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Preface

The Standard Model of particle physics represents one of the triumphs of modern
physics. With the discovery of the Higgs boson at the LHC, all of the particles in the
Standard Model have now been observed. The main aim of this book is to provide
a broad overview of our current understanding of particle physics. It is intended to
be suitable for final-year undergraduate physics students and also can serve as an
introductory graduate-level text. The emphasis is very much on the modern view
of particle physics with the aim of providing a solid grounding in a wide range of
topics.

Our current understanding of the sub-atomic Universe is based on a number of
profound theoretical ideas that are embodied in the Standard Model of particle
physics. However, the development of the Standard Model would not have been
possible without a close interplay between theory and experiment, and the struc-
ture of this book tries to reflects this. In most chapters, theoretical concepts are
developed and then are related to the current experimental results. Because parti-
cle physics is mostly concerned with fundamental objects, it is (in some sense) a
relatively straightforward subject. Consequently, even at the undergraduate level,
it is quite possible to perform calculations that can be related directly to the recent
experiments at the forefront of the subject.

Pedagogical approach

In writing this textbook I have tried to develop the subject matter in a clear and
accessible manner and thought long and hard about what material to include. Whilst
the historical development of particle physics is an interesting topic in its own right,
it does not necessarily provide the best pedagogical introduction to the subject. For
this reason, the focus of this book is on the contemporary view of particle physics
and earlier experimental results are discussed only to develop specific points. Sim-
ilarly, no attempt is made to provide a comprehensive review of the many experi-
ments, instead a selection of key measurements is used to illustrate the theoretical
concepts; the choice of which experimental measurements to include is primarily
motivated by the pedagogical aims of this book.

This textbook is intended to be self-contained, and only a basic knowledge of
quantum mechanics and special relativity is assumed. As far as possible, [ have tried
to derive everything from first principles. Since this is an introductory textbook, the
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mathematical material is kept as simple as possible, and the derivations show all
the main steps. I believe that this approach enables students relatively new to the
subject to develop a clear understanding of the underlying physical principles; the
more sophisticated mathematical trickery can come later. Calculations are mostly
performed using helicity amplitudes based on the explicit Dirac—Pauli representa-
tion of the particle spinors. I believe this treatment provides a better connection
to the underlying physics, compared to the more abstract trace formalism (which
is also described). Some of the more-challenging material is included in optional
starred sections. When reading these sections, the main aim should be to under-
stand the central concepts, rather than the details.

The general structure of this book is as follows: Chapters 1-5 introduce the
underlying concepts of relativistic quantum mechanics and interaction by particle
exchange; Chapters 6—12 describe the electromagnetic, strong and weak interac-
tions; and Chapters 13—18 cover major topics in modern particle physics. This
textbook includes an extensive set of problems. Each problem is graded according
to the relative time it is likely to take. This does not always reflect the difficulty
of the problem and is meant to provide a guide to students, where for example a
shorter graded problem should require relatively little algebra. Hints and outline
solutions to many of the problems are available at www.cambridge.org/MPP.

For instructors

This book covers a wide range of topics and can form the basis of a long course
in particle physics. For a shorter course, it may not be possible to fit all of the
material into a single semester and certain sections can be omitted. In this case,
I would recommend that students read the introductory material in Chapters 1-3
as preparation for a lecture course. Chapters 4—8, covering the calculations of the
e*e”™ — p*u” annihilation and e p scattering cross sections, should be considered
essential. Some of the material in Chapter 9 on the quark model can be omitted,
although not the discussion of symmetries. The material in Chapter 14 stands alone
and could be omitted or covered only partially. The material on electroweak unifi-
cation and the tests of the Standard Model, presented in Chapters 15 and 16, repre-
sents one of the highlights of modern particle physics and should be considered as
core. The chapter describing the Higgs mechanism is (necessarily) quite involved
and it would be possible to focus solely on the properties of the Higgs boson and
its discovery, rather than the detailed derivations.

Fully worked solutions to all problems are available to instructors, and these can
be found at www.cambridge.org/MPP. In addition, to aid the preparation of new
courses, PowerPoint slides covering most of the material in this book are available
at the same location, as are all of the images in this book.
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Introduction

The purpose of this chapter is to provide a brief introduction to the Standard
Model of particle physics. In particular, it gives an overview of the fundamen-
tal particles and the relationship between these particles and the forces. It also
provides an introduction to the interactions of particles in matter and how they
are detected and identified in the experiments at modern particle colliders.

1.1 The Standard Model of particle physics

Particle physics is at the heart of our understanding of the laws of nature. It is
concerned with the fundamental constituents of the Universe, the elementary par-
ticles, and the interactions between them, the forces. Our current understanding is
embodied in the Standard Model of particle physics, which provides a unified pic-
ture where the forces between particles are themselves described by the exchange
of particles. Remarkably, the Standard Model provides a successful description
of all current experimental data and represents one of the triumphs of modern
physics.

1.1.1 The fundamental particles

In general, physics aims to provide an effective mathematical description of a phys-
ical system, appropriate to the energy scale being considered. The world around us
appears to be formed from just a few different particles. Atoms are the bound states
of negatively charged electrons (e™) which orbit around a central nucleus com-
posed of positively charged protons (p) and electrically neutral neutrons (n). The
electrons are bound to the nucleus by the electrostatic attraction between opposite
charges, which is the low-energy manifestation of the fundamental theory of elec-
tromagnetism, namely Quantum Electrodynamics (QED). The rich structure of the
properties of the elements of the periodic table emerges from quantum mechan-
ics, which dictates the precise electronic structure of the different atoms. In the
atomic nucleus, the protons and neutrons are bound together by the strong nuclear
force, which is a manifestation of the fundamental theory of strong interactions,
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The Universe at different energy scales, from atomic physics to modern particle physics at the TeV scale.

called Quantum Chromodynamics (QCD). The fundamental interactions of parti-
cle physics are completed by the weak force, which is responsible for the nuclear
[3-decays of certain radioactive isotopes and the nuclear fusion processes that fuel
the Sun. In both nuclear 3-decay and nuclear fusion, another particle, the nearly
massless electron neutrino (ve) is produced. Almost all commonly encountered
physical phenomena can be described in terms of the electron, electron neutrino,
proton and neutron, interacting by the electromagnetic, strong and weak forces.
The picture is completed by gravity, which although extremely weak, is always
attractive and is therefore responsible for large-scale structure in the Universe. This
is an appealingly simple physical model with just four “fundamental” particles
and four fundamental forces. However, at higher energy scales, further structure
is observed, as indicated in Figure 1.1. For example, the protons and neutrons
are found to be bound states of (what are believed to be) genuinely fundamen-
tal particles called quarks, with the proton consisting of two up-quarks and a
down-quark, p(uud), and the neutron consisting of two down-quarks and an
up-quark, n(ddu).

The electron, the electron neutrino, the up-quark and down-quark are known
collectively as the first generation. As far as we know, they are elementary particles,
rather than being composite, and represent the basic building blocks of the low-
energy Universe. However, when particle interactions are studied at the energy
scales encountered in high-energy particle colliders, further complexity is revealed.
For each of the four first-generation particles, there are exactly two copies which
differ only in their masses. These additional eight particles are known as the second
and third generations. For example, the muon (u™) is essentially a heavier version
of the electron with mass my, ~ 200 m,, and the third generation tau-lepton (1) is
an even heavier copy with m; =~ 3500 m.. Apart from the differences in masses,
which have physical consequences, the properties of the electron, muon and tau-
lepton are the same in the sense that they possess exactly the same fundamental
interactions.

It is natural to ask whether this pattern is repeated and that there are further gen-
erations of particles. Perhaps surprisingly, this seems not to be the case; there is
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Table 1.1 The twelve fundamental fermions divided into quarks and leptons.

The masses of the quarks are the current masses.

Leptons Quarks
Particle (0] mass/GeV Particle (0] mass/GeV
First electron (e) -1 0.0005 down @ -1/3 0.003
generation  neutrino (Ve) 0 <107 up (u) +2/3 0.005
Second muon (T -1 0.106 strange (s) -1/3 0.1
generation  neutrino (VW) 0 <107 charm (c) +2/3 1.3
Third tau () -1 1.78 bottom (b) -1/3 4.5
generation  neutrino (v7) 0 <107 top (1) +2/3 174
First generation Ve e d u
Vi u s c
Second generation
o o @

Third generation v :b

The particles in the three generations of fundamental fermions with the masses indicated by imagined spher-
ical volumes of constant density. In reality, fundamental particles are believed to be point-like.

strong experimental evidence that there are just three generations; hence the matter
content of the Universe appears to be in the form of the twelve fundamental spin-
half particles listed in Table 1.1. There is a subtlety when it comes to the description
of the neutrinos; the v, v, and v; are in fact quantum-mechanical mixtures of the
three fundamental neutrino states with well-defined masses, labelled simply vy, v,
and v3. This distinction is only important in the discussion of the behaviour of
neutrinos that propagate over large distances, as described in Chapter 13. Whilst
it is known that the neutrinos are not massless, the masses are sufficiently small
that they have yet to be determined. From the upper limits on the possible neutrino
masses, it is clear that they are at least nine orders of magnitude lighter than the
other fermions. Apart from the neutrinos, the masses of the particles within a par-
ticular generation are found to be rather similar, as illustrated in Figure 1.2. Whilst
it is likely that there is some underlying reason for this pattern of masses, it is not
currently understood.



Introduction

Table 1.2 The forces experienced by different particles.

strong electromagnetic weak
down-t d b
Quarks own-type S v v v
up-type u C t
harged = - - v v
Leptons ¢ arge © W v
neutrinos Ve Vi Ve v

The dynamics of each of the twelve fundamental fermions are described by the
Dirac equation of relativistic quantum mechanics, which is the subject of Chapter 4.
One important consequence of the Dirac equation is that for each of the twelve
fermions there exists an antiparticle state with exactly the same mass, but opposite
charge. Antiparticles are denoted either by their charge or by a bar over the corre-
sponding particle symbol. For example, the anti-electron (which is known as the
positron) is denoted by e*, and the anti-up-quark is written u.

Quarks and leptons

The particles interact with each other through the four fundamental forces, grav-
ity, electromagnetism, the strong force and the weak force. The gravitational force
between two individual particles is extremely small and can be neglected in the dis-
cussion of particle interactions. The properties of the twelve fundamental fermions
are categorised by the types of interaction that they experience, as summarised
in Table 1.2. All twelve fundamental particles “feel” the weak force and undergo
weak interactions. With the exception of the neutrinos, which are electrically neu-
tral, the other nine particles are electrically charged and participate in the electro-
magnetic interaction of QED. Only the quarks carry the QCD equivalent of electric
charge, called colour charge. Consequently, only the quarks feel the strong force.
Because of the nature of the QCD interaction, quarks are never observed as free
particles, but are always confined to bound states called hadrons, such as the pro-
ton and neutron. Because the quarks feel the strong force, their properties are very
different from those of the electron, muon, tau-lepton and the neutrinos, which are
collectively referred to as the leptons.

1.1.2 The fundamental forces

In classical electromagnetism, the electrostatic force between charged particles can
be described in terms of a scalar potential. This classical description of a force
arising from a potential is unsatisfactory on a number of levels. For example, when
an electron scatters in the electrostatic potential of a proton, there is a transfer of
momentum from one particle to the other without any apparent mediating body.
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e e

The scattering of two electrons in QED by the exchange of a photon. With time running from left to right, the
diagrams indicate the two possible time-orderings.

Regarding this apparent action-at-a-distance, Newton famously wrote “It is incon-
ceivable that inanimate brute matter should, without the mediation of something
else which is not material, operate upon and affect other matter without mutual
contact”. Whilst it is convenient to express classical electromagnetism in terms of
potentials, it hides the fundamental origin of the electromagnetic interaction.

In modern particle physics, each force is described by a Quantum Field Theory
(QFT). In the case of electromagnetism this is the theory of Quantum Electro-
dynamics (QED), where the interactions between charged particles are mediated
by the exchange of virtual photons; the meaning of the term virtual is explained in
Chapter 5. By describing a force in terms of particle exchange, there is no longer
any mysterious action at a distance. As an example, Figure 1.3 shows the interac-
tion between two electrons by the exchange of a photon. In the first diagram, the
upper electron emits a photon, which at a later time is absorbed by the lower elec-
tron. The effect is to transfer momentum from one electron to the other, and it is
this transfer of momentum which manifests itself as a force. The second diagram
shows the other possible time-ordering with the lower electron emitting the photon
that is subsequently absorbed by the upper electron. Since the exchanged particle
is not observed, only the combined effect of these two time-ordered diagrams is
physically meaningful.

Each of the three forces of relevance to particle physics is described by a QFT
corresponding to the exchange of a spin-1 force-carrying particle, known as a
gauge boson. The familiar spin-1 photon is the gauge boson of QED. In the case
of the strong interaction, the force-carrying particle is called the gluon which, like
the photon, is massless. The weak charged-current interaction, which is responsi-
ble for nuclear (3-decay and nuclear fusion, is mediated by the charged W* and W~
bosons, which are approximately eighty times more massive than the proton. There
is also a weak neutral-current interaction, closely related to the charged current,
which is mediated by the electrically neutral Z boson. The relative strengths of
the forces associated with the different gauge bosons are indicated in Table 1.3. It
should be noted that these numbers are only indicative as the strengths of the forces
depend on the distance and energy scale being considered.
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Table 1.3  The four known forces of nature. The relative strengths are approximate indicative values for two

fundamental particles at a distance of 1fm = 10~ m (roughly the radius of a proton).

Force Strength Boson Spin Mass/GeV
Strong 1 Gluon g 1 0
Electromagnetism 1073 Photon Y 1 0

W boson W= 1 80.4
Weak o Z boson Z 1 91.2
Gravity 1077 Graviton? G 2 0

1.1.3 The Higgs boson

The final element of the Standard Model is the Higgs boson, which was discovered
by the ATLAS and CMS experiments at the Large Hadron Collider (LHC) in 2012.
The Higgs boson, which has a mass

my = 125 GeV,

differs from all other Standard Model particles. Unlike, the fundamental fermions
and the gauge bosons, which are respectively spin-half and spin-1 particles, the
Higgs boson is spin-0 scalar particle. As conceived in the Standard Model, the
Higgs boson is the only fundamental scalar discovered to date.

The Higgs boson plays a special role in the Standard Model; it provides the
mechanism by which all other particles acquire mass. Without it the Universe
would be a very different, all the particles would be massless and would propa-
gate at the speed of light! In QFT, the Higgs boson can be thought of as an excita-
tion of the Higgs field. Unlike the fields associated with the fundamental fermions
and bosons, which have zero expectation values in the vacuum, the Higgs field
is believed to have a non-zero vacuum expectation value. It is the interaction of
the initially massless particles with this non-zero Higgs field that gives them their
masses. The discovery of a Higgs-like particle at the LHC represented a remark-
able validation of the theoretical ideas which constitute the Standard Model. The
mathematical details of the Higgs mechanism, which are subtle, are discussed in
detail in Chapter 17. The masses of the W*, Z and H bosons are all of the order of
100 GeV, which is known as the electroweak scale. This doesn’t happen by chance;
in the Standard Model, the masses of the weak gauge bosons are intimately con-
nected to the Higgs mechanism.

1.1.4 The Standard Model vertices

The nature of the strong, electromagnetic and weak forces are determined by the
properties of the bosons of the associated quantum field theory, and the way in



1.1 The Standard Model of particle physics

Electromagnetism

Strong interaction

Weak interaction
e e q q e Ve Ve Ve
e gs 9w 9z
Y g w z
All charged particles Only quarks All fermions All fermions
Never changes flavour | Never changes flavour | Always changes flavour : Never changes flavour
a=1/137 og=1 Oz = 1/30

The Standard Model interaction vertices.

which the gauge bosons couple to the spin-half fermions. The coupling of the gauge
bosons to the fermions is described by the Standard Model interaction vertices,
shown in Figure 1.4. In each case, the interaction is a three-point vertex of the
gauge boson and an incoming and outgoing fermion. For each type of interaction
there is an associated coupling strength g. For QED the coupling strength is simply
the electron charge, goep = e = +le|.

A particle couples to a force-carrying boson only if it carries the charge of the
interaction. For example, only electrically charged particles couple to the photon.
Only the quarks carry the colour charge of QCD, and hence only quarks partici-
pate in the strong interaction. All twelve fundamental fermions carry the charge
of the weak interaction, known as weak isospin, and therefore they all partici-
pate in the weak interaction. The weak charged-current interaction does not cor-
respond to the usual concept of a force as it couples together different flavour
fermions. Since the W* and W~ bosons have charges of +e and —e respectively,
in order to conserve electric charge, the weak charged-current interaction only
couples together pairs of fundamental fermions that differ by one unit of electric
charge. In the case of the leptons, by definition, the weak interaction couples a
charged lepton with its corresponding neutrino,

() e ()

For the quarks, the weak interaction couples together all possible combinations
differing by one unit of charge,

(&) C] GG CRG)- G- G-6)

The strength of the weak charged-current coupling between the charge +% up-
type quarks (u, c, t) and the charge —% down-type quarks (d, s, b) is greatest for
quarks of the same generation. Since the weak interaction is the only known force
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The scattering of two fermions, denoted f, by the exchange of the boson, X. The strength of the fundamental
interaction at each of the two three-point ffX vertices is denoted by the coupling constant g.

for which the incoming and outgoing fermions are different, the weak charged-
current interaction is particularly important when considering particle decays as it
introduces a change of flavour.

The strength of the fundamental interaction between the gauge boson and a
fermion is determined by the coupling constant g, which can be thought of as a
measure of the probability of a spin-half fermion emitting or absorbing the boson
of the interaction. Put more precisely, the quantum-mechanical transition matrix
element for an interaction process includes a factor of the coupling constant g for
each interaction vertex. For example, the matrix element for the scattering process
indicated by Figure 1.5 contains two factors of g, one at each vertex, and therefore

Mo g2

Hence, the interaction probability, which is proportional to the matrix element
squared, IM|?> = MM, contains a factor ¢g> from each interaction vertex, thus in
this example

IMP? o g*.

Rather than working with the coupling constant itself, it is often more convenient to
use the associated dimensionless constant, & oc g2. In the case of electromagnetism
this is the familiar fine-structure constant

82

= 4neohc

One advantage of writing the coupling strength in terms of a dimensionless con-
stant is that the numerical value is independent of the system of units used for
a calculation. In addition, the quantum-mechanical probability of the interaction
includes a single factor of a for each interaction vertex. The intrinsic strength
of the electromagnetic interaction is given by the size of fine-structure constant
a=1/137. The QCD interaction is intrinsically stronger with ag ~ 1. The intrin-
sic strength of the weak interaction, with aw ~ 1/30, is in fact greater than that
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The Feynman diagram for the scattering processa + b — ¢ + d and the two time-ordered processes that
it represents.

of QED. However, the large mass of the associated W boson means that at rela-
tively low-energy scales, such as those encountered in particle decays, the weak
interaction is (as its name suggests) very much weaker than QED.

1.1.5 Feynman diagrams

Feynman diagrams are an essential part of the language of particle physics. They
are a powerful representation of transitions between states in quantum field the-
ory and represent all possible time-orderings in which a process can occur. For
example, the generic Feynman diagram for the process a + b — ¢ + d, involving
the exchange of boson X, shown in Figure 1.6, represents the sum of the quantum
mechanical amplitudes for the two possible time-orderings. It should be remem-
bered that in a Feynman diagram time runs from left to right but only in the sense
that the left-hand side of a Feynman diagram represents the initial state, in this case
particles a and b, and the right-hand side represents the final state, here ¢ and d. The
central part of the Feynman diagram shows the particles exchanged and the Stan-
dard Model vertices involved in the interaction, but not the order in which these
processes occurred. Feynman diagrams are much more than a pictorial represen-
tation of the fundamental physics underlying a particular process. From Quantum
Field Theory it is possible to derive simple Feynman rules associated with the ver-
tices and virtual particles in a Feynman diagram. Once the Feynman diagram has
been drawn, it is straightforward to write down the quantum-mechanical transi-
tion matrix element using the relevant Feynman rules, thus avoiding the need to
calculate each process from first principles in Quantum Field Theory.

In general, for each process considered, there will be an infinite number of
Feynman diagrams that can be drawn. For example, Figure 1.7 shows Feynman
diagrams for the scattering of two electrons by the exchange of either one or two
photons. Both diagrams have the same initial and final state, and therefore corre-
spond to the same physical process, e”e~ — e~e™. Each interaction vertex is associ-
ated with a factor e in the matrix element, or equivalently a factor of @ in the matrix
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Two Feynman diagrams fore”"e™ — e~ e™ scattering.

element squared. Thus, the matrix element squared for the diagram involving a sin-
gle photon exchange and two vertices is proportional to %, and that involving two
photons and four vertices is proportional to a*,

|M$| o« a® and |M$Y| o a’.

Because the coupling strength of the electromagnetic interaction is relatively small,
@ ~ 1/137, the diagram with four vertices is suppressed by a factor O(10*) relative
to the diagram with two vertices. In the language of perturbation theory, only the
lowest-order term is significant. Consequently, for almost all processes that will be
encountered in this book, only the simplest (i.e. lowest-order) Feynman diagram
needs to be considered.

For reasons that will become clear in Chapter 4, antiparticles are drawn in Feyn-
man diagrams with arrows pointing in the “backwards in time” direction. In the
Standard Model, particles and antiparticles can be created or annihilated only in
pairs. This means that the arrows on the incoming and outgoing fermion lines in
Standard Model vertices are always in the same sense and flow through the vertex;
they never both point towards or away from the vertex.

1.1.6 Particle decays

Most particles decay with a very short lifetime. Consequently, only the relatively
few stable and long-lived types of particle are detected in particle physics exper-
iments. There are twelve fundamental spin-half particles (and the twelve corre-
sponding antiparticles), but they are not all stable. For a particle to decay there
must be a final state with lower total rest mass that can be reached by a process with
a Feynman diagram constructed from the Standard Model vertices. Decays of the
fundamental particles all involve the weak charged current which has the only inter-
action vertex that allows for a change in flavour. For example, since m,, > m. and
the neutrinos are almost massless, the muon can decay via u~ — €™ Vv, through
the weak charged-current process with the Feynman diagram of Figure 1.8. Similar
diagrams can be drawn for the tau-lepton. Since the electron is the lightest charged
lepton, there is no corresponding weak decay process which conserves energy and
momentum and consequently the electron is stable.
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The Feynman diagram for muon decay. The arrow in the “negative time direction” denotes an antiparticle, in
this case an electron antineutrino (V).
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The three types of observed hadronic states.

Because of the nature of the QCD interaction, quarks are never observed as free
particles but are always found confined in bound states, known as hadrons. Con-
sequently their decays need to be considered in the context of these bound states.
The only hadronic states that have been observed to date, indicated in Figure 1.9,
are the mesons which consist of a quark and an antiquark (qq), the baryons which
consist of three quarks (qqq), and the antibaryons consisting of three antiquarks
(Gq Q.

Many hadronic states have been observed. These correspond to different com-
binations of quark flavours and different internal angular momenta states. Each of
these distinct states is observed as a particle with a particular mass, which is not
just the sum of the masses of the constituent quarks, but includes a large contri-
bution from the QCD binding energy. The total angular momentum of a hadron,
which is referred to as its spin, depends on the orbital angular momentum between
the constituent quarks and the overall spin state. Hadronic states can be labelled by
their flavour content, i.e. the type of quarks they contain, their total angular momen-
tum J, and their parity P, which is an observable quantum number reflecting the
symmetry of the wavefunction under the transformation r — —r. For example, the
positively charged pion st*(ud), which is the lightest meson state consisting of an
up-quark and an anti-down-quark, has spin-parity J” =0~. The masses and life-
times for a number of commonly encountered hadrons are given in Appendix C.

The only stable hadron is the proton, which is the lightest system of three quarks
with m, =938.3 MeV =1.673 X 10727 kg. As a free particle, the neutron with mass
my =939.6 MeV, decays with a lifetime of about 15 min via the weak interaction
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The lifetimes of a number of common hadronic states grouped into the type of decay. Also shown are the
lifetimes of the muon and tau-lepton, both of which decay weakly.

process n— pe~ V.. Although a free neutron can decay, when bound within a
nucleus, the change in nuclear binding energy is usually larger than the proton—
neutron mass difference, and under these circumstances the neutron behaves as a
stable particle. All other hadronic states decay, usually very rapidly.

Whilst particle decay rates depend on a number of factors, the most important is
the type of fundamental interaction involved in the decay. For example, Figure 1.10
shows two possible Feynman diagrams for the decay of the p® meson, p® — n*n~.
The first diagram is a strong decay involving the exchange of a gluon. The second
diagram is an electromagnetic process. The respective matrix elements depend on
the coupling strengths of the strong and electromagnetic forces,

I/\/(gl2 oc ag and I/\/IYI2 < a?.

Because ays is two orders of magnitude greater than «, the contribution from the
strong decay Feynman diagram dominates.

The above example illustrates an important point; if a particle can decay by the
strong interaction this will almost always dominate over any possible electromag-
netic or weak decay processes. Similarly, electromagnetic decay modes will dom-
inate over weak interaction processes. To illustrate this point, Figure 1.11 shows
the lifetimes of a selection of hadrons divided according to whether the dominant
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decay mode is a strong, electromagnetic or weak interaction. Particles where only
weak decay processes are possible are relatively long-lived (at least in the context
of particle physics). Nevertheless, because the charged-current weak interaction
produces a change of flavour at the interaction vertex, the weak interaction plays
an important role in the decays of many particles for which electromagnetic and
strong decay modes are not possible. Because many particles have very short life-
times, only their decay products are observed in particle physics experiments.

1.2 Interactions of particles with matter

Particle physics experiments are designed to detect and identify the particles pro-
duced in high-energy collisions. Of the particles that can be produced, only the
electron, proton, photon and the effectively undetectable neutrinos are stable.
Unstable particles will travel a distance of order yvr before decaying, where 7 is the
mean lifetime (in the rest frame of the particle) and y = 1/ /1 — v2/c? is the Lorentz
factor accounting for relativistic time dilation. Relativistic particles with lifetimes
greater than approximately 10710s will propagate over several metres when pro-
duced in high-energy particle collisions and thus can be directly detected. These
relatively long-lived particles include the muon p*, the neutron n(ddu), the charged
pions rc+(ua)/fc‘(dﬁ), and the charged kaons K*(us)/K™(su). Short-lived particles
with lifetimes of less than 107!0 s will typically decay before they travel a signif-
icant distance from the point of production and only their decay products can be
detected.

The stable and relatively long-lived particles form the observables of particle
physics collider experiments. The techniques employed to detect and identify the
different particles depends on the nature of their interactions in matter. Broadly
speaking, particle interactions can be divided into three categories: (i) the inter-
actions of charged particles; (ii) the electromagnetic interactions of electrons and
photons; and (iii) the strong interactions of charged and neutral hadrons.

1.2.1 Interactions and detection of charged particles

When a relativistic charged particle passes through a medium, it interacts electro-
magnetically with the atomic electrons and loses energy through the ionisation of
the atoms. For a singly charged particle with velocity v = Sc traversing a medium
with atomic number Z and number density n, the ionisation energy loss per unit
length traversed is given by the Bethe—Bloch equation,

dE Z 282y c?
— ~ —4nh’ld? " In By ctme —ﬁ2 . (1.1)
dx Mev2 I,
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The ionisation energy loss curves for a singly charged particle traversing lead, iron, carbon and gaseous
helium. Adapted from Beringer et al. (2012).

Here I, is the effective ionisation potential of the material averaged over all atomic
electrons, which is very approximately given by I.~10ZeV. For a particular
medium, the rate of the ionisation energy loss of a charged particle is a function of
its velocity. Owing to the 1/v? term in the Bethe—Bloch equation, dE/dx is greatest
for low-velocity particles. Modern particle physics is mostly concerned with highly
relativistic particles where v ~ c. In this case, for a given medium, dE/dx depends
logarithmically on (8y)?, where

pr=—ti_ =P

resulting in a slow “relativistic rise” of the rate of ionisation energy loss that is
evident in Figure 1.12.

The rate of ionisation energy loss does not depend significantly on the material
except through its density p. This can be seen by expressing the number density of
atoms as n = p/(Am,), where A is the atomic mass number and m,, = 1.66 X 107% kg
is the unified atomic mass unit. Hence (1.1) can be written

1dE 4 2222 222 2
dE _ 4nhic’a {lnl ﬁymec]_ﬁz}’ (12)

pdx — mevim, A I,
and it can be seen that dE/dx is proportional to Z/A. Because nuclei consist of
approximately equal numbers of protons and neutrons, Z/A is roughly constant and
thus the rate of energy loss by ionisation is proportional to density but otherwise
does not depend strongly on the material. This can be seen from Figure 1.12, which
shows the ionisation energy loss (in units of MeV g~! cm?) as a function of By for
a singly charged particle in helium, carbon, iron and lead. Particles with Sy = 3,
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which corresponds to the minimum in the ionisation energy loss curve, are referred
to as minimum ionising particles.

All charged particles lose energy through the ionisation of the medium in which
they are propagating. Depending on the particle type, other energy-loss mecha-
nisms maybe present. Nevertheless, for muons with energies below about 100 GeV,
ionisation is the dominant energy-loss process. As a result, muons travel significant
distances even in dense materials such as iron. For example, a 10 GeV muon loses
approximately 13MeV cm™! in iron and therefore has a range of several metres.
Consequently, the muons produced at particle accelerators are highly penetrating
particles that usually traverse the entire detector, leaving a trail of ionisation. This
feature can be exploited to identify muons; all other charged particles have other
types of interactions in addition to ionisation energy loss.

Tracking detectors

The detection and measurement of the momenta of charged particles is an essential
aspect of any large particle physics experiment. Regardless of the medium through
which a charged particle travels, it leaves a trail of ionised atoms and liberated
electrons. By detecting this ionisation it is possible to reconstruct the trajectory
of a charged particle. Two main tracking detector technologies are used. Charged
particle tracks can detected in a large gaseous tracking volume by drifting the liber-
ating electrons in a strong electric field towards sense wires where a signal can be
recorded. However, in recent particle physics experiments, for example the ATLAS
and CMS experiments at the LHC, there has been a move to using tracking detec-
tors based on semiconductor technology using silicon pixels or strips.

When a charged particle traverses an appropriately doped silicon wafer, electron—
hole pairs are created by the ionisation process, as indicated by Figure 1.13. If a
potential difference is applied across the silicon, the holes will drift in the direction
of the electric field where they can be collected by p—n junctions. The sensors can
be shaped into silicon strips, typically separated by O(25 um), or into silicon pix-
els giving a precise 2D space point. The signals are not small; in crossing a typical
silicon wafer, a charged particle will liberate O(10 000) electron—hole pairs that,

p-type Amplified
silicon signal
] L] (L
~250 pm n-type %
silicon T+

The production and collection of charge in a silicon tracking sensor.
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The principle of charged particle track reconstruction from the space points observed in a (five-layer) silicon
tracking detector. The curvature in the xy-plane determines the transverse momentum.

with appropriate amplification electronics, gives a clear signal associated with the
strip/pixel on which the charge was collected.

Silicon tracking detectors typically consist of several cylindrical surfaces of sil-
icon wafers, as indicated in Figure 1.14. A charged particle will leave a “hit” in
a silicon sensor in each cylindrical layer from which the trajectory of the charged
particle track can be reconstructed. The tracking system is usually placed in a large
solenoid producing an approximately uniform magnetic field in the direction of
axis of the colliding beams, taken to be the z-axis. Owing to the v X B Lorentz
force, the trajectory of a charged particle in the axial magnetic field is a helix with
a radius of curvature R and a pitch angle A, which for a singly charged particle
(Igl = e) are related to its momentum by

pcosd =0.3BR,

where the momentum p is given in GeV/c, B is the magnetic flux density in tesla
and R is in metres. Hence by determining the parameters of the helical trajectory
from the measured hits in the tracking detectors, R and A can be obtained and thus
the momentum of the particle can be reconstructed. For high-momentum particles,
the radius of curvature can be large. For example, the radius of curvature of a
100 GeV nt* in the 4 T magnetic field of the super-conductor solenoid of the CMS
experiment is R ~ 100 m. Even though such charged particle tracks appear almost
straight, the small deflection is easily measured using the precise space-points from
the silicon strip detectors.

Scintillation detectors

Organic scintillators are used extensively in modern particle physics experiments
as a cost effective way to detect the passage of charged particles where precise
spatial information is not required. In particular, detectors based on plastic and
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liquid scintillators have been used in a number of recent neutrino experiments. In an
organic scintillator, the passage of a charged particle leaves some of the molecules
in an excited state. In a scintillator, the subsequent decay of the excited state results
in the emission of light in the ultraviolet (UV) region. By adding fluorescent dyes
to the scintillator, the molecules of the dye absorb the UV light and re-emit it as
photons in the blue region. The blue light can be detected by using photomultiplier
devices which are capable of detecting single optical photons.

Cerenkov radiation

Charged particles can also be detected through their emission of Cerenkov radia-
tion. When a charged particle traverses a dielectric medium of refractive index n it
polarises the molecules in the medium. After its passage, the molecules return to
the unpolarised state through the emission of photons. If the velocity of the particle
is greater than the speed of light in that medium, v > ¢/n, constructive interference
occurs and Cerenkov radiation is emitted as a coherent wavefront at a fixed angle
6 to the trajectory of the charged particle, analogous to the sonic boom produced
by supersonic aircraft. The angle at which the radiation is emitted is given by the
geometrical construction shown in Figure 1.15. In a time ¢, the particle travels a
distance Sct. In this time the wavefront emitted at # = 0 has travelled a distance ct/n
and therefore the angle 6 at which the radiation is produced is given by

0=—.
cos B

The photons emitted as Cerenkov radiation can be detected using photo-multiplier
tubes (PMTs), capable of detecting a single photon with reasonable efficiency.
Cerenkov radiation can be used to detect relativistic particles in large volumes of
transparent liquid (for example water) as has been used extensively in the detection

The geometry of the emission of Cerenkov radiation.
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of neutrinos. Furthermore, Cerenkov radiation is emitted only when 8> 1/n. This
threshold behaviour can be utilised to aid the identification of particles of a given
momentum p; for a relativistic particle 8 =pc/E =p/(p*> + m*>c?)'/? and therefore
only particles with mass

mc < (n2 - 1)1/2p,

will produce Cerenkov radiation.

1.2.2 Interactions and detection of electrons and photons

At low energies, the energy loss of electrons is dominated by ionisation. How-
ever, for energies above a “critical energy” E., the main energy loss mechanism
is bremsstrahlung (German for braking radiation), whereby the electron radiates a
photon in the electrostatic field of a nucleus, as shown in Figure 1.16. The critical
energy is related to the charge Z of the nucleus and is approximately

800
E. ~ — MeV.
Z

The electrons of interest in most particle physics experiments are in the multi-
GeV range, significantly above the critical energy, and therefore interact with mat-
ter primarily through bremsstrahlung. The bremsstrahlung process can occur for
all charged particles, but the rate is inversely proportional to the square of the
mass of the particle. Hence, for muons the rate of energy loss by bremsstrahlung
is suppressed by (m, /mu)2 relative to that for electrons. It is for this reason that
bremsstrahlung is the dominant energy-loss process for electrons, but ionisation
energy loss dominates for muons (except at very high energies, E, > 100 GeV,
where bremsstrahlung also contributes).

At low energies, photons interact in matter primarily by the photoelectric effect,
whereby the photon is absorbed by an atomic electron that is ejected from the
atom. At somewhat higher energies, E, ~ 1 MeV, the Compton scattering process
ye~ — ye” becomes significant. At higher energies still, £, > 10 MeV, the interac-
tions of photons are dominated by e*e™ pair production in the field of the nucleus,
as shown in Figure 1.16.

e Y Y e
e e’
¥ Y
Ze
N N N Ze N

The bremsstrahlung and e* e~ pair-production processes. N is a nucleus of charge +Ze.
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The electromagnetic interactions of high energy electrons and photons in matter
are characterised by the radiation length Xo. The radiation length is the average
distance over which the energy of an electron is reduced by bremsstrahlung by a
factor of 1/e. It is also approximately 7/9 of the mean free path of the e*e™ pair-
production process for a high-energy photon. The radiation length is related to the
atomic number Z of the material, and can be approximated by the expression

1
Xo = ,
07 4anz2rIn (287/Z172)

where n is the number density of nuclei and r. is the “classical radius of the elec-
tron” defined as

62

Fe =28x10 P m.

- Arregmec?
For high-Z materials the radiation length is relatively short. For example, iron and
lead have radiation lengths of Xo(Fe) = 1.76 cm and Xy(Pb) = 0.56 cm.

Electromagnetic showers

When a high-energy electron interacts in a medium it radiates a bremsstrahlung
photon, which in turn produces an e*e™ pair. The process of bremsstrahlung and
pair production continues to produce a cascade of photons, electrons and positrons,
referred to as an electromagnetic shower, as indicated in Figure 1.17. Similarly, the
primary interaction of a high-energy photon will produce an e*e™ pair that will
then produce an electromagnetic shower.

The number of particles in an electromagnetic shower approximately doubles
after every radiation length of material traversed. Hence, in an electromagnetic
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The development of an electromagnetic shower where the number of particles roughly doubles after each
radiation length.
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shower produced by an electron or photon of energy E, the average energy of the
particles after x radiation lengths is

E
(E) = 7= (1.3)

The shower continues to develop until the average energy of the particles falls
below the critical energy E., at which point the electrons and positrons in the cas-
cade lose energy primarily by ionisation. The electromagnetic shower therefore
has the maximum number of particles after x,,,, radiation lengths, given by the
condition (E) ~ E.. From (1.3) it can be seen that this point is reached after

In(E/E.)
max — n2

radiation lengths. In a high-Z material, such as lead with E. ~ 10 MeV, a 100 GeV
electromagnetic shower reaches is maximum after x,,, ~ 13 Xo. This corresponds
to less than 10 cm of lead. Consequently, electromagnetic showers deposit most of
their energy in a relatively small region of space. The development of a shower
is a stochastic process consisting of a number of discrete interactions. However,
because of the large numbers of particles involved, which is of order 2  the
fluctuations in the development of different electromagnetic showers with the same
energy are relatively small and individual electromagnetic showers of the same
energy are very much alike.

Electromagnetic calorimeters

In high-energy particle physics experiments, the energies of electrons and pho-
tons are measured using an electromagnetic calorimeter constructed from high-Z
materials. A number of different technologies can be used. For example, the elec-
tromagnetic calorimeter in the CMS detector at the LHC is constructed from an
array of 75 000 crystals made from lead tungstate (PbWQy), which is an inorganic
scintillator. The crystals are both optically transparent and have a short radiation
length Xy =0.83 cm, allowing the electromagnetic showers to be contained in a
compact region. The electrons in the electromagnetic shower produce scintillation
light that can be collected and amplified by efficient photon detectors. The amount
of scintillation light produced is proportional to the total energy of the original elec-
tron/photon. Alternatively, electromagnetic calorimeters can be constructed from
alternating layers of a high-Z material, such as lead, and an active layer in which
the ionisation from the electrons in the electromagnetic shower can be measured.
For the electromagnetic calorimeters in large particle physics detectors, the energy
resolution for electrons and photons is typically in the range

oce 3% —-10%
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1.2.3 Interactions and detection of hadrons

Charged hadrons (for example, protons and charged pions) lose energy continu-
ously by the ionisation process as they traverse matter. In addition, both charged
and neutral hadrons can undergo a strong interaction with a nucleus of the medium.
The particles produced in this primary hadronic interaction will subsequently inter-
act further downstream in the medium, giving rise to a cascade of particles. The
development of hadronic showers is parameterised by the nuclear interaction inter-
action length A; defined as the mean distance between hadronic interactions of
relativistic hadrons. The nuclear interaction length is significantly larger than the
radiation length. For example, for iron A; ~ 17 cm, compared to its radiation length
of 1.8 cm.

Unlike electromagnetic showers, which develop in a uniform manner, hadronic
showers are inherently more variable because many different final states can be
produced in high-energy hadronic interactions. Furthermore, any n¥s produced in
the hadronic shower decay essentially instantaneously by ni’ — vy, leading to an
electromagnetic component of the shower. The fraction of the energy in this elec-
tromagnetic component will depend on the number of n¥s produced and will vary
from shower to shower. In addition, not all of the energy in a hadronic shower is
detectable; on average 30% of incident energy is effectively lost in the form of
nuclear excitation and break-up.

Hadron calorimeters

In particle detector systems, the energies of hadronic showers are measured in
a hadron calorimeter. Because of the relatively large distance between nuclear
interactions, hadronic showers occupy a significant volume in any detector. For
example, in a typical hadron calorimeter, the shower from a 100 GeV hadron has
longitudinal and lateral extents of order 2 m and 0.5 m respectively. Therefore a
hadron calorimeter necessarily occupies a large volume. A number of different
technologies have been used to construct hadron calorimeters. A commonly used
technique is to use a sandwich structure of thick layers of high-density absorber
material (in which the shower develops) and thin layers of active material where
the energy depositions from the charged particles in the shower are sampled. For
example, the hadron calorimeter in the ATLAS experiment at the LHC consists of
alternating layers of steel absorber and plastic scintillator tiles. The signals in the
different layers of the scintillator tiles are summed to give a measure of the energy
of the hadronic shower. Fluctuations in the electromagnetic fraction of the shower
and the amount of energy lost in nuclear break-up limits the precision to which the
energy can be measured to

OE 50%
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which is roughly an order of magnitude worse than the energy resolution for elec-
tromagnetic showers.

1.3 Collider experiments
|

At a particle accelerator, the colliding beams produce individual interactions
referred to as events. The large particle physics detector systems use a wide range of
technologies to detect and measure the properties of the particles produced in these
high-energy collisions with the aim of reconstructing the primary particles pro-
duced in the interaction. In essence, one tries to go from the signals in the different
detector systems back to the Feynman diagram responsible for the interaction.
The basic structure of a modern particle physics detector is indicated in
Figure 1.18. In general, a detector consists of a cylindrical (or polygonal) barrel
part, with its axis parallel to the incoming colliding beams. The cylindrical struc-
ture is closed by two flat end caps, providing almost complete solid angle cov-
erage down to the beam pipe. The inner region of the detector is devoted to the
tracking of charged particles. The tracking volume is surrounded by an electro-
magnetic calorimeter (ECAL) for detecting electrons and photons. The relatively
large-volume hadronic calorimeter (HCAL) for detecting and measuring the ener-
gies of hadrons is located outside the ECAL. Dedicated detectors are positioned
at the outside of the experiment to record the signals from any high-energy muons
produced in the collisions, which are the only particles (apart from neutrinos) that
can penetrate through the HCAL. In order to be able to measure the momenta of

[ /

HCAL ECAL Tracking detector Muon detectors

The typical layout of a large particle physics detector consisting of a tracking system (here shown with cylin-
drical layers of a silicon detector), an electromagnetic calorimeter (ECAL), a hadron calorimeter (HCAL) and
muon detectors. The solenoid used to produce the magnetic field is not shown. The typical signatures pro-
duced by different particles are shown.
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charged particles, a detector usually has a solenoid which produces a strong axial
magnetic field in the range B = 1-4 T. The solenoid may be located between the
tracking volume and the calorimeters.

The design of a collider experiment is optimised for the identification and energy
measurement of the particles produced in high-energy collisions. The momenta
of charged particles are obtained from the curvature of the reconstructed tracks.
The energies of neutral particles are obtained from the calorimeters. Particle iden-
tification is achieved by comparing the energy deposits in the different detector
systems as indicated in Figure 1.18. Photons appear as isolated energy deposits
in the ECAL. Electrons are identified as charged-particle tracks that are asso-
ciated with an electromagnetic shower in the ECAL. Neutral hadrons will usu-
ally interact in the HCAL and charged hadrons are identified as charged-particle
tracks associated with a small energy deposit in the ECAL (from ionisation energy
loss) and a large energy deposition in the HCAL. Finally, muons can be identi-
fied as charged-particle tracks associated with small energy depositions in both the
ECAL and HCAL and signals in the muon detectors on the outside of the detector
system.

Whilst neutrinos leave no signals in the detector, their presence often can be
inferred from the presence of missing momentum, which is defined as

Pmis = — Z Pi;
i

where the sum extends over the measured momenta of all the observed particles in
an event. If all the particles produced in the collision have been detected, this sum
should be zero (assuming the collision occurs in the centre-of-mass frame). Signif-
icant missing momentum is therefore indicative of the presence of an undetected
neutrino.

The ultimate aim in collider experiments is to reconstruct the fundamental par-
ticles produced in the interaction. Electrons, photons and muons give clear sig-
natures and are easily identified. Tau-leptons, which decay in 2.9 x 10~!3s, have
to be identified from their observed decay products. The main tau-lepton decay
modes are T~ — € VeV; (17.8%), T = uw vy (17.4%), 1 — n (nn®)v; (48%) and
1" > atn (nn’)v, (15%). The hadronic decay modes typically lead to final
states with one or three charged pions and zero, one or two n’s which decay to
photons 7t® — yy. Tau-leptons can therefore be identified as narrowly collimated
jets of just a few particles and the presence of missing momentum in the event,
associated with the neutrino.

1.3.1 Detection of quarks

Owing to the nature of QCD, quarks are never observed as free particles, but are
always found confined within hadrons. However, in high-energy collisions it is
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Anillustration of the appearance of a jet in a detector. In practice, the individual particles are not resolved.

quarks that are produced, not hadrons. For example, in the process e e~ — qq the
two quarks will be produced flying apart at relativistic velocities. As a result of
the QCD interaction, the energy in the strong interaction field between the two
quarks is converted into further pairs of quarks and antiquarks through a process
call hadronisation (described in Chapter 10) that occurs over a distance scale of
10715 m. As a result of hadronisation, each quark produced in a collision produces
a jet of hadrons, as indicated in Figure 1.19. Hence a quark is observed as an
energetic jet of particles. On average, approximately 60% of the energy in a jet is
in the form of charged particles (mostly 7*), 30% of the energy is in the form
of photons from m’ — vy decays, and 10% is in the form of neutral hadrons
(mostly neutrons and Kjs). In high-energy jets, the separation between the indi-
vidual particles is typically smaller than the segmentation of the calorimeters and
not all of the particles in the jet can be resolved. Nevertheless, the energy and
momentum of the jet can be determined from the total energy deposited in the
calorimeters.

Tagging of b-quarks

In general, it is not possible to tell which flavour of quark was produced, or even
whether the jet originated from a quark or a gluon. However, if a b-quark is pro-
duced, the hadronisation process will create a jet of hadrons, one of which will
contain the b-quark, for example a B®(bd) meson. It turns out that b-quark hadrons
are relatively long-lived with lifetimes of order 1.5 x 1072 s. When produced in
high-energy collisions, this relatively long lifetime, combined with the Lorentz
time-dilation factor, means that B hadrons travel on average a few millimetres
before decaying. The decays of B hadrons often produce more than one charged
particle. Because of the relatively large mass of the b-quark, the decay products can
be produced at a relatively large angle to the original b-quark direction. Therefore
the experimental signature for a b-quark is a jet of particles emerging from the point
of the collision (the primary vertex) and a secondary vertex from the b-quark decay,
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Secondary vertex Secondary vertex
B? decay B® decay

Primary vertex

— ~3mm-—

Anillustration of the principle of b-quark taggingina e*e~ — Z — bbevent.

which is displaced from the primary vertex by several millimetres, as indicated in
Figure 1.20.

The identification of b-quark jets relies on the ability to resolve the secondary
vertices from the primary vertex. In practice, this is achieved by using high-
precision silicon microvertex detectors consisting of several concentric layers of
silicon at radii of a few centimetres from the axis of the colliding beams. Such
detectors can achieve a single hit resolution of O(10 um), sufficient to be able to
identify and reconstruct the secondary vertices, even in a dense jet environment.
The ability to tag b-quarks has played an important role in a number of recent
experiments.

1.4 Measurements at particle accelerators
|

With the exception of the measurements of the properties of the neutrino, most of
the recent breakthroughs in particle physics have come from experiments at high-
energy particle accelerators. Particle accelerators can be divided into two types:
(1) colliding beam machines where two beams of accelerated particles are brought
into collision; and (ii) fixed-target experiments where a single beam is fired at a
stationary target. In order to produce massive particles, such as the W*, Z and
H bosons, high energies are required. More precisely, the energy available in the
centre-of-mass frame has to be greater than the sum of the masses of the particles
being produced. The centre-of-mass energy +/s is given by the square root of the
Lorentz invariant quantity s formed from the total energy and momentum of the
two initial-state particles, which in natural units with ¢ = 1 is

(E ) )

In a fixed-target experiment, momentum conservation implies that the final-state
particles are always produced with significant kinetic energy and much of the initial
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Table 1.4 The basic parameters of the recent particle accelerators. At the time of writing the LHC was

operating at /s = 8 TeV.

Collider Laboratory Type Date \s/GeV Luminosity/cm™2s~!
PEP-II SLAC ete” 1999-2008 10.5 1.2 x 10%
KEKB KEK efe” 1999-2010 10.6 2.1 x10%
LEP CERN ete” 1989-2000 90-209 102

HERA DESY e p/e‘p 1992-2007 320 8 x 10!
Tevatron Fermilab Pp 19872012 1960 4 x 10%
LHC CERN pp 2009- 14000 10%

energy is effectively wasted. For example, if an £ =7 TeV proton collides with a
proton at rest,

s=(E+ mp)2 - p2 = 2m§ +2myE ~ 2myE,

giving a centre-of-mass energy of just 115 GeV. Colliding beam machines have
the advantage that they can achieve much higher centre-of-mass energies since the
collision occurs in the centre-of-mass frame. For example, the LHC will ultimately
collide two beams of 7 TeV protons giving a centre-of-mass energy of 14 TeV. For
this reason, almost all high-energy particle physics experiments are based on large
particle colliders.

Only charged stable particles can be accelerated to high energies, and therefore
the possible types of accelerator are restricted to e*e™ colliders, hadron colliders
(pp or pp) and electron—proton colliders (¢™p or e*p). The most recent examples
have been the Tevatron pp collider, the LHC pp collider, the LEP e*e™ collider, the
PEP-II and KEKB e*e™ b-factories, and the HERA electron—proton collider. The
main parameters of these machines are summarised in Table 1.4. The two most
important features of an accelerator are its centre-of-mass energy, which deter-
mines the types of particles that can be studied/discovered, and its instantaneous
luminosity £, which determines the event rates. For a given process, the number
of interactions is the product of the luminosity integrated over the lifetime of the
operation of the machine and the cross section for the process in question,

N = crfL(t) dr. (1.4)

The cross section (defined in Chapter 3) is a measure of quantum mechanical prob-
ability for the interaction. It depends on the fundamental physics involved in the
Feynman diagram(s) contributing to the process.

In order to convert the observed numbers of events of a particular type to the
cross section for the process, the integrated luminosity needs to be known. In prin-
ciple, this can be calculated from the knowledge of the parameters of the colliding
beams. Typically, the particles in an accelerator are grouped into bunches that are



2

Summary

brought into collision at one or more interaction points where the detectors are
located. In the case of the LHC, the bunches are separated by 25 ns, correspond-
ing to a collision frequency of f=40MHz. The instantaneous luminosity of the
machine can be expressed in terms of the numbers of particles in the colliding
bunches, n; and n,, the frequency at which the bunches collide, and the root-
mean-square (rms) horizontal and vertical beam sizes o, and o,. Assuming that
the beams have a Gaussian profile and collide head-on, the instantaneous luminos-
ity is given by

ninj

L=f

= f— . 1.5
dr ooy (1-5)

In practice, the exact properties of the colliding beams, such as the transverse pro-
files, are not known precisely and it is not possible to accurately calculate the
instantaneous luminosity. For this reason, cross section measurements are almost
always made with reference to a process where the cross section is already known.
Hence, a cross section measurement is performed by counting the number of events
of interest N, and the number of observed events for the reference process Nie,
such that the measured cross section is given by

N
N, ref

Corrections may needed to account for the detection efficiency and possible sources
of background events. Nevertheless, ultimately many experimental particle physics
measurements reduce to counting events, where the event type is identified using
the experimental techniques described in Section 1.3. Of course, this is not always
quite as easy as it sounds.

Summary
.

The intention of this chapter was to introduce some of the basic ideas of particle
physics. At this point you should be familiar with the types of particles and forces in
the Standard Model and you should have a qualitative understanding of how to use
the Standard Model vertices associated with the electromagnetic, strong and weak
interactions to construct Feynman diagrams for particle interactions and decays.
The second part of the chapter introduced the experimental techniques of particle
physics and is intended to provide the context for the experimental measurements
used to demonstrate the theoretical ideas developed in the following chapters. At
this point you should understand how the different particles appear in the large
detector systems employed in collider experiments.
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Problems

Feynman diagrams are constructed out of the Standard Model vertices shown in Figure 1.4. Only the weak
charged-current (W*) interaction can change the flavour of the particle at the interaction vertex. Explaining
your reasoning, state whether each of the sixteen diagrams below represents a valid Standard Model
vertex.

(a) e e (b) Ve Ve (c)e” et (d) Ve Ve
Y Y Y z
(e) e~ woo (e Ve (9) e v (e Vi
v w Z w
(i) e e (b b (k) d s o v Y
9 9 9 Y
(m) u u (n) u d (o) d t (p) e e
W W w Y Y
1.2 Draw the Feynman diagram for t= — st~ v, (the 7t~ is the lightest du meson).
1.3 Explain why it is not possible to construct a valid Feynman diagram using the Standard Model vertices for the
following processes:
@ w —efee’,
(b) ve+p—pu +n,
(9] VT+P—>T++H,
(d) st (ud) + 7t (du) — n(udd) + 7 (uu).
1.4  Draw the Feynman diagrams for the decays:
(@) A*(uud) — n(udd) 7t (ud),
(b) X°(uds) — A(uds)y,
(0 m*(ud) — uhvy,
and place them in order of increasing lifetime.
15  Treating the rt° as a ut bound state, draw the Feynman diagrams for:

(@) 7® — yy,
b) 7 - veteT,
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@ 110
M 1n

(0 m — efemete,

d n® — ete .

By considering the number of QED vertices present in each decay, estimate the relative decay rates taking
=1/137.

Particle interactions fall into two main categories, scattering processes and annihilation processes, as indicated
by the Feynman diagrams below.

Draw the lowest-order Feynman diagrams for the scattering and/or annihilation processes:

(@) e e” > ee,
(b) ete” —>Mu,
(c)ee — eteT,
(d) N

(e)

In some cases there may be more than one lowest-order diagram.

High-energy muons traversing matter lose energy according to

——— ~a+ b,
p dx
where a is due to ionisation energy loss and b is due to the bremsstrahlung and e*e™ pair-production pro-
cesses. For standard rock, taken to have A = 22,7 =11and p = 2.65 g cm 3, the parameters a and b depend
only weakly on the muon energy and have values a ~ 2.5MeV g~ cm? and b ~ 3.5 x 107 ¢~ cm?

(a) Atwhat muon energy are the ionisation and bremsstrahlung/pair production processes equally important?
(b) Approximately how far does a 100 GeV cosmic-ray muon propagate in rock?

Tungsten has a radiation length of X; = 0.35 cm and a critical energy of £, = 7.97 MeV. Roughly what thickness
of tungsten is required to fully contain a 500 GeV electromagnetic shower from an electron?

The CPLEAR detector (see Section 14.5.2) consisted of: tracking detectors in a magnetic field of 0.44T; an
electromagnetic calorimeter; and Cerenkov detectors with a radiator of refractive index n=1.25 used to
distinguish st* from K=.

A charged particle travelling perpendicular to the direction of the magnetic field leaves a track with a mea-
sured radius of curvature of R = 4 m. If it is observed to give a Cerenkov signal, is it possible to distinguish
between the particle being a pion or kaon? Take m,, ~ 140 MeV/c? and my = 494 MeV /.

In a fixed-target pp experiment, what proton energy would be required to achieve the same centre-of-mass
energy as the LHC, which will ultimately operate at 14 TeV.

Atthe LEPe* e~ collider, which had a circumference of 27 km, the electron and positron beam currents were both
1.0 mA. Each beam consisted of four equally spaced bunches of electrons/positrons. The bunches had an effec-
tive area of 1.8 x 10* m?. Calculate the instantaneous luminosity on the assumption that the beams collided
head-on.
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/Much of particle physics is concerned with the high-energy interactions of )

relativistic particles. Therefore the calculation of interaction and decay rates
requires a relativistic formulation of quantum mechanics. Relativistic quan-
tum mechanics (RQM) is founded on the two pillars of “modern” physics,
Einstein’s theory of special relativity and the wave mechanics developed in
the early part of the twentieth century. It is assumed that you are already
familiar with special relativity and non-relativistic quantum mechanics. The
purpose of this chapter is to review the specific aspects of special relativity
and quantum mechanics used in the subsequent development of relativistic
quantum mechanics. Before discussing these important topics, the system of
units commonly used in particle physics is introduced.

2.1 Units in particle physics

30

The system of S.I. units [kg, m, s] forms a natural basis for the measurements of
mass, length and time for everyday objects and macroscopic phenomena. However,
it is not a natural choice for the description of the properties of particles, where
we are almost always dealing with very small quantities, such as the mass of the
electron, which in S.I. units is 9.1 x 1073! kg. One way to avoid carrying around
large exponents is to use S.I. based units. For example, interaction cross sections
(which have the dimension of area) are usually quoted in barns, where

1barn = 10728 m?2,

The cross sections for the more interesting physical processes at the highest
energies are typically in the picobarn (pb) to femtobarn (fb) range, where 1 pb =
1072 barn and 1fb = 107" barn. The use of derived S.I. units solves the problem
of large exponents, nevertheless, it is more convenient to work with a system of
units that from the outset reflects the natural length and time scales encountered in
particle physics.
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2.1.1 Natural units

The system of units used in particle physics is known as natural units. It is based on
the fundamental constants of quantum mechanics and special relativity. In natural
units, [kg, m, s] are replaced by [#, ¢, GeV], where 7 = 1.055 X 10734 J s is the unit
of action in quantum mechanics, ¢ =2.998 x 108 ms~! is the speed of light in vac-
uum, and 1GeV =10” eV =1.602 x 10~'°J, which is very approximately the rest
mass energy of the proton. Table 2.1 lists the units used for a number of commonly
encountered quantities expressed in terms of both [kg, m, s] and [#, ¢, GeV], where
the conversion can be obtained from dimensional analysis.

Natural units provide a well-motived basis for expressing quantities in particle
physics and can be simplified by choosing

h=c=1.

In this way, all quantities are expressed in powers of GeV, as shown in the rightmost
column of Table 2.1. Setting # = ¢ = 1 has the advantage of simplifying algebraic
expressions as there is no longer the need to carry around (possibly large) powers
of 7 and c. For example, the Einstein energy—momentum relation

4 becomes E? = p2 +m?.

E?= pzc2 +m*c

At first sight it might appear that information has been lost in setting /i = ¢ = 1.

However, the factors of 7 and ¢ have not simply vanished; they are still present in

the dimensions of quantities. The conversion back to S.I. units is simply a question

of reinserting the necessary missing factors of 72 and ¢, which can be identified from

dimensional analysis. For example, the result of a calculation using natural units
might determine the root-mean-square charge radius of the proton to be

H? =41 GevV.

Table2.1 Relationship between S.I. and natural units.

Quantity [kg, m, s] [A, ¢, GeV] hi=c=1
Energy kgm?s~2 GeV GeV
Momentum kgms™! GeV/c GeV
Mass kg GeV/c? GeV
Time S (GeV/h)™! GeV™!
Length m (GeV/hc)™! GeV~!

Area m? (GeV/hic)™2 GeV~2
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To convert this to back into S.I. units the correct dimensions are obtained by mul-
tiplying by 7%c, giving
1.055 x 1073* x 2.998 x 10®
(rHV? = 4.1 % m
1.602 x 10~10
=4.1%(0.197x107®)m = 0.8 x 107" m.

In converting from natural units to S.I. units, it is useful to remember the conversion
factor

fic = 0.197 GeV fm,

where one femtometre (fm) = 10~ m

Heaviside—Lorentz units

The equations of classical electromagnetism can be simplified by adopting
Heaviside—Lorentz units. The value of the electron charge is defined by the magni-
tude of the Coulomb force between two electrons separated by a distance r,

62

F=—,
4megr?

where g is the permittivity of free space. In Heaviside—Lorentz units g is set to

unity, and the expression for the Coulomb force becomes

62

T dnr?
Effectively gy has been absorbed into the definition of the electron charge. Because
1/(gopo) = ¢, choosing £y = 1 and ¢ = 1 implies that the permeability of free space
o = 1. Hence, in the combined system of natural units and Heaviside—Lorentz units
used in particle physics,

h=c=¢ey=po=1.

With ¢ = € = yp = 1, Maxwell’s equations take the same form as with S.I. units.
The strength of the QED interaction is defined in terms of the dimensionless fine
structure constant,

62

= . 2.1
@ drephic 2.1

Since « is dimensionless, it has the same numerical value regardless of the system
of units used,
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In natural units, the relationship between « and the electron charge (which is not
dimensionless) is simply

_eZN 1
T 4n 137

(0%

2.2 Special relativity
|

This section gives a brief overview of the basic concepts of special relativity, with

the emphasis on the definition and application of four-vectors and the concept of
Lorentz invariance and Lorentz invariant quantities.

2.2.1 The Lorentz transformation

Special relativity is based on the space-time transformation properties of physical
observables as measured in two or more inertial frames moving relative to each
other. For example, Figure 2.1 shows a space-time event that occurs at (¢,r) in the
inertial frame X and at (¢, r’) in the inertial frame X’ that is moving with a velocity
v in the z-direction relative to the frame X. For the case where v <« ¢ and the origins
of two inertial frames coincide at r = ¢ = 0, the two sets of coordinates are related
by the Galilean transformation

=t xX'=x, y=y and 7 =z-vt

Einstein postulated that the speed of light in the vacuum is the same in all inertial
frames. This primary postulate of special relativity implies that a space-time point
on the wavefront of a pulse of light emitted at r = ¢ = 0 satisfies both x>+ y*> + 7> =
22 and X% + y'? + 2% = 2%, Consequently the space-time interval,

P R . 2?2 y,z _ 72 2.2)
) >
A r A
y y v
(tr)
r (', r)
r/
z z'

A space-time event as seen into two inertial frames. The frame X’ moves with a velocity v in the z direction
relative to frame .
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is an invariant quantity; it is observed to be the same in all reference frames. Equa-
tion (2.2) is satisfied if the coordinates in £ and X’ are related by the Lorentz trans-
formation
A%
f = y(t— —2z), X=x, y=y and 7z =y(-vi),
c
where the Lorentz factor vy is given by
2. —L
Y = (1 _ﬁ ) 2,
and S=v/c. In the low velocity limit v < ¢, the Lorentz factor reduces to unity

and the Galilean transformations are recovered. In natural units, where ¢ =1, the
Lorentz transformation of the space-time coordinates becomes

!=y@t-B2), X' =x, y =y and ' =y(z-pr. (2.3)
This can be written in matrix form as X’ = AX,
v vy 00 —yB\(1t
x’ 0 10 O X
d —-yB 00 vy Z

where X is the four-component vector {z,x}. The inverse Lorentz transformation,
from X’ to X, is obtained by reversing the sign of the velocity in (2.3) such that

r=y({'+pB7), x=x', y=y and z=y( +pr). (2.5)
In matrix form this can be written X = A™1X’,

t vy 00 +yB)\(t
X 0 10 O x
y| | 0 01 O y | (2.6)
z +y8 00 y JUZ
It is straightforward to confirm that the matrices appearing in (2.4) and (2.6) are
the inverse of each other, AA™! = I. The matrix equations of (2.4) and (2.6) define
the Lorentz transformation between the space-time coordinates measured in two

inertial frames with relative motion in the z-direction.

~

2.2.2 Four-vectors and Lorentz invariance

Throughout particle physics it is highly desirable to express physical predictions,
such as interaction cross sections and decay rates, in an explicitly Lorentz-invariant
form that can be applied directly in all inertial frames. Although the Lorentz trans-
formation forms the basis of special relativity, Lorentz invariance is the more impor-
tant concept for much that follows. Lorentz invariance is best expressed in terms
of four-vectors. A contravariant four-vector is defined to be a set of quantities that
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when measured in two inertial frames are related by the Lorentz transformation of
(2.4). For example, the contravariant four-vector x# is defined as

xH=(t,x,y,2),

where the indices u = {0, 1, 2, 3} label the space-time coordinates with the zeroth
component representing time. In tensor form, the Lorentz transformation of (2.4)
now can be expressed as

xXH = AR X, 2.7)

where A¥, can be thought of as the elements of the matrix A and Einstein’s sum-
mation convention for repeated indices is used to express the matrix multiplication.

The magnitude of a normal three-vector, which is given by the three-vector scalar
product X - X, is invariant under rotations. The Lorentz invariance of the space-time
interval, 2 —x*>—y? -z, can be expressed as a four-vector scalar product by defining
the covariant space-time four-vector,

x, = (t,—x,—Y,—2).
With this notation, the Lorentz-invariant space-time interval can be written as the
four-vector scalar product
xHx, = Oxo+x'x + P+ =02 -2 -y - 22

The main reason for introducing covariant four-vectors, which are denoted with a
“downstairs” index to distinguish them from the corresponding contravariant four-
vectors, is to keep account of the minus signs in Lorentz-invariant products. The
Lorentz transformation of the space-time coordinates (2.3) can be written in terms
of the components of the covariant four-vector as

v vy 00 +yB t
—x’ 0O 10 O -X
-] 0 01 O -y | (2:8)
-7 +yB 00 vy -z

The sign changes in this matrix relative to that of (2.4) compensate for the changes
of sign in the definition of x, relative to x#. Both (2.8) and (2.4) are equivalent
expressions of the same Lorentz transformation originally defined in (2.3). The
transformation matrix appearing in (2.8) is the inverse of that of (2.4). To make
this distinction explicit in tensor notation the transformation of a covariant four-
vector is written as

x;l = A,"xy, (2.9)

where the downstairs index appears first in A,” which represents the elements
of A°L.
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In tensor notation, the relationship between covariant and contravariant four-
vectors in special relativity can be expressed as

_ v
X = Gk

where summation over repeated indices is again implicit and the diagonal metric
tensor gy, is defined as

(2.10)

1 0 0 0
0-1 0 0
Ivv=1o 0-1 0
-1

0O 0 O

By definition, only quantities with the Lorentz transformation properties of (2.4)
are written as contravariant four-vectors. For such a set of quantities a* the scalar
product with the corresponding covariant four-vector a,, is guaranteed to be Lorentz
invariant. Furthermore, if a* and b* are both (contravariant) four-vectors, then the
scalar product

a*b, = a,b" = g,,at'b’,

is automatically Lorentz invariant. Again this follows directly from the form of
the Lorentz transformation for contravariant and covariant four-vectors. Hence any
expression that can be written in terms of four-vector scalar products is guaranteed
to be Lorentz invariant. From the linearity of the Lorentz transformation, it also
follows that the sum of any number of contravariant four-vectors also transforms
according to (2.4) and therefore is itself a four-vector.

Four-momentum

The relativistic expressions for the energy and momentum of a particle of mass m
can be identified as E = ymc? and p = ymv, which when expressed in natural units
are

E=ym and p=ymp. (2.11)

By considering the transformation properties of velocity, dx/d¢, it can be shown

that relativistic energy and momentum, defined in this way, transform according to
(2.4) and therefore form a contravariant four-vector,
p‘u = (E’ px, py, Pz),

referred to as four-momentum. Because momentum and energy are separately con-
served, four-momentum is also conserved. Furthermore, since four-momentum is
a four-vector, the scalar product

ppu=E* - p?,

is a Lorentz-invariant quantity.
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From (2.11) it can be seen that a single particle at rest has four-momentum p* =
(m,0,0,0) and therefore p¥p, = m?. Since p# Py 1s Lorentz invariant, the relation

E2-p?=m?

holds in all inertial frames. This is, of course, just the Einstein energy—momentum
relationship. For a system of n particles, the total energy and momentum

pt = Zn:pl-“
i=1

is also a four-vector. Therefore for a system of particles the quantity

n 2 n 2
o = E | - _
P Pu i P;
i:] l=1
is a Lorentz-invariant quantity, which gives the squared invariant mass of the sys-
tem. In a particle decay a — 1+ 2, the invariant mass of the decay products is equal

to the mass of the decaying particle,

(p1 + p)*(p1 + P2y = Pl Pay = .

Four-derivative

The transformation properties of the space-time derivatives can be found by using
the Lorentz transformation of (2.3) to express the coordinates of an event in the
frame X’ as functions of the coordinates measured in the frame X, for example
7'(t, x,y,z) and (¢, x, y, 7). Hence, for a Lorentz transformation in the z-direction,
the derivatives in the primed-frame can be expressed as

0 _(92)0 (or)\o . O _(92\9 (or)\0
o7 \oz ] oz \oz ) or or \or|oz \or)or

From (2.5), the relevant partial derivatives are

0z ot 0z ot
(a_z,) =7 (a_z,) - +)/ﬁ’ (%) - +7ﬁ and (%) =7,

and therefore,

0 0 0 0 0 0
a7 Ve T M 5 T Y 12
From (2.12) it can be seen that Lorentz transformation properties of the partial

derivatives are

/ot vy 00 +yB\( d/ot
dloxX’ | | 0 10 O d/0x
aloy | | 0 01 O /oy |’
0/07 +y8 00 vy 0/0z
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and comparison with (2.8) shows that

996 9 9
ot’ 0x’ 0y’ 0z

transforms as a covariant four-vector, which is written as

_ 9
I T
and has components
0y = gt 01 = +;—x, 0y = +66_y and 03 = +é%.
The corresponding contravariant four-derivative is therefore
g o o0 0

o == 2 = _ 2
o’ x> oy’ 0z)
and it should be noted that here the space-like coordinates enter with minus signs.
The equivalent of the Laplacian for the four-derivative, which is known as the
d’Alembertian, is therefore

In this book the symbol [ is used to represent the d’ Alembertian, in some text-
books you may see it written as [12.

Vector and four-vector notation

This is a convenient place to introduce the notation used in this book. Unless oth-
erwise stated, quantities written simply as x and p always should be interpreted as
four-vectors. Three-vectors, such as the three-momentum of a particle, are always
written in boldface, for example p, with three-vector scalar products written as

Pi P2

The magnitude of a three-vector is written either as |p| or simply p. Four-vector
scalar products are written either as a*b, or a-b, with

a-b = atb, = gatb’ = a"b°’ - a'b' - b - b’

Just as p? is shorthand for p - p, then for a four-vector a, the expression a is short-
hand for the four-vector scalar product a - a. For example, the Einstein energy—
momentum relationship for a single particle can be expressed as p* =m?, since
p? = p-p = E? — p*. Finally, it will sometimes be convenient to work with quantities
measured in the centre-of-mass frame of a system of particles, and such quantities
are denoted by a star. For example, p* is the magnitude of the three-momentum of
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a particle evaluated in the centre-of-mass frame, which for a system of particles is
the inertial frame in which there is no net three-momentum.

2.2.3 Mandelstam variables

Feynman diagrams, involving the exchange of a single force mediating particle,
can be placed in the three categories shown in Figure 2.2. The first two diagrams
represent the s-channel annihilation process and the #-channel scattering process.
The third diagram represents u-channel scattering and is only relevant when there
are identical particles in the final state. In Chapter 5 it will be shown that four-
momentum is conserved at each vertex in a Feynman diagram. In a process involv-
ing two initial-state and two final-state particles, the Mandelstam variables

s=(p1+p2)* = (p3 + pa),
t=(p1—p3)* = (p2— pa),
u=(p1 - pa)* = (p2— p3)%,

are equivalent to the four-momentum squared ¢ of the exchanged boson in the
respective class of diagram. For identical final-state particles the distinction
between u- and 7-channel diagrams is necessary because the final-state particle
with four-momentum p3 can originate from either interaction vertex, and the four-
momentum ¢ of the virtual particle is different for the two cases.

Since the Mandelstam variables are four-vector scalar products, they are man-
ifestly Lorentz invariant and can be evaluated in any frame. For example, in the
centre-of-mass frame where there is no net momentum, the four-momenta of two
colliding particles are p; = (E7,p*) and p, = (E;, —p*), from which

s=(p1+p)* =(E;+E})* - (p* - p*)* = (E} + E})~. (2.13)

Hence, the Lorentz-invariant quantity +/s can be identified as the total energy
available in the centre-of-mass frame. It is worth noting that for the process

P3

P4 Ps3 )

[27) P4 Po

P2 Pa Pa

The Feynman diagrams for s-channel, t-channel and u-channel processes. The u-channel diagram applies
only when there are identical particles in the final state.
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1+2—3+4, the sum of s+u+t can be shown to be equal to the sum of the
squares of the masses of the four particles (see Problem 2.12),

S S N R )
s+u+t=mj+m;+m5+my. (2.14)

2.3 Non-relativistic quantum mechanics
|

This section gives a brief overview of topics in non-relativistic quantum mechanics
which are of direct relevance to the development of the relativistic treatment of
spin-half particles in Chapter 4. It also reviews of the algebraic treatment of angular
momentum that serves as an introduction to the algebra of the SU(2) symmetry

group.

2.3.1 Wave mechanics and the Schrodinger equation

In quantum mechanics it is postulated that free particles are described by wave
packets which can be decomposed into a Fourier integral of plane waves of the
form

U(x, 1) oc expli(k - x — wir)}. (2.15)

Following the de Broglie hypothesis for wave—particle duality, the wavelength of
a particle in quantum mechanics can be related to its momentum by A=h/p, or
equivalently, the wave vector k is given by k =p/7. The angular frequency of the
plane wave describing a particle is given by the Planck—Einstein postulate, E = hw.
In natural units with 72 = 1, the de Broglie hypothesis and Planck—Einstein postulate
imply k = p and w = E, and thus the plane wave of (2.15) becomes

w(x, 1) = Nexpli(p-x — Et)}, (2.16)

where N is the normalisation constant.

In classical physics, the energy and momentum of a particle are dynamical vari-
ables represented by time-dependent real numbers. In the Schrodinger picture of
quantum mechanics, the wavefunction is postulated to contain all the informa-
tion about a particular state. Dynamical variables of a quantum state, such as
the energy and momentum, are obtained from the wavefunction. Consequently,
in the Schrodinger picture of quantum mechanics, the time-dependent variables
of classical dynamics are replaced by time-independent operators acting on the
time-dependent wavefunction. Because the wavefunction is postulated to contain
all the information about a system, a physical observable quantity A corresponds
to the action of a quantum mechanical operator A on the wavefunction. A further
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postulate of quantum mechanics is that the result of the measurement of the observ-
able A will be one of the eigenvalues of the operator equation

Ay = ay.

For A to correspond to a physical observable, the eigenvalues of the corresponding
operator must be real, which implies that the operator is Hermitian. This is formally
defined by the requirement

fl//TAII/ZdT:f[AwI]*Q/QdT

Because the plane wave of (2.16) is intended to represent a free particle with energy
E and momentum p, it is reasonable to identify the momentum and energy opera-
tors, p and E, as

0

p=-iV and E=i—

2.17
5 (2.17)

such that p and £ acting on the plane wave of (2.16) give the required eigenvalues,

py = —iVy = py,
N
Elﬂ = ZE = Ew

In classical dynamics, the total energy of a non-relativistic particle can be
expressed as the sum of its kinetic and potential energy terms,
p>
E=H=T+V=—+YV,
2m
where H = T + V is the Hamiltonian. The equivalent quantum mechanical expres-
sion is obtained by replacing each of the terms with the corresponding operators

defined in (2.17) acting on the wavefunction. This gives rise to the time-dependent
Schrodinger equation,

o (x, 1)

' = Hy(x, 1), 2.18
i— (X, 1) (2.18)
where, for a non-relativistic particle, the Hamiltonian operator is
A2
N N 1 N
A= 4V =——v247. (2.19)
2m 2m

For a one-dimensional system (2.18) and (2.19) reduce to the familiar one-
dimensional time-dependent Schrodinger equation,

o 1 Y(x, 1)

ot 2m 9x2 = Vil )
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2.3.2 Probability density and probability current

The physical interpretation of the wavefunction y(x, ?) is that "y d3x is the proba-
bility of finding the particle represented by the wavefunction in the volume element
d*x. This is equivalent to identifying the probability density p(x, ) as

pX, 1) =y (X, ) Y(X, 1)

Assuming the particle does not decay or interact, its associated total probability
will be constant. This conservation of probability can be expressed in terms of a
continuity equation by defining the probability current density (sometimes referred
to as the probability flux density), denoted j(x, 7), such that the flux of probability
across an elemental surface dS is given by j - dS. The rate of change of the total
probability contained within a volume V, shown in Figure 2.3, is related to the net

flux leaving the surface by
0
— dv=- | j-dS.
5 [ pav=- 3

Using the divergence theorem this can be written as

0
— dV=- [ V.jdV.
8tfvp ﬂ/ J

Because this holds for an arbitrary volume, the continuity equation for the conser-
vation of quantum mechanical probability can be written

dp
V.j+— =0. 2.2
j+ =0 (2.20)

In non-relativistic quantum mechanics, the expression for the probability current
can be obtained from the free particle time-dependent Schrédinger equation,

oy _ 1

= ——V?y, 2.21
or " am ¥ (221
and the corresponding equation for the complex conjugate of ¢,
oy* 1 _,
—i =——Vyr. 222
o 2m v (2.22)

The net flux of probability leaving a volume V.
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Taking ¢* X (2.21) — ¢ x (2.22) then gives

L N .
—%(wvw—wvw)—z(aﬁ atwm)
1 * * _-2 * _-a_p

= VWV YY) = i) = i (2.23)

Comparing (2.23) with the general form of the continuity equation of (2.20) leads
to the identification of probability current as

* 1 % k
I=5 W'Yy —yVyr). (2.24)
The plane wave
Y(x,1) = Ne'P*ED,

is therefore associated with a constant probability density of yay* =|N|?> and can
be interpreted as representing a region of space with a number density of particles
n = |N|?. The corresponding expression for the probability current density of (2.24)
gives

i= NP2 =,
m
where v is the (non-relativistic) velocity. Thus, the plane wave y(x, t) represents a
region of space with number density of n = |N|? particles per unit volume moving

with velocity v, such that flux of particles passing through a unit area per unit time
is j = nv.

2.3.3 Time dependence and conserved quantities

The time evolution of a quantum mechanical state is given by the time-dependent
Schrédinger equation of (2.18). If ¢; is an eigenstate of the Hamiltonian H with
energy E; such that

Hyi(x,1) = Egpi(x, 1),
then, from (2.18), the time evolution of the wavefunction is given by

Wi(x, 1)
ot

i

= Eii(x, 1).
Hence, the time dependence of an eigenstate of the Hamiltonian is given by

Yi(x, 1) = gi(x)e . (2.25)
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For a system in a quantum mechanical state! [y(x, 1)), the expectation value of
an operator A is given by

(A) = (iAW) = f o Ay dx,

where the complex conjugate used up to this point has been replaced by the
Hermitian conjugate, aﬁ = (y*)T. The time evolution of the expectation value (A)
can therefore be expressed as

d(A) AN A
— = —A A—|d7x, 2.26

di f [ o Y A |4 (2.26)
where it has been assumed that there is no explicit time dependence in the operator

itself, i.e. A /8¢ = 0. The time derivatives in (2.26) can be expressed using (2.18)
and its Hermitian conjugate, giving

S = [ |[ae) dv s uta{ia)]ex 2.27)

; f [0 A Ay -y A1y x

i f v (HA — ARy dx. (2.28)

The last step follows from the fact that the Hamiltonian is Hermitian (which must
be the case for it to have real eigenvalues). The relation of (2.28) implies that for
any state

% = i([A,A), (2.29)
where [H,A] = HA — AH is the commutator of the Hamiltonian and the operator
A. Hence, if the operator A commutes with the Hamiltonian, the corresponding
observable A does not change with time and therefore corresponds to a conserved
quantity. Furthermore if i; is an eigenstate of the Hamiltonian, then (2.27) imme-
diately reduces to

dA)

o f |LEw1Aw; + y]Al-iEw) | x = 0.

Therefore, for an eigenstate of the Hamiltonian, the expectation value of any oper-
ator is constant. For this reason, the eigenstates of the Hamiltonian are known as
the stationary states of the system.

! The wavefunction y has been replaced by the more general state |i) written in Dirac ket notation
which may have a number of degrees of freedom, for example spin.
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In general, a state |p) can be expressed in terms of the complete set of states
formed from the eigenstates of the Hamiltonian [y;),

ey = > cili),

1
and the time dependence of the system is determined by the evolution of the sta-
tionary states according to (2.25). If at time =0, a system is in the state |p(x)),
then the time evolution of the system is determined by the time evolution of the
component stationary states

lp(x, 1) = Y cilgilx)e 5. (2.30)

1

This relationship between the time evolution of a state and the time dependence
of the stationary states will be used extensively in the discussion of neutrino and
strangeness oscillations in Chapters 13 and 14.

2.3.4 Commutation relations and compatible observables

The commutation relation between the operators for different observables deter-
mines whether they can be known simultaneously. Consider two observables cor-
responding to operators A and B which commute,

[A,Bl=AB-BA=0.
If |¢) is an non-degenerate eigenstate of A with eigenvalue a, such that
Alg) = alg),
then
AB\p) = BAIg) = aB|9).

Therefore the state B |¢) is also an eigenstate of A with eigenvalue a. For this to be
true, B |¢) oc |¢), which implies that |¢) satisfies

Blgy = blg).

Hence |¢) is a simultaneous eigenstate of both A and B and the state corresponds
to well-defined values of the two observables, a and b. The same conclusion is
obtained even if the states are degenerate. If A and B commute, the corresponding
observables are referred to as compatible. In general, a quantum mechanical state
can be labelled by the quantum numbers specifying the complete set of compatible
observables. In the above example |¢) can be labelled by |a, b). If there is a further
operator C that commutes with both A and B, the state is labelled by the quantum
numbers |a, b, ¢). In the quantum mechanical description of angular momentum,
described in Section 2.3.5, the states are labelled in terms of the eigenvalues of
angular momentum squared and the z-component of angular momentum, |, m).
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Similar arguments can be applied to show that if A and B do not commute,
[A,B] = AB- BA # 0,
then it is not in general possible to define a simultaneous eigenstate of the two
operators. In this case, it is not possible to know simultaneously the exact values

of the physical observables A and B and the limit to which A and B can be known
is given by the generalised uncertainty principle

AAAB > L[4, BY)), (2.31)

where (AA)? = (A?) — (A)?.

Position—momentum uncertainty relation

An important example of incompatible variables is that of the position and momen-
tum uncertainty principal. The operators corresponding to the x position of a parti-
cle and the x component of its momentum are respectively given by

. R .0
X =x¢y and pyy=—-i—.
0x

The commutator [, p,] can be evaluated from its action on a wavefunction ¢,

N )
(£, Pl = i + i ()

.2
= lx@x +uﬁ+1xax = +iy,
giving
[X, Px] = +i.

The usual expression of the Heisenberg uncertainty principle for position and
momentum is then obtained by substituting this commutation relation into (2.31)
giving (after reinserting the hidden factor of %)

h
A)CApx > 5

2.3.5 Angular momentum in quantum mechanics

The concept of angular momentum and its quantum mechanical treatment plays an
important role in particle physics. In classical dynamics, the angular momentum L
of a body is defined by the moment of its momentum,

L =r Xp = (yp; — 2Py, 2Px — XDz, XPy — YPx)-
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The corresponding quantum mechanical operator L is obtained by replacing the
position and momentum coordinates by their operator equivalents. Hence, in quan-
tum mechanics, the components of angular momentum operator are given by

L, =§jp,— 2]5y’ Ly =Zpx—Xp; and L;= )%p’\y — §Px.
Because the position operator does not commute with the corresponding compo-
nent of momentum,

£ bl = (9. By] = 2. b2] = +i.

the angular momentum operators do not commute with each other and it is straight-
forward to show that

|LeLy| =ile. |Ly.L| =il and |L.L.|=iL, (2.32)
It is important to realise that the commutation relations of (2.32) are sufficient
to fully define the algebra of angular momentum in quantum mechanics. This is
significant because exactly the same commutation relations arise naturally in the
discussion of other symmetries, such as flavour symmetry which is described in
Chapter 9. For this reason, the development of the algebra defined by (2.32) and
the subsequent identification of the angular momentum states is directly applicable
to the more abstract symmetry concepts encountered in context of the quark model
and QCD.

Because L, ﬁy and L, do not commute, they correspond to incompatible observ-
ables and (unless the state has zero angular momentum) it is not possible to define
a simultaneous eigenstate of more than one of the components of angular momen-
tum. However, it is relatively straightforward to show (see Problem 2.15) that the
operator for the total squared angular momentum defined by

£ _ P2 72 72
L7 =Ly+ L, + L,
commutes with each of the components of angular momentum,
22,1, = |12 1] = |12 £] = .

Hence it is possible to express the angular momentum states in terms of the simul-
taneous eigenstates of [ and any one of the components of angular momentum
which, by convention, is chosen to be I:Z.

It is also useful to define angular momentum raising and lowering ladder
operators,
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for which lﬁi =[_and ' = L.. Because L2 commutes with both L, and ]:y, it
also commutes with both the ladder operators,

[ﬁz,ﬁi] = 0.

and therefore

L., Ls] = £Ls. (2.33)

Furthermore, using [Lx, I:y] = if,z, it can be shown that 1.2 can be expressed as (see
Problem 2.15)

[>=L L, +L,+I2 (2.34)

The simultaneous eigenstates of > and L. can be obtained using the relations of
(2.33) and (2.34). Suppose the state |4, m) is a simultaneous eigenstate of both f,z
and L2, with eigenvalues given by

LA, m)=m|A,m) and L*|A,m)= 2|4, m). (2.35)

Now consider the state = f,+ |4, m), defined by the action of the angular momen-
tum raising operator on the original state. Because L?> commutes with L,,

PPy =1L Aa,m) = L L2 A, m)y = AL, |4, m) = Ay.
Furthermore from (2.33), ﬁzﬁ+ = ﬁ+ﬁz + IA,+ and therefore
Ly=1L, [L A, m>] = (L L, + L)1, m)
= (m+ 1)Ly 1A, m)| = (m + Dyy.

Hence, the state ¢ = L. |4, m) is also a simultaneous eigenstate of [? and ﬁz, with
respective eigenvalues of A and m + 1. Therefore, the effect of the angular momen-
tum raising operators is to step along states with the same value of total angular
momentum squared but with one unit more of the z-component of angular momen-
tum. The angular momentum lowering operator has the opposite effect, lowering
the z-component of angular momentum by one unit.

The magnitude of the z-component of angular momentum can be no greater than
the total angular momentum itself,

(£2) ={L).

This implies that, for a particular value of A, there must be maximum and minimum
values of m and that the action of L. on the state with the largest value of m gives
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A pictorial representation of the 2£ + 1states for £ = 2.

zero. Suppose the state with the largest z-component of angular momentum has
m = € such that

L,1a,0 =0,
then total angular momentum squared of this state is
P40 = (L-Ly + L.+ £2)14, 0)
A, =0+ €+ )|, ).

Hence, for the m = ¢ extreme state, the eigenvalue of [?%is A=¢£(£+1). The same
arguments can be applied to show at the other extreme, m = — £. Hence, for each
value of A (or equivalently for each value of ¢), there are 2¢€+ 1 states (see
Figure 2.4), differing by one unit of the z-component of angular momentum,

m=-{, —€+1,....,+{—-1, +¢.

This implies that ¢ is quantised, and can take only integer or half-integer values.
Expressing the states in terms of the quantum number ¢ rather than A, the eigen-
value equations of (2.35) can be written as

L.je,m)=m|6,m) and L*|6,m) =€+ 1)[6,m).

The effect of the angular momentum raising operator on the state |, m) is to gen-
erate the state |€, m + 1) with a coefficient @, which still needs to be determined,

Lilt,m)y = apmltm+1). (2.36)
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Since I:Jfr = [_, the Hermitian conjugate of (2.36) is

(L tem)] = @mii = o}, (Cm+ 11 (2.37)
The coefficient @/, can be obtained by taking the product of (2.36) and (2.37)
giving
Com| L L, |,m) = |agul* (€,m+ 1|6, m + 1).
Hence, for the normalised states |€, m) and |€,m + 1),
laeml” = (€. m| L_Ly |, m)
=(&,m|[* - L, - L2, m)
= (6L + 1) — m — m?) (£, m|€, m)
= 0L+ 1) —m(m + 1),

and therefore,

Ly |6,my = €L+ 1) — m(m + 1) |6,m + 1). (2.38)

The corresponding relation for the angular momentum lowering operator, which
can be obtained in the same manner, is

Lo|t,m) = V€l + 1) —mm—1)|t,m— 1). (2.39)

The relations given in (2.38) and (2.39) will be used to construct the angular
momentum (and flavour states) formed from the combination of more than one
particle.

2.3.6 Fermi’s golden rule

Particle physics is mainly concerned with decay rates and scattering cross sec-
tions, which in quantum mechanics correspond to transitions between states. In
non-relativistic quantum mechanics, calculations of transition rates are obtained
from Fermi’s golden rule. The derivation of Fermi’s golden rule is far from trivial,
but is included here for completeness.

Let ¢x(x,7) be the normalised solutions to the Schrodinger equation for the
unperturbed time-independent Hamiltonian Hy, where

Hodr = Exdre  and  {¢jln) = O jp.

In the presence of an interaction Hamiltonian H (x, 1), which can induce transitions
between states, the time-dependent Schrodinger equation becomes

d A
id—‘f = Ao+ A'(x,0)|y. (2.40)
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The wavefunction ¥/(x, f) can be expressed in terms of complete set of states of the
unperturbed Hamiltonian as

1) = ) crge(xe (2.41)
k
where the time-dependent coefficients ci(#) allow for transitions between states.
Substituting (2.41) into (2.40) gives a set of differential equations for the coeffi-
cients c(?),

. dck . . s A s A s
’Z[ e B — iErerpre™ | = ) ecflogre ™ + ) A e
k

i k

. dc —i Yy’ —i
= iy d—f¢ke Ext = Zk] A (e B (2.42)

k

Suppose at time ¢ =0, the initial-state wavefunction is |i) = ¢; and the coeflicients
are cx(0) = . If the perturbing Hamiltonian, which is constant for 7> 0, is suffi-
ciently small that at all times c;(¢) ~ 1 and cx;(t) = 0, then to a first approximation
(2.42) can be written

. dc s Ay iR
sz: d—tk¢ke Edt B gie~ (2.43)

The differential equation for the coefficient c (), corresponding to transitions to a
particular final state |f) = ¢/, is obtained by taking the inner product of both the
LHS and RHS of (2.43) with ¢ ¢(x) and using (¢ rl¢i) = 0 s« to give

d o
g = —i(fI liye ErE, (2.44)

where
LA fv ¢ 0H ¢i(x) dx.

The transition matrix element Ty; = f |H’|i) has dimensions of energy because both
¢; and ¢ are normalised by a volume integral. At time =T, the amplitude for
transitions to the state |f) is given by the integral of (2.44)

T
ci(T) = —i f Tyie"Er-Et dr,
0
If the perturbing Hamiltonian is time-independent, so is the term ( f |A’|i) and thus

T
cp(T) = —iTy; f e ErEdt gy, (2.45)
0

The probability for a transition to the state |f) is given by

T T
Pji = c{(T)CH(T) = [Tyl f f (ErED G EED 41 df
0 0



52 Underlying concepts

sin? x
X

0 I I l I l I I
-50 -40 -30 -20 10 0 10 20 30 40 50

(E;~E)N0"5 eV

The functional form of the integral of Equation (2.46) for T = 1s.

The transition rate dI'y; from the initial state |i) to the single final state |f) is
therefore

(Sl

Pyi 1 2 Yot i(Ef—Ept —i(Es—E)t’
dl'yi = —= = =Tyl f f e BB gmHE=EDE qr df (2.46)
T T _ -z

r
2

where the limits of integration are obtained by the substitutions + — ¢+ 7/2 and
t" — t' + T /2. The exact solution to the integral in (2.46) has the form

.2
sin“x . (Ef— E)T
with x = ———,
x? 2h

where the factor of 7 is included for clarity. This solution is shown for 7=1s in
Figure 2.5, from which it can be seen that the transition rate is only significant
for final states where E¢ ~ E; and that energy is conserved within the limits of the
energy—time uncertainty relation

AEAt ~ h. (2.47)

The narrowness of the functional form of (2.46) means that for all practical
purposes, it can be written as

1 —+
.= 2 1 J—
o =maf o {7 [

N

4T
[ ewrevesenn

ST}
N
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Using the definition of the Dirac delta-function given by (A.4) in Appendix A, the
integral over dt’ can be replaced by 27 6(E ¢ — E;) and thus

1 7 .
de, = 271' |Tfl|2 Thm {T f el(Ef_Ei)t(S(Ef - El) dt} .

r
2

If there are dn accessible final states in the energy range Ey — Ey + dE/, then the
total transition rate I'z; is given by

d 1 (7
Tsi=2n f |Tf,~|2d—£c lim {? f e_‘(Ef_E")’(S(Ef—Ei)dt} dE;.  (2.48)

T

2

The delta-function in the integral implies that Er = E; and therefore (2.48) can be
written

+

dn 1
=2 ThH?—6(Es — E;) lim { = dr$ dE
1 ﬂf|f|dEf(f )TEEO{TI% } 1

r
2

d
=21 f TP ——8(E; — E;) dE; (2.49)
dEy
dn
=27 |T il |—| .
7T| fll dEf 5
The term % E is referred to as the density of states, and is often written as p(E;)
where
dn
E: -
p(E;) aE; |,

Fermi’s golden rule for the total transition rate is therefore
Lyi = 2x [T i p(Ep),

where, to first order, Ty; = qiidhy

In the above derivation, it was assumed that c+;(#) ~0. An improved approx-
imation can be obtained by again taking c;(f) ~ 1 and substituting the expression
for cyi(¢) from (2.45) back into (2.42), which after taking the inner product with a
particular final state ¢ ¢(x) gives

dc L R ‘ o . ,
5~ AR ETE 1 (=) Y fIB e fo (IA iy B dy
k#i
(2.50)
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Because the perturbation is not present at =0, and for #>0 it is constant, the
integral in (2.50) can be written

(Er—E))t
i(Ex — E;)

Therefore, the improved approximation for the evolution of the coefficients c¢(z) is
given by

f k|A |iYe" BB 4 = (k| i) ———

O VAL LI Y P
7 = _ H LAV % 57 .
- z(<f| i) + ; o |

Comparison with (2.44) shows that, to second order, the transition matrix element
Ty; is given by

2 I:]’ k kIfI/ .
Tyi = (fIAli)+ ) Ul EI. z<Elk i

k#i

The second-order term corresponds to the transition occurring via some inter-
mediate state |k). The full perturbation expansion can be obtained by successive
substitutions. Provided the perturbation is sufficiently small, the successive terms
in the perturbation expansion decrease rapidly, and it is possible to obtain accu-
rate predictions using only the lowest-order term that contributes to a particular
process.

Summary
|

Three main topics have been presented in this chapter. Firstly, the system of natural
units with

h=c=gy=pup=1

was introduced. It is used widely in particle physics and is adopted throughout this
book. You should be comfortable with the concept of natural units and should be
able to convert between natural units and S.I. units.

Because almost all of particle physics deals with relativistic particles, a sound
understanding of special relativity and, in particular, the use of four-vectors is
essential for much of what follows. Four-vector notation is used throughout this
book with the conventions that the metric tensor is

1 00 0
0-1 0 0

— MV —

Io=9"=l0o 0-1 o)

0 0 0-1
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such that zeroth component of a four-vector is the time-like quantity, for example

xt =(t,x,y,2) and p* =(E, px, py, D)

The scalar product of any two four-vectors,
a-b = atb, = g,,a'b" = a’b® — a'b' — &*b* — &°b® = invariant,

forms a Lorentz-invariant quantity that does not depend on the frame of reference.
The results of the calculations that follow are usually presented in a frame inde-
pendent manner using Lorentz invariant quantities.

A number of concepts in quantum mechanics are central to the theoretical ideas
developed in the following chapters and it is important that you are familiar with
the material reviewed in this chapter. Here the four most important concepts are:
(1) the operator formulation of quantum mechanics, where physical observables are
described by time-independent operators acting on time-dependent wavefunctions;
(ii) the idea of stationary states of the Hamiltonian and the time development of a
quantum mechanical system; (iii) the treatment of angular momentum in quantum
mechanics and the algebra defined by the commutation relations between the angu-
lar momentum operators; and (iv) Fermi’s golden rule to describe transition rates.

Problems
|

21 When expressed in natural units the lifetime of the W boson is approximately 7 ~ 0.5 GeV ™. What is the cor-
responding value in S.I. units?

2.2 Across section is measured to be 1 pb; convert this to natural units.
23 Show that the processy — e*e™ can not occur in the vacuum.

24 Aparticle of mass 3 GeVis travelling in the positive z-direction with momentum 4 GeV; what are its energy and
velocity?

2.5  In the laboratory frame, denoted X, a particle travelling in the z-direction has momentum p = p,2 and
energy £.

(a) Use the Lorentz transformation to find expressions for the momentum p; and energy £” of the particleina
frame X', which is moving in a velocity v = +vZ relative to , and show that £ — p2 = (£")* — (p})%.
(b) Forasystem of particles, prove that the total four-momentum squared,

pip, = [Z 5]2 - (Z p,-]z ,

i i

is invariant under Lorentz transformations.
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2.6

2.7

2.8

2.9

2.10

21

2.12

2.13

2.14

2.15

For the decay @ — 1 + 2, show that the mass of the particle a can be expressed as
m} = m} +m + 26561 - By, os 6),
where (3, and 3, are the velocities of the daughter particles (8; = v;/c) and s the angle between them.

Ina collider experiment, A baryons can be identified from the decay A — 7t~ p, which givesrise to a displaced
vertex in a tracking detector. In a particular decay, the momenta of the st and p are measured to be 0.75 GeV
and 4.25 GeV respectively, and the opening angle between the tracks is 9°. The masses of the pion and proton
are 139.6 MeV and 938.3 MeV.

(a) Calculate the mass of the A baryon.
(b) Onaverage, A baryons of this energy are observed to decay at a distance of 0.35 m from the point of pro-
duction. Calculate the lifetime of the A.

In the laboratory frame, a proton with total energy £ collides with proton at rest. Find the minimum proton
energy such that process

pP+p—=p+p+p+p
is kinematically allowed.

Find the maximum opening angle between the photons produced in the decay t® — vy if the energy of the
neutral pion is 10 GeV, given that m,0 = 135 MeV.

The maximum of the 7t~ p cross section, which occurs at p,, = 300 MeV, corresponds to the resonant production
of the A baryon (i.e. v/s = m,). What is the mass of the A?

Tau-leptons are produced in the process e*e™ — Tt ata centre-of-mass energy of 91.2 GeV. The angular
distribution of the st~ from the decay 1= — st~ v, is
dv
d(cos 6*)
where 6* is the polar angle of the 5t~ in the tau-lepton rest frame, relative to the direction defined by the

T (tau) spin. Determine the laboratory frame energy distribution of the st~ for the cases where the tau-lepton
spinis (i) aligned with or (ii) opposite to its direction of flight.

oc 1+ cos 6",

For the process 142 — 3 +4, the Mandelstam variables s, t and u are defined as s = (p; + p,),
t=(p1 —ps)* and u = (p; — pa)?. Show that

S+U+t=m+m+m+m.

At the HERA collider, 27.5 GeV electrons were collided head-on with 820 GeV protons. Calculate the centre-of-
mass energy.

Consider the Compton scattering of a photon of momentum k and energy £ = |k| = k from an electron at rest.
Writing the four-momenta of the scattered photon and electron respectively as k” and p’, conservation of four-
momentum is expressed as k + p = k' + p’. Use the relation p’* = m? to show that the energy of the scattered
photon is given by
, E
1+ (E/m)(1 — cos6)’

where @ is the angle through which the photon is scattered.

Using the commutation relations for position and momentum, prove that

L] = iL..
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(D 216

D w7

Using the commutation relations for the components of angular momenta prove
[zza ZX:I = 05

and

e (01 e 1[0 =i &
SX_2(10 , Sy_i i 0 and Sz_i

satisfy the same algebra as the angular momentum operators, namely
B3] =8 [5:5] =58 and [5.5] =15,

' . 2l M oy p ) A .
Find the eigenvalue(s) of the operator S = }(Sﬁ + SJZ, + 52), and deduce that the eigenstates of 9, are a suit-
able representation of a spin-half particle.

Find the third-order term in the transition matrix element of Fermi’s golden rule.



Decay rates and cross sections

4 This chapter describes the methodology for the calculations of cross sections )
and decay rates in relativistic quantum mechanics. In particular, it introduces
the ideas of Lorentz-invariant phase space, the Lorentz-invariant matrix ele-
ment and the treatment of kinematics in particle decays and interactions. The
end product is a set of master formulas which, once the quantum mechanical
matrix element for a process is known, can be used to obtain expressions for
decays rates and cross sections. Provided the main concepts are understood, it
is possible to skip the details of the derivations.

3.1 Fermi’s golden rule

58

Much of particle physics is based on the experimental measurements of particle
decay rates and particle interaction cross sections. These experimentally observ-
able phenomena represent transitions between different quantum mechanical states.
In non-relativistic quantum mechanics, transition rates are obtained using Fermi’s
golden rule, which was derived in Section 2.3.6. Fermi’s golden rule for the transi-
tion rate I'y; from an initial state [/) to a final state |f) is usually expressed as

Ty = 27T ;i p(E)), (3.1)

where T; is the transition matrix element and p(E;) is the density of states. The
transition matrix element is determined by the Hamiltonian for the interaction
which causes the transitions A’. In the limit where the perturbation is weak, the
transition matrix element is given by a perturbation expansion in terms of the inter-
action Hamiltonian,

B DGIA D |
E —E; '

75 = (A + Y

J#I
The transition rate of (3.1) depends on the density of states p(E;),
dn

p(E;) = iE

b
E;
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et ur q q

Feynman diagrams fore"e™ — w*u™ annihilation and e~q — e~ q scattering.

where dn is the number of accessible states in the energy range E — E + dE. Alter-
natively, the density of states can be written as an integral over all final-state ener-
gies using the Dirac delta-function to impose energy conservation,

dn
dE

dn
= | —68(E; - E)dE
El. deé( 1 ) ’

giving the alternative form of Fermi’s golden rule

Ty =2n f T 1*6(E; — E) dn, (3.2)

which appeared as an intermediate step in the derivation of Fermi’s golden rule,
see (2.49).

The transition rate between two states depends on two components, (i) the tran-
sition matrix element, which contains the fundamental particle physics, and (ii) the
density of accessible states, which depends on the kinematics of the process being
considered. The aim of the first part of this book is to develop the methodology for
the calculation of decay rates and interaction cross sections for particle annihila-
tion and scattering processes such as those represented by the Feynman diagrams
of Figure 3.1. In modern particle physics the most complete theoretical approach to
such calculations is to use quantum field theory. Nevertheless, the same results can
be obtained using perturbation theory in relativistic quantum mechanics (RQM).
This requires a relativistic formulation of Fermi’s golden rule where the density of
states is based on relativistic treatments of phase space and the normalisation of
the plane waves used to represent the particles.

3.2 Phase space and wavefunction normalisation
|

Before discussing the relativistic wavefunction normalisation and phase space, it
is worth briefly reviewing the non-relativistic treatment. In non-relativistic quan-
tum mechanics, the decay rate for the process a — 1 + 2 can be calculated using



60

Decay rates and cross sections

Fermi’s golden rule. To first order in perturbation theory, the transition matrix
element is

Tri = Wl H' [Wa) (3.3)
- fv Wi padPx. (3.4)

In the Born approximation, the perturbation is taken to be small and the initial- and
final-state particles are represented by plane waves of the form

W(x, 1) = AeP*ED, (3.5)

where A determines the wavefunction normalisation. The integral in (3.4) extends
over the volume in which the wavefunctions are normalised. It is usual to adopt a
scheme where each plane wave is normalised to one particle in a cubic volume of
side a. Using the non-relativistic expression for probability density p =y, this is

equivalent to writing
fffgb*tﬁdxdydz =1,
0 Jo Jo

which implies that the normalisation constant in (3.5) is given by
A =1/a* =1}V,

where V is the volume of the box.
The normalisation of one particle in a box of volume a® implies that the wave-
function satisfies the periodic boundary conditions'

v(x+a,y,z) =y¥(x,y,z), etc.,

as illustrated in Figure 3.2. The periodic boundary conditions on the wavefunction,
for example e/P+* = ¢Px*+@ imply that the components of momentum are quan-
tised to

2r
(p)h py, pz) = (nxa ny’ nz)79

! In terms of counting the number of states, the periodic boundary conditions are equivalent to
requiring that the wavefunction is zero at the boundaries of the volume. This condition implies that
the wavefunction consists of standing waves of the form ¥(x, y, z) = A sin(p,x) sin(p,y) sin(p,z),
with p,, p, and p, such that there are a half-integer number of wavelengths along each side of the
box. Since sin(p,x) = (e/P* —e~iPx¥)/2i, the wavefunction expressed in this way has forward-going
and backward-going components and the integration over phase space is restricted to positive
values of p,, p, and p.. The same number of states are obtained with periodic boundary conditions,
with an integer number of wavelengths in each direction. In this case, the phase space integral
extends over both positive and negative values of p,, p, and p..
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Py
A A
e gl
a Y (KK
° ¢ ()
° ¢ e
° ¢ e e
> Py o ¢ °
° ¢ °
—o—¢ Px
o ¢

dp

The non-relativistic treatment of phase space: (a) the wavefunction of a particle confined to a box of side
a satisfies the periodic boundary conditions such that there are an integer number of wavelengths in each
direction; (b) the allowed states in momentum space; and (c) the number of statesinarangep — p + dp
in two dimensions.

where n,, n, and n; are integers. This restricts the allowed momentum states to
the discrete set indicated in Figure 3.2b. Each state in momentum space occupies a
cubic volume of

3 3
2 2

&*p = dp,dp,dp, = (—”) G
a \%

As indicated in Figure 3.2¢, the number of states dn with magnitude of momentum
in the range p — p + dp, is equal to the momentum space volume of the spherical
shell at momentum p with thickness dp divided by the average volume occupied
by a single state, (27)*/V, giving

Vv
dn = 4np*dp x ——

Q2n)*
and hence
dn _ 4np*
dp ()3
The density of states in Fermi’s golden rule then can be obtained from
oE) = 3 = 5 |

The density of states corresponds to the number of momentum states accessible
to a particular decay and increases with the momentum of the final-state particle.
Hence, all other things being equal, decays to lighter particles, which will be pro-
duced with larger momentum, are favoured over decays to heavier particles.

The calculation of the decay rate will not depend on the normalisation volume;
the volume dependence in the expression for phase space is cancelled by the factors
of V associated with the wavefunction normalisations that appear in the square of
transition matrix element. Since the volume will not appear in the final result, it
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is convenient to normalise to one particle per unit volume by setting V = 1. In this
case, the number of accessible states for a particle associated with an infinitesimal
volume in momentum space d>p; is simply

For the decay of a particle to a final state consisting of N particles, there are N — 1
independent momenta in the final state, since the momentum of one of the final-
state particles can always be obtained from momentum conservation. Thus, the
number of independent states for an N-particle final state is

dn—l_[dn,—l—[—I;

This can be expressed in a more democratic form including the momentum space
volume element for the Nth particle d>p, and using a three-dimensional delta-
function to impose momentum conservation

N-1 &p, N
dn = | ﬁ53 [pa - p,.) py, (3.6)
i=1 T i=1

where p, is the momentum of the decaying particle. Therefore the general non-
relativistic expression for N-body phase space is

_ 3 — dpz 3 -
dn = (2m) ﬂ(2 sl .- ) il 3.7)

i=1

3.2.1 Lorentz-invariant phase space

The wavefunction normalisation of one particle per unit volume is not Lorentz
invariant since it only applies to a particular frame of reference. In a different ref-
erence frame, the original normalisation volume will be Lorentz contracted by a
factor of 1/y along its direction of relative motion, as shown in Figure 3.3. Thus,
the original normalisation of one particle per unit volume corresponds to a nor-
malisation of y = E/m particles per unit volume in the boosted frame of reference.
A Lorentz-invariant choice of wavefunction normalisation must therefore be pro-
portional to E particles per unit volume, such that the increase in energy accounts
for the effect of Lorentz contraction. The usual convention is to normalise to 2E
particles per unit volume. The reason for this particular choice is motivated in Sec-
tion 3.2.3 and also in Chapter 4.
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VWY s/

a a

a aly

The normalisation volume in a particular frame is length contracted along the direction of motion for a
general rest frame.

The wavefunctions s appearing in the transition matrix element 7's; of Fermi’s
golden rule are normalised to one particle per unit volume,

f¢*¢d3x: 1.
%

Wavefunctions with the appropriate Lorentz-invariant normalisation, here written
as y’, are normalised to 2E particles per unit volume

f Yy dx = 2E,
1%
and therefore

W' = QE)'y.

For a general process, a + b+ --- — 1 + 2 + .-, the Lorentz-invariant matrix
element, using wavefunctions with a Lorentz-invariant normalisation, is defined as

My = Wty | H W, ). (3.8)

The Lorentz-invariant matrix element is therefore related to the transition matrix
element of Fermi’s golden rule by

My = Wty B W, ) = QEy - 2Ey - 2E, - 2Ep -+ ) *Tpi,  (3.9)

where the product on the RHS of (3.9) includes all intial- and final-state particles.

3.2.2 Fermi’s golden rule revisited

For a two-body decay a — 1 + 2, the quantum mechanical transition rate is given
by Fermi’s golden rule, which in the form of (3.2) can be written

[y= 27Tf|Tfi|25(Ea - E, - E>)dn,

where dn is given by (3.7), and hence
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&’p; &p,
Q2n)* (2m)3
Using the relation between the transition matrix element and the Lorentz invariant
matrix element of (3.9), this can be written as

i = 2n) f THPS(Es — Er - ENG (D, — Py - P2) (3.10)

Qn)* &p,  dp,

(2 )32E1 (27T)32E2

Tp=2 f IMsi26(Eq — E1 - E)6* (D, — Py — Do)

(3.11)

with |M fl-l2 =(E2E 12E2)|Tf,~|2. One consequence of using wavefunctions with a
Lorentz invariant normalisation, is that the phase space integral over d>p/(27)? has
been replaced by an integral over terms like
d’p
(2n)32E’

which is known as the Lorentz-invariant phase space factor. To prove this is Lorentz
invariant, consider a Lorentz transformation along the z-axis, where the element
d3p transforms to d°p’ given by

d_p£d3
dp;

From the Einstein energy—momentum relation, E?= p2 + pﬁ + pg +m?, and the
Lorentz transformation of the energy—momentum four-vector,

p.=v(p.—BE) and E’=y(E-pp,),

4 ’ ’ 4 p
d&*p’ = dp\dp|dp, = dp.dp, d—pzdpz = p. (3.12)
Z

it follows that

’

d ’
L y(l —ﬁa—E) =y (1-%) = 2y E-ppa ==,

dp; dp; E
which when substituted into (3.12) demonstrates that
d3p/ _ d3p
E  E’

and hence d*p/E is Lorentz invariant.

The matrix element My; in (3.11) is defined in terms of wavefunctions with a
Lorentz-invariant normalisation, and the elements of integration over phase space
d*p,/E; are also Lorentz invariant. Consequently, the integral in (3.11) is Lorentz
invariant and thus (3.11) expresses Fermi’s golden rule in a Lorentz-invariant form.
This is an important result, it is exactly the required relativistic treatment of transi-
tion rates needed for the calculation of decay rates. The resulting transition rate for
the decay a — 1 + 2 given in (3.11) is inversely proportional to the energy of the
decaying particle in the frame in which it is observed, E, = ym,, as expected from
relativistic time dilation.
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3.2.3 *Lorentz-invariant phase space

The expression for the decay rate given (3.11) can be extended to an N-body decay,
a— 142+ --- + N.In this more general case, the phase space integral involves the
three-momenta of all final-state particles

dLIPS = ]—[ (27r)32E

where dLIPS is known as the element of Lorentz-invariant phase space (LIPS).
The factors 1/2E; can be rewritten in terms of a delta-function using (A.6) of
Appendix A and the constraint from the Einstein energy—momentum relationship,
E; = p? + m?, which implies that

1

S(E? —p? —m?)dE; = —.
f(, - m)dEi = o

Hence, the integral over Lorentz-invariant phase space can be written as

N
f ... dLIPS = f | emaE? - p} - m}) &, dE;,
i=1

which, in terms of the four-momenta of the final-state particles is

N
f ... dLIPS = f ---ﬂ(zn)—35(pf~—m$)d4p,~.
i=1

Similarly, the transition rate for the two-body decay a — 1 + 2, given in (3.11), can
be written as

@2m)*

Lri=> f @m)IMsil*6*(pa = p1 = p2)8(p} — MD)S(p3 — m3) d*prd*pa.

The integral now extends over all values of the energies and momenta of each of the
final-state particles. The delta-functions ensure that the decay rate only has contri-
butions from values of the four-momenta of the final-state particles compatible with
overall energy and momentum conservation and the Einstein energy—momentum
relation pi2 = ml2 This form of the expression for the decay rate elucidates clearly
the point that all the fundamental physics lives in the matrix element. It also pro-
vides a deeper insight into the origin of the phase space integral.
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3.3 Particle decays
|

In general, a given particle may decay by more than one decay mode. For example,
the tau-lepton can decay into a number of final states, T~ — € VeVy, T~ — WV, Vq
and 1t~ — v + hadrons. The transition rate for each decay mode j can be calcu-
lated independently using Fermi’s golden rule. The individual transition rates I';
are referred to as partial decay rates or, for reasons that will become apparent
later, partial widths.

The total decay rate is simply the sum of the decay rates for the individual decay
modes. For example, if there are N particles of a particular type, the number that
decay in time d¢ is given by the sum of the numbers of decays into each decay
channel,

6N = —NT'\6t — N6t — -+ = =N " T; 61 = -NT'ét, (3.13)
J
where the total decay rate per unit time I" is the sum of the individual decay rates,

F:er.
J

The number of particles remaining after a time ¢ is obtained by integrating (3.13)
to give the usual exponential form

N(t) = N(O) e ™ = N(0) exp (—5)

where the lifetime of the particle in its rest frame 7 is referred to as its proper
lifetime and is determined from the total decay rate

1
T=—.

r
The relative frequency of a particular decay mode is referred to as the branching
ratio (or branching fraction). The branching ratio for a particular decay mode BR( )
is given by the decay rate to the mode j relative to the total decay rate

Y

For example, the branching ratio for the tau-lepton decay t~ — e Vv is 0.17,
which means that on average 17% of the time a T~ will decay to e”v¢Vv;. By defini-
tion, the branching ratios for all decay modes of a particular particle sum to unity.

3.3.1 Two-body decays

The transition rate for each decay mode of a particle can be calculated by using the
relativistic formulation of Fermi’s golden rule given in (3.11). The rate depends on
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The two-body decay @ — 1+ 2in the rest frame of particle a.

the matrix element for the process and the phase space integral. The matrix element
depends on the nature of the decay and needs to be evaluated for each process. In
contrast, the form of the phase space integral depends only on the number of parti-
cles in the final state. Furthermore, since the integral of (3.11) is Lorentz invariant,
it can be evaluated in any frame.

Consider the two-body decay a — 1 + 2, shown in Figure 3.4. In the centre-of-
mass frame, the decaying particle is at rest, £, = m, and p, = 0, and the two daugh-
ter particles are produced back to back with three-momenta p* and —p*. In this
frame, the decay rate is given by (3.11),

35 43
Tji= &T%m f IM;iP6(my — Ey — E2)8 () + p2) (;_1;)11(;_;22 (3.14)
It is not straightforward to evaluate the phase space integral in this expression, but
fortunately the calculation applies to all two-body decays and has to be performed
only once. The 6°(p; + p,) term in (3.14) means that the integral over d*p, has the
effect of relating the three-momenta of the final-state particles giving p, = —p; and
hence

1 1
Ty = iI*——36(m, — E1 — E;)d’py, 3.15
= 5 [ M 5 m - B - Ea (3.15)
where E, is now given by E% = (m% + pf). In spherical polar coordinates,

d°p, = pldp; sinfdod¢ = p? dpdQ,

and (3.15) can be written

1 , P;
U= g [ MRS (= i 5} = 8} ) 7o dpra. 10

At first sight this integral looks quite tricky. Fortunately the Dirac delta-function
does most of the work. Equation (3.16) has the functional form

1
Lyi= mf|Mfi|2g(P1)5(f(P1))dpldQ, (3.17)
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with
2
P}
= , 3.18
g(p1) IE.E, (3.18)
and
fp1) =my— Ey — Ey =mg — \/m%+p%— \/m§+pf. (3.19)

The Dirac delta-function 6(f(p;)) imposes energy conservation and is only non-
zero for p; =p*, where p* is the solution of f(p*) =0. The integral over dp; in (3.17)
can be evaluated using the properties of the Dirac delta-function (see Appendix A),
whereby

(3.20)

MR 05 (7p) i = 1M 1
p*
The derivative df/dp; can be obtained from (3.19),

dar|_ p1 p1 _ (E1 + Ez)
apr| " A pH2 T + pDI E\Ey )
which, when combined with the expression for g(p;) given in (3.18), leads to
-1 " %
__bp P EE _ b
dp popr AE1Ex pU(E1+Ey)  4mg

Thus, the integral of (3.20) is

f MG 9(p1) 6P dp1 = oM

and therefore,

p; &p
2E 2E,

fIMfll S(mg — Ey = Ep)5° (p1+Pz) 2 = im f|Mfi|2dQ, (3.21)

and hence (3.14) becomes

P’ 2
[fi=———= | IMgl"dQ. 3.22
fi 327‘[2}’)1% fl fll ( )

Equation (3.22) is the general expression for any two-body decay. The fundamental
physics is contained in the matrix element and the additional factors arise from the
phase space integral. The matrix element, which may depend on the decay angle,
remains inside the integral. The centre-of-mass frame momentum of the final-state
particles p* can be obtained from energy conservation, or equivalently f(p*)=0,
and 1s given by (see Problem 3.2)

p' = Zrln \/[(mg = (my + mz)z] [mg = (my — mz)z].
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3.4 Interaction cross sections
|

The calculation of interaction rates is slightly more complicated than that for par-
ticle decays because it is necessary to account for the flux of initial-state particles,
where flux is defined as the number of particles crossing a unit area per unit time.
In the simplest case, one can imagine a beam of particles of type a, with flux ¢,,
crossing a region of space in which there are n,, particles per unit volume of type
b. The interaction rate per target particle r;, will be proportional to the incident

particle flux and can be written
rp = 0dg. (3.23)

The fundamental physics is contained in o, which has dimensions of area, and is
termed the interaction cross section. Sometimes it is helpful to think of o as the
effective cross sectional area associated with each target particle. Indeed, there are
cases where the cross section is closely related to the physical cross sectional area
of the target, for example, neutron absorption by a nucleus. However, in general,
the cross section is simply an expression of the underlying quantum mechanical
probability that an interaction will occur.

The definition of the cross section is illustrated by the situation shown in
Figure 3.5a, where a single incident particle of type a is travelling with a veloc-
ity v, in a region defined by the area A, which contains n; particles of type b per
unit volume moving with a velocity v, in the opposite direction to v,. In time 6t,
the particle a crosses a region containing 6N = np(v, + vp)At particles of type b.
The interaction probability can be obtained from the effective total cross sectional
area of the 6N particles divided by the area A, which can be thought of as the prob-
ability that the incident particle passes through one of the regions of area o drawn
around each of the ON target particles, as shown in Figure 3.5b. The interaction
probability 6P is therefore

_ONo  np(vq + vp)A oot

oP 1 1 = npvoot,
(a) (b)
([ ° o
[ ] o «—0
° L4 ®

The left-hand plot (a) shows a single incident particle of type a traversing a region containing particles of
type b. The right-hand plot (b) shows the projected view of the region traversed by the incident particle in
time ot.



70

Decay rates and cross sections

where v = v, + v,. Hence the interaction rate for each particle of type a is
dP

Fo = —

“dt

For a beam of particles of type a, with number density n, confined to a volume V,
the total interaction rate is

= nypVvo.

rate = r,n,V = (npvo) n,V. (3.24)
The expression of (3.24) can be rearranged into
rate = (ny,v)(npV)o = ¢ Np, 0.
Thus the total rate is equal to
rate = flux X number of target particles X cross section,

which is consistent with the definition of (3.23). More formally, the cross section
for a process is defined as

number of interactions per unit time per target particle
o= — .
incident flux

It should be noted that the flux ¢ accounts for the relative motion of the particles.

3.4.1 Lorentz-invariant flux

The cross section for a particular process can be calculated using the relativistic
formulation of Fermi’s golden rule and the appropriate Lorentz-invariant expres-
sion for the particle flux. Consider the scattering process a + b — 1 + 2, as observed
in the rest frame where the particles of type a have velocity v, and those of type
b have velocity v, as shown in Figure 3.6. If the number densities of the particles
are n, and nyp, the interaction rate in the volume V is given by

rate = ¢, npVo = (Vg +Vp)ngnp o'V, (3.25)

The two-body scattering processa + b — 1+ 2.
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where ¢, is the flux of particles of type a through a plane moving at velocity vy,

ba = na(Vg + Vp).

Normalising the wavefunctions to one particle in a volume V, gives n, = n, = 1/V,
for which the interaction rate in the volume V is

(Va + Vb)
= —a0.

[y v

(3.26)
Because the factors of V in the expression for the flux will ultimately be cancelled
by the corresponding factors from the wavefunction normalisation and phase space,
the volume V will not appear in the final result and it is again convenient to adopt
a normalisation of one particle per unit volume. With this choice, the cross section
is related to the transition rate by

o= —rﬂ
(Vg + Vb).
The transition rate I'; is given by Fermi’s golden rule, which in the form of (3.10)

gives

(2n)* 2 3 d3p1 d3p2
= ———— | [THlF0(E, + Ep — Ey — E2)6> (P, + Pp — P1 — P2)——— :
T N ) ITfil"6(Ea + Ep — Ex — E2)6° (P, + Py, — P1 — P2) 203 ()

This can be expressed in a Lorentz-invariant form by writing T'f; in terms of the
Lorentz-invariant matrix element My; = (2E; 2E; 2E5 2E)Y zTﬁ,

(2m)~?

d’p, d’p,
o =
4 EaEb(Va + Vb)

2 3
iI"0(E, + Ep — Ey — E3)0 —-P P .
f|Mf| (Eq+ Ep = Ey = E2)5"(B, + By = Py = P 55 5

(3.27)

The integral in (3.27) is now written in a Lorentz-invariant form. The quantity
F =4E,Ep(v, + vp) is known as the Lorentz-invariant flux factor. To demonstrate
the Lorentz invariance of F', first write

Pa, Py

Ea Eb
2 _ 2.2 2.2

= F~ =16(E;p; + E;p, + 2E.Eppaps), (3.28)

a

F =A4E,E,(vg + vp) = 4EaEb( ) = 4(E.pp + Eppa),

and then note that, for the case where the incident particle velocities are collinear,

(Pa-Pb)* = (EqEp + paPp)* = E2E} + p2ps + 2E4Eppaps- (3.29)

Substituting the expression for 2E,E,p,pp from (3.29) into (3.28) then gives

=16 [(pa' pp)* — (Ez —p2)(E} - pi)] :
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Thus, F can be written in the manifestly Lorentz-invariant form

1
F = 4|(pa-ps)* = mamy |? .

Since both F and the integral in (3.27) are Lorentz invariant, it can be concluded
that the cross section for an interaction is itself Lorentz invariant.

3.4.2 Scattering in the centre-of-mass frame

Because the interaction cross section is a Lorentz-invariant quantity, the cross sec-
tion for the process a + b — 1 + 2 can be calculated in any frame. The most conve-
nient choice is the centre-of-mass frame where p, = —p, = p; and p; = —p, = p},

and the centre-of-mass energy is given by /s = (E; + E}). In the centre-of-mass
frame, the Lorentz-invariant flux factor is

F = 4ELE}(V; + V) = AELE] (& ¥ ﬁ) = 4p!(E} + E})

E; E,
= 4p; Vs.
Using this expression and the constraint that p, + p, = 0, (3.27) becomes

1
(271)2 4p* \/_

The integral in (3.30) is the same as that of (3.21) with m, replaced by +/s. There-
fore, applying the results from Section 3.3.1 immediately leads to

L fl/\/( Q"
T 16n2pi s 4vs ST

where the solid angle element has been written as dQ2* to emphasise that it refers to
the centre-of-mass frame. Hence the cross section for any two-body — two-body
process is given by

sz

25 (3.30)

[ maPo(vs - 1 - E2)5 0+ SR

2 *
! fIM e, (3.31)

3.5 Differential cross sections
I ———

In many cases it is not only the total cross section that is of interest, but also the dis-
tribution of some kinematic variable. For example, Figure 3.7 shows the inelastic
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An example of e“p — e~ p scattering where the electron is scattered into a solid angle dQ2.

scattering process e p — eX where the proton breaks up. Here, the angular distri-
bution of the scattered electron provides essential information about the fundamen-
tal physics of the interaction. In this case, the relevant experimental measurement
is the differential cross section for the scattering rate into an element of solid angle
dQ = d(cos 6)dg,

do- _ number of particles scattered into d€2 per unit time per target particle
dQ incident flux ’

The integral of the differential cross section gives the total cross section,

do
o= | —dQ.
/&
Differential cross sections are not restricted to angular distributions. In some
situations, it is the energy distribution of the scattered particle that is sensitive to
the underlying fundamental physics. In other situations one might be interested in

the joint angular and energy distribution of the scattered particles. In each case, it
is possible to define the corresponding differential cross section, for example

do or d®o
dE dEdQ’

3.5.1 Differential cross section calculations

Differential cross sections can be calculated from the differential form of (3.31),

%k

d L P IM i 2dQ" (3.32)
o= — - ) .
647125 p; fi

The simplest situation is where the laboratory frame corresponds to the centre-of-
mass frame, for example e*e™ annihilation at LEP or pp collisions at the LHC.
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In this case, the differential cross section expressed in terms of the angles of one of
the final-state particles is immediately obtained from (3.32)

do 3 1
dQ*  64x2s

p*
LIMi. (3.33)
P;

In fixed-target experiments, such as e"p — e~ p elastic scattering, where the
target proton is at rest, the laboratory frame is not the centre-of-mass frame and
the calculation is more involved. Here, the differential cross section is most useful
when expressed in terms of the observable laboratory frame quantities, such as
the angle through which the electron is scattered, 6. The differential cross section
with respect to the laboratory frame electron scattering angle can be obtained by
applying the appropriate coordinate transformation to (3.32).

The transformation from the differential cross section in the centre-of-mass frame
to that in the laboratory frame is most easily obtained by first writing (3.32) in a
Lorentz-invariant form, which is applies in all frames. This is achieved by express-
ing the element of solid angle dQQ* in terms of the Mandelstam variable ¢t = p; — p3.
For e™p — e p scattering, ¢ is a function of the initial- and final-state electron four-
momenta. Using the definitions of the particle four-momenta shown in Figure 3.8,

t=(p} - p3)’ = pi° + Py = 2p;-p;
=m +m3 — 2E}E; - p} - p})
= m} +m3 — 2E}E} + 2p’p; cos 0. (3.34)
In the centre-of-mass frame, the magnitude of the momenta and the energies of the

final-state particles are fixed by energy and momentum conservation and the only
free parameter in (3.34) is the electron scattering angle 6%, thus

dr = 2p|p; d(cos 6°),

Lab. frame y e CoM frame y e
Ps P3
- b1 - * 6
e H 0 e
> @) z P, - z
p p> P
Pa Pi
P p

The process of e”p — e™p elastic scattering shown in the laboratory (left) and centre-of-mass (right)
frames.
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and therefore

dr dg*

dQ* = d(cos8) dg* = TPl
1P3

(3.35)

Writing p] and pj respectively as p; and p}i, and substituting (3.35) into (3.32)
leads to

do SIMildg"dr. (3.36)

" 1287%s p;

Assuming that matrix element is independent of the azimuthal angle, the integra-
tion over d¢* just introduces a factor of 27 and therefore

do 1

— = ——— My 3.37
The magnitude of the momentum of the initial-state particles in the centre-of-mass
frame can be shown to be

1
pi* = s = (my + mo) s = (my = ma)’] (3.38)

Since o, s, t and I/\/(f,-l2 are all Lorentz-invariant quantities, Equation (3.37) gives
a general Lorentz-invariant expression for the differential cross section for the

two-body — two-body scattering process.

3.5.2 Laboratory frame differential cross section

Because (3.37) is valid in all rest frames, it can be applied directly to the example
of e”p — e p elastic scattering in the laboratory frame, shown in Figure 3.8. In the
limit where the incident and scattered electron energies are much greater than the
electron rest mass, the laboratory frame four-momenta of the particles are

p1 ~ (E1,0,0, Ey),
p2 = (mp’ 07 03 0)7
p3 = (E3,0, E3sinf, E5 cos 6),
and P4 = (E4’ p4)
The momenta of the initial-state particles in the centre-of-mass frame are given by
(3.38) and since me << my,
(s — m2)?

4s

*2

P2~ (3.39)
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where s is given by

s=(p1+p2) = pi+p5+2p1-p2 ~ m}+2p1-p)

= mlz) +2E1myp,
and therefore
E2m?
p2 = —ls P (3.40)

The differential cross section in terms of the laboratory frame scattering angle of
the electron can be obtained from

d0' 3 | dr do

" d(cos 0) dr’

(3.41)

where the factor 2r arises from the integral over d¢ (again assuming azimuthal
symmetry). An expression for d¢/d(cos ) can be obtained by writing the Mandel-
stam variable 7 in terms of the laboratory frame four-momenta, defined above,

t=(p1 — p3)* ~ —2E1E3(1 — cos 6), (3.42)

where E3 is itself a function of 6. Conservation of energy and momentum imply
that p; + p» = p3 + p4, and ¢ can also be expressed in terms of the four-momenta
of the initial and final-state proton,

t = (p2— pa)’ = 2my = 2py-py = 2m> — 2myEq = —2mp(Ey — E3),  (3.43)

where the last step follows from energy conservation, E4 = E| +m, — E3. Equating
(3.42) and (3.43) gives the expression for E3 as a function of cos 6,

Ez = (3.44)

mp + E; — Eycos 6’

Because E| is the fixed energy of the initial-state electron, differentiating (3.43)
with respect to cos 6 gives

dr dEs

d(cos ) = 2my d(cos ) (3:45)
Differentiating the expression for E3 of (3.44), gives
dEs Efmy _ E_%
d(cos€) (mp+E; — Ejcos0)? mp’
which when substituted into (3.45) leads to
o (3.46)

d(cos§) ¥
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Substituting (3.46) into (3.41), and using the Lorentz-invariant expression for the
differential cross section of (3.37) gives

do 1, ,do E} 2

) O - R Y JUES

dQ 277 3dr 647T2sp;2| /i
The momentum of the intial-state particles in the centre-of-mass frame can be elim-
inated using (3.40) and thus

Bl 3 3.47
dQ ~ 64n2 (mpEl) M (347)

Finally, the energy of the scattered electron E3 can be expressed in terms of cos 6
alone using (3.44). Therefore the differential cross section can be written as an
explicit function of cos 6 and the energy of the incident electron

o 1 1 2|M I (3.48)
dQ ~ 6472 \my+ E| — E;cosd) = " ‘

The same calculation including the mass of the electron is algebraically more
involved, although the steps are essentially the same.
Summary

The general expression for the decay rate a — 1 + 2 is

p* 2
I = Mei|7dQ, 3.49
Ny f M (3.49)

where p* is the magnitude of the momentum of the final-state particles in the rest
frame of the decaying particle, which is given by

7 = 5[ = Gy moR] [ = my =]

The expression for the differential cross section for the process a + b — ¢ +d in
the centre-of-mass frame is

do 1 pf 2
_ M2, 3.50
dQ*  64n%s p: sil (550)

where p; and p} are respectively the magnitudes of the initial- and final-state
momenta in the centre-of-mass frame. In the limit where the electron mass can
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be neglected, the differential cross section for e"p — e p elastic scattering, in the
proton rest frame is

do 1 (E3

2
2
do_ 1 (£ 2, 3.51
dQ ~ 64n2 mpEl) Mgl ©51)

where E3 is a function of the electron scattering angle.

Problems
|

31  (alculate the energy of the w™ produced in the decay at rest w~ — p~v,. Assume m, =140 GeV,
m,, =106 MeV and take m, ~ 0.

3.2 Forthedecaya — 1+ 2, show that the momenta of both daughter particles in the centre-of-mass frame p* are

o = = [ o+ o[ [~ — ]

33 Calculate the branching ratio for the decay K* — mt*nt?, given the partial decay width T(K* — n*x®) =
1.2 x 1078 eV and the mean kaon lifetime 7(K*) =12 x 107%s.

3.4 Atafuture e*e™ linear collider operating as a Higgs factory at a centre-of-mass energy of +/s = 250 GeV, the
cross section for the process ete™ — HZ is 250 fb. If the collider has an instantaneous luminosity of
2 x 10* cm~2s™" and is operational for 50% of the time, how many Higgs bosons will be produced in five
years of running?

Note: 1femtobarn = 107" b.

35 Thetotalete™ —y — w*p~ annihilation cross section is o = 4ra’? /3s, where o ~ 1/137. Calculate the
cross section at +/s = 50 GeV, expressing your answer in both natural units and in barns (1barn =102 m?),
Compare this to the total pp cross section at /s = 50 GeV which is approximately 40 mb and comment on the
result.

3.6 A1GeV muon neutrino is fired at a 1m thick block of iron (;¢Fe) with density p =7.874 x 10° kgm™>. If the

average neutrino—nucleon interaction cross sectionis o = 8 x 1073 cm?, calculate the (small) probability that
the neutrino interacts in the block.

3.7  Fortheprocessa + b — 1+ 2the Lorentz-invariant flux term is

1
F=4](pgpsf — mm]” .
In the non-relativistic limit, 8, << 1and 8, <1, show that
F =~ 4m,mpy v, — vy,
where v, and v, are the (non-relativistic) velocities of the two particles.

3.8  The Lorentz-invariant flux term for the processa + b — 1+ 2in the centre-of-mass frame was shown to be
F=4p; /s, where p; is the momentum of the intial-state particles. Show that the corresponding expression
in the frame where b is at rest is

F = 4myp,.
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(§ 3.9  Show that the momentum in the centre-of-mass frame of the initial-state particles in a two-body scattering
process can be expressed as

1
pi? = 515 = (mr + mo)'Ils = (my — my)'].

@ 3.10 Repeat the calculation of Section 3.5.2 for the process e"p — e~ p where the mass of the electron is no longer
neglected.

(@) First show that

df; pip2

d(cosd)  ps(Ey + my) — Espycos @

(b) Then show that

o 1B 1 M

dQ 64 pim, byl + m,) — Espy cos 6 '

where (E;, p1) and (£, ps) are the respective energies and momenta of the initial-state and scattered elec-
trons as measured in the laboratory frame.



The Dirac equation

This chapter provides an introduction to the Dirac equation, which is the rel-
ativistic formulation of quantum mechanics used to describe the fundamental
fermions of the Standard Model. Particular emphasis is placed on the free-
particle solutions to the Dirac equation that will be used to describe fermions
in the calculations of cross sections and decay rates in the following chapters.

4.1 The Klein—Gordon equation

80

One of the requirements for a relativistic formulation of quantum mechanics is
that the associated wave equation is Lorentz invariant. The Schrodinger equation,
introduced in Section 2.3.1, is first order in the time derivative and second order
in the spatial derivatives. Because of the different dependence on the time and
space coordinates, the Schrddinger equation is clearly not Lorentz invariant, and
therefore cannot provide a description of relativistic particles. The non-invariance
of the Schrodinger equation under Lorentz transformations is a consequence its
construction from the non-relativistic relationship between the energy of a free
particle and its momentum

p2

T om’
The first attempt at constructing a relativistic theory of quantum mechanics was
based on the Klein—Gordon equation. The Klein—Gordon wave equation is obtained
by writing the Einstein energy—momentum relationship,

E? = p2 +m2,

in the form of operators acting on a wavefunction,

EXy(x,1) = PY(x, 1) + my(x,1).
Using the energy and momentum operators identified in Section 2.3.1,
0

A:—'V d E: '_,
P 1 an lat
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this leads to the Klein—Gordon wave equation,

Py o 2
The Klein—Gordon equation, which is second order in both space and time deriva-

tives, can be expressed in the manifestly Lorentz-invariant form
(00, + m* )y =0, (4.2)
where

o= —-—-—-—.,
Foor oxr oyt 0z
is the Lorentz-invariant scalar product of two four-vectors.
The Klein—Gordon equation has plane wave solutions,

Y(x, 1) = Ne'PXF0, (4.3)
which when substituted into (4.2) imply that

EXy = p*y + my,
and thus (by construction) the plane wave solutions to the Klein—Gordon equa-

tion satisfy the Einstein energy—momentum relationship, where the energy of the
particle is related to its momentum by

E = +/p? + m2.

In classical mechanics, the negative energy solutions can be dismissed as being
unphysical. However, in quantum mechanics all solutions are required to form a
complete set of states, and the negative energy solutions simply cannot be dis-
carded. Whilst it is not clear how the negative energy solutions should be inter-
preted, there is a more serious problem with the associated probability densities.
The expressions for the probability density and probability current for the Klein—
Gordon equation can be identified following the procedure used in Section 2.3.2.
Taking the difference ¢* X (4.1) — ¥ X (4.1)* gives

O Py \ \
Wi — U = (VY =) — (VAT =)
o .0 W\ o o oo
a—t(l// E_‘[’at)‘v W'Vy —yVyr). 4.4)

Comparison with the continuity equation of (2.20) leads to the identification of
the probability density and probability current for solutions to the Klein—Gordon
equation as

LU oy*
o Va

p= i(w ) and j = —i(y"V¢ -y Vy), (4.5)
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where the factor of i is included to ensure that the probability density is real. For a
plane wave solution, the probability density and current are

p=2INFE and j=2INPp,

which can be written as a four-vector j,’éG =2|N|>pH. The probability density is
proportional to the energy of the particle, which is consistent with the discussion
of relativistic length contraction of Section 3.2.1. However, this implies that the
negative energy solutions have unphysical negative probability densities. From
the presence of negative probability density solutions, it can be concluded that the
Klein—Gordon equation does not provide a consistent description of single particle
states for a relativistic system. It should be noted that this problem does not exist in
quantum field theory, where the Klein—Gordon equation is used to describe multi-
particle excitations of a spin-0 quantum field.

4.2 The Dirac equation
|

The apparent problems with the Klein—Gordon equation led Dirac (1928) to search
for an alternative formulation of relativistic quantum mechanics. The resulting
wave equation not only solved the problem of negative probability densities, but
also provided a natural description of the intrinsic spin and magnetic moments of
spin-half fermions. Its development represents one of the great theoretical break-
throughs of the twentieth century.

The requirement that relativistic particles satisfy E?=p?+ m? results in the
Klein—Gordon wave equation being second order in the derivatives. Dirac looked
for a wave equation that was first order in both space and time derivatives,

Ey = (- +pmyy, (4.6)
which in terms of the energy and momentum operators can be written
0 S Y B
lalﬁ = —zozxa — lay@ - la/Za—Z + Bm | . 4.7)

If the solutions of (4.7) are to represent relativistic particles, they must also sat-
isfy the Einstein energy—momentum relationship, which implies they satisfy the
Klein—Gordon equation. This requirement places strong constraints on the possi-
ble nature of the constants @ and 8 in (4.6). The conditions satisfied by @ and S can
be obtained by “squaring” (4.7) to give

_[)2_;0_ iai+iai+ia£—,8m iai+ia£+ia2—ﬁm 1
oz ox Yoy ‘0z T ox Y oy ‘0z ’
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which, when written out in gory detail, is

Py LY 0 LY

2 2
W_axﬁ+ay6_y2+az(922 B m Y
>y oy oy
+ (ayay, + a/yax)m + (aya; + azay)m + (@, + axaz)m

+ i(a, B +Bax)m8—w + i(ayB +ﬁay)m6—¢’ + (a8 +ﬁaz)m8—w. 4.8)
Ox dy 0z

In order for (4.8) to reduce to the Klein—Gordon equation,

Py Py oy Oy

2
= + + - ,
ot ox:  oy* 02 i
the coefficients @ and S must satisfy
2_ 2 2 _ 2

oy =@, = =B =1, 4.9)
a/j,8+ﬂa/j=0, (410)
ajap+araj =0 (j#k), 4.11)

where [ represents unity. The anticommutation relations of (4.10) and (4.11) can-
not be satisfied if the @; and B are normal numbers. The simplest mathematical
objects that can satisfy these anticommutation relations are matrices. From the
cyclic property of traces, Tr(ABC) = Tr (BCA), and the requirements that 8> = I and
a; B = —Ba;, it is straightforward to show that the a; and 8 matrices must have trace
zZero:

Tr(a;) = Tr(aipp) = Tr(Baip) = —Tr (i BB) = —Tr ().

Furthermore, it can be shown that the eigenvalues of the @; and 8 matrices are +1.
This follows from multiplying the eigenvalue equation,

a,-X = /1X,
by @; and using & = I, which implies
X =X = X=X,

and therefore A4 = +1. Because the sum of the eigenvalues of a matrix is equal to its
trace, and here the matrices have eigenvalues of either +1 or —1, the only way the
trace can be zero is if the @; and S matrices are of even dimension. Finally, because
the Dirac Hamiltonian operator of (4.6),

Hp = (@ P+ pm),
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must be Hermitian in order to have real eigenvalues, the @ and 5 matrices also must
be Hermitian,

ay=al, a,=a, @=a and ﬂ—,BT (4.12)

X M y — Zy T Yz - . :

Hence a,, @, a; and g are four mutually anticommuting Hermitian matrices of
even dimension and trace zero. Because there are only three mutually anticom-
muting 2 X 2 traceless matrices, for example the Pauli spin-matrices, the lowest
dimension object that can represent a,, a;, @, and § are 4 X 4 matrices. Therefore,

the Dirac Hamiltonian of (4.6) is a 4 X 4 matrix of operators that must act on a
four-component wavefunction, known as a Dirac spinor,

Ui
/%)
U3
Ya

w:

The consequence of requiring the quantum-mechanical wavefunctions for a rela-
tivistic particle satisfy the Dirac equation and be consistent with the Klein—Gordon
equation, is that the wavefunctions are forced to have four degrees of freedom.
Before leaving this point, it is worth noting that, if all particles were massless,
there would be no need for the S term in (4.7) and the @ matrices could be rep-
resented by the three Pauli spin-matrices. In this Universe without mass, it would
be possible to describe a particle by a two-component object, known as a Weyl
spinor.

The algebra of the Dirac equation is fully defined by the relations of (4.9)—(4.11)
and (4.12). Nevertheless, it is convenient to introduce an explicit form for ay, @,
a, and B. The conventional choice is the Dirac—Pauli representation, based on the
familiar Pauli spin-matrices,

,3:((]) —(I)) and ozi:(o %i), (4.13)

i

with

(10 (01 I A T &
“lo1) “T\1o0) 99T\ of ™ %=Tlo 1)

This is only one possible representation of the @ and 8 matrices. The matrices a =
Ua;U™" and 8 = UBU™!, generated by any 4 x 4 unitary matrix U, are Hermitian
and also satisfy the necessary anticommutation relations. The physical predictions
obtained from the Dirac equation will not depend on the specific representation
used; the physics of the Dirac equation is defined by the algebra satisfied by «a,,
@y, a; and B, not by the specific representation.
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4.3 Probability density and probability current

The expressions for the probability density and probability current for solutions
of the Dirac equation can be obtained following a similar procedure to that used
for the Schrodinger and Klein—Gordon equations. Since the wavefunctions are
now four-component spinors, the complex conjugates of wavefunctions have to
be replaced by Hermitian conjugates, y* — ' = (¢*)T. The Hermitian conjugate
of the Dirac equation,

—iaxg—li — iy Zw lazg—f + mpy = —H%f (4.14)
is simply
+la—wa +i— oy ——a + la—wa/ lﬁTﬁT —lai (4.15)
Ox dy 7 0z ot )

Using the fact that the @ and 8 matrices are Hermitian, the combination of ' x
(4.14) — (4.15) Xy gives

o . oy . o
Tl_ - _ -
/4 ( o — o — lay By la; PR + ,Bmw)

A A A . A
(axax+layay+lazaz+m¢/ﬁ Y=y 8t+l('3t

(4.16)

U

Equation (4.16) can be simplified by writing

W, aw A W, oyt awTy)
T — 7 BV T -
v Gx Ox @ = 0x and -y o ot thp_ ot
giving
.
V. Wlay) + (‘”t‘”) 0,

where ¥’ = 1> 95,45, ¥;,). By comparison with the continuity equation of (2.20),
the probability density and probability current for solutions of the Dirac equation
can be identified as

p=¢'y and j=y'ay. (4.17)
In terms of the four components of the Dirac spinors, the probability density is

p =" =P + ol + sl + sl

and thus, all solutions of the Dirac equation have positive probability density. By
requiring that the wavefunctions satisfy a wave equation linear in both space and
time derivatives, in addition to being solutions of the Klein—Gordon equation, Dirac
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solved the perceived problem with negative probability densities. The price is that
particles now have to be described by four-component wavefunctions. The Dirac
equation could have turned out to be a purely mathematical construction with-
out physical relevance. However, remarkably, it can be shown that the additional
degrees of freedom of the four-component wavefunctions naturally describe the
intrinsic angular momentum of spin-half particles and antiparticles. The proof that
the Dirac equation provides a natural description of spin-half particles is given in
the following starred section. It is fairly involved and the details are not essential
to understand the material that follows.

4.4 *Spin and the Dirac equation
|

In quantum mechanics, the time dependence of an observable corresponding to an
operator O is given by (2.29),

do d . . T A
= = 20y = ki, Ol

Therefore, if the operator for an observable commutes with the Hamiltonian of
the system, it is a constant of the motion. The Hamiltonian of the free-particle
Schrodinger equation,

f)_2

Hgp = —,
SE= 5

commutes with the angular momentum operator L=fxp, and thus angular
momentum is a conserved quantity in non-relativistic quantum mechanics. For the
free-particle Hamiltonian of the Dirac equation,

Hp=a-p+pm, (4.18)
the corresponding commutation relation is
[Ap,L] = [@-p +pm.# x ] = [ P, x p]. (4.19)

This can be evaluated by considering the commutation relation for a particular
component of L, for example

[I:ID, lAJx] =[a-p,(® X P)] = [apx+ ayﬁy +a;p;, Yp; — 2ﬁy] (4.20)

The only terms in (4.20) that are non-zero arise from the non-zero position—
momentum commutation relations
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giving
[ﬁD, lAJx] = a’y[ﬁy, ylp: — a;[p:, 2]ﬁy
= _i(a’yﬁz - azﬁy)
= _l(a x ﬁ))ﬁ

where (@ X P), is the x-component of @ X p. Generalising this result to the other
components of L gives

[Hp,L] = —ia x P. (4.21)

Hence, for a particle satisfying the Dirac equation, the “orbital” angular momentum
operator L does not commute with the Dirac Hamiltonian, and therefore does not
correspond to a conserved quantity.

Now consider the 4 X 4 matrix operator S formed from the Pauli spin-matrices

A _1a_1(00
s=§>:=§(00), (4.22)
with
0100 0 -0 0 1 00 0
. 1000 - i 00 0 0-10 0
“=looo01|l 7o 00| ™ Z=|g 01 o
0010 0 0i 0 0 00 —1

Because the a-matrices in the Dirac—Pauli representation and the X-matrices are
both derived from the Pauli spin-matrices, they have well-defined commutation
relations. Consequently, the commutator [«;, flx] can be expressed in terms of the
commutators of the Pauli spin-matrices. Writing the 4 X 4 matrices in 2 X 2 block

form,
o [0 gi\[fox O) [or O 0 o
s = GG 2 )5 )05

_ 0 [oi,04]
= ( (s, 0] 0 ) (4.23)
The commutation relations,
[0x, 0,1 =0, [oy,0x]=-2i0c, and [0}, 0] = 2i0y,

imply that (4.23) is equivalent to
[@x, 2] = 0, (4.24)

0 2o,
—2io, O

B 0 2ioy) .
[a;, 2] = ( i 0 ) = 2ia,. (4.26)

[a,,Z,] = ( ) = 2ia,, (4.25)

y
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Now consider the commutator of flx with the Dirac Hamiltonian
[Ap.%] = [a - p +Bm, Z,].
It is straightforward to show that [, $.] = 0 and hence

[Ap, 3] = [@- P, 5] = [apy + aypy + a:p, 2]
= pula, Ei1 + pylay, £ + p.lag, E,]. (4.27)

Using the commutation relations of (4.24)—(4.26) implies that

[Ap,%.] = —2ip,a, +2ip.a,

= 2i(@ X P)x.
Generalising this derivation to the i and z components of [Hp, £ and using S= %i‘.
gives the result
[Ap,S] =ia xp. (4.28)

Because S does not commute with the Dirac Hamiltonian, the corresponding
observable is not a conserved quantity. However, from (4.21) and (4.28) it can be
seen that the sum J = L. + 8 commutes with the Hamiltonian of the Dirac equation,

|Ap. 3| = |Ap.L+8]=0.

Hence S can be identified as the operator for the intrinsic angular momentum (the
spin) of a partlcle The total angular momentum of the particle, associated with the
operator J = L. + S, is a conserved quantlty

Because the 4 x 4 matrix operator S is defined in terms of the Pauli spin-matrices,

S=

=

N 1{o 0
Y= 2(0 0_), (4.29)

its components have the same commutation relations as the Pauli spin-matrices,
for example [S.,8 yl= iS .- These are the same commutation relations satisfied by
the operators for orbital angular momentum, [f,x, l:,,] = iﬁz, etc. Therefore, from
the arguments of Section 2.3.5, it follows that spin is quantised in exactly the same
way as orbital angular momentum. Consequently, the total spin s can be identified
from the eigenvalue of the operator,

A A 3
S :Z(E§+2§+2§):Z

el elells
S O = O
oS = O O
- o O O
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for which Szls, mg) = s(s + 1)|s, my). Hence, for any Dirac spinor i,

§% = s(s + Dy = 3y,

and thus a particle satisfying the Dirac equation has intrinsic angular momentum
s = % Furthermore, it can be shown (see Appendix B.1) that the operator fi giving
the intrinsic magnetic moment of a particle satisfying the Dirac equation is given by

S, (4.30)

3 |=

f=

where ¢ and m are respectively the charge and mass of the particle. Hence S has
all the properties of the quantum-mechanical spin operator for a Dirac spinor.
The Dirac equation therefore provides a natural description of spin-half particles.
This is a profound result, spin emerges as a direct consequence of requiring the
wavefunction to satisfy the Dirac equation.

4.5 Covariant form of the Dirac equation
|

Up to this point the Dirac equation has been expressed in terms of the @- and (-
matrices. This naturally brings out the connection with spin. However, the Dirac
equation is usually expressed in the form which emphasises its covariance. This is
achieved by first pre-multiplying the Dirac equation of (4.7) by 8 to give

iﬁax(;—'i + iﬁayg—‘z + iﬁazi—f + iﬁ%—‘f - B*my = 0. (4.31)

By defining the four Dirac y-matrices as
YW=pB v =pan ¥y =pa, and ¥ =pe,

and using 8% = I, equation (4.31) becomes

Y

——
o1 oz " 3y oz ™

By labelling the four y-matrices by the index g, such that y* = (4°,9',%2,7%%), and
using the definition of the covariant four-derivative

0/.1 = (607 617627 63) = (aa 57 a_y7 a_z)’

the Dirac equation can be expressed in the covariant form

(iy* 0, — myy = 0, (4.32)
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with the index u being treated as the Lorentz index of a four-vector and, as usual,
summation over repeated indices is implied. Despite the suggestive way in which
(4.32) is written, it is important to realise that the Dirac y-matrices are not
four-vectors; they are constant matrices which are invariant under Lorentz trans-
formations. Hence, the Lorentz covariance of the Dirac equation, which means that
it applies in all rest frames, is not immediately obvious from Equation (4.32). The
proof of the covariance of the Dirac equation and the derivation of the Lorentz
transformation properties of Dirac spinors is quite involved and is deferred to
Appendix B.2.

The properties of the y-matrices can be obtained from the properties of the
a- and B-matrices given in (4.9), (4.11) and (4.12). For example, using ,82 =1, a/)% =1
and Ba, = — a, B, it follows that

(¥")? = Bax fay = —axffay = —ar = —1.

Similarly, it is straightforward to show that the products of two y-matrices satisfy

O =1
O =-1,
and yHyY = —y'y# for u#v,

where the convention used here is that the index k=1, 2 or 3. The above expres-
sions can be written succinctly as the anticommutation relation

vy = vy +y"yH =291 (4.33)

The ° matrix, which is equivalent to 3, is Hermitian and it is straightforward to
show that the other three gamma matrices are anti-Hermitian, for example,

VIT = (ﬂaX)T = a'j“BT =ayf = —Pay = _71’
and hence

YT =90 and HF =k (4.34)

Equations (4.33) and (4.34) fully define the algebra of the y-matrices, which
in itself is sufficient to define the properties of the solutions of the Dirac equa-
tion. Nevertheless, from a practical and pedagogical perspective, it is convenient to
consider a particular representation of the y-matrices. In the Dirac—Pauli represen-
tation, the y-matrices are

7°=ﬁ=((1) _(])) and 7"=ﬁak=(

0 Ok
—O'kO ’
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where the a- and S-matrices are those defined previously. Hence in the Dirac—Pauli
representation,

10 0 0 0 001
o |01 0 0 , loo1o
Y loo-1 ol Y7 | o-100]
00 0 -1 1 000
(4.35)
000 —i 001 0
, | 00i 0 ; | 000-1
YL oio ol Y |-100 o
—i 00 0 010 0

4.5.1 The adjoint spinor and the covariant current

In Section 4.3, it was shown that the probability density and the probability current
for a wavefunction satisfying the Dirac equation are respectively given by p = ¢y
and j = ¢ ay. These two expressions can be written compactly as

J* = (o, §) = viyOyHy, (4.36)

which follows from (y%)? =1 and y°y* = 8Bay = a;. By considering the Lorentz
transformation properties of the four components of j¥, as defined in (4.36), it can
be shown (see Appendix B.3) that j# is a four-vector. Therefore, the continuity
equation (2.20), which expresses the conservation of particle probability,

dp
Liv.j=o,
or

can be written in the manifestly Lorentz-invariant form of a four-vector scalar
product

B, j* = 0.

The expression for the four-vector current, j* =y, can be simplified by
introducing the adjoint spinor , defined as

v =yt

The definition of the adjoint spinor allows the four-vector current j* to be written
compactly as

J* = uyty. (4.37)
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For completeness, it is noted that in the Dirac—Pauli representation of the
y-matrices, the adjoint spinor is simply

J = WT)’O = (lr//*)T’yo = ('70>1k’ W;, w;a l//Z) = (Wf, W;, _'//;’ —WZ)

S O O
o o = O
|

4.6 Solutions to the Dirac equation
|

The ultimate aim of this chapter is to identify explicit forms for the wavefunctions
of spin-half particles that will be used in the matrix element calculations that fol-
low. It is natural to commence this discussion by looking for free-particle plane
wave solutions of the form

w(x, 1) = u(E, p)e'P*ED, (4.38)

where u(E,p) is a four-component Dirac spinor and the overall wavefunction
Y(x, 1) satisfies the Dirac equation

(iy"d, — myy = 0. (4.39)

The position and time dependencies of the plane waves described by (4.38) occur
solely in exponent; the four-component spinor u(E, p) is a function of the energy
and momentum of the particle. Hence the derivatives d i act only on the exponent
and therefore,

ooy = %—f =—iky, Oy = g—f =ipyW, O =ipyy and O3y =ipy.
(4.40)
Substituting the relations of (4.40) back into (4.39) gives
OPE =y px =¥’ py = ¥’ pe = mu(E, p)e ™ = 0,
and therefore the four-component Dirac spinor u(E, p) satisfies
Y'py—m)yu =0, (4.41)

where, because of the covariance of the Dirac equation, the index u on the
y-matrices can be treated as a four-vector index. Equation (4.41), which contains
no derivatives, is the free-particle Dirac equation for the spinor u written in terms
of the four-momentum of the particle.
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4,6.1 Particles at rest

For a particle at rest with p =0, the free-particle wavefunction is simply
¥ = u(E,0)e ™,
and thus (4.41) reduces to
E)/Ou = mu.

This can be expressed as an eigenvalue equation for the components of the spinor

10 0 0)(¢: ¢1
01 0 O]é2]|_ )
Eloo -1 olles |=™| o5
00 0-1)/\¢4 b4
Because 9" is diagonal, this yields four orthogonal solutions. The first two,
1 0
0 1
u(E,0) =N 0 and uy(E,0) =N ol (4.42)
0 0
have positive energy eigenvalues, E = +m. The other two solutions,
0 0
u3(E,0) =N | and u4(E,0) =N 8 , (4.43)
0 1

have negative energy eigenvalues, E =—m. In all cases N determines the nor-
malisation of the wavefunction. These four states are also eigenstates of the S,
operator, as defined in Section 4.4. Hence u;(E,0) and u,(E, 0) represent spin-up
and spin-down positive energy solutions to the Dirac equation, and u3(E,0) and
us(E, 0) represent spin-up and spin-down negative energy solutions. The four solu-
tions to the Dirac equation for a particle at rest, including the time dependence, are
therefore

l/ll — N e—imt, '7[/2 — N e—imt’ w3 — N e+imt and w4 — N e+imt-

o = O O

1 0 0
0 1 0
0 0 0
0 0 1

4.6.2 General free-particle solutions

The general solutions of the free-particle Dirac equation for a particle with momen-
tum p can be obtained from the solutions for a particle at rest, using the Lorentz
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transformation properties of Dirac spinors derived in Appendix B.2. However, it
is more straightforward to solve directly the Dirac equation for the general plane
wave solution of (4.38). The Dirac equation for the spinor u(E, p) given in (4.41)
when written in full is

(EY’ = poy' = pyy* = poy’ —mu = 0.

This can be expressed in matrix form using the Dirac—Pauli representation of the
y-matrices, giving

I 0 0O o-p 10 _
(6 %)= TP )l 7 |u=0 @44)

where the 4 X 4 matrix multiplying the four-component spinor u has been expressed
in 2 X 2 block matrix form with

Pz Px — ipy )

‘p = + + = 3
O°'P=0xpPx+ O0xpPy+ Oxp; (px+lpy —p,

Writing the spinor u in terms of two two-component column vectors, uy and up,

u= ,
Up
allows (4.44) to be expressed as

(E-m) —-o-p Up -0
op —-E+mI)\ug) 7

giving coupled equations for u4 in terms of up,

0'.
“:E—i”’ (4.45)
g-p
. 44
Up = Z—— A (4.46)

Two solutions to the free-particle Dirac equation, #; and u,, can be found by taking
the two simplest orthogonal choices for uy,

MAZ((I)) and uA:((l)). (4.47)

The corresponding components of ug, given by (4.46), are

. 1 _
g o-p ( Pz Px lpy)uA’

:E+m_E+m px+ipy -p;
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and thus the first two solutions of the free-particle Dirac equation are

1 0
0 1
ui(E,p) = N - and  u(E,p) =N2| po—ip, |
E+m “E+m
Pxtipy —Pz
E+m E+m

where N; and N, determine the wavefunction normalisation. It should be noted
that whilst the choice of the two orthogonal forms for u4 is arbitrary, any other
orthogonal choice would have been equally valid, since a general (E > 0) spinor
can be expressed as a linear combination of u; and u;. Choosing the forms of u4 of
(4.47) is analogous to choosing a particular basis for spin where conventionally the
z-axis is chosen to label the states. The two other solutions of the Dirac equation

can be found by writing
1 0
MBZ(O) and MB:(I),

and using (4.45) to give the corresponding components for u4. The four orthogonal
plane wave solutions to the free-particle Dirac equation of the form

Ui = wi(E, p)e'®*E

are therefore

Pz
1 0 o
0 1 Pxtipy
u =N, Dz , U =Ny pa—ipy |» U3 = N3 E—m and
E+m E+m 1
Pxtipy —Pz 0
E+m E+m
Dx—ipy
E-m
us = Ny E(‘)m . (4.48)

If any one of these four spinors is substituted back into the Dirac equation, the
Einstein energy—momentum relation E = p? + m? is recovered. In the limit p =0,
the spinors u#; and u; reduce to the E > 0 spinors for a particle at rest given in (4.42).
Hence u; and u; can be identified as the positive energy spinors with

E:+‘\/p2+m2',

and u3 and uy are the negative energy particle spinors with

E= |\ v,
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The same identification of u; and u, as being the positive energy spinors, and u3
and u4 as the negative energy spinors, can be reached by transforming the solu-
tions for a particle at rest into the frame where the particle has momentum p (see
Appendix B.2).

At this point it is reasonable to ask whether it is possible to interpret all four
solutions of (4.48) as having E > 0. The answer is no, as if this were the case, the
exponent of the wavefunction,

W(x,1) = u(E, p)e'®*E0,

would be the same for all four solutions. In this case the four solutions no longer
would be independent since, for example, it would be possible to express u; as the
linear combination

p: px+ipy
uy = us + ug.

E+m E+m
Hence, there are only four independent solutions to the Dirac equation when two
are taken to have E < 0; it is not possible to avoid the need for the negative energy
solutions. The same conclusion can be reached from the fact that the Dirac Hamil-
tonian is a 4 X 4 matrix with trace zero, and therefore the sum of its eigenvalues is

zero, implying equal numbers of positive and negative energy solutions.

4.7 Antiparticles

The Dirac equation provides a beautiful mathematical framework for the relativis-
tic quantum mechanics of spin-half fermions in which the properties of spin and
magnetic moments emerge naturally. However, the presence of negative energy
solutions is unavoidable. In quantum mechanics, a complete set of basis states is
required to span the vector space, and therefore the negative energy solutions can-
not simply be discarded as being unphysical. It is therefore necessary to provide a
physical interpretation for the negative energy solutions.

4.7.1 The Diracsea interpretation

If negative energy solutions represented accessible negative energy particle states,
one would expect that all positive energy electrons would fall spontaneously into
these lower energy states. Clearly this does not occur. To avoid this apparent contra-
diction, Dirac proposed that the vacuum corresponds to the state where all negative
energy states are occupied, as indicated in Figure 4.1. In this “Dirac sea” picture,
the Pauli exclusion principle prevents positive energy electrons from falling into
the fully occupied negative energy states. Furthermore, a photon with energy
E >2m, could excite an electron from a negative energy state, leaving a hole in
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Y— ete” ete” >y
A »~ A
T — ————— - —
me . JE— me I~ A ,Y me I~ —_ ,Y
-Mg -my - —O——e— -my - —O——o—

The Dirac interpretation of negative energy solutions as holes in the vacuum that correspond to antiparticle
states.

the vacuum. A hole in the vacuum would correspond to a state with more energy
(less negative energy) and a positive charge relative to the fully occupied vacuum.
In this way, holes in the Dirac sea correspond to positive energy antiparticles with
the opposite charge to the particle states. The Dirac sea interpretation thus pro-
vides a picture for e*e™ pair production and also particle—antiparticle annihilation
(shown in Figure 4.1). The discovery of positively charged electrons in cosmic-ray
tracks in a cloud chamber, Anderson (1933), provided the experimental confir-
mation that the antiparticles predicted by Dirac corresponded to physical observ-
able states.

Nowadays, the Dirac sea picture of the vacuum is best viewed in terms of his-
torical interest. It has a number of conceptual problems. For example, antiparticle
states for bosons are also observed and in this case the Pauli exclusion principle
does not apply. Furthermore, the fully occupied Dirac sea implies that the vacuum
has infinite negative energy and it is not clear how this can be interpreted physi-
cally. The negative energy solutions are now understood in terms of the Feynman—
Stiickelberg interpretation.

4.7.2 The Feynman-Stiickelberg interpretation

It is an experimentally established fact that for each fundamental spin-half parti-
cle there is a corresponding antiparticle. The antiparticles produced in accelerator
experiments have the opposite charges compared to the corresponding particle.
Apart from possessing different charges, antiparticles behave very much like parti-
cles; they propagate forwards in time from the point of production, ionise the gas in
tracking detectors, produce the same electromagnetic showers in the calorimeters
of large collider particle detectors, and undergo many of the same interactions as
particles. It is not straightforward to reconcile these physical observations with the
negative energy solutions that emerge from the abstract mathematics of the Dirac
equation.
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e (E>0) e (E>0)

e (E<0) e"(E>0)

(left) The process of e™ e~ annihilation in terms of a positive energy electron producing a photon and a neg-
ative energy electron propagating backwards in time. (right) The Feynman—Stiickelberg interpretation with
a positive energy positron propagating forwards in time. In both diagrams, time runs from the left to right.

The modern interpretation of the negative energy solutions, due to Stiickelberg
and Feynman, was developed in the context of quantum field theory. The E <0
solutions are interpreted as negative energy particles which propagate backwards
in time. These negative energy particle solutions correspond to physical positive
energy antiparticle states with opposite charge, which propagate forwards in time.
Since the time dependence of the wavefunction, exp (—iE?), is unchanged under
the simultaneous transformation £ — — E and ¢t — — ¢ these two pictures are math-
ematically equivalent,

exp {—iEt} = exp {—i(—E)(-1)}.

To illustrate this idea, Figure 4.2 shows the process of electron—positron
annihilation in terms of negative energy particle solutions and in the Feynman—
Stiickelberg interpretation of these solutions as positive energy antiparticles. In the
left plot, an electron of energy E emits a photon with energy 2E and, to conserve
energy, produces a electron with energy —FE, which being a negative energy solution
of the Dirac equation propagates backwards in time. In the Feynman—Stiickelberg
interpretation, shown on the right, a positive energy positron of energy E annihi-
lates with the electron with energy E to produce a photon of energy 2E. In this case,
both the particle and antiparticle propagate forwards in time. It should be noted that
although antiparticles propagate forwards in time, in a Feynman diagram they are
still drawn with an arrow in the “backwards in time” sense, as shown in the left
plot of Figure 4.2.

4.7.3 Antiparticle spinors

In principle, it is possible to perform calculations with the negative energy par-
ticle spinors u3 and us. However, this necessitates remembering that the energy
which appears in the definition of the spinor is the negative of the physical energy.
Furthermore, because u3 and u4 are interpreted as propagating backwards in time,
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the momentum appearing in the spinor is the negative of the physical momentum.
To avoid this possible confusion, it is more convenient to work with antiparticle
spinors written in terms of the physical momentum and physical energy,
E =+ |/p? + m?|. Following the Feynman—Stiickelberg interpretation, the negative
energy particle spinors, #3 and u4, can be rewritten in terms of the physical positive
energy antiparticle spinors, vy and vy, simply by reversing the signs of E and p
to give

01(E, ple” XD = yy(~E, —p)el P-CE]

va(E, p)e " PXED = 3 (—E, —p)e/lPx-CE1],

A more formal approach to identifying the antiparticle spinors is to look for
solutions of the Dirac equation of the form

W(x, 1) = u(E, p)e P*ED, (4.49)
where the signs in the exponent are reversed with respect to those of (4.38). For

E > 0, the wavefunctions of (4.49) still represent negative energy solutions in the
sense that

8
l@!ﬁ = —E!ﬁ

Substituting the wavefunction of (4.49) into the Dirac equation, (iy#d, — m)y =0,
gives

(—Y’E +¥'pc +¥?*py + ¥’ p, —mp = 0,
which can be written as
Y'pu+mpy =0.

This is the Dirac equation in terms of momentum for the v spinors. Proceeding as
before and writing

leads to
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giving the solutions

px_ipy EL 1
+m
E—+T Pxtipy
vy =N| Extm | v, =N| Etm | v3=N| p, and
0 1 =
DPxtipy
1 0 E-m
0
1
U4 =N px—ipy |> (4.50)
E-m
—Pz
E-m

where

E:+‘\/p2+m2|

for vy and v;, and

E = -|\pT v

for v3 and v4. Hence we have now identified eight solutions to the free particle
Dirac equation, given in (4.48) and (4.50). Of these eight solutions, only four
are independent. In principle it would be possible to perform calculations using
only the u-spinors, or alternatively using only the v-spinors. Nevertheless, it is
more natural to work with the four solutions for which the energy that appears
in the spinor is the positive physical energy of the particle/antiparticle, namely
{ur, uz, vy, v2}.

To summarise, in terms of the physical energy, the two particle solutions to the
Dirac equation are

'J’i — uie+i(p-x—Et)
with
1 0
0 1
u(p) = NE+m| p,_ and wu(p)= VE+m pe—iny | 4.51)
E+m E+m
Pxtipy Pz
E+m E+m

and the two antiparticle solutions are

v = vie—z(p-x—Ez)
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with
Px—ipy Pz
Fim B+
—Dz Pxtipy
vi(p) = VE+m Eam and 0w(p)= VE+m Eim . (4.52)
1 0

Wavefunction normalisation

The spinors in (4.51) and (4.52) have been normalised to the conventional 2E par-
ticles per unit volume. This required normalisation factor can be found from the
definition of probability density, p = "y, which for ¢ = u;(p)expi(p - x — Et) is
p=yv'y =Ny = uju.
Using the explicit form for u; of (4.48) gives
AR

2F
2

+ =
(E+m)?  (E+m)?

E+m

INI

wlug = INP[1+

Hence, to normalise the wavefunctions to 2E particles per unit volume implies
N = VE + m.

The same normalisation factor is obtained for the u and v spinors.

4.7.4 Operators and the antiparticle spinors

There is a subtle, but nevertheless important, point related to using the antiparticle
spinors written in terms of the physical energy and momenta,

¥ = o(E, p)e” P,

The action of the normal quantum mechanical operators for energy and momentum
do not give the physical quantities,
o

Hy = is = —Ey and py = —iVy = —py.

The minus signs should come as no surprise; the antiparticle spinors are still the
negative energy particle solutions of the Dirac equation, albeit expressed in terms of
the physical (positive) energy E and physical momentum p of the antiparticle. The
operators which give the physical energy and momenta of the antiparticle spinors
are therefore

N 0
AV = —i— and pY = +iV,
i p i



102

The Dirac equation

where the change of sign reflects the Feynman—Stiickelberg interpretation of the
negative energy solutions. Furthermore, with the replacement (E,p) — (—E, —p),
the orbital angular momentum of a particle

L=rxp— -L.
In order for the commutator [Hp, L + S] to remain zero for the antiparticle spinors,

the operator giving the physical spin states of the v spinors must be

al)

S =S,

where S is defined in (4.29). Reverting (very briefly) to the the Dirac sea picture,

a spin-up hole in the negative energy particle sea, leaves the vacuum in a net spin-
down state.

4.7.5 *Charge conjugation

Charge conjugation is an important example of a discrete symmetry transformation
that will be discussed in depth in Chapter 14. The effect of charge conjugation is
to replace particles with the corresponding antiparticles and vice versa. In classical
dynamics, the motion of a charged particle in an electromagnetic field A* = (¢, A)
can be obtained by making the minimal substitution

E—-FE—-qg¢p and p— p-dgA, (4.53)

where ¢ and A are the scalar and vector potentials of electromagnetism and g is the
charge of the particle. In four-vector notation, (4.53) can be written

Pu = Pu— qA,. (4.54)

Following the canonical procedure for moving between classical physics and quan-
tum mechanics and replacing energy and momentum by the operators p = —iV and
E =)o, Equation (4.54) can be written in operator form as

i, — 0, — qA,. (4.55)

The Dirac equation for an electron with charge g = — e (where e = + |e| is the mag-
nitude of the electron charge) in the presence of an electromagnetic field can be
obtained by making the minimal substitution of (4.55) in the free-particle Dirac
equation, giving

YH(@,, — ieA, ) + imy = 0. (4.56)

The equivalent equation for the positron can be obtained by first taking the complex
conjugate of (4.56) and then pre-multiplying by —iy? to give

—iy (yH) (0, + ieA W — my*y* = 0. (4.57)
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In the Dirac—Pauli representation of the y-matrices, (y*)* =99, (y)* =y!, (?)* =
—v? and (y®)* =y>. Using these relations and y*y* = —y*y? for u# 2, Equation
(4.57) becomes

yH (0, + ieA)iy* " + imiy*y* = 0. (4.58)
If ¢/ is defined as
W =iy
then (4.58) can be written
YH(0, + ieA )y +imy’ = 0. (4.59)

The equation satisfied by ¢’ is the same as that for i (4.56), except that the ieA,,
term now appears with the opposite sign. Hence, ¢’ is a wavefunction describing a
particle which has the same mass as the original particle but with opposite charge;
Y/’ can be interpreted as the antiparticle wavefunction. In the Dirac—Pauli represen-
tation, the charge conjugation operator C, which transforms a particle wavefunction
into the corresponding antiparticle wavefunction, therefore can be identified as

W =Cy=iy'y’.

The identification of € as the charge conjugation operator can be confirmed by
considering its effect on the particle spinor

W = ;e ®XED,
The corresponding charge-conjugated wavefunction ¢’ is
v =Cy =iyPy* = iyzu’l‘e_i(p'x_E’).

The spinor part of ¢’ is

k

000 —i 1 21y
0 —Pz
i72u121 OO. i 0 VE +m s = VE+m| Erm |,
0:0 O Tam 0
-100 O % 1

which is the antiparticle spinor v; identified in Section 4.7.3. The effect of the
charge-conjugation operator on the u; particle spinor is

U = 1y @xED i) W = b @XED.
and likewise (up to a unobservable overall complex phase) the effect on u; is

i(px—Et) c

W = upe — Y = vy PXED,
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Therefore, the effect of the charge-conjugation operator on the particle spinors u
and u; is to transform them respectively to the antiparticle spinors v; and v;.

4.8 Spin and helicity states

For particles at rest, the spinors u;(E,0) and u>(E,0) of (4.42) are clearly eigen-
states of

and therefore represent “spin-up” and “spin-down” eigenstates of the z-component
of the spin operator. However, from the forms of the u and v spinors, givenin (4.51)
and (4.52), it is immediately apparent that the u;, uy, v; and v, spinors are not in
general eigenstates of S.. Nevertheless, for particles/antiparticles travelling in the
+z-direction (p = + pZ), the u and v spinors are

+p
1 0 9 Frm
0 1 =2 0
uy=N| & |, ua=N ,vp=N| Etm landvy = N ,
Eom 0 0 1
0 Fom 1 0

and therefore
S.u1(E,0,0,+p) = +3ui(E, 0,0, +p),
S.ur(E,0,0, £p) = —3u(E, 0,0, £p).

For antiparticle spinors, the physical spin is given by the operator S Z(”) =-3, and
therefore

$701(E,0,0, £p) = ~S.01(E, 0,0, 4p) = +101(E, 0,0, +p),
$0y(E, 0,0, £p) = ~8.02(E. 0,0, £p) = —Luy(E. 0,0, =p).

Hence for a particle/antiparticle with momentum p=(0,0, +p), the u; and v;
spinors represent spin-up states and the uy and v, spinors represent spin-down
states, as indicated in Figure 4.3.

- - - - - - - -
_— — —

[ o o o o
> w w w w

Uy Us V4 Vo Uy Us Vq Vo
> Z > Z

The uy, uy, vy and v, spinors for particles/antiparticles travelling in the +z-direction.



105

4.8 Spin and helicity states

4.8.1 Helicity

In the chapters that follow, interaction cross sections will be analysed in terms of
the spin states of the particles involved. Since the u;, uy, v; and v, spinors only
map onto easily identified spin states for particles travelling in the z-direction, their
use for this purpose is limited. Furthermore, since S, does not commute with the
Dirac Hamiltonian, [FID,SZ] # 0, it is not possible to define a basis of simulta-
neous eigenstates of S, and Hp. Rather than defining basis states in terms of an
external axis, it is more natural to introduce to concept of helicity. As illustrated in
Figure 4.4, the helicity & of a particle is defined as the normalised component of its
spin along its direction of flight,

S.
h=2F (4.60)
p
For a four-component Dirac spinor, the helicity operator is
. Ep 1({o-p O
h=—=— ~ | 4.61
2p  2p ( 0 o- p) ob

where p is the momentum operator. From the form of the Dirac Hamiltonian (4.18),
it follows that [ﬁp,ﬁ-f)] =0 and therefore 7 commutes with the free-particle
Hamiltonian. Consequently, it is possible to identify spinor states which are simul-
taneous eigenstates of the free particle Dirac Hamiltonian and the helicity oper-
ator. For a spin-half particle, the component of spin measured along any axis is
quantised to be either +£1/2. Consequently, the eigenvalues of the helicity operator
acting on a Dirac spinor are +1/2. The two possible helicity states for a spin-
half fermion are termed right-handed and left-handed helicity states, as shown in
Figure 4.5. Whilst helicity is an important concept in particle physics, it is impor-
tant to remember that helicity is not Lorentz invariant; for particles with mass, it
is always possible to transform into a frame in which the direction of the parti-
cle is reversed. The related Lorentz-invariant concept of chirality is introduced in
Chapter 6.

The definition of helicity as the projection of the spin of a particle along its direction of motion.
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The two helicity eigenstates for a spin-half fermion. The h = +1/2and h = —1/2 states are respectively
referred to as right-handed (RH) and left-handed (LH) helicity states.

The simultaneous eigenstates of the free particle Dirac Hamiltonian and the
helicity operator are solutions to the Dirac equation which also satisfy the eigen-
value equation,

hu = Au.

Writing the spinor in terms of two two-component column vectors u4 and ug, and
using the helicity operator defined above, this eigenvalue equation can be written

1 (U.p . )(MA) (MA)
_ =1 ,
2p\ O o-p/\up up

(0’ . p)uA = 2p /luA, (4.62)
(o - p)up = 2p Augp. (4.63)

implying that

The eigenvalues of the helicity operator can be obtained by multiplying (4.62) by
o - p and noting (see Problem 4.10) that (¢ - p)*> = p?, from which it follows that

pua = 2pA(0 - Plua = 4p* Pua,

and therefore, as anticipated, 4 = +1/2. Because the spinors corresponding to the
two helicity states are also eigenstates of the Dirac equation, us and up are related
by (4.46),

(o-pluy = (E + m)ugp,

which when combined with (4.62) gives

up = 2/1( (4.64)

) UAp.
E+m
Therefore for a helicity eigenstate, up is proportional to us and once (4.62) is
solved to obtain uu, the corresponding equation for up (4.63) is automatically
satisfied.

Equation (4.62) is most easily solved by expressing the helicity states in terms
of spherical polar coordinates where

p = (psinfcos ¢, psinfsin @, pcosb),
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and the helicity operator can be written as
1 1 Pz px—ip
_(0' . ) = — ( Z. Y
2p P 2p\pxtipy -
1 ( cos@ sinfe )

“ 2\ sinBe® —cosd

the eigenvalue equation of (4.62) becomes

cosf sinfe\(a) K
sine® —cos® J\b |~ b
and therefore the ratio of b/a is equal to

b 21-cosb
= —".

a sin @

For the right-handed helicity state with 4 = +1/2,

Writing the components of u4 as

é _ 1-cos# 5 2sin? (g) i _ o sin(g)
a  sinf - 2sin(§)cos(§) cos(g).

Using the relation between uy and up from (4.64), the right-handed helicity particle
spinor, denoted u4, then can be identified as

P id i (8
mEKb Sin (z)
where N = VE + m is the overall normalisation factor. The left-handed helicity
spinor with A=—1/2, denoted u, can be found in the same manner and thus the
right-handed and left-handed helicity particle spinors, normalised to 2E particles
per unit volume, are

C —S
S€i¢ C€i¢
ur = VE+m u = VE+m , (4.65)
T P . l _P ¢
E+m E+m
P_ ol Pl

“ E+m
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Particles Antiparticles

RI-/ LV RI-/ LV
ur uy v vy
The helicity eigenstates for spin-half particles and antiparticles.

where s = sin (%) and ¢ = cos (g) The corresponding antiparticle states, vy and v,

are obtained in the same way remembering that the physical spin of an antiparticle
spinor is given by §V=_ S, and hence for the h = +1/2 antiparticle state

X-p
2p

_ 1
)UT = _EUT'

The resulting normalised antiparticle helicity spinors are

P P
E+m?® E+m€
__P ., _P_ it
vy = VE + m| “Em®¢ v, = VE + m| Bm*¢" |, (4.66)
—S C
cei¢ S€i¢

The four helicity states of (4.65) and (4.66), which correspond to the states shown
in Figure 4.6, form the helicity basis that is used to describe particles and antipar-
ticles in the calculations that follow. In many of these calculations, the energies
of the particles being considered are much greater than their masses. In this ultra-
relativistic limit (E > m) the helicity eigenstates can be approximated by

c —S 5 c
se'? ce’ —ce'? set?

uTz\/E c ,ulz\/E P ,sz\/E iy and vlz\/f c | (4.67)
se'? —ce'? ce' se'?

It should be remembered that the above spinors all can be multiplied by an overall
complex phase with no change in any physical predictions.

4.9 Intrinsic parity of Dirac fermions
|

Charge conjugation, discussed in Section 4.7.5, is one example of a discrete sym-
metry transformation, particle < antiparticle. Another example is the parity
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transformation, which corresponds to spatial inversion through the origin,
X=-x, Yy=-y, 7=-z and ¢ =1

Parity is an important concept in particle physics because both the QED and QCD
interactions always conserve parity. To understand why this is the case (which is
explained in Chapter 11), we will need to use the parity transformation properties
of Dirac spinors and will need to identify the corresponding parity operator which
acts on solutions of the Dirac equation.

Suppose ¥ is a solution of the Dirac equation and ¢’ is the corresponding solu-
tion in the “parity mirror” obtained from the action of the parity operator P
such that

v -y = Py.

From the definition of the parity operation, the effect of two successive parity
transformations is to recover the original wavefunction. Consequently P?=1
and thus

W =Py = Py =y.

The form of the parity operator can be deduced by considering a wavefunction
Yw(x,y, z,t) which satisfies the free-particle Dirac equation,

—my = —iyo‘;—f. (4.68)

The parity transformed wavefunction ¢’ (x’, y’, z’, t') = Py(x, y, z, f) must satisfy the
Dirac equation in the new coordinate system

g0y L0 30y . 0Oy
1 2 3 / 0
— — — — = —iy —. 4.6
iy o + iy ay + iy 57 nmy iy 5 (4.69)
Writing ¢ = Py, equation (4.68) becomes
150 SO O 5 000
1 2 3 / 0
P— P— P -mPyY' = —iy' P—.
Iy o + 1y dy + 1y pE mPy Iy £y

Premultiplying by y° and expressing the derivatives in terms of the primed system
(which introduces minus signs for all the space-like coordinates) gives

N4

50U’ 0.2 0.3
P _ 02 p
G VY Pgy Y

N4

N4 N
Pi - my’Py’ = —i®'P s

07

_1-707/1
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which using yy* = — y%y° can be written

Nl 50U 5O

N4
+ 0op—~_ 0op——_ op—_.
o iy*y 3y +iy’y e

iy P— - my’Py’ = —iy%OP o (4.70)

In order for (4.70) to reduce to the desired form of (4.69), ¥° P must be proportional
to the 4 X 4 identity matrix,

yOPocI.

In addition, P> = I and therefore the parity operator for Dirac spinors can be iden-
tified as either

P=+" or P=-"

It is conventional to choose P = + 9 such that under the parity transformation, the
form of the Dirac equation is unchanged provided the Dirac spinors transform as

¥ — Py =+%. 4.71)

The intrinsic parlty of a fundamental particle is defined by the action of the parity
operator P =v" on a spinor for a particle at rest. For example, the u; spinor for a
particle at rest given by (4.42), is an eigenstate of the parity operator with

10 0 O 1
N 01 0 O 0
_ A0, _
Puy=y'u = 00 -1 0 V2m ol= +uj.
00 0 -1 0
Similarly, Puy =+ uy, Pvy=—v, and Pv, =—v,. Hence the intrinsic parity of a

fundamental spin-half particle is opposite to that of a fundamental spin-half
antiparticle.

The conventional choice of P =+ rather than P =—+°, corresponds to defin-
ing the intrinsic parity of particles to be positive and the intrinsic parity of antipar-
ticles to be negative,

Pu(m,0) = +u(m,0) and Puo(m,0) = —v(m,0).

Since particles and antiparticles are always created and destroyed in pairs, this
choice of sign has no physical consequence. Finally, it is straightforward to verify
that the action of the parity operator on Dirac spinors corresponding to a particle
with momentum p reverses the momentum but does not change the spin state, for
example

pl/tl(E, p) = +MI(E, _p)
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Summary

Summary
|

This chapter described the foundations of relativistic quantum mechanics and it is
worth reiterating the main points. The formulation of relativistic quantum mechan-
ics in terms of the Dirac equation, which is linear in both time and space derivatives,
Hpy = (e - p + By = i@—f,
implies new degrees of freedom of the wavefunction. Solutions to the Dirac equa-
tion are represented by four-component Dirac spinors. These solutions provide
a natural description of the spin of the fundamental fermions and antifermions.
The E <0 solutions to the Dirac equation are interpreted as negative energy parti-
cles propagating backwards in time, or equivalently, the physical positive energy
antiparticles propagating forwards in time.
The Dirac equation is usually expressed in terms of four y-matrices,

(iy*0, —my = 0.

The properties of the solutions to the Dirac equation are fully defined by the algebra
of the y-matrices. Nevertheless, explicit free-particle solutions were derived using
the Dirac—Pauli representation. The four-vector probability current can be written
in terms of the y-matrices

J* = uTYoyty = gyty,

where v is the adjoint spinor defined as i = /7y". The four-vector current will play
a central role in the description of particle interactions through the exchange of
force-carrying particles.

The solutions to the Dirac equation provide the relativistic quantum mechanical
description of spin-half particles and antiparticles. In particular the states uy, uj,
vy and v, which are simultaneous eigenstates of the Dirac Hamiltonian and the
helicity operator, form a suitable basis for the calculations of cross sections and
decay rates that follow.

Finally, two discrete symmetry transformations were introduced, charge conju-
gation and parity, with corresponding operators

v — Cy = iyztp* and ¢ — Py = ’}/Ol//.

The transformation properties of the fundamental interactions under parity and
charge-conjugation operations will be discussed in detail in the context of the weak
interaction.
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Problems

41

4.2
43

4.4

4.5

4.6

4.7

4.8

4.9

Show that
[p°,F x p] =0,

and hence the Hamiltonian of the free-particle Schrdinger equation commutes with the angular momentum
operator.

Show that u; and u, are orthogonal, i.e. “1T th =0.

Verify the statement that the Einstein energy—momentum relationship is recovered if any of the four Dirac
spinors of (4.48) are substituted into the Dirac equation written in terms of momentum, (y#p,, — myu = 0.

For a particle with four-momentum p# = (E, p), the general solution to the free-particle Dirac Equation can
be written

Y(p) = Lawn(p) + buy(p)]e P>
Using the explicit forms for u; and u;, show that the four-vector current j* = (p, j) is given by
j/l — 2p/1.

Furthermore, show that the resulting probability density and probability current are consistent with a particle
moving with velocity 8 = p/E.

Writing the four-component spinor v in terms of two two-component vectors

show that in the non-relativistic limit, where 8 = v/c < 1, the components of ug are smaller than those of
uy by afactorv/c.

By considering the three casest = v = 0,4 = v # 0and i # v show that
YRy Yy =27
By operating on the Dirac equation,
(Y8 —myr =0,
with y”d,, prove that the components of i satisfy the Klein—Gordon equation,

(0", +mh )y = 0.

Show that
)" =Yy
Starting from

y*pu —mu =0,

show that the corresponding equation for the adjoint spinor is

u(y*p, —m) =0.
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Problems

410

an

4.12

413

414

415

Hence, without using the explicit form for the u spinors, show that the normalisation condition u'u = 2F
leads to

uu =2m,
and that
uytu = 2p-.
Demonstrate that the two relations of Equation (4.45) are consistent by showing that
(-p)=p"

Consider the e*e™ — y — e*e™ annihilation process in the centre-of-mass frame where the energy of the
photon is 2E. Discuss energy and charge conservation for the two cases where:

(a) thenegative energy solutions of the Dirac equation are interpreted as negative energy particles propagating
backwards in time;

(b) the negative energy solutions of the Dirac equation are interpreted as positive energy antiparticles propa-
gating forwards in time.

Verify that the helicity operator

>

ﬁ:i:l("‘f’ 0 )
» p\ 0 o
commutes with the Dirac Hamiltonian,
Hy=a-p+pBm.
Show that
Pur (0, ¢) = uy(m — 6, + §),
and comment on the result.
Under the combined operation of parity and charge conjugation (CP) spinors transform as
b=y =Py =iy
Show that up to an overall complex phase factor

CPur(6, ¢) = vi(m — 6,7 + §).

Starting from the Dirac equation, derive the identity

—_ 1_ i _
WPy u(p) = 5 TE )P + P u(p) + (5 )Z " g u(p),

whereq = p’ — pand T# = I[y#,y"].



Interaction by particle exchange

4 In the modern understanding of particle physics, the interactions between par- )

ticles are mediated by the exchange of force carrying gauge bosons. The rig-
orous theoretical formalism for describing these interactions is Quantum Field
Theory, which is beyond the scope of this book. Here the concepts are devel-
oped in the context of relativistic quantum mechanics. The main purpose of
this short chapter is to describe how interactions arise from the exchange of
virtual particles and to provide an introduction to Quantum Electrodynamics.

. v

5.1 First- and second-order perturbation theory

In quantum mechanics, the transition rate I'; between an initial state i and a final
state f is given by Fermi’s golden rule I'y; = 27r|Tf,~|2p(E ), where T, is the transi-
tion matrix element, given by the perturbation expansion

. SIVINGIVIED
Ty = <fIVIi) + —_— ...

The first two terms in the perturbation series can be viewed as ‘“scattering in a
potential” and “scattering via an intermediate state j as indicated in Figure 5.1. In
the classical picture of interactions, particles act as sources of fields that give rise
to a potential in which other particles scatter.

In quantum mechanics, the process of scattering in a static potential corres-
ponds to the first-order term in the perturbation expansion, {f|V|i). This picture of

(100 Scattering in an external potential V and scattering via an intermediate state, ;.

iz
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Space
Space

Time Time

Two possible time-orderings for the processa + b — ¢ + d.

scattering in the potential produced by another particle is unsatisfactory on a
number of levels. When a particle scatters in a potential there is a transfer of
momentum from one particle to another without any apparent mediating body.
Furthermore, the description of forces in terms of potentials seems to imply that
if a distant particle were moved suddenly, the potential due to that particle would
change instantaneously at all points in space, seemingly in violation the special
theory of relativity. In Quantum Field Theory, interactions between particles are
mediated by the exchange of other particles and there is no mysterious action at a
distance. The forces between particles result from the transfer of the momentum
carried by the exchanged particle.

5.1.1 Time-ordered perturbation theory

The process of interaction by particle exchange can be formulated by using time-
ordered perturbation theory. Consider the particle interaction, a +b — ¢ +d, which
can occur via an intermediate state corresponding to the exchange of a particle X.
There are two possible space-time pictures for this process, shown in Figure 5.2. In
the first space-time picture, the initial state |i) corresponds to the particles a + b, the
intermediate state |j) corresponds to ¢ + b + X, and the final state |f) corresponds
to ¢ + d. In this time-ordered diagram, particle a can be thought of as emitting the
exchanged particle X, and then at a later time X is absorbed by b. In QED this
could correspond to an electron emitting a photon that is subsequently absorbed by
a second electron. The corresponding term in the quantum-mechanical perturbation
expansion is

Tab _ SIVIRGIVIY — (dIVIX + b){c + X|V]a)
fi = E;~E;  (E4+Ep)—(E.+Ex+Ep)

5.1

The notation T]‘ﬁf’ refers to the time ordering where the interaction between a and X
occurs before that between X and b. It should be noted that the energy of the inter-
mediate state is not equal to that of the initial state, £; # E;, which is allowed for a



116

Interaction by particle exchange

short period of time by the energy—time uncertainty relation of quantum mechan-
ics given by Equation (2.47). The interactions at the two vertices are defined by the
non-invariant matrix elements V;; = (¢ + X|Vl|a) and V¢; = (d|V|X + b). Following
the arguments of Section 3.2.1, the non-invariant matrix element V;; is related to
the Lorentz-invariant (LI) matrix element M;; by

Vii= M;i H(ZEk)_l/z,
k

where the index k runs over the particles involved. In this case

Ma—>c+X
(QE,2E.2Ex)V/?’

where M, _,.+x is the LI matrix element for the fundamental interaction a — ¢ + X.
The requirement that the matrix element M,_,.,x is Lorentz invariant places strong
constraints on its possible mathematical structure. To illustrate the concept of inter-
action by particle exchange, the simplest possible Lorentz-invariant coupling is
assumed here, namely a scalar. In this case, the LI matrix element is simply
M seix = ga, and thus

Vj,' = <C + XIVIa) =

Jda
(QE2E.2Ex)V/?’

and the magnitude of the coupling constant g, is a measure of the strength of the
scalar interaction. Similarly

Vj,' = <C + XIVIa) =

9gb

(QE2E2Ex)!/?’
where g, is the coupling strength at the b + X — d interaction vertex. Therefore,
with the assumed scalar form for the interaction, the second-order term in the per-
turbation series of (5.1) is

ab _ {d|V|X + b){c + X|V|a)

It (Eq + Ep) = (Ec + Ex + Eyp)

_ 1 . 9a9p
2Ex (2QE2Ey2E2E)'Y? (E,—E.—Ex)’

The LI matrix element for the process a+ b — ¢ +d is related to the corresponding
transition matrix element by (3.9),

Vi = dVIX +b) =

(5.2)

M4 = (QE2Ep2E2Eq) T4,

and thus from (5.2),
1 9a9b
M — : ) 53
/1 2Ex  (Eq— Ec - Ex) )
The matrix element of (5.3) is Lorentz invariant in the sense that it is defined in
terms of wavefunctions with an appropriate LI normalisation and has an LI scalar
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Vi n Vi w

The two lowest-order time-ordered diagrams contributing to e™v,, — Vel ™ scattering.

form for the interaction. It should be noted that for this second-order process in
perturbation theory, momentum is conserved at the interaction vertices but energy
is not, E; # E;. Furthermore, the exchanged particle X satisfies the usual energy—
momentum relationship, E)z{ = pi + mi, and is termed “on-mass shell”.

The second possible time-ordering for the process a + b — ¢ +d is shown in the
right-hand plot of Figure 5.2 and corresponds to b emitting X which is subsequently
absorbed by a. The exchanged particle X in this time-ordering is assumed to have
the same mass as X but has opposite charge(s). This must be the case if charge is to
be conserved at each vertex. For example, in the process of e™v, — veu™ scattering,
shown Figure 5.3, one of the time-ordered diagrams involves the exchange of a W™
and the other time-ordered diagram involves the exchange of a W*. In the case of
a QED process, there is no need to make this distinction for the neutral photon.

By repeating the steps that led to (5.3), it is straightforward to show that the LI
matrix element for the second time-ordered diagram of Figure 5.2 is

1 9ga9b
Mba = : .
ft " 2Ex (Ep— Eq - Ex)

In quantum mechanics the different amplitudes for a process need to be summed
to obtain the total amplitude. Here the total amplitude (at lowest order) is given by
the sum of the two time-ordered amplitudes

Mii = MG + M3

_ Ya9b | 1 N 1

2Ex \E,-E.—-Ex E,—-E;—Ex)’
which, using energy conservation E, — E; = E; — E,, can be written
1 1
Myi= 522 -

2Ex E,—-E.—-Eyx E,-E.+ Ex

_ 9ga9b
(Eq — Ec)? - E}

(5.4)

For both time-ordered diagrams, the energy of the exchanged particle Ey is related
to its momentum by the usual Einstein energy-momentum relation, E% = p% + m>.
Since momentum is conserved at each interaction vertex, for the first time-ordered
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process py =(p,—P.)- In the case of the second time-ordered process py =
(Pp —Ps) =— (P, — P.)- Consequently, for both time-ordered diagrams the energy
of the exchanged particle can be written as

E)Z( = p§ + mi =(p,—p.) + mi
Substituting this expression for E)z( into (5.4) leads to

_ 9a9b

(Eq— Ec)? - (P, — pc)2 - m?{
_ 9a9b

(Pa = Pe)? = mf( ,

My (5.5)

where p, and p. are the respective four-momenta of particles a and c. Finally writ-
ing the four-momentum of the exchanged virtual particle X as

q = Pa — Pc»
gives
9a9b
Myi= = = > (5.6)
q- —my

This is a remarkable result. The sum over the two possible time-ordered diagrams
in second-order perturbation theory has produced an expression for the interaction
matrix element that depends on the four-vector scalar product ¢ and is therefore
manifestly Lorentz invariant. In (5.6) the terms g, and g, are associated with the
interaction vertices and the term

1

—— (5.7)
q- —my

is referred to as the propagator, is associated with the exchanged particle.

5.2 Feynman diagrams and virtual particles
|

In Quantum Field Theory, the sum over all possible time-orderings is represented
by a Feynman diagram. The left-hand side of the diagram represents the initial
state, and the right-hand side represents the final state. Everything in between rep-
resents the manner in which the interaction happened, regardless of the ordering
in time. The Feynman diagram for the scattering process a + b — ¢ + d, shown in
Figure 5.4, therefore represents the sum over the two possible time-orderings. The
exchanged particles which appear in the intermediate state of a Feynman diagram,
are referred to as virtual particles. A virtual particle is a mathematical construct
representing the effect of summing over all possible time-ordered diagrams and,
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X

b d b d b d

The relation between the Feynman diagram fora+ b — ¢+ d scattering and the two possible time-ordered
diagrams.

where appropriate, summing over the possible polarisation states of the exchanged
particle.

From (5.5) it can be seen that the four-momentum g which appears in the propa-
gator is given by the difference between the four-momenta of the particles entering
and leaving the interaction vertex, g = p, — p. = pa — p»- Hence g can be thought of
as the four-momentum of the exchanged virtual particle. By expressing the inter-
action in terms of the exchange of a virtual particle with four-momentum ¢, both
momentum and energy are conserved at the interaction vertices of a
Feynman diagram. This is not the case for the individual time-ordered diagrams,
where energy is not conserved at a vertex. Because the ¢>-dependence of the prop-
agator is determined by the four-momenta of the incoming and outgoing particles,
the virtual particle (which really represents the effect of the sum of all time-ordered
diagrams) does not satisfy the Einstein energy—momentum relationship and it is
termed off mass-shell, ¢ # mf( Whilst the effects of the exchanged particles are
observable through the forces they mediate, they are not directly detectable. To
observe the exchanged particle would require its interaction with another particle
and this would be a different Feynman diagram with additional (and possibly dif-
ferent) virtual particles.

The four-momentum g which appears in the propagator can be determined from
the conservation of four-momentum at the interaction vertices. For example,
Figure 5.5 shows the Feynman diagrams for the s-channel annihilation and the
t-channel scattering processes introduced in Section 2.2.3. For the annihilation pro-
cess, the four-momentum of the exchanged virtual particle is

q =p1+t P2 =p3+ P4,

and therefore q2 = (p1 + p2)*> which is the Mandelstam s variable. Previously (2.13)
it was shown that s = (E] + E;)z, where E7 and E are the energies of the initial-
state particles in the centre-of-mass frame. Consequently, for an s-channel pro-
cess g° >0 and the exchanged virtual particle is termed “time-like” (the square of
the time-like component of ¢ is larger than the sum of the squares of the three
space-like components). For the 7-channel scattering diagram of Figure 5.5, the
four momentum of the exchanged particle is given by g = p; — p3 = p4 — p>. In this
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b4 b3 2 Ps

P2 Py
P2 P4

b d b d

Feynman diagrams for illustrative s-channel annihilation and t-channel scattering processes.

case g° is equal to the Mandelstam ¢ variable. In Chapter 8 it will be shown that, for
a t-channel process, ¢ is always less than zero and the exchanged virtual particle
is termed “‘space-like”.

5.2.1 Scatteringin a potential

The covariant formulation of a scalar interaction in terms of the exchange of (vir-
tual) particles leads to a Lorentz-invariant matrix element of the form

9a9b

2 2"
q_mx

My = (5.8)
This was derived by considering the second-order term in the perturbation expan-
sion for Ty;. It is reasonable to ask how this picture of interaction by particle
exchange relates to the familiar concept of scattering in a potential. For example,
the differential cross section for the scattering of non-relativistic electrons (v < ¢)
in the electrostatic field of a stationary proton can be calculated using first pertur-
bation theory with

M = YylVOl) = f WV yid'r, (5.9)

where V(r) is the effective static electrostatic potential due to the proton and
Y; and ¢ are the wavefunctions of the initial and final-state electron. In the
non-relativistic limit, this approach successfully reproduces the experimental data.
However, the concept of scattering from a static potential is intrinsically not
Lorentz invariant; the integral in matrix element of (5.9) only involves spatial
coordinates.

The covariant picture of scattering via particle exchange applies equally in the
non-relativistic and highly relativistic limits. In the non-relativistic limit, the form
of the static potential used in first-order perturbation theory is that which repro-
duces the results of the more general treatment of the scattering process in terms
of particle exchange. For example, the form of the potential V(r) that reproduces
the low-energy limit of scattering with the matrix element of (5.8) is the
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Yukawa potential

e—mr

V() = gagp——
In this way, it is possible relate the formalism of interaction by particle exchange
to the more familiar (non-relativistic) concept of scattering in a static potential. For
an interaction involving the exchange of a massless particle, such as the photon,

the Yukawa potential reduces to the usual 1/r form of the Coulomb potential.

5.3 Introduction to QED

Quantum Electrodynamics (QED) is the Quantum Field Theory of the electromag-
netic interaction. A first-principles derivation of the QED interaction from QFT
goes beyond the scope of this book. Nevertheless, the basic interaction and cor-
responding Feynman rules can be obtained following the arguments presented in
Section 5.1.1. The LI matrix element for a scalar interaction, given in (5.6), is
composed of three parts: the strength of interaction at each of the two vertices,
WelVIya) and (Y 4|V|p), and the propagator for the exchanged virtual particle of
mass my, which can be written as

M= Vi) ——— WalV I (5.10)
q- —my
In the previous example, the simplest Lorentz-invariant choice for the interaction
vertex was used, namely a scalar interaction of the form (y|V|¢) o« g. To obtain the
QED matrix element for a scattering process, such as that shown in Figure 5.6, the
corresponding expression for the QED interaction vertex is required. Furthermore,
for the exchange of the photon, which is a spin-1 particle, it is necessary to sum
over the quantum-mechanical amplitudes for the possible polarisation states.
The free photon field A, can be written in terms of a plane wave and a four-vector
£“W for the polarisation state A,

A, = 81(11) SAPX—ED)

T

The Feynman diagram for the QED scattering processe™ 1t~ — e™ 1.
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The properties of the free photon field in classical electromagnetism are discussed
in detail in Appendix D. For a real (as opposed to virtual) photon, the polarisation
vector is always transverse to the direction of motion. Thus, a photon propagating
in the z-direction can be described by two orthogonal polarisation states

eV =(0,1,0,0) and &@ =(0,0,1,0).

The fundamental interaction between a fermion with charge ¢ and an electro-
magnetic field described by a four-potential A, = (¢, A) can be obtained by making
the minimal substitution (see Section 4.7.5)

0y — 0, +igA,,

where A, =(¢,—A) and 9, =(9/0t,+V). With this substitution, the free-particle
Dirac equation becomes

YHOW + iqyH A + imy = 0. (5.11)

This is the wave equation for a spin-half particle in the presence of the electro-
magnetic field A,. The interaction Hamiltonian can be obtained by pre-multiplying
(5.11) by iv° to give

oy .
i— + i’y -V — ¢y y A — my°y = 0,

ot
where ¥ - V is shorthand for ! [% + y%% +93 a%' Since
n oy
Hy =i—,
=t ot

the Hamiltonian for a spin-half particle in an electromagnetic field can be
identified as

H=m®-iy'y-V)+ q)/oy'“A#. (5.12)

The first term on the RHS of (5.12) is just the free-particle Hamiltonian Hp already
discussed in Chapter 4, and therefore can be identified as the combined rest mass
and kinetic energy of the particle. The final term on the RHS of (5.12) is the contri-
bution to the Hamiltonian from the interaction and thus the potential energy oper-
ator can be identified as

Vp = qyoy”A#. (5.13)
This result appears reasonable since the time-like (u=0) contribution to Vp, is

qy*y Ao = g, which is just the normal expression for the energy of a charge ¢
in the scalar potential ¢.
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The Lorentz-invariant matrix element for the QED process of e"t~ — et~ scat-
tering, shown in Figure 5.6, can be obtained by using the potential of (5.13) for the
interaction at the ey vertex (labelled by the index )

Wp)IVplw(p1)) — ul(p3) Qeey’y el ue(py),

where the charge g = Qe is expressed in terms of the magnitude of charge of the
electron (such that Q. = —1). Since the wavefunctions are four-component spinors,
the final-state particle necessarily appears as the Hermitian conjugate u'(p3)=
u*T(pg) rather than u*(p3). Similarly, the interaction at the Tty vertex (labelled
v) can be written as

il (p1) 0eey’y e u(pa).

The QED matrix element is obtained by summing over both the two possible
time orderings and the possible polarisation states of the virtual photon. The sum
over the two time-ordered diagrams follows directly from the previous result of
(5.10). Hence the Lorentz-invariant matrix element for this QED process, which
now includes the additional sum over the photon polarisation, is

1 .
M= [ul(p3)Qeer’ v uc(py) e (”q—s(f’ |1l (pa) ey’ Y ue(p)|.  (5.14)
A

In Appendix D.4.3, it is shown that the sum over the polarisation states of the
virtual photon can be taken to be

) (D)=
Z()() = —Gyuv>

and therefore (5.14) becomes

M =|Qeeul(p3)y"y ue<p1>] [ Ore u} (p4)y"y un(p2). (5.15)

This can be written in a more compact form using the adjoint spinors defined by

v =y,

—[Qce ue(ps)y“ue(pl)] [ Qe i (pa)y ux(p2)]- (5.16)

In Appendix B.3 it is shown that the combination of spinors and y-matrices j* =

u(p)y*u(p’) forms as contravariant four-vector under Lorentz boosts. By writing

the four-vector currents

J¢ = Tue(p3)y uc(pr) and ;= W(pa)y us(po). (5.17)

Equation (5.16) can be written in the manifestly Lorentz-invariant form of a four-
vector scalar product

2 Je Jt

=—Qc0re (5.18)
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This demonstrates that the interaction potential of (5.13) gives rise to a Lorentz-
invariant description of the electromagnetic interaction.

5.4 Feynman rules for QED

A rigorous derivation of the matrix element of (5.16) can be obtained in the frame-
work of quantum field theory. Nevertheless, the treatment described here shares
some of the features of the full QED derivation, namely the summation over all
possible time-orderings and polarisation states of the massless photon which gives
rise to the photon propagator term g,,, / g°, and the Qeiry*u form of the QED inter-
action between a fermion and photon. The expression for the matrix element of
(5.16) hides a lot of complexity. If every time we were presented with a new
Feynman diagram, it was necessary to derive the matrix element from first prin-
ciples, this would be extremely time consuming. Fortunately this is not the case;
the matrix element for any Feynman diagram can be written down immediately by
following a simple set of rules that are derived formally from QFT.

There are three basic elements to the matrix element corresponding to the
Feynman diagram of Figure 5.6: (i) the Dirac spinors for the external fermions
(the initial- and final-state particles); (ii) a propagator term for the virtual photon;
and (iii) a vertex factor at each interaction vertex. For each of these elements of the
Feynman diagram, there is a Feynman rule for the corresponding term in the matrix
element. The product of all of these terms is equivalent to —i M. In their simplest
form, the Feynman rules for QED, which can be used to calculate lowest-order
cross sections, are as follows.

initial-state particle: u(p) ——e
final-state particle: u(p) ——p———
initial-state antiparticle: v(p) ——0
final-state antiparticle: v(p) =
initial-state photon: £u(p) AN e
final-state photon: £,(p) o~~~
i
photon propagator: - g/;v o~
q
0 qut m)

fermion propagator: PR
q-—m

QED vertex: —iQeyt Y
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u(p3)liey"lu(pr)

Gy

q2

u(py)liey”Ju(p2)

The Feynman diagram for the QED scattering process et~ — e~ 1~ and the associated elements of the
matrix element constructed from the Feynman rules. The matrix element is comprised of a term for the elec-
tron current, a term for the tau-lepton current and a term for the photon propagator.

It should be noted that in QED, the fundamental interaction is between a single
photon and two spin-half fermions; there is no QED vertex connecting more than
three particles. For this reason, all valid QED processes are described by Feynman
diagrams formed from the basic three-particle QED vertex.

The use of the Feynman rules is best illustrated by example. Consider again the
Feynman diagram for the process e"t~ — e t~, shown in Figure 5.7. The indices
u and v label the two interaction vertices. Applying the Feynman rules to the elec-
tron current, gives an adjoint spinor for the final-state electron, a factor iey* for
the interaction vertex labelled by u, and a spinor for the initial-state electron. The
adjoint spinor is always written first and thus the contribution to the matrix element
from the electron current is

u(p3)liey"lu(py).

The same procedure applied to the tau-lepton current gives
u(ps)liey”Ju(p2).

Finally, the photon propagator contributes a factor

~ig,y

g

The product of these three terms gives —iM and therefore

—iM = [ii(ps)iey"Ju(p))] _;g;” [i(pa)iey Yu(p2)]. (5.19)

which is equivalent to the expression of (5.16), which was obtained from first prin-
ciple arguments.
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5.4.1 Treatment of antiparticles

The Feynman diagram for the s-channel annihilation process e*e™ — u*u~ is
shown in Figure 5.8. Antiparticles are represented by lines in the negative time
direction, reflecting the interpretation of the negative energy solutions to Dirac
equation as particles which travel backwards in time. It is straightforward to obtain
the matrix element for e*e™ — u*u~ from the Feynman rules. The part of the matrix
element due to the electron and muon currents are, respectively,

vo(po)liey*lu(p1) and  u(p3)liey lv(pa),

where v-spinors are used to describe the antiparticles. As before, the photon prop-
agator is
_iguv
e

Hence the matrix element for e*e™ — p*u~ annihilation is given by

—iM = [B(po) ey Ju(p1)] —22 [i(pa)liey Jo(pa)]. (5.20)

The QED matrix element for the s-channel annihilation process e*e™ — p*u~
given by (5.20) is very similar to that for the #-channel scattering process e"1~ —
et~ given by (5.19). Apart from the presence of the v-spinors for antiparticles,
the only difference is the order in which the particles appear in the expressions for
the currents. Fortunately, it is not necessary to remember the Feynman rules that
specify whether a particle/antiparticle appears in the matrix element as a spinor
or as an adjoint spinor, there is an easy mnemonic; the first particle encountered
when following the line representing a fermion current from the end to the start in
the direction against the sense of the arrows, always appears as the adjoint spinor.
For example, in Figure 5.8, the incoming e* and outgoing u~ are written as adjoint
Spinors.

e M
P4 Ps
Y
0 %
po Pa
e’ ur

The lowest-order Feynman diagram for the QED annihilation processe*e™ — u*u™.
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Problems

Summary
|

This chapter described the basic ideas behind the description of particle interactions
in terms of particle exchange and provided an introduction to the Feynman rules of
QED. A number of important concepts were introduced. The sum of all possible
time-ordered diagrams results in a Lorentz-invariant (LI) matrix element including
propagator terms for the exchanged virtual particles of the form

1
¢ —my
The four-momentum appearing in the propagator term was shown to be determined
by energy and momentum conservation at the interaction vertices.
The matrix element for a particular process is then constructed from propagator

terms for the virtual particles and vertex factors. In QED, the interaction between
a photon and a charged fermion has the form

ieQusy*u;,

where u; is the spinor for the initial-state particle and uy is the adjoint spinor for
the final-state particle. Finally, for each element of a Feynman diagram there is a
corresponding Feynman rule which can be used to construct the matrix element for
the diagram.

Problems
|

@ 5.1  Draw the two time-ordered diagrams for the s-channel process shown in Figure 5.5. By repeating the steps of

Section 5.1.1, show that the propagator has the same form as obtained for the ¢-channel process.

Hint: one of the time-ordered diagrams is non-intuitive, remember that in second-order perturbation theory
the intermediate state does not conserve energy.

(B 52 Draw the two lowest-order Feynman diagrams for the Compton scattering process ye™ — ye™.

@ 5.3 Draw the lowest-order -channel and u-channel Feynman diagrams for e e~ — +y'y and use the Feynman rules

for QED to write down the corresponding matrix elements.



Electron—positron annihilation

Experimental results from electron—positron colliders have been central to the
development and understanding of the Standard Model. In this chapter, the
derivation of the cross section for e*e™ — u*u~ annihilation is used as an
example of a calculation in QED. The cross section is first calculated using
helicity amplitudes to evaluate the matrix elements, highlighting the under-
lying spin structure of the interaction. In the final starred section, the more
\ abstract trace formalism is introduced. Y.

6.1 Calculations in perturbation theory

128

In QED, the dominant contribution to a cross section or decay rate is usually the
Feynman diagram with the fewest number of interaction vertices, known as the
lowest-order (LO) diagram. For the annihilation process ee™ — uw* ™, there is just
a single lowest-order QED diagram, shown in Figure 6.1. In this diagram there
are two QED interaction vertices, each of which contributes a factor iey* to the
matrix element. Therefore, regardless of any other considerations, the matrix ele-
ment squared |M|?> will be proportional to e* or equivalently |M|? « a?, where a is
the dimensionless fine-structure constant @ = ¢2 /4r. In general, each QED vertex
contributes a factor of a to the expressions for cross sections and decay rates.

In addition to the lowest-order diagram of Figure 6.1, there are an infinite num-
ber of higher-order-diagrams resulting in the same final state. For example, three of
the next-to-leading-order (NLO) diagrams for e*e™ — u*u~, each with four inter-
action vertices, are shown in Figure 6.2. Taken in isolation, the matrix element
squared for each of these diagrams has a factor a for each of the four QED vertices,
and hence | M| « a*. However, in quantum mechanics the individual Feynman dia-
grams for a particular process can not be taken in isolation; the total amplitude M;
for a particular process is the sum of all individual amplitudes giving the same final
state. In the case of e*e™ — u*u~, this sum can be written as

MfizMLO+ZM1,j+“', (6.1)
J
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et ur

The lowest-order Feynman diagram for the QED annihilation processe*e™ — u*u™.

Three of the O(*) Feynman diagrams contributing the QED annihilation process e™e™ — pu~.

where Mio is the matrix element for the single lowest-order (LO) diagram of
Figure 6.1, M; ; are the matrix elements for the NLO diagrams with four interac-
tion vertices, including those of Figure 6.2, and the dots indicate the higher-order
diagrams with more than four vertices. The dependence of the each of the terms in
(6.1) on @ can be shown explicitly by writing it as

Mfl'Za’ML0+Q'ZZM1,j+---,
J

where the various powers of the coupling constant @ have been factored out of the
matrix element, such that M o is written as aMj o, etc.

Physical observables, such as decay rates and cross sections, depend on the
matrix element squared given by

Ml = abio+a® 3 My 4 -][aMfio N IR
J k

= 02|ML0|2 + CZ3 Z (MLOMT,J' + MEOMl»j) + CZ4 Z Ml,jMT,k + -
J Jk

(6.2)
In general, the individual amplitudes are complex and the contributions from differ-
ent diagrams can interfere either positively or negatively. Equation (6.2) gives the
QED perturbation expansion in terms of powers of @. For QED, the dimensionless
coupling constant @ ~ 1/137 is sufficiently small that this series converges rapidly
and is dominated by the LO term. The interference between the lowest-order dia-
gram and the NLO diagrams, terms such as (MpoM; it M[ M, j), are suppressed
by a factor of @ ~ 1/137 relative to the lowest-order term. Hence, if all higher-order
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terms are neglected, it is reasonable to expect QED calculations to be accurate to
O(1%). For this reason, only the lowest-order diagram(s) will be considered for the
calculations in this book, although the impact of the higher-order diagrams will be
discussed further in Chapter 10 in the context of renormalisation.

6.2 Electron—positron annihilation
|

The matrix element for the lowest-order diagram for the process ee™ — u*u™ is
given in (5.20),

2

M= _%gﬂv [0(p2)y u(p)][E(p3)y v(ps)] (6.3)
62

= _?guvjélj;r’ 6.4)

where the electron and muon four-vector currents are defined as
J& =0(p2)y ulp)) and jy = u(ps)y v(pa). (6.5)

The four-momentum of the virtual photon is determined by conservation of energy
and momentum at the interaction vertex, g = pj+ p2 = p3 + p4, and therefore
q* = (p1 + p2)* = 5, where s is the centre-of-mass energy squared. Hence the matrix
element of (6.4) can be written as

62

M= == jejy. (6.6)

Assuming that the electron and positron beams have equal energies, which has been
the case for the majority of high-energy e*e™ colliders, the centre-of-mass energy
is simply twice the beam energy, Vs = 2Epeam.

6.2.1 Spin sums

To calculate the ee™ — u*u™ cross section, the matrix element of (6.6) needs to
be evaluated taking into account the possible spin states of the particles involved.
Because each of the e*, e™, u*™ and u™ can be in one of two possible helicity states,
there are four possible helicity configurations in the initial state, shown Figure 6.3,
and four possible helicity configurations in the u*u~ final state. Hence, the process
e*e” — uu” consists of sixteen possible orthogonal helicity combinations, each of
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- - - - - - _ = -

e — — ¢ 6 — «—— ¢ 6 — > +— et e — «—e'
RL RR LL LR

The four possible helicity combinations in the e* e initial state.

which constitutes a separate physical process, for example e{e; - M}L Wy (denoted
RR — RR) and e}“ e; = u}“ul. Because the helicity states involved are orthogonal,
the processes for the different helicity configurations do not interfere and the matrix
element squared for each of the sixteen possible helicity configurations can be
considered independently.

For a particular initial-state spin configuration, the total e*e™ — u*u~ annihila-
tion rate is given by the sum of the rates for the four possible u*u™ helicity states
(each of which is a separate process). Therefore, for a given initial-state helicity
configuration, the cross section is obtained by taking the sum of the four corre-
sponding |M|* terms. For example, for the case where the colliding electron and
positron are both in right-handed helicity states,

2 2 2 2 2
Z|MRR| = |Mgr-grrl” + IMrr-RLI” + IMrr=LRI™ + IMRRSLLI™

In most e*e™ colliders, the colliding electron and positron beams are unpolarised,
which means that there are equal numbers of positive and negative helicity elec-
trons/positrons present in the initial state. In this case, the helicity configuration
for a particular collision is equally likely to occur in any one of the four possi-
ble helicity states of the e"e™ initial state. This is accounted for by defining the
spin-averaged summed matrix element squared,

1
UMy = 7 (Mrrl® + IMReP + IMerl + ML)

1 ) 5 )
=2 (lMRR—>RR| + IMgrrorrl® + -+ IMriSgrrl + -+ ),
where the factor 4—11 accounts for the average over the four possible initial-state helic-

ity configurations. In general, the spin-averaged matrix element is given by

2_1 2
MGl = 3 D) IMP,

spins

where the sum corresponds to all possible helicity configurations. Consequently,
to evaluate the ete™ — u*u~ cross section, it is necessary to calculate the matrix
element of (6.6) for sixteen helicity combinations. This sum can be performed in
two ways. One possibility is to use the trace techniques described in Section 6.5,
where the sum is calculated directly using the properties of the Dirac spinors. The
second possibility is to calculate each of the sixteen individual helicity amplitudes.
This direct calculation of the helicity amplitudes involves more steps, but has the
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advantages of being conceptually simpler and of leading to a deeper physical under-
standing of the helicity structure of the QED interaction.

6.2.2 Helicity amplitudes

In the limit where the masses of the particles can be neglected, /s> m,,, the four-
momenta in the process e*e™ — u*u~, as shown Figure 6.4, can be written

p1=(E,0,0,E), (6.7)
p2 =(E,0,0,-F), (6.8)
p3 = (E,Esin6,0, E cos ), (6.9)
ps = (E,—Esin6,0,—FE cos6), (6.10)

where, with no loss of generality, the final state u~ and u* are taken to be produced
with azimuthal angles of ¢ = 0 and ¢ = « respectively.

The spinors appearing in the four-vector currents of (6.5) are the ultra-relativistic
(E > m) limit of the helicity eigenstates of (4.67):

c ) S c
se’¢ ce’¢ —C€i¢ sei¢
MTZ‘/E c ,uiz\/f g ,UTZ‘/E _ ,Ulz\/E c |’ (6.11)
sei¢ —cei¢ cei¢ sei¢‘

where s = sing and ¢ = cos g. The two possible spinors for initial-state electron
with (6 = 0, ¢ = 0) and for the initial-state positron with (6 = &, ¢ = m) are

0 1 0 _1
MT(pl):ﬁl’ul(pl):\/E ()’”T(PZ):\/E_1’%(P2)=\/E ol
0 -1 0 -1
e w
w P1 P3
P3
Y
e o > < 0 et u v
P2
+A/4 p2 p4
1)
et u‘*’

The QED annihilation process e"e™ — u* ™ viewed in the centre-of-mass frame and the corresponding
lowest-order Feynman diagram.
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The spinors for the final-state particles are obtained by using the spherical polar
angles (6, 0) for the u~ and (7 — 6, 7r) for the p*. Using the trigonometric relations

-6 0 -6 0 ,
sin(nz ):COS(E), COS(7T2 ):Sin(i) and " = -1,

the spinors for the two possible helicity states of the final-state u* and p~ are

c —S c N

N c s —C
ur(p3) = VE| |, ui(p3) = VE| |, or(p) = VE| __|. vi(ps) = VE

N —C —S —C

6.2.3 The muon and electron currents

The matrix element for a particular helicity combination is obtained from (6.6),

62

M= = jerjy
where the corresponding four-vector currents of (6.5) are defined in terms of the
above spinors for the helicity eigenstates. The muon current, ji =u(p3)y"v(pa),
needs to be evaluated for the four possible final-state helicity combinations shown
in Figure 6.5. Using the Dirac—Pauli representation of the y-matrices (4.35), it
is straightforward to show that, for any two spinors ¢ and ¢, the components of

yyFe = yiylyre are

U0 = w0y = wier + uien + Wids + Uida, (6.12)
Uy'e =0Ty 6 = wigs + Ushs + Wihn + Ui, (6.13)
Uy e =YV b = i da — Wids + Wi — i), (6.14)
VYo =YV 0 = wigs — Yies + Ui — Uik, (6.15)

Using these relations, the four components of the four-vector current j, can be
determined by using the spinors for a particular helicity combination. For example,
for the RL combination where the u~ is produced in a right-handed helicity state
and the p* is produced in a left-handed helicity state, the appropriate spinors are
ur(p3) and v (p4). In this case, from Equations (6.12)—(6.15), the components of

" " " '/M
z g Wz +V

u RL u RR u LL u LR

The four possible helicity combinations for the w* ™ final state.
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the muon current are

Jd = (p3)y°v)(ps) = E(cs — sc + ¢s — s¢) =0,

]'d = ur(p3)y v (pa) = E(=¢* + s* = ¢* + 5%) = 2E(s* = ¢*) = =2E cos 0,
Ji = (P oy (pe) = —E(=C = 5 = — %) = 2iE,

j: = ET(p3)y3vl(p4) = E(cs+ sc+cs+ sc) =4Esc = 2E sin 6.

Hence, the four-vector current for the helicity combination Wy MI is

Jurr = up(p3)y vy (ps) = 2E(0, - cos 6, i, sin 6).
Repeating the calculation for the other three u*u™ helicity combinations gives

Jure = up(p3)y vy (ps) = 2E(0, —cos 6, i,sin 6), (6.16)
Juwrr = ur(p3)y"vr(ps) = (0,0,0,0),
Jurr = uy(p3)y”vy(ps) = (0,0,0,0),
Juir = uy(p3)y vy(ps) = 2E(0, - cos 6, —i, sin 6). (6.17)

Hence, in the limit where E > m,,, only two of the four u*p~ helicity combinations
lead to a non-zero four-vector current. This important feature of QED is related to
the chiral nature of the interaction, as discussed in Section 6.4.

The electron currents for the four possible initial-state helicity configurations can
be evaluated directly using (6.12)—(6.15). Alternatively, the electron currents can
be obtained by noting that they differ from the form of the muon currents only in
the order in which the particle and antiparticle spinors appear, j& = v(p2)y u(p1)
compared to j =u(p3)y"v(p4). The relationship between vy*u and uy*v can be
found by taking the Hermitian conjugate of the muon current to give

[1(p3)y*op)]" = [u(ps) ¥y o)
= v(p) Y YT u(p3) using (AB)" = B'AT
= v(pa) y* Y u(ps) since Y7 ="
= v(pa) "y ¥ u(ps) since y#Ty? = y0y#
= U(pa)y u(ps).

The effect of taking the Hermitian conjugate of the QED current is to swap the order
in which the spinors appear in the current. Because each element of the four-vector
current, labelled by the index g, is just a complex number, the elements of the four-
vector current for vy*u are given by the complex conjugates of the corresponding
elements of uy*v. Therefore from (6.16) and (6.17),

*

vy (pa)y*ur(p3) = [ur(p3)y*vy(ps)]” = 2E(0, — cos 0, —i, sin 6)
U (pa)yHuy(ps) = [uy(p3)y*v(ps)]” = 2E(0, — cos 6, i, sin 6).
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By setting 8 =0, it follows that the two non-zero electron currents are

Jere = Vy(p2)y*ur(p1) = 2E(0,-1,-i,0), (6.18)
Je.Lr = vp(p2)yHuy(p1) = 2E(0,-1,1,0). (6.19)

Furthermore, from j ;1 = ju.rg =0, it follows that j. ;7 and je gg are also zero.

6.24 Theete™ — n*u™ cross section

In the limit E > m, only two of the four helicity combinations for both the ini-
tial and final state lead to non-zero four-vector currents. Therefore, in the pr