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Preface to the First Edition

This introduction to the theory of elementary particles is intended primarily for
advanced undergraduates who are majoring in physics. Most of my colleagues
consider this subject inappropriate for such an audience — mathematically too
sophisticated, phenomenologically too cluttered, insecure in its foundations, and
uncertain in its future. Ten years ago I would have agreed. But in the last decade the
dust has settled to an astonishing degree, and it is fair to say that elementary particle
physics has come of age. Although we obviously have much more to learn, there
now exists a coherent and unified theoretical structure that is simply too exciting
and important to save for graduate school or to serve up in diluted qualitative form
as a subunit of modern physics. I believe the time has come to integrate elementary
particle physics into the standard undergraduate curriculum.

Unfortunately, the research literature in this field is clearly inaccessible to
undergraduates, and although there are now several excellent graduate texts, these
call for a strong preparation in advanced quantum mechanics, if not quantum
field theory. At the other extreme, there are many fine popular books and a
number of outstanding Scientific American articles. But very little has been written
specifically for the undergraduate. This book is an effort to fill that need. It grew
out of a one-semester elementary particles course I have taught from time to
time at Reed College. The students typically had under their belts a semester of
electromagnetism (at the level of Lorrain and Corson), a semester of quantum
mechanics (at the level of Park), and a fairly strong background in special relativity.

In addition to its principal audience, I hope this book will be of use to beginning
graduate students, either as a primary text, or as preparation for a more sophisticated
treatment. With this in mind, and in the interest of greater completeness and
flexibility, I have included more material here than one can comfortably cover in a
single semester. (In my own courses I ask the students to read Chapters 1 and 2
on their own, and begin the lectures with Chapter 3. I skip Chapter 5 altogether,
concentrate on Chapters 6 and 7, discuss the first two sections of Chapter 8, and
then jump to Chapter 10.) To assist the reader (and the teacher) I begin each
chapter with a brief indication of its purpose and content, its prerequisites, and its
role in what follows.
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This book was written while I was on sabbatical at the Stanford Linear Accelerator
Center, and I would like to thank Professor Sidney Drell and the other members of

the Theory Group for their hospitality.

Davip GRIFFITHS
1986



Preface to the Second Edition

It is 20 years since the first edition of this book was published, and it is both
gratifying and distressing to reflect that it remains, for the most part, reasonably
up-to-date. There are, to be sure, some gross lacunae — the existence of the top
quark had not been confirmed back then, and neutrinos were generally assumed
(for no very good reason) to be massless. But the Standard Model, which is, in
essence, the subject of the book, has proved to be astonishingly robust. This is
a tribute to the theory, and at the same time an indictment of our collective
imagination. I don’t think there has been a comparable period in the history of
elementary particle physics in which so little of a truly revolutionary nature has
occurred. What about neutrino oscillations? Indeed: a fantastic story (I have added a
chapter on the subject); and yet, this extraordinary phenomenon fits so comfortably
into the Standard Model that one might almost say, in retrospect (of course), that it
would have been more surprising if it had not been so. How about supersymmetry
and string theory? Yes, but these must for the moment be regarded as speculations
(I have added a chapter on contemporary theoretical developments). As far as solid
experimental confirmation goes, the Standard Model (with neutrino masses and
mixing) still rules.

In addition to the two new chapters already mentioned, I have brought the
history up-to-date in Chapter 1, shortened Chapter 5, provided (I hope) a more
compelling introduction to the Golden Rule in Chapter 6, and eliminated most of
the old Chapter 8 on electromagnetic form factors and scaling (this was crucially
important in interpreting the deep inelastic scattering experiments that put the
quark model on a secure footing, but no one today doubts the existence of quarks,
and the technical details are no longer so essential). What remains of Chapter 8
is now combined with the old Chapter 9 to make a new chapter on hadrons.
Finally, T have prepared a complete solution manual (available free from the
publisher, though only - I regret — to course instructors). Beyond this the changes
are relatively minor.

Many people have sent me suggestions and corrections, or patiently answered my
questions. I cannot thank everyone, but I would like to acknowledge some of those
who were especially helpful: Guy Blaylock (UMass), John Boersma (Rochester),
Carola Chinellato (Brazil), Eugene Commins (Berkeley), Mimi Gerstell (Cal Tech),

Introduction to Elementary Particles, Second Edition. David Griffiths
Copyright © 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Preface to the Second Edition

Nahmin Horwitz (Syracuse), Richard Kass (Ohio State), Janis McKenna (UBC),
Jim Napolitano (RPI), Nic Nigro (Seattle), John Norbury (UW-Milwaukee), Jason
Quinn (Notre Dame), Aaron Roodman (SLAC), Natthi Sharma (Eastern Michigan),
Steve Wasserbeach (Haverford), and above all Pat Burchat (Stanford).

Part of this work was carried out while I was on sabbatical, at Stanford and
SLAC, and I especially thank Patricia Burchat and Michael Peskin for making this
possible.

DaviD GRIFFITHS
2008
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Formulas and Constants

Particle Data

Mass in MeV/c?, lifetime in seconds, charge in units of the proton charge.

Leptons (spin 1/2)
Generation | Flavor Charge | Mass* Lifetime Principal Decays
first ¢ (electron) -1 0.510999 00 -
v, (€ neutrino) 0 0 00 -
second (4 (muon) -1 105.659 | 2.19703 x 10~° ev, v,
v, (4 neutrino) 0 0 0 -
third T (tau) -1 177699 | 2.91x 1075 | ev.v,, pv vy, mov,
vy (T neutrino) 0 0 00 -

*Neutrino masses are extremely small, and for most purposes can be taken to be zero; for details see Chapter 11.

Quarks (spin 1/2)
Generation | Flavor Charge | Mass*
first d (down) -1/3 7

u (up) 2/3 3
second S (strange) | —1/3 120

¢ (charm) 2/3 1200
third b (bottom) | —1/3 | 4300

¢ (top) 2/3 | 174000

*Light quark masses are imprecise and speculative; for effective masses in mesons and baryons, see Chapter 5.

Mediators (spin 1)
Force Mediator Charge | Mass* Lifetime Principal Decays
Strong g (8 gluons) 0 0 00 -
Electromagnetic | y (photon) 0 0 00 -
Weak W (charged) | £1 | 80,420 | 3.11x 107% | ¢*w, utv,, v, cX — hadrons
Z° (neutral) 0 91,190 | 2.64 x 107 | e*e™, utp~, %17, g — hadrons




Baryons (spin 1/2)
Baryon | Quark Content | Charge Mass Lifetime Principal Decays
N J4 uud 1 938.272 00 -
n udd 0 939.565 885.7 pev,
A uds 0 1115.68 | 2.63 x 10710 pr~, n®
xt uus 1 1189.37 | 8.02x 107! pr®, nrt
x0 uds 0 1192.64 | 7.4x107% Ay
% dds -1 119745 | 1.48 x 10710 n~
g0 uss 0 13148 | 2.90 x 10710 A
B dss -1 13213 | 1.64x 10710 Am~
AF ude 1 22865 | 2.00 x 107" | pKr, Awx, Taw
Baryons (spin 3/2)
Baryon | Quark Content Charge | Mass | Lifetime | Principal Decays
A wuy, wud, udd, ddd | 2,1,0,—1 | 1232 | 5.6 x 1072 Nm
x* uus, uds, dds 1,0~1 | 1385 | 1.8 x 10723 Am, Lm
B* uss, dss 0,—1 1533 | 6.9x 1072 B
Q- 55 -1 1672 | 82 x 1071 AK~, Br
Pseudoscalar Mesons (spin 0)
Meson Quark Content Charge | Mass Lifetime Principal Decays
w* ud, di 1,-1 | 139,570 260 x 107 1w,
7 (uTi — dd)//2 0 | 134977 8.4 x 10717 %
K* us, St -1 | 493.68 1.24 x 1078 UV, T, T
K% g5, sd 0 | agres | [KSEBX0T | am
K?:5.11x 1078 T eV, TT[4Vy, TTT
n | (WE+dd—23%//6| 0 547.51 5.1x 1071 Yy, AT
7 (Ui + dd + 55)//3 0 957.78 32x 1074 N, Py
D* cd, de 1,-1 | 1869.3 1.04 x 10712 Knr, Ky, Kev,
D, D’ i, Ut 0 | 18645 41 %1078 Krre, Keve, Kitv,
D¥ G5, SC 1,-1 | 1968.2 5.0 x 10713 np, G, G
Bt ub, bui 1,-1 | 5279.0 1.6 x 1071 D*tvg, Devg, D¥nm
8,5’ db, bd 0 | 52794 1.5 x 1012 D*tvy, Dlvy, D
Vector Mesons (spin 1)
Meson Quark Content Charge | Mass | Lifetime Principal Decays
o | ud, (wi—dd)/v2,du | 1,0-1 | 7755 | 4x 1072 nw
K* U5, 5, sd, si 1,01 | 894 | 1x1072 Kn
) (uk + dd)//2 0 | 7826 | 8x107% TR, TY
v C 0 3097 | 7x 1072 | efem, ptu, 5m, 7n
D* cd, ¢, ut, dc 1,01 | 2008 | 3x 1072 Dr, Dy
T bb 0 9460 | 1x 10720 | gtem, ptu~, tre”




Spin 1/2

6201 GzO—i 0=10
*“\1 0/ YT \i o) FT\0 -1

Ui(Tj=8g+i6iJ'ka, (a-a)(b'o)za-b—i—iawaxb)

Pauli Matrices:

(fi"' =0 =0}, ¢ = cosg + i(0 - o)sin6
Dirac Matrices:
1 0 , 0 o A
0 __ (- 13 Ol: 0 H:_L O/qu "
V—(O _1>’ G—<—Ui 0)’ 14 Yo, v Y, vYvVv'vY 14
1 0 0 0
0 -1 o0 0
2 v _____2 /,LU /1,\1: —
{:V Y } g 8 Buv 0 0 -1 0
0 0 0 -1
5__ . 01,2 3 _ 0 1 © .5y 5.2 _
vEy vt =4 o) {r“,v°’1=0, () =1

(For product rules and trace theorems see Appendix C.)

Dirac Equation:
ihy* 9,y —mcyy =0

(f—mou=0, (F+mejy=0, u@—me)=0 v(F+me)=0

=y’ T=yTT° d=a,n*

Feynman Rules

External Lines Propagators
Spin 0 Nothi i
pin 0: othing —_——
q* — (me)*

Incoming particle: u

Spin 1/2: Incom.ing antiPaﬂicle: ? Lz(g + mc)2
Outgoing particle: u g — (mc)
Outgoing antiparticle: v
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Incoming: ¢
Spin 1: { &

Outgoing: ¢,

Massless: —l‘(’;’“’

q

—1 — 2
Massive: Uguv — Gudv/(me)7]

q* — (me)?

(For vertex factors see Appendix D.)

Fundamental Constants

Planck’s constant:

Speed of light:
Mass of electron:

Mass of proton:

Electron charge (magnitude):

Fine structure constant:
Bohr radius:

Bohr energies:

Classical electron radius:
QED coupling constant:

Weak coupling constants:

Weak mixing angle:

Strong coupling constant:

h

8s

1.05457 x 1073* J s

6.58212 x 10722 MeV s

2.99792 x 10® m/s

9.10938 x 10~3'kg = 0.510999 MeV/c?
1.67262 x 10~%"kg = 938.272 MeV/c?
1.60218 x 10~1° C

4.80320 x 10710 esu

e?/hc = 1/137.036

R?/mee? = 5.29177 x 10711 m

—meet /2P n? = —13.6057/n* eV

€2 /mec? = 2.81794 x 107 m

ex/4m Jhic = 0.302822

g./ sin 6, = 0.6295;

gw/ cos 6y, = 0.7180

28.76° (sin’#@,, = 0.2314)

1.214

Conversion Factors

1A = 01lnm=10"""m
1fm = 107Pm

1 barn = 1078 m?

lev = 1.60218 x 10717 ]
1MeV/c? = 1.78266 x 107 kg

1 Coulomb = 2.99792 x 1072 esu



Introduction

Elementary Particle Physics

Elementary particle physics addresses the question, “What is matter made of ?’ at
the most fundamental level — which is to say, on the smallest scale of size. It’s
a remarkable fact that matter at the subatomic level consists of tiny chunks, with
vast empty spaces in between. Even more remarkable, these tiny chunks come
in a small number of different types (electrons, protons, neutrons, pi mesons,
neutrinos, and so on), which are then replicated in astronomical quantities to make
all the ‘stuff’ around us. And these replicas are absolutely perfect copies — not
just ‘pretty similar’, like two Fords coming off the same assembly line, but utterly
indistinguishable. You can’t stamp an identification number on an electron, or paint
a spot on it — if you've seen one, you've seen them all. This quality of absolute
identicalness has no analog in the macroscopic world. (In quantum mechanics it
is reflected in the Pauli exclusion principle.) It enormously simplifies the task of
elementary particle physics: we don’t have to worry about big electrons and little
ones, or new electrons and old ones — an electron is an electron is an electron. It
didn’t have to be so easy.

My firstjob, then, is to introduce you to the various kinds of elementary particles —
the actors, if you will, in the drama. I could simply list them, and tell you their
properties (mass, electric charge, spin, etc.), but I think it is better in this case
to adopt a historical perspective, and explain how each particle first came on the
scene. This will serve to endow them with character and personality, making them
easier to remember and more interesting to watch. Moreover, some of the stories
are delightful in their own right.

Once the particles have been introduced, in Chapter 1, the issue becomes, ‘How
do they interact with one another?’ This question, directly or indirectly, will occupy
us for the rest of the book. If you were dealing with two macroscopic objects, and
you wanted to know how they interact, you would probably begin by holding them
at various separation distances and measuring the force between them. That’s how
Coulomb determined the law of electrical repulsion between two charged pith balls,
and how Cavendish measured the gravitational attraction of two lead weights. But
you can't pick up a proton with tweezers or tie an electron onto the end of a piece of
string; they’re just too small. For practical reasons, therefore, we have to resort to

Introduction to Elementary Particles, Second Edition. David Griffiths
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less direct means to probe the interactions of elementary particles. As it turns out,
almost all of our experimental information comes from three sources: (1) scattering
events, in which we fire one particle at another and record (for instance) the angle
of deflection; (2) decays, in which a particle spontaneously disintegrates and we
examine the debris; and (3) bound states, in which two or more particles stick
together, and we study the properties of the composite object. Needless to say,
determining the interaction law from such indirect evidence is not a trivial task.
Ordinarily, the procedure is to guess a form for the interaction and compare the
resulting theoretical predictions with the experimental data.

The formulation of such a guess (‘model’ is a more respectable term for it) is
guided by certain general principles, in particular, special relativity and quantum
mechanics. In the diagram below I have sketched out four realms of mechanics:

Small —
Classical Quantum
mechanics | mechanics

Fast .
v Relativistic | Quantum

mechanics | field theory

The world of everyday life, of course, is governed by classical mechanics. But for
objects that travel very fast (at speeds comparable to c), the classical rules are
modified by special relativity, and for objects that are very small (comparable to the
size of atoms, roughly speaking), classical mechanics is superseded by quantum
mechanics. Finally, for things that are both fast and small, we require a theory
that incorporates relativity and quantum principles: quantum field theory. Now,
elementary particles are extremely small, of course, and typically they are also very
fast. So, elementary particle physics naturally falls under the dominion of quantum
field theory.

Please observe the distinction here between a type of mechanics and a particular
force law. Newton’s law of universal gravitation, for example, describes a specific
interaction (gravity), whereas Newton’s three laws of motion define a mechanical
system (classical mechanics), which (within its jurisdiction) governs all interactions.
The force law tells you what F is, in the case at hand; the mechanics tells you how
to use F to determine the motion. The goal of elementary particle dynamics, then,
is to guess a set of force laws which, within the context of quantum field theory,
correctly describe particle behavior.

However, some general features of this behavior have nothing to do with the
detailed form of the interactions. Instead they follow directly from relativity, from
quantum mechanics, or from the combination of the two. For example, in relativity,
energy and momentum are always conserved, but (rest) mass is not. Thus the decay
A — p+ 7 is perfectly acceptable, even though the A weighs more than the sum
of p plus 7. Such a process would not be possible in classical mechanics, where
mass is strictly conserved. Moreover, relativity allows for particles of zero (rest)
mass — the very idea of a massless particle is nonsense in classical mechanics —
and as we shall see, photons and gluons are massless.
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In quantum mechanics a physical system is described by its state, s (represented
by the wave function ¥ in Schrédinger’s formulation, or by the ket |s) in Dirac’s
theory). A physical process, such as scattering or decay, consists of a transition
from one state to another. But in quantum mechanics the outcome is not uniquely
determined by the initial conditions; all we can hope to calculate, in general, is
the probability for a given transition to occur. This indeterminacy is reflected in
the observed behavior of particles. For example, the charged pi meson ordinarily
disintegrates into a muon plus a neutrino, but occasionally one will decay into an
electron plus a neutrino. There’s no difference in the original pi mesons; they’re all
identical. It is simply a fact of nature that a given particle can go either way.

Finally, the union of relativity and quantum mechanics brings certain extra
dividends that neither one can offer by itself: the existence of antiparticles (with
the same mass and lifetime as the particle itself, but opposite electric charge), a
proof of the Pauli exclusion principle (which in nonrelativistic quantum mechanics
is simply an ad hoc hypothesis), and the so-called TCP theorem. I'll tell you more
about these later on; my purpose in mentioning them here is to emphasize that
these are features of the mechanical system itself, not of the particular model.
Short of a catastrophic revolution, they are untouchable. By the way, quantum field
theory in all its glory is difficult and deep, but don’t be alarmed: Feynman invented
a beautiful and intuitively satisfying formulation that is not hard to learn; we’ll
come to that in Chapter 6. (The derivation of Feynman'’s rules from the underlying
quantum field theory is a different matter, which can easily consume the better
part of an advanced graduate course, but this need not concern us here.)

In the 1960s and 1970s a theory emerged that described all of the known
elementary particle interactions, except gravity. (As far as we can tell, gravity is
much too weak to play any significant role in ordinary particle processes.) This
theory — or, more accurately, this collection of related theories, based on two
families of elementary particles (quarks and leptons), and incorporating quantum
electrodynamics, the Glashow—Weinberg—Salam theory of electroweak processes,
and quantum chromodynamics — has come to be called the Standard Model. No
one pretends that it is the final word on the subject, but at least we are now playing
with a full deck of cards. Since 1978, when the Standard Model achieved the status
of ‘orthodoxy’, it has met every experimental test. Moreover, it has an attractive
aesthetic feature: all of the fundamental interactions derive from one general
principle, the requirement of local gauge invariance. It seems certain that future
developments will involve extensions of the Standard Model, not its repudiation.
This book might be called an ‘Introduction to the Standard Model’.

As that alternative title suggests, it is a book about elementary particle theory,
with very little on experimental methods or instrumentation. These are important
matters, and an argument can be made for integrating them into a text such as this,
but they can also be distracting, and interfere with the clarity and elegance of the
theory itself. I encourage you to read about the experimental aspects of the subject,
and from time to time I will refer you to particularly accessible accounts. But for
now, I'll confine myself to scandalously brief answers to the two most obvious
experimental questions.
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How Do You Produce Elementary Particles?

Electrons and protons are no problem; these are the stable constituents of ordinary
matter. To produce electrons one simply heats up a piece of metal, and they come
boiling off. If you want a beam of electrons, you just set up a positively charged plate
nearby, to attract them over, and poke a small hole in it; the electrons that make it
through the hole constitute the beam. Such an electron gun is the starting element
in a television tube or an oscilloscope or an electron accelerator (Figure L.1).

To obtain protons you ionize hydrogen (in other words, strip off the electron). In
fact, if you're using the protons as a target, you don’t even need to bother about the
electrons; they’re so light that an energetic incident particle will knock them out of
the way. Thus, a tank of hydrogen is essentially a tank of protons. For more exotic
particles there are three main sources: cosmic rays, nuclear reactors, and particle
accelerators.

o Cosmic rays: The earth is constantly bombarded with
high-energy particles (principally protons) coming from
outer space. What the source of these particles might be
remains something of a mystery; at any rate, when they hit
atoms in the upper atmosphere they produce showers of
secondary particles (mostly muons and neutrinos, by the

Fig. 1.1 SLAG; the straight line is the accelerator itself.
(Courtesy Stanford Linear Accelerator Center.)
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time they reach ground level), which rain down on us all the
time. As a source of elementary particles, cosmic rays have
two virtues: they are free, and their energies can be
enormous — far greater than we could possibly produce in
the laboratory. But they have two major disadvantages: the
rate at which they strike any detector of reasonable size is
very low, and they are completely uncontrollable. So cosmic
ray experiments call for patience and luck.

e Nuclear reactors: When a radioactive nucleus disintegrates, it
may emit a variety of particles — neutrons, neutrinos, and
what used to be called alpha rays (actually, alpha particles,
which are bound states of two neutrons plus two protons),
beta rays (actually, electrons or positrons), and gamma rays
(actually, photons).

o Particle accelerators: You start with electrons or protons,
accelerate them to high energy, and smash them into a target
(Figure 1.1). By skillful arrangements of absorbers and
magnets, you can separate the particle species that you wish
to study from the resulting debris. Nowadays it is possible in
this way to generate intense secondary beams of positrons,
muons, pions, kaons, B-mesons, antiprotons, and neutrinos,
which in turn can be fired at another target. The stable
particles — electrons, protons, positrons, and antiprotons —
can even be fed into giant storage rings in which, guided by
powerful magnets, they circulate at high speed for hours at a
time, to be extracted and used at the required moment [1].

In general, the heavier the particle you want to produce, the higher must be
the energy of the collision. That's why, historically, lightweight particles tend to
be discovered first, and as time goes on, and accelerators become more powerful,
heavier and heavier particles are found. It turns out that you gain enormously in
relative energy if you collide two high-speed particles head-on, as opposed to firing
one particle at a stationary target. (Of course, this calls for much better aim!) For this
reason many contemporary experiments involve colliding beams from intersecting
storage rings; if the particles miss on the first pass, they can try again the next time
around. Indeed, with electrons and positrons (or protons and antiprotons) the same
ring can be used, with the plus charges circulating in one direction and minus
charges the other. Unfortunately, when a charged particle accelerates it radiates,
thereby losing energy. In the case of circular motion (which, of course, involves
acceleration) this is called synchrotron radiation, and it severely limits the efficiency
of storage rings for energetic electrons (heavier particles with the same energy
accelerate less, so synchrotron radiation is not such a problem for them). For this
reason electron scattering experiments will increasingly turn to linear colliders,
while storage rings will continue to be used for protons and heavier particles.

5
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There is another reason why particle physicists are always pushing for higher en-
ergies: in general, the higher the energy of the collision, the closer the two particles
come to one another. So if you want to study an interaction at very short range, you
need very energetic particles. In quantum-mechanical terms, a particle of momen-
tum p has an associated wavelength A given by the de Broglie formula A = h/p,
where h is Planck’s constant. At large wavelengths (low momenta) you can only
hope to resolve relatively large structures; in order to examine something extremely
small, you need comparably short wavelengths, and hence high momenta. If you
like, consider this a manifestation of the uncertainty principle (AxAp > h/4m) —
to make Ax small, Ap must be large. However you look at it, the conclusion is the
same: to probe small distances you need high energies.

At present the most powerful accelerator in the world is the Tevatron at Fermilab
(Figure 1.2), with a maximum beam energy of almost 1 TeV. The tevatron (a
proton—antiproton collider) began operation in 1983; its successor, the Supercon-
ducting Supercollider (SSC) was under construction in 1993 when the project was
terminated by Congress. As a result, there has been a long period in which no
fundamental progress was possible. This dry spell should end in 2008, when the
Large Hadron Collider (LHC) at CERN starts taking data (Figure 1.3). The LHC is
designed to reach beam energies in excess of 7 TeV, and the hope is that this new
terrain will include the Higgs particle, possibly supersymmetric particles, and —
best of all — something completely unexpected [2]. It’s not clear what comes after
the LHC — most likely the proposed International Linear Collider (ILC). But, accel-
erators have become so huge (the SSC would have been 87 km in circumference)
that there is not much room for expansion. Perhaps we are approaching the end

W}

Fig. 1.2 Fermilab; the large circle in the background is the
Tevatron. (Courtesy Fermilab Visual Media Services.)
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Fig. 1.3 CERN; the circle indicates the path of the LHC tun-
nel (formerly LEP) — Geneva and Mt Blanc are in the back-
ground. (Courtesy CERN.)

of the accelerator era, and particle physicists will have to turn to astrophysics and
cosmology for information about higher energies. Or perhaps someone will have a
clever new idea for squeezing energy onto an elementary particle.”

How Do You Detect Elementary Particles?

There are many kinds of particle detectors — Geiger counters, cloud chambers, bub-
ble chambers, spark chambers, drift chambers, photographic emulsions, Cerenkov
counters, scintillators, photomultipliers, and so on. Actually, a typical modern

* In macroscopic terms the amount of energy involved is not that great — after all, 1 TeV
(10'? eV) is only 1077 Joules; the problem is how to deliver that energy to a particle. No law
of physics prevents you from doing so, but nobody has yet figured out a way to do it without
gigantic (and expensive) machinery.
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Fig. 1.4 The CDF detector at Fermilab, where the top quark
was discovered. (Courtesy Fermilab Visual Media Services.)

detector has whole arrays of these devices, wired up to a computer that tracks
the particles and displays their trajectories on a television screen (Figure 1.4). The
details do not concern us, but there is one thing you should be aware of: most
detection mechanisms rely on the fact that when high-energy charged particles pass
through matter they ionize atoms along their path. The ions then act as ‘seeds’ in
the formation of droplets (cloud chamber) or bubbles (bubble chamber) or sparks
(spark chamber), as the case may be. But electrically neutral particles do not cause
ionization, and they leave no tracks. For instance, if you look at the bubble chamber
photograph in Figure 1.9, you will see that the five neutral particles are ‘invisible’;
their paths have been reconstructed by analyzing the tracks of the charged particles
in the picture and invoking conservation of energy and momentum at each vertex.
Notice also that most of the tracks in the picture are curved (actually, all of them
are, to some extent; try holding a ruler up to one you think is straight). The bubble
chamber was placed between the poles of a giant magnet; in a magnetic field B, a
particle of charge q and momentum p will move in a circle of radius R given by the
famous cyclotron formula: R = pc/qB, where c is the speed of light. The curvature
of the track in a known magnetic field thus affords a very simple measure of the
particle’s momentum. Moreover, we can immediately tell the sign of the charge
from the direction of the curve.
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Units

Elementary particles are small, so for our purposes the normal mechanical units —
grams, ergs, joules, and so on — are inconveniently large. Atomic physicists
introduced the electron volt — the energy acquired by an electron when accelerated
through a potential difference of 1 volt: 1 eV = 1.6 x 107 joules. For us the eV is
inconveniently small, but we're stuck with it. Nuclear physicists use keV (10% eV);
typical energies in particle physics are MeV (10°eV), GeV (10° eV), or even TeV
(102 eV). Momenta are measured in MeV/c (or GeV/c, or whatever), and masses
in MeV/c%. Thus the proton weighs 938 MeV/c? = 1.67 x 10~ g,

Actually, particle theorists are lazy (or clever, depending on your point of view) —
they seldom include the ¢’s and A’s (A= h/2x) in their formulas. You're just
supposed to fit them in for yourself at the end, to make the dimensions come out
right. As they say in the business, ‘set ¢ = & = 1. This amounts to working in
units such that time is measured in centimeters and mass and energy in inverse
centimeters; the unit of time is the time it takes light to travel 1cm, and the
unit of energy is the energy of a photon whose wavelength is 27 cm. Only at the
end of the problem do we revert to conventional units. This makes everything
look very elegant, but I thought it would be wiser in this book to keep all the ¢’s
and #’s where they belong, so that you can check for dimensional consistency as
you go along. (If this offends you, remember that it is easier for you to ignore
an ki you don’t like than for someone else to conjure one up in just the right
place.)

Finally, there is the question of what units to use for electric charge. In
introductory physics courses most instructors favor the SI system, in which charge
is measured in coulombs, and Coulomb’s law reads

1
F=— 12 (g
4ey v2
Most advanced work is done in the Gaussian system, in which charge is measured
in electrostatic units (esu), and Coulomb’s law is written

F=222 (g

r2

But elementary particle physicists prefer the Heaviside — Lorentz system, in which
Coulomb’s law takes the form

1 q1q2
F= — == HL
47 12 (HL)

The three units of charge are related as follows:

1
quL = VAT qg = EQSI
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In this book I shall use Gaussian units exclusively, in order to avoid unnecessary
confusion in an already difficult subject. Whenever possible I will express results
in terms of the fine structure constant

e? 1
o= — =
hc 137.036

where ¢ is the charge of the electron in Gaussian units. Most elementary particle
texts write this as €? /47, because they are measuring charge in Heaviside—Lorentz
units and setting ¢ = i = 1; but everyone agrees that the number is 1/137.

Further reading

Since the early 1960s, the Particle Data Group at Berkeley has periodically issued a
listing of the established particles and their properties. These are published every
other year in Reviews of Modern Physics or Journal of Physics G, and summarized
in a (free) booklet that can be ordered on the web at http:\\pdg.lbl.gov. In the early
days this summary took the form of ‘wallet cards’, but by 2006 it had grown to a
densely packed 315 pages. I shall refer to it as the Particle Physics Booklet (PPB).
Every student of elementary particle physics must have a copy — don’t leave home
without it! The longer version, called the Review of Particle Physics (RPP) is the bible
for professionals — the 2006 edition runs to 1231 pages, and it includes authoritative
articles on every relevant subject, written by the world’s leading experts [3]. If you
want the definitive, up-to-date word on any particular topic, this is the place to go
(it is also available on-line, at the Particle Data Group web site).

Particle physics is an enormous and rapidly changing subject. My aim in this
book is to introduce you to some important ideas and methods, to give you a
sense of what’s out there to be learned, and perhaps to stimulate your appetite
for more. If you want to read further in quantum field theory, I particularly
recommend:

Bjorken, J. D. and Drell, S. D. (1964) Relativistic Quantum Mechanics and
Relativistic Quantum Fields, McGraw-Hill, New York.

Itzykson, C. and Zuber, J.-B. (1980) Quantum Field Theory, McGraw-Hill, New
York.

Peskin, M. E. and Schroeder, D. V. (1995) An Introduction to Quantum Field
Theory, Perseus, Cambridge, M.A.

Ryder, L. H. (1985) Quantum Field Theory, Cambridge University Press,
Cambridge, UK.

Sakurai, J. J. (1967) Advanced Quantum Mechanics, Addison-Wesley, Reading,
M.A.

[ warn you, however, that these are all difficult and advanced books.
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For elementary particle physics itself, the following books (listed in order of
increasing difficulty) are especially useful:

Close, F., Marten, M. and Sutton, C. (1987) The Particle Explosion, Oxford
University Press, Oxford, UK.

Frauenfelder, H. and Henley, E. M. (1991) Subatomic Physics, 2nd edn,
Prentice-Hall, Englewood Cliffs, N.J.

Gottfried, K. and Weisskopf, V. F. (1984) Concepts of Particle Physics, Oxford
University Press, Oxford.

Perkins, D. H. (2000) Introduction to High-Energy Physics, 4th Ed, Cambridge
University Press, Cambridge, UK.

Halzen, F. and Martin, A. D. (1984) Quarks and Leptons, John Wiley & Sons,
Ltd, New York.

Roe, B. P. (1996) Particle Physics at the New Millennium, Springer, New York.

Aitchison, I. J. R. and Hey, A. J. G. (2003) Gauge Theories in Particle Physics,
3rd edn, Institute of Physics, Bristol, UK.

Seiden, A. (2005) Particle Physics: A Comprehensive Introduction, Addison-
Wesley, San Francisco, C.A.

Quigg, C. (1997) Gauge Theories of the Strong, Weak, and Electromagnetic
Interactions, Addison-Wesley, Reading, M.A.
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Historical Introduction to the Elementary Particles

This chapter is a kind of ‘folk history’ of elementary particle physics. Its purpose is
to provide a sense of how the various particles were first discovered, and how they fit
into the overall scheme of things. Along the way some of the fundamental ideas that
dominate elementary particle theory are explained. This material should be read quickly,
as background to the rest of the book. (As history, the picture presented here is certainly
misleading, for it sticks closely to the main track, ignoring the false starts and blind alleys
that accompany the development of any science. That’s why I call it ‘folk’ history — it’s
the way particle physicists like to remember the subject — a succession of brilliant insights
and heroic triumphs unmarred by foolish mistakes, confusion, and frustration. It wasn’t
really quite so easy.)

1.1
The Classical Era (1897-1932)

It is a little artificial to pinpoint such things, but I'd say that elementary particle
physics was born in 1897, with J. J. Thomson’s discovery of the electron [1]. (It
is fashionable to carry the story all the way back to Democritus and the Greek
atomists, but apart from a few suggestive words their metaphysical speculations
have nothing in common with modern science, and although they may be of
modest antiquarian interest, their genuine relevance is negligible.) Thomson knew
that cathode rays emitted by a hot filament could be deflected by a magnet. This
suggested that they carried electric charge; in fact, the direction of the curvature
required that the charge be negative. It seemed, therefore, that these were not rays
at all, but rather streams of particles. By passing the beam through crossed electric
and magnetic fields, and adjusting the field strength until the net deflection was
zero, Thomson was able to determine the velocity of the particles (about a tenth the
speed of light) as well as their charge-to-mass ratio (Problem 1.1). This ratio turned
out to be enormously greater than for any known ion, indicating either that the
charge was extremely large or the mass was very small. Indirect evidence pointed
to the second conclusion. Thomson called the particles corpuscles. Back in 1891,
George Johnstone Stoney had introduced the term ‘electron’ for the fundamental
unit of charge; later, that name was taken over for the particles themselves.

Introduction to Elementary Particles, Second Edition. David Griffiths
Copyright © 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Thomson correctly surmised that these electrons were essential constituents
of atoms; however, since atoms as a whole are electrically neutral and very
much heavier than electrons, there immediately arose the problem of how the
compensating plus charge — and the bulk of the mass — is distributed within an
atom. Thomson himself imagined that the electrons were suspended in a heavy,
positively charged paste, like (as he put it) the plums in a pudding. But Thomson’s
model was decisively repudiated by Rutherford’s famous scattering experiment,
which showed that the positive charge, and most of the mass, was concentrated in
a tiny core, or nucleus, at the center of the atom. Rutherford demonstrated this by
firing a beam of & particles (ionized helium atoms) into a thin sheet of gold foil
(Figure 1.1). Had the gold atoms consisted of rather diffuse spheres, as Thomson
supposed, then all of the « particles should have been deflected a bit, but none
would have been deflected much — any more than a bullet is deflected much when
it passes, say, through a bag of sawdust. What in fact occurred was that most of
the « particles passed through the gold completely undisturbed, but a few of them
bounced off at wild angles. Rutherford’s conclusion was that the « particles had

Zinc sulfide screen Gold foil Collimated beam

\\ \ of a-particles

Microscope

Source of
a-particles

Vacuum

pump
——

Fig. 1.1 Schematic diagram of the apparatus used in the
Rutherford scattering experiment. Alpha particles scattered
by the gold foil strike a fluorescent screen, giving off a flash
of light, which is observed visually through a microscope.
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encountered something very small, very hard, and very heavy. Evidently the positive
charge, and virtually all of the mass, was concentrated at the center, occupying only
a tiny fraction of the volume of the atom (the electrons are too light to play any role in
the scattering; they are knocked right out of the way by the much heavier « particles).

The nucleus of the lightest atom (hydrogen) was given the name proton by
Rutherford. In 1914 Niels Bohr proposed a model for hydrogen consisting of a
single electron circling the proton, rather like a planet going around the sun, held
in orbit by the mutual attraction of opposite charges. Using a primitive version of
the quantum theory, Bohr was able to calculate the spectrum of hydrogen, and the
agreement with experiment was nothing short of spectacular. It was natural then
to suppose that the nuclei of heavier atoms were composed of two or more protons
bound together, supporting a like number of orbiting electrons. Unfortunately, the
next heavier atom (helium), although it does indeed carry two electrons, weighs four
times as much as hydrogen, and lithium (three electrons) is seven times the weight of
hydrogen, and so it goes. This dilemma was finally resolved in 1932 with Chadwick’s
discovery of the neutron — an electrically neutral twin to the proton. The helium
nucleus, it turns out, contains two neutrons in addition to the two protons; lithium
evidently includes four; and, in general, the heavier nuclei carry very roughly the
same number of neutrons as protons. (The number of neutrons is in fact somewhat
flexible - the same atom, chemically speaking, may come in several different iso-
topes, all with the same number of protons, but with varying numbers of neutrons.)

The discovery of the neutron put the final touch on what we might call the classical
period in elementary particle physics. Never before (and I'm sorry to say never since)
has physics offered so simple and satisfying an answer to the question, “What is
matter made of?’ In 1932, it was all just protons, neutrons, and electrons. But
already the seeds were planted for the three great ideas that were to dominate the
middle period (1930—1960) in particle physics: Yukawa’s meson, Dirac’s positron,
and Pauli’s neutrino. Before we come to that, however, I must back up for a
moment to introduce the photon.

1.2
The Photon (1900-1924)

In some respects, the photon is a very ‘modern’ particle, having more in common
with the W and Z (which were not discovered until 1983) than with the classical
trio. Moreover, it’s hard to say exactly when or by whom the photon was really
‘discovered’, although the essential stages in the process are clear enough. The
first contribution was made by Planck in 1900. Planck was attempting to explain
the so-called blackbody spectrum for the electromagnetic radiation emitted by
a hot object. Statistical mechanics, which had proved brilliantly successful in
explaining other thermal processes, yielded nonsensical results when applied to
electromagnetic fields. In particular, it led to the famous ‘ultraviolet catastrophe’,
predicting that the total power radiated should be infinite. Planck found that he could
escape the ultraviolet catastrophe — and fit the experimental curve — if he assumed



16

1 Historical Introduction to the Elementary Particles

that electromagnetic radiation is quantized, coming in little ‘packages’ of energy
E=hv (1.1)

where v is the frequency of the radiation and h is a constant, which Planck adjusted
to fit the data. The modern value of Planck’s constant is

h=6.626 x 107 erg s (1.2)

Planck did not profess to know why the radiation was quantized; he assumed that
it was due to a peculiarity in the emission process: for some reason a hot surface
only gives off light* in little squirts.

Einstein, in 1905, put forward a far more radical view. He argued that quantization
was a feature of the electromagnetic field itself, having nothing to do with the
emission mechanism. With this new twist, Einstein adapted Planck’s idea, and his
formula, to explain the photoelectric effect: when electromagnetic radiation strikes a
metal surface, electrons come popping out. Einstein suggested that an incoming
light quantum hits an electron in the metal, giving up its energy (hv); the excited
electron then breaks through the metal surface, losing in the process an energy w
(the so-called work function of the material — an empirical constant that depends
on the particular metal involved). The electron thus emerges with an energy

E<hy—w (1.3)

(It may lose some energy before reaching the surface; that’s the reason for the
inequality.) Einstein’s formula (Equation 1.3) is trivial to derive, but it carries an
extraordinary implication: The maximum electron energy is independent of the
intensity of the light and depends only on its color (frequency). To be sure, a more
intense beam will knock out more electrons, but their energies will be the same.

Unlike Planck’s theory, Einstein’s met a hostile reception, and over the next
20 years he was to wage a lonely battle for the light quantum [2]. In saying that
electromagnetic radiation is by its nature quantized, regardless of the emission
mechanism, Einstein came dangerously close to resurrecting the discredited parti-
cle theory of light. Newton, of course, had introduced such a corpuscular model, but
a major achievement of nineteenth-century physics was the decisive repudiation
of Newton’s idea in favor of the rival wave theory. No one was prepared to see
that accomplishment called into question, even when the experiments came down
on Einstein’s side. In 1916 Millikan completed an exhaustive study of the photo-
electric effect and was obliged to report that ‘Einstein’s photoelectric equation ...
appears in every case to predict exactly the observed results. ... Yet the semicor-
puscular theory by which Einstein arrived at his equation seems at present wholly
untenable’ [3].

* In this book the word light stands for electromagnetic radiation, whether or not it happens to fall
in the visible region.
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Fig. 1.2 Compton scattering. A photon of wavelength A scat-
ters off a particle, initially at rest, of mass m. The scattered
photon carries wavelength A" given by Equation 1.4.

What finally settled the issue was an experiment conducted by A. H. Compton
in 1923. Compton found that the light scattered from a particle at rest is shifted in
wavelength, according to the equation

X =X+ il —cosb) (1.4)

where A is the incident wavelength, A" is the scattered wavelength, 6 is the scattering
angle, and

Ae = h/mec (1.5)

is the so-called Compton wavelength of the target particle (mass m). Now, this is
precisely the formula you get (Problem 3.27) if you treat light as a particle of zero
rest mass with energy given by Planck’s equation, and apply the laws of conser-
vation of (relativistic) energy and momentum - just as you would for an ordinary
elastic collision (Figure 1.2). That clinched it; here was direct and incontrovertible
experimental evidence that light behaves as a particle, on the subatomic scale. We
call this particle the photon (a name suggested by the chemist Gilbert Lewis, in
1926); the symbol for a photon is y (from gamma ray). How the particle nature of
light on this level is to be reconciled with its well-established wave behavior on the
macroscopic scale (exhibited in the phenomena of interference and diffraction) is
a story I'll leave for books on quantum mechanics.

Although the photon initially forced itself on an unreceptive community of physi-
cists, it eventually found a natural place in quantum field theory, and was to offer a
whole new perspective on electromagnetic interactions. In classical electrodynam-
ics, we attribute the electrical repulsion of two electrons, say, to the electric field
surrounding them; each electron contributes to the field, and each one responds to
the field. But in quantum field theory, the electric field is quantized (in the form of
photons), and we may picture the interaction as consisting of a stream of photons
passing back and forth between the two charges, each electron continually emitting
photons and continually absorbing them. And the same goes for any noncontact
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force: Where classically we interpret ‘action at a distance’ as ‘mediated’ by a field,
we now say that it is mediated by an exchange of particles (the quanta of the field). In
the case of electrodynamics, the mediator is the photon; for gravity, it is called the
graviton (though a fully successful quantum theory of gravity has yet to be developed
and it may well be centuries before anyone detects a graviton experimentally).

You will see later on how these ideas are implemented in practice, but for now
I want to dispel one common misapprehension. When I say that every force is
mediated by the exchange of particles, I am not speaking of a merely kinematic
phenomenon. Two ice skaters throwing snowballs back and forth will of course
move apart with the succession of recoils; they ‘repel one another by exchange of
snowballs’, if you like. But that’s not what is involved here. For one thing, this
mechanism would have a hard time accounting for an attractive force. You might
think of the mediating particles, rather, as ‘messengers’, and the message can just
as well be ‘come a little closer’ as ‘go away’.

I said earlier that in the ‘classical’ picture ordinary matter is made of atoms,
in which electrons are held in orbit around a nucleus of protons and neutrons
by the electrical attraction of opposite charges. We can now give this model a
more sophisticated formulation by attributing the binding force to the exchange
of photons between the electrons and the protons in the nucleus. However, for
the purposes of atomic physics this is overkill, for in this context quantization of the
electromagnetic field produces only minute effects (notably the Lamb shift and the
anomalous magnetic moment of the electron). To excellent approximation we can
pretend that the forces are given by Coulomb’s law (together with various magnetic
dipole couplings). The point is that in a bound state enormous numbers of photons
are continually streaming back and forth, so that the ‘lumpiness’ of the field is
effectively smoothed out, and classical electrodynamics is a suitable approximation
to the truth. But in most elementary particle processes, such as the photoelectric
effect or Compton scattering, individual photons are involved, and quantization can
no longer be ignored.

1.3
Mesons (1934-1947)

Now there is one conspicuous problem to which the ‘classical’ model does not
address itself at all: what holds the nucleus together? After all, the positively charged
protons should repel one another violently, packed together as they are in such close
proximity. Evidently there must be some other force, more powerful than the force
of electrical repulsion, that binds the protons (and neutrons) together; physicists of
that less imaginative age called it, simply, the strong force. But if there exists such
a potent force in nature, why don’t we notice it in everyday life? The fact is that
virtually every force we experience directly, from the contraction of a muscle to the
explosion of dynamite, is electromagnetic in origin; the only exception, outside a
nuclear reactor or an atomic bomb, is gravity. The answer must be that, powerful
though it is, the strong force is of very short range. (The range of a force is like the



1.3 Mesons (1934—-1947) |19

arm’s reach of a boxer — beyond that distance its influence falls off rapidly to zero.
Gravitational and electromagnetic forces have infinite range, but the range of the
strong force is about the size of the nucleus itself.)*

The first significant theory of the strong force was proposed by Yukawa in 1934
[4]. Yukawa assumed that the proton and neutron are attracted to one another by
some sort of field, just as the electron is attracted to the nucleus by an electric
field and the moon to the earth by a gravitational field. This field should properly
be quantized, and Yukawa asked the question: what must be the properties of its
quantum — the particle (analogous to the photon) whose exchange would account
for the known features of the strong force? For example, the short range of the force
indicated that the mediator would be rather heavy; Yukawa calculated that its mass
should be nearly 300 times that of the electron, or about a sixth the mass of a proton
(see Problem 1.2). Because it fell between the electron and the proton, Yukawa’s
particle came to be known as the meson (meaning ‘middle-weight’). In the same
spirit, the electron is called a lepton (‘light-weight’), whereas the proton and neutron
are baryons (‘heavy-weight’). Now, Yukawa knew that no such particle had ever
been observed in the laboratory, and he therefore assumed his theory was wrong.
But at that time a number of systematic studies of cosmic rays were in progress,
and by 1937 two separate groups (Anderson and Neddermeyer on the West Coast,
and Street and Stevenson on the East) had identified particles matching Yukawa’s
description.’ Indeed, the cosmic rays with which you are being bombarded every
tew seconds as you read this consist primarily of just such middle-weight particles.

For a while everything seemed to be in order. But as more detailed studies
of the cosmic ray particles were undertaken, disturbing discrepancies began to
appear. They had the wrong lifetime and they seemed to be significantly lighter
than Yukawa had predicted; worse still, different mass measurements were not
consistent with one another. In 1946 (after a period in which physicists were
engaged in a less savory business) decisive experiments were carried out in Rome
demonstrating that the cosmic ray particles interacted very weakly with atomic
nuclei [5]. If this was really Yukawa’s meson, the transmitter of the strong force,
the interaction should have been dramatic. The puzzle was finally resolved in 1947,
when Powell and his coworkers at Bristol [6] discovered that there are actually
two middle-weight particles in cosmic rays, which they called 7 (or ‘pion’) and u
(or ‘muon’). (Marshak reached the same conclusion simultaneously, on theoretical
grounds [7].) The true Yukawa meson is the 7; it is produced copiously in the upper
atmosphere, but ordinarily disintegrates long before reaching the ground (see
Problem 3.4). Powell’s group exposed their photographic emulsions on mountain
tops (see Figure 1.3). One of the decay products is the lighter (and longer lived) p,
and it is primarily muons that one observes at sea level. In the search for Yukawa’s
meson, then, the muon was simply an impostor, having nothing whatever to do

* This is a bit of an oversimplification. Typically, the forces go like e~07%) /72, where a is the
‘range’. For Coulomb’s law and Newton’s law of universal gravitation, a = co; for the strong
force a is about 10713 cm (1 fm).

T Actually, it was Robert Oppenheimer who drew the connection between these cosmic ray parti-
cles and Yukawa’'s meson.



20

1 Historical Introduction to the Elementary Particles

Fig. 1.3 One of Powell’s earliest pictures track). (Source: Powell, C. F., Fowler, P. H.
showing the track of a pion in a photo- and Perkins, D. H. (1959) The Study of Ele-
graphic emulsion exposed to cosmic rays at  mentary Particles by the Photographic Method
high altitude. The pion (entering from the Pergamon, New York. First published in
left) decays into a muon and a neutrino (the (1947) Nature 159, 694.)

latter is electrically neutral, and leaves no

with the strong interactions. In fact, it behaves in every way like a heavier version
of the electron and properly belongs in the lepton family (though some people to
this day call it the ‘mu-meson’ by force of habit).

1.4
Antiparticles (1930-1956)

Nonrelativistic quantum mechanics was completed in the astonishingly brief pe-
riod 1923-1926, but the relativistic version proved to be a much thornier problem.
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The first major achievement was Dirac’s discovery, in 1927, of the equation that
bears his name. The Dirac equation was supposed to describe free electrons with
energy given by the relativistic formula E? — p%c? = m2c*. But it had a very trou-
bling feature: for every positive-energy solution (E = +,/p%c? + m?c*) it admitted
a corresponding solution with negative energy (E = —./p?c? + m?c*). This meant
that, given the natural tendency of every system to evolve in the direction of lower
energy, the electron should ‘runaway’ to increasingly negative states, radiating
off an infinite amount of energy in the process. To rescue his equation, Dirac
proposed a resolution that made up in brilliance for what it lacked in plausibility:
he postulated that the negative-energy states are all filled by an infinite ‘sea’ of
electrons. Because this sea is always there, and perfectly uniform, it exerts no net
force on anything, and we are not normally aware of it. Dirac then invoked the Pauli
exclusion principle (which says that no two electrons can occupy the same state), to
‘explain’ why the electrons we do observe are confined to the positive-energy states.
But if this is true, then what happens when we impart to one of the electrons in
the ‘sea’” an energy sufficient to knock it into a positive-energy state? The absence
of the ‘expected’ electron in the sea would be interpreted as a net positive charge
in that location, and the absence of its expected negative energy would be seen as a
net positive energy. Thus a ‘hole in the sea’ would function as an ordinary particle
with positive energy and positive charge. Dirac at first hoped that these holes might
be protons, but it was soon apparent that they had to carry the same mass as the
electron itself — 2000 times too light to be a proton. No such particle was known
at the time, and Dirac’s theory appeared to be in trouble. What may have seemed a
fatal defect in 1930, however, turned into a spectacular triumph in late 1931, with
Anderson’s discovery of the positron (Figure 1.4), a positively charged twin for the
electron, with precisely the attributes Dirac required [8].

Still, many physicists were uncomfortable with the notion that we are awash in
an infinite sea of invisible electrons, and in the 1940s Stuckelberg and Feynman
provided a much simpler and more compelling interpretation of the negative-energy
states. In the Feynman-Stuckelberg formulation, the negative-energy solutions
are re-expressed as positive-energy states of a different particle (the positron); the
electron and positron appear on an equal footing, and there is no need for Dirac’s
‘electron sea’ or for its mysterious ‘holes’. We’ll see in Chapter 7 how this — the
modern interpretation — works. Meantime, it turned out that the dualism in Dirac’s
equation is a profound and universal feature of quantum field theory: for every
kind of particle there must exist a corresponding antiparticle, with the same mass
but opposite electric charge. The positron, then, is the antielectron. (Actually, it is
in principle completely arbitrary which one you call the ‘particle’ and which the
‘antiparticle’ — I could just as well have said that the electron is the antipositron.
But since there are a lot of electrons around, and not so many positrons, we tend to
think of electrons as ‘matter’ and positrons as ‘antimatter’). The (negatively charged)
antiproton was first observed experimentally at the Berkeley Bevatron in 1955, and
the (neutral) antineutron was discovered at the same facility the following year [9].
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Fig. 1.4 The positron. In 1932, Anderson particle passing through the plate slows
took this photograph of the track left in down, and subsequently moves in a tighter
a cloud chamber by a cosmic ray particle. circle. By inspection of the curves, it is clear

The chamber was placed in a magnetic field that this particle traveled upward, and hence
(pointing into the page), which caused the must have been positively charged. From the

particle to travel in a curve. But was it a curvature of the track and from its texture,
negative charge traveling downward or a Anderson was able to show that the mass
positive charge traveling upward? In order of the particle was close to that of the elec-

to distinguish, Anderson had placed a lead  tron. (Photo courtesy California Institute of
plate across the center of the chamber (the  Technology.)
thick horizontal line in the photograph). A

The standard notation for antiparticles is an overbar. For example, p denotes the
proton and p the antiproton; »n the neutron and # the antineutron. However, in
some cases it is customary simply to specify the charge. Thus most people write ™
for the positron (notg) and u* for the antimuon (not ix).* Some neutral particles are
their own antiparticles. For example, the photon: ¥ = y. In fact, you may have been
wondering how the antineutron differs physically from the neutron, since both are
uncharged. The answer is that neutrons carry other ‘quantum numbers’ besides
charge (in particular, baryon number), which change sign for the antiparticle.
Moreover, although its net charge is zero, the neutron does have a charge structure
(positive at the center and near the surface, negative in between) and a magnetic
dipole moment. These, too, have the opposite sign for 7.

There is a general principle in particle physics that goes under the name of
crossing symmetry. Suppose that a reaction of the form

A+B-— C+D

is known to occur. Any of these particles can be ‘crossed’ over to the other side of
the equation, provided it is turned into its antiparticle, and the resulting interaction

* But you must not mix conventions: e* is ambiguous, like a double negative — the reader doesn’t
know if you mean the positron or the antipositron, (which is to say, the electron).
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will also be allowed. For example,

In addition, the reverse reaction occurs: C+ D — A+ B, but technically this
derives from the principle of detailed balance, rather than from crossing symmetry.
Indeed, as we shall see, the calculations involved in these various reactions are
practically identical. We might almost regard them as different manifestations
of the same fundamental process. However, there is one important caveat in all
this: conservation of energy may veto a reaction that is otherwise permissible.
For example, if A weighs less than the sum of B, C, and D, then the decay
A — B+ C+ D cannot occur; similarly, if A and C are light, whereas B and D
are heavy, then the reaction A + C — B+ D will not take place unless the initial
kinetic energy exceeds a certain ‘threshold’ value. So perhaps I should say that the
crossed (or reversed) reaction is dynamically permissible, but it may or may not be
kinematically allowed. The power and beauty of crossing symmetry can scarcely be
exaggerated. It tells us, for instance, that Compton scattering

y+e —y-+e

is ‘really’ the same process as pair annihilation

6_+6+—>y+y

although in the laboratory they are completely different phenomena.

The union of special relativity and quantum mechanics, then, leads to a pleasing
matter/antimatter symmetry. But this raises a disturbing question: how come our
world is populated with protons, neutrons, and electrons, instead of antiprotons,
antineutrons, and positrons? Matter and antimatter cannot coexist for long — if a
particle meets its antiparticle, they annihilate. So maybe it’s just a historical accident
that in our corner of the universe there happened to be more matter than antimatter,
and pair annihilation has vacuumed up all but a leftover residue of matter. If this
is so, then presumably there are other regions of space in which antimatter
predominates. Unfortunately, the astronomical evidence is pretty compelling that
all of the observable universe is made of ordinary matter. In Chapter 12 we will
explore some contemporary ideas about the ‘matter—antimatter asymmetry’.

1.5
Neutrinos (1930-1962)

For the third strand in the story we return again to the year 1930 [10]. A problem
had arisen in the study of nuclear beta decay. In beta decay, a radioactive nucleus A
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is transformed into a slightly lighter nucleus B, with the emission of an electron:
A—> B+e (1.6)

Conservation of charge requires that B carry one more unit of positive charge than
A. (We now realize that the underlying process here is the conversion of a neutron,
in A, into a proton, in B; but remember that in 1930 the neutron had not yet
been discovered.) Thus the ‘daughter’ nucleus (B) lies one position farther along
on the periodic table. There are many examples of beta decay: potassium goes to
calcium ({5K —4%9 Ca), copper goes to zinc (33Cu —$§ Zn), tritium goes to helium
(¢H —3 He), and so on.*

Now, it is a characteristic of two-body decays (A — B+ C) that the outgoing
energies are kinematically determined, in the center-of-mass frame. Specifically,
if the ‘parent’ nucleus (A) is at rest, so that B and e come out back-to-back with
equal and opposite momenta, then conservation of energy dictates that the electron
energy is (Problem 3.19)

E= w 2 (1.7)
ZmA

The point to notice is that E is fixed once the three masses are specified. But when
the experiments are done, it is found that the emitted electrons vary considerably in
energy; Equation 1.7 only determines the maximum electron energy for a particular
beta decay process (see Figure 1.5).

This was a most disturbing result. Niels Bohr (not for the first time) was ready to
abandon the law of conservation of energy.” Fortunately, Pauli took a more sober
view, suggesting that another particle was emitted along with the electron, a silent
accomplice that carries off the ‘missing’ energy. It had to be electrically neutral, to
conserve charge (and also, of course, to explain why it left no track); Pauli proposed
to call it the neutron. The whole idea was greeted with some skepticism, and in
1932 Chadwick preempted the name. But in the following year Fermi presented
a theory of beta decay that incorporated Pauli’s particle and proved so brilliantly
successful that Pauli’s suggestion had to be taken seriously. From the fact that the
observed electron energies range up to the value given in Equation 1.7 it follows
that the new particle must be extremely light; Fermi called it the neutrino (‘little
neutral one’). For reasons you'll see in a moment, we now call it the antineutrino.

* The upper number is the atomic weight (the electron theory (telling him, incorrectly, that
number of neutrons plus protons) and the Klein and Gordon had already succeeded),
lower number is the atomic number (the num-  opposed Pauli’s introduction of the neutrino,
ber of protons). ridiculed Yukawa’s theory of the meson, and

T It is interesting to note that Bohr was an disparaged Feynman’s approach to quantum
outspoken critic of Einstein’s light quan- electrodynamics. Great scientists do not al-
tum (prior to 1924), that he mercilessly ways have good judgment — especially when
denounced Schrédinger’s equation, dis- it concerns other people’s work — but Bohr

couraged Dirac’s work on the relativistic must hold the all-time record.
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Fig. 1.5 The beta decay spectrum of tritium GH — 3He).
(Source: Lewis, G. M. (1970) Neutrinos, Wykeham, London,
p. 30.)

In modern terminology, then, the fundamental beta decay process is
n—>pt e +7 (1.8)

(neutron goes to proton plus electron plus antineutrino).

Now, you may have noticed something peculiar about Powell’s picture of the
disintegrating pion (Figure 1.3): the muon emerges at about 90° with respect to
the original pion direction. (That’s not the result of a collision, by the way; collisions
with atoms in the emulsion account for the dither in the tracks, but they cannot
produce an abrupt left turn.) What this kink indicates is that some other particle
was produced in the decay of the pion, a particle that left no footprints in the
emulsion, and hence must have been electrically neutral. It was natural (or at any
rate economical) to suppose that this was again Pauli’s neutrino:

T pn+v (1.9)

A few months after their first paper, Powell’s group published an even more striking
picture, in which the subsequent decay of the muon is also visible (Figure 1.6). By
then muon decays had been studied for many years, and it was well established
that the charged secondary is an electron. From the figure there is clearly a neutral
product as well, and you might guess that it is another neutrino. However, this
time it is actually two neutrinos:

w—>e+2v (1.10)
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Fig. 1.6 Here, a pion decays into a muon (plus a neutrino);
the muon subsequently decays into an electron (and two
neutrinos). (Source: Powell, C. F., Fowler, P. H. and Perkins,
D. H. (1959) The Study of Elementary Particles by the Pho-
tographic Method Pergamon, New York. First published in
(1949) Nature 163, 82.)

How do we know there are two of them? Same way as before: we repeat the
experiment over and over, each time measuring the energy of the electron. If it
always comes out the same, we know there are just two particles in the final state.
But if it varies, then there must be (at least) three.* By 1949 it was clear that the

* Here, and in the original beta decay prob- the early days, and for most people energy
lem, conservation of angular momentum conservation was the compelling argument.
also requires a third outgoing particle, quite In the interest of simplicity, I will keep
independently of energy conservation. But angular momentum out of the story until

the spin assignments were not so clear in Chapter 4.
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electron energy in muon decay is not fixed, and the emission of two neutrinos was
the accepted explanation. (By contrast, the muon energy in pion decay is perfectly
constant, within experimental uncertainties, confirming that this is a genuine
two-body decay.)

By 1950, then, there was compelling theoretical evidence for the existence
of neutrinos, but there was still no direct experimental verification. A skeptic
might have argued that the neutrino was nothing but a bookkeeping device — a
purely hypothetical particle whose only function was to rescue the conservation
laws. It left no tracks, and it didn’t decay; in fact, no one had ever seen a
neutrino do anything. The reason for this is that neutrinos interact extraordinarily
weakly with matter; a neutrino of moderate energy could easily penetrate a
thousand light years(!) of lead.* To have a chance of detecting one you need
an extremely intense source. The decisive experiments were conducted at the
Savannah River nuclear reactor in South Carolina, in the mid-1950s. Here Cowan
and Reines set up a large tank of water and watched for the ‘inverse’ beta decay
reaction

V+pt > ntet (1.11)

At their detector the antineutrino flux was calculated to be 5 x 10! particles per
square centimeter per second, but even at this fantastic intensity they could only
hope for two or three events every hour. On the other hand, they developed an
ingenious method for identifying the outgoing positron. Their results provided
unambiguous confirmation of the neutrino’s existence [11].

As I mentioned earlier, the particle produced in ordinary beta decay is actually
an antineutrino, not a neutrino. Of course, since they're electrically neutral,
you might ask — and many people did — whether there is any difference between
a neutrino and an antineutrino. The neutral pion, as we shall see, is its own
antiparticle; so too is the photon. On the other hand, the antineutron is definitely
not the same as a neutron. So we're left in a bit of a quandary: is the neutrino
the same as the antineutrino, and if not, what property distinguishes them?
In the late 1950s, Davis and Harmer put this question to an experimental test
[12]. From the positive results of Cowan and Reines, we know that the crossed
reaction

v+n— pt e (1.12)

must also occur, and at about the same rate. Davis looked for the analogous reaction
using antineutrinos:

V4n—pt4e (1.13)

* That's a comforting realization when you learn that hundreds of billions of neutrinos per sec-
ond pass through every square inch of your body, night and day, coming from the sun (they hit
you from below, at night, having passed right through the earth).
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He found that this reaction does not occur, and concluded that the neutrino and
antineutrino are distinct particles.*

Davis’s result was not unexpected. In fact, back in 1953 Konopinski and
Mahmoud [13] had introduced a beautifully simple rule for determining which
reactions — such as Equation 1.12 — will work, and which - like Equation 1.13 -
will not. In effect,’ they assigned a lepton number L = +1 to the electron, the muon,
and the neutrino, and L = —1 to the positron, the positive muon, and the antineu-
trino (all other particles are given a lepton number of zero). They then proposed
the law of conservation of lepton number (analogous to the law of conservation of
charge): in any physical process, the sum of the lepton numbers before must equal
the sum of the lepton numbers after. Thus the Cowan—Reines reaction (1.11) is
allowed (L = —1 before and after), but the Davis reaction (1.13) is forbidden (on
the left L = —1, on the right L = +1). It was in anticipation of this rule that I called
the beta decay particle (Equation 1.8) an antineutrino; likewise, the charged pion
decays (Equation 1.9) should really be written

T > U 4V

at = ut v (1.14)
and the muon decays (Equation 1.10) are actually

w —e +v4v

ut—et+v+v (1.15)

You might be wondering what property distinguishes the neutrino from the
antineutrino. The cleanest answer is: lepton number — it’s +1 for the neutrino and
—1 for the antineutrino. These numbers are experimentally determinable, just as
electric charge is, by watching how the particle in question interacts with others. (As
we shall see, they also differ in their helicity: the neutrino is ‘left-handed’ whereas
the antineutrino is ‘right-handed’. But this is a technical matter best saved for later.)

There soon followed another curious twist to the neutrino story. Experimentally,
the decay of a muon into an electron plus a photon is never observed:

woA e +y (1.16)

and yet this process is consistent with conservation of charge and conservation of
the lepton number. Now, a famous rule of thumb in particle physics (generally

* Actually, this conclusion is not as fireproof of this book, I shall assume we are dealing
as it once seemed. It could be the spin state with Dirac neutrinos, but we’ll return to the
of the 7, rather than the fact that it is distinct ~ question in Chapter 11.
from v, that forbids reaction 1.13. Today, in " Konopinski and Mahmoud [13] did not use

—t

fact, there are two viable models: Dirac neu- this terminology, and they got the muon as-
trinos, which are distinct from their antiparti- signments wrong. But never mind, the essen-
cles, and Majorana neutrinos, for which v and ~ tial idea was there.

v are two states of the same particle. For most
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attributed to Richard Feynman) declares that whatever is not expressly forbidden is
mandatory. The absence of u — e+ y suggests a law of conservation of ‘mu-ness’,
but then how are we to explain the observed decays u — e+ v + U? The answer
occurred to a number of people in the late 1950s and early 1960s [14]: suppose there
are two different kinds of neutrino — one associated with the electron (v.) and one
with the muon (v,). If we assign a muon number L, = +1 to u~ and v,, and
L, = —1tou* and v,, and at the same time an electron number L, = +1to e~ and
Ve, and L, = —1 to ¢ and v,, and refine the conservation of lepton number into
two separate laws — conservation of electron number and conservation of muon
number — we can then account for all allowed and forbidden processes. Neutron
beta decay becomes

n—pt+e +7, (1.17)
the pion decays are

T = WU+,

nt— ut+u, (1.18)
and the muon decays take the form

n —>e +v.tyy,

ut — et v+, (1.19)

I said earlier that when pion decay was first analyzed it was ‘natural’ and ‘economi-
cal’ to assume that the outgoing neutral particle was the same as in beta decay, and
that’s quite true: it was natural and it was economical, but it was wrong.

The first experimental test of the two-neutrino hypothesis (and the separate con-
servation of electron and muon number) was conducted at Brookhaven in 1962 [15].
Using about 10 antineutrinos from 7~ decay, Lederman, Schwartz, Steinberger,
and their collaborators identified 29 instances of the expected reaction

Vy+pt > ut+n (1.20)
and no cases of the forbidden process
v, +pt et +n (1.21)

With only one kind of neutrino, the second reaction would be just as common
as the first. (Incidentally, this experiment presented truly monumental shielding
problems. Steel from a dismantled battleship was stacked up 44-feet thick, to make
sure that nothing except neutrinos got through to the target.)

I mentioned earlier that neutrinos are extremely light — in fact, until fairly
recently it was widely assumed (for no particularly good reason) that they are
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Table 1.1 The lepton family, 1962-1976

Lepton  Electron Muon
number number number

Leptons

e 1 1 0
Ve 1 1 0
w- 1 0 1
vy 1 0 1
Antileptons

et -1 -1 0
Ve -1 -1 0
ut -1 0 -1
v, ~1 0 ~1

massless. This simplifies a lot of calculations, but we now know that it is not strictly
true: neutrinos have mass, though we do not yet know what those masses are,
except to reiterate that they are very small, even when compared to the electron’s.
What is more, over long distances neutrinos of one type can convert into neutrinos
of another type (for example, electron neutrinos into muon neutrinos) — and back
again, in a phenomenon known as neutrino oscillation. But this story belongs much
later, and deserves a detailed treatment, so I'll save it for Chapter 11.

By 1962, then, the lepton family had grown to eight: the electron, the muon, their
respective neutrinos, and the corresponding antiparticles (Table 1.1). The leptons
are characterized by the fact that they do not participate in strong interactions. For
the next 14 years things were pretty quiet, as far as the leptons go, so this is a good
place to pause and catch up on the strongly interacting particles — the mesons and
baryons, known collectively as the hadrons.

1.6
Strange Particles (1947-1960)

For a brief period in 1947, it was possible to believe that the major problems of
elementary particle physics were solved. After a lengthy detour in pursuit of the
muon, Yukawa’s meson (the 7) had finally been apprehended. Dirac’s positron
had been found, and Pauli’s neutrino, although still at large (and, as we have
seen, still capable of making mischief), was widely accepted. The role of the muon
was something of a puzzle (‘Who ordered that?” Rabi asked) - it seemed quite
unnecessary in the overall scheme of things. On the whole, however, it looked in
1947 as though the job of elementary particle physics was essentially done.

But this comfortable state did not last long [16]. In December of that year,
Rochester and Butler [17] published the cloud chamber photograph shown in
Figure 1.8 Cosmic ray particles enter from the upper left and strike a lead plate,
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Incident cosmic ray
\37 shower

“Unusual
fork”

Debris

Fig. 1.7 The first strange particle. Cosmic rays strike a lead
plate, producing a K°, which subsequently decays into a pair
of charged pions. (Photo courtesy of Prof. Rochester, G. D.
(© 1947). Nature, 160, 855. Copyright Macmillan Journals
Limited.)

producing a neutral particle, whose presence is revealed when it decays into two
charged secondaries, forming the upside-down ‘V’ in the lower right. Detailed analy-
sis indicated that these charged particles are in facta 7™ and a7 . Here, then, was a
new neutral particle with at least twice the mass of the pion; we call it the K° (‘kaon’):

K->t 4n~ (1.22)

In 1949 Brown and her collaborators published the photograph reproduced in
Figure 1.8, showing the decay of a charged kaon:

K-> nt4+nt 47~ (1.23)

(The K° was first known as the V° and later as the 8°; the K* was originally called
the t*. Their identification as neutral and charged versions of the same basic
particle was not completely settled until 1956 — but that’s another story, to which
we shall return in Chapter 4.) The kaons behave in some respects like heavy pions,
so the meson family was extended to include them. In due course, many more
mesons were discovered — the 7, the ¢, the w, the p’s, and so on.

Meanwhile, in 1950 another neutral ‘V’ particle was found by Anderson’s group
at Cal Tech. The photographs were similar to Rochester’s (Figure 1.7), but this time
the products were a p™ and a 7. Evidently, this particle is substantially heavier
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Fig. 1.8 K*, entering from above, decays at AAKt — n*

+ 7t + ™. (The 7~ subsequently causes a nuclear dis-
integration at B.) (Source: Powell, C. F. Fowler, P. H. and
Perkins, D. H. (1959) The Study of Elementary Particles by the
Photographic Method, Pergamon, New York. First published
in Nature, 163, 82 (1949).)

than the proton; we call it the A:
A—>pt4+a” (1.24)

The lambda belongs with the proton and the neutron in the baryon family. To
appreciate this, we must go back for a moment to 1938. The question had arisen,
‘Why is the proton stable?” Why, for example, doesn’t it decay into a positron and a
photon:

p+ et 4y (1.25)
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Needless to say, it would be unpleasant for us if this reaction were common (all
atoms would disintegrate), and yet it does not violate any law known in 1938. (It does
violate conservation of lepton number, but that law was not recognized, remember,
until 1953.) Stiickelberg [18] proposed to account for the stability of the proton by
asserting a law of conservation of baryon number: assign to all baryons (which in
1938 meant the proton and the neutron) a ‘baryon number’ A = +1, and to the
antibaryons (pand n) A= —1; then the total baryon number is conserved in any phys-
ical process. Thus, neutron beta decay (n — p™ + ¢~ + 7,) is allowed (A = 1 before
and after), and so too is the reaction in which the antiproton was first observed:

ptp—p+tp+p+p (1.26)

(A = 2 on both sides). But the proton, as the lightest baryon, has nowhere to go;
conservation of baryon number guarantees its absolute stability.* If we are to retain
the conservation of baryon number in the light of reaction (1.24), the lambda must
be assigned to the baryon family. Over the next few years, many more heavy baryons
were discovered — the ¥’s, the &’s, the A’s, and so on. By the way, unlike leptons
and baryons, there is no conservation of mesons. In pion decay (7~ — u~ +7V,)a
meson disappears, and in lambda decay (A — p* + 77) a meson is created.

It is some measure of the surprise with which these new heavy baryons and
mesons were greeted that they came to be known collectively as ‘strange’ particles.
In 1952, the first of the modern particle accelerators (the Brookhaven Cosmotron)
began operating, and soon it was possible to produce strange particles in the
laboratory (before this the only source had been cosmic rays) ... and with this
the rate of proliferation increased. Willis Lamb began his Nobel Prize acceptance
speech in 1955 with the following words [19]:

When the Nobel Prizes were first awarded in 1901, physicists
knew something of just two objects which are now called “ele-
mentary particles”: the electron and the proton. A deluge of oth-
er “elementary” particles appeared after 1930; neutron, neu-
trino, | meson (sic), T meson, heavier mesons, and various hy-
perons. I have heard it said that “the finder of a new elemen-
tary particle used to be rewarded by a Nobel Prize, but such a
discovery now ought to be punished by a $10,000 fine”.

Not only were the new particles unexpected; there is a more technical sense
in which they seemed ‘strange’: they are produced copiously (on a time scale of
about 1072® seconds), but they decay relatively slowly (typically about 10710 sec-
onds). This suggested to Pais and others [20] that the mechanism involved in

* ‘Grand unified theories’ (GUTs) allow for a observed, and its lifetime is known to exceed
minute violation of baryon number conser- 10% years—which is pretty stable, when you
vation, and in these theories the proton is consider that the age of the universe is about
not absolutely stable (see Sections 2.6 and 10" years.

12.2). As of 2007, no proton decay has been
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their production is entirely different from that which governs their disintegration.
In modern language, the strange particles are produced by the strong force (the
same one that holds the nucleus together), but they decay by the weak force (the
one that accounts for beta decay and all other neutrino processes). The details of
Pais’s scheme required that the strange particles be produced in pairs (so-called
associated production). The experimental evidence for this was far from clear at
that time, but in 1953 Gell-Mann [21] and Nishijima [22] found a beautifully
simple and, as it developed, stunningly successful way to implement and improve
Pais’s idea. They assigned to each particle a new property (Gell-Mann called it
‘strangeness’) that (like charge, lepton number, and baryon number) is conserved
in any strong interaction, but (unlike those others) is not conserved in a weak
interaction. In a pion—proton collision, for example, we might produce two strange
particles:

n”+pt - KT+ X7
— K0+ x°
— KO+ A (1.27)
Here, the K’s carry strangeness S = +1, the £’s and the A have S = —1, and
the ‘ordinary’ particles — 7, p, and n — have S = 0. But we never produce just one
strange particle:
T +pt At + 2T
A a4+ A
# K0 +n (1.28)

On the other hand, when these particles decay, strangeness is not conserved:

A ——>p++7r_
2t = pt+af

—>n+xt (1.29)

these are weak processes, which do not respect conservation of strangeness.

There is some arbitrariness in the assignment of strangeness numbers, obviously.
We could just as well have given S = +1 to the £’s and the A, and S = —1 to K*
and K% in fact, in retrospect it would have been a little nicer that way. (In exactly
the same sense, Benjamin Franklin’s original convention for plus and minus
charge was perfectly arbitrary at the time, and unfortunate in retrospect, since
it made the current-carrying particle — the electron — negative.) The significant
point is that there exists a consistent assignment of strangeness numbers to
all the hadrons (baryons and mesons) that accounts for the observed strong
processes and ‘explains’ why the others do not occur. (The leptons and the
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photon don’t experience strong forces at all, so strangeness does not apply to
them.)

The garden that seemed so tidy in 1947 had grown into a jungle by 1960, and
hadron physics could only be described as chaos. The plethora of strongly interacting
particles was divided into two great families — the baryons and the mesons — and
the members of each family were distinguished by charge, strangeness, and mass;
but beyond that there was no rhyme or reason to it all. This predicament reminded
many physicists of the situation in chemistry a century earlier, in the days before
the periodic table, when scores of elements had been identified, but there was no
underlying order or system. In 1960, the elementary particles awaited their own
‘periodic table’.

1.7
The Eightfold Way (1961-1964)

The Mendeleev of elementary particle physics was Murray Gell-Mann, who intro-
duced the so-called Eightfold Way in 1961 [23]. (Essentially the same scheme was
proposed independently by Ne’eman.) The Eightfold Way arranged the baryons and
mesons into weird geometrical patterns, according to their charge and strangeness.
The eight lightest baryons fit into a hexagonal array, with two particles at the center:*

The baryon octet

This group is known as the baryon octet. Notice that particles of like charge lie along
the downward-sloping diagonal lines: Q = +1 (in units of the proton charge) for
the proton and the ©+; Q = 0 for the neutron, the A, the £, and the 8% Q = —1
for the ¥~ and the E~. Horizontal lines associate particles of like strangeness: S =0
for the proton and neutron, S = —1 for the middle line, and S = —2 for the two E’s.

The eight lightest mesons fill a similar hexagonal pattern, forming the (pseudo-
scalar) meson octet:

* The relative placement of the particles in the center is arbitrary, but in this book I shall always
put the neutral member of the triplet (here the £%) above the singlet (here the A).
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K° K*
S=1 - ——=~———-
S=0 ————»7" The meson octet
S=-t-—-—————=

Once again, diagonal lines determine charge and horizontal lines determine
strangeness, but this time the top line has S = 1, the middle line S = 0, and the
bottom line S = —1. (This discrepancy is again a historical accident; Gell-Mann
could just as well have assigned S = 1 to the proton and neutron, S = 0 to the
¥’s and the A, and S = —1 to the E’s. In 1953 he had no reason to prefer that
choice, and it seemed most natural to give the familiar particles — proton, neutron,
and pion — a strangeness of zero. After 1961, a new term — hypercharge — was
introduced, which was equal to S for the mesons and to S + 1 for the baryons. But
later developments revealed that strangeness was the better quantity after all, and
the word ‘hypercharge’ has now been taken over for a quite different purpose.)

Hexagons were not the only figures allowed by the Eightfold Way; there was
also, for example, a triangular array, incorporating 10 heavier baryons — the baryon
decuplet:*

a=-1

* In this book, for simplicity, I adhere to the old-fashioned notation in which the decuplet parti-
cles are designated £* and E*; modern usage drops the star and puts the mass in parentheses:
$(1385) and E(1530).
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Now, as Gell-Mann was fitting these particles into the decuplet, an absolutely
lovely thing happened. Nine of the particles were known experimentally, but
at that time the tenth particle (the one at the very bottom, with a charge of
—1 and strangeness —3) was missing; no particle with these properties had
ever been detected in the laboratory [24]. Gell-Mann boldly predicted that such
a particle would be found, and told the experimentalists exactly how to pro-
duce it. Moreover, he calculated its mass (as you can for yourself, in Problem
1.6) and its lifetime (Problem 1.8) — and sure enough, in 1964 the famous
omega-minus particle was discovered [25], precisely as Gell-Mann had predicted
(see Figure 1.9).*

Since the discovery of the omega-minus (27), no one has seriously doubted
that the Eightfold Way is correct. Over the next 10 years, every new hadron
found a place in one of the Eightfold Way supermultiplets. Some of these are
shown in Figure 1.107. In addition to the baryon octet, decuplet, and so on,
there exist of course an antibaryon octet, decuplet, etc, with opposite charge
and opposite strangeness. However, in the case of the mesons, the antiparticles
lie in the same supermultiplet as the corresponding particles, in the diametri-
cally opposite positions. Thus the antiparticle of the pi-plus is the pi-minus, the
anti-K-minus is the K-plus, and so on (the pi-zero and the eta are their own
antiparticles).

Classification is the first stage in the development of any science. The Eightfold
Way did more than merely classify the hadrons, but its real importance lies in the
organizational structure it provided. I think it’s fair to say that the Eightfold Way
initiated the modern era in particle physics.

1.8
The Quark Model (1964)

But the very success of the Eightfold Way begs the question: why do the hadrons
fit into these bizarre patterns? The periodic table had to wait many years for
quantum mechanics and the Pauli exclusion principle to provide its explanation.
An understanding of the Eightfold Way, however, came already in 1964, when
Gell-Mann and Zweig independently proposed that all hadrons are in fact composed
of even more elementary constituents, which Gell-Mann called quarks [26]. The

* A similar thing happened in the case of the periodic table. There were three famous ‘holes’
(missing elements) on Mendeleev's chart, and he predicted that new elements would be discov-
ered to fill in the gaps. Like Gell-Mann, he confidently described their properties, and within 20
years all three — gallium, scandium, and germanium — were found.

T To be sure, there were occasional false alarms — particles that did not seem to fit Gell-Mann’s
scheme — but they always turned out to be experimental errors. Elementary particles have a way
of appearing and then disappearing. Of the 26 mesons listed on a standard table in 1963, 19
were later found to be spurious!
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Fig. 1.9 The discovery of the Q7. The actual bubble

chamber photograph is shown on the left

iagram

a line d

i

of the relevant tracks is on the right. (Photo courtesy

Brookhaven National Laboratory.)
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Fig. 1.10 Some meson nonets, labeled in are three complete octets (with spins 1/2,
spectroscopic notation (see Chapter 5). 3/2, and 5/2) and 10 others partly filled;
There are now at least 15 established nonets there is only one complete decuplet, but 6
(though in some cases not all members more are partly filled, and there are three

have been discovered). For the baryons there known singlets.

quarks come in three types (or ‘flavors’), forming a triangular ‘Eightfold-Way’
pattern:

The quarks

The u (for ‘up’) quark carries a charge of 2 and a strangeness of zero; the d (‘down’)
quark carries a charge of —1 and S = 0; the s (originally ‘sideways’, but now more
commonly ‘strange’) quark carries a charge of —} and S = —1. To each quark (g)
there corresponds an antiquark (), with the opposite charge and strangeness:

The antiquarks
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And there are two composition rules:
1. Every baryon is composed of three quarks (and every
antibaryon is composed of three antiquarks).
2. Every meson is composed of a quark and an antiquark.

With this, it is a matter of elementary arithmetic to construct the baryon decuplet
and the meson octet. All we need to do is list the combinations of three quarks (or
quark—antiquark pairs) and add up their charge and strangeness:

The baryon decuplet

a9  Q S Baryon

nen 2 0 AT
uud 1 0 AT
udd 0 A
ddd -1 0 A~
Uus 1 -1 )
uds 0 -1 »#0
dds -1 -1 »*-
uss 0 -2 50
dss -1 -2 Ok
SSS -1 -3 Q-

Notice that there are 10 combinations of three quarks. Three u’s, for instance,
at Q = % each, yield a total charge of +2 and a strangeness of zero. This is the
ATT particle. Continuing down the table, we find all the members of the decuplet
ending with the 7, which is evidently made of three s quarks.

A similar enumeration of the quark—antiquark combinations yields the meson

table:
The meson nonet

qq9 Q S Meson

un 0 0 T

ud 1 0 at
T | 0 T~
di 0 0 n

us 1 1 K+
das 0 1 K°
su  —1 -1 K~

sd 0 -1 K°
ss 0 0 PP
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But wait! There are nine combinations here, and only eight particles in the meson
octet. The quark model requires that there be a third meson (in addition to the 7°
and the n) with Q = 0 and S = 0. As it turns out, just such a particle had already
been found experimentally — the n'. In the Eightfold Way, the n” had been classified
as a singlet, all by itself. According to the quark model, it properly belongs with the
other eight mesons to form the meson nonet. (Actually, since uz, dd, and ss all have Q
= 0and S =0, it is not possible to say, on the basis of anything we have done so far,
which is the 77, which the , and which the n’. But never mind, the pointis thatthere
are three mesons with Q = S = 0.) By the way, the antimesons automatically fall in
the same supermultiplet as the mesons: ud is the antiparticle of d7, and vice versa.

You may have noticed that I avoided talking about the baryon octet — and it is
far from obvious how we are going to get eight baryons by putting together three
quarks. In truth, the procedure is perfectly straightforward, but it does call for some
facility in handling spins, and I would rather save the details for Chapter 5. For now,
I'll just tantalize you with the mysterious observation that if you take the decuplet
and knock off the three corners (where the quarks are identical — uuu, ddd, and sss)
and double the center (where all three are different — uds), you obtain precisely the
eight states in the baryon octet. So the same set of quarks can account for the octet;
it’s just that some combinations do not appear at all, and one appears twice.

Indeed, all the Eightfold Way supermultiplets emerge naturally in quark model.
Of course, the same combination of quarks can go to make a number of different
particles: the delta-plus and the proton are both composed of two u’s and a d; the
pi-plus and the rho-plus are both ud, and so on. Just as the hydrogen atom (electron
plus proton) has many different energy levels, a given collection of quarks can
bind together in many different ways. But whereas the various energy levels in
the electron/proton system are relatively close together (the spacings are typically
several electron volts, in an atom whose rest energy is nearly 10° eV), so that we
naturally think of them all as ‘hydrogen’, the energy spacings for different states
of a bound quark system are very large, and we normally regard them as distinct
particles. Thus we can, in principle, construct an infinite number of hadrons out of
only three quarks. Notice, however, that some things are absolutely excluded in the
quark model: for example, a baryon with S =1 or Q = —2; no combination of the
three quarks can produce these numbers (though they do occur for antibaryons).
Nor can there be a meson with a charge of 42 (like the A™* baryon) or a strangeness
of =3 (like the Q7). For a long time, there were major experimental searches for
these so-called ‘exotic’ particles; their discovery would be devastating for the quark
model, but none has ever been found (see Problem 1.11).

The quark model does, however, suffer from one profound embarrassment:
in spite of the most diligent search, no one has ever seen an individual quark.
Now, if a proton is really made out of three quarks, you'd think that if you hit
one hard enough, the quarks ought to come popping out. Nor would they be
hard to recognize, carrying as they do the unmistakable fingerprint of fractional
charge — an ordinary Millikan oil drop experiment would clinch the identification.
Moreover, at least one of the quarks should be absolutely stable; what could it decay
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into, since there is no lighter particle with fractional charge? So quarks ought to be
easy to produce, easy to identify, and easy to store, and yet, no one has ever found one.

The failure of experiments to produce isolated quarks occasioned widespread
skepticism about the quark model in the late 1960s and early 1970s. Those who
clung to the model tried to conceal their disappointment by introducing the notion
of quark confinement: perhaps, for reasons not yet understood, quarks are absolutely
confined within baryons and mesons, so that no matter how hard you try, you
cannot get them out. Of course, this doesn’t explain anything, it just gives a
name to our frustration. But it does pose sharply a critical theoretical question
that is still not completely answered: what is the mechanism responsible for quark
confinement? [27]

Even if all quarks are stuck inside hadrons, this does not mean they are
inaccessible to experimental study. One can explore the interior of a proton in
much the same way as Rutherford probed the inside of an atom — by firing things
into it. Such experiments were carried out in the late 1960s using high-energy
electrons at the Stanford Linear Accelerator Center (SLAC). They were repeated in
the early 1970s using neutrino beams at CERN, and later still using protons. The
results of these so-called ‘deep inelastic scattering’ experiments [28] were strikingly
reminiscent of Rutherford’s (Figure 1.11): most of the incident particles pass right
through, whereas a small number bounce back sharply. This means that the charge
of the proton is concentrated in small lumps, just as Rutherford’s results indicated
that the positive charge in an atom is concentrated at the nucleus [29]. However,
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in the case of the proton the evidence suggests three lumps, instead of one. This is
strong support for the quark model, obviously, but still not conclusive.

Finally, there was a theoretical objection to the quark model: it appears to vi-
olate the Pauli exclusion principle. In Pauli’s original formulation, the exclusion
principle states that no two electrons can occupy the same state. However, it was
later realized that the same rule applies to all particles of half-integer spin (the
proof of this is one of the most important achievements of quantum field theory).
In particular, the exclusion principle should apply to quarks, which, as we shall
see, must carry spin 3. Now the A**, for instance, is supposed to consist of three
identical u quarks in the same state; it (and also the A~ and the ©~) appear to be
inconsistent with the Pauli principle. In 1964, O. W. Greenberg proposed a way
out of this dilemma [30]. He suggested that quarks not only come in three flavors
(u, d, and s) but each of these also comes in three colors (‘red’, ‘green’, and ‘blue’,
say). To make a baryon, we simply take one quark of each color; then the three u’s
in AT are no longer identical (one’s red, one’s green, and one’s blue). Since the
exclusion principle only applies to identical particles, the problem evaporates.

The color hypothesis sounds like sleight of hand, and many people initially
considered it the last gasp of the quark model. As it turned out, the introduction of
color was extraordinarily fruitful [31]. I need hardly say that the term ‘color’ here
has absolutely no connection with the ordinary meaning of the word. Redness,
blueness, and greenness are simply labels used to denote three new properties that,
in addition to charge and strangeness, the quarks possess. A red quark carries
one unit of redness, zero blueness, and zero greenness; its antiparticle carries
minus one unit of redness, and so on. We could just as well call these quantities
X-ness, Y-ness, and Z-ness, for instance. However, the color terminology has one
especially nice feature: it suggests a delightfully simple characterization of the
particular quark combinations that are found in nature.

All naturally occurring particles are colorless.

By ‘colorless’ I mean that either the total amount of each color is zero or all
three colors are present in equal amounts. (The latter case mimics the optical
fact that light beams of three primary colors combine to make white.) This clever
rule ‘explains’ (if that’s the word for it) why you can’t make a particle out of two
quarks, or four quarks, and for that matter why individual quarks do not occur in
nature. The only colorless combinations you can make are ¢q (the mesons), gqq
(the baryons), and 44 ¢ (the antibaryons).*

* Of course, you can package together combi- have been statistical artifacts [32], but in at
nations of these — the deuteron, for example, least one meson case (the so-called X(3872)
is a six quark state (three w's and three d’s). discovered at KEK in Japan), the four-quark
In 2003, there was a flurry of excitement interpretation seems to be holding up, though
over the apparent observation of four-quark it is still not clear whether it is best thought
‘mesons’ (actually, gq4g) and pentaquark of as a DD* ‘molecule’ or as a meson in its

‘baryons’ (gqqqq). The latter now appear to own right [33].
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1.9
The November Revolution and Its Aftermath (1974-1983 and 1995)

The decade from 1964 to 1974 was a barren time for elementary particle physics.
The quark model, which had seemed so promising at the beginning, was in
an uncomfortable state of limbo by the end. It had some striking successes: it
neatly explained the Eightfold Way, and correctly predicted the lumpy structure
of the proton. But it had two conspicuous defects: the experimental absence
of free quarks and inconsistency with the Pauli principle. Those who liked the
model papered over these failures with what seemed at the time to be rather
transparent rationalizations: the idea of quark confinement and the color hy-
pothesis. But I think it is safe to say that by 1974 most elementary particle
physicists felt queasy, at best, about the quark model. The lumps inside the pro-
ton were called partons, and it was unfashionable to identify them explicitly with
quarks.

Curiously enough, what rescued the quark model was not the discovery of
free quarks, or an explanation of quark confinement, or confirmation of the
color hypothesis, but something entirely different and (almost) [34] completely
unexpected: the discovery of the psi meson. The ¢ was first observed at Brookhaven
by a group under C. C. Ting, in the summer of 1974. But Ting wanted to check
his results before announcing them publicly, and the discovery remained an
astonishingly well-kept secret until the weekend of November 10-11, when the
new particle was discovered independently by Burton Richter’s group at SLAC.
The two teams then published simultaneously [35], Ting naming the particle J,
and Richter calling it ¥. The J/¢ was an electrically neutral, extremely heavy
meson —~ more than three times the weight of a proton (the original notion that
mesons are ‘middle-weight’ and baryons ‘heavy-weight” had long since gone by the
boards). But what made this particle so unusual was its extraordinarily long lifetime,
for the v lasted fully 1072 seconds before disintegrating. Now, 10~2° seconds may
not impress you as a particularly long time, but you must understand that the
typical lifetimes for hadrons in this mass range are on the order of 10723 seconds.
So the v has a lifetime about a 1000 times longer than any comparable particle. It's
as though someone came upon an isolated village in Peru or the Caucasus where
people live to be 70 000 years old. That wouldn’t just be some actuarial anomaly, it
would be a sign of fundamentally new biology at work. And so it was with the ¥ its
long lifetime, to those who understood, spoke of fundamentally new physics. For
good reason, the events precipitated by the discovery of the ¥ came to be known as
the November Revolution [36].

In the months that followed, the true nature of the ¥ meson was the subject of
lively debate, but the explanation that won was provided by the quark model: the
¥ is a bound state of a new (fourth) quark, the ¢ (for charm) and its antiquark,
¥ = (cc). Actually, the idea of a fourth flavor, and even the whimsical name, had
been introduced many years earlier by Bjorken and Glashow [37]. There was an
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intriguing parallel between the leptons and the quarks:

Leptons : €, ve, |4, vy

Quarks: d,u,s

If all mesons and baryons are made out of quarks, these two families are left as the
truly fundamental particles. But why four leptons and only three quarks? Wouldn’t
it be nicer if there were four of each? Later, Glashow, Iliopoulos, and Maiani [38]
offered more compelling technical reasons for wanting a fourth quark, but the
simple idea of a parallel between quarks and leptons is another of those far-fetched
speculations that turned out to have more substance than their authors could have
imagined.

So when the i was discovered, the quark model was ready and waiting with an
explanation. Moreover, it was an explanation pregnant with implications. For if a
fourth quark exists, there should be all kinds of new baryons and mesons, carrying
various amounts of charm. Some of these are shown in Figure 1.12; you can work
out the possibilities for yourself (Problems 1.14 and 1.15). Notice that the y itself

Fig. 1.12 Supermultiplets constructed using four-quark fla-
vors: baryons (a and b) and mesons (¢ and d). (Source:
Review of Particle Physics.)
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7 ™. The charmed baryon decays (A} — A + 7™") too soon
National Laboratory.)

interpretation of this event is v, +p— AT +pu~ + 7t +
to leave a track, but the subsequent decay of the A is

Fig. 1.13 The charmed baryon. The most probable
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carries no net charm, for if the c is assigned a charm of +1, then ¢ will have a charm
of —1; the charm of the v is, if you will, ‘hidden’. To confirm the charm hypothesis,
it was important to produce a particle with ‘naked’ (or ‘bare’) charm [39]. The first
evidence for charmed baryons (A} = udc and £}* = uuc) appeared already in
1975 (Figure 1.13) [40], followed later by E; = usc and 2, = ssc. (In 2002 there were
hints of the first doubly charmed baryon at Fermilab.) The first charmed mesons
(D° = ¢ and D = cd) were discovered in 1976 [41], followed by the charmed
strange meson (D} = ¢5) in 1977 [42]. With these discoveries, the interpretation of
the v as cc was established beyond reasonable doubt. More important, the quark
model itself was put back on its feet.

However, the story does not end there, for in 1975 a new lepton was discovered
[43], spoiling Glashow’s symmetry. This new particle (the tau) has its own neutrino,
so we are up to six leptons, and only four quarks. But don’t despair, because 2 years
later a new heavy meson (the upsilon) was discovered [44], and quickly recognized
as the carrier of a fifth quark, b (for beauty, or bottom, depending on your taste):
Y = bb. Immediately the search began for hadrons exhibiting ‘naked beauty’, or
‘bare bottom.” (I'm sorry. I didn’t invent this terminology. In a way, its silliness is
a reminder of how wary people were of taking the quark model seriously, in the
early days.) The first bottom baryon, Ag = udb, was observed in the 1980’s, and the
second (E; = uub) in 2006; in 2007 the first baryon with a quark from all three
generations was discovered (&; = dsb). The first bottom mesons (B® = bd and
B~ = bu) were found in 1983 [45]. The B%/B° system has proven to be especially
rich, and so-called ‘B factories’ are now operating at SLAC (‘BaBar’) and KEK
(‘Belle’). The Particle Physics Booklet also lists B = sh and Bf = cb.

At this point, it didn’t take a genius to predict that a sixth quark (¢, for truth,
of course, or top) would soon be found, restoring Glashow’s symmetry with six
quarks and six leptons. But the top quark turned out to be extraordinarily heavy
and frustratingly elusive (at 174 GeV/c?, it is over 40 times the weight of the
bottom quark). Early searches for ‘toponium’ (a t} meson analogous to the ¥ and
T) were unsuccessful, both because the electron—positron colliders did not reach
high enough energy and because, as we now realize, the top quark is simply too
short-lived to form bound states — apparently there are no top baryons and mesons.
The top quark’s existence was not definitively established until 1995, when the
Tevatron finally accumulated enough data to sustain strong indications from the
previous year [46]. (The basic reaction is u 4% (ord 4+ d) — t+ % the top and
anti-top immediately decay, and it is by analyzing the decay products that one is
able to infer their fleeting appearance.) Until the LHC begins operation, Fermilab
will be the only accelerator in the world capable of producing top quarks.

1.10
Intermediate Vector Bosons (1983)

In his original theory of beta decay (1933), Fermi treated the process as a contact
interaction, occurring at a single point, and therefore requiring no mediating



48

1 Historical Introduction to the Elementary Particles

particle. As it happens, the weak force (which is responsible for beta decay) is of
extremely short range, so that Fermi’s model was not far from the truth, and yields
excellent approximate results at low energies. However, it was widely recognized
that this approach was bound to fail at high energies and would eventually have
to be supplanted with a theory in which the interaction is mediated by the
exchange of some particle. The mediator came to be known by the prosaic name
intermediate vector boson. The challenge for theorists was to predict the properties
of the intermediate vector boson, and for experimentalists, to produce one in the
laboratory. You may recall that Yukawa, faced with the analogous problem for the
strong force, was able to estimate the mass of the pion in terms of the range of
the force, which he took to be roughly the same as the size of a nucleus. But we
have no corresponding way to measure the range of the weak force; there are no
‘weak bound states’ whose size would inform us — the weak force is simply too
feeble to bind particles together. For many years, predictions of the intermediate
vector boson mass were little more than educated guesses (the ‘education’ coming
largely from the failure of experiments at progressively higher energies to detect
the particle). By 1962, it was known that the mass had to be at least half the
proton mass; 10 years later the experimental lower limit had grown to 2.5 proton
masses.

But it was not until the emergence of the electroweak theory of Glashow,
Weinberg, and Salam that a really firm prediction of the mass became pos-
sible. In this theory, there are in fact three intermediate vector bosons, two
of them charged (W*) and one neutral (Z). Their masses were calculated to
be [47]

My =82+ 2GeV/c?, Mz =92+2GeV/c> (predicted) (1.30)

In the late 1970s, CERN began construction of a proton—antiproton collider de-
signed specifically to produce these extremely heavy particles (bear in mind that
the mass of the proton is 0.94 GeV/c?, so we're talking about something nearly
100 times as heavy). In January 1983, the discovery of the W was reported by Carlo
Rubbia’s group [48], and 5 months later the same team announced discovery of the
Z [49]. Their measured masses are

My = 80.403 + 0.029 GeV/c?, Mz = 91.188 £ 0.002GeV/c> (measured)
(1.31)

These experiments represent an extraordinary technical triumph [50], and they
were of fundamental importance in confirming a crucial aspect of the Standard
Model, to which the physics community was by that time heavily committed (and
tor which a Nobel Prize had already been awarded). Unlike the strange particles
or the ¢, however, (but like the top quark a decade later) the intermediate vector
bosons were long awaited and universally expected, so the general reaction was a
sigh of relief, not shock or surprise.
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1.11
The Standard Model (1978-?)

In the current view, then, all matter is made out of three kinds of elementary
particles: leptons, quarks, and mediators. There are six leptons, classified according
to their charge (Q), electron number (L), muon number (L,), and tau number
(L;). They fall naturally into three generations:

Lepton classification

! Q | L | L, | L
First generation { N ! 0 0
Ve 0 110710
-1 0| 1}]0

d i { M
Second generation v 0 1 0
0] 01
0101

. . T | —1
Third generation { o, 0

There are also six antileptons, with all the signs reversed. The positron, for example,
carries a charge of 4+1 and an electron number —1. So there are really 12 leptons,
all told.

Similarly, there are six ‘flavors’ of quarks, classified by charge, strangeness (S),
charm (C), beauty (B), and truth (T). (For consistency, I suppose we should include
‘upness’, U, and ‘downness’, D, although these terms are seldom used. They are
redundant, inasmuch as the only quark with S = C=B=T =0and Q = 2, for
instance, is the up quark, so it is not necessary to specify U =1and D = 0 as well.)
The quarks, too, fall into three generations:

Quark classification

q Q D|yuyy s |C| B |T

_ . d| 13| -1]0] 0 ]0] 00
First generation wul 23] 0111 01/0]| 070
. s|—13] 00| -1]0] 00

Second generation c 231 0 0] 0 |1 010
Third generation lt) _21 // 33 g g 8 g '"(')1 (1)

Again, all signs would be reversed on the table of antiquarks. Meanwhile, each
quark and antiquark comes in three colors, so there are 36 of them in all.

Finally, every interaction has its mediator — the photon for the electromagnetic
force, two W’s and a Z for the weak force, the graviton (presumably) for gravity
... but what about the strong force? In Yukawa’s original theory the mediator of
strong forces was the pion, but with the discovery of heavy mesons this simple
picture could not stand; protons and neutrons could now exchange p’s and 7’s
and K’s and ¢’s and all the rest of them. The quark model brought an even more
radical revision: for if protons, neutrons, and mesons are complicated composite
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Fig. 1.14 The three generations of quarks and leptons, in order of increasing mass.

structures, there is no reason to believe their interaction should be simple. To study
the strong force at the fundamental level, one should look, rather, at the interaction
between individual quarks. So the question becomes: what particle is exchanged
between two quarks, in a strong process? This mediator is called the gluon, and in
the Standard Model there are eight of them. As we shall see, the gluons themselves
carry color, and therefore (like the quarks) should not exist as isolated particles. We
can hope to detect gluons only within hadrons or in colorless combinations with
other gluons (glueballs). Nevertheless, there is substantial indirect experimental
evidence for the existence of gluons: the deep inelastic scattering experiments
showed that roughly half the momentum of a proton is carried by electrically
neutral constituents, presumably gluons; the jet structure characteristic of inelastic
scattering at high energies can be explained in terms of the disintegration of quarks
and gluons in flight [51] and glueballs may conceivably have been observed [52].

This is all adding up to an embarrassingly large number of supposedly ‘elemen-
tary” particles: 12 leptons, 36 quarks, 12 mediators (I won't count the graviton,
since gravity is not included in the Standard Model). And, as we shall see later, the
Glashow—Weinberg—Salam theory calls for at least one Higgs particle, so we have
a minimum of 61 particles to contend with. Informed by our experience first with
atoms and later with hadrons, many people have suggested that some, at least, of
these 61 must be composites of more elementary subparticles (see Problem 1.18)
[53]. Such speculations lie beyond the Standard Model and outside the scope of
this book. Personally, I do not think the large number of ‘elementary’ particles in
the Standard Model is by itself alarming, for they are tightly interrelated. The eight
gluons, for example, are identical except for their colors, and the second and third
generations mimic the first (Figure 1.14).

Still, it does seem odd that there should be three generations of quarks and
leptons — after all, ordinary matter is made of up and down quarks (in the form of
protons and neutrons) and electrons, all drawn from the first generation. Why are
there two ‘extra’ generations; who needs 'em? It’s a peculiar question, presuming
a kind of purpose and efficiency on the part of the creator for which there is
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little evidence ... but one can’t help wondering. Actually, there is a surprising
answer: as we shall see, the predominance of matter over antimatter admits a
plausible accounting within the Standard Model, but only if there are (at least)
three generations.

Of course, this begs the reverse question: why are there only three generations?
Indeed, could there be more of them, which have not yet been discovered (presum-
ably because they are too heavy to be made with existing machines)? As recently as
1988 [54], there were good reasons to anticipate a fourth generation, and perhaps
even a fifth. But within a year that possibility was foreclosed by experiments at
SLAC and CERN [55]. The Z° is (as Saddam would say) the ‘mother of all particles’,
in the sense that it can decay (with a precisely calculable probability) into any
quark/antiquark or lepton/antilepton pair (¢~ + e*, u + U, v, + V,,, etc.), provided
only that the particle’s mass is less than half that of the Z° (else there wouldn’t be
enough energy to make the pair). So by measuring the lifetime of the Z° you can
actually count the number of quarks and leptons with mass less than 45 GeV/c2.
The more there are, the shorter the lifetime of the Z%, just as the more fatal diseases
we are susceptible to the shorter our average lifespan becomes. The experiments
show that the lifetime of the Z° is exactly what you would expect on the basis of
the established three generations. Of course, the quarks (and conceivably even the
charged lepton) in a putative fourth generation might be too heavy to affect the Z°
lifetime, but it is hardly to be imagined that the fourth neutrino would suddenly
jump to over 45 GeV/c2. At any rate, what the experiments do unequivocally show
is that the number of light neutrinos is 2.99 & 0.06.

Although the Standard Model has survived unscathed for 30 years, it is certainly
not the end of the story. There are many important issues that it simply does not
address — it does not, for example, tell us how to calculate the quark and lepton

masses.”
uark and lepton masses (in MeV/c?
P

lepton mass quark | mass
Ve <2x107° U

vy <0.2 d 5
Vg <18 s 100
e 0.511 c 1200
" 106 b 4200
T 1777 t 174000

In the Standard Model, these are simply empirical numbers, taken from experi-
ment, but a mature theory, presumably, would explain them, just as we can for
the atoms on the periodic table.” As we shall see, the Standard Model also takes as
empirical input three angles and a phase in the Kobayashi—Maskawa matrix, and
analogous numbers for the leptons, and the Weinberg angle describing electroweak

* There is substantial uncertainty in the light quark masses; I have rounded them off for the sake
of clarity.

T Note, however, that the quark/lepton mass formula is going to look very strange, since it has to
cover a range of at least 11 powers of 10, from the electron neutrino to the top quark.
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mixing, and ... all told, there are over 20 arbitrary parameters in the Standard
Model, and this is simply unacceptable in any ‘final’ theory [56].

On the experimental side, there remains much to be learned about neutrino
oscillations (see Chapter 11), and CP violation (Chapter 12), but the most conspic-
uous missing link is the Higgs particle, which is necessary in the Standard Model
to account for the masses of the W and Z (and perhaps all other particles as well).
Like the top quark, the predicted mass of the Higgs has increased with time, as
each new experiment failed to discover it. At this point, it is presumably beyond the
range of any existing accelerator, and, since the cancellation of the SSC, the LHC
is our best hope for finding this elusive particle.

Meanwhile, there are a number of theoretical speculations (supported as yet by
no direct experimental evidence) that go beyond the Standard Model. There are the
Grand Unified Theories (GUTs) that link the strong, electromagnetic, and weak
interactions (Chapter 2); these are so widely accepted, at least in some form, as to be
practically orthodox. Also very attractive to theorists is the idea of ‘supersymmetry’
(SUSY), which (among other things) would double the number of particles,
associating with every fermion a boson, and vice versa. Thus the leptons would
be joined by ‘sleptons’ (‘selectrons’, ‘sneutrinos’, etc.) and quarks by ‘squarks’;
the mediators would acquire twins (the ‘photino’, ‘gluino’, ‘wino’, and ‘zino’).
If subquarks or supersymmetric particles are discovered, this will be huge news,
resetting the whole agenda for the next era in elementary particle physics. But except
for several tantalizing false alarms [57], no evidence for either has yet appeared.

And then there is superstring theory, which since 1984 has captured the
imagination of an entire generation of particle theorists. Superstrings promise
not only to reconcile quantum mechanics and general relativity, and to eliminate
the infinities that plague quantum field theory, but also to provide a unified ‘theory
of everything’, from which all of elementary particle physics (including gravity)
would emerge as an inescapable consequence. String theory has certainly enjoyed
a brilliant and adventurous youth; it remains to be seen whether it can deliver on
its extravagant ambition [58].
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Problems

1.1 If a charged particle is undeflected in passing through uniform crossed electric and
magnetic fields E and B (mutually perpendicular and both perpendicular to the direction
of motion), what is its velocity? If we now turn off the electric field, and the particle
moves in an arc of radius R, what is its charge-to-mass ratio?

1.2 The mass of Yukawa’s meson can be estimated as follows. When two protons in a
nucleus exchange a meson (mass m), they must temporarily violate the conservation of
energy by an amount mc? (the rest energy of the meson). The Heisenberg uncertainty
principle says that you may ‘borrow’ an energy AE, provided you ‘pay it back’ in a time
At given by AE At = li/2 (where /i = h/27). In this case, we need to borrow AE = mc?
long enough for the meson to make it from one proton to the other. It has to cross the
nucleus (size r¢), and it travels, presumably, at some substantial fraction of the speed of
light, so, roughly speaking, At = ro/c. Putting all this together, we have

Using ro = 107! cm (the size of a typical nucleus), calculate the mass of Yukawa's
meson. Express your answer in MeV/c?, and compare the observed mass of the pion.
[Comment: If you find that argument compelling, 1 can only say that you're pretty
gullible. Try it for an atom, and you'll conclude that the mass of the photon is about
7 x 10~3° g, which is nonsense. Nevertheless, it is a useful device for ‘back-of-the-
envelope’ calculations, and it does very well for the pi meson. Unfortunately, many
books present it as though it were a rigorous derivation, which it certainly is not. The
uncertainty principle does not license violation of conservation of energy (nor does
any such violation occur in this process; we shall see later on how this comes about).
Moreover, it’s an inequality, AE At > h/2, which at most could give you a lower bound
on m. It is typically true that the range of a force is inversely proportional to the mass of
the mediator, but the size of a bound state is not always a good measure of the range.
(That’s why the argument fails for the photon: the range of the electromagnetic force is
infinite, but the size of an atom is not.) In general, when you hear a physicist invoke the
uncertainty principle, keep a hand on your wallet.]

1.3 In the period before the discovery of the neutron, many people thought that the nucleus
consisted of protons and electrons, with the atomic number equal to the excess number
of protons. Beta decay seemed to support this idea — after all, electrons come popping
out; doesn’t that imply that there were electrons inside? Use the position-momentum
uncertainty relation, Ax Ap > /2, to estimate the minimum momentum of an electron
confined to a nucleus (radius 107!* cm). From the relativistic energy—momentum
relation, E? — p%c? = m?c*, determine the corresponding energy and compare it with
that of an electron emitted in, say, the beta decay of tritium (Figure 1.5). (This result
convinced some people that the beta decay electron could not have been rattling around
inside the nucleus, but must be produced in the disintegration itself.)

1.4 The Gell-Mann/Okubo mass formula relates the masses of members of the baryon octet
(ignoring small differences between p and n; £+, £°, and £ ~; and E% and E™):

2(my + mg) = 3mp + my

Using this formula, together with the known masses of the nucleon N (use the average
of pand n), T (again, use the average), and & (ditto), ‘predict’ the mass of the A. How
close do you come to the observed value?
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1.5 The same formula applies to the mesons (with £ — 7, A — 5, etc.), except that in this
case, for reasons that remain something of a mystery, you must use the squares of the
masses. Use this to ‘predict’ the mass of the . How close do you come?

1.6 The mass formula for decuplets is much simpler — equal spacing between the rows:

MaA — Myx = My*x — Mgx = Mgx — MO

Use this formula (as Gell-Mann did) to predict the mass of the Q™. (Use the average of
the first two spacings to estimate the third.) How close is your prediction to the observed
value?

1.7 (a) Members of the baryon decuplet typically decay after 10723seconds into a lighter
baryon (from the baryon octet) and a meson (from the pseudo-scalar meson octet).
Thus, for example, AT™ — p* + 7. List all decay modes of this form for the A~
T**t, and E*”. Remember that these decays must conserve charge and strangeness
(they are strong interactions).

(b)In any decay, there must be sufficient mass in the original particle to cover the
masses of the decay products. (There may be more than enough; the extra will be
‘soaked up’ in the form of kinetic energy in the final state.) Check each of the
decays you proposed in part (a) to see which ones meet this criterion. The others are
kinematically forbidden.

1.8 (a) Analyze the possible decay modes of the 27, just as you did in Problem 1.7 for the A,
¥*,and E*. See the problem? Gell-Mann predicted that the @~ would be ‘metastable’
(i.e. much longer lived than the other members of the decuplet), for precisely this
reason. (The Q7 does in fact decay, but by the much slower weak interaction, which
does not conserve strangeness.)

(b) From the bubble chamber photograph (Figure 1.9), measure the length of the Q™
track, and use this to estimate the lifetime of the Q7. (Of course, you don’t know
how fast it was going, but it's a safe bet that the speed was less than the velocity
of light; let’s say it was going about 0.1¢c. Also, you don’t know if the reproduction
has enlarged or shrunk the scale, but never mind: this is quibbling over factors of 2,
or 5, or maybe even 10. The important point is that the lifetime is many orders of
magnitude longer than the 1072 seconds characteristic of all other members of the
decuplet).

1.9 Check the Coleman—Glashow relation [Phys. Rev. B134, 671 (1964)]:

>t -2 =p—n+E°-E

(the particle names stand for their masses).

1.10 Look up the table of ‘known’ mesons compiled by Roos, M. (1963) Reviews of Modern
Physics, 35, 314, and compare the current Particle Physics Booklet to determine which of
the 1963 mesons have stood the test of time. (Some of the names have been changed,
so you will have to work from other properties, such as mass, charge, strangeness,
etc.)

1.11 Of the spurious particles you identified in Problem 1.10, which are ‘exotic’ (i.e.,
inconsistent with the quark model)? How many of the surviving mesons are exotic?

1.12 How many different meson combinations can you make with 1, 2, 3, 4, 5, or 6 different
quark flavors? What's the general formula for n flavors?

1.13 How many different baryon combinations can you make with 1, 2, 3, 4, 5, or 6 different
quark flavors? What's the general formula for n flavors?

1.14 Using four quarks (u, d, s, and ¢), construct a table of all the possible baryon species.
How many combinations carry a charm of +1? How many carry charm +2, and
+3?

1.15 Same as Problem 1.14, but this time for mesons.
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1.16 Assuming the top quark is too short-lived to form bound states (‘truthful’ mesons and
baryons), list the 15 distinct meson combinations 4g (not counting antiparticles) and
the 35 distinct baryon combinations gqq. From the Particle Physics Booklet and/or other
sources, determine which of these have been found experimentally. Give their name,
mass, and year of discovery (just the lightest one, in each case). Thus, for instance, one
baryon entry would be

sss: 7, 1672 MeV/c?,  1964.

All hadrons are (presumably) various excitations of these 50 quark combinations.

1.17 A. De Rujula, H. Georgi, and S. L. Glashow [Physical Review, D12, 147 (1975)] estimated
the so-called constituent quark masses* to be: m,, = my = 336 MeV/c?, m; = 540 MeV/c?,
and m, = 1500 MeV/c? (the bottom quark is about 4500 MeV/c?). If they are right, the
average binding energy for members of the baryon octet is —62 MeV. If they all had
exactly this binding energy, what would their masses be? Compare the actual values
and give the percent error. (Don’t try this on the other supermultiplets, however. There
really is no reason to suppose that the binding energy is the same for all members of
the group. The problem of hadron masses is a thorny issue, to which we shall return in
Chapter 5.)

1.18 Shupe, M. (1979) [Physics Letters, 86B, 87] proposed that all quarks and leptons are
composed of two even more elementary constituents: ¢ (with charge —1/3) and n (with
charge zero) — and their respective antiparticles, ¢ and 7. You're allowed to combine
them in groups of three particles or three antiparticles (ccn, for example, or n# 7).
Construct all of the eight quarks and leptons in the first generation in this manner. (The
other generations are supposed to be excited states.) Notice that each of the quark states
admits three possible permutations (ccn, cnc, nee, for example) — these correspond to the
three colors. Mediators can be constructed from three particles plus three antiparticles.
W*, 7% and y involve three like particles and three like antiparticles (W~ = cccnnn,
for instance). Construct W, Z0, and y in this way. Gluons involve mixed combinations
(ccnt e, for instance). How many possibilities are there in all? Can you think of any
way to reduce this down to eight?

1.19 Your roommate is a chemistry major. She knows all about protons, neutrons, and
electrons, and she sees them in action every day in the laboratory. But she is skeptical
when you tell her about positrons, muons, neutrinos, pions, quarks, and intermediate
vector bosons. Explain to her why none of these plays any direct role in chemistry. (For
instance, in the case of the muon a reasonable answer might be ‘They are unstable, and
last only a millionth of a second before disintegrating.’)

* For reasons we will come to in due course, the effective mass of a quark bound inside a hadron
is not the same as the ‘bare’ mass of the ‘free’ quark.
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Elementary Particle Dynamics

This chapter introduces the fundamental forces by which elementary particles interact,
and the Feynman diagrams we use to represent these interactions. The treatment is
entirely qualitative and can be read quickly to get a sense of the lay of the land’. The
quantitative details will come in Chapters 6 through 9.

2.1
The Four Forces

As far as we know, there are just four fundamental forces in nature: strong,
electromagnetic, weak, and gravitational. They are listed in the following table in
order of decreasing strength:*

Force Strength Theory Mediator
Strong 10 Chromodynamics Gluon
Electromagnetic 1072 Electrodynamics Photon
Weak 10713 Flavordynamics W and Z
Gravitational 10~% Geometrodynamics Graviton

To each of these forces there belongs a physical theory. The classical theory of gravity
is, of course, Newton’s law of universal gravitation. Its relativistic generalization
is Einstein’s general theory of relativity (‘geometrodynamics’ would be a better
term). A completely satisfactory quantum theory of gravity has yet to be worked
out; for the moment, most people assume that gravity is simply too weak to play
a significant role in elementary particle physics. The physical theory that describes
electromagnetic forces is called electrodynamics. It was given its classical formulation

* The ‘strength’ of a force is an intrinsically ambiguous notion - after all, it depends on the
nature of the source and on how far away you are. So the numbers in this table should not
be taken too literally, and (especially in the case of the weak force) you will see quite different
figures quoted elsewhere.

Introduction to Elementary Particles, Second Edition. David Griffiths
Copyright © 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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by Maxwell over one hundred years ago. Maxwell’s theory was already consistent
with special relativity (for which it was, in fact, the main inspiration). The quantum
theory of electrodynamics was perfected by Tomonaga, Feynman, and Schwinger
in the 1940s. The weak forces, which account for nuclear beta decay (and also, as we
have seen, the decay of the pion, the muon, and many of the strange particles), were
unknown to classical physics; their theoretical description was given a relativistic
quantum formulation right from the start. The first theory of the weak forces
was presented by Fermi in 1933; it was refined by Lee and Yang, Feynman and
Gell-Mann, and many others, in the 1950s, and put into its present form by Glashow,
Weinberg, and Salam, in the 1960s. For reasons that will appear in due course,
the theory of weak interactions is sometimes called flavordynamics [1]; in this book,
I refer to it simply as the Glashow—Weinberg—Salam (GWS) theory. (The GWS
model treats weak and electromagnetic interactions as different manifestations of
a single electroweak force, and in this sense the four forces reduce to three.) As for
the strong forces, beyond the pioneering work of Yukawa in 1934 there really was
no theory until the emergence of chromodynamics in the 1970s.

Each of these forces is mediated by the exchange of a particle. The gravitational
forces are mediated by the graviton, electromagnetic forces are mediated by the
photon, strong forces by the gluon, and weak forces by the intermediate vector bosons,
W and Z. These mediators transmit the force between one quark or lepton and
another. In principle, the force of impact between a bat and a baseball is nothing
but the combined interaction of the quarks and leptons in one with the quarks
and leptons in the other. More to the point, the strong force between two protons,
say, which Yukawa took to be a fundamental and irreducible process, must be
regarded as a complicated interaction of six quarks. This is clearly not the place
to look for simplicity. Rather, we must begin by analyzing the force between one
truly elementary particle and another. In this chapter, I will show you qualitatively
how each of the relevant forces acts on individual quarks and leptons. Subsequent
chapters develop the machinery needed to make the theory quantitative.

2.2
Quantum Electrodynamics (QED)

Quantum electrodynamics (QED) is the oldest, the simplest, and the most suc-
cessful of the dynamical theories; the others are self-consciously modeled on it. So
I'll begin with a description of QED. All electromagnetic phenomena are ultimately
reducible to the following elementary process:

Time —>
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In these figures time flows horizontally, to the right, so this diagram reads: a
charged particle, ¢, enters, emits (or absorbs) a photon, y, and exits. For the sake of
argument, I'll assume that the charged particle is an electron; it could just as well
be a quark, or any lepton except a neutrino (the latter is neutral, of course, and does
not experience an electromagnetic force).

To describe more complicated processes, we simply combine two or more repli-
cas of this primitive vertex. Imagine that you have a bag full of ‘tinker toy’ models
of the primitive vertex, made out of flexible plastic. You can snap them together,
photon-to-photon or electron-to-electron (but in the latter case you must preserve
the direction of the arrows). Consider, for example, the following:

Here, two electrons enter, a photon passes between them (I need not say which
one emits the photon and which one absorbs it; the diagram represents both
orderings), and the two exit.* This diagram, then, describes the interaction between
two electrons; in the classical theory, we would call it the Coulomb repulsion of like
charges. In QED, this process is called Moller scattering; we say that the interaction
is ‘mediated by the exchange of a photon’, for reasons that should now be apparent.

You're allowed to twist these ‘Feynman diagrams’ around into any topological
configuration you like — for example, we could stand the previous picture on its side:

A particle line running ‘backward in time’ (an arrow pointing toward the left) is
interpreted as the corresponding antiparticle going forward (the photon is its own
antiparticle, that’s why I didn’t need an arrow on the photon line). In this process

* In reading a Feynman diagram it sometimes helps to picture a vertical line that sweeps along
to the right, representing the passage of time. In the beginning (far left) it intersects two elec-
tron lines, in the middle it encounters the exchanged photon, and at the end (far right) there
are again just two electrons.
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an electron and a positron* annihilate to form a photon, which in turn produces
a new electron—positron pair. An electron and a positron went in, an electron and
a positron came out (not the same ones, but then, since all electrons are identical,
it hardly matters). This represents the interaction of two opposite charges: their
Coulomb attraction. In QED, this process is called Bhabha scattering. Actually, there
is a quite different diagram which also describes Bhabha scattering:

As we shall see, both diagrams must be included in the analysis.

Using just two vertices we can also construct the following diagrams, describing,
respectively, pair annihilation, e~ + et — y + y; pair production, y + y —
e~ + ¢*; and Compton scattering, e~ + y — e~ + y:

LT

Notice that Bhabha and Megller scattering are related by crossing symmetry
(Section 1.4), as are the three processes shown here. In terms of Feynman di-
agrams, crossing symmetry corresponds to twisting or rotating the figure. If we
allow more vertices (just reach in the bag and pull out a few more tinker toys), the
possibilities rapidly proliferate; for example, with four vertices we obtain, among
others, the following diagrams:

* Some authors would label the upper left and would suggest that it is an antiparticle going
lower right lines in this diagram with ¢, to re- ~ backwards in time ... which would be a par-
mind you that it’s an antiparticle. I think this ticle. 1 prefer to label all lines with the particle
is dangerous notation. The arrow already tells ~ symbol, and let the arrow tell you whether it

you it’s the antiparticle, and a literal reading is in fact the antiparticle.
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j S

In each of these figures two electrons went in and two electrons came out. They
too describe the repulsion of like charges (Mgller scattering). The ‘innards’ of the
diagram are irrelevant as far as the observed process is concerned. Internal lines
(those which begin and end within the diagram) represent particles that are not
observed — indeed, that cannot be observed without entirely changing the process.
We call them virtual particles. Only the external lines (those that enter or leave
the diagram) represent ‘real’ (observable) particles. The external lines, then, tell
you what physical process is occurring; the internal lines describe the mechanism
involved.

At the purely qualitative level this is such a childishly simple game that there’s
a serious danger you will inadvertently embellish the rules. If you find yourself
drawing a Feynman diagram that contains the vertex

for example, or

or you snap a photon line onto an electron line
—————syVV\\

you have made a mistake — the bag contains no such tinker toys, and the snaps just
don’t work when you try to hook a photon to an electron. Your diagram might
conceivably describe some other interaction, but it’s not electrodynamics.
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Feynman diagrams are purely symbolic; they do not represent particle trajectories
(as you might see them in, say, a bubble chamber photograph). The horizontal
dimension is time, but vertical spacing does not correspond to physical separation.
For instance, in Bhabha scattering the electron and positron are attracted, not
repelled (as the diverging lines might seem to suggest). All that the diagram says
is: ‘Once there was an electron and a positron; they exchanged a photon; then there
was an electron and a positron again’.

Quantitatively, each Feynman diagram stands for a particular number, which
can be calculated using the so-called Feynman rules (you'll learn how to do this
in Chapter 6). Suppose you want to analyze a certain physical process (say,
Mgller scattering). First you draw all the diagrams that have the appropriate
external lines (the one with two vertices, all the ones with four vertices, and
so on), then you evaluate the contribution of each diagram, using the Feyn-
man rules, and add it all up. The sum total of all Feynman diagrams with the
given external lines represents the actual physical process. Of course, there’s a
wee problem here: there are infinitely many Feynman diagrams for any partic-
ular reaction! Fortunately, each vertex within a diagram introduces a factor of
o = e?/hic = 1/137, the fine structure constant. Because this is such a small num-
ber, diagrams with more and more vertices contribute less and less to the final
result, and, depending on the accuracy you need, may be ignored. In fact, in
QED it is rare to see a calculation that includes diagrams with more than four
vertices. The answers are only approximate, to be sure, but when the approx-
imation is valid to six significant digits, only the most fastidious are likely to
complain.

The Feynman rules enforce conservation of energy and momentum at each
vertex, and hence for the diagram as a whole. It follows that the primitive QED
vertex by itself does not represent a possible physical process. We can draw
the diagram, but calculation would assign to it the number zero. The reason is
purely kinematical: e= — ¢~ + y would violate conservation of energy. (In the
center-of-mass frame the electron is initially at rest, so its energy is mc?. It cannot
decay into a photon plus a recoiling electron because the latter alone would require
an energy greater than mc?.) Nor, for instance, is e~ + et — y kinematically
possible, although it is easy enough to draw the diagram:

In the center-of-mass system the electron and positron enter symmetrically with
equal and opposite velocities, so the total momentum before the collision is
obviously zero. But the final momentum cannot be zero, since photons always
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travel at the speed of light; an electron—positron pair can annihilate to make two
photons, but not one. Within a larger diagram, however, these figures are perfectly
acceptable, because, although energy and momentum must be conserved at each
vertex, a virtual particle does not carry the same mass as the corresponding free
particle. In fact, a virtual particle can have any mass.” In the business, we say that
virtual particles do not lie on their mass shell. External lines, by contrast, represent
real particles, and these do carry the ‘correct’ mass.”

I have been assuming that the charged particle in question is an electron,* but it
could just as well be a muon, say, or a quark. What would you make of the following
diagram?

Here a u/u pair annihilates, producing two photons (one photon, remember, is
kinematically forbidden). Because of quark confinement you're not going to wit-
ness this as a scattering experiment, but what if the quarks were bound together
in the form of a meson — a 7%, for example? This diagram would represent the
‘decay’ of the 7% 7% — y + y. I put the word in quotes, because in a deeper sense
this is not a decay at all — it’s just ordinary old pair annihilation, in which the
original pair happen to be bound together as a meson. This explains why the 7°
has a lifetime 9 orders of magnitude smaller than its charged siblings (%) — it
decays by an electromagnetic process, whereas the others have to await the weak
interactions, which are much slower.

I cannot resist telling you an amusing fable, but you must promise not to take
it too seriously. Feynman claimed that his advisor (J. A. Wheeler) once offered the

* In special relativity, the energy E, momen- a photon from a distant star would have to
tum, p, and mass m of a free particle are re- be extremely close to its ‘correct’ mass — it
lated by the equation E* — p?c? = m?c*. But would have to be almost ‘real’. As a calcula-
for a virtual particle F> — p?c? can take on any  tional matter, you would get essentially the
value. Many authors interpret this to mean same answer if you treated the process as two
that virtual processes violate conservation of separate events (emission of a real photon by
energy (see Problem 1.2). Personally, I con- star, followed by absorption of a real photon
sider this misleading, at best. Energy is always Dy eye). You might say that a real particle is a
conserved. virtual particle that lasts long enough that we

T Actually, the physical distinction between real don’t care to inquire how it was produced, or
and virtual particles is not quite as sharp as _ how it is eventually absorbed.

I have implied. If a photon is emitted on Al-  + In practice, the term ‘quantum electrodynam-
pha Centauri, and absorbed in your eye, it is ics’ is usually taken to mean the interaction
technically a virtual photon, 1 suppose. How- of electrons, positrons, and photons, unless
ever, in general, the farther a virtual particle otherwise specified.

is from its mass shell the shorter it lives, so
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following explanation for why all electrons are identical: there’s only one of em!
It’s riding along on a diagram of the form

vvvvvvv<

A\VAVAVAV/

e

vvvvvw<

/

(1

At a given instant (the vertical line) the electron is present (on this segment) four
times as a particle and three times as an antiparticle — but it’s all the same electron.
Of course, this does imply that the number of positrons in the universe should
equal the number of electrons (give or take one), but apart from that it’s kind of cute.

2.3
Quantum Chromodynamics (QCD)

In chromodynamics, color plays the role of charge, and the fundamental process
(analogous to e — e + y) is quark — quark plus gluon (g — g + g):*

As before, we combine two or more such ‘primitive vertices’ to represent more
complicated processes. For example, the force between two quarks (which is
responsible in the first instance for binding quarks together to make hadrons,
and indirectly for holding the neutrons and protons together to form a nucleus) is
described in lowest order by the diagram:

* Since leptons do not carry color, they do not participate in the strong interactions.
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We say that the force between two quarks is ‘mediated’ by the exchange of
gluons.

At this level chromodynamics is very similar to electrodynamics. However, there
are also important differences, most conspicuously the fact that whereas there is
only one kind of electric charge (it can be positive or negative, to be sure, but a single
number suffices to characterize the charge of a particle), there are three kinds of
color (red, green, and blue). In the fundamental process g — g + g, the color of the
quark (but not its flavor) may change. For example, a blue up-quark may convert
into a red up-quark. Since color (like charge) is always conserved, this means that
the gluon must carry away the difference — in this instance, one unit of blueness
and minus one unit of redness:

Gluons, then, are ‘bicolored’, carrying one positive unit of color and one nega-
tive unit. There are evidently 3 x 3= 9 possibilities here, and you might expect
there to be nine kinds of gluons. For technical reasons, which we’ll come to in
Chapter 8, there are actually only eight.

Since the gluons themselves carry color (unlike the photon, which is electrically
neutral), they couple directly to other gluons, and hence in addition to the
fundamental quark—gluon vertex, we also have primitive gluon—gluon vertices; in
fact, two kinds: three-gluon vertices and four-gluon vertices:

This direct gluon—gluon coupling makes chromodynamics a lot more complicated
than electrodynamics, but also far richer, allowing, for instance, the possibility of
glueballs (bound states of interacting gluons, with no quarks in sight).

Another difference between chromodynamics and electrodynamics is the size
of the coupling constant. Remember that each vertex in QED introduces a factor
of « = 1/137, and the smallness of this number means that we need only
consider Feynman diagrams with a small number of vertices. Experimentally, the
corresponding coupling constant for the strong forces, s — as determined, say,
from the force between two protons — is greater than 1, and the bigness of this
number has plagued particle physics for decades. Instead of contributing less
and less, the more complex diagrams contribute more and more, and Feynman’s
procedure, which worked so well in QED, is apparently doomed. One of the great
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Fig. 2.1 Screening of a charge g by a dielectric medium.

triumphs of quantum chromodynamics (QCD) was the discovery that in this theory
the number that plays the role of coupling ‘constant’ is in fact not constant at
all, but depends on the separation distance between the interacting particles (we
call it a ‘running’ coupling constant). Although at the relatively large distances
characteristic of nuclear physics it is big, at very short distances (less than the size
of a proton) it becomes quite small. This phenomenon is known as asymptotic
freedom [2]; it means that within a proton or a pion, say, the quarks rattle around
without interacting much. Just such behavior was found experimentally in the deep
inelastic scattering experiments. From a theoretical point of view, the discovery of
asymptotic freedom rescued the Feynman calculus as a legitimate tool for QCD, in
the high-energy regime.

Even in electrodynamics, the effective coupling depends somewhat on how far
you are from the source. This can be understood qualitatively as follows. Picture first
a positive point charge g embedded in a dielectric medium (i.e. a substance whose
molecules become polarized in the presence of an electric field). The negative end
of each molecular dipole will be attracted toward g, and the positive end repelled
away, as shown in Figure 2.1 As a result, the particle acquires a ‘halo’ of negative
charge that partially cancels its field. In the presence of the dielectric, then, the
effective charge of any particle is somewhat reduced:

Geff = q/€ (2.1)

(The factor € by which the field is reduced is called the dielectric constant of the
material; it is a measure of the ease with which the substance can be polarized
[3].) Of course, if you are closer than the nearest molecule, then there is no such
screening, and you ‘see’ the full charge g. Thus if you were to make a graph of the
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Fig. 2.2 Effective charge as a function of distance.

effective charge, as a function of distance, it would look something like Figure 2.2
The effective charge increases at very small distances.

Now, it so happens that in quantum electrodynamics the vacuum itself behaves
like a dielectric; it sprouts positron—electron pairs, as shown in Feynman diagrams
such as these:

...etc.

The virtual electron in each ‘bubble’ is attracted toward ¢, and the virtual positron
is repelled away; the resulting vacuum polarization partially screens the charge
and reduces its field. Once again, however, if you get too close to g, the screening
disappears. What plays the role of the ‘intermolecular spacing’ in this case is the
Compton wavelength of the electron, A; = h/mc = 2.43 x 1071 cm. For distances
smaller than this the effective charge increases, just as it did in Figure 2.2.
Notice that the unscreened (‘close-up’) charge, which you might regard as the
‘true’ charge of the particle, is not what we measure in any ordinary experiment,
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since we are seldom working at such minute separation distances.” What we have
always called ‘the charge of the electron’ is actually the fully screened effective
charge.

So much for electrodynamics. The same thing happens in QCD, but with an
important added ingredient. Not only do we have the quark—quark—gluon vertex
(which, by itself, would again lead to an increasing coupling strength at short
distances), but now there are also the direct gluon—gluon vertices. So in addition to
the diagrams analogous to vacuum polarization in QED, we must now also include
gluon loops, such as these:

o= =

It is not clear a priori what influence these diagrams will have on the story [4]; as
it turns out, their effect is the opposite: There occurs a kind of competition between
the quark polarization diagrams (which drive « up at short distances) and gluon
polarization (which drives it down). Since the former depends on the number of
quarks in the theory (hence on the number of flavors, f), whereas the latter depends
on the number of gluons (hence on the number of colors, n), the winner in the
competition depends on the relative number of flavors and colors. The critical
parameter turns out to be

a=2f—1ln (2.2)

If this number is positive, then, as in QED, the effective coupling increases at short
distances; if it is negative, the coupling decreases. In the Standard Model, f = 6 and
n =3, so a = —21, and the QCD coupling decreases at short distances. This is the
origin of asymptotic freedom.

The final distinction between QED and QCD is that whereas many particles carry
electric charge, no naturally occurring particles carry color. Quarks are confined
in colorless packages of two (mesons) and three (baryons). As a consequence,
the processes we actually observe in the laboratory are necessarily indirect and
complicated manifestations of chromodynamics. It is as though our only access to
electrodynamics came from the van der Waals forces between neutral molecules.
For example, the (strong) force between two protons involves (among many others)

* An exception is the Lamb shift — a tiny perturbation in the spectrum of hydrogen — in which
the influence of vacuum polarization (or rather, its absence at short distances) is clearly dis-
cernible.
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the following diagram:

Uy AU (r°)

(P)

You will recognize here the remnants of Yukawa’s pion-exchange model, but the
entire process is enormously more complex than Yukawa ever imagined.

If QCD is correct, it must contain the explanation for quark confinement; that
is, it must be possible to prove, as a consequence of this theory, that quarks can
only exist in the form of colorless combinations. Presumably this proof will take
the form of a demonstration that the potential energy increases without limit as
the quarks are pulled farther and farther apart, so that it would require an infinite
energy (or at any rate, enough to create new quark—antiquark pairs) to separate
them completely (see Figure 2.3). So far, no one has provided a conclusive proof
that QCD implies confinement (see, however, Reference 27 in Chapter 1). The
difficulty is that confinement involves the long-range behavior of the quark—quark
interaction, but this is precisely the regime in which the Feynman calculus fails.*

2.4
Weak Interactions

There is no particular name for the ‘stuff’ that produces weak forces, in the sense
that electric charge produces electromagnetic forces and color produces strong

* There are strong indications that a ‘phase quarks may have existed in the first moments
transition’ occurs at extremely high densi- after the Big Bang, and efforts are underway
ties — three or four times that of an atomic to recreate similar conditions (on a smaller
nucleus - leading to deconfinement and scale!) in the laboratory, using the Relativistic

the so-called quark—gluon plasma. Thus, free Heavy Ion Collider (RHIC) at Brookhaven (5).
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Fig. 2.3 A possible scenario for quark confinement: as we
pull a u quark out of the proton, a pair of quarks is created,
and instead of a free quark, we are left with a pion and a
neutron.

forces. Some people call it ‘weak charge’. Whatever word you use, all quarks and all
leptons carry it [6]. (Leptons have no color, so they do not participate in the strong
interactions; neutrinos have no charge, so they experience no electromagnetic
forces; but all of them join in the weak interactions.) There are two kinds of weak
interactions: charged (mediated by the Ws) and neutral (mediated by the Z). The
neutral weak interactions are much simpler, so I'll start with them.*

2.4.1
Neutral

The fundamental neutral vertex is:T

where f can be any lepton or any quark. The Z mediates such processes as
neutrino—electron scattering (v, + ¢~ — v, +€7):

* Although charged weak interactions were
known right from the start (beta decay is the
classic example), the theoretical possibility of
neutral weak processes was not appreciated
until 1958. The GWS model includes neutral
weak interactions as essential ingredients,
and their existence was first confirmed in
neutrino scattering experiments at CERN, in
1973 (7).

T Itis traditional to use a wavy line for the photon,
and a springy line for the gluon, but there is
no consistency in the literature for the weak
mediators. I'm going to use a jagged line, but
this is not standard notation. (I'll use a solid
line for spin-1/2 particles, which is standard,
and a dashed line for spin 0, which is not.)
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(in the latter case, two ‘spectator’ quarks go along for the ride, bound to the d by
strong forces — gluon exchange — that, for simplicity, we do not draw).*

Notice that any process mediated by the photon could also be mediated by the
Z - for example, electron—electron scattering:

Presumably there is a minute correction to Coulomb’s law attributable to the
second diagram, but the photon-mediated process overwhelmingly dominates.
Experiments at DESY (in Hamburg) studied the reaction e + et — p~ 4+ u™ at
very high energy and found unmistakable evidence of a contribution from the Z
[8]. In atomic physics, neutral weak contamination of electromagnetic processes
can sometimes be teased out by exploiting the fact that weak interactions carry
a unique fingerprint: they violate conservation of parity (mirror symmetry) [9].

* There are also, of course, diagrams in which the Z couples to one of the u quarks.
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Still, to observe a pure neutral weak interaction one has to resort to neutrino
scattering, in which there is no competing electromagnetic mechanism — and
neutrino experiments are notoriously difficult.

2.4.2
Charged

The primitive vertices for strong, electromagnetic, and neutral weak interactions
all share the feature that the same quark or lepton comes out as went in — accompa-
nied, of course, by a gluon, photon, or Z, as the case may be. Well ... OK: in QCD
the color of the quark may change, but the flavor never does. The charged weak
interactions are the only ones that change flavor, and in this sense they are the only
ones capable of causing a ‘true’ decay (as opposed to a mere repackaging of the
quarks, or a hidden pair production or annihilation). I'll begin with the charged
weak interactions of leptons.*

2.4.2.1 Leptons
The fundamental charged vertex looks like this:

A negative lepton (it could be e”, u~, or 77) converts into the corresponding
neutrino, with emission of a W~ (or absorption of a W*): I= — v; + W™.T As
always, we combine the primitive vertices to generate more complicated reactions.
For example, the process u~ + v, — e~ + v, would be represented by the
diagram:

Such a neutrino—muon scattering event would be hard to set up in the laboratory,
but with a slight twist essentially the same diagram describes the decay of the

* The discovery of neutrino oscillations will force some modifications in this picture, but we do
not know yet exactly what form they will take (perhaps they will bring the theory into line with
the quarks), so for the moment I will stick to the simple (pre-oscillation) story.

T This implies, of course, that the crossed reaction I* — ¥; + W+ is also allowed.
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muon, U= —> € + v, + Ve

This is the cleanest of all charged weak interactions; we’ll study it in detail in
Chapter 10.*

243
Quarks

Notice that the leptonic weak vertices connect members of the same generation: e~
converts to v, (with emission of W), or u~ — p~ (emitting a Z), but e™ never goes
to = nor u~ to v,. In this way, the theory enforces the conservation of electron
number, muon number, and tau number. It is tempting to suppose that the same
rule applies to the quarks, so that the fundamental charged vertex is:

A quark with charge —1 (which is to say: d, s, or b) converts into the corresponding
quark with charge +% (u, ¢, or t, respectively), with the emission of a W~. The
outgoing quark carries the same color as the ingoing one, but a different flavor.

The far end of the W line can couple to leptons (a ‘semileptonic’ process), or to
other quarks (a purely hadronic process). The most important semileptonic process
isd4+v,— u+e

* Technically, it is only the lowest-order contribution to muon decay, but in weak interaction the-
ory one almost never needs to consider higher-order corrections.

T It's not that the W~ carries off the ‘missing’ flavor — the W’s have no flavor; flavor is simply not
conserved in the charged weak interactions.
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Because of quark confinement, this process would never occur in nature as it
stands. However, turned on its side, and with the % and 4 bound together (by the
strong force), this diagram represents a possible decay of the pion, 7~ — €7 + Ve:

(For reasons to be discussed later, the more common decay is actually 7~ —
w~ + v, but the diagram is the same, with e replaced by 1) Moreover, essentially
the same diagram accounts for the beta decay of the neutron (n — p* +¢~ +
Ve):

Thus, apart from strong interaction contamination (in the form of the spectator
quarks), the decay of the neutron is identical in structure to the decay of the muon,
and closely related to the decay of the pion. In the days before the quark model,
these appeared to be three very different processes.

Eliminating the electron—neutrino vertex in favor of a second quark vertex we
obtain a purely hadronic weak interaction, A® — p* + 7 =:*

* The A9 has the same quark content as the neutron, but this decay is not possible for neutrons
because they are not heavy enough to make a proton and a pion.
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Actually, this particular decay also proceeds by the strong interaction:

(a°)

the weak mechanism is an immeasurably small contribution. We'll see more
realistic examples of nonleptonic weak interactions in a moment.

So far, it’s all pretty simple: the quarks mimic the leptons — the only difference
is that the strong force (to which, remember, the leptons are immune) complicates
the picture with spectators and what-not that have nothing to do with the basic weak
process. Sad to say, this story is a little too simple. For as long as the fundamental
quark vertex is allowed to operate only within each generation, we can never hope
to account for strangeness-changing weak interactions, such as the decay of the
lambda (A — p* + 7 ™) or the omega-minus (2~ — A + K~), which involves the
conversion of a strange quark into an up quark:

(A)

The solution to this dilemma was suggested by Cabibbo in 1963, perfected
by Glashow, Illiopoulos, and Maiani (GIM) in 1970, and extended to three
generations by Kobayashi and Maskawa (KM) in 1973.* The essential idea is
that the quark generations are ‘skewed,’ for the purposes of weak interactions."

* The Cabibbo/GIM/KM mechanism will be were no strangeness-changing neutral weak

discussed more fully in Chapter 9.

T Technically, this applies to the neutral as
well as the charged weak interactions. But in
the former case it doesn’t matter, and I have
tried to keep the story as clear as possible by
avoiding the issue at that stage. Historically,
when there were only three quarks known

it was a puzzle why (experimentally) there

interactions. The GIM mechanism introduced
a fourth quark (four years before the Novem-
ber Revolution), and a 2 x 2 ‘KM matrix’, to
provide for a miraculous cancellation, the net
effect of which (in the neutral case) was the
same as if we had never ‘skewed’ the quarks
in the first place.
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Instead of

(6)6)6) e

the weak force couples the pairs

GO0

where d’, ', and b’ are linear combinations of the physical quarks d, s, and b:

d Via  Vis Vub d
S l=|Vy Vs Vg S (2.5)
14 Via Vis Vi) \b

If this 3 x 3 Kobayashi—Maskawa matrix were the unit matrix, then &, s/, and b/
would be the same as d, s, and b, and no ‘cross-generational’ transitions could
occur. ‘Upness-plus-downness’ would be absolutely conserved (just as the electron
number is); ‘strangeness-plus-charm’ would be conserved (like muon number);
and so would ‘topness-plus-bottomness’ (like tau number). But it’s not the unit
matrix (although it’s pretty close); experimentally, the magnitudes of the matrix
elements are [10]

0.974 0.227 0.004
0.227 0.973 0.042 (2.6)
0.008 0.042 0.999

V.4 measures the coupling of u to d, Vs the coupling of u to s, and so on. The fact
that the latter is nonzero is what permits strangeness-changing processes, such as
the decay of the A and the Q7 to occur.*

244
Weak and Electromagnetic Couplings of W and Z

There are also direct couplings of W and Z to one another, in GWS theory (just as
there are direct gluon—gluon couplings in QCD):

* Neutrino oscillations involve cross-generational couplings in the lepton sector, so it may be that
we will have a ‘KM matrix’ for the leptons as well. See Chapter 11.
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Moreover, because the W is charged, it couples to the photon:

Although these interactions are critical for the internal consistency of the theory,
they are of limited practical importance at this stage (see Problem 2.6).

2.5
Decays and Conservation Laws

One of the most striking general properties of elementary particles is their
tendency to disintegrate; we might almost call it a universal principle that every
particle decays into lighter particles, unless prevented from doing so by some conservation
law. The photon is stable (having zero mass, there is nothing lighter for it to
decay into); the electron is stable (it’s the lightest charged particle, so conservation
of charge prevents its decay); the proton is presumably stable (it's the lightest
baryon, and the conservation of baryon number saves it — likewise conservation
of lepton number protects the lightest of the neutrinos). By the same token, the
positron, the antiproton, and the lightest antineutrino are stable. But most particles
spontaneously disintegrate — even the neutron, although it becomes stable in the
protective environment of many atomic nuclei. In practice, our world is populated
mainly by protons, neutrons, electrons, photons, and neutrinos; more exotic things
are created now and then (by collisions) but they don’t last long. Each unstable
species has a characteristic mean lifetime,* 7: for the muon it’s 2.2 x 107 sec; for
the w+ it's 2.6 x 1078 sec; for the 7° it's 8.3 x 10~ sec. In fact, most particles
exhibit several different decay modes; 64% of all K*’s, for example, decay into
pwt 4 v, but21% gotont + 70, 6% tont +nt + 77, 5% to (€7 + v, + 7%), and
so on. One of the goals of elementary particle theory is to calculate these lifetimes
and branching ratios.

A given decay is governed by one of the three fundamental forces: ATt —
pt + nt, for example, is a strong decay; 7° — y + y is electromagnetic; and
Y~ — n+e + 7, is weak. How can you tell? Well, if a photon comes out, the pro-
cess is certainly electromagnetic, and if a neutrino emerges, the process is certainly
weak. But if neither a photon nor a neutrino is present, it’s a little harder to say.
For example, ¥~ — n + m~ is weak, but A~ — n + 7~ is strong. I'll show you
in a moment how to figure that out, but first I want to mention the most dramatic
experimental difference between strong, electromagnetic, and weak decays: a typical

* The lifetime t is related to the halflife t1,; by the formula t;/; = (In2)r = 0.6937. The half-life
is the time it takes for half the particles in a large sample to disintegrate (see Section 6.1).
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strong decay involves a lifetime around 10723 sec, a typical electromagnetic decay
takes about 1071 sec, and weak decay times range from around 107!* sec (for
the 7) up to 15min (for the neutron). For a given type of interaction, the decay
generally proceeds more rapidly the larger the mass difference between the original
particle and the decay products, just as a ball rolls faster down a steeper hill.* It
is this kinematic effect that accounts for the enormous range in weak interaction
lifetimes. In particular, the proton and electron together are so close to the neutron’s
mass that the decay n — p* + ¢~ + 7, barely makes it at all, and the lifetime of the
neutron is greater by far than that of any other unstable particle. Experimentally,
though, there is a vast separation in lifetime between strong and electromagnetic
decays (a factor of about 10 million), and again between electromagnetic and weak
decays (a factor of at least a thousand). Indeed, particle physicists are so used to
thinking in terms of 10723 sec as the normal’ unit of time that the handbooks
generally classify anything with a lifetime greater than 10~ sec or so as a ‘stable’
particle!T

Now, what about the conservation laws which, as I say, permit certain reactions
and forbid others? To begin with there are the purely kinematic conservation
laws — conservation of energy and momentum (which we shall study in Chapter 3)
and conservation of angular momentum (which comes in Chapter 4). The fact that
a particle cannot spontaneously decay into particles heavier than itself is actually
a consequence of conservation of energy (although it may seem so ‘obvious’ as
to require no explanation at all). The kinematic conservation laws apply to all
interactions — strong, electromagnetic, weak, and for that matter anything else
that may come along in the future — since they derive from special relativity itself.
However, our concern right now is with the dynamical conservation laws that follow
from the structure of the fundamental vertices:

i Z, W
g
q q © ° f f
* There are exceptions: 7+ — ut + v, for measurements, and invoke the uncertainty
example, is shorter by a factor of 10* than 7+ principle: AEAt > %/2. Here AE = (Am)c?,
— et + v,, but such cases cry out for some and At =1, s0
special explanation.
T Incidentally, 10723 sec is about the time it > h
takes light to cross a proton (diameter ~ ~ 2(Am)c?
10715 m). You obviously cannot determine
the lifetime of such a particle with a stop- Thus the spread in mass is a measure of the
watch, or even by measuring the length of particle’s lifetime. (Technically it’s only a
its track (as you did for the Q= in Problem lower bound on 7, but for such short-lived

1.8(b)) — it doesn’t move far enough to leave a  particles we are presumably right up against
track. Instead, you make a histogram of mass  the uncertainty limit [11]).
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Since all physical processes are obtained by sticking these together in elaborate
combinations, anything that is conserved at each vertex must be conserved for the
reactions as a whole. So, what do we have?

1. Charge: All three interactions, of course, conserve electric
charge. In the case of the weak interactions, the lepton (or
quark) that comes out may not have the same charge as the one
that went in, but if so, the difference is carried away by the W.

2. Color: The electromagnetic and weak interactions do not
affect color. At a strong vertex the quark color does change,
but the difference is carried off by the gluon. (The direct
gluon—gluon couplings also conserve color.) However, since
naturally occurring particles are always colorless, the
observable manifestation of color conservation is pretty
trivial: zero in, zero out.

3. Baryon number: In all the primitive vertices, if a quark goes in,
a quark comes out, so the total number of quarks present is
a constant. In this arithmetic we count antiquarks as negative,
so that, for example, at the vertex g + g — g the quark
number is zero before and zero after. Of course, we never
see individual quarks, only baryons (with quark number
3), antibaryons (quark number —3), and mesons (quark
number zero). So, in practice, it is more convenient to speak
of the conservation of baryon number (1 for baryons, —1 for
antibaryons, and 0 for everything else). The baryon number
is just 3 the quark number. Notice that there is no analogous
conservation of meson number; since mesons carry zero quark
number, a given collision or decay can produce as many
mesons as it likes, consistent with conservation of energy.

4. Lepton number: The strong forces do not touch leptons
at all; in an electromagnetic interaction the same particle
comes out (accompanied by a photon) as went in; and in
the weak interactions if a lepton goes in, a lepton comes out
(not necessarily the same one, this time). So, lepton number
is absolutely conserved. Until recently there appeared
to be no cross-generation mixing among the leptons,
so electron number, muon number, and tau number were
all separately conserved. This remains true in most cases,
but neutrino oscillations indicate that it is not absolute.*

* There would be a similar decades. Still, because the off-diagonal el-
conservation of generation type ements in the KM matrix are relatively small,
for quarks (upness-plus-downness, cross-generational decays tend to be sup-
strangeness-plus-charm, and pressed, and processes that require two such
beauty-plus-truth), but here the intergen- crossings are extremely rare — hence an old

erational mixing has been obvious for rule that ‘forbids’ decays with AS = 2.
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5. Flavor: What about quark flavor? Flavor is conserved at a

strong or electromagnetic vertex, but not at a weak vertex,
where an up-quark may turn into a down quark or a strange
quark, with nothing at all picking up the lost upness or
supplying the ‘gained’ downness or strangeness. Because the
weak forces are so weak, we say that the various flavors are
approximately conserved. In fact, as you may remember, it
was precisely this approximate conservation that led
Gell-Mann to introduce the notion of strangeness in the first
place. He ‘explained’ the fact that strange particles are always
produced in pairs:

7 (du) + pT(uud) — KT (us) + = (dds) 2.7)
for instance, but
7 (d%) + p*(uud) A 7t (ud) + 7 (dds) (2.8)

by arguing that the latter violates conservation of strange-
ness. (Actually, this is a possible weak interaction, but it will
never be seen in the laboratory, because it must compete
against enormously more probable strong processes that do
conserve strangeness.) In decays, however, the
nonconservation of strangeness is very conspicuous, because
for many particles this is the only way they can decay; there is
no competition from strong or electromagnetic processes.
The A, for instance, is the lightest strange baryon; if it is to
decay, it must go to n (or p) plus something. But the lightest
strange meson is the K, and n (or p) plus K weighs
substantially more than the A. If the A decays at all (and it
does as we know: A — p* + 7~ 64% of the time, and A — n
+ % 36% of the time), then strangeness cannot be
conserved, and the reaction must proceed by the weak
interaction. By contrast, the A (with a strangeness of zero)
can goto p* + 7w~ or n + 7° by the strong interaction, and its
lifetime is accordingly much shorter.

. The OZI rule: Finally, I must tell you about

one very peculiar case that has been on my conscience since
Chapter 1. I have in mind the decay of the ¥y meson, which,
you will recall, is a bound state of the charmed quark and its
antiquark: ¢ = ¢¢. The ¢ has an anomalously long lifetime

(~107%% sec); the question is, why? It has nothing to do with
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conservation of charm; the net charm of the v is zero. The

¥ lifetime is short enough so that the decay is clearly due to
the strong interactions. But why is it a thousand times slower
than a strong decay ‘ought’ to be? The explanation (if you can
call it that) goes back to an old observation by Okubo, Zweig,
and lizuka, known as the ‘OZI rule’. These authors [12] were
puzzled by the fact that the ¢ meson (whose quark content,
s5, makes it the strange analog to the ) decays much more
often into two K’s than into three n’s (the two pion decay is
forbidden for other reasons, which we will come to in Chapter
4), in spite of the fact that the three-pion decay is energetically
favored (the mass of two K’s is 990 MeV/c?; three s weigh
only 415 MeV/c?). In Figure 2.4, we see that the three-pion
diagram can be cut in two by snipping only gluon lines.

The OZI rule states that such processes are ‘suppressed’. Not
absolutely forbidden, mind you, for the decay ¢ — 37 does
in fact occur, but far less likely than one would otherwise have
supposed. The OZI rule is related to asymptotic freedom, in
the following sense: in an OZI-suppressed diagram the gluons
must be ‘hard’ (high energy), since they carry the energy
necessary to make the hadrons into which they fragment.
But asymptotic freedom says that gluons couple weakly

at high energies (short ranges). By contrast, in OZI-allowed
processes the gluons are typically ‘soft’ (low energy),

and in this regime the coupling is strong. Qualitatively, at

u
S/K-t»

Fig. 2.4 The OZI rule: if the diagram can be cut in two by
slicing only gluon lines (and not cutting any external lines),
the process is suppressed.
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least, this accounts for the OZI rule. (The quantitative details
will have to await a more complete understanding of QCD.)
But what does all this have to do with the y? Well,
presumably the same rule applies, suppressing ¢ — 37, and
leaving the decay into two charmed D mesons (analogs to the
K, but with the charmed quarks in place of the strange
quarks) as the favored route. Only there’s a new twist in the
r system, for the D’s turn out to be too heavy: a pair of D’s
weighs more than the ¥. So the decay  — D" 4+ D~ (or

DO + D) is kinematically forbidden, while y — 37 is OZI
suppressed, and it is to this happy combination that the
owes its unusual longevity.

2.6
Unification Schemes

At one time, electricity and magnetism were two distinct subjects, the one dealing
with pith balls, batteries, and lightning; the other with lodestones, bar magnets,
and the North Pole. But in 1820 Oersted noticed that an electric current could
deflect a magnetic compass needle, and 10 years later Faraday discovered that
a moving magnet could generate an electric current in a nearby loop of wire.
By the time Maxwell put the whole theory together in its final form, electric-
ity and magnetism were properly regarded as two aspects of a single subject:
electromagnetism.

Einstein dreamed of going a step further, combining gravity with electrodynamics
in a single unified field theory. Although this program was not successful, a similar
vision inspired Glashow, Weinberg, and Salam to join the weak and electromagnetic
forces. Their theory starts out with four massless mediators, but, as it develops,
three of them acquire mass (by the so-called Higgs mechanism), becoming the W’s
and the Z, while one remains massless: the photon. Although experimentally a
reaction mediated by W or Z is quite different from one mediated by the y, they are
both manifestations of a single electroweak interaction. The relative weakness of the
weak force is attributable to the enormous mass of the intermediate vector bosons;
its intrinsic strength is in fact somewhat greater than that of the electromagnetic
force, as we shall see in Chapter 9.

Beginning in the early 1970s, many people have worked on the obvious next step:
combining the strong force (chromodynamics) with the electroweak force (GWS).
Several different schemes for implementing this grand unification are now on the
table, and although it is too soon to draw any definitive conclusions, the basic idea
is widely accepted. You will recall that the strong coupling constant o decreases at
short distances (which is to say, for very high-energy collisions). So too does the
weak coupling «,,, but at a slower rate. Meanwhile, the electromagnetic coupling
constant, a,, which is the smallest of the three, increases. Could it be that they all
converge to a common limiting value, at extremely high energy (Figure 2.5)? Such
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Fig. 2.5 Evolution of the three fundamental coupling constants.

is the promise of the grand unified theories (GUTs). Indeed, from the functional
form of the running coupling constants it is possible to estimate the energy at which
this unification occurs: around 10'> GeV. This is, of course, astronomically higher
than any currently accessible energy (remember, the mass of the Z is 90 GeV/c?).
Nevertheless, it is an exciting idea, for it means that the observed difference in
strength among the three interactions is an ‘accident’ resulting from the fact that
we are obliged to work at low energies, where the unity of the forces is obscured.
If we could just get in close enough to see the ‘true’ strong, electric, and weak
charges, without any of the screening effects of vacuum polarization, we would
find that they are all equal. How nicel!

Another prediction of the GUTs is that the proton is unstable, although its half-life
is fantastically long (at least 10'? times the age of the universe). It has often been
remarked that conservation of charge and color are in a sense more ‘fundamental’
than the conservation of baryon number and lepton number, because charge is the
‘source’ for electrodynamics, and color for chromodynamics. If these quantities
were not conserved, QED and QCD would have to be completely reformulated. But
baryon number and lepton number do not function as sources for any interaction,
and their conservation has no deep dynamical significance. In the grand unified
theories new interactions are contemplated, permitting decays such as

pt—et+7° or pt v, +ot (2.9)

in which baryon number and lepton number change. Several major experiments
have searched for these rare proton decays, but so far the results are negative [13].

If grand unification works, all of elementary particle physics will be reduced
to the action of a single force. The final step, then, will be to bring in gravity,
vindicating at last Einstein’s dream, with the ultimate unification. At this point
superstring theory is the most promising approach.* Stay tuned!

* See Section 12.2 for more on grand unification, and Section 12.4 for supersymmetry and super-
strings.
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Problems

2.1 Calculate the ratio of the gravitational attraction to the electrical repulsion between two
stationary electrons. (Do I need to tell you how far apart they are?)

2.2 Sketch the lowest-order Feynman diagram representing Delbruck scattering: y +
¥y = ¥ + y. (This process, the scattering of light by light, has no analog in classical
electrodynamics.)

2.3 Draw all the fourth-order (four vertex) diagrams for Compton scattering. (There are 17
of them; disconnected diagrams don’t count.)

2.4 Determine the mass of the virtual photon in each of the lowest-order diagrams for
Bhabha scattering (assume the electron and positron are at rest). What is its velocity?

(Note that these answers would be impossible for real photons.)
2.5 (a) Which decay do you think would be more likely,

—— oy —

E —=>A+n" or B —nt+m

Explain your answer, and confirm it by looking up the experimental data.
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(b) Which decay of the D°(cii) meson is most likely,

D> K +xt, D7 +xt, or D°— Kt +7n~

Which is least likely? Draw the Feynman diagrams, explain your answer and check
the experimental data. (One of the successful predictions of the Cabibbo/GIM/KM
model was that charmed mesons should decay preferentially into strange mesons,
even though energetically the 2 mode is favored.)

(c) How about the ‘beautiful’ (B) mesons? Should they go to the D’s, K’s, or ’s?

2.6 Draw all the lowest-order diagrams contributing to the process et + ¢~ — W + W~.
(One of them involves the direct coupling of Z to W’s and another the coupling of y to
W'’s, so when LEP (the electron—positron collider at CERN) achieved sufficient energy
to make two W’s, in 1996, these exotic processes could be studied experimentally. See
B. Schwarzschild, Physics Today (September 1996), p. 21.)

2.7 Examine the following processes, and state for each one whether it is possible or
impossible, according to the Standard Model (which does not include GUTs, with their
potential violation of the conservation of lepton number and baryon number). In the
former case, state which interaction is responsible — strong, electromagnetic, or weak;
in the latter case, cite a conservation law that prevents it from occurring.* (Following
the usual custom, I will not indicate the charge when it is unambiguous, thus y, A, and
n are neutral; p is positive, e is negative; etc.)

@p+p—>nt+n
©X°— A+7°

e +e = ut+pu”
(g) AT = p+n°
(e+tp— ve+n°
kK)p—e+y
myn+an—->nat+x +7x°
() K — 7~ +n°
(@=°— A+y

() EY— p+n~
(W’ —y+y

byn—>y+vy

dE >n+n-

Op —e +7v,
h)ve+p—>n+et
p+p—> T +n+ K +at +7°
p+p—>p+p+p+p
mrt+n—->na"+p
(P) = +n—> 2" +p
ME = A+n"

7 +p—> A+K°
V)X —>n+e+v,

2.8 Some decays involve two (or even all three) different forces. Draw possible Feynman

diagrams for the following processes:

@u—etete +v,+7,
b =" —>p+y

What interactions are involved? (Both these decays have been observed, by the

way.)

* Note: A collision is never kinematically forbid-

den. If you claim, for example, that reaction
(e) is forbidden by conservation of energy
(because the electron weighs less than the
muon), you are at least half wrong - it can
(and does) occur, as long as the electrons
have enough kinetic energy to make up the

difference. But don’t try to play this game for
decays — a single particle cannot decay into
heavier secondaries no matter what its kinetic
energy is, as you can easily see by examining
the process in the rest frame of the decaying
particle.
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2.9 The Y meson, bb, is the bottom-quark analog to the ¥, ¢c. Its mass is 9460 MeV/c?, and

its lifetime is 1.5 x 10729 sec. From this information, what can you say about the mass
of the B meson, ub? (The observed mass is 5280 MeV/c?%.)

2.10 The v’ meson, at 3686 MeV/c?, has the same quark content as the ¥ (viz. ct). Its

2.11

2.12

principal decay mode is ¥’ — ¥ + nt + m~. Is this a strong interaction? Is it
OZI suppressed? What lifetime would you expect for the ¥'? (The observed value is
3 x 107 sec.)

Figure 1.9 shows the first confirmed production of an Q~, in a hydrogen bubble
chamber. The incident K~ evidently hit a stationary particle X, producing a K%, a K™,
and the Q7. (a) What was the charge of the X? What was its strangeness? What particle do
you suppose it was? (b) Follow each line in the right-hand diagram, listing every reaction
as you go along; also specify what kind of interaction — (strong, electromagnetic, or
weak — was responsible. (In case the diagram is unclear, the two photons are supposed
to come from the same point. Incidentally, while y — e~ + e* is impossible in vacuum
(it doesn’t conserve momentum), it does occur in the vicinity of a nucleus — the nucleus
soaks up the ‘missing’ momentum. The reaction is really y + p — ¢~ + e™ + p, but the
p leaves no track, because it is so heavy that it scarcely moves; the electron and positron
carry off the photon’s energy, and the proton simply acts as a passive momentum
‘sink’.)

The W™ was discovered in 1983 at CERN, using proton/antiproton scattering:

p+p—> W +X

where X represents one or more particles. What is the most likely X, for this process?
Draw a Feynman diagram for your reaction, and explain why your X is more probable
than the various alternatives.
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Relativistic Kinematics

In this chapter, I summarize the basic principles, notation, and terminology of relativistic
kinematics. This is material you must know cold in order to understand Chapters 6
through 10 (it is not needed for Chapters 4 and 5, however, and if you prefer you can read
them first). Although the treatment is reasonably self-contained, I do assume that you
have encountered special relativity before — if not, you should pause here and read the
appropriate chapter in any introductory physics text before proceeding. If you are already
quite familiar with relativity, this chapter will be an easy review — but read through it
anyway because some of the notation may be new to you.

3.1
Lorentz Transformations

According to the special theory of relativity [1], the laws of physics apply just as
well in a reference system moving at constant velocity as they do in one at rest. An
embarrassing implication of this is that there’s no way of telling which system (if
any) is at rest, and hence there is no way of knowing what ‘the’ velocity of any other
system might be. So perhaps I had better start over. Ahem.

According to the special theory of relativity [1], the laws of physics are equally valid
in all inertial reference systems. An inertial system is one in which Newton’s first law
(thelaw of inertia) is obeyed: objects keep moving in straight lines at constant speeds
unless acted upon by some force.* It’s easy to see that any two inertial systems must
be moving at constant velocity with respect to one another, and conversely, that any
system moving at constant velocity with respect to an inertial system is itself inertial.

Imagine, then, that we have two inertial frames, S and S, with S’ moving at
uniform velocity v (magnitude v) with respect to S (S, then, is moving at velocity
—v with respect to §’). We may as well lay out our coordinates in such a way that
the motion is along the common x/x’ axis (Figure 3.1), and set the master clocks at
the origin in each system so that both read zero at the instant the two coincide (that
is, t = t' = 0 when x = ¥’ = 0). Suppose, now, that some event occurs at position

* If you are wondering whether a freely falling system in a uniform gravitational field is ‘inertial’,
you know more than is good for you. Let’s just keep gravity out of it.

Introduction to Elementary Particles, Second Edition. David Griffiths
Copyright © 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-40601-2
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S S’
vy A y' A
—"> v
XI
X
z z'

Fig. 3.1 The inertial systems S and S'.

(x,y,2) and time t in S. Question: What are the space-time coordinates (x', y', z') and
¢ of this same event in S'? The answer is provided by the Lorentz transformations:

ix =yx—ut)

i y=y
i, 2 =z (3.1)
. ’ v
v. ¢ :y(t— —C-2-x>
where
1
y = (3.2)

N

The inverse transformations, which take us back from S to S, are obtained by
simply changing the sign of v (see Problem 3.1):

7

i x =y + vt

i, y=y
il z =2 (3.3)
(v
iv. t_y(t—i-czx)

The Lorentz transformations have a number of immediate consequences, of
which I mention briefly the most important:
1. The relativity of simultaneity: If two events occur at the same
time in S, but at different locations, then they do not occur at
the same time in S'. Specifically, if t4 = tg, then

Yu
t/A = tlB + —Cz—(xB — X4) (3.4)
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(see Problem 3.2). Events that are simultaneous in one
inertial system, then, are not simultaneous in others.

2. Lorentz contraction: Suppose a stick lies on the x” axis, at rest
in S'. Say one end is at the origin (x' = 0) and the other is at
L’ (soits length in S" is ['). What is its length as measured in
S? Since the stick is moving with respect to S, we must be
careful to record the positions of its two ends at the same
instant, say t = 0. At that moment, the left end is at x = 0 and
the right end, according to Equation (i), is at x = L'/y. Thus
the length of the stick is L = L’/y, in S. Notice that y is
always greater than or equal to 1. It follows that a moving
object is shortened by a factor of y, as compared with its length
in the system in which it is at rest. Notice that Lorentz
contraction only applies to lengths along the direction of
motion; perpendicular dimensions are not affected.

3. Time dilation: Suppose the clock at the origin in S’ ticks off
an interval T’; for simplicity, say it runs from ¢ =0tot = T".
How long is this period as measured in S? Well, it begins
when t = 0, and it ends when t' = T" at ¥’ = 0, so (according
to Equation (iv')) t = y T". Evidently the clocks in S tick off a
longer interval, T = y T, by that same factor of y; or, put it
the other way around: moving clocks run slow.

Unlike Lorentz contraction, which is only indirectly
relevant to elementary particle physics, time dilation is a
commonplace in the laboratory. For, in a sense, every
unstable particle has a built-in clock: whatever it is that tells
the particle when its time is up. And these internal clocks do
indeed run slow when the particle is moving. That is to say, a
moving particle lasts longer (by a factor of y) than it would at
rest.* (The tabulated lifetimes are, of course, for particles at
rest.) In fact, the cosmic ray muons produced in the upper
atmosphere would never make it to ground level were it not
for time dilation (see Problem 3.4).

4. Velocity addition: Suppose a particle is moving in the x
direction at speed u’, with respect to S'. What is its speed, u,
with respect to S? Well, it travels a distance Ax = y (Ax’ + v
At)in atime At = y[AF + (v/c?)Ax'], s0

Ax  AX+vAY (AX/AY) +
At T AY 4 (v/R)Ax T 14 (v/2)(AX/AY)

* Actually, the disintegration of an individual particle is a random process; when we speak of a
‘lifetime’ we really mean the average lifetime of that particle type. When I say that a moving par-
ticle lasts longer, I really mean that the average lifetime of a group of moving particles is longer.
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But Ax/At = u, and Ax'/At =W/, so

w4+

= T ) 33

u

Notice that if w' = ¢, then u = c also: the speed of light is the same in all inertial
systems.

It can sometimes be confusing to figure out in a particular context, which
numbers should be primed and what signs attach to the velocities, so I personally
remember three rules: moving sticks are short (by a factor of y), moving clocks
are slow (by a factor of y) — so put the y (which, remember, is greater than 1) on
whichever side of the equation you need to achieve these results, — and

_ vapt+UBC
1+ (vapvpc/c?)

vAC (3.6)

where v 3 (for instance) means the velocity of A with respectto B. The numerator is
the classical result (the so-called ‘Galilean velocity addition rule’); the denominator
is Einstein’s correction — it is very close to 1 unless the velocities are close to c.

3.2
Four-vectors

It is convenient at this point to introduce some simplifying notation. We define the
position-time four-vector x*, u = 0, 1, 2, 3, as follows:

%0 =ct, X =, X" =Y, X =2z (3.7)

In terms of x*, the Lorentz transformations take on a more symmetrical appear-
ance:

1 =y (" = B

=y = px)

X = x? (3.8)
x3/ — x3
where
B = v 39
= - (3.9)

More compactly:

3
W= Ak (1=0,1,23) (3.10)
=0
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The coefficients A}, may be regarded as the elements of a matrix A:

y —vB 0 0
-y vy 0 0
A = )
0 0 1 0 (3-11)
0 0 0 1

(ie. Ad = Al =y; Al = A = —yB; A} = A3 = 1; and all the rest are zero). To
avoid writing lots of X’s, we shall follow Einstein’s ‘summation convention’, which
says that repeated Greek indices (one as subscript, one as superscript) are to be
summed from 0 to 3. Thus Equation 3.10 becomes, finally,*

X = Alx (3.12)

A special virtue of this tidy notation is that the same form describes Lorentz
transformations that are not along the x direction; in fact, the Sand S’ axes need not
even be parallel; the A matrix is more complicated, naturally, but Equation 3.12 still
holds. (On the other hand, there is no real loss of generality in using Equation 3.11,
since we are always free to choose parallel axes, and to align the x axis along the
direction of v.)

Although the individual coordinates of an event change, in accordance with
Equation 3.12, when we go from S to §', there is a particular combination of them
that remains the same (Problem 3.8):

I= (%)% — ()2 — ()2 — () = (x%)% — (1) — (x¥)2 — («*)? (3.13)

Such a quantity, which has the same value in any inertial system, is called an
invariant. (In the same sense, the quantity 12 = x + y* + z* is invariant under
rotations.) Now, [ would like to write this invariant in the form of a sum: ¥ izox"x“,
but unfortunately there are those three irritating minus signs. To keep track of
them, we introduce the metric, g,,, whose components can be displayed as a
matrix g

(3.14)

s 1}
I
S O O
o
|
Iy

* In an expression such as this the Greek o 0.0 0.1 0.2 0.3
. . = Agx" + Ajx" + A Asx

letter used for the summation index, v, is x Apx™ + Apxt + Agx" 4 A
of course completely arbitrary. The same K = ALy® ALl 1 Al 4 ALy

goes for the ‘hanging’ index j, although 0 1 2 3
it must match on the two sides of the 2 = A0 + A2x! 4 A2 4 ALy

equation. Thus Equation (3.12) could just 0 ! 2 3

: K Ak T /

as well be written & = Af{x*. ElthE?f expres- 2 = ABO A 4 A 4 AL
sion stands for the set of four equations:
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(i.e. goo = 1; g11 = g22 = g33 = —1; all the rest are zero).* With the help of g, the
invariant I can be written as a double sum:

3 3
=300 gus” = guxs’ (3.15)

=0 v=0

Carrying things a step further, we define the covariant four-vector x,, (index down)
as follows:

Xy = g;wxv (316)

(ie. xo = x°, x; = —x!, x; = —x?%, x3 = —x*). To emphasize the distinction we call
the ‘original’ four-vector x* (index up) a contravariant four-vector. The invariant I
can then be written in its cleanest form:

I =x,x" (3.17)

(or, equivalently, x*x,). All this will no doubt seem like monstrous notational
overkill, just to keep track of three pesky minus signs, but it’s actually very simple,
once you get used to it. (What's more, it generalizes nicely to non-Cartesian
coordinate systems and to the curved spaces encountered in general relativity,
though neither of these is relevant to us here.)

The position-time four-vector x* is the archetype for all four-vectors. We define
a four-vector, a#, as a four-component object that transforms in the same way x*
does when we go from one inertial system to another, to wit:

a* = Aba’ (3.18)
with the same coefficients Ay, . To each such (contravariant) four-vector we associate
a covariant four-vector a,, obtained by simply changing the signs of the spatial
components, or, more formally

Oy = Guvd’ (3.19)

Of course, we can go back from covariant to contravariant by reversing the signs
again:

at = g’“’av (3.20)

where g’ are technically the elements in the matrix g—! (however, since our metric
is its own inverse, g"” is the same as g,,). Given any two four-vectors, a* and b*,
the quantity

a"b, = a,b" = a®° — alb! — a2 — BB (3.21)

* 1 should warn you that some physicists define the metric with the opposite signs (—1, 1, 1, 1). It
doesn’t matter much — if I is an invariant, so too is —I. But it does mean that you must be on
the lookout for unfamiliar signs. Fortunately, most particle physicists nowadays use the conven-
tion in Equation 3.14.
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is invariant (the same number in any inertial system). We shall refer to it as the
scalar product of a and b; it is the four-dimensional analog to the dot product of two
three-vectors (there is no four-vector analog to the cross product).

If you get tired of writing indices, feel free to use the dot notation:

a-b=a,b" (3.22)

However, you will then need a way to distinguish this four-dimensional scalar
product from the ordinary dot product of two three-vectors. The best way is to
be scrupulously careful to put an arrow over all three-vectors (except perhaps the
velocity, v, which, since it is not part of a four-vector, is not subject to ambiguity).
In this book, I use boldface for three-vectors. Thus

a-b=a""—a-b (3.23)
We also use the notation a? for the scalar product of a* with itself:T
> =a-a= (- a (3.24)

Notice, however, that a® need not be positive. Indeed, we can classify all four-vectors
according to the sign of a?:

Ifa? >0, at is called timelike
Ifa’ <0, a# is called spacelike (3.25)
Ifa? =0, at is called lightlike

From vectors it is a short step to tensors: a second-rank tensor, s*¥, carries two
indices, has 4* = 16 components, and transforms with two factors of A:

S = AP AV S (3.26)

a third-rank tensor, #***, has three indices, 4> = 64 components, and transforms
with three factors of A:

t/“)‘, — A{jA;A)TLtKUT (3.27)

* The closest thing is (a*b” — a"b*), but this is between a? and the square of the magnitude

a second-rank tensor, not a four-vector (see be-

low).

T On its face, this is dangerously ambiguous
notation, since a? could also be the second
spatial component of a*. But in practice we
so seldom refer to individual components
that this causes no problems (if you really
mean the component, better say so explic-
itly). More serious is the potential confusion

of the three-vector part of a*. I personally
write the latter in bold face, to avoid any pos-
sible misunderstanding: a? = a - a. This is
not standard notation, however, and if you
prefer some other device, that’s fine. But I
do urge you to find a clear way to distinguish
a? from a?, or you are asking for real trouble
down the road.
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and so on. In this hierarchy, a vector is a tensor of rank one, and a scalar (invariant)
is a tensor of rank zero. We construct covariant and ‘mixed’ tensors by lowering
indices (at the cost of a minus sign for each spatial index), for example

Suv - guksuk; Spuv = g;LKguASKA (328)

and so on. Notice that the product of two tensors is itself a tensor: (a#b") is a tensor
of second rank; (a#t"*?) is a tensor of fourth rank; and so on. Finally, we can obtain
from any tensor of rank n + 2 a ‘contracted’ tensor of rank n, by summing like upper
and lower indices. Thus s, is a scalar; t,*" ig a vector; a, t#v* ig a second-rank tensor.

3.3
Energy and Momentum

Suppose you're driving down the highway, and pretend for the sake of argument
that you're going at close to the speed of light. You might want to keep an eye
on two different ‘times’: if you're worried about making an appointment in San
Francisco, you should check the stationary clocks posted now and then along the
side of the road. But if you're wondering when would be an appropriate time to
stop for a bite to eat, it would be more sensible to look at the watch on your wrist.
For, according to relativity, the moving clock (in this case, your watch) is running
slow (relative to the ‘stationary’ clocks on the ground), and so too is your heart
rate, your metabolism, your speech and thought, everything. Specifically, while the
‘ground’ time advances by an infinitesimal amount dt, your own (or proper) time
advances by the smaller amount dr:

ar = & (3.29)

4

At normal driving speeds, of course, y is so close to 1 that dt and dr are essentially
identical, but in elementary particle physics the distinction between laboratory
time (read off the clock on the wall) and particle time (as it would appear on the
particle’s watch) is crucial. Although we can always get from one to the other, using
Equation 3.29, in practice it is usually most convenient to work with proper time,
because T is invariant — all observers can read the particle’s watch, and at any given
moment they must all agree on what it says, even though their own clocks may
differ from it and from one another.

When we speak of the ‘velocity’ of a particle (with respect to the laboratory), we
mean, of course, the distance it travels (measured in the lab frame) divided by the
time it takes (measured on the lab clock):

dx

V=a‘£

(3.30)

But in view of what has just been said, it is also useful to introduce the proper
velocity, n, which is the distance traveled (again, measured in the lab frame) divided



3.3 Energy and Momentum
by the proper time:*

dx
dr

n (3.31)

According to Equation 3.29, the two velocities are related by a factor of y:
n=yv (3.32)

However, 7 is much easier to work with, for if we want to go from the lab system, S,
to a moving system, S, both the numerator and the denominator in Equation 3.30 must
be transformed — leading to the cumbersome velocity addition rule Equation 3.5 —
whereas in Equation 3.31 only the numerator transforms; dt, as we have seen, is
invariant. In fact, proper velocity is part of a four-vector:

b 9 3.33
= (3.33)

whose zeroth component is

o 42 de) _ 3.34
Td T wyya (3-34)

Thus
n" =y (c, vy, vy, v2) (3.35)

Incidentally, n,n* should be invariant, and it is:

nun® = y(e? —vg — vy —v}) = yiP(1 - v¥/¢h) = ¢ (3.36)
They don’t make ’em more invariant than that!

Classically, momentum is mass times velocity. We would like to carry this over in
relativity, but the question arises: which velocity should we use — ordinary velocity
or proper velocity? Classical considerations offer no clue, for the two are equal in the
nonrelativistic limit. In a sense, it’s just a matter of definition, but there is a subtle
and compelling reason why ordinary velocity would be a bad choice, whereas proper
velocity is a good choice. The point is this: if we defined momentum as mv, then
the law of conservation of momentum would be inconsistent with the principle
of relativity (if it held in one inertial system, it would not hold in other inertial

* Proper velocity is a hybrid quantity, in the its velocity is zero. If my terminology disturbs
sense that distance is measured in the lab you, call 5 the ‘four-velocity’. I should add
frame, whereas time is measured in the par- that although proper velocity is the more con-
ticle frame. Some people object to the adjec- venient quantity to calculate with, ordinary ve-
tive ‘proper’ in this context, holding that this locity is still the more natural quantity from
should be reserved for quantities measured the point of view of an observer watching a

entirely in the particle frame. Of course, in its  particle fly past.
own frame the particle never moves at all -
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systems). But, if we define momentum as m, then conservation of momentum
is consistent with the principle of relativity (if it holds in one inertial system, it
automatically holds in all inertial systems). I'll let you prove this for yourself in
Problem 3.12. Mind you, this doesn’t guarantee that momentum is conserved —
that’s a matter for experiments to decide. But it does say that if we’'re hoping to
extend momentum conservation to the relativistic domain, we had better not define
momentum as mv, whereas mn is perfectly acceptable.

That’s a tricky argument, and if you didn’t follow it, try reading that last paragraph
again. The upshot is that in relativity, momentum is defined as mass times proper
velocity:

p=mn (3.37)
Since proper velocity is part of a four-vector, the same goes for momentum:
pr = mn* (3.38)

The spatial components of p* constitute the (relativistic) momentum three-vector:

my

=YmMV = ————— 3.39

P T2 (3.39)
Meanwhile, the ‘temporal’ component is

P’ =yme (3.40)

For reasons that will appear in a moment, we define the relativistic energy, E, as

WLCZ

V1 —v2/c?

The zeroth component of p*, then, is E/c. Thus, energy and momentum together
make up a four-vector — the energy—momentum four-vector (or four-momentum)

E=ymc® = (3.41)

p“=<5p pp) (3.42)
C’ X Py 'z *

Incidentally, from Equations 3.36 and 3.38 we have

;L__E_Z_ 2 22
pup” = 2 p-=mc (3.43)

which, again, is manifestly invariant.

The relativistic momentum (Equation 3.37) reduces to the classical expression
in the nonrelativistic regime (v < ¢), but the same cannot be said for relativistic
energy (Equation 3.41). To see how this quantity comes to be called ‘energy,” we
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expand the radical in a Taylor series:

4

3 v* 3
v +m>=mc2+§mv2+—mv—+-.. (3.44)

2
emd (1415 +35 3"
Notice that the second term here corresponds to the classical kinetic energy,
while the leading term (mc?) is a constant. Now you may recall that in classical
mechanics only changes in energy are physically significant — you can add a
constant with impunity. In this sense, the relativistic formula is consistent with
the classical one, in the limit v « ¢ where the higher terms in the expansion are
negligible. The constant term, which survives even when v = 0, is called the rest

energy;
R = mc? (3.45)

the remainder, which is energy attributable to the motion of the particle, is the
relativistic kinetic energy:

szcz(y~1)=lmv2+§m2j+~-~ (3.46)
2 8  ¢? ’

In classical mechanics, there is no such thing as a massless particle; its momen-
tum (mv) would be zero, its kinetic energy (3mv?) would be zero, it could sustain
no force, since F = ma, and hence (by Newton’s third law) it could not exert a
force on anything else — it would be a dynamical ghost. At first glance you might
suppose that the same would be true in relativity, but a careful inspection of the
formulas

2
m =" (3.47)

P= V1= JV1—v?/c?

reveals a loophole: when m = 0, the numerators are zero, but if v = ¢, the de-
nominators also vanish, and these equations are indeterminate (0/0). So it is just
possible that we could allow m = 0, provided the particle always travels at the speed
of light. In this case, Equation 3.47 will not serve to define E and p; nevertheless,
Equation 3.43 still holds:

v=c, E = |plc (for massless particles) (3.48)
Personally, I would regard this ‘argument’ as a joke, were it not for the fact that

massless particles (photons) are known to exist in nature, they do travel at the speed
of light, and their energy and momentum are related by Equation 3.48. So we have

* Notice that I have never mentioned ‘relativis- by a factor of ¢*. Whatever can be said about
tic mass’ in all this. It is a superfluous quan- My could just as well be said about E. For in-
tity that serves no useful function. In case you  stance, the ‘conservation of relativistic mass’
encounter it, the definition is m,y = ym; it is nothing but conservation of energy, with a

has died out because it differs from E only factor of ¢? divided out.
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to take the loophole seriously. You may well ask: if Equation 3.47 doesn’t define
p and E, what does determine the momentum and energy of a massless particle?
Not the mass (that’s zero by assumption); not the speed (that’s always c). How,
then, does a photon with an energy of 2 eV differ from a photon with an energy of
3eV? Relativity offers no answer to this question, but curiously enough quantum
mechanics does, in the form of Planck’s formula:

E=hv (3.49)

It is the frequency of the photon that determines its energy and momentum: the
2-eV photon is red, and the 3-eV photon is purple !

34
Collisions

So far, relativistic energy and momentum are nothing but definitions; the physics
resides in the empirical fact that these quantities are conserved. In relativity, as in
classical mechanics, the cleanest application of the conservation laws is to collisions.
Imagine first a classical collision, in which object A hits object B (perhaps they are
both carts on an air table), producing objects C and D (Figure 3.2). Of course, C
and D might be the same as A and B; but we may as well allow that some paint
(or whatever) rubs off A onto B, so that the final masses are not the same as the
original ones. (We do assume, however, that A, B, C, and D are the only actors
in the drama; if some wreckage, W, is left at the scene, then we would be talking
about a more complicated process: A+ B — C + D + W.) By its nature, a collision
is something that happens so fast that no external force, such as gravity, or friction
with the track, has an appreciable influence. Classically, mass and momentum are
always conserved in such a process; kinetic energy may or may not be conserved.

3.4.1
Classical Collisions

1. Mass is conserved: m4 + mp = mc + mp.
2. Momentum is conserved: ps + ps = pc + Pb-
3. Kinetic energy may or may not be conserved.

co”
A \; D\

Before After
Fig. 3.2 A collision in which A+ B — C + D.



3.4 Collisions

I like to distinguish three types of collisions: ‘sticky’ ones, in which the kinetic
energy decreases (typically, it is converted into heat); ‘explosive’ ones, in which the
kinetic energy increases (for example, suppose A has a compressed spring on its
front bumper, and the catch is released in the course of the collision so that spring
energy is converted into kinetic energy); and elastic ones, in which the kinetic
energy is conserved.

(a) Sticky (kinetic energy decreases): To + Tg > Tc + Tp.
(b) Explosive (kinetic energy increases): T4 + Tp < Tc + Tp.
(c) Elastic (kinetic energy conserved): To + Tp = T¢c + Tp.

In the extreme case of type (a), the two particles stick together, and there is really
only one final object: A + B — C. In the extreme case of type (b), a single object
breaks in two: A — C + D (in the language of particle physics, A decays into
C+ D).

34.2
Relativistic Collisions

In a relativistic collision, energy and momentum are always conserved. In other words,
all four components of the energy—momentum four-vector are conserved. As in
the classical case, kinetic energy may or may not be conserved.

1. Energy is conserved: E4 + Ep = Ec + Ep.

2. Momentum is conserved: pa + ps = pc + Pp-

3. Kinetic energy may or may not be conserved.

(The first two can be combined into a single expression: ply + ply = pic + p5.)
Again, we can classify collisions as sticky, explosive, or elastic, depending on
whether the kinetic energy decreases, increases, or remains the same. Since the
total energy (rest plus kinetic) is always conserved, it follows that rest energy (and
hence also mass) increases in a sticky collision, decreases in an explosive collision,
and is unchanged in an elastic collision.
(a) Sticky (kinetic energy decreases): rest energy and mass
increase.
(b) Explosive (kinetic energy increases): rest energy and mass
decrease.
(c) Elastic (kinetic energy is conserved): rest energy and mass
are conserved.

Please note: except in elastic collisions, mass is not conserved.* For example, in the
decay 7% — y + y the initial mass was 135 MeV/c?, but the final mass is zero.

* In the old terminology, we would say that relativistic mass is conserved, but rest mass is not.
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Here rest energy was converted into kinetic energy (or, in the absurd language of
the popular press, infuriating to anyone with the slightest respect for dimensional
consistency, ‘mass was converted into energy’). Conversely, if mass is conserved,
then the collision was elastic. In elementary particle physics, there is only one
way this ever happens: the same particles come out as went in*— electron—proton
scattering (e + p — ¢ + p), for example.

In spite of a certain structural similarity between the classical and relativistic
analyses, there is a striking difference in the interpretation of inelastic collisions.
In the classical case, we say that energy is converted from kinetic form to some
‘internal’ form (thermal energy, spring energy, etc.), or vice versa. In the relativistic
analysis, we say that it goes from kinetic energy to rest energy or vice versa. How
can these possibly be consistent? After all, relativistic mechanics is supposed to
reduce to classical mechanics in the limit v « ¢. The answer is that all ‘internal’
forms of energy are reflected in the rest energy of an object. A hot potato weighs
more than a cold potato; a compressed spring weighs more than a relaxed spring.
On the macroscopic scale, rest energies are enormously greater than internal
energies, so these mass differences are utterly negligible in everyday life, and very
small even at the atomic level. Only in nuclear and particle physics are typical
internal energies comparable to typical rest energies. Nevertheless, in principle,
whenever you weigh an object, you are measuring not only the rest energies
(masses) of its constituent parts, but all of their kinetic and interaction energies
as well.

3.5
Examples and Applications

Solving problems in relativistic kinematics is as much an art as a science. Although
the physics involved is minimal — nothing but conservation of energy and conser-
vation of momentum - the algebra can be formidable. Whether a given problem
takes two lines or seven pages depends a lot on how skillful and experienced you
are at manipulating the tools and the tricks of the trade. I now propose to work a
few examples, pointing out as I go along some of the labor-saving devices that are
available to you [2].

Example 3.1 Two lumps of clay, each of mass m, collide head-on at %c (Figure 3.3).
They stick together. Question: What is the mass M of the final composite lump?

Solution: Conservation of energy says E; + E; = Ejp. Conservation of momentum
says p1 + p2 = pum. In this case, conservation of momentum is trivial: p; = —p,, so
the final lump is at rest (which was obvious from the start). The initial energies are

* In principle, if there existed two distinct pairs of particles (A, B and C, D) that happened to add
up to the same total mass, then I suppose the reaction A + B — C + D might be considered
‘elastic’, but in reality there are no such coincidences, so to a particle physicist the word ‘elastic’
has come to mean that the same particles come out as went in.



3.5 Examples and Applications

3 3
¢ ¢
O O 0
m m M
Before After

Fig. 3.3 Sticky collision of two equal masses (Example 3.1).

equal, so conservation of energy yields

2mc? 5
Mc? = 2By = e = ~(2mc?)

J1—=(3/5)2

Conclusion: M = 2m. Notice that this is greater than the sum of the initial masses;
in sticky collisions kinetic energy is converted into rest energy, so the mass
increases.

Example 3.2 A particle of mass M, initially at rest, decays into two pieces, each of
mass m (Figure 3.4). Question: What is the speed of each piece as it flies off?

Solution: This is, of course, the reverse of the process in Example 3.1 Conservation
of momentum just says that the two lumps fly off in opposite directions at equal
speeds. Conservation of energy requires that

2m
M= ———u—\, so v=c/1—(2m/M)?
V1 —v2/c?

This answer makes no sense unless M exceeds 2m: there has to be at least enough
rest energy available to cover the rest energies in the final state (any extra is fine;
it can be soaked up in the form of kinetic energy). We say that M = 2m is the
threshold for the process M — 2m to occur. The deuteron, for example, is below
the threshold for decay into proton plus neutron (my = 1875.6 Mev/c?; m, + m, =
1877.9 MeV/c?), and therefore is stable. A deuteron can be pulled apart, but only by
pumping enough energy into the system to make up the difference. (If it puzzles
you that a bound state of p and n should weigh less than the sum of its parts, the
point is that the binding energy of the deuteron — which, like all internal energy,
is reflected in its rest mass — is negative. Indeed, for any stable bound state the
binding energy must be negative; if the composite particle weighs more than the
sum of its constituents, it will spontaneously disintegrate.) |

Example 3.3 A pion at rest decays into a muon plus a neutrino (Figure 3.5).
Question: What is the speed of the muon?

v v
M m m
Before After

Fig. 3.4 A particle decays into two equal pieces. (Example 3.2).
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T M
o /D
Before After

Fig. 3.5 Decay of the charged pion (Example 3.3).

Solution: Conservation of energy requires E, = E, + E,. Conservation of mo-
mentum gives p, = p, + py; but pr = 0, so p, = —p,. Thus the muon and the
neutrino fly off back-to-back, with equal and opposite momenta. To proceed, we
need a formula relating the energy of a particle to its momentum; Equation 3.43
does the job.*

Suggestion 1. To get the energy of a particle, when you know its
momentum (or vice versa), use the invariant

E? — pc? = m?ct (3.50)
In the present case, then:

E, = m,c?

E, = c,/mlc? +pl

E, = |pyvlc = |pulc
Putting these into the equation for conservation of energy, we have
2
myc” = c,/m?%c? +p2 + |pulc
or
(mrc — |pul)* = mic* + pl,

Solving for [p,/,

N

2
m, —m,
pul = ——¢
2my

Meanwhile, the energy of the muon (from Equation 3.50) is

2 2
g _mﬂ-f-mu )
= ——2

2my

* You might be inclined to solve Equation 3.39 for the velocity, and plug the result into
Equation 3.41, but that would be a very poor strategy. In general, velocity is a bad parameter
to work with, in relativity. Better to use Equation 3.43, which takes you directly back and forth
between E and p.
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Once we know the energy and momentum of a particle, it is easy to find its
velocity. If E = ymc? and p = ymv, dividing gives

p/E:v/c2

Suggestion 2. If you know the energy and momentum of a par-
ticle, and you want to determine its velocity, use

v=pc*/E (3.51)

So the answer to our problem is

2 2
. _mp—my
) 2
My +my

Putting in the actual masses, I get v, = 0.271c.

There is nothing wrong with that calculation; it was a straightforward and
systematic exploitation of the conservation laws. But I want to show you now a
faster way to get the energy and momentum of the muon, by using four-vector
notation. (I should put a superscript u on all the four-vectors, but I don’t
want you to confuse the space-time index p with the particle identifier u, so
here, and often in the future, I will suppress the space-time indices, and use
a dot to indicate the scalar product.) Conservation of energy and momentum
requires

Pr =Pu+pv, OF Py =DpPr—Pu

Taking the scalar product of each side with itself, we obtain
Ps =Dt + Pl — 2P

But

2 ) 22 2 2.2, il
P, =0; p, =myc’, p, =mic*; and prp, = ~ = my Ey
Therefore
22 2.2
0=mpc” +myc” —2myE,

from which E,, follows immediately.
By the same token

Pu =P — Pv
Squaring yields

mec2 = m,z(c2 — 2my E,
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But E, = [pvlc = |pulc, so

2mg |pul = (mfr — mi)c
which gives us |p,|. In this case, the problem was simple enough that the savings
afforded by four-vector notation are meager, but in more complicated problems the

benefits can be enormous.

Suggestion 3. Use four-vector notation, and exploit the invari-
ant dot product. Remember that p* = m?c? (Equation 3.43)
for any (real) particle.

One reason why the use of invariants is so powerful in this business is that we
are free to evaluate them in any inertial system we like. Frequently, the laboratory
frame is not the simplest one to work with. In a typical scattering experiment, for
instance, a beam of particles is fired at a stationary target. The reaction under study
might be, say, p + p— whatever, but in the laboratory the situation is asymmetrical,
since one proton is moving and the other is at rest. Kinematically, the process is
much simpler when viewed from a system in which the two protons approach
one another with equal speeds. We call this the center-of-momentum (CM) frame,
because in this system the total (three-vector) momentum is zero.

Example 3.4 The Bevatron at Berkeley was built with the idea of producing
antiprotons, by the reaction p + p — p + p + p + p. That is, a high-energy proton
strikes a proton at rest, creating (in addition to the original particles) a proton—
antiproton pair. Question: What is the threshold energy for this reaction (i.e. the
minimum energy of the incident proton)?

Solution: In the laboratory the process looks like Figure 3.6a; in the CM frame,
it looks like Figure 3.6b. Now, what is the condition for threshold? Answer: Just
barely enough incident energy to create the two extra particles. In the lab frame, it
is hard to see how we would formulate this condition, but in the CM it is easy: all
four final particles must be at rest, with nothing ‘wasted’ in the form of kinetic energy.
(We can’t have that in the lab frame, of course, since conservation of momentum
requires that there be some residual motion.)

Let plor be the total energy—momentum four-vector in the lab; it is conserved,
so it doesn’t matter whether we evaluate it before or after the collision. We’ll do it

before:

E + mc?
p%OT = <—“C—: Ipl, 0, 0)

where E and p are the energy and momentum of the incident proton, and m is
the proton mass. Let p&, be the total energy—momentum four-vector in the CM.
Again, we can evaluate it before or after the collision; this time we’ll do it after:

Pror = (4me,0,0,0)
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por”

(a) O pp
P P — O\
p
Before After

~ ¢
O— =0 /o

Before After

(b)

Fig.36 p+p— p+p+p+p. (a) In the lab frame; (b) in the CM frame.

since (at threshold) all four particles are at rest. Now pk # phor , obviously, but
the invariant products p orPror a0d purorPior ore equal:

E 2
(E + mc) — p* = (4me)?

Using the standard invariant (Equation 3.50) to eliminate p?, and solving for E, we
find

E = 7mc*

Evidently, the incident proton must carry a kinetic energy at least six times its rest
energy, for this process to occur. (And in fact the first antiprotons were discovered
when the machine reached about 6000 MeV.) &
This is perhaps a good place to emphasize the distinction between a conserved
quantity and an invariant quantity. Energy is conserved — the same value after the
collision as before — but it is not invariant. Mass is invariant — the same in all
inertial systems — but it is not conserved. Some quantities are both invariant and
conserved (e.g. electric charge); many are neither (speed, for instance). As Example
3.4 indicates, the clever exploitation of conserved and invariant quantities can save
you a lot of messy algebra. It also demonstrates that some problems are easier to
analyze in the CM system, whereas others may be simpler in the lab frame.

Suggestion 4. If a problem seems cumbersome in the lab frame,
try analyzing it in the CM system.

Even if you're dealing with something more complicated than a collision of two
identical particles, the CM (in which pror = 0) is still a useful reference frame, for
in this system conservation of momentum is trivial: zero before, zero after. But you
might wonder whether there is always a CM frame. In other words, given a swarm
of particles with masses my, my, ms, ..., and velocities vy, v, v3,..., does there
necessarily exist an inertial system in which their total (three-vector) momentum
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is zero? The answer is yes; I will prove it by finding the velocity of that frame and
demonstrating that this velocity is less than c. The total energy and momentum in
the lab frame (S) are

Eror = Y _yimic%; ProT = Y Vifivi (3.52)
i i

Since pfoyr is a four-vector, we can use the Lorentz transformations to get the
momentum in system §', moving in the direction of pror with speed v

Etot
IProrl =¥ (lPTOT] - B CO )

In particular, this momentum is zero if v is chosen such that

v lprotle |2 yimivil

¢ Eror Y vimic

Now, the length of the sum of three-vectors cannot exceed the sum of their lengths
(this geometrically evident fact is known as the triangle inequality), so

> yimi(vi/c)
>ovimi

and since v; < ¢, we can be sure that v < ¢.* Thus the CM system always exists,
and its velocity relative to the lab frame is given by

v
-~
c

2
vou = 2202 (3.53)

Eror

It seems odd, looking back at the answer to Example 3.4, that it takes an incident
kinetic energy six times the proton rest energy to produce a p/p pair. After all, we're
only creating 2mc? of new rest energy. This example illustrates the inefficiency of
scattering off a stationary target; conservation of momentum forces you to waste a
lot of energy as kinetic energy in the final state. Suppose we could have fired the
two protons at one another, making the laboratory itself the CM system. Then it
would suffice to give each proton a kinetic energy of only mc?, one-sixth of what
the stationary-target experiment requires. This realization led, in the early 1970s,
to the development of colliding-beam machines (see Figure 3.7). Today, virtually
every new machine in high-energy physics is a collider.

Example 3.5 Suppose two identical particles, each with mass m and kinetic energy
T, collide head-on. Question: What is their relative kinetic energy, T (i.e. the kinetic
energy of one in the rest system of the other)?

* 1 am tacitly assuming that at least one of the particles is massive. If all of them are massless,
we may obtain v = ¢, in which case there is no CM system. For example, there is no CM frame
for a single photon.
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A O— ~—) B A O———— OB
(a) (b)

Fig. 3.7 Two experimental arrangements: (a) Colliding beams; (b) fixed target.

Solution: There are many ways to do this one. A quick method is to write down the
total four-momentum in the CM and in the lab

“ 2E o E +mc*
Pror = 7,0 » Pror = . »P

set (pror)” = (pror’)*:
() -z
c ¢
use Equation 3.50 to eliminate p’
2E? = mc*(E' + mc?)

and express the answer in terms of T = E — mc? and T' = F' — mc?

T
T =4T (1 3.54
( * 2m62> (3->4)

The classical answer would have been T’ = 4T, to which this reduces when T « mc?.
(In the rest system of B, A has, classically, twice the velocity, and hence four times as
much kinetic energy, as in the CM.) Now, a factor of 4 is some benefit, to be sure, but
the relativistic gain can be greater by far. Colliding electrons with a laboratory kinetic
energy of 1 GeV, for example, would have a relative kinetic energy of 4000 GeV! i

References
1 There are many excellent textbooks (1992) Spacetime Physics, 2nd edn.

on special relativity. I especially Freeman, San Francisco, C.A.
recommend Smith, J. H. (1996) 2 If you want to go into this
Introduction to Special Relativity, much more deeply, the standard
Dover, New York. For a fascinat- reference is Hagedorn, R. (1964)
ing (but unorthodox) approach, see Relativistic Kinematics, Benjamin,
(a) Taylor, E. F. and Wheeler, J. A. New York.

Problems

3.1 Solve Equation 3.1 for %, y, z, t in terms of &/, y, 2, ¢, and check that you recover
Equation 3.3.
3.2 (a) Derive Equation 3.4.
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(b) According to clocks on the ground (system S), streetlights A and B (situated 4km
apart) were both turned on at precisely 8:00 p.M. Which one went on first according
to an observer on a train (system S'), which moves from A toward B at % the speed
of light? How much later (in seconds) did the other light go on? Note: As always in
relativity, we are talking here about what S’ observed, after correcting for the time it
took the light to reach her, not what she actually saw (which would depend on where
she was located on the train).

3.3 (a) How do volumes transform? (If a container has volume V’ in its own rest frame, S,
what is its volume as measured by an observer in S, with respect to which it is moving
at speed v?)

(b) How do densities transform? (If a container holds p’ molecules per unit volume in its
own rest frame, S’, how many molecules per unit volume does it carry in S?)

3.4 Cosmic ray muons are produced high in the atmosphere (at 8000m, say) and travel
toward the earth at very nearly the speed of light (0.998 ¢, say).

(a) Given the lifetime of the muon (2.2 x 107 sec ), how far would it go before
disintegrating, according to prerelativistic physics? Would the muons make it to
ground level?

(b) Now answer the same question using relativistic physics. (Because of time dilation,
the muons last longer, so they travel farther.)

(c) Pions are also produced in the upper atmosphere. In fact, the sequence is proton
(from outer space) hits proton (in atmosphere) —p + p + pions. The pions then
decay into muons: 7~ — u~ + 7V, vt — ut +v,. But, the lifetime of the pion is
much shorter (2.6 x 1078 s). Assuming the pions have the same speed (0.998 c), will
they reach ground level?

3.5 Half the muons in a monoenergetic beam decay in the first 600 m. How fast are they
going?

3.6 As the outlaws escape in their getaway car, which goes 2c, the cop fires a bullet from
the pursuit car, which only goes %C. The muzzle velocity (speed relative to gun) of the
bullet is 1c. Does the bullet reach its target
(a) According to prerelativistic physics?

(b) According to relativity?

3.7 Find the matrix M that inverts Equation 3.12: ¥* = M}x"’ (use Equation 3.3). Show
that M is the matrix inverse of A: AM =1.

3.8 Show that the quantity I (in Equation 3.13) is invariant under Lorentz transformations
(Equation 3.8).

3.9 Given two four-vectors, a* = (3, 4, 1, 2) and b* = (5, 0, 3, 4), find: a,, b,, a?, b?,a - b,
a?, b, and a - b. Characterize a* and b* as timelike, spacelike, or lightlike.

3.10 A second-rank tensor is called symmetric if it is unchanged when you switch the indices

(s"# = s"VY; it is antisymmetric if it changes sign (a"# = —a®").

221

(a) How many independent elements are there in a symmetric tensor? (Since s
these would count as only one independent element.)

(b) How many independent elements are there in an antisymmetric tensor?

(c) Show that symmetry is preserved by Lorentz transformations — that is, if s*V is

symmetric, so too is s*¥’. What about antisymmetry?
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(d)If s*¥ is symmetric, show that s,, is also symmetric. If a*¥ is antisymmetric, show
that a,,, is antisymmetric.

(e) If sV is symmetric and g is antisymmetric, show that s*a,,, = 0.

(f) Show that any second-rank tensor (#*") can be written as the sum of an antisymmetric
part (¢*") and a symmetric part (s*?): #*¥ = a*¥ + s*V. Construct s*” and a*” explicitly,
given t*¥.

3.11 A particle is traveling at -g-c in the x direction. Determine its proper velocity, n* (all four
components).

3.12 Consider a collision in which particle A (with 4-momentum p/) hits particle B (4-
momentum pl), producing particles C (p) and D (p}y). Assume the (relativistic) energy
and momentum are conserved in systems S (py + p = p% + p). Using the Lorentz
transformations (Eq. 3.12), show that energy and momentum are also conserved in
g.

3.13 Is p* timelike, spacelike, or lightlike for a (real) particle of mass m? How about a
massless particle? How about a virtual particle?

3.14 How much more does a hot potato weigh than a cold one (in kg)?

3.15 A pion traveling at speed v decays into a muon and a neutrino, 7~ — p” -+ V. If the
neutrino emerges at 90° to the original pion direction, at what angle does the 1 come
of? [Answer: tan 6 = (1 — m? /mZ)/(2By?).]

3.16 Particle A (energy E) hits particle B (at rest), producing particles Cq, Cp,...:A+ B— C;
+ Cy + - -+ + Cy. Calculate the threshold (i.e. minimum E) for this reaction, in terms
of the various particle masses.

2

2 2
My T Mp )
Answer : -, where M=m;+my+...+my,

ZmB

3.17 Use the result of Problem 3.16 to find the threshold energies for the following reactions,
assuming the target proton is stationary:*

@p+p—>ptp+na’
bp+p—>ptp+at+a”
O~ +p—>p+p+n
@7~ +p—> K+ %0
@p+p—>p+EF+K°
3.18 The first man-made Q~ (Fig. 1.9) was created by firing a high-energy proton at a
stationary hydrogen atom to produce a K* /K~ pairt p+p — p+ p + K* + K7;
the K~ in turn hit another stationary proton, K~ + p — Q= + K° + K*. What

minimum kinetic energy is required (for the incident proton), to make an Q in this
way? (Gell-Mann must have done this calculation to see whether the experiment would

be feasible.)

* Beware: The Particle Physics Booklet (and thing, m, = 105.658 MeV/c?. It is safest to
most other sources) list particle ‘masses’ in convert formulas from mass to rest energy
MeV. For example, the mass of the muon before plugging in any numbers. In this
is quoted as 105.658 MeV. What they mean, case, for example, multiply top and bottom
of course, is the rest energy of the muon: by ¢2, to get Epiy = [(Mc?)? — (mac?)? —

myc? = 105.658 MeV — or, what is the same (mpct)?)/2(mpc?).
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3.19 Particle A, at rest, decays into particles Band C (A — B + C).

(a) Find the energy of the outgoing particles, in terms of the various masses.

2 2 2
ms + my —m
{Answer: Egp=-—24 B Ccz]

ZH’LA

(b) Find the magnitudes of the outgoing momenta.

Mm3, mp, mZ)

Answer : = =
nswer: |pgl = [pc| AC,

where A is the so-called triangle function :

| A(x,y,2) = %2+ y* + 2% — 2xp — 2xz — 2pz. |

(c) Note that A factors: A(a?, b*, 2) = (a+ b+ c)(a+ b —c)(a— b+ c)(@a — b — c). Thus
Ipsl goes to zero when my = mp + mc, and runs imaginary if ma < (mg + mc).
Explain.
3.20 Use the result of Problem 3.19 to find the CM energy of each decay product in the
following reactions (see footnote to Problem 3.17):

@2 — A+ K-

3.21 A pion at rest decays into a muon and a neutrino (v~ — u~ + V). On the average,
how far will the muon travel (in vacuum) before disintegrating? [Answer: d = [(m2 —
mﬁ)/(Zmn my)let = 186 m.]

3.22 Particle A, at rest, decays into three or more particles: A~ B+ C+ D+ ---.

(a) Determine the maximum and minimum energies that B can have in such a decay, in
terms of the various masses.
(b) Find the maximum and minimum electron energies in muon decay, u= — e~ +
Ve + vy
3.23 (a) A particle traveling at speed u approaches an identical particle at rest. What is
the speed (v) of each particle in the CM frame? (Classically, of course, it would
just be u/2.)

[Answer: (2 /u) (1 /T2 /62>]
(b)Find y = 1//1 — v%/c? interms of y' = 1//1 — u?/c%.

[Answer: \/(y' + 1)/2]
(c) Use your result in part (b) to express the kinetic energy of each particle in the CM
frame, and thus re-derive Equation 3.54
3.24 In reactions of the type A+ B — A + C; + C; + - - - (in which particle A scatters off
particle B, producing Cq, Cy, .. .), there is another inertial frame, in addition to the lab
(B at rest) and the CM (pror = 0), which is sometimes useful. It is called the Breit, or
‘brick wall’ frame, and it is the system in which A recoils with its momentum reversed
(Pafier = —Prefore)> as though it had bounced off a brick wall. Take the case of elastic
scattering (A + B — A + B); if particle A carries energy E, and scatters at an angle 6,
in the CM, what is its energy in the Breit frame? Find the velocity of the Breit frame
(magnitude and direction) relative to the CM.
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3.25 In a two-body scattering event, A + B — C + D, it is convenient to introduce the
Mandelstam variables

s = (pa+pp)*/c
t = (pa —pc)’/c’
u = (pa — pp)’/c*

(a) Show that s + t + u = m? + m% + m& + m?,
The theoretical virtue of the Mandelstam variables is that they are Lorentz invariants,
with the same value in any inertial system. Experimentally, though, the more accessible
parameters are energies and scattering angles.

(b)Find the CM energy of A, in terms of s, t, u and the masses. [Answer: EM =
(s+ mi — md)c?/2./5 ]

(¢) Find the Lab (B at rest) energy of A. [Answer: ER® = (s — m% — m})c?/2mp.]

(d) Find the total CM energy (Etor = Es + Ep = Ec + Ep). [Answer: E%dT = ./5¢%]

3.26 For elastic scattering of identical particles, A + A — A + A, show that the Mandelstam
variables (Problem 3.25) become

s = 4(p2 + mzcz)/c2
t = —2p*(1 — cos 6)/c*

u = —2p*(1 + cos ) /c*

where p is the CM momentum of the incident particle, and @ is the scattering angle.

3.27 Work out the kinematics of Compton scattering: a photon of wavelength A collides
elastically with a charged particle of mass m. If the photon scatters at angle 9, find its
outgoing wavelength, A'. [Answer: A = A 4 (hf/mc)(1 — cos 6).]
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Symmetries

Symmetries play an important role in elementary particle physics, in part because of their
relation to conservation laws and in part because they permit one to make some progress
when a complete dynamical theory is not yet available. The first section of this chapter
contains some general remarks about the mathematical description of symmetry (group
theory) and the relation between symmetry and conservation laws (Noether’s theorem).
We then take up the case of rotational symmetry and its relation to angular momentum
and spin. This leads in turn to the ‘internal’ symmetries — isospin, SU(3), and flavor
SU(6). Finally, we consider ‘discrete’ symmetries — parity, charge conjugation, and
time reversal. Except for the theory of spin (Section 4.2) — which will be used extensively
in later chapters — and the material on parity in Section 4.1 — which is useful
background for Chapter 9 — this chapter can be studied as superficially (or as deeply)
as the reader wishes. I recommend a quick pass at this stage and a return to specific
sections later, if warranted. Some knowledge of matrix theory is presupposed; readers
familiar with quantum mechanics will find the sections on angular momentum an easy
review (those unacquainted with quantum mechanics may find them hopelessly obscure,
in which case they should study the relevant chapter of an introductory quantum text).
Group theory is touched on here in a scandalously cursory fashion (my main purpose is
to introduce some standard terminology); a serious student of elementary particle physics
should plan eventually to study this subject in far greater detail.

4.1
Symmetries, Groups, and Conservation Laws

Take a look at the graph in Figure 4.1. I won't tell you what the functional form of
f(x) is, but this much is clear: It's an odd function, f(—x) = —f(x). (If you don’t
believe me, trace the curve, rotate the tracing by 180°, and check that it perfectly
fits the original.) From this it follows, for instance, that

+3
[F(=2)1° = [f(2)° | fwdx=o,
df _ df +7 — +7 ,
&, —dxl, B [f (x)]° dx = 2 i [f (x)]* dx, (4.1)

Introduction to Elementary Particles, Second Edition. David Griffiths
Copyright © 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-40601-2
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Fig. 41 An odd function.

that no cosines appear in the Fourier expansion of f(x), and that its Taylor series
contains only odd powers of x. In fact, you can deduce quite a lot about f (x), even
though you don’t know its functional form, just from the observation that it has
a particular symmetry — oddness, in this case. In physics, intuition or a general
principle often suggests symmetries in a problem, and their systematic exploitation
can be an extremely powerful tool.*

The most striking examples of symmetry in physics are, I suppose, crystals. But
we’re not so much interested here in static symmetries of shape as in dynamical sym-
metries of motion. The Greeks apparently believed that the symmetries of nature
should be directly reflected in the motion of objects: stars must move in circles be-
cause those are the most symmetrical trajectories. Of course, planets do not, and that
was embarrassing (it was not the last time that naive intuitions about symmetry ran
into trouble with experiment). Newton recognized that fundamental symmetries
are revealed not in the motions of individual objects, but in the set of all possible mo-
tions — symmetries are manifest in the equations of motion rather than in particular
solutions to those equations. Newton's law of universal gravitation, for instance, ex-
hibits spherical symmetry (the force is the same in all directions), and yet planetary
orbits are elliptical. Thus the underlying symmetry of the system is only indirectly
revealed to us; indeed, you might wonder how we would ever have discovered it
from the observed planetary trajectories, if we didn’t have a pretty strong hunch
that the gravitational field of the sun ‘ought’ to be spherically symmetrical.

It was not until 1917 that the dynamical implications of symmetry were com-
pletely understood. In that year, Emmy Noether published her famous theorem

* In some respects, the appeal to symmetry mature theory, symmetry considerations of-
is characteristic of an incomplete theory. For ten lead to deeper understanding and calcu-
example, if we somehow discovered the ex- lational simplification. For instance, if you're
plicit form of f(x), say, f(x) = e sin(x?), called upon to integrate f(x) from —3 to +3,
then the theorems in Equation 4.1 would lose it pays to notice that f(x) is odd, even if you
their luster. Why bother with partial informa- do know its functional form.

tion when we can have it all? But even in a



4.1 Symmetries, Groups, and Conservation Laws

Table 4.1 Symmetries and conservation laws.

Symmetry Conservation law

Translation in time <>  Energy

Translation in space <  Momentum
Rotation <> Angular momentum
Gauge transformation <« Charge

relating symmetries and conservation laws:
Noether’s Theorem: Symmetries <> Conservation laws

Every symmetry of nature yields a conservation law; conversely, every conservation
law reflects an underlying symmetry. For example, the laws of physics are sym-
metrical with respect to translations in time (they work the same today as they did
yesterday). Noether’s theorem relates this invariance to conservation of energy. If
a system is invariant under translations in space, then momentum is conserved; if
it is symmetrical under rotations about a point, then angular momentum is con-
served. Similarly, the invariance of electrodynamics under gauge transformations
leads to conservation of charge (we call this an internal symmetry, in contrast to
the space-time symmetries). I'm not going to prove Noether’s theorem; the details
are not terribly enlightening [1]. The important thing is the profound and beautiful
idea that symmetries are associated with conservation laws (see Table 4.1).

I have been speaking rather casually about symmetries, and I cited some
examples; but what precisely is a symmetry? It is an operation you can perform
(at least conceptually) on a system that leaves it invariant — that carries it into a
configuration indistinguishable from the original one. In the case of the function in
Figure 4.1, changing the sign of the argument, x — —x, and multiplying the whole
thing by —1, f(x) = —f(—x), is a symmetry operation. For a meatier example,
consider the equilateral triangle (Figure 4.2). It is carried into itself by a clockwise
rotation through 120° (R ), and by a counterclockwise rotation through 120° (R_),
by flipping it about the vertical axis a (Ry), or around the axis through b (Ry), or ¢
(R;). Is that all? Well, doing nothing (I) obviously leaves it invariant, so this too is a
symmetry operation, albeit a pretty trivial one. And then we could combine opera-
tions — for example, rotate clockwise through 240°. But that’s the same as rotating
counter clockwise by 120° (i.e. RZ = R_). As it turns out, we have already identified
all the distinct symmetry operations on the equilateral triangle (see Problem 4.1).

The set of all symmetry operations (on a particular system) has the following
properties:

1. Closure: If R; and R; are in the set, then the product, RiR; —
meaning: first perform R;, then perform R;* — is also in the
set; that is, there exists some Ry such that RjR; = Ry.

* Note the ‘backwards’ ordering. Think of the symmetry operations as acting on a system to their
right: RiR;(A) = Ri[Rj(A)): Ry acts first, and then R; acts on the result.
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Fig. 4.2 Symmetries of the equilateral triangle.

2. Identity: There is an element I such that IR; = R;I = R; for
all elements R;.

3. Inverse: For every element R; there is an inverse, Ri” 1, such
that RR;' = R 'R; = L.

4. Associativity: Ri(RjRy) = (R;iRj)Ry.

These are the defining properties of a mathematical group. Indeed, group theory
may be regarded as the systematic study of symmetries. Note that group elements
need not commute: R;R; # RiR;, in general. If all the elements do commute, the
group is called Abelian. Translations in space and time form Abelian groups;
rotations (in three dimensions) do not [2]. Groups can be finite (like the triangle
group, which has just six elements) or infinite (for example, the set of integers, with
addition playing the role of group ‘multiplication’). We shall encounter continuous
groups (such as the group of all rotations in a plane), in which the elements depend
on one or more continuous parameters® (the angle of rotation, in this case), and
discrete groups, in which the elements may be labeled by an index that takes on
only integer values (all finite groups are, of course, discrete).

As it turns out, most of the groups of interest in physics can be formulated as
groups of matrices. The Lorentz group, for instance, consists of the set of 4 x
4 A matrices introduced in Chapter 3. In elementary particle physics, the most
common groups are of the type mathematicians call U(n): the collection of all
unitary n x n matrices (see Table 4.2). (A unitary matrix is one whose inverse
is equal to its transpose conjugate: U~! = U*.) If we restrict ourselves further to
unitary matrices with determinant 1, the group is called SU(n). (The S stands for
‘special’, which just means ‘determinant 1°.) If we limit ourselves to real unitary
matrices, the group is O(n). (O stands for ‘orthogonal’; an orthogonal matrix is
one whose inverse is equal to its transpose: O~! = O.) Finally, the group of real,
orthogonal, n x n matrices of determinant 1 is SO(n); SO(n) may be thought of
as the group of all rotations in a space of n dimensions. Thus, SO(3) describes the

* If this dependence takes the form of an analytic function, it is called a Lie group. All of the con-
tinuous groups one encounters in physics are Lie groups [3].
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Table 4.2 Important symmetry groups.

Group name  Dimension  Matrices in group

U(n) nxn unitary (U*U = 1)

SU(n) nxn unitary, determinant 1
O(n) nXn orthogonal (OO = 1)
SO(n) nXn orthogonal, determinant 1

rotational symmetry of our world, a symmetry that is related by Noether’s theorem
to the conservation of angular momentum. Indeed, the entire quantum theory of
angular momentum is really closet group theory. It so happens that SO(3) is almost
identical in mathematical structure to SU(2), which is the most important internal
symmetry in elementary particle physics. So the theory of angular momentum, to
which we turn next, will actually serve us twice.

One final thing. Every group G can be represented by a group of matrices: for
every group element a there is a corresponding matrix M,, and the correspon-
dence respects group multiplication, in the sense that if ab = ¢, then MM}, = M,.
A representation need not be ‘faithful’: there may be many distinct group ele-
ments represented by the same matrix. (Mathematically, the group of matrices is
homomorphic, but not necessarily isomorphic, to G.) Indeed, there is a trivial case,
in which we represent every element by the 1 x 1 unit matrix (which is to say, the
number 1). If G is a group of matrices, such as SU(6) or O(18), then it is (obviously)
a representation of itself — we call it the fundamental representation. But there will,
in general, be many other representations, by matrices of various dimensions. For
example, SU(2) has representations of dimension 1 (the trivial one), 2 (the matrices
themselves), 3, 4, 5, and in fact every positive integer. A major problem in group
theory is the characterization of all the representations of a given group.

Of course, you can always construct a new representation by combining two old
ones, thus

M

M, =

(zeros) | M, %

But we don’t count this separately; when we list the representations of a group,
we are talking about the so-called irreducible representations, which cannot be
decomposed into block-diagonal form. Actually, you have already encountered
several examples of group representations, probably without realizing it: an ordinary
scalar belongs to the one-dimensional representation of the rotation group, SO(3),
and a vector belongs to the three-dimensional representation; four-vectors belong
to the four-dimensional representation of the Lorentz group; and the curious
geometrical arrangements of Gell-Mann’s Eightfold Way correspond to irreducible
representations of the group SU(3).
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4.2
Angular Momentum

The earth, in its motion, carries two kinds of angular momentum: orbital angular
momentum, rmv, associated with its annual revolution around the sun, and spin
angular momentum, Iw, associated with its daily rotation about the north—south
axis. The same goes for the electron in a hydrogen atom: it too carries both orbital
and spin angular momentum. In the macroscopic case, the distinction is not terribly
profound; after all, the spin angular momentum of the earth is nothing but the sum
total of the ‘orbital’ angular momenta of all the rocks and dirt clods that make it up,
in their daily ‘orbit’ around the axis. In the case of the electron this interpretation
is not open to us: the electron, as far as we know, is a true point particle; its spin
angular momentum is not attributable to constituent parts revolving about an axis,
but is simply an intrinsic property of the particle itself (see Problem 4.8).
Classically, we are free to measure all three components of the orbital angular
momentum vector, L = r x mv, to any desired precision, and these components
can assume any values whatever. In quantum mechanics, however, it is impossible
in principle to measure all three components simultaneously; a measurement of
Ly, say, inevitably alters the value of L,, by an unpredictable amount. The best
we can do is to measure the magnitude of L, (or rather, its square: [> =L - L)
together with one component (which we customarily take to be the z component,
L,). Furthermore, these measurements can only return certain ‘allowed’ values.*
Specifically, a (competent) measurement of L2 always yields a number of the form

(1 + 1)R? (4.2)

where [ is a nonnegative integer:

1=0,1,2,3,... (4.3)

For a given value of ], a measurement of L, always gives a result of the form

mh (4.4)
where my is an integer in the range —I to +I:

m=—lL—l+1,...,-1,0,+1,...,1— 1,1 (4.5)
(21 + 1) possibilities. Figure 4.3 may help you to visualize the situation. Here | = 2,

so the magnitude of L is V6h = 2.45 F: L, can assume the values 27, #, 0, — #, or

* T am not going to prove the quantization rules for angular momentum, and if this material is
new to you, I suggest that you consult a textbook on quantum mechanics. All I propose to do
here is summarize the essential results we will need in what follows.



4.2 Angular Momentum

w4

Fig. 4.3 Possible orientations of the angular momentum vector for | = 2,

—2h. Notice that the angular momentum vector cannot be oriented purely in the z
direction.

The same goes for spin angular momentum: a measurement of S? = § - S can
only return values of the form

s(s + 1)A? (4.6)

In the case of spin, however, the quantum number s can be a half-integer as well
as an integer:

14395
s=(),i,1,§,2,~2-,... (47)
For a given value of s, a measurement of S, must yield an answer of the form
meh (4.8)
where m; is an integer or half-integer (whichever s is) in the range —sto s:
ms=—5,—s+1,...,s—1,s (4.9)
(25 + 1) possibilities.
Now, a given particle can be given any orbital angular momentum I you like, but
for each type of particle, the value of s is fixed. Every pion or kaon, for example,
has s = 0; every electron, proton, neutron, and quark carries s = %; for the p, the

¥, the photon, and the gluon, s = 1; for the A’s and the ™, s = 3; and so on. We
call s the ‘spin’ of the particle. Particles with half-integer spin are fermions — all
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Table 4.3 Classification of particles by spin.

Bosons (integer spin) Fermions (half-integer spin)
Spin 0 Spin 1 Spin % Spin %
- Mediators Quarks/Leptons - <« Elementary
Pseudoscalar mesons | Vector mesons Baryon octet Baryon decuplet | < Composite

baryons, leptons, and quarks are fermions; particles with integer spin are bosons —
all mesons and mediators are bosons (see Table 4.3).*

4.2.1
Addition of Angular Momenta

Angular momentum states are represented by ‘kets’: [l my ) or |s ms). Thus, if I
say the electron in a hydrogen atom occupies the orbital state |3 —1) and the spin
state | 1), I am telling you that [ =3, my = —1, s = 1 (which is unnecessary, of
course; if it is an electron, s must be %), and mg = % Now, it may happen that we
are not interested in the spin and orbital angular momenta separately, but rather in
the total angular momentum, L + S. (In the presence of coupling between L and S
— tidal, if it’s the earth—sun system; magnetic, for the electron—proton system - it
is the sum, and not L and S individually, that will be conserved.) Or perhaps we are
studying the two quarks that go to make a i meson; in this case, as we shall see,
the orbital angular momentum is zero, but we are confronted with the problem of
combining the two quark spins to get the total spin of the ¥: § = §; + S;. In either
case, the question arises: how do we add two angular momenta'

J=Nh+] (4.10)

Classically, of course, we just add the components. But in quantum mechanics
we do not have access to all three components; we are obliged to work with one
component and the magnitude. So the question becomes: if we combine states
liim1) and |jamy), what total angular momentum state(s) |jm) do we get? The z
components still add, naturally, so

m = my + my (4.11)

but the magnitudes do not; it all depends on the relative orientation of J; and J,
(Figure 4.4). If they are parallel the magnitudes add, but if they are antiparallel the

* The terms ‘fermion’ and ‘boson’ refer to The ‘connection between spin and statistics’
the rules for constructing composite wave- (all fermions have half-integer spin and all
functions for identical particles: boson bosons have integer spin) is a deep theorem
wave functions must be symmetric under _ in quantum field theory.
interchange of any two particles, fermion T T'll use the letter ] for generic angular mo-
wavefunctions are antisymmetric. This leads mentum — it could be orbital (L), spin (S), or
to the Pauli exclusion principle for fermions, some combined quantity.

and to profound differences in the statis-
tical mechanics of the two particle types.



4.2 Angular Momentum

Fig. 4.4 Addition of angular momenta.

magnitudes subtract; in general, the magnitude of the vector sum is somewhere
between these extremes. As it turns out, we get every j from (j; + j2) down to |j1 — jal,
in integer steps [4]:

J=lh—nbLh—nl+L... (1 +j2) =1 (1 +5) (4.12)

For instance, a particle of spin 1 in an orbital state | = 3 could have total angular
momentum j = 4 (i.e. J2 = 20/2), or j = 3 (J2 = 12K%), or j = 2 (J* = 6K?).

Example 4.1 A quark and an antiquark are bound together, in a state of zero orbital
angular momentum, to form a meson. Question: What are the possible values of
the meson’s spin?

Solution: Quarks (and therefore also antiquarks) carry spin 3, so we can get
2+2=1or 1 —1=0. The spin-0 combination gives us the ‘pseudoscalar’
mesons (7’s, K’s, 1, n’) — ‘scalar’ means spin 0, ‘pseudo-’ will be explained shortly.
The spin-1 combination gives the ‘vector’ mesons (p’s, K*’s, ¢, w) — ‘vector’ means
spin 1.

To add three angular momenta, we combine two of them first, using Equation
4.12, and then add on the third. Thus, if we allow the quarks in Example 4.1 an
orbital angular momentum I > 0, we get mesons with spin I+ 1, [, and [ — 1.
Because the orbital quantum number has to be an integer, all mesons carry integer
spin (they are bosons). By the same token, all baryons (made up of three quarks)

must have half-integer spin (they are fermions).

Example 4.2 Suppose you combine three quarks in a state of zero orbital angular
momentum. Question: What are the possible spins of the resulting baryon?
Solution: From two quarks, each spin 1, we get a total angular momentum of
1+ % = lor 7 — 1 = 0. Adding in the third quark yields 1 + 1 = —3— orl— % = %
(when the first two add to 1), and 0 + 3 = 1 (when the first two add to zero). Thus
the baryon can have a spin of 2 or 1 (and the latter can be achieved in two different
ways). In practice, s= 2 is the decuplet, s= 1 is the octet, and evidently, the
quark model would allow for another family with s = 1. (If we permit the quarks
to revolve around one another, throwing in some orbital angular momentum,
the number of possibilities increases accordingly — but the total will always be a
half-integer).
Well, Equation 4.12 tells us what total angular momenta j we can obtain by
combining j; and j,, but occasionally we require the explicit decomposition of
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5/2
2x1/2) 50 [52 a2
[+2 12] 1 |32 +32
¥2 =12 |15 45 | 52 372
+1 412 | 45 -1/5 [+12 +1/2
1 -1/2 2/5 3/5 5/2 3/2
0 +1/2 3/5 ~2/5}1-1/2 -1/2
0 -12| 35 2/5| 52 3/2
-1 +1/2| 2/6 -3/5|-3/2 -3/2
-1 =12 | 4/5 1/5| 5/2
-2 +1/2 | 1/5 -4/5 |-5/2
-2 -1/2 | 1

Fig. 4.5 Clebsch—Gordan coefficients for ji =2, jo = 5
(A square root sign over each number is implied.)

ljim ) [j2myz) into specific states of total angular momentum, |jm):

(1+52)
fimdliam) = > Cottmlim),  with m = mq +m (4.13)
j=li1—al

The numbers Cl’ Iy m, ate known as Clebsch—Gordan coefficients. A book on advanced
quantum mechanics will explain how to calculate them. In practice, we normally
look them up in a table. (There is one in the Particle Physics Booklet, and the case
j1 =2, j» = 3 is reproduced in Figure 4.5) The Clebsch—-Gordan coefficients tell
you the probability of getting j(j + 1)#?, for any particular allowed j, if we measure
J? on a system consisting of two angular momentum states [j;my) and [jm;): the
probability is the square of the corresponding Clebsch—Gordan coefficient.

Example 4.3  The electron in a hydrogen atom occupies the orbital state |2 —1)
and the spin state l% 1). Question: If we measure J?, what values might we get, and
what is the probability of each?

Solution: The possible values ofj are l+ s=2+i=2andl-s=2-3=3.
The z components add: m =-1+1=-1 Wegoto the Clebsch— Gordan tabl
(Figure 4.5) labeled 2 x 3, which indicates that we are combining j; =2 withj, =
and look for the honzontal row, labeled —1, 1 2, : these are the values of mq and mz

Reading off the two entries, we find 12 - 1) f [ \/- 1— — =

So the probability of getting j = —2— is 2, and the probabﬂlty of gettmg j=3is %
Notice that the probabilities add to 1, as, of course, they must. 1%

Example 4.4 We know from Example 4.1 that two spin-3 states combine to give
spin 1 and spin 0. Problem: Find the explicit Clebsch—Gordan decomposition for
these states.
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Solution: Consulting the 1 x 1 table, we find

!%%)i%%) =[11)
iyl 1 _1_ 10 100
I3 — 35 35) = (7)110> (75)100)
7 -3 - =1-1
Thus the three spin 1 states are
1) =I5 I3 3)
110) = () [l 5 =2 +17 — D3 7] (4.15)
1-1) = % —%)l% *%)
whereas the spin O state is
00) = (1/V2[I3 13 -5 — 13 - D3] (4.16)

By the way, Equations (4.15) and (4.16) can be read directly off the Clebsch—Gordan
table; the coefficients work both directions:

) = > oy i1 ma) [iama) (4.17)
J1d2

This time we read down the columns, instead of along the rows. The spin-1
combination is called the ‘“riplet’, for obvious reasons, and spin 0 is called the
‘singlet’. For future reference, notice that the triplet is symmetric under interchange
of the particles, 1 <> 2, whereas the singlet is antisymmetric (that is, it changes
sign). Incidentally, in a singlet state the spins are oppositely aligned (antiparallel);
however, it is not the case that in a triplet state the spins are necessarily parallel;
they are for m = 1 and m = —1, but not for m = 0. ;

422
Spin %

The most important spin system iss= 2 ; the proton, neutron, electron, all quarks,
and all leptons carry spin 1. Furthermore, once you understand the formalism for
s = 3, any other caseis a relatwely simple matter to work out. So I will pause here
to develop the theory of spin —;— in some detail.

A particle with spin 1 can have m, = 2 (‘spin up’), or ms = —3 2 (‘spin down’).
Informally, we represent these two states by arrows: 1 and |. Buta better notation
is afforded by two-component column vectors, or spinors:

b=(3). 1-1=()) o
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It is often said that a particle of spin 1 can only exist in one or the other of these
two states, but that is quite false. The most general state of a spin-J particle is the
linear combination

ERCRT

where « and B are two complex numbers. It is true that a measurement of S,
can only return the value +17% or —17, but the first outcome, say, does not prove
that the particle was in the state 1 prior to the measurement. In the general case
(Equation 4.19), |a|? is the probability that a measurement of S, would yield the
value +%ﬁ, and |B|? is the probability of getting —%ﬁ. Since these are the only
allowed results, it follows that

)+ 18P =1 (4.20)

Apart from this ‘normalization’ condition, there is no a priori constraint on the
numbers « and B.

Suppose now that we are to measure Sy or S, on a particle in the generic state
given by Equation 4.19 What results might we get, and what is the probability of
each? Symmetry dictates that the allowed values be +17% — after all, it's perfectly
arbitrary which direction we choose to call z in the first place. But determining
the probabilities is not so simple. To each component of S we associate a 2 x 2
matrix:*

R Efo 1 ~  Kh{0 —i . Ef{1 0
SX:_ , = — . , z = = .
2 (1 0) > 2 (1 o) S 2 (0 —1) (+21)

The eigenvalues of S, are i% , and corresponding normalized eigenvectors
arel

1
Xs = <i~/i ) (4.22)
/2

* Again, the derivation of these matrices will be s called an eigenvector of a given n x n ma-
found in any quantum-mechanics text. My trix M if
purpose here is to show you how angular mo-
mentum is handled in particle physics, not to My =ix
explain why it is done this way.

. . for some number A (the eigenvalue). Notice
I A nonzero column matrix

that any multiple of x is still an eigenvector,
a1 with the same eigenvalue.
)

X praad

On
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(see Problem 4.15). An arbitrary spinor (oe) can be written as a linear combination

B

of these eigenvectors:

By 1
("‘) = a(“{i) +b( V2 ) (4.23)
P 7 ~7

G =)
a= «/i [a ]’ - \/_2— {O[ ﬂ] ( )

The probability that a measurement of S, will yield the value -12-ﬁ is |al?; the
probability of getting — 37 is |b|%. Evidently, |a|? + |b|*> = 1 (see Problem 4.16).
The general procedure, of which this was a particular instance, is as follows:
1. Construct the matrix, A, representing the observable A in
question.
2. The allowed values of A are the eigenvalues of A.
3. Write the state of the system as a linear combination of
eigenvectors of A; the absolute square of the coefficient of
the ith eigenvector is the probability that a measurement of
A would yield the ith eigenvalue.

where

Example 4.5 Suppose we measure (Sy)? on a particle in the state (Z) Question:

What values might we get, and what is the probability of each?
Solution. The matrix representing (S)? is the square of the matrix representing S,:

o W1 0

{9656

every spinor is an eigenvector of 52, with eigenvalue %. Thus we would be certain to

get % (probability 1). The same goes for S)z, and 82, so every spinor is an eigenstate

A A Ps A . . 2 . . .
of 82 =82 + S% + 82, with eigenvalue 22-. This should come as no surprise — in

Since

4
general, for spin s we must have S = s(s + 1)72°.

For mathematical purposes, the factor of % in Equation 4.21 is ugly, and it is
customary to introduce the Pauli spin matrices:

0 1 0 —i 10
Gx:(]. o)’ GY:(i 0)’ (’Z:(o —1) (4.20)
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so that § = (%)a. The Pauli matrices have many interesting properties, some of
which are explored in Problems 4.19 and 4.20. We shall encounter them repeatedly
in the course of this book.

In a sense, spinors (two-component objects) occupy an intermediate position
between scalars (one component) and vectors (three components). Now, when you
rotate your coordinate axes, the components of a vector change, in a prescribed
manner (see Problem 4.6), and we might inquire how the components of a spinor
transform, under the same circumstances. The answer [5] is provided by the
following rule:

“) — v (© 427
< /3/> @) 8 (4.27)

where U(@) is the 2 x 2 matrix
U(9) = e~ 100)/2 (4.28)

The vector @ points along the axis of rotation, and its magnitude is the angle of
rotation, in the right-hand sense, about that axis. Notice that the exponent here is
itself a matrix! An expression of this form is to be interpreted as shorthand for the
power series:

et =1+A+ 1A+ A 4 (4.29)

(see Problem 4.21).* As you can check for yourself (Problem 4.22), U(@) is a unitary
matrix of determinant 1; in fact, the set of all such rotation matrices constitutes
the group SU(2). Thus spin-1 particles transform under rotations according to the
two-dimensional representation of SU(2). Similarly, particles of spin 1, described by
vectors, belong to the three-dimensional representation of SU(2); spin—% particles,
described by a four-component object, transform under the four-dimensional
representation of SU(2); and so on. (The construction of these higher-dimensional
representations is explored in Problem 4.23.) You're probably wondering what
SU(2) has to do with rotations; well, as I mentioned earlier, SU(2) is essentially™
the same group as SO(3), the group of rotations in three dimensions. Particles of

different spin, then, belong to different representations of the rotation group.

L

Beware: For matrices it is not the case that
ete? = eA8, in general. You might want to

check this by using the matrices in Problem
4.21. However, the usual rule does apply if A

and B commute (i.e. if AB = BA).

" There is actually a subtle distinction between

SU(2) and SO(3). According to Problem 4.21,
the matrix U for rotation through an angle
of 27 is —1; a spinor changes sign under such
a rotation. And yet, geometrically, a rotation
through 27 is equivalent to no rotation at all.

SU(2) is a kind of ‘doubled’ version of SO(3),
in which you don’t come back to the begin-
ning until you have turned through 720°. In
this sense, spinor representations of SU(2)
are not ‘true’ representations of the rotation
group, and that’s why they do not appear in
classical physics. In quantum mechanics only
the square of the wave function carries phys-
ical significance, and in the squaring the mi-
nus sign goes away.
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4.3
Flavor Symmetries

There’s an extraordinary thing about the neutron, which Heisenberg observed
shortly after its discovery in 1932: apart from the obvious fact that it carries
no charge, it is almost identical to the proton. In particular, their masses are
astonishingly close, m, = 938.28 MeV/c%, m, = 939.57 MeV/c?. Heisenberg [6]
proposed that we regard them as two ‘states’ of a single particle, the nucleon.
Even the small difference in mass might be attributed to the fact that the proton
is charged, since the energy stored in its electric field contributes, according to
Einstein’s formula E = mc?, to its inertia. (Unfortunately, this argument suggests
that the proton should be the heavier of the two, which is not only untrue, but would
be disastrous for the stability of matter. More on this in a moment.) If we could
somehow ‘turn off’ all electric charge, the proton and neutron would, according to
Heisenberg, be indistinguishable. Or, to put it more prosaically, the strong forces
experienced by protons and neutrons are identical.

To implement Heisenberg’s idea, we write the nucleon as a two-component
column matrix

N = (‘Z) (4.30)
p= ((1)) and n= <(1)) (4.31)

This is nothing but notation, of course, but it is notation seductively reminiscent
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