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Preface

The Standard Model of particle physics represents one of the triumphs of modern
physics. With the discovery of the Higgs boson at the LHC, all of the particles in the
Standard Model have now been observed. The main aim of this book is to provide
a broad overview of our current understanding of particle physics. It is intended to
be suitable for final-year undergraduate physics students and also can serve as an
introductory graduate-level text. The emphasis is very much on the modern view
of particle physics with the aim of providing a solid grounding in a wide range of
topics.

Our current understanding of the sub-atomic Universe is based on a number of
profound theoretical ideas that are embodied in the Standard Model of particle
physics. However, the development of the Standard Model would not have been
possible without a close interplay between theory and experiment, and the struc-
ture of this book tries to reflects this. In most chapters, theoretical concepts are
developed and then are related to the current experimental results. Because parti-
cle physics is mostly concerned with fundamental objects, it is (in some sense) a
relatively straightforward subject. Consequently, even at the undergraduate level,
it is quite possible to perform calculations that can be related directly to the recent
experiments at the forefront of the subject.

Pedagogical approach
In writing this textbook I have tried to develop the subject matter in a clear and
accessible manner and thought long and hard about what material to include. Whilst
the historical development of particle physics is an interesting topic in its own right,
it does not necessarily provide the best pedagogical introduction to the subject. For
this reason, the focus of this book is on the contemporary view of particle physics
and earlier experimental results are discussed only to develop specific points. Sim-
ilarly, no attempt is made to provide a comprehensive review of the many experi-
ments, instead a selection of key measurements is used to illustrate the theoretical
concepts; the choice of which experimental measurements to include is primarily
motivated by the pedagogical aims of this book.

This textbook is intended to be self-contained, and only a basic knowledge of
quantum mechanics and special relativity is assumed. As far as possible, I have tried
to derive everything from first principles. Since this is an introductory textbook, the
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xiv Preface

mathematical material is kept as simple as possible, and the derivations show all
the main steps. I believe that this approach enables students relatively new to the
subject to develop a clear understanding of the underlying physical principles; the
more sophisticated mathematical trickery can come later. Calculations are mostly
performed using helicity amplitudes based on the explicit Dirac–Pauli representa-
tion of the particle spinors. I believe this treatment provides a better connection
to the underlying physics, compared to the more abstract trace formalism (which
is also described). Some of the more-challenging material is included in optional
starred sections. When reading these sections, the main aim should be to under-
stand the central concepts, rather than the details.

The general structure of this book is as follows: Chapters 1–5 introduce the
underlying concepts of relativistic quantum mechanics and interaction by particle
exchange; Chapters 6–12 describe the electromagnetic, strong and weak interac-
tions; and Chapters 13–18 cover major topics in modern particle physics. This
textbook includes an extensive set of problems. Each problem is graded according
to the relative time it is likely to take. This does not always reflect the difficulty
of the problem and is meant to provide a guide to students, where for example a
shorter graded problem should require relatively little algebra. Hints and outline
solutions to many of the problems are available at www.cambridge.org/MPP.

For instructors
This book covers a wide range of topics and can form the basis of a long course
in particle physics. For a shorter course, it may not be possible to fit all of the
material into a single semester and certain sections can be omitted. In this case,
I would recommend that students read the introductory material in Chapters 1–3
as preparation for a lecture course. Chapters 4–8, covering the calculations of the
e+e− → µ+µ− annihilation and e−p scattering cross sections, should be considered
essential. Some of the material in Chapter 9 on the quark model can be omitted,
although not the discussion of symmetries. The material in Chapter 14 stands alone
and could be omitted or covered only partially. The material on electroweak unifi-
cation and the tests of the Standard Model, presented in Chapters 15 and 16, repre-
sents one of the highlights of modern particle physics and should be considered as
core. The chapter describing the Higgs mechanism is (necessarily) quite involved
and it would be possible to focus solely on the properties of the Higgs boson and
its discovery, rather than the detailed derivations.

Fully worked solutions to all problems are available to instructors, and these can
be found at www.cambridge.org/MPP. In addition, to aid the preparation of new
courses, PowerPoint slides covering most of the material in this book are available
at the same location, as are all of the images in this book.
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1 Introduction

The purpose of this chapter is to provide a brief introduction to the Standard
Model of particle physics. In particular, it gives an overview of the fundamen-
tal particles and the relationship between these particles and the forces. It also
provides an introduction to the interactions of particles in matter and how they
are detected and identified in the experiments at modern particle colliders.

1.1 The Standard Model of particle physics

Particle physics is at the heart of our understanding of the laws of nature. It is
concerned with the fundamental constituents of the Universe, the elementary par-
ticles, and the interactions between them, the forces. Our current understanding is
embodied in the Standard Model of particle physics, which provides a unified pic-
ture where the forces between particles are themselves described by the exchange
of particles. Remarkably, the Standard Model provides a successful description
of all current experimental data and represents one of the triumphs of modern
physics.

1.1.1 The fundamental particles

In general, physics aims to provide an effective mathematical description of a phys-
ical system, appropriate to the energy scale being considered. The world around us
appears to be formed from just a few different particles. Atoms are the bound states
of negatively charged electrons (e−) which orbit around a central nucleus com-
posed of positively charged protons (p) and electrically neutral neutrons (n). The
electrons are bound to the nucleus by the electrostatic attraction between opposite
charges, which is the low-energy manifestation of the fundamental theory of elec-
tromagnetism, namely Quantum Electrodynamics (QED). The rich structure of the
properties of the elements of the periodic table emerges from quantum mechan-
ics, which dictates the precise electronic structure of the different atoms. In the
atomic nucleus, the protons and neutrons are bound together by the strong nuclear
force, which is a manifestation of the fundamental theory of strong interactions,
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!Fig. 1.1 The Universe at different energy scales, from atomic physics to modern particle physics at the TeV scale.

called Quantum Chromodynamics (QCD). The fundamental interactions of parti-
cle physics are completed by the weak force, which is responsible for the nuclear
β-decays of certain radioactive isotopes and the nuclear fusion processes that fuel
the Sun. In both nuclear β-decay and nuclear fusion, another particle, the nearly
massless electron neutrino (νe) is produced. Almost all commonly encountered
physical phenomena can be described in terms of the electron, electron neutrino,
proton and neutron, interacting by the electromagnetic, strong and weak forces.
The picture is completed by gravity, which although extremely weak, is always
attractive and is therefore responsible for large-scale structure in the Universe. This
is an appealingly simple physical model with just four “fundamental” particles
and four fundamental forces. However, at higher energy scales, further structure
is observed, as indicated in Figure 1.1. For example, the protons and neutrons
are found to be bound states of (what are believed to be) genuinely fundamen-
tal particles called quarks, with the proton consisting of two up-quarks and a
down-quark, p(uud), and the neutron consisting of two down-quarks and an
up-quark, n(ddu).

The electron, the electron neutrino, the up-quark and down-quark are known
collectively as the first generation. As far as we know, they are elementary particles,
rather than being composite, and represent the basic building blocks of the low-
energy Universe. However, when particle interactions are studied at the energy
scales encountered in high-energy particle colliders, further complexity is revealed.
For each of the four first-generation particles, there are exactly two copies which
differ only in their masses. These additional eight particles are known as the second
and third generations. For example, the muon (µ−) is essentially a heavier version
of the electron with mass mµ ≈ 200 me, and the third generation tau-lepton (τ−) is
an even heavier copy with mτ ≈ 3500 me. Apart from the differences in masses,
which have physical consequences, the properties of the electron, muon and tau-
lepton are the same in the sense that they possess exactly the same fundamental
interactions.

It is natural to ask whether this pattern is repeated and that there are further gen-
erations of particles. Perhaps surprisingly, this seems not to be the case; there is



3 1.1 The Standard Model of particle physics

Table 1.1 The twelve fundamental fermions divided into quarks and leptons.
The masses of the quarks are the current masses.

Leptons Quarks

Particle Q mass/GeV Particle Q mass/GeV

First electron (e−) −1 0.0005 down (d) −1/3 0.003
generation neutrino (νe) 0 < 10−9 up (u) +2/3 0.005

Second muon (µ−) −1 0.106 strange (s) −1/3 0.1
generation neutrino (νµ) 0 < 10−9 charm (c) +2/3 1.3

Third tau (τ−) −1 1.78 bottom (b) −1/3 4.5
generation neutrino (ντ) 0 < 10−9 top (t) +2/3 174

tb

s c

e- d uFirst generation νe

νµ

ντ

µ-

τ-

Second generation

Third generation

!Fig. 1.2 The particles in the three generations of fundamental fermions with the masses indicated by imagined spher-
ical volumes of constant density. In reality, fundamental particles are believed to be point-like.

strong experimental evidence that there are just three generations; hence the matter
content of the Universe appears to be in the form of the twelve fundamental spin-
half particles listed in Table 1.1. There is a subtlety when it comes to the description
of the neutrinos; the νe, νµ and ντ are in fact quantum-mechanical mixtures of the
three fundamental neutrino states with well-defined masses, labelled simply ν1, ν2

and ν3. This distinction is only important in the discussion of the behaviour of
neutrinos that propagate over large distances, as described in Chapter 13. Whilst
it is known that the neutrinos are not massless, the masses are sufficiently small
that they have yet to be determined. From the upper limits on the possible neutrino
masses, it is clear that they are at least nine orders of magnitude lighter than the
other fermions. Apart from the neutrinos, the masses of the particles within a par-
ticular generation are found to be rather similar, as illustrated in Figure 1.2. Whilst
it is likely that there is some underlying reason for this pattern of masses, it is not
currently understood.
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Table 1.2 The forces experienced by different particles.

strong electromagnetic weak

Quarks
down-type d s b

! ! !
up-type u c t

Leptons
charged e− µ− τ− ! !
neutrinos νe νµ ντ !

The dynamics of each of the twelve fundamental fermions are described by the
Dirac equation of relativistic quantum mechanics, which is the subject of Chapter 4.
One important consequence of the Dirac equation is that for each of the twelve
fermions there exists an antiparticle state with exactly the same mass, but opposite
charge. Antiparticles are denoted either by their charge or by a bar over the corre-
sponding particle symbol. For example, the anti-electron (which is known as the
positron) is denoted by e+, and the anti-up-quark is written u.

Quarks and leptons
The particles interact with each other through the four fundamental forces, grav-
ity, electromagnetism, the strong force and the weak force. The gravitational force
between two individual particles is extremely small and can be neglected in the dis-
cussion of particle interactions. The properties of the twelve fundamental fermions
are categorised by the types of interaction that they experience, as summarised
in Table 1.2. All twelve fundamental particles “feel” the weak force and undergo
weak interactions. With the exception of the neutrinos, which are electrically neu-
tral, the other nine particles are electrically charged and participate in the electro-
magnetic interaction of QED. Only the quarks carry the QCD equivalent of electric
charge, called colour charge. Consequently, only the quarks feel the strong force.
Because of the nature of the QCD interaction, quarks are never observed as free
particles, but are always confined to bound states called hadrons, such as the pro-
ton and neutron. Because the quarks feel the strong force, their properties are very
different from those of the electron, muon, tau-lepton and the neutrinos, which are
collectively referred to as the leptons.

1.1.2 The fundamental forces

In classical electromagnetism, the electrostatic force between charged particles can
be described in terms of a scalar potential. This classical description of a force
arising from a potential is unsatisfactory on a number of levels. For example, when
an electron scatters in the electrostatic potential of a proton, there is a transfer of
momentum from one particle to the other without any apparent mediating body.
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!Fig. 1.3 The scattering of two electrons in QED by the exchange of a photon. With time running from left to right, the
diagrams indicate the two possible time-orderings.

Regarding this apparent action-at-a-distance, Newton famously wrote “It is incon-
ceivable that inanimate brute matter should, without the mediation of something
else which is not material, operate upon and affect other matter without mutual
contact”. Whilst it is convenient to express classical electromagnetism in terms of
potentials, it hides the fundamental origin of the electromagnetic interaction.

In modern particle physics, each force is described by a Quantum Field Theory
(QFT). In the case of electromagnetism this is the theory of Quantum Electro-
dynamics (QED), where the interactions between charged particles are mediated
by the exchange of virtual photons; the meaning of the term virtual is explained in
Chapter 5. By describing a force in terms of particle exchange, there is no longer
any mysterious action at a distance. As an example, Figure 1.3 shows the interac-
tion between two electrons by the exchange of a photon. In the first diagram, the
upper electron emits a photon, which at a later time is absorbed by the lower elec-
tron. The effect is to transfer momentum from one electron to the other, and it is
this transfer of momentum which manifests itself as a force. The second diagram
shows the other possible time-ordering with the lower electron emitting the photon
that is subsequently absorbed by the upper electron. Since the exchanged particle
is not observed, only the combined effect of these two time-ordered diagrams is
physically meaningful.

Each of the three forces of relevance to particle physics is described by a QFT
corresponding to the exchange of a spin-1 force-carrying particle, known as a
gauge boson. The familiar spin-1 photon is the gauge boson of QED. In the case
of the strong interaction, the force-carrying particle is called the gluon which, like
the photon, is massless. The weak charged-current interaction, which is responsi-
ble for nuclear β-decay and nuclear fusion, is mediated by the charged W+ and W−

bosons, which are approximately eighty times more massive than the proton. There
is also a weak neutral-current interaction, closely related to the charged current,
which is mediated by the electrically neutral Z boson. The relative strengths of
the forces associated with the different gauge bosons are indicated in Table 1.3. It
should be noted that these numbers are only indicative as the strengths of the forces
depend on the distance and energy scale being considered.
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Table 1.3 The four known forces of nature. The relative strengths are approximate indicative values for two
fundamental particles at a distance of 1 fm = 10−15 m (roughly the radius of a proton).

Force Strength Boson Spin Mass/GeV
Strong 1 Gluon g 1 0
Electromagnetism 10−3 Photon γ 1 0

Weak 10−8 W boson W± 1 80.4
Z boson Z 1 91.2

Gravity 10−37 Graviton? G 2 0

1.1.3 The Higgs boson

The final element of the Standard Model is the Higgs boson, which was discovered
by the ATLAS and CMS experiments at the Large Hadron Collider (LHC) in 2012.
The Higgs boson, which has a mass

mH ≈ 125 GeV,

differs from all other Standard Model particles. Unlike, the fundamental fermions
and the gauge bosons, which are respectively spin-half and spin-1 particles, the
Higgs boson is spin-0 scalar particle. As conceived in the Standard Model, the
Higgs boson is the only fundamental scalar discovered to date.

The Higgs boson plays a special rôle in the Standard Model; it provides the
mechanism by which all other particles acquire mass. Without it the Universe
would be a very different, all the particles would be massless and would propa-
gate at the speed of light! In QFT, the Higgs boson can be thought of as an excita-
tion of the Higgs field. Unlike the fields associated with the fundamental fermions
and bosons, which have zero expectation values in the vacuum, the Higgs field
is believed to have a non-zero vacuum expectation value. It is the interaction of
the initially massless particles with this non-zero Higgs field that gives them their
masses. The discovery of a Higgs-like particle at the LHC represented a remark-
able validation of the theoretical ideas which constitute the Standard Model. The
mathematical details of the Higgs mechanism, which are subtle, are discussed in
detail in Chapter 17. The masses of the W±, Z and H bosons are all of the order of
100 GeV, which is known as the electroweak scale. This doesn’t happen by chance;
in the Standard Model, the masses of the weak gauge bosons are intimately con-
nected to the Higgs mechanism.

1.1.4 The Standard Model vertices

The nature of the strong, electromagnetic and weak forces are determined by the
properties of the bosons of the associated quantum field theory, and the way in
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!Fig. 1.4 The Standard Model interaction vertices.

which the gauge bosons couple to the spin-half fermions. The coupling of the gauge
bosons to the fermions is described by the Standard Model interaction vertices,
shown in Figure 1.4. In each case, the interaction is a three-point vertex of the
gauge boson and an incoming and outgoing fermion. For each type of interaction
there is an associated coupling strength g. For QED the coupling strength is simply
the electron charge, gQED = e ≡ +|e|.

A particle couples to a force-carrying boson only if it carries the charge of the
interaction. For example, only electrically charged particles couple to the photon.
Only the quarks carry the colour charge of QCD, and hence only quarks partici-
pate in the strong interaction. All twelve fundamental fermions carry the charge
of the weak interaction, known as weak isospin, and therefore they all partici-
pate in the weak interaction. The weak charged-current interaction does not cor-
respond to the usual concept of a force as it couples together different flavour
fermions. Since the W+ and W− bosons have charges of +e and −e respectively,
in order to conserve electric charge, the weak charged-current interaction only
couples together pairs of fundamental fermions that differ by one unit of electric
charge. In the case of the leptons, by definition, the weak interaction couples a
charged lepton with its corresponding neutrino,

(
νe

e−

)
,

(
νµ
µ−

)
,

(
ντ
τ−

)
.

For the quarks, the weak interaction couples together all possible combinations
differing by one unit of charge,

(
u
d

)
,

(
u
s

)
,

(
u
b

)
,

(
c
d

)
,

(
c
s

)
,

(
c
b

)
,

(
t
d

)
,

(
t
s

)
,

(
t
b

)
.

The strength of the weak charged-current coupling between the charge +2
3 up-

type quarks (u, c, t) and the charge −1
3 down-type quarks (d, s, b) is greatest for

quarks of the same generation. Since the weak interaction is the only known force
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X

f

f

f

f

g

g!Fig. 1.5 The scattering of two fermions, denoted f, by the exchange of the boson, X . The strength of the fundamental
interaction at each of the two three-point ffX vertices is denoted by the coupling constant g.

for which the incoming and outgoing fermions are different, the weak charged-
current interaction is particularly important when considering particle decays as it
introduces a change of flavour.

The strength of the fundamental interaction between the gauge boson and a
fermion is determined by the coupling constant g, which can be thought of as a
measure of the probability of a spin-half fermion emitting or absorbing the boson
of the interaction. Put more precisely, the quantum-mechanical transition matrix
element for an interaction process includes a factor of the coupling constant g for
each interaction vertex. For example, the matrix element for the scattering process
indicated by Figure 1.5 contains two factors of g, one at each vertex, and therefore

M ∝ g2.

Hence, the interaction probability, which is proportional to the matrix element
squared, |M|2 =MM∗, contains a factor g2 from each interaction vertex, thus in
this example

|M|2 ∝ g4.

Rather than working with the coupling constant itself, it is often more convenient to
use the associated dimensionless constant, α ∝ g2. In the case of electromagnetism
this is the familiar fine-structure constant

α =
e2

4πε0!c
.

One advantage of writing the coupling strength in terms of a dimensionless con-
stant is that the numerical value is independent of the system of units used for
a calculation. In addition, the quantum-mechanical probability of the interaction
includes a single factor of α for each interaction vertex. The intrinsic strength
of the electromagnetic interaction is given by the size of fine-structure constant
α= 1/137. The QCD interaction is intrinsically stronger with αS ∼ 1. The intrin-
sic strength of the weak interaction, with αW ∼ 1/30, is in fact greater than that
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it represents.

of QED. However, the large mass of the associated W boson means that at rela-
tively low-energy scales, such as those encountered in particle decays, the weak
interaction is (as its name suggests) very much weaker than QED.

1.1.5 Feynman diagrams

Feynman diagrams are an essential part of the language of particle physics. They
are a powerful representation of transitions between states in quantum field the-
ory and represent all possible time-orderings in which a process can occur. For
example, the generic Feynman diagram for the process a + b → c + d, involving
the exchange of boson X, shown in Figure 1.6, represents the sum of the quantum
mechanical amplitudes for the two possible time-orderings. It should be remem-
bered that in a Feynman diagram time runs from left to right but only in the sense
that the left-hand side of a Feynman diagram represents the initial state, in this case
particles a and b, and the right-hand side represents the final state, here c and d. The
central part of the Feynman diagram shows the particles exchanged and the Stan-
dard Model vertices involved in the interaction, but not the order in which these
processes occurred. Feynman diagrams are much more than a pictorial represen-
tation of the fundamental physics underlying a particular process. From Quantum
Field Theory it is possible to derive simple Feynman rules associated with the ver-
tices and virtual particles in a Feynman diagram. Once the Feynman diagram has
been drawn, it is straightforward to write down the quantum-mechanical transi-
tion matrix element using the relevant Feynman rules, thus avoiding the need to
calculate each process from first principles in Quantum Field Theory.

In general, for each process considered, there will be an infinite number of
Feynman diagrams that can be drawn. For example, Figure 1.7 shows Feynman
diagrams for the scattering of two electrons by the exchange of either one or two
photons. Both diagrams have the same initial and final state, and therefore corre-
spond to the same physical process, e−e−→ e−e−. Each interaction vertex is associ-
ated with a factor e in the matrix element, or equivalently a factor of α in the matrix
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!Fig. 1.7 Two Feynman diagrams for e−e− → e−e− scattering.

element squared. Thus, the matrix element squared for the diagram involving a sin-
gle photon exchange and two vertices is proportional to α2, and that involving two
photons and four vertices is proportional to α4,

|M2
γ | ∝ α2 and |M2

γγ| ∝ α4.

Because the coupling strength of the electromagnetic interaction is relatively small,
α ∼ 1/137, the diagram with four vertices is suppressed by a factor O(104) relative
to the diagram with two vertices. In the language of perturbation theory, only the
lowest-order term is significant. Consequently, for almost all processes that will be
encountered in this book, only the simplest (i.e. lowest-order) Feynman diagram
needs to be considered.

For reasons that will become clear in Chapter 4, antiparticles are drawn in Feyn-
man diagrams with arrows pointing in the “backwards in time” direction. In the
Standard Model, particles and antiparticles can be created or annihilated only in
pairs. This means that the arrows on the incoming and outgoing fermion lines in
Standard Model vertices are always in the same sense and flow through the vertex;
they never both point towards or away from the vertex.

1.1.6 Particle decays

Most particles decay with a very short lifetime. Consequently, only the relatively
few stable and long-lived types of particle are detected in particle physics exper-
iments. There are twelve fundamental spin-half particles (and the twelve corre-
sponding antiparticles), but they are not all stable. For a particle to decay there
must be a final state with lower total rest mass that can be reached by a process with
a Feynman diagram constructed from the Standard Model vertices. Decays of the
fundamental particles all involve the weak charged current which has the only inter-
action vertex that allows for a change in flavour. For example, since mµ > me and
the neutrinos are almost massless, the muon can decay via µ−→ e−νeνµ through
the weak charged-current process with the Feynman diagram of Figure 1.8. Similar
diagrams can be drawn for the tau-lepton. Since the electron is the lightest charged
lepton, there is no corresponding weak decay process which conserves energy and
momentum and consequently the electron is stable.
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νe!Fig. 1.8 The Feynman diagram for muon decay. The arrow in the “negative time direction” denotes an antiparticle, in
this case an electron antineutrino (νe).
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!Fig. 1.9 The three types of observed hadronic states.

Because of the nature of the QCD interaction, quarks are never observed as free
particles but are always found confined in bound states, known as hadrons. Con-
sequently their decays need to be considered in the context of these bound states.
The only hadronic states that have been observed to date, indicated in Figure 1.9,
are the mesons which consist of a quark and an antiquark (qq), the baryons which
consist of three quarks (qqq), and the antibaryons consisting of three antiquarks
(q q q).

Many hadronic states have been observed. These correspond to different com-
binations of quark flavours and different internal angular momenta states. Each of
these distinct states is observed as a particle with a particular mass, which is not
just the sum of the masses of the constituent quarks, but includes a large contri-
bution from the QCD binding energy. The total angular momentum of a hadron,
which is referred to as its spin, depends on the orbital angular momentum between
the constituent quarks and the overall spin state. Hadronic states can be labelled by
their flavour content, i.e. the type of quarks they contain, their total angular momen-
tum J, and their parity P, which is an observable quantum number reflecting the
symmetry of the wavefunction under the transformation r→−r. For example, the
positively charged pion π+(ud), which is the lightest meson state consisting of an
up-quark and an anti-down-quark, has spin-parity JP = 0−. The masses and life-
times for a number of commonly encountered hadrons are given in Appendix C.

The only stable hadron is the proton, which is the lightest system of three quarks
with mp = 938.3 MeV≡ 1.673× 10−27 kg. As a free particle, the neutron with mass
mn = 939.6 MeV, decays with a lifetime of about 15 min via the weak interaction
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!Fig. 1.11 The lifetimes of a number of common hadronic states grouped into the type of decay. Also shown are the
lifetimes of the muon and tau-lepton, both of which decay weakly.

process n→ p e− νe. Although a free neutron can decay, when bound within a
nucleus, the change in nuclear binding energy is usually larger than the proton–
neutron mass difference, and under these circumstances the neutron behaves as a
stable particle. All other hadronic states decay, usually very rapidly.

Whilst particle decay rates depend on a number of factors, the most important is
the type of fundamental interaction involved in the decay. For example, Figure 1.10
shows two possible Feynman diagrams for the decay of the ρ0 meson, ρ0 → π+π−.
The first diagram is a strong decay involving the exchange of a gluon. The second
diagram is an electromagnetic process. The respective matrix elements depend on
the coupling strengths of the strong and electromagnetic forces,

|Mg|2 ∝ α2
S and |Mγ|2 ∝ α2.

Because αS is two orders of magnitude greater than α, the contribution from the
strong decay Feynman diagram dominates.

The above example illustrates an important point; if a particle can decay by the
strong interaction this will almost always dominate over any possible electromag-
netic or weak decay processes. Similarly, electromagnetic decay modes will dom-
inate over weak interaction processes. To illustrate this point, Figure 1.11 shows
the lifetimes of a selection of hadrons divided according to whether the dominant
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decay mode is a strong, electromagnetic or weak interaction. Particles where only
weak decay processes are possible are relatively long-lived (at least in the context
of particle physics). Nevertheless, because the charged-current weak interaction
produces a change of flavour at the interaction vertex, the weak interaction plays
an important role in the decays of many particles for which electromagnetic and
strong decay modes are not possible. Because many particles have very short life-
times, only their decay products are observed in particle physics experiments.

1.2 Interactions of particles with matter

Particle physics experiments are designed to detect and identify the particles pro-
duced in high-energy collisions. Of the particles that can be produced, only the
electron, proton, photon and the effectively undetectable neutrinos are stable.
Unstable particles will travel a distance of order γvτ before decaying, where τ is the
mean lifetime (in the rest frame of the particle) and γ= 1/

√
1 − v2/c2 is the Lorentz

factor accounting for relativistic time dilation. Relativistic particles with lifetimes
greater than approximately 10−10 s will propagate over several metres when pro-
duced in high-energy particle collisions and thus can be directly detected. These
relatively long-lived particles include the muon µ±, the neutron n(ddu), the charged
pions π+(ud)/π−(du), and the charged kaons K+(us)/K−(su). Short-lived particles
with lifetimes of less than 10−10 s will typically decay before they travel a signif-
icant distance from the point of production and only their decay products can be
detected.

The stable and relatively long-lived particles form the observables of particle
physics collider experiments. The techniques employed to detect and identify the
different particles depends on the nature of their interactions in matter. Broadly
speaking, particle interactions can be divided into three categories: (i) the inter-
actions of charged particles; (ii) the electromagnetic interactions of electrons and
photons; and (iii) the strong interactions of charged and neutral hadrons.

1.2.1 Interactions and detection of charged particles

When a relativistic charged particle passes through a medium, it interacts electro-
magnetically with the atomic electrons and loses energy through the ionisation of
the atoms. For a singly charged particle with velocity v = βc traversing a medium
with atomic number Z and number density n, the ionisation energy loss per unit
length traversed is given by the Bethe–Bloch equation,

dE
dx
≈ −4π!2c2α2 nZ

mev2

{
ln

[
2 β2γ2c2me

Ie

]
− β2

}
. (1.1)
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!Fig. 1.12 The ionisation energy loss curves for a singly charged particle traversing lead, iron, carbon and gaseous
helium. Adapted from Beringer et al. (2012).

Here Ie is the effective ionisation potential of the material averaged over all atomic
electrons, which is very approximately given by Ie ∼ 10 Z eV. For a particular
medium, the rate of the ionisation energy loss of a charged particle is a function of
its velocity. Owing to the 1/v2 term in the Bethe–Bloch equation, dE/dx is greatest
for low-velocity particles. Modern particle physics is mostly concerned with highly
relativistic particles where v≈ c. In this case, for a given medium, dE/dx depends
logarithmically on (βγ)2, where

βγ =
v/c

√
1 − (v/c)2

=
p

mc
,

resulting in a slow “relativistic rise” of the rate of ionisation energy loss that is
evident in Figure 1.12.

The rate of ionisation energy loss does not depend significantly on the material
except through its density ρ. This can be seen by expressing the number density of
atoms as n= ρ/(Amu), where A is the atomic mass number and mu = 1.66×10−27 kg
is the unified atomic mass unit. Hence (1.1) can be written

1
ρ

dE
dx
≈ −4π!2c2α2

mev2mu

Z
A

{
ln

[
2 β2γ2mec2

Ie

]
− β2

}
, (1.2)

and it can be seen that dE/dx is proportional to Z/A. Because nuclei consist of
approximately equal numbers of protons and neutrons, Z/A is roughly constant and
thus the rate of energy loss by ionisation is proportional to density but otherwise
does not depend strongly on the material. This can be seen from Figure 1.12, which
shows the ionisation energy loss (in units of MeV g−1 cm2) as a function of βγ for
a singly charged particle in helium, carbon, iron and lead. Particles with βγ≈ 3,
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which corresponds to the minimum in the ionisation energy loss curve, are referred
to as minimum ionising particles.

All charged particles lose energy through the ionisation of the medium in which
they are propagating. Depending on the particle type, other energy-loss mecha-
nisms maybe present. Nevertheless, for muons with energies below about 100 GeV,
ionisation is the dominant energy-loss process. As a result, muons travel significant
distances even in dense materials such as iron. For example, a 10 GeV muon loses
approximately 13 MeV cm−1 in iron and therefore has a range of several metres.
Consequently, the muons produced at particle accelerators are highly penetrating
particles that usually traverse the entire detector, leaving a trail of ionisation. This
feature can be exploited to identify muons; all other charged particles have other
types of interactions in addition to ionisation energy loss.

Tracking detectors
The detection and measurement of the momenta of charged particles is an essential
aspect of any large particle physics experiment. Regardless of the medium through
which a charged particle travels, it leaves a trail of ionised atoms and liberated
electrons. By detecting this ionisation it is possible to reconstruct the trajectory
of a charged particle. Two main tracking detector technologies are used. Charged
particle tracks can detected in a large gaseous tracking volume by drifting the liber-
ating electrons in a strong electric field towards sense wires where a signal can be
recorded. However, in recent particle physics experiments, for example the ATLAS
and CMS experiments at the LHC, there has been a move to using tracking detec-
tors based on semiconductor technology using silicon pixels or strips.

When a charged particle traverses an appropriately doped silicon wafer, electron–
hole pairs are created by the ionisation process, as indicated by Figure 1.13. If a
potential difference is applied across the silicon, the holes will drift in the direction
of the electric field where they can be collected by p–n junctions. The sensors can
be shaped into silicon strips, typically separated by O(25 µm), or into silicon pix-
els giving a precise 2D space point. The signals are not small; in crossing a typical
silicon wafer, a charged particle will liberate O(10 000) electron–hole pairs that,

n-type
silicon

+
+

++

+−
−−

−
−

p-type
silicon

∼ 250 mm

∼ 25 mm Amplified
signal

V
+

−

!Fig. 1.13 The production and collection of charge in a silicon tracking sensor.
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!Fig. 1.14 The principle of charged particle track reconstruction from the space points observed in a (five-layer) silicon
tracking detector. The curvature in the xy-plane determines the transverse momentum.

with appropriate amplification electronics, gives a clear signal associated with the
strip/pixel on which the charge was collected.

Silicon tracking detectors typically consist of several cylindrical surfaces of sil-
icon wafers, as indicated in Figure 1.14. A charged particle will leave a “hit” in
a silicon sensor in each cylindrical layer from which the trajectory of the charged
particle track can be reconstructed. The tracking system is usually placed in a large
solenoid producing an approximately uniform magnetic field in the direction of
axis of the colliding beams, taken to be the z-axis. Owing to the v × B Lorentz
force, the trajectory of a charged particle in the axial magnetic field is a helix with
a radius of curvature R and a pitch angle λ, which for a singly charged particle
(|q| = e) are related to its momentum by

p cos λ = 0.3 BR,

where the momentum p is given in GeV/c, B is the magnetic flux density in tesla
and R is in metres. Hence by determining the parameters of the helical trajectory
from the measured hits in the tracking detectors, R and λ can be obtained and thus
the momentum of the particle can be reconstructed. For high-momentum particles,
the radius of curvature can be large. For example, the radius of curvature of a
100 GeV π± in the 4 T magnetic field of the super-conductor solenoid of the CMS
experiment is R∼ 100 m. Even though such charged particle tracks appear almost
straight, the small deflection is easily measured using the precise space-points from
the silicon strip detectors.

Scintillation detectors
Organic scintillators are used extensively in modern particle physics experiments
as a cost effective way to detect the passage of charged particles where precise
spatial information is not required. In particular, detectors based on plastic and
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liquid scintillators have been used in a number of recent neutrino experiments. In an
organic scintillator, the passage of a charged particle leaves some of the molecules
in an excited state. In a scintillator, the subsequent decay of the excited state results
in the emission of light in the ultraviolet (UV) region. By adding fluorescent dyes
to the scintillator, the molecules of the dye absorb the UV light and re-emit it as
photons in the blue region. The blue light can be detected by using photomultiplier
devices which are capable of detecting single optical photons.

Čerenkov radiation
Charged particles can also be detected through their emission of Čerenkov radia-
tion. When a charged particle traverses a dielectric medium of refractive index n it
polarises the molecules in the medium. After its passage, the molecules return to
the unpolarised state through the emission of photons. If the velocity of the particle
is greater than the speed of light in that medium, v> c/n, constructive interference
occurs and Čerenkov radiation is emitted as a coherent wavefront at a fixed angle
θ to the trajectory of the charged particle, analogous to the sonic boom produced
by supersonic aircraft. The angle at which the radiation is emitted is given by the
geometrical construction shown in Figure 1.15. In a time t, the particle travels a
distance βct. In this time the wavefront emitted at t= 0 has travelled a distance ct/n
and therefore the angle θ at which the radiation is produced is given by

cos θ =
1

nβ
.

The photons emitted as Čerenkov radiation can be detected using photo-multiplier
tubes (PMTs), capable of detecting a single photon with reasonable efficiency.
Čerenkov radiation can be used to detect relativistic particles in large volumes of
transparent liquid (for example water) as has been used extensively in the detection

bctq

Photons

Photons

ct /n

!Fig. 1.15 The geometry of the emission of Čerenkov radiation.
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of neutrinos. Furthermore, Čerenkov radiation is emitted only when β> 1/n. This
threshold behaviour can be utilised to aid the identification of particles of a given
momentum p; for a relativistic particle β= pc/E = p/(p2 +m2c2)1/2 and therefore
only particles with mass

mc < (n2 − 1)1/2p,

will produce Čerenkov radiation.

1.2.2 Interactions and detection of electrons and photons

At low energies, the energy loss of electrons is dominated by ionisation. How-
ever, for energies above a “critical energy” Ec, the main energy loss mechanism
is bremsstrahlung (German for braking radiation), whereby the electron radiates a
photon in the electrostatic field of a nucleus, as shown in Figure 1.16. The critical
energy is related to the charge Z of the nucleus and is approximately

Ec ∼
800
Z

MeV.

The electrons of interest in most particle physics experiments are in the multi-
GeV range, significantly above the critical energy, and therefore interact with mat-
ter primarily through bremsstrahlung. The bremsstrahlung process can occur for
all charged particles, but the rate is inversely proportional to the square of the
mass of the particle. Hence, for muons the rate of energy loss by bremsstrahlung
is suppressed by (me/mµ)2 relative to that for electrons. It is for this reason that
bremsstrahlung is the dominant energy-loss process for electrons, but ionisation
energy loss dominates for muons (except at very high energies, Eµ > 100 GeV,
where bremsstrahlung also contributes).

At low energies, photons interact in matter primarily by the photoelectric effect,
whereby the photon is absorbed by an atomic electron that is ejected from the
atom. At somewhat higher energies, Eγ ∼ 1 MeV, the Compton scattering process
γe−→ γe− becomes significant. At higher energies still, Eγ > 10 MeV, the interac-
tions of photons are dominated by e+e− pair production in the field of the nucleus,
as shown in Figure 1.16.
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!Fig. 1.16 The bremsstrahlung and e+e− pair-production processes. N is a nucleus of charge+Ze.
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The electromagnetic interactions of high energy electrons and photons in matter
are characterised by the radiation length X0. The radiation length is the average
distance over which the energy of an electron is reduced by bremsstrahlung by a
factor of 1/e. It is also approximately 7/9 of the mean free path of the e+e− pair-
production process for a high-energy photon. The radiation length is related to the
atomic number Z of the material, and can be approximated by the expression

X0 ≈
1

4αnZ2r2
e ln (287/Z1/2)

,

where n is the number density of nuclei and re is the “classical radius of the elec-
tron” defined as

re =
e2

4πϵ0mec2 = 2.8 × 10−15 m.

For high-Z materials the radiation length is relatively short. For example, iron and
lead have radiation lengths of X0(Fe) = 1.76 cm and X0(Pb) = 0.56 cm.

Electromagnetic showers
When a high-energy electron interacts in a medium it radiates a bremsstrahlung
photon, which in turn produces an e+e− pair. The process of bremsstrahlung and
pair production continues to produce a cascade of photons, electrons and positrons,
referred to as an electromagnetic shower, as indicated in Figure 1.17. Similarly, the
primary interaction of a high-energy photon will produce an e+e− pair that will
then produce an electromagnetic shower.

The number of particles in an electromagnetic shower approximately doubles
after every radiation length of material traversed. Hence, in an electromagnetic
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!Fig. 1.17 The development of an electromagnetic shower where the number of particles roughly doubles after each
radiation length.
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shower produced by an electron or photon of energy E, the average energy of the
particles after x radiation lengths is

⟨E⟩ ≈ E
2x . (1.3)

The shower continues to develop until the average energy of the particles falls
below the critical energy Ec, at which point the electrons and positrons in the cas-
cade lose energy primarily by ionisation. The electromagnetic shower therefore
has the maximum number of particles after xmax radiation lengths, given by the
condition ⟨E⟩ ≈ Ec. From (1.3) it can be seen that this point is reached after

xmax =
ln (E/Ec)

ln 2
radiation lengths. In a high-Z material, such as lead with Ec ∼ 10 MeV, a 100 GeV
electromagnetic shower reaches is maximum after xmax ∼ 13 X0. This corresponds
to less than 10 cm of lead. Consequently, electromagnetic showers deposit most of
their energy in a relatively small region of space. The development of a shower
is a stochastic process consisting of a number of discrete interactions. However,
because of the large numbers of particles involved, which is of order 2xmax , the
fluctuations in the development of different electromagnetic showers with the same
energy are relatively small and individual electromagnetic showers of the same
energy are very much alike.

Electromagnetic calorimeters
In high-energy particle physics experiments, the energies of electrons and pho-
tons are measured using an electromagnetic calorimeter constructed from high-Z
materials. A number of different technologies can be used. For example, the elec-
tromagnetic calorimeter in the CMS detector at the LHC is constructed from an
array of 75 000 crystals made from lead tungstate (PbWO4), which is an inorganic
scintillator. The crystals are both optically transparent and have a short radiation
length X0 = 0.83 cm, allowing the electromagnetic showers to be contained in a
compact region. The electrons in the electromagnetic shower produce scintillation
light that can be collected and amplified by efficient photon detectors. The amount
of scintillation light produced is proportional to the total energy of the original elec-
tron/photon. Alternatively, electromagnetic calorimeters can be constructed from
alternating layers of a high-Z material, such as lead, and an active layer in which
the ionisation from the electrons in the electromagnetic shower can be measured.
For the electromagnetic calorimeters in large particle physics detectors, the energy
resolution for electrons and photons is typically in the range

σE

E
∼ 3% − 10%√

E/GeV
.
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1.2.3 Interactions and detection of hadrons

Charged hadrons (for example, protons and charged pions) lose energy continu-
ously by the ionisation process as they traverse matter. In addition, both charged
and neutral hadrons can undergo a strong interaction with a nucleus of the medium.
The particles produced in this primary hadronic interaction will subsequently inter-
act further downstream in the medium, giving rise to a cascade of particles. The
development of hadronic showers is parameterised by the nuclear interaction inter-
action length λI defined as the mean distance between hadronic interactions of
relativistic hadrons. The nuclear interaction length is significantly larger than the
radiation length. For example, for iron λI ≈ 17 cm, compared to its radiation length
of 1.8 cm.

Unlike electromagnetic showers, which develop in a uniform manner, hadronic
showers are inherently more variable because many different final states can be
produced in high-energy hadronic interactions. Furthermore, any π0s produced in
the hadronic shower decay essentially instantaneously by π0→ γγ, leading to an
electromagnetic component of the shower. The fraction of the energy in this elec-
tromagnetic component will depend on the number of π0s produced and will vary
from shower to shower. In addition, not all of the energy in a hadronic shower is
detectable; on average 30% of incident energy is effectively lost in the form of
nuclear excitation and break-up.

Hadron calorimeters
In particle detector systems, the energies of hadronic showers are measured in
a hadron calorimeter. Because of the relatively large distance between nuclear
interactions, hadronic showers occupy a significant volume in any detector. For
example, in a typical hadron calorimeter, the shower from a 100 GeV hadron has
longitudinal and lateral extents of order 2 m and 0.5 m respectively. Therefore a
hadron calorimeter necessarily occupies a large volume. A number of different
technologies have been used to construct hadron calorimeters. A commonly used
technique is to use a sandwich structure of thick layers of high-density absorber
material (in which the shower develops) and thin layers of active material where
the energy depositions from the charged particles in the shower are sampled. For
example, the hadron calorimeter in the ATLAS experiment at the LHC consists of
alternating layers of steel absorber and plastic scintillator tiles. The signals in the
different layers of the scintillator tiles are summed to give a measure of the energy
of the hadronic shower. Fluctuations in the electromagnetic fraction of the shower
and the amount of energy lost in nuclear break-up limits the precision to which the
energy can be measured to

σE

E
"

50%√
E/GeV

,
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which is roughly an order of magnitude worse than the energy resolution for elec-
tromagnetic showers.

1.3 Collider experiments

At a particle accelerator, the colliding beams produce individual interactions
referred to as events. The large particle physics detector systems use a wide range of
technologies to detect and measure the properties of the particles produced in these
high-energy collisions with the aim of reconstructing the primary particles pro-
duced in the interaction. In essence, one tries to go from the signals in the different
detector systems back to the Feynman diagram responsible for the interaction.

The basic structure of a modern particle physics detector is indicated in
Figure 1.18. In general, a detector consists of a cylindrical (or polygonal) barrel
part, with its axis parallel to the incoming colliding beams. The cylindrical struc-
ture is closed by two flat end caps, providing almost complete solid angle cov-
erage down to the beam pipe. The inner region of the detector is devoted to the
tracking of charged particles. The tracking volume is surrounded by an electro-
magnetic calorimeter (ECAL) for detecting electrons and photons. The relatively
large-volume hadronic calorimeter (HCAL) for detecting and measuring the ener-
gies of hadrons is located outside the ECAL. Dedicated detectors are positioned
at the outside of the experiment to record the signals from any high-energy muons
produced in the collisions, which are the only particles (apart from neutrinos) that
can penetrate through the HCAL. In order to be able to measure the momenta of

n

Muon detectorsHCAL ECAL Tracking detector

π+

µ+

e-

γ

ν

!Fig. 1.18 The typical layout of a large particle physics detector consisting of a tracking system (here shown with cylin-
drical layers of a silicon detector), an electromagnetic calorimeter (ECAL), a hadron calorimeter (HCAL) and
muon detectors. The solenoid used to produce the magnetic field is not shown. The typical signatures pro-
duced by different particles are shown.
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charged particles, a detector usually has a solenoid which produces a strong axial
magnetic field in the range B= 1−4 T. The solenoid may be located between the
tracking volume and the calorimeters.

The design of a collider experiment is optimised for the identification and energy
measurement of the particles produced in high-energy collisions. The momenta
of charged particles are obtained from the curvature of the reconstructed tracks.
The energies of neutral particles are obtained from the calorimeters. Particle iden-
tification is achieved by comparing the energy deposits in the different detector
systems as indicated in Figure 1.18. Photons appear as isolated energy deposits
in the ECAL. Electrons are identified as charged-particle tracks that are asso-
ciated with an electromagnetic shower in the ECAL. Neutral hadrons will usu-
ally interact in the HCAL and charged hadrons are identified as charged-particle
tracks associated with a small energy deposit in the ECAL (from ionisation energy
loss) and a large energy deposition in the HCAL. Finally, muons can be identi-
fied as charged-particle tracks associated with small energy depositions in both the
ECAL and HCAL and signals in the muon detectors on the outside of the detector
system.

Whilst neutrinos leave no signals in the detector, their presence often can be
inferred from the presence of missing momentum, which is defined as

pmis = −
∑

i

pi,

where the sum extends over the measured momenta of all the observed particles in
an event. If all the particles produced in the collision have been detected, this sum
should be zero (assuming the collision occurs in the centre-of-mass frame). Signif-
icant missing momentum is therefore indicative of the presence of an undetected
neutrino.

The ultimate aim in collider experiments is to reconstruct the fundamental par-
ticles produced in the interaction. Electrons, photons and muons give clear sig-
natures and are easily identified. Tau-leptons, which decay in 2.9× 10−13 s, have
to be identified from their observed decay products. The main tau-lepton decay
modes are τ−→ e−νeντ (17.8%), τ−→ µ−νµντ (17.4%), τ−→π−(nπ0)ντ (48%) and
τ−→π−π+π−(nπ0)ντ (15%). The hadronic decay modes typically lead to final
states with one or three charged pions and zero, one or two π0s which decay to
photons π0→ γγ. Tau-leptons can therefore be identified as narrowly collimated
jets of just a few particles and the presence of missing momentum in the event,
associated with the neutrino.

1.3.1 Detection of quarks

Owing to the nature of QCD, quarks are never observed as free particles, but are
always found confined within hadrons. However, in high-energy collisions it is
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!Fig. 1.19 An illustration of the appearance of a jet in a detector. In practice, the individual particles are not resolved.

quarks that are produced, not hadrons. For example, in the process e+e−→ qq the
two quarks will be produced flying apart at relativistic velocities. As a result of
the QCD interaction, the energy in the strong interaction field between the two
quarks is converted into further pairs of quarks and antiquarks through a process
call hadronisation (described in Chapter 10) that occurs over a distance scale of
10−15 m. As a result of hadronisation, each quark produced in a collision produces
a jet of hadrons, as indicated in Figure 1.19. Hence a quark is observed as an
energetic jet of particles. On average, approximately 60% of the energy in a jet is
in the form of charged particles (mostly π±), 30% of the energy is in the form
of photons from π0 → γγ decays, and 10% is in the form of neutral hadrons
(mostly neutrons and KLs). In high-energy jets, the separation between the indi-
vidual particles is typically smaller than the segmentation of the calorimeters and
not all of the particles in the jet can be resolved. Nevertheless, the energy and
momentum of the jet can be determined from the total energy deposited in the
calorimeters.

Tagging of b-quarks

In general, it is not possible to tell which flavour of quark was produced, or even
whether the jet originated from a quark or a gluon. However, if a b-quark is pro-
duced, the hadronisation process will create a jet of hadrons, one of which will
contain the b-quark, for example a B0(bd) meson. It turns out that b-quark hadrons
are relatively long-lived with lifetimes of order 1.5 × 10−12 s. When produced in
high-energy collisions, this relatively long lifetime, combined with the Lorentz
time-dilation factor, means that B hadrons travel on average a few millimetres
before decaying. The decays of B hadrons often produce more than one charged
particle. Because of the relatively large mass of the b-quark, the decay products can
be produced at a relatively large angle to the original b-quark direction. Therefore
the experimental signature for a b-quark is a jet of particles emerging from the point
of the collision (the primary vertex) and a secondary vertex from the b-quark decay,
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Primary vertex

Secondary vertex
B0 decay

Secondary vertex
     decay

~ 3 mm

B0

!Fig. 1.20 An illustration of the principle of b-quark tagging in a e+e− → Z→ bb event.

which is displaced from the primary vertex by several millimetres, as indicated in
Figure 1.20.

The identification of b-quark jets relies on the ability to resolve the secondary
vertices from the primary vertex. In practice, this is achieved by using high-
precision silicon microvertex detectors consisting of several concentric layers of
silicon at radii of a few centimetres from the axis of the colliding beams. Such
detectors can achieve a single hit resolution of O(10 µm), sufficient to be able to
identify and reconstruct the secondary vertices, even in a dense jet environment.
The ability to tag b-quarks has played an important role in a number of recent
experiments.

1.4 Measurements at particle accelerators

With the exception of the measurements of the properties of the neutrino, most of
the recent breakthroughs in particle physics have come from experiments at high-
energy particle accelerators. Particle accelerators can be divided into two types:
(i) colliding beam machines where two beams of accelerated particles are brought
into collision; and (ii) fixed-target experiments where a single beam is fired at a
stationary target. In order to produce massive particles, such as the W±, Z and
H bosons, high energies are required. More precisely, the energy available in the
centre-of-mass frame has to be greater than the sum of the masses of the particles
being produced. The centre-of-mass energy

√
s is given by the square root of the

Lorentz invariant quantity s formed from the total energy and momentum of the
two initial-state particles, which in natural units with c = 1 is

s =

⎛
⎜⎜⎜⎜⎜⎜⎝

2∑

i=1

Ei

⎞
⎟⎟⎟⎟⎟⎟⎠

2

−
⎛
⎜⎜⎜⎜⎜⎜⎝

2∑

i=1

pi

⎞
⎟⎟⎟⎟⎟⎟⎠

2

.

In a fixed-target experiment, momentum conservation implies that the final-state
particles are always produced with significant kinetic energy and much of the initial
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Table 1.4 The basic parameters of the recent particle accelerators. At the time of writing the LHC was
operating at

√
s = 8 TeV.

Collider Laboratory Type Date
√

s/GeV Luminosity/cm−2s−1

PEP-II SLAC e+e− 1999–2008 10.5 1.2 × 1034

KEKB KEK e+e− 1999–2010 10.6 2.1 × 1034

LEP CERN e+e− 1989–2000 90–209 1032

HERA DESY e−p/ e+p 1992–2007 320 8 × 1031

Tevatron Fermilab pp 1987–2012 1960 4 × 1032

LHC CERN pp 2009– 14 000 1034

energy is effectively wasted. For example, if an E = 7 TeV proton collides with a
proton at rest,

s = (E + mp)2 − p2 = 2m2
p + 2mpE ≈ 2mpE,

giving a centre-of-mass energy of just 115 GeV. Colliding beam machines have
the advantage that they can achieve much higher centre-of-mass energies since the
collision occurs in the centre-of-mass frame. For example, the LHC will ultimately
collide two beams of 7 TeV protons giving a centre-of-mass energy of 14 TeV. For
this reason, almost all high-energy particle physics experiments are based on large
particle colliders.

Only charged stable particles can be accelerated to high energies, and therefore
the possible types of accelerator are restricted to e+e− colliders, hadron colliders
(pp or pp) and electron–proton colliders (e−p or e+p). The most recent examples
have been the Tevatron pp collider, the LHC pp collider, the LEP e+e− collider, the
PEP-II and KEKB e+e− b-factories, and the HERA electron–proton collider. The
main parameters of these machines are summarised in Table 1.4. The two most
important features of an accelerator are its centre-of-mass energy, which deter-
mines the types of particles that can be studied/discovered, and its instantaneous
luminosity L, which determines the event rates. For a given process, the number
of interactions is the product of the luminosity integrated over the lifetime of the
operation of the machine and the cross section for the process in question,

N = σ
∫
L(t) dt. (1.4)

The cross section (defined in Chapter 3) is a measure of quantum mechanical prob-
ability for the interaction. It depends on the fundamental physics involved in the
Feynman diagram(s) contributing to the process.

In order to convert the observed numbers of events of a particular type to the
cross section for the process, the integrated luminosity needs to be known. In prin-
ciple, this can be calculated from the knowledge of the parameters of the colliding
beams. Typically, the particles in an accelerator are grouped into bunches that are
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brought into collision at one or more interaction points where the detectors are
located. In the case of the LHC, the bunches are separated by 25 ns, correspond-
ing to a collision frequency of f = 40 MHz. The instantaneous luminosity of the
machine can be expressed in terms of the numbers of particles in the colliding
bunches, n1 and n2, the frequency at which the bunches collide, and the root-
mean-square (rms) horizontal and vertical beam sizes σx and σy. Assuming that
the beams have a Gaussian profile and collide head-on, the instantaneous luminos-
ity is given by

L = f
n1n2

4πσxσy
. (1.5)

In practice, the exact properties of the colliding beams, such as the transverse pro-
files, are not known precisely and it is not possible to accurately calculate the
instantaneous luminosity. For this reason, cross section measurements are almost
always made with reference to a process where the cross section is already known.
Hence, a cross section measurement is performed by counting the number of events
of interest N, and the number of observed events for the reference process Nref ,
such that the measured cross section is given by

σ = σref
N

Nref
.

Corrections may needed to account for the detection efficiency and possible sources
of background events. Nevertheless, ultimately many experimental particle physics
measurements reduce to counting events, where the event type is identified using
the experimental techniques described in Section 1.3. Of course, this is not always
quite as easy as it sounds.

Summary

The intention of this chapter was to introduce some of the basic ideas of particle
physics. At this point you should be familiar with the types of particles and forces in
the Standard Model and you should have a qualitative understanding of how to use
the Standard Model vertices associated with the electromagnetic, strong and weak
interactions to construct Feynman diagrams for particle interactions and decays.
The second part of the chapter introduced the experimental techniques of particle
physics and is intended to provide the context for the experimental measurements
used to demonstrate the theoretical ideas developed in the following chapters. At
this point you should understand how the different particles appear in the large
detector systems employed in collider experiments.
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Problems

1.1 Feynman diagrams are constructed out of the Standard Model vertices shown in Figure 1.4. Only the weak
charged-current (W±) interaction can change the flavour of the particle at the interaction vertex. Explaining
your reasoning, state whether each of the sixteen diagrams below represents a valid Standard Model
vertex.

(a)

γ

(b)

γ

(c)

γ

(d)

Z
(e) µ-

γ

(f)

W

(g)

Z

(h) e-

W
(i)

g

(j) b b

g

(k) d s

g

(l) γ γ

γ
(m) u u

W

(n) u d

W

(o) d t

W

(p)

γ γ

e-

e- e- e-

e- e-

τ-

e- e+

e- e-

e- νe νe νeνe

νe νµ

1.2 Draw the Feynman diagram for τ− → π−ντ (theπ− is the lightest du meson).

1.3 Explain why it is not possible to construct a valid Feynman diagram using the Standard Model vertices for the
following processes:

(a) µ− → e+e−e+,
(b) ντ + p→ µ− + n,
(c) ντ + p→ τ+ + n,
(d) π+(ud) + π−(du)→ n(udd) + π0(uu).

1.4 Draw the Feynman diagrams for the decays:

(a) ∆+(uud)→ n(udd)π+(ud),
(b) Σ0(uds)→ Λ(uds) γ,
(c) π+(ud)→ µ+νµ,

and place them in order of increasing lifetime.

1.5 Treating theπ0 as a uu bound state, draw the Feynman diagrams for:

(a) π0 → γγ,
(b) π0 → γe+e−,
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(c) π0 → e+e−e+e−,
(d) π0 → e+e−.

By considering the number of QED vertices present in each decay, estimate the relative decay rates taking
α = 1/137.

1.6 Particle interactions fall into two main categories, scattering processes and annihilation processes, as indicated
by the Feynman diagrams below.

Draw the lowest-order Feynman diagrams for the scattering and/or annihilation processes:

(a) e−e− → e−e−,
(b) e+e− → µ+µ−,
(c) e+e− → e+e−,
(d) e−νe → e−νe,
(e) e−νe → e−νe.

In some cases there may be more than one lowest-order diagram.

1.7 High-energy muons traversing matter lose energy according to

− 1
ρ

dE
dx
≈ a + bE,

where a is due to ionisation energy loss and b is due to the bremsstrahlung and e+e− pair-production pro-
cesses. For standard rock, taken to have A= 22, Z = 11 and ρ= 2.65 g cm−3, the parameters a and b depend
only weakly on the muon energy and have values a≈ 2.5 MeV g−1 cm2 and b≈ 3.5× 10−6 g−1 cm2.

(a) At what muon energy are the ionisation and bremsstrahlung/pair production processes equally important?
(b) Approximately how far does a 100 GeV cosmic-ray muon propagate in rock?

1.8 Tungsten has a radiation length of X0 = 0.35 cm and a critical energy of Ec = 7.97 MeV. Roughly what thickness
of tungsten is required to fully contain a 500 GeV electromagnetic shower from an electron?

1.9 The CPLEAR detector (see Section 14.5.2) consisted of: tracking detectors in a magnetic field of 0.44 T; an
electromagnetic calorimeter; and Čerenkov detectors with a radiator of refractive index n= 1.25 used to
distinguishπ± from K±.

A charged particle travelling perpendicular to the direction of the magnetic field leaves a track with a mea-
sured radius of curvature of R= 4 m. If it is observed to give a Čerenkov signal, is it possible to distinguish
between the particle being a pion or kaon? Take mπ ≈ 140 MeV/c2 and mK = 494 MeV/c2.

1.10 In a fixed-target pp experiment, what proton energy would be required to achieve the same centre-of-mass
energy as the LHC, which will ultimately operate at 14 TeV.

1.11 At the LEP e+e− collider, which had a circumference of 27 km, the electron and positron beam currents were both
1.0 mA. Each beam consisted of four equally spaced bunches of electrons/positrons. The bunches had an effec-
tive area of 1.8× 104 µm2. Calculate the instantaneous luminosity on the assumption that the beams collided
head-on.
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Much of particle physics is concerned with the high-energy interactions of
relativistic particles. Therefore the calculation of interaction and decay rates
requires a relativistic formulation of quantum mechanics. Relativistic quan-
tum mechanics (RQM) is founded on the two pillars of “modern” physics,
Einstein’s theory of special relativity and the wave mechanics developed in
the early part of the twentieth century. It is assumed that you are already
familiar with special relativity and non-relativistic quantum mechanics. The
purpose of this chapter is to review the specific aspects of special relativity
and quantum mechanics used in the subsequent development of relativistic
quantum mechanics. Before discussing these important topics, the system of
units commonly used in particle physics is introduced.

2.1 Units in particle physics

The system of S.I. units [kg, m, s] forms a natural basis for the measurements of
mass, length and time for everyday objects and macroscopic phenomena. However,
it is not a natural choice for the description of the properties of particles, where
we are almost always dealing with very small quantities, such as the mass of the
electron, which in S.I. units is 9.1× 10−31 kg. One way to avoid carrying around
large exponents is to use S.I. based units. For example, interaction cross sections
(which have the dimension of area) are usually quoted in barns, where

1 barn ≡ 10−28 m2.

The cross sections for the more interesting physical processes at the highest
energies are typically in the picobarn (pb) to femtobarn (fb) range, where 1 pb =
10−12 barn and 1 fb = 10−15 barn. The use of derived S.I. units solves the problem
of large exponents, nevertheless, it is more convenient to work with a system of
units that from the outset reflects the natural length and time scales encountered in
particle physics.

30
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2.1.1 Natural units

The system of units used in particle physics is known as natural units. It is based on
the fundamental constants of quantum mechanics and special relativity. In natural
units, [kg, m, s] are replaced by [!, c,GeV], where ! = 1.055 × 10−34 J s is the unit
of action in quantum mechanics, c= 2.998 × 108 m s−1 is the speed of light in vac-
uum, and 1 GeV= 109 eV= 1.602× 10−10 J, which is very approximately the rest
mass energy of the proton. Table 2.1 lists the units used for a number of commonly
encountered quantities expressed in terms of both [kg, m, s] and [!, c,GeV], where
the conversion can be obtained from dimensional analysis.

Natural units provide a well-motived basis for expressing quantities in particle
physics and can be simplified by choosing

! = c = 1.

In this way, all quantities are expressed in powers of GeV, as shown in the rightmost
column of Table 2.1. Setting ! = c = 1 has the advantage of simplifying algebraic
expressions as there is no longer the need to carry around (possibly large) powers
of ! and c. For example, the Einstein energy–momentum relation

E2 = p2c2 + m2c4 becomes E2 = p2 + m2.

At first sight it might appear that information has been lost in setting ! = c = 1.
However, the factors of ! and c have not simply vanished; they are still present in
the dimensions of quantities. The conversion back to S.I. units is simply a question
of reinserting the necessary missing factors of ! and c, which can be identified from
dimensional analysis. For example, the result of a calculation using natural units
might determine the root-mean-square charge radius of the proton to be

⟨r2⟩1/2 = 4.1 GeV−1.

Table 2.1 Relationship between S.I. and natural units.

Quantity [kg, m, s] [!, c, GeV] ! = c = 1
Energy kg m2 s−2 GeV GeV
Momentum kg m s−1 GeV/c GeV
Mass kg GeV/c2 GeV
Time s (GeV/!)−1 GeV−1

Length m (GeV/!c)−1 GeV−1

Area m2 (GeV/!c)−2 GeV−2
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To convert this to back into S.I. units the correct dimensions are obtained by mul-
tiplying by !c, giving

⟨r2⟩1/2 = 4.1 × 1.055 × 10−34 × 2.998 × 108

1.602 × 10−10 m

= 4.1 × (0.197 × 10−15) m = 0.8 × 10−15 m.

In converting from natural units to S.I. units, it is useful to remember the conversion
factor

!c = 0.197 GeV fm,

where one femtometre (fm) = 10−15 m.

Heaviside–Lorentz units
The equations of classical electromagnetism can be simplified by adopting
Heaviside–Lorentz units. The value of the electron charge is defined by the magni-
tude of the Coulomb force between two electrons separated by a distance r,

F =
e2

4πε0 r2 ,

where ε0 is the permittivity of free space. In Heaviside–Lorentz units ε0 is set to
unity, and the expression for the Coulomb force becomes

F =
e2

4πr2 .

Effectively ε0 has been absorbed into the definition of the electron charge. Because
1/(ε0µ0)= c2, choosing ε0 = 1 and c= 1 implies that the permeability of free space
µ0 = 1. Hence, in the combined system of natural units and Heaviside–Lorentz units
used in particle physics,

! = c = ε0 = µ0 = 1.

With c = ε = µ0 = 1, Maxwell’s equations take the same form as with S.I. units.
The strength of the QED interaction is defined in terms of the dimensionless fine

structure constant,

α =
e2

4πε0!c
. (2.1)

Since α is dimensionless, it has the same numerical value regardless of the system
of units used,

α ≈ 1
137
.
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In natural units, the relationship between α and the electron charge (which is not
dimensionless) is simply

α =
e2

4π
≈ 1

137
.

2.2 Special relativity

This section gives a brief overview of the basic concepts of special relativity, with
the emphasis on the definition and application of four-vectors and the concept of
Lorentz invariance and Lorentz invariant quantities.

2.2.1 The Lorentz transformation

Special relativity is based on the space-time transformation properties of physical
observables as measured in two or more inertial frames moving relative to each
other. For example, Figure 2.1 shows a space-time event that occurs at (t, r) in the
inertial frame Σ and at (t′, r′) in the inertial frame Σ′ that is moving with a velocity
v in the z-direction relative to the frame Σ. For the case where v≪ c and the origins
of two inertial frames coincide at t = t′ = 0, the two sets of coordinates are related
by the Galilean transformation

t′ = t, x′ = x, y′ = y and z′ = z − vt.

Einstein postulated that the speed of light in the vacuum is the same in all inertial
frames. This primary postulate of special relativity implies that a space-time point
on the wavefront of a pulse of light emitted at t = t′ = 0 satisfies both x2+y2+ z2 =

c2t2 and x′2 + y′2 + z′2 = c2t′2. Consequently the space-time interval,

c2t2 − x2 − y2 − z2 = c2t′2 − x′2 − y′2 − z′2, (2.2)

y y!

z!z

r!

v
(t, r)

(t!, r!)r

Σ Σ!

!Fig. 2.1 A space-time event as seen into two inertial frames. The frameΣ′ moves with a velocity v in the z direction
relative to frameΣ.
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is an invariant quantity; it is observed to be the same in all reference frames. Equa-
tion (2.2) is satisfied if the coordinates in Σ and Σ′ are related by the Lorentz trans-
formation

t′ = γ
(
t − v

c2 z
)
, x′ = x, y′ = y and z′ = γ(z − vt),

where the Lorentz factor γ is given by

γ = (1 − β2)−
1
2 ,

and β= v/c. In the low velocity limit v≪ c, the Lorentz factor reduces to unity
and the Galilean transformations are recovered. In natural units, where c= 1, the
Lorentz transformation of the space-time coordinates becomes

t′ = γ (t − βz) , x′ = x, y′ = y and z′ = γ(z − βt). (2.3)

This can be written in matrix form as X′ = ΛX,
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t′

x′

y′

z′

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ 0 0 −γβ
0 1 0 0
0 0 1 0
−γβ 0 0 γ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t
x
y
z

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (2.4)

where X is the four-component vector {t, x}. The inverse Lorentz transformation,
from Σ′ to Σ, is obtained by reversing the sign of the velocity in (2.3) such that

t = γ
(
t′ + βz′

)
, x = x′, y = y′ and z = γ(z′ + βt′). (2.5)

In matrix form this can be written X = Λ−1X′,
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t
x
y
z

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ 0 0 +γβ
0 1 0 0
0 0 1 0
+γβ 0 0 γ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t′

x′

y′

z′

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (2.6)

It is straightforward to confirm that the matrices appearing in (2.4) and (2.6) are
the inverse of each other, ΛΛ−1 = I. The matrix equations of (2.4) and (2.6) define
the Lorentz transformation between the space-time coordinates measured in two
inertial frames with relative motion in the z-direction.

2.2.2 Four-vectors and Lorentz invariance

Throughout particle physics it is highly desirable to express physical predictions,
such as interaction cross sections and decay rates, in an explicitly Lorentz-invariant
form that can be applied directly in all inertial frames. Although the Lorentz trans-
formation forms the basis of special relativity, Lorentz invariance is the more impor-
tant concept for much that follows. Lorentz invariance is best expressed in terms
of four-vectors. A contravariant four-vector is defined to be a set of quantities that
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when measured in two inertial frames are related by the Lorentz transformation of
(2.4). For example, the contravariant four-vector x µ is defined as

x µ = (t, x, y, z),

where the indices µ= {0, 1, 2, 3} label the space-time coordinates with the zeroth
component representing time. In tensor form, the Lorentz transformation of (2.4)
now can be expressed as

x′µ = Λµνxν, (2.7)

where Λµν can be thought of as the elements of the matrix Λ and Einstein’s sum-
mation convention for repeated indices is used to express the matrix multiplication.

The magnitude of a normal three-vector, which is given by the three-vector scalar
product x · x, is invariant under rotations. The Lorentz invariance of the space-time
interval, t2−x2−y2−z2, can be expressed as a four-vector scalar product by defining
the covariant space-time four-vector,

xµ = (t,−x,−y,−z).

With this notation, the Lorentz-invariant space-time interval can be written as the
four-vector scalar product

x µxµ = x0x0 + x1x1 + x2x2 + x3x3 = t2 − x2 − y2 − z2.

The main reason for introducing covariant four-vectors, which are denoted with a
“downstairs” index to distinguish them from the corresponding contravariant four-
vectors, is to keep account of the minus signs in Lorentz-invariant products. The
Lorentz transformation of the space-time coordinates (2.3) can be written in terms
of the components of the covariant four-vector as

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t′

−x′

−y′
−z′

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ 0 0 +γβ
0 1 0 0
0 0 1 0
+γβ 0 0 γ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t
−x
−y
−z

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (2.8)

The sign changes in this matrix relative to that of (2.4) compensate for the changes
of sign in the definition of xµ relative to x µ. Both (2.8) and (2.4) are equivalent
expressions of the same Lorentz transformation originally defined in (2.3). The
transformation matrix appearing in (2.8) is the inverse of that of (2.4). To make
this distinction explicit in tensor notation the transformation of a covariant four-
vector is written as

x′µ = Λµ
νxν, (2.9)

where the downstairs index appears first in Λµν which represents the elements
of Λ−1.
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In tensor notation, the relationship between covariant and contravariant four-
vectors in special relativity can be expressed as

xµ = gµνxν,

where summation over repeated indices is again implicit and the diagonal metric
tensor gµν is defined as

gµν ≡

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (2.10)

By definition, only quantities with the Lorentz transformation properties of (2.4)
are written as contravariant four-vectors. For such a set of quantities a µ the scalar
product with the corresponding covariant four-vector aµ is guaranteed to be Lorentz
invariant. Furthermore, if a µ and b µ are both (contravariant) four-vectors, then the
scalar product

a µbµ = aµb µ = gµνa µbν,

is automatically Lorentz invariant. Again this follows directly from the form of
the Lorentz transformation for contravariant and covariant four-vectors. Hence any
expression that can be written in terms of four-vector scalar products is guaranteed
to be Lorentz invariant. From the linearity of the Lorentz transformation, it also
follows that the sum of any number of contravariant four-vectors also transforms
according to (2.4) and therefore is itself a four-vector.

Four-momentum
The relativistic expressions for the energy and momentum of a particle of mass m
can be identified as E = γmc2 and p = γmv, which when expressed in natural units
are

E = γm and p = γmβ. (2.11)

By considering the transformation properties of velocity, dx/dt, it can be shown
that relativistic energy and momentum, defined in this way, transform according to
(2.4) and therefore form a contravariant four-vector,

p µ = (E, px, py, pz),

referred to as four-momentum. Because momentum and energy are separately con-
served, four-momentum is also conserved. Furthermore, since four-momentum is
a four-vector, the scalar product

p µpµ = E2 − p2,

is a Lorentz-invariant quantity.
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From (2.11) it can be seen that a single particle at rest has four-momentum p µ =
(m, 0, 0, 0) and therefore p µpµ = m2. Since p µpµ is Lorentz invariant, the relation

E2 − p2 = m2

holds in all inertial frames. This is, of course, just the Einstein energy–momentum
relationship. For a system of n particles, the total energy and momentum

p µ =
n∑

i=1

p µi

is also a four-vector. Therefore for a system of particles the quantity

p µpµ =

⎛
⎜⎜⎜⎜⎜⎝

n∑

i=1

Ei

⎞
⎟⎟⎟⎟⎟⎠

2

−
⎛
⎜⎜⎜⎜⎜⎝

n∑

i=1

pi

⎞
⎟⎟⎟⎟⎟⎠

2

is a Lorentz-invariant quantity, which gives the squared invariant mass of the sys-
tem. In a particle decay a→ 1+2, the invariant mass of the decay products is equal
to the mass of the decaying particle,

(p1 + p2) µ(p1 + p2)µ = p µa paµ = m2
a.

Four-derivative
The transformation properties of the space-time derivatives can be found by using
the Lorentz transformation of (2.3) to express the coordinates of an event in the
frame Σ′ as functions of the coordinates measured in the frame Σ, for example
z′(t, x, y, z) and t′(t, x, y, z). Hence, for a Lorentz transformation in the z-direction,
the derivatives in the primed-frame can be expressed as

∂

∂z′
=

(
∂z
∂z′

)
∂

∂z
+

(
∂t
∂z′

)
∂

∂t
and

∂

∂t′
=

(
∂z
∂t′

)
∂

∂z
+

(
∂t
∂t′

)
∂

∂t
.

From (2.5), the relevant partial derivatives are
(
∂z
∂z′

)
= γ,

(
∂t
∂z′

)
= +γβ,

(
∂z
∂t′

)
= +γβ and

(
∂t
∂t′

)
= γ,

and therefore,

∂

∂z′
= γ

∂

∂z
+ γβ

∂

∂t
and

∂

∂t′
= γβ

∂

∂z
+ γ

∂

∂t
. (2.12)

From (2.12) it can be seen that Lorentz transformation properties of the partial
derivatives are

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂/∂t′

∂/∂x′

∂/∂y′

∂/∂z′

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ 0 0 +γβ
0 1 0 0
0 0 1 0
+γβ 0 0 γ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂/∂t
∂/∂x
∂/∂y
∂/∂z

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,
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and comparison with (2.8) shows that
(
∂

∂t
,
∂

∂x
,
∂

∂y
,
∂

∂z

)

transforms as a covariant four-vector, which is written as

∂µ =
∂

∂x µ
,

and has components

∂0 =
∂

∂t
, ∂1 = +

∂

∂x
, ∂2 = +

∂

∂y
and ∂3 = +

∂

∂z
.

The corresponding contravariant four-derivative is therefore

∂ µ =

(
∂

∂t
,− ∂
∂x
,− ∂
∂y
,− ∂
∂z

)
,

and it should be noted that here the space-like coordinates enter with minus signs.
The equivalent of the Laplacian for the four-derivative, which is known as the
d’Alembertian, is therefore

= ∂ µ∂µ =
∂2

∂t2 −
∂2

∂x2 −
∂2

∂y2
− ∂2

∂z2 .

In this book the symbol is used to represent the d’Alembertian, in some text-
books you may see it written as 2.

Vector and four-vector notation
This is a convenient place to introduce the notation used in this book. Unless oth-
erwise stated, quantities written simply as x and p always should be interpreted as
four-vectors. Three-vectors, such as the three-momentum of a particle, are always
written in boldface, for example p, with three-vector scalar products written as

p1 · p2.

The magnitude of a three-vector is written either as |p| or simply p. Four-vector
scalar products are written either as a µbµ or a·b, with

a·b ≡ a µbµ ≡ gµνa µbν = a0b0 − a1b1 − a2b2 − a3b3.

Just as p2 is shorthand for p · p, then for a four-vector a, the expression a2 is short-
hand for the four-vector scalar product a · a. For example, the Einstein energy–
momentum relationship for a single particle can be expressed as p2 =m2, since
p2 = p·p= E2 −p2. Finally, it will sometimes be convenient to work with quantities
measured in the centre-of-mass frame of a system of particles, and such quantities
are denoted by a star. For example, p∗ is the magnitude of the three-momentum of
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a particle evaluated in the centre-of-mass frame, which for a system of particles is
the inertial frame in which there is no net three-momentum.

2.2.3 Mandelstam variables

Feynman diagrams, involving the exchange of a single force mediating particle,
can be placed in the three categories shown in Figure 2.2. The first two diagrams
represent the s-channel annihilation process and the t-channel scattering process.
The third diagram represents u-channel scattering and is only relevant when there
are identical particles in the final state. In Chapter 5 it will be shown that four-
momentum is conserved at each vertex in a Feynman diagram. In a process involv-
ing two initial-state and two final-state particles, the Mandelstam variables

s = (p1 + p2)2 = (p3 + p4)2,

t = (p1 − p3)2 = (p2 − p4)2,

u = (p1 − p4)2 = (p2 − p3)2,

are equivalent to the four-momentum squared q2 of the exchanged boson in the
respective class of diagram. For identical final-state particles the distinction
between u- and t-channel diagrams is necessary because the final-state particle
with four-momentum p3 can originate from either interaction vertex, and the four-
momentum q of the virtual particle is different for the two cases.

Since the Mandelstam variables are four-vector scalar products, they are man-
ifestly Lorentz invariant and can be evaluated in any frame. For example, in the
centre-of-mass frame where there is no net momentum, the four-momenta of two
colliding particles are p1 = (E∗1,p

∗) and p2 = (E∗2,−p∗), from which

s = (p1 + p2)2 = (E∗1 + E∗2)2 − (p∗ − p∗)2 = (E∗1 + E∗2)2. (2.13)

Hence, the Lorentz-invariant quantity
√

s can be identified as the total energy
available in the centre-of-mass frame. It is worth noting that for the process

p1 p1
p1

p4

p3
p3

p2

p2 p2

q

p3

p4
p4

q q

!Fig. 2.2 The Feynman diagrams for s-channel, t-channel and u-channel processes. The u-channel diagram applies
only when there are identical particles in the final state.
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1+ 2→ 3+ 4, the sum of s+ u+ t can be shown to be equal to the sum of the
squares of the masses of the four particles (see Problem 2.12),

s + u + t = m2
1 + m2

2 + m2
3 + m2

4. (2.14)

2.3 Non-relativistic quantum mechanics

This section gives a brief overview of topics in non-relativistic quantum mechanics
which are of direct relevance to the development of the relativistic treatment of
spin-half particles in Chapter 4. It also reviews of the algebraic treatment of angular
momentum that serves as an introduction to the algebra of the SU(2) symmetry
group.

2.3.1 Wave mechanics and the Schrödinger equation

In quantum mechanics it is postulated that free particles are described by wave
packets which can be decomposed into a Fourier integral of plane waves of the
form

ψ(x, t) ∝ exp{i(k · x − ωt)}. (2.15)

Following the de Broglie hypothesis for wave–particle duality, the wavelength of
a particle in quantum mechanics can be related to its momentum by λ= h/p, or
equivalently, the wave vector k is given by k=p/!. The angular frequency of the
plane wave describing a particle is given by the Planck–Einstein postulate, E = !ω.
In natural units with ! = 1, the de Broglie hypothesis and Planck–Einstein postulate
imply k = p and ω = E, and thus the plane wave of (2.15) becomes

ψ(x, t) = N exp{i(p · x − Et)}, (2.16)

where N is the normalisation constant.
In classical physics, the energy and momentum of a particle are dynamical vari-

ables represented by time-dependent real numbers. In the Schrödinger picture of
quantum mechanics, the wavefunction is postulated to contain all the informa-
tion about a particular state. Dynamical variables of a quantum state, such as
the energy and momentum, are obtained from the wavefunction. Consequently,
in the Schrödinger picture of quantum mechanics, the time-dependent variables
of classical dynamics are replaced by time-independent operators acting on the
time-dependent wavefunction. Because the wavefunction is postulated to contain
all the information about a system, a physical observable quantity A corresponds
to the action of a quantum mechanical operator Â on the wavefunction. A further
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postulate of quantum mechanics is that the result of the measurement of the observ-
able A will be one of the eigenvalues of the operator equation

Âψ = aψ.

For A to correspond to a physical observable, the eigenvalues of the corresponding
operator must be real, which implies that the operator is Hermitian. This is formally
defined by the requirement

∫
ψ∗1Âψ2 dτ =

∫ [
Âψ1

]∗
ψ2 dτ.

Because the plane wave of (2.16) is intended to represent a free particle with energy
E and momentum p, it is reasonable to identify the momentum and energy opera-
tors, p̂ and Ê, as

p̂ = −i∇ and Ê = i
∂

∂t
, (2.17)

such that p̂ and Ê acting on the plane wave of (2.16) give the required eigenvalues,

p̂ψ = −i∇ψ = pψ,

Êψ = i
∂ψ

∂t
= Eψ.

In classical dynamics, the total energy of a non-relativistic particle can be
expressed as the sum of its kinetic and potential energy terms,

E = H = T + V =
p2

2m
+ V,

where H = T + V is the Hamiltonian. The equivalent quantum mechanical expres-
sion is obtained by replacing each of the terms with the corresponding operators
defined in (2.17) acting on the wavefunction. This gives rise to the time-dependent
Schrödinger equation,

i
∂ψ(x, t)
∂t

= Ĥψ(x, t), (2.18)

where, for a non-relativistic particle, the Hamiltonian operator is

ĤNR =
p̂2

2m
+ V̂ = − 1

2m
∇2 + V̂ . (2.19)

For a one-dimensional system (2.18) and (2.19) reduce to the familiar one-
dimensional time-dependent Schrödinger equation,

i
∂ψ(x, t)
∂t

= − 1
2m

∂2ψ(x, t)
∂x2 + V̂ψ(x, t).
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2.3.2 Probability density and probability current

The physical interpretation of the wavefunction ψ(x, t) is that ψ∗ψ d3x is the proba-
bility of finding the particle represented by the wavefunction in the volume element
d3x. This is equivalent to identifying the probability density ρ(x, t) as

ρ(x, t) = ψ∗(x, t)ψ(x, t).

Assuming the particle does not decay or interact, its associated total probability
will be constant. This conservation of probability can be expressed in terms of a
continuity equation by defining the probability current density (sometimes referred
to as the probability flux density), denoted j(x, t), such that the flux of probability
across an elemental surface dS is given by j · dS. The rate of change of the total
probability contained within a volume V , shown in Figure 2.3, is related to the net
flux leaving the surface by

∂

∂t

∫

V
ρ dV = −

∫

S
j · dS.

Using the divergence theorem this can be written as

∂

∂t

∫

V
ρ dV = −

∫

V
∇ · j dV.

Because this holds for an arbitrary volume, the continuity equation for the conser-
vation of quantum mechanical probability can be written

∇ · j + ∂ρ
∂t
= 0. (2.20)

In non-relativistic quantum mechanics, the expression for the probability current
can be obtained from the free particle time-dependent Schrödinger equation,

i
∂ψ

∂t
= − 1

2m
∇2ψ, (2.21)

and the corresponding equation for the complex conjugate of ψ,

−i
∂ψ∗

∂t
= − 1

2m
∇2ψ∗. (2.22)

V

dS

j(x, t )!Fig. 2.3 The net flux of probability leaving a volume V.
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Taking ψ∗ × (2.21) − ψ × (2.22) then gives

− 1
2m

(
ψ∗∇2ψ − ψ∇2ψ∗

)
= i

(
ψ∗
∂ψ

∂t
+ ψ

∂ψ∗

∂t

)

⇒ − 1
2m
∇· (ψ∗∇ψ − ψ∇ψ∗) = i

∂

∂t
(ψ∗ψ) = i

∂ρ

∂t
. (2.23)

Comparing (2.23) with the general form of the continuity equation of (2.20) leads
to the identification of probability current as

j =
1

2im
(
ψ∗∇ψ − ψ∇ψ∗) . (2.24)

The plane wave

ψ(x, t) = Nei(p·x−Et),

is therefore associated with a constant probability density of ψψ∗ = |N|2 and can
be interpreted as representing a region of space with a number density of particles
n = |N|2. The corresponding expression for the probability current density of (2.24)
gives

j = |N|2 p
m
≡ nv,

where v is the (non-relativistic) velocity. Thus, the plane wave ψ(x, t) represents a
region of space with number density of n = |N|2 particles per unit volume moving
with velocity v, such that flux of particles passing through a unit area per unit time
is j = nv.

2.3.3 Time dependence and conserved quantities

The time evolution of a quantum mechanical state is given by the time-dependent
Schrödinger equation of (2.18). If ψi is an eigenstate of the Hamiltonian Ĥ with
energy Ei such that

Ĥψi(x, t) = Eiψi(x, t),

then, from (2.18), the time evolution of the wavefunction is given by

i
∂ψi(x, t)
∂t

= Eiψi(x, t).

Hence, the time dependence of an eigenstate of the Hamiltonian is given by

ψi(x, t) = φi(x)e−iEit. (2.25)
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For a system in a quantum mechanical state1 |ψ(x, t)⟩, the expectation value of
an operator Â is given by

⟨Â⟩ = ⟨ψ|Â|ψ⟩ =
∫

ψ†Âψ d3x,

where the complex conjugate used up to this point has been replaced by the
Hermitian conjugate, ψ† = (ψ∗)T . The time evolution of the expectation value ⟨Â⟩
can therefore be expressed as

d⟨Â⟩
dt
=

∫ [
∂ψ†

∂t
Âψ + ψ†Â

∂ψ

∂t

]
d3x, (2.26)

where it has been assumed that there is no explicit time dependence in the operator
itself, i.e. ∂Â/∂t = 0. The time derivatives in (2.26) can be expressed using (2.18)
and its Hermitian conjugate, giving

d⟨Â⟩
dt
=

∫ [{
1
i Ĥψ

}†
Âψ + ψ†Â

{
1
i Ĥψ

}]
d3x (2.27)

= i
∫ [

ψ†Ĥ†Âψ − ψ†ÂĤψ
]

d3x

= i
∫

ψ†(ĤÂ − ÂĤ)ψ d3x. (2.28)

The last step follows from the fact that the Hamiltonian is Hermitian (which must
be the case for it to have real eigenvalues). The relation of (2.28) implies that for
any state

d⟨Â⟩
dt
= i

〈
[Ĥ, Â]

〉
, (2.29)

where [Ĥ, Â]= ĤÂ− ÂĤ is the commutator of the Hamiltonian and the operator
Â. Hence, if the operator Â commutes with the Hamiltonian, the corresponding
observable A does not change with time and therefore corresponds to a conserved
quantity. Furthermore if ψi is an eigenstate of the Hamiltonian, then (2.27) imme-
diately reduces to

d⟨Â⟩
dt
=

∫ [
[iEiψ

†
i ]Âψi + ψ

†
i Â[−iEiψi]

]
d3x = 0.

Therefore, for an eigenstate of the Hamiltonian, the expectation value of any oper-
ator is constant. For this reason, the eigenstates of the Hamiltonian are known as
the stationary states of the system.

1 The wavefunction ψ has been replaced by the more general state |ψ⟩ written in Dirac ket notation
which may have a number of degrees of freedom, for example spin.
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In general, a state |ϕ⟩ can be expressed in terms of the complete set of states
formed from the eigenstates of the Hamiltonian |ψi⟩,

|ϕ⟩ =
∑

i

ci|ψi⟩,

and the time dependence of the system is determined by the evolution of the sta-
tionary states according to (2.25). If at time t= 0, a system is in the state |ϕ(x)⟩,
then the time evolution of the system is determined by the time evolution of the
component stationary states

|ϕ(x, t)⟩ =
∑

i

ci |φi(x)⟩e−iEit. (2.30)

This relationship between the time evolution of a state and the time dependence
of the stationary states will be used extensively in the discussion of neutrino and
strangeness oscillations in Chapters 13 and 14.

2.3.4 Commutation relations and compatible observables

The commutation relation between the operators for different observables deter-
mines whether they can be known simultaneously. Consider two observables cor-
responding to operators Â and B̂ which commute,

[Â, B̂] ≡ ÂB̂ − B̂Â = 0.

If |φ⟩ is an non-degenerate eigenstate of Â with eigenvalue a, such that

Â|φ⟩ = a|φ⟩,
then

ÂB̂ |φ⟩ = B̂Â |φ⟩ = aB̂ |φ⟩.
Therefore the state B̂ |φ⟩ is also an eigenstate of Â with eigenvalue a. For this to be
true, B̂ |φ⟩ ∝ |φ⟩, which implies that |φ⟩ satisfies

B̂|φ⟩ = b|φ⟩.
Hence |φ⟩ is a simultaneous eigenstate of both Â and B̂ and the state corresponds
to well-defined values of the two observables, a and b. The same conclusion is
obtained even if the states are degenerate. If Â and B̂ commute, the corresponding
observables are referred to as compatible. In general, a quantum mechanical state
can be labelled by the quantum numbers specifying the complete set of compatible
observables. In the above example |φ⟩ can be labelled by |a, b⟩. If there is a further
operator Ĉ that commutes with both Â and B̂, the state is labelled by the quantum
numbers |a, b, c⟩. In the quantum mechanical description of angular momentum,
described in Section 2.3.5, the states are labelled in terms of the eigenvalues of
angular momentum squared and the z-component of angular momentum, |ℓ,m⟩.
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Similar arguments can be applied to show that if Â and B̂ do not commute,

[Â, B̂] ≡ ÂB̂ − B̂Â ! 0,

then it is not in general possible to define a simultaneous eigenstate of the two
operators. In this case, it is not possible to know simultaneously the exact values
of the physical observables A and B and the limit to which A and B can be known
is given by the generalised uncertainty principle

∆A∆B ≥ 1
2

∣∣∣⟨i[Â, B̂]⟩
∣∣∣ , (2.31)

where (∆A)2 = ⟨Â2⟩ − ⟨Â⟩2.

Position–momentum uncertainty relation
An important example of incompatible variables is that of the position and momen-
tum uncertainty principal. The operators corresponding to the x position of a parti-
cle and the x component of its momentum are respectively given by

x̂ψ = xψ and p̂x ψ = −i
∂

∂x
ψ.

The commutator [x̂, p̂x] can be evaluated from its action on a wavefunction ψ,

[x̂, p̂x]ψ = −ix
∂

∂x
ψ + i

∂

∂x
(xψ)

= −ix
∂ψ

∂x
+ iψ + ix

∂ψ

∂x
= +iψ,

giving

[x̂, p̂x] = +i.

The usual expression of the Heisenberg uncertainty principle for position and
momentum is then obtained by substituting this commutation relation into (2.31)
giving (after reinserting the hidden factor of !)

∆x∆px ≥
!

2
.

2.3.5 Angular momentum in quantum mechanics

The concept of angular momentum and its quantum mechanical treatment plays an
important role in particle physics. In classical dynamics, the angular momentum L
of a body is defined by the moment of its momentum,

L = r × p = (ypz − zpy, zpx − xpz, xpy − ypx).
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The corresponding quantum mechanical operator L̂ is obtained by replacing the
position and momentum coordinates by their operator equivalents. Hence, in quan-
tum mechanics, the components of angular momentum operator are given by

L̂x = ŷp̂z − ẑ p̂y, L̂y = ẑ p̂x − x̂ p̂z and L̂z = x̂ p̂y − ŷp̂x.

Because the position operator does not commute with the corresponding compo-
nent of momentum,

[
x̂, p̂x

]
=

[
ŷ, p̂y

]
=

[
ẑ, p̂z

]
= +i,

the angular momentum operators do not commute with each other and it is straight-
forward to show that

[
L̂x, L̂y

]
= iL̂z,

[
L̂y, L̂z

]
= iL̂x and

[
L̂z, L̂x

]
= iL̂y. (2.32)

It is important to realise that the commutation relations of (2.32) are sufficient
to fully define the algebra of angular momentum in quantum mechanics. This is
significant because exactly the same commutation relations arise naturally in the
discussion of other symmetries, such as flavour symmetry which is described in
Chapter 9. For this reason, the development of the algebra defined by (2.32) and
the subsequent identification of the angular momentum states is directly applicable
to the more abstract symmetry concepts encountered in context of the quark model
and QCD.

Because L̂x, L̂y and L̂z do not commute, they correspond to incompatible observ-
ables and (unless the state has zero angular momentum) it is not possible to define
a simultaneous eigenstate of more than one of the components of angular momen-
tum. However, it is relatively straightforward to show (see Problem 2.15) that the
operator for the total squared angular momentum defined by

L̂2 = L̂2
x + L̂2

y + L̂2
z ,

commutes with each of the components of angular momentum,
[
L̂2, L̂x

]
=

[
L̂2, L̂y

]
=

[
L̂2, L̂z

]
= 0.

Hence it is possible to express the angular momentum states in terms of the simul-
taneous eigenstates of L̂2 and any one of the components of angular momentum
which, by convention, is chosen to be L̂z.

It is also useful to define angular momentum raising and lowering ladder
operators,

L̂+ = L̂x + iL̂y,

L̂− = L̂x − iL̂y,
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for which L̂†+ = L̂− and L̂†− = L̂+. Because L̂2 commutes with both L̂x and L̂y, it
also commutes with both the ladder operators,

[
L̂2, L̂±

]
= 0.

The commutator of the ladder operators with L̂z is given by
[
L̂z, L̂±

]
=

[
L̂z, L̂x

]
± i

[
L̂z, L̂y

]

= iL̂y ± L̂x,

and therefore
[
L̂z, L̂±

]
= ±L̂±. (2.33)

Furthermore, using
[
L̂x, L̂y

]
= iL̂z, it can be shown that L̂2 can be expressed as (see

Problem 2.15)

L̂2 = L̂−L̂+ + L̂z + L̂2
z . (2.34)

The simultaneous eigenstates of L̂2 and L̂z can be obtained using the relations of
(2.33) and (2.34). Suppose the state |λ,m⟩ is a simultaneous eigenstate of both L̂z

and L̂2, with eigenvalues given by

L̂z |λ,m⟩ = m |λ,m⟩ and L̂2 |λ,m⟩ = λ |λ,m⟩ . (2.35)

Now consider the state ψ = L̂+ |λ,m⟩, defined by the action of the angular momen-
tum raising operator on the original state. Because L̂2 commutes with L̂+,

L̂2ψ = L̂2L̂+ |λ,m⟩ = L̂+L̂2 |λ,m⟩ = λL̂+ |λ,m⟩ = λψ.

Furthermore from (2.33), L̂zL̂+ = L̂+L̂z + L̂+ and therefore

L̂zψ = L̂z

[
L̂+ |λ,m⟩

]
= (L̂+L̂z + L̂+) |λ,m⟩
= (m + 1)

[
L̂+ |λ,m⟩

]
= (m + 1)ψ.

Hence, the state ψ = L̂+ |λ,m⟩ is also a simultaneous eigenstate of L̂2 and L̂z, with
respective eigenvalues of λ and m + 1. Therefore, the effect of the angular momen-
tum raising operators is to step along states with the same value of total angular
momentum squared but with one unit more of the z-component of angular momen-
tum. The angular momentum lowering operator has the opposite effect, lowering
the z-component of angular momentum by one unit.

The magnitude of the z-component of angular momentum can be no greater than
the total angular momentum itself,

〈
L̂2

z

〉
≤

〈
L̂2

〉
.

This implies that, for a particular value of λ, there must be maximum and minimum
values of m and that the action of L̂+ on the state with the largest value of m gives
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!Fig. 2.4 A pictorial representation of the 2ℓ + 1 states for ℓ = 2.

zero. Suppose the state with the largest z-component of angular momentum has
m = ℓ such that

L̂+ |λ, ℓ⟩ = 0,

then total angular momentum squared of this state is

L̂2 |λ, ℓ⟩ =
(
L̂−L̂+ + L̂z + L̂2

z

)
|λ, ℓ⟩

λ |λ, ℓ⟩ = (0 + ℓ + ℓ2) |λ, ℓ⟩ .

Hence, for the m= ℓ extreme state, the eigenvalue of L̂2 is λ= ℓ(ℓ+ 1). The same
arguments can be applied to show at the other extreme, m=− ℓ. Hence, for each
value of λ (or equivalently for each value of ℓ), there are 2ℓ+ 1 states (see
Figure 2.4), differing by one unit of the z-component of angular momentum,

m = −ℓ, −ℓ + 1, . . . ,+ℓ − 1, + ℓ.

This implies that ℓ is quantised, and can take only integer or half-integer values.
Expressing the states in terms of the quantum number ℓ rather than λ, the eigen-
value equations of (2.35) can be written as

L̂z |ℓ,m⟩ = m |ℓ,m⟩ and L̂2 |ℓ,m⟩ = ℓ(ℓ + 1) |ℓ,m⟩ .

The effect of the angular momentum raising operator on the state |ℓ,m⟩ is to gen-
erate the state |ℓ,m + 1⟩ with a coefficient αℓ,m which still needs to be determined,

L̂+ |ℓ,m⟩ = αℓ,m |ℓ,m + 1⟩ . (2.36)
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Since L̂†+ = L̂−, the Hermitian conjugate of (2.36) is
[
L̂+ |ℓ,m⟩

]†
= ⟨ℓ,m|L̂− = α∗ℓ,m⟨ℓ,m + 1|. (2.37)

The coefficient αℓ,m can be obtained by taking the product of (2.36) and (2.37)
giving

⟨ℓ,m| L̂−L̂+ |ℓ,m⟩ = |αℓ,m|2 ⟨ℓ,m + 1|ℓ,m + 1⟩.
Hence, for the normalised states |ℓ,m⟩ and |ℓ,m + 1⟩,

|αℓ,m|2 = ⟨ℓ,m| L̂−L̂+ |ℓ,m⟩
= ⟨ℓ,m| L̂2 − L̂z − L̂2

z |ℓ,m⟩
= (ℓ(ℓ + 1) − m − m2) ⟨ℓ,m|ℓ,m⟩
= ℓ(ℓ + 1) − m(m + 1),

and therefore,

L̂+ |ℓ,m⟩ =
√
ℓ(ℓ + 1) − m(m + 1) |ℓ,m + 1⟩. (2.38)

The corresponding relation for the angular momentum lowering operator, which
can be obtained in the same manner, is

L̂− |ℓ,m⟩ =
√
ℓ(ℓ + 1) − m(m − 1) |ℓ,m − 1⟩. (2.39)

The relations given in (2.38) and (2.39) will be used to construct the angular
momentum (and flavour states) formed from the combination of more than one
particle.

2.3.6 Fermi’s golden rule

Particle physics is mainly concerned with decay rates and scattering cross sec-
tions, which in quantum mechanics correspond to transitions between states. In
non-relativistic quantum mechanics, calculations of transition rates are obtained
from Fermi’s golden rule. The derivation of Fermi’s golden rule is far from trivial,
but is included here for completeness.

Let φk(x, t) be the normalised solutions to the Schrödinger equation for the
unperturbed time-independent Hamiltonian Ĥ0, where

Ĥ0φk = Ekφk and ⟨φ j|φk⟩ = δ jk.

In the presence of an interaction Hamiltonian Ĥ′(x, t), which can induce transitions
between states, the time-dependent Schrödinger equation becomes

i
dψ
dt
=

[
Ĥ0 + Ĥ′(x, t)

]
ψ. (2.40)
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The wavefunction ψ(x, t) can be expressed in terms of complete set of states of the
unperturbed Hamiltonian as

ψ(x, t) =
∑

k

ck(t)φk(x)e−iEkt, (2.41)

where the time-dependent coefficients ck(t) allow for transitions between states.
Substituting (2.41) into (2.40) gives a set of differential equations for the coeffi-
cients ck(t),

i
∑

k

[
dck

dt
φke−iEkt − iEkckφke−iEkt

]
=

∑

k

ckĤ0φke−iEkt +
∑

k

Ĥ′ckφke−iEkt

⇒ i
∑

k

dck

dt
φke−iEkt =

∑

k

Ĥ′ck(t)φke−iEkt. (2.42)

Suppose at time t= 0, the initial-state wavefunction is |i⟩= φi and the coefficients
are ck(0)= δik. If the perturbing Hamiltonian, which is constant for t> 0, is suffi-
ciently small that at all times ci(t)≈ 1 and ck!i(t)≈ 0, then to a first approximation
(2.42) can be written

i
∑

k

dck

dt
φke−iEkt ≈ Ĥ′φie−iEit. (2.43)

The differential equation for the coefficient c f (t), corresponding to transitions to a
particular final state | f ⟩= φ f , is obtained by taking the inner product of both the
LHS and RHS of (2.43) with φ f (x) and using ⟨φ f |φk⟩= δ f k to give

dc f

dt
= −i⟨ f |Ĥ′|i⟩ei(E f−Ei)t, (2.44)

where

⟨ f |Ĥ′|i⟩ =
∫

V
φ∗f (x)Ĥ′φi(x) d3x.

The transition matrix element T f i = ⟨ f |Ĥ′|i⟩ has dimensions of energy because both
φi and φ f are normalised by a volume integral. At time t=T , the amplitude for
transitions to the state | f ⟩ is given by the integral of (2.44)

c f (T ) = −i
∫ T

0
T f i ei(E f−Ei)t dt.

If the perturbing Hamiltonian is time-independent, so is the term ⟨ f |Ĥ′|i⟩ and thus

c f (T ) = −iT f i

∫ T

0
ei(E f−Ei)t dt. (2.45)

The probability for a transition to the state | f ⟩ is given by

P f i = c f (T )c∗f (T ) = |T f i|2
∫ T

0

∫ T

0
ei(E f−Ei)te−i(E f−Ei)t′ dt dt′.
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(Ef -Ei )/10-15 eV!Fig. 2.5 The functional form of the integral of Equation (2.46) for T = 1 s.

The transition rate dΓ f i from the initial state |i⟩ to the single final state | f ⟩ is
therefore

dΓ f i =
P f i

T
=

1
T
|T f i|2

∫ + T
2

− T
2

∫ + T
2

− T
2

ei(E f−Ei)te−i(E f−Ei)t′ dt dt′, (2.46)

where the limits of integration are obtained by the substitutions t → t + T/2 and
t′ → t′ + T/2. The exact solution to the integral in (2.46) has the form

sin2 x
x2 with x =

(E f − Ei)T
2!

,

where the factor of ! is included for clarity. This solution is shown for T = 1 s in
Figure 2.5, from which it can be seen that the transition rate is only significant
for final states where E f ≈ Ei and that energy is conserved within the limits of the
energy–time uncertainty relation

∆E∆t ∼ !. (2.47)

The narrowness of the functional form of (2.46) means that for all practical
purposes, it can be written as

dΓ f i = |T f i|2 lim
T→∞

⎧⎪⎪⎨
⎪⎪⎩

1
T

∫ + T
2

− T
2

∫ + T
2

− T
2

ei(E f−Ei)te−i(E f−Ei)t′ dt dt′
⎫⎪⎪⎬
⎪⎪⎭ .
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Using the definition of the Dirac delta-function given by (A.4) in Appendix A, the
integral over dt′ can be replaced by 2π δ(E f − Ei) and thus

dΓ f i = 2π |T f i|2 lim
T→∞

⎧⎪⎪⎨
⎪⎪⎩

1
T

∫ + T
2

− T
2

ei(E f−Ei)tδ(E f − Ei) dt

⎫⎪⎪⎬
⎪⎪⎭ .

If there are dn accessible final states in the energy range E f → E f + dE f , then the
total transition rate Γ f i is given by

Γ f i = 2π
∫
|T f i|2

dn
dE f

lim
T→∞

⎧⎪⎪⎨
⎪⎪⎩

1
T

∫ + T
2

− T
2

e−i(E f−Ei)tδ(E f − Ei) dt

⎫⎪⎪⎬
⎪⎪⎭ dE f . (2.48)

The delta-function in the integral implies that E f = Ei and therefore (2.48) can be
written

Γ f i = 2π
∫
|T f i|2

dn
dE f

δ(E f − Ei) lim
T→∞

⎧⎪⎪⎨
⎪⎪⎩

1
T

∫ + T
2

− T
2

dt

⎫⎪⎪⎬
⎪⎪⎭ dE f

= 2π
∫
|T f i|2

dn
dE f

δ(E f − Ei) dE f (2.49)

= 2π |T f i|2
∣∣∣∣∣∣

dn
dE f

∣∣∣∣∣∣
Ei

.

The term
∣∣∣∣ dn
dE f

∣∣∣∣
Ei

is referred to as the density of states, and is often written as ρ(Ei)

where

ρ(Ei) =

∣∣∣∣∣∣
dn

dE f

∣∣∣∣∣∣
Ei

.

Fermi’s golden rule for the total transition rate is therefore

Γ f i = 2π |T f i|2ρ(Ei),

where, to first order, T f i = ⟨ f |Ĥ′|i⟩.
In the above derivation, it was assumed that ck!i(t)≈ 0. An improved approx-

imation can be obtained by again taking ci(t)≈ 1 and substituting the expression
for ck!i(t) from (2.45) back into (2.42), which after taking the inner product with a
particular final state φ f (x) gives

dc f

dt
≈ −i⟨ f |Ĥ|i⟩ei(E f−Ei)t + (−i)2

∑

k!i

⟨ f |Ĥ′|k⟩ei(E f−Ek)t
∫ t

0
⟨k|Ĥ′|i⟩ei(Ek−Ei)t′dt′.

(2.50)
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Because the perturbation is not present at t= 0, and for t> 0 it is constant, the
integral in (2.50) can be written

∫ t

0
⟨k|Ĥ′|i⟩ei(Ek−Ei)t′dt′ = ⟨k|Ĥ′|i⟩ ei(Ek−Ei)t

i(Ek − Ei)
.

Therefore, the improved approximation for the evolution of the coefficients c f (t) is
given by

dc f

dt
= −i

⎛
⎜⎜⎜⎜⎜⎜⎝⟨ f |Ĥ|i⟩ +

∑

k!i

⟨ f |Ĥ′|k⟩⟨k|Ĥ′|i⟩
Ei − Ek

⎞
⎟⎟⎟⎟⎟⎟⎠ ei(E f−Ei)t.

Comparison with (2.44) shows that, to second order, the transition matrix element
T f i is given by

T f i = ⟨ f |Ĥ|i⟩ +
∑

k!i

⟨ f |Ĥ′|k⟩⟨k|Ĥ′|i⟩
Ei − Ek

.

The second-order term corresponds to the transition occurring via some inter-
mediate state |k⟩. The full perturbation expansion can be obtained by successive
substitutions. Provided the perturbation is sufficiently small, the successive terms
in the perturbation expansion decrease rapidly, and it is possible to obtain accu-
rate predictions using only the lowest-order term that contributes to a particular
process.

Summary

Three main topics have been presented in this chapter. Firstly, the system of natural
units with

! = c = ε0 = µ0 = 1

was introduced. It is used widely in particle physics and is adopted throughout this
book. You should be comfortable with the concept of natural units and should be
able to convert between natural units and S.I. units.

Because almost all of particle physics deals with relativistic particles, a sound
understanding of special relativity and, in particular, the use of four-vectors is
essential for much of what follows. Four-vector notation is used throughout this
book with the conventions that the metric tensor is

gµν = g
µν ≡

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,
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such that zeroth component of a four-vector is the time-like quantity, for example

x µ = (t, x, y, z) and p µ = (E, px, py, pz).

The scalar product of any two four-vectors,

a·b ≡ a µbµ ≡ gµνa µb µ ≡ a0b0 − a1b1 − a2b2 − a3b3 = invariant,

forms a Lorentz-invariant quantity that does not depend on the frame of reference.
The results of the calculations that follow are usually presented in a frame inde-
pendent manner using Lorentz invariant quantities.

A number of concepts in quantum mechanics are central to the theoretical ideas
developed in the following chapters and it is important that you are familiar with
the material reviewed in this chapter. Here the four most important concepts are:
(i) the operator formulation of quantum mechanics, where physical observables are
described by time-independent operators acting on time-dependent wavefunctions;
(ii) the idea of stationary states of the Hamiltonian and the time development of a
quantum mechanical system; (iii) the treatment of angular momentum in quantum
mechanics and the algebra defined by the commutation relations between the angu-
lar momentum operators; and (iv) Fermi’s golden rule to describe transition rates.

Problems

2.1 When expressed in natural units the lifetime of the W boson is approximately τ≈ 0.5 GeV−1. What is the cor-
responding value in S.I. units?

2.2 A cross section is measured to be 1 pb; convert this to natural units.

2.3 Show that the process γ→ e+e− can not occur in the vacuum.

2.4 A particle of mass 3 GeV is travelling in the positive z-direction with momentum 4 GeV; what are its energy and
velocity?

2.5 In the laboratory frame, denoted Σ, a particle travelling in the z-direction has momentum p= pzẑ and
energy E.

(a) Use the Lorentz transformation to find expressions for the momentum p′z and energy E′ of the particle in a
frameΣ′, which is moving in a velocity v=+vẑ relative toΣ, and show that E2 − p2

z = (E′)2 − (p′z)2.
(b) For a system of particles, prove that the total four-momentum squared,

p µpµ ≡
⎛
⎜⎜⎜⎜⎜⎝
∑

i

Ei

⎞
⎟⎟⎟⎟⎟⎠

2

−
⎛
⎜⎜⎜⎜⎜⎝
∑

i

pi

⎞
⎟⎟⎟⎟⎟⎠

2

,

is invariant under Lorentz transformations.
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2.6 For the decay a→ 1 + 2, show that the mass of the particle a can be expressed as

m2
a = m2

1 + m2
2 + 2E1E2(1 − β1β2 cos θ),

where β1 and β2 are the velocities of the daughter particles (βi = vi/c) and θ is the angle between them.

2.7 In a collider experiment,Λ baryons can be identified from the decayΛ→ π−p, which gives rise to a displaced
vertex in a tracking detector. In a particular decay, the momenta of theπ+ and p are measured to be 0.75 GeV
and 4.25 GeV respectively, and the opening angle between the tracks is 9◦. The masses of the pion and proton
are 139.6 MeV and 938.3 MeV.

(a) Calculate the mass of theΛ baryon.
(b) On average,Λ baryons of this energy are observed to decay at a distance of 0.35 m from the point of pro-

duction. Calculate the lifetime of theΛ.

2.8 In the laboratory frame, a proton with total energy E collides with proton at rest. Find the minimum proton
energy such that process

p + p→ p + p + p + p

is kinematically allowed.

2.9 Find the maximum opening angle between the photons produced in the decayπ0 → γγ if the energy of the
neutral pion is 10 GeV, given that mπ0 = 135 MeV.

2.10 The maximum of theπ−p cross section, which occurs at pπ = 300 MeV, corresponds to the resonant production
of the∆0 baryon (i.e.

√
s = m∆). What is the mass of the∆?

2.11 Tau-leptons are produced in the process e+e− → τ+τ− at a centre-of-mass energy of 91.2 GeV. The angular
distribution of theπ− from the decay τ− → π−ντ is

dN
d(cos θ∗)

∝ 1 + cos θ∗,

where θ∗ is the polar angle of the π− in the tau-lepton rest frame, relative to the direction defined by the
τ (tau) spin. Determine the laboratory frame energy distribution of theπ− for the cases where the tau-lepton
spin is (i) aligned with or (ii) opposite to its direction of flight.

2.12 For the process 1+ 2→ 3+ 4, the Mandelstam variables s, t and u are defined as s= (p1 + p2)2,
t = (p1 − p3)2 and u= (p1 − p4)2. Show that

s + u + t = m2
1 + m2

2 + m2
3 + m2

4.

2.13 At the HERA collider, 27.5 GeV electrons were collided head-on with 820 GeV protons. Calculate the centre-of-
mass energy.

2.14 Consider the Compton scattering of a photon of momentum k and energy E = |k|= k from an electron at rest.
Writing the four-momenta of the scattered photon and electron respectively as k′ and p′, conservation of four-
momentum is expressed as k + p= k′ + p′. Use the relation p′2 =m2

e to show that the energy of the scattered
photon is given by

E′ =
E

1 + (E/me)(1 − cos θ)
,

where θ is the angle through which the photon is scattered.

2.15 Using the commutation relations for position and momentum, prove that
[

L̂x , L̂y
]
= iL̂z.
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Using the commutation relations for the components of angular momenta prove
[

L̂2, L̂x
]
= 0,

and

L̂2 = L̂− L̂+ + L̂z + L̂2
z .

2.16 Show that the operators Ŝi =
1
2σi , whereσi are the three Pauli spin-matrices,

Ŝx =
1
2

(
0 1
1 0

)
, Ŝy =

1
2

(
0 −i
i 0

)
and Ŝz =

1
2

(
1 0
0 −1

)
,

satisfy the same algebra as the angular momentum operators, namely
[

Ŝx , Ŝy
]
= iŜz,

[
Ŝy, Ŝz

]
= iŜx and

[
Ŝz, Ŝx

]
= iŜy.

Find the eigenvalue(s) of the operator Ŝ2
= 1

4 (Ŝ2
x + Ŝ2

y + Ŝ2
z ), and deduce that the eigenstates of Ŝz are a suit-

able representation of a spin-half particle.

2.17 Find the third-order term in the transition matrix element of Fermi’s golden rule.



3 Decay rates and cross sections

This chapter describes the methodology for the calculations of cross sections
and decay rates in relativistic quantum mechanics. In particular, it introduces
the ideas of Lorentz-invariant phase space, the Lorentz-invariant matrix ele-
ment and the treatment of kinematics in particle decays and interactions. The
end product is a set of master formulas which, once the quantum mechanical
matrix element for a process is known, can be used to obtain expressions for
decays rates and cross sections. Provided the main concepts are understood, it
is possible to skip the details of the derivations.

3.1 Fermi’s golden rule

Much of particle physics is based on the experimental measurements of particle
decay rates and particle interaction cross sections. These experimentally observ-
able phenomena represent transitions between different quantum mechanical states.
In non-relativistic quantum mechanics, transition rates are obtained using Fermi’s
golden rule, which was derived in Section 2.3.6. Fermi’s golden rule for the transi-
tion rate Γ f i from an initial state |i⟩ to a final state | f ⟩ is usually expressed as

Γ f i = 2π|T f i|2ρ(Ei), (3.1)

where T f i is the transition matrix element and ρ(Ei) is the density of states. The
transition matrix element is determined by the Hamiltonian for the interaction
which causes the transitions Ĥ′. In the limit where the perturbation is weak, the
transition matrix element is given by a perturbation expansion in terms of the inter-
action Hamiltonian,

T f i = ⟨ f |Ĥ′|i⟩ +
∑

j!i

⟨ f |Ĥ′| j⟩⟨ j|Ĥ′|i⟩
Ei − E j

+ · · · .

The transition rate of (3.1) depends on the density of states ρ(Ei),

ρ(Ei) =
∣∣∣∣∣
dn
dE

∣∣∣∣∣
Ei

,

58
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q q

e- e- e-

e+

µ-

µ+

g
g

!Fig. 3.1 Feynman diagrams for e+e− → µ+µ− annihilation and e−q→ e−q scattering.

where dn is the number of accessible states in the energy range E→ E + dE. Alter-
natively, the density of states can be written as an integral over all final-state ener-
gies using the Dirac delta-function to impose energy conservation,

∣∣∣∣∣
dn
dE

∣∣∣∣∣
Ei

=

∫
dn
dE

δ(Ei − E) dE,

giving the alternative form of Fermi’s golden rule

Γ f i = 2π
∫
|T f i|2δ(Ei − E) dn, (3.2)

which appeared as an intermediate step in the derivation of Fermi’s golden rule,
see (2.49).

The transition rate between two states depends on two components, (i) the tran-
sition matrix element, which contains the fundamental particle physics, and (ii) the
density of accessible states, which depends on the kinematics of the process being
considered. The aim of the first part of this book is to develop the methodology for
the calculation of decay rates and interaction cross sections for particle annihila-
tion and scattering processes such as those represented by the Feynman diagrams
of Figure 3.1. In modern particle physics the most complete theoretical approach to
such calculations is to use quantum field theory. Nevertheless, the same results can
be obtained using perturbation theory in relativistic quantum mechanics (RQM).
This requires a relativistic formulation of Fermi’s golden rule where the density of
states is based on relativistic treatments of phase space and the normalisation of
the plane waves used to represent the particles.

3.2 Phase space and wavefunction normalisation

Before discussing the relativistic wavefunction normalisation and phase space, it
is worth briefly reviewing the non-relativistic treatment. In non-relativistic quan-
tum mechanics, the decay rate for the process a → 1 + 2 can be calculated using
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Fermi’s golden rule. To first order in perturbation theory, the transition matrix
element is

T f i = ⟨ψ1ψ2|Ĥ′|ψa⟩ (3.3)

=

∫

V
ψ∗1ψ

∗
2Ĥ′ψad3x. (3.4)

In the Born approximation, the perturbation is taken to be small and the initial- and
final-state particles are represented by plane waves of the form

ψ(x, t) = Aei(p·x−Et), (3.5)

where A determines the wavefunction normalisation. The integral in (3.4) extends
over the volume in which the wavefunctions are normalised. It is usual to adopt a
scheme where each plane wave is normalised to one particle in a cubic volume of
side a. Using the non-relativistic expression for probability density ρ=ψ∗ψ, this is
equivalent to writing

∫ a

0

∫ a

0

∫ a

0
ψ∗ψ dx dy dz = 1,

which implies that the normalisation constant in (3.5) is given by

A2 = 1/a3 = 1/V,

where V is the volume of the box.
The normalisation of one particle in a box of volume a3 implies that the wave-

function satisfies the periodic boundary conditions1

ψ(x + a, y, z) = ψ(x, y, z), etc.,

as illustrated in Figure 3.2. The periodic boundary conditions on the wavefunction,
for example eipx x = eipx(x+a), imply that the components of momentum are quan-
tised to

(px, py, pz) = (nx, ny, nz)
2π
a
,

1 In terms of counting the number of states, the periodic boundary conditions are equivalent to
requiring that the wavefunction is zero at the boundaries of the volume. This condition implies that
the wavefunction consists of standing waves of the form ψ(x, y, z)= A sin(px x) sin(pyy) sin(pzz),
with px, py and pz such that there are a half-integer number of wavelengths along each side of the
box. Since sin(px x)= (eipx x−e−ipx x)/2i, the wavefunction expressed in this way has forward-going
and backward-going components and the integration over phase space is restricted to positive
values of px, py and pz. The same number of states are obtained with periodic boundary conditions,
with an integer number of wavelengths in each direction. In this case, the phase space integral
extends over both positive and negative values of px, py and pz.
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(a)

a

a
a

dp

(c) py

px

(b) py

px

pz

a
2p−−−

!Fig. 3.2 The non-relativistic treatment of phase space: (a) the wavefunction of a particle confined to a box of side
a satisfies the periodic boundary conditions such that there are an integer number of wavelengths in each
direction; (b) the allowed states in momentum space; and (c) the number of states in a range p → p + dp
in two dimensions.

where nx, ny and nz are integers. This restricts the allowed momentum states to
the discrete set indicated in Figure 3.2b. Each state in momentum space occupies a
cubic volume of

d3p = dpxdpydpz =

(
2π
a

)3

=
(2π)3

V
.

As indicated in Figure 3.2c, the number of states dn with magnitude of momentum
in the range p → p + dp, is equal to the momentum space volume of the spherical
shell at momentum p with thickness dp divided by the average volume occupied
by a single state, (2π)3/V , giving

dn = 4πp2dp × V
(2π)3 ,

and hence

dn
dp
=

4πp2

(2π)3 V.

The density of states in Fermi’s golden rule then can be obtained from

ρ(E) =
dn
dE
=

dn
dp

∣∣∣∣∣
dp
dE

∣∣∣∣∣ .

The density of states corresponds to the number of momentum states accessible
to a particular decay and increases with the momentum of the final-state particle.
Hence, all other things being equal, decays to lighter particles, which will be pro-
duced with larger momentum, are favoured over decays to heavier particles.

The calculation of the decay rate will not depend on the normalisation volume;
the volume dependence in the expression for phase space is cancelled by the factors
of V associated with the wavefunction normalisations that appear in the square of
transition matrix element. Since the volume will not appear in the final result, it
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is convenient to normalise to one particle per unit volume by setting V = 1. In this
case, the number of accessible states for a particle associated with an infinitesimal
volume in momentum space d3pi is simply

dni =
d3pi

(2π)3 .

For the decay of a particle to a final state consisting of N particles, there are N − 1
independent momenta in the final state, since the momentum of one of the final-
state particles can always be obtained from momentum conservation. Thus, the
number of independent states for an N-particle final state is

dn =
N−1∏

i=1

dni =

N−1∏

i=1

d3pi

(2π)3 .

This can be expressed in a more democratic form including the momentum space
volume element for the Nth particle d3pN and using a three-dimensional delta-
function to impose momentum conservation

dn =
N−1∏

i=1

d3pi

(2π)3 δ
3

⎛
⎜⎜⎜⎜⎜⎜⎝pa −

N∑

i=1

pi

⎞
⎟⎟⎟⎟⎟⎟⎠ d3pN , (3.6)

where pa is the momentum of the decaying particle. Therefore the general non-
relativistic expression for N-body phase space is

dn = (2π)3
N∏

i=1

d3pi

(2π)3 δ
3

⎛
⎜⎜⎜⎜⎜⎜⎝pa −

N∑

i=1

pi

⎞
⎟⎟⎟⎟⎟⎟⎠ . (3.7)

3.2.1 Lorentz-invariant phase space

The wavefunction normalisation of one particle per unit volume is not Lorentz
invariant since it only applies to a particular frame of reference. In a different ref-
erence frame, the original normalisation volume will be Lorentz contracted by a
factor of 1/γ along its direction of relative motion, as shown in Figure 3.3. Thus,
the original normalisation of one particle per unit volume corresponds to a nor-
malisation of γ= E/m particles per unit volume in the boosted frame of reference.
A Lorentz-invariant choice of wavefunction normalisation must therefore be pro-
portional to E particles per unit volume, such that the increase in energy accounts
for the effect of Lorentz contraction. The usual convention is to normalise to 2E
particles per unit volume. The reason for this particular choice is motivated in Sec-
tion 3.2.3 and also in Chapter 4.
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a

a
a

a

a

a/g

v = bc

!Fig. 3.3 The normalisation volume in a particular frame is length contracted along the direction of motion for a
general rest frame.

The wavefunctions ψ appearing in the transition matrix element T f i of Fermi’s
golden rule are normalised to one particle per unit volume,

∫

V
ψ∗ψ d3x = 1.

Wavefunctions with the appropriate Lorentz-invariant normalisation, here written
as ψ′, are normalised to 2E particles per unit volume

∫

V
ψ′∗ψ′d3x = 2E,

and therefore

ψ′ = (2E)1/2ψ.

For a general process, a + b + · · · → 1 + 2 + · · · , the Lorentz-invariant matrix
element, using wavefunctions with a Lorentz-invariant normalisation, is defined as

M f i = ⟨ψ′1ψ′2 · · · |Ĥ′|ψ′aψ′b · · · ⟩. (3.8)

The Lorentz-invariant matrix element is therefore related to the transition matrix
element of Fermi’s golden rule by

M f i = ⟨ψ′1ψ′2 · · · |Ĥ′|ψ′aψ′b · · · ⟩ = (2E1 · 2E2 · · · 2Ea · 2Eb · · · )1/2T f i, (3.9)

where the product on the RHS of (3.9) includes all intial- and final-state particles.

3.2.2 Fermi’s golden rule revisited

For a two-body decay a → 1 + 2, the quantum mechanical transition rate is given
by Fermi’s golden rule, which in the form of (3.2) can be written

Γ f i = 2π
∫
|T f i|2δ(Ea − E1 − E2) dn,

where dn is given by (3.7), and hence
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Γ f i = (2π)4
∫
|T f i|2δ(Ea − E1 − E2)δ3(pa − p1 − p2)

d3p1

(2π)3

d3p2

(2π)3 . (3.10)

Using the relation between the transition matrix element and the Lorentz invariant
matrix element of (3.9), this can be written as

Γ f i =
(2π)4

2Ea

∫
|M f i|2δ(Ea − E1 − E2)δ3(pa − p1 − p2)

d3p1

(2π)32E1

d3p2

(2π)32E2
,

(3.11)

with |M f i|2 = (2Ea2E12E2)|T f i|2. One consequence of using wavefunctions with a
Lorentz invariant normalisation, is that the phase space integral over d3p/(2π)3 has
been replaced by an integral over terms like

d3p
(2π)32E

,

which is known as the Lorentz-invariant phase space factor. To prove this is Lorentz
invariant, consider a Lorentz transformation along the z-axis, where the element
d3p transforms to d3p′ given by

d3p′ ≡ dp′xdp′ydp′z = dpxdpy ·
dp′z
dpz

dpz =
dp′z
dpz

d3p. (3.12)

From the Einstein energy–momentum relation, E2 = p2
x + p2

y + p2
z +m2, and the

Lorentz transformation of the energy–momentum four-vector,

p′z = γ(pz − βE) and E′ = γ(E − βpz),

it follows that
dp′z
dpz
= γ

(
1 − β ∂E

∂pz

)
= γ

(
1 − β pz

E

)
=

1
E
γ (E − βpz) =

E′

E
,

which when substituted into (3.12) demonstrates that

d3p′

E′
=

d3p
E
,

and hence d3p/E is Lorentz invariant.
The matrix element M f i in (3.11) is defined in terms of wavefunctions with a

Lorentz-invariant normalisation, and the elements of integration over phase space
d3pi/Ei are also Lorentz invariant. Consequently, the integral in (3.11) is Lorentz
invariant and thus (3.11) expresses Fermi’s golden rule in a Lorentz-invariant form.
This is an important result, it is exactly the required relativistic treatment of transi-
tion rates needed for the calculation of decay rates. The resulting transition rate for
the decay a → 1 + 2 given in (3.11) is inversely proportional to the energy of the
decaying particle in the frame in which it is observed, Ea = γma, as expected from
relativistic time dilation.
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3.2.3 *Lorentz-invariant phase space

The expression for the decay rate given (3.11) can be extended to an N-body decay,
a→ 1+ 2+ · · · +N. In this more general case, the phase space integral involves the
three-momenta of all final-state particles

dLIPS =
N∏

i=1

d3pi

(2π)32Ei
,

where dLIPS is known as the element of Lorentz-invariant phase space (LIPS).
The factors 1/2Ei can be rewritten in terms of a delta-function using (A.6) of
Appendix A and the constraint from the Einstein energy–momentum relationship,
Ei = p2

i + m2
i , which implies that

∫
δ(E2

i − p2
i − m2) dEi =

1
2Ei
.

Hence, the integral over Lorentz-invariant phase space can be written as

∫
· · · dLIPS =

∫
· · ·

N∏

i=1

(2π)−3δ(E2
i − p2

i − m2
i ) d3pi dEi,

which, in terms of the four-momenta of the final-state particles is

∫
· · · dLIPS =

∫
· · ·

N∏

i=1

(2π)−3δ(p2
i − m2

i ) d4 pi.

Similarly, the transition rate for the two-body decay a→ 1+ 2, given in (3.11), can
be written as

Γ f i =
(2π)4

2Ea

∫
(2π)−6|M f i|2δ4(pa − p1 − p2)δ(p2

1 − m2
1)δ(p2

2 − m2
2) d4 p1d4 p2.

The integral now extends over all values of the energies and momenta of each of the
final-state particles. The delta-functions ensure that the decay rate only has contri-
butions from values of the four-momenta of the final-state particles compatible with
overall energy and momentum conservation and the Einstein energy–momentum
relation p2

i = m2
i . This form of the expression for the decay rate elucidates clearly

the point that all the fundamental physics lives in the matrix element. It also pro-
vides a deeper insight into the origin of the phase space integral.
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3.3 Particle decays

In general, a given particle may decay by more than one decay mode. For example,
the tau-lepton can decay into a number of final states, τ−→ e−νeντ, τ−→ µ−νµντ
and τ−→ ντ + hadrons. The transition rate for each decay mode j can be calcu-
lated independently using Fermi’s golden rule. The individual transition rates Γ j

are referred to as partial decay rates or, for reasons that will become apparent
later, partial widths.

The total decay rate is simply the sum of the decay rates for the individual decay
modes. For example, if there are N particles of a particular type, the number that
decay in time δt is given by the sum of the numbers of decays into each decay
channel,

δN = −NΓ1δt − NΓ2δt − · · · = −N
∑

j

Γ j δt = −NΓδt, (3.13)

where the total decay rate per unit time Γ is the sum of the individual decay rates,

Γ =
∑

j

Γ j.

The number of particles remaining after a time t is obtained by integrating (3.13)
to give the usual exponential form

N(t) = N(0) e−Γt = N(0) exp
(
− t
τ

)
,

where the lifetime of the particle in its rest frame τ is referred to as its proper
lifetime and is determined from the total decay rate

τ =
1
Γ
.

The relative frequency of a particular decay mode is referred to as the branching
ratio (or branching fraction). The branching ratio for a particular decay mode BR( j)
is given by the decay rate to the mode j relative to the total decay rate

BR( j) =
Γ j

Γ
.

For example, the branching ratio for the tau-lepton decay τ−→ e−νeντ is 0.17,
which means that on average 17% of the time a τ− will decay to e−νeντ. By defini-
tion, the branching ratios for all decay modes of a particular particle sum to unity.

3.3.1 Two-body decays

The transition rate for each decay mode of a particle can be calculated by using the
relativistic formulation of Fermi’s golden rule given in (3.11). The rate depends on
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a

1

2

z
-p∗

p∗

q

!Fig. 3.4 The two-body decay a → 1 + 2 in the rest frame of particle a.

the matrix element for the process and the phase space integral. The matrix element
depends on the nature of the decay and needs to be evaluated for each process. In
contrast, the form of the phase space integral depends only on the number of parti-
cles in the final state. Furthermore, since the integral of (3.11) is Lorentz invariant,
it can be evaluated in any frame.

Consider the two-body decay a→ 1+ 2, shown in Figure 3.4. In the centre-of-
mass frame, the decaying particle is at rest, Ea =ma and pa = 0, and the two daugh-
ter particles are produced back to back with three-momenta p∗ and −p∗. In this
frame, the decay rate is given by (3.11),

Γ f i =
1

8π2ma

∫
|M f i|2δ(ma − E1 − E2)δ3(p1 + p2)

d3p1

2E1

d3p2

2E2
. (3.14)

It is not straightforward to evaluate the phase space integral in this expression, but
fortunately the calculation applies to all two-body decays and has to be performed
only once. The δ3(p1 + p2) term in (3.14) means that the integral over d3p2 has the
effect of relating the three-momenta of the final-state particles giving p2 = −p1 and
hence

Γ f i =
1

8π2ma

∫
|M f i|2

1
4E1E2

δ (ma − E1 − E2) d3p1, (3.15)

where E2 is now given by E2
2 = (m2

2 + p2
1). In spherical polar coordinates,

d3p1 = p2
1dp1 sin θ dθ dφ = p2

1 dp1dΩ,

and (3.15) can be written

Γ f i =
1

8π2ma

∫
|M f i|2δ

(
ma −

√
m2

1 + p2
1 −

√
m2

2 + p2
1

) p2
1

4E1E2
dp1dΩ. (3.16)

At first sight this integral looks quite tricky. Fortunately the Dirac delta-function
does most of the work. Equation (3.16) has the functional form

Γ f i =
1

8π2ma

∫
|M f i|2g(p1) δ( f (p1)) dp1dΩ, (3.17)



68 Decay rates and cross sections

with

g(p1) =
p2

1

4E1E2
, (3.18)

and

f (p1) = ma − E1 − E2 = ma −
√

m2
1 + p2

1 −
√

m2
2 + p2

1. (3.19)

The Dirac delta-function δ( f (p1)) imposes energy conservation and is only non-
zero for p1 = p∗, where p∗ is the solution of f (p∗)= 0. The integral over dp1 in (3.17)
can be evaluated using the properties of the Dirac delta-function (see Appendix A),
whereby

∫
|M f i|2 g(p1) δ

(
f (p1)

)
dp1 = |M f i|2 g(p∗)

∣∣∣∣∣∣
d f
dp1

∣∣∣∣∣∣

−1

p∗
. (3.20)

The derivative d f /dp1 can be obtained from (3.19),
∣∣∣∣∣∣

d f
dp1

∣∣∣∣∣∣ =
p1

(m2
1 + p2

1)1/2
+

p1

(m2
2 + p2

1)1/2
= p1

(
E1 + E2

E1E2

)
,

which, when combined with the expression for g(p1) given in (3.18), leads to

g(p∗)

∣∣∣∣∣∣
d f
dp1

∣∣∣∣∣∣

−1

p1=p∗
=

p∗2

4E1E2
· E1E2

p∗(E1 + E2)
=

p∗

4ma
.

Thus, the integral of (3.20) is
∫
|M f i|2 g(p1) δ( f (p1)) dp1 =

p∗

4ma
|M f i|2,

and therefore,
∫
|M f i|2δ(ma − E1 − E2)δ3(p1 + p2)

d3p1

2E1

d3p2

2E2
=

p∗

4ma

∫
|M f i|2dΩ, (3.21)

and hence (3.14) becomes

Γ f i =
p∗

32π2m2
a

∫
|M f i|2 dΩ. (3.22)

Equation (3.22) is the general expression for any two-body decay. The fundamental
physics is contained in the matrix element and the additional factors arise from the
phase space integral. The matrix element, which may depend on the decay angle,
remains inside the integral. The centre-of-mass frame momentum of the final-state
particles p∗ can be obtained from energy conservation, or equivalently f (p∗)= 0,
and is given by (see Problem 3.2)

p∗ =
1

2ma

√[
(m2

a − (m1 + m2)2
] [

m2
a − (m1 − m2)2

]
.



69 3.4 Interaction cross sections

3.4 Interaction cross sections

The calculation of interaction rates is slightly more complicated than that for par-
ticle decays because it is necessary to account for the flux of initial-state particles,
where flux is defined as the number of particles crossing a unit area per unit time.
In the simplest case, one can imagine a beam of particles of type a, with flux φa,
crossing a region of space in which there are nb particles per unit volume of type
b. The interaction rate per target particle rb will be proportional to the incident
particle flux and can be written

rb = σφa. (3.23)

The fundamental physics is contained in σ, which has dimensions of area, and is
termed the interaction cross section. Sometimes it is helpful to think of σ as the
effective cross sectional area associated with each target particle. Indeed, there are
cases where the cross section is closely related to the physical cross sectional area
of the target, for example, neutron absorption by a nucleus. However, in general,
the cross section is simply an expression of the underlying quantum mechanical
probability that an interaction will occur.

The definition of the cross section is illustrated by the situation shown in
Figure 3.5a, where a single incident particle of type a is travelling with a veloc-
ity va in a region defined by the area A, which contains nb particles of type b per
unit volume moving with a velocity vb in the opposite direction to va. In time δt,
the particle a crosses a region containing δN = nb(va + vb)Aδt particles of type b.
The interaction probability can be obtained from the effective total cross sectional
area of the δN particles divided by the area A, which can be thought of as the prob-
ability that the incident particle passes through one of the regions of area σ drawn
around each of the δN target particles, as shown in Figure 3.5b. The interaction
probability δP is therefore

δP =
δN σ

A
=

nb(va + vb)Aσδt
A

= nbvσδt,

(va + vb)dt
(a) (b)

!Fig. 3.5 The left-hand plot (a) shows a single incident particle of type a traversing a region containing particles of
type b. The right-hand plot (b) shows the projected view of the region traversed by the incident particle in
time δt.
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where v = va + vb. Hence the interaction rate for each particle of type a is

ra =
dP
dt
= nbvσ.

For a beam of particles of type a, with number density na confined to a volume V ,
the total interaction rate is

rate = ra naV = (nbvσ) naV. (3.24)

The expression of (3.24) can be rearranged into

rate = (nav)(nbV)σ = φNb σ.

Thus the total rate is equal to

rate = flux × number of target particles × cross section,

which is consistent with the definition of (3.23). More formally, the cross section
for a process is defined as

σ =
number of interactions per unit time per target particle

incident flux
.

It should be noted that the flux φ accounts for the relative motion of the particles.

3.4.1 Lorentz-invariant flux

The cross section for a particular process can be calculated using the relativistic
formulation of Fermi’s golden rule and the appropriate Lorentz-invariant expres-
sion for the particle flux. Consider the scattering process a+ b→ 1+ 2, as observed
in the rest frame where the particles of type a have velocity va and those of type
b have velocity vb, as shown in Figure 3.6. If the number densities of the particles
are na and nb, the interaction rate in the volume V is given by

rate = φa nbV σ = (va + vb) na nb σV, (3.25)

a b

1

2

va vb

!Fig. 3.6 The two-body scattering process a + b→ 1 + 2.
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where φa is the flux of particles of type a through a plane moving at velocity vb,

φa = na(va + vb).

Normalising the wavefunctions to one particle in a volume V , gives na = nb = 1/V ,
for which the interaction rate in the volume V is

Γ f i =
(va + vb)

V
σ. (3.26)

Because the factors of V in the expression for the flux will ultimately be cancelled
by the corresponding factors from the wavefunction normalisation and phase space,
the volume V will not appear in the final result and it is again convenient to adopt
a normalisation of one particle per unit volume. With this choice, the cross section
is related to the transition rate by

σ =
Γ f i

(va + vb)
.

The transition rate Γ f i is given by Fermi’s golden rule, which in the form of (3.10)
gives

σ =
(2π)4

(va + vb)

∫
|T f i|2δ(Ea + Eb − E1 − E2)δ3(pa + pb − p1 − p2)

d3p1

(2π)3

d3p2

(2π)3 .

This can be expressed in a Lorentz-invariant form by writing T f i in terms of the
Lorentz-invariant matrix elementM f i = (2E1 2E2 2E3 2E4)1/2T f i,

σ =
(2π)−2

4 EaEb(va + vb)

∫
|M f i|2δ(Ea + Eb − E1 − E2)δ3(pa + pb − p1 − p2)

d3p1

2E1

d3p2

2E2
.

(3.27)

The integral in (3.27) is now written in a Lorentz-invariant form. The quantity
F = 4EaEb(va + vb) is known as the Lorentz-invariant flux factor. To demonstrate
the Lorentz invariance of F, first write

F = 4EaEb(va + vb) = 4EaEb

(
pa

Ea
+

pb

Eb

)
= 4(Eapb + Ebpa),

⇒ F2 = 16(E2
ap2

b + E2
bp2

a + 2EaEbpapb), (3.28)

and then note that, for the case where the incident particle velocities are collinear,

(pa ·pb)2 = (EaEb + papb)2 = E2
aE2

b + p2
ap2

b + 2EaEbpapb. (3.29)

Substituting the expression for 2EaEbpapb from (3.29) into (3.28) then gives

F2 = 16
[
(pa ·pb)2 − (E2

a − p2
a)(E2

b − p2
b)
]
.
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Thus, F can be written in the manifestly Lorentz-invariant form

F = 4
[
(pa ·pb)2 − m2

am2
b

] 1
2 .

Since both F and the integral in (3.27) are Lorentz invariant, it can be concluded
that the cross section for an interaction is itself Lorentz invariant.

3.4.2 Scattering in the centre-of-mass frame

Because the interaction cross section is a Lorentz-invariant quantity, the cross sec-
tion for the process a+ b→ 1+ 2 can be calculated in any frame. The most conve-
nient choice is the centre-of-mass frame where pa = −pb = p∗i and p1 = −p2 = p∗f ,
and the centre-of-mass energy is given by

√
s = (E∗a + E∗b). In the centre-of-mass

frame, the Lorentz-invariant flux factor is

F = 4E∗aE∗b(v∗a + v∗b) = 4E∗aE∗b

(
p∗i
E∗a
+

p∗i
E∗b

)
= 4p∗i (E∗a + E∗b)

= 4p∗i
√

s.

Using this expression and the constraint that pa + pb = 0, (3.27) becomes

σ =
1

(2π)2

1
4p∗i
√

s

∫
|M f i|2δ

(√
s − E1 − E2

)
δ3(p1 + p2)

d3p1

2E1

d3p2

2E2
. (3.30)

The integral in (3.30) is the same as that of (3.21) with ma replaced by
√

s. There-
fore, applying the results from Section 3.3.1 immediately leads to

σ =
1

16π2p∗i
√

s
×

p∗f
4
√

s

∫
|M f i|2dΩ∗,

where the solid angle element has been written as dΩ∗ to emphasise that it refers to
the centre-of-mass frame. Hence the cross section for any two-body → two-body
process is given by

σ =
1

64π2s

p∗f
p∗i

∫
|M f i|2dΩ∗. (3.31)

3.5 Differential cross sections

In many cases it is not only the total cross section that is of interest, but also the dis-
tribution of some kinematic variable. For example, Figure 3.7 shows the inelastic
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p
e-

e-

dΩ

q

!Fig. 3.7 An example of e−p→ e−p scattering where the electron is scattered into a solid angle dΩ.

scattering process e−p → eX where the proton breaks up. Here, the angular distri-
bution of the scattered electron provides essential information about the fundamen-
tal physics of the interaction. In this case, the relevant experimental measurement
is the differential cross section for the scattering rate into an element of solid angle
dΩ = d(cos θ)dφ,

dσ
dΩ
=

number of particles scattered into dΩ per unit time per target particle
incident flux

.

The integral of the differential cross section gives the total cross section,

σ =

∫
dσ
dΩ

dΩ.

Differential cross sections are not restricted to angular distributions. In some
situations, it is the energy distribution of the scattered particle that is sensitive to
the underlying fundamental physics. In other situations one might be interested in
the joint angular and energy distribution of the scattered particles. In each case, it
is possible to define the corresponding differential cross section, for example

dσ
dE

or
d2σ

dEdΩ
.

3.5.1 Differential cross section calculations

Differential cross sections can be calculated from the differential form of (3.31),

dσ =
1

64π2s

p∗f
p∗i
|M f i|2dΩ∗. (3.32)

The simplest situation is where the laboratory frame corresponds to the centre-of-
mass frame, for example e+e− annihilation at LEP or pp collisions at the LHC.
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In this case, the differential cross section expressed in terms of the angles of one of
the final-state particles is immediately obtained from (3.32)

dσ
dΩ∗

=
1

64π2s

p∗f
p∗i
|M f i|2. (3.33)

In fixed-target experiments, such as e−p → e−p elastic scattering, where the
target proton is at rest, the laboratory frame is not the centre-of-mass frame and
the calculation is more involved. Here, the differential cross section is most useful
when expressed in terms of the observable laboratory frame quantities, such as
the angle through which the electron is scattered, θ. The differential cross section
with respect to the laboratory frame electron scattering angle can be obtained by
applying the appropriate coordinate transformation to (3.32).

The transformation from the differential cross section in the centre-of-mass frame
to that in the laboratory frame is most easily obtained by first writing (3.32) in a
Lorentz-invariant form, which is applies in all frames. This is achieved by express-
ing the element of solid angle dΩ∗ in terms of the Mandelstam variable t = p1− p3.
For e−p→ e−p scattering, t is a function of the initial- and final-state electron four-
momenta. Using the definitions of the particle four-momenta shown in Figure 3.8,

t = (p∗1 − p∗3)2 = p∗21 + p∗23 − 2p∗1 ·p∗3
= m2

1 + m2
3 − 2(E∗1E∗3 − p∗1 · p∗3)

= m2
1 + m2

3 − 2E∗1E∗3 + 2p∗1p∗3 cos θ∗. (3.34)

In the centre-of-mass frame, the magnitude of the momenta and the energies of the
final-state particles are fixed by energy and momentum conservation and the only
free parameter in (3.34) is the electron scattering angle θ∗, thus

dt = 2p∗1p∗3 d(cos θ∗),

z z

y

p

p

y

p

p

Lab. frame CoM frame

e- e-

e-
e-

p1 p*
1

p*
4

p*
2

p*
3p3

p4

q q *

!Fig. 3.8 The process of e−p→ e−p elastic scattering shown in the laboratory (left) and centre-of-mass (right)
frames.
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and therefore

dΩ∗ ≡ d(cos θ∗) dφ∗ =
dt dφ∗

2p∗1p∗3
. (3.35)

Writing p∗1 and p∗3 respectively as p∗i and p∗f , and substituting (3.35) into (3.32)
leads to

dσ =
1

128π2s p∗2i

|M f i|2dφ∗dt. (3.36)

Assuming that matrix element is independent of the azimuthal angle, the integra-
tion over dφ∗ just introduces a factor of 2π and therefore

dσ
dt
=

1
64πs p∗2i

|M f i|2. (3.37)

The magnitude of the momentum of the initial-state particles in the centre-of-mass
frame can be shown to be

p∗2i =
1
4s

[s − (m1 + m2)2][s − (m1 − m2)2]. (3.38)

Since σ, s, t and |M f i|2 are all Lorentz-invariant quantities, Equation (3.37) gives
a general Lorentz-invariant expression for the differential cross section for the
two-body→ two-body scattering process.

3.5.2 Laboratory frame differential cross section

Because (3.37) is valid in all rest frames, it can be applied directly to the example
of e−p→ e−p elastic scattering in the laboratory frame, shown in Figure 3.8. In the
limit where the incident and scattered electron energies are much greater than the
electron rest mass, the laboratory frame four-momenta of the particles are

p1 ≈ (E1, 0, 0, E1),

p2 = (mp, 0, 0, 0),

p3 ≈ (E3, 0, E3 sin θ, E3 cos θ),

and p4 = (E4,p4).

The momenta of the initial-state particles in the centre-of-mass frame are given by
(3.38) and since me ≪ mp,

p∗2i ≈
(s − m2

p)2

4s
, (3.39)
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where s is given by

s = (p1 + p2)2 = p2
1 + p2

2 + 2p1 ·p2 ≈ m2
p + 2p1 ·p2

= m2
p + 2E1mp,

and therefore

p∗2i =
E2

1m2
p

s
. (3.40)

The differential cross section in terms of the laboratory frame scattering angle of
the electron can be obtained from

dσ
dΩ
=

dσ
dt

∣∣∣∣∣
dt
dΩ

∣∣∣∣∣ =
1

2π
dt

d(cos θ)
dσ
dt
, (3.41)

where the factor 2π arises from the integral over dφ (again assuming azimuthal
symmetry). An expression for dt/d(cos θ) can be obtained by writing the Mandel-
stam variable t in terms of the laboratory frame four-momenta, defined above,

t = (p1 − p3)2 ≈ −2E1E3(1 − cos θ), (3.42)

where E3 is itself a function of θ. Conservation of energy and momentum imply
that p1 + p2 = p3 + p4, and t can also be expressed in terms of the four-momenta
of the initial and final-state proton,

t = (p2 − p4)2 = 2m2
p − 2p2 ·p4 = 2m2

p − 2mpE4 = −2mp(E1 − E3), (3.43)

where the last step follows from energy conservation, E4 = E1+mp−E3. Equating
(3.42) and (3.43) gives the expression for E3 as a function of cos θ,

E3 =
E1mp

mp + E1 − E1 cos θ
. (3.44)

Because E1 is the fixed energy of the initial-state electron, differentiating (3.43)
with respect to cos θ gives

dt
d(cos θ)

= 2mp
dE3

d(cos θ)
. (3.45)

Differentiating the expression for E3 of (3.44), gives

dE3

d(cos θ)
=

E2
1mp

(mp + E1 − E1 cos θ)2 =
E2

3

mp
,

which when substituted into (3.45) leads to

dt
d(cos θ)

= 2E2
3. (3.46)
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Substituting (3.46) into (3.41), and using the Lorentz-invariant expression for the
differential cross section of (3.37) gives

dσ
dΩ
=

1
2π

2E2
3

dσ
dt
=

E2
3

64π2s p∗2i

|M f i|2.

The momentum of the intial-state particles in the centre-of-mass frame can be elim-
inated using (3.40) and thus

dσ
dΩ
=

1
64π2

(
E3

mpE1

)2

|M f i|2. (3.47)

Finally, the energy of the scattered electron E3 can be expressed in terms of cos θ
alone using (3.44). Therefore the differential cross section can be written as an
explicit function of cos θ and the energy of the incident electron

dσ
dΩ
=

1
64π2

(
1

mp + E1 − E1 cos θ

)2

|M f i|2. (3.48)

The same calculation including the mass of the electron is algebraically more
involved, although the steps are essentially the same.

Summary

The general expression for the decay rate a→ 1 + 2 is

Γ =
p∗

32π2m2
a

∫
|M f i|2dΩ, (3.49)

where p∗ is the magnitude of the momentum of the final-state particles in the rest
frame of the decaying particle, which is given by

p∗ =
1

2mi

√[
(m2

i − (m1 + m2)2
] [

m2
i − (m1 − m2)2

]
.

The expression for the differential cross section for the process a + b→ c + d in
the centre-of-mass frame is

dσ
dΩ∗

=
1

64π2s

p∗f
p∗i
|M f i|2, (3.50)

where p∗i and p∗f are respectively the magnitudes of the initial- and final-state
momenta in the centre-of-mass frame. In the limit where the electron mass can
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be neglected, the differential cross section for e−p → e−p elastic scattering, in the
proton rest frame is

dσ
dΩ
=

1
64π2

(
E3

mpE1

)2

|M f i|2, (3.51)

where E3 is a function of the electron scattering angle.

Problems

3.1 Calculate the energy of the µ− produced in the decay at rest π− → µ−νµ. Assume mπ = 140 GeV,
mµ = 106 MeV and take mν ≈ 0.

3.2 For the decay a→ 1+ 2, show that the momenta of both daughter particles in the centre-of-mass frame p∗ are

p∗ =
1

2ma

√[
(m2

a − (m1 + m2)2
] [

m2
a − (m1 − m2)2

]
.

3.3 Calculate the branching ratio for the decay K+→π+π0, given the partial decay width Γ(K+→π+π0)=
1.2× 10−8 eV and the mean kaon lifetime τ(K+)= 1.2× 10−8 s.

3.4 At a future e+e− linear collider operating as a Higgs factory at a centre-of-mass energy of
√

s= 250 GeV, the
cross section for the process e+e− → HZ is 250 fb. If the collider has an instantaneous luminosity of
2 × 1034 cm−2 s−1 and is operational for 50% of the time, how many Higgs bosons will be produced in five
years of running?
Note: 1 femtobarn≡ 10−15 b.

3.5 The total e+e− → γ → µ+µ− annihilation cross section isσ= 4πα2/3s, where α≈ 1/137. Calculate the
cross section at

√
s= 50 GeV, expressing your answer in both natural units and in barns (1 barn= 10−28 m2).

Compare this to the total pp cross section at
√

s= 50 GeV which is approximately 40 mb and comment on the
result.

3.6 A 1 GeV muon neutrino is fired at a 1 m thick block of iron (56
26Fe) with density ρ= 7.874 × 103 kg m−3. If the

average neutrino–nucleon interaction cross section isσ= 8× 10−39 cm2, calculate the (small) probability that
the neutrino interacts in the block.

3.7 For the process a + b → 1 + 2 the Lorentz-invariant flux term is

F = 4
[

(pa ·pb)2 − m2
am2

b

] 1
2 .

In the non-relativistic limit, βa≪ 1 and βb≪ 1, show that

F ≈ 4mamb |va − vb| ,
where va and vb are the (non-relativistic) velocities of the two particles.

3.8 The Lorentz-invariant flux term for the process a + b → 1 + 2 in the centre-of-mass frame was shown to be
F = 4p∗i

√
s, where p∗i is the momentum of the intial-state particles. Show that the corresponding expression

in the frame where b is at rest is

F = 4mbpa.
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3.9 Show that the momentum in the centre-of-mass frame of the initial-state particles in a two-body scattering
process can be expressed as

p∗2
i =

1
4s

[s − (m1 + m2)2][s − (m1 − m2)2].

3.10 Repeat the calculation of Section 3.5.2 for the process e−p→ e−p where the mass of the electron is no longer
neglected.

(a) First show that

dE3

d(cosθ)
=

p1p2
3

p3(E1 + mp) − E3p1 cos θ
.

(b) Then show that

dσ
dΩ
=

1
64π2 ·

p2
3

p1mp
· 1

p3(E1 + mp) − E3p1 cos θ
· |Mfi|2,

where (E1, p1) and (E3, p3) are the respective energies and momenta of the initial-state and scattered elec-
trons as measured in the laboratory frame.



4 The Dirac equation

This chapter provides an introduction to the Dirac equation, which is the rel-
ativistic formulation of quantum mechanics used to describe the fundamental
fermions of the Standard Model. Particular emphasis is placed on the free-
particle solutions to the Dirac equation that will be used to describe fermions
in the calculations of cross sections and decay rates in the following chapters.

4.1 The Klein–Gordon equation

One of the requirements for a relativistic formulation of quantum mechanics is
that the associated wave equation is Lorentz invariant. The Schrödinger equation,
introduced in Section 2.3.1, is first order in the time derivative and second order
in the spatial derivatives. Because of the different dependence on the time and
space coordinates, the Schrödinger equation is clearly not Lorentz invariant, and
therefore cannot provide a description of relativistic particles. The non-invariance
of the Schrödinger equation under Lorentz transformations is a consequence its
construction from the non-relativistic relationship between the energy of a free
particle and its momentum

E =
p2

2m
.

The first attempt at constructing a relativistic theory of quantum mechanics was
based on the Klein–Gordon equation. The Klein–Gordon wave equation is obtained
by writing the Einstein energy–momentum relationship,

E2 = p2 + m2,

in the form of operators acting on a wavefunction,

Ê2ψ(x, t) = p̂2ψ(x, t) + m2ψ(x, t).

Using the energy and momentum operators identified in Section 2.3.1,

p̂ = −i∇ and Ê = i
∂

∂t
,

80
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this leads to the Klein–Gordon wave equation,

∂2ψ

∂t2 = ∇
2ψ − m2ψ. (4.1)

The Klein–Gordon equation, which is second order in both space and time deriva-
tives, can be expressed in the manifestly Lorentz-invariant form

(∂ µ∂µ + m2)ψ = 0, (4.2)

where

∂ µ∂µ ≡
∂2

∂t2 −
∂2

∂x2 −
∂2

∂y2
− ∂2

∂z2 ,

is the Lorentz-invariant scalar product of two four-vectors.
The Klein–Gordon equation has plane wave solutions,

ψ(x, t) = Nei(p·x−Et), (4.3)

which when substituted into (4.2) imply that

E2ψ = p2ψ + m2ψ,

and thus (by construction) the plane wave solutions to the Klein–Gordon equa-
tion satisfy the Einstein energy–momentum relationship, where the energy of the
particle is related to its momentum by

E = ±
√

p2 + m2.

In classical mechanics, the negative energy solutions can be dismissed as being
unphysical. However, in quantum mechanics all solutions are required to form a
complete set of states, and the negative energy solutions simply cannot be dis-
carded. Whilst it is not clear how the negative energy solutions should be inter-
preted, there is a more serious problem with the associated probability densities.
The expressions for the probability density and probability current for the Klein–
Gordon equation can be identified following the procedure used in Section 2.3.2.
Taking the difference ψ∗ × (4.1) − ψ × (4.1)∗ gives

ψ∗
∂2ψ

∂t2 − ψ
∂2ψ∗

∂t2 = ψ
∗(∇2ψ − m2ψ) − ψ(∇2ψ∗ − m2ψ∗)

⇒ ∂

∂t

(
ψ∗
∂ψ

∂t
− ψ∂ψ

∗

∂t

)
= ∇ · (ψ∗∇ψ − ψ∇ψ∗). (4.4)

Comparison with the continuity equation of (2.20) leads to the identification of
the probability density and probability current for solutions to the Klein–Gordon
equation as

ρ = i
(
ψ∗
∂ψ

∂t
− ψ∂ψ

∗

∂t

)
and j = −i(ψ∗∇ψ − ψ∇ψ∗), (4.5)
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where the factor of i is included to ensure that the probability density is real. For a
plane wave solution, the probability density and current are

ρ = 2|N|2 E and j = 2|N|2 p,

which can be written as a four-vector j µKG = 2|N|2 p µ. The probability density is
proportional to the energy of the particle, which is consistent with the discussion
of relativistic length contraction of Section 3.2.1. However, this implies that the
negative energy solutions have unphysical negative probability densities. From
the presence of negative probability density solutions, it can be concluded that the
Klein–Gordon equation does not provide a consistent description of single particle
states for a relativistic system. It should be noted that this problem does not exist in
quantum field theory, where the Klein–Gordon equation is used to describe multi-
particle excitations of a spin-0 quantum field.

4.2 The Dirac equation

The apparent problems with the Klein–Gordon equation led Dirac (1928) to search
for an alternative formulation of relativistic quantum mechanics. The resulting
wave equation not only solved the problem of negative probability densities, but
also provided a natural description of the intrinsic spin and magnetic moments of
spin-half fermions. Its development represents one of the great theoretical break-
throughs of the twentieth century.

The requirement that relativistic particles satisfy E2 =p2 +m2 results in the
Klein–Gordon wave equation being second order in the derivatives. Dirac looked
for a wave equation that was first order in both space and time derivatives,

Êψ = (α · p̂ + βm)ψ, (4.6)

which in terms of the energy and momentum operators can be written

i
∂

∂t
ψ =

(
−iαx

∂

∂x
− iαy

∂

∂y
− iαz

∂

∂z
+ βm

)
ψ. (4.7)

If the solutions of (4.7) are to represent relativistic particles, they must also sat-
isfy the Einstein energy–momentum relationship, which implies they satisfy the
Klein–Gordon equation. This requirement places strong constraints on the possi-
ble nature of the constants α and β in (4.6). The conditions satisfied by α and β can
be obtained by “squaring” (4.7) to give

−∂
2ψ

∂t2 =

(
iαx

∂

∂x
+ iαy

∂

∂y
+ iαz

∂

∂z
− βm

) (
iαx

∂

∂x
+ iαy

∂

∂y
+ iαz

∂

∂z
− βm

)
ψ,
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which, when written out in gory detail, is

∂2ψ

∂t2 = α
2
x
∂2ψ

∂x2 + α
2
y
∂2ψ

∂y2
+ α2

z
∂2ψ

∂z2 − β
2m2ψ

+ (αxαy + αyαx)
∂2ψ

∂x∂y
+ (αyαz + αzαy)

∂2ψ

∂y∂z
+ (αzαx + αxαz)

∂2ψ

∂z∂x

+ i(αxβ + βαx)m
∂ψ

∂x
+ i(αyβ + βαy)m

∂ψ

∂y
+ i(αzβ + βαz)m

∂ψ

∂z
. (4.8)

In order for (4.8) to reduce to the Klein–Gordon equation,

∂2ψ

∂t2 =
∂2ψ

∂x2 +
∂2ψ

∂y2
+
∂2ψ

∂z2 − m2ψ,

the coefficients α and β must satisfy

α2
x = α

2
y = α

2
z = β

2 = I,

α j β + β α j = 0,

α j αk + αk α j = 0 ( j ! k),

(4.9)

(4.10)

(4.11)

where I represents unity. The anticommutation relations of (4.10) and (4.11) can-
not be satisfied if the αi and β are normal numbers. The simplest mathematical
objects that can satisfy these anticommutation relations are matrices. From the
cyclic property of traces, Tr(ABC)=Tr (BCA), and the requirements that β2 = I and
αi β = −β αi, it is straightforward to show that the αi and βmatrices must have trace
zero:

Tr (αi) = Tr (αi β β) = Tr (β αi β) = −Tr (αi β β) = −Tr (αi) .

Furthermore, it can be shown that the eigenvalues of the αi and β matrices are ±1.
This follows from multiplying the eigenvalue equation,

αiX = λX,

by αi and using α2
i = I, which implies

α2
i X = λαiX ⇒ X = λ2X,

and therefore λ = ±1. Because the sum of the eigenvalues of a matrix is equal to its
trace, and here the matrices have eigenvalues of either +1 or −1, the only way the
trace can be zero is if the αi and β matrices are of even dimension. Finally, because
the Dirac Hamiltonian operator of (4.6),

ĤD = (α · p̂ + βm),
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must be Hermitian in order to have real eigenvalues, the α and β matrices also must
be Hermitian,

αx = α
†
x, αy = α

†
y, αz = α

†
z and β = β†. (4.12)

Hence αx, αy, αz and β are four mutually anticommuting Hermitian matrices of
even dimension and trace zero. Because there are only three mutually anticom-
muting 2 × 2 traceless matrices, for example the Pauli spin-matrices, the lowest
dimension object that can represent αx, αy, αz and β are 4 × 4 matrices. Therefore,
the Dirac Hamiltonian of (4.6) is a 4 × 4 matrix of operators that must act on a
four-component wavefunction, known as a Dirac spinor,

ψ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ψ1

ψ2

ψ3

ψ4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The consequence of requiring the quantum-mechanical wavefunctions for a rela-
tivistic particle satisfy the Dirac equation and be consistent with the Klein–Gordon
equation, is that the wavefunctions are forced to have four degrees of freedom.
Before leaving this point, it is worth noting that, if all particles were massless,
there would be no need for the β term in (4.7) and the α matrices could be rep-
resented by the three Pauli spin-matrices. In this Universe without mass, it would
be possible to describe a particle by a two-component object, known as a Weyl
spinor.

The algebra of the Dirac equation is fully defined by the relations of (4.9)–(4.11)
and (4.12). Nevertheless, it is convenient to introduce an explicit form for αx, αy,
αz and β. The conventional choice is the Dirac–Pauli representation, based on the
familiar Pauli spin-matrices,

β =

(
I 0
0 −I

)
and αi =

(
0 σi

σi 0

)
, (4.13)

with

I =
(

1 0
0 1

)
, σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
and σz =

(
1 0
0 −1

)
.

This is only one possible representation of the α and β matrices. The matrices α′i =
UαiU−1 and β = UβU−1, generated by any 4 × 4 unitary matrix U, are Hermitian
and also satisfy the necessary anticommutation relations. The physical predictions
obtained from the Dirac equation will not depend on the specific representation
used; the physics of the Dirac equation is defined by the algebra satisfied by αx,
αy, αz and β, not by the specific representation.
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4.3 Probability density and probability current

The expressions for the probability density and probability current for solutions
of the Dirac equation can be obtained following a similar procedure to that used
for the Schrödinger and Klein–Gordon equations. Since the wavefunctions are
now four-component spinors, the complex conjugates of wavefunctions have to
be replaced by Hermitian conjugates, ψ∗ →ψ† = (ψ∗)T . The Hermitian conjugate
of the Dirac equation,

−iαx
∂ψ

∂x
− iαy

∂ψ

∂y
− iαz

∂ψ

∂z
+ mβψ = +i

∂ψ

∂t
, (4.14)

is simply

+i
∂ψ†

∂x
α†x + i

∂ψ†

∂y
α†y + i

∂ψ†

∂z
α†z + mψ†β† = −i

∂ψ†

∂t
. (4.15)

Using the fact that the α and β matrices are Hermitian, the combination of ψ† ×
(4.14) − (4.15) × ψ gives

ψ†
(
−iαx

∂ψ

∂x
− iαy

∂ψ

∂y
− iαz

∂ψ

∂z
+ βmψ

)

−
(
i
∂ψ†

∂x
αx + i

∂ψ†

∂y
αy + i

∂ψ†

∂z
αz + mψ†β

)
ψ = iψ†

∂ψ

∂t
+ i

∂ψ†

∂t
ψ.

(4.16)

Equation (4.16) can be simplified by writing

ψ†αx
∂ψ

∂x
+
∂ψ†

∂x
αxψ ≡

∂(ψ†αxψ)
∂x

and ψ†
∂ψ

∂t
+
∂ψ†

∂t
ψ ≡ ∂(ψ†ψ)

∂t
,

giving

∇ · (ψ†αψ) +
∂(ψ†ψ)
∂t

= 0,

where ψ† = (ψ∗1,ψ
∗
2,ψ

∗
3,ψ

∗
4). By comparison with the continuity equation of (2.20),

the probability density and probability current for solutions of the Dirac equation
can be identified as

ρ = ψ†ψ and j = ψ†αψ. (4.17)

In terms of the four components of the Dirac spinors, the probability density is

ρ = ψ†ψ = |ψ1|2 + |ψ2|2 + |ψ3|2 + |ψ4|2,
and thus, all solutions of the Dirac equation have positive probability density. By
requiring that the wavefunctions satisfy a wave equation linear in both space and
time derivatives, in addition to being solutions of the Klein–Gordon equation, Dirac



86 The Dirac equation

solved the perceived problem with negative probability densities. The price is that
particles now have to be described by four-component wavefunctions. The Dirac
equation could have turned out to be a purely mathematical construction with-
out physical relevance. However, remarkably, it can be shown that the additional
degrees of freedom of the four-component wavefunctions naturally describe the
intrinsic angular momentum of spin-half particles and antiparticles. The proof that
the Dirac equation provides a natural description of spin-half particles is given in
the following starred section. It is fairly involved and the details are not essential
to understand the material that follows.

4.4 *Spin and the Dirac equation

In quantum mechanics, the time dependence of an observable corresponding to an
operator Ô is given by (2.29),

dO
dt
=

d
dt
⟨Ô⟩ = i⟨ψ|[Ĥ, Ô]|ψ⟩.

Therefore, if the operator for an observable commutes with the Hamiltonian of
the system, it is a constant of the motion. The Hamiltonian of the free-particle
Schrödinger equation,

ĤS E =
p̂2

2m
,

commutes with the angular momentum operator L̂= r̂× p̂, and thus angular
momentum is a conserved quantity in non-relativistic quantum mechanics. For the
free-particle Hamiltonian of the Dirac equation,

ĤD = α · p̂ + βm, (4.18)

the corresponding commutation relation is

[ĤD, L̂] = [α · p̂ + βm, r̂ × p̂] = [α · p̂, r̂ × p̂]. (4.19)

This can be evaluated by considering the commutation relation for a particular
component of L̂, for example

[ĤD, L̂x] = [α · p̂, (r̂ × p̂)x] = [αx p̂x + αy p̂y + αz p̂z, ŷ p̂z − ẑ p̂y]. (4.20)

The only terms in (4.20) that are non-zero arise from the non-zero position–
momentum commutation relations

[x̂, p̂x] = [ŷ, p̂y] = [ẑ, p̂z] = i,
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giving

[ĤD, L̂x] = αy[ p̂y, ŷ] p̂z − αz[ p̂z, ẑ] p̂y
= −i(αy p̂z − αz p̂y)

= −i(α × p̂)x,

where (α × p̂)x is the x-component of α × p̂. Generalising this result to the other
components of L̂ gives

[ĤD, L̂] = −iα × p̂. (4.21)

Hence, for a particle satisfying the Dirac equation, the “orbital” angular momentum
operator L̂ does not commute with the Dirac Hamiltonian, and therefore does not
correspond to a conserved quantity.

Now consider the 4 × 4 matrix operator Ŝ formed from the Pauli spin-matrices

Ŝ ≡ 1
2 Σ̂ ≡ 1

2

(
σ 0
0 σ

)
, (4.22)

with

Σ̂x =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, Σ̂y =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −i 0 0
i 0 0 0
0 0 0 −i
0 0 i 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and Σ̂z =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Because the α-matrices in the Dirac–Pauli representation and the Σ-matrices are
both derived from the Pauli spin-matrices, they have well-defined commutation
relations. Consequently, the commutator [αi, Σ̂x] can be expressed in terms of the
commutators of the Pauli spin-matrices. Writing the 4 × 4 matrices in 2 × 2 block
form,

[αi, Σ̂x] =
(

0 σi

σi 0

) (
σx 0
0 σx

)
−

(
σx 0
0 σx

) (
0 σi

σi 0

)

=

(
0 [σi,σx]

[σi,σx] 0

)
. (4.23)

The commutation relations,

[σx,σx] = 0, [σy,σx] = −2iσz and [σz,σx] = 2iσy,

imply that (4.23) is equivalent to

[αx,Σx] = 0, (4.24)

[αy,Σx] =
(

0 −2iσz

−2iσz 0

)
= −2iαz, (4.25)

[αz,Σx] =
(

0 2iσy
2iσy 0

)
= 2iαy. (4.26)
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Now consider the commutator of Σ̂x with the Dirac Hamiltonian

[ĤD,Σx] = [α · p̂ + βm,Σx].

It is straightforward to show that [β, Σ̂x] = 0 and hence

[ĤD, Σ̂x] = [α · p̂, Σ̂x] = [αx p̂x + αy p̂y + αz p̂z, Σ̂x]

= p̂x[αx, Σ̂x] + p̂y[αy, Σ̂x] + p̂z[αz, Σ̂x]. (4.27)

Using the commutation relations of (4.24)–(4.26) implies that

[ĤD, Σ̂x] = −2ip̂yαz + 2ip̂zαy

= 2i(α × p̂)x.

Generalising this derivation to the y and z components of [ĤD, Σ̂] and using Ŝ = 1
2 Σ̂

gives the result

[ĤD, Ŝ] = iα × p̂. (4.28)

Because Ŝ does not commute with the Dirac Hamiltonian, the corresponding
observable is not a conserved quantity. However, from (4.21) and (4.28) it can be
seen that the sum Ĵ = L̂+ Ŝ commutes with the Hamiltonian of the Dirac equation,

[
ĤD, Ĵ

]
≡

[
ĤD, L̂ + Ŝ

]
= 0.

Hence Ŝ can be identified as the operator for the intrinsic angular momentum (the
spin) of a particle. The total angular momentum of the particle, associated with the
operator Ĵ = L̂ + Ŝ, is a conserved quantity.

Because the 4× 4 matrix operator Ŝ is defined in terms of the Pauli spin-matrices,

Ŝ = 1
2 Σ̂ =

1
2

(
σ 0
0 σ

)
, (4.29)

its components have the same commutation relations as the Pauli spin-matrices,
for example [Ŝ x, Ŝ y]= iŜ z. These are the same commutation relations satisfied by
the operators for orbital angular momentum, [L̂x, L̂y]= iL̂z, etc. Therefore, from
the arguments of Section 2.3.5, it follows that spin is quantised in exactly the same
way as orbital angular momentum. Consequently, the total spin s can be identified
from the eigenvalue of the operator,

Ŝ
2
=

1
4

(Σ̂2
x + Σ̂

2
y + Σ̂

2
z ) =

3
4

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,
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for which Ŝ
2|s,ms⟩ = s(s + 1)|s,ms⟩. Hence, for any Dirac spinor ψ,

Ŝ
2
ψ = s(s + 1)ψ = 3

4ψ,

and thus a particle satisfying the Dirac equation has intrinsic angular momentum
s = 1

2 . Furthermore, it can be shown (see Appendix B.1) that the operator µ̂ giving
the intrinsic magnetic moment of a particle satisfying the Dirac equation is given by

µ̂ =
q
m

Ŝ, (4.30)

where q and m are respectively the charge and mass of the particle. Hence Ŝ has
all the properties of the quantum-mechanical spin operator for a Dirac spinor.
The Dirac equation therefore provides a natural description of spin-half particles.
This is a profound result, spin emerges as a direct consequence of requiring the
wavefunction to satisfy the Dirac equation.

4.5 Covariant form of the Dirac equation

Up to this point the Dirac equation has been expressed in terms of the α- and β-
matrices. This naturally brings out the connection with spin. However, the Dirac
equation is usually expressed in the form which emphasises its covariance. This is
achieved by first pre-multiplying the Dirac equation of (4.7) by β to give

iβαx
∂ψ

∂x
+ iβαy

∂ψ

∂y
+ iβαz

∂ψ

∂z
+ iβ

∂ψ

∂t
− β2mψ = 0. (4.31)

By defining the four Dirac γ-matrices as

γ0 ≡ β, γ1 ≡ βαx, γ2 ≡ βαy and γ3 ≡ βαz,

and using β2 = I, equation (4.31) becomes

iγ0 ∂ψ

∂t
+ iγ1 ∂ψ

∂x
+ iγ2 ∂ψ

∂y
+ iγ3 ∂ψ

∂z
− mψ = 0.

By labelling the four γ-matrices by the index µ, such that γ µ = (γ0, γ1, γ2, γ3), and
using the definition of the covariant four-derivative

∂µ ≡ (∂0, ∂1, ∂2, ∂3) ≡
(
∂

∂t
,
∂

∂x
,
∂

∂y
,
∂

∂z

)
,

the Dirac equation can be expressed in the covariant form

(iγ µ∂µ − m)ψ = 0, (4.32)
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with the index µ being treated as the Lorentz index of a four-vector and, as usual,
summation over repeated indices is implied. Despite the suggestive way in which
(4.32) is written, it is important to realise that the Dirac γ-matrices are not
four-vectors; they are constant matrices which are invariant under Lorentz trans-
formations. Hence, the Lorentz covariance of the Dirac equation, which means that
it applies in all rest frames, is not immediately obvious from Equation (4.32). The
proof of the covariance of the Dirac equation and the derivation of the Lorentz
transformation properties of Dirac spinors is quite involved and is deferred to
Appendix B.2.

The properties of the γ-matrices can be obtained from the properties of the
α- and β-matrices given in (4.9), (4.11) and (4.12). For example, using β2 = I, α2

x = I
and βαx =−αx β, it follows that

(γ1)2 = βαx βαx = −αx ββαx = −α2
x = −I.

Similarly, it is straightforward to show that the products of two γ-matrices satisfy

(γ0)2 = I,

(γk)2 = −I,

and γ µγν = −γνγ µ for µ ! ν,

where the convention used here is that the index k= 1, 2 or 3. The above expres-
sions can be written succinctly as the anticommutation relation

{γ µ, γν} ≡ γ µγν + γνγ µ = 2gµν. (4.33)

The γ0 matrix, which is equivalent to β, is Hermitian and it is straightforward to
show that the other three gamma matrices are anti-Hermitian, for example,

γ1† = (βαx)† = α†x β
† = αx β = −βαx = −γ1,

and hence

γ0† = γ0 and γk† = −γk. (4.34)

Equations (4.33) and (4.34) fully define the algebra of the γ-matrices, which
in itself is sufficient to define the properties of the solutions of the Dirac equa-
tion. Nevertheless, from a practical and pedagogical perspective, it is convenient to
consider a particular representation of the γ-matrices. In the Dirac–Pauli represen-
tation, the γ-matrices are

γ0 = β =

(
I 0
0 −I

)
and γk = βαk =

(
0 σk

−σk 0

)
,
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where the α- and β-matrices are those defined previously. Hence in the Dirac–Pauli
representation,

γ0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, γ1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

γ2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 −i
0 0 i 0
0 i 0 0
−i 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, γ3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0
0 0 0 −1
−1 0 0 0

0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(4.35)

4.5.1 The adjoint spinor and the covariant current

In Section 4.3, it was shown that the probability density and the probability current
for a wavefunction satisfying the Dirac equation are respectively given by ρ = ψ†ψ
and j = ψ†αψ. These two expressions can be written compactly as

j µ = (ρ, j) = ψ†γ0γ µψ, (4.36)

which follows from (γ0)2 = 1 and γ0γk = ββαk =αk. By considering the Lorentz
transformation properties of the four components of j µ, as defined in (4.36), it can
be shown (see Appendix B.3) that j µ is a four-vector. Therefore, the continuity
equation (2.20), which expresses the conservation of particle probability,

∂ρ

∂t
+ ∇ · j = 0,

can be written in the manifestly Lorentz-invariant form of a four-vector scalar
product

∂µ j µ = 0.

The expression for the four-vector current, j µ =ψ†γ0γ µψ, can be simplified by
introducing the adjoint spinor ψ, defined as

ψ ≡ ψ†γ0.

The definition of the adjoint spinor allows the four-vector current j µ to be written
compactly as

j µ = ψγ µψ. (4.37)
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For completeness, it is noted that in the Dirac–Pauli representation of the
γ-matrices, the adjoint spinor is simply

ψ = ψ†γ0 = (ψ∗)Tγ0 = (ψ∗1,ψ
∗
2,ψ

∗
3,ψ

∗
4)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= (ψ∗1,ψ

∗
2,−ψ∗3,−ψ∗4).

4.6 Solutions to the Dirac equation

The ultimate aim of this chapter is to identify explicit forms for the wavefunctions
of spin-half particles that will be used in the matrix element calculations that fol-
low. It is natural to commence this discussion by looking for free-particle plane
wave solutions of the form

ψ(x, t) = u(E,p)ei(p·x−Et), (4.38)

where u(E,p) is a four-component Dirac spinor and the overall wavefunction
ψ(x, t) satisfies the Dirac equation

(iγ µ∂µ − m)ψ = 0. (4.39)

The position and time dependencies of the plane waves described by (4.38) occur
solely in exponent; the four-component spinor u(E,p) is a function of the energy
and momentum of the particle. Hence the derivatives ∂µψ act only on the exponent
and therefore,

∂0ψ ≡
∂ψ

∂t
= −iEψ, ∂1ψ ≡

∂ψ

∂x
= ipxψ, ∂2ψ = ipyψ and ∂3ψ = ipzψ.

(4.40)

Substituting the relations of (4.40) back into (4.39) gives

(γ0E − γ1 px − γ2 py − γ3 pz − m)u(E,p)ei(p·x−Et) = 0,

and therefore the four-component Dirac spinor u(E,p) satisfies

(γ µpµ − m) u = 0, (4.41)

where, because of the covariance of the Dirac equation, the index µ on the
γ-matrices can be treated as a four-vector index. Equation (4.41), which contains
no derivatives, is the free-particle Dirac equation for the spinor u written in terms
of the four-momentum of the particle.
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4.6.1 Particles at rest

For a particle at rest with p= 0, the free-particle wavefunction is simply

ψ = u(E, 0)e−iEt,

and thus (4.41) reduces to

Eγ0u = mu.

This can be expressed as an eigenvalue equation for the components of the spinor

E

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

φ1

φ2

φ3

φ4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= m

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

φ1

φ2

φ3

φ4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Because γ0 is diagonal, this yields four orthogonal solutions. The first two,

u1(E, 0) = N

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and u2(E, 0) = N

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
1
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (4.42)

have positive energy eigenvalues, E = +m. The other two solutions,

u3(E, 0) = N

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
1
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and u4(E, 0) = N

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (4.43)

have negative energy eigenvalues, E =−m. In all cases N determines the nor-
malisation of the wavefunction. These four states are also eigenstates of the Ŝ z

operator, as defined in Section 4.4. Hence u1(E, 0) and u2(E, 0) represent spin-up
and spin-down positive energy solutions to the Dirac equation, and u3(E, 0) and
u4(E, 0) represent spin-up and spin-down negative energy solutions. The four solu-
tions to the Dirac equation for a particle at rest, including the time dependence, are
therefore

ψ1 = N

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

e−imt, ψ2 = N

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
1
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

e−imt, ψ3 = N

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
1
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

e+imt and ψ4 = N

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

e+imt.

4.6.2 General free-particle solutions

The general solutions of the free-particle Dirac equation for a particle with momen-
tum p can be obtained from the solutions for a particle at rest, using the Lorentz



94 The Dirac equation

transformation properties of Dirac spinors derived in Appendix B.2. However, it
is more straightforward to solve directly the Dirac equation for the general plane
wave solution of (4.38). The Dirac equation for the spinor u(E,p) given in (4.41)
when written in full is

(Eγ0 − pxγ
1 − pyγ2 − pzγ

3 − m)u = 0.

This can be expressed in matrix form using the Dirac–Pauli representation of the
γ-matrices, giving

[(
I 0
0 −I

)
E −

(
0 σ · p

−σ · p 0

)
− m

(
I 0
0 I

)]
u = 0, (4.44)

where the 4× 4 matrix multiplying the four-component spinor u has been expressed
in 2 × 2 block matrix form with

σ · p ≡ σx px + σx py + σx pz =

(
pz px − ipy

px + ipy −pz

)
.

Writing the spinor u in terms of two two-component column vectors, uA and uB,

u =
(

uA

uB

)
,

allows (4.44) to be expressed as
(

(E − m)I −σ · p
σ · p −(E + m)I

) (
uA

uB

)
= 0,

giving coupled equations for uA in terms of uB,

uA =
σ · p
E − m

uB, (4.45)

uB =
σ · p
E + m

uA. (4.46)

Two solutions to the free-particle Dirac equation, u1 and u2, can be found by taking
the two simplest orthogonal choices for uA,

uA =

(
1
0

)
and uA =

(
0
1

)
. (4.47)

The corresponding components of uB, given by (4.46), are

uB =
σ · p
E + m

=
1

E + m

(
pz px − ipy

px + ipy −pz

)
uA,
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and thus the first two solutions of the free-particle Dirac equation are

u1(E,p) = N1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
pz

E+m
px+ipy
E+m

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and u2(E,p) = N2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
1

px−ipy
E+m−pz
E+m

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where N1 and N2 determine the wavefunction normalisation. It should be noted
that whilst the choice of the two orthogonal forms for uA is arbitrary, any other
orthogonal choice would have been equally valid, since a general (E > 0) spinor
can be expressed as a linear combination of u1 and u2. Choosing the forms of uA of
(4.47) is analogous to choosing a particular basis for spin where conventionally the
z-axis is chosen to label the states. The two other solutions of the Dirac equation
can be found by writing

uB =

(
1
0

)
and uB =

(
0
1

)
,

and using (4.45) to give the corresponding components for uA. The four orthogonal
plane wave solutions to the free-particle Dirac equation of the form

ψi = ui(E,p)ei(p·x−Et)

are therefore

u1 = N1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
pz

E+m
px+ipy
E+m

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, u2 = N2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
1

px−ipy
E+m−pz
E+m

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, u3 = N3

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

pz
E−m

px+ipy
E−m
1
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

u4 = N4

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

px−ipy
E−m−pz
E−m
0
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (4.48)

If any one of these four spinors is substituted back into the Dirac equation, the
Einstein energy–momentum relation E2 = p2 +m2 is recovered. In the limit p= 0,
the spinors u1 and u2 reduce to the E > 0 spinors for a particle at rest given in (4.42).
Hence u1 and u2 can be identified as the positive energy spinors with

E = +
∣∣∣∣
√

p2 + m2
∣∣∣∣ ,

and u3 and u4 are the negative energy particle spinors with

E = −
∣∣∣∣
√

p2 + m2
∣∣∣∣ .
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The same identification of u1 and u2 as being the positive energy spinors, and u3

and u4 as the negative energy spinors, can be reached by transforming the solu-
tions for a particle at rest into the frame where the particle has momentum p (see
Appendix B.2).

At this point it is reasonable to ask whether it is possible to interpret all four
solutions of (4.48) as having E > 0. The answer is no, as if this were the case, the
exponent of the wavefunction,

ψ(x, t) = u(E,p)ei(p·x−Et),

would be the same for all four solutions. In this case the four solutions no longer
would be independent since, for example, it would be possible to express u1 as the
linear combination

u1 =
pz

E + m
u3 +

px + ipy
E + m

u4.

Hence, there are only four independent solutions to the Dirac equation when two
are taken to have E < 0; it is not possible to avoid the need for the negative energy
solutions. The same conclusion can be reached from the fact that the Dirac Hamil-
tonian is a 4 × 4 matrix with trace zero, and therefore the sum of its eigenvalues is
zero, implying equal numbers of positive and negative energy solutions.

4.7 Antiparticles

The Dirac equation provides a beautiful mathematical framework for the relativis-
tic quantum mechanics of spin-half fermions in which the properties of spin and
magnetic moments emerge naturally. However, the presence of negative energy
solutions is unavoidable. In quantum mechanics, a complete set of basis states is
required to span the vector space, and therefore the negative energy solutions can-
not simply be discarded as being unphysical. It is therefore necessary to provide a
physical interpretation for the negative energy solutions.

4.7.1 The Dirac sea interpretation

If negative energy solutions represented accessible negative energy particle states,
one would expect that all positive energy electrons would fall spontaneously into
these lower energy states. Clearly this does not occur. To avoid this apparent contra-
diction, Dirac proposed that the vacuum corresponds to the state where all negative
energy states are occupied, as indicated in Figure 4.1. In this “Dirac sea” picture,
the Pauli exclusion principle prevents positive energy electrons from falling into
the fully occupied negative energy states. Furthermore, a photon with energy
E > 2me could excite an electron from a negative energy state, leaving a hole in
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. . . . 

. . . . 

. . . . !Fig. 4.1 The Dirac interpretation of negative energy solutions as holes in the vacuum that correspond to antiparticle
states.

the vacuum. A hole in the vacuum would correspond to a state with more energy
(less negative energy) and a positive charge relative to the fully occupied vacuum.
In this way, holes in the Dirac sea correspond to positive energy antiparticles with
the opposite charge to the particle states. The Dirac sea interpretation thus pro-
vides a picture for e+e− pair production and also particle–antiparticle annihilation
(shown in Figure 4.1). The discovery of positively charged electrons in cosmic-ray
tracks in a cloud chamber, Anderson (1933), provided the experimental confir-
mation that the antiparticles predicted by Dirac corresponded to physical observ-
able states.

Nowadays, the Dirac sea picture of the vacuum is best viewed in terms of his-
torical interest. It has a number of conceptual problems. For example, antiparticle
states for bosons are also observed and in this case the Pauli exclusion principle
does not apply. Furthermore, the fully occupied Dirac sea implies that the vacuum
has infinite negative energy and it is not clear how this can be interpreted physi-
cally. The negative energy solutions are now understood in terms of the Feynman–
Stückelberg interpretation.

4.7.2 The Feynman–Stückelberg interpretation

It is an experimentally established fact that for each fundamental spin-half parti-
cle there is a corresponding antiparticle. The antiparticles produced in accelerator
experiments have the opposite charges compared to the corresponding particle.
Apart from possessing different charges, antiparticles behave very much like parti-
cles; they propagate forwards in time from the point of production, ionise the gas in
tracking detectors, produce the same electromagnetic showers in the calorimeters
of large collider particle detectors, and undergo many of the same interactions as
particles. It is not straightforward to reconcile these physical observations with the
negative energy solutions that emerge from the abstract mathematics of the Dirac
equation.
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Eγ = 2E Eγ = 2E

e-(E > 0)

e-(E < 0)

e-(E > 0)

e+(E > 0)

γ γ

!Fig. 4.2 (left) The process of e+e− annihilation in terms of a positive energy electron producing a photon and a neg-
ative energy electron propagating backwards in time. (right) The Feynman–Stückelberg interpretation with
a positive energy positron propagating forwards in time. In both diagrams, time runs from the left to right.

The modern interpretation of the negative energy solutions, due to Stückelberg
and Feynman, was developed in the context of quantum field theory. The E < 0
solutions are interpreted as negative energy particles which propagate backwards
in time. These negative energy particle solutions correspond to physical positive
energy antiparticle states with opposite charge, which propagate forwards in time.
Since the time dependence of the wavefunction, exp (−iEt), is unchanged under
the simultaneous transformation E→− E and t→− t these two pictures are math-
ematically equivalent,

exp {−iEt} ≡ exp {−i(−E)(−t)}.

To illustrate this idea, Figure 4.2 shows the process of electron–positron
annihilation in terms of negative energy particle solutions and in the Feynman–
Stückelberg interpretation of these solutions as positive energy antiparticles. In the
left plot, an electron of energy E emits a photon with energy 2E and, to conserve
energy, produces a electron with energy −E, which being a negative energy solution
of the Dirac equation propagates backwards in time. In the Feynman–Stückelberg
interpretation, shown on the right, a positive energy positron of energy E annihi-
lates with the electron with energy E to produce a photon of energy 2E. In this case,
both the particle and antiparticle propagate forwards in time. It should be noted that
although antiparticles propagate forwards in time, in a Feynman diagram they are
still drawn with an arrow in the “backwards in time” sense, as shown in the left
plot of Figure 4.2.

4.7.3 Antiparticle spinors

In principle, it is possible to perform calculations with the negative energy par-
ticle spinors u3 and u4. However, this necessitates remembering that the energy
which appears in the definition of the spinor is the negative of the physical energy.
Furthermore, because u3 and u4 are interpreted as propagating backwards in time,
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the momentum appearing in the spinor is the negative of the physical momentum.
To avoid this possible confusion, it is more convenient to work with antiparticle
spinors written in terms of the physical momentum and physical energy,
E =+ |

√
p2 +m2 |. Following the Feynman–Stückelberg interpretation, the negative

energy particle spinors, u3 and u4, can be rewritten in terms of the physical positive
energy antiparticle spinors, v1 and v2, simply by reversing the signs of E and p
to give

v1(E,p)e−i(p·x−Et) = u4(−E,−p)ei[−p·x−(−E)t]

v2(E,p)e−i(p·x−Et) = u3(−E,−p)ei[−p·x−(−E)t].

A more formal approach to identifying the antiparticle spinors is to look for
solutions of the Dirac equation of the form

ψ(x, t) = v(E,p)e−i(p·x−Et), (4.49)

where the signs in the exponent are reversed with respect to those of (4.38). For
E > 0, the wavefunctions of (4.49) still represent negative energy solutions in the
sense that

i
∂

∂t
ψ = −Eψ.

Substituting the wavefunction of (4.49) into the Dirac equation, (iγ µ∂µ − m)ψ= 0,
gives

(−γ0E + γ1 px + γ
2 py + γ3 pz − m)v = 0,

which can be written as

(γ µpµ + m)v = 0.

This is the Dirac equation in terms of momentum for the v spinors. Proceeding as
before and writing

v =

(
vA
vB

)
,

leads to

vA =
σ · p
E + m

vB and vB =
σ · p
E − m

vA,
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giving the solutions

v1 = N

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

px−ipy
E+m−pz
E+m
0
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, v2 = N

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

pz
E+m

px+ipy
E+m
1
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, v3 = N

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
pz

E−m
px+ipy
E−m

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

v4 = N

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
1

px−ipy
E−m−pz
E−m

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (4.50)

where

E = +
∣∣∣∣
√

p2 + m2
∣∣∣∣

for v1 and v2, and

E = −
∣∣∣∣
√

p2 + m2
∣∣∣∣

for v3 and v4. Hence we have now identified eight solutions to the free particle
Dirac equation, given in (4.48) and (4.50). Of these eight solutions, only four
are independent. In principle it would be possible to perform calculations using
only the u-spinors, or alternatively using only the v-spinors. Nevertheless, it is
more natural to work with the four solutions for which the energy that appears
in the spinor is the positive physical energy of the particle/antiparticle, namely
{u1, u2, v1, v2}.

To summarise, in terms of the physical energy, the two particle solutions to the
Dirac equation are

ψi = uie+i(p·x−Et)

with

u1(p) =
√

E + m

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
pz

E+m
px+ipy
E+m

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and u2(p) =
√

E + m

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
1

px−ipy
E+m−pz
E+m

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (4.51)

and the two antiparticle solutions are

ψi = vie−i(p·x−Et)
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with

v1(p) =
√

E + m

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

px−ipy
E+m−pz
E+m
0
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and v2(p) =
√

E + m

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

pz
E+m

px+ipy
E+m
1
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (4.52)

Wavefunction normalisation
The spinors in (4.51) and (4.52) have been normalised to the conventional 2E par-
ticles per unit volume. This required normalisation factor can be found from the
definition of probability density, ρ = ψ†ψ, which for ψ = u1(p) exp i(p · x − Et) is

ρ = ψ†ψ = (ψ∗)Tψ = u†1u1.

Using the explicit form for u1 of (4.48) gives

u†1u1 = |N|2
⎛
⎜⎜⎜⎜⎜⎝1 +

p2
z

(E + m)2 +
p2

x + p2
y

(E + m)2

⎞
⎟⎟⎟⎟⎟⎠ = |N|2

2E
E + m

.

Hence, to normalise the wavefunctions to 2E particles per unit volume implies

N =
√

E + m.

The same normalisation factor is obtained for the u and v spinors.

4.7.4 Operators and the antiparticle spinors

There is a subtle, but nevertheless important, point related to using the antiparticle
spinors written in terms of the physical energy and momenta,

ψ = v(E,p)e−i(p·x−Et).

The action of the normal quantum mechanical operators for energy and momentum
do not give the physical quantities,

Ĥψ = i
∂ψ

∂t
= −Eψ and p̂ψ = −i∇ψ = −pψ.

The minus signs should come as no surprise; the antiparticle spinors are still the
negative energy particle solutions of the Dirac equation, albeit expressed in terms of
the physical (positive) energy E and physical momentum p of the antiparticle. The
operators which give the physical energy and momenta of the antiparticle spinors
are therefore

Ĥ(v) = −i
∂

∂t
and p̂(v) = +i∇,
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where the change of sign reflects the Feynman–Stückelberg interpretation of the
negative energy solutions. Furthermore, with the replacement (E,p) → (−E,−p),
the orbital angular momentum of a particle

L = r × p→ −L.

In order for the commutator [ĤD, L̂+ Ŝ] to remain zero for the antiparticle spinors,
the operator giving the physical spin states of the v spinors must be

Ŝ
(v)
= −Ŝ,

where Ŝ is defined in (4.29). Reverting (very briefly) to the the Dirac sea picture,
a spin-up hole in the negative energy particle sea, leaves the vacuum in a net spin-
down state.

4.7.5 *Charge conjugation

Charge conjugation is an important example of a discrete symmetry transformation
that will be discussed in depth in Chapter 14. The effect of charge conjugation is
to replace particles with the corresponding antiparticles and vice versa. In classical
dynamics, the motion of a charged particle in an electromagnetic field Aµ = (φ,A)
can be obtained by making the minimal substitution

E → E − qφ and p→ p − qA, (4.53)

where φ and A are the scalar and vector potentials of electromagnetism and q is the
charge of the particle. In four-vector notation, (4.53) can be written

pµ → pµ − qAµ. (4.54)

Following the canonical procedure for moving between classical physics and quan-
tum mechanics and replacing energy and momentum by the operators p̂ = −i∇ and
Ê = i∂/∂t, Equation (4.54) can be written in operator form as

i∂µ → i∂µ − qAµ. (4.55)

The Dirac equation for an electron with charge q=− e (where e≡+ |e| is the mag-
nitude of the electron charge) in the presence of an electromagnetic field can be
obtained by making the minimal substitution of (4.55) in the free-particle Dirac
equation, giving

γ µ(∂µ − ieAµ)ψ + imψ = 0. (4.56)

The equivalent equation for the positron can be obtained by first taking the complex
conjugate of (4.56) and then pre-multiplying by −iγ2 to give

−iγ2(γ µ)∗(∂µ + ieAµ)ψ∗ − mγ2ψ∗ = 0. (4.57)
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In the Dirac–Pauli representation of the γ-matrices, (γ0)∗ = γ0, (γ1)∗ = γ1, (γ2)∗ =
− γ2 and (γ3)∗ = γ3. Using these relations and γ2γ µ =− γ µγ2 for µ! 2, Equation
(4.57) becomes

γ µ(∂µ + ieAµ)iγ2ψ∗ + im iγ2ψ∗ = 0. (4.58)

If ψ′ is defined as

ψ′ = iγ2ψ∗,

then (4.58) can be written

γ µ(∂µ + ieAµ)ψ′ + imψ′ = 0. (4.59)

The equation satisfied by ψ′ is the same as that for ψ (4.56), except that the ieAµ
term now appears with the opposite sign. Hence, ψ′ is a wavefunction describing a
particle which has the same mass as the original particle but with opposite charge;
ψ′ can be interpreted as the antiparticle wavefunction. In the Dirac–Pauli represen-
tation, the charge conjugation operator Ĉ, which transforms a particle wavefunction
into the corresponding antiparticle wavefunction, therefore can be identified as

ψ′ = Ĉψ = iγ2ψ∗.

The identification of Ĉ as the charge conjugation operator can be confirmed by
considering its effect on the particle spinor

ψ = u1ei(p·x−Et).

The corresponding charge-conjugated wavefunction ψ′ is

ψ′ = Ĉψ = iγ2ψ∗ = iγ2u∗1e−i(p·x−Et).

The spinor part of ψ′ is

iγ2u∗1 = i

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 −i
0 0 i 0
0 i 0 0
−i 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

√
E + m

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
pz

E+m
px+ipy
E+m

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∗

=
√

E + m

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

px−ipy
E+m−pz
E+m
0
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

which is the antiparticle spinor v1 identified in Section 4.7.3. The effect of the
charge-conjugation operator on the u1 particle spinor is

ψ = u1ei(p·x−Et) Ĉ−→ ψ′ = v1e−i(p·x−Et),

and likewise (up to a unobservable overall complex phase) the effect on u2 is

ψ = u2ei(p·x−Et) Ĉ−→ ψ′ = v2e−i(p·x−Et).



104 The Dirac equation

Therefore, the effect of the charge-conjugation operator on the particle spinors u1

and u2 is to transform them respectively to the antiparticle spinors v1 and v2.

4.8 Spin and helicity states

For particles at rest, the spinors u1(E, 0) and u2(E, 0) of (4.42) are clearly eigen-
states of

Ŝz =
1
2Σz =

1
2

(
σz 0
0 σz

)
= 1

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

and therefore represent “spin-up” and “spin-down” eigenstates of the z-component
of the spin operator. However, from the forms of the u and v spinors, given in (4.51)
and (4.52), it is immediately apparent that the u1, u2, v1 and v2 spinors are not in
general eigenstates of Ŝz. Nevertheless, for particles/antiparticles travelling in the
±z-direction (p= ± pẑ), the u and v spinors are

u1 = N

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
±p

E+m
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, u2 = N

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
1
0
∓p

E+m

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, v1 = N

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
∓p

E+m
0
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and v2 = N

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

±p
E+m
0
1
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

and therefore

Ŝz u1(E, 0, 0,±p) = + 1
2 u1(E, 0, 0,±p),

Ŝz u2(E, 0, 0,±p) = − 1
2 u2(E, 0, 0,±p).

For antiparticle spinors, the physical spin is given by the operator Ŝ (v)
z =− Ŝz and

therefore

Ŝ (v)
z v1(E, 0, 0,±p) ≡ −Ŝzv1(E, 0, 0,±p) = + 1

2v1(E, 0, 0,±p),

Ŝ (v)
z v2(E, 0, 0,±p) ≡ −Ŝzv2(E, 0, 0,±p) = − 1

2v2(E, 0, 0,±p).

Hence for a particle/antiparticle with momentum p= (0, 0,±p), the u1 and v1
spinors represent spin-up states and the u2 and v2 spinors represent spin-down
states, as indicated in Figure 4.3.

z
u1 u1u2 u2

z
v2v1 v1 v2!Fig. 4.3 The u1, u2, v1 and v2 spinors for particles/antiparticles travelling in the±z-direction.
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4.8.1 Helicity

In the chapters that follow, interaction cross sections will be analysed in terms of
the spin states of the particles involved. Since the u1, u2, v1 and v2 spinors only
map onto easily identified spin states for particles travelling in the z-direction, their
use for this purpose is limited. Furthermore, since Ŝz does not commute with the
Dirac Hamiltonian, [ĤD, Ŝz] ! 0, it is not possible to define a basis of simulta-
neous eigenstates of Ŝz and ĤD. Rather than defining basis states in terms of an
external axis, it is more natural to introduce to concept of helicity. As illustrated in
Figure 4.4, the helicity h of a particle is defined as the normalised component of its
spin along its direction of flight,

h ≡ S · p
p
. (4.60)

For a four-component Dirac spinor, the helicity operator is

ĥ =
Σ̂ · p̂
2p
=

1
2p

(
σ · p̂ 0

0 σ · p̂

)
, (4.61)

where p̂ is the momentum operator. From the form of the Dirac Hamiltonian (4.18),
it follows that [ĤD, Σ̂ · p̂]= 0 and therefore ĥ commutes with the free-particle
Hamiltonian. Consequently, it is possible to identify spinor states which are simul-
taneous eigenstates of the free particle Dirac Hamiltonian and the helicity oper-
ator. For a spin-half particle, the component of spin measured along any axis is
quantised to be either ±1/2. Consequently, the eigenvalues of the helicity operator
acting on a Dirac spinor are ±1/2. The two possible helicity states for a spin-
half fermion are termed right-handed and left-handed helicity states, as shown in
Figure 4.5. Whilst helicity is an important concept in particle physics, it is impor-
tant to remember that helicity is not Lorentz invariant; for particles with mass, it
is always possible to transform into a frame in which the direction of the parti-
cle is reversed. The related Lorentz-invariant concept of chirality is introduced in
Chapter 6.

h = S · p

S

p

p!Fig. 4.4 The definition of helicity as the projection of the spin of a particle along its direction of motion.
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RH LH

h = h =−1
2+ −1

2-!Fig. 4.5 The two helicity eigenstates for a spin-half fermion. The h = +1/2 and h = −1/2 states are respectively
referred to as right-handed (RH) and left-handed (LH) helicity states.

The simultaneous eigenstates of the free particle Dirac Hamiltonian and the
helicity operator are solutions to the Dirac equation which also satisfy the eigen-
value equation,

ĥu = λu.

Writing the spinor in terms of two two-component column vectors uA and uB, and
using the helicity operator defined above, this eigenvalue equation can be written

1
2p

(
σ · p 0

0 σ · p

) (
uA

uB

)
= λ

(
uA

uB

)
,

implying that

(σ · p)uA = 2p λuA, (4.62)

(σ · p)uB = 2p λuB. (4.63)

The eigenvalues of the helicity operator can be obtained by multiplying (4.62) by
σ · p and noting (see Problem 4.10) that (σ · p)2 = p2, from which it follows that

p2uA = 2pλ(σ · p)uA = 4p2λ2uA,

and therefore, as anticipated, λ = ±1/2. Because the spinors corresponding to the
two helicity states are also eigenstates of the Dirac equation, uA and uB are related
by (4.46),

(σ · p)uA = (E + m)uB,

which when combined with (4.62) gives

uB = 2λ
( p

E + m

)
uA. (4.64)

Therefore for a helicity eigenstate, uB is proportional to uA and once (4.62) is
solved to obtain uA, the corresponding equation for uB (4.63) is automatically
satisfied.

Equation (4.62) is most easily solved by expressing the helicity states in terms
of spherical polar coordinates where

p = (p sin θ cos φ, p sin θ sin φ, p cos θ),
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and the helicity operator can be written as

1
2p

(σ · p) =
1
2p

(
pz px − ipy

px + ipy −pz

)

=
1
2

(
cos θ sin θe−iφ

sin θeiφ − cos θ

)
.

Writing the components of uA as

uA =

(
a
b

)
,

the eigenvalue equation of (4.62) becomes
(

cos θ sin θe−iφ

sin θeiφ − cos θ

) (
a
b

)
= 2λ

(
a
b

)
,

and therefore the ratio of b/a is equal to

b
a
=

2λ − cos θ
sin θ

eiφ.

For the right-handed helicity state with λ = +1/2,

b
a
=

1 − cos θ
sin θ

eiφ =
2 sin2

(
θ
2

)

2 sin
(
θ
2

)
cos

(
θ
2

)eiφ = eiφ
sin

(
θ
2

)

cos
(
θ
2

) .

Using the relation between uA and uB from (4.64), the right-handed helicity particle
spinor, denoted u↑, then can be identified as

u↑ = N

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cos
(
θ
2

)

eiφ sin
(
θ
2

)

p
E+m cos

(
θ
2

)

p
E+m eiφ sin

(
θ
2

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where N =
√

E + m is the overall normalisation factor. The left-handed helicity
spinor with h=− 1/2, denoted u↓, can be found in the same manner and thus the
right-handed and left-handed helicity particle spinors, normalised to 2E particles
per unit volume, are

u↑ =
√

E + m

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c
seiφ

p
E+m c
p

E+m seiφ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

u↓ =
√

E + m

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−s
ceiφ

p
E+m s

− p
E+m ceiφ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (4.65)
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LH

Particles

u↑ u↓

RH LH

Antiparticles

v↑ v↓

RH

!Fig. 4.6 The helicity eigenstates for spin-half particles and antiparticles.

where s= sin
(
θ
2

)
and c= cos

(
θ
2

)
. The corresponding antiparticle states, v↑ and v↓,

are obtained in the same way remembering that the physical spin of an antiparticle
spinor is given by Ŝ

(v)
=− Ŝ, and hence for the h = +1/2 antiparticle state

(
Σ · p
2p

)
v↑ = − 1

2v↑.

The resulting normalised antiparticle helicity spinors are

v↑ =
√

E + m

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p
E+m s

− p
E+m ceiφ

−s
ceiφ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
v↓ =

√
E + m

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p
E+m c
p

E+m seiφ

c
seiφ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (4.66)

The four helicity states of (4.65) and (4.66), which correspond to the states shown
in Figure 4.6, form the helicity basis that is used to describe particles and antipar-
ticles in the calculations that follow. In many of these calculations, the energies
of the particles being considered are much greater than their masses. In this ultra-
relativistic limit (E ≫ m) the helicity eigenstates can be approximated by

u↑ ≈
√

E

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c
seiφ

c
seiφ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, u↓ ≈

√
E

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−s
ceiφ

s
−ceiφ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, v↑ ≈

√
E

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

s
−ceiφ

−s
ceiφ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and v↓ ≈
√

E

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c
seiφ

c
seiφ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (4.67)

It should be remembered that the above spinors all can be multiplied by an overall
complex phase with no change in any physical predictions.

4.9 Intrinsic parity of Dirac fermions

Charge conjugation, discussed in Section 4.7.5, is one example of a discrete sym-
metry transformation, particle ↔ antiparticle. Another example is the parity
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transformation, which corresponds to spatial inversion through the origin,

x′ = −x, y′ = −y, z′ = −z and t′ = t.

Parity is an important concept in particle physics because both the QED and QCD
interactions always conserve parity. To understand why this is the case (which is
explained in Chapter 11), we will need to use the parity transformation properties
of Dirac spinors and will need to identify the corresponding parity operator which
acts on solutions of the Dirac equation.

Suppose ψ is a solution of the Dirac equation and ψ′ is the corresponding solu-
tion in the “parity mirror” obtained from the action of the parity operator P̂
such that

ψ→ ψ′ = P̂ψ.

From the definition of the parity operation, the effect of two successive parity
transformations is to recover the original wavefunction. Consequently P̂2 = I
and thus

ψ′ = P̂ψ ⇒ P̂ψ′ = ψ.

The form of the parity operator can be deduced by considering a wavefunction
ψ(x, y, z, t) which satisfies the free-particle Dirac equation,

iγ1 ∂ψ

∂x
+ iγ2 ∂ψ

∂y
+ iγ3 ∂ψ

∂z
− mψ = −iγ0 ∂ψ

∂t
. (4.68)

The parity transformed wavefunction ψ′(x′, y′, z′, t′)= P̂ψ(x, y, z, t) must satisfy the
Dirac equation in the new coordinate system

iγ1 ∂ψ
′

∂x′
+ iγ2 ∂ψ

′

∂y′
+ iγ3 ∂ψ

′

∂z′
− mψ′ = −iγ0 ∂ψ

′

∂t′
. (4.69)

Writing ψ= P̂ψ′, equation (4.68) becomes

iγ1P̂
∂ψ′

∂x
+ iγ2P̂

∂ψ′

∂y
+ iγ3P̂

∂ψ′

∂z
− mP̂ψ′ = −iγ0P̂

∂ψ′

∂t
.

Premultiplying by γ0 and expressing the derivatives in terms of the primed system
(which introduces minus signs for all the space-like coordinates) gives

−iγ0γ1P̂
∂ψ′

∂x′
− iγ0γ2P̂

∂ψ′

∂y′
− iγ0γ3P̂

∂ψ′

∂z′
− mγ0P̂ψ′ = −iγ0γ0P̂

∂ψ′

∂t′
,
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which using γ0γk =− γkγ0 can be written

iγ1γ0P̂
∂ψ′

∂x′
+ iγ2γ0P̂

∂ψ′

∂y′
+ iγ3γ0P̂

∂ψ′

∂z′
− mγ0P̂ψ′ = −iγ0γ0P̂

∂ψ′

∂t′
. (4.70)

In order for (4.70) to reduce to the desired form of (4.69), γ0P̂ must be proportional
to the 4 × 4 identity matrix,

γ0P̂ ∝ I.

In addition, P̂2 = I and therefore the parity operator for Dirac spinors can be iden-
tified as either

P̂ = +γ0 or P̂ = −γ0.

It is conventional to choose P̂=+ γ0 such that under the parity transformation, the
form of the Dirac equation is unchanged provided the Dirac spinors transform as

ψ→ P̂ψ = γ0ψ. (4.71)

The intrinsic parity of a fundamental particle is defined by the action of the parity
operator P̂= γ0 on a spinor for a particle at rest. For example, the u1 spinor for a
particle at rest given by (4.42), is an eigenstate of the parity operator with

P̂u1 = γ
0u1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

√
2m

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= +u1.

Similarly, P̂u2 =+ u2, P̂v1 =− v1 and P̂v2 =− v2. Hence the intrinsic parity of a
fundamental spin-half particle is opposite to that of a fundamental spin-half
antiparticle.

The conventional choice of P̂=+ γ0 rather than P̂=− γ0, corresponds to defin-
ing the intrinsic parity of particles to be positive and the intrinsic parity of antipar-
ticles to be negative,

P̂u(m, 0) = +u(m, 0) and P̂v(m, 0) = −v(m, 0).

Since particles and antiparticles are always created and destroyed in pairs, this
choice of sign has no physical consequence. Finally, it is straightforward to verify
that the action of the parity operator on Dirac spinors corresponding to a particle
with momentum p reverses the momentum but does not change the spin state, for
example

P̂u1(E,p) = +u1(E,−p).
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Summary

This chapter described the foundations of relativistic quantum mechanics and it is
worth reiterating the main points. The formulation of relativistic quantum mechan-
ics in terms of the Dirac equation, which is linear in both time and space derivatives,

ĤDψ = (α · p̂ + βm)ψ = i
∂ψ

∂t
,

implies new degrees of freedom of the wavefunction. Solutions to the Dirac equa-
tion are represented by four-component Dirac spinors. These solutions provide
a natural description of the spin of the fundamental fermions and antifermions.
The E < 0 solutions to the Dirac equation are interpreted as negative energy parti-
cles propagating backwards in time, or equivalently, the physical positive energy
antiparticles propagating forwards in time.

The Dirac equation is usually expressed in terms of four γ-matrices,

(iγ µ∂µ − m)ψ = 0.

The properties of the solutions to the Dirac equation are fully defined by the algebra
of the γ-matrices. Nevertheless, explicit free-particle solutions were derived using
the Dirac–Pauli representation. The four-vector probability current can be written
in terms of the γ-matrices

j µ = ψ†γ0γ µψ = ψγ µψ,

where ψ is the adjoint spinor defined as ψ=ψ†γ0. The four-vector current will play
a central role in the description of particle interactions through the exchange of
force-carrying particles.

The solutions to the Dirac equation provide the relativistic quantum mechanical
description of spin-half particles and antiparticles. In particular the states u↑, u↓,
v↑ and v↓, which are simultaneous eigenstates of the Dirac Hamiltonian and the
helicity operator, form a suitable basis for the calculations of cross sections and
decay rates that follow.

Finally, two discrete symmetry transformations were introduced, charge conju-
gation and parity, with corresponding operators

ψ→ Ĉψ = iγ2ψ∗ and ψ→ P̂ψ = γ0ψ.

The transformation properties of the fundamental interactions under parity and
charge-conjugation operations will be discussed in detail in the context of the weak
interaction.
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Problems

4.1 Show that

[p̂2, r̂ × p̂] = 0,

and hence the Hamiltonian of the free-particle Schrödinger equation commutes with the angular momentum
operator.

4.2 Show that u1 and u2 are orthogonal, i.e. u†1 u2 = 0.

4.3 Verify the statement that the Einstein energy–momentum relationship is recovered if any of the four Dirac
spinors of (4.48) are substituted into the Dirac equation written in terms of momentum, (γ µpµ − m)u = 0.

4.4 For a particle with four-momentum p µ = (E,p), the general solution to the free-particle Dirac Equation can
be written

ψ(p) = [au1(p) + bu2(p)]ei(p·x−Et).

Using the explicit forms for u1 and u2, show that the four-vector current j µ = (ρ, j) is given by

j µ = 2p µ.

Furthermore, show that the resulting probability density and probability current are consistent with a particle
moving with velocity β= p/E.

4.5 Writing the four-component spinor u1 in terms of two two-component vectors

u =
(

uA
uB

)
,

show that in the non-relativistic limit, where β ≡ v/c ≪ 1, the components of uB are smaller than those of
uA by a factor v/c.

4.6 By considering the three cases µ = ν = 0,µ = ν ! 0 andµ ! ν show that

γ µγν + γνγ µ = 2g µν.

4.7 By operating on the Dirac equation,

(iγ µ∂µ − m)ψ = 0,

with γν∂ν, prove that the components ofψ satisfy the Klein–Gordon equation,

(∂ µ∂µ + m2)ψ = 0.

4.8 Show that

(γ µ)† = γ0γ µγ0.

4.9 Starting from

(γ µpµ − m)u = 0,

show that the corresponding equation for the adjoint spinor is

u(γ µpµ − m) = 0.
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Hence, without using the explicit form for the u spinors, show that the normalisation condition u†u= 2E
leads to

uu = 2m,

and that

uγ µu = 2p µ.

4.10 Demonstrate that the two relations of Equation (4.45) are consistent by showing that

(σ · p)2 = p2.

4.11 Consider the e+e− → γ→ e+e− annihilation process in the centre-of-mass frame where the energy of the
photon is 2E. Discuss energy and charge conservation for the two cases where:

(a) the negative energy solutions of the Dirac equation are interpreted as negative energy particles propagating
backwards in time;

(b) the negative energy solutions of the Dirac equation are interpreted as positive energy antiparticles propa-
gating forwards in time.

4.12 Verify that the helicity operator

ĥ =
Σ̂ · p̂

2p
=

1
2p

(
σ · p̂ 0

0 σ · p̂
)
,

commutes with the Dirac Hamiltonian,

ĤD = α · p̂ + βm.

4.13 Show that

P̂u↑(θ, φ) = u↓(π − θ, π + φ),

and comment on the result.

4.14 Under the combined operation of parity and charge conjugation (ĈP̂) spinors transform as

ψ→ ψc = ĈP̂ψ = iγ2γ0ψ∗.

Show that up to an overall complex phase factor

ĈP̂u↑(θ, φ) = ν↓(π − θ, π + φ).

4.15 Starting from the Dirac equation, derive the identity

u(p′)γ µu(p) =
1

2m
u(p′)(p + p′) µu(p) +

i
m

u(p′)Σ µνqνu(p),

where q = p′ − p andΣ µν = i
4 [γ µ, γν].



5 Interaction by particle exchange

In the modern understanding of particle physics, the interactions between par-
ticles are mediated by the exchange of force carrying gauge bosons. The rig-
orous theoretical formalism for describing these interactions is Quantum Field
Theory, which is beyond the scope of this book. Here the concepts are devel-
oped in the context of relativistic quantum mechanics. The main purpose of
this short chapter is to describe how interactions arise from the exchange of
virtual particles and to provide an introduction to Quantum Electrodynamics.

5.1 First- and second-order perturbation theory

In quantum mechanics, the transition rate Γ f i between an initial state i and a final
state f is given by Fermi’s golden rule Γ f i = 2π|T f i|2ρ(E f ), where T f i is the transi-
tion matrix element, given by the perturbation expansion

T f i = ⟨ f |V |i⟩ +
∑

j!i

⟨ f |V | j⟩⟨ j|V |i⟩
Ei − E j

+ · · · .

The first two terms in the perturbation series can be viewed as “scattering in a
potential” and “scattering via an intermediate state j” as indicated in Figure 5.1. In
the classical picture of interactions, particles act as sources of fields that give rise
to a potential in which other particles scatter.

In quantum mechanics, the process of scattering in a static potential corres-
ponds to the first-order term in the perturbation expansion, ⟨ f |V |i⟩. This picture of

Vfi Vj i

Vfj

f
f

i
i

j

!Fig. 5.1 Scattering in an external potential Vfi and scattering via an intermediate state, j.
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a a

S
pa

ce

S
pa

ce

Time Time

i ij jf f

b b

c c

d d

X ~
X

Vj i

Vf j

!Fig. 5.2 Two possible time-orderings for the process a + b → c + d.

scattering in the potential produced by another particle is unsatisfactory on a
number of levels. When a particle scatters in a potential there is a transfer of
momentum from one particle to another without any apparent mediating body.
Furthermore, the description of forces in terms of potentials seems to imply that
if a distant particle were moved suddenly, the potential due to that particle would
change instantaneously at all points in space, seemingly in violation the special
theory of relativity. In Quantum Field Theory, interactions between particles are
mediated by the exchange of other particles and there is no mysterious action at a
distance. The forces between particles result from the transfer of the momentum
carried by the exchanged particle.

5.1.1 Time-ordered perturbation theory

The process of interaction by particle exchange can be formulated by using time-
ordered perturbation theory. Consider the particle interaction, a+b→ c+d, which
can occur via an intermediate state corresponding to the exchange of a particle X.
There are two possible space-time pictures for this process, shown in Figure 5.2. In
the first space-time picture, the initial state |i⟩ corresponds to the particles a+b, the
intermediate state | j⟩ corresponds to c + b + X, and the final state | f ⟩ corresponds
to c + d. In this time-ordered diagram, particle a can be thought of as emitting the
exchanged particle X, and then at a later time X is absorbed by b. In QED this
could correspond to an electron emitting a photon that is subsequently absorbed by
a second electron. The corresponding term in the quantum-mechanical perturbation
expansion is

T ab
f i =

⟨ f |V | j⟩⟨ j|V |i⟩
Ei − E j

=
⟨d|V |X + b⟩⟨c + X|V |a⟩

(Ea + Eb) − (Ec + EX + Eb)
. (5.1)

The notation T ab
f i refers to the time ordering where the interaction between a and X

occurs before that between X and b. It should be noted that the energy of the inter-
mediate state is not equal to that of the initial state, E j ! Ei, which is allowed for a
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short period of time by the energy–time uncertainty relation of quantum mechan-
ics given by Equation (2.47). The interactions at the two vertices are defined by the
non-invariant matrix elements V ji = ⟨c + X|V |a⟩ and V f j = ⟨d|V |X + b⟩. Following
the arguments of Section 3.2.1, the non-invariant matrix element V ji is related to
the Lorentz-invariant (LI) matrix elementM ji by

V ji =M ji

∏

k

(2Ek)−1/2,

where the index k runs over the particles involved. In this case

V ji = ⟨c + X|V |a⟩ = Ma→c+X

(2Ea2Ec2EX)1/2
,

whereMa→c+X is the LI matrix element for the fundamental interaction a→ c+ X.
The requirement that the matrix elementMa→c+X is Lorentz invariant places strong
constraints on its possible mathematical structure. To illustrate the concept of inter-
action by particle exchange, the simplest possible Lorentz-invariant coupling is
assumed here, namely a scalar. In this case, the LI matrix element is simply
Ma→c+X = ga, and thus

V ji = ⟨c + X|V |a⟩ = ga

(2Ea2Ec2EX)1/2
,

and the magnitude of the coupling constant ga is a measure of the strength of the
scalar interaction. Similarly

V f j = ⟨d|V |X + b⟩ = gb

(2Eb2Ed2EX)1/2
,

where gb is the coupling strength at the b + X → d interaction vertex. Therefore,
with the assumed scalar form for the interaction, the second-order term in the per-
turbation series of (5.1) is

T ab
f i =

⟨d|V |X + b⟩⟨c + X|V |a⟩
(Ea + Eb) − (Ec + EX + Eb)

=
1

2EX
· 1

(2Ea2Eb2Ec2Ed)1/2
· gagb

(Ea − Ec − EX)
. (5.2)

The LI matrix element for the process a+b→ c+d is related to the corresponding
transition matrix element by (3.9),

Mab
f i = (2Ea2Eb2Ec2Ed)1/2T ab

f i ,

and thus from (5.2),

Mab
f i =

1
2EX

· gagb

(Ea − Ec − EX)
. (5.3)

The matrix element of (5.3) is Lorentz invariant in the sense that it is defined in
terms of wavefunctions with an appropriate LI normalisation and has an LI scalar
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W -

W +

e- e-νe νe

νµ νµµ- µ-!Fig. 5.3 The two lowest-order time-ordered diagrams contributing to e−νµ→ νeµ
− scattering.

form for the interaction. It should be noted that for this second-order process in
perturbation theory, momentum is conserved at the interaction vertices but energy
is not, E j ! Ei. Furthermore, the exchanged particle X satisfies the usual energy–
momentum relationship, E2

X =p2
X +m2

X , and is termed “on-mass shell”.
The second possible time-ordering for the process a+ b→ c+ d is shown in the

right-hand plot of Figure 5.2 and corresponds to b emitting X̃ which is subsequently
absorbed by a. The exchanged particle X̃ in this time-ordering is assumed to have
the same mass as X but has opposite charge(s). This must be the case if charge is to
be conserved at each vertex. For example, in the process of e−νµ → νeµ

− scattering,
shown Figure 5.3, one of the time-ordered diagrams involves the exchange of a W−

and the other time-ordered diagram involves the exchange of a W+. In the case of
a QED process, there is no need to make this distinction for the neutral photon.

By repeating the steps that led to (5.3), it is straightforward to show that the LI
matrix element for the second time-ordered diagram of Figure 5.2 is

Mba
f i =

1
2EX

· gagb

(Eb − Ed − EX)
.

In quantum mechanics the different amplitudes for a process need to be summed
to obtain the total amplitude. Here the total amplitude (at lowest order) is given by
the sum of the two time-ordered amplitudes

M f i =Mab
f i +Mba

f i

=
gagb

2EX
·
(

1
Ea − Ec − EX

+
1

Eb − Ed − EX

)
,

which, using energy conservation Eb − Ed = Ec − Ea, can be written

M f i =
gagb

2EX
·
(

1
Ea − Ec − EX

− 1
Ea − Ec + EX

)

=
gagb

(Ea − Ec)2 − E2
X

. (5.4)

For both time-ordered diagrams, the energy of the exchanged particle EX is related
to its momentum by the usual Einstein energy–momentum relation, E2

X = p2
X +m2

X .
Since momentum is conserved at each interaction vertex, for the first time-ordered
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process pX = (pa −pc). In the case of the second time-ordered process pX̃ =

(pb −pd)=− (pa −pc). Consequently, for both time-ordered diagrams the energy
of the exchanged particle can be written as

E2
X = p2

X + m2
X = (pa −pc)2 + m2

X .

Substituting this expression for E2
X into (5.4) leads to

M f i =
gagb

(Ea − Ec)2 − (pa − pc)2 − m2
X

(5.5)

=
gagb

(pa − pc)2 − m2
X

,

where pa and pc are the respective four-momenta of particles a and c. Finally writ-
ing the four-momentum of the exchanged virtual particle X as

q = pa − pc,

gives

M f i =
gagb

q2 − m2
X

. (5.6)

This is a remarkable result. The sum over the two possible time-ordered diagrams
in second-order perturbation theory has produced an expression for the interaction
matrix element that depends on the four-vector scalar product q2 and is therefore
manifestly Lorentz invariant. In (5.6) the terms ga and gb are associated with the
interaction vertices and the term

1
q2 − m2

X

, (5.7)

is referred to as the propagator, is associated with the exchanged particle.

5.2 Feynman diagrams and virtual particles

In Quantum Field Theory, the sum over all possible time-orderings is represented
by a Feynman diagram. The left-hand side of the diagram represents the initial
state, and the right-hand side represents the final state. Everything in between rep-
resents the manner in which the interaction happened, regardless of the ordering
in time. The Feynman diagram for the scattering process a + b → c + d, shown in
Figure 5.4, therefore represents the sum over the two possible time-orderings. The
exchanged particles which appear in the intermediate state of a Feynman diagram,
are referred to as virtual particles. A virtual particle is a mathematical construct
representing the effect of summing over all possible time-ordered diagrams and,
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a c

db

X

a c

+

db

a c

db

X ~
X

≡

!Fig. 5.4 The relation between the Feynman diagram for a+b→ c+d scattering and the two possible time-ordered
diagrams.

where appropriate, summing over the possible polarisation states of the exchanged
particle.

From (5.5) it can be seen that the four-momentum q which appears in the propa-
gator is given by the difference between the four-momenta of the particles entering
and leaving the interaction vertex, q= pa − pc = pd − pb. Hence q can be thought of
as the four-momentum of the exchanged virtual particle. By expressing the inter-
action in terms of the exchange of a virtual particle with four-momentum q, both
momentum and energy are conserved at the interaction vertices of a
Feynman diagram. This is not the case for the individual time-ordered diagrams,
where energy is not conserved at a vertex. Because the q2-dependence of the prop-
agator is determined by the four-momenta of the incoming and outgoing particles,
the virtual particle (which really represents the effect of the sum of all time-ordered
diagrams) does not satisfy the Einstein energy–momentum relationship and it is
termed off mass-shell, q2 !m2

X . Whilst the effects of the exchanged particles are
observable through the forces they mediate, they are not directly detectable. To
observe the exchanged particle would require its interaction with another particle
and this would be a different Feynman diagram with additional (and possibly dif-
ferent) virtual particles.

The four-momentum q which appears in the propagator can be determined from
the conservation of four-momentum at the interaction vertices. For example,
Figure 5.5 shows the Feynman diagrams for the s-channel annihilation and the
t-channel scattering processes introduced in Section 2.2.3. For the annihilation pro-
cess, the four-momentum of the exchanged virtual particle is

q = p1 + p2 = p3 + p4,

and therefore q2 = (p1 + p2)2 which is the Mandelstam s variable. Previously (2.13)
it was shown that s= (E∗1 + E∗2)2, where E∗1 and E∗2 are the energies of the initial-
state particles in the centre-of-mass frame. Consequently, for an s-channel pro-
cess q2 > 0 and the exchanged virtual particle is termed “time-like” (the square of
the time-like component of q is larger than the sum of the squares of the three
space-like components). For the t-channel scattering diagram of Figure 5.5, the
four momentum of the exchanged particle is given by q= p1 − p3 = p4 − p2. In this
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d
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p3 p3

p4p2
X

X

!Fig. 5.5 Feynman diagrams for illustrative s-channel annihilation and t-channel scattering processes.

case q2 is equal to the Mandelstam t variable. In Chapter 8 it will be shown that, for
a t-channel process, q2 is always less than zero and the exchanged virtual particle
is termed “space-like”.

5.2.1 Scattering in a potential

The covariant formulation of a scalar interaction in terms of the exchange of (vir-
tual) particles leads to a Lorentz-invariant matrix element of the form

M f i =
gagb

q2 − m2
X

. (5.8)

This was derived by considering the second-order term in the perturbation expan-
sion for T f i. It is reasonable to ask how this picture of interaction by particle
exchange relates to the familiar concept of scattering in a potential. For example,
the differential cross section for the scattering of non-relativistic electrons (v≪ c)
in the electrostatic field of a stationary proton can be calculated using first pertur-
bation theory with

M = ⟨ψ f |V(r)|ψi⟩ =
∫

ψ∗f V(r)ψi d3r, (5.9)

where V(r) is the effective static electrostatic potential due to the proton and
ψi and ψ f are the wavefunctions of the initial and final-state electron. In the
non-relativistic limit, this approach successfully reproduces the experimental data.
However, the concept of scattering from a static potential is intrinsically not
Lorentz invariant; the integral in matrix element of (5.9) only involves spatial
coordinates.

The covariant picture of scattering via particle exchange applies equally in the
non-relativistic and highly relativistic limits. In the non-relativistic limit, the form
of the static potential used in first-order perturbation theory is that which repro-
duces the results of the more general treatment of the scattering process in terms
of particle exchange. For example, the form of the potential V(r) that reproduces
the low-energy limit of scattering with the matrix element of (5.8) is the
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Yukawa potential

V(r) = gagb
e−mr

r
.

In this way, it is possible relate the formalism of interaction by particle exchange
to the more familiar (non-relativistic) concept of scattering in a static potential. For
an interaction involving the exchange of a massless particle, such as the photon,
the Yukawa potential reduces to the usual 1/r form of the Coulomb potential.

5.3 Introduction to QED

Quantum Electrodynamics (QED) is the Quantum Field Theory of the electromag-
netic interaction. A first-principles derivation of the QED interaction from QFT
goes beyond the scope of this book. Nevertheless, the basic interaction and cor-
responding Feynman rules can be obtained following the arguments presented in
Section 5.1.1. The LI matrix element for a scalar interaction, given in (5.6), is
composed of three parts: the strength of interaction at each of the two vertices,
⟨ψc|V |ψa⟩ and ⟨ψd |V |ψb⟩, and the propagator for the exchanged virtual particle of
mass mX , which can be written as

M = ⟨ψc|V |ψa⟩
1

q2 − m2
X

⟨ψd |V |ψb⟩. (5.10)

In the previous example, the simplest Lorentz-invariant choice for the interaction
vertex was used, namely a scalar interaction of the form ⟨ψ|V |φ⟩ ∝ g. To obtain the
QED matrix element for a scattering process, such as that shown in Figure 5.6, the
corresponding expression for the QED interaction vertex is required. Furthermore,
for the exchange of the photon, which is a spin-1 particle, it is necessary to sum
over the quantum-mechanical amplitudes for the possible polarisation states.

The free photon field Aµ can be written in terms of a plane wave and a four-vector
ε(λ) for the polarisation state λ,

Aµ = ε
(λ)
µ ei(p·x−Et).

p2

p1

p4

q

p3

e- e-

τ- τ-

m

ν

g

!Fig. 5.6 The Feynman diagram for the QED scattering process e−τ− → e−τ−.
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The properties of the free photon field in classical electromagnetism are discussed
in detail in Appendix D. For a real (as opposed to virtual) photon, the polarisation
vector is always transverse to the direction of motion. Thus, a photon propagating
in the z-direction can be described by two orthogonal polarisation states

ε(1) = (0, 1, 0, 0) and ε(2) = (0, 0, 1, 0).

The fundamental interaction between a fermion with charge q and an electro-
magnetic field described by a four-potential Aµ = (φ,A) can be obtained by making
the minimal substitution (see Section 4.7.5)

∂µ → ∂µ + iqAµ ,

where Aµ = (φ,−A) and ∂µ = (∂/∂t,+∇). With this substitution, the free-particle
Dirac equation becomes

γ µ∂µψ + iqγ µAµψ + imψ = 0. (5.11)

This is the wave equation for a spin-half particle in the presence of the electro-
magnetic field Aµ. The interaction Hamiltonian can be obtained by pre-multiplying
(5.11) by iγ0 to give

i
∂ψ

∂t
+ iγ0γ · ∇ψ − qγ0γ µAµψ − mγ0ψ = 0,

where γ · ∇ is shorthand for γ1 ∂
∂x + γ

2 ∂
∂y + γ

3 ∂
∂z . Since

Ĥψ = i
∂ψ

∂t
,

the Hamiltonian for a spin-half particle in an electromagnetic field can be
identified as

Ĥ = (mγ0 − iγ0γ · ∇) + qγ0γ µAµ. (5.12)

The first term on the RHS of (5.12) is just the free-particle Hamiltonian ĤD already
discussed in Chapter 4, and therefore can be identified as the combined rest mass
and kinetic energy of the particle. The final term on the RHS of (5.12) is the contri-
bution to the Hamiltonian from the interaction and thus the potential energy oper-
ator can be identified as

V̂D = qγ0γ µAµ. (5.13)

This result appears reasonable since the time-like (µ= 0) contribution to V̂D is
qγ0γ0A0 = qφ, which is just the normal expression for the energy of a charge q
in the scalar potential φ.
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The Lorentz-invariant matrix element for the QED process of e−τ−→ e−τ− scat-
tering, shown in Figure 5.6, can be obtained by using the potential of (5.13) for the
interaction at the e−γ vertex (labelled by the index µ)

⟨ψ(p3)|V̂D|ψ(p1)⟩ → u†e(p3) Qeeγ0γ µε(λ)
µ ue(p1),

where the charge q=Qe is expressed in terms of the magnitude of charge of the
electron (such that Qe =− 1). Since the wavefunctions are four-component spinors,
the final-state particle necessarily appears as the Hermitian conjugate u†(p3)≡
u∗T (p3) rather than u∗(p3). Similarly, the interaction at the τ−γ vertex (labelled
ν) can be written as

u†τ (p4) Qτeγ0γνε(λ)∗
ν uτ(p2).

The QED matrix element is obtained by summing over both the two possible
time orderings and the possible polarisation states of the virtual photon. The sum
over the two time-ordered diagrams follows directly from the previous result of
(5.10). Hence the Lorentz-invariant matrix element for this QED process, which
now includes the additional sum over the photon polarisation, is

M =
∑

λ

[
u†e(p3)Qeeγ0γ µue(p1)

]
ε(λ)
µ

1
q2 ε

(λ)∗
ν

[
u†τ(p4)Qτeγ0γνuτ(p2)

]
. (5.14)

In Appendix D.4.3, it is shown that the sum over the polarisation states of the
virtual photon can be taken to be

∑

λ

ε(λ)
µ ε

(λ)∗
ν = −gµν,

and therefore (5.14) becomes

M =
[
Qee u†e(p3)γ0γ µue(p1)

]−gµν
q2

[
Qτe u†τ(p4)γ0γνuτ(p2)

]
. (5.15)

This can be written in a more compact form using the adjoint spinors defined by
ψ = ψ†γ0,

M = −[Qee ue(p3)γ µue(p1)
]gµν

q2

[
Qτe uτ(p4)γνuτ(p2)

]
. (5.16)

In Appendix B.3 it is shown that the combination of spinors and γ-matrices j µ =
u(p)γ µu(p′) forms as contravariant four-vector under Lorentz boosts. By writing
the four-vector currents

j µe = ue(p3)γ µue(p1) and jντ = uτ(p4)γνuτ(p2). (5.17)

Equation (5.16) can be written in the manifestly Lorentz-invariant form of a four-
vector scalar product

M = −QeQτ e2 je · jτ
q2 . (5.18)
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This demonstrates that the interaction potential of (5.13) gives rise to a Lorentz-
invariant description of the electromagnetic interaction.

5.4 Feynman rules for QED

A rigorous derivation of the matrix element of (5.16) can be obtained in the frame-
work of quantum field theory. Nevertheless, the treatment described here shares
some of the features of the full QED derivation, namely the summation over all
possible time-orderings and polarisation states of the massless photon which gives
rise to the photon propagator term gµν/q2, and the Qeuγ µu form of the QED inter-
action between a fermion and photon. The expression for the matrix element of
(5.16) hides a lot of complexity. If every time we were presented with a new
Feynman diagram, it was necessary to derive the matrix element from first prin-
ciples, this would be extremely time consuming. Fortunately this is not the case;
the matrix element for any Feynman diagram can be written down immediately by
following a simple set of rules that are derived formally from QFT.

There are three basic elements to the matrix element corresponding to the
Feynman diagram of Figure 5.6: (i) the Dirac spinors for the external fermions
(the initial- and final-state particles); (ii) a propagator term for the virtual photon;
and (iii) a vertex factor at each interaction vertex. For each of these elements of the
Feynman diagram, there is a Feynman rule for the corresponding term in the matrix
element. The product of all of these terms is equivalent to −iM. In their simplest
form, the Feynman rules for QED, which can be used to calculate lowest-order
cross sections, are as follows.

initial-state particle: u(p)

final-state particle: u(p)

initial-state antiparticle: v(p)

final-state antiparticle: v(p)

initial-state photon: εµ(p)

final-state photon: ε∗µ(p)

photon propagator: − igµν
q2

fermion propagator: − i(γ µqµ + m)
q2 − m2

QED vertex: −iQeγ µ
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p2

p1

p4

q = p1 - p3

p3

e- e-

τ- τ-

m

ν

g

u(p3)[ieγ µ]u(p1)

−igµν
q2

u(p4)[ieγν]u(p2)!Fig. 5.7 The Feynman diagram for the QED scattering process e−τ−→ e−τ− and the associated elements of the
matrix element constructed from the Feynman rules. The matrix element is comprised of a term for the elec-
tron current, a term for the tau-lepton current and a term for the photon propagator.

It should be noted that in QED, the fundamental interaction is between a single
photon and two spin-half fermions; there is no QED vertex connecting more than
three particles. For this reason, all valid QED processes are described by Feynman
diagrams formed from the basic three-particle QED vertex.

The use of the Feynman rules is best illustrated by example. Consider again the
Feynman diagram for the process e−τ−→ e−τ−, shown in Figure 5.7. The indices
µ and ν label the two interaction vertices. Applying the Feynman rules to the elec-
tron current, gives an adjoint spinor for the final-state electron, a factor ieγ µ for
the interaction vertex labelled by µ, and a spinor for the initial-state electron. The
adjoint spinor is always written first and thus the contribution to the matrix element
from the electron current is

u(p3)[ieγ µ]u(p1).

The same procedure applied to the tau-lepton current gives

u(p4)[ieγν]u(p2).

Finally, the photon propagator contributes a factor

−igµν
q2 .

The product of these three terms gives −iM and therefore

−iM = [
u(p3){ieγ µ}u(p1)

]−igµν
q2

[
u(p4){ieγν}u(p2)

]
, (5.19)

which is equivalent to the expression of (5.16), which was obtained from first prin-
ciple arguments.
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5.4.1 Treatment of antiparticles

The Feynman diagram for the s-channel annihilation process e+e−→ µ+µ− is
shown in Figure 5.8. Antiparticles are represented by lines in the negative time
direction, reflecting the interpretation of the negative energy solutions to Dirac
equation as particles which travel backwards in time. It is straightforward to obtain
the matrix element for e+e−→ µ+µ− from the Feynman rules. The part of the matrix
element due to the electron and muon currents are, respectively,

v(p2)[ieγ µ]u(p1) and u(p3)[ieγν]v(p4),

where v-spinors are used to describe the antiparticles. As before, the photon prop-
agator is

−igµν
q2 .

Hence the matrix element for e+e− → µ+µ− annihilation is given by

−iM = [
v(p2){ieγ µ}u(p1)

]−igµν
q2

[
u(p3){ieγν}v(p4)

]
. (5.20)

The QED matrix element for the s-channel annihilation process e+e−→ µ+µ−
given by (5.20) is very similar to that for the t-channel scattering process e−τ−→
e−τ− given by (5.19). Apart from the presence of the v-spinors for antiparticles,
the only difference is the order in which the particles appear in the expressions for
the currents. Fortunately, it is not necessary to remember the Feynman rules that
specify whether a particle/antiparticle appears in the matrix element as a spinor
or as an adjoint spinor, there is an easy mnemonic; the first particle encountered
when following the line representing a fermion current from the end to the start in
the direction against the sense of the arrows, always appears as the adjoint spinor.
For example, in Figure 5.8, the incoming e+ and outgoing µ− are written as adjoint
spinors.

p2 p4

p1 p3

e- µ-

µ+

µ

e+

ν
g

!Fig. 5.8 The lowest-order Feynman diagram for the QED annihilation process e+e− → µ+µ−.
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Summary

This chapter described the basic ideas behind the description of particle interactions
in terms of particle exchange and provided an introduction to the Feynman rules of
QED. A number of important concepts were introduced. The sum of all possible
time-ordered diagrams results in a Lorentz-invariant (LI) matrix element including
propagator terms for the exchanged virtual particles of the form

1
q2 − m2

X

.

The four-momentum appearing in the propagator term was shown to be determined
by energy and momentum conservation at the interaction vertices.

The matrix element for a particular process is then constructed from propagator
terms for the virtual particles and vertex factors. In QED, the interaction between
a photon and a charged fermion has the form

ieQ u fγ
µui,

where ui is the spinor for the initial-state particle and u f is the adjoint spinor for
the final-state particle. Finally, for each element of a Feynman diagram there is a
corresponding Feynman rule which can be used to construct the matrix element for
the diagram.

Problems

5.1 Draw the two time-ordered diagrams for the s-channel process shown in Figure 5.5. By repeating the steps of
Section 5.1.1, show that the propagator has the same form as obtained for the t-channel process.
Hint: one of the time-ordered diagrams is non-intuitive, remember that in second-order perturbation theory
the intermediate state does not conserve energy.

5.2 Draw the two lowest-order Feynman diagrams for the Compton scattering process γe− → γe−.

5.3 Draw the lowest-order t-channel and u-channel Feynman diagrams for e+e− → γγ and use the Feynman rules
for QED to write down the corresponding matrix elements.



6 Electron–positron annihilation

Experimental results from electron–positron colliders have been central to the
development and understanding of the Standard Model. In this chapter, the
derivation of the cross section for e+e−→ µ+µ− annihilation is used as an
example of a calculation in QED. The cross section is first calculated using
helicity amplitudes to evaluate the matrix elements, highlighting the under-
lying spin structure of the interaction. In the final starred section, the more
abstract trace formalism is introduced.

6.1 Calculations in perturbation theory

In QED, the dominant contribution to a cross section or decay rate is usually the
Feynman diagram with the fewest number of interaction vertices, known as the
lowest-order (LO) diagram. For the annihilation process e+e−→ µ+µ−, there is just
a single lowest-order QED diagram, shown in Figure 6.1. In this diagram there
are two QED interaction vertices, each of which contributes a factor ieγ µ to the
matrix element. Therefore, regardless of any other considerations, the matrix ele-
ment squared |M|2 will be proportional to e4 or equivalently |M|2 ∝ α2, where α is
the dimensionless fine-structure constant α= e2/4π. In general, each QED vertex
contributes a factor of α to the expressions for cross sections and decay rates.

In addition to the lowest-order diagram of Figure 6.1, there are an infinite num-
ber of higher-order-diagrams resulting in the same final state. For example, three of
the next-to-leading-order (NLO) diagrams for e+e−→ µ+µ−, each with four inter-
action vertices, are shown in Figure 6.2. Taken in isolation, the matrix element
squared for each of these diagrams has a factor α for each of the four QED vertices,
and hence |M|2 ∝α4. However, in quantum mechanics the individual Feynman dia-
grams for a particular process can not be taken in isolation; the total amplitudeM f i

for a particular process is the sum of all individual amplitudes giving the same final
state. In the case of e+e−→ µ+µ−, this sum can be written as

M f i =MLO +
∑

j

M1, j + · · · , (6.1)

128
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!Fig. 6.1 The lowest-order Feynman diagram for the QED annihilation process e+e− → µ+µ−.

e e
e e

e e

e

e e

e
e

e!Fig. 6.2 Three of theO(α4) Feynman diagrams contributing the QED annihilation process e+e− → µ+µ−.

where MLO is the matrix element for the single lowest-order (LO) diagram of
Figure 6.1,M1, j are the matrix elements for the NLO diagrams with four interac-
tion vertices, including those of Figure 6.2, and the dots indicate the higher-order
diagrams with more than four vertices. The dependence of the each of the terms in
(6.1) on α can be shown explicitly by writing it as

M f i = αMLO + α
2
∑

j

M1, j + · · · ,

where the various powers of the coupling constant α have been factored out of the
matrix element, such thatMLO is written as αMLO, etc.

Physical observables, such as decay rates and cross sections, depend on the
matrix element squared given by

|M f i|2 =
⎛
⎜⎜⎜⎜⎜⎜⎜⎝αMLO + α

2
∑

j

M1,j + · · ·
⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝αM∗LO + α

2
∑

k

M∗1,k + · · ·
⎞
⎟⎟⎟⎟⎟⎟⎠

= α2|MLO|2 + α3
∑

j

(
MLOM∗1, j + M∗LOM1, j

)
+ α4

∑

jk

M1, jM∗1,k + · · · .

(6.2)

In general, the individual amplitudes are complex and the contributions from differ-
ent diagrams can interfere either positively or negatively. Equation (6.2) gives the
QED perturbation expansion in terms of powers of α. For QED, the dimensionless
coupling constant α ≈ 1/137 is sufficiently small that this series converges rapidly
and is dominated by the LO term. The interference between the lowest-order dia-
gram and the NLO diagrams, terms such as (MLOM∗1, j +M∗LOM1, j), are suppressed
by a factor of α ≈ 1/137 relative to the lowest-order term. Hence, if all higher-order
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terms are neglected, it is reasonable to expect QED calculations to be accurate to
O(1%). For this reason, only the lowest-order diagram(s) will be considered for the
calculations in this book, although the impact of the higher-order diagrams will be
discussed further in Chapter 10 in the context of renormalisation.

6.2 Electron–positron annihilation

The matrix element for the lowest-order diagram for the process e+e−→ µ+µ− is
given in (5.20),

M = − e2

q2 gµν
[
v(p2)γ µu(p1)

][
u(p3)γνv(p4)

]
(6.3)

= − e2

q2 gµν j µe j νµ , (6.4)

where the electron and muon four-vector currents are defined as

j µe = v(p2)γ µu(p1) and j νµ = u(p3)γνv(p4). (6.5)

The four-momentum of the virtual photon is determined by conservation of energy
and momentum at the interaction vertex, q= p1 + p2 = p3 + p4, and therefore
q2 = (p1 + p2)2 = s, where s is the centre-of-mass energy squared. Hence the matrix
element of (6.4) can be written as

M = −e2

s
je · jµ. (6.6)

Assuming that the electron and positron beams have equal energies, which has been
the case for the majority of high-energy e+e− colliders, the centre-of-mass energy
is simply twice the beam energy,

√
s = 2Ebeam.

6.2.1 Spin sums

To calculate the e+e−→ µ+µ− cross section, the matrix element of (6.6) needs to
be evaluated taking into account the possible spin states of the particles involved.
Because each of the e+, e−, µ+ and µ− can be in one of two possible helicity states,
there are four possible helicity configurations in the initial state, shown Figure 6.3,
and four possible helicity configurations in the µ+µ− final state. Hence, the process
e+e−→ µ+µ− consists of sixteen possible orthogonal helicity combinations, each of
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RR LL LRRL
e- e- e- e-e+ e+ e+ e+!Fig. 6.3 The four possible helicity combinations in the e+e− initial state.

which constitutes a separate physical process, for example e+↑ e−↑ → µ+↑µ−↑ (denoted
RR→RR) and e+↑ e−↑ → µ+↑µ−↓ . Because the helicity states involved are orthogonal,
the processes for the different helicity configurations do not interfere and the matrix
element squared for each of the sixteen possible helicity configurations can be
considered independently.

For a particular initial-state spin configuration, the total e+e−→ µ+µ− annihila-
tion rate is given by the sum of the rates for the four possible µ+µ− helicity states
(each of which is a separate process). Therefore, for a given initial-state helicity
configuration, the cross section is obtained by taking the sum of the four corre-
sponding |M|2 terms. For example, for the case where the colliding electron and
positron are both in right-handed helicity states,

∑
|MRR|2 = |MRR→RR|2 + |MRR→RL|2 + |MRR→LR|2 + |MRR→LL|2.

In most e+e− colliders, the colliding electron and positron beams are unpolarised,
which means that there are equal numbers of positive and negative helicity elec-
trons/positrons present in the initial state. In this case, the helicity configuration
for a particular collision is equally likely to occur in any one of the four possi-
ble helicity states of the e+e− initial state. This is accounted for by defining the
spin-averaged summed matrix element squared,

⟨|M f i|2⟩ =
1
4

(
|MRR|2 + |MRL|2 + |MLR|2 + |MLL|2

)

=
1
4

(
|MRR→RR|2 + |MRR→RL|2 + · · · + |MRL→RR|2 + · · ·

)
,

where the factor 1
4 accounts for the average over the four possible initial-state helic-

ity configurations. In general, the spin-averaged matrix element is given by

⟨|M f i|2⟩ =
1
4

∑

spins

|M|2,

where the sum corresponds to all possible helicity configurations. Consequently,
to evaluate the e+e−→ µ+µ− cross section, it is necessary to calculate the matrix
element of (6.6) for sixteen helicity combinations. This sum can be performed in
two ways. One possibility is to use the trace techniques described in Section 6.5,
where the sum is calculated directly using the properties of the Dirac spinors. The
second possibility is to calculate each of the sixteen individual helicity amplitudes.
This direct calculation of the helicity amplitudes involves more steps, but has the
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advantages of being conceptually simpler and of leading to a deeper physical under-
standing of the helicity structure of the QED interaction.

6.2.2 Helicity amplitudes

In the limit where the masses of the particles can be neglected,
√

s≫mµ, the four-
momenta in the process e+e−→ µ+µ−, as shown Figure 6.4, can be written

p1 = (E, 0, 0, E), (6.7)

p2 = (E, 0, 0,−E), (6.8)

p3 = (E, E sin θ, 0, E cos θ), (6.9)

p4 = (E,−E sin θ, 0,−E cos θ), (6.10)

where, with no loss of generality, the final state µ− and µ+ are taken to be produced
with azimuthal angles of φ = 0 and φ = π respectively.

The spinors appearing in the four-vector currents of (6.5) are the ultra-relativistic
(E≫m) limit of the helicity eigenstates of (4.67):

u↑=
√

E

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c
seiφ

c
seiφ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, u↓=

√
E

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−s
ceiφ

s
−ceiφ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, v↑=

√
E

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

s
−ceiφ

−s
ceiφ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, v↓=

√
E

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c
seiφ

c
seiφ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (6.11)

where s= sin θ
2 and c= cos θ

2 . The two possible spinors for initial-state electron
with (θ = 0, φ = 0) and for the initial-state positron with (θ = π, φ = π) are

u↑(p1) =
√

E

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
1
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, u↓(p1) =

√
E

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
1
0
−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, v↑(p2) =

√
E

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
−1

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, v↓(p2) =

√
E

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
−1

0
−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

e-

e− m

µ-

µ-
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p2

p1

p1

p4p4

p3p3

νq

!Fig. 6.4 The QED annihilation process e+e−→ µ+µ− viewed in the centre-of-mass frame and the corresponding
lowest-order Feynman diagram.
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The spinors for the final-state particles are obtained by using the spherical polar
angles (θ, 0) for the µ− and (π − θ, π) for the µ+. Using the trigonometric relations

sin
(π − θ

2

)
= cos

( θ
2

)
, cos

(π − θ
2

)
= sin

( θ
2

)
and eiπ = −1,

the spinors for the two possible helicity states of the final-state µ+ and µ− are

u↑(p3) =
√

E

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c
s
c
s

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, u↓(p3) =

√
E

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−s
c
s
−c

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, v↑(p4) =

√
E

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c
s
−c
−s

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, v↓(p4) =

√
E

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

s
−c

s
−c

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

6.2.3 The muon and electron currents

The matrix element for a particular helicity combination is obtained from (6.6),

M = −e2

s
je · jµ,

where the corresponding four-vector currents of (6.5) are defined in terms of the
above spinors for the helicity eigenstates. The muon current, j νµ = u(p3)γνv(p4),
needs to be evaluated for the four possible final-state helicity combinations shown
in Figure 6.5. Using the Dirac–Pauli representation of the γ-matrices (4.35), it
is straightforward to show that, for any two spinors ψ and φ, the components of
ψγ µφ ≡ ψ†γ0γ µφ are

ψγ0φ = ψ†γ0γ0φ = ψ∗1φ1 + ψ
∗
2φ2 + ψ

∗
3φ3 + ψ

∗
4φ4, (6.12)

ψγ1φ = ψ†γ0γ1φ = ψ∗1φ4 + ψ
∗
2φ3 + ψ

∗
3φ2 + ψ

∗
4φ1, (6.13)

ψγ2φ = ψ†γ0γ2φ = −i(ψ∗1φ4 − ψ∗2φ3 + ψ
∗
3φ2 − ψ∗4φ1), (6.14)

ψγ3φ = ψ†γ0γ3φ = ψ∗1φ3 − ψ∗2φ4 + ψ
∗
3φ1 − ψ∗4φ2. (6.15)

Using these relations, the four components of the four-vector current jµ can be
determined by using the spinors for a particular helicity combination. For example,
for the RL combination where the µ− is produced in a right-handed helicity state
and the µ+ is produced in a left-handed helicity state, the appropriate spinors are
u↑(p3) and v↓(p4). In this case, from Equations (6.12)–(6.15), the components of

µ+

µ-

µ+

µ-

µ+

µ-

µ+

µ-

RR LL LRRL!Fig. 6.5 The four possible helicity combinations for theµ+µ− final state.
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the muon current are

j 0
µ = u↑(p3)γ0v↓(p4) = E(cs − sc + cs − sc) = 0,

j 1
µ = u↑(p3)γ1v↓(p4) = E(−c2 + s2 − c2 + s2) = 2E(s2 − c2) = −2E cos θ,

j 2
µ = u↑(p3)γ2v↓(p4) = −iE(−c2 − s2 − c2 − s2) = 2iE,

j 3
µ = u↑(p3)γ3v↓(p4) = E(cs + sc + cs + sc) = 4Esc = 2E sin θ.

Hence, the four-vector current for the helicity combination µ−↑µ
+
↓ is

jµ,RL = u↑(p3)γνv↓(p4) = 2E(0,− cos θ, i, sin θ).

Repeating the calculation for the other three µ+µ− helicity combinations gives

jµ,RL = u↑(p3)γνv↓(p4) = 2E(0,− cos θ, i, sin θ), (6.16)

jµ,RR = u↑(p3)γνv↑(p4) = (0, 0, 0, 0),

jµ,LL = u↓(p3)γνv↓(p4) = (0, 0, 0, 0),

jµ,LR = u↓(p3)γνv↑(p4) = 2E(0,− cos θ,−i, sin θ). (6.17)

Hence, in the limit where E ≫ mµ, only two of the four µ+µ− helicity combinations
lead to a non-zero four-vector current. This important feature of QED is related to
the chiral nature of the interaction, as discussed in Section 6.4.

The electron currents for the four possible initial-state helicity configurations can
be evaluated directly using (6.12)–(6.15). Alternatively, the electron currents can
be obtained by noting that they differ from the form of the muon currents only in
the order in which the particle and antiparticle spinors appear, j µe = v(p2)γ µu(p1)
compared to j νµ = u(p3)γνv(p4). The relationship between vγ µu and uγ µv can be
found by taking the Hermitian conjugate of the muon current to give

[
u(p3)γ µv(p4)

]† =
[
u(p3)†γ0γ µv(p4)

]†

= v(p4)†γ µ†γ0†u(p3) using (AB)† = B†A†

= v(p4)†γ µ†γ0u(p3) since γ0† = γ0

= v(p4)†γ0γ µu(p3) since γ µ†γ0 = γ0γ µ

= v(p4)γ µu(p3).

The effect of taking the Hermitian conjugate of the QED current is to swap the order
in which the spinors appear in the current. Because each element of the four-vector
current, labelled by the index µ, is just a complex number, the elements of the four-
vector current for vγ µu are given by the complex conjugates of the corresponding
elements of uγ µv. Therefore from (6.16) and (6.17),

v↓(p4)γ µu↑(p3) =
[
u↑(p3)γ µv↓(p4)

]∗ = 2E(0,− cos θ,−i, sin θ)

v↑(p4)γ µu↓(p3) =
[
u↓(p3)γ µv↑(p4)

]∗ = 2E(0,− cos θ, i, sin θ).
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By setting θ= 0, it follows that the two non-zero electron currents are

je,RL = v↓(p2)γ µu↑(p1) = 2E(0,−1,−i, 0), (6.18)

je,LR = v↑(p2)γ µu↓(p1) = 2E(0,−1, i, 0). (6.19)

Furthermore, from jµ,LL = jµ,RR = 0, it follows that je,LL and je,RR are also zero.

6.2.4 The e+e− → µ+µ− cross section

In the limit E≫m, only two of the four helicity combinations for both the ini-
tial and final state lead to non-zero four-vector currents. Therefore, in the process
e+e−→ µ+µ− only the four helicity combinations shown in Figure 6.6 give non-
zero matrix elements. For each of these four helicity combinations, the matrix ele-
ment is obtained from

M = −e2

s
je · jµ.

For example, the matrix element MRL→RL for the process e−↑ e+↓ → µ−↑µ+↓ is deter-
mined by the scalar product of the currents

j µe,RL = v↓(p2)γ µu↑(p1) = 2E(0,−1,−i, 0),

and j νµ,RL = u↑(p3)γνv↓(p4) = 2E(0,− cos θ, i, sin θ).

Taking the four-vector scalar product je,RL · jµ,RL and writing s= 4E2 gives

MRL→RL = −
e2

s
[2E(0,−1,−i, 0)]·[2E(0,− cos θ, i, sin θ)]

= e2(1 + cos θ)

= 4πα(1 + cos θ).

Using the muon and electron currents of (6.16)–(6.19), it follows that the matrix
elements corresponding to the four helicity combinations of Figure 6.6 are

|MRL→RL|2 = |MLR→LR|2 = (4πα)2(1 + cos θ)2, (6.20)

|MRL→LR|2 = |MLR→RL|2 = (4πα)2(1 − cos θ)2, (6.21)

µ+

µ-

e- e+

µ+

µ-

e- e+

µ+

µ-

e- e+

µ+

µ-

e- e+

RL → RL RL → LR LR → RL LR → LR!Fig. 6.6 The four helicity combinations for e+e− → µ+µ− that in the limit E≫m give non-zero matrix elements.
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where θ is the angle of the outgoing µ− with respect to the incoming e− direction.
The spin-averaged matrix element for the process e+e− → µ+µ− is given by

⟨|M f i|2⟩ =
1
4
×

(
|MRL→RL|2 + |MRL→LR|2 + |MLR→RL|2 + |M2

LR→LR|
)

=
1
4

e4
[
2(1 + cos θ)2 + 2(1 − cos θ)2

]

= e4(1 + cos2 θ). (6.22)

The corresponding differential cross section is obtained by substituting the spin-
averaged matrix element squared of (6.22) into the general cross section formula
of (3.50) with p∗i = p∗f = E, giving

dσ
dΩ
=

1
64π2s

e4(1 + cos2 θ),

where the solid angle is defined in terms of the spherical polar angles of the µ−

as measured in the centre-of-mass frame. Finally, when written in terms of the
dimensionless coupling constant α= e2/(4π), the e+e−→ µ+µ− differential cross
section becomes

dσ
dΩ
=
α2

4s
(1 + cos2 θ). (6.23)

Figure 6.7 shows the predicted (1+ cos2 θ) angular distribution of the e+e−→
µ+µ− differential cross section broken down into the contributions from the differ-
ent helicity combinations. The distribution is forward–backward symmetric, mean-
ing that equal numbers of µ− are produced in the forward hemisphere (cos θ> 0) as
in the backwards hemisphere (cos θ< 0). This symmetry is a direct consequence of
the parity conserving nature of the QED interaction, as explained in Chapter 11.

The right-hand plot of Figure 6.7 shows the measured e+e−→ µ+µ− differen-
tial cross section at

√
s= 34.4 GeV from the JADE experiment, which operated

between 1979 and 1986 at the PETRA e+e− collider at the DESY laboratory in
Hamburg. The (1+ cos2 θ) nature of the dominant QED contribution is appar-
ent. However, the interpretation of these data is complicated the presence of elec-
troweak corrections arising from the interference between the QED amplitude and
that from the Feynman diagram involving the exchange of a Z boson (see
Chapter 15). This results in a relatively small forward–backward asymmetry in
the differential cross section.

The total e+e−→ µ+µ− cross section is obtained by integrating (6.23) over the
full solid angle range. Writing dΩ = dφ d(cos θ), the solid angle integral is simply

∫
(1 + cos2 θ) dΩ = 2π

∫ +1

−1
(1 + cos2 θ) d(cos θ) =

16π
3
.
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!Fig. 6.7 (left) The QED prediction for the distribution of cos θ in e+e− → µ+µ− annihilation, where θ is the angle
of the outgoingµ− with respect to the incoming e− direction. (right) The measured e+e−→ µ+µ− differ-
ential cross section at

√
s= 34.4 GeV from the JADE experiment, adapted from Bartel et al. (1985). The solid

curve is the lowest-order QED prediction. The dotted curve includes electroweak corrections.

Therefore, the lowest-order prediction for the total e+e− → µ+µ− cross section is

σ =
4πα2

3s
. (6.24)

Figure 6.8 shows the experimental measurements of the e+e− → µ+µ− cross section
at centre-of-mass energies of

√
s< 40 GeV. In this case, the electroweak correc-

tions are negligible (the effects of interference with the Z boson exchange diagram
average to zero in the solid angle integral) and the lowest-order QED prediction
provides an excellent description of the data. This is an impressive result, starting
from first principles, it has been possible to calculate an expression for the cross
section for electron–positron annihilation which is accurate at the O(1%) level.

6.2.5 Lorentz-invariant form

The spin-averaged matrix element of (6.22) is expressed in terms of the angle θ
as measured in the centre-of-mass frame. However, because the matrix element is
Lorentz invariant, it also can be expressed in an explicitly Lorentz-invariant form
using four-vector scalar products formed from the four-momenta of the initial- and
final-state particles. From the four-momenta defined in (6.7)−(6.10),

p1 ·p2 = 2E2, p1 ·p3 = E2(1 − cos θ) and p1 ·p4 = E2(1 + cos θ).
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s (GeV)√!Fig. 6.8 The measured e+e−→ µ+µ− cross section for
√

s< 40 GeV. The curve shows the lowest-order QED pre-
diction of (6.24).

Hence the spin-averaged matrix element of (6.22) can be written as

⟨|M f i|2⟩ = 2e4 (p1 ·p3)2 + (p1 ·p4)2

(p1 ·p2)2 . (6.25)

The scalar products appearing in (6.25) can be expressed in terms of the Mandel-
stam variables, where for example

s = (p1 + p2)2 = p2
1 + p2

2 + 2p1 ·p2 = m2
1 + m2

2 + 2p1 ·p2.

In the limit, where the masses of the particles can be neglected,

s = +2p1 ·p2, t = −2p1 ·p3 and u = −2p1 ·p4,

and therefore (6.25) can be written as

⟨|M f i|2⟩ = 2e4
(
t2 + u2

s2

)
. (6.26)

This expression, which depends only on Lorentz-invariant quantities, is valid in all
frames of reference.
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6.3 Spin in electron–positron annihilation

The four helicity combinations for the process e+e−→ µ+µ− that give non-zero
matrix elements are shown in Figure 6.6. In each case, the spins of the two initial-
state particles are aligned, as are the spins of the two final-state particles. Defining
the z-axis to be in the direction of the incoming electron beam, the z-component
the combined spin of the e+ and e− is therefore either +1 or −1, implying that the
non-zero matrix elements correspond to the cases where the electron and positron
collide in a state of total spin-1. Therefore, the spin state for the RL helicity com-
bination can be identified as |S , S z⟩= |1, + 1⟩ and that for the LR combinations as
|1,−1⟩. Similarly, the helicity combinations of the µ+µ− system correspond to spin
states of |1,±1⟩θ measured with respect to the axis in the direction of µ−, as indi-
cated in Figure 6.9.

The angular dependence of the matrix elements for each helicity combination
can be understood in terms of these spin states. The operator corresponding to the
component of spin along an axis defined by the unit vector n at an angle θ to the z-
axis is Ŝ n =

1
2 n ·σ. Using this operator, it is possible to express the spin states of the

µ+µ− system in terms of the eigenstates of Ŝ z (see Problem 6.6). For example, the
spin wavefunction of the RL helicity combination of the µ+µ− final state, |1,+1⟩θ,
can be expressed as

|1,+1⟩θ = 1
2 (1 − cos θ) |1,−1⟩ + 1√

2
sin θ |1, 0⟩ + 1

2 (1 + cos θ) |1,+1⟩.

The angular distributions of matrix elements of (6.20) and (6.21) can be understood
in terms of the inner products of the spin states of initial-state e+e− system and the

|1,1〉q

|1,1〉q

|1,1〉z

|1, -1〉z

-1 +1cosq

-1 +1cosq

µ-

µ-

µ+

µ+

e+

e+

e-

e-

RL ®  RL

LR ®  RL!Fig. 6.9 The orientations of the spin-1 system in the RL→ RL and LR→ RL helicity combinations and the angular
dependence of the corresponding matrix element in the limit where E≫m.
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final-state µ+µ− system. For example,

MRL→RL ∝ ⟨1,+1|1,+1⟩θ = 1
2 (1 + cos θ)

MLR→RL ∝ ⟨1,−1|1,+1⟩θ = 1
2 (1 − cos θ).

Hence, in the limit E≫m, the spin combinations that give non-zero matrix ele-
ments correspond to states of total spin-1 with the spin vector pointing along the
direction of the particles motion and the resulting angular distributions can be
understood in terms of the quantum mechanics of spin-1. This is consistent with
the notion that an interaction of the form φγ µψ corresponds to the exchange of a
spin-1 particle, in this case the photon.

6.4 Chirality

In the limit E≫m only four out of the sixteen possible helicity combinations for
the process e+e−→ e+e− give non-zero matrix elements. This does not happen by
chance, but reflects the underlying chiral structure of QED. The property of chi-
rality is an important concept in the Standard Model. Chirality is introduced by
defining the γ5-matrix as

γ5 ≡ iγ0γ1γ2γ3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

(
0 I
I 0

)
. (6.27)

The significance of the γ5-matrix, whilst not immediately obvious, follows from
its mathematical properties and the nature of its eigenstates. The properties of the
γ5-matrix can be derived (see Problem 6.1) from the commutation and Hermiticity
relations of the γ-matrices given in (4.33) and (4.34), leading to

(γ5)2 = 1,

γ5† = γ5,

γ5γ µ = −γ µγ5.

(6.28)

(6.29)

(6.30)

In the limit E≫m, and only in this limit, the helicity eigenstates of (6.11) are
also eigenstates of the γ5-matrix with eigenvalues

γ5u↑ = +u↑, γ5u↓ = −u↓, γ5v↑ = −v↑ and γ5v↓ = +v↓.

In general, the eigenstates of the γ5-matrix are defined as left- and right-handed
chiral states (denoted with subscripts R, L to distinguish them from the general
helicity eigenstates ↑, ↓) such that
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γ5uR = +uR and γ5uL = −uL,

γ5vR = −vR and γ5vL = +vL.
(6.31)

With this convention, when E≫m the chiral eigenstates are the same as the helic-
ity eigenstates for both particle and antiparticle spinors, for example u↑ → uR and
v↓ → vL. Hence, in general, the solutions to the Dirac equation which are also eigen-
states of γ5 are identical to the massless helicity eigenstates of (6.11),

uR≡ N

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c
seiφ

c
seiφ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, uL≡ N

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−s
ceiφ

s
−ceiφ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, vR≡ N

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

s
−ceiφ

−s
ceiφ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and vL≡ N

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c
seiφ

c
seiφ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (6.32)

where the normalisation is given by N =
√

E + m. Unlike helicity, there is no simple
physical interpretation of the property of chirality, it is nevertheless an integral part
of the structure of the Standard Model.

Chiral projection operators
Any Dirac spinor can be decomposed into left- and right-handed chiral components
using the chiral projection operators, PL and PR, defined by

PR =
1
2 (1 + γ5),

PL =
1
2 (1 − γ5).

(6.33)

Using the properties of the γ5-matrix, it is straightforward to show that PR and PL

satisfy the required algebra of quantum mechanical projection operators, namely,

PR + PL = 1, PR PR = PR, PL PL = PL and PLPR = 0.

In the Dirac–Pauli representation

PR =
1
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and PL =
1
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 −1 0
0 1 0 −1
−1 0 1 0

0 −1 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (6.34)

From the definitions of (6.31), it immediately follows that the right-handed chi-
ral projection operator has the properties

PRuR = uR, PRuL = 0, PRvR = 0 and PRvL = vL.

Hence PR projects out right-handed chiral particle states and left-handed chiral
antiparticle states. Similarly, for the left-handed chiral projection operator,

PLuR = 0, PLuL = uL, PLvR = vR and PLvL = 0.
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Since PR and PL project out chiral states, any spinor u can be decomposed into left-
and right-handed chiral components with

u = aR uR + aL uL =
1
2 (1 + γ5)u + 1

2 (1 − γ5)u,

where aR and aL are complex coefficients and uR and uL are right- and left-handed
chiral eigenstates.

6.4.1 Chirality in QED

In QED, the fundamental interaction between a fermion and a photon is expressed
as a four-vector current iQfeψγ µφ, formed from the Dirac spinors ψ and φ. Any
four-vector current can be decomposed into contributions from left- and right-
handed chiral states using the chiral projection operators defined in (6.33). For
example, in the case of QED,

ψγ µφ = (a∗RψR + a∗LψL)γ µ(bRφR + bLφL)

= a∗RbRψRγ
µφR + a∗RbLψRγ

µφL + a∗LbRψLγ
µφR + a∗LbLψLγ

µφL, (6.35)

where the coefficients, a and b, will depend on the spinors being considered. The
form of the QED interaction means that two of the chiral currents in (6.35) are
always zero. For example, consider the term uL(p)γ µuR(p′). The action of PR on a
right-handed chiral spinor leaves the spinor unchanged,

uR(p′) = PRuR(p′). (6.36)

Therefore PR can always be inserted in front of right-handed chiral particle state
without changing the expression in which it appears. The equivalent relation for
the left-handed adjoint spinor is

uL(p) ≡ [uL(p)]†γ0 = [PLuL(p)]†γ0 = [ 1
2 (1 − γ5)uL(p)]†γ0

= [uL(p)]† 1
2 (1 − γ5)γ0 (using γ5 = γ5†)

= [uL(p)]†γ0 1
2 (1 + γ5) (using γ0γ5 = −γ5γ0)

= uL(p)PR.

From this it follows that

uL(p)γ µuR(p′) = uL(p)PR γ
µPR uR(p′). (6.37)

But since γ5γ µ = −γ µγ5,

PRγ
µ = 1

2 (1 + γ5)γ µ = γ µ 1
2 (1 − γ5) = γ µPL,

and thus (6.37) can be written

uL(p)γ µuR(p′) = uL(p)γ µPLPR uR(p′) = 0,
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because PLPR = 0. Therefore, the ψγ µφ form of the QED interaction, implies that
only certain combinations of chiral eigenstates give non-zero matrix elements, and
the currents of the form

uLγ
µuR = uRγ

µuL = vLγ
µvR = vRγ

µvL = vLγ
µuL = vRγ

µuR ≡ 0

are always identically zero.

6.4.2 Helicity and chirality

It is important not to confuse the concepts of helicity and chirality. Helicity eigen-
states are defined by the projection of the spin of a particle onto its direction of
motion, whereas the chiral states are the eigenstates of the γ5-matrix. The relation-
ship between the helicity eigenstates and the chiral eigenstates can be found by
decomposing the general form of the helicity spinors into their chiral components.
For example, the right-handed helicity particle spinor of (4.65) can be written as

u↑(p, θ, φ) = N

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c
seiφ

κc
κseiφ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

with κ =
p

E + m
and N =

√
E + m.

The spinor can be decomposed into its left- and right-handed chiral components by
considering the effect of the chiral projection operators,

PRu↑ = 1
2 (1 + κ) N

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c
seiφ

c
seiφ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and PLu↑ = 1
2 (1 − κ) N

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c
seiφ

−c
−seiφ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Therefore, the right-handed helicity spinor, expressed in terms of its chiral compo-
nents, is

u↑(p, θ, φ) = 1
2 (1 + κ) N

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c
seiφ

c
seiφ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ 1

2 (1 − κ) N

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c
seiφ

−c
−seiφ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∝ 1
2 (1 + κ) uR +

1
2 (1 − κ) uL, (6.38)

where uR and uL are chiral eigenstates with γ5uR =+ uR and γ5uL =− uL. From
(6.38) it is clear that it is only in the limit where E≫m (when κ→ 1) that the
helicity eigenstates are equivalent to the chiral eigenstates. Because only certain
combinations of chiral states give non-zero contributions to the QED matrix ele-
ment, in the ultra-relativistic limit only the corresponding helicity combinations
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!Fig. 6.10 The helicity combinations at the QED vertex which give non-zero four-vector currents in the limit E≫m.

contribute to the QED interaction. The chiral nature of the QED interaction there-
fore explains the previous observation that only four of the sixteen possible helicity
combinations contribute to the e+e− → µ+µ− annihilation process at high energies.

The correspondence between the helicity and chiral eigenstates in the ultra-
relativistic limit implies that for E≫m, the four-vector currents written in terms of
the helicity states,

u↓γ µu↑ = u↑γ µu↓ = v↓γ µv↑ = v↑γ µv↓ = v↓γ µu↓ = v↑γ µu↑ = 0,

are all zero. Therefore in the high-energy QED processes, only the helicity combi-
nations shown in Figure 6.10 give non-zero currents. Consequently, the helicity of
the particle leaving the QED vertex is that same as that entering it and helicity is
effectively “conserved” in high-energy interactions.

6.5 *Trace techniques

In the calculation of the e+e−→ µ+µ− cross section described above, the individual
matrix elements were calculated for each helicity combination using the explicit
representations of the spinors and the γ-matrices. The resulting squares of the
matrix elements were then summed and averaged. This approach is relatively sim-
ple and exposes the underlying physics of the interaction. For these reasons, the
majority of the calculations that follow will adopt the helicity amplitude approach.
In the limit where the masses of the particles can be neglected, these calculations
are relatively straightforward as they involve only a limited number of helicity com-
binations. However, when the particle masses can not be neglected, it is necessary
to consider all possible spin combinations. In this case, calculating the individual
helicity amplitudes is not particularly efficient (although it is well suited to com-
putational calculations). For more complicated processes, analytic solutions are
usually most easily obtained using a powerful technique based on the traces of
matrices and the completeness relations for Dirac spinors.

6.5.1 Completeness relations

Sums over the spin states of the initial- and final-state particles can be calcu-
lated using the completeness relations satisfied by Dirac spinors. The completeness
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relations are defined by the sum over the two possible spin states of the tensor
formed from the product of a spinor with its adjoint spinor,

2∑

s=1

us(p)us(p),

where the sum is for two orthogonal spin states. The sum can be performed using
the helicity basis or the spinors u1 and u2, both of which form a complete set of
states. Here it is most convenient to work with the spinors u1(p) and u2(p), in which
case the completeness relation is

2∑

s=1

us(p)us(p) ≡ u1(p)u1(p) + u2(p)u2(p).

In the Dirac–Pauli representation, the spinors u1 and u2 can be written as

us(p) =
√

E + m

⎛
⎜⎜⎜⎜⎜⎜⎝

φs

σ·p
E+mφs

⎞
⎟⎟⎟⎟⎟⎟⎠ with φ1 =

(
1
0

)
and φ2 =

(
0
1

)
.

Using (σ · p)† = σ · p, the adjoint spinor can be written

us = u†sγ
0 =
√

E + m
(
φT

s φT
s

(σ·p)†

E+m

) ( I 0
0 −I

)
=
√

E + m
(
φT

s −φT
s

(σ·p)
E+m

)
,

where I is the 2×2 identity matrix. Hence the completeness relation can be written

2∑

s=1

us(p)us(p) = (E + m)
2∑

s=1

⎛
⎜⎜⎜⎜⎜⎜⎝

φsφT
s − σ·pE+mφsφT

s
σ·p
E+mφsφT

s − (σ·p)2

(E+m)2φsφT
s

⎞
⎟⎟⎟⎟⎟⎟⎠ ,

which using

2∑

s=1

φsφ
T
s =

(
1 0
0 1

)
and (σ · p)2 = p2 = (E + m)(E − m),

gives

2∑

s=1

us(p)us(p) =
(

(E + m)I −σ · p
σ · p (−E + m)I

)
. (6.39)

Equation (6.39) can be written in terms of the γ-matrices as

2∑

s=1

usus = (γ µpµ + mI) = /p + m, (6.40)
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where the “slash” notation is shorthand for /p ≡ γ µpµ = Eγ0 − pxγ1 − pyγ2 − pzγ3.
Repeating the above derivation, it is straightforward to show that the antiparticle
spinors satisfy the completeness relation,

2∑

r=1

vrvr = (γ µpµ − mI) = /p − m, (6.41)

where the mass term enters with a different sign compared to the equivalent expres-
sion for particle spinors.

6.5.2 Spin sums and the trace formalism

The QED, QCD and weak interaction vertex factors all can be written in the form
u(p) Γ u(p′), where Γ is a 4 × 4 matrix constructed out of one or more Dirac γ-
matrices. In index notation, this product of spinors and γ-matrices can be written

u(p) Γ u(p′) = u(p) j Γji u(p′)i,

where the indices label the components and summation over repeated indices is
implied. It should be noted that u(p) Γ u(p′) is simply a (complex) number.1 For
the QED vertex Γ= γ µ and the matrix element for the process e+e−→ µ+µ− is
given by (6.3),

M f i = −
e2

q2

[
v(p2)γ µu(p1)

]
gµν

[
u(p3)γνv(p4)

]

= − e2

q2

[
v(p2)γ µu(p1)

] [
u(p3)γµv(p4)

]
, (6.42)

where summation over the index µ is implied. The matrix element squared |M f i|2
is the product ofM f i andM†f i, with

M†f i =
e2

q2

[
v(p2)γνu(p1)

]† [u(p3)γνv(p4)
]† ,

where the index ν has been used for this summation to avoid confusion with the
index µ in the expression forM f i given in (6.42). Because the components of the

1 If this is not immediately obvious, consider the 2 × 2 case of cTBa, where the equivalent product
can be written as

(c1, c2)
(

B11 B12

B22 B22

) (
a1

a2

)
= c1B11a1 + c1B12a2 + c2B21a1 + c2B22

= c jBjiai,

which is just the sum over the product of the components of a, c and B.
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currents are simply numbers, the order in which they are written does not matter.
Hence |M f i|2 =M f iM†f i can be written

|M f i|2 =
e4

q4

[
v(p2)γ µu(p1)

] [
v(p2)γνu(p1)

]† ×
[
u(p3)γµv(p4)

] [
u(p3)γνv(p4)

]† .

The spin-averaged matrix element squared can therefore be written

⟨|M f i|2⟩ =
1
4

∑

spins

|M f i|2

=
e4

4q4

∑

s,r

[
vr(p2)γ µus(p1)

] [
vr(p2)γνus(p1)

]†

×
∑

s′,r′

[
us′(p3)γµvr

′
(p4)

]
,
[
us′(p3)γνvr

′
(p4)

]†
, (6.43)

where s, s′, r and r′ are the labels for the two possible spin states (or equivalently
helicity states) of the four spinors. In this way, the calculation of the spin-averaged
matrix element squared has been reduced to the product of two terms of the form

∑

spins

[
ψΓ1φ

] [
ψΓ2φ

]†
, (6.44)

where Γ1 and Γ2 are two 4 × 4 matrices, which for this QED process are Γ1 = γ µ

and Γ2 = γν. Equation (6.44) can be simplified by writing

[
ψΓφ

]†
=

[
ψ†γ0Γφ

]†
= φ†Γ†γ0†ψ = φ†γ0γ0Γ†γ0ψ = φγ0Γ†γ0ψ,

and hence
[
ψΓφ

]† ≡ φ Γψ with Γ = γ0Γ†γ0.

From the properties of the γ-matrices given (4.33) and (4.34), it can be seen that
γ0γ µ

†
γ0 = γ µ for all µ. Hence for the QED vertex, with Γ = γ µ,

Γ = γ0γ µ†γ0 = γ µ = Γ.

Although not shown explicitly, it should be noted that Γ = Γ also holds for the QCD
and weak interaction vertices. Hence for all of the Standard Model interactions,

[
ψΓφ

]† ≡ φ Γψ. (6.45)
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Using (6.45), the spin-averaged matrix element squared for the process e+e−→
µ+µ− of (6.43) can be written

∑

spins

|M f i|2 =
e4

q4

∑

s,r

[
vr(p2)γ µus(p1)

] [
us(p1)γνvr(p2)

]

×
∑

s′,r′

[
us′(p3)γµvr

′
(p4)

] [
v r′(p4)γνus′(p3)

]
. (6.46)

Denoting the part of (6.46) involving the initial-state e+ and e− spinors by the
tensor L µν(e) and writing the matrix multiplication in index form gives

L µν(e) =

2∑

s,r=1

vrj(p2)γ µjiu
s
i (p1) us

n(p1)γνnmv
r
m(p2) . (6.47)

Since all the quantities in (6.47) are just numbers, with the indices keeping track of
the matrix multiplication, this can be written as

L µν(e) =

⎡
⎢⎢⎢⎢⎢⎢⎣

2∑

r=1

vrm(p2)vrj(p2)

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

2∑

s=1

us
i (p1)us

n(p1)

⎤
⎥⎥⎥⎥⎥⎥⎦ γ
µ
jiγ

ν
nm . (6.48)

Using the completeness relations of (6.40), the electron tensor of (6.48) becomes

Lµν(e) = (/p2 − m)m j(/p1 + m)inγ
µ
jiγ

ν
nm, (6.49)

where (/p2−m)m j is the (m j)th element of the 4× 4 matrix (/p2−mI). Equation (6.49)
can be put back into normal matrix multiplication order to give

Lµν(e) = (/p2 − m)m jγ
µ
ji(/p1 + m)inγ

ν
nm

=
[
(/p2 − m)γ µ(/p1 + m)γν

]
mm

= Tr
(
[/p2 − m]γ µ[/p1 + m]γν

)
. (6.50)

Consequently, the sum over spins of the initial-state particles has been replaced by
the calculation of the traces of 4 × 4 matrices, one for each of the sixteen possible
combinations of the indices µ and ν. The order in which the two /p terms appear
in trace calculation of (6.50) follows the order in which the spinors appear in the
original four-vector currents; the /p term associated with the adjoint spinor appears
first (although traces are unchanged by cycling the elements). In constructing the
traces associated with a Feynman diagram it is helpful to remember that the order
in which different terms appear can be obtained by following the arrows in the
fermion currents in the backwards direction. Writing the sum over the spins of
final-state particles of (6.46) as the muon tensor,

L(µ)
µν =

∑

s′,r′

[
us′(p3)γµvr

′
(p4)

] [
v r′(p4)γνus′(p3)

]
,
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and expressing this in terms of a trace, leads to

∑

spins

|M f i|2 =
e4

q4L
µν
(e)L

(µ)
µν

=
e4

q4 Tr
(
[/p2 − m]γ µ[/p1 + m]γν

)
× Tr

(
[/p3 + M]γµ[/p4 − M]γν

)
,

(6.51)

where the masses of the initial- and final-state particles are respectively written as
m and M.

6.5.3 Trace theorems

The calculation of the spin-summed matrix element has been reduced to a prob-
lem of calculating traces involving combinations of γ-matrices. At first sight this
appears a daunting task, but fortunately there are a number of algebraic “tricks”
which greatly simplify the calculations. Firstly, traces have the properties

Tr (A + B) ≡ Tr (A) + Tr (B) , (6.52)

and are unchanged by cycling the order of the elements

Tr (AB . . .YZ) ≡ Tr (ZAB . . .Y) . (6.53)

Secondly, the algebra of the γ-matrices is defined by the anticommutation relation
of (4.33), namely

γ µγν + γνγ µ ≡ 2gµνI, (6.54)

where the presence of the 4 × 4 identity matrix has been made explicit. Taking the
trace of (6.54) gives

Tr
(
γ µγν

)
+ Tr

(
γνγ µ

)
= 2gµν Tr (I) ,

which using Tr (AB) =Tr (BA) becomes Tr (γ µγν) = gµν Tr (I), and hence

Tr
(
γ µγν

)
= 4gµν. (6.55)

The trace of any odd number of γ-matrices can be shown to be zero by inserting
γ5γ5 = I into the trace. For example, consider the trace of any three γ-matrices

Tr
(
γ µγνγ ρ

)
= Tr

(
γ5γ5γ µγνγ ρ

)

= Tr
(
γ5γ µγνγ ργ5

)
(traces are cyclical)

= −Tr
(
γ5γ5γ µγνγ ρ

)
(since γ5γ µ = −γ µγ5)
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where the last line follows from commuting γ5 through the three γ-matrices, each
time introducing a factor of −1. Hence Tr (γ µγνγ ρ) =−Tr (γ µγνγ ρ), which can
only be true if

Tr
(
γ µγνγ ρ

)
= 0. (6.56)

The same argument can be applied to show that the trace of any odd number of
γ-matrices is zero.

Finally, the trace of four γ-matrices can be obtained from (6.54) which allows
γ aγ b to be written as 2g ab − γ bγ a and repeated application of this identity gives

γ µγνγ ργσ = 2gµνγ ργσ − γνγ µγ ργσ

= 2gµνγ ργσ − 2gµργνγσ + γνγ ργ µγσ

= 2gµνγ ργσ − 2gµργνγσ + 2gµσγνγ ρ − γνγ ργσγ µ

⇒ γ µγνγ ργσ + γνγ ργσγ µ = 2gµνγ ργσ − 2gµργνγσ + 2gµσγνγ ρ. (6.57)

Taking the trace of both sides of (6.57) and using the cyclic property of traces

2Tr
(
γ µγνγ ργσ

)
= 2gµν Tr

(
γ ργσ

) − 2gµρ Tr
(
γνγσ

)
+ 2gµσ Tr

(
γνγ ρ

)
,

and using (6.55) for the trace of two γ-matrices gives the identity

Tr
(
γ µγνγ ργσ

)
= 4gµνg ρσ − 4gµρgνσ + 4gµσgνρ. (6.58)

The full set of trace theorems, including those involving γ5 = iγ0γ1γ2γ3, are:

(a) Tr (I) = 4;

(b) the trace of any odd number of γ-matrices is zero;

(c) Tr (γ µγν) = 4gµν;

(d) Tr (γ µγνγ ργσ) = 4gµνg ρσ − 4gµρgνσ + 4gµσgνρ;

(e) the trace of γ5 multiplied by an odd number of γ-matrices is zero;

(f) Tr
(
γ5

)
= 0;

(g) Tr
(
γ5γ µγν

)
= 0; and

(h) Tr
(
γ5γ µγνγ ργσ

)
= 4iε µνρσ, where ε µνρσ is antisymmetric under the inter-

change of any two indices.

Armed with these trace theorems, expressions such as that of (6.51) can be eval-
uated relatively easily; it is worth going through one example of a matrix element
calculation using the trace methodology in gory detail.
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e- f

m

e+

g

p2

p1

p4

p3

ν

f!Fig. 6.11 The lowest-order QED Feynman diagram for e+e− → ff.

6.5.4 Electron–positron annihilation revisited

Consider the process e+e−→ ff, shown in Figure 6.11, where f represents any of the
fundamental spin-half charged fermions. In the limit where the electron mass can
be neglected, but the masses of the final-state fermions cannot, the spin-averaged
matrix element squared is given by (6.51) with m= 0 and M =mf ,

⟨|M f i|2⟩ =
1
4

∑

spins

|M f i|2 =
Q2

f e
4

4q4 Tr
(
/p2γ

µ
/p1γ

ν
)

Tr
(
[/p3 + m f ]γµ[/p4 − m f ]γν

)
.

(6.59)

This can be evaluated by writing /p1 = γ
σp1σ and /p2 = γ

ρp2ρ, in which case the first
trace in (6.59) can be written as

Tr
(
/p2γ

µ
/p1γ

ν
)
= p2ρp1σTr

(
γ ργ µγσγν

)

= 4p2ρp1σ(g ρµgσν − g ρσgµν + g ρνgµσ)

= 4p µ2 pν1 − 4gµν(p1 ·p2) + 4pν2 p µ1 .

Since the trace of an odd number of γ-matrices is zero and Tr (A+ B) =Tr (A) +
Tr (B), the second trace in (6.59) can be written

Tr
(
[/p3 + mf]γµ[/p4 − mf]γν

)
= Tr

(
/p3γµ/p4γν

)
− m2

f Tr
(
γµγν

)
(6.60)

= 4p3µp4ν − 4gµν(p3 ·p4) + 4p3νp4µ − 4m2
f gµν.

(6.61)

Hence, the spin-averaged matrix element squared is given by

⟨|M f i|2⟩ = 16
Q2

f e4

4q4

[
p µ2 pν1 − gµν(p1 ·p2) + pν2 p µ1

]

×
[
p3µp4ν − gµν(p3 ·p4) + p3νp4µ − m2

f gµν
]
. (6.62)

This expression can be simplified by contracting the indices, where for example

gµνgµν = 4, p µ2 pν1gµν = (p1 ·p2) and p µ2 pν1 p3µp4ν = (p2 ·p3)(p1 ·p4).
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Thus the twelve terms of (6.62) become

⟨|M f i|2⟩ = 4
Q2

f e4

q4

[
(p1 ·p4)(p2 ·p3) − (p1 ·p2)(p3 ·p4) + (p1 ·p3)(p2 ·p4)

− (p1 ·p2)(p3 ·p4) + 4(p1 ·p2)(p3 ·p4) − (p1 ·p2)(p3 ·p4)

+ (p1 ·p3)(p2 ·p4) − (p1 ·p2)(p3 ·p4) + (p1 ·p4)(p2 ·p3)

−m2
f (p1 ·p2) + 4m2

f (p1 ·p2) − m2
f (p1 ·p2)

]
,

which simplifies to

⟨|M f i|2⟩ = 4
Q2

f e4

q4

[
2(p1 ·p3)(p2 ·p4) + 2(p1 ·p4)(p2 ·p3) + 2m2

f (p1 ·p2)
]
.

In the limit where the electron mass is neglected, the four-momentum squared of
the virtual photon is

q2 = (p1 + p2)2 = p2
1 + p2

2 + 2(p1 ·p2) ≈ 2(p1 ·p2),

and therefore

⟨|M f i|2⟩ = 2
Q2

f e4

(p1 ·p2)2

[
(p1 ·p3)(p2 ·p4) + (p1 ·p4)(p2 ·p3) + m2

f (p1 ·p2)
]
. (6.63)

If the final-state fermion mass is also neglected, (6.63) reduces to the expression
for the spin-averaged matrix element squared of (6.25), which was obtained from
the helicity amplitudes.

In the above calculation, neither the explicit form of the spinors nor the specific
representation of the γ-matrices is used. The spin-averaged matrix element squared
is determined from the completeness relations for the spinors and the commutation
and Hermiticity properties of the γ-matrices alone.

e+e− → ff annihilation close to threshold
The spin-averaged matrix element squared of (6.63) can be used to calculate the
cross section for e+e−→ ff close to threshold. Working in the centre-of-mass frame
and writing the momenta of the final-state particles as p= βE, where β= v/c, the
four-momenta of the particles involved can be written

p1 = (E, 0, 0,+E),

p2 = (E, 0, 0,−E),

p3 = (E,+βE sin θ, 0,+βE cos θ),

p4 = (E,−βE sin θ, 0,−βE cos θ),
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and the relevant four-vector scalar products are

p1 ·p3 = p2 ·p4 = E2(1 − β cos θ),

p1 ·p4 = p2 ·p3 = E2(1 + β cos θ),

p1 ·p2 = 2E2.

Substituting these expressions into (6.63) gives

⟨|M f i|2⟩ = 2
Q2

f e4

4E4

[
E4(1 − β cos θ)2 + E4(1 + β cos θ)2 + 2E2m2

f

]

= Q2
f e4

(
1 + β2 cos2 θ +

E2 − p2

E2

)

= Q2
f e4

(
2 + β2 cos2 θ − β2

)
. (6.64)

The differential cross section is then obtained by substituting the spin-averaged
matrix element squared of (6.64) into the cross section formula of (3.50) to give

dσ
dΩ
=

1
64π2s

p
E
⟨|M f i|2⟩

=
1
4s
βQ2

fα
2
(
2 + β2 cos2 θ − β2

)
,

where e2 = 4πα. The total cross section is obtained by integrating over dΩ, giving

σ(e+e− → ff) =
4πα2Q2

f

3s
β

(
3 − β2

2

)
with β2 =

⎛
⎜⎜⎜⎜⎜⎝1 −

4m2
f

s

⎞
⎟⎟⎟⎟⎟⎠. (6.65)

Close to threshold, the cross section is approximately proportional to the velocity
of the final state particles. Figure 6.12 shows the measurements of the total e+e−→
τ+τ− cross section at centre-of-mass energies just above threshold. The data are in
good agreement with the prediction of (6.65). In the relativistic limit where β→ 1,
the total cross section of (6.65) reduces to the expression of (6.24).

6.5.5 Electron–quark scattering

The main topic of the next two chapters is electron–proton scattering. In the case
of inelastic scattering where the proton breaks up, the underlying QED process
is t-channel scattering of electrons from the quarks inside the proton. In the limit
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3.5 4 4.5 5
0
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0.2

τ+ τ
- /

µ+ µ
-

s (GeV)√!Fig. 6.12 The measured ratio of number of identified e+e−→ τ+τ− events to the number of e+e−→ µ+µ− at
centre-of-mass energies close to the e+e−→ τ+τ− threshold. The curve shows the β(3− β2) behaviour
of (6.65). The normalisation depends on the efficiency for identifying τ+τ− events and a small background
component is included. Adapted from Bacino et al. (1978).

e- e-

m

q q

g

p2

p1

p4

p3

ν!Fig. 6.13 The lowest-order Feynman diagram for QED t-channel electron–quark scattering process.

where the masses of the electron and the quark can be neglected, it is relatively
straightforward to obtain the expressions for the four non-zero matrix elements
using the helicity amplitude approach (see Problem 6.7). However, if the particle
masses cannot be neglected, which is the case for low-energy electron–proton scat-
tering, the spin-averaged matrix element is most easily calculated using the trace
formalism introduced above.

The QED matrix element for the Feynman diagram of Figure 6.13 is

M f i =
Qqe2

q2

[
u(p3)γ µu(p1)

]
gµν

[
u(p4)γνu(p2)

]
.

Noting the order in which the spinors appear in the matrix element (working back-
wards along the arrows on the fermion lines), the spin-summed matrix element
squared is given by
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∑

spins

|M f i|2 =
Q2

qe4

q4 Tr
(
[/p3 + me]γ µ[/p1 + me]γν

)
Tr

(
[/p4 + mq]γµ[/p2 + mq]γν

)
.

(6.66)

Apart from the signs of the mass terms, which are all positive since only particles
are involved, the expressions in the traces of (6.66) have the same form as those
of (6.60) and can therefore be evaluated using the result of (6.61) with the signs of
the m2 terms reversed, giving

∑

spins

|M f i|2 =
16 Q2

qe4

q4

(
p µ3 pν1 − gµν(p1 ·p3) + p µ1 pν3 + m2

eg
µν

)

×
(
p4µp2ν − gµν(p2 ·p4) + p2µp4ν + m2

qgµν
)
.

From this expression, it follows that

⟨|M f i|2⟩ =
1
4

∑

spins

|M f i|2

=
8Q2

qe4

(p1 − p3)4 ×
[
(p1 ·p2)(p3 ·p4) + (p1 ·p4)(p2 ·p3)

−m2
e(p2 ·p4) − m2

q(p1 ·p3) + 2m2
em2

q

]
. (6.67)

In the limit where the masses can be neglected, (6.67) reduces to

⟨|M f i|2⟩ = 2Q2
qe4

(
s2 + u2

t2

)
. (6.68)

Apart from the factor Q2
q from the quark charge, this spin-averaged matrix element

squared for the t-channel scattering process of eq→ eq is identical to the corre-
sponding expression for e+e−→ µ+µ− annihilation of (6.26) with s and t inter-
changed. The similarity between these two expressions is to be expected from the
closeness of the forms of the fermion currents for the two processes. This property,
known as crossing symmetry, can be utilised to obtain directly the expression for
the spin-averaged matrix element squared for a t-channel process from that of the
corresponding s-channel process.

6.5.6 Crossing symmetry

The calculations of the spin-averaged squared matrix elements for the s-channel
e+e−→ ff annihilation process and the t-channel e−f→ e−f scattering processes,
shown in Figure 6.14, proceed in similar way. In the annihilation process, the two
currents are

j µe = v(p2)γ µu(p1) and j νf = u(p3)γνv(p4), (6.69)
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f!Fig. 6.14 The Feynman diagrams for QED s-channel annihilation process e+e−→ ff and the QED t-channel scattering
process e−f→ e−f.

and for the scattering process the corresponding two currents are

j µe = u(p3)γ µu(p1) and j νf = u(p4)γνu(p2). (6.70)

By making the replacement u(p1)→ u(p1), v(p2)→ u(p3), u(p3)→ u(p4) and
v(p4)→ u(p2) the currents in the annihilation process (6.69) correspond to those
for the scattering process (6.70). In the calculation of traces, this implies making
the replacement, p1→ p1, p2→ p3, p3→ p4 and p4→ p2. This accounts for the
order in which the spinors appear in the four-vector currents, but does not account
for the replacement of an antiparticle spinor with a particle spinor. From the com-
pleteness relationships of (6.40) and (6.41), the spin sums lead to a term in the trace
of [/p+m] for particles and [/p−m] for antiparticles. So when a particle is replaced
by an antiparticle, the sign of the mass term in the trace is reversed. Alternatively,
the effect of changing the relative sign between /p and m, can be achieved by chang-
ing the sign of the four-momentum when a particle in one diagram is replaced by
an antiparticle in the other diagram. Hence, crossing symmetry implies that the
matrix element for e−f→ e−f can be obtained the matrix element for e+e−→ ff by
making the substitutions,

p1 → p1, p2 → −p3, p3 → p4 and p4 → −p2.

The effect on the Mandelstam variables is s2→ t2, t2→ u2 and u2→ s2, and with
these replacements the matrix element for the s-channel annihilation process
e+e−→ ff of (6.26) transforms to the matrix element for the t-channel scattering
process e−f → e−f of (6.68)

⟨|M f i|2⟩s = 2Q2
f e4

(
t2 + u2

s2

)
←→ ⟨|M f i|2⟩t = 2Q2

f e4
(
u2 + s2

t2

)
.
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Summary

In this chapter, the e+e−→ µ+µ− annihilation process has been used to introduce the
techniques used to perform lowest-order QED calculations. A number of important
concepts were introduced. The treatment of the different spin states of the initial-
and final-state particles leads to the introduction of the spin-averaged matrix ele-
ment squared given by

⟨|M f i|2⟩ =
1
4

∑

spins

|M|2,

where the sum extends over the sixteen orthogonal spins states. In the limit where
the masses of the particles were neglected, only four of the possible helicity combi-
nations give non-zero matrix elements. This property is due to the chiral nature of
the QED interaction, where the left- and right-handed chiral states are eigenstates
of the γ5-matrix defined as

γ5 ≡ iγ0γ1γ2γ3.

Because of the φγ µψ form of the QED interaction vertex, certain combinations of
chiral currents are always zero, for example uRγ µuL = 0. In the limit E≫m, the
helicity eigenstates correspond to the chiral eigenstates and twelve of the sixteen
possible helicity combinations in the process e+e−→ µ+µ− do not contribute to the
cross section and helicity is effectively conserved in the interaction. The resulting
spin-averaged matrix element squared for e+e−→ µ+µ− is

e+e− → µ+µ− : ⟨|M f i|2⟩ = 2e4
(
t2 + u2

s2

)
. (6.71)

In the starred section of this chapter, the method of using traces to perform
spin sums was introduced and was then used to calculate the matrix elements for
e+e−→ ff annihilation and e−q→ e−q scattering. In the massless limit, the spin-
averaged matrix element squared for electron–quark scattering was shown to be

e−q→ e−q : ⟨|M f i|2⟩ = 2Q2
qe4

(
s2 + u2

t2

)
. (6.72)
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Problems

6.1 Using the properties of the γ-matrices of (4.33) and (4.34), and the definition of γ5 ≡ iγ0γ1γ2γ3, show
that

(γ5)2 = 1, γ5† = γ5 and γ5γ µ = −γ µγ5.

6.2 Show that the chiral projection operators

PR =
1
2 (1 + γ5) and PL =

1
2 (1 − γ5),

satisfy

PR + PL = 1, PRPR = PR, PLPL = PL and PLPR = 0.

6.3 Show that

Λ+ =
m + γ µpµ

2m
and Λ− =

m − γ µpµ
2m

,

are also projection operators, and show that they respectively project out particle and antiparticle states, i.e.

Λ+u = u, Λ−ν = ν and Λ+ν = Λ−u = 0.

6.4 Show that the helicity operator can be expressed as

ĥ = − 1
2
γ0γ5γ · p

p
.

6.5 In general terms, explain why high-energy electron–positron colliders must also have high instantaneous
luminosities.

6.6 For a spin-1 system, the eigenstate of the operator Ŝn =n · Ŝ with eigenvalue+1 corresponds to the spin being
in the direction n̂. Writing this state in terms of the eigenstates of Ŝz , i.e.

|1,+1⟩θ = α|1,−1⟩ + β|1, 0⟩ + γ|1,+1⟩,

and taking n = (sin θ, 0, cos θ) show that

|1,+1⟩θ = 1
2 (1 − cos θ) |1,−1⟩ + 1√

2
sin θ |1, 0⟩ + 1

2 (1 + cos θ) |1,+1⟩.

Hint: write Ŝx in terms of the spin ladder operators.

6.7 Using helicity amplitudes, calculate the differential cross section for e−µ− → e−µ− scattering in the following
steps:

(a) From the Feynman rules for QED, show that the lowest-order QED matrix element for e−µ− → e−µ− is

Mfi = −
e2

(p1 − p3)2 gµν
[

u(p3)γ µu(p1)
] [

u(p4)γνu(p2)
]
,

where p1 and p3 are the four-momenta of the initial- and final-state e−, and p2 and p4 are the four-momenta
of the initial- and final-stateµ−.
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(b) Working in the centre-of-mass frame, and writing the four-momenta of the initial- and final-state e− as
p µ1 = (E1, 0, 0, p) and p µ3 = (E1, p sin θ, 0, p cos θ) respectively, show that the electron currents for the
four possible helicity combinations are

u↓(p3)γ µu↓(p1) = 2(E1c, ps,−ips, pc),
u↑(p3)γ µu↓(p1) = 2(ms, 0, 0, 0),
u↑(p3)γ µu↑(p1) = 2(E1c, ps, ips, pc),
u↓(p3)γ µu↑(p1) = −2(ms, 0, 0, 0),

where m is the electron mass, s = sin(θ/2) and c = cos(θ/2).
(c) Explain why the effect of the parity operator P̂ = γ0 is

P̂u↑(p, θ, φ) = P̂u↓(p, π − θ, π + φ).

Hence, or otherwise, show that the muon currents for the four helicity combinations are

u↓(p4)γ µu↓(p2) = 2(E2c,−ps,−ips,−pc),
u↑(p4)γ µu↓(p2) = 2(Ms, 0, 0, 0),
u↑(p4)γ µu↑(p2) = 2(E2c,−ps, ips,−pc),
u↓(p4)γ µu↑(p2) = −2(Ms, 0, 0, 0),

where M is the muon mass.
(d) For the relativistic limit where E≫M, show that the matrix element squared for the case where the incom-

ing e− and incomingµ− are both left-handed is given by

|MLL|2 =
4e4s2

(p1 − p3)4 ,

where s= (p1 + p2)2. Find the corresponding expressions for |MRL|2, |MRR|2 and |MLR|2.
(e) In this relativistic limit, show that the differential cross section for unpolarised e−µ− → e−µ− scattering

in the centre-of-mass frame is

dσ
dΩ
=

2α2

s
·

1 + 1
4 (1 + cos θ)2

(1 − cos θ)2 .

6.8* Using γ µγν + γνγ µ = 2g µν, prove that

γ µγµ = 4, γ µ/aγµ = −2/a and γ µ/a/bγµ = 4a·b.

6.9* Prove the relation
[
ψγ µγ5φ

]†
= φγ µγ5ψ .

6.10* Use the trace formalism to calculate the QED spin-averaged matrix element squared for e+e− → ff including
the electron mass term.

6.11* Neglecting the electron mass term, verify that the matrix element for e−f→ e−f given in (6.67) can be obtained
from the matrix element for e+e− → ff given in (6.63) using crossing symmetry with the substitutions

p1 → p1, p2 → −p3, p3 → p4 and p4 → −p2.

6.12* Write down the matrix elements,M1 andM2, for the two Feynman diagrams for the Compton scattering
process e−γ → e−γ. From first principles, express the spin-averaged matrix element ⟨|M1 +M2|2⟩ as a
trace. You will need the completeness relation for the photon polarisation states (see Appendix D).
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In e+e− collisions, the initial-state particles are fundamental fermions. Conse-
quently, the cross sections for processes such as e+e− annihilation are deter-
mined by the QED matrix element and the event kinematics (phase space)
alone. Calculations of cross sections for collisions involving protons, for
example at an electron–proton collider or a hadron collider, also need to
account for the composite nature of the proton. This chapter describes low-
energy electron–proton elastic scattering. The main purpose is to provide an
introduction to a number of concepts which form the starting point for the
description of the high-energy interactions of protons that is the main topic of
the following chapter.

7.1 Probing the structure of the proton

Electron–proton scattering provides a powerful tool for probing the structure of the
proton. At low energies, the dominant process is elastic scattering where the pro-
ton remains intact. Elastic scattering is described by the coherent interaction of a
virtual photon with the proton as a whole, and thus provides a probe of the global
properties of the proton, such as its charge radius. At high energies, the dominant
process is deep inelastic scattering, where the proton breaks up. Here the underly-
ing process is the elastic scattering of the electron from one of the quarks within the
proton. Consequently, deep inelastic scattering provides a probe of the momentum
distribution of the quarks.

The precise nature of the e−p → e−p scattering process depends on the wave-
length of the virtual photon in comparison to the radius of the proton. Electron–
proton scattering can be broadly categorised into the four classes of process shown
schematically in Figure 7.1:

(a) at very low energies, where the electrons are non-relativistic and the wavelength
of the virtual photon is large compared to the radius of the proton, λ ≫ rp, the
e−p → e−p process can be described in terms of the elastic scattering of the
electron in the static potential of an effectively point-like proton;

160
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e-

l >> rp

e-

l ~ rp

e-

l < rp

e-

l << rp

(a) (b) (c) (d)

!Fig. 7.1 The nature of e−p scattering depending on the wavelength of the virtual photon.

(b) at higher electron energies, where λ ∼ rp, the scattering process is no longer
purely electrostatic in nature and the cross section calculation also needs to
account for the extended charge and magnetic moment distributions of the
proton;

(c) when the wavelength of the virtual photon becomes relatively small, λ < rp,
the elastic scattering cross section also becomes small. In this case, the dom-
inant process is inelastic scattering where the virtual photon interacts with a
constituent quark inside the proton and the proton subsequently breaks up;

(d) at very high electron energies, where the wavelength of the virtual photon
(λ ≪ rp) is sufficiently short to resolve the detailed dynamic structure of the
proton, the proton appears to be a sea of strongly interacting quarks and gluons.

Whilst we will be interested primarily in the high-energy deep inelastic e−p scatter-
ing, the low-energy e−p elastic scattering process provides a valuable introduction
to a number of important concepts.

7.2 Rutherford and Mott scattering

Rutherford and Mott scattering are the low-energy limits of e−p elastic scattering.
In both cases, the electron energy is sufficiently low that the kinetic energy of the
recoiling proton is negligible compared to its rest mass. In this case, the proton can
be taken to be a fixed source of a 1/r electrostatic potential. The cross sections for
Rutherford and Mott scattering are usually derived from non-relativistic scattering
theory using the first-order ⟨ψ f |V(r)|ψi⟩ term in the perturbation expansion. Here
the cross sections are derived using the helicity amplitude approach of the previous
chapter, treating the proton as if it were a point-like Dirac particle. Provided the
wavelength of the virtual photon is much larger than the radius of the proton, this
is a reasonable approximation.
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ν!Fig. 7.2 Rutherford scattering of an electron from a proton at rest in the laboratory frame and the corresponding
Feynman diagram.

In the limit where the proton is taken to be a point-like Dirac fermion, the matrix
element for the Feynman diagram for low-energy e−p elastic scattering, shown in
Figure 7.2, is given by

M f i =
Qqe2

q2

[
u(p3)γ µu(p1)

]
gµν

[
u(p4)γνu(p2)

]
. (7.1)

From (4.65), the Dirac spinors describing the two possible helicity states of the
electron can be written in the form

u↑ = Ne

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c
seiφ

κc
κseiφ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and u↓ = Ne

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−s
ceiφ

κs
−κceiφ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where Ne =
√

E + me, s = sin (θ/2) and c = cos(θ/2). The parameter κ is given by

κ =
p

E + me
≡ βeγe

γe + 1
,

where βe and γe are respectively the speed and Lorentz factor of the electron. Writ-
ing the electron spinors in terms of the parameter κ clearly differentiates between
the non-relativistic (κ ≪ 1) and highly relativistic (κ ≈ 1) limits. If the velocity
of the scattered proton is small, its kinetic energy can be neglected, and to a good
approximation the energy of the electron does not change in the scattering process.
Hence the same value of κ applies to both the initial- and final-state electron. For
an electron scattering angle θ (see Figure 7.2) and taking the azimuthal angle for
the electrons to be φ = 0, the possible initial- and final-state electron spinors are

u↑(p1) = Ne

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
κ
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, u↓(p1) = Ne

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
1
0
−κ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and u↑(p3) = Ne

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c
s
κc
κs

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, u↓(p3) = Ne

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−s
c
κs
−κc

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.
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The electron currents for the four possible helicity combinations, calculated from
(6.12)–(6.15), are

je↑↑ = u↑(p3)γµu↑(p1) = (E + me)
[
(κ2 + 1)c, 2κs,+2iκs, 2κc

]
, (7.2)

je↓↓ = u↓(p3)γµu↓(p1) = (E + me)
[
(κ2 + 1)c, 2κs,−2iκs, 2κc

]
, (7.3)

je↓↑ = u↑(p3)γµu↓(p1) = (E + me)
[
(1 − κ2)s, 0, 0, 0

]
, (7.4)

je↑↓ = u↓(p3)γµu↑(p1) = (E + me)
[
(κ2 − 1)s, 0, 0, 0

]
. (7.5)

Thus, in the relativistic limit where κ ≈ 1, only two of the four helicity combi-
nations give non-zero electron currents, reflecting the chiral nature of the QED
interaction vertex. At lower energies, where κ < 1, all four helicity combinations
give non-zero matrix elements; in this limit the helicity eigenstates no longer cor-
respond to the chiral eigenstates and helicity is not conserved in the interaction.

In the limit where the velocity of the recoiling proton is small (βp≪ 1), the
lower two components of the corresponding particle spinors are approximately zero
(since κ ≈ 0). Taking the spherical polar angles defining the direction of the (rel-
atively small) recoil momentum of the proton as (θp = η, φp = π), the initial-state
and final-state protons can be described respectively by the helicity states

u↑(p2)=
√

2mp

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
≡ u1(p2) and u↓(p2)=

√
2mp

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
1
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
≡ u2(p2),

and

u↑(p4)≈
√

2mp

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cη
−sη
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and u↓(p4)≈
√

2mp

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−sη
−cη
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where cη = cos(η/2) and sη = sin(η/2). The proton four-vector currents for the four
possible combinations of the initial- and final-state helicity states, again calculated
using (6.12)−(6.15), are

jp↑↑ = − jp↓↓ = 2mp

[
cη, 0, 0, 0

]
and jp↑↓ = jp↓↑ = −2mp

[
sη, 0, 0, 0

]
. (7.6)

Thus, in the limit where the proton recoil momentum is small, all four spin combi-
nations for the proton current contribute to the scattering process.

From the QED matrix element,

M f i =
e2

q2 je · jp,
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and the expressions for the electron and proton currents of (7.2)–(7.6), the spin-
averaged matrix element squared is

⟨|M2
f i|⟩ =

1
4

∑
|M2

f i|

=
1
4

e4

q4 × 4m2
p(E + me)2 ·

[
c2
η + s2

η

]
·
[
4(1 + κ2)2c2 + 4(1 − κ2)2s2

]

=
4m2

pm2
ee4(γe + 1)2

q4

[
(1 − κ2)2 + 4κ2c2

]
, (7.7)

where in the last step, the electron energy was written as E = γeme. The above
expression can be simplified further by writing

κ =
βeγe

γe + 1
and (1 − β2

e)γ2
e = 1,

in which case, after some algebraic manipulation, (7.7) becomes

⟨|M2
f i|⟩ =

16m2
pm2

ee4

q4

[
1 + β2

eγ
2
e cos2 θ

2

]
. (7.8)

In the t-channel e−p → e−p scattering process, the square of four-momentum
carried by the virtual photon is given by

q2 = (p1 − p3)2.

For the elastic scattering process where the recoil of the proton can be neglected,
the energies and momenta of the initial- and final-state electrons are E1 = E3 = E
and p1 = p3 = p, and hence

q2 = (0,p1 − p3)2 = −2p2(1 − cos θ) = −4p2 sin2(θ/2).

Substituting this expression for q2 into (7.8) gives

⟨|M2
f i|⟩ =

m2
pm2

ee4

p4 sin4(θ/2)

[
1 + β2

eγ
2
e cos2 θ

2

]
. (7.9)

Provided the proton recoil can be neglected, this matrix element is equally appli-
cable when the electron is either non-relativistic or relativistic.

7.2.1 Rutherford scattering

Rutherford scattering is the limit where the proton recoil can be neglected and
the electron is non-relativistic, βeγe ≪ 1. In this case, the spin-averaged matrix
element squared of (7.9) reduces to

⟨|M2
f i|⟩ =

m2
pm2

ee4

p4 sin4(θ/2)
. (7.10)
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The laboratory frame differential cross section is obtained from the cross section
formula of (3.48),

dσ
dΩ
=

1
64π2

(
1

mp + E1 − E1 cos θ

)2

⟨|M f i|2⟩. (7.11)

In the Rutherford scattering limit, where the electron is non-relativistic, E1 ∼ me ≪
mp, and (7.11) therefore reduces to

dσ
dΩ
=

1
64π2m2

p
⟨|M f i|2⟩ =

m2
ee4

64π2p4 sin4(θ/2)
. (7.12)

Equation (7.12) can be expressed in the more usual form by writing the kinetic
energy of the non-relativistic electron as EK = p2/2me and writing e2 = 4πα to
give

(
dσ
dΩ

)

Rutherford
=

α2

16E2
K sin4(θ/2)

. (7.13)

The Rutherford scattering cross section of (7.13) is usually derived from first-order
perturbation theory by considering the scattering of a non-relativistic electron in the
static Coulomb potential of the proton, V(r) = α/r. Therefore, it can be concluded
that in the non-relativistic limit, only the interaction between the electric charges
of the electron and proton contribute to the scattering process; there is no signifi-
cant contribution from the magnetic (spin–spin) interaction. It should be noted that
the angular dependence of the Rutherford scattering cross section originates solely
from the 1/q2 propagator term.

7.2.2 Mott scattering

Mott scattering is the limit of electron–proton elastic scattering where the electron
is relativistic but the proton recoil still can be neglected. These conditions apply
when me ≪ E ≪ mp. In this case, the parameter κ ≈ 1 and two of the four possible
electron currents of (7.2)−(7.5) are zero. Writing E = γeme and taking the limit
βeγe ≫ 1 for which E ≈ p, the matrix element of (7.9) reduces to

⟨|M2
f i|⟩ ≈

m2
pe4

E2 sin4(θ/2)
cos2 θ

2
,

which when substituted into (7.11) gives

(
dσ
dΩ

)

Mott
=

α2

4E2 sin4(θ/2)
cos2 θ

2
. (7.14)

The Mott scattering cross section formula of (7.14) could have been derived by
considering the scattering of a relativistic electron in the Coulomb potential of a
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spin-less nucleus. Again it can be concluded that the contribution to the scattering
process from a purely magnetic spin–spin interaction is negligible.

7.3 Form factors

The Rutherford and Mott scattering formulae of (7.13) and (7.14) can be calcu-
lated from first-order perturbation theory for scattering in the Coulomb potential
from a point-like object. To account for the finite extent of the charge distribution
of the proton, this treatment must be modified by introducing a form factor. Qual-
itatively, the form factor accounts for the phase differences between contributions
to the scattered wave from different points of the charge distribution, as indicated
in Figure 7.3. If the wavelength of the virtual photon is much larger than the radius
of the proton, the contributions to the scattered wave from each point in the charge
distribution will be in phase and therefore add constructively. When the wavelength
is smaller than the radius of the proton, the phases of the scattered waves will have a
strong dependence on the position of the part of the charge distribution responsible
for the scattering. In this case, when integrated over the entire charge distribution,
the negative interference between the different contributions greatly reduces the
total amplitude.

The mathematical expression for the form factor (which is not a Lorentz-invariant
concept) can be derived in the context of first-order perturbation theory. Consider
the scattering of an electron in the static potential from an extended charge distri-
bution, as indicated in Figure 7.4. The charge density can be written as Q ρ(r′),

!Fig. 7.3 A cartoon indicating the origin of the form factor in elastic scattering.

e-

e-
p1

p3

V (r)

r

r - r!

r!!Fig. 7.4 The potential due to an extended charge distribution.
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where Q is the total charge and ρ(r′) is the charge distribution normalised to
unity

∫
ρ(r′) d3r′ = 1 .

The potential at a distance r from the origin, written in terms of this charge density
is simply

V(r) =
∫

Qρ(r′)
4π|r − r′|d

3r′ . (7.15)

In the Born approximation, where the wavefunctions of the initial-state and scat-
tered electrons are expressed as the plane waves, ψi = ei(p1·r−Et) and ψ f = ei(p3·r−Et),
the lowest-order matrix element for the scattering process is

M f i = ⟨ψ f |V(r)|ψi⟩ =
∫

e−ip3·rV(r)eip1·r d3r.

Writing q = (p1 − p3) and using the potential of (7.15) leads to

M f i =

∫ ∫
eiq·r Qρ(r′)

4π|r − r′| d
3r′d3r

=

∫ ∫
eiq·(r−r′)eiq·r′ Qρ(r′)

4π|r − r′| d
3r′d3r . (7.16)

By expressing the difference r − r′ as the vector R, the integral of (7.16) separates
into two parts

M f i =

∫
eiq·R Q

4π|R|d
3R

∫
ρ(r′)eiq·r′ d3r′ .

The integral over d3R is simply the equivalent expression for scattering from a
potential due to a point charge. Hence the matrix element can be written

M f i =Mpt
f iF(q2),

where Mpt
f i is the equivalent matrix element for a point-like proton and the form

factor F(q2) is given by

F(q2) =
∫

ρ(r)eiq·r d3r.

Therefore, in order to account for the extended charge distribution of the proton,
the Mott scattering cross section of (7.14) has to be modified to

(
dσ
dΩ

)

Mott
→ α2

4E2 sin4(θ/2)
cos2

( θ
2

) ∣∣∣F(q2)
∣∣∣2 . (7.17)

The form factor F(q2) is the three-dimensional Fourier transform of the charge
distribution. If the wavelength of the virtual photon is large compared to the size of
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!Fig. 7.5 Possible three-dimensional charge distributions and the corresponding form factors plotted as a
function of q2.

the charge distribution then q · r ≈ 0 over the entire volume integral. In this case,
the scattering cross section is identical to that for a point-like object and therefore,
regardless of the form of the charge distribution, F(0) = 1. In the limit where the
wavelength is very small compared with the size of the charge distribution, the
phases of the contributions from different regions of the charge distribution will
vary rapidly and will tend to cancel and F(q2 → ∞) = 0. Thus, for any finite
size charge distribution, the elastic scattering cross section will tend to zero at high
values of q2. The exact form of F(q2) depends on the charge distribution; some
common examples and the corresponding form factors are shown in Figure 7.5.
For a point-like particle, F(q2) = 1 for all q.

7.4 Relativistic electron–proton elastic scattering

In the above calculations of the Rutherford and Mott elastic scattering cross sec-
tions, it was assumed that the recoil of the proton could neglected. This a reasonable
approximation provided |q| ≪ mp. In this low-energy limit, it was inferred that the
contribution to the scattering process from the pure magnetic spin–spin interaction
is negligibly small. For electron–proton elastic scattering at higher energies, the
recoil of the proton cannot be neglected and the magnetic spin–spin interaction
becomes important.

For the general case, the four-momenta of the initial- and final-state particles,
defined in Figure 7.6, can be written as

p1 = (E1, 0, 0, E1), (7.18)

p2 = (mp, 0, 0, 0), (7.19)

p3 = (E3, 0, E3 sin θ, E3 cos θ), (7.20)

p4 = (E4,p4). (7.21)
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p1!Fig. 7.6 The kinematics of electron–proton scattering in the proton rest frame.

Here the energy of the scattered electron is no longer equal to that of the incident
electron. Assuming that the electron energy is sufficiently large that terms of O(m2

e)
can be neglected, and (initially) treating the proton as a point-like Dirac particle,
the matrix element for the elastic scattering process e−p→ e−p is given by (6.67)

⟨|M f i|2⟩ =
8e4

(p1 − p3)4

[
(p1.p2)(p3.p4) + (p1.p4)(p2.p3) − m2

p(p1.p3)
]
. (7.22)

7.4.1 Scattering kinematics

In most electron–proton elastic scattering experiments, the final-state proton is not
observed. Consequently, the matrix element of (7.22) is most usefully expressed in
terms of the experimental observables, which are the energy and scattering angle
of the electron. To achieve this, the final-state proton four-momentum p4 can be
eliminated using energy and momentum conservation, p4 = p1+ p2− p3. From the
definitions of the four-momenta in (7.18)−(7.20), the four-vector scalar products
in (7.22) which do not involve p4 are

p2 ·p3 = E3mp, p1 ·p2 = E1mp and p1 ·p3 = E1E3(1 − cos θ).

The two terms involving p4, which can be rewritten using p4 = p1 + p2 − p3, are

p3 ·p4 = p3 ·p1 + p3 ·p2 − p3 ·p3 = E1E3(1 − cos θ) + E3mp,

p1 ·p4 = p1 ·p1 + p1 ·p2 − p1 ·p3 = E1mp − E1E3(1 − cos θ),

where the terms p1 ·p1 = p3 ·p3 = m2
e have been been dropped. Hence, the matrix

element of (7.22), expressed in terms of the energy of the final-state electron E3

and the scattering angle θ is

⟨|M f i|2⟩ =
8e4

(p1 − p3)4 mpE1E3

[
(E1 − E3)(1 − cos θ) + mp[(1 + cos θ)

]

=
8e4

(p1 − p3)4 2mpE1E3

[
(E1 − E3) sin2 θ

2
+ mp cos2 θ

2

]
. (7.23)

The four-momentum squared of the virtual photon, q2 = (p1 − p3)2, also can be
expressed in terms of E3 and θ using

q2 = (p1 − p3)2 = p2
1 + p2

3 − 2p1 ·p3 ≈ −2E1E3(1 − cos θ), (7.24)
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where again the terms p1 ·p1 = p3 ·p3 = m2
e have been neglected. Hence, to a good

approximation,

q2 = −4E1E3 sin2 θ

2
. (7.25)

Because q2 is always negative, it is more convenient to work in terms of Q2

defined by

Q2 ≡ −q2 = 4E1E3 sin2 θ

2
, (7.26)

which is always positive.
The energy lost by the electron in the scattering process, E1 − E3, can be ex-

pressed in terms of Q2 by first noting that

q·p2 = (p1 − p3)·p2 = mp(E1 − E3). (7.27)

A second equation for q·p2 can be obtained by expressing q in terms of the proton
four-momenta, q = p4 − p2, such that

p2
4 = (q + p2)2 = q2 + 2q·p2 + p2

2,

which, using p2
2 = p2

4 = m2
p, gives

q·p2 = −q2/2. (7.28)

Equating (7.27) and (7.28) enables (E1 − E3) to be expressed as a function of Q2,

E1 − E3 = −
q2

2mp
=

Q2

2mp
, (7.29)

which (unsurprisingly) demonstrates that the electron always loses energy in the
scattering process. Using the relations of (7.25) and (7.29), the spin-averaged matrix
element squared of (7.23) can be expressed as

⟨|M f i|2⟩ =
m2

pe4

E1E3 sin4(θ/2)

⎡
⎢⎢⎢⎢⎣cos2 θ

2
+

Q2

2m2
p

sin2 θ

2

⎤
⎥⎥⎥⎥⎦ .

The differential cross section again can be obtained the cross section formula of
(3.47), giving

dσ
dΩ
≈ 1

64π2

(
E3

mpE1

)2

⟨|M f i|2⟩.

Hence, the differential cross section for the scattering of relativistic electrons from
a proton that is initially at rest is

dσ
dΩ
=

α2

4E2
1 sin4(θ/2)

E3

E1

⎛
⎜⎜⎜⎜⎝cos2 θ

2
+

Q2

2m2
p

sin2 θ

2

⎞
⎟⎟⎟⎟⎠ . (7.30)
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Although (7.30) is expressed in terms of Q2, E3 and θ, it is important to realise
that there is only one independent variable; both Q2 and E3 can be expressed in
terms of the scattering angle of the electron. This can be seen by firstly equating
(7.24) and (7.29) to give

−2mp(E1 − E3) = −2E1E3(1 − cos θ),

and hence

E3 =
E1mp

mp + E1(1 − cos θ)
. (7.31)

Substituting (7.31) back into (7.24) then gives an expression for Q2 in terms of the
electron scattering angle

Q2 =
2mpE2

1(1 − cos θ)

mp + E1(1 − cos θ)
. (7.32)

Therefore, if the scattering angle of the electron is measured in the elastic scattering
process, the entire kinematics of the interaction are determined. In practice, mea-
suring the e−p→ e−p differential cross section boils down to counting the number
of electrons scattered in a particular direction for a known incident electron flux.
Furthermore, because the energy of an elastically scattered electron at a particular
angle must be equal to that given by (7.31), by measuring the energy and angle
of the scattered electron, it is possible to confirm that the interaction was indeed
elastic and that the unobserved proton remained intact.

In the limit of Q2 ≪ m2
p and E3 ≈ E1, the expression for the electron–proton

differential cross section of (7.30) reduces to that for Mott scattering, demonstrat-
ing that the Mott scattering cross section formula applies when me ≪ E1 ≪ mp.
Equation (7.30) differs from the Mott scattering formula by the additional factor
E3/E1, which accounts for the energy lost by electron due the proton recoil, and
by the new term proportional to sin2(θ/2), which can be identified as being due to
a purely magnetic spin–spin interaction.

7.5 The Rosenbluth formula

Equation (7.30) is the differential cross section for elastic e−p → e−p scattering
assuming a point-like spin-half proton. The finite size of the proton is accounted
for by introducing two form factors, one related to the charge distribution of the
proton, GE(Q2), and the other related to the magnetic moment distribution within
the proton, GM(Q2). It can be shown that the most general Lorenz-invariant form
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for electron–proton scattering via the exchange of a single photon, known as the
Rosenbluth formula, is

dσ
dΩ
=

α2

4E2
1 sin4(θ/2)

E3

E1

⎛
⎜⎜⎜⎜⎝
G2

E + τG2
M

(1 + τ)
cos2 θ

2
+ 2τG2

M sin2 θ

2

⎞
⎟⎟⎟⎟⎠ , (7.33)

where τ is given by

τ =
Q2

4m2
p
. (7.34)

In the Lorentz-invariant Rosenbluth formula, the form factors GE(Q2) and GM(Q2)
are functions of the four-momentum squared of the virtual photon. Unlike the form
factor F(q2) introduced previously, which was a function of the three-momentum
squared, the form factors GE(Q2) and GM(Q2) cannot be interpreted simply as the
Fourier transforms of the charge and magnetic moment distributions of the proton.
However, the relation between GE(Q2) and GM(Q2) and the corresponding Fourier
transforms can be obtained by writing

Q2 = −q2 = q2 − (E1 − E3)2,

which from (7.29) gives

Q2
⎛
⎜⎜⎜⎜⎝1 +

Q2

4m2
p

⎞
⎟⎟⎟⎟⎠ = q2 .

Therefore, in the limit where Q2 ≪ 4m2
p, the time-like component of Q2 is rela-

tively small and Q2 ≈ q2. Thus, in this low-Q2 limit, the form factors GE(Q2) and
GM(Q2) approximate to functions of q2 alone and can be interpreted as the Fourier
transforms of the charge and magnetic moment distributions of the proton

GE(Q2) ≈ GE(q2) =
∫

eiq·rρ(r)d3r,

GM(Q2) ≈ GM(q2) =
∫

eiq·rµ(r)d3r .

There is one further complication. The form of the Rosenbluth equation follows
from (7.30), which was obtained from the QED calculation where the proton was
treated as a point-like Dirac particle. But the magnetic moment of a point-like Dirac
particle (see Appendix B.1) is related to its spin by

µ =
q
m

S,

whereas the experimentally measured value of the anomalous magnetic moment of
the proton (discussed further in Chapter 9) is

µ = 2.79
e

mp
S .
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For consistency with this experimental observation, the magnetic moment distribu-
tion has to be normalised to +2.79 rather than unity, and therefore

GE(0) =
∫

ρ(r) d3r = 1

GM(0) =
∫
µ(r) d3r = +2.79.

It is worth noting that, even taken in isolation, the observation of the anomalous
magnetic moment of the proton already provides evidence that the proton is not a
point-like particle.

7.5.1 Measuring GE(Q2) and GM(Q2)

The e−p → e−p differential cross section is a function of both the charge and
magnetic moment distributions of the proton. Whilst it is tempting to assume that
magnetic moment distribution follows that of the charge distribution, GM(Q2) =
2.79 GE(Q2), there is no a priori justification for making this assumption. Fortu-
nately GM(Q2) and GE(Q2) can be determined separately from experiment. This
can be seen by writing the Rosenbluth formula of (7.33) as

dσ
dΩ
=

⎛
⎜⎜⎜⎜⎝
G2

E + τG
2
M

(1 + τ)
+ 2τG2

M tan2 θ

2

⎞
⎟⎟⎟⎟⎠ ·

(
dσ
dΩ

)

0
, (7.35)

where
(

dσ
dΩ

)

0
=

α2

4E2
1 sin4(θ/2)

(
E3

E1

)
cos2 θ

2
, (7.36)

is the Mott cross section, modified to account for the proton recoil. At low Q2,
where τ ≪ 1, the electric form factor dominates and (7.35) is approximately

dσ
dΩ

/(
dσ
dΩ

)

0
≈ G2

E .

In this limit, G2
E is equivalent to the form factor |F(q)|2 described previously. At

high Q2, where τ ≫ 1, the purely magnetic spin–spin term dominates and (7.35)
approximates to

dσ
dΩ

/(
dσ
dΩ

)

0
≈

(
1 + 2τ tan2 θ

2

)
G2

M .

In general, the Q2 dependence of GM(Q2) and GE(Q2) can be inferred from
e−p → e−p elastic scattering experiments by varying the electron beam energy.
For each beam energy, the differential cross section is measured at the angle cor-
responding to a particular value of Q2, given by (7.32). For example, Figure 7.7a
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!Fig. 7.7 Low energy e−p→ e−p elastic scattering data. Data from Hughes et al. (1965).

shows the measured e−p → e−p differential cross sections for six different scatter-
ing angles and a range of beam energies. The five data points that are highlighted
all correspond to e−p → e−p elastic scattering at Q2 = 0.292 GeV2. In this way,
the cross section can be measured at fixed Q2 but over a range of scattering angles.
Figure 7.7b shows, for the five data points with Q2 = 0.292 GeV2, the measured
cross sections normalised to the expected Mott cross section of (7.36), plotted as
a function of tan2(θ/2). The observed linear dependence on tan2(θ/2) is expected
from (7.35), where it can be seen that the gradient and intercept with the y-axis are
given respectively by

m = 2τ
[
GM(Q2)

]2
and c =

[
GE(Q2)

]2
+ τ

[
GM(Q2)

]2

(1 + τ)
.

Hence, the data shown in Figure 7.7b can be used to extract measurements of both
GE(Q2) and GM(Q2) at Q2 = 0.292 GeV2 (see Problem 7.6). A similar analysis
can be applied to cross section measurements corresponding to different values
of Q2, providing an experimental determination of the electric and magnetic form
factors of the proton over a range of Q2 values, as shown in Figure 7.8a. The fact
that the measured form factors decrease with Q2 provides a concrete experimental
demonstration that the proton has finite size. The shape of GM(Q2) closely follows
that of GE(Q2), showing that the charge and magnetic moment distributions within
the proton are consistent. Furthermore, the measured values extrapolated to Q2 = 0
are in agreement with the expectations of GE(0) = 1 and GM(0) = 2.79. Finally,
Figure 7.8b shows measurements of GM(Q2) at Q2 values up to 32 GeV2. For these
data recorded at higher values of Q2, the contribution from GE(Q2) is strongly
suppressed and only GM(Q2) can be measured.
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!Fig. 7.8 (a) Measurements of GE(Q2) and GM(Q2) from e−p → e−p elastic scattering data at low Q2, adapted from
Hughes et al. (1965) and references therein. (b) Measurements of GM(Q2) at higher Q2, data from Walker et al.
(1994) (solid circles) and Sill et al. (1993) (open circles). The curves correspond to the dipole function described
in the text.

The data shown in Figures 7.8a and 7.8b are reasonably well parameterised by
the empirically determined “dipole function”

GM(Q2) = 2.79GE(Q2) ≈ 2.79
1

(1 + Q2/0.71 GeV2)2 . (7.37)

By taking the Fourier transform of the dipole function for GE(Q2), which provides
a good description of the low Q2 data where Q2 ≈ q2, the charge distribution of
the proton is determined to be

ρ(r) ≈ ρ0e−r/a,

with a ≈ 0.24 fm. This experimentally determined value for a corresponds to a
proton root-mean-square charge radius of 0.8 fm.

7.5.2 Elastic scattering at high Q2

At high Q2, the electron–proton elastic scattering cross section of (7.35) reduces to
(

dσ
dΩ

)

elastic
∼ α2

4E2
1 sin4(θ/2)

E3

E1

⎡
⎢⎢⎢⎢⎣

Q2

2m2
p
G2

M sin2 θ

2

⎤
⎥⎥⎥⎥⎦ .

From (7.37) it can be seen that in the high-Q2 limit, GM(Q2) ∝ Q−4 and therefore
(

dσ
dΩ

)

elastic
∝ 1

Q6

(
dσ
dΩ

)

Mott
.



176 Electron–proton elastic scattering

Consequently, due to the finite size of the proton, the elastic scattering process
becomes increasingly unlikely for interactions where the virtual photon has large
Q2. If the inelastic scattering process, where the proton breaks up, also involved
a coherent interaction of the virtual photon with the charge and magnetic moment
distribution of the proton as a whole, a similar high-Q2 suppression of the cross
section would be expected. In practice, no such suppression of the inelastic e−p
cross section is observed. This implies that the interaction takes place with the
constituent parts of the proton rather than the proton as a whole. This process of
high-energy deep inelastic scattering is the main topic of next chapter.

Summary

In this chapter, the process of e−p → e−p elastic scattering has been described in
some detail. In general, the differential elastic scattering cross section is given by
the Rosenbluth formula

dσ
dΩ
=

α2

4E2
1 sin4(θ/2)

E3

E1

⎛
⎜⎜⎜⎜⎝
G2

E + τG2
M

(1 + τ)
cos2 θ

2
+ 2τG2

M sin2 θ

2

⎞
⎟⎟⎟⎟⎠ ,

where the form factors GE(Q2) and GM(Q2) describe the charge and magnetic
moment distributions of the proton. The techniques used to measure the form fac-
tors were described in some detail. It is important that you understand the concepts;
they will be used again in the following chapter.

Because of the finite size of the proton, both GE(Q2) and GM(Q2) become small
at high Q2 and the elastic scattering cross section falls rapidly with increasing
Q2. Consequently, high-energy electron–proton scattering is dominated by inelas-
tic processes where the virtual photon interacts with the quarks inside the proton,
rather than the proton as a coherent whole.

Problems

7.1 The derivation of (7.8) used the algebraic relation

(γ + 1)2(1 − κ2)2 = 4,

where

κ =
βγ

γ + 1
and (1 − β2)γ2 = 1.

Show that this holds.
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7.2 By considering momentum and energy conservation in e−p elastic scattering from a proton at rest, find an
expression for the fractional energy loss of the scattered electron (E1 − E3)/E1 in terms of the scattering angle
and the parameter

κ =
p

E1 + me
≡ βγ

γ + 1
.

7.3 In an e−p scattering experiment, the incident electron has energy E1 = 529.5 MeV and the scattered electrons
are detected at an angle of θ = 75◦ relative to the incoming beam.

(a) At this angle, almost all of the scattered electrons are measured to have an energy of E3 ≈ 373 MeV.
What can be concluded from this observation?

(b) Find the corresponding value of Q2.

7.4 For a spherically symmetric charge distribution ρ(r), where
∫

ρ(r) d3r = 1,

show that the form factor can be expressed as

F(q2) =
4π
q

∫ ∞

0
r sin(qr)ρ(r) dr,

≃ 1 − 1
6

q2⟨R2⟩ + · · · ,

where ⟨R2⟩ is the mean square charge radius. Hence show that

⟨R2⟩ = −6
[

dF(q2)
dq2

]

q2=0
.

7.5 Using the answer to the previous question and the data in Figure 7.8a, estimate the root-mean-squared charge
radius of the proton.

7.6 From the slope and intercept of the right plot of Figure 7.7, obtain values for GM(0.292 GeV2) and
GE(0.292 GeV2).

7.7 Use the data of Figure 7.7 to estimate GE(Q2) at Q2 = 0.500 GeV2.

7.8 The experimental data of Figure 7.8 can be described by the form factor

G(Q2) =
G(0)

(1 + Q2/Q2
0)

2
,

with Q0 = 0.71 GeV. Taking Q2 ≈ q2, show that this implies that proton has an exponential charge distri-
bution of the form

ρ(r) = ρ0e−r/a,

and find the value of a.



8 Deep inelastic scattering

This chapter describes high-energy electron–proton inelastic scattering where
the proton breaks up in the interaction. The inelastic scattering process is first
discussed in terms of a general Lorentz-invariant extension of the ideas intro-
duced in the previous chapter, with form factors replaced by structure func-
tions. Deep inelastic scattering is then described by the QED interaction of
a virtual photon with the constituent quarks inside the proton. The experi-
mental data are then interpreted in the quark–parton model and the measured
structure functions are related to parton distribution functions that describe the
momentum distributions of the quarks. From the experimental measurements,
the proton is found to be a complex dynamical system comprised of quarks,
gluons and antiquarks.

8.1 Electron–proton inelastic scattering

Because of the finite size of the proton, the cross section for electron–proton elastic
scattering decreases rapidly with energy. Consequently, high-energy e−p interac-
tions are dominated by inelastic scattering processes where the proton breaks up.
For e−p → e−X inelastic scattering, shown in Figure 8.1, the hadronic final state
resulting from the break-up of the proton usually consists of many particles. The
invariant mass of this hadronic system, denoted W, depends on the four-momentum
of the virtual photon, W2 = p2

4 = (p2 + q)2, and therefore can take a range of val-
ues. Compared to the elastic scattering process, where the invariant mass of the
final state is always the mass of the proton, this additional degree of freedom in
the inelastic scattering process means that the event kinematics must be specified
by two quantities. Whereas e−p → e−p elastic scattering was described in terms
of the electron scattering angle alone, the two kinematic variables used to describe
inelastic scattering are usually chosen from the Lorentz-invariant quantities W, x,
y, ν and Q2, defined below.

178
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!Fig. 8.1 Electron–proton inelastic scattering.

8.1.1 Kinematic variables for inelastic scattering

As was the case for elastic scattering, Q2 is defined as the negative four-momentum
squared of the virtual photon,

Q2 = −q2.

When written in terms of the four-momenta of the initial- and final-state electrons,

Q2 = −(p1 − p3)2 = −2m2
e + 2p1 ·p3 = −2m2

e + 2E1E3 − 2p1p3 cos θ.

In inelastic scattering, the energies are sufficiently high that the electron mass can
be neglected and therefore, to a very good approximation

Q2 ≈ 2E1E3(1 − cos θ) = 4E1E3 sin2 θ

2
,

implying that Q2 is always positive.

Bjorken x
The Lorentz-invariant dimensionless quantity

x ≡ Q2

2p2 ·q
, (8.1)

will turn out to be an important kinematic variable in the discussion of the quark
model of deep inelastic scattering. The range of possible values of x can be found
by writing the four-momentum of the hadronic system in terms of that of the virtual
photon

W2 ≡ p2
4 = (q + p2)2 = q2 + 2p2 ·q + p2

2

⇒ W2 + Q2 − m2
p = 2p2 ·q,
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and therefore, from the definition of (8.1),

x =
Q2

Q2 +W2 − m2
p
. (8.2)

Because there are three valence quarks in the proton, and quarks and antiquarks
can be produced together only in pairs, the hadronic final state in an e−p inelastic
scattering process must include at least one baryon (qqq). Consequently, the invari-
ant mass of the final-state hadronic system is always greater than the mass of the
proton (which is the lightest baryon), thus

W2 ≡ p2
4 ≥ m2

p.

Because Q2 ≥ 0 and W2 ≥ mp, the relation of (8.2) implies that x is always in the
range

0 ≤ x ≤ 1.

The value of x expresses the “elasticity” of the scattering process. The extreme case
of x = 1 is equivalent to W2 = m2

p, and therefore corresponds to elastic scattering.

y and ν
A second dimensionless Lorentz-invariant quantity, the inelasticity y, is defined as

y ≡ p2 ·q
p2 ·p1

.

In the frame where the proton is at rest, p2 = (mp, 0, 0, 0), the momenta of the
initial-state e−, the final-state e− and the virtual photon can be written

p1 = (E1, 0, 0, E1), p3 = (E3, E3 sin θ, 0, E3 cos θ) and q = (E1 − E3,p1 − p3),

and therefore

y =
mp(E1 − E3)

mpE1
= 1 − E3

E1
. (8.3)

Hence y can be identified as the fractional energy lost by the electron in the scat-
tering process in the frame where the proton is initially at rest. In this frame, the
energy of the final-state hadronic system is always greater than the energy of the
initial-state proton, E4 ≥ mp, which implies the electron must lose energy. Conse-
quently, y is constrained to be in the range

0 ≤ y ≤ 1.



181 8.1 Electron–proton inelastic scattering

Sometimes it is more convenient to work in terms of energies, rather than the
fractional energy loss described by y. In this case the related quantity

ν ≡ p2 ·q
mp
, (8.4)

is often used. In the frame where the initial-state proton is at rest,

ν = E1 − E3,

is simply the energy lost by the electron.

Relationships between kinematic variables
For a given centre-of-mass energy

√
s, the kinematics of inelastic scattering are

fully defined by specifying two independent observables which are usually chosen
to be two of Lorentz-invariant quantities, Q2, x, y and ν. Provided the chosen quan-
tities are independent, the other two quantities then can be determined through the
relations that follow from the definitions,

Q2 ≡ −q2, x ≡ Q2

2p2 ·q
, y ≡ p2 ·q

p2 ·p1
and ν ≡ p2 ·q

mp
. (8.5)

For example, it immediately can be seen that x is related to Q2 and ν by

x =
Q2

2mpν
. (8.6)

Furthermore, for a fixed centre-of-mass energy,

s = (p1 + p2)2 = p2
1 + p2

2 + 2p1 ·p2 = 2p1 ·p2 + m2
p + m2

e .

Since m2
e ≪ m2

p, to a good approximation

2p1 ·p2 ≃ s − m2
p,

and then from the definitions of (8.5), it follows that y is proportional to ν,

y =

⎛
⎜⎜⎜⎜⎝

2mp

s − m2
p

⎞
⎟⎟⎟⎟⎠ ν. (8.7)

Finally from (8.6) and (8.7), it can be seen that Q2 is related to x and y by

Q2 = (s − m2
p)xy. (8.8)

Hence, for a fixed centre-of-mass energy, the kinematics of inelastic scattering can
be described by any two of the Lorentz-invariant quantities x, Q2, y and ν, with the
exception of y and ν, which are not independent.
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8.1.2 Inelastic scattering at low Q2

For electron–proton scattering at relatively low electron energies, both elastic and
inelastic scattering processes can occur. For example, Figure 8.2 shows the observed
energy distribution of electrons scattered through an angle of θ = 10◦ at a fixed-
target experiment at DESY, where electrons of energy E1 = 4.879 GeV were fired
at a liquid hydrogen target (essentially protons at rest). Because two independent
variables are required to define the kinematics of inelastic scattering, the corre-
sponding double-differential cross section is expressed in terms of two variables,
in this case d2σ/dΩ dE3.

Since the kinematics of an individual interaction are fully specified by two inde-
pendent variables, in this case the angle and energy of the scattered electron, θ
and E3, the invariant mass W of the unobserved final-state hadronic system can be
determined on an event-by-event basis using

W2 = (p2 + q)2 = p2
2 + 2p2 ·q + q2 = m2

p + 2p2 ·(p1 − p3) + (p1 − p3)2

≈
[
m2

p + 2mpE1

]
− 2

[
mp + E1(1 − cos θ)

]
E3. (8.9)

Hence, for electrons detected at a fixed scattering angle, the invariant mass W of
the hadronic system is linearly related to the energy E3 of the scattered electron.
Consequently the energy distribution of Figure 8.2 can be interpreted in terms of
W. The large peak at final-state electron energies of approximately 4.5 GeV cor-
responds to W = mp, and these electrons can be identified as coming from elastic
scattering. The peak at E3 ≈ 4.2 GeV corresponds to resonant production of a sin-
gle ∆+ baryon with mass W = 1.232 GeV (see Chapter 9). The two smaller peaks
at E3 ∼ 3.85 GeV and E3 ∼ 3.55 GeV correspond to resonant production of other
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!Fig. 8.2 The energy of the scattered electron in low-energy electron–proton scattering and the corresponding
invariant mass W of the final state hadronic system. From Bartel et al. (1968).
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!Fig. 8.3 Low-Q2 measurements of the electron–proton inelastic scattering cross section scaled to the Mott cross
section. Also shown is the expected dependence for elastic scattering. Adapted from Breidenbach et al.
(1969).

baryon states. These resonances are essentially excited bound states of the proton
(uud), which subsequently decay strongly, for example ∆+ → pπ0. The full-width-
at-half-maximum (FWHM) of a resonance as a function of W is equal to the total
decay rate Γ, which in turn is related to the lifetime of the resonant state by Γ = 1/τ.
The continuum at higher W is the start of the deep inelastic region where the proton
is broken up in the collision, resulting in multi-particle final states.

Figure 8.3 shows measurements of the e−p → e−X differential cross section
scaled to the Mott scattering cross section of (7.36). The data are plotted as function
of Q2 for three different values of W. The expected ratio for elastic scattering,
assuming the dipole form for GE(Q2) and GM(Q2) is shown for comparison. The
inelastic cross sections are observed to depend only weakly on Q2, in contrast to
rapidly falling elastic scattering cross section. In the deep inelastic region (higher
values of W), the near Q2 independence of the cross section implies a constant
form factor, from which it can be concluded that deep inelastic scattering occurs
from point-like (or at least very small) entities within the proton.

8.2 Deep inelastic scattering

The most general Lorentz-invariant form of the e−p→ e−p elastic scattering cross
section from the exchange of a single photon is given by the Rosenbluth formula
of (7.33),
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dσ
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=

α2

4E2
1 sin4(θ/2)
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M
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2
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M sin2 θ
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This can be expressed in an explicitly Lorentz-invariant form using the definitions
of Q2 and y (see Problem 8.2):

dσ
dQ2 =

4πα2

Q4

⎡
⎢⎢⎢⎢⎢⎣
G2

E + τG
2
M

(1 + τ)

⎛
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m2
py

2

Q2

⎞
⎟⎟⎟⎟⎟⎠ +

1
2
y2G2

M

⎤
⎥⎥⎥⎥⎥⎦ .

The Q2 dependence of the form factors GE(Q2) and GM(Q2) and τ = Q2/4mp can
be absorbed into two new functions, here written as f1(Q2) and f2(Q2), such that

dσ
dQ2 =

4πα2

Q4

⎡
⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎝1 − y −

m2
py

2

Q2

⎞
⎟⎟⎟⎟⎟⎠ f2(Q2) +

1
2
y2 f1(Q2)

⎤
⎥⎥⎥⎥⎥⎦ . (8.10)

Although y appears in this formula, it should be remembered that for elastic scat-
tering x = 1 and therefore y is a function of Q2 alone. In this form, f1(Q2) is asso-
ciated with the purely magnetic interaction and f2(Q2) has electric and magnetic
contributions.

8.2.1 Structure functions

Equation (8.10) can be generalised to the inelastic scattering process, where the
differential cross section has to be expressed in terms of two independent kine-
matic quantities. It can be shown that the most general (parity conserving) Lorentz-
invariant expression for the cross section for ep→ eX inelastic scattering, mediated
by the exchange of a single virtual photon, is

d2σ

dx dQ2 =
4πα2

Q4

⎡
⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎝1 − y −

m2
py

2

Q2

⎞
⎟⎟⎟⎟⎟⎠

F2(x,Q2)
x

+ y2F1(x,Q2)

⎤
⎥⎥⎥⎥⎥⎦ . (8.11)

Here the functions f1(Q2) and f2(Q2) of (8.10) have been replaced by the two
structure functions, F1(x,Q2) and F2(x,Q2), where F1(x,Q2) can be identified as
being purely magnetic in origin. Because the structure functions depend on both Q2

and x, they cannot be interpreted as the Fourier transforms of the proton charge and
magnetic moment distributions; as we will see shortly they represent something
more fundamental.

For deep inelastic scattering, where Q2 ≫ m2
py

2, Equation (8.11) reduces to

d2σ

dx dQ2 ≈
4πα2

Q4

[
(1 − y) F2(x,Q2)

x
+ y2F1(x,Q2)

]
. (8.12)
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In fixed-target electron–proton deep inelastic scattering experiments, the Lorentz-
invariant kinematic variables Q2, x and y can be obtained on an event-by-event
basis from the observed energy and scattering angle of the electron, E3 and θ,

Q2 = 4E1E3 sin2 θ

2
, x =

Q2

2mp(E1 − E3)
and y = 1 − E3

E1
,

where E1 is the incident electron energy. The double-differential cross section
is measured by counting the numbers of events in the range x → x + ∆x and
Q2 → Q2 + ∆Q2. The double-differential cross section at a particular value of x
and Q2 can be determined for a range of y values, obtained by varying the incident
electron energy (see Problem 8.3). The y-dependence of the measured cross sec-
tions is then used to disentangle the contributions from F1(x,Q2) and F2(x,Q2), in
much the same way as for the determination of GE(Q2) and GM(Q2) as described
in Section 7.5.1.

Bjorken scaling and the Callan–Gross relation
The first systematic studies of structure functions in inelastic electron–proton scat-
tering were obtained in a series of experiments at the Stanford Linear Accelerator
Center (SLAC) in California. Electrons of energies between 5 GeV and 20 GeV
were fired at a liquid hydrogen target. The scattering angle of the electron was
measured using a large movable spectrometer, in which the energy of the detected
final-state electrons could be selected by using a magnetic field. The differential
cross sections, measured over a range of incident electron energies, were used to
determine the structure functions. The experimental data revealed two striking fea-
tures, shown in Figure 8.4. The first observation, known as Bjorken scaling, was
that both F1(x,Q2) and F2(x,Q2) are (almost) independent of Q2, allowing the
structure functions to be written as

F1(x,Q2)→ F1(x) and F2(x,Q2)→ F2(x).

The lack of Q2 dependence of the structure functions is strongly suggestive of
scattering from point-like constituents within the proton.

The second observation was that in the deep inelastic scattering regime, Q2

greater than a few GeV2, the structure functions F1(x) and F2(x) are not inde-
pendent, but satisfy the Callan–Gross relation

F2(x) = 2xF1(x).

This observation can be explained by assuming that the underlying process in
electron–proton inelastic scattering is the elastic scattering of electrons from point-
like spin-half constituent particles within the proton, namely the quarks. In this case
the electric and magnetic contributions to the scattering process are related by the
fixed magnetic moment of a Dirac particle.
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Gross relation. Adapted from Friedman and Kendall (1972) and Bodek et al. (1979).

8.3 Electron–quark scattering

In the quark model, the underlying interaction in deep inelastic scattering is the
QED process of e−q→ e−q elastic scattering and the deep inelastic scattering cross
sections are related to the cross section for this quark-level process. The matrix
element for e−q→ e−q scattering is obtained from the QED Feynman rules for the
Feynman diagram of Figure 8.5. The electron and quark currents are

u(p3)[ieγ µ]u(p1) and u(p4)[−iQqeγν]u(p2),

and the photon propagator is given by −igµν/q2 where q2 = p1 − p3. Hence the
matrix element can be written

M f i =
Qqe2

q2

[
u(p3)γ µu(p1)

]
gµν

[
u(p4)γνu(p2)

]
. (8.13)

The spin-averaged matrix element squared can be obtained from the helicity ampli-
tudes (see Problem 6.7), or using the trace approach as described in Section 6.5.5.
In either case, in the limit where the electron and quark masses can be neglected,
the spin-averaged matrix element squared is given by (6.68),

⟨|M f i|2⟩ = 2Q2
qe4

(
s2 + u2

t2

)
= 2Q2

qe4 (p1.p2)2 + (p1.p4)2

(p1.p3)2 , (8.14)

where as usual, s = p1 + p2, t = p1 − p3 and u = p1 − p4.
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Here it is convenient to work in the centre-of-mass frame and to express the
Lorentz-invariant matrix element of (8.14) in terms of the electron scattering angle,
θ∗, as shown in Figure 8.5. Writing the energy of the electron in the centre-of-
mass frame as E =

√
s/2, and neglecting the electron and quark masses, the four-

momenta of the initial- and final-state particles are given by

p1 = (E, 0, 0,+E), p3 = (E,+E sin θ∗, 0,+E cos θ∗),

p2 = (E, 0, 0,−E), p4 = (E,−E sin θ∗, 0,−E cos θ∗).

The four-vector scalar products appearing in (8.14) are

p1 ·p2 = 2E2, p1 ·p3 = E2(1 − cos θ∗) and p1 ·p4 = E2(1 + cos θ∗).

Hence the spin-averaged matrix element squared for the QED process e−q → e−q
is

⟨|M f i|2⟩ = 2Q2
qe4 4E4 + E4(1 + cos θ∗)2

E4(1 − cos θ∗)2 .

The differential cross section is obtained by substituting this expression for ⟨|M f i|2⟩
into the cross section formula of (3.50), giving

dσ
dΩ∗

=
Q2

qe4

8π2s

[
1 + 1

4 (1 + cos θ∗)2
]

(1 − cos θ∗)2 . (8.15)

The angular dependence in the numerator of (8.15),

1 + 1
4 (1 + cos θ∗)2 , (8.16)

reflects the chiral structure of the QED interaction. From the arguments of
Section 6.4.2, helicity is conserved in the ultra-relativistic limit of the QED inter-
action. Therefore, the only non-zero matrix elements originate from spin states
where the helicities of the electron and the quark are unchanged in the interaction,
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first two, RR → RR and LL → LL, occur in a total spin state with Sz = 0. The second two, RL → RL and
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as shown in Figure 8.6. The RR → RR and LL → LL scattering processes occur
in a S z = 0 state, where there is no component of the angular momentum in the
z-direction. Consequently, there is no preferred polar angle, accounting for the con-
stant term in (8.16). The RL → RL and LR → LR scattering processes occur in
S z = ±1 states and hence (see Section 6.3) result in an angular dependence of

1
4 (1 + cos θ∗)2 ,

explaining the second term in (8.16). The denominator in the expression for the
differential cross section of (8.15) arises from the 1/q2 propagator term with

q2 = t = (p1 − p3)2 ≈ −E2(1 − cos θ∗).

When q2 → 0, in which case the scattering angle θ∗ → 0, the differential cross
section tends to infinity. This should not be a surprise. It is analogous to the scat-
tering of a particle in a 1/r potential in classical dynamics; regardless of the impact
parameter, there is always a finite deflection (however small). The presence of the
propagator term implies that in the QED elastic scattering process, the electron is
predominantly scattered in the forward direction.

Lorentz-invariant form
Equation (8.15) gives the e−q → e−q differential cross section in terms of the
centre-of-mass scattering angle θ∗. This can be expressed in a Lorentz-invariant
form by writing cos θ∗ in terms of s and q2 and changing variables using

dσ
dq2 =

dσ
dΩ∗

∣∣∣∣∣∣
dΩ∗

dq2

∣∣∣∣∣∣ .
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Alternatively, the spin-averaged matrix element squared of (8.14) can be substi-
tuted directly into the Lorentz-invariant form for the differential cross section of
(3.37) with t = q2, giving

dσ
dq2 =

1
64πs p∗2i

⟨|M f i|2⟩ =
Q2

qe4

32πs p∗2i

(
s2 + u2

t2

)
. (8.17)

Since p∗i =
√

s/2 and t = q2, Equation (8.17) can be written as

dσ
dq2 =

Q2
qe4

8πq4

(
s2 + u2

s2

)
=

Q2
qe4

8πq4

[
1 +

(u
s

)2
]
. (8.18)

Finally, this equation can be expressed in terms of q2 and s alone by recalling that
the sum of the Mandelstam variables s + t + u is equal to the sum of the masses of
the initial- and final-state particles. Therefore, in the high-energy limit where the
electron and quark masses can neglected,

u ≈ −s − t = −s − q2,

and the differential cross section for the e−q → e−q elastic scattering process of
(8.18), expressed in terms of s and q2 alone, is

dσ
dq2 =

2πα2Q2
q

q4

⎡
⎢⎢⎢⎢⎢⎣1 +

(
1 +

q2

s

)2⎤⎥⎥⎥⎥⎥⎦ . (8.19)

8.4 The quark–parton model

Before quarks and gluons were generally accepted, Feynman proposed that the
proton was made up of point-like constituents, termed partons. In the quark–parton
model, the basic interaction in deep inelastic electron–proton scattering is elastic
scattering from a spin-half quark within the proton, as shown in Figure 8.7. In this
process, the quark is treated as a free particle; this assumption will be justified in
Chapter 10. The quark–parton model for deep inelastic scattering is formulated
in a frame where the proton has very high energy, E ≫ mp, referred to as the
infinite momentum frame. In the infinite momentum frame the mass of the proton
can be neglected, such that its four-momentum can be written p2 = (E2, 0, 0, E2).
Furthermore, in this frame any component of the momentum of the struck quark
transverse to the direction of motion of the proton also can be neglected. Hence,
in the infinite momentum frame, the four-momentum of the struck quark can be
written

pq = ξp2 = (ξE2, 0, 0, ξE2),
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where ξ is the fraction of momentum of proton carried by the quark, as indicated
by Figure 8.8.

The four-momentum of the quark after the interaction with the virtual photon is
simply ξp2 + q. Since the four-momentum squared of the final-state quark is just
the square of its mass,

(ξp2 + q)2 = ξ2 p2
2 + 2ξp2 ·q + q2 = m2

q. (8.20)

However, ξp2 is the just four-momentum of the quark before the interaction and
therefore ξ2 p2

2 = m2
q. Thus, (8.20) implies that q2 + 2ξp2·q = 0 and the momentum

fraction ξ can be identified as

ξ =
−q2

2p2 ·q
=

Q2

2p2 ·q
≡ x.

Hence, in the quark–parton model, Bjorken x can be identified as the fraction of
the momentum of the proton carried by the struck quark (in a frame where the
proton has energy E ≫ mp). Therefore, the measurements of the x-dependence of
the structure functions can be related to the momentum distribution of the quarks
within the proton.

The kinematic variables for the underlying electron–quark scattering process
can be related to those for the electron–proton collision. Neglecting the electron
and proton mass terms, the centre-of-mass energy of the e−p initial state is
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s = (p1 + p2)2 ≈ 2p1 ·p2.

Because the four-momentum of the struck quark is pq = xp2, the centre-of-mass
energy of the initial-state e−q system is

sq = (p1 + xp2)2 ≈ 2xp1 ·p2 = xs.

The kinematic variables x and y, defined in terms of the four-momentum of the
proton, are

y =
p2 ·q
p2 ·p1

and x =
Q2

2p2 ·q
.

Similarly, for the electron–quark system,

yq =
pq ·q
pq ·p1

=
xp2 ·q
xp2 ·p1

= y.

Finally, because the underlying electron–quark interaction is an elastic scattering
process, xq = 1. Hence, the kinematic variables for the e−q interaction are related
to those defined in terms of the e−p interaction by

sq = xs, yq = y and xq = 1,

where s, x and y are defined in terms of the electron and proton four-momenta.
The cross section for e−q→ e−q scattering, given by (8.19), can now be written

dσ
dq2 =

2πα2Q2
q

q4

⎡
⎢⎢⎢⎢⎢⎣1 +

(
1 +

q2

sq

)2⎤⎥⎥⎥⎥⎥⎦ , (8.21)

where sq is the electron–quark centre-of-mass energy squared. From (8.8), the four-
momentum squared of the virtual photon q2 can be expressed as

q2 = −Q2 = −(sq − m2
q)xqyq,

which in the limit where the quark mass is neglected gives

q2

sq
= −xqyq = −y.

Hence, the differential cross section of (8.21) can be written

dσ
dq2 =

2πα2Q2
q

q4

[
1 + (1 − y)2

]
.

Finally, using q2 = −Q2 and rearranging the terms in the brackets leads to

dσ
dQ2 =

4πα2Q2
q

Q4

[
(1 − y) + y

2

2

]
, (8.22)



192 Deep inelastic scattering

which resembles the form of the deep inelastic scattering cross section expressed
in terms of the structure functions, as given by (8.12). Equation (8.22) gives the
differential cross section for e−q elastic scattering where the quark carries a fraction
x of the momentum of the proton. Although x does not appear explicitly in this
equation, the x dependence is implicit through (8.8) whereby

y =
Q2

(s − m2
p)x
.

8.4.1 Parton distribution functions

The quarks inside the proton will interact with each other through the exchange of
gluons. The dynamics of this interacting system will result in a distribution of quark
momenta within the proton. These distributions are expressed in terms of Parton
Distribution Functions (PDFs). For example, the up-quark PDF for the proton up(x)
is defined such that

up(x) δx,

represents the number of up-quarks within the proton with momentum fraction
between x and x + δx. Similarly dp(x) is the corresponding PDF for the down-
quarks. In practice, the functional forms of the PDFs depend on the detailed
dynamics of the proton; they are not a priori known and have to be obtained from
experiment. Figure 8.9 shows a few possible forms of the PDFs that correspond to:
(i) the proton consists of a single point-like particle which carries all of the momen-
tum of the proton, in this case the PDF is a Dirac delta-function at x = 1; (ii) the
proton consists of three static quarks each of which carries 1/3 of the momentum
of the proton, in this case the PDF has the form of a delta-function at x = 1/3
with a normalisation of three; (iii) the three quarks interact with each other and the
delta-function at x = 1/3 is smeared out as the quarks exchange momentum; and
(iv) higher-order processes, such as virtual quark pairs being produced from gluons

qp(x)

x1

(i)

qp(x)

x

(ii)

qp(x)

x1

(iii)

qp(x)

x1

(iv)

−13 −13 −13!Fig. 8.9 Four possible forms of the quark PDFs within a proton: (i) a single point-like particle; (ii) three static quarks
each sharing 1/3 of the momentum of the proton; (iii) three interacting quarks which can exchange momen-
tum; and (iv) interacting quarks including higher-order diagrams. After Halzen and Martin (1984).
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inside the proton, tend to result in an enhancement of the PDFs at low x, reflecting
the 1/q2 nature of the gluon propagator.

The electron–proton deep inelastic scattering cross section can be obtained from
the definition of the parton distribution functions and the expression for the differ-
ential cross section for underlying electron–quark elastic scattering process given
in (8.22). The cross section for elastic scattering from a particular flavour of quark
i with charge Qi and momentum fraction in the range x→ x + δx, is

d2σ

dQ2 =
4πα2

Q4

[
(1 − y) + y

2

2

]
× Q2

i qp
i (x) δx ,

where qp
i (x) is the PDF for that flavour of quark. The double-differential cross

section is obtained by dividing by δx and summing over all quark flavours

d2σep

dx dQ2 =
4πα2

Q4

[
(1 − y) + y

2

2

]∑

i

Q2
i qp

i (x). (8.23)

This is the parton model prediction for the electron–proton deep inelastic scattering
cross section. Comparison with (8.12), which is the general expression for the deep
inelastic scattering cross section in terms of the structure functions,

d2σ

dxdQ2 =
4πα2

Q4

⎡
⎢⎢⎢⎢⎢⎣(1 − y)

Fep
2 (x,Q2)

x
+ y2Fep

1 (x,Q2)

⎤
⎥⎥⎥⎥⎥⎦ ,

leads to the parton model predictions for Fep
1 (x,Q2) and Fep

2 (x,Q2),

Fep
2 (x,Q2) = 2xFep

1 (x,Q2) = x
∑

i

Q2
i qp

i (x).

The parton model naturally predicts Bjorken scaling; because the underlying pro-
cess is elastic scattering from point-like quarks, no (strong) Q2 dependence is
expected. Consequently, both F1 and F2 can be written as functions of x alone,
F1(x,Q2) → F1(x) and F2(x,Q2) → F2(x). The parton model also predicts the
Callan–Gross relation, F2(x) = 2xF1(x). This is due to the underlying process
being elastic scattering from spin-half Dirac particles; the quark magnetic moment
is directly related to its charge and therefore the contributions from the electromag-
netic (F2) and the pure magnetic (F1) structure functions are fixed with respect to
one another.

8.4.2 Determination of the parton distribution functions

The parton distribution functions reflect the underlying structure of the proton. At
present they cannot be calculated from first principles. This is because the theory
of QCD has a large coupling constant, αS ∼ O(1), and perturbation theory cannot
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be applied. The PDFs therefore have to be extracted from measurements of the
structure functions in deep inelastic scattering experiments and elsewhere.

For electron–proton deep inelastic scattering, the structure function Fep
2 (x) is

related to the PDFs by

Fep
2 (x) = x

∑

i

Q2
i qp

i (x) . (8.24)

In the static model of the proton, it is formed from two up-quarks and a down-
quark, and it might be expected that only up- and down-quark PDFs would appear
in this sum. However, in reality the proton is a dynamic system where the strongly
interacting quarks are constantly exchanging virtual gluons that can fluctuate into
virtual qq pairs through processes such as that shown in Figure 8.10. Because glu-
ons with large momenta are suppressed by the 1/q2 gluon propagator, this sea of
virtual quarks and antiquarks tend to be produced at low values of x. Electron–
proton inelastic scattering therefore involves interactions with both quarks and
antiquarks. Furthermore, there will be contributions to the scattering process from
strange quarks through interactions with virtual ss pairs and even very small con-
tributions from off-mass shell heavier quarks. Here, for the sake of clarity, the rela-
tively small contribution from strange quarks is neglected and the sum in (8.24) is
restricted to the light flavours, giving the quark–parton model prediction

Fep
2 (x) = x

∑

i

Q2
i qp

i (x) ≈ x
(
4
9

up(x) +
1
9

dp(x) +
4
9

up(x) +
1
9

d
p
(x)

)
, (8.25)

where up(x), dp(x), up(x) and d
p
(x) are respectively the up-, down-, anti-up and

anti-down parton distribution functions for the proton. A similar expression can be
written down for the structure functions for electron–neutron scattering,

Fen
2 (x) = x

∑

i

Q2
i qn

i (x) ≈ x
(
4
9

un(x) +
1
9

dn(x) +
4
9

un(x) +
1
9

d
n
(x)

)
, (8.26)

where the PDFs now refer to the momentum distributions within the neutron.
With the exception of the relatively small difference in Coulomb interactions

between the constituent quarks, the neutron (ddu) would be expected to have the
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same structure as the proton (uud) with the up- and down-quarks interchanged.
This assumed isospin symmetry (see Chapter 9) implies that the down-quark PDF
in the neutron is the same as the up-quark PDF in the proton and thus

dn(x) = up(x) and un(x) = dp(x).

In order to simplify the notation, the PDFs for the proton are usually written as
u(x), d(x), u(x) and d(x), in which case the neutron PDFs can be taken to be

dn(x) = up(x) ≡ u(x) and un(x) = dp(x) ≡ d(x).

Likewise, the assumed isospin symmetry implies that the neutron antiquark PDFs
can be written in terms of the antiquark PDFs of the proton,

d
n
(x) = up(x) ≡ u(x) and un(x) = d

p
(x) ≡ d(x).

Thus the proton and neutron structure functions of (8.25) and (8.26), can be written
in terms of the PDFs of the proton,

Fep
2 (x) = 2xFep

1 (x) = x
(
4
9

u(x) +
1
9

d(x) +
4
9

u(x) +
1
9

d(x)
)
, (8.27)

Fen
2 (x) = 2xFen

1 (x) = x
(
4
9

d(x) +
1
9

u(x) +
4
9

d(x) +
1
9

u(x)
)
. (8.28)

Integrating these expressions for the structure functions over the entire x range
gives

∫ 1

0
Fep

2 (x) dx =
4
9

fu +
1
9

fd and
∫ 1

0
Fen

2 (x) dx =
4
9

fd +
1
9

fu, (8.29)

where fu and fd are defined by

fu =
∫ 1

0
[xu(x) + xu(x)] dx and fd =

∫ 1

0
[xd(x) + xd(x)] dx .

The quantity fu is the fraction of the momentum of the proton carried by the
up- and anti-up quarks. Similarly fd is the fraction carried by the down-/anti-down-
quarks. The momentum fractions fu and fd can be obtained directly from the exper-
imental measurements of the proton and neutron structure functions. For example,
Figure 8.11 shows an experimental measurement of Fep

2 (x,Q2) as a function of x
for deep inelastic scattering events with 2 GeV2 < Q2 < 30 GeV2 as observed at
SLAC. The area defined by the measured data points gives

∫
Fep

2 (x) dx ≈ 0.18 .
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!Fig. 8.11 SLAC measurements of Fep
2 (x, Q2) for 2 < Q2/ GeV2 < 30. Data from Whitlow et al. (1992).

Similarly, Fen
2 (x) can be extracted from electron–deuterium scattering data (see

Problem 8.6), and it is found that
∫

Fen
2 (x) dx ≈ 0.12 .

Using the quark–parton model predictions of (8.29), these experimental results can
be interpreted as measurements of the fractions of the momentum of the proton
carried by the up-/anti-up- and down-/anti-down-quarks:

fu ≈ 0.36 and fd ≈ 0.18.

Given that the proton consists of two up-quarks and one down-quark, it is perhaps
not surprising that fu = 2 fd. Nevertheless, the total fraction of the momentum of the
proton carried by quarks and antiquarks is just over 50%; the remainder is carried
by the gluons that are the force carrying particles of the strong interaction. Because
the gluons are electrically neutral, they do not contribute to the QED process of
electron–proton deep inelastic scattering.

8.4.3 Valence and sea quarks

It is already clear that the proton is a lot more complex than first might have been
anticipated. The picture of a proton as a bound state consisting of three “valence”
quarks is overly simplistic. The proton not only contains quarks, but also contains
of a sea of virtual gluons that give rise to an antiquark component through g→ qq
pair production. To reflect these two distinct components, the up-quark PDF can
be split into the contribution from the two valence quarks, written as uV (x), and a
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contribution from the sea of up-quarks that are pair-produced from virtual gluons,
uS (x). In this way, the proton light quark PDFs can be decomposed into

u(x) = uV(x) + uS(x) and d(x) = dV(x) + dS(x).

In the case of the antiquark PDFs, there are only sea quark contributions,

u(x) ≡ uS(x) and d(x) ≡ dS(x).

Since the proton consists of two valence up-quarks and one valence down-quark, it
is reasonable to expect that the valence quark PDFs are normalised accordingly,

∫ 1

0
uV(x) dx = 2 and

∫ 1

0
dV(x) dx = 1 .

Although there is no corresponding a priori expectation for the sea quarks, some
reasonable assumptions can be made. Firstly, since the sea quarks and the anti-
quarks of a given flavour are produced in pairs, the sea quark PDF will be the same
as the PDF for the corresponding antiquark. Furthermore, since the masses of the
up- and down-quarks are similar, it is reasonable to expect that the sea PDFs for
the up- and down-quarks will be approximately the same. With these assumptions,
the sea PDFs can all be approximated by a single function, written S (x), such that

uS(x) = uS(x) ≈ dS(x) = dS(x) ≈ S (x).

Writing (8.27) and (8.28) in terms of the valence and sea quark PDFs leads to

Fep
2 (x) = x

(
4
9

uV(x) +
1
9

dV(x) +
10
9

S (x)
)
,

Fen
2 (x) = x

(
4
9

dV(x) +
1
9

uV(x) +
10
9

S (x)
)
.

With the above assumptions, the ratio of Fen
2 (x) to Fep

2 (x) is predicted to be

Fen
2 (x)

Fep
2 (x)

=
4dV(x) + uV(x) + 10S (x)
4uV(x) + dV(x) + 10S (x)

. (8.30)

Although the PDFs need to be determined experimentally, some qualitative pre-
dictions can be made. For example, since the sea quarks are expected to be pro-
duced mainly at low x, it is reasonable to hypothesise that the sea quarks will give
the dominant contribution to the proton PDFs at low x. In this case, the low-x limit
of (8.30) would be

Fen
2 (x)

Fep
2 (x)

→ 1 as x→ 0.

This prediction is supported by the data of Figure 8.12, which shows the ratio
of the Fen

2 (x)/Fep
2 (x) obtained from electron–proton and electron–deuterium deep

inelastic scattering measurements.
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!Fig. 8.12 The ratio of Fen
2 (x)/Fep

2 (x) obtained from electron–deuterium and electron–proton deep inelastic scattering
measurements at SLAC. Data from Bodek et al. (1979).

Owing to the 1/q2 gluon propagator, which will suppress the production of sea
quarks at high x, it might be expected that the high-x PDFs of the proton will be
dominated by the valence quarks. In this case,

Fen
2 (x)

Fep
2 (x)

→ 4dV(x) + uV(x)
4uV(x) + dV(x)

as x→ 1 .

If it is also assumed that uV (x) = 2dV (x), the ratio of Fen
2 (x)/Fep

2 (x) would be
expected to tend to 2/3 as x → 1. This is in clear disagreement with the data of
Figure 8.12, where it can be seen that

Fen
2 (x)

Fep
2 (x)

→ 1
4

as x→ 1.

This would seem to imply that the ratio dV (x)/uV (x) → 0 as x → 1. Whilst this
behaviour is not fully understood, a qualitative explanation based on the exclu-
sion principle can be made. At high x, one of the valence quarks carries most
of the momentum of the proton and the other two valence quarks must be in a
low momentum state. Since the exclusion principle forbids two like-flavour quarks
being in the same state, the configuration where the down-quark in the proton is at
high x and both up-quarks have low momentum is disfavoured.

There are a number of conclusions that can be drawn from the above discussion.
Firstly, the proton is a complex system consisting of many strongly interacting
quarks and gluons. Secondly, whilst qualitative predictions of the properties of the
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PDFs can be made, relatively simplistic arguments do not always work. Ultimately,
the parton distribution functions have to be inferred directly from experimental
data.

8.5 Electron–proton scattering at the HERA collider

The studies of deep inelastic scattering at very high Q2 and at very low x were
amongst the main goals of the HERA electron–proton collider that operated from
1991 to 2007 at the DESY (Deutsches Elektronen-Synchrotron) laboratory in Ham-
burg, Germany. It consisted of a 3 km circumference ring where 27.5 GeV electrons
(or positrons) were collided with 820 GeV or 920 GeV protons. Two large experi-
ments, H1 and ZEUS, were located at opposite sides of the ring. Each experiment
recorded over one million e±p deep inelastic collisions at Q2 > 200 GeV2. These
large data samples at a centre-of-mass energy of

√
s ≈ 300 GeV, enabled the struc-

ture of the proton to be probed with high precision, both at Q2 values of up to
2 × 104 GeV2 and at x below 10−4.

Figure 8.13 shows an example of a very-high-Q2 interaction recorded by the H1
experiment. The final-state hadronic system is observed as a jet of high-energy par-
ticles. The energy and direction of this jet of particles is measured less precisely
than the corresponding properties of the electron. Consequently, for each observed
event, Q2 and x are determined from the energy and scattering angle of the elec-
tron. The results from deep inelastic scattering data from the H1 and ZEUS exper-
iments, summarised in Figure 8.14, provide a precise determination of the proton
structure functions over a very wide range of x and Q2. The data show a number

pe-

!Fig. 8.13 A high-energy electron–proton collision in the H1 detector at HERA. In this event the electron (the particle
recorded in the lower part of the detector) is scattered through a large angle and the hadronic system from
the break up of the proton forms a jet of particles. Courtesy of the H1 Collaboration.
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Q 2/GeV2!Fig. 8.14 Measurements of Fep
2 (x, Q2) at HERA. Results from both the H1 and ZEUS experiments are shown. The different

bands of data points correspond to the Q2 evolution of Fep for different values of x. For clarity, the data at
different values of x are shifted by−log x. Also shown are lower-Q2 data from earlier fixed-target experiments
(BCDMS, E665, NMC and the SLAC experiments). From Beringer et al. (2012), ©the American Physical Society.

of interesting features. For 0.01 < x < 0.5, where the measurements extend out to
Q2 = 2×104 GeV2, only a weak Q2 dependence of Fep

2 (x,Q2) is observed, broadly
consistent with Bjorken scaling. It can therefore be concluded that quarks appear
to be point-like particles at scales of up to Q2 = 2 × 104 GeV2. If the quark was a
composite particle, deviations from Bjorken scaling would be expected when the
wavelength of the virtual photon, λ ∼ hc/|Q|, became comparable to the size of
the quark. The observed consistency with Bjorken scaling therefore implies that
the radius of a quark must be smaller than

rq < 10−18 m.
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8.5.1 Scaling violations

Whilst Bjorken scaling holds over a wide range of x values, relatively small devi-
ations are observed at very low and very high values of x. For example, at high
(low) values of x, the proton structure function is observed to decrease (increase)
with increasing Q2. Put another way, at high Q2 the measured structure functions
are shifted towards lower values of x relative to the structure functions at low Q2,
as indicated in Figure 8.15. This behaviour, known as scaling violation, implies
that at high Q2, the proton is observed to have a greater fraction of low x quarks.
These scaling violations are not only expected, but the observed Q2 dependence is
calculable in the theory of the strong interaction, QCD.

The mathematical description of the origin of scaling violations is beyond the
scope of this book and only a qualitative description is given here. At low Q2, there
is a length scale, determined by the wavelength of the virtual photon, below which
it is not possible to resolve any spatial sub-structure, as indicated in Figure 8.16a.
At higher values of Q2, corresponding to shorter-wavelengths of the virtual photon,
it is possible to resolve finer detail. In this case, the deep inelastic scattering process
is sensitive to the effects of quarks radiating virtual gluons, q → qg, over smaller
length scales, as indicated in Figure 8.16b. Consequently, more low-x quarks are
“seen" in high-Q2 deep inelastic scattering.

Although currently it is not possible to calculate the proton PDFs from first prin-
ciples within the theory of QCD, the Q2 dependence of the PDFs is calculable

Low x

Medium x

High x

ln Q2

High Q2

Low Q2

x

(a) (b)

F
2ep
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2 )

F
2ep

 (x
, Q
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!Fig. 8.15 The general features of the evolution of Fep
2 (x, Q2): (a) the Q2 dependence at low and high x and (b) the x

dependence at low and high Q2.

(a) (b)

!Fig. 8.16 Finer structure within the proton can be resolved by shorter-wavelength virtual photons leading to the obser-
vation of lower x partons at higher Q2. The circled regions indicate the length scale below which structure
cannot be resolved.
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using the parton evolution functions known as the DGLAP (Dokshitzer–Gribov–
Lipatov–Altarelli–Parisi) equations. These equations are based on universal parton
splitting functions for the QCD processes q→ qg and g→ qq. The observed scal-
ing violations in deep inelastic scattering therefore provide a powerful validation
of the fundamental QCD theory of the strong interaction. A good introduction to
the DGLAP evolution equations can be found in Halzen and Martin (1984).

8.6 Parton distribution function measurements

Information about the parton distribution functions of the proton can be extracted
from high-energy measurements involving protons, such as: fixed-target electron–
proton and electron–neutron scattering; high-energy electron–proton collider data;
neutrino–nucleon scattering data (discussed in Chapter 12); high-energy pp collider
data from the Tevatron; and very-high-energy pp collider data from the LHC. The
different experimental measurements provide complementary information about
the PDFs. For example, neutrino scattering data provide a direct measurement of
the u(x) and d(x) content of the proton and the pp collider data provides information
on the gluon PDF, g(x).

The proton PDFs are extracted from a global fit to a wide range of experimental
data. Owing to the complementary nature of the different measurements, tight con-
straints on the PDFs are obtained. In practice, the PDFs are varied, subject to the
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(x

)

!Fig. 8.17 The current understanding of the proton PDFs at Q2 = 10 GeV2 as determined from the MRST fit to a wide
range of experimental data. The relatively small strange quark PDF s(x) is shown. PDFs from the Durham
HepData project.
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constraints imposed by the theoretical framework of QCD such as the DGLAP
evolution equations, to obtain the best agreement with experimental data. The
output of this procedure is a set of PDFs at a particular Q2 scale. For example,
Figure 8.17 shows the extracted PDFs at Q2 = 10 GeV2 obtained from a recent fit
to the experimental data, where it is assumed that u(x) = uV (x) + u(x). The con-
tribution from gluons is large and, as expected, is peaked towards low values of x.
The antiquark PDFs are relatively small and, because the antiquarks originate from
g→ qq, also are peaked towards low values of x. Apart from at high values of x, it
is found that uV (x) ≈ 2dV (x) as expected. Finally, it is worth noting that although
the PDFs for u and d are similar, there is a small difference with d(x) > u(x).
This may be explained by a relative suppression of the g → uu process due to
the exclusion principle and the larger number of up-quark states which are already
occupied.

Summary

In this chapter the process of deep inelastic scattering has been described in terms
of the quark–parton model, where the underlying process is the elastic scattering
of the electron from the quasi-free spin-half constituent quarks. The kinematics
of inelastic scattering were described in terms of two of the kinematic variables
defined below

Q2 ≡ −q2, x ≡ Q2

2p2 ·q
, y ≡ p2 ·q

p2 ·p1
and ν ≡ p2 ·q

mp
.

In the quark–parton model, x is identified as the fraction of the momentum of the
proton carried by the struck quark in the underlying e−q → e−q elastic scattering
process. The quark–parton model naturally describes the experimentally observed
phenomena of Bjorken scaling, F(x,Q2) → F(x), and the Callan–Gross relation,
F2(x) = 2xF1(x).

In the quark–parton model, cross sections can be described in terms of par-
ton distribution functions (PDFs) which represent the momentum distributions of
quarks and antiquarks within the proton. The PDFs can not yet be calculated from
first principles but are determined from a wide range of experimental data. The
resulting PDF measurements reveal the proton to be much more complex than a
static bound state of three quarks (uud); it is a dynamic object consisting of three
valence quarks and a sea of virtual quarks, antiquarks and gluons, with almost
50% of the momentum of the proton carried by the gluons. The precise knowl-
edge of the PDFs is an essential ingredient to the calculations of cross sections
for all high-energy processes involving protons, such as proton–proton collisions
at the LHC.
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The quark–parton model provides a hugely successful description of the dynamic
nature of the proton. However, it does not explain why the only observed hadronic
states are baryons and mesons or why the proton is the lowest mass baryon. The
static quark model is the subject of the next chapter.

Problems

8.1 Use the data in Figure 8.2 to estimate the lifetime of the∆+ baryon.

8.2 In fixed-target electron–proton elastic scattering

Q2 = 2mp(E1 − E3) = 2mpE1y and Q2 = 4E1E3 sin2(θ/2).

(a) Use these relations to show that

sin2
(θ

2

)
=

E1

E3

m2
p

Q2 y2 and hence
E3

E1
cos2

(θ
2

)
= 1 − y −

m2
py2

Q2 .

(b) Assuming azimuthal symmetry and using Equations (7.31) and (7.32), show that

dσ
dQ2 =

∣∣∣∣∣
dΩ
dQ2

∣∣∣∣∣
dσ
dΩ
=
π

E2
3

dσ
dΩ
.

(c) Using the results of (a) and (b) show that the Rosenbluth equation,

dσ
dΩ
=

α2

4E2
1 sin4(θ/2)

E3

E1

⎛
⎜⎜⎜⎜⎝

G2
E + τ G2

M

(1 + τ)
cos2 θ

2
+ 2τ G2

M sin2 θ

2

⎞
⎟⎟⎟⎟⎠ ,

can be written in the Lorentz-invariant form

dσ
dQ2 =

4πα2

Q4

⎡
⎢⎢⎢⎢⎢⎣

G2
E + τG2

M

(1 + τ)

⎛
⎜⎜⎜⎜⎜⎝1 − y −

m2
py2

Q2

⎞
⎟⎟⎟⎟⎟⎠ +

1
2

y2G2
M

⎤
⎥⎥⎥⎥⎥⎦ .

8.3 In fixed-target electron–proton inelastic scattering:

(a) show that the laboratory frame differential cross section for deep-inelastic scattering is related to the
Lorentz-invariant differential cross section of Equation (8.11) by

d2σ

dE3 dΩ
=

E1E3

π

d2σ

dE3 dQ2 =
E1E3

π

2mpx2

Q2
d2σ

dx dQ2 ,

where E1 and E3 are the energies of the incoming and outgoing electron.
(b) Show that

2mpx2

Q2 ·
y2

2
=

1
mp

E3

E1
sin2 θ

2
and 1 − y −

m2
px2y2

Q2 =
E3

E1
cos2 θ

2
.
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!Fig. 8.18 SLAC measurements of FeD
2 (x, Q2) in for 2 < Q2/GeV2 < 30. Data from Whitlow et al. (1992).

(c) Hence, show that the Lorentz-invariant cross section of Equation (8.11) becomes

d2σ

dE3 dΩ
=

α2

4E2
1 sin4 θ/2

[
F2

ν
cos2 θ

2
+

2F1

mp
sin2 θ

2

]
.

(d) A fixed-target ep scattering experiment consists of an electron beam of maximum energy 20 GeV and a
variable angle spectrometer that can detect scattered electrons with energies greater than 2 GeV. Find
the range of values of θ over which deep inelastic scattering events can be studied at x = 0.2 and Q2 =
2 GeV2.

8.4 If quarks were spin-0 particles, why would Fep
1 (x)/Fep

2 (x) be zero?

8.5 What is the expected value of
∫ 1

0 u(x) − u(x) dx for the proton?

8.6 Figure 8.18 shows the raw measurements of the structure function F2(x) in low-energy electron–deuterium
scattering. When combined with the measurements of Figure 8.11, it is found that

∫ 1
0 FeD

2 (x) dx
∫ 1

0 Fep
2 (x) dx

≃ 0.84.

Write down the quark–parton model prediction for this ratio and determine the relative fraction of the momen-
tum of proton carried by down-/anti-down-quarks compared to that carried by the up-/anti-up-quarks, fd/fu.

8.7 Including the contribution from strange quarks:

(a) show that Fep
2 (x) can be written

Fep
2 (x) =

4
9
[

u(x) + u(x)
]
+

1
9

[
d(x) + d(x) + s(x) + s(x)

]
,

where s(x) and s(x) are the strange quark–parton distribution functions of the proton.
(b) Find the corresponding expression for Fen

2 (x) and show that

∫ 1

0

[
Fep

2 (x) − Fen
2 (x)

]

x
dx ≈ 1

3
+

2
3

∫ 1

0

[
u(x) − d(x)

]
dx,

and interpret the measured value of 0.24 ± 0.03.
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8.8 At the HERA collider, electrons of energy E1 = 27.5 GeV collided with protons of energy E2 = 820 GeV. In deep
inelastic scattering events at HERA, show that the Bjorken x is given by

x =
E3

E2

[
1 − cos θ

2 − (E3/E1)(1 + cos θ)

]
,

where θ is the angle through which the electron has scattered and E3 is the energy of the scattered electron.
Estimate x and Q2 for the event shown in Figure 8.13 assuming that the energy of the scattered electron
is 250 GeV.



9 Symmetries and the quark model

Symmetries are a central to our current understanding of particle physics. In
this chapter, the concepts of symmetries and conservation laws are first intro-
duced in the general context of quantum mechanics and are then applied to the
quark model. The approximate light quark flavour symmetry is used to predict
the structure and wavefunctions of the lightest hadronic states. These wave-
functions are used to obtain predictions for the masses and magnetic moments
of the observed baryons. The discussion of the quark model provides an intro-
duction to the algebra of the SU(2) and SU(3) symmetry groups that play a
central rôle in the Standard Model. No prior knowledge of group theory is
assumed; the required properties of the SU(2) and SU(3) symmetry groups
are obtained from first principles.

9.1 Symmetries in quantum mechanics

In both classical and quantum physics, conservation laws are associated with sym-
metries of the Hamiltonian. For particle physics it is most natural to introduce these
ideas in the context of quantum mechanics. In quantum mechanics, a symmetry of
the Universe can be expressed by requiring that all physical predictions are invari-
ant under the wavefunction transformation

ψ→ ψ′ = Ûψ,

where, for example, Û could be the operator corresponding a finite rotation of
the coordinate axes. The requirement that all physical predictions are unchanged
by a symmetry transformation, constrains the possible form of Û. A necessary
requirement is that wavefunction normalisations are unchanged, implying

⟨ψ|ψ⟩ = ⟨ψ′|ψ′⟩ = ⟨Ûψ|Ûψ⟩ = ⟨ψ|Û†Û |ψ⟩.
From this it can be concluded that the operator corresponding to any acceptable
symmetry transformation in quantum mechanics must be unitary

Û†Û = I,

207
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where I represents unity (which could be 1 or the identity matrix). Furthermore, for
physical predications to be unchanged by a symmetry operation, the eigenstates of
the system also must be unchanged by the transformation. Hence the Hamiltonian
itself must possess the symmetry in question, Ĥ → Ĥ′ = Ĥ. The eigenstates of the
Hamiltonian satisfy

Ĥψi = Eiψ,

and because of the invariance of the Hamiltonian, the energies of the transformed
eigenstates ψ′i will be unchanged,

Ĥ′ψ′i = Ĥψ′i = Eiψ
′
i .

Since ψ′i = Ûψi, this implies

ĤÛψi = EiÛψi = ÛEiψi = ÛĤψi.

Therefore, for all states of the system, ĤÛψi = ÛĤψi, and it can be concluded that
Û commutes with the Hamiltonian

[
Ĥ, Û

]
≡ ĤÛ − ÛĤ = 0.

Hence, for each symmetry of the Hamiltonian there is a corresponding unitary
operator which commutes with the Hamiltonian.

A finite continuous symmetry operation can be built up from a series of infinites-
imal transformations of the form

Û(ϵ) = I + iϵĜ,

where ϵ is an infinitesimally small parameter and Ĝ is called the generator of the
transformation. Since Û is unitary,

Û(ϵ)Û†(ϵ) = (I + iϵĜ)(I − iϵĜ†) = I + iϵ(Ĝ − Ĝ†) + O(ϵ2).

For this infinitesimal transformation terms of O(ϵ2) can be neglected, and therefore
the requirement that U†U = I implies that

Ĝ = Ĝ†.

Thus, for each symmetry of the Hamiltonian there is a corresponding unitary sym-
metry operation with an associated Hermitian generator Ĝ. The eigenstates of a
Hermitian operator are real and therefore the operator Ĝ is associated with an
observable quantity G. Furthermore, since Û commutes with the Hamiltonian,[
Ĥ, I + iϵĜ

]
= 0, the generator Ĝ also must commute with the Hamiltonian,

[
Ĥ, Ĝ

]
= 0.
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In quantum mechanics the time evolution of the expectation value of the operator
Ĝ is given by (2.29),

d
dt
⟨Ĝ⟩ = i

〈[
Ĥ, Ĝ

]〉
,

and because here Ĝ commutes with the Hamiltonian,

d
dt
⟨Ĝ⟩ = 0.

Hence, for each symmetry of the Hamiltonian, there is an associated observable
conserved quantity G. Thus in quantum mechanics, symmetries are associated
with conservation laws and vice versa. This profound statement is not restricted
to quantum mechanics, in classical dynamics symmetries of the Hamiltonian also
correspond to conserved quantities. The relationship between symmetries and con-
servation laws is an expression of Noether’s theorem, which associates a symmetry
of the Lagrangian with a conserved current (see, for example, Appendix E).

Translational invariance
As an example of the above arguments, consider the simple case of translational
invariance in one dimension. The Hamiltonian for a system of particles depends
only on the velocities and the relative distances between particles and therefore
does not change if all particles are translated by the same infinitesimal distance ϵ,

x→ x + ϵ.

The corresponding wavefunction transformation is

ψ(x)→ ψ′(x) = ψ(x + ϵ).

Performing a Taylor expansion of ψ(x) in terms of ϵ gives

ψ′(x) = ψ(x + ϵ) = ψ(x) +
∂ψ

∂x
ϵ + O(ϵ2).

For this infinitesimal transformation, the terms of O(ϵ2) can be dropped, giving

ψ′(x) =
(
1 + ϵ

∂

∂x

)
ψ(x). (9.1)

This can be expressed in terms of the quantum-mechanical momentum operator,

p̂x = −i
∂

∂x
,

giving

ψ′(x) = (1 + iϵ p̂x)ψ(x).
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Comparison with (9.1) shows that the generator of the symmetry transformation,
x→ x + ϵ, is the quantum-mechanical momentum operator p̂x. Hence, the transla-
tional invariance of Hamiltonian implies momentum conservation.

In general, a symmetry operation may depend on more than one parameter, and
the corresponding infinitesimal unitary operator can be written in terms of the set
of generators Ĝ = {Ĝi},

Û = 1 + iϵ · Ĝ,

where ϵ = {ϵi}. For example, an infinitesimal three-dimensional spatial translation
x→ x + ϵ can be associated with the generators p̂ = ( p̂x, p̂y, p̂z) with

Û(ϵ) = 1 + iϵ · p̂ ≡ 1 + iϵx p̂x + iϵy p̂y + ϵz p̂z.

9.1.1 Finite transformations

Any finite symmetry transformation can be expressed as a series of infinitesimal
transformations using

Û(α) = lim
n→∞

(
1 + i

1
n
α · Ĝ

)n

= exp (iα ·G).

For example, consider the finite translation x→ x+x0 in one dimension. The corre-
sponding unitary operator, expressed in terms of the generator of the infinitesimal
translation p̂x, is

Û(x0) = exp (ix0 p̂x) = exp
(
x0
∂

∂x

)
.

Hence for this finite translation, wavefunctions transform according to

ψ′(x) = Ûψ(x) = exp
(
x0
∂

∂x

)
ψ(x)

=

⎛
⎜⎜⎜⎜⎜⎝1 + x0

∂

∂x
+

x2
0

2!
∂2

∂x2 + · · ·
⎞
⎟⎟⎟⎟⎟⎠ψ(x)

= ψ(x) + x0
∂ψ

∂x
+

x2
0

2
∂2ψ

∂x2 + · · · ,

which is just the usual Taylor expansion for ψ(x + x0), and therefore Û(x0) results
in the transformation

ψ(x)→ ψ′(x) = Û(x0)ψ = ψ(x + x0),

as required.
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9.2 Flavour symmetry

In the early days of nuclear physics, it was realised that the proton and neutron have
very similar masses and that the nuclear force is approximately charge independent.
In other words, the strong force potential is the same for two protons, two neutrons
or a neutron and a proton

Vpp ≈ Vnp ≈ Vnn.

Heisenberg suggested that if you could switch off the electric charge of the proton,
there would be no way to distinguish between a proton and a neutron. To reflect
this observed symmetry of the nuclear force, it was proposed that the neutron and
proton could be considered as two states of a single entity, the nucleon, analogous
to the spin-up and spin-down states of a spin-half particle,

p =
(

1
0

)
and n =

(
0
1

)
.

This led to the introduction of the idea of isospin, where the proton and neutron
form an isospin doublet with total isospin I = 1/2 and third component of isospin
I3 = ±1/2. The charge independence of the strong nuclear force is then expressed
in terms of invariance under unitary transformations in this isospin space. One
such transformation would correspond to replacing all protons with neutrons and
vice versa. Physically, isospin has nothing to do with spin. Nevertheless, it will be
shown in the following section that isospin satisfies the same SU(2) algebra as spin.

9.2.1 Flavour symmetry of the strong interaction

The idea of proton/neutron isospin symmetry can be extended to the quarks. Since
the QCD interaction treats all quark flavours equally, the strong interaction pos-
sesses a flavour symmetry analogous to isospin symmetry of the nuclear force. For
a system of quarks, the Hamiltonian can be broken down into three components

Ĥ = Ĥ0 + Ĥstrong + Ĥem, (9.2)

where Ĥ0 is the kinetic and rest mass energy of the quarks, and Ĥstrong and Ĥem

are respectively the strong and electromagnetic interaction terms. If the (effective)
masses of the up- and down-quarks are the same, and Ĥem is small compared to
Ĥstrong, then to a good approximation the Hamiltonian possesses an up–down (ud)
flavour symmetry; nothing would change if all the up-quarks were replaced by
down-quarks and vice versa. One simple consequence of an exact ud flavour sym-
metry is that the existence of a (uud) bound quark state implies that there will a
corresponding state (ddu) with the same mass.
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The above idea can be developed mathematically by writing the up- and down-
quarks as states in an abstract flavour space

u =
(

1
0

)
and d =

(
0
1

)
.

If the up- and down-quarks were indistinguishable, the flavour independence of
the QCD interaction could be expressed as an invariance under a general unitary
transformation in this abstract space

(
u′

d′

)
= Û

(
u
d

)
=

⎛
⎜⎜⎜⎜⎜⎝

U11 U12

U21 U22

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

u

d

⎞
⎟⎟⎟⎟⎟⎠ .

Since a general 2×2 matrix depends on four complex numbers, it can be described
by eight real parameters. The condition ÛÛ† = I, imposes four constraints; there-
fore a 2 × 2 unitary matrix can be expressed in terms of four real parameters or,
equivalently, four linearly independent 2 × 2 matrices representing the generators
of the transformation

Û = exp (iαiĜi).

One of the generators can be identified as

Û =

⎛
⎜⎜⎜⎜⎜⎝

1 0

0 1

⎞
⎟⎟⎟⎟⎟⎠ eiφ. (9.3)

This U(1) transformation corresponds to multiplication by a complex phase and is
therefore not relevant to the discussion of transformations between different flavour
states. The remaining three unitary matrices form a special unitary SU(2) group
with the property1 det U = 1. The three matrices representing the Hermitian gener-
ators of the SU(2) group are linearly independent from the identity and are there-
fore traceless. A suitable choice2 for three Hermitian traceless generators of the ud
flavour symmetry are the Pauli spin-matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
and σ3 =

(
1 0
0 −1

)
.

The ud flavour symmetry corresponds to invariance under SU(2) transformations
leading to three conserved observable quantities defined by the eigenvalues of Pauli

1 The property det U = 1 follows from the properties of determinants, det U†U ≡ det I =
det U† det U = det U∗ det U = | det U |2 = 1. For the corresponding infinitesimal transformation to
be close to the identity, det U must equal +1.

2 The algebra of the SU(2) is determined by the commutation relations of the generators. The use of
the Pauli spin-matrices is purely conventional. An equally valid choice of the generators Gi would
be S †σiS where S is an arbitrary unitary matrix. The commutation relations are unchanged by
this redefinition, and thus the algebra of SU(2) does not depend on the specific representation of
the generators.
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spin-matrices. The algebra of the ud flavour symmetry is therefore identical to that
of spin for a spin-half particle. In analogy with the quantum-mechanical treatment
of spin-half particles, isospin T̂ is defined in terms of the Pauli spin-matrices

T̂ = 1
2σ.

Any finite transformation in the up–down quark flavour space can be written in
terms of a unitary transformation

Û = eiα·T̂,

such that
(

u′

d′

)
= eiα·T̂

(
u
d

)
,

where α · T̂ = α1T̂1 + α2T̂2 + α3T̂3. Hence, the general flavour transformation
is a “rotation” in flavour space, not just the simple interchange of up and down
quarks. A general unitary transformation in this isospin space would amount to
relabelling the up-quark as a linear combination of the up-quark and the down-
quark. If the flavour symmetry were exact, and the up- and down-quarks were
genuinely indistinguishable, this would be perfectly acceptable. However, because
the up- and down-quarks have different charges, it does not make sense to form
states which are linear combinations of the two, as this would lead to violations of
electric charge conservation. Consequently, the only physical meaningful isospin
transformation is that which corresponds to relabelling the states, u↔ d.

9.2.2 Isospin algebra

Whilst isospin has nothing to do with the physical property of spin, it has exactly
the same mathematical structure defined by the generators of the SU(2) symme-
try group. In the language of group theory the generators of SU(2) define a non-
Abelian (i.e. non-commuting) Lie algebra. The three generators of the group, which
correspond to physical observables, satisfy the algebra

[
T̂1, T̂2

]
= iT̂3,

[
T̂2, T̂3

]
= iT̂1 and

[
T̂3, T̂1

]
= iT̂2.

This is exactly the same set of commutators as found for the quantum mechanical
treatment of angular momentum, introduced in Section 2.3.5. Consequently, the
results obtained for angular momentum can be applied directly to the properties of
isospin. The total isospin operator,

T̂ 2 = T̂ 2
1 + T̂ 2

2 + T̂ 2
3 ,

which commutes with each of the generators, is Hermitian and therefore also corre-
sponds to an observable quantity. Because the three operators T̂1, T̂2 and T̂3 do not
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d u
I3

+−1
2-−1

2!Fig. 9.1 The isospin one-half multiplet consisting of an up-quark and a down-quark.

T- T+

I3!Fig. 9.2 The isospin ladder operators step along the states in I3 within an isospin multiplet.

commute with each other, the corresponding observables cannot be known simul-
taneously (see Section 2.3.4). Hence, isospin states can be labelled in terms of the
total isospin I and the third component of isospin I3. These isospin states φ(I, I3)
are the mathematical analogues of the angular momentum states |l,m⟩ and have the
properties

T̂ 2φ (I, I3) = I(I + 1)φ (I, I3) and T̂3φ (I, I3) = I3φ (I, I3).

In terms of isospin, the up-quark and down-quark are represented by

u =
(
1
0

)
= φ

(
1
2 ,+

1
2

)
and d =

(
0
1

)
= φ

(
1
2 ,− 1

2

)
.

The up- and down-quarks are the two states of an isospin one-half multiplet with
respective third components of isospin +1

2 and − 1
2 as indicated in Figure 9.1.

Isospin ladder operators
The isospin ladder operators, analogous to the quantum mechanical angular momen-
tum ladder operators, defined as

T̂− ≡ T̂1 − iT̂2 and T̂+ ≡ T̂1 + iT̂2,

have the effect of moving between the (2I + 1) states within an isospin multiplet,
as indicated in Figure 9.2. The action the ladder operators on a particular isospin
state are

T̂+φ (I, I3) =
√

I(I + 1) − I3(I3 + 1) φ (I, I3 + 1), (9.4)

T̂−φ (I, I3) =
√

I(I + 1) − I3(I3 − 1) φ (I, I3 − 1), (9.5)

where the coefficients were derived in Section 2.3.5. For an isospin multiplet with
total isospin I, the ladder operators have the effect of raising or lowering the third
component of isospin. The action of the ladder operators on the extreme states with
I3 = ±I yield zero,

T̂−φ (I,−I) = 0 and T̂+φ (I,+I) = 0.
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Therefore, the effects of the isospin ladder operators on the u- and d-quarks are

T̂+u = 0, T̂+d = u, T̂−u = d and T̂−d = 0.

9.3 Combining quarks into baryons

The strong interaction Hamiltonian does not distinguish between up- and down-
quarks, therefore in the limit where the up- and down-quark masses are the same,
physical predictions involving the strong interaction alone are symmetric under
unitary transformations in this space. The conserved observable quantities, corre-
sponding to the generators of this symmetry are I3 and I. Because I3 and I are
conserved in strong interactions, the concept of isospin is useful in describing low-
energy hadron interactions. For example, isospin arguments can be used to explain
the observation that the decay rate for ∆+ → pπ0 is twice that for ∆0 → nπ0 (see
Problem 9.3). Here the concept of isospin will be used to construct the flavour
wavefunctions of baryons (qqq) and mesons (qq).

The rules for combining isospin for a system of two quarks are identical to those
for the addition of angular momentum. The third component of isospin is added as
a scalar and the total isospin is added as the magnitude of a vector. If two isospin
states φ

(
Ia, Ia

3

)
and φ

(
Ib, Ib

3

)
are combined, the resulting isospin state φ (I, I3) has

I3 = Ia
3 + Ib

3 and |Ia − Ib| ≤ I ≤ |Ia + Ib|.

These rules can be used to identify the possible isospin states formed from two
quarks (each of which can be either an up- or down-quark). The third component
of isospin is the scalar sum of I3 for the individual quarks, and hence the I3 assign-
ments of the four possible combinations of two light quarks are those of Figure 9.3.
The isospin assignments for the extreme states immediately can be identified as

uu ≡ φ
(

1
2 ,

1
2

)
φ
(

1
2 ,

1
2

)
= φ (1,+1) and dd ≡ φ

(
1
2 ,− 1

2

)
φ
(

1
2 ,− 1

2

)
= φ (1,−1).

This identification is unambiguous, since a state with I3 = ±1 must have I ≥ 1
and the maximum total isospin for a two-quark state is I = 1. The quark combina-
tions ud and du, which both have I3 = 0, are not eigenstates of total isospin. The

dd

-1 0 +1
I3

ud, du uu!Fig. 9.3 The I3 assignments for the four possible combinations of two up- or down-quarks. There are two states with
I3 = 0 (indicated by the point and circle) ud and du.
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⊕
dd (ud + du) (ud - du)uu

0+1-1 0
I3 I3

T± T±

1
2√

1
2√!Fig. 9.4 The isospin eigenstates for the combination of two quarks.

ddd uuu
uudddu

⊕ I3I3

(ud − du)d(ud + du)d (ud + du)u (ud - du)u1
2√

1
2√

1
2√

1
2√

−1
2+−3

2+−1
2+−1

2-−3
2- −1

2-!Fig. 9.5 The I3 assignments of three-quark states built from the qq triplet and singlet states.

appropriate linear combination corresponding to the I = 1 state can be identified
using isospin ladder operators,

T̂−φ (1,+1) =
√

2φ (1, 0) = T̂−(uu) = ud + du,

and thus

φ (1, 0) = 1√
2
(ud + du).

The φ (0, 0) state can be identified as the linear combination of ud and du that is
orthogonal to φ (1, 0), from which

φ (0, 0) = 1√
2
(ud − du). (9.6)

Acting on the I = 0 singlet state of (9.6) with either T̂+ or T̂− gives zero, confirming
that it is indeed the φ (0, 0) state, for example

T̂+ 1√
2
(ud − du) = 1√

2

(
[T̂+u]d + u[T̂+d] − [T̂+d]u − d[T̂+u]

)

= 1√
2
(uu − uu) = 0.

The four possible combinations of two isospin doublets therefore decomposes into
a triplet of isospin-1 states and a singlet isospin-0 state, as shown in Figure 9.4.
This decomposition can be written as 2 ⊗ 2 = 3 ⊕ 1. It should be noted that the
isospin-0 and isospin-1 states are physically different; the isospin-1 triplet is sym-
metric under interchange of the two quarks, whereas the isospin singlet is antisym-
metric.

The isospin states formed from three quarks can be obtained by adding an up-
or down-quark to the qq isospin singlet and triplet states of Figure 9.4. Since I3

adds as a scalar, the I3 assignments of the possible combinations are those shown
in Figure 9.5. The two states built from the I = 0 singlet will have total isospin
I = 1/2, whereas those constructed from the I = 1 triplet can have either I = 1/2
or I = 3/2. Of the six combinations formed from the triplet, the extreme ddd and
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uuu states with I3 = −3/2 and I3 = +3/2 uniquely can be identified as being part of
isospin I = 3/2 multiplet. The other two I = 3/2 states can be identified using the
ladder operators. For example, the φ

(
3
2 ,− 1

2

)
state, which is a linear combination of

the ddu and 1√
2
(ud + du)d states, can be obtained from the action of T̂+ on

φ
(

3
2 ,− 3

2

)
= ddd,

from which

T̂+φ
(

3
2 ,− 3

2

)
=
√

3φ
(

3
2 ,− 1

2

)
= T̂+(ddd) = [T̂+d]dd + d[T̂+d]d + dd[T̂+d]

= udd + dud + ddu,

and therefore

φ
(

3
2 ,− 1

2

)
= 1√

3
(udd + dud + ddu). (9.7)

From the repeated action of the ladder operators, the four isospin- 3
2 states, built

from the qq triplet, can be shown to be

φ
(

3
2 ,− 3

2

)
= ddd, (9.8)

φ
(

3
2 ,− 1

2

)
= 1√

3
(udd + dud + ddu), (9.9)

φ
(

3
2 ,+

1
2

)
= 1√

3
(uud + udu + duu), (9.10)

φ
(

3
2 ,+

3
2

)
= uuu. (9.11)

The two states obtained from the qq triplet with total isospin I = 1/2 are orthog-
onal to the I3 = ±1/2 states of (9.9) and (9.10). Hence, the φ

(
1
2 ,− 1

2

)
state can be

identified as the linear combination of ddu and 1√
2
(ud + du)d that is orthogonal to

the φ
(

3
2 ,− 1

2

)
state of (9.9), giving

φS

(
1
2 ,− 1

2

)
= − 1√

6
(2ddu − udd − dud), (9.12)

and similarly

φS

(
1
2 ,+

1
2

)
= 1√

6
(2uud − udu − duu). (9.13)

The relative phases of (9.12) and (9.13) ensure that the ladder operators correctly
step between the two states. In addition, the two states constructed from the qq
isospin singlet of (9.6) are

φA

(
1
2 ,− 1

2

)
= 1√

2
(udd − dud), (9.14)

φA

(
1
2 ,+

1
2

)
= 1√

2
(udu − duu). (9.15)
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⊕
(udu + duu + uud)ddd uuu

I3

(udd + dud + ddu)

⊕I3 I3

1
3√

1
3√

−3
2

- −1
2

-

−1
2

- −1
2

-

−1
2

+

−1
2

+ −1
2

+

−3
2

+

−3l =
2

−1l =
2

(2ddu - udd - dud)1
6√

- (2uud - duu - udu)1
6√ (udd - dud)1

2√
(udu - duu)1

2√!Fig. 9.6 The three-quark φ (I, I3) states in SU(2) flavour symmetry. The eight combinations decompose into a sym-
metric quadruplet and two mixed symmetry doublets.

Hence, the eight combinations of three up- and down-quarks, uuu, uud, udu, udd,
duu, dud, ddu and ddd, have been grouped into an isospin- 3

2 quadruplet and two
isospin- 1

2 doublets, as shown in Figure 9.6. In terms of the SU(2) group structure
this can be expressed as

2 ⊗ 2 ⊗ 2 = 2 ⊗ (3 ⊕ 1) = (2 ⊗ 3) ⊕ (2 ⊗ 1) = 4 ⊕ 2 ⊕ 2,

where 2 ⊗ 2 ⊗ 2 represents the combinations of three quarks represented as isospin
doublets. The different isospin multiplets have different exchange symmetries. The
flavour states in the isospin- 3

2 quadruplet, (9.8)–(9.11), are symmetric under the
interchange of any two quarks. The isospin- 1

2 doublets are referred to as mixed sym-
metry states to reflect the symmetry under the interchange of the first two quarks,
but lack of overall exchange symmetry. The doublet states of (9.12) and (9.13),
labelled φS , are symmetric under the interchange of quarks 1 ↔ 2, whereas the
doublet states of (9.14) and (9.15), labelled φA, are antisymmetric under the inter-
change of quarks 1 ↔ 2. These two isospin doublets have no definite symmetry
under the interchange of quarks 1↔ 3 and 2↔ 3.

9.3.1 Spin states of three quarks

Because the SU(2) algebra for combining spin-half is that same as that for isospin,
the possible spin wavefunctions of three quarks, denoted by χ, are constructed in
the same manner. Hence the combination of three spin-half particles gives: a spin- 3

2
quadruplet, with spin states

χ
(

3
2 ,+

3
2

)
=↑↑↑, (9.16)

χ
(

3
2 ,+

1
2

)
= 1√

3
(↑↑↓ + ↑↓↑ + ↓↑↑), (9.17)

χ
(

3
2 ,− 1

2

)
= 1√

3
(↓↓↑ + ↓↑↓ + ↑↓↓), (9.18)

χ
(

3
2 ,− 3

2

)
=↓↓↓; (9.19)
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a mixed symmetry doublet which is symmetric under 1↔ 2,

χS

(
1
2 ,− 1

2

)
= − 1√

6
(2 ↓↓↑ − ↑↓↓ − ↓↑↓), (9.20)

χS

(
1
2 ,+

1
2

)
= 1√

6
(2 ↑↑↓ − ↑↓↑ − ↓↑↑); (9.21)

and a mixed symmetry doublet which is antisymmetric under 1↔ 2,

χA

(
1
2 ,− 1

2

)
= 1√

2
(↑↓↓ − ↓↑↓), (9.22)

χA

(
1
2 ,+

1
2

)
= 1√

2
(↑↓↑ − ↓↑↑). (9.23)

9.4 Ground state baryon wavefunctions

There are eight possible isospin states for a system of three quarks and eight pos-
sible spin states, leading to a total of 64 possible combined flavour and spin states.
However, not all combinations satisfy the required fermion exchange symmetry
of the total wavefunction. In addition to spin and flavour components, the wave-
function for a qqq state also needs to describe the colour content and the spatial
wavefunction. The overall wavefunction for a bound qqq state, accounting for all
degrees of freedom, can be written

ψ = φflavour χspin ξcolour ηspace. (9.24)

Because quarks are fermions, the overall wavefunction of (9.24) is required to be
antisymmetric under the interchange of any two of the quarks. For a system of
like fermions, for example uuu, this is simply a statement of the Pauli exclusion
principle. However, because of the assumed SU(2) flavour symmetry, when the
flavour wavefunction is included, the fermion exchange symmetry applies to the
wavefunction as a whole (the argument is given in the starred Addendum in Section
9.7 at the end of this chapter).

The requirement that the wavefunction of (9.24) is totally antisymmetric places
restrictions on the individual parts. In Chapter 10, it is shown that the colour wave-
function is necessarily totally antisymmetric. Here the discussion is restricted to
the L = 0 ground state baryons, in which there is no orbital angular momentum. In
this case, the quarks are described by ℓ = 0 s-waves. Since the exchange symmetry
of the orbital states is given by (−1)ℓ, here the orbital wavefunction is symmetric
under the interchange of any two quarks. Consequently, for the L = 0 baryons the
combination ξcolour ηspace is antisymmetric under the interchange of any two quarks.
For the overall wavefunction to be antisymmetric, the combined flavour and spin
wavefunctions, φflavour χspin, must be symmetric.

L = 0 baryons: φflavour χspin = symmetric.
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∆− ∆+ ∆++∆0

I3

−1
2

+−32− −32+−12−

ddd uuu(ddu + dud + udd)1
3√

(uud + udu + duu)1
3√

!Fig. 9.7 The flavour wavefunctions of the I = 3
2 light quark∆-baryons, each of which has total spin s = 3

2 .

The possible forms of the flavour and spin parts of the wavefunction are respec-
tively given by (9.8)–(9.15) and (9.16)–(9.23). There are two ways to construct a
totally symmetric combination of φflavour and χspin. Firstly, the totally symmetric
flavour wavefunctions of (9.8)–(9.11) can be combined with the totally symmetric
spin wavefunctions of (9.16)–(9.19) to give four spin- 3

2 , isospin- 3
2 baryons. These

are known as the ∆-baryons with the flavour wavefunctions shown in Figure 9.7.
The second way to construct a totally symmetric φflavour χspin wavefunction is to

note that the combinations of mixed symmetry wavefunctions, φSχS and φAχA, are
both symmetric under interchange of quarks 1↔ 2. However, neither combination
on its own has a definite symmetry under the interchange of quarks 1 ↔ 3 and
2↔ 3. Nevertheless, it is easy to verify that the linear combination

ψ = 1√
2
(φSχS + φAχA) (9.25)

is symmetric under the interchange of any two quarks, as required. Here the two
possible flavour states correspond to the spin-half proton (uud) and neutron (ddu).
Therefore, from (9.25), the wavefunction for a spin-up proton can be identified as

|p↑⟩ = 1√
2

[
φS

(
1
2 ,+

1
2

)
χS

(
1
2 ,+

1
2

)
+ φA

(
1
2 ,+

1
2

)
χA

(
1
2 ,+

1
2

)]

= 1
6
√

2
(2uud− udu− duu)(2 ↑↑↓ − ↑↓↑ − ↓↑↑) + 1

2
√

2
(udu− duu)(↑↓↑ − ↓↑↑),

which when written out in full is

|p↑⟩ = 1√
18

(2u↑u↑d↓−u↑u↓d↑−u↓u↑d↑
+ 2u↑d↓u↑−u↑d↑u↓−u↓d↑u↑
+ 2d↓u↑u↑−d↑u↑u↓−d↑u↓u↑). (9.26)

The fully antisymmetric version of the proton wavefunction would include the anti-
symmetric colour wavefunction, which itself has six terms, giving a wavefunction
with a total of 54 terms with different combinations of flavour, spin and colour. In
practice, the wavefunction of (9.26) is sufficient to calculate the physical properties
of the proton.
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9.5 Isospin representation of antiquarks

In the above description of SU(2) flavour symmetry, the up- and down-quarks were
placed in an isospin doublet,

q =
(

u
d

)
.

A general SU(2) transformation of the quark doublet, q→ q′ = Uq, can be written
(

u
d

)
→

(
u′

d′

)
=

⎛
⎜⎜⎜⎜⎜⎝

a b

−b∗ a∗

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

u

d

⎞
⎟⎟⎟⎟⎟⎠ , (9.27)

where a and b are complex numbers which satisfy aa∗ + bb∗ = 1. In Section 4.7.5,
the charge conjugation operation was identified as ψ′ = Ĉψ = iγ2ψ∗. Hence taking
the complex conjugate of (9.27) gives the transformation properties of the flavour
part of the antiquark wavefunctions

(
u′

d
′

)
= U∗

(
u
d

)
=

⎛
⎜⎜⎜⎜⎜⎝

a∗ b∗

−b a

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

u

d

⎞
⎟⎟⎟⎟⎟⎠ . (9.28)

In SU(2) it is possible to place the antiquarks in a doublet that transforms in the
same way as the quarks, q→ q′ = Uq. If the antiquark doublet is written as

q ≡
(
−d
u

)
= S

(
u
d

)
=

⎛
⎜⎜⎜⎜⎜⎝

0 −1

1 0

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

u

d

⎞
⎟⎟⎟⎟⎟⎠ , (9.29)

then since
(

u
d

)
= S −1q and

(
u′

d
′

)
= S −1q′,

Equation (9.28) can be written

S −1q′ = U∗S −1q

⇒ q′ = S U∗S −1q.

Using the definition of the S of (9.29),

S U∗S −1 =

⎛
⎜⎜⎜⎜⎜⎝

0 −1

1 0

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

a∗ b∗

−b a

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

0 1

−1 0

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

a b

−b∗ a∗

⎞
⎟⎟⎟⎟⎟⎠ = U,

and therefore, as desired,

q→ q′ = Uq.
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d u
I3 I3
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2- −1
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2+ −1
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u -d

!Fig. 9.8 The isospin representation of d and u quarks and d and u antiquarks.

Hence, by placing the antiquarks in an SU(2) doublet defined by

q ≡
(
−d
u

)
,

the antiquarks transform in exactly the same manner as the quarks. The ordering of
the d and u in the doublet and the minus sign in front of the d, ensure that quarks and
antiquarks behave in the same way under SU(2) flavour transformations and that
physical predictions are invariant under the simultaneous transformations of the
form u ↔ d and u ↔ d. The I3 assignments of the quark and antiquark doublets
are shown in Figure 9.8. The effect of the isospin ladder operators on the antiquark
doublet can be seen to be

T+u = −d, T+d = 0, T−u = 0 and T−d = −u.

It is important to note that, in general, it is not possible to place the quarks and
antiquarks in the same representation; this is a feature SU(2). It cannot be applied
to the SU(3) flavour symmetry of Section 9.6.

Meson states
A meson is a bound state of a quark and an antiquark. In terms of isospin, the
four possible states formed from up- and down-quarks/antiquarks can be expressed
as the combination of an SU(2) quark doublet and an SU(2) antiquark doublet.
Using the isospin assignments of Figure 9.8, the du state immediately can be iden-
tified as the qq isospin state, φ (1,−1). The two other members of the isospin triplet
can be identified by application of the isospin ladder operator T̂+ leading to

φ (1,−1) = du,

φ (1, 0) = 1√
2
(uu − dd),

φ (1,+1) = −ud.

The isospin singlet, which must be orthogonal to the φ (1, 0) state, is therefore

φ (0, 0) = 1√
2

(
uu + dd

)
.

This decomposition into an isospin triplet and an isospin singlet, shown in
Figure 9.9, is expressed as 2 ⊗ 2 = 3 ⊕ 1, where the 2 is the isospin representa-
tion of the quark doublet and the 2 is the isospin representation of an antiquark



223 9.6 SU(3) flavour symmetry

⊕
00 +1-1

I3 I3

T± T±

du (uu - dd)1
2√

-ud (uu + dd)1
2√

d

!Fig. 9.9 The qq isospin triplet and singlet states.

doublet (in the language of group theory the quark doublet is a fundamental repre-
sentation of SU(2) and the antiquark doublet is the conjugate representation). The
action of the isospin raising and lowering operators on the φ (0, 0) state both give
zero, confirming that it is indeed a singlet state.

9.6 SU(3) flavour symmetry

The SU(2) flavour symmetry described above is almost exact because the difference
in the masses of the up- and down-quarks is small and the Coulomb interaction
represents a relatively small contribution to the overall Hamiltonian compared to
the strong interaction. It is possible to extend the flavour symmetry to include the
strange quark. The strong interaction part of the Hamiltonian of (9.2) treats all
quarks equally and therefore possesses an exact uds flavour symmetry. However,
since the mass of the strange quark is different from the masses of the up- and
down-quarks, the overall Hamiltonian is not flavour symmetric. Nevertheless, the
difference between ms and mu/d, which is of the order 100 MeV, is relatively small
compared to the typical binding energies of baryons, which are of order 1 GeV. It is
therefore possible to proceed as if the overall Hamiltonian possessed a uds flavour
symmetry. However, the results based on this assumption should be treated with
care as, in reality, the symmetry is only approximate.

The assumed uds flavour symmetry can be expressed by a unitary transformation
in flavour space

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

u′

d′

s′

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠ = Û

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

u
d
s

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

U11 U12 U13

U21 U22 U23

U31 U32 U33

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

u
d
s

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠ .

In general, a 3 × 3 matrix can be written in terms of nine complex numbers, or
equivalently 18 real parameters. There are nine constraints from requirement of
unitarity, Û†Û = I. Therefore Û can be expressed in terms of nine linearly inde-
pendent 3 × 3 matrices. As before, one of these matrices is the identity matrix
multiplied by a complex phase and is not relevant to the discussion of transforma-
tions between different flavour states. The remaining eight matrices form an SU(3)
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group and can be expressed in terms of the eight independent Hermitian generators
T̂i such that the general SU(3) flavour transformation can be expressed as

Û = eiα·T̂.

The eight generators are written in terms of eight λ-matrices with

T̂ =
1
2
λ,

where the matrices act on the SU(3) representations of the u, d and s quarks

u =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠ , d =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
1
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠ and s =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (9.30)

The SU(3) uds flavour symmetry contains the subgroup of SU(2) u ↔ d flavour
symmetry. Hence, three of the λ-matrices correspond to the SU(2) ud isospin sym-
metry and have the Pauli spin-matrices in the top left 2×2 block of the 3×3 matrix
with all other entries zero,

λ1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0
1 0 0
0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠ , λ2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −i 0
i 0 0
0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠ and λ3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
0 −1 0
0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠ .

The third component of isospin is now written in terms of the operator

T̂3 =
1
2λ3,

such that

T̂3u = + 1
2 u, T̂3d = − 1

2 d and T̂3s = 0.

As before, isospin lowering and raising operators are defined as T± = 1
2 (λ1 ± iλ2).

The remaining λ-matrices can be identified by realising that the SU(3) uds flavour
symmetry also contains the subgroups of SU(2) u ↔ s and SU(2) d ↔ s flavour
symmetries, both of which can also be expressed in terms of the Pauli spin-matrices.
The corresponding 3 × 3 λ-matrixes for the u↔ s symmetry are

λ4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1
0 0 0
1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠ , λ5 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 −i
0 0 0
i 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠ and λX =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
0 0 0
0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

and for the d↔ s symmetry they are

λ6 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0
0 0 1
0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠ , λ7 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0
0 0 −i
0 i 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠ and λY =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0
0 1 0
0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠ .
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Of the nine λ-matrices identified above, only eight are independent; one of the
three diagonal matrices, λ3, λX and λY , can be expressed in terms of the other two.
Because the u↔ d symmetry is nearly exact, it is natural to retain λ3 as one of the
eight generators of the SU(3) flavour symmetry. The final generator is chosen as
the linear combination of λX and λY that treats u and d quarks symmetrically

λ8 =
1√
3

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0
0 1 0
0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠ +

1√
3

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
0 0 0
0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠ =

1√
3

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
0 1 0
0 0 −2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠ .

The eight matrices used to represent the generators of the SU(3) symmetry, known
as the Gell-Mann matrices, are therefore

λ1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0
1 0 0
0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠ , λ4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1
0 0 0
1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠ , λ6 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0
0 0 1
0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

λ2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −i 0
i 0 0
0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠ , λ5 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 −i
0 0 0
i 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠ , λ7 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0
0 0 −i
0 i 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

λ3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
0 −1 0
0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠ , λ8 =

1√
3

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
0 1 0
0 0 −2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠ .

(9.31)

9.6.1 SU(3) flavour states

For the case of SU(2) flavour symmetry there are three Hermitian generators, each
of which corresponds to an observable quantity. However, since the generators do
not commute, they correspond to a set of incompatible variables. Consequently
SU(2) states were defined in terms of the eigenstates of the third component of
isospin T̂3 and the total isospin T̂ 2 = T̂ 2

1 + T̂ 2
2 + T̂ 2

3 . In SU(3) there is an analogue of
total isospin, which for the fundamental representation of the quarks can be written

T̂ 2 =

8∑

i=1

T̂ 2
i =

1
4

8∑

i=1

λ2
i =

4
3

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
0 1 0
0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠ .

Of the eight SU(3) generators, only T3 =
1
2λ3 and T8 =

1
2λ8 commute and therefore

describe compatible observable quantities. Hence, in addition to the analogue of the
total isospin, SU(3) states are described in terms of the eigenstates of the λ3 and λ8

matrices. The corresponding quantum numbers are the third component of isospin
and the flavour hypercharge defined by the operators

T̂3 =
1
2λ3 and Ŷ = 1√

3
λ8.
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!Fig. 9.10 Isospin and hypercharge in SU(3) flavour symmetry for the quarks and antiquarks.

The quarks are the fundamental “3” representation of the SU(3) flavour symmetry.
Using the definitions of the quark states of (9.30) it is easy to verify that the isospin
and hypercharge assignments of the u, d and s quarks are

T̂3u = +1
2 u and Ŷu = + 1

3 u,

T̂3d = −1
2 d and Ŷd = + 1

3 d,

T̂3s = 0 and Ŷs = − 2
3 s.

The flavour content of a state is uniquely identified by I3 = nu − nd and Y =
1
3 (nu + nd − 2ns), where nu, nd and ns are the respective numbers of up-, down- and
strange quarks. The I3 and Y quantum numbers of the antiquarks have the opposite
signs compared to the quarks and they form a 3 multiplet, as shown in Figure 9.10.

Whilst the Gell-Mann λ3 and λ8 matrices label the SU(3) states, the six remain-
ing λ-matrices can be used to define ladder operators,

T̂± = 1
2 (λ1 ± iλ2),

V̂± = 1
2 (λ4 ± iλ5),

Û± = 1
2 (λ6 ± iλ7),

which respectively step along the d ↔ u, s ↔ u and d ↔ s directions. From the
matrix representations of these ladder operators it is straightforward to verify that

V̂+s = +u, V̂−u = +s, Û+s = +d, Û−d = +s, T̂+d = +u and T̂−u = +d,

with all other combinations giving zero. In SU(3) flavour symmetry it is not pos-
sible to express the antiquarks as a triplet which transforms in the same way as
the quark triplet. Nevertheless, following the arguments given in Section 9.5, the
effect of a single ladder operator on an antiquark state must reproduce that from
the corresponding SU(2) subgroup, such that the states can be obtained from

V̂+u = −s, V̂−s = −u, Û+d = −s, Û−s = −d, T̂+u = −d and T̂−d = −u.
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u!Fig. 9.11 SU(3) isospin and hypercharge assignments of the nine possible qq combinations.

9.6.2 The light mesons

In the discussion of SU(2) flavour symmetry, the third component of isospin is an
additive quantum number, in analogy with angular momentum. In SU(3) flavour
symmetry, both I3 and Y are additive quantum numbers, which together specify the
flavour content of a state. The light meson (qq) states, formed from combinations
of u, d and s quarks/antiquarks, can be constructed using this additive property to
identify the extreme states within an SU(3) multiplet. Having identified the extreme
states, the ladder operators can be used to obtain the full multiplet structure. The
I3 and Y values for all nine possible combinations of a light quark and a light
antiquark are shown in Figure 9.11. The pattern of states can be obtained quickly
by drawing triangles corresponding to the antiquark multiplet centred on each of
the three positions in the original quark multiplet (this is equivalent to adding the
I3 and Y values for all nine combinations).

The states around the edge of the multiplet are uniquely defined in terms of
their flavour content. The three physical states with I3 = Y = 0 will be lin-
ear combinations of uu, dd and ss, however, they are not necessarily part of the
same multiplet. The I3 = Y = 0 states which are in the same multiplet as the
{us, ud, du, ds, su, sd} states can be obtained using the ladder operators, as indi-
cated in Figure 9.12,

T+|du⟩ = |uu⟩ − |dd⟩ and T−|ud⟩ = |dd⟩ − |uu⟩, (9.32)

V+|su⟩ = |uu⟩ − |ss⟩ and V−|us⟩ = |ss⟩ − |uu⟩, (9.33)

U+|sd⟩ = |dd⟩ − |ss⟩ and U−|ds⟩ = |ss⟩ − |dd⟩. (9.34)

Of these six states, only two are linearly independent and therefore, of the three
physical I3 = Y = 0 states, it can be concluded that one must be in a different
SU(3) multiplet. Hence, for the assumed SU(3) flavour symmetry, the qq flavour
states are decomposed into an octet and a singlet. The singlet state ψS is the linear
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!Fig. 9.12 Ladder operators applied to the qq states around the edge of the I3, Y diagram.

=⊗
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⊕
(uu + dd + ss)1

3√d

s

u

du

su

ds us

ud

sd!Fig. 9.13 SU(3) flavour qq multiplets. The two states at the centre of the octet are linear combinations of |uu⟩, |dd⟩
and |ss⟩which are orthogonal to the singlet state.

combination of uu, dd and ss that is orthogonal to the states of (9.32)–(9.34) and is
readily identified as

|ψS ⟩ = 1√
3
(uu + dd + ss). (9.35)

The application of the SU(3) ladder operators on |ψS ⟩ all give zero, for example

T+ψS =
1√
3
([T+u]u + u[T+u] + [T+d]d + d[T+d] + [T+s]s + s[T+s])

= 1√
3
(0 − ud + ud + 0 + 0 + 0) = 0,

confirming that |ψS ⟩ is the singlet state.
Figure 9.13 shows the multiplet structure for combining a quark and an antiquark

in SU(3) flavour symmetry. In the language of group theory, the combination of a
quark 3 representation and an antiquark 3 representation decomposes into an octet
and a singlet, 3 ⊗ 3 = 8 ⊕ 1. It worth pausing to consider the physical significance
of the singlet state. For spin, the corresponding singlet state for the combination of
two spin-half states, |s,m⟩ = |0, 0⟩, is a state of zero angular momentum that carries



229 9.6 SU(3) flavour symmetry

J p = 0− J p = 1−
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!Fig. 9.14 The nine ℓ = 0, s = 0 pseudoscalar mesons and nine ℓ = 0, s = 1 vector mesons formed from the light
quarks, plotted in terms of I3 and Y .

no information about the spins of its constituent particles; it could just have been
formed from two scalar particles. Similarly, the SU(3) flavour singlet |ψS ⟩ can be
thought of as a “flavourless” state, carrying no information about the flavours of its
constituents.

The L= 0 mesons
In general, the wavefunction for a meson can be written in terms of four compo-
nents,

ψ(meson) = φflavour χspin ξcolour ηspace.

Because quarks and antiquarks are distinguishable, there is no restriction on the
exchange symmetry of the wavefunction for a qq state. For each flavour state, there
are two possible spin states, s = 0 and s = 1. For the lightest mesons, which
have zero orbital angular momentum (ℓ = 0), the total angular momentum J is
determined by the spin state alone. Consequently the lightest mesons divide into
the J = 0 pseudoscalar mesons and the J = 1 (the vector mesons), respectively
with s = 0 and s = 1. Since quarks and antiquarks have opposite intrinsic parities,
the overall parity is given by

P(qq) = P(q)P(q) × (−1)ℓ = (+1)(−1)(−1)ℓ,

where (−1)ℓ is the symmetry of the orbital wavefunction. Hence, the lightest mesons
(with ℓ = 0) have odd intrinsic parities. In Chapter 10, it is shown that there is only
one possible colour wavefunction for a bound qq system. Therefore, there are nine
light JP = 0− pseudoscalar mesons and nine JP = 1− light vector mesons, corre-
sponding to nine possible flavour states each with two possible spin states.

Figure 9.14 shows the observed ℓ = 0 meson states plotted in terms of I3 and Y .
The π0, η and η′ can be associated with the two I3 = Y = 0 octet states and the
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I3 = Y = 0 singlet state of Figure 9.13. The η′, which has an anomalously large
mass, can be identified as the singlet state with wavefunction

|η′⟩ ≈ 1√
3
(uu + dd + ss).

If the SU(3) flavour symmetry were exact, the two I3 = Y = 0 octet states would
have exactly the same mass and the flavour wavefunctions could be taken to be
any two orthogonal linear combinations of (9.32)–(9.34). However, because ms >
mu/d, the SU(3) flavour symmetry is only approximate and the choice of the flavour
wavefunctions for the observed states will lead to different physical predictions.
Experimentally, the lightest pseudoscalar mesons, namely the π+, π0 and π−, are
observed to have approximately the same mass of about 140 MeV. Since the π+

and π− correspond to the ud and du states, the π0 can be identified as

|π0⟩ = 1√
2
(uu − dd).

The final I3 = Y = 0 pseudoscalar meson, the η, is the linear combination of uu, dd
and ss that is orthogonal to both the |η′⟩ and the |π0⟩ states,

|η⟩ = 1√
6
(uu + dd − 2ss).

In the case of the vector mesons, the predictions of the SU(3) flavour symmetry
prove to be less useful; the physical I3 = Y = 0 states are mixtures of the octet and
singlet states. Experimentally, the observed states are found to correspond to

|ρ0⟩ = 1√
2
(uu − dd),

|ω⟩ ≈ 1√
2
(uu + dd),

|φ⟩ ≈ ss.

9.6.3 Meson masses

The measured masses of the ℓ = 0 pseudoscalar and vector mesons are listed in
Table 9.1. If the SU(3) flavour symmetry were exact, all the states in pseudoscalar
meson octet would have the same mass. The observed mass differences can be
ascribed to the fact that the strange quark is more massive than the up- and down-
quarks. However, this does not explain why the vector mesons are more massive
than their pseudoscalar counterparts. For example, the flavour wavefunctions for
the π and the ρ states are the same, but their masses are very different. The only
difference between the pseudoscalar and vector mesons is the spin wavefunction.
Therefore, the different masses of the π and ρ mesons can be attributed to a spin–
spin interaction.
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Table 9.1 The L = 0 pseudoscalar and vector meson masses.

Pseudoscalar mesons Vector mesons

π0 135 MeV ρ0 775 MeV
π± 140 MeV ρ± 775 MeV
K± 494 MeV K∗± 892 MeV
K0,K0 498 MeV K∗0/K∗0 896 MeV
η 548 MeV ω 783 MeV
η′ 958 MeV φ 1020 MeV

In QED, the potential energy between two magnetic dipoles contains a term pro-
portional to scalar product of the two dipole moments, µi · µ j. For two Dirac parti-
cles of masses mi and m j, this corresponds to a potential energy term of the form

U ∝ e
mi

Si ·
e

m j
S j ∝

α

mim j
Si · S j,

where α is the fine structure constant. This QED interaction term, which contributes
to the hyperfine splitting of the energy levels of the hydrogen atom, is relatively
small. In Chapter 10 it is shown that, apart from a numerical constant that accounts
for colour, the QCD vertex has the same form as that of QED. Therefore, there will
be a corresponding QCD “chromomagnetic” spin–spin interaction giving a term in
the qq potential of the form

U ∝ αS

mim j
Si · S j,

where αS is the coupling constant of QCD. Since αS ∼ 1 is much greater than
α ∼ 1/137, the chromomagnetic spin–spin interaction term is relatively large and
plays an important role in determining the meson masses. For an ℓ = 0 meson
formed from a quark and an antiquark with masses m1 and m2, the meson mass can
be written in terms of the constituent quark masses and the expectation value of the
chromomagnetic spin–spin interaction

m(q1q2) = m1 + m2 +
A

m1m2
⟨S1 · S2⟩, (9.36)

where the parameter A can be determined from experiment.
The scalar product S1 · S2 in (9.36) can be obtained by writing the total spin as

the vector sum, S = S1 + S2, and squaring to give

S2 = S2
1 + 2S1 · S2 + S2

2,

which implies that

S1 · S2 =
1
2

[
S2 − S1

2 − S1
2
]
.
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Therefore, the expectation value of S1 · S2 can be written as

⟨S1 · S2⟩ = 1
2

[〈
S2

〉
−

〈
S2

1

〉
−

〈
S2

2

〉]

= 1
2 [s(s + 1) − s1(s1 + 1) − s2(s2 + 1)] ,

where s1 = s2 =
1
2 and s is the total spin of the qq system. For the pseudoscalar

mesons s = 0 and for the vector mesons s = 1 and hence (9.36) can be written

Pseudoscalar mesons (s = 0): mP = m1 + m2 −
3A

4m1m2
, (9.37)

Vector mesons (s = 1): mV = m1 + m2 +
A

4m1m2
. (9.38)

Hence the masses of the spin-0 pseudoscalar mesons are predicted to be lower
than the masses of the spin-1 vector mesons. The observed meson masses listed in
Table 9.1 are in good agreement with the predictions of the meson mass formulae
of (9.37) and (9.38) with the parameters

md = mu = 0.307 GeV, ms = 0.490 GeV and A = 0.06 GeV3. (9.39)

The one exception is the η′, where the predicted mass of 355 MeV differs signifi-
cantly from the anomalously large observed value of 958 MeV. The reason for this
discrepancy is attributed to the η′ being a “flavourless” singlet state that can, in
principle, mix with possible purely gluonic flavourless bound states.

9.6.4 The L= 0 uds baryons

The ground states of the (qqq) baryons are states with no orbital angular momen-
tum in the system. Assuming SU(3) flavour symmetry, the wavefunctions for these
L = 0 baryons can be obtained by first considering the multiplet structure for the
combination of two quarks and then adding the third. This is essentially a repeat
of the process used to derive the proton wavefunction in Section 9.4. Here, we will
concentrate on the multiplet structure rather than the wavefunctions themselves.

Since I3 and Y are additive quantum numbers, the (I3,Y) values of the combina-
tion of two quarks in SU(3) are just the sums of the individual values. The multiplet
structure for the combination of two quarks can be obtained by starting at one of
the extreme SU(2) qq states and applying the SU(3) ladder operators. In this way it
can be shown that in SU(3) flavour symmetry, the combination of two quarks leads
to a symmetric sextet of states and an antisymmetric triplet of states, as shown in
Figure 9.15. Since the triplet has the same (I3,Y) states as the SU(3) representation
of a single antiquark, the multiplet structure arising from the combination of two
quarks can be written as 3 ⊗ 3 = 6 ⊕ 3.

The multiplet structure for the 27 possible flavour combinations in the qqq sys-
tem is then obtained by adding a quark triplet to each of the sextet and triplet of
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=⊗ ⊕

uudd

ss

(ud + du) (ud − du)1
2√

1
2√

!Fig. 9.15 The multiplet structure for the combination of qq in SU(3) flavour symmetry.

⊗ ⊕⊗ = ⊗

(a)

(b)

(c)

⊗ = ⊕
ud

s

⊗ = = ⊕

(uud + udu + duu) (2uud − udu − duu)

(uds − usd + dsu − dus + sud − sdu)

(udu − duu)
(ud − du)

1
3√

1
6√

1
6√

1
2√1

2√

!Fig. 9.16 The I3 and Y assignments for the qqq multiplets in SU(3) flavour symmetry broken down into the 6 ⊗ 3 and
3̄ ⊗ 3 parts (shown in b and c).

Figure 9.15. In terms of the group structure, this can be written 3⊗3⊗3 = (6⊕3)⊗3
as indicated in Figure 9.16a. Adding an additional quark to the sextet, gives a decu-
plet of totally symmetric states and a mixed symmetry octet, as shown in Fig-
ure 9.16b, where the states without strange quarks are exactly those identified in
Section 9.4. This 10 ⊕ 8 multiplet structure can be verified by repeated applica-
tion of the SU(3) ladder operators to the SU(2) states of (9.8)–(9.11) and to the
states of (9.12)–(9.13) to obtain respectively the decuplet and the mixed symme-
try octet.

The second set of qqq flavour states are obtained by adding a quark to the qq
triplet (3). In terms of the multiplet structure, this is the same as combining the
SU(3) representation of a quark and antiquark (3 ⊗ 3), giving a mixed symmetry
octet and a totally antisymmetric singlet state, as indicated in Figure 9.16c. The
wavefunctions for this octet can be obtained from the corresponding SU(2) states
of (9.14)–(9.15) using the SU(3) ladder operators. Hence, 26 of the possible states
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(10+ 8+ 8) can be obtained from the SU(2) qqq states using ladder operators. The
final state, which must be in a singlet, is

|ψS⟩ = 1√
6
(uds − usd + dsu − dus + sud − sdu). (9.40)

It is straightforward to verify that this is the singlet state by showing that the action
of all the SU(3) ladder operators give zero, for example

T̂+|ψS⟩ = 1√
6
(uus − usu + usu − uus + suu − suu) = 0.

In summary, the combination of three quarks in SU(3) flavour symmetry gives a
symmetric decuplet, two mixed symmetry octets and a totally antisymmetric sin-
glet state,

3 ⊗ 3 ⊗ 3 = 3 ⊗ (6 ⊕ 3) = 10 ⊕ 8 ⊕ 8 ⊕ 1.

The existence of the singlet state will have important consequences when it comes
to the discussion of the SU(3) colour symmetry of QCD.

The baryon wavefunctions are obtained by combining the SU(3) flavour wave-
functions with the spin wavefunctions of Section 9.3.1, respecting the requirement
that the overall baryon wavefunction has to be antisymmetric under the exchange
of any two of the quarks. Since the colour wavefunction is always antisymmetric
and the ℓ = 0 spatial wavefunction is symmetric, baryon states can be formed from
combinations of spin and flavour wavefunctions which are totally symmetric under
the interchange of any two quarks. This can be achieved in two ways. Firstly, a sym-
metric spin- 3

2 wavefunction can be combined with the symmetric SU(3) flavour
decuplet to give ten spin- 3

2 baryons (including the ∆-particles). Secondly, as in
(9.25), the mixed symmetry flavour octet states can be combined with the mixed
symmetry spin states to give a spin- 1

2 octet (including the proton and neutron). It is
not possible to construct a totally symmetric flavour × spin wavefunction from the
flavour singlet of (9.40) because there is no corresponding totally antisymmetric
spin state formed from the combination three spin-half particles. The experimen-
tally observed L = 0 baryons fit neatly into this SU(3) flavour symmetry prediction
of an octet of spin- 1

2 states and a decuplet of spin- 3
2 states, as shown in Figure 9.17.

Baryon masses
If the SU(3) flavour symmetry were exact, the masses of all the baryons within
the octet would be the same, as would the masses of all the baryons within the
decuplet. Because the strange-quark mass is greater than that of the up- and down-
quarks, this is not the case. The measured masses of the L = 0 baryons are listed
in Table 9.2. The patterns of masses within a multiplet largely reflects the number
of strange quarks in the state, whereas the difference between the masses of the
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Table 9.2 Measured masses and number of strange quarks for the L = 0
light baryons.

s quarks Octet Decuplet

0 p, n 940 MeV ∆ 1230 MeV
1 Σ 1190 MeV Σ∗ 1385 MeV
1 Λ 1120 MeV
2 Ξ 1320 MeV Ξ∗ 1533 MeV
3 Ω 1670 MeV

p(uud)n(ddu)

Σ−
 (dds)

Ξ−
 (ssd)

Ξ∗−
 (ssd)

Σ∗−
 (dds)

∆−
 (ddd) ∆+

 (duu) ∆++
 (uuu)∆0

 (ddu)

Σ∗+
 (uus)Σ∗0

 (uds)

Ω−
 (sss)

Ξ∗0
 (ssu)

Ξ0
 (ssu)

Σ+
 (uus)Σ0

 (uds)

Λ(uds)

J P = −3
+

2J P = −1
+

2

!Fig. 9.17 The observed octet and decuplet of light baryon states.

octet and decuplet states is due to the chromomagnetic spin–spin interactions of the
individual quarks. Following the argument presented in Section 9.6.3, the L = 0
baryon mass formula is

m(q1q2q3) = m1 + m2 + m3 + A′
( ⟨S1 · S2⟩

m1m2
+
⟨S1 · S3⟩

m1m3
+
⟨S2 · S3⟩

m2m3

)
, (9.41)

where S1, S2 and S3 are the spin vectors of the three quarks. This expression is
found to give good agreement with the observed baryon masses using

md = mu = 0.365 GeV, ms = 0.540 GeV and A′ = 0.026 GeV3.

It is important to note that the quark masses needed to explain the observed
baryon masses are about 50 MeV higher than those used to describe the meson
masses, as given in (9.39). Furthermore, they are very different from the funda-
mental up- and down-quark masses, known as the current masses, which are just
a few MeV. The quark masses that enter the meson and baryon mass formulae
are the constituent masses, which can be thought of as the effective masses of the
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quarks as they move within and interact with the QCD potential inside baryons and
mesons. Since the QCD environments within baryons and mesons will be differ-
ent, it should not be a surprise that the constituent masses are different for baryons
and mesons. This distinction between current and constituent quark masses implies
that only 1% of the mass of a proton is attributable to the masses of the quarks, the
remainder arises from the energy associated with the internal QCD gluon field.

9.6.5 Baryon magnetic moments

In Chapter 7 it was seen that the magnetic moment of the proton differs from
that expected for a point-like Dirac fermion. The experimentally measured val-
ues of the anomalous magnetic moments of the proton and neutron are 2.792 µN

and −1.913 µN respectively, where µN is the nuclear magneton defined as

µN =
e!

2mp
.

The origin of the proton and neutron anomalous magnetic moments can be
explained in terms of the magnetic moments of the individual quarks and the
baryon wavefunctions derived above.

Since quarks are fundamental Dirac fermions, the operators for the total mag-
netic moment and z-component of the magnetic moment are

µ̂ = Q
e
m

Ŝ and µ̂z = Q
e
m

Ŝ z.

For spin-up (ms = +
1
2 ) quarks, the expectation values of the z-component of the

magnetic moment of the up- and down-quarks are

µu = ⟨u↑ | µ̂z | u↑⟩ =
(
+ 2

3

) e!
2mu

= +
2mp

3mu
µN , (9.42)

µd = ⟨d↑ | µ̂z | d↑⟩ =
(
− 1

3

) e!
2md

= − mp

3md
µN . (9.43)

The corresponding expressions for the spin-down states are

⟨u↓ | µ̂z | u↓⟩ = −µu and ⟨d↓ | µ̂z | d↓⟩ = −µd.

The total magnetic moment of a baryon is the vector sum of the magnetic moments
of the three constituent quarks

µ̂ = µ̂(1) + µ̂(2) + µ̂(3),

where µ̂(i) is the magnetic moment operator which acts on the ith quark. Therefore,
the magnetic moment of the proton can be written

µp = ⟨µ̂z⟩ = ⟨p↑ | µ̂(1)
z + µ̂

(2)
z + µ̂

(3)
z |p↑⟩. (9.44)
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The order that the quarks appear in the proton wavefunction does not affect the
calculation of the magnetic moment and it is sufficient to write

|p↑⟩ = 1√
6
(2u↑u↑d↓−u↑u↓d↑−u↓u↑d↑),

and thus (9.44) can be written as

µp =
1
6 ⟨(2u↑u↑d↓−u↑u↓d↑−u↓u↑d↑) | µ̂z| (2u↑u↑d↓−u↑u↓d↑−u↓u↑d↑)⟩ ,

where µ̂z = µ̂
(1)
z + µ̂

(2)
z + µ̂

(3)
z . Because of the orthogonality of the quark flavour and

spin states, for example ⟨u ↑ u ↑ d ↓ | u ↓ u ↑ d ↑⟩ = 0, the expression for the proton
magnetic moment reduces to

µp =
4
6 ⟨u↑u↑d↓ | µ̂z| u↑u↑d↓⟩ + 1

6 ⟨u↑u↓d↑ | µ̂z| u↑u↓d↑⟩
+ 1

6 ⟨u↓u↑d↑ | µ̂z| u↓u↑d↑⟩ . (9.45)

Equation (9.45) can be evaluated using

µ̂z|u↑⟩ = +µu |u↑⟩ and µ̂z|u↓⟩ = −µu |u↓⟩,
µ̂z|d↑⟩ = +µd |d↑⟩ and µ̂z|d↓⟩ = −µd |d↓⟩,

giving

µp =
4
6 (µu + µu − µd) + 1

6 (µu − µu + µd) + 1
6 (−µu + µu + µd) .

Therefore, the quark model prediction for the magnetic moment of the proton is

µp =
4
3µu − 1

3µd.

The prediction for the magnetic moment of the neutron can be written down by
replacing u→ d and vice versa,

µn =
4
3µd − 1

3µu.

Assuming that mu ≈ md, the relations of (9.42) and (9.43) imply that µu = −2µd.
Consequently, the ratio of the proton and neutron magnetic moments is predicted
to be

µp

µn
=

4µu − µd

4µd − µu
= −3

2
,

which is in reasonable agreement with the experimentally measured value of −1.46.
The best agreement between the quark model predictions and the measured values
of the magnetic moments of the L = 0 baryons is obtained with

mu = 0.338 GeV, md = 0.322 GeV and ms = 0.510 GeV.

Using these values in (9.42) and (9.43) gives µu = +1.85µN and µd = −0.97µN ,
reproducing the observed values of the proton and neutron magnetic moments.
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9.6.6 Final words on SU(3) flavour symmetry

Whilst the SU(3) flavour symmetry is only approximate, it is able to account for
the observed states of the L = 0 mesons and baryons. Furthermore, the hadron
wavefunctions derived in the context of SU(3) flavour symmetry can be used to
obtain reasonable predictions for baryon and meson masses and the baryon mag-
netic moments. If anything, it is perhaps surprising that the predictions from SU(3)
flavour symmetry give such reasonable results. After all, the SU(3) flavour symme-
try can be only approximate because the mass of the strange quark is about 0.1 GeV
greater than the masses of the up- and down-quarks, although this mass difference
is relatively small compared to the typical QCD binding energy which is of order
1 GeV. A further issue with the static quark model is that the hadronic states have
been treated as bound states of valence quarks, whereas from the discussion of deep
inelastic scattering it is clear that hadrons are far more complex. To some extent,
these additional degrees of freedom are accounted for in the constituent masses
of the quarks used to obtain the predictions for meson and baryon masses and the
baryon magnetic moments. These masses are much larger than the current masses
listed in Table 1.1; most of the mass of the hadrons originates from of the energy
of the strongly interacting sea of virtual quarks and gluons.

The above discussion was restricted to the approximate SU(3) flavour symme-
try of the three light quarks. It is tempting to extend this treatment to an SU(4)
flavour symmetry including the charm quark. However, this makes little sense; the
difference between the mass of the charm quark and the light quarks is greater than
1 GeV, which is the typical QCD binding energies of hadrons. For this reason, the
Hamiltonian for the hadronic states does not possess even an approximate SU(4)
flavour symmetry.

Summary

In this chapter a number of important concepts were introduced. Symmetries of
the Hamiltonian were associated with unitary transformations expressed in terms
of Hermitian generators

Û(α) = exp (iα · Ĝ).

In this way, each symmetry of the Hamiltonian is associated with an observable
conserved quantity.

The flavour symmetry of the static quark model was used to illustrate these
ideas and to introduce the SU(2) and SU(3) groups. Based on symmetry arguments
alone, it was possible to derive static wavefunctions for the mesons and baryons
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formed from u, d and s quarks. The static quark model was shown to provide a
good description of the masses and magnetic moments of the light hadrons. In the
following chapter, these ideas will be extended to the abstract SU(3) local gauge
symmetry that lies at the heart of QCD.

9.7 *Addendum: Flavour symmetry revisited

In the derivation of the proton wavefunction, given in Section 9.4, the overall
wavefunction,

ψ = φflavour χspin ξcolour ηspace,

was required to be antisymmetric. For cases where the flavour wavefunction
describes like particles, for example φflavour = uuu, the requirement of an over-
all antisymmetric wavefunction is just an expression of Pauli exclusion principle,
which arises from the spin-statistics of fermions. It is less obvious why this should
also apply to the more general case with different quark flavours; the reasoning is
subtle.

In quantum field theory an up-quark state with spin r is expressed by the action
of the creation operator a†+r on the vacuum state,

|u↑⟩ = a†+r |0⟩,

where the + sign refers to the creation of the I3 = +
1
2 state labelling an up-quark

in SU(2) flavour symmetry. The creation operator a†+r satisfies the requirements of
fermion spin statistics, which can be written as the anticommutator

{a†+r, a
†
+r} = 0,

which implies

a†+ra
†
+r |0⟩ = 0, (9.46)

and therefore two identical particles can not be produced in the same state. For the
SU(2) isospin flavour symmetry T̂−|u↑⟩ = |d↑⟩, which implies

T̂−a†+r |0⟩ = a†−r |0⟩,

where a†−r is the creation operator for a spin-up down quark with I3 = − 1
2 . There-

fore one can write T̂−a†+r = a†−r. Applying the isospin lowering operator to (9.46)
gives

T̂−(a†+ra
†
+r)|0⟩ = a†−ra

†
+r |0⟩ + a†+ra

†
−r |0⟩ = 0,
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and hence

{a†+r, a
†
−r} = 0.

Therefore, within the assumed SU(2) flavour symmetry, the creation operators for
up- and down-quarks satisfy the same anticommutation relations as the creation
operators for two up-quarks or two down-quarks. Consequently, within the SU(2)
or SU(3) flavour symmetries, the requirement that the overall wavefunction is anti-
symmetric applies equally to states where the flavours of the quarks are different.

Problems

9.1 By writing down the general term in the binomial expansion of
(

1 + i
1
n
α · Ĝ

)n

,

show that

Û(α) = lim
n→∞

(
1 + i

1
n
α · Ĝ

)n

= exp (iα ·G).

9.2 For an infinitesimal rotation about the z-axis through an angle ϵ show that

Û = 1 − iϵ Ĵz,

where Ĵz is the angular momentum operator Ĵz = xp̂y − yp̂x .

9.3 By considering the isospin states, show that the rates for the following strong interaction decays occur in the
ratios

Γ(∆− → π−n) :Γ(∆0 → π−p) : Γ(∆0 → π0n) : Γ(∆+ → π+n) :

Γ(∆+ → π0p) : Γ(∆++ → π+p) = 3 : 1 : 2 : 1 : 2 : 3.

9.4 If quarks and antiquarks were spin-zero particles, what would be the multiplicity of the L = 0 multiplet(s).
Remember that the overall wavefunction for bosons must be symmetric under particle exchange.

9.5 The neutral vector mesons can decay leptonically through a virtual photon, for example by V(qq) → γ →
e+e−. The matrix element for this decay is proportional to ⟨ψ|Q̂q|ψ⟩, whereψ is the meson flavour wavefunc-
tion and Q̂q is an operator that is proportional to the quark charge. Neglecting the relatively small differences in
phase space, show that

Γ(ρ0 → e+e−) : Γ(ω→ e+e−) : Γ(φ→ e+e−) ≈ 9 : 1 : 2.

9.6 Using the meson mass formulae of (9.37) and (9.38), obtain predictions for the masses of the π±, π0, η, η′,
ρ0,ρ±,ω andφ. Compare the values obtained to the experimental values listed in Table 9.1.

9.7 Compare the experimentally measured values of the masses of the JP = 3
2
+ baryons, given in Table 9.2, with

the predictions of (9.41). You will need to consider the combined spin of any two quarks in a spin- 3
2 baryon

state.
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9.8 Starting from the wavefunction for theΣ− baryon:

(a) obtain the wavefunction for theΣ0 and therefore find the wavefunction for theΛ;
(b) using (9.41), obtain predictions for the masses of the Σ0 and the Λ baryons and compare these to the

measured values.

9.9 Show that the quark model predictions for the magnetic moments of theΣ+,Σ− andΩ− baryons are

µ(Σ+) = 1
3 (4µu − µs) , µ(Σ−) = 1

3 (4µd − µs) and µ(Ω−) = 3µs.

What values of the quark constituent masses are required to give the best agreement with the measured
values of

µ(Σ+) = (2.46 ± 0.01)µN, µ(Σ−) = (−1.16 ± 0.03)µN and
µ(Ω−) = (−2.02 ± 0.06)µN?

9.10 If the colour did not exist, baryon wavefunctions would be constructed from

ψ = φflavour χspin ηspace.

Taking L = 0 and using the flavour and spin wavefunctions derived in the text:

(a) show that it is still possible to construct a wavefunction for a spin-up proton for whichφflavour χspin is totally
antisymmetric;

(b) predict the baryon multiplet structure for this model;
(c) for this colourless model, show that µp is negative and that the ratio of the neutron and proton magnetic

moments would be
µn

µp
= −2.



10 Quantum Chromodynamics (QCD)

This chapter provides an introduction to the theory of Quantum Chromody-
namics (QCD). Firstly, the concept of a local gauge symmetry is described
and then used to obtain the form of the QCD interaction. Superficially QCD
appears like a stronger version of QED with eight gluons replacing the sin-
gle photon, but because the gluons carry the charge of the interaction, QCD
behaves very differently. A number of important topics are discussed includ-
ing colour confinement, hadronisation, renormalisation, running coupling con-
stants and colour factors. The last part of chapter provides an introduction to
hadron–hadron collisions at the Tevatron and the LHC.

10.1 The local gauge principle

Gauge invariance is a familiar idea from electromagnetism, where the physical E
and B fields, which are obtained from the scalar and vector potentials φ and A, do
not change under the gauge transformation

φ→ φ′ = φ − ∂χ
∂t

and A→ A′ = A + ∇χ.

This gauge transformation can be written more succinctly as

Aµ → A′µ = Aµ − ∂µχ, (10.1)

where Aµ = (φ,−A) and ∂µ = (∂0,∇).
In relativistic quantum mechanics, the gauge invariance of electromagnetism can

be related to a local gauge principle. Suppose there is a fundamental symmetry of
the Universe that requires the invariance of physics under local phase transforma-
tions defined by

ψ(x)→ ψ′(x) = Û(x)ψ(x) = eiqχ(x)ψ(x). (10.2)

This is similar to the U(1) global phase transformation of ψ → ψ′ = eiφψ of (9.3),
but here the phase q χ(x) can be different at all points in space-time. For this local
U(1) phase transformation, the free-particle Dirac equation

242
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iγ µ∂µψ = mψ, (10.3)

becomes

iγ µ∂µ(eiqχ(x)ψ) = meiqχ(x)ψ

⇒ eiqχ iγ µ
[
∂µψ + iq(∂µχ)ψ

]
= eiqχmψ

iγ µ(∂µ + iq∂µχ)ψ = mψ, (10.4)

which differs from (10.3) by the term −qγ µ(∂µχ)ψ. Hence, as it stands, the free-
particle Dirac equation does not possess the hypothesised invariance under a U(1)
local phase transformation. More generally, local phase invariance is not possible
for a free theory, i.e. one without interactions. The required invariance can be estab-
lished only by modifying the Dirac equation to include a new degree of freedom
Aµ such that the original form of the Dirac equation of (10.3) becomes

iγ µ(∂µ + iqAµ)ψ − mψ = 0, (10.5)

where Aµ will be interpreted as the field corresponding to a massless gauge boson.
Equation (10.5) is invariant under the local phase transformation defined in (10.2)
provided Aµ transforms as

Aµ → A′µ = Aµ − ∂µχ,

in order to cancel the unwanted −qγ µ(∂µχ)ψ term in (10.4). Stating this another
way, for physical predictions to remain unchanged under a local U(1) phase trans-
formation, it is necessary to introduce a new field that exhibits the observed gauge
invariance of classical electromagnetism, as given in (10.1). More significantly, the
modified Dirac equation of (10.5) no longer corresponds to a wave equation for a
free particle, there is now an interaction term of the form

qγ µAµψ. (10.6)

This is identical to the QED interaction term of (5.13) which was previously iden-
tified using minimal substitution.

The requirement that physics is invariant under local U(1) phase transformations
implies the existence of a gauge field which couples to Dirac particles in exactly the
same way as the photon. This is a profound statement; all of QED, including ulti-
mately Maxwell’s equations, can be derived by requiring the invariance of physics
under local U(1) transformations of the form Û = eiqχ(x).

10.1.1 From QED to QCD

Quantum Electrodynamics (QED) corresponds to a U(1) local gauge symmetry
of the Universe. The underlying symmetry associated with Quantum Chromody-
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namics (QCD), which is the Quantum Field Theory of the strong interaction, is
invariance under SU(3) local phase transformations,

ψ(x)→ ψ′(x) = exp
[
igSα(x) · T̂

]
ψ(x). (10.7)

Here T̂ = {T a} are the eight generators of the SU(3) symmetry group, which are
related to the Gell-Mann matrices of (9.31) by

T a = 1
2λ

a,

and αa(x) are eight functions of the space-time coordinate x. Because the gen-
erators of SU(3) are represented by 3 × 3 matrices, the wavefunction ψ must now
include three additional degrees of freedom that can be represented by a three com-
ponent vector analogous to the representation of the u, d and s quarks in SU(3)
flavour symmetry. This new degree of freedom is termed “colour” with red, blue
and green labelling the states. The SU(3) local phase transformation corresponds
to “rotating” states in this colour space about an axis whose direction is different at
every point in space-time. For the local gauge transformation of (10.7), the Dirac
equation becomes

iγ µ
[
∂µ + igS (∂µα) · T̂

]
ψ = mψ. (10.8)

The required local gauge invariance can be asserted by introducing eight new fields
Ga
µ(x), where the index a = 1, . . . , 8, each corresponding to one of the eight gen-

erators of the SU(3) symmetry. The Dirac equation, including the interactions with
the new gauge fields,

iγ µ
[
∂µ + igS Ga

µT
a
]
ψ − mψ = 0, (10.9)

is invariant under local SU(3) phase transformations provided the new fields trans-
form as

Gk
µ → Gk

µ
′
= Gk

µ − ∂µαk − gS fi jkαiG
j
µ. (10.10)

The last term in (10.10) arises because the generators of the SU(3) symmetry do
not commute and the fi jk are the structure constants of the SU(3) group, defined by
the commutation relations [λi, λ j] = 2i fi jkλk. Because the generators SU(3) do not
commute, QCD is known as a non-Abelian gauge theory and the presence of the
additional term in (10.10) gives rise to gluon self-interactions (see Appendix F).
The mathematical forms of these triple and quartic gluon vertices, shown in Fig-
ure 10.1, are completely specified by the SU(3) gauge symmetry. Putting aside
these self-interactions for now, the required SU(3) local gauge invariance necessi-
tates the modification of the Dirac equation to include new interaction terms, one
for each of the eight generators of the gauge symmetry. The eight new fields Ga are
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!Fig. 10.1 The predicted QCD interaction vertices arising from the requirement of SU(3) local gauge invariance.

the gluons of QCD and from (10.9) it can be seen that the form of qqg interaction
vertex is

gS T aγ µGa
µψ = gS

1
2λ

aγ µGa
µψ. (10.11)

10.2 Colour and QCD

The underlying theory of quantum chromodynamics appears to be very similar to
that of QED. The QED interaction is mediated by a massless photon corresponding
to the single generator of the U(1) local gauge symmetry, whereas QCD is medi-
ated by eight massless gluons corresponding to the eight generators of the SU(3)
local gauge symmetry. The single charge of QED is replaced by three conserved
“colour” charges, r, b and g (where colour is simply a label for the orthogonal
states in the SU(3) colour space). Only particles that have non-zero colour charge
couple to gluons. For this reason the leptons, which are colour neutral, do not feel
the strong force. The quarks, which carry colour charge, exist in three orthogo-
nal colour states. Unlike the approximate SU(3) flavour symmetry, discussed in
Chapter 9, the SU(3) colour symmetry is exact and QCD is invariant under unitary
transformations in colour space. Consequently, the strength of QCD interaction is
independent of the colour charge of the quark. In QED the antiparticles have the
opposite electric charge to the particles. Similarly, in QCD the antiquarks carry the
opposite colour charge to the quarks, r, g and b.

The three colour states of QCD can be represented by colour wavefunctions,

r =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠ , g =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
1
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠ and b =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠ .

Following the discussion of SU(3) flavour symmetry in Chapter 9, the colour states
of quarks and antiquarks can be labelled by two additive quantum numbers, the
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third component of colour isospin Ic
3 and colour hypercharge Yc as indicated in

Figure 10.2.

10.2.1 The quark–gluon vertex

The SU(3) local gauge symmetry of QCD implies a conserved colour charge and an
interaction between quarks and gluons of the form given by (10.11). By comparing
the QCD interaction term to that for QED given in (10.6),

−iqγ µAµψ→ −igS
1
2λ

aγ µGa
µψ,

the QCD vertex factor can be identified as

−iqγ µ → −igS γ
µ 1

2λ
a.

Apart from the different coupling constant, the quark–gluon interaction only differs
from the QED interaction in the appearance of the 3 × 3 Gell-Mann matrices that
only act on the colour part of the quark wavefunction. The quark wavefunctions
therefore need to include this colour degree of freedom. This can be achieved by
writing

u(p)→ ciu(p),

where u(p) is a Dirac spinor and ci represents one of the possible colour states

c1 = r =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠ , c2 = g =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
1
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠ and c3 = b =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠ .

Consequently, the quark current associated with the QCD vertex, shown in
Figure 10.3, can be written

j µq = u(p3)c†j
{
− 1

2 igS λ
aγ µ

}
ciu(p1), (10.12)

where the ci and c j are the colour wavefunctions of the quarks and the index a
refers to gluon corresponding to the SU(3) generator T a. (In other textbooks you
may see the colour index appended to the spinor ciu(p)→ ui(p).)
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!Fig. 10.3 The QCD quark–gluon vertex representing the interaction of quarks with colours i and j with a gluon of type
a and the gluon propagator.

In the quark current of (10.12), the 3 × 3 Gell-Mann matrix λa acts on the three-
component colour wavefunction, whereas the 4×4 γ-matrices act on the four com-
ponents of the Dirac spinor. Therefore the colour part of the current factorises,
allowing (10.12) to be written as

u(p3)c†j{− 1
2 igsλ

aγ µ}ciu(p1) = − 1
2 igs

[
c†jλ

aci

]
× [

u(p3)γ µu(p1)
]
.

The factorised colour part of the interaction is

c†jλ
aci = c†j

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

λa
1i
λa

2i
λa

3i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠ = λ

a
ji.

Hence the qqg vertex can be written as

− 1
2 igS λ

a
ji
[
u(p3)γ µu(p1)

]
,

where λa
ji is just a number, namely the jith element of λa. Therefore, the Feynman

rule associated with the QCD vertex is

− 1
2 igS λ

a
jiγ
µ.

For lowest-order diagrams, the Feynman rule for the gluon propagator of
Figure 10.3 is

−i
gµν

q2 δ
ab,

where the delta-function ensures that the gluon of type a emitted at the vertex
labelled µ is the same as that which is absorbed at vertex ν.

10.3 Gluons

The QCD interaction vertex includes a factor λa
ji, where i and j label the colours

of the quarks. Consequently, gluons corresponding to the non-diagonal Gell-Mann
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b r!Fig. 10.4 Colour flow for the t-channel process rb → br. Shown as the Feynman diagram, the colour flow and the two
time-ordered diagrams.

matrices connect quark states of different colour. In order for colour to be con-
served at the interaction vertex, the gluons must carry colour charge. For example,
the gluon corresponding to λ4, defined in (9.31), which has non-zero entries in the
13 and 31 positions, contributes to interactions involving the changes of colour
r → b and b→ r. This is illustrated in Figure 10.4, which shows the QCD process
of qq → qq scattering where the colour flow corresponds to br → rb, illustrated
both in terms the colour flow in the Feynman diagram and as the two correspond-
ing time-ordered diagrams. Because colour is a conserved charge, the interaction
involves the exchange of a br gluon in the first time-ordering and a rb gluon in
the second time-ordering. From this discussion, it is clear that gluons must carry
simultaneously both colour charge and anticolour charge.

Since gluons carry a combination of colour and anticolour, there are six gluons
with different colour and anticolour, rg, gr, rb, br, gb and bg. Naïvely one might
expect three gluons corresponding to rr, gg and bb. However, the physical gluons
correspond to the fields associated with the generators λ1,..,8 of the SU(3) gauge
symmetry. The gluons are therefore an octet of coloured states, analogous to the qq
meson SU(3) flavour states. The colour assignments of the eight physical gluons
can be written

rg, gr, rb, br, gb, bg, 1√
2
(rr − gg) and 1√

6
(rr + gg − 2bb).

Even though two of these gluon states have Ic
3 = Yc = 0, they are part of a colour

octet and therefore still carry colour charge (unlike the colourless singlet state).

10.4 Colour confinement

There is a wealth of experimental evidence for the existence of quarks. However,
despite many experimental attempts to detect free quarks, which would be observed
as fractionally charged particles, they have never been seen directly. The non-
observation of free quarks is explained by the hypothesis of colour confinement,
which states that coloured objects are always confined to colour singlet states and



249 10.4 Colour confinement

g

g

g

g

g

g

g

g

g

g

g

g

g

g

!Fig. 10.5 Lowest-order Feynman diagrams for the process gg→ gg, formed from the triple and quartic gluon vertices
of Figure 10.1.
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!Fig. 10.6 Qualitative picture of the effect of gluon–gluon interactions on the long-range QCD force.

that no objects with non-zero colour charge can propagate as free particles. Colour
confinement is believed to originate from the gluon–gluon self-interactions that
arise because the gluons carry colour charge, allowing gluons to interact with other
gluons through diagrams such as those shown in Figure 10.5.

There is currently no analytic proof of the concept of colour confinement,
although there has been recent progress using the techniques of lattice QCD. Nev-
ertheless, a qualitative understanding of the likely origin can be obtained by consid-
ering what happens when two free quarks are pulled apart. The interaction between
the quarks can be thought of in terms of the exchange of virtual gluons. Because
they carry colour charge, there are attractive interactions between these exchanged
virtual gluons, as indicated in Figure 10.6a. The effect of these interactions is to
squeeze the colour field between the quarks into a tube. Rather than the field lines
spreading out as in QED (Figure 10.6b), they are confined to a tube between the
quarks, as indicated in Figure 10.6c. At relatively large distances, the energy den-
sity in the tube between the quarks containing the gluon field is constant. Therefore
the energy stored in the field is proportional the separation of the quarks, giving a
term in the potential of the form

V(r) ∼ κr, (10.13)

where experimentally κ ∼ 1 GeV/fm. This experimentally determined value for
κ (see Section 10.8) corresponds to a very large force of O(105) N between any
two unconfined quarks, regardless of separation! Because the energy stored in the
colour field increases linearly with distance, it would require an infinite amount
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of energy to separate two quarks to infinity. Put another way, if there are two free
colour charges in the Universe, separated by macroscopic distances, the energy
stored in the resulting gluon field between them would be vast. As a result, coloured
objects arrange themselves into bound hadronic states that are colourless combina-
tions with no colour field between them. Consequently quarks are always confined
to colourless hadrons.

Another consequence of the colour confinement hypothesis is that gluons, being
coloured, are also confined to colourless objects. Therefore, unlike photons (the
force carriers of QED), gluons do not propagate over macroscopic distances. It is
interesting to note that had nature chosen a U(3) local gauge symmetry, rather than
SU(3), there would be a ninth gluon corresponding to the additional U(1) generator.
This gluon would be the colour singlet state,

G9 =
1√
3
(rr + gg + bb).

Because this gluon state is colourless, it would be unconfined and would behave
like a strongly interacting photon, resulting in an infinite range strong force; the
Universe would be a very different (and not very hospitable) place with long-range
strong interactions between all quarks.

10.4.1 Colour confinement and hadronic states

Colour confinement implies that quarks are always observed to be confined to
bound colourless states. To understand exactly what is meant by “colourless”, it
is worth recalling the states formed from the combination of spin for two spin-half
particles. The four possible spin combinations give rise to a triplet of spin-1 states
and a spin-0 singlet (2 ⊗ 2 = 3 ⊕ 1):

|1,+1⟩ =↑↑, |1, 0⟩ = 1√
2
(↑↓ + ↓↑), |1,−1⟩ =↓↓ and |0, 0⟩ = 1√

2
(↑↓ − ↓↑).

The singlet state is “spinless” in the sense that it carries no angular momentum.
In a similar way, SU(3) colour singlet states are colourless combinations which
have zero colour quantum numbers, Ic

3 = Yc = 0. It should be remembered that
Ic
3 = Yc = 0 is a necessary but not sufficient condition for a state to be colourless.

The action of any of the SU(3) colour ladder operators on a colour singlet state must
yield zero, in which case the state is analogous to the spinless |0, 0⟩ singlet state.

The colour confinement hypothesis implies that only colour singlet states can
exist as free particles. Consequently, all bound states of quarks and antiquarks must
occur in colour singlets. This places a strong restriction on the structure of possi-
ble hadronic states; the allowed combinations of quarks and antiquarks are those
where a colour singlet state can be formed. The algebra of the exact SU(3) colour
symmetry was described in Chapter 9 in the context of SU(3) flavour symmetry
and the results can be directly applied to colour with the replacements, u → r,
d→ g and s→ b.



251 10.4 Colour confinement

=⊗ ⊕

g r

b

g rg

bgbr

gb rb

(rr + gg + bb)
g

1
3√r

b

r

!Fig. 10.7 The colour combination of a quark and an antiquark, 3 ⊗ 3̄ = 8 ⊕ 1.

g r

b

⊗
g r

b
=

g gr

b

⊗
r

b

⊗
g r

b

gg

bb

(rg + gr)

ggg rrr

bbb

⊕

⊕ ⊕ ⊕=

1
2√

(rg − gr)1
2√
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First consider the possible colour wavefunctions for a bound qq state. The com-
bination of a colour with an anticolour is mathematically identical to the construc-
tion of meson flavour wavefunctions in SU(3) flavour symmetry. The resulting
colour multiplets, shown in Figure 10.7, are a coloured octet and a colourless sin-
glet. The colour confinement hypothesis implies that all hadrons must be colour
singlets, and hence the colour wavefunction for mesons is

ψc(qq) = 1√
3
(rr + gg + bb).

The addition of another quark (or antiquark) to either the octet or singlet state in
Figure 10.7 will not yield a state with Ic

3 = Yc = 0. Therefore, it can be concluded
that bound states of qqq or qq q do not exist in nature.

These arguments can be extended to the combinations of two and three quarks as
shown in Figure 10.8. The combination of two colour triplets yields a colour sextet
and a colour triplet (3). The absence of a colour singlet state for the qq system,
implies that bound states of two quarks are always coloured objects and therefore
do not exist in nature. However, the combination of three colours yields a single
singlet state with the colour wavefunction
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ψc(qqq) = 1√
6
(rgb − rbg + gbr − grb + brg − bgr), (10.14)

analogous to the SU(3) flavour singlet wavefunction of Section 9.6.4. This state
clearly satisfies the requirement that Ic

3 = Yc = 0. The colour ladder operators
can be used to confirm it is a colour singlet. For example, the action of the colour
isospin raising operator T c

+, for which T c
+g = r, gives

T c
+ψ

c(qqq) = 1√
6
(rrb − rbr + rbr − rrb + brr − brr) = 0,

as required. Hence a SU(3) colour singlet state can be formed from the combination
of three quarks and colourless bound states of qqq are observed in nature. Since the
colour singlet wavefunction of (10.14) is totally antisymmetric, and it is the only
colour singlet state for three quarks, the colour wavefunction for baryons is always
antisymmetric. This justifies the assumption used in Chapter 9 to construct the
baryon wavefunctions.

Colour confinement places strong restrictions on the possible combinations of
quarks and antiquarks that can form bound hadronic states. To date, all confirmed
observed hadronic states correspond to colour singlets either in the form of mesons
(qq), baryons (qqq) or antibaryons (q q q). In principle, combinations of (qq) and
(qqq) such as pentaquark states (qqqqq) could exist, either as bound states in their
own right or as hadronic molecules such as (qq)-(qqq). In recent years there have
been a number of claims for the existence of pentaquark states, but the evidence is
(at best) far from convincing.

10.4.2 Hadronisation and jets

In processes such as e+e− → qq, the two (initially free) high-energy quarks are
produced travelling back to back in the centre-of-mass frame. As a consequence
of colour confinement, the quarks do not propagate freely and are observed as
jets of colourless particles. The process by which high-energy quarks (and gluons)
produce jets is known as hadronisation.

A qualitative description of the hadronisation process is shown in Figure 10.9.
The five stages correspond to: (i) the quark and antiquark produced in an inter-
action initially separate at high velocities; (ii) as they separate the colour field is
restricted to a tube with energy density of approximately 1 GeV/fm; (iii) as the
quarks separate further, the energy stored in the colour field is sufficient to pro-
vide the energy necessary to form new qq pairs and breaking the colour field into
smaller “strings” is energetically favourable; (iv) this process continues and further
qq pairs are produced until (v) all the quarks and antiquarks have sufficiently low
energy to combine to form colourless hadrons. The hadronisation process results
in two jets of hadrons, one following the initial quark direction and the other in the
initial antiquark direction. Hence, in high-energy experiments, quarks and gluons
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!Fig. 10.9 Qualitative picture of the steps in the hadronisation process.

are always observed as jets of hadrons (see for example, Figures 10.19 and 10.30).
The precise process of hadronisation is poorly understood. Nevertheless, there are
a number of phenomenological models (often with many free parameters) that are
able to provide a reasonable description of the experimental data. Whilst these
models are motived by QCD, they are a long way from a first-principles theoretical
description of the hadronisation process.

10.5 Running ofαS and asymptotic freedom

At low-energy scales, the coupling constant of QCD is large, αS ∼ O(1). Conse-
quently, the perturbation expansion discussed in the context of QED in
Section 6.1, does not converge rapidly. For this reason (low-energy) QCD pro-
cesses are not calculable using traditional perturbation theory. Nevertheless, in
recent years, there has been a significant progress with the computational technique
of lattice QCD, where quantum-mechanical calculations are performed on a dis-
crete lattice of space-time points. Such calculations are computationally intensive,
with a single calculation often taking many months, even using specially adapted
supercomputing facilities. With lattice QCD it has been possible to calculate the
proton mass with a precision of a few per cent, thus providing a first principles test
of the validity of QCD in the non-perturbative regime. Despite this success, most
practical calculations in particle physics are based on perturbation theory. For this
reason, it might seem problematic that perturbation theory cannot be applied in
QCD processes because of the large value of αS . Fortunately, it turns out that αS is
not constant; its value depends on the energy scale of the interaction being consid-
ered. At high energies, αS becomes sufficiently small that perturbation theory can
again be used. In this way, QCD divides into a non-perturbative low-energy regime,
where first-principles calculations are not currently possible, such as the hadroni-
sation process, and a high-energy regime where perturbation theory can be used.
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The running of αS is closely related to the concept of renormalisation. A thorough
mathematical treatment of renormalisation is beyond the level of this book. Never-
theless, it is necessary to introduce the basic ideas in order to provide a qualitative
understanding of the running of the coupling constants of both QED and QCD.

10.5.1 *Renormalisation in QED

The strength of the interaction between a photon and an electron is determined by
the coupling at the QED vertex, which up to this point has been taken to be constant
with value e. The experimentally measured value of the electron charge e, which
corresponds to α ≈ 1/137, is obtained from measurements of the strength of the
static Coulomb potential in atomic physics. This is not the same as the strength of
coupling between an electron and photon that appears in Feynman diagrams, which
can be written as e0 (often referred to as the bare electron charge); the experimen-
tally measured value of e is the effective strength of the interaction which results
from the sum over all relevant QED higher-order diagrams.

Up to this point, only the lowest-order contribution to the QED coupling between
a photon and a charged fermion, shown in Figure 10.10a, has been considered.
However, for each QED vertex in a Feynman diagram, there is an infinite set of
higher-order corrections; for example, the O(e2) corrections to the QED e−γe− ver-
tex are shown in Figures 10.10b–10.10e. The experimentally measured strength of
the QED interaction is the effective strength from the sum over of all such dia-
grams. The diagram of Figure 10.10b represents correction to the propagator and
the diagrams in Figures 10.10c–10.10e represent corrections to the electron four-
vector current. In principle, both types of diagram will modify the strength of the
interaction relative to the lowest-order diagram alone.

For each higher-order diagram, it is relatively straightforward to write down the
matrix element using the Feynman rules for QED. Each loop in a Feynman diagram
enters as an integral over the four momenta of the particles in the loop and such dia-
grams lead to divergent (infinite) results. Fortunately, the infinities associated with
the loop corrections to the photon propagator can be absorbed into the definition
of the electron charge (described below). However, the corrections to four-vector

(a) (b) (c) (d) (e)

!Fig. 10.10 The lowest-order diagram for the QED vertex and theO(e2) corrections.
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!Fig. 10.11 Renormalisation in QED, relating the running charge e(q2) to the bare charge e0.

current, Figures 10.10c–10.10e, are potentially more problematic as they involve
loops that include virtual fermions. Consequently, the results of the corresponding
loop integrals will depend on the fermion masses. In principle, this would result in
the effective strength of the QED interaction being dependent on the mass of the
particle involved, which is not the case. However, in a field theory with local gauge
invariance such as QED, the effect of the diagram of Figure 10.10c is exactly can-
celled by the effects of diagrams 10.10d–10.10e. This type of cancellation, that is
known as a Ward identity, holds to all orders in perturbation theory. Consequently,
here we only need to consider the higher-order corrections to the photon propaga-
tor.

The infinite series of corrections to the photon propagator, known as the photon
self-energy terms, are accounted for by replacing the lowest-order photon exchange
diagram by the infinite series of loop diagrams expressed in terms on the bare elec-
tron charge, e0. As a result of the loop corrections, the photon propagator includ-
ing the self-energy terms, will no longer have a simple 1/q2 form. The physical
effects of the modification to the propagator can be accounted for by retaining the
1/q2 dependence for the effective propagator and absorbing the corrections into
the definition of the charge, which now necessarily depends on q2. This procedure
is shown in Figure 10.11, where the infinite sum over the self-energy corrections
to the photon with bare charge e0, indicated by the blob, is replaced by a 1/q2

propagator with effective charge e(q2).
The effective photon propagator, here denoted as P, can be expressed in terms

of the propagator with the bare charge,

P0 =
e2

0

q2 ,

by inserting an infinite series of the fermion loops. Each loop introduces a correc-
tion factor π(q2), such that the effective propagator is given by

P = P0 + P0 π(q2) P0 + P0 π(q2) P0 π(q2) P0 + · · · ,

where, for example, the second term in the above sum corresponds to a single
loop correction π(q2) inserted between two bare P0 propagator terms, and therefore
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represents the second diagram in Figure 10.11. This geometric series can be
summed to give

P = P0
1

1 − π(q2) P0
= P0

1
1 − e2

0Π(q2)
,

where Π(q2) = π(q2)/q2 is the one-loop photon self-energy correction. The effec-
tive propagator can then be expressed in terms of the running coupling e(q2) as

P ≡ e2(q2)
q2 =

e2
0

q2

1
1 − e2

0Π(q2)
.

Since scattering cross sections are known to be finite, it is an experimentally estab-
lished fact that e(q2) is finite, therefore

e2(q2) =
e2

0

1 − e2
0Π(q2)

, (10.15)

is finite, even though the denominator contains Π(q2) which is divergent. If the
physical electron charge is known at some scale q2 = µ2, then (10.15) can be
rearranged to give an expression for the bare charge

e2
0 =

e2(µ2)
1 + e2(µ2)Π(µ2)

,

which can be substituted back into (10.15) to give the exact relation,

e2(q2) =
e2(µ2)

1 − e2(µ2) · [Π(q2) − Π(µ2)]
. (10.16)

As a result of the loop integral for the photon self-energy, both Π(q2) and Π(µ2)
are separately divergent. However, the difference Π(q2) − Π(µ2) is finite and cal-
culable. Although the infinities have been renormalised away, the finite difference
between the effective strength of the interaction at different values of q2 remains.
Consequently, the coupling strength is no longer constant, it runs with the q2 scale
of the virtual photon. For values of q2 and µ2 larger than the electron mass squared,
it can be shown that

Π(q2) − Π(µ2) ≈ 1
12π2 ln

(
q2

µ2

)
.

Substituting this into (10.16) and writing α(q2) = e2(q2)/4π gives

α(q2) =
α(µ2)

1 − α(µ2)
1

3π
ln

⎛
⎜⎜⎜⎜⎜⎝

q2

µ2

⎞
⎟⎟⎟⎟⎟⎠

, (10.17)
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q /GeV!Fig. 10.12 Measurements ofα(q2) at different q2 scales from e+e− → ff with the OPAL experiment at LEP. The dotted
line shows the low-q2 limit ofα ≈ 1/137. Adapted from Abbiendi et al. (2004).

and the coupling has acquired a dependence on the q2 of the photon. Hence, the
lowest-order QED diagram with a running coupling constant α(q2) incorporates the
effects of the virtual loop diagrams in the photon propagator. The above derivation
applies equally to s-channel and t-channel processes and (10.17) holds in both
cases. In a t-channel process both q2 and µ2 are negative and the running of the
coupling constant is often written as α(Q2). It should be noted that α(q2) should be
read as α(|q2|).

The minus sign in (10.17) implies that the coupling of QED increases with
increasing |q2|, although the evolution is rather slow. In measurements from atomic
physics at q2 ≈ 0, the fine-structure constant is determined to be

α(q2 ≈ 0) =
1

137.035 999 074(94)
.

The QED coupling α(q2) has also been measured in e+e− annihilation at LEP; the
results from the highest q2 measurements are shown in Figure 10.12. At a mean
centre-of-mass energy of

√
s = 193 GeV, it is found that

α =
1

127.4 ± 2.1
,

providing a clear demonstration of the running of the coupling of QED.

10.5.2 Running ofαS

The treatment of renormalisation in QCD is similar to that of QED. However,
owing to the gluon–gluon self-interactions, there are additional loop diagrams, as
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!Fig. 10.13 Renormalisation in QCD.

shown in Figure 10.13. For values of q2 and µ2 larger than the confinement scale,
the difference between the gluon self-energy again grows logarithmically

ΠS (q2) − ΠS (µ2) ≈ − B
4π

ln
(

q2

µ2

)
,

where the B depends to the numbers of fermionic (quark) and bosonic (gluon)
loops. For N f quark flavours and Nc colours,

B =
11Nc − 2N f

12π
.

The effect of the bosonic loops enters the expression for the q2 evolution of αS

with the opposite sign to the pure fermion loops, with the fermion loops leading
to a negative contributions (which was also the case for QED) and the gluon loops
leading to positive contributions. The corresponding evolution of αS (q2) is

αS (q2) =
αS (µ2)

1 + BαS (µ2) ln

⎛
⎜⎜⎜⎜⎜⎝

q2

µ2

⎞
⎟⎟⎟⎟⎟⎠

.

For Nc = 3 colours and N f ≤ 6 quarks, B is greater than zero and hence αS

decreases with increasing q2.
There are many ways in which αS can be measured. These include studies of the

hadronic decays of the tau-lepton, the observed spectra of bound states of heavy
quarks (cc and bb), measurements of deep inelastic scattering, and jet production
rates in e+e− annihilation. Figure 10.14 shows a summary of the most precise mea-
surements of αS which span |q| = 2 − 200 GeV. The predicted decrease in αS with
increasing |q| is clearly observed and the data are consistent with the QCD predic-
tions for the running of αS with a value of αS at |q2| = m2

Z of

αS (m2
Z) = 0.1184 ± 0.0007.
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!Fig. 10.14 Measurements of αS at different |q| scales. The barely noticeable kinks in the QCD prediction occur at the
thresholds for producing ss, cc and bb; these affect the evolution of αS as the number of effective fermion
flavours Nf changes. Adapted from Bethke (2009).

Asymptotic freedom
The strength of the QCD coupling varies considerably over the range of energies
relevant to particle physics. At |q| ∼ 1 GeV, αS is of O(1) and perturbation theory
cannot be used. This non-perturbative regime applies to the discussion of bound
hadronic states and the latter stages in the hadronisation process. At |q| > 100 GeV,
which is the typical scale for modern high-energy collider experiments, αS ∼ 0.1,
which is sufficiently small that perturbation theory again can be used. This prop-
erty of QCD is known as asymptotic freedom. It is the reason that, in the previous
discussion of deep inelastic scattering at high q2, the quarks could be treated as
quasi-free particles, rather than being strongly bound within the proton. It should
be noted that at high q2, even though αS ∼ 0.1 is sufficiently small for perturbation
theory to be applicable, unlike QED, it is not so small that higher-order correc-
tions can be neglected. For this reason, QCD calculations for processes at the LHC
are almost always calculated beyond lowest order. These calculations, which often
involve many Feynman diagrams, are extremely challenging.

10.6 QCD in electron–positron annihilation

A number of the properties of QCD can be studied at an electron–positron collider,
primarily through the production of qq pairs in the annihilation process e+e− → qq,
shown Figure 10.15. There are a number of advantages in studying QCD at an
electron–positron collider compared to at a hadron collider. The QED production
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!Fig. 10.15 The lowest-order QED Feynman diagram for e+e− → qq production and the appearance of the interaction
in a detector as a final state consisting of two jets of hadrons.

process of e+e− annihilation is well understood and can be calculated to high preci-
sion; there are no uncertainties related to the parton distribution functions. In addi-
tion, the observed final state corresponds to the underlying hard interaction. This
is not the case for hadron–hadron collisions, where the remnants of the colliding
hadrons are also observed, typically as forward-going jets.

The differential cross-section for the process e+e− → µ+µ− was calculated in
Chapter 6. Assuming that quarks are spin-half particles, the angular dependence of
the differential cross section for e+e− → qq is expected to be

dσ
dΩ
∝ (1 + cos2 θ),

where θ is the angle between the incoming e− and the final-state quark. Because the
quark and antiquark will hadronise into jets of hadrons, it is not generally possible
to identify experimentally which flavour of quark was produced. For this reason,
the e+e− → qq cross section is usually expressed as an inclusive sum over all quark
flavours, e+e− → hadrons. Furthermore, it is also not usually possible to identify
which jet came from the quark and which jet came from the antiquark. To reflect
this ambiguity, the differential cross section is usually quoted in terms of | cos θ|.
For example, Figure 10.16 shows the observed angular distribution of the jets in
the process e+e− → hadrons in the centre-of-mass energy range 38.8 <

√
s <

46.5 GeV. The angular distribution is consistent with expected (1 + cos2 θ) form,
demonstrating that quarks are indeed spin-half particles.

The total QED e+e− → µ+µ− cross section, was calculated previously

σ(e+e− → µ+µ−) =
4πα2

3s
. (10.18)

The corresponding cross section for the QED production of a qq pair is

σ(e+e− → qq ) = 3 × 4πα2

3s
Q2

q, (10.19)
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!Fig. 10.16 The angular distribution of the jets produced in e+e− annihilation at centre-of-mass energies between
38.8 GeV <

√
s < 46.5 GeV as observed in the CELLO experiment at the PETRA e+e− collider at DESY.

The expected (1 + cos2θ) distribution for the production of spin-half particles is also shown. Adapted from
Behrend et al. (1987).

where the factor of three accounts for the sum over the three possible colour com-
binations of the final-state qq that can be produced as gg, rr or bb. The inclusive
QED cross section for σ(e+e− → hadrons) is the sum of the cross sections for the
quark flavours that are kinematically accessible at a given centre-of-mass energy
(
√

s > 2mq),

σ(e+e− → hadrons) =
4πα2

s
× 3

∑

flavours

Q2
q. (10.20)

It is convenient to express the inclusive cross section of (10.20) in terms of a ratio
relative to the µ+µ− cross section of (10.18),

Rµ ≡
σ(e+e− → hadrons)
σ(e+e− → µ+µ−)

= 3
∑

flavours

Q2
q. (10.21)

This has the advantage that a number of experimental systematic uncertainties can-
cel since Rµ is related to the ratio of the observed numbers of events. The expected
value of Rµ depends on the sum of the squares of the charges of the quark flavours
that can be produced at a particular centre-of-mass energy. For

√
s # 3 GeV, only

u, d and s quarks can be produced, giving the predicted value

R d,u,s
µ = 3 ×

(
4
9 +

1
9 +

1
9

)
= 2.
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ing three colours. The solid line includes the first-order QCD correction of (1 + αS(q2)/π). Based on data
compiled by the Particle Data Group, Beringer et al. (2012).

Above the thresholds for cc production (3.1 GeV) and bb production (9.5 GeV) the
predictions for Rµ are respectively

R c
µ = 3 ×

(
1
9 +

4
9 +

1
9 +

4
9

)
= 10

3 and R b
µ = 3 ×

(
1
9 +

4
9 +

1
9 +

4
9 +

1
9

)
= 11

3 .

Figure 10.17 shows the measurements of Rµ over a wide range of centre-of-
mass energies. At relatively low energies, there is significant structure due to res-
onant production of bound qq states with the same spin and parity as the virtual
photon, JP = 1−. These resonances greatly enhance the e+e− → hadrons cross
section when the centre-of-mass energy is close to the mass of the state being pro-
duced. At very low energies, the resonance structure is dominated by the JP = 1−

mesons introduced in Section 9.6.3, namely the ρ0(770 MeV), ω(782 MeV) and
φ(1020 MeV) mesons. At higher energies, charmonium (cc) and bottomonium (bb)
states are produced, such as the J/ψ(3097 MeV),ψ′(3686 MeV) andΥ states. These
heavy quark resonances are discussed further in Section 10.8.

In the continuum between the meson resonances, the data disagree with the pre-
dictions for Rµ given in (10.21) at the level of approximately 10%. The origin of the
discrepancy is that the cross sections of (10.18) and (10.19) are only relevant for
the lowest-order process, whereas the measured cross sections will include µ+µ−γ,
qqγ and qqg final states, as shown in Figure 10.18. The cross sections for these
processes will be suppressed relative to the lowest-order process by respective fac-
tors of α, α and αS due to the additional vertex. The QED corrections are relatively
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!Fig. 10.18 Feynman diagrams for e+e− → µ+µ−γ, qqγ, qqg.

small, but the O(αS ) correction cannot be neglected. If the first-order QCD correc-
tion from e+e− → qqg is included, the prediction of (10.21) is modified to

Rµ =
σ(e+e− → hadrons)
σ(e+e− → µ+µ−)

= 3
(
1 +

αS (q2)
π

) ∑

flavours

Q2
q. (10.22)

With the QCD correction included, the prediction for Rµ, shown by the solid line in
Figure 10.17, is in excellent agreement with the experimental measurements away
from the resonances. This agreement provides strong evidence for the existence of
colour (which is never directly observed); without the additional colour degree of
freedom, the prediction for Rµ would be a factor of three smaller and would be
incompatible with the observed data.

Gluon production in e+e− annihilation

Jet production in high-energy electron–positron collisions also provides direct evi-
dence for the existence of gluons. Figure 10.19 shows three examples of e+e− →
hadrons events observed in the OPAL detector at LEP. Whilst the majority of the
e+e− → hadrons events are produced with a clear two-jet topology, final states
with three- or four-jets are also observed. The three-jet events originate from the
process e+e− → qqg, where the gluon is radiated from either the final-state quark
or antiquark, as shown in Figure 10.19b. The relative cross section for the produc-
tion of three-jet events compared to the two-jet final states is proportional to αS .
Hence the observed number of three-jet events relative to the number of two-jet
events, provides one of the most precise measurements of αS (q2). Jet production in
electron–positron collisions also provides a direct test of the SU(3) group structure
of QCD. For example, one of the Feynman diagrams for four-jet production, shown
in Figure 10.19c, involves the triple gluon vertex. The Feynman rules for this ver-
tex are determined by the local gauge symmetry of QCD. By studying the angular
distributions of the jets in four-jet events, it is possible to distinguish between an
underlying SU(3) colour symmetry and alternative gauge symmetries. Needless to
say, the experimental data are consistent with the predictions of SU(3).
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!Fig. 10.19 Jet production in e+e− annihilation. The example events were recorded at
√

s = 91 GeV by the OPAL exper-
iment at LEP in the mid 1990s. They correspond to (a) e+e− → qq → two-jets, (b) e+e− → qqg →
three-jets and (c) e+e− → qqgg→ four-jets. Reproduced courtesy of the OPAL collaboration. Also shown
are possible Feynman diagrams corresponding to the observed events. In the case of four-jet production there
are also diagrams where both gluons are radiated from the quarks.

10.7 Colour factors

At hadron colliders, such as the LHC, the observed event rates are dominated by
the QCD scattering of quarks and gluons. Figure 10.20 shows one of the parton-
level processes contributing to the cross section for pp → two jets + X, where X
represents the remnants of the proton that are observed as forward jets in the direc-
tion of the incoming proton beams. The calculation of the corresponding matrix
element needs to account for the different colours of the quarks and gluons that can
contribute to the scattering process.

In the Feynman diagram of Figure 10.20, the incoming and outgoing quark
colours are labelled by i, j, k and l. The exchanged gluon is labelled by a and b
at the two vertices, with the δab term in the propagator ensuring that the gluon at
vertex µ is the same as that at vertex ν. The colour flow in the diagram corresponds
to ik → jl. There are 34 possible colour combinations for the four quarks involved
in this process. In addition, there and eight possible gluons that can be exchanged.
Consequently, there are 648 distinct combinations of quark colours and gluons that
potentially can contribute to the process. Fortunately, the effect of summing over
all the colour and gluon combinations can be absorbed into a single colour factor.
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The matrix element for the Feynman diagram of Figure 10.20 can be written
down using the Feynman rules for QCD:

−iM =
[
u(p3){− 1

2 igS λ
a
jiγ
µ}u(p1)

]−igµν
q2 δab

[
u(p4){− 1

2 igS λ
b
lkγ

ν}u(p2)
]
.

This can be rearranged to give

M = −
g2

S

4
λa

jiλ
a
lk

1
q2 gµν

[
u(p3)γ µu(p1)

][
u(p4)γνu(p2)

]
. (10.23)

This matrix element resembles that for the QED process e−q→ e−q given in (8.13),

M = Qq
e2

q2 gµν
[
u(p3)γ µu(p1)

][
u(p4)γνu(p2)

]
.

The QCD matrix element for a particular combination of quark colours can be
obtained from the calculated QED matrix element by making the replacements
−Qqe2 → g2

S , or equivalently −Qqα → αS , and multiplying by the colour factor
C(ik → jl) that accounts for the sum over the eight possible exchanged
gluons

C(ik → jl) ≡ 1
4

8∑

a=1

λa
jiλ

a
lk. (10.24)
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!Fig. 10.21 Examples of the four classes of colour exchange diagram in quark–quark scattering.

The QCD colour factor C(ik → jl) can be evaluated using the Gell-Mann
matrices

λ1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0
1 0 0
0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠ , λ4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1
0 0 0
1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠ , λ6 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0
0 0 1
0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠ , λ3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
0 −1 0
0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

λ2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −i 0
i 0 0
0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠ , λ5 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 −i
0 0 0
i 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠ , λ7 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0
0 0 −i
0 i 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠ , λ8 =

1√
3

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
0 1 0
0 0 −2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

where λ1 and λ2 correspond to the exchange of rg and gr gluons, λ4 and λ5 rep-
resent rb and br gluons, λ6 and λ7 represent gb and bg gluons, and λ3 and λ8

represent the exchange of 1
2 (rr−gg) and 1√

6
(rr+gg−2bb) gluons. The 34 possible

combinations of the colours i, j, k and l can be categorised into the four classes of
colour exchange, shown in Figure 10.21. These correspond to the following cases:
all four colours are the same, e.g. rr → rr ; the two initial-state quarks have dif-
ferent colours but do not change colour, e.g. rb → rb ; the two initial-state quarks
have different colours and exchange colour, e.g. rb→ br ; and all three colours are
involved. The different colour indices determine which elements of the λ-matrices
are relevant to the scattering process, which in turn determines which gluons con-
tribute.

From (10.24) the colour factor for rr → rr is

C(rr → rr) ≡ 1
4

8∑

a=1

λa
11λ

a
11.

Here the non-zero contributions arise from λ3 and λ8, which are the only
Gell-Mann matrices with non-zero values in the 11-element. Hence

C(rr → rr) =
1
4

8∑

a=1

λa
11λ

a
11 =

1
4

(λ3
11λ

3
11 + λ

8
11λ

8
11)

=
1
4

(
1 + 1

3

)
= 1

3 .
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Because of the underlying exact SU(3) colour symmetry, there is no need to repeat
the exercise for gg → gg or bb → bb ; the SU(3) colour symmetry guarantees that
the same result will be obtained, thus

C(rr → rr) = C(gg→ gg) = C(bb→ bb) = 1
3 . (10.25)

For the second class of diagram of Figure 10.21, rb→ rb, the corresponding colour
factor is

C(rb→ rb) =
1
4

8∑

a=1

λa
11λ

a
33.

Hence only the gluons associated with the Gell-Mann matrices with non-zero
entries in the 11 and 33 positions give a non-zero contribution, thus

C(rb→ rb) =
1
4

8∑

a=1

λa
11λ

a
33 =

1
4
λ8

11λ
8
33 =

1
4

(
1√
3
· −2√

3

)
= −1

6
,

and, from the SU(3) colour symmetry,

C(rb→ rb) = C(rg→ rg) = C(gr → gr) =

C(gb→ gb) = C(br → br) = C(bg→ bg) = −1
6 . (10.26)

For the third class of colour exchange of Figure 10.21, rg → gr, the only non-
zero contributions arise from the λ-matrices with non-zero entries in the 12 and 21
positions, therefore

C(rg→ gr) =
1
4

8∑

a=1

λa
21λ

a
12 =

1
4

(
λ1

21λ
1
12 + λ

2
21λ

2
12

)
=

1
2
,

and thus

C(rb→ br) = C(rg→ gr) = C(gr → rg) =

C(gb→ bg) = C(br → rb) = C(bg→ gb) = 1
2 . (10.27)

Finally, for the case where three different colours are involved, e.g. rb→ bg,

C(rb→ bg) =
1
4

8∑

a=1

λa
31λ

a
23.

Because none of the λ-matrices has non-zero entries in both the 31 and 23 posi-
tions, the colour factor is zero. This should come as no surprise, colour is a con-
served charge of the SU(3) colour symmetry and the process rb→ bg would result
in a net change of colour.
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Averaged colour factor
The colour factors calculated above account for the summation over the eight pos-
sible gluon intermediate states for a particular colour exchange ik → jl. In the scat-
tering process ud → ud, the colours of each of the initial-state quarks are equally
likely to be r, b or g. Therefore the nine possible initial-state colour combinations
are equally probable. For a particular initial-state colour combination, the cross
section will depend on the sum of the squared matrix elements for each of the nine
possible orthogonal final-state colour combinations. The possible colour combina-
tions are accounted for by the colour-averaged sum of squared matrix elements,

⟨|M|2⟩ = 1
9

3∑

i, j,k,l= 1

|M(i j→ kl)|2, (10.28)

where the sum is over all possible colours in the initial- and final-state, and the
factor of 1

9 averages over the nine possible initial-state colour combinations. The
colour part of (10.28),

⟨|C|2⟩ = 1
9

3∑

i, j,k,l= 1

|C(i j→ kl)|2, (10.29)

can be evaluated using the expressions for the individual colour factors of (10.25)–
(10.27). There are three colour combinations of the type rr → rr (i.e. rr → rr,
bb → bb and gg → gg) each with an individual colour factor 1

3 , six combinations
of the type rb→ rb with colour factor −1

6 and six combinations of the type rb→ br
with colour factor 1

2 . Hence the overall colour factor is

⟨|C|2⟩ = 1
9

[
3 ×

(
1
3

)2
+ 6 ×

(
− 1

6

)2
+ 6 ×

(
1
2

)2
]
= 2

9 . (10.30)

Hence, the entire effect of the 648 possible combinations of quark colours and
types of gluons is encompassed into a single number.

The QCD cross section for the scattering process ud→ ud can be obtained from
the QED cross section for e−q→ e−q of (8.19),

dσ
dq2 =

2πQ2
qα

2

q4

⎡
⎢⎢⎢⎢⎢⎣1 +

(
1 +

q2

s

)2⎤⎥⎥⎥⎥⎥⎦ ,

by replacing αQq with αS and by multiplying by the averaged colour factor of
(10.30), to give

dσ
dq2 =

4πα2
S

9q4

⎡
⎢⎢⎢⎢⎢⎣1 +

(
1 +

q2

ŝ

)2⎤⎥⎥⎥⎥⎥⎦ , (10.31)

where ŝ is the centre-of-mass energy of the colliding ud system.
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10.7.1 Colour in processes with antiquarks

Figure 10.22 shows the vertices for the basic QCD interaction between quarks
and/or antiquarks. The quark current associated with the qqg vertex is given by
(10.12)

j µq = u(p3)c†j
{
− 1

2 igS λ
aγ µ

}
ciu(p1),

where the outgoing quark enters as the adjoint spinor. In the equivalent expression
for the q qg vertex, the incoming antiparticle is now represented by the adjoint
spinor

j µq = v(p1)c†i
{
− 1

2 igS λ
aγ µ

}
c jv(p3).

Consequently, the colour part of the expression is

c†i λ
ac j = c†i

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λa
1 j
λa

2 j
λa

3 j

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= λa

i j.

The order of the indices i j is swapped with respect to the quark case, ji → i j. In
general, the colour index associated with the adjoint spinor appears first, and thus
the colour factor associated with the qqg annihilation vertex shown of Figure 10.22
is λa

ki.
Figure 10.23 shows the four possible combinations of two quarks/antiquarks

interacting via the exchange of a single gluon. For the quark–antiquark and
antiquark–antiquark scattering diagrams, the expressions for the colour factors are

C(i k → j l) ≡ 1
4

8∑

a=1

λa
i jλ

a
kl, and C(i k → j l) ≡ 1

4

8∑

a=1

λa
jiλ

a
kl,

which can be compared to the expression for the colour factor for quark–quark
scattering of (10.24). Because the Gell-Mann matrices have the property that either
λT = λ or λT = −λ, the same colour factors are obtained for qq and q q scattering,

i

p1

j

ga

p3

q q
m

p3p1

ga

m p1

i

p2

ga

q

m
k

ji
q q

q!Fig. 10.22 Colour indices for the qqg , qqg and qqg vertices.
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k!Fig. 10.23 The four diagrams involving the interaction of two quarks/antiquarks via a single gluon.
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g g g!Fig. 10.24 Examples of colour flow in the t-channel scattering processes of ud → ud, ud → ud and ud → ud
scattering, and the s-channel annihilation process qq → qq. In each case the gluons exchanged are
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and it is straightforward to show that the non-zero colour factors for the t-channel
scattering processes are

C(r r → r r) = C(r r → r r) = C(r r → r r) = 1
3 , (10.32)

C(r g→ r g) = C(r g→ r g) = C(r g→ r g) = −1
6 , (10.33)

C(r g→ g r) = C(r r → g g) = C(r g→ g r) = 1
2 . (10.34)

For the s-channel annihilation diagram, the expression for the individual colour
factors is

Cs(i k → jl) ≡ 1
4

8∑

a=1

λa
kiλ

a
jl,

from which it follows that

Cs(r r → r r) = 1
3 , Cs(r g→ r g) = 1

2 and Cs(r r → g g) = − 1
6 . (10.35)

For all four processes shown in Figure 10.23, the colour-averaged colour factor,
defined in (10.29), is ⟨|C|2⟩ = 2/9. Each of the individual colour factors given in
(10.32)–(10.35) can be associated with the exchange of a particular type of gluon,
such that colour charge is conserved at each vertex. For example, Figure 10.24
shows the colour flow in the Feynman diagrams of Figure 10.23 for the case where
the virtual gluon corresponds to the combined effect of the exchange of rg and gr
gluons.
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10.7.2 *Colour sums revisited

The overall colour factor for quark (or antiquark) scattering via the exchange of
a single gluon can be obtained directly by considering the factors that enter the
expression for the matrix element squared. For example, the qq → qq matrix ele-
mentM for colours ik → jl includes the colour factor

C =
1
4
λa

jiλ
a
lk,

where summation over the repeated gluon indices is implied. The matrix element
squared for this colour combination, |M|2 =MM†, is proportional to

CC∗ =
1

16
λa

jiλ
a
lk · (λb

ji)
∗(λb

lk)∗

=
1

16
λa

jiλ
a
lkλ

b
i jλ

b
kl, (10.36)

where the second line follows from the Gell-Mann matrices being Hermitian. The
colour-averaged summed matrix element squared therefore can be written

⟨|C|2⟩ = ⟨CC∗⟩ = 1
9

1
16

8∑

a,b=1

3∑

i jkl=1

λa
jiλ

b
i jλ

a
lkλ

b
kl

=
1

144

8∑

a,b=1

[
Tr

(
λaλb

)]2
.

It is straightforward to show that Tr
(
λaλb

)
= 2δab, and thus

⟨|C|2⟩ = 1
144

8∑

a,b=1

(2δab)2 =
1

144

8∑

a=1

22 =
2
9
.

The same result will be obtained independent of the order in which the indices
appear in the initial expression, and therefore the same colour-averaged colour fac-
tor is obtained for all four processes of Figure 10.23.

10.8 Heavy mesons and the QCD colour potential

Heavy quark cc (charmonium) and bb (bottomonium) bound states are observed as
resonances in e+e− annihilation, as seen previously in Figure 10.17. The multiple
charmonium and bottomonium resonances correspond to eigenstates of the qq sys-
tem in the QCD potential. Whilst only states with spin-parity JP = 1− are produced
in e+e− annihilation, other states are observed in particle decays. Unlike the quarks
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!Fig. 10.25 The masses and JPC assignments of the observed charmonium (cc) and bottomonium (bb) bound states,
where C is the charge conjugation quantum number discussed in Chapter 14.

in the light uds mesons, which are relativistic, the velocities of the heavy quarks in
the charmonium and bottomonium states are relatively low, βc ∼ 0.3 and βb ∼ 0.1.
In this case, the observed spectra of charmonium and bottomonium states, shown
in Figure 10.25, provide a probe of the QCD potential in the non-relativistic limit.

In non-relativistic QCD (NRQCD), the interaction between two quarks (or
between a quark and an antiquark) can be expressed as a static potential of the
form V(r). Owing to the gluon self-interactions (10.13), the potential at large dis-
tances is proportional to the separation of the quarks, V(r) ∼ κr. The short-range
component of the NRQCD potential can be obtained by considering the analo-
gous situation for QED. The non-relativistic limit of QED gives rise to a repulsive
Coulomb potential between two electrons (i.e. two particles), V(r) = α/r, and an
attractive potential between an electron and its antiparticle, V(r) = −α/r. With the
exception of the treatment of colour, which factorises from the spinor part, the fun-
damental QCD interaction has exactly the same φγ µψ form as QED. Therefore, the
short-range NRQCD potential between two quarks must be

Vqq(r) = +C
αS

r
, (10.37)

and that between a quark and an antiquark is

Vqq(r) = −C
αS

r
, (10.38)

where C is the appropriate colour factor. Depending on the sign of this colour
factor, which will depend on the colour wavefunction of the state, the short-range
static potential for the qq system could be either attractive or repulsive.
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From the colour confinement hypothesis, it is known that mesons are colour
singlets, with a colour wavefunction

ψ = 1√
3
(rr + gg + bb).

Thus, the expectation value of the NRQCD potential for a meson can be written

⟨Vqq⟩ = ⟨ψ|VQCD|ψ⟩ = 1
3

(
⟨rr|VQCD|rr⟩ + · · · + ⟨rr|VQCD|bb⟩ + · · ·

)
, (10.39)

where the dots indicate the other seven colour combinations. From the form of the
NRQCD potential identified in (10.38),

⟨rr|VQCD|rr⟩ = −C(rr → rr)
αS

r
and ⟨rr|VQCD|bb⟩ = −C(rr → bb)

αS

r
,

and therefore the expectation value of the QCD potential of (10.39) can be written

⟨Vqq⟩ = −
αS

3r

(
C(rr → rr) + · · · +C(rr → bb) + · · ·

)
.

This expression contains three terms of the form rr → rr and six of the form
rr → gg, and therefore

⟨Vqq⟩ = −
αS

3r
[
3 ×C(rr → rr) + 6 ×C(rr → gg)] .

Using the expressions for the colour factors for the t-channel exchange of a gluon
between a quark and an antiquark, given in (10.32) and (10.34), the non-relativistic
QCD potential can be written

⟨Vqq⟩ = −
αS

3r

[
3 × 1

3 + 6 × 1
2

]
= −4

3
αS

r
.

Hence, the short range NRQCD potential in the qq colour singlet state is attractive.
Adding in the long-range term of (10.13), gives the expression for the NRQCD
potential

Vqq(r) = −4
3
αS

r
+ κr. (10.40)

The non-relativistic QCD potential of (10.40) can be used to obtain the predicted
spectra for the cc and bb bound states. The more accurate predictions are obtained
for the bb system, where the non-relativistic treatment is a good approximation.
Reasonable agreement with observed l = 0 and l = 1 charmonium and bottom-
onium states of Figure 10.25 is found assuming λ ≈ 1 GeV/fm, providing further
evidence for the presence of the linear term in the potential, which is believed to
be responsible for colour confinement.

Figure 10.26 shows the non-relativistic QCD potential of (10.40) for αS =

0.2 and κ = 1 GeV/fm. The potential energy becomes positive at approximately
0.25 fm, with the linear term dominating at larger radii, setting the length scale for
confinement for these heavy quark states.
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!Fig. 10.26 The approximate form of the non-relativistic QCD potential for a bound qq state, assuming αS = 0.2 and
κ = 1 GeV/ fm.

10.9 Hadron–hadron collisions

Hadron colliders, either proton–proton or proton–antiproton, provide a route to
achieving higher centre-of-mass energies than is possible with circular e+e− col-
liders, and are central to the search for the production of new particles at high-mass
scales. The underlying process in hadron–hadron collisions is the interaction of two
partons, which can be either quarks, antiquarks or gluons.

10.9.1 Hadron collider event kinematics

In electron–proton elastic scattering, a single variable was sufficient to describe the
event kinematics. This was chosen to be the scattering angle of the electron. In
electron–proton deep inelastic scattering two variables are required, reflecting the
additional degree of freedom associated with the unknown momentum fraction x
of the struck quark. In hadron–hadron collisions, the momentum fractions x1 and
x2 of the two interacting partons are unknown, and the event kinematics have to be
described by three variables, for example Q2, x1 and x2. These three independent
kinematic variables can be related to three experimentally well-measured quanti-
ties. In hadron collider experiments, the scattered partons are observed as jets. In
a process such as pp → two jets + X, the angles of the two-jets with respect to
the beam axis are relatively well measured. Consequently, differential cross sec-
tions are usually described in terms of these two jet angles and the component of
momentum of one of the jets in the plane transverse to the beam axis, referred to
as the transverse momentum
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pT =

√
p2

x + p2
y,

where the z-axis defines the beam direction.
At a hadron–hadron collider, such as the LHC, the collisions take place in the

centre-of-mass frame of the pp system, which is not the centre-of-mass frame of the
colliding partons. The net longitudinal momentum of the colliding parton–parton
system is given by (x1− x2)Ep, where Ep is the energy of the proton. Consequently,
in a process such pp → 2 jets + X, the two final-state jets are boosted along the
beam direction. For this reason, the jet angles are usually expressed in terms of the
rapidity y, defined by

y =
1
2

ln
(

E + pz

E − pz

)
, (10.41)

where E and pz are the measured energy and z-component of momentum of a jet.
The use of rapidity has the advantage that rapidity differences are invariant under
boosts along the beam direction. This can be seen by considering the effect of a
Lorentz transformation along the z-axis, where the rapidity y in the boosted frame
of reference is given by

y′ =
1
2

ln
[
E′ + p′z
E′ − p′z

]
=

1
2

ln
[
γ(E − βpz) + γ(pz − βE)
γ(E − βpz) − γ(pz − βE)

]

=
1
2

ln
[
(1 − β)(E + pz)
(1 + β)(E − pz)

]

= y +
1
2

ln
(
1 − β
1 + β

)
.

Hence, differences in rapidities are the same measured in any two frames, ∆y′ =
∆y. Therefore, the a priori unknown longitudinal boost of the parton–parton system
does not affect the distribution of rapidity differences.

The invariant mass of the system of particles forming a jet is referred to as the jet
mass. The jet mass is not the same as the mass of the primary parton; it is mainly
generated in the hadronisation process. For high-energy jets, the jet mass is usually
small compared to the jet energy and pz ≈ E cos θ, where θ is the polar angle of the
jet with respect to the beam axis. Hence the rapidity can be approximated by

y ≈ 1
2

ln
(
1 + cos θ
1 − cos θ

)
=

1
2

ln
(
cot2 θ

2

)
.

Therefore, the pseudorapidity η defined as

η ≡ − ln
(
tan θ

2

)

can be used in place of rapidity y when jet masses can be neglected. Figure 10.27
illustrates the polar angle ranges covered by different regions of pseudorapidity.
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Broadly speaking, the differential cross sections for jet production in hadron–hadron
collisions are approximately constant in pseudorapidity, implying that roughly equal
numbers of jets are observed in each interval of pseudorapidity shown in
Figure 10.27, reflecting the forward nature of jet production in pp and pp colli-
sions.

10.9.2 The Drell–Yan process

The QED production of a pair of leptons in hadron–hadron collisions from the
annihilation of an antiquark and a quark, shown in Figure 10.28, is known as the
Drell–Yan process. It provides a useful example of a cross section calculation for
hadron–hadron collisions, in this case pp → µ+µ−X, where X represents the rem-
nants of the colliding hadrons.

The QED annihilation cross section for e+e− → µ+µ− was calculated in
Chapter 7. The corresponding cross section for qq→ µ+µ− annihilation is

σ(qq→ µ+µ−) =
1

Nc
Q2

q
4πα2

3ŝ
, (10.42)

where Qq is the quark/antiquark charge and ŝ is the centre-of-mass energy of the
colliding qq system. The factor 1/Nc, where Nc = 3 is the number of colours,



277 10.9 Hadron–hadron collisions

accounts for the conservation of colour charge, which implies that of the nine pos-
sible colour combinations of the qq system, the annihilation process can only occur
for three, rr, bb and gg. From the definition of the parton distribution functions, the
contribution to the pp Drell–Yan cross section from an up-quark within the proton
with momentum fraction x1 → x1 + δx1 annihilating with an anti-up-quark within
the antiproton with momentum fraction x2 → x2 + δx2 is

d2σ = Q2
u

4πα2

9ŝ
up(x1)dx1 up(x2) dx2, (10.43)

where up(x2) is the PDF for the anti-up-quark in the antiproton. Because the anti-
quark PDFs within the antiproton will be identical to the corresponding quark PDFs
in the proton, up(x) = up(x) ≡ u(x), Equation (10.43) can be written

d2σ =
4
9
· 4πα2

9ŝ
u(x1)u(x2) dx1dx2. (10.44)

The centre-of-mass energy of the qq system can be expressed in terms of that of
the proton–antiproton system using

ŝ = (x1 p1 + x2 p2)2 = x2
1 p2

1 + x2
2 p2

2 + 2x1x2 p1 ·p2.

In the high-energy limit, where the proton mass squared can be neglected, p2
1 =

p2
2 ≈ 0 and

ŝ ≈ x1x2(2p1 ·p2) = x1x2s,

where s is the centre-of-mass energy of the colliding pp system. Hence (10.44),
expressed in terms of s, becomes

d2σ =
4
9
· 4πα2

9x1x2s
u(x1)u(x2) dx1dx2. (10.45)

Accounting for the (smaller) contribution from the annihilation of a u in the proton
with a u in the antiproton and the contribution from dd annihilation, leads to

d2σ =
4πα2

9x1x2s

[
4
9

{
u(x1)u(x2) + u(x1)u(x2)

}
+ 1

9

{
d(x1)d(x2) + d(x1)d(x2)

}]
dx1dx2.

(10.46)

The Drell–Yan differential cross section is most usefully expressed in terms of
the experimental observables. Here a suitable choice is the rapidity and the invari-
ant mass of the µ+µ− system, both of which can be determined from the momenta
of the µ+ and µ− as reconstructed in the tracking system of the detector. The coordi-
nate transformation from x1 and x2 to these experimental observables is not entirely
straightforward, but is shown to illustrate the general principle. The invariant mass
of the µ+µ− system is equal to the centre-of-mass energy of the colliding partons,

M2 = x1x2s. (10.47)
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The rapidity of the µ+µ− system is given by

y =
1
2

ln
(

E3 + E4 + p3z + p4z

E3 + E4 − p3z − p4z

)
=

1
2

ln
(

Eq + Eq + pqz + pqz

Eq + Eq − pqz − pqz

)
,

where the equality of four-momenta of the µ+µ− system and that of the colliding
partons follows from energy and momentum conservation. The four-momenta of
the colliding q and q are respectively given by

pq =

√
s

2
(x1, 0, 0, x1) and pq =

√
s

2
(x2, 0, 0,−x2),

and hence

y =
1
2

ln
(
(x1 + x2) + (x1 − x2)
(x1 + x2) − (x1 − x2)

)
=

1
2

ln
x1

x2
. (10.48)

From (10.47) and (10.48), x1 and x2 can be written in terms of M and y,

x1 =
M√

s
ey and x2 =

M√
s
e−y. (10.49)

The differential cross section in terms of dx1dx2 can be expressed in terms of dy dM
using the determinant of the Jacobian matrix for the coordinate transformation

dy dM =
∂(y,M)
∂(x1, x2)

dx1dx2 =

∣∣∣∣∣∣∣

∂y
∂x1

∂y
∂x2

∂M
∂x1

∂M
∂x2

∣∣∣∣∣∣∣
dx1 dx2,

where the partial derivatives obtained from (10.47) and (10.48) give

dy dM =
s

2M
dx1dx2.

Hence the differential cross section of (10.46) can be expressed as

d2σ =
4πα2

9M2 f (x1, x2)
2M

s
dy dM,

where

f (x1, x2) =
[

4
9

{
u(x1)u(x2) + u(x1)u(x2)

}
+ 1

9

{
d(x1)d(x2) + d(x1)d(x2)

}]
,

and thus, the Drell–Yan differential cross section, written in terms of the invariant
mass and rapidity of the µ+µ− system, is

d2σ

dy dM
=

8πα2

9Ms
f (x1, x2),

where x1 and x2 are given by (10.49).
The above treatment of the Drell–Yan process considered only the QED photon-

exchange diagram. However, any neutral particle which couples to both quarks
and muons can contribute. For example, Figure 10.29 shows the measured differ-
ential cross section for pp → µ+µ−X from the CDF experiment at the Tevatron,
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!Fig. 10.29 The measured Drell–Yan cross section in pp collisions at
√

s = 1.8 TeV in the CDF detector at the Tevatron
collider. Adapted from Abe et al. (1999).

which operated from 1989 to 2011. The strong enhancement in the cross section
at Mµ+µ− ∼ 91 GeV is due to the resonant production of the Z boson, through the
annihilation process qq→ Z→ µ+µ−. The Drell–Yan process also provides a way
of searching for physics beyond the Standard Model through the production of new
massive neutral particles that couple to both quarks and leptons, through the pro-
cess qq → X0 → µ+µ−. To date, no such signals of physics beyond the Standard
Model have been observed.

10.9.3 Jet production at the LHC

The Large Hadron Collider at CERN is the highest energy accelerator ever built. It
is a pp collider designed to operate at an ultimate centre-of-mass energy of 14 TeV.
The LHC commenced full operation at

√
s = 7 TeV in 2010 and ran at

√
s =

8 TeV in 2012. The most common, although not the most interesting, high-energy
process at the LHC is the QCD production of two-jets. Figure 10.30 shows an
example of a two-jet event recorded at

√
s = 7 TeV in the ATLAS experiment.

Since the colliding partons have no momentum transverse to the beam axis, the
jets are produce back to back in the transverse plane and have equal and opposite
transverse momenta, pT. In the other view, the jets are not back to back due to
the boost of the final-state system from the net momentum of the colliding partons
along the beam axis, (x1 − x2)

√
s/2.

The cross section for the production of two jets from the t-channel gluon
exchange process qq→ qq is given by (10.31),
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!Fig. 10.30 An example of a pp → two-jets X event observed in the ATLAS detector a the LHC: (left) the transverse
view (perpendicular to the beam direction) and (right) the yz-view with the z-axis along the beam direction.
Reproduced courtesy of the ATLAS collaboration.

dσ
dQ2 =

4πα2
S

9Q4

⎡
⎢⎢⎢⎢⎢⎣1 +

(
1 − Q2

ŝ

)2⎤⎥⎥⎥⎥⎥⎦ ,

where Q2 = −q2 and ŝ = x1x2s is the centre-of-mass energy of the colliding
quarks. The contribution to the proton–proton cross section, expressed in terms of
the parton density functions, is therefore

dσ
dQ2 =

4πα2
S

9Q4

⎡
⎢⎢⎢⎢⎢⎣1 +

(
1 − Q2

sx1x2

)2⎤⎥⎥⎥⎥⎥⎦ g(x1, x2) dx1dx2.

where g(x1, x2) is the sum over the products of the relevant parton distribution
functions for the scattering process qq→ qq, which for up- and down-quarks is

g(x1, x2) = [u(x1)u(x2) + u(x1)d(x2) + d(x1)u(x2) + d(x1)d(x2)] .

The differential cross section therefore can be written as

d3σ

dQ2 dx1 dx2
=

4πα2
S

9Q4

⎡
⎢⎢⎢⎢⎢⎣1 +

(
1 − Q2

sx1x2

)2⎤⎥⎥⎥⎥⎥⎦ g(x1, x2). (10.50)

This expression has three degrees of freedom; one from the underlying elastic
scattering process, here written in terms of Q2, and one from each of the parton
momentum fractions, x1 and x2. In the process pp → two-jets X, the experimen-
tally well-measured quantities are the rapidities of the two final-state jets, y3 and
y4, and the magnitude of the transverse momentum, pT (which is the same for both
jets). Equation (10.50) can be written in terms of these measured quantities using
the determinant of the Jacobian for the coordinate transformation from {Q2, x1, x2}
to {pT, y3, y4} (see Problems 10.6 and 10.7). In principle, given knowledge of the
PDFs, it would be possible to calculate the lowest-order QCD contribution to the
LHC two-jet production cross section from the process qq → qq and express it
in terms of these three experimental observables. However, qq → qq is just one
of a number of parton-level processes that contribute to pp → two-jets X at the
LHC. For example, some of the other Feynman diagrams resulting in a two-jet
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!Fig. 10.31 Feynman diagrams for two-jet production in proton–proton collisions. There are also diagrams involving
initial-state antiquarks.

final state are shown in Figure 10.31. The contributions from all processes, includ-
ing the interference between diagrams with the same final-state partons, need to
be summed to obtain the cross section for pp → two-jets X. Furthermore, for
accurate predictions, the effects of higher-order QCD diagrams also need to be
considered.

At this point, it should be clear that unlike the case of electron–positron anni-
hilation, cross section calculations for the LHC are highly complex. Not only are
the PDFs required, but multiple diagrams are involved and higher orders have to
be included. In practice, such calculations are performed numerically in highly
sophisticated computer programs. Nevertheless, the comparison of the predictions
from these calculations with the experimental data from the LHC provides a pow-
erful test of QCD. For example, Figure 10.32 shows early data from the CMS
experiment. The plot shows the inclusive jet production cross section d2σ/dpTdy
in intervals of ∆y = 0.5 of rapidity (which correspond to different ranges of polar
angles in the detector). The pT distribution is peaked towards zero, reflecting the
1/Q4 propagator term and the large values of the PDFs at low x. The measured
cross sections for each interval of rapidity are similar, with roughly equal num-
bers of jets being observed in each of the (pseudo)rapidity intervals shown in
Figure 10.27, demonstrating that jets are produced preferentially in the forward
directions.

The data of Figure 10.32 are compared to next-to-leading-order (NLO) QCD
predictions using the current knowledge of the PDFs. The predicted cross sections
are in good agreement with the data that span a wide range of jet pT. In general,
QCD is found to provide an excellent description of jet phenomena in hadron–
hadron collisions. The success of QCD in describing the experimental results is
an important achievement of modern particle physics and provides overwhelming
evidence for the existence of the underlying SU(3) gauge symmetry.
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!Fig. 10.32 The measurement of the inclusive differential cross section for jet production from data recorded at
√

s =
7 TeV in the CMS experiment at the LHC. The curves are the predicted cross sections from NLO QCD. Adapted
from Chatrchyan et al. (2011).

Summary

Quantum Chromodynamics is the quantum field theory of the strong interaction. It
corresponds to a non-Abelian SU(3) local gauge symmetry, with eight gluons asso-
ciated with the eight generators. The interactions between the gluons and quarks
are described by the qqg vertex factor

− 1
2 igS λ

a
jiγ
µ,

where i and j are the colour charges of the quarks. The corresponding Feynman
rule for the gluon propagator is

−i
gµν

q2 δ
ab.

Whilst the Feynman rules for the QCD vertex and the gluon propagator resem-
ble those of QED, the presence of gluon self-interactions leads to very different
behaviour. For example, colour is confined and all freely propagating particles are
colour singlet states; free quarks and gluons are not observed.

The running of αS (Q2) implies that the strength of the QCD interaction decreases
with energy scale, a property known as asymptotic freedom. As a consequence,



283 Problems

perturbative calculations can be used for high-energy QCD processes. Despite the
practical difficulties of performing accurate calculations, QCD is found to provide
an excellent description of hadron collider data and the SU(3) local gauge symme-
try should be considered to be an experimentally established fact.

Problems

10.1 By considering the symmetry of the wavefunction, explain why the existence of theΩ−(sss) L = 0 baryon
provides evidence for a degree of freedom in addition to space× spin× flavour.

10.2 From the expression for the running of αS with Nf = 3, determine the value of q2 at which αS appears to
become infinite. Comment on this result.

10.3 Find the overall “colour factor” for qq→ qq if QCD corresponded to a SU(2) colour symmetry.

10.4 Calculate the non-relativistic QCD potential between quarks q1 and q2 in a q1q2q3 baryon with colour wavefunc-
tion

ψ =
1√

6
(rgb − grb + gbr − bgr + brg − rbg).

10.5 Draw the lowest-order QCD Feynman diagrams for the process pp → two-jets + X , where X represents the
remnants of the colliding hadrons.

10.6 The observed events in the process pp → two-jets at the LHC can be described in terms of the jet pT and the
jet rapidities y3 and y4.
(a) Assuming that the jets are massless, E2 = p2

T + p2
z , show that the four-momenta of the final-state jets can

be written as

p3 = (pT cosh y3,+pT sin φ,+pT cos φ, pT sinh y3),
p4 = (pT cosh y4,−pT sin φ,−pT cos φ, pT sinh y4).

(b) By writing the four-momenta of the colliding partons in a pp collision as

p1 =

√
s

2
(x1, 0, 0, x1) and p2 =

√
s

2
(x2, 0, 0,−x1),

show that conservation of energy and momentum implies

x1 =
pT√

s
(e+y3 + e+y4 ) and x2 =

pT√
s
(e−y3 + e−y4 ).

(c) Hence show that

Q2 = p2
T(1 + ey4−y3 ).

10.7 Using the results of the previous question show that the Jacobian

∂(y3, y4, p2
T)

∂(x1, x2, q2)
=

1
x1x2
.
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10.8 The total cross section for the Drell–Yan process pp→ µ+µ−X was shown to be

σDY =
4πα2

81s

∫ 1

0

∫ 1

0

1
x1x2

[
4u(x1)u(x2) + 4u(x1)u(x2) + d(x1)d(x2) + d(x1)d(x2)

]
dx1dx2 .

(a) Express this cross section in terms of the valence quark PDFs and a single PDF for the sea contribution, where
S(x) = u(x) = d(x).

(b) Obtain the corresponding expression for pp→ µ+µ−X .
(c) Sketch the region in the x1–x2 plane corresponding sqq > s/4. Comment on the expected ratio of the Drell–

Yan cross sections in pp and pp collisions (at the same centre-of-mass energy) for the two cases: (i) ŝ ≪ s
and (ii) ŝ > s/4, where ŝ is the centre-of-mass energy of the colliding partons.

10.9 Drell–Yan production ofµ+µ−-pairs with an invariant mass Q2 has been studied inπ± interactions with carbon
(which has equal numbers of protons and neutrons). Explain why the ratio

σ(π+C→ µ+µ−X)
σ(π−C→ µ+µ−X)

tends to unity for small Q2 and tends to 1
4 as Q2 approaches s.



11 The weak interaction

This chapter provides an introduction to the weak interaction, which is medi-
ated by the massive W+ and W− bosons. The main topics covered are: the
origin of parity violation; the V–A form of the interaction vertex; and the con-
nection to Fermi theory, which is the effective low-energy description of the
weak charged current. The calculation of the decay rate of the charged pion is
used to illustrate the rôle of helicity in weak decays. The purpose of this chap-
ter is to describe the overall structure of the weak interaction; the applications
are described in the following chapters on charged-current interactions, neu-
trino oscillations and CP violation in the weak decays of neutral mesons.

11.1 The weak charged-current interaction

At the fundamental level, QED and QCD share a number of common features.
Both interactions are mediated by massless neutral spin-1 bosons and the spinor
part of the QED and QCD interaction vertices have the same u(p′)γ µu(p) form.
The charged-current weak interaction differs in almost all respects. It is mediated
by massive charged W± bosons and consequently couples together fermions differ-
ing by one unit of electric charge. It is also the only place in the Standard Model
where parity is not conserved. The parity violating nature of the interaction can
be directly related to the form of the interaction vertex, which differs from that of
QED and QCD.

11.2 Parity

The parity operation is equivalent to spatial inversion through the origin, x → −x.
In general, in quantum mechanics the parity transformation can be associated with
the operator P̂, defined by

ψ(x, t)→ ψ′(x, t) = P̂ψ(x, t) = ψ(−x, t).

285
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The original wavefunction is clearly recovered if the parity operator is applied
twice,

P̂P̂ψ(x, t) = P̂ψ(−x, t) = ψ(x, t),

and hence the parity operator is its own inverse,

P̂P̂ = I. (11.1)

If physics is invariant under parity transformations, then the parity operation must
be unitary

P̂†P̂ = I. (11.2)

From (11.1) and (11.2), it can be inferred that

P̂† = P̂,

and therefore P̂ is a Hermitian operator that corresponds to an observable prop-
erty of a quantum-mechanical system. Furthermore, if the interaction Hamiltonian
commutes with P̂, parity is an observable conserved quantity in the interaction. In
this case, if ψ(x, t) is an eigenstate of the Hamiltonian, it is also an eigenstate of the
parity operator with an eigenvalue P,

P̂ψ(x, t) = Pψ(x, t).

Acting on this eigenvalue equation with P̂ gives

P̂P̂ψ(x, t) = PP̂ψ(x, t) = P2ψ(x, t),

which implies that P2 = 1 since P̂P̂ = I. Because P̂ is Hermitian, its eigenvalues
are real and are therefore equal to ±1.

11.2.1 Intrinsic parity

Fundamental particles, despite being point-like, possess an intrinsic parity. In
Section 4.9, it was shown that the parity operator for Dirac spinors is γ0, which
in the Dirac–Pauli matrix representation is

P̂ = γ0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

It was also shown that spin-half particles, which necessarily satisfy the Dirac
equation, have the opposite parity to the corresponding antiparticles. By conven-
tion, the particle states are defined to have positive intrinsic parity; for example
P(e−)= P(νe)= P(q)=+1, and therefore antiparticles have negative intrinsic parity,
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for example P(e+)= P(νe)= P(q)=−1. From the Quantum Field Theory describ-
ing the force carrying particles, it can be shown that the vector bosons responsible
for the electromagnetic, strong and weak forces all have negative intrinsic parity,

P(γ) = P(g) = P(W±) = P(Z) = −1.

11.2.2 Parity conservation in QED

Parity conservation in QED arises naturally from the form of the interaction. For
example, the matrix element for the QED process of e−q→ e−q scattering, shown
in Figure 11.1, can be written as the four-vector scalar product

M = Qqe2

q2 je · jq,

where the electron and quark currents are defined by

j µe = u(p3)γ µu(p1) and jνq = u(p4)γνu(p2). (11.3)

The equivalent matrix element for the parity transformed process, where the
three-momenta of all the particles are reversed, can be obtained by applying the
parity operator P̂ = γ0 to the spinors of (11.3). Since Dirac spinors transform as

u
P̂−→ P̂u = γ0u, (11.4)

the adjoint spinors transform as

u = u†γ0 P̂−→ (P̂u)†γ0 = u†γ0†γ0 = u†γ0γ0 = uγ0,

and hence

u
P̂−→ uγ0. (11.5)

p2

p1 p3

p4

q q

e-e-

ν

g

m

!Fig. 11.1 The lowest-order Feynman diagram for the QED t-channel electron–quark scattering process.



288 The weak interaction

From (11.4) and (11.5), it can be seen that the four-vector currents of (11.3) become

j µe = u(p3)γ µu(p1)
P̂−→ u(p3)γ0γ µγ0u(p1).

Because γ0γ0 = I, the time-like component of the current is unchanged by the
parity operation,

j 0
e

P̂−→ uγ0γ0γ0u = uγ0u = j 0
e .

The space-like components of j µ, with indices k = 1, 2, 3, transform as

j k
e

P̂−→ uγ0γ kγ0u = −uγ kγ0γ0u = −uγ ku = − j k
e ,

since γ0γ k = −γ kγ0. Therefore, as expected, the parity operation changes the signs
of the space-like components of the four-vector current but the time-like compo-
nent remains unchanged. Consequently, the four-vector scalar product in the QED
matrix element, je · jq = j 0

e j 0
q − j k

e j k
q , transforms to

je.· jq = j 0
e j 0

q − j k
e j k

q
P̂−→ j 0

e j 0
q − (− j k

e )(− j k
q ) = je · jq, (11.6)

and it can be concluded that the QED matrix element is invariant under the parity
operation. Hence the terms in the Hamiltonian related to the QED interaction are
invariant under parity transformations. This invariance implies that

parity is conserved in QED.

Apart from the colour factors, the QCD interaction has the same form as QED and
consequently

parity is conserved in QCD.

The conservation of parity in strong and electromagnetic interactions needs to
be taken into account when considering particle decays. For example, consider the
two decays

ρ0(1−)→ π+(0−) + π−(0−) and η(0−)→ π+(0−) + π−(0−),

where the JP values are shown in brackets. The total parity of the two-body final
state is the product of the intrinsic parities of the particles and the parity of the
orbital wavefunction, which is given by (−1)ℓ, where ℓ is the orbital angular
momentum in the final state. In order to conserve angular momentum, the π+ and
π− in the ρ0 → π+π− decay are produced with relative orbital angular moment
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ℓ = 1, whereas the π+π− in the decay of the η must have ℓ = 0. Therefore, conser-
vation of parity in the two decays can be expressed as follows:

P(ρ0) = P(π+) · P(π−) · (−1)ℓ=1 ⇒ − 1 = (−1)(−1)(−1) !

P(η) = P(π+) · P(π−) · (−1)ℓ=0 ⇒ − 1 = (−1)(−1)(+1) ×
Hence the strong interaction decay process ρ0 → π+π− is allowed, but the strong
decay η → π+π− does not occur as it would violate the conservation of parity
that is implicit in the strong interaction Hamiltonian. It can also be shown that the
QED and QCD interactions are invariant under the charge conjugation operation Ĉ,
defined in Section 4.7.5, which changes particles into antiparticles and vice versa,
and therefore there is a corresponding conserved quantity C = ±1.

Scalars, pseudoscalars, vectors and axial vectors
Physical quantities can be classified according to their rank (dimensionality) and
parity inversion properties. For example, single-valued scalar quantities, such as
mass and temperature, are invariant under parity transformations. Vector quantities,
such as position and momentum, change sign under parity transformations, x →
−x and p → −p. There is also a second class of vector quantity, known as an
axial vector, which is sometimes referred to as a pseudovector. Axial vectors are
formed from the cross product of two vector quantities, and therefore do not change
sign under parity transformations. One example is angular momentum L = x × p.
Because both x and p change sign under parity, the axial vector L is unchanged.
Other examples of axial vectors include the magnetic moment and the magnetic
flux density B, which is related to the current density j by the Biot–Savart law,
dB ∝ j× d3x. Scalar quantities can be formed out of scalar products of two vectors
or two axial vectors, the simplest example being the magnitude squared of the
momentum vector, p2 = p ·p. There is a second class of scalar quantity known as a
pseudoscalar. Pseudoscalars are single-valued quantities formed from the product
of a vector and an axial vector, and consequently change sign under the parity
operation. One important example of a pseudoscalar is helicity, h ∝ S · p. The
different scalar and vector quantities are listed in Table 11.1.

Table 11.1 The parity properties of scalars, pseudoscalars, vectors and
axial vectors.

Rank Parity Example

Scalar 0 + Temperature, T
Pseudoscalar 0 − Helicity, h
Vector 1 − Momentum, p
Axial vector 1 + Angular momentum, L
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B B

e−(p)

e−(−p)

mm

P

!Fig. 11.2 The β-decay of polarised 60Co. On the left, an electron is emitted in a particular direction. On the right the
parity inverted equivalent is shown.

11.2.3 Parity violation in nuclearβ-decay

The parity inversion properties of the different types of physical quantity can be
exploited to investigate whether parity is conserved in the weak interaction. In
1957, Wu and collaborators studied nuclear β-decay of polarised cobalt-60,

60Co→ 60Ni∗ + e− + νe.

The 60Co nuclei, which possess a permanent nuclear magnetic moment µ, were
aligned in a strong magnetic field B and the β-decay electrons were detected at
different polar angles with respect to this axis, as shown in Figure 11.2. Because
both B and µ are axial vectors, they do not change sign under the parity trans-
formation. Hence when viewed in the parity inverted “mirror”, the only quantity
that changes sign is the vector momentum of the emitted electron. Hence, if parity
were conserved in the weak interaction, the rate at which electrons were emitted at
a certain direction relative to the B-field would be identical to the rate in the oppo-
site direction. Experimentally, it was observed that more electrons were emitted in
the hemisphere opposite to the direction of the applied magnetic field than in the
hemisphere in the direction of the applied field, thus providing a clear demonstra-
tion that

parity is NOT conserved in the weak interaction.

From this observation it can be concluded that, unlike QED and QCD, the weak
interaction does not have four-vector currents of the form j µ = u(p′)γ µu(p).

11.3 V – A structure of the weak interaction

QED and QCD are vector interactions with a current of the form j µ = u(p′)γ µu(p).
This particular combination of spinors and γ-matrices transforms as a four vec-
tor (as shown in Appendix B.3). From the observation of parity violation, the
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Table 11.2 Lorentz-invariant bilinear covariant currents.

Type Form Components Boson spin

Scalar ψφ 1 0
Pseudoscalar ψγ5φ 1 0
Vector ψγ µφ 4 1
Axial vector ψγ µγ5φ 4 1
Tensor ψ(γ µγν − γνγ µ)φ 6 2

weak interaction vertex is required have a different form. However, the require-
ment of Lorentz invariance of the interaction matrix element severely restricts the
possible forms of the interaction. The general bilinear combination of two spinors
can be written u(p′)Γu(p), where Γ is a 4 × 4 matrix formed from products of the
Dirac γ-matrices. It turns out that there are only five combinations of individual
γ-matrices that have the correct Lorentz transformation properties, such that they
can be combined into a Lorentz-invariant matrix element. These combinations are
called bilinear covariants and give rise to the possible scalar, pseudoscalar, vector,
axial vector and tensor currents listed in Table 11.2.

In QED, the factor gµν in the matrix element arises from the sum over the
(2J + 1) + 1 polarisation states of the JP = 1− virtual photon, which includes the
time-like component of the polarisation four-vector. These four polarisation states
correspond to the four degrees of freedom of the vector current j µ = ψγ µφ, labelled
by the index µ = 0, 1, 2, 3. The single component scalar and pseudoscalar interac-
tions therefore can be associated with the exchange of a spin-0 boson (J = 0),
which possesses just a single degree of freedom. Similarly, the six non-zero com-
ponents of a tensor interaction can be associated with the exchange of a spin-2
boson (J = 2), with (2J + 1) + 1 = 6 polarisation states for the spin-2 virtual
particle.

The most general Lorentz-invariant form for the interaction between a fermion
and a boson is a linear combination of the bilinear covariants. If this is restricted to
the exchange of a spin-1 (vector) boson, the most general form for the interaction
is a linear combination of vector and axial vector currents,

j µ ∝ u(p′)(gVγ
µ + gAγ

µγ5)u(p) = gV j µV + gA j µA ,

where gV and gA are vector and axial vector coupling constants and the current has
been decomposed into vector and axial vector components

j µV = u(p′)γ µu(p) and j µA = u(p′)γ µγ5u(p).
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The parity transformation properties of j µV were derived in Section 11.2.2. The
parity transformation properties of the pure axial vector current can be obtained
the same way

j µA = uγ µγ5u
P̂−→ uγ0γ µγ5γ0u = −uγ0γ µγ0γ5u,

which follows from γ5γ0 = −γ0γ5. Hence the time-like component of the axial
vector current transforms as

j 0
A =

P̂−→ −uγ0γ0γ0γ5u = −uγ0γ5u = − j 0
A,

and the space-like components transform as

j k
A =

P̂−→ −uγ0γkγ0γ5u = +uγkγ5u = + j k
A.

Therefore, the scalar product of two axial vector currents is invariant under parity
transformations

j1 · j2 = j 0
1 j 0

2 − j k
1 j k

2
P̂−→ (− j 0

1 )(− j 0
2 ) − j k

1 j k
2 = j1 · j2. (11.7)

This should come as no surprise, the matrix element is a scalar quantity; if it is
formed from the four-vector scalar product of either two vectors or two axial vec-
tors it has to be invariant under the parity transformation.

To summarise, the parity transformation properties of the components of the
vector and the axial vector currents are

j 0
V

P̂−→ + j 0
V , j k

V
P̂−→ − j k

V , and j 0
A

P̂−→ − j 0
A, j k

A
P̂−→ + j k

A.

Whilst the scalar products of two vector currents or two axial vector currents are
unchanged in a parity transformation, the scalar product jV·jA transforms to − jV·jA.
Hence the combination of vector and axial vector currents provides a mechanism
to explain the observed parity violation in the weak interaction.

Consider the (inverse-β-decay) charged-current weak interaction process νed→
e−u, shown in Figure 11.3, with assumed currents of the form

j µνe = u(p3)(gVγ
µ + gAγ

µγ5)u(p1) = gV jVνe + gA jA
νe,

jνdu = u(p4)(gVγ
ν + gAγ

νγ5)u(p2) = gV jVdu + gA jA
du.

The matrix element is proportional to the four-vector scalar products of two
currents

M f i ∝ jνe · jdu = g
2
V jVνe · jVdu + g

2
A jA
νe · jA

du + gVgA( jVνe · jA
du + jA

νe · jVdu).

The terms jVνe · jVνe and jA
νe · jA

νe do not change sign under a parity transformation, but
the mixed V and A combinations do, and therefore

jνe · jdu
P̂−→ g2

V jVνe · jVdu + g
2
A jA
νe · jA

du − gVgA( jVνe · jA
du + j,Aνe · jVdu).
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W

d u

e−νe

p3p1

p4p2

m

ν!Fig. 11.3 The lowest-order Feynman diagram for the charged-current weak interaction νed→ e−u.

Thus the relative strength of the parity violating part of the matrix element com-
pared to the parity conserving part is given by

gVgA

g2
V + g

2
A

.

Hence, if either gV or gA is zero, parity is conserved in the interaction. Furthermore,
maximal parity violation occurs when |gV | = |gA|, corresponding to a pure V − A or
V + A interaction. From experiment, it is known that the weak charged current due
to the exchange of W± bosons is a vector minus axial vector (V − A) interaction of
the form γ µ − γ µγ5, with a vertex factor of

−igW√
2

1
2γ
µ(1 − γ5). (11.8)

Here gW is the weak coupling constant (which is often written simply as g). The
origin of the additional numerical factors will be explained in Chapter 15. The
corresponding four-vector current is given by

j µ =
gW√

2
u(p′) 1

2γ
µ(1 − γ5)u(p).

11.4 Chiral structure of the weak interaction

In Chapter 6, the left- and right-handed chiral projection operators,

PR =
1
2 (1 + γ5) and PL =

1
2 (1 − γ5),

were introduced. Any spinor can be decomposed into left- and right-handed chiral
components,

u = 1
2 (1 + γ5)u + 1

2 (1 − γ5)u = PRu + PLu = aRuR + aLuL,

with coefficients aR and aL. In Section 6.4.1, it was shown that only two combi-
nations of chiral spinors (RR and LL) gave non-zero values for the QED vector
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current, u(p′)γ µu(p). For the weak interaction, the V − A vertex factor of (11.8)
already includes the left-handed chiral projection operator,

1
2 (1 − γ5).

In this case, the current where both the spinors are right-handed chiral states is
also zero

j µRR =
gW√

2
uR(p′)γ µ 1

2 (1 − γ5)uR(p)

=
gW√

2
uR(p′)γ µPLuR(p) = 0,

and the only non-zero current for particle spinors involves only left-handed chi-
ral states. Hence only left-handed chiral particle states participate in the charged-
current weak interaction. For antiparticle spinors PL projects out right-handed
chiral states,

1
2 (1 − γ5)v = vR,

and therefore only right-handed chiral antiparticle states participate in the charged-
current weak interaction. In the limit E ≫ m, where the chiral and helicity states
are the same, the V −A term in the weak interaction vertex projects out left-handed
helicity particle states and right-handed helicity antiparticles states. Hence, in this
ultra-relativistic limit, the only allowed helicity combinations for the weak interac-
tion vertices involving electrons/positrons and electron neutrinos/antineutrinos are
those shown in Figure 11.4.

The maximally different coupling of the weak charged-current interaction to left-
handed and right-handed chiral states is the origin of parity violation. For example,
the left-hand plot of Figure 11.5 shows the helicity configuration of the allowed
weak interaction of a high-energy left-handed e− and a right-handed νe. In the
parity mirror, the vector quantities are reversed, p→ −p, but the axial vector spins
of the particles remain unchanged, giving a RH particle and a LH antiparticle.
Hence the parity operation transforms an allowed weak interaction into one that is
not allowed, maximally violating the conservation of parity.

e+e-

e-

e+
νe

νe

νe

W W

W W

νe

!Fig. 11.4 The allowed helicity combinations in weak interaction vertices involving the e+, e−, νe and νe, in the limit
where E ≫ m (where the helicity states are effectively the same as the chiral states).
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RH antiparticle LH antiparticleLH particle RH particle

e- e-

pe -pepν -pν
νe νe

P!Fig. 11.5 The allowed helicity combination for a e−νe weak interaction, and (right) its parity transformed equivalent.

11.5 The W-boson propagator

The Feynman rule for the propagator of QED, corresponding to the exchange of
the massless spin-1 photon, is

−igµν
q2 .

The weak interaction not only differs from QED and QCD in the form of the inter-
action vertex, but it is mediated by the massive W bosons, with mW ∼ 80 GeV.
Consequently, the q2-dependence of the W-boson propagator is given by (5.7),

1
q2 − m2

W

.

The gµν term in the Feynman rule for QED propagator is associated with the sum
over the polarisation states of the virtual photon,

∑

λ

ϵλ∗µ ϵ
λ
ν = −gµν.

Massive spin-1 particles differ from massless spin-1 particles in having the addi-
tional degree of freedom of a longitudinal polarisation state. In Appendix D, it is
shown that the corresponding sum over the polarisation states of the exchanged
virtual massive spin-1 boson gives

∑

λ

ϵλ∗µ ϵ
λ
ν = −gµν +

qµqν
m2

W

.

Therefore, the Feynman rule associated with the exchange of a virtual W boson is

−i

q2 − m2
W

⎛
⎜⎜⎜⎜⎜⎝gµν −

qµqν
m2

W

⎞
⎟⎟⎟⎟⎟⎠ . (11.9)

In the limit where q2 ≪ m2
W, the qµqν term is small and the propagator can be

taken to be

−igµν
q2 − m2

W

. (11.10)
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More generally, for the lowest-order calculations in the following chapters the qµqν
term in (11.9) does not contribute to the matrix element squared and it is sufficient
to take the propagator term to be that given in (11.10).

11.5.1 Fermi theory

For most low-energy weak interactions, such as the majority of particle decays,
|q2| ≪ m2

W and the W-boson propagator of (11.10) can be approximated by

i
gµν

m2
W

, (11.11)

and the effective interaction no longer has any q2 dependence. Physically this cor-
responds to replacing the propagator with an interaction which occurs at a single
point in space-time, as indicated in Figure 11.6. Hence, in the low-energy limit,
the weak charged-current can be expressed in terms of this four-fermion contact
interaction.

The original description of the weak interaction, due to Fermi (1934), was for-
mulated before the discovery of the parity violation and the matrix element for
β-decay was expressed in terms of a contact interaction

M f i = GF gµν[ψ3γ
µψ1][ψ4γ

νψ2], (11.12)

where the strength of the weak interaction is given by the Fermi constant GF. After
the discovery of parity violation by Wu et al. (1957), this expression was modi-
fied to

M f i =
1√
2

GF gµν[ψ3γ
µ(1 − γ5)ψ1][ψ4γ

ν(1 − γ5)ψ2], (11.13)

W

d u

e- e-

ν

ν

d u

νe νe

p3p1

p2 p4

m

m

!Fig. 11.6 The weak interaction Feynman diagram and the q2 ≪ m2
W limit of an effective contact interaction.
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where the factor of
√

2 was introduced so that the numerical value of GF did not
need to be changed. The expression of (11.13) can be compared to the full expres-
sion obtained using the Feynman rules for the weak interaction,

M f i = −
[
gW√

2
ψ3

1
2γ
µ(1 − γ5)ψ1

]
·
⎡
⎢⎢⎢⎢⎢⎣
gµν − qµqν/m2

W

q2 − m2
W

⎤
⎥⎥⎥⎥⎥⎦ ·

[
gW√

2
ψ4

1
2γ

ν(1 − γ5)ψ2

]
,

which in the limit of q2 ≪ m2
W reduces to

M f i =
g2

W

8m2
W

gµν[ψ3γ
µ(1 − γ5)ψ1][ψ4γ

ν(1 − γ5)ψ2]. (11.14)

Hence, by comparing (11.13) and (11.14), it can be seen that the Feynman rules
in the low-q2 limit, give the same expression for the matrix element as obtained
from Fermi theory and therefore the Fermi constant is related to the weak coupling
strength by

GF√
2
=
g2

W

8m2
W

. (11.15)

Strength of the weak interaction
The strength of the weak interaction is most precisely determined from low-energy
measurements, and in particular from the muon lifetime. For these low-energy mea-
surements, where for example mµ ≪ mW, Fermi theory can be used. The calcula-
tion of the decay rate for µ− → e−νµνe includes a fairly involved integration over
the three-body phase space of the final state and the results are simply quoted here.
The muon lifetime τµ is related to its mass by

Γ(µ− → e−νµνe) =
1
τµ
=

G2
Fm5
µ

192π3 . (11.16)

The precise measurements of the muon lifetime and mass,

mµ = 0.105 658 371 5(35) GeV and τµ = 2.196 981 1(22) × 10−6 s,

provide a precise determination of the Fermi constant,

GF = 1.166 38 × 10−5 GeV−2.

However, GF does not express the fundamental strength of the weak interaction, it
is related to the ratio of the coupling strength gW and the W-boson mass by (11.15).
Nevertheless, GF is the quantity that is precisely measured in muon decay and it is
still used parameterise the strength of weak interaction.

The value of fundamental coupling constant gW can be obtained from GF using
the precise measurement of mW = 80.385 ± 0.015 GeV (see Chapter 16). From
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the relation of (11.15) and the measured values of GF and mW, the dimensionless
coupling constant of the weak interaction is

αW =
g2

W

4π
=

8m2
WGF

4
√

2π
≈ 1

30
.

Hence the weak interaction is in fact intrinsically stronger than the electromagnetic
interaction, αW > α. It is only the presence of the large mass of the W boson in the
propagator that is responsible for the weakness of the low-energy weak interaction
compared to that of QED. For a process where the exchanged boson carries four-
momentum q, where |q2| ≪ m2

W, the QED and weak interactions propagators are
respectively

PQED ∼
1
q2 and PW ∼

1
q2 − m2

W

≈ − 1
m2

W

.

Therefore weak interaction decay rates, which are proportional to |M|2, are sup-
pressed by a factor q4/m4

W relative to QED decay rates. In contrast, in the high-
energy limit where |q2| > m2

W, the m2
W term in the weak propagator is relatively

unimportant and the electromagnetic and weak interactions have similar strength,
as will be seen directly in the results from high-Q2 electron–proton interactions,
described in Section 12.5.

11.6 Helicity in pion decay

The charged pions (π±) are the JP = 0− meson states formed from ud and du. They
are the lightest mesons with m(π±) ∼140 MeV and therefore cannot decay via the
strong interaction; they can only decay through the weak interaction to final states
with lighter fundamental fermions. Hence charged pions can only decay to final
states with either electrons or muons. The three main decay modes of the π− are
the charged-current weak processes π− → e−νe, π− → µ−νµ and π− → µ−νµγ,
with decays to µ−νµ dominating.

The Feynman diagrams for the decays π− → e−νe and π− → µ−νµ are shown in
Figure 11.7. Because the strength of the weak interaction for the different lepton
generations is found to be the same (see Chapter 12), it might be expected that
the matrix elements for the decays π− → e−νe and π− → µ−νµ would be simi-
lar. For a two-body decay, the phase space factor is proportional the momentum
of the decay products in the centre-of-mass frame, see (3.49). On this basis, the
decay rate to e−νe would be expected to be greater than that to µ−νµ. However, the
opposite is found to be true; charged pions decay almost entirely by π− → µ−νµ
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d

W

e−
d

W
π− π−

µ−

u u
νe νm

!Fig. 11.7 Two of the three main decay modes for the π−. The decay π− → µ−νµγ (not shown) has a comparable
branching ratio to that forπ− → e−νe.

π−

!−ν!!Fig. 11.8 The helicity configuration inπ− → ℓ−νℓ decay, where ℓ = e orµ.

(or equivalently π+ → µ+νµ) with a branching ratio of 99.988% and the measured
ratio of the decay rates to electrons and muons is

Γ(π− → e−νe)
Γ(π− → µ−νµ)

= 1.230(4) × 10−4.

This counterintuitive result is a manifestation of the chiral structure of the weak
interaction and provides a clear illustration of the difference between helicity,
defined by σ · p/|p|, and chirality defined by the action of the chiral projection
operators.

The weak interaction only couples to LH chiral particle states and RH chiral
antiparticle states. Because neutrinos are effectively massless, mν ≪ E, the neu-
trino chiral states are, in all practical circumstances, equivalent to the helicity states.
Therefore, the antineutrino from a π− decay is always produced in a RH helicity
state. Because the pion is a spin-0 particle, the lepton–neutrino system must be
produced in the spin-0 singlet state, with the charged lepton and neutrino spins in
opposite directions. Therefore, because the neutrino is RH, conservation of angular
momentum implies that the charged lepton is also produced in a RH helicity state,
and the only allowed spin configuration is that of Figure 11.8. Since the weak inter-
action vertex is non-zero only for LH chiral particle states, the charged lepton has,
in some sense, the “wrong helicity” for the weak interaction. If the charged leptons
were also massless, the decay would not occur. However, chiral and helicity states
are not equivalent and the weak decay to a RH helicity particle state can occur,
although it may be highly suppressed.

In general the RH helicity spinor u↑ can be decomposed into RH and LH chiral
components, uR and uL, given by (6.38),

u↑ ≡ 1
2

(
1 +

p
E + m

)
uR +

1
2

(
1 − p

E + m

)
uL. (11.17)
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In the weak interaction vertex only the uL component of (11.17) will give a non-zero
contribution to the matrix element. Putting aside the relatively small differences
from the normalisations of the lepton and neutrino spinors, the charged-current
weak decay matrix element is proportional to the size of the LH chiral component
in (11.17) and

M ∼ 1
2

(
1 − pℓ

Eℓ + mℓ

)
, (11.18)

where Eℓ, pℓ and mℓ are the energy, momentum and mass of the charged lepton.
If the charged lepton is highly relativistic, the left-handed chiral component of
the right-handed helicity state will be very small, resulting in a suppression of the
decay rate.

Taking the mass of the neutrino to be zero, it is straightforward to show that

Eℓ =
m2
π + m2

ℓ

2mπ
and pℓ =

m2
π − m2

ℓ

2mπ
, (11.19)

giving

pℓ
Eℓ + mℓ

=
mπ − mℓ

mπ + mℓ
,

which when substituted into (11.18), demonstrates that

M ∼ mℓ

mπ + mℓ
.

Because mµ/me ≈ 200, pion decays to electrons are strongly suppressed with
respect to those to muons. This helicity suppression reflects the fact that the elec-
trons produced in pion decay are highly relativistic, β = 0.999 97, and therefore
the chiral states almost correspond to the helicity states. For the decay to muons,
β = 0.27, and the uL coefficient in (11.17) is significant. The above discussion gives
a qualitative explanation of why charged pions predominantly decay to muons
rather than electrons. The full calculation, which is interesting in its own right,
is given below.

11.6.1 Pion decay rate

Consider the π− → ℓ−νℓ decay in its rest frame, where the direction of the charged
lepton defines the z-axis, as shown in Figure 11.9. In this case, the four-momenta
of the π−, ℓ− and νℓ are respectively,

pπ = (mπ, 0, 0, 0), pℓ = p3 = (Eℓ, 0, 0, p) and pν = p4 = (p, 0, 0,−p),
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fp
p−

p−

pp q
z

p4

p
3

!−

!−

ν!

ν!

!Fig. 11.9 The definition of the four-momenta in the processπ− → ℓ−νℓ.

where p is the magnitude of the momentum of both the charged lepton and antineu-
trino in the centre-of-mass frame.

The weak leptonic current associated with the ℓ−νℓ vertex is

jνℓ =
gW√

2
u(p3) 1

2γ
ν(1 − γ5)v(p4).

Because the pion is a bound qq state, the corresponding hadronic current cannot
be expressed in terms of free particle Dirac spinors. However, the pion current
has to be a four-vector such that the four-vector scalar product with the leptonic
current gives a Lorentz-invariant expression for the matrix element. Since the pion
is a spin-0 particle, the only four-vector quantity that can be used is the pion four-
momentum. Hence, the most general expression for the pion current is obtained by
replacing vγ µ(1−γ5)u with fπp µπ , where fπ is a constant associated with the decay.
The matrix element for the decay π− → ℓ−νℓ therefore can be written as

M f i =
[
gW√

2
1
2 fπp µπ

]
×

⎡
⎢⎢⎢⎢⎢⎣
gµν

m2
W

⎤
⎥⎥⎥⎥⎥⎦ ×

[
gW√

2
u(p3)γν 1

2 (1 − γ5)v(p4)
]

=
g2

W

4m2
W

gµν fπp µπu(p3)γν 1
2 (1 − γ5)v(p4),

where the propagator has been approximated by the Fermi contact interaction
(which is an extremely good approximation because q2 = m2

π ≪ m2
W). In the pion

rest frame, only the time-like component of the pion four-momentum is non-zero,
p0
π = mπ, and hence

M f i =
g2

W

4m2
W

fπmπu(p3)γ0 1
2 (1 − γ5)v(p4).

Because uγ0 = u†γ0γ0 = u†, this can be written as

M f i =
g2

W

4m2
W

fπmπu†(p3) 1
2 (1 − γ5)v(p4). (11.20)
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For the neutrino, which has m ≪ E, the helicity eigenstates are essentially equiv-
alent to the chiral states and therefore 1

2 (1 − γ5)v(p4) = v↑(p4), and thus (11.20)
becomes

M f i =
g2

W

4m2
W

fπmπu†(p3)v↑(p4). (11.21)

The spinors corresponding to the two possible helicity states of the charged lep-
ton spinor are obtained from (4.65) with (θ = 0, φ = 0),

u↑(p3)=
√

Eℓ + mℓ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
p

Eℓ+mℓ

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and u↓(p3)=
√

Eℓ + mℓ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
1
0

− p
Eℓ+mℓ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (11.22)

and the right-handed antineutrino spinor is given by (4.66) with (θ = π, φ = π),

v↑(p4)=
√

p

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
−1

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (11.23)

From (11.22) and (11.23) it is immediately clear that u†↓(p3)v↑(p4) = 0. Therefore,
as anticipated, of the four possible helicity combinations, the only non-zero matrix
element corresponds to the case where both the charged lepton and the antineu-
trino are in RH helicity states. Using the explicit forms for the spinors, the matrix
element of (11.21) is

M f i =
g2

W

4m2
W

fπmπ

√
Eℓ + mℓ

√
p
(
1 − p

Eℓ + mℓ

)
. (11.24)

Equation (11.24) can be simplified using the expressions for Eℓ and p given in
(11.19), such that

M f i =
g2

W

4m2
W

fπmπ ·
mπ + mℓ√

2mπ

·
⎛
⎜⎜⎜⎜⎜⎝

m2
π − m2

ℓ

2mπ

⎞
⎟⎟⎟⎟⎟⎠

1
2
· 2mℓ

mπ + mℓ

=

(
gW

2mW

)2

fπmℓ(m2
π − m2

ℓ )
1
2 .
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Since the pion is a spin-0 particle, there is no need to average over the initial-state
spins, and the matrix element squared is given by

⟨|M f i|2⟩ ≡ |M f i|2 = 2G2
F f 2
πm2

ℓ (m
2
π − m2

ℓ ),

where gW has been expressed in terms of GF using (11.15). Finally, the decay rate
can be determined from the expression for the two-body decay rate given by (3.49),
where the integral over solid angle introduces a factor of 4π as there is no angular
dependence in ⟨|M f i|2⟩. Hence

Γ =
4π

32π2m2
π

p ⟨|M f i|2⟩ =
G2

F

8πm3
π

f 2
π

[
mℓ(m2

π − m2
ℓ )
]2
, (11.25)

where p is given by (11.19). Therefore, to lowest order, the predicted ratio of the
π− → e−νe to π− → µ−νµ decay rates is

Γ(π− → e−νe)
Γ(π− → µ−νµ)

=

⎡
⎢⎢⎢⎢⎣

me(m2
π − m2

e)

mµ(m2
π − m2

µ)

⎤
⎥⎥⎥⎥⎦
2

= 1.26 × 10−4,

which is in reasonable agreement with the measured value of 1.230(4) × 10−4.

11.7 Experimental evidence for V – A

The V − A nature of the weak interaction is an experimentally established fact.
For example, if the weak interaction was a scalar (ψφ) or pseudoscalar (ψγ5φ)
interaction, the predicted ratio of the charged pion leptonic decay rates would be
Γ(π− → e−νe)/Γ(π− → µ−νµ) = 5.5, in clear contradiction with the experimental
observations. In general, any weak decay can be expressed in terms of a linear
combination of the five bilinear covariants, scalar (S ), pseudoscalar (P), vector
(V), axial vector (A) and tensor (T ):

gSψφ, gPψγ
5φ, gVψγ

µφ, gAψγ
µγ5φ and gTψ(γ µγν − γνγ µ)φ.

By comparing these predictions with the experimental measurements, limits can be
placed on the possible sizes of the different contributions. The most precise test of
the V − A structure of the weak interaction is based on measurements of the angu-
lar distribution of decays of approximately 1010 polarised muons by the TWIST
experiment: see Bayes et al. (2011). The measurements are expressed in terms of
the Michel parameters which parameterise the general combination of the possible
S +P+V+A+T interaction terms. For example, the Michel parameter ρ, which for
a pure V −A interaction should be 0.75, is measured to be ρ = 0.749 97±0.000 26.
All such tests indicate that the charged-current weak interaction is described by a
V − A vertex factor.
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Summary

In this chapter, the general structure of the weak charged-current interaction was
introduced. Unlike QED and QCD, the weak interaction does not conserve parity.
Parity violation in the weak charged-current interaction is a direct consequence of
the V − A form of the weak charged-current, which treats left-handed and right-
handed particles differently. The weak charged-current vertex factor was found
to be

−igW√
2

1
2γ
µ(1 − γ5),

and the propagator associated with the exchange of the massive W bosons is

−i

q2 − m2
W

⎛
⎜⎜⎜⎜⎜⎝g
µν − q µqν

m2
W

⎞
⎟⎟⎟⎟⎟⎠ .

Because of the V − A interaction only

LH chiral particle states and RH chiral antiparticle states

participate in the weak charged-current.

Problems

11.1 Explain why the strong decayρ0 → π−π+ is observed, but the strong decayρ0 → π0π0 is not.

Hint: you will need to consider conservation of angular momentum, parity and the symmetry of theπ0π0 wave-
function.

11.2 Whenπ− mesons are stopped in a deuterium target they can form a bound (π− − D) state with zero orbital
angular momentum, ℓ = 0. The bound state decays by the strong interaction

π−D→ nn.

By considering the possible spin and orbital angular momentum states of the nn system, and the required sym-
metry of the wavefunction, show that the pion has negative intrinsic parity.

Note: the deuteron has JP = 1+ and the pion is a spin-0 particle.

11.3 Classify the following quantities as either scalars (S), pseudoscalars (P), vectors (V) or axial-vectors (A):
(a) mechanical power, P = F · v ;
(b) force, F ;
(c) torque, G = r × F ;
(d) vorticity,Ω = ∇ × v ;
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(e) magnetic flux,φ =
∫

B · dS ;
(f) divergence of the electric field strength,∇ · E .

11.4 In the annihilation process e+e− → qq, the QED vector interaction leads to non-zero matrix elements only for
the chiral combinations LR → LR, LR → RL, RL → RL, RL → LR. What are the corresponding allowed chiral
combinations for S, P and S − P interactions?

11.5 Consider the decay at rest τ− → π−ντ, where the spin of the tau is in the positive z-direction and the ντ
andπ− travel in the± z-directions. Sketch the allowed spin configurations assuming that the form of the weak
charged-current interaction is (i) V − A and (ii) V + A.

11.6 Repeat the pion decay calculation for a pure scalar interaction and show that the predicted ratio of decay
rates is

Γ(π− → e−νe)
Γ(π− → µ−νµ)

≈ 5.5.

11.7 Predict the ratio of the K− → e−νe and K− → µ−νµ weak interaction decay rates and compare your answer
to the measured value of

Γ(K− → e−νe)
Γ(K− → µ−νµ)

= (2.488 ± 0.012) × 10−5.

11.8 Charged kaons have several weak interaction decay modes, the largest of which are

K+(us)→ µ+νµ, K+ → π+π0 and K+ → π+π+π−.

(a) Draw the Feynman diagrams for these three weak decays.
(b) Using the measured branching ratio

Br(K+ → µ+νµ) = 63.55 ± 0.11 %,

estimate the lifetime of the charged kaon.

Note: charged pions decay almost 100% of the time by the weak interactionπ+ → µ+νµ and have a lifetime
of (2.6033 ± 0.0005) × 10−8 s.

11.9 From the prediction of (11.25) and the above measured value of the charged pion lifetime, obtain a value
for fπ.

11.10 Calculate the partial decay width for the decay τ− → π−ντ in the following steps.

(a) Draw the Feynman diagram and show that the corresponding matrix element is

M ≈
√

2GFfπu(pν)γ µ 1
2 (1 − γ5)u(pτ)gµνpνπ.

(b) Taking the τ− spin to be in the z-direction and the four-momentum of the neutrino to be

pν = p∗(1, sin θ, 0, cos θ),

show that the leptonic current is

j µ =
√

2mτp∗ (−s,−c,−ic, s) ,

where s = sin
(
θ
2

)
and c = cos

(
θ
2

)
. Note that, for this configuration, the spinor for the τ− can be taken

to be u1 for a particle at rest.
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(c) Write down the four-momentum of theπ− and show that

|M|2 = 4G2
Ff 2
πm3

τp∗ sin2
(
θ
2

)
.

(d) Hence show that

Γ(τ− → π−ντ) =
G2

Ff 2
π

16π
m3
τ

(
m2
τ − m2

π

m2
τ

)2

.

(e) Using the value of fπ obtained in the previous problem, find a numerical value forΓ(τ− → π−ντ).
(f) Given that the lifetime of the τ-lepton is measured to beττ = 2.906× 10−13 s, find an approximate value

for the τ− → π−ντ branching ratio.



12 The weak interactions of leptons

In the previous chapter, the general structure of the charged-current weak
interaction was introduced. In this chapter, these ideas are applied to the weak
interactions of charged leptons and neutrinos. The scattering cross sections for
neutrinos on nucleons are calculated from first principles and the experimental
measurements are related to the nucleon parton distribution functions. In the
final section, the high-energy charged-current process e−p → νeX is used as
an example of the weak interaction in the limit Q2 > m2

W.

12.1 Lepton universality

From the observed decay rates of muons and tau leptons, it is found that the strength
of the weak interaction is the same for all lepton flavours. For example, Figure 12.1
shows the Feynman diagram for muon decay, µ− → e−νeνµ. It involves two weak-
interaction vertices, µ−νµW and We−νe. In principle, the coupling at these two
vertices could be different. Allowing for this possibility, the muon decay rate of
(11.16) can be written

Γ(µ− → e−νeνµ) ≡
1
τµ
=

G(e)
F G(µ)

F m5
µ

192π3 , (12.1)

where the weak couplings to the electron and muon are respectively G(e)
F and G(µ)

F .
The same calculation for the decay rate τ− → e−νeντ gives

Γ(τ− → e−νeντ) =
G(e)

F G(τ)
F m5

τ

192π3 . (12.2)

The tau-lepton is sufficiently massive that it can also decay into a muon or to
mesons formed from light quarks, as shown in Figure 12.2. Therefore the tau life-
time needs to expressed in terms of the total decay rate

1
ττ
= Γ =

∑

i

Γi,

307
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q

W

e−
p3

p2
p1

p4

νµ

µ-

νe!Fig. 12.1 The lowest-order Feynman diagram for muon decay.

e-
d

ντ ντ ντ

µ-

τ- τ- τ-

νe νm
u!Fig. 12.2 The lowest-order Feynman diagrams for tau decay.

where Γi are the partial decay rates for the individual decay modes. The ratio of the
partial width Γ(τ− → e−νeντ) to the total decay rate gives the branching ratio

Br(τ− → e−νeντ) =
Γ(τ− → e−νeντ)

Γ
= Γ(τ− → e−νeντ) × ττ. (12.3)

From (12.2) and (12.3), the tau lifetime can be expressed as

ττ =
192π3

G(e)
F G(τ)

F m5
τ

Br(τ− → e−νeντ). (12.4)

Comparing the expressions for the muon and tau-lepton lifetimes given in (12.1)
and (12.4), gives the ratio

G(τ)
F

G(µ)
F

=
m5
µτµ

m5
τττ

Br(τ− → e−νeντ). (12.5)

The ratios of the couplings can be obtained from the measured branching ratios for
the leptonic decays of the tau-lepton, which are

Br(τ− → e−νeντ) = 0.1783(5) and Br(τ− → µ−νµντ) = 0.1741(4),

and the measured masses and lifetimes of the muon and tau-lepton,

mµ = 0.1056583715(35) GeV and τµ = 2.1969811(22) × 10−6 s,

mτ = 1.77682(16) GeV and ττ = 0.2906(10) × 10−12 s.
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From these measured values and the relation of (12.5), the ratio of the muon and
tau weak charged-current coupling strengths is determined to be

G(τ)
F

G(µ)
F

= 1.0023 ± 0.0033.

Similarly, by comparing Br(τ− → e−νeντ) to Br(τ− → µ−νµντ), taking into account
the expected small difference due to phase space, gives

G(e)
F

G(µ)
F

= 1.000 ± 0.004.

Therefore, within the accuracy of the experimental measurements, it can be con-
cluded that G(e)

F = G(µ)
F = G(τ)

F , providing strong experimental evidence for the lep-
ton universality of the weak charged current; there is a universal coupling strength
at the Weνe, Wµνµ and Wτντ interaction vertices.

12.2 Neutrino scattering

Although neutrinos interact only weakly in matter, precise measurements of their
properties can be made using sufficiently intense neutrino beams. The general
scheme for producing a collimated beam of neutrinos is shown schematically in
Figure 12.3. The neutrino beam is produced by firing an intense beam of high-
energy protons at a target, resulting in a large flux of high-energy hadrons from the
hard QCD interaction and subsequent hadronisation process. A significant fraction
of the produced hadrons are charged pions, both π+ and π−. The charged pions of
a particular charge sign can be focussed in the magnetic field generated by one or
more “neutrino horns"; the other charge will be defocussed. In this way it is possi-
ble to produce a collimated beam of pions with a particular charge sign. The pion

Proton beam

Target

Magnetic
focussing

Neutrino
beam

Decay tunnel

π+

π-

π-

π-
π+  → µ+νµ

νµ
νµ
νµ!Fig. 12.3 The general scheme for producing a neutrino beam from a proton beam. The focussed pions produced from

the target are allowed to decay in a long decay tunnel.
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νµ

νµ

νµ

q
m

ν!Fig. 12.4 Neutrino deep inelastic scattering and the Feynman diagram for the correspondingνµd process. In the centre-
of-mass frame theµ− is produced at an angle θ∗ to the incoming neutrino direction.

beam is then allowed to decay in flight over a distance of order γcτπ in an evacu-
ated decay tunnel, which is typically a few hundred metres long. Because the mass
of the pion is small compared to the typical pion energy, the neutrinos produced in
the π+ → µ+νµ or π− → µ−νµ decays are boosted along the direction of motion
of the pions. The choice of the sense of the magnetic field in the neutrino horns
enables either π+ or π− to be focussed, and therefore either a νµ or νµ beam can be
produced. The muons produced from the pion decays are stopped in the rock at the
end of the decay tunnel, before they decay themselves. The result is a collimated
beam of almost entirely muon neutrinos or muon antineutrinos.

The phenomenology of neutrino scattering closely follows that of electron–
proton scattering, discussed in Chapter 8. At low Q2, there is a quasi-elastic pro-
cess, νµn → µ−p, which is quasi-elastic in the sense that the nucleon changes type
but does not break up. At slightly higher neutrino energies (a few GeV), resonant
inelastic processes such as νµn→ µ−∆+ → µ−pπ0 are observed. At higher energies
still, neutrino interactions are dominated by the neutrino deep inelastic scattering
process, shown in Figure 12.4.

In the neutrino scattering experiments considered in this chapter, the neutrino
energy is sufficiently high that only the deep inelastic process is of relevance. For
a neutrino interacting with a nucleon at rest, the centre-of-mass energy squared is

s = (p1 + p2)2 = (Eν + mN)2 − E2
ν = 2mNEν + m2

N, (12.6)

where mN is the mass of the nucleon. The maximum Q2 in the scattering process is
restricted by

Q2 = (s − m2
N)xy = 2mNEνxy,

and since x and y are always less than or equal to one, for a given neutrino energy,

Q2 ≤ 2mN Eν.
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The highest-energy neutrinos produced in an accelerator-based neutrino beam had
Eν = 400 GeV, for which Q2 # 750 GeV2. This is sufficiently small that, for all
practical purposes, the weak interaction propagator can be approximated by

−igµν
q2 − m2

W

→ igµν
m2

W

.

Furthermore, for high-energy neutrino interactions where the m2
N term in (12.6)

can be neglected, the centre-of-mass energy squared is proportional to the neutrino
energy,

s ≈ 2mNEν. (12.7)

The underlying interactions in neutrino–nucleon scattering are the parton-level
processes, νµd → µ−u and νµu → µ−d. The cross sections for these processes are
calculated below. Because only left-handed chiral particle states and right-handed
chiral antiparticle states participate in the weak charged-current, only one helicity
combination needs to be considered in each case.

12.2.1 Neutrino–quark scattering cross section

Neglecting the q2 dependence of the propagator, the matrix element for the Feynman
diagram of Figure 12.4 is

−iM f i =

[
−i
gW√

2
u(p3)γ µ 1

2 (1 − γ5)u(p1)
]

igµν
m2

W

[
−i
gW√

2
u(p4)γν 1

2 (1 − γ5)u(p2)
]

M f i =
g2

W

2m2
W

gµν
[
u(p3)γ µ 1

2 (1 − γ5)u(p1)
] [

u(p4)γν 1
2 (1 − γ5)u(p2)

]
. (12.8)

For high-energy neutrino scattering, both the masses of the neutrinos and quarks
are sufficiently small that the LH chiral states are effectively identical to the LH
helicity states and (12.8) can be written

M f i =
g2

W

2m2
W

gµν
[
u↓(p3)γ µu↓(p1)

] [
u↓(p4)γνu↓(p2)

]
=
g2

W

2m2
W

jℓ · jq, (12.9)

where j µℓ = u↓(p3)γ µu↓(p1) and jνq = u↓(p4)γνu↓(p2) are respectively the lepton
and quark currents.

The matrix element is most easily evaluated in the centre-of-mass frame. Taking
the initial neutrino direction to define the z-axis and θ∗ to be the polar angle of the
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(b)

νm

µ− µ+

q qνm!Fig. 12.5 The spin orientations of the particles in (a) charged-current νµd → µ−u and (b) charged-current νµu →
µ+d weak interactions.

final-state µ−, then the spherical polar angles of the four particles, as indicated in
Figure 12.4, are

(θ1, φ1) = (0, 0), (θ2, φ2) = (π, π), (θ3, φ3) = (θ∗, 0) and (θ4, φ4) = (π − θ∗, π).

The corresponding LH spinors are given by (4.67),

u↓(p1) =
√

E

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
1
0
−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, u↓(p2) =

√
E

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1
0
1
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, u↓(p3) =

√
E

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−s
c
s
−c

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

u↓(p4) =
√

E

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−c
−s
c
s

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(12.10)

where c = cos θ∗
2 , s = sin θ∗

2 and E is the energy of each of the four particles in
the centre-of-mass frame. The lepton and quark currents then can be evaluated by
using the relations of (6.12)−(6.15), giving

j µℓ = u↓(p3)γ µu↓(p1) = 2E(c, s,−is, c),

jνq = u↓(p4)γνu↓(p2) = 2E(c,−s,−is,−c),

and hence

M f i =
g2

W

2m2
W

jℓ · jq =
g2

W

2m2
W

4E2(c2 + s2 + s2 + c2).

Therefore, the matrix element for νµd→ µ−u scattering is simply

M f i =
g2

W

m2
W

ŝ, (12.11)

where ŝ = (2E)2 is the νµd centre-of-mass energy. The matrix element of (12.11)
does not depend on the polar angle θ∗ and therefore represents an isotropic distribu-
tion of the final-state particles in the centre-of-mass frame. This can be understood
in terms of the helicities of the colliding particles, shown in Figure 12.5a. Because
both the quark and neutrino are left-handed, the interaction occurs in an S z = 0
state and thus there is no preferred polar angle in the centre-of-mass frame.
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In the limit where the particle masses can be neglected, the centre-of-mass frame
differential cross section is given by (3.50),

dσ
dΩ∗

=
1

64π2 ŝ
⟨|M f i|2⟩,

where ⟨|M f i|2⟩ is the spin-averaged matrix element squared. In this weak charged-
current process, the only non-zero matrix element is that for the helicity combina-
tion LL → LL, calculated above. Previously the average over the spins of the two
initial-state fermions gave rise to a factor 1/4 in the spin-averaged matrix element.
Here, because it was produced in a weak decay, the neutrino will always be left-
handed and it is only necessary to average over the two spin states of the quark.
Hence the spin-averaged matrix element squared is

⟨|M f i|2⟩ =
1
2

⎛
⎜⎜⎜⎜⎜⎝
g2

W

m2
W

ŝ

⎞
⎟⎟⎟⎟⎟⎠

2

, (12.12)

and the differential cross section is

dσ
dΩ∗

=
1

64π2 ŝ
⟨|M f i|2⟩ =

⎛
⎜⎜⎜⎜⎜⎝
g2

W

8
√

2πm2
W

⎞
⎟⎟⎟⎟⎟⎠

2

ŝ.

Using GF =
√

2g2
W/8m2

W, this can be written as

dσνq
dΩ∗

=
G2

F

4π2 ŝ, (12.13)

and the total cross section, obtained by integrating over dΩ∗, is

σνq =
G2

F ŝ

π
. (12.14)

12.2.2 Antineutrino–quark scattering

Figure 12.6 shows the Feynman diagram for antineutrino–quark scattering. In order
to conserve electric charge, the antineutrino can interact with an up-quark, but not
a down-quark. The corresponding matrix element is

M f i =
g2

W

2m2
W

gµν
[
v(p1)γ µ 1

2 (1 − γ5)v(p3)
] [

u(p4)γν 1
2 (1 − γ5)u(p2)

]
.
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!Fig. 12.6 The Feynman diagram for νµu→ µ+d.

In the high-energy limit, only LH helicity particles and RH helicity antiparticles
participate in the charged-current weak interaction and thus the only non-zero
matrix element is given by

M f i =
g2

W

2m2
W

gµν
[
v↑(p1)γ µv↑(p3)

] [
u↓(p4)γνu↓(p2)

]
.

Proceeding as before, it is straightforward to show that this leads to

Mνq =
1
2 (1 + cos θ∗)

g2
W

m2
W

ŝ, (12.15)

where θ∗ is the polar angle of the µ+ in the centre-of-mass frame. This matrix ele-
ment differs from the corresponding matrix element for neutrino–quark scattering
(12.11) by the factor 1

2 (1 + cos θ∗). The origin of this difference can be understood
in terms of spins of the particles, as shown in Figure 12.5b. The V −A nature of the
weak interaction means that the νq interaction occurs in an S z = 1 state and, from
the discussion of Section 6.3, this results in an angular dependence of the matrix
element of 1

2 (1 + cos θ∗). Therefore, the νµu differential cross section is related to
that for νµd by

dσνq

dΩ∗
= 1

4 (1 + cos θ∗)2 dσνq

dΩ∗
=

G2
F

16π2 (1 + cos θ∗)2 ŝ,

and the total cross section is obtained by integrating over solid angle with
∫

(1 + cos θ∗)2dΩ∗ =
∫ 2π

0
dφ∗

∫ +1

−1
(1 + x)2dx =

16π
3
,

where the substitution x = cos θ∗ was used. Hence, the total antineutrino–quark
cross section is

σνq =
G2

F ŝ

3π
,
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!Fig. 12.7 The four possible Feynman diagrams and corresponding helicity combinations for the weak charged-current
interactions involvingνµ,νµ and any light (ud) quark or antiquark. Also shown are the corresponding angu-
lar distributions in the centre-of-mass frame.

which is a factor three smaller than the neutrino–quark cross section

σνq

σνq
=

1
3
.

Neutrino–nucleon differential cross sections

Neutrino interactions in matter are described by their interactions with the con-
stituent quarks of nucleons. From the conservation of electric charge, there are only
four possible interactions between a νµ or νµ and the light constituents (u, d, u and
d) of the nucleon. These are νµd → µ−u, νµu → µ−d, νµu → µ−d and νµd → µ+u.
For each process only one helicity combination is involved. The differential cross
sections for scattering from the antiquarks can be obtained directly from those
derived above by considering the spin state in which the interaction occurs, as
shown in Figure 12.7. The differential cross section for neutrino/antineutrino scat-
tering from antiquarks can be equated to the corresponding scattering cross section
for quarks that occurs in the same spin state. Hence

dσνd

dΩ∗
=

dσνd

dΩ∗
=

G2
F ŝ

4π2 and
dσνu

dΩ∗
=

dσνu

dΩ∗
=

G2
F ŝ

16π2 (1 + cos θ∗)2.
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Writing dΩ∗ = dφ∗d(cos θ∗) and integrating over the azimuthal angle gives

dσνd

d(cos θ∗)
=

dσνd

d(cos θ∗)
=

G2
F ŝ

2π
(12.16)

and
dσνu

d(cos θ∗)
=

dσνu

d(cos θ∗)
=

G2
F ŝ

8π
(1 + cos θ∗)2. (12.17)

The differential cross sections of (12.16) and (12.17) can be expressed in a
Lorentz-invariant form using the Lorentz-invariant kinematic variable

y ≡ p2 · q
p2 · p1

.

The choice of y is motivated by the fact that it related to the fraction of the neutrino
energy carried by the observed final-state muon and it can be measured directly in
neutrino scattering experiments. For elastic neutrino–quark scattering in the centre-
of-mass frame, the four-momenta appearing in the expression for y are

p1 = (E, 0, 0, E), p2 = (E, 0, 0,−E) and p3 = (E, 0, E sin θ∗, E cos θ∗),

and therefore y can be written as

y =
p2 · q
p2 · p1

=
p2 · (p1 − p3)

p2 · p1
= 1

2 (1 − cos θ∗).

Differentiating y with respect to cos θ∗ gives

dy
d(cos θ∗)

= −1
2
,

and thus

dσ
dy
=

∣∣∣∣∣
d(cos θ∗)

dy

∣∣∣∣∣
dσ

d(cos θ∗)
= 2

dσ
d(cos θ∗)

,

and the differential cross section of (12.16) can be expressed as

dσνq

dy
=

dσνq

dy
=

G2
F

π
ŝ. (12.18)

Furthermore, using (1 − y) = 1
2 (1 + cos θ∗), the Lorentz-invariant forms of the νq

and νq differential cross sections of (12.17) are

dσνq

dy
=

dσνq

dy
=

G2
F

π
(1 − y)2 ŝ. (12.19)
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!Fig. 12.8 The parton model picture of the charged-current scattering of a neutrino from a d quark in a nucleon.

12.2.3 Neutrino deep inelastic scattering

The interaction of high-energy neutrinos and antineutrinos with matter can be
expressed in terms of deep inelastic scattering with protons and neutrons. The
underlying interaction, shown in Figure 12.8, is between a neutrino/antineutrino
and a quark/antiquark carrying a fraction x of the nucleon momentum. Neglecting
the contributions from the strange quark sea, the underlying physical processes for
neutrino–proton deep inelastic scattering are νµd → µ−u and νµu → µ−d with dif-
ferential cross sections given by (12.18) and (12.19). The number of down-quarks
within a proton in the momentum fraction range x→ x+dx is d(x) dx, where d(x) is
the down-quark parton distribution function for the proton. The equivalent expres-
sion for the anti-up-quarks is u(x) dx. The contribution to the total neutrino–proton
scattering cross section from νd and νu scattering is therefore

dσνp

dŷ
=

G2
F

π
ŝ
[
d(x) + (1 − ŷ)2u(x)

]
dx,

where ŝ and ŷ refer to the neutrino–quark system. The kinematic variables ŝ and ŷ
can be expressed in terms of the neutrino–proton system using

ŝ = (p1 + xp2)2 ≈ 2xp1 ·p2 = xs and ŷ =
pq ·q
pq ·p1

=
xp2 ·q
xp2 ·p1

= y.

Hence, the parton model differential cross section for neutrino–proton scattering is

d2σνp

dx dy
=

G2
F

π
sx

[
d(x) + (1 − y)2u(x)

]
. (12.20)

The underlying processes for antineutrino–proton scattering are νu and νd scatter-
ing, and the corresponding differential cross section is

d2σνp

dx dy
=

G2
F

π
sx

[
(1 − y)2u(x) + d(x)

]
. (12.21)
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The differential cross sections for neutrino/antineutrino scattering with neutrons
can be obtained from (12.20) and (12.21) by replacing the PDFs for the proton
with those for the neutron, and using isospin symmetry to relate the neutron PDFs
to those of the proton, dn(x) = u(x), etc., giving

d2σνn

dx dy
=

G2
F

π
sx

[
u(x) + (1 − y)2d(x)

]
, (12.22)

d2σνn

dx dy
=

G2
F

π
sx

[
(1 − y)2d(x) + u(x)

]
. (12.23)

In practice, because neutrino cross sections are so small, massive detectors are
required. Consequently, the majority of the experiments that have studied high-
energy neutrino deep inelastic scattering have employed detectors constructed from
a dense material, usually steel (which is predominantly iron). Therefore, the mea-
sured neutrino cross sections are a combination of the cross sections for protons
and neutrons. For an isoscalar target, with an equal number of protons and neu-
trons, the average neutrino scattering cross section per nucleon is

d2σνN

dx dy
=

1
2

(
d2σνp

dx dy
+

d2σνn

dx dy

)
,

which, from (12.20) and (12.22), can be written in terms of the PDFs as

d2σνN

dx dy
=

G2
FmN

π
Eν x

[
d(x) + u(x) + (1 − y)2

{
u(x) + d(x)

}]
, (12.24)

where the centre-of-mass energy has been expressed in terms of the neutrino energy,
s ≈ 2mNEν. The integral of (12.24) over the momentum fraction x of the struck
quark (or antiquark) gives the differential cross section in terms of y,

dσνN

dy
=

G2
FmN

π
Eν

[
fq + (1 − y)2 fq)

]
, (12.25)

where fq and fq are the fractions of the nucleon momentum respectively carried by
the quarks and the antiquarks,

fq =
∫ 1

0
x [u(x) + d(x)] dx and fq =

∫ 1

0
x
[
u(x) + d(x)

]
dx.

Likewise, the average antineutrino–nucleon scattering cross section, obtained from
(12.21) and (12.23), is

d2σνN

dxdy
=

G2
FmN

π
Eν x

[
(1 − y)2 {u(x) + d(x)} + u(x) + d(x)

]
, (12.26)
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which when integrated over x gives

dσνN

dy
=

G2
FmN

π
Eν

[
(1 − y)2 fq + fq)

]
. (12.27)

Here the factor (1 − y)2 appears in front of the quark term rather than the anti-
quark term as in (12.25). The y-dependence of the differential cross sections for
neutrino/antineutrino nucleon scattering can be utilised to provide a direct mea-
surement of the antiquark content of the proton and neutron.

12.3 Neutrino scattering experiments

Over the past few decades there have been several high-energy neutrino beam
experiments, such as the CDHS experiment at CERN, which took data from 1976
to 1984. The CDHS experiment used a collimated neutrino beam of either νµ or νµ
in the energy range 30 GeV−200 GeV, created from a 400 GeV proton beam. The
neutrino interactions were observed in a detector with a mass of 1250 tons, which
consisted of 19 magnetised iron modules, separated by wire drift chambers that
provided a precise measurement of the position of the muon produced in charged-
current neutrino interactions. The iron modules were built up of several iron plates
with planes of plastic scintillator detectors in between them. The muon momen-
tum was reconstructed from its curvature in the magnetic field of the detector and
the energy of the final-state hadronic system was determined from the total energy
deposited in the scintillator detectors between the iron plates.

An example of a charged-current νµ interaction in the CDHS detector is shown
in Figure 12.9. The upper half of the event display shows the deposited energy,
as a function of distance along the detector. The energy deposition at the start of
the interaction provides a measurement of the energy of the hadronic system, EX .

νm X
m−

N.E.P.

Y−PROJ MIN=−2000.0 MAX= 2000.0

MIN= 0.0 MAX= 75.0

!Fig. 12.9 A deep inelastic neutrino interaction in the CDHS detector. The upper half of the left-hand plot shows the
energy deposition as a function of depth in the detector and the lower half shows the precise position mea-
surements provided by the drift chambers. The right-hand figure shows the interpretation of the event.
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u + d!Fig. 12.10 The measured shape (arbitrary normalisation) of the νN and νN differential cross sections from the CDHS
experiment. Adapted from de Groot et al. (1979). The relative normalisation of the ν and ν data have been
corrected to correspond to the same flux. The plots on the right show the expected shapes of the measured
differential cross sections in terms of quark and antiquark components.

The lower half of the event display shows the hit positions, from which the muon
momentum can be reconstructed from the measured curvature. Thus, for each
observed neutrino interaction, the neutrino energy can be reconstructed as

Eν = Eµ + EX ,

and the value of y for each interaction can be determined from (8.3),

y =

(
1 − Eµ

Eν

)
=

EX

EX + Eµ
.

The measured y-distributions for νN and νN scattering from the CDHS experiment
are shown in Figure 12.10. The data can be compared to expected distributions
given in (12.25) and (12.27). The ν beam data show a clear contribution from νq
scattering with a flat y distribution and smaller contribution from νq scattering with
a (1−y)2 distribution. The antineutrino data are dominated by the contribution from
ν q scattering, which results in a (1 − y)2 distribution, with a smaller contribution
from ν q scattering. Therefore the observed data can be understood in terms of a
large quark component in the nucleon and a smaller antiquark component, as indi-
cated in the plots on the left of Figure 12.10. The observed shapes of the measured
y distributions are consistent with the quarks carrying about five times the momen-
tum fraction of the proton as the antiquarks.
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!Fig. 12.11 A summary of the measurements of the total νN and νN cross sections divided by the laboratory frame neu-
trino energy. The data are taken from references given in Beringer et al. (2012). The lines show the average
values of the cross sections measured by a subset of the experiments in the range 30–200 GeV.

The total expected neutrino–nucleon cross section can be obtained by integrating
(12.25) over y to give

σνN =
G2

FmNEν
π

[
fq +

1
3

fq

]
. (12.28)

Similarly, the integral of (12.27) gives the total antineutrino–nucleon cross section,

σνN =
G2

FmNEν
π

[
1
3

fq + fq

]
. (12.29)

The total neutrino deep inelastic cross section is proportional to the laboratory
frame neutrino energy Eν, and the ratio of the νN to the νN total cross section is

σνN

σνN
=

3 fq + fq
fq + 3 fq

. (12.30)

Figure 12.11 summarises the experimental measurements ofσνN/Eν andσνN/Eν
for neutrino energies of up to 350 GeV. In the deep inelastic region, above about
30 GeV, the cross sections are approximately proportional to the neutrino energy
and the measurements in the range 30–150 GeV are consistent with

σνN/Eν = 0.677 ± 0.014 × 10−38 cm2 GeV−1, (12.31)

σνN/Eν = 0.334 ± 0.008 × 10−38 cm2 GeV−1, (12.32)
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giving the measured ratio

σνN

σνN
= 1.984 ± 0.012.

If there were no antiquarks in the nucleon, the parton model prediction would be
σνN/σνN = 3. The presence of the antiquarks reduces this ratio to approximately
two. The total cross section measurements of (12.31) and (12.32) can be interpreted
as measurements of fq and fq using the predicted deep inelastic cross sections of
(12.28) and (12.29), giving

fq ≈ 0.41 and fq ≈ 0.08.

Again, it is seen that only about half of the momentum of the proton is carried by
the quarks/antiquarks, the remaining 50% is due to the gluons that do not interact
with the W bosons of the weak interaction. Just under a tenth of momentum of the
proton is carried by the antiquarks.

12.4 Structure functions in neutrino interactions

In the limit where particle masses can be neglected, the e±p deep inelastic cross
section of (8.11) can be written in terms of y as

d2σe±p

dx dy
=

4πα2s
Q4

[
(1 − y) F2(x,Q2) + y2xF1(x,Q2)

]
, (12.33)

where F1(x,Q2) and F2(x,Q2) are the structure functions described in Chapter 8.
Equation (12.33) is the most general Lorentz-invariant parity conserving expres-
sion for the e±p cross section mediated by single photon exchange. The corre-
sponding general expressions for neutrino/antineutrino deep inelastic scattering,
which are modified to allow parity violation, are

d2σνp

dx dy
=

G2
Fs

2π

[
(1 − y) Fνp

2 (x,Q2) + y2xFνp
1 (x,Q2) + y

(
1 − y

2

)
xFνp

3 (x,Q2)
]
,

d2σνp

dx dy
=

G2
Fs

2π

[
(1 − y) Fνp

2 (x,Q2) + y2xFνp
1 (x,Q2) − y

(
1 − y

2

)
xFνp

3 (x,Q2)
]
.

(12.34)

The structure functions are the experimental observables of deep inelastic scatter-
ing experiments that can then be interpreted in the parton model. By equating the
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!Fig. 12.12 Measurements of FνN
2 (x) and xFνN

3 (x) in neutrino/antineutrino nucleon deep inelastic scattering in the NuTeV
experiment at Fermilab for 7.5 GeV2 < Q2 < 13.0 GeV2, compared to the expected distributions from the
parton distribution functions at Q2 = 10 GeV2 shown in Figure 8.17. Data from Tzanov et al. (2006).

powers of y in (12.34) with those in the parton model prediction of (12.20), the
structure functions can be expressed as

Fνp
2 = 2xFνp

1 = 2x
[
d(x) + u(x)

]
,

xFνp
3 = 2x

[
d(x) − u(x)

]
.

The equivalent expressions for neutrino–nucleon scattering are

FνN
2 = 2xFνN

1 =
1
2 (Fνp

2 + Fνn
2 ) = x

[
u(x) + d(x) + u(x) + d(x)

]
, (12.35)

xFνN
3 =

1
2 (xFνp

3 + xFνn
3 ) = x

[
u(x) + d(x) − u(x) − d(x)

]
. (12.36)

Using the parton model prediction that FνN
2 = 2xFνN

1 , the y-dependence of the
cross sections can be expressed in terms of F2(x,Q2) and F3(x,Q2),

d2σνN

dx dy
=

G2
Fs

2π

[(
1 − y + y

2

2

)
FνN

2 (x,Q2) + y
(
1 − y

2

)
xFνN

3 (x,Q2)
]
. (12.37)

The structure functions, FνN
2 (x,Q2) and FνN

3 (x,Q2), can be obtained from the exper-
imental measurements of the y-dependence of the measured neutrino cross sections
at a particular value of x. For example, Figure 12.12 shows experimental measure-
ments of FνN

2 and xFνN
3 at Q2 ∼ 10 GeV2 from the NuTeV experiment at Fermi-

lab, which had a similar sandwich structure of steel plates and active detectors to
the CDHS experiment described in Section 12.3. The data are compared to the
predictions obtained using the PDFs shown in Figure 8.17, including the contribu-
tion from the strange quarks.
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From (12.35) and (12.36), it can be seen that the difference

FνN
2 (x) − xFνN

3 (x) = 2x
[
u(x) + d(x)

]
,

provides a direct measure of the antiquark content of the nucleon. The data of
Figure 12.12 show clearly that the x distribution of the antiquarks is, as expected,
largest at low values of x. Furthermore, if the PDFs are written in terms of valence
and sea quark contributions, it follows from (12.36) that

FνN
3 (x) = uV (x) + dV (x).

Therefore FνN
3 (x) provides a direct measurement of the sum of the PDFs for the

valence quarks alone. If there are three valence quarks within the nucleon, then
∫ 1

0
FνN

3 (x) dx =
∫ 1

0
uV (x) + dV (x) dx = 3,

which is known as the Gross–Llewellyn-Smith sum rule. The measurement of
xFνN

3 (x), shown in Figure 12.12, is consistent with this prediction.

12.5 Charged-current electron–proton scattering

Section 8.5 described electron–proton scattering at a centre-of-mass energy of√
s = 300 GeV at the HERA collider. In addition to electron–proton collisions,

which constituted the largest part of HERA operation, HERA also collided
positrons and protons. For collisions at Q2 < m2

W, the e−p and e+p interactions
are dominated by neutral-current QED t-channel deep inelastic scattering, medi-
ated by photon exchange. However, since Q2 ≈ sxy, the Q2 values obtainable at
HERA extend above m2

W. Therefore, for the interactions at the highest Q2 values,
charged-current scattering processes mediated by W± exchange, become increas-
ingly important. Figure 12.13 shows the parton-level Feynman diagrams for the
weak charged-current e−p→ νeX and e+p→ νeX scattering processes. The exper-
imental signature for high-Q2 weak charged-current interactions is similar to the
event shown in Figure 8.13, except that there is no final-state charged lepton. As

W

u

e- e- e+

d d

νe νe e+

W W

u

W

u u

νe νe

d d!Fig. 12.13 Lowest-order diagrams contributing to charged-current e−p and e+p scattering.
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discussed in Section 1.3, although the neutrino is not observed, its presence can be
inferred from the momentum imbalance in the plane transverse to the beam axis.
Consequently, the charged-current interactions mediated by the exchange of a W
boson are clearly identifiable from the more common QED neutral-current interac-
tions.

The calculations of the differential cross sections for charged current e−p and
e+p scattering follow closely that for νp and νp scattering described above. Con-
sequently, the results can be obtained directly from the neutrino scattering cross
sections by replacing the approximate low-Q2 form of the W-boson propagator by

1
m2

W

→ 1
Q2 + m2

W

,

and by making the replacement u(x) ↔ d(x) and u(x) ↔ d(x) to reflect the dif-
ferent quarks involved in the electron scattering interaction, which can be seen by
comparing the Feynman diagrams of Figure 12.7 to those of Figure 12.13. With
these replacements, the neutrino–proton cross section of (12.20) can be adapted to
give the electron–proton weak charged-current scattering cross section,

d2σe−p
CC

dx dy
=

1
2

G2
F

π

m4
W

(Q2 + m2
W)2

sx
(
u(x) + (1 − y)2d(x)

)
, (12.38)

where the additional factor of one-half comes from the need to average over the
two spin states of the electron and quark, rather than just the quark spin in neutrino
scattering. Using Q2 = sxy, (12.38) can be written

d2σe−p
CC

dx dQ2 =
d2σe−p

CC

dx dy

∣∣∣∣∣
∂y

∂Q2

∣∣∣∣∣ =
1
sx

d2σe−p
CC

dx dy
.

Hence the differential cross section for charged-current e−p→ νeX scattering is

d2σe−p
CC

dx dQ2 =
G2

Fm4
W

2π(Q2 + m2
W)2

(
u(x) + (1 − y)2d(x)

)
, (12.39)

and the corresponding expression for charged-current e+p→ νeX scattering is

d2σe+p
CC

dx dQ2 =
G2

Fm4
W

2π(Q2 + m2
W)2

(
(1 − y)2d(x) + u(x)

)
. (12.40)

Figure 12.14 shows the measured charged-current and neutral-current differ-
ential cross sections for electron–proton and positron–proton scattering obtained
by the H1 experiment at HERA. The main features of this plot can be under-
stood in terms of the Q2 dependence of the photon and W-boson propagators. For
Q2 ≪ m2

W, the W-boson propagator is approximately independent of Q2,

1/(m2
W + Q2) ≈ 1/m2

W,
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s = 319 GeV at the HERA collider. Adapted

from data in Aaron et al. (2012).

which explains the relative flatness of the charged-current cross section at low Q2.
At higher values of Q2, the charged-current cross section decreases more rapidly
with Q2 due to the 1/(m2

W + Q2) dependence of the propagator.
The observed differences in the e−p and e+p charged-current cross sections can

be understood in terms of the PDFs involved. At low Q2, the cross sections are
dominated by interactions with low-x sea quarks and antiquarks. Because the sea
quark PDFs are approximately the same for up- and down-quarks, the e−p and e+p
cross sections given in (12.39) and (12.40) are roughly equal. Whereas at high Q2,
interactions with valence quarks become more important (Q2 = xys) and therefore
the e−p cross section is greater than that for e+p because uV (x) > dV (x) and due to
the presence of the factor of (1 − y)2 multiplying d(x) in (12.40).

From the Q2 dependence of the γ and W-boson propagators and the size of the
QED and weak coupling constants,

σQED
NC

σW
CC

∼ α2

α2
W

·
(Q2 + m2

W)2

Q4 .

Consequently, at low Q2 the neutral-current cross section, which is dominated by
photon exchange, is larger than weak charged-current cross section. However, for
Q2 " m2

W, the photon and W-boson propagator terms are approximately equal and
the observed convergence of the neutral-current and charged-current cross sections
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reflects the similar intrinsic strengths of the electromagnetic and weak interactions,
α ∼ 1/137 and αW ∼ 1/30. Hence, the high-energy e±p scattering data from HERA
provide direct experimental evidence that the coupling constants of QED and the
weak interaction are not very different.

Finally, it is worth noting that for Q2 " m2
Z, the neutral-current cross section

includes significant contributions from both γ- and Z-exchange diagrams. The con-
tribution to the scattering amplitude from the Z boson leads to the observed small
differences between the e−p and e+p neutral-current cross sections at high Q2.

Summary

The main aim of this chapter was to provide an introduction to cross section calcu-
lations for the weak charged-current. In the limit where the masses of the particles
can be neglected, these calculations are relatively straightforward, since for each
Feynman diagram only one helicity combination needs to be considered. In the
limit where Q2 ≪ m2

W, the W-boson propagator has little Q2 dependence and the
neutrino interaction cross sections are proportional to the laboratory frame neutrino
energy. The total neutrino and antineutrino interaction cross sections per nucleon,
assuming equal numbers of protons and neutrons, were found to be

σνN =
G2

FmNEν
π

[
fq +

1
3

fq

]
and σνN =

G2
FmNEν
π

[
1
3

fq + fq

]
.

The 1/(Q2 +m2
W) form of the W-boson propagator was evident in the discussion

of e−p and e+p scattering, where both charged-current (W exchange) and neutral
current (γ and Z exchange) processes contribute. The convergence of the charged-
current and neutral-current cross sections provides a direct demonstration that the
QED and weak coupling constants might be related, hinting at the unified elec-
troweak theory described in Chapter 15.

Problems

12.1 Explain why the tau-lepton branching ratios are observed to be approximately

Br(τ− → e−ντνe) : Br(τ− → e−ντνµ) : Br(τ− → ντ + hadrons) ≈ 1 : 1 : 3.
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12.2 Assuming that the process νee− → e−νe occurs only by the weak charged-current interaction (i.e. ignoring
the Z-exchange neutral-current process), show that

σνe e−
CC ≈

2meEνG2
F

π
,

where Eν is neutrino energy in the laboratory frame in which the struck e− is at rest.

12.3 Using the above result, estimate the probability that a 10 MeV Solar νe will undergo a charged-current weak
interaction with an electron in the Earth if it travels along a trajectory passing through the centre of the Earth.
Take the Earth to be a sphere of radius 6400 km and uniform density ρ = 5520 kg m−3.

12.4 By equating the powers of y in (12.34) with those in the parton model prediction of (12.20), show that the struc-
ture functions can be expressed as

Fνp
2 = 2xFνp

1 = 2x
[

d(x) + u(x)
]

and xFνp
3 = 2x

[
d(x) − u(x)

]
.

12.5 In the quark–parton model, show that FeN
2 =

1
2 (Q2

u + Q2
d)FνN

2 .
Hence show that the measured value of

FeN
2 /FνN

2 = 0.29 ± 0.02,

is consistent with the up- and down-quarks having respective charges of+ 2
3 and− 1

3 .

12.6 Including the contributions from strange quarks, the neutrino–nucleon scattering structure functions can be
expressed as

Fνp
2 = 2x[d(x) + s(x) + u(x)] and Fνn

2 = 2x[u(x) + d(x) + s(x)],

where s(x) and s(x) are respectively the strange and anti-strange quark PDFs of the nucleon. Assuming s(x) =
s(x), obtain an expression for xs(x) in terms of the structure functions for neutrino–nucleon and electron–
nucleon scattering

FνN
2 =

1
2

(
Fνp

2 (x) + Fνn
2 (x)

)
and FeN

2 =
1
2

(
Fep

2 (x) + Fen
2 (x)

)
.

12.7 The H1 and ZEUS experiments at HERA measured the cross sections for the charged-current processes e−p →
νeX and e+p → νeX for different degrees of electron longitudinal polarisation. For example, the ZEUS mea-
surements of the total e+p → νeX cross section at

√
s = 318 GeV and Q2 > 200 GeV2 for positron polarisa-

tions of Pe = −36%, 0% and+33% are:

σ(−0.36) = 22.9 ± 1.1 pb, σ(0) = 34.8 ± 1.34 pb and σ(+0.33) = 48.0 ± 1.8 pb,

see Abramowicz et al. (2010) and references therein. Plot these data and predict the corresponding cross section
for Pe = −1.0, i.e. when the positrons are all left-handed. What does this tell you about the nature of the weak
charged-current interaction?



13 Neutrinos and neutrino oscillations

This chapter focusses on the properties of neutrinos and in particular the phe-
nomenon of neutrino oscillations, whereby neutrinos undergo flavour tran-
sitions as they propagate over large distances. Neutrino oscillations are a
quantum-mechanical phenomenon and can be described in terms of the rela-
tionship between the eigenstates of the weak interaction νe, νµ and ντ, and the
eigenstates of the free-particle Hamiltonian, known as the mass eigenstates,
ν1, ν2 and ν3. The mathematical description of neutrino oscillations is first
introduced for two flavours and then extended to three flavours. The predic-
tions are compared to the recent experimental data from reactor and long-
baseline neutrino oscillation experiments.

13.1 Neutrino flavours

Unlike the charged leptons, which can be detected from the continuous track
defined by the ionisation of atoms as they traverse matter, neutrinos are never
directly observed; they are only detected through their weak interactions. Different
neutrino flavours can only be distinguished by the flavours of charged lepton pro-
duced in charged-current weak interactions. Consequently, the electron neutrino
νe, is defined as the neutrino state produced in a charged-current weak interaction
along with an electron. Similarly, by definition, the weak charged-current interac-
tions of a νe will produce an electron. For many years it was assumed that the νe, νµ
and ντ were massless fundamental particles. This assumption was based, at least in
part, on experimental evidence. For example, it was observed that the interactions
of the neutrino/antineutrino produced along with a positron/electron in a nuclear
β-decay, would produce an electron/positron as indicated in Figure 13.1. This nat-
urally led to the idea that the electron neutrino carried some property related to
the electron that is conserved in weak interactions, which was referred to as elec-
tron number. Similarly, in beam neutrino experiments, such as those described in
Chapter 12, it was observed that the neutrinos produced from π+ → µ+νµ decays
always produced a muon in charged-current weak interactions.

329
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!Fig. 13.1 Neutrino production and subsequent detection where the νe state is associated with positrons/electrons.
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m-!Fig. 13.2 A possible Feynman diagram forµ− → e−γ for the case where the νe and νµ are not distinct.

Further evidence for the distinct nature of the electron and muon neutrinos was
provided by the non-observation of the decay µ− → e−γ, which is known to have a
very small branching ratio,

BR(µ− → e−γ) < 10−11.

In principle, this decay could occur via the Feynman diagram shown in Figure 13.2.
The absence of the decay suggests that the neutrino associated with Wµ−ν vertex
is distinct from the neutrino associated with the We−ν vertex.

Until the late 1990s, relatively little was known about neutrinos beyond that there
are three distinct flavours and that they are extremely light (and possibly massless).
However, even at that time several experiments had reported possible anomalies
in the observed interaction rates of atmospheric and solar neutrinos. This picture
changed with the publication of the solar and atmospheric neutrino data from the
Super-Kamiokande detector, which provided compelling experimental evidence
for the phenomenon of neutrino flavour oscillations over very large distances. The
subsequent study of neutrino oscillations has been one of the highlights of particle
physics in recent years.

13.2 Solar neutrinos

Nuclear fusion in the Sun produces a large flux of electron neutrinos, 2× 1038 νe s−1.
Despite the smallness of neutrino interaction cross sections and the large distance
to the Sun, solar neutrinos can be observed with a sufficiently massive detector.
Nuclear fusion in the Sun proceeds through a number of distinct processes, each of
which has several stages. The resulting solar neutrino energy spectrum is shown in
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Figure 13.3. The main hydrogen burning process, known as the pp cycle, proceeds
through three steps:

p + p→ D + e+ + νe,

D + p→ 3
2He + γ,

3
2He + 3

2He→ 4
2He + p + p.

Because the binding energy of the deuteron 2
1D is only 2.2 MeV, the neutrinos pro-

duced in the process p+p→ D+ e+ + νe have low energies, Eν < 0.5 MeV. Conse-
quently, they are difficult to detect. For this reason, the majority of experiments
have focussed on the detection of the higher-energy solar neutrinos from rarer
fusion processes. The highest energy solar neutrinos originate from the β-decay
of boron-8 (8B) that is produced from the fusion of two helium nuclei,

4
2He + 3

2He→ 7
4Be + γ,

7
4Be + p→ 8

5B + γ,

with the subsequent β-decay,

8
5B→8

4 Be∗ + e+ + νe,

giving neutrinos with energies up to 15 MeV.
A number of experimental techniques have been used to detect solar neutrinos.

The earliest experiment, based in the Homestake Mine in South Dakota, USA,
used a radiochemical technique to measure the flux of solar neutrinos. It consisted
of a tank of 615 tons of dry-cleaning fluid, C2Cl4. The solar neutrino flux was
measured by counting the number of 37Ar atoms produced in the inverse β-decay
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process, νe +
37
17Cl→ 37

18Ar+ e−. The 37Ar atoms where extracted from the tank and
counted through their radioactive decays. Despite the huge flux of neutrinos, only
1.7 interactions per day were expected. The observed rate was only 0.48 ± 0.04
neutrino interactions per day; see Cleveland et al. (1998). This apparent deficit
of solar neutrinos became known as the solar neutrino problem. The Homestake
experiment was sensitive to the relatively high-energy 8B neutrinos. Subsequently,
the SAGE and GALLEX radiochemical experiments used gallium as a target, and
were sensitive to the low-energy neutrinos from the first step of the pp chain. These
experiments also observed a deficit of solar neutrinos.

Radiochemical experiments played an important role in demonstrating the exis-
tence of the solar neutrino deficit; Ray Davis, who conceived the Homestake exper-
iment, was awarded the Nobel prize for its discovery. However, it was the results
from the large water Čerenkov detectors that firmly established the origin of the
deficit of solar neutrinos.

13.2.1 The Super-Kamiokande experiment

The 50 000 ton Super-Kamiokande water Čerenkov detector, shown schematically
in Figure 13.4a, was designed to detect Čerenkov radiation (see Section 1.2.1)
from relativistic particles produced within the volume of the detector. In essence,
Super-Kamiokande is a large vessel of water surrounded by photo-multiplier tubes
(PMTs) that are capable of detecting single photons.

νe
e-

(a) (b)

36
 m

34 m!Fig. 13.4 (a) The Super-Kamiokande experiment comprising a tank of 50 000 tons of water viewed by 11 146 PMTs.
(b) A neutrino interaction in the Super-Kamiokande experiment showing the ring of Čerenkov light produced
by the relativistic e− with v > c/n as detected as signals in the PMTs on the walls of the detector. Left-hand
diagram courtesy of the Super-Kamiokande collaboration.
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!Fig. 13.5 The two Feynman diagrams contributing to νee− → νee− elastic scattering.

Because oxygen is a particularly stable nucleus, the charged-current process
νe +

16
8 O → 16

9 F + e− is kinematically forbidden for the neutrino energies being
considered here. Consequently, solar neutrinos are detected by the elastic scatter-
ing process νee− → νee−, shown in Figure 13.5. The final-state electron is relativis-
tic and can be detected from the Čerenkov radiation photons that are emitted at a
fixed angle to its direction of motion as it travels through water. The photons form
a ring of hits in the PMTs on the sides of the detector, as shown in Figure 13.4b.
The number of detected photons provides a measure of the neutrino energy and the
direction of the electron can be determined from the orientation of the Čerenkov
ring. In this way, Super-Kamiokande is able to detect electron neutrino elastic scat-
tering interactions down to neutrino energies of about 5 MeV. Below this energy,
background from the β-decays of radioisotopes dominates. Because of this effec-
tive threshold, the Super-Kamiokande detector is sensitive primarily to the flux of
8B neutrinos.

The angular distribution of the scattered electron with respect to the incom-
ing neutrino direction is isotropic in the centre-of-mass frame, as was the case
for neutrino–quark scattering cross section of (12.13). Because the centre-of-mass
frame is boosted in the direction of the neutrino, in the laboratory frame the scat-
tered electron tends to follow the direction of the solar neutrino. Consequently, the
directional correlation with the Sun is retained.

Figure 13.6 shows the reconstructed electron direction with respect to the direc-
tion of the Sun for neutrino interactions with Eν " 5 MeV. The peak towards
cos θsun =1 provides clear evidence for a flux of neutrinos from the Sun. The flat
background arises from the β-decay of radioisotopes. Whilst Super-Kamiokande
observes clear evidence of solar neutrinos from the Sun, the flux of electron neu-
trinos is measured to be about half that expected.

13.2.2 The SNO experiment

Results from Super-Kamiokande and other solar neutrino experiments demonstra-
ted a clear deficit of electron neutrinos from the Sun. The Sudbury Neutrino Obser-
vatory (SNO) experiment in Canada was designed to measure both the νe and total
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!Fig. 13.7 The νe charged-current (CC) and neutral-current (NC) weak interactions with the deuteron.

neutrino flux from the Sun. SNO consisted of 1000 tons of heavy water, D2O, inside
a 12 m diameter vessel, viewed by 9,600 PMTs. Heavy water was used because the
deuteron, the bound state of a proton and a neutron, has a binding energy of just
2.2 MeV, which is relatively small compared to the energies of the 8B solar neutri-
nos. For this reason, solar neutrinos can be detected in SNO through three different
physical processes. Crucially, the different processes have different sensitivities to
the fluxes of electron, muon and tau neutrinos, φ(νe), φ(νµ) and φ(ντ).

Because of the low binding energy of the deuteron, the charged-current (CC)
interaction of electron neutrinos, νe +D→ e+ p+ p, shown in Figure 13.7 (left), is
kinematically allowed. The final-state electron can be detected from the resulting
Čerenkov ring. From the discussion of Section 12.2.2, it can be appreciated that
in the centre-of-mass frame the angular distribution of the electron relative to the
incoming neutrino is almost isotropic. Because Eν ≪ mD, the laboratory frame
is almost equivalent to the centre-of-mass frame and therefore the final-state elec-
tron does not correlate strongly with the direction of the Sun. The charged-current
interaction with the deuteron is only sensitive to the νe flux and therefore

CC rate ∝ φ(νe). (13.1)
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All flavours of neutrinos can interact with the deuteron via the neutral-current
(NC) interaction of Figure 13.7 (right), where the momentum imparted to the
deuteron is sufficient to break up this loosely bound state. The neutron produced
in the final state will (eventually) be captured in the reaction n + 2

1H → 3
1H + γ,

releasing a 6.25 MeV photon. Through its subsequent interactions, this photon will
produce relativistic electrons that give a detectable Čerenkov signal. The neutral-
current process is equally sensitive to all neutrino flavours, thus

NC rate ∝ φ(νe) + φ(νµ) + φ(ντ). (13.2)

Finally, neutrinos can interact with the atomic electrons through the elastic scat-
tering (ES) processes of Figure 13.5. For electron neutrinos, both the charged-
current process and the neutral-current process contribute to the cross section,
whereas for νµ and ντ only the neutral-current process, which has a smaller cross
section, contributes. The observed elastic scattering rate is therefore sensitive to all
flavours of neutrinos but has greater sensitivity to νe,

ES rate ∝ φ(νe) + 0.154
[
φ(νµ) + φ(ντ)

]
. (13.3)

The electrons from the ES scattering process point back to the Sun and can there-
fore be distinguished from those from the CC process.

The different angular and energy distributions of the Čerenkov rings from CC,
NC and ES interactions allows the rates for each individual process to be deter-
mined separately. Using the knowledge of the interaction cross sections, the mea-
sured rates can be interpreted in terms of the neutrino fluxes using (13.1)–(13.3),
with the CC process providing a measure of the νe flux and the NC process pro-
viding a measure of the total neutrino flux (νe + νµ + ντ). The observed CC rate
was consistent with a flux of νe of 1.8 × 10−6 cm−2 s−1 and the observed NC rate
was consistent with a total neutrino flux of 5.1 × 10−6 cm−2 s−1, providing clear
evidence for an unexpected νµ/ντ flux from the Sun.

The observed neutrino rates in SNO from the CC, NC and ES processes can be
combined to place constraints on the separate νe and νµ + ντ fluxes, as shown in
Figure 13.8, giving the overall result

φ(νe) = (1.76 ± 0.10) × 10−6 cm−2 s−1,

φ(νµ) + φ(ντ) = (3.41 ± 0.63) × 10−6 cm−2 s−1.

The total neutrino flux, obtained from the NC process is consistent with the expec-
tation from theoretical modelling of the Sun that predicts a νe flux of

φ(νe)pred = (5.1 ± 0.9) × 10−6 cm−2 s−1.

The SNO data therefore demonstrate that the total flux of neutrinos from the Sun
is consistent with the theoretical expectation, but rather than consisting of only
νe, there is a large νµ and/or ντ component. Since νµ/ντ cannot be produced in
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deviation errors from the different processes. The CC process is sensitive only toνe. The NC process is sensitive
to all neutrinos. The ES rate is proportional toφ(νe) + 0.154

[
φ(νµ) + φ(ντ)

]
. The ellipse is the resulting

68% confidence limit from combining the three measurements. Adapted from Ahmad et al. (2002).

the fusion processes in the Sun, SNO provides clear evidence of neutrino flavour
transformations over large distances.

13.3 Mass and weak eigenstates

The neutrino flavour transformations observed by SNO and other experiments can
be explained by the phenomenon of neutrino oscillations. The physical states of
particle physics, termed the mass eigenstates, are the stationary states of the free-
particle Hamiltonian and satisfy

Ĥψ = i
∂ψ

∂t
= Eψ.

The time evolution of a mass eigenstate takes the form of (2.25),

ψ(x, t) = φ(x)e−iEt.

The neutrino mass eigenstates (the fundamental particles) are labelled ν1, ν2 and
ν3. There is no reason to believe that the mass eigenstates should correspond to
the weak eigenstates, νe, νµ and ντ, which are produced along with the respective
flavour of charged lepton in a weak interaction. This important distinction between
mass and weak eigenstates is illustrated in Figure 13.9. Here any one of the three
mass eigenstates can be produced in conjunction with the electron in the initial
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weak interaction. Since it is not possible to know which mass eigenstate was pro-
duced, the system has to be described by a coherent linear superposition of ν1, ν2

and ν3 states. In quantum mechanics, the basis of weak eigenstates can be related
to the basis of mass eigenstates by a unitary matrix U,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

νe

νµ
ντ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3
Uτ1 Uτ2 Uτ3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ν1

ν2

ν3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (13.4)

Hence the electron neutrino, which is the quantum state produced along with a
positron in a charged-current weak interaction, is the linear combination of the
mass eigenstates defined by the relative charged-current weak interaction couplings
of the ν1, ν2 and ν3 at the W+ → e+ν vertex

|ψ⟩ = U∗e1|ν1⟩ + U∗e2|ν2⟩ + U∗e3|ν3⟩. (13.5)

The neutrino state subsequently propagates as a coherent linear superposition of
the three mass eigenstates until it interacts and the wavefunction collapses into a
weak eigenstate, producing an observable charged lepton of a particular flavour. If
the masses of the ν1, ν2 and ν3 are not the same, phase differences arise between
the different components of the wavefunction and the phenomenon of neutrino
oscillations occurs. In this way, a neutrino produced along with one flavour of
charged lepton can interact to produce a charged lepton of a different flavour.

13.3.1 The leptonic charged-current vertex revisited

In Chapter 12, the charged-current interaction between a charged lepton and a neu-
trino was described in terms of the neutrino weak eigenstates. For example, the
weak charged-current vertex has the form
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−i gW√
2
eγ µ 1

2 (1 − γ5)νe,

where here νe and e denote the electron neutrino spinor and the electron adjoint
spinor. In terms of the neutrino mass eigenstates, the weak charged-current for a
lepton of flavour α = e, µ, τ and a neutrino of type k = 1, 2, 3 takes the form

−i gW√
2
ℓαγ

µ 1
2 (1 − γ5)Uαkνk.

Defining the neutrino state produced in a weak interaction using the matrix U of
(13.4) implies that, when the neutrino appears as the adjoint spinor, the factor U∗αk
appears in the weak interaction vertex. Consequently, the couplings between neu-
trinos or antineutrinos and the charged leptons are those shown in Figure 13.10.

13.4 Neutrino oscillations of two flavours

The full treatment of neutrino oscillations for three flavours is developed in
Section 13.5. However, the main features can be readily understood by consider-
ing just two flavours. For example, consider the weak eigenstates νe and νµ, which
here are taken to be coherent linear superpositions of the mass eigenstates ν1 and
ν2. The mass eigenstates propagate as plane waves of the form

|ν1(t)⟩ = |ν1⟩ei(p1·x−E1t) = e−ip1·x,

|ν2(t)⟩ = |ν2⟩ei(p2·x−E2t) = e−ip2·x,

where (E1,p1) and (E2,p2) are the respective energy and three-momenta of the ν1

and ν2, and p · x = Et − p · x is the (Lorentz-invariant) phase. In the two-flavour
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treatment of neutrino oscillations, the weak eigenstates are related to the mass
eigenstates by a 2 × 2 unitary matrix that can be expressed in terms of a single
mixing angle θ,

(
νe

νµ

)
=

⎛
⎜⎜⎜⎜⎜⎝

cos θ sin θ

− sin θ cos θ

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝
ν1

ν2

⎞
⎟⎟⎟⎟⎟⎠ . (13.6)

Now suppose at time t = 0, a neutrino is produced in the process u → de+νe,
as shown in Figure 13.11. The wavefunction at time t = 0 is the coherent linear
superposition of ν1 and ν2, corresponding to the νe state

|ψ(0)⟩ = |νe⟩ ≡ cos θ |ν1⟩ + sin θ |ν2⟩.
The state subsequently evolves according to the time dependence of the mass
eigenstates

|ψ(x, t)⟩ = cos θ |ν1⟩e−ip1·x + sin θ |ν2⟩e−ip2·x,

where p1 and p2 are the four-momenta associated with the mass eigenstates ν1 and
ν2. If the neutrino then interacts at a time T and at a distance L along its direction
of flight, the neutrino state at this space-time point is

|ψ(L,T )⟩ = cos θ |ν1⟩e−iφ1 + sin θ |ν2⟩e−iφ2 , (13.7)

where the phases of the two mass eigenstates are written as

φi = pi ·x = EiT − piL.

Equation (13.7) can be written in terms of the weak eigenstates using the inverse
of (13.6),

(
ν1

ν2

)
=

⎛
⎜⎜⎜⎜⎜⎝

cos θ − sin θ

sin θ cos θ

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝
νe

νµ

⎞
⎟⎟⎟⎟⎟⎠ ,

leading to

|ψ(L,T )⟩ = cos θ
(
cos θ |νe⟩ − sin θ |νµ⟩

)
e−iφ1+sin θ

(
sin θ |νe⟩ + cos θ |νµ⟩

)
e−iφ2

= (e−iφ1 cos2 θ + e−iφ2 sin2 θ) |νe⟩ − (e−iφ1 − e−iφ2 ) cos θ sin θ |νµ⟩
= e−iφ1

[
(cos2 θ + ei∆φ12 sin2 θ) |νe⟩ − (1 − ei∆φ12 ) cos θ sin θ |νµ⟩

]
, (13.8)
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with

∆φ12 = φ1 − φ2 = (E1 − E2)T − (p1 − p2)L. (13.9)

If the phase difference ∆φ12 = 0, the neutrino remains in a pure electron neutrino
state and will produce an electron in a subsequent weak charged-current interac-
tion. However, if ∆φ12 ! 0, there is now a muon neutrino component to the wave-
function. The relative sizes of the electron and muon neutrino components of the
wavefunction can be obtained by writing (13.8) as

|ψ(L,T )⟩ = ce|νe⟩ + cµ|νµ⟩,
where ce = ⟨νe|ψ⟩ and cµ = ⟨νµ|ψ⟩. The probability that the neutrino, which was
produced as a νe, will interact to produce a muon is P(νe → νµ) = cµc∗µ. Compari-
son with (13.8) gives

P(νe → νµ) = cµc∗µ = (1 − ei∆φ12 )(1 − e−i∆φ12 ) cos2 θ sin2 θ

= 1
4 (2 − 2 cos∆φ12) sin2(2θ)

= sin2(2θ) sin2
(
∆φ12

2

)
. (13.10)

Hence, the νe → νµ oscillation probability depends on the mixing angle θ and the
phase difference between the mass eigenstates, ∆φ12. The derivation of the phase
difference, ∆φ12 = (E1 − E2)T − (p1 − p2)L, in terms of the masses of ν1 and ν2

requires care. One could assume, without any real justification, that the momenta
of the two mass eigenstates are equal, p1 = p2 = p, in which case

∆φ12 = (E1 − E2)T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
p
⎛
⎜⎜⎜⎜⎝1 +

m2
1

p2

⎞
⎟⎟⎟⎟⎠

1
2
− p

⎛
⎜⎜⎜⎜⎝1 +

m2
2

p2

⎞
⎟⎟⎟⎟⎠

1
2
⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T. (13.11)

Because m ≪ E, the square roots in (13.11) are approximately,

(
1 +

m2

p2

) 1
2
≈ 1 +

m2

2p2 ,

and therefore

∆φ12 ≈
m2

1 − m2
2

2p
L , (13.12)

where it has been assumed that T ≈ L (in natural units), which follows since the
neutrino velocity β ≈ 1. At first sight, this treatment appears perfectly reasonable.
However, it overlooks that fact that the different mass eigenstates will propagate
with different velocities, and therefore will travel the distance L in different times.
This objection only can be overcome with a proper wave-packet treatment of the
propagation of the coherent state, which yields the same expression as given in
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(13.12). However, it is worth noting that the expression of (13.12), which was
obtained assuming p1 = p2, also can be obtained by assuming either E1 = E2

or β1 = β2. This can be seen by writing the phase difference of (13.9) as

∆φ12 = (E1 − E2)T −
⎛
⎜⎜⎜⎜⎝

p2
1 − p2

2

p1 + p2

⎞
⎟⎟⎟⎟⎠ L

= (E1 − E2)T −
⎛
⎜⎜⎜⎜⎝

E2
1 − m2

1 − E2
2 + m2

2

p1 + p2

⎞
⎟⎟⎟⎟⎠ L

= (E1 − E2)
[
T −

(
E1 + E2

p1 + p1

)
L
]
+

⎛
⎜⎜⎜⎜⎝

m2
1 − m2

2

p1 + p2

⎞
⎟⎟⎟⎟⎠ L. (13.13)

The first term on the RHS of (13.13) clearly vanishes if it is assumed that E1 =

E2. This term also vanishes if a common velocity is assumed, β1 = β2 = β (see
Problem 13.1). Hence, although a wave-packet treatment of the neutrino oscillation
phenomenon is desirable, it is comforting to see that the same result for the phase
difference ∆φ is obtained from the assumption of either p1 = p2, E1 = E2 or
β1 = β2.

Combining the results of (13.10) and (13.12) and writing p = Eν, gives the
two-flavour neutrino oscillation probability

P(νe → νµ) = sin2(2θ) sin2
⎛
⎜⎜⎜⎜⎝

(m2
1 − m2

2)L

4Eν

⎞
⎟⎟⎟⎟⎠ . (13.14)

It is convenient to express the oscillation probability in units more suited to the
length and energy scales encountered in practice. Writing L in km, ∆m2 in eV2 and
the neutrino energy in GeV, (13.14) can be written

P(νe → νµ) = sin2(2θ) sin2
(
1.27
∆m2[eV2]L[km]

Eν[GeV]

)
. (13.15)

The corresponding electron neutrino survival probability, P(νe → νe), either can
be obtained from c∗ece or from the conservation of probability, P(νe → νe) = 1 −
P(νe → νµ),

P(νe → νe) = 1 − sin2(2θ) sin2
⎛
⎜⎜⎜⎜⎝

(m2
1 − m2

2)L

4Eν

⎞
⎟⎟⎟⎟⎠ . (13.16)

Figure 13.12 shows an illustrative example of the oscillation probability as function
of distance for Eν = 1 GeV, ∆m2 = 0.002 eV2 and sin2(2θ) = 0.8. The wavelength
of the oscillations is given by

λosc[km] =
πEν[GeV]

1.27∆m2[eV2]
.
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function of L for Eν = 1 GeV,∆m2 = 0.002 eV2 and sin2(2θ) = 0.8.

For small values of ∆m2, neutrino flavour oscillations only develop over very large
distances. This explains why neutrino flavour appeared to be conserved in earlier
neutrino experiments. Finally, it should be noted that the amplitude of the oscil-
lations is determined by sin2(2θ), with sin2(2θ) = 1 corresponding to maximal
mixing.

13.5 Neutrino oscillations of three flavours

The derivation of the neutrino oscillation probability for two flavours contains
nearly all of the essential physics, namely the relationship between the weak and
mass eigenstates and that the oscillations originate from the phase difference
between the mass eigenstates in the time-dependent wavefunction. The full three-
flavour derivation of the neutrino oscillation probabilities follows closely the steps
above, although the algebra is more involved.

In the three-flavour treatment of neutrino oscillations, the three weak eigen-
states are related to the mass eigenstates by the 3 × 3 unitary Pontecorvo–Maki–
Nakagawa–Sakata (PMNS) matrix,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

νe

νµ
ντ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3
Uτ1 Uτ2 Uτ3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ν1

ν2

ν3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (13.17)

The elements of the PMNS matrix are fundamental parameters of the lepton flavour
sector of the Standard Model. The mass eigenstates can be expressed in terms of
the weak eigenstates using the unitarity of the PMNS matrix that implies U−1 =

U† ≡ (U∗)T and hence
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ν1

ν2

ν3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

U∗e1 U∗µ1 U∗τ1
U∗e2 U∗µ2 U∗τ2
U∗e3 U∗µ3 U∗τ3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

νe

νµ
ντ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The unitarity condition, UU† = I, also implies that
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3
Uτ1 Uτ2 Uτ3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

U∗e1 U∗µ1 U∗τ1
U∗e2 U∗µ2 U∗τ2
U∗e3 U∗µ3 U∗τ3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
0 1 0
0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

which gives nine relations between the elements of the PMNS matrix, for example

Ue1U∗e1 + Ue2U∗e2 + Ue3U∗e3 = 1, (13.18)

Ue1U∗µ1 + Ue2U∗µ2 + Ue3U∗µ3 = 0. (13.19)

Now consider the neutrino state that is produced in a charged-current weak inter-
action along with an electron, as indicated in Figure 13.13. The neutrino, which
enters the weak interaction vertex as the adjoint spinor, corresponds to a coherent
linear superposition of mass eigenstates with a wavefunction at time t = 0 of

|ψ(0)⟩ = |νe⟩ ≡ U∗e1|ν1⟩ + U∗e2|ν2⟩ + U∗e3|ν3⟩.

The time evolution of the wavefunction is determined by the time evolution of the
mass eigenstates and can be written as

|ψ(x, t)⟩ = U∗e1|ν1⟩e−iφ1 + U∗e2|ν2⟩e−iφ2 + U∗e3|ν3⟩e−iφ3 ,

where as before φi = pi·xi = (Eit−pi·x) is the phase of the plane wave representing
each mass eigenstate. The subsequent charged-current weak interactions of the
neutrino can be described in terms of its weak eigenstates by writing

|ψ(x, t)⟩ = U∗e1(Ue1|νe⟩ + Uµ1|νµ⟩ + Uτ1|ντ⟩)e−iφ1

+ U∗e2(Ue2|νe⟩ + Uµ2|νµ⟩ + Uτ2|ντ⟩)e−iφ2

+ U∗e3(Ue3|νe⟩ + Uµ3|νµ⟩ + Uτ3|ντ⟩)e−iφ3 . (13.20)

Because the neutrino appears as the spinor in the weak interaction vertex producing
a charged lepton, the mass eigenstates are expressed in terms of the elements of the
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!Fig. 13.14 The processes and elements of the PMNS that contribute to νe → νµ oscillations.

PMNS matrix and not its complex conjugate. It should be noted that the weak
states (νe, νµ and ντ) in (13.20) really refer to the flavour of the lepton produced
in a subsequent charged-current weak interaction of the neutrino. Gathering up the
terms for each weak eigenstate, Equation (13.20) can be written

|ψ(x, t)⟩ = (U∗e1Ue1e−iφ1 + U∗e2Ue2e−iφ2 + U∗e3Ue3e−iφ3 )|νe⟩
(U∗e1Uµ1e−iφ1 + U∗e2Uµ2e−iφ2 + U∗e3Uµ3e−iφ3 )|νµ⟩
(U∗e1Uτ1e−iφ1 + U∗e2Uτ2e−iφ2 + U∗e3Uτ3e−iφ3 )|ντ⟩. (13.21)

This can be expressed in the form |ψ(x, t)⟩ = ce|νe⟩ + cµ|νµ⟩ + cτ|ντ⟩, from which
the oscillation probabilities can be obtained, for example

P(νe → νµ) = |⟨νµ|ψ(x, t)⟩|2 = cµc∗µ
= |U∗e1Uµ1e−iφ1 + U∗e2Uµ2e−iφ2 + U∗e3Uµ3e−iφ3 |2. (13.22)

This expression can be understood as the magnitude squared of the sum of the
diagrams shown in Figure 13.14, taking into account the relative phase differences
that develop over the propagation distance. The oscillation probabilities are defined
in terms of the flavours of the charged leptons produced in the weak interactions
and the relevant PMNS matrix elements. If the phases were all the same, then the
complex conjugate of the unitarity relation of (13.19), U∗e1Uµ1+U∗e2Uµ2+U∗e3Uµ3 =
0, would imply P(νe → νµ) = 0 and, as before, neutrino flavour oscillations only
occur if the neutrinos have mass, and the masses are not all the same.

Equation (13.22) can be simplified using the complex number identity,

|z1 + z2 + z3|2 ≡ |z1|2 + |z2|2 + |z3|2 + 2Re{z1z∗2 + z1z∗3 + z2z∗3}, (13.23)
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giving

P(νe → νµ) = |U∗e1Uµ1|2 + |U∗e2Uµ2|2 + |U∗e3Uµ3|2 + 2Re{U∗e1Uµ1Ue2U∗µ2e−i(φ1−φ2)}
+ 2Re{U∗e1Uµ1Ue3U∗µ3e−i(φ1−φ3)} + 2Re{U∗e2Uµ2Ue3U∗µ3e−i(φ2−φ3)}.

(13.24)

This can be simplified further by applying the identity (13.23) to the modulus
squared of the complex conjugate of the unitarity relation of (13.19), which gives

|U∗e1Uµ1|2 + |U∗e2Uµ2|2 + |U∗e3Uµ3|2+
2Re{U∗e1Uµ1Ue2U∗µ2 + U∗e1Uµ1Ue3U∗µ3 + U∗e2Uµ2Ue3U∗µ3} = 0,

and thus, (13.24) can be written as

P(νe → νµ) = 2Re{U∗e1Uµ1Ue2U∗µ2[ei(φ2−φ1) − 1]}
2Re{U∗e1Uµ1Ue3U∗µ3[ei(φ3−φ1) − 1]}
2Re{U∗e2Uµ2Ue3U∗µ3[ei(φ3−φ2) − 1]}. (13.25)

The electron neutrino survival probability P(νe → νe) can be obtained in a similar
manner starting from (13.24) and using the unitarity relation of (13.18). In this
case, each element of the PMNS matrix is paired with the corresponding complex
conjugate, e.g. Ue1U∗e1, and the combinations of PMNS matrix elements give real
numbers. Therefore, the electron neutrino survival probability is

P(νe → νe) = 1 + 2|Ue1|2|Ue2|2Re{[ei(φ2−φ1) − 1]}
+ 2|Ue1|2|Ue3|2Re{[ei(φ3−φ1) − 1]}
+ 2|Ue2|2|Ue3|2Re{[ei(φ3−φ2) − 1]}. (13.26)

Equation (13.26) can be simplified by noting

Re{ei(φ j−φi) − 1} = cos(φ j − φi) − 1 = −2 sin2
(
φ j − φi

2

)
= −2 sin2 ∆ ji,

where ∆ ji is defined as

∆ ji =
φ j − φi

2
=

(m2
j − m2

i )L

4Eν
.

Hence, (13.26) can be written

P(νe → νe) = 1 − 4|Ue1|2|Ue2|2 sin2 ∆21

− 4|Ue1|2|Ue3|2 sin2 ∆31 − 4|Ue2|2|Ue3|2 sin2 ∆32. (13.27)
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The electron neutrino survival probability depends on three differences of
squared masses, ∆m2

21 = m2
2 −m2

1, ∆m2
31 = m2

3 −m2
1 and ∆m2

32 = m2
3 −m2

2. Only two
of these differences are independent and ∆31 can be expressed as

∆31 = ∆32 + ∆21. (13.28)

Before using the above formulae to describe the experimental data, it is worth dis-
cussing the current knowledge of neutrino masses, the nature of the PMNS matrix
and the discrete symmetries related to the neutrino oscillation phenomena, includ-
ing the possibility of CP violation.

13.5.1 Neutrino masses and the neutrino mass hierarchy

Since the neutrino oscillation probabilities depend on differences of the squared
neutrino masses, the experimental measurements of neutrino oscillations do not
constrain the overall neutrino mass scale. To date, there are no direct measure-
ments of neutrino masses, only upper limits. From studies of the end point of the
electron energy distribution in the nuclear β-decay of tritium, it is known that the
mass of the lightest neutrino is # 2 eV. Tighter, albeit model-dependent, limits can
be obtained from cosmology. The density of low-energy relic neutrinos from the
Big Bang is large, O(100) cm−3 for each flavour. Consequently, neutrino masses
potentially impact the evolution of the Universe. From recent cosmological mea-
surements of the large-scale structure of the Universe, it can be deduced that

3∑

i=1

mνi # 1 eV.

Whilst the neutrino masses are not known, it is clear that they are much smaller
than those of either the charged leptons or the quarks. Even with neutrino masses
at the eV scale, they are smaller by a factor of at least 106 than the mass of the
electron and smaller by a factor of at least 109 than the mass of the tau-lepton. The
current hypothesis for this large difference, known as the seesaw mechanism, is
discussed in Chapter 17.

The results of recent neutrino oscillation experiments, which are described in
Sections 13.7 and 13.8, provide determinations of differences of the squares of the
neutrino masses

∆m2
21 = m2

2 − m2
1 ≈ 8 × 10−5 eV2,

|∆m2
32| = |m2

3 − m2
2| ≈ 2 × 10−3 eV2.

Regardless of the absolute mass scale of the lightest neutrino, there are two possible
hierarchies for the neutrino masses, shown in Figure 13.15. In the normal hierar-
chy m3 > m2 and in the inverted mass hierarchy m3 < m2. Current experiments
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are not sensitive enough to distinguish between these two possibilities. However,
regardless of the hierarchy, because ∆m2

21 ≪ |∆m2
32| in most circumstances it is

reasonable to make the approximation

|∆m2
31| ≈ |∆m2

32|.

13.5.2 CP violation in neutrino oscillations

The V − A chiral structure of the weak charged-current implies that parity is max-
imally violated. It also implies that charge-conjugation symmetry is maximally
violated. This can be seen by considering the weak decay π− → µ−νµ. Because
neutrino masses are extremely small compared to the energies involved, the antineu-
trino is effectively always emitted in a RH helicity state, as shown in Figure 13.16a.
The effect of the parity operator, shown in Figure 13.16b, is to reverse the parti-
cle momenta leaving the particle spins (axial-vectors) unchanged. The result of the
parity transformation is a final state with a LH antineutrino, for which the weak
charged-current matrix element is zero.

The effect of the charge conjugation operator Ĉ is to replace particles by their
antiparticles and vice versa, is shown in Figure 13.16c. Charge conjugation results
in a RH neutrino in the final state. Since only LH particle states participate in the
weak interaction, the matrix element for this process is also zero. Thus the weak
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interaction maximally violates charge-conjugation symmetry. The combined effect
of C and P, shown in Figure 13.16d, results in a valid weak decay involving a
LH neutrino. For this reason it is plausible that the weak interaction respects the
combined CP symmetry.

It is known that CP violation is needed to account for the excess of matter over
antimatter in the Universe today (see Chapter 14). Since the QED and QCD inter-
actions conserve C and P separately, and therefore conserve CP, the only possible
place in the Standard Model where CP-violating effects can occur is in the weak
interaction.

Time reversal symmetry and CPT
Parity is a discrete symmetry operation corresponding to x → −x. Similarly, time
reversal is a discrete symmetry operation that has the effect t → −t. Following the
arguments of Chapter 11, it should be clear that the vector nature of the QED
and QCD interactions, implies that the matrix elements of QED and QCD are
invariant under time reversal. More generally, all local Lorentz-invariant Quantum
Field Theories can be shown to be invariant under the combined operation of C, P
and T. One consequence of this CPT symmetry is that particles and antiparticles
have identical masses, magnetic moments, etc. The best experimental limit on CPT
invariance comes from the equality of the masses of the flavour eigenstates of the
neutral kaons, K0(ds) and K0(sd), where

|m(K0) − m(K0)|
m(K0)

< 10−18.

CPT is believed to be an exact symmetry of the Universe. This implies that, if
physics is unchanged by the combined operation of C and P, then time reversal
symmetry also holds. The corollary is that CP violation implies that T reversal
symmetry is also violated and vice versa.

CP and T violation in neutrino oscillations
It is instructive to consider the effects of the discrete symmetry transformations,
CP, T and CPT, in the context of neutrino oscillations. If time reversal symmetry
applies, then the oscillation probability for P(νe → νµ) will be equal to P(νµ → νe).
The oscillation probability P(νe → νµ) is given by (13.25)

P(νe → νµ) = 2Re{U∗e1Uµ1Ue2U∗µ2[ei(φ2−φ1) − 1]} + · · · . (13.29)

The corresponding expression for the oscillation probability P(νµ → νe) is obtained
by swapping the e and µ labels

P(νµ → νe) = 2Re{U∗µ1Ue1Uµ2U∗e2[ei(φ2−φ1) − 1]} + · · · .



349 13.5 Neutrino oscillations of three flavours

The elements of the PMNS matrix that appear in the expression for P(νµ → νe) are
the complex conjugates of those in the expression for P(νe → νµ). Hence, unless
all elements Uei and Uµ j are real, time reversal symmetry does not necessarily hold
in neutrino oscillations, which in turn implies the possibility of CP violation.

The effect of the CP operation on νe → νµ flavour transformations is

νe → νµ
ĈP̂−→ νe → νµ,

where C transforms particles in to antiparticles and P ensures that the LH neutri-
nos transform to RH antineutrinos. The oscillation probability P(νe → νµ) can be
obtained from that for P(νe → νµ) by noting that whether the element of the PMNS
matrix appears as U or U∗ depends on whether the neutrino appears as the spinor
or adjoint spinor in the weak interaction vertex (see Section 13.3.1). Consequently

P(νe → νµ) = 2Re{Ue1U∗µ1U∗e2Uµ2[ei(φ2−φ1) − 1]} + · · · .
Again, unless all the elements Uei and Uµ j are real, P(νe → νµ) ! P(νe → νµ), and
CP can be violated in neutrino oscillations. Finally, consider the combined CPT
operation

νe → νµ
ĈP̂T̂−→ νµ → νe,

where the effect of time reversal swaps the e and µ labels and the effect CP is to
exchange U ↔ U∗ and therefore

P(νµ → νe) = 2Re{Uµ1U∗e1U∗µ2Ue2[ei(φ2−φ1) − 1]} + · · · = P(νe → νµ).

As expected, neutrino oscillations are invariant under the combined action of CPT.
The imaginary components of the PMNS matrix, provide a possible source of

CP violation in the Standard Model. The relative magnitude of the CP violation in
neutrino oscillations is given by P(νe → νµ) − P(νe → νµ). This can be shown to
be (see Problem 13.4)

P(νe → νµ) − P(νe → νµ) = 16Im{U∗e1Uµ1Ue2U∗µ2} sin∆12 sin∆13 sin∆23.

(13.30)

With the current experimental knowledge of the PMNS matrix elements, it is known
that the difference P(νe → νµ) − P(νe → νµ) is at most a few percent. CP violat-
ing effects in neutrino oscillations are small and are beyond the sensitivity of the
current generation of experiments.

The PMNS matrix
In the Standard Model, the unitarity PMNS matrix can be described in terms of
three real parameters and a single phase. The reasoning is subtle. A general 3 × 3
matrix can be described by nine complex numbers. The unitarity of the PMNS
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matrix, UU† = I, provides nine constraints, leaving nine independent parameters.
If the PMNS matrix were real, it would be correspond to the orthogonal rotation
matrix R and could be described by three rotation angles, θ12, θ13 and θ23

R =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
0 c23 s23

0 −s23 c23

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠ ×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

c13 0 s13

0 1 0
−s13 0 c13

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠ ×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

c12 s12 0
−s12 c12 0

0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (13.31)

where si j = sin θi j and ci j = cos θi j. In this form θ12 is the angle of rotation about
the three-axis, θ13 is the angle of rotation about the new two-axis, and θ23 is a
rotation about the resulting one-axis.

Since the PMNS matrix is unitary, not real, there are six additional degrees of
freedom that appear as complex phases of the form exp (iδ). It turns out that not all
of these phases are physically relevant. This can be seen by writing the currents for
the possible leptonic weak interaction charged-current vertices as

−i gW√
2

( e, µ, τ ) γ µ 1
2 (1 − γ5)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3
Uτ1 Uτ2 Uτ3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ν1

ν2

ν3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠ .

These four-vector currents are unchanged by the transformation,

ℓα → ℓαeiθα , νk → νkeiθk and Uαk → Uαkei(θα−θk), (13.32)

where ℓα is the charged lepton of type α = e, µ, τ. Hence, it might appear that the
six complex phases in the PMNS matrix can be absorbed into the definitions of
the phases of the neutrino and charged leptons without any physical consequences.
This is not the case because an overall phase factor in the PMNS matrix multiplying
all elements has no physical consequence. For this reason, it is possible to pull out
a common phase U → Ueiθ. In this way all phases can be defined relative to,
for example, the phase of the electron θe such that θk = θe + θ′k. In this case the
transformation of (13.32) becomes

ℓα → ℓαei(θe+θ′α), νk → νkei(θe+θ′k) and Uαk → Uαkei(θ′α−θ′k),

from which it can be seen that only five phases of the PMNS matrix can be absorbed
into the definition of the particles since θ′e = 0 and the common phase eiθe has no
physical consequences. Hence the PMNS matrix can be expressed in terms of three
mixing angles, θ12, θ23 and θ13 and a single complex phase δ.

The PMNS matrix is usually written as

UPMNS =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3
Uτ1 Uτ2 Uτ3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
0 c23 s23

0 −s23 c23

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

c13 0 s13e−iδ

0 1 0
−s13eiδ 0 c13

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

c12 s12 0
−s12 c12 0

0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠ .
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This form is particularly convenient because θ13 is known to be relatively small and
thus the central matrix is almost diagonal. The individual elements of the PMNS
matrix, obtained from the matrix multiplication, are

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3
Uτ1 Uτ2 Uτ3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13

s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠ .

(13.33)

It is worth noting that, in the two-flavour treatment of neutrino oscillations, the
general form of the unitary transformation between weak and mass eigenstates has
four parameters, a rotation angle and three complex phases. But, all three com-
plex phases can be absorbed into the definitions of the particles, and the resulting
matrix depends on a single angle, as assumed in (13.6). In this case the matrix is
entirely real and therefore cannot accommodate the CP violation. Hence CP viola-
tion originating from the PMNS matrix occurs only for three or more generations
of leptons.

13.6 Neutrino oscillation experiments

Early experimental results on neutrino oscillations were obtained from studies of
solar neutrinos and the neutrinos produced in cosmic-ray-induced cascades in the
atmosphere. More recent results have been obtained from long-baseline neutrino
oscillation beam experiments and from the study of electron antineutrinos from
nuclear fission reactors. There are two possible signatures for neutrino oscilla-
tions. Firstly neutrino oscillations can result in the appearance of “wrong” flavour
charged leptons, for example the observation of e− and/or τ− from an initially pure
beam of νµ. Alternatively, neutrino oscillations can be observed as the disappear-
ance of the “right” flavour charged lepton, where fewer than expected µ− are pro-
duced from an initially pure νµ beam.

13.6.1 Neutrino interaction thresholds

The observable experimental effects resulting from neutrino oscillations depend on
the type of neutrino interactions that are detectable. Neutrinos can be detected in
matter through their charged-current and neutral-current weak interactions, either
with atomic electrons or with nucleons, as shown in Figure 13.17. Unless kinemat-
ically forbidden, interactions with nucleons will dominate, since the neutrino inter-
action cross sections are proportional to the centre-of-mass energy squared, s ≈
2mEν, where m is the mass of the target particle (see for example, Section 12.3).
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!Fig. 13.17 The Feynman diagrams for CC and NC neutrino interactions in matter. Forνe there is also an s-channel process,
νee− → νee−.

Whether an appearance signal can be observed depends on whether the interac-
tion is kinematically allowed. Charged-current neutrino interactions are allowed if
the centre-of-mass energy is sufficient to produce a charged lepton and the final-
state hadronic system. The threshold is determined by the lowest W2 process,
νℓn → ℓ−p. In the laboratory frame, where the neutron is at rest, the centre-of-
mass energy squared is given by

s = (pν + pn)2 = (Eν + mn)2 − E2
ν = 2Eνmn + m2

n.

The νℓn→ ℓ−p interaction is only kinematically allowed if s > (mℓ + mp)2,

Eν >
(m2

p − m2
n) + m2

ℓ + 2mpmℓ

2mn
.

From this expression, the laboratory frame neutrino threshold energies for charged-
current interactions with a nucleon are

Eνe > 0, Eνµ > 110 MeV and Eντ > 3.5 GeV.

For electron neutrinos with energies of order a few MeV, the nuclear binding energy
also has to be taken into account.

Charged-current interactions with an atomic electron νℓe− → νeℓ− are kinemat-
ically allowed if s > m2

ℓ , where mℓ is the mass of the final-state charged lepton. In
the laboratory frame

s = (pν + pe)2 = (Eν + me)2 − E2
ν = 2Eνme + m2

e ,

and hence

Eν >
m2
ℓ − m2

e

2me
,

leading to laboratory frame thresholds for charged-current νe− scattering of

Eνe > 0, Eνµ > 11 GeV and Eντ > 3090 GeV.

Consequently, for the neutrino energies encountered in most experiments, interac-
tions with atomic electrons are relevant only for electron neutrinos/antineutrinos.
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13.7 Reactor experiments

Nuclear fission reactors produce a large flux of electron antineutrinos from the β-
decays of radioisotopes such as 235U, 238U, 239Pu and 241Pu, which are produced
in nuclear fission. The mean energy of the reactor antineutrinos is about 3 MeV
and the flux is known precisely from the power produced by the reactor (which is
closely monitored). The νe can be detected through the inverse β-decay process,

νe + p→ e+ + n.

If the νe oscillate to other neutrino flavours, they will not be detected since the
neutrino energy is well below threshold to produce a muon or tau-lepton the final
state. Hence it is only possible to observe the disappearance of reactor νe. The νe

survival probability is given by (13.27), which with the approximation ∆31 ≈ ∆32

becomes

P(νe → νe) ≈ 1 − 4|Ue1|2|Ue2|2 sin2 ∆21 − 4|Ue3|2
[
|Ue1|2 + |Ue2|2

]
sin2 ∆32.

Using the unitarity relation of (13.18), this can be written as

P(νe → νe) ≈ 1 − 4|Ue1|2|Ue2|2 sin2 ∆21 − 4|Ue3|2
[
1 − |Ue3|2

]
sin2 ∆32, (13.34)

which can be expressed in terms of the PMNS matrix elements of (13.33) as

P(νe → νe)=1 − 4(c12c13)2(s12c13)2 sin2 ∆21 − 4s2
13(1 − s2

13) sin2 ∆32

=1 − cos4(θ13) sin2(2θ12) sin2
⎛
⎜⎜⎜⎜⎝
∆m2

21L

4Eν

⎞
⎟⎟⎟⎟⎠ − sin2(2θ13) sin2

⎛
⎜⎜⎜⎜⎜⎝
∆m2

32L

4Eν

⎞
⎟⎟⎟⎟⎟⎠ .

(13.35)

Figure 13.18 shows the expected νe survival probability assuming θ12 = 30◦, θ23 =

45◦, θ13 = 10◦ and

∆m2
21 = 8 × 10−5 eV2 and ∆m2

32 = 2.5 × 10−3 eV2.

The oscillations occur on two different length scales. The short wavelength com-
ponent, which depends on ∆m2

32, oscillates with an amplitude of sin2(2θ13) about
the longer wavelength component, with wavelength determined by ∆m2

21. Hence,
measurements of the νe survival probability at distances of O(1) km are sensitive to
θ13 and measurements at distances of O(100) km are sensitive to ∆m2

21 and θ12.

13.7.1 The short-baseline reactor experiments

Close to a fission reactor, where the long wavelength contribution to neutrino oscil-
lations has yet to develop, the electron antineutrino survival probability of (13.35)
can be approximated by
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!Fig. 13.18 The P(νe → νe) survival probability as a function of distance for 3 MeV νe assuming θ13 = 10◦.

P(νe → νe) ≈ 1 − sin2(2θ13) sin2

⎛
⎜⎜⎜⎜⎜⎝
∆m2

32L

4Eν

⎞
⎟⎟⎟⎟⎟⎠ . (13.36)

Until recently, such short-baseline neutrino oscillations had not been observed, and
θ13 only was known to be small. The first conclusive observations of a non-zero
value of θ13 were published in 2012.

The Daya Bay experiment in China detects neutrinos from six reactor cores each
producing 2.9 GW of power. The experiment consists of six detectors, two at a
mean flux-weighted distance of 470 m from the reactors, one at 576 m and three
at 1.65 km. Each detector consists of a large vessel containing 20 tons of liquid
scintillator loaded with gadolinium. The vessels are viewed by arrays of photo-
multiplier tubes. Electron antineutrinos are detected by the inverse β-decay reac-
tion νe + p→ e+ + n. The subsequent annihilation of the positron with an electron
gives two prompt photons. The low-energy neutron scatters in the liquid scintilla-
tor until it is captured by a gadolinium nucleus. The neutron capture, which occurs
on a timescale of 100 µs, produces photons from n + Gd → Gd∗ → Gd + γ. The
photons from both the annihilation process and neutron capture produce Compton
scattered electrons. These electrons then ionise the liquid scintillator producing
scintillation light. The signature for a νe interaction is therefore the coincidence of
a prompt pulse of scintillation light from the annihilation and a delayed pulse from
the neutron capture 10–100 µs later. The observed amount of prompt light provides
a measure of the neutrino energy.

The signal for neutrino oscillations at Daya Bay is a deficit of antineutrinos
that depends on the distance from the reactors and a distortion of the observed
e+ energy spectrum. By comparing the data recorded in the three far detectors
at 1.65 km from the reactors, with the data from the three near detectors, many
systematic uncertainties cancel. In the absence of neutrino oscillations, the rates
in the near and far detectors will be compatible and the same energy distribution
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!Fig. 13.19 Left: the observed antineutrino rates in the Daya Bay experiment scaled to the expectation for no oscilla-
tions, plotted as a function of the flux-weighted distance to the reactors. Right: the observed background-
subtracted e+ energy spectrum in the far detectors compared to the corresponding scaled distributions from
the near detectors. Adapted from An et al. (2012).

will be observed in all detectors. The left-hand plot of Figure 13.19 shows the
observed background-subtracted rates in the near and far detectors relative to the
unoscillated expectation. The results show a clear deficit of events compared to
the unoscillated expectation and this deficit increases with the distance from the
reactors. Accounting for scaling of the fluxes with distance, the observed ratio of
far/near rates is

Nfar/Nnear = 0.940 ± 0.012.

The right-hand plot of Figure 13.19 shows the observed e+ energy spectrum in the
far detectors compared to that in the near detectors, scaled to the same integrated
neutrino flux. A clear difference is observed, with the maximum deficit in the far
detectors occurring in the 2–4 MeV range, consistent with neutrino oscillations
with the known value of ∆m2

32 = 2.3 × 10−3 eV2 (see Section 13.8). The observed
ratio of far-to-near event rates gives sin2(2θ13) = 0.092 ± 0.017.

Recent results from the RENO reactor experiment in South Korea, which is
similar in design to the Daya Bay experiment, also show a deficit of electron
antineutrinos, compatible with sin2(2θ13) = 0.113 ± 0.023, see Ahn et al. (2012).
Based on the initial Daya Bay and RENO results, it can be concluded that

sin2(2θ13) ≃ 0.10 ± 0.01.

Further, albeit less significant, evidence for a non-zero value of θ13 has been pro-
vided by the Double-Chooz, MINOS and T2K experiments.
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13.7.2 The KamLAND experiment

The KamLAND experiment, located in the same mine as the Super-Kamiokande
experiment, detected νe from a number of reactors (with a total power 70 GW)
located at distances in the range 130–240 km from the detector. The KamLAND
detector consisted of a large volume of liquid scintillator surrounded by almost
1800 PMTs. Antineutrinos are again detected by the inverse β-decay reaction,
νe + p → e+ + n, giving a prompt signal from the positron annihilation followed
by a delayed signal from the 2.2 MeV photon produced from the neutron capture
reaction, n + p → D + γ. At the distances relevant to the KamLAND experiment,
the L/E dependence of the rapid oscillations due to the ∆m2

32 term in (13.35) is not
resolved because the neutrino sources (the reactors) are not at a single distance L
and also because the energy resolution is insufficient to resolve the rapid neutrino
energy dependence. Consequently, only the average value of

⟨sin2 ∆32⟩ = 1
2 ,

is relevant. Therefore the survival probability of (13.35) can be written

P(νe → νe) = 1 − cos4(θ13) sin2(2θ12) sin2 ∆21 − 1
2 sin2(2θ13)

= cos4(θ13) + sin4(θ13) − cos4(θ13) sin2(2θ12) sin2 ∆21.

Neglecting the sin4(θ13) term, which is small (< 0.001), gives

P(νe → νe) ≈ cos4(θ13)
⎡
⎢⎢⎢⎢⎣1 − sin2(2θ12) sin2

⎛
⎜⎜⎜⎜⎝
∆m2

21L

4Eν

⎞
⎟⎟⎟⎟⎠
⎤
⎥⎥⎥⎥⎦ . (13.37)

Hence, the effective survival probability for reactor neutrinos at large distances has
the same form as the two-flavour oscillation formula multiplied by cos4(θ13) ≈
0.95.

The KamLAND experiment observed 1609 reactor νe interactions compared
to the expectation of 2179±89 in the absence of neutrino oscillations. For each
event, a measurement of the neutrino energy was obtained from the amount of
light associated with the prompt scintillation signal from the positron annihilation.
By comparing the energy distribution of the observed data with the expected dis-
tribution, the survival probability can be plotted as a function of L0/Eν, where
L0 = 180 km is the flux-weighted average distance to the reactors contributing to
νe interactions in KamLAND, as shown in Figure 13.20. The range of L/E sam-
pled is determined by the energies of the neutrinos produced in nuclear reactors,
∼2−7 MeV. The data show a clear oscillation signal with a decrease and subsequent
rise in the mean oscillation probability. The measured distribution can be compared
to the expectation of (13.37) after accounting for the experimental energy resolu-
tion and range of distances sampled, which smears out the effect of the oscillations.
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!Fig. 13.20 KamLAND data showing the measured mean survival probability as a function of the measured neutrino
energy divided by the flux-weighted mean distance to the reactors, L0. The histogram shows the expected
distribution for the oscillation parameters that best describe the data. Adapted from Abe et al. (2008).

The location of the minimum at L0/Eνe ∼ 50 km MeV−1 provides a tight constraint
on ∆m2

21 = m2
2 − m2

1,

∆m2
21 = (7.6 ± 0.2) × 10−5 eV2.

A measurement of the mixing angle θ12 can also be obtained, which when com-
bined with the more precise determination from the solar neutrino data of SNO
(see Section 13.2) gives

sin2(2θ12) = 0.87 ± 0.04.

13.8 Long-baseline neutrino experiments

In recent years, intense accelerator-based neutrino beams, produced in a similar
manner to that described in Section 12.2, have been used to study neutrino oscilla-
tions. One advantage of a neutrino beam experiment is that the energy spectrum can
be tailored to a specific measurement. Long-baseline neutrino oscillation experi-
ments typically use two detectors, one sufficiently close to the source of the beam
to allow a measurement of the unoscillated neutrino energy spectrum, and one far
from the source to measure the oscillated spectrum. The use of a near and far
detector means that many systematic uncertainties cancel, allowing precise mea-
surements to be made.
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13.8.1 The MINOS experiment

The MINOS long-baseline neutrino oscillation experiment uses an intense 0.3 MW
beam of muon neutrinos produced at Fermilab near Chicago. The neutrino energy
spectrum is concentrated in the range 1–5 GeV and peaks at 3 GeV. The 1000 ton
MINOS near detector is located 1 km from the source and the 5400 ton MINOS far
detector is located in a mine in Northern Minnesota, 735 km from the source. The
detectors are relatively simple, consisting of planes of iron, which provide the bulk
of the mass, interleaved with planes of 4 cm wide strips of plastic scintillator. When
a charged particle traverses the scintillator, light is produced. This scintillation light
is transmitted to small PMTs using optical fibres that are embedded in the scintil-
lator. The detector is magnetised to enable the measurement of the momentum of
muons produced in νµN → µ−X interactions from their curvature. The amount of
scintillation light gives a measure of the energy of the hadronic final state X pro-
duced in the interaction. Hence, on an event-by-event basis, the neutrino energy is
reconstructed, Eν = Eµ + EX . An example of a neutrino interaction in the MINOS
detector is shown in Figure 13.21.

MINOS studied the neutrino oscillations of an almost pure νµ beam. Because
θ13 is relatively small, νµ → ντ oscillations dominate. Since L is fixed, the oscilla-
tions are observed as a distortion of the energy spectrum. It is found that the first
maximum of the oscillation probability occurs at 1.3 GeV. Despite the fact that
the oscillations are dominated by νµ → ντ, most of the oscillated ντ are below
threshold for producing a tau-lepton and therefore MINOS makes a disappearance
measurement of |∆m2

32| and θ32. With the approximation ∆31 ≈ ∆32, the νµ → νµ
survival probability is given by (13.34) with the Uei replaced by Uµi,

P(νµ → νµ) ≈ 1 − 4|Uµ1|2Uµ2|2 sin2 ∆21 − 4|Uµ3|2(1 − |Uµ3|2) sin2 ∆32.

X

20 4 6
z/m

νm

m-

!Fig. 13.21 Aνµ charged-current weak interaction,νµN→ µ−X , in the MINOS detector. The sizes of the circles indicate
the amount of light recorded in the scintillator strips. The muon momentum is determined from the curvature
in the magnetic field and the energy of the hadronic system from the amount of light close to the interaction
vertex.
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!Fig. 13.22 Left: the MINOS far detector energy spectrum compared to the unoscillated prediction (dashed). Right: the
oscillation probability as measured from the ratio of the far detector data to the unoscillated prediction.
Adapted from Adamson et al. (2011).

For the MINOS experiment, with L = 735 km and Eν > 1 GeV, the contribution
to the oscillation probability from the long wavelength component associated with
∆21 can be neglected and therefore

P(νµ → νµ) ≈ 1 − 4|Uµ3|2(1 − |Uµ3|2) sin2 ∆32.

Using the parameterisation of the PMNS matrix given in (13.33), this can be written

P(νµ → νµ) = 1 − 4 sin2(θ23) cos2(θ13)
[
1 − sin2(θ23) cos2(θ13)

]
sin2 ∆32

= 1 −
[
sin2(2θ23) cos4(θ13) + sin2(2θ13) sin2(θ23)

]
sin2 ∆32

≈ 1 − A sin2

⎛
⎜⎜⎜⎜⎜⎝
∆m2

32L

4Eν

⎞
⎟⎟⎟⎟⎟⎠ , (13.38)

where A = sin2(2θ23) cos4(θ13)+sin2(2θ13) sin2(θ23). Because θ13 is relatively small
the dominant term in the amplitude of the oscillations is from sin2(2θ23) cos4(θ13).

By comparing the energy spectrum of charged-current neutrino interactions in
the near and far detectors, MINOS directly measures the oscillation probability
as a function of Eν. Figure 13.22 shows the measured far detector energy spec-
trum compared to the expected spectrum for no oscillations, determined from the
unoscillated near detector data. A clear deficit of neutrinos is observed at low ener-
gies, where the oscillation probability is highest. The right plot of Figure 13.22
shows the ratio of the measured far detector energy spectrum to the expectation
without neutrino oscillations that is obtained from the near detector data. This pro-
vides a direct measurement of the survival probability P(νµ → νµ), albeit slightly
smeared out by the experimental energy resolution. The position of the minimum
in the measured oscillation curve at Eν ∼ 1.5 GeV determines
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|∆m2
32| = (2.3 ± 0.1) × 10−3 eV2.

The measured amplitude of the oscillations provides a measure of the parameter A,
which, by using the known value of θ13, provides a constraint on the mixing angle

sin2(2θ23) " 0.90.

A slightly tighter constraint is obtained from the analysis of atmospheric neutrinos
in the Super-Kamiokande detector.

13.9 The global picture

For reasons of space, it has only been possible to describe a few notable exper-
iments that provide an illustration of the main experimental techniques used to
study neutrino oscillations; there are other experiments. For example, the CERN
to Gran Sasso neutrino experiment (CNGS) is searching for νµ → ντ appear-
ance. At the time of writing, two candidate ντ interactions have been observed
in the OPERA detector of the CNGS experiment. Furthermore, the T2K experi-
ment in Japan is studying νµ disappearance and νµ → νe appearance in an intense
beam.

When the results from all experiments are taken together, a detailed picture of
the properties of neutrinos emerges. The existence of neutrino oscillations implies
that the neutrinos have mass, even if the masses are very small. The differences of
the squares of the neutrino masses have been measured to better than 5% by the
KamLAND and MINOS experiments,

m2
2 − m2

1 = (7.6 ± 0.2) × 10−5 eV2,

|m2
3 − m2

2| = (2.3 ± 0.1) × 10−3 eV2.

Three of the four parameters of the PMNS matrix, describing the lepton flavour
sector of the Standard Model, have been determined. From the recent results of the
SNO, KamLAND, Super-Kamiokande, MINOS, Daya Bay, RENO and Double-
Chooz experiments it is known that

sin2(2θ12) = 0.87 ± 0.04,

sin2(2θ23) > 0.92,

sin2(2θ13) ≈ 0.10 ± 0.01.

From the above measurements, the magnitudes of the elements of PMNS matrix
are determined to be approximately
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

|Ue1| |Ue2| |Ue3|
|Uµ1| |Uµ2| |Uµ3|
|Uτ1| |Uτ2| |Uτ3|

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠ ∼

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.85 0.50 0.17
0.35 0.60 0.70
0.35 0.60 0.70

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (13.39)

The final parameter of the PMNS matrix, the phase δ, is not yet known. The focus
of the next generation of experiments will be to measure this phase and thus estab-
lish whether CP is violated in leptonic weak interactions.

Summary

The νe, νµ and ντ are not fundamental particle states, but are mixtures of the mass
eigenstates, ν1, ν2 and ν3. The relationship between the weak and mass eigenstates
is determined by the unitary PMNS matrix

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

νe

νµ
ντ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3
Uτ1 Uτ2 Uτ3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ν1

ν2

ν3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠ .

The PMNS matrix can be expressed in terms of four fundamental parameters of
the Standard Model; three rotation angles, θ12, θ13 and θ23, and a complex phase δ
that admits the possibility of CP violation in the leptonic sector.

Neutrinos propagate as coherent linear superpositions of the mass eigenstates,
for example

|νe⟩ = Ue1|ν1⟩e−iφ1 + Ue2|ν2⟩e−iφ2 + Ue3|ν3⟩e−iφ3 .

If m(ν1) ! m(ν2) ! m(ν3), phase differences develop between the different compo-
nents, giving rise to the observable effect of neutrino oscillations, with oscillation
probabilities of the form

P(νe → νµ) = sin2(2θ) sin2
(
1.27
∆m2[eV2]L[km]

Eν[GeV]

)
.

The study of neutrino oscillations provides a determination of the differences in the
squares of the neutrino masses

m2
2 − m2

1 ≈ 7.6 × 10−5 eV2 and |m2
3 − m2

2| ≈ 2.3 × 10−3 eV2,

and measurements of the mixing angles of the PMNS matrix

θ12 ≈ 35◦, θ23 ≈ 45◦ and θ13 ≈ 10◦.
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Problems

13.1 By writing p1 = βE1 and p2 = βE2, and assuming β1 = β2 = β, show that Equation (13.13) reduces to
(13.12), i.e.

∆φ12 = (E1 − E2)
[

T −
(

E1 + E2

p1 + p1

)
L
]
+

⎛
⎜⎜⎜⎜⎝

m2
1 − m2

2

p1 + p2

⎞
⎟⎟⎟⎟⎠ L ≈

m2
1 − m2

2

2p
L,

where p = p1 ≈ p2 and it is assumed that p1 ≫ m1 and p2 ≫ m2.

13.2 Show that when L is given in km and∆m2 is given in eV2, the two-flavour oscillation probability expressed in
natural units becomes

sin2(2θ) sin2
(
∆m2[GeV2]L[GeV−1]

4Eν[GeV]

)
→ sin2(2θ) sin2

(
1.27
∆m2[eV2]L[km]

4Eν[GeV]

)
.

13.3 From Equation (13.24) and the unitarity relation of (13.18), show that

P(νe → νe) = 1 + 2|Ue1|2|Ue2|2 Re{[e−i(φ1−φ2) − 1]}
+ 2|Ue1|2|Ue3|2 Re{[e−i(φ1−φ3) − 1]}
+ 2|Ue2|2|Ue3|2 Re{[e−i(φ2−φ3) − 1]}.

13.4 Derive Equation (13.30) in the following three steps.

(a) By writing the oscillation probability P(νe → νµ) as

P(νe → νµ) = 2
∑

i<j

Re
{

U∗ei Uµi Uej U∗µj

[
ei(φj−φi) − 1

]}
,

and writing∆ij = (φi − φj)/2, show that

P(νe → νµ) = −4
∑

i<j

Re{U∗ei Uµi Uej U∗µj} sin2 ∆ij

+ 2
∑

i<j

Im{U∗ei Uµi Uej U∗µj} sin 2∆ij.

(b) Defining−J ≡ Im{U∗e1Uµ1Ue3U∗µ3}, use the unitarity of the PMNS matrix to show that

Im{U∗e1Uµ1Ue3U∗µ3} = −Im{U∗e2Uµ2Ue3U∗µ3} = −Im{U∗e1Uµ1Ue2U∗µ2} = −J.

(c) Hence, using the identity

sin A + sin B − sin(A + B) = 4 sin
(

A
2

)
sin

(
B
2

)
sin

(
A + B

2

)
,

show that

P(νe → νµ) = −4
∑

i<j

Re{U∗ei Uµi Uej U∗µj} sin2 ∆ij + 8J sin∆12 sin∆13 sin∆23.

(d) Hence show that

P(νe → νµ) − P(νe → νµ) = 16Im{U∗e1Uµ1Ue2U∗µ2} sin∆12 sin∆13 sin∆23.
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(e) Finally, using the current knowledge of the PMNS matrix determine the maximum possible value of P(νe →
νµ) − P(νe → νµ).

13.5 The general unitary transformation between mass and weak eigenstates for two flavours can be written as
(
νe
νµ

)
=

⎛
⎜⎜⎜⎜⎜⎝

cos θ exp (iδ1) sin θ exp
(

i
[
δ1+δ2

2 − δ
])

− sin θ exp
(

i
[
δ1+δ2

2 + δ
])

cos θ exp (iδ2)

⎞
⎟⎟⎟⎟⎟⎠

(
ν1

ν2

)
.

(a) Show that the matrix in the above expression is indeed unitary.
(b) Show that the three complex phases δ1, δ2 and δ can be eliminated from the above expression by the

transformation

ℓα → ℓαei(θe+θ′α), νk → νk ei(θe+θ′k ) and Uαk → Uαk ei(θ′α−θ′k ),

without changing the physical form of the two-flavour weak charged current

−i
gW√

2
( e, µ) γ µ 1

2 (1 − γ5)
(

Ue1 Ue2

Uµ1 Uµ2

) (
ν1

ν2

)
.

13.6 The derivations of (13.37) and (13.38) used the trigonometric relations

1 − 1
2 sin2(2θ13) = cos4(θ13) + sin4(θ13),

and

4 sin2 θ23 cos2 θ13(1 − sin2 θ23 cos2 θ13) = (sin2 2θ23 cos4 θ13 + sin2 2θ13 sin2 θ23).

Convince yourself these relations hold.

13.7 Use the data of Figure 13.20 to obtain estimates of sin2(2θ12) and |∆m2
21|.

13.8 Use the data of Figure 13.22 to obtain estimates of sin2(2θ23) and |∆m2
32|.

13.9 The T2K experiment uses an off-axis νµ beam produced from π+ → µ+νµ decays. Consider the case where
the pion has velocityβ along the z-direction in the laboratory frame and a neutrino with energy E∗ is produced
at an angle θ∗ with respect to the z′-axis in theπ+ rest frame.

(a) Show that the neutrino energy in the pion rest frame is p∗ = (m2
π − m2

µ)/2mπ .
(b) Using a Lorentz transformation, show that the energy E and angle of production θ of the neutrino in the

laboratory frame are

E = γE∗(1 + β cos θ∗) and E cos θ = γE∗(cos θ∗ + β),

where γ = Eπ/mπ.
(c) Using the expressions for E∗ and θ∗ in terms of E and θ, show that

γ2(1 − β cos θ)(1 + β cos θ∗) = 1.

(d) Show that maximum value of θ in the laboratory frame is θmax = 1/γ.
(e) In the limit θ ≪ 1, show that

E ≈ 0.43Eπ
1

1 + βγ2θ2 ,

and therefore on-axis (θ = 0) the neutrino energy spectrum follows that of the pions.
(f) Assuming that the pions have a flat energy spectrum in the range 1–5 GeV, sketch the form of the resulting

neutrino energy spectrum at the T2K far detector (Super-Kamiokande), which is off-axis atθ = 2.5◦. Given
that the Super-Kamiokande detector is 295 km from the beam, explain why this angle was chosen.



14 CP violation and weak hadronic interactions

CP violation is an essential part of our understanding of both particle physics
and the evolution of the early Universe. It is required to explain the observed
dominance of matter over antimatter in the Universe. In the Standard Model,
the only place where CP violating effects can be accommodated is in the weak
interactions of quarks and leptons. This chapter describes the weak charged-
current interactions of the quarks and concentrates on the observations of CP
violation in the neutral kaon and B-meson systems. This is not an easy topic
and it is developed in several distinct stages. The detailed quantum mechani-
cal derivations of the mixing of neutral meson states are given in two starred
sections.

14.1 CP violation in the early Universe

The atoms in our local region of the Universe are formed from electrons, protons
and neutrons rather than their equivalent antiparticles. The possibility that there are
galaxies and/or regions of space dominated by antimatter can be excluded by the
astronomical searches for photons from the e+e− annihilation process that would
occur at the interfaces between matter and antimatter dominated regions of the Uni-
verse. The predominance of matter is believed to have arisen in the early evolution
of the Universe.

In the early Universe, when the thermal energy kBT was large compared to the
masses of the hadrons, there were an equal number of baryons and antibaryons.
The baryons and antibaryons were initially in thermal equilibrium with the soup of
relatively high-energy photons that pervaded the early Universe, through processes
such as

γ + γ$ p + p. (14.1)

As the Universe expanded, its temperature decreased as did the mean energy of
the photons. At some point, the forward reaction of (14.1) effectively ceased. Fur-
thermore, with the expansion, the number density of baryons and antibaryons also
decreased and eventually became sufficiently low that annihilation processes such

364



365 14.2 The weak interactions of quarks

as the backward reaction of (14.1) became very rare. At this point in time, the num-
ber of baryons and antibaryons in the Universe was effectively fixed. This process
is known as Big Bang baryogenesis. The calculations of the thermal freeze out of
the baryons without CP violation predict equal number densities of baryons and
antibaryons, nB = nB, and a baryon to photon number density ratio of

nB = nB ∼ 10−18nγ.

This prediction is in contradiction with the observed matter-dominated Universe,
where the baryon–antibaryon asymmetry, which can be inferred from the relative
abundances of light isotopes formed in the process of Big Bang nucleosynthesis, is

nB − nB

nγ
∼ 10−9.

Broadly speaking, to generate this asymmetry, for every 109 antibaryons in the
early Universe there must have been 109 + 1 baryons, which annihilated to give
O(109) photons, leaving 1 baryon.

To explain the observed matter–antimatter asymmetry in the Universe, three con-
ditions, originally formulated by Sakharov (1967), must be satisfied. In the early
Universe there must have been: (i) baryon number violation such that nB−nB is not
constant; (ii) C and CP violation, because if CP is conserved, for every reaction that
creates a net number of baryons over antibaryons there would be a CP conjugate
reaction generating a net number of antibaryons over baryons; and (iii) departure
from thermal equilibrium, since in thermal equilibrium any baryon number vio-
lating process will be balanced by the inverse reaction. The Standard Model of
particle physics provides the possibility of CP violation in the weak interactions of
quarks and leptons. To date, CP violation has only been observed in the quark sec-
tor, where many detailed measurements have been made. Despite the clear observa-
tions of CP violating effects in the weak interactions of quarks, this is not sufficient
to explain the matter–antimatter asymmetry in the Universe and ultimately another
source needs to be identified.

14.2 The weak interactions of quarks

In Section 12.1, it was shown that there is a universal coupling strength of the
weak interaction to charged leptons and the corresponding neutrino weak eigen-
states; G(e)

F = G(µ)
F = G(τ)

F . The strength of the weak interaction for quarks can
be determined from the study of nuclear β-decay, where |M|2 ∝ G(e)

F G(β)
F and G(β)

F
gives the coupling at the weak interaction vertex of the quarks in Figure 14.1. From
the observed β-decay rates for superallowed nuclear transitions, the strength of the
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νe νe!Fig. 14.1 The lowest-order Feynman diagrams for µ−-decay and the underlying quark-level process in nuclear
β−-decay.
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d ds s!Fig. 14.2 The weak interaction couplings of the d, s, u and c in terms of the Cabibbo angle, θc .

coupling at the ud quark weak interaction vertex is found to be 5% smaller than
that at the µ−νµ vertex,

G(µ)
F = (1.166 3787 ± 0.000 0006) × 10−5 GeV−2,

G(β)
F = (1.1066 ± 0.0011) × 10−5 GeV−2.

Furthermore, different coupling strengths are found for the ud and us weak charged-
current vertices. For example, the measured decay rate for K−(us) → µ−νµ com-
pared to that of π−(ud) → µ−νµ is approximately a factor 20 smaller than would
be expected for a universal weak coupling to the quarks. These observations were
originally explained by the Cabibbo hypothesis. In the Cabibbo hypothesis, the
weak interactions of quarks have the same strength as the leptons, but the weak
eigenstates of quarks differ from the mass eigenstates. The weak eigenstates,
labelled d′ and s′, are related to the mass eigenstates, d and s, by the unitary matrix,

(
d′

s′

)
=

⎛
⎜⎜⎜⎜⎜⎝

cos θc sin θc

− sin θc cos θc

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

d

s

⎞
⎟⎟⎟⎟⎟⎠ , (14.2)

where θc is known as the Cabibbo angle. This idea is very similar to the two-flavour
mixing of the neutrino mass and weak eigenstates encountered in Section 13.4. In
the Cabibbo model, the weak interactions of quarks are described by ud′ and cs′

couplings, shown in Figure 14.2.
Nuclear β-decay involves the weak coupling between u and d quarks. There-

fore, with the Cabibbo hypothesis, β-decay matrix elements are proportional to
gW cos θc and decay rates are proportional to GF cos2 θc. Similarly, the matrix
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s s!Fig. 14.4 Two box diagrams for the decay KL → µ+µ−. The distinction between the KL and the K0 is described in
Section 14.4.

elements for the decays K− → µ−νµ and π− → µ−νµ, shown in Figure 14.3,
respectively include factors of cos θc and sin θc. Consequently, after accounting
for the difference in phase space, the K− decay rate is suppressed by a factor of
tan2 θc relative to that for the π−. The observed β-decay rates and the measured
ratio of Γ(K−(us) → µ−νµ) to Γ(π−(ud) → µ−νµ) can be explained by the Cabibbo
hypothesis with θc ≃ 13◦.

When the Cabibbo mechanism was first proposed, the charm quark had not been
discovered. Since the Cabibbo mechanism allows for ud and us couplings, the
flavour changing neutral-current (FCNC) decay of the neutral kaon KL → µ+µ−
can occur via the exchange of a virtual up-quark, as shown in the first box diagram
of Figure 14.4. However, the observed branching ratio,

BR(KL → µ+µ−) = (6.84 ± 0.11) × 10−9,

is much smaller than expected from this diagram alone. This observation was
explained by the GIM mechanism; see Glashow, Iliopoulos and Maiani (1970).
In the GIM mechanism, which was formulated before the discovery of the charm
quark, a postulated fourth quark coupled to the s′ weak eigenstate. In this case, the
decay KL → µ+µ− can also proceed via the exchange of a virtual charm quark, as
shown in the second box diagram of Figure 14.4. The matrix elements for the two
KL → µ+µ− box diagrams are respectively

Mu ∝ g4
W cos θc sin θc and Mc ∝ −g4

W cos θc sin θc.

Because both diagrams give the same final state, the amplitudes must be summed

|M|2 = |Mu +Mc|2 ≈ 0.
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The GIM mechanism therefore explains the smallness of the observed KL → µ+µ−
branching ratio. The cancellation is not exact because of the different masses of the
up and charm quarks.

14.3 The CKM matrix

The Cabibbo mechanism is naturally extended to the three generations of the Stan-
dard Model, where the weak interactions of quarks are described in terms of the
unitary Cabibbo–Kobayashi–Maskawa (CKM) matrix. The weak eigenstates are
related to the mass eigenstates by

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

d′

s′

b′

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

d
s
b

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (14.3)

Consequently, the weak charged-current vertices involving quarks are given by

−i
gW√

2
( u, c, t ) γ µ 1

2 (1 − γ5)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

d
s
b

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

where, for example, d is a down-quark spinor and u is the adjoint spinor for an
up-quark. The relative strength of the interaction is defined by the relevant element
of the CKM matrix. For example, the weak charged-current associated with the
duW vertex shown in the top left plot of Figure 14.5 is

j µdu = −i gW√
2

Vud uγ µ 1
2 (1 − γ5)d.

d u

W
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!Fig. 14.5 The charged-current weak interaction vertices involving u and d quarks.



369 14.3 The CKM matrix

The CKM matrix is defined such that the associated vertex factor contains Vud

when the charge −1
3 quark enters the weak current as the spinor. If the charge −1

3
quark is represented by an adjoint spinor, d = d†γ0, the vertex factor from the CKM
matrix is V∗ud. For example, the current associated with the vertex in the bottom left
plot of Figure 14.5 is

j µud = −i gW√
2

V∗ud dγ µ 1
2 (1 − γ5)u.

The CKM matrix, which is the analogous to the PMNS matrix for the weak
interactions of leptons, is unitary and can be described by three rotation angles and
a complex phase,

VCKM =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
0 c23 s23

0 −s23 c23

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠ ×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

c13 0 s13e−iδ′

0 1 0
−s13eiδ′ 0 c13

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠ ×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

c12 s12 0
−s12 c12 0

0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

(14.4)

where si j = sin φi j and ci j = cos φi j.
Whilst the structure of the weak interactions of quarks and leptons is the same,

the phenomenology is very different. Quarks do not propagate as free particles,
but hadronise on a length scale of 10−15 m. Consequently, the final states of weak
interactions involving quarks have to be described in terms of mesons or baryons.
The observed hadronic states are composed of particular quark flavours and, there-
fore, it is the quark mass (flavour) eigenstates that form the observable quantities
in hadronic weak interactions. Consequently, the nine individual elements of the
CKM matrix can be measured separately. For example, Vud is determined from
superallowed nuclear β-decays,

|Vud| = cos θc = 0.974 25(22).

The weak coupling between the u and s quarks can be determined from the mea-
sured branching ratio of the K0 → π−e+νe decay shown in Figure 14.6a,

|Vus| = 0.225 2(9).
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e+ e+

νe νe

d d

(b)
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d d

(c)
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Vcd

νm m-

p- p-

s u b u
Vus

∗ Vub
∗

!Fig. 14.6 The Feynman diagrams for a) K0 → π−e+νe, b) B0 → π−e+νe and c) νµd→ µ−c.
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The large numbers of B0(db) and B0(bd) mesons produced at the BaBar and Belle
experiments, described in Section 14.6.3, allow precise measurements of the
branching ratios for decays such as B0 → π−e+νe, shown in Figure 14.6b. The mea-
surements of the inclusive and exclusive branching ratios of the B-mesons imply

|Vub| = (4.15 ± 0.49) × 10−3.

The CKM matrix element Vcs can be determined from the leptonic decays of
the D+s (us) meson, for example D+s → µ+νµ, and Vcb can be determined from the
semi-leptonic decay modes of B-mesons to final states with charm quarks, giving

|Vcs| = 1.006 ± 0.023 and |Vcb| = (40.9 ± 1.1) × 10−3.

The CKM matrix element Vcd is most precisely measured in neutrino–nucleon scat-
tering, νµd → µ−c, shown in Figure 14.6c. The final-state charm quark can be
identified from its semi-leptonic decay c → sµ+νµ, which gives an experimental
signature of a pair of oppositely charged muons, one from the charm production
process and one from its decay. The observed production rate of opposite sign
muons in neutrino deep inelastic scattering gives

|Vcd| = 0.230(11).

The experimental situation for the CKM matrix elements involving top quarks
is somewhat less clear. The observations of B0 ↔ B0 oscillations, described in
Section 14.6, can be interpreted in the Standard Model as measurements of

|Vtd| = (8.4 ± 0.6) × 10−3 and |Vts| = (42.9 ± 2.6) × 10−3.

From the observed decay modes of the top quark at CDF and D0, it is known that
the top quark decays predominantly via t→ bW and therefore |Vtb| is close to unity,
although the current experimental error is at the 10% level.

In the Standard Model, the CKM matrix is unitary, V†V = I, which implies that

|Vud|2 + |Vus|2 + |Vub|2 = 1, (14.5)

|Vcd|2 + |Vcs|2 + |Vcb|2 = 1, (14.6)

|Vtd|2 + |Vts|2 + |Vtb|2 = 1. (14.7)

The measurements of the individual CKM matrix elements, described above, are
consistent with these three unitarity relations. Assuming unitarity, further con-
straints can be placed on the less precisely determined CKM matrix elements, for
example |Vtb|2 = 1 − |Vts|2 − |Vtb|2, which implies that |Vtb| = 0.999. With the
unitarity constraints from (14.5)−(14.7), the experimental measurements can be
interpreted as

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

|Vud| |Vus| |Vub|
|Vcd| |Vcs| |Vcb|
|Vtd| |Vts| |Vtb|

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠ ≈

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.974 0.225 0.004
0.225 0.973 0.041
0.009 0.040 0.999

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (14.8)
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Unlike the PMNS matrix of the lepton flavour sector, the off-diagonal terms in
the CKM matrix are relatively small. This implies that the rotation angles between
the quark mass and weak eigenstates in (14.4) are also small, φ12 = 13◦, φ23 = 2.3◦

and φ13 = 0.2◦. The smallness of these angles leads to the near diagonal form
of the CKM matrix. Consequently, the weak interactions of quarks of different
generations are suppressed relative to those of the same generation, ud, cs and
tb. The suppression is largest for the couplings between first and third generation
quarks, ub and td.

Because of the near diagonal nature of the CKM matrix, it is convenient to
express it as an expansion in the relatively small parameter λ = sin θc = 0.225.
In the widely used Wolfenstein parameterisation, the CKM matrix is written in
terms of four real parameters, λ, A, ρ and η. To O(λ4) the CKM matrix then can be
parameterised as

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 − λ2/2 λ Aλ3(ρ − iη)
−λ 1 − λ2/2 Aλ2

Aλ3(1 − ρ − iη) −Aλ2 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠ + O(λ4). (14.9)

In the Wolfenstein parameterisation, the complex components of the CKM matrix
reside only in Vub and Vtd (although if higher-order terms are included, Vcd and Vts

also have a small complex components that are proportional to λ5). For CP to be
violated in the quark sector, the CKM matrix must contain an irreducible complex
phase and this corresponds to η being non-zero. The experimental measurements of
branching ratios only constrain the magnitudes of the individual CKM matrix ele-
ments, and do not provide any information about this complex phase. To constrain
η and ρ separately, measurements that are sensitive to the amplitudes, rather than
amplitudes squared are required. Such measurements can be made in the neutral
kaon and neutral B-mesons systems.

14.4 The neutral kaon system

The first experimental observation of CP violation was made in the neutral kaon
system. The K0(ds) and K0(sd) are the lightest mesons containing strange quarks.
They are produced copiously in strong interactions, for example in processes

π−(du) + p(uud)→ Λ(uds) + K0(ds),

p(uud) + p(u ud)→ K+(us) + K0(sd) + π−(du).

The K0 and K0 are the eigenstates of the strong interaction and are referred to as
the flavour states. Since they are the lightest hadrons containing strange quarks,
the K0 and K0 can decay only by the weak interaction. Because the neutral kaons
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!Fig. 14.7 Two box diagrams for K0 ↔ K0 mixing. There are corresponding diagrams involving all nine combinations
of virtual up, charm and top quarks.

are relatively light, m(K) = 498 MeV, only decays to final states with either lep-
tons (e/µ) or pions are kinematically allowed. The weak interaction also provides a
mechanism whereby the neutral kaons can mix through the K0 ↔ K0 box diagrams
shown in Figure 14.7.

In quantum mechanics, the physical states are the eigenstates of the free-particle
Hamiltonian. These are the stationary states introduced in Section 2.3.3. Until now,
independent stationary states have been used to describe each type of particle. Here
however, because of the K0 ↔ K0 mixing process, a neutral kaon that is produced
as a K0 will develop a K0 component. For this reason, the K0–K0 system has to
be considered as a whole. The physical neutral kaon states are the stationary states
of the combined Hamiltonian of the K0–K0 system, including the weak interaction
mixing Hamiltonian. Consequently, the neutral kaons propagate as linear combi-
nations of the K0 and K0. These physical states are known as the K-short (KS )
and the K-long (KL). The KS and KL are observed to have very similar masses,
m(KS ) ≈ m(KL) ≈ 498 MeV, but quite different lifetimes,

τ(KS ) = 0.9 × 10−10 s and τ(KL) = 0.5 × 10−7 s.

If CP were an exact symmetry of the weak interaction, the KS and KL would
be equivalent to the CP eigenstates of the neutral kaon system (the proof of this
statement is given in Section 14.4.3). The CP states can be identified by considering
the action of the parity and charge conjugation operators on the neutral kaons. The
flavour eigenstates, K0(ds) and K0(sd), have spin-parity JP = 0− and therefore

P̂|K0⟩ = −|K0⟩ and P̂|K0⟩ = −|K0⟩.

The K0 and K0 are not eigenstates of the charge conjugation operator Ĉ that has
the effect of replacing particles with antiparticles and vice versa. However, since
they are neutral particles with opposite flavour content, one can write

Ĉ|K0(ds)⟩ = eiζ |K0(ds)⟩ and Ĉ|K0(ds)⟩ = e−iζ |K0(ds)⟩,
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where ζ is an unobservable phase factor, which is conventionally1 chosen to be
ζ = π such that

Ĉ|K0(ds)⟩ = −|K0(ds)⟩ and Ĉ|K0(ds)⟩ = −|K0(ds)⟩.

With this choice, the combined action of ĈP̂ on the neutral kaon flavour eigen-
states are

ĈP̂|K0⟩ = +|K0⟩ and ĈP̂|K0⟩ = +|K0⟩.
Consequently, the orthogonal linear combinations

K1 =
1√
2
(K0 + K0) and K2 =

1√
2
(K0 − K0), (14.10)

are CP eigenstates with

ĈP̂|K1⟩ = +|K1⟩ and ĈP̂|K2⟩ = −|K2⟩.
If CP were conserved in the weak interaction, these states would correspond to the
physical KS and KL particles. In practice, CP is observed to be violated but at a
relatively low level, and to a reasonable approximation it is found that

|KS ⟩ ≈ |K1⟩ and |KL⟩ ≈ |K2⟩.

14.4.1 Kaon decays to pions

Neutral kaons propagate as the physical particles KS and KL, which have well-
defined masses and lifetimes. The KS and KL mainly decay to hadronic final states
of either two/three pions or to semi-leptonic final states with electrons or muons.
For the hadronic decays, the KS decays mostly to ππ final states, whereas the main
hadronic decays of the KL are to πππ final states,

Γ(KS → ππ) ≫ Γ(KS → πππ) and Γ(KL → πππ) ≫ Γ(KL → ππ).

The differences in the lifetimes of the KS and KL can be attributed to the different
hadronic decay modes that are a consequence of the (near) conservation of CP in
kaon decays, as discussed below

First consider the decays to two pions. The two pions can be produced with
relative orbital angular momentum ℓ, as indicated in Figure 14.8a. Because kaons
and pions both have JP = 0−, the pions produced in the decay K → π0π0 must be
in an ℓ = 0 state in order to conserve angular momentum. The overall parity of the
π0π0 system, which is given by the symmetry of the spatial wavefunction and the
intrinsic parity of the pion, is therefore

P(π0π0) = (−1)ℓP(π0)P(π0) = (+1) × (−1) × (−1) = +1.

1 Sometimes, the convention ζ = 0 is used, leading to a different definition of the K1 and K2 in
terms of the flavour eigenstates. However, provided this weak phase is treated consistently, there
are no physical consequences in the choice.
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The flavour wavefunction of the π0 is

|π0⟩ = 1√
2
(uu − dd),

and consequently the π0 is an eigenstate of Ĉ with eigenvalue +1. Therefore

C(π0π0) = C(π0)C(π0) = +1,

and since P(π0π0) = +1, the π0π0 system must be produced in a CP-even state,

CP(π0π0) = +1.

The angular momentum arguments given above apply equally to the π+π− system,
and therefore P(π+π−) = +1. The effect of the parity operation on the π+π− system
is to swap the positions of the two particles, with no change in sign. Because the
charge conjugation operation turns a π+ into a π− and vice versa, the effect of the
charge conjugation on the π+π− system is also to swap the positions of the particles,
with no change in sign. Hence, here the parity and charge conjugation operations
have the same effect, as shown in Figure 14.9, and thus C(π+π−) = P(π+π−) = +1.
Therefore, the decay of a neutral kaon into two pions always produces a CP-even
final state,

CP(π0π0) = +1 and CP(π+π−) = +1.

If CP is conserved in kaon decay (which it is to a very good approximation), the
decay K→ ππ can only occur if the neutral kaon state has CP = +1.

The corresponding arguments for the decays K→ π0π0π0 and K→ π+π−π0 are
slightly more involved. Here, the orbital angular momentum has to be decomposed
into two components; the relative angular momentum of the first two particles, L1,
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and the relative angular momentum of the third with respect to the centre of mass
of the first two, L2, as indicated in Figure 14.8b. Because both kaons and pions are
spin-0 particles, the total orbital angular momentum in the decay K → πππ must
be zero, L = L1 + L2 = 0. This only can be the case if ℓ1 = ℓ2 = ℓ. The overall
parity of the final state in a K→ πππ decay is therefore

P(πππ) = (−1)ℓ1 (−1)ℓ2(P(π))3 = (−1)2ℓ(−1)3 = −1.

For the π0π0π0 final state, the effect of the charge conjugation operator is

C(π0π0π0) = C(π0)C(π0)C(π0) = (+1)3 = +1,

and therefore CP(π0π0π0) = −1. The effect of the charge conjugation operator on
the π+π−π0 system follows from the arguments given previously,

C(π+π−π0) = C(π+π−)C(π0) = +C(π+π−) = P(π+π−) = (−1)ℓ1 ,

where again the effect of Ĉ(π+π−) is the same as that of P̂(π+π−). Because m(K)−
3m(π) ≈ 80 MeV, the kinetic energy of the three-pion system is relatively small,
and the decays where ℓ1 = ℓ2 > 0 are suppressed to the point where the contribution
is negligible. For this reason ℓ1 can be taken to be zero and thus

CP(π0π0π0) = −1 and CP(π+π−π0) = −1.

Therefore, the K → πππ decay modes of neutral kaons always result in a CP-odd
final state.

If CP were conserved in the decays of neutral kaons, the hadronic decays of the
CP-eigenstates |K1⟩ and |K2⟩ would be exclusively K1 → ππ and K2 → πππ.
Because the phase space available for decays to two and three pions is very differ-
ent, m(K) − 2m(π) ≈ 220 MeV compared to m(K) − 3m(π) ≈ 80 MeV, the decay
rate to two pions is much larger than that to three pions. Hence, the short-lived KS ,
which decays mostly to two pions, can be identified as being a close approximation
to the CP-even state

KS ≈ K1 =
1√
2
(K0 + K0), (14.11)

and the longer lived KL as

KL ≈ K2 =
1√
2
(K0 − K0). (14.12)

If CP were exactly conserved in the weak interaction, then KS ≡ K1 and KL ≡ K2.

CP violation in hadronic kaon decays
The decays of neutral kaons have been extensively studied using kaon beams pro-
duced from hadronic interactions. If a neutral kaon is produced in the strong
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interaction p p → K−π+K0, at the time of production, the kaon is the flavour
eigenstate,

|K(0)⟩ = |K0⟩.
In the absence of CP violation, where KS ≡ K1 and KL ≡ K2, the |K0⟩ flavour state
can be written in terms of the CP eigenstates using (14.11) and (14.12),

|K(0)⟩ = |K0⟩ = 1√
2
[ |K1⟩ + |K2⟩] = 1√

2
[ |KS ⟩ + |KL⟩]. (14.13)

The subsequent time evolution is described in terms of the KS and KL, which are
the observed physical neutral kaons with well-defined masses and lifetimes. In the
rest frame of the kaon, the time-evolution of the KS and KL states are given by

|KS (t)⟩ = |KS ⟩ exp [−imS t − ΓS t/2], (14.14)

|KL(t)⟩ = |KL⟩ exp [−imLt − ΓLt/2], (14.15)

where the exp [−Γt/2] terms ensure that the probability densities decay exponen-
tially. For example

⟨KS (t)|KS (t)⟩ ∝ e−ΓS t = e−t/τS .

Hence the time evolution of the state of (14.13) is

|K(t)⟩ = 1√
2

[
|KS ⟩e−(imS+ΓS /2)t + |KL⟩e−(imL+ΓL/2)t

]
,

which can be written as

|K(t)⟩ = 1√
2

[θS (t)|KS ⟩ + θL(t)KL] , (14.16)

with

θS (t) = exp [− (imS + ΓS /2) t] and θL(t) = exp [− (imL + ΓL/2) t]. (14.17)

The decay rate to the CP-even two-pion final state is proportional to the K1 com-
ponent of the wavefunction, which in the limit where CP is conserved is equivalent
to the KS component. Therefore, if CP is conserved, the decay rate to two pions
from a beam that was initially in a pure |K0⟩ state is

Γ(K0
t=0 → ππ) ∝ |⟨KS |K(t)⟩|2 ∝ |θS (t)|2 = e−ΓS t = e−t/τS ,

and similarly

Γ(K0
t=0 → πππ) ∝ |⟨KL|ψ(t)⟩|2 ∝ e−t/τL .

If a kaon beam, which originally consisted of K0(ds), propagates over a large dis-
tance (L ≫ cτS ), the KS component will decay away leaving a pure KL beam, as
indicated in Figure 14.10. The same would be true for an initial K0 beam.

If CP were conserved in the weak interactions of quarks, the KL would corre-
spond exactly to the CP-odd K2 state and at large distances from the production
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Table 14.1 The main decay modes of the KS and KL.

KS Decays BR KL Decays BR

KS → π+π− 69.2% KL → π+π− 0.20%
KS → π0π0 30.7% KL → π0π0 0.09%
KS → π+π−π0 ∼3 × 10−5% KL → π+π−π0 12.5%
KS → π0π0π0 − KL → π0π0π0 19.5%

KS → π−e+νe 0.03% KL → π−e+νe 20.3%
KS → π+e−νe 0.03% KL → π+e−νe 20.3%
KS → π−µ+νµ 0.02% KL → π−µ+νµ 13.5%
KS → π+µ−νµ 0.02% KL → π+µ−νµ 13.5%

KS → pp

KL → ppp

Distance from K0 production

Lo
g 

in
te

ns
ity

!Fig. 14.10 Expected decay rates to pions from an initially pure K0 beam, assuming no CP violation.

of a kaon beam, the hadronic decays to two pions would never be detected. The
first experimental evidence for CP violation was the observation of 45 KL → π+π−

decays out of a total of 22 700 KL decays at a large distance from the production of
the neutral kaon beam; see Christenson et al. (1964). This provided the first direct
evidence for CP violation in the neutral kaon system, albeit only at the level of
0.2%, for which Cronin and Fitch were awarded the Nobel prize.

The branching ratios for the main decay modes of the KS and KL are listed in
Table 14.1, including the relatively rare CP violating hadronic decays. The small-
ness of the semi-leptonic branching ratios of the KS compared to the KL, reflects
the relatively large KS → ππ decay rate; the semi-leptonic partial decay rates of
the KS and KL are almost identical (see Section 14.5.4).

14.4.2 The origin of CP violation

There are two main ways of introducing CP violation into the neutral kaon system.
If CP is violated in the K0 ↔ K0 mixing process (see Section 14.4.3), then the
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KS and KL will not correspond to the CP eigenstates, K1 and K2. Given that the
observed level of CP violation is relatively small, the KS and KL can be related to
the CP eigenstates by the small (complex) parameter ε,

|KS ⟩ =
1

√
1 + |ε|2

(|K1⟩ + ε|K2⟩) and |KL⟩ =
1

√
1 + |ε|2

(|K2⟩ + ε|K1⟩) ,

such that KS ≈ K1 and KL ≈ K2. In this case, the observed KL → ππ decays are
accounted for by

|KL⟩ =
1

√
1 + |ε|2

(|K2⟩ + ε|K1⟩)
ππ

πππ✲
✲

and the relative rate of decays to two pions will be depend on ε.
The second possibility is that CP is violated directly in the decay of a CP eigen-

state,

|KL⟩ = |K2⟩
ππ

πππ✲
✲

The relative strength of this direct CP violation in neutral kaon decay is parame-
terised by ε′ with Γ(K2 → ππ)/Γ(K2 → πππ) = ε′. Experimentally, it is known
that CP is violated in both mixing and directly in the decay. The results of the
NA48 experiment at CERN and the KTeV experiment at Fermilab, demonstrate
that direct CP violation is a relatively small effect,

Re

(
ε′

ε

)
= (1.65 ± 0.26) × 10−3,

and ε is already a small parameter. Therefore, the main contribution to CP violation
in the neutral kaon system is from K0 ↔ K0 mixing. The quantum mechanics of
mixing in the neutral kaon system is described in detail in the following starred
section.

14.4.3 *The quantum mechanics of kaon mixing

To fully understand the physics of the neutral kaon system, it is necessary to con-
sider the quantum mechanical time evolution of the combined K0–K0 system. This
is not an easy topic, but the results are important.

In the absence of neutral kaon mixing, the time dependence of the wavefunction
of the K0 would be

|K0(t)⟩ = |K0⟩e−Γt/2e−imt, (14.18)
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∗!Fig. 14.11 Two box diagrams for K0 ↔ K0. There are corresponding diagrams involving all nine combinations of virtual
up, charm and top quarks.

where m is the mass of the particle and the term Γ = 1/τ ensures the probability
density decays away exponentially. The time-dependent wavefunction of (14.18)
clearly satisfies the differential equation

i
∂

∂t
|K0(t)⟩ = (m − i

2Γ)|K0(t)⟩,

and therefore the effective HamiltonianH can be identified as

H|K0(t)⟩ = (m − i
2Γ)|K0(t)⟩. (14.19)

Because of the inclusion of the exponential decay term in the wavefunction, the
effective Hamiltonian is not Hermitian and also the expectation values of opera-
tors corresponding to physical observable will not be constant. The mass m in the
effective Hamiltonian of (14.19) includes contributions from the masses of the con-
stituent quarks and from the potential energy of the system. The potential energy
includes contributions from the strong interaction potential (which is the dominant
term), the coulomb interaction and the weak interaction. The interaction terms can
be expressed as expectation values of the corresponding interaction Hamiltonians.
Therefore the mass of the K0, when taken in isolation, can be written as

m = md + ms + ⟨K0|ĤQCD + ĤEM + ĤW |K0⟩ +
∑

j

⟨K0|ĤW | j⟩⟨ j|ĤW |K0⟩
E j − mK

. (14.20)

The last term in this expression comes from the small second-order O(G2
F) con-

tribution to the weak interaction potential from the K0 ↔ K0 box diagrams of
Figure 14.11. The decay rate Γ that appears in (14.19) is given by Fermi’s golden
rule

Γ = 2π
∑

f

|⟨ f |ĤW |K0⟩|2ρ f ,

where the sum is taken over all possible final states, labelled f , and ρ f is the density
of states for that decay mode.

Up to this point, the K0 has been considered in isolation. However, a K0 will
develop a K0 component through the K0 ↔ K0 mixing diagrams of Figure 14.7.
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Consequently, the time evolution of a neutral kaon state must include both K0 and
K0 components,

|K(t)⟩ = a(t)|K0⟩ + b(t)|K0⟩, (14.21)

where the coefficients a(t) and b(t) are the amplitudes and phases of the K0 and
K0 components of the state at a time t. The time evolution of |K(t)⟩, analogous to
(14.19), now has to be written as the coupled equations

⎛
⎜⎜⎜⎜⎜⎝

M11 − i
2Γ11 M12 − i

2Γ12

M21 − i
2Γ21 M22 − i

2Γ22

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

a(t) |K0⟩
b(t) |K0⟩

⎞
⎟⎟⎟⎟⎟⎠ = i

∂

∂t

⎛
⎜⎜⎜⎜⎜⎝

a(t) |K0⟩
b(t) |K0⟩

⎞
⎟⎟⎟⎟⎟⎠ , (14.22)

and the effective Hamiltonian becomes

H =M − i
2Γ =

(
M11 M12

M21 M22

)
− i

2

(
Γ11 Γ12

Γ21 Γ22

)
. (14.23)

It is important to understand the physical meaning of the terms in (14.23). First
consider the decay matrix Γ that accounts for the decay of the state |K(t⟩). Here the
total decay rate is given by Fermi’s golden rule, which to lowest order is

Γ = 2π
∑

f

|⟨ f |ĤW |K(t)⟩|2ρ f ≡ 2π
∑

f

⟨K(t)|ĤW | f ⟩⟨ f |ĤW |K(t)⟩ ρ f .

By writing |K(t)⟩ in terms of K0 and K0, the matrix element squared for the decay
to a final state f becomes

|⟨ f |ĤW |K(t)⟩|2 = |a(t)|2 |⟨ f |ĤW |K0⟩|2 + |b(t)|2 |⟨ f |ĤW |K0⟩|2

+ a(t)b(t)∗ ⟨K0|ĤW | f ⟩⟨ f |ĤW |K0⟩ + a(t)∗b(t) ⟨K0|ĤW | f ⟩⟨ f |ĤW |K0⟩.

The diagonal elements of Γ are therefore given by the decay rates

Γ11 = 2π
∑

f

|⟨ f |ĤW |K0⟩|2ρ f and Γ22 = 2π
∑

f

|⟨ f |ĤW |K0⟩|2ρ f ,

and are therefore real numbers. The off-diagonal terms of Γ account for the inter-
ference between the decays of the K0 and K0 components of K(t). Because the two
interference terms are the Hermitian conjugates of each other, Γ12 = Γ

∗
21, and the

matrix Γ is itself Hermitian.
Now consider the mass matrix M. The diagonal elements are the mass terms for

the K0 and K0 flavour eigenstates, with M11 given by (14.20) and

M22 = ms + md + ⟨K0|ĤQCD + ĤEM + ĤW |K0⟩ +
∑

j

⟨K0|ĤW | j⟩⟨ j|ĤW |K0⟩
E j − mK

.

(14.24)
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The off-diagonal terms of M are due to the K0 ↔ K0 mixing diagrams of
Figure 14.7, and can be written

M12 = M∗21 =
∑

j

⟨K0|ĤW | j⟩⟨ j|ĤW |K0⟩
E j − mK

.

There is no off-diagonal term of the form ⟨K0|ĤW |K0⟩ because there is no Feyn-
man diagram for K0 ↔ K0 mixing involving the exchange of a single W boson.
Since M12 = M∗21 and the diagonal terms of M are real, the mass matrix is Her-
mitian. If there were no mixing in the neutral kaon system M12, M21, Γ12 and Γ21

would all be zero, and the time evolution equation of (14.22) would decouple into
two independent equations of the form of (14.19), describing the independent time
evolution of the K0 and K0.

From the required CPT symmetry of the Standard Model, the masses and decay
rates of the flavour states K0 and K0 must be equal, M11 = M22 = M and Γ11 =

Γ22 = Γ. Therefore the effective Hamiltonian of (14.23) can be written as

H =M − i
2Γ =

(
M M12

M∗12 M

)
− i

2

(
Γ Γ12

Γ∗12 Γ

)
. (14.25)

Because the off-diagonal elements of M arise from second-order weak interaction
box diagrams, they are much smaller than the diagonal elements that include the
fermion masses and the strong interaction Hamiltonian. The off-diagonal terms
of Γ, which can be of the same order of magnitude as the diagonal terms, are
either positive or negative. Because of the presence of the non-zero off-diagonal
terms inH , the flavour eigenstates K0 and K0 are no longer the eigenstates of the
Hamiltonian.

The neutral kaon state of (14.21), evolves in time according to
(

M − i
2Γ M12 − i

2Γ12

M∗12 − i
2Γ
∗
12 M − i

2Γ

) (
a(t) |K0⟩
b(t) |K0⟩

)
= i

∂

∂t

(
a(t) |K0⟩
b(t)|K0⟩

)
. (14.26)

The eigenstates of this effective Hamiltonian can be found by transforming (14.26)
into the basis where H is diagonal. The required transformation can be found by
first solving the eigenvalue equation

(
M − i

2Γ M12 − i
2Γ12

M∗12 − i
2Γ
∗
12 M − i

2Γ

) (
p
q

)
= λ

(
p
q

)
. (14.27)

The non-trivial solutions to (14.27) can be obtained from the characteristic equa-
tion, det(H − λI) = 0, which gives

(M − i
2Γ − λ)2 − (M∗12 − i

2Γ
∗
12)(M12 − i

2Γ12) = 0.

Solving this quadratic equation for λ gives the two eigenvalues

λ± = M − i
2Γ ±

[
(M∗12 − i

2Γ
∗
12)(M12 − i

2Γ12)
] 1

2 . (14.28)
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The corresponding eigenstates, found by substituting these two eigenvalues back
into (14.27), have

q
p
= ±ξ ≡ ±

⎛
⎜⎜⎜⎜⎜⎝

M∗12 − i
2Γ
∗
12

M12 − i
2Γ12

⎞
⎟⎟⎟⎟⎟⎠

1
2

. (14.29)

The normalised eigenstates, here denoted K+ and K−, which ultimately will be
identified as the KS and KL, are therefore

(
|K+⟩
|K−⟩

)
=

1
√

1 + |ξ|2

(
1 ξ
1 −ξ

) ( |K0⟩
|K0⟩

)
=

1
√

1 + |ξ|2

(
|K0⟩ + ξK0

|K0⟩ − ξ|K0⟩

)
.

Equation (14.26), which has the formHK = i∂K/∂t, can be written in the diago-
nal basis using the matrix S formed from the eigenvectors of H , such that H ′ =
S−1HS is diagonal,

H ′ = S−1HS =
(
λ+ 0
0 λ−

)
.

In the diagonal basis (14.26) becomes

i
∂

∂t

(
|K+(t)⟩
|K−(t)⟩

)
=

(
λ+ 0
0 λ−

) (
|K+(t)⟩
|K−(t)⟩

)
. (14.30)

Hence the states K+ and K− propagate as independent particles and therefore can
be identified as the physical mass eigenstates of the neutral kaon system. The time
dependences of the K+ and K− states are given by the solutions of (14.30),

|K+(t)⟩ = 1
√

1 + |ξ|2
(
|K0⟩ + ξ|K0⟩

)
e−iλ+t

|K−(t)⟩ = 1
√

1 + |ξ|2
(
|K0⟩ − ξ|K0⟩

)
e−iλ−t,

with the real and imaginary parts of λ± determining respectively the masses and
decay rates of the two physical states. From (14.28),

λ+ − λ− = 2
[
(M∗12 − i

2Γ
∗
12)(M12 − i

2Γ12)
] 1

2 , (14.31)

and therefore λ+ and λ− can be written as

λ± = M − i
2Γ ± 1

2 (λ+ − λ−) = M ± Re
(λ+ − λ−

2

)
− i

2 (Γ ∓ Im {λ+ − λ−}) .

It is not a priori clear which of the two eigenvalues, λ+ and λ−, is associated with
the KS and which is associated with the KL, but both can be written in the form

λ = [M ± ∆m/2] − i
2 [Γ ± ∆Γ/2] ,
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with

∆m = |Re (λ+ − λ−)| and ∆Γ = ±|∆Γ| = ±2|Im (λ+ − λ−)|.

Here ∆m is defined to be positive and the sign of ∆Γ depends on the relative signs of
the real and imaginary parts of (14.31), which in turn depends on the off-diagonal
terms of the effective Hamiltonian. For the neutral kaon system it turns out that
∆Γ < 0, and therefore the heavier state has the smaller decay rate. Consequently,
the physical eigenstates of the neutral kaon system consist of a heavier state of
mass M + ∆m/2 that can be identified as the longer-lived KL state and a lighter
state with a larger decay rate and mass M − ∆m/2 that can be identified as the KS ,

λS = mS − i
2ΓS with mS = M − ∆m/2 and ΓS = Γ + |∆Γ|/2,

λL = mL − i
2ΓL with mL = M + ∆m/2 and ΓL = Γ − |∆Γ|/2.

Because the off-diagonal terms in the effective Hamiltonian arise from the weak
interaction alone, ∆m ≪ M, and the mass difference between the KL and KS is
very small.

If the CKM matrix were entirely real, which would imply that M12 = M∗12 and
Γ12 = Γ

∗
12, the parameter ξ defined in (14.29) would be unity. In this case, the

physical states would be

KS ≡ K1 =
1√
2

(
K0 + K0

)
and KL ≡ K2 =

1√
2

(
K0 − K0

)
. (14.32)

Hence, if the CKM matrix were entirely real, in which case the weak interactions of
quarks would conserve CP, the physical states of the neutral kaon system would be
the CP eigenstates, K1 and K2. In practice, CP violation is observed in the neutral
kaon system, albeit at a very low level and therefore ξ ! 1.

Because CP-violating effects are observed to be relatively small, it is convenient
to rewrite ξ in terms of the (small) complex parameter ε defined by

ξ =
1 − ε
1 + ε

,

such that the physical KS and KL states are

|KS (t)⟩ = 1
√

2(1 + |ε|2)

[
(1 + ε)|K0⟩ + (1 − ε)|K0⟩

]
e−iλS t, (14.33)

|KL(t)⟩ = 1
√

2(1 + |ε|2)

[
(1 + ε)|K0⟩ − (1 − ε)|K0⟩

]
e−iλLt. (14.34)

Using (14.10), the physical states also can be expressed in terms of the CP eigen-
states K1 and K2,
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|KS (t)⟩ = 1
√

1 + |ε|2
[|K1⟩ + ε|K2⟩] e−iλS t,

|KL(t)⟩ = 1
√

1 + |ε|2
[|K2⟩ + ε|K1⟩] e−iλLt.

(14.35)

(14.36)

14.5 Strangeness oscillations

The previous chapter described how neutrino oscillations arise because neutrinos
are created and interact as weak eigenstates but propagate as mass eigenstates. A
similar phenomenon occurs in the neutral kaon system. The physical mass eigen-
states are the KS and KL. However, the hadronic decays to ππ or πππ have to
be described in terms of the CP eigenstates and the semi-leptonic decays of the
KS and KL have to be described in terms of the flavour eigenstates, K0 and K0.
For example, Figure 14.12 shows the Feynman diagrams for the allowed decays
K0 → π−e+νe and K0 → π+e−νe. There are no corresponding Feynman diagrams
for K0 → π+e−νe and K0 → π−e+νe because the charge of the lepton depends on
whether s→ u or s→ u decay is involved:

K0 → π−e+νe and K0 → π+e−νe,

K0 " π+e−νe and K0 " π−e+νe.

Hence neutral kaons are produced and decay as flavour and/or CP eigenstates, but
propagate as the KS and KL mass eigenstates. The result is the phenomenon of
strangeness oscillations, which occurs regardless of whether CP is violated or not.

14.5.1 Strangeness oscillations neglecting CP violation

Consider a neutral kaon that is produced as the flavour eigenstate K0. The time
evolution of the wavefunction is described in terms of the KS and KL mass eigen-
states,

|K(t)⟩ = 1√
2

[ θS (t)|KS ⟩ + θL(t)|KL⟩] , (14.37)
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!Fig. 14.12 The Feynman diagrams for K0 → π−e+νe and K0 → π+e−νe.
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where θS (t) and θL(t) are given by (14.17). In the limit where CP violation is
neglected, in which case KS = K1 and KL = K2, this can be expressed in terms of
the flavour eigenstates using (14.11) and (14.12),

|K(t)⟩ ≈ 1
2

(
θS

[
|K0⟩ + |K0⟩

]
+ θL

[
|K0⟩ − |K0⟩

])

= 1
2 (θS + θL) |K0⟩ + 1

2 (θS − θL) |K0⟩.

Because the masses of the KS and KL are slightly different, the oscillatory parts of
θS (t) and θL(t) differ, and the initially pure K0 beam will develop a K0 component.
The corresponding strangeness oscillation probabilities are

P(K0
t=0 → K0) = |⟨K0|K(t)⟩|2 = 1

4 |θS + θL|2, (14.38)

P(K0
t=0 → K0) = |⟨K0|K(t)⟩|2 = 1

4 |θS − θL|2. (14.39)

This can be simplified by using the identity, |θS ± θL|2 = |θS |2 + |θL|2 ± 2Re(θS θ∗L),

|θS (t) ± θL(t)|2 = e−ΓS t + e−ΓLt ± 2Re
{
e−imS te−

1
2ΓS t · e+imLte−

1
2ΓLt

}

= e−ΓS t + e−ΓLt ± 2e−
1
2 (ΓS+ΓL)t Re

{
ei(mL−mS )t

}

= e−ΓS t + e−ΓLt ± 2e−
1
2 (ΓS+ΓL)t cos(∆m t),

where ∆m = m(KL) − m(KS ). Substituting the above expression into (14.38) and
(14.39) leads to

P(K0
t=0 → K0) = 1

4

[
e−ΓS t + e−ΓLt + 2e−

1
2 (ΓS+ΓL)t cos(∆m t)

]
, (14.40)

P(K0
t=0 → K0) = 1

4

[
e−ΓS t + e−ΓLt − 2e−

1
2 (ΓS+ΓL)t cos(∆m t)

]
. (14.41)

The above equations are reminiscent of the two-flavour neutrino oscillation proba-
bilities, except here the amplitudes of the oscillations decay at a rate given by the
arithmetic mean of the KS and KL decay rates.

Using the measured value of ∆m (see Section 14.5.2), the corresponding period
of the strangeness oscillations is

Tosc =
2π!
∆m
≈ 1.2 × 10−9 s,

which turns out to be greater than the KS lifetime, τ(KS ) = 0.9 × 10−10 s. Conse-
quently, after one oscillation period, the KS and oscillatory components of (14.40)
and (14.41) will have decayed away leaving an essentially pure KL beam. The
resulting oscillation probabilities are plotted in Figure 14.13. Because of the rela-
tively rapid decay of the KS component, the oscillatory structure is not particularly
pronounced. Nevertheless, the observation of strangeness oscillations provides a
method to measure ∆m.



386 CP violation and weak hadronic interactions

t/ns
0 0.5 1 1.5

In
te

ns
ity

0

0.5

1

K0
t=0 → 

K0
t=0 → K

0

 K
0

!Fig. 14.13 The effect of strangeness oscillations, showing the relative K0 and K0 components in a beam that was
produced as a K0 plotted against time.

14.5.2 The CPLEAR experiment

Strangeness oscillations can be studied by using the semi-leptonic decays of the
neutral kaon system. Because the decays K0 → π+ℓ−νℓ and K0 → π−ℓ+νℓ (ℓ =
e, µ) do not occur, the charge of the observed lepton in the semi-leptonic decays
K0 → π−ℓ+νℓ and K0 → π+ℓ−νℓ uniquely tags the flavour eigenstate from which
the decay originated.

The CPLEAR experiment, which operated from 1990 to 1996 at CERN, stud-
ied strangeness oscillations and CP violation in the neutral kaon system. It used
a low-energy antiproton beam to produce kaons through the strong interaction
processes

pp→ K−π+K0 and pp→ K+π−K0.

The energy of the beam was sufficiently low that the particles were produced almost
at rest. This enabled the production and decay to be observed in the same detector.
The charge of the observed K±π∓ identifies the flavour state of the neutral kaon
produced in the pp interaction as being either a K0 or K0. The neutral kaon then
propagates at a low velocity as the linear combinations of the KS and KL with
the time dependence given by (14.37). The charge of the observed lepton in the
semi-leptonic decay then identifies the decay as coming from either a K0 or K0,
thus tagging the flavour component of the wavefunction at the time of decay. For
example, Figure 14.14 shows an event in the CPLEAR detector where a K0 is
produced at the origin along with a K−π+, where the K− is distinguished from a π−

by the absence of an associated signal in the Čerenkov detectors used for particle
identification, see Section 1.2.1. The neutral kaon state subsequently decays as a
K0, identified by its leptonic decay K0 → π+e−νe. The relative rates of decays
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e-
K-

p+

p+

!Fig. 14.14 An event in the CPLEAR detector where a K0 is produced in pp → K−π+K0 and decays as K0 → π+e−νe.
The grey boxes indicate signals from relativistic particles in the Čerenkov detectors. Courtesy of the CPLEAR
Collaboration.

from K0 and K0 as a function of the distance between the production point and the
decay vertex, provides a direct measure of the relative K0 and K0 components of
the neutral kaon wavefunction as a function of time.

For a kaon initially produced as a K0, the decay rates to π−e+νe and π+e−νe,
denoted R+ and R− respectively, are given by (14.40) and (14.41),

R+ ∝ P(K0
t=0 → K0) = N 1

4

[
e−ΓS t + e−ΓLt + 2e−(ΓS+ΓL)t/2 cos(∆m t)

]
,

R− ∝ P(K0
t=0 → K0) = N 1

4

[
e−ΓS t + e−ΓLt − 2e−(ΓS+ΓL)t/2 cos(∆m t)

]
,

where N is an overall normalisation factor related to the number of pp interactions.
The corresponding expressions for the decays of neutral kaons that were produced
as the K0 flavour state are

R+ ∝ P(K0
t=0 → K0) = N 1

4

[
e−ΓS t + e−ΓLt − 2e−(ΓS+ΓL)t/2 cos(∆m t)

]
,

R− ∝ P(K0
t=0 → K0) = N 1

4

[
e−ΓS t + e−ΓLt + 2e−(ΓS+ΓL)t/2 cos(∆m t)

]
.

Because the QCD interaction is charge conjugation symmetric, equal numbers of
K0 and K0 are produced in the pp strong interaction and the same normalisa-
tion factor applies to R± and R±. The dependence on the overall normalisation
can be removed by expressing the experimental measurements in terms of the
asymmetry,

A∆m(t) =
(R+ + R−) − (R− + R+)

(R+ + R−) + (R− + R+)
,
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!Fig. 14.15 The CPLEAR measurement of A∆m as a function of time. The curve shows expression of (14.42) for ∆m =
3.485 × 10−15 GeV, modified to include the effects of the experimental timing resolution. Adapted from
Angelopoulos et al. (2001).

which has the advantage that a number of potential systematic biases cancel. This
asymmetry can be expressed as a function of time using the above expressions for
R± and R±,

A∆m(t) =
2e−(ΓS+ΓL)t/2 cos(∆mt)

e−ΓS t + e−ΓLt
. (14.42)

The experimental measurements of A∆m(t) from the CPLEAR experiment are
shown in Figure 14.15. The effects of strangeness oscillations are clearly seen and
the position of the minimum provides a precise measurement of ∆m. The com-
bined results from several experiments, including the CPLEAR experiment and the
KTeV experiment at Fermilab, give

∆m = m(KL) − m(KS ) = (3.483 ± 0.006) × 10−15 GeV.

14.5.3 CP violation in the neutral kaon system

CP violation in the neutral kaon system has been studied by a number of experi-
ments, including CPLEAR. If there is CP violation in K0 ↔ K0 mixing process,
the physical states of the neutral hadron system are

|KS ⟩ =
1

√
1 + |ε|2

(|K1⟩ + ε|K2⟩) and |KL⟩ =
1

√
1 + |ε|2

(|K2⟩ + ε|K1⟩) ,

(14.43)
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which can be expressed in terms of the flavour eigenstates as

|KS ⟩ =
1

√
2(1 + |ε|2)

[
(1 + ε)|K0⟩ + (1 − ε)|K0⟩

]
,

|KL⟩ =
1

√
2(1 + |ε|2)

[
(1 + ε)|K0⟩ − (1 − ε)|K0⟩

]
.

The corresponding expressions for the flavour eigenstates in terms of the physical
KS and KL are

|K0⟩ = 1
1+ε

√
1+|ε|2

2 (|KS ⟩ + |KL⟩) and |K0⟩ = 1
1−ε

√
1+|ε|2

2 (|KS ⟩ − |KL⟩) .
Therefore, accounting for the possibility of CP violation in neutral kaon mixing, a
neutral kaon state that was produced as a K0 evolves as

|K(t)⟩ = 1
1 + ε

√
1 + |ε|2

2
[θS (t)|KS ⟩ + θL(t)|KL⟩] , (14.44)

where as before θS (t) and θL(t) are given by (14.17). Direct CP violation in kaon
decay is a relatively small effect (ε′/ε ∼ 10−3) and decays to the ππ final state can
be taken to originate almost exclusively from the CP-even K1 component of the
wavefunction. The time evolution of (14.44) can be expressed in terms of the K1

and K2 states using (14.43)

|K(t)⟩ = 1√
2

1
(1 + ε)

[θS (|K1⟩ + ε|K2⟩) + θL(|K2⟩ + ε|K1⟩)]

= 1√
2

1
(1 + ε)

[(θS + εθL)|K1⟩ + (θL + εθS )|K2⟩] .

The decay rate to two pions is therefore given by

Γ(K0
t=0 → ππ) ∝ |⟨K1|K(t)⟩|2 = 1

2

∣∣∣∣∣
1

1 + ε

∣∣∣∣∣
2
|θS + εθL|2 . (14.45)

Because |ε| ≪ 1,
∣∣∣∣∣

1
1 + ε

∣∣∣∣∣
2
=

1
(1 + ε∗)(1 + ε)

≈ 1
1 + 2Re{ε} ≈ 1 − 2Re{ε}.

The term |θS +εθL|2 can be simplified using |θS ±εθL|2 = |θS |2+ |θL|2±2Re(θS ε∗θ∗L)
and by writing ε = |ε|eiφ,

|θS + εθL|2 =
∣∣∣e−imS t−ΓS t/2 + |ε|eiφe−imLt−ΓLt/2

∣∣∣2

= e−ΓS t + |ε|2e−ΓLt + 2|ε|e−(ΓS+ΓL)t/2 cos(∆m t − φ).

Therefore (14.45) can be written as

Γ(K0
t=0 → ππ) =

N
2

(1−2Re{ε})
[
e−ΓS t+ |ε|2e−ΓLt+ 2|ε|e−(ΓS+ΓL)t/2 cos(∆m t − φ)

]
,

(14.46)
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!Fig. 14.16 The CPLEAR measurement of A+−. Adapted from Angelopoulos et al. (2000).

where N is a normalisation factor. The first term in the square brackets corresponds
to the contribution from KS decays. The second term is the contribution from KL

decays, which is small since |ε|2 ≪ 1. The final term is the interference between
the KS and KL components of the wavefunction. The corresponding expression for
the decay rate to two pions from a state that was initially a K0 is

Γ(K0
t=0 → ππ) =

N
2

(1 + 2Re{ε})
[
e−ΓS t+ |ε|2e−ΓLt− 2|ε|e−(ΓS+ΓL)t/2 cos(∆m t − φ)

]
.

(14.47)

Here the interference term has the opposite sign to that of (14.46). For t ≪ τS

and t ≫ τL the expressions of (14.46) and (14.47) are approximately equal, but at
intermediate times, the interference term results in a significant difference in the ππ
decay rates. Figure 14.16a shows the numbers of K → π+π− decays observed in
the CPLEAR experiment, plotted as a function of the neutral kaon decay time for
events that were initially tagged as either a K0 or K0. The difference in the region
of t ∼ 1 ns is the result of this interference term and the magnitude of the difference
is proportional to |ε|.

In practice, the experimental measurement of ε at CPLEAR was obtained from
the asymmetry A+−, defined as

A+− =
Γ
(
K0

t=0 → π+π−
)
− Γ

(
K0

t=0 → π+π−
)

Γ
(
K0

t=0 → π+π−
)
+ Γ

(
K0

t=0 → π+π−
) . (14.48)

From (14.46) and (14.47), this can be expressed as

A+− =
4Re{ε}

[
e−ΓS t + |ε|2e−ΓLt

]
− 4|ε|e−(ΓL+ΓS )t/2 cos(∆m t − φ)

2
[
e−ΓS t + |ε|2e−ΓLt] − 8Re{ε}|ε|e−(ΓL+ΓS )t/2 cos(∆m t − φ)

.
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Since ε is small, the term in the denominator that is proportional to |ε|Re{ε} can be
neglected at all times, giving

A+− ≈ 2Re{ε} − 2|ε|e−(ΓL+ΓS )t/2 cos(∆m t − φ)
e−ΓS t + |ε|2e−ΓLt

= 2Re{ε} − 2|ε|e(ΓS−ΓL)t/2 cos(∆m t − φ)
1 + |ε|2e(ΓS−ΓL)t . (14.49)

Hence both the phase and magnitude of ε can be cleanly extracted from the exper-
imental measurement of A+−. Figure 14.16b shows the asymmetry A+− obtained
from the CPLEAR data of Figure 14.16a. The measured asymmetry is well
described by (14.49) with the measured parameters

|ε| = (2.264 ± 0.035) × 10−3 and φ = (43.19 ± 0.73)◦. (14.50)

The non-zero value of |ε| provides clear evidence for CP violation in the weak
interaction. Because φ is close to 45◦, the real and imaginary parts of ε are roughly
the same size, Re{ε} ≈ Im{ε}.

14.5.4 CP violation in leptonic decays

We can also observe CP violation in the semi-leptonic decays of the KL from meas-
urements at a large distance from the production of the K0/K0. Since the semi-
leptonic decays occur from a particular kaon flavour eigenstate, the relative decay
rates can be obtained from the KL wavefunction expressed in terms of its K0 and
K0 components,

|KL⟩ =
1

√
2(1 + |ε2|)

[
(1 + ε)|K0⟩ − (1 − ε)|K0⟩

]
.

π+e−νe
π−e+νe✲

✲

Hence the decay rates are

Γ(KL → π+e−νe) ∝ |⟨K0|KL⟩|2 ∝ |1 − ε|2 ≈ 1 − 2Re (ε),

Γ(KL → π−e+νe) ∝ |⟨K0|KL⟩|2 ∝ |1 + ε|2 ≈ 1 + 2Re (ε).

The experimental measurements are conveniently expressed in terms of the charge
asymmetry δ defined as

δ =
Γ(KL → π−e+νe) − Γ(KL → π+e−νe)
Γ(KL → π−e+νe) + Γ(KL → π+e−νe)

≈ 2Re (ε) = 2|ε| cos φ.

Experimentally, the number of observed KL → π−e+νe decays is found to be 0.66%
larger than the number of KL → π+e−νe decays, giving

δ = 0.327 ± 0.012%. (14.51)
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This is consistent with the expectation from the measured values of |ε| and φ given
in (14.50), which predict a charge asymmetry of δ = 0.33%.

Interestingly, the small difference in the KL → π−e+νe and KL → π−e−νe decay
rates can be used to provide an unambiguous definition of what we mean by matter
as opposed to antimatter, which in principle, could be communicated to aliens in
a distant galaxy; the electrons in the atoms in our region of the Universe have the
same charge sign as those emitted least often in the decays of the long-lived neutral
kaons. Interesting, but perhaps of little practical use.

14.5.5 Interpretation of the neutral kaon data

The size of the mass splitting ∆m = m(KL) − m(KS ) and magnitude of the CP
violating parameter ε can be related to the elements of CKM matrix and how they
enter the matrix elements for K0 ↔ K0 mixing. In the box diagrams responsible for
neutral kaon mixing, shown in Figure 14.17, there are nine possible combinations
of u, c and t flavours for the two virtual quarks. The matrix element for each box
diagram has the dependence

Mqq′ ∝ VqdV∗qsV∗q′sVq′d.

For reasons that are explained below, to first order, the value of ε is determined by
the matrix elements for box diagrams involving at least one top quark, whereas the
dominant contributions to the KL and KS mass splitting arises from box diagrams
with combinations of virtual up- and charm quarks. A full treatment of these cal-
culations is beyond the scope of this book, but the essential physical concepts can
be readily understood.

The mass splitting ∆m can be related to the magnitude of the matrix elements for
K0 ↔ K0 mixing. Owing to the smallness of |Vtd| and |Vts|, the diagrams involving
the top quark can, to a first approximation, be neglected (see Problem 14.8). Hence
the overall matrix element for K0 ↔ K0 mixing can be written

M ≈Muu +Muc +Mcu +Mcc.

q q!K0 K0

d ds
Vqd

Vq!d Vq!d

Vqd q
s

q!
d d

V *
q!s

V *
q!sV *

qs

V *
qs

s s

 K
0

 K
0

!Fig. 14.17 The box diagrams for K0 ↔ K0 mixing, where the virtual quarks can be any of the nine combinations
of q, q′ = {u, c, t}.
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The individual matrix elements will be proportional to G2
F and will include propa-

gator terms for the two virtual quarks involved and hence

M ∼ G2
F

[
VudV∗usVudV∗us

(k2 − m2
u)2

+ 2
VudV∗usVcdV∗cs

(k2 − m2
u)(k2 − m2

c)
+

VcdV∗csVcdV∗cs

(k2 − m2
c)2

]
,

where k is the four-momentum appearing in the box of virtual particles. Writing
Vud ≈ Vcs ≈ cos θc and Vus ≈ −Vcd ≈ sin θc, this can be expressed as

M ∼ G2
F

[
sin2 θc cos2 θc

(k2 − m2
u)2

− 2
sin2 θc cos2 θc

(k2 − m2
u)(k2 − m2

c)
+

sin2 θc cos2 θc

(k2 − m2
c)2

]

∼ G2
F sin2 θc cos2 θc

(m2
c − m2

u)2

(k2 − m2
u)2(k2 − m2

c)2
.

If the masses of the up- and charm quarks were identical, this contribution to the
matrix element for K0 ↔ K0 mixing would vanish. The evaluation of the matrix
element, which involves the integration over the four-momentum k, is non-trivial
and the resulting expression for ∆m is simply quoted here

∆m ≈
G2

F

3π2 sin2 θc cos2 θc f 2
KmK

(m2
c − m2

u)2

m2
c

. (14.52)

In this expression fK ∼ 170 MeV is the kaon decay factor, analogous to that intro-
duced in Section 11.6.1 in the context of π± decay. Although the above analysis
is rather simplistic, it gives a reasonable estimate of the magnitude of ∆m. Taking
the charm quark mass to be 1.3 GeV, Equation (14.52) gives the predicted value of
∆m ∼ 5 × 10−15 GeV, which is within a factor of two of the observed value. The
smallness of ∆m is due to the presence of the G2

F term from the two exchanged W
bosons in the box diagram.

The Standard Model interpretation of ε
CP violation in K0 ↔ K0 mixing arises because the matrix element for K0 → K0 is
not the same as that for K0 → K0. For example, the matrix elements for K0 → K0

and K0 → K0, arising from the exchange of a charm and a top quark, shown in
Figure 14.18, are respectively proportional to

c tK0

d d

K0

s
Vcd

Vtd

Vcs

Vts

c t

s

s sd d

 K
0

 K
0

Vts
∗

Vcs
∗ Vcd

∗

Vtd
∗

!Fig. 14.18 The box diagram for K0 → K0 involving virtual c and t quarks and the corresponding diagram for K0 → K0.
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M12 ∝ VcdV∗csVtdV∗ts and M21 ∝ V∗cdVcsV∗tdVts =M∗12.

CP violation in mixing occurs ifM12 !M∗12. It can be shown (see Problem 14.9)
that

|ε| ≈ Im {M12}√
2∆m

.

The imaginary part ofM12 can be expressed in terms of the possible combinations
of exchanged u, c, t quarks in the box diagrams,

Im {M12} =
∑

q,q′
Aqq′ Im (VqdV∗qsVq′dV∗q′s),

where the parameters Aqq′ are constants that depend on the masses of the ex-
changed quarks. In the Wolfenstein parameterisation of the CKM matrix given in
(14.9), the imaginary elements of the CKM matrix are Vtd and Vub. Since Vub is not
relevant for kaon mixing, CP violation in neutral kaon mixing is associated with
box diagrams involving at least one top quark, and therefore

|ε| ∝ Aut Im (VudV∗usVtdV∗ts) +Act Im (VcdV∗csVtdV∗ts) +Att Im (VtdV∗tsVtdV∗ts).
(14.53)

Writing the elements of the CKM matrix in terms of A, λ, ρ and η of the Wolfenstein
parametrisation (14.9), it can be shown that (see Problem 14.10)

|ε| ∝ η(1 − ρ + constant).

Hence the measurement of a non-zero value of |ε| implies that η ! 0 and provides
an experimental constraint on the possible values of the parameters η and ρ.

14.6 B-meson physics

The oscillations of neutral mesons are not confined to kaons, they have also been
observed for the heavy neutral meson systems,

B0(bd)↔ B0(bd), B0
s (bs)↔ B0

s (bs) and D0(cu)↔ D0(cu).

In particular, the results from the studies of the B0(bd) and B0(bd) mesons by
the BaBar and Belle experiments have provided crucial information on the CKM
matrix and CP violation. The mathematical treatment of the oscillations of the
B0(bd) ↔ B0(bd) system follows closely that developed for the neutral kaon sys-
tem. However, because the B0 and B0 are relatively massive, m(B) ∼ 5.3 GeV,
they have a large number of possible decay modes; to date, over 400 have been
observed; see Beringer et al. (2012). Of these decay modes, relatively few are com-
mon to both the B0 and B0. Consequently, the interference between the decays of
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the B0 and B0 is small. Because of this, it can be shown (see the following starred
section) that B0 ↔ B0 oscillations can be described by a single angle β and that the
physical eigenstates of the neutral B-meson system are

|BL⟩ =
1√
2

[
|B0⟩ + e−i2β|B0⟩

]
and |BH⟩ =

1√
2

[
|B0⟩ − e−i2β|B0⟩

]
. (14.54)

The BL and BH are respectively a lighter and heavier state with almost identical
lifetimes; again the mass difference m(BL) − m(BH) is very small.

14.6.1 *B-meson mixing

The treatment of B-mixing given here, makes a number of approximations to sim-
plify the discussion in order to focus on the main physical concepts. The physical
neutral B-meson states are the eigenstates of the overall Hamiltonian of the B0 and
B0 system, analogous to the kaon states discussed in Section 14.4.3. There are a
large number of B-meson decay modes, of which only a few are common to both
the B0 and B0, and the contribution to the effective Hamiltonian of (14.25) from the
interference between the decays of the B0 and B0 can be neglected, Γ12 = Γ

∗
21 ≈ 0.

In this case

H ≈
⎛
⎜⎜⎜⎜⎜⎝

M − i
2Γ M12

M∗12 M − i
2Γ

⎞
⎟⎟⎟⎟⎟⎠ , (14.55)

where M12 is due to the box diagrams for B0 ↔ B0 mixing. The eigenvalues of
(14.55), which determine the masses and lifetimes of the physical states, are

λH = mH +
1
2 iΓH ≈ M + |M12| − 1

2 iΓ,

λL = mL +
1
2 iΓL ≈ M − |M12| − 1

2 iΓ.

leading to a heavier state BH and a lighter state BL with masses

mH = M + |M12| and mL = M − |M12|. (14.56)

Because the interference term Γ12 is sufficiently small that it can be neglected, the
imaginary parts of λH and λL are the same. Consequently, the BH and BL have
approximately the same lifetime, which is measured to be

ΓH ≈ ΓL ≈ Γ ≈ 4.3 × 10−13 GeV.

The corresponding physical eigenstates of the effective Hamiltonian are

|BL⟩ =
1

√
1 + |ξ|2

(|B0⟩ + ξ|B0⟩) and |BH⟩ =
1

√
1 + |ξ|2

(|B0⟩ − ξ|B0⟩), (14.57)
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!Fig. 14.19 The dominant box diagrams for B0 ↔ B0 mixing.

where ξ is given by (14.29),

ξ =

⎛
⎜⎜⎜⎜⎜⎝

M∗12 − i
2Γ
∗
12

M12 − i
2Γ12

⎞
⎟⎟⎟⎟⎟⎠

1
2

≈
M∗12

|M12|
, (14.58)

from which it follows that |ξ| ≈ 1.
In K0 ↔ K0 mixing, the contributions from different flavours of virtual quarks in

the box diagrams are of a similar order of magnitude. Here, because |Vtb| ≫ |Vts| >
|Vtd|, only the box diagrams involving two top quarks, shown in Figure 14.19, con-
tribute significantly to the mixing process and

M∗12 ∝ (VtdV∗tb)2.

In the Wolfenstein parametrisation of the CKM matrix (14.9), Vtb is real and thus

ξ =
M∗12

|M12|
=

(VtdV∗tb)2

|(VtdV∗tb)2| =
V2

td

|V2
td|
. (14.59)

By writing Vtd as

Vtd = |Vtd|e−iβ,

the expression for ξ given in (14.59) is simply

ξ = e−i2β.

Hence, the physical neutral B-meson states of (14.57) are

|BL⟩ = 1√
2

(
|B0⟩ + e−i2β|B0⟩

)
and |BH⟩ = 1√

2

(
|B0⟩ − e−i2β|B0⟩

)
. (14.60)

From (14.56), it can be seen that the mass difference

∆md = m(BH) − m(BL) = 2|M12| ∝ |(VtdV∗tb)2|. (14.61)

Because Vtb ≈ 1, it follows that the BH −BL mass difference is proportional to |V2
td|.

Consequently, the measurement of∆md in B0↔B0 mixing provides a way of deter-
mining |Vtd|.
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14.6.2 Neutral B-meson oscillations

The mathematical description of the phenomenon of B-meson oscillations follows
that developed for the kaon system. Suppose a B0(bd) is produced at a time t = 0,
such that |B(0)⟩ = |B0⟩. Then from (14.60), the flavour state B0 can be expressed
in terms of the physical BH and BL mass eigenstates

|B0⟩ = 1√
2

(|BL⟩ + |BH⟩) .

The wavefunction evolves according to the time dependence of the physical states,

|B(t)⟩ = 1√
2

[θL(t)|BL⟩ + θH(t)|BH⟩] , (14.62)

where the time dependencies of the physical states are

θL = e−Γt/2e−imLt and θH = e−Γt/2e−imHt.

Equation (14.62) can be expressed in terms of the flavour eigenstates using (14.60),

|B(t)⟩ = 1
2

[
(θL + θH)|B0⟩ + e−i2β(θL − θH)|B0⟩

]
= 1

2

[
θ+|B0⟩ + ξθ−|B0⟩

]
, (14.63)

where θ± = θL ± θH and ξ = e−2iβ. By writing mL = M − ∆md/2 and mH =

M + ∆md/2,

θ±(t) = e−Γt/2e−iMt ×
[
ei∆mdt/2 ± e−i∆mdt/2

]
, (14.64)

from which it follows that θ+ and θ− are given by

θ+ = 2e−Γt/2e−iMt cos
(
∆mdt

2

)
and θ− = 2ie−Γt/2e−iMt sin

(
∆mdt

2

)
.

The probabilities of the state decaying as a |B0⟩ or a |B0⟩ are therefore

P(B0
t=0 → B0) = |⟨B(t)|B0⟩|2 = 1

4 e−Γt|θ+|2 = e−Γt cos2
(

1
2∆mdt

)
,

P(B0
t=0 → B0) = |⟨B(t)|B0⟩|2 = 1

4 e−Γt|ξθ−|2 = |ξ|2e−Γt sin2
(

1
2∆mdt

)
. (14.65)

The corresponding expressions for a state that was produced as a B0 are

P(B0
t=0 → B0) = e−Γt cos2

(
1
2∆mdt

)
and P(B0

t=0 → B0) =
∣∣∣∣∣
1
ξ

∣∣∣∣∣
2
e−Γt sin2

(
1
2∆mdt

)
.

Because the contribution to the effective Hamiltonian for the neutral B-meson
system from the interference between B0 and B0 decays can be neglected, |ξ| =
|e−i2β| = 1 and therefore

P(B0
t=0 → B0) ≈ P(B0

t=0 → B0) and P(B0
t=0 → B0) ≈ P(B0

t=0 → B0).

Consequently, it is very hard to observe CP violation in neutral B-meson mixing.
Nevertheless, B0 ↔ B0 oscillations can be utilised to measure ∆md, which from
(14.61) provides a measurement of |Vtd|.
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14.6.3 The BaBar and Belle experiments

The BaBar (1999–2008) and Belle (1999–2010) experiments were designed to pro-
vide precise measurements of CP violation in the neutral B-meson system. The
experiments utilised the high-luminosity PEP2 and KEKB e+e− colliders at SLAC
in California and KEK in Japan. To produce very large numbers of B0B0 pairs, the
colliders operated at a centre-of-mass energy of 10.58 GeV, which corresponds to
the mass of the Υ(4S ) bb resonance. The Υ(4S ) predominantly decays by either
Υ(4S ) → B+B− or Υ(4S ) → B0B0, with roughly equal branching ratios. The
masses of the charged and neutral B-mesons are 5.279 GeV, and therefore they are
produced almost at rest in the centre-of-mass frame of the Υ(4S ). Because the life-
times of the neutral B-mesons are short (τ = 1.519×10−12 s) and they are produced
with relatively low velocities, they travel only a short distance in the centre-of-mass
frame before decaying. Consequently, in the centre-of-mass frame it would be hard
to separate the decays of two B-mesons produced in e+e− → Υ(4S ) → B0B0.
For this reason, the PEP2 and KEKB colliders operated as asymmetric b-factories,
where the electron beam energy was higher than that of the positron beam. For
example, PEP2 collided a 9 GeV electron beam with a 3.1 GeV positron beam.
Owing to the asymmetric beam energies, the Υ(4S ) is boosted along the beam
axis; at the PEP2 collider the Υ(4S ) is produced with βγ = 0.56. As a result of
this boost, the mean distance between the two B-meson decay vertices in the beam
direction is increased to ∆z ∼ 200 µm. This separation is large enough for the
two B-meson decay vertices to be resolved using a high-precision silicon vertex
detector, as described in Section 1.3.1.

The oscillations of B-mesons can be studied through their leptonic decays,

B0(bd)→ D−(cd) µ+ νµ and B0(bd)→ D+(cd) µ− νµ.

The sign of the lepton identifies the B-meson flavour state, since the decays B0 →
D+µ−νµ and B0 → D−µ+νµ do not occur. After production in e+e− → B0B0, the
two B-mesons propagate as a coherent state. When one of the B-mesons decays
into a particular flavour eigenstate, the overall wavefunction collapses, fixing the
flavour state of the other B-meson. For example, Figure 14.20 illustrates the case
where at t = 0 one of the B-mesons is observed to decay to D+µ−νµ, tagging it as
a B0. At this instant in time, the second B-meson corresponds to a pure B0 state,
|B(0)⟩ = |B0⟩. The wavefunction of the second B-meson then evolves according to
(14.63). When the second B-meson decays ∆t later, the charge sign of the observed
lepton tags the flavour eigenstate in which the decay occurred. Thus B0 ↔ B0

oscillations can be studied by measuring the rates where the two B-meson decays
are the same flavour, B0B0 and B0B0, or are of opposite flavour, B0B0. The same
flavour (SF) decays give like-sign leptons, µ+µ+ or µ−µ−, and the opposite flavour
(OF) decays give opposite-sign leptons, µ+µ−. The relative rates depend on the
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!Fig. 14.20 The process e+e− → B0B0 followed by two same-flavour (SF) leptonic B0 decays, following B0 → B0

oscillation.

time between the two decays ∆t. Because the B-mesons are produced almost at
rest in the centre-of-mass frame, the proper time between the two decays is given
by ∆t = ∆z/βγc, where β and γ are determined from the known velocity of the Υ.

The mass difference ∆md =m(BH)−m(BL) is determined from the lepton flavour
asymmetry A(∆t) defined as

A(∆t) =
NOF − NS F

NS F + NOF
,

where NOF is the number of observed opposite flavour decays and NS F is the
corresponding number of same flavour decays. The observed asymmetry can be
expressed in terms of the oscillation probabilities as

A(∆t) =
[P(B0

t=0→B0) + P(B0
t=0→B0)] − [P(B0

t=0→B0) + P(B0
t=0→B0)]

[P(B0
t=0→B0) + P(B0

t=0→B0)] + [P(B0
t=0→B0) + P(B0

t=0→B0)]
,

which, using (14.65) and the subsequent relations, gives

A(∆t) = cos2
(

1
2∆mdt

)
− sin2

(
1
2∆mdt

)
= cos (∆mdt) . (14.66)

Figure 14.21 shows the measurement of A(∆t) from the Belle experiment. The
data do not follow the pure cosine form of (14.66) due to a number of experimental
effects, including the presence of background, the misidentification of the lepton
charge and the experimental ∆t resolution. Nevertheless, the effects of B0 ↔ B0

oscillations are clearly observed. When combined, the results from the BaBar and
Belle experiments give

∆md = (0.507 ± 0.005) ps−1 ≡ (3.34 ± 0.03) × 10−13 GeV.

From (14.61) and the knowledge that Vtb ≈ 1, the measured value of ∆md can be
interpreted as a measurement of

|Vtd| = (8.4 ± 0.6) × 10−3.
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and the effects of experimental resolution. Adapted from Abe et al. (2005).

In a similar manner, |Vts| can be extracted from the measurements of oscilla-
tions in the B0

s (bs) ↔ B0
s (bs) system from the CDF and LHCb experiments, see

Abulencia et al. (2006) and Aaij et al. (2012). When the results from these two
experiments are averaged they give ∆ms = 17.72 ± 0.04 ps−1. Taking Vtb ≈ 1 this
result leads to

|Vts| = (4.3 ± 0.3) × 10−2.

14.6.4 CP violation in the B-meson system

In general, CP violation can be observed as three distinct effects:

(i) direct CP violation in decay such that Γ(A → X) ! Γ(A → X), as parame-
terised by ε′ in the neutral kaon system;

(ii) CP violation in the mixing of neutral mesons as parameterised by ε in the
kaon system;

(iii) CP violation in the interference between decays to a common final state f
with and without mixing, for example B0 → f and B0 → B0 → f .

In the Standard Model, the effects of CP violation in B0 ↔ B0 mixing is small.
Nevertheless, CP-violating effects in the interference between decays B0 → f and
B0 → B0 → f can be relatively large and have been studied extensively by the
BaBar and Belle experiments in a number of final states; here the decay B →
J/ψKS is used to illustrate the main ideas. To simplify the notation, the J/ψ meson
is written simply as ψ.

The ψ charmonium (cc) state has JP = 1− and is a CP eigenstate with CP = +1.
Neglecting CP violation in neutral kaon mixing, the KS is to a good approximation,



401 14.6 B-meson physics

e+

m–

m–
m+

e-

Dt

B → yK

KS → p+ p–

B0

B0

!Fig. 14.22 The process e+e− → B0B0 where the leptonic decay tags the flavour of the other B-meson as being a B0

that subsequently decays to aψ KS. In this illustrative example,ψ→ µ+µ− and KS → π+π−.

Vcs

c

d

d

s

Vcb

c

B0
b

K0

b

c

c

d

d  K
0

 B
0

y y
Vcb

∗

Vcs
∗

s!Fig. 14.23 The Feynman diagrams for B0 → ψ K0 and B0 → ψ K0.

the CP = +1 eigenstate of the neutral kaon system with JP = 0−. Since the B0 and
B0 are spin-0 mesons, the decays B0 → ψKS and B0 → ψKS must result in an
ℓ = 1 orbital angular momentum state. Therefore the CP state of the combined
ψKS system is

CP(ψKS ) = CP(ψ) ×CP(KS ) × (−1)ℓ = (+1)(+1)(−1) = −1.

Similarly, the decay B→ ψKL occurs in a CP-even state, CP(ψKL) = +1.
Figure 14.22 shows the topology of a typical neutral B-meson decay to ψKS . In

this example, the charge of the muon in the leptonic B0 → D+µ−νµ decay tags it as
B0 and hence at time t = 0, the other B-meson is in a B0 flavour state, |B(0)⟩ = |B0⟩.
The decay to ψKS can either occur directly by B0 → ψKS or after mixing, B0 →
B0 → ψKS . It is the interference between the two amplitudes for these processes,
which have different phases, that provides the sensitivity to the CP violating angle
β. The B → ψKS decays can be identified from the clear experimental signatures,
for example ψ→ µ+µ− and KS → π+π−.

The B0/B0 → ψKS decays proceed in two stages. First the B0/B0 decays to
the corresponding flavour eigenstate, B0 → ψK0 and B0 → ψK0, as shown in
Figure 14.23. Subsequently, the neutral kaon system evolves as as a linear combi-
nation of the physical KS and KL states and then decays to the CP states KSψ and
KLψ. CP violation in the interference between B0 → ψKS and B0 → B0 → ψKS

is measurable through the asymmetry,
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AKS
CP =

Γ(B0
t=0 → ψKS ) − Γ(B0

t=0 → ψKS )

Γ(B0
t=0 → ψKS ) + Γ(B0

t=0 → ψKS )
= sin(∆mdt) sin(2β). (14.67)

Figure 14.24 shows the experimental data from the BaBar experiment. The left-
hand plot shows the raw numbers of observed decays to ψKS , from both events
that were tagged as B0 or B0, plotted as a function of ∆t. Here ∆t is the differ-
ence in the proper time of the tagged B0/B0 semi-leptonic decay and the observed
B → ψKS decay. The curves show the expected distributions including a sym-
metric background contribution from other B-meson decays. The right-hand plot
of Figure 14.24 shows the raw asymmetry obtained from these data. This has the
expected sinusoidal form of (14.67) and the amplitude provides a measurement of
sin(2β),

sin(2β) = 0.685 ± 0.032.

This observation of a non-zero value of sin(2β) is a direct manifestation of CP
violation in the B-meson system. The Belle experiment (see Adachi et al. (2012))
measured sin(2β) = 0.670 ± 0.032.

14.7 CP violation in the Standard Model

There is now a wealth of experimental data on CP violation associated with the
weak interactions of quarks. This chapter has focussed on the observations of CP
violation in K0 − K0 mixing and in the interference between the amplitudes for
B0 → J/ψKS and B0 → B0 → J/ψKS decays. Direct CP violation in the decays of
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kaons and B-mesons has also been observed, for example, as a difference between
the rates Γ(B0 → K−π+) and Γ(B0 → K+π−).

In the Standard Model, CP violation in the weak interactions of hadrons is
described by the single irreducible complex phase in the CKM matrix. In the
Wolfenstein parametrisation of (14.9), CP violation is associated with the parame-
ter η. To O(λ4), the parameter η appears only in Vub and Vtd, with

Vub ≈ Aλ3(ρ − iη) and Vtd ≈ Aλ3(1 − ρ − iη).

The measurements of non-zero values of |ε| and sin(2β) separately imply that η ! 0.
However, it is only when the experimental measurements are combined, that the
values of ρ and η can be determined.

In the Standard Model, the CKM matrix is unitary, V†V = I. This property
places constraints on the possible values of the different elements of the CKM
matrix. These constraints are usually expressed in terms of unitarity triangles. For
example, the unitarity of the CKM matrix implies that

VudV∗ub + VcdV∗cb + VtdV∗tb = 0. (14.68)

In the Wolfenstein parametrisation, of these six CKM matrix elements, Vud, Vtb,
Vcd and Vcb are all real and only Vcd is negative. Hence (14.68) can be divided by
VcdVcb to give

1 − |Vud|
|Vcd||Vcb|

V∗ub −
|Vtb|
|Vcd||Vcb|

Vtd = 0. (14.69)

Since V∗ub and Vtd are complex, V∗ub = Aλ3(ρ + iη) and Vtd = Aλ3(1 − ρ − iη), the
unitarity relation of (14.69) is a vector equation in the complex ρ–η plane, with the
three vectors forming the closed triangle, as shown in Figure 14.25a.

From Vtd = |Vtd|e−iβ = Aλ3(1 − ρ − iη), it can be seen that

β = arg (1 − ρ + iη) or equivalently tan β =
η

1 − ρ .

Consequently, the angle β corresponds to the internal angle of the unitarity tri-
angle shown in Figure 14.25a. Therefore, the measurement of sin(2β) described
previously constrains the angle between two of the sides of the unitarity triangle as
shown in Figure 14.25b, which also shows the constraint in the ρ–η plane obtained
from the measurement of |ε| in neutral kaon mixing,

|ε| ∝ η(1 − ρ + constant).

The measurement of ∆md determines |Vtd|. When this is combined with the knowl-
edge that |Vtb| ≈ 1 and the measurements of |Vcd| and |Vcb| described in Sec-
tion 14.3, it constrains of the length of the upper side of the unitarity triangle,
as shown in Figure 14.25b.
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The experimental constraints from the measurements of |ε|, sin(2β) and ∆md

are consistent with a common point in the ρ–η plane, as indicated by the ellipse
in Figure 14.25b, thus providing experimental confirmation of the unitarity rela-
tion VudV∗ub + VcdV∗cb + VtdV∗tb = 0. From a global fit to these and other results
(see Beringer et al. (2012)) the Wolfenstein parameters are determined to be

λ = 0.2253 ± 0.0007, A = 0.811+0.022
−0.012, ρ = 0.13 ± 0.02, η = 0.345 ± 0.014.

The experimental measurements described in this chapter provide a strong test of
the Standard Model prediction that the unitarity triangle of (14.69) is closed. Any
deviation from this prediction would indicate physics beyond the Standard Model.
To date, all measurements in the quark flavour sector are consistent a unitary
CKM matrix, where the observed CP violation is described by a single complex
phase.

Whilst the Standard Model provides an explanation of the observed CP violation
in the quark sector, this is not sufficient to explain the matter–antimatter asymme-
try in the Universe. There are suggestions that CP violation in the lepton sector
during the early evolution of the Universe might account for the observed matter-
antimatter asymmetry. However, it is also possible that there are as yet undiscov-
ered CP violating processes beyond the Standard Model. In the coming years the
LHCb experiment at the LHC and the Belle II experiment at KEK will probe CP
violation in the quark sector with ever increasing precision and may shed further
light on this important question.
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Summary

CP violation is an essential part of our understanding of particle physics. In the
Standard Model it can be accommodated in the irreducible complex phases in
the PMNS and CKM matrices. In the decays of hadrons, CP violation has been
observed in three ways: (i) direct CP violation in decay; (ii) indirect CP violation
in the mixing of neutral mesons; and (iii) CP violation in the interference between
decays with and without oscillations.

This chapter concentrated on the measurements of oscillations and CP violation
in the neutral kaon and neutral B-meson systems. Many of the effects arise from the
distinction between the different neutral meson states. For example, neutral kaons
are produced in the strong interaction as the flavour eigenstates, K0(sd) and K0(sd),
but the physical particles with definite masses and lifetimes are the eigenstates of
the overall Hamiltonian of the K0–K0 system are

|KS ⟩ ∝ (1 + ε)|K0⟩ + (1 − ε)|K0⟩ and |KL⟩ ∝ (1 + ε)|K0⟩ − (1 − ε)|K0⟩,

where the parameter ε is non-zero only if CP is violated. If CP were conserved in
the weak interaction, the physical states would correspond to the CP eigenstates

|KS ⟩ ∝ |K0⟩ + |K0⟩ and |KL⟩ ∝ |K0⟩ − |K0⟩.

Oscillations arise because neutral mesons are produced as flavour eigenstates and
decay as either flavour or CP eigenstates, but propagate as the physical mass
eigenstates.

The studies of the neutral mesons and their oscillations, provide constraints on
the values of the elements of the CKM matrix and allow CP violation to be studied
in the quark sector. To date, all such experimental measurements are consistent
with the Standard Model predictions from the single complex phase in the unitary
CKM matrix.

Problems

14.1 Draw the lowest-order Feynman diagrams for the decays

K0 → π+π−, K0 → π0 π0, K0 → π+π− and K0 → π0 π0,

and state how the corresponding matrix elements depend on the Cabibbo angle θc .
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14.2 Draw the lowest-order Feynman diagrams for the decays

B0 → D− π+, B0 → π+ π− and B0 → J/ψ K0,

and place them in order of decreasing decay rate.

The flavour content of the above mesons is B0(db), D−(dc), J/ψ(cc) and K0(ds).

14.3 Draw the lowest-order Feynman diagrams for the weak decays

D0(cu)→ K−(su) + π+(ud) and D0(cu)→ K+(us) + π−(du),

and explain the observation that

Γ(D0 → K+π−)
Γ(D0 → K−π+)

≈ 4 × 10−3.

14.4 A hypothetical T0(tu) meson decays by the weak charged-current decay chain,

T0 → Wπ→ (Xπ)π → (Yπ)ππ→ (Zπ)πππ.

Suggest the most likely identification of the W, X , Y and Z mesons and state why this decay chain would be
preferred over the direct decay T0 → Z π.

14.5 For the cases of two, three and four generations, state:

(a) the number of free parameters in the corresponding n × n unitary matrix relating the quark flavour and
weak states;

(b) how many of these parameters are real and how many are complex phases;
(c) how many of the complex phases can be absorbed into the definitions of phases of the fermions without

any physical consequences;
(d) whether CP violation can be accommodated in quark mixing.

14.6 Draw the lowest-order Feynman diagrams for the strong interaction processes

pp→ K−π+K0 and pp→ K+π−K0.

14.7 In the neutral kaon system, time-reversal violation can be expressed in terms of the asymmetry

AT =
Γ(K0 → K0) − Γ(K0 → K0)

Γ(K0 → K0) + Γ(K0 → K0)
.

Show that this is equivalent to

AT =
Γ(K0

t=0 → π−e+νe) − Γ(K0
t=0 → π+e−νe)

Γ(K0
t=0 → π−e+νe) + Γ(K0

t=0 → π+e−νe)
,

and therefore

AT ≈ 4|ε| cos φ.

14.8 The KS – KL mass difference can be expressed as

∆m = m(KL) − m(KS) ≈
∑

q,q′

G2
F

3π2 f 2
K mK|VqdV∗qsVq′dV∗q′s|mqmq′ ,
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where q and q′ are the quark flavours appearing in the box diagram. Using the values for the CKM matrix
elements given in (14.8), obtain expressions for the relative contributions to∆m arising from the different com-
binations of quarks in the box diagrams.

14.9 Indirect CP violation in the neutral kaon system is expressed in terms of ε = |ε|eiφ. Writing

ξ =
1 − ε
1 + ε

≈ 1 − 2ε =
⎛
⎜⎜⎜⎜⎝

M∗12 − i
2Γ
∗
12

M12 − i
2Γ12

⎞
⎟⎟⎟⎟⎠

1
2

,

show that

ε ≈ 1
2
×

⎛
⎜⎜⎜⎜⎝

(Im {M12} − i
2 Im {Γ12})

M12 − i
2Γ12

⎞
⎟⎟⎟⎟⎠

1
2

≈ Im {M12} − i Im {Γ12/2}
∆m − i∆Γ/2

.

Using the knowledge that φ ≈ 45◦ and the measurements of ∆m and ∆Γ, deduce that Im {M12}≫
Im {Γ12} and therefore

|ε| ∼ 1√
2

Im {M12}
∆m

.

14.10 Using (14.53) and the explicit form of Wolfenstein parametrisation of the CKM matrix, show that

|ε| ∝ η(1 − ρ + constant).

14.11 Show that the B0 – B0 mass difference is dominated by the exchange of two top quarks in the box diagram.

14.12 Calculate the velocities of the B-mesons produced in the decay at rest of theΥ(4S)→ B0B0.

14.13 Given the lifetimes of the neutral B-mesons are τ = 1.53 ps, calculate the mean distance they travel when
produced at the KEKB collider in collisions of 8 GeV electrons and 3.5 GeV positrons.

14.14 From the measured values

|Vud| = 0.974 25 ± 0.000 22 and |Vub| = (4.15 ± 0.49) × 10−3,

|Vcd| = 0.230 ± 0.011 and |Vcb| = 0.041 ± 0.001,

calculate the length of the corresponding side of the unitarity triangle in Figure 14.25 and its uncertainty. By
sketching this constraint and that from the measured value of β, obtain approximate constraints on the values
of ρ and η.



15 Electroweak unification

One of the main goals of particle physics is to provide a unified picture of
the fundamental particles and their interactions. In the nineteenth century,
Maxwell provided a description of electricity and magnetism as different
aspects of a unified electromagnetic theory. In the 1960s, Glashow, Salam
and Weinberg (GSW) developed a unified picture of the electromagnetic and
weak interactions. One consequence of the GSW electroweak model is the
prediction of a weak neutral-current mediated by the neutral Z boson with
well-defined properties. This short chapter describes electroweak unification
and the properties of the W and Z bosons.

15.1 Properties of the W bosons

The W boson is a spin-1 particle with a mass of approximately 80 GeV. Its wave-
function can be written in terms of a plane wave and a polarisation four-vector,

Wµ = ϵ µλ e−ip·x = ϵ µλ ei(p·x−Et).

For a massive spin-1 particle the polarisation four-vector ϵ µλ is restricted to one of
three possible polarisation states (see Appendix D). For a W boson travelling in the
z-direction, the three orthogonal polarisation states λ can be written as

ϵ µ− =
1√
2
(0, 1,−i, 0), ϵ µL =

1
mW

(pz, 0, 0, E) and ϵ µ+ = − 1√
2
(0, 1, i, 0). (15.1)

These states represent two transverse polarisation modes ϵ±, corresponding to cir-
cularly polarised spin-1 states with S z = ±1, and a longitudinal S z = 0 state.

15.1.1 W-boson decay

The calculation of the W-boson decay rate provides a good illustration of the use
of polarisation four-vectors in matrix element calculations. The lowest-order Feyn-
man diagram for the W− → e−νe decay is shown in Figure 15.1. The matrix ele-
ment for the decay is obtained using the appropriate Feynman rules. The final-state
electron and antineutrino are written respectively as the adjoint particle spinor

408
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p1

p4

p3

W-

e-

νe

!Fig. 15.1 The lowest-order Feynman diagram for W− → e−νe.

u(p3) and the antiparticle spinor v(p4). The initial-state W− is written as ϵλµ (p1),
where λ indicates one of the three possible polarisation states. Finally, the vertex
factor for the weak charged-current is the usual V − A interaction

−i gW√
2

1
2γ
µ(1 − γ5).

Using these Feynman rules, the matrix element for W− → e−νe is given by

−iM f i = ϵ
λ
µ (p1) u(p3)

[
−i gW√

2
γ µ 1

2 (1 − γ5)
]
v(p4),

and therefore

M f i =
gW√

2
ϵλµ (p1) u(p3)γ µ 1

2 (1 − γ5)v(p4). (15.2)

This expression can be written as the four-vector scalar product of the W-boson
four-vector polarisation and the lepton current,

M f i =
gW√

2
ϵλµ (p1) j µ, (15.3)

where the leptonic weak charged-current j µ is given by

j µ = u(p3)γ µ 1
2 (1 − γ5)v(p4). (15.4)

It is convenient to consider the W− → e−νe decay in the rest frame of the W
boson, as illustrated in Figure 15.2. Given that mW ≫ me, the mass of the electron
can be neglected and the four-vectors of the W−, e− and νe can be taken to be

p1 = (mW, 0, 0, 0),

p3 = (E, E sin θ, 0, E cos θ),

p4 = (E,−E sin θ, 0,−E cos θ),

with E = mW/2. In the ultra-relativistic limit, where the helicity states are the same
as the chiral states, only left-handed helicity particle states and right-handed helic-
ity antiparticle states contribute to the weak interaction. In this case, the leptonic
current of (15.4) can be written

j µ = u↓(p3)γ µv↑(p4), (15.5)
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e-

W- q
z

p3

p4
p1

νe!Fig. 15.2 The decay W− → e−νe in the W-boson rest frame.

where u↓(p3) and v↑(p4) are respectively the left-handed particle and right-handed
antiparticle helicity spinors for the electron and electron antineutrino. The lep-
tonic current of (15.5) is identical to that encountered for the µ+µ− current in the
s-channel process e+e− → µ+µ− and is given by (6.17) with E = mW/2,

j µ = mW(0,− cos θ,−i, sin θ).

For a W boson at rest, the three possible polarisation states of (15.1) are

ϵ µ− =
1√
2
(0, 1,−i, 0), ϵ µL = (0, 0, 0, 1) and ϵ µ+ = − 1√

2
(0, 1, i, 0).

Therefore, from (15.3), the matrix elements for the decay W− → e−νe in the three
possible W-boson polarisation states are

M− = gWmW
2 (0, 1,−i, 0) · (0,− cos θ,−i, sin θ) = 1

2gWmW(1 + cos θ),

ML =
gWmW√

2
(0, 0, 0, 1) · mW(0,− cos θ,−i, sin θ) = − 1√

2
gWmW sin θ,

M+ = − gWmW
2 (0, 1, i, 0) · mW(0,− cos θ,−i, sin θ) = 1

2gWmW(1 − cos θ).

Hence, for the three possible W-boson polarisations

|M−|2 = g2
Wm2

W
1
4 (1 + cos θ)2,

|ML|2 = g2
Wm2

W
1
2 sin2 θ,

|M+|2 = g2
Wm2

W
1
4 (1 − cos θ)2.

The resulting angular distributions of the decay products for each of the different
W-boson polarisations can be understood by noting that the LH and RH helici-
ties of the electron and antineutrino imply that they are produced in a spin-1 state
aligned with the direction of the neutrino, as shown in Figure 15.3. The angular
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!Fig. 15.3 The angular distributions of the electron and electron antineutrino in the decay W− → e−νe for the three
possible W-boson polarisation states.

distributions then follow from the quantum mechanical properties of spin-1, as dis-
cussed in Section 6.3.

The total decay rate is determined by the spin-averaged matrix element squared,
which (for unpolarised W decays) is given by

〈
|M f i|2

〉
= 1

3

(
|M−|2 + |ML|2 + |M+|2

)

= 1
3g

2
Wm2

W

[
1
4 (1 + cos θ)2 + 1

2 sin2 θ + 1
4 (1 − cos θ)2

]

= 1
3g

2
Wm2

W. (15.6)

Hence, after averaging over the three polarisation states of the W boson, there is
no preferred direction for the final-state particles that are, as expected, produced
isotropically in the W-boson rest frame. The W− → e−νe decay rate is obtained by
substituting the expression for the spin-averaged matrix element of (15.6) into the
decay rate formula of (3.49),

Γ =
p∗

32π2m2
W

∫ 〈
|M f i|2

〉
dΩ∗ =

p∗

8πm2
W

〈
|M f i|2

〉
,

where p∗ is the momentum of the electron (or antineutrino) in the centre-of-mass
frame. If the masses of the final-state particles are neglected, p∗ = mW/2, and
therefore the W− → e−νe decay rate is given by

Γ(W− → e−νe) =
g2

WmW

48π
. (15.7)
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!Fig. 15.4 The lowest-order Feynman diagram for W− → qq′ and the first-order QCD correction from W− → qq′g.

The expression of (15.7) gives the partial decay width for W− → e−νe. To calcu-
late the total decay rate of the W boson, all possible decay modes have to be consid-
ered. From the lepton universality of the weak charged-current (and neglecting the
very small differences due to the lepton masses), the three leptonic decay modes
have the same partial decay rates,

Γ(W− → e−νe) = Γ(W− → µ−νµ) = Γ(W− → τ−ντ).

The W boson also can decay to all flavours of quarks with the exception of the
top quark, which is too massive (mt > mW). The decay rate of the W boson to a
particular quark flavour needs to account for the elements of the CKM matrix and
the three possible colours of the final-state quarks, therefore the decay rates relative
to Γeν = Γ(W− → e−νe) are

Γ(W− → du)= 3|Vud|2 Γeν, Γ(W− → dc)= 3|Vcd|2 Γeν,

Γ(W− → su)= 3|Vus|2 Γeν, Γ(W− → sc)= 3|Vcs|2 Γeν,

Γ(W− → bu)= 3|Vub|2 Γeν, Γ(W− → bc)= 3|Vcb|2 Γeν.

From the unitarity of the CKM matrix,

|Vud|2 + |Vus|2 + |Vub|2 = 1 and |Vcd|2 + |Vcs|2 + |Vcb|2 = 1,

and the lowest-order prediction for the W-boson decay rate to quarks is

Γ(W− → qq′) = 6Γ(W− → e−νe).

In addition to the lowest-order W → qq′ process, the QCD correction from the
process W → qq′g, shown in Figure 15.4, enhances the decay rate to hadronic
final states by a factor

κQCD =

[
1 +

αS (mW)
π

]
≈ 1.038. (15.8)
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Thus the total decay rate of the W boson to either quarks or to the three possible
leptonic final states is

ΓW = (3 + 6 κQCD) Γ(W− → e−νe) ≈ 9.2 ×
g2

WmW

48π
= 2.1 GeV,

and the branching ratio of the W boson to hadronic final states is

BR(W→ qq′) =
6 κQCD

3 + 6 κQCD
= 67.5%. (15.9)

The prediction of ΓW = 2.1 GeV is in good agreement with the measured value of
ΓW = 2.085 ± 0.042 GeV (see Chapter 16). Because the mass of the W boson is
large, so is the total decay width, and the lifetime of the W boson is onlyO(10−25 s).

15.1.2 W-pair production

The fact that the force carrying particles of the weak interaction possess the charge
of the electromagnetic interaction is already suggestive that the weak and electro-
magnetic forces are somehow related. Further hints of electroweak unification are
provided by the observation that the coupling constants of the electromagnetic and
weak interactions are of the same order of magnitude (see Section 11.5.1). How-
ever, there are also strong theoretical arguments for why a theory with just the weak
charged current must be incomplete.

Pairs of W bosons can be produced in e+e− annihilation at an electron–positron
collider or in qq annihilation at a hadron collider. The three lowest-order Feynman
diagrams for the process e+e− → W+W− are shown in Figure 15.5. The t-channel
neutrino exchange diagram represents a purely weak charged-current process. The
s-channel photon exchange diagram is an electromagnetic process, which arises
because the W+ and W− carry electromagnetic charge. With the first two dia-
grams of Figure 15.5 alone, the calculated e+e−→W+W− cross section is found
to increase with centre-of-mass energy without limit, as shown in Figure 15.6.

νe

e-

e+

W-

W+

γ

e-

e+

W-

W+

Z

e-

e+

W-

W+

!Fig. 15.5 The three lowest-order Feynman diagram for e+e− → W+W−.
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s /GeV√!Fig. 15.6 The predicted e+e− → W+W− production cross section for three cases: only theνe-exchange diagram; the
νe-exchange and γ-exchange diagrams; and all three Feynman diagrams of Figure 15.5.

At some relatively high centre-of-mass energy, the cross section violates quantum
mechanical unitarity, whereby particle probability is no longer conserved; the cal-
culated number of W-pairs produced in the interaction exceeds the incident e+e−

flux. This problematic high-energy behaviour of the e+e− → W+W− cross section
indicates that the theory with just the first two diagrams of Figure 15.5 is incom-
plete. Because the s- and t-channel diagrams interfere negatively, the problem
would be even worse with the neutrino exchange diagram alone,

|Mν +Mγ|2 < |Mν|2.

The problem of unitarity violation in e+e− → W+W− production is resolved
naturally in the electroweak theory, which predicts an additional gauge boson, the
neutral Z. Because the contribution to the e+e− → W+W− cross section from the
Z-exchange diagram interferes negatively,

|Mν +Mγ +MZ|2 < |Mν +Mγ|2,

the calculated e+e− → W+W− cross section is well behaved at all centre-of-mass
energies, as shown in Figure 15.6. This partial cancellation only works because the
couplings of the γ, W± and the new Z boson are related to each other in the unified
electroweak model.
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15.2 The weak interaction gauge group

In Section 10.1 it was shown that QED and QCD are associated with respective
U(1) and SU(3) local gauge symmetries. The charged-current weak interaction is
associated with invariance under SU(2) local phase transformations,

ϕ(x)→ ϕ′(x) = exp
[
igW α(x) · T]

ϕ(x). (15.10)

Here T are the three generators of the SU(2) group that can be written in terms of
the Pauli spin matrices,

T = 1
2σ,

and α(x) are three functions which specify the local phase at each point in space-
time. The required local gauge invariance can only be satisfied by the introduction
of three gauge fields, Wk

µ with k = 1, 2, 3, corresponding to three gauge bosons
W(1), W(2) and W(3). Because the generators of the SU(2) gauge transformation are
the 2 × 2 Pauli spin-matrices, the wavefunction ϕ(x) in (15.10) must be written in
terms of two components. In analogy with the definition of isospin, ϕ(x) is termed
a weak isospin doublet. Since the weak charged-current interaction associated with
the W± couples together different fermions, the weak isospin doublets must contain
flavours differing by one unit of electric charge, for example

ϕ(x) =
(
νe(x)
e−(x)

)
.

In this weak isospin space, the νe and e− have total weak isospin IW =
1
2 and third

component of weak isospin I(3)
W (νe) = + 1

2 and I(3)
W (e−) = −1

2 . Since the observed
form of the weak charged-current interaction couples only to left-handed chiral
particle states and right-handed chiral antiparticle states, the gauge transformation
of (15.10) can affect only LH particles and RH antiparticles. To achieve this, RH
particle and LH antiparticle chiral states are placed in weak isospin singlets with
IW = 0 and are therefore unaffected by the SU(2) local gauge transformation. The
weak isospin doublets are composed only of LH chiral particle states and RH chiral
antiparticle states and, for this reason, the symmetry group of the weak interaction
is referred to as SU(2)L.

The weak isospin doublets are constructed from the weak eigenstates and there-
fore account for the mixing in the CKM and PMNS matrices. For example, the
u quark appears in a doublet with the weak eigenstate d′, as defined in (14.3).
The upper member of the doublet, with I(3)

W = +1/2, is always the particle state
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which differs by plus one unit in electric charge relative to the lower member of the
doublet,

(
νe

e−

)

L
,

(
νµ
µ−

)

L
,

(
ντ
τ−

)

L
,

(
u
d′

)

L
,

(
c
s′

)

L
,

(
t

b′

)

L
.

This common ordering within the doublets is necessary for a consistent definition
of the physical W± bosons. The right-handed particle chiral states are placed in
weak isospin singlets with IW = I(3)

W = 0,

e−R, µ
−
R, τ−R, uR, cR, tR, dR, sR, bR.

Because the weak isospin singlets are unaffected by the SU(2)L local gauge trans-
formation of the weak interaction, they do not couple to the gauge bosons of the
symmetry.

The requirement of local gauge invariance implies the modification of the Dirac
equation to include a new interaction term, analogous to (10.11),

igWTkγ
µWk
µϕL = igW

1
2σkγ

µWk
µϕL, (15.11)

where ϕL represents a weak isospin doublet of left-handed chiral particles. This
form of the interaction gives rise to three weak currents, one for each of the three
gauge fields Wk. In the case of the weak isospin doublet formed from the left-
handed electron and the electron neutrino,

ϕL =

(
νL

eL

)
,

the three weak currents, one for each of the Pauli spin-matrices, are

j µ1 =
gW

2
ϕLγ

µσ1ϕL, j µ2 =
gW

2
ϕLγ

µσ2ϕL and j µ3 =
gW

2
ϕLγ

µσ3ϕL,

where ϕL =
(
νL eL

)
contains the left-handed chiral adjoint spinors, νL and eL. The

weak charged-currents are related to the weak isospin raising and lowering opera-
tors, σ± = 1

2 (σ1 ± iσ2), which step between the two states within a weak isospin
doublet. The four-vector currents corresponding to the exchange of the physical
W± bosons are

j µ± =
1√
2

(
j µ1 ± i j µ2

)
=
gW√

2
ϕLγ

µ 1
2 (σ1 ± iσ2)ϕL,

=
gW√

2
ϕLγ

µσ±ϕL.

The physical W bosons can be identified as the linear combinations

W±µ =
1√
2

(
W(1)
µ ∓ iW(2)

µ

)
, (15.12)
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!Fig. 15.7 The weak charged-current interaction vertices between the e− and the νe weak eigenstate.

such that the weak currents can be written

jµ ·Wµ = j µ1 W(1)
µ + j µ2 W(2)

µ + j µ3 W(3)
µ ≡ j µ+W+µ + j µ−W−µ + j µ3 W(3)

µ .

The current j µ+ , which corresponds to the exchange of a W+ boson, can be
expressed as

j µ+ =
gW√

2
ϕLγ

µσ+ϕL =
gW√

2

(
νL eL

)
γ µ

(
0 1
0 0

) (
νL

eL

)

=
gW√

2
νLγ

µeL ≡
gW√

2
ν γ µ 1

2 (1 − γ5)e.

Similarly, the current corresponding to the W− vertex is

j µ− =
gW√

2
ϕLγ

µσ−ϕL =
gW√

2

(
νL eL

)
γ µ

(
0 0
1 0

) (
νL

eL

)

=
gW√

2
eLγ

µνL ≡
gW√

2
e γ µ 1

2 (1 − γ5)ν.

Thus, the SU(2)L symmetry of the weak interaction results in the now familiar
weak charged-currents

j µ+ =
gW√

2
ν γ µ 1

2 (1 − γ5)e and j µ− =
gW√

2
e γ µ 1

2 (1 − γ5)ν,

corresponding to the W+ and W− vertices shown in Figure 15.7.
In addition to the two weak charged-currents, j+ and j−, which arise from lin-

ear combinations of the W(1) and W(2), the SU(2)L gauge symmetry implies the
existence a weak neutral-current given by

j µ3 = gWϕLγ
µ 1

2σ3ϕL.

The weak neutral-current, written in terms of the component fermions, is

j µ3 = gW
1
2

(
νL eL

)
γ µ

(
1 0
0 −1

) (
νL

eL

)

= gW
1
2νLγ

µνL − gW
1
2 eLγ

µeL. (15.13)
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!Fig. 15.8 The weak neutral-current interaction of the e− and νe.

Hence the SU(2)L symmetry of the weak interaction implies the existence of the
weak neutral-current corresponding to the vertices shown in Figure 15.8, with

j µ3 = I(3)
W gW f γ µ 1

2 (1 − γ5)f, (15.14)

where f denotes the fermion spinor. The sign in this expression is determined by the
third component of weak isospin I(3)

W = ±1/2. Because RH particles/LH antiparti-
cles have I(3)

W = 0, they do not couple to the weak neutral-current corresponding to
the W(3).

15.3 Electroweak unification

It is tempting to identify the neutral-current of (15.14) as that due to the exchange
of the Z boson, in which case the Z boson would correspond to the W(3) of the
SU(2)L local gauge symmetry. This would imply that the weak neutral-current cou-
pled only to left-handed particles and right-handed antiparticles. This is in contra-
diction with experiment, which shows that the physical Z boson couples to both
left- and right-handed chiral states (although not equally).

Of the four observed bosons of QED and the weak interaction, the photon and the
Z boson, with the corresponding fields Aµ and Zµ, are both neutral. Consequently, it
is plausible that they can be expressed in terms of quantum state formed from two
neutral bosons, one of which is the W(3) associated with the SU(2)L local gauge
symmetry. In the electroweak model of Glashow, Salam and Weinberg (GSW),
the U(1) gauge symmetry of electromagnetism is replaced with a new U(1)Y local
gauge symmetry

ψ(x)→ ψ′(x) = Û(x)ψ(x) = exp
[
ig′

Y
2
ζ(x)

]
ψ(x), (15.15)

giving rise to a new gauge field Bµ that couples to a new kind of charge, termed
weak hypercharge Y . The resulting interaction term is

g′
Y
2
γ µBµψ, (15.16)
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which has the same form as the interaction from the U(1) symmetry of QED,

Qeγ µAµψ,

with Qe replaced by Yg′/2. In the unified electroweak model, the photon and Z
boson are written as linear combinations of the Bµ and neutral W(3)

µ of the weak
interaction,

Aµ = +Bµ cos θW +W(3)
µ sin θW, (15.17)

Zµ = −Bµ sin θW +W(3)
µ cos θW, (15.18)

where θW is the weak mixing angle. This mixing of the neutral fields of the U(1)Y

and SU(2)L gauge symmetries might seem contrived; however, it arises naturally
in the Higgs mechanism (see Chapter 17). From (15.17) and (15.18), the physical
currents of QED and the weak neutral current are

j µem = j µY cos θW + j µ3 sin θW, (15.19)

j µZ = − j µY sin θW + j µ3 cos θW. (15.20)

The GSW model of electroweak unification implies that the couplings of the
weak and electromagnetic interactions are related. This can be seen by considering
the interactions of the electron and the electron neutrino. The weak neutral-current
associated with the W(3) is given by (15.13) and involves only left-handed particles,

j µ3 =
1
2gW νLγ

µνL − 1
2gW eLγ

µeL. (15.21)

The currents from the interaction term of (15.16), which treats left- and right-
handed states equally, are

j µY =
1
2g
′YeL eL γ

µeL +
1
2g
′YeR eR γ

µeR +
1
2g
′YνL νL γ

µνL +
1
2g
′YνR νR γ

µνR,
(15.22)

where, for example, YeL is the weak hypercharge of the left-handed electron. The
current for the electromagnetic interaction, written in terms of the chiral compo-
nents of the electron, is

j µem = Qee eLγ
µeL + Qee eRγ

µeR.

Since the neutrino is a neutral particle its electromagnetic current is zero. For the
GSW model to work, it must reproduce the observed couplings of QED. From
(15.19) the electromagnetic current can be written

j µem = Qee eLγ
µeL + Qee eRγ

µeR = j µY cos θW + j µ3 sin θW,
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where j µY and j µ3 , which include terms for the electron neutrino, are given by
(15.21) and (15.22). Hence the terms in electromagnetic current j µem, including
those for the neutrinos which are zero, can be equated to

eLγ
µeL : Qee = 1

2g
′YeL cos θW − 1

2gW sin θW, (15.23)

νLγ
µνL : 0 = 1

2g
′YνL cos θW +

1
2gW sin θW, (15.24)

eRγ
µeR : Qee = 1

2g
′YeR cos θW, (15.25)

νRγ
µνR : 0 = 1

2g
′YνR cos θW. (15.26)

Equations (15.23)–(15.26) relate the couplings of electromagnetism to those of the
weak interaction and the couplings associated with the U(1)Y symmetry.

In the GSW model, the underlying gauge symmetry of the electroweak sector
of the Standard Model is the U(1)Y of weak hypercharge and the SU(2)L of the
weak interaction, written as U(1)Y × SU(2)L. For invariance under U(1)Y and
SU(2)L local gauge transformations, the weak hypercharges of the particles in a
weak isospin doublet must be the same, for example YeL = YνL . If this were not
the case, a U(1)Y local gauge transformation would introduce a phase difference
between the two components of a weak isospin doublet, breaking the SU(2)L sym-
metry. The weak hypercharge assignments of the fermions can be expressed as a
linear combination of the electromagnetic charge Q and the third component of
weak isospin I(3)

W ,

Y = αQ + βI(3)
W .

The charges and third component of weak isospin for the left-handed electron and
the left-handed electron neutrino are respectively

(
Q = −1, I(3)

W = − 1
2

)
and(

Q = 0, I(3)
W = +

1
2

)
, and therefore

YνL = +
1
2β and YeL = −α − 1

2β.

From the requirement that YeL = YνL , it follows that β = −α and the weak hyper-
charge can be identified as

Y = 2
(
Q − I(3)

W

)
. (15.27)

The factor of two in (15.27) is purely conventional; a different choice could be
absorbed into the definition of g′ without modifying the actual couplings. The weak
hypercharges of the eL and νL are therefore

YeL = YνL = −1.

Since YeL = YνL , subtracting (15.23) from (15.24) gives the relationship between
the weak and electromagnetic couplings in terms of the weak mixing angle,

e = gW sin θW. (15.28)
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The sum of (15.23) and (15.24) gives

Qee = 1
2g
′(YeL + YνL) cos θW.

Since QeL = −1 and YeL = YνL = −1, the coupling g′ is related to the electron
charge by

e = g′ cos θW. (15.29)

Finally, from (15.27), the weak hypercharge assignments of the I(3)
W = 0 right-

handed states are

YeR = −2 and YνR = 0,

which when substituted into (15.25) and (15.26) give the correct electromagnetic
charges of Q = −1 and Q = 0 for the eR and νR.

The unified electroweak model is able to provide a consistent picture of the elec-
tromagnetic interactions of the fermions with the relation,

e = gW sin θW = g
′ cos θW, (15.30)

and where the weak hypercharge is given by

Y = 2
(
Q − I(3)

W

)
.

The weak mixing angle has been measured in a number of different ways, includ-
ing the studies of e+e− → Z → ff, described in Chapter 16. The average of the
measurements of sin2 θW gives

sin2 θW = 0.23146 ± 0.00012. (15.31)

From (15.28) and the measured value of sin2 θW, the expected ratio of the weak to
electromagnetic coupling constants is

α

αW
=

e2

g2
W

= sin2 θW ∼ 0.23,

consistent with the measured values discussed previously in Section 11.5.1.

15.3.1 The couplings of the Z

At this point it might be tempting to think that the procedure for electroweak uni-
fication has just replaced two independent couplings, e and gW, by a single unified
coupling and the weak mixing angle. However, once the couplings in the elec-
troweak model are chosen to reproduce the observed electromagnetic couplings,
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Z
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!Fig. 15.9 The weak neutral-current interaction vertices for the physical Z boson and the chiral states of a fermion f.

the couplings of the Z boson to all the fermions are completely specified. The cur-
rent from the interaction between the Z boson and a fermion of flavour f is given
by (15.20),

j µZ = − 1
2g
′ sin θW[YfLuLγ

µuL + YfRuRγ
µuR] + I(3)

W gW cos θW[uLγ
µuL],

where uL/R and uL/R are the spinors and adjoints spinors for LH and RH chiral
states. Using (15.27) to express the weak hypercharge in terms of Q and I(3)

W implies

j µZ = −g
′ sin θW

[(
Qf − I(3)

W

)
uLγ

µuL + QfuRγ
µuR

]
+ I(3)

W gW cos θW
[
uLγ

µuL
]
.

Collecting up the factors in front of the left- and right-handed currents gives

j µZ =
[
−g′

(
Qf − I(3)

W

)
sin θW + I(3)

W gW cos θW

]
uLγ

µuL −
[
g′ sin θWQf

]
uRγ

µuR.

From (15.30) it can be seen that g′ = gW tan θW and therefore

j µZ = gW

[
−

(
Qf − I(3)

W

) sin2 θW

cos θW
+ I(3)

W cos θW

]
uLγ

µuL − gW

[
sin2 θW

cos θW
Qf

]
uRγ

µuR.

(15.32)

Defining the coupling to the physical Z boson as

gZ =
gW

cos θW
≡ e

sin θW cos θW
,

allows the neutral-current due to the Z boson to be written as

j µZ = gZ

(
I(3)
W − Qf sin2 θW

)
uLγ

µuL − gZ

(
Qf sin2 θW

)
uRγ

µuR.

Hence the couplings of the Z boson to left- and right-handed chiral states, shown
in Figure 15.9, are

j µZ = gZ
(
cL uLγ

µuL + cRuRγ
µuR

)
, (15.33)

with

cL = I(3)
W − Qf sin2 θW and cR = −Qf sin2 θW. (15.34)

Thus, the Z boson couples to both left- and right-handed chiral states, but not
equally. This should come as no surprise; the current associated with the Z boson
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Table 15.1 The charge, I(3)
W and weak hypercharge assignments of the fundamental

fermions and their couplings to the Z assuming sin2θW = 0.231 46.

fermion Qf I(3)
W YL YR cL cR cV cA

νe, νµ, ντ 0 + 1
2 −1 0 + 1

2 0 + 1
2 + 1

2

e−, µ−, τ− −1 − 1
2 −1 −2 −0.27 +0.23 −0.04 − 1

2

u, c, t + 2
3 + 1

2 + 1
3 + 4

3 +0.35 −0.15 +0.19 + 1
2

d, s, b − 1
3 − 1

2 + 1
3 − 2

3 −0.42 +0.08 −0.35 − 1
2

has contributions from the weak interaction, which couples only to left-handed
particles, and from the Bµ field associated with the U(1)Y local gauge symmetry,
which treats left- and right-handed states equally.

The couplings of the Z boson to fermions also can be expressed in terms of
vector and axial-vector couplings using the chiral projection operators of (6.33),

uLγ
µuL = uγ µ 1

2 (1 − γ5)u and uRγ
µuR = uγ µ 1

2 (1 + γ5)u,

such that the current j µZ of (15.33) becomes

j µZ = gZuγ µ
[
cL

1
2 (1 − γ5) + cR

1
2 (1 + γ5)

]
u

= gZuγ µ 1
2

[
(cL + cR) − (cL − cR)γ5

]
u.

Therefore the weak neutral-current can be written as

j µZ =
1
2gZu

(
cVγ

µ − cAγ
µγ5

)
u, (15.35)

where the vector and axial-vector couplings of the Z boson are

cV = (cL + cR) = I(3)
W − 2Q sin2 θW, (15.36)

cA = (cL − cR) = I(3)
W . (15.37)

In terms of these vector and axial-vector couplings, the Feynman rule associated
with the Z-boson interaction vertex is

−i 1
2gZγ

µ
[
cV − cAγ

5
]
. (15.38)

Because the weak neutral-current contains both vector and axial-vector couplings,
it does not conserve parity (see Section 11.3); this also immediately follows from
its different couplings to left- and right-handed chiral states.

In the Standard Model, once sin2 θW is known, the couplings of the Z boson to
the fermions are predicted exactly. For sin2 θW = 0.23146, the predicted couplings
of the fermions to the Z boson are listed in Table 15.1, both in terms of the vector
and axial-vector couplings (cV , cA) and the couplings to left- and right-handed chi-
ral states, (cL, cR).
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15.4 Decays of the Z

The calculation of the Z-boson total decay width and branching ratios follows
closely that for the decay of the W boson, given in Section 15.1.1. However,
whereas the W boson couples only to left-handed chiral particle states, the Z boson
couples to both left- and right-handed states. Nevertheless, because the weak
neutral-current is a vector/axial-vector interaction, the currents due to certain chiral
combinations are still zero. For example, for the decay Z → ff, the weak neutral-
current where both the fermion and antifermion are right-handed is zero, which can
be seen from

uRγ
µ(cV − cAγ

5)vR = u† 1
2 (1 + γ5)γ0γ µ(cV − cAγ

5) 1
2 (1 − γ5)v

= 1
4 u†γ0(1 − γ5)(1 + γ5)γ µ(cV − cAγ

5)v

= 1
4 uγ µPLPR(cV − cAγ

5)v = 0.

Consequently, in the limit where the masses of the fermions in the decay Z → ff
can be neglected, only the two helicity combinations shown in Figure 15.10 give
non-zero matrix elements for the decay of the Z boson.

The Z-boson decay rate either can be calculated from first principles (see Prob-
lem 15.3) or can be obtained from the spin-averaged matrix element of (15.6),
derived previously for W-boson decay. For the helicity combination where the
decay of the Z boson gives a LH particle and RH antiparticle, the spin-averaged
matrix element is the same as that for W-boson decay, but with

1
2g

2
W → g2

Zc2
L, ⇒ ⟨|ML|2⟩ = 2

3 c2
Lg

2
Zm2

Z.

The corresponding matrix element for the Z decay to a RH particle and LH antipar-
ticle will be proportional to cR rather than cL. After averaging over the spin states
and decay angle, all other factors will be the same. Therefore the spin-averaged
matrix element squared for Z→ ff is

⟨|M|2⟩ = ⟨|ML|2 + |MR|2⟩ = 2
3 (c2

L + c2
R)g2

Zm2
Z. (15.39)

z

e-

W-

z
Z

f

z
Z

f

cR gZcL gZ
1 gw
2√

f fνe!Fig. 15.10 The possible helicities in the decays W− → e−νe and Z→ ff.
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This can be expressed in terms of the vector and axial-vector couplings of the Z
boson using cV = cL+cR and cA = cL−cR, which implies that c2

V +c2
A = 2(c2

L+c2
R).

Hence

⟨|M|2⟩ = 1
3 (c2

V + c2
A)g2

Zm2
Z, (15.40)

from which it follows that

Γ(Z→ ff) =
g2

ZmZ

48π
(c2

V + c2
A). (15.41)

15.4.1 Z width and branching ratios

The Z-boson partial decay rates depend on gZ and mZ. The measured value of mass
of the Z boson is mZ = 91.2 GeV (see Section 16.2.1). The numerical value of gZ

can be obtained from the measured values of the Fermi constant and sin2 θW,

g2
Z =

g2
W

cos2 θW
=

8m2
W√

2 cos2 θW
GF ≈ 0.55.

The partial decay rate to a particular fermion flavour can be calculated from (15.41)
using the appropriate vector and axial-vector couplings. For example, in the case
of the decay Z → νeνe, the neutrino vector and axial-vector couplings are cV =

cA =
1
2 , and therefore

Γ(Z→ νeνe) =
g2

ZmZ

48π

(
1
4
+

1
4

)
= 167 MeV. (15.42)

Because the Z boson couples to all fermions, it can decay to all flavours with the
exception of the top quark (mt > mZ). The total decay width ΓZ is given by the sum
of the partial decay widths

ΓZ =
∑

f

Γ(Z→ ff).

The Z-boson couplings, listed in Table 15.1, are the same for all three generations,
and thus the total decay width can be written

ΓZ = 3Γ(Z→ νeνe) + 3Γ(Z→ e+e−) + 3 × 2Γ(Z→ uu) + 3 × 3Γ(Z→ dd),

where the additional factors of three multiplying the decays to quarks account for
colour, and only two decays to up-type quarks are possible since mt > mZ. Using
the couplings in Table 15.1, and multiplying the hadronic decay widths by [1 +
αS (Q2)/π] to account for the gluon radiation in the decay, the total decay width of
the Z is predicted to be

ΓZ ≈ 2.5 GeV,
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and the branching ratios of the Z boson, given by Br(Z→ ff) = Γ(Z→ ff)/ΓZ, are

Br(Z→ νeνe) = Br(Z→ νµνµ) = Br(Z→ ντντ) ≈ 6.9%,

Br(Z→ e+e−) = Br(Z→ µ+µ−) = Br(Z→ τ+τ−) ≈ 3.5%,

Br(Z→ uu) = Br(Z→ cc) ≈ 12%,

Br(Z→ dd) = Br(Z→ ss) = Br(Z→ bb) ≈ 15%.

Grouping together the decays to neutrinos, charged leptons, and quarks gives

Br(Z→ νν) ≈ 21%, Br(Z→ ℓ+ℓ−) ≈ 10% and Br(Z→ hadrons) ≈ 69%,

and thus almost 70% of Z decays result in final states with jets.

Summary

In the Standard Model, the weak charged-current is associated with an SU(2)L

local gauge symmetry. This gives rise to the W+ and W− bosons and a neutral
gauge field, W(3). In the GSW model of electroweak unification, this neutral field
mixes with a photon-like field of the U(1)Y gauge symmetry to give the physical
photon and Z-boson fields

Aµ = +Bµ cos θW +W(3)
µ sin θW

Zµ = −Bµ sin θW +W(3)
µ cos θW,

where θW is the weak mixing angle. Within this unified model, the couplings of the
γ, W and Z are related by

e = gW sin θW = gZ sin θW cos θW.

Within the unified electroweak model, once θW is known, the properties of the Z
boson are completely specified. The precise tests of these predictions are main the
subject of the next chapter.

Problems

15.1 Draw all possible lowest-order Feynman diagrams for the processes:

e+e− → µ+µ−, e+e− → νµνµ, νµe− → νµe− and νee− → νee−.

15.2 Draw the lowest-order Feynman diagram for the decayπ0 → νµνµ and explain why this decay is effectively
forbidden.
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15.3 Starting from the matrix element, work through the calculation of the Z → ff partial decay rate, expressing
the answer in terms of the vector and axial-vector couplings of Z. Taking sin2 θW = 0.2315, show that

Rµ =
Γ(Z→ µ+µ−)
Γ(Z→ hadrons)

≈ 1
20
.

15.4 Consider the purely neutral-current (NC) process νµe− → νµe−.

(a) Show that in the limit where the electron mass can be neglected, the spin-averaged matrix element for
νµe− → νµe− can be written

⟨|M|2⟩ = 1
2

(∣∣∣MNC
LL

∣∣∣2 +
∣∣∣MNC

LR

∣∣∣2
)
,

where

MNC
LL = 2c(ν)

L c(e)
L

g2
Zs

m2
Z

and MNC
RR = 2c(ν)

L c(e)
R

g2
Zs

m2
Z

1
2 (1 + cos θ∗),

and θ∗ is the angle between the directions of the incoming and scattered neutrino in the centre-of-mass
frame.

(b) Hence find an expression for the νµe− neutral-current cross section in terms of the laboratory frame neu-
trino energy.

15.5 The two lowest-order Feynman diagrams for νee− → νee− are shown in Figure 13.5. Because both diagrams
produce the same final state, the amplitudes have to be added before the matrix element is squared. The matrix
element for the charged-current (CC) process is

MCC
LL =

g2
Ws

m2
W

.

(a) In the limit where the lepton masses and the q2 term in the W-boson propagator can be neglected, write
down expressions for spin-averaged matrix elements for the processes

νµe− → νµe−, νee− → νee− and νµe− → νeµ
−.

(b) Using the relation gZ/mZ = gW/mW, show that

σ(νµe− → νµe−) : σ(νee− → νee−) : σ(νµe− → νeµ
−) = c2

L +
1
3 c2

R : (1 + cL)2 + 1
3 c2

R : 1,

where cL and cR refer to the couplings of the left- and right-handed charged leptons to the Z.
(c) Find numerical values for these ratios of NC+ CC : NC : CC cross sections and comment on the sign of the

interference between the NC and CC diagrams.
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Over the course of the previous 15 chapters, the main elements of the Stan-
dard Model of particle physics have been described. There are 12 fundamen-
tal spin-half fermions, which satisfy the Dirac equation, and 12 corresponding
antiparticles. The interactions between particles are described by the exchange
of spin-1 gauge bosons where the form of the interaction is determined by the
local gauge principle. The underlying gauge symmetry of the Standard Model
is U(1)Y × SU(2)L × SU(3), with the electromagnetic and weak interactions
described by the unified electroweak theory. The precise predictions of the
electroweak theory were confronted with equally precise experimental mea-
surements of the properties of the W and Z bosons at the LEP and Tevatron
colliders. These precision tests of the Standard Model are the main subject of
this chapter.

16.1 The Z resonance

The unified electroweak model introduced in Chapter 15 provides precise predic-
tions for the properties of the Z boson. These predictions were tested with high
precision at the Large Electron–Positron (LEP) collider at CERN, where large
numbers of Z bosons were produced in e+e− annihilation at the Z resonance.

Because the neutral Z boson couples to all flavours of fermions, the photon in
any QED process can be replaced by a Z. For example, Figure 16.1 shows the two
lowest-order Feynman diagrams for the annihilation process e+e− → µ+µ−. The
respective couplings and propagator terms that enter the matrix elements for the
photon and Z exchange diagrams are

Mγ ∝
e2

q2 and MZ ∝
g2

Z

q2 − m2
Z

. (16.1)

In the s-channel annihilation process, the four-momentum of the virtual parti-
cle is equal to the centre-of-mass energy squared, q2 = s. Owing to the presence
of the m2

Z term in the Z-boson propagator, the QED process dominates at low

428
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e-

µ+

µ-

gZ gZ

!Fig. 16.1 The lowest-order Feynman diagrams for the annihilation process e+e− → µ+µ−.

centre-of-mass energies,
√

s≪mZ. This is why the Z-boson diagram could be
neglected in the discussion of electron–positron annihilation in Chapter 6. At very
high centre-of-mass energies,

√
s ≫ mZ, the QED and Z exchange processes are

both important because the strengths of the couplings of the photon and the Z
boson are comparable. In the region

√
s ∼ mZ, the Z-boson process dominates.

Indeed, from (16.1) it would appear that the matrix element diverges at
√

s = mZ.
This apparent problem arises because the Z-boson propagator of (16.1) does not
account for the Z boson being an unstable particle.

There are a number of ways of deriving the propagator for a decaying state.
Here, the form of the Z-boson propagator is obtained from the time evolution
of the wavefunction for a decaying state. The time dependence of the quantum
mechanical wavefunction for a stable particle, as measured in its rest frame, is
given by e−imt. For an unstable particle, with total decay rate Γ = 1/τ, this must be
modified to

ψ ∝ e−imt → ψ ∝ e−imte−Γt/2, (16.2)

such that the probability density decays away as ψψ∗ ∝ e−Γt = e−t/τ. The introduc-
tion of the exponential decay term in (16.2) can be obtained from the replacement

m→ m − iΓ/2.

This suggests that the finite lifetime of the Z boson can be accounted for in the
propagator of (16.1) by making the replacement

m2
Z → (mZ − iΓZ/2)2 = m2

Z − imZΓZ − 1
4Γ

2
Z.

For the Z boson, the total decay width ΓZ ≪ mZ, and to a good approximation the
1
4Γ

2
Z term can be neglected. In this case, the Z-boson propagator of (16.1) becomes

1
q2 − m2

Z

→ 1
q2 − m2

Z + imZΓZ
. (16.3)
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s/GeV√!Fig. 16.2 The measurements of the e+e− → qq cross section from LEP close to and above Z resonance. Also shown
are the lower-energy measurements from earlier experiments. The dashed line shows the contribution to the
cross section from the QED process alone. Adapted from LEP and SLD Collaborations (2006).

The cross section for e+e− → Z→ µ+µ−, with q2 = s, is therefore proportional to

σ ∝ |M|2 ∝
∣∣∣∣∣∣∣

1
s − m2

Z + imZΓZ

∣∣∣∣∣∣∣

2

=
1

(s − m2
Z)2 + m2

ZΓ
2
Z

.

Hence the e+e− → Z annihilation cross section peaks sharply at
√

s = mZ, and the
resulting Lorentzian dependence on the centre-of-mass energy is referred to as a
Breit–Wigner resonance.

The experimental measurements of the e+e− → qq cross section over a wide
range of centre-of-mass energies are shown in Figure 16.2. The data are compared
to the prediction from the s-channel γ- and Z-exchange Feynman diagrams, includ-
ing the interference between the two processes,

|M|2 = |Mγ +MZ|2.
The predicted cross section from the QED process alone is also shown. For centre-
of-mass energies below 40 GeV, the cross section is dominated by the QED photon
exchange diagram. In the region

√
s = 50 − 80 GeV, both γ and Z processes are

important. Close to the Z resonance, the Z-boson exchange diagram dominates;
at the peak of the resonance it is about three orders of magnitude greater than
pure QED contribution. For

√
s ≫ mZ, the contributions from the photon and

Z-exchange diagrams are of the same order of magnitude, reflecting the unified
description of QED and the weak interaction where gZ ∼ e.
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16.1.1 Z production cross section

In principle, the cross section for e+e− annihilation close to the Z resonance, in
for example the process e+e− → µ+µ−, needs to account for the two Feynman
diagrams of Figure 16.1. However, for

√
s ∼ mZ the QED contribution to the total

cross section can be neglected. In this case, only the matrix element for e+e− →
Z → µ+µ− needs to be considered. This matrix element can be obtained by using
the propagator of (16.3) and the weak neutral-current vertex factor of (15.38),

M f i = −
g2

Z

(s − m2
Z + imZΓZ)

gµν
[
v(p2)γ µ 1

2

(
ce

V − ce
Aγ

5
)

u(p1)
]
×

[
u(p3)γν 1

2

(
cµV − cµAγ

5
)
v(p4)

]
,

where ce
V , ce

A, cµV and cµA are the vector and axial-vector couplings of the Z to the
electron and muon. Given the chiral nature of vector boson interactions, it is con-
venient to re-express this matrix element in terms of the couplings of the Z boson
to left- and right-handed chiral states by writing cV = (cL + cR) and cA = (cL − cR).
In this case, the matrix element can be written

M f i = −
g2

Z

(s − m2
Z + imZΓZ)

gµν
[
ce

Lv(p2)γ µPLu(p1) + ce
Rv(p2)γ µPRu(p1)

]
×

[
cµLu(p3)γνPLv(p4) + cµRu(p3)γνPRv(p4)

]
, (16.4)

where PL =
1
2 (1−γ5) and PR =

1
2 (1+γ5) are the chiral projection operators. Given

that mZ ≫ mµ, the fermions in the process e+e− → Z→ µ+µ− are ultra-relativistic
and the helicity and chiral states are essentially the same. The chiral projection
operators in (16.4) therefore have the effect

PLu = u↓, PRu = u↑, PLv = v↑ and PRv = v↓.

Furthermore, as described in Section 15.4, helicity combinations such as u↑γ µv↑
give zero matrix elements. Consequently the matrix element of (16.4) is only non-
zero for the four helicity combinations shown in Figure 16.3, with the correspond-
ing matrix elements

MRR = −PZ(s) g2
Z ce

RcµR gµν [v↓(p2)γ µu↑(p1)] [u↑(p3)γνv↓(p4)], (16.5)

MRL = −PZ(s) g2
Z ce

RcµL gµν [v↓(p2)γ µu↑(p1)] [u↓(p3)γνv↑(p4)], (16.6)

MLR = −PZ(s) g2
Z ce

LcµR gµν [v↑(p2)γ µu↓(p1)] [u↑(p3)γνv↓(p4)], (16.7)

MLL = −PZ(s) g2
Z ce

LcµL gµν [v↑(p2)γ µu↓(p1)] [u↓(p3)γνv↑(p4)], (16.8)

where PZ(s) = 1/(s − m2
Z + imZΓZ) is the Z propagator and the labels on the differ-

ent matrix elementsM denote the helicity states of the e− and µ−.
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!Fig. 16.3 The four possible helicity combinations contributing to e+e− → Z → µ+µ−. The corresponding matrix
elements are labelled by the helicity states of the e− andµ−.

The combinations of four-vector currents in (16.5)−(16.8) are identical to those
encountered in Chapter 6 for the pure QED process e+e− → µ+µ−, where for
example

gµv[v↓(p2)γ µu↑(p1)][u↑(p3)γνv↓(p4)] = s(1 + cos θ).

Using the previously derived results of (6.20) and (6.21), the matrix elements
squared for the four helicity combinations in the process e+e− → Z→ µ+µ− are

|MRR|2 = |PZ(s)|2 g4
Zs2(ce

R)2(cµR)2(1 + cos θ)2, (16.9)

|MRL|2 = |PZ(s)|2 g4
Zs2(ce

R)2(cµL)2(1 − cos θ)2, (16.10)

|MLR|2 = |PZ(s)|2 g4
Zs2(ce

L)2(cµR)2(1 − cos θ)2, (16.11)

|MLL|2 = |PZ(s)|2 g4
Zs2(ce

L)2(cµL)2(1 + cos θ)2, (16.12)

where |PZ(s)|2 = 1/[(s − m2
Z)2 + m2

ZΓ
2
Z].

For unpolarised e− and e+ beams, the spin-averaged matrix element is given by

⟨|M|2⟩ = 1
4

(
|MRR|2 + |MLL|2 + |MLR|2 + |MRL|2

)
,

where the factor of one quarter arises from averaging over the two possible helicity
states for each of the electron and the positron, and therefore from (16.9)−(16.12),

⟨|M|2⟩ = 1
4

g4
Zs2

(s − m2
Z)2 + m2

ZΓ
2
Z

×
{ [

(ce
R)2(cµR)2 + (ce

L)2(cµL)2
]

(1 + cos θ)2

+
[

(ce
R)2(cµL)2 + (ce

L)2(cµR)2
]

(1 − cos θ)2
}
.

(16.13)

The terms in the braces can be grouped into

{· · ·} =
[
(ce

R)2 + (ce
L)2

] [
(cµR)2 + (cµL)2

] (
1 + cos2 θ

)

+ 2
[
(ce

R)2 − (ce
L)2

] [
(cµR)2 − (cµL)2

]
cos θ, (16.14)

which can then be expressed back in terms of the vector and axial-vector couplings
of the electron and muon to the Z boson using

c2
V + c2

A = 2(c2
L + c2

R) and cVcA = c2
L − c2

R,
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giving

{. . .} = 1
4

[
(ce

V )2 + (ce
A)2

] [
(cµV )2 + (cµA)2

] (
1 + cos2 θ

)
+ 2ce

Vce
AcµVcµA cos θ.

Finally, the e+e− → Z→ µ+µ− differential cross section is obtained by substituting
the spin-averaged matrix element squared into (3.50),

dσ
dΩ
=

1
256π2s

·
g4

Zs2

(s − m2
Z)2 + m2

ZΓ
2
Z

×
{

1
4

[
(ce

V )2 + (ce
A)2

] [
(cµV )2 + (cµA)2

] (
1 + cos2 θ

)
+ 2ce

Vce
AcµVcµA cos θ

}
. (16.15)

The total cross section is determined by integrating over the solid angle dΩ. This
is most easily performed by writing dΩ = dφ d(cos θ) and making the substitution
x = cos θ, such that

∫
(1 + cos2 θ) dΩ =

∫ 2π

0
dφ

∫ +1

−1
(1 + x2) dx =

16π
3

and
∫

cos θ dΩ = 0.

The resulting cross section for the process e+e− → Z→ µ+µ− is

σ(e+e− → Z→ µ+µ−) =
1

192π

g4
Zs

(s − m2
Z)2 + m2

ZΓ
2
Z

[
(ce

V )2+ (ce
A)2

][
(cµV )2+ (cµA)2

]
.

Thus, the total e+e− → Z → µ+µ− cross section is proportional to the product
of the sum of the squares of the vector and axial-vector couplings of the initial-
state electrons and the final-state muons. Using the expression for the partial decay
widths of the Z boson, given in (15.41), the sums c2

V +c2
A for the electron and muon

can be related to Γee = Γ(Z→ e+e−) and Γµµ = Γ(Z→ µ+µ−),

Γee =
g2

ZmZ

48π

[
(ce

V )2 + (ce
A)2

]
and Γµµ =

g2
ZmZ

48π

[
(cµV )2 + (cµA)2

]
.

Hence, the total cross section, expressed in terms of the partial decay widths, is

σ(e+e− → Z→ µ+µ−) =
12πs

m2
Z

ΓeeΓµµ

(s − m2
Z)2 + m2

ZΓ
2
Z

. (16.16)

The cross sections for other final-state fermions are given by simply replacing Γµµ
by the partial width Γff = Γ(e+e− → ff).

The properties of the Z resonance are described by (16.16). The maximum value
of the cross section, which occurs at the centre-of-mass energy

√
s = mZ, is

σ0
ff =

12π
m2

Z

ΓeeΓff

Γ2
Z

. (16.17)
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From (16.16) it is straightforward to show that the cross section falls to half of its
peak value at

√
s = mZ ± ΓZ/2.

Therefore ΓZ is not only the total decay rate of the Z boson, it is also the full-width-
at-half-maximum (FWHM) of the cross section as a function of centre-of-mass
energy. Hence the mass and total width of the Z boson can be determined directly
from measurements of the centre-of-mass energy dependence of the cross section
for e+e− → Z → ff. Furthermore, once mZ and ΓZ are known, the measured value
of peak cross section for a particular final-state fermion σ0

ff
can be related to the

product of the partial decay widths using (16.17),

ΓeeΓff =
σ0
ff
Γ2

Zm2
Z

12π
.

Hence, the observed peak cross sections can be used to determine the partial decay
widths of the Z boson for the different visible final states.

16.2 The Large Electron–Positron collider

The LEP collider, which operated at CERN from 1989 to 2000, is the highest
energy electron–positron collider ever built. The circular accelerator was located
in the 26 km circumference underground tunnel that is now home to the LHC. The
electrons and positrons circulated in opposite directions and collided at four inter-
action points, spaced equally around the ring, accommodating four large general
purpose detectors, ALEPH, DELPHI, L3 and OPAL. From 1989 to 1995, LEP
operated at centre-of-mass energies close to the Z mass and the four experiments
accumulated over 17 million Z events between them, allowing its properties to
be determined with high precision. From 1996 to 2000, LEP operated above the
threshold for W+W− production and the LEP experiments accumulated a total of
more than 30 000 e+e− → W+W− events over the centre-of-mass energy range
161–208 GeV, allowing the properties of the W boson to be studied in detail.

16.2.1 Measurement of the mass and width of the Z

At LEP, the mass and width of the Z boson were determined from the centre-
of-mass energy dependence of the measured e+e− → Z → qq cross section. In
principle, the cross section is described by the Breit–Wigner resonance of (16.16),
with the maximum occurring at

√
s = mZ and the FWHM giving ΓZ. In practice,

this is not quite the case. In addition to the lowest-order Feynman diagram, there
are two higher-order QED diagrams where a photon is radiated from either the



435 16.2 The Large Electron–Positron collider

Z

e+

e-

µ+

µ–

Z

e+

e-

µ+

µ–γ

Z

e+

e-

µ+

µ–

γ!Fig. 16.4 The lowest-order Feynman diagram for the annihilation process e+e− → µ+µ− and the diagrams including
initial-state radiation.

initial-state electron or positron, as shown in Figure 16.4. The effect of initial-state
radiation (ISR) is to distort the shape of the Z resonance curve. If an ISR photon
with energy Eγ is radiated, the energy of the e+ or e− is reduced from E to E′ = E−
Eγ, where E is the nominal energy of the electron and positron beams. In the limit
where the photon is emitted collinear with the incoming electron/positron (which is
usually the case), the four-momenta of the electron and positron at the Z production
vertex are p1 = (E − Eγ, 0, 0, E − Eγ) and p2 = (E, 0, 0,−E). For collisions at a
nominal centre-of-mass energy of

√
s, the effect of ISR is to produce a distribution

of the four-momentum qZ of the virtual Z bosons. This can be expressed as the
effective centre-of-mass energy squared at the e+e− annihilation vertex s′ = q2

Z,
given by the square of the sum of four-momenta of the e+ and e− after ISR,

s′ = (p1 + p2)2 = (2E − Eγ)2 − E2
γ = 4E2

(
1 − Eγ

E

)
= s

(
1 − Eγ

E

)
.

The impact of ISR is to reduce the effective centre-of-mass energy for the collisions
where ISR photons are emitted; even if the accelerator is operated at a nominal
centre-of-mass energy equal to mZ, some fraction of the Z bosons will be produced
with q2

Z < m2
Z.

The distribution of
√

s′ can be written in terms of the normalised probability
distribution f (s′, s). The measured cross section is the convolution of the s′ distri-
bution with the cross section σ(s′) obtained from (16.16),

σmeas(s) =
∫

σ(s′) f (s′, s) ds′.

The effect of ISR is to distort the measured Z resonance. However, because ISR
is a QED process, the function f (s′, s) can be calculated to high precision. Conse-
quently, the measured cross section can be corrected back to the underlying Breit–
Wigner distribution. Figure 16.5 shows the measured e+e− → Z→ qq cross section
as a function of centre-of-mass energy. The data are compared to the expected dis-
tribution including ISR. The dashed curve shows the reconstructed shape of the Z
resonance after the deconvolution of the effects of ISR. Close to and below the peak
of the resonance, ISR results in a reduction in the measured cross section because
the centre-of-mass energy at the e+e− vertex is moved further from the peak of
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the resonance. Above the peak of the resonance, ISR increases the cross section
because the average centre-of-mass energy is moved closer to the peak.

From the measurements of the Z resonance at LEP, shown in Figure 16.5, the
mass of the Z boson is determined to be

mZ = 91.1875 ± 0.0021 GeV.

Owing to the large numbers of Z bosons produced at LEP, mZ could be measured
with a precision of 0.002%, making it one of the more precisely known funda-
mental parameters. To achieve this high level of precision, the average centre-
of-mass energy of the LEP collider had to be known to 2 MeV. This required a
detailed understanding of a number of potential systematic biases. For example,
tidal effects due to the gravitational pull of the Moon distort the rock surround-
ing the LEP accelerator by a small amount, resulting in ±0.15 mm variations in
the 4.3 km radius of the accelerator. These variations are sufficient to change the
beam energy by approximately ±10 MeV. Nevertheless, the position of the Moon
is known and the effect of these tidal variations could be accounted for. A more
subtle and unexpected effect was the observation of apparent jumps in the beam
energies at specific times of the day. After much investigation, the origin was iden-
tified as leakage currents from the local high-speed railway. These leakage currents
followed the path of least resistance in a circuit formed from the rails, a local river
and the LEP ring. The small currents that ran along the LEP ring, were sufficient to
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modify the magnetic field in the accelerator, leading to small changes in the beam
energy. Once understood, the affected data could be treated appropriately.

The width of the Z-boson
The total width of the Z boson, determined from the FWHM of the Breit–Wigner
resonance curve after unfolding the effects of ISR (shown in Figure 16.5) is

ΓZ = 2.4952 ± 0.0023 GeV,

corresponding to a lifetime of just 2.6× 10−25 s. The total width of the Z is the sum
of the partial decay widths for all its decay modes,

ΓZ = Γee + Γµµ + Γττ + Γhadrons + Γνeνe + Γνµνµ + Γντντ , (16.18)

where Γhadrons is the partial decay width to all final states with quarks. Assuming
the lepton universality of the weak neutral-current, (16.18) can be written

ΓZ = 3Γℓℓ + Γhadrons + 3Γνν,

where Γℓℓ and Γνν are respectively the partial decay widths to a single flavour of
charged lepton or neutrino. Although the decays to neutrinos are not observed, they
still affect the observable total width of the Z resonance.

To date only three generations of fermions have been observed. This in itself
does not preclude the possibility of a fourth generation, provided the fourth-
generation particles are sufficiently massive to have avoided detection. However, if
there were a fourth-generation neutrino, with similar properties to the three known
generations, the neutrino would be sufficiently light for the decay Z → ν4ν4 to
occur. This possibility can be tested through its observable effect on ΓZ. For Nν

light neutrino generations, the expected width of the Z boson is

ΓZ = 3Γℓℓ + Γhadrons + NνΓνν. (16.19)

Hence the number of light neutrino generations that exist in nature can be obtained
from the measured values of ΓZ, Γℓℓ and Γhadrons using

Nν =
(ΓZ − 3Γℓℓ − Γhadrons)

ΓSM
νν

, (16.20)

where ΓSM
νν is the Standard Model prediction of (15.42). The individual partial

decay widths to particles other than neutrinos, can be determined from the mea-
sured cross sections at the peak of the Z resonance using

σ0(e+e− → Z→ ff) =
12π
m2

Z

ΓeeΓff

Γ2
Z

. (16.21)

Given that mZ and ΓZ are known precisely, the measured peak cross section for
e+e− → Z → e+e− determines Γ2

ee. Once Γee is known, the partial decay widths of
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the Z boson to the other visible final states can be determined from the respective
peak cross sections, again using (16.21). Using the measured values of the partial
decay widths and the relation of (16.20), the number of light neutrino generations
is determined to be

Nν = 2.9840 ± 0.0082. (16.22)

Figure 16.6 compares the measured e+e−→ qq cross section, close to the Z reso-
nance, with the expected cross sections for two, three and four neutrino generations.
The consistency of the data with the predictions for three neutrino generations pro-
vides strong evidence that there are exactly three generations of light neutrinos
(assuming Standard Model couplings) from which it can be inferred that there are
probably only three generations of fermions.

16.2.2 Measurements of the weak mixing angle

The weak mixing angle θW is one of the fundamental parameters of the Standard
Model. The Standard Model vector and axial-vector couplings of the fermions to
the Z boson are given by (15.36) and (15.37),

cV = I(3)
W − 2Q sin2 θW and cA = I(3)

W ,
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and thus sin2 θW can be obtained from measurements of cV . In practice, the relevant
experimental observables depend on the ratio of couplings,

cV

cA
= 1 − 2Q sin2 θW

I(3)
W

.

For the charged leptons, with Q = −1 and I(3)
W = −1/2,

cℓV
cℓA
= 1 − 4 sin2 θW. (16.23)

There are a number of ways in which the ratio cV/cA can be obtained from mea-
surements at LEP. The simplest conceptually is the measurement of the forward–
backward asymmetry AFB of the leptons produced in e+e− → Z → ℓ+ℓ−. AFB

reflects the asymmetry in angular distribution of the final-state leptons and is
defined as

AℓFB =
σF − σB

σF + σB
. (16.24)

Here σF and σB are the respective cross sections for the negatively charged lepton
being produced in the forward (θℓ− < π/2) and backward (θℓ− > π/2) hemispheres,
as indicated in Figure 16.7.

The differential cross section for e+e− → Z→ µ+µ− of (16.14) has the form

dσ
dΩ
∝ a(1 + cos2 θ) + 2b cos θ, (16.25)

where the coefficients a and b are given by

a =
[
(ce

L)2 + (ce
R)2

] [
(cµL)2 + (cµR)2

]
and b =

[
(ce

L)2 − (ce
R)2

] [
(cµL)2 − (cµR)2

]
.

If the couplings of the Z boson to left-handed (LH) and right-handed (RH) fermions
were the same, b would be equal to zero and the angular distribution would have
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the symmetric (1+cos2 θ) form seen previously for the pure QED process, in which
case AFB = 0.

The different couplings of the Z boson to LH and RH fermions manifests itself
in differences in the magnitudes of the squared matrix elements for the four helicity
combinations of Figure 16.3. From (16.9)−(16.12), it can be seen that the sum of
the squared matrix elements for the RL→ RL and LR→ LR helicity combinations
depends on (1 + cos θ)2, whereas the sum for the RL → LR and LR → RL com-
binations depends on (1 − cos θ)2. This difference results in a forward–backward
asymmetry in the differential cross section, as indicated in the right-hand plot of
Figure 16.7.

The forward and backward cross sections, σF and σB, can be obtained by inte-
grating the differential cross section of (16.25) over the two different polar angle
ranges, 0 < θ < π/2 and π/2 < θ < π. Writing dΩ = dφ d(cos θ),

σF ≡ 2π
∫ 1

0

dσ
dΩ

d(cos θ) and σB ≡ 2π
∫ 0

−1

dσ
dΩ

d(cos θ).

From the form of the differential cross section of (16.25), σF and σB are

σF ∝
∫ 1

0

[
a(1 + cos2 θ) + 2b cos θ

]
d(cos θ) =

∫ 1

0

[
a(1 + x2) + 2bx

]
dx =

(
4
3 a + b

)
,

σB∝
∫ 0

−1

[
a(1 + cos2 θ) + 2b cos θ

]
d(cos θ) =

∫ 0

−1

[
a(1 + x2) + 2bx

]
dx =

(
4
3 a − b

)
.

Thus the forward–backward asymmetry is given by

AFB =
σF − σB

σF + σB
=

3b
4a
.

From the expressions for the coefficients a and b, the forward–backward asymme-
try is related to the left- and right-handed couplings of the fermions by

AFB =
3
4

⎡
⎢⎢⎢⎢⎣
(ce

L)2 − (ce
R)2

(ce
L)2 + (ce

R)2

⎤
⎥⎥⎥⎥⎦ ·

⎡
⎢⎢⎢⎢⎣
(cµL)2 − (cµR)2

(cµL)2 + (cµR)2

⎤
⎥⎥⎥⎥⎦ .

This can be written in the form

AFB =
3
4
AeAµ,

where the asymmetry parameterAf for a particular flavour f is defined by

Af =
(cf

L)2 − (cf
R)2

(cf
L)2 + (cf

R)2
≡

2cf
Vcf

A

(cf
V )2 + (cf

A)2
. (16.26)

At LEP, AFB is most cleanly measured using the e+e−, µ+µ− and τ+τ− final states,
where the charges of the leptons are determined from the sense of the curvature of
the measured particle track in the magnetic field of the detector. By counting the
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numbers of events where the ℓ− is produced in either the forward or backward
hemispheres, NF and NB, the measured forward–backward asymmetry is simply

AFB =
NF − NB

NF + NB
.

In the measurement of AFB, many potential systematic biases cancel because they
tend to affect both forward and backward events in the same manner, consequently
a precise measurement can be made. In practice, AFB is obtained from the observed
angular distribution, rather than simply counting events. For example, Figure 16.8
shows the OPAL measurements of the e+e− → µ+µ− and e+e− → τ+τ− differential
cross sections at

√
s = mZ. The observed asymmetry is small, but non-zero.

Combining the results from the four LEP experiments gives

Ae
FB = 0.0145 ± 0.0025, AµFB = 0.0169 ± 0.0013 and AτFB = 0.0188 ± 0.0017.

These measurements can be expressed in terms of the asymmetry parameter defined
in (16.26), giving

Ae
FB =

3
4
A2

e , AµFB =
3
4
AeAµ and AτFB =

3
4
AeAτ.

Hence the measurements of the forward–backward asymmetries can be interpreted
as measurements of the asymmetry parameters for the individual lepton flavours,
with the e+e− → Z→ e+e− process uniquely determiningAe.

There are a number of other ways of measuring the lepton asymmetry parame-
ters at LEP and elsewhere. For example, the results from the left-right asymmetry
measured in the SLD detector at the Stanford Linear Collider (SLC) provides a
precise measurement of Ae alone (see Problem 16.4). The combined results from
LEP and SLC give
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Ae = 0.1514 ± 0.0019, Aµ = 0.1456 ± 0.0091 and Aτ = 0.1449 ± 0.0040,

consistent with the lepton universality of the weak neutral-current.
Dividing both the numerator and denominator of (16.26) by c2

A gives the expres-
sion for the asymmetry parameters in terms of cV/cA,

A = 2cV/cA

1 + (cV/cA)2 .

Therefore, the measured asymmetry parameters for the leptons can be interpreted
as measurements of cV/cA, which then can be related to sin2 θW using (16.23),

cV

cA
= 1 − 4 sin2 θW.

When the various measurements of sin2 θW from the Z resonance and elsewhere
are combined, the weak mixing angle is determined to be

sin2 θW = 0.23146 ± 0.00012.

The lepton forward–backward asymmetries are small because sin2 θW is nearly 1/4.

16.3 Properties of the W boson

The studies of the Z boson provide a number of important results, including the pre-
cise measurements of mZ, ΓZ and sin2 θW. Further constraints on the electroweak
sector of the Standard Model can be obtained from studies of the W boson. From
1996 to 2000, the LEP collider operated at

√
s > 161 GeV, above the threshold

for production of e+e− → W+W−. In e+e− → W+W− events, each W boson can
decay either leptonically, for example W− → µ−νµ, or hadronically, for exam-
ple W− → du. Consequently, e+e− → W+W− interactions at LEP are observed
in the three distinct event topologies shown in Figure 16.9. Events where both W
bosons decay leptonically are observed as two charged leptons and an imbalance of
momentum in the transverse plane due to the two unseen neutrinos. Events where
one W decays leptonically and the other decays hadronically are observed as two
jets, a single charged lepton and an imbalance of momentum from the neutrino.
Finally, events where both W bosons decay hadronically produce four jets. The
distinctive event topologies enable e+e− → W+W− events to be identified with
high efficiency and little ambiguity.

The observed numbers of events in each of the three W+W− topologies can be
related to branching ratio for W→ qq′. For example, the numbers of fully hadronic
decays and fully leptonic decays are respectively proportional to

Nqqqq ∝
[
BR(W→ qq′)

]2
and Nℓνℓν ∝

[
1 − BR(W→ qq′)

]2
.
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W+W- → e-νeµ+νµ W+W- → e-νeq1q2 W+W- → q1q2q3q4!Fig. 16.9 The three possible event topologies for the decays of W+W− in e+e− → W+W− at LEP. Reproduced courtesy
of the OPAL Collaboration.

Consequently, the relative numbers of observed events in the three W+W− topolo-
gies gives a precise measurement of the W-boson branching ratio to hadrons,

BR(W→ qq′) = 67.41 ± 0.27%.

This is consistent with the Standard Model expectation of 67.5% obtained from
(15.9). Furthermore, the decays W → eν, W → µν and W → τν are observed
to occur with equal frequencies, consistent with the expectation from the lepton
universality of the charged-current weak interaction.

Figure 16.10 shows the combined measurements of the e+e− → W+W− cross
section from the four LEP experiments. The data are consistent with the Standard
Model expectation determined from the three Feynman diagrams of Figure 15.5.
The contribution to the total cross section from the s-channel Z-exchange diagram,
shown in Figure 16.11, depends on the strength of the W+W−Z coupling, which
in the Standard Model is fixed by the local gauge symmetry and the electroweak
unification mechanism. The predicted cross section without the contribution from
the Z-exchange diagram, also shown in Figure 16.10, clearly does not reproduce
the data. The e+e− → W+W− cross section measurements therefore provide a test
the Standard Model prediction of the strength of coupling at the W+W−Z vertex.
Yet again, the Standard Model provides an excellent description of the data.

16.3.1 Measurement of the W boson mass and width

The mass and width of the Z boson are determined from the shape of the resonance
in the Z production cross section in e+e− collisions. The production of W-pairs
at LEP is not a resonant process; for

√
s > 2mW, the Z boson in the s-channel

Feynman diagram of Figure 16.11 is far from being on-mass shell. Consequently
different techniques are required to measure the mass and width of the W boson.
In principle, it is possible to measure the W boson mass and width from the shape
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of the e+e− → W+W− cross section close to threshold at
√

s ∼ 2mW, where the
position and sharpness of the turn-on of the cross section depend on mW and ΓW.
Significantly above threshold, where the majority of the LEP data were recorded,
mW and ΓW are determined from the direct reconstruction of the invariant masses
of the W-decay products.

Up to this point, the production and decay of the W bosons in the process
e+e− → W+W− have been discussed as independent processes. This distinction,
which effectively treats the W bosons as real on-shell particles, is not strictly
correct. The W bosons should be considered as virtual particles. For example,
Figure 16.11 shows one of the three Feynman diagrams for e+e− → µ−νµq1q2,
which proceeds via the production and decay of two virtual W bosons. In this
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pq3!Fig. 16.12 The WW → qqqq and WW → qqℓν event topologies used at LEP to determine the W-boson mass from
the direct reconstruction of the decay products.

diagram, there are three propagators, one for the Z boson and one for each of the
two W bosons. The propagators for the virtual W bosons have the form

1
q2 − m2

W + imWΓW
,

where q is the four-momentum of the W boson and the imaginary term accounts for
its finite lifetime. The contribution of the two W-boson propagators to the matrix
element squared is therefore

|M|2 ∝ 1
(q2

1 − m2
W)2 + m2

WΓ
2
W

× 1
(q2

2 − m2
W)2 + m2

WΓ
2
W

, (16.27)

where q1 and q2 are the four-momenta of the two W bosons. Hence, the invariant
mass of the two fermions from each W-boson decay is not fixed to be exactly
mW, but will distributed as a Lorentzian centred on mW with width ΓW. A precise
determination of the W-boson mass and width can be obtained from the direct
reconstruction of the four-momenta of the four fermions in the W+W− → ℓνq1q2
and W+W− → q1q2q3q4 decay topologies, shown in Figure 16.12.

For W+W− → q1q2q3q4 decays, the measured four-momenta of the four jets can
be used directly to reconstruct the invariant masses of the two W bosons,

m2
1 = q2

1 = (pq1 + pq2)2 and m2
2 = q2

2 = (pq3 + pq4)2.

The masses of the two W bosons produced in W+W− → ℓνq1q2 decays can be
determined by reconstructing the momentum of the neutrino. Because the e+e−

collisions occur in the centre-of-mass frame, the total four-momentum of the final-
state particles is constrained to

Ptot = (
√

s, 0).
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Adapted from Achard et al. (2006).

Consequently, the neutrino four-momentum can be obtained from the measured
four-momenta of the charged lepton and the two jets,

pν = Ptot − pℓ − pq1 − pq2 .

Thus, the masses of the two W bosons in the W+W− → ℓνq1q2 decays can be
measured from

m2
1 = q2

1 = (pq1 + pq2)2 and m2
2 = q2

2 = (pℓ + pν)2.

Whilst jet angles are generally well reconstructed, the experimental jet energy
resolution is relatively poor. The resolution on the reconstructed invariant masses
in each observed event can be improved by using the constraint Ptot = (

√
s, 0),

which implies that both W bosons will have half the centre-of-mass energy and
will have equal and opposite three-momenta.

Figure 16.13 shows the reconstructed W-mass distribution for ℓνq1q2 events
observed in the L3 experiment. For each observed W+W− event, the average recon-
structed W-boson mass m = 1

2 (m1 + m2) is plotted. The position of the peak deter-
mines mW and the width of the distribution, after accounting for the experimental
resolution, determines ΓW. The results from the four LEP experiments give

mW = 80.376 ± 0.033 GeV and ΓW = 2.195 ± 0.083 GeV.

It is worth noting that, owing to the Lorentzian form of the propagator, the vir-
tual W bosons in the Feynman diagram of Figure 16.11 tend to be produced in the
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range q2 ∼ (mW ± ΓW)2 and are therefore usually close to being on-shell, as can
be seen from (16.13). For this reason, the process e+e− → W+W− → f1f2f3f4 can
be approximated as the production of two real W bosons, each of which subse-
quently decays to two fermions. For more accurate calculations, such as the Stan-
dard Model prediction shown in Figure 16.10, this approximation is not sufficient
to match the experimental precision and the process has to be treated as the pro-
duction of four fermions through two virtual W bosons.

16.3.2 Measurement of the W mass at the Tevatron

The study of W-boson pair production at LEP provides precise measurements of
mW, ΓW and the W-boson branching ratios. Precision measurements can also be
made at hadron colliders. For example, mW has been measured precisely at the
Tevatron in the process pp → WX, where X is the hadronic system from initial-
state QCD radiation and the remnants of the colliding hadrons. In pp collisions, the
W boson is produced in parton-level processes such as ud→W+ → µ+νµ. In order
to reconstruct the mass of the W boson, the momentum of the neutrino needs to be
determined.

At a hadron collider, the centre-of-mass energy of the underlying qq′ annihila-
tion process is not known on an event-by-event basis. If x1 and x2 are the momen-
tum fractions of the proton and antiproton carried by the annihilating q and q′, the
four-momentum of the final state is

Ptot =
[
(x1 + x2)

√
s

2 , 0, 0, (x1 − x2)
√

s
2

]
.

Consequently, the final-state W boson will be boosted along the beam (z) axis.
Because the momentum fractions x1 and x2 are unknown, the components of the
momentum of the final-state system only balance in the transverse (xy) plane. The
typical W → µν event topology, as seen in the plane transverse to the beam axis,
is illustrated in the left plot of Figure 16.14. The transverse components of the
momentum of the neutrino can be reconstructed from the transverse momentum of
the muon, pµT = pxx̂+ pyŷ, and the (usually small) transverse momentum uT of the
hadronic system X,

pνT = −pµT − uT .

Owing to the unknown momentum fractions of the colliding partons, the
z-component of the neutrino momentum cannot be determined.

Because the z-component of the momentum of the neutrino is unknown, the
invariant mass of the products from the decaying W boson can not be determined
on an event-by-event-basis. However, it is possible to define the transverse mass

mT ≡
[
2
(
pµT pνT − pµT · pνT

)] 1
2 .
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Figure 16.14 shows the reconstructed mT distribution from over 600 000 W → µν
decays observed in the CDF detector. Because the longitudinal components of the
momentum are not included, mT does not peak at mW and the distribution of mT

is relatively broad. Nevertheless, these disadvantages are outweighed by the very
large W-production cross section at a hadron–hadron collider. Because of the large
numbers of events, mW can be measured even more precisely than at LEP. The
sensitivity to mW comes from the shape of the mT distribution and the position of
the broad peak. The combined results from the CDF and D0 experiments at the
Tevatron and the four LEP experiments give

mW = 80.385 ± 0.015 GeV and ΓW = 2.085 ± 0.042 GeV.

16.4 Quantum loop corrections

The data from LEP, the Tevatron and elsewhere provide precise measurements of
the fundamental parameters of the electroweak model. The masses of the weak
gauge bosons are determined to be

mZ = 91.1875 ± 0.0021 GeV and mW = 80.385 ± 0.015 GeV.

The weak mixing angle is determined to be

sin2 θW = 0.23146 ± 0.00012,
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and the strengths of the weak and electromagnetic interaction are

GF = 1.166 378 7(6) × 10−5 GeV−2 and α(m2
Z) =

1
128.91 ± 0.02

,

where α is given at the electroweak scale of q2 = m2
Z. In the Standard Model, the

masses of the W and Z bosons are not free parameters, they are determined by
the Higgs mechanism, described in Chapter 17. Consequently, if any three of the
parameters mZ, mW, GF, α and sin2 θW are known, the other two are determined by
exact relations from the electroweak unification mechanism of the Standard Model.
For example, the mass of the W boson is related to α, GF and θW by

mW =

(
πα√
2GF

) 1
2 1

sin θW
,

and the masses of the W and Z bosons are related by

mW = mZ cos θW.

These constraints, coupled with the precise measurements described above, allow
the electroweak sector of the Standard Model to be tested to high precision. For
example, using the measurements of mZ and sin2 θW, the predicted mass of the W
boson obtained from mW = mZ cos θW is

mpred
W = 79.937 ± 0.009 GeV.

Despite being of the right order, this prediction is thirty standard deviations smaller
than the measured value of mW = 80.385 ± 0.015 GeV. This apparent discrepancy
does not represent a failure of the Standard Model; it can be explained by higher-
order contributions from virtual quantum loop corrections. For example, the mass
of the W boson includes contributions from virtual loops, of which the two largest
are shown in Figure 16.15. As a result of these quantum loops, the physical W-
boson mass differs from the lowest-order prediction m0

W by

mW = m0
W + a m2

t + b ln
(

mH

mW

)
+ · · · , (16.28)

where a and b are calculable constants, and mt and mH are the masses of the top
quark and Higgs boson.

The difference between the predicted lowest-order W-boson mass and the meas-
ured value effectively measures the size of these quantum loop corrections. Since
the dependence on the Higgs mass is only logarithmic, the dominant correction in
(16.28) comes from the top quark mass. In 1994 the measurements of the elec-
troweak parameters at LEP implied a top quark mass of 175 ± 11 GeV. Shortly
afterwards, the top quark was discovered at the Tevatron with a mass consistent
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q t!Fig. 16.16 The lowest-order Feynman diagram for tt production in pp collisions at the Tevatron.

with this prediction. This direct observation of the effects of quantum loop correc-
tions provides an impressive validation of the electroweak sector of the Standard
Model.

Because the electroweak measurements are sufficiently precise to be sensitive
to quantum loop corrections, they strongly constrain possible models for physics
beyond the Standard Model; any new particle or interaction that gives rise to a
significant contribution to the quantum loop corrections to the W-boson mass will
not be consistent with the experimental data.

16.5 The top quark

The top quark is by some way the most massive of the quarks. In fact, with a
mass of approximately 175 GeV, it is the most massive fundamental particle in
the Standard Model, m(t) > m(H) > m(Z) > m(W). Because of its mass, the top
quark could not be observed directly at LEP and was only discovered in 1994 in pp
collisions at the Tevatron. In pp collisions, top quarks are predominantly produced
in pairs in the QCD process qq→ tt, shown in Figure 16.16.

Owing to its large mass, the lifetime of the top quark is very short. Consequently,
the top pairs produced in the process qq → tt do not have time to form bound
states, such as those observed in the resonant production of charmonium (cc) and
bottomonium (bb) states (discussed in Section 10.8). Because |Vtb| ≫ |Vts| > |Vtd|,
the top quark decays almost entirely by t→ bW+. Hence top quark pair production
and decay at the Tevatron (and at the LHC) proceeds mostly by

qq→ tt→ bW+ bW−.
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The Feynman diagram for the production of the tt semi-leptonic final state, where
one W boson decays leptonically and the other decays hadronically, is shown in
Figure 16.17. The corresponding matrix element contains four propagators for
massive particles, two for the top quarks and two for the W bosons. Because
ΓW ≪ mW, the largest contributions to the matrix element will be when the W
bosons are produced almost on-shell with q2 ∼ m2

W. Similarly, the presence of the
propagators for the two virtual top quarks implies that

|M|2 ∝ 1
(q2

1 − m2
t )2 + m2

t Γ
2
t
× 1

(q2
2 − m2

t )2 + m2
t Γ

2
t
.

As a result, the invariant masses of each of the W+b and W−b systems, produced
in the top decays, will be distributed according Lorentzian centred on mt with
width Γt.

16.5.1 Decay of the top quark

Because the W boson from the decay of a top quark is close to being on-shell,
q2 ∼ m2

W, the top decay width can be calculated from the Feynman diagram for
t → bW+ shown in Figure 16.18, where the W boson is treated as a real on-
shell final-state particle. The corresponding matrix element is obtained from the
quark spinors, the weak charged-current vertex factor and the term ϵ∗(pW) for the
polarisation state of the W boson,

−iM =
[
u(pb) −igW√

2
γ µ 1

2 (1 − γ5) u(pt)
]
× ϵ∗µ(pW),

and thus

M = gW√
2
ϵ∗µ(pW) u(pb)γ µ 1

2 (1 − γ5)u(pt). (16.29)

It is convenient to consider the decay in the rest frame of the top quark and to
take the final-state b-quark direction to define the z-axis. Neglecting the mass of
the b-quark, the four-momenta of the t, b and W+ can be written
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!Fig. 16.18 The lowest-order Feynman diagram for the decay t → bW+ and coordinates used for the calculation of the
decay rate.

pt = (mt, 0, 0, 0), pb = (p∗, 0, 0, p∗) and pW = (E∗, 0, 0,−p∗),

where p∗ is the magnitude of the momentum of the final-state particles in the
centre-of-mass frame and E∗ is the energy of the W boson, E∗2 = (p∗)2 + m2

W.
The weak interaction couples only to left-handed chiral particle states. Here, in
the limit p∗ ≫ mb, the chiral states are equivalent to the helicity states and, con-
sequently, the b-quark can only be produced in a left-handed helicity state such
that for the configuration of Figure 16.18 its spin points in the negative z-direction.
Hence, the matrix element of (16.29) can be written as

M = gW√
2
ϵ∗µ(pW) u↓(pb)γ µu(pt). (16.30)

From (4.67), the LH helicity spinor for the b-quark is

u↓(pb) ≈
√

p∗

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
1
0
−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The two possible spin states of the top quark can be written using the u1 and u2

spinors, which for a top quark at rest are (4.48),

u1(pt) =
√

2mt

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and u2(pt) =
√

2mt

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
1
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

respectively representing S z = +
1
2 and S z = − 1

2 states. The four-vector quark cur-
rents for the two possible spin states, calculated using the relations of (6.12)−(6.15),
are

j µ1 = u↓(pb)γ µu1(pt) =
√

2mtp∗(0,−1,−i, 0),

j µ2 = u↓(pb)γ µu2(pt) =
√

2mtp∗(1, 0, 0, 1).
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The three possible polarisation states of the W boson, given by (15.1), are

ϵ∗+(pW) = − 1√
2
(0, 1,−i, 0),

ϵ∗−(pW) = 1√
2
(0,+1,+i, 0),

ϵ∗L(pW) = 1
mW

(−p∗, 0, 0, E∗),

which correspond to the S z = ±1 and the longitudinal polarisation states. For a
particular top quark spin and W polarisation state, the matrix element of (16.30) is
given by the four-vector scalar product

M = gW√
2

ji ·ϵ∗λ.

The only combinations of the two possible quark currents and the three possible
W-boson polarisations for which the matrix element is non-zero are ϵ∗+· j1 and ϵ∗L· j2.
These two combinations correspond to the spin states shown in Figure 16.19, which
(unsurprisingly) are the only configurations that conserve angular momentum.

The matrix elements for these two allowed spin configurations are

M1 =
gW√

2
ϵ∗+ · j1 = − gW√

2

√
mtp∗ (0, 1, i, 0)·(0,−1,−i, 0) = −gW

√
2mtp∗,

M2 =
gW√

2
ϵ∗L · j2 =

gW
mW

√
mtp∗ (−p∗, 0, 0, E∗)·(1, 0, 0, 1) = − gW

mW

√
mtp∗(E∗ + p∗).

From conservation of energy, E∗ + p∗ = mt, and therefore the spin-averaged matrix
element squared for the decay t→ bW+ is

⟨|M2|⟩ = 1
2

(
|M2

1| + |M2
2|
)
= 1

2g
2
Wmtp∗

⎛
⎜⎜⎜⎜⎜⎝2 +

m2
t

m2
W

⎞
⎟⎟⎟⎟⎟⎠ ,

where the factor of one half averages over the two spin states of the t-quark. The
total decay rate is obtained by substituting the spin-averaged matrix element into
the formula of (3.49) which, after integrating over the 4π of solid angle, gives

Γ(t→ bW+) =
p∗

8πm2
t
⟨|M2|⟩ =

g2
Wp∗2

16πmt

⎛
⎜⎜⎜⎜⎜⎝2 +

m2
t

m2
W

⎞
⎟⎟⎟⎟⎟⎠ . (16.31)
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With some algebraic manipulation (see Problem 16.10), this can be written as

Γ(t→ bW+) =
GFm3

t

8
√

2π

⎛
⎜⎜⎜⎜⎜⎝1 −

m2
W

m2
t

⎞
⎟⎟⎟⎟⎟⎠

2 ⎛
⎜⎜⎜⎜⎜⎝1 +

2m2
W

m2
t

⎞
⎟⎟⎟⎟⎟⎠ , (16.32)

where g2
W is given in terms of the Fermi constant, GF =

√
2g2

W/(8m2
W). For the

measured values of mt = 173 GeV, mW = 80.4 GeV and GF = 1.166×10−5 GeV−2,
the lowest-order calculation of the total decay width of the top quark gives

Γt = 1.5 GeV. (16.33)

Hence the top quark lifetime is of order τt = 1/Γt ≈ 5× 10−25 s. This is sufficiently
short that the top quarks produced at the Tevatron decay in a distance of order
10−16 m. This is small compared to the typical length scale for the hadronisation
process, and therefore the tt pairs produced at the Tevatron not only decay before
forming a bound state, but also decay before hadronising.

16.5.2 Measurement of the top quark mass

The mass of the top quark has been measured in the process pp → tt by direct
reconstruction of the top quark decay products, similar to the procedure used to
measure the W-boson mass at LEP. Since both top quarks decay to a b-quark and
a W boson there are three distinct final-state topologies:

tt→ (bW+)(bW−)→ (b q1q2) (b q3q4)→ 6 jets,

tt→ (bW+)(bW−)→ (b q1q2) (b ℓ−νℓ)→ 4 jets + 1, charged lepton + 1ν

tt→ (bW+)(bW−)→ (b ℓ+νℓ) (b ℓ′−νℓ′)→ 2 jets + 2 charged leptons + 2νs.

The measurement of the top quark mass is more complicated than the corre-
sponding measurement of the W-mass at LEP, but the principle is the same. The
b-quark jets are identified from the tagging of secondary vertices (see Section 1.3.1)
and the remaining jets have to be associated to the W-boson decay(s), as indicated
in Figure 16.20. Because the momentum of the tt system in the beam (z) direction
is not known (see Section 16.3.2), it might appear that there is insufficient informa-
tion to fully reconstruct the neutrino momentum in observed tt → four jets + ℓ + ν
events. However, the invariant mass of the two jets associated with a W boson
and the invariant mass of the lepton and neutrino both can be constrained to mW

within ±ΓW. Furthermore, the invariant masses of the particles forming the two
reconstructed top quarks can be required to be equal. These additional constraints
provide a system of equations that allow the momentum of the neutrino to be
determined from the technique of kinematic fitting. In both the fully hadronic and
tt→ four jets+ℓ+ν decay topologies, these constraints improve the event-by-event
mass resolution.
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!Fig. 16.20 The two main tt event topologies used at the Tevatron to determine the top quark mass from the direct recon-
struction of the decay products.

The top quark mass has been determined by both the CDF and D0 collaborations
using the measured four-momenta of the jets and leptons in observed tt → six jets
and tt → four jets + ℓ + ν events. As an example, Figure 16.21 shows the recon-
structed top mass distribution from an analysis of data recorded by the CDF exper-
iment. Whilst the reconstructed mass peak is relatively broad due to experimental
resolution, a clear peak is observed allowing the top mass to be determined with a
precision of O(1%). The current average of the top quark mass measurements from
the CDF and D0 experiments is

mt = 173.5 ± 1.0 GeV.

The total width of the top quark is measured to be Γt = 2.0 ± 0.6 GeV. The top
width is determined much less precisely than the top quark mass because the width
of the distribution in Figure 16.21 is dominated by the experimental resolution.
Nevertheless, the current measurement is consistent with the result of the lowest-
order calculation presented in Section 16.5.1.

A window on the Higgs boson
Just as the electroweak measurements at LEP provided a prediction of the top quark
mass through its quantum loop corrections to the W-boson mass, the precise deter-
mination of the top quark mass at the Tevatron provides a window on the Higgs
boson. Its measurement determines the size of the largest loop correction to the
W-boson mass, which arises from the virtual tb loop in Figure 16.15. The next
largest correction arises from the WH loop that leads to the logarithmic term in
(16.28). The electroweak measurements at LEP and the Tevatron, when combined
with the direct measurement of the top quark mass, constrain the mass of the Stan-
dard Model Higgs boson to be in the range

50 GeV # mH # 150 GeV.
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!Fig. 16.21 The distribution of the reconstructed top mass in selected tt → four jets+ ℓ+ ν events in the CDF detector
at the Tevatron. The dashed curve indicates the expected contribution from processes other than tt. Adapted
from Aaltonen et al. (2011).

Direct searches for the Higgs boson at LEP placed a lower bound on its mass of

mH > 115 GeV.

Hence, prior to the turn-on of the LHC, the window for the Standard Model Higgs
boson was already quite narrow.

Summary

The Z boson was studied with very high precision at the LEP e+e− collider. The
resulting measurements provided a stringent test of the predictions of the GSW
model for electroweak unification. The mass of the Z boson, which is a fundamen-
tal parameter of the Standard Model, was determined to be

mZ = 91.1875 ± 0.0021 GeV.

The observed couplings of the Z boson are consistent with the Standard Model
expectations with

sin2 θW = 0.23146 ± 0.00012.
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The measurements of ΓZ and the e+e− → Z → ff cross sections, demonstrate that
there are only three generations of light neutrinos (assuming standard couplings),
which is strongly suggestive that there are only three generations of fundamental
fermions. Furthermore, studies of the W boson at LEP and the Tevatron and the
studies of the top quark at the Tevatron, show that

mW = 80.385 ± 0.015 GeV and mt = 173.5 ± 1.0 GeV.

Remarkably, when combined, the above measurements of the electroweak sec-
tor of the Standard Model are sufficiently precise to reveal effects at the quantum
loop level. These precision measurements and the ability of the Standard Model to
describe the electroweak data, represent one of the highlights of modern physics.
However, there is a serious problem with the Standard Model as it has been pre-
sented so far; the fact the W and Z bosons have mass breaks the required gauge
symmetry of the Standard Model. The solution to this apparent contradiction is the
Higgs mechanism.

Problems

16.1 After correcting for QED effects, including initial-state radiation, the measured e+e− → µ+µ− and e+e− →
hadrons cross sections at the peak of the Z resonance give

σ0(e+e− → Z→ µ+µ−) = 1.9993 nb and σ0(e+e− → Z→ hadrons) = 41.476 nb.

(a) Assuming lepton universality, determineΓℓℓ andΓhadrons.
(b) Hence, using the measured value ofΓZ = 2.4952± 0.0023 GeV and the theoretical value ofΓνν given by

Equation (15.41), obtain an estimate of the number of light neutrino flavours.

16.2 Show that the e+e− → Z→ µ+µ− differential cross section can be written as

dσ
dΩ
∝ (1 + cos2 θ) + 8

3 AFB cos θ.

16.3 From the measurement of the muon asymmetry parameter,

Aµ = 0.1456 ± 0.0091,

determine the corresponding value of sin2 θW.

16.4 The e+e− Stanford Linear Collider (SLC), operated at
√

s = mZ with left- and right-handed longitudinally
polarised beams. This enabled the e+e− → Z → ff cross section to be measured separately for left-handed
and right-handed electrons.

Assuming that the electron beam is 100% polarised and that the positron beam is unpolarised, show that the
left–right asymmetry ALR is given by
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ALR =
σL − σR

σL + σR
=

(ce
L )

2 − (ce
R)

2

(ce
L )

2 + (ce
R)

2 = Ae,

whereσL andσR are respectively the measured cross sections at the Z resonance for LH and RH electron beams.

16.5 From the expressions for the matrix elements given in (16.8), show that:

(a) the average polarisation of the tau leptons produced in the process e+e− → Z→ τ+τ− is

⟨Pτ−⟩ =
N↑ − N↓
N↑ + N↓

= −Aτ,

where N↑ and N↓ are the respective numbers of τ− produced in RH and LH helicity states;
(b) the tau polarisation where the τ− is produced at an angle θwith respect to the initial-state e− is

Pτ− (cos θ) =
N↑(cos θ) − N↓(cos θ)
N↑(cos θ) + N↓(cos θ)

= −Aτ(1 + cos2 θ) + 2Ae cos θ
(1 + cos2 θ) + 8

3 AFB cos θ
.

16.6 The average tau polarisation in the process e+e− → Z → τ+τ− can be determined from the energy dis-
tribution of π− in the decay τ− → π−ντ. In the τ− rest frame, the π− four-momentum can be written
p = (E∗, p∗ sin θ∗, 0, p∗ cos θ∗), where θ∗ is the angle with respect to the τ− spin, and the differential par-
tial decay width is

dΓ
d cos θ∗

∝ (p∗)2

mτ
(1 + cos θ∗).

(a) Without explicit calculation, explain this angular dependence.
(b) For the case where the τ− is right-handed, show that the observed energy distribution of the π− in the

laboratory frame is

dΓτ−↑
dEπ−

∝ x,

where x = Eπ/Eτ.
(c) What is the correspondingπ− energy distribution for the decay of a LH helicity τ−.
(d) If the observed pion energy distribution is consistent with

dΓ
dx
= 1.14 − 0.28x ≡ 0.86x + 1.14(1 − x),

determineAτ and the corresponding value of sin2 θW.

16.7 There are ten possible lowest-order Feynman diagrams for the process e+e− → µ−νµud, of which only three
involve a W+W− intermediate state. Draw the other seven diagrams (they are all s-channel processes involving
a single virtual W).

16.8 Draw the two lowest-order Feynman diagrams for e+e− → ZZ.

16.9 In the OPAL experiment at LEP, the efficiencies for selecting W+W− → ℓνq1q2 and W+W− → q1q2q3q4
events were 83.8% and 85.9% respectively. After correcting for background, the observed numbers of ℓνq1q2
and q1q2q3q4 events were respectively 4192 and 4592. Determine the measured value of the W-boson hadronic
branching ratio BR(W→ qq′) and its statistical uncertainty.

16.10 Suppose the four jets in an identified e+e− → W+W− event at LEP are measured to have momenta,

p1 = 82.4 ± 5 GeV, p2 = 59.8 ± 5 GeV, p3 = 23.7 ± 5 GeV and p4 = 42.6 ± 5 GeV,
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and directions given by the Cartesian unit vectors,

n̂1 = (0.72, 0.33, 0.61), n̂2 = (−0.61, 0.58,−0.53),
n̂3 = (−0.63,−0.72,−0.25), n̂4 = (−0.14,−0.96,−0.25).

Assuming that the jets can be treated as massless particles, find the most likely association of the four jets to the
two W bosons and obtain values for the invariant masses of the (off-shell) W bosons in this event. Optionally,
calculate the uncertainties on the reconstructed masses assuming that the jet directions are perfectly measured.

16.11 Show that the momenta of the final-state particles in the decay t→ W+b are

p∗ =
m2

t − m2
W

2mt
,

and show that the decay rate of (16.31) leads to the expression forΓt given in (16.32).



17 The Higgs boson

The Higgs mechanism and the associated Higgs boson are essential parts of
the Standard Model. The Higgs mechanism is the way that the W and Z bosons
acquire mass without breaking the local gauge symmetry of the Standard
Model. It also gives mass to the fundamental fermions. This chapter describes
the Higgs mechanism and the discovery of the Higgs boson at the LHC. The
Higgs mechanism is subtle and to gain a full understanding requires the addi-
tional theoretical background material covered in the sections on Lagrangians
and local gauge invariance in quantum field theory.

17.1 The need for the Higgs boson

The apparent violation of unitarity in the e+e−→W+W− cross section was resolved
by the introduction of the Z boson. A similar issue arises in the W+W−→W+W−

scattering process, where the cross section calculated from the Feynman diagrams
shown in Figure 17.1 violates unitarity at a centre-of-mass energy of about 1 TeV.
The unitarity violating amplitudes originate from WLWL → WLWL scattering,
where the W bosons are longitudinally polarised. Consequently, unitary violation
in WW scattering can be associated with the W bosons being massive, since longi-
tudinal polarisation states do not exist for massless particles. The unitarity violation
of the WLWL → WLWL cross section can be cancelled by the diagrams involving
the exchange of a scalar particle, shown in Figure 17.2. In the Standard Model this
scalar is the Higgs boson. This cancellation can work only if the couplings of the
scalar particle are related to the electroweak couplings, which naturally occurs in
the Higgs mechanism.

The Higgs mechanism is an integral part of the Standard Model. Without it, the
Standard Model is not a consistent theory; the underlying gauge symmetry of the
electroweak interaction is broken by the masses of the associated gauge bosons. As
shown by ‘t Hooft, only theories with local gauge invariance are renormalisable,
such that the cancellation of all infinities takes place among only a finite number
of interaction terms. Consequently, the breaking of the local gauge invariance of
the electroweak theory by the gauge boson masses can not simply be dismissed.

460
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W+ W+ W+ W+

W- W- W- W- W-

W+

W-

W+

γ /Z
γ /Z!Fig. 17.1 The lowest-order Feynman diagrams for W+W− → W+W−. The final diagram, corresponds to the quartic

coupling of four W bosons.

H
H

W+ W+ W+W+

W- W- W- W-!Fig. 17.2 Higgs boson exchange diagrams for W+W− → W+W−.

The Higgs mechanism generates the masses of the electroweak gauge bosons in a
manner that preserves the local gauge invariance of the Standard Model.

17.2 Lagrangians in Quantum Field Theory

The Higgs mechanism is described in terms of the Lagrangian of the Standard
Model. In quantum mechanics, single particles are described by wavefunctions
that satisfy the appropriate wave equation. In Quantum Field Theory (QFT), par-
ticles are described by excitations of a quantum field that satisfies the appropriate
quantum mechanical field equations. The dynamics of a quantum field theory can
be expressed in terms of the Lagrangian density. Whilst the development of QFT
is outside the scope of this book, an understanding of the Lagrangian formalism is
necessary for the discussion of the Higgs mechanism. The purpose of this section
is to provide a pedagogical introduction to the Lagrangian of the Standard Model,
which ultimately contains all of the fundamental particle physics.

17.2.1 Classical fields

In classical dynamics, the motion of a system can be described in terms of forces
and the resulting accelerations using Newton’s second law, F = mẍ. The same
equations of motion can be obtained from the Lagrangian L defined as

L = T − V, (17.1)
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where T and V are respectively the kinetic and potential energies of the system.
The Lagrangian L(qi, q̇i) is a function of a set of generalised coordinates qi and
their time derivatives q̇i (the possible explicit time dependence of the Lagrangian
is not considered here). Once the Lagrangian is specified, the equations of motion
are determined by the Euler–Lagrange equations,

d
dt

(
∂L
∂q̇i

)
− ∂L
∂qi
= 0. (17.2)

For example, consider a particle moving in one dimension where the Lagrangian
is a function of the coordinate x and its time derivative ẋ, with

L = T − V = 1
2 mẋ2 − V(x).

The derivatives of the Lagrangian with respect to x and ẋ are

∂L
∂ẋ
= mẋ and

∂L
∂x
= −∂V

∂x
,

and the Euler–Lagrange equation (17.2) for the coordinate qi = x is simply

mẍ = −∂V(x)
∂x
.

Since the derivative of the potential gives the force, this is equivalent to F = mẍ
and Newton’s second law of motion is recovered.

The Lagrangian treatment of a discrete system of particles, described by n gen-
eralised coordinates qi, can be extended to a continuous system by replacing the
Lagrangian of (17.1) with the Lagrangian density L,

L
(
qi,

dqi

dt

)
→ L

(
φi, ∂µφi

)
.

In the Lagrangian density, the generalised coordinates qi are replaced by the fields
φi(t, x, y, z), and the time derivatives of the generalised coordinates q̇i are replaced
by the derivatives of the fields with respect to each of the four space-time coordi-
nates,

∂µφi ≡
∂φi

∂x µ
.

The fields are continuous functions of the space-time coordinates x µ and the
Lagrangian L itself is given by

L =
∫
L d3x.
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x

f(
x,

 t
)

tr!Fig. 17.3 The scalar fieldφ(x, t) representing the transverse displacement of a string of mass per unit length ρ under
tension τ.

Using the principle of least action,1 the equivalent of the Euler–Lagrange equation
for the fields φi can be shown to be

∂µ

(
∂L

∂(∂µφi)

)
− ∂L
∂φi
= 0. (17.3)

The field φi(x µ) represents a continuous quantity with a value at each point in
space-time. It can be a scalar such as temperature T (x, t), a vector such as the
electric field strength E(x, t), or a tensor.

To illustrate the application of classical field theory, consider the relatively sim-
ple example of a string of mass per unit length ρ under tension τ, as indicated in
Figure 17.3. Here the scalar field φ(x, t) represents the transverse displacement of
the string as a function of x and t. The kinetic and potential energies of the string,
written in terms of the derivatives of the field, are

T =
∫

1
2ρ

(
∂φ

∂t

)2

dx and V =
∫

1
2τ

(
∂φ

∂x

)2

dx.

Hence the Lagrangian density is

L = 1
2ρ

⎡
⎢⎢⎢⎢⎢⎣

(
∂φ

∂t

)2

− v2
(
∂φ

∂x

)2⎤⎥⎥⎥⎥⎥⎦ ≡ 1
2ρ

[
(∂0φ)2 − v2(∂1φ)2

]
, (17.4)

where v =
√
τ/ρ. Once the Lagrangian density has been specified, the equations

of motion follow from the Euler–Lagrange equation of (17.3). For the Lagrangian
density of (17.4), the relevant partial derivatives are

∂L
∂(∂0φ)

= ρ ∂0φ ≡ ρ
∂φ

∂t
,

∂L
∂(∂1φ)

= −ρv2 ∂1φ ≡ −ρv2
∂φ

∂x
and

∂L
∂φ
= 0,

and the Euler–Lagrange equation gives

ρ∂0(∂0φ) − ρv2∂1(∂1φ) = 0 or equivalently ρ
∂

∂t

(
∂φ

∂t

)
− ρv2 ∂

∂x

(
∂φ

∂x

)
= 0.

1 The derivation can be found in any standard text on classical or Quantum Field Theory.
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Therefore the field φ(x), describing the displacement of the string, satisfies the
equation of motion

∂2φ

∂t2 − v
2 ∂

2φ

∂x2 = 0,

which is the usual one-dimensional wave equation with phase velocity given by
v =

√
τ/ρ. Hence, it can be seen that Lagrangian density determines the wave

equation for the field.

17.2.2 Relativistic fields

In Quantum Field Theory, the single particle wavefunctions of quantum mechanics
are replaced by (multi-particle) excitations of a quantum field, which itself satisfies
the appropriate field equation. The field equation is determined by the form of the
Lagrangian density, which henceforth will be referred to simply as the Lagrangian.
In the above example of a string under tension, it was shown that the Lagrangian,

L = 1
2ρ

[
(∂0φ)2 − v2(∂1φ)2

]
,

gives the usual wave equation for the displacement of the string. Similarly the
dynamics of the quantum mechanical fields describing spin-0, spin-half and spin-1
particles are determined by the appropriate Lagrangian densities.

Relativistic scalar fields
In QFT, spin-0 scalar particles are described by excitations of the scalar field
φ(x) satisfying the Klein–Gordon equation, first encountered in Section 4.1. The
Lagrangian for a free non-interacting scalar field can be identified as

LS =
1
2 (∂µφ)(∂ µφ) − 1

2 m2φ2. (17.5)

To see that this Lagrangian corresponds to the Klein–Gordon equation, it is helpful
to write (17.5) in full,

LS =
1
2
[
(∂0φ) (∂0φ) − (∂1φ) (∂1φ) − (∂2φ) (∂2φ) − (∂3φ) (∂3φ)

] − 1
2 m2φ2,

from which the partial derivatives appearing in the Euler–Lagrange equation are

∂L
∂φ
= −m2φ,

∂L
∂(∂0φ)

= ∂0φ ≡ ∂0φ and
∂L

∂(∂kφ)
= −∂kφ ≡ ∂ kφ,

where k = 1, 2, 3. Substituting these partial derivatives into the Euler–Lagrange
equation of (17.3) gives

∂µ∂
µφ + m2φ = 0,

which is the Klein–Gordon equation for a free scalar field φ(x).
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Relativistic spin-half fields
The Lagrangian for the spinor field ψ(x) satisfying the free-particle Dirac
equation is

LD = iψγ µ∂µψ − mψψ. (17.6)

Here the field ψ(x) is a four-component complex spinor, which can be expressed in
terms of eight independent real fields,

ψ(x) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ψ1

ψ2

ψ3

ψ4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ψ1 + iΦ1

Ψ2 + iΦ2

Ψ3 + iΦ3

Ψ4 + iΦ4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

In principle, the Euler–Lagrange equation can be solved in terms of these eight
fields. However, the eight independent components of the complex Dirac spinor ψ
also can be expressed as linear combinations of ψ and the adjoint spinor ψ. Hence,
the independent fields can be taken to be the four components the spinor and the
four components of the adjoint spinor. The partial derivatives with respect to one
of the components of the adjoint spinor are

∂L
∂(∂µψi)

= 0 and
∂L
∂ψi

= iγ µ∂µψ − mψ,

which when substituted into the Euler–Lagrange equation give

− ∂L
∂ψi

= 0,

and consequently, the spinor field ψ satisfies the Dirac equation,

iγ µ(∂µψ) − mψ = 0.

Relativistic vector fields
Maxwell’s equations for the electromagnetic field Aµ = (φ,A) can be expressed in
a covariant form (see Appendix D.1) as

∂µFµν = jν,

where Fµν is the field-strength tensor,

Fµν = ∂ µAν − ∂νAµ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −Ex −Ey −Ez

Ex 0 −Bz By
Ey Bz 0 −Bx

Ez −By Bx 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (17.7)
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and j= (ρ, J) is the four-vector current associated with the charge and current
densities ρ and J. The corresponding Lagrangian (see Problem 17.4) is

LEM = − 1
4 FµνFµν − j µAµ.

In the absence of sources j µ = 0, and the Lagrangian for the free photon field is

LEM = − 1
4 FµνFµν. (17.8)

Using the form of the field strength tensor of (17.7), this is equivalent to LEM =
1
2 (E2−B2), from which the corresponding Hamiltonian densityHEM =

1
2 (E2+B2)

gives the normal expression for the energy density of an electromagnetic field (in
Heaviside–Lorentz units with ϵ0 = µ0 = 1). If the photon had mass, the free-
particle Lagrangian of (17.8) would be modified to

LProca = − 1
4 FµνFµν + 1

2 m2
γAµAµ, (17.9)

which is known as the Proca Lagrangian, from which the field equations for a
massive spin-1 particle can be obtained.

17.2.3 Noether’s theorem

In the following section, the ideas of local gauge invariance are considered in the
context of the symmetries of the Lagrangian. Here a simple example is used to
illustrate the connection between a symmetry of the Lagrangian and a conservation
law. The Lagrangian for a mass m orbiting in the gravitational potential of a fixed
body of mass M is

L = T − V = 1
2 mv2 +

GMm
r

= 1
2 mṙ2 + 1

2 mr2φ̇2 +
GMm

r
,

where r and φ are the polar coordinates of the mass m in the plane of the orbit. The
Lagrangian does not depend on the polar angle φ and therefore is invariant under
the infinitesimal transformation, φ → φ′ = φ + δφ. Since the Lagrangian does not
depend on φ, the corresponding Euler–Lagrange equation implies

d
dt

(
∂L
∂φ̇

)
= 0,

and consequently

J =
∂L
∂φ̇
= mr2φ̇,

is a constant of the motion. The rotational symmetry of the Lagrangian therefore
implies the existence of a conserved quantity, which in this example is the angular
momentum of the orbiting body m.
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In field theory, Noether’s theorem relates a symmetry of the Lagrangian to a
conserved current. For example, the Lagrangian for the free Dirac field

L = iψγ µ∂µψ − mψψ, (17.10)

is unchanged by the global U(1) phase transformation,

ψ→ ψ′ = eiθψ.

In Appendix E it is shown that the corresponding conserved current is the usual
four-vector current

j µ = ψγ µψ,

which automatically satisfies the continuity equation ∂µ j µ = 0.

17.3 Local gauge invariance

In Section 10.1, the electromagnetic interaction was introduced by requiring
the Dirac equation to be invariant under a U(1) local phase transformation. The
required local gauge symmetry is expressed naturally as the invariance of the
Lagrangian under a local phase transformation of the fields,

ψ(x)→ ψ′(x) = eiqχ(x)ψ(x). (17.11)

The local nature of the gauge transformation means that the derivatives acting on
the field also act on the local phase χ(x). With this transformation, the Lagrangian
for a free spin-half particle of (17.6),

L = iψγ µ∂µψ − mψψ, (17.12)

becomes

L→ L′ = ie−iqχψγ µ
[
eiqχ∂µψ + iq

(
∂µχ

)
eiqχψ

]
− me−iqχψeiqχψ

= L − qψγ µ
(
∂µχ

)
ψ. (17.13)

Hence, as it stands, the free-particle Lagrangian for a Dirac field is not invari-
ant under U(1) local phase trasformations. The required gauge invariance can be
restored by replacing the derivative ∂µ in (17.12) with the covariant derivative Dµ,

∂µ → Dµ = ∂µ + iqAµ,

where Aµ is a new field. The desired cancellation of the unwanted qψγ µ(∂µχ)ψ
term in (17.13) is achieved provided the new field transforms as

Aµ → A′µ = Aµ − ∂µχ. (17.14)
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The required U(1) local gauge invariance of the Lagrangian corresponding to the
Dirac equation can be achieved only by the introduction of the field Aµ with well-
defined gauge transformation properties. Hence the gauge-invariant Lagrangian for
a spin-half fermion

L = ψ(iγ µ∂µ − m)ψ − qψγ µAµψ,

now contains a term describing the interaction of the fermion with the new field Aµ,
which can be identified as the photon. Hence the Lagrangian of QED, describing
the fields for the electron (with q = −e), the massless photon and the interactions
between them can be written as

LQED = ψ(iγ µ∂µ − me)ψ + eψγ µψAµ − 1
4 FµνFµν. (17.15)

The kinetic term for the massless spin-1 field FµνFµν is already invariant under
U(1) local phase transformations (see Problem 17.3).

The connection to Maxwell’s equations can be made apparent by writing the
QED Lagrangian of (17.15) in terms of the four-vector current, j µ = −eψγ µψ,

L = ψ(iγ µ∂µ − me)ψ − j µAµ − 1
4 FµνFµν.

The Euler–Lagrange equation for the derivatives with respect to the photon field
Aµ gives (see Problem 17.4)

∂µFµν = jν,

which is the covariant form of Maxwell’s equations. Hence the whole of elec-
tromagnetism can be derived by requiring a local U(1) gauge symmetry of the
Lagrangian for a particle satisfying the Dirac equation.

The weak interaction and QCD are respectively obtained by extending the local
gauge principle to require that the Lagrangian is invariant under SU(2)L and SU(3)
local phase transformations. The prescription for achieving the required gauge
invariance is to replace the four-derivative ∂µ with the covariant derivative Dµ
defined in terms of the generators of the group. For example, for the SU(2)L sym-
metry of the weak interaction

∂µ → Dµ = ∂µ + igWT ·Wµ(x),

where the T = 1
2σ are the three generators of SU(2) and W(x) are the three new

gauge fields. The generators of the SU(2) and SU(3) symmetry groups do not com-
mute and the corresponding local gauge theories are termed non-Abelian. In a non-
Abelian gauge theory, the transformation properties of the gauge fields are not
independent and additional gauge boson self-interaction terms have to be added to
the field-strength tensor for it to be gauge invariant. The focus of this chapter is
the Higgs mechanism and therefore the more detailed discussion of non-Abelian
gauge theories is deferred to Appendix F.
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17.4 Particle masses

The local gauge principle provides an elegant description of the interactions in
the Standard Model. The success of the Standard Model in describing the exper-
imental data, including the high-precision electroweak measurements, places the
local gauge principle on a solid experimental basis. However, the required local
gauge invariance of the Standard Model is broken by the terms in the Lagrangian
corresponding to particle masses. For example, if the photon were massive, the
Lagrangian of QED would contain an additional term 1

2 m2
γ AµAµ,

LQED → ψ(iγ µ∂µ − me)ψ + eψγ µAµψ − 1
4 FµνFµν + 1

2 m2
γ AµAµ.

For the U(1) local gauge transformation of (17.11), the photon field transforms as

Aµ → A′µ = Aµ − ∂µχ,

and the new mass term becomes

1
2 m2

γAµAµ → 1
2 m2

γ

(
Aµ − ∂µχ

) (
Aµ − ∂ µχ) ! 1

2 m2
γAµAµ,

from which it is clear that the photon mass term is not gauge invariant. Hence the
required U(1) local gauge symmetry can only be satisfied if the gauge boson of
an interaction is massless. This restriction is not limited to the U(1) local gauge
symmetry of QED, it also applies to the SU(2)L and SU(3) gauge symmetries of
the weak interaction and QCD. Whilst the local gauge principle provides an ele-
gant route to describing the nature of the observed interactions, it works only for
massless gauge bosons. This is not a problem for QED and QCD where the gauge
bosons are massless, but it is in apparent contradiction with the observation of the
large masses of W and Z bosons.

The problem with particle masses is not restricted to the gauge bosons. Writing
the electron spinor field as ψ = e, the electron mass term in QED Lagrangian can
be written in terms of the chiral particle states as

−meee = −mee
[

1
2 (1 − γ5) + 1

2 (1 + γ5)
]

e

= −mee
[

1
2 (1 − γ5)eL +

1
2 (1 + γ5)eR

]

= −me(eReL + eLeR). (17.16)

In the SU(2)L gauge transformation of the weak interaction, left-handed parti-
cles transform as weak isospin doublets and right-handed particles as singlets, and
therefore the mass term of (17.16) breaks the required gauge invariance.



470 The Higgs boson

17.5 The Higgs mechanism

In the Standard Model, particles acquire masses through their interactions with the
Higgs field. In this section, the Higgs mechanism is developed in three distinct
stages. First it is shown how mass terms for a scalar field can arise from a broken
symmetry. This mechanism is then extended to show how the mass of a gauge
boson can be generated from a broken U(1) local gauge symmetry. Finally, the
full Higgs mechanism is developed by breaking the SU(2)L × U(1)Y local gauge
symmetry of the electroweak sector of the Standard Model.

17.5.1 Interacting scalar fields

A Lagrangian consists of two parts, a kinetic term involving the derivatives of the
fields and a potential term expressed in terms of the fields themselves. For example,
in the Lagrangian of QED (17.15), the kinetic terms for the electron and photon are

iψγ µ∂µψ and − 1
4 FµνF µν.

The potential term, which represents the interactions between the electron and pho-
ton fields, is

eψγ µψAµ.

This can be associated with the normal three-point interaction vertex of QED,
shown on the left of Figure 17.4. In general, the nature of the interactions between
the fields and the strength of the coupling is determined by the terms in the
Lagrangian involving the combinations of the fields, here ψψA.

Now, consider a scalar field φ with the potential

V(φ) = 1
2µ

2φ2 + 1
4λφ

4. (17.17)

The corresponding Lagrangian is given by

L = 1
2 (∂µφ)(∂ µφ) − V(φ)

= 1
2 (∂µφ)(∂ µφ) − 1

2µ
2φ2 − 1

4λφ
4. (17.18)

A e

ψ

ψ

f f

f f

l−1
4

!Fig. 17.4 The three-point interaction of QED and the four-point interaction for a scalar field with the potentialλφ4/4.
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(b)(a)

f

f
-v +v

!Fig. 17.5 The one-dimensional potential V(φ) = µ2φ2/2 + λφ4/4 for λ > 0 and the cases where (a)µ2 > 0 and
(b)µ2 < 0.

The term proportional to (∂µφ)(∂ µφ) can be associated with the kinetic energy of
the scalar particle and 1

2µ
2φ2 can represent the mass of the particle. The φ4 term can

be identified as self-interactions of the scalar field, corresponding to the four-point
interaction vertex shown in the right-hand plot of Figure 17.4.

The vacuum state is the lowest energy state of the field φ and corresponds to the
minimum of the potential of (17.17). For the potential to have a finite minimum, λ
must be positive. If µ2 is also chosen to be positive, the resulting potential, shown
in Figure 17.5a, has a minimum at φ = 0. In this case, the vacuum state corresponds
to the field φ being zero and the Lagrangian of (17.18) represents a scalar particle
with mass µ and a four-point self-interaction term proportional to φ4. However,
whilst λ must be greater than zero for there to be a finite minimum, there is no such
restriction for µ2. If µ2 < 0, the associated term in the Lagrangian can no longer be
interpreted as a mass and the potential of (17.17) has minima at

φ = ±v = ±
∣∣∣∣∣∣∣

√
−µ2

λ

∣∣∣∣∣∣∣
,

as shown in Figure 17.5b. For µ2 < 0, the lowest energy state does not occur at
φ = 0 and the field is said to have a non-zero vacuum expectation value v. Since the
potential is symmetric, there are two degenerate possible vacuum states. The actual
vacuum state of the field either will be φ = +v or φ = −v. The choice of the vacuum
state breaks the symmetry of the Lagrangian, a process known as spontaneous
symmetry breaking. A familiar example of spontaneous symmetry breaking is a
ferromagnet with magnetisation M. The Lagrangian (or Hamiltonian) depends on
M2 and has no preferred direction. However, below the Curie temperature, the spins
will be aligned in a particular direction, spontaneously breaking the underlying
rotational symmetry of the Lagrangian.
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!Fig. 17.6 The self-interactions of the fieldη that lead to Feynman diagrams for the processesη→ ηηandηη→ ηη.

If the vacuum state of the scalar field is chosen to be at φ = +v, the excitations
of the field, which describe the particle states, can be obtained by considering per-
turbations of the field φ around the vacuum state by writing φ(x) = v + η(x). Since
the vacuum expectation value v is a constant, ∂µφ = ∂µη and the Lagrangian of
(17.18), expressed in terms of the field η, is

L(η) = 1
2 (∂µη)(∂ µη) − V(η)

= 1
2 (∂µη)(∂ µη) − 1

2µ
2(v + η)2 − 1

4λ(v + η)4.

Since the minimum of the potential is given by µ2 = −λv2, this expression can be
written as

L(η) = 1
2 (∂µη)(∂ µη) − λv2η2 − λvη3 − 1

4λη
4 + 1

4λv
4. (17.19)

From the comparison with the Lagrangian for a free scalar field of (17.5), it can be
seen that the term proportional to η2 can be interpreted as a mass

mη =
√

2λv2 =
√
−2µ2,

and therefore the Lagrangian of (17.19) describes a massive scalar field. The terms
proportional to η3 and η4 can be identified as triple and quartic interaction terms,
as indicated in Figure 17.6. Finally, the term λv4/4 is just a constant, and has no
physical consequences. Hence after spontaneous symmetry breaking, and having
expanded the field about the vacuum state, the Lagrangian can be written as

L(η) = 1
2 (∂µη)(∂ µη) − 1

2 m2
ηη

2 − V(η), with V(η) = λvη3 + 1
4λη

4. (17.20)

It is important to realise that the Lagrangian of (17.20) is the same as the original
Lagrangian of (17.18), but is now expressed as excitations about the minimum at
φ = +v. In principle, the same physical predictions can be obtained by using either
form. However, in order to use perturbation theory, it is necessary to express the
fields as small perturbations about the vacuum state.
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17.5.2 Symmetry breaking for a complex scalar field

The idea of spontaneous symmetry breaking, introduced above in the context of a
real scalar field, can be applied to the complex scalar field,

φ = 1√
2
(φ1 + iφ2),

for which the corresponding Lagrangian is

L = (∂µφ)∗(∂ µφ) − V(φ) with V(φ) = µ2(φ∗φ) + λ(φ∗φ)2. (17.21)

When expressed in terms of the two (real) scalar fields φ1 and φ2 this is just

L = 1
2 (∂µφ1)(∂ µφ1) + 1

2 (∂µφ2)(∂ µφ2) − 1
2µ

2(φ2
1 + φ

2
2) − 1

4λ(φ2
1 + φ

2
2)2. (17.22)

As before, for the potential to have a finite minimum, λ > 0. The Lagrangian of
(17.21) is invariant under the transformation φ → φ′ = eiαφ, because φ′∗φ′ =
φ∗φ, and therefore possesses a global U(1) symmetry. The shape of the potential
depends on the sign of µ2, as shown in Figure 17.7. When µ2 > 0, the minimum
of the potential occurs when both fields are zero. If µ2 < 0, the potential has an
infinite set of minima defined by

φ2
1 + φ

2
2 =
−µ2

λ
= v2,

as indicated by the dashed circle in Figure 17.7. The physical vacuum state will
correspond to a particular point on this circle, breaking the global U(1) symmetry
of the Lagrangian. Without loss of generality, the vacuum state can be chosen to

(a) (b)
V(f ) V(f )

f 2

f 1

f 2

f 1

!Fig. 17.7 The V(φ) = µ2(φ∗φ) + λ(φ∗φ)2 potential for a complex scalar field for (a)µ2 > 0 and (b)µ2 < 0.
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2!Fig. 17.8 The scalar interactions obtained by breaking the symmetry for a complex scalar field.

be in the real direction, (φ1, φ2) = (v, 0), and the complex scaler field φ can be
expanded about the vacuum state by writing φ1(x) = η(x) + v and φ2(x) = ξ(x),

φ = 1√
2
(η + v + iξ).

The Lagrangian of (17.22), written in terms of the fields η and ξ, is

L = 1
2 (∂µη)(∂ µη) + 1

2 (∂µξ)(∂ µξ) − V(η, ξ),

where the potential V(η, ξ) is given by

V(η, ξ) = µ2φ2 + λφ4 with φ2 = φφ∗ = 1
2

[
(v + η)2 + ξ2

]
.

The potential can be written in terms of the fields η and ξ using µ2 = −λv2,

V(η, ξ) = µ2φ2 + λφ4

= − 1
2λv

2
{
(v + η)2 + ξ2

}
+ 1

4λ
{
(v + η)2 + ξ2

}2

= − 1
4λv

4 + λv2η2 + λvη3 + 1
4λη

4 + 1
4λξ

4 + λvηξ2 + 1
2λη

2ξ2.

The term which is quadratic in the field η can be identified as a mass, and the terms
with either three or four powers of the fields can be identified as interaction terms.
Thus the Lagrangian can be written as

L = 1
2 (∂µη)(∂ µη) − 1

2 m2
ηη

2 + 1
2 (∂µξ)(∂ µξ) − Vint(η, ξ), (17.23)

with mη =
√

2λv2 and interactions given by

Vint(η, ξ) = λvη3 + 1
4λη

4 + 1
4λξ

4 + λvηξ2 + 1
2λη

2ξ2. (17.24)

These interaction terms correspond to triple and quartic couplings of the fields η
and ξ, as shown in Figure 17.8.

The Lagrangian of (17.23) represents a scalar field η with mass mη =
√

2λv2 and
a massless scalar field ξ. The excitations of the massive field η are in the direction
where the potential is (to first order) quadratic. In contrast, the particles described
by the massless scalar field ξ correspond to excitations in the direction where the
potential does not change, as indicated in Figure 17.9. This massless scalar particle
is known as a Goldstone boson.
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v h(x)

x (x)

!Fig. 17.9 The fields η(x) and ξ(x) in terms of the vacuum expectation value atφ = (v, 0).

17.5.3 The Higgs mechanism

In the Higgs mechanism, the spontaneous symmetry breaking of a complex scalar
field with a potential,

V(φ) = µ2φ2 + λφ4, (17.25)

is embedded in a theory with a local gauge symmetry. In this section, the example
of a U(1) local gauge symmetry is used to introduce the main ideas.

Because of the presence of the derivatives in (17.21), the Lagrangian for a com-
plex scalar field φ is not invariant under the U(1) local gauge transformation

φ(x)→ φ′(x) = eigχ(x)φ(x). (17.26)

The required U(1) local gauge invariance can be achieved by replacing the deriva-
tives in the Lagrangian with the corresponding covariant derivatives

∂µ → Dµ = ∂µ + igBµ.

The resulting Lagrangian,

L = (Dµφ)∗(D µφ) − V(φ2),

is gauge invariant (see Problem 17.7) provided the new gauge field Bµ, which
appears in the covariant derivative, transforms as

Bµ → B′µ = Bµ − ∂µχ(x). (17.27)

Just as was the case for Dirac Lagrangian (see Section 17.3), the required local
gauge invariance implies the existence a new gauge field with well-defined gauge
transformation properties. The combined Lagrangian for the complex scalar field
φ and the gauge field B is

L = − 1
4 FµνFµν + (Dµφ)∗(D µφ) − µ2φ2 − λφ4, (17.28)
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where FµνFµν is the kinetic term for the new field with

Fµν = ∂ µBν − ∂νBµ.

The gauge field B is required to be massless, since the mass term 1
2 mBBµBµ would

break the gauge invariance. The term involving the covariant derivatives, when
written out in full, is

(Dµφ)∗(D µφ) = (∂µ − igBµ)φ∗(∂ µ + igBµ)φ

= (∂µφ)∗(∂ µφ) − igBµφ∗(∂ µφ) + ig(∂µφ∗)Bµφ + g2BµBµφ∗φ

and the full expression for the Lagrangian is

L = − 1
4 FµνFµν + (∂µφ)∗(∂ µφ) − µ2φ2 − λφ4

− igBµφ∗(∂ µφ) + ig(∂µφ∗)Bµφ + g2BµBµφ∗φ. (17.29)

For the case where the potential for the scalar field of (17.25) has µ2 < 0, the vac-
uum state is degenerate and the choice of the physical vacuum state spontaneously
breaks the symmetry of the Lagrangian of (17.29). As before, the physical vacuum
state is chosen to be φ1 + iφ2 = v, and the complex scalar field φ is expanded about
the vacuum state by writing

φ(x) = 1√
2
(v + η(x) + iξ(x)). (17.30)

Substituting (17.30) into (17.29) leads to (see Problem 17.6)

L = 1
2 (∂µη)(∂ µη)−λv2η2

︸!!!!!!!!!!!!!!!!!!!︷︷!!!!!!!!!!!!!!!!!!!︸
massive η

+ 1
2 (∂µξ)(∂ µξ)︸!!!!!!!!!︷︷!!!!!!!!!︸

massless ξ

− 1
4 FµνFµν+ 1

2g
2v2BµBµ︸!!!!!!!!!!!!!!!!!!!!!!︷︷!!!!!!!!!!!!!!!!!!!!!!︸

massive gauge field

−Vint + gvBµ(∂ µξ),

(17.31)

where Vint(η, ξ, B) contains the three- and four-point interaction terms of the fields
η, ξ and B. As before, the breaking of the symmetry of the Lagrangian produces a
massive scalar field η and a massless Goldstone boson ξ. In addition, the previously
massless gauge field B has acquired a mass term 1

2g
2v2BµBµ, achieving the aim of

giving a mass to the gauge boson of the local gauge symmetry. Again it should be
emphasised that this is exactly the same Lagrangian as (17.28), but with the com-
plex scalar field expanded about the vacuum state at φ1+ iφ2 = v; by expanding the
scalar fields about the vacuum where the fields have a non-zero vacuum expecta-
tion value, the underlying gauge symmetry of the Lagrangian has been hidden, but
has not been removed.

However, there appear to be two problems with (17.31). The original Lagrangian
contained four degrees of freedom, one for each of the scalar fields φ1 and φ2,
and the two transverse polarisation states for the massless gauge field B. In the
Lagrangian of (17.31), the gauge boson has become massive and therefore has
the additional longitudinal polarisation state; somehow in the process of sponta-
neous symmetry breaking an additional degree of freedom appears to have been
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B

gv

x!Fig. 17.10 The coupling between the gauge field B and the Goldstone field ξ.

introduced. Furthermore, the gvBµ(∂ µξ) term appears to represent a direct coupling
between the Goldstone field ξ and the gauge field B. It would appear that the spin-1
gauge field can transform into a spin-0 scalar field, as indicated in Figure 17.10.
This term is somewhat reminiscent of the off-diagonal mass term encountered in
the discussion of the neutral kaon system, which coupled the K0 and K0 flavour
states, suggesting that the fields appearing in (17.31) are not the physical fields.
This coupling to the Goldstone field ultimately will be associated with the longitu-
dinal polarisation state of the massive gauge boson.

The Goldstone field ξ in (17.31) can be eliminated from the Lagrangian by mak-
ing the appropriate gauge transformation. By writing

1
2 (∂µξ)(∂ µξ) + gvBµ(∂ µξ) + 1

2g
2v2BµBµ = 1

2g
2v2

[
Bµ +

1
gv

(∂µξ)
]2

,

and making the gauge transformation,

Bµ(x)→ B′µ(x) = Bµ(x) +
1
gv
∂µξ(x), (17.32)

the Lagrangian of (17.31) becomes

L = 1
2 (∂ µη)(∂µη)−λv2η2

︸!!!!!!!!!!!!!!!!!!!︷︷!!!!!!!!!!!!!!!!!!!︸
massive η

+ − 1
4 FµνFµν+ 1

2g
2v2Bµ′B′µ︸!!!!!!!!!!!!!!!!!!!!!!!︷︷!!!!!!!!!!!!!!!!!!!!!!!︸

massive gauge field

−Vint.

Since the original Lagrangian was constructed to be invariant under local U(1)
gauge transformations, the physical predications of the theory are unchanged by
the gauge transformation of (17.32).

Thus, with the appropriate choice of gauge, the Goldstone field ξ no longer
appears in the Lagrangian. This choice of gauge corresponds to taking χ(x) =
−ξ(x)/gv in (17.27). The corresponding gauge transformation of the original com-
plex scalar field φ(x) is therefore

φ(x)→ φ′(x) = e−ig ξ(x)
gv φ(x) = e−iξ(x)/vφ(x). (17.33)

After symmetry breaking, the complex scalar field was expanded about the physical
vacuum by writing φ(x) = 1√

2
(v+ η(x)+ iξ(x)), which to first order in the fields can

be expressed as

φ(x) ≈ 1√
2

[
v + η(x)

]
eiξ(x)/v.

The effect of the gauge transformation of (17.33) on the original complex scalar
field is therefore
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φ(x)→ φ′(x) = 1√
2
e−iξ(x)/v [v + η(x)

]
eiξ(x)/v = 1√

2
(v + η(x)).

Hence, the gauge in which the Goldstone field ξ(x) is eliminated from the
Lagrangian, which is known as the Unitary gauge, corresponds to choosing the
complex scalar field φ(x) to be entirely real,

φ(x) = 1√
2
(v + η(x)) ≡ 1√

2
(v + h(x)).

Here the field η(x) has been written as the Higgs field h(x) to emphasise that this is
the physical field in the unitary gauge. It is important to remember that the physical
predictions of the theory do not depend on the choice of gauge, but in the unitary
gauge the fields appearing in the Lagrangian correspond to the physical particles;
there are no “mixing” terms like Bµ(∂ µξ). The degree of freedom corresponding to
the Goldstone field ξ(x) no longer appears in the Lagrangian; it has been replaced
by the degree of freedom corresponding to the longitudinal polarisation state of the
now massive gauge field B. Sometimes it is said that the Goldstone boson has been
“eaten” by the gauge field. Writing µ2 = −λv2, and working in the unitary gauge
where φ(x) = 1√

2
(v + h(x)), the Lagrangian of (17.28) can be written

L = (Dµφ)∗(D µφ) − 1
4 FµνFµν − µ2φ2 − λφ4

= 1
2 (∂µ − igBµ)(v + h)(∂ µ + igBµ)(v + h) − 1

4 FµνFµν − 1
2µ

2(v + h)2 − 1
4λ(v + h)4

= 1
2 (∂µh)(∂ µh) + 1

2g
2BµBµ(v + h)2 − 1

4 FµνFµν − λv2h2 − λvh3 − 1
4λh4 + 1

4λv
4.

Gathering up the terms (and ignoring the λv4/4 constant) gives

L = 1
2 (∂µh)(∂ µh) − λv2h2

︸!!!!!!!!!!!!!!!!!!!!︷︷!!!!!!!!!!!!!!!!!!!!︸
massive h scalar

− 1
4 FµνFµν + 1

2g
2v2BµBµ︸!!!!!!!!!!!!!!!!!!!!!!!︷︷!!!!!!!!!!!!!!!!!!!!!!!︸

massive gauge boson

+ g2vBµBµh + 1
2g

2BµBµh2

︸!!!!!!!!!!!!!!!!!!!!!!!!!!︷︷!!!!!!!!!!!!!!!!!!!!!!!!!!︸
h,B interactions

− λvh3 − 1
4λh4

︸!!!!!!!!!︷︷!!!!!!!!!︸
h self-interactions

. (17.34)

This Lagrangian describes a massive scalar Higgs field h and a massive gauge
boson B associated with the U(1) local gauge symmetry. It contains interaction
terms between the Higgs boson and the gauge boson, and Higgs boson self-
interaction terms, indicated in Figure 17.11. The mass of the gauge boson,

mB = g v,

is related to the strength of the gauge coupling and the vacuum expectation value
of the Higgs field. The mass of the Higgs boson is given by

mH =
√

2λ v.

It should be noted that the vacuum expectation value v sets the scale for the masses
of both the gauge boson and the Higgs boson.
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4!Fig. 17.11 The interaction terms arising from the Higgs mechanism for a U(1) local gauge theory.

17.5.4 The Standard Model Higgs

In the above example, the Higgs mechanism was used to generate a mass for
the gauge boson corresponding to a U(1) local gauge symmetry. In the Salam–
Weinberg model, the Higgs mechanism is embedded in the U(1)Y × SU(2)L local
gauge symmetry of the electroweak sector of the Standard Model. Three Goldstone
bosons will be required to provide the longitudinal degrees of freedom of the W+,
W− and Z bosons. In addition, after symmetry breaking, there will be (at least) one
massive scalar particle corresponding to the field excitations in the direction picked
out by the choice of the physical vacuum. The simplest Higgs model, which has
the necessary four degrees of freedom, consists of two complex scalar fields.

Because the Higgs mechanism is required to generate the masses of the elec-
troweak gauge bosons, one of the scalar fields must be neutral, written as φ0, and
the other must be charged such that φ+ and (φ+)∗ = φ− give the longitudinal degrees
of freedom of the W+ and W−. The minimal Higgs model consists of two complex
scalar fields, placed in a weak isospin doublet

φ =

(
φ+

φ0

)
= 1√

2

(
φ1 + iφ2

φ3 + iφ4

)
. (17.35)

As usual, the upper and lower components of the doublet differ by one unit of
charge. The Lagrangian for this doublet of complex scalar fields is

L = (∂µφ)†(∂ µφ) − V(φ), (17.36)

with the Higgs potential,

V(φ) = µ2φ†φ + λ(φ†φ)2.

For µ2 < 0, the potential has an infinite set of degenerate minima satisfying

φ†φ = 1
2 (φ2

1 + φ
2
2 + φ

2
3 + φ

2
4) =

v

2

2
= −µ

2

2λ
.

After symmetry breaking, the neutral photon is required to remain massless, and
therefore the minimum of the potential must correspond to a non-zero vacuum
expectation value only of the neutral scalar field φ0,
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⟨0|φ|0⟩ = 1√
2

(
0
v

)
.

The fields then can be expanded about this minimum by writing

φ(x) = 1√
2

(
φ1(x) + iφ2(x)
v + η(x) + iφ4(x)

)
.

After the spontaneous breaking of the symmetry, there will be a massive scalar
and three massless Goldstone bosons, which will ultimately give the longitudinal
degrees of freedom of the W± and Z bosons. Rather than repeating the derivation
given in Section 17.5.3 and “gauging-away” the Goldstone fields, here the Higgs
doublet is immediately written in the unitary gauge,

φ(x) = 1√
2

(
0

v + h(x)

)
.

The resulting Lagrangian is known as the Salam–Weinberg model. All that remains
is to identify the masses of gauge bosons and the interaction terms.

The mass terms can be identified by writing the Lagrangian of (17.36) such that
it respects the SU(2)L × U(1)Y local gauge symmetry of the electroweak model
by replacing the derivatives with the appropriate covariant derivatives (discussed
further in Appendix F),

∂µ → Dµ = ∂µ + igWT ·Wµ + ig′
Y
2

Bµ, (17.37)

where T = 1
2σ are the three generators of the SU(2) symmetry. In Chapter 15, the

weak hypercharge of the Glashow–Salam–Weinberg (GSW) model was identified
as Y = 2

(
Q − I(3)

W

)
. Here, the lower component of the Higgs doublet is neutral and

has I(3)
W = − 1

2 , and thus the Higgs doublet has hypercharge Y = 1. Hence, the effect
of the covariant derivative of (17.37) acting on the Higgs doublet φ is

Dµφ = 1
2

[
2∂µ +

(
igWσ ·Wµ + ig′Bµ

)]
φ,

where Dµ is a 2 × 2 matrix acting on the two component weak isospin doublet and
the identity matrix multiplying the ∂µ and Bµ terms is implicit in this expression.

The term in the Lagrangian that generates the masses of the gauge bosons is
(Dµφ)†(D µφ). In the Unitary gauge Dµφ is given by

Dµφ = 1
2
√

2

⎛
⎜⎜⎜⎜⎝

2∂µ + igWW(3)
µ + ig′Bµ igW[W(1)

µ − iW(2)
µ ]

igW[W(1)
µ + iW(2)

µ ] 2∂µ − igWW(3)
µ + ig′Bµ

⎞
⎟⎟⎟⎟⎠
(

0
v + h

)

= 1
2
√

2

⎛
⎜⎜⎜⎜⎝

igW(W(1)
µ − iW(2)

µ )(v + h)
(2∂µ − igWW(3)

µ + ig′Bµ)(v + h)

⎞
⎟⎟⎟⎟⎠ .



481 17.5 The Higgs mechanism

Taking the Hermitian conjugate gives (Dµφ)†, from which

(Dµφ)†(D µφ) = 1
2 (∂µh)(∂ µh) + 1

8g
2
W(W(1)

µ + iW(2)
µ )(W(1)µ − iW(2)µ)(v + h)2

+ 1
8 (gWW(3)

µ − g′Bµ)(gWW(3)µ − g′Bµ)(v + h)2. (17.38)

The gauge bosons masses are determined by the terms in (Dµφ)†(D µφ) that are
quadratic in the gauge boson fields, i.e.

1
8v

2g2
W

(
W(1)
µ W(1)µ +W(2)

µ W(2)µ
)
+ 1

8v
2
(
gWW(3)

µ − g′Bµ
) (
gWW(3)µ − g′Bµ

)
.

In the Lagrangian, the mass terms for the W(1) and W(2) spin-1 fields will appear as

1
2 m2

WW(1)
µ W(1)µ and 1

2 m2
WW(2)

µ W(2)µ,

and therefore the mass of the W boson is

mW =
1
2gWv. (17.39)

The mass of the W boson is therefore determined by the coupling constant of the
SU(2)L gauge interaction gW and the vacuum expectation value of the Higgs field.

The terms in the Lagrangian of (17.38) which are quadratic in the neutral W(3)

and B fields can be written as

v2

8

(
gWW(3)

µ −g′Bµ
) (
gWW(3)µ−g′Bµ

)
= v

2

8

(
W(3)
µ Bµ

) ( g2
W −gWg′

−gWg′ g′2

) (
W(3)µ

Bµ

)

= v
2

8

(
W(3)
µ Bµ

)
M

(
W(3)µ

Bµ

)
, (17.40)

where M is the non-diagonal mass matrix. The off-diagonal elements of M couple
together the W(3) and B fields, allowing them to mix. Again this is reminiscent of
the non-diagonal mass matrix encountered in the discussion of the neutral kaon sys-
tem (see Section 14.4.3). The physical boson fields, which propagate as indepen-
dent eigenstates of the free particle Hamiltonian, correspond to the basis in which
the mass matrix is diagonal. The masses of the physical gauge bosons are given by
the eigenvalues of M, obtained from characteristic equation det (M − λI) = 0,

(g2
W − λ)(g′2 − λ) − g2

Wg
′2 = 0,

giving

λ = 0 or λ = g2
W + g

′2. (17.41)

Hence, in the diagonal basis the mass matrix of (17.40) is

1
8
v2

(
Aµ Zµ

) ( 0 0
0 g2

W + g
′2

) (
Aµ

Zµ

)
,
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where the Aµ and Zµ are the physical fields corresponding to the eigenvectors of
M. In the diagonal basis, the term in the Lagrangian representing the masses of the
A and Z will be

1
2

(
Aµ Zµ

) ( m2
A 0

0 m2
Z

) (
Aµ

Zµ

)
,

from which the masses of the physical gauge bosons can be identified as

mA = 0 and mZ =
1
2v

√
g2

W + g
′2. (17.42)

Hence, in the physical basis there is a massless neutral gauge boson A which can be
identified as the photon and a massive neutral gauge boson which can be identified
as the Z. The physical fields, which correspond to the normalised eigenvectors of
the mass matrix, are

Aµ =
g′W(3)

µ + gWBµ
√
g2

W + g
′2

with mA = 0, (17.43)

Zµ =
gWW(3)

µ − g′Bµ√
g2

W + g
′2

with mZ =
1
2v

√
g2

W + g
′2. (17.44)

Thus, the physical fields are mixtures of the massless bosons associated with the
U(1)Y and SU(2)L local gauge symmetries. The combination corresponding to the
Z boson, which is associated with the neutral Goldstone boson of the broken sym-
metry, has acquired mass through the Higgs mechanism and the field corresponding
to the photon has remained massless. By writing the ratio of the couplings of the
U(1)Y and SU(2)L gauge symmetries as

g′

gW
= tan θW, (17.45)

the relationship between the physical fields and underlying fields of (17.43) and
(17.44) can be written as

Aµ = cos θWBµ + sin θWW(3)
µ ,

Zµ = − sin θWBµ + cos θWW(3)
µ ,

which are exactly the relations that were asserted in Section 15.3. Furthermore, by
using (17.45), the mass of Z boson in (17.42) can be expressed as

mZ =
1
2
gW

cos θW
v.
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Therefore, when combined with the corresponding expression for the W-boson
mass given in (17.39), the Glashow–Salam–Weinberg model predicts

mW

mZ
= cos θW.

The experimental verification of this relation, described in Chapter 16, provides a
compelling argument for the reality of the Higgs mechanism.

The GSW model is described by just four parameters, the SU(2)L×U(1)Y gauge
couplings gW and g′, and the two free parameters of the Higgs potential µ and λ,
which are related to the vacuum expectation value of the Higgs field v and the mass
of the Higgs boson mH by

v2 =
−µ2

λ
and m2

H = 2λv2.

By using the relation mW =
1
2gWv and the measured values for mW and gW, the

vacuum expectation value of the Higgs field is found to be

v = 246 GeV.

The parameter λ in the Higgs potential can be obtained from the mass of the Higgs
boson as measured at the LHC (see Section 17.7).

Couplings to the gauge bosons
In the (Dµφ)†(D µφ) term in the Lagrangian of (17.38), the gauge boson fields
appear in the form of VV(v + h)2, where V = W±,Z. The VVv2 terms determine
the masses of the gauge bosons and the VVh and VVhh terms give rise to triple and
quartic couplings between one or two Higgs bosons and the gauge bosons. From
(15.12), the W+ and W− fields are the linear combinations

W± = 1√
2

(
W(1) ∓ iW(2)

)
.

Hence the second term on the RHS (17.38) can be written in terms of the physical
W+ and W− fields,

1
4g

2
WW−µW+µ(v + h)2 = 1

4g
2
Wv

2W−µW+µ + 1
2g

2
WvW

−
µW+µh + 1

4g
2
WW−µW+µhh.

Here the first term gives the masses to the W+ and W−. The hW+W− and hhW+W−

terms give rise to the triple and quartic couplings of the Higgs boson to the gauge
bosons. The coupling strength at the hW+W− vertex of Figure 17.12 is therefore

gHWW =
1
2g

2
Wv ≡ gWmW.

Hence the coupling of the Higgs boson to the W boson is proportional to the
W-boson mass. Likewise, the coupling of the Higgs boson to the Z boson, gHZZ =

gZmZ, is proportional to mZ.
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!Fig. 17.12 The trilinear couplings of the Higgs boson to the W and Z, where gZ = gW/cosθW.

17.5.5 Fermion masses

The Higgs mechanism for the spontaneous symmetry breaking of the U(1)Y ×
SU(2)L gauge group of the Standard Model generates the masses of the W and
Z bosons. Remarkably, it also can be used to generate the masses of the fermions.
Because of the different transformation properties of left- and right-handed chiral
states, the fermion mass term in the Dirac Lagrangian,

−mψψ = −m
(
ψRψL + ψLψR

)
,

does not respect the SU(2)L × U(1)Y gauge symmetry, and therefore cannot be
present in the Lagrangian of the Standard Model.

In the Standard Model, left-handed chiral fermions are placed in SU(2) dou-
blets, here written L, and right-handed fermions are placed in SU(2) singlets, here
denoted R. Because the two complex scalar fields of the Higgs mechanism are
placed in an SU(2) doublet φ(x), an infinitesimal SU(2) local gauge transformation
has the effect,

φ→ φ′ = (I + igWϵ(x) · T)φ.

Exactly the same local gauge transformation applies to the left-handed doublet of
fermion fields L. Therefore, the effect of the infinitesimal SU(2) gauge transforma-
tion on L ≡ L†γ0 is

L→ L
′
= L(I − igWϵ(x) · T).

Consequently, the combination Lφ is invariant under the SU(2)L gauge transfor-
mations. When combined with a right-handed singlet, LφR, it is invariant under
SU(2)L and U(1)Y gauge transformations; as is its Hermitian conjugate (LφR)† =
Rφ†L. Hence, a term in the Lagrangian of the form −gf(LφR + Rφ†L) satisfies the
SU(2)L × U(1)Y gauge symmetry of the Standard Model. For the SU(2)L doublet
containing the electron, this corresponds to

Le = −ge

[(
νe e

)
L

(
φ+

φ0

)
eR + eR

(
φ+∗ φ0∗ )

(
νe

e

)

L

]
, (17.46)
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!Fig. 17.13 Left: the interaction between a massless chiral electron and the non-zero expectation value of the Higgs field.
Right: the interaction vertex for the coupling of the Higgs boson to an electron.

where ge is a constant known as the Yukawa coupling of the electron to the Higgs
field. After spontaneously symmetry breaking, the Higgs doublet in the unitary
gauge is

φ(x) = 1√
2

(
0

v + h(x)

)
,

and thus (17.46) becomes

Le = − ge√
2
v
(
eLeR + eReL

) − ge√
2
h
(
eLeR + eReL

)
. (17.47)

The first term in (17.47) has exactly the form required for the fermion masses, but
has now been introduced in gauge invariant manner. The Yukawa coupling ge is
not predicted by the Higgs mechanism, but can be chosen to be consistent with the
observed electron mass,

ge =
√

2
me

v
.

In this case, (17.47) becomes

Le = −meee − me

v
eeh. (17.48)

The first term in (17.48), which gives the mass of the electron, represents the
coupling of electron to the Higgs field through its non-zero vacuum expectation
value. The second term in (17.48) gives rise to a coupling between the electron and
the Higgs boson itself. These two terms are illustrated in Figure 17.13, where the
fermion masses arise from the coupling of left-handed and right-handed massless
chiral fermions though the interaction with the non-zero expectation value of the
Higgs field.

Because the non-zero vacuum expectation value occurs in the lower (neutral)
component of the Higgs doublet, the combination of fields LφR + Rφ†L only can
generate the masses for the fermion in the lower component of an SU(2)L doublet.
Thus it can be used to generate the masses of the charged leptons and the down-
type quarks, but not the up-type quarks or the neutrinos. Putting aside the question
of neutrino masses, a mechanism is required to give masses to the up-type quarks.
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This can be achieved by constructing the conjugate doublet φc formed from the
four fields in (17.35),

φc = −iσ2φ
∗ =

(
−φ0∗

φ−

)
= 1√

2

(
−φ3 + iφ4

φ1 − iφ2

)
.

Because of the particular properties of SU(2), see Section 9.5, the conjugate dou-
blet φc transforms in exactly the same way as the doublet φ. This is analogous to the
representation of up- and down-quarks and anti-up and anti-down in SU(2) isospin
symmetry. A gauge invariant mass term for the up-type quarks can be constructed
from LφcR + Rφ†c L, for example

Lu = gu

(
u d

)
L

(
−φ0∗

φ−

)
uR + Hermitian conjugate,

which after symmetry breaking becomes

Lu = − gu√
2
v
(
uLuR + uRuL

) − gu√
2
h
(
uLuR + uRuL

)
,

with the Yukawa coupling gu =
√

2mu/v, giving

Lu = −muuu − mu

v
uuh.

Hence for all Dirac fermions, gauge invariant mass terms can be constructed
from either

L = −gf

[
LφR + (LφR)†

]
or L = gf

[
LφcR + (LφcR)†

]
,

giving rise to both the masses of the fermions and the interactions between the
Higgs boson and the fermion. The Yukawa couplings of the fermions to the Higgs
field are given by

gf =
√

2
mf

v
,

where the vacuum expectation value of the Higgs field is v = 246 GeV. Inter-
estingly, for the top quark with mt ∼ 173.5 ± 1.0 GeV, the Yukawa coupling is
almost exactly unity. Whilst this may be a coincidence, it is perhaps natural that the
Yukawa couplings of the fermions are O(1). If the neutrino masses are also asso-
ciated with the Higgs mechanism, it is perhaps surprising that they are so small,
with Yukawa couplings of # 10−12. This might suggest that the mechanism which
generates the neutrino masses differs from that for other fermions. One interesting
possibility is the seesaw mechanism described in the addendum to this chapter.
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17.6 Properties of the Higgs boson

The Standard Model Higgs boson H is a neutral scalar particle. Its mass is a free
parameter of the Standard Model that is given by mH = 2λv2. The Higgs boson
couples to all fermions with a coupling strength proportional to the fermion mass.
From (17.48), the Feynman rule for the interaction vertex with a fermion of mass
mf can be identified as

−i
mf

v
≡ −i

mf

2mW
gW. (17.49)

The Higgs boson therefore can decay via H → ff for all kinematically allowed
decays modes with mH > 2mf . If it is sufficiently massive, the Higgs boson can
also decay via H → W+W− or H → ZZ. The Feynman diagrams and coupling
strengths for these lowest-order decay modes are shown in Figure 17.14. In each
case, the resulting matrix element is proportional to the mass of the particle cou-
pling to the Higgs boson. The proportionality of the Higgs boson couplings to mass
determines the dominant processes through which it is produced and decays; the
Higgs boson couples preferentially to the most massive particles that are kinemat-
ically accessible.

17.6.1 Higgs decay

In principle, the Higgs boson can decay to all Standard Model particles. However,
because of the proportionality of the coupling to the mass of the particles involved,
the largest branching ratios are to the more massive particles. For a Higgs boson
mass of 125 GeV, the largest branching ratio is to bottom quarks, BR(H → bb) =
57.8%. The corresponding partial decay width Γ(H → bb) can be calculated from
the Feynman rule for the Hbb interaction vertex of (17.49) and the spinors for the
quark and antiquark. Because the Higgs boson is a scalar particle, no polarisation
four-vector is required; it is simply described by a plane wave. Consequently, the
matrix element for the Feynman diagram shown in Figure 17.15 is

H

f

mf
gW

2mW
H

W−

W+

mWgW H

Z

Z

mZ
gW

cosqW

f

!Fig. 17.14 Three lowest-order Feynman diagrams for Higgs decay.
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!Fig. 17.15 The Feynman diagram for h→ bb and the four-momenta of the particles in the Higgs rest frame.

M = mb

v
u(p2)v(p3) =

mb

v
u†γ0v. (17.50)

Without loss of generality, the b-quark momentum can be taken to be in the z-axis.
Because mH ≫ mb, the final-state quarks are highly relativistic and therefore have
four-momenta p2 ≈ (E, 0, 0, E) and p3 ≈ (E, 0, 0,−E), where E = mH/2. In the
ultra-relativistic limit, the spinors for the two possible helicity states for each of the
b-quark (θ = 0, φ = 0) and the b-antiquark (θ = π, φ = π) are

u↑(p2)=
√

E

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
1
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, u↓(p2)=

√
E

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
1
0
−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, v↑(p3)=

√
E

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
−1

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
v↓(p4)=

√
E

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
−1

0
−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

From the u†γ0v form of the matrix element of (17.50), it can be seen immediately
that only two of the four possible helicity combinations give non-zero matrix ele-
ments, these are

M↑↑ = −M↓↓ =
mb

v
2E.

In both cases, the non-zero matrix elements correspond to spin configurations
where the bb are produced in a spin-0 state. Because the Higgs is a spin-0 scalar, it
decays isotropically and matrix element has no angular dependence. Furthermore,
since the Higgs boson exists in a single spin state, the spin-averaged matrix element
squared is simply,

⟨|M|2⟩ = |M↑↑|2 + |M↓↓|2 =
m2

b

v2
8E2 =

2m2
bm2

H

v2
.

The partial decay width, obtained from (3.49), is therefore

Γ(H→ bb) = 3 ×
m2

bmH

8πv2
, (17.51)

where the factor of three accounts for the three possible colours of the bb pair. For
a Higgs boson mass of 125 GeV, the partial decay width Γ(H → bb) is O(2 MeV).
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Table 17.1 The predicted
branching ratios of the Higgs

boson for mH = 125 GeV.

Decay mode Branching ratio

H→ bb 57.8%
H→WW∗ 21.6%
H→ τ+τ− 6.4%
H→ gg 8.6%
H→ cc 2.9%
H→ ZZ∗ 2.7%
H→ γγ 0.2%

t

t

tH

g

g
t

t

tH

W

W
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γ

γγ

γ

!Fig. 17.16 The Feynman diagrams for the decays H→ gg and H→ γγ.

From (17.51), it can be seen that the partial decay rate to fermions is proportional
to the square of the fermion mass, and therefore

Γ(H→ bb) : Γ(H→ cc) : Γ(H→ τ+τ−) ∼ 3m2
b : 3m2

c : m2
τ . (17.52)

It should be noted that quark masses run with q2 in a similar manner to the running
of αS. Hence the masses appearing in (17.51) are the appropriate values at q2 = m2

H,
where the charm and bottom quark masses are approximately mc(m2

H) ≈ 0.6 GeV
and mb(m2

H) ≈ 3.0 GeV.
The branching ratios for a Standard Model Higgs boson with mH = 125 GeV are

listed in Table 17.1. Despite the fact that mH < 2mW, the second largest branching
ratio is for the decay H→WW∗, where the star indicates that one of the W bosons
is produced off-mass-shell with q2 < m2

W. From the form of the W-boson propa-
gator of (16.27), the presence of the off-shell W boson will tend to suppress the
matrix element. Nevertheless, the large coupling of the Higgs boson to the mas-
sive W boson, gWmW, means that the branching ratio is relatively large. The Higgs
boson also can decay to massless particles, H→ gg and H→ γγ, through loops of
virtual top quarks and W bosons, as shown in Figure 17.16. Because the masses of
the particles in these loops are large, these decays can compete with the decays to
fermions and the off-mass-shell gauge bosons.
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17.7 The discovery of the Higgs boson

Prior to the turn-on of the Large Hadron Collider at CERN, the window for a Stan-
dard Model Higgs was relatively narrow. The absence of a signal from the direct
searches at LEP implied that mH > 114 GeV. At the same time, the limits on the
size of the quantum loop corrections from the precision electroweak measurements
at LEP and the Tevatron suggested that mH # 150 GeV and that mH was unlikely
to be greater than 200 GeV.

One of the main aims of the LHC was the discovery of the Higgs boson (assum-
ing it existed). The LHC is not only the highest-energy particle collider ever built,
it is also the highest-luminosity proton–proton collider to date. During 2010–2011
it operated at a centre-of-mass energy of 7 TeV and during 2012 at 8 TeV. Com-
pelling evidence of the discovery of a new particle compatible with the Standard
Model Higgs boson was published by the ATLAS and CMS experiments in the
Summer of 2012.

The Higgs boson can be produced at the LHC through a number of different pro-
cesses, two of which are shown in Figure 17.17. Because the Higgs boson couples
preferentially to mass, the largest cross section at the LHC is through gluon–gluon
fusion via a loop of virtual top quarks. The cross section for this process can be
written in terms of the underlying cross section for gg→ H and the gluon PDFs,

σ(pp→ hX) ∼
∫ 1

0

∫ 1

0
g(x1)g(x2)σ(gg→ H) dx1dx2.

Consequently, the detailed knowledge of the PDFs for the proton is an essential
component in the calculation of the expected Higgs boson production rate at the
LHC. Fortunately, the proton PDFs are well known and the related uncertainties
on the various Higgs production cross sections are less than 10%. Although the
gluon–gluon fusion process has the largest cross section, from the experimental
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!Fig. 17.17 Two of the most important Feynman diagram for Higgs boson production in pp collisions at the LHC. The
gluon–gluon fusion process has a significantly higher cross section.
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!Fig. 17.18 Left: a candidate H → γγ event in the CMS detector. Right: a candidate H → ZZ∗ → e+e−e+e− in the
ATLAS detector. Reproduced with kind permission from the ATLAS and CMS collaborations, © 2012 CERN.

perspective the vector boson fusion process (shown in Figure 17.17) is also impor-
tant. This is because it results in more easily identifiable final states consisting of
just the decay products of the Higgs boson and two forward jets from the break-up
of the colliding protons. In contrast, the gluon–gluon fusion process is accompa-
nied by QCD radiation from the colour field, making the identification of the Higgs
boson final states less easy.

In proton–proton collisions at a centre-of-mass energy of ∼ 8 TeV, the total pro-
duction cross section for a Higgs boson with mH = 125 GeV is approximately
20 pb. The first observations of the Higgs boson were based on approximately
20 fb−1 of data (ATLAS and CMS combined). This data sample corresponded to
a total of approximately N = σL = 400 000 produced Higgs bosons. Whilst this
number might seem large, it is a tiny fraction of the total number of interactions
recorded at the LHC, most of which involve the QCD production of multi-jet final
states. Consequently, it is difficult to distinguish the decays of the Higgs boson
producing final states with jets from the large QCD background. For this reason,
the most sensitive searches for the Higgs boson at the LHC are in decay channels
with distinctive final-state topologies, such as H → γγ, H → ZZ∗ → ℓ+ℓ−ℓ′+ℓ′−

(where ℓ = e or µ) and H→WW∗ → eνeµνµ. Despite the relatively low branching
ratios for these decay modes, the experimental signatures are sufficiently clear for
them to be distinguished from the backgrounds from other processes. For exam-
ple, Figure 17.18 shows a candidate H → γγ event in the CMS detector (left-hand
plot). The dashed lines point to the two large energy deposits in the electromagnetic
calorimeter from two high-energy photons, which are easily identifiable. Similarly,
the right-hand plot of Figure 17.18 shows a candidate H→ ZZ∗ → e+e−e+e− event
in the ATLAS detector. Here the four charged-particle tracks, pointing to four large



492 The Higgs boson

energy deposits in the electromagnetic calorimeter, are clearly identifiable as high-
energy electrons.

17.7.1 Results

The ATLAS and CMS experiments searched for the Higgs boson in several final
states, γγ, ZZ∗, WW∗, τ+τ− and bb. In both experiments, the most significant evi-
dence for the Higgs boson was observed in the two most sensitive decay channels,
H → γγ and H → ZZ∗ → 4ℓ. In both these decay channels, the mass of the
Higgs boson candidate can be reconstructed on an event-by-event basis from the
invariant mass of its decay products. The left-hand plot of Figure 17.19 shows
the distribution of the reconstructed invariant mass of the two photons in candi-
date H → γγ events in the ATLAS detector. In this plot, each observed event is
entered into the histogram with a weight of between zero and one, reflecting the
estimated probability of it being compatible with the kinematics of Higgs pro-
duction and decay. Compared to the expected background, an excess of events is
observed at mγγ ≈ 126 GeV. The CMS experiment observed a similar excess. The
right-hand plot of Figure 17.19 shows the distribution of the invariant masses of
the four charged leptons in the CMS H → ZZ∗ → 4ℓ search. The peak at 91 GeV
is from Z-boson production. The peak at about 125 GeV can be attributed to the
Higgs boson. Whilst the numbers of events are relatively small, the expected back-
ground in this region is also small. The ATLAS experiment observed a comparable
excess of H→ ZZ∗ → 4ℓ candidates at the same mass.
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m4ℓ /GeV!Fig. 17.19 Left: the reconstructed invariant mass distribution of the two photons from candidate H → γγ decays in
the ATLAS experiment, adapted from Aad et al. (2012). Right: the distribution of the reconstructed invari-
ant masses of the four leptons in candidate H → ZZ∗ → 4ℓ events in the CMS experiment, adapted from
Chatrchyan et al. (2012). In both plots the solid line shows the expected distribution from background and the
observed Higgs signal and the dashed line indicates the expectation from background events alone.
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The combined results of the ATLAS and CMS experiments provided statisti-
cally compelling evidence for the discovery of a new particle compatible with the
expected properties of the Higgs boson. Until it has been demonstrated that the
observed particle is a scalar, it is not possible to say conclusively that the Higgs
boson has been discovered. However, even at the time of writing, it seems almost
certain that the Higgs boson has been discovered; its production cross section is
consistent with the Standard Model expectation and its mass is compatible with the
indirect determinations from its presence in quantum loop corrections, as inferred
from the precision electroweak measurements. Consistent measurements of the
mass of the new particle were obtained by the ATLAS (m = 126.0 ± 0.6 GeV)
and the CMS (m = 125.3 ± 0.6 GeV) experiments. On the reasonable assumption
that the new particle is the Higgs boson, it can be concluded that

mH ≃ 125.7 ± 0.5 GeV.

Since the discovery of the W and Z bosons in the mid 1980s, the search for the
Higgs boson has been the highest priority in particle physics. Its discovery finally
completed the particle spectrum of the Standard Model.

17.7.2 Outlook

The discovery of the Higgs boson is not the end of the story. The use of a sin-
gle Higgs doublet in the Standard Model is the most economical choice, but it is
not the only possibility. In supersymmetry (see Section 18.2.2), which is a popu-
lar extension to the Standard Model, there are (at least) two complex doublets of
scalar fields, which give rise to five physical Higgs bosons. Furthermore, it is not
clear whether the observed Higgs boson is a fundamental scalar particle or whether
it might be composite. In the coming years, the measurements of the spin and
branching ratios of the Higgs boson will further test the predictions of the Standard
Model. Perhaps more importantly, a detailed understanding of all the properties of
the Higgs boson may well open up completely new avenues in our understanding
of the Universe and point to what lies beyond the Standard Model.

Summary

The Higgs mechanism is an essential part of the Standard Model. It is based on a
doublet of complex scalar fields with the Higgs potential V(φ) = µ2(φ†φ)+λ(φ†φ)2

where µ2 < 0. As a result, the vacuum state of the Universe is degenerate. The spon-
taneous breaking of this symmetry, when combined with the underlying SU(2)L ×
U(1)Y gauge symmetry of the electroweak model, provides masses to the W and Z
gauge bosons with
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mW = mZ cos θW =
1
2gW v,

where v is the vacuum expectation value of the Higgs field. The value of

v = 246 GeV,

sets the mass scale for the electroweak and Higgs bosons. The interaction between
the fermion fields and the non-zero expectation value of the Higgs field, provides
a gauge-invariant mechanism for generating the masses of the Standard Model
fermions.

In 2012, the discovery of the Higgs boson at the LHC with mass

mH ≃ 126 GeV,

completed the spectrum of Standard Model particles. Following the discovery of
the Higgs boson, it is hoped that the studies of its properties will provide clues to
physics beyond the Standard Model, which is the main topic of the final chapter of
this book.

17.8 *Addendum: Neutrino masses

The right-handed chiral neutrino states νR do not participate in any of the interac-
tions of the Standard Model; they do not couple to the gluons or electroweak gauge
bosons. Consequently, there is no direct evidence that they exist. However, from
the studies of neutrino oscillations it is known that neutrinos do have mass, and
therefore there must be a corresponding mass term in the Lagrangian. In the Stan-
dard Model, neutrino masses can be introduced in exactly the same way as for the
up-type quarks using the conjugate Higgs doublet. In this case, after spontaneous
symmetry breaking, the gauge invariant Dirac mass term for the neutrino is

LD = −mD (νRνL + νLνR).

If this is the origin of neutrino masses, then right-handed chiral neutrinos exist.
However, the neutrino masses are very much smaller than the masses of the other
fermions, suggesting that another mechanism for generating neutrino mass might
be present.

Because the right-handed neutrinos and left-handed antineutrinos transform as
singlets under the Standard Model gauge transformations, any additional terms in
the Lagrangian formed from these fields alone can be added to the Lagrangian
without breaking the gauge invariance of the Standard Model. The left-handed
antineutrinos appear in the Lagrangian as the CP conjugate fields defined by
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ψc = ĈP̂ψ = iγ2γ0ψ∗,

where the CP conjugate field for the right-handed neutrino, written νc
R, corresponds

to a left-handed antineutrino. Therefore the Majorana mass term

LM = − 1
2 M (νc

RνR + νRν
c
R),

which is formed from right-handed neutrino fields and left-handed antineutrino
fields, respects the local gauge invariance of the Standard Model. Consequently, it
can be added to the Standard Model Lagrangian. However, there is a price to pay;
the Majorana mass term provides a direct coupling between between a particle and
an antiparticle. For example, the corresponding Majorana mass term for the elec-
tron would allow e+ ↔ e− transitions, violating charge conservation. This problem
does not exist for the neutrinos. Furthermore, because neutrinos are neutral, it is
possible that they are their own antiparticles, in which case they are referred to as
Majorana neutrinos as opposed to Dirac neutrinos.

17.8.1 The seesaw mechanism

The most general renormalisable Lagrangian for the neutrino masses includes both
the Dirac and Majorana mass terms, indicated in Figure 17.20. Because νLνR is
equivalent to νc

Rν
c
L, the Dirac mass term can be written

LD = − 1
2 mD (νLνR + ν

c
Rν

c
L) + h.c.,

where h.c. stands for the corresponding Hermitian conjugate. This term admits the
possibility that neutrino masses arise from the spontaneous symmetry breaking of
the Higgs mechanism. If in addition, the automatically gauge-invariant Majorana
mass term is added by hand, the Lagrangian for the combined Dirac and Majorana
masses is

LDM = − 1
2

[
mD νLνR + mD ν

c
Rν

c
L + M νc

RνR

]
+ h.c.

or, equivalently,

LDM = − 1
2

(
νL νc

R

) ( 0 mD

mD M

) (
νc

L
νR

)
+ h.c. (17.53)

νL

νR νL

νR
mD

M

!Fig. 17.20 The Dirac and Majorana neutrino mass terms.
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The physical states of this system can be obtained from the basis in which the mass
matrix is diagonal, analogous to the procedure for identifying the physical states of
the neutral kaon system and the neutral gauge bosons of the U(1)Y × SU(2)L gauge
symmetry. Hence, with the Lagrangian including Dirac and Majorana mass terms,
the masses of the physical neutrino states are the eigenvalues of mass matrix M
in (17.53). These can be found from the characteristic equation det (M − λI) = 0,
which implies λ2 −Mλ−m2

D = 0. Hence, in this model, the masses of the physical
neutrinos would be

m± = λ± =
M ±

√
M2 + 4m2

D

2
=

M ± M
√

1 + 4m2
D/M

2

2
.

If the Majorana mass M is taken to be much greater than the Dirac mass mD, then

m± ≈ 1
2 M ± 1

2

⎛
⎜⎜⎜⎜⎝M +

2m2
D

M

⎞
⎟⎟⎟⎟⎠ , (17.54)

giving a light neutrino state2 (ν) and heavy neutrino state (N) with masses

|mν| ≈
m2

D

M
and mN ≈ M.

In the seesaw mechanism, it is hypothesised that the Dirac mass terms for the
neutrinos are of a similar size to the masses of the other fermions, i.e. O(1 GeV).
The Majorana mass M is then made sufficiently large that the lighter of the two
physical neutrino states has a mass mν ∼ 0.01 eV. In this way, the masses of the
lighter neutrino states can be made to be very small, even when the Dirac mass
term is of the same order of magnitude as the other fermions. For this to work, the
Majorana mass must be very large, M ∼ 1011 GeV.

If a Majorana mass term exists, the seesaw mechanism predicts that for each
of the three neutrino generations, there is a very light neutrino with a mass much
smaller than the other Standard Model fermions and a very massive neutrino state
mN ≈ M. The physical neutrino states, which are obtained from the eigenvalues of
the mass matrix, are

ν = cos θ(νL + ν
c
L) − sin θ(νR + ν

c
R) and N = cos θ(νR + ν

c
R) + sin θ(νL + ν

c
L),

where tan θ ≈ mD/M. Since the left-handed chiral components of the light neutrino
are multiplied by cos θ, the effect of introducing the Majorana mass term is to
reduce the weak charged-current couplings of the light neutrino states by a factor
cos θ. However, for M ≫ mD, the neutrino states are

ν ≈ (νL + ν
c
L) − mD

M
(νR + ν

c
R) and N ≈ (νR + ν

c
R) +

mD

M
(νL + ν

c
L),

2 The minus sign for the mass of the light neutrino in (17.54) can be absorbed in to the definition of
the fields.
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and the couplings of the light neutrinos to the weak charged-current are essentially
the same as those of the Standard Model. Since the massive neutrino state is almost
entirely right-handed, it would not participate in the weak charged- or neutral-
currents.

The seesaw mechanism provides an interesting hypothesis for the smallness of
neutrino masses, but it is just a hypothesis. It would be placed on firmer ground
if neutrinos were shown to be Majorana particles. One experimental consequence
of neutrinos being Majorana particles would be the possibility of observing the
phenomenon of neutrinoless double β-decay, which is discussed in the following
chapter.

Problems

17.1 By considering the form of the polarisation four-vector for a longitudinally polarised massive gauge bosons,
explain why the t-channel neutrino-exchange diagram for e+e− → W+W−, when taken in isolation, is badly
behaved at high centre-of-mass energies.

17.2 The Lagrangian for the Dirac equation is

L = iψγµ∂ µψ − mψψ,

Treating the eight fieldsψi andψi as independent, show that the Euler-Lagrange equation for the component
ψi leads to

i∂µψγ µ + mψ = 0.

17.3 Verify that the Lagrangian for the free electromagnetic field,

L = − 1
4 FµνFµν,

is invariant under the gauge transformation Aµ → A′µ = Aµ − ∂µχ.

17.4 The Lagrangian for the electromagnetic field in the presence of a current j µ is

L = − 1
4 FµνFµν − j µAµ.

By writing this as

L = − 1
4 (∂ µAν − ∂νAµ)(∂µAν − ∂νAµ) − j µAµ

= − 1
2 (∂ µAν)(∂µAν) + 1

2 (∂νAµ)(∂µAν) − j µAµ,

show that the Euler–Lagrange equation gives the covariant form of Maxwell’s equations,

∂µFµν = jν.

17.5 Explain why the Higgs potential can contain terms with only even powers of the fieldφ.

17.6 Verify that substituting (17.30) into (17.29) leads to

L = 1
2 (∂ µη)(∂µη) − λv2η2 + 1

2 (∂ µξ)(∂µξ),− 1
4 FµνFµν + 1

2 g2v2BµBµ − Vint + gvBµ(∂ µξ).
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17.7 Show that the Lagrangian for a complex scalar fieldφ,

L = (Dµφ)∗(Dµφ),

with the covariant derivative Dµ = ∂µ + igBµ, is invariant under local U(1) gauge transformations,

φ(x)→ φ′(x) = eigχ(x)φ(x),

provided the gauge field transforms as

Bµ → B′µ = Bµ − ∂µχ(x).

17.8 From the mass matrix of (17.40) and its eigenvalues (17.41), show that the eigenstates in the diagonal
basis are

Aµ =
g′W(3)
µ + gBµ

√
g2 + g′Bµ

and Zµ =
gW(3)
µ − g′Bµ

√
g2 + g′Bµ

,

where Aµ and Zµ correspond to the physical fields for the photon and Z.

17.9 By considering the interaction terms in (17.38), show that the HZZ coupling is given by

gHZZ =
gW

cos θW
mZ.

17.10 For a Higgs boson with mH > 2mW, the dominant decay mode is into two on-shell W bosons, H → W+W−.
The matrix element for this decay can be written

M = −gWmWgµνϵ µ(p2)∗ϵν(p3)∗,

where p2 and p3 are respectively the four-momenta of the W+ and W−.

(a) Taking p2 to lie in the positive z-direction, consider the nine possible polarisation states of the W+W−
and show that the matrix element is non-zero only when both W bosons are left-handed (M↓↓), both W
bosons are right-handed (M↑↑), or both are longitudinally polarised (MLL).

(b) Show that

M↑↑ =M↓↓ = −gWmW and MLL =
gW

mW

(
1
2 m2

H − m2
W

)
.

(c) Hence show that

Γ(H→ W+W−) =
GFm3

H

8π
√

2

√
1 − 4λ2

(
1 − 4λ2 + 12λ4

)
,

whereλ = mW/mH.

17.11 Assuming a total Higgs production cross section of 20 pb and an integrated luminosity of 10 fb−1, how many
H→ γγ and H→ µ+µ−µ+µ− events are expected in each of the ATLAS and CMS experiments.

17.12 Draw the lowest-order Feynman diagrams for the processes e+e− → HZ and e+e− → Hνeνe, which are the
main Higgs production mechanism at a future high-energy linear collider.

17.13 In the future, it might be possible to construct a muon collider where the Higgs boson can be produced directly
through µ+µ− → H. Compare the cross sections for e+e− → H→ bb, µ+µ− → H→ bb and µ+µ− →
γ→ bb at

√
s = mH.



18 The Standard Model and beyond

The success of the Standard Model of particle physics in describing the wide
range of precise experimental measurements is a remarkable achievement.
However, the Standard Model is just a model and there are many unanswered
questions. This short concluding chapter provides a broad overview of the cur-
rent state of our understanding of particle physics and describes some of the
more important open issues.

18.1 The Standard Model

The ultimate theory of particle physics might consist of a (simple) equation with
relatively few free parameters, from which everything else followed. Whilst the
Standard Model (SM) is undoubtedly one of the great triumphs of modern physics,
it is not this ultimate theory. It is a model constructed from a number of beauti-
ful and profound theoretical ideas put together in a somewhat ad hoc fashion in
order to reproduce the experimental data. The essential ingredients of the Standard
Model, indicated in Figure 18.1, are: the Dirac equation of relativistic quantum
mechanics that describes the dynamics of the fermions; Quantum Field Theory that
provides a fundamental description of the particles and their interactions; the local
gauge principle that determines the exact nature of these interactions; the Higgs
mechanism of electroweak symmetry breaking that generates particle masses; and
the wide-reaching body of experimental results that guide the way in which the
Standard Model is constructed. The recent precision tests of the Standard Model
and the discovery of the Higgs boson have firmly established the validity of the
Standard Model at energies up to the electroweak scale. Despite this success, there
are many unanswered questions.

18.1.1 The parameters of the Standard Model

If neutrinos are normal Dirac fermions, the Standard Model of particle physics has
25 (or 26) free parameters that have to be input by hand. These are: the masses of
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Standard Model

Dirac equation

Quantum Field Theory

Gauge principle

Higgs mechanism

Experimental data

Experimental tests!Fig. 18.1 The theoretical and experimental pillars of the Standard Model.

the twelve fermions (or perhaps more correctly the twelve Yukawa couplings to the
Higgs field),

mν1 , mν2 , mν3 , me, mµ, mτ, md, ms, mb, mu, mc and mt ;

the three coupling constants describing the strengths of the gauge interactions,

α, GF and αS ,

or equivalently g′, gW and gS ; the two parameters describing the Higgs potential,
µ and λ, or equivalently its vacuum expectation value and the mass of the Higgs
boson,

v and mH ;

and the eight mixing angles of the PMNS and CKM matrices, which can be param-
eterised by

θ12, θ13, θ23, δ, and λ, A, ρ, η.

In principle, there is one further parameter in the Standard Model; the Lagrangian
of QCD can contain a phase that would lead to CP violation in the strong interac-
tion. Experimentally, this strong CP phase is known to be extremely small,

θCP ≃ 0.

and is usually taken to be zero. If θCP is counted, then the Standard Model has 26
free parameters.

The relatively large number of free parameters is symptomatic of the Standard
Model being just that; a model where the parameters are chosen to match the obser-
vations, rather than coming from a higher theoretical principle. Putting aside θCP,
of the 25 SM parameters, 14 are associated with the Higgs field, eight with the
flavour sector and only three with the gauge interactions. Within each of these
three broad areas, patterns emerge between the different parameters, suggesting the
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!Fig. 18.2 The fermion masses shown by generation. The neutrino masses are displayed as approximate ranges of values
assuming the normal hierarchy (m1 < m2 < m3) and using the approximate upper limits on the sum of
neutrino masses from cosmological constraints.

presence of some, as yet unknown, symmetry principle. For example, Figure 18.2
shows the observed masses of the fermions. With the exception of the neutrinos,
the masses within a single generation are similar, and it is unlikely that this happens
by chance. Likewise, the coupling constants of the three gauge interactions are of a
similar order of magnitude, hinting that they might be different low-energy mani-
festations of a Grand Unified Theory (GUT) of the forces. These patterns provide
hints for, as yet unknown, physics beyond the Standard Model.

18.2 Open questions in particle physics

The Standard Model is not the final theory of particle physics. However, there are
many possibilities for the nature of physics beyond the Standard Model, for exam-
ple, supersymmetry, large-scale extra dimensions, and ultimately perhaps even
string theory. Here it is possible to give only a brief overview of a handful of the
outstanding issues with the Standard Model and the possible solutions. The chosen
topics focus on active areas of current experimental research.

18.2.1 What is dark matter?

The existence of dark matter in the Universe provides compelling evidence for
physics beyond the Standard Model. Since the mid 1930s, it has been known that
a significant fraction of the mass in the Universe is not bound up in the luminous
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stars that once were thought to comprise most of the mass of the galaxies. The most
direct evidence for dark matter comes from the velocity distributions of stars as
they orbit the galactic centre. In a spiral galaxy like the Milky Way, the majority of
the luminous mass is located in the central bulge. Outside this central region, the
tangental velocity of a star of mass m should be given by the usual equation for
centripetal acceleration in a gravitational field

mv2

r
≈ Gm

r2 M(r),

where M(r) is the total mass within a radius r. Assuming that most of this mass
is concentrated in the central bulge, the tangental velocities of the stars should
decrease as r−1/2. This is not consistent with the observed velocity distributions,
which decrease only slowly with radius, implying that the distribution of mass
in the galaxy is approximately M(r) ∝ r. From this observation alone, it can be
concluded that the mass of a galaxy has a significant non-luminous component,
known as dark matter.

Further compelling evidence for the existence of dark matter is provided by
a number of cosmological and astrophysical measurements related to the large-
scale structure in the Universe and, in particular, the precision measurements of the
small fluctuations in the cosmic microwave background (CMB) from the Cosmic
Microwave Background Explorer (COBE) and Wilkinson Microwave Anisotropy
Probe (WMAP) satellites. These and other observations have provided a firm exper-
imental basis for the ΛCDM cosmological model, which is the standard model of
cosmology. In the ΛCDM model, the total energy-matter densityΩ of the Universe
is consistent with the flat geometry of space-time predicted by inflationary models,
with Ω = 1. Within the ΛCDM model, only 5% of energy–matter density of the
Universe is in the form of normal baryonic matter, ΩB ≃ 0.05. A further 23% is in
the form of cold dark matter (CDM), ΩC ≃ 0.23, and the majority of the energy–
matter density of the Universe is in the form of dark energy, ΩΛ ≃ 0.72. In the
ΛCDM model, the dark energy is attributed to a non-zero cosmological constant
of Einstein’s equations of general relativity, Λ ! 0, which tends to accelerate the
expansion of the Universe.

It is a remarkable fact that our understanding of cosmology has reached the
level of precision and sophistication where it now provides constraints on parti-
cle physics. Whilst the existence of dark energy does not (yet) impact our under-
standing of particle physics, the cosmological constraints on dark matter are highly
relevant. The particle content of the Universe affects the way in which large-scale
structure arises. Because lighter particles, such as neutrinos, remain relativistic
throughout the expansion and cooling of the Universe, they affect the evolution of
large-scale structure differently than massive particles, which become non-
relativistic during the first few years after the Big Bang. On this basis, it is known
that the majority of the energy–mass density associated with the non-baryonic
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dark matter is due to cold (non-relativistic) matter as opposed to hot (relativistic)
particles. The cosmological measurements are sufficiently precise to constrain the
sum of the neutrino masses to be approximately

3∑

i=1

mνi # 1 eV.

The current experimental evidence indicates that only a small fraction of the
cold dark matter is in the form of normal baryons, for example in low-mass brown
dwarf stars. The success of the ΛCDM standard model of cosmology, therefore
strongly suggests that a significant fraction of the cold dark matter in the Universe
may be in the form of a new type of weakly interacting massive particle (WIMP),
with a mass in the few GeV−TeV range. Such particles arise naturally in extensions
to the Standard Model; for example, in many supersymmetric models the lightest
supersymmetric particle is the stable weakly interacting neutralino χ̃0

1. Regardless
of the precise nature of the dark matter, the direct detection of WIMPs is one of the
main goals in particle physics at this time. WIMPs can either be observed through
their production at the LHC or through the direct detection of the WIMPs that are
believed to pervade our galaxy.

Direct detection of dark matter
The direct detection of the galactic WIMP halo (assuming it exists) is extremely
challenging. The WIMPs are predicted to have a Maxwell–Boltzmann velocity
distribution with a root-mean-square (rms) velocity in the range 200–250 km s−1,
which corresponds to a mean kinetic energy of approximately ⟨Tχ⟩ ≈ 3 × 10−7mχ,
where mχ is the mass of the WIMP in GeV. WIMPs would interact with normal
matter through the elastic scattering with nuclei, χ+A→ χ+A. Dark matter exper-
iments attempt to detect the recoil of a nucleus after such a scattering process.
However, the maximum kinetic energy transferred to a nucleus of mass number A
is only

Tmax ≈
4Amχmp

(mχ + Amp)2 Tχ ∼ 1.2 × 10−6
Am2

χmp

(mχ + Amp)2 .

Consequently, for WIMP masses greater than 10 GeV, the recoil energies are typi-
cally in the range of 1 − 10 keV. By the usual standards of particle physics, this is
a very low energy and the possible detection techniques reflect this. There are two
main ways of detecting the nuclear recoil. The ionisation produced by the recoiling
nucleus can be detected from scintillation light in sodium iodide crystals or liquid
noble gas detectors. Alternatively, in cryogenic detectors consisting of very pure
silicon or germanium crystals cooled to low temperatures, WIMPs can be detected



504 The Standard Model and beyond

from the phonons produced by the particle interactions and also from the ionisation
produced by the recoiling nucleus.

From the energy–matter density associated with the CDM, the local number
density of WIMPs is expected to be about n ∼ 0.3 /mχ[GeV] cm−3. This relatively
low number density, combined with the low velocities of the WIMPs and the small-
ness of weak interaction cross sections, means that the expected event rates are very
small; typically just a few events per year in the current 10 kg-scale detectors. Fur-
thermore, because the nuclear recoil energies are so low, backgrounds from natural
radioactivity have to be controlled carefully.

Despite the occasional tantalising hints for a signal, at the time of writing there
has been no confirmed direct detection of dark matter. Nevertheless, for many
favoured scenarios (including supersymmetry), the sensitivities of the current
experiments are only just beginning to reach that required to observe a possible sig-
nal and the results from the experiments in the coming decade are eagerly awaited.

18.2.2 Does supersymmetry exist?

Supersymmetry (SUSY) is a popular extension to the Standard Model. In SUSY
each Standard Model particle has a super-partner “sparticle” which differs by half
a unit of spin. The super-partner of each chiral fermion is a spin-0 scalar (sfermion)
and the super-partners of the spin-1 gauge fields are spin-half gauginos. The part-
ners of the spin-0 Higgs field are a weak isospin doublet of spin-half Higgsinos,
H̃0

1,2 and H̃±. The physical fields in the minimal supersymmetric model are listed
in Table 18.1. The physical chargino and neutralino states are, in general, mix-
tures of the Higgsinos and gauginos. In many supersymmetric models, the lightest
neutralino χ̃0

1 is a weakly interacting stable particle, and is a possible WIMP can-
didate for the dark matter in the Universe.

Table 18.1 The Standard Model particles and their possible super-partners in the
minimal supersymmetric model.

Particle Spin Super-particle Spin
Quark q 1

2 Squark q̃L, q̃R 0
Lepton ℓ± 1

2 Slepton ℓ̃±L , ℓ̃±R 0
Neutrino ν 1

2 Sneutrino ν̃L, ν̃R(?) 0
Gluon g 1 Gluino g̃ 1

2

Photon γ 1 γ̃
⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

Neutralino χ̃0
1, χ̃0

2, χ̃0
3, χ̃0

4
1
2Z boson Z 1 Z̃

Higgs H 0
{ H̃0

1, H̃0
2

H̃± }
Chargino χ̃±1 , χ̃±2

1
2W boson W± 1 W̃±
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Xf!Fig. 18.3 Examples of loop corrections to the Higgs boson self-energy, where X represents a new massive particle.

The possibility of explaining the dark matter in the Universe is not the prime
motivation for supersymmetry. Just as quantum loop corrections contributed to the
W-boson mass (see Section 16.4), quantum loops in the Higgs boson propaga-
tor, such as those indicated in Figure 18.3, contribute to the Higgs boson mass.
This in itself is not a problem. However, if the Standard Model is part of theory
that is valid up to very high mass scales, such as that of a Grand Unified Theory
ΛGUT ∼ 1016 GeV or the Planck scale ΛP ∼ 1019 GeV, these corrections become
very large. Because of these quantum corrections, which are quadratic in Λ, it is
difficult to keep the Higgs mass at the electroweak scale of 102 GeV. This is known
as the Hierarchy problem. It can be solved by fine-tuning the new contributions to
the Higgs mass such that they tend to cancel to a high degree of precision. How-
ever, supersymmetry provides a more natural solution to the Hierarchy problem;
for every loop of particles there is a corresponding loop of sparticles, which pro-
vide a correction with the opposite sign. If the sparticle masses were the same as
the particle masses, this cancellation would be exact. If supersymmetry were an
exact symmetry of nature, the sparticles would have the same masses as the parti-
cles and already would have been discovered. Therefore, if supersymmetry exists,
it is a broken symmetry and the mass scale of the SUSY particles is not known
a priori. Nevertheless, there are theoretical arguments that favour a relatively low
mass scale of O(1 TeV).

The search for the production of SUSY particles is one of the main focuses
of the search for new physics at the LHC. In most SUSY models, sparticles are
predicted to decay into final states including the stable lightest supersymmetric
particle (LSP), which being neutral escapes detection. For example, at the LHC
the signature of squark pair production and subsequent decay, q̃q̃→ qqχ̃0

1χ̃
0
1, is

a pair of high-energy jets and a large component of missing transverse momen-
tum from the unobserved neutralinos. At the time of writing, no evidence of the
direct production of SUSY particles has been observed at the LHC; the ATLAS
and CMS experiments have been able exclude squark and gluino masses below
about 1 TeV. The limits on the slepton and gaugino masses are much weaker,
since these particles are not produced directly in strong interactions. Whilst there
is no current experimental evidence for SUSY, the first operation of the LHC at its
full energy of

√
s∼ 14 TeV will provide discovery potential at significantly higher

mass scales.
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18.2.3 Can the forces be unified?

It has already been noted that the coupling constants of the three forces of the
Standard Model have similar strengths. At the electroweak scale of q2 = m2

Z,

α−1 : α−1
W : α−1

S ≈ 128 : 30 : 9. (18.1)

Furthermore, in Section 10.5 it was shown that the coupling constants of QED and
QCD run with energy according to

[
αi(q2)

]−1
=

[
αi(µ2)

]−1
+ β ln

⎛
⎜⎜⎜⎜⎜⎝

q2

µ2

⎞
⎟⎟⎟⎟⎟⎠ ,

where β depends on the numbers of fermion and boson loops contributing to the
gauge boson self-energy. In QED where the photon self-energy arises from fermion
loops alone α increases with energy, whereas αS decreases with energy due to the
presence of gluon loops. Because of the weak boson self-interactions, which are
a consequence of the SU(2) gauge symmetry, αW also decreases with increasing
energy scale, although not as rapidly as αS . The running of the different coupling
constants therefore tends to bring their values together. It seems plausible that at
some high-energy scale, the coupling constants associated with the U(1), SU(2)
and SU(3) gauge symmetries converge to a single value. In the mid 1970s, it was
suggested by Georgi and Glashow that the observed gauge symmetries of the Stan-
dard Model could be accommodated within a larger SU(5) symmetry group. In this
Grand Unified Theory (GUT), the coupling constants of the Standard Model are
found to converge (although not exactly) at an energy scale of about 1015 GeV, as
shown in Figure 18.4a.
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|q|/GeV |q|/GeV!Fig. 18.4 An illustration of the running of the coupling constants in: (a) the SU(5) Grand Unified Theory and (b) a super-
symmetric extension of SU(5) with new particles with masses of 1 TeV. It should be noted that, in the SU(5)
model, the coupling constant of the U(1) symmetry is notα butα1 = 5/3g′.



507 18.2 Open questions in particle physics

The running of the coupling constants shown in Figure 18.4a assumes that only
Standard Model particles enter the loops in the gauge boson propagators. If there
is physics beyond the Standard Model with new particles at a mass scale Λ, these
particles also would contribute to the gauge boson self-energy terms through extra
fermionic and bosonic loops, modifying the running of the coupling constants for
q2 > Λ2. For example, Figure 18.4b shows how supersymmetric particles at a
scale of ΛSUSY = 1 TeV would modify the evolution of the U(1), SU(2) and SU(3)
couplings within the SU(5) GUT. Remarkably, the coupling constants converge to
a single value of αGUT ≃ 1/26 at |q| ∼ 1016 GeV. In some sense, this convergence is
inevitable since two non-parallel lines will always cross, and with the appropriate
choice of the mass scale for new physics the three lines can always be made to
meet at a single point. Nevertheless, it is interesting that the required mass scale
turns out to be only 1 TeV.

It is now known that SU(5) is not the correct gauge group for a GUT; the pre-
dicted value for sin2 θW is incompatible with the measured value. Despite this, the
convergence of the coupling constants strongly suggests that the three forces of the
Standard Model are the low-energy manifestations of some larger, as yet unknown,
unified theory.

18.2.4 What is the nature of the Higgs boson?

The experimental study of the Higgs boson at the LHC is undoubtedly one of the
most exciting areas in contemporary particle physics. Within the Standard Model,
the Higgs boson is unique; it is the only fundamental scalar in the theory. Establish-
ing the properties of the Higgs boson such as its spin, parity and branching ratios is
essential to understand whether the observed particle is the Standard Model Higgs
boson or something more exotic.

In the Standard Model, the Higgs mechanism assumes a doublet of complex
scalar fields. Whilst this is the simplest choice, it is not unique. For example,
supersymmetric extensions to the Standard Model require (at least) two doublets of
complex scalar fields. In the two-Higgs doublet model (2HDM), three of the eight
scalar fields are the Goldstone bosons that give mass to the W and Z bosons. The
remaining five fields correspond to five physical Higgs bosons; two CP-even neu-
tral scalars h and H0, two charged scalar particles H±, and a CP-odd neutral scalar
A0. In supersymmetry, the neutral Higgs boson (denoted h) must be light and can
appear very much like the Standard Model Higgs boson, whereas the H±, A0 and
H0 can be very massive.

In supersymmetric models, the two Higgs doublets, which have different vacuum
expectation values, respectively give the masses to the fermions in the upper and
lower components of the weak isospin doublets. In this case, the couplings of the
light Higgs boson to the fermions will differ from the Standard Model predictions,
although the differences may be quite small. Consequently, the measurements of
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the branching ratios of the 125 GeV Higgs boson may reveal physics beyond the
Standard Model. In the coming years, the study of the Higgs boson at the LHC will
form one of the main thrusts of experimental particle physics. On a longer time
scale, even more precise studies may be possible at a future e+e− linear collider,
such as the International Linear Collider (ILC) or the Compact Linear Collider
(CLIC).

18.2.5 Flavour and the origin of CP violation

There are a number of fundamental questions related to the flavour sector of the
Standard Model. Although it appears that there are exactly three generations of
fermions, the Standard Model provides no explanation of why this is the case. Like-
wise, the Standard Model provides no clear explanation of why the CKM matrix is
almost diagonal, and in contrast, the PMNS matrix is relatively “flat”.

Furthermore, the complex phases in the CKM and PMNS matrix are the only
places in the Standard Model where CP violation can be accommodated. Whilst
CP violation in the quark sector has been studied in great depth, CP violation in
the neutrino sector has yet to be observed. The measurement of the parameter δ in
the PMNS matrix will be the focus of the next generation of long-baseline neutrino
oscillations experiments.

However, even if CP violation is observed in neutrino oscillations, it seems quite
possible that the CP violation in the Standard Model is insufficient to explain the
observed matter–antimatter asymmetry of the Universe. One solution to this appar-
ent problem is that (possibly large) CP-violating effects may occur in as yet undis-
covered physics beyond the Standard Model. It is possible that such effects will
be observed in the coming years, either directly or through loop corrections, in the
decays of the vast numbers of b-quarks produced in the LHCb experiment at the
LHC and the Belle-II experiment at KEK in Japan.

18.2.6 Are neutrinos Majorana particles?

The masses of the neutrinos are very different from the masses of the other fermi-
ons. If neutrinos are normal Dirac particles, this would imply an unnaturally small
Yukawa coupling to the Higgs field. Whilst this is possible, the seesaw mechanism,
described in Section 17.8.1, provides an attractive explanation for the smallness
of the neutrino masses. Although the presence of a Majorana mass term in the
Lagrangian would not automatically imply that neutrinos are Majorana particles,
this would be a real possibility. In this case, the neutrinos would be their own
antiparticles, ν ≡ ν ≡ νM.

Perhaps surprisingly, the observable effects of removing the distinction between
neutrinos and antineutrinos are very small. In the Standard Model, the neutrino
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!Fig. 18.5 The Feynman diagram for neutrinoless doubleβ-decay.

produced in the decay π+ → µ+νµ will always produce a µ− in its subsequent
νµn→ µ−p charged-current interactions (assuming it has not oscillated). Therefore
in the Standard Model, the net number of leptons in the Universe, L = N(leptons)−
N(antileptons), is constant and lepton number L is said to be conserved. If neutri-
nos were Majorana particles, the neutrino from the decay π+ → µ+νM could in
principle interact as a RH chiral antiparticle νMp → µ+n. The net effect would
be a ∆L = −2 change in lepton number and lepton number no longer would be
a conserved quantity. However, because of the smallness of neutrino masses, the
neutrino helicity states are almost identical to the chiral states and the fraction of
lepton-number-violating processes would be suppressed byO(m2

ν/m
2
µ), which is too

small to be observable. Consequently, experiments have focussed on the possibil-
ity of neutrinoless double β-decay, which can occur only if neutrinos are Majorana
particles.

Certain even–even nuclei, where the usual β±-decay or electron-capture pro-
cesses are energetically forbidden, can decay to a more tightly bound even–even
nucleus by the double β-decay process, (Z, A) → (Z + 2, A)+ 2e− + 2νe, which
can be thought of in terms of two simultaneous single β-decays. Whilst such
2νββ-decays are rare, with half-lives in the range τ1/2 ∼ 1019 − 1025 years, they
have been observed for a number of isotopes. If neutrinos were Majorana particles,
the lepton number violating neutrinoless double β-decays processes (0νββ) can
occur through the Feynman diagram shown Figure 18.5. Experimentally 0νββ
can be distinguished from the more common 2νββ-decays from the energy spec-
trum of the electrons. Neutrinoless double β-decays would produce mono-energetic
electrons with energy

Ee =
1
2 Q = 1

2 [M(Z, A) − M(Z + 2, A)] ,

where M(Z, A) and M(Z + 2, A) are the masses of the parent and daughter nuclei.
In contrast, 2νββ-decays produce a broad spectrum of electron energies with very
few being produced close to the end point of 1

2 Q.
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If neutrinos are Majorana particles, the predicted 0νββ-decay rates are propor-
tional to

Γ ∝ G4
F |mββ|2 × |Mnucl|2,

whereMnucl is the nuclear matrix element and mββ is known as the effective Majo-
rana mass. The effective Majorana mass,

mββ =

3∑

i=1

U2
ei mνi , (18.2)

depends on the neutrino masses and the elements of the PMNS matrix. As a result,
the predicted decay rates depend on the neutrino mass hierarchy, with the inverted
hierarchy typically leading to larger predicted rates.

A number of experiments have searched for 0νββ-decays in processes such as
76
32Ge → 76

34Se + e− + e− and 136
54 Xe → 136

56 Ba + e− + e−. To date, there has been
no confirmed observation of neutrinoless double β-decay, with the most stringent
lifetime limits being set at τ0νββ

1/2 " 1025 years. Nevertheless, the experiments are
only just beginning to reach the required level of sensitivity where it might be
possible observe 0νββ-decay, even for the most optimistic values of mββ. In the
coming years, a number of larger experiments will start to search for neutrinoless
double β-decay. A positive signal would represent a major discover, demonstrating
that the neutrinos are fundamentally different from all other particles.

18.3 Closing words

Most of the theoretical concepts in the Standard Model were in place by the end
of the 1960s. These ideas gained strong support with the discovery of the W and
Z bosons at CERN in the mid 1980s. In the last decade of the twentieth century,
the precision studies of the W and Z bosons provided tests of the predictions of
the Standard Model at the quantum loop level. The start of the full operation of
the LHC in 2010 represented a new stage in the experimental study of particle
physics. With the discovery of the Higgs boson in 2012, the full spectrum of the
Standard Model particles had been observed. This period of nearly 50 years from
the late 1960s to 2012, represented a giant leap forward in our understanding of the
Universe at the most fundamental level. I hope this book has helped you appreciate
some of the profound theoretical ideas and the beautiful experimental measure-
ments that have made the Standard Model of particle physics one of the central
pillars of modern physics.

Despite it success, it should not be forgotten that the Standard Model is not
the end of the story; there are just too many loose ends. The coming years will
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see the high-luminosity operation of the LHC at a centre-of-mass energy close to
14 TeV. In addition, a new generation of experiments will search for signatures for
physics beyond the Standard Model. We may be standing at the threshold of new
and potentially revolutionary discoveries. Only time will tell whether this will be
the direct detection of dark matter, the demonstration that neutrinos are Majorana
particles, the discovery of supersymmetry, or quite possibly something completely
unexpected. The only certain thing is that interesting times lie ahead of us.



Appendix A The Dirac delta-function

The Dirac delta-function is used in the development of the relativistic formu-
lation of decay rates and interaction cross sections, described in Chapter 3. For
this reason, a brief overview of the main properties of the Dirac delta-function
is given here.

A.1 Definition of the Dirac delta-function

The Dirac delta-function, written as δ(x), is defined to be an infinitesimally narrow
peak of unit area, such that for all values of x1 and x2,

∫ x2

x1

δ(x − a) dx =
{

1 if x1 < a < x2

0 otherwise
. (A.1)

Figure A.1 shows a representation of δ(x − a) as a spike that is only non-zero at
x = a. Because the integral of δ(x − a) is unity, it follows that

∫ +∞

−∞
f (x)δ(x − a) dx = f (a). (A.2)

The integral over δ(x − a) picks out the value of the integrand at x = a. This useful
property can be used to express energy and momentum conservation in an integral
form. For example, in the decay a → 1 + 2, the only non-zero contribution to the
integral

∫
· · · δ(Ea − E1 − E2) dE1,

occurs for Ea = E1 + E2. Similarly, a three-dimensional delta-function δ3(x) can
be defined such that

∫
· · · δ3(pa − p1 − p2) d3p1,

is equivalent to imposing momentum conservation, pa = p1 + p2.
Whilst there is no unique functional form for the Dirac delta-function, it is some-

times helpful to think in terms of an explicit function that has the properties of
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d(x − a)

f (x)

x
a!Fig. A.1 A graphical representation of δ(x − a).

(A.1). One possible representation of the Dirac delta-function is an infinitesimally
narrow Gaussian distribution,

δ(x − a) = lim
σ→0

1√
2πσ

exp
(
− (x − a)2

2σ2

)
.

A.2 Fourier transform of a delta-function

From (A.2) the Fourier transform of δ(x) can be written

g(k) = F {δ(x)} =
∫ +∞

−∞
δ(x)e−ikxdx = e0 = 1. (A.3)

The Fourier transform of δ(x) is therefore a uniform distribution. This can be under-
stood in terms of the Gaussian representation of the δ-function; the Fourier trans-
form of a Gaussian distribution of width σ is a Gaussian of width 1/σ. Hence,
for the limiting case where σ → 0, the Fourier transform has a width tending to
infinity, corresponding to a uniform distribution. Using (A.3), the delta-function,
δ(x − x0), can be written as

δ(x − x0) =
1

2π

∫ +∞

−∞
e+ik(x−x0) dk,

and hence, from a simple relabelling of the variables, the integral
∫ +∞

−∞
ei(k−k0)xdx = 2πδ(k − k0). (A.4)

A.3 Delta-function of a function

In Chapter 3, the properties of the delta-function of a function are used to sim-
plify the integrals that arise in the calculation of decay rates and cross sections
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f(x)

d(f (x))

x0 x0

x x!Fig. A.2 A function f (x) and a graphical representation of δ(f (x)).

in relativistic quantum mechanics. To derive the mathematical expression for the
delta-function of a function δ( f (x)) consider the function f (x) that is zero at x = x0,
as shown in Figure A.2. Here δ( f (x)) is only non-zero at x0 but is no longer
necessarily normalised to unit area. This can be seen by writing y = f (x) and
δ( f (x)) = δ(y), where f (x0) = 0. From the definition of the delta-function of (A.1)

∫ y2

y1

δ(y) dy =
{

1 if y1 < 0 < y2
0 otherwise

.

Changing variable from y to x with y = f (x) gives
∫ x2

x1

δ( f (x))
d f
dx

dx =
{

1 if x1 < x0 < x2

0 otherwise
.

From (A.2) this equation can be written as
∣∣∣∣∣
d f
dx

∣∣∣∣∣
x0

∫ x2

x1

δ( f (x))dx =
{

1 if x1 < x0 < x2

0 otherwise
. (A.5)

Writing the RHS of (A.5) as a delta function and using (A.1) gives
∣∣∣∣∣
d f
dx

∣∣∣∣∣
x0

∫ x2

x1

δ( f (x)) dx =
∫ x2

x1

δ(x − x0) dx.

Hence the delta-function of a function is given by

δ( f (x)) =
∣∣∣∣∣
d f
dx

∣∣∣∣∣
−1

x0

δ(x − x0). (A.6)



Appendix B Dirac equation

The main properties of the Dirac equation and its solutions were developed
in Chapter 4. Here, some of the more mathematically demanding aspects are
considered. Firstly, the non-relativistic limit of the Dirac equation is used to
identify the magnetic moment of a Dirac fermion and then the Lorentz trans-
formation properties of the Dirac equation and its solutions are derived.

B.1 Magnetic moment of a Dirac fermion

The magnetic moment µ of a Dirac particle can be identified by taking the non-
relativistic limit of the Dirac equation in the presence of an electromagnetic field,
where the energy associated with the magnetic moment is U = −µ · B. The Dirac
equation for the four-component wavefunction ψ, written in operator form, is

ĤDψ = Eψ,

(α · p̂ + βm)ψ = Eψ. (B.1)

In classical dynamics, the motion of a particle of charge q in an electromagnetic
field Aµ = (φ,A) can be obtained from the minimal substitution

E → E − qφ and p→ p − qA.

Applying this to the Dirac equation of (B.1) leads to
[
α · (p̂ − qA) + βm

]
ψ = (E − qφ)ψ.

For the Pauli–Dirac representation of the α and β matrices, this can be written
(

(E − m − qφ)I −σ · (p̂ − qA)
−σ · (p̂ − qA) (E + m − qφ)I

) (
ψA

ψB

)
= 0, (B.2)

where I is the 2× 2 identity matrix and the four-component spinor ψ has been split
into the upper and lower two components ψA and ψB. Equation (B.2) gives coupled
equations for ψA in terms of ψB,
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[
σ · (p̂ − qA)

]
ψB = (E − m − qφ)ψA, (B.3)

[
σ · (p̂ − qA)

]
ψA = (E + m − qφ)ψB. (B.4)

In the non-relativistic limit, where E ≈ m ≫ qφ, (B.4) can be written

ψB ≈
1

2m
σ · (p̂ − qA)ψA.

Substituting this expression for ψB into (B.3) gives

(E − m − qφ)ψA =
1

2m
[
σ · (p̂ − qA)

]2 ψA. (B.5)

For arbitrary three-vectors a and b,

σ · a =
(

az ax − iay
ax + iay −az

)
and σ · b =

(
bz bx − iby

bx + iby −bz

)
,

from which it follows that

(σ · a)(σ · b) ≡ (a · b) I + iσ · (a × b). (B.6)

Applying this identity to the RHS of (B.5) gives

(E − m − qφ)ψA =
1

2m

[
(p̂ − qA)2 − iqσ · (p̂ × A + A × p̂)

]
ψA.

Writing the momentum operator as p̂ = −i∇, leads to

(E − m − qφ)ψA =
1

2m

[
(p̂ − qA)2 − qσ · (∇ × A + A × ∇)

]
ψA. (B.7)

Remembering that the differential operator acts on everything to the right, the term

∇ × (AψA) = (∇ × A)ψA + (∇ψA) × A,

and therefore the last term in (B.7) can be written

∇ × (AψA) + A × (∇ψA) = (∇ × A)ψA + (∇ψA) × A + A × (∇ψA)

= (∇ × A)ψA

≡ BψA,

where the last step follows from the relation between the magnetic flux density B
and the vector potential, B = ∇ × A. Hence (B.7) can be written

EψA =

[
m +

1
2m

(p̂ − qA)2 + qφ − q
2m

(σ · B)
]
ψA.

This is the non-relativistic limit of the energy of a Dirac particle in an electromag-
netic field, from which the potential energy due to the magnetic interaction between
the particle and the magnetic field can be seen to be

U = − q
2m

(σ · B) ≡ −µ · B,
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!Fig. B.1 The classical magnetic moment of a current loop with angular momentum L = mvr.

from which the magnetic moment of the Dirac fermion can be identified as

µ =
q

2m
σ.

Because the intrinsic spin of a fermion can be written as S = 1
2σ, the intrinsic

magnetic moment is

µ =
q
m

S.

Classically, the magnetic moment associated with a current loop, as shown in
Figure B.1, is given by the current multiplied by the area of the loop πr2, hence

µ = πr2 qv
2πr

ẑ =
q

2m
L,

where |L| = mvr. Thus, the relationship between the magnetic moment µ and the
intrinsic angular momentum S of a Dirac fermion differs from the corresponding
expression in classical physics by a factor of two. This is usually expressed in terms
of the gyromagnetic ratio g defined such that

µ = g
q

2m
S,

where the Dirac equation predicts g = 2.

B.2 Covariance of the Dirac equation

The idea of Lorentz covariance is familiar from electromagnetism. Maxwell’s equa-
tions for the electric and magnetic fields, E and B, are Lorentz covariant, meaning
that the equations are the same in all frames, although the fields are different.

Here consider a frame Σwith coordinates x µ. In this frame, a particle with wave-
function ψ(x) satisfies the Dirac equation,

iγ µ∂µψ(x) = mψ(x). (B.8)
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The Dirac equation is Lorentz covariant if an observer in a different frame Σ′, with
coordinates x′ν, can also describe the particle by the Dirac equation

iγν∂′νψ
′(x′) = mψ′(x′), (B.9)

where ψ′(x′) is the transformed spinor in Σ′ and the γ-matrices take the same form
as in Σ. The covariance of the Dirac equation can be established if it can be shown
that the spinors in Σ and Σ′ can be related by the transformation,

ψ′(x′) = Sψ(x),

where S is a 4 × 4 matrix.
The (covariant) four-derivative ∂′ν is related to ∂µ by the Lorentz transformation

∂′ν = Λν
µ∂µ.

Hence the required form of the Dirac equation in Σ′, given in (B.9), can be written

iγνΛνµ∂µSψ(x) = mSψ(x).

Because S is a constant matrix, ∂µSψ = S ∂µψ, and thus

iγνΛνµS
[
∂µψ(x)

]
= mSψ(x).

This can be compared to the Dirac equation as expressed in Σ, which when multi-
plied by S is

iS γ µ
[
∂µψ(x)

]
= mSψ(x).

Hence the Lorentz covariance of the Dirac equation will be demonstrated if a
matrix S can be found such that

S γ µ = γνΛνµS , (B.10)

which would imply that the Dirac equation is valid in all inertial frames.
Rather than trying to find the general form for S , consider the case where the

frame Σ′ is travelling with velocity +vẑ relative to the frame Σ. In this case

Λν
µ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ 0 0 +βγ
0 1 0 0
0 0 1 0
+βγ 0 0 γ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where β = v/c and γ2 = (1 − β2)−1. In this case, the four relations of (B.10), one
for each of µ = 0, 1, 2, 3, can be written as

S γ0 = γ γ0S + βγ γ3S , (B.11)

S γ1 = γ1S , (B.12)

S γ2 = γ2S , (B.13)

S γ3 = βγ γ0S + γ γ3S . (B.14)
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It is not difficult to show that the matrix

S = aI − bγ0γ3 with a =
√

1
2 (γ + 1) and b =

√
1
2 (γ − 1), (B.15)

satisfies these four equations and, as required, tends to the identity matrix as γ→ 1.
Thus S describes the transformation properties of Dirac spinors for a Lorentz trans-
formation in the +z direction. With this transformation, the mathematical form of
the Dirac equation is preserved, demonstrating its Lorentz covariance.

Now consider the effect of this transformation on the spinor for a particle at rest
in the frame Σ as given by (4.42),

u1(p) = u1(m, 0) =
√

2m

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

In the Dirac–Pauli representation, the matrix S = aI − bγ0γ3 is

S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a 0 −b 0
0 a 0 +b
−b 0 a 0

0 +b 0 a

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Therefore, in the frame Σ′ the spinor of the particle is

u′1(p′) = S u1(p) =
√

2m

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a
0
−b

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=
√

E′ + m

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
−b/a

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where the last step follows from 2ma2 = m(γ+1) = E′+m. The ratio b/a, expressed
in terms of β and γ, is

b
a
=

√
γ − 1
γ + 1

=

√
γ2 − 1

(γ + 1)2 =
βγ

(γ + 1)
.

In the frame Σ′, which is moving with a velocity v = vẑ with respect to the frame
Σ, the velocity of the particle is v′ = −vẑ′ and therefore p′z = −mγβ and E′ = mγ.
Consequently

b
a
= − p′z

E′ + m
,

and the spinor in the frame Σ′ can be written



520 Appendix B

u′1(p′) =
√

E′ + m

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
p′z

E′+m
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

which is, as expected, the corresponding general solution to the Dirac equation for
a particle with momentum in the z-direction, as given by (4.51).

B.3 Four-vector current

Section 11.3 introduced the concept of bilinear covariants, formed from two spin-
ors, which have well-defined Lorentz transformation properties. For example, it
was stated that ψφ transforms as a scalar and ψγ µφ transforms as four-vector. Hav-
ing identified the transformation properties of Dirac spinors, it is now possible to
justify these statements.

For the two frames Σ and Σ′, defined above, the spinor ψ(x) in the frame Σ
transforms to ψ′(x′) = Sψ(x) in the frame Σ′, where S is the matrix of (B.15). The
adjoint spinor in the primed frame can be written

ψ
′
= ψ′†γ0 = (Sψ)†γ0 = ψ†S †γ0.

Hence the spinor product ψ
′
φ′ can be written

ψ
′
φ′ = ψ†S †γ0Sφ, (B.16)

For a Lorentz transformation along the z-axis, S = aI − bγ0γ3, and its Hermitian
conjugate is given by

S † = aI − bγ3†γ0† = aI − bγ0γ3.

Therefore

S †γ0S = (aI − bγ0γ3)γ0(aI − bγ0γ3)

= (aI − bγ0γ3)(aI + bγ0γ3)γ0

= (a2I − b2γ0γ3γ0γ3)γ0

= (a2 − b2)γ0

= γ0.

Hence (B.16) becomes

ψ
′
φ′ = ψ†S †γ0Sφ = ψ†γ0φ = ψφ,

from which it can be concluded that the spinor combination ψφ forms a Lorentz-
invariant scalar.
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The proof that j ν = ψγνφ transforms as a four-vector, requires some care and
familiarity with the manipulation of index notation. In the derivation that follows
it should be remembered that S and the γ-matrices are 4× 4 matrices and the order
in which they appear in the various expressions needs to be retained. In contrast,
the individual elements of the tensor for the Lorentz transformation Λρµ are just
numbers which can be written in any position in an expression. With this in mind,
consider the Lorentz transformation properties of

ψ
′
γ µφ′ = (ψ†S †γ0)γ µSφ. (B.17)

This is most easily simplified by finding an expression for γ µS in terms of S γ µ,
and then using S †γ0S = γ0. Multiplying (B.10) by Λρµ, gives

ΛρµS γ µ = ΛρµΛνµγνS .

It is straightforward to show that ΛρµΛνµ = δ
ρ
ν , and therefore

ΛρµS γ µ = γ ρS . (B.18)

Relabelling the indices allows γ µS in (B.17) to be written as γ µS = ΛµνS γν, such
that

ψ
′
γ µφ′ = ψ†S †γ0(ΛµνS γν)φ

= Λµν ψ
†(S †γ0S )γνφ

= Λµν ψ
†γ0γνφ

= Λµν ψγ
νφ.

Therefore j′µ = ψ
′
γ µφ′ is related to j ν = ψγνφ by

j′µ = Λµν j ν, (B.19)

proving that j ν = ψγνφ transforms as a (contravariant) four-vector.

Problems

B.1* Show that the matrix

S = aI − bγ0γ3 with a =
√

1
2 (γ + 1) and b =

√
1
2 (γ − 1),

satisfies the equations of (B.11)-(B.14).
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B.2* By considering the Lorentz transformations along the z-axis

Λ = Λµν =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ 0 0 −βγ
0 1 0 0
0 0 1 0
−βγ 0 0 γ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and Λµ
ν =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ 0 0 +βγ
0 1 0 0
0 0 1 0
+βγ 0 0 γ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

show that

ΛρµΛν
µ = δρν ,

where δρν is the Kronecker delta-function.



Appendix C The low-mass hadrons

A large number of hadronic states have been observed and a full listing can be
found in Beringer et al. (2012). The more commonly encountered light L= 0 baryon
states (with zero internal orbital angular momentum) are listed in Table C.1, which
gives the quark content, mass, lifetime and main decay modes of the listed baryons.
Where a baryon decays by the strong interaction, the lifetime is too short to be
measured directly, typically ∼ 10−23 s. In this case the table gives the total decay
width Γ= 1/τ, which can be determined from the observed invariant mass distri-
bution of the decay products. For example, the invariant mass distribution of the p
and π+ from the decay ∆++ → pπ+ will be a Lorentzian centred on m(∆++) with
FWHM equal to Γ(∆++). Table C.2 gives the corresponding information for the
most commonly encountered L = 0 meson states.

Table C.1 The first half of the table shows a number of L = 0, JP = 1
2
+ baryons. The second half lists the

baryons in the L = 0 baryon decuplet with JP = 3
2
+.

Baryon Quark content Mass/MeV Lifetime/Width Main decay modes

p uud 938.3 > 2.9 × 1029 yrs
n ddu 939.6 880.1 s pe−νe

Λ uds 1115.7 2.6 × 10−10 s pπ−, nπ0

Σ+ uus 1189.4 8.0 × 10−11 s pπ0, nπ+

Σ0 uds 1192.6 7.4 × 10−20 s Λγ

Σ− dds 1197.4 1.5 × 10−10 s nπ−

Ξ0 uss 1314.9 2.9 × 10−10 s Λπ0

Ξ− dss 1321.7 1.6 × 10−10 s Λπ−

Λ+c udc 2286.5 2.0 × 10−13 s many
Σc uuc, udc, ddc 2453 2.2 MeV Λ+c π

Ξ+c usc 2467.8 4.4 × 10−13 s Ξ + πs and others
Ξ0

c dsc 2470.9 1.1 × 10−13 s Ξ− and Ks
Ω0

c ssc 2695.2 6.9 × 10−14 s Σ+, Ω− and Ks
Λ0

b udb 5619.4 1.4 × 10−12 s Λ+c + X

∆ uuu, uud, udd, ddd 1232 117 MeV Nπ
Σ∗ uus, uds, dds 1385 36 MeV Λπ, Σπ
Ξ∗ uss, dss 1533 9 MeV Ξπ

Ω− sss 1672.5 8.2 × 10−11 s ΛK−, Ξ0π−, Ξ−π0

523
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Table C.2 The first half of the table lists the main properties of a number of commonly encountered L = 0
pseudoscalar mesons with JP = 0−. The second half lists the properties of a number of L = 0 vector mesons

with JP = 1−, including theΥ states.

Meson Quark content Mass/MeV Lifetime/Width Main decay modes

π± ud, du 139.6 2.6 × 10−8 s µ+νµ
π0 (uu − dd) 135.0 8.4 × 10−17 s γγ

η (uu + dd − 2ss) 547.9 130(7) keV γγ, πππ
η′ (uu + dd + ss) 957.8 0.199(9) MeV ππη, ρ0γ

K± us, su 493.7 1.2 × 10−8 s µ+νµ, π0π+

KS (ds + sd) 497.6 8.9 × 10−11 s ππ

KL (ds − sd) 497.6 5.1 × 10−8 s πππ, π±ℓ∓νℓ,
D± cd, dc 1869.6 1.0 × 10−12 s K0ℓ+νℓ, K−πs, KSπs
D0, D0 cu, uc 1864.9 4.1 × 10−13 s K0X, K0X, K−ℓ+νℓ
D±s cs, sc 1968.5 5.0 × 10−13 s many
ηc(1S ) cc 2981 29.7(1) MeV hadrons
B± ub, bu 5279.3 1.6 × 10−12 s many
B0, B0 db, bd 5279.6 1.5 × 10−12 s many
B0

s , B0
s sb, bs 5366.8 1.5 × 10−12 s many

B±c cb, bc 6277 4.5 × 10−13 s many

ρ±, ρ0 ud, du, (uu − dd) 774.5 149.1 MeV ππ

ω (uu + dd) 782.7 8.5 MeV π+π−π0

φ ss 1019.5 4.3 MeV K+K−, KLKS , ρπ
K∗± us, su 891.7 50.8 MeV Kπ
K∗0, K∗0 ds, sd) 895.9 46 MeV Kπ
D∗0, D∗0 cu, uc 2007.0 < 2.1 MeV D0π0, D0γ

D∗± cd, dc 2010.3 96 keV D0π+, D+π0

D∗±s cs, sc 2112.3 < 1.9 MeV D±s γ, D±s π
0

J/ψ(1S ) cc 3096.9 92.9 keV hadrons, e+e−, µ+µ−

B∗ ub, bu, db, du 5425.2 Bγ
Υ(1S ) bb 9460.3 54 keV hadrons, ℓ+ℓ−

Υ(2S ) bb 10023.3 31 keV hadrons, Υ(1S ) + X
Υ(3S ) bb 10355.2 20 keV hadrons, Υ(2S ) + X
Υ(4S ) bb 10579.4 20.5 MeV B+B−, B0B0



Appendix D Gauge boson polarisation states

The polarisation states of the spin-1 bosons appear in the Feynman rules for
the description of real external gauge bosons and in the spin sums implicit in
the propagators for virtual gauge bosons. This appendix develops the descrip-
tion of gauge boson polarisation states, first for the massless photon and then
for the massive W and Z bosons. Finally the gauge invariance of the electro-
magnetic interaction is used to determine the completeness relations for real
and virtual photons.

D.1 Classical electromagnetism

In Heaviside–Lorentz units, Maxwell’s equations for the electric field strength
E(x, t) and magnetic flux density B(x, t) are

∇ · E = ρ, ∇ × E = −∂B
∂t
, ∇ · B = 0 and ∇ × B = J +

∂E
∂t

where ρ(x, t) and J(x, t) are respectively the electric charge and current densities.
It is an experimentally established fact that charge is conserved. This implies that
the charge and current density satisfy the continuity equation (see, for example,
Section 2.3.2)

∂ρ

∂t
+ ∇ · J = 0.

If charge is conserved in all frames, this implies that j µ = (ρ, J) must be a four-
vector, and that the continuity equation can be written in the manifestly Lorentz
invariant form

∂µ j µ = 0.

The fields can be expressed in terms of the electric scalar potential φ and magnetic
vector potential A such that

B = ∇ × A and E = −∂A
∂t
− ∇φ. (D.1)
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By defining the four-vector potential Aµ = (φ,A), Maxwell’s equations can be
written compactly as

∂µFµν = j ν, (D.2)

where the field-strength tensor Fµν is defined as

Fµν = ∂ µAν − ∂νAµ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −Ex −Ey −Ez

Ex 0 −Bz By
Ey Bz 0 −Bx

Ez −By Bx 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (D.3)

The expressions of (D.2) and (D.3), which are equivalent to Maxwell’s equations,
can be written as

∂µ∂
µAν − ∂ν∂µAµ = j ν. (D.4)

Because j ν is a four-vector, with well-defined Lorentz transformation properties,
(D.4) implies that Aµ must also be a (contravariant) four-vector.

D.1.1 Gauge invariance

The electric and magnetic fields defined by (D.1) are unchanged by the gauge trans-
formation

A→ A′ = A + ∇χ and φ→ φ′ − ∂χ
∂t
,

where χ(x, t) is any finite differentiable function. In four-vector notation, with Aµ =
(φ,−A) and ∂µ = (∂/∂t,+∇), the gauge invariance of the electromagnetic fields can
be expressed as

Aµ → A′µ = Aµ − ∂µχ. (D.5)

The freedom to chose the gauge can be exploited in order to simplify the covariant
formulation of Maxwell’s equations. From (D.5),

∂ µA′µ = ∂
µ(Aµ − ∂µχ) = ∂ µAµ − χ.

The gauge where χ is chosen such that χ = ∂ µAµ, and therefore ∂ µA′µ = 0, is
known as the Lorenz gauge (after Ludvig Lorenz, not Hendrik Lorentz). Dropping
the primes on the fields, the Lorenz gauge condition is

Lorenz gauge condition: ∂ µAµ = 0. (D.6)

In the Lorenz gauge, the covariant form of Maxwell’s equations of (D.4) becomes

Lorenz gauge: Aµ ≡ ∂ν∂νAµ = j µ. (D.7)
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D.2 Photon polarisation states

In the absence of charges j µ = 0 and in the Lorenz gauge, the free photon field
satisfies

Aµ = 0. (D.8)

This equation has plane wave solutions of the form

Aµ = ϵ µ(q)e−iq·x, (D.9)

where ϵ µ(q) is a four vector describing the polarisation of the electromagnetic field.
Substituting (D.9) into (D.8) gives

Aµ = −q2ϵ µe−iq·x = 0.

Hence the plane wave solutions to the covariant form of Maxwell’s equations
for the free photon field must have q2 = 0. Consequently (D.8) can be identi-
fied as the wave equation for a massless particle. Since a spin-1 boson has three
degrees of freedom, it is not immediately obvious that it should be described by
the four-vector Aµ that has four degrees of freedom. However, the four compo-
nents of ϵ µ are not independent because the field Aµ satisfies the Lorenz gauge
condition ∂µAµ = 0, which implies

0 = ∂µ(ϵ µe−iq·x) = ϵ µ∂µ(e−iq·x) = −iϵ µqµe−iq·x.

Therefore

qµϵ µ = 0, (D.10)

from which it can be concluded that only three of the components of ϵ µ(q) are
independent.

Having imposed the Lorenz condition, there is still the freedom to make the
further gauge transformation

Aµ → A′µ = Aµ − ∂µΛ(x), (D.11)

where Λ(x) is any function which satisfies Λ = 0. This gauge transforma-
tion leaves both the field equation of (D.7) and the Lorenz condition of (D.6)
unchanged. Consider the gauge transformation

Λ(x) = −iae−iq·x,

where a is an arbitrary constant. This satisfies Λ = 0 because Λ = −q2Λ and
q2 = 0 for the massless spin-1 boson described by (D.8). With this choice of Λ, the
plane wave of (D.9) becomes
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Aµ → A′µ = Aµ − ∂µΛ = ϵµe−iq·x + ia∂µe−iq·x

= ϵµe−iq·x + ia(−iqµ)e−iq·x

= (ϵµ + aqµ)e−iq·x.

Therefore, the physical electromagnetic fields are unchanged by

ϵµ → ϵ′µ = ϵµ + aqµ, (D.12)

and hence, any polarisation vectors that differ by a multiple of the four-momentum
of the photon, correspond to the same physical photon.

In the Coulomb gauge, a is chosen such that the time-like component of the
polarisation is zero and the Lorenz condition of (D.10) becomes

ϵ · q = 0.

Hence in the Coulomb gauge (sometimes referred to as the transverse gauge), the
polarisation of the photon is transverse to its direction of motion, and there are only
two independent polarisation states. For a photon travelling in the z-direction, these
can be written as the linearly polarised states

ϵ µ1 = (0, 1, 0, 0) and ϵ µ2 = (0, 0, 1, 0).

This choice is not unique, and the circularly polarised states

ϵ µ− =
1√
2
(0, 1,−i, 0) and ϵ µ+ = − 1√

2
(0, 1, i, 0) (D.13)

are often used; these are the states which correspond to the z-component of the spin
of the photon being S z = ±1.

D.3 Polarisation states of massive spin-1 particles

The Lagrangian for a massless spin-1 field is

L0 = − 1
4 FµνFµν,

where Fµν is the field-strength tensor Fµν = (∂ µBν − ∂νBµ). The corresponding
Lagrangian for a massive spin-1 boson is the Proca Lagrangian of (17.9). This
includes an additional mass term which is quadratic in the fields

Lm = − 1
4 FµνFµν + 1

2 m2BµBµ.

From the Euler–Lagrange equation, the corresponding free field equation is

( + m2)Bµ − ∂ µ(∂νBν) = 0. (D.14)
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The same equation can be obtained by noting that Klein–Gordon equation for
massless and massive spin-0 scalars are respectively

φ = 0 and ( + m2)φ = 0.

This suggests that the equation of motion for a massive particle can be obtained
from that for a massless particle by making the replacement → + m2. In the
absence of sources, the equation of motion for the free photon is

Aµ − ∂ µ(∂νAν) = 0.

The corresponding equation for a massive spin-1 field Bµ, obtained by making the
substitution → + m2, is

( + m2)Bµ − ∂ µ(∂νBν) = 0,

which is the Proca equation of (D.14).
Taking the derivative of the Proca equation, by acting on it with ∂µ, gives

( + m2)∂µBµ − ∂µ∂ µ(∂νBν) = 0

( + m2)∂µBµ − (∂νBν) = 0

m2∂µBµ = 0,

and therefore

∂µBµ = 0. (D.15)

Thus, the Lorenz condition is automatically satisfied for a massive spin-1 boson.
Consequently, there is no freedom to choose the gauge; from Chapter 17 it should
come as no surprise that the mass term has broken the gauge invariance. Using the
Lorenz condition, the Proca equation of(D.14) becomes

( + m2)Bµ = 0. (D.16)

For a massive particle with four momentum q, q2 = m2 and therefore

e−iq·x = −q2e−iq·x = −m2e−iq·x.

Hence (D.16) has plane wave solutions

Bµ = ϵ µe−iq·x. (D.17)

The Lorenz condition of (D.15) implies that the four-vector polarisation of the
plane wave solutions satisfies

qµϵ µ = 0. (D.18)

This constraint means that of the four degrees of freedom in ϵ µ, only three are
independent. Since there is no further freedom to choose the gauge, a spin-1 boson
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described by (D.17) has three independent polarisation states. For a spin-1 boson
travelling in the z-direction, two of these can be chosen to be the two circular
polarisation states of (D.13),

ϵ µ− =
1√
2
(0, 1,−i, 0) and ϵ µ+ = − 1√

2
(0, 1, i, 0).

The third polarisation state, which is orthogonal to the circular polarisations states,
can be written in the form

ϵ µL ∝ (α, 0, 0, β).

The relationship between α and β is fixed by (D.18) which implies αE − βpz = 0
and hence the longitudinal polarisation state is

ϵ µL =
1
m (pz, 0, 0, E), (D.19)

where the normalisation is such that in the rest frame of the gauge boson, the lon-
gitudinal polarisation state is just (0, 0, 0, 1).

D.4 Polarisation sums

In Section 6.5.1 the completeness relation for Dirac spinors was shown to be

2∑

s=1

usus = (γ µpµ + m) = /p + m.

In the trace formalism this relation was used to perform spin sums in the calculation
of matrix elements. The corresponding completeness relation for the sum over the
polarisation states of a spin-1 boson,

∑

λ

ϵ∗µλ ϵ
ν
λ,

is used in similar calculations involving real gauge bosons in the initial- and final-
state. Here, the main focus is on justifying the sums over the polarisation states of
virtual gauge bosons that gives rise to the form of the propagator in the description
of an interaction by the exchange of spin-1 particles.

D.4.1 Polarisation sums for massive gauge bosons

The completeness relation for massive spin-1 bosons can be obtained by using the
three polarisation states given in (D.13) and (D.19). For a boson propagating in the
z-direction, the completeness relation can be expressed in tensor form as
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∑

λ

ϵ∗µλ ϵ
ν
λ =

1
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0
0 1 −i 0
0 +i 1 0
0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+

1
m2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p2 0 0 Ep
0 0 0 0
0 0 0 0

Ep 0 0 E2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ 1

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0
0 1 +i 0
0 −i 1 0
0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+

1
m2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

E2 − m2 0 0 Ep
0 0 0 0
0 0 0 0

Ep 0 0 p2 + m2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Writing E and p as the components of the four-momentum q gives

∑

λ

ϵ∗µλ ϵ
ν
λ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+

1
m2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

q0q0 0 0 q0q3

0 0 0 0
0 0 0 0

q0q3 0 0 q3q3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

which can be generalised to

∑

λ

ϵ∗µλ ϵ
ν
λ = −gµν +

q µqν

m2 . (D.20)

D.4.2 Polarisation sums for external photons

The situation for photons is complicated by the freedom of the choice of gauge.
Consider a real photon travelling in the z-direction. In the Coulomb gauge, the
transverse polarisation vectors can be written ϵ1 = (0, 1, 0, 0) and ϵ2 = (0, 0, 1, 0).
Hence the sum over these transverse polarisation states is

∑

λ

ϵ∗µλ ϵ
ν
λ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

This can be extended to a real photon with four-momentum q, travelling in an
arbitrary direction. In this case, the sum over the two polarisation states in the
Coulomb gauge can be seen to be

∑

T

ϵ∗iT ϵ
j
T = δi j −

qiq j

|q|2 ,

where i, j = 1, 2, 3 are the space-like indices of the polarisation vector and the
sum is over the two transverse polarisation states of the photon. Since the polari-
sation four-vector ϵ µ and ϵ µ + aq µ describe the same photon, this result is gauge
dependent.

The general completeness relation, expressed in terms of all four components of
the polarisation four-vector, needs to take into account the gauge freedom associated
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p

q

p!

q

q

γ

!Fig. D.1 The Feynman diagram for q→ qγwhich might form part of the process electromagnetic decayρ0→π0γ.

with a massless photon. For example, consider the quark-level Feynman diagram
for the emission of a real photon in the decay ρ0 → π0γ. At the quark level, the
matrix element for the diagram of Figure D.1 is

M = eQq [u(p′)γµu(p)] ϵ µλ (q),

which can be written in the form

M = jµϵ
µ
λ (q), (D.21)

where jµ is the four-vector associated with the fermion current (including the
charge). The spin-summed matrix element squared is

∑

λ

|M|2 =
∑

λ

jµ j∗νϵ
µ
λ ϵ
∗ν
λ . (D.22)

In the Coulomb gauge, where there are only two transverse polarisation states,
the spin-summed matrix element squared takes the form

2∑

T=1

|M|2 = jµ j∗ν

2∑

T=1

ϵµT ϵ
∗ν
T . (D.23)

In the frame where the photon is travelling in the z-direction, the four-vectors for
the two transverse polarisation states can be written ϵ1 = (0, 1, 0, 0) and ϵ2 =

(0, 0, 1, 0). In this case, the sum over the two transverse polarisation states in (D.23)
gives

2∑

T=1

|M|2 = j1 j∗1 + j2 j∗2.

This expression can be written as a sum over all four components of jµ using

2∑

T=1

|M|2 = j1 j∗1 + j2 j∗2 = −gµν jµ j∗ν + j0 j∗0 − j3 j∗3. (D.24)

From the gauge invariance of (D.12), it was seen that the polarisation vectors ϵ µ

and ϵ µ + aq µ describe the same photon. Therefore, the matrix element of (D.21)
must be invariant under the gauge transformation ϵ µ → ϵ µ + aq µ, and hence
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p2

p1

p4

γ q

p3

τ- τ-

e- e-

ν

m

!Fig. D.2 The Feynman diagram for the QED scattering process e−τ− → e−τ−.

M = jµϵ
µ
λ (q) = jµϵ

µ
λ (q) + jµq µ,

which implies

jµq µ = 0. (D.25)

For a photon with q µ = (q, 0, 0,+q), it can be concluded that q j0 − q j3 = 0.
Consequently, the gauge invariance of electromagnetism here implies that j0 = j3
and therefore (D.24) is equivalent to

2∑

T=1

|M|2 = −gµν jµ j∗ν.

From the comparison with (D.23), it can be seen that the completeness relation for
the spin sum over the polarisation states of a real initial- or final-state photon is

2∑

λ=1

ϵ µλ ϵ
∗ν
λ = −gµν.

D.4.3 The photon propagator

The completeness relation derived above applies to external on-shell photons. The
situation with off-mass-shell virtual photons is more complicated. Because virtual
photons have q2 ! 0, it is not possible to simply neglect the longitudinal and scalar
polarisation states. In Section 5.3, the matrix element for the QED scattering pro-
cess e−τ−→ e−τ−, shown in Figure D.2, was expressed in Equation (5.19) as the
sum over the polarisation states of the virtual photon and the four-vector currents
for the electron and tau-lepton,

M ∝
4∑

λ=1

j (e)
µ j (τ)

ν

ϵ∗µλ (q)ϵνλ(q)

q2 .
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Because an off mass-shell virtual photon can be considered to have an invariant
mass q2 ! 0, the sum over polarisation states can be obtained from the complete-
ness relation of (D.20) for the massive spin-1 particles, replacing m2 with q2,

∑

λ

ϵ∗µλ ϵ
ν
λ = −gµν +

q µqν

q2 . (D.26)

Because the diagram shown in Figure D.2 is the only lowest-order QED Feynman
diagram for the process e−τ−→ e−τ−, the matrix element for this diagram alone
must be gauge invariant and therefore must be unchanged by ϵ µ→ ϵ µ + aq µ and
ϵν→ ϵν + bqν, hence

4∑

λ=1

j (e)
µ j (τ)

ν ϵ∗µλ ϵ
ν
λ =

4∑

λ=1

j (e)
µ j (τ)

ν (ϵ∗µλ + aq µ)(ϵνλ + bqν) ∀ a and b,

implying that

j (e)
µ j (τ)

ν q µqν = 0.

Thus it can be concluded that the q µqν/q2 term in (D.26) does not contribute to the
matrix element. In this case, the spin sum associated with the photon propagator
(for this single matrix element) can be written

∑

λ

ϵ µλ ϵ
∗ν
λ = −gµν,

and the Feynman rule for the photon propagator itself is simply

−i
gµν

q2 . (D.27)

This form of the photon propagator is appropriate for all lowest-order diagrams
where the fermions are on-shell.

In higher-order diagrams, where the virtual photon connects virtual fermions,
only the sum of the amplitudes for all diagrams is gauge invariant. In this case, the
matrix element for a particular diagram may not be gauge invariant and photon
propagator must be written

− i
q2

[
gµν + (1 − ξ)q µqν

q2

]
,

where ξ is a gauge-dependent parameter. For most practical purposes, calculations
are performed in the so-called Feynman gauge with ξ = 1, and the photon propaga-
tor is again given by (D.27). In general, for the calculation of higher-order diagrams
in QED and QCD, the correct treatment of the choice of gauge requires care and
represents a topic that goes well beyond the level of this book. Nevertheless, the
use of the simple Feynman gauge form of the propagator for the photon and gluon
propagators is appropriate for all the lowest-order diagrams encountered here.



Appendix E Noether’s theorem

Symmetries and conservation laws are central to the development of the
Standard Model of particle physics. This short appendix gives an example
of application of Noether’s theorem to the global U(1) symmetry of the Dirac
equation, where the conserved current is found to be the four-vector formed
from the probability density and probability current.

Noether’s theorem relates a symmetry of the Lagrangian to a conserved current.
For example, the Lagrangian for the free Dirac field,

L = iψγ µ∂µψ − mψψ, (E.1)

is unchanged by the global U(1) phase transformation,

ψ→ ψ′ = eiθψ.

The invariance of the Lagrangian can be expressed in terms of the infinitesimal
global U(1) phase transformation,

ψ→ ψ′ = (1 + iε)ψ and ψ→ ψ
′
= (1 − iε)ψ,

for which the changes in the fields and their derivatives are

δψ = iεψ, δ(∂µψ) = iε(∂µψ), δψ = −iεψ and δ(∂µψ) = −iε(∂µψ).

The U(1) global symmetry of the Lagrangian implies that

δL = ∂L
∂ψ

δψ +
∂L

∂(∂µψ)
δ(∂µψ) +

∂L
∂ψ

δψ +
∂L

∂(∂µψ)
δ(∂µψ) = 0, (E.2)

from which

iε
∂L
∂ψ

ψ + iε
∂L

∂(∂µψ)
(∂µψ) − iε

∂L
∂ψ

ψ − iε
∂L

∂(∂µψ)
(∂µψ) = 0. (E.3)

The term involving the derivative with respect to (∂µψ) can be expressed as

∂L
∂(∂µψ)

(∂µψ) = ∂µ

(
∂L

∂(∂µψ)
ψ

)
−

[
∂µ

(
∂L

∂(∂µψ)

)]
ψ,

and thus (E.3) becomes
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iε
[
∂L
∂ψ
− ∂µ

(
∂L

∂(∂µψ)

)]
ψ + iε∂µ

(
∂L

∂(∂µψ)
ψ

)
− {ψ terms } = 0. (E.4)

From the Euler–Lagrange equation of (17.3), the term in square brackets is zero,
as is the corresponding term for ψ and thus

iε∂µ

⎡
⎢⎢⎢⎢⎢⎣
∂L

∂(∂µψ)
ψ − ψ ∂L

∂(∂µψ)

⎤
⎥⎥⎥⎥⎥⎦ = 0.

This can be recognised as a continuity equation of the form

∂µ j µ = 0,

where the conserved current associated with the global U(1) symmetry of the
Lagrangian is

j µ = (ρ, J) = −i

⎛
⎜⎜⎜⎜⎜⎝

∂L
∂(∂µψ)

ψ − ψ ∂L
∂(∂µψ)

⎞
⎟⎟⎟⎟⎟⎠ . (E.5)

The factor of −i appearing in this expression ensures that the associated density is
real and positive. The partial derivatives appearing in (E.5) can be obtained from
the Lagrangian of (E.1),

∂L
∂(∂µψ)

= iψγ µ and
∂L

∂(∂µψ)
= 0,

from which it immediately can be seen that the conserved current associated with
the U(1) global symmetry of the Dirac equation is

j µ = (ρ, J) = ψγ µψ.

This is just the probability density and probability current associated with a Dirac
spinor, originally identified in Section 4.3.

Problem

E.1* The Lagrangian for a complex scalar field

LS =
1
2
(∂µφ)∗(∂ µφ) − 1

2
m2φ∗φ,

possesses a global U(1) symmetry. Use Noether’s theorem to identify the conserved current.



Appendix F Non-Abelian gauge theories

Local gauge theories are referred to as non-Abelian if the generators of the
associated symmetry group do not commute. In a non-Abelian gauge theory,
the transformation properties of the fields imply the existence of gauge boson
self-interactions. In this Appendix, the example of the SU(2) local gauge the-
ory of the weak interaction is used to introduce these concepts. Whilst the
algebra is quite involved, the main ideas can be understood readily.

The generators of the SU(2) and SU(3) gauge groups of the Standard Model do
not commute. For example, the three generators of the SU(2) symmetry group,
T = {T1,T2,T3}, can be expressed in terms of the Pauli spin matrices as T = σ/2
and satisfy the commutation relations

[Ti,T j] = 1
4 [σi,σ j] = 1

4 2iϵi jkσk = iϵi jkTk,

where ϵi jk is the totally antisymmetric Levi–Civita tensor. In general, the com-
mutation relations for a particular group can be written in terms of the structure
constants fi jk of the group defined by

[Ti,T j] = i fi jkTk. (F.1)

In a non-Abelian gauge theory, the transformation properties of the associated
gauge fields are not independent and additional self-interaction terms have to be
added to the field-strength tensor for it to be gauge invariant. These self-interaction
terms lead to the triple and quartic gauge bosons vertices encountered in the dis-
cussions of QCD and the electroweak interaction.

An infinitesimal SU(2) local gauge transformation can be written,

ϕ(x) =
(
νe(x)
e(x)

)
→ ϕ′(x) = (I + igWα(x) · T)ϕ(x).

The corresponding infinitesimal transformation of the doublet of adjoint spinors
ϕ = ϕ†γ0 is

ϕ(x)→ ϕ′(x) = ϕ(x) (I − igWα(x) · T) .
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Taking the fermion masses to be zero (they can be introduced latter through the
Higgs mechanism), the Lagrangian giving the Dirac equations for both the electron
and the electron neutrino can be written as

L = iϕγµ∂ µϕ ≡ i νeγµ∂
µνe + i eγµ∂ µe. (F.2)

The gauge invariance of the Lagrangian can be ensured by replacing the derivatives
∂ µ with the corresponding covariant derivatives, defined by

∂ µ → D µ = ∂ µ + igWWµ · T,

where W = {W1,W2,W3} are the three gauge fields of the SU(2) symmetry. Hence
the Lagrangian of (F.2) becomes

L = iϕγµ(∂ µ + igWWµ · T)ϕ. (F.3)

This Lagrangian includes the interactions between the fermions and W fields, but
is only gauge invariant if the W fields have the correct transformation properties.

The transformation properties of the gauge fields can be determined by noting
that the gauge invariance of the Lagrangian is ensured if Dµϕ transforms in the
same way as ϕ itself, i.e.

D′µϕ′ = (I + igWα · T) D µϕ. (F.4)

If this is the case,

ϕ′D′µϕ′ = ϕ(x) (I − igWα(x) · T) (I + igWα(x) · T) D µϕ = ϕD µϕ + O(g2
Wα

2).

The condition that Dµϕ must transform in the same way as ϕ, defines the gauge
transformation properties of the fields. Because

D′µ = ∂ µ + igWW′µ · T,

then D′µϕ′ is given by

D′µϕ′ =
(
∂ µ + igWW′µ · T)

(1 + igWα(x) · T)ϕ.

Hence the requirement of (F.4) becomes
(
∂ µ + igWW′µ · T)

(1 + igWα(x) · T)ϕ = (I + igWα(x) · T)
(
∂ µ + igWWµ · T)

ϕ.

Expanding both sides and cancelling the common terms leads to

igW(∂ µα) · T + igWW′µ · T − g2
W(W′µ · T)(α · T) = igW(Wµ · T)

− g2
W(α · T)(Wµ · T). (F.5)

Simply following the prescription used for QED and writing

Wµk → W′µk = Wµk − ∂
µαk, (F.6)
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does not restore the gauge invariance. This is because the generators of SU(2) do
not commute and therefore (α · T)(W · T) ! (W · T)(α · T). The required gauge
invariance can be achieved by adding a term to (F.6) such that the transformations
of the three W fields are no longer independent,

Wµk → W′µk = Wµk − ∂
µαk − gWai jkαiW

µ
j , (F.7)

where the ai jk are appropriate constants that need to be identified. Inserting this
expression in to (F.5) leads to

−ig2
Wai jkαiW

µ
j Tk = −g2

W
[
(α · T)(Wµ · T) − (Wµ · T)(α · T)

]
+ O(g2

Wα
2)

= −g2
WαiW

µ
j [Ti,T j] = −g2

WαiW
µ
j

(
i fi jkTk

)
,

where the fi jk are the structure constants of the SU(2) group, defined in (F.1).
Hence, for invariance of the Lagrangian under SU(2) local gauge transformations,
the constants ai jk in (F.7) must equal fi jk = ϵi jk. Thus the fields must transform as

Wµk → W′µk = Wµk − ∂
µαk − gWϵi jkαiW

µ
j , (F.8)

which also can be written in vector form,

Wµ →W′µ =Wµ − ∂ µα − gWα ×Wµ.

In general, in a non-Abelian gauge theory, the transformation properties of the
fields includes a term which depends on the structure constants of the group, defined
by the commutation relations [Ti,T j] = i fi jkTk.

The transformation of the fields of (F.8) ensures that the Lagrangian of (F.3)
is invariant under local SU(2) phase transformations. However, the kinetic term
for the W fields has yet to be included. Simply taking −1

4 Fµν · F µν with F µν =
∂ µWν − ∂νWµ is not gauge invariant. The gauge-invariant form can be found by
noting that the field strength tensor for QED can be written in terms of its covariant
derivative D µ = ∂ µ + iqAµ as

F µν = ∂ µAν − ∂νAµ = 1
iq

[D µ,Dν].

Repeating this for the covariant derivative of the SU(2) gauge symmetry leads to

1
igW

[D µ,Dν] =
1

igW

[
∂ µ + igWT ·Wµ, ∂ν + igWT ·Wν]

= T · (∂ µWν − ∂νWµ) + igW
[
(T ·Wµ)(T ·Wν) − (T ·Wν)(T ·Wµ)

]
.

(F.9)
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Because the generators of SU(2) do not commute, the second term on the RHS of
(F.9) is not zero. The term involving the generators can be simplified by writing

(T ·Wµ)(T ·Wν) − (T ·Wν)(T ·Wµ) = Wµi Wν
j [Ti,T j]

= iϵi jkWµi Wν
j Tk = i(Wµ ×Wν)kTk

= i T · (Wµ ×Wν).

Hence (F.9) can be written as the tensor

W µν ≡ 1
igW

[D µ,Dν] = T · [∂ µWν − ∂νWµ − gWWµ ×Wν]

= 1
2σ ·W µν,

where the generators have been written in terms of the Pauli spin-matrices and W µν

is given by

W µν = ∂ µWν − ∂νWµ − gWWµ ×Wν. (F.10)

Hence the field strength tensor for the three W fields can be identified as Wµν =
1
2σ ·Wµν. A gauge-invariant term in the Lagrangian for the W-boson fields can be
formed by taking the trace of W µνWµν,

LW ∝ Tr
(
[σ ·W µν][σ ·W µν]

)
.

Using the identity of (B.6) this reduces to

LW ∝ Tr
(
W µν ·W µν I

)
= 2W µν ·W µν.

The invariance of this expression under the gauge transformation U is ensured
by the transformation properties of the covariant derivative where D µ → D′µ =
UD µU−1. This implies that W′µν = UW µνU−1 and the cyclic property of traces
ensures that

Tr
(
W′µν ·W′

µν

)
= Tr

(
W µν ·W µν

)
.

Hence the gauge-invariant term in the Lagrangian for the W fields alone can be
identified as

LW = − 1
4 W µν ·W µν,

where the factor of one quarter is included to reproduce the normal kinetic term for
spin-1 gauge bosons. The gWWµ×Wν = gWϵi jkWµj Wν

k term in the field strength ten-
sor of (F.10), means that the Lagrangian contains W-boson self-interaction terms.
This can be made explicit by dividing the Lagrangian into kinetic and interaction
parts, LW = Lkin +Lint, with

Lkin = − 1
4

(
∂ µWν

i − ∂νW
µ
i

) (
∂µWiν − ∂νWiµ

)
,

Lint = +
1
2gWϵi jk(∂ µWν

i − ∂νW
µ
i )W jµWkν − 1

4g
2
Wϵi jkϵimnWµj Wν

k WmµWnν.
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W3

W2

W1

gW

Wk

Wj

Wk

Wj

g
W
2

!Fig. F.1 The Standard Model triple and quartic gauge boson vertices arising from the SU(2) local gauge invariance of
the weak interaction.

The interaction term contains both triple gauge boson and quartic gauge boson
vertices, as shown in Figure F.1. These self-interactions are a consequence of non-
commuting generators of the SU(2) group, and the associated fields are referred to
as Yang–Mills fields. In terms of the physical fields obtained from electroweak uni-
fication of the Standard Model, there are two triple gauge boson vertices, γW+W−

and ZW+W−, and three quartic gauge boson vertices, W+W−W+W−, W+W−ZZ
and W+W−γγ.

Gluon self-interactions in QCD
The transformation properties of the gluon fields under the non-Abelian SU(3)
local gauge transformation of QCD depends on the commutation relations between
the generators

G µk → G′µk = G µk − ∂
µαk − gS fi jkαiG

µ
j , (F.11)

where fi jk are the structure constants of the SU(3) group defined by

[Ti,T j] = i fi jkTk.

The structure constants of QCD are completely antisymmetric with fi jk = − fik j,
and of the 83 possible combinations of the indices i, j and k, the only combinations
which correspond to non-zero values are:

f123 = 1, f147 = f246 = f257 = f345 = f516 = f637 =
1
2 and f458 = f678 =

√
3

2 ,

and their cyclic permutations. Without going into the details, the kinetic term in the
Lagrangian for the eight gluon fields is given by

L = − 1
4 G µν ·Gµν,

with

G µνi = ∂
µGν

i − ∂νG
µ
i − gS fi jkG

µ
j Gν

k.
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g

g

g

gS

g

g

g

g

gS
2

!Fig. F.2 The triple and quartic gluon self-interaction vertices.

The G µj Gν
k term in the field strength tensor gives rise to the triple and quartic gluon

vertices, indicated in Figure F.2. It is the presence of these vertices, which are due
to the non-Abelian nature of SU(3), that results in colour confinement.
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Further reading

This textbook provides a broad overview of the Standard Model of particle physics at an
introductory level. It focuses on providing a contemporary perspective of both the under-
lying theory and the experimental results. The historical development of the subject is not
covered here. Furthermore, at an introductory level, the material can only be taken so far.
In particular, Quantum Field Theory is not covered; this is a subject in its own right. The
small selection of books listed below either give a more historical view of particle physics
or cover theoretical material at a more advanced graduate level.

Introductory books with a more historical outlook

A. Bettini, Introduction to Elementary Particle Physics, Cambridge University Press (2008).
D. H. Perkins, Introduction to High Energy Physics, Cambridge University Press (2000).

More advanced books covering a number aspects of theoretical particle physics

I. J. R. Aitchison and A. J. G. Hey, Gauge Theories in Particle Physics, Taylor and Francis
(2004). A more advanced graduate-level textbook with the emphasis on gauge field theory.
J. D. Bjorken and S. D. Drell, Relativistic Quantum Mechanics, McGraw-Hill (1964). The
classic textbook on relativistic quantum mechanics.
R. K. Ellis, W. J. Stirling and B. R. Webber, QCD and Collider Physics, Cambridge Univer-
sity Press (2003). A more advanced book on the phenomenology of QCD in hadron–hadron
collisions.
H. Georgi, Lie Algebras in Particle Physics, Westview Press (1999). Covers the essentials
of group theory as applied to particle physics.
F. Halzen and A. D. Martin, Quarks and Leptons, Wiley and Sons (1984). Gives a particu-
larly good description of the parton model, QCD and the DGLAP evolution equations.
M. E. Peskin and D. V. Schroeder, An Introduction to Quantum Field Theory, Addison-
Wesley (1995). A graduate level textbook providing an introduction to quantum field theory
with many practical examples.
L. H. Ryder, Quantum Field Theory, Cambridge University Press (1996). Provides a rela-
tively accessible introduction to quantum field theory.

Other resources

Detailed listings of particle properties and reviews of topical areas in particle physics
are provided by the Particle Data Group http://pdg.lbl.gov and published as The Review
of Particle Physics, Beringer et al. (2012). Whilst the main audience is researchers in
particle physics, there is a wealth of information here.
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accelerators
list of, 26

action at a distance, 5
adjoint spinor, 91
ALEPH experiment, 434
αS , value of, 258
angular momentum

algebra in quantum mechanics, 46
ladder operators, 47

anomalous magnetic moment, 172
antineutrino–quark scattering, 313
antiparticles, 96

Dirac sea interpretation, 96
Feynman–Stückelberg interpretation, 97
in Feynman diagrams, 126
operators acting on spinors, 101
spinors, 98

antiquarks
isospin representation, 221

asymmetry
A+− for neutral kaons, 390
AKS

CP for neutral B-mesons, 401
ALR, 457
forward-backward, 136, 439

asymptotic freedom, 253, 259
ATLAS experiment, 6, 279, 490, 505
axial vector, 289

B-meson
b-tagging, 24
CP violation, 400
mass eigenstates, 396
mixing, 395

b-tagging, 24
BaBar experiment, 370, 398
barn (unit of area), 30
baryogenesis, 365
baryon, 11

decuplet, 233
∆, 182, 220
list of low mass states, 523

magnetic moments, 236
mass formula, 234
octet, 233
wavefunctions, 215, 219, 232

baryonic matter density, 502
Belle experiment, 370, 398
Belle-II experiment, 508
Beta (β)-decay

GF from, 366
parity violation in, 290

Bethe–Bloch equation, 13
Big Bang baryogenesis, 365
bilinear covariants, 290, 520
Bjorken x, 179
Bjorken scaling, 185, 193
Born approximation, 60, 167
bottomonium, 262, 271
box diagrams, 372, 379, 392
branching ratio, definition, 66
Breit–Wigner resonance, 430
∆-baryons, 182

Bremsstrahlung, 18

Cabibbo mixing, 366
Cabibbo–Kobayashi–Maskawa matrix, 368
Callan–Gross relation, 185, 193
calorimeters, 20, 21
CDF experiment, 278, 370, 400, 448, 455
CDHS experiment, 319
CELLO experiment, 261
centre-of-mass energy, 26
Čerenkov radiation, 17, 332
CERN, 279, 319, 360, 378, 386, 428, 434, 490
charge conjugation

neutral kaons, 372
neutrinos, 347
operator for, 102

charge radius of proton, 175
charmonium, 262, 271, 400
chiral eigenstates, 141

and the fermion mass term, 485
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chiral projection operators, 141
chirality, 140

in electron–quark scattering, 187
in weak interaction, 293
relation to helicity, 143

chromomagnetic interaction, 231
CKM matrix, 368
classical electromagnetism, 525
CMS experiment, 6, 281, 490, 505
CNGS experiment, 360
COBE satellite, 502
cold dark matter, 502
colliders

future linear collider, 508
HERA, 199, 324
KEKB b-factory, 398
LEP, 257, 263, 428, 434
LHC, 6, 202, 264, 279, 490, 505
PEP2 b-factory, 398
PETRA, 136, 261
SLC, 441
Tevatron, 202, 279, 447, 450

colour
charge, 245
colour averaged sum, 268
colour factors, 265
colour trace, 271
confinement of, 248, 250
for antiquarks, 269
singlet states, 250
singlet wavefunction, 250

commutation relations, 45
Compact Linear Collider (CLIC), 508
compatible observables, 45
completeness relations

for fermions, 144
massive gauge bosons, 530
photons, 533

confinement of colour, 248
constituent masses, 235
contact interaction, 296
continuity equation, 42

covariant form, 91
contravariant four-vector, see four-vectors
cosmic microwave background, 502
cosmological constant, 502
coulomb gauge, 528
coulomb potential, 121
coupling constant, 8

running of α, 254
running of αS , 257

weak charged-current, 297
covariance of the Dirac equation, 517
covariant derivative, 467, 539
covariant four-vector, see four-vectors
CP conjugate fields, 494
CP eigenstates

neutral kaons, 372
CP operation, 347
CP violation, 508

B-meson, 400
connection to PMNS matrix, 351
in leptonic decays of neutral kaons,

391
in neutrino oscillations, 347
in the early Universe, 364
unitarity triangle, 403

CPLEAR experiment, 386
CPT symmetry, 348, 381
critical energy, 18
cross section

calculations, 70
definition, 69
differential, 72
master formulae, 77
neutrino scattering, 315

crossing symmetry, 155
current

of QED, 123
current masses, 235

d’Alembertian, 38
D0 experiment, 370, 448, 455
dark energy, 502
dark matter, 501
Daya Bay experiment, 353
decay rates, 66

branching ratios, 66
master formula, 77
partial decay rates, 66
two-body decays, 66

decuplet of baryon states, 233
deep inelastic scattering, 178, 183

kinematic variables, 179
of neutrinos, 317
parton model, 189
structure functions, 184

DELPHI experiment, 434
∆ baryon, 182, 220
density of states, 53, 58
DESY, 136, 199
DGLAP equations, 202
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differential cross section
definition, 72

dipole function, 175
Dirac, 82
Dirac delta-function, 512
Dirac equation, 82

adjoint spinor, 91
covariance, 517
covariant form, 89
four-vector current, 91, 520
free particle solutions, 93
in momentum, 99
Lagrangian density, 465
magnetic moment, 89
probability, 85
spin, 86, 88
total angular momentum, 88

Dirac mass term, 494
Dirac sea, 96
Dirac spinors, 84

for antiparticles, 98
for particles at rest, 93
helicity states, 104, 108
Lorentz transformation of, 519
normalisation, 101
parity, 108
spin states, 104

Dirac–Pauli representation, 84
double β-decay, 509
Drell–Yan, 276

elastic scattering
electron–proton, 160
form factors, 166
kinematics, 171
of neutrinos, 333

electromagnetic calorimeters, 20
electromagnetic showers, 19
electron–deuterium scattering, 205
e+e− pair production process, 19
electron–positron annihilation, 128

close to threshold, 152
cross section, 135
differential cross section, 136
Lorentz-invariant matrix element,

137
matrix element, 130
quantum chromodynamics in, 259
Rµ, 261
resonances in, 262
trace method, 150

electron–proton scattering, 160
form factor, 166
Mott limit, 165
relativistic, 168
Rosenbluth formula, 171
Rutherford limit, 161
weak charged current, 324

electron–quark scattering, 153
differential cross section, 186

electroweak unification, 408, 418
Euler–Lagrange equation, 462
exchange symmetry, 218
experiments

ALEPH, 434
ATLAS, 6, 279, 490, 505
BaBar, 370, 398
Belle, 370, 398
Belle-II, 508
CDF, 278, 370, 400, 448, 455
CDHS, 319
CELLO, 261
CMS, 6, 281, 490, 505
CNGS, 360
CPLEAR, 386
D0, 370, 448, 455
Daya Bay, 353
DELPHI, 434
e−p scattering at SLAC, 185, 195, 197
GALLEX, 332
H1, 199, 325
Homestake, 331
JADE, 136
KamLAND, 356
KTeV, 378, 388
L3, 446
LHCb, 400, 404, 508
MINOS, 358
NA48, 378
NuTeV, 323
OPAL, 257, 263, 434, 441
OPERA, 360
RENO, 355
SAGE, 332
SLD, 441
SNO, 333
Super-Kamiokande, 330, 332, 363
T2K, 360, 363
TWIST, 303
ZEUS, 199
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FCNC, see flavour changing neutral current
Fermi constant, GF, 297
Fermi theory, 296

of β-decay, 296
Fermi’s golden rule, 58, 63, 114

derivation, 50
Fermilab, 323, 358, 378
fermion masses, 501
Feynman, 189
Feynman diagrams, 9, 118

antiparticles, 126
interference, 129

Feynman gauge, 534
Feynman rules, 124

for QCD, 247
for QED, 124
massive propagator, 295
weak charged-current, 293
weak neutral-current, 423

Feynman–Stückelberg interpretation, 97
field strength tensor, 465
fine structure constant, 8
flavour changing neutral current, 367
flavour symmetry, 211
form factor, 166

examples of, 168
forward–backward asymmetry, 439
four-vectors, 34

contravariant, 35
covariant, 35
current, 91, 123
four-derivative, 37
four-momentum, 36

fundamental fermions, 4
fundamental forces, 5

galactic rotation curves, 502
GALLEX, 332
gamma-matrices, 89

anticommutation relations, 90
Dirac–Pauli representation, 90
γ5, 140
properties, 90

gauge boson
self-interactions, 542

gauge field, 243
gauge invariance, 242

Higgs mechanism, 475
non-Abelian, 538
SU(2)L, 415
SU(3) of QCD, 243

U(1)Y of weak hypercharge, 418
U(1) of QED, 243

gauge theory
non-Abelian, 468

Gell-Mann matrices, 225
generations of fermions, 2
generators, 208

SU(2), 212
SU(3), 225

GF, 297
GIM mechanism, 367
Glashow, Salam and Weinberg, 408, 418
gluons, 247

in e+e− annihilation, 263
self-interactions, 248, 543
three-jet events, 263

Goldstone boson, 474
Grand Unification, 506
Gross–Llewellyn-Smith sum rule, 324
GSW, see Glashow, Salam and Weinberg
gyromagnetic ratio, 517

H1 experiment, 199
hadron calorimeters, 21
hadron–hadron collisions, 264, 274

Higgs production, 490
hadronisation, 252
hadrons, 4, 11

list of low mass states, 523
Hamiltonian

of QED, 122
Heaviside–Lorentz units, 32
helicity, 105

amplitudes, 132
conservation, 144
in electron–quark scattering, 188
in pion decay, 298
relation to chirality, 143

HERA ep collider, 199, 324
hierarchy

of neutrino masses, 346
hierarchy problem, 505
Higgs boson, 6

branching ratios, 489
decays, 487
discovery, 490
mass, 493
mass from electroweak measurements,

455
production at the LHC, 490
two Higgs doublet model, 507



550 Index

Higgs field, 478
Higgs mechanism, 470

fermion masses, 486
Higgs production

in e+e− collisions, 498
in hadron–hadron collisions, 490

higher-order diagrams, 128
homestake experiment, 331
hypercharge

in SU(3) flavour symmetry, 225
weak, 418

hyperfine splitting, 231

inelastic scattering, 178
inelasticity, 180
infinite momentum frame, 189
initial state radiation, 435
interaction length, 21
interference
γ-Z in e+e− annihilation, 430
in e+e− →W+W−, 414
in neutrino interactions, 427

International Linear Collider (ILC), 508
intrinsic parity, 110
invariant mass, 37

reconstruction, 445
inverse β-decay, 353
ionisation energy loss, 13
isoscalar target, 318
isospin, 213

in nuclear physics, 211
isospin symmetry in deep inelastic

scattering, 195
ladder operators, 214
representation of antiquarks, 221

J/ψ meson, 262
JADE experiment, 136
jets

hadronisation, 252
in e+e− annihilation, 263
particle content, 24
three- and four-jet events, 263

KamLAND experiment, 356
kaons, see neutral kaons
KEK, 398
KEKB collider, 398
kinematic variables

in inelastic scattering, 181

Klein–Gordon equation, 80
Lagrangian density, 464
probability density, 82

KTeV experiment, 378, 388

L3 experiment, 434, 446
ladder operators, 214

angular momentum, 47
Lagrangian

density, 462
density in QFT, 461
for spin-0 fields, 464
for spin-1 fields, 466
for spin-half fields, 465
for the electromagnetic field, 466
ΛCDM, 502
lattice QCD, 249, 253
LEP e+e− collider, 257, 263, 428, 434
lepton number, 509
lepton universality

of the weak charged-current, 309
leptonic current

in QED, 133
leptons, 4
LHC pp collider, 6, 202, 264, 490, 505

jet production at, 279
LHCb experiment, 400, 404, 508
Lie algebra, 213
light meson states, 222
lightest supersymmetric particle, 505
LIPS, see Lorentz-invariant phase space
local gauge principle, 242
long-baseline neutrino experiments, 357
Lorentz invariance, 35
Lorentz-invariant

flux, 71
matrix element, 63, 116
phase space, 62, 65

Lorentz transformation, 33
of Dirac spinors, 519

Lorenz gauge, 526
LSP, 505
luminosity

instantaneous, 26
integrated, 26

magnetic moment, 89
of a Dirac fermion, 517
of baryons, 236

Majorana mass, 495
Majorana neutrinos, 508
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Mandelstam variables, 39, 189
mass eigenstates

B-mesons, 396
neutral gauge bosons, 482
neutral kaons, 383
neutrinos, 336

mass hierarchy of neutrinos, 346
mass matrix

for Dirac and Majorana neutrinos, 496
Higgs mechanism, 481
neutral kaons, 380

mass-shell, 117
meson mass formula, 230
mesons, 11

B0/B0, 395
bottomonium, 271
charmonium, 271
η, 230
η′, 230, 232
J/ψ, 262
KS /KL, 375, 383
list of low mass states, 523
neutral kaons, 371
ω, 230, 262
φ, 230, 262
π±, 230

weak decay, 298
π0, 230
ρ decay, 12
ρ0, 230, 262
Υ(4S ), 398
Υ, 262

metric tensor, 36
Michel parameters, 303
minimum ionising particle, 15
MINOS experiment, 358
missing momentum, 23
momentum conservation

from translational invariance, 210
Mott scattering, 165
multiplets

baryon, 234, 241
baryon decuplet/octet, 234
meson singlet/octet, 232

muon
decay, 307

NA48 experiment, 378
natural units, 31
negative energy states, 81
neutral-current, see weak neutral-current

neutral kaons, 371
branching ratios, 377
CP eigenstates, 372
decays to pions, 373
effective Hamiltonian, 379
quantum mechanical mixing, 378
strangeness oscillations, 384

neutralino, 503, 504
neutrino

beams, 309
deep inelastic scattering, 317
differential cross section, 315
flavours, 329
interaction thresholds, 351
Majorana mass, 495
mass and weak eigenstates, 336
masses and mass hierarchy, 346
neutrino–nucleon cross section, 321
number of generations, 438
right-handed, 494
scattering, 309

structure functions, 322
solar neutrinos, 330

neutrino oscillations, 329
C, P, CP and CPT, 347
three-flavours, 342
two-flavour, 338

neutrino–quark scattering, 311
neutrinoless double β-decay, 509
neutron

magnetic moment, 237
Noether’s theorem, 209, 467, 536
non-Abelian, 468
non-Abelian gauge invariance, 538
non-Abelian gauge theory, 244
non-relativistic QCD, 272
non-relativistic quantum mechanics, 40
normalisation

of Dirac spinors, 101
of wavefunctions, 60

ν in inelastic scattering, 180
nuclear interaction length, 21
nuclear magneton, 236
nucleon, 211
NuTeV experiment, 323

octet of baryon states, 233
OPAL experiment, 257, 263, 434, 441
OPERA experiment, 360
operators in quantum mechanics, 40
organic scintillators, 16
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parity, 108, 285
conservation in QED and QCD, 287
intrinsic, 110
operator, 109
violation in β-decay, 290
violation in the weak interaction, 293

partial widths, 66
particle accelerators

list of, 26
particle exchange, 114
particle identification, 23
particle lifetimes

examples of, 13
parton distribution functions, 192

determination of, 202
measurement of, 193

parton model, 189
Pauli spin matrices, 84, 212
PDF, see parton distribution functions
PEP2 collider, 398
periodic boundary conditions, 60
perturbation expansion, 129
perturbation theory, 114, 128

time-ordered, 115
PETRA e+e− collider, 136, 260
phase space

Lorentz-invariant, 65
non-relativistic, 60

photon
polarisation states, 122, 527
propagator, 533
self-energy, 255

pion decay, 298
Planck scale, 505
PMNS matrix, 342, 349
polarisation

massive gauge bosons, 528
photons, 527
W bosons, 408

polarisation sums, 530
pp cycle in Sun, 331
principle of least action, 463
probability density/current

Dirac equation, 85
Klein–Gordon equation, 81
Schrödinger equation, 43

Proca equation, 529
Proca Lagrangian, 466
projection operators

chiral, 141
particle/antiparticle, 158

propagator, 118

in ep scattering, 325
photon, 533
W-boson, 295, 445

proper lifetime, 66
proton

anomalous magnetic moment, 172
charge radius, 175
form factors, 175
magnetic moment, 237
PDFs from a global fit, 202
PDFs from neutrino scattering, 323
structure of, 160
wavefunction, 220

pseudorapidity, 275
pseudoscalar mesons, 229

Q2, 179
QCD, 242

as a gauge interaction, 243
asymptotic freedom, 253, 259
colour factors, 265
colour potential, 271
gluon self-interactions, 542
in hadron–hadron collisions, 264
non-relativistic potential, 272
parity conservation, 288
running of αS , 253

QED, 121
as a gauge interaction, 243
calculations, 128
Drell–Yan process, 276
Feynman rules, 124
Hamiltonian, 122
interaction potential, 122
Lagrangian, 468
parity conservation, 288
running of α, 257

Quantum Field Theory, 118, 461
quantum loop corrections, 449
quantum mechanics

angular momentum, 46
compatible observables, 45
continuity equation, 42
de Broglie hypothesis, 40
ladder operators, 47
non-relativistic, 40
operators, 40
Planck–Einstein postulate, 40
probability density/current, 42
stationary states, 44
time dependence, 43
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quantum numbers, 45
quark

constituent masses, 232
current masses, 3
flavours, 4
model, 215
sea quarks, 197
upper limit on size of, 200
valence quarks, 197

quark–parton model, 189

radiation length, 19
rapidity, 275
reactor neutrino experiments, 353
relativistic quantum mechanics, 80
relativistic rise, 14
relativity, see special relativity
RENO experiment, 355
renormalisation

in QCD, 257
in QED, 254

resonances
baryon, 523
in e+e− annihilation, 262
in electron–proton scattering, 182
Z-boson, 430

right-handed neutrinos, 494
rosenbluth formula, 171
rotation curves of galaxies, 502
running coupling constant, 253

grand unification, 506
Rutherford scattering, 161

SAGE, 332
Sakharov, 365
Salam–Weinberg model, 480
scalar

interaction, 116
scaling variables

x, 179
scaling violations, 201
Schrödinger equation, 41, 80
scintillation detectors, 16
sea quarks, 197
seesaw mechanism, 346, 495
shower

electromagnetic, 19
hadronic, 21

silicon detector, 16
silicon microvertex detectors, 25
singlet

colour, 250

isospin, 216
weak isospin, 415

SLAC, 185, 195, 197, 398
SLC e+e− collider, 441
SLD experiment, 441
SNO experiment, 333
solar neutrinos, 330
space-like, 120
sparticles, 504
special relativity, 33

four-vectors, 34
Lorentz invariance, 35
Lorentz transformation, 33
notation, 38

spin
from the Dirac equation, 86
in e+e− annihilation, 139
wavefunction of three quarks, 218

spin sums
in e+e− annihilation, 130
trace formalism, 146
virtual photon, 533

spontaneous symmetry breaking, 471
Standard Model, 1, 499

fermions, 2
forces, 5
parameters, 500
vertices, 7

static potential, 120
stationary states, 44
strangeness oscillations, 384
structure constants, 244, 538
structure functions, 184, 322
Super-Kamiokande experiment, 330, 332, 363
supersymmetry, 493, 504
symmetry, 207

generators of, 208
in quantum mechanics, 207
SU(2) flavour, 211
SU(2)L of the weak interaction, 415
SU(3) flavour, 223
SU(3) of colour, 244
U(1), 212
U(1) of QED, 242
U(1) of weak hypercharge, 418

T2K experiment, 360, 363
tau-lepton

decay and lifetime, 307
decays, 23

tau polarisation, 458
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Tevatron pp collider, 202, 279, 447, 450
‘t Hooft, 460
time dependence in quantum mechanics,

43
time-like, 119
time-ordered perturbation theory, 115
time-reversal symmetry, 348
top quark, 450

decay of, 450
mass, 455
Yukawa coupling, 486

total angular momentum, 88
trace

colour factor, 271
techniques, 144
theorems, 149

tracking detectors, 15
transition matrix element, 51, 58
TWIST experiment, 303

uncertainty principle, 46
unitarity

in neutrino mixing, 343
unitarity triangle, 403
unitarity violation

in e+e− →W+W−, 414
in WLWL →WLWL, 460

unitary gauge, 478
unitary transformation, 207
units, 30

Heaviside–Lorentz, 32
natural units, 31

Υ meson, 262

V–A, 290
experimental evidence, 303

vacuum expectation value, 471
valence quarks, 196
vector mesons, 229
Vertex

Standard Model, 7
vertex

Higgs-W, 483
Higgs-fermion, 487
QCD, 246
QED, 124
weak charged current, 293
weak neutral-current, 423

vertex detectors, 24
virtual particles, 118

W boson
branching ratios, 413, 443
decays, 408
mass, 448
pair production, 442
propagator, 295, 445
width, 448

Ward identity, 255
Water Čerenkov detectors, 332
wave packet, 340
wavefunction normalisation

non-relativistic, 60
relativistic, 63

weak charged-current, 285
coupling constant, 297
leptons, 307, 337
quarks, 365
weak eigenstates

neutrinos, 336
quarks, 368

weak hypercharge, 418
formula, 420

weak interaction, see weak charged-current
weak isospin, 415
weak mixing angle, 426

from Higgs mechanism, 483
weak neutral-current, 417

in electron-proton scattering, 327
Weyl spinor, 84
WIMP, 503
WMAP, 502
Wolfenstein parameterisation, 371

measurements, 404

x, see Bjorken x

y in inelastic scattering, 180
Yang–Mills fields, 542
Yukawa coupling, 485
Yukawa potential, 121

Z boson
branching ratios, 426
couplings, 421
decays, 424
mass, 436
production in e+e− annihilation, 431
resonance, 430
width, 437

ZEUS experiment, 199



Pauli spin matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
and σ3 =

(
1 0
0 −1

)
.

γ-matrices (Dirac–Pauli representation)

γ0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, γ1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, γ2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 −i
0 0 i 0
0 i 0 0
−i 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, γ3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0
0 0 0 −1
−1 0 0 0

0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(γ0)2 = I, (γk)2 = −I; γ0† = γ0, γk† = −γk; {γ µ, γν} ≡ γ µγν + γνγ µ = 2gµν.

γ5 ≡ iγ0γ1γ2γ3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(γ5)2 = 1, γ5† = γ5, γ5γ µ = −γ µγ5.

Free particle solutions to the Dirac equation

ψu = u(p)e+i(p·x−Et) and ψv = v(p)e−i(p·x−Et),

Dirac u and v spinors (N=
√

E+m):

u1(p) = N

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
pz

E+m
px+ipy
E+m

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, u2(p) = N

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
1

px−ipy
E+m
−pz

E+m

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, v1(p) = N

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

px−ipy
E+m
−pz

E+m

0
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, v2(p) = N

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

pz

E+m
px+ipy
E+m

1
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Helicity spinors:

u↑(p) = N

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c
seiφ

p
E+m c
p

E+m seiφ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, u↓(p) = N

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−s
ceiφ

p
E+m s

− p
E+m ceiφ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, v↑(p) = N

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p
E+m s

− p
E+m ceiφ

−s
ceiφ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, v↓(p) = N

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p
E+m c
p

E+m seiφ

c
seiφ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Chiral spinors:

uR(p) =
√

E

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c
seiφ

c
seiφ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, uL(p) =

√
E

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−s
ceiφ

s
−ceiφ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, vR(p) =

√
E

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

s
−ceiφ

−s
ceiφ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and vL(p) =
√

E

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c
seiφ

c
seiφ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Natural units

!c = 197 MeV fm.



Lowest-order Feynman rules

External particles:

u
f

u
f

v
f

v

ϵm ϵmϵm∗ ϵm∗
g gγ γ

f

Propagators:

f g W/Z H

i
(g mqm-m) q 2

-igmν
d ab

q 2

-igmν -i (gmν-qmqν /m
2)

q 2-m2

i

q 2-m2

γ

Three-point vertices:

f

-iQ feg m g

q

W

νℓ

ℓ +

Z

f

cosqW

H

f

-imf 2mW
H

W
+ Z

ZW–

igmnmWgW igmnmZH cosqW

γ gs
2 lag m-i

gW gW

gW

(1 - g 5)g m-i -i (cV - cAg 5)g m

gW

2√
−1
2

−1
2

f

f

f

q

Standard Model relations:

gW = gZ cos θ =
e

sin θW
with sin2 θW ≈ 0.23146(12).

GF =

√
2g2

W
8m2

W
= 1.1663787(6) × 10−5 GeV−2.

mW = mZ cos θ = 1
2gWv and mH =

√
2λ v with v = 246 GeV.


