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Preface

During my experience of teaching aircraft structures I have felt the need for a textbook
written specifically for students of aeronautical engineering. Although there have been
a number of excellent books written on the subject they are now either out of date or
too specialist in content to fulfil the requirements of an undergraduate textbook. My
aim, therefore, has been to fill this gap and provide a completely self-contained course
in aircraft structures which contains not only the fundamentals of elasticity and aircraft
structural analysis but also the associated topics of airworthiness and aeroelasticity.

The book in intended for students studying for degrees, Higher National Diplomas
and Higher National Certificates in aeronautical engineering and will be found of value
to those students in related courses who specialize in structures. The subject matter
has been chosen to provide the student with a textbook which will take him from the
beginning of the second year of his course, when specialization usually begins, up to and
including his final examination. I have arranged the topics so that they may be studied
to an appropriate level in, say, the second year and then resumed at a more advanced
stage in the final year; for example, the instability of columns and beams may be studied
as examples of structural instability at second year level while the instability of plates
and stiffened panels could be studied in the final year. In addition, I have grouped some
subjects under unifying headings to emphasize their interrelationship; thus, bending,
shear and torsion of open and closed tubes are treated in a single chapter to underline the
fact that they are just different loading cases of basic structural components rather than
isolated topics. I realize however that the modern trend is to present methods of analysis
in general terms and then consider specific applications. Nevertheless, I feel that in
cases such as those described above it is beneficial for the student’s understanding of
the subject to see the close relationships and similarities amongst the different portions
of theory.

Part T of the book, ‘Fundamentals of Elasticity’, Chapters 1-6, includes sufficient
elasticity theory to provide the student with the basic tools of structural analysis. The
work is standard but the presentation in some instances is original. In Chapter 4 I have
endeavoured to clarify the use of energy methods of analysis and present a consistent,
but general, approach to the various types of structural problem for which energy
methods are employed. Thus, although a variety of methods are discussed, emphasis is
placed on the methods of complementary and potential energy. Overall, my intention
has been to given some indication of the role and limitations of each method of analysis.
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Preface

Part II, ‘Analysis of Aircraft Structures’, Chapters 7-11, contains the analysis of the
thin-walled, cellular type of structure peculiar to aircraft. In addition, Chapter 7 includes
a discussion of structural materials, the fabrication and function of structural compo-
nents and an introduction to structural idealization. Chapter 10 discusses the limitations
of the theory presented in Chapters 8 and 9 and investigates modifications necessary
to account for axial constraint effects. An introduction to computational methods of
structural analysis is presented in Chapter 11 which also includes some elementary
work on the relatively modern finite element method for continuum structures.

Finally, Part III, ‘Airworthiness and Aeroelasticity’, Chapters 12 and 13, are self
explanatory.

Worked examples are used extensively in the text to illustrate the theory while numer-
ous unworked problems with answers are listed at the end of each chapter; S.I. units
are used throughout.

I am indebted to the Universities of London (L.U.) and Leeds for permission to
include examples from their degree papers and also the Civil Engineering Department
of the University of Leeds for allowing me any facilities I required during the preparation
of the manuscript. I am also extremely indebted to my wife, Margaret, who willingly
undertook the onerous task of typing the manuscript in addition to attending to the
demands of a home and our three sons, Andrew, Richard and Antony.

T'H.G. Megson



Preface to Second Edition

The publication of a second edition has given me the opportunity to examine the contents
of the book in detail and determine which parts required alteration and modernization.
Aircraft structures, particularly in the field of materials, is a rapidly changing subject
and, while the fundamentals of analysis remain essentially the same, clearly an attempt
must be made to keep abreast of modern developments. At the same time I have exam-
ined the presentation making changes where I felt it necessary and including additional
material which I believe will be useful for students of the subject.

The first five chapters remain essentially the same as in the first edition except for
some minor changes in presentation.

In Chapter 6, Section 6.12 has been rewritten and extended to include flexural—
torsional buckling of thin-walled columns; Section 6.13 has also been rewritten to
present the theory of tension field beams in a more logical form.

The discussion of composite materials in Chapter 7 has been extended in the light of
modern developments and the sections concerned with the function and fabrication of
structural components now include illustrations of actual aircraft structures of different
types. The topic of structural idealization has been removed to Chapter 8.

Chapter 8 has been retitled and the theory presented in a different manner. Matrix
notation is used in the derivation of the expression for direct stress due to unsymmetrical
bending and the ‘bar’ notation discarded. The theory of the torsion of closed sections
has been extended to include a discussion of the mechanics of warping, and the theory
for the secondary warping of open sections amended. Also included is the analysis
of combined open and closed sections. Structural idealization has been removed from
Chapter 7 and is introduced here so that the effects of structural idealization on the
analysis follow on logically. An alternative method for the calculation of shear flow
distributions is presented.

Chapter 9 has been retitled and extended to the analysis of actual structural com-
ponents such as tapered spars and beams, fuselages and multicell wing sections. The
method of successive approximations is included for the analysis of many celled wings
and the effects of cut-outs in wings and fuselages are considered. In addition the cal-
culation of loads on and the analysis of fuselage frames and wing ribs is presented. In
addition to the analysis of structural components composite materials are considered
with the determination of the elastic constants for a composite together with their use
in the fabrication of plates.
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Preface to Second Edition

Chapter 10 remains an investigation into structural constraint, although the presen-
tation has been changed particularly in the case of the study of shear lag. The theory for
the restrained warping of open section beams now includes general systems of loading
and introduces the concept of a moment couple or bimoment.

Only minor changes have been made to Chapter 11 while Chapter 12 now includes a
detailed study of fatigue, the fatigue strength of components, the prediction of fatigue
life and crack propagation. Finally, Chapter 13 now includes a much more detailed
investigation of flutter and the determination of critical flutter speed.

I am indebted to Professor D. J. Mead of the University of Southampton for many
useful comments and suggestions. I am also grateful to Mr K. Broddle of British
Aerospace for supplying photographs and drawings of aircraft structures.

T H.G. Megson
1989



Preface to Third Edition

The publication of a third edition and its accompanying solutions manual has allowed
me to take a close look at the contents of the book and also to test the accuracy of the
answers to the examples in the text and the problems set at the end of each chapter.

I have reorganised the book into two parts as opposed, previously, to three. Part I,
Elasticity, contains, as before, the first six chapters which are essentially the same
except for the addition of two illustrative examples in Chapter 1 and one in Chapter 4.

Part II, Chapters 7 to 13, is retitled Aircraft structures, with Chapter 12, Airworthi-
ness, now becoming Chapter 8, Airworthiness and airframe loads, since it is logical
that loads on aircraft produced by different types of manoeuvre are considered before
the stress distributions and displacements caused by these loads are calculated.

Chapter 7 has been updated to include a discussion of the latest materials used in
aircraft construction with an emphasis on the different requirements of civil and military
aircraft.

Chapter 8, as described above, now contains the calculation of airframe loads pro-
duced by different types of manoeuvre and has been extended to consider the inertia
loads caused, for example, by ground manoeuvres such as landing.

Chapter 9 (previously Chapter 8) remains unchanged apart from minor corrections
while Chapter 10 (9) is unchanged except for the inclusion of an example on the
calculation of stresses and displacements in a laminated bar; an extra problem has been
included at the end of the chapter.

Chapter 11 (10), Structural constraint, is unchanged while in Chapter 12 (11) the
discussion of the finite element method has been extended to include the four node
quadrilateral element together with illustrative examples on the calculation of element
stiffnesses; a further problem has been added at the end of the chapter.

Chapter 13, Aeroelasticity, has not been changed from Chapter 13 in the second
edition apart from minor corrections.

I am indebted to, formerly, David Ross and, latterly, Matthew Flynn of Arnold for
their encouragement and support during this project.

TH.G. Megson
1999
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Preface to Fourth Edition

I'have reviewed the three previous editions of the book and decided that a major overhaul
would be beneficial, particularly in the light of developments in the aircraft industry and
in the teaching of the subject. Present-day students prefer numerous worked examples
and problems to solve so that I have included more worked examples in the text and
more problems at the end of each chapter. I also felt that some of the chapters were
too long. I have therefore broken down some of the longer chapters into shorter, more
‘digestible’ ones. For example, the previous Chapter 9 which covered bending, shear
and torsion of open and closed section thin-walled beams plus the analysis of combined
open and closed section beams, structural idealization and deflections now forms the
contents of Chapters 16-20. Similarly, the Third Edition Chapter 10 ‘Stress Analysis of
Aircraft Components’ is now contained in Chapters 21-25 while ‘Structural Instability’,
Chapter 6 in the Third Edition, is now covered by Chapters 8 and 9.

In addition to breaking down the longer chapters I have rearranged the material
to emphasize the application of the fundamentals of structural analysis, contained in
Part A, to the analysis of aircraft structures which forms Part B. For example, Matrix
Methods, which were included in ‘Part II, Aircraft Structures’ in the Third Edition are
now included in Part A since they are basic to general structural analysis; similarly for
structural vibration.

Parts of the theory have been expanded. In Part A, virtual work now merits a chapter
(Chapter 4) to itself since I believe this powerful and important method is worth an in-
depth study. The work on tension field beams (Chapter 9) has become part of the chapter
on thin plates and has been extended to include post-buckling behaviour. Materials, in
Part B, now contains a section on material properties while, in response to readers’
comments, the historical review has been discarded. The design of rivetted connections
has been added to the consideration of structural components of aircraft in Chapter 12
while the work on crack propagation has been extended in Chapter 15. The method of
successive approximations for multi-cellular wings has been dropped since, in these
computer-driven times, it is of limited use and does not advance an understanding of
the behaviour of structures. On the other hand the study of composite structures has
been expanded as these form an increasing part of a modern aircraft’s structure.

Finally, a Case Study, the design of part of the rear fuselage of a mythical trainer/semi-
aerobatic aeroplane is presented in the Appendix to illustrate the application of some
of the theory contained in this book.
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Preface to Fourth Edition

I would like to thank Jonathan Simpson of Elsevier who initiated the project and who
collated the very helpful readers’ comments, Margaret, my wife, for suffering the long
hours I sat at my word processor, and Jasmine, Lily, Tom and Bryony who are always
an inspiration.

T H.G. Megson

Supporting material accompanying this book
A full set of worked solutions for this book are available for teaching purposes.

Please visit http://www.textbooks.elsevier.com and follow the registration
instructions to access this material, which is intended for use by lecturers
and tutors.
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Basic elasticity

We shall consider, in this chapter, the basic ideas and relationships of the theory of elas-
ticity. The treatment is divided into three broad sections: stress, strain and stress—strain
relationships. The third section is deferred until the end of the chapter to emphasize
the fact that the analysis of stress and strain, for example the equations of equilibrium
and compatibility, does not assume a particular stress—strain law. In other words, the
relationships derived in Sections 1.1-1.14 inclusive are applicable to non-linear as well
as linearly elastic bodies.

1.1 Stress

Consider the arbitrarily shaped, three-dimensional body shown in Fig. 1.1. The body is
in equilibrium under the action of externally applied forces Py, P3, ... and is assumed
to comprise a continuous and deformable material so that the forces are transmitted
throughout its volume. It follows that at any internal point O there is a resultant force

Ps

Fig. 1.1 Internal force at a point in an arbitrarily shaped body.
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Ps

Fig. 1.2 Internal force components at the point O.

8P. The particle of material at O subjected to the force 6P is in equilibrium so that there
must be an equal but opposite force 6P (shown dotted in Fig. 1.1) acting on the particle
at the same time. If we now divide the body by any plane nn containing O then these
two forces 6P may be considered as being uniformly distributed over a small area 6A
of each face of the plane at the corresponding point O as in Fig. 1.2. The stress at O is
then defined by the equation
. 6P
Stress = lim — (1.1)
8A—0 8A

The directions of the forces 6P in Fig. 1.2 are such as to produce tensile stresses
on the faces of the plane nn. It must be realized here that while the direction of §P is
absolute the choice of plane is arbitrary, so that although the direction of the stress at
O will always be in the direction of §P its magnitude depends upon the actual plane
chosen since a different plane will have a different inclination and therefore a different
value for the area §A. This may be more easily understood by reference to the bar in
simple tension in Fig. 1.3. On the cross-sectional plane mm the uniform stress is given
by P/A, while on the inclined plane m'm’ the stress is of magnitude P/A’. In both cases
the stresses are parallel to the direction of P.

Generally, the direction of 6P is not normal to the area §A, in which case it is usual
to resolve 6P into two components: one, 6Py, normal to the plane and the other, §P;,
acting in the plane itself (see Fig. 1.2). Note that in Fig. 1.2 the plane containing §P
is perpendicular to 3A. The stresses associated with these components are a normal or
direct stress defined as

SP
o= lim — (1.2)
SA—0 SA
and a shear stress defined as
. 0P
T= lim — (1.3)

SA—0 SA



1.2 Notation for forces and stresses

-
m \m

P

Fig. 1.3 Values of stress on different planes in a uniform bar.

The resultant stress is computed from its components by the normal rules of vector
addition, namely

Resultant stress = v 02 + 72

Generally, however, as indicated above, we are interested in the separate effects of o
and .

However, to be strictly accurate, stress is not a vector quantity for, in addition to
magnitude and direction, we must specify the plane on which the stress acts. Stress is
therefore a tensor, its complete description depending on the two vectors of force and
surface of action.

1.2 Notation for forces and stresses

It is usually convenient to refer the state of stress at a point in a body to an orthogonal
set of axes Oxyz. In this case we cut the body by planes parallel to the direction of the
axes. The resultant force §P acting at the point O on one of these planes may then be
resolved into a normal component and two in-plane components as shown in Fig. 1.4,
thereby producing one component of direct stress and two components of shear stress.
The direct stress component is specified by reference to the plane on which it acts but
the stress components require a specification of direction in addition to the plane. We
therefore allocate a single subscript to direct stress to denote the plane on which it acts
and two subscripts to shear stress, the first specifying the plane, the second direction.
Therefore in Fig. 1.4, the shear stress components are 7, and 1, acting on the z plane
and in the x and y directions, respectively, while the direct stress component is o;.
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We may now completely describe the state of stress at a point O in a body by
specifying components of shear and direct stress on the faces of an element of side §x,
8y, 8z, formed at O by the cutting planes as indicated in Fig. 1.5.

The sides of the element are infinitesimally small so that the stresses may be assumed
to be uniformly distributed over the surface of each face. On each of the opposite faces
there will be, to a first simplification, equal but opposite stresses.

«1—Cutting plane

X
/ Resultant stress

Fig. 1.4 Components of stress at a point in a body.

y

sz, F 4
’ T,

} 0 Txz

z

Fig. 1.5 Sign conventions and notation for stresses at a point in a body.



1.3 Equations of equilibrium

‘We shall now define the directions of the stresses in Fig. 1.5 as positive so that normal
stresses directed away from their related surfaces are tensile and positive, opposite
compressive stresses are negative. Shear stresses are positive when they act in the
positive direction of the relevant axis in a plane on which the direct tensile stress is in the
positive direction of the axis. If the tensile stress is in the opposite direction then positive
shear stresses are in directions opposite to the positive directions of the appropriate axes.

Two types of external force may act on a body to produce the internal stress system
we have already discussed. Of these, surface forces such as Py, P2, ..., or hydrostatic
pressure, are distributed over the surface area of the body. The surface force per unit
area may be resolved into components parallel to our orthogonal system of axes and
these are generally given the symbols X, Y and Z. The second force system derives
from gravitational and inertia effects and the forces are known as body forces. These
are distributed over the volume of the body and the components of body force per unit
volume are designated X, Y and Z.

1.3 Equations of equilibrium

Generally, except in cases of uniform stress, the direct and shear stresses on opposite
faces of an element are not equal as indicated in Fig. 1.5 but differ by small amounts.
Therefore if, say, the direct stress acting on the z plane is o; then the direct stress
acting on the z + §z plane is, from the first two terms of a Taylor’s series expansion,
o; + (do;/0z)dz.

We now investigate the equilibrium of an element at some internal point in an elastic
body where the stress system is obtained by the method just described.

In Fig. 1.6 the element is in equilibrium under forces corresponding to the stresses
shown and the components of body forces (not shown). Surface forces acting on the

y doy
o, + 5 Sy
aTyz aryx
Ty, t ay 8 Sx Tyx+-a—y' Sy
or N
Tzy + aZy SZ >/ // Sy
I Tox /" Ty 5
\ ———— L Txy + p) X
Txz, M
/Zl ] ao‘,
e ot gy B
U O
X
Tvxy — v 4 asz
e Tz + Ix 3x
=T 8z
Tyx |
! Tox + Itex ¥4
t ZX az
/ + 23—5 -¥4 l
R o,

7 y

Fig. 1.6 Stresses on the faces of an element at a point in an elastic body.
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boundary of the body, although contributing to the production of the internal stress
system, do not directly feature in the equilibrium equations.
Taking moments about an axis through the centre of the element parallel to the z axis

dx 0Ty dx 8y
txyﬁy(sZ? +{y+ o dx 8y8z? - ‘L’yx(S)C(SZE

0Tyx 8y

e B ——38y Jéxéz— =0
( =T Ty ) 2
which simplifies to
8x)? dty 8y)?
Toy8y826x + a% V62 (;) — T (;) —0

Dividing through by 8x8yéz and taking the limit as dx and Sy approach zero

Txy = Tyx
Similarly Tyz = Tox (1.4)
Ty, = Ty

We see, therefore, that a shear stress acting on a given plane (Tyy, Ty, Ty;) is always
accompanied by an equal complementary shear stress (Tyyx, T;x, Tzy) acting on a plane
perpendicular to the given plane and in the opposite sense.

Now considering the equilibrium of the element in the x direction

00y afyx
Ox + ——38x |8y 8z — 038ydz + | Tyx + ——38y | dxdz
ox ay

0Ty
— Tye0X0Z + | Ty + a—z& 8x8y
— T 0x8y 4+ Xox8ydz = 0

which gives

o ay 0z

Or, writing Ty, = Ty, and ty; = T, from Eq. (1.4)

00

0Tyy

0Ty,

T x =0
ox ay 0z *
a a a Y
Similarly % % % LY =0 (1.5)
y X 4
g | It Iy,
0z ox ay

The equations of equilibrium must be satisfied at all interior points in a deformable
body under a three-dimensional force system.



1.5 Boundary conditions

1.4 Plane stress

Most aircraft structural components are fabricated from thin metal sheet so that stresses
across the thickness of the sheet are usually negligible. Assuming, say, that the z axis is
in the direction of the thickness then the three-dimensional case of Section 1.3 reduces
to a two-dimensional case in which o, 7, and 7y, are all zero. This condition is known
as plane stress; the equilibrium equations then simplify to

o a

o T x — 0

ox ay (1.6)
doy 0Ty )
— 4+ —4Y=0

ay ox

1.5 Boundary conditions

The equations of equilibrium (1.5) (and also (1.6) for a two-dimensional system) satisfy
the requirements of equilibrium at all internal points of the body. Equilibrium must
also be satisfied at all positions on the boundary of the body where the components of
the surface force per unit area are X, Y and Z. The triangular element of Fig. 1.7 at the
boundary of a two-dimensional body of unit thickness is then in equilibrium under the
action of surface forces on the elemental length AB of the boundary and internal forces
on internal faces AC and CB.
Summation of forces in the x direction gives

— 1
X85 — 0x0y — Tyxdx + X§6x8y =0

which, by taking the limit as §x approaches zero, becomes

X0 pp, &
= 0, — e —
Yds M ds

y —_—

A Y

Ox l Sy 89 R
R Sx
C B
Tyx
Oy
0 X

Fig. 1.7 Stresses on the faces of an element at the boundary of a two-dimensional body.
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The derivatives dy/ds and dx/ds are the direction cosines / and m of the angles that a
normal to AB makes with the x and y axes, respectively. It follows that

X =0yl + tym
and in a similar manner
Y =oym+ 1yl

A relatively simple extension of this analysis produces the boundary conditions for
a three-dimensional body, namely

X =0+ Tyl + Tyl
Y = oym + Tyl + 10 (1.7)
7 =on+ Ty M + Tyl

where [, m and n become the direction cosines of the angles that a normal to the surface
of the body makes with the x, y and z axes, respectively.

1.6 Determination of stresses on inclined planes

The complex stress system of Fig. 1.6 is derived from a consideration of the actual
loads applied to a body and is referred to a predetermined, though arbitrary, system of
axes. The values of these stresses may not give a true picture of the severity of stress
at that point so that it is necessary to investigate the state of stress on other planes on
which the direct and shear stresses may be greater.

We shall restrict the analysis to the two-dimensional system of plane stress defined
in Section 1.4.

Figure 1.8(a) shows a complex stress system at a point in a body referred to axes
Ox, Oy. All stresses are positive as defined in Section 1.2. The shear stresses ty, and
Tyx were shown to be equal in Section 1.3. We now, therefore, designate them both ty,.

A %
y\ - Txy E
\ Tyy
E 3x -
8 By Ox Oy &
Oy .
Tyy C D Txy C D
Ty, = PV S
Xy TX_V
O O'y A B
- x oy
(a) (b)

Fig. 1.8 (a) Stresses on a two-dimensional element; (b) stresses on an inclined plane at the point.



1.6 Determination of stresses on inclined planes

The element of side éx, §y and of unit thickness is small so that stress distributions over
the sides of the element may be assumed to be uniform. Body forces are ignored since
their contribution is a second-order term.

Suppose that we require to find the state of stress on a plane AB inclined at an angle 6
to the vertical. The triangular element EDC formed by the plane and the vertical through
E is in equilibrium under the action of the forces corresponding to the stresses shown in
Fig. 1.8(b), where o, and t are the direct and shear components of the resultant stress
on AB. Then resolving forces in a direction perpendicular to ED we have

onED = 0,ECcos 0 + 0,CD sin 6 + 7,,ECsin 6 + 7,,CD cos 0
Dividing through by ED and simplifying
Op = Oy cos® 0 + oy sin? 6 + Tyy Sin 26 (1.8)
Now resolving forces parallel to ED
TED = 0,ECsin 6 — 0,CD cos 0 — 7,yEC cos 0 + 7,,CD sin 0
Again dividing through by ED and simplifying
(ox — 0y)

T= TsinZG—erCOSZG (1.9)

Example 1.1

A cylindrical pressure vessel has an internal diameter of 2m and is fabricated from
plates 20 mm thick. If the pressure inside the vessel is 1.5 N/mm? and, in addition, the
vessel is subjected to an axial tensile load of 2500 kN, calculate the direct and shear
stresses on a plane inclined at an angle of 60° to the axis of the vessel. Calculate also
the maximum shear stress.

The expressions for the longitudinal and circumferential stresses produced by the
internal pressure may be found in any text on stress analysis® and are

d
Longitudinal stress (o) = Z—t =1.5x2x 10°/4 x 20 = 37.5N/mm’

d
Circumferential stress (oy) = % =15x2x10° /2 x20=175 N/mm?

The direct stress due to the axial load will contribute to o, and is given by
o (axial load) = 2500 x 10° /7 x 2 x 10% x 20 = 19.9 N/mm?

A rectangular element in the wall of the pressure vessel is then subjected to the stress
system shown in Fig. 1.9. Note that there are no shear stresses acting on the x and y
planes; in this case, o, and oy, then form a biaxial stress system.

The direct stress, oy, and shear stress, 7, on the plane AB which makes an angle of
60° with the axis of the vessel may be found from first principles by considering the

13
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T 0,=75 N/mm?2

A
0
57.4 N/mm? "
574 N/mm2 <+ < L » 0, =37.5+19.9 = 57.4 N/mm?
T
60°
C l B
75 N/mm?

Fig. 1.9 Element of Example 1.1.

equilibrium of the triangular element ABC or by direct substitution in Eqs (1.8) and
(1.9). Note that in the latter case 6 =30° and 1,, =0. Then

o, = 57.4cos? 30° + 75 sin® 30° = 61.8 N/mm?
T = (57.4 — 75)(sin (2 x 30°))/2 = —7.6 N/mm>

The negative sign for 7 indicates that the shear stress is in the direction BA and not AB.
From Eq. (1.9) when 7,, =0

T = (0, — 0,)(sin 26)/2 (i)

The maximum value of t will therefore occur when sin 26 is a maximum, i.e. when
sin 20 =1 and 6 =45°. Then, substituting the values of o, and oy in Eq. (i)

Tmax = (57.4 — 75)/2 = —8.8 N/mm?

Example 1.2

A cantilever beam of solid, circular cross-section supports a compressive load of 50 kN
applied to its free end at a point 1.5 mm below a horizontal diameter in the vertical
plane of symmetry together with a torque of 1200 Nm (Fig. 1.10). Calculate the direct
and shear stresses on a plane inclined at 60° to the axis of the cantilever at a point on
the lower edge of the vertical plane of symmetry.

The direct loading system is equivalent to an axial load of S0kN together with a
bending moment of 50 x 10° x 1.5 =75000Nmm in a vertical plane. Therefore, at
any point on the lower edge of the vertical plane of symmetry there are compressive
stresses due to the axial load and bending moment which act on planes perpendicular
to the axis of the beam and are given, respectively, by Eqs (1.2) and (16.9), i.e.

oy (axial load) = 50 x 10%/7 x (60?/4) = 17.7 N/mm?
oy (bending moment) = 75000 x 30/7 x (60%/64) = 3.5 N/mm?>



1.6 Determination of stresses on inclined planes

60 mm diameter

y1.5mm

\@1200 Nm
50kN

Fig. 1.10 Cantilever beam of Example 1.2.

28.3 N/mm?
A
28.3 N/mm?
On
21.2 N/mm? — oy =17.7 + 3.5 = 21.2 N/mm?
21.2 N/mm?
T
60° Ty, = 28.3N/mm?
C B
—_—
28.3 N/mm?

Fig. 1.11 Stress system on two-dimensional element of the beam of Example 1.2.

The shear stress, 7y, at the same point due to the torque is obtained from Eq. (iv) in
Example 3.1, i.e.

Ty = 1200 x 10* x 30/7 x (60%/32) = 28.3 N/mm?

The stress system acting on a two-dimensional rectangular element at the point is
shown in Fig. 1.11. Note that since the element is positioned at the bottom of the
beam the shear stress due to the torque is in the direction shown and is negative (see
Fig. 1.8).

Again oy and t may be found from first principles or by direct substitution in
Eqgs (1.8) and (1.9). Note that 8 =30°, oy, =0 and 7, = —28.3 N/mm? the negative
sign arising from the fact that it is in the opposite direction to 1,y in Fig. 1.8.

Then

op, = —21.2cos? 30° — 28.3 sin 60° = —40.4 N/mm? (compression)
T = (—21.2/2) sin 60° 4 28.3 cos 60° = 5.0 N/mm? (acting in the direction AB)

Different answers would have been obtained if the plane AB had been chosen on the
opposite side of AC.
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1.7 Principal stresses

For given values of oy, 0y and tyy, in other words given loading conditions, o;, varies
with the angle 6 and will attain a maximum or minimum value when doy, /d6 = 0. From
Eq. (1.8)

d

d(;n = —20, cos@sinf + 20, sinf cos 6 + 27,y cos 26 =0
Hence

—(0x — 0y)sin 260 + 21,y cos 20 = 0
or
2Tyy
tan 20 = — (1.10)
oy — 0y

Two solutions, 6 and 6 4 /2, are obtained from Eq. (1.10) so that there are two
mutually perpendicular planes on which the direct stress is either a maximum or a
minimum. Further, by comparison of Eqs (1.9) and (1.10) it will be observed that these
planes correspond to those on which there is no shear stress. The direct stresses on
these planes are called principal stresses and the planes themselves, principal planes.

From Eq. (1.10)

2 — oy
sin 20 = o cos20 = Ox %
Jiox— o) +47, Jo—o2 +473,
and
27 (o —
$in 2(0 + 7/2) = X c0s 2(0 + 7/2) = (0x — %)
\/(ox — 0y + 472, \/(ox — 0y + 472,
Rewriting Eq. (1.8) as
Oy oy .
Op = ?(1 + cos 20) + 7(1 — €08 20) + Ty sin 20

and substituting for {sin 26, cos 26} and {sin 2(6 + 7/2), cos 2(60 + 7/2)} in turn gives

ox + oy 1
o1 = T+E\/(0x—ay)2+4t§y (1.11)
and
Ox + Oy 1
on =2 — 5\/(crx —0y)? + 472, (1.12)

where o7 is the maximum or major principal stress and oy is the minimum or minor
principal stress. Note that oy is algebraically the greatest direct stress at the point while
oyr is algebraically the least. Therefore, when oyy is negative, i.e. compressive, it is
possible for oyy to be numerically greater than oj.



1.8 Mohr’s circle of stress

The maximum shear stress at this point in the body may be determined in an identical
manner. From Eq. (1.9)

d
d—; = (0y — 0y) 08 20 + 27,y 5in 20 = 0
giving
an26 = — %) (1.13)
27,y
It follows that
(o — O 2o
sin 26 = 0 — %) c0s26 = by
\/(Ux _ Gy)z + 4-5)%)7 \/(crx — oy)2 + 41’%)
- -2t
§in2(0 + 71/2) = —— = %) 0820 + 7/2) = X
\/(Ux -0y + 4r§y \/(ax —0y)? + 47:%,
Substituting these values in Eq. (1.9) gives
1 2 2
Tmax,min — ii\/(o'x - Uy) + 4Txy (1.14)

Here, as in the case of principal stresses, we take the maximum value as being the
greater algebraic value.
Comparing Eq. (1.14) with Eqgs (1.11) and (1.12) we see that

O] — O]
Tmax = — 5 1 (1.15)

Equations (1.14) and (1.15) give the maximum shear stress at the point in the body
in the plane of the given stresses. For a three-dimensional body supporting a two-
dimensional stress system this is not necessarily the maximum shear stress at the point.

Since Eq. (1.13) is the negative reciprocal of Eq. (1.10) then the angles 26 given by
these two equations differ by 90° or, alternatively, the planes of maximum shear stress
are inclined at 45° to the principal planes.

1.8 Mohr’s circle of stress

The state of stress at a point in a deformable body may be determined graphically by
Mohr’s circle of stress.

In Section 1.6 the direct and shear stresses on an inclined plane were shown to be
given by

On = 0, c0s° 0 + 0y sin® 0 + Ty sin 20 (Eq. (1.8))

17
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Tx

Ty

(a) (b)

Fig. 1.12 (a) Stresses on a triangular element; (b) Mohr's circle of stress for stress system shown in (a).

and
(ox —oay) .
T= — sin 26 — Ty, cos 20 (Eq. (1.9))

respectively. The positive directions of these stresses and the angle 6 are defined in
Fig. 1.12(a). Equation (1.8) may be rewritten in the form

oy oy .
On = ?(1 + cos 26) + 7(1 — €08 20) + Ty sin 20
or
1 1 ,
On — E(Ux +oy) = E(Gx — 0y) €08 20 + Ty sin 20

Squaring and adding this equation to Eq. (1.9) we obtain

1 2 1 2
——(on 40| +P =z —0p| + 172
On 3 X y 3 X y Xy

which represents the equation of a circle of radius %\/ (ox —0y)* + 4@%}, and having its
centre at the point ((ox — 0y)/2, 0).

The circle is constructed by locating the points Q(oy, Txy) and Qx(oy, —1yy) referred
to axes Oot as shown in Fig. 1.12(b). The centre of the circle then lies at C the inter-

section of Q1Q; and the Oo axis; clearly C is the point ((ox — 0y)/2, 0) and the radius

of the circle is %\/ (oy — Uy)2 +4r§y as required. CQ’ is now set off at an angle 20

(positive clockwise) to CQq, Q' is then the point (o, —T) as demonstrated below. From
Fig. 1.12(b) we see that

ON =0C+CN



1.8 Mohr’s circle of stress

or, since OC = (0x +0y)/2, CN = CQ’ cos(B — 20) and CQ' =CQ, we have

ox + oy . .
on = > + CQ;(cos B cos 26 + sin B sin 20)
But
CP
co = L ad cpy = =)
cos B 2
Hence
o, = X “ZL W4 <G" ; Gy>cos 20 + CP; tan 8 sin 26

which, on rearranging, becomes
op = Oy cos? 0 + oy sin? 6 + Tyy $in 20
as in Eq. (1.8). Similarly it may be shown that

0y — Oy

Q/N=‘Exy00829—< )sin26=—t
as in Eq. (1.9). Note that the construction of Fig. 1.12(b) corresponds to the stress
system of Fig. 1.12(a) so that any sign reversal must be allowed for. Also, the Oc
and Ot axes must be constructed to the same scale or the equation of the circle is not
represented.

The maximum and minimum values of the direct stress, viz. the major and minor

principal stresses oy and oy, occur when N (and Q') coincide with B and A, respectively.
Thus

o1 = OC + radius of circle

(ox +0y)
= % +,/CP? +P1Q}

or
(ox+o0y) 1
o] = % + E\/(O'x — (Ty)z +4T)%y
and in the same fashion
(ox+o0y) 1
o1 = % - 5\/(% —0y)* + 4T)%y

The principal planes are then given by 20 = f(o7) and 20 = 8 + w(om).

Also the maximum and minimum values of shear stress occur when Q' coincides
with D and E at the upper and lower extremities of the circle.

At these points Q'N is equal to the radius of the circle which is given by

(ox — O’y)2

CQ, = 1

2
+13,

19
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Hence Tmax min = % (oy — ay)2 + 4t§y as before. The planes of maximum and min-

imum shear stress are given by 20 = 4 n/2 and 26 = B 4 37/2, these being inclined
at 45° to the principal planes.

Example 1.3

Direct stresses of 160 N/mm? (tension) and 120 N/mm? (compression) are applied at a
particular point in an elastic material on two mutually perpendicular planes. The prin-
cipal stress in the material is limited to 200 N/mm? (tension). Calculate the allowable
value of shear stress at the point on the given planes. Determine also the value of the
other principal stress and the maximum value of shear stress at the point. Verify your
answer using Mohr’s circle.

The stress system at the point in the material may be represented as shown in Fig. 1.13
by considering the stresses to act uniformly over the sides of a triangular element ABC
of unit thickness. Suppose that the direct stress on the principal plane AB is o. For
horizontal equilibrium of the element

oABcos 0 = 0,BC + 7, AC
which simplifies to
Ty tant = o — oy @)
Considering vertical equilibrium gives
0ABsin 0 = 0,AC + 7,,BC
or
Tyycotl = o — oy (i1)
Hence from the product of Eqs (i) and (ii)
2

Ty = (0 —ox)(o — Uy)
B
9 o (200 N/mm?)
Oy
(160 N/mm?)
Tyy
C A
Tay

A

o, (=120N/mm?)

Fig. 1.13 Stress system for Example 1.3.
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Now substituting the values o, =160 N/mmz, oy=—120 N/mm? and o= o=
200 N/mm? we have

Ty = £113N/mm?
Replacing cot 6 in Eq. (ii) by 1/tan 6 from Eq. (i) yields a quadratic equation in o

o — o(oy — oy) + 00y — rfy =0 (iii)
The numerical solutions of Eq. (iii) corresponding to the given values of oy, oy and ty,
are the principal stresses at the point, namely

o1 = 200N/mm? (given) o = —160N/mm?

Having obtained the principal stresses we now use Eq. (1.15) to find the maximum
shear stress, thus

200 + 160
Tmax = + = 180 N/mm?

The solution is rapidly verified from Mohr’s circle of stress (Fig. 1.14). From
the arbitrary origin O, OP; and OP, are drawn to represent o, = 160 N/mm? and
oy=—120 N/mm?. The mid-point C of PP is then located. OB = o1 =200 N/mm? is
marked out and the radius of the circle is then CB. OA is the required principal stress.
Perpendiculars P1Q; and P,Q; to the circumference of the circle are equal to £,y
(to scale) and the radius of the circle is the maximum shear stress.

74

Trmax = 180 N/mm?

{0, =-160N/mm?)

{=120N/mm?, ~113 N/mm?)

Fig. 1.14 Solution of Example 1.3 using Mohr’s circle of stress.
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1.9 Strain

The external and internal forces described in the previous sections cause linear and
angular displacements in a deformable body. These displacements are generally defined
in terms of strain. Longitudinal or direct strains are associated with direct stresses o
and relate to changes in length while shear strains define changes in angle produced by
shear stresses. These strains are designated, with appropriate suffixes, by the symbols
¢ and y, respectively, and have the same sign as the associated stresses.

Consider three mutually perpendicular line elements OA, OB and OC at a point O in
a deformable body. Their original or unstrained lengths are §x, §y and 8z, respectively.
If, now, the body is subjected to forces which produce a complex system of direct and
shear stresses at O, such as that in Fig. 1.6, then the line elements will deform to the
positions O’A’, O'B’ and O’C’ shown in Fig. 1.15.

The coordinates of O in the unstrained body are (x,y, z) so that those of A, B and
C are (x +6x,y,z), (x,y+8y,z) and (x,y,z+ §z). The components of the displace-
ment of O to O’ parallel to the x,y and z axes are u, v and w. These symbols are used
to designate these displacements throughout the book and are defined as positive in
the positive directions of the axes. We again employ the first two terms of a Taylor’s
series expansion to determine the components of the displacements of A, B and C.
Thus, the displacement of A in a direction parallel to the x axis is u + (du/0x)dx.
The remaining components are found in an identical manner and are shown
in Fig. 1.15.

We now define direct strain in more quantitative terms. If a line element of length L
at a point in a body suffers a change in length AL then the longitudinal strain at that

Fig. 1.15 Displacement of line elements OA, OB and OC.
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point in the body in the direction of the line element is

. AL
&= lim —
L—-0 L

The change in length of the element OA is (O’A” — OA) so that the direct strain at O
in the x direction is obtained from the equation
_OA"—0A O'A"—dx
- 0A &

(1.16)

Ex

Now

N ou 2 v 2 ow 2
(OA)” = 5x+u+a—5x—u + v+8—8x—v T w+ —sx—w
X X

0x
on e (142 2+ v 2+ w\>
= 0X — — _
0x o0x 0x

which may be written when second-order terms are neglected

or

1

ou\ 2
OA = 8x(1 + 2—”)
ox
Applying the binomial expansion to this expression we have
o u
OA" =6x[14+ — (1.17)
ox

in which squares and higher powers of du/dx are ignored. Substituting for O’A’ in
Eq. (1.16) we have

ou
& = —
T ox
dv
It follows that gy = — (1.18)
ay
ow
&, = —
Z 82

The shear strain at a point in a body is defined as the change in the angle between two
mutually perpendicular lines at the point. Therefore, if the shear strain in the xz plane
is . then the angle between the displaced line elements O’A’ and O'C’ in Fig. 1.15 is
/2 — vy, radians.

Now cos A’O'C’ = cos(7r/2 — yx;) = sin y,, and as yy, is small then cos A’O’'C’ = y,,.
From the trigonometrical relationships for a triangle

A 2 VN2 AC 2
cos A'O'C = @A) +OC) — (AC) (1.19)
2(00ANY0O'C)
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We have previously shown, in Eq. (1.17), that

N ou
OA " =6x(1+ —
0x

Similarly
a
0 = 5z<1 + —W)
0z

But for small displacements the derivatives of u, v and w are small compared with 1, so
that, as we are concerned here with actual length rather than change in length, we may
use the approximations

OA ~é& OC=~§;

Again to a first approximation

g2 aw_\? . \*
AC)Yy =(6z— —d&x) +|6x— —6z
ox 0z

Substituting for O’A’, O'C’ and A’C’ in Eq. (1.19) we have

(8x%) + (82)* — [8z — (dw/dx)8x]*> — [8x — (du/dz)8z]>

cosA’O'C' =
28x6z

Expanding and neglecting fourth-order powers gives

2(3w/3x)8x8z + 2(du/82)8x8z

cosA'O'C' =
26x67
or

ow  du

Vxz = a + a_z

o v Jdu
Similarly Yy = P + B_y (1.20)

aw v

Vyz = 8_y + 8_2

It must be emphasized that Eqs (1.18) and (1.20) are derived on the assumption that
the displacements involved are small. Normally these linearized equations are adequate
for most types of structural problem but in cases where deflections are large, for example
types of suspension cable, etc., the full, non-linear, large deflection equations, given in
many books on elasticity, must be employed.

1.10 Compatibility equations

In Section 1.9 we expressed the six components of strain at a point in a deformable body
in terms of the three components of displacement at that point, u#, v and w. We have
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supposed that the body remains continuous during the deformation so that no voids are
formed. It follows that each component, u, v and w, must be a continuous, single-valued
function or, in quantitative terms

uzfl(x,y,z) v=f2(x’y’z) W=f3(x,y,2)

If voids were formed then displacements in regions of the body separated by the
voids would be expressed as different functions of x, y and z. The existence, therefore,
of just three single-valued functions for displacement is an expression of the continuity
or compatibility of displacement which we have presupposed.

Since the six strains are defined in terms of three displacement functions then they
must bear some relationship to each other and cannot have arbitrary values. These
relationships are found as follows. Differentiating yy, from Eq. (1.20) with respect to
x and y gives

Py 0 D N 0> du
dxdy  dxdydx  dxdy dy

or, since the functions of # and v are continuous

Py 0 v N 8% du
axdy  ax2dy Ay ox

which may be written, using Eq. (1.18)

azyxy _ 328y . 9%e, (121)
oxdy  oxz  9y?

In a similar manner
vy . Fey e,

= 1.22
dyodz 0z 0y? (1.22)
Py e, 0%e

= 1.23
dxdz  Ox? + 072 (1:23)

If we now differentiate yy, with respect to x and z and add the result to y,,
differentiated with respect to y and x, we obtain

3Py 8 2 [Ou v 2 [0 ]
Vxy n Vxz _ ou A ow + ou
oxdz dydx  oxdz \dy Ox dyox \ dx 0z

B () P b P w9
dz  ay dy 0z Ox

or

ax\ oz "oy ) T mzavox a2
Substituting from Eqs (1.18) and (1.21) and rearranging

2Pex 9 O v Yy
dyodz  Ox ox ay 0z

(1.24)
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Similarly

2828y:i %_%_}_% (1.25)
oxdz  dy \ ox ay 0z '

and

oxdy  dz \ ox ay 0z

Equations (1.21)—(1.26) are the six equations of strain compatibility which must be
satisfied in the solution of three-dimensional problems in elasticity.

, e _ 0 (8Vyz L e %) (1.26)

1.11 Plane strain

Although we have derived the compatibility equations and the expressions for strain
for the general three-dimensional state of strain we shall be mainly concerned with the
two-dimensional case described in Section 1.4. The corresponding state of strain, in
which it is assumed that particles of the body suffer displacements in one plane only,
is known as plane strain. We shall suppose that this plane is, as for plane stress, the xy
plane. Then &, y,; and y,, become zero and Eqs (1.18) and (1.20) reduce to

ou v (1.27)
&= — & = — .
T 7 ay
and
= o + ou (1.28)
Yo = ox dy '

Further, by substituting &, = yx, = y,; = 0 in the six equations of compatibility and
noting that &y, &, and y,y, are now purely functions of x and y, we are left with Eq. (1.21),
namely

Yy _ Pey ey
xdy w2 9y?

as the only equation of compatibility in the two-dimensional or plane strain case.

1.12 Determination of strains on inclined planes

Having defined the strain at a point in a deformable body with reference to an arbitrary
system of coordinate axes we may calculate direct strains in any given direction and the
change in the angle (shear strain) between any two originally perpendicular directions
at that point. We shall consider the two-dimensional case of plane strain described in
Section 1.11.

An element in a two-dimensional body subjected to the complex stress system of
Fig. 1.16(a) will distort into the shape shown in Fig. 1.16(b). In particular, the triangular
element ECD will suffer distortion to the shape E'C’'D’ with corresponding changes



1.12 Determination of strains on inclined planes
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(a) (b)

Fig. 1.16 (a) Stress system on rectangular element; (b) distorted shape of element due to stress system in (a).

in the length FC and angle EFC. Suppose that the known direct and shear strains
associated with the given stress system are &y, &y and yx, (the actual relationships will
be investigated later) and that we require to find the direct strain ¢, in a direction
normal to the plane ED and the shear strain y produced by the shear stress acting on
the plane ED.

To a first order of approximation

C'D' = CD(1 + &)
C'E' = CE(l +¢,) (1.29)
E'D' = ED(1 + 8n+7r/2)

where &, /7 is the direct strain in the direction ED. From the geometry of the triangle
E'C’'D’ in which angle E'C'D’ =7/2 — yy,

(E'D")? = (C'D')? + (C'E')* — 2(C'D')(C'E) cos(/2 — Yay)
or, substituting from Eqs (1.29)

(ED)*(1 + entn2)* = (CDY2(1 + £2)* + (CEY(1 + &)
— 2(CD)(CE)(1 + &x)(1 + &y)sin yyy

Noting that (ED)? = (CD)? 4 (CE)? and neglecting squares and higher powers of small
quantities this equation may be rewritten

2(ED)*ent7/2 = 2(CD)?e, + 2(CE)*e, — 2(CE)(CD)yyy
Dividing through by 2(ED)? gives
Engn/2 = Ex sin” @ + &y cos® 6 — cos 6 sin Oy (1.30)

The strain &, in the direction normal to the plane ED is found by replacing the angle 6
in Eq. (1.30) by 6 — /2. Hence

&n = &y c0529+£y sin® 0 + %sinZQ (1.31)
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Turning our attention now to the triangle C'F'E’ we have
(C’E")? = (C'F)* + (FE)? — 2C'F)(F'E)cos(m/2 — ) (1.32)
in which

C'E' = CE(l +¢,)
C'F = CF(1 + ¢&,)
FE = FE(1 + 5n+rr/2)

Substituting for C'E’, C'F’ and F'E’ in Eq. (1.32) and writing cos(w/2 — y) = siny
we find

(CE)*(1 4 &y)* = (CF)*(1 4 £1)* + (FE)*(1 + &n1n/2)?
— 2(CF)(FE)(1 4 &n)(1 4 &n4/2) siny (1.33)

All the strains are assumed to be small so that their squares and higher powers may be
ignored. Further, sin y & y and Eq. (1.33) becomes

(CEY’(1 +2¢y) = (CFY’(1 + 2&y) + (FEY’(1 + 2en1772) — 2CE)(EE)y
From Fig. 1.16(a), (CE)? = (CF)? + (FE)? and the above equation simplifies to
2(CE)%e, = 2(CF)*en + 2(FE)*en4n2 — 2(CF)(FE)y
Dividing through by 2(CE)? and transposing

&q sin 6 + Entm/2 cos? 6 — &y

V= sin 6 cos 0

Substitution of &, and &, 5/> from Eqgs (1.31) and (1.30) yields

(&x — gy) Yxy

g = sin 260 — B cos 20 (1.34)

1.13 Principal strains

If we compare Eqs (1.31) and (1.34) with Eqs (1.8) and (1.9) we observe that they
may be obtained from Eqgs (1.8) and (1.9) by replacing oy, by &p, 0y by &y, 0y by &y, Ty
by yxy/2 and t by y/2. Therefore, for each deduction made from Eqs (1.8) and (1.9)
concerning oy and t there is a corresponding deduction from Egs (1.31) and (1.34)
regarding e, and y/2.

Therefore at a point in a deformable body, there are two mutually perpendicular
planes on which the shear strain y is zero and normal to which the direct strain is a
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maximum or minimum. These strains are the principal strains at that point and are
given (from comparison with Eqs (1.11) and (1.12)) by

ext+e&y 1

b= + ! r(ex — &)’ + y%, (1.35)
ext+e 1

en=——— = 5\/(ex — &)+ 7} (1.36)

If the shear strain is zero on these planes it follows that the shear stress must also be
zero and we deduce, from Section 1.7, that the directions of the principal strains and
principal stresses coincide. The related planes are then determined from Eq. (1.10) or
from

and

Vxy
Ex — &y

tan 20 = (1.37)

In addition the maximum shear strain at the point is

) =ife-ar+n (138)

14 &1 — &1l
z — 1.39
<2>max 2 ( )

or

(cf- Eqgs (1.14) and (1.15)).

1.14 Mohr's circle of strain

We now apply the arguments of Section 1.13 to the Mohr’s circle of stress described in
Section 1.8. A circle of strain, analogous to that shown in Fig. 1.12(b), may be drawn
when oy, 0y, etc. are replaced by ¢, &y, etc. as specified in Section 1.13. The horizontal
extremities of the circle represent the principal strains, the radius of the circle, half the
maximum shear strain and so on.

1.15 Stress—strain relationships

In the preceding sections we have developed, for a three-dimensional deformable body,
three equations of equilibrium (Eqgs (1.5)) and six strain—displacement relationships
(Egs (1.18) and (1.20)). From the latter we eliminated displacements thereby deriving
six auxiliary equations relating strains. These compatibility equations are an expression
of the continuity of displacement which we have assumed as a prerequisite of the
analysis. At this stage, therefore, we have obtained nine independent equations towards
the solution of the three-dimensional stress problem. However, the number of unknowns
totals 15, comprising six stresses, six strains and three displacements. An additional
six equations are therefore necessary to obtain a solution.
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So far we have made no assumptions regarding the force—displacement or stress—
strain relationship in the body. This will, in fact, provide us with the required six
equations but before these are derived it is worthwhile considering some general aspects
of the analysis.

The derivation of the equilibrium, strain—displacement and compatibility equations
does not involve any assumption as to the stress—strain behaviour of the material of the
body. It follows that these basic equations are applicable to any type of continuous,
deformable body no matter how complex its behaviour under stress. In fact we shall
consider only the simple case of linearly elastic isotropic materials for which stress is
directly proportional to strain and whose elastic properties are the same in all directions.
A material possessing the same properties at all points is said to be homogeneous.

Particular cases arise where some of the stress components are known to be zero and
the number of unknowns may then be no greater than the remaining equilibrium equa-
tions which have not identically vanished. The unknown stresses are then found from
the conditions of equilibrium alone and the problem is said to be statically determinate.
For example, the uniform stress in the member supporting a tensile load P in Fig. 1.3 is
found by applying one equation of equilibrium and a boundary condition. This system
is therefore statically determinate.

Statically indeterminate systems require the use of some, if not all, of the other equa-
tions involving strain—displacement and stress—strain relationships. However, whether
the system be statically determinate or not, stress—strain relationships are necessary
to determine deflections. The role of the six auxiliary compatibility equations will be
discussed when actual elasticity problems are formulated in Chapter 2.

We now proceed to investigate the relationship of stress and strain in a three—
dimensional, linearly elastic, isotropic body.

Experiments show that the application of a uniform direct stress, say oy, does not
produce any shear distortion of the material and that the direct strain &y is given by the
equation

Ox
=, (1.40)
where E is a constant known as the modulus of elasticity or Young’s modulus.
Equation (1.40) is an expression of Hooke’s law. Further, ¢, is accompanied by lateral
strains
o o
£y = _VEX & = _UEX (1.41)
in which v is a constant termed Poisson’s ratio.

For a body subjected to direct stresses oy, oy and o the direct strains are, from

Eqgs (1.40) and (1.41) and the principle of superposition (see Chapter 5, Section 5.9)

1
Ex = E[Ux —v(oy + 07)]

1
&y = E[ay —v(oy + 03)] (1.42)

1
&= E[GZ —v(oy + Gy)]
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Equations (1.42) may be transposed to obtain expressions for each stress in terms of
the strains. The procedure adopted may be any of the standard mathematical approaches
and gives

- £ 1.43

R T T S T (149
vE E

Y A rod - Trn? (1.44)
vE E

(1.45)

= A rna—wm T arn=
in which
e=¢y+e +e;, (seeEq.(1.53))
For the case of plane stress in which o, =0, Eqs (1.43) and (1.44) reduce to

E
oy = m(ex + vey) (1.46)

E
Oy = m(é‘y + V(‘)x) (147)

Suppose now that, at some arbitrary point in a material, there are principal strains
&1 and g1 corresponding to principal stresses o and opy. If these stresses (and strains)
are in the direction of the coordinate axes x and y, respectively, then 7y, = y,, =0 and
from Eq. (1.34) the shear strain on an arbitrary plane at the point inclined at an angle
6 to the principal planes is

y = (e1 — &) sin 260 (1.48)
Using the relationships of Eqs (1.42) and substituting in Eq. (1.48) we have

1 .
y = E[(UI — vorr) — (o1 — voy)] sin 260

or
(14
- E
Using Eq. (1.9) and noting that for this particular case 7,y =0, 0x =07 and 6y, = oy

(o1 — oy1) sin 260 (1.49)

2t = (o1 — oq1) sin 26
from which we may rewrite Eq. (1.49) in terms of 7 as

2(1 +v)
E

T (1.50)

The term E/2(1 + v) is a constant known as the modulus of rigidity G. Hence

y=1/G
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and the shear strains yyy, ¥, and yy, are expressed in terms of their associated shear
stresses as follows
Tay Tyz Ty;
ny:E sz:E Vyz:E (1.51)

Equations (1.51), together with Eqs (1.42), provide the additional six equations
required to determine the 15 unknowns in a general three-dimensional problem in
elasticity. They are, however, limited in use to a linearly elastic isotropic body.

For the case of plane stress they simplify to

1
& = E(ax — voy)

1
gy = E(Gy — Voy)

(1.52)
—V
&, = F(Ux - O'y)
Try
Vxy = E

It may be seen from the third of Eqs (1.52) that the conditions of plane stress and
plane strain do not necessarily describe identical situations.

Changes in the linear dimensions of a strained body may lead to a change in volume.
Suppose that a small element of a body has dimensions éx, §y and §z. When subjected to
a three-dimensional stress system the element will sustain a volumetric strain e (change
in volume/unit volume) equal to

. (1 + &x)0x(1 + €y)8y(1 + &,)8z — 8x8ydz
N 8x8y8z

Neglecting products of small quantities in the expansion of the right-hand side of the
above equation yields

e=¢x+& +ég (1.53)

Substituting for &y, £y and &, from Eqgs (1.42) we find, for a linearly elastic, isotropic
body

1
e= E—?[GJC + oy + 0, — 2v(0x + 0y + 07)]

or

(1—-2v)

e=———(0y+0,+0,)
E
In the case of a uniform hydrostatic pressure, oy = o, =0, = —p and
3(1 —2v) (1.54)
e=———- .
g P

The constant E/3(1 —2v) is known as the bulk modulus or modulus of volume
expansion and is often given the symbol K.
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An examination of Eq. (1.54) shows that v <0.5 since a body cannot increase in
volume under pressure. Also the lateral dimensions of a body subjected to uniaxial
tension cannot increase so that v > 0. Therefore, for an isotropic material 0 <v <0.5
and for most isotropic materials v is in the range 0.25-0.33 below the elastic limit.
Above the limit of proportionality v increases and approaches 0.5.

Example 1.4

A rectangular element in a linearly elastic isotropic material is subjected to tensile
stresses of 83 and 65 N/mm? on mutually perpendicular planes. Determine the strain
in the direction of each stress and in the direction perpendicular to both stresses. Find

also the principal strains, the maximum shear stress, the maximum shear strain and
their directions at the point. Take E =200 000 N/mm? and v =0.3.

If we assume that o, = 83 N/mm? and oy =65 N/mm? then from Eqgs (1.52)

gy = ————(83 — 0.3 x 65) =3.175 x 1074
200000

gy = ————(65 — 0.3 x 83) = 2.005 x 107
200000

-0.3

— " (834 65)=-2220x10"*
€= 500000 > T 0% %

In this case, since there are no shear stresses on the given planes, oy and o, are
principal stresses so that &, and &y, are the principal strains and are in the directions of
oy and oy. It follows from Eq. (1.15) that the maximum shear stress (in the plane of the
stresses) is

83 —65
2

Tmax = =9 N/mm2
acting on planes at 45° to the principal planes.
Further, using Eq. (1.50), the maximum shear strain is

2x(1+03)x9

Ymax = 500000

so that ymax = 1.17 x 10~ on the planes of maximum shear stress.

Example 1.5

At a particular point in a structural member a two-dimensional stress system exists
where o, = 60 N/mm?, oy =—40 N/mm? and Ty =50 N/mm?. If Young’s modulus
E =200000 N/mm? and Poisson’s ratio v= 0.3 calculate the direct strain in the x and
y directions and the shear strain at the point. Also calculate the principal strains at the
point and their inclination to the plane on which o, acts; verify these answers using a
graphical method.
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From Eqgs (1.52)

(60 + 0.3 x 40) = 360 x 1076

Ex

~ 200000
(—40 — 0.3 x 60) = —290 x 107°

gy =
200000

From Eq. (1.50) the shear modulus, G, is given by

E 200000

G= = = 76923 N/mm?>
21 +v) 2(140.3)
Hence, from Eqs (1.52)
Tyy 50 _6
=-——=—=650x10
Yo =76 T 76923 x

Now substituting in Eq. (1.35) for &y, &y and yy

360 — 290
& = 107 [T

1
+ 5\/(360 +290)2 + 6502}

which gives
e1 =495 x 107°
Similarly, from Eq. (1.36)
enn = —425 x 107°

From Eq. (1.37)

650 x 1076
tan 20 = =1
360 x 10=6 4290 x 10—°
Therefore
20 = 45° or 225°
so that

0 =225°or 112.5°

The values of ¢1, 1 and 6 are verified using Mohr’s circle of strain (Fig. 1.17).
Axes O¢ and Oy are set up and the points Q; (360 x 10_6,% x 650 x 107°) and
Q> (=290 x 1079, —% x 650 x 1079) located. The centre C of the circle is the inter-
section of Q1Q; and the Oe axis. The circle is then drawn with radius CQ; and the
points B(er) and A(eyr) located. Finally angle QCB =26 and angle Q;CA =20+ 7.
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YA
Q; (360x107°, $x650x107)
A o| 26 B
Lo >
(en) y (g) ¢
Q 20+
2
(-290x 1078, -1 x650x 1075)

Fig. 1.17 Mohr’s circle of strain for Example 1.5.

1.15.1 Temperature effects

The stress—strain relationships of Eqs (1.43)—(1.47) apply to abody or structural member
at a constant uniform temperature. A temperature rise (or fall) generally results in an
expansion (or contraction) of the body or structural member so that there is a change
in size, i.e. a strain.

Consider a bar of uniform section, of original length L,, and suppose that it is
subjected to a temperature change AT along its length; AT can be a rise (+ve) or fall
(—ve). If the coefficient of linear expansion of the material of the bar is « the final
length of the bar is, from elementary physics

L =Lo(1 + aAT)

so that the strain, ¢, is given by

— aAT (1.55)

Suppose now that a compressive axial force is applied to each end of the bar such
that the bar returns to its original length. The mechanical strain produced by the axial
force is therefore just large enough to offset the thermal strain due to the temperature
change making the total strain zero. In general terms the total strain, ¢, is the sum of
the mechanical and thermal strains. Therefore, from Eqs (1.40) and (1.55)

o
= — AT 1.56
£ E—i—a ( )

In the case where the bar is returned to its original length or if the bar had not been
allowed to expand at all the total strain is zero and from Eq. (1.56)

o = —EaAT (1.57)
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Equations (1.42) may now be modified to include the contribution of thermal strain.
Therefore, by comparison with Eq. (1.56)

1
Ey = E[ax —v(oy + 0y)] + AT

1
gy = E[Uy —v(oy + o)l + AT (1.58)

1
& = E[UZ — v(oy + 0y)] + aAT

Equations (1.58) may be transposed in the same way as Eqs (1.42) to give stress—strain
relationships rather than strain—stress relationships, i.e.

VE E E
Oy = e+ Ex — a AT
A+nd—2v) " d+rn > -2
vE + £ E_ AT (1.59)
oy = Ey — .
YT drnd—20 T a1+ n? T a2
VE E E
o, = e+ & — o AT
A+wd—2v) " d+n* d-2v

For the case of plane stress in which o, =0 these equations reduce to

oa AT

E
—(1 — )(sx + vey) — T

E E
oy = ———-(&y + vey) — ——aAT
(1—-1?2) (1—-v)

Oy =

E
2

(1.60)

Example 1.6

A composite bar of length L has a central core of copper loosely inserted in a sleeve of
steel; the ends of the steel and copper are attached to each other by rigid plates. If the
bar is subjected to a temperature rise AT determine the stress in the steel and in the
copper and the extension of the composite bar. The copper core has a Young’s modulus
E., across-sectional area A, and a coefficient of linear expansion «; the corresponding
values for the steel are Eg, Ag and o.

Assume that o > .

If the copper core and steel sleeve were allowed to expand freely their final lengths
would be different since they have different values of the coefficient of linear expansion.
However, since they are rigidly attached at their ends one restrains the other and an
axial stress is induced in each. Suppose that this stress is oy. Then in Eqs (1.58) o, = o¢
or oz and oy = 0, = 0; the total strain in the copper and steel is then, respectively

o .
& = E—C + ac AT i)

C

. ..
& = E_S + asAT (i1)

S
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The total strain in the copper and steel is the same since their ends are rigidly attached
to each other. Therefore, from compatibility of displacement

Oc T QAT Os QAT (i)
— 4o =—+4u iii
E. ¢ E,

There is no external axial load applied to the bar so that

0cAc + 03As =0

i.e. 0y = —— O¢ @iv)

Substituting for oy in Eq. (iii) gives

14—& AT( )
O, —_— = g — (O,
C EC ASES S C

. AT (s — ac)AsEEe
from which o, =
ASES + ACEC

)

Also a > oy so that o, is negative and therefore compressive. Now substituting for o,
in Eq. (iv)
AT(as — oc)AcESE:
AgEs + AE,
which is positive and therefore tensile as would be expected by a physical appreciation
of the situation.

Finally the extension of the compound bar, §, is found by substituting for o, in Eq. (i)
or for oy in Eq. (ii). Then

(vi)

Oy =

(vii)

5= ATL (acAcEc + aSASES)

AEs + AcE,

1.16 Experimental measurement of surface strains

Stresses at a point on the surface of a piece of material may be determined by measuring
the strains at the point, usually by electrical resistance strain gauges arranged in the
form of a rosette, as shown in Fig. 1.18. Suppose that 1 and eyy are the principal strains
at the point, then if &4, &, and &, are the measured strains in the directions 9, (6 + «),
(6 + @+ B) to g1 we have, from the general direct strain relationship of Eq. (1.31)

Eq = &1 00529+811 sin® @ (1.61)
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Fig. 1.18 Strain gauge rosette.

since &, becomes &1, &y becomes ey and yyy is zero since the x and y directions have
become principal directions. Rewriting Eq. (1.61) we have

1 + cos 20 1 — cos 20
Ea = €1 5 + en Y

or
ga = 2(e1 + &) + A(e1 — exr) cos 26 (1.62)
Similarly
ep = 3(e1 + &) + 3(e1 — en) cos 2(60 + ) (1.63)
and
g0 = %(81 +en) + %(8] —eq1)cos2(0 +a+ B) (1.64)

Therefore if €4, €5 and ¢, are measured in given directions, i.e. given angles « and B,
then &1, e11 and 6 are the only unknowns in Eqs (1.62)—(1.64).

The principal stresses are now obtained by substitution of ¢ and ep; in Eqgs (1.52).

Thus

: ( ) (1.65)
&1 = — (o1 — vo .
1= gl 11

and

1
e = E(UH — vor) (1.66)

Solving Eqgs (1.65) and (1.66) gives

o] = (&1 + ver) (1.67)

1 —12
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7
Q (e))
20
C N M
o en ' & €
P (ep)
R
(€0
Fig. 1.19 Experimental values of principal strain using Mohr's circle.
and
on = (emr + vey) (1.68)

1—12

A typical rosette would have o = 8 =45° in which case the principal strains are most
conveniently found using the geometry of Mohr’s circle of strain. Suppose that the arm
a of the rosette is inclined at some unknown angle 6 to the maximum principal strain
as in Fig. 1.18. Then Mohr’s circle of strain is as shown in Fig. 1.19; the shear strains
Ya» Yb and y, do not feature in the analysis and are therefore ignored. From Fig. 1.19

OC = 3(eq + &)
CN =g, — OC = 1(eq — &)
QN =CM =&, — OC = &), — 3(ea + &)

The radius of the circle is CQ and

CQ = y/CN2 + QN2

Hence

CQ = y/[Lea — e0)> + [0 — bea + €]’

which simplifies to

1

ﬁ\/(sa —&p)? + (80 — &p)?

Q=

39



40

Basic elasticity

Therefore e, which is given by
&1 = OC + radius of circle

is
1

V2

& = %(Sa +éc)+ \/(Sa — &) + (e — &p)?

Also
enr = OC — radius of circle

1.e.

1

ﬁ\/(ea — ep)? + (8c — €p)?

en = 3(eq +6c) —
Finally the angle 0 is given by

1
N ep — 5(eq+ ¢
tan20 = & _ 2t &)
CN j(sa — &)
1.e.
tan 20 = —28b ~fa T B
&a — &

A similar approach may be adopted for a 60° rosette.

Example 1.7

(1.69)

(1.70)

(1.71)

A bar of solid circular cross-section has a diameter of 50 mm and carries a torque,
T, together with an axial tensile load, P. A rectangular strain gauge rosette attached
to the surface of the bar gave the following strain readings: &, = 1000 x 10°,
ep=—200 x 107% and . = —300 x 10~ where the gauges ‘a’ and ‘¢’ are in line with,
and perpendicular to, the axis of the bar, respectively. If Young’s modulus, E, for the
bar is 70 000 N/mm? and Poisson’s ratio, v, is 0.3, calculate the values of T and P.

Substituting the values of ¢4, €, and &, in Eq. (1.69)

10 10~

6
& = T(IOOO —300) + —=+/(1000 + 200)2 4 (—200 + 300)?

V2
which gives
g1 = 1202 x 1076
Similarly, from Eq. (1.70)

en = —502 x 107°
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Now substituting for ¢1 and ey in Eq. (1.67)

70000 x 107°
Ol= """ 322
1 —(0.3)

(=502 + 0.3 x 1202) = —80.9 N/mm?>
Similarly, from Eq. (1.68)
om1 = —10.9 N/mm?

Since o, =0, Egs (1.11) and (1.12) reduce to

o 1
o = ?x + 5‘/0% + 41, (i)
o = 5~ 5‘/0" +4rxy >i1)

respectively. Adding Eqs (i) and (ii) we obtain

and

o1 + o1 = Oy
Thus
o = 80.9 — 10.9 = 70N/mm?

For an axial load P

, P P
oy =70N/mm*“" = — = ———
A 7 x50%/4
whence
P =137.4kN

Substituting for oy in either of Eq. (i) or (ii) gives
Ty = 29.7N/mm?

From the theory of the torsion of circular section bars (see Eq. (iv) in Example 3.1)

297N/ o Ir T x 25
T = . m =--—=—
v J 7w x 50432
from which

T =0.7kNm
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Note that P could have been found directly in this particular case from the axial
strain. Thus, from the first of Eqs (1.52)

o = Egq = 70000 x 1000 x 107% = 70 N/mm?

as before.
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Problems

P.1.1 A structural member supports loads which produce, at a particular point, a
direct tensile stress of 80 N/mm? and a shear stress of 45 N/mm? on the same plane.
Calculate the values and directions of the principal stresses at the point and also the
maximum shear stress, stating on which planes this will act.

Ans.  o;=1002N/mm?> 6=24°11
on=-202N/mm? 6=114°11
Tmax = 60.2N/mm?  at 45° to principal planes.

P.1.2 Atapoint in an elastic material there are two mutually perpendicular planes,
one of which carries a direct tensile stress at 50 N/mm? and a shear stress of 40 N/mm?2,
while the other plane is subjected to a direct compressive stress of 35 N/mm?” and a
complementary shear stress of 40 N/mm?. Determine the principal stresses at the point,
the position of the planes on which they act and the position of the planes on which
there is no normal stress.

Ans. o1=659N/mm?> #=21°38
o =—50.9N/mm? 6=111°38

No normal stress on planes at 70°21" and —27°5 to vertical.

P.1.3 Listed below are varying combinations of stresses acting at a point and
referred to axes x and y in an elastic material. Using Mohr’s circle of stress determine
the principal stresses at the point and their directions for each combination.

ox (N'mm?) oy (N/mm?) 7y, (N/mm?)

1 +54 +30 +5
(i) +30 +54 =5
(iii)) —60 —36 +5

(iv) +30 -50 +30



Problems

Ans. (i) o1=4+55N/mm?> o =+29N/mm? oy at 11.5° to x axis.
(i) or=+55N/mm>  og=+29N/mm> oy at 11.5° to x axis.
(ili) or=—34.5N/mm? oy =—61N/mm? ofat79.5° to x axis.
(iv) o1 = +40 N/mm? o = —60N/mm? o at 18.5° to x axis.

|0 N/mm?

T 10 N/mm? 10 N/mm?

j 10 N/mm? 10 N/mm?
10 N/mm?

Fig. P.1.4

P.1.4 The state of stress at a point is caused by three separate actions, each of
which produces a pure, unidirectional tension of 10 N/mm? individually but in three
different directions as shown in Fig. P.1.4. By transforming the individual stresses
to a common set of axes (x,y) determine the principal stresses at the point and their
directions.

Ans. o1 =oq = 15 N/mm?. All directions are principal directions.

P.1.5 A shear stress T,y acts in a two-dimensional field in which the maximum
allowable shear stress is denoted by Tax and the major principal stress by o7.

Derive, using the geometry of Mohr’s circle of stress, expressions for the maximum
values of direct stress which may be applied to the x and y planes in terms of the three
parameters given above.

Ans. Oy =01 — Tmax + v Trznax - T)%y

0y =01 — Tmax — y/ Tax — Toy-

P.1.6 A solid shaft of circular cross-section supports a torque of S0kNm and a
bending moment of 25 kNm. If the diameter of the shaft is 150 mm calculate the values
of the principal stresses and their directions at a point on the surface of the shaft.

Ans. op=121.4N/mm? 6=31°43
o =—46.4N/mm?> 6=121°43".

P.1.7 Anelement of an elastic body is subjected to a three-dimensional stress system
0y, 0y and o;. Show that if the direct strains in the directions x,y and z are &y, &, and
&; then
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ox = Ae +2Gey oy = Ae+2Gey o0; = Are+2Ge;

where
vE
A —
(14+v)(1 —2v)

the volumetric strain.

and e=¢y+¢&y+¢,

P.1.8 Show that the compatibility equation for the case of plane strain, viz.

Yy _ Pey ey
xdy w2 9y?

may be expressed in terms of direct stresses o, and oy in the form

P 9
(@ + W) (ox +0y) =0

P.1.9 A bar of mild steel has a diameter of 75 mm and is placed inside a hollow
aluminium cylinder of internal diameter 75 mm and external diameter 100 mm; both
bar and cylinder are the same length. The resulting composite bar is subjected to an
axial compressive load of 1000 kN. If the bar and cylinder contract by the same amount
calculate the stress in each.

The temperature of the compressed composite bar is then reduced by 150°C but no
change in length is permitted. Calculate the final stress in the bar and in the cylinder if
E (steel) =200 000 N/mm?, E (aluminium) = 80 000 N/mm?, « (steel) = 0.000012/°C
and « (aluminium) = 0.000005/°C.

Ans. Due to load: o (steel) = 172.6 N/mm? (compression)
o (aluminium) = 69.1 N/mm? (compression).
Final stress: o (steel) = 187.4 N/mm? (tension)
o (aluminium) = 9.1 N/mm? (compression).

P.1.10 In Fig. P.1.10 the direct strains in the directions a, b, ¢ are —0.002, —0.002
and 4-0.002, respectively. If I and II denote principal directions find €7, £11 and 6.

Ans. e =40.00283 eq=-0.00283 6=—-22.5° or +-67.5°.

II

45°
45°

Fig. P.1.10
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P.1.11 The simply supported rectangular beam shown in Fig. P.1.11 is subjected
to two symmetrically placed transverse loads each of magnitude Q. A rectangular
strain gauge rosette located at a point P on the centroidal axis on one vertical face
of the beam gave strain readings as follows: g, = —222 x 1076, g, =213 x 107
and e, =445 x 107°. The longitudinal stress oy at the point P due to an external
compressive force is 7 N/mm?. Calculate the shear stress 7 at the point P in the vertical
plane and hence the transverse load Q:

(Q =2bdt/3 where b = breadth, d = depth of beam)
E =31000N/mm?> v=0.2

Ans. t=3.17N/mm?> Q=95.1kN.

Equal distances

Wi e

4 b
o ~ ! Centroidai i P i 300 mm
p{ 4 axis
;g; ;;;/ ¢ :/,:;; 2/

Fig. P.1.11
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Two-dimensional problems
in elasticity

Theoretically we are now in a position to solve any three-dimensional problem in elas-
ticity having derived three equilibrium conditions, Eqgs (1.5), six strain—displacement
equations, Eqgs (1.18) and (1.20), and six stress—strain relationships, Eqs (1.42) and
(1.46). These equations are sufficient, when supplemented by appropriate boundary
conditions, to obtain unique solutions for the six stress, six strain and three displace-
ment functions. It is found, however, that exact solutions are obtainable only for some
simple problems. For bodies of arbitrary shape and loading, approximate solutions may
be found by numerical methods (e.g. finite differences) or by the Rayleigh—Ritz method
based on energy principles (Chapter 7).

Two approaches are possible in the solution of elasticity problems. We may solve
initially either for the three unknown displacements or for the six unknown stresses. In
the former method the equilibrium equations are written in terms of strain by express-
ing the six stresses as functions of strain (see Problem P.1.7). The strain—displacement
relationships are then used to form three equations involving the three displacements
u, v and w. The boundary conditions for this method of solution must be specified
as displacements. Determination of u#, v and w enables the six strains to be com-
puted from Eqs (1.18) and (1.20); the six unknown stresses follow from the equations
expressing stress as functions of strain. It should be noted here that no use has been
made of the compatibility equations. The fact that u, v and w are determined directly
ensures that they are single-valued functions, thereby satisfying the requirement of
compatibility.

In most structural problems the object is usually to find the distribution of stress in
an elastic body produced by an external loading system. It is therefore more convenient
in this case to determine the six stresses before calculating any required strains or
displacements. This is accomplished by using Eqs (1.42) and (1.46) to rewrite the
six equations of compatibility in terms of stress. The resulting equations, in turn, are
simplified by making use of the stress relationships developed in the equations of
equilibrium. The solution of these equations automatically satisfies the conditions of
compatibility and equilibrium throughout the body.



2.1 Two-dimensional problems

2.1 Two-dimensional problems

For the reasons discussed in Chapter 1 we shall confine our actual analysis to the
two-dimensional cases of plane stress and plane strain. The appropriate equilibrium
conditions for plane stress are given by Eqs (1.6), viz.

0oy 0Ty

X=0
0x ay +
0 0Ty,
doy Oy
dy dy

and the required stress—strain relationships obtained from Eqs (1.47), namely

Ex = E(Ox — voy)

1
gy = E(ay — Voy)
2(1+v)
Yoy ="Fp W

We find that although ¢, exists, Eqs (1.22)—(1.26) are identically satisfied leaving Eq.
(1.21) as the required compatibility condition. Substitution in Eq. (1.21) of the above
strains gives

214l 2 ) 2.1)
v = — (0, — Vo) + — (0 — VO, )
axdy  ox2 gyt Y
From Eqgs (1.6)
821'xy _ 3’0y _B_X 2.2)
dy ox ox2  dx
and
FTyy Foy, Y
- __JY_ = 2.3
ox 0y 8y2 3y (Tyx Txy) (2.3)

Adding Egs (2.2) and (2.3), then substituting in Eq. (2.1) for 2821:xy/8x8y, we have

820y n 020,
ox2 dy?

0X N Y\ 0%y N ¥ oy N
ax Oy 2

—(1+) ( o2 dy

or
i + > (ox +0y) 1+v) X + oy (2.4)
— + — ] (o =— V| —+— .
ox2  9y? x T ox ay

The alternative two-dimensional problem of plane strain may also be formulated in
the same manner. We have seen in Section 1.11 that the six equations of compatibility
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reduce to the single equation (1.21) for the plane strain condition. Further, from the
third of Eqs (1.42)

o, = v(oy +0y) (since &; = O for plane strain)

so that
1
&y = E[(l — oy — (1 + v)oy]
and
1 2
gy = E[(l —v9)oy — v(l + v)oy]
Also
2(1 +v)
Vy = foy

Substituting as before in Eq. (1.21) and simplifying by use of the equations of
equilibrium we have the compatibility equation for plane strain

* N * 0 +09) L (X oY 2.5)
— 4+ — ) (oy +0y) = — — 4+ — .
w2 ogyr) I1—v\adx ay

The two equations of equilibrium together with the boundary conditions, from Eqs
(1.7), and one of the compatibility equations (2.4) or (2.5) are generally sufficient for
the determination of the stress distribution in a two-dimensional problem.

2.2 Stress functions

The solution of problems in elasticity presents difficulties but the procedure may be
simplified by the introduction of a stress function. For a particular two-dimensional
case the stresses are related to a single function of x and y such that substitution for the
stresses in terms of this function automatically satisfies the equations of equilibrium
no matter what form the function may take. However, a large proportion of the infinite
number of functions which fulfil this condition are eliminated by the requirement that
the form of the stress function must also satisfy the two-dimensional equations of
compatibility, (2.4) and (2.5), plus the appropriate boundary conditions.

For simplicity let us consider the two-dimensional case for which the body forces
are zero. The problem is now to determine a stress—stress function relationship which
satisfies the equilibrium conditions of

doy 0Ty

_* =0
ox ay 2.6)
doy  OTy 0 '
ay x

and a form for the stress function giving stresses which satisfy the compatibility equation

?
<@ + W) (ox +0y) =0 2.7



2.3 Inverse and semi-inverse methods

The English mathematician Airy proposed a stress function ¢ defined by the equations

3% 3% 3¢
Oy = — =

dy? ) T"y__axay

(2.8)

Clearly, substitution of Eqs (2.8) into Eqs (2.6) verifies that the equations of equilibrium
are satisfied by this particular stress—stress function relationship. Further substitution
into Eq. (2.7) restricts the possible forms of the stress function to those satisfying the
biharmonic equation

o e 3o
— 42 — =0
ox4 ox20y? oyt

(2.9)

The final form of the stress function is then determined by the boundary conditions
relating to the actual problem. Therefore, a two-dimensional problem in elasticity with
zero body forces reduces to the determination of a function ¢ of x and y, which satisfies
Eq. (2.9) at all points in the body and Eqs (1.7) reduced to two dimensions at all points
on the boundary of the body.

2.3 Inverse and semi-inverse methods

The task of finding a stress function satisfying the above conditions is extremely difficult
in the majority of elasticity problems although some important classical solutions have
been obtained in this way. An alternative approach, known as the inverse method, is
to specify a form of the function ¢ satisfying Eq. (2.9), assume an arbitrary boundary
and then determine the loading conditions which fit the assumed stress function and
chosen boundary. Obvious solutions arise in which ¢ is expressed as a polynomial.
Timoshenko and Goodier! consider a variety of polynomials for ¢ and determine the
associated loading conditions for a variety of rectangular sheets. Some of these cases
are quoted here.

Example 2.1

Consider the stress function
¢ = Ax® + Bxy + Cy2

where A, B and C are constants. Equation (2.9) is identically satisfied since each term
becomes zero on substituting for ¢. The stresses follow from

82
Oy = —¢ =2C
dy?
929
=—=2A
% ax2
92¢

by = _8x8y -
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50 Two-dimensional problems in elasticity

]
Y

o =2C -

Fig. 2.1 Required loading conditions on rectangular sheet in Example 2.1.

To produce these stresses at any point in a rectangular sheet we require loading
conditions providing the boundary stresses shown in Fig. 2.1.

Example 2.2

A more complex polynomial for the stress function is

As before
Fo e ¢
— =" _=—1 =90
ox4 0x20y? oyt
so that the compatibility equation (2.9) is identically satisfied. The stresses are given by

——32¢—C +D
Ox = 3)/2 =X y
3%
oyZQ:Ax—f—By
¢
Ty ox oy * Y

We may choose any number of values of the coefficients A, B, C and D to produce
a variety of loading conditions on a rectangular plate. For example, if we assume
A =B=C=0then o, =Dy, 0, =0 and 7,y =0, so that for axes referred to an origin at



2.3 Inverse and semi-inverse methods

y Y o =Bbr2_— = B
T o, =Dy ox=Dy l Ty=—Bl
b X b X
@ 1 \
5]
|
— TG
oy ==
T = -ax
(a) (b)
Fig. 2.2 (a) Required loading conditions on rectangular sheet in Example 2.2 for A=B8=C=0; (b) as in (a) but
=C=D=0.

the mid-point of a vertical side of the plate we obtain the state of pure bending shown
in Fig. 2.2(a). Alternatively, Fig. 2.2(b) shows the loading conditions corresponding to
A =C=D=0in which o, =0, o, = By and 1,y = —Bx.

By assuming polynomials of the second or third degree for the stress function we
ensure that the compatibility equation is identically satisfied whatever the values of the
coefficients. For polynomials of higher degrees, compatibility is satisfied only if the
coefficients are related in a certain way. For example, for a stress function in the form
of a polynomial of the fourth degree

_ Ax*  Bx’y Cx%* Dxy* Ey*

=1 2 6 12
and
84 84 4
_¢ — 2—¢ =4C M =2F
ox* dx20y? oyt

Substituting these values in Eq. (2.9) we have

E=-2C+A)
The stress components are then
82
oy = a—‘f = Cx®> + Dxy — (2C + A)y?
Y

2
oy = 8—¢ =Ax2—|—Bxy—|-Cy2
YT w2

Tyy = =———2Cxy —

3% Bx? Dy?
v axdy 2 2
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The coefficients A, B, C and D are arbitrary and may be chosen to produce various
loading conditions as in the previous examples.

Example 2.3

A cantilever of length L and depth 24 is in a state of plane stress. The cantilever is of
unit thickness, is rigidly supported at the end x = L and is loaded as shown in Fig. 2.3.
Show that the stress function

¢ = Ax* + szy + Cy3 + D(S)czy3 — y5)
is valid for the beam and evaluate the constants A, B, C and D.

The stress function must satisfy Eq. (2.9). From the expression for ¢

¢

ol 2Ax + 2Bxy + 10Dxy’
X
¢ 3 .
— =2A+2By+ 10Dy’ = oy (1)
ax2
Also
0
8—¢ = Bx* + 3Cy2 + 15szy2 - 5Dy4
y
82¢—6C Dx*y — 20Dy* = i
W_ y + 30Dx“y — 20Dy” = o (ii)
and
¢ 2Bx 4 30Dxy? (iii)
= X = —T 111
dx dy Y v
Further
a* a* a*
—¢ =0 —¢ = —120Dy —¢ = 60Dy
ox4 oyt ax2 9y?
g/unit area

y
Fig. 2.3 Beam of Example 2.3.



2.3 Inverse and semi-inverse methods

Substituting in Eq. (2.9) gives

84¢ 2 —34¢ + 34¢ 2 x 60D 120D 0
- — =2 — =
ox* ax29y? 9yt Y Y

The biharmonic equation is therefore satisfied and the stress function is valid.
From Fig. 2.3, 0, = 0 at y = A so that, from Eq. (i)

2A + 2BH + 10Dh* = 0
Also from Fig. 2.3, 0, = —q at y = —h so that, from Eq. (i)
2A —2BH — 10Dh> = —¢
Again from Fig. 2.3, 7, =0 at y = %A giving, from Eq. (iii)
2Bx + 30Dxh* = 0
so that
2B + 30Dh* = 0

At x =0 there is no resultant moment applied to the beam, i.e.

h h
Mo = / oy dy = / (6Cy> — 20Dy*)dy = 0
h —h

ie.
My—o = [2Cy’ —4Dy’1", =0
or
C —2Dh* =0
Subtracting Eq. (v) from (iv)

4Bh + 20Dk = ¢

or
q
B+ 5Dh? = -~
+ 4h
From Eq. (vi)
B+ 15Dh> =0

so that, subtracting Eq. (viii) from Eq. (ix)

.
40h3

@iv)

)

(vi)

(vii)

(viii)

(ix)
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54  Two-dimensional problems in elasticity

Then
3
p=22 4_-_1 ~__41
8 4 20K
and
¢ = 40% 10132 4 15223y — 212y — (5533 — )]

The obvious disadvantage of the inverse method is that we are determining prob-
lems to fit assumed solutions, whereas in structural analysis the reverse is the case.
However, in some problems the shape of the body and the applied loading allow sim-
plifying assumptions to be made, thereby enabling a solution to be obtained. St. Venant
suggested a semi-inverse method for the solution of this type of problem in which
assumptions are made as to stress or displacement components. These assumptions
may be based on experimental evidence or intuition. St. Venant first applied the method
to the torsion of solid sections (Chapter 3) and to the problem of a beam supporting
shear loads (Section 2.6).

2.4 St.Venant's principle

In the examples of Section 2.3 we have seen that a particular stress function form may be
applicable to a variety of problems. Different problems are deduced from a given stress
function by specifying, in the first instance, the shape of the body and then assigning a
variety of values to the coefficients. The resulting stress functions give stresses which
satisfy the equations of equilibrium and compatibility at all points within and on the
boundary of the body. 1t follows that the applied loads must be distributed around the
boundary of the body in the same manner as the internal stresses at the boundary. In
the case of pure bending for example (Fig. 2.2(a)), the applied bending moment must be
produced by tensile and compressive forces on the ends of the plate, their magnitudes
being dependent on their distance from the neutral axis. If this condition is invalidated
by the application of loads in an arbitrary fashion or by preventing the free distortion of
any section of the body then the solution of the problem is no longer exact. As this is the

<_>b——‘A

‘———»P
|
|
!
!

L
|,

A

Fig. 2.4 Stress distributions illustrating St. Venant's principle.



2.5 Displacements

case in practically every structural problem it would appear that the usefulness of the
theory is strictly limited. To surmount this obstacle we turn to the important principle
of St. Venant which may be summarized as stating:

that while statically equivalent systems of forces acting on a body produce substan-
tially different local effects the stresses at sections distant from the surface of loading
are essentially the same.

Therefore at a section AA close to the end of a beam supporting two point loads P
the stress distribution varies as shown in Fig. 2.4, whilst at the section BB, a distance
usually taken to be greater than the dimension of the surface to which the load is applied,
the stress distribution is uniform.

We may therefore apply the theory to sections of bodies away from points of applied
loading or constraint. The determination of stresses in these regions requires, for some
problems, separate calculation (see Chapters 26 and 27).

2.5 Displacements

Having found the components of stress, Eqs (1.47) (for the case of plane stress) are
used to determine the components of strain. The displacements follow from Eqs (1.27)
and (1.28). The integration of Eqgs (1.27) yields solutions of the form

u=¢ex+a—by (2.10)
v=2¢gy+c+bx (2.11)

in which a, b and ¢ are constants representing movement of the body as a whole or
rigid body displacements. Of these a and c¢ represent pure translatory motions of the
body while b is a small angular rotation of the body in the xy plane. If we assume that
b is positive in an anticlockwise sense then in Fig. 2.5 the displacement v" due to the
rotation is given by

vV =P'Q —PQ
= OPsin(0 + b) — OPsin 0

Px,y)

b

2

1
I
I
|
|
|
o Q Q

Fig. 2.5 Displacements produced by rigid body rotation.
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56 Two-dimensional problems in elasticity

which, since b is a small angle, reduces to
v = bx
Similarly
u' = —by as stated

2.6 Bending of an end-loaded cantilever

In his semi-inverse solution of this problem St. Venant based his choice of stress function
on the reasonable assumptions that the direct stress is directly proportional to bending
moment (and therefore distance from the free end) and height above the neutral axis.
The portion of the stress function giving shear stress follows from the equilibrium
condition relating oy and t,y. The appropriate stress function for the cantilever beam
shown in Fig. 2.6 is then

Bxy? .
¢ = Axy + ; (1)
where A and B are unknown constants. Hence
3¢
Oy = W = Bxy
3% ..
O‘y = W = O (11)
32 B 2
‘L’xy = — ¢ = —A — L
ox dy 2

Substitution for ¢ in the biharmonic equation shows that the form of the stress function
satisfies compatibility for all values of the constants A and B. The actual values of A
and B are chosen to satisfy the boundary condition, viz. T, =0 along the upper and
lower edges of the beam, and the resultant shear load over the free end is equal to P.

Unit width

N
R

L

Fig. 2.6 Bending of an end-loaded cantilever.



2.6 Bending of an end-loaded cantilever

From the first of these

By? b
giving
Bb?
A= ——
8

From the second

b/2
— / Tyydy = P (see sign convention for Tyy)

—b/2
or
b/2 Bbz By2
L2 5)e
—b/2 8 2
from which
12P
B = _?
The stresses follow from Eqs (ii)
12Pxy Px
R
oy=0 (iii)
12P P
Ty = =gz (07 =4 =~ (0? = 4?)

where I = b3/12 the second moment of area of the beam cross-section.
We note from the discussion of Section 2.4 that Eq. (iii) represent an exact solution
subject to the following conditions that:

(1) the shear force P is distributed over the free end in the same manner as the shear
stress Ty, given by Egs (iii);

(2) the distribution of shear and direct stresses at the built-in end is the same as those
given by Egs (iii);

(3) all sections of the beam, including the built-in end, are free to distort.

In practical cases none of these conditions is satisfied, but by virtue of St. Venant’s
principle we may assume that the solution is exact for regions of the beam away from
the built-in end and the applied load. For many solid sections the inaccuracies in these
regions are small. However, for thin-walled structures, with which we are primarily
concerned, significant changes occur and we shall consider the effects of structural and
loading discontinuities on this type of structure in Chapters 26 and 27.

We now proceed to determine the displacements corresponding to the stress system of
Eqgs (iii). Applying the strain—displacement and stress—strain relationships, Eqs (1.27),
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(1.28) and (1.47), we have

8_%_ﬂ__@ (iv)
T ox  E EI

v voy  VPxy
{;‘y = — = —— = (V)
dy E EI

ou v Ty P 5 5 .
=TT 6 T 8IG ) V)

Integrating Eqgs (iv) and (v) and noting that &, and ¢, are partial derivatives of the
displacements, we find

Px?y vPxy? ..
=T ThO) V=g T e

where f1(y) and f>(x) are unknown functions of x and y. Substituting these values of u
and v in Eq. (vi)

Px?  3i(y)  vPY?  3H(x) P 5 2
_Pe? — -4
2Bl T oy T 2ET T ax sig” Y

Separating the terms containing x and y in this equation and writing

Px*  3h() vPy: Pyt Bfi(y)
Fi(x) = ——— Faly) = _BT o)
=g PO %m T act Ty

we have
2

P
Fi(x) + Fa(y) = 3G

The term on the right-hand side of this equation is a constant which means that F(x)
and F>(y) must be constants, otherwise a variation of either x or y would destroy the
equality. Denoting F1(x) by C and F;(y) by D gives

C+D= _P_l)2 (viii)
8IG
and
) _ P ) _ P Py
ox 2EI dy 2IG  2EI
so that
fa(x) = P—X3 +Cx+F
6EI
and

Py3 va3
6IG 6E]

ho) = +Dy+H



2.6 Bending of an end-loaded cantilever
Therefore from Eqs (vii)

Px’y vPy> Py

- _ — A Dy+H i
“="%m T eEl Teic YT (ix)
vay2 Px?
= —— 4+ Cx+F
v SEI +6EI+ X + (x)

The constants C, D, F and H are now determined from Eq. (viii) and the displacement
boundary conditions imposed by the support system. Assuming that the support prevents
movement of the point K in the beam cross-section at the built-in end then u =v=0 at
x=1[,y=0 and from Eqgs (ix) and (x)

If we now assume that the slope of the neutral plane is zero at the built-in end then
dv/ox =0 atx = [, y = 0 and from Eq. (x)

PP
2EI
It follows immediately that
PP
~ 2FEI
and, from Eq. (viii)
_p? PV
~ 2EI  8IG

Substitution for the constants C, D, F' and H in Eqs (ix) and (x) now produces the
equations for the components of displacement at any point in the beam. Thus

" 2EI  6EI ' 6IG

Px’y vPy’ Py’ P> Pb? D)
— X1
261~ 381G )”

vP)cy2 n Px3  PPx n PP (xii)
V= A T xii
2EI 6EI 2EI  3EI

The deflection curve for the neutral plane is

Px3  PPx PP

6E1 281 3B (xii)

(U)yzo =
from which the tip deflection (x = 0) is P[3/3EI This value is that predicted by simple

beam theory (Chapter 16) and does not include the contribution to deflection of the
shear strain. This was eliminated when we assumed that the slope of the neutral plane
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Fig. 2.7 Rotation of neutral plane due to shear in end-loaded cantilever.

at the built-in end was zero. A more detailed examination of this effect is instructive.
The shear strain at any point in the beam is given by Eq. (vi)

P
_ P a4
Vxy 8IG( y)

and is obviously independent of x. Therefore at all points on the neutral plane the shear
strain is constant and equal to

Pb?

8IG

which amounts to a rotation of the neutral plane as shown in Fig. 2.7. The deflection of
the neutral plane due to this shear strain at any section of the beam is therefore equal to

Yoy = —

Pb? (-
jIG

and Eq. (xiii) may be rewritten to include the effect of shear as

Px3  PPx N pP N Pb? d—x xiv)
— -t — 4+ —=( - Xiv
6EI ~ 2EI ' 3EI ' 8IG"

Let us now examine the distorted shape of the beam section which the analysis
assumes is free to take place. At the built-in end when x =/ the displacement of any
point is, from Eq. (xi)

(U)y:O =

vPy3 Py’ Pb%y
u= + == - — (xv)
6ElI  6IG  8IG
The cross-section would therefore, if allowed, take the shape of the shallow reversed S
shown in Fig. 2.8(a). We have not included in Eq. (xv) the previously discussed effect
of rotation of the neutral plane caused by shear. However, this merely rotates the beam
section as indicated in Fig. 2.8(b).

The distortion of the cross-section is produced by the variation of shear stress over
the depth of the beam. Thus the basic assumption of simple beam theory that plane
sections remain plane is not valid when shear loads are present, although for long,
slender beams bending stresses are much greater than shear stresses and the effect may
be ignored.
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Pb¥8IG

(a) {(b)

Fig. 2.8 (a) Distortion of cross-section due to shear; (b) effect on distortion of rotation due to shear.

It will be observed from Fig. 2.8 that an additional direct stress system will be
imposed on the beam at the support where the section is constrained to remain plane.
For most engineering structures this effect is small but, as mentioned previously, may
be significant in thin-walled sections.

Reference

1 Timoshenko, S. and Goodier, J. N., Theory of Elasticity, 2nd edition, McGraw-Hill Book
Company, New York, 1951.

Problems

P.2.1 A metal plate has rectangular axes Ox, Oy marked on its surface. The point O
and the direction of Ox are fixed in space and the plate is subjected to the following
uniform stresses:

compressive, 3p, parallel to Ox,

tensile, 2p, parallel to Oy,

shearing, 4p, in planes parallel to Ox and Oy
in a sense tending to decrease the angle xOy.

Determine the direction in which a certain point on the plate will be displaced; the
coordinates of the point are (2, 3) before straining. Poisson’s ratio is 0.25.

Ans. 19.73° to Ox.

P.2.2 What do you understand by an Airy stress function in two dimensions? A
beam of length /, with a thin rectangular cross-section, is built-in at the end x =0 and
loaded at the tip by a vertical force P (Fig. P.2.2). Show that the stress distribution, as
calculated by simple beam theory, can be represented by the expression

¢ = Ay3 + By3x + Cyx

as an Airy stress function and determine the coefficients A, B and C.

Ans. A=2Pl/td’>, B=—-2P/td’>, C=3P/2t.
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y
Z

d ‘7—-7————~-—— —————— — X d

Fig. P.2.2

P.2.3 The cantilever beam shown in Fig. P.2.3 is in a state of plane strain and is
rigidly supported at x =L. Examine the following stress function in relation to this
problem:

w

= m(15h2x2y — 5%y —2ny +y0)

¢

Show that the stresses acting on the boundaries satisfy the conditions except for a
distributed direct stress at the free end of the beam which exerts no resultant force or
bending moment.

y w/unit area

A A A

A A

w/unit area

Fig. P.2.3

Ans. The stress function satisfies the biharmonic equation:

e Aty=h, o, =w and 1,, =0, boundary conditions satisfied.
e Aty=—h, oy =—w and 1,y =0, boundary conditions satisfied.

Direct stress at free end of beam is not zero, there is no resultant force or bending
moment at the free end.
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P.2.4 A thin rectangular plate of unit thickness (Fig. P.2.4) is loaded along the edge
y=+d by a linearly varying distributed load of intensity w = px with corresponding
equilibrating shears along the vertical edges at x =0 and /. As a solution to the stress
analysis problem an Airy stress function ¢ is proposed, where

[5(° — Px)(y + d)*(y — 2d) — 3yx(y* — d*)*]

= 12Od3

w = px

Fig. P.2.4

Show that ¢ satisfies the internal compatibility conditions and obtain the distribution
of stresses within the plate. Determine also the extent to which the static boundary
conditions are satisfied.

Ans. = Sy — %) — 10y* + 64*
Ox 20d3[y( ) — 10y” + 6d7y]
oy = —3(y3 —3yd? —2d°)
Ty = 40d3 P 15G6x% — B)(y? — d?) — 5y* + 6y2d® — d*).

The boundary stress function values of 7., do not agree with the assumed constant
equilibrating shears at x =0 and /.

P.2.5 The cantilever beam shown in Fig. P.2.5 is rigidly fixed at x = L and carries
loading such that the Airy stress function relating to the problem is

(—10c*x? — 15¢2x%y 4 2¢2y% 4 502y — y9)

0= 40bc3
Find the loading pattern corresponding to the function and check its validity with respect
to the boundary conditions.

Ans. The stress function satisfies the biharmonic equation. The beam is a cantilever
under a uniformly distributed load of intensity w/unit area with a self-equilibrating stress
application given by o, = w(12¢’y — 20y*)/40bc¢> at x = 0. There is zero shear stress at
y=Zxcandx=0.Aty=+c,opy=—w/band at y=—c, 0, =0.
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—

y

Fig. P.2.5

P.2.6 A two-dimensional isotropic sheet, having a Young’s modulus E and linear
coefficient of expansion «, is heated non-uniformly, the temperature being T(x,y).
Show that the Airy stress function ¢ satisfies the differential equation

V2(V2¢p + EaT) =0

where

,  *F
Vi=—+ —
ox2  9y?

is the Laplace operator.

P.2.7 Investigate the state of plane stress described by the following Airy stress
function
_30xy  Oxy?
0= 4a  4a°
over the square region x =—a to x=+4a, y=—a to y=-+a. Calculate the stress
resultants per unit thickness over each boundary of the region.

Ans. The stress function satisfies the biharmonic equation. Also,

when x =a,
=30y
=R
when x = —a,
_ 30y
Ay}
and

<

[}8)

v 4da at)’



Torsion of solid sections

The elasticity solution of the torsion problem for bars of arbitrary but uniform cross-
section is accomplished by the semi-inverse method (Section 2.3) in which assumptions
are made regarding either stress or displacement components. The former method owes
its derivation to Prandtl, the latter to St. Venant. Both methods are presented in this
chapter, together with the useful membrane analogy introduced by Prandtl.

3.1 Prandtl stress function solution

Consider the straight bar of uniform cross-section shown in Fig. 3.1. It is subjected
to equal but opposite torques 7 at each end, both of which are assumed to be free
from restraint so that warping displacements w, that is displacements of cross-sections
normal to and out of their original planes, are unrestrained. Further, we make the
reasonable assumptions that since no direct loads are applied to the bar

oy=0y,=0,=0

Fig. 3.1 Torsion of a bar of uniform, arbitrary cross-section.
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and that the torque is resisted solely by shear stresses in the plane of the cross-section
giving
Ty =0

To verify these assumptions we must show that the remaining stresses satisfy the condi-
tions of equilibrium and compatibility at all points throughout the bar and, in addition,
fulfil the equilibrium boundary conditions at all points on the surface of the bar.

If we ignore body forces the equations of equilibrium, (1.5), reduce, as a result of
our assumptions, to

0 o Jhe_ O, O0e G.1)
0z 0z ox ay

The first two equations of Eqs (3.1) show that the shear stresses 7, and 1y, are func-
tions of x and y only. They are therefore constant at all points along the length of
the bar which have the same x and y coordinates. At this stage we turn to the stress
function to simplify the process of solution. Prandtl introduced a stress function ¢
defined by

o 0

a—f =Ty £ = Ty 3.2)
which identically satisfies the third of the equilibrium equations (3.1) whatever form ¢
may take. We therefore have to find the possible forms of ¢ which satisfy the compati-
bility equations and the boundary conditions, the latter being, in fact, the requirement
that distinguishes one torsion problem from another.

From the assumed state of stress in the bar we deduce that

&y =6y =&, =y =0 (see Eqgs (1.42) and (1.46))

Further, since 1., and 7y, and hence y,; and y,, are functions of x and y only then
the compatibility equations (1.21)—(1.23) are identically satisfied as is Eq. (1.26). The
remaining compatibility equations, (1.24) and (1.25), are then reduced to

(e e
ox ox ay

LNCTE A
ay \ ox ay

Substituting initially for yy, and y,, from Eqs (1.46) and then for t,(=Tt),)
and 7, (= ty;) from Eqgs (3.2) gives
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or

9 3
— V=0 ——V>p=0 (3.3)
ox ay

where V? is the two-dimensional Laplacian operator

¥
JR— + J—
(3)62 8y2)
The parameter V>¢ is therefore constant at any section of the bar so that the function
¢ must satisfy the equation

2 2
% + % = constant = F (say) (3.4)
at all points within the bar.

Finally we must ensure that ¢ fulfils the boundary conditions specified by Eqs (1.7).
On the cylindrical surface of the bar there are no externally applied forces so that
X =Y =Z=0. The direction cosine 7 is also zero and therefore the first two equa-
tions of Eqgs (1.7) are identically satisfied, leaving the third equation as the boundary
condition, i.e.

Ty + Tl = 0 3.5)

The direction cosines / and m of the normal N to any point on the surface of the bar
are, by reference to Fig. 3.2

_dy dx

=5 m= (3.6)

l _
ds

Substituting Egs (3.2) and (3.6) into (3.5) we have

dpdx Opdy 0
oxds  dyds
Y4
3s N
By
—3x
s
0 X

Fig. 3.2 Formation of the direction cosines / and m of the normal to the surface of the bar.
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or
o
ds

Thus ¢ is constant on the surface of the bar and since the actual value of this constant
does not affect the stresses of Eq. (3.2) we may conveniently take the constant to be
zero. Hence on the cylindrical surface of the bar we have the boundary condition

=0 3.7

On the ends of the bar the direction cosines of the normal to the surface have the
values [ =0, m =0 and n = 1. The related boundary conditions, from Eqs (1.7), are then

=0

X =1y,
Y =1,
Z=0

We now observe that the forces on each end of the bar are shear forces which are dis-
tributed over the ends of the bar in the same manner as the shear stresses are distributed
over the cross-section. The resultant shear force in the positive direction of the x axis,
which we shall call S, is then

Sx=//)_(dxdy=//tzxdxdy

or, using the relationship of Eqs (3.2)

n [ ot B

as ¢ =0 at the boundary. In a similar manner, Sy, the resultant shear force in the y

direction, is
0
_ /dy/—d) dx =
0x

It follows that there is no resultant shear force on the ends of the bar and the forces
represent a torque of magnitude, referring to Fig. 3.3

7= [[ - ranaxey

in which we take the sign of 7" as being positive in the anticlockwise sense.
Rewriting this equation in terms of the stress function ¢

[ S ] B

Integrating each term on the right-hand side of this equation by parts, and noting again
that ¢ = 0 at all points on the boundary, we have

Tzzf #dx dy (3.8)



3.1 Prandtl stress function solution

Fig. 3.3 Derivation of torque on cross-section of bar.

We are therefore in a position to obtain an exact solution to a torsion problem if a stress
function ¢(x,y) can be found which satisfies Eq. (3.4) at all points within the bar and
vanishes on the surface of the bar, and providing that the external torques are distributed
over the ends of the bar in an identical manner to the distribution of internal stress over
the cross-section. Although the last proviso is generally impracticable we know from
St. Venant’s principle that only stresses in the end regions are affected; therefore, the
solution is applicable to sections at distances from the ends usually taken to be greater
than the largest cross-sectional dimension. We have now satisfied all the conditions of
the problem without the use of stresses other than 7, and 7,,, demonstrating that our
original assumptions were justified.

Usually, in addition to the stress distribution in the bar, we require to know the angle
of twist and the warping displacement of the cross-section. First, however, we shall
investigate the mode of displacement of the cross-section. We have seen that as a result
of our assumed values of stress

Ex =6 =& =Yy =0
It follows, from Eqs (1.18) and the second of Eqgs (1.20), that

du Jdv dw Jv  Ju

—=—=7—=—+—=0

ox dy 0z Ox Jy
which result leads to the conclusions that each cross-section rotates as a rigid body in
its own plane about a centre of rotation or twist, and that although cross-sections suffer
warping displacements normal to their planes the values of this displacement at points
having the same coordinates along the length of the bar are equal. Each longitudinal
fibre of the bar therefore remains unstrained, as we have in fact assumed.

Let us suppose that a cross-section of the bar rotates through a small angle 6 about
its centre of twist assumed coincident with the origin of the axes Oxy (see Fig. 3.4).
Some point P(r, o) will be displaced to P'(r, a + ), the components of its displacement
being

u=—rfsinad v=rlcosa
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— X
Fig. 3.4 Rigid body displacement in the cross-section of the bar.
or
u=—0y v=0x 3.9)
Referring to Eqs (1.20) and (1.46)
_Ou w1y ow v Ty

BTt TG T kTG

Rearranging and substituting for # and v from Eqs (3.9)

L L L (3.10)
ox G dz ay G dz
For a particular torsion problem Eqgs (3.10) enable the warping displacement w of
the originally plane cross-section to be determined. Note that since each cross-section
rotates as a rigid body 6 is a function of z only.
Differentiating the first of Eqs (3.10) with respect to y, the second with respect to x

and subtracting we have
oo (i) do
dy ox dz

Expressing 7, and 7y in terms of ¢ gives

3’y 9% do
B ATk R, Vo R
ox2 + 0y? dz
or, from Eq. (3.4)
—2Gd— = V“¢ = F (constant) 3.11)
Z

Itis convenient to introduce a forsion constant J defined by the general torsion equation

do
T=GJ]— (3.12)
dz



3.1 Prandtl stress function solution

Y Ty

8n Tz

¢ = Constant

Fig. 3.5 Lines of shear stress.

The product GJ is known as the torsional rigidity of the bar and may be written, from

Eqgs (3.8) and (3.11)
- W¢NQM@ (3.13)

Consider now the line of constant ¢ in Fig. 3.5. If s is the distance measured along
this line from some arbitrary point then

o 0= d¢ dy n o¢ dx

s  dyds oxds
Using Eqs (3.2) and (3.6) we may rewrite this equation as
¢
as

From Fig. 3.5 the normal and tangential components of shear stress are

=Tl +1m=0 (3.14)

T = Tl + Tpym Ty = Tl — Tom (3.15)

Comparing the first of Egs (3.15) with Eq. (3.14) we see that the normal shear stress is
zero so that the resultant shear stress at any point is tangential to a line of constant ¢.
These are known as lines of shear stress or shear lines.
Substituting ¢ in the second of Eqgs (3.15) we have
dp 0

Ty = — o= Cm

ax ay
which may be written, from Fig. 3.5, as

Cdpdx  dpdy 3

= = 3.16
fox ax dn ay dn on ( )

where, in this case, the direction cosines / and m are defined in terms of an elemental
normal of length én.
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72 Torsion of solid sections

We have therefore shown that the resultant shear stress at any point is tangential to
the line of shear stress through the point and has a value equal to minus the derivative
of ¢ in a direction normal to the line.

Example 3.1
Determine the rate of twist and the stress distribution in a circular section bar of radius
R which is subjected to equal and opposite torques 7 at each of its free ends.

If we assume an origin of axes at the centre of the bar the equation of its surface is
given by
24y =R
If we now choose a stress function of the form

¢ =Cx*+y* —R% (i)

the boundary condition ¢ =0 is satisfied at every point on the boundary of the bar
and the constant C may be chosen to fulfil the remaining requirement of compatibility.
Therefore from Egs (3.11) and (i)

do
4C = -2G—
dz
so that
_ Gdo
T 2dz
and
do
¢ = —Gd—(x2 +y2 —RY)|2 (ii)
Z

Substituting for ¢ in Eq. (3.8)

do 2 2 2
T=—Gd— x“dxdy + y“dxdy — R dxdy
z

The first and second integrals in this equation both have the value 7R*/4 while the third
integral is equal to 7R?, the area of cross-section of the bar. Then

do (7R* nR* .
T=-G—|—+— —7R
dz \ 4 4

which gives

i.e.

T=GJ— (iii)



3.1 Prandtl stress function solution

in which J = 7R*/2 = nD*/32 (D is the diameter), the polar second moment of area of
the bar’s cross-section.
Substituting for G(d6/dz) in Eq. (ii) from (iii)

T 2 2 2
=—— —R
¢ 2J(x +y )

and from Eqs (3.2)

0p Tx _ op T

ox  J tzx—ay=—7y

Ty =

The resultant shear stress at any point on the surface of the bar is then given by

) 2
T= /15 + T

1.€.
T/, 2
T=—
VY
1.e.
TR (iv)
T=— iv
J

The above argument may be applied to any annulus of radius r within the cross-section
of the bar so that the stress distribution is given by

Tr
T=—
J
and therefore increases linearly from zero at the centre of the bar to a maximum 7R/J
at the surface.

Example 3.2

A uniform bar has the elliptical cross-section shown in Fig. 3.6 and is subjected to equal
and opposite torques 7T at each of its free ends. Derive expressions for the rate of twist in
the bar, the shear stress distribution and the warping displacement of its cross-section.

The semi-major and semi-minor axes are a and b, respectively, so that the equation
of its boundary is

If we choose a stress function of the form

x2 y2 '
¢=C<a—2+——1> ()
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—~
1

Fig. 3.6 Torsion of a bar of elliptical cross-section.

then the boundary condition ¢ = 0 is satisfied at every point on the boundary and the
constant C may be chosen to fulfil the remaining requirement of compatibility. Thus,
from Egs (3.11) and (i)

b? dz
or
o a*b? ..
C= —Gd—zm (11)
giving
do  a2b? x2 y2
= Cr@rm\atr ! (i)

Substituting this expression for ¢ in Eq. (3.8) establishes the relationship between the
torque 7 and the rate of twist

do  a*b?
T = 2Gdz(a b2)< //x dxdy—l——//y dxdy — / dxdy)

The first and second integrals in this equation are the second moments of area
Ly = wa’b/4 and I, = wab’/4, while the third integral is the area of the cross-section
A = mab. Replacing the integrals by these values gives

do na’h? i)
—_—— iv
dz (a* + b?)
from which (see Eq. (3.12))
na’h? W)
-7 \%
(a* +b?)

The shear stress distribution is obtained in terms of the torque by substituting for
the product G (d6/dz) in Eq. (iii) from (iv) and then differentiating as indicated by the
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relationships of Eqgs (3.2). Thus

2Ty 2Tx .
R R A

So far we have solved for the stress distribution, Eqs (vi), and the rate of twist, Eq.
(iv). It remains to determine the warping distribution w over the cross-section. For this
we return to Egs (3.10) which become, on substituting from the above for 7y, 7,y and
do/dz

aw 2Ty T (@®>+b%  ow 2Tx T (a® + b%)
_—=— _— _—= _— — X
ox 7a’G G nadb’ dy wa’hG G malh’
or
ow T aw T
w_ L o2 ow _ b2 — .
i = 2ac T T o T mamgt T (vi)
Integrating both of Eqs (vii)
T(b* — a?) A T(b? — a?) .
= ———x W= ————-— X
2B3G 1 2d3G D T2

The warping displacement given by each of these equations must have the same value
at identical points (x, y). It follows that f(y) =f2(x) = 0. Hence

T(b* — d?) (vii)

= ——F5X viii

273G

Lines of constant w therefore describe hyperbolas with the major and minor axes of the

elliptical cross-section as asymptotes. Further, for a positive (anticlockwise) torque the

warping is negative in the first and third quadrants (a > b) and positive in the second
and fourth.

3.2 St. Venant warping function solution

In formulating his stress function solution Prandtl made assumptions concerned with the
stress distribution in the bar. The alternative approach presented by St. Venant involves
assumptions as to the mode of displacement of the bar; namely, that cross-sections of
a bar subjected to torsion maintain their original unloaded shape although they may
suffer warping displacements normal to their plane. The first of these assumptions leads
to the conclusion that cross-sections rotate as rigid bodies about a centre of rotation or
twist. This fact was also found to derive from the stress function approach of Section
3.1 so that, referring to Fig. 3.4 and Eq. (3.9), the components of displacement in the
x and y directions of a point P in the cross-section are

u=—0y v=0~6x
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It is also reasonable to assume that the warping displacement w is proportional to the
rate of twist and is therefore constant along the length of the bar. Hence we may define
w by the equation

do
w= V) (3.17)
Z

where ¥(x, y) is the warping function.

The assumed form of the displacements u, v and w must satisfy the equilibrium and
force boundary conditions of the bar. We note here that it is unnecessary to investigate
compatibility as we are concerned with displacement forms which are single-valued
functions and therefore automatically satisfy the compatibility requirement.

The components of strain corresponding to the assumed displacements are obtained
from Eqs (1.18) and (1.20) and are

Ex=& =& =Yy =0

0w 4 du do (oY
Vo = ox oz dz 0x Y (3.18)

aw L av Blp
) = — = +x
Vay ay 0z dZ

The corresponding components of stress are, from Eqs (1.42) and (1.46)

Ox =0y =0, =Ty =0

oy
T = GdZ (— —y) (3.19)

oy
y_Gdz <8y x)

Ignoring body forces we see that these equations identically satisfy the first two of the
equilibrium equations (1.5) and also that the third is fulfilled if the warping function
satisfies the equation

2y vy )

The direction cosine # is zero on the cylindrical surface of the bar and so the first
two of the boundary conditions (Eqgs (1.7)) are identically satisfied by the stresses of
Eqgs (3.19). The third equation simplifies to

<%+x>m+(%—y>l:0 (3.21)
ay ox

It may be shown, but not as easily as in the stress function solution, that the shear
stresses defined in terms of the warping function in Eqs (3.19) produce zero resultant
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shear force over each end of the bar.! The torque is found in a similar manner to that
in Section 3.1 where, by reference to Fig. 3.3, we have

T = / (Tzyx — Trey)dx dy

_ 4o oy oy
S | (CIORTCI N

By comparison with Eq. (3.12) the torsion constant J is now, in terms of v

[

The warping function solution to the torsion problem reduces to the determination
of the warping function ¥ which satisfies Eqs (3.20) and (3.21). The torsion constant
and the rate of twist follow from Eqgs (3.23) and (3.22); the stresses and strains from
Egs (3.19) and (3.18) and, finally, the warping distribution from Eq. (3.17).

or

3.3 The membrane analogy

Prandtl suggested an extremely useful analogy relating the torsion of an arbitrarily
shaped bar to the deflected shape of a membrane. The latter is a thin sheet of material
which relies for its resistance to transverse loads on internal in-plane or membrane
forces.

Suppose that a membrane has the same external shape as the cross-section of a torsion
bar (Fig. 3.7(a)). It supports a transverse uniform pressure ¢ and is restrained along its
edges by a uniform tensile force N/unit length as shown in Fig. 3.7(a) and (b). It is
assumed that the transverse displacements of the membrane are small so that N remains

(a) (b)

Fig. 3.7 Membrane analogy: in-plane and transverse loading.
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unchanged as the membrane deflects. Consider the equilibrium of an element 5x§y of
the membrane. Referring to Fig. 3.8 and summing forces in the z direction we have

ow w  Fw ow w  FPw
—N8y—— = Nby (== = 258x | = Nox—— = Nox ( ——= — ——8x | + qx8y =0
X X

ox  ox? y dy 92
or
FPw  FPw 2 q
@—FW:Vw:—N (3.24)

Equation (3.24) must be satisfied at all points within the boundary of the membrane.
Furthermore, at all points on the boundary

w=0 (3.25)

and we see that by comparing Eqs (3.24) and (3.25) with Eqs (3.11) and (3.7) w is
analogous to ¢ when ¢ is constant. Thus if the membrane has the same external shape
as the cross-section of the bar then

W(X, Y) = ¢(X, )’)

and

d
4 _ _p_n6Y
N dz

The analogy now being established, we may make several useful deductions relating
the deflected form of the membrane to the state of stress in the bar.

Contour lines or lines of constant w correspond to lines of constant ¢ or lines of shear
stress in the bar. The resultant shear stress at any point is tangential to the membrane
contour line and equal in value to the negative of the membrane slope, dw/dn, at that

3 (5]

Fig. 3.8 Equilibrium of element of membrane.
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point, the direction n being normal to the contour line (see Eq. (3.16)). The volume
between the membrane and the xy plane is

Vol = //wdxdy

and we see that by comparison with Eq. (3.8)
T =2Vol

The analogy therefore provides an extremely useful method of analysing torsion
bars possessing irregular cross-sections for which stress function forms are not known.
Hetényi? describes experimental techniques for this approach. In addition to the strictly
experimental use of the analogy it is also helpful in the visual appreciation of a particular
torsion problem. The contour lines often indicate a form for the stress function, enabling
a solution to be obtained by the method of Section 3.1. Stress concentrations are made
apparent by the closeness of contour lines where the slope of the membrane is large.
These are in evidence at sharp internal corners, cut-outs, discontinuities, etc.

3.4 Torsion of a narrow rectangular strip

In Chapter 18 we shall investigate the torsion of thin-walled open section beams; the
development of the theory being based on the analysis of a narrow rectangular strip
subjected to torque. We now conveniently apply the membrane analogy to the torsion
of such a strip shown in Fig. 3.9. The corresponding membrane surface has the same
cross-sectional shape at all points along its length except for small regions near its
ends where it flattens out. If we ignore these regions and assume that the shape of the

y
1 TR
s/2
X
s/2

t
S

Fig. 3.9 Torsion of a narrow rectangular strip.
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membrane is independent of y then Eq. (3.11) simplifies to

d%¢ do
— T = _2G—
dx2 dz

Integrating twice
de ,
¢=—-G—x"+Bx+C
dz

Substituting the boundary conditions ¢ =0 at x = 4-7/2 we have

2
b=-GS [ﬁ _ (%) } (3.26)

Although ¢ does not disappear along the short edges of the strip and therefore does not
give an exact solution, the actual volume of the membrane differs only slightly from
the assumed volume so that the corresponding torque and shear stresses are reasonably
accurate. Also, the maximum shear stress occurs along the long sides of the strip where
the contours are closely spaced, indicating, in any case, that conditions in the end region
of the strip are relatively unimportant.

The stress distribution is obtained by substituting Eq. (3.26) in Egs (3.2), then

dé
Ty =2Gx— 15, =0 (3.27)
dz
the shear stress varying linearly across the thickness and attaining a maximum
dé
T =+Gt— 3.28
Zy,max dz ( )

at the outside of the long edges as predicted. The torsion constant J follows from the
substitution of Eq. (3.26) into (3.13), giving

J st ( )
= 3.29
and

3T
T, ,max — ~_ 3
T o3

These equations represent exact solutions when the assumed shape of the deflected
membrane is the actual shape. This condition arises only when the ratio s/t approaches
infinity; however, for ratios in excess of 10 the error is of the order of only 6 per cent.
Obviously the approximate nature of the solution increases as s/t decreases. Therefore,
in order to retain the usefulness of the analysis, a factor u is included in the torsion
constant, i.e.

. ,ust3
BE

Values of p for different types of section are found experimentally and quoted in various
references.>* We observe that as s/t approaches infinity u approaches unity.

J
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Fig. 3.10 Warping of a thin rectangular strip.

The cross-section of the narrow rectangular strip of Fig. 3.9 does not remain plane
after loading but suffers warping displacements normal to its plane; this warping may
be determined using either of Egs (3.10). From the first of these equations

ow do
— =y— 3.30
0x Y dz ( )

since 7, = 0 (see Eqgs (3.27)). Integrating Eq. (3.30) we obtain
de
w= xyd— + constant (3.31)
Z

Since the cross-section is doubly symmetrical w =0 at x =y = 0 so that the constant in
Eq. (3.31) is zero. Therefore

w=xy— (3.32)
dz
and the warping distribution at any cross-section is as shown in Fig. 3.10.

We should not close this chapter without mentioning alternative methods of solution
of the torsion problem. These in fact provide approximate solutions for the wide range
of problems for which exact solutions are not known. Examples of this approach are
the numerical finite difference method and the Rayleigh—Ritz method based on energy
principles.’
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Problems

P.3.1 Show that the stress function ¢ = k(r> — a®) is applicable to the solution of
a solid circular section bar of radius a. Determine the stress distribution in the bar in
terms of the applied torque, the rate of twist and the warping of the cross-section.

Is it possible to use this stress function in the solution for a circular bar of hollow
section?

Ans. t=Tr/l, where I,= wat/2,
d6/dz =2T/Gra*, w =0 everywhere.

P.3.2 Deduce a suitable warping function for the circular section bar of P.3.1 and
hence derive the expressions for stress distribution and rate of twist.

4 v=0 Ty Tx Tr do T
ns. =0, tu=—-", TZy=—, Ty=—, —=—r
“Ton YL YT dz Glp

P.3.3 Show that the warping function ¥ = kxy, in which k is an unknown constant,
may be used to solve the torsion problem for the elliptical section of Example 3.2.

P.3.4 Show that the stress function

art , , 1 . 2,
=-c<|: S B o el
¢ dz [2(x ) =5, =307 = 5na

is the correct solution for a bar having a cross-section in the form of the equilateral
triangle shown in Fig. P.3.4. Determine the shear stress distribution, the rate of twist
and the warping of the cross-section. Find the position and magnitude of the maximum
shear stress.

B

N

T X

Wi

Fig. P.3.4



Problems

Ans. de 3x% 3y?
=G (x—- 4+
& dz ( 2a + 2a
dé 3
Ty = —G— (y + ﬂ)
dz
dé
Tmax (at centre of each side) = —EG—
2 dz
do 15437
dz  Gd*
1 .do ;4 2
=——0O" -3 .
v 2a dz o )

P.3.5 Determine the maximum shear stress and the rate of twist in terms of the
applied torque T for the section comprising narrow rectangular strips shown in Fig.
P3.5.

L t
f

l< a _i
1

Fig. P3.5

Ans.  Tmax =3T/Qa + b)t?, d0/dz=3T/GQa+ b)t>.
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Virtual work and energy
methods

Many structural problems are statically determinate, i.e., the support reactions and
internal force systems may be found using simple statics where the number of unknowns
is equal to the number of equations of equilibrium available. In cases where the number
of unknowns exceeds the possible number of equations of equilibrium, for example, a
propped cantilever beam, other methods of analysis are required.

The methods fall into two categories and are based on two important concepts; the
first, which is presented in this chapter, is the principle of virtual work. This is the most
fundamental and powerful tool available for the analysis of statically indeterminate
structures and has the advantage of being able to deal with conditions other than those
in the elastic range. The second, based on strain energy, can provide approximate
solutions of complex problems for which exact solutions do not exist and is discussed in
Chapter 5. In some cases the two methods are equivalent since, although the governing
equations differ, the equations themselves are identical.

In modern structural analysis, computer-based techniques are widely used; these
include the flexibility and stiffness methods (see Chapter 6). However, the formulation
of, say, stiffness matrices for the elements of a complex structure is based on one of
the above approaches so that a knowledge and understanding of their application is
advantageous.

4.1 Work

Before we consider the principle of virtual work in detail, it is important to clarify
exactly what is meant by work. The basic definition of work in elementary mechanics
is that ‘work is done when a force moves its point of application’. However, we shall
require a more exact definition since we shall be concerned with work done by both
forces and moments and with the work done by a force when the body on which it acts
is given a displacement which is not coincident with the line of action of the force.
Consider the force, F, acting on a particle, A, in Fig. 4.1(a). If the particle is given
a displacement, A, by some external agency so that it moves to A’ in a direction at an
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angle « to the line of action of F, the work, W, done by Fis given by

Wr = F(A cosw) “4.1)
or

Wr = (F cosa)A “4.2)

We see therefore that the work done by the force, F, as the particle moves from A to
A’ may be regarded as either the product of F and the component of A in the direction
of F (Eq. (4.1)) or as the product of the component of F in the direction of A and A
(Eq. (4.2)).

Now consider the couple (pure moment) in Fig. 4.1(b) and suppose that the couple
is given a small rotation of 6 radians. The work done by each force F is then F(a/2)6
so that the total work done, W, by the couple is

We=F20+ F20 = Fap
c=mpyTiyr e

It follows that the work done, Wj,, by the pure moment, M, acting on the bar AB in
Fig. 4.1(c) as it is given a small rotation, 0, is

Wy = M6 4.3)

Note that in the above the force, ', and moment, M, are in position before the displace-
ments take place and are not the cause of them. Also, in Fig. 4.1(a), the component of A
parallel to the direction of F is in the same direction as F’; if it had been in the opposite
direction the work done would have been negative. The same argument applies to the
work done by the moment, M, where we see in Fig. 4.1(c) that the rotation, 6, is in
the same sense as M. Note also that if the displacement, A, had been perpendicular to
the force, F', no work would have been done by F.

Finally it should be remembered that work is a scalar quantity since it is not associated
with direction (in Fig. 4.1(a) the force F does work if the particle is moved in any
direction). Thus the work done by a series of forces is the algebraic sum of the work
done by each force.

N |

6 —» F—‘

N

>
ny
T
N
D

(a) (b) ()

Fig. 4.1 Work done by a force and a moment.



4.2 Principle of virtual work

4.2 Principle of virtual work

The establishment of the principle will be carried out in stages. First we shall consider
a particle, then a rigid body and finally a deformable body, which is the practical
application we require when analysing structures.

4.2.1 Principle of virtual work for a particle

In Fig. 4.2 a particle, A, is acted upon by a number of concurrent forces, Fy, F», ...,
Fy, ..., Fy; the resultant of these forces is R. Suppose that the particle is given a small
arbitrary displacement, Ay, to A’ in some specified direction; Ay is an imaginary or
virtual displacement and is sufficiently small so that the directions of Fp, F7, etc., are
unchanged. Let O be the angle that the resultant, R, of the forces makes with the
direction of Ay and 61,6s,...,6,..., 0, the angles that F\, F3, ..., Fy,...,F, make
with the direction of A,, respectively. Then, from either of Eqs (4.1) or (4.2) the
total virtual work, Wr, done by the forces Fas the particle moves through the virtual
displacement, Ay, is given by

Wr =F1AycosO1 + FoAycosbr 4 -+ -+ FrAycosOy +-- -+ FrAycos b,

Thus

,
Wi =Y FrAycosby
k=1

or, since Ay is a fixed, although imaginary displacement

.
Wi = Ay ZFk cos 6 (4.4)
k=1

In Eq. (4.4) ") _ Fi cos 0 is the sum of all the components of the forces, F, in the
direction of A and therefore must be equal to the component of the resultant, R, of the

Fs F, vh

Fig. 4.2 Virtual work for a system of forces acting on a particle.
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forces, F, in the direction of Ay, i.e.

-
Wr = Ay Z Fj cos 6 = AyR cos g 4.5)

k=1
If the particle, A, is in equilibrium under the action of the forces, Fy, Fa, ..., Fk,..., Fr,

the resultant, R, of the forces is zero. It follows from Eq. (4.5) that the virtual work
done by the forces, F, during the virtual displacement, Ay, is zero.
We can therefore state the principle of virtual work for a particle as follows:

If a particle is in equilibrium under the action of a number of forces the total work
done by the forces for a small arbitrary displacement of the particle is zero.

It is possible for the total work done by the forces to be zero even though the particle is
notin equilibrium if the virtual displacement is taken to be in a direction perpendicular to
their resultant, R. We cannot, therefore, state the converse of the above principle unless
we specify that the total work done must be zero for any arbitrary displacement. Thus:

A particle is in equilibrium under the action of a system of forces if the total work
done by the forces is zero for any virtual displacement of the particle.

Note that in the above, A, is a purely imaginary displacement and is not related in any
way to the possible displacement of the particle under the action of the forces, F.. A has
been introduced purely as a device for setting up the work—equilibrium relationship of
Eq. (4.5). The forces, F, therefore remain unchanged in magnitude and direction during
this imaginary displacement; this would not be the case if the displacement were real.

4.2.2 Principle of virtual work for a rigid body

Consider the rigid body shown in Fig. 4.3, which is acted upon by a system of external
forces, F1,F,,...,Fy,...,F,. These external forces will induce internal forces in the
body, which may be regarded as comprising an infinite number of particles; on adjacent
particles, such as Aj and Aj, these internal forces will be equal and opposite, in other
words self-equilibrating. Suppose now that the rigid body is given a small, imaginary,
that is virtual, displacement, A, (or a rotation or a combination of both), in some
specified direction. The external and internal forces then do virtual work and the total
virtual work done, Wi, is the sum of the virtual work, W, done by the external forces
and the virtual work, W;, done by the internal forces. Thus

Wi=We + W, (4.6)

Since the body is rigid, all the particles in the body move through the same displacement,
Ay, so that the virtual work done on all the particles is numerically the same. However,
for a pair of adjacent particles, such as A| and A; in Fig. 4.3, the self-equilibrating
forces are in opposite directions, which means that the work done on A is opposite in
sign to the work done on Aj. Therefore the sum of the virtual work done on A; and
Aj is zero. The argument can be extended to the infinite number of pairs of particles in
the body from which we conclude that the internal virtual work produced by a virtual
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Fa

Self-equilibrating internal forces

F, Fy

Fig. 4.3 Virtual work for a rigid body.

displacement in a rigid body is zero. Equation (4.6) then reduces to
Wy =W, 4.7)

Since the body is rigid and the internal virtual work is therefore zero, we may regard
the body as a large particle. It follows that if the body is in equilibrium under the action
of a set of forces, Fy, F»,...,Fg,...,Fy, the total virtual work done by the external
forces during an arbitrary virtual displacement of the body is zero.

Example 4.1

Calculate the support reactions in the simply supported beam shown in Fig. 4.4.

Only a vertical load is applied to the beam so that only vertical reactions, Ry and
Rc, are produced.

Suppose that the beam at C is given a small imaginary, that is a virtual, displacement,
Ay ¢, in the direction of Rc as shown in Fig. 4.4(b). Since we are concerned here solely
with the external forces acting on the beam we may regard the beam as a rigid body.
The beam therefore rotates about A so that C moves to C' and B moves to B’. From
similar triangles we see that

1
v,B / v,C I v,C

The total virtual work, Wi, done by all the forces acting on the beam is then given by
Wy = RCAV,C - WAV,B (11)

Note that the work done by the load, W, is negative since Ayp is in the opposite
direction to its line of action. Note also that the support reaction, Ra, does no work
since the beam only rotates about A. Now substituting for Ay g in Eq. (ii) from Eq. (i)
we have

a
Wi = RcAvyc — WZAV’C (ii1)
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(b)

(©)

Fig. 4.4 Use of the principle of virtual work to calculate support reactions.

Since the beam is in equilibrium, W; is zero from the principal of virtual work. Hence,
from Eq. (iii)

RcAyc — W%AV,C —0
which gives

R_a
c="r
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which is the result that would have been obtained from a consideration of the moment
equilibrium of the beam about A. Ra follows in a similar manner. Suppose now that
instead of the single displacement A, ¢ the complete beam is given a vertical virtual
displacement, Ay, together with a virtual rotation, 6,, about A as shown in Fig. 4.4(c).
The total virtual work, Wy, done by the forces acting on the beam is now given by

Wi = RaAy — W(Ay +aby) + Rc(Ay + L6y) =0 (iv)
since the beam is in equilibrium. Rearranging Eq. (iv)
(Ra +Rc — W)Ay + (RcL — Wa)by, =0 )
Equation (v) is valid for all values of A, and 6, so that
Ran+Rc—W=0 RcL—Wa=0

which are the equations of equilibrium we would have obtained by resolving forces
vertically and taking moments about A.

It is not being suggested here that the application of the principles of statics should
be abandoned in favour of the principle of virtual work. The purpose of Example 4.1
is to illustrate the application of a virtual displacement and the manner in which the
principle is used.

4.2.3 Virtual work in a deformable body

In structural analysis we are not generally concerned with forces acting on a rigid body.
Structures and structural members deform under load, which means that if we assign
a virtual displacement to a particular point in a structure, not all points in the structure
will suffer the same virtual displacement as would be the case if the structure were rigid.
This means that the virtual work produced by the internal forces is not zero as it is in
the rigid body case, since the virtual work produced by the self-equilibrating forces on
adjacent particles does not cancel out. The total virtual work produced by applying a
virtual displacement to a deformable body acted upon by a system of external forces is
therefore given by Eq. (4.6).

If the body is in equilibrium under the action of the external force system then every
particle in the body is also in equilibrium. Therefore, from the principle of virtual work,
the virtual work done by the forces acting on the particle is zero irrespective of whether
the forces are external or internal. It follows that, since the virtual work is zero for all
particles in the body, it is zero for the complete body and Eq. (4.6) becomes

We+ Wi =0 (4.8)

Note that in the above argument only the conditions of equilibrium and the concept of
work are employed. Equation (4.8) therefore does not require the deformable body to
be linearly elastic (i.e. it need not obey Hooke’s law) so that the principle of virtual work
may be applied to any body or structure that is rigid, elastic or plastic. The principle
does require that displacements, whether real or imaginary, must be small, so that we
may assume that external and internal forces are unchanged in magnitude and direction
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during the displacements. In addition the virtual displacements must be compatible
with the geometry of the structure and the constraints that are applied, such as those
at a support. The exception is the situation we have in Example 4.1 where we apply
a virtual displacement at a support. This approach is valid since we include the work
done by the support reactions in the total virtual work equation.

4.2.4 Work done by internal force systems

The calculation of the work done by an external force is straightforward in that it is the
product of the force and the displacement of its point of application in its own line of
action (Eqgs (4.1), (4.2) or (4.3)) whereas the calculation of the work done by an internal
force system during a displacement is much more complicated. Generally no matter
how complex a loading system is, it may be simplified to a combination of up to four
load types: axial load, shear force, bending moment and torsion; these in turn produce
corresponding internal force systems. We shall now consider the work done by these
internal force systems during arbitrary virtual displacements.

Axial force

Consider the elemental length, 8x, of a structural member as shown in Fig. 4.5 and
suppose that it is subjected to a positive internal force system comprising a normal force
(i.e. axial force), N, a shear force, S, a bending moment, M and a torque, T, produced
by some external loading system acting on the structure of which the member is part.
The stress distributions corresponding to these internal forces are related to an axis

Cross-sectional
area, A

Vs

Fig. 4.5 Virtual work due to internal force system.
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system whose origin coincides with the centroid of area of the cross-section. We shall,
in fact, be using these stress distributions in the derivation of expressions for internal
virtual work in linearly elastic structures so that it is logical to assume the same origin
of axes here; we shall also assume that the y axis is an axis of symmetry. Initially we
shall consider the normal force, N.

The direct stress, o, at any point in the cross-section of the member is given by
o = N/A. Therefore the normal force on the element 3A at the point (z, y) is

N
3N = 03A = —3A
A

Suppose now that the structure is given an arbitrary virtual displacement which produces
a virtual axial strain, €y, in the element. The internal virtual work, 8wj,y, done by the
axial force on the elemental length of the member is given by

N
dwin = f —dAsy dx
A A

which, since [,dA = A, reduces to
dwin = Ney dx 4.9)

In other words, the virtual work done by N is the product of N and the virtual axial
displacement of the element of the member. For a member of length L, the virtual work,
wi N, done during the arbitrary virtual strain is then

Win = / Ne, dx (4.10)
L

For a structure comprising a number of members, the total internal virtual work, W, v,
done by axial force is the sum of the virtual work of each of the members. Therefore

Wiy = Z/Nev dx (4.11)
L

Note that in the derivation of Eq. (4.11) we have made no assumption regarding the
material properties of the structure so that the relationship holds for non-elastic as well
as elastic materials. However, for a linearly elastic material, i.e. one that obeys Hooke’s
law, we can express the virtual strain in terms of an equivalent virtual normal force, i.e.

oy Ny

8V = ——= —

E EA

Therefore, if we designate the actual normal force in a member by N, Eq. (4.11) may
be expressed in the form

NaNy
iN = dx 4.12
win =Y i (4.12)
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Shear force

The shear force, S, acting on the member section in Fig. 4.5 produces a distribution of
vertical shear stress which depends upon the geometry of the cross-section. However,
since the element, 3A, is infinitesimally small, we may regard the shear stress, t, as
constant over the element. The shear force, 8S, on the element is then

88 = T3A (4.13)

Suppose that the structure is given an arbitrary virtual displacement which produces a
virtual shear strain, yy, at the element. This shear strain represents the angular rotation
in a vertical plane of the element 8A x dx relative to the longitudinal centroidal axis
of the member. The vertical displacement at the section being considered is therefore
yy 8x. The internal virtual work, 8wj s, done by the shear force, S, on the elemental
length of the member is given by

dwi s = / TdAyy 8x
A

A uniform shear stress through the cross section of a beam may be assumed if we allow
for the actual variation by including a form factor, B.! The expression for the internal
virtual work in the member may then be written

S
Swis = / B <Z> dAyy dx
A

dwis = BSyy dx 4.14)

or

Hence the virtual work done by the shear force during the arbitrary virtual strain in a
member of length L is

wis = ,3/ Syy dx 4.15)
L

For a linearly elastic member, as in the case of axial force, we may express the virtual
shear strain, yy, in terms of an equivalent virtual shear force, Sy, i.e.

s Sy
WTG T ca
so that from Eq. (4.15)
SAS
wls—ﬁ/ A% (4.16)

For a structure comprising a number of linearly elastic members the total internal work,
Wi.s, done by the shear forces is

SaSy
WlS— A

4.17)
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Bending moment

The bending moment, M, acting on the member section in Fig. 4.5 produces a distri-
bution of direct stress, o, through the depth of the member cross-section. The normal
force on the element, 8A, corresponding to this stress is therefore o 8A. Again we shall
suppose that the structure is given a small arbitrary virtual displacement which pro-
duces a virtual direct strain, €y, in the element 3A x 8x. Thus the virtual work done by
the normal force acting on the element 3A is o 8A ¢y 8x. Hence, integrating over the
complete cross-section of the member we obtain the internal virtual work, dw; s, done
by the bending moment, M, on the elemental length of member, i.e.

dwim = / odAgy &x 4.18)
A
The virtual strain, €y, in the element 8A x 8x is, from Eq. (16.2), given by
Ey = R_V

where Ry is the radius of curvature of the member produced by the virtual displacement.
Thus, substituting for ¢, in Eq. (4.18), we obtain

dwim = / aldA dx
A RV
or, since oy 8A is the moment of the normal force on the element, 3A, about the z axis
3 M 3
Wiy = — &x
i,M RV

Therefore, for amember of length L, the internal virtual work done by an actual bending
moment, My, is given by

M
Wim = / A dx (4.19)
L Rv

In the derivation of Eq. (4.19) no specific stress—strain relationship has been assumed,
so that it is applicable to a non-linear system. For the particular case of a linearly elastic
system, the virtual curvature 1/R, may be expressed in terms of an equivalent virtual
bending moment, My, using the relationship of Eq. (16.20), i.e.
1 M,

R, EI

Substituting for 1/Ry in Eq. (4.19) we have
MaM,

. EI

so that for a structure comprising a number of members the total internal virtual work,
Wi.m, produced by bending is

Wim = (4.20)

MaM,
Wim = dx 4.21
= = (4.21)
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Torsion

The internal virtual work, w; 7, due to torsion in the particular case of a linearly elastic
circular section bar may be found in a similar manner and is given by

TAT
WiTzf ALY g (4.22)
' L Gl

in which I, is the polar second moment of area of the cross-section of the bar (see
Example 3.1). For beams of non-circular cross-section, I, is replaced by a torsion
constant, J, which, for many practical beam sections is determined empirically.

Hinges

In some cases it is convenient to impose a virtual rotation, 6y, at some point in a
structural member where, say, the actual bending moment is M. The internal virtual
work done by M is then M6, (see Eq. (4.3)); physically this situation is equivalent
to inserting a hinge at the point.

Sign of internal virtual work
So far we have derived expressions for internal work without considering whether it is
positive or negative in relation to external virtual work.

Suppose that the structural member, AB, in Fig. 4.6(a) is, say, a member of a truss and
that it is in equilibrium under the action of two externally applied axial tensile loads,
P; clearly the internal axial, that is normal, force at any section of the member is P.
Suppose now that the member is given a virtual extension, 3y, such that B moves to B'.
Then the virtual work done by the applied load, P, is positive since the displacement,
dy, 1s in the same direction as its line of action. However, the virtual work done by
the internal force, N (=P), is negative since the displacement of B is in the opposite
direction to its line of action; in other words work is done on the member. Thus, from
Eq. (4.8), we see that in this case

We =W; (4.23)
A B
Pe—y O—> ~—O—>p
N=P
(@)
A B B’
P<—-) > - O----- O —pP
N=P

(b)

Fig. 4.6 Sign of the internal virtual work in an axially loaded member.
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Equation (4.23) would apply if the virtual displacement had been a contraction and not
an extension, in which case the signs of the external and internal virtual work in Eq.
(4.8) would have been reversed. Clearly the above applies equally if P is a compressive
load. The above arguments may be extended to structural members subjected to shear,
bending and torsional loads, so that Eq. (4.23) is generally applicable.

4.2.5 Virtual work due to external force systems

So far in our discussion we have only considered the virtual work produced by externally
applied concentrated loads. For completeness we must also consider the virtual work
produced by moments, torques and distributed loads.

In Fig. 4.7 a structural member carries a distributed load, w(x), and at a particular
point a concentrated load, W, a moment, M and a torque, 7. Suppose that at the point
a virtual displacement is imposed that has translational components, Ay, and Ay ,,
parallel to the y and x axes, respectively, and rotational components, 6, and ¢y, in the
yx and zy planes, respectively.

If we consider a small element, 8x, of the member at the point, the distributed load
may be regarded as constant over the length 8x and acting, in effect, as a concentrated
load w(x)3x. The virtual work, we, done by the complete external force system is
therefore given by

we = WAy + PAy + MOy +Toy + / w(x)Ay,y dx
L

For a structure comprising a number of load positions, the total external virtual work
done is then

We=)_ [WAv,y +PAy, + MO, + T, + / W) Ay dx} (4.24)
L

In Eq. (4.24) there need not be a complete set of external loads applied at every loading
point so, in fact, the summation is for the appropriate number of loads. Further, the
virtual displacements in the above are related to forces and moments applied in a vertical
plane. We could, of course, have forces and moments and components of the virtual

7 "

.. w(x)
4

Fig. 4.7 Virtual work due to externally applied loads.

99



100  Virtual work and energy methods

displacement in a horizontal plane, in which case Eq. (4.24) would be extended to
include their contribution.

The internal virtual work equivalent of Eq. (4.24) for a linear system is, from Eqs
(4.12), (4.17), (4.21) and (4.22)

WiZZI: NAN

L

SAS, MAM. T
A Avdx+/Avdx + M6,
. El L GJ

(4.25)

in which the last term on the right-hand side is the virtual work produced by an actual
internal moment at a hinge (see above). Note that the summation in Eq. (4.25) is taken
over all the members of the structure.

4.2.6 Use of virtual force systems

So far, in all the structural systems we have considered, virtual work has been produced
by actual forces moving through imposed virtual displacements. However, the actual
forces are not related to the virtual displacements in any way since, as we have seen, the
magnitudes and directions of the actual forces are unchanged by the virtual displace-
ments so long as the displacements are small. Thus the principle of virtual work applies
for any set of forces in equilibrium and any set of displacements. Equally, therefore,
we could specify that the forces are a set of virtual forces in equilibrium and that the
displacements are actual displacements. Therefore, instead of relating actual external
and internal force systems through virtual displacements, we can relate actual external
and internal displacements through virtual forces.

If we apply a virtual force system to a deformable body it will induce an internal
virtual force system which will move through the actual displacements; internal virtual
work will therefore be produced. In this case, for example, Eq. (4.10) becomes

WiN = /NVEAdx
L

in which Ny is the internal virtual normal force and €4 is the actual strain. Then, for
a linear system, in which the actual internal normal force is Na, €A = Na/EA, so that
for a structure comprising a number of members the total internal virtual work due to
a virtual normal force is

NyNa
Wi’N:Z | TEA dx

which is identical to Eq. (4.12). Equations (4.17), (4.21) and (4.22) may be shown to
apply to virtual force systems in a similar manner.

4.3 Applications of the principle of virtual work

We have now seen that the principle of virtual work may be used either in the form
of imposed virtual displacements or in the form of imposed virtual forces. Generally



4.3 Applications of the principle of virtual work

the former approach, as we saw in Example 4.1, is used to determine forces, while the
latter is used to obtain displacements.

For statically determinate structures the use of virtual displacements to determine
force systems is a relatively trivial use of the principle although problems of this type
provide a useful illustration of the method. The real power of this approach lies in its
application to the solution of statically indeterminate structures. However, the use of
virtual forces is particularly useful in determining actual displacements of structures.
We shall illustrate both approaches by examples.

Example 4.2
Determine the bending moment at the point B in the simply supported beam ABC shown
in Fig. 4.8(a).

We determined the support reactions for this particular beam in Example 4.1. In this
example, however, we are interested in the actual internal moment, Mg, at the point of
application of the load. We must therefore impose a virtual displacement which will
relate the internal moment at B to the applied load and which will exclude other unknown
external forces such as the support reactions, and unknown internal force systems such
as the bending moment distribution along the length of the beam. Therefore, if we
imagine that the beam is hinged at B and that the lengths AB and BC are rigid, a virtual
displacement, Ay, at B will result in the displaced shape shown in Fig. 4.8(b).

Note that the support reactions at A and C do no work and that the internal moments
in AB and BC do no work because AB and BC are rigid links. From Fig. 4.8(b)

Ayp = ap = ba (i)
Hence
%p
o= -
b

Fig. 4.8 Determination of bending moment at a point in the beam of Example 4.2 using virtual work.
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102  Virtual work and energy methods

and the angle of rotation of BC relative to AB is then
a L ..
op = p+a=p(1+7) =78 (i)

Now equating the external virtual work done by W to the internal virtual work done by
Mg (see Eq. (4.23)) we have

WAyB = Mp6s (ii1)
Substituting in Eq. (iii) for Ay g from Eq. (i) and for g from Eq. (ii) we have

L
Wap = Mp Z,B
which gives
_ Wab
PTL

which is the result we would have obtained by calculating the moment of Rc (=Wa/L
from Example 4.1) about B.

Example 4.3

Determine the force in the member AB in the truss shown in Fig. 4.9(a).

Ac
C 30kN |
—_—

R c ..C
k ’
4m . _‘_,"
B""' i
A | /
D 10kN V'BI ! S~ |
B - ‘: B (a =D
4m
A OE Y A oE
W/ M/ 77, W/
3m

(a) (b)

Fig. 4.9 Determination of the internal force in a member of a truss using virtual work.



4.3 Applications of the principle of virtual work

We are required to calculate the force in the member AB, so that again we need to
relate this internal force to the externally applied loads without involving the internal
forces in the remaining members of the truss. We therefore impose a virtual extension,
Ay B, at B in the member AB, such that B moves to B’. If we assume that the remaining
members are rigid, the forces in them will do no work. Further, the triangle BCD
will rotate as a rigid body about D to B'C’D as shown in Fig. 4.9(b). The horizontal
displacement of C, Ac, is then given by

Ac = 4a
while
Ayp = 3a
Hence
4Ay B .
Ac = 3“ (i)

Equating the external virtual work done by the 30 kN load to the internal virtual work
done by the force, Fa, in the member, AB, we have (see Eq. (4.23) and Fig. 4.6)

30Ac = FpaAvp (i)

Substituting for AC from Eq. (i) in Eq. (i),
4
30 x §AV,B = FBAAV,B

Whence
Fga = +40kN (i.e. Fga is tensile)

In the above we are, in effect, assigning a positive (i.e. tensile) sign to Fga by imposing
a virtual extension on the member AB.

The actual sign of Fpa is then governed by the sign of the external virtual work.
Thus, if the 30 kN load had been in the opposite direction to Ac the external work done
would have been negative, so that Fga would be negative and therefore compressive.
This situation can be verified by inspection. Alternatively, for the loading as shown
in Fig. 4.9(a), a contraction in AB would have implied that Fg4 was compressive. In
this case DC would have rotated in an anticlockwise sense, Ac would have been in
the opposite direction to the 30 kN load so that the external virtual work done would
be negative, resulting in a negative value for the compressive force Fpa; Fga would
therefore be tensile as before. Note also that the 10 kN load at D does no work since D
remains undisplaced.

We shall now consider problems involving the use of virtual forces. Generally we
shall require the displacement of a particular point in a structure, so that if we apply a
virtual force to the structure at the point and in the direction of the required displacement
the external virtual work done will be the product of the virtual force and the actual
displacement, which may then be equated to the internal virtual work produced by the
internal virtual force system moving through actual displacements. Since the choice of
the virtual force is arbitrary, we may give it any convenient value; the simplest type of
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104  Virtual work and energy methods

virtual force is therefore a unit load and the method then becomes the unit load method
(see also Section 5.5).

Example 4.4
Determine the vertical deflection of the free end of the cantilever beam shown in
Fig. 4.10(a).

Let us suppose that the actual deflection of the cantilever at B produced by the
uniformly distributed load is vp and that a vertically downward virtual unit load was
applied at B before the actual deflection took place. The external virtual work done by
the unit load is, from Fig. 4.10(b), 1ug. The deflection, vg, is assumed to be caused
by bending only, i.e. we are ignoring any deflections due to shear. The internal virtual
work is given by Eq. (4.21) which, since only one member is involved, becomes

L
MM
Wi,M=/ A de
o EI

@

The virtual moments, My, are produced by a unit load so that we shall replace M, by
M. Then

| dx (ii)

At any section of the beam a distance x from the built-in end

M = —%(L 0 My=—1(L—x)

7 w
Y v Jrj Y V¥ vy
A ‘g B
o x ) J
>
(a)

7 1 (Unit load)
. -
_N ug

B T

(b)

Fig. 4.10 Deflection of the free end of a cantilever beam using the unit load method.
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Substituting for M4 and M| in Eq. (ii) and equating the external virtual work done by
the unit load to the internal virtual work we have

L w
1UB:/ — (L —x)3dx
o 2EI

which gives

w [1 4 L
B =—=|-(L—x)
2FEI | 4 0
so that
_ wL?*
VB = QK1

Note that vp is in fact negative but the positive sign here indicates that it is in the same
direction as the unit load.

Example 4.5
Determine the rotation, i.e. the slope, of the beam ABC shown in Fig. 4.11(a) at A.

w
A B C

é; = %
Z 2

XL ‘ L2
!

(a)

Unit moment

(b)

Fig. 4.11 Determination of the rotation of a simply supported beam at a support using the unit load method.
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106  Virtual work and energy methods
The actual rotation of the beam at A produced by the actual concentrated load, W, is
6. Let us suppose that a virtual unit moment is applied at A before the actual rotation
takes place, as shown in Fig. 4.11(b). The virtual unit moment induces virtual support

reactions of Ry o (=1/L) acting downwards and Ry c (=1/L) acting upwards. The actual
internal bending moments are

w
MA=+?x 0<x<L/2
w
M :+?(L_x) L/2<x<L
The internal virtual bending moment is
1
My=1——-x 0<x<L
L

The external virtual work done is 16 (the virtual support reactions do no work as there
is no vertical displacement of the beam at the supports) and the internal virtual work
done is given by Eq. (4.21). Hence

o= [ [ (- Dae [ / (T

Simplifying Eq. (i) we have

W L2 ) L )
O = —— Lx — x7)dx L — x)°dx ii
A 2EIL[/O (Lx — x7) +L/2( x) } (i)
Hence
w x2 X3 Li2 1 L
Or=—1{|L=—=| —=[L-x°
A 2EIL{|: 2 3]0 3=,
from which
WL?
Op = ——
A~ 16EI
Example 4.6

Calculate the vertical deflection of the joint B and the horizontal movement of the
support D in the truss shown in Fig. 4.12(a). The cross-sectional area of each member is
1800 mm? and Young’s modulus, E, for the material of the members is 200 000 N/mm?.

The virtual force systems, i.e. unit loads, required to determine the vertical deflection
of B and the horizontal deflection of D are shown in Fig. 4.12(b) and (c), respectively.
Therefore, if the actual vertical deflection at B is 3g v and the horizontal deflection at D
is 8p p the external virtual work done by the unit loads is 13g y and 18p p, respectively.
The internal actual and virtual force systems comprise axial forces in all the members.



4.3 Applications of the principle of virtual work

40 kN
Ey F
4m
A D
é; B c
g 1100 kN d
4m 4m 4m
(a)
E F E F

Fig. 4.12 Deflection of a truss using the unit load method.

These axial forces are constant along the length of each member so that for a truss
comprising n members, Eq. (4.12) reduces to

n
FajFyjL; )
Wiy = Z W (1)
j=1
in which Fa ;j and Fy ; are the actual and virtual forces in the jth member which has a
length L;, an area of cross-section A; and a Young’s modulus E;.
Since the forces Fy ; are due to a unit load, we shall write Eq. (i) in the form

n

Fa jF1;L; ..
Win =) ————— (i)
j; E;A;

Also, in this particular example, the area of cross-section, A, and Young’s modulus, E,
are the same for all members so that it is sufficient to calculate Z]'.’:l Fa jF jLj and
then divide by EA to obtain W; .

The forces in the members, whether actual or virtual, may be calculated by the
method of joints.> Note that the support reactions corresponding to the three sets of
applied loads (one actual and two virtual) must be calculated before the internal force
systems can be determined. However, in Fig. 4.12(c), it is clear from inspection that
F1.aB = F18c = F1,cp = +1 while the forces in all other members are zero. The calcu-
lations are presented in Table 4.1; note that positive signs indicate tension and negative
signs compression.
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108 Virtual work and energy methods

Table 4.1
Member L (m) Fa (kN) Fip Fip FaF1,8L (kN m) FaF1pL (kNm)
AE 5.7 —84.9 —0.94 0 +451.4 0
AB 4.0 +60.0 +0.67 +1.0 +160.8 +240.0
EF 4.0 —60.0 —0.67 0 +160.8 0
EB 4.0 +20.0 +0.67 0 +53.6 0
BF 5.7 —28.3 +0.47 0 —75.2 0
BC 4.0 +80.0 +0.33 +1.0 +105.6 +320.0
CD 4.0 +80.0 +0.33 +1.0 +105.6 +320.0
CF 4.0 +100.0 0 0 0 0
DF 5.7 —113.1 —0.47 0 +301.0 0
> =+41263.6 > =+4880.0

Thus equating internal and external virtual work done (Eq. (4.23)) we have

1263.6 x 10°
gy = —————
’ 200000 x 1800
whence
dp,y = 3.5l mm
and
880 x 10°
Bph =
’ 200000 x 1800
which gives
3ph = 2.44mm

Both deflections are positive which indicates that the deflections are in the directions
of the applied unit loads. Note that in the above it is unnecessary to specify units for
the unit load since the unit load appears, in effect, on both sides of the virtual work
equation (the internal F| forces are directly proportional to the unit load).

References

1 Megson, T. H. G., Structural and Stress Analysis, 2nd edition, Elsevier, Oxford, 2005.

Problems

P.4.1 Use the principle of virtual work to determine the support reactions in the
beam ABCD shown in Fig. P4.1.

Ans. Ra =125W Rp = 1.75W.



Problems

L2 L/a L/a

Fig. P.4.1

P.4.2 Find the support reactions in the beam ABC shown in Fig. P.4.2 using the
principle of virtual work.

Ans. Rpa = (W +2wL)/4 R.= (3w +2wL)/4.
w
w
P 280 20 200 700K 200 20 200K 2 2 2 2 P
B
Z;;;;;/ /
. 3L/4 o va
Fig. P.4.2

P.4.3 Determine the reactions at the built-in end of the cantilever beam ABC shown
in Fig. P.4.3 using the principle of virtual work.

Ans. Ra =3W Mx =2.5WL.
w 2W
7 A lB
C
A
- L2 | L2 N
i
Fig. P.4.3

P.4.4 Find the bending moment at the three-quarter-span point in the beam shown
in Fig. P.4.4. Use the principle of virtual work.
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Ans.  3wL?/32.

Y_Y Y Y Y VY Y YYYY

Z 7

A
4

Fig. P.4.4

P4.5 Calculate the forces in the members FG, GD and CD of the truss shown in
Fig. P.4.5 using the principle of virtual work. All horizontal and vertical members are
1 m long.

Ans. FG=+20kN GD=+4283kN CD=—-20kN.

10 kN E F G
—_—

Fig. P4.5

P.4.6 Use the principle of virtual work to calculate the vertical displacements at
the quarter- and mid-span points in the beam shown in Fig. P.4.6.

Ans.  5TwL*/6144EI 5wL*/384EI (both downwards).

Y Y Y Y Y Y VY VY Y VY
7 e /

A

-

Fig. P.4.6



Energy methods

In Chapter 2 we have seen that the elasticity method of structural analysis embodies the
determination of stresses and/or displacements by employing equations of equilibrium
and compatibility in conjunction with the relevant force—displacement or stress—strain
relationships. In addition, in Chapter 4, we investigated the use of virtual work in calcu-
lating forces, reactions and displacements in structural systems. A powerful alternative
but equally fundamental approach is the use of energy methods. These, while providing
exact solutions for many structural problems, find their greatest use in the rapid approx-
imate solution of problems for which exact solutions do not exist. Also, many structures
which are statically indeterminate, i.e. they cannot be analysed by the application of
the equations of statical equilibrium alone, may be conveniently analysed using an
energy approach. Further, energy methods provide comparatively simple solutions for
deflection problems which are not readily solved by more elementary means.

Generally, as we shall see, modern analysis1 uses the methods of fotal complemen-
tary energy and total potential energy. Either method may be employed to solve a
particular problem, although as a general rule deflections are more easily found using
complementary energy, and forces by potential energy.

Although energy methods are applicable to a wide range of structural problems
and may even be used as indirect methods of forming equations of equilibrium or
compatibility,> we shall be concerned in this chapter with the solution of deflection
problems and the analysis of statically indeterminate structures. We shall also include
some methods restricted to the solution of linear systems, i.e. the unit load method, the
principle of superposition and the reciprocal theorem.

5.1 Strain energy and complementary energy

Figure 5.1(a) shows a structural member subjected to a steadily increasing load P. As
the member extends, the load P does work and from the law of conservation of energy
this work is stored in the member as strain energy. A typical load—deflection curve for a
member possessing non-linear elastic characteristics is shown in Fig. 5.1(b). The strain
energy U produced by a load P and corresponding extension y is then

U= /dey 5.1)
0
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RN Load Complementary energy C
p A - B
56f
l ? T Strain energy U
| y
L
T D

P O 8y-»“<— Y Deflection

(@) (b)

Fig. 5.1 (a) Strain energy of a member subjected to simple tension; (b) load—deflection curve for a nonlinearly elastic
member.

and is clearly represented by the area OBD under the load—deflection curve. Engesser
(1889) called the area OBA above the curve the complementary energy C, and from
Fig. 5.1(b)

P
C=/ ydP (5.2)
0

Complementary energy, as opposed to strain energy, has no physical meaning, being
purely a convenient mathematical quantity. However, it is possible to show that com-
plementary energy obeys the law of conservation of energy in the type of situation
usually arising in engineering structures, so that its use as an energy method is valid.
Differentiation of Eqs (5.1) and (5.2) with respect to y and P, respectively gives

dU dc
— P —

dy 0 oap 7

Bearing these relationships in mind we can now consider the interchangeability of strain
and complementary energy. Suppose that the curve of Fig. 5.1(b) is represented by the
function

P = by"

where the coefficient » and exponent n are constants. Then

y 1 [P/p\'/"
U:/de:—/ (—) dp
0 nJo \b

Hence

dU du 1 /P\'/" 1
e Ly .



5.2 The principle of the stationary value of the total complementary energy

Load |
p A B
C
U
D
© Y Deflection
Fig. 5.2 Load—deflection curve for a linearly elastic member.
dc dc bny" P 5.4
—_— = — =bny =n .
dpP Y dy Y
Whenn=1
du dcC
o oa
Yoo (5.5)
dU _ dc _
P~ ap ”

and the strain and complementary energies are completely interchangeable. Such a
condition is found in a linearly elastic member; its related load—deflection curve being
that shown in Fig. 5.2. Clearly, area OBD(U) is equal to area OBA(C).

It will be observed that the latter of Eqs (5.5) is in the form of what is commonly
known as Castigliano’s first theorem, in which the differential of the strain energy U
of a structure with respect to a load is equated to the deflection of the load. To be
mathematically correct, however, it is the differential of the complementary energy C
which should be equated to deflection (compare Eqs (5.3) and (5.4)).

5.2 The principle of the stationary value of the
total complementary energy

Consider an elastic system in equilibrium supporting forces P1, P3, ..., P, which pro-
duce real corresponding displacements Ay, Aj,..., A,. If we impose virtual forces
8Py, 8P2,...,8P, on the system acting through the real displacements then the total
virtual work done by the system is (see Chapter 4)

n
—| ydP+) AP
v/\:o] Z T

r=1

The first term in the above expression is the negative virtual work done by the particles
in the elastic body, while the second term represents the virtual work of the externally
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applied virtual forces. From the principle of virtual work

- / ydP+ Y A8P, =0 (5.6)
vol

r=1

Comparing Eq. (5.6) with Eq. (5.2) we see that each term represents an increment in
complementary energy; the first, of the internal forces, the second, of the external loads.
Equation (5.6) may therefore be rewritten

3(Ci+Ce) =0 5.7
where
P n
Ci = / / ydP and Co=—) AP, (5.8)
vol J0O =1
We shall now call the quantity (C; 4+ C.) the total complementary energy C of the
system.

The displacements specified in Eq. (5.6) are real displacements of a continuous
elastic body; they therefore obey the condition of compatibility of displacement so that
Egs (5.6) and (5.7) are equations of geometrical compatibility. The principle of the
stationary value of the total complementary energy may then be stated as:

For an elastic body in equilibrium under the action of applied forces the true internal
forces (or stresses) and reactions are those for which the total complementary energy
has a stationary value.

In other words the true internal forces (or stresses) and reactions are those which
satisfy the condition of compatibility of displacement. This property of the total com-
plementary energy of an elastic system is particularly useful in the solution of statically
indeterminate structures, in which an infinite number of stress distributions and reactive
forces may be found to satisfy the requirements of equilibrium.

5.3 Application to deflection problems

Generally, deflection problems are most readily solved by the complementary energy
approach, although for linearly elastic systems there is no difference between the
methods of complementary and potential energy since, as we have seen, complemen-
tary and strain energy then become completely interchangeable. We shall illustrate the
method by reference to the deflections of frames and beams which may or may not
possess linear elasticity.

Let us suppose that we require to find the deflection A; of the load P; in the sim-
ple pin-jointed framework consisting, say, of k members and supporting loads Pq,
Py, ..., Py, asshown in Fig. 5.3. From Eqgs (5.8) the total complementary energy of the
framework is given by

k F; n
C= Z/O A dF; — Z AP, (5.9)
i=1 r=1



5.3 Application to deflection problems

Fig. 5.3 Determination of the deflection of a point on a framework by the method of complementary energy.

where A; is the extension of the ith member, F; the force in the ith member and A,
the corresponding displacement of the rth load P,. From the principle of the stationary
value of the total complementary energy

— —Ar=0 5.10
8P2 121: 8P2 = (5.10)
from which
Ay = S Ai adl (5.11)
2T L p, '

i=1
Equation (5.10) is seen to be identical to the principle of virtual forces in which virtual
forces §F and 8P act through real displacements A and A. Clearly the partial derivatives
with respect to P, of the constant loads Py, P3,..., P, vanish, leaving the required
deflection A, as the unknown. At this stage, before A, can be evaluated, the load—

displacement characteristics of the members must be known. For linear elasticity
FiL;

A= =

AiE;

where L;, A; and E; are the length, cross-sectional area and modulus of elasticity of the
ith member. On the other hand, if the load—displacement relationship is of a non-linear
form, say

Fi = b(A)*
in which b and ¢ are known, then Eq. (5.11) becomes
k 1/c
F; oF;
Ay = — —
=2(3)
The computation of A, is best accomplished in tabular form, but before the procedure
is illustrated by an example some aspects of the solution merit discussion.
We note that the support reactions do not appear in Eq. (5.9). This convenient absence

derives from the fact that the displacements Ay, As,..., A, are the real displace-
ments of the frame and fulfil the conditions of geometrical compatibility and boundary
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restraint. The complementary energy of the reaction at A and the vertical reaction at
B is therefore zero, since both of their corresponding displacements are zero. If we
examine Eq. (5.11) we note that A; is the extension of the ith member of the framework
due to the applied loads Py, P3, ..., P,. Therefore, the loads F; in the substitution for
X; in Eq. (5.11) are those corresponding to the loads Py, Py, ..., P,. The term 0F;/0P;
in Eq. (5.11) represents the rate of change of F; with P, and is calculated by applying
the load P» to the unloaded frame and determining the corresponding member loads in
terms of P,. This procedure indicates a method for obtaining the displacement of either
a point on the frame in a direction not coincident with the line of action of a load or,
in fact, a point such as C which carries no load at all. We place at the point and in the
required direction a fictitious or dummy load, say Ps, the original loads being removed.
The loads in the members due to P are then calculated and 0F/0P¢ obtained for each
member. Substitution in Eq. (5.11) produces the required deflection.

It must be pointed out that it is not absolutely necessary to remove the actual loads
during the application of P¢. The force in each member would then be calculated in
terms of the actual loading and Ps. F; follows by substituting P =0 and oF;/0Ps is
found by differentiation with respect to Pr. Obviously the two approaches yield the
same expressions for F; and dF;/dPs, although the latter is arithmetically clumsier.

Example 5.1
Calculate the vertical deflection of the point B and the horizontal movement of D in the
pin-jointed framework shown in Fig. 5.4(a). All members of the framework are linearly

40 000 N
. F E F
£
o
8 .
< A D A D
B C B! C
|/ 00 000 N y T Y Ps,¢ 7
|
| 4 000mm | 4000 mm | 4000 mm |

(a) (b)

A D PD,f

_———

(c)

Fig. 5.4 (a) Actual loading of framework; (b) determination of vertical deflection of B; (c) determination of horizontal
deflection of D.



5.3 Application to deflection problems

elastic and have cross-sectional areas of 1800 mm?. E for the material of the members
is 200 000 N/mm?.

The members of the framework are linearly elastic so that Eq. (5.11) may be written
K FiL; OF;

A=Y L i
£ A(E; OP ®

or, since each member has the same cross-sectional area and modulus of elasticity

k
1 oF; .
A:E EIFiLiB_P (ll)
=

The solution is completed in Table 5.1, in which F are the member forces due to the

actual loading of Fig. 5.4(a), F s are the member forces due to the fictitious load Pg ¢

in Fig. 5.4(b) and Fp r are the forces in the members produced by the fictitious load Pp ¢

in Fig. 5.4(c). We take tensile forces as positive and compressive forces as negative.
The vertical deflection of B is

1268 x 10°
ABy = —————— = 3.52mm
’ 1800 x 200 000
and the horizontal movement of D is
880 x 100
Abh X = 2.44mm

0= 1800 x 200000

which agree with the virtual work solution (Example 4.6).

The positive values of Ap y and Apj, indicate that the deflections are in the directions
of Pt and Pp .

The analysis of beam deflection problems by complementary energy is similar to
that of pin-jointed frameworks, except that we assume initially that displacements are
caused primarily by bending action. Shear force effects are discussed later in the chapter.
Figure 5.5 shows a tip loaded cantilever of uniform cross-section and length L. The tip
load P produces a vertical deflection A, which we require to find.

Table 5.1

) @ ©) @ ® ® @ x 109 ® x 100
Member L (mm) F(N) Fpr (N) OFp/oPps Fpg (N) 0Fpg/dPps FLOFps/oPps FLOFpg/dPps
AE 4000,/2 —60000/2 —2/2Pgs/3 —242/3 O 0 320,/2 0

EF 4000 —60000 —2Ppt/3 —2/3 0 0 160 0

FD 4000,/2 —80000,2 —./2Pps/3 —/2/3 0 0 640./2/3 0

DC 4000 80000 Pg /3 1/3 Ppg 1 320/3 320

CB 4000 80000 Py /3 1/3 Ppg 1 320/3 320

BA 4000 60000 2Pg /3 2/3 Ppy 1 480/3 240

EB 4000 20000 2P /3 2/3 0 0 160/3 0

FB 40002 —20000/2 J2Pge/3 /213 0 0 —160,/2/3 0

FC 4000 100000 0 0 0 0 0 0

Y =1268 Y =880
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Radius of curvature 1
of beam at sectionz K//
|

y ~36
Centre of curvature at section z

Fig. 5.5 Beam deflection by the method of complementary energy.
The total complementary energy C of the system is given by
M
C= // dodM — PA, (5.12)
LJO

in which féw dfdM is the complementary energy of an element 6z of the beam. This
element subtends an angle &6 at its centre of curvature due to the application of the bend-
ing moment M. From the principle of the stationary value of the total complementary

energy
aC dM
== / do— — Ay =0
op ), dP
or
dm
A, = / oM (5.13)
. dP

Equation (5.13) is applicable to either a non-linear or linearly elastic beam. To proceed
further, therefore, we require the load—displacement (M—6) and bending moment—
load (M—P) relationships. It is immaterial for the purposes of this illustrative problem
whether the system is linear or non-linear, since the mechanics of the solution are the
same in either case. We choose therefore a linear M—6 relationship as this is the case
in the majority of the problems we consider. Hence from Fig. 5.5

80 = Kéz
or

M 1 EI
do = —dz — = — from simple beam theory
El K M

where the product modulus of elasticity x second moment of area of the beam cross
section is known as the bending or flexural rigidity of the beam. Also

M = Pz
so that
dM B

ar = ¢



5.3 Application to deflection problems

w/unit length Py

Fig. 5.6 Deflection of a uniformly loaded cantilever by the method of complementary energy.

Substitution for d9, M and dM/dP in Eq. (5.13) gives
LP 2
Ay = / idz
o EI

_PL?
~ 3EI

The fictitious load method of the framework example may be employed in the solution
of beam deflection problems where we require deflections at positions on the beam other
than concentrated load points. Suppose that we are to find the tip deflection At of the
cantilever of the previous example in which the concentrated load has been replaced by
auniformly distributed load of intensity w per unit length (see Fig. 5.6). First we apply a
fictitious load Py at the point where the deflection is required. The total complementary
energy of the system is

M L
C=f/ dBdM—ATPf—/ Awdz
LJo 0

where the symbols take their previous meanings and A is the vertical deflection of any
point on the beam. Then

or

v

aC L aMm
o _ f a2 ap = (5.14)
0Py 0 0Py
As before
M
df = —dz
EI
but
2
wz
M=Piz+— (Pr=0)
Hence
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Substituting in Eq. (5.14) for d8, M and oM /0Ps, and remembering that Pf =0, we

have
L WZ3
- /O o
giving
wL*
"7 8EI

It will be noted that here, unlike the method for the solution of the pin-jointed
framework, the fictitious load is applied to the loaded beam. There is, however, no
arithmetical advantage to be gained by the former approach although the result would
obviously be the same since M would equal wz>/2 and M /3P would have the value z.

Example 5.2
Calculate the vertical displacements of the quarter and mid-span points B and C of the
simply supported beam of length L and flexural rigidity £/ loaded, as shown in Fig. 5.7.

The total complementary energy C of the system including the fictitious loads Pp ¢
and Pcy is

M L
C = / / dodM — PB,fAB — PC,fAC — / Awdz (1)
LJO 0
Hence
aC oM ..
= / do — A = (i1)
oPg ¢ L OPpg
and
aC oM
—— = [ dd—— — Ac = (iii)
oPc ¢ L 0Pcg

Assuming a linearly elastic beam, Eqs (ii) and (iii) become

A ! b, oM d (iv)
= 77 v
B=F1 )y "opgs °
:PB,f |Fe,e  w/unit length
wil
Parsrerr | L Pt tR
4 0L
. 2
'L
L .

Fig. 5.7 Deflection of a simply supported beam by the method of complementary energy.
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Ac = L L]VIai dz (v)
El Jo = oPcy
From A to B
<3 1 WL) wz?
M=\3Psst+3Pct+ — )z2— —=
2 2
so that
oM 5 M
oPgr 47 Pcy 2
From B to C
M= <?—1PBf+ IPc + W—L>Z— W—Zz —PBf<Z— E)
’ ’ 2 2 ’ 4
giving
WLy w1
oPp ¢ 4 0Pct 2
From Cto D
M= (1PBf +pes+ W—L) (L-2)—S(L~2)
4 727 2 2
so that
oM =l(L—z) oM =1(L—z)
Pg; 4 aPcs 2

Substituting these values in Eqs (iv) and (v) and remembering that Pg f = Pc s =0 we
have, from Eq. (iv)

1 L/4 wLz WZZ L/2 wLz WZZ
Apo L wle _ wil\ 5 g wle w4
B EI{/O (2 2)‘*“+/L/4<2 2>( O

L fwLz  wz?
+/ (— - —) - z)dz}
L2\ 2 2

from which
_ 119wL?
B = 24576E1
Similarly
SwL*
C =
384E]

The fictitious load method of determining deflections may be streamlined for linearly
elastic systems and is then termed the unit load method; this we shall discuss later in
the chapter.
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5.4 Application to the solution of statically indeterminate
systems

In a statically determinate structure the internal forces are determined uniquely by
simple statical equilibrium considerations. This is not the case for a statically indeter-
minate system in which, as we have already noted, an infinite number of internal force
or stress distributions may be found to satisfy the conditions of equilibrium. The true
force system is, as we demonstrated in Section 5.2, the one satisfying the conditions
of compatibility of displacement of the elastic structure or, alternatively, that for which
the total complementary energy has a stationary value. We shall apply the principle
to a variety of statically indeterminate structures, beginning with the relatively simple
singly redundant pin-jointed frame shown in Fig. 5.8 in which each member has the
same value of the product AE.

The first step is to choose the redundant member. In this example no advantage is
gained by the choice of any particular member, although in some cases careful selection
canresultin a decrease in the amount of arithmetical labour. Taking BD as the redundant
member we assume that it sustains a tensile force R due to the external loading. The
total complementary energy of the framework is, with the notation of Eq. (5.9)

CZZ/O 1 dF; — PA
i=1
Hence
k
oC oF;
— = Ai— =0 5.15
R ; i (5.15)
or, assuming linear elasticity
k
1 oF;
— Y FiLi— =0 5.16
V5 ; iLimm (5.16)

Fig. 5.8 Analysis of a statically indeterminate framework by the method of complementary energy.
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The solution is now completed in Table 5.2 where, as in Table 5.1, positive signs indicate
tension.
Hence from Eq. (5.16)

4.83RL +2.707PL =0
or
R = —-0.56P

Substitution for R in column ® of Table 5.2 gives the force in each member. Having
determined the forces in the members then the deflection of any point on the framework
may be found by the method described in Section 5.3.

Unlike the statically determinate type, statically indeterminate frameworks may be
subjected to self-straining. Thus, internal forces are present before external loads are
applied. Such a situation may be caused by a local temperature change or by an initial
lack of fit of a member. Suppose that the member BD of the framework of Fig. 5.8 is
short by a known amount Ag when the framework is assembled but is forced to fit. The
load R in BD will then have suffered a displacement Ag in addition to that caused by
the change in length of BD produced by the load P. The total complementary energy
is then

k F;
C= Z/O ridF; — PA — RAg
i=1

and

IC . OF;

oR ; R K
or

1 & IF;
Ag=— Y FLi— 5.17
R AE ; it 9R ( )

Table 5.2
@ ) ® @ ®
Member Length F oF/0R FLOF/0R
AB L —R/J2 —1/42 RL/2
BC L —R/J2 —1/2 RL/2
CD L —(P+R//2) —1/2 L(P+R//2)/2
DA L —R/J2 —1/42 RL/2
AC V2L V2P +R 1 L(2P + /2R)
BD V2L R 1 V2RL

¥ =4.83RL+2.707PL
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Obviously the summation term in Eq. (5.17) has the same value as in the previous case
so that
AE

4.83L
Hence the forces in the members are due to both applied loads and an initial lack of fit.
Some care should be given to the sign of the lack of fit Ag. We note here that the
member BD is short by an amount Ag so that the assumption of a positive sign for
Apg is compatible with the tensile force R. If BD were initially too long then the total
complementary energy of the system would be written

R =—-0.56P +

AR

k F;
C= Z/ A dF; — PA — R(—Ag)
i=1 0
giving

no LN O
R=AE oR

i=

Example 5.3

Calculate the loads in the members of the singly redundant pin-jointed framework
shown in Fig. 5.9. The members AC and BD are 30 mm? in cross-section, and all other
members are 20 mm? in cross-section. The members AD, BC and DC are each 800 mm
long. E =200 000 N/mm?.

From the geometry of the framework ABD=CBD= 30°; therefore BD=AC =
800+/3 mm. Choosing CD as the redundant member and proceeding from Eq. (5.16)

we have
1 A FiL; OF; ,
D= ()
E P A; OR
From Table 5.3 we have
X FiL; 9F;

—— =—268+4+129.2R =0
A; OR

i=1

Fig. 5.9 Framework of Example 5.3.
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Table 5.3 (Tension positive)

@ ® ® ® ® ® @
Member L (mm) A@mm?)  F(N) AFIIR (FLIA)3FI3R Force (N)
AC 8003 30 50— 3R/2  —3/2  —2000+20./3R 482

CB 800 20 86.6+R/2 12 1732+ 10R 87.6

BD 8003 30 —/3R/2 —J/3/2 20./3R 1.8

CD 800 20 R 1 40R 2.1

AD 800 20 RI2 1/2 10R 1.0

¥ =-268+129.2R

Hence R =2.1 N and the forces in the members are tabulated in column @ of Table 5.3.

Example 5.4

A plane, pin-jointed framework consists of six bars forming a rectangle ABCD 4000 mm
by 3000 mm with two diagonals, as shown in Fig. 5.10. The cross-sectional area of each
bar is 200 mm? and the frame is unstressed when the temperature of each member is
the same. Due to local conditions the temperature of one of the 3000 mm members is
raised by 30°C. Calculate the resulting forces in all the members if the coefficient of
linear expansion « of the bars is 7 x 1076/°C. E =200 000 N/mm?.

Suppose that BC is the heated member, then the increase in length of BC =
3000 x 30 x 7 x 10~° = 0.63 mm. Therefore, from Eq. (5.17)

oF; .
T @)

k
—-063= ————— FiL;
200 x 200000 ; OR

Substitution from the summation of column ® in Table 5.4 into Eq. (i) gives

—0.63 x 200 x 200 000
R = = —525N
48 000

Column ® of Table 5.4 is now completed for the force in each member.

So far, our analysis has been limited to singly redundant frameworks, although the
same procedure may be adopted to solve a multi-redundant framework of, say, m
redundancies. Therefore, instead of a single equation of the type (5.15) we would have

A B
R
R
D c

Fig. 5.10 Framework of Example 5.4.
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Table 5.4 (Tension positive)

) @ ® @ ® ®
Member L (mm) F(N) dF/9R FLOF/dR Force (N)
AB 4000 4R/3 4/3 64 000R/9 —1700

BC 3000 R 1 3000R —525

CD 4000 4R/3 4/3 64 000R/9 —700
DA 3000 R 1 3000R —525

AC 5000 —5R/3 —5/3 125 000R/9 875

DB 5000 —5R/3 —5/3 125 000R/9 875

¥ =48 000R

! - f

Fig. 5.11 Analysis of a propped cantilever by the method of complementary energy.

m simultaneous equations

IC o _
R Zk’aRj =0 (j=12,....m)
i=1

from which the m unknowns Ry, R, ..., R,, would be obtained. The forces F in the mem-
bers follow, being expressed initially in terms of the applied loads and Ry, R», ..., Ry,.

Other types of statically indeterminate structure are solved by the application of total
complementary energy with equal facility. The propped cantilever of Fig. 5.11 is an
example of a singly redundant beam structure for which total complementary energy
readily yields a solution.

The total complementary energy of the system is, with the notation of Eq. (5.12)

M
C:// d6dM — PAc — RpAp
LJO

where Ac and Ap are the deflections at C and B, respectively. Usually, in problems of
this type, Ap is either zero for a rigid support, or a known amount (sometimes in terms
of Rp) for a sinking support. Hence, for a stationary value of C

aC oM
— = / dd— — Ag =0
ORgp . ORp

from which equation Rg may be found; Rp being contained in the expression for the
bending moment M.

Obviously the same procedure is applicable to a beam having a multiredundant
support system, e.g. a continuous beam supporting a series of loads Py, Pa, ..., P,.
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The total complementary energy of such a beam would be given by

M m n
c:// dodM — Y " RiA; =Y P.A,

where R; and A; are the reaction and known deflection (at least in terms of R;) of the
Jjth support point in a total of m supports. The stationary value of C gives

E:/d@aﬂ—Aj:O (j=12,....m)
OR; L OR;
producing m simultaneous equations for the m unknown reactions.

The intention here is not to suggest that continuous beams are best or most readily
solved by the energy method; the moment distribution method produces a more rapid
solution, especially for beams in which the degree of redundancy is large. Instead
the purpose is to demonstrate the versatility and power of energy methods in their
ready solution of a wide range of structural problems. A complete investigation of this
versatility is impossible here due to restriction of space; in fact, whole books have been
devoted to this topic. We therefore limit our analysis to problems peculiar to the field
of aircraft structures with which we are primarily concerned. The remaining portion
of this section is therefore concerned with the solution of frames and rings possessing
varying degrees of redundancy.

The frameworks we considered in the earlier part of this section and in Section
5.3 comprised members capable of resisting direct forces only. Of a more general
type are composite frameworks in which some or all of the members resist bending
and shear loads in addition to direct loads. It is usual, however, except for the thin-
walled structures in Part B of this book, to ignore deflections produced by shear forces.
We only consider, therefore, bending and direct force contributions to the internal
complementary energy of such structures. The method of analysis is illustrated in the
following example.

Example 5.5

The simply supported beam ABC shown in Fig. 5.12 is stiffened by an arrangement of
pin-jointed bars capable of sustaining axial loads only. If the cross-sectional area of the
beamis Ag and that of the barsis A, calculate the forces in the members of the framework
assuming that displacements are caused by bending and direct force action only.

We observe that if the beam were only capable of supporting direct loads then the
structure would be a relatively simple statically determinate pin-jointed framework.
Since the beam resists bending moments (we are ignoring shear effects) the system is
statically indeterminate with a single redundancy, the bending moment at any section of
the beam. The total complementary energy of the framework is given, with the notation
previously developed, by

M k F;
c:/ / d9dM+Z/ A dF; — PA (i)
ABC J0 i J0
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L/2

L/4 lP
A F C Cross-sectional
Area. A
3 p 1 e

609 ,
2P af
Cross-~sectional
Area . A
E R

R D
Fig. 5.12 Analysis of a trussed beam by the method of complementary energy.

L/2

Y
o |l o1

Table 5.5 (Tension positive)

@ @ ©)] @ ® ®

Member Length Area F 0F/0R (F/A)dF/0R
AB L2 A —R/2 —172 R/4Ag

BC L2 A —R/2 —1/2 R/4Ap

CD L2 A R 1 R/IA

DE L2 A R 1 R/A

BD L2 A —R —1 R/A

EB L2 A —R -1 R/A

AE L2 A R 1 R/A

If we suppose that the tensile load in the member ED is R then, for C to have a stationary
value

aC oM aF; .
EZ/ d9—+2)\,-—’:0 (i)

At this point we assume the appropriate load—displacement relationships; again we
shall take the system to be linear so that Eq. (ii) becomes

L M oM ‘. FiL; OF;
——dz + —— = (iii)
o EI R P AE OR
The two terms in Eq. (iii) may be evaluated separately, bearing in mind that only the
beam ABC contributes to the first term while the complete structure contributes to the
second. Evaluating the summation term by a tabular process we have Table 5.5.
Summation of column ® in Table 5.5 gives

k

FL;dF;, RL/1 10 .
= — (iv)

—— ==+
£ AE OR ~ 4E \Ag ' A
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The bending moment at any section of the beam between A and F is

3 3 oM 3
M = -Pz7 — £RZ hence — = —£z
4 2 oR 2
between F and B
P V3 oM V3
M = Z(L —2)— TRZ hence R —TZ
and between B and C
P V3 oM V3
M=—L-7)——R(L - h — =——(L -
4( 2) 2 (L —z) hence 3R > (L—2)

Thus

L pmoom 1 L4 (3 3 3
dz = — / —| =Pz — £Rz £z dz
0

o EI R " EI 4 2 2

Lxle V3 V3
+ [L . [Z(L - 7Rz} (—7z> dz

L
+/ - |:E(L—z)— ﬁR(L—z)i| ﬁ(L—z)dz}
L2 |4 2 2

giving
Lmom — —114/3PL N RL?
o EI0R " ~ 768Kl 16E1
Substituting from Eqs (iv) and (v) into Eq. (iii)

)

11J§PL3+RL3 RL (A + 10Ap _o
768EI 16EI = 4E AgA -

from which
114/3PL?AgA
~ 48[L2AgA + 4I(A + 10Ap)]
Hence the forces in each member of the framework. The deflection A of the load P

or any point on the framework may be obtained by the method of Section 5.3. For
example, the stationary value of the total complementary energy of Eq. (i) gives A, i.e.

k
aC oM dF;
_=/ do—+ ) hi— —A=0
P  Japc OR = 0P

Although braced beams are still found in modern light aircraft in the form of braced
wing structures a much more common structural component is the ring frame. The role
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Fig. 5.13 Internal force system in a two-dimensional ring.

of this particular component is discussed in detail in Chapter 14; it is therefore suffi-
cient for the moment to say that ring frames form the basic shape of semi-monocoque
fuselages reacting shear loads from the fuselage skins, point loads from wing spar
attachments and distributed loads from floor beams. Usually a ring is two-dimensional
supporting loads applied in its own plane. Our analysis is limited to the two-dimensional
case.

A two-dimensional ring has redundancies of direct load, bending moment and shear
at any section, as shown in Fig. 5.13. However, in some special cases of loading the
number of redundancies may be reduced. For example, on a plane of symmetry the
shear loads and sometimes the normal or direct loads are zero, while on a plane of
antisymmetry the direct loads and bending moments are zero. Let us consider the
simple case of a doubly symmetrical ring shown in Fig. 5.14(a). At a section in the
vertical plane of symmetry the internal shear and direct loads vanish, leaving one
redundancy, the bending moment M4 (Fig. 5.14(b)). Note that in the horizontal plane
of symmetry the internal shears are zero but the direct loads have a value P/2. The total
complementary energy of the system is (again ignoring shear strains)

M P
C:/ / d9dM—2(—A)
ring J 0O 2

taking the bending moment as positive when it increases the curvature of the ring. In
the above expression for C, A is the displacement of the top, A, of the ring relative to
the bottom, B. Assigning a stationary value to C we have

aC oM
— = / d0—— =0
oMa ring oM
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P
A
B
P
P
(a) (b)

Fig. 5.14 Doubly symmetric ring.

or assuming linear elasticity and considering, from symmetry, half the ring

R M oM
— ds=0
o EIOMp
Thus since
P . oM
M =Mp — —Rsinf —— =1
2 oM

and we have

4 P
/ (MA——Rsint9>Rdo9:O
0 2

or
P T
|:MA9 + —Rcos0i| =0
2 0
from which
PR
My = —
T

The bending moment distribution is then

(1 sin9>
M=PR|— —
T 2

and is shown diagrammatically in Fig. 5.15.

Let us now consider a more representative aircraft structural problem. The circular
fuselage frame of Fig. 5.16(a) supports a load P which is reacted by a shear flow ¢ (i.e. a
shear force per unit length: see Chapter 17), distributed around the circumference of the
frame from the fuselage skin. The value and direction of this shear flow are quoted here
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Fig. 5.15 Distribution of bending moment in a doubly symmetric ring.

Fig. 5.16 Determination of bending moment distribution in a shear and direct loaded ring.
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but are derived from theory established in Section 17.3. From our previous remarks on
the effect of symmetry we observe that there is no shear force at the section A on the
vertical plane of symmetry. The unknowns are therefore the bending moment M and
normal force Nao. We proceed, as in the previous example, by writing down the total
complementary energy C of the system. Then, neglecting shear strains

M
c:/ f dodM — PA Q)
ring J 0

in which A is the deflection of the point of application of P relative to the top of the
frame. Note that M5 and N do not contribute to the complement of the potential energy
of the system since, by symmetry, the rotation and horizontal displacements at A are
zero. From the principle of the stationary value of the total complementary energy

aC oM .
— = d—=0 (ii)
OMa ring oM
and
aC oM
— = f dd— =0 (iii)
ONA ring ONA

The bending moment at a radial section inclined at an angle 6 to the vertical diameter
is, from Fig. 5.16(c)

0
M = Mp + NaAR(1 —cos@)+/ gBDR do
0
or
o p
M = Mu + NaR(1 —cos9)+/ —Rsinoz[R—Rcos(Q—oe)]Rda
0o T

which gives

PR 1
M = Mp + NaAR(1 —cos0) + —(1 — cos6 — §9sin9) @iv)
T
Hence
oM oM
—— =1 —— =R(1 —cosb) )
oM s ONA
Assuming that the fuselage frame is linearly elastic we have, from Eqs (ii) and (iii)
™™ oM ™M oM .
2 ———Rd6 =2 ——RdO =0 (vi)
0 EI aMA 0 EI a]\IA

Substituting from Egs (iv) and (v) into Eq. (vi) gives two simultaneous equations

PR .
—— = MA + NaAR (vii)
2w
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7PR 3
——— = Ma + =NaR (viii)
8 2
These equations may be written in matrix form as follows
PR [-1/2] _ |1 R My (ix)
z 1-7/8( = |1 3R/2||Na X
so that
Ma| _PR[1 R 7' [-172
Na|l a7 |1 3R)2 —7/8
or

My _PR[ 3 —27[-1/2
Na~ % |-2/R 2/R|]1-7/8

PR —3P
N

which gives

=E A 4

The bending moment distribution follows from Eq. (iv) and is

Ma

PR 1 )
M=—(1 — =cosf —6sinb) (x)
2w 2

The solution of Eq. (ix) involves the inversion of the matrix

1 R

1 3R/2
which may be carried out using any of the standard methods detailed in texts on matrix
analysis. In this example Eqs (vii) and (viii) are clearly most easily solved directly; how-

ever, the matrix approach illustrates the technique and serves as a useful introduction
to the more detailed discussion in Chapter 6.

Example 5.6

A two-cell fuselage has circular frames with a rigidly attached straight member across
the middle. The bending stiffness of the lower half of the frame is 2E1, whilst that of
the upper half and also the straight member is EI.

Calculate the distribution of the bending moment in each part of the frame for the
loading system shown in Fig. 5.17(a). [llustrate your answer by means of a sketch and
show clearly the bending moment carried by each part of the frame at the junction
with the straight member. Deformations due only to bending strains need be taken into
account.

The loading is antisymmetrical so that there are no bending moments or normal
forces on the plane of antisymmetry; there remain three shear loads Sa, Sp and Sc,
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Sa
El A
M, } Sp
M, ( >M° é D
4 S
(] M° % ¢
ya T r 2EI ¢

(a) (b)

Fig. 5.17 Determination of bending moment distribution in an antisymmetrical fuselage frame.

as shown in Fig. 5.17(b). The total complementary energy of the half-frame is then
(neglecting shear strains)

M My ,
C = dodm — M()O(B — —AB (1)
half-frame J0 r

where op and Ap are the rotation and deflection of the frame at B caused by the
applied moment M and concentrated load My /r, respectively. From antisymmetry
there is no deflection at A, D or C so that Sx, Sp and Sc make no contribution to the
total complementary energy. In addition, overall equilibrium of the half-frame gives

M iy
Sa +5Sp + Sc = 70 (ii)

Assigning stationary values to the total complementary energy and considering the
half-frame only, we have

aC oM
— = / do— =0
aSA half-frame 8SA

and

aC oM
— = dd— =0
8SD half-frame 8SD

or assuming linear elasticity

M M M M
/ ——ds = / ——ds=0 (ii1)
half-frame EI 054 half-frame EI 35p
In AB

M = —Sarsinf and = —rsin6, 0

EON asp
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In DB
oM oM
M=Spx and — =0, — =x
BAYN dSp
In CB
. My .
M = Scrsing = (— —SA — SD) r sin ¢
r
Thus
oM in ¢ d M in ¢
—— = —rsin and — = —rsin
aSa Sp

Substituting these expressions in Eq. (iii) and integrating we have

3.3655A + Sc = My/r @iv)
Sa 4+ 2.1785¢c = My/r v)

which, with Eq. (ii), enable S, Sp and Sc to be found. In matrix form these equations
are written

My/r 1 1 1 Sa
My/ry =13.35 0 1 SD (vi)
My/r 1 0 2.178 Sc
from which we obtain
Sa 0 0.345 —0.159 | [ My/r
Spf=1]1 -0.187 -0.373 My/r (vii)
Sc 0 -0.159 0.532 | | My/r

which give
Sa =0.187Mo/r Sp =0.44Mp/r Sc = 0.373My/r

Again the square matrix of Eq. (vi) has been inverted to produce Eq. (vii).

The bending moment distribution with directions of bending moment is shown in
Fig. 5.18.

So far in this chapter we have considered the application of the principle of the
stationary value of the total complementary energy of elastic systems in the analysis
of various types of structure. Although the majority of the examples used to illustrate
the method are of linearly elastic systems it was pointed out that generally they may be
used with equal facility for the solution of non-linear systems.

In fact, the question of whether a structure possesses linear or non-linear character-
istics arises only after the initial step of writing down expressions for the total potential
or complementary energies. However, a great number of structures are linearly elastic
and possess unique properties which enable solutions, in some cases, to be more easily
obtained. The remainder of this chapter is devoted to these methods.
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Fig. 5.18 Distribution of bending moment in frame of Example 5.6.
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5.5 Unit load method
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In Section 5.3 we discussed the dummy or fictitious load method of obtaining deflections
of structures. For a linearly elastic structure the method may be stream-lined as follows.

Consider the framework of Fig. 5.3 in which we require, say, to find the vertical
deflection of the point C. Following the procedure of Section 5.3 we would place a
vertical dummy load Pr at C and write down the total complementary energy of the

framework, i.e.

C= Z/ A dF; — ZAP

For a stationary value of C

from which

=~

oF;
Ac = Z}Liﬁi as before
i=1

(see Eq. (5.9))

(5.18)

(5.19)

If instead of the arbitrary dummy load Pr we had placed a unit load at C, then the load
in the ith linearly elastic member would be

oF;
Fi=—1
oPs
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Therefore, the term 0F;/dPs in Eq. (5.19) is equal to the load in the ith member due to
a unit load at C, and Eq. (5.19) may be written

k
FioFi1Li
Ac=Y i) (5.20)

where F; o is the force in the ith member due to the actual loading and F;,; is the force
in the ith member due to a unit load placed at the position and in the direction of the
required deflection. Thus, in Example 5.1 columns @ and ® in Table 5.1 would be
eliminated, leaving column ® as Fg 1 and column @ as Fp ;. Obviously column ® is Fy.

Similar expressions for deflection due to bending and torsion of linear structures
follow from the well-known relationships between bending and rotation and torsion
and rotation. Hence, for a member of length L and flexural and torsional rigidities E/

and GJ, respectively
MoM ToT
AB.M=f L4 dez (5.21)
. EI

where M) is the bending moment at any section produced by the actual loading and M
is the bending moment at any section due to a unit load applied at the position and in
the direction of the required deflection. Similarly for torsion.

Generally, shear deflections of slender beams are ignored but may be calculated when
required for particular cases. Of greater interest in aircraft structures is the calculation of
the deflections produced by the large shear stresses experienced by thin-walled sections.
This problem is discussed in Chapter 17.

Example 5.7

A steel rod of uniform circular cross-section is bent as shown in Fig. 5.19, AB and BC
being horizontal and CD vertical. The arms AB, BC and CD are of equal length. The
rod is encastré at A and the other end D is free. A uniformly distributed load covers the
length BC. Find the components of the displacement of the free end D in terms of EI
and GJ.

Since the cross-sectional area A and modulus of elasticity E are not given we shall
assume that displacements due to axial distortion are to be ignored. We place, in turn,
unit loads in the assumed positive directions of the axes xyz.

First, consider the displacement in the direction parallel to the x axis. From Eqs (5.21)

M0M1 / ToT1

Ay =
L

Employing a tabular procedure

My M, Ty T,
Plane xy Xz vz Xy Xz yz Xy Xz yzZ Xy Xz )z
CD 0 0 0 y 0O O 0 O 0 0 O 0
CB 0 0 —wz?22 0 z 0 0 0 0 I 0 0
BA —wlx 0 0 ) l 0 0 0 wh /2 0 O 0
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B
w/unit length —
c 1
\ b4
1 X
el y
D }\\“
LT
\
1
Fig. 5.19 Deflection of a bent rod.
Hence
l 2
wl“x
o= [,
0 El
or
wi*
Ay =——
2EI
Similarly

At (L
Y 24EI ~ 2GJ

5.6 Flexibility method

An alternative approach to the solution of statically indeterminate beams and frames
is to release the structure, i.e. remove redundant members or supports, until the
structure becomes statically determinate. The displacement of some point in the
released structure is then determined by, say, the unit load method. The actual loads on
the structure are removed and unknown forces applied to the points where the structure
has been released; the displacement at the point produced by these unknown forces
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must, from compatibility, be the same as that in the released structure. The unknown
forces are then obtained; this approach is known as the flexibility method.

Example 5.8
Determine the forces in the members of the truss shown in Fig. 5.20(a); the cross-
sectional area A, and Young’s modulus E, are the same for all members.

The truss in Fig. 5.20(a) is clearly externally statically determinate but has a degree
of internal statical indeterminacy equal to 1. We therefore release the truss so that it
becomes statically determinate by ‘cutting’ one of the members, say BD, as shown in
Fig. 5.20(b). Due to the actual loads (P in this case) the cut ends of the member BD
will separate or come together, depending on whether the force in the member (before
it was cut) was tensile or compressive; we shall assume that it was tensile.

We are assuming that the truss is linearly elastic so that the relative displacement
of the cut ends of the member BD (in effect the movement of B and D away from
or towards each other along the diagonal BD) may be found using, say, the unit load
method. Thus we determine the forces F, ;, in the members produced by the actual
loads. We then apply equal and opposite unit loads to the cut ends of the member BD as
shown in Fig 5.20(c) and calculate the forces, F ; in the members. The displacement
of B relative to D, App, is then given by

" F,iFiiL;
ABp = &I (gee Eq. (ii) in Example 4.6
BD Z E (see Eq. (i) ple 4.6)
Jj=1
The forces, F, j, are the forces in the members of the released truss due to the actual
loads and are not, therefore, the actual forces in the members of the complete truss. We
shall therefore redesignate the forces in the members of the released truss as F ;. The
expression for Agp then becomes

n

FoiF) L
App = Z ' )
= AE
B c P B c Fp B c
Xsp 1
XeD 1
Cut
45°
A D A D A D
7/—;;;;/ v /. "

Fig. 5.20 Analysis of a statically indeterminate truss.
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In the actual structure this displacement is prevented by the force, Xgp, in the redundant
member BD. If, therefore, we calculate the displacement, agp, in the direction of BD
produced by a unit value of Xgp, the displacement due to Xgp will be Xgpagpp. Clearly,
from compatibility

Agp + Xgpagp =0 (i)

from which Xgp is found, app is a flexibility coefficient. Having determined Xgp, the
actual forces in the members of the complete truss may be calculated by, say, the method
of joints or the method of sections.

In Eq. (i), app is the displacement of the released truss in the direction of BD pro-
duced by a unit load. Thus, in using the unit load method to calculate this displacement,
the actual member forces (F,;) and the member forces produced by the unit load (F7 ;)
are the same. Therefore, from Eq. (i)

" FiL
app = Z AJE : (iii)
j=1
The solution is completed in Table 5.6.
From Table 5.6
A 2.71PL 4.82L
= a = —
BT A PP T uAE

Substituting these values in Eq. (i) we have

2.71PL 4.82L
X J—

=0
AE  TABD g

from which
Xgp = —0.56P (i.e. compression)

The actual forces, F, ;, in the members of the complete truss of Fig. 5.20(a) are now
calculated using the method of joints and are listed in the final column of Table 5.6.
We note in the above that Agp is positive, which means that Agp is in the direction
of the unit loads, i.e. B approaches D and the diagonal BD in the released structure
decreases in length. Therefore in the complete structure the member BD, which prevents
this shortening, must be in compression as shown; also agp will always be positive since

Table 5.6

Member L; (m) Fo; Fi; Fo jF1;L; F} L Fa;

AB L 0 -0.71 0 0.5L +0.40P
BC L 0 -0.71 0 0.5L +0.40P
CD L -P -0.71 0.71PL 0.5L —0.60P
BD 141L - 1.0 - 141L —0.56P
AC 141L 1.41P 1.0 2.0PL L41L +0.85P
AD L 0 -0.71 0 0.5L +0.40P

¥=2.71PL ¥ =4.82L
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it contains the term F' 12 .. Finally, we note that the cut member BD is included in the
calculation of the displacements in the released structure since its deformation, under
a unit load, contributes to agp.

Example 5.9
Calculate the forces in the members of the truss shown in Fig. 5.21(a). All members
have the same cross-sectional area A, and Young’s modulus E.

By inspection we see that the truss is both internally and externally statically inde-
terminate since it would remain stable and in equilibrium if one of the diagonals, AD
or BD, and the support at C were removed; the degree of indeterminacy is therefore 2.
Unlike the truss in Example 5.8, we could not remove any member since, if BC or CD
were removed, the outer half of the truss would become a mechanism while the portion
ABDE would remain statically indeterminate. Therefore we select AD and the support
at C as the releases, giving the statically determinate truss shown in Fig. 5.21(b); we
shall designate the force in the member AD as X; and the vertical reaction at C as R;.

10 kN 10 kN
yB A / B
A
X
im
) c .
E D E D
N WA N
A

‘ im im I

A
A B B
1
1
C
E D c E D
\ j

(© (d)

Fig. 5.21 Statically indeterminate truss of Example 5.9.

Z



5.6 Flexibility method

In this case we shall have two compatibility conditions, one for the diagonal AD
and one for the support at C. We therefore need to investigate three loading cases:
one in which the actual loads are applied to the released statically determinate truss
in Fig. 5.21(b), a second in which unit loads are applied to the cut member AD
(Fig. 5.21(c)) and a third in which a unit load is applied at C in the direction of R;
(Fig. 5.21(d)). By comparison with the previous example, the compatibility conditions
are

Aap + a1 X1 +apRy=0 (1)
vc +a21X1 +anR, =0 (i)

in which Aap and vc are, respectively, the change in length of the diagonal AD and

the vertical displacement of C due to the actual loads acting on the released truss,

while a11, a2, etc., are flexibility coefficients, which we have previously defined. The

calculations are similar to those carried out in Example 5.8 and are shown in Table 5.7.
From Table 5.7

n

Fo F1 (X)L  —27.1
A = 2 2 =
A=) AE AE

(i.e. AD increases in length)
j=1

n

Fo;F) i(R)L;,  —48.11
ve = Z J J ] —

(i.e. C displaced downwards)

. AE AE

Jj=1

"VFLXDL 432
an =) AE  AE

j=1

" FLRIL 11.62
an=)_ AE  AE

j=1

n
Fii(X)Fj(R)L; 2.7
a12=a212 j j j _ 2!

‘ AE AE

J=1
Table 5.7

FojF1,j  FojFu,;j Fi,j (X1)

Member L;  Fo, Fij (X1) Fij (R2) (XL (Ro)L; F|2!,~ XL Fﬁ,» (RL; Fij(R2) L Fay
AB 1 10.0 —-0.71 -2.0 -17.1 —20.0 0.5 4.0 1.41 0.67
BC 1.41 0 0 —1.41 0 0 0 2.81 0 —4.45
CD 1 0 0 1.0 0 0 0 1.0 0 3.15
DE 1 0 —-0.71 1.0 0 0 0.5 1.0 —-0.71 0.12
AD 1.41 0 1.0 0 0 0 1.41 0 0 4.28
BE 141 —14.14 1.0 1.41 —20.0 —28.11 1.41 2.81 2.0 —54
BD 1 0 —-0.71 0 0 0 0.5 0 0 —3.03

Y=-27.1 ¥=-48.11 ¥=432 X=11.62 =27
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A B A B
X
3m X
D C D C
;;;;;;/ V, / //

Fig. 5.22 Self-straining due to a temperature change.

Substituting in Egs (i) and (ii) and multiplying through by AE we have

—27.1 +4.32X; +2.7R, = 0 (iii)
—48.11 +2.7X; + 11.62R, = 0 (iv)

Solving Egs (iii) and (iv) we obtain
X; =428kN R, =3.15kN

The actual forces, F, ;, in the members of the complete truss are now calculated by the
method of joints and are listed in the final column of Table 5.7.

5.6.1 Self-straining trusses

Statically indeterminate trusses, unlike the statically determinate type, may be subjected
to self-straining in which internal forces are present before external loads are applied.
Such a situation may be caused by a local temperature change or by an initial lack of fit
of a member. In cases such as these, the term on the right-hand side of the compatibility
equations, Eq. (ii) in Example 5.8 and Eqs (i) and (ii) in Example 5.9, would not
be zero.

Example 5.10

The truss shown in Fig. 5.22(a) is unstressed when the temperature of each member is
the same, but due to local conditions the temperature in the member BC is increased
by 30°C. If the cross-sectional area of each member is 200 mm? and the coefficient of
linear expansion of the members is 7 x 1070/°C, calculate the resulting forces in the
members; Young’s modulus E = 200 000 N/mm?.

Due to the temperature rise, the increase in length of the member BC is 3 x 107 x
30 x 7 x 107 =0.63 mm. The truss has a degree of internal statical indeterminacy
equal to 1 (by inspection). We therefore release the truss by cutting the member BC,
which has experienced the temperature rise, as shown in Fig. 5.22(b); we shall suppose
that the force in BC is X. Since there are no external loads on the truss, Agc is zero
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Table 5.8

Member L; (mm) Fy Ft L Fu i (N)

AB 4000 1.33 7111.1 —700

BC 3000 1.0 3000.0 —525

CD 4000 1.33 7111.1 —700

DA 3000 1.0 3000.0 —525

AC 5000 —1.67 13888.9 875

DB 5000 —1.67 13 888.9 875

2 =48000.0
and the compatibility condition becomes
a“Xl = —0.63mm (1)
in which, as before
n 2 7.
1=
AE

j=1

Note that the extension of BC is negative since it is opposite in direction to X;. The
solution is now completed in Table 5.8. Hence

48000

= _12x1073
200 x 200 000

ai

Then, from Eq. (i)
X1 =—-525N

The forces, F, j, in the members of the complete truss are given in the final column of
Table 5.8. Compare the above with the solution of Ex. 5.4.

5.7 Total potential energy

In the spring—mass system shown in its unstrained position in Fig. 5.23(a) we normally
define the potential energy of the mass as the product of its weight, Mg, and its height, A,
above some arbitrarily fixed datum. In other words it possesses energy by virtue of its
position. After deflection to an equilibrium state (Fig. 5.23(b)), the mass has lost an
amount of potential energy equal to Mgy. Thus we may associate deflection with a loss
of potential energy. Alternatively, we may argue that the gravitational force acting on
the mass does work during its displacement, resulting in a loss of energy. Applying this
reasoning to the elastic system of Fig. 5.1(a) and assuming that the potential energy of
the system is zero in the unloaded state, then the loss of potential energy of the load P
as it produces a deflection y is Py. Thus, the potential energy V of P in the deflected
equilibrium state is given by

V =—Py
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Z

Mass M —

{a) (b)

Fig. 5.23 (a) Potential energy of a spring—mass system; (b) loss in potential energy due to change in position.

We now define the fotal potential energy (TPE) of a system in its deflected equilibrium
state as the sum of its internal or strain energy and the potential energy of the applied
external forces. Hence, for the single member—force configuration of Fig. 5.1(a)

y
TPE=U+V=/ Pdy — Py
0

For a general system consisting of loads Py, P, ..., P, producing corresponding
displacements (i.e. displacements in the directions of the loads: see Section 5.10)
A1, Ay, ..., A, the potential energy of all the loads is

n n
V= Zvr = Z(_PrAr)
r=1 r=1

and the total potential energy of the system is given by

n
TPE=U+V=U+)» (—P:A)) (5.22)

r=1

5.8 The principle of the stationary value of the total
potential energy

Let us now consider an elastic body in equilibrium under a series of external loads,
Py, Py, ..., Py, and suppose that we impose small virtual displacements A1, §A,, ...,
8, in the directions of the loads. The virtual work done by the loads is then

Xn:PrsA,
r=1

This work will be accompanied by an increment of strain energy SU in the elastic
body since by specifying virtual displacements of the loads we automatically impose
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virtual displacements on the particles of the body itself, as the body is continuous
and is assumed to remain so. This increment in strain energy may be regarded as
negative virtual work done by the particles so that the total work done during the virtual
displacement is

—8U + Xn:P,(SA,

r=1

The body is in equilibrium under the applied loads so that by the principle of virtual
work the above expression must be equal to zero. Hence

SU = PsA, =0 (5.23)

r=1

The loads P, remain constant during the virtual displacement; therefore, Eq. (5.23)
may be written

n
SU-8Y PA=0
r=1
or, from Eq. (5.22)
SU+V)=0 (5.24)

Thus, the total potential energy of an elastic system has a stationary value for all
small displacements if the system is in equilibrium. It may also be shown that if the
stationary value is a minimum the equilibrium is stable. A qualitative demonstration of
this fact is sufficient for our purposes, although mathematical proofs exist.! In Fig. 5.24
the positions A, B and C of a particle correspond to different equilibrium states. The
total potential energy of the particle in each of its three positions is proportional to
its height 4 above some arbitrary datum, since we are considering a single particle
for which the strain energy is zero. Clearly at each position the first order variation,
(U 4+ V)/du, is zero (indicating equilibrium), but only at B where the total potential
energy is a minimum is the equilibrium stable. At A and C we have unstable and
neutral equilibrium, respectively.

TPE

f(h)
@

({U+V}

Fig. 5.24 States of equilibrium of a particle.
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To summarize, the principle of the stationary value of the total potential energy may
be stated as:

The total potential energy of an elastic system has a stationary value for all small
displacements when the system is in equilibrium; further, the equilibrium is stable if
the stationary value is a minimum.

This principle may often be used in the approximate analysis of structures where
an exact analysis does not exist. We shall illustrate the application of the principle in
Example 5.11 below, where we shall suppose that the displaced form of the beam is
unknown and must be assumed; this approach is called the Rayleigh—Ritz method.

Example 5.11
Determine the deflection of the mid-span point of the linearly elastic, simply supported
beam shown in Fig. 5.25; the flexural rigidity of the beam is EI.

The assumed displaced shape of the beam must satisfy the boundary conditions for
the beam. Generally, trigonometric or polynomial functions have been found to be the
most convenient where, however, the simpler the function the less accurate the solution.
Let us suppose that the displaced shape of the beam is given by

. Tt (i)
v = vpsin — i
L

in which vp is the displacement at the mid-span point. From Eq. (i) we see that v=0
when z=0 and z =L and that v=wvg when z=L/2. Also dv/dz=0 when z=L/2 so
that the displacement function satisfies the boundary conditions of the beam.

The strain energy, U, due to bending of the beam, is given by (see Ref. [3])

M2
U= | —d ii
/L SEl z (i1)
Also
d%v
M = —ElI— (see Chapter 16) (ii1)
dz?
w
A B C
l Y ]

L/2 L2
I |

Fig. 5.25 Approximate determination of beam deflection using total potential energy.



5.10 The reciprocal theorem

Substituting in Eq. (iii) for v from Eq. (i) and for M in Eq. (ii) from (iii)

EI [Fogn?
U=— B~ sin? Edz
2 Jo L* L
which gives
dpp.2
_ m'Elvg
413
The total potential energy of the beam is then given by
T*El vlz3
TPE=U+V = A3 — Wup

Then, from the principle of the stationary value of the total potential energy

WU +V) a*Elvg

—-W=0
dvp 213
whence
2WL3 wL3
= = 0.02053—— i
"B = AR El @)
The exact expression for the mid-span displacement is (Ref. [3])
wL3 wL3
vg = —— = 0.02083 —— )
48E1 EI

Comparing the exact (Eq. (v)) and approximate results (Eq. (iv)) we see that the dif-
ference is less than 2 per cent. Further, the approximate displacement is less than the
exact displacement since, by assuming a displaced shape, we have, in effect, forced the
beam into taking that shape by imposing restraint; the beam is therefore stiffer.

5.9 Principle of superposition

An extremely useful principle employed in the analysis of linearly elastic structures
is that of superposition. The principle states that if the displacements at all points in
an elastic body are proportional to the forces producing them, i.e. the body is linearly
elastic, the effect on such a body of a number of forces is the sum of the effects of the
forces applied separately. We shall make immediate use of the principle in the derivation
of the reciprocal theorem in the following section.

5.10 The reciprocal theorem

The reciprocal theorem is an exceptionally powerful method of analysis of linearly
elastic structures and is accredited in turn to Maxwell, Betti and Rayleigh. However,
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Fig. 5.26 Linearly elastic body subjected to loads Py, Py, P3, ..., Pn.

before we establish the theorem we first consider a useful property of linearly elas-
tic systems resulting from the principle of superposition. The principle enables us to
express the deflection of any point in a structure in terms of a constant coefficient and
the applied loads. For example, a load P; applied at a point 1 in a linearly elastic body
will produce a deflection A at the point given by

Ay =an P

in which the influence or flexibility coeffcient aj is defined as the deflection at the point
1 in the direction of Py, produced by a unit load at the point 1 applied in the direction
of P1. Clearly, if the body supports a system of loads such as those shown in Fig. 5.26,
each of the loads P1, Py, ..., P, will contribute to the deflection at the point 1. Thus,
the corresponding deflection A at the point 1 (i.e. the total deflection in the direction
of Py produced by all the loads) is then

Ay =anPr+apPr+---+aipPy

where a1 is the deflection at the point 1 in the direction of Py, produced by a unit load
at the point 2 in the direction of the load P, and so on. The corresponding deflections
at the points of application of the complete system of loads are then

Ay =anPr+apPr+apzP3+ - +aPy
Ay = a1 Py +anPr + ayP3+ -+ ayP,
Az =a31P1 +axP +a3zP3 + - -+ azpPy (5.25)

An:anlpl +an2P2+an3P3+"'+annPn

or, in matrix form

A am apz ai3 ... din| (P
Ay ar ax» axs ... ay P>
Azl _ a3z axn a3y ... a3 | ]P3
Ay Py

anl dp2 Aap3 ... dpn



5.10 The reciprocal theorem

which may be written in shorthand matrix notation as
{A} =[Al{P}

Suppose now that an elastic body is subjected to a gradually applied force P; at a
point 1 and then, while P remains in position, a force P; is gradually applied at another
point 2. The total strain energy U of the body is given by

Py P
U = 7(a11P1) + 7(022P2) + Pi(a12P2) (5.26)

The third term on the right-hand side of Eq. (5.26) results from the additional work
done by P as it is displaced through a further distance a2 P; by the action of P;. If we
now remove the loads and apply P, followed by P; we have

Py Pq
Uy = 7(0221’2) + 7(6111131) + P2(a21P1) (5.27)

By the principle of superposition the strain energy stored is independent of the order
in which the loads are applied. Hence

U =0,
and it follows that

ap = as (5.28)
Thus in its simplest form the reciprocal theorem states that:

The deflection at a point 1 in a given direction due to a unit load at a point 2 in a
second direction is equal to the deflection at the point 2 in the second direction due
to a unit load at the point 1 in the first direction.

In a similar manner, we derive the relationship between moments and rotations, thus:

The rotation at a point 1 due to a unit moment at a point 2 is equal to the rotation at
the point 2 produced by a unit moment at the point 1.

Finally, we have:

The rotation at a point I due to a unit load at a point 2 is numerically equal to the
deflection at the point 2 in the direction of the unit load due to a unit moment at the
point 1.

Example 5.12
A cantilever 800 mm long with a prop 500 mm from the wall deflects in accordance
with the following observations when a point load of 40 N is applied to its end.

Distance (mm) 0 100 200 300 400 500 600 700 800
Deflection (mm) 0 -03 —-14 =25 -1.9 0 2.3 4.8 10.6

What will be the angular rotation of the beam at the prop due to a 30 N load applied
200 mm from the wall, together with a 10 N load applied 350 mm from the wall?
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A D E g | §
. N
N 200 mm N h Y E

~"350mm

(a) (b)

Fig. 5.27 (a) Given deflected shape of propped cantilever; (b) determination of the deflection of C.

The initial deflected shape of the cantilever is plotted as shown in Fig. 5.27(a) and
the deflections at D and E produced by the 40 N load determined. The solution then
proceeds as follows.

Deflection at D due to 40 N load at C = —1.4 mm.

Hence from the reciprocal theorem the deflection at C due to a 40N load at
D=—-1.4mm.

It follows that the deflection at C due to a 30 N load at D = —% x 1.4=—1.05mm.

Similarly the deflection at C due to a 10 N load at E= —A% X 2.4 =—0.6 mm.

Therefore, the total deflection at C, produced by the 30 and 10 N loads acting simul-
taneously (Fig. 5.27(b)), is —1.05 — 0.6 = —1.65 mm from which the angular rotation
of the beam at B, 6g, is given by

1.65
g = tan~! 300 = tan"' 0.0055

or

O = 0°19

Example 5.13

An elastic member is pinned to a drawing board at its ends A and B. When a moment M
is applied at A, A rotates 65, B rotates 6 and the centre deflects §;. The same moment M
applied to B rotates B, 6c and deflects the centre through ;. Find the moment induced
at A when a load W is applied to the centre in the direction of the measured deflections,
both A and B being restrained against rotation.

The three load conditions and the relevant displacements are shown in Fig. 5.28.
Thus from Fig. 5.28(a) and (b) the rotation at A due to M at B is, from the reciprocal
theorem, equal to the rotation at B due to M at A. Hence

Oap) = 0B

It follows that the rotation at A due to Mp at B is

Mg )
OA@)1 = WOB 6]
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Fig. 5.28 Model analysis of a fixed beam.

Also the rotation at A due to unit load at C is equal to the deflection at C due to unit
moment at A. Therefore

Oae2 _ 81
w M
or
w
Oa)2 = MS[ (i)

where 04(),2 is the rotation at A due to W at C. Finally, the rotation at A due to Mx at
A is, from Fig. 5.28(a) and (c)

A
OA@)3 = WQA (iii)

The total rotation at A produced by M at A, W at C and Mp at B is, from Eqgs (i), (ii)
and (iii)

My w Ma .
OAe)1 T Oa@)2 T 0A@)3 = WQB + M(Sl + WQA =0 (iv)
since the end A is restrained from rotation. Similarly the rotation at B is given by
Mg w Ma
—0 —&h+—0=0
et 02t 50 v)

Solving Eqs (iv) and (v) for M gives

1) — 616
MA:W(M)

Oa6c — 03

The fact that the arbitrary moment M does not appear in the expression for the
restraining moment at A (similarly it does not appear in Mp), produced by the load
W, indicates an extremely useful application of the reciprocal theorem, namely the
model analysis of statically indeterminate structures. For example, the fixed beam of
Fig. 5.28(c) could possibly be a full-scale bridge girder. It is then only necessary to
construct a model, say of Perspex, having the same flexural rigidity ET as the full-scale
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beam and measure rotations and displacements produced by an arbitrary moment M to
obtain fixing moments in the full-scale beam supporting a full-scale load.

5.11 Temperature effects

A uniform temperature applied across a beam section produces an expansion of the
beam, as shown in Fig. 5.29, provided there are no constraints. However, a linear
temperature gradient across the beam section causes the upper fibres of the beam to
expand more than the lower ones, producing a bending strain as shown in Fig. 5.30
without the associated bending stresses, again provided no constraints are present.
Consider an element of the beam of depth & and length 5z subjected to a linear
temperature gradient over its depth, as shown in Fig. 5.31(a). The upper surface

ZAA B t

Expansion

Fig. 5.29 Expansion of beam due to uniform temperature.
7
Orep

t
o — __?

Fig. 5.30 Bending of beam due to linear temperature gradient.

t Sz(1+af)

(a) (b)

Fig. 5.31 (a) Linear temperature gradient applied to beam element; (b) bending of beam element due to temperature
gradient.



5.11 Temperature effects

of the element will increase in length to §z(1 + «f) (see Section 1.15.1) where
« is the coefficient of linear expansion of the material of the beam. Thus from
Fig. 5.31(b)

R R+h

8z - 8z(1 + at)

giving

R=h/at (5.29)
Also

80 = 8z/R
so that, from Eq. (5.29)

86 = % (5.30)

We may now apply the principle of the stationary value of the total complementary
energy in conjunction with the unit load method to determine the deflection A, due
to the temperature of any point of the beam shown in Fig. 5.30. We have seen that
the above principle is equivalent to the application of the principle of virtual work
where virtual forces act through real displacements. Therefore, we may specify that the
displacements are those produced by the temperature gradient while the virtual force
system is the unit load. Thus, the deflection At.p of the tip of the beam is found by
writing down the increment in total complementary energy caused by the application
of a virtual unit load at B and equating the resulting expression to zero (see Eqs (5.7)
and (5.12)). Thus

6C = fMldQ — 1A =0
L
or
ATeB = /M] do (5.31)
L

where M is the bending moment at any section due to the unit load. Substituting for
dé from Eq. (5.30) we have

ot
ATep = | M1—dz (5.32)
L h

where ¢ can vary arbitrarily along the span of the beam, but only linearly with depth.
For a beam supporting some form of external loading the total deflection is given by the
superposition of the temperature deflection from Eq. (5.32) and the bending deflection

from Eq. (5.21); thus
My at
A= Mi|—+—]d 5.33
/L I(EI + h) z (5.33)
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Example 5.14

Determine the deflection of the tip of the cantilever in Fig. 5.32 with the temperature
gradient shown.

Applying a unit load vertically downwards at B, M| =1 x z. Also the temperature ¢
at a section z is #o(/ — z)/I. Substituting in Eq. (5.32) gives

I at .
Ates = | z—-—( —2)dz (1)
o hl
Integrating Eq. (i) gives
atyl? .
ATep = o (i.e. downwards)

Spanwise variation of ¢

7/
A W o l
B id
h : ~
5 Depth variation of ¢

Fig. 5.32 Beam of Example 5.14.
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Problems

P.5.1 Find the magnitude and the direction of the movement of the joint C of the

plane pin-jointed frame loaded as shown in Fig. P.5.1. The value of L/AE for each
member is 1/20 mm/N.

Ans.  5.24mm at 14.7° to left of vertical.
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£
E
|
g

B C
E A { 1920 mm !
8 /(IOBO mm ION
— A

Fig. P.5.1

P.5.2  Arigid triangular plate is suspended from a horizontal plane by three vertical
wires attached to its corners. The wires are each 1 mm diameter, 1440 mm long, with
a modulus of elasticity of 196 000 N/mm?. The ratio of the lengths of the sides of the
plate is 3:4:5. Calculate the deflection at the point of application due to a 100 N load
placed at a point equidistant from the three sides of the plate.

Ans.  0.33 mm.

P.5.3 The pin-jointed space frame shown in Fig. P.5.3 is attached to rigid supports
at points 0, 4, 5 and 9, and is loaded by a force P in the x direction and a force 3P in the
negative y direction at the point 7. Find the rotation of member 27 about the z axis due
to this loading. Note that the plane frames 01234 and 56789 are identical. All members
have the same cross-sectional area A and Young’s modulus E.

Ans. 382P/9AE.

Fig. P.5.3
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P.5.4 A horizontal beam is of uniform material throughout, but has a second
moment of area of I for the central half of the span L and //2 for each section in
both outer quarters of the span. The beam carries a single central concentrated load P.

(a) Derive a formula for the central deflection of the beam, due to P, when simply
supported at each end of the span.

(b) If both ends of the span are encastré determine the magnitude of the fixed end
moments.

Ans. 3PL3/128EI, 5PL/48 (hogging).

P.5.5 The tubular steel post shown in Fig. P.5.5 supports a load of 250 N at the free
end C. The outside diameter of the tube is 100 mm and the wall thickness is 3 mm.
Neglecting the weight of the tube find the horizontal deflection at C. The modulus of
elasticity is 206 000 N/mm?.

Ans. 53.3mm.
" \c
—— |B
Ww=250N

4R R = 1500 mm

Y A

Z Z
Fig. P5.5

P.5.6 A simply supported beam AB of span L and uniform section carries a dis-
tributed load of intensity varying from zero at A to wo/unit length at B according to the

law

per unit length. If the deflected shape of the beam is given approximately by the

expression
74 n . 27wz
v = aj sin — + ap sin —
L L

evaluate the coefficients a; and a; and find the deflection of the beam at mid-span.
Ans. ay =2woL*(® + 4)/EIn’, ay=—woL*/16EI7>, 0.00918 woL*/EI.

P.5.7 A uniform simply supported beam, span L, carries a distributed loading which
varies according to a parabolic law across the span. The load intensity is zero at both
ends of the beam and wy at its mid-point. The loading is normal to a principal axis of the
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beam cross-section and the relevant flexural rigidity is EI. Assuming that the deflected
shape of the beam can be represented by the series

0 .
L Imz
v= E a; sin —
. L

i=1

find the coefficients a; and the deflection at the mid-span of the beam using the first
term only in the above series.

Ans.  a;=32woL*/EIn’i’ (i odd), woL*/94.4EI.

P.5.8 Figure P.5.8 shows a plane pin-jointed framework pinned to a rigid founda-
tion. All its members are made of the same material and have equal cross-sectional area
A, except member 12 which has area A~/2.

12a

Fig. P.5.8

Under some system of loading, member 14 carries a tensile stress of 0.7 N/mm?.
Calculate the change in temperature which, if applied to member 14 only, would
reduce the stress in that member to zero. Take the coefficient of linear expansion as
o =24 x 107%/°C and Young’s modulus E =70 000 N/mm?.

Ans. 5.6°C.

P.5.9 The plane, pin-jointed rectangular framework shown in Fig. P.5.9(a) has one
member (24) which is loosely attached at joint 2, so that relative movement between
the end of the member and the joint may occur when the framework is loaded. This
movement is a maximum of 0.25 mm and takes place only in the direction 24. Fig-
ure P.5.9(b) shows joint 2 in detail when the framework is unloaded. Find the value
of the load P at which member 24 just becomes an effective part of the structure and
also the loads in all the members when P is 10 000 N. All bars are of the same material
(E =70 000 N/mm?) and have a cross-sectional area of 300 mm?.
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Ans. P=294N, Fi;p=2481.6N(T), Fx3=1861.2N(T), F34=2481.6 N(T),
F41 =56389N(C), F13=9398.1N(T), F24=3102.0N(C).

600 mm

450 mm

Z 7
(a) (b)
Fig. 5.9
P.5.10 The plane frame ABCD of Fig. P.5.10 consists of three straight members
with rigid joints at B and C, freely hinged to rigid supports at A and D. The flexural
rigidity of AB and CD is twice that of BC. A distributed load is applied to AB, varying
linearly in intensity from zero at A to w per unit length at B.

Determine the distribution of bending moment in the frame, illustrating your results
with a sketch showing the principal values.

Ans. Mg =7wl2/45, Mc =8w12/45, Cubic distribution on AB, linear on BC

and CD.
C

w
B
ET
2E1 2E1 1
A |
Z ,
l

|
21/3

__§>‘U

Fig. P.5.10
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P.5.11 A bracket BAC is composed of a circular tube AB, whose second moment
of area is 1.5/, and a beam AC, whose second moment of area is / and which has
negligible resistance to torsion. The two members are rigidly connected together at A
and built into a rigid abutment at B and C as shown in Fig. P.5.11. A load P is applied
at A in a direction normal to the plane of the figure.

Determine the fraction of the load which is supported at C. Both members are of the
same material for which G=0.38E.

Ans. 0.72P.

-5I
4a

Fig. P.5.11

P.5.12 In the plane pin-jointed framework shown in Fig. P.5.12, bars 25, 35, 15
and 45 are linearly elastic with modulus of elasticity E. The remaining three bars obey
a non-linear elastic stress—strain law given by

e

where 7 is the stress corresponding to strain €. Bars 15, 45 and 23 each have a cross-
sectional area A, and each of the remainder has an area of A /+/3. The length of member
12 is equal to the length of member 34 =2L.

If a vertical load Py is applied at joint 5 as shown, show that the force in the member
23, i.e. F3, is given by the equation

X"+ 35 4+0.8=0

Fig. P.5.12
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where
X = F23/P0 and o= P()/Al'o

P.5.13 Figure P.5.13 shows a plan view of two beams, AB 9150 mm long and
DE 6100 mm long. The simply supported beam AB carries a vertical load of 100 000 N
applied at F, a distance one-third of the span from B. This beam is supported at C on the
encastré beam DE. The beams are of uniform cross-section and have the same second
moment of area 83.5 x 10° mm*. E =200 000 N/mm?. Calculate the deflection of C.

Ans. 5.6mm

W/
E
§E§
rﬂE
F
Ao ¢ > OB
| 3050|mm | 3050mm | 3050mm !
Qe
Q€
vy 1D
Vit

Fig. P.5.13

P.5.14 The plane structure shown in Fig. P.5.14 consists of a uniform continuous
beam ABC pinned to a fixture at A and supported by a framework of pin-jointed mem-
bers. All members other than ABC have the same cross-sectional area A. For ABC,
the area is 44 and the second moment of area for bending is Aa>/16. The material is
the same throughout. Find (in terms of w, A, a and Young’s modulus E) the vertical
displacement of point D under the vertical loading shown. Ignore shearing strains in
the beam ABC.

Ans. 30232 wa?/3AE.

3wa l l ij/iﬂtTngT ‘ 0

Fig. P.5.14
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P.5.15 The fuselage frame shown in Fig. P.5.15 consists of two parts, ACB and
ADB, with frictionless pin joints at A and B. The bending stiffness is constant in each
part, with value EI for ACB and xEI for ADB. Find x so that the maximum bending

moment in ADB will be one half of that in ACB. Assume that the deflections are due
to bending strains only.

Ans. 0.092.

Fig. P.5.15

P.5.16 A transverse frame in a circular section fuel tank is of radius r and constant
bending stiffness EI. The loading on the frame consists of the hydrostatic pressure due
to the fuel and the vertical support reaction P, which is equal to the weight of fuel
carried by the frame, shown in Fig. P.5.16.

Fig. P.5.16

Taking into account only strains due to bending, calculate the distribution of bending
moment around the frame in terms of the force P, the frame radius r and the angle 6.

Ans. M =Pr(0.160 — 0.080 cos 8 — 0.1596 sin 6)

P.5.17 The frame shown in Fig. P.5.17 consists of a semi-circular arc, centre B,
radius a, of constant flexural rigidity EI jointed rigidly to a beam of constant flexural



164  Energy methods

rigidity 2EI. The frame is subjected to an outward loading as shown arising from an
internal pressure pg.
Find the bending moment at points A, B and C and locate any points of contraflexure.
A is the mid point of the arc. Neglect deformations of the frame due to shear and
normal forces.

Ans. My =—0.057poa®, Mg =—0.292pga*, Mc =0.208pya>.

Points of contraflexure: in AC, at 51.7° from horizontal; in BC, 0.764a from B.

A
.l a
T AN 41T

Fig. P.5.17

P.5.18 The rectangular frame shown in Fig. P.5.18 consists of two horizontal mem-
bers 123 and 456 rigidly joined to three vertical members 16, 25 and 34. All five
members have the same bending stiffness EI.

P

1

1 |
Za! J T
i

P

3a |

I i l

Fig. P.5.18

The frame is loaded in its own plane by a system of point loads P which are balanced
by a constant shear flow g around the outside. Determine the distribution of the bending
moment in the frame and sketch the bending moment diagram. In the analysis take
bending deformations only into account.

Ans. Shears only at mid-points of vertical members. On the lower half of the frame
S43 =0.27P to right, S5 =0.69P to left, S¢; = 1.08P to left; the bending moment
diagram follows.

P.5.19 A circular fuselage frame shown in Fig. P.5.19, of radius r and constant
bending stiffness EI, has a straight floor beam of length r+/2, bending stiffness EI,
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Fig. P.5.19

rigidly fixed to the frame at either end. The frame is loaded by a couple T applied at its
lowest point and a constant equilibrating shear flow ¢ around its periphery. Determine
the distribution of the bending moment in the frame, illustrating your answer by means
of a sketch.

In the analysis, deformations due to shear and end load may be considered negligible.
The depth of the frame cross-section in comparison with the radius » may also be
neglected.

Ans. M14=T(0.295in 6 — 0.166), M>4 =0.30Tx/r, M4z =T(0.59sin6 — 0.160).

P.5.20 A thin-walled member BCD is rigidly built-in at D and simply supported at
the same level at C, as shown in Fig. P.5.20.

Ao c
L

Fig. P.5.20

Find the horizontal deflection at B due to the horizontal force F. Full account must
be taken of deformations due to shear and direct strains, as well as to bending.

The member is of uniform cross-section, of area A, relevant second moment of area
in bending I = Ar?/400 and ‘reduced’ effective area in shearing A’ = A/4. Poisson’s
ratio for the material is v=1/3.

Give the answer in terms of F, r, A and Young’s modulus E.

Ans. 448 Fr/EA.

P.5.21 Figure P.5.21 shows two cantilevers, the end of one being vertically above
the other and connected to it by a spring AB. Initially the system is unstrained. A weight
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W placed at A causes a vertical deflection at A of §; and a vertical deflection at B of §5.
When the spring is removed the weight W at A causes a deflection at A of §3. Find the
extension of the spring when it is replaced and the weight W is transferred to B.

Ans.  82(81 — 82)/(83 — 81).

U
_

AN
oMWW P

Fig. P.5.21

P.5.22 Abeam 2400 mm long is supported at two points A and B which are 1440 mm
apart; point A is 360 mm from the left-hand end of the beam and point B is 600 mm
from the right-hand end; the value of EI for the beam is 240 x 103 N mm?. Find the
slope at the supports due to a load of 2000 N applied at the mid-point of AB.

Use the reciprocal theorem in conjunction with the above result, to find the deflection
at the mid-point of AB due to loads of 3000 N applied at each of the extreme ends of
the beam.

Ans.  0.011, 15.8 mm.

P.5.23 Figure P.5.23 shows a frame pinned to its support at A and B. The frame
centre-line is a circular arc and the section is uniform, of bending stiffness EI and depth
d. Find an expression for the maximum stress produced by a uniform temperature
gradient through the depth, the temperatures on the outer and inner surfaces being
respectively raised and lowered by amount 7. The points A and B are unaltered in
position.

Ans. 1.30ET«.

Fig. P.5.23

P.5.24 A uniform, semi-circular fuselage frame is pin-jointed to a rigid portion of
the structure and is subjected to a given temperature distribution on the inside as shown
in Fig. P.5.24. The temperature falls linearly across the section of the frame to zero on
the outer surface. Find the values of the reactions at the pin-joints and show that the



distribution of the bending moment in the frame is
_ 0.59Elaf) cos ¥
B h

given that:
(a) the temperature distribution is

0 =6pcos2y for —m/4 <y <m/4
6=0 for —m/4 > ¢ > n/4

Fig. P.5.24
(b) bending deformations only are to be taken into account:

o = coefficient of linear expansion of frame material
EI = bending rigidity of frame

h = depth of cross-section

r = mean radius of frame.

Problems
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Actual aircraft structures consist of numerous components generally arranged in an
irregular manner. These components are usually continuous and therefore, theoret-
ically, possess an infinite number of degrees of freedom and redundancies. Analysis
is then only possible if the actual structure is replaced by an idealized approximation
or model. This procedure is discussed to some extent in Chapter 20 where we note
that the greater the simplification introduced by the idealization the less complex but
more inaccurate becomes the analysis. In aircraft design, where structural weight is
of paramount importance, an accurate knowledge of component loads and stresses is
essential so that at some stage in the design these must be calculated as accurately as
possible. This accuracy may only be achieved by considering an idealized structure
which closely represents the actual structure. Standard methods of structural analysis
are inadequate for coping with the necessary degree of complexity in such idealized
structures. It was this situation which led, in the late 1940s and early 1950s, to the
development of matrix methods of analysis and at the same time to the emergence of
high-speed, electronic, digital computers. Conveniently, matrix methods are ideally
suited for expressing structural theory and for expressing the theory in a form suitable
for numerical solution by computer.

A structural problem may be formulated in either of two different ways. One approach
proceeds with the displacements of the structure as the unknowns, the internal forces
then follow from the determination of these displacements, while in the alternative
approach forces are treated as being initially unknown. In the language of matrix
methods these two approaches are known as the stiffness (or displacement) method
and the flexibility (or force) method, respectively. The most widely used of these two
methods is the stiffness method and for this reason, we shall concentrate on this par-
ticular approach. Argyris and Kelsey,! however, showed that complete duality exists
between the two methods in that the form of the governing equations is the same whether
they are expressed in terms of displacements or forces.

Generally, actual structures must be idealized to some extent before they become
amenable to analysis. Examples of some simple idealizations and their effect on struc-
tural analysis are presented in Chapter 20 for aircraft structures. Outside the realms of
aeronautical engineering the representation of a truss girder by a pin-jointed framework
is a well-known example of the idealization of what are known as ‘skeletal’ structures.
Such structures are assumed to consist of a number of elements joined at points called



6.1 Notation

nodes. The behaviour of each element may be determined by basic methods of structural
analysis and hence the behaviour of the complete structure is obtained by superposition.
Operations such as this are easily carried out by matrix methods as we shall see later
in this chapter.

A more difficult type of structure to idealize is the continuum structure; in this
category are dams, plates, shells and, obviously, aircraft fuselage and wing skins. A
method, extending the matrix technique for skeletal structures, of representing continua
by any desired number of elements connected at their nodes was developed by Clough
et al.* at the Boeing Aircraft Company and the University of Berkeley in California. The
elements may be of any desired shape but the simplest, used in plane stress problems,
are the triangular and quadrilateral elements. We shall discuss the finite element method,
as it is known, in greater detail later.

Initially, we shall develop the matrix stiffness method of solution for simple skeletal
and beam structures. The fundamentals of matrix algebra are assumed.

6.1 Notation

Generally we shall consider structures subjected to forces, Fy 1, Fy 1, F,1,Fx2, Fy2,
Foo,...,Fyn, Fyu, Frp,atnodes 1,2,. .., nat which the displacements are uq, v, wy,
uz, V2, W2, ..., Uy, Uy, wy. The numerical suffixes specify nodes while the algebraic
suffixes relate the direction of the forces to an arbitrary set of axes, x,y,z. Nodal
displacements u, v, w represent displacements in the positive directions of the x, y and z
axes, respectively. The forces and nodal displacements are written as column matrices
(alternatively known as column vectors)

Fia ui
Fy1 V1
F 21 w1
Fyp u
Fy» U2
F:» w2
Fx,n Up
Fy,n Up
Fzn Wn

which, when once established for a particular problem, may be abbreviated to

{F} {3}

The generalized force system { F'} can contain moments M and torques 7 in addition
to direct forces in which case {é} will include rotations 8. Therefore, in referring simply
to a nodal force system, we imply the possible presence of direct forces, moments and
torques, while the corresponding nodal displacements can be translations and rotations.
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For a complete structure the nodal forces and nodal displacements are related through
a stiffness matrix [K]. We shall see that, in general

{F} = [K]{5} (6.1

where [K] is a symmetric matrix of the form

kit ki - ki
Kj= | e 62)
knl kn2 krm

The element k;; (that is the element located on row i and in column j) is known as the
stiffness influence coefficient (note k;j = kj;). Once the stiffness matrix [K] has been
formed the complete solution to a problem follows from routine numerical calculations
that are carried out, in most practical cases, by computer.

6.2 Stiffness matrix for an elastic spring

The formation of the stiffness matrix [K] is the most crucial step in the matrix solution
of any structural problem. We shall show in the subsequent work how the stiffness
matrix for a complete structure may be built up from a consideration of the stiffness of
its individual elements. First, however, we shall investigate the formation of [K] for a
simple spring element which exhibits many of the characteristics of an actual structural
member.

The spring of stiffness k£ shown in Fig. 6.1 is aligned with the x axis and supports
forces F1 and Fy 7 at its nodes 1 and 2 where the displacements are u; and up. We
build up the stiffness matrix for this simple case by examining different states of nodal
displacement. First we assume that node 2 is prevented from moving such that u; = u;
and up =0. Hence

Fy1 = kuy
and from equilibrium we see that

Fx,2 = —Ix] = _kul (63)

which indicates that F, » has become a reactive force in the opposite direction to Fy j.
Secondly, we take the reverse case where #; =0 and u, = u» and obtain

Fyp = kuy = — x1 (6.4)
y
Fy,1 Ui o k o Fe,2 Uz
— 00000000000000/
1 2 X

Fig. 6.1 Determination of stiffness matrix for a single spring.
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By superposition of these two conditions we obtain relationships between the applied
forces and the nodal displacements for the state when u; = u; and uy = up. Thus

Fy1 =kuy — kuy } 6.5)

Fyp = —kuy + kup

Writing Eq. (6.5) in matrix form we have

Fer| _ k —k||u
i) =L ) 6o

and by comparison with Eq. (6.1) we see that the stiffness matrix for this spring
element is

[K] = [_’,j _’,j (6.7)

which is a symmetric matrix of order 2 x 2.

6.3 Stiffness matrix for two elastic springs in line

Bearing in mind the results of the previous section we shall now proceed, initially by a
similar process, to obtain the stiffness matrix of the composite two-spring system shown
in Fig. 6.2. The notation and sign convention for the forces and nodal displacements
are identical to those specified in Section 6.1.

First let us suppose that u; =u; and up =u3 =0. By comparison with the single
spring case we have

Fyi =kauy = —Fy» (6.8)

but, in addition, F 3 =0 since up =u3 =0.
Secondly, we put u; =u3 =0 and up =uy. Clearly, in this case, the movement of
node 2 takes place against the combined spring stiffnesses k, and k. Hence

Fyp = (ka + kp)uz }

6.9
Fy1 = —kauy, Fy3=—kpuo 6.9)

Hence the reactive force Fy 1(=—kau2) is not directly affected by the fact that node 2
is connected to node 3, but is determined solely by the displacement of node 2. Similar
conclusions are drawn for the reactive force Fy 3.

Finally, we set u; = up =0, u3 = u3 and obtain

Fy3 = kpuz = —Fx
Fol =0 (6.10)
Fro u2 y
Fe s ko - ky s s Y
— > 0—— 0009000000000 ——O0—— 0000000000000
1 2 3 X

Fig. 6.2 Stiffness matrix for a two-spring system.
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Superimposing these three displacement states we have, for the condition u; = u1,
Uz =uz, U3z = Uu3
Fri= kauy — kauo
Fyp = —kauy + (ka + ko)uz — kpuz (6.11)
Fy3 = —kpua + kpus
Writing Eqs (6.11) in matrix form gives

Fx,l ka _ka 0 ui
Fx,2 =|—ka ka+ko —kp uz (612)
Fy3 0 —ky kp u3

Comparison of Egs (6.12) with Eq. (6.1) shows that the stiffness matrix [K] of this
two-spring system is

ka _ka 0
[Kl=|—ka ka+ky —kp (6.13)
0 —kp kb

Equation (6.13) is a symmetric matrix of order 3 x 3.

It is important to note that the order of a stiffness matrix may be predicted from a
knowledge of the number of nodal forces and displacements. For example, Eq. (6.7)isa
2 x 2 matrix connecting two nodal forces with two nodal displacements; Eq. (6.13) is
a3 x 3 matrix relating three nodal forces to three nodal displacements. We deduce that
a stiffness matrix for a structure in which # nodal forces relate to n nodal displacements
will be of order n x n. The order of the stiffness matrix does not, however, bear a direct
relation to the number of nodes in a structure since it is possible for more than one force
to be acting at any one node.

So far we have built up the stiffness matrices for the single- and two-spring assemblies
by considering various states of displacement in each case. Such a process would clearly
become tedious for more complex assemblies involving a large number of springs so
that a shorter, alternative, procedure is desirable. From our remarks in the preceding
paragraph and by reference to Eq. (6.2) we could have deduced at the outset of the
analysis that the stiffness matrix for the two-spring assembly would be of the form

kit kio ki3
[K]l= |kt koo ko3 (6.14)
k31 k3o k33

The element kj; of this matrix relates the force at node 1 to the displacement at node
1 and so on. Hence, remembering the stiffness matrix for the single spring (Eq. (6.7))
we may write down the stiffness matrix for an elastic element connecting nodes 1 and
2 in a structure as

[kt ka2 |
K] = 6.15
[ 12] _k21 k22_ ( )
and for the element connecting nodes 2 and 3 as
(koo ko3|
K] = 6.16
[K23] s (6.16)




6.3 Stiffness matrix for two elastic springs in line
In our two-spring system the stiffness of the spring joining nodes 1 and 2 is k, and that

of the spring joining nodes 2 and 3 is k. Therefore, by comparison with Eq. (6.7), we
may rewrite Eqs (6.15) and (6.16) as

Substituting in Eq. (6.14) gives

ka —ka O
K]= | —ka ka+hky —hp
0  —k  k

which is identical to Eq. (6.13). We see that only the k»; term (linking the force at node
2 to the displacement at node 2) receives contributions from both springs. This results
from the fact that node 2 is directly connected to both nodes 1 and 3 while nodes 1 and
3 are each joined directly only to node 2. Also, the elements k13 and k31 of [K] are zero
since nodes 1 and 3 are not directly connected and are therefore not affected by each
other’s displacement.

The formation of a stiffness matrix for a complete structure thus becomes a relatively
simple matter of the superposition of individual or element stiffness matrices. The
procedure may be summarized as follows: terms of the form k;; on the main diagonal
consist of the sum of the stiffnesses of all the structural elements meeting at node i
while off-diagonal terms of the form k;; consist of the sum of the stiffnesses of all the
elements connecting node i to node j.

An examination of the stiffness matrix reveals that it possesses certain properties. For
example, the sum of the elements in any column is zero, indicating that the conditions
of equilibrium are satisfied. Also, the non-zero terms are concentrated near the leading
diagonal while all the terms in the leading diagonal are positive; the latter property
derives from the physical behaviour of any actual structure in which positive nodal
forces produce positive nodal displacements.

Further inspection of Eq. (6.13) shows that its determinant vanishes. As a result the
stiffness matrix [K] is singular and its inverse does not exist. We shall see that this means
that the associated set of simultaneous equations for the unknown nodal displacements
cannot be solved for the simple reason that we have placed no limitation on any of the
displacements u1, u> or u3. Thus the application of external loads results in the system
moving as a rigid body. Sufficient boundary conditions must therefore be specified
to enable the system to remain stable under load. In this particular problem we shall
demonstrate the solution procedure by assuming that node 1 is fixed, i.e. u; =0.

The first step is to rewrite Eq. (6.13) in partitioned form as

a ka O
Fx,l ........................ uy = 0
Fypp = . u (6.18)
F.3 —ka ky+ky  —kp s

0 —kp ky

In Eq. (6.18) Fy is the unknown reaction at node 1, u; and u are unknown nodal
displacements, while Fy > and Fy 3 are known applied loads. Expanding Eq. (6.18) by
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matrix multiplication we obtain

_ u Feol _ |kat+hke —ko|)uz
e of) - 2 e

Inversion of the second of Eqs (6.19) gives u> and u3 in terms of Fyp and F 3.
Substitution of these values in the first equation then yields Fy .

Thus
w| _ |kat+ke —kp 1 Fea
us| | —ko k Fy3
ur| _ | 1/ka 1/ka Fio
us 1/ka 1/kp + 1/ka | | Fx3

_ 1/k, 1/k, Fi2
{Fr1} =[—ka 0] [l/ka 1/ky + l/ka] {Fx,3}

or

Hence

which gives
Fx,l = - x,Z_Fx,3

as would be expected from equilibrium considerations. In problems where reactions are
not required, equations relating known applied forces to unknown nodal displacements
may be obtained by deleting the rows and columns of [K] corresponding to zero dis-
placements. This procedure eliminates the necessity of rearranging rows and columns
in the original stiffness matrix when the fixed nodes are not conveniently grouped
together.

Finally, the internal forces in the springs may be determined from the force—
displacement relationship of each spring. Thus, if S is the force in the spring joining
nodes 1 and 2 then

Sa = ka(uo — uy)

Similarly for the spring between nodes 2 and 3

Sp = kp(uz — up)

6.4 Matrix analysis of pin-jointed frameworks

The formation of stiffness matrices for pin-jointed frameworks and the subsequent
determination of nodal displacements follow a similar pattern to that described for a
spring assembly. A member in such a framework is assumed to be capable of carrying
axial forces only and obeys a unique force—deformation relationship given by

AE

F=—§
L
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X, U
/‘J‘ﬁ v Fy,/'t Fai /
I/
Y
Fri == =—=0 o X, u
Y
Fy,i 1Fy,

Fig. 6.3 Local and global coordinate systems for a member of a plane pin-jointed framework.

where F is the force in the member, § its change in length, A its cross-sectional area,
L its unstrained length and E its modulus of elasticity. This expression is seen to be
equivalent to the spring—displacement relationships of Eqs (6.3) and (6.4) so that we
may immediately write down the stiffness matrix for a member by replacing k by AE/L
in Eq. (6.7). Thus

[ AE/L —AEJL
(K] = [—AE/L AE/L]
or
AE| 1 -1
K1= "7 [_1 1} (6.20)

so that for a member aligned with the x axis, joining nodes i and j subjected to nodal
forces F); and Fy ;, we have

Foil _AE| 1 —1|]u
=T 1 ) 621

The solution proceeds in a similar manner to that given in the previous section for a
spring or spring assembly. However, some modification is necessary since frameworks
consist of members set at various angles to one another. Figure 6.3 shows a member
of a framework inclined at an angle 6 to a set of arbitrary reference axes x,y. We
shall refer every member of the framework to this global coordinate system, as it is
known, when we are considering the complete structure but we shall use a member or
local coordinate system x, y when considering individual members. Nodal forces and
displacements referred to local coordinates are written as F, i etc. so that Eq. (6.21)
becomes, in terms of local coordinates

Fil Ae| 1 —1|[w
) o (6.22)
{Fx,j} L [_1 J {“f}

where the element stiffness matrix is written [K_,j].
In Fig. 6.3 external forces Fy; and F, ; are applied to nodes i and j. It should
be noted that Fy;, and Fy j, do not exist since the member can only support axial
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forces. However, K and ﬁ] have components Fy;, Fy; and Fy;, Fy; respectively,
so that, whereas only two force components appear for the member in terms of local
coordinates, four components are present when global coordinates are used. Therefore,
if we are to transfer from local to global coordinates, Eq. (6.22) must be expanded to
an order consistent with the use of global coordinates, i.e.

Fui 10 -1 07 (w
Fal _AE| 0 0 o0 of]w
FA= T =10 1 o0|lg (6.23)
F,, 00 o olly

Equation (6.23) does not change the basic relationship between F, ;, Fy j and %;, u; as
defined in Eq. (6.22).
From Fig. 6.3 we see that

Fy;=Fy;cosf + Fy;sin0
Fy;= —Fy;sin0+ Fy;cos®
and
Fyj=Fyjcosf+Fysind
m = —Fy jsinf + F) jcosf

Writing A for cos 8 and u for sin 8 we express the above equations in matrix form as

Fui Ao 0 07 (Fu
Fy,i —Mn A 0 O Fy,i
Fyj 0 O A Fyj (6.24)
Fy,] 0 0 —u A Fy,j
or, in abbreviated form
{F} = [T{F} (6.25)

where [T] is known as the transformation matrix. A similar relationship exists between
the sets of nodal displacements. Thus, again using our shorthand notation

{8} = [TI{3) (6.26)
Substituting now for {F} and {8} in Eq. (6.23) from Eqgs (6.25) and (6.26), we have
[THF} = [K][T){3}

Hence
(Fy = [T KT (3) 6.27)
It may be shown that the inverse of the transformation matrix is its transpose, i.e.
(7" =171

Thus we rewrite Eq. (6.27) as
{F} = [TI"[KZI[TI{S) (6.28)
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The nodal force system referred to global coordinates, { F'} is related to the correspond-
ing nodal displacements by
{F} = [K;){8} (6.29)

where [Kj;] is the member stiffness matrix referred to global coordinates. Comparison
of Eqgs (6.28) and (6.29) shows that

[K;j] = [T1"[K;1IT]
Substituting for [T] from Eq. (6.24) and [K_ij] from Eq. (6.23), we obtain

A A =A% —au
AE | i p? - —p?
L | =22 —xu A2

—a —pt A

(K] = (6.30)

By evaluating A(= cos #) and (= sin 6) for each member and substituting in Eq. (6.30)
we obtain the stiffness matrix, referred to global coordinates, for each member of the
framework.

In Section 6.3 we determined the internal force in a spring from the nodal displace-
ments. Applying similar reasoning to the framework member we may write down an
expression for the internal force S;; in terms of the local coordinates. Thus

AE
S,‘j = —(Mj — Uj (631)
L
Now
uj = Auj + v
u; = Auj + (Lv;
Hence

uj — i = Muj — up) + pn(vj — vi)
Substituting in Eq. (6.31) and rewriting in matrix form, we have

Sij = AE [k “] {”f U } (6.32)

L T

Example 6.1

Determine the horizontal and vertical components of the deflection of node 2 and the
forces in the members of the pin-jointed framework shown in Fig. 6.4. The product AE
is constant for all members.

We see in this problem that nodes 1 and 3 are pinned to a fixed foundation and are
therefore not displaced. Hence, with the global coordinate system shown

uy=vy=uz3=v3 =20

The external forces are applied at node 2 such that F, » =0, F » = —W; the nodal forces
at 1 and 3 are then unknown reactions.
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Fig. 6.4 Pin-jointed framework of Example 6.1.

The first step in the solution is to assemble the stiffness matrix for the complete
framework by writing down the member stiffness matrices referred to the global coord-
inate system using Eq. (6.30). The direction cosines A and u take different values
for each of the three members, therefore remembering that the angle 6 is measured
anticlockwise from the positive direction of the x axis we have the following:

Member 0 A "w
1-2 0 1 0
1-3 90 0 1

2-3 135 —1//2 12

The member stiffness matrices are therefore

1 0 -1 0 0O 0 0 o0
AE 0 0 0 0 AE | 0 1 0 —1
0 0 0 0 0 -1 0 1
-1 1 _1 L7
2 2 2 2
1 1 1 1
AE —2 2 2 72
[K23] = —( (i)
1 1 1 1
V2L 2 2 2 T2
L1 _1 1
L 2 2 2 2

The next stage is to add the member stiffness matrices to obtain the stiffness matrix for
the complete framework. Since there are six possible nodal forces producing six possible



6.4 Matrix analysis of pin-jointed frameworks

nodal displacements the complete stiffness matrix is of the order 6 x 6. Although the
addition is not difficult in this simple problem care must be taken, when solving more
complex structures, to ensure that the matrix elements are placed in the correct position
in the complete stiffness matrix. This may be achieved by expanding each member
stiffness matrix to the order of the complete stiffness matrix by inserting appropriate
rows and columns of zeros. Such a method is, however, time and space consuming. An
alternative procedure is suggested here. The complete stiffness matrix is of the form
shown in Eq. (ii)

Frq 17
Fyq U]
Y, T b T T r M
kil kil Tzl
Fyp L i e | JH2 .
= | ko1l Tkt Tkos > (i)
Fyo s o= Y2
k31l k3l k33l
Fy3 u3
Fy,3 v3

The complete stiffness matrix has been divided into a number of submatrices in which
[k11] is a 2 x 2 matrix relating the nodal forces F 1, Fy,; to the nodal displacements
u1, v1 and so on. It is a simple matter to divide each member stiffness matrix into
submatrices of the form [k1], as shown in Egs (iii). All that remains is to insert each
submatrix into its correct position in Eq. (ii), adding the matrix elements where they
overlap; for example, the [k;1] submatrix in Eq. (ii) receives contributions from [K/2]
and [Kj3]. The complete stiffness matrix is then of the form shown in Eq. (iv). It
is sometimes helpful, when considering the stiffness matrix separately, to write the
nodal displacement above the appropriate column (see Eq. (iv)). We note that [K] is
symmetrical, that all the diagonal terms are positive and that the sum of each row and
column is zero

R 01 -l 0%
P ko b ki
AE| 10 of 10 01
K S L - L -
el =7 07 1 07
i kot o ko
L0 0; 10 0.
r0 07 10 (O
ok b ks
A | L0 i 10 -1
[Kisl=—| _ .- . (iii)
L 170 07 10 07
Pk b ks
{0 A L}
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rol 17 r 17
) 201 2 2!
! 9% b k23 !
o1 11 1
AE |1 2 20 L 2 T2
K»] = —
Kasl =5, ol 1771 17
) 201 2 2!
! k32 b k33 !
Pl 1y 1 1
L2 24 L2 24
ur v u (%) u3 v3
10 1 0 0 0 7
0 1 0 0 0 —1
Fy Lo 1s 1 1 1 1
Fy 2V2 22 22 V2
Fyo _A_E 0 0 1 1 1 1
}7‘y - J— [ —
F>’§ L W2 22 22 22
x, 1 1 1 1
Fy3 0 — P
! W2 22 22 272
1 1 1 1
0 —1 _ - 1+ ——
L 22 22 22 242

(1ii)

(iv)

If we now delete rows and columns in the stiffness matrix corresponding to zero
displacements, we obtain the unknown nodal displacements u; and v, in terms of the

applied loads Fy> (=0) and F) > (= —W). Thus

1 1
I+— —-——=
Foo| _ AE 2V2 22| |w
Fy’z - L 1 1 V2
V2 2V2
Inverting Eq. (v) gives
w| _ L1 1 1%
V2 AE |1 1+ 2\/5 Fy,z
from which
= L (Pt Fr) = —ox
= QT I =T

L WL
= —|[F 14+ 22)Fy o] = ———(1 + 242
vy = —lFeo + (1 + V2)Fy ] yVoihs V2)

(vi)

(vii)

(viii)



6.5 Application to statically indeterminate frameworks

The reactions at nodes 1 and 3 are now obtained by substituting for u, and v, from

Eq. (vi) into Eq. (iv). Thus

-1 0
Fr1 0 0
Fal _ S S 1 1 Fyp
Foa| 7| 2v2  2v2 [ |1 1+42V2] | Fe2
Fy3 1 1
L 2v2 2v2]
—1 -1
_ 0 Of |Fx2
- 0 1 Fy»
. 0 —1

giving

Fx,lz_Fx,Z_Fy,ZZW

Fy1=0
Fiz=Fy,=-W
Fy3=W

Finally, the forces in the members are found from Eqs (6.32), (vii) and (viii)

AE -
S = T[l 0] {zi _ z:} = —W (compression)

AE

_ = uz —up| _
Si13 = I [0 1] {v3 . Ul} = 0 (as expected)
AE [ 1 10 |uy— uz} ,
S=—F—|—""F% —&= = +/2W (tension)
: ﬁL[ NG ﬁ”va—vz

6.5 Application to statically indeterminate frameworks

The matrix method of solution described in the previous sections for spring and pin-
jointed framework assemblies is completely general and is therefore applicable to any
structural problem. We observe that at no stage in Example 6.1 did the question of the
degree of indeterminacy of the framework arise. It follows that problems involving stat-
ically indeterminate frameworks (and other structures) are solved in an identical manner
to that presented in Example 6.1, the stiffness matrices for the redundant members being
included in the complete stiffness matrix as before.
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6.6 Matrix analysis of space frames

The procedure for the matrix analysis of space frames is similar to that for plane pin-
jointed frameworks. The main difference lies in the transformation of the member
stiffness matrices from local to global coordinates since, as we see from Fig. 6.5, axial
nodal forces Fy; and Fy ; have each now three global components F ;, Fy;, F.; and
Fy j, Fy j, F, j, respectively. The member stiffness matrix referred to global coordinates
is therefore of the order 6 x 6 so that [K;;] of Eq. (6.22) must be expanded to the same
order to allow for this. Hence

|
NC |

co~, oo ~S

F—AE 6.33
[lj]_T ( )

cCo—o o ==
cocooccoo

coocococog
cCooco oo
ooooooéI

In Fig. 6.5 the member ij is of length L, cross-sectional area A and modulus of elas-
ticity E. Global and local coordinate systems are designated as for the two-dimensional
case. Further, we suppose that

0,z = angle between x and x

0xy = angle between x and y

0,3 = angle between z and y

»v

=I
<|

i
<l

e

X, U

Zw
zZ, w

Fig. 6.5 Local and global coordinate systems for a member in a pin-jointed space frame.
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Therefore, nodal forces referred to the two systems of axes are related as follows

e

y = Fy cos Oz + Fy cos Oy5 + F; cOs 0,7
= F cos Oz + Fycos O3 + F, cos 0z
. = Fycos O + F) cos 05 + F, cos 0z

3.2

Writing

Az = cosbyz, Ay =cC0s0yy, Az = COS0yz

Miz = cosByz, Uy = CO8by;, [z = COSOy;

Vi = CO080x, Vy =080z, vz =C0S0;

we may express Eq. (6.34) for nodes i and j in matrix form as

E _)\.)_C Mx Vx 0 0 0 7 Fx,l
Fy,i )»y My vy 0 0 0 Fy,i
Fgil |2 wz vz 0 0 O Fri
Foil {0 0 0 X wpzx vel|Frj
Fy; 0 0 0 Ay puy vyl |Fyj
F; L0 0 0 Az wuz vz |Fzj
or in abbreviated form
{F} = [TF}

(6.34)

(6.35)

(6.36)

The derivation of [Kj;] for a member of a space frame proceeds on identical lines to

that for the plane frame member. Thus, as before
[Ky] = [TT'[KHIT]

Substituting for [7'] and [Kij] from Eqs (6.36) and (6.33) gives

[ A2 Ae o kave —AE —haus
Axlz n2 HxVz Aspy  —ul
Kyl = AE )»xv;‘c MxVx v2 —A;;v; — UV
L =\ —Azdx  —Azvx A% Agli
—Ax Mz —M,% —MUxVi  AgMx M,%
| —AxVi  —Hiv: — U,% Az Vs MxVx

(6.37)
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All the suffixes in Eq. (6.37) are x so that we may rewrite the equation in simpler form,

namely
22 : SYM
A p?
AE AV uv 2o
[KGj] = = | oveeeee e (6.38)

| A —pv =2 D Ay 2 _
where A, u and v are the direction cosines between the x, y, z and x axes, respectively.

The complete stiffness matrix for a space frame is assembled from the member
stiffness matrices in a similar manner to that for the plane frame and the solution
completed as before.

6.7 Stiffness matrix for a uniform beam

Our discussion so far has been restricted to structures comprising members capable
of resisting axial loads only. Many structures, however, consist of beam assemblies in
which the individual members resist shear and bending forces, in addition to axial loads.
We shall now derive the stiffness matrix for a uniform beam and consider the solution
of rigid jointed frameworks formed by an assembly of beams, or beam elements as they
are sometimes called.

Figure 6.6 shows a uniform beam ij of flexural rigidity EI and length L subjected
to nodal forces Fy;, Fy ; and nodal moments M;, M; in the xy plane. The beam suffers
nodal displacements and rotations v;, v; and 6;, 6;. We do not include axial forces here
since their effects have already been determined in our investigation of pin-jointed
frameworks.

The stiffness matrix [K;;] may be built up by considering various deflected states for
the beam and superimposing the results, as we did initially for the spring assemblies

y

T
M)

4

,\O
/‘
—-»0
S
> ¥

Fy,is Vi Rin Y

Fig. 6.6 Forces and moments on a beam element.
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of Figs 6.1 and 6.2 or, alternatively, it may be written down directly from the well-
known beam slope—deflection equations.> We shall adopt the latter procedure. From
slope—deflection theory we have

6E] 4E1 6E] 2EI

i:_Fvi+Tei+ij+T /j (639)
and
6EI 2EI 6EI 4EI
Also, considering vertical equilibrium we obtain
Fyi+F,;=0 (6.41)
and from moment equilibrium about node j we have
FyiL+M;+M; =0 (6.42)
Hence the solution of Eqgs (6.39)-(6.42) gives
12E1 6EI 12E1 6E]
—Fy,i =Fy;= _?Ui+7'9i+?vj+79j (6.43)
Expressing Eqs (6.39), (6.40) and (6.43) in matrix form yields
Fyi 12/L3  —6/L* —12/L3 —6/L*] (v;
M; | _ —6/L>  4/L 6/L? 2/L 6;
Fyil ™~ El —12/L3 6/L> 12/L°>  6/L? vj (6.44)
M; —6/L>  2/L 6/L? 4/L 6;

which is of the form
{F} = [K;;]{3}

where [Kj;] is the stiffness matrix for the beam.
It is possible to write Eq. (6.44) in an alternative form such that the elements of [Kj;]
are pure numbers. Thus

Fy,,' 12 -6 —-12 -6 v
ML\ _EI| -6 4 6 2|]6L
Fy [T3|-12 6 12 6]y
M;/L -6 2 6 4]leL

This form of Eq. (6.44) is particularly useful in numerical calculations for an assemblage
of beams in which EI/L? is constant.

Equation (6.44) is derived for a beam whose axis is aligned with the x axis so that
the stiffness matrix defined by Eq. (6.44) is actually [K_ij] the stiffness matrix referred
to a local coordinate system. If the beam is positioned in the xy plane with its axis
arbitrarily inclined to the x axis then the x and y axes form a global coordinate system
and it becomes necessary to transform Eq. (6.44) to allow for this. The procedure
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is similar to that for the pin-jointed framework member of Section 6.4 in that [K_ij]
must be expanded to allow for the fact that nodal displacements u; and u;, which are
irrelevant for the beam in local coordinates, have components u;, v; and u;, v; in global

coordinates. Thus

uj; Vi 9,’ Uj vj Qj
0 0 0 0 0 0
0 12/L* —6/L> 0 —12/L* —6/L?
[Kjl=EI |0 —6/L* 4/L 0 6/L? 2/L (6.45)
0 0 0 0 0 0
0 —12/L> 6/L*> 0 12/ 6/L?
|0 —6/L*  2/L 0 6/L? 4/L |

We may deduce the transformation matrix [7] from Eq. (6.24) if we remember that
although u and v transform in exactly the same way as in the case of a pin-jointed
member the rotations 6 remain the same in either local or global coordinates.

Hence

A px 0 0 00
—n A 0 0 0 0
0 01 0 0 0

1= 0 0 0 1 u 0 (6.46)
0 0 0 —u » O
0 00 0 0 1

where A and u have previously been defined. Thus since
[K;j] = [TT'[K1IT] (see Section 6.4)

we have, from Eqs (6.45) and (6.46)

[ 1202/L3 SYM |
—12xp/L3  122%/L3
6/1/L? —6A/L? 4/L
Kyl = EI —12u%/13  12ap/L3  —6u/L*  12u%/L3
12au/L3  —120%/L%  6A/L* —12au/L? 122%/L3
6/1/L? —6A/L? 2/L 6/1/L? 6A/L>  4A/L
(6.47)

Again the stiffness matrix for the complete structure is assembled from the member
stiffness matrices, the boundary conditions are applied and the resulting set of equations
solved for the unknown nodal displacements and forces.

The internal shear forces and bending moments in a beam may be obtained in terms
of the calculated nodal displacements. Thus, for a beam joining nodes i and j we shall
have obtained the unknown values of v;, 6; and vj, 6;. The nodal forces Fy; and M; are
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Fig. 6.7 Idealization of a beam into beam—elements.

then obtained from Eq. (6.44) if the beam is aligned with the x axis. Hence

12 6 12 6
Fra=El\ zvi— %~ v~ 2%
(6.48)

6 4 6 2
M; = EI v + Zei + 2y + ZQ/

Similar expressions are obtained for the forces at node j. From Fig. 6.6 we see that the
shear force Sy, and bending moment M in the beam are given by

Sy =Fy;
(6.49)
M = Fy’,'x + M;
Substituting Eq. (6.48) into Eq. (6.49) and expressing in matrix form yields
12 6 12 6 v
Sl _ 3 12 v 12 0i
{A/y;} =El1p" 6 67 4 1276 6 2|y ©O
X x+—= ——=x+-— J

[ R S+ R R > ol B U

The matrix analysis of the beam in Fig. 6.6 is based on the condition that no external
forces are applied between the nodes. Obviously in a practical case a beam supports
a variety of loads along its length and therefore such beams must be idealized into
a number of beam—elements for which the above condition holds. The idealization
is accomplished by merely specifying nodes at points along the beam such that any
element lying between adjacent nodes carries, at the most, a uniform shear and a linearly
varying bending moment. For example, the beam of Fig. 6.7 would be idealized into
beam—elements 1-2, 2-3 and 3—4 for which the unknown nodal displacements are
v2,6h,03,v4 and 64 (v =0] =v3 =0).

Beams supporting distributed loads require special treatment in that the distributed
load is replaced by a series of statically equivalent point loads at a selected number of
nodes. Clearly the greater the number of nodes chosen, the more accurate but more
complicated and therefore time consuming will be the analysis. Figure 6.8 shows a
typical idealization of a beam supporting a uniformly distributed load. Details of the
analysis of such beams may be found in Martin.*

Many simple beam problems may be idealized into a combination of two beam—
elements and three nodes. A few examples of such beams are shown in Fig. 6.9. If
we therefore assemble a stiffness matrix for the general case of a two beam—element
system we may use it to solve a variety of problems simply by inserting the appropriate
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Fig. 6.8 Idealization of a beam supporting a uniformly distributed load.

D—
[N

=

Fig. 6.9 Idealization of beams into beam—elements.
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Fig. 6.10 Assemblage of two beam—elements.

loading and support conditions. Consider the assemblage of two beam—elements shown
in Fig. 6.10. The stiffness matrices for the beam—elements 1-2 and 2-3 are obtained
from Eq. (6.44); thus

V1 01 v )
[T 12/L3 —6/Ly7 T—12/L] —6/L7"]
! k11 P k12 !
[Ki2] = El, L_6/L§ 4/Laj | 6/L; 2/La | (6.51)
F—12/L3 6/Ly7  T12/L] 6/Ly
i ) ko i i , k2o i
|1 —6/L2 2/Ly i 1 6/L 4/L, !
V2 02 U3 03
[T 12/L3 —6/Ly 1 [ —12/Ly —6/L3
! k2 P ka3 !
[Kas] = Ely | L6/L5 Lol | 6/LG 2Lo i | (652
F—12/L; 6/l T12/13 6/Lg
| k32 L k33 |
| -6/ 2Ly 1 6/LG 4/Ly |
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The complete stiffness matrix is formed by superimposing [K;] and [K73] as described
in Example 6.1. Hence

- 12, 6l 121, 61, -
R 2 R 0 0
L] L3 L L3
61, 41 6l 21
__2“ -2 8 -4 0 0
2 I 12 L
121 61 1. I 1. I 121 61
% % on(he) o(5-3) -2 -2
[ K] —FE La La La Lb La Lb Lb Lb
6l, 2, Lk L I 6y 21
A z-72) \ot) 7 o
L2 L L2 12 L, ' Ly 2 L
121 6l 12, 6l
0 0 —73 = 3 2
L % 5
6l 20 6ly 4l
0 0 —77 - = 7
i L Ly Ly Lv |

(6.53)

Example 6.2
Determine the unknown nodal displacements and forces in the beam shown in Fig. 6.11.
The beam is of uniform section throughout.

The beam may be idealized into two beam—elements, 1-2 and 2-3. From Fig. 6.11 we
see that v; =v3 =0, F,» =—W, M, =+M. Therefore, eliminating rows and columns
corresponding to zero displacements from Eq. (6.53), we obtain

Fyy=—W 27/2L3 9/2L* 6/L*> —3/2L>7 (v,
My =M o 9/2L> 6/L 2/L 1/L 6, ,
Mi=0 [~ 6/L> 2/L 4L 0 o1 ©
M3 =0 —3/2L7 1/L 0 2/L 03

w

L M ;
VARG yAS
N

4 L 'i‘ 2L

Fig. 6.11 Beam of Example 6.2.
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Equation (i) may be written such that the elements of [K] are pure numbers

Fyo=—W 27 9 12 -3 (w

myL=m/L| E| 9 12 4 2||eL iy
Mi/L=0 (T23|12 4 8 o0|)aL (i)
Ms/L =0 3 2 0 4] lest

Expanding Eq. (ii) by matrix multiplication we have

-W EI ([27 9] [ w 12 =31 (6L
{M/L :ﬁ<_9 12} {02L}+|:4 2} {93L}> (i)
0 El (T12 4] (v 8 0] (6L .
o =2 (5 Lot =[5 &) {oc))

Equation (iv) gives
01L - V2
{03L} = [_ } {GQL} )

Substituting Eq. (v) in Eq. (iii) we obtain

w| L[-4 =2][-w :
0L = omr |—2 3| \M/L Vi)

from which the unknown displacements at node 2 are

and

Bl W
(ST ST

4WL>  2ML?
>~ 79 E 9 El
gy 22 1ML
9 EI 3 EI
In addition, from Eq. (v) we find that
SWL> 1ML
O =-——+_-—
9 EI 6 EI
g AW 1ML
9 EI 3 EI

It should be noted that the solution has been obtained by inverting two 2 x 2 matrices
rather than the 4 x 4 matrix of Eq. (ii). This simplification has been brought about by
the fact that M} = M3 =0.

The internal shear forces and bending moments can now be found using Eq. (6.50).
For the beam—element 1-2 we have

12 6 12 6
Sy’lz =El| vy — —=6; — sz — 1792
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or

and

126 6 4
Mp=El|| zx—z)ut(—zx+7)o0

12 6 6 2
+ —EX—FE vy + —EX-FZ )

which reduces to

6.8 Finite element method for continuum structures

In the previous sections we have discussed the matrix method of solution of structures
composed of elements connected only at nodal points. For skeletal structures consisting
of arrangements of beams these nodal points fall naturally at joints and at positions of
concentrated loading. Continuum structures, such as flat plates, aircraft skins, shells
etc., do not possess such natural subdivisions and must therefore be artificially idealized
into a number of elements before matrix methods can be used. These finite elements,
as they are known, may be two- or three-dimensional but the most commonly used are
two-dimensional triangular and quadrilateral shaped elements. The idealization may
be carried out in any number of different ways depending on such factors as the type
of problem, the accuracy of the solution required and the time and money available.
For example, a coarse idealization involving a small number of large elements would
provide a comparatively rapid but very approximate solution while a fine idealization
of small elements would produce more accurate results but would take longer and
consequently cost more. Frequently, graded meshes are used in which small elements
are placed in regions where high stress concentrations are expected, for example around
cut-outs and loading points. The principle is illustrated in Fig. 6.12 where a graded
system of triangular elements is used to examine the stress concentration around a
circular hole in a flat plate.

Although the elements are connected at an infinite number of points around their
boundaries it is assumed that they are only interconnected at their corners or nodes.
Thus, compatibility of displacement is only ensured at the nodal points. However, in
the finite element method a displacement pattern is chosen for each element which may
satisfy some, if not all, of the compatibility requirements along the sides of adjacent
elements.

Since we are employing matrix methods of solution we are concerned initially with
the determination of nodal forces and displacements. Thus, the system of loads on
the structure must be replaced by an equivalent system of nodal forces. Where these
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Fig. 6.12 Finite element idealization of a flat plate with a central hole.

loads are concentrated the elements are chosen such that a node occurs at the point of
application of the load. In the case of distributed loads, equivalent nodal concentrated
loads must be calculated.*

The solution procedure is identical in outline to that described in the previous sec-
tions for skeletal structures; the differences lie in the idealization of the structure into
finite elements and the calculation of the stiffness matrix for each element. The latter
procedure, which in general terms is applicable to all finite elements, may be specified
in a number of distinct steps. We shall illustrate the method by establishing the stiffness
matrix for the simple one-dimensional beam—element of Fig. 6.6 for which we have
already derived the stiffness matrix using slope—deflection.

6.8.1 Stiffness matrix for a beam—-element

The first step is to choose a suitable coordinate and node numbering system for the
element and define its nodal displacement vector {5°} and nodal load vector { F¢}. Use
is made here of the superscript e to denote element vectors since, in general, a finite
element possesses more than two nodes. Again we are not concerned with axial or shear
displacements so that for the beam—element of Fig. 6.6 we have

v; Fyi
0; M;
{56} — 1 {Fe} — l
vj Fy,
0 M;

Since each of these vectors contains four terms the element stiffness matrix [K®] will
be of order 4 x 4.

In the second step we select a displacement function which uniquely defines the
displacement of all points in the beam—element in terms of the nodal displacements.
This displacement function may be taken as a polynomial which must include four
arbitrary constants corresponding to the four nodal degrees of freedom of the element.
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Thus
v(x) = a1 + apx + a3x2 + a4x3 (6.54)

Equation (6.54) is of the same form as that derived from elementary bending theory
for a beam subjected to concentrated loads and moments and may be written in matrix
form as

o]
o) =11 x o 17 02
o4
or in abbreviated form as
{v)} = [f(O) N} (6.55)

The rotation 6 at any section of the beam—element is given by dv/dx; therefore
0 = s + 203x + 3aux’ (6.56)

From Eqgs (6.54) and (6.56) we can write down expressions for the nodal displacements
v;,0; and v;, 0; at x =0 and x = L, respectively. Hence

Vi = o
?1; z 221 + oL + a3L? + ayl? (6.57)
6 = az + 2a3L + 3a4L?
Writing Eqs (6.57) in matrix form gives
v; 1 0 0 O o]
szl e e 639
6; 0 1 2L 32| lw
or
{6} = [Ala} (6.59)

The third step follows directly from Eqs (6.58) and (6.55) in that we express the
displacement at any point in the beam—element in terms of the nodal displacements.
Using Eq. (6.59) we obtain

{a} = [A71]{8°%) (6.60)

Substituting in Eq. (6.55) gives

o)} = [FIAT(5) (6.61)
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where [A!] is obtained by inverting [A] in Eq. (6.58) and may be shown to be
given by

1 0 0 0

0 1 0 0
-3/L> —2/L 3/L*> —1/L
2/L  1/L> —2/L3 1/L?

A~ = (6.62)

In step four we relate the strain {e(x) } at any point x in the element to the displacement
{v(x)} and hence to the nodal displacements {5¢}. Since we are concerned here with
bending deformations only we may represent the strain by the curvature 8>v/dx>. Hence
from Eq. (6.54)

9%
—5 = 2a3 + 6a4x (6.63)
x
or in matrix form
o]
_ a2
{e} =10 0 2 6x] o (6.64)
(o2}
which we write as
{e} = [CHo} (6.65)
Substituting for {«} in Eq. (6.65) from Eq. (6.60) we have
{e} = [ClIA™"1{s°) (6.66)

Step five relates the internal stresses in the element to the strain {¢} and hence, using
Eq. (6.66), to the nodal displacements {§¢}. In our beam—element the stress distribution
at any section depends entirely on the value of the bending moment M at that section.
Thus we may represent a ‘state of stress’ {o } at any section by the bending moment M,
which, from simple beam theory, is given by

9%v
M =El—
ax2
or
{o} = [Ell{e} (6.67)
which we write as
{o} = [DN{e} (6.68)

The matrix [D] in Eq. (6.68) is the ‘elasticity’ matrix relating ‘stress’ and ‘strain’. In
this case [D] consists of a single term, the flexural rigidity EI of the beam. Generally,
however, [D] is of a higher order. If we now substitute for {e} in Eq. (6.68) from Eq.
(6.66) we obtain the ‘stress’ in terms of the nodal displacements, i.e.

{o} = [DI[CNIA~"1{5) (6.69)
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The element stiffness matrix is finally obtained in step six in which we replace the
internal ‘stresses’ {0 } by astatically equivalent nodal load system { F°}, thereby relating
nodal loads to nodal displacements (from Eq. (6.69)) and defining the element stiffness
matrix [K€]. This is achieved by employing the principle of the stationary value of the
total potential energy of the beam (see Section 5.8) which comprises the internal strain
energy U and the potential energy V of the nodal loads. Thus

1 T e\T e
U+V = 5/ {e}" {o}d(vol) — {5} {F*} (6.70)
vol
Substituting in Eq. (6.70) for {e} from Eq. (6.66) and {o} from Eq. (6.69) we have
U+V= % / 1{(S‘f}T[A—‘JT[C]T[D][C][A“]{ae}ci(vol) - Fy (67D

The total potential energy of the beam has a stationary value with respect to the nodal
displacements {8°}”; hence, from Eq. (6.71)

% = / } [A~'1' [T [DICIA™'1{6%}d(vol) — {F} = 0 (6.72)
whence
(F) = [ / | [C]T[A_I]T[D][C][A_l]d(vol)} (%) 6.73)
or writing [C][A~!] as [B] we obtain
{Fe} = [ / . [B]"[D] [B]d(vol)} {6} (6.74)
from which the element stiffness matrix is clearly
[K°] = [ / B1'(D) [B]d(vol)} (6.75)
From Eqgs (6.62) and (6.64) we have )
1 0 0 0
0 1 0 0

BI=[CHATT=10 0 2 61| 300 5y 352 1

2/L  1/L> —2/L% 1/L?

or

6 12x7]

T
4 6x

B =| 1’51 (6.76)

23
2 6x

Az
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Hence
6 12x 7]
ZANE
4  6x
— Ll =172 o8 124 66 12 2 6],
- 0 6 12x LZ L3 L L2 L2 L3 L L2 X
2 L3
2 n 6x
L 1?2 _
which gives
12 —-6L —12 —6L
EI | — 2 2
(K°] = 6L 4L 6L 2L 6.77)

13| —12 6L 12 6L
—6L 2L* 6L 42

Equation (6.77) is identical to the stiffness matrix (see Eq. (6.44)) for the uniform beam
of Fig. 6.6.

Finally, in step seven, we relate the internal ‘stresses’, {o}, in the element to the
nodal displacements {8°}. This has in fact been achieved to some extent in Eq. (6.69),
namely

{o} = [DI[CIA™"1{8°)
or, from the above
{o} = [D][BI{5°} (6.78)

Equation (6.78) is usually written
{o} = [H{5°} (6.79)

in which [H]=[D][B] is the stress—displacement matrix. For this particular beam—
element [D] = EI and [B] is defined in Eq. (6.76). Thus

6 12 4 6x 6 12 6
a o a +—x] (6.80)

2
H =El|-— + — ——4— ——— _Z
L1 [L2+L3 LT L' 12

6.8.2 Stiffness matrix for a triangular finite element

Triangular finite elements are used in the solution of plane stress and plane strain
problems. Their advantage over other shaped elements lies in their ability to represent
irregular shapes and boundaries with relative simplicity.

In the derivation of the stiffness matrix we shall adopt the step by step procedure
of the previous example. Initially, therefore, we choose a suitable coordinate and node
numbering system for the element and define its nodal displacement and nodal force
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Fig. 6.13 Triangular element for plane elasticity problems.

vectors. Figure 6.13 shows a triangular element referred to axes Oxy and having nodes
i,j and k lettered anticlockwise. It may be shown that the inverse of the [A] matrix for
a triangular element contains terms giving the actual area of the element; this area is
positive if the above node lettering or numbering system is adopted. The element is
to be used for plane elasticity problems and has therefore two degrees of freedom per
node, giving a total of six degrees of freedom for the element, which will result in a
6 x 6 element stiffness matrix [K°¢]. The nodal forces and displacements are shown and
the complete displacement and force vectors are

u; Fyi
v; Fy,,'
Uj Fuj
(6%} = (F®} = (6.81)
vj Fy,j
U Fyk
Uk Fyk

We now select a displacement function which must satisfy the boundary conditions
of the element, i.e. the condition that each node possesses two degrees of freedom.
Generally, for computational purposes, a polynomial is preferable to, say, a trigono-
metric series since the terms in a polynomial can be calculated much more rapidly by
a digital computer. Furthermore, the total number of degrees of freedom is six, so that
only six coefficients in the polynomial can be obtained. Suppose that the displacement
function is

u(x,y) = a1 + opx + oz3y} 6.82)

v(x,y) = g4 + as5x + agy

The constant terms, o1 and a4, are required to represent any in-plane rigid body motion,
i.e. motion without strain, while the linear terms enable states of constant strain to be
specified; Eqs (6.82) ensure compatibility of displacement along the edges of adjacent
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elements. Writing Eqgs (6.82) in matrix form gives

o
o

ux, 1 _[1 x »y 0 0 0])a3

{v(x,y)}_[O 0 01 x y|]ag (6.83)
as
a6

Comparing Eq. (6.83) with Eq. (6.55) we see that it is of the form

:u(x, y)

Wm*=wmmm} (6.84)

Substituting values of displacement and coordinates at each node in Eq. (6.84) we have,

for node i
wl |1 x y» 0 0 O
:vi}_[O 00 1 x y|9

Similar expressions are obtained for nodes j and k so that for the complete element we

obtain
Uu; I x, y# 0 0 O o]
v; 0 0 0 1 xi vy o)
wi{_ (1 % y» 00 0 a3 6.85
vj 0 0 0 1 Xj Yj (o 7] (6.85)
Uy 1 xx y 0 0 O o5
Vk 00 0 1 xx wm o6

From Eq. (6.81) and by comparison with Eqs (6.58) and (6.59) we see that Eq. (6.85)
takes the form

{6°} = [A{a}

Hence (step 3) we obtain
{a} = [A711{8°} (compare with Eq. (6.60))

The inversion of [A], defined in Eq. (6.85), may be achieved algebraically as illus-
trated in Example 6.3. Alternatively, the inversion may be carried out numerically for
a particular element by computer. Substituting for {«} from the above into Eq. (6.84)
gives

{u(x, y)

_ -1 e
MMJ—UWMM]B} (6.86)

(compare with Eq. (6.61)).
The strains in the element are

{e}=1¢ (6.87)
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From Eqgs (1.18) and (1.20) we see that

ou v ou v
- = = — 4+ — 6.88
o ox & ay Yoy ay + ox ( )
Substituting for u and v in Eqgs (6.88) from Eqs (6.82) gives
Ex = Q2
&y = Q6
yxy =3 + o5
or in matrix form
o]
010000 ZZ
{edl=10 0 0 0 0 1 a3 (6.89)
00101 0f][™
a5
a6

which is of the form
{e} = [Cl{a} (see Eqs (6.64) and (6.65))
Substituting for {a}(=[A~11{5°}) we obtain
{e} = [CIIA™'1{6°}) (compare with Eq. (6.66))
or

{e} = [B1{5°} (see Eq. (6.76))

where [C] is defined in Eq. (6.89).
In step five we relate the internal stresses {o } to the strain {e} and hence, using step
four, to the nodal displacements {§°}. For plane stress problems

Oy
{o} =10y (6.90)
Txy
and
Ox  VOy
& = — — —
E E
o — Oy  VOy ch .
YT g E (see Chapter 1)
Ty  2(1+v)
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Thus, in matrix form,

1
{e}=18& ¢ = —v 1 0 oy (6.91)

Oy E | Y 0 &x
{o} =10y ¢ = -2 v 1 0 gy (6.92)
Tyy V00 a-w | vy
which has the form of Eq. (6.68), i.e.
{o} = [D){e}

Substituting for {€} in terms of the nodal displacements {3°} we obtain
{0} = [DI[BI{s°} (see Eq. (6.69))

In the case of plane strain the elasticity matrix [D] takes a different form to that defined
in Eq. (6.92). For this type of problem

oy Vo, Vo

E E E

oy Voy Vo

&y =—=——— —

E E E

0;  VOx VOy
8Z=—————=

E E E

Ty 21+
W= T T g ™

Eliminating o, and solving for oy, oy and 1,y gives

v
1 0
o I=v >
. E(l — v .
o} =1{o, } = % — 1 0 £ (6.93)
v)(1 —2v
Tay (1—2v) | Do
0 0
2(1—v)
which again takes the form
{0} = [D]{e}

Step six, in which the internal stresses {o } are replaced by the statically equivalent
nodal forces {F°} proceeds, in an identical manner to that described for the beam—
element. Thus

(Fe) = [ / | [B]WD][B]d(vol)} 5°)
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as in Eq. (6.74), whence
[K°] = [/ | [B]T[D][B]d(vol)}

In this expression [B] =[C] [A~'] where [A] is defined in Eq. (6.85) and [C] in Eq.
(6.89). The elasticity matrix [D] is defined in Eq. (6.92) for plane stress problems
or in Eq. (6.93) for plane strain problems. We note that the [C], [A] (therefore [B])
and [D] matrices contain only constant terms and may therefore be taken outside the
integration in the expression for [K], leaving only [d(vol) which is simply the area A,
of the triangle times its thickness z. Thus

[K°] = [[B]"[D][B]A1] (6.94)
Finally the element stresses follow from Eq. (6.79), i.e.
{o} = [H{5}

where [H] = [D][B] and [D] and [B] have previously been defined. It is usually found
convenient to plot the stresses at the centroid of the element.

Of all the finite elements in use the triangular element is probably the most versatile.
It may be used to solve a variety of problems ranging from two-dimensional flat plate
structures to three-dimensional folded plates and shells. For three-dimensional appli-
cations the element stiffness matrix [K®] is transformed from an in-plane xy coordinate
system to a three-dimensional system of global coordinates by the use of a transform-
ation matrix similar to those developed for the matrix analysis of skeletal structures.
In addition to the above, triangular elements may be adapted for use in plate flexure
problems and for the analysis of bodies of revolution.

Example 6.3

A constant strain triangular element has corners 1(0, 0), 2(4, 0) and 3(2, 2) referred to a
Cartesian Oxy axes system and is 1 unit thick. If the elasticity matrix [D] has elements
Di1=Dy=a, Dip=Dy =b, Di3=Dy3 =D31 =D3 =0 and D33 =c, derive the
stiffness matrix for the element.

From Eq. (6.82)
ur = oy + 2(0) + «3(0)

i.e.
up = o 1)
uy = ay +az2(4) + a3(0)

i.e.
u, = aq + 4oy (ii)
u3 = o1 +a2(2) + a3(2)

i.e.

uz = o + 20y + 2a3 (ii1)
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From Eq. (i)

o] = uj
and from Eqgs (ii) and (iv)

uz —up

o2

Then, from Egs (iii) to (v)

2u3 — Uy — up
a3=—4

Substituting for o1, @» and o3 in the first of Eqs (6.82) gives

upy — uj 2u3 — up — up
u:u1+< n >x+<—4 )y

or

Similarly

Now from Eq. (6.88)

ou U u
G =—=——+ —
0x 4 4
v vy vy U3
gy=—=————+—
ay 4 4 2
and
u  Jv _uw uy v v2
Yo =y T T 4 4 4
Hence
P
gﬁ (-1 0o 1 00
[B]{8%} = . = 2 0 —1 0 -1 0
y _ _ _
u . 9 1 1 1 1 2
[ dy  ox |
Also

(D] =

S SR
o
o OO

ui
At
u
v2
u3
v3

(iv)

)

(vi)

(vii)

(viii)

(ix)
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Hence
1| @ -b a —-b 0 2b
[DIIBl=-|-b —a b —a 0 2a
4 —c —c —c ¢ 2 O
and

a+c b4+c —a+c b—c —2c -2b
b+c a+c —-b+c a—-c —2c¢ -2a
l |—a+c¢ -b+c a+c¢c —-b—c —2c 2b
T S
[B] [D][B]_16 b—rc a—c —-b—c a+c 2c —2a
—2¢ —2¢ —2c 2¢ 4c 0
—2b —2a 2b —2a 0 4a

Then, from Eq. (6.94)

a+c b+c¢c —-a+c b—c —2c¢ -=2b
b+c a+c —-b+c a—c —2¢ —2a
ll-a+c¢c -b+c a+c —-b—c —-2¢ 2b

I
[K]_4 b—c a—c —-b—c a+c 2¢  —2a
—2c —2c —2c 2c 4c 0
—2b —2a 2b —2a 0 4a

6.8.3 Stiffness matrix for a quadrilateral element

Quadrilateral elements are frequently used in combination with triangular elements to
build up particular geometrical shapes.

Figure 6.14 shows a quadrilateral element referred to axes Oxy and having cor-
ner nodes, i,j,k and /; the nodal forces and displacements are also shown and the
displacement and force vectors are

u; Fy,i
v; Fy,i
I/tj FxJ'
ey _ ) U ey _ ) Fyi
=1 01 Fr=1p (6.95)
Uk Fyk
uj Fxi
vy Fy,

As in the case of the triangular element we select a displacement function which satisfies
the total of eight degrees of freedom of the nodes of the element; again this displacement
function will be in the form of a polynomial with a maximum of eight coefficients. Thus

u(x,y) = o + aox + a3y + Ot4xy} 6.96)

v(x,y) = a5 + aex + a7y + agxy
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Y

0

Fig. 6.14 Quadrilateral element subjected to nodal in-plane forces and displacements.

<Y

The constant terms, o and «s, are required, as before, to represent the in-plane rigid
body motion of the element while the two pairs of linear terms enable states of constant
strain to be represented throughout the element. Further, the inclusion of the xy terms
results in both the u(x, y) and v(x, y) displacements having the same algebraic form so
that the element behaves in exactly the same way in the x direction as it does in the y

direction.

Writing Eqs (6.96) in matrix form gives

or

|

[ ——
Il
1
O =
O =
o<
° 3

—_ O

= O

~ O

u(x, y)} = [f(x,y){a}

v(x,y)

\><<O
I

oy
a2
a3
oy
os
o6
a7
ag

(6.97)

(6.98)

Now substituting the coordinates and values of displacement at each node we obtain

Uj
Vi
uj
Yj
Uk
Uk
uj
i

SR O~ O —O

Xi
0
Xj
0
Xk
0
Xi
0

Vi Xiyi

0 O

Yi XY

0 O

Yk XkYk
0 O

Yoo Xy

0 O

— O, O ~, OO

0 0 O

Xi Vi XiYi

0 0 O
XY XY

0 0

Xk Yk XkYk
0 0 O
XLooye o Xy |

ol
o)
o3
04
as
a6
a7
og

(6.99)
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which is of the form
{6° = [Al{er}
Then
{a) = [A71]{8°%) (6.100)

The inversion of [A] is illustrated in Example 6.4 but, as in the case of the triangular
element, is most easily carried out by means of a computer. The remaining analysis is

identical to that for the triangular element except that the {&}—{«} relationship (see Eq.

(6.89)) becomes

o
o
o3
ay
s
a6
a7
ag

(6.101)

©
I
S OO
SO =
- o O
= O<
S OO
- o O
S - O
= = O

Example 6.4

A rectangular element used in a plane stress analysis has corners whose coordinates (in
metres), referred to an Oxy axes system, are 1(—2, —1), 2(2, —1), 3(2, 1) and 4(—2,
1); the displacements (also in metres) of the corners were

u; = 0.001, upy = 0.003, uz = —0.003, uy4 =0

v = —0.004, vy, = —0.002, v3=0.001, vg = 0.001
If Young’s modulus E = 200000 N/mm? and Poisson’s ratio v=0.3; calculate the
stresses at the centre of the element.

From the first of Eqs (6.96)

up = o] — 2ap — az + 2a4 = 0.001 @)
Uy = o] + 200 — a3 — 204 = 0.003 (i1)
u3 = o1 + 202 + a3 + 24 = —0.003 (iii)
s =0 — 200 +o3 — 204 =0 @iv)

Subtracting Eq. (ii) from Eq. (i)
oy — o4 = 0.0005 v)
Now subtracting Eq. (iv) from Eq. (iii)

oy 4+ ag4 = —0.00075 (vi)
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Then subtracting Eq. (vi) from Eq. (v)

aq = —0.000625
whence, from either of Eqgs (v) or (vi)

ay = —0.000125
Adding Egs (i) and (ii)

o1 — a3 = 0.002
Adding Eqgs (iii) and (iv)

ay + a3z = —0.0015
Then adding Eqgs (ix) and (x)
a1 = 0.00025

and, from either of Egs (ix) or (x)

a3 = —0.00175

(vii)

(viii)

(ix)

(x)

(xi)

(xii)

The second of Egs (6.96) is used to determine «s, g, @7, arg in an identical manner to

the above. Thus

as = —0.001
ae = 0.00025
a7 = 0.002

ag = —0.00025

Now substituting for a, oy, ..., as in Eqs (6.96)

u; = 0.00025 — 0.000125x — 0.00175y — 0.000625xy

and

v; = —0.001 + 0.00025x 4 0.002y — 0.00025xy
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Then, from Eqgs (6.88)

5
x = == = —0.000125 — 0000625y
X
5
£y = — = 0.002 — 0.00025x
dy
du v
Viy = — 4 — = —0.0015 — 0.000625x — 0.00025y
ay  ox

Therefore, at the centre of the element (x =0, y =0)

ey = —0.000125
gy = 0.002
Yxy = —0.0015
so that, from Eqgs (6.92)
200 000
Oy = .2 (ex + vey) = m(—0.000lZS + (0.3 x 0.002))
ie.
o = 104.4N/mm?
200 000
ie.
oy = 431.3N/mm?
and
1 E
=T QU T S aa
Thus
200 000 (—0.0015)
Ty = —— X (—0.
21 40.3)
ie.

Ty = —115.4N/mm2

The application of the finite element method to three-dimensional solid bodies is
a straightforward extension of the analysis of two-dimensional structures. The basic
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Fig. 6.15 Tetrahedron and rectangular prism finite elements for three-dimensional problems.

three-dimensional elements are the tetrahedron and the rectangular prism, both shown
in Fig. 6.15. The tetrahedron has four nodes each possessing three degrees of freedom, a
total of 12 for the element, while the prism has 8 nodes and therefore a total of 24 degrees
of freedom. Displacement functions for each element require polynomials in x,y and
z; for the tetrahedron the displacement function is of the first degree with 12 constant
coefficients, while that for the prism may be of a higher order to accommodate the 24
degrees of freedom. A development in the solution of three-dimensional problems has
been the introduction of curvilinear coordinates. This enables the tetrahedron and prism
to be distorted into arbitrary shapes that are better suited for fitting actual boundaries.
For more detailed discussions of the finite element method reference should be made
to the work of Jenkins,? Zienkiewicz® and to the many research papers published on
the method.

New elements and new applications of the finite element method are still being
developed, some of which lie outside the field of structural analysis. These fields include
soil mechanics, heat transfer, fluid and seepage flow, magnetism and electricity.
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Problems

P.6.1 Figure P.6.1 shows a square symmetrical pin-jointed truss 1234, pinned to
rigid supports at 2 and 4 and loaded with a vertical load at 1. The axial rigidity EA is
the same for all members.

Use the stiffness method to find the displacements at nodes 1 and 3 and hence solve
for all the internal member forces and support reactions.

Ans.  v) = —PL/\2AE, v3 = —0.293PL/AE, Si» = P/2 = Si4,
Sy = —0.207P = S43, S13 = 0.293P
Fyp = —Fy4 =0207P, Fyo=F,4=P/2.

Fig. P.6.1

P.6.2 Use the stiffness method to find the ratio H/P for which the displacement of
node 4 of the plane pin-jointed frame shown loaded in Fig. P.6.2 is zero, and for that
case give the displacements of nodes 2 and 3.

All members have equal axial rigidity FA.

Ans. H/P=0.449, vy =—4PI1/(9 +2+/3)AE,
v3 =—6PL/(9+ 2+/3)AE.
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Fig. P.6.2

P.6.3 Form the matrices required to solve completely the plane truss shown in Fig.
P.6.3 and determine the force in member 24. All members have equal axial rigidity.

Ans. Sy, =0.

Fig. P6.3

P.6.4 The symmetrical plane rigid jointed frame 1234567, shown in Fig. P.6.4,
is fixed to rigid supports at 1 and 5 and supported by rollers inclined at 45° to the
horizontal at nodes 3 and 7. It carries a vertical point load P at node 4 and a uniformly
distributed load w per unit length on the span 26. Assuming the same flexural rigidity
EI for all members, set up the stiffness equations which, when solved, give the nodal
displacements of the frame.

Explain how the member forces can be obtained.



2
T
45° 45° ‘
w/unit length
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2 4 6
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Fig. 6.4

Problems

P.6.5 The frame shown in Fig. P.6.5 has the planes xz and yz as planes of symmetry.
The nodal coordinates of one quarter of the frame are given in Table P.6.5(i).

In this structure the deformation of each member is due to a single effect, this being
axial, bending or torsional. The mode of deformation of each member is given in Table
P.6.5(ii), together with the relevant rigidity.

21

Fig. P.6.5
Table P.6.5(i)
Node X y b4
2 0 0 0
3 L 0 0
7 L 0.8L 0
9 L 0 L
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Table P.6.5(ii)
Effect
Member Axial Bending Torsional
23 - EI -
37 - - GJ=0.8EI
29 EA=6v2% _

Use the direct stiffness method to find all the displacements and hence calculate the
forces in all the members. For member 123 plot the shear force and bending moment

diagrams.

Briefly outline the sequence of operations in a typical computer program suitable for

linear frame analysis.

Ans.  Sr9=S»3 =~/2P/6 (tension)

M3 =—-M;=PL/9 (hogging), M>=2PL/9(sagging)

SF1p=—SF;3=P/3

Twisting moment in 37, PL/18 (anticlockwise).

P.6.6 Given that the force—displacement (stiffness) relationship for the beam
element shown in Fig. P.6.6(a) may be expressed in the following form:

Fyi 12
M, /L EI| —6

Foo [ 03|12
My/L —6

—6 —12 —6] [ v
4 6 2| leL
6 12 6] w
2 6 4| |eL

Obtain the force—displacement (stiffness) relationship for the variable section beam
(Fig. P.6.6(b)), composed of elements 12, 23 and 34.

Such a beam is loaded and supported symmetrically as shown in Fig. P.6.6(c). Both
ends are rigidly fixed and the ties FB, CH have a cross-section area a; and the ties EB,
CG a cross-section area ap. Calculate the deflections under the loads, the forces in the
ties and all other information necessary for sketching the bending moment and shear

force diagrams for the beam.

Neglect axial effects in the beam. The ties are made from the same material as the

beam.

Ans.
S1 =2P/3, S, =+/2P/3,
Fya = P/3, Ma = —PL/4.

v = vc = —SPL3/144EI, 63 = —6c = PL?*/24EI,



Problems
y
M1 , 91 MZ’ 92
= o) P
L l
Faw £ 2, v2
(a)
1 2I 2 I 3 21 4
L L L

Fig. P.6.6

P.6.7 The symmetrical rigid jointed grillage shown in Fig. P.6.7 is encastré at 6, 7,
8 and 9 and rests on simple supports at 1, 2, 4 and 5. It is loaded with a vertical point

load P at 3.
Use the stiffness method to find the displacements of the structure and hence calculate

the support reactions and the forces in all the members. Plot the bending moment
diagram for 123. All members have the same section properties and GJ = 0.8EI.
Ans. Fy1=Fy5=—P/16
Fyr=Fy4= 9P/16
My = Mys = —PI/16 (hogging)
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Mp3 = M3 = —PI/12 (hogging)
Twisting moment in 62, 82, 74 and 94 is PI/96.

Fig. P.6.7

P.6.8 It is required to formulate the stiffness of a triangular element 123 with
coordinates (0, 0), (a, 0), and (0, a), respectively, to be used for ‘plane stress’ problems.
(a) Form the [B] matrix.

(b) Obtain the stiffness matrix [K€].
Why, in general, is a finite element solution not an exact solution?

P.6.9 It is required to form the stiffness matrix of a triangular element 123 for use
in stress analysis problems. The coordinates of the element are (1, 1), (2, 1), and (2, 2),
respectively.

(a) Assume a suitable displacement field explaining the reasons for your choice.

(b) Form the [B] matrix.

(c) Form the matrix which gives, when multiplied by the element nodal displacements,
the stresses in the element. Assume a general [D] matrix.

P.6.10 It is required to form the stiffness matrix for a rectangular element of side
2a x 2b and thickness t for use in ‘plane stress’ problems.
(a) Assume a suitable displacement field.
(b) Form the [C] matrix.
(c) Obtain fvol[C]T[D][C] dv.
Note that the stiffness matrix may be expressed as

[Ke]=[a"1T [ f 1 [C]T[D][C]dV] A1



Problems

P.6.11 A square element 1234, whose corners have coordinates x, y (in metres) of
(-1, -0, 1, =1), (1, 1), and (—1, 1), respectively, was used in a plane stress finite
element analysis. The following nodal displacements (mm) were obtained:

ur =01 up =03 u3=06 uy=0.1
v =01 1v»=03 v3=07 v4=05

If Young’s modulus E =200 000 N/mm? and Poisson’s ratio v=0.3, calculate the
stresses at the centre of the element.

Ans. 0y=51.65N/mm?, 0, =55.49N/mm?, 7, = 13.46 N/mm’.

P.6.12 A rectangular element used in plane stress analysis has corners whose coord-
inates in metres referred to an Oxy axes system are 1(—2, —1), 2(2, —1), 3(2, 1),
4(—2, 1). The displacements of the corners (in metres) are

up =0.001 up =0.003 wu3 =-0.003 us=0
v; = —0.004 v, =-0.002 v3=0.001 v4=0.001

If Young’s modulus is 200 000 N/mm? and Poisson’s ratio is 0.3 calculate the strains at
the centre of the element.
Ans. &, = —0.000125, &, = 0.002, yy, = —0.0015.

P.6.13 A constant strain triangular element has corners 1(0,0), 2(4,0) and 3(2,2) and
is 1 unit thick. If the elasticity matrix [D] has elements D1y =Dy =a, D1p =D1 =b,
D13 =D»3 = D31 = D3y =0 and D33 = ¢ derive the stiffness matrix for the element.

Ans.
_a—i-c ]
b+c a+c
[Ke]:l —a+c¢ —-b+c a+c
41 b—c a—c —-b—c a+c
—2c —2c —2c 2c 4c
—2b —2a 2b —2a 0 4a_

P.6.14 The following interpolation formula is suggested as a displacement function
for deriving the stiffness of a plane stress rectangular element of uniform thickness ¢
shown in Fig. P.6.14.

1
= la=x)b—yu+(a+x)b—yu+(@+x)b+yus + (@ —x)b+ypul

Form the strain matrix and obtain the stiffness coefficients Kj; and K, in terms of
the material constants ¢, d and e defined below.
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2a=2
Fig. P.6.14
In the elasticity matrix [D]

Dii1=Dy=c Dip=d Diyz=e and D;3=Dypy =0

Ans. Ki1 =t(4c+e)/6, Kip =1t(d+e)/4.
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Bending of thin plates

Generally, we define a thin plate as a sheet of material whose thickness is small com-
pared with its other dimensions but which is capable of resisting bending in addition
to membrane forces. Such a plate forms a basic part of an aircraft structure, being, for
example, the area of stressed skin bounded by adjacent stringers and ribs in a wing
structure or by adjacent stringers and frames in a fuselage.

In this chapter we shall investigate the effect of a variety of loading and support
conditions on the small deflection of rectangular plates. Two approaches are presented:
an ‘exact’ theory based on the solution of a differential equation and an energy method
relying on the principle of the stationary value of the total potential energy of the plate
and its applied loading. The latter theory will subsequently be used in Chapter 9 to
determine buckling loads for unstiffened and stiffened panels.

7.1 Pure bending of thin plates

The thin rectangular plate of Fig. 7.1 is subjected to pure bending moments of intensity
M, and M, per unit length uniformly distributed along its edges. The former bending
moment is applied along the edges parallel to the y axis, the latter along the edges

Fig. 7.1 Plate subjected to pure bending.
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parallel to the x axis. We shall assume that these bending moments are positive when
they produce compression at the upper surface of the plate and tension at the lower.

If we further assume that the displacement of the plate in a direction parallel to the
z axis is small compared with its thickness ¢ and that sections which are plane before
bending remain plane after bending, then, as in the case of simple beam theory, the
middle plane of the plate does not deform during the bending and is therefore a neutral
plane. We take the neutral plane as the reference plane for our system of axes.

Let us consider an element of the plate of side 6xdy and having a depth equal to the
thickness ¢ of the plate as shown in Fig. 7.2(a). Suppose that the radii of curvature of the
neutral plane n are p, and p, in the xz and yz planes respectively (Fig. 7.2(b)). Positive
curvature of the plate corresponds to the positive bending moments which produce
displacements in the positive direction of the z or downward axis. Again, as in simple
beam theory, the direct strains ¢, and &, corresponding to direct stresses oy and oy of
an elemental lamina of thickness §z a distance z below the neutral plane are given by

= ey = (7.1)
Px Py
Referring to Eqgs (1.52) we have
&y = E(ax —Voy) &y = é(ay — V0y) (7.2)
Substituting for &, and &, from Eqs (7.1) into (7.2) and rearranging gives

Ez <1 N v)
1—12 \ oy Py

Oy =

(7.3)

{a) (b)

Fig. 7.2 (a) Direct stress on lamina of plate element; (b) radii of curvature of neutral plane.
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As would be expected from our assumption of plane sections remaining plane the
direct stresses vary linearly across the thickness of the plate, their magnitudes depend-
ing on the curvatures (i.e. bending moments) of the plate. The internal direct stress
distribution on each vertical surface of the element must be in equilibrium with the
applied bending moments. Thus

12
M,Sy = / 0,28y dz
—1)2

and
t/2
—t/2
Substituting for oy and oy from Egs (7.3) gives

v
Mx—/ ( +—)dZ
t/Zl_V Px Py
M, / ( +v>d
- Z
t/21_V2 Py Px

Let
12 EZ? EP
D= dz = 7.4
/_,/2 -2 T 20— (74)
Then
1 v
M,=D (— + —) (7.5)
Px Py
1 %
My =D ( + —) (7.6)
Py Px

in which D is known as the flexural rigidity of the plate.

If w is the deflection of any point on the plate in the z direction, then we may relate
w to the curvature of the plate in the same manner as the well-known expression for
beam curvature. Hence

1 Pw o1 Pw

Px iz py dy

the negative signs resulting from the fact that the centres of curvature occur above the
plate in which region z is negative. Equations (7.5) and (7.6) then become

M, = (% &Y 17)
=— v .
* ox2 0y?

M= _p(2 v (7.8)
= — V—sir .
J 2 ox2
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Fig. 7.3 Anticlastic bending.

Equations (7.7) and (7.8) define the deflected shape of the plate provided that M, and
M, are known. If either M or M, is zero then

9w 9%w 9w 92w

— = —V— Of — = —V—s
ox2 dy? dy? ox2

and the plate has curvatures of opposite signs. The case of My, =0 is illustrated in
Fig. 7.3. A surface possessing two curvatures of opposite sign is known as an anticlastic
surface, as opposed to a synclastic surface which has curvatures of the same sign.
Further, if M\, = M, = M then from Eqs (7.5) and (7.6)

Therefore, the deformed shape of the plate is spherical and of curvature

1 M
B — (7.9)
p DA +v)

7.2 Plates subjected to bending and twisting

In general, the bending moments applied to the plate will not be in planes perpendicular
to its edges. Such bending moments, however, may be resolved in the normal manner
into tangential and perpendicular components, as shown in Fig. 7.4. The perpendicular
components are seen to be M, and M, as before, while the tangential components M,y
and M, (again these are moments per unit length) produce twisting of the plate about
axes parallel to the x and y axes. The system of suffixes and the sign convention for
these twisting moments must be clearly understood to avoid confusion. M,y is a twisting
moment intensity in a vertical x plane parallel to the y axis, while My, is a twisting
moment intensity in a vertical y plane parallel to the x axis. Note that the first suffix
gives the direction of the axis of the twisting moment. We also define positive twisting
moments as being clockwise when viewed along their axes in directions parallel to the
positive directions of the corresponding x or y axis. In Fig. 7.4, therefore, all moment
intensities are positive.
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My (= —Myy)

(a) (b

Fig. 7.5 (a) Plate subjected to bending and twisting; (b) tangential and normal moments on an arbitrary plane.

Since the twisting moments are tangential moments or torques they are resisted by
a system of horizontal shear stresses 7y, as shown in Fig. 7.6. From a consideration
of complementary shear stresses (see Fig. 7.6) My, = —M,,, so that we may represent
a general moment application to the plate in terms of My, M, and M,, as shown in
Fig. 7.5(a). These moments produce tangential and normal moments, M; and My, on
an arbitrarily chosen diagonal plane FD. We may express these moment intensities (in
an analogous fashion to the complex stress systems of Section 1.6) in terms of M,, M,
and M,,. Thus, for equilibrium of the triangular element ABC of Fig. 7.5(b) in a plane
perpendicular to AC

M,AC = M AB cosa + MyBCsina — M,AB sina — M,,BC cos o
giving
M, = My cos® & + My sin® @ — My, sin 2« (7.10)
Similarly for equilibrium in a plane parallel to CA
M{AC = M AB sina — MyBCcos a + My,AB cosa — M,,BCsin
or

(Mx - My)

M, = sin 2o + M,y cos 2 (7.11)
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(compare Eqs (7.10) and (7.11) with Eqs (1.8) and (1.9)). We observe from Eq. (7.11)
that there are two values of «, differing by 90° and given by

tan 200 = — 2M—xy
M, — M,

for which M; =0, leaving normal moments of intensity M}, on two mutually perpen-
dicular planes. These moments are termed principal moments and their corresponding
curvatures principal curvatures. For a plate subjected to pure bending and twisting in
which M, My and M, are invariable throughout the plate, the principal moments are
the algebraically greatest and least moments in the plate. It follows that there are no
shear stresses on these planes and that the corresponding direct stresses, for a given
value of z and moment intensity, are the algebraically greatest and least values of direct
stress in the plate.

Let us now return to the loaded plate of Fig. 7.5(a). We have established, in Eqs (7.7)
and (7.8), the relationships between the bending moment intensities M, and M, and
the deflection w of the plate. The next step is to relate the twisting moment My, to w.
From the principle of superposition we may consider M,, acting separately from M,
and M. As stated previously M,, is resisted by a system of horizontal complementary
shear stresses on the vertical faces of sections taken throughout the thickness of the
plate parallel to the x and y axes. Consider an element of the plate formed by such
sections, as shown in Fig. 7.6. The complementary shear stresses on a lamina of the
element a distance z below the neutral plane are, in accordance with the sign convention
of Section 1.2, 7,y. Therefore, on the face ABCD

t/2
M,y = —/ Tyydyz dz

—t)2

Fig. 7.6 Complementary shear stresses due to twisting moments My, .
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and on the face ADFE
t/2
M,y ox = —/ Tydxz dz
—t/2
giving
/2
M,y = —/ Tyzdz
—t/2

or in terms of the shear strain y,, and modulus of rigidity G

t/2
Mxy = _G/ yx)7Z dZ (712)
—t/2

Referring to Eqs (1.20), the shear strain yyy is given by

v du

yxyzax+5

We require, of course, to express y,y in terms of the deflection w of the plate; this
may be accomplished as follows. An element taken through the thickness of the plate
will suffer rotations equal to dw/dx and dw/dy in the xz and yz planes respectively.
Considering the rotation of such an element in the xz plane, as shown in Fig. 7.7, we
see that the displacement u in the x direction of a point a distance z below the neutral
plane is

ow
U=——7z

ox

Similarly, the displacement v in the y direction is

ow
V= ——
ayz
X
Ow
dw_ 7 ox
Ox .
Sx
T -y
z \\ n
| t/2
A TF

z

Fig. 7.7 Determination of shear strain y.
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Hence, substituting for # and v in the expression for yy, we have

92w
= 27— 7.13
Yoy Zaxay ( )

whence from Eq. (7.12)
My = G/t/z 2z282—wdz
-y axdy
or
Gt w
6 0xdy
Replacing G by the expression E/2(1 4 v) established in Eq. (1.50) gives

My, =

Mo — Ef 9w
1231 4 v) axdy

Multiplying the numerator and denominator of this equation by the factor (1 — v) yields

3w
M., = D(1 —v)— 7.14
Xy ( V) oxdy ( )

Equations (7.7), (7.8) and (7.14) relate the bending and twisting moments to the
plate deflection and are analogous to the bending moment-curvature relationship for a
simple beam.

7.3 Plates subjected to a distributed transverse load

The relationships between bending and twisting moments and plate deflection are now
employed in establishing the general differential equation for the solution of a thin
rectangular plate, supporting a distributed transverse load of intensity ¢ per unit area
(see Fig. 7.8). The distributed load may, in general, vary over the surface of the plate
and is therefore a function of x and y. We assume, as in the preceding analysis, that the
middle plane of the plate is the neutral plane and that the plate deforms such that plane
sections remain plane after bending. This latter assumption introduces an apparent
inconsistency in the theory. For plane sections to remain plane the shear strains y,, and
¥y, must be zero. However, the transverse load produces transverse shear forces (and
therefore stresses) as shown in Fig. 7.9. We therefore assume that although y,, = 74, /G
and yy; = 1y;/G are negligible the corresponding shear forces are of the same order of
magnitude as the applied load g and the moments M,, My, and M,,. This assumption is
analogous to that made in a slender beam theory in which shear strains are ignored.
The element of plate shown in Fig. 7.9 supports bending and twisting moments as
previously described and, in addition, vertical shear forces Q. and Qy per unit length
on faces perpendicular to the x and y axes, respectively. The variation of shear stresses
Ty, and Ty, along the small edges dx, 8y of the element is neglected and the resultant
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U N

P4

Fig. 7.8 Plate supporting a distributed transverse load.

X
5
ox x

M, + Y. 85y
g/lxy §x
L 9{ x
Xy ay y
200 Q + 90, 5x
Q,+ ayy Sy * o 9x

Fig. 7.9 Plate element subjected to bending, twisting and transverse loads.

shear forces O, 8y and Qydx are assumed to act through the centroid of the faces of the
element. From the previous sections

t/2 t/2 1/2
M, = / oyzdz My = / oyzdz My = (—Myy) = —[ Tz dz
—t/2 —t/2 —t/2
In a similar fashion
t/2 t/2
0= [t 0= [ wa (7.15)
—t/2 —t/2

For equilibrium of the element parallel to Oz and assuming that the weight of the
plate is included in ¢

8Qx aQy
O+ » dx) 8y — Qxby + |Qy + a—y(Sy dx — Qyéx + géxdy = 0
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228 Bending of thin plates

or, after simplification

ad 20,
&4-&4—(]:0 (7.16)
ox ay
Taking moments about the x axis
OMy, oM,
Moy — | Myy + dx ) 6y — Myox + | My + a—Sy Sx
X Y
00, 8y 00x  \ &’ 8y’
— ,+ ——=38y | 6x§ -— - x| — —gdx— =0
(Qy+ oy y)xy+Qx2 Ox + O] o T 9%

Simplifying this equation and neglecting small quantities of a higher order than those
retained gives

M,y M

y
— , =0 7.17
o % + 0y (7.17)
Similarly taking moments about the y axis we have
oMy, oM
2 - S+ 0, =0 (7.18)
ay ox

Substituting in Eq. (7.16) for O, and Q) from Eqs (7.18) and (7.17) we obtain

PM, M, M, PM,
ox2 oxdy dy? 0xady

=—q

or
PM, _PMy,  FM,
5 2 vy T2 = (7.19)

Replacing M,, My, and My, in Eq. (7.19) from Eqs (7.7), (7.14) and (7.8) gives

*w ) *w + *w _q (7.20)
ox4 ax29y2 9yt D '

This equation may also be written
PPN (Pw Pw) g
2w\ a2 T2 )T
0x ay ox ay D
82 82 2
< oxz - 9y? ) D

The operator (8%/dx> 4+ 3%/dy?) is the well-known Laplace operator in two dimensions
and is sometimes written as V2. Thus

or

V22 = 4
Vw =2



7.3 Plates subjected to a distributed transverse load

Generally, the transverse distributed load ¢ is a function of x and y so that the
determination of the deflected form of the plate reduces to obtaining a solution of
Eq. (7.20), which satisfies the known boundary conditions of the problem. The bending
and twisting moments follow from Eqs (7.7), (7.8) and (7.14), and the shear forces per
unit length O, and Q, are found from Eqs (7.17) and (7.18) by substitution for My, M,
and M,y in terms of the deflection w of the plate; thus

M, My, 3 (Pw  Pw
= ——2 = D—(—5+— 7.21
Qs ox dy ox <8x2 + 0y? (7.21)
oM, oM 3 (w  FPw
O=—"-—"=-"D—(—5+-—> (7.22)
ay ox ay \ ox ay

Direct and shear stresses are then calculated from the relevant expressions relating them
to My, My, My, Oy and Q,.

Before discussing the solution of Eq. (7.20) for particular cases we shall establish
boundary conditions for various types of edge support.

7.3.1 The simply supported edge

Let us suppose that the edge x = 0 of the thin plate shown in Fig. 7.10 is free to rotate
but not to deflect. The edge is then said to be simply supported. The bending moment
along this edge must be zero and also the deflection w = 0. Thus

92w 92w
W)y=0 =0 and (My)y—0 = —D (ax_2 + va—yz>x=0 =0

The condition that w = 0 along the edge x = 0 also means that

ow 92w
—_— = — = 0
dy  0y?
b a
y X
z

Fig. 7.10 Plate of dimensions a x b.

229



230

Bending of thin plates

along this edge. The above boundary conditions therefore reduce to

=0 (82W) -0 723
W)x=0 = ) x:O_ (7.23)

7.3.2 The built-in edge

If the edge x =0 is built-in or firmly clamped so that it can neither rotate nor deflect,
then, in addition to w, the slope of the middle plane of the plate normal to this edge
must be zero. That is

ow
(W)x=0 =0 (—) =0 (7.24)
ox x=0

7.3.3 The free edge

Along a free edge there are no bending moments, twisting moments or vertical shearing
forces, so that if x =0 is the free edge then

(My)x=0 = 0 (Mxy)xzo =0 (Qx)x:O =0

giving, in this instance, three boundary conditions. However, Kirchhoff (1850) showed
that only two boundary conditions are necessary to obtain a solution of Eq. (7.20),
and that the reduction is obtained by replacing the two requirements of zero twisting
moment and zero shear force by a single equivalent condition. Thomson and Tait (1883)
gave a physical explanation of how this reduction may be effected. They pointed out
that the horizontal force system equilibrating the twisting moment M, may be replaced
along the edge of the plate by a vertical force system.

Consider two adjacent elements dy; and 8y, along the edge of the thin plate of
Fig. 7.11. The twisting moment M,,8y; on the element y; may be replaced by forces
M,y a distance 8y; apart. Note that M,,, being a twisting moment per unit length,
has the dimensions of force. The twisting moment on the adjacent element &y, is
[Myy + (0My/0y)5y]8y>. Again this may be replaced by forces My, + (0Myy/3y)dy.
At the common surface of the two adjacent elements there is now a resultant force
(0M,,/dy)8y or a vertical force per unit length of dM,,/dy. For the sign conven-
tion for QO shown in Fig. 7.9 we have a statically equivalent vertical force per unit
length of (Q, — 0M,/dy). The separate conditions for a free edge of (Myy,)x—o =0 and
(Ox)x=0 = 0 are therefore replaced by the equivalent condition

oMy
(Qx - - ) =0
ay x=0

Fw + )—83W 0 (7.25)
— = .
ax3 axdy? | o

or in terms of deflection
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Fig. 7.11 Equivalent vertical force system.

Also, for the bending moment along the free edge to be zero

2

w 2w
Il =0 7.26
a2 oy >x:o (7:20

(Mx)xzo = (

The replacement of the twisting moment M,y along the edges x = 0 and x = a of a thin
plate by a vertical force distribution results in leftover concentrated forces at the corners
of My, as shown in Fig. 7.11. By the same argument there are concentrated forces M,
produced by the replacement of the twisting moment M,,. Since My, = —M,,, then
resultant forces 2M,, act at each corner as shown and must be provided by external
supports if the corners of the plate are not to move. The directions of these forces
are easily obtained if the deflected shape of the plate is known. For example, a thin
plate simply supported along all four edges and uniformly loaded has dw/dx positive
and numerically increasing, with increasing y near the corner x =0, y=0. Hence
d>w/dxdy is positive at this point and from Eq. (7.14) we see that M ' 18 positive and
M, negative; the resultant force 2M,, is therefore downwards. From symmetry the
force at each remaining corner is also 2M,, downwards so that the tendency is for the
corners of the plate to rise.

Having discussed various types of boundary conditions we shall proceed to obtain
the solution for the relatively simple case of a thin rectangular plate of dimensions
a x b, simply supported along each of its four edges and carrying a distributed load
q(x, y).We have shown that the deflected form of the plate must satisfy the differential
equation

a*w *w 9w X,
Tw  , Tw Tw_qy)
ox4 ox20yr oyt D
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with the boundary conditions

9w
(W)x=0,a =0 (—) =0
= axz x=0,a

2w
(W)y=0, =0 (—) =0
Y 3 ) =0

Navier (1820) showed that these conditions are satisfied by representing the deflection
w as an infinite trigonometrical or Fourier series

o0 (o)
w= Z Z mn SIN @ sin ? (7.27)

in which m represents the number of half waves in the x direction and n the corres-
ponding number in the y direction. Further, A,,,, are unknown coefficients which must
satisfy the above differential equation and may be determined as follows.

We may also represent the load g(x, y) by a Fourier series, thus

qx,y) = Z Z - m—m sin ? (7.28)

m=1 n=1

A particular coefficient a,,,, is calculated by first multiplying both sides of Eq. (7.28)
by sin(m’'mx/a) sin(n'y/b) and integrating with respect to x from 0 to @ and with respect
to y from O to b. Thus

/ / q(x, y)sm Zydxdy

a rb mnax . m'ax | nmwy . A'my
A SIN —— sin
0 b b

I
i [M]e
[~]e

a a
m=1 n=1
ab
= Zam/n/
since
a  mux . m'mx
/ sin sin dx=0 when m#m'
0 a a
a
=— when m=w'
2
and
b
niy n'my
sm—sm—dy—O when n#n
0 b b

b /
=— when n=n
2



7.3 Plates subjected to a distributed transverse load

It follows that

nm
i = — f / q(x,y)sin = by y (7.29)

Substituting now for w and g(x, y) from Eqgs (7.27) and (7.28) into the differential
equation for w we have

& mym\4 mm\2 /nmw\2 nmw\4 Ayn mmx nwy
ZZ{*‘%[(?) +2(7) (5) +(5) }‘ D }51“7“ 5 =0

m=1n=1

This equation is valid for all values of x and y so that

() 2 () (3 4 (5] - -0

or in alternative form

4 n’l2 n2 2 Amn
Amnﬂ' a—2 4+ ﬁ — =0

giving
1 Amn
74D [(m?/a?) + (n? /b?)]?

mn =

Hence

1 & & Amn mmix nmwy
= —— sin sin —— (7.30)
74D W; ; [(m2/a?) + (n?/b?))? a b

in which a,, is obtained from Eq. (7.29). Equation (7.30) is the general solution for a
thin rectangular plate under a transverse load g(x, y).

Example 7.1

A thinrectangular plate a x b is simply supported along its edges and carries a uniformly
distributed load of intensity gg. Determine the deflected form of the plate and the
distribution of bending moment.

Since g(x, y) = go we find from Eq. (7.29) that

where m and n are odd integers. For m or n even, a,,, =0. Hence from Eq. (7.30)

16q0 Z Z sin (mmx/a) sin (nwy/b)
mn[(m?/a®) 4+ (n* /b*)]?

m=1,3,5n=1,3,5
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234 Bending of thin plates

The maximum deflection occurs at the centre of the plate where x = a/2, y = b/2. Thus

(o.¢] o0

1640 sin (mm/2) sin (n/2) .
Wmax = D Z Z (i1)

2/42 2 /H2V12
mel 3.5 ness Mnlm=/a%) + (n /b)]

This series is found to converge rapidly, the first few terms giving a satisfactory answer.
For a square plate, taking v=0.3, summation of the first four terms of the series
gives
0.04430 %
Wmax = V. QOE?

Substitution for w from Eq. (i) into the expressions for bending moment, Eqs (7.7) and
(7.8), yields

2 & [md) v /bD) . mmx | nmy
¥E A )IEDD mnl(m2ja®) + 2R a T b (iii)

m=1,3,5n=13,5

oo oo

[v(m?/a®) + (n?/b)] . mmx . nmy .
M, = — 373 5 35 Sin sin —— @iv)
T el 85 mn[(m*/a*) + (n*/b*)] a b

Maximum values occur at the centre of the plate. For a square plate a = b and the first
five terms give

My max = My max = 0.0479q0a2
Comparing Eqgs (7.3) with Egs (7.5) and (7.6) we observe that

12M, 7 12Myz
= Uy =
3 3

Ox

Again the maximum values of these stresses occur at the centre of the plate at z = 4-¢/2

so that
6M, 6M,
Ox,max — t_2 Oy,max = l_2
For the square plate
2

Ox,max = Oy max — 0-287l]0t—2

The twisting moment and shear stress distributions follow in a similar manner.

The infinite series (Eq. (7.27)) assumed for the deflected shape of a plate gives an
exact solution for displacements and stresses. However, a more rapid, but approximate,
solution may be obtained by assuming a displacement function in the form of a polyno-
mial. The polynomial must, of course, satisfy the governing differential equation (Eq.
(7.20)) and the boundary conditions of the specific problem. The “guessed” form of
the deflected shape of a plate is the basis for the energy method of solution described
in Section 7.6.



7.4 Combined bending and in-plane loading of a thin rectangular plate

Example 7.2

Show that the deflection function
w= A(xzy2 — bxzy - axy2 + abxy)

is valid for a rectangular plate of sides a and b, built in on all four edges and subjected
to a uniformly distributed load of intensity g. If the material of the plate has a Young’s
modulus E and is of thickness ¢ determine the distributions of bending moment along
the edges of the plate.

Differentiating the deflection function gives

a* ot a*
IW_og Yo 2V _ua
ox4 oyt 0x20y?
Substituting in Eq. (7.20) we have
0+ 2 x 4A + 0 = constant = %

The deflection function is therefore valid and

=4
8D

The bending moment distributions are given by Eqs (7.7) and (7.8), i.e.

M, = =107 — by + v — av)] (i)
M, = —%[)c2 — ax + v(y* — by)] (i)
For the edgesx=0and x=a
v
Mo=-202 —by) My =107~ by)
4 4
For the edges y=0and y=">
M, = —%(x2 —ax) M, = —z—]‘(x2 — ax)

7.4 Combined bending and in-plane loading of a thin
rectangular plate

So far our discussion has been limited to small deflections of thin plates produced
by different forms of transverse loading. In these cases we assumed that the middle or
neutral plane of the plate remained unstressed. Additional in-plane tensile, compressive
or shear loads will produce stresses in the middle plane, and these, if of sufficient
magnitude, will affect the bending of the plate. Where the in-plane stresses are small
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o Sx

-t ONyx
Nyx + 3 By
oN,
y Ny + Ty}: By

Fig. 7.12 In-plane forces on plate element.

compared with the critical buckling stresses it is sufficient to consider the two systems
separately; the total stresses are then obtained by superposition. On the other hand, if
the in-plane stresses are not small then their effect on the bending of the plate must be
considered.

The elevation and plan of a small element 5x3y of the middle plane of a thin deflected
plate are shown in Fig. 7.12. Direct and shear forces per unit length produced by the
in-plane loads are given the notation Ny, Ny and Ny, and are assumed to be acting in
positive senses in the directions shown. Since there are no resultant forces in the x or
y directions from the transverse loads (see Fig. 7.9) we need only include the in-plane
loads shown in Fig. 7.12 when considering the equilibrium of the element in these
directions. For equilibrium parallel to Ox

N+ azvxa 5 ow N 82w8 NS ow

—0X COoS| — —F0X | — COS —
o ox Y ox ox2 el ox
oON,

5 yyx 5y> 8x — Nyydx = 0

For small deflections ow/dx and (dw/ox) + (82w/ 9x2)8x are small and the cosines of
these angles are therefore approximately equal to one. The equilibrium equation thus
simplifies to

W | Mo

=0 7.31
ox ay ( )
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e 4(%)s
\ N +%
X

Fig. 7.13 Component of shear loads in the z direction.

Similarly for equilibrium in the y direction we have

Ny 0Ny
O Ny

0 7.32
ay ox ( )

Note that the components of the in-plane shear loads per unit length are, to a first order
of approximation, the value of the shear load multiplied by the projection of the element
on the relevant axis.

The determination of the contribution of the shear loads to the equilibrium of the
element in the z direction is complicated by the fact that the element possesses curvature
in both xz and yz planes. Therefore, from Fig. 7.13 the component in the z direction
due to the N,y shear loads only is

ONyy w 3w ow
Nyy + x| oy — + ——6x ) — Nydy—
ox y x Jy

or

neglecting terms of a lower order. Similarly, the contribution of Ny, is

N T gy Mo g
VX~ o~ -x o x
)x8x8y Y ay ox Y

The components arising from the direct forces per unit length are readily obtained
from Fig. 7.12, namely

ON, w  Pw aw
Ny + ox ) oy| —+ —x ) — Nx(Sya—
X

0x 0x ax2
or
Ny 82W5x8y+ xa—8x8y
ox2 ox 0

237



238  Bending of thin plates

and similarly

N, az—w(Sx 3y + %a—wéx 8y
Y 9y2 dy dy
The total force in the z direction is found from the summation of these expressions
and is
82 —58x 8y + ﬂ—&cﬁy + N, P —58x 8y + %B—WS 38y
N ax dx Yay? dy dy
2
+ a;\;:y %Sx 8y + 2ny£C—aWyax 8y + agyxy MW sy

in which Ny, is equal to and is replaced by N,y. Using Eqs (7.31) and (7.32) we reduce
this expression to

N 82w+N 82W—|—2N 3w 518
— — —— | 8x
*ox2 Y dy? * ox ay Y

Since the in-plane forces do not produce moments along the edges of the element
then Eqs (7.17) and (7.18) remain unaffected. Further, Eq. (7.16) may be modified
simply by the addition of the above vertical component of the in-plane loads to géxdy.
Therefore, the governing differential equation for a thin plate supporting transverse and
in-plane loads is, from Eq. (7.20)

Fw Fwo w1

Iy, 2w I _ N
ox* + 8x28y2+ oyt D(q—i_ *

92w 92w 92w

a2 T T ey ) (7.33)

Example 7.3

Determine the deflected form of the thin rectangular plate of Example 7.1 if, in addition
to a uniformly distributed transverse load of intensity g, it supports an in-plane tensile
force N, per unit length.

The uniform transverse load may be expressed as a Fourier series (see Eq. (7.28) and
Example 7.1), i.e.

o0

16q0 mix nwy
— sm — sin —~
2 Z ;
=1,3,5n=1,3, 5
Equation (7.33) then becomes, on substituting for ¢
tw *w *w N, Pw  16q > mmx . RNy
—+t2——+ —-—=—— = —— Z Z —sm—sm— (1)
4 2 9v2 4 2 2
ox ox= oy ay D ox an T35 naiss ™ b
The appropriate boundary conditions are
82
w:—vz‘}:O at x=0 and a
ox
Fw

W:W:O at y=0 and b



7.5 Bending of thin plates having a small initial curvature

These conditions may be satisfied by the assumption of a deflected form of the plate
given by

o0 o0
. mux nimy
= E E A SIN —— sin ——
a b

m=1n=1

Substituting this expression into Eq. (i) gives

1640
6D m? + n* 2 + Nxm2
7aDmn | | — + = —_
a? b2 w2Da?

Apn =0 forevenm and n

Apn = for odd m and n

Therefore

1640 > 1 . mmx | nmwy .
7T6D Z Z 5 N 5 sin P smT (i1)
m=135n=135 | (M1 +Nxm

a’>  b? m2Da?

Comparing Eq. (ii) with Eq. (i) of Example 7.1 we see that, as a physical inspection
would indicate, the presence of a tensile in-plane force decreases deflection. Conversely
a compressive in-plane force would increase the deflection.

7.5 Bending of thin plates having a small initial curvature

Suppose that a thin plate has an initial curvature so that the deflection of any point in its
middle plane is wg. We assume that wy is small compared with the thickness of the plate.
The application of transverse and in-plane loads will cause the plate to deflect a further
amount wy so that the total deflection is then w = wy + w. However, in the derivation
of Eq. (7.33) we note that the left-hand side was obtained from expressions for bending
moments which themselves depend on the change of curvature. We therefore use the
deflection wy on the left-hand side, not w. The effect on bending of the in-plane forces
depends on the total deflection w so that we write Eq. (7.33)

84w1 ) 84w1 " 84w1
ox4 ox29y?  ay*
1 9 (wo 4 wp) P(wo + wi) P (wo 4+ wy)
= — Ny——F——+4+N,——F>F+—+2N;yy———— 7.34
D |:q N ax?2 N dy? + ey ox dy (7.34)

The effect of an initial curvature on deflection is therefore equivalent to the application
of a transverse load of intensity

9?wo 9?wo 92w
o +Ny—— P + 2N,

Ny * ox ay
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Thus, in-plane loads alone produce bending provided there is an initial curvature.
Assuming that the initial form of the deflected plate is

nwy
= A sin —— sin —— 7.35
wo = Z Z sin 22 gin ) (7.35)

m=1n=1

then by substitution in Eq. (7.34) we find that if N, is compressive and Ny =N,y =0

Z Z By, sin m_yrx sin ? (7.36)

m=1 n=1

where
Aman
(2D /a®)[m + (n%a?/mb*))* —

mn =

We shall return to the consideration of initially curved plates in the discussion of the
experimental determination of buckling loads of flat plates in Chapter 9.

7.6 Energy method for the bending of thin plates

Two types of solution are obtainable for thin plate bending problems by the application
of the principle of the stationary value of the total potential energy of the plate and
its external loading. The first, in which the form of the deflected shape of the plate is
known, produces an exact solution; the second, the Rayleigh—Ritz method, assumes an
approximate deflected shape in the form of a series having a finite number of terms
chosen to satisfy the boundary conditions of the problem and also to give the kind of
deflection pattern expected.

In Chapter 5 we saw that the total potential energy of a structural system comprised
the internal or strain energy of the structural member, plus the potential energy of the
applied loading. We now proceed to derive expressions for these quantities for the
loading cases considered in the preceding sections.

7.6.1 Strain energy produced by bending and twisting

In thin plate analysis we are concerned with deflections normal to the loaded surface
of the plate. These, as in the case of slender beams, are assumed to be primarily due
to bending action so that the effects of shear strain and shortening or stretching of the
middle plane of the plate are ignored. Therefore, it is sufficient for us to calculate
the strain energy produced by bending and twisting only as this will be applicable, for
the reason of the above assumption, to all loading cases. It must be remembered that
we are only neglecting the contributions of shear and direct strains on the deflection of
the plate; the stresses producing them must not be ignored.

Consider the element dx x §y of a thin plate a x b shown in elevation in the xz plane
in Fig. 7.14(a). Bending moments M, per unit length applied to its §y edge produce
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0 X
M,
Vx
dw ; v
Ox
Sw_ 0 (dw -~ dw, 8 (3
Ox + 0x (6x)8x 6_;)*_& (3;)—) 8x
Z g/
M,

My, y
(a) (b)

Fig. 7.14 (a) Strain energy of element due to bending; (b) strain energy due to twisting.

a change in slope between its ends equal to (3°w/dx2)8x. However, since we regard
the moments M, as positive in the sense shown, then this change in slope, or relative
rotation, of the ends of the element is negative as the slope decreases with increasing
x. The bending strain energy due to M, is then

1 3w
EMXSy —w&x

Similarly, in the yz plane the contribution of My, to the bending strain energy is

The strain energy due to the twisting moment per unit length, M,,, applied to the &y
edges of the element, is obtained from Fig. 7.14(b). The relative rotation of the 5y edges
is (8%w/dxdy)dx so that the corresponding strain energy is

1M 5 3w
27 y8x8y

ox

Finally, the contribution of the twisting moment My, on the dx edges is, in a similar
fashion
1 Fw
~M,éx
ox dy

)
) Y

The total strain energy of the element from bending and twisting is thus

1 v 9w Iy 9w oM 3w -
—_— J— —_— — —_— [ x
2 T2 T2 Y axay )
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Substitution for My, M, and M, from Eqgs (7.7), (7.8) and (7.14) gives the total strain
energy of the element as

D[ (9w 2+ Pw +28w82 v Pw s
— | (= — — x
2 |\ o2 32 a2 9y? ox ay Y
which on rearranging becomes
D[[*w & Pwatw [ Pw )\’
) f (idiad + —W -2(1—-v) i il ox 8y
2 ox2  9y? a2 gy ox dy

Hence the total strain energy U of the rectangular plate a x b is

_ 0w w 2 21 Pw 2w 9w 2 drd
——f/ (axz —2) - WW‘(M) !

(7.37)

Note that if the plate is subject to pure bending only, then M,, =0 and from Eq. (7.14)
82w/dxdy =0, so that Eq. (7.37) simplifies to

D (o (Pl /w\> [3w\> _ 8w dw
U="> ar Sl dxd 7.38
2/0 /0 [(aﬂ) +<8y2) T | U9

7.6.2 Potential energy of a transverse load

An element 5x x Jy of the transversely loaded plate of Fig. 7.8 supports a load géx3y.
If the displacement of the element normal to the plate is w then the potential energy §V
of the load on the element referred to the undeflected plate position is

8V = —wqéx 8y (See Section 5.7)

Therefore, the potential energy V of the total load on the plate is given by
a prb
=— / / wgq dx dy (7.39)
0 Jo

7.6.3 Potential energy of in-plane loads

We may consider each load Ny, Ny and N,y in turn, then use the principle of super-
position to determine the potential energy of the loading system when they act
simultaneously. Consider an elemental strip of width §y along the length a of the
plate in Fig. 7.15(a). The compressive load on this strip is N4y and due to the bending
of the plate the horizontal length of the strip decreases by an amount A, as shown in
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(b)

Fig. 7.15 (a) In-plane loads on plate; (b) shortening of element due to bending.

Fig. 7.15(b). The potential energy 8V, of the load N,d8y, referred to the undeflected
position of the plate as the datum, is then

8Vy = —NyAdy (7.40)

From Fig. 7.15(b) the length of a small element a of the strip is

Sa = (5x% + sw?)?

sarsc |14 (2 ’
a X 0X — —
2\ ox

and since dw/0x is small then

Hence
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giving
/+/-a’1 ow 2
a=a | —
0 2 0x
and
) / 1 <8w>2
A=a—a = .l e
0 2 0x
Since

a1 ow\? a1 fow)?
/ “(2Y) dx  only differs from/ (2 ax
0o 2\ 0o 2\ 0x

by a term of negligible order we write

a 2
= () e an
0

The potential energy V, of the N, loading follows from Eqs (7.40) and (7.41), thus

Lofa b faw)?
V, = ——/ / Ne () dxdy (7.42)
2 0 0 ax

1 [a [P w2
V, = —— N, [ =) dxd 7.43
g 2/0 /o y<8y) Y (7:43)

The potential energy of the in-plane shear load N,, may be found by considering the
work done by N,y during the shear distortion corresponding to the deflection w of an
element. This shear strain is the reduction in the right angle CoAB to the angle C{AB;
of the element in Fig. 7.16 or, rotating C,A with respect to AB; to AD in the plane
C1AB|, the angle DAC;. The displacement C,D is equal to (dw/dy)dy and the angle
DC;C is aw/dx. Thus C D is equal to

Similarly

ow aw

ax oy

and the angle DAC; representing the shear strain corresponding to the bending
displacement w is

aw ow
dx dy
so that the work done on the element by the shear force Ny,éx is

1 ow ow

NS — —
2 "yxax ay
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Fig. 7.16 Calculation of shear strain corresponding to bending deflection.

Similarly, the work done by the shear force Ny, dy is

and the total work done taken over the complete plate is

1 (e (b ow d
_f / Ny 2 gy
2 0 Jo ox 8y

It follows immediately that the potential energy of the Ny, loads is

L (e, owd
V=3 / / 2Ny o= S dxdy (7.44)
0 Jo x oy

and for the complete in-plane loading system we have, from Eqs (7.42), (7.43) and
(7.44), a potential energy of

1 [e (b w2 w2 ow Iw
V=— N, | — N, | — 2Nyy—— [ dxd 7.45
! [*(8x> i y(8y> BT

We are now in a position to solve a wide range of thin plate problems provided that
the deflections are small, obtaining exact solutions if the deflected form is known or
approximate solutions if the deflected shape has to be ‘guessed’.

Considering the rectangular plate of Section 7.3, simply supported along all four
edges and subjected to a uniformly distributed transverse load of intensity gg, we know
that its deflected shape is given by Eq. (7.27), namely

o0 o0
. mmx | nmwy
w= E E Apn SIN —— sin ——
a b

m=1 n=1
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246  Bending of thin plates
The total potential energy of the plate is, from Eqs (7.37) and (7.39)

Pw  2w\>
vrv= //{ [(axz )
231 Pw Fw ( Pw )2 dxd 746
=2(1 —v) @W— % — W4y y (7.46)

Substituting in Eq. (7.46) for w and realizing that ‘cross-product’ terms integrate to

zero, we have
MTX . 5 NI

2\ 2
n .2
U+V= //{ ZZA |: ( +b2) sin p S b
m=1n=1
2,24
T (sin® P gin? T cos2 TP o2 ?)]
a

m-n
~ 201 =)= (sin® ==

o0 o0
mmx . N
—q0 Z ZA'"” sin —— sin Ty} dxdy
m=1 n=1 a
2

The term multiplied by 2(1 — v) integrates to zero and the mean value of sin” or cos
over a complete number of half waves is % thus integration of the above expression

yields
00 00
bz) — 40 Z Z Amn 2mn

7*ab
U+v_ § § Az (
m=13,5n=1,3,5
(7.47)

m=1,3,5n=13,5
From the principle of the stationary value of the total potential energy we have
aU+V) D_ nwtab (m* n? 4ab
— =2Apm— | 5+ = =0
Am  2m 2 \@T8) TV,
so that
16go

" = 728 Dmnl(m2/a?) + (n2/b2)]2

giving a deflected form
> sin (mmx/a) sin (nmwy/b)

_ 16q0
B 2 Z mn[(m?/a?) + (n* /b?)]*

—6n
7D
m=1,3,5n=1,3,5

which is the result obtained in Eq. (i) of Example 7.1
The above solution is exact since we know the true deflected shape of the plate in the

form of an infinite series for w. Frequently, the appropriate infinite series is not known
so that only an approximate solution may be obtained. The method of solution, known
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as the Rayleigh—Ritz method, involves the selection of a series for w containing a finite
number of functions of x and y. These functions are chosen to satisfy the boundary
conditions of the problem as far as possible and also to give the type of deflection
pattern expected. Naturally, the more representative the ‘guessed’ functions are the
more accurate the solution becomes.

Suppose that the ‘guessed’ series for w in a particular problem contains three different
functions of x and y. Thus

w = A1fi(x,y) + Arfa(x,y) + Azfz(x,y)

where A1, A and Az are unknown coefficients. We now substitute for w in the appropri-
ate expression for the total potential energy of the system and assign stationary values
with respect to A1, A> and A3 in turn. Thus

8(U+V)_0 E)(U—FV)_0 E)(U—i—V)_0
AT Ay A3
giving three equations which are solved for Aj, Ay and As.

Example 7.4
A rectangular plate a x b, is simply supported along each edge and carries a uniformly
distributed load of intensity gg. Assuming a deflected shape given by

TX Ty
w = Aq] sin — sin —
a b

determine the value of the coefficient A;; and hence find the maximum value of
deflection.

The expression satisfies the boundary conditions of zero deflection and zero curvature
(i.e. zero bending moment) along each edge of the plate. Substituting for w in Eq. (7.46)
we have

a rb | pA? * X Ty
U4V = 1 2 4+ b*)?sin® — sin? == — 2(1 —
" /0 /0 [ 2 {(a2b2)2(a OISt 2 =)

[ L mx L my At ) TTX ny]}
X

Z—bQSln 7811’1 7—2—172005 7(:05 —_—

— qoA11 sin ™ sin 71_:| dx dy
a b

whence
2
DAY,
2 4a3b3

4ab
(@ + b — 610A11—

U+V =

so that

(U +V) DA1]7T ( ) 4ab _0
AL 4D T
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and
Ay = 16goa’b*
70D(a? + b?)?
giving
16goa’b* X ., 7y

=m5in75in7

At the centre of the plate w is a maximum and

16goa’*b*
7%D(a? + b?)?

Wmax =

For a square plate and assuming v=0.3

a4
Wmax = 00455q0 E?

which compares favourably with the result of Example 7.1.

In this chapter we have dealt exclusively with small deflections of thin plates. For a
plate subjected to large deflections the middle plane will be stretched due to bending
so that Eq. (7.33) requires modification. The relevant theory is outside the scope of this
book but may be found in a variety of references.
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Problems

P.7.1 A plate 10 mm thick is subjected to bending moments M, equal to 10 Nm/mm
and M, equal to 5 Nm/mm. Calculate the maximum direct stresses in the plate.

Ans.  Oymax = £ 600N/mm?, 0y max = & 300 N/mm?.

P.7.2  Forthe plate and loading of problem P.7.1 find the maximum twisting moment
per unit length in the plate and the direction of the planes on which this occurs.

Ans. 2.5 Nm/mm at 45° to the x and y axes.

P.7.3 The plate of the previous two problems is subjected to a twisting moment of
5 Nm/mm along each edge, in addition to the bending moments of M, =10 N m/mm
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and M, =5 N m/mm. Determine the principal moments in the plate, the planes on which
they act and the corresponding principal stresses.

Ans. 13.INm/mm, 19Nm/mm, «=-31.7°, o=-+58.3°, +786N/mm?2,
+114 N/mm?.

P.7.4 A thin rectangular plate of length a and width 2a is simply supported along
the edges x=0, x=a, y=—a and y=-+a. The plate has a flexural rigidity D, a
Poisson’s ratio of 0.3 and carries a load distribution given by g(x, y) = qo sin(wx/a). If
the deflection of the plate may be represented by the expression

4 X

94 (1 —I—Acosh — +B— sinh —) sin —
~ Dt a a a

determine the values of the constants A and B.
Ans. A=-0.2213, B=0.0431.

P.7.5 A thin, elastic square plate of side a is simply supported on all four sides and
supports a uniformly distributed load g. If the origin of axes coincides with the centre
of the plate show that the deflection of the plate can be represented by the expression

-1
96(1 — v)D

where D is the flexural rigidity, v is Poisson’s ratio and A is a constant. Calculate the
value of A and hence the central deflection of the plate.

Ans. A=a*(5—3v)/4, Cen. def. = ga*(5 — 3v)/384D(1 — v)

26* +yY = 3a2(1 — V)2 +y?) — 120x%y? + A]

P.7.6 The deflection of a square plate of side a which supports a lateral load
represented by the function g(x, y) is given by
X 3wy
w(x,y) = wpcos — cos ——
a a
where x and y are referred to axes whose origin coincides with the centre of the plate
and wy is the deflection at the centre.

If the flexural rigidity of the plate is D and Poisson’s ratio is v determine the loading
function g, the support conditions of the plate, the reactions at the plate corners and the
bending moments at the centre of the plate.

t 3wy

X
Ans. q(x,y)= WODIOO— COs — CcO0S ——
a a

The plate is simply supported on all edges.
2
Reactions: —6wgD (z) (1—-v)
a
MX_WOD( ) (1+9v), M,_WOD( ) ©+).

P.7.7 A simply supported square plate a X a carries a distributed load according to
the formula

X
q(x,y) = qo—
a
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where g is its intensity at the edge x = a. Determine the deflected shape of the plate.

Ans. =

_ 8qoa* Z Z (=™ mmx | nmy

6D ( 2+ 2)2 Sin Sin ——
V3 mn(m n a a
m=1,2,3n=13,5

P.7.8 Anelliptic plate of major and minor axes 2a and 2b and of small thickness ¢ is
clamped along its boundary and is subjected to a uniform pressure difference p between
the two faces. Show that the usual differential equation for normal displacements of a
thin flat plate subject to lateral loading is satisfied by the solution

22 2
w =Wy 1_;_1?

where wy is the deflection at the centre which is taken as the origin.
Determine wy in terms of p and the relevant material properties of the plate and hence
expressions for the greatest stresses due to bending at the centre and at the ends of the

minor axis.
3p(1 —1?)
Ans. wop = . 3 > 3
2Et a* & a2 a’b? l?
+3pa’b*(b* + va?) +3pa’b*(a* + vb?)

Centre,  ouvmax = 33 T 20202 1 348 T T 20t 1 24202 1 34

Ends of minor axis
+6pa’h? +6pb*a®
(o = , O =
T 2304 + 23262 + 3a*)” T 22364 + 24262 + 3a?)

P.7.9 Use the energy method to determine the deflected shape of a rectangular
plate a x b, simply supported along each edge and carrying a concentrated load W at
a position (&, n) referred to axes through a corner of the plate. The deflected shape of
the plate can be represented by the series

4W sin m_mS sin ?
Ans. Ay = a
A A Dabl(m? ) + (2 /b2
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P.7.10 If, in addition to the point load W, the plate of problem P.7.9 supports an
in-plane compressive load of N, per unit length on the edges x =0 and x = a, calculate
the resulting deflected shape.

mit. niw
4W sin _3; sin ]

— a b
Ans. Ay, = PR 5 e
abDrt | =+ 5 ) — 55—
a>  b? w2a?D
P.7.11 A square plate of side a is simply supported along all four sides and is
subjected to a transverse uniformly distributed load of intensity gg. It is proposed to

determine the deflected shape of the plate by the Rayleigh—Ritz method employing a
‘guessed’ form for the deflection of

4x2 4y2
=A 1-—)(1-—=
v (1=5) (=)

in which the origin is taken at the centre of the plate.
Comment on the degree to which the boundary conditions are satisfied and find the
central deflection assuming v=0.3.

0.0389¢goa*

ns.
Er3

P.7.12 A rectangular plate a x b, simply supported along each edge, possesses a
small initial curvature in its unloaded state given by

. X . Ty
wo = Aj1 sin — sin —
a b

Determine, using the energy method, its final deflected shape when it is subjected to a
compressive load N, per unit length along the edges x =0, x =a.

An . X . Ty
Ans. w= sin — sin —

Nya? a® 2 a b
Gy (i
7D ( + b2>
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Columns

A large proportion of an aircraft’s structure comprises thin webs stiffened by slender
longerons or stringers. Both are susceptible to failure by buckling at a buckling stress
or critical stress, which is frequently below the limit of proportionality and seldom
appreciably above the yield stress of the material. Clearly, for this type of structure,
buckling is the most critical mode of failure so that the prediction of buckling loads of
columns, thin plates and stiffened panels is extremely important in aircraft design. In
this chapter we consider the buckling failure of all these structural elements and also
the flexural—torsional failure of thin-walled open tubes of low torsional rigidity.

Two types of structural instability arise: primary and secondary. The former involves
the complete element, there being no change in cross-sectional area while the wave-
length of the buckle is of the same order as the length of the element. Generally, solid
and thick-walled columns experience this type of failure. In the latter mode, changes
in cross-sectional area occur and the wavelength of the buckle is of the order of the
cross-sectional dimensions of the element. Thin-walled columns and stiffened plates
may fail in this manner.

8.1 Euler buckling of columns

The first significant contribution to the theory of the buckling of columns was made as
early as 1744 by Euler. His classical approach is still valid, and likely to remain so, for
slender columns possessing a variety of end restraints. Our initial discussion is therefore
a presentation of the Euler theory for the small elastic deflection of perfect columns.
However, we investigate first the nature of buckling and the difference between theory
and practice.

It is common experience that if an increasing axial compressive load is applied to a
slender column there is a value of the load at which the column will suddenly bow or
buckle in some unpredetermined direction. This load is patently the buckling load of the
column or something very close to the buckling load. Clearly this displacement implies
adegree of asymmetry in the plane of the buckle caused by geometrical and/or material
imperfections of the column and its load. However, in our theoretical stipulation of
a perfect column in which the load is applied precisely along the perfectly straight
centroidal axis, there is perfect symmetry so that, theoretically, there can be no sudden
bowing or buckling. We therefore require a precise definition of buckling load which
may be used in our analysis of the perfect column.
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Columns

Displaced
position

Fig. 8.2 Determination of buckling load for a pin-ended column.

If the perfect column of Fig. 8.1 is subjected to a compressive load P, only shortening
of the column occurs no matter what the value of P. However, if the column is displaced
a small amount by a lateral load F then, at values of P below the critical or buckling
load, PcRr, removal of F results in a return of the column to its undisturbed position,
indicating a state of stable equilibrium. At the critical load the displacement does not
disappear and, in fact, the column will remain in any displaced position as long as the
displacement is small. Thus, the buckling load Pcr is associated with a state of neutral
equilibrium. For P > Pcr enforced lateral displacements increase and the column is
unstable.

Consider the pin-ended column AB of Fig. 8.2. We assume that it is in the displaced
state of neutral equilibrium associated with buckling so that the compressive load P
has attained the critical value Pcr. Simple bending theory (see Chapter 16) gives

d2v
El— =—-M
dz?
or
d%v
El— = —PcRrv 8.1)

dz?
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so that the differential equation of bending of the column is

d>v  Pcr
S TR =0 8.2
2t (8.2)

The well-known solution of Eq. (8.2) is
v=Acosuz+ Bsin uz (8.3)

where u? = Pcr/EI and A and B are unknown constants. The boundary conditions for
this particular case are v=0at z=0and [. Thus A=0 and

Bsinul =0
For a non-trivial solution (i.e. v # 0) then

sinul =0 or pul=nm wheren=1,2,3,...

giving
Pcrl?
o =
or
n*m2El
PCR = l—2 (84)

Note that Eq. (8.3) cannot be solved for v no matter how many of the available boundary
conditions are inserted. This is to be expected since the neutral state of equilibrium
means that v is indeterminate.

The smallest value of buckling load, in other words the smallest value of P which
can maintain the column in a neutral equilibrium state, is obtained by substituting n = 1
in Eq. (8.4). Hence

m2El
P CR — l_2 (85)

Other values of Pcg correspondington=2, 3,..., are

A72El 972El
CR = 1—2, 1—2, e

These higher values of buckling load cause more complex modes of buckling such as
those shown in Fig. 8.3. The different shapes may be produced by applying external
restraints to a very slender column at the points of contraflexure to prevent lateral
movement. If no restraints are provided then these forms of buckling are unstable and
have little practical meaning.

The critical stress, ocr, corresponding to Pcr, is, from Eq. (8.5)

7’E

OCR
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@ Per Fer — Fer
!‘ /2 /2 ! w3 | w3 | s,
Peg = 4m2EI/12 Per= 9m%EI/1?

Fig. 8.3 Buckling loads for different buckling modes of a pin-ended column.

Table 8.1

Ends Lo/l Boundary conditions

Both pinned 1.0 v=0atz=0and/

Both fixed 0.5 v=0atz=0andz=1/,dv/dz=0atz=1
One fixed, the other free 2.0 v=0anddv/dz=0atz=0

One fixed, the other pinned  0.6998 dv/dz=0atz=0,v=0atz=/andz=0

where r is the radius of gyration of the cross-sectional area of the column. The term

I/r is known as the slenderness ratio of the column. For a column that is not doubly

symmetrical, r is the least radius of gyration of the cross-section since the column will

bend about an axis about which the flexural rigidity EI is least. Alternatively, if buckling

is prevented in all but one plane then EI is the flexural rigidity in that plane.
Equations (8.5) and (8.6) may be written in the form

w2El
Per = — 87
(&)
and
72E 8.8)
OCR = 775 .
(le/1)?

where [ is the effective length of the column. This is the length of a pin-ended column
that would have the same critical load as that of a column of length /, but with different
end conditions. The determination of critical load and stress is carried out in an identical
manner to that for the pin-ended column except that the boundary conditions are dif-
ferent in each case. Table 8.1 gives the solution in terms of effective length for columns
having a variety of end conditions. In addition, the boundary conditions referred to the
coordinate axes of Fig. 8.2 are quoted. The last case in Table 8.1 involves the solution
of a transcendental equation; this is most readily accomplished by a graphical method.

Let us now examine the buckling of the perfect pin-ended column of Fig. 8.2 in
greater detail. We have shown, in Eq. (8.4), that the column will buckle at discrete values
of axial load and that associated with each value of buckling load there is a particular
buckling mode (Fig. 8.3). These discrete values of buckling load are called eigenvalues,
their associated functions (in this case v= Bsinnmrz/l) are called eigenfunctions and
the problem itself is called an eigenvalue problem.

Further, suppose that the lateral load F in Fig. 8.1 is removed. Since the column
is perfectly straight, homogeneous and loaded exactly along its axis, it will suffer
only axial compression as P is increased. This situation, theoretically, would continue
until yielding of the material of the column occurred. However, as we have seen,
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P=P.p (bifurcation point)

-

0
Lateral deflection at mid-height

Fig. 8.4 Behaviour of a perfect pin-ended column.

for values of P below Pcgr the column is in stable equilibrium whereas for P > Pcr
the column is unstable. A plot of load against lateral deflection at mid-height would
therefore have the form shown in Fig. 8.4 where, at the point P = Pcg, it is theoretically
possible for the column to take one of three deflection paths. Thus, if the column
remains undisturbed the deflection at mid-height would continue to be zero but unstable
(i.e. the trivial solution of Eq. (8.3), v=0) or, if disturbed, the column would buckle
in either of two lateral directions; the point at which this possible branching occurs
is called a bifurcation point; further bifurcation points occur at the higher values of
Pcr(4m2EL /12, 97%EL 12, . . ).

Example 8.1

A uniform column of length L and flexural stiffness EI is simply supported at its ends
and has an additional elastic support at midspan. This support is such that if a lateral
displacement v, occurs at this point a restoring force kv, is generated at the point.
Derive an equation giving the buckling load of the column. If the buckling load is
47?EI /L? find the value of k. Also if the elastic support is infinitely stiff show that the
buckling load is given by the equation tan AL/2 = AL/2 where A = /P/EI.

The column is shown in its displaced position in Fig. 8.5.The bending moment at any
section of the column is given by

kv
M =Pv— —z
2
so that, by comparison with Eq. (8.1)
Eldzv Pot kv
— = —Pv _
dz? 2 ¢

giving

v, kv

)
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Fig. 8.5 Column of Example 8.1.

The solution of Eq. (i) is of standard form and is

2P

The constants A and B are found using the boundary conditions of the column which
are: v=0 when z=0, v=1v., when z=L/2 and (dv/dz) =0 when z =L/2.
From the first of these, A = 0 while from the second

Ve < k)\)
B=——F__(1-2
sin (AL/2) 4p

The third boundary condition gives, since v, # 0, the required equation, i.e.

Rearranging

p_ IE (1 _ tan ()\L/2)>

4 ALJ2

If P (buckling load) = 472EI /L? then AL/2 = 7 so that k =4P/L.
Finally, if k — oo
AL AL

tan > =3 (i)
Note that Eq. (ii) is the transcendental equation which would be derived when deter-
mining the buckling load of a column of length L/2, built in at one end and pinned at

the other.
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8.2 Inelastic buckling

We have shown that the critical stress, Eq. (8.8), depends only on the elastic modulus
of the material of the column and the slenderness ratio //r. For a given material the
critical stress increases as the slenderness ratio decreases; i.e. as the column becomes
shorter and thicker. A point is then reached when the critical stress is greater than the
yield stress of the material so that Eq. (8.8) is no longer applicable. For mild steel this
point occurs at a slenderness ratio of approximately 100, as shown in Fig. 8.6. We
therefore require some alternative means of predicting column behaviour at low values
of slenderness ratio.

It was assumed in the derivation of Eq. (8.8) that the stresses in the column remained
within the elastic range of the material so that the modulus of elasticity E(= do/de) was
constant. Above the elastic limit do/de depends upon the value of stress and whether
the stress is increasing or decreasing. Thus, in Fig. 8.7 the elastic modulus at the point
A is the tangent modulus E if the stress is increasing but E if the stress is decreasing.

9001}
&
£

£ 600}
£
S
b

3001

Yield stressf—-——-
j
O : Al A
100 200 300
{L/n)
Fig. 8.6 Critical stress—slenderness ratio for a column.
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Fig. 8.7 Elastic moduli for a material stressed above the elastic limit.
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Fig. 8.8 Determination of reduced elastic modulus.

Consider a column having a plane of symmetry and subjected to a compressive load
P such that the direct stress in the column P/A is above the elastic limit. If the column
is given a small deflection, v, in its plane of symmetry, then the stress on the concave
side increases while the stress on the convex side decreases. Thus, in the cross-section
of the column shown in Fig. 8.8(a) the compressive stress decreases in the area A
and increases in the area A, while the stress on the line nn is unchanged. Since these
changes take place outside the elastic limit of the material, we see, from our remarks
in the previous paragraph, that the modulus of elasticity of the material in the area
Aq is E while that in A, is E;. The homogeneous column now behaves as if it were
non-homogeneous, with the result that the stress distribution is changed to the form
shown in Fig. 8.8(b); the linearity of the distribution follows from an assumption that
plane sections remain plane.

As the axial load is unchanged by the disturbance

d; d>r
/ oydA = / o,dA (8.9)
0 0

Also, P is applied through the centroid of each end section a distance e from nn so that

di dp
/ ox(y1 + ) dA + / ou(y2 — €)dA = —Pu (8.10)
0 0
From Fig. 8.8(b)
o1 (o]
Oy = d_1y1 Oy = d_2y2 (8-11)

The angle between two close, initially parallel, sections of the column is equal to the
change in slope d?v/dz? of the column between the two sections. This, in turn, must be
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equal to the angle §¢ in the strain diagram of Fig. 8.8(c). Hence

d2
S 8.12)
dZ2 Ed1 Etdz
and Eq. (8.9) becomes, from Eqs (8.11) and (8.12)
d2v dp d2U dr
E— dA — E,— dA=0 8.13
de /(; 1 t dZZ ‘/(; Y2 ( )

Further, in a similar manner, from Eq. (8.10)

d2v dp ) dy ) d2v dp dr
F E/ y]dA+Et/ yZdA +€d—2 E/ yldA—Et/ y2dA = —Pv
< 0 0 < 0 0

(8.14)
The second term on the left-hand side of Eq. (8.14) is zero from Eq. (8.13). Therefore
we have

d%v
d_zz(Ell + Eir) = —Pv (8.15)

in which

dy dy
I =/ y}dA and I =/ y3dA
0 0

the second moments of area about nn of the convex and concave sides of the column
respectively. Putting

E.l =EL + Ed;

or
I I
ﬂ:E%+&% (8.16)

where E; is known as the reduced modulus, gives

d?v
Erld_zz +PU=O

Comparing this with Eq. (8.2) we see that if P is the critical load Pcr then

72Ed
Pcr = —5 (8.17)
le
and
72E,
OCR (8.18)

" Ue/r)?
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The above method for predicting critical loads and stresses outside the elastic range is
known as the reduced modulus theory. From Eq. (8.13) we have

dp dy
E/ yldA—Et/ y2dA =0 (8.19)
0 0

which, together with the relationship d =d; + d>, enables the position of nn to be
found.

It is possible that the axial load P is increased at the time of the lateral disturbance
of the column such that there is no strain reversal on its convex side. The compressive
stress therefore increases over the complete section so that the tangent modulus applies
over the whole cross-section. The analysis is then the same as that for column buckling
within the elastic limit except that E; is substituted for E. Hence the tangent modulus
theory gives

n*EJ
Pcr = B (8.20)
(&
and
2
b/ E[
(le/7?)

By a similar argument, a reduction in P could result in a decrease in stress over the
whole cross-section. The elastic modulus applies in this case and the critical load and
stress are given by the standard Euler theory; namely, Eqs (8.7) and (8.8).

In Eq. (8.16), I1 and I, are together greater than I while E is greater than E. It follows
that the reduced modulus E; is greater than the tangent modulus E;. Consequently,
buckling loads predicted by the reduced modulus theory are greater than buckling
loads derived from the tangent modulus theory, so that although we have specified
theoretical loading situations where the different theories would apply there still remains
the difficulty of deciding which should be used for design purposes.

Extensive experiments carried out on aluminium alloy columns by the aircraft indus-
try in the 1940s showed that the actual buckling load was approximately equal to the
tangent modulus load. Shanley (1947) explained that for columns with small imper-
fections, an increase of axial load and bending occur simultaneously. He then showed
analytically that after the tangent modulus load is reached, the strain on the concave
side of the column increases rapidly while that on the convex side decreases slowly. The
large deflection corresponding to the rapid strain increase on the concave side, which
occurs soon after the tangent modulus load is passed, means that it is only possible to
exceed the tangent modulus load by a small amount. It follows that the buckling load of
columns is given most accurately for practical purposes by the tangent modulus theory.

Empirical formulae have been used extensively to predict buckling loads, although
in view of the close agreement between experiment and the tangent modulus theory
they would appear unnecessary. Several formulae are in use; for example, the Rankine,
Straight-line and Johnson’s parabolic formulae are given in many books on elastic
stability.!
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8.3 Effect of initial imperfections

Obviously itis impossible in practice to obtain a perfectly straight homogeneous column
and to ensure that it is exactly axially loaded. An actual column may be bent with some
eccentricity of load. Such imperfections influence to a large degree the behaviour of the
column which, unlike the perfect column, begins to bend immediately the axial load is
applied.

Let us suppose that a column, initially bent, is subjected to an increasing axial load
P as shown in Fig. 8.9. In this case the bending moment at any point is proportional to
the change in curvature of the column from its initial bent position. Thus

d?v d2vy
El— —El—- —P 8.22
dz? dz? 0 (8.22
which, on rearranging, becomes
PR (8.23)
v= .
dz2 dz?

where A2 = P/EI. The final deflected shape, v, of the column depends upon the form
of its unloaded shape, vg. Assuming that

o0
w= Aysin "—7? (8.24)
n=1

and substituting in Eq. (8.23) we have

The general solution of this equation is

n2An . nmz

o0
v =Bcoskz+DsinAz+Z

n=1

n? —u !

Fig. 8.9 Initially bent column.
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where B and D are constants of integration and o = A2 /2. The boundary conditions
are v=0at z=0and /, giving B= D =0 whence

. n2A nmz
n .
= sin — 8.25
v ; n? —a l (8.25)

Note that in contrast to the perfect column we are able to obtain a non-trivial solution
for deflection. This is to be expected since the column is in stable equilibrium in its
bent position at all values of P.

An alternative form for « is

PP P
o = = —
T 2EI PCR
Thus « is always less than one and approaches unity when P approaches PcR so that the

first term in Eq. (8.25) usually dominates the series. A good approximation, therefore,
for deflection when the axial load is in the region of the critical load is

(see Eq. (8.5))

A
v= 2 sin 2 (8.26)
l -« /
or at the centre of the column where z =1/2
Ay
V= ———— (8.27)
1 — P/Pcr

in which A is seen to be the initial central deflection. If central deflections §(=v — A1)
are measured from the initially bowed position of the column then from Eq. (8.27) we
obtain

Ay

— A =6
1 — P/Pcr

which gives on rearranging

)
§=Pcr——A 8.28
CRp 1 (8.28)

and we see that a graph of § plotted against §/P has a slope, in the region of the critical
load, equal to Pcr and an intercept equal to the initial central deflection. This is the
well known Southwell plot for the experimental determination of the elastic buckling
load of an imperfect column.

Timoshenko! also showed that Eq. (8.27) may be used for a perfectly straight column
with small eccentricities of column load.

Example 8.2

The pin-jointed column shown in Fig. 8.10 carries a compressive load P applied eccen-
trically at a distance e from the axis of the column. Determine the maximum bending
moment in the column.

The bending moment at any section of the column is given by

M = P(e + v)
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y
b
V4
P e e F
L
Fig. 8.10 Eccentrically loaded column of Example 8.2
Then, by comparison with Eq. (8.1)
g — petv)
— = —P(e+v
dz?
giving
L S ()
- V= —— = 1
az M T

The solution of Eq. (i) is of standard form and is
v=Acosuz+ Bsinuz —e

The boundary conditions are: v =0 when z =0 and (dv/dz) =0 when z =L/2.
From the first of these A = e while from the second

L
B=ectan =
2

The equation for the deflected shape of the column is then

| cos w(z—L/2) _q
- |: cosulL/2 :|

The maximum value of v occurs at midspan where z=L/2, i.e.

(5 -1)
Umax = € secT—l

The maximum bending moment is given by
M(max) = Pe + Pvmax
so that

uL
M (max) = Pe sec >
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8.4 Stability of beams under transverse and axial loads

Stresses and deflections in a linearly elastic beam subjected to transverse loads as
predicted by simple beam theory, are directly proportional to the applied loads. This
relationship is valid if the deflections are small such that the slight change in geom-
etry produced in the loaded beam has an insignificant effect on the loads themselves.
This situation changes drastically when axial loads act simultaneously with the trans-
verse loads. The internal moments, shear forces, stresses and deflections then become
dependent upon the magnitude of the deflections as well as the magnitude of the exter-
nal loads. They are also sensitive, as we observed in the previous section, to beam
imperfections such as initial curvature and eccentricity of axial load. Beams supporting
both axial and transverse loads are sometimes known as beam-columns or simply as
transversely loaded columns.

We consider first the case of a pin-ended beam carrying a uniformly distributed load
of intensity w per unit length and an axial load P as shown in Fig. 8.11. The bending
moment at any section of the beam is

M = Po+t wlz  wz? _ E1d2v
STy T Ty T
giving
v P W,
=— -1 (8.29)

a2 TE" T 2
The standard solution of Eq. (8.29) is

v=AcosAz+ Bsiniz + id z 2
- ¢ “Tap\® 22

where A and B are unknown constants and A> = P/EI. Substituting the boundary
conditions v=0 at z=0 and [ gives

w

A=—— B=———
AP A2Psin Al

(I —cosAl)

wl

|
wly e 2
P 3%””‘5V T P

‘ w/unit length
|

l

Fig. 8.11 Bending of a uniformly loaded beam-column.
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so that the deflection is determinate for any value of w and P and is given by

w e+ 1 —cosAl\ . | 4+ w 2 2 (8.30)
V= ——|COS ———— | Sin — — —_ — .
22P ¢ sin Al HTap\F TR TR

In beam-columns, as in beams, we are primarily interested in maximum values of
stress and deflection. For this particular case the maximum deflection occurs at the
centre of the beam and is, after some transformation of Eq. (8.30)

w Mo wi? 8.3D)
=—=—|sec——1)— — .
max = 52p \ 2 8P
The corresponding maximum bending moment is
wi?
Mmax = —Pumax — ?
or, from Eq. (8.31)
w Al
Mpax = 2 1 —sec > (8.32)

We may rewrite Eq. (8.32) in terms of the Euler buckling load Pcr = 72EI/I? for a
pin-ended column. Hence

v wi? Pcr . 7| P 8.33)
= —— —sec— [ — .
=2 p 2\ Pcr

As P approaches Pcr the bending moment (and deflection) becomes infinite. However,
the above theory is based on the assumption of small deflections (otherwise d?v/dz?
would not be a close approximation for curvature) so that such a deduction is invalid.
The indication is, though, that large deflections will be produced by the presence of a
compressive axial load no matter how small the transverse load might be.

Let us consider now the beam-column of Fig. 8.12 with hinged ends carrying a
concentrated load W at a distance a from the right-hand support. For

d? We
z<l—a EISY= M=_—pp— % (8.34)
dz? l
and for
d?v w
z>l—a El—=-M=—-Pv— —((—a)l—2) (8.35)
dz? [
Writing
2=t
EI
Eq. (8.34) becomes
d?v 9 Wa
— tA V= ——=2
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Fig. 8.12 Beam-column supporting a point load.

the general solution of which is

We
v=AcosAz+ Bsiniz — F;lz (8.36)

Similarly, the general solution of Eq. (8.35) is
%4
v=Ccosiz+ DsinAz — ﬁ(l —a)(l—2) (8.37)

where A, B, C and D are constants which are found from the boundary conditions as
follows.

When z=0, v=0, therefore from Eq. (8.36) A=0. At z=1[, v=0 giving, from
Eq. (8.37), C = —Dtan AL At the point of application of the load the deflection and
slope of the beam given by Eqs (8.36) and (8.37) must be the same. Hence, equating
deflections

. Wa . Wa
Bsin A(l — a) — ?l(l —a)=D[sinA(l —a) —tanAlcosA(l — a)] — ?l(l —a)
and equating slopes
Wa . w
BAcosA(l —a) — I = DA[cosA(l —a) —tan Alsin A(I — a)] + Fl(l —a)

Solving the above equations for B and D and substituting for A, B, C and D in Eqs (8.36)
and (8.37) we have

W sin Lla Wa
= ———sinAz — —z fi <Il-— 8.38
v Prsinil Sin Az Pl z for z< a ( )
WsinA(l —a) . W
P sin ol sin A(I — 2) Pl (l—a)(l—2) forz>=l—a (8.39)

These equations for the beam-column deflection enable the bending moment and
resulting bending stresses to be found at all sections.

A particular case arises when the load is applied at the centre of the span. The
deflection curve is then symmetrical with a maximum deflection under the load of

w Al WL

—— tan
2P\ 2 4p

Umax =
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Mg
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Fig. 8.13 Beam-column supporting end moments.

Finally, we consider a beam-column subjected to end moments M4 and Mg in addi-
tion to an axial load P (Fig. 8.13). The deflected form of the beam-column may be
found by using the principle of superposition and the results of the previous case. First,
we imagine that Mp acts alone with the axial load P. If we assume that the point load W
moves towards B and simultaneously increases so that the product Wa = constant = My
then, in the limit as a tends to zero, we have the moment Mp applied at B. The deflection
curve is then obtained from Eq. (8.38) by substituting Aa for sin Aa (since Aa is now
very small) and Mg for Wa. Thus

Mg (sinA
p= 2B (S0AT 2 (8.40)
P sin Al [

In asimilar way, we find the deflection curve corresponding to M 5 acting alone. Suppose
that W moves towards A such that the product W(l—a) = constant = M. Then as (I —a)
tends to zero we have sin A(l — a) = A( — a) and Eq. (8.39) becomes

e Ma |:sink(l—z) B (l—z)i|

8.41
P sin Al l ( )

The effect of the two moments acting simultaneously is obtained by superposition of
the results of Eqgs (8.40) and (8.41). Hence for the beam-column of Fig. 8.13

_ Mg <sinkz Z) N Ma |:sink(l—z) 3 (l—z):|

v (8.42)

P \sinAl [ P sin Al I

Equation (8.42) is also the deflected form of a beam-column supporting eccentrically
applied end loads at A and B. For example, if ep and ep are the eccentricities of P at
the ends A and B, respectively, then Mp = Pes, Mp = Peg, giving a deflected form of

siniz  z sinA(l—2) (-2
_ _z _ 8.43
VB (sinkl l> Tea [ sin Al I } (843)

Other beam-column configurations featuring a variety of end conditions and loading
regimes may be analysed by a similar procedure.

8.5 Energy method for the calculation of buckling
loads in columns

The fact that the total potential energy of an elastic body possesses a stationary value
in an equilibrium state may be used to investigate the neutral equilibrium of a buckled
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PCR

y
Fig. 8.14 Shortening of a column due to buckling.

column. In particular, the energy method is extremely useful when the deflected form
of the buckled column is unknown and has to be ‘guessed’.

First, we shall consider the pin-ended column shown in its buckled position in
Fig. 8.14. The internal or strain energy U of the column is assumed to be produced by
bending action alone and is given by the well known expression

U /led (8.44)
= )y 2E1°° '

or alternatively, since EI d>v/dz*> = —M

El (! [d?v\*
U=— [ (%2) dz 8.45
> ), (d12> z (8.45)

The potential energy V of the buckling load PcRr, referred to the straight position of the
column as the datum, is then

V = —PcRrd

where § is the axial movement of Pcr caused by the bending of the column from its
initially straight position. By reference to Fig. 7.15(b) and Eq. (7.41) we see that

1! /dv\?
d=— — ) dz
20 dz

P L rdv\?
v=_tR ) 4, (8.46)
2 0 dz

The total potential energy of the column in the neutral equilibrium of its buckled state
is therefore

giving

I 2 ! 2

M P d

U+V=[| Z—dz— "R [ (&) ¢ (8.47)
0 2EI 2 0 dz

or, using the alternative form of U from Eq. (8.45)

El (! [d%\° Per (! (dv\?
U+v=—-| (=) &z B[ (Z) 4 8.48
+ 2 0 <d22> ¢ 2 0 (dz> ‘ ( )



8.5 Energy method for the calculation of buckling loads in columns

We have seen in Chapter 7 that exact solutions of plate bending problems are obtain-
able by energy methods when the deflected shape of the plate is known. An identical
situation exists in the determination of critical loads for column and thin plate buckling
modes. For the pin-ended column under discussion a deflected form of

v = ZA sin 2% (8.49)

satisfies the boundary conditions of

(V)2m0 = ()smy = 0 (d2”> (d2”> 0
V)= = (V),—] = —_— — - -
yé 0 Z [ de Zzo de Z=l

and is capable, within the limits for which itis valid and if suitable values for the constant
coefficients A, are chosen, of representing any continuous curve. We are therefore in a
position to find Pcr exactly. Substituting Eq. (8.49) into Eq. (8.48) gives

U+v_— ( ) (anAnmn—Z)zdz

l

Pcr (n)2 > " nmz 2d (8.50
2 Jy () \Zmveos 77 ) s 50)

The product terms in both integrals of Eq. (8.50) disappear on integration, leaving only
integrated values of the squared terms. Thus

UtV =5 Z Z A; (8.51)

Assigning a stationary value to the total potential energy of Eq. (8.51) with respect to
each coefficient A, in turn, then taking A, as being typical, we have

WU +V) a'Eln*A, a?Pcrn®A,

— =0
0A,, 283 21
from which
72 EIn?
Pcr = 2 as before.

We see that each term in Eq. (8.49) represents a particular deflected shape with a
corresponding critical load. Hence the first term represents the deflection of the column
shown in Fig. 8.14, with Pcr = w2EI /I>. The second and third terms correspond to the
shapes shown in Fig. 8.3, having critical loads of 472EI /> and 97*EI /1> and so on.
Clearly the column must be constrained to buckle into these more complex forms. In
other words the column is being forced into an unnatural shape, is consequently stiffer
and offers greater resistance to buckling as we observe from the higher values of critical
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Fig. 8.15 Buckling load for a built-in column by the energy method.

load. Such buckling modes, as stated in Section 8.1, are unstable and are generally of
academic interest only.

If the deflected shape of the column is known it is immaterial which of Eqs (8.47)
or (8.48) is used for the total potential energy. However, when only an approximate
solution is possible Eq. (8.47) is preferable since the integral involving bending moment
depends upon the accuracy of the assumed form of v, whereas the corresponding term in
Eq. (8.48) depends upon the accuracy of d>v/dz>. Generally, for an assumed deflection
curve v is obtained much more accurately than d?v/dz>.

Suppose that the deflection curve of a particular column is unknown or extremely
complicated. We then assume a reasonable shape which satisfies, as far as possible,
the end conditions of the column and the pattern of the deflected shape (Rayleigh—Ritz
method). Generally, the assumed shape is in the form of a finite series involving a series
of unknown constants and assumed functions of z. Let us suppose that v is given by

v=A1f1(2) + A2f2(2) + A3f3(2)

Substitution in Eq. (8.47) results in an expression for total potential energy in terms of
the critical load and the coefficients A1, A; and A3 as the unknowns. Assigning stationary
values to the total potential energy with respect to A1, A and A3 in turn produces three
simultaneous equations from which the ratios Aj/A;, A1/A3 and the critical load are
determined. Absolute values of the coefficients are unobtainable since the deflections
of the column in its buckled state of neutral equilibrium are indeterminate.

As asimple illustration consider the column shown in its buckled state in Fig. 8.15. An
approximate shape may be deduced from the deflected shape of a tip-loaded cantilever.
Thus

v()Z2
V= W(3l - Z)

This expression satisfies the end-conditions of deflection, viz. v=0at z=0 and v=vg
at z=1. In addition, it satisfies the conditions that the slope of the column is zero at
the built-in end and that the bending moment, i.e. d%v/dz2, is zero at the free end. The
bending moment at any section is M = Pcr(vg — v) so that substitution for M and v in
Eq. (8.47) gives

P2 v2 ! 322 2N\ Pcr [ (3w’
U V:Mf 11— =+ d——/ — | 2@i-27%d
+ 2EL J, rtap) o ) \gp) Felmad
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Integrating and substituting the limits we have

2 .2 2
_ 1_7PCRvol B EP v

UtV=5"m ~5fey
Hence
AU +V)  17Pigvol  6Pcrvo 0
vy 35 EI 51
from which
Pcr = 2EL
1712 2

This value of critical load compares with the exact value (see Table 8.1) of
w2 El /41> =2.467EI /1?; the error, in this case, is seen to be extremely small. Approxi-
mate values of critical load obtained by the energy method are always greater than the
correct values. The explanation lies in the fact that an assumed deflected shape implies
the application of constraints in order to force the column to take up an artificial shape.
This, as we have seen, has the effect of stiffening the column with a consequent increase
in critical load.

It will be observed that the solution for the above example may be obtained by simply
equating the increase in internal energy (U) to the work done by the external critical
load (—V). This is always the case when the assumed deflected shape contains a single
unknown coefficient, such as vg in the above example.

8.6 Flexural-torsional buckling of thin-walled columns

It is recommended that the reading of this section be delayed until after Chapter 27 has
been studied.

In some instances thin-walled columns of open cross-section do not buckle in bending
as predicted by the Euler theory but twist without bending, or bend and twist simul-
taneously, producing flexural-torsional buckling. The solution of this type of problem
relies on the theory presented in Chapter 27 for the torsion of open section beams
subjected to warping (axial) restraint. Initially, however, we shall establish a useful
analogy between the bending of a beam and the behaviour of a pin-ended column.

The bending equation for a simply supported beam carrying a uniformly distributed
load of intensity wy and having Cx and Cy as principal centroidal axes is

d*v

EIXXF

=wy (see Chapter 16) (8.52)

Also, the equation for the buckling of a pin-ended column about the Cx axis is (see
Eq. (8.1))

d?v

EIxxd—Zz = —PCRU (853)
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Fig. 8.16 Flexural-torsional buckling of a thin-walled column.

Differentiating Eq. (8.53) twice with respect to z gives

d*v d?v

Ely— = —Peg —
YA R 472

(8.54)

Comparing Eqs (8.52) and (8.54) we see that the behaviour of the column may be
obtained by considering it as a simply supported beam carrying a uniformly distributed
load of intensity wy given by

d%v
Wy = —PCR@ (855)
Similarly, for buckling about the Cy axis
d%u
Wy = _PCRd_Z2 (856)

Consider now a thin-walled column having the cross-section shown in Fig. 8.16 and
suppose that the centroidal axes Cxy are principal axes (see Chapter 16); S(xs, ys) is
the shear centre of the column (see Chapter 17) and its cross-sectional area is A. Due
to the flexural-torsional buckling produced, say, by a compressive axial load P the
cross-section will suffer translations # and v parallel to Cx and Cy, respectively and a
rotation 6, positive anticlockwise, about the shear centre S. Thus, due to translation,
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C and S move to C’ and S’ and then, due to rotation about S’, C’ moves to C”. The total
movement of C, uc, in the x direction is given by

ue =u+CD=u+CC"sina (S'C'C" ~90°)
But
Cc'C” =C'S'6 = CSo
Hence
uc = u+ 0CSsino = u + ysb (8.57)
Also the total movement of C in the y direction is
ve=v—DC"=v—-CC"cosa = v — OCS cos &
so that
ve = v — x50 (8.58)

Since at this particular cross-section of the column the centroidal axis has been dis-
placed, the axial load P produces bending moments about the displaced x and y axes
given, respectively, by

M, = Pvc = P(v — xsb) (8.59)
and
M, = Puc = P(u+ ysb) (8.60)
From simple beam theory (Chapter 16)
d%v
ElLyy,— = —M, = —P(v — x50) (8.61)
dz?
and
d’u
Elyyd—Z2 = —My, = —P(u+ ys0) (8.62)

where I, and I, are the second moments of area of the cross-section of the column
about the principal centroidal axes, E is Young’s modulus for the material of the column
and z is measured along the centroidal longitudinal axis.

The axial load P on the column will, at any cross-section, be distributed as a uniform
direct stress . Thus, the direct load on any element of length s at a point B(xg, yg) is
ot ds acting in a direction parallel to the longitudinal axis of the column. In a similar
manner to the movement of C to C” the point B will be displaced to B”. The horizontal
movement of B in the x direction is then

ug =u~+ B'F =u+ B'B"cos

But
B'B” = S'B'6 = SB#



278 Columns

Hence

ug = u + 0SB cos
or

ug = u+(ys — yB)o (8.63)
Similarly the movement of B in the y direction is

v = v — (xg — xg)f (8.64)

Therefore, from Egs (8.63) and (8.64) and referring to Eqs (8.55) and (8.56), we see
that the compressive load on the element és at B, o¢és, is equivalent to lateral loads

d2
—Jt8s— [u + (ys — yB)#] in the x direction

and

2

d
—at8sd 3 [v— (xs —xB)f] in the y direction

The lines of action of these equivalent lateral loads do not pass through the displaced
position S’ of the shear centre and therefore produce a torque about S’ leading to the
rotation 6. Suppose that the element §s at B is of unit length in the longitudinal z
direction. The torque per unit length of the column §7'(z) acting on the element at B is
then given by

d2
8T (z) = —otés— iz [+ (ys — yB)O1(ys — yB)

2
+ ot8sd—2[v — (xs — xB)0](xs — xB) (8.65)
dz

Integrating Eq. (8.65) over the complete cross-section of the column gives the torque
per unit length acting on the column, i.e.

d2u
T(z) = —/ ot—(ys — yp)ds — / ot(ys — yB)° —dS
Sect 4z Sect

d2 ,d%0
+ / v(xs — xg)ds — / ot(xs — xB) —ds (8.66)
Sect dZ Sect
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Expanding Eq. (8.66) and noting that o is constant over the cross-section, we obtain

d?u d?u d%e
T@2) = —a—ys/ tds+o— tyg ds — 0—y3 / tds
dz? Sect dz? Sect B dz? S Sect

d%o d%o d?
+0—2ys tygds —o— vy ds—i—or—;)xs/ tds
dz Sect

dZ2 Sect dZZ Sect
dzv/ txg d & 2/ tds+ d292 / ixg d
—0— xgds —o—=x s+ o0—=2xg xg ds
dz? Sect dz? S Sect dz? Sect
d%e
—0—2/ tsz ds (8.67)
dz= Jsect

Equation (8.67) may be rewritten

d?v d?u\ Pd* , )
T(Z) =P xsd—zz —yS@ — Zd—ZZ(AyS +Ixx +Axs +Iyy) (868)
In Eq. (8.68) the term Iy, + Iy +A(x§ + y%) is the polar second moment of area [y of
the column about the shear centre S. Thus Eq. (8.68) becomes

d?v d’u P d%e
T =P _ —ye— | -y —— 8.69
(2) (Xs 2 a2 ) Uywrs: (8.69)
Substituting for 7'(z) from Eq. (8.69) in Eq. (27.11), the general equation for the torsion
of a thin-walled beam, we have

d*e ( P) d?e d%v d2u

ElT——-|(GJ—-Iy— ) — — Pxs— + Pys— =0 8.70
i 0% ) gz ~ s + Pys (8.70)

A
Equations (8.61), (8.62) and (8.70) form three simultaneous equations which may be
solved to determine the flexural-torsional buckling loads.

As an example, consider the case of a column of length L in which the ends are
restrained against rotation about the z axis and against deflection in the x and y directions;
the ends are also free to rotate about the x and y axes and are free to warp. Thus
u=v=60=0atz=0and z=L. Also, since the column is free to rotate about the x and
y axes at its ends, My =M, =0 at =0 and z =L, and from Eqgs (8.61) and (8.62)

v d%u
d—Z2=d—ZZ=Oatz=Oandz=L
Further, the ends of the column are free to warp so that

d%0
@ =0atz=0and z = L (see Eq. (27.1))

An assumed buckled shape given by

. 7T . 7T . T
u=A;sin— v=Arsin— 6 =A3zsin— (8.71)
L L L
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in which A1, A; and A3 are unknown constants, satisfies the above boundary conditions.
Substituting for u#, v and 6 from Eqgs (8.71) into Eqgs (8.61), (8.62) and (8.70), we have

2
n°El
(P — Lz”)Az — PxsA3 =0

2
EI,,
(p I 2 ) Ay + PysA; =0 (8.72)

PysA1 — PxsAy — i l_‘—|—GJ—I—0P A3 =0
X,
ysA1 sA2 2 3

For non-zero values of A1, A; and A3 the determinant of Eqgs (8.72) must equal zero, i.e.

0 P — n%El,/L? —Pxg
P — n’El,y/L? 0 Pys =0 (8.73)
Pys —Pxg IpP/A — n*ET/L? — GJ

The roots of the cubic equation formed by the expansion of the determinant give the
critical loads for the flexural—torsional buckling of the column; clearly the lowest value
is significant.

In the case where the shear centre of the column and the centroid of area coincide,
i.e. the column has a doubly symmetrical cross-section, xs =ys =0 and Eqs (8.61),
(8.62) and (8.70) reduce, respectively, to

dZv
Elxx@ = —Pv (8.74)
d%u
Elyyd—zz = —Pu (875)
d*o P\ d?%6
ET— (G —-Ip— ) — =0 8.76
dz* < 0A> dz? (8.76)

Equations (8.74), (8.75) and (8.76), unlike Eqs (8.61), (8.62) and (8.70), are uncoupled
and provide three separate values of buckling load. Thus, Eqs (8.74) and (8.75) give
values for the Euler buckling loads about the x and y axes respectively, while Eq. (8.76)
gives the axial load which would produce pure torsional buckling; clearly the buckling
load of the column is the lowest of these values. For the column whose buckled shape
is defined by Eqs (8.71), substitution for v, # and 6 in Eqs (8.74), (8.75) and (8.76),
respectively gives

72ET

L2

72 ElLy _ 7’El,
L Pcriy) = 2

A
Pcr(xx) = Pcreg) = 1_0 (GJ + ) (8.77)

Example 8.3
A thin-walled pin-ended column is 2m long and has the cross-section shown in
Fig. 8.17. If the ends of the column are free to warp determine the lowest value of axial
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y
25mm

— 75 mm

Fig. 8.17 Column section of Example 8.3.
load which will cause buckling and specify the buckling mode. Take E = 75 000 N/mm?
and G =21000 N/mm?.

Since the cross-section of the column is doubly-symmetrical, the shear centre coin-
cides with the centroid of area and xs = ys = 0; Eq. (8.74), (8.75) and (8.76) therefore
apply. Further, the boundary conditions are those of the column whose buckled shape
is defined by Eqs (8.71) so that the buckling load of the column is the lowest of the
three values given by Eqs (8.77).

The cross-sectional area A of the column is

A =252 x 37.5+75) = 375 mm?>

The second moments of area of the cross-section about the centroidal axes Cxy are (see
Chapter 16), respectively

L =2 x 375 x 2.5 x 37.52 + 2.5 x 75°/12 = 3.52 x 10° mm*

Ly =2 x 2.5 x 37.5%/12 = 0.22 x 10° mm*
The polar second moment of area Iy is

Iy = Iy + Iy + A(x% + y%) (see derivation of Eq. (8.69))
ie.
Ip=3.52 x 10° +0.22 x 10° = 3.74 x 10° mm*
The torsion constant J is obtained using Eq. (18.11) which gives
J=2x375x%x25/34+75x%x2.5%/3 =781.3mm*
Finally, I is found using the method of Section 27.2 and is
I =2.5x 37.5° x 75%/24 = 30.9 x 10® mm®
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Substituting the above values in Eqs (8.77) we obtain
Pcr(uy = 6.5 x 10*N  Pcgrgyy) = 0.41 x 10*N  Pcgepy = 2.22 x 10*N

The column will therefore buckle in bending about the Cy axis when subjected to an
axial load of 0.41 x 10* N.

Equation (8.73) for the column whose buckled shape is defined by Eqs (8.71) may
be rewritten in terms of the three separate buckling loads given by Eqs (8.77). Thus

0 P — PcR(xx) —Pxs
P — PCR(yy) 0 Pys =0 (878)
Pys —Pxs Io(P — Pcreg))/A

If the column has, say, Cx as an axis of symmetry, then the shear centre lies on this axis
and ys = 0. Equation (8.78) thereby reduces to

P — Pcr(xx) —Pxg

=0 8.79
—Pxs Io(P — Pcreg))/A (8.79)

The roots of the quadratic equation formed by expanding Eq. (8.79) are the values of
axial load which will produce flexural-torsional buckling about the longitudinal and x
axes. If Pcryyy) is less than the smallest of these roots the column will buckle in pure
bending about the y axis.

Example 8.4
A column of length 1 m has the cross-section shown in Fig. 8.18. If the ends of the

column are pinned and free to warp, calculate its buckling load; E =70 000 N/mm?,
G = 30000 N/mm?.

In this case the shear centre S is positioned on the Cx axis so that yg = 0 and Eq. (8.79)
applies. The distance x of the centroid of area C from the web of the section is found

v A
& 2mm
f T
2mm —=f=—
® > 100 mm
Six,.0) Cc X
x
{ 1
t
2mm
I |
! 100 mm |

Fig. 8.18 Column section of Example 8.4.
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by taking first moments of area about the web. Thus
2(100 4 100 + 100)x = 2 x 2 x 100 x 50
which gives
x =33.3mm

The position of the shear centre S is found using the method of Example 17.1; this gives
xs = —76.2 mm. The remaining section properties are found by the methods specified
in Example 8.3 and are listed below

A =600 mm? L=1.17 x 10°mm* I, =0.67 x 10° mm*
Ip=5.32 x 10°mm* J =800 mm* [ =2488 x 10° mm®

From Eq. (8.77)
Pcray) = 4.63 x 100N Pcrpuy = 8.08 x 10°N  Pcregy = 1.97 x 10°N
Expanding Eq. (8.79)
(P — Pcr)(P = Pcr@)o/A — P2x§ = 0 M
Rearranging Eq. (i)
P*(1 = Ax§/Io) — P(Pcr(x) + Pcree)) + PcrieoPcr@) = 0 (ii)
Substituting the values of the constant terms in Eq. (ii) we obtain
P2 —29.13 x 10°P 4+ 46.14 x 10'° =0 (iii)
The roots of Eq. (iii) give two values of critical load, the lowest of which is
P=1.68x10°N

It can be seen that this value of flexural—torsional buckling load is lower than any of
the uncoupled buckling loads Pcrxx), Pcr(yy) Or Pcr); the reduction is due to the
interaction of the bending and torsional buckling modes.

Example 8.5

A thin walled column has the cross-section shown in Fig. 8.19, is of length L and is
subjected to an axial load through its shear centre S. If the ends of the column are
prevented from warping and twisting determine the value of direct stress when failure
occurs due to torsional buckling.

The torsion bending constant I is found using the method described in Section 27.2.
The position of the shear centre is given but is obvious by inspection. The swept area
2)AR 0 is determined as a function of s and its distribution is shown in Fig. 8.20. The
centre of gravity of the ‘wire’ is found by taking moments about the s axis.
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Fig. 8.19 Section of column of Example 8.5.

2A,_-,’0
2AR 3 4
______2’____|____|___ 5_ _ _ _ .
3d? 3402
2A'gp | o : o |T d2|
1 | | | 6’
1 d 2 d 3 d 4 d 5 d 6

Fig. 8.20 Determination of torsion bending constant for column section of Example 8.5.

Then

d* 542 N 3d? N 5d? N d?
4 2 4 2

2AR5td = td <7 +
which gives
24k = d?

The torsion bending constant is then the ‘moment of inertia’ of the ‘wire’ and is
2 2

1 td [ d* d>
I =2td-(d>)?*+ — [ — 2+td | —
t3( )+3(2> X 24t (2>
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from which
13
M= —w’
12
Also the torsion constant J is given by (see Section 3.4)
st3 5df’
J = _— = —
3 3

The shear centre of the section and the centroid of area coincide so that the torsional
buckling load is given by Eq. (8.76). Rewriting this equation

Zizf + Zjizf =0 (i)
where
w? = (oly — G)JET (o = P/A)
The solution of Eq. (i) is
0 =Acosuz+ Bsinuz+ Cz+ D (ii)

The boundary conditions are § =0 when z=0 and z=L and since the warping is
suppressed at the ends of the beam

do
d—:O whenz=0andz =1L (see Eq. (18.19))
Z
Putting 6 =0 at z =0 in Eq. (ii)
0=A4+D
or
A=-D
Also
do .
Fil —uAsin uz + uBcosuz 4+ C
z

and since (d9/dz)=0atz=0
C=—uB

When z =L, 6 =0 so that, from Eq. (ii)

O0=AcosuL+BsinuL+ CL+ D
which may be rewritten

0 =B(sinuL — uL) + A(cos uL — 1) (iii)

Then for (d6/dz)=0atz=L

0= uBcosul — uAsin uL — uB
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or
0 =B(cospuL — 1) — Asin uL @iv)
Eliminating A from Egs (iii) and (iv)
0 = B[2(1 — cos uL) — uLsin L] v)
Similarly, in terms of the constant C
0=—C[2(1 —cos uL) — puLsin uL] (vi)
or
B=-C
But B=—C/pu so that to satisfy both equations B= C =0 and
0 =Acosuz—A =A(cosuz—1) (vii)
Since 6=0atz=1
cosuL =1
or
uL =2nm
Therefore
U212 = dn2n?
or
oly — GJ  4n*n?
ET L2
The lowest value of torsional buckling load corresponds to n =1 so that, rearranging
the above
o= <GJ + 4”2EF> (vii)
Iy L?

The polar second moment of area I is given by

Iy = Lix + Iy (see Ref. 2)

ie
td? 3td? d?
Ip=2\tdd*+ = 4 2td—
0 ( + 3 )+ B + n
which gives
o dud?
=2

Substituting for Iy, J and I' in Eq. (viii)

_ A (e s 137%Ed*
7= has ¢ 2
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Problems

P.8.1 The system shown in Fig. P.8.1 consists of two bars AB and BC, each of
bending stiffness EI elastically hinged together at B by a spring of stiffness K (i.e.
bending moment applied by spring = K x change in slope across B).

Regarding A and C as simple pin-joints, obtain an equation for the first buckling load
of the system. What are the lowest buckling loads when (a) K — o0, (b) EI — co. Note
that B is free to move vertically.

Ans. pK/tan pl.

Stiffness K
P& 85t g F
| |
Fig. P.8.1

P.8.2 A pin-ended column of length / and constant flexural stiffness E1 is reinforced
to give a flexural stiffness 4EI over its central half (see Fig. P.8.2).

EI 4EI EI
P { } P
P — —
1
al L 7l

Fig. P.8.2

Considering symmetric modes of buckling only, obtain the equation whose roots
yield the flexural buckling loads and solve for the lowest buckling load.

Ans. tanpul/8=1/v/2,P=24.2FI/I>

P.8.3 A uniform column of length / and bending stiffness EI is built-in at one end
and free at the other and has been designed so that its lowest flexural buckling load is
P (see Fig. P.8.3).

7 7
EI 7 4p

7 t ik
A o 7 1 Z

Fig. P.8.3
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Subsequently it has to carry an increased load, and for this it is provided with a lateral
spring at the free end. Determine the necessary spring stiffness k so that the buckling
load becomes 4P.

Ans. k=4Pu/(ul — tan pl).

P.8.4 A uniform, pin-ended column of length / and bending stiffness EI has an
initial curvature such that the lateral displacement at any point between the column and
the straight line joining its ends is given by

4z .
vy = al—z(l —2) (see Fig. P.8.4)

Show that the maximum bending moment due to a compressive end load P is given by

8aP M
Mpax = __(Al)z sec 5~ 1

where

A? = P/EI

Fig. P.8.4

P.8.5 The uniform pin-ended column shown in Fig. P.8.5 is bent at the centre so
that its eccentricity there is §. If the two halves of the column are otherwise straight and
have a flexural stiffness EI, find the value of the maximum bending moment when the
column carries a compression load P.

28 |EI Pl
Ans. —P—./—tan,/——.
IV P El2

Fig. P.8.5

P.8.6 A straight uniform column of length / and bending stiffness EI is subjected
to uniform lateral loading w/unit length. The end attachments do not restrict rotation
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of the column ends. The longitudinal compressive force P has eccentricity e from the
centroids of the end sections and is placed so as to oppose the bending effect of the
lateral loading, as shown in Fig. P.8.6. The eccentricity e can be varied and is to be
adjusted to the value which, for given values of P and w, will result in the least maximum
bending moment on the column. Show that

e = (w/Pu?)tan® ul/4
where
u? = P/EI

Deduce the end moment which will give the optimum condition when P tends to
ZEero.

Ans.  wil?/16.
L T
p e | e p
P : g1

P.8.7 The relation between stress o and strain & in compression for a certain
material is

16
10.5 x 1068=0+21000( “ )
49000

Assuming the tangent modulus equation to be valid for a uniform strut of this material,
plot the graph of oy, against //r where oy, is the flexural buckling stress, / the equivalent
pin-ended length and r the least radius of gyration of the cross-section.

Estimate the flexural buckling load for a tubular strut of this material, of 1.5 units
outside diameter and 0.08 units wall thickness with effective length 20 units.

Ans. 14 454 force units.

P.8.8 A rectangular portal frame ABCD is rigidly fixed to a foundation at A and D
and is subjected to a compression load P applied at each end of the horizontal member
BC (see Fig. P.8.8). If the members all have the same bending stiffness EI show that
the buckling loads for modes which are symmetrical about the vertical centre line are
given by the transcendental equation

Aa 1 sa Aa

a_ - (-) tan ( 22

2 2 \b < 2 )
where

A* = P/EI

289



290 Columns

Fig. P.8.8

P.8.9 A compression member (Fig. P.8.9) is made of circular section tube, diameter
d, thickness ¢. The member is not perfectly straight when unloaded, having a slightly
bowed shape which may be represented by the expression

v = §sin (%)

Fig. P.8.9

Show that when the load P is applied, the maximum stress in the member can be

expressed as
P m 1 45
o= g T—ad

where
o =P/P., P.=n’El/l

Assume ¢ is small compared with d so that the following relationships are applicable:
Cross-sectional area of tube = mrdt.
Second moment of area of tube = d>1/8.

P.8.10 Figure P.8.10 illustrates an idealized representation of part of an aircraft
control circuit. A uniform, straight bar of length a and flexural stiffness EI is built-in
at the end A and hinged at B to a link BC, of length b, whose other end C is pinned so
that it is free to slide along the line ABC between smooth, rigid guides. A, B and C are
initially in a straight line and the system carries a compression force P, as shown.
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| a l b ’
| |

Fig. P.8.10

C
. /
pb—%-
% 7 g
|

Assuming that the link BC has a sufficiently high flexural stiffness to prevent its
buckling as a pin-ended strut, show, by setting up and solving the differential equation
for flexure of AB, that buckling of the system, of the type illustrated in Fig. P.8.10,
occurs when P has such a value that

tan Aa = AMa + b)

where
2> = P/EI

P.8.11 A pin-ended column of length [ has its central portion reinforced, the second
moment of its area being /I, while that of the end portions, each of length a, is I;.
Use the energy method to determine the critical load of the column, assuming that its
centre-line deflects into the parabola v = kz(I — z) and taking the more accurate of the
two expressions for the bending moment.

In the case where I =1.6/; and a=0.2/ find the percentage increase in strength
due to the reinforcement, and compare it with the percentage increase in weight on the
basis that the radius of gyration of the section is not altered.

Ans. Pcr = 14.96EI /1?,52%,36%.

P.8.12 A tubular column of length [ is tapered in wall-thickness so that the area and
the second moment of area of its cross-section decrease uniformly from A and /; at its
centre to 0.24; and 0.2/; at its ends.

Assuming a deflected centre-line of parabolic form, and taking the more correct form
for the bending moment, use the energy method to estimate its critical load when tested
between pin-centres, in terms of the above data and Young’s modulus E. Hence show
that the saving in weight by using such a column instead of one having the same radius
of gyration and constant thickness is about 15%.

Ans. 7.01EI /1>

P.8.13 A uniform column (Fig. P.8.13), of length [ and bending stiffness EI, is
rigidly built-in at the end z =0 and simply supported at the end z=/. The column is
also attached to an elastic foundation of constant stiffness k/unit length.

Representing the deflected shape of the column by a polynomial

p

v= Zann”, where n = z/I
n=0
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% L -
’ EI I P
D— > 7
A 33 23 3 3 344
G 2% 2 % Z
k/unit length
Fig. P.8.13

determine the form of this function by choosing a minimum number of terms p such
that all the kinematic (geometric) and static boundary conditions are satisfied, allowing
for one arbitrary constant only.

Using the result thus obtained, find an approximation to the lowest flexural buckling
load Pcr by the Rayleigh—Ritz method.

Ans.  Pcr =21.05E1 /1% 4 0.09kI2.

P.8.14 Figure P.8.14 shows the doubly symmetrical cross-section of a thin-walled
column with rigidly fixed ends. Find an expression, in terms of the section dimensions
and Poisson’s ratio, for the column length for which the purely flexural and the purely
torsional modes of instability would occur at the same axial load.

In which mode would failure occur if the length were less than the value found? The
possibility of local instability is to be ignored.

Ans. 1= 2ub?/1)/(1 + v)/255. Torsion.

t

._L_ [

; N7

N

Fig. P.8.14

P.8.15 A column of length 2/ with the doubly symmetric cross-section shown in
Fig. P.8.15 is compressed between the parallel platens of a testing machine which fully
prevents twisting and warping of the ends.

Using the data given below, determine the average compressive stress at which the
column first buckles in torsion

[ =500mm, b=250mm, r=25mm, E=70000N/mm? E/G=2.6
Ans. ocr =282 N/mm?.
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30°30°

/\

b

N\
b

Fig. P.8.15

P.8.16 A pin-ended column of length 1.0m has the cross-section shown in
Fig. P.8.16. If the ends of the column are free to warp determine the lowest value
of axial load which will cause the column to buckle, and specify the mode. Take
E =70000 N/mm? and G = 25 000 N/mm?.

Ans. 5527 N. Column buckles in bending about an axis in the plane of its web.

20 mn;
f

1.5mm

1.5mm —==—

40 mm

*1.5 mm

20 mm

Fig. P.8.16

P.8.17 A pin-ended column of height 3.0 m has a circular cross-section of diameter
80 mm, wall thickness 2.0 mm and is converted to an open section by a narrow longi-
tudinal slit; the ends of the column are free to warp. Determine the values of axial load
which would cause the column to buckle in (a) pure bending and (b) pure torsion. Hence
determine the value of the flexural—torsional buckling load. Take E =70 000 N/mm?
and G = 22 000 N/mm?.

Note: the position of the shear centre of the column section may be found using
the method described in Chapter 17.

Ans. (a) 3.09 x 10*N, (b) 1.78 x 10*N, 1.19 x 10*N.
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Thin plates

We shall see in Chapter 12 when we examine the structural components of aircraft
that they consist mainly of thin plates stiffened by arrangements of ribs and stringers.
Thin plates under relatively small compressive loads are prone to buckle and so must
be stiffened to prevent this. The determination of buckling loads for thin plates in
isolation is relatively straightforward but when stiffened by ribs and stringers, the
problem becomes complex and frequently relies on an empirical solution. In fact it
may be the stiffeners which buckle before the plate and these, depending on their
geometry, may buckle as a column or suffer local buckling of, say, a flange.

In this chapter we shall present the theory for the determination of buckling loads of
flat plates and then examine some of the different empirical approaches which various
researchers have suggested. In addition we shall investigate the particular case of flat
plates which, when reinforced by horizontal flanges and vertical stiffeners, form the
spars of aircraft wing structures; these are known as tension field beams.

9.1 Buckling of thin plates

A thin plate may buckle in a variety of modes depending upon its dimensions, the
loading and the method of support. Usually, however, buckling loads are much lower
than those likely to cause failure in the material of the plate. The simplest form of
buckling arises when compressive loads are applied to simply supported opposite edges
and the unloaded edges are free, as shown in Fig. 9.1. A thin plate in this configuration

Nx/unit length

Fig. 9.1 Buckling of a thin flat plate.
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behaves in exactly the same way as a pin-ended column so that the critical load is that
predicted by the Euler theory. Once this critical load is reached the plate is incapable
of supporting any further load. This is not the case, however, when the unloaded edges
are supported against displacement out of the xy plane. Buckling, for such plates, takes
the form of a bulging displacement of the central region of the plate while the parts
adjacent to the supported edges remain straight. These parts enable the plate to resist
higher loads; an important factor in aircraft design.

At this stage we are not concerned with this post-buckling behaviour, but rather with
the prediction of the critical load which causes the initial bulging of the central area of
the plate. For the analysis we may conveniently employ the method of total potential
energy since we have already, in Chapter 7, derived expressions for strain and potential
energy corresponding to various load and support configurations. In these expressions
we assumed that the displacement of the plate comprises bending deflections only and
that these are small in comparison with the thickness of the plate. These restrictions
therefore apply in the subsequent theory.

First we consider the relatively simple case of the thin plate of Fig. 9.1, loaded as
shown, but simply supported along all four edges. We have seen in Chapter 7 that its
true deflected shape may be represented by the infinite double trigonometrical series

[e.e] o0
. mux nmwy
w= E E Apn Sin sin ——
a b

m=1 n=1

Also, the total potential energy of the plate is, from Eqs (7.37) and (7.45)

Pw 32 :
vav = [ )
dy?
92w 02w 92w 2 w2

The integration of Eq. (9.1) on substituting for w is similar to those integrations carried
out in Chapter 7. Thus, by comparison with Eq. (7.47)

Uy = kD ZZA ( ) N ZZmZAE,m 9.2)

m=1n=1 m=1n=1

The total potential energy of the plate has a stationary value in the neutral equilibrium
of its buckled state (i.e. Ny = Ny cr). Therefore, differentiating Eq. (9.2) with respect
to each unknown coefficient A,,,,we have

Nx,CRmZAmn =0

WU +V) _wtabD, (m? 2 72
A 4 "\ P 4a

and for a non-trivial solution

2
N 2ap L (™ n n 9.3)
X, CR - m2 a2 b2 .
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Exactly the same result may have been deduced from Eq. (ii) of Example 7.3, where
the displacement w would become infinite for a negative (compressive) value of Ny
equal to that of Eq. (9.3).

We observe from Eq. (9.3) that each term in the infinite series for displacement
corresponds, as in the case of a column, to a different value of critical load (note, the
problem is an eigenvalue problem). The lowest value of critical load evolves from some
critical combination of integers m and n, i.e. the number of half-waves in the x and y
directions, and the plate dimensions. Clearly n =1 gives a minimum value so that no
matter what the values of m,a and b the plate buckles into a half sine wave in the y
direction. Thus we may write Eq. (9.3) as

2ol m? 1\?
Nycr =7 DW 2 + 5]
or
km>D
Necr = =73 (9.4)
where the plate buckling coefficient k is given by the minimum value of
b 2
k= ("L + i) ©9.5)
a mb

for a given value of a/b. To determine the minimum value of k for a given value of a/b
we plot k as a function of a/b for different values of m as shown by the dotted curves
in Fig. 9.2. The minimum value of & is obtained from the lower envelope of the curves
shown solid in the figure.

a/b

Fig. 9.2 Buckling coefficient k for simply supported plates.



9.2 Inelastic buckling of plates

It can be seen that m varies with the ratio a/b and that k and the buckling load are a
minimum when k =4 at valuesof a/b=1,2,3,....Asa/bbecomes large k approaches
4 so that long narrow plates tend to buckle into a series of squares.

The transition from one buckling mode to the next may be found by equating values
of k for the m and m + 1 curves. Hence

mb a (m+1Db a

a mb a (m+ b

giving
4_ m@m + 1)
b= V/

Substituting m =1, we have a/b = V2 =1.414, and for m=2, alb=+/6="2.45 and
SO on.
For a given value of a/b the critical stress, ocr = Ny cr/t, is found from Eqgs (9.4)

and (7.4), i.e.
kn’E t\?
=— | - 9.6
TR =012 (b> ©-6)

In general, the critical stress for a uniform rectangular plate, with various edge supports
and loaded by constant or linearly varying in-plane direct forces (Ny, Ny) or constant
shear forces (Nyy) along its edges, is given by Eq. (9.6). The value of k remains a
function of a/b but depends also upon the type of loading and edge support. Solutions
for such problems have been obtained by solving the appropriate differential equation
or by using the approximate (Rayleigh—Ritz) energy method. Values of k for a variety of
loading and support conditions are shown in Fig. 9.3. In Fig. 9.3(c), where k becomes
the shear buckling coefficient, b is always the smaller dimension of the plate.

We see from Fig. 9.3 that k is very nearly constant for a/b > 3. This fact is particularly
useful in aircraft structures where longitudinal stiffeners are used to divide the skin
into narrow panels (having small values of b), thereby increasing the buckling stress of
the skin.

9.2 Inelastic buckling of plates

For plates having small values of b/t the critical stress may exceed the elastic limit of
the material of the plate. In such a situation, Eq. (9.6) is no longer applicable since, as
we saw in the case of columns, E becomes dependent on stress as does Poisson’s ratio
v. These effects are usually included in a plasticity correction factor n so that Eq. (9.6)

becomes
nkm’E t\2
=—7| - 9.7
IR 12(1—v2)<b> G-7)

where E and v are elastic values of Young’s modulus and Poisson’s ratio. In the linearly
elastic region 1 = 1, which means that Eq. (9.7) may be applied at all stress levels. The
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Fig. 9.3 (a) Buckling coefficients for flat plates in compression; (b) buckling coefficients for flat plates in bending; (c)
shear buckling coefficients for flat plates.



9.4 Local instability

derivation of a general expression for 7 is outside the scope of this book but one! giving
good agreement with experiment is

1-2E[1 1/1 3E\?
n= - R
1— vy E 2 2\4 4E;
where E; and Ej are the tangent modulus and secant modulus (stress/strain) of the plate
in the inelastic region and ve and v, are Poisson’s ratio in the elastic and inelastic ranges.

9.3 Experimental determination of critical load
for a flat plate

In Section 8.3 we saw that the critical load for a column may be determined experi-
mentally, without actually causing the column to buckle, by means of the Southwell
plot. The critical load for an actual, rectangular, thin plate is found in a similar manner.

The displacement of an initially curved plate from the zero load position was found
in Section 7.5, to be

x o0
. mmux | nmy
wi = E E Bm,,sm7$1n—

m=1 n=1 b
where
Aman
an - 2 2,2 2
22 (m+25) — N,

We see that the coefficients By, increase with an increase of compressive load intensity
N,. It follows that when N, approaches the critical value, Ny cr, the term in the series
corresponding to the buckled shape of the plate becomes the most significant. For a
square plate n =1 and m = 1 give a minimum value of critical load so that at the centre
of the plate

A11Nx

W= —-—"
Nx,CR - Nx

or, rearranging
wi
w1 = NycrR — A1l
Ny

Thus, a graph of wy plotted against w1/N, will have a slope, in the region of the critical
load, equal to Ny cr.

9.4 Local instability

We distinguished in the introductory remarks to Chapter 8 between primary and sec-
ondary (or local) instability. The latter form of buckling usually occurs in the flanges
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and webs of thin-walled columns having an effective slenderness ratio, lo/r < 20. For
le/r > 80 this type of column is susceptible to primary instability. In the intermediate
range of /./r between 20 and 80, buckling occurs by a combination of both primary and
secondary modes.

Thin-walled columns are encountered in aircraft structures in the shape of longitudin-
al stiffeners, which are normally fabricated by extrusion processes or by forming from a
flat sheet. A variety of cross-sections are employed although each is usually composed
of flat plate elements arranged to form angle, channel, Z- or ‘top hat’ sections, as shown
in Fig. 9.4. We see that the plate elements fall into two distinct categories: flanges which
have a free unloaded edge and webs which are supported by the adjacent plate elements
on both unloaded edges.

In local instability the flanges and webs buckle like plates with a resulting change
in the cross-section of the column. The wavelength of the buckle is of the order of the
widths of the plate elements and the corresponding critical stress is generally independ-
ent of the length of the column when the length is equal to or greater than three times
the width of the largest plate element in the column cross-section.

Buckling occurs when the weakest plate element, usually a flange, reaches its critical
stress, although in some cases all the elements reach their critical stresses simultane-
ously. When this occurs the rotational restraint provided by adjacent elements to each
other disappears and the elements behave as though they are simply supported along
their common edges. These cases are the simplest to analyse and are found where the
cross-section of the column is an equal-legged angle, T-, cruciform or a square tube of
constant thickness. Values of local critical stress for columns possessing these types of
section may be found using Eq. (9.7) and an appropriate value of k. For example, k
for a cruciform section column is obtained from Fig. 9.3(a) for a plate which is simply
supported on three sides with one edge free and has a/b > 3. Hence k = 0.43 and if the
section buckles elastically then n =1 and

2
t
ocr = 0.388E (5) (v=20.3)

It must be appreciated that the calculation of local buckling stresses is generally
complicated with no particular method gaining universal acceptance, much of the infor-
mation available being experimental. A detailed investigation of the topic is therefore
beyond the scope of this book. Further information may be obtained from all the
references listed at the end of this chapter.

(a) {b) (c) {d)

Fig. 9.4 (a) Extruded angle; (b) formed channel; (c) extruded Z; (d) formed ‘top hat'.



9.5 Instability of stiffened panels

9.5 Instability of stiffened panels

It is clear from Eq. (9.7) that plates having large values of b/t buckle at low values of
critical stress. An effective method of reducing this parameter is to introduce stiffeners
along the length of the plate thereby dividing a wide sheet into a number of smaller
and more stable plates. Alternatively, the sheet may be divided into a series of wide
short columns by stiffeners attached across its width. In the former type of structure
the longitudinal stiffeners carry part of the compressive load, while in the latter all the
load is supported by the plate. Frequently, both methods of stiffening are combined to
form a grid-stiffened structure.

Stiffeners in earlier types of stiffened panel possessed a relatively high degree of
strength compared with the thin skin resulting in the skin buckling at a much lower
stress level than the stiffeners. Such panels may be analysed by assuming that the
stiffeners provide simply supported edge conditions to a series of flat plates.

A more efficient structure is obtained by adjusting the stiffener sections so that
buckling occurs in both stiffeners and skin at about the same stress. This is achieved by
a construction involving closely spaced stiffeners of comparable thickness to the skin.
Since their critical stresses are nearly the same there is an appreciable interaction at
buckling between skin and stiffeners so that the complete panel must be considered as
aunit. However, caution must be exercised since it is possible for the two simultaneous
critical loads to interact and reduce the actual critical load of the structure? (see Example
8.4). Various modes of buckling are possible, including primary buckling where the
wavelength is of the order of the panel length and local buckling with wavelengths of
the order of the width of the plate elements of the skin or stiffeners. A discussion of the
various buckling modes of panels having Z-section stiffeners has been given by Argyris
and Dunne.’

The prediction of critical stresses for panels with a large number of longitudinal
stiffeners is difficult and relies heavily on approximate (energy) and semi-empirical
methods. Bleich* and Timoshenko (see Ref. 1, Chapter 8) give energy solutions for
plates with one and two longitudinal stiffeners and also consider plates having a large
number of stiffeners. Gerard and Becker’ have summarized much of the work on
stiffened plates and a large amount of theoretical and empirical data is presented by
Argyris and Dunne in the Handbook of Aeronautics.

For detailed work on stiffened panels, reference should be made to as much as
possible of the above work. The literature is, however, extensive so that here we present a
relatively simple approach suggested by Gerard!. Figure 9.5 represents a panel of width
w stiffened by longitudinal members which may be flats (as shown), Z-, I-, channel or

B
| {
wil RN A

Fig. 9.5 Stiffened panel.
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‘top hat’ sections. It is possible for the panel to behave as an Euler column, its cross-
section being that shown in Fig. 9.5. If the equivalent length of the panel acting as a
column is /. then the Euler critical stress is

72E
(le/r)?

as in Eq. (8.8). In addition to the column buckling mode, individual plate elements
comprising the panel cross-section may buckle as long plates. The buckling stress is

then given by Eq. (9.7), i.e.
nkm?E t\2
OcR=——| =
RT2a-w) \b

where the values of k, t and b depend upon the particular portion of the panel being
investigated. For example, the portion of skin between stiffeners may buckle as a plate
simply supported on all four sides. Thus, for a/b >3, k=4 from Fig. 9.3(a) and,
assuming that buckling takes place in the elastic range

A7E fsk 2
OCR=——"—+ | —
R0 -0 by

OCRE =

A further possibility is that the stiffeners may buckle as long plates simply supported
on three sides with one edge free. Thus

0.4372E [ty \°
OCR = — | —
R=0 =02 by

Clearly, the minimum value of the above critical stresses is the critical stress for the
panel taken as a whole.

The compressive load is applied to the panel over its complete cross-section. To relate
this load to an applied compressive stress oa acting on each element of the cross-section
we divide the load per unit width, say N,, by an equivalent skin thickness 7, hence

Ny
OA = —
t
where
_ Ag
= — 4+t
bsk

and Ay, is the stiffener area.

The above remarks are concerned with the primary instability of stiffened panels.
Values of local buckling stress have been determined by Boughan, Baab and Gallaher
for idealized web, Z- and T- stiffened panels. The results are reproduced in Rivello®
together with the assumed geometries.

Further types of instability found in stiffened panels occur where the stiffeners are
riveted or spot welded to the skin. Such structures may be susceptible to interrivet



9.6 Failure stress in plates and stiffened panels

buckling in which the skin buckles between rivets with a wavelength equal to the rivet
pitch, or wrinkling where the stiffener forms an elastic line support for the skin. In the
latter mode the wavelength of the buckle is greater than the rivet pitch and separation of
skin and stiffener does not occur. Methods of estimating the appropriate critical stresses
are given in Rivello® and the Handbook of Aeronautics.

9.6 Failure stress in plates and stiffened panels

The previous discussion on plates and stiffened panels investigated the prediction of
buckling stresses. However, as we have seen, plates retain some of their capacity to
carry load even though a portion of the plate has buckled. In fact, the ultimate load is
not reached until the stress in the majority of the plate exceeds the elastic limit. The
theoretical calculation of the ultimate stress is difficult since non-linearity results from
both large deflections and the inelastic stress—strain relationship.

Gerard! proposes a semi-empirical solution for flat plates supported on all four
edges. After elastic buckling occurs theory and experiment indicate that the average
compressive stress, gy, in the plate and the unloaded edge stress, o., are related by the

following expression
s n
SR ( Je > 9.8)
OCR OCR

km’E t\2
OCR=——"-| —
RT120-) \b
and «; is some unknown constant. Theoretical work by Stowell’” and Mayers and
Budiansky® shows that failure occurs when the stress along the unloaded edge is

approximately equal to the compressive yield strength, o¢y, of the material. Hence
substituting o¢y for oe in Eq. (9.8) and rearranging gives

— 1-n
o (UCR) 9.9)

O'cy OCy

where

where the average compressive stress in the plate has become the average stress at
failure o¢. Substituting for ocr in Eq. (9.9) and putting

2= B

[12(1 —v)]i=n

_ £ 1 2(1—n)

t 2
o k| L (—) (9.10)
Ocy b \ o¢y

yields

303



304

Thin plates

or, in a simplified form

1am
of t ( E\?2
—=p|-|— (9.11)
Ocy b \ ocy
where = ak™/?. The constants 8 and m are determined by the best fit of Eq. (9.11) to
test data.

Experiments on simply supported flat plates and square tubes of various aluminium
and magnesium alloys and steel show that 8 =1.42 and m = 0.85 fit the results within
410 per cent up to the yield strength. Corresponding values for long clamped flat plates
are B =1.80, m=0.85.

Gerard®~!? extended the above method to the prediction of local failure stresses for
the plate elements of thin-walled columns. Equation (9.11) becomes

s [(2\(EYT
w6 ] o1

where A is the cross-sectional area of the column, B, and m are empirical constants
and g is the number of cuts required to reduce the cross-section to a series of flanged
sections plus the number of flanges that would exist after the cuts are made. Examples
of the determination of g are shown in Fig. 9.6.

The local failure stress in longitudinally stiffened panels was determined by
Gerard!%!2 using a slightly modified form of Eqs (9.11) and (9.12). Thus, for a section
of the panel consisting of a stiffener and a width of skin equal to the stiffener spacing

1 m
0 tktst [ E \?2
I _ g, | Sk (_) (9.13)
Ocy A Ocy
Angle Tube T —section Cruciform
|
1
i
]
| l
IR
I
Basic section g = 4 cuts + 8 flanges g = 3 flanges g = 4 flanges
g=2 =12
I—section Z-section

g = 1cut +6flanges =7 g =1cut+ 4 flanges=5

Fig. 9.6 Determination of empirical constant g.
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where tg and 7 are the skin and stiffener thicknesses, respectively. A weighted yield
stress oy is used for a panel in which the material of the skin and stiffener have different
yield stresses, thus

Ocy + Ucy,sk[(f/[st) —1]
t/ty

ch =

where 7 is the average or equivalent skin thickness previously defined. The parameter g
is obtained in a similar manner to that for a thin-walled column, except that the number
of cuts in the skin and the number of equivalent flanges of the skin are included. A cut
to the left of a stiffener is not counted since it is regarded as belonging to the stiffener
to the left of that cut. The calculation of g for two types of skin/stiffener combination
is illustrated in Fig. 9.7. Equation (9.13) is applicable to either monolithic or built up
panels when, in the latter case, interrivet buckling and wrinkling stresses are greater
than the local failure stress.

The values of failure stress given by Eqgs (9.11), (9.12) and (9.13) are asso-
ciated with local or secondary instability modes. Consequently, they apply when
le/r <20. In the intermediate range between the local and primary modes, failure
occurs through a combination of both. At the moment there is no theory that predicts
satisfactorily failure in this range and we rely on test data and empirical methods.
The NACA (now NASA) have produced direct reading charts for the failure of ‘top
hat’, Z- and Y-section stiffened panels; a bibliography of the results is given by
Gerard.!?

It must be remembered that research into methods of predicting the instabil-
ity and post-buckling strength of the thin-walled types of structure associated with
aircraft construction is a continuous process. Modern developments include the
use of the computer-based finite element technique (see Chapter 6) and the study
of the sensitivity of thin-walled structures to imperfections produced during fab-
rication; much useful information and an extensive bibliography is contained in
Murray.?
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Fig. 9.7 Determination of g for two types of stiffener/skin combination.
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Fig. 9.8 Diagonal tension field beam.

9.7 Tension field beams

The spars of aircraft wings usually comprise an upper and a lower flange connected by
thin stiffened webs. These webs are often of such a thickness that they buckle under
shear stresses at a fraction of their ultimate load. The form of the buckle is shown in
Fig. 9.8(a), where the web of the beam buckles under the action of internal diagonal
compressive stresses produced by shear, leaving a wrinkled web capable of supporting
diagonal tension only in a direction perpendicular to that of the buckle; the beam is
then said to be a complete tension field beam.

9.7.1 Complete diagonal tension

The theory presented here is due to H. Wagner.'3

The beam shown in Fig. 9.8(a) has concentrated flange areas having a depth d
between their centroids and vertical stiffeners which are spaced uniformly along the
length of the beam. It is assumed that the flanges resist the internal bending moment at
any section of the beam while the web, of thickness ¢, resists the vertical shear force.
The effect of this assumption is to produce a uniform shear stress distribution through
the depth of the web (see Section 20.3) at any section. Therefore, at a section of the
beam where the shear force is S, the shear stress 7 is given by

S

. 9.14
= (9.14)

Consider now an element ABCD of the web in a panel of the beam, as shown in Fig.
9.8(a). The element is subjected to tensile stresses, oy, produced by the diagonal tension
on the planes AB and CD; the angle of the diagonal tension is «. On a vertical plane
FD in the element the shear stress is T and the direct stress o,. Now considering the
equilibrium of the element FCD (Fig. 9.8(b)) and resolving forces vertically, we have
(see Section 1.6)

0¢CDt sin ¢ = tFDt¢



9.7 Tension field beams

— |

Fig. 9.9 Determination of flange forces.

which gives
2
o= — ==t (9.15)

sin o cos o sin 2«

or, substituting for r from Eq. (9.14) and noting that in this case S = W at all sections
of the beam

2W (9.16)
o= ——— .
"7 1d sin 2a
Further, resolving forces horizontally for the element FCD
0,FDt = 0;CDt cos
which gives
0. = 0y cos’
or, substituting for oy from Eq. (9.15)
T
0, = (9.17)
tan o
or, for this particular beam, from Eq. (9.14)
w
= 9.18
o td tan o ©.18)

Since T and oy are constant through the depth of the beam it follows that o, is constant
through the depth of the beam.

The direct loads in the flanges are found by considering a length z of the beam as
shown in Fig. 9.9. On the plane mm there are direct and shear stresses o, and 7 acting in
the web, together with direct loads F1 and Fp in the top and bottom flanges respectively.
Fr and Fp are produced by a combination of the bending moment Wz at the section
plus the compressive action (o) of the diagonal tension. Taking moments about the
bottom flange

o, td?
Wz = Frd — =
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Hence, substituting for o, from Eq. (9.18) and rearranging

Wz w
Fr=— 9.19
T d + 2tan o ( )

Now resolving forces horizontally
Fg —FT+O'Zld=O
which gives, on substituting for o; and Fr from Eqs (9.18) and (9.19)

Wz w
Fg=— —
d 2tan o

(9.20)

The diagonal tension stress oy induces a direct stress o, on horizontal planes at any
point in the web. Then, on a horizontal plane HC in the element ABCD of Fig. 9.8 there
is a direct stress oy and a complementary shear stress 7, as shown in Fig. 9.10.

From a consideration of the vertical equilibrium of the element HDC we have

oyHCt = 0iCDt sin«
which gives
oy = Ot sin” o

Substituting for oy from Eq. (9.15)

oy = Ttana (9.21)
or, from Eq. (9.14) in which S=W
w
, = —t 9.22
oy ” an o ( )

The tensile stresses oy on horizontal planes in the web of the beam cause compression
in the vertical stiffeners. Each stiffener may be assumed to support half of each adjacent
panel in the beam so that the compressive load P in a stiffener is given by

P = oyth

0y
D

Fig. 9.10 Stress system on a horizontal plane in the beam web.
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which becomes, from Eq. (9.22)

Wb
P=—tana« (9.23)
d
If the load P is sufficiently high the stiffeners will buckle. Tests indicate that they buckle

as columns of equivalent length

le =d/J&=2bjd forb < I.Sd} (9.24)

or . =d for b > 1.5d

In addition to causing compression in the stiffeners the direct stress oy produces bending
of the beam flanges between the stiffeners as shown in Fig. 9.11. Each flange acts as a
continuous beam carrying a uniformly distributed load of intensity oy¢. The maximum
bending moment in a continuous beam with ends fixed against rotation occurs at a
support and is wL?/12 in which w is the load intensity and L the beam span. In this
case, therefore, the maximum bending moment M, occurs at a stiffener and is given by

. aytb2
max — 12
or, substituting for oy, from Eq. (9.22)
Wh? tan «
Mpax = T (9-25)

Midway between the stiffeners this bending moment reduces to Wh? tan a/24d.

The angle « adjusts itself such that the total strain energy of the beam is a minimum.
If it is assumed that the flanges and stiffeners are rigid then the strain energy comprises
the shear strain energy of the web only and o =45°. In practice, both flanges and
stiffeners deform so that « is somewhat less than 45°, usually of the order of 40° and, in
the type of beam common to aircraft structures, rarely below 38°. For beams having all
components made of the same material the condition of minimum strain energy leads
to various equivalent expressions for «, one of which is

2 ot + OF

tan” o = (9.26)
ot + o5

BENIIENINENgEEN

Fig. 9.11 Bending of flanges due to web stress.
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in which of and oy are the uniform direct compressive stresses induced by the diagonal
tension in the flanges and stiffeners, respectively. Thus, from the second term on the
right-hand side of either of Egs (9.19) or (9.20)

w

= 9.27
oF 2Af tan o ( )
in which Af is the cross-sectional area of each flange. Also, from Eq. (9.23)
Wb
o5 = m tan o (9.28)

where Ag is the cross-sectional area of a stiffener. Substitution of oy from Eq. (9.16) and
or and og from Eqs (9.27) and (9.28) into Eq. (9.26), produces an equation which may
be solved for . An alternative expression for «, again derived from a consideration of
the total strain energy of the beam, is

4 1 + td/2AF

tan* o = — /AR 9.29
= A b/ As ©-29)

Example 9.1

The beam shown in Fig. 9.12 is assumed to have a complete tension field web. If
the cross-sectional areas of the flanges and stiffeners are, respectively, 350 mm? and
300 mm? and the elastic section modulus of each flange is 750 mm?, determine the
maximum stress in a flange and also whether or not the stiffeners will buckle. The
thickness of the web is 2 mm and the second moment of area of a stiffener about an
axis in the plane of the web is 2000 mm4; E = 70000 N/mm?.

From Eq. (9.29)

142 x 400/(2

fant o — LH2X 400 x350) _ 5,4
1+ 2 x 300/300

tSkN

400 mm

AL/

300 mm

1200 mm

1

Fig. 9.12 Beam of Example 9.1.
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so that
o =42.6°

The maximum flange stress will occur in the top flange at the built-in end where the
bending moment on the beam is greatest and the stresses due to bending and diagonal
tension are additive. Therefore, from Eq. (9.19)

_5x1200 5
= "400 2 tan 42.6°

1.€.
Fr=17.7kN

Hence the direct stress in the top flange produced by the externally applied bending
moment and the diagonal tension is 17.7 x 10%/350 = 50.7 N/mm?. In addition to this
uniform compressive stress, local bending of the type shown in Fig. 9.11 occurs. The
local bending moment in the top flange at the built-in end is found using Eq. (9.25), i.e.

o 5 x 103 x 300 tan 42.6° 8.6 x 10°N
= = 08.0 X mm
ma 12 x 400

The maximum compressive stress corresponding to this bending moment occurs at the
lower extremity of the flange and is 8.6 x 10%/750 = 114.9 N/mm?. Thus the maximum
stress in a flange occurs on the inside of the top flange at the built-in end of the beam,
is compressive and equal to 114.9 +50.7 = 165.6 N/mm?.

The compressive load in a stiffener is obtained using Eq. (9.23), i.e.

. 5 x 300tan42.6°
N 400

P = 3.4kN

Since, in this case, b < 1.5d, the equivalent length of a stiffener as a column is given
by the first of Eqs (9.24), i.e.

le = 400/\/4 — 2 x 300/400 = 253 mm
From Eq. (8.7) the buckling load of a stiffener is then

2 % 70000 x 2000
Pop = =% x —22.0kN
2532

Clearly the stiffener will not buckle.

In Egs (9.28) and (9.29) it is implicitly assumed that a stiffener is fully effective in
resisting axial load. This will be the case if the centroid of area of the stiffener lies in
the plane of the beam web. Such a situation arises when the stiffener consists of two
members symmetrically arranged on opposite sides of the web. In the case where the
web is stiffened by a single member attached to one side, the compressive load P is
offset from the stiffener axis thereby producing bending in addition to axial load. For
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a stiffener having its centroid a distance e from the centre of the web the combined
bending and axial compressive stress, o, at a distance e from the stiffener centroid is

P Pe?
As  Agr?

O¢c =

in which r is the radius of gyration of the stiffener cross-section about its neutral axis
(note: second moment of area I = Ar?). Then

= 2T (9]

or
P
oc = A_se
where
Ag, = A—S (9.30)
CT ()

and is termed the effective stiffener area.

9.7.2 Incomplete diagonal tension

In modern aircraft structures, beams having extremely thin webs are rare. They retain,
after buckling, some of their ability to support loads so that even near failure they are in
a state of stress somewhere between that of pure diagonal tension and the pre-buckling
stress. Such a beam is described as an incomplete diagonal tension field beam and may
be analysed by semi-empirical theory as follows.

It is assumed that the nominal web shear t (=S/td) may be divided into a ‘true shear’
component ts and a diagonal tension component Tpt by writing

T = kt, 5= —k)T (9.31)

where k, the diagonal tension factor, is a measure of the degree to which the diagonal
tension is developed. A completely unbuckled web has k =0 whereas k = 1 for a web
in complete diagonal tension. The value of k corresponding to a web having a critical
shear stress 7cR is given by the empirical expression

k = tanh (0.5 log i) (9.32)
TCR

The ratio t/tcr is known as the loading ratio or buckling stress ratio. The buckling
stress Tcr may be calculated from the formula

£\? 1 n\>
TCR elastic = KssE b Ry + E(Rb — Ryq) 7 (9.33)
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where kg is the coefficient for a plate with simply supported edges and Rq and R}, are
empirical restraint coefficients for the vertical and horizontal edges of the web panel
respectively. Graphs giving ks, Rq and Ry, are reproduced in Kuhn.!3

The stress equations (9.27) and (9.28) are modified in the light of these assumptions
and may be rewritten in terms of the applied shear stress t as

ktcota (9.34)
OfF = .
P~ QAr/td) +0.5(1 — k)
kttan o
os (9.35)

~ (As/th) + 0.5(1 — k)

Further, the web stress oy given by Eq. (9.15) becomes two direct stresses: o7 along the
direction of « given by

2kt .
o] = — + 7(1 — k) sin 2« (9.36)
sin 2«
and o7 perpendicular to this direction given by
o = —1(1 — k) sin 2« (9.37)

The secondary bending moment of Eq. (9.25) is multiplied by the factor k, while the
effective lengths for the calculation of stiffener buckling loads become (see Eqs (9.24))

le = ds/\/1+ k23 — 2b/ds) for b < 1.5d

or lo = dy forb > 1.5d

where d is the actual stiffener depth, as opposed to the effective depth d of the web,
taken between the web/flange connections as shown in Fig. 9.13. We observe that Eqs
(9.34)—(9.37) are applicable to either incomplete or complete diagonal tension field
beams since, for the latter case, k = 1 giving the results of Eqs (9.27), (9.28) and (9.15).

In some cases beams taper along their lengths, in which case the flange loads are no
longer horizontal but have vertical components which reduce the shear load carried by
the web. Thus, in Fig. 9.14 where d is the depth of the beam at the section considered,
we have, resolving forces vertically

W — (Fr + Fp)sin 8 — ot(d cosa)sina = 0 (9.38)

t (<] [+ L] (<] [»] [=] 011
]
-]
° Stiffener Effective web
° depth depth
o ds d
{ o [«] ] © [+] ?‘]

Fig. 9.13 Calculation of stiffener buckling load.
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Fig. 9.14 Effect of taper on diagonal tension field beam calculations.

For horizontal equilibrium
(Fr — F)cos B — otd cos’a =0
Taking moments about B
Wz — Frd cos B + %attdz cosla =0

Solving Eqs (9.38), (9.39) and (9.40) for oy, Fr and Fp

2W 2z
oy = - 11— —tanp

td sin 2o d

w dcota 2z
Fr= 1——t
T dcos,3|:z+ 2 ( danﬂﬂ

w dcota 2z
Fg = z— 1——tanp
dcosf 2 d

Equation (9.23) becomes

Wb 2z
P=—tana|1— —tanp
d d

Also the shear force § at any section of the beam is, from Fig. 9.14
S=W—(Fr+ Fg)sing

or, substituting for Fr and Fg from Eqs (9.42) and (9.43)

s=w(1-Ewnp
N d

(9.39)

(9.40)

(9.41)

(9.42)

(9.43)

(9.44)

(9.45)
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b

Fig. 9.15 Collapse mechanism of a panel of a tension field beam.

9.7.3 Post buckling behaviour

Sections 9.7.1 and 9.7.2 are concerned with beams in which the thin webs buckle to
form tension fields; the beam flanges are then regarded as being subjected to bending
action as in Fig. 9.11. It is possible, if the beam flanges are relatively light, for failure
due to yielding to occur in the beam flanges after the web has buckled so that plastic
hinges form and a failure mechanism of the type shown in Fig. 9.15 exists. This post
buckling behaviour was investigated by Evans, Porter and Rockey'® who developed a
design method for beams subjected to bending and shear. It is their method of analysis
which is presented here.

Suppose that the panel AXBZ in Fig. 9.15 has collapsed due to a shear load S and a
bending moment M; plastic hinges have formed at W, X, Y and Z. In the initial stages
of loading the web remains perfectly flat until it reaches its critical stresses i.e., T¢r in
shear and o, in bending. The values of these stresses may be found approximately

from
2 2
("mb> +<T—“‘) =1 (9.46)
Ocrb Ter

where o, is the critical value of bending stress with § =0, M # 0 and 7 is the critical
value of shear stress when S %0 and M =0. Once the critical stress is reached the
web starts to buckle and cannot carry any increase in compressive stress so that, as
we have seen in Section 9.7.1, any additional load is carried by tension field action.
It is assumed that the shear and bending stresses remain at their critical values
and o and that there are additional stresses oy which are inclined at an angle 6 to
the horizontal and which carry any increases in the applied load. At collapse, i.e. at
ultimate load conditions, the additional stress oy reaches its maximum value oymax) and
the panel is in the collapsed state shown in Fig. 9.15.
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Consider now the small rectangular element on the edge AW of the panel before
collapse. The stresses acting on the element are shown in Fig. 9.16(a). The stresses
on planes parallel to and perpendicular to the direction of the buckle may be found
by considering the equilibrium of triangular elements within this rectangular element.
Initially we shall consider the triangular element CDE which is subjected to the stress
system shown in Fig. 9.16(b) and is in equilibrium under the action of the forces
corresponding to these stresses. Note that the edge CE of the element is parallel to the
direction of the buckle in the web.

For equilibrium of the element in a direction perpendicular to CE (see Section 1.6)

0:CE + ompED cos 6 — t1nED sin6 — 13 DCcos 6 = 0
Dividing through by CE and rearranging we have
0t = —Omp cos? 6 + Ty Sin 260 (9.47)

Similarly, by considering the equilibrium of the element in the direction EC we have
Tpe = —% sin 260 — 1, cos 26 (9.48)

Further the direct stress o, on the plane FD (Fig. 9.16(c)) which is perpendicular to the
plane of the buckle is found from the equilibrium of the element FED. Then,

0yFD + onpED sin 6 + 1 EF sin + 1, DEcos 6 = 0
Dividing through by FD and rearranging gives
Oy = —Omb $in” 6 — Ty sin 20 (9.49)
Note that the shear stress on this plane forms a complementary shear stress system
with 7.

The failure condition is reached by adding oymax) to oz and using the von Mises
theory of elastic failure (see Ref. [14]) i.e.

oy =07 + 03 — 0107 + 37" (9.50)

where oy is the yield stress of the material, o1 and o, are the direct stresses acting on
two mutually perpendicular planes and t is the shear stress acting on the same two
planes. Hence, when the yield stress in the web is oyy, failure occurs when

03y = (0% + Oiimax))” + 05 — 03(0¢ + Oymax)) + 3To; (9.51)

-Tm — »Tm E

. E
m
: 0 ) %
0, | 0, 0, Omb
mb mb mb
T
o D c - 7 Tm

C D Tk

Tm

w)]

(a) (b) (c)

Fig. 9.16 Determination of stresses on planes parallel and perpendicular to the plane of the buckle.
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Eqs (9.47), (9.48), (9.49) and (9.51) may be solved for oymax) Which is then given by

1 1 2 2 2 2 1
Ot(max) = _EA + E[A — Ao, + 3T — ayw)]2 (9.52)
where
A = 31, 8i0 20 + o, Sin> 6 — 207p 0> O (9.53)

These equations have been derived for a point on the edge of the panel but are applicable
to any point within its boundary. Therefore the resultant force Fy, corresponding to the
tension field in the web may be calculated and its line of action determined.

If the average stresses in the compression and tension flanges are o and oy and the
yield stress of the flanges is oyf the reduced plastic moments in the flanges are (see
Ref. [14])

2
M}, = My |:1 _ (%) :| (compression flange) 9.54)
M, =My |1 — (2 (tension fl 9.55
o = Myt O'_yf ension flange) (9.55)

The position of each plastic hinge may be found by considering the equilibrium of a
length of flange and employing the principle of virtual work. In Fig. 9.17 the length
WX of the upper flange of the beam is given a virtual displacement ¢. The work done
by the shear force at X is equal to the energy absorbed by the plastic hinges at X and W
and the work done against the tension field stress oymax). Suppose the average value
of the tension field stress is oy, i.e. the stress at the midpoint of WX.

Then

/ ) ce
chC¢ = 2MPC¢ + Otc tw Sin 93@5

The minimum value of S, is obtained by differentiating with respect to c, i.e.

ds ; sin? 0
— =22 4oty =0
dec s 2
L« Co ;I
_-®
M,pc .- et M'po
W - - qb X
F, ¢ ) ° F,
Otc S

Fig. 9.17 Determination of plastic hinge position.
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| c./2 |
Fc —»l |<— Ocf
[} .
Pa!
Oc
Fig. 9.18 Determination of flange stress.
which gives
aM’
=" (9.56)
Oic Ly SIn~ 6
Similarly in the tension flange
4aM’
= —2"2 (9.57)

Oyt lw Sil’l2 0

Clearly for the plastic hinges to occur within a flange both c. and ¢; must be less than
b. Therefore from Eq. (9.56)

, twb?sin” @
My < Tl (9.58)

where oy is found from Eqs (9.52) and (9.53) at the midpoint of WX.

The average axial stress in the compression flange between W and X is obtained by
considering the equilibrium of half of the length of WX (Fig. 9.18).

Then

Ce . c
F. = oAt + crtcthc sin @ cos 6 + TthEC

from which

F. — %(atc sin 6 cos 6 + Ty )twCe
Acf

where F is the force in the compression flange at W and A is the cross-sectional area

of the compression flange.
Similarly for the tension flange

(9.59)

Ocf =

Fi + Yoy sin @ cos 6 + to)twe
oy = t + 5(ou - m)twCt 9.60)
tf

The forces F, and F; are found by considering the equilibrium of the beam to the right
of WY (Fig. 9.19). Then, resolving vertically and noting that S¢; =t twd

Sult = Fy $in 0 + titwd + Z W, 9.61)

Resolving horizontally and noting that H; = tiptw (b — cc — ¢t)

Fo— Fi = Fycos0 — ttw(b — cc — ¢y) (9.62)
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M/
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F, / W X
Midpoint T q
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.
Fig. 9.19 Determination of flange forces.
Taking moments about O we have
2 b+ c.— ¢
Fe+ Fi=7 |:Suh (s + TC) + My — M+ Fug — My — > ann}
n
(9.63)

where W) to Wy, are external loads applied to the beam to the right of WY and M, is
the bending moment in the web when it has buckled and become a tension field, i.e.

_ ompbd®
YTb
The flange forces are then
Sult 1 / /
Fe =g(dcott9-|-2s—|-b—i-cC —c)+ 7 Mpt —Mpc + Fwqg — My, — Zann
n
1
— Etmtw(d cotf+b—cc—cyp) (9.64)

S 1
F ZZL;(dcot0+2s+b+cc e+ (MI’)[ — M. — Fyq — My — ZWnZn)
n

1
+ zrmtw(d cotl+b —cc— ) (9.65)
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Evans, Porter and Rockey adopted an iterative procedure for solving Eqs (9.61)—(9.65)
in which an initial value of 8 was assumed and o.f and o were taken to be zero. Then
¢ and ¢; were calculated and approximate values of F and F; found giving better
estimates for o¢r and oyr. The procedure was then repeated until the required accuracy
was obtained.
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Problems

P.9.1 A thin square plate of side a and thickness ¢ is simply supported along each
edge, and has a slight initial curvature giving an initial deflected shape.

. X, Ty
wo = ésin — sin —
a a
If the plate is subjected to a uniform compressive stress o in the x-direction (see
Fig. P.9.1), find an expression for the elastic deflection w normal to the plate. Show
also that the deflection at the mid-point of the plate can be presented in the form of a
Southwell plot and illustrate your answer with a suitable sketch.
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— 2 2 : :
Ans. w=[ot8/(4n°D/a” — ot)] sin == sin %

a N
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. l—
— ——
— le—
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— le—
] f—
—] l——
] -
y

Fig. P.9.1

P.9.2 A uniform flat plate of thickness ¢ has a width b in the y direction and length /
in the x direction (see Fig. P.9.2). The edges parallel to the x axis are clamped and those
parallel to the y axis are simply supported. A uniform compressive stress ¢ is applied
in the x direction along the edges parallel to the y axis. Using an energy method, find
an approximate expression for the magnitude of the stress o which causes the plate to
buckle, assuming that the deflected shape of the plate is given by

. MAX . 5 Ty
w = aj] sin —— sin” —
[ b

For the particular case [ =2b, find the number of half waves m corresponding to the
lowest critical stress, expressing the result to the nearest integer. Determine also the
lowest critical stress.

Ans.  m=3, ocr = [6E/(1-v?)](t/b)?

y
] DR
—_— -—
—] e
—p] fei——
—_—] e
b o __ | . O
N e
— | r———
—_— het——
_ |e—— X
L )

Fig. P.9.2
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P.9.3 A panel, comprising flat sheet and uniformly spaced Z-section stringers, a part
of whose cross-section is shown in Fig. P.9.3, is to be investigated for strength under
uniform compressive loads in a structure in which it is to be stabilized by frames a
distance [ apart, [ being appreciably greater than the spacing b.

(a) State the modes of failure which you would consider and how you would
determine appropriate limiting stresses.

(b) Describe a suitable test to verify your calculations, giving particulars of the speci-
men, the manner of support and the measurements you would take. The latter should
enable you to verify the assumptions made, as well as to obtain the load supported.

- b ~]< b Jt b o b >
| i | l
f* c _‘V_ys
— fs ‘
~ gy i‘ Area= Ag
Fig. P.9.3

P.9.4 Part of a compression panel of internal construction is shown in Fig. P.9.4.
The equivalent pin-centre length of the panel is 500 mm. The material has a Young’s
modulus of 70000 N/mm? and its elasticity may be taken as falling catastrophically
when a compressive stress of 300 N/mm? is reached. Taking coefficients of 3.62 for
buckling of a plate with simply supported sides and of 0.385 with one side simply
supported and one free, determine (a) the load per mm width of panel when initial
buckling may be expected and (b) the load per mm for ultimate failure. Treat the
material as thin for calculating section constants and assume that after initial buckling
the stress in the plate increases parabolically from its critical value in the centre of
sections.

Ans. 613.8 N/mm, 844.7 N/mm.

30 mm !

—f+—3.5mm

120 mm
Fig. P.9.4

P.9.5 A simply supported beam has a span of 2.4 m and carries a central con-
centrated load of 10kN. The flanges of the beam each have a cross-sectional area of
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300 mm? while that of the vertical web stiffeners is 280 mm?. If the depth of the
beam, measured between the centroids of area of the flanges, is 350 mm and the
stiffeners are symmetrically arranged about the web and spaced at 300 mm inter-
vals, determine the maximum axial load in a flange and the compressive load in a
stiffener.

It may be assumed that the beam web, of thickness 1.5 mm, is capable of resisting
diagonal tension only.

Ans. 19.9kN, 3.9kN.

P.9.6 The spar of an aircraft is to be designed as an incomplete diagonal tension
beam, the flanges being parallel. The stiffener spacing will be 250 mm, the effective
depth of web will be 750 mm, and the depth between web-to-flange attachments is
725 mm.

The spar is to catry an ultimate shear force of 100 000 N. The maximum permissible
shear stress is 165 N/mm?, but it is also required that the shear stress should not exceed
15 times the critical shear stress for the web panel.

Assuming « to be 40° and using the relationships below:

(i) Select the smallest suitable web thickness from the following range of standard
thicknesses. (Take Young’s Modulus E as 70 000 N/mm?.)

0.7mm, 0.9 mm, 1.2mm, 1.6 mm

(ii) Calculate the stiffener end load and the secondary bending moment in the flanges
(assume stiffeners to be symmetrical about the web).

The shear stress buckling coefficient for the web may be calculated from the
expression

K =7.70[1 4 0.75(b/d)*]

b and d having their usual significance.
The relationship between the diagonal tension factor and buckling stress ratio is

ter 5 7 9 11 13 15
k 037 040 042 048 0.51 0.53

Note that « is the angle of diagonal tension measured from the spanwise axis of the
beam, as in the usual notation.

Ans. 1.2mm, 130As/(1 4 0.0113As), 238910 N mm.

P. 9.7 The main compressive wing structure of an aircraft consists of stringers,
having the section shown in Fig. P.9.7(b), bonded to a thin skin (Fig. P.9.7(a)). Find
suitable values for the stringer spacing b and rib spacing L if local instability, skin buck-
ling and panel strut instability all occur at the same stress. Note that in Fig. P.9.7(a) only
two of several stringers are shown for diagrammatic clarity. Also the thin skin should
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be treated as a flat plate since the curvature is small. For a flat plate simply supported
along two edges assume a buckling coefficient of 3.62. Take E = 69 000 N/mm?.

Ans. b=56.5mm, L =700 mm.

Wingr,b\\\~—)
(a)

(b)
Fig. P.9.7
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10

Structural vibration

Structures which are subjected to dynamic loading, particularly aircraft, vibrate or
oscillate in a frequently complex manner. An aircraft, for example, possesses an infi-
nite number of natural or normal modes of vibration. Simplifying assumptions, such as
breaking down the structure into a number of concentrated masses connected by weight-
less beams (lumped mass concept), are made but whatever method is employed the natu-
ral modes and frequencies of vibration of a structure must be known before flutter speeds
and frequencies can be found. We shall discuss flutter and other dynamic aeroelastic
phenomena in Chapter 28 but for the moment we shall concentrate on the calculation of
the normal modes and frequencies of vibration of a variety of beam and mass systems.

10.1 Oscillation of mass/spring systems

Let us suppose that the simple mass/spring system shown in Fig. 10.1 is displaced by
a small amount xg and suddenly released. The equation of the resulting motion in the
absence of damping forces is

mx +kx =0 (10.1)

where £ is the spring stiffness. We see from Eq. (10.1) that the mass, m, oscillates with
simple harmonic motion given by

x = xg sin(wt + €) (10.2)
7 o
Mass m
jI:()
~—
Lt x

Fig. 10.1 Oscillation of a mass/spring system.
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my k> m, k3 ms mp—y kn m,

L e e e

Fig. 10.2 Oscillation of an n mass/spring system.

in which w? =k/m and ¢ is a phase angle. The frequency of the oscillation is w/27
cycles per second and its amplitude xg. Further, the periodic time of the motion, that is
the time taken by one complete oscillation, is 27r/w. Both the frequency and periodic
time are seen to depend upon the basic physical characteristics of the system, namely
the spring stiffness and the magnitude of the mass. Therefore, although the amplitude
of the oscillation may be changed by altering the size of the initial disturbance, its
frequency is fixed. This frequency is the normal or natural frequency of the system and
the vertical simple harmonic motion of the mass is its normal mode of vibration.

Consider now the system of n masses connected by (n — 1) springs, as shown in
Fig. 10.2. If we specify that motion may only take place in the direction of the spring
axes then the system has n degrees of freedom. It is therefore possible to set the system
oscillating with simple harmonic motion in n different ways. In each of these n modes
of vibration the masses oscillate in phase so that they all attain maximum amplitude at
the same time and pass through their zero displacement positions at the same time. The
set of amplitudes and the corresponding frequency take up different values in each of
the n modes. Again these modes are termed normal or natural modes of vibration and
the corresponding frequencies are called normal or natural frequencies.

The determination of normal modes and frequencies for a general spring/mass sys-
tem involves the solution of a set of n simultaneous second-order differential equations
of a type similar to Eq. (10.1). Associated with each solution are two arbitrary con-
stants which determine the phase and amplitude of each mode of vibration. We can
therefore relate the vibration of a system to a given set of initial conditions by assigning
appropriate values to these constants.

A useful property of the normal modes of a system is their orthogonality, which is
demonstrated by the provable fact that the product of the inertia forces in one mode
and the displacements in another results in zero work done. In other words displace-
ments in one mode cannot be produced by inertia forces in another. It follows that the
normal modes are independent of one another so that the response of each mode to an
externally applied force may be found without reference to the other modes. Therefore
by considering the response of each mode in turn and adding the resulting motions we
can find the response of the complete system to the applied loading. Another useful
characteristic of normal modes is their ‘stationary property’. It can be shown that if
an elastic system is forced to vibrate in a mode that is slightly different from a true
normal mode the frequency is only very slightly different to the corresponding natural
frequency of the system. Reasonably accurate estimates of natural frequencies may
therefore be made from ‘guessed’ modes of displacement.

We shall proceed to illustrate the general method of solution by determining nor-
mal modes and frequencies of some simple beam/mass systems. Two approaches are
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possible: a stiffness or displacement method in which spring or elastic forces are
expressed in terms of stiffness parameters such as k in Eq. (10.1); and a flexibility
or force method in which elastic forces are expressed in terms of the flexibility § of the
elastic system. In the latter approach § is defined as the deflection due to unit force; the
equation of motion of the spring/mass system of Fig. 10.1 then becomes

msi 45 =0 (103)
Again the solution takes the form x = xg sin(wt + ¢€) but in this case w? = 1/mé. Clearly
by our definitions of k and § the product k§ = 1. In problems involving rotational oscil-
lations m becomes the moment of inertia of the mass and § the rotation or displacement
produced by unit moment.

Let us consider a spring/mass system having a finite number, n, degrees of
freedom. The term spring is used here in a general sense in that the n masses
my,my,...,m;,...,m, may be connected by any form of elastic weightless member.
Thus, if m; is the mass at a point i where the displacement is x; and §;; is the displacement
at the point i due to a unit load at a point j (note from the reciprocal theorem §;; = §;;),
the n equations of motion for the system are

myX1811 + maX2812 + -« - - + miXi81; + -+ - + mpXyd1, +x1 =0
m1X1821 + moXodpp + - - - + miXipi + - - - + mpXpdop +x2=0

SRR, [ETTEPEPRRTITY [UITETEPRTIORY SERRCITETTITeY 104
miX18i1 + moX2dip + - - + miXiSii + - -+ + mpXnSin +x; =0 (10.4)
mX18,1 + maXodpy + -+ - + mMiXiSpi + + - - + MpXpSpn + X, =0

or

n
D miEisi+x=0 (i=12...n) (10.5)

Jj=1
Since each normal mode of the system oscillates with simple harmonic motion,
then the solution for the ith mode takes the form x:x? sin(wf + &) so that

X = —wzx? sin(wt + &) = —w?x;. Equation (10.5) may therefore be written as
n
—® Y miSpx =0 (i=12...,n (10.6)
j=1

For a non-trivial solution, that is x; # 0, the determinant of Eq. (10.6) must be zero.
Hence

(w*m811 — 1) w’my812 o 0Pmdy; .. @’ Mpd1,
®*mi 87 (a)2m2822 -1 ... @*m;8s; @*mydap
e —0
w-mié; W mdp (0™ m;di; — 1) W Mybip
W m,1 Wm0, a)zmtam (0" mpdun 1)

(10.7)
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330 Structural vibration

The solution of Eq. (10.7) gives the normal frequencies of vibration of the system. The
corresponding modes may then be deduced as we shall see in the following examples.

Example 10.1

Determine the normal modes and frequencies of vibration of a weightless cantilever
supporting masses m/3 and m at points 1 and 2 as shown in Fig. 10.3. The flexural
rigidity of the cantilever is EI

The equations of motion of the system are

(m/3)V1811 + miad12 + vy =0 (1)
(m/3)1821 + mindan +v2 =0 (iii)
where v; and v; are the vertical displacements of the masses at any instant of time.
In this example, displacements are assumed to be caused by bending strains only; the

flexibility coefficients 811, 822 and §12(= §21) may therefore be found by the unit load
method described in Section 5.8. Then

M;M;
EI

8ij = dz (iii)
where M; is the bending moment at any section z due to a unit load at the point i and M;

is the bending moment at any section z produced by a unit load at the point j. Therefore,
from Fig. 10.3

M, =1(1-7) 0<z<lI
M> = 1(1)2 —2) 0<z<l/2
M>, =0 2<z<l1
Hence
) 1/1M2d 1/1(1 y2d (iv)
- S — v
W= ), T E S TYE
v, L2 rr N
6y = — | M?dz = — ——z) d
22 El J, 5 dz El )y (2 z) z )
I 1 (12 !
S1p =8 =— | MiMdz = — I-2(=—2z)d i
12 21 EI/O Mrdz = o A ( Z)<2 Z) z (vi)
7
/ ET m EI m/3
@- >y
2 1
—z
172 | 1/2 I

Fig. 10.3 Mass/beam system for Example 10.1.



10.1 Oscillation of mass/spring systems

Integrating Egs (iv), (v) and (vi) and substituting limits, we obtain

8_13 5_13 8_8_513
"T3Er P T 2aEr P T T a8EI
Each mass describes simple harmonic motion in the normal modes of oscillation so
that v; = v(l) sin (wt + €) and vy = vg sin (wt + ¢€). Hence ¥; = —w?v; and ¥ = —w?vs.
Substituting for vy, v2, 811, d22 and §12(=4821) in Eqgs (i) and (ii) and writing
L =ml/(3 x 48EI), we obtain

(1 — 1620>)v; — 1500%vy = 0 (vii)
5 070 — (1 — 61?2 =0 (viii)
For a non-trivial solution
(1 — 1610?) —1500?
2 2| =0
SAw —(1 — 6 w”)

Expanding this determinant we have
—(1 — 1620*)(1 — 610?) + 75(h®)* = 0
or
2100H)? = 2200” +1=0 (ix)
Inspection of Eq. (ix) shows that
rw? =1/21 or 1

Hence
,» 3 x48EI 3 x 48EI
=—" o ———
21mi3 ml3
The normal or natural frequencies of vibration are therefore

w1 2 | 3EI
f] = —_—= — —3
2 N Tml

w2 6 | EI
h=2=2=

_E_JT ml?

The system is therefore capable of vibrating at two distinct frequencies. To determine
the normal mode corresponding to each frequency we first take the lower frequency fi
and substitute it in either Eq. (vii) or Eq. (viii). From Eq. (vii)

v 156?15 x(1/21)
vy 1 —16rw?  1—16x(1/21)

which is a positive quantity. Therefore, at the lowest natural frequency the cantilever
oscillates in such a way that the displacement of both masses has the same sign at
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Fig. 10.5 The second natural mode of the mass/beam system of Fig. 10.3.

the same instant of time. Such an oscillation would take the form shown in Fig. 10.4.

Substituting the second natural frequency in Eq. (vii) we have

v 15?15
v 1-160®  1—16

which is negative so that the masses have displacements of opposite sign at any instant

of time as shown in Fig. 10.5.

Example 10.2

Find the lowest natural frequency of the weightless beam/mass system shown in

Fig. 10.6. For the beam GJ = (2/3)EI.

The equations of motion are

mvié11 + 4mivadip +vy =0

mv181 + 4mvydoy + vy =0
In this problem displacements are caused by bending and torsion so that

M;M; T;T;
= “as+ | —Lds

A . GJ

@
(i)

(iii)
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Fig. 10.6 Mass/beam system for Example 10.2.

From Fig. 10.6 we see that

M;=1x 0<x<l
Mi=12l—-2) 0<z<?2]
My=1(l—-z) 0<z<lI

M>=0 I<z<2l 0<x<lI
T =11 0<z=x<?2l
T, =0 0<x<l
T, = 0<z<2 0<x<lI
Hence
[ .2 21 2 21 12
x 2l -2 / [ .
811 = — dx —d —d
"= E +/O R NeTAS @)
I 2
(-2
8§y = d
2 /0 T (v)
1
2l —z2)( —2) .
812 =621 = —d
12 =1021 fo I K4 (vi)
from which we obtain
613 P 513
11 £l 22 3] 12 21 6E]

Writing A = ml? /6EI and solving Eqs (i) and (ii) in an identical manner to the solution
of Eqs (i) and (ii) in Example 10.1 results in a quadratic in Aw?, namely

188(Aw?)? — 44r®> +1 =0 (vii)

Solving Eq. (vii) we obtain

) 44+ 442 —4x 188 x |
B 376

Aw
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which gives
ro® =021 or 0.027

The lowest natural frequency therefore corresponds to Aw® = 0.027 and is

i 10.162E1
2 ml3
Example 10.3

Determine the natural frequencies of the system shown in Fig. 10.7 and sketch the
normal modes. The flexural rigidity EI of the weightless beam is 1.44 x 10° N m?,
[ =0.76 m, the radius of gyration r of the mass m is 0.152 m and its weight is 1435 N.

In this problem the mass possesses an inertia about its own centre of gravity (its radius
of gyration is not zero) which means that in addition to translational displacements it
will experience rotation. The equations of motion are therefore

mvsiy + mr268;, +v =20 (i)
mvdy + mr268y +6 =0 (ii)

where v is the vertical displacement of the mass at any instant of time and 6 is the
rotation of the mass from its stationary position. Although the beam supports just one
mass it is subjected to two moment systems; M| at any section z due to the weight of the
mass and a constant moment M7 caused by the inertia couple of the mass as it rotates.

Then
M =1z 0<z<l
My =1 0<y<lI
M, =1 0<z<l
My=1 0=<y=<l
Hence
I 2 I 2
511 = —d —d
11 /;EI zZ+ , EI y (iii)
| l
m
1,2 5 T
|
—
l
Y
J__L
V4

Fig. 10.7 Mass/beam system for Example 10.3.
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1 1
dz dy .
8y = — —
22 jg T | El (iv)
1 1
zdz 1
8120 =6y = -— —d
12 = 821 E | E y )
from which
43 21 32
Sii= — Sp=— O8i1p=68y=—
N=gp = on 21 = 5

Each mode will oscillate with simple harmonic motion so that
v =vgsin(wt + &) 6 = Gy sin(wt + €)

and
V= —wv 0=—w0

Substituting in Eqgs (i) and (ii) gives

413 312
l —’m—— |v—*mr*—06 =0 (vi)
3EI 2EI
312 21
—o’m—v+ (1 —*mr?=)6=0 (vii)
2EI EI

Inserting the values of m, r, [ and EI we have

0?0 =0 (viii)

. 1435 x 4 x 0.76° 1435 x 0.152% x 3 x 0.76?
9.81 x 3 x 1.44 x 106" 9.81 x 2 x 1.44 x 109

1435 x 3 x 0.76> 1435 x 0.1522 x 2 x 0.76 , ,
— w v 1-— w”)0=0 (ix)
9.81 x 2 x 1.44 x 106 9.81 x 1.44 x 106
or
(1—6x10w?)v—0.203 x 100’0 =0 (x)
—8.8 x 10 w?v+ (1 — 0.36 x 102w?)H =0 (xi)

Solving Egs (x) and (xi) as before gives
w =122 or 1300

from which the natural frequencies are

61 650
h=— h=—
T bid
From Eq. (x)

v 0.203 x 107%0?

0 1—6x10"5a2
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f, = 6l/m c/s % f, = 650/7 c/s
7

Fig. 10.8 The first two natural modes of vibration of the beam/mass system of Fig. 10.7.

which is positive at the lowest natural frequency, corresponding to w = 122, and negative
for w = 1300. The modes of vibration are therefore as shown in Fig. 10.8.

10.2 Oscillation of beams

So far we have restricted our discussion to weightless beams supporting conce