boom shell.

23.1 Three-boom shell

The wing section shown in Fig. 23.1 has been idealized into an arrangement of direct
stress carrying booms and shear–stress-only carrying skin panels. The part of the wing
section aft of the vertical spar 31 performs an aerodynamic role only and is therefore

Fig. 23.1 Three-boom wing section.
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unstressed. Lift and drag loads, Sy and Sx, induce shear flows in the skin panels which
are constant between adjacent booms since the section has been completely idealized.
Therefore, resolving horizontally and noting that the resultant of the internal shear flows
is equivalent to the applied load, we have

Sx = −q12l12 + q23l23 (23.1)

Now resolving vertically

Sy = q31(h12 + h23) − q12h12 − q23h23 (23.2)

Finally, taking moments about, say, boom 3

Sxη0 + Syξ0 = −2A12q12 − 2A23q23 (23.3)

(see Eqs (20.9) and (20.10)). In the above there are three unknown values of shear flow,
q12, q23, q31 and three equations of statical equilibrium. We conclude therefore that a
three-boom idealized shell is statically determinate.

We shall return to the simple case of a three-boom wing section when we examine the
distributions of direct load and shear flows in wing ribs. Meanwhile, we shall consider
the bending, torsion and shear of multicellular wing sections.

23.2 Bending

Bending moments at any section of a wing are usually produced by shear loads at other
sections of the wing. The direct stress system for such a wing section (Fig. 23.2) is
given by either Eqs (16.18) or (16.19) in which the coordinates (x, y) of any point in the
cross-section and the sectional properties are referred to axes Cxy in which the origin
C coincides with the centroid of the direct stress carrying area.

Fig. 23.2 Idealized section of a multicell wing.

Example 23.1
The wing section shown in Fig. 23.3 has been idealized such that the booms carry all
the direct stresses. If the wing section is subjected to a bending moment of 300 kN m
applied in a vertical plane, calculate the direct stresses in the booms.

Boom areas: B1 = B6 = 2580 mm2 B2 = B5 = 3880 mm2 B3 = B4 = 3230 mm2
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Fig. 23.3 Wing section of Example 23.1.

Table 23.1

Boom y (mm) σz (N/mm2)

1 165 61.2
2 230 85.3
3 200 74.2
4 −200 −74.2
5 −230 −85.3
6 −165 −61.2

We note that the distribution of the boom areas is symmetrical about the horizontal
x axis. Hence, in Eq. (16.18), Ixy = 0. Further, Mx = 300 kN m and My = 0 so that
Eq. (16.18) reduces to

σz = Mxy

Ixx
(i)

in which

Ixy = 2(2580 × 1652 + 3880 × 2302 + 3230 × 2002) = 809 × 106 mm4

Hence

σz = 300 × 106

809 × 106 y = 0.371y (ii)

The solution is now completed in Table 23.1 in which positive direct stresses are tensile
and negative direct stresses compressive.

23.3 Torsion

The chordwise pressure distribution on an aerodynamic surface may be represented
by shear loads (lift and drag loads) acting through the aerodynamic centre together
with a pitching moment M0 (see Section 12.1). This system of shear loads may be
transferred to the shear centre of the section in the form of shear loads Sx and Sy
together with a torque T . It is the pure torsion case that is considered here. In the
analysis we assume that no axial constraint effects are present and that the shape of
the wing section remains unchanged by the load application. In the absence of axial
constraint there is no development of direct stress in the wing section so that only shear
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Fig. 23.4 Multicell wing section subjected to torsion.

stresses are present. It follows that the presence of booms does not affect the analysis
in the pure torsion case.

The wing section shown in Fig. 23.4 comprises N cells and carries a torque T which
generates individual but unknown torques in each of the N cells. Each cell therefore
develops a constant shear flow qI, qII, . . . , qR, . . . , qN given by Eq. (18.1).

The total is therefore

T =
N∑

R=1

2ARqR (23.4)

Although Eq. (23.4) is sufficient for the solution of the special case of a single cell
section, which is therefore statically determinate, additional equations are required for
an N-cell section. These are obtained by considering the rate of twist in each cell and
the compatibility of displacement condition that all N cells possess the same rate of
twist dθ/dz; this arises directly from the assumption of an undistorted cross-section.

Consider the Rth cell of the wing section shown in Fig. 23.5. The rate of twist in the
cell is, from Eq. (17.22)

dθ

dz
= 1

2ARG

∮

R
q

ds

t
(23.5)

Fig. 23.5 Shear flow distribution in the Rth cell of an N-cell wing section.
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The shear flow in Eq. (23.5) is constant along each wall of the cell and has the values
shown in Fig. 23.5. Writing

∫
ds/t for each wall as δ, Eq. (23.5) becomes

dθ

dz
= 1

2ARG
[qRδ12 + (qR − qR−1)δ23 + qRδ34 + (qR − qR+1)δ41]

or, rearranging the terms in square brackets

dθ

dz
= 1

2ARG
[−qR−1δ23 + qR(δ12 + δ23 + δ34 + δ41) − qR+1δ41]

In general terms, this equation may be rewritten in the form

dθ

dz
= 1

2ARG
(−qR−1δR−1,R + qRδR − qR+1δR+1,R) (23.6)

in which δR−1,R is
∫

ds/t for the wall common to the Rth and (R − 1)th cells, δR is
∫

ds/t
for all the walls enclosing the Rth cell and δR+1,R is

∫
ds/t for the wall common to the

Rth and (R + 1)th cells.
The general form of Eq. (23.6) is applicable to multicell sections in which the cells

are connected consecutively, i.e. cell I is connected to cell II, cell II to cells I and III
and so on. In some cases, cell I may be connected to cells II and III, etc. (see problem
P.23.4) so that Eq. (23.6) cannot be used in its general form. For this type of section the
term

∮
q(ds/t) should be computed by considering

∫
q(ds/t) for each wall of a particular

cell in turn.
There are N equations of the type (23.6) which, with Eq. (23.4), comprise the N + 1

equations required to solve for the N unknown values of shear flow and the one unknown
value of dθ/dz.

Frequently, in practice, the skin panels and spar webs are fabricated from materials
possessing different properties such that the shear modulus G is not constant. The
analysis of such sections is simplified if the actual thickness t of a wall is converted to
a modulus-weighted thickness t∗ as follows. For the Rth cell of an N-cell wing section
in which G varies from wall to wall, Eq. (23.5) takes the form

dθ

dz
= 1

2AR

∮

R
q

ds

Gt

This equation may be rewritten as

dθ

dz
= 1

2ARGREF

∮

R
q

ds

(G/GREF)t
(23.7)

in which GREF is a convenient reference value of the shear modulus. Equation (23.7)
is now rewritten as

dθ

dz
= 1

2ARGREF

∮

R
q

ds

t∗
(23.8)

in which the modulus-weighted thickness t∗ is given by

t∗ = G

GREF
t (23.9)

Then, in Eq. (23.6), δ becomes
∫

ds/t∗.



Ch23-H6739.tex 23/1/2007 12: 38 Page 612

612 Wings

Example 23.2
Calculate the shear stress distribution in the walls of the three-cell wing section shown
in Fig. 23.6, when it is subjected to an anticlockwise torque of 11.3 kN m.

Wall Length (mm) Thickness (mm) G (N/mm2) Cell area (mm2)

12o 1650 1.22 24 200 AI = 258 000
12i 508 2.03 27 600 AII = 355 000
13, 24 775 1.22 24 200 AIII = 161 000
34 380 1.63 27 600
35, 46 508 0.92 20 700
56 254 0.92 20 700

Note: The superscript symbols o and i are used to distinguish between outer and inner walls connecting the same two booms.

Since the wing section is loaded by a pure torque the presence of the booms has no
effect on the analysis.

Choosing GREF = 27 600 N/mm2 then, from Eq. (23.9)

t∗12o = 24 200

27 600
× 1.22 = 1.07 mm

Similarly

t∗13 = t∗24 = 1.07 mm t∗35 = t∗46 = t∗56 = 0.69 mm

Hence

δ12o =
∫

12o

ds

t∗
= 1650

1.07
= 1542

Similarly

δ12i = 250 δ13 = δ24 = 725 δ34 = 233 δ35 = δ46 = 736 δ56 = 368

Substituting the appropriate values of δ in Eq. (23.6) for each cell in turn gives the
following:

• For cell I
dθ

dz
= 1

2 × 258 000GREF
[qI(1542 + 250) − 250qII] (i)

Fig. 23.6 Wing section of Example 23.2
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Fig. 23.7 Shear stress (N/mm2) distribution in wing section of Example 23.2.

• For cell II

dθ

dz
= 1

2 × 355 000GREF
[−250qI + qII(250 + 725 + 233 + 725) − 233qIII] (ii)

• For cell III

dθ

dz
= 1

2 × 161 000GREF
[−233qII + qIII(736 + 233 + 736 + 368)] (iii)

In addition, from Eq. (23.4)

11.3 × 106 = 2(258 000qI + 355 000qII + 161 000qIII) (iv)

Solving Eqs (i)–(iv) simultaneously gives

qI = 7.1 N/mm qII = 8.9 N/mm qIII = 4.2 N/mm

The shear stress in any wall is obtained by dividing the shear flow by the actual wall
thickness. Hence the shear stress distribution is as shown in Fig. 23.7.

23.4 Shear

Initially we shall consider the general case of an N-cell wing section comprising booms
and skin panels, the latter being capable of resisting both direct and shear stresses. The
wing section is subjected to shear loads Sx and Sy whose lines of action do not necessarily
pass through the shear centre S (see Fig. 23.8); the resulting shear flow distribution is
therefore due to the combined effects of shear and torsion.

The method for determining the shear flow distribution and the rate of twist is based
on a simple extension of the analysis of a single cell beam subjected to shear loads
(Sections 17.3 and 20.3). Such a beam is statically indeterminate, the single redundancy
being selected as the value of shear flow at an arbitrarily positioned ‘cut’. Thus, the
N-cell wing section of Fig. 23.8 may be made statically determinate by ‘cutting’ a skin
panel in each cell as shown. While the actual position of these ‘cuts’ is theoretically
immaterial there are advantages to be gained from a numerical point of view if the
‘cuts’ are made near the centre of the top or bottom skin panel in each cell. Generally,
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Fig. 23.8 N-cell wing section subjected to shear loads.

at these points, the redundant shear flows (qs,0) are small so that the final shear flows
differ only slightly from those of the determinate structure. The system of simultaneous
equations from which the final shear flows are found will then be ‘well conditioned’and
will produce reliable results. The solution of an ‘ill conditioned’ system of equations
would probably involve the subtraction of large numbers of a similar size which would
therefore need to be expressed to a large number of significant figures for reasonable
accuracy. Although this reasoning does not apply to a completely idealized wing section
since the calculated values of shear flow are constant between the booms, it is again
advantageous to ‘cut’ either the top or bottom skin panels for, in the special case of a
wing section having a horizontal axis of symmetry, a ‘cut’ in, say, the top skin panels
will result in the ‘open section’ shear flows (qb) being zero in the bottom skin panels.
This decreases the arithmetical labour and simplifies the derivation of the moment
equation, as will become obvious in Example 23.4.

The ‘open section’ shear flow qb in the wing section of Fig. 23.8 is given by
Eq. (20.6), i.e.

qb = −
(

SxIxx − SyIxy

IxxIyy − I2
xy

) (∫ s

0
tDx ds +

n∑

r=1

Brxr

)

−
(

SyIyy − SxIxy

IxxIyy − I2
xy

) (∫ s

0
tDy ds +

n∑

r=1

Bryr

)

We are left with an unknown value of shear flow at each of the ‘cuts’, i.e. qs,0,I,
qs,0,II, . . . , qs,0,N plus the unknown rate of twist dθ/dz which, from the assumption of
an undistorted cross-section, is the same for each cell. Therefore, as in the torsion case,
there are N + 1 unknowns requiring N + 1 equations for a solution.

Consider the Rth cell shown in Fig. 23.9. The complete distribution of shear flow
around the cell is given by the summation of the ‘open section’ shear flow qb and the
value of shear flow at the ‘cut’, qs,0,R. We may therefore regard qs,0,R as a constant shear
flow acting around the cell. The rate of twist is again given by Eq. (17.22); thus

dθ

dz
= 1

2ARG

∮

R
q

ds

t
= 1

2ARG

∮

R
(qb + qs,0,R)

ds

t



Ch23-H6739.tex 23/1/2007 12: 38 Page 615

23.4 Shear 615

Fig. 23.9 Redundant shear flow in the Rth cell of an N-cell wing section subjected to shear.

Fig. 23.10 Moment equilibrium of Rth cell.

By comparison with the pure torsion case we deduce that

dθ

dz
= 1

2ARG

(
−qs,0,R−1δR−1,R + qs,0,RδR − qs,0,R+1δR+1,R +

∮

R
qb

ds

t

)
(23.10)

in which qb has previously been determined. There are N equations of the type (23.10)
so that a further equation is required to solve for the N + 1 unknowns. This is obtained
by considering the moment equilibrium of the Rth cell in Fig. 23.10.

The moment Mq,R produced by the total shear flow about any convenient moment
centre O is given by

Mq,R =
∮

qRp0 ds (see Section 18.1)

Substituting for qR in terms of the ‘open section’ shear flow qb and the redundant shear
flow qs,0,R, we have

Mq,R =
∮

R
qbp0 ds + qs,0,R

∮

R
p0 ds

or

Mq,R =
∮

R
qbp0 ds + 2ARqs,0,R
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The sum of the moments from the individual cells is equivalent to the moment of the
externally applied loads about the same point. Thus, for the wing section of Fig. 23.8

Sxη0 − Syξ0 =
N∑

R=1

Mq,R =
N∑

R=1

∮

R
qbp0 ds +

N∑

R=1

2ARqs,0,R (23.11)

If the moment centre is chosen to coincide with the point of intersection of the lines of
action of Sx and Sy, Eq. (23.11) becomes

0 =
N∑

R=1

∮

R
qbp0 ds +

N∑

R=1

2ARqs,0,R (23.12)

Example 23.3
The wing section of Example 23.1 (Fig. 23.3) carries a vertically upward shear load
of 86.8 kN in the plane of the web 572. The section has been idealized such that the
booms resist all the direct stresses while the walls are effective only in shear. If the
shear modulus of all walls is 27 600 N/mm2 except for the wall 78 for which it is three
times this value, calculate the shear flow distribution in the section and the rate of twist.
Additional data are given below.

Wall Length (mm) Thickness (mm) Cell area (mm2)

12, 56 1023 1.22 AI = 265 000
23 1274 1.63 AII = 213 000
34 2200 2.03 AIII = 413 000

483 400 2.64
572 460 2.64

61 330 1.63
78 1270 1.22

Choosing GREF as 27 600 N/mm2 then, from Eq. (23.9)

t∗78 = 3 × 27 600

27 600
× 1.22 = 3.66 mm

Hence

δ78 = 1270

3.66
= 347

Also

δ12 = δ56 = 840 δ23 = 783 δ34 = 1083 δ38 = 57 δ84 = 95 δ87 = 347

δ27 = 68 δ75 = 106 δ16 = 202

We now ‘cut’ the top skin panels in each cell and calculate the ‘open section’ shear
flows using Eq. (20.6) which, since the wing section is idealized, singly symmetrical
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(as far as the direct stress carrying area is concerned) and is subjected to a vertical shear
load only, reduces to

qb = −Sy

Ixx

n∑

r=1

Bryr (i)

where, from Example 23.1, Ixx = 809 × 106 mm4. Thus, from Eq. (i)

qb = −86.8 × 103

809 × 106

n∑

r=1

Bryr = −1.07 × 10−4
n∑

r=1

Bryr (ii)

Since qb = 0 at each ‘cut’, then qb = 0 for the skin panels 12, 23 and 34. The remaining
qb shear flows are now calculated using Eq. (ii). Note that the order of the numerals in
the subscript of qb indicates the direction of movement from boom to boom.

qb,27 = −1.07 × 10−4 × 3880 × 230 = −95.5 N/mm

qb,16 = −1.07 × 10−4 × 2580 × 165 = −45.5 N/mm

qb,65 = −45.5 − 1.07 × 10−4 × 2580 × (−165) = 0

qb,57 = −1.07 × 10−4 × 3880 × (−230) = 95.5 N/mm

qb,38 = −1.07 × 10−4 × 3230 × 200 = −69.0 N/mm

qb,48 = −1.07 × 10−4 × 3230 × (−200) = 69.0 N/mm

Therefore, as qb,83 = qb,48 (or qb,72 = qb,57), qb,78 = 0. The distribution of the qb shear
flows is shown in Fig. 23.11. The values of δ and qb are now substituted in Eq. (23.10)
for each cell in turn.

• For cell I

dθ

dz
= 1

2 × 265 000GREF
[qs,0,I(1083+95+57)−57qs,0,II+69×95+69×57] (iii)

• For cell II

dθ

dz
= 1

2 × 213 000GREF
[−57qs,0,I + qs,0,II(783 + 57 + 347 + 68) − 68qs,0,III

+ 95.5 × 68 − 69 × 57] (iv)

Fig. 23.11 qb distribution (N/mm).
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• For cell III

dθ

dz
= 1

2 × 413 000GREF
[−68qs,0,II + qs,0,III(840 + 68 + 106 + 840 + 202)

+ 45.5 × 202 − 95.5 × 68 − 95.5 × 106] (v)

The solely numerical terms in Eqs (iii)–(v) represent
∮

R qb(ds/t) for each cell. Care
must be taken to ensure that the contribution of each qb value to this term is interpreted
correctly. The path of the integration follows the positive direction of qs,0 in each cell,
i.e. anticlockwise. Thus, the positive contribution of qb,83 to

∮
I qb(ds/t) becomes a

negative contribution to
∮

II qb(ds/t) and so on.
The fourth equation required for a solution is obtained from Eq. (23.12) by taking

moments about the intersection of the x axis and the web 572. Thus

0 = − 69.0 × 250 × 1270 − 69.0 × 150 × 1270 + 45.5 × 330 × 1020

+ 2 × 265 000qs,0,I + 2 × 213 000qs,0,II + 2 × 413 000qs,0,III (vi)

Simultaneous solution of Eqs (iii)–(vi) gives

qs,0,I = 5.5 N/mm qs,0,II = 10.2 N/mm qs,0,III = 16.5 N/mm

Superimposing these shear flows on the qb distribution of Fig. 23.11, we obtain the
final shear flow distribution. Thus

q34 = 5.5 N/mm q23 = q87 = 10.2 N/mm q12 = q56 = 16.5 N/mm

q61 = 62.0 N/mm q57 = 79.0 N/mm q72 = 89.2 N/mm

q48 = 74.5 N/mm q83 = 64.3 N/mm

Finally, from any of Eqs (iii)–(v)

dθ

dz
= 1.16 × 10−6 rad/mm

23.5 Shear centre

The position of the shear centre of a wing section is found in an identical manner
to that described in Section 17.3. Arbitrary shear loads Sx and Sy are applied in turn
through the shear centre S, the corresponding shear flow distributions determined and
moments taken about some convenient point. The shear flow distributions are obtained
as described previously in the shear of multicell wing sections except that the N equa-
tions of the type (23.10) are sufficient for a solution since the rate of twist dθ/dz is zero
for shear loads applied through the shear centre.
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23.6 Tapered wings

Wings are generally tapered in both spanwise and chordwise directions. The effects
on the analysis of taper in a single cell beam have been discussed in Section 21.2.
In a multicell wing section the effects are dealt with in an identical manner except
that the moment equation (21.16) becomes, for an N-cell wing section (see Figs 21.5
and 23.8)

Sxη0 − Syξ0 =
N∑

R=1

∮

R
qbp0 ds +

N∑

R=1

2ARqs,0,R −
m∑

r=1

Px,rηr +
m∑

r=1

Py,rξr (23.13)

Example 23.4
A two-cell beam has singly symmetrical cross-sections 1.2 m apart and tapers symmet-
rically in the y direction about a longitudinal axis (Fig. 23.12). The beam supports loads
which produce a shear force Sy = 10 kN and a bending moment Mx = 1.65 kN m at the
larger cross-section; the shear load is applied in the plane of the internal spar web. If
booms 1 and 6 lie in a plane which is parallel to the yz plane calculate the forces in
the booms and the shear flow distribution in the walls at the larger cross-section. The
booms are assumed to resist all the direct stresses while the walls are effective only in
shear. The shear modulus is constant throughout, the vertical webs are all 1.0 mm thick
while the remaining walls are all 0.8 mm thick:

Boom areas: B1 = B3 = B4 = B6 = 600 mm2 B2 = B5 = 900 mm2

Fig. 23.12 Tapered beam of Example 23.4.
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At the larger cross-section

Ixx = 4 × 600 × 902 + 2 × 900 × 902 = 34.02 × 106 mm4

The direct stress in a boom is given by Eq. (16.18) in which Ixy = 0 and My = 0, i.e.

σz,r = Mxyr

Ixx

whence

Pz,r = Mxyr

Ixx
Br

or

Pz,r = 1.65 × 106yrBr

34.02 × 106 = 0.08yrBr (i)

The value of Pz,r is calculated from Eq. (i) in column ② of Table 23.2; Px,r and Py,r
follow from Eqs (21.10) and (21.9), respectively in columns ⑤ and ⑥. The axial load
Pr is given by [②2 + ⑤2 + ⑥2]1/2 in column ⑦ and has the same sign as Pz,r (see
Eq. (21.12)). The moments of Px,r and Py,r , columns ⑩ and , are calculated for a
moment centre at the mid-point of the internal web taking anticlockwise moments as
positive.
From column ⑤

6∑

r=1

Px,r = 0

(as would be expected from symmetry).
From column ⑥

6∑

r=1

Py,r = 764.4 N

From column ⑩

6∑

r=1

Px,rηr = −117 846 N mm

Table 23.2

① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ ⑩

Pz,r
δxr

δz

δyr

δz
Px,r Py,r Pr ξr ηr Px,rηr Py,rξr

Boom (N) (N) (N) (N) (mm) (mm) (N mm) (N mm)

1 2619.0 0 0.0417 0 109.2 2621.3 400 90 0 43 680
2 3928.6 0.0833 0.0417 327.3 163.8 3945.6 0 90 −29 457 0
3 2619.0 0.1250 0.0417 327.4 109.2 2641.6 200 90 −29 466 21 840
4 −2619.0 0.1250 −0.0417 −327.4 109.2 −2641.6 200 90 −29 466 21 840
5 −3928.6 0.0833 −0.0417 −327.3 163.8 −3945.6 0 90 −29 457 0
6 −2619.0 0 −0.0417 0 109.2 −2621.3 400 90 0 −43 680
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From column

6∑

r=1

Py,rξr = −43 680 N mm

From Eq. (21.15)

Sx,w = 0 Sy,w = 10 × 103 − 764.4 = 9235.6 N

Also, since Cx is an axis of symmetry, Ixy = 0 and Eq. (20.6) for the ‘open section’
shear flow reduces to

qb = −Sy,w

Ixx

n∑

r=1

Bryr

or

qb = − 9235.6

34.02 × 106

n∑

r=1

Bryr = −2.715 × 10−4
n∑

r=1

Bryr (ii)

‘Cutting’ the top walls of each cell and using Eq. (ii), we obtain the qb distribution
shown in Fig. 23.13. Evaluating δ for each wall and substituting in Eq. (23.10) gives
for cell I

dθ

dz
= 1

2 × 36 000G
(760qs,0,I − 180qs,0,II − 1314) (iii)

for cell II

dθ

dz
= 1

2 × 72 000G
(−180qs,0,I + 1160qs,0,II + 1314) (iv)

Taking moments about the mid-point of web 25 we have, using Eq. (23.13)

0 = −14.7 × 180 × 400 + 14.7 × 180 × 200 + 2 × 36 000qs,0,I + 2 × 72 000qs,0,II

−117 846 − 43 680

or

0 = −690 726 + 72 000qs,0,I + 144 000qs,0,II (v)

Fig. 23.13 qb (N/mm) distribution in beam section of Example 23.4 (view along z axis towards C).
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Fig. 23.14 Shear flow (N/mm) distribution in tapered beam of Example 23.4.

Solving Eqs (iii)–(v) gives

qs,0,I = 4.6 N/mm qs,0,II = 2.5 N/mm

and the resulting shear flow distribution is shown in Fig. 23.14.

23.7 Deflections

Deflections of multicell wings may be calculated by the unit load method in an identical
manner to that described in Section 20.4 for open and single cell beams.

Example 23.5
Calculate the deflection at the free end of the two-cell beam shown in Fig. 23.15 allowing
for both bending and shear effects. The booms carry all the direct stresses while the
skin panels, of constant thickness throughout, are effective only in shear.

Take E = 69 000 N/mm2 and G = 25 900 N/mm2

Boom areas: B1 = B3 = B4 = B6 = 650 mm2 B2 = B5 = 1300 mm2

Fig. 23.15 Deflection of two-cell wing section.
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The beam cross-section is symmetrical about a horizontal axis and carries a vertical
load at its free end through the shear centre. The deflection � at the free end is then,
from Eqs (20.17) and (20.19)

� =
∫ 2000

0

Mx,0Mx,1

EIxx
dz +

∫ 2000

0

(∫

section

q0q1

Gt
ds

)
dz (i)

where

Mx,0 = −44.5 × 103(2000 − z) Mx,1 = −(2000 − z)

and

Ixx = 4 × 650 × 1252 + 2 × 1300 × 1252 = 81.3 × 106 mm4

also

Sy,0 = 44.5 × 103 N Sy,1 = 1

The q0 and q1 shear flow distributions are obtained as previously described (note
dθ/dz = 0 for a shear load through the shear centre) and are

q0,12 = 9.6 N/mm q0,23 = −5.8 N/mm q0,43 = 50.3 N/mm

q0,45 = −5.8 N/mm q0,56 = 9.6 N/mm q0,61 = 54.1 N/mm

q0,52 = 73.6 N/mm at all sections of the beam

The q1 shear flows in this case are given by q0/44.5 × 103. Thus
∫

section

q0q1

Gt
ds = 1

25 900 × 2 × 44.5 × 103 (9.62 × 250 × 2 + 5.82 × 500 × 2

+ 50.32 × 250 + 54.12 × 250 + 73.62 × 250)

= 1.22 × 10−3

Hence, from Eq. (i)

� =
∫ 2000

0

44.5 × 103(2000 − z)2

69 000 × 81.3 × 106 dz +
∫ 2000

0
1.22 × 10−3dz

giving

� = 23.5 mm

23.8 Cut-outs in wings

Wings, as well as fuselages, have openings in their surfaces to accommodate under-
carriages, engine nacelles and weapons installations, etc. In addition inspection panels
are required at specific positions so that, as for fuselages, the loads in adjacent portions
of the wing structure are modified.
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Fig. 23.16 Three-bay wing structure with cut-out of Example 23.6.

Initially we shall consider the case of a wing subjected to a pure torque in which one
bay of the wing has the skin on its undersurface removed. The method is best illustrated
by a numerical example.

Example 23.6
The structural portion of a wing consists of a three-bay rectangular section box which
may be assumed to be firmly attached at all points around its periphery to the aircraft
fuselage at its inboard end. The skin on the undersurface of the central bay has been
removed and the wing is subjected to a torque of 10 kN m at its tip (Fig. 23.16). Calculate
the shear flows in the skin panels and spar webs, the loads in the corner flanges and the
forces in the ribs on each side of the cut-out assuming that the spar flanges carry all the
direct loads while the skin panels and spar webs are effective only in shear.

If the wing structure were continuous and the effects of restrained warping at the
built-in end ignored, the shear flows in the skin panels would be given by Eq. (18.1), i.e.

q = T

2A
= 10 × 106

2 × 200 × 800
= 31.3 N/mm

and the flanges would be unloaded. However, the removal of the lower skin panel in
bay ② results in a torsionally weak channel section for the length of bay ② which
must in any case still transmit the applied torque to bay ① and subsequently to the
wing support points. Although open section beams are inherently weak in torsion (see
Section 18.2), the channel section in this case is attached at its inboard and outboard
ends to torsionally stiff closed boxes so that, in effect, it is built-in at both ends. We
shall examine the effect of axial constraint on open section beams subjected to torsion
in Chapter 27. An alternative approach is to assume that the torque is transmitted
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Fig. 23.17 Differential bending of front spar.

across bay ② by the differential bending of the front and rear spars. The bending
moment in each spar is resisted by the flange loads P as shown, for the front spar,
in Fig. 23.17(a). The shear loads in the front and rear spars form a couple at any station
in bay ② which is equivalent to the applied torque. Thus, from Fig. 23.17(b)

800S = 10 × 106 N mm

i.e.

S = 12 500 N

The shear flow q1 in Fig. 23.17(a) is given by

q1 = 12 500

200
= 62.5 N/mm

Midway between stations 1500 and 3000 a point of contraflexure occurs in the front
and rear spars so that at this point the bending moment is zero. Hence

200P = 12 500 × 750 N mm

so that

P = 46 875 N

Alternatively, P may be found by considering the equilibrium of either of the spar
flanges. Thus

2P = 1500q1 = 1500 × 62.5 N

whence

P = 46 875 N

The flange loads P are reacted by loads in the flanges of bays ① and ③. These
flange loads are transmitted to the adjacent spar webs and skin panels as shown
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Fig. 23.18 Loads on bay ③ of the wing of Example 23.6.

in Fig. 23.18 for bay ③ and modify the shear flow distribution given by Eq. (18.1).
For equilibrium of flange 1

1500q2 − 1500q3 = P = 46 875 N

or

q2 − q3 = 31.3 (i)

The resultant of the shear flows q2 and q3 must be equivalent to the applied torque.
Hence, for moments about the centre of symmetry at any section in bay ③ and using
Eq. (20.10)

200 × 800q2 + 200 × 800q3 = 10 × 106 N mm

or

q2 + q3 = 62.5 (ii)

Solving Eqs (i) and (ii) we obtain

q2 = 46.9 N/mm q3 = 15.6 N/mm

Comparison with the results of Eq. (18.1) shows that the shear flows are increased by a
factor of 1.5 in the upper and lower skin panels and decreased by a factor of 0.5 in the
spar webs.

The flange loads are in equilibrium with the resultants of the shear flows in the
adjacent skin panels and spar webs. Thus, for example, in the top flange of the front
spar

P(st.4500) = 0

P(st.3000) = 1500q2 − 1500q3 = 46 875 N (compression)

P(st.2250) = 1500q2 − 1500q3 − 750q1 = 0
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Fig. 23.19 Distribution of load in the top flange of the front spar of the wing of Example 23.6.

Fig. 23.20 Shear flows (N/mm) on wing rib at station 3000 in the wing of Example 23.6.

The loads along the remainder of the flange follow from antisymmetry giving the
distribution shown in Fig. 23.19. The load distribution in the bottom flange of the rear
spar will be identical to that shown in Fig. 23.19 while the distributions in the bottom
flange of the front spar and the top flange of the rear spar will be reversed. We note that
the flange loads are zero at the built-in end of the wing (station 0). Generally, however,
additional stresses are induced by the warping restraint at the built-in end; these are
investigated in Chapter 26. The loads on the wing ribs on either the inboard or outboard
end of the cut-out are found by considering the shear flows in the skin panels and spar
webs immediately inboard and outboard of the rib. Thus, for the rib at station 3000 we
obtain the shear flow distribution shown in Fig. 23.20.

In Example 23.6 we implicitly assumed in the analysis that the local effects of the
cut-out were completely dissipated within the length of the adjoining bays which were
equal in length to the cut-out bay. The validity of this assumption relies on St. Venant’s
principle (Section 2.4). It may generally be assumed therefore that the effects of a cut-
out are restricted to spanwise lengths of the wing equal to the length of the cut-out on
both inboard and outboard ends of the cut-out bay.

We shall now consider the more complex case of a wing having a cut-out and subjected
to shear loads which produce both bending and torsion. Again the method is illustrated
by a numerical example.

Example 23.7
A wing box has the skin panel on its undersurface removed between stations 2000 and
3000 and carries lift and drag loads which are constant between stations 1000 and 4000
as shown in Fig. 23.21(a). Determine the shear flows in the skin panels and spar webs
and also the loads in the wing ribs at the inboard and outboard ends of the cut-out bay.



Ch23-H6739.tex 23/1/2007 12: 38 Page 628

628 Wings

Fig. 23.21 Wing box of Example 23.7.

Assume that all bending moments are resisted by the spar flanges while the skin panels
and spar webs are effective only in shear.

The simplest approach is first to determine the shear flows in the skin panels and spar
webs as though the wing box were continuous and then to apply an equal and opposite
shear flow to that calculated around the edges of the cut-out. The shear flows in the
wing box without the cut-out will be the same in each bay and are calculated using the
method described in Section 20.3 and illustrated in Example 20.4. This gives the shear
flow distribution shown in Fig. 23.22.

We now consider bay ② and apply a shear flow of 75.9 N/mm in the wall 34 in the
opposite sense to that shown in Fig. 23.22. This reduces the shear flow in the wall 34
to zero and, in effect, restores the cut-out to bay ②. The shear flows in the remaining
walls of the cut-out bay will no longer be equivalent to the externally applied shear
loads so that corrections are required. Consider the cut-out bay (Fig. 23.23) with the
shear flow of 75.9 N/mm applied in the opposite sense to that shown in Fig. 23.22. The
correction shear flows q′

12, q′
32 and q′

14 may be found using statics. Thus, resolving
forces horizontally we have

800q′
12 = 800 × 75.9 N

whence

q′
12 = 75.9 N/mm

Fig. 23.22 Shear flow (N/mm) distribution at any station in the wing box of Example 23.7 without cut-out.
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Fig. 23.23 Correction shear flows in the cut-out bay of the wing box of Example 23.7.

Resolving forces vertically

200q′
32 = 50q′

12 − 50 × 75.9 − 300q′
14 = 0 (i)

and taking moments about O in Fig. 23.21(b) we obtain

2 × 52 000q′
12 − 2 × 40 000q′

32 + 2 × 52 000 × 75.9 − 2 × 60 000q′
14 = 0 (ii)

Solving Eqs (i) and (ii) gives

q′
32 = 117.6 N/mm q′

14 = 53.1 N/mm

The final shear flows in bay ② are found by superimposing q′
12, q′

32 and q′
14 on the

shear flows in Fig. 23.22, giving the distribution shown in Fig. 23.24. Alternatively,
these shear flows could have been found directly by considering the equilibrium of the
cut-out bay under the action of the applied shear loads.

The correction shear flows in bay ② (Fig. 23.23) will also modify the shear flow
distributions in bays ① and ③. The correction shear flows to be applied to those shown
in Fig. 23.22 for bay ③ (those in bay ① will be identical) may be found by determining
the flange loads corresponding to the correction shear flows in bay ②.

It can be seen from the magnitudes and directions of these correction shear flows
(Fig. 23.23) that at any section in bay ② the loads in the upper and lower flanges of the
front spar are equal in magnitude but opposite in direction; similarly for the rear spar.
Thus, the correction shear flows in bay ② produce an identical system of flange loads
to that shown in Fig. 23.17 for the cut-out bays in the wing structure of Example 23.6.

Fig. 23.24 Final shear flows (N/mm) in the cut-out bay of the wing box of Example 23.7.
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Fig. 23.25 Correction shear flows in bay ③ of the wing box of Example 23.7.

It follows that these correction shear flows produce differential bending of the front and
rear spars in bay ② and that the spar bending moments and hence the flange loads are
zero at the mid-bay points. Therefore, at station 3000 the flange loads are

P1 = (75.9 + 53.1) × 500 = 64 500 N (compression)

P4 = 64 500 N (tension)

P2 = (75.9 + 117.6) × 500 = 96 750 N (tension)

P3 = 96 750 N (tension)

These flange loads produce correction shear flows q′′
21, q′′

43, q′′
23 and q′′

41 in the skin
panels and spar webs of bay ③ as shown in Fig. 23.25. Thus for equilibrium of flange 1

1000q′′
41 + 1000q′′

21 = 64 500 N (iii)

and for equilibrium of flange 2

1000q′′
21 + 1000q′′

23 = 96 750 N (iv)

For equilibrium in the chordwise direction at any section in bay ③

800q′′
21 = 800q′′

43

or

q′′
21 = q′′

43 (v)

Finally, for vertical equilibrium at any section in bay ③

300q′′
41 + 50q′′

43 + 50q′′
21 − 200q′′

23 = 0 (vi)
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Fig. 23.26 Final shear flows in bay ③ (and bay ①) of the wing box of Example 23.7.

Fig. 23.27 Shear flows (N/mm) applied to the wing rib at station 3000 in the wing box of Example 23.7.

Simultaneous solution of Eqs (iii)–(vi) gives

q′′
21 = q′′

43 = 38.0 N/mm q′′
23 = 58.8 N/mm q′′

41 = 26.6 N/mm

Superimposing these correction shear flows on those shown in Fig. 23.22 gives the final
shear flow distribution in bay ③ as shown in Fig. 23.26. The rib loads at stations 2000
and 3000 are found as before by adding algebraically the shear flows in the skin panels
and spar webs on each side of the rib. Thus, at station 3000 we obtain the shear flows
acting around the periphery of the rib as shown in Fig. 23.27. The shear flows applied
to the rib at the inboard end of the cut-out bay will be equal in magnitude but opposite
in direction.

Note that in this example only the shear loads on the wing box between stations 1000
and 4000 are given. We cannot therefore determine the final values of the loads in the
spar flanges since we do not know the values of the bending moments at these positions
caused by loads acting on other parts of the wing.

Problems

P.23.1 The central cell of a wing has the idealized section shown in Fig. P.23.1.
If the lift and drag loads on the wing produce bending moments of −120 000 N m and
−30 000 N m, respectively at the section shown, calculate the direct stresses in the
booms. Neglect axial constraint effects and assume that the lift and drag vectors are in
vertical and horizontal planes.

Boom areas: B1 = B4 = B5 = B8 = 1000 mm2

B2 = B3 = B6 = B7 = 600 mm2
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Ans. σ1 = −190.7 N/mm2 σ2 = −181.7 N/mm2 σ3 = −172.8 N/mm2

σ4 = −163.8 N/mm2 σ5 = 140 N/mm2 σ6 = 164.8 N/mm2

σ7 = 189.6 N/mm2 σ8 = 214.4 N/mm2.

Fig. P.23.1

P.23.2 Figure P.23.2 shows the cross-section of a two-cell torque box. If the shear
stress in any wall must not exceed 140 N/mm2, find the maximum torque which can be
applied to the box.

If this torque were applied at one end and resisted at the other end of such a box of
span 2500 mm, find the twist in degrees of one end relative to the other and the torsional
rigidity of the box. The shear modulus G = 26 600 N/mm2 for all walls.

Data:

Shaded areas: A34 = 6450 mm2, A16 = 7750 mm2

Wall lengths: s34 = 250 mm, s16 = 300 mm

Wall thickness: t12 = 1.63 mm, t34 = 0.56 mm

t23 = t45 = t56 = 0.92 mm

t61 = 2.03 mm

t25 = 2.54 mm

Ans. T = 102 417 N m, θ = 1.46◦, GJ = 10 × 1012 N mm2/rad.

Fig. P.23.2
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P.23.3 Determine the torsional stiffness of the four-cell wing section shown in
Fig. P.23.3.

Data:

Wall 12 23 34
78 67 56 45o 45i 36 27 18

Peripheral length (mm) 762 812 812 1525 356 406 356 254
Thickness (mm) 0.915 0.915 0.915 0.711 1.220 1.625 1.220 0.915

Cell areas (mm2) AI = 161 500 AII = 291 000
AIII = 291 000 AIV = 226 000

Ans. 522.5 × 106G N mm2/rad.

Fig. P.23.3

P.23.4 Determine the shear flow distribution for a torque of 56 500 N m for the three
cell section shown in Fig. P.23.4. The section has a constant shear modulus throughout.

Wall Length (mm) Thickness (mm) Cell Area (mm2)

12U 1084 1.220 I 108 400
12L 2160 1.625 II 202 500
14, 23 127 0.915 III 528 000
34U 797 0.915
34L 797 0.915

Fig. P.23.4
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Ans. q12U = 25.4 N/mm q21L = 33.5 N/mm q14 = q32 = 8.1 N/mm
q43U = 13.4 N/mm q34L = 5.3 N/mm.

P.23.5 The idealized cross-section of a two-cell thin-walled wing box is shown
in Fig. P.23.5. If the wing box supports a load of 44 500 N acting along the web 25,
calculate the shear flow distribution. The shear modulus G is the same for all walls of
the wing box.

Wall Length (mm) Thickness (mm) Boom Area (mm2)

16 254 1.625 1, 6 1290
25 406 2.032 2, 5 1936
34 202 1.220 3, 4 645
12, 56 647 0.915
23, 45 775 0.559

Cell areas: AI = 232 000 mm2, AII = 258 000 mm2

Ans. q16 = 33.9 N/mm q65 = q21 = 1.1 N/mm
q45 = q23 = 7.2 N/mm q34 = 20.8 N/mm
q25 = 73.4 N/mm.

Fig. P.23.5

P.23.6 Figure P.23.6 shows a singly symmetric, two-cell wing section in which all
direct stresses are carried by the booms, shear stresses alone being carried by the walls.
All walls are flat with the exception of the nose portion 45. Find the position of the

Fig. P.23.6
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shear centre S and the shear flow distribution for a load of Sy = 66 750 N through S.
Tabulated below are lengths, thicknesses and shear moduli of the shear carrying walls.
Note that dotted line 45 is not a wall.

Wall Length (mm) Thickness (mm) G(N/mm2) Boom Area (mm2)

34, 56 380 0.915 20 700 1, 3, 6, 8 1290
12, 23, 67, 78 356 0.915 24 200 2, 4, 5, 7 645
36, 81 306 1.220 24 800
45 610 1.220 24 800

Nose area N1 = 51 500 mm2

Ans. xS = 160.1 mm q12 = q78 = 17.8 N/mm q32 = q76 = 18.5 N/mm
q63 = 88.2 N/mm q43 = q65 = 2.9 N/mm q54 = 39.2 N/mm
q81 = 90.4 N/mm.

P.23.7 A singly symmetric wing section consists of two closed cells and one open
cell (see Fig. P.23.7). The webs 25, 34 and the walls 12, 56 are straight, while all
other walls are curved. All walls of the section are assumed to be effective in carrying
shear stresses only, direct stresses being carried by booms 1–6. Calculate the distance
xS of the shear centre S aft of the web 34. The shear modulus G is the same for
all walls.

Wall Length (mm) Thickness (mm) Boom Area (mm2) Cell Area (mm2)

12, 56 510 0.559 1, 6 645 I 93 000
23, 45 765 0.915 2, 5 1290 II 258 000
34o 1015 0.559 3, 4 1935
34i 304 2.030
25 304 1.625

Ans. 241.4 mm.

Fig. P.23.7

P.23.8 A portion of a tapered, three-cell wing has singly symmetrical ideal-
ized cross-sections 1000 mm apart as shown in Fig. P.23.8. A bending moment
Mx = 1800 N m and a shear load Sy = 12 000 N in the plane of the web 52 are applied at
the larger cross-section. Calculate the forces in the booms and the shear flow distribution
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at this cross-section. The modulus G is constant throughout. Section dimensions at the
larger cross-section are given below.

Fig. P.23.8

Wall Length (mm) Thickness (mm) Boom Area (mm2) Cell Area (mm2)

12, 56 600 1.0 1, 6 600 I 100 000
23, 45 800 1.0 2, 5 800 II 260 000
34o 1200 0.6 3, 4 800 III 180 000
34i 320 2.0
25 320 2.0
16 210 1.5

Ans. P1 = −P6 = 1200 N P2 = −P5 = 2424 N P3 = −P4 = 2462 N
q12 = q56 = 3.74 N/mm q23 = q45 = 3.11 N/mm q34o = 0.06 N/mm
q43i = 12.16 N/mm q52 = 14.58 N/mm q61 = 11.22 N/mm.

P.23.9 A portion of a wing box is built-in at one end and carries a shear load of
2000 N through its shear centre and a torque of 1000 N m as shown in Fig. P.23.9. If

Fig. P.23.9
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the skin panel in the upper surface of the inboard bay is removed, calculate the shear
flows in the spar webs and remaining skin panels, the distribution of load in the spar
flanges and the loading on the central rib. Assume that the spar webs and skin panels
are effective in resisting shear stresses only.

Ans. Bay ①: q in spar webs = 7.5 N/mm
Bay ②: q in spar webs = 1.9 N/mm, in skin panels = 9.4 N/mm
Flange loads (2): at built-in end = 1875 N (compression)

at central rib = 5625 N (compression)
Rib loads: q (horizontal edges) = 9.4 N/mm

q (vertical edges) = 9.4 N/mm.
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Fuselage frames and
wing ribs

Aircraft are constructed primarily from thin metal skins which are capable of resisting
in-plane tension and shear loads but buckle under comparatively low values of in-plane
compressive loads. The skins are therefore stiffened by longitudinal stringers which
resist the in-plane compressive loads and, at the same time, resist small distributed loads
normal to the plane of the skin. The effective length in compression of the stringers is
reduced, in the case of fuselages, by transverse frames or bulkheads or, in the case of
wings, by ribs. In addition, the frames and ribs resist concentrated loads in transverse
planes and transmit them to the stringers and the plane of the skin. Thus, cantilever
wings may be bolted to fuselage frames at the spar caps while undercarriage loads are
transmitted to the wing through spar and rib attachment points.

24.1 Principles of stiffener/web construction

Generally, frames and ribs are themselves fabricated from thin sheets of metal and
therefore require stiffening members to distribute the concentrated loads to the thin
webs. If the load is applied in the plane of a web the stiffeners must be aligned with the
direction of the load. Alternatively, if this is not possible, the load should be applied
at the intersection of two stiffeners so that each stiffener resists the component of load
in its direction. The basic principles of stiffener/web construction are illustrated in
Example 24.1.

Example 24.1
A cantilever beam (Fig. 24.1) carries concentrated loads as shown. Calculate the dis-
tribution of stiffener loads and the shear flow distribution in the web panels assuming
that the latter are effective only in shear.

We note that stiffeners HKD and JK are required at the point of application of
the 4000 N load to resist its vertical and horizontal components. A further transverse
stiffener GJC is positioned at the unloaded end J of the stiffener JK since stress concen-
trations are produced if a stiffener ends in the centre of a web panel. We note also that
the web panels are only effective in shear so that the shear flow is constant throughout a
particular web panel; the assumed directions of the shear flows are shown in Fig. 24.1.
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Fig. 24.1 Cantilever beam of Example 24.1.

It is instructive at this stage to examine the physical role of the different structural
components in supporting the applied loads. Generally, stiffeners are assumed to with-
stand axial forces only so that the horizontal component of the load at K is equilibrated
locally by the axial load in the stiffener JK and not by the bending of stiffener HKD.
By the same argument the vertical component of the load at K is resisted by the axial
load in the stiffener HKD. These axial stiffener loads are equilibrated in turn by the
resultants of the shear flows q1 and q2 in the web panels CDKJ and JKHG. Thus we
see that the web panels resist the shear component of the externally applied load and at
the same time transmit the bending and axial load of the externally applied load to the
beam flanges; subsequently, the flange loads are reacted at the support points A and E.

Consider the free body diagrams of the stiffeners JK and HKD shown in Figs. 24.2(a)
and (b).

From the equilibrium of stiffener JK we have

(q1 − q2) × 250 = 4000 sin 60◦ = 3464.1 N (i)

Fig. 24.2 Free body diagrams of stiffeners JK and HKD in the beam of Example 24.1.



Ch24-H6739.tex 23/1/2007 12: 39 Page 640

640 Fuselage frames and wing ribs

Fig. 24.3 Equilibrium of stiffener CJG in the beam of Example 24.1.

and from the equilibrium of stiffener HKD

200q1 + 100q2 = 4000 cos 60◦ = 2000 N (ii)

Solving Eqs (i) and (ii) we obtain

q1 = 11.3 N/mm q2 = −2.6 N/mm

The vertical shear force in the panel BCGF is equilibrated by the vertical resultant of
the shear flow q3. Thus

300q3 = 4000 cos 60◦ = 2000 N

whence

q3 = 6.7 N/mm

Alternatively, q3 may be found by considering the equilibrium of the stiffener CJG.
From Fig. 24.3

300q3 = 200q1 + 100q2

or

300q3 = 200 × 11.3 − 100 × 2.6

from which

q3 = 6.7 N/mm

The shear flow q4 in the panel ABFE may be found using either of the above methods.
Thus, considering the vertical shear force in the panel

300q4 = 4000 cos 60◦ + 5000 = 7000 N

whence

q4 = 23.3 N/mm

Alternatively, from the equilibrium of stiffener BF

300q4 − 300q3 = 5000 N
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Fig. 24.4 Load distributions in flanges of the beam of Example 24.1.

whence

q4 = 23.3 N/mm

The flange and stiffener load distributions are calculated in the same way and are
obtained from the algebraic summation of the shear flows along their lengths. For
example, the axial load PA at A in the flange ABCD is given by

PA = 250q1 + 250q3 + 250q4

or

PA = 250 × 11.3 + 250 × 6.7 + 250 × 23.3 = 10 325 N (tension)

Similarly

PE = −250q2 − 250q3 − 250q4

i.e.

PE = 250 × 2.6 − 250 × 6.7 − 250 × 23.3 = −6850 N (compression)

The complete load distribution in each flange is shown in Fig. 24.4. The stiffener load
distributions are calculated in the same way and are shown in Fig. 24.5.

The distribution of flange load in the bays ABFE and BCGF could have been
obtained by considering the bending and axial loads on the beam at any section. For
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Fig. 24.5 Load distributions in stiffeners of the beam of Example 24.1.

example, at the section AE we can replace the actual loading system by a bending
moment

MAE = 5000 × 250 + 2000 × 750 − 3464.1 × 50 = 2 576 800 N mm

and an axial load acting midway between the flanges (irrespective of whether or not
the flange areas are symmetrical about this point) of

P = 3464.1 N

Thus

PA = 2 576 800

300
+ 3464.1

2
= 10 321 N (tension)

and

PE = −2 576 800

300
+ 3464.1

2
= −6857 N (compression)

This approach cannot be used in the bay CDHG except at the section CJG since the
axial load in the stiffener JK introduces an additional unknown.

The above analysis assumes that the web panels in beams of the type shown in
Fig. 24.1 resist pure shear along their boundaries. In Chapter 9 we saw that thin webs
may buckle under the action of such shear loads producing tension field stresses which,
in turn, induce additional loads in the stiffeners and flanges of beams. The tension field
stresses may be calculated separately by the methods described in Chapter 9 and then
superimposed on the stresses determined as described above.

So far we have been concerned with web/stiffener arrangements in which the loads
have been applied in the plane of the web so that two stiffeners are sufficient to resist the
components of a concentrated load. Frequently, loads have an out-of-plane component
in which case the structure should be arranged so that two webs meet at the point of
load application with stiffeners aligned with the three component directions (Fig. 24.6).
In some situations it is not practicable to have two webs meeting at the point of load
application so that a component normal to a web exists. If this component is small it
may be resisted in bending by an in-plane stiffener, otherwise an additional member
must be provided spanning between adjacent frames or ribs, as shown in Fig. 24.7. In
general, no normal loads should be applied to an unsupported web no matter how small
their magnitude.
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Fig. 24.6 Structural arrangement for an out of plane load.

Fig. 24.7 Support of load having a component normal to a web.

24.2 Fuselage frames

We have noted that fuselage frames transfer loads to the fuselage shell and provide
column support for the longitudinal stringers. The frames generally take the form of
open rings so that the interior of the fuselage is not obstructed. They are connected
continuously around their peripheries to the fuselage shell and are not necessarily
circular in form but will usually be symmetrical about a vertical axis.

A fuselage frame is in equilibrium under the action of any external loads and the
reaction shear flows from the fuselage shell. Suppose that a fuselage frame has a
vertical axis of symmetry and carries a vertical external load W , as shown in Fig.
24.8(a) and (b). The fuselage shell/stringer section has been idealized such that the
fuselage skin is effective only in shear. Suppose also that the shear force in the fuselage
immediately to the left of the frame is Sy,1 and that the shear force in the fuselage
immediately to the right of the frame is Sy,2; clearly, Sy,2 = Sy,1 − W . Sy,1 and Sy,2
generate shear flow distributions q1 and q2, respectively in the fuselage skin, each given
by Eq. (22.1) in which Sx,1 = Sx,2 = 0 and Ixy = 0 (Cy is an axis of symmetry). The shear
flow qf transmitted to the periphery of the frame is equal to the algebraic sum of q1 and
q2, i.e.

qf = q1 − q2
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Fig. 24.8 Loads on a fuselage frame.

Thus, substituting for q1 and q2 obtained from Eq. (22.1) and noting that Sy,2 =
Sy,1 − W , we have

qf = −W

Ixx

n∑

r=1

Bryr + qs,0

in which qs,0 is calculated using Eq. (17.17) where the shear load is W and

qb = −W

Ixx

n∑

r=1

Bryr

The method of determining the shear flow distribution applied to the periphery of a
fuselage frame is identical to the method of solution (or the alternative method) of
Example 22.2.

Having determined the shear flow distribution around the periphery of the frame,
the frame itself may be analysed for distributions of bending moment, shear force and
normal force, as described in Section 5.4.

24.3 Wing ribs

Wing ribs perform similar functions to those performed by fuselage frames. They
maintain the shape of the wing section, assist in transmitting external loads to the wing
skin and reduce the column length of the stringers. Their geometry, however, is usually
different in that they are frequently of unsymmetrical shape and possess webs which
are continuous except for lightness holes and openings for control runs.

Wing ribs are subjected to loading systems which are similar to those applied to
fuselage frames. External loads applied in the plane of the rib produce a change in shear
force in the wing across the rib; this induces reaction shear flows around its periphery.
These are calculated using the methods described in Chapter 17 and in Chapter 23.
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Fig. 24.9 Wing rib of Example 24.2.

To illustrate the method of rib analysis we shall use the example of a three-flange wing
section in which, as we noted in Section 23.1, the shear flow distribution is statically
determinate.

Example 24.2
Calculate the shear flows in the web panels and the axial loads in the flanges of the
wing rib shown in Fig. 24.9. Assume that the web of the rib is effective only in shear
while the resistance of the wing to bending moments is provided entirely by the three
flanges 1, 2 and 3.

Since the wing bending moments are resisted entirely by the flanges 1, 2 and 3, the
shear flows developed in the wing skin are constant between the flanges. Using the
method described in Section 23.1 for a three-flange wing section we have, resolving
forces horizontally

600q12 − 600q23 = 12 000 N (i)

Resolving vertically

300q31 − 300q23 = 15 000 N (ii)

Taking moments about flange 3

2(50 000 + 95 000)q23 + 2 × 95 000q12 = −15 000 × 300 N mm (iii)

Solution of Eqs (i)–(iii) gives

q12 = 13.0 N/mm q23 = −7.0 N/mm q31 = 43.0 N/mm

Consider now the nose portion of the rib shown in Fig. 24.10 and suppose that the shear
flow in the web immediately to the left of the stiffener 24 is q1. The total vertical shear
force Sy,1 at this section is given by

Sy,1 = 7.0 × 300 = 2100 N

The horizontal components of the rib flange loads resist the bending moment at this
section. Thus

Px,4 = Px,2 = 2 × 50 000 × 7.0

300
= 2333.3 N
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Fig. 24.10 Equilibrium of nose portion of the rib.

The corresponding vertical components are then

Py,2 = Py,4 = 2333.3 tan 15◦ = 625.2 N

Thus the shear force carried by the web is 2100 − 2 × 625.2 = 849.6 N. Hence

q1 = 849.6

300
= 2.8 N/mm

The axial loads in the rib flanges at this section are given by

P2 = P4 = (2333.32 + 625.22)1/2 = 2415.6 N

The rib flange loads and web panel shear flows, at a vertical section immediately to
the left of the intermediate web stiffener 56, are found by considering the free body
diagram shown in Fig. 24.11. At this section the rib flanges have zero slope so that the
flange loads P5 and P6 are obtained directly from the value of bending moment at this
section. Thus

P5 = P6 = 2[(50 000 + 46 000) × 7.0 − 49 000 × 13.0]/320 = 218.8 N

The shear force at this section is resisted solely by the web. Hence

320q2 = 7.0 × 300 + 7.0 × 10 − 13.0 × 10 = 2040 N

Fig. 24.11 Equilibrium of rib forward of intermediate stiffener 56.
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Fig. 24.12 Equilibrium of stiffener 56.

Fig. 24.13 Equilibrium of the rib forward of stiffener 31.

so that

q2 = 6.4 N/mm

The shear flow in the rib immediately to the right of stiffener 56 is found most simply
by considering the vertical equilibrium of stiffener 56 as shown in Fig. 24.12. Thus

320q3 = 6.4 × 320 + 15 000

which gives

q3 = 53.3 N/mm

Finally, we shall consider the rib flange loads and the web shear flow at a section
immediately forward of stiffener 31. From Fig. 24.13, in which we take moments
about the point 3

M3 = 2[(50 000+95 000)×7.0−95 000×13.0]+15 000×300 = 4.06×106 N mm

The horizontal components of the flange loads at this section are then

Px,1 = Px,3 = 4.06 × 106

300
= 13 533.3 N
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and the vertical components are

Py,1 = Py,3 = 3626.2 N

Hence

P1 = P3 =
√

13 533.32 + 3626.22 = 14 010.7 N

The total shear force at this section is 15 000 + 300 × 7.0 = 17 100 N. Therefore, the
shear force resisted by the web is 17 100 − 2 × 3626.2 = 9847.6 N so that the shear
flow q3 in the web at this section is

q3 = 9847.6

300
= 32.8 N/mm

Problems

P.24.1 The beam shown in Fig. P.24.1 is simply supported at each end and carries
a load of 6000 N. If all direct stresses are resisted by the flanges and stiffeners and the
web panels are effective only in shear, calculate the distribution of axial load in the
flange ABC and the stiffener BE and the shear flows in the panels.

Ans: q(ABEF) = 4 N/mm, q(BCDE) = 2 N/mm
PBE increases linearly from zero at B to 6000 N (tension) at E
PAB and PCB increase linearly from zero at A and C to 4000 N (compres-
sion) at B.

Fig. P.24.1

P.24.2 Calculate the shear flows in the web panels and direct load in the flanges and
stiffeners of the beam shown in Fig. P.24.2 if the web panels resist shear stresses only.

Ans. q1 = 21.6 N/mm q2 = −1.6 N/mm q3 = 10 N/mm

PC = 0 PB = 6480 N (tension) PA = 9480 N (tension)

PF = 0 PG = 480 N (tension) PH = 2520 N (compression)

PE in BEG = 2320 N (compression) PD in ED = 6928 N (tension)

PD in CD = 4320 N (tension) PD in DF = 320 N (tension).
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Fig. P.24.2

P.24.3 A three-flange wing section is stiffened by the wing rib shown in Fig. P.24.3.
If the rib flanges and stiffeners carry all the direct loads while the rib panels are effective
only in shear, calculate the shear flows in the panels and the direct loads in the rib flanges
and stiffeners.

Ans. q1 = 4.0 N/mm q2 = 26.0 N/mm q3 = 6.0 N/mm

P2 in 12 = −P3 in 43 = 1200 N (tension) P5 in 154 = 2000 N (tension)

P3 in 263 = 8000 N (compression) P5 in 56 = 12 000 N (tension)

P6 in 263 = 6000 N (compression).

Fig. P.24.3
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25

Laminated composite
structures

An increasingly large proportion of the structures of many modern aircraft are fabricated
from composite materials. These, as we saw in Chapter 12 consist of laminas in which
a stiff, high strength filament, for example carbon fibre, is embedded in a matrix such as
epoxy, polyester, etc. The use of composites can lead to considerable savings in weight
over conventional metallic structures. They also have the advantage that the direction
of the filaments in a multi-lamina structure may be aligned with the direction of the
major loads at a particular point resulting in a more efficient design.

There are two approaches to the analysis of composite materials. In the first, microme-
chanics, the constituent materials, i.e. the fibres and resin (the matrix) are considered
separately. The properties of the composite will then change from point to point in a
particular direction depending on whether the fibre or the resin is being examined. In
the second approach, macromechanics, the composite material is regarded as a whole
so that the properties will not change from point to point in a particular direction. Gen-
erally, the design and analysis of composite materials are based on the macro- rather
than the micro- approach.

Initially, but briefly, we shall consider the micro- approach in which the elastic
constants of a lamina are determined in terms of the known properties of the constituent
materials; we shall then determine the corresponding stresses.

25.1 Elastic constants of a simple lamina

A simple lamina of a composite structure can be considered as orthotropic with two
principal material directions in its own plane: one parallel, the other perpendicular to the
direction of the filaments; we shall designate the former the longitudinal direction (1),
the latter the transverse direction (t).

In Fig. 25.1 a portion of a lamina containing a single filament is subjected to a stress,
σ1, in the longitudinal direction which produces an extension �l. If it is assumed that
plane sections remain plane during deformation then the strain ε1 corresponding to σ1
is given by

εl = �l

l
(25.1)
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Fig. 25.1 Determination of El.

and

σl = Elεl (25.2)

where El is the modulus of elasticity of the lamina in the direction of the filament. Also,
using the suffixes f and m to designate filament and matrix parameters, we have

σf = Efεl σm = Emεl (25.3)

Further, if A is the total area of cross-section of the lamina in Fig. 25.1, Af is the cross-
sectional area of the filament and Am the cross-sectional area of the matrix then, for
equilibrium in the direction of the filament

σlA = σfAf + σmAm

or, substituting for σl, σf and σm from Eqs (25.2) and (25.3)

ElεlA = EfεfAf + EmεlAm

so that

El = Ef
Af

A
+ Em

Am

A
(25.4)

Writing Af/A = vf and Am/A = vm, Eq. (25.4) becomes

El = vfEf + vmEm (25.5)

Equation (25.5) is generally referred to as the law of mixtures.
A similar approach may be used to determine the modulus of elasticity in the trans-

verse direction (Et). In Fig. 25.2 the total extension in the transverse direction is
produced by σt and is given by

εtlt = εmlm + εf lf

or
σt

Et
lt = σt

Em
lm + σt

Ef
lf
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Fig. 25.2 Determination of Et.

which gives

1

Et
= vm

Em
+ vf

Ef

Rearranging this we obtain

Et = EmEf

vmEf + vfEm
(25.6)

The major Poisson’s ratio νlt may be found by referring to the stress system of Fig. 25.1
and the dimensions given in Fig. 25.2. The total displacement in the transverse direction
produced by σl is given by

�t = νltεllt

i.e.

�t = νltεllt = νmεllm + νfεllf

from which

νlt = vmνm + vfνf (25.7)

The minor Poisson’s ratio νtl is found by referring to Fig. 25.2. The strain in the
longitudinal direction produced by the transverse stress σt is given by

νtl
σt

Et
= νm

σt

Et
= νf

σt

Ef
(25.8)

From the last two of Eqs (25.8)

νf = Ef

Em
νm

Substituting in Eq. (25.7)

νlt = νm

(
vm + Ef

Em
vf

)
= νm

Em
(vmEm + vfEf )
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Fig. 25.3 Determination of Glt.

or, from Eq. (25.5)

νlt = νm
El

Em

Now substituting for νm in the first two of Eqs (25.8)

νtl

Et
= νlt

Et

or

νtl = Et

El
νlt = Et

El
(vmνm + vfνf ) (25.9)

Finally, the shear modulus Glt(=Gtl) is determined by assuming that the con-
stituent materials are subjected to the same shear stress τlt as shown in Fig. 25.3.
The displacement �s produced by shear is

�s = τlt

Glt
lt = τlt

Gm
lm + τlt

Gf
lf

in which Gm and Gf are the shear moduli of the matrix and filament, respectively. Then

lt
Glt

= lm
Gm

+ lf
Gf

whence

Glt = GmGf

vmGf + vfGm
(25.10)

Example 25.1
A laminated bar whose cross-section is shown in Fig. 25.4 is 500 mm long and com-
prises an epoxy resin matrix reinforced by a carbon filament having moduli equal to
5000 N/mm2 and 200 000 N/mm2, respectively; the corresponding values of Poisson’s
ratio are 0.2 and 0.3. If the bar is subjected to an axial tensile load of 100 kN, determine
the lengthening of the bar and the reduction in its thickness. Calculate also the stresses
in the epoxy resin and the carbon filament.
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Fig. 25.4 Cross-section of the bar of Example 25.1.

From Eq. (25.5) the modulus of the bar is given by

El = 200 000 × 80 × 10

80 × 50
+ 5000 × 80 × 40

80 × 50

i.e.

El = 44 000 N/mm2

The direct stress, σl, in the longitudinal direction is given by

σl = 100 × 103

80 × 50
= 25.0 N/mm2

Therefore, from Eq. (25.2), the longitudinal strain in the bar is

εl = 25.0

44 000
= 5.68 × 10−4

The lengthening, �l, of the bar is then

�l = 5.68 × 10−4 × 500

i.e.

�l = 0.284 mm

The major Poisson’s ratio for the bar is found from Eq. (25.7), i.e.

νlt = 80 × 40

80 × 50
× 0.2 + 80 × 10

80 × 50
× 0.3 = 0.22

The strain in the bar across its thickness is then

εt = −0.22 × 5.68 × 10−4 = −1.25 × 10−4

The reduction in thickness, �t , of the bar is then

�t = 1.25 × 10−4 × 50
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i.e.

�t = 0.006 mm

The stresses in the epoxy and the carbon are found using Eq. (25.3). Thus

σm(epoxy) = 5000 × 5.68 × 10−4 = 2.84 N/mm2

σf (carbon) = 200 000 × 5.68 × 10−4 = 113.6 N/mm2

25.2 Stress–strain relationships for an orthotropic ply
(macro- approach)

A single sheet of composite material in which the sheet has been preimpregnated with
resin (a prepreg) and with the fibres aligned with one particular direction is called a
unidirectional ply or lamina (Fig. 25.5(a)). On the other hand a woven ply has the fibres
placed in two perpendicular directions (Fig. 25.5(b)); generally the fibre reinforcement
will be the same in both directions. In plies where this is not the case so that the material
properties are different in the two mutually perpendicular directions the ply is said to
be orthotropic (see Section 11.7). Two cases of orthotropic plies arise. In the first, the
directions of the applied loads coincide with directions of the plies; these are known as
specially orthotropic plies. In the second the applied loads are applied in any direction;
these are termed generally orthotropic plies.

(a) (b)

Fig. 25.5 Types of ply. (a) Unidirectional ply; (b) Woven ply.

25.2.1 Specially orthotropic ply

Figure 25.6 shows an element of a specially orthotropic ply. The ply reference axes
are the same as in Section 25.1, i.e. longitudinal (suffix l) and transverse (suffix t). Of
course these axes do not have the same significance for a woven ply as they do for
a unidirectional ply but reference axes must be specified and these are as convenient
as any. We also specify loading axes, x and y, which, for a specially orthotropic ply,
coincide with the ply reference axes.

Suppose that the ply is subjected to direct stressesσx andσy, shear and complementary
shear stresses τxy and that the elastic constants for the ply are El, Et , Glt (=Gtl), νlt and
νtl (see Eqs (25.5)–(25.10)). Note that, unlike an isotropic material, the shear modulus
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σy

τxy

τxy

τxy

τxy

σx

σx

σy

yt

i
x

Fig. 25.6 Reference axes for a specially orthotropic ply.

Glt is not related to the other elastic constants. From Section 1.15 (see Eqs (1.52)) the
strains in the longitudinal and transverse directions are given by

εl = σx

El
− νtlσy

Et

εt = σy

Et
− νltσx

El

⎫
⎪⎪⎬

⎪⎪⎭
(25.11)

Eqs (25.11) may be written in matrix form, i.e.

{
El
Et

}
=

⎡

⎢⎢
⎣

1

El
−νtl

Et

−νlt

El

1

Et

⎤

⎥⎥
⎦

{
σx
σy

}
(25.12)

or, in general terms

[ε] = [K][σ] (25.13)

It may be shown, using an energy approach, that the stiffness matrix [K] must be
symmetric about the leading diagonal. Therefore

−νtl

Et
= −νlt

El

giving

νtl

Et
= νlt

El
(25.14)

so that, of the four elastic constants El, Et , νlt and νtl only three are independent.
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Eqs (25.11) may be transposed (as in Section 1.15) to give stress–strain relationships.
Then

σx = El

1 − νltνtl
εl + νtlEl

1 − νltνtl
εt

σy = Et

1 − νltνtl
εt + νltEt

1 − νltνtl
εl

⎫
⎪⎪⎬

⎪⎪⎭
(25.15)

From the last of Eqs (1.52)

γlt = τxy

Glt

τxy = γltGlt (25.16)

Eqs (25.15) and (25.16) may be written in matrix form, i.e.

⎧
⎨

⎩

σx
σy
τxy

⎫
⎬

⎭
=

⎡

⎢⎢⎢⎢
⎣

El

1 − νltνtl

νtlEl

1 − νltνtl
0

νltEt

1 − νltνtl

Et

1 − νltνtl
0

0 0 Glt

⎤

⎥⎥⎥⎥
⎦

⎧
⎨

⎩

εl
εt
γlt

⎫
⎬

⎭
(25.17)

Example 25.2
A single sheet of woven ply is subjected to longitudinal and transverse direct stresses
of 50 and 25 N/mm2, respectively together with a shear stress of 40 N/mm2. The elastic
constants for the ply are El = 120 000 N/mm2, Et = 80 000 N/mm2, Glt = 5000 N/mm2

and νlt = 0.3. Calculate the direct strains in the longitudinal and transverse directions
and the shear strain in the ply.

The value of the minor Poisson’s ratio, νtl, is not given and must be calculated first.
From Eq. (25.14)

νtl = νlt
Et

El
= 0.3 × 80 000

120 000
= 0.2

Therefore, from Eqs (25.11)

εl = 50

120 000
− 0.2 × 25

80 000
= 3.54 × 10−4

εt = 25

80 000
− 0.3 × 50

120 000
= 1.88 × 10−4

and from Eq. (25.16)

γlt = 40

5000
= 80.0 × 10−4
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25.2.2 Generally orthotropic ply

In Fig. 25.7 the direction of the fibres in the ply does not coincide with the loading axes
x and y. We shall specify that the longitudinal fibres of the ply are inclined at an angle θ

to the x axis; θ is positive when the fibres are rotated in an anticlockwise sense from
the x axis.

Suppose that an element of the ply is subjected to stresses σx, σy and τxy as shown
in Fig. 25.8. The stresses on an element of the ply in the directions of the fibres may
be found in terms of the applied stresses using the method described in Section 1.6.
Therefore, by comparison with Eq. (1.8)

σl = σx cos2 θ + σy sin2 θ + 2τxy cos θ sin θ (25.18)

Similarly

σt = σx sin2 θ + σy cos2 θ − 2τxy cos θ sin θ (25.19)

and by comparison with Eq. (1.9) but noting that τlt is in the opposite sense to τ

τlt = −σx cos θ sin θ + σy cos θ sin θ + τxy( cos2 θ − sin2 θ) (25.20)

θ
y

x

x

y

Fig. 25.7 Generally orthotropic ply.

σy

σt

σt

σl

σl

σxσx

σy

τlt

τlt

τxy

τxy

τxy

τxy

θ

Fig. 25.8 Stresses in a generally orthotropic ply.
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If we write m = cos θ and n = sin θ, Eqs (25.18)–(25.20) become

σl = m2σx + n2σy + 2mnτxy (25.21)

σt = n2σx + m2σy − 2mnτxy (25.22)

τlt = −mnσx + mnσy + (m2 − n2)τxy (25.23)

Writing Eqs (25.21)–(25.23) in matrix form we have

⎧
⎨

⎩

σl
σt
τlt

⎫
⎬

⎭
=

⎡

⎣
m2 n2 2mn
n2 m2 −2mn

−mn mn m2 − n2

⎤

⎦

⎧
⎨

⎩

σx
σy
τxy

⎫
⎬

⎭
(25.24)

Similarly, from Eqs (1.31) and (1.34)

⎧
⎨

⎩

εl
εt
γlt

⎫
⎬

⎭
=

⎡

⎣
m2 n2 mn
n2 m2 −mn

−2mn 2mn m2 − n2

⎤

⎦

⎧
⎨

⎩

εx
εy
γxy

⎫
⎬

⎭
(25.25)

Eqs (25.24) may be transposed so that the applied stresses are expressed in terms of
the ply stresses. Then

⎧
⎨

⎩

σx
σy
τxy

⎫
⎬

⎭
=

⎡

⎣
m2 n2 −2mn
n2 m2 2mn
mn −mn m2 − n2

⎤

⎦

⎧
⎨

⎩

σl
σlt
τlt

⎫
⎬

⎭
(25.26)

In Eqs (25.17) for a specially orthotropic ply the ply stresses and loading stresses are
identical so that we may use this equation to relate the ply stresses in a generally
orthotropic ply to the ply strains. Then

⎧
⎨

⎩

σl
σt
τlt

⎫
⎬

⎭
=

⎡

⎢⎢⎢⎢
⎣

El

1 − νltνtl

νtlEl

1 − νltνtl
0

νltEt

1 − νltνtl

Et

1 − νltνtl
0

0 0 Glt

⎤

⎥⎥⎥⎥
⎦

⎧
⎨

⎩

εl
εt
γlt

⎫
⎬

⎭
(25.27)

Substituting for the ply stresses in Eqs (25.26) from Eqs (25.27) we express the applied
stresses in terms of the ply strains, i.e.

⎧
⎨

⎩

σx
σy
τxy

⎫
⎬

⎭
=

⎡

⎣
m2 n2 −2mn
n2 m2 2mn
mn −mn m2 − n2

⎤

⎦

⎡

⎢⎢⎢⎢
⎣

El

1 − νltνtl

νtlEl

1 − νltνtl
0

νltEt

1 − νltνtl

Et

1 − νltνtl
0

0 0 Glt

⎤

⎥⎥⎥⎥
⎦

⎧
⎨

⎩

εl
εt
γlt

⎫
⎬

⎭
(25.28)
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Finally, by substituting for the ply strains in Eqs (25.28) from Eqs (25.25) we obtain
the applied stresses in terms of the strains referred to the xy axes, i.e.

⎧
⎨

⎩

σx
σy
τxy

⎫
⎬

⎭
=

⎡

⎣
m2 n2 −2mn
n2 m2 2mn
mn −mn m2 − n2

⎤

⎦

⎡

⎢⎢⎢⎢
⎣

El

1 − νltνtl

νtlEl

1 − νltνtl
0

νltEt

1 − νltνtl

Et

1 − νltνtl
0

0 0 Glt

⎤

⎥⎥⎥⎥
⎦

×
⎡

⎣
m2 n2 mn
n2 m2 −mn
−2mn 2mn m2 − n2

⎤

⎦

⎧
⎨

⎩

εx
εy
γxy

⎫
⎬

⎭
(25.29)

Writing the individual terms of the central matrix as

k11 = El

1 − νltνtl
k12 = νtlEl

1 − νltνtl
= k21 (from Eq. (25.14))

k22 = Et

1 − νltνtl
k33 = Glt

Eqs (25.29) become

⎧
⎨

⎩

σx
σy
τxy

⎫
⎬

⎭
=

⎡

⎣
m2 n2 −2mn
n2 m2 2mn
mn −mn m2 − n2

⎤

⎦

⎡

⎣
k11 k12 0
k12 k22 0
0 0 k33

⎤

⎦

×
⎡

⎣
m2 n2 mn
n2 m2 −mn

−2mn 2mn m2 − n2

⎤

⎦

⎧
⎨

⎩

εx
εy
γxy

⎫
⎬

⎭
(25.30)

Carrying out the matrix multiplication in Eqs (25.30) we obtain

{
σx
σy
τxy

}

=

⎡

⎢⎢⎢⎢⎢⎢
⎣

m4k11 + m2n2(2k12 m2n2(k11 + k22 − 4k33) m3n(k11 − k12 − 2k33)
+ 4k33) + n4k22 + (m4 + n4)k12 + mn3(k12 − k22 + 2k33)

m2n2(k11 + k22 − 4k33) n4k11 + m2n2(2k12 mn3(k11 − k12 − 2k33)
+ (m4 + n4)k12 + 4k33) + m4k22 + m3n(k12 − k22 + 2k33)

m3n(k11 − k12 − 2k33) mn3(k11 − k12 − 2k33) m2n2(k11 − k22 − 2k12

+ mn3(k12 − k22 + 2k33) + m3n(k12 − k22 + 2k33) − 2k33) + (m4 + n4)k33

⎤

⎥⎥⎥⎥⎥⎥
⎦

{
εx
εy
γxy

}

(25.31)
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It can be seen that for a specially orthotropic ply where θ = 0, Eqs (25.31) reduce to

⎧
⎨

⎩

σx
σy
τxy

⎫
⎬

⎭
=

⎡

⎣
k11 k12 0
k12 k22 0
0 0 k33

⎤

⎦

⎧
⎨

⎩

εx
εy
γxy

⎫
⎬

⎭
(25.32)

which are identical to Eqs (25.17).
Having expressed the applied stresses in terms of the xy strains Eqs (25.31) may be

transposed to obtain the xy strains in terms of the applied stresses. This may be shown
to be

{
εx
εy
γxy

}

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

m4s11 + n4s22 m2n2s11 + m2n2s22 2m3ns11 − 2mn3s22

+2m2n2s12 + m2n2s33 +(m4 + n4)s12 +2(mn3 − m3n)s12

−m2n2s33 +(mn3 − m3n)s33

m2n2s11 + m2n2s22 n4s11 + m4s22 2mn3s11 − 2m3ns22

+(m4 + n4)s12 +2m2n2s12 + m2n2s33 +2(m3n − mn3)s12

−m2n2s33 +(m3n − mn3)s33

2m3ns11 − 2mn3s22 2mn3s11 − 2m3ns22 4m2n2s11 + 4m2n2s22

+2(mn3 − m3n)s12 +2(m3n − mn3)s12 −8m2n2s12

+(mn3 − m3n)s33 +(m3n − mn3)s33 +(m2 − n2)2s33

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

{
σx
σy
τxy

}

(25.33)

in which

s11 = 1/El, s12 = −νtl/Et , s22 = 1/Et , s33 = 1/Glt

For a specially orthotropic ply in which only direct stresses σx and σy are applied,
Eqs (25.33) reduce to

{
εx
εy

}
=

[
s11 s12
s12 s22

] {
σx
σy

}

i.e.

{
εx
εy

}
=

⎡

⎢
⎣

1

El
−νtl

Et

−νlt

El

1

Et

⎤

⎥
⎦

{
σx
σy

}

which are identical to Eqs (25.12).

Example 25.3
A generally orthotropic ply is subjected to direct stresses of 60 N/mm2 parallel to the
x reference axis and 40 N/mm2 perpendicular to the x reference axis. If the longitu-
dinal plies are inclined at an angle of 45◦ to the x axis and the elastic constants are
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El = 150 000 N/mm2, Et = 90 000 N/mm2, Glt = 5000 N/mm2 and νlt = 0.3, calculate
the direct strains parallel to the x and y directions and the shear strain referred to the
xy axes.

We note that there is no applied shear stress so that it is unnecessary to calculate the
terms in the third column of the matrix of Eqs (25.33). Then

s11 = 1

El
= 1

150 000
= 6.7 × 10−6

s22 = 1

Et
= 1

90 000
= 11.1 × 10−6

s12 = −νlt

El
= − 0.3

150 000
= −2.0 × 10−6

s33 = 1

Glt
= 1

5000
= 200 × 10−6

Also

cos θ = sin θ = cos 45◦ = 1/
√

2

so that

m2 = 0.5 = n2, m4 = n4 = 0.25, m2n2 = 0.25, etc.

Substituting these values in Eqs (25.33) we have
⎧
⎨

⎩

εx
εy
γxy

⎫
⎬

⎭
=

⎡

⎣
53.45 −46.55 −

−46.55 53.45 −
−2.2 −2.2 −

⎤

⎦

⎧
⎨

⎩

60
40
0

⎫
⎬

⎭

which gives

εx = 1345 × 10−6

εy = −655 × 10−6

γxy = −220 × 10−6

It should be noted that the above is an introduction into the analysis and design of
composite materials. Complete texts1,2 are devoted to the subject in which multi-ply
laminates, laminate failure, residual thermal stresses, etc. are considered.

25.3 Thin-walled composite beams

We noted in Chapter 11 that some structural components in many modern aircraft are
fabricated from composite materials. These components are generally in the form of
laminates which are stacks of plies bonded together. The orientation of each ply will be
different to that of its immediate neighbour so that the required strength and stiffness in a
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Fig. 25.9 Composite thin-walled section.

particular direction is obtained. The determination of the elastic properties of a laminate
is discussed in Refs [1] and [2] and is lengthy so that we shall assume that these are
known and concentrate on the effects of the composite construction on the analysis.

In Chapters 16–18 we determined stresses and displacements in open and closed
section thin-walled beams subjected to bending, shear and torsional loads; the effect
of axial load was considered in Chapter 1. We shall now re-examine these cases to
determine the effect of composite construction.

Figure 25.9 shows a thin-walled beam which may be of either open or closed section
and which is fabricated from laminates ①, ②, ③, . . . The dimensions of each laminate
are different as are their elastic properties.

The beam is subjected to axial, bending, shear and torsional loads which are positive
in the directions shown (see also Fig 16.9). The beam axes XYZ are now in upper case
letters to avoid confusion with the laminate axes xy.

25.3.1 Axial load

Suppose that the portion of the axial load P taken by the ith laminate is Pi. The longi-
tudinal strain εx,i in the laminate is equal to the longitudinal strain εz in the beam since
one of the basic assumptions of our analysis, except in the case of torsion, is that plane
sections remain plane after the load is applied. Then, from Eq. (1.40)

Pi

biti
= εx,i Ex,i
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Therefore

Pi = biti εx,i Ex,i

i.e.

Pi = εz biti Ex,i (25.34)

The total axial load on the beam is then given by

P = εz

n∑

i=1

biti Ex,i (25.35)

Note that in Eq. (25.35) εz is the longitudinal strain in the beam section and is there-
fore the same for every laminate, it may therefore be taken outside the summation.
Further, the value of Young’s modulus for a particular laminate is the same whether
referred to the laminate x axis or the beam Z axis; we shall therefore refer it to the beam
Z axis. Equation (25.35) may therefore be written

P = εz

n∑

i=1

biti Ez,i (25.36)

from which

εz = P
n∑

i=1
biti Ez,i

(25.37)

Example 25.4
A beam has the singly symmetrical composite section shown in Fig. 25.10. The flange
laminates are identical and have a Young’s modulus, Ez, of 60 000 N/mm2 while the

100 mm

150 mm

2.0 mm

1.0 mm

100 mm

Fig. 25.10 Beam section of Example 25.4.
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vertical web has a Young’s modulus, Ez, of 20 000 N/mm2. If the beam is subjected to
an axial load of 40 kN determine the axial load in each laminate.

For each flange

biti Ez,i = 100 × 2.0 × 60 000 = 12 × 106

and for the web

biti Ez,i = 150 × 1.0 × 20 000 = 3 × 106

Therefore
n∑

i=1

biti Ez,i = 2 × 12 × 106 + 3 × 106 = 27 × 106

Then, from Eq. (25.37)

εz = 40 × 103

27 × 106 = 1.48 × 10−3

Therefore, from Eq. (25.34)

P(flanges) = 1.48 × 10−3 × 12 × 106 = 17 760 N = 17.76 kN

P(web) = 1.48 × 10−3 × 3 × 106 = 4440 N = 4.44 kN

Note that 2 × 17.76 + 4.44 = 39.96 kN, the discrepancy, 0.04 kN, is due to rounding
off errors.

25.3.2 Bending

In Section 16.2 we derived an expression for the direct stress distribution in a beam of
unsymmetrical cross-section (Eqs (16.18) or (16.19)). In this derivation the direct stress
on an element of the beam cross-section was expressed in terms of Young’s modulus,
the radius of curvature of the beam, the coordinates of the element and the inclination
of the neutral axis to the section x axis (see Eq. (16.16)). The beam was assumed to be
comprised of homogenous material so that Young’s modulus was a constant. This, as
we have seen, is not necessarily the case for a composite beam where E can vary from
laminate to laminate. We therefore rewrite Eq. (16.17) in the form

Mx =
∫

A

Ez,i

ρ
(x sin α + y cos α)y dA, My =

∫

A

Ez,i

ρ
(x sin α + y cos α)x dA,

or

Mx = sin α

ρ

∫

A
Ez,i xy dA + cos α

ρ

∫

A
Ez,i y2 dA,

My = sin α

ρ

∫

A
Ez,i x2 dA + cos α

ρ

∫

A
Ez,i xy dA.
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We therefore define modified second moments of area which include the laminate value
of Young’s modulus, EZ ,i, and which are referred to the XYZ axes of Fig. 25.10. Then

I ′
XX =

∫

A
EZ ,i Y2 dA, I ′

YY =
∫

A
EZ ,i X2 dA, I ′

XY =
∫

A
EZ ,i XY dA (25.38)

so that

MX = sin α

ρ
I ′
XY + cos α

ρ
I ′
XX

MY = sin α

ρ
I ′
YY + cos α

ρ
I ′
XY

Solving, we obtain

sin α

ρ
= MY I ′

XX − MXI ′
XY

I ′
XXI ′

YY − I ′
XY

2

cos α

ρ
= MXI ′

YY − MY I ′
XY

I ′
XXI ′

YY − I ′
XY

2

Then, from Eq. (16.16)

σZ = EZ ,i

[(
MY I ′

XX − MXI ′
XY

I ′
XXI ′

YY − I ′
XY

2

)

x +
(

MXI ′
YY − MY I ′

XY

I ′
XXI ′

YY − I ′
XY

2

)

y

]

(25.39)

Note that the above applies equally to open or closed section thin-walled beams.

Example 25.5
A thin-walled beam has the composite cross-section shown in Fig. 25.11 and is sub-
jected to a bending moment of 1 kN m applied in a vertical plane. If the values of
Young’s modulus for the flange laminates are each 50 000 N/mm2 and that of the web
is 15 000 N/mm2 determine the maximum value of direct stress in the cross-section of
the beam.

From Section 16.4.5 and Eqs (25.38)

I ′
XX = 2 × 50 000 × 50 × 2.0 × 502 + 15 000 × 1.0 × 1003

12
= 2.63 × 1010 N mm2

I ′
YY = 50 000 × 2.0 × 1003

12
= 0.83 × 1010 N mm2

I ′
XY = 50 000 × 50 × 2.0(+50)(+50) + 50 000 × 50 × 2.0(−50)(−50)

= 2.50 × 1010 N mm2
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2 1

34

Fig. 25.11 Beam section of Example 25.5.

Also since MX = l kNm and MY = 0, Eq. (25.39) becomes

σZ = EZ ,i

[ −1 × 106 × 2.5 × 1010

1020(2.63 × 0.83 − 2.52)
X + 1 × 106 × 0.83 × 1010

1020(2.63 × 0.83 − 2.52)
Y

]

i.e.

σZ = EZ ,i(6.15 × 10−5X − 2.04 × 10−5Y ) (i)

On the top flange 12, EZ ,i = 50 000 N/mm2 and Y = 50 mm so that Eq. (i) becomes

σZ = 3.08X − 51.0

Then

σZ ,1 = 3.08 × 50 − 51.0 = 103.0 N/mm2

and

σZ ,2 = −51.0 N/mm2
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In the web 23, EZ ,i = 15 000 N/mm2 and X = 0. Equation (i) then becomes

σZ = −0.31Y

and

σZ ,2 = −15.5 N/mm2

The remaining distribution follows from antisymmetry so that the maximum direct
stress in the beam cross-section is ±103 N/mm2.

25.3.3 Shear

Open section beams
In Section 17.2, we derived an expression for the shear flow distribution in an open
section thin-walled beam subjected to shear loads (Eq. (17.14)). This is related to the
direct stress distribution in the section (Eq. (17.2)) so that the arguments applied to
composite section beams subjected to bending apply to the case of composite beams
subjected to shear. Equation (17.14) then becomes

qs = −EZ ,i

[(
SXI ′

XX − SY I ′
XY

I ′
XXI ′

YY − I ′
XY

2

) ∫ s

0
ti x ds +

(
SY I ′

YY − SXI ′
XX

I ′
XXI ′

YY − I ′
XY

2

) ∫ s

0
ti Y ds

]

(25.40)

Note that in Eq. (25.40) s is measured from an open edge in the beam section and the
second moments of area are those defined in Eq. (25.38).

Closed section beams
Again the same arguments apply to the composite case as before and Eq. (17.15)
becomes

qs = −EZ ,i

[(
SXI ′

XX − SY I ′
XY

I ′
XXI ′

YY − I ′
XY

2

) ∫ s

0
ti x ds +

(
SY I ′

YY − SXI ′
XX

I ′
XXI ′

YY − I ′
XY

2

) ∫ s

0
ti y ds

]

+ qs,0

(25.41)

In Eq. (25.41) the value of the shear flow, qs,0, at the origin for s is found using either
of Eqs (17.17) or (17.18).

Example 25.6
The composite triangular section thin-walled beam shown in Fig. 25.12 carries a vertical
shear load of 2 kN applied at the apex. If the walls 12 and 13 have a laminate Young’s
modulus of 45 000 N/mm2 while that of the vertical web 23 is 20 000 N/mm2 determine
the shear flow distribution in the section.
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2 kN

X

1.5 mm

2.0 mm

300 mm

250 m
m

2

1

s1s2

3

α

α

Fig. 25.12 Beam section of Example 25.6.

The X axis is an axis of symmetry so that I ′
XY = 0 and, since SX = 0, Eq. (25.41)

reduces to

qs = −EZ ,i
SY

I ′
XX

∫ s

0
t Y ds + qs,0 (i)

From Section 16.4.5 and Eq. (25.38)

I ′
XX = 2 × 45 000 × 2.0 × 2503(150/250)2

12
+ 20 000 × 1.5 × 3003

12

= 15.2 × 1010 N mm2

‘Cut’ the section at 1. Then, from the first term on the right-hand side of Eq. (i)

qb,12 = −45 000 × 2 × 103

15.2 × 1010

∫ s1

0
2.0(−s1 sin α)ds1

in which sin α = 150/250 = 0.6. Therefore

qb,12 = 3.6 × 10−4s2
1 (ii)

so that

qb,2 = 22.2 N/mm

Also

qb,23 = −20 000 × 2 × 103

15.2 × 1010

∫ s2

0
1.5(−150 + s2)ds2 + 22.2
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from which

qb,23 = 0.06s2 − 1.95 × 10−4s2
2 + 22.2 (iii)

Taking moments about the mid-point of the wall 23 (or about point 1) we have

2 × 103 × 250 cos α = −2
∫ 250

0
qb,12150 cos α ds2 + 2 × 300

2
× (250 cos α)qs,0

which gives

qs,0 = 14.2 N/mm (in an anticlockwise sense)

The shear flow distribution is then

q12 = 3.6 × 10−4s2
1 − 14.2

q23 = −1.95 × 10−4s2
2 + 0.06s2 + 8.0

25.3.4 Torsion

Closed section beams
We shall consider composite closed section beams first since, as we saw in Chapters
17 and 18, the strain–displacement relationships derived for open and closed section
beams subjected to shear loads apply to the torsion of closed section beams so that the
analysis follows logically on.

The shear flow distribution in a closed section thin-walled beam subjected to a torque
in which the warping is unrestrained is given by Eq. (18.1), i.e.

T = 2Aq

or

q = T

2A
(25.42)

The derivation of Eq. (25.42) is based purely on equilibrium considerations and does
not, therefore, rely on the elastic properties of the beam section. Equation (25.42)
therefore applies equally to composite as well as to isotropic beam sections.

The rate of twist of a closed section beam subjected to a torque is given by
Eq. (18.4), i.e.

dθ

dz
= T

4A2

∮
ds

Gt

This expression also applies to a composite closed section beam provided that the shear
modulus G remains within the integration and that the laminate shear modulus GXY ,i is
used as appropriate. Equation (18.4) then becomes

dθ

dZ
= T

4A2

∮
ds

GXY ,i ti
(25.43)
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Rearranging

T = 4A2

∮ ds
GXY ,i ti

dθ

dZ
(25.44)

We saw in Chapter 3, Eq. (3.12), that the torque and rate of twist in a beam are related
by the torsional stiffness GJ. Therefore, from Eq. (25.44), we see that the torsional
stiffness of a composite closed section beam is given by

GJ = 4A2

∮ ds
GXY ,i ti

(25.45)

The above arguments apply to the determination of the warping distribution in a closed
section composite beam. This is then given by (see the derivation of Eq. (18.5))

Ws − W0 = q
∫ s

0

ds

GXY ,i ti
− A0s

A
q

∮
ds

GXY ,i ti
(25.46)

or, from Eq. (25.42) in terms of the applied torque

Ws − W0 = T

2A

(∫ s

0

ds

GXY ,i ti
− A0s

A

∮
ds

GXY ,i ti

)
(25.47)

Example 25.7
The rectangular section, thin-walled, composite beam shown in Fig. 25.13 is subjected
to a torque of 10 kN m. If the laminate shear modulus of the covers is 20 000 N/mm2 and
that of the webs is 35 000 N/mm2 determine the shear flow distribution in the section
and the distribution of warping.

The shear flow distribution is obtained from Eq. (25.42) and is

q = 10 × 106

2 × 200 × 100
= 250 N/mm

2.0 mm
Y

X

12

3 4

100 mm

200 mm

1.0 mm

Fig. 25.13 Beam section of Example 25.7.
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The warping distribution is given by Eq. (25.47) in which

∮
ds

GXY ,i ti
= 2 × 200

20 000 × 2.0
+ 2 × 100

35 000 × 1.0
= 0.0157

Eq. (25.47) then becomes

Ws − W0 = 250

(∫ s

0

ds

GXY ,i ti
− A0s

200 × 100
× 0.0157

)

or

W2 − W0 = 250

(∫ s

0

ds

GXY ,i ti
− 0.785 × 10−6A0s

)
(i)

We saw in Example 18.2 that the warping distribution in a rectangular section thin-
walled beam is linear with zero values at the mid-points of the webs and covers. The
same situation applies in this example so that it is only necessary to calculate the value
of warping at, say, corner 1. Then, from Eq. (i)

W1 = 250

(
50

35 000 × 1.0
− 0.785 × 10−6 × 100 × 50

)

which gives

W1 = −0.62 mm

The remaining distribution follows from symmetry.

Open section beams
The torsional stiffness of an open section thin-walled beam is, as for a closed section
beam, GJ, but in which the torsion constant, J , is given by either of Eqs (18.11).
However, for a composite beam section the shear modulus must be taken inside the
summation or integral and will be the laminate shear modulus GXY ,i. Then

GJ =
n∑

i=1

GXY ,i
st3

i

3
or GJ = 1

3

∫

sect
GXY ,i t3

i ds (25.48)

The rate of twist of a beam is related to the applied torque by Eq. (3.12). For a composite
open section beam the relationship holds but the torsional stiffness is given by either
of Eqs (25.48), i.e.

T =
(

n∑

i=1

GXY ,i
st3

i

3

)
dθ

dZ
or T =

(
1

3

∫

sect
GXY ,i t3

i ds

)
dθ

dZ
(25.49)
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Having obtained the rate of twist Eq. (18.9) gives the shear stress distribution across
the thickness at any point round the beam section, i.e.

τ = 2GXY ,i n
dθ

dZ
(25.50)

Again the maximum shear stress will occur at the surface of the beam section where
n = ±t/2.

The primary warping distribution follows from Eq. (18.19) in which the rate of twist
is found from either of Eqs (25.49).

Example 25.8
A composite channel section has the dimensions shown in Fig. 18.12 and is subjected
to a torque of 10 Nm. If the flanges have a laminate shear modulus of 20 000 N/mm2

and that of the web is 15 000 N/mm2 determine the maximum shear stress in the beam
section and the distribution of warping assuming that the beam is constrained to twist
about an axis through the mid-point of the web.

The torsional stiffness of the section is obtained from the first of Eqs (25.48)
and is

GJ = 2 × 20 000 × 25 × 1.53

3
+ 15 000 × 50 × 2.53

3
= 5.03 × 106 N mm2

Then, from Eq. (25,49)

dθ

dZ
= 10 × 103

5.03 × 106 = 1.99 × 10−3

and from Eq. (25.50)

τmax(12) = 2 × 20 000 × (1.5/2) × 1.99 × 10−3 = 59.7 N/mm2

τmax(23) = 2 × 15 000 × (2.5/2) × 1.99 × 10−3 = 74.6 N/mm2

The maximum therefore occurs in the web and is 74.6 N/mm2.
The section is constrained to twist about an axis through the mid-point of the web

so that W is zero everywhere in the web. Then, from Eq. (18.19)

W1 = −2 × 1

2
× 25 × 25 × 1.99 × 10−3 = −1.24 mm

The warping is linear along the flange 12, the warping along the flange 34 follows from
symmetry.

Note that if the axis of twist had not been specified the position of the shear cen-
tre of the section would have had to have been found using the method previously
described.
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Problems

P.25.1 A bar, whose cross-section is shown in Fig. P.25.1, comprises a polyester
matrix and Kevlar filaments; the respective moduli are 3000 and 140 000 N/mm2 with
corresponding Poisson’s ratios of 0.16 and 0.28. If the bar is 1 m long and is subjected
to a compressive axial load of 500 kN, determine the shortening of the bar, the increase
in its thickness and the stresses in the polyester and Kevlar.

Ans. 3.26 mm, 0.032 mm, 9.78 N/mm2, 456.4 N/mm2.

Polyester 15 mm

100 mm

15 mm

15 mm

5 mm

5 mm

Kevlar

Kevlar

Polyester

Polyester

Fig. P.25.1

P.25.2 A box beam has the thin-walled composite cross-section shown in
Fig. P.25.2. The cover laminates are identical and have a Young’s modulus of
20 000 N/mm2 while that of the vertical webs is 60 000 N/mm2. If the beam is subjected
to an axial load of 40 kN determine the axial force in each laminate.

Ans. Covers, 4 kN; webs,16 kN.

2.0 mm

1.0 mm

100 mm

150 mm

Fig. P.25.2



Ch25-H6739.tex 23/1/2007 12: 40 Page 675

Problems 675

P.25.3 If the thin-walled box beam of Fig. P.25.2 carries a bending moment of
1 kN m applied in a vertical plane, determine the maximum direct stress in the cross-
section of the beam.

Ans. 85.8 N/mm2.

P.25.4 If the thin-walled composite beam of Example 25.5 is subjected to a bending
moment of 0.5 kN m applied in a horizontal plane calculate the maximum value of direct
stress in the beam section.

Ans. 76.8 N/mm2.

P.25.5 The thin-walled composite beam section of Example 25.5 carries a ver-
tical shear load of 2 kN applied in the plane of the web. Determine the shear flow
distribution.

Ans. q12 = 0.00575s2
1 − 0.385s1

q23 = 0.0287s2 − 2.865 × 10−4s2
2 − 4.875.

P.25.6 The closed, composite section, thin-walled beam shown in Fig. P.25.6
is subjected to a vertical shear load of 20 kN applied through its centre of sym-
metry. If the laminate elastic properties are: for the covers, EZ ,i = 54 100 N/mm2;
for the webs EZ ,i = 17 700 N/mm2,determine the distribution of shear flow round the
cross-section.

Ans. q01 = −1.98s1, q12 = 6.5 × 10−3s2
2 − 0.325s2−198.

50 mm

s1

s2

1 0

X

Y

C

20 kN

2 3

4

200 mm

1.0 mm

0.5 mm

Fig. P.25.6

P.25.7 The beam section shown in Fig. P.25.6 is subjected to an anticlockwise
torque of 1 kN m. If the laminate shear modulus of the covers is 20 700 N/mm2 and
that of the webs is 36 400 N/mm2 determine the maximum shear stress in the section,
its rate of twist and the distribution of warping.

Ans. 100 N/mm2, 6.25 × 10−5 rad/mm, −0.086 mm (at 4, zero at 0).



Ch25-H6739.tex 23/1/2007 12: 40 Page 676

676 Laminated composite structures

P.25.8 The thin-walled, composite beam section shown in Fig. P.25.8 has laminate
shear moduli of 16 300 N/mm2 for the flanges and 20 900 N/mm2 for the web. If the
beam is subjected to a torque of 0.5 kN mm determine the rate of twist in the section,
the maximum shear stress and the value of warping at the point 1.

Ans. 0.8 × 10−3 rad/mm, ±13 N/mm2 (in flanges), 2.0 mm.

1 2

1.0 mm
0.5 mm

50 mm

100 mm

3 4

Fig. P.25.8
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26

Closed section beams

The analysis presented in Chapters 16–20 relies on elementary theory for the deter-
mination of stresses and displacements produced by axial loads, shear forces and
bending moments and torsion. No allowance is made for the effects of restrained warp-
ing produced by structural or loading discontinuities in the torsion of open or closed
section beams, or for the effects of shear strains on the calculation of direct and shear
stresses in beams subjected to bending and shear.

In this chapter we shall examine some relatively simple examples of the above effects;
more complex cases require analysis by computer-based techniques such as the finite
element method.

26.1 General aspects

Structural constraint stresses in either closed or open beams result from a restriction
on the freedom of any section of the beam to assume its normal displaced shape under
load. Such a restriction arises when one end of the beam is built-in although the same
effect may be produced practically, in a variety of ways. For example, the root section
of a beam subjected to torsion is completely restrained from warping into the displaced
shape indicated by Eq. (18.5) and a longitudinal stress system is induced which, in a
special case discussed later, is proportional to the free warping of the beam.

A slightly different situation arises when the beam supports shear loads. The stress
system predicted by elementary bending theory relies on the basic assumption of plane
sections remaining plane after bending. However, for a box beam comprising thin
skins and booms, the shear strains in the skins are of sufficient magnitude to cause
a measurable redistribution of direct load in the booms and hence previously plane
sections warp. We shall discuss the phenomenon of load redistribution resulting from
shear, known as shear lag, in detail later in the chapter. The prevention of this warping
by some form of axial constraint modifies the stress system still further.

The most comprehensive analysis yet published of multi-cell and single cell beams
under arbitrary loading and support conditions is that by Argyris and Dunne.1 Their
work concentrates in the main on beams of idealized cross-section and while the theory
they present is in advance of that required here, it is beneficial to examine some of
the results of their analysis. We shall limit the present discussion to closed beams of
idealized cross-section.
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The problem of axial constraint may be conveniently divided into two parts. In the
first, the shear stress distribution due to an arbitrary loading is calculated exclusively
at the built-in end of the beam. In the second, the stress (and/or load) distributions are
calculated along the length of the beam for the separate loading cases of torsion and
shear. Obviously the shear stress systems predicted by each portion of theory must be
compatible at the built-in end.

Argyris and Dunne showed that the calculation of the shear stress distribution at a
built-in end is a relatively simple problem, the solution being obtained for any loading
and beam cross-section by statics. More complex is the determination of the stress
distributions at sections along the beam. These stresses, for the torsion case, are shown
to be the sum of the stresses predicted by elementary theory and stresses caused by
systems of self-equilibrating end loads. For a beam supporting shear loads the total
stresses are again the sum of those corresponding to elementary bending theory and
stresses due to systems of self-equilibrating end loads.

For an n-boom, idealized beam, Argyris and Dunne found that there are n − 3 self-
equilibrating end load, or eigenload, systems required to nullify n − 3 possible modes
of warping displacement. These eigenloads are analogous to, say, the buckling loads
corresponding to the different buckled shapes of an elastic strut. The fact that, generally,
there are a number of warping displacements possible in an idealized beam invalidates
the use of the shear centre or flexural axis as a means of separating torsion and shear
loads. For, associated with each warping displacement is an axis of twist that is different
for each warping mode. In practice, a good approximation is obtained if the torsion
loads are referred to the axis of twist corresponding to the lowest eigenload. Transverse
loads through this axis, the zero warping axis produce no warping due to twist, although
axial constraint stresses due to shear will still be present.

In the special case of a doubly symmetrical section the problem of separating the
torsion and bending loads does not arise since it is obvious that the torsion loads
may be referred to the axis of symmetry. Double symmetry has the further effect
of dividing the eigenloads into four separate groups corresponding to (n/4) − 1 pure
flexural modes in each of the xz and yz planes, (n/4) pure twisting modes about the
centre of symmetry and (n/4) − 1 pure warping modes which involve neither flexure
nor twisting. A doubly symmetrical six boom beam supporting a single shear load has
therefore just one eigenload system if the centre boom in the top and bottom panels
is regarded as being divided equally on either side of the axis of symmetry thereby
converting it, in effect, into an eight boom beam.

It will be obvious from the above that, generally, the self-equilibrating stress systems
cannot be proportional to the free warping of the beam unless the free warping can be
nullified by just one eigenload system. This is true only for the four boom beam which,
from the above, has one possible warping displacement. If, in addition, the beam is
doubly symmetrical then its axis of twist will pass through the centre of symmetry. We
note that only in cases of doubly symmetrical beams do the zero warping and flexural
axes coincide.

A further special case arises when the beam possesses the properties of a Neuber
beam (Section 18.1.2) which does not warp under torsion. The stresses in this case are
the elementary torsion theory stresses since no constraint effects are present. When
bending loads predominate, however, it is generally impossible to design an efficient
structure which does not warp.
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In this chapter the calculation of spanwise stress distributions in closed section
beams is limited to simple cases of beams having doubly symmetrical cross-sections.
It should be noted that simplifications of this type can be misleading in that some of
the essential characteristics of beam analysis, for example the existence of the n − 3
self-equilibrating end load systems, vanish.

26.2 Shear stress distribution at a built-in end of a
closed section beam

This special case of structural constraint is of interest due to the fact that the shear
stress distribution at the built-in end of a closed section beam is statically determinate.
Figure 26.1 represents the cross-section of a thin-walled closed section beam at its
built-in end. It is immaterial for this analysis whether or not the section is idealized
since the expression for shear flow in Eq. (17.19), on which the solution is based, is
applicable to either case. The beam supports shear loads Sx and Sy which generally
will produce torsion in addition to shear. We again assume that the cross-section of the
beam remains undistorted by the applied loads so that the displacement of the beam
cross-section is completely defined by the displacements u, v, w and the rotation θ

referred to an arbitrary system of axes Oxy. The shear flow q at any section of the beam
is then given by Eq. (17.20), that is

q = Gt

(
p

dθ

dz
+ du

dz
cos ψ + dv

dz
sin ψ + ∂w

∂s

)

At the built-in end, ∂w/∂s is zero and hence

q = Gt

(
p

dθ

dz
+ du

dz
cos ψ + dv

dz
sin ψ

)
(26.1)

Fig. 26.1 Cross-section of a thin-walled beam at the built-in end.
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in which dθ/dz, du/dz and dv/dz are the unknowns, the remaining terms being functions
of the section geometry.

The resultants of the internal shear flows q must be statically equivalent to the applied
loading, so that

∮
q cos ψ ds = Sx

∮
q sin ψ ds = Sy

∮
qp ds = Syξ0 − Sxη0

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(26.2)

Substitution for q from Eq. (26.1) in Eqs (26.2) yields

dθ

dz

∮
tp cos ψ ds + du

dz

∮
t cos2 ψ ds + dv

dz

∮
t cos ψ sin ψ ds = Sx

G
dθ

dz

∮
tp sin ψ ds + du

dz

∮
t sin ψ cos ψ ds + dv

dz

∮
t sin2 ψ ds = Sy

G
dθ

dz

∮
tp2 ds + du

dz

∮
tp cos ψ ds + dv

dz

∮
tp sin ψ ds = (Syξ0 − Sxη0)

G

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(26.3)

Equations (26.3) are solved simultaneously for dθ/dz, du/dz and dv/dz. These values
are then substituted in Eq. (26.1) to obtain the shear flow, and hence the shear stress
distribution.

Attention must be paid to the signs of ψ, p and q in Eqs (26.3). Positive directions
for each parameter are suggested in Fig. 26.1 although alternative conventions may be
adopted. In general, however, there are rules which must be obeyed, these having special
importance in the solution of multicell beams. Briefly, these are as follows. The positive
directions of q and s are the same but may be assigned arbitrarily in each wall. Then p
is positive if movement of the foot of the perpendicular along the positive direction of
the tangent leads to an anticlockwise rotation of p about O. ψ is the clockwise rotation
of the tangent vector necessary to bring it into coincidence with the positive direction
of the x axis.

Example 26.1
Calculate the shear stress distribution at the built-in end of the beam shown in Fig.
26.2(a) when, at this section, it carries a shear load of 22 000 N acting at a distance of
100 mm from and parallel to side 12. The modulus of rigidity G is constant throughout
the section:

Wall 12 34 23
Length (mm) 375 125 500

It is helpful at the start of the problem to sketch the notation and sign convention as
shown in Fig. 26.2(b). The walls of the beam are flat and therefore p and ψ are constant
along each wall. Also the thickness of each wall is constant so that the shear flow q
is independent of s in each wall. Let point 1 be the origin of the axes, then, writing
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Fig. 26.2 (a) Beam cross-section at built-in end; (b) notation and sign convention.

θ′ = dθ/dz, u′ = du/dz and v′ = dv/dz, we obtain from Eq. (26.1)

q12 = 1.6Gv′ (i)

q23 = 1.0G(375 × 0.886θ′ − 0.886u′ − 0.5v′) (ii)

q34 = 1.2G(500 × 0.866θ′ − v′) (iii)

q41 = 1.0Gu′ (iv)

For horizontal equilibrium

500 × 0.886q41 − 500 × 0.886q23 = 0

giving

q41 = q23 (v)

For vertical equilibrium

375q12 − 125q34 − 250q23 = 22 000 (vi)

For moment equilibrium about point 1

500 × 375 × 0.886q23 + 125 × 500 × 0.886q34 = 22 000 × 100

or

3q23 + q34 = 40.6 (vii)

Substituting for q12, etc. from Eqs (i), (ii), (iii) and (iv) into Eqs (v), (vi) and (vii), and
solving for θ′, u′ and v′, gives θ′ = 0.122/G, u′ = 9.71/G, v′ = 42.9/G. The values of
θ′, u′ and v′ are now inserted in Eqs (i), (ii), (iii) and (iv), giving q12 = 68.5 N/mm,
q23 = 9.8 N/mm, q34 = 11.9 N/mm, q41 = 9.8 N/mm from which

τ12 = 42.8 N/mm2 τ23 = τ41 = 9.8 N/mm2 τ34 = 9.9 N/mm2
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Fig. 26.3 Built-in end of a beam section having a curved wall.

We note in Example 26.1 that there is a discontinuity of shear flow at each of the corners
of the beam. This implies the existence of axial loads at the corners which would, in
practice, be resisted by booms, if stress concentrations are to be avoided. We see also
that in a beam having straight walls the shear flows are constant along each wall so that,
from Eq. (17.2), the direct stress gradient ∂σz/∂z = 0 in the walls at the built-in end
although not necessarily in the booms. Finally, the centre of twist of the beam section
at the built-in end may be found using Eq. (17.11), i.e.

xR = −v′

θ′ yR = u′

θ′

which, from the results of Example 26.1, give xR = −351.6 mm, yR = 79.6 mm. Thus,
the centre of twist is 351.6 mm to the left of and 79.6 mm above corner 1 of the section
and will not, as we noted in Section 26.1, coincide with the shear centre of the section.

The method of analysis of beam sections having curved walls is similar to that of
Example 26.1 except that in the curved walls the shear flow will not be constant since
both p and ψ in Eq. (26.1) will generally vary. Consider the beam section shown in Fig.
26.3 in which the curved wall 23 is semicircular and of radius r. In the wall 23, p = r
and ψ = 180 + φ, so that Eq. (26.1) gives

q23 = Gt(rθ′ − u′ cos φ − v′ sin φ)

The resultants of q23 are then

Horizontally :
∫ π

0
q23 cos φr dφ

Vertically :
∫ π

0
q23 sin φr dφ

Moment (about 0) :
∫ π

0
q23r2 dφ

The shear flows in the remaining walls are constant and the solution proceeds as
before.
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2R
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q41

q34

q12

q23

20 kN

2
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O

φ

34

Fig. 26.4 Beam section of Example 26.2.

Example 26.2
Determine the shear flow distribution at the built-in end of a beam whose cross-section
is shown in Fig. 26.4. All walls have the same thickness t and shear modulus G;
R = 200 mm.

In general at a built-in end (see Eq (26.1))

q = Gt

(
p

dθ

dz
+ du

dz
cos ψ + dv

dz
sin ψ

)

Therefore, taking O as the origin and writing θ′ = dθ/dz, u′ = du/dz and v′ = dv/dz

q41 = Gt(−2Rθ′ + v′) (i)

q12 = Gt(−Rθ′ + u′) (ii)

q34 = Gt(−Rθ′ − u′) (iii)

q23 = Gt(−Rθ′ + u′ cos φ − v′ sin φ) (iv)

From symmetry

q12 = q34

i.e.

Gt(−Rθ′ + u′) = Gt(−Rθ′ − u′)
Therefore

u′ = 0

Resolving vertically

q412R −
∫ π

0
q23 sin φ R dφ = 20 × 103
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i.e.

q41 − 1

2

∫ π

0
q23 sin φ dφ = 10 000

R

Substituting from Eqs (i) and (iv) gives

−Rθ′ + 1.79v′ = 10 000

GtR
(v)

Now taking moments about O

q41 2R 2R + q12 2R R + q34 2R R +
∫ π

0
q23 R2dφ = 20 000 × 2R

which gives

2q41 + q12 + q34 + 1

2

∫ π

0
q23 dφ = 20 000

R

Substituting from Eqs (i), (ii), (iii) and (iv)

2Gt(−2Rθ′ + v′) − 2GtRθ′ + Gt

2

∫ π

0
(−Rθ′ − v′sinφ) dφ = 20 000

R

from which

Rθ′ − 0.13v′ = −2641.7

GtR
(vi)

Solving Eqs (v) and (vi)

v′ = 4432.7

GtR
, Rθ′ = −2065.4

GtR

Therefore

q41 = Gt

(
2 × 2065.4

200Gt
+ 4432.7

200Gt

)
= 42.8 N/mm

Similarly

q12 = q34 = 10.3 N/mm

Finally

q23 = 10.3 − 22.2 sin φ N/mm
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26.3 Thin-walled rectangular section beam subjected
to torsion

In Example 18.2 we determined the warping distribution in a thin-walled rectangular
section beam which was not subjected to structural constraint. This free warping distri-
bution (w0) was found to be linear around a cross-section and uniform along the length
of the beam having values at the corners of

w0 = ± T

8abG

(
b

tb
− a

ta

)

The effect of structural constraint, such as building one end of the beam in, is to reduce
this free warping to zero at the built-in section so that direct stresses are induced which
subsequently modify the shear stresses predicted by elementary torsion theory. These
direct stresses must be self-equilibrating since the applied load is a pure torque.

The analysis of a rectangular section beam built-in at one end and subjected to a
pure torque at the other is simplified if the section is idealized into one comprising
four corner booms which are assumed to carry all the direct stresses together with
shear–stress-only carrying walls. The assumption on which the idealization is based
is that the direct stress distribution at any cross-section is directly proportional to the
warping which has been suppressed. Therefore, the distribution of direct stress is linear
around any cross-section and has values equal in magnitude but opposite in sign at
opposite corners of a wall. This applies at all cross-sections since the free warping will
be suppressed to some extent along the complete length of the beam. In Fig. 26.5(b) all
the booms will have the same cross-sectional area from anti-symmetry and, from Eq.
(20.1) or (20.2)

B = ata
6

(2 − 1) + btb
6

(2 − 1) = 1

6
(ata + btb)

To the boom area B will be added existing concentrations of area such as connecting
angle sections at the corners. The contributions of stringers may be included by allowing
for their direct stress carrying capacity by increasing the actual wall thickness by an
amount equal to the total stringer area on one wall before idealizing the section.

We have seen in Chapter 20 that the effect of structural idealization is to reduce
the shear flow in the walls of a beam to a constant value between adjacent booms.

Fig. 26.5 Idealization of a rectangular section beam subjected to torsion: (a) actual; (b) idealized.
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Fig. 26.6 ldealized rectangular section beam built-in at one end and subjected to a torque at the other.

In Fig. 26.6 suppose that the shear flows in the covers and webs at any section are qa
and qb, respectively; from antisymmetry the shear flows in both covers will be qa and
in both webs qb. The resultant of these shear flows is equivalent to the applied torque
so that

T =
∮

qp ds = 2qaa
b

2
+ 2qbb

a

2
or

T = ab(qa + qb) (26.4)

We now use Eq. (17.19), i.e.

q = Gt

(
∂w

∂s
+ ∂v

∂z

)

to determine qa and qb. Since the beam cross-section is doubly symmetrical the axis of
twist passes through the centre of symmetry at any section so that, from Eq. (17.8)

∂vt

∂z
= pR

dθ

dz
(26.5)

Therefore for the covers of the beam

∂vt

∂z
= b

2

dθ

dz
(26.6)

and for the webs
∂vt

∂z
= a

2

dθ

dz
(26.7)
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Fig. 26.7 Shear distortion of (a) an element of the top cover; (b) an element of the right hand web.

The elements of length δz of the covers and webs of the beam will warp into the shapes
shown in Fig. 26.6 if T is positive (anticlockwise) and b/tb > a/ta. Clearly there must
be compatibility of displacement at adjacent edges of the elements. From Fig. 26.7(a)

∂w

∂s
= −w

a/2
(26.8)

and from Fig. 26.7(b)

∂w

∂s
= w

b/2
(26.9)

Substituting for ∂w/∂s and ∂vt/∂z in Eq. (17.19) separately for the covers and webs,
we obtain

qa = Gta

(−2w

a
+ b

2

dθ

dz

)
qb = Gtb

(
2w

b
+ a

2

dθ

dz

)
(26.10)

Now substituting for qa and qb in Eq. (26.4) we have

T = abG

[
ta

(−2w

a
+ b

2

dθ

dz

)
+ tb

(
2w

b
+ a

2

dθ

dz

)]

Rearranging

dθ

dz
= 4w(bta − atb)

ab(bta + atb)
+ 2T

abG(bta + atb)
(26.11)

If we now substitute for dθ/dz from Eq. (26.11) into Eqs (26.10) we have

qa = −4wGtbta
bta + atb

+ Tta
a(bta + atb)

qb = 4wGtbta
bta + atb

+ Ttb
b(bta + atb)

(26.12)

Equations (26.11) and (26.12) give the rate of twist and the shear flows (and hence shear
stresses) in the beam in terms of the warping w and the applied torque T . Their derivation
is based on the compatibility of displacement which exists at the cover/boom/web
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Fig. 26.8 Equilibrium of boom element.

junctions. We shall now use the further condition of equilibrium between the shears
in the covers and webs and the direct load in the booms to obtain expressions for the
warping displacement and the distributions of boom stress and load. Thus, for the
equilibrium of an element of the top right-hand boom shown in Fig. 26.8

(
σz + ∂σz

∂z
δz

)
B − σzB + qaδz − qbδz = 0

i.e.

B
∂σz

∂z
+ qa − qb = 0 (26.13)

Now

σz = E
∂w

∂z
(see Chapter 1)

Substituting for σz in Eq. (26.13) we obtain

BE
∂2w

∂z2 + qa − qb = 0 (26.14)

Replacing qa and qb from Eqs (26.12) gives

BE
∂2w

∂z2 − 8Gtbta
bta + atb

w = − T

ab

(bta − atb)

(bta + atb)
or

∂2w

∂z2 − µ2w = − T

abBE

(bta − atb)

(bta + atb)
(26.15)



Ch26-H6739.tex 23/1/2007 15: 10 Page 691

26.3 Thin-walled rectangular section beam 691

where

µ2 = 8Gtbta
BE(bta + atb)

The differential equation (26.15) is of standard form and its solution is

w = C cosh µz + D sinh µz + T

8abG

(
b

tb
− a

ta

)
(26.16)

in which the last term is seen to be the free warping displacement w0 of the top right-
hand corner boom. The constants C and D in Eq. (26.16) are found from the boundary
conditions of the beam. In this particular case the warping w = 0 at the built-in end and
the direct strain ∂w/∂z = 0 at the free end where there is no direct load. From the first
of these

C = − T

8abG

(
b

tb
− a

ta

)
= −w0

and from the second

D = w0 tanh µL

Then

w = w0(1 − cosh µz + tanh µL sinh µz) (26.17)

or rearranging

w = w0

[
1 − cosh µ(L − z)

cosh µL

]
(26.18)

The variation of direct stress in the boom is obtained from σz = E∂w/∂z and Eq. (26.18),
i.e.

σz = µEw0
sinh µ(L − z)

cosh µL
(26.19)

and the variation of boom load P is then

P = Bσz = BµEwo
sinh µ(L − z)

cosh µL
(26.20)

Substituting for w in Eqs (26.12) and rearranging, we obtain the shear stress distribution
in the covers and webs. Thus

τa = qa

ta
= T

2abta

[
1 + (bta − atb)

(bta + atb)

cosh µ(L − z)

cosh µL

]
(26.21)

τb = qb

tb
= T

2abtb

[
1 − (bta − atb)

(bta + atb)

cosh µ(L − z)

cosh µL

]
(26.22)

Inspection of Eqs (26.21) and (26.22) shows that the shear stress distributions each
comprise two parts. The first terms, T/2abta and T/2abtb, are the shear stresses pre-
dicted by elementary theory (see Section 18.1), while the hyperbolic second terms
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Fig. 26.9 Shear stress distributions along the beam of Fig. 11.5.

represent the effects of the warping restraint. Clearly, for an anticlockwise torque and
bta > atb, the effect of this constraint is to increase the shear stress in the covers over
that predicted by elementary theory and decrease the shear stress in the webs. It may
also be noted that for bta to be greater than atb for the beam of Fig. 26.6, in which
a > b, then ta must be appreciably greater than tb so that T/2abta < T/2abtb. Also
at the built-in end (z = 0), Eqs (26.21) and (26.22) reduce to τa = T/a(bta + atb) and
τb = T/b(bta + atb) so that even though τb is reduced by the axial constraint and τa
increased, τb is still greater than τa. It should also be noted that these values of τa and
τb at the built-in end may be obtained using the method of Section 26.2 and that these
are the values of shear stress irrespective of whether the section has been idealized or
not. In other words, the presence of intermediate stringers and/or direct stress carrying
walls does not affect the shear flows at the built-in end since the direct stress gradient
at this section is zero (see Section 26.2 and Eq. (17.2)) except in the corner booms.
Finally, when both z and L become large, i.e. at the free end of a long, slender beam

τa → T

2abta
and τb → T

2abtb

The above situation is shown in Fig. 26.9.
In the particular case when bta = atb we see that the second terms on the right-hand

side of Eqs (26.21) and (26.22) disappear and no constraint effects are present; the
direct stress of Eqs (26.19) is also zero since w0 = 0 (see Example 18.2).

The rate of twist is obtained by substituting for w from Eq. (26.18) in Eq. (26.11).
Thus

dθ

dz
= T

2a2b2G

(
b

tb
+ a

ta

) [

1 −
(

bta − atb
bta + atb

)2 cosh µ(L − z)

cosh µL

]

(26.23)

in which we see that again the expression on the right-hand side comprises the rate of
twist given by elementary theory, T (b/tb + a/ta)/2a2b2G (see Section 18.1), together
with a correction due to the warping restraint. Clearly the rate of twist is always reduced
by the constraint since (bta − atb)2 is always positive. Integration of Eq. (26.23) gives
the distribution of angle of twist along the length of the beam, the boundary condition
in this case being θ = 0 at z = 0.
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Example 26.3
A uniform four boom box of span 5 m is 500 mm wide by 20 mm deep and has four
corner booms each of cross-sectional area 800 mm2, its wall thickness is 1.0 mm. If
the box is subjected to a uniformly distributed torque loading of 20 Nm/mm along its
length and it is supported at each end such that complete freedom of warping exists
at the end cross-sections calculate the angle of twist at the mid-span section. Take
G = 20 000 N/mm2 and G/E = 0.36.

The reactive torques at each support are = 20 × 5000/2 = 50 000 Nm
Taking the origin for z at the mid-span of the beam the torque at any section is

given by

T (z) = 20(2500 − z) − 50 000 = −20z Nm

Substituting in Eq. (26.16) we obtain

w = C cosh µz + D sinh µz − 20z × 103(b − a)

8abGt

The boundary conditions are:
w = 0 when z = 0 from symmetry and ∂w/∂z = 0 when z = L (L = 2500 mm)
From the first of these C = 0 while from the second

D = 20 × 103(b − a)

8µabGt cosh µL

Therefore

w = 20(b − a) × 103

8abGt

(
sinh µz

µ cosh µL
− z

)
(i)

Further

µ2 = 8Gt

AE(b + a)
= 8 × 0.36 × 1.0

800(200 + 500)
= 5.14 × 10−6

so that Eq. (i) becomes

w = −3.75 × 10−4(3.04 sinh µz − z) (ii)

Substituting for w, etc. in Eq. (26.11)

dθ

dz
= 10−8(1.95 sinh µz − 3.49z)

Hence

θ = 10−8
(

1.95

µ
cosh µz − 1.75z2 + F

)
(iii)

When z = L (2500 mm) θ = 0. Then, from Eq. (iii)

F = 10.8 × 106
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so that

θ = 10−8(859 cosh µz − 1.75z2 + 10.8 × 106) (iv)

At mid-span where z = 0, from Eq. (iv)

θ = 0.108 rad or θ = 6.2◦

26.4 Shear lag

A problem closely related to the restrained torsion of rectangular section beams is that
generally known as shear lag. We have seen in Chapter 18 that torsion induces shear
stresses in the walls of beams and these cause shear strains which produce warping
of the cross-section. When this warping is restrained, direct stresses are set up which
modify the shear stresses. In a similar manner the shear strains in the thin walls of
beams subjected to shear loads cause cross-sections to distort or warp so that the basic
assumption of elementary bending theory of plane sections remaining plane is no longer
valid. The direct and shear stress distributions predicted by elementary theory therefore
become significantly inaccurate. Further modifications arise when any form of structural
constraint prevents the free displacement of the cross-sections of a beam. Generally,
shear lag becomes a problem in wide, relatively shallow, thin-walled beams such as
wings in which the shear distortion of the thin upper and lower surface skins causes
redistribution of stress in the stringers and spar caps while the thicker and shallower
spar webs experience little effect.

Consider the box beam shown in Fig. 26.10. Elementary bending theory predicts that
the direct stress at any sectionAA would be uniform across the width of the covers so that
the stringers and web flanges would all be subjected to the same stress. However, the
shear strains at the section cause the distortion shown so that the intermediate stringers
carry lower stresses than the web flanges. Since the resultant of the direct stresses must

Fig. 26.10 Shear distortion in the covers of a box beam.
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be equivalent to the applied bending moment this means that the direct stresses in the
web flanges must be greater than those predicted by elementary bending theory. Our
investigation of the shear lag problem will be restricted to idealized six- and eight-
boom doubly symmetrical rectangular section beams subjected to shear loads acting
in the plane of symmetry and in which the axis of twist, the flexural axis and the zero
warping axis coincide; the shear loads therefore produce no twist and hence no warping
due to twist. In the analysis we shall assume that the cross-sections of beams remain
undistorted in their own plane.

Figure 26.11 shows an idealized six-boom beam built-in at one end and carrying a
shear load at the other; the corner booms have a cross-sectional area B while the central
booms have a cross-sectional area A. At any section the vertical shear load is shared
equally by the two webs. Also, since the beam has been idealized, the shear flow at
any section will be constant between the booms so that, for a web, the situation is
that shown in the free body diagram of Fig. 26.12, in addition, the corner booms are
subjected to equal and opposite loads PB. The complementary shear flows Sy/2h are
applied to the corner booms as shown so that the top cover, say, is subjected to loads as
shown in Fig. 26.13. We assume that suitable edge members are present at the free end
of the cover to equilibrate the shear flows; we also assume that strains in the transverse
direction are negligible.

It is advantageous to adopt a methodical approach in the analysis. Thus, use may
be made of the symmetry of the cover so that only one edge boom, one panel and
the central boom need to be considered as long as the symmetry is allowed for in the
assumed directions of the panel shear flows q, as shown in Fig. 26.13. Further, the
origin for z may be taken to be at either the free or built-in end. A marginally simpler
solution is obtained if the origin is taken to be at the free end, in which case the solution
represents that for an infinitely long panel. Considering the equilibrium of an element of
an edge boom (Fig. 26.14), in which we assume that the boom load is positive (tension)

Fig. 26.11 Six-boom beam subjected to a shear load.
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Fig. 26.12 Loads on webs and corner booms of the beam of Fig. 26.11.

Fig. 26.13 Top cover of the beam of Fig. 26.11.

and increases with increasing z, we have

PB + ∂PB

∂z
δz − PB − qδz + Sy

2h
δz = 0

or
∂PB

∂z
− q + Sy

2h
= 0 (26.24)

Similarly, for an element of the central boom (Fig. 26.15)

∂PA

∂z
+ 2q = 0 (26.25)
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Fig. 26.14 Equilibrium of boom element.

Fig. 26.15 Equilibrium of element of central boom.

Fig. 26.16 Equilibrium of a length z of cover.

Now considering the overall equilibrium of a length z of the cover (Fig. 26.16), we have

2PB + PA + Sy

h
z = 0 (26.26)

We now consider the compatibility condition which exists in the displacements of
elements of the booms and adjacent elements of the panels. Figure 26.17(a) shows
the displacements of the cover and an element of a panel and the adjacent elements
of the boom. Note that the element of the panel is distorted in a manner which agrees
with the assumed directions of the shear flows in Fig. 26.13 and that the shear strain
increases with z. From Fig. 26.17(b)

(1 + εB)δz = (1 + εA)δz + d
∂γ

∂z
∂z
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Fig. 26.17 Compatibility condition.

in which εB and εA are the direct strains in the elements of boom. Then, rearranging
and noting that γ is a function of z only when the section is completely idealized, we
have

dγ

dz
= 1

d
(εB − εA) (26.27)

Now

εB = PB

BE
εA = PA

AE
γ = q

Gt
so that Eq. (26.27) becomes

dq

dz
= Gt

dE

(
PB

B
− PA

A

)
(26.28)

We now select the unknown to be determined initially. Generally, it is simpler math-
ematically to determine either of the boom load distributions, PB or PA, rather than the
shear flow q. Thus, choosing PA, say, as the unknown, we substitute in Eq. (26.28) for
q from Eq. (11.25) and for PB from Eq. (26.26). Hence

−1

2

∂2PA

∂z2 = Gt

dE

(
−PA

2B
− Syz

2Bh
− PA

A

)

Rearranging, we obtain

∂2PA

∂z2 − Gt(2B + A)

dEAB
PA = GtSyz

dEBh

or

∂2PA

∂z2 − λ2PA = GtSyz

dEBh
(26.29)
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in which λ2 = Gt(2B + A)/dEAB. The solution of Eq. (26.29) is of standard form
and is

PA = C cosh λz + D sinh λz − SyA

h(2B + A)
z

The constants C and D are determined from the boundary conditions of the cover of
the beam namely, PA = 0 when z = 0 and γ = q/Gt = −(∂PA/∂z)/2Gt = 0 when z = L
(see Eq. (26.25)). From the first of these C = 0 and from the second

D = SyA

λh(2B + A) cosh λL

Thus

PA = − SyA

h(2B + A)

(
z − sinh λz

λ cosh λL

)
(26.30)

The direct stress distribution σA(= PA/A) follows, i.e.

σA = − Sy

h(2B + A)

(
z − sinh λz

λ cosh λL

)
(26.31)

The distribution of load in the edge booms is obtained by substituting for PA from
Eq. (26.30) in Eq. (26.26), thus

PB = − SyB

h(2B + A)

(
z + A

2Bλ

sinh λz

cosh λL

)
(26.32)

whence

σB = − Sy

h(2B + A)

(
z + A

2Bλ

sinh λz

cosh λL

)
(26.33)

Finally, from either pairs of Eqs (26.25) and (26.30) or (26.24) and (26.32)

q = SyA

2h(2B + A)

(
1 − cosh λz

cosh λL

)
(26.34)

so that the shear stress distribution τ(=q/t) is

τ = SyA

2ht(2B + A)

(
1 − cosh λz

cosh λL

)
(26.35)

Elementary theory gives

σA = σB = − Syz

h(2B + A)

and

q = SyA

2h(2B + A)
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Fig. 26.18 Rectangular section beam supported at corner booms only.

so that, as in the case of the torsion of a four boom rectangular section beam, the solution
comprises terms corresponding to elementary theory together with terms representing
the effects of shear lag and structural constraint.

Many wing structures are spliced only at the spars so that the intermediate stringers are
not subjected to bending stresses at the splice. The situation for a six boom rectangular
section beam is then as shown in Fig. 26.18. The analysis is carried out in an identical
manner to that in the previous case except that the boundary conditions for the central
stringer are PA = 0 when z = 0 and z = L. The solution is

PA = − SyA

h(2B + A)

(
z − L

sinh λz

sinh λL

)
(26.36)

PB = − SyB

h(2B + A)

(
z + AL

2B

sinh λz

sinh λL

)
(26.37)

q = SyA

2h(2B + A)

(
1 − λL

cosh λz

sinh λL

)
(26.38)

where λ2 = Gt(2B + A)/dEAB. Examination of Eq. (26.38) shows that q changes sign
when cosh λz = ( sinh λL)/λL, the solution of which gives a value of z less than L, i.e. q
changes sign at some point along the length of the beam. The displaced shape of the top
cover is therefore as shown in Fig. 26.19. Clearly, the final length of the central stringer
is greater than in the previous case and appreciably greater than the final length of the
spar flanges. The shear lag effect is therefore greater than before. In some instances
this may be beneficial since a larger portion of the applied bending moment is resisted
by the heavier section spar flanges. These are also restrained against buckling in two
directions by the webs and covers while the lighter section stringers are restrained in
one direction only. The beam is therefore able to withstand higher bending moments
than those calculated from elementary theory.
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Fig. 26.19 Displaced shape of top cover of box team of Fig. 26.18.

3 mm
2 mm

2 mm

3 mm100 mm

600 mm

Fig. 26.20 Beam section of Example 26.4.

200 mm 200 mm 200 mm

1 2 3 4

8765

Fig. 26.21 Idealized beam section of Example 26.4.

Example 26.4
A shallow box section beam whose cross-section is shown in Fig. 26.20 is simply
supported over a span of 2 m and carries a vertically downward load of 20 kN at mid-
span. Idealise the section into one suitable for shear lag analysis, comprising eight
booms, and hence determine the distribution of direct stress along the top right-hand
corner of the beam. Take G/E = 0.36.

The idealized section is shown in Fig. 26.21.
Using either Eqs (20.1) or (20.2)

B1 = B4 = B8 = B5 = 100 × 3

6
(2 − 1) + 200 × 2

6
(2 + 1) = 250 mm2

B2 = B3 = B6 = B7 = 200 × 2

6
(2 + 1) × 2 = 400 mm2
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Mid-span 50 N/mm

50 N/mm

250 mm2 (B)

250 mm2

1000 mm

400 mm2 (A) q = 0

d � 200 mm

d � 200 mm

d � 200 mmq

q

z

Fig. 26.22 Shear flows acting on top cover of idealized beam section of Example 26.4.

50 N/mm

q

dz

dzPB �
�PB 
�z

PB

Fig. 26.23 Element of boom B.

The support reactions of 10 kN produce loads of 5 kN on each vertical web. These, in
turn, produce shear flows of 50 N/mm along each corner boom as shown in Fig. 26.22
for the top cover of the beam.

Considering the equilibrium of elements of the booms we have, for the top boom,
Fig. 26.23

PB + ∂PB

∂z
δz − PB + qδz + 50δz = 0

which gives

∂PB

∂z
= −q − 50 (i)

Similarly for an element of boom A

∂PA

∂z
= q (ii)

Overall equilibrium of a length z of the panel gives

2PB + 2PA + 2 × 50z = 0
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dz�
�z

(1�εB)dz

(1�εA)dz

�

d

�
��

Fig. 26.24 Compatibility condition for top cover of beam of Example 26.4.

i.e

PB + PA + 50z = 0 (iii)

The compatibility of displacement between elements of boom and adjacent panel,
Fig. 26.24 gives

∂γ

∂z
= 1

d
(εA − εB) (iv)

But

εA = PA/EA εB = PB/EB γ = q/Gt

Substituting in Eq. (iv) we obtain

∂q

∂z
= Gt

dE

(
PA

A
− PB

B

)
(v)

From Eq. (iii)

PA = −PB − 50z

From Eq. (i)

∂q

∂z
= −∂2PB

∂z2

Substituting in Eq. (v)

∂2PB

∂z2 − µ2PB = 50Gt

dEA
z (vi)

in which

µ2 = Gt

dE

(
A + B

AB

)
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The solution of Eq. (vi) is

PB = C cosh µz + D sinh µz − 50B

A + B
z

The boundary conditions are;

when z = 0, PB = 0

and when z = 100 mm
∂PB

∂z
= −50 (from Eq (i) since q = 0 at z = 1000 mm)

From the first of these C = 0 while from the second

D = −50A

(A + B)µ cosh 1000µ

Therefore

σB = PB

B
= −50A

B(A + B)µ cosh 1000µ
= sinh µz − 50

A + B
z

Substituting the boom areas, etc. gives

σB = −0.4 sinh µz − 0.08z

In certain situations beams, or parts of beams, carry loads which cause in-plane bending
of the covers. An example is shown in Fig. 26.25 where the loads P cause bending in
addition to axial effects. Shear lag modifies the stresses predicted by elementary theory
in a similar manner to the previous cases. From symmetry we can consider either the

Fig. 26.25 Beam subjected to combined bending and axial load.
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top or bottom cover in isolation as shown in Fig. 26.26(a). In this case the load P causes
bending as well as extension of the cover so that at any section z the beam has a slope
∂v/∂z (Fig. 26.26(b)). We shall again assume that transverse strains are negligible and
that the booms carry all the direct load.

Initially, as before, we choose directions for the shear flows in the top and bottom
panels. Any directions may be chosen since the question of symmetry does not arise.
The equilibrium of an element δz of each boom is first considered giving

∂PB1

∂z
= −q1

∂PA

∂z
= q1 − q2

∂PB2

∂z
= q2 (26.39)

where PB1 is the load in boom 1 and PB2 is the load in boom 2. Longitudinal and
moment equilibrium about boom 2 of a length z of the cover give, respectively

PB1 + PB2 + PA = P PB12d + PAd = P2d (26.40)

The compatibility condition now includes the effect of bending in addition to extension,
as shown in Fig. 26.27. Note that the panel is distorted in a manner which agrees with
the assumed direction of shear flow and that γ1 and ∂v/∂z increase with z. Thus

(1 + εA)δz = (1 + εB1)δz + d

(
dγ1

dz
+ d2v

dz2

)
δz

where γ1 and v are functions of z only. Thus

dγ1

dz
= 1

d
(εA − εB1) − d2v

dz2 (26.41)

Similarly, for an element of the lower panel

dγ2

dz
= 1

d
(εB2 − εA) − d2v

dz2 (26.42)

Fig. 26.26 Cover of beam of Fig. 11.19.
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Fig. 26.27 Compatibility condition for combined bending and axial load.

Subtraction of Eq. (26.42) from Eq. (26.41) eliminates d2v/dz2, i.e.

dγ1

dz
− dγ2

dz
= 1

d
(2εA − εB1 − εB2)

or, as before

dq1

dz
− dq2

dz
= Gt

dE

(
2PA

A
− PB1

B
− PB2

B

)
(26.43)

In this particular problem the simplest method of solution is to choose PA as the unknown
since, from Eqs (26.39)

dq1

dz
− dq2

dz
= ∂2PA

∂z2

Also substituting for PB1 and PB2 from Eq. (26.40), we obtain

∂2PA

∂z2 − Gt

dE

(
2B + A

AB

)
PA = − PGt

dEB

or

∂2PA

∂z2 − λ2PA = − PGt

dEB
(26.44)

where λ2 = Gt(2B + A)/dEAB. The solution of Eq. (26.44) is of standard form and is

PA = C cosh λz + D sinh λz + PA

2B + A
(26.45)
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The boundary conditions are PA = 0 when z = 0 and q1 = q2 = 0 = ∂PA/∂z at the built-in
end (no shear loads are applied). Hence

PA = PA

2B + A
(1 − cosh λz + tanh λL sinh λz)

or, rearranging

PA = PA

2B + A

[
1 − cosh λ(L − z)

cosh λL

]
(26.46)

Hence

σA = P

2B + A

[
1 − cosh λ(L − z)

cosh λL

]
(26.47)

Substituting for PA in the second of Eqs (26.40), we have

PB1 = PA

2(2B + A)

[
4B + A

A
+ cosh λ(L − z)

cosh λL

]
(26.48)

whence

σB1 = PA

2B(2B + A)

[
4B + A

A
+ cosh λ(L − z)

cosh λL

]
(26.49)

Also from Eqs (26.40)

PB2 = −PA

2

so that

PB2 = −PA

2(2B + A)

[
1 − cosh λ(L − z)

cosh λL

]
(26.50)

and

σB2 = −PA

2B(2B + A)

[
1 − cosh λ(L − z)

cosh λL

]
(26.51)

Finally, the shear flow distributions are obtained from Eqs (16.39), thus

q1 = −∂PB1

∂z
= PAλ

2(2B + A)

sinh λ(L − z)

cosh λL
(26.52)

q2 = ∂PB2

∂z
= −PAλ

2(2B + A)

sinh λ(L − z)

cosh λL
(26.53)

Again we see that each expression for direct stress, Eqs (26.47), (26.49) and (26.51),
comprises a term which gives the solution from elementary theory together with a
correction for the shear lag effect. The shear flows q1 and q2 are self-equilibrating, as
can be seen from Eqs (26.52) and (26.53), and are entirely produced by the shear lag
effect (q1 and q2 must be self-equilibrating since no shear loads are applied).
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Example 26.5
The unsymmetrical panel shown in Fig. 26.28 comprises three direct stress carrying
booms and two shear stress carrying panels. If the panel supports a load P at its free
end and is pinned to supports at the ends of its outer booms determine the distribution
of direct load in the central boom. Determine also the load in the central boom when
A = B = C and shear lag effects are absent.

As before we consider the equilibrium of elements of the booms, say A and B. This
gives

∂PA

∂z
= −q1 (i)

and
∂PB

∂z
= q1 − q2 (ii)

For overall equilibrium of a length z of the panel

PA + PB + PC = P (iii)

and taking moments about boom C

2PA + PB = P (iv)

The compatibility condition is shown in Fig. 26.29 and gives

∂γ1

∂z
= 1

d
(εA − εA) − ∂2v

∂z2 (v)

z

P

d

d

L

A

B

C

q1

q2

Fig. 26.28 Panel of Example 26.5.
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(1�εA)�z

(1�εB)�z

�1 � �υ
�z

�z �z �z
dz dz��1

�υ ��1� �
�

�z
�υ ))

Fig. 26.29 Compatibility condition for the panel of Example 26.5.

Similarly, for elements of the booms B and C

∂γ2

∂z
= 1

d
(εC − εB) − ∂2v

∂z2 (vi)

Subtracting Eq. (vi) from (v) gives

∂γ1

∂z
− ∂γ2

∂z
= 1

d
(2εB − εA − εC) (vii)

Also

γ1 = q1

Gt
γ2 = q2

Gt
εA = PA

AE
εB = PB

BE
and εC = PC

CE
Substituting these expressions in Eq. (vii) gives

∂q1

∂z
− ∂q2

∂z
= Gt

dE

(
2PB

B
− PA

A
− PC

C

)
(viii)

From Eqs (iv) and (iii)

PA = 1

2
(P − PB), PC = 1

2
(P − PB)

Substituting in Eq. (viii), using Eq. (ii) and rearranging we have

∂2PB

∂z2 − Gt

dE

(
4AC + BC + AB

2ABC

)
PB = −GtP

2dE

(
A + C

AC

)
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the solution of which is

PB = D cosh µz + F sinh µz + B(A + C)P

(4AC + BC + AB)

where

µ2 = Gt

dE

(
4AC + BC + AB

2ABC

)

The boundary conditions are: when z = 0, PB = P and when z = L, PB = 0. From the
first of these

D = 4AC

4AC + BC + AB
P

while from the second

F = − P

sinh µL

[
4AC

4AC + BC + AB
cosh µL + B(A + C)

4AC + BC + AB

]

The expression for the load in the central boom is then

PB = P

4AC + BC + AB

[
4AC cosh µz −

(
4AC cosh µL + AB + BC

sinh µL

)

× sinh µz + B(A + C)]

If there is no shear lag the hyperbolic terms disappear and when A = B = C

PB = P/3

Reference

1 Argyris, J. H. and Dunne, P. C., The general theory of cylindrical and conical tubes under torsion
and bending loads, J. Roy. Aero. Soc., Parts I–IV, February 1947; PartV, September and November
1947; Part VI, May and June 1949.

Problems

P.26.1 A thin-walled beam with the singly symmetrical cross-section shown in
Fig. P.26.1, is built-in at one end where the shear force Sy = 111 250 N is applied
through the web 25. Assuming the cross-section remains undistorted by the loading,
determine the shear flow and the position of the centre of twist at the built-in end. The
shear modulus G is the same for all walls.

Ans: q12 = q56 = 46.6 N/mm, q52 = 180.8 N/mm,
q32 = q54 = 1.4 N/mm, q43 = 74.6 N/mm,
xR = −630.1 mm, yR = 0 (relative to mid-point of 52).
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Fig. P.26.1

P.26.2 A thin-walled two-cell beam with the singly symmetrical cross-section
shown in Fig. P.26.2 is built-in at one end where the torque is 11 000 Nm. Assum-
ing the cross-section remains undistorted by the loading, determine the distribution of
shear flow and the position of the centre of twist at the built-in end. The shear modulus
G is the same for all walls.

Ans: q12 = q45 = 44.1 N/mm, q23 = q34 = 42.9 N/mm,
q51 = 80.2 N/mm, q24 = 37.4 N/mm,
xR = −79.5 mm, yR = 0 (referred to mid-point of web 24).

Fig. P.26.2

P.26.3 A singly symmetrical, thin-walled, closed section beam is built-in at one
end where a shear load of 10 000 N is applied as shown in Fig. P.26.3. Calculate the
resulting shear flow distribution at the built-in end if the cross-section of the beam
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remains undistorted by the loading and the shear modulus G and wall thickness t are
each constant throughout the section.

Ans: q12 = 3992.9/R N/mm, q23 = 711.3/R N/mm,
q31 = (1502.4 − 1894.7 cos φ − 2102.1 sin φ)/R N/mm.

Fig. P.26.3

P.26.4 A uniform, four-boom beam, built-in at one end, has the rectangular cross-
section shown in Fig. P.26.4. The walls are assumed to be effective only in shear, the
thickness and shear modulus being the same for all walls while the booms, which are of
equal area, carry only direct stresses. Assuming that the cross-section remains undis-
torted by the loading, calculate the twist at the free end due to a uniformly distributed
torque loading T= 20 N m/mm along its entire length. Take G = 20 000 N/mm2 and
G/E = 0.36.

Ans: 5.9◦ anticlockwise.

Fig. P.26.4

P.26.5 Figure P.26.5 shows the doubly symmetrical idealized cross-section of a
uniform box beam of length l. Each of the four corner booms has area B and Young’s
modulus E, and they constitute the entire direct stress carrying area. The thin walls all
have the same shear modulus G. The beam transmits a torque T from one end to the
other, and at each end warping is completely suppressed. Between the ends, the shape
of the cross-section is maintained without further restriction of warping.
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Obtain an expression for the distribution of the end load along the length of one of
the corner booms. Assuming bt1 > at2, indicate graphically the relation between torque
direction and tension and compression in the boom end loads.

Ans. P = µBET

8abGt1t2
(bt1 − at2)

[
− sinh µz + ( cosh µl − 1)

sinh µl
cosh µz

]

where

µ2 = 8Gt1t2/BE(at2 + bt1).

Fig. P.26.5

P.26.6 The idealized cross-section of a beam is shown in Fig. P.26.6. The beam is
of length L and is attached to a flexible support at one end which only partially prevents
warping of the cross-section; at its free end the beam carries a concentrated torque T .

Assuming that the warping at the built-in end is directly proportional to the free
warping, ie w = kwo, derive an expression for the distribution of direct stress along
the top right-hand corner boom. State the conditions corresponding to the values k = 0
and k = 1.

Ans. σ = −µEw0(k − 1)
sinh µ(L − z)

cosh µL
, µ2 = 8Gtbta

BE(bta + atb)

when k = 0, σ = µEw0
sinh µ(L − z)

cosh µL
(i.e a rigid foundation)

when k = 1, σ = 0 (i.e free warping)

ta

ta

tb tb b

a

Area B

Fig. P.26.6
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P.26.7 In the panel shown in Fig. P.26.7 the area, As, of the central stringer is to be
designed so that the stress in it is 80% of the constant stress, σe, in the edge members,
each of area B.

Assuming that the sheet, which is of constant thickness, t, carries only shear stress
and that transverse strains are prevented, derive expressions for As and B in terms of
the applied loads and the appropriate elastic moduli, E for the longitudinal members
and G for the sheet.

Evaluate these expressions in the case where P = 450 000 N; Ps = 145 000 N;
S = 350 N/mm; σe = 275 N/mm2; l = 1250 mm; b = 250 mm; t = 2.5 mm and
G = 0.38E. Find the fraction of the total tension at the abutment which is carried
by the stringer.

Ans. As = Gt

2Eb

(
lz − z2

2

)
+ 1.25Ps

σe
,

B = 0.1Gt

Eb
z2 + 1

σc

[(
S − 0.2Gtσel

bE

)
z + P

]
, 0.25.

Fig. P.26.7

P.26.8 A symmetrical panel has the form shown in Fig. P.26.8. The longerons are
of constant area, B1 for the edge members and B2 for the central member, and the sheet
is of uniform thickness t. The panel is assembled without stress.

Obtain an expression for the distribution of end load in the central longeron if it is
then raised to a temperature T (constant along its length) above the edge members.
Also give the longitudinal displacement, at one end of the panel, of the central longeron
relative to the edge members.

Assume that end loads are carried only by the longerons, that the sheet carries only
shear, and that transverse members are provided to prevent transverse straining and to
ensure shear effectiveness of the sheet at the ends of the panel.

Ans. P2 = EαT

(
cosh µz − tanh

µl

2
sinh µz − 1

) / (
1

2B1
+ 1

B2

)
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Disp. = αT

µ
tanh µ

l

2

where

u2 = 2Gt

dE

(
1

2B1
+ 1

B2

)
.

Fig. P.26.8

P.26.9 The flat panel shown in Fig. P.26.9 comprises a sheet of uniform thickness
t, a central stringer of constant area A and edge members of varying area. The panel
is supported on pinned supports and is subjected to externally applied shear flows S1
and S2, together with end loads P1,0 and P2,0 as shown. The areas of the edge members
vary such that the direct stresses σ1 and σ2 in the edge members are constant.

Assuming that transverse strains are prevented, that the sheet transmits shear stress
only and that each part has suitable end members to take the complementary shear
stresses, derive expressions for the variation of direct stress σ3 in the stringer and for
the variation of shear flow in the upper panel in terms of the dimensions given and the
elastic moduli E and G for the material.

Fig. P.26.9
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Ans. σ3 =
(

σ1 + σ2

2

) [
1 − cosh µz − sinh µz

sinh µl
(1 − cosh µl)

]

q1 = A

(
σ1 + σ2

4

)
µ

[
sinh µz + cosh µz

sinh µl
(1 − cosh µl)

]

where

µ2 = 2Gt/bAE

P.26.10 The panel shown in Fig. P.26.10 has been idealized into a combination of
direct stress carrying booms and shear stress carrying plates; the boom areas are shown
and the plate thickness is t. Derive expressions for the distribution of direct load in each
boom and state how the load distributions are affected when A = B.

Ans. P1 = 6P

2A + B

[
−

(
B + 8A

6

)
−

(
B − A

3

)
cosh µ(L − z)

cosh µL

]

P2 = 6P

2A + B

[
−B + 2

3
(B − A)

cosh µ(L − z)

cosh µL

]

P3 = 6P

2A + B

[
−

(
4A − B

6

)
−

(
B − A

3

)
cosh µ(L − z)

cosh µL

]

When A = B, P1 = −3P, P2 = −2P, P3 = −P, i.e no shear lag.

A

1

2

d

d

3

3P

2P

P
A

L

B

Fig. P.26.10

P.26.11 A uniform cantilever of length l has the doubly symmetrical cross-section
shown in Fig. P.26.11. The section shape remains undistorted in its own plane after load-
ing. Direct stresses on the cross-section are carried only in the concentrated longeron
areas shown, and the wall thickness dimensions given relate only to shearing effects.
All longerons have the same Young’s modulus E and all walls the same effective shear
modulus G.

The root of the cantilever is built-in, warping being completely suppressed there, and
a shearing force S is applied at the tip in the position indicated.
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Derive an expression for the resultant end load in a corner longeron. Also calculate
the resultant deflection of the tip, including the effects of both direct and shear strains.

Ans. P = − S

8h

(
sinh µz

µ cosh µl
+ 3z

)

where µ2 = 4Gt/3dBE (top right hand) (origin for z at free end)

Def. = Sl

12h

(
11

4Gt
+ l2

EBh

)
.

Fig. P.26.11

P.26.12 The idealized cantilever beam shown in Fig. P.26.12 carries a uniformly
distributed load of intensity w.Assuming that all direct stresses are carried by the booms
while the panels are effective only in shear determine the distribution of direct stress
in the central boom in the top cover. Young’s modulus for the booms is E and the shear
modulus of the walls is G.

Ans. PA = − wA

h(2B + A)

[
cosh µz

µ2 +
(

µL − sinh µL

µ2 cosh µL

)
sinh µz − 1

µ2 − z2

2

]

where

µ2 = Gt(2B + A)

dEAB

z L

d

d

h
t

w

Area A

Area B

Fig. P.26.12
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Open section beams

Instances of open section beams occurring in isolation are infrequent in aircraft
structures. The majority of wing structures do, however, contain cut-outs for undercar-
riages, inspection panels and the like, so that at these sections the wing is virtually an
open section beam. We saw in Chapter 23 that one method of analysis for such cases
is to regard the applied torque as being resisted by the differential bending of the front
and rear spars in the cut-out bay. An alternative approach is to consider the cut-out bay
as an open section beam built-in at each end and subjected to a torque. We shall now
investigate the method of analysis of such beams.

27.1 I-section beam subjected to torsion

If such a beam is axially unconstrained and loaded by a pure torque T the rate of twist
is constant along the beam and is given by

T = GJ
dθ

dz
(from Eq. (18.12))

We also showed in Section 18.2 that the shear stress varies linearly across the thickness
of the beam wall and is zero at the middle plane (Fig. 27.1). It follows that although
the beam and the middle plane warp (we are concerned here with primary warping),
there is no shear distortion of the middle plane. The mechanics of this warping are more
easily understood by reference to the thin-walled I-section beam of Fig. 27.2(a). A plan
view of the beam (Fig. 27.2(b)) reveals that the middle plane of each flange remains
rectangular, although twisted, after torsion. We now observe the effect of applying
a restraint to one end of the beam. The flanges are no longer free to warp and will

Fig. 27.1 Shear stress distribution across the wall of an open section beam subjected to torsion.
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Fig. 27.2 (a) Torsion of I-section beam; (b) plan view of beam showing undistorted shape of flanges.

Fig. 27.3 Bending effect of axial constraint on flanges of I-section beam subjected to torsion.

Fig. 27.4 Torsion of I-section beam fully built-in at one end.

bend in their own planes into the shape shown in plan in Fig. 27.3. Obviously the
beam still twists along its length but the rate of twist is no longer constant and the
resistance to torsion is provided by the St. Venant shear stresses (unrestrained warping)
plus the resistance of the flanges to bending. The total torque may therefore be written
T = TJ + T�, where TJ = GJ dθ/dz from the unconstrained torsion of open sections but
in which dθ/dz is not constant, and T� is obtained from a consideration of the bending
of the flanges. It will be instructive to derive an expression for T� for the I-section beam
of Fig. 27.4 before we turn our attention to the case of a beam of arbitrary section.
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Suppose that at any section z the angle of twist of the I-beam is θ. Then the lateral
displacement u of the lower flange is

u = θ
h

2
and the bending moment MF in the plane of the flange is given by

MF = −EIF
d2u

dz2

where IF is the second moment of area of the flange cross-section about the y axis. It
is assumed here that displacements produced by shear are negligible so that the lateral
deflection of the flange is completely due to the self-equilibrating direct stress system
σ� set up by the bending of the flange. We shall not, however, assume that the shear
stresses in the flange are negligible. The shear SF in the flange is then

SF = dMF

dz
= −EIF

d3u

dz3

or substituting for u in terms of θ and h

SF = −EIF
h

2

d3θ

dz3

Similarly, there is a shear force in the top flange of the same magnitude but opposite in
direction. Together they form a couple which represents the second part T� of the total
torque, thus

T� = SFh = −EIF
h2

2

d3θ

dz3

and the expression for the total torque may be written

T = GJ
dθ

dz
− EIF

h2

2

d3θ

dz3

27.2 Torsion of an arbitrary section beam

The insight into the physical aspects of the problem gained in the above will be found
helpful in the development of the general theory for the arbitrary section beam shown
in Fig. 27.5.

Fig. 27.5 Torsion of an open section beam fully built-in at one end.
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The theory, originally developed by Wagner and Kappus, is most generally known as
the Wagner torsion bending theory. It assumes that the beam is long compared with its
cross-sectional dimensions, that the cross-section remains undistorted by the loading
and that the shear strain γzs of the middle plane of the beam is negligible although
the stresses producing the shear strain are not. From similar assumptions is derived, in
Section 18.2.1, an expression for the primary warping w of the beam, viz.

w = −2AR
dθ

dz
(Eq. (18.19))

In the presence of axial constraint, dθ/dz is no longer constant so that the longitudinal
strain ∂w/∂z is not zero and direct (also shear) stresses are induced. Then

σ� = E
∂w

∂z
= −2ARE

d2θ

dz2 (27.1)

The σ� stress system must be self-equilibrating since the applied load is a pure torque.
Therefore, at any section the resultant end load is zero and

∫

c
σ�t ds = 0

(∫

c
denotes integration around the beam section

)

or, from Eq. (27.1) and observing that d2θ/dz2 is a function of z only
∫

c
2ARt ds = 0 (27.2)

The limits of integration of Eq. (27.2) present some difficulty in that AR is zero when
w is zero at an unknown value of s. Let

2AR = 2AR,0 − 2A′
R

where AR,0 is the area swept out from s = 0 and A′
R is the value of AR,0 at w = 0 (see

Fig. 27.6). Then in Eq. (27.2)
∫

c
2AR,0t ds − 2A′

R

∫

c
t ds = 0

and

2A′
R =

∫
c 2AR,0t ds

∫
c t ds

giving

2AR = 2AR,0 −
∫

c 2AR,0t ds
∫

c t ds
(27.3)

The axial constraint shear flow system, q�, is in equilibrium with the self-
equilibrating direct stress system. Thus, from Eq. (17.2)

∂q�

∂s
+ t

∂σ�

∂z
= 0
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Fig. 27.6 Computation of swept area AR.

Hence
∂q�

∂s
= −t

∂σ�

∂z

Substituting for σ� from Eq. (27.1) and noting that q� = 0 when s = 0, we have

q� =
∫ s

0
2AREt

d3θ

dz3 ds

or

q� = E
d3θ

dz3

∫ s

0
2ARt ds (27.4)

Now

T� =
∫

c
pRq� ds

or, from Eq. (27.4)

T� = E
d3θ

dz3

∫

c
pR

(∫ s

0
2ARt ds

)
ds

The integral in this equation is evaluated by substituting pR = (d/ds)(2AR) and
integrating by parts. Thus

∫

c

d

ds
(2AR)

(∫ s

0
2ARt ds

)
ds =

[
2AR

∫ s

0
2ARt ds

]

c
−

∫

c
4A2

Rt ds

At each open edge of the beam q�, and therefore
∫ s

0 2ARt ds, is zero so that the integral
reduces to − ∫

c 4A2
Rt ds, giving

T� = −E�R
d3θ

dz3 (27.5)

where �R = ∫
c 4A2

Rt ds, the torsion-bending constant, and is purely a function of the
geometry of the cross-section. The total torque T , which is the sum of the St. Venant
torque and the Wagner torsion bending torque, is then written

T = GJ
dθ

dz
− E�R

d3θ

dz3 (27.6)
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(Note: Compare Eq. (27.6) with the expression derived for the I-section beam.)
In the expression for �R the thickness t is actually the direct stress carrying thickness

tD of the beam wall so that �R, for a beam with n booms, may be generally written

�R =
∫

c
4A2

RtD ds +
n∑

r=1

(2AR,r)2Br

where Br is the cross-sectional area of the rth boom. The calculation of �R enables
the second order differential equation in dθ/dz (Eq. (27.6)) to be solved. The constraint
shear flows, q�, follow from Eqs (27.4) and (27.3) and the longitudinal constraint
stresses from Eq. (27.1). However, before illustrating the complete method of solution
with examples we shall examine the calculation of �R.

So far we have referred the swept area AR, and hence �R, to the centre of twist of
the beam without locating its position. This may be accomplished as follows. At any
section of the beam the resultant of the q� shear flows is a pure torque (as is the resultant
of the St. Venant shear stresses) so that in Fig. 27.7

∫

c
q� sin ψ ds = Sy = 0

Therefore, from Eq. (27.4)

E
d3θ

dz3

∫

c

(∫ s

0
2ARt ds

)
sin ψ ds = 0

Now

sin ψ = dy

ds

d

ds
(2AR) = pR

and the above expression may be integrated by parts, thus
∫

c

dy

ds

(∫ s

0
2ARt ds

)
ds =

[
y
∫ s

0
2ARt ds

]

c
−

∫

c
y2ARt ds = 0

The first term on the right-hand side vanishes as
∫ s

0 2ARt ds is zero at each open edge
of the beam, leaving

∫

c
y2ARt ds = 0

Fig. 27.7 Determination of the position of the centre of twist.
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Again integrating by parts
∫

c
y2ARt ds =

[
2AR

∫ s

0
yt ds

]

c
−

∫

c
pR

(∫ s

0
yt ds

)
ds = 0

The integral in the first term on the right-hand side of the above equation may be
recognized, from Chapter 17, as being directly proportional to the shear flow produced
in a singly symmetrical open section beam supporting a shear load Sy. Its value is
therefore zero at each open edge of the beam. Hence

∫

c
pR

(∫ s

0
yt ds

)
ds = 0 (27.7)

Similarly, for the horizontal component Sx to be zero
∫

c
pR

(∫ s

0
xt ds

)
ds = 0 (27.8)

Equations (27.7) and (27.8) hold if the centre of twist coincides with the shear centre
of the cross-section. To summarize, the centre of twist of a section of an open section
beam carrying a pure torque is the shear centre of the section.

We are now in a position to calculate �R. This may be done by evaluating
∫

c 4A2
Rt ds in

which 2AR is given by Eq. (27.3). In general, the calculation may be lengthy unless the
section has flat sides in which case a convenient analogy shortens the work considerably.
For the flat-sided section in Fig. 27.8(a) we first plot the area 2AR,0 swept out from the
point 1 where we choose s = 0 (Fig. 27.8(b)). The swept area AR,0 increases linearly
from zero at 1 to (1/2)p12d12 at 2 and so on. Note that movement along side 23 produces
no increment of 2AR,0 as p23 = 0. Further, we adopt a sign convention for p such that
p is positive if movement in the positive s direction of the foot of p along the tangent
causes anticlockwise rotation about R. The increment of 2AR,0 from side 34 is therefore
negative.

In the derivation of Eq. (27.3) we showed that

2A′
R =

∫
c 2AR,0t ds

∫
c t ds

Fig. 27.8 Computation of torsion bending constant �R: (a) dimensions of flat-sided open section beam; (b) variation
of 2AR,0 around beam section.
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Suppose now that the line 1′2′3′ . . . 6′ is a wire of varying density such that the weight
of each element δs′ is tδs. Thus the weight of length 1′2′ is td12, etc. The y coordinate
of the centre of gravity of the ‘wire’ is then

ȳ =
∫

yt ds
∫

t ds

Comparing this expression with the previous one for 2A′
R, y and ȳ are clearly analogous

to 2AR,0 and 2A′
R, respectively. Further

�R =
∫

c
(2AR)2t ds =

∫

c
(2AR,0 − 2A′

R)2t ds

Expanding and substituting

2A′
R

∫

c
t ds for

∫

c
2AR,0t ds

gives

�R =
∫

c
(2AR,0)2t ds − (2A′

R)2
∫

c
t ds (27.9)

Therefore, in Eq. (27.9), �R is analogous to the moment of inertia of the ‘wire’ about
an axis through its centre of gravity parallel to the s axis.

Example 27.1
An open section beam of length L has the section shown in Fig. 27.9. The beam is firmly
built-in at one end and carries a pure torque T . Derive expressions for the direct stress
and shear flow distributions produced by the axial constraint (the σ� and q� systems)
and the rate of twist of the beam.

The beam is loaded by a pure torque so that the axis of twist passes through the shear
centre S(R) of each section. We shall take the origin for s at the point 1 and initially plot
2AR,0 against s to determine �R (see Fig. 27.10). The position of the centre of gravity,
(2A′

R), of the wire 1′2′3′4′ is found by taking moments about the s axis. Then

t(2d + h)2A′
R = td

(
hd

4

)
+ th

(
hd

2

)
+ td

(
hd

4

)

from which

2A′
R = hd(h + d)

2(h + 2d)
(i)

�R follows from the moment of inertia of the ‘wire’ about an axis through its centre of
gravity. Hence

�R = 2td
1

3

(
hd

2

)2

+ th

(
hd

2

)2

−
[

hd(h + d)

2(h + 2d)

]2

t(h + 2d)

which simplifies to

�R = t d3h2

12

(
2h + d

h + 2d

)
(ii)
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t

Fig. 27.9 Section of axially constrained open section beam under torsion.

Fig. 27.10 Calculation of �R for the section of Example 27.1.

Equation (27.6), i.e.

T = GJ
dθ

dz
− E�R

d3θ

dz3

may now be solved for dθ/dz. Rearranging and writing µ2 = GJ/E�R we have

d3θ

dz3 − µ2 dθ

dz
= −µ2 T

GJ
(iii)

The solution of Eq. (iii) is of standard form, i.e.

dθ

dz
= T

GJ
+ A cosh µz + B sinh µz

The constants A and B are found from the boundary conditions:

(1) At the built-in end the warping w = 0 and since w = −2ARdθ/dz then dθ/dz = 0
at the built-in end.

(2) At the free end σ� = 0, as there is no constraint and no externally applied direct
load. Therefore, from Eq. (27.1), d2θ/dz2 = 0 at the free end.

From (1)

A = −T/GJ



Ch27-H6739.tex 23/1/2007 12: 41 Page 727

27.2 Torsion of an arbitrary section beam 727

Fig. 27.11 Stiffening effect of axial constraint.

From (2)

B = (T/GJ) tanh µL

so that
dθ

dz
= T

GJ
(1 − cosh µz + tanh µL sinh µz)

or

dθ

dz
= T

GJ

[
1 − cosh µ(L − z)

cosh µL

]
(iv)

The first term in Eq. (iv) is seen to be the rate of twist derived from the St. Venant
torsion theory. The hyperbolic second term is therefore the modification introduced by
the axial constraint. Equation (iv) may be integrated to find the distribution of angle of
twist θ, the appropriate boundary condition being θ = 0 at the built-in end, i.e.

θ = T

GJ

[
z + sinh µ(L − z)

µ cosh µL
− sinh µL

µ cosh µL

]
(v)

and the angle of twist, θF,E, at the free end of the beam is

θF,E = TL

GJ

(
1 − tanh µL

µL

)
(vi)

Plotting θ against z (Fig. 27.11) illustrates the stiffening effect of axial constraint on
the beam.

The decrease in the effect of axial constraint towards the free end of the beam is shown
by an examination of the variation of the St. Venant (TJ ) and Wagner (T�) torques along
the beam. From Eq. (iv)

TJ = GJ
dθ

dz
= T

[
1 − cosh µ(L − z)

cosh µL

]
(vii)

and

T� = −E�R
d3θ

dz3 = T
cosh µ(L − z)

cosh µL
(viii)

TJ and T� are now plotted against z as fractions of the total torque T (Fig. 27.12). At
the built-in end the entire torque is carried by the Wagner stresses, but although the
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Fig. 27.12 Distribution of St. Venant and torsion-bending torques along the length of the open section beam shown
in Fig. 27.9.

Fig. 27.13 Distribution of axial constraint direct stress around the section.

constraint effect diminishes towards the free end it does not disappear entirely. This is
due to the fact that the axial constraint shear flow, q�, does not vanish at z = L, for at
this section (and all other sections) d3θ/dz3 is not zero.

Equations (iii)–(viii) are, of course, valid for open section beams of any cross-section.
Their application in a particular case is governed by the value of the torsion bending
constant �R and the St. Venant torsion constant J[= (h + 2d)t3/3 for this example].
With this in mind we can proceed, as required by the example, to derive the direct
stress and shear flow distributions. The former is obtained from Eqs (27.1) and (iv), i.e.

σ� = −2ARE
T

GJ
µ

sinh µ(L − z)

cosh µL

or writing µ2 = GJ/E�R and rearranging

σ� = −
√

E

GJ�R
T2AR

sinh µ(L − z)

cosh µL
(ix)

In Eq. (ix) E, G, J and �R are constants for a particular beam, T is the applied torque,
AR is a function of s and the hyperbolic term is a function of z. It follows that at a
given section of the beam the direct stress is proportional to −2AR, and for the beam
of this example the direct stress distribution has, from Fig. 27.10, the form shown in
Figs 27.13(a) and (b). In addition, the value of σ� at a particular value of s varies along
the beam in the manner shown in Fig. 27.14.

Finally, the axial constraint shear flow, q�, is obtained from Eq. (27.4), namely

q� = E
d3θ

dz3

∫ s

0
2ARt ds
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Fig. 27.14 Spanwise distribution of axial constraint direct stress.

Fig. 27.15 Calculation of axial constraint shear flows.

At any section z, q� is proportional to
∫ s

0 2ARt ds and is computed as follows. Referring
to Fig. 27.15, 2AR = 2AR,0 − 2A′

R so that in flange 12

2AR = hs1

2
− hd

2

(
h + d

h + 2d

)

Hence
∫ s

0
2ARt ds = t

[
hs2

1

4
− hd

2

(
h + d

h + 2d

)
s1

]

so that

q�,1 = 0 and q�,2 = −E
d3θ

dz3

h2d2t

4(h + 2d)

Similarly

q�,23 = E
d3θ

dz3

[
hd2t

2(h + 2d)
s2 − h2d2t

4(h + 2d)

]

whence

q�,2 = −E
d3θ

dz3

h2d2t

4(h + 2d)
q�,3 = E

d3θ

dz3

h2d2t

4(h + 2d)

Note that in the above d3θ/ dz3 is negative (Eq. (viii)). Also at the mid-point of the web
where s2 = h/2, q� = 0. The distribution on the lower flange follows from antisymmetry
and the distribution of q� around the section is of the form shown in Fig. 27.16.



Ch27-H6739.tex 23/1/2007 12: 41 Page 730

730 Open section beams

Fig. 27.16 Distribution of axial constraint shear flows.

The spanwise variation of q� has the same form as the variation of T� since

T� = −E�R
d3θ

dz3

giving

q� = − T�

�R

∫ s

0
2ARt ds from Eq. (27.4)

Hence for a given value of s, (
∫ s

0 2ARt ds), q� is proportional to T� (see Fig. 27.12).

27.3 Distributed torque loading

We now consider the more general case of a beam carrying a distributed torque loading.
In Fig. 27.17 an element of a beam is subjected to a distributed torque of intensity Ti(z),
i.e. a torque per unit length. At the section z the torque comprises the St. Venant torque
TJ plus the torque due to axial constraint T�. At the section z + δz the torque increases
to T + δT (= TJ + δTJ + T� + δT�) so that for equilibrium of the beam element

TJ + δTJ + T� + δT� + Ti(z)δz − TJ − T� = 0

or

−Ti(z)δz = δTJ + δT� = δT

Fig. 27.17 Beam carrying a distributed torque loading.
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Hence
dT

dz
= −Ti(z) = dTJ

dz
+ dT�

dz
(27.10)

Now

TJ = GJ
dθ

dz
(Eq. (18.12))

and

T� = −E�
d3θ

dz3 (Eq. (27.5))

so that Eq. (27.10) becomes

E�
d4θ

dz4 − GJ
d2θ

dz2 = Ti(z) (27.11)

The solution of Eq. (27.11) is again of standard form in which the constants of
integration are found from the boundary conditions of the particular beam under con-
sideration. For example, for a cantilever beam of length L in which the origin for z is
at the built-in end and which is subjected to a uniform torque loading, the boundary
conditions are:

when z = L, d2θ/dz2 = 0 (from Eq. (27.1))
when z = 0, dθ/dz = 0 (since the warping is zero at the built-in end, see Eq. (18.19))
when z = L, d3θ/dz3 = 0 (since T� = TJ = T = 0 at the free end, see Eq. (27.5))
when z = 0, θ = 0 (there is no rotation at the built-in end).

27.4 Extension of the theory to allow for general systems
of loading

So far we have been concerned with open section beams subjected to torsion in which,
due to constraint effects, axial stresses are induced. Since pure torsion can generate
axial stresses it is logical to suppose that certain distributions of axial stress applied as
external loads will cause twisting. The problem is to determine that component of an
applied direct stress system which causes twisting.

Figure 27.18 shows the profile of a thin-walled open section beam subjected to a
general system of loads which produce longitudinal, transverse and rotational displace-
ments of its cross-section. In the analysis we assume that the cross-section of the beam
is undistorted by the loading and that displacements corresponding to the shear strains
are negligible. In Fig. 27.18 the tangential displacement vt is given by Eq. (17.7), i.e.

vt = pRθ + u cos ψ + v sin ψ (27.12)

Also, since shear strains are assumed to be negligible, Eq. (17.6) becomes

γ = ∂w

∂s
+ ∂vt

∂z
= 0 (27.13)
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Fig. 27.18 Cross-section of an open section beam subjected to a general system of loads.

Substituting for vt in Eq. (27.13) from (27.12) and integrating from the origin for s to
any point s around the cross-section, we have

ws − w0 = −dθ

dz
2AR,0 − du

dz
(x − x0) − dv

dz
(y − y0) (27.14)

where 2AR,0 = ∫ s
0 pR ds. The direct stress at any point in the wall of the beam is given by

σz = E
∂ws

∂z
Therefore, from Eq. (27.14)

σz = E

[
∂w0

∂z
− d2θ

dz2 2AR,0 − d2u

dz2 (x − x0) − d2v

dz2 (y − y0)

]
(27.15)

Now AR,0 = A′
R + AR (Fig. 27.18) so that Eq. (27.15) may be rewritten

σz = f1(z) − E
d2θ

dz2 2AR − E
d2u

dz2 x − E
d2v

dz2 y (27.16)

in which

f1(z) = E

(
∂w0

∂z
− d2θ

dz2 2A′
R + d2u

dz2 x0 + d2v

dz2 y0

)

The axial load P on the section is given by

P =
∫

c
σzt ds = f1(z)

∫

c
t ds − E

d2θ

dz2

∫

c
2ARt ds − E

d2u

dz2

∫

c
tx ds − E

d2v

dz2

∫

c
ty ds

where
∫

c denotes integration taken completely around the section. From Eq. (27.2) we
see that

∫
c 2ARt ds = 0. Also, if the origin of axes coincides with the centroid of the

section
∫

c tx ds = ∫
c ty ds = 0 and

∫
ty ds = 0 so that

P =
∫

c
σzt ds = f1(z)A (27.17)

in which A is the cross-sectional area of the material in the wall of the beam.
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The component of bending moment, Mx, about the x axis is given by

Mx =
∫

c
σzty ds

Substituting for σz from Eq. (27.16) we have

Mx = f1(z)
∫

c
ty ds − E

d2θ

dz2

∫

c
2ARty ds − E

d2u

dz2

∫

c
txy ds − E

d2v

dz2

∫

c
ty2 ds

We have seen in the derivation of Eqs (27.7) and (27.8) that
∫

c 2ARty ds = 0. Also since

∫

c
ty ds = 0

∫

c
txy ds = Ixy

∫

c
ty2 ds = Ixx

Mx = −E
d2u

dz2 Ixy − E
d2v

dz2 Ixx (27.18)

Similarly

My =
∫

c
σztx ds = −E

d2u

dz2 Iyy − E
d2v

dz2 Ixy (27.19)

Equations (27.18) and (27.19) are identical to Eqs (16.31) so that from Eqs (16.29)

E
d2u

dz2 = MxIxy − MyIxx

IxxIyy − I2
xy

E
d2v

dz2 = −MxIyy + MyIxy

IxxIyy − I2
xy

(27.20)

The first differential, d2θ/dz2, of the rate of twist in Eq. (27.16) may be isolated by
multiplying throughout by 2ARt and integrating around the section. Thus

∫

c
σz2ARt ds = f1(z)

∫

c
2ARt ds − E

d2θ

dz2

∫

c
(2AR)2t ds − E

d2u

dz2

∫

c
2ARtx ds

− E
d2v

dz2

∫

c
2ARty ds

As before
∫

c
2ARt ds = 0

∫

c
2ARtx ds =

∫

c
2ARty ds = 0

and
∫

c
(2AR)2t ds = �R

so that
∫

c
σz2ARt ds = −E�R

d2θ

dz2
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or

d2θ

dz2 = −
∫

c

σz2ARt ds

E�R
(27.21)

Substituting in Eq. (27.16) from Eqs (27.17), (27.20) and (27.21), we obtain

σz = P

A
+

(
MyIxx − MxIxy

IxxIyy − I2
xy

)

x +
(

MxIyy − MyIxy

IxxIyy − I2
xy

)

y + 2AR
∫

c σz2ARt ds

�R
(27.22)

The second two terms on the right-hand side of Eq. (27.22) give the direct stress due to
bending as predicted by elementary beam theory; note that the above approach provides
an alternative method of derivation of Eq. (16.18).

Comparing the last term on the right-hand side of Eq. (27.22) with Eq. (27.1), we
see that

2AR
∫

c σz2ARt ds

�R
= σ�

It follows therefore that the external application of a direct stress system σz induces
a self-equilibrating direct stress system σ�. Also, the first differential of the rate of
twist (d2θ/dz2) is related to the applied σz stress system through the term

∫
c σz2ARt ds.

Therefore, if
∫

c σz2ARt ds is interpreted in terms of the applied loads at a particular
section then a boundary condition exists (for d2θ/dz2) which determines one of the
constants in the solution of either Eq. (27.6) or (27.11).

27.5 Moment couple (bimoment)

The units of
∫

c σz2ARt ds are force × (distance)2 or moment × distance. A simple phys-
ical representation of this expression would thus consist of two equal and opposite
moments applied in parallel planes some distance apart. This combination has been
termed a moment couple1 or a bimoment2 and is given the symbol M� or Bω. Equation
(27.22) is then written

σz = P

A
+

(
MyIxx − MxIxy

IxxIyy − I2
xy

)

x +
(

MxIyy − MyIxy

IxxIyy − I2
xy

)

y + M�2AR

�R
(27.23)

As a simple example of the determination of M� consider the open section beam shown
in Fig. 27.19 which is subjected to a series of concentrated loads P1, P2, …, Pk , …, Pn
parallel to its longitudinal axis. The term σzt ds in

∫
c σz2ARtds may be regarded as a

concentrated load acting at a point in the wall of the beam. Thus,
∫

c σz2ARt ds becomes∑n
k=1 Pk2ARk and hence

M� =
n∑

k=1

PR2ARk (27.24)

M� is determined for a range of other loading systems in Ref. [2].
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Fig. 27.19 Open section beam subjected to concentrated loads parallel to its longitudinal axis.

Fig. 27.20 Column of Example 27.2.

Example 27.2
The column shown in Fig. 27.20(a) carries a vertical load of 100 kN. Calculate the
angle of twist at the top of the column and the distribution of direct stress at its base.
E = 200 000 N/mm2 and G/E = 0.36.

The centre of twist R of the column cross-section coincides with its shear centre at
the mid-point of the web 23. The distribution of 2AR is obtained by the method detailed
in Example 27.1 and is shown in Fig. 27.21. The torsion bending constant �R is given
by Eq. (ii) of Example 27.1 and has the value 2.08 × 1010 mm6. The St. Venant torsion
constant J = 	st3/3 = 0.17 × 105 mm4 so that

√
GJ/E�R (=µ in Eq. (iii) of Example

27.1) = 0.54 × 10−3. Since no torque is applied to the column the solution of Eq. (iii)
in Example 27.1 is

dθ

dz
= C cosh µz + D sinh µz (i)

At the base of the column warping of the cross-section is suppressed so that, from Eq.
(18.19), dθ/dz = 0 when z = 0. Substituting in Eq. (i) gives C = 0. The moment couple
at the top of the column is obtained from Eq. (27.24) and is

M� = P2AR = −100 × 2.5 × 103 = −25 × 105 kN mm2
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Fig. 27.21 Distribution of area 2AR in the column of Example 27.2.

Therefore, from Eq. (27.21) and noting that
∫

c σz2ARt ds = M�, we have

d2θ

dz2 = 2.5 × 105 × 103

200 000 × 2.08 × 1010 = 0.06 × 10−6/mm2

at z = 3000 mm. Substitution in the differential of Eq. (i) gives D = 0.04 × 10−3 so that
Eq. (i) becomes

dθ

dz
= 0.04 × 10−3 sinh 0.54 × 10−3 z (ii)

Integration of Eq. (ii) gives

θ = 0.08 cosh 0.54 × 10−3 z + F

At the built-in end (z = 0) θ = 0 so that F = −0.08. Hence

θ = 0.08(cosh 0.54 × 10−3z − 1) (iii)

At the top of the column (z = 3000 mm) the angle of twist is then

θ(top) = 0.08 cosh 0.54 × 10−3 × 3000 = 0.21 rad(12.01◦)

The axial load is applied through the centroid of the cross-section so that no bending
occurs and Eq. (27.23) reduces to

σz = P

A
+ M�2AR

�R
(iv)

At the base of the column

(M�)z=0 = −E�R

(
d2θ

dz2

)

z=0
(see Eq. (27.21))

Therefore, from Eq. (ii)

(M�)z=0 = −200 000 × 2.08 × 1010 × 0.02 × 10−6 = −83.2 × 106 N mm2
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The direct stress distribution at the base of the column is then, from Eq. (iv)

σz = −100 × 103

400 × 5
− 83.2 × 106

2.08 × 1010 2AR

or

σz = −50 − 4.0 × 10−3 2AR

The direct stress distribution is therefore linear around the base of the column (see
Fig. 27.21) with

σz1 = σz4 = 20.0 N/mm2

σz2 = σz3 = −68.0 N/mm2

27.5.1 Shear flow due to M�

The self-equilibrating shear flow distribution, q�, produced by axial constraint is
given by

∂q�

∂s
= −t

∂σ�

∂z
(see derivation of Eq. (27.4))

From the last term on the right-hand side of Eqs (27.23)

∂σ�

∂z
= ∂M�

∂z

2AR

�R

From Eq. (27.21)

M� = −E�R
d2θ

dz2

so that

∂M�

∂z
= −E�R

d2θ

dz3 = T� (see Eq. (27.5))

Hence
∂q�

∂s
= −T�

2ARt

�R

and

q� = − T�

�R

∫ s

0
2ARt ds (as before)
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Problems

P.27.1 An axially symmetric beam has the thin-walled cross-section shown in Fig.
P.27.1. If the thickness t is constant throughout and making the usual assumptions for a
thin-walled cross-section, show that the torsion bending constant �R calculated about
the shear centre S is

�R = 13

12
d5 t

Fig. P.27.1

P.27.2 A uniform beam has the point-symmetric cross-section shown in Fig. P.27.2.
Making the usual assumptions for a thin-walled cross-section, show that the torsion-
bending constant � calculated about the shear centre S is � = 8

3 a5tsin22α. The thickness
t is constant throughout.

Fig. P.27.2

P.27.3 The thin-walled section shown in Fig. P.27.3 consists of two semicircular
arcs of constant thickness t. Show that the torsion bending constant about the shear
centre S is

� = π2r5t

(
π

3
− 3

π

)

Fig. P.27.3
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P.27.4 A thin-walled, I-section beam, of constant wall thickness t, is mounted as a
cantilever with its web horizontal. At the tip, a downward force is applied in the plane
of one of the flanges, as shown in Fig. P.27.4. Assuming the necessary results of the
elementary theory of bending, the St. Venant theory of torsion and the Wagner torsion-
bending theory, determine the distribution of direct stress over the cross-section at the
supported end.

Take

E/G = 2.6 P = 200 N

h = 75 mm d = 37.5 mm

t = 2.5 mm l = 375 mm

Ans. −σ1 = σ3 = 108.9 N/mm2, σ6 = −σ5 = 18.9 N/mm2, σ2 = σ4 = σ24 = 0.

Fig. P.27.4

P.27.5 An open section beam of length 2l, whose ends are free to warp, consists
of two uniform portions of equal length l, as shown in Fig. P.27.5. The cross-sections
of the two halves are identical except that the thickness in one half is t and in the other
2t. If the St. Venant torsion constant and the torsion-bending constant for the portion of
thickness t are J and �, respectively, show that when the beam is loaded by a constant
torque T the relative twist between the free ends is given by

θ = Tl

8GJ

[
9 − 49 sinh 2µl

2µl(10 cosh2 µl − 1)

]

where

µ2 = GJ/E� and G = shear modulus (constant throughout)

Fig. P.27.5

P.27.6 A thin-walled cantilever beam of length L has the cross-section shown in
Fig. P.27.6 and carries a load P positioned as shown at its free end. Determine the
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torsion bending constant for the beam section and derive an expression for the angle
of twist θT at the free end of the beam. Calculate the value of this angle for P = 100 N,
a = 30 mm, L = 1000 mm, t = 2.0 mm, E = 70 000 N/mm2 and G = 25 000 N/mm2

Ans. � = 1.25a5t θT = 6.93◦.

θ� = TL

GJ

[
1 − tanh µL

µL

]

a

t

2a

a

a/2

a/2

Fig. P.27.6

P.27.7 Determine the torsion bending constant for the thin-walled beam shown in
Fig. P.27.7 and also derive an expression for the angle of twist at its free end.

B

A

h t

d

L

L

T

T

C

Fig. P.27.7
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Ans. � = th2d3/24 θT = T

GJ

(
L − sinh µL

µL cosh 2µL

)

P.27.8 A thin-walled cantilever beam of length L has the cross-section shown in
Fig. P.27.8 and carries an anticlockwise torque T at its free end. Determine the torsion
bending constant for the beam section and derive an expression for the rate of twist
along the length of the beam.

In a practical case the beam supports a shear load of 150 N at its free end applied
vertically upwards in the plane of the web. If L = 500 mm, a = 20 mm, t = 1.0 mm
and G/E = 0.3 calculate the value of direct stress at the point 2 including both axial
constraint and elementary bending stresses.

Ans. � = 7a5t/24
dθ

dz
= T

GJ

(
1 − cosh µ(L − z)

cosh µL

)

125.7 N/mm2 (compression).

2

3 4

a

a

at

Shear centre

1

3 a
8

Fig. P.27.8

P.27.9 Calculate the direct stress distribution (including both axial constraint and
elementary bending stresses) at the built-in end of the cantilever beam shown in
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Fig. P.27.9 for the case when w = 0.5 N/mm, L = 1500 mm, h = 200 mm, d = 50 mm,
t = 5 mm and E/G = 3.0.

Ans. σ1 = −σ3 = 197.5 N/mm2 σ2 = σ5 = 0 σ4 = −σ6 = −72.5 N/mm2.

3

2

1

5

6

h t

d

L

w/unit le
ngth

Fig. P.27.9
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Wing problems

Aircraft structures, being extremely flexible, are prone to distortion under load. When
these loads are caused by aerodynamic forces, which themselves depend on the geom-
etry of the structure and the orientation of the various structural components to the
surrounding airflow, then structural distortion results in changes in aerodynamic load,
leading to further distortion and so on. The interaction of aerodynamic and elastic forces
is known as aeroelasticity.

28.1 Types of problem

Two distinct types of aeroelastic problem occur. One involves the interaction of aero-
dynamic and elastic forces of the type described above. Such interactions may exhibit
divergent tendencies in a too flexible structure, leading to failure, or, in an adequately
stiff structure, converge until a condition of stable equilibrium is reached. In this type
of problem static or steady state systems of aerodynamic and elastic forces produce
such aeroelastic phenomena as divergence and control reversal. The second class of
problem involves the inertia of the structure as well as aerodynamic and elastic forces.
Dynamic loading systems, of which gusts are of primary importance, induce oscilla-
tions of structural components. If the natural or resonant frequency of the component
is in the region of the frequency of the applied loads then the amplitude of the oscilla-
tions may diverge, causing failure. Also, as we observed in Chapter 15, the presence of
fluctuating loads is a fatigue hazard. For obvious reasons we refer to these problems as
dynamic. Included in this group are flutter, buffeting and dynamic response.

The various aeroelastic problems may be conveniently summarized in the form of a
‘tree’ as follows:

Aeroelasticity

Static stability ... Static Dynamic ... Dynamic 
    stability

Load 
distribution

Divergence Control 
reversal

Flutter Buffeting Dynamic 
response
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In this chapter we shall concentrate on the purely structural aspects of aeroelasticity;
its effect on aircraft static and dynamic stability is treated in books devoted primarily
to aircraft stability and control.1,2

28.2 Load distribution and divergence

Redistribution of aerodynamic loads and divergence are closely related aeroelastic phe-
nomena; we shall therefore consider them simultaneously. It is essential in the design
of structural components that the aerodynamic load distribution on the component is
known. Wing distortion, for example, may produce significant changes in lift distribu-
tion from that calculated on the assumption of a rigid wing, especially in instances of
high wing loadings such as those experienced in manoeuvres and gusts. To estimate
actual lift distributions the aerodynamicist requires to know the incidence of the wing
at all stations along its span. Obviously this is affected by any twisting of the wing
which may be present.

Let us consider the case of a simple straight wing with the centre of twist behind
the aerodynamic centre (see Fig. 28.1). The moment of the lift vector about the centre
of twist causes an increase in wing incidence which produces a further increase in
lift, leading to another increase in incidence and so on. At speeds below a critical
value, called the divergence speed, the increments in lift converge to a condition of
stable equilibrium in which the torsional moment of the aerodynamic forces about the
centre of twist is balanced by the torsional rigidity of the wing. The calculation of
lift distribution then proceeds from a knowledge of the distribution of twist along the
wing. For a straight wing the redistribution of lift usually causes an outward spanwise
movement of the centre of pressure, resulting in greater bending moments at the wing
root. In the case of a swept wing a reduction in streamwise incidence of the outboard
sections due to bending deflections causes a movement of the centre of pressure towards
the wing root.

All aerodynamic surfaces of the aircraft suffer similar load redistribution due to
distortion.

28.2.1 Wing torsional divergence (two-dimensional case)

The most common divergence problem is the torsional divergence of a wing. It is
useful, initially, to consider the case of a wing of area S without ailerons and in a

Fig. 28.1 Increase of wing incidence due to wing twist.
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two-dimensional flow, as shown in Fig. 28.2. The torsional stiffness of the wing, which
we shall represent by a spring of stiffness, K , resists the moment of the lift vector,
L, and the wing pitching moment, M0, acting at the aerodynamic centre of the wing
section. For moment equilibrium of the wing section about the aerodynamic centre we
have

M0 + Lec = Kθ (28.1)

where ec is the distance of the aerodynamic centre forward of the flexural centre
expressed in terms of the wing chord, c, and θ is the elastic twist of the wing. From
aerodynamic theory

M0 = 1

2
ρV2ScCM,0 L = 1

2
ρV2SCL

Substituting in Eq. (28.1) yields

1

2
ρV2S(cCM,0 + ecCL) = Kθ

or, since

CL = CL,0 + ∂CL

∂α
(α + θ)

in which α is the initial wing incidence or, in other words, the incidence corresponding
to given flight conditions assuming that the wing is rigid and CL,0 is the wing lift
coefficient at zero incidence, then

1

2
ρV2S

[
cCM,0 + ecL,0 + ec

∂CL

∂α
(α + θ)

]
= Kθ

where ∂CL/∂α is the wing lift curve slope. Rearranging gives

θ

(
K − 1

2
ρV2Sec

∂CL

∂α

)
= 1

2
ρV2Sc

(
CM,0 + eCL,0 + e

∂CL

∂α
α

)

Fig. 28.2 Determination of wing divergence speed (two-dimensional case).
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or

θ =
1
2ρV2Sc[CM,0 + eCL,0 + e(∂CL/∂α)α]

K − 1
2ρV2Sec(∂CL/∂α)

(28.2)

Equation (28.2) shows that divergence occurs (i.e. θ becomes infinite) when

K = 1

2
ρV2Sec

∂CL

∂α

The divergence speed Vd is then

Vd =
√

2K

ρSec(∂CL/∂α)
(28.3)

We see from Eq. (28.3) that Vd may be increased either by stiffening the wing (increasing
K) or by reducing the distance ec between the aerodynamic and flexural centres. The
former approach involves weight and cost penalties so that designers usually prefer
to design a wing structure with the flexural centre as far forward as possible. If the
aerodynamic centre coincides with or is aft of the flexural centre then the wing is stable
at all speeds.

28.2.2 Wing torsional divergence (finite wing)

We shall consider the simple case of a straight wing having its flexural axis nearly
perpendicular to the aircraft’s plane of symmetry (Fig. 28.3(a)). We shall also assume
that wing cross-sections remain undistorted under the loading. Applying strip theory

Fig. 28.3 Determination of wing divergence speed (three-dimensional case).
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in the usual manner, i.e. we regard a small element of chord c and spanwise width δz
as acting independently of the remainder of the wing and consider its equilibrium, we
have from Fig. 28.3(b), neglecting wing weight

(
T + dT

dz
δz

)
− T + �Lec + �M0 = 0 (28.4)

where T is the applied torque at any spanwise section z and �L and �M0 are the lift and
pitching moment on the elemental strip acting at its aerodynamic centre, respectively.
As δz approaches zero, Eq. (28.4) becomes

dT

dz
+ ec

dL

dz
+ dM0

dz
= 0 (28.5)

In Eq. (28.4)

�L = 1

2
ρV2cδz

∂c1

∂α
(α + θ)

where ∂c1/∂α is the local two-dimensional lift curve slope and

�M0 = 1

2
ρV2c2δzcm,0

in which cm,0 is the local pitching moment coefficient about the aerodynamic centre.
Also from torsion theory (see Chapter 3) T = GJ dθ/dz. Substituting for L, M0 and T
in Eq. (28.5) gives

d2θ

dz2 +
1
2ρV2ec2(∂c1/∂α)θ

GJ
= − 1

2ρV2ec2(∂c1/∂α)α

GJ
−

1
2ρV2c2cm,0

GJ
(28.6)

Equation (28.6) is a second-order differential equation in θ having a solution of the
standard form

θ = A sin λz + B cos λz −
[

cm,0

e(∂c1/∂α)
+ α

]
(28.7)

where

λ2 =
1
2ρV2ec2(∂c1/∂α)

GJ
and A and B are unknown constants that are obtained from the boundary conditions;
namely, θ = 0 when z = 0 at the wing root and dθ/dz = 0 at z = s since the torque is zero
at the wing tip. From the first of these

B =
[

cm,0

e(∂c1/∂α)
+ α

]

and from the second

A =
[

cm,0

e(∂c1/∂α)
+ α

]
tan λs
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Hence

θ =
[

cm,0

e(∂c1/∂α)
+ α

]
( tan λs sin λz + cos λz − 1) (28.8)

or rearranging

θ =
[

cm,0

e(∂c1/∂α)
+ α

] [
cos λ(s − z)

cos λs
− 1

]
(28.9)

Therefore, at divergence when the elastic twist, θ, becomes infinite

cos λs = 0

so that

λs = (2n + 1)
π

2
for n = 0, 1, 2, . . . , ∞ (28.10)

The smallest value corresponding to the divergence speed Vd occurs when n = 0, thus

λs = π/2

or

λ2 = π2/4s2

from which

Vd =
√

π2GJ

2ρec2s2(∂c1/∂α)
(28.11)

Mathematical solutions of the type given in Eq. (28.10) rarely apply with any accur-
acy to actual wing or tail surfaces. However, they do give an indication of the order of the
divergence speed, Vd. In fact, when the two-dimensional lift-curve slope, ∂c1/∂α, is used
they lead to conservative estimates of Vd. It has been shown that when ∂c1/∂α is replaced
by the three-dimensional lift-curve slope of the finite wing, values of Vd become very
close to those determined from more sophisticated aerodynamic and aeroelastic theory.

The lift distribution on a straight wing, accounting for the elastic twist, is found by
introducing a relationship between incidence and lift distribution from aerodynamic
theory. In the case of simple strip theory the local wing lift coefficient, c1, is given by

c1 = ∂c1

∂α
(α + θ)

in which the distribution of elastic twist θ is known from Eq. (28.9).

28.2.3 Swept wing divergence

In the calculation of divergence speeds of straight wings the flexural axis was taken
to be nearly perpendicular to the aircraft’s plane of symmetry. Bending of such wings
has no influence on divergence, this being entirely dependent on the twisting of the
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Fig. 28.4 Effect of wing sweep on wing divergence speed.

wing about its flexural axis. This is no longer the case for a swept wing where the
spanwise axes are inclined to the aircraft’s plane of symmetry. Let us consider the
swept wing of Fig. 28.4. The wing lift distribution causes the wing to bend in an
upward direction. Points A and B on a line perpendicular to the reference axis will
deflect by approximately the same amount, but this will be greater than the deflection
of A′ which means that bending reduces the streamwise incidence of the wing. The
corresponding negative increment of lift opposes the elastic twist, thereby reducing the
possibility of wing divergence. In fact, the divergence speed of swept wings is so high
that it poses no problems for the designer. Diederich and Budiansky in 1948 showed
that wings with moderate or large sweepback cannot diverge. The opposite of course
is true for swept-forward wings where bending deflections have a destabilizing effect
and divergence speeds are extremely low. The determination of lift distributions and
divergence speeds for swept-forward wings is presented in Ref. [3].

28.3 Control effectiveness and reversal

The flexibility of the major aerodynamic surfaces (wings, vertical and horizontal tails)
adversely affects the effectiveness of the corresponding control surfaces (ailerons,
rudder and elevators). For example, the downward deflection of an aileron causes a
nose-down twisting of the wing which consequently reduces the aileron incidence.
Thus, the wing twist tends to reduce the increase in lift produced by the aileron deflec-
tion, and thereby the rolling moment to a value less than that for a rigid wing. The
aerodynamic twisting moment on the wing due to aileron deflection increases as the
square of the speed but the elastic restoring moment is constant since it depends on
the torsional stiffness of the wing structure. Therefore, ailerons become markedly less
effective as the speed increases until, at a particular speed, the aileron reversal speed,
aileron deflection does not produce any rolling moment at all. At higher speeds reversed
aileron movements are necessary in that a positive increment of wing lift requires an
upward aileron deflection and vice versa.

Similar, less critical, problems arise in the loss of effectiveness and reversal of the
rudder and elevator controls. They are complicated by the additional deformations of
the fuselage and tailplane–fuselage attachment points, which may be as important as the
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deformations of the tailplane itself. We shall concentrate in this section on the problem
of aileron effectiveness and reversal.

28.3.1 Aileron effectiveness and reversal (two-dimensional case)

We shall illustrate the problem by investigating, as in Section 28.1, the case of a wing-
aileron combination in a two-dimensional flow. In Fig. 28.5 an aileron deflection ξ

produces changes �L and �M0 in the wing lift, L, and wing pitching moment, M0;
these in turn cause an elastic twist, θ, of the wing. Thus

�L =
(

∂CL

∂α
θ + ∂CL

∂ξ
ξ

)
1

2
ρV2S (28.12)

where ∂CL/∂α has been previously defined and ∂CL/∂ξ is the rate of change of lift
coefficient with aileron angle. Also

�M0 = ∂CM,0

∂ξ
ξ

1

2
ρV2Sc (28.13)

in which ∂CM,0/∂ξ is the rate of change of wing pitching moment coefficient with aileron
deflection. The moment produced by these increments in lift and pitching moment is
equilibrated by an increment of torque �T about the flexural axis. Hence

�T = Kθ = 1

2
ρV2Sc

[(
∂CL

∂α
θ + ∂CL

∂ξ
ξ

)
e + ∂CM,0

∂ξ
ξ

]
(28.14)

Isolating θ from Eq. (28.14) gives

θ =
1
2ρV2Sc[(∂CL/∂ξ)e + ∂CM,0/∂ξ]ξ

K − 1
2ρV2Sce(∂CL/∂α)

(28.15)

Fig. 28.5 Aileron effectiveness and reversal speed (two-dimensional case).
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Substituting for θ in Eq. (28.12) we have

�L = 1

2
ρV2S

[
1
2ρV2Sc{(∂CL/∂ξ)e + ∂CM,0/∂ξ}

K − 1
2ρV2Sce(∂CL/∂α)

∂CL

∂α
+ ∂CL

∂ξ

]

ξ

which simplifies to

�L = 1

2
ρV2S

[
[ 1

2ρV2Sc(∂CM,0/∂ξ)(∂CL/∂α) + K(∂CL/∂ξ)]

K − 1
2ρV2Sce(∂CL/∂α)

]

ξ (28.16)

The increment of wing lift is therefore a linear function of aileron deflection and
becomes zero, i.e. aileron reversal occurs, when

1

2
ρV2Sc

∂CM,0

∂ξ

∂CL

∂α
+ K

∂CL

∂ξ
= 0 (28.17)

Hence the aileron reversal speed, Vr , is, from Eq. (28.17)

Vr =
√

−K(∂CL/∂ξ)
1
2ρSC(∂CM,0/∂ξ)(∂CL/∂α)

(28.18)

We may define aileron effectiveness at speeds below the reversal speed in terms of
the lift �LR produced by an aileron deflection on a rigid wing. Thus

Aileron effectiveness = �L/�LR (28.19)

where

�LR = ∂CL

∂ξ
ξ

1

2
ρV2S (28.20)

Hence, substituting in Eq. (28.19) for �L from Eq. (28.16) and �LR from Eq. (28.20),
we have

Aileron effectiveness =
1
2ρV2Sc(∂CM,0/∂ξ)(∂CL/∂α) + K(∂CL/∂ξ)

[K − 1
2ρV2Sce(∂CL/∂α)]∂CL/∂ξ

(28.21)

Equation (28.21) may be expressed in terms of the wing divergence speed Vd and aileron
reversal speed Vr, using Eqs (28.3) and (28.18), respectively; hence

Aileron effectiveness = 1 − V2/V2
r

1 − V2/V2
d

(28.22)

We see that when Vd = Vr, which occurs when ∂CL/∂ξ = −(∂CM,0/∂ξ)/e, then the aileron
is completely effective at all speeds. Such a situation arises because the nose-down wing
twist caused by aileron deflection is cancelled by the nose-up twist produced by the
increase in wing lift.

Although the analysis described above is based on a two-dimensional case, it is
sometimes used in practice to give approximate answers for finite wings. The method
is to apply the theory to a representative wing cross-section at an arbitrary spanwise
station and use the local wing section properties in the formulae.
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28.3.2 Aileron effectiveness and reversal (finite wing)

We shall again apply strip theory to investigate the aeroelastic effects of aileron deflec-
tion on a finite wing. In Fig. 28.6(a) the deflection of the aileron through an angle ξ

produces a rolling velocity p rad/s, having the sense shown. The wing incidence at any
section z is thus reduced due to p by an amount pz/V . The downward aileron deflec-
tion shown here coincides with an upward deflection on the opposite wing, thereby
contributing to the rolling velocity p. The incidence of the opposite wing is therefore
increased by this direction of roll. Since we are concerned with aileron effects we con-
sider the antisymmetric lift and pitching moment produced by aileron deflection. Thus,
in Fig. 28.6(b), the forces and moments are changes from the level flight condition.

The lift �L on the strip shown in Fig. 28.6(b) is given by

�L = 1

2
ρV2cδz

[
∂c1

∂α

(
θ − pz

V

)
+ ∂c1

∂ξ
fa(z)ξ

]
(28.23)

where ∂c1/∂α has been previously defined and ∂c1/∂ξ is the rate of change of local
wing lift coefficient with aileron angle. The function fa(z) represents aileron forces
and moments along the span; for 0 ≤ z ≤ s1, fa(z) = 0 and for s1 ≤ z ≤ s, fa(z) = 1. The
pitching moment �M0 on the elemental strip is given by

�M0 = 1

2
ρV2c2δz

∂cm,0

∂ξ
fa(z)ξ (28.24)

in which ∂cm,0/∂ξ is the rate of change of local pitching moment coefficient with aileron
angle.

Fig. 28.6 Aileron effectiveness and reversal speed (finite wing).
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Considering the moment equilibrium of the elemental strip of Fig. 28.6(b) we obtain,
neglecting wing weight

dT

dz
δz + �Lec + �M0 = 0 (28.25)

or substituting for �L and �M0 from Eqs (28.23) and (28.24)

dT

dz
+ 1

2
ρV2ec2

[
∂c1

∂α

(
θ − pz

V

)
+ ∂c1

∂ξ
fa(z)ξ

]
+ 1

2
ρV2c2 ∂cm,0

∂ξ
fa(z)ξ = 0 (28.26)

Substituting for T in Eq. (28.26) from torsion theory (T = GJ dθ/dz) and rearranging
we have

d2θ

dz2 +
1
2ρV2ec2(∂c1/∂α)

GJ
θ =

1
2ρV2c2

GJ

[
e
∂c1

∂α

pz

V
− e

∂c1

∂ξ
fa(z)ξ − ∂cm,0

∂ξ
fa(z)ξ

]

(28.27)
Writing

1
2ρV2ec2(∂c1/∂α)

GJ
= λ2

we obtain

d2θ

dz2 + λ2θ = λ2 pz

V
− λ2

∂c1/∂α

(
∂c1

∂ξ
+ 1

e

∂cm,0

∂ξ

)
fa(z)ξ (28.28)

It may be shown that the solution of Eq. (28.28), satisfying the boundary conditions

θ = 0 at z = 0 and dθ/dz = 0 at z = s

is

θ = p

V

(
z − sin λz

λ cos λs

)
− 1

∂c1/∂α

(
∂c1

∂ξ
+ 1

e

∂cm,0

∂ξ

)

×
[

fa(z){1 − cos λ(z − s1)} − sin λ(s − s1)

cos λs
sin λz

]
ξ (28.29)

where

cos λ(z − s1) = 0 when z < s1

The spanwise variation of total local wing lift coefficient is given by strip theory as

c1 = ∂c1

∂α

(
α + θ − pz

V

)
+ ∂c1

∂ξ
fa(z)ξ (28.30)

where θ is known from Eq. (28.29) and α is the steady flight wing incidence.
The aileron effectiveness is often measured in terms of the wing-tip helix angle

(ps/V ) per unit aileron displacement during a steady roll. In this condition the rolling
moments due to a given aileron deflection, ξ, wing twist and aerodynamic damping
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are in equilibrium so that from Fig. 28.6(a) and Eq. (28.23) and noting that ailerons on
opposite wings both contribute to the rolling, we have

2
∫ s

0

1

2
ρV2c

[
∂c1

∂α

(
θ − pz

V

)
+ ∂c1

∂ξ
fa(z)ξ

]
z dz = 0 (28.31)

from which
∫ s

0

∂c1

∂α

(
θ − pz

V

)
z dz = −ξ

∫ s

0

∂c1

∂ξ
fa(z)z dz (28.32)

Substituting for θ from Eq. (28.29) into Eq. (28.32) gives
∫ s

0

∂c1

∂α

{
ps

V

sin λz

λs cos λs
− 1

∂c1/∂α

(
∂c1

∂ξ
+ 1

e

∂cm,0

∂ξ

)

×
[

fa(z){1 − cos λ(z − s1)} − sin λ(s − s1)

cos λs
sin λz

]
ξ

}
z dz

= −ξ

∫ s

0

∂c1

∂ξ
fa(z)z dz

Hence

ξ

∫ s

0

{(
∂c1

∂ξ
+ 1

e

∂cm,0

∂ξ

) [
fa(z){1 − cos λ(z − s1)} − sin λ(s − s1)

cos λs
sin λz

]

−∂c1

∂ξ
fa(z)

}
z dz = ps

V

∫ s

0

∂c1

∂α

sin λz

λs cos λs
z dz (28.33)

Therefore, aileron effectiveness (ps/V )/ξ is given by

(ps/V )

ξ
=

∫ s

0

[
−∂c1

∂ε
fa(z) +

(
∂c1

∂ξ
+ 1

e

∂cm,0

∂ξ

)

×
[

fa(z){1 − cos λ(z − s1)} − sin λ(s − s1)

cos λs
sin λz

]]
z dz

∫ s
0

∂c1

∂α

sin λz

λs cos λs
z dz

Integration of the right-hand side of the above equation gives

(ps/V )

ξ
=

(
cos λs1

cos λs
− 1

)
1

∂c1/∂α

∂c1

∂ξ
+

(
cos λs1

cos λs
−1− λ2 s2 − s2

1

2

)
1

e(∂c1/∂α)

∂cm,0

∂ξ
(

tan λs

λs
− 1

)

(28.34)
The aileron reversal speed occurs when the aileron effectiveness is zero. Thus, equating
the numerator of Eq. (28.34) to zero, we obtain the transcendental equation

(
∂c1

∂ξ
+ 1

e

∂cm,0

∂ξ

)
(cos λs − cos λs1) +

(

λ2 s2 − s2
1

2

1

e

∂cm,0

∂ξ

)

cos λs = 0 (28.35)
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Alternative methods of obtaining divergence and control reversal speeds employ
matrix or energy procedures. Details of such treatments may be found in Ref. [3].

28.4 Introduction to ‘flutter’

We have previously defined flutter as the dynamic instability of an elastic body in an
airstream. It is found most frequently in aircraft structures subjected to large aerody-
namic loads such as wings, tail units and control surfaces. Flutter occurs at a critical or
flutter speed Vf which in turn is defined as the lowest airspeed at which a given struc-
ture will oscillate with sustained simple harmonic motion. Flight at speeds below and
above the flutter speed represents conditions of stable and unstable (that is divergent)
structural oscillation, respectively.

Generally, an elastic system having just one degree of freedom cannot be unstable
unless some peculiar mechanical characteristic exists such as a negative spring force or
a negative damping force. However, it is possible for systems with two or more degrees
of freedom to be unstable without possessing unusual characteristics. The forces associ-
ated with each individual degree of freedom can interact, causing divergent oscillations
for certain phase differences. The flutter of a wing in which the flexural and torsional
modes are coupled is an important example of this type of instability. Some indication
of the physical nature of wing-bending–torsion-flutter may be had from an examination
of aerodynamic and inertia forces during a combined bending and torsional oscillation
in which the individual motions are 90◦ out of phase. In a pure bending or pure torsional
oscillation the aerodynamic forces produced by the effective wing incidence oppose the
motion; the geometric incidence in pure bending remains constant and therefore does
not affect the aerodynamic damping force, while in pure torsion the geometric incidence
produces aerodynamic forces which oppose the motion during one-half of the cycle but
assist it during the other half so that the overall effect is nil. Thus, pure bending or pure
torsional oscillations are quickly damped out. This is not the case in the combined oscil-
lation when the maximum twist occurs at zero bending and vice versa; i.e. a 90◦ phase
difference.

Consider the wing shown in Fig. 28.7 in various stages of a bending–torsion oscilla-
tion. At the position of zero bending the twisting of the wing causes a positive geometric
incidence and therefore an aerodynamic force in the same direction as the motion of
the wing. A similar but reversed situation exists as the wing moves in a downward
direction; the negative geometric incidence due to wing twist causes a downward
aerodynamic force. It follows that, although the effective wing incidence produces
aerodynamic forces which oppose the motion at all stages, the aerodynamic forces
associated with the geometric incidence have a destabilizing effect. At a certain speed –
the flutter speed Vf – this destabilization action becomes greater than the stabilizing
forces and the oscillations diverge. In practical cases the bending and torsional oscil-
lations would not be as much as 90◦ out of phase; however, the same basic principles
apply.

The type of flutter described above, in which two distinctly different types of oscil-
lating motion interact such that the resultant motion is divergent, is known as classical
flutter. Other types of flutter, non-classical flutter, may involve only one type of motion.
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Fig. 28.7 Coupling of bending and torsional oscillations and destabilizing effect of geometric incidence.

For example, stalling flutter of a wing occurs at a high incidence where, for particular
positions of the spanwise axis of twist, self-excited twisting oscillations occur which,
above a critical speed, diverge.

Another non-classical form of flutter, aileron buzz, occurs at high subsonic speeds
and is associated with the shock wave on the wing forward of the aileron. If the aileron
oscillates downwards the flow over the upper surface of the wing accelerates, intensi-
fying the shock and resulting in a reduction in pressure in the boundary layer behind
the shock. The aileron, therefore, tends to be sucked back to its neutral position. When
the aileron rises the shock intensity reduces and the pressure in the boundary layer
increases, tending to push the aileron back to its neutral position. At low frequencies
these pressure changes are approximately 180◦ out of phase with the aileron deflection
and therefore become aerodynamic damping forces. At higher frequencies a component
of pressure appears in phase with the aileron velocity which excites the oscillation. If
this is greater than all other damping actions on the aileron a high frequency oscilla-
tion results in which only one type of motion, rotation of the aileron about its hinge,
is present, i.e. aileron buzz. Aileron buzz may be prevented by employing control
jacks of sufficient stiffness to ensure that the natural frequency of aileron rotation
is high.

Buffeting is produced most commonly in a tailplane by eddies caused by poor airflow
in the wing wake striking the tailplane at a frequency equal to its natural frequency; a
resonant oscillation having one degree of freedom could then occur. The problem may
be alleviated by proper positioning of the tailplane and clean aerodynamic design.

28.4.1 Coupling

We have seen that the classical flutter of an aircraft wing involves the interaction of
flexural and torsional motions. Separately neither motion will cause flutter but together,
at critical values of amplitude and phase angle, the forces produced by one motion excite
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Fig. 28.8 Inertial coupling of a wing.

the other; the two types of motion are then said to be coupled. Various forms of coupling
occur: inertial, aerodynamic and elastic.

The cross-section of a small length of wing is shown in Fig. 28.8. Its centre of gravity
is a distance gc ahead of its flexural axis, c is the wing section chord and the mass of the
small length of wing is m. If the length of wing is subjected to an upward acceleration ÿ
an accompanying inertia force mÿ acts at its centre of gravity in a downward direction,
thereby producing a nose-down torque about the flexural axis of mÿgc, causing the
wing to twist. The vertical motion therefore induces a twisting motion by virtue of
the inertia forces present, i.e. inertial coupling. Conversely, an angular acceleration α̈

about the flexural axis causes a linear acceleration of gcα̈ at the centre of gravity with
a corresponding inertia force of mgcα̈. Thus, angular acceleration generates a force
producing translation, again inertial coupling. Note that the inertia torque due to unit
linear acceleration (mgc) is equal to the inertia force due to unit angular acceleration
(mgc); the inertial coupling therefore possesses symmetry.

Aerodynamic coupling is associated with changes of lift produced by wing rotation or
translation. A change of wing incidence, i.e. a rotation of the wing, induces a change of
lift which causes translation while a translation of velocity ẏ, say, results in an effective
change in incidence, thereby yielding a lift which causes rotation. These aerodynamic
forces, which oscillate in a flutter condition, act through a centre analogous to the
aerodynamic centre of a wing in steady motion; this centre is known as the centre of
independence.

Consider now the wing section shown in Fig. 28.9 and suppose that the wing stiffness
is represented by a spring of stiffness k positioned at its flexural axis. Suppose also that
the displacement of the wing is defined by the vertical deflection y of an arbitrary point
O (Fig. 28.9(a)) and a rotation α about O (Fig. 28.9(b)). In Fig. 28.9(a) the vertical
displacement produces a spring force which causes a clockwise torque (kyd ) on the
wing section about O, resulting in an increase in wing incidence α. In Fig. 28.9(b)
the clockwise rotation α about O results in a spring force kdα acting in an upward
direction on the wing section, thereby producing translations in the positive y direction.
Thus, translation and rotation are coupled by virtue of the elastic stiffness of the wing,
hence elastic coupling. We note that, as in the case of inertial coupling, elastic coupling
possesses symmetry since the moment due to unit displacement (kd ) is equal to the
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Fig. 28.9 Elastic coupling of a wing.

force produced by the unit rotation (kd ). Also, if the arbitrarily chosen point O is made
to coincide with the flexural axis, d = 0 and the coupling disappears.

From the above it can be seen that flutter will be prevented by uncoupling the two
constituent motions. Thus, inertial coupling is prevented if the centre of gravity coin-
cides with the flexural axis, while aerodynamic coupling is eliminated when the centre
of independence coincides with the flexural axis. This, in fact, would also eliminate
elastic coupling since O in Fig. 28.9 would generally be the centre of independence.
Unfortunately, in practical situations, the centre of independence is usually forward
of the flexural axis, while the centre of gravity is behind it giving conditions which
promote flutter.

28.4.2 Determination of critical flutter speed

Consider a wing section of chord c oscillating harmonically in an airflow of velocity
V and density ρ and having instantaneous displacements, velocities and accelerations
of, rotationally, α, α̇, α̈, and, translationally, y, ẏ, ÿ. The oscillation causes a reduction
in lift from the steady state lift4 so that, in effect, the lift due to the oscillation acts
downwards. The downward lift corresponding to α, α̇ and α̈ is, respectively

lαρcV2α = Lαα

lα̇ρc2V α̇ = Lα̇α̇

lα̈ρc3α̈ = Lα̈α̈

in which lα, lα̇, lα̈ are non-dimensional coefficients analogous to the lift-curve slopes
in steady motion. Similarly, downward forces due to the translation of the wing section
occur and are

lyρcV2y/c = Lyy

lẏρc2Vẏ/c = Lẏẏ

lÿρc3ÿ/c = Lÿÿ
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Fig. 28.10 Flutter of a wing section.

Thus, the total aerodynamic lift on the wing section due to the oscillating motion is
given by

L = Lyy + Lẏẏ + Lÿÿ + Lαα + Lα̇α̇ + Lα̈α̈ (28.36)

We have previously seen that rotational and translational displacements produce
moments about any chosen centre. Thus, the total nose-up moment on the wing section is

M = Myy + Mẏẏ + Mÿÿ + Mαα + Mα̇α̇ + Mα̈α̈ (28.37)

where

Myy = lyρc2V2y/c

Mẏẏ = lẏρc3Vẏ/c

Mÿÿ = lÿρc4ÿ/c

Mαα = mαρc2V2α/c

Mα̇α̇ = mα̇ρc3V α̇/c

Mα̈α̈ = mα̈ρc4α̈/c

in which mα, etc. are analogous to the steady motion local pitching moment coefficients.
Now consider the wing section shown in Fig. 28.10. The wing section is oscillating

about a mean position and its flexural and torsional stiffnesses are represented by
springs of stiffness k and kθ , respectively. Suppose that its instantaneous displacement
from the mean position is y, which is now taken as positive downwards. In addition to
the aerodynamic lift and moment forces of Eqs (28.36) and (28.37) the wing section
experiences inertial and elastic forces and moments. Thus, if the mass of the wing
section is m and IO is its moment of inertia about O, instantaneous equations of vertical
force and moment equilibrium may be written as follows. For vertical force equilibrium

L − mÿ + mgcα̈ − ky = 0 (28.38)
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and for moment equilibrium about O

M − IOα̈ + mgcÿ − kθα = 0 (28.39)

Substituting for L and M from Eqs (28.36) and (28.37) we obtain

(m − Lÿ)ÿ − Lẏẏ + (k − Ly)y − (mgc + Lα̈)α̈ − Lα̇α̇ − Lαα = 0 (28.40)

(−mgc − Mÿ)ÿ − Mẏẏ − Myy + (IO − Mα̈)α̈ − Mα̇α̇ + (kθ − Mα)α = 0 (28.41)

The terms involving y in the force equation and α in the moment equation are known
as direct terms, while those containing α in the force equation and y in the moment
equation are known as coupling terms.

The critical flutter speed Vf is contained in Eqs (28.40) and (28.41) within the terms
Ly, Lẏ, Lα, Lα̇, My, Mẏ, Mα and Mα̇. Its value corresponds to the condition that these
equations represent simple harmonic motion. Above this critical value the equations
represent divergent oscillatory motion, while at lower speeds they represent damped
oscillatory motion. For simple harmonic motion

y = y0 eiωt α = α0 eiωt

Substituting in Eqs (28.40) and (28.41) and rewriting in matrix form we obtain
[−ω2(m − Lÿ) − iωLẏ + k − Ly ω2(mgc + Lα̈) − iωLα̇ − Lα

ω2(mgc + Mÿ) − iωMẏ + My −ω2(IO − Mα̈) − iωMα̇ + kθ − Mα

] {
y0
α0

}
= 0

(28.42)

The solution of Eq. (28.42) is most readily obtained by computer4 for which several
methods are available. One method represents the motion of the system at a general
speed V by

y = y0 e(δ+iω)t α = α
(δ+iω)t
0

in which δ + iω is one of the complex roots of the determinant of Eq. (28.42). For
any speed V the imaginary part ω gives the frequency of the oscillating system while
δ represents the exponential growth rate. At low speeds the oscillation decays (δ is
negative) and at high speeds it diverges (δ is positive). Zero growth rate corresponds
to the critical flutter speed Vf , which may therefore be obtained by calculating δ for a
range of speeds and determining the value of Vf for δ = 0.

28.4.3 Prevention of flutter

We have previously seen that flutter can be prevented by eliminating inertial, aero-
dynamic and elastic coupling by arranging for the centre of gravity, the centre of
independence and the flexural axis of the wing section to coincide. The means by
which this may be achieved are indicated in the coupling terms in Eqs (28.40) and
(28.41).

In Eq. (28.41) the inertial coupling term is mgc + Mÿ in which Mÿ is usually very
much smaller than mgc. Thus, inertial coupling may be virtually eliminated by adjusting
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the position of the centre of gravity of the wing section through mass balancing so that
it coincides with the flexural axis, i.e. gc = 0. The aerodynamic coupling term Mẏẏ
vanishes, as we have seen, when the centre of independence coincides with the flexural
axis. Further, the terms Myy and Lα̇α̇ are very small and may be neglected so that
Eqs (28.40) and (28.41) now reduce to

(m − Lÿ)ÿ − Lẏẏ + (k − Ly)y − Lαα = 0 (28.43)

and

(IO − Mα̈)α̈ − Mα̇α̇ + (kθ − Mα)α = 0 (28.44)

The remaining coupling term Lαα cannot be eliminated since the vertical force required
to maintain flight is produced by wing incidence.

Equation (28.44) governs the torsional motion of the wing section and contains no
coupling terms so that, since all the coefficients are positive at speeds below the wing
section torsional divergence speed, any torsional oscillation produced, say, by a gust
will decay. Also, from Eq. (28.43), it would appear that a vertical oscillation could be
maintained by the incidence term Lαα. However, rotational oscillations, as we have
seen from Eq. (28.44), decay so that the lift force Lαα is a decaying force and cannot
maintain any vertical oscillation.

In practice it is not always possible to prevent flutter by eliminating coupling terms.
However, increasing structural stiffness, although carrying the penalty of increased
weight, can raise the value of Vf above the operating speed range. Further, arranging
for the centre of gravity of the wing section to be as close as possible to and forward of
the flexural axis is beneficial. Thus, wing mounted jet engines are housed in pods well
ahead of the flexural axis of the wing.

28.4.4 Experimental determination of flutter speed

The previous analysis has been concerned with the flutter of a simple two degrees of
freedom model. In practice the structure of an aircraft can oscillate in many different
ways. For example, a wing has fundamental bending and torsional modes of oscillation
on which secondary or overtone modes of oscillation are superimposed. Also it is
possible for fuselage bending oscillations to produce changes in wing camber thereby
affecting wing lift and for control surfaces oscillating about their hinges to produce
aerodynamic forces on the main surfaces.

The equations of motion for an actual aircraft are therefore complex with a number
N , say, of different motions being represented (N can be as high as 12). There are,
therefore, N equations of motion which are aerodynamically coupled. At a given speed,
solution of these N equations yields N different values of δ + iω corresponding to the N
modes of oscillation. Again, as in the simple two degrees of freedom case, the critical
flutter speed for each mode may be found by calculating δ for a range of speeds and
determining the value of speed at which δ = 0.

A similar approach is used experimentally on actual aircraft. The aircraft is flown
at a given steady speed and caused to oscillate either by exploding a small detonator
on the wing or control surface or by a sudden control jerk. The resulting oscillations
are recorded and analysed to determine the decay rate. The procedure is repeated
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Fig. 28.11 Experimental determination of flutter speed.

at increasing speeds with smaller increments being used at higher speeds. The mea-
sured decay rates are plotted against speed, producing a curve such as that shown in
Fig. 28.11. This curve is then extrapolated to the zero decay point which corresponds
to Vf . Clearly this approach requires as accurate as possible a preliminary estimation
of flutter speed since induced oscillations above the flutter speed diverge leading to
possibly catastrophic results.

Other experimental work involves wind tunnel tests on flutter models, the results
being used to check theoretical calculations.3

28.4.5 Control surface flutter

If a control surface oscillates about its hinge, oscillating forces are induced on the
main surface. For example, if a wing oscillates in bending at the same time as the
aileron oscillates about its hinge, flutter can occur provided there is a phase difference
between the two motions. In similar ways elevator and rudder flutter can occur as
the fuselage oscillates in bending. Other forms of control surface flutter involve more
than two different types of motion. Included in this category are wing bending/aileron
rotation/tab rotation and elevator rotation/fuselage bending/rigid body pitching and
translation of the complete aircraft.

It can be shown4 that control surface flutter can be prevented by eliminating the
inertial coupling between the control rotation and the motion of the main surface.
This may be achieved by mass balancing the control surface whereby weights are
attached to the control surface forward of the hinge line.

All newly designed aircraft are subjected early in the life of a prototype to a ground
resonance test to determine actual normal modes and frequencies. The primary objec-
tives of such tests are to check the accuracy of the calculated normal modes on which
the flutter predictions are based and to show up any unanticipated peculiarities in the
vibrational behaviour of the aircraft. Usually the aircraft rests on some low frequency
support system or even on its deflated tyres. Electrodynamic exciters are mounted in
pairs on the wings and tail with accelerometers as the measuring devices. The test
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procedure is generally first to discover the resonant frequencies by recording ampli-
tude and phase of a selected number of accelerometers over a given frequency range.
Having obtained the resonant frequencies the aircraft is then excited at each of these
frequencies in turn and all accelerometer records taken simultaneously.
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Problems

P.28.1 An initially untwisted rectangular wing of semi-span s and chord c has its
flexural axis normal to the plane of symmetry, and is of constant cross-section with
torsional rigidity GJ. The aerodynamic centre is ec ahead of the flexural axis, the lift-
coefficient slope is a and the pitching moment coefficient at zero lift is Cm,0. At speed
V in air of density ρ the wing-root incidence from zero lift is α0.

Using simple strip theory, i.e. ignoring downwash effects, show that the incidence
at a section distant y from the plane of symmetry is given by

α0 + θ =
(

Cm,0

ea
+ α0

)
cos λ(s − y)

cos λs
− Cm,0

ea

where

λ2 = ea 1
2ρV2c2

GJ

Hence, assuming Cm,0 to be negative, find the condition giving the speed at which the
lift would be reduced to zero.

Ans. Vd =
√

π2GJ

2ρec2s2a
.

P.28.2 The rectangular wing shown in Fig. P.28.2 has a constant torsional rigidity
GJ and an aileron of constant chord. The aerodynamic centre of the wing is at a constant
distance ec ahead of the flexural axis while the additional lift due to operation of the
aileron acts along a line a distance hc aft of the flexural axis; the local, two-dimensional
lift-curve slopes are a1 for the wing and a2 for aileron deflection. Using strip theory and
considering only the lift due to the change of incidence arising from aileron movement,
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show that the aileron reversal speed is given by

tan λks
∫ ks

0
y sin λy dy−tan λs

∫ s

0
y sin λy dy−

∫ s

ks
y cos λy dy = (e + h)

2h cos λks
[(ks)2−s2]

where

λ2 = 1

2
ρV2a1 ec2/GJ

Fig. P.28.2
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Appendix: Design of a rear
fuselage

Figure A.1 shows the elevation of a two seater trainer/semi-aerobatic aircraft. It is
required to carry out the detailed structural design of the portion of the rear fuselage
between the sections AA and BB.

A.1 Specification

The required flight envelope for this particular aircraft is shown in Fig. A.2 (refer also
to Fig. 13.10) where

n1 = 6.28, VD (design diving speed) = 183.8 m/s

Also

VC = 0.8VD = 147.0 m/s

n2 = 0.75n1 = 4.71

n3 = 0.5n1 = 3.14

Note also that airworthiness requirements specify that since n1 > 3 the point D2 lies on
the n = 0 axis.

Further requirements are that:

(i) at any point in the flight envelope an additional pitching acceleration given by
(

20 + 475

W

)
n

V
rad/s2 (A.1)

be applied where W is the total weight of the aircraft in kN and V is the velocity of
the aircraft in m/s.

(ii) for asymmetric flight an angle of yaw given by

ψ = 0.7n1 + 457.2

VD
degrees (A.2)

must be allowed for; the angle of yaw increases the overall pitching moment
coefficient of the aircraft by −0.0015/degree of yaw.
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Fig. A.2 Flight envelope.

A.2 Data

Preliminary design work has produced the following data.

Aircraft
Fully loaded weight = 37.43 kN.

Moment of inertia of fully loaded aircraft about the centre of gravity (G in Fig. A.1)

= 22 235 kg m2

Position of G and the body drag centres, engine on and off, are shown in Fig. A.1.
The body drag coefficients are

CD,B (engine on) = 0.01583

CD,B (engine off) = 0.0576

The engine has a maximum horse power of 905 and the propeller efficiency is 90%.

Wing
The wing has a span of 14.07 m and gross area of 29.64 m2. Its aerodynamic mean
chord, c = 2.82 m and the variations of lift and drag coefficients with incidence are
shown in Fig. A.3.

Also, the pitching moment coefficient is given by

CM = −0.238CL

and, due to a rigger’s incidence of −1.5◦, there is an additional pitching moment
coefficient equal to −0.036.

Tailplane
The tailplane has a span of 6.55 m and a gross area of 8.59 m2; the position of the
aerodynamic centre, P, of the tailplane is shown in Fig. A.1.
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Fig. A.3 Wing characteristics.

Due to the asymmetry of the slipstream induced by yaw asymmetric loads are induced
on the tailplane. These loads, upwards on one side and downwards on the other, result
in a torque given by

0.00125√
1 − M2

ρV2Stbtψ (A.3)

where M is the mach number, St the tailplane area and bt the tailplane span.

Fin
The fin has a height of 1.65 m, an area of 1.80 m2 and an aspect ratio of 1.5. Also, it
may be shown that the lift-curve slope, a1, of the fin is given by

a1 = 5.5A

A + 2
(A.4)

in which A is the aspect ratio of a wing which is equivalent to two fins.
In yawed flight the incidence of the fin to the air flow is ψ so that a fin load equal to

1
2ρV2SFa1ψ is generated where V is the aircraft speed and SF the fin area.
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The position of the centre of pressure of the fin depends upon the geometry of the
pressure distribution. Calculations show that the centre of pressure is 1.13 m above the
axis of the rear fuselage and a distance of 3.7 m aft of the section AA.

A.3 Initial calculations

Flight envelope
The positive stall curve in the flight envelope of Fig. A.2 is found from basic
aerodynamic wing theory and is given by

CL,max = nW
1
2ρV2

s S

where Vs is the stalling speed and S the wing area. Then

Vs =
(

2nW

ρSCL,max

)1/2

(A.5)

Substituting the values given in the preceding data and taking ρ, the air density at sea
level, as 1.226 kg/m3

Vs =
(

2 × 37.43 × 103

1.226 × 29.64 × 1.38

)1/2

(n)1/2

i.e.

Vs = 38.6(n)1/2 (A.6)

The positive stall curve is found by assigning a series of values to n and then calculating
the corresponding stalling speeds. For n = n1 = 6.28

Vs = 38.6(6.28)1/2 = 96.7 m/s (A on flight envelope)

Fin lift-curve slope
From Eq. (A.4)

a1 = 5.5 × 3.0

3.0 + 2.0
= 3.3

Speed of sound
At sea level at a temperature of 15◦C the speed of sound is 340.8 m/s.

A.4 Balancing out calculations

The tailplane and fin loads corresponding to the various critical points in the flight
envelope will now be calculated so that, subsequently, values of shear force, bending
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moment and torque acting on the rear fuselage may be determined. The cases to be
investigated are:

Case A (point A on the flight envelope, engine on)
Case A′ (point A on the flight envelope, engine off)
Case C (point C on the flight envelope, engine off)
Case D1 (point D1 on the flight envelope, engine off)
Case D2 (point D2 on the flight envelope, engine off)

Case A
From the flight envelope n = 6.28, V = 96.7 m/s and from Fig. A.3 the wing incidence
α corresponding to CL,max = 1.38 is 18◦. The forces acting on the aircraft and their lines
of action are shown in Fig. A.4, the dimensions may be scaled from an actual drawing
(the simplest approach) or calculated.

Since 1 hp = 746 W = 746 mN/s, the thrust T of the engine is given by

T = η × hp × 746

V

i.e.

T = 0.9 × 905 × 746

96.7

so that

T = 6284 N

Also

nW = 6.28 × 37.43 × 103 = 235 060 N

6.28 m

0.06 m

1.07 m

DB

DW

0.12 m

G

0.18 m
T

L

M

P

P

nW

18°

Fig. A.4 Balancing out calculations.
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A first approximation for the wing lift, L, is obtained by neglecting the tailplane lift,
P, i.e.

L = nW − T sin (18◦ − 1.5◦)

which gives

L = 235 060 − 6284 sin 16.5◦ = 233 275 N

From Fig. A.3 the wing drag coefficient, CD,W, is 0.149 so that the wing drag, which
is given by

DW = CD,W
1

2
ρV2S

is

DW = 0.149 × 1.226 × 96.72 × 29.64/2 = 25 315 N

The body drag coefficient is 0.01583 so that

DB = 0.01583 × 1.226 × 96.72 × 29.64/2 = 2690 N

The angle of yaw is given by Eq. (A.2), i.e.

ψ = 0.7 × 6.28 + 457.2

183.8
= 6.9◦

The total pitching moment coefficient is then

CM = −0.238 × 1.38 − 0.036 − 0.0015 × 6.9 = −0.375

so that

M = CM
1

2
ρV2Sc = −0.375 × 1.226 × 96.72 × 29.64 × 2.82/2 = −179 669 N m

The additional pitching moment acceleration is, from Eq. (A.1)
(

20 + 475

37.43

)
6.28

96.7
= 2.12 rad/s2

Then, taking moments about G (refer to Fig A.4)

1.07L − 0.18T + 0.06DB − 0.12DW − 6.28P − 179 669 = 22 235 × 2.12

i.e.

1.07L−0.18×6284+0.06×2690−0.12×25 315−6.28P−179 669 = 22 235×2.12

which simplifies to

5.78P = L − 215 715
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First approximation, L = 233 275 N gives P = 2991 N
Second approximation, L = 233 275 − 2991 = 230 284 N gives P = 2482 N
Third approximation, L = 233 275 − 2482 = 230 793 N gives P = 2569 N
Fourth approximation, L = 233 275 − 2569 = 230 706 N gives P = 2554 N
Fifth approximation, L = 233 275 − 2554 = 230 721 N gives P = 2556 N

Therefore the tail load P = 2556 N.
The torque produced by the asymmetric loading on the tailplane is given by Eq. (A.3),

i.e.

Tailplane torque = 0.00125
√

1 − (96.7/340.8)2
×1.226×96.72×8.59×6.55×6.9 = 5802 N m

The load on the fin caused by the yawed flight is given by 1
2ρV2Sψal, i.e.

Fin load = 1.226 × 96.72 × 1.8(6.9 × π/180) × 3.3/2 = 4100 N

The torque produced on the fuselage by this fin load is 4100 × 1.13 = 4633 N m. The
total torque on the rear fuselage is therefore given by

Total torque (real fuselage) = 5802 + 4633 = 10 435 N m

The tail and fin loads and the rear fuselage torque corresponding to the remaining
flight envelope cases are calculated in an identical manner and are listed in Table A.1.

Table A.1

Tail load (N) Fin load (N) Fuselage torque (N m)
Case (+ ↑) (+ →) (+ ↓)

A 2556 4100 10435
A′ 2292 4100 10435
C 596 9501 24957
D1 −4997 12460 34031
D2 −9412 5340 14635

A.5 Fuselage loads

The dimensions of the portion of the rear fuselage to be designed are given in Fig. A.1.

Fuselage section
The construction of structural components was discussed in Chapter 12 where it was
seen that fuselages generally comprise arrangements of stringers, frames and skin. For
this particular aircraft the fuselage is unpressurized so that the frames will not support
significant loads. However they will be required to maintain the fuselage shape but
may therefore be nominal in size, suitable frame sections will be suggested later. The
combination of stringers and skin will resist the shear forces, bending moments and
torques produced by self-weight and aerodynamic loads. For this purpose a circular
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Fig. A.5 Stringer arrangement in rear fuselage.

cross-section will meet the design requirements of the aircraft and be simple to fabricate
and design.

Figure A.5 shows a possible section. Twenty-four stringers arranged symmetrically,
each having the same cross-sectional area, would be spaced at approximately 168 mm
at the section AA and at 96 mm at the section BB.

Material
An aluminium alloy will be used for both stringers and skin and has the following
properties:

0.1% Proof stress = 186 N/mm2

Shear strength = 117 N/mm2

Self-weight
In a conventional single-engined aircraft of the type shown in Fig. A.1 it is usual to
assume that the fuselage weight is from 4.8% to 8.0% of the total weight and that the
weight of the tailplane/fin assembly is from 1.2% to 2.5% of the total weight. It will be
further assumed in this case that half of the fuselage weight is aft of the section AA and
that the weight distribution varies directly as the skin surface area. Therefore, taking
average values

Weight of rear fuselage = 37.43 × 103 × 6.4

2 × 100
= 1198 N

Weight of tailplane/fin = 37.43 × 103 × 1.8

100
= 674 N
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Fig. A.6 Rear fuselage sections.

For ease of calculation the rear fuselage is assumed to taper uniformly as shown in
Fig. A.6; CC is a section midway between AA and BB. The total skin area is given by

Skin area = π(1.28 + 0.1) × 4.57/2 = 9.91 m2

At the section AA the weight/m of fuselage = 1198 × π × 1.28/9.91 = 486.1 N/m
At the section CC the weight/m = 1198 × π × 1.01/9.91 = 383.6 N/m
At the section BB the weight/m = 1198 × π × 0.73/9.91 = 277.2 N/m
At the section DD the weight/m = 1198 × π × 0.1/9.91 = 38.0 N/m

Also the centre of gravity of the tailplane/fin assembly has been estimated to be 4.06 m
from the section AA on a line parallel to the fuselage centre line.

Shear forces and bending moments due to self-weight
At the section AA

SF = (1198 + 674)n = 1872n N (A.7)

BM = [(38.0 × 4.572/2) + (448.1 × 4.572/2 × 3) + 674 × 4.06]n cos α

= 4693n cos α N m (A.8)

where n is the normal acceleration coefficient and α the wing incidence.
At the section CC

SF = [1872 − (486.1 + 383.6) × (2.13/2 × 2)]n = 1409n N (A.9)

BM = [(38.0 × 3.512/2) + (345.6 × 3.512/2 × 3) + 674 × 2.99]n cos α

= 2959n cos α N m (A.10)



Appendix-H6739.tex 23/1/2007 15: 15 Page 777

A.5 Fuselage loads 777

At the section BB

SF = [1872 − (486.1 + 277.2) × (2.13/2)]n = 10059n N (A.11)

BM = [(38.0 × 2.442/2) + (239.2 × 2.442/2 × 3) + 674 × 1.93]n cos α

= 1651n cos α N m (A.12)

Total shear forces, bending moments and torques
The values of shear force, bending moment and torque at the sections AA, BB and CC
will now be calculated for the flight envelope cases listed in Section A.4.

Case A (n = 6.28, α = 18◦)

Section AA
The shear force due to the self-weight and tail load is, from Eq. (A.7) and Table A.1
SF (Sy) = 1872 × 6.28 − 2556 = 9200 N (acting vertically downwards)
The shear force due to the fin load is, from Table A.1
SF (Sx) = 4100 N (acting horizontally to the right)
The bending moment due to the self-weight and tail load is, from Eq. (A.8) and TableA.1

(see also Fig. A.1)
BM (Mx) = 4693 × 6.28 cos 18◦ − 2556 × 3.47 = 19160 N m
The bending moment due to the fin load is, from Table A.1
BM (My) = 4100 × 3.7 = 15170 N m
The torque due to asymmetric flight and the fin load is, from Table A.1
T = 10435 N m

The values of shear force, bending moment and torque at the section AA due to the
remaining flight envelope cases are calculated in an identical manner. The complete
procedure is then repeated for the sections CC and BB. The results are listed in TableA.2
with the positive directions and senses of the forces, moments and torques shown in
Fig. A.7; these are as specified in Section 16.2.1 for an internal section when viewed

Table A.2

Section Case Sx (N) Sy (N) Mx (N m) My (N m) T (N m)

AA A 4100 9200 19160 15170 10435
A′ 4100 9434 19938 15170 10435
C 9501 11125 27534 28958 24957
D1 12460 13350 39470 37978 34031
D2 5340 9412 32688 16276 14635

CC A 4100 6675 10308 8301 10435
A′ 4100 7120 11393 8301 10435
C 9501 8811 16276 18813 24957
D1 12460 11837 26490 24686 34031
D2 5340 9412 22651 10580 14635

BB A 4100 4673 4747 3824 10435
A′ 4100 5118 5358 3824 10435
C 9501 6809 8003 8687 24957
D1 12460 10547 13347 11393 34031
D2 5340 9412 12614 4883 14635
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Fig. A.7 Positive directions for internal forces and moments.

in the direction Oz (see Fig. 16.9) except for torsion where it is assumed that a positive
fin load produces a positive torque.

A.6 Fuselage design calculations

Two approaches to the actual design are possible. Elastic design uses allowable or
working stresses which are obtained from, say, the 0.1% proof stress by incorporating
a factor of safety, usually 1.5; these stresses are then combined with the actual loads
to produce skin and stringer sizes. Alternatively, ultimate load design is based on the
actual loads multiplied by an ultimate load factor (see Section 13.1) which then produces
failure loads, the stresses involved are therefore the ultimate stresses. For linear systems
the methods produce identical results so that, in this case, since the 0.1% proof stress
is given, elastic design will be used. The working, or allowable, stresses are then

Direct = 186/1.5 = 124 N/mm2

Shear = 117/1.5 = 78 N/mm2

The proposed fuselage section is circular as previously shown in Fig. A.5. The design
process is required to produce suitable stringer sections and a skin thickness. Suppose
that each stringer (or boom) has a cross-sectional area B mm2 and that the skin thickness
is t mm. The idealized fuselage section (see Section 20.2) is shown in Fig A.8.

Stringer sections
The direct stress in each stringer produced by bending moments Mx and My is given
by Eq. (16.20), i.e.

σz = Mx

Ixx
y + My

Iyy
x (A.13)
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Fig. A.8 Idealized fuselage cross-section.

where

Ixx = Iyy = 4BD2(0.12942 + 0.252 + 0.3532 + 0.4332 + 0.4832 + 0.52/2)

i.e.

Ixx = Iyy = 3.0BD2 mm4

A positive value of Mx will cause tensile stresses in stringers 2 to 12 (there will be zero
stress in stringers 1 and 13) and compressive stresses in stringers 14 to 24. A positive
value of My will produce tensile stresses in stringers 8 to 18 and compressive stresses in
stringers 6 to 20 (zero stress in stringers 7 and 19). Therefore Mx and My both produce
tensile stresses in stringers 7 to 13 and compressive stresses in stringers 19 to 1; in the
remaining stringers the stresses due to Mx and My are of opposite sign.

Inspection of Table A.2 shows that Mx and My reach their greatest values at each
fuselage section in Case D1.

Section AA (diameter D = 1.28 m)

Mx = 39 470 N m My = 37 978 N m

Equation (A.13) becomes

σ = 39 470 × 103

3.0B × 1.282 × 106 y + 37 978 × 103

3.0B × 1.282 × 106 x
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i.e.

σ = (8.03y + 7.73x)/B

At stringer 7, x = 0, y = 0.64 m
Then

σ7 = 8.03 × 0.64 × 103/B

i.e.

σ7 = 5139/B N/mm2

Similarly

σ8 = 6245/B N/mm2

σ9 = 6924/B N/mm2

σ10 = 7121/B N/mm2

σ11 = 6854/B N/mm2

σ12 = 6109/B N/mm2

σ13 = 4947/B N/mm2

Section CC (diameter D = 1.01 m)

Mx = 26 490 N m My = 24 686 N m

Equation (A.13) becomes

σ = (8.66y + 8.07x)/B

Then

σ7 = 4373/B N/mm2

σ8 = 5279/B N/mm2

σ9 = 5825/B N/mm2

σ10 = 5965/B N/mm2

σ11 = 5716/B N/mm2

σ12 = 5069/B N/mm2

σ13 = 4075/B N/mm2

Section BB (diameter D = 0.73 m)

Mx = 13 347 N m My = 11 393 N m
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Equation (A.13) becomes

σ = (8.35y + 7.13x)/B

Then

σ7 = 3048/B N/mm2

σ8 = 3618/B N/mm2

σ9 = 3941/B N/mm2

σ10 = 3989/B N/mm2

σ11 = 3834/B N/mm2

σ12 = 3303/B N/mm2

σ13 = 2602/B N/mm2

From the above it can be seen that the maximum direct stress at each fuselage section
occurs in stringer 10. Also the stress in stringer 10 (and all other stringers) is lower at
section CC than at section AA and lower at section BB than at section CC. Therefore
if fuselage frames are positioned at each of these sections lighter stringers may be used
between CC and BB than between AA and CC. An additional frame will be positioned
midway between AA and CC and between CC and BB, and will be slotted to allow the
stringers to pass through. The arrangement is shown diagrammatically in Fig. A.9 and
in detail in Fig. A.13.

The allowable direct stress in a stringer is 124 N/mm2. The maximum direct stress
in stringer 10 at the section AA is 7121/B N/mm2. The required stringer area of cross-
section is then given by

7121/B = 124

i.e.

B = 57.4 mm2

The Z-section stringer shown in Fig. A.10 has a cross-sectional area = 58.1 mm2 and
will therefore be satisfactory

The maximum direct stress in stringer 10 at the section CC is 5965/B N/mm2.
The required stringer area is then given by

5965/B = 124

i.e.

B = 48.1 mm2

The cross-section shown in Fig. A.11 has a cross-sectional area of 51.9 mm2 and is
therefore satisfactory.
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A

A

C

C

B

B

Frame 1 Frame 2 Frame 3 Frame 4 Frame 5

Frames slotted to allow
passage of stringers

Fig. A.9 Arrangement of fuselage frames.

12 mm

1.25 mm

25 mm

12 mm

Fig. A.10 Stringer section, AA to CC (Type A).
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12 mm

1.25 mm

20 mm

12 mm

Fig. A.11 Stringer section, CC to BB (Type B).

55 mm

25 mm

6 mm

1.25 mm

55 mm

20 mm

12 mm

1.25 mm

(a) Frames 1 and 5 (b) Frames 2, 3 and 4

Fig. A.12 Fuselage frame sections.

Although the fuselage frames are non-load bearing the frames atAA, CC and BB must
be of sufficient size to allow the ends of the stringers to be connected to them via brackets
while intermediate frames must be of sufficient size to allow slots to be cut so that the
stringers can pass through them. The frame sections to be used are shown in Fig. A.12.
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Skin thickness
The fuselage cross-section is subjected to shear loads Sx and Sy along two perpendicular
axes of symmetry. Equation (20.5) gives the change in shear flow as a boom, i.e. a
stringer, is crossed and, due to symmetry, reduces to

q2 − q1 = − Sx

Iyy
Brxr − Sy

Ixx
Bryr (A.14)

Then, since, Br (=B) is constant round the fuselage section and Ixx = Iyy = 3.0BD2

Eq. (A.14) reduces to

q2 − q1 = − Sx

3.0D2 xr − Sy

3.0D2 yr

Consider the action of Sy (or Sx) only. Then

q2 − q1 = − Sy

3.0D2 yr (A.15)

Referring now to Fig. A.8

q23 = q12 + Sy

3.0D2 × 0.1294D = q12 + 0.043Sy/D

q34 = q23 + Sy

3.0D2 × 0.25D = q12 + 0.126Sy/D

q45 = q34 + Sy

3.0D2 × 0.353D = q12 + 0.244Sy/D

q56 = q45 + Sy

3.0D2 × 0.433D = q12 + 0.388Sy/D

q67 = q56 + Sy

3.0D2 × 0.483D = q12 + 0.549Sy/D

q78 = q67 + Sy

3.0D2 × 0.5D = q12 + 0.716Sy/D

From symmetry q78 = −q67 so that

q12 + 0.716Sy

D
= −q12 − 0.549Sy

D

giving

q12 = −0.633Sy

D
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Then

q23 = (−0.633 + 0.043)Sy/D = −0.59Sy/D

Similarly

q34 = −0.507Sy/D

q45 = −0.389Sy/D

q56 = −0.245Sy/D

q67 = −0.084Sy/D

Consider now the action of Sx only. Equation (A.14) becomes

q2 − q1 = − Sx

3.0D2 xr

Again referring to Fig. A.8

q65 = q76 − Sx

3.0D2 × 0.1294D = q76 − 0.043 Sx/D

q54 = q65 − Sx

3.0D2 × 0.25D = q76 − 0.126 Sx/D

q43 = q54 − Sx

3.0D2 × 0.353D = q76 − 0.244 Sx/D

q32 = q43 − Sx

3.0D2 × 0.433D = q76 − 0.388 Sx/D

q21 = q32 − Sx

3.0D2 × 0.483D = q76 − 0.549 Sx/D

q1 24 = q21 − Sx

3.0D2 × 0.5D = q76 − 0.716 Sx/D

But q21 = −q1 24 from symmetry so that

q76 − 0.549Sx/D = −q76 + 0.716Sx/D

i.e.

q76 = 0.633Sx

D
Then

q65 = 0.59Sx/D

q54 = 0.507Sx/D

q43 = 0.389Sx/D

q32 = 0.245Sx/D

q21 = 0.084Sx/D
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Note that the shear flows due to Sx and Sy in skin panels 76 to 21 inclusive are in
the same direction. An identical situation arises in panels 19 18 to 14 13 but in the
remaining panels the shear flows are opposed.

The shear flow produced by the applied torque is given by Eq. (18.1), i.e.

q = T

2A

where A is the area enclosed by the fuselage skin. Then

q = T

2(πD2/4)

or

q = 0.637T/D2 (A.16)

It can be seen from Table A.2 that all the applied torques are positive, i.e. clockwise.
The shear flow is then in the same sense in skin panels 76 to 21 as the shear flows due
to Sx and Sy; these panels are therefore subjected to the greatest shear stresses.

The total shear flow in each of the panels 76 to 21 is then

q76 = 0.084Sy/D + 0.633Sx/D + 0.637T/D2

q65 = 0.245Sy/D + 0.590Sx/D + 0.637T/D2

q54 = 0.389Sy/D + 0.507Sx/D + 0.637T/D2

q43 = 0.507Sy/D + 0.389Sx/D + 0.637T/D2

q32 = 0.590Sy/D + 0.245Sx/D + 0.637T/D2

q21 = 0.633Sy/D + 0.084Sx/D + 0.637T/D2 (A.17)

From Table A.2 the maximum values of Sy, Sx and T at each section are produced by
Case D1 in the flight envelope.

Section AA (diameter D = 1.28 m)

Sx = 12 460 N Sy = 13 350 N T = 34 031 N m

Then, from Eqs (A.17)

q76 = 0.084 × 13 350/(1.28 × 103) + 0.633 × 12 460/(1.28 × 103)

+ 0.637 × 34 031 × 103/(1.28 × 103)2

i.e.

q76 = 20.3 N/mm
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Similarly

q65 = 21.5 N/mm

q54 = 22.2 N/mm

q43 = 22.3 N/mm

q32 = 21.8 N/mm

q21 = 20.7 N/mm

Section CC (diameter D = 1.01 m)

Sx = 12 460 N Sy = 11 837 N T = 34 031 N m

Then, from Eqs (A.17)

q76 = 0.084 × 11 837

1.01 × 103 + 0.633 × 12 460

1.01 × 103 + 0.637 × 34 031 × 103

(1.01 × 103)2

i.e.

q76 = 30.0 N/mm

Similarly

q65 = 31.4 N/mm

q54 = 33.1 N/mm

q43 = 32.0 N/mm

q32 = 31.2 N/mm

q21 = 29.7 N/mm

Section BB (diameter D = 0.73 m)

Sx = 12 460 N Sy = 10 547 N T = 34 031 Nm

From Eqs (A.17)

q76 = 0.084 × 10 547

0.73 × 103 + 0.633 × 12 460

0.73 × 103 + 0.637 × 34 031 × 103

(0.73 × 103)2

i.e.

q76 = 52.7 N/mm
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Similarly

q65 = 54.3 N/mm

q54 = 55.0 N/mm

q43 = 54.6 N/mm

q32 = 53.4 N/mm

q21 = 51.3 N/mm

The skin will be of constant thickness so that the maximum shear stress in the skin
will occur in the panel in which the shear flow is a maximum. This, from the above, is
55.0 N/mm in panel 54 at section BB. From Section A.5 the maximum allowable shear
stress is 78 N/mm2, therefore

55.0

t
= 78

which gives

t = 0.71 mm

A skin thickness of, say, 0.75 mm would not meet the requirements of a minimum
thickness for rivet diameters equal to or greater than 2.5 mm (the probable rivet diameter
but determined later). A skin thickness of 1.0 mm will therefore be used.

Rivet size
Skin/stringer rivets
The change in end load over a unit length of stringer can be found using the method
of Section 20.3.4. This change in end load is then the shear force on the stringer/skin
connection, i.e. the rivets. Using this approach, the bending moment due to Sx at a
section 1 mm (say) from the section in which Sx is applied is Sx × 1 N mm. The direct
stress in the rth stringer produced by the bending moment is given by the second of
Eqs (16.21), i.e.

σz = Sx × 1

Iyy

The end load in the stringer is then

Pr = σzBr = SxBrxr

Iyy

Similarly, due to Sy

Pr = SyBryr

Ixx

Since Ixx = Iyy = 3.0BD2 the total change in end load over the 1 mm length of stringer
is given by

Total change in end load Pr = Sx

3.0D2 xr + Sy

3.0D2 yr (A.18)
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Clearly the change in end load will be a maximum when Sx and Sy have the same
sign and xr and yr have the same sign; this occurs in stringers 7 to 13 and 19 to 1. In
the former case the change in end load is tensile while in the latter it is compressive.
Further, the maximum values of Sx and Sy at sections AA, CC and BB all occur for
Case D1 (see Table A.2); these cases will now be investigated.

Section AA (diameter D = 1.28 m)

Sx = 12 460 N Sy = 13 350 N

Stringer 7

P7 = 12 460

3.0(1.28 × 103)2 (0) + 13 350

3.0(1.28 × 103)2 (0.5D)

i.e.

P7 = 1.74 N/mm

Similarly

P8 = 2.10 N/mm

P9 = 2.32 N/mm

P10 = 2.37 N/mm

P11 = 2.27 N/mm

P12 = 2.02 N/mm

P13 = 1.62 N/mm

Section CC (Diameter D = 1.01 m)

Sx = 12 460 N Sy = 11 837 N

P7 = 1.95 N/mm

P8 = 2.42 N/mm

P9 = 2.72 N/mm

P10 = 2.83 N/mm

P11 = 2.76 N/mm

P12 = 2.49 N/mm

P13 = 2.06 N/mm

Section BB (diameter D = 0.73 m)

Sx = 12 460 N Sy = 10 547 N
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P7 = 2.41 N/mm

P8 = 3.06 N/mm

P9 = 3.51 N/mm

P10 = 3.71 N/mm

P11 = 3.67 N/mm

P12 = 3.37 N/mm

P13 = 2.84 N/mm

From the above it can be seen that the maximum load on the rivets occurs at section BB
in stringer 10 and is 3.71 N/mm. Assuming 2.5 mm diameter countersunk rivets which
have, in a skin thickness of 1.0 mm, an allowable load in shear of 668 N the number of
rivets/m given by

n = 3.71 × 103

668
= 5.6 say 6 rivets/m

However this would give a rivet pitch of approximately 167 mm which is not sufficient
to ensure a rigid structure. Therefore 2.5 mm diameter rivets will be used at a pitch of
25 mm.

Frame/stringer rivets
The maximum stringer load at the section AA is 7121 N and this is resisted by the rivets
connecting the skin to the frame over a length equal to the stringer spacing of 167.6 mm.
Therefore the number of 2.5 mm diameter rivets required is 7121/668 = 10.7, say 11.
This gives a rivet pitch of 167.6/11 � 15 mm.

At the section BB the maximum stringer load is 3989 N so that the number of rivets
required is 3989/668 � 6. This gives a rivet pitch of 0.73 × 103 × π/(24 × 6) � 16 mm.

At the section CC the maximum stringer load is 5965 N so that the number of riv-
ets required is 5965/668 � 9. The required rivet pitch is then 1.01 × 103 × π/(24 × 9)
�14 mm.

Therefore for all frames a rivet pitch of 12.5 mm will be used.
The layout of a quarter of the rear fuselage is shown in Fig. A.13 with the detail

design shown in Figs A.14(a)–(e).
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Stringers type B’

Stringers type A’

Frame 4
see detail 4
(Fig. A.14(d))

Frame 5
see detail 5
(Fig. A.14(e))

Frame 2
see detail 2
(Fig. A.14(b))

Frame 1
see detail 1
(Fig. A.14(a))

Cut out for stringers
from previous panel

Section AA

Section BB

Frame 3
see detail 3
(Fig. A.14(c))

Fig. A.13 Layout of quarter fuselage.
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Section on ABCDEA

Stringer type ‘A’

Elevation from Port Side

= 25 mm

Frame 1

12.5 mm

A

A

E D

CB

Stringer cut away

XX �� X X

For Details of Bracket
see Fig. A.14 (c)
Skins from Previous
Sections Overlap Where
Necessary.
All Rivets 2.5 mm Countersunk
Except for Bracket.

Fig. A.14(a) Detail, Frame 1.
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Section on
AA

Lip Cut Away

All Rivets 2.5 mm Countersunk

Joggled

Elevation Port Side

12.5 mm"

"

"

"

"

"

"

"

"

A

Stringer Type ‘A’

= 25 mm
XXXX

Frame 2

A

26.5 mm

20 mm

Skins from Previous
Sections Overlap Where
Necessary

Fig. A.14(b) Detail 2, Frame 2.
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25 mm

12.5 mm

Stringer Type ‘B’Stringer Type ‘A’

Elevation From Port SideA
Frame 3

A

Section on
AA

6 mm

6 mm

6 mm6 mm
22 mm

25 mm

6 mm

6 mm

25 mm

Bracket

1.2 mm Thickness
Matl.
No. Off 48
Rivets 2.5 mm
Mushroom

Joggled

All Rivets 2.5 mm Countersunk
Except for Bracket Use 2.5 mm
Mushroom. Skins from Previous
Sections Overlap Where
Necessary

=
=

=
=

=
=

=
=

=

= = = =

Fig. A.14(c) Detail 3, Frame 3.
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Section on AA

Lip Cut Away

All rivets 2.5 mm Countersunk.
Skins from Previous
Sections Overlap Where
Necessary

Joggled

Elevation on Port Side

12.5 mm"

"

"

"

"

"

"

"

"

"

"
" ""

A

Stringer Type ‘B’

25 mm

Frame 4 A

Fig. A.14(d) Detail 4, Frame 4.
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Skins from Previous
Sections Overlap
Where Necessary
Rivets 2.5 mm Diameter Countersunk.

"

"

"

"

"

"

"

"

"

"

"

" " " "

A

Stringer Type 'B'

Elevation on Port Side

25 mm

Frame 5
A

6 mm

16 mm

5 mm

Section on ABCDEA

BC

12.5 mm

D E

Brackets, As Shown
Material 1.2 mm thick
No. off 24
Rivets 2.5 mm Diameter Mushroom16 mm

5 mm 6 mm

12.5 mm

Fig. A.14(e) Detail 5, Frame 5.



MEGSON Index.tex 19/1/2007 10: 14 Page 797

Index

Aeroelasticity, wing problems, 745–765
Control effectiveness and reversal,

751–757
aileron effectiveness and reversal (finite

wing), 754–757
aileron effectiveness and reversal (2-D

case), 752, 753
aileron reversal speed, 751

flutter, 757–765
aileron buzz, 758
aerodynamic coupling, 759
buffeting, 758
centre of independence, 759
classical flutter, 764, 765
coupling, 758–760
determination of critical flutter speed,

760–762
elastic coupling, 759
experimental determination of flutter

speed, 763, 764
ground resonance test, 764
inertial coupling, 759
non-classical flutter, 757
prevention of flutter, 762, 763
stalling flutter, 758
wing-bending-torsion-flutter, 757

load distribution and divergence, 746–751
swept wing divergence, 750, 751
wing torsional divergence (finite wing),

748–750
wing torsional divergence (2-D case),

746–748
types of problem, 745

Airframe loads, 405–424
aircraft inertia loads, 405–411
gust loads, 418–424

graded gust, 419, 423
gust alleviation factor, 423
gust envelope, 423, 424
1 - cosine gust, 419, 420
power spectral analysis, 420
sharp-edged gust, 419, 420–422

normal accelerations associated with
various types of manoeuvre,
416–418

correctly banked turn, 417, 418
steady pull-out, 416, 417

symmetric manoeuvre loads, 411–416
general case, 413–416
level flight, 411–413

Airworthiness, 399–404
factors of safety, flight envelope,

399–401
fatigue, see Fatigue
flight envelope, 400
limit load, 399, 401
load factor determination, 401
proof factor, 399
proof load, 399
ultimate factor, 399
ultimate load, 399
uncertainties in design/structural

deterioration, 401, 402
variation is structural strength, 402

Airy stress function, 49
Anticlastic bending, 460
Anticlastic surface, 222

Basic elasticity, 5–42
Beam columns, 268–271
Bending of an end-loaded cantilever, 56–61

effect of shear strains, 59, 60
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Bending of open and closed section
thin-walled beams, 451–495

anticlastic bending, 460
applicability of bending theory, 491
calculation of section properties, 482–490

approximations for thin-walled sections,
486–490

parallel axes theorem, 482
product second moment of area, 485,

486
second moments of area of standard

sections, 483–485
theorem of perpendicular axes, 482, 483

deflections due to bending, 468–482
singularity functions (Macauley’s

method), 475–480
load intensity, shear force and bending

moment relationships, 467–468
symmetrical bending, 452–460

assumptions, 453
centre, radius of curvature, 459
direct stress distribution, 453–460
examples of symmetrical sections, 452
neutral axis, 453
neutral plane, 451, 453

temperature effects, 491–495
unsymmetrical bending, 460–467

direct stress distribution, 462–465
position of neutral axis, 465
resolution of bending moments, 461,

462
sign conventions and notation, 461

Bending of thin plates, see Plates
Bending rigidity of a beam, 118
Bifurcation point, 259
Biharmonic equation, 49
Bimoment (moment couple), 734–737
Body forces, 9

boundary conditions, 11, 12
compatibility equations, 24–26
equations of equilibrium, 9, 10

Bredt-Batho theory, see Torsion of closed
section beams

Buckling
columns, see Columns
plates, see Plates

Bulk modulus, 32

Combined open and closed section beams,
551–556

bending, 551

shear, 551–554
torsion, 554–556

Columns, 255–286
buckling load for a pin ended column,

256–259
modes of buckling, 257

bifurcation point, 259
critical stress, 257, 258
definition of buckling load for a perfect

column, 256
effect of initial imperfections, 265–267

Southwell plot, 266
effective length, 258
effective lengths of columns having

varying end conditions, 258
eigenfunctions, eigenvalues, 258
energy (Rayleigh-Ritz) method for the

calculation of buckling loads,
271–275

Euler buckling, 255–266
flexural-torsional buckling of thin-walled

columns, 275–286
inelastic buckling, 261–264

reduced elastic modulus, 262
reduced modulus theory, 262–264
tangent modulus, 261
tangent modulus theory, 264

primary instability, 255
secondary instability, 255
slenderness ratio, 258
stability of beams under transverse and

axial loads (beam-columns), 268–271
Compatibility equation, 24–26
Complementary energy, see Energy methods
Complementary shear stress, 10
Components of stress, 8
Composite materials, 357–359

carbon fibre reinforced plastics (CFRP),
358, 359

glass reinforced plastics (GRP), 358
Composite structures, see Laminated

composite structures
Connections, see Structural components of

aircraft
Control effectiveness and reversal, see

Aeroelasticity
Crack propagation see Fatigue

Deflections of beams due to bending,
468–482

Deflection of thin plates, see Plates
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Deflection of thin-walled beams due to
bending, shear and torsion, 573–575

Determination of strains on inclined planes,
26–28

Determination of stresses on inclined planes,
12–16

Diagonal tension, see Plates

Effective length of a column, see Columns
Elasticity, 3–82

basic elasticity, 5–42
torsion of solid sections, 65–82
two-dimensional problems, 46–61

Energy methods, 111–156, 271–275
bending of thin plates, 240–248
energy method for the calculation of

buckling loads
in columns, 271–275
in plates, 295–297

flexibility method, 139–144
influence or flexibility coefficient, 150

principle of superposition, 149
principle of the stationary value of the total

complementary energy, 113–114
application to deflection problems,

114–121
application to the solution of statically

indeterminate systems, 122–137
fictitious or dummy load method, 116
unit load method, 137–139
principle of the stationary value of the

total potential energy, 146–148
self-straining trusses, 144–145
strain energy and complementary

energy, 111–113
temperature effects, 154–156
the reciprocal theorem, 149–151
total potential energy, 145, 146

Euler buckling, 255–260, see Columns
Experimental determination of critical load

for a thin plate, 299
Experimental measurement of surface

strains, 37–42
strain gauge rosette, 37, 38

Fabrication of structural components, see
Structural components of aircraft

Factors of safety, flight envelope, see
Airworthiness

Fail-safe structures, see Fatigue

Failure stress in plates and stiffened panels,
see Plates

Fatigue, 373, 374, 429–446
corrosion fatigue, 429
crack propagation 440–446

crack propagation rates, 444–446
crack tip plasticity, 443, 441
fracture toughness, 443
modes of crack growth, 441
stress concentration factor, 440–443
stress field in vicinity of a crack, 441
stress intensity factor, 440

cycle fatigue, 429
designing against fatigue, 430–432

fatigue load spectrum, 431
gust exceedance, 431
gust frequency curves, 431

endurance limit, 373
Miner’s cumulative damage theory, 373,

374, 434
S-n curves, 373, 371, 402, 403, 432

fatigue strength, 373
fatigue strength of components, 432–435

confidence limits, 432
Goodman diagram, 433
scatter factor, 435

fretting fatigue, 429
prediction of aircraft fatigue life, 435–440

ground-air-ground cycle, 435, 436
gust damage, 436–4393

safe life and fail-safe structures, 429, 430
stress concentrations, 373, 430
thermal fatigue, 429

Fictitious or dummy load method, 116
Finite element method, see Matrix methods
Flexibility method, 139–144

flexibility (influence) coefficient, 150
Flexural axis, 680
Flexural rigidity of a beam, 118
Flexural-torsional buckling of thin-walled

columns, 275–286
Flutter, see Aeroelasticity
Force, 7–9

body forces, 9
notation, 7
surface forces, 9

Function of structural components, see
Structural components of aircraft

Fuselages, analysis of, 598–606
Fuselage frames and wing ribs, analysis of,

638–648
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General stress, strain and displacement
relationships, see Shear of beams

Glass, see Materials
Glass reinforced plastics (GRP), see

Materials
Goodman diagram, 433
Ground resonance test, 764
Gust loads, see Airframe loads, Fatigue

Hooke’s law, 30

Inelastic buckling, 261–264
columns, 261–264

reduced elastic modulus, 262
reduced modulus theory, 262–264
tangent modulus, 261
tangent modulus theory, 264

thin plates, 297–299
Instability of stiffened panels, 301–303

failure stress, 303–305
interrivet buckling, 302, 303
wrinkling, 303

Inverse and semi-inverse methods for
elasticity problems, 49–54

Laminated composite structures,
650–673

elastic constants for a simple lamina,
650–655

law of mixtures, 651
stress-strain relationships for an

orthotropic ply, 655–662
thin-walled composite beams, 662–673

axial load, 663–665
bending, 665–668
shear, 668–670
torsion, 670–673

types of ply, 655
generally orthotropic ply, 658–662
specially orthotropic ply, 655–657

Laplacian operator, 67, 228
Load intensity, shear force and bending

moment relationships for a beam,
467, 468

Loads on structural components, see
Structural components of aircraft

Local instability in plates, 299, 300
Lumped mass concept, see Structural

vibration

Macauley’s method (singularity functions),
475–480

Materials of aircraft construction,
353–374

aluminium alloys, 353–355
composite materials, see Composite

materials
creep and relaxation, 372–373
fatigue, see Fatigue
glass, 357
maraging steels, 356
plastics, 357
properties of materials, see Properties of

materials
steel, 355, 356
strain hardening, 371
stress-strain curves, 366–371
testing of engineering materials, see

Testing of engineering materials
titanium, 356, 357

Matrix methods, 168–208
application to statically indeterminate

frameworks, 181–184
finite element method, 191–208

stiffness matrix for a beam element,
192–196

stiffness matrix for a quadrilateral
element, 203–208

stiffness matrix for a triangular element,
196–203

flexibility (force) method, 168
matrix analysis of pin-jointed frameworks,

174–181
notation, 169, 170
stiffness matrix, 170
stiffness matrix for a uniform beam,

184–191
idealization into beam elements,

187–188
stiffness matrix for an elastic spring, 170,

171
stiffness matrix for two elastic springs in

line, 171–174
stiffness (displacement) method, 168

Membrane analogy, 77–81
Modulus of elasticity (Young’s modulus), 30
Modulus of rigidity (shear modulus), 31
Mohr’s circle of strain, 29
Mohr’s circle of stress, 17–21
Moment couple (bimoment), 734–737
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Neuber beam, 536, 537
Neutral axis, 453, 465
Neutral plane

of a beam, 451, 453
of a plate, 220

Oscillation of beam, see Structural vibration

Parallel axes theorem, 482
Perpendicular axes theorem, 482, 483
Plane strain, 26
Plane stress, 17
Plates, thin, 219–248

bending and twisting of, 222–226
principal curvatures, 224
principal moments, 224

bending of plates having a small initial
curvature, 239, 240

buckling of plates, 294–297
buckling coefficient, 296, 297

combined bending and in-plane loading of
a rectangular plate, 235–239

governing differential equation, 238
energy method, 240–248

potential energy of a transverse load,
242

potential energy of in-plane loads,
242–245

Rayleigh-Ritz method, 240, 247
strain energy due to bending and

twisting, 240–242
experimental determination of critical load

(Southwell plot), 299
failure stress in plates and stiffened panels,

303–305
inelastic buckling of plates, 297–299

buckling coefficients, 298
instability of stiffened panels, 301–303

interrivet buckling, 302, 303
wrinkling, 303

local instability, 299, 300
pure bending, 219–222

anticlastic surface, 222
flexural rigidity, 221
neutral plane, 220
synclastic surface, 222

subjected to a distributed transverse load,
226–235

built-in edge, 230
differential equation for deflection, 228,

231

Fourier series for deflections and loads,
232

free edge, 230–233
Laplace operator, 228
simply supported edge, 229, 230

tension field beams, 306–320
complete diagonal tension, 306–312
diagonal tension factor, 312
incomplete diagonal tension, 312–314
loading or buckling stress ratio, 312
post buckling behaviour, 315–320

Point of zero warping in an open section
beam, 541

Poisson’s ratio, 30
Potential energy, see Energy methods
Primary instability, 255
Primary warping in an open section beam, 539
Principal strains, 28, 29
Principal stresses, planes, 16, 17
Principle of the stationary value of the total

complementary energy, 113–114
application to deflection problems,

114–121
application to the solution of statically

indeterminate systems, 122–137
Principle of the stationary value of the total

potential energy, 146–148
Principle of superposition, 149
Principle of virtual work, 89–93
Principles of stressed skin construction,

353–395
materials, see Materials

Products second moment of area, 485, 486
Properties of materials, 359, 360

anisotropic materials, 360
brittleness, 360
creep and relaxation, 372, 373
ductility, 359
elastic materials, 360
fatigue, see Fatigue
isotropic materials, 360
orthotropic materials, 360
plasticity, 360
strain hardening, 371

Rayleigh, 341
Rayleigh-Ritz method, 240, 247, 271–275,

341–344
Reciprocal theorem, 149–151
Reduced modulus theory, 262–264

reduced elastic modulus, 262
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Safe life structures, see Fatigue
St Venant’s principle, 54, 55
Second moments of area, 482–490
Secondary instability, 255
Secondary warping in an open section beam,

539
Self straining trusses, 144, 145
Shear center, see Shear of beams
Shear flow, see Shear of beams, Torsion of

beams
Shear lag, see Structural and loading

discontinuities
Shear of beams, 503–519

centre of twist, 506–507
general stress, strain and displacement

relationships, 503–507
shear flow, 504, 507, 508
shear of closed section beams, 512–519

shear centre, 517, 519
shear flow, 513–515
twist and warping, 515–517

shear of open section beams, 507–512
shear centre, 507, 510–512

Shear stress distribution at a built-in end,
681–686

Singularity functions (Macauley’s method),
475–480

Slenderness ratio for a column, see Columns
Southwell plot, 266, 299
Stability of beams under transverse and axial

loads (beam-columns), 268–271
Strain, 22–29

determination of stains on inclined
planes, 26–28

longitudinal (direct) strain, 22, 23
Mohr’s circle of strain, 29
plane strain, 26–28
principal strains, 28, 29
shear strain, 22–24

Strain energy, 111, 112
in simple tension, 112

Strain gauge rosette, 37, 38
Stress

complementary shear stress, 10
components at a point, 8
definition, 6
determination of stresses on inclined

planes, 12–16
direct (normal) stress, 6
maximum shear stress at a point, 17
Mohr’s circle of stress, 17–21

notation for stresses, 7–9
plane stress, 11
principal stresses, planes, 16, 17
resultant stress, 7
shear stress, definition, 6

Stress analysis of aircraft components,
583–673

fuselages, 598–606
effect of cut-outs, 604–606
in bending, 598, 599
in shear, 600–603
in torsion, 603–604

fuselage frames and wing ribs, 638–648
fuselage frames, 643, 644
principles of stiffener/web construction,

638–643
wing ribs, 644–648

laminated composite structures, see
Laminated composite structures

wing spars and tapered box beams,
583–596

beams having variable stringer areas,
593–596

open and closed section beams, 587–592
tapered wing spar, 584–587

wings, 607–631
bending of, 608, 609
cut-outs in wings, 623–631
deflections, 622, 623
shear, 613–618
shear centre, 618
tapered wings, 619–622
three-boom shell, 607, 608
torsion, 609–613

Stress functions, 48, 49
Stress-strain relationships, 29–35
Structural and loading discontinuities,

679–737
closed section beams, 679–710

eigenloads, 680
flexural axis, 680
general aspects, 679–681
rectangular section beam subjected to

torsion, 687–694
shear lag, 694–710
shear stress distribution at a built-in end,

681–686
zero warping axis, 680

open section beams, 718–737
distributed torque loading, 730–731



MEGSON Index.tex 19/1/2007 10: 14 Page 803

Index 803

extension of theory to allow for general
systems of loading, 731–734

I-section beam subjected to torsion,
718–720

moment couple (bimoment), 734–737
shear flow due to a moment couple, 737
torsion bending constant, 722
torsion of an arbitrary section beam,

720–730
“wire” analogy, 725

Structural components of aircraft, 376–395
connections, 388–395

eccentrically loaded riveted joints,
392–394

group riveted joints, 391, 392
joint efficiency, 391
simple lap joint, 389–391
use of adhesives, 394, 395

fabrication of structural components,
384–388

integral construction, 386
sandwich panels, 387
sub-assemblies, 385

function of structural components,
379–383

fuselages, 380
monocoque structures, 379
semi-monocoque structures, 379
tailplanes, 380
wings, 379, 380

loads on components, 376–379
aerodynamic centre, 377
body forces, 376
centre of pressure, 377
drag, 377
ground loads, 376
pitching moment, 377
surface forces, 376
wing lift, 377
yawing moment, 377

Structural idealization, 558–575
effect of idealization on the analysis of

open and closed section beams,
561–572

alternative method for shear flow
distribution, 571, 572

bending of open and closed section
beams, 562,563

deflections of open and closed section
beams, 573–575

shear of closed section beams, 569–571

shear of open section beams, 563–569
torsion of open and closed section

beams, 572
idealization of a panel, 559, 560
principle, 558, 559

Structural instability, 255–320
columns, see Columns
thin plates, see Plates

Structural vibration, 327–344
approximate methods for natural

frequencies (Rayleigh,
Rayleigh-Ritz), 341, 344

flexibility method, 329
lumped mass concept, 327
mass/spring systems, 327–336
normal modes of vibration, 327
oscillation of beams, 336–341
stiffness method, 329

Surface forces, 9
Symmetric manoeuvre loads, see Airframe

loads
Symmetrical bending, see Bending of open

and closed section thin-walled beams
Synclastic surface, 222

Tangent modulus theory, 264
tangent modulus, 261

Temperature effects, 35–37, 154–156,
491–495

in beams, 491–495
mechanical strain, 35
thermal strain, 35
total strain, 35

Tension field beams, see Plates
Testing of engineering materials, 360–366

bending tests, 362–364
modulus of rupture, 364

compression tests, 362
hardness tests, 365, 366
impact tests, 366

shear tests, 364
stress-strain curves, 366–371

aluminium, 369, 370
brittle materials, 370
composites, 370, 371
mild steel, 367, 368

tensile tests, 361, 362
actual stress, 361
nominal stress, 361

Torsion bending constant, 722
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Torsion of a rectangular section beam
subjected to axial constraint, 687–694

Torsion of an I-section beam built-in at one
end, 718–720

Torsion of an open, arbitrary section beam
subjected to axial constraint, 720–730

Torsion of beams, 527–544
torsion of closed section beams, 527–537

condition for zero warping (Neuber
beam), 536, 537

displacements, 528–536
mechanics of warping, 534–536
rate of twist, 529
shear flow (Bredt-Batho theory), 528
warping, 530–537
warping in a rectangular section beam,

531–534
torsion of open section beams, 537–544

point of zero warping, 541
primary warping, 539
rate of twist, 538
secondary warping, 539
shear lines, 537
shear stress distribution, 538
torsion constant, 538
warping of cross-section, 538–540

Torsion of solid sections, 65–81
membrane analogy, 77–81

torsion of a narrow rectangular strip,
79–81

warping of a thin rectangular strip, 81
Prandtl stress function solution, 65–75

Laplacian operator, 67
lines of shear stress, 71
polar second moment of area, 73
torsion constant, 70
torsion of a circular section bar, 72, 73
torsion of an elliptical section bar, 73–75
torsional rigidity, 71
warping displacement, 70

St Venant warping function solution, 75–77
torsion constant, 77
warping function, 76

Total potential energy, 145, 146
Twist and warping in closed section beams,

515–517
Twist and warping in open section beams,

537–544

Two-dimensional problems in elasticity,
46–61

bending of an end-loaded cantilever, 56–61
biharmonic equation, 49
displacements, 55, 56
inverse and semi-inverse methods, 49–54
St Venant’s principle, 54, 55
stress functions, 48, 49

Unit load method, 137–139
Unsymmetrical bending, see Bending of open

and closed section thin-walled beams

Virtual work, 87–108
applications of principle, 100–108
principle of virtual work, 89–93

for a particle, 89, 90
for a rigid body, 90–93

use of virtual force systems, 100
virtual work in a deformable body, 93, 94
work, definition, 87, 88
work done by external force systems, 99,

100
work done by internal force systems,

94–99
axial force, 94, 95
bending moment, 97
hinges, 98
shear force, 96
sign of, 98, 99
torsion, 98

Warping
in a closed section beam, 515–517
in a solid section beam, 70
in an open section beam, 538–540
of a thin rectangular strip, 81
St Venant’s warping function, 75–77

Wing torsional divergence, see Aeroelasticity
Wings, analysis of, 607–631
Wings, spars and box beams, analysis of,

583–596
“Wire” analogy for the calculation of the

torsion bending constant, 725
Work, definition, 87, 88

Young’s modulus, 30

Zero warping axis, 680
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